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Maxim SHEVELEV 

Conception assistée par ordinateur des modulateurs de 
polymérisation de la tubuline 

Résumé 

La protéine tubuline, cruciale pour la division cellulaire et le transport intracellulaire, est 
une cible clé dans la recherche sur le cancer et la neurodégénérescence. Les difficultés 
de synthèse et les propriétés pharmacologiques médiocres des agents existants ciblant 
la tubuline nécessitent de nouvelles découvertes. L'objectif de cette thèse était d'utiliser 
la conception de médicaments assistée par ordinateur pour identifier de nouvelles 
molécules qui ciblent des sites de liaison moins explorés et qui sont plus accessibles. La 
thèse a ciblé les sites peu étudiés de la maytansine, de la pironétine et du todalam avec 
des approches de criblage virtuel basées sur les ligands et la structure, et a conçu de 
nouvelles molécules pour le site de la colchicine en utilisant des technologies avancées 
d'apprentissage profond. La recherche a permis d'obtenir un total de 28 agents 
déstabilisateurs de microtubules nouveaux et structurellement diversifiés, ciblant les sites 
todalam, maytansine et colchicine. En outre, un logiciel d'analyse automatisée des 
images de microscope provenant d'expériences de diffraction de fibres de microtubules 
a été développé. 

Mots clés : criblage virtuel, apprentissage profond, les agents antitubulines 

Résumé en anglais 

The tubulin protein, crucial for cell division and intracellular transport, is a key target in 
cancer and neurodegeneration research. Synthetic challenges and poor pharmacological 
properties of existing tubulin-targeting agents necessitate new discoveries. The goal of 
this thesis was to use computer-aided drug design to identify novel molecules that target 
less explored binding sites and are more synthetically accessible. The thesis targeted the 
understudied maytansine, pironetin, and todalam sites with ligand- and structure-based 
virtual screening approaches, and designed new molecules for the colchicine site using 
advanced deep learning technologies. The research yielded a total of twenty-eight 
structurally diverse and novel microtubule-destabilizing agents targeting the todalam, 
maytansine, and colchicine sites. Moreover, a software for automated analysis of 
microscope images from microtubule fiber diffraction experiments was developed. 

Keywords: virtual screening, deep learning, microtubule-targeting agents 
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Résumé en français 

 

Introduction 

 

Cette thèse de doctorat fait partie du programme européen de formation doctorale appelé 

TubInTrain, qui réunit 13 doctorants de différents profils scientifiques pour étudier les 

microtubules (MT) et leur rôle dans les maladies neurodégénératives et la neurotoxicité. La 

complexité croissante de la recherche scientifique nécessite la collaboration de spécialistes de 

nombreux domaines. Au sein de ces collaborations interdisciplinaires, la chimie computationnelle 

joue un rôle crucial car elle rationalise l'incorporation de modèles computationnels, l'analyse des 

données et la vérification expérimentale, reliant ainsi le travail théorique et empirique. 

L'objectif central de cette thèse était de créer de nouveaux ligands de petites molécules qui 

modulent la polymérisation de la tubuline. Ce processus a fait appel à des méthodologies de 

conception de médicaments assistée par ordinateur pour faire avancer le processus de recherche et 

favoriser la collaboration entre les chimistes de synthèse, les biochimistes et les biologistes. Cette 

coopération interdisciplinaire a permis de trouver des solutions innovantes à des défis scientifiques 

complexes. 

Dans cette thèse de doctorat, le Chapitre 1 présente la biologie de la tubuline et des 

microtubules, en détaillant leurs attributs structurels, leur nature dynamique et leurs rôles 

fonctionnels. Il souligne également leur importance en tant que cibles thérapeutiques potentielles 

dans le traitement de maladies telles que les maladies neurodégénératives et le cancer. De plus, le 

Chapitre 1 offre un aperçu des principales techniques de conception et de modélisation moléculaire 

assistées par ordinateur utilisées dans le cadre de cette recherche. Le Chapitre 2 décrit les efforts 

de criblage virtuel effectués pour trouver de nouvelles petites molécules qui ciblent le site de 

liaison de la maytansine de la protéine tubuline. Dans ce chapitre, le criblage pharmacophore, le 

docking protéine-ligand et la conception de médicaments de novo basée sur la structure ont été 

utilisés pour concevoir et découvrir des petites molécules qui inhibent la polymérisation de la 

tubuline, qui peuvent être davantage exploitées pour concevoir de nouveaux agents anti-tubuline 

ciblant le site de liaison de la maytansine. Le Chapitre 3 décrit les efforts de criblage virtuel réalisés 

pour trouver de nouvelles petites molécules qui ciblent le site de liaison de la pironétine. Dans ce 

chapitre, en plus des techniques déjà mentionnées, nous avons mis en œuvre le concept de criblage 

virtuel basé sur le docking protéine-ligand et piloté par l'apprentissage automatique de grandes 

bases de données. Le Chapitre 4 décrit l'investigation du site de todalam, récemment découvert 

dans la tubuline α. Ce chapitre détaille comment les approches de conception moléculaire assistées 

par ordinateur ont été utilisées pour identifier des chémotypes alternatifs ciblant le site de todalam 
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afin de les exploiter davantage pour concevoir des ligands covalents supposés à ce site. Le Chapitre 

5 décrit l'application d'une approche de modélisation de relation quantitative structure à activité 

(modélisation QSAR) inverse pour la conception de novo de nouvelles petites molécules ciblant 

le site de liaison de la colchicine. Le Chapitre 6 décrit nos efforts pour enquêter sur l'applicabilité 

de l'approche d'apprentissage par transfert à l'apprentissage de représentations moléculaires utiles 

à partir de données moléculaires non étiquetées, et leur utilité dans la tâche de modélisation QSAR 

en aval. Le Chapitre 7 décrit l'étude de la dynamique conformationnelle de la protéine tubuline à 

l'aide de simulations de dynamique moléculaire accélérées dans le but de trouver d'éventuelles 

poches de liaison cryptiques à la surface de la tubuline. Enfin, le Chapitre 8 décrit le 

développement d'une application logicielle avec une interface utilisateur graphique, qui facilite et 

automatise l'analyse des résultats expérimentaux obtenus à partir d'expériences de diffraction des 

fibres de microtubules. 

Les études computationnelles décrites dans ce travail ont été menées à la fois à l'Université 

de Strasbourg, en France, et à l'Université de Barcelone, en Espagne. La synthèse organique, la 

cristallographie par diffraction des rayons X et les essais biologiques décrits dans cette thèse de 

doctorat ont été réalisés par d'autres collègues de TubInTrain dans d'autres institutions, notamment 

à l'Université de Milan, en Italie, à l'Institut Paul Scherrer, en Suisse, et au Consejo Superior De 

Investigaciones Cientificas, en Espagne. 

 

Chapitre 1. Contexte biologique et méthodologique 

 

La protéine tubuline est un complexe globulaire dimérique composé de deux sous-unités 

distinctes, connues sous le nom d'α-tubuline et de β-tubuline1. Ces sous-unités sont 

structurellement similaires et sont maintenues ensemble, tête-bêche, par des interactions 

longitudinales non covalentes. Cet hétérodimère constitue le composant fondamental des 

microtubules, un élément clé du cytosquelette de toutes les cellules eucaryotes1. Les microtubules 

sont essentiels pour une multitude de fonctions cellulaires, telles que la signalisation cellulaire, le 

maintien de la forme de la cellule, la facilitation des mouvements cellulaires, la division cellulaire 

et le contrôle du trafic intracellulaire sur de longues distances2. 

Les microtubules se développent en ajoutant un hétérodimère de tubuline avec une 

molécule de guanosine triphosphate (GTP) liée aux deux sites de liaison des nucléotides. Les 

microtubules se développent tête-bêche, en ajoutant toujours de l'α-tubuline à la β-tubuline 

exposée (Figure R-1). Cela conduit à une structure de microtubule polaire avec la β-tubuline à 

l'extrémité qui s'étend (l'extrémité plus du microtubule). L'incorporation du dimère de tubuline 

dans la structure du microtubule entraîne un changement de conformation (d'une géométrie courbe 
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à une géométrie droite), suivi de l'hydrolyse du GTP dans le monomère de β-tubuline. Une "coiffe 

de GTP" située à l'extrémité plus du microtubule, composée de dimères avec du GTP dans les deux 

sites, stabilise l'extrémité, empêchant la dépolymérisation. Lorsque le taux d'ajout de dimères 

dépasse celui de l'hydrolyse du GTP, il y a extension du microtubule ; dans le cas contraire, le 

microtubule subit une dégradation, également connue sous le nom de "catastrophe"1,2. 

 

Figure R-1. Schéma général de la formation des microtubules et de leur instabilité dynamique 

 

La dynamique du réseau de microtubules est influencée par les protéines associées aux 

microtubules (MAP), les modifications post-traductionnelles et les agents ciblant les microtubules 

(MTA). 

Les protéines associées aux microtubules (MAP) sont un ensemble diversifié de protéines 

qui régissent et guident l'instabilité dynamique des microtubules. Les MAP interagissent avec les 

microtubules pour réguler leur dynamique, leur stabilité et leur organisation. Leur rôle critique 

s'étend à de nombreux processus cellulaires. Les cellules eucaryotes comptent généralement plus 

de 100 protéines différentes qui se lient aux microtubules. La structure de la tubuline comprend 

un court C-terminal (~20 acides aminés) enrichi en acides glutamiques et aspartiques. Par 

conséquent, lorsque la tubuline s'assemble en microtubules, la surface de ces derniers porte une 

charge négative nette. Par conséquent, de nombreux MAPs, qui sont chargés positivement, se lient 

aux microtubules par le biais d'interactions électrostatiques. Les MAPs peuvent être classés en 

deux grandes catégories : ceux qui interagissent avec des hétérodimères de tubuline individuels et 

ceux qui se lient à des microtubules entièrement formés. En outre, les MAP peuvent augmenter ou 

diminuer la stabilité des microtubules, en favorisant ou en inhibant la polymérisation de la 

tubuline. 

Les MTA à forte concentration ont un impact sur la dynamique des microtubules de 

différentes manières, ce qui a conduit à les classer en deux groupes : les agents stabilisateurs des 
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microtubules (MSA), qui favorisent la polymérisation des microtubules et augmentent la stabilité 

de leur structure, et les agents déstabilisateurs des microtubules (MDA), qui empêchent 

l'assemblage des dimères dans les microtubules1. 

Les microtubules jouent un rôle essentiel dans le processus de mitose et participent à 

diverses opérations cellulaires. En raison de leur rôle central dans la division cellulaire, un 

processus indispensable à l'expansion et à la multiplication des cellules cancéreuses, les 

microtubules constituent une cible intéressante pour le traitement du cancer. Cependant, le 

problème des MTA est leur manque de spécificité, qui peut endommager des cellules saines, ce 

qui entraîne des effets secondaires graves. Dans le contexte des maladies neurodégénératives, les 

dysfonctionnements de la dynamique des microtubules neuronaux constituent un mécanisme 

causal fondamental, et les microtubules représentent donc une cible attrayante pour le traitement 

de ces maladies. La compréhension de la fonction des microtubules dans l'activité neuronale et la 

maladie peut grandement contribuer à la création de traitements efficaces pour les troubles 

neurologiques. Les méthodes informatiques peuvent être utilisées pour concevoir et créer des 

MTA en tant que sondes moléculaires, réduisant ainsi le temps, les dépenses et les risques associés 

au développement de nouveaux médicaments1. 

Les MTA se lient à la tubuline, entravant sa polymérisation, et peuvent être utilisés comme 

agents thérapeutiques dans le traitement du cancer et des maladies neurodégénératives. Ils sont 

également utiles à la recherche pour étudier la structure et la fonctionnalité des microtubules. Huit 

sites de liaison confirmés pour les MTA ont été identifiés sur la tubuline, dont cinq sur la β-tubuline 

(sites colchicine, taxane, vinca, peloruside/laulimalide et maytansine), un sur l'α-tubuline (site 

pironétine), un à l'interface intra-dimère (site gatorbuline) et un à l'interface inter-dimère (site 

todalam) (Figure R-2). 

 

Figure R-2. Différents sites de liaison de la tubuline et exemples de ligands associés 
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Les MTA induisent divers effets sur la polymérisation de la tubuline et la stabilité des 

microtubules en fonction du site spécifique auquel ils se lient1. Le paclitaxel, un MSA qui se lie 

au site taxane, renforce la stabilité des microtubules en facilitant la transition courbe-droite. Les 

ligands du site colchicine empêchent la compaction de la poche formée par les brins βS8 et βS9 

ainsi que les hélices βH8 et αH7, bloquant ainsi la transition courbe-droite nécessaire à 

l'assemblage des microtubules. Les ligands du site peloruside/laulimalide renforcent l'interaction 

entre les dimères de tubuline dans les protofilaments voisins au sein des microtubules. Les ligands 

du site vinca introduisent un "coin" à l'extrémité de croissance des microtubules, empêchant ainsi 

l'ajout de nouveaux hétérodimères de tubuline. Les ligands du site maytansine entravent 

l'assemblage des microtubules en suivant un mécanisme similaire. La pironétine se lie à une poche 

enfouie par attachement covalent à la Cys316, perturbant l'hélice αH8 et la boucle αT7. Todalam, 

le premier ligand de tubuline conçu rationnellement, empêche la formation de microtubules en 

formant un coin dans la structure de l'oligomère de tubuline. Le mécanisme d'action de la 

gatorbuline est actuellement à l'étude. 

Les MTA ont démontré leur puissance en tant que modulateurs de la croissance cellulaire 

et ont une importance pratique exceptionnelle (notamment les agents anticancéreux comme le 

paclitaxel, la vinblastine et la maytansine). Le réseau européen ITN TubInTrain a consacré des 

efforts considérables à la découverte systématique de nouveaux ligands de la tubuline. 

La conception moléculaire assistée par ordinateur est une méthodologie informatique qui 

exploite la modélisation et les simulations informatiques pour la conception et la découverte de 

nouvelles molécules3. Le criblage virtuel, une technique courante de la conception moléculaire 

assistée par ordinateur, implique la recherche de composés chimiques ayant une forte probabilité 

de se lier à une cible thérapeutique, généralement des protéines. Après l'identification de ligands 

potentiels par des techniques informatiques, il est nécessaire d'utiliser des méthodes 

expérimentales pour évaluer les molécules trouvées. Des techniques telles que la recherche de 

similitudes, la recherche de sous-structures, la modélisation pharmacophore, le docking protéine-

ligand, la modélisation QSAR et les simulations de dynamique moléculaire sont des exemples de 

méthodes de conception de médicaments assistée par ordinateur utilisées dans cette thèse de 

doctorat pour examiner les modes de liaison et les affinités d'une bibliothèque de composés 

virtuels. Ces instruments de calcul sont essentiels pour identifier et hiérarchiser les candidats 

moléculaires potentiels, réduire la durée et les dépenses associées au développement de petites 

molécules et améliorer le taux de réussite des "hits"3. 

La recherche de similitude4 est une méthode employée pour identifier les molécules ayant 

des propriétés similaires à celles de composés actifs connus. Elle repose sur le principe de la 

similarité moléculaire, selon lequel des molécules structurellement similaires sont statistiquement 
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susceptibles d'avoir des propriétés similaires. La recherche de similitude consiste à comparer les 

caractéristiques structurelles et chimiques de différentes molécules, le plus souvent à l'aide de 

fingerprints moléculaire, qui sont des représentations sous forme de chaînes de bits de la structure 

et des propriétés moléculaires. Chaque bit de l'empreinte digitale représente la présence ou 

l'absence d'une caractéristique structurelle particulière au sein de la molécule. Il est également 

possible d'utiliser d'autres descripteurs moléculaires. En classant les composés sur la base de leurs 

scores de similarité, la recherche par similarité permet de cribler efficacement de grandes 

bibliothèques de composés afin de trouver des médicaments candidats potentiels dès les premiers 

stades de la découverte de médicaments. Les mesures de similarité couramment utilisées 

comprennent le coefficient de Tanimoto, le coefficient de Dice, la distance euclidienne ou la 

distance de Manhattan. La combinaison idéale de descripteurs et de fonctions métriques est celle 

qui garantit la meilleure "conformité au comportement de voisinage"5. Il s'agit de minimiser les 

situations où des paires de composés semblent très similaires malgré des valeurs de propriétés 

différentes, connues sous le nom de "falaises de propriétés"5. 

La recherche de sous-structures6 est une opération fondamentale qui implique 

l'identification de fragments ou de motifs moléculaires spécifiques au sein de structures 

moléculaires plus larges. Les principes clés qui sous-tendent le concept de recherche de sous-

structures sont ancrés dans la théorie des graphes. Les molécules et leurs sous-structures peuvent 

être représentées comme des graphes, où les atomes sont des nœuds et les liaisons des arêtes. Le 

problème de la recherche de sous-structures est alors transformé en un problème d'isomorphisme 

de sous-graphes, qui consiste à trouver une correspondance biunivoque entre les nœuds et les 

arêtes du graphe de sous-structures et un sous-ensemble de nœuds et d'arêtes du graphe de 

molécules. La recherche de sous-structures est utilisée dans le cadre du criblage virtuel, car elle 

permet de filtrer et de sélectionner efficacement des composés à partir de grandes bases de données 

en fonction de la présence de groupes fonctionnels ou de sous-structures spécifiques. Cette 

méthode est particulièrement utile si l'on sait que certaines sous-structures sont liées à des 

propriétés souhaitables, telles que l'affinité de liaison avec une protéine cible. En identifiant les 

composés qui contiennent ces sous-structures, les chercheurs peuvent donner la priorité à certains 

composés pour des tests et des analyses plus poussés7. 

La modélisation des relations quantitatives structure-activité (QSAR)8 est une méthode qui 

établit une relation fonctionnelle entre un ensemble de descripteurs moléculaires et une propriété 

quantifiable d'une molécule. Ainsi, un modèle QSAR est une fonction ℱ  qui produit une 

estimation raisonnable d'une propriété cible 𝒴 à partir d'un ensemble de descripteurs moléculaires 

𝒟 , 𝒴 = ℱ 𝒟 . Les descripteurs peuvent être classés en descripteurs 1D, 2D et 3D, chacun 

capturant des aspects différents de la structure de la molécule. Les descripteurs 1D sont simples et 



 13 

comprennent des propriétés telles que le poids moléculaire, tandis que les descripteurs 2D 

capturent des informations topologiques ou de connectivité, et les descripteurs 3D reflètent 

l'arrangement spatial des atomes dans une molécule. Le processus de recherche de cette 

dépendance fonctionnelle s'appelle l'ajustement du modèle ou l'entraînement. 

Pour effectuer une modélisation QSAR, il faut disposer d'un ensemble de données 

comprenant les structures moléculaires et les propriétés expérimentales correspondantes8. Les 

données doivent être soigneusement contrôlées avant la modélisation, en veillant à supprimer les 

doublons, à normaliser la structure (transformation des formes tautomériques et de résonance en 

une seule forme, neutralisation des charges et élimination des petits fragments des sels), à vérifier 

l'exactitude des données et à transformer les données biologiques en une forme adaptée à la 

modélisation mathématique. 

En appliquant un modèle QSAR entraîné aux vecteurs de descripteurs de composés 

inconnus, il est possible de prédire leurs propriétés, ce qui s'avère utile aux premiers stades de la 

conception et de la découverte de médicaments pour identifier de nouveaux composés potentiels8. 

Une autre méthode importante utilisée dans ce travail est la modélisation du 

pharmacophore9. Un modèle de pharmacophore est un ensemble de caractéristiques stériques et 

électroniques essentielles d'un ligand qui assurent des interactions supramoléculaires optimales 

avec une cible biologique spécifique. Il existe plusieurs types de caractéristiques pharmacophores 

communes, notamment les accepteurs et les donneurs de liaisons hydrogène, les groupes chargés 

ou ionisables, les résidus hydrophobes et les anneaux aromatiques. Ces caractéristiques reflètent 

le concept de bioisostérisme, reconnaissant que différents groupes fonctionnels peuvent présenter 

des propriétés physicochimiques similaires9. 

Dans un modèle pharmacophore tridimensionnel10, les éléments ont des relations spatiales 

spécifiques les uns avec les autres, sous forme de distances ou de plages de distances entre les 

éléments. Les coordonnées spatiales des éléments sont généralement complétées par une région 

de tolérance sphérique pour tenir compte de la variabilité de la distance. 

La source des données pour générer un modèle pharmacophore peut varier. Il existe deux 

méthodes courantes : la modélisation basée sur la structure, qui se repose sur la structure 

tridimensionnelle d'un complexe ligand-protéine, et la modélisation basée sur le ligand, qui dépend 

uniquement des informations structurelles des composés actifs10. 

Avant le criblage10, chaque molécule d'une bibliothèque de composés est représentée par 

un ensemble de conformères, qui incluent potentiellement la géométrie bioactive supposée lors de 

l'interaction avec la protéine cible. Les correspondances entre le modèle pharmacophore et les 

conformères sont compilées dans une liste de résultats. Un système de scoring est ensuite utilisé 

pour classer les molécules de la liste de résultats. Ce score quantifie la qualité de la correspondance 
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entre chaque molécule et le modèle pharmacophore, fournissant une mesure de l'aptitude 

potentielle de chaque molécule en tant que candidat-médicament. 

Une autre méthode computationnelle qui a été déterminante pour ce travail est le docking 

protéine-ligand11. Le docking protéine-ligand est une méthode largement utilisée pour estimer la 

manière dont un ligand interagit avec un site de liaison protéique spécifique. Ce processus est 

essentiel pour comprendre les interactions récepteur-ligand et les mécanismes d'action des 

médicaments, car il permet de prédire la pose de liaison du ligand et d'estimer grossièrement son 

affinité de liaison. Un programme de docking comprend généralement deux éléments : l'algorithme 

d'échantillonnage conformationnel et la fonction de notation. L'algorithme d'échantillonnage est 

chargé de générer un grand nombre d'orientations et de conformations potentielles du ligand dans 

le site de liaison de la protéine. L'objectif d'une fonction de notation est alors de prédire l'affinité 

de liaison de chaque conformation du ligand à l'aide d'une fonction d'énergie empirique. Les 

méthodes protéine-ligand utilisées dans ce travail considéraient que le squelette de la protéine était 

rigide et ne tenaient pas compte de la flexibilité des chaînes latérales11. 

Le présent travail de doctorat a également étudié l'application de l'apprentissage profond 

aux tâches de la chemoinformatique. L'apprentissage profond s'est récemment imposé comme un 

outil puissant dans la découverte de médicaments, jouant un rôle central dans le processus8. Il est 

utilisé dans différentes tâches chimiques, par exemple la prédiction des interactions entre 

médicaments et cibles, la conception de médicaments de novo et la modélisation des relations 

quantitatives structure-activité (QSAR). L'importance de l'apprentissage profond dans le contexte 

de la découverte de médicaments réside, en particulier, dans sa capacité avancée à prédire les 

propriétés et les fonctions moléculaires, et à générer de manière automatisée des entités chimiques 

innovantes dotées des propriétés souhaitées.  

L'apprentissage par transfert, un concept de l'apprentissage automatique, a été appliqué à 

la découverte de médicaments pour relever le défi de l'identification de descripteurs appropriés 

pour les tâches de modélisation en aval. Par essence, l'apprentissage par transfert est une méthode 

qui consiste à adapter un modèle pré-entraîné à une tâche nouvelle, mais connexe. Il permet 

d'appliquer les connaissances acquises lors de la résolution d'un problème à un problème différent 

mais connexe. Cette méthode est particulièrement utile dans les situations où les données relatives 

à la tâche concernée sont rares ou lorsque la tâche est trop complexe pour être apprise à partir de 

zéro.  

Le processus d'apprentissage par transfert dans la découverte de médicaments comporte 

deux étapes principales : la pré-entraînement et le réglage fin. Le pré-entraînement est la phase 

initiale au cours de laquelle un modèle est entraîné sur un grand ensemble de données afin 

d'apprendre une représentation générale des données. Dans le contexte de la découverte de 
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médicaments, la phase de pré-entraînement consiste à entraîner un modèle sur un grand ensemble 

de données afin d'apprendre des représentations générales des molécules. Cet objectif est atteint 

grâce à l'apprentissage auto-supervisé, où le modèle apprend à prédire certains aspects des données 

à partir d'autres parties des mêmes données. Pour ce faire, on utilise souvent l'apprentissage auto-

supervisé, où le modèle apprend à prédire des parties des données d'entrée à partir d'autres parties, 

ce qui lui permet d'apprendre des représentations utiles des données. Ce processus permet au 

modèle d'apprendre des représentations utiles des molécules sans avoir besoin de données 

étiquetées pour la tâche spécifique à accomplir.  

Après le pré-entraînement, le modèle subit un processus de réglage fin. Le réglage fin 

consiste à ajuster le modèle préapprenti pour le rendre plus adapté à la tâche spécifique à 

accomplir. Pour ce faire, la formation du modèle se poursuit sur les données de la tâche spécifique, 

ce qui permet au modèle d'adapter les représentations apprises aux caractéristiques spécifiques de 

la nouvelle tâche. Dans le contexte de la découverte de médicaments, le réglage fin peut contribuer 

à accroître les performances prédictives d'un modèle QSAR sur une tâche spécifique en adaptant 

les représentations moléculaires générales apprises lors du pré-entraînement aux propriétés 

spécifiques pertinentes pour la tâche QSAR en question.  

Pour mettre en œuvre avec succès l'apprentissage par transfert dans la découverte de 

médicaments, certaines conditions doivent être remplies. Tout d'abord, il faut disposer d'un vaste 

ensemble de données pour le préapprentissage afin d'apprendre les représentations moléculaires 

générales. Cet ensemble de données devrait idéalement couvrir un large éventail d'espaces 

chimiques. Deuxièmement, des données spécifiques à une tâche sont nécessaires pour affiner le 

modèle. Ces données doivent être pertinentes pour la tâche spécifique à accomplir et doivent 

idéalement contenir des exemples de propriétés ou d'activités spécifiques que le modèle doit 

prédire. Enfin, un modèle d'apprentissage profond approprié, capable d'apprendre à partir des 

données de préformation et de s'adapter aux données de mise au point, est nécessaire. Ce modèle 

doit être capable d'apprendre des modèles et des relations complexes dans les données, et doit être 

suffisamment flexible pour adapter les représentations apprises à la tâche spécifique.  

L'apprentissage par transfert offre une approche prometteuse pour relever le défi de 

l'identification de descripteurs appropriés pour les tâches de modélisation en aval dans la 

découverte de médicaments. En tirant parti de la puissance de l'apprentissage profond et du concept 

d'apprentissage par transfert, il est possible d'apprendre des représentations moléculaires utiles à 

partir de grands ensembles de données et d'adapter ces représentations à des tâches spécifiques, 

améliorant ainsi la performance prédictive des modèles dans la découverte de médicaments. 
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Chapitre 2. Découverte de possibles agents déstabilisateurs de microtubules ciblant le site de la 

maytansine 

 

La polymérisation de la tubuline, un processus essentiel à la fonction cellulaire, implique 

l'alignement des unités α- et β-tubuline. Une étape critique de ce processus est l'interaction d'une 

boucle spécifique de la sous-unité α-tubuline avec une cavité unique de la sous-unité β-tubuline. 

La perturbation de cette interaction, par exemple par la liaison de molécules comme la maytansine 

et ses analogues à la cavité de la β-tubuline, inhibe la polymérisation de la tubuline1. Malgré leur 

activité inhibitrice connue, l'application pratique des ligands ciblant le site de la maytansine est 

limitée en raison de leur synthèse complexe, de leur coût élevé et de leur extrême cytotoxicité12. 

Notre étude visait à utiliser des techniques de chimie computationnelle pour identifier des 

molécules plus accessibles et moins cytotoxiques qui pourraient cibler le site de liaison de la 

maytansine (Figure R-3). 

 

Figure R-3. Le site de liaison de la maytansine et certains ligands qui le ciblent 

 

Notre projet a commencé par une évaluation des données disponibles. Nous avons constaté 

que la base de données ChEMBL13, qui contient des composés médicamenteux et leurs résultats 

d'essais biologiques, ne contenait pas d'essais biologiques spécifiques sur les molécules ciblant le 

site de la maytansine. Par conséquent, nos données de lancement provenaient de plusieurs 

structures cristallines PDB obtenues à partir de la base de données PDB du RCSB14. 

Afin d'établir une structure de base pour la modélisation pharmacophore, nous avons 

réalisé une expérience de re-docking, un processus qui consiste à re-docker un ligand connu dans 

son récepteur natif. Pour ce faire, nous avons extrait des ligands natifs de toutes les structures PDB 

pertinentes, généré des conformations aléatoires pour ces ligands et les avons redocké dans le site 
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de liaison. Le ligand maytansinol de la structure 7E4Z a été redocké avec l'écart quadratique moyen 

le plus faible, ce qui indique que notre logiciel de docking pouvait reproduire correctement son 

mode de liaison. Par conséquent, nous l'avons choisie comme structure de base pour la 

construction automatisée d'un modèle pharmacophore avec le logiciel LigandScout10. Le modèle 

obtenu contenait cinq caractéristiques et classait correctement les autres dérivés du maytansinol 

co-cristallisés avec la tubuline comme actifs. 

Nous avons criblé deux bibliothèques : ChEMBL (version 24, avec 1,5 million de 

molécules) et la Enamine High-Throughput Collection (contenant 2,7 millions de composés à 

l'époque). Les bibliothèques ont été standardisées à l'aide d'un pipeline interne basé sur 

ChemAxon, et 200 et 25 conformations ont été calculées pour chaque composé dans les 

bibliothèques ChEMBL et Enamine, respectivement. Le calcul des conformations a assuré la 

diversité entre les poses calculées dans une fourchette de 1.5 Å de RMSD. 

Après le criblage pharmacophore, les molécules sélectionnées ont fait l'objet d'un docking 

rigide avec le logiciel PLANTS15, le site de liaison étant dérivé de la structure PDB 7E4Z. Le 

ligand et la protéine ont été préparés avec SPORES15, et les meilleures poses ont été réévaluées à 

l'aide du modèle pharmacophore. 

Le criblage de la bibliothèque ChEMBL a mis en évidence la glycibridine, un produit naturel qui 

correspondait au modèle pharmacophore du maytansinol et qui présentait un score favorable dans 

le site de liaison de la maytansine. Après avoir généré tous les dérivés possibles et comparé leurs 

scores d'amarrage et leurs modes de liaison potentiels, nous avons déterminé que la structure 

originale était l'option la plus appropriée. Cependant, la synthèse de cette molécule a échoué.  

Le criblage de la bibliothèque d'énamines a donné 11 molécules potentielles. Parmi celles-

ci, deux composés ont montré une légère diminution de la polymérisation de la tubuline dans l'essai 

de polymérisation des microtubules in vitro, indiquant des interactions potentielles avec la tubuline 

ou les microtubules (Figure R-4). Cependant, la cristallographie aux rayons X n'a détecté aucune 

liaison entre ces molécules et la tubuline.  

La complexité des molécules macrocycliques qui se lient au site de la maytansine provient 

de leur origine en tant que produits naturels, ce qui entraîne des processus de synthèse compliqués, 

qui entravent l'exploration et l'exploitation efficaces de ce site de liaison. Nous avons donc voulu 

étudier l'application des techniques de conception moléculaire de novo afin d'utiliser leur potentiel 

pour générer de nouvelles molécules3. Cependant, un inconvénient commun à ces méthodes est 

que la génération de molécules chimiquement valables néglige souvent les aspects pratiques et 

financiers de leur synthèse. Cette limitation souligne la nécessité d'un mécanisme de contrôle de 

la faisabilité chimique dans les méthodes de conception de novo
3. 
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Pour relever ce défi, il faut introduire un score d'accessibilité synthétique dans le pipeline 

de conception de novo. Une façon d'y parvenir est d'utiliser une approche de synthèse en amont. 

La tâche de prédiction de la synthèse en amont (également connue sous le nom de tâche de la 

prédiction de la réaction) consiste à trouver une chaîne de réactions chimiques synthétiquement 

valide appliquée à un nombre limité de blocs de construction chimiques facilement disponibles 

qui produisent la molécule cible requise, générant ainsi son arbre de synthèse. Cela contraste avec 

une approche rétrosynthétique plus couramment utilisée, dans laquelle la molécule cible est 

séquentiellement décomposée en petits fragments achetables. Les techniques de forward et de 

rétrosynthèse peuvent être mises en œuvre pour faciliter la génération de molécules de novo. Dans 

ce travail, nous avons mis en œuvre un pipeline de génération de molécules de novo basé sur la 

structure, qui utilise un outil interne capable de résoudre une tâche de prédiction de réaction en 

amont. 

Pour s'assurer que les molécules sont spécifiquement conçues pour le site de liaison, nous 

avons mis au point une implémentation de cette approche basée sur un algorithme génétique pour 

le docking protéine-ligand, en utilisant l'approche de synthèse en amont comme mesure de 

l'accessibilité chimique des molécules générées. Au lieu de générer la molécule cible, l'outil de 

synthèse directe l'utilise comme référence. L'objectif de la construction de l'arbre synthétique est 

d'optimiser à la fois le score d'ancrage des produits dans chaque nœud et la similarité avec le ligand 

de référence. Cette dernière exigence limite l'outil à l'exploration de l'espace des composés 

semblables à des médicaments. La sélection des fragments et des transformations chimiques à 

chaque étape est guidée par un algorithme génétique. Cela conduit à la génération de molécules 

qui sont (1) similaires au ligand connu jusqu'à une valeur seuil de similarité spécifiée par 

l'utilisateur, garantissant ainsi la similarité des molécules générées avec les médicaments ; et (2) 

qui produisent un bon score de docking dans le site de liaison. L'orientation du processus en 

fonction du score de docking permet de produire des molécules dont l'affinité prévue pour le site 

est améliorée. L'examen des transformations chimiques qui génèrent les molécules ayant le 

meilleur score d'amarrage nous permet de reconstruire leur voie de synthèse. Par conséquent, cet 

outil sert à la fois d'instrument de conception de novo basée sur la structure et d'instrument de 

synthèse à terme. 

Cette génération de novo de molécules adaptées au site de liaison de la maytansine, basée 

sur la structure, a donné à trois petites molécules. Grâce à la caractéristique unique de notre 

logiciel, nous avons pu extraire la séquence précise des éléments constitutifs et des transformations 

chimiques qui ont produit les molécules ayant le score de docking le plus élevé dans le site de 

liaison. L'évaluation des meilleures poses dockées de ces molécules ont révélé des caractéristiques 
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clés qui se chevauchent, ce qui est prometteur pour la synthèse et le développement futurs de ces 

molécules. 

Les travaux futurs se concentreront sur l'utilisation d'un logiciel du docking plus avancé 

qui peut prendre en compte le site superficiel exposé au solvant, le développement d'un modèle 

pharmacophore plus complet qui incorpore des caractéristiques d'autres dérivés du maytansinol 

disponibles dans la PDB, et la préparation de bibliothèques de criblage par le calcul de 

conformations supplémentaires. En outre, les efforts visant à synthétiser le produit naturel 

glycibridin B en vue de le tester se poursuivront. 

 

 

Figure R-4. Deux "hit molecules" qui montrent une certaine activité d'inhibition de la 

polymérisation des microtubules et leur mode d'action prédit 

 

Chapitre 3. Criblage virtuel de nouveaux inhibiteurs de la polymérisation de la tubuline ciblant 

le site de la pironétine 

 

Il est clair que perturber la polymérisation des microtubules en manipulant l'interaction 

entre la boucle spécifique d'une sous-unité d'α-tubuline et une cavité au sommet d'une sous-unité 

de β-tubuline constitue une approche stratégique pour la modulation de la dynamique des 

microtubules. Une opportunité intéressante se présente lorsque l'on considère la possibilité 

d'induire des changements de conformation dans la boucle elle-même, empêchant son placement 

dans la cavité. La pironétine (Figure R-5), un produit naturel isolé de Streptomyces sp. est connue 

pour provoquer ce déplacement en se liant à un site de liaison unique sur la sous-unité α-tubuline1. 

La pironétine se lie de manière covalente à une poche enfouie sur la sous-unité α-tubuline par une 

réaction d'addition de Michael avec un résidu cystéine à l'intérieur du site, près de la boucle 



 20 

essentielle pour la liaison intra-tubuline16. Cependant, la difficulté de sa synthèse, sa cytotoxicité 

élevée et le manque d'options d'optimisation abordables limitent ses applications cliniques17. Par 

conséquent, dans ce projet, nous avons cherché à utiliser des techniques de chimie 

computationnelle pour identifier des analogues de la pironétine abordables et facilement 

accessibles qui pourraient réguler la polymérisation de la tubuline en suivant un mécanisme de 

liaison similaire. 

 

 

Figure R-5. Le site de liaison de la pironétine 

 

Pour cette étude, nous avons employé des techniques de modélisation et de criblage 

pharmacophore, ainsi que des techniques d'amarrage protéine-ligand, afin d'identifier les 

molécules qui pourraient éventuellement se lier au site de la pironétine. Nous avons également mis 

en œuvre un pipeline de criblage virtuel efficace piloté par une prédiction itérative des scores de 

docking basée sur l'apprentissage automatique. Ce type de criblage itératif18 utilise des modèles 

de relations quantitatives structure-activité (QSAR) qui sont entraîné sur les scores de docking de 

sous-ensembles d'une chimiothèque (Figure R-6). Ces modèles se rapprochent du résultat de 

docking pour les entrées non traitées et éliminent les molécules défavorables de manière itérative. 

La mise en œuvre du criblage itératif dans ce projet a impliqué l'utilisation d'une méthode de 

machine à vecteur de support pour apprendre les scores de docking produits par le logiciel 

PLANTS sur la base de la structure 2D d'un composé représentée par les descripteurs ISIDA19. 
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Figure R-6. Aperçu des approches de criblage itératif basées sur l'apprentissage automatique 

 

Nos données initiales étaient constituées de deux structures PDB de la pironétine et de trois 

structures cristallines de petits fragments qui se sont liés à une cavité proche du site de liaison de 

la pironétine, publiées par nos collaborateurs20. Nous avons choisi la structure PDB 5FNV en 

raison de la meilleure résolution autour du ligand. Les modèles pharmacophores ont été générés 

automatiquement à partir des structures expérimentales par le logiciel LigandScout. Nous avons 

utilisé le Enamine High-Throughput Screening collection pour le criblage itératif et le criblage 

pharmacophore, ainsi que huit librairies Enamine plus petites et plus spécifiques. L'étape de 

préparation des chimiothèques a reflété notre approche dans le cadre du projet sur le site de la 

maytansine. Les hits virtuels identifiés ont été dockés dans le site de la pironétine et leurs scores 

de docking ont été comparés à ceux de la pironétine. Les 47 hits virtuels ont également été dockés 

dans le site de la colchicine à des fins d'analyse comparative. 

Bien qu'aucun des composés sélectionnés par le criblage virtuel n'ait été détecté dans le 

site de la pironétine par cristallographie aux rayons X, trois petits fragments trouvés ont démontré 

une activité significative de déstabilisation des microtubules lors d'essais de polymérisation des 

microtubules. En outre, deux molécules trouvés se sont liées au site de la colchicine. Des tests 

supplémentaires ont révélé que l'une de ces molécules présentait une préférence pour l'isotype βIII 

de la tubuline, un biomarqueur surexprimé chez les patients cancéreux, en particulier ceux qui sont 

résistants à d'autres types de médicaments anticancéreux ciblant la tubuline (Figure R-7). 
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Figure R-7. Le criblage virtuel a révélé trois petits fragments puissants et deux molécules qui se 

lient au site de liaison de la colchicine, dont l'une présente une certaine spécificité pour l'isotype 

βIII-tubuline, important dans le cancer. 

 

Chapitre 4. Découverte et conception d'agents ciblant le site todalam 

 

Récemment, Muhlethaler et al. ont rapporté la conception rationnelle d'un nouvel inhibiteur 

de tubuline appelé "Todalam", identifié par criblage de fragments21. La caractéristique innovante 

du todalam est son site de liaison unique situé à l'interface de deux unités de tubuline (Figure R-

8), à proximité du site de liaison de la pironétine et de la boucle de la sous-unité α-tubuline. Nous 

avons cherché à utiliser des outils de chimie computationnelle pour identifier de nouvelles 

molécules et de nouveaux échafaudages qui se lient à ce site, élargissant ainsi notre connaissance 

de la chimie de ce site de liaison et de la tubuline en général. 
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Figure R-8. Aperçu du site de liaison du todalam et de la structure du ligand du todalam 

 

Ce projet a fait appel à plusieurs techniques chémoinformatiques, notamment la 

modélisation et le criblage pharmacophore, le docking protéine-ligand, la recherche de similarité 

et de sous-structure, la recherche de similarité de site de liaison et le docking covalent.  PLANTS 

et AutoDock 4 a été utilisé pour les expériences de docking covalent et rigide, ainsi qu'AutoDock 

GPU22. 

Les données initiales se limitaient à une seule structure cristalline, PDB code 5SB7. La 

modélisation automatisée du pharmacophore a permis d'obtenir un modèle comportant huit 

caractéristiques. Le criblage pharmacophore a été effectué sur la bibliothèque HTS Enamine, la 

bibliothèque HTS Ambinter et une bibliothèque interne de composés triazoles. Les molécules 

identifiées ont été obtenues et soumises à la cristallographie aux rayons X et à des essais de 

déplacement de microtubules. Sur les 57 molécules trouvées par le criblage virtuel, 21 ont été 

confirmées comme se liant au site todalam par cristallographie aux rayons X, et trois d'entre elles 

ont également montré des effets dépolymérisants significatifs sur les microtubules. 

En raison de la proximité d'un résidu cystéine à la position de liaison du ligand, nous avons 

cherché à concevoir un liant covalent ciblant ce résidu. La création réussie d'un ligand réagissant 

de manière covalente avec le résidu cystéine dans ce site constituerait un composé inédit, qui 

pourrait servir de sonde moléculaire utile pour étudier la dynamique des microtubules in vivo. 

La réactivité du résidu cystéine a été évaluée à l'aide de diverses méthodes. Bien que toutes 

les méthodes indiquent une faible réactivité, nous avons émis l'hypothèse qu'un fragment 

organique suffisamment réactif, s'il est maintenu à proximité du résidu par un ligand bien lié, 



 24 

pourrait potentiellement réagir avec la cystéine. Une analyse exhaustive de la littérature a permis 

de dresser une liste de 32 fragments réactifs possibles. 

Nous avons identifié une liste d'échafaudages uniques dont il a été prouvé 

expérimentalement qu'ils se liaient bien au site todalam. En particulier, les molécules contenant 

l'échafaudage triazole ont démontré de bonnes propriétés de liaison. Profitant de la synthèse facile 

et rapide des triazoles par chimie click, nous avons recherché des fragments contenant un fragment 

réactif d'un côté et une triple liaison de l'autre pour synthétiser des triazoles intéressants. 

Nous avons découvert quelques fragments achetables convenant à la chimie click et avons 

dénombré des molécules de triazole avec ces fragments. Ces molécules ont été dockées à l'aide 

d'AutoDock et réévaluées à l'aide du modèle pharmacophore complet contenant huit 

caractéristiques pharmacophoriques. Un docking covalent a également été réalisé pour simuler la 

façon dont la pose changerait après une éventuelle réaction covalente. Parallèlement, nous avons 

également recherché des échafaudages de liaison connus contenant un fragment réactif 

convenablement situé à l'aide de l'outil SciFinder. Les molécules proposées ont été achetées, 

synthétisées et testées. Quelques molécules conçues se sont effectivement liées au site. Cependant, 

aucune réaction covalente n'a encore été observée. 

Grâce à ce projet, nous avons identifié 21 molécules cibles qui se lient au site de liaison de 

todalam (Figure R-9). Malgré les tentatives infructueuses de liaison covalente, ces résultats 

contribuent de manière significative à notre compréhension de l'inhibition de la polymérisation de 

la tubuline. Les efforts futurs pourraient impliquer une optimisation plus poussée des molécules 

les plus prometteuses afin d'améliorer les propriétés de déstabilisation des microtubules et 

d'obtenir une liaison covalente avec le résidu cystéine du site de todalam. 
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Figure R-9. Aperçu des molécules obtenues 

 

Chapitre 5. Conception de novo d'agents ciblant le site de la colchicine en utilisant l'approche 

QSAR inverse 

 

Le site de liaison de la colchicine, une poche profonde située à l'interface entre les sous-

unités α et β de l'hétérodimère tubuline, joue un rôle important dans les changements de 

conformation qui se produisent pendant l'assemblage des microtubules (Figure R-10). La liaison 

d'un ligand à ce site inhibant ainsi la formation des microtubules. La plupart des agents connus se 

liant au site de la colchicine ont des profils pharmacologiques peu satisfaisants et sont des dérivés 

d'un nombre limité d'échafaudages, ce qui limite la diversité23. L'objectif de ce projet était de 

concevoir de nouveaux agents de liaison au site de liaison de la colchicine en mettant l'accent sur 

la diversification des échafaudages connus en utilisant la méthodologie QSAR inverse24. 



 26 

 

Figure R-10. Le site de liaison de la colchicine 

 

Au lieu de prédire la propriété d'une molécule donnée sur la base des valeurs des 

descripteurs moléculaires, la QSAR inverse concerne la conception de nouvelles molécules ayant 

des propriétés spécifiques souhaitées en s'appuyant sur les relations entre les structures 

moléculaires et leurs activités établies par les modèles QSAR (Figure R-11). Dans cette étude, 

nous avons utilisé un auto-encodeur conditionnel basé sur l'attention de Bort et al24. Ce type de 

modèle apprend la distribution des composés dans l'espace chimique défini par les descripteurs 

moléculaires et permet l'échantillonnage de molécules à partir de graines spécifiées dans cet espace 

latent. Le modèle autoencodeur a été entraîné sur l'ensemble de la base de données ChEMBL (v 

26, 1,8 million de composés) pour apprendre à reconstruire des structures moléculaires valides à 

partir de descripteurs moléculaires. 

 

 

Figure R-11. Aperçu des différences entre les approches QSAR classiques et les approches 

QSAR inverses 
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Pour déterminer les valeurs des descripteurs ISIDA qui sont en corrélation avec l'activité 

souhaitée, un modèle QSAR de régression a été entraîné sur les valeurs IC50 de 379 composés 

ciblant le site de la colchicine contre les cellules HeLa25. L'algorithme de la forêt d'arbres 

décisionnels a été employé pour l'entraînement, et les données ont été standardisées comme décrit 

précédemment. Un modèle à validation croisée performant avec R2 de 0.68 a été utilisé pour cribler 

la collection de composés de la bibliothèque phénotypique d'Enamine. Le domaine d'applicabilité 

du modèle a été évalué par la méthode de la boîte englobante, ce qui a permis de réduire le nombre 

de composés à 421 sur les 5760 initiaux. Ces composés ont été standardisés et codés de la même 

manière que les données d'apprentissage, et leurs valeurs IC50 prédites contre les cellules HeLa 

ont été déterminées. Les 15 molécules présentant les meilleures valeurs prédites de IC50 ont été 

sélectionnées pour un examen plus approfondi. 

Les 15 composés les plus actifs prédits ont servi de molécules de graines pour la génération 

de novo. L'introduction d'un petit bruit aléatoire dans la représentation des descripteurs a permis 

la variabilité, ce qui a abouti à la génération de 782 composés uniques, présentant tous des 

caractéristiques structurelles compatibles avec la liaison au site de la colchicine et des valeurs IC50 

prédites élevées contre les cellules HeLa. 

Pour classer par ordre de priorité certains des composés générés, on a réalisé un docking 

protéine-ligand contre le site de la colchicine de la structure PDB de la tubuline 1SA0. Les 

molécules qui ont obtenu des scores de docking supérieurs à ceux du ligand natif ont été 

sélectionnées, ce qui a permis d'obtenir 50 molécules ayant obtenu les meilleurs scores.  

Étant donné qu'aucun de ces composés ne pouvait être obtenu directement auprès d'un 

fournisseur et que la synthèse organique était irréalisable, une recherche de similarité a été 

effectuée pour trouver des molécules analogues dans les bibliothèques de composés achetables, en 

utilisant un score de Tanimoto de 0.8 ou plus comme critère de similarité (Figure R-12). 

Malheureusement, les composés achetés, qui sont des analogues structurels proches des molécules 

générées de novo, ne présentaient pas de liaison au site de la colchicine ni d'activité de 

dépolymérisation des microtubules, testés respectivement par cristallographie aux rayons X et par 

essai de dépolymérisation des microtubules in vitro. 
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Figure R-12. Comparaison de la structure moléculaire et des valeurs pIC50 prédites contre les 

cellules HeLa des molécules générées de novo et de leurs analogues disponibles à l'achat 

 

Chapitre 6. Evaluation de l'applicabilité du concept d'apprentissage par transfert pour la 

modélisation QSAR 

 

Les modèles QSAR permettent d'établir une corrélation entre les structures chimiques et 

leurs propriétés. Une étape critique de ce processus consiste à représenter les molécules sous forme 

de vecteurs numériques à l'aide de divers descripteurs moléculaires. La sélection des descripteurs 

est essentielle pour développer des modèles prédictifs performants, mais l'ensemble optimal de 

descripteurs n'est généralement pas connu a priori. Les choix sont souvent dictés par l'intuition 

d'un expert ou par des pipelines complexes de sélection d'ensembles de descripteurs. Malgré cela, 

l'optimalité du jeu de descripteurs final n'est pas garantie. L'objectif de ce projet était de vérifier si 

l'apprentissage par transfert, un concept qui gagne du terrain dans le domaine de l'apprentissage 

profond, pouvait être exploité pour apprendre des représentations moléculaires significatives pour 

une tâche à accomplir. 

L'apprentissage par transfert implique généralement des étapes de pré-entraînement, 

peaufinage et de prédiction (Figure R-13). Le pré-entraînement consiste à apprendre des 

représentations moléculaires utiles à partir d'un vaste ensemble de données moléculaires de 

manière autosupervisée. Un plus petit ensemble de données est ensuite utilisé pour le peaufinage, 

où les représentations apprises sont ajustées de bout en bout pour faire correspondre la structure 

moléculaire d'entrée à la propriété cible. Ces représentations affinées peuvent potentiellement 

améliorer les performances prédictives lorsqu'elles sont extraites de modèles affinés en vue d'une 

utilisation ultérieure. Pour cette étude, nous avons utilisé GROVER de Rong et al.26, un outil qui 

met en œuvre toutes les étapes du pipeline d'apprentissage par transfert avec une interface pratique. 
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Figure R-13. Aperçu du concept d'apprentissage par transfert 

 

Nous avons trouvé les paramètres optimaux de la méthode et nous avons les appliqué à une 

étude de cas axée sur la classification de l'activité des composés ciblant le site de la colchicine. 

Nous avons utilisé un ensemble de données comprenant 766 points de données de structures 

moléculaires avec des étiquettes d'activité correspondantes pour une tâche de classification 

binaire25. 

La méthodologie d'apprentissage par transfert de GROVER démontre des performances 

comparables à celles de la méthode de pointe de la machine à vecteur de support sur les 

descripteurs ISIDA (Figure R-14). Elle surpasse la référence de base établie par une forêt d'arbres 

decisionelle sur les descripteurs physico-chimiques. Par conséquent, l'apprentissage par transfert 

présente des performances compétitives par rapport aux principales méthodologies actuelles et 

peut être encore optimisé en combinant les représentations apprises avec d'autres descripteurs. Les 

travaux futurs pourraient explorer un schéma de validation croisée plus robuste afin d'améliorer 

encore cette approche. 

 

Figure R-14. Performance de classification de quatre modèles différents sur des données de 

structure-activité associées au site de la colchicine 
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Chapitre 7. Exploration de poches de liaison cryptiques dans la tubuline à l'aide de simulations 

de dynamique moléculaire accélérées par la gaussienne 

 

Les protéines sont des entités dynamiques qui subissent continuellement des changements 

de conformation. Ce dynamisme est étroitement lié à la fonction biologique des protéines. La 

nature dynamique des protéines donne lieu à des poches de liaison cryptiques. Les poches de 

liaison cryptiques sont des sites de liaison dans les protéines qui ne sont pas toujours présents dans 

la structure de la protéine, mais qui émergent pendant une courte période en raison de changements 

de conformation intrinsèques à la protéine ou induits par un ligand (Figure R-15). Elles offrent des 

possibilités uniques pour le développement de médicaments27. 

 

 

Figure R-15. Représentation schématique de deux mécanismes possibles de formation de poches 

cryptiques (adapté de Kuzmanic et al.27) 

 

Les simulations computationnelles jouent un rôle crucial dans l'identification de ces poches 

cryptiques. Les méthodes computationnelles telles que les simulations de dynamique moléculaire 

peuvent capturer les changements de conformation de la protéine au fil du temps, révélant ainsi 

les poches transitoires. Cependant, les approches conventionnelles des simulations de dynamique 

moléculaire ne peuvent pas échantillonner efficacement de nombreux changements de 

conformation biologiquement pertinents lorsqu'il s'agit de systèmes qui ont des barrières 

énergétiques élevées sur leurs surfaces d'énergie potentielle, car le système peut rester piégé dans 

des minima locaux pendant de longues périodes27. 

Une façon de surmonter cette limitation est d'utiliser une technique d'échantillonnage 

améliorée, telle que la dynamique moléculaire accélérée par la gaussienne (GaMD)28. La GaMD 

introduit un potentiel d'accélération harmonique sur la surface d'énergie potentielle du système, ce 

qui lisse efficacement le paysage énergétique et facilite les transitions conformationnelles28.  

L'objectif de ce projet était donc d'utiliser la GaMD pour simuler la dynamique conformationnelle 

de la protéine tubuline et d'identifier les poches cryptiques potentielles à sa surface. 
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À cette fin, nous avons préparé le système de simulation en récupérant la structure 

tridimensionnelle de l'hétérodimère α,β-tubuline dans le dossier 7E4Z de la Protein Data Bank et 

en supprimant toutes les molécules de solvant et les petites molécules organiques, à l'exception du 

GTP. Nous avons conservé les ions manganèse. Nous avons supprimé toutes les chaînes à 

l'exception des chaînes C et D, correspondant aux parties α-tubuline et β-tubuline de 

l'hétérodimère. La protéine préparée a été immergée dans une boîte cubique remplie de molécules 

d'eau TIP3P équilibrées. Pour neutraliser le système, certaines molécules d'eau ont été remplacées 

par des ions Na+ ou Cl-. Le module LEaP du logiciel AMBER18 a été utilisé pour corriger les 

problèmes de protonation et les atomes manquants. 

Après la préparation du système, la minimisation de l'énergie a été effectuée par étapes. 

Après la minimisation, le système a été équilibré. Ensuite, nous avons effectué trois cycles de 

production de 1 µs. Tous les calculs ont été effectués à l'aide du code PMEMD (Particle Mesh 

Ewald Molecular Dynamics) du logiciel AMBER18 dans sa version CUDA, en utilisant le champ 

de force AMBER ff14SB. 

Après la simulation, nous avons calculé les valeurs RMSD et RMSF. Cette analyse a 

montré que le système a atteint une stabilité structurelle après une brève période de stabilisation. 

Nous avons ensuite utilisé l'analyse en composantes principales pour déterminer les 

principales variations structurelles du système étudié. Nous avons ensuite projeté chaque 

instantané de trajectoire MD sur les deux composantes principales présentant la variance expliquée 

la plus élevée. Nous avons montré que chacune des trois courses GaMD explorait des sections 

distinctes de l'espace conformationnel. 

Ensuite, nous avons identifié des conformations distinctes de la tubuline en classant les 

structures similaires de l'ensemble de la trajectoire de simulation en 15 groupes différents. Des 

structures représentatives de chaque groupe ont ensuite été utilisées pour identifier les points 

chauds à l'aide du serveur web FTMap29. Notre étude a révélé quatre nouvelles poches cryptiques, 

qui n'ont pas été identifiées auparavant par cristallographie aux rayons X ou par des simulations 

MD classiques, et qui ne sont pas connues pour héberger des ligands connus (Figure R-16). 
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Figure R-16. Localisation des poches cryptiques identifiées par FTMap 

 

Ces poches nouvellement identifiées peuvent constituer des cibles prometteuses pour les 

criblages de composés et les études d'amarrage. Toutefois, des recherches supplémentaires sont 

nécessaires pour comprendre pleinement ces sites de liaison. La pharmacocinétique des poches 

doit être évaluée pour toutes les poches identifiées. À l'avenir, nous avons l'intention d'explorer 

davantage ces nouvelles poches, en nous concentrant particulièrement sur leur potentiel en tant 

que cibles médicamenteuses. 

 

Chapitre 8. Développement d'une application graphique pour l'analyse automatique des images 

de diffraction des fibres de microtubules. 

 

L'interaction de petites molécules organiques avec la tubuline peut avoir un impact 

significatif sur les caractéristiques physiques des microtubules, notamment le rayon des 

microtubules, le nombre de protofilaments constitutifs et la longueur moyenne des monomères de 

tubuline dans la structure tubulaire. La diffraction des fibres de microtubules aux rayons X 

constitue une approche permettant d'étudier quantitativement ces changements30. 

La diffraction des fibres, une technique largement utilisée en biologie structurale, permet 

d'explorer la structure des filaments biologiques, en particulier des microtubules, dans des 

conditions physiologiques sans qu'il soit nécessaire de les fixer, de les cristalliser ou de les 

congeler30. Les échantillons étudiés sont souvent disposés, naturellement ou artificiellement, en 

une ligne de structures filamenteuses présentant un certain degré de régularité, de périodicité ou 

de structure hélicoïdale. La diffraction des fibres offre une compréhension structurelle plus 
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complète que les autres techniques basées sur la diffraction des rayons X, en fournissant des 

informations détaillées sur la périodicité longitudinale et l'espacement latéral des molécules à 

l'intérieur d'un filament arrangé30.  

Dans une expérience typique de diffraction de fibres de microtubules, les images de 

diffraction de fibres de rayons X sont capturées dans des lignes de faisceaux de rayonnement 

synchrotron31 (Figure R-17). Les rayons X diffractés sont recueillis par un détecteur, ce qui permet 

d'obtenir une seule image de diffraction par exposition au faisceau. En général, 16 à 24 images de 

diffraction sont collectées à partir de 4 à 6 échantillons indépendants pour une expérience donnée. 

En outre, des images de fond sont obtenues dans les mêmes conditions à l'aide d'une solution 

tampon. L'étape finale est l'étalonnage spatial, réalisé à l'aide de la diffraction de poudre d'Ag-

Behenate, qui prend en compte une diffusion élastique et fournit les distances au centre du faisceau 

des intensités de diffraction des vecteurs de diffusion31. 

 

Figure R-17. Montage expérimental d'une expérience de diffraction de fibres de microtubules 

 

Ainsi, les résultats d'une expérience typique de diffraction sur fibre de microtubules 

comprennent un fichier avec les paramètres du détecteur, un fichier d'étalonnage de l'expérience 

de diffraction sur poudre d'Ag-Behenate, les images de la solution tampon et, surtout, les 

diagrammes de diffraction des rayons X obtenus à partir de microtubules alignés en présence 

d'agents testés ciblant les microtubules31. 

L'analyse des images produites par les expériences de diffraction des rayons X sur les fibres 

de microtubules par flux de cisaillement implique le traitement des images, l'intégration numérique 

des données visuelles et l'approximation fonctionnelle des résultats de l'intégration (Figure R-18). 

En règle générale, cette analyse est manuelle et exige beaucoup de travail, ce qui nécessite 

l'utilisation de plusieurs applications spécialisées de traitement d'images et de données statistiques. 

La nécessité d'une analyse fastidieuse limitait le nombre d'expériences que les chercheurs 

pouvaient réaliser pendant le temps d'expérimentation très limité et coûteux dont ils disposaient 

sur les installations synchrotron.  
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Figure R-18. Résumé schématique de l'analyse des diagrammes de diffraction et des 

informations qui peuvent en être déduites 

 

Par conséquent, l'objectif de ce projet était de développer un programme d'analyse 

automatisée des images de diffraction des rayons X des fibres de microtubules avec une interface 

graphique simple d'utilisation qui augmenterait la vitesse de l'analyse et, par conséquent, 

permettrait de réaliser plus d'expériences plus rapidement, augmentant ainsi le rendement des 

expériences de diffraction des fibres de microtubules par les rayons X de l'écoulement cisaillé30,31. 

Nos efforts ont abouti à la création de FiDAT (Fiber Diffraction Analysis for 

microTubules), une application autonome qui rationalise les trois étapes de l'analyse des données 

expérimentales. Cette application est conçue pour être simple d'utilisation, ne nécessite pas 

d'expertise préalable et accélère de manière significative le débit de ces expériences. FiDAT est 

équipé pour gérer toutes les étapes de l'analyse des résultats des expériences de diffraction sur 

fibre, ce qui en fait une solution complète pour les chercheurs dans ce domaine. Le logiciel est 

fourni avec des paramètres par défaut préconfigurés, garantissant un traitement des données et un 

ajustement du modèle fiableы immédiatement. Cependant, nous avons également répondu aux 

besoins des utilisateurs experts en leur offrant la possibilité de personnaliser les paramètres pour 

chaque étape de l'analyse.  

L'efficacité de FiDAT a été validée par nos collègues du consortium TubInTrain. 

L'efficacité du processus d'analyse automatisé de FiDAT a non seulement facilité l'exécution 

d'expériences supplémentaires, mais a également permis aux chercheurs d'intégrer rapidement des 

idées nouvelles dans leur conception expérimentale. Cette adaptabilité en temps réel a permis une 

prise de décision sur place et une vérification immédiate des hypothèses, éliminant ainsi la 

nécessité d'une analyse manuelle longue et laborieuse.  
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À l'avenir, nous prévoyons d'améliorer encore FiDAT en résolvant des bogues mineurs liés 

au traçage d'images et en incorporant des fonctions d'enregistrement supplémentaires, comme l'ont 

suggéré nos collègues. Après cela, nous prévoyons également de publier FiDAT en tant que 

logiciel libre, rendant ainsi cet outil puissant accessible à la communauté scientifique dans son 

ensemble. En outre, la direction du synchrotron Alba à Barcelone, en Espagne, a manifesté un 

intérêt considérable pour l'intégration de FiDAT dans son ordinateur central. Une fois les 

améliorations prévues mises en œuvre, FiDAT sera mis à la disposition de tous les chercheurs du 

synchrotron en tant qu'outil par défaut, ce qui renforcera encore son rôle en tant qu'atout 

indispensable dans les expériences de diffraction des fibres de microtubules. 

 

Conclusion 

 

Cette thèse de recherche a abouti à la découverte d'une série de nouveaux composés qui 

ciblent différents sites de liaison sur la protéine tubuline, ouvrant la voie à des approches 

innovantes pour moduler la polymérisation de la tubuline. La première découverte importante 

comprend l'identification de deux molécules qui présentent une affinité possible pour le site de 

liaison de la maytansine. En outre, trois fragments actifs ont été découverts, démontrant un 

puissant effet inhibiteur sur la polymérisation des microtubules. Deux nouvelles molécules 

rentables ont été trouvées pour se lier au site de liaison de la colchicine, l'une d'entre elles montrant 

une spécificité pour l'isotype βIII-tubuline. Une découverte importante est l'identification de 21 

molécules qui ciblent le site todalam, jusqu'à présent peu étudié, ce qui enrichit considérablement 

notre compréhension de la diversité chimique de ce site de liaison. Parallèlement à ces découvertes, 

de nouvelles méthodologies d'apprentissage profond ont été développées et peuvent être utiles 

pour les recherches futures dans ce domaine. Par ailleurs, une analyse conformationnelle du 

système hétérodimère de la tubuline a été réalisée à l'aide d'une technique de dynamique 

moléculaire à échantillonnage amélioré, mettant en évidence quatre poches de liaison cryptiques 

précédemment inconnues à la surface de la tubuline. En outre, une interface utilisateur graphique 

(GUI) a été développée pour automatiser et rationaliser le processus d'analyse de la diffraction des 

microtubules. Les futurs efforts de recherche devraient se concentrer sur l'optimisation de ces 

composés prometteurs et sur l'affinement des méthodologies de modélisation utilisées dans cette 

étude. 
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Chapter 1. Bibliographic overview 

 

Humanity is facing several healthcare challenges, including cancer and neurodegenerative 

diseases. Cancer is a leading cause of death worldwide, accounting for nearly 10 million deaths in 

20201. The burden of cancer is projected to increase in the future, with a predicted 28.4 million 

new cancer cases and 13 million cancer-related deaths annually by 20401. Similarly, 

neurodegenerative diseases, in which neurons in the brain can no longer function properly causing 

loss of cognitive function (dementia), also cause significant morbidity and mortality. For instance, 

the World Health Organization estimated that in 2019, 55.2 million people worldwide were living 

with dementia, predicting a one and a half times rise in this number by 20302. Neurodegenerative 

diseases were estimated to cause 1.6 million deaths worldwide in 20192. Currently, there are no 

definitive cures for either of these conditions. 

The tubulin protein is a promising biological target for the development of therapies aimed 

at addressing the pathogenesis of both cancer and neurodegenerative diseases. Tubulin is present 

in all eukaryotic cells and plays a crucial role in regulating cell division and intracellular transport. 

Recent research efforts have focused on modulating the polymerization of tubulin as a way to 

influence the cellular processes involved in cancer and neurodegenerative diseases. 

Currently, despite promising research potential, tubulin-targeting agents have only been 

approved by FDA as a treatment for cancer, and not neurodegenerative diseases. Despite their 

effectiveness against malignant tumours, these agents are associated with high cytotoxicity and 

severe side effects, including peripheral neuropathy, hair loss, nausea, and vomiting, which further 

limit their clinical use3. Furthermore, most of the developed agents were designed to target only a 

small number of binding sites on tubulin, while several other binding sites remain largely 

unexplored. 

Given the limitations of existing tubulin-targeting agents, it is promising to develop novel 

and potent agents to overcome these challenges. The eventual aim is to develop more effective 

drugs for cancer and to explore their potential use in developing treatments for neurodegenerative 

diseases. Additionally, there is promise in designing new molecular probes to study tubulin 

behavior both in vitro and in vivo. 
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1.1. The structural dynamics of tubulin polymerization 

 

1.1.1. Structure of an individual α,β-tubulin unit 

The tubulin protein is a heterodimeric globular complex comprising two subunits, α-

tubulin and β-tubulin. Each of these subunits weighs approximately 50 kDa, resulting in a 

heterodimer with a total molecular weight of approximately 100 kDa4. This heterodimer serves as 

the fundamental building block of microtubules, which are integral to the cytoskeleton in all 

eukaryotic cells4. The α-tubulin and β-tubulin subunits are structurally similar and connect in a 

head-to-tail manner through non-covalent, longitudinal interactions5. Each subunit encases a core 

of two β sheets surrounded by α helices, and they both consist of 445-450 amino acids4,6. Figure 

1 shows the amino acid sequence of both tubulin subunits, labeling fragments of the sequence by 

the structural element they form. Throughout this thesis, we will refer to this designation when 

referring to specific structural elements of the tubulin protein. 

 

Figure 1. The amino acid sequence of both tubulin subunits (adapted from Löwe et al. 
7
) 

Both α-tubulin and β-tubulin subunits have a binding site for guanosine triphosphate 

(GTP), a molecule with a crucial role in energy transfer, as it stores and releases energy through 

the breakdown (hydrolysis) of its high-energy phosphate bonds5. In the α-tubulin subunit, the 

bound GTP is non-exchangeable and non-hydrolysable, making it an intrinsic part of the 

heterodimeric structure5. However, β-tubulin can bind either GTP or GDP and is the site of GTP 

hydrolysis, which is important for the protein’s biological function5,8. Figure 2a shows the 

quaternary structure of the tubulin protein with the nucleotide binding site highlighted, while 

Figure 2b has the structural elements colored by the secondary structure as designated in Figure 1. 
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Figure 2. (a) The structure of a single α,β-tubulin heterodimer; (b) The heterodimer's structural 

elements highlighted according to designation in Figure 1. Red – α-helices, blue – β-sheets, 

green – loops, purple – structurally important loops. 

Multiple isoforms of the tubulin heterodimers exist, as the human genome contains several 

α- and β-tubulin genes5. The amino acid sequence of tubulin is highly conserved throughout 

evolution, indicating that this sequence has remained largely unchanged over time, underscoring 

its biological importance and functionality4. At least six different types of tubulin isotypes are 

found in mammals, each performing subtly different functions in cells and tissues. Most 

differences between isotypes are localized within the last 15 residues of the sequences4,9. 

The α-β tubulin heterodimer undergoes post-translational modifications executed by a set 

of enzymes, which include polyglutamylation, polyglycylation, acetylation, and detyrosination9. 

Post-translational modifications occur after protein biosynthesis and often take place in the 

endoplasmic reticulum and the Golgi apparatus9. They are key mechanisms to increase proteomic 

diversity and play a fundamental role in functional proteomics by regulating protein activity, 

localization, and interaction with other cellular molecules, such as other proteins, nucleic acids, 

lipids, and cofactors6,9.  

Mutations in both α- and β-tubulin genes have implications in both cancer and 

neurodegeneration research9–11. As such, cancer cells are well-documented to develop resistance 

to tubulin-targeting chemotherapy treatment by upregulating specific tubulin isotypes, particularly 

βIII-tubulin12. At the same time, tubulin gene mutations disrupt normal neurodevelopment and are 

associated with a range of neurodevelopment disorders11. 
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1.1.2. Proto-filament formation mechanism 

Tubulin naturally aggregates into long, hollow, cylindrical biopolymers known as 

microtubules. Microtubules are composed of 13 parallel protofilaments, each of which is a 

longitudinal assembly of αβ-tubulin heterodimers arranged in a head-to-tail manner, ultimately 

folded into a tubular structure and held together by longitudinal and lateral contacts5,6. They are a 

crucial component of a cell’s cytoskeleton, playing an indispensable role in such biological 

processes as cell division and long-distance intracellular transport (e.g., along axons and dendrites 

in neurons). In the former, they are integral in forming the mitotic spindle, which aids in 

chromosome segregation during mitosis. In the latter, they provide the highways along which 

vesicles, organelles, and other cellular components move to facilitate normal cell functioning. 

The formation of a microtubule starts with the longitudinal assembly of tubulin dimers, 

forming extended chains6. These chains, referred to as protofilaments, act as the building blocks 

of the microtubule structure. 

The polymerization of tubulin into protofilaments is a GTP-dependent process. Only 

tubulin bound to GTP, rather than GDP, can undergo such polymerization5. This process starts 

with nucleation, a rate-limiting step wherein tubulin dimers randomly form proto-filaments 

through Brownian motion. Proto-filaments are elongated chains of tightly linked dimers, arrayed 

in a head-to-tail manner, meaning that the α-tubulin of one dimer is non-covalently bound to the 

β-tubulin of the preceding one (Figure 3)6. Consequently, a proto-filament always exposes α-

tubulin at one side (designated the minus (-) end) and β-tubulin at the opposite side (the plus (+) 

end). An interesting aspect of this polymerization is that the addition of new dimers typically 

occurs more rapidly at the plus end6. 

During tubulin polymerization, the GTP bound to β-tubulin undergoes hydrolysis as the 

polymer extends. This hydrolysis can occur concurrently with the addition of a new dimer or 

slightly afterward. To facilitate the addition of new dimers, it is critical for the growing polymer 

to maintain a 'GTP cap' – a layer of tubulin-GTP at the developing tip. Only tubulin-GTP can form 

stable structures, hence its vital role in tubulin polymerization. When the hydrolysis of GTP 

catches up with the polymer's growth, polymerization halts, and the structure begins to de-

polymerize, leading to separate tubulin units. This feature of tubulin-GDP also causes 

microtubules to slowly disassemble from the α-side in vitro, albeit at a slower rate than 

polymerization5,6. 
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Figure 3. A protofilament is made of individual tubulin heterodimers bound together in a head-

to-tail fashion. 

 

1.1.3. Microtubule formation mechanism 

When sufficient number of protofilaments is available, they stochastically come together 

and fold to form a microtubule. In the biological context, a microtubule is typically composed of 

13 protofilament chains, thereby shaping a nanotube with a diameter of approximately 25 nm. In 

laboratory conditions, the count of protofilaments in a microtubule can range from 11 to 15. 

Microtubules are the most rigid and straightest structural elements in most eukaryotic cells 6,13. 

The arrangement of protofilaments within the microtubule follows a helical pattern, 

forming a helix with a skew of 1.5 tubulin dimer units between the first and last chains at the seam 

line. This configuration allows the helix to complete one turn across three protofilament subunits5 

(Figure 4).  

 

Figure 4. Microtubule structure 
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Two types of bonds contribute to the structural integrity of the microtubule: longitudinal 

bonds that span each protofilament chain and lateral bonds that connect neighboring tubulin 

subunits (Figure 5). The longitudinal interface, similar to the one that links individual αβ-tubulin 

units, possesses high binding energy. Lateral bonds are formed between identical subunits, either 

α-tubulin to α-tubulin or β-tubulin to β-tubulin, with the exception of the seam where α-tubulin is 

adjacent to β-tubulin 5,8. 

 
Figure 5. Lateral and longitudinal contacts contribute to the microtubule stability 

Microtubules, being polar structures, expose α-tubulin at one end and β-tubulin at the other. 

Given the tight bonding within the microtubules, the addition or removal of tubulin dimers is 

typically restricted to the ends of the microtubule. This dynamic process, regulated by GTP 

hydrolysis and taking place predominantly at the microtubule's plus end, is referred to as dynamic 

instability
4,5. 

 

1.1.4. Dynamic instability of microtubules 

Microtubule dynamic instability is a hallmark of eukaryotic cellular function, underpinned 

by intricate processes involving tubulin-GTP and tubulin-GDP dimers, and their respective roles 

in microtubule polymerization and depolymerization. This interplay of conformational changes 

and GTP hydrolysis drives the characteristic behavior of microtubules and shapes their functional 

role in the cell 5,14. 

Initial polymerization of microtubules is facilitated by a structure known as the GTP cap, 

composed of tubulin-GTP dimers. This cap stabilizes the microtubule, facilitating the addition of 
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further tubulin-GTP dimers. The cap results from the fact that the protofilaments that made up the 

microtubule had tubulin-GTP at their plus ends when folding into a microtubule. Tubulin-GTP 

dimers, which initially exhibit a curved conformation, are added to growing microtubule ends. 

Upon incorporation into microtubule lattices, these curved dimers undergo a gradual 

conformational transition towards a straighter structure, in line with the overall microtubule 

architecture. This is known as a “curved-to-straight” conformation change (Figure 6). The delay 

in GTP hydrolysis and phosphate release relative to microtubule growth allows the ends to 

maintain a GTP-tubulin cap, thus stabilizing the structure. Subsequent hydrolysis of the GTP in β-

tubulin units is a crucial step, notably slower in a free tubulin dimer compared to when the dimer 

is part of a microtubule5,8. 

 

Figure 6. Schematic representation of curved-to-straight conformational change
5
. 

The main shaft of the microtubule consists of tubulin-GDP dimers, and a random loss of 

the GTP cap induced by an imbalance between the hydrolysis rate and the addition of new tubulin-

GTP dimers, can cause rapid depolymerization, a process known as "catastrophe" (Figure 7). This 

is characterized by protofilaments dissociating from the microtubule shaft into tubulin-GDP 

dimers and small curved oligomers. In this event, the tubulin-GDP units assume a curved 

conformation that weakens the microtubule structure, leading to protofilament dissociation, and 

potential total microtubule disassembly. However, mechanisms exist for microtubule "rescue", 

whereby the structure can either stabilize itself or undergo reconstruction 5,15. 
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Figure 7. Schematic representation of microtubule growth and shrinkage 

There are two main hypotheses for the rescue process. The first postulates the existence of 

"GTP islands" within the microtubule structure, where β-tubulin remains unhydrolyzed during 

polymerization. In the event of a catastrophe, these GTP-rich regions provide the foundation for 

microtubule rebuilding. The second hypothesis suggests the intervention of specific proteins which 

can influence the GDP-tubulin within a disassembling microtubule, encouraging it to abandon its 

curved conformation and adopt a structure more akin to that of GTP-tubulin, thereby stabilizing 

the overall microtubule structure and facilitating the binding of GTP-tubulin to the microtubule 

tip16,17. 

Although the exact mechanisms of the rescue process remain under debate, it is universally 

recognized that the cyclical processes of catastrophe and rescue are integral to microtubule 

function. They enable spatial and temporal regulation of microtubule assembly and disassembly 

within the cell. The balance between these processes, including phases of growth, shortening, and 

pausing, defines the dynamic instability of microtubules. These processes enable microtubules to 

be constructed and deconstructed at different sites of the cell whenever necessary, regulated by 

complex cellular biochemical machinery5.  

 
1.2. Microtubules and intracellular transport 

1.2.1. Intracellular transport as part of normal cell functioning 

Microtubules are integral to the intricate network of intracellular transport, performing 

crucial roles in the delivery of vesicles and organelles to specific locations within the cell, thereby 

ensuring their proper function. These microtubule-based transport mechanisms also mediate the 

transfer of signaling proteins between different organelles. Cellular components or cargo 

molecules bind to designated motor proteins that traverse the length of the microtubules, directed 

to precise intracellular sites by regulatory proteins18. 
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The inherent polarity of microtubules facilitates bidirectional movement along their length. 

Special motor proteins can journey from the minus end to the plus end, a movement known as 

anterograde transport, which is oriented from the inner cellular space towards the cell periphery. 

Alternatively, they can move from the plus end towards the minus end, a process referred to as 

retrograde transport, which proceeds from the cell exterior towards its interior. This bidirectional 

transport is executed by two families of motor proteins: kinesins and dyneins, discussed in more 

detail below6,19. 

Neurons, the functional units of the brain responsible for processing and transmitting 

information via electrical and chemical signals, are particularly reliant on intracellular transport. 

Neurons comprise axons and dendrites, both of which are packed with microtubule assemblies. 

The polarity of these microtubules, specifically the orientation of their plus and minus ends, is of 

paramount importance. Within axons, all microtubules are aligned such that their minus ends point 

towards the cell body and their plus ends extend towards the axonal terminals. This arrangement 

serves as a microtubule highway, guiding the transport of specific proteins and vesicle-bound 

biological cargo to the dendrites20 (Figure 8). 

For instance, neurotransmitters, which are synthesized in the cell body near the nucleus, 

must traverse extensive distances to reach the axonal termini where they participate in synaptic 

transmission. It is along the microtubule routes that these vital molecules are transported from 

their point of origin to their site of action6. 

 

Figure 8. Microtubules are involved in intracellular transport 

Microtubules are not only indispensable for axonal transport but are also essential in other 

eukaryotic cells. They play a crucial role in intracellular transport by providing a structural 

framework that guides and facilitates the movement of cargo. This includes the transport of 

organelles, such as mitochondria and lysosomes, as well as vesicles carrying proteins and lipids, 
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to their required destinations within the cell. This ensures the proper localization of cellular 

components and allows for efficient cellular functioning18. 

 

1.2.2. Microtubule-associated proteins (MAPs)  

The intricate dynamics of microtubules is a characteristic that cells frequently exploit for their 

own functionality. This is made possible by an array of biochemical machinery within cells that 

governs and guides the dynamic instability of microtubules, a task primarily executed by 

microtubule-associated proteins (MAPs). As a diverse set of proteins, MAPs interact with 

microtubules to regulate their dynamics, stability, and organization. Their critical role extends to 

numerous cellular processes. The cellular composition typically includes more than 100 different 

microtubule-binding proteins6. 

The structure of the tubulin protein includes a short C-terminal (~20 amino acids) enriched 

with glutamic and aspartic acids. Therefore, when tubulin assembles into microtubules, the surface 

of the latter carries a net negative charge. As a result, many MAPs, which are positively charged, 

bind to microtubules via electrostatic interactions21. 

MAPs can be broadly categorized into two groups: those that interact with individual tubulin 

heterodimers, and those that engage with fully formed microtubules. 

A key representative of MAPs that interact with individual tubulin units is the γ-tubulin ring 

complex (γ-TuRC). Microtubule formation necessitates the interaction between numerous tubulin 

dimers, which, to occur spontaneously, demands an extraordinarily high concentration of free 

tubulin in one place - a condition challenging to meet in vivo. Therefore, additional factors are 

required to accelerate and induce microtubule nucleation. g-Tubulin, an isotype of tubulin, serves 

precisely this function: it acts as a nucleation site to foster the growth of microtubules. However, 

g-tubulin is usually found as part of a larger structure, the γ-TuRC, in all cells22. 

The γ-TuRC, a protein complex, initiates the formation of microtubules by providing a 

template for the polymerization of 13 protofilament microtubules (Figure 9). It consists of g-

tubulin molecules bound to various members of a g-tubulin complex protein family. The complex 

has a cone-like structure, with g-tubulin molecules arranged in a single-turn helix, which facilitates 

the addition of αβ-tubulin dimers from the cytosol. It does this by forming robust bonds with α-

tubulin and promoting lateral contacts between forming tubulin proto-filaments. When these 

proto-filaments reach a critical size, they rapidly polymerize into a microtubule filament, held 

together by their bonds with γ-TuRC. As γ-TuRC only binds to the α-tubulin subunit, the resulting 

microtubules retain their intrinsic polarity, with the unstable α-side (the minus pole) attached to 

and stabilized by the organizing center, and the reactive β-side (the plus pole) exposed towards the 
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cell. Furthermore, γ-TuRCs can bind to microtubules that have formed stochastically within the 

cell from the α-side, thereby anchoring them6,22. 

 

Figure 9. γ-TuRC is a nucleation center that promotes formation of microtubules with 13 

protofilaments. Image adapted from Alberts et al.
6
 

Stathmin is another example of a microtubule-associated protein modulating microtubule 

polymerization. Stathmin is a highly conserved 17 kDa protein that plays a crucial role in the 

regulation of the cell cytoskeleton. Unlike the γ-TuRC, stathmin binds to small oligomers of 

tubulin, inhibiting their further polymerization23. 

MAPs’ interactions with formed microtubules can be categorized into three broad classes: (1) 

those that promote microtubule polymerization, (2) those that induce microtubule disassembly, 

and (3) those that cross-link microtubules to form complex arrays (Figure 10). 

A representative of the first class is XMAP215. This protein belongs to a highly conserved 

group of MAPs, distinct due to their primary interaction with the growing-end (plus-end) of 

microtubules. This interaction places XMAP215 within the family of plus-end tracking proteins 

(+TIPs)24,25. 

In contrast, kinesin-13 serves as an example from the second class. Kinesin-13s are 

microtubule depolymerizing enzymes, thus promoting microtubule disassembly and playing a 

significant role in the catastrophe process6. 

The tau protein is an important member of the third class, known for its role in microtubule 

stabilization and cross-linking in human brain neurons. Tau helps stabilize neuronal microtubules, 

promoting axonal outgrowth and ensuring long-distance cargo trafficking in neurons for correct 

neuroactivity6. 

In summary, cells harbor a plethora of mechanisms to control microtubule dynamics, 

involving multiple signaling pathways and a multitude of proteins with specific roles. These 

diverse mechanisms highlight the cell's ability to fine-tune microtubule dynamics, facilitating the 

intricate processes of intracellular transport and cargo distribution. 
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Figure 10. Schematic overview of different types of microtubule-associated proteins
6
 

1.2.2. Motor proteins and their interaction with microtubules 

Motor proteins constitute a critical class of MAPs, with their primary function being the 

transportation of various cellular components along microtubules and contributing to the 

positioning of microtubules relative to each other. The fundamental architecture of motor proteins 

includes three core elements: the motor domain, the cargo-binding domain, and the linker chain 

between them. Despite the existence of many members within a given motor protein family, such 

as the 45 identified members of the kinesin family in humans, the motor domain remains conserved 

across them. In contrast, the cargo-binding domain is specialized to bind to specific cargo targets 
26. 

The intracellular transport of molecules and organelles facilitated by microtubules is a 

crucial process for many cellular functions, including cognitive processes. Here, motor proteins 

play a pivotal role, carrying out two key functions: (1) the transportation of cargo like organelles 

and macromolecules over long distances within the cell; (2) facilitating the sliding of microtubules 

relative to one another, thus enabling the specific arrangements of microtubules6. 

Motor proteins are primarily categorized into two types: kinesins and dyneins (Figure 11). 

These proteins traverse microtubules in different directions and possess distinct structural features. 

Kinesins have two motor units at the head of the structure and traverse microtubules from the 
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minus end to the plus end. In contrast, dyneins, being eight times larger than kinesins, comprise 

two motor units attached to each other and the cargo, and traverse microtubules from the plus end 

to the minus end 26. 

The mechanism of kinesin interaction with microtubules begins with the binding of the 

kinesin to the cargo it needs to transport. The motors then bind to a β-tubulin subunit in the 

microtubule, triggering a series of conformational changes that propel the motor protein forward 

along the microtubule. This process continues until the kinesin interacts with regulatory proteins 

that detach the cargo. Specifically, kinesins are involved in fast anterograde axonal transport, 

moving from minus to plus ends of a microtubule, carrying mitochondria, secretary vesicle 

precursors, and various synapse components to distant nerve terminals27. 

Conversely, dyneins move in the opposite direction to kinesins, from the plus end to the 

minus end of a microtubule. The structure of dynein motor proteins differs from kinesins, with 

each dynein protein consisting of two motor units attached to each other and the cargo. The precise 

mode of attachment remains unknown. Dynein transport operates through a process of stochastic 

binding and rebinding, which results in a worm-like movement pattern. Dynein family proteins 

are involved in retrograde axonal transport, moving from plus to minus ends of a microtubule27. 

 
Figure 11. Kinesin and dynein families of motor proteins have distinct mechanisms of traversing 

microtubules 

The significance of microtubules for the proper functioning of cells cannot be understated. 

As the primary conduits for intracellular transport, microtubules form an essential network within 

the cell. Their dynamic nature - characterized by constant growth and shrinkage - allows for the 

effective and timely delivery of various cellular components, from organelles to macromolecules, 
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to where they are needed most. This is achieved through the strategic regulation of their dynamics 

by the cell, using microtubule-associated proteins, including motor proteins primarily responsible 

for physical cargo transportation down the microtubules 6,26,27. 

Importantly, recent research has implicated microtubule dysfunction in neurodegenerative 

diseases in relation to the dysregulation of microtubule dynamics in unhealthy neurons, 

highlighting the importance of their further study. Thus, investigating microtubules’ dynamic 

behavior offers a promising avenue for gaining insights into not only the fundamental mechanisms 

of intracellular transport but also the pathogenesis of neurodegenerative diseases 10,11.  

 
1.3. Microtubules in cell division 

1.3.1. The cell cycle 

In eukaryotic organisms, the continuous process of cell division is central to both the 

survival and reproduction of the organism. This intricate process involves a carefully orchestrated 

series of events, governed by a combination of external stimuli and internal checkpoints. The 

ultimate aim of the cell cycle is to duplicate the DNA of each chromosome of the parent cell and 

distribute these copies to two daughter cells, ensuring that each newly formed cell possesses an 

identical genome to its predecessor28. 

Fundamentally, the cell division process in eukaryotes comprises two main phases: the 

Synthesis (S) phase and the Mitosis (M) phase. During the S phase, the cell duplicates its DNA, 

preparing for the subsequent division. This is a time-consuming process, often taking tens of hours 

to complete. Following the S phase is the M phase, which is characterized by the physical 

segregation of chromosomes into daughter nuclei, culminating in the formation of two genetically 

identical cells. Compared to the S phase, the M phase is relatively swift, often completed in less 

than an hour6. 

Intersecting the S and M phases are periods of pause, the Gap 1 (G1) and Gap 2 (G2) 

phases. These intervals allow the cell to assess internal conditions and respond to external signals, 

ensuring it is ready to proceed to the next stage of the cycle. Therefore, the eukaryotic cell cycle 

is traditionally divided into four sequential phases: G1, S, G2, and M. Collectively, the G1, S, and 

G2 phases are often referred to as the interphase6 (Figure 12). 

Several additional steps occur within the M phase, each reliant on the key driving force of 

microtubules. These steps include prophase, prometaphase, metaphase, and anaphase, all of which 

occur within the broader mitotic stage of the M phase. The active participation of microtubules 

during these stages highlights their critical role in cell division. The following sections will discuss 

these stages, shedding light on the fundamental importance of microtubules in the process of cell 

division6,28. 
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Figure 12. General scheme of cell division
6
 

1.3.2. Prophase 

In the initial stages of mitosis, the cell receives a signal to start replication, triggering a 

series of complex processes within the nucleus. At the crux of this process is the duplication of the 

DNA. During this phase, a chromosome splits into individual chromatids, and each chromatid is 

copied to form an identical pair. These pairs, referred to as sister chromatids, are bound together 

at a region known as the centromere. Each sister chromatid thus carries two identical copies of a 

chromosome, marking a successful completion of the DNA replication process during the 

Synthesis (S) phase of mitosis6. 

Simultaneously, the cell begins the process of centrosome duplication. Located adjacent to 

the nucleus, the centrosome serves as the primary microtubule-organizing center (MTOC) in most 

cells during interphase, nucleating the majority of the cell's cytoplasmic microtubules. As the cell 

enters the cell cycle, the centrosome duplicates, ensuring that two centrosomes are present by the 

onset of mitosis. This duplication is initiated in tandem with the cell's entry into the S phase, under 

the influence of proteins that trigger cell-cycle entry29. 

The centrosome, an organelle specialized for the nucleation of microtubules, is a distinct 

location within the cell from which microtubules emerge and spread (Figure 13). Comprising two 

tubular structures known as centrioles and a protein-rich pericentriolar material (PCM), the 

centrosome serves as the main MTOC in eukaryotic cells. The PCM plays a crucial role in efficient 

microtubule nucleation, recruiting multiprotein γ-tubulin ring complexes (γ-TuRCs) at its surface. 

These γ-TuRCs facilitate the nucleation of microtubules, with their minus ends anchored at the 

centrosome and their plus ends extending outwards, continually growing and shrinking to explore 

the cell’s three-dimensional volume. It is worth noting that although centrosomes are the most 

extensively studied MTOCs, any organelle can serve as an MTOC provided it recruits γ-TuRCs at 

its surface6,22,29. 
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Figure 13. The centrosome 

Following the initiation of microtubule formation by the centrosomes, the two closely 

located centrosomes require motor proteins from the cytoplasm for their distribution to opposite 

ends of the cell (Figure 14). This separation of the centrosomes forms the two poles of a complex 

protein structure known as the mitotic spindle6.  

 

Figure 14. Distribution of centrosomes 

The mitotic spindle is a bipolar network of highly dynamic microtubules, characterized by 

their minus ends oriented towards the poles and their plus ends directed outwards (Figure 15). This 

network of microtubules undergoes a significant transformation at the onset of mitosis, becoming 

far more dynamic than those present during interphase. This increased instability culminates in a 

remarkably dense and dynamic array of spindle microtubules, setting the stage for the subsequent 

steps of mitosis8. 

 

Figure 15. The mitotic spindle 
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The mitotic spindle is made of three primary types of microtubules: kinetochore, astral, 

and polar microtubules. Each type has distinct roles and characteristics, contributing to the 

orchestration of successful cell division6,8. 

Kinetochore microtubules play a pivotal role in chromosome segregation during the 

metaphase. They connect to kinetochores, large protein structures located at the centromere of 

each sister chromatid. This connection is established at the plus ends of the kinetochore 

microtubules during metaphase, effectively linking sister-chromatid pairs to the mitotic spindle. 

Each kinetochore forms a robust attachment with numerous microtubules, which are cross-linked 

to create substantial microtubule bundles. Overall, the kinetochore microtubules function to 

connect the chromosomes to the spindle via kinetochores, with each kinetochore accommodating 

the attachment of approximately 20-30 microtubules during metaphase8. 

Polar microtubules, also known as non-kinetochore microtubules, originate from opposing 

spindle poles and interact with each other through motor proteins. This interaction facilitates the 

separation and stabilization of the mitotic spindle. Despite their short and unstable nature, polar 

microtubules contribute to the structural integrity of the spindle. They are cross-linked by various 

proteins to form a dynamic scaffolding network, capable of adapting to ensure the stability of the 

spindle6. 

Finally, astral microtubules extend from the spindle poles towards the cell cortex. This 

outward radiation allows them to interact with the cell cortex, playing a vital role in spindle 

positioning within the cell. By maintaining contact with the cell cortex, astral microtubules assist 

in correctly situating the spindle, ensuring a successful execution of mitosis6. 

 

1.3.3. Prometaphase 

Prometaphase represents a pivotal shift in the process of mitosis, marked by the rupture of 

the nuclear envelope (Figure 16). This rupture liberates the sister chromatids, enabling their 

interaction with microtubules, and marking the start of their distribution within the cell. Once 

released, sister chromatids situated at the cell's center are readily seized by microtubules emanating 

from the mitotic spindle6. 

With the nuclear envelope now dissolved, a complex series of interactions is involved to 

position the sister chromatids precisely at the midpoint of the cell. This process relies heavily on 

a swarm of microtubules, which rapidly polymerize in the vicinity of the newly freed sister 

chromatids, as the latter create a suitable environment for nucleating microtubule polymerization6. 

Motor proteins play a vital role in this process as well, interacting with both the newly 

formed microtubules and released sister chromatids to facilitate their accurate positioning. A sister 

chromatid’s precise placement at the equatorial plate is achieved through the balanced 
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polymerization and depolymerization of microtubules. This intricate system involves regulatory 

microtubule-associated proteins to ensure the perfect alignment of sister chromatids at the cell's 

center18,21. 

To ensure such configuration, cells employ a mechanism known as the spindle assembly 

checkpoint. This surveillance system detects and corrects errors, promoting the accurate 

positioning of chromosomes. A multitude of proteins and mechanisms coordinate to secure the 

precise placement of chromosomes at the cell's midpoint30. 

As a result, prometaphase orchestrates the meticulous positioning of sister chromatids 

precisely at the center of the dividing cell, setting the stage for the subsequent steps of mitosis. 

 

Figure 16. Prometaphase 

1.3.4. Metaphase 

At the metaphase stage of mitosis, the sister chromatids, carrying crucial genetic material, 

have been meticulously positioned at the cell's center. This central placement facilitates their 

attachment to the microtubules, which marks the onset of one of the most critical steps in the cell 

division process6. 

Following the successful assembly of a bipolar microtubule array, the next major step 

involves this array's attachment to the sister chromatids. The spindle microtubules find their 

attachment points at each chromatid's kinetochore, a multilayered protein structure located at the 

chromatid's centromeric region. During metaphase, the plus ends of these kinetochore 

microtubules embed head-on into specialized attachment sites within the kinetochore's outer 

region (the Ndc80 protein complex, not reviewed here), the area most distant from the DNA31. 

This strategic attachment of the kinetochore protein complex to the microtubule creates an 

important linkage between the microtubule and the kinetochore and, by extension, the 

chromosome. Crucially, this attachment process does not impede the addition or removal of free 

tubulin subunits at the microtubule's plus end32.  

During metaphase, the chromosomes align at the cell's equatorial plane, forming the 

metaphase plate. This is achieved through the balanced pulling forces generated by the kinetochore 
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microtubules from opposite spindle poles. This tug-of-war-like tension ensures that each 

chromosome is properly aligned for the next stage of mitosis 8 (Figure 17). 

Moreover, metaphase hosts one of the cell cycle checkpoints, ensuring that all 

chromosomes are correctly attached to microtubules and properly aligned before the cell proceeds 

to anaphase. This stage in mitosis is not only significant for its pivotal role in the orderly 

segregation of genetic material but also for its role in maintaining the integrity of cell division 

through stringent regulatory checkpoints33. 

 

Figure 17. The metaphase 

1.3.5. Anaphase 

Anaphase represents the pinnacle of mitotic activity wherein the sister chromatids are not 

only separated but also relocated to opposite poles of the cell (Figure 18). The dissolution of sister-

chromatid cohesion enables the separation of the sister chromatids, thus permitting the forces of 

the mitotic spindle to pull the sisters towards the cell's opposite poles, effectuating chromosome 

segregation. This stage is the culmination of the processes that have preceded it and relies on two 

primary forces to facilitate the requisite movement6. 

The first force is generated through the depolymerization of the microtubule's plus end, to 

which the chromosome's kinetochore is attached. This force propels the kinetochore and its 

associated chromatid along the kinetochore microtubule towards the spindle pole. As the 

kinetochore moves further along the microtubule, the microtubule itself collapses behind it, 

effectively pulling the kinetochore towards the spindle pole. Even as the microtubule 

depolymerizes, the kinetochore remains attached due to the multiple low-affinity attachments 

formed along the side of the microtubule. These attachments are continuously breaking and re-

forming at new sites, ensuring the kinetochore's continual movement. The dynamic behavior of 

tubulin, particularly its depolymerization, is integral to the successful execution of this process6,8. 

A second force, referred to as microtubule flux, contributes to the poleward movement in 

certain cell types. This process involves the microtubules being pulled towards the spindle poles 

and dismantled at their minus ends. While the exact mechanism underlying this movement remains 

unclear, it likely involves forces generated by motor proteins and minus-end depolymerization at 
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the spindle pole. The addition of new tubulin at the plus end compensates for the loss at the minus 

end, maintaining a constant microtubule length despite the movement towards the spindle pole. It 

is the stored energy within the microtubule, primarily derived from the hydrolysis of GTP after a 

tubulin subunit has been added to the microtubule plus end, that drives this movement. A 

kinetochore attached to a microtubule undergoing such flux experiences a poleward force. This 

force, in conjunction with the kinetochore-based forces, contributes to moving the sister 

chromatids after their separation in anaphase6. 

Finally, the subsequent stages of telophase and cytokinesis essentially complete the 

segregation of chromosomes by enclosing the divided genetic material within new membranes. 

These stages, however, do not involve active participation of tubulin or microtubules, and are thus 

not discussed here in detail. 

 

Figure 18. Results of the anaphase 

 
1.4. Small molecule modulators of tubulin polymerization 

 

Microtubules are essential for the correct functioning of all eukaryotic cells. Specifically, 

the intrinsic property of tubulin heterodimers to spontaneously polymerize into microtubules, and 

then dynamically switch between the growth and shrinkage phases both stochastically and under 

the influence of external factors, is something that drives two of the most important cellular 

processes: intracellular transport and cell division. 

Of particular importance is the role of tubulin in intracellular transport, which has 

especially profound implications in neurodegeneration. Neurons heavily rely on the continuous 

transport of biochemicals between the neuron cell body and axon terminals. Therefore, any 

disruption to tubulin polymerization or microtubule stability inflicts considerable damage upon 

neurons, potentially leading to their malfunction or even death. Understanding the role of 

microtubules in neuronal function and disease thus paves the way for developing effective 

treatments for neurological disorders10,11. 
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Similarly, tubulin is involved in a key stage of mitosis, what makes it a promising target 

for anti-cancer research. By interfering with microtubule dynamic instability during the cell cycle, 

it becomes possible to halt the cycle and induce the death of cancer cells5,34. 

Thus, tubulin’s multifaceted role makes it a significant biological target for both cancer- 

and neurodegeneration-related research. In particular, the design and discovery of small molecules 

capable of modulating tubulin polymerization present promising ways to regulate cancer cell 

proliferation and investigate neuronal behavior. By understanding the processes that regulate 

tubulin dynamics, we may be able to manipulate them in a targeted manner. Such manipulations 

could lead to the development of new therapeutics.  

As such, microtubule-targeting agents (MTAs) have emerged as powerful tools in the fight 

against various diseases, including cancer, due to their ability to interfere with microtubule 

dynamics. The specific binding of MTAs to microtubules (MTs) allows them to interfere with the 

functional performance of these structures, making them invaluable tools in studying MT function 

and its role in diverse cellular processes. By using MTAs as molecular probes, it becomes possible 

to track the interactions of MTs with other cellular components and perturb MT functions in cells, 

thereby studying the effects of MT disruption on cellular processes. MTAs can be labeled with 

fluorescent dyes or other markers, such as radioisotopes, broadening their application in 

research5,35. 

They have also been employed as therapeutic agents in the treatment of diseases associated 

with dysregulation of MT dynamics, most notably – cancer. MTAs predominantly induce cell 

death in dividing cells, given the crucial role of microtubule dynamics in maintaining the 

functional integrity of the mitotic spindle. However, these drugs also exhibit toxicity towards 

healthy, rapidly dividing cells, such as those present in bone marrow, intestine, and hair follicles36. 

A broad range of chemical classes of MTAs have been identified, the majority of which 

are natural products or their synthetic derivatives extracted from diverse natural sources such as 

marine sponges, plants, or bacteria. First developments of MTAs in the context of anti-cancer 

research started in the 1950s, culminating in the development of several FDA-approved anti-

cancer MTAs including vinblastine (Velban®), vincristine (Vincrex®), paclitaxel (Taxol®), 

epothilone (Ixempra®), eribulin (Heleven®), auristatin (Adcetris®), and Trastuzumab emtansine 

(Kadcyla®, an antibody-drug conjugate). While many of these tubulin binders display promising 

in vitro profiles, they also present significant off-target effects when tested in patients, 

necessitating the continued search for safer and more efficient MTAs. The potential of MTAs in 

treating injuries and diseases of the nervous system is underscored by their ability to affect 

intracellular trafficking of vital molecules and organelles. Moreover, the application of MTAs in 

cancer treatment has been limited by factors such as high cytotoxicity, complex non-scalable 
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synthesis, adverse properties, and the development of resistance. With the increasing availability 

of tubulin structural data, computer-aided design techniques can be instrumental in focusing on 

the relevant chemical space and guiding the design process of new MTAs5. 

As of this writing, eight MTA binding sites have been identified and characterized (Figure 

19), with the most recent discoveries made in the last two years, characterized extensively via X-

ray crystallography. MTAs can be broadly classified as microtubule stabilizing (MSA) and 

destabilizing (MDA) agents based on their action on microtubules. While the former promote 

microtubule assembly and enhance the stability of the formed microtubules, the latter provoke 

microtubule disassembly into separate tubulin dimers or small oligomers. The exact action exerted 

by a MTA on tubulin polymerization depends on the binding site that the molecule binds to, as the 

binding interferes with conformational changes required for normal functioning of the protein5. 

 

Figure 19. Microtubule-targeting agents have different action on microtubule polymerization 

 

1.4.1. Microtubule-stabilizing agents 

 

1.4.1.1. Taxane site 

Located on the luminal side of microtubules, the taxane binding site is a pocket within β-

tubulin predominantly formed by hydrophobic residues of H7, S7, loops H6-H7, S7-H9 (the M-

loop), and S9-S10. Ligands of this site establish both hydrophobic and polar contacts with several 

of these secondary structural elements. Some ligands bind to this site by forming covalent bonds 

with residues within it5. 

As the site is close to the unordered M-loop, certain ligands (zampanolide, epothilone A) 

structure it into a short helix. Such induced structuring greatly contributes to the stability of 
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microtubules because the M-loop plays a significant role in establishing lateral tubulin contacts 

within microtubules. On the other hand, other ligands (paclitaxel, discodermolide) stabilize 

microtubules by enhancing longitudinal tubulin contacts via an allosteric mechanism (Figure 

20)5,37. 

These diverse mechanisms suggest that although different taxane-site ligands bind to the 

same pocket on β-tubulin, they may achieve their microtubule-stabilizing effects through varying 

molecular pathways. Importantly, several ligands that target the taxane site (e.g., paclitaxel 

(Taxol®), epothilone (Ixempra®), eribulin (Heleven®)) have gained FDA approval for use as 

cancer therapeutics5,37. 

 

Figure 20. Schematic representation of taxane site-targeting molecules' action 

 

1.4.1.2. Laulimalide/Peloruside site 

Laulimalide and peloruside A are two microtubule-stabilizing agents that demonstrate 

notable cytotoxic activity against a diverse range of cancer cell lines bind to a site different from 

the taxane site5,37. 

The binding pocket common to both of these ligands is located on β-tubulin on the 

microtubule's exterior. This site is composed of hydrophobic and polar residues of helices H9 and 

H10, along with the loops H9–H90 and H10–S9 of β-tubulin. Due to its location on the 

microtubule, this site allows the two ligands to establish lateral contacts with adjacent 

protofilaments, thereby inhibiting microtubule disassembly5 (Figure 21). 

 

Figure 21. Schematic representation of lauliamalide site-targeting agents action 

1.4.2. Microtubule-destabilizing agents 

1.4.2.1. Vinca site 

The vinca alkaloids are the earliest known microtubule-targeting agents. A variety of 

compounds, both natural and synthetic, target the vinca site and span several chemical classes 38. 

These ligands bind at the inter-dimer interface between two longitudinally aligned tubulin dimers. 
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The structural elements that form the core zone of the vinca binding site include the C-terminal 

turn of helix H6, loops T5 and H6– H7 of β-tubulin, and helix H10, strand S9, and loop T7 of α-

tubulin of another heterodimer5 (Figure 22).  

The destabilization of microtubules by vinca-site ligands is achieved in one of two ways. 

Some ligands obstructing the curved-to-straight transition of tubulin on the microtubule tip. 

Alternatively, other ligands only allow tubulin dimers to form ring-like oligomers that are 

incompatible with the straight protofilament structure in microtubules 38. Notably, some vinca site-

targeting agents have received FDA approval for use as anti-cancer drugs (e.g., vinblastine 

(Velban®), vincristine (Vincrex®))5. 

 

Figure 22. Schematic representation of the vinca site-targeting agents action 

1.4.2.2. Colchicine site 

The colchicine binding site is located in the intra-dimer interface between the α- and β-

tubulin subunits. The ligands targeting the colchicine site display a remarkable structural variety 

around a limited number of structural frameworks39. Despite being a well-studied target for 

microtubule-targeting agents, none of the ligands directed at this site have yet advanced to the 

commercial phase5. 

Colchicine and its related ligands primarily inhibit microtubule formation by blocking the 

“curved-to-straight” conformational change in tubulin39 (Figure 23). Within the bound state, the 

core secondary structural elements of the colchicine site interact predominantly through 

hydrophobic, and to a lesser extent, polar contacts with the ligand5. Chapter 5 of this thesis 

describes work on de novo design of novel colchicine site-targeting agents. 

 

Figure 23. Schematic representation of the mechanism of action of colchicine site-targeting 

compounds 
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1.4.2.3. Gatorbulin site 

A previously unknown binding site on the tubulin dimer has been identified recently40. 

This discovery involves a cydodepsipeptide named gatorbulin, which is derived from marine 

cyanobacteria. Gatorbulin has been observed to bind to a specific region within the tubulin dimer, 

located next to the colchicine binding site. However, the exact mechanism by which gatorbulin 

influences tubulin function is not yet fully understood. Further research is required to elucidate the 

precise mechanism of gatorbulin action on the tubulin dimer and microtubules 40. 

 

1.4.2.4. Maytansine site 

The maytansine binding site is an exposed pocket on the β-tubulin, located near the 

guanosine nucleotide binding site. It is shaped by a combination of hydrophobic and polar residues 

from helices H3’, H11, and H11’, and certain loops like S3-H3’ (T3-loop), S5-H5 (T5-loop), and 

H11-H11’ 5.  

Binding of ligands to this site interferes with microtubule formation either by preventing 

tubulin dimers from joining the growing ends of microtubules by blocking the formation of new 

longitudinal interactions, or by creating tubulin-ligand that cannot participate in assembly, 

especially at high concentrations of the ligands (Figure 24). As a result, maytansine site-ligands 

exhibit strong anti-tumor activity in vitro and in vivo
41. 

A derivative of maytansine, a natural compound after which the site was named for, is a 

part of the FDA-approved antibody-drug conjugate trastuzumab emtansine (Kadcyla®), used in 

the treatment of metastatic breast cancer5.  

Chapter 2 of this thesis discusses the work performed on discovery of novel maytansine 

site-targeting ligands. 

 

Figure 24. Schematic representation of the mechanism of action of maytansine site ligands. 

 

1.4.2.5. Pironetin site 

Until recently, the only known binding site on the α-tubulin subunit was the pironetin 

binding site42. Pironetin is a natural compound known for its promising anti-cancer properties. 

Upon binding, it forms a covalent bond with a cysteine residue within the site43. 
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Pironetin binding induces significant changes in tubulin structure. Specifically, it disrupts 

the T7 loop and causes a conformational change in the N-terminal region of helix H8. Additionally, 

the pyrone ring of pironetin interacts with certain amino acid residues found in strands S8 and S10, 

as well as helix H7. The side chain of pironetin is buried within a pocket formed by amino acid 

residues of helix H7 and strands S4, S5, and S65. 

Structural changes caused by the binding of pironetin have important implications for the 

dynamics of microtubules. They hinder the formation of microtubules by either creating 

complexes between tubulin and pironetin that are unable to assemble when the concentration of 

the ligand is high or by preventing the addition of more tubulin dimers to the minus ends of 

microtubules, where α-tubulin subunits are exposed (Figure 25). As a result, pironetin binding 

impairs the assembly of tubulin into microtubules, highlighting its potential as an effective agent 

for cancer chemotherapy5. 

Chapter 3 of this thesis described the work performed on attempted discovery of novel 

pironetin site-targeting ligands. 

 

Figure 25. Schematic representation of the mechanism of action of pironetin site ligands 

 

1.4.2.6. Todalam site 

In a recent study by Mühlethaler et al., a crystallographic fragment screening of the tubulin 

protein44 discovered a hitherto unknown binding site, now named the todalam binding site after 

the first ligand rationally designed by combining the small fragments that demonstrated affinity 

for the pocket and subsequently optimizing the resultant structure 45. 

The todalam binding site is located between two longitudinally arranged αβ-tubulin 

heterodimers, in an interface between the maytansine site on β-tubulin and the end of the pironetin 

pocket on α-tubulin. Todalam is thought to hinder the formation of microtubules by creating a 

wedge in the tubulin-oligomer structure.45 At the time of this writing, no other compounds have 

been reported to engage this particular binding site. Chapter 4 of this thesis discusses the work 

performed on discovering novel molecules that target this binding site. 
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Figure 26. Schematic representation of the mechanism of action of todalam site ligands 

 
1.5. Computer-aided drug design (CADD) methodologies used in this work 

 

Computer-aided drug design (CADD) is a comprehensive field that employs a wide array 

of theoretical and computational methodologies, forming an integral part of modern drug 

discovery. These methods have significantly contributed to the development of numerous drugs 

that are either in clinical use or undergoing clinical trials, demonstrating their practical relevance 

in the pharmaceutical industry.  

CADD methods can be broadly categorized into ligand-based and structure-based 

approaches based on the type of data required to utilize a given method. Computational methods 

are used for modeling small molecules and macromolecules on various levels, as well as for mining 

chemical data, analyzing and predicting protein-ligand interactions. This predictive capability of 

CADD is particularly valuable in the early stages of drug discovery, where it can guide the design 

of new molecules with desired properties, or optimization of found hit molecules46. 

Computer-aided methods are fast, efficient, and straightforward tools for identifying new 

molecules that bind to a specific protein site and for optimizing this process by elucidating its 

mechanism. By predicting and optimizing small molecules’ interactions with macromolecular 

biological targets, they accelerate the drug discovery process, reduce associated costs, and enhance 

the success rate of identifying effective molecules47. 

 

1.5.1. Ligand-based virtual screening 

 

1.5.1.1. Molecular structure representation in chemoinformatics 

Chemoinformatics manages, interprets, and extracts knowledge from chemical data, 

requiring digital representation of chemical structures. This digital representation is critical to the 

success of chemoinformatics methodologies, and it is typically achieved through several levels of 

representation. 

At the primary level, molecules can be represented as molecular graphs46. In this 

representation, nodes represent atoms, and edges correspond to chemical bonds. However, a graph 
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is inherently a topological concept, which, while easily understood by humans, is not well-suited 

for direct algebraic operations. This limitation arises from the graph representation’s dependence 

on an arbitrary atom numbering scheme. Consequently, a secondary level of chemical structure 

representation, known as molecular descriptors, is employed. In this approach, structural 

information is extracted from the molecular graph and encoded in a numerical format, typically a 

vector of numbers, 𝒟% , where each component i represents a specific structural feature. These 

descriptor vectors are particularly effective for computational analysis. Success of any chemical 

structure-dependent modeling depends on the inclusion of property-relevant information in the 

descriptor vector 𝒟. 

Molecular descriptors can be categorized into three main types48. 1D descriptors, derived 

from the molecular formula, capture bulk properties and physicochemical parameters such as 

molecular weight and atom count. 2D descriptors, calculated from the 2D molecular graph, capture 

information on atoms connectivity. Examples include topological indices, fragment descriptors, 

and topological fingerprints. Topological indices capture the structural information related to the 

connectivity and arrangement of atoms and bonds within a molecule, providing a numerical 

representation of its overall topology. Fragment descriptors encode the structure of a molecule into 

a vector, with each index corresponding to a predefined structural feature. The presence or absence 

of a feature is indicated either by a total count of times this fragment is present in the molecule, or 

by a binary value of 1 or 0, respectively. Topological fingerprints, on the other hand, do not require 

a predefined fragment library. They are generated by enumerating all possible fragments within a 

molecule that are not larger than a certain size and converting these fragments into numeric values. 

3D descriptors are derived from the 3D structure of the molecule and capture information on 

geometric, electronic, and thermodynamic properties, thereby providing a comprehensive 

representation of its spatial configuration and physicochemical characteristics49. 

In this study, we specifically used ISIDA fragment descriptors, a type of 2D fragment 

descriptors50. These descriptors encode a compound’s structure by counting the occurrence of 

different substructural fragments, which could be linear sequences, augmented atoms (central 

atoms with their environment), or triplets that encode the compound’s atoms and/or bond types. 

Additionally, these fragments can be colored to provide extra information, such as pharmacophore 

types of atoms, formal charges, and force-field atom types. 

Given that the same chemical compound can be represented in multiple ways due to the 

presence of tautomers, isomers, and varying charge states, standardization is crucial to ensure that 

identical or similar structures are recognized as such, regardless of their initial representation. 

Chemical structure standardization is thus an integral part of any modelling pipeline51. It refers to 

the process of transforming and normalizing chemical structures into a consistent format. This 
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process may involve several steps, such as the removal of salts, the normalization of specific 

functional groups, the correction of bond types, and the generation of a canonical tautomeric form. 

This consistency is vital for many chemoinformatics operations. By standardizing chemical 

structures, we can ensure that these operations are performed on a consistent and meaningful 

representation of the chemical space, thereby enhancing the reliability and interpretability of the 

results. 

 

1.5.1.2. Similarity search 

Similarity search is a computational method employed in drug discovery to identify 

molecules with similar properties to known active compounds. It is based on the molecular 

similarity principle, stating that structurally similar molecules are statistically likely to have similar 

properties52. In the context of drug discovery, if two molecules have similar structures, they are 

likely to interact with biological systems in similar ways, and thus, may have similar therapeutic 

profiles. 

Similarity search involves comparing the structural and chemical characteristics of 

different molecules, most often using fingerprints, which are bit string representations of 

molecular structure and properties53. Each bit in the fingerprint represents the presence or absence 

of a particular structural feature within the molecule. It is possible to use other molecular 

descriptors, too. By ranking compounds based on their similarity scores, similarity search allows 

for the efficient screening of large compound libraries to find potential drug candidates in the early 

stages of drug discovery. Commonly used similarity metrics include the Tanimoto coefficient, 

Dice coefficient, Euclidean distance, or Manhattan distance 54. The ideal combination of 

descriptors and metric function is the one that ensures the best “Neighborhood Behavior 

Compliance”.55 This means minimizing situations where pairs of compounds appear very similar 

despite having different property values, known as “property cliffs”.  

Applying similarity search to large compound libraries requires efficient algorithms and 

appropriate hardware due to computational considerations. The results of a similarity search can 

be utilized to predict the biological activity of a compound by comparing its fingerprint to those 

of known active compounds (e.g., by means of the k nearest neighbors approach). However, 

determining the appropriate similarity threshold values for different fingerprint types and 

compound classes remains a challenge, as similarity search calculations are influenced by 

compound class-dependence and database composition53. 

Despite its limitations, such as the inability to handle structure-activity relationship 

discontinuity, similarity search in virtual screening offers advantages by providing a holistic 

molecular view and allowing for screening in the absence of detailed knowledge about activity-
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determining features. It accelerates the drug discovery process by reducing the number of 

compounds requiring experimental testing 54.  

In this work, similarity search was part of the pipeline used to discover novel todalam 

binding site-targeting molecules (Chapter 4), as well as to find commercially-available compounds 

structurally similar to de novo generated colchicine site-targeting agents (Chapter 5). 

 

1.5.1.3. Substructure search 

Substructure search is a fundamental operation that involves the identification of specific 

molecular fragments or patterns within larger molecular structures56. Patterns for substructure 

search are encoded using the SMARTS language57 that provides flexibility in the search criteria, 

as the substructures can be defined in various ways to capture different chemical features. 

Furthermore, it allows for the definition of complex substructural patterns, which can be useful in 

identifying compounds with specific structural characteristics 56,58. 

The key principles that underpin the concept of substructure search are rooted in graph 

theory. Molecules and their substructures can be represented as graphs, where atoms are nodes and 

bonds are edges. The substructure search problem is then translated into a subgraph isomorphism 

problem, which involves finding a one-to-one correspondence between the nodes and edges of the 

substructure graph and a subset of the nodes and edges of the molecule graph58. 

Substructure search is used in virtual screening because it helps to efficiently filter and 

select compounds from large databases based on the presence of specific functional groups or 

substructures. This is particularly useful if certain substructures are known to be related to 

desirable properties, such as binding affinity to a target protein. By identifying compounds that 

contain these substructures, researchers can prioritize certain compounds for further testing and 

analysis.58 

However, substructure search also has its limitations. The performance of the search can 

be affected by the size of the molecules and the complexity of the substructures. Large molecules 

and complex substructures can increase the computational cost of the search. Additionally, the 

search is sensitive to the way the substructures are defined. Different formulations of the same 

substructure can lead to different search results. Therefore, careful consideration must be given to 

the definition of the substructures to ensure that the search results are meaningful and relevant.56,58 

In conclusion, substructure search is a powerful tool in chemoinformatics and virtual 

screening, providing a means to efficiently navigate large compound databases and identify 

potential drug candidates. Despite its limitations, its benefits in terms of speed, flexibility, and the 

ability to capture complex chemical features make it an indispensable part of the drug discovery 

process. 



 68 

In this work, substructure search was performed as part of the virtual screening pipeline 

designed to discover novel inhibitors of the todalam binding site (Chapter 4). 

 

1.5.1.4. Quantitative structure-activity relationship (QSAR) modeling 

Quantitative structure-activity relationship (QSAR) modeling is a computational method 

establishes a mathematical relationship between chemical structure and some property of interest. 

This method helps rationalize underlying relationships between molecular structure and property 

within a series of molecules. It can also be used to screen virtual libraries of compounds by 

predicting their properties and using the predicted value as a filter 48. 

To perform QSAR modeling, one needs a dataset comprising molecular structures and their 

corresponding experimental property data. The data should be carefully curated before modeling, 

ensuring the removal of duplicates, structure standardization (transformation of tautomeric and 

resonance forms into a single form, the neutralization of charges, and the removal of small 

fragments from salts), the verification of the accuracy of primary data, and the transformation of 

biological data into a form suitable for mathematical modeling51. In particular, it involves encoding 

the chemical information of the modelled compounds in the descriptor form. 

Classification and regression modeling are two key approaches in QSAR modeling. 

Classification modeling is used when the target variable is categorical, such as an 

“active”/“inactive” label, while regression modeling is used when the target variable is continuous, 

for example – the IC50 value. The choice of machine learning methods for these modeling tasks 

varies and depends on the character of the target property59. 

The performance of a QSAR model can be assessed using various metrics. For 

classification models, the balanced accuracy metric (BA) is often used. For regression models, the 

coefficient of determination (R2) metric is commonly used48. Both metrics are discussed in detail 

in Chapter 6. 

K-fold cross-validation is a technique often used in QSAR modeling to estimate the 

predictive performance of a model. It involves partitioning the data into subsets, training the model 

on a portion of the data, and then testing it on the remaining data. This process is repeated multiple 

times with different partitions. Cross-validation is crucial in QSAR modeling as it provides a 

robust estimate of the model's predictive performance and helps prevent overfitting51.  

The applicability domain of a QSAR model refers to the chemical space within which the 

model can make reliable predictions. It can be assessed using various methods, such as the leverage 

approach or the distance-based approach. Assessing a model’s applicability domain is crucial to 

ensure that predictions are only made within the domain for which the model is valid60. 
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QSAR modeling in virtual screening has both advantages and disadvantages. On the one 

hand, it can significantly reduce the cost and time of drug discovery by predicting the target 

property of compounds before synthesis or testing. Additionally, it can be used in virtual screening 

to filter large compound sets by the predicted values of the target property. On the other hand, the 

accuracy of QSAR models depends on the quality of the input data and the choice of descriptors 

and modeling techniques. Furthermore, QSAR models are limited to their applicability domain 

and may not make accurate predictions for compounds outside this domain. 

In this thesis, QSAR modeling was performed to model anti-proliferative activity of 

colchicine site-targeting compounds against HeLa cells in Chapter 5, as one of the steps in de novo 

inverse QSAR drug design pipeline. It was also used in Chapter 6 as a benchmark for the 

application of the transfer learning approach. The descriptor calculation steps were performed 

using the RDKit chemoinformatics toolkit, as well as the ISIDA Fragmentor tool. The machine 

learning and cross-validation steps were performed using the scikit-learn Python package. 

 

1.5.1.5. Transfer learning 

Transfer learning, a concept in machine learning, has been applied to drug discovery to 

address the challenge of identifying suitable descriptors for downstream modeling tasks. In 

essence, transfer learning is a method where a pre-trained model is adapted for a new, but related 

task. It allows the application of knowledge gained while solving one problem to a different but 

related problem. This is particularly useful in situations where the data for the task of interest is 

scarce or when the task is too complex to be learned from scratch 61,62.  

The process of transfer learning in drug discovery involves two main steps: pre-training 

and fine-tuning. Pre-training is the initial phase where a model is trained on a large dataset to learn 

a general representation of the data. In the context of drug discovery, the pre-training phase 

involves training a model on a large dataset to learn general representations of molecules. This is 

achieved through self-supervised learning, where the model learns to predict some aspect of the 

data from other parts of the same data. This is often done using self-supervised learning, where 

the model learns to predict parts of the input data from other parts, thereby learning useful 

representations of the data. This process allows the model to learn useful representations of 

molecules without needing labeled data for the specific task at hand63. 

Following pre-training, the model undergoes a fine-tuning process. Fine-tuning is the 

adjustment of the pre-trained model to make it more suitable for the specific task at hand. This is 

done by continuing the training of the model on the specific task data, allowing the model to adapt 

its learned representations to the specific characteristics of the new task. In the context of drug 

discovery, fine-tuning can help increase the predictive performance of a QSAR model on a 
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downstream task by adapting the general molecular representations learned during pre-training to 

the specific properties relevant to the QSAR task at hand64. 

To successfully implement transfer learning in drug discovery, certain requirements need 

to be met. Firstly, a large dataset for pre-training is needed to learn general molecular 

representations. This dataset should ideally cover a wide range of chemical space. Secondly, task-

specific data is required for fine-tuning the model. This data should be relevant to the specific task 

at hand and should ideally contain examples of the specific properties or activities that the model 

needs to predict. Lastly, a suitable deep learning model that can learn from the pre-training data 

and adapt to the fine-tuning data is required. This model should be capable of learning complex 

patterns and relationships in the data, and should be flexible enough to adapt its learned 

representations to the specific task. 

In conclusion, transfer learning offers a promising approach to address the challenge of 

identifying suitable descriptors for downstream modeling tasks in drug discovery. By leveraging 

the power of deep learning and the concept of transfer learning, it is possible to learn useful 

molecular representations from large datasets and adapt these representations to specific tasks, 

thereby improving the predictive performance of models in drug discovery. 

In this thesis, Chapter 6 discusses the application of transfer learning to downstream QSAR 

modeling tasks and its comparison to state-of-the-art approaches. 

 

1.5.1.6. Inverse QSAR-based de novo ligand generation 

De novo drug design is a strategy in drug discovery that involves the design of novel 

molecules with desirable properties from scratch, rather than relying on the modification of pre-

existing molecules. This approach offers several advantages. Firstly, it allows for the exploration 

of a vast chemical space, potentially leading to the discovery of novel drug candidates that would 

not be identified through the modification of known molecules. Secondly, it can be guided by the 

target structure, allowing for the design of molecules that are specifically tailored to interact with 

the target in a desired manner. Lastly, it can be automated, making it a highly efficient method for 

drug discovery65. 

Inverse QSAR modeling, on the other hand, is a process that reverses the conventional 

QSAR modeling approach. Instead of mapping a set of descriptors to a target property, inverse 

QSAR modeling maps a target property to a required compound via a set of descriptor values. The 

purpose of this approach is to identify descriptor values that correspond to optimal properties, and 

then to generate molecules that possess these descriptor values. This is challenging due to the 

difficulty of reconstructing a molecule from descriptor values. However, the development of 

autoencoder neural network models has made this process feasible66. 
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An autoencoder is a type of artificial neural network that is trained to encode input data 

into a lower-dimensional representation and then decode this representation back into the original 

data. In the context of chemoinformatics, an autoencoder can be trained to learn the 

correspondence between chemical structures and a latent chemical space. This is achieved by 

training the autoencoder on a large dataset of chemical structures, allowing it to learn how to 

encode these structures into points in the latent space and decode points in this space back into 

chemical structures66. 

The process of performing inverse QSAR modeling involves several steps. Firstly, a QSAR 

model is built to identify the relationship between the descriptors and the target property. Then, 

compounds whose descriptor vectors are predicted to correspond to high affinity values are found. 

A trained autoencoder model is then used to generate molecules that correspond to these descriptor 

values. This process involves the addition of random noise to the values of a point in the latent 

space, allowing for the sampling of multiple molecules from the region around the selected seed 

molecule66. 

In the context of de novo drug design, the application of inverse QSAR modeling offers a 

powerful approach for the generation of novel drug candidates. By first identifying descriptor 

values that correspond to optimal properties, and then using an autoencoder to generate molecules 

that possess these descriptor values, it is possible to design molecules that are specifically tailored 

to exhibit desirable properties. This approach, therefore, offers a highly efficient and targeted 

method for drug discovery, allowing for the exploration of a vast chemical space and the 

identification of novel drug candidates that may not be discovered through traditional methods66. 

In this thesis, Chapter 5 discusses the application of inverse QSAR methodology to tailored 

de novo drug design of colchicine site-targeting agents. 

 

1.5.1.7. Forward- and retrosynthesis route prediction 

Retrosynthesis, one of the core tasks in reaction informatics, is a method used to plan the 

synthesis of organic molecules by deconstructing them into commercially available precursors. 

The process begins with a target molecule and involves the iterative application of reaction rules 

to break down the molecule into simpler components. These reaction rules, also known as 

transformations, are derived from known chemical reactions and reflect which bond needs to 

form/break and what products are formed as a result of that. The process continues until 

commercially available starting building blocks are identified, or a limit of steps is reached67. 

The retrosynthesis process is guided by reaction mapping, which is a representation of how 

atoms rearrange in reactions. Such mapping is often used to automate the labeling of reactants and 
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products, and plays a crucial role in understanding the transformation of molecules during a 

reaction67. 

To navigate the retrosynthetic trees generated during this process, a technique known as 

Monte-Carlo tree search (MCTS) is employed. MCTS is a heuristic search algorithm used in 

decision-making processes. In the context of retrosynthesis, it is used to explore the space of 

possible synthetic routes, making decisions based on the expected outcome of the reactions68. 

On the other hand, the reaction prediction task is centered on predicting a possible product 

of a chemical reaction in one or more reactants67. In one of the implementations, it involves 

creating a virtual reactor where virtual building blocks are iteratively subjected to chemical 

transformation rules until a desired target molecule, or a close analog, is obtained. This process is 

guided by similarity metrics and is crucial for determining if a molecule that showed up in 

screening or de novo generation is actually synthesizable and how much it would cost to make it68. 

To predict if a reaction between two reagents will proceed, machine learning models are 

trained on experimental procedures extracted from patent data. These models expect the input 

reaction to specify all the species involved in the reaction, including solvents and catalysts. The 

models capture the functional dependence between the input parameters and the reaction 

outcomes, and they are highly specific for a single reaction or a family of reactions67. 

Knowing the synthesis steps required to get to a target molecule with desired properties is 

immensely useful. It not only aids in the discovery of new molecules and materials but also 

accelerates the R&D processes in academia and across chemical and pharmaceutical industries. 

This knowledge can lead to more efficient and cost-effective drug design, ultimately contributing 

to the advancement of medicine and healthcare. 

 In this project, both forward and retrosynthesis approaches were used in the project 

dedicated to design and discovery of novel maytansine site-targeting ligands, Chapter 2. 

 

1.5.2. Structure-based virtual screening 

1.5.2.1. Pharmacophore screening 

A pharmacophore model represents a set of essential steric and electronic features that 

ensure optimal supramolecular interactions of a ligand with a specific biological target. These 

interactions can either activate or inhibit the biological response of the target69. 

There are several common pharmacophore feature types, which include hydrogen bond 

acceptors and donors, charged or ionizable groups, hydrophobic residues, and aromatic rings. 

These features reflect the concept of bioisosterism, acknowledging that different functional groups 

may exhibit similar physicochemical properties69. 
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In a three-dimensional pharmacophore model, the features have specific spatial 

relationships with each other, captured as distances or distance ranges between the features. The 

spatial coordinates of the features are typically supplemented with a spherical tolerance region to 

account for distance variability70. 

The source of data for generating a pharmacophore model can vary. There are two common 

methods: structure-based modeling, which relies on the three-dimensional structure of a ligand-

protein complex, and ligand-based modeling, which depends solely on the structural information 

of active compounds. This work extensively employed structure-based pharmacophore modeling. 

Several tools have been developed for pharmacophore modeling and screening, with 

Catalyst, MOE, Phase, and LigandScout among the most commonly employed for lead discovery. 

Despite differences in their respective screening algorithms, these tools share a common approach: 

they utilize a pharmacophore model as a query to screen databases of small molecules’ 3D 

structures70. 

Before screening, each molecule in the database is represented by a set of conformers, 

which potentially include the bioactive geometry assumed during interaction with the target 

protein. Thus, the quality and robustness of conformational sampling performed during database 

preparation has a strong influence on the quality of screening results. The resulting matches 

between the pharmacophore model and the conformers are compiled into a hit list. Depending on 

the selectivity and rigor of the model, a virtual screening of chemical databases containing millions 

of small molecules can yield from tens to thousands potential hits71. 

A scoring system is then employed to rank the molecules in the hit list. This score 

quantifies the quality of the match between each molecule and the pharmacophore model, 

providing a measure of the potential fitness of each molecule as a drug candidate69. 

In this work, pharmacophore screening was performed using the LigandScout software (v. 

4.4.8). LigandScout, developed by Inte:Ligand GmbH, is a powerful tool that allows users to 

automatically generate a feature-based pharmacophore model from a ligand-target complex 

structure. This process can be performed using either a co-crystallized or docked complex70,71. 

The pharmacophore model creation begins with ligand perception, a two-step process that 

involves the interpretation and assignment of the ligand's molecular information. This information, 

which includes hybridization status and bond characteristics, is often not explicitly defined in the 

input data files, particularly those in the Protein Data Bank file format71. 

The next phase involves generating feature-based pharmacophore models by identifying 

interactions between the ligand and target atoms. The structure of both the ligand and the binding 

pocket undergoes a thorough analysis to identify atoms and groups capable of participating in a 

variety of interactions. These include hydrogen bonding, hydrophobic, aromatic, ionic, and metal 
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binding interactions. The decision to include a feature in the final pharmacophore model is guided 

by its location relative to corresponding features within the binding site. Once all complementary 

feature pairs within the complex have been identified, their corresponding ligand-side features are 

incorporated into the pharmacophore model. The final step in this process involves the addition of 

exclusion volume spheres to the model. These spheres mimic the shape of the binding pocket, 

adding another layer of spatial detail to the model and contributing to its ability to accurately 

represent the molecular interaction landscape69,71.  

After the initial model is created, it can be further refined using binding data to increase its 

predictive accuracy. Alternatively, multiple models can be merged to form a single, 

comprehensive feature pharmacophore model. The combined model offers the potential for a more 

complete and holistic representation of the pharmacophore71. 

In LigandScout, the quality of alignment is evaluated using four distinct scoring functions. 

The first of these, the pharmacophore fit score, is a straightforward geometric scoring function. 

This score prioritizes solutions with a high number of geometrically matched feature pairs, while 

solutions with higher root mean square deviations among these pairs receive penalties71. 

The second scoring function, the atom sphere overlap score, quantifies the overlap of atom 

van der Waals spheres. The Gaussian shape similarity score, the third function, measures the 

overlap of Gaussian function representations of molecular volume71. 

The final scoring function is a combination of the pharmacophore fit and atom overlap 

scores. In the present study, the pharmacophore fit score was used as the default scoring function 

(Equation 1). 

𝑆'() = 𝑐 ∙ 𝑁-'. +	 9 − 3 ∙ min 𝑅𝑀𝑆'. , 3  (1) 

 

In Equation 1, 𝑆'() is the feature count/RMSD distance score, 𝑐 is a weighting factor for 

the number of matched feature pairs, 𝑁-'. is the number of geometrically matched feature pairs, 

𝑅𝑀𝑆'. is the root mean square deviation of the matched feature pair distances. 

To validate the created pharmacophore models, a dataset of ligands with known activity 

levels can be used. This validation dataset is tested against the pharmacophore model, and 

statistical metrics are calculated to assess how effectively the model distinguishes between active 

and inactive compounds. Once validated, the model is ready to be applied in virtual screening 

processes69. 

The list of pharmacophore features available in LigandScout is shown in Figure 27. Each 

feature in the generated pharmacophore can be labeled optional, meaning it is not obligatory for a 

valid alignment. Therefore, during the screening process, even if an optional feature is not 

matched, the molecule can still be considered a valid hit. 
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Figure 27. Pharmacophore features implemented in LigandScout 

 Pharmacophore modeling and screening played was an important method used throughout 

the whole thesis. Of particular importance is its application to discovery of novel maytansine site-

targeting ligands (Chapter 2) and todalam site-targeting agents (Chapter 4).  

 

1.5.2.2. Binding site similarity search 

Application of binding site similarity search to drug design is based on the assumption that 

similar binding sites may accommodate similar ligands. The focus on binding sites is due to the 

increasing knowledge on ligand bioactivity data. Binding sites can be represented on a computer 

in two primary ways: sequence-based and structure-based72.  

Sequence-based representation involves deriving important residues lining the ligand-

binding site from a set of aligned protein sequences from the same family. These residues are then 

mapped onto a reference 3D structure, and consensus binding site amino acids are concatenated 

into a gapless cavity sequence. A binding site-based phylogenetic tree is then derived from 

computed distances between cavity sequences using either sequence identity (homology) or 

physicochemical properties as a distance metric72. 

On the other hand, structure-based representation of binding sites involves defining a 

binding site from residues interacting with a particular compound. This definition can vary 

depending on whether global or local similarities are desirable. For instance, a cavity will 

encompass all protein residues potentially accessible to a ligand at the protein surface, whereas a 

specific binding site is only defined from residues interacting with a particular compound72. 

Comparing binding sites with each other involves the use of various algorithms73. 

Generally, they can be grouped in five groups. Clique-based methods, the first group, are primarily 

based on the concept of identifying maximal cliques in a graph, where a graph represents a 

protein's binding site. The nodes of the graph correspond to the atoms or residues in the binding 

pocket, and the edges represent the spatial relationships between them. The main idea behind these 

methods is to find the largest common subgraph between two protein binding sites, which 
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corresponds to the largest clique in the product graph. This approach uses the representation of Cα 

atoms or functional groups in the binding pocket. 

The second group of methods solves the assignment problem. The main idea here is to 

assign residues or atoms in one binding pocket to those in another pocket, aiming to maximize the 

overall similarity or minimize the total cost. These methods often use the Hungarian algorithm or 

its variants to solve the assignment problem. The pocket representation used by these methods 

includes Cα atoms or Cα-Cβ vectors73. 

The third group of methods combines the clique detection and the assignment algorithm. 

The main idea is to use the strengths of both approaches to achieve better performance. They first 

detect cliques in the graph representation of binding pockets and then solve the assignment 

problem within these cliques. The pocket representation used by these methods includes chemical 

feature points or Cα atoms and Cα-Cβ vectors73. 

The fourth group of methods employs geometric hashing and sorting. The main idea behind 

these methods is to use geometric hashing to index the features of binding pockets and then use 

sorting to quickly find similar features. The pocket representation used by these methods includes 

N, Cα, C, O, Cβ and side-chain centroid atoms or microenvironments73. 

The fifth group of methods employs the rotational and translational search. The main idea 

is to rotate and translate one binding pocket in the three-dimensional space to find the best match 

with another pocket. This approach often involves a comprehensive search in the rotational and 

translational space, which can be computationally intensive. These methods represent the binding 

pockets as ensembles of non-hydrogen atoms73. 

The process of performing 3D binding site similarity search thus involves several steps. 

First, the binding site of interest is represented in a format suitable for the required alignment 

method. Then, pocket alignment and similarity search is run to identify similar binding sites. The 

ligands that bind to these similar binding sites are then analyzed, and this information is used to 

design new ligands that can target the original binding site of interest72. 

In this work, binding site similarity search was used as one of the first steps to the design 

of novel todalam site-targeting molecules, described in Chapter 4. 

 

1.5.2.3. Protein-ligand docking 

Protein-ligand docking is widely-used computational approach to estimate how a ligand 

interacts with a specific protein binding site. This process is central to understanding receptor-

ligand interactions and the mechanisms of drug action, as it aids in predicting the ligand’s binding 

pose and roughly estimating its binding affinity74.  
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A docking program typically includes two components: the sampling algorithm and the 

scoring function. The sampling algorithm is tasked with generating a large number of potential 

orientations and conformations of the ligand within the protein's binding site. The goal of a scoring 

function then is to predict the binding affinity of each ligand orientation or conformation using 

either a physical or an empirical energy function. The pose with the lowest energy score is 

predicted to be the “best match”, i.e. the most probable binding pose75. 

Ligand sampling involves the exploration of a multitude of conformational degrees of 

freedom, even for relatively simple organic molecules. Thus, the accuracy of this exploration is 

vital in identifying the conformation best suited to the receptor structure, and the process must be 

rapid enough to evaluate thousands of compounds efficiently. It is important to note that ligand 

binding often triggers changes in protein conformation as well. These can range from minor side-

chain rearrangements to large domain motions. Given the extensive size and multiple degrees of 

freedom inherent in proteins, the modeling of protein flexibility represents a significant challenge 

in molecular docking76. Protein-ligand docking methods used in this work considered the protein 

backbone to be rigid and did not account for flexibility of the side chains. 

Speed and accuracy of the chosen scoring function are also important characteristics of a 

protein-ligand docking pipeline. There are four main types of scoring functions: empirical, 

knowledge-based, force-field methods, and machine learning-based77. 

Empirical scoring functions are equations that include various terms representing 

physicochemical properties that are known to influence drug binding. These terms generally 

describe polar and apolar interactions, the loss of ligand flexibility, and desolvation effects. 

However, these functions require a training set to determine the weight factors of individual energy 

terms, which is a significant drawback77.  

Force-field methods, on the other hand, rely on the non-bonded terms of a classical 

molecular mechanics force field. Force fields are mathematical models that estimate the energy 

and forces acting on atoms within a molecule, thereby facilitating the simulation of the molecule’s 

physical behavior and properties. The underlying idea of force fields is to approximate the 

potential energy surface of a molecular system using a series of empirical equations that describe 

the interactions between atoms, including bond stretching, angle bending, and non-bonded 

interactions, thereby providing a means to predict the molecule's geometric and energetic 

properties77. 

 The main drawback of force-field calculations is the exclusion of the entropic component 

of the binding free energy77. 

Knowledge-based scoring functions use structural information gathered from resolved 

protein-ligand system coordinates to encode the free interaction energies of protein-ligand atom 
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pairs. The score is thus the sum of all interatomic interactions in the protein-ligand complex. 

Primary limitation of such scoring functions is that their derivation is largely reliant on information 

implicitly encoded in limited sets of protein-ligand complex structures77. 

Machine learning-based scoring functions present an emerging and promising approach in 

molecular docking. They mine the relevant physicochemical patterns from available protein-ligand 

complex data without explicit programming or derivation of rules, hence avoiding the bias in 

predicting a binding affinity value. However, these methods largely depend on the initially chosen 

representation of the training set protein-ligand complexes and are limited in their domain of 

applicability by the contents of the training set77. 

In addition to the challenges mentioned above, another issue is the preparation of protein 

binding sites for docking simulations. Issues may arise due to the low resolution of 

crystallographic structures of proteins and their complexes, the positioning of nitrogen and oxygen 

atoms in side chains of asparagine and glutamine residues, determining the correct tautomeric state 

of some amino acid residues, and the appropriate positioning and orientation of water molecules, 

which can participate in protein-ligand interactions. As such, these factors need to be taken into 

account to ensure the reliability and accuracy of docking simulations74. 

One of the projects performed as part of the thesis work also involved covalent protein-

ligand docking. This approach is distinct from conventional, unconstrained protein-ligand 

docking, where the ligand is free to rotate within the binding site. In contrast, covalent docking 

involves a constrained rotation around a fixed point in three-dimensional space, specifically 

around the reacting residue and the warhead of the ligand. However, the underlying sampling and 

scoring techniques are the same. The warhead, an electrophilic group within the ligand, and the 

target residue, a nucleophilic component of the protein, are central to the process of covalent 

docking. Covalent docking is particularly useful in drug discovery due to its ability to model and 

predict the behavior of covalent binders. These molecules, which form a covalent bond with their 

target, can offer unique activity profiles compared to non-covalent ligands78. 

It is possible to assess the accuracy of docking via a benchmarking process that measures 

the root mean square deviation of atomic positions between the poses of the crystallized and 

docked ligand, obtained through re-docking and cross-docking procedures. Re-docking involves 

reintroducing the ligand, extracted from the X-ray structure of a protein-ligand complex, back into 

its original binding site. Cross-docking, on the other hand, is placing the native ligand of a protein-

ligand complex into a slightly different shaped protein binding site, either from another complex 

or from the ligand-free protein. A satisfactory benchmark is typically indicated by RMSD values 

that are less than 2Å74. 
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This work used two docking programs, namely PLANTS79, AutoDock 480, and AutoDock 

GPU81, a version of AutoDock that supports GPU acceleration for conformational sampling. In all 

three approaches the ligand is flexible and the protein is kept rigid. The software differs in the 

underlying sampling algorithms and scoring functions, as well as docking system preparation 

routines. 

The PLANTS docking software represents a protein’s binding site by including all protein 

atoms within a certain distance from the geometric center of a ligand. To normalize raw PDB 

structures of complexes and determine the tautomeric and protonation states of binding site amino 

acids, a complementary Structure Protonation and Recognition System (SPORES) software is 

utilized. It can also be used to prepare the ligand structure in a similar manner79. 

The docking algorithm employed by PLANTS is built on a stochastic optimization 

algorithm known as ant colony optimization (ACO). The principle underlying ACO is drawn from 

the natural behavior of ants in their quest for the shortest path between their nest and a food source. 

As ants move, they deposit pheromones to denote the paths they've already followed. When faced 

with a choice between multiple paths, they are more likely to select the ones marked with a higher 

concentration of pheromones. ACO algorithms emulate this behavior using virtual pheromones, 

which are represented as numerical values associated with each possible conformation. The 

algorithm then gradually converges on ligand poses with the most number of favorable 

interactions, thereby optimizing ligand conformation79. 

PLANTS has two empirical scoring functions: PLANTSPLP and PLANTSCHEMPLP. Both 

functions are built on elements of previously published scoring functions and force fields, with the 

piecewise linear potential (PLP) scoring function utilized to model the steric complementarity 

between the protein and the ligand. PLANTSCHEMPLP (Equation 2) introduces angle-dependent 

terms for hydrogen bonding and metal binding, drawing from the terms of GOLD's Chemscore 

implementation. Additionally, the torsional potential from the Tripos force field, along with a 

heavy-atom clash term, is employed to account for intra-ligand interactions. These components 

collectively contribute to the robustness and efficacy of the PLANTS docking software in the 

realm of drug design. In this work, the PLANTSCHEMPLP scoring function was used82. 

𝑃𝐿𝐴𝑁𝑇𝑆(>?-.@. = 𝑓BCB + 𝑓DE + 𝑓DEFGD + 𝑓DEF(>H + 𝑓IJK + 

+	𝑓IJKFGLLMN + 𝑓IJKFGD + 𝑓IJKFGLLMNFGD +	𝑓GCOPD + 𝑓KLMP + 𝐶P%KJ 
(2) 

 

In Equation 2, 𝑓BCB is the piecewise linear potential; 𝑓DE is the potential for the donor-acceptor 

pairs; 𝑓DEFGD  is the potential for the charged donor and charged acceptor pairs; 𝑓DEF(>H  is the 

potential for the hydrogen bonding pairs containing an oxygen-acceptor; 𝑓IJK is the distance- and 

angle-dependent potential; 𝑓IJKFGLLMN is the metal coordination potential; 𝑓IJKFGD is the potential 
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for charged acceptor atom, involved in a metal interaction; 𝑓IJKFGLLMNFGD  is the potential for 

charged acceptor atom, involved in a metal interaction; 𝑓GCOPD  is the empirical heavy-atom 

potential; 𝑓KLMP is the torsional potential; 𝐶P%KJ is the quadratic potential. 

AutoDock 4 is a widely-used docking program that employs a free energy force field to 

evaluate conformations during docking simulations. The force field was parameterized using a 

large number of protein-inhibitor complexes for which both structure and inhibition constants are 

known. The force field evaluates binding in two steps. The ligand and protein start in an unbound 

conformation. In the first step, the intramolecular energies are estimated for the transition from 

these unbound states (based on user input) to the conformation of the ligand and protein in the 

bound state. The purpose of this initial assessment is to provide a baseline for comparing the 

energies of the bound states that are generated during the docking process. The second step then 

evaluates the intermolecular energies of combining the ligand and protein in their bound 

conformation. The force field scoring function of AutoDock 4 includes six pair-wise evaluations 

(Equation 3) and an estimate of the conformational entropy lost upon binding. Each of the pair-

wise evaluations include energy terms for dispersion/repulsion, hydrogen bonding, electrostatics, 

and desolvation (Equation 4)80.  

 

L – ligand, P – protein. 

 

(3) 

 

 

(4) 

In Equation 4, first term is a typical 6/12 potential for dispersion/repulsion interactions; 

second term is a directional H-bond term based on a 10/12 potential, with C and D parameters 

assigned to control energies for hydrogen bonds with oxygen, nitrogen, and sulfur; the E(t) 

function introduces directionality of a hydrogen bond based on the angle t from an ideal H-bonding 

geometry; the third term is a Coulomb electrostatic potential; finally, the last term is a desolvation 

potential based on the volume of atoms (V) that surround a given atom and shelter it from solvent, 

weighted by a solvation parameter (S) and an exponential term with distance-weighting factor σ = 

3.5Å. 

AutoDock 4 employs the concept of a grid map, which is a three-dimensional grid where 

the protein is embedded, and a probe atom is placed at each grid point. The energy of interaction 

of this single atom with the protein is assigned to the grid point. AutoGrid affinity grids are 

calculated for each type of atom in the ligand, typically carbon, oxygen, nitrogen, and hydrogen, 



 81 

as well as grids of electrostatic and desolvation potentials. This grid map concept allows AutoDock 

4 to make rapid energy estimations during the docking process. The energetics of a particular 

ligand configuration is evaluated using the values from the grids80. 

AutoDock 4 uses a genetic algorithm-based conformational sampling algorithm, 

specifically a Lamarckian genetic algorithm. A Lamarckian genetic algorithm integrates the 

principles of natural selection with the idea of inheritance of acquired traits. The algorithm begins 

with an initial population of potential solutions, each represented as a chromosome – a string of 

parameters that define the solution. This population undergoes a process of evolution over a series 

of iterations (generations). In each generation, a fitness function is used to evaluate the 

performance (fitness) of each individual in the population. The fittest individuals are then selected 

to create offspring for the next generation through operations that mimic biological processes: 

crossover (or recombination), where parts of two parent chromosomes are combined to create a 

new offspring chromosome, and mutation, where random changes are introduced to a 

chromosome. This iterative process of selection, crossover, mutation, and local search continues 

until a satisfactory solution is found or a stopping criterion is met. In the case of protein-ligand 

docking, chromosomes encode ligand conformations, and their selection is based on the values of 

the scoring function80. 

It is also possible to use AutoDock 4 for covalent protein-ligand docking experiments. The 

first approach involves specifying a restricting grid map around the warhead atom that would be 

covalently attached to a nucleophilic residue. This would penalize the movement of the atom away 

from the initially defined coordinates, essentially fixing it in place. The second approach considers 

a bound ligand as an extension of the binding site residue to which it is bound, and samples 

conformations of the new residue within the pocket. These two approaches provide flexibility in 

modeling covalent interactions, expanding the range of docking simulations that can be performed 

with AutoDock 478. 

AutoDock GPU is recently released implementation of AutoDock designed to exploit both 

GPU and CPU parallel architectures. The conformational search is performed using either the 

original random optimizer Solis-Wets (SW) or the newly implemented ADADELTA gradient-

based local search function. The key difference between AutoDock GPU and its predecessor, 

AutoDock 4, lies in their computational efficiency, as AutoDock GPU is designed to exploit the 

parallel nature of docking and the underlying algorithms, outperforming AutoDock 4 by a factor 

of 30 times. This significant speedup is achieved without compromising the accuracy of the 

docking results. AutoDock GPU uses the same free-energy force field scoring function as 

AutoDock 4. However, while AutoDock 4 uses precalculated and cached interaction energy maps 



 82 

for ligand atoms, AutoDock GPU calculates exact values by evaluating the analytical form of the 

scoring function81. 

Protein-ligand docking was instrumental in most of the projects described throughout the 

thesis. 

 

1.5.2.4. Gaussian-accelerated molecular dynamics simulations 

 

Molecular dynamics (MD) simulation is a computational method that simulates the 

movement of atoms in protein systems. These simulations are crucial in understanding the 

behavior of biological systems in real life, where they are in constant motion. The fundamental 

idea behind MD simulations is to calculate the force exerted on each atom by all other atoms, using 

this information to predict the spatial position of each atom over time. Accuracy of such 

simulations relies on the used force fields – mathematical models that describe the interactions 

between atoms83.  

To prepare a system for MD simulations, a three dimensional protein structure is placed in 

a simulation box, and solvent molecules, typically water, are added, along with ions to neutralize 

the system. This is crucial to mimic the natural environment of the protein. The simulation process 

involves two main steps: equilibration and production. Equilibration is the initial phase where the 

system is allowed to stabilize, while the production phase is where the actual simulation is run83. 

When performed over suitable timescales, molecular dynamics simulations can yield a 

wealth of information. They can provide insights into protein function and interaction with small 

molecules, which helps in elucidating the mechanisms underlying the behaviour of targeted 

biological systems83. 

Conventional molecular dynamics simulations, while powerful, have a notable limitation. 

They often struggle with the issue of inefficient sampling due to the tendency of biological systems 

to get trapped in local minima of potential energy. This means that conventional MD simulations 

may not fully capture all possible dynamics of a studied biological system84. 

To overcome this challenge, the Gaussian-accelerated molecular dynamics (GaMD) 

approach was developed. GaMD is a computational enhanced sampling technique that works by 

adding a harmonic boost potential that follows a Gaussian distribution to the system’s potential 

energy. The boost potential is determined based on a harmonic force constant and the difference 

between the reference energy and the system's potential energy. This addition is performed when 

the system's potential energy is lower than a reference energy. The use of a Gaussian distribution 

allows for a smooth and continuous modification of the potential energy surface. The modified 

potential of the system is then calculated as the sum of the system’s potential and the harmonic 
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boost potential. This process effectively smoothens the potential energy surface and reduces 

system energy barriers, enabling the system to escape from local energy minima more easily. This 

approach allows GaMD to induce more conformational changes in the simulated systems, thereby 

enhancing the conformational sampling84.  

GaMD simulation proceeds in three stages: short conventional MD, GaMD equilibration, 

and GaMD production. During the first stage of short conventional MD, system potential statistics 

(including the minimum, maximum, average, and standard deviation) are collected to calculate the 

GaMD acceleration parameters. In the second stage of GaMD equilibration, the system potential 

statistics are updated to recalculate the GaMD acceleration parameters on the fly. In the third stage 

of GaMD production, the boost potential is applied to the system with GaMD acceleration 

parameters fixed. Simulation frames and the corresponding boost potential values are saved for 

analysis84. 

After the GaMD simulation, energy reweighting is done to analyze the boost potential 

distribution and calculate free energy profiles. Because the boost potential follows a Gaussian 

distribution, the original free energy profiles of studied biomolecules can be recovered through a 

process known as “Gaussian approximation” or cumulant expansion to the second order. By 

reweighting the obtained potential energy profiles, it is possible to understand how energetically 

favorable or unfavorable certain regions of conformational space are84. 

The application of GaMD is particularly beneficial in the study of highly dynamic 

biological systems. It allows for the exploration of a wider range of protein conformational 

dynamics, including the identification of rare conformational change episodes84. 

In this thesis, chapter 7 discusses the application of GaMD in modeling the dynamics of 

the tubulin protein. 

 

1.6. Review of published works on computer-aided drug design techniques for discovering new 

modulators of tubulin polymerization  

 
It’s essential to appreciate the role that CADD techniques have played in the search for 

small molecules modulators of tubulin polymerization. CADD approaches have been instrumental 

in directing the discovery and development of novel tubulin modulators. In the following section, 

we review published works where these computational tools have been used to explore the vast 

chemical space in search of small molecule modulators of tubulin polymerization. We aim to 

highlight the inherent versatility and efficiency of CADD methodologies, showcasing how they 

have paved pathways to potential therapeutic agents and enriched our understanding of tubulin’s 

complex biochemistry. 
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Chapter 2. Discovery of possible maytansine site-targeting microtubule destabilizing agents 

2.1. Introduction 

The polymerization of tubulin heterodimers into microtubules is a crucial physiological 

process in cell division and is fundamentally mediated by longitudinal interactions between 

dimers. This process propels the integration of new dimers into the microtubule lattice, thus 

facilitating the curved-to-straight conformational change5,41. Specifically, these interactions occur 

between helix H8 of α-tubulin and a pocket shaped by loops S3-H3, S5-H5, and H11-H11’ of β-

tubulin41. The conformational transition is further characterized by the movement of the 

intermediate domain of both α- and β-tubulin subunits, during which strands S8 and S9 move 

closer to helix H85. Any interference with this site could potentially inhibit tubulin polymerization 

and block the formation of longitudinal tubulin contacts5. 

One such molecule is maytansine, an ansamacrolide isolated from the African shrub Maytenus 

ovatus in 1972, which has been noted for its potent cytotoxicity due to its inhibitory impact on 

microtubule assembly85–87. Alongside maytansine, a small number of ligands, classified into four 

structural types, are known to bind to this site - maytansine derivatives, disorazole analogues, 

rhizoxin and spongistatin86 (Figure 28). 

 

Figure 28. Maytansine binding site and some ligands that target it 

However, the precise binding site of these ligands remained a matter of scientific debate until 

recent advancements in X-ray crystallography. This method facilitated a deeper understanding of 

the binding dynamics, revealing that these ligands, known to interfere with vinblastine binding, 

actually bind to a distinct site5. This site, found on an exposed pocket of β-tubulin, is located next 

to the guanosine nucleotide and is defined by the hydrophobic and polar residues of b-tubulin 
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helices H3’, H11, and H11’, along with the loops S3-H3' (T3-loop), S5-H5 (T5-loop), and H11-

H11’5. A set of key β-tubulin residues were identified as being critical for the ligand binding. In 

essence, all compounds engage in hydrogen bonding with the main chain nitrogen atom of Val181, 

as well as the side chains of Lys105 and Asn102. Furthermore, a subset of these compounds create 

a hydrogen bond with the main chain carbonyl group of Gly1005,41,87,88. The conformation of the 

maytansine binding site remains fairly stable despite the curved-to-straight transition. This 

observation indicates that ligands targeting the maytansine site have the potential to bind with both 

curved and straight states of tubulin5,41. 

The cytotoxic potential of these ligands, especially at low concentrations, has resulted in their 

clinical application as part of antibody-drug conjugates (ADCs), with maytansine derivatives most 

commonly employed as cytotoxic warheads5,86,89. Despite this promising avenue, these ligands 

present significant drawbacks due to their complexity being extracted from natural sources, which 

pose challenges for synthesis, separation and purification41,86. Furthermore, the high costs 

associated with ADCs and their systemic toxicity observed in clinical trials further complicate 

their application86–88. Additionally, the solvent-exposed pocket is difficult to target86. 

Given these complexities, the maytansine binding site remains under-explored yet fascinating 

for research. Preliminary computational work has provided pharmacophore models, although these 

have not been extensively used for screening41,86,90. A notable work by Li et al. saw an application 

of a manually developed pharmacophore model to screening two libraries of commercially 

available macrocycle molecules, establishing 15 virtual hits that have not been further validated 

experimentally86. This research landscape underscores the need for the discovery of small, easily 

synthesizable molecules that can inhibit tubulin polymerization by binding to the maytansine site, 

offering new pathways for pharmacological profile modification. In light of this, the primary aim 

of this chapter is to attempt to discover such molecules, thus contributing to the broader 

understanding of tubulin dynamics and its role in cell division. 

 

2.2. Virtual screening of the ChEMBL library 

2.2.1. Survey of available data 

Building upon previous work involving the creation and application of pharmacophore 

models41,86,90, we decided to perform pharmacophore-based virtual screening of ChEMBL, a 

database containing known drugs and drug-like compounds and their respective bioassay results91. 

Our aim was to identify molecules that conformed to a pharmacophore model of maytansine site 

binding compounds and exhibited cytotoxic properties with an unknown mechanism of action, 

which could then potentially be linked to the maytansine binding site of the tubulin protein. 
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A suitable pharmacophore model could be derived automatically from a well-resolved 

crystal structure of tubulin co-crystallized with a maytansine site bound ligand. A search in the 

Protein Data Bank (PDB)92, a primary source of protein-ligand crystal data, yielded six records 

where tubulin was cocrystalized with maytansine site-bound ligands (6FJM, 6FII, 6FJF, 4TV8, 

4TUY, 4TV9). We proposed to employ pharmacophore screening followed by docking validation 

of the discovered virtual hits.  

 

2.2.2. Re-docking  

To ensure the effectiveness of our study, we decided to employ a pharmacophore model 

that corresponds to the binding pattern of a compound which our docking software can accurately 

reproduce. The rationale is that if the pharmacophore model is based on a molecule whose docking 

pose our software can accurately recreate, then the potential hits conforming to this pharmacophore 

model will likely also dock in a similar manner. This would potentially result in a more 

biologically relevant and plausible pose generated by the docking software within the binding site, 

leading to prioritization of more relevant compounds for further study.  

To determine the most suitable protein-ligand complex, we conducted a re-docking 

experiment. This process involved extracting the native ligand from a protein-ligand complex, 

generating its random three-dimensional conformation, and using our docking software, PLANTS, 

to reintroduce the ligand into the binding site. We utilized the root mean square deviation of atomic 

positions between native and docked poses of the ligand as a metric to evaluate how well the pose 

was reproduced. Acceptable docking software performance is typically indicated by an RMSD 

value of less than 2.0 Å. 

We started by extracting the ligand from each PDB structure. We then generated a random 

pose for each ligand using the conformation sampling tool provided by ChemAxon. Subsequently, 

all solvent molecules, ions, and minor organic molecules were eliminated from the protein 

structure to focus on the interaction of the ligand and the protein. 

We used the SPORES software to prepare both the ligand and the ligand-free protein 

structure for further analysis. We defined the maytansine binding site as all the atoms within a 

distance of no more than 12 Å from the center of mass of each ligand. For scoring the docking 

simulations, we utilized the chemplp scoring function and set the software to generate 10 different 

docking poses for each ligand. 

In defining the binding site, we chose not to include any water molecules. This decision 

was based on the fact that none of the studies we reviewed which discussed the structure of the 

binding site indicated any significant role of water molecules in ligand binding. This step helped 
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us streamline our docking simulation by focusing only on the crucial components of the binding 

site. 

As a result, disorazole, a natural product known for its high cytotoxicity88, demonstrated 

the best re-docking performance with an RMSD of 3.05 Å. However, it should be noted that a 

major setback in the RMSD value is caused by a solvent-exposed part of the molecule, while most 

of the main “body” of the molecule, especially parts important for the protein-ligand interaction, 

were re-docked correctly (Figure 29). Disorazole was therefore selected for pharmacophore model 

development. 

 

Figure 29. Re-docking of disorazole. Gray – experimental pose, orange – re-docked pose. 

Failure to dock these complex compounds is clearly related to the sampling of macrocycle 

conformers. Alternative computational studies on maytansine (performed by Dr. Helena Perez-

Peña within the TubInTrain consortium), showed that redocking of the PDB conformation of 

maytansine is successful with AutoDock80, while software not using the correct initial ligand 

geometry would typically fail. Finally, the in-house program S4MPLE93, developed as a general 

approach to “difficult” flexible and/or multiligand conformational sampling and docking programs 

was challenged to redock maytansine. S4MPLE is a Lamarckian evolutionary algorithm, always 

starting from a randomized set of conformers: even if the PDB file of maytansine is provided at 

input, that particular geometry will be ignored. It uses the AMBER/GAFF force field coupled to 

an empirical continuum desolvation model to score the stability of poses, and employs contact 

fingerprints to manage the non-redundancy of the evolving populations of conformers. 

Nonetheless, the initial S4MPLE run consisting of 5-fold repeated evolutionary simulations of 700 

generations each also failed, although the number of generations was increased to 700 from the 
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default 500. Eventually, S4MPLE was deployed on 48 CPUs, and out of the 48 simulations, two 

were found to converge towards the native maytansine pose, ranked as the most stable of all other 

sampled conformations (Figure 30). However, at a cost of ~50 CPU hours/molecule, this approach 

is not applicable to high throughput virtual screening and was not pursued. 

 

Figure 30. S4MPLE-generated native pose of maytansine, after an aggressive parallel 

deployment on 48 CPUs. 

2.2.3. Pharmacophore modelling 

We used the 6FJM protein-ligand crystal structure in conjunction with LigandScout 

software to automatically generate a pharmacophore model. The model comprised 10 features 

(Figure 32): 6 hydrophobic spheres corresponding to hydrophobic interactions of the conjugated 

polyalkene side chain with βTRP407, βPHE404, βVAL182, βTYR408, βVAL181, 3 hydrogen 

bond acceptors targeted at βVAL181, βASN101, βVAL182 residues, and 1 hydrogen bond donor 

with βGLY100. The model also included exclusion zones mimicking the binding site shape, not 

shown for brevity. The resulting model included interactions with key residues highlighted earlier 

by Prota et al., Porter et al., and Li et al., which affirmed the validity of our model. 

 

Figure 31. Overview of the derived pharmacophore model 

Furthermore, using ChimeraX software, we superimposed the 4TV8 protein structure onto 

the 6FJM protein structure to observe the spatial relationship between them. Specifically, we 

utilized the “align” command with the “matchAtomNames” option set as a boolean “True” to 
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ensure optimal alignment. After this, we extracted the pose of the maytansine ligand, which is 

native to the 4TV8 PDB record, to evaluate how it overlapped with the pharmacophore model we 

derived from the 6FJM disorazole. Upon visual inspection, we were satisfied with the results 

(Figure 33). The overlap was particularly striking for features corresponding to interactions with 

the βASN101 and βVAL181 residues. This similarity further substantiated the accuracy of our 

model, granting us confidence to proceed with its application in screening. 

 

Figure 32. Maytansine aligns well with disorazole pharmacophore model 

2.2.4. Screening library preparation 

For the virtual screening, we selected the ChEMBL database (v. 26), containing 1,771,509 

molecules. To ensure consistency and accuracy during the screening process, all the molecules in 

our study were standardized. This standardization process was conducted based on the protocol 

used on the Virtual Screening Web Server at the Laboratory of Chemoinformatics at the University 

of Strasbourg. We employed the ChemAxon Standardizer tool for this task. 

The standardization process involved several steps. First, we performed dearomatization 

followed by final aromatization; however, heterocyclic compounds like pyridone were left 

unaromatized. The next step was dealkalization, where alkali ions were removed. Then, the 

molecular structures were converted into canonical Simplified Molecular Input Line Entry System 

(SMILES) format for easier processing and comparison. We also removed any salts and mixtures 

from the compounds to isolate the active molecules. This was followed by the neutralization of all 

species, except for nitrogen (IV). Finally, we generated the most stable tautomer of each 

compound, according to the protocol defined by ChemAxon. All these steps ensured that the 

molecules were in an optimal and standardized form for our screening and subsequent analyses. 

Pharmacophore screening is based on the fundamental principle of matching a large 

collection of compounds, represented by various three-dimensional (3D) conformations, to a 3D 

pharmacophore model. The higher number of conformations is used, the higher is the chance to 

capture a biologically significant conformation for each molecule in the conformation set. 
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In this study, we used LigandScout’s in-built conformational sampling tool, iCon, to 

prepare conformations for all 1,771,509 molecules in the ChEMBL database (v. 26). Specifically, 

we used the "iCon-best" option, meaning for each molecule we generated a maximum of 200 

unique conformations, distinguished by a RMSD value of at least 0.7 Å between different 

conformations. This approach facilitated a comprehensive conformational analysis for each 

molecule, thereby enhancing the effectiveness of our pharmacophore screening. 

  

2.2.5. Pharmacophore screening 

After constructing the database, we initiated the pharmacophore screening process using 

LigandScout. We chose to employ the "Pharmacophore fit" scoring function. This score provides 

a reflection of the number of matched features, in addition to the RMSD of their positions relative 

to the feature sphere's center. 

For the screening process, we opted for the "Match at least 3 query features" screening 

mode. We also set the retrieval mode to "Stop after first matching conformation" to speed up the 

screening process. To further refine the screening, we activated the check for excluded volume 

clashes. 

Through these settings, we were able to identify 1,035 potential hits from the ChEMBL 

database that had a Pharmacophore-Fit score exceeding 64. 

 

2.2.6. Protein-ligand docking 

To further refine our results, we docked the 1,035 virtual hits into the maytansine binding 

site extracted from the 6FJM PDB structure alongside the native ligand, disorazole. This was 

accomplished using the PLANTS docking software. The binding site was defined as all atoms 

within 12 Å radius from the center of mass of the native ligand. We used the chemplp scoring 

function. For each compound we calculated 10 docking poses within the site. The pose with the 

lowest docking score was considered to be the most probable one. A total of 104 molecules 

exhibited a better docking score than disorazole and aligned with at least three features of the query 

pharmacophore model. 

Upon cross-referencing these 104 molecules with the ChEMBL database, we identified 6 

molecules with documented cytotoxic action in bioassays (Figure 34). These molecules are of 

particular interest due to their conformance to the pharmacophore model, superior docking score 

compared to the native ligand, and associated cytotoxic properties. 
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Figure 33. Six virtual hits with known cytotoxicity values 

From the 6 virtual hits established by pharmacophore screening, compound 

ChEMBL4076273 attracted our attention in particular, because it is a natural product called 

Glycibridin B isolated from Glycyrrhiza glabra (commonly known as licorice)94. It had a docking 

score better than the original ligand, disorazole (-93.08 vs -91.05) and overlapped three 

pharmacophore features, showing potential interactions with key residues of the site (Figure 35). 

One work published its selective moderate cytotoxic activity on the MCF7 cancer cell line94. So 

we decided to pursue this molecule further. 

 

Figure 34. Virtual hit called glycibridin B has shown good docking score and overlaps five 

pharmacophore features of disorazole 
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The synthesis of this molecule was attempted by our collaborators within the TubInTrain 

network – the group of Prof. Daniele Passarella, University of Milano, Italy. Before starting to 

plan the synthesis, our colleagues asked us to see if certain structural modifications can simplify 

the molecule yet preserve its beneficial contacts with the key residues within the site. 

 

2.2.7. Virtual hit optimization 

 The modifications discussed herein concern the scaffold of the molecule and its various 

substituents, located at the aromatic rings. When it comes to the scaffold, we were interested to 

check whether the chain connecting the two aromatic rings should contain a hydroxyketone, a diol, 

or just be made of carbon atoms, and whether the stereochemistry of the hydroxyl group(-s) in the 

chain matters (Figure 36). 

 

Figure 35. Examined modifications of the intermediate section of the virtual hit 

 

Another question regarding the scaffold chain was whether it can be formed not by 3, but 

by 2 atoms (Figure 37). 



 124 

 

Figure 36. Tested scaffolds that are one carbon atom shorter in the intermediate section 

 

 In total, we have checked 6 scaffolds (Figure 38).  

 

Figure 37. Overview of enumerated variants of the middle section 

 

For each scaffold, we analyzed the importance of several factors for binding, such as (1) 

the presence of the dimethylallyl substituent (Figure 39a), (2) the variation of the hydroxyl groups 

positions in the aromatic rings (Figure 39b); (3) the replacement of the hydroxyl groups at their 

initial positions by a hydrogen atom (Figure 39c); (4) the replacement of the hydroxyl groups by 

another substituent from the list of suggested substituents: –F, –Cl, –OCH3, –NH2, –NO2 (Figure 

39d). In total, 1444 modifications of CHEMBL4076273 were examined. 
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Figure 38. Summary of enumerated side chain modifications 

 

 Each of the generated modifications has been then docked into a region of the protein 

consisting of the maytansine site and two closely-located cavities using the PLANTS docking 

software. As such, it would be possible to distinguish between ligands that could potentially bind 

to the maytansine site, and those that won’t. As a result of that, we have obtained 10 docking poses 

for each compound, each with an associated docking score. The lower the docking score value, 

the better the binding. Thus, by comparing the best-scoring docking poses of all ligands, it is 

possible to find out which modifications can potentially demonstrate better binding to tubulin.  

 According to our calculations, none of the modifications or simplifications of the original 

ligand’s structure caused an increase in affinity towards the maytansine binding site, hence we 

recommended to continue with the original structure.  

 

2.2.8. Virtual hit retrosynthesis route analysis 

Additionally, we have generated a possible retrosynthetic pathway to the virtual hit 

compound using the freely available AiZynthFinder automatic retrosynthesis tool95.  

Retrosynthesis is a task of reconstructing a synthetic route given only the final structure of 

the target molecule and a database of known reaction rules. One of the available tools for this task 
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is the open-source retrosynthesis planning tool called AiZynthFinder. It uses the Monte Carlo tree 

search algorithm that recursively breaks down a molecule into smaller fragments until purchasable 

precursors are generated. The way a molecule is broken down is guided by a neural network that 

suggests possible precursors, being trained on a library of known reaction templates. In this 

particular case, we set the tool up in such a way to break down a molecule until it can generate 

precursor compounds that can be found in a subset of the ZINC database containing 17,422,831 

purchasable compounds, which is a stock file made from the ZINC database on 17th of April, 

2020, and comes together with the AiZynthFinder installation. 

The tool can generate several possible synthetic pathways to a given molecule. Each of the 

generated pathways is described by a single number called “Score”. The “score” reflects the 

fraction of purchasable precursors in the generated route and the number of reactions required to 

synthesize the target compound. The score for a “solved” compound (i.e., a compound that is 

demonstrated to be synthesizable from purchasable building blocks) is close to 1.0, whereas the 

score for an “un-solved” compound is typically less than 0.8. However, it should be noted that the 

score was designed to support the tree search and is rather indiscriminate with regard to the quality 

of the route (i.e. if it’s a good route or not) and should be interpreted with care. 

If a compound can indeed be “solved”, the results clearly display which precursors to 

procure in order to synthesize the target compound. The predicted route is drawn with precursors 

in stock in a green rectangle, and the precursors that are not in stock highlighted by an orange one. 

Among the features of this tool are its high operation speed (generation of several synthetic 

routes for one molecule usually takes no more than 2-3 minutes) and the ability to run 

retrosynthetic jobs in batch mode via a dedicated command-line mode, while a more user-friendly 

GUI is available via an interactive Jupyter notebook interface.  

When working with AiZynthFinder, the stereochemistry features of the target compound 

had to be omitted due to the limitations of the used software. The obtained path is shown in Figure 

40. 
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Figure 39. Retrosynthetic route suggested by AiZynthFinder for the virtual hit molecule 

 

2.2.9. Virtual hit analogue selection 

Our colleagues from the organic chemistry lab deemed our initially proposed synthetic 

route unrealistic, due to unaddressed regioselectivity and stereoselectivity issues. In response, they 

proposed an alternative, more intricate retrosynthetic pathway (Figure 41).  

 

Figure 40. Alternative synthesis route devised by our colleagues 

However, this path proved to be synthetically difficult, rendering the synthesis of 

Glycibridin B within a reasonable timeframe implausible. Consequently, we identified 14 potential 

molecules of interest that could be considered instead of the originally targeted natural product: 
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seven were intermediates already produced in the attempted synthetic route, while the remaining 

seven were prospective products easily accessible from these intermediates (Figure 42). 

 

 

Figure 41. Intermediate and possible future product molecules that could be considered instead 

of the initially proposed glycibridin B molecule 

Our objective thus was to see whether any of these 14 molecules could serve as effective 

binders to the maytansine site. To facilitate this, we executed a two-sided computational approach. 

Initially, we docked the 14 ligands, alongside disorazole (the native ligand), into the maytansine 

site using PLANTS software. We adhered to the previously established parameters for this process, 

which included using the same definition of the maytansine binding site, which included all atoms 

within 12Å from the center of mass of the native ligand of the 6fjm PDB structure. The pose with 

the lowest docking score was selected as the most probable one. However, docking results saw all 

14 molecules get a better docking score than the native ligand, so it could not be used to differ or 

rank the ligands. 

To accommodate for that, we also conducted a blind docking experiment. Blind docking 

explores whether a ligand in question forms more intra-molecular interactions with alternative 

protein sites, as opposed to the specifically assigned site. This approach stems from the 

characteristic nature of the docking process, which theoretically allows any ligand to be 

accommodated into a binding site. Consequently, blind docking serves as a surrogate method: it's 

rapid but may lack precision. Nonetheless, it provides a broad overview, indicating if there exist 

other pockets on the protein to which the docked ligand demonstrates a stronger affinity.  
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The blind docking was also done using the PLANTS software. We still used the α,β-tubulin 

heterodimer structure extracted from 6FJM PDB structure, pre-processed by removing everything 

but the C and D chains of the protein, and processed with SPORES before docking. However, this 

time, the "binding site" was specified as all atoms within 60 Å from the center of mass between 

four randomly selected residues on the interdimer surface. This ensured that the binding site 

definition covered all atoms in the tubulin protein. To ensure sufficient conformational sampling, 

we configured PLANTS to compute 40 conformations for each ligand. This extensive sampling 

provided a broader perspective on potential binding scenarios. Blind docking narrowed our focus 

to ligands 9 and 10, which displayed a better docking score in the maytansine site in the majority 

of their sampled poses. 

Upon identifying ligands 9 and 10 as our most promising candidates, we further analyzed 

their overlap with the disorazole pharmacophore model. Both ligands’ best docking poses 

overlapped with five features of the pharmacophore model and fit well within the binding site 

(Figure 43). These two molecules, yet to be synthesized, emerged as promising alternatives. 

 

Figure 42. Two possible future products of glycibridin synthesis with promising fitness to the 

binding site and pharmacophore model 

 

2.2.10. Results and discussion 

 

Through the execution of this project, we developed a virtual screening pipeline that yielded 

104 virtual hits, six of which had previously been identified in cytotoxic assays. We initially 

selected one molecule for synthesis and validation, but complexities in its synthesis necessitated a 
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search for alternatives. Computational analysis enabled us to propose two synthetically accessible 

molecules as potential candidates. These molecules are yet to be synthesized and experimentally 

tested. With the recent resolution of new tubulin crystal structures with bound maytansine site 

ligands, there is scope for re-exploring this project using these new structures. Additionally, while 

we didn't conduct cross-docking in this study due to similarities in the ligands' binding modes, the 

availability of new data opens the possibility for its inclusion in future experiments. It's also worth 

noting that the shallow character of the binding site was not accounted for by the docking software 

used in our study. 

 

2.3. Virtual screening of the Enamine library 

As a result of the virtual screening of the ChEMBL database, we discovered a virtual hit that 

we subjected to further study. Unfortunately, the complex process of synthesizing this molecule 

proved to be an obstacle, hindering our progress in the project. Consequently, we made a decision 

to switch our approach and screen a large library of commercially-available compounds instead. 

We specifically opted for the Enamine High Throughput Screening (HTS) library, which, at the 

time, consisted of 2,688,748 million compounds. However, new crystal structures of tubulin co-

crystallized with maytansine site-bound ligands made us reconsider the choice of a pharmacophore 

model for the task. 

 

2.3.1. Survey of available data 

 

Sometime after we finished the screening of the ChEMBL library described in section 2.2, 

three new crystal structures of tubulin co-crystallized with maytansine site-binding ligands were 

published in the RCSB PDB. Their codes are 7E4R, 7E4Q and 7E4Z. Ligands referenced in these 

structures come from a work by Li et al.86, which studied the importance of an ester side chain in 

maytansinoids. The 2D structures of these molecules are shown in Figure 44. 

 

 

Figure 43. Three maytansine derivatives 
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Compared to the structure of maytansine itself, compounds I and II have a longer side 

chain with a disulfide group, and compound III doesn’t have any sidechain at all. 

 We also compared these new structures’ bound conformations to that of maytansine in 3D. 

For this, we aligned the three new protein-ligand complexes to the 4TV8 structure using ChimeraX 

software and the align command with the “matchAtomNames” flag turned on. 

 By analyzing the overlapped poses, we saw that the new structures keep exactly the same 

binding mode, establishing similar interactions to the key residues described in the literature 

(Figure 45).  

 

Figure 44. Overlap of novel maytansine derivatives with maytansine pose in the binding site. 

Gray – maytansine, orange – derivative molecule. 

 As such, all three compounds follow maytansine’s binding mode. Thus, we decided to 

automatically build the pharmacophore model of maytansinol (compound III) using LigandScout, 

validate it on other maytansinoids with resolved crystal structures, and use this model to screen 

the Enamine HTS collection. We specifically chose this compound collection because of its high 

diversity and relatively low cost of compounds per one gram. 

 

2.3.2. Pharmacophore modelling 

 

 We have then proceeded to construct the pharmacophore model of compound III (Figure 

47). 
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Figure 45. Compound III's pharmacophore model 

The resulting model is similar to the one we used for pharmacophore screening of the 

ChEMBL database in the previous project. The difference between the models lies in a different 

arrangement of hydrophobic spheres, and a lower number of pharmacophore features in general 

(6 versus 10). The exact positions of some exclusion spheres (not shown in figures) were different, 

although the general shape of the site defined by the exclusion volume spheres remained largely 

the same. 

 

2.3.3. Model validation 

We validated the model by overlapping other maytansinoids with the 7E4Z system, 

visually inspecting the quality of feature overlap. Namely, we used 4TV8, 6FJF, 7E4Q, 7E4R for 

model validation. As a result, we saw that the maytansinoid compounds had a good alignment with 

this model, which let us use it in performing the virtual screening of the Enamine library. 

 

2.3.4. Screening library preparation 

As mentioned, we chose the Enamine HTS library, containing 2,688,748 molecules. To be 

consist in our screening process, we applied a standardization procedure to all molecules included 

in this screening campaign. The applied standardization process mirrored the approach employed 

for screening the ChEMBL library, as outlined in section 2.2.4. 

In brief, the standardization involved several sequential steps. First, the standardization 

pipeline ensured proper aromatization. Second, it included dealkalization. Thirdly, compounds 

were converted into canonical SMILES strings. Additionally, salts and mixtures were removed, 

with active molecules isolated. Then, all species were neutralized, except for nitrogen (IV). 

Finally, the most stable tautomer was generated by ChemAxon tools for each compound.  

In this study, we employed LigandScout's integrated conformational sampling tool, iCon, 

to prepare conformations for all 2,688,748 molecules sourced from the Enamine HTS database. 

Specifically, we utilized the "iCon-fast" option, which generated up to 25 unique conformations 
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for each molecule. These conformations were distinguished by a Root Mean Square Deviation 

(RMSD) value of at least 0.7 Å between different conformations. This approach offered a suitable 

balance between screening speed and quality, enabling us to efficiently prepare the database and 

conduct the screening process within a reasonable timeframe. 

 

2.3.5. Pharmacophore screening 

After preparing the database, we started the pharmacophore screening using the 

LigandScout software. We made the decision to utilize the "Pharmacophore fit" scoring function, 

which evaluates the degree of feature matching and the RMSD of their positions relative to the 

center of the feature sphere 

For the screening process, we selected the "Match at least 3 query features" screening mode. 

To make the screening process more efficient, we configured the retrieval mode to "Stop after first 

matching conformation." Additionally, we enabled the check for excluded volume clashes to 

enhance the screening precision. 

By employing these settings, we successfully identified 151 potential hits from the 

Enamine HTS collection. These hits exhibited a Pharmacophore-Fit score surpassing 65, 

indicating their compatibility with the pharmacophore model. A random sample of three best-

matching virtual hits is shown in Figure 48. 

 

Figure 46. A random sample of three virtual hits from the Enamine HTS library that match the 

maytansinol pharmacophore model 

 

2.3.6. Protein-ligand docking 

 We have then proceeded to dock these 151 molecules along compound III into its 

corresponding protein structure (PDB code: 7E4Z). Docking was done using the PLANTS 

software. After docking, each compound had ten calculated poses within the binding site. The 
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best-scoring pose was used to characterize each compound by a chemplp PLANTS docking score 

and four ligand efficiency scores derived from it. Assuming DS is docking score, n is total number 

of ligand atoms, b is total number of rotatable bonds, the ligand efficiency scores were defined by 

Equations 5-8.  

𝐿𝐸S =
𝐷𝑆

𝑛 (5) 

𝐿𝐸V =
𝐷𝑆

𝑛
 (6) 

𝐿𝐸W =
𝐷𝑆

𝑏 + 1
 (7) 

𝐿𝐸Z =
𝐷𝑆

𝑛	×	𝑏 + 𝑛
 (8) 

 

We reasoned that if a compound gets a docking score value and the ligand efficiency scores 

values better than the original ligand (compound III, in this case), it may demonstrate a similar or 

better binding affinity towards tubulin’s maytansine binding site. The purpose of the ligand 

efficiency scores is to highlight the relevance of chemical interactions of a virtual hit with the 

binding site, reducing the influence of the sheer number of atoms and rotatable bonds on the final 

docking score. 

 We then chose most promising molecules by performing a Pareto front optimization of the 

list of 151 virtual hits based on the combination of docking score values and ligand efficiency 

scores. 

Pareto front optimization, also known as multi-objective optimization or simply Pareto 

optimization, is a technique used to solve problems that involve multiple conflicting objectives. 

Pareto front optimization seeks to find a set of solutions that represents the best trade-offs between 

the objectives. These solutions are known as Pareto optimal solutions. A Pareto optimal solution 

is one that cannot be improved in any one objective without sacrificing performance in another 

objective. The Pareto front refers to the set of all Pareto optimal solutions, which forms a curve or 

surface in the objective space. It represents the trade-off relationship between the objectives, 

showing the best achievable performance for each objective combination. The process of Pareto 

front optimization involves exploring the solution space and evaluating the objective functions to 

identify and refine Pareto optimal solutions. The purpose of this exercise was to find molecules 

that are good binders not because they just have many atoms and as a consequence a higher 

docking score, but because they form meaningful interactions with the target binding pocket. 

Essentially, this is done to lower the influence of ligand atom count on the final docking score 

value, instead promoting the interactions themselves as the main factor contributing to the docking 

score value. 
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 Following this logic, we established 11 molecules from the Enamine screening collection 

that fit compound III’s pharmacophore model and received a better combination of the docking 

and ligand efficiency scores than the original compound III. They are shown in Figure 49. 

 

Figure 47. Eleven virtual hits found after docking the pharmacophore screening hits 

 

2.3.7. Experimental validation of virtual hits 

Two kinds of experiments were carried out with the 11 purchased virtual hits. The first 

involved X-ray crystallography, specifically the co-crystallization of these molecules with tubulin. 

This work was done by our collaborators from Dr. Andrea Prota’s group at the Paul Scherrer 

Institut in Villigen, Switzerland. They performed soaking experiments using the T2R-TTL tubulin 

system, which consists of a protein complex comprising two bovine brain α,β-tubulin 

heterodimers, the rat stathmin-like protein RB3, and the chicken tubulin tyrosine ligase (TTL). 

The goal of this experiment was to see if any of the virtual hit molecules bound to the maytansine 

binding site of the tubulin protein.  

The second test involved biochemical tubulin polymerization assays carried out by our 

colleagues at Dr. Fernando Díaz’s group at the Centro de Investigaciones Biológicas Margarita 

Salas (CIB-CSIC) in Madrid, Spain. The goal of these assays was to examine the effect of these 

ligands on tubulin polymerization dynamics in vitro. Dr. Ahmed Soliman conducted the 

experiments by incubating the 11 ligands with tubulin purified from calf brains at 37°C. The 

formation of microtubules or other aggregates in solution was monitored by measuring the light 

absorption at 350 nm. The polymerization dynamics were tracked by measuring the absorbance at 
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350 nm for a duration of at least 4600 seconds. The tests included controls using tubulin with 

dimethyl sulfoxide (DMSO), the solvent used as a vehicle. The primary tubulin isotypes present 

in the tubulin preparation were tubulin βII (58%) and tubulin βIII (25%), with the remaining 17% 

consisting of other β-tubulin isotypes. In a typical bioassay of this kind, microtubule-stabilizing 

agents (e.g., paclitaxel) exhibit an increase in the amount of polymerized tubulin, reflected in an 

increased maximum slope and plateau in the absorption curve. Additionally, a higher number of 

nucleation events result in a reduced lag time, often too short to be detected in these experiments. 

Conversely, tubulin polymerization inhibitors (e.g., podophyllotoxin) show no increase in 

absorbance, indicating the complete prevention of microtubule formation. 

Regarding the eleven virtual hits discovered through virtual screening of the Enamine HTS 

library, X-ray crystallography experiments did not demonstrate binding of any ligands to the 

maytansine binding site. However, two of the molecules (compound 2 and 3) exhibited some 

inhibitory effects on microtubule polymerization. These molecules have favorable docking poses 

and alignment with the pharmacophore model (Figure 50). We hypothesize that these molecules 

may bind to the maytansine binding site, as predicted by computational methods, due to their 

binding mode aligning well with the pharmacophore features. Soaking these compounds into pre-

formed crystals where the maytansine site is already occupied by the complementary tubulin 

monomer renders binding unachievable. For the binding to occur, it needs to transpire prior to the 

coupling of tubulin monomers, and the compound would, in essence, obstruct the formation of 

microtubules. However, when "mature" microtubule crystals are already formed, they cannot be 

disrupted by the compound. Additionally, the contacts formed by these two ligands as shown by 

the computational model are predominantly hydrophobic, which may contribute to their low 

affinity for the site, thus not being detected in the X-ray crystallography experiments. 

 

Figure 48. Two hits that show some microtubule polymerization inhibition activity 
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2.3.8. Results and discussion 

In conclusion, the objective of this project was to identify inhibitors of tubulin 

polymerization that bind specifically to the maytansine binding site. We were particularly 

interested in discovering low-cost commercially available compounds, as these could be 

potentially modified and utilized for drug or molecular probe development. Through the screening 

of the Enamine HTS collection of 2.7 million compounds using a pharmacophore model derived 

from the maytansinol structure (7E4Z), we successfully identified 11 virtual hits. These hits 

underwent further experimental evaluation, including X-ray crystallography through co-

crystallization with tubulin, and a standard tubulin polymerization assay. 

The screening campaign yielded two molecules that exhibited inhibitory activity on tubulin 

polymerization, despite not being observed in X-ray structures. The observed effect on 

polymerization inhibition, although notable, was relatively modest. This could potentially be 

attributed to the sub-optimal affinity of these ligands for the binding site. Our computational 

analysis suggests that further optimization of these molecules may enhance their affinity to the 

site, potentially leading to the development of more potent binders. Exploring these possibilities 

in future research could pave the way for the design and synthesis of improved compounds for 

effective modulation of tubulin polymerization. 

 

2.4. Structure-based de novo design 

2.4.1. Docking-enabled forward synthesis-based de novo design 

The complexity of current macrocyclic molecules that bind to the maytansine site stems 

from their origin as natural products, resulting in complicated synthetic processes, which hinders 

efficient exploration and exploitation of this binding site. Thus, we were interested to investigate 

the application of de novo design techniques in order to use their potential to generate novel 

molecules. Yet, a common drawback of such methods is that the generation of chemically valid 

molecules often overlooks the practical and financial aspects of their synthesis. This limitation 

underscores the need for a mechanism to control chemical feasibility in de novo design methods. 

Addressing this challenge involves the introduction of a synthetic accessibility score into 

the de novo design pipeline. One way to do it is by using a forward synthesis approach. Forward 

synthesis prediction task (also known as reaction prediction task) is concerned with finding a 

synthetically valid chain of chemical reactions applied to a limited number of readily-available 

chemical building blocks that produce the required target molecule, thereby generating its 

synthetic tree. This contrasts with a more commonly used retrosynthetic approach, where the target 

molecule is sequentially broken down into small purchasable fragments. Both forward and 

retrosynthesis techniques can be implemented to assist in de novo molecule generation. In this 
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work, we attempted to implement a structure-based de novo molecule generation pipeline, which 

made use of an in-house tool capable of solving a “forward” reaction prediction task, central to 

which is the concept of a synthetic tree. 

In this digital construct, nodes represent individual molecules, and edges are chemical 

transformations that link them. When the user inputs a target molecule (for which they would like 

to produce a synthetic route), the software performs a similarity search in the provided building 

block database. It then samples a user-defined number of building blocks as potential starting 

points for the synthetic tree. For each possible starting block, a pre-trained neural network predicts 

the chemical transformation and another building block that can be applied to yield a product 

structurally similar to the target molecule. The Tanimoto metric is employed to define such 

similarity. This process is conducted for all building blocks, assigning a special "reward" value to 

each node. This value measures the suitability of a given node to successfully grow towards the 

target molecule. At each step, the tool selects the node with the highest "reward" value to progress 

the route, thereby growing the synthetic tree. The tool's goal is to reach the target compound by 

maximizing the similarity of the products produced by the nodes. Alternatively, the process can 

be halted upon reaching a user-defined number of synthetic steps (i.e., number of applied chemical 

transformations). This approach offers the advantage of producing either the required molecule 

exactly, along with a complete synthetic pathway from the provided starting material and allowed 

reactions, or molecules highly similar to the target molecule that may still possess the required 

properties. 

To ensure the molecules are specifically designed for the binding site, we developed a 

genetic algorithm-based protein-ligand docking implementation of this approach, re-configuring 

the forward synthesis approach (Figure 51). Instead of generating the target molecule, the forward 

synthesis tool uses it as a reference. The objective of the synthetic tree building is to optimize both 

the docking score of the products in each node and similarity to the reference ligand. The latter 

requirement limits the tool to explore the drug-like compound space. The selection of fragments 

and chemical transformations on each step is guided by a genetic algorithm. This leads to the 

generation of molecules that are (1) similar to the known ligand up to a user-specified threshold 

similarity value, thereby ensuring the drug-likeness of the generated molecules; and (2) yield a 

good docking score in the binding site. Guiding the process by docking score produces molecules 

with enhanced predicted affinity to the site. Reviewing the chemical transformations that generate 

the best-docking score molecules allows us to reconstruct their synthesis pathway. Consequently, 

this tool serves both as a structure-based de novo design and forward synthesis instrument. 
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Figure 49. Overview of suggested approach to structure-based forward synthesis-guided de novo 

molecular design 

2.4.2. Computational setup 

The tool setup for this project required several components: (1) a dataset of chemical 

transformations; (2) a dataset of building blocks; (3) a reference ligand structure; and (4) a protein 

binding site. The dataset of chemical transformations came from our colleagues from the Kazan 

Federal University, Russia (Dr. Timur Madzhidov’s group), who mined the dataset of chemical 

transformations from the USPTO dataset96, which included 550 one-component rules and 1700 

two-component rules. The building block dataset comprised of 390,000 building blocks from the 

ZINC database (v. 12), which were standardized using a procedure outlined in previous sections. 

We used disorazole as the reference ligand to guide the chemical design towards molecules that 

are likely to bind effectively to the targeted binding site. The binding site was defined as all atoms 

within 12 Å from the center of mass of disorazole from the 6FJM PDB structure, with the protein 

prepared by the SPORES software. All water molecules, ions, and other small ligands were 

removed. The genetic algorithm parameters included a starting population size of at least 50, 

number of generations set at 50,000, crossover probability of 0.7, an elitism fraction of 0.1, and 

the number of tolerated generations without fitness score (i.e., docking score) improvement as 

50,000. Compounds encoded by individual chromosomes had to have at least 0.4 Tanimoto 

similarity score to the reference ligand to be docked and considered in the optimization process. 

 

2.4.3. Results of the generation 

The de novo design pipeline was run thrice to account for the variability in the docking 

scores and genetic algorithm that predicts the necessary building blocks/chemical transformations. 

The structure-based de novo generation of molecules tailored for the maytansine binding site 
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resulted in three small molecules. Owing to the unique feature of our software, we could extract 

the precise sequence of building blocks and chemical transformations that produced the molecules 

with the highest docking score in the binding site. The generated compounds and potential 

synthetic routes are presented in Figure 52, with compounds highlighted in green color being 

commercially-available starting building blocks as seen in the ZINC v. 12 building blocks subset. 

Evaluation of the best docked poses of these molecules and alignment with the pharmacophore 

model of disorazole revealed overlapping key features (Figure 53). 

 

Figure 50. Three de novo generated compounds to target the maytansine binding site with 

synthetic pathways simultaneously suggested by the forward synthesis tool 
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Figure 51. Three de novo generated ligands and their predicted overlap with pharmacophore 

features according to the docked pose with the lowest docking score value 

2.4.4. Comparison to retrosynthesis tools 

We aimed to determine if retrosynthesis tools could replicate the routes produced by the 

forward synthesis tool. For this comparison, we utilized AiZynthFinder, SciFinder (a proprietary 

web-based tool), and Spaya (a proprietary web-based tool with a time-limited free access option). 

 The ChemPlanner tool, now part of the proprietary SciFindern suite, operates in a similar 

manner to the AiZynthFinder (by breaking a molecule down into purchasable pieces according to 

certain chemical rules), but uses a different database of chemical transformation rules and 

purchasable compounds. Its features are the two options to (1) specify the first bond to break 

during the first step of the retro-synthesis procedure, or (2) protect some bonds from breaking (thus 

letting the user define a general direction for further retrosynthesis). It also can utilize three 

different databases of chemical transformations: Common (with commonly-used reactions), 

Uncommon and Rare (both including rare reactions with little examples in the literature, which 

may potentially lead to a more creative synthetic pathway being suggested). Additionally, when 

the retrosynthesis is finished, the user can examine the literature references that affected the 

selection, thus making the tool interpretable. Finally, if a user doesn’t like a certain part of the 
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route, he can select an alternative one from a list of compatible suggestions. It is also worth noting 

that the tool can be used straight from the web browser and does not require any software 

installation or configuration. Moreover, this tool is capable of generating a detailed report for 

future use, and calculates an approximate cost of the synthesis. 

 Spaya is another proprietary retrosynthesis tool, developed by IKTOS. Unlike SciFindern, 

Spaya offers a free 1-month trial for individuals. Under the hood, it uses a neural network approach 

to molecule breakdown, much like the AiZynthFinder tool. The database of chemical 

transformations it uses is called Pistachio and comes from NextMove Softwares. Mcule provides 

its library of commercial starting materials and updated data related to their commercial 

availability and pricing. Among the features of this tool, one can mention the possibility of 

specifying specific intermediate molecules’ SMILES prior to starting the retrosynthesis job, which 

may help the experienced user direct the retrosynthesis in a particular direction. When the job is 

started, the tool suggests several groups of possible routes, different in the bonds of the target 

molecule that they break on their first step. Each route is assigned a special score. The higher the 

score the better. As is the case with the SciFindern tool, if a user doesn't like one part of the 

proposed retrosynthesis route, he can selectively modify this part by selecting alternative routes 

from a list of suggestions. For each reaction in the route, it is possible to see similar reactions 

described in the literature – thus making the tool interpretable. It is also worth mentioning that all 

interaction with this tool happens via a browser-based GUI. Another interesting feature of Spaya 

is the availability of the API access, which means that the retrosynthetic accessibility of 

compounds of interest can be assessed in batch mode and without any installation, using the 

IKTOS servers to do the job. Moreover, this tool is also capable of generating a PDF with a detailed 

report of the route. 

Below are the retrosynthesis paths generated by the respective tools for compounds DN-1 

(Figure 54), DN-2 (Figure 55), and DN-3 (Figure 56). Molecules highlighted in green in these 

images are commercially-available starting building blocks. 
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Figure 52. Retrosynthetic paths generated for compounds DN-1 

 

Figure 53. Retrosynthetic paths generated for compound DN-2 
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Figure 54. Retrosynthetic paths generated for compound DN-3 

 

2.4.5. Results and discussion 

In conclusion, in this project we successfully developed a structure-based de novo design 

pipeline, utilizing a forward synthesis prediction tool as a guiding limitation of synthetic 

accessibility. This novel implementation ensures the creation of molecules tailored for the 

maytansine binding site, with interactions with key residues, while also ensuring accessible 

synthesis. Notably, we can discern the exact reactions required for their synthesis. Upon 

comparison with routes generated by retrosynthesis tools for the de novo created molecules, we 

could draw insightful conclusions. 

As such, the forward synthesis tool generally produces shorter synthetic paths than all of 

the retro-synthesis ones. However, sometimes the forward synthesis tool suggests sub-optimal 

routes. For example, in the case of compound 1, the forward synthesis tool suggests using a reagent 

which then requires to perform complex rearrangements of fluorine and bromine atoms in the 

aromatic ring. Instead, it could have advised to use a bit different starting reagent, which would 

have been a better (easier) way. However, in the context of de novo design, the precise substituent 

pattern should not be taken as an absolute must – unless those substituents are providing 

(predicted) key interactions with the target, unlike in the case of the herein discussed halogens on 

the phenyl ring. All those analogues are roughly equally similar to the target product and dock 

comparably well – picking the synthetically easiest would have been the rational way to follow. 
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Unfortunately, that was not an option in the context of TubInTrain, because of insufficient 

resources. This computational experiment was not validated – showing again that in theory the 

exploration of the whole chemical space is appealing, but in practice exploring the chemical space 

of compounds for which the partner chemists have the (cheap) starting materials in stock and 

perfectly master the synthesis protocols is much likely to conclude with experimental validation. 

Interestingly enough, we have observed that the AiZynthFinder tool in its default 

configuration tends to break already purchasable intermediate compounds further down into much 

smaller starting molecules. It also tends to break larger molecules down to small molecules like 

ethanol and acetylene. This leads to artificially more complicated synthetic paths. One of the 

reasons for that may be due to the contents of the default database of building blocks.  

Generally, all of the retrosynthetic tools tend to separate larger molecules into 2 or more 

smaller parts, and then find ways to (1) separately synthesize them in a parallel fashion; (2) unite 

these parts together. On the contrary, the forward synthesis tool works by consequentially growing 

a starting fragment by enlarging its carbon chain, and everything is done in a sequential way. 

Neither software recommends using protective groups, assuming the suggested reactions 

happen at required atoms, and not at other, un-protected ones. In some cases, all tools proposed 

similar reactions (of the same type) using slight modifications of the same starting reagents, once 

again highlighting the importance of the used building block database (e.g., compound 1, 2). 

Thus, it's important to note that the effectiveness of our approach largely depends on the 

quality and extent of the databases of building blocks and chemical transformations available. 

Furthermore, the performance of the docking software is also crucial.  

Despite these dependencies, our method has shown considerable utility in designing 

molecules targeting specific sites. Its uniqueness lies in its guidance by a forward synthesis tool, 

rather than a retrosynthesis tool, thus offering a distinctive perspective in the field of de novo drug 

design. 

 

2.5. Conclusions and perspectives 

In conclusion, we have performed two virtual screening campaigns to discover novel 

maytansine site-targeting agents - a combined approach only previously employed by one other 

study. The first campaign involved screening ChEMBL to identify a cytotoxic molecule with an 

unknown mechanism of action that could potentially be attributed to binding at the maytansine 

site. We did identify a natural product with cytotoxic action, although challenges in synthesizing 

this product led us to identify possible alternatives that would be easier to synthesize. Their 

synthesis and experimental validation remain to be done. 
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The second screening campaign, conducted with an Enamine HTS library, yielded 11 virtual 

hits, two of which showed moderate microtubule inhibiting action. While X-ray crystallization did 

not provide clear results, we believe the observed inhibition can be attributed to binding at the 

maytansine site due to their structural features and size. Although the exact binding dynamics 

remain unclear, these molecules present an exciting opportunity for further research, including 

potential modifications to develop new probes or inhibitors of tubulin heterodimer interactions. 

Our third project marked the successful development of a de novo molecule design pipeline, 

allowing for the creation of chemically viable molecules specifically tailored for the maytansine 

binding site. By coupling a forward synthesis tool with a protein-ligand docking tool, we ensured 

that the generated molecules would be chemically valid and accessible via computed synthetic 

routes. The synthetic routes produced by our software were comparable to those generated by 

freely and commercially available retrosynthesis tools. 

Despite these advances, our work also highlighted potential areas for improvement. Further 

research is necessary to fully capitalize on the successes of this study and refine our approach. 

While there is more work to be done, the promising results from our virtual screening campaigns 

and the development of a novel de novo design pipeline lay a solid foundation for future 

investigations. 
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Chapter 3. Virtual screening for novel pironetin site-targeting inhibitors of tubulin 

polymerization 

3.1. Introduction 

 
Disruption of longitudinal interactions between tubulin heterodimers is an effective strategy 

to inhibit the polymerization of microtubules, as seen in the mode of action of maytansine site-

targeting agents and vinca alkaloids, who act as a "wedge," physically impeding the T7 loop and 

H8 helix of α-tubulin from locking themselves in a special cavity on the β-tubulin subunit5. 

However, a similar destabilizing effect may be achieved if a small molecule interferes with a-

tubulin’s T7 loop and H8 helix directly. 

Indeed, such a molecule exists. It is pironetin, a natural product isolated in 1994 from the 

fermentation broths of Streptomyces prunicolor PA-48153 and Streptomyces sp. NK 109585,97 

(Figure 55). Initially discovered as a plant growth regulator, it was later found to exhibit potent 

antiproliferative activity, thanks to its capability to impede microtubule dynamics. This ability 

gives it powerful in vitro activity against cell lines both sensitive and resistant to first-line 

therapeutics, and even those resistant to other microtubule-targeting drugs42,43,98. Pironetin is a 

dihydropyrone derivative and several studies have shown that its α,β-unsaturated lactone core 

fragment is essential for its microtubule inhibitory activity. The alkyl chain and the hydroxyl group 

at the 7-position are also important for the inhibition of tubulin polymerization99. 

Binding of pironetin disturbs the H8 helix and T7 loop of α-tubulin, disrupting longitudinal 

tubulin-tubulin interactions5. The molecule binds to an extended hydrophobic pocket on α-tubulin, 

interacting with strands S8, S10, and helix H7 (Figure 55). The sidechain of pironetin burrows 

further into a pocket shaped by helix H7 and strands S4, S5, and S6. This interaction disorganizes 

the T7 loop and provokes a conformational change in the N-terminal section of helix H8 of α-

tubulin, with some residues shifting more than 10 Å5,100. The binding pocket is not present in the 

apo structure, hinting that pironetin may bind through an induced fit mechanism42. The inhibition 

was discovered to be essentially irreversible under physiological conditions43. 

A unique feature is that pironetin forms a covalent bond with a cysteine residue upon binding 

to the pocket. The reaction follows a Michael addition mechanism, made possible by the 

nucleophilic cysteine residue (Cys316) located close to ligand’s position the binding site and the 

presence of an α,β-unsaturated carbonyl fragment (δ-lactone) in pironetin43. This covalent-binding 

action was confirmed by structure-activity relationship studies and verified by two independent 

X-ray crystallography studies, which identified Cys316 of α-tubulin as the reactive residue5,42. It 

is worth noting that the binding site contains three more cysteine residues in the vicinity of the 

ligand’s binding pose (Figure 55). 
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Figure 55. Pironetin binding site 

Remarkably, until recently, pironetin was the only ligand characterized crystallographically 

to bind solely to α-tubulin42. This has prompted numerous groups to pursue total syntheses of this 

compound101. To date, 12 unique total syntheses of pironetin have been published, underlining 

both the synthetic challenges and the biological intrigue associated with this natural product42. 

The complex nature of pironetin, with its six stereo enters, results in lengthy and impractical 

synthesis processes for large-scale production101. Even the synthesis of its simplified analogues 

remains complex, with analogues showing a significant reduction in cytotoxicity compared to 

pironetin42. Moreover, in vivo studies of pironetin revealed a poor efficacy and potentially toxic 

side effects in mice, possibly related to potential off-target binding, making it unsuitable as a direct 

drug candidate98. Additionally, the structure-activity relationships of pironetin analogues are not 

easily rationalized, complicating the design of new generations of these analogues43. Little to no 

computational studies on the pironetin binding site-targeting molecules have been published so 

far. One computational study by Banuelos-Hernandez et al. used density functional theory 

computations, protein-ligand docking and molecular dynamics simulation to provide a rationale 

for the pironetin inhibitory activity97.  Vergoten et al. established a list of potent cytotoxic agents 

that were structurally similar to pironetin and used protein-ligand docking to speculate that their 

mode of action is similar to that of pironetin99. No virtual screening attempts for this site have been 

published. 

Nonetheless, we were interested to explore the pironetin binding site due to it being relatively 

understudied in the realm of cancer therapeutics and molecular probe design42,99. The binding site, 

nestled in the α-tubulin, represents a potentially fruitful area of drug design, especially due to β-
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tubulin-targeting agent resistant mutations in tubulin in cancer isotypes42. Currently, the 

consequences and benefits of targeting α-tubulin instead of, or in conjunction with, β-tubulin 

remain largely unexplored. The lack of pironetin-resistant cell lines suggests that pironetin or α-

tubulin binders could serve as useful probes to understand β-tubulin resistant cancers and show 

utility against tumors that have become resistant to first-line tubulin-binding chemotherapeutics42. 

Additionally, a molecular probe that would covalently bind to a cysteine residue within the 

pironetin binding site may be useful in the design of high-throughput surface-based tubulin binding 

assays, using such methods as surface plasmon resonance or wave-guided interferometry assay102. 

A key challenge for these surface-based assays lies in the immobilization of tubulin onto a matrix 

in a manner that facilitates small molecules interactions103. Current approaches are sub-optimal, 

often tampering with the useful signal103. However, combining the high sensitivity of surface-

based assays with a properly immobilized, binding-competent tubulin through an easily accessible 

small molecule that binds to the pironetin binding site could potentially allow for the high-

throughput determination of binding affinities of a wide array of small molecules. This would 

greatly accelerate the discovery and development of novel microtubule-targeting agents with high 

specificity and potency. 

Thus, the goal of this work was to perform virtual screening of large compound collections to 

find more easily synthetically accessible molecules that could target the pironetin binding site, 

and, potentially, create a covalent bond with one of the cysteine residues in the binding site. 

 

3.2. Virtual screening of the ChEMBL library 

 

This project was aimed at discovering new small molecules that could bind to the pironetin 

site. We intended to expand the variety of molecules that could target this site, as it is presently 

known to be targeted by just one molecule, pironetin itself. With the moderate success of the 

pharmacophore-based virtual screening strategy as described in Chapter 2, we decided to adopt a 

similar pharmacophore screening approach to start this project. 

 

3.2.1. Overview of available data 

The crucial question was to select a starting protein-ligand complex to develop a 

pharmacophore model. The RCSB PDB database listed only two crystal structures of tubulin co-

crystallized with pironetin, namely 5FNV and 5LA6. Both of these structures showed pironetin 

bound to Cys316 of the α-tubulin subunit in an identical conformation. Nevertheless, 5LA6 was 

not well-resolved around the site, as a significant portion of the T7 loop was missing. As a result, 

we selected the 5FNV PDB structure as our source of protein-ligand interaction data. 
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3.2.2. Pharmacophore modelling 

An automatically-derived pharmacophore model was developed using the LigandScout 

software, based on the 5FNV structure (Figure 56). The model comprised 5 features: four 

hydrophobic spheres aligned linearly and 1 residue bonding point feature, which detects reactive 

groups essential for forming a covalent bond with a nucleophilic residue. Such groups include 

ketones, nitriles, or Michael acceptors, which were of particular interest to us. Given that only one 

ligand has been confirmed to bind at the pironetin site, we could not validate the model. 

 

Figure 56. Pironetin’s pharmacophore model derived from the 5FNV PDB structure 

We redocked pironetin to verify if our software could replicate its pose within the site, 

anticipating that this could imply that other compounds adhering to this pharmacophore model 

would be docked accurately. Our redocking process involved breaking the covalent bond between 

pironetin and the cysteine residue and docking the non-bound form of the ligand. The docking 

procedure was executed using the PLANTS software. The ligand’s binding site was derived from 

the 5FNV structure, which was prepared by removing all solvent molecules, ions, and other small 

organic molecules. The ChemAxon conformation sampling software within the MolConvert 

program calculated a random initial ligand’s conformation from a stereoisomeric SMILES string 

representation of pironetin. Both protein and ligand structures were pre-processed by the SPORES 

software. The outcome was satisfactory as the molecule redocked correctly with an RMSD of 1.81 

Å (Figure 57) with respect to the covalently bound form, expected to be offset from the 

(experimentally undetectable) non-covalent pose. The RMSD value was calculated using the 

CalcLigRMSD script, contributed to the RDKit chemoinformatics toolkit by Velázquez-Libera et 

al.104 
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Figure 57. Grey – pironetin's native pose, orange – re-docked pose 

 

3.2.3. Screening library preparation 

We first screened the ChEMBL library (v. 26), as our initial preference was to work with 

molecules that already had established bioactivity data. This could aid in identifying potential 

cytotoxic agents without the need for complex experiments. The screening library preparation 

procedure followed the same steps as described in Chapter 2, section 2.2.4. Briefly, all molecules 

were first standardized using an in-house standardization routine (see section 2.2.4). Secondly, we 

calculated 200 conformations for all molecules in the library using the iCon-best option in the 

iCon built-in conformation sampler of LigandScout, with a 0.7 Å RMSD window between 

individual conformations. 

 

3.2.4. Pharmacophore screening 

We then applied the pironetin pharmacophore model for screening the compounds. We 

used the "Pharmacophore fit" scoring function to select compounds. The "Match at least 3 query 

features" screening mode was used. The retrieval mode was set to "Stop after first matching 

conformation" to speed up the screening process. Excluded volume clashed were accounted for 

during screening.  

The result yielded 9229 virtual hits with pharmacophore fit score values higher than 54.69 

due to the relative simplicity of the model. However, to proceed with the selection of virtual hits, 

we had to devise additional filtering methods to enhance the quality of the hits and improve their 

suitability for the binding site. 

 

3.2.5. Protein-ligand docking 

To do so, we docked all 9229 virtual hits into the pironetin site derived from the 5FNV 

structure using the PLANTS software. The binding site was defined as all atoms within 12 Å radius 

from the center of mass of the native ligand of the 5FNV structure, pironetin. Each compound was 

evaluated by a chemplp docking score and 4 ligand efficiency scores, which reduced the influence 

of the ligand size (in terms of atom numbers) on the docking score. The ligand efficiency scores 
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are derivatives of the docking score, defined in section 2.3.7. For each compound, we generated 

10 docked poses, followed by Pareto optimization over the docking score of the best pose (i.e., the 

one with the lowest docking score) and ligand efficiency scores. This was to identify ligands that 

could yield highest docking scores with a lesser number of atoms. Post-optimization, 190 

molecules were shortlisted. For all these molecules, we computed the synthetic accessibility score 

(SAscore) and ranked them accordingly. The SAscore, proposed by Ertl et al., is a combination of 

fragment contributions and a complexity penalty105. Fragment contributions were computed by 

examining a vast collection of representative molecules sourced from the PubChem database. The 

score accounts for molecule size, the presence of unconventional structural elements, including 

sizable rings, non-standard ring fusions, and stereocomplexity. It ranges from 1 to 10, where 1 

signifies ease of synthesis, while 10 indicates a high level of complexity in synthesis. In this work, 

we used the SAscore implementation included in the RDKit chemoinformatics toolkit for the 

Python programming language. 

As a result, we selected 10 molecules that had a docking score better than pironetin, largely 

adhered to the pharmacophore model, and had a favorable synthetic accessibility score of less than 

2. They are shown in Figure 58. Calculated pose and pharmacophore feature overlap of a virtual 

hit with the lowest (i.e., best) value of the docking score is shown in Figure 59. Noticeably, the 

outcomes of this virtual screening campaign presented several molecules with warheads placed in 

molecular contexts where their reactivity is dubious, hinting that the structural match is a more 

important criterion for the used software than chemical reactivity. Moreover, it appeared as though 

the software prioritized overlap with the hydrophobic feature adjacent to the reactive group feature. 

For certain virtual hits, the reactive group was situated at a greater distance from the targeted 

cysteine residue than anticipated, suggesting an unexpected preference pattern within the 

screening process. 
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Figure 58. Ten virtual hits found by pharmacophore screening of the ChEMBL library 

 

Figure 59. The calculated docked pose and pharmacophore feature overlap of the virtual hit 

with the best docking score 

3.2.6. Results and discussion 

Upon checking these 10 molecules in the ChEMBL database, it was found that none of 

them, despite being part of cytotoxic assays, had any significant cytotoxic effect. Consequently, 

we couldn’t leverage these results to progress further and had to abandon the initiative. Possible 

future avenues could include refining the pharmacophore model to make it more complex or 

exploring different docking approaches. One potential alternative could be ensemble docking, 
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which takes into account the flexibility of the binding site and the induced-fit binding mechanism 

suggested by certain publications. It could also be that the database does not contain any cytotoxic 

molecules that cause the antiproliferative action via binding at the pironetin site. 

 
3.3. Virtual screening of the Enamine libraries 

 

When the screening of the ChEMBL library yielded no significant outcomes, we pivoted 

our approach to focus on the Enamine libraries of purchasable compounds. 

 

3.3.1. Pharmacophore modelling 

Our strategy for this project continued to use the pharmacophore model previously 

employed during the ChEMBL database screening. Moreover, we leveraged new findings from a 

fragment screening campaign conducted by our collaborators106. This campaign uncovered three 

small fragments with a propensity to bind to the pironetin binding site. From these protein-

fragment complexes, we derived additional pharmacophore models. While two of the fragments 

expectedly produced straightforward models with a single feature, one fragment (2-chloro-N-

methylbenzene-1-sulfonamide, PDB code: 5S5M) presented a more complex model containing 

three features (Figure 60).  

 

Figure 60. Gray – native pose of pironetin (5FNV). Cyan – crystal pose of the small fragment 

(5S5M). Both were used to derive a pharmacophore model. 

Consequently, the larger pironetin model was used to screen libraries of larger purchasable 

molecules, approximating a molecular weight of 500 Da, due to its features residing in an 

elongated 3D shape. In contrast, the small fragment model, with closely situated features, was 

utilized to screen libraries of small fragments, with an approximate molecular weight of 200 Da. 
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3.3.2. Screening libraries preparation 

The Enamine HTS compound library (2,688,748 compounds), covalent probes library (960 

small fragments), tubulin-targeted library (3,452 compounds), cysteine-targeted library (3,200 

compounds), phenotypic screening library (5,760 compounds), covalent screening library (11,760 

compounds), 3D shape diverse library (1,200 small fragments), NP-like fragments (4,160 small 

fragments), covalent fragments (7,360 small fragments), DSI-poised library (860 small 

fragments), high fidelity fragment library (1,920 small fragments), and the essential fragment 

library (320 small fragments) were all used in this study. These libraries were all standardized 

using a previously described method. For the HTS library we calculated 25 conformations using 

the iCon-fast option of the built-in conformational sampler iCon, as part of the LigandScout 

software. For all other libraries, we computed 200 conformations using the iCon-best option of the 

same software. 

 

3.3.3. Pharmacophore screening 

We conducted the screening process using the LigandScout software, employing the 

"Pharmacophore fit" scoring function. This score reflects the number of matched features and the 

RMSD of their positions relative to the feature sphere's center. For the screening process, we used 

the "Match at least 3 query features" screening mode and set the retrieval mode to "Stop after first 

matching conformation" to make the process efficient. To enhance the screening accuracy, we 

activated the check for excluded volume clashes. The libraries screened with the pironetin model 

and the small fragment model produced 2340 and 4932 virtual hits, respectively (Table 1). These 

hits were then filtered to retain only those ligands best suited for targeting the pironetin binding 

site. 

 

Table 1. Libraries screened by pironetin and small fragment's pharmacophore models 

Library Number of records Model Pharmacophore 

screening hits found 

Enamine HTS 

compound library 

2688748 Pironetin 2176 

Covalent screening 

library 

11760 Pironetin 120 

Covalent fragments 7360 Small fragment 40 

Phenotypic screening 

library 

5760 Pironetin 21 
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NP-like fragments 4160 Small fragment 1507 

Tubulin-targeted 

library 

3452 Pironetin 12 

Cysteine-targeted 

library 

3200 Pironetin 11 

Small fragment 1693 

High fidelity 

fragment library 

1920 Small fragment 645 

3D shape diverse 

library 

1200 Small fragment 644 

Covalent probes 

library 

960 Small fragment 0 

DSI-poised library 860 Small fragment 312 

Essential fragment 

library 

320 Small fragment 91 

 

3.3.4. Protein-ligand docking 

To refine our results, we conducted protein-ligand docking of the virtual hits identified 

within the pironetin binding site. We maintained the same binding site definition and docking 

parameters as outlined in section 3.2.6. For molecules identified by the pironetin pharmacophore 

model, we evaluated the best poses in the sites and performed Pareto optimization over the docking 

score values and the ligand efficiency score values. Then, we focused on the distances between 

the reactive functional groups of the remaining virtual hits and the cysteine residues in the binding 

site. Then, we manually computed distances to the four cysteine residues using the measurement 

wizard in the ChimeraX software. The top molecules were then re-ranked based on the distance 

values to the cysteine residues in the site, with emphasis on the distance value rather than the 

specific residue targeted. 

For the virtual hits identified by the small fragment model, we ranked them based on the 

docking score and through visual inspection of their preferred position within the site, prioritizing 

those situated closer to any cysteine residue. 

Our concerted efforts resulted in the identification of 32 promising virtual hits. 27 of these 

were derived from the screening with the pironetin model (eleven from the Enamine HTS 

collection (Figure 61), three from the tubulin-targeted library (Figure 62), and thirteen from the 

cysteine-targeted library separately found by two models (Figure 63)), and the remaining 5 were 

generated from the screening with the small fragment model (the electrophile covalent probes 

library (Figure 64)). Once again, for some of the virtual hit molecules, it seemed that the software 
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displayed a tendency to prioritize the overlap with the adjacent hydrophobic features rather than 

the reactive group feature. In some instances, the placement of the reactive group was more 

distanced than what was initially expected, implying an unanticipated bias within the screening 

algorithm. 

 

Figure 61. Virtual hits found by screening the Enamine HTS collection using pironetin’s 

pharmacophore model 

 

 

Figure 62. Virtual hits found by screening the tubulin-targeting library by pironetin’s 

pharmacophore model 
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Figure 63. Virtual hits separately found by pironetin and small fragment's models from the 

cysteine-targeted Enamine library 

 

Figure 64. Virtual hits found by the small fragment model in the Enamine electrophile covalent 

probes library 

 

The virtual hit molecules were purchased and subsequently underwent experimental 

validation, which is discussed in detail in section 3.3.7. Interestingly, a majority of the small 

fragment virtual hits and some larger virtual hits featured the α-chloroacetate reactive group, a 

group known for its exceptional reactivity due to the strong electrophilic character of the carbonyl 

carbon, which makes it readily susceptible to nucleophilic attack. This characteristic could make 

it a potent covalent modifier targeting the cysteine residues in the pironetin binding site. However, 

this same property also raises considerations about selectivity, as the high reactivity of the α-

chloroacetate group could potentially lead to off-target interactions. Consequently, we anticipated 

that fragments containing this group may demonstrate non-specific tubulin polymerization 

modulator activity. 
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3.3.5. Machine learning-driven protein-ligand docking screening pipeline 

Our pharmacophore model, being fairly rudimentary, may inadvertently exclude viable 

molecules due to an incomplete representation of all relevant protein-ligand interactions at the 

target site. Therefore, we sought to complement our existing approach with a more exploratory, 

albeit riskier strategy. We aimed to uncover entirely novel chemotypes targeting the pironetin site, 

which do not necessarily align with our existing pharmacophore model. 

A docking-based virtual screening approach can be used to this end. It requires no 

pharmacophore hypothesis – any feasible interaction with the protein site can be exploited – but 

may fail in relative ranking of the impact of these interactions on binding affinity, and, foremost, 

is unable to tackle the covalent binding problem. It may discover compound conveniently fitting 

the pironetin binding site but without guarantees that these will feature any SH-binding warhead 

close to Cys316, and even less guarantees that if close, the warhead would actually react. 

Furthermore, neither docking nor pharmacophore model can guarantee that the selected ligands 

have a sufficient affinity to “power” (by whatever unknown mechanism) the induced-fit 

conformational change leading to the hypothesized binding site geometry to which they fit, 

according to the software. All in all, any state-of-art virtual screening approach is seriously 

challenged in this context, and the a posteriori analysis of hits by human experts is an absolute 

must.   

Through the examination of docking scores, ligand poses, and the interactions a ligand 

forms within the site, we can gain insights into potential high-affinity molecules. However, large-

scale application of this method is impeded by its significant computational demand. Literature 

provides examples of machine learning-driven iterative screening strategies developed to 

overcome this drawback (Figure 65) 107. In these approaches, only a small subset of a large 

database is first selected for docking. A machine learning model is then trained on the results of 

the docking to predict the docking score based on a 2D representation of the ligands within this 

subset. This iterative process continues, with new subsets docked and their scores compared to the 

model’s predictions. If the model’s predictive accuracy, determined by a user-specified metric, is 

low, the model is re-fitted on the concatenated data from previous and current docking cycles. This 

process continues until the model achieves satisfactory predictive accuracy, after which it is used 

to predict the docking scores of all compounds in the larger database. Only compounds predicted 

to have a docking score higher than a user-defined threshold are docked, saving considerable time 

and computational resources without causing significant drops in the hit quality108,109. 
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Figure 65. An overview of machine learning-based iterative screening approaches (adapted 

from Graff et al.
109

) 

In this study, we implemented such an iterative screening approach to screen the Enamine 

HTS collection using protein-ligand docking. Our setup used a support vector machine regression 

model and ISIDA descriptors as 2D molecular representations to learn the chemplp scoring 

function values from the protein-ligand complexes produced by the PLANTS software. The ISIDA 

property-labeled fragment descriptors encode molecular structures as counts of specific 

subgraphs’ occurrences, with atoms represented as nodes, which can be labeled by element type 

or some local property/feature, and bonds represented as edges, with bond type information either 

present or omitted. Thus, many ISIDA fragmentation schemes can be produced for the same sets 

of molecules, different in the resolution of the chemical information extracted into the descriptors. 

The predictive performance of the model was measured by the regression coefficient (R2) value 

between the predicted and actual docking scores, with a consistent R2 value of 0.8 for three 

consecutive training cycles used as a threshold for model acceptance to screen the whole large 

database. A genetic algorithm, as described by Horvath et al.110, was implemented to 

simultaneously optimize the SVM regression model’s hyperparameters and the ISIDA descriptor 

set. Each model training step employed 3-fold cross-validation, repeated 12 times. The genetic 

algorithm parameters set the minimum initial population size at 500 points and a stopping criterion 

of 1000 generations without metric value progress. For each model fitting cycle, we randomly 

selected 3000 compounds from the large dataset. The training was configured to stop if the model 

did not require refitting after three optimization cycles. 

We applied this setup to screen the Enamine HTS collection library. After five model 

refitting cycles, we obtained a predictive model with an R2 metric value consistently exceeding 

0.8, with the optimal fragmentation scheme being sequences fragmentation with atoms represented 

by atom symbol (no special coloration used) and the inclusion of the bond order information to 

produce fragments with the topological distance of at minimum 1 and at maximum 5. We then 

used this model and descriptor set to predict the docking scores of all compounds in the library. 

We chose to dock only those compounds predicted to have a docking score lower (indicating a 

better binding affinity) than -28.63. This cutoff was based on the 10% percentile of the best 
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docking scores from the model training data. Of the 2,670,898 predictions obtained, only 141,091 

were docked using PLANTS, which is just 5% of the original library. Upon filtering for fragments 

with a double bond adjacent to an electron-withdrawing group (EWG) to promote cysteine 

binding, we were left with 1550 protein-ligand complexes. A Pareto front over the docking score 

and ligand efficiency scores was used to narrow down our selection to 52 compounds. These were 

then ranked by docking score, and only the top 15 molecules, which achieved a better docking 

score than pironetin and had their reactive group close to any of the four cysteine residues in the 

binding site, were retained for experimental validation (Figure 66). 

 

Figure 66. Fifteen virtual hits found by the iterative screening approach 

 

3.3.6. Comparing the docked poses of virtual hits with those of known colchicine site agents 

 

Our virtual screening and docking approaches yielded small molecules. In general, these 

molecules all feature an aromatic moiety and a significant number of hydrogen bind acceptors, 

which made us consider the possibility of alternative binding to the larger and more promiscuous 

colchicine site. 

The colchicine site, primarily residing within the β-tubulin unit and described in more 

detail in Chapter 5, is a large cavity known to accommodate microtubule-destabilizing agents of 

diverse structures. Given its wide-open nature in contrast to the likely induced-fit opening of the 

pironetin site, it is plausible that our small, non-specific virtual screening hits could also bind there. 
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To assess the potential binding of our virtual hits to the colchicine site, we devised another 

pharmacophore modelling strategy. We conducted a literature review and mined the RCSB PDB 

database, producing a list of 104 PDB records of tubulin co-crystallized with colchicine site-

targeting agents. From these records, we isolated the ligand-bound β-tubulin chains and aligned 

all of them to the ligand-bound β-tubulin from the high-resolution 6F7C PDB structure. After that, 

we automatically extracted pharmacophore models of all colchicine site-targeting compounds 

using LigandScout, merging models devised for structurally similar ligands that co-crystallized in 

the site following similar binding modes.  

Then, we docked all of the 47 virtual screening hits into the colchicine binding site. The 

binding site was defined as all atoms within 8Å from the native ligand’s (the colchicine ligand) 

center of mass in the 5EYP PDB structure, which was chosen due to being one of the most well-

resolved crystal structures of tubulin bound to a colchicine site ligand (structure resolution 1.9 Å). 

Docking was done using the AutoDock GPU software to increase the sampling quality of the 

virtual hits position inside the binding site. It was setup to estimate 200 possible conformations for 

each ligand. The grid was centered around the native ligand’s center of mass, stretching 62 points 

by the x-axis, 54 by the y-axis, and 78 by the z-axis, with a spacing of 0.375 Å between each point. 

All default atom types were used to calculate the grid maps. Default AutoDock scoring function 

was used. 

Upon docking our virtual hits into the colchicine site, we investigated potential overlaps 

between the best docked poses (i.e., the ones with the lowest value of the docking score) and the 

pharmacophore models. In particular, we were only considering virtual hits that overlapped three 

or more pharmacophore features for any given model. This analysis identified two ligands that 

overlapped three pharmacophore features derived from the 3HKD PDB structure of a (3Z,5S)-5-

benzyl-3-[1-(phenylamino)ethylidene]pyrrolidine-2,4-dione ligand (PDB code: N16) co-

crystallized with tubulin in the colchicine binding site. These were HTS-9 and CT-2. Despite 

conforming to the pironetin pharmacophore model, these ligands, when docked in the colchicine 

site, occupied positions highly similar to that of N16, and arranged well with its pharmacophore 

model (Figure 67).  
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Figure 67. Docked poses of two virtual screening hits aligned well to a pharmacophore model of 

a known colchicine site inhibitor 

Additionally, we superimposed the docked poses of virtual hits HTS-9 and CT-2 with all 

small fragments that were crystallographically shown to bind at the colchicine site in the recent 

fragment screening campaign mentioned above106. Remarkably, we saw good overlap (Figure 68) 

of a part of HTS-9 with cyclopropyl-[4-(4-fluorophenyl)piperazin-1-yl]methanone, a small 

fragment co-crystallized with tubulin in the colchicine site (PDB ligand ID: GX4, PDB structure 

code: 5S4U).  

 

Figure 68. Overlap between docked pose of virtual hit HTS-9 and (orange) and crystal pose of 

small fragment GX4 (gray). 

This led us to consider that HTS-9 and CT-2 might bind at the colchicine site, a 

consideration we bore in mind when proceeding to the experimental validation of all identified 

virtual hits. 
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3.3.7. Experimental validation of virtual hits 

We procured all 47 virtual hits identified in our study for further evaluation, employing 

two primary assays: X-ray crystallography and tubulin polymerization inhibition, as detailed in 

Section 2.3.7. The X-ray crystallography experiments performed by our collaborators from the 

group of Dr. Andrea Prota in the Paul Scherrer Institut, Villigen, Switzerland did not detect any 

molecule or fragment bound to the prionetin site. However, three small fragments found by 

pharmacophore screening of the cysteine-targeted library with the small fragment model (CT-9, 

CT-10, CT-11) demonstrated a considerable inhibitory effect on tubulin polymerization (Figure 

69), despite their absence in the X-ray crystal structures. We hypothesize that this could be 

attributed to non-selective acylation reactions, given the high reactivity of these fragments. While 

the exact site of acylation remains undetermined, it is most likely located on the tubulin protein 

surface. Given that the small fragments follow the pharmacophore model of the 2-chloro-N-

methylbenzene-1-sulfonamide fragment that binds close to the entrance to the pironetin site, we 

speculate that the reactions may involve cysteine residues number 4 or 200 on the α-tubulin 

subunit. This warrants further investigation, as there is potential to develop these fragments into 

effective ligands. 

 

Figure 69. Microtubule polymerization assay results for three small fragment hits 

 

Remarkably, two of the virtual hits (HTS-9 and CT-2) were found to bind at the colchicine 

site, as predicted by our pharmacophore modelling and fragment overlap analysis. These 

molecules significantly inhibited tubulin polymerization, with compound HTS-9 showing a 

particularly pronounced effect. The X-ray structure of compound CT-2 was partially unresolved, 
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suggesting it may bind to the colchicine site, albeit not remain stable in the site. Conversely, the 

X-ray crystal structure of compound HTS-9 was well resolved, providing stronger evidence for its 

binding (Figure 70).  

Figure 70. Experimental electron densities of hits HTS-9 and CT-2 in the colchicine site 

We also validated the docking pose predicted by the AutoDock software for compound 

HTS-9. As a result, the docked pose that had the lowest (i.e., best) value of the docking score was 

1.72 Å different from the pose that this compound takes in the colchicine binding site when co-

crystallized with tubulin (Figure 71). The RMSD value was calculated using the CalcLigRMSD 

script, contributed to the RDKit chemoinformatics toolkit by Velázquez-Libera et al.104 

 

Figure 71. Crystal pose of hit HTS-9 (gray) vs. AutoDock generated best pose (orange) 
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Tubulin polymerization assay showed notable inhibition effect for compound HTS-9. 

Additionally, cell viability tests, performed by Francesca Bonato, a fellow TubInTrain PhD student 

from the group of Dr. Fernando Díaz at CIB-CSIC, Madrid, Spain revealed that compound  

HTS-9 was cytotoxic in the micromolar range (Figure 72). The goal of the in vitro assay was to 

measure the concentration of compound HTS-9 that inhibits proliferation of five different cancer 

cell lines by 50% (i.e., the IC50 value). Cytotoxicity of compound HTS-9 was measured in 

comparison with two standard nanomolar inhibitors of tubulin polymerization, podophyllotoxin 

and mebendazole, both binding to the colchicine site as well. Remarkably, HTS-9 exhibited 

pronounced cytotoxic action against all of the cell lines it was tested on. Interestingly, it exhibited 

some specificity towards the βIII-tubulin isotype expressed in the HeLa cells. This isotype is 

noteworthy as it is expressed by cancer cells resistant to other tubulin-targeting therapeutics. Thus, 

our discovery could pave the way for the development of future tubulin isotype-specific 

treatments. 

 

Figure 72. Results of in vitro bioactivity tests performed for hit compound HTS-9. 

 
3.4. Conclusion and perspectives 

 

In summary, our research involved the screening of the ChEMBL library of drug-like 

molecules with known bioassay data, alongside multiple Enamine libraries of purchasable 

compounds and small fragments. Despite our efforts, the ChEMBL library failed to yield any 

significant hits, leading us to discontinue this line of study. The reasons for this lack of results may 

range from a potentially oversimplified pharmacophore model, unanticipated behaviour of the 

pharmacophore screening algorithm in the context of warhead matching, inaccuracies in docking 

filtering, or the possibility that the ChEMBL library does not contain ligands that induce 

cytotoxicity via pironetin binding. 
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Shifting our focus to the Enamine libraries, we applied two pharmacophore models and a 

novel machine learning-aided protein-ligand docking-based approach for screening the largest 

library, the HTS collection. This strategy proved more successful, yielding 47 virtual hits. Upon 

purchasing and evaluating these hits, we identified three small fragments with significant 

microtubule-depolymerization activity. Furthermore, we discovered two molecules that bind at the 

colchicine binding site and exert a notable inhibitory effect on microtubule polymerization. 

Importantly, one virtual hit demonstrated specificity towards the βIII-tubulin isotype, which is 

prevalent in drug-resistant cancer cells. 

Future research should consider the further optimization of these small fragment hits to 

develop potent tubulin polymerization modulators. Of particular interest is the promising hit that 

binds at the colchicine site, which will require additional investigation and optimization. Our work 

paves the way for these future endeavors, contributing valuable insights to the development of 

targeted tubulin polymerization inhibitors. 
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Chapter 4. Discovery and design of todalam site-targeting agents 

4.1. Introduction 

In cells, tubulin is regulated by numerous proteins that modulate microtubule dynamics 

and organization, thus influencing fundamental physiological processes in all eukaryotes106. This 

binding capacity is not limited to proteins, but extends to a vast array of chemically diverse small 

molecules that interact with one of the seven distinct binding sites identified on the tubulin protein 

to date. Compounds that disrupt tubulin’s function have demonstrated significant effectiveness in 

treating various human diseases. Given the diverse array of proteins and ligands that bind to 

tubulin, one can suggest that there may exist other, yet undiscovered binding sites on the tubulin 

protein, which could also be targeted to develop novel therapeutic agents or molecular probes106. 

One way to investigate this possibility is to perform crystallographic fragment screening, which is 

an experiment concerned with soaking a protein of interest with a large number of structurally 

diverse small chemical fragments, identifying their binding modes through X-ray crystallography 

experiments, and further developing the bound fragments into actual ligands with desired action111. 

In a recent study, Mühlethaler et al. employed such a crystallographic fragment screening 

campaign for tubulin, yielding significant results106. Using 708 different fragments, they identified 

56 fragments that target ten unique, previously unidentified binding sites on the tubulin protein106. 

Notably, three fragments bound to a site at the inter-dimer interface between α- and β-tubulin, 

adjacent to the pironetin site, prompting further investigation due to its potential relevance in anti-

cancer drug design and tubulin-targeting molecular probe studies. The authors then employed a 

fragment linking strategy to grow the fragments into a full ligand, named todalam45.  

Todalam binds to a unique binding site, formed by residues from βH3’, βH11’, and αH8 

helices, αS4 strand, and various loops including βT3, βT5, αH3-S4, and αH4-αS5 when two 

tubulin heterodimers come together in a head-to-tail fashion45. The ligand’s structure can be 

divided into three moieties (Figure 73): an anchor (the acetaminophenyl group), a central linker 

(an aminothiazole group), and a hydrophobic head (a hydrophobic trifluoromethylbenzene group). 

Todalam forms three hydrogen bonds with the βAsn102, αThr257, and αGln256 residues, and 

establishes parallel-displaced π-π stacking interactions with βTrp407. The binding site stretches 

into a region rich in hydrophobic amino acids (αLeu136, αLeu167, αLeu242, αLeu252), which 

supports the binding of todalam due to its own aromatic hydrophobic group45. 
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Figure 73. Overview of the todalam binding site and the todalam ligand's structure. 

The transformation of tubulin from a curved to a straight shape when it integrates into the 

microtubule lattice is facilitated by the rotation of the intermediate domain of both the α- and β-

tubulin monomers in relation to their N- and C-terminal domains5. A part of the todalam binding 

pocket on α-tubulin is formed by secondary structure elements from both the N-terminal (αS4 and 

αS5) and intermediate (αH8) domains of α-tubulin. When the α-tubulin monomer shifts from the 

curved to the straight form, the αH8 helix moves towards the αS4 and αS5 strands. However, in 

the presence of todalam, this motion results in a collision between the αH8 helix and the main part 

of the todalam compound. Therefore, todalam appears to function as a "molecular block", 

preventing the αH8 helix from moving closer to the αS4 and αS5 strands during this 

conformational shift45. Because todalam's binding site is positioned between two tubulin dimers 

aligned lengthwise, todalam is able to bind both the α- and β-tubulin monomers of two tubulin 

dimers simultaneously. This explains why the presence of todalam in vitro induces the formation 

of tubulin ring-like structures, effectively inhibiting microtubule polymerization and causing 

significant cytotoxicity45. 

What makes the todalam binding site particularly interesting is the presence of a targetable 

cysteine residue (αCys4) at the hydrophobic pocket in the a-tubulin subunit. If a molecule could 

bind to this site and form a covalent bond with the cysteine residue, it could greatly facilitate the 

development of assays for immobilizing tubulin and expedite high-throughput crystallographic 

studies on agents targeting tubulin by being developed into a molecular probe. The recent 

discoveries related to the todalam site open up new opportunities for the rational design of more 

accessible molecules, and further exploration and enhancement of new binders for this site. 
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In light of these findings, this project had two main objectives. Firstly, we aimed to identify 

diverse molecular scaffolds that can bind to the todalam binding site to explore structure-activity 

relationships in this so far uncharacterized binding site. Secondly, using this information, we 

sought to either find analogues of these compounds with reactive functional groups (warheads) 

capable of targeting the cysteine residue, or establish a limited number of easily accessible 

reactions that produce these well-binding scaffolds and identify purchasable small fragments that 

can functionalize them to create tailor-made covalent binders. 

 

4.2. Discovery of novel chemical scaffolds that target the todalam site 

4.2.1. Initial data analysis and library selection 

 

We approached the project by first conducting a survey of available data on the todalam 

binding site and ligand that target it. At that time, several todalam site-related Protein Data Bank 

(PDB) structures were available, i.e. tubulin co-crystallized with todalam (PDB code: 5SB7) and 

its four simplified derivatives (PDB codes: 5SB3, 5SB4, 5SB5, 5SB6). A thorough analysis of 

these structures revealed the critical importance of the acetaminophenyl group and a hydrophobic 

group at the molecule’s opposing end for effective binding, due to the interactions they formed 

with the binding site residues (Figure 74). Additionally, the central region of the todalam site 

contains two glutamine residues (αGln133 and αGln256) and a serine residue (αSer165), all of 

which provide opportunities for todalam site-targeting ligands to form hydrogen bonds with the 

site. To ensure the presence of these interactions in the ligands we aimed to discover, we opted to 

employ the pharmacophore modelling approach in this project. 

 

Figure 74. Overlap of five todalam derivatives in the binding site helped to come up with ligand 

moiety designations 
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Seven diverse Enamine libraries, including the HTS collection (2,688,748 compounds), 

the tubulin-targeted library (3,452 compounds), the protein-protein interactions inhibitors library 

(40,640 compounds), the covalent fragments library (7,360 compounds), the covalent screening 

library (11,200 compounds), the NP-like library (4,158 compounds), and the covalent compounds 

collection (88,259 compounds), were selected for pharmacophore screening. We anticipated that 

the chemical diversity of these libraries would ensure the diversity of the found virtual hits, while 

the ready availability of these compounds would help us advance the exploration of the binding 

site chemistry efficiently. Concurrently, the group of Prof. Daniele Passarella from the University 

of Milano, Italy, deigned a custom in-house library of 176 compounds, which they were capable 

of synthesizing in one or two steps using their expertise in amide formation, azide-alkyne Huisgen 

cycloaddition, and Suzuki coupling reactions. Virtual screening strategy for this small in-house 

set involved docking all molecules into the todalam site and re-scoring them based on their 

alignment with a chosen pharmacophore model. Altogether, the screening involved a total of 

2,843,993 compounds.  

 

4.2.2. Pharmacophore modelling 

We used the crystal structure of the tubulin-bound todalam ligand (PDB code 5SB7) to 

automatically generate an initial pharmacophore model with LigandScout, resulting in an eight-

feature model (Figure 75). The features included four hydrophobic spheres, two hydrogen bond 

donor and two hydrogen bond acceptor interactions between the ligand and the binding site 

residues. 
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Figure 75. The initial eight-feature pharmacophore model of todalam; dashed blue line – 

possible hydrogen bonds between todalam and the binding site residues 

The nature and specific arrangement of features of this model possibly made it restrictive 

for virtual screening. To address the potential lack of hit diversity during the virtual screening, five 

simpler models were created from the initial model by individually removing each of the five non-

anchor features (Figure 76). 

 

Figure 76. Five simplified analogues of the initial model, each missing one feature not related to 

the anchoring point 
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To validate the applicability of the PLANTS docking software for modelling our protein-

ligand system, we performed a re-docking experiment of the todalam ligand. This re-docking was 

performed on a protein structure from the 5SB7 crystal structure, stripped of all solvent molecules, 

ions, and other small organic molecules. The ligand and protein were prepared using the SPORES 

software, with a random ligand conformation generated using ChemAxon’s conformational 

sampling tool. We defined the binding site as all atoms of all residues from chains B and C 

(modelling b-tubulin and a-tubulin, respectively) of the 5SB7 PDB structure within 8 Å from the 

native ligand’s pose in the site. The software was configured to produce ten docked poses, each 

evaluated by the chemplp scoring function. When compared to the native pose, the best-scoring 

docked pose had an RMSD value of 0.43 Å, confirming the software’s reliability in accurately 

modeling the binding mode of todalam site-targeting ligands (Figure 77). 

 

Figure 77. Native (gray) and re-docked (orange) poses of todalam 

 

4.2.3. Screening libraries preparation 

Following the selection of the Enamine libraries totalling 2,843,817 compounds, we 

standardized the molecules in these libraries by using a multi-step standardization process 

previously described in section 2.2.4. Briefly, it included proper aromatization, dealkalization, 

conversion into canonical SMILES strings, salt and mixture removal, species neutralization, and 

tautomer generation with ChemAxon tools. Each molecule then underwent conformational 

sampling using LigandScout's integrated iCon tool, generating up to 25 unique conformations with 

an RMSD value of at least 0.7 Å between conformations. 

Similarly, the 176 compounds in the in-house library underwent the same standardization 

routine, although these were specifically prepared for docking rather than for pharmacophore 

screening, so conformational sampling was not performed for them. 
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4.2.4. Pharmacophore screening 

As anticipated, the initial eight-feature model only identified one hit molecule, 

significantly similar to the native ligand, todalam, from the seven screened Enamine libraries. To 

ensure a diverse set of virtual hits and increase our design options, we repeated the screening using 

the five simplified models. Consequently, these yielded 175, 18, 53, 248, and 13 virtual hits from 

models 1, 2, 3, 4, and 5, respectively. This process, in total, produced 499 unique virtual hits from 

the Enamine libraries. Figure 78 shows examples of best-matching molecules found by each 

model. The next step was to dock these virtual hits into the todalam binding site and assess the 

alignment of their best scoring poses within the site with the full eight-feature pharmacophore 

model. 

 

Figure 78. Example of well-fitting virtual hits found in the Enamine libraries after 

pharmacophore screening 

 

4.2.5. Protein-ligand docking 

All 499 unique virtual hits from the Enamine libraries were subsequently docked into the 

todalam binding site alongside the native ligand, utilizing the PLANTS docking software. The 

procedure and settings were consistent with those used during the re-docking experiment (section 

4.2.2). Each of the ten poses calculated for each virtual hit were assigned a chemplp docking score. 

The molecules were then ranked based on the docking score values of the best scoring poses, and 

those with scores surpassing that of the native ligand, todalam, were selected (60 in total). These 

selected hits were then re-scored by overlapping each one’s best-scoring docked pose in the 

todalam site with the full eight-feature pharmacophore model, which resulted in the final selection 

of 13 virtual hits from the Enamine libraries for experimental validation (Figure 79).  
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Figure 79. Virtual hits found after re-scoring pharmacophore screening hits by alignment of 

their best docked poses with the eight-feature pharmacophore model 

The thirteen virtual hits were selected considering their potential interactions with the 

residues in the binding site. The calculated poses for all thirteen compounds are shown in Figure 

80. 

As such, VH-1 was chosen due to its excellent overlap with todalam’s bound structure (in 

the image shown as transparent black sticks), facilitated by three hydrogen bonds and π-stacking 

interaction with identical residues to todalam. VH-2 was selected due to the possible dual hydrogen 

bonds and π-stacking with the b-tubulin anchor residues, and a possible hydrogen bond with serine. 

The selection of VH-3 was motivated by the desire to investigate the potential of a molecule to 

establish a hydrogen bond with αGln133 and provide an outward-facing functional group. VH-4 

was chosen to examine the impact of substituting the phenyl ring in the anchor group, as docking 

revealed a favourable conformation. VH-5 was selected due to the possible hydrogen bonding with 

αSer165 and αGln256 via the sulphur atom of the thiazole fragment as suggested by the best-

docked pose. This pose also displayed an advantageous placement of the phenyl ring within the 

hydrophobic pocket – a position we would have liked to leverage for future cysteine targeting. 

VH-6 was chosen for its potential to form two hydrogen bonds with αGln256 to improve 

ligand stability in the site. VH-7 and VH-10, despite being shorter than todalam, were selected to 

explore an alternative anchor interaction point on the interdimer interface. Both molecules’ 

anchors were calculated to form three hydrogen bonds with nearby residues. The choice of VH-8 

was motivated by the desire to explore potential stabilizing effects resulting from hydrogen bonds 

with residues αGln133 and αGln256. We selected VH-9 with an interest in replacing the linker 

part in the middle of the molecule with a non-conjugated linear chain instead of a ring structure. 

Similarly, VH-11, with an easily accessible synthetic scaffold, was chosen for its potential binding 
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capabilities and the subsequent possibility of straightforward fragment modification through 

simple synthesis. VH-12 was selected due to the potential for replacing the hydrophobic aromatic 

ring with another hydrophobic functional group. This molecule followed todalam’s binding mode 

closely and displayed the formation of an additional hydrogen bond with αSer165. Finally, VH-

13 was chosen for its close alignment with the placement of todalam’s hydrophobic groups within 

the pharmacophore model. We wanted to investigate whether prioritizing hydrophobic interactions 

over hydrogen bonding could aid this compound in reaching the site. 

 

Figure 80. Predicted poses of virtual hits VH 1-13. Todalam’s binding mode is shown as 

transparent gray sticks; best-scoring docked poses of the virtual hits – as orange sticks. Possible 

hydrogen bonds within the site are shown as pink dashed lines. 

An identical procedure was applied to the molecules from the in-house library. Of the 176 

designed molecules, 68 achieved a docking score superior to todalam, and five were prioritized 

for further investigation after being re-scored with the eight-feature model of todalam bound to 

the binding site (Figure 81 and 82). 

 

Figure 81. Five virtual hits selected from the in-house library 
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We selected in-house compound VH-14 due to its easy synthetic accessibility and a 

favorable docking pose, which aligns well with todalam’s binding mode. Notably, the triazole ring 

of VH-14 shows a considerable overlap with todalam’s thiazole group. However, the simplistic 

alkyl chain of the linker doesn't offer many opportunities for establishing stabilizing interactions 

within the site. Similarly, we opted for VH-16, as its docking pose exhibited good alignment with 

todalam’s binding mode. Interestingly, the docked pose suggested a potential for a hydrogen bond 

between the triazole ring and the αSer165 residue. Compounds VH-15, VH-17, and VH-18 were 

selected because their calculated binding poses closely mirrored that of todalam. The easily 

accessible scaffold of these compounds offers the potential for future modifications. Additionally, 

we selected these compounds to understand the significance of having a phenylacetamide fragment 

in the anchor, as opposed to a phenylprop-2-enamide fragment, thereby contributing to our 

understanding of this binding site. 

 

Figure 82. Best docked poses of in-house library virtual hits (orange) overlapped with todalam's 

native bound pose (transparent black) 

 

4.2.6. Binding site similarity search 

We also considered the possibility of searching for other binding sites that are structurally 

and chemically similar to the todalam site to potentially identify ligands that could target the 

todalam site due to similar binding environments. As such, we needed to select a set of protein-

ligand complexes to search in, and a binding site similarity search algorithm. To this end, we used 

the scPDB database as the source of protein-ligand complexes112. It contained 16,034 entries: 6326 

ligands bound to 4782 proteins. As a way to compare the sites, we used the ProBiS algorithm113. 

It conducts pocket matching by comparing the geometric and physicochemical characteristics of 
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protein binding pockets. This comparison is carried out at the level of amino acid functional 

groups. In this method, pockets are represented as graphs, where each vertex represents a 

functional group of surface residues that interact with other molecules. These vertices are assigned 

specific physicochemical properties, such as hydrogen bond acceptor or donor, mixed 

acceptor/donor, and aromatic or aliphatic characteristics. When comparing two proteins, a product 

graph is created, retaining only those edges whose lengths in the individual protein graphs differ 

by less than 2Å. The algorithm then identifies potential binding site similarities by applying the 

maximum clique algorithm. Here, the maximum clique represents the largest similarity between 

the two protein graphs, based on the number of vertices in the product graph. Each maximum 

clique corresponds to a single local structural alignment between the two proteins being compared. 

The final step involves scoring the constructed alignments using a function that takes into account 

surface vector angles, surface patch root-mean-square deviation, surface patch size, and 

expectation values73. 

Despite the meticulous search and the use of two separate representations of the todalam 

binding site (as a single pocket on the a-tubulin subunit, and as a pocket between b-tubulin and a-

tubulin of two separate longitudinally aligned heterodimers), only the pironetin binding site was 

found to be similar. As this result did not offer substantial value for our research, we discontinued 

further binding site similarity searches. 

 

4.2.7. Experimental validation of virtual screening hits 

We proceeded to validate the 18 virtual hits (13 from the Enamine libraries, 5 from the in-

house library) using X-ray crystallography and microtubule polymerization bioassays. Both 

experiments were performed by our collaborators from the TubInTrain consortium using the set 

up described in section 2.3.8.  

From the in-house library compounds, three out of five were crystallographically 

confirmed to bind at the todalam site (Figure 83). Additionally, for the two other virtual hits that 

follow the same scaffold, electron density related to the anchoring moiety of the molecules was 

detected in the binding site, hinting that the molecules seem to bind at the site, but cannot adopt a 

stable conformation. Two of the bound molecules exhibited inhibitory influence on microtubule 

polymerization in the in vitro studies (Figure 84). 
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Figure 83. Three in-house hit molecules found by pharmacophore screening and protein-ligand 

docking 

 

Figure 84. Microtubule polymerization inhibitory action shown by two in-house hit molecules 

Two other hits from the in-house library (VH-15 and VH-17) that were poorly defined in 

the todalam site also caused notable inhibition of tubulin polymerization (Figure 85). 
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Figure 85. Microtubule polymerization inhibitory action displayed by hit molecules VH-15 and 

VH-17 

Regarding the Enamine libraries hits, five out of thirteen compounds were 

crystallographically confirmed to bind at the todalam site. Crystal structure for one of the 

compounds (VH-12) could not be resolved due to poor resolution of the crystal structure. For the 

four other hits (VH-1, VH-5, VH-8, VH-11), their crystal poses are shown in Figure 86, overlapped 

with the best scoring docking poses calculated for them. 

 

Figure 86. Overlap between the docked and experimentlally determined poses of four virtual hits 

in the todalam binding site 

None of the 5 compounds had any effect on microtubule polymerization. Interestingly, one 

virtual hit from the Enamine libraries (VH-4) was not detected to bind at the todalam site, but 
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demonstrated a microtubule depolymerizing effect in vitro, comparable to that of todalam (Figure 

87).  

 

Figure 87. Virtual hit VH-4 demonstrated microtubule polymerization inhibition activity on a 

level comparable to todalam 

In parallel, another virtual screening campaign, using a different computational approach, 

was performed by Dr. Helena Perez-Peña, in a collaboration between universities of Strasbourg 

and Milano under the TubInTrain consortium framework. Instead of pharmacophore screening, 

that work used substructure search to find purchasable molecules capable of targeting the todalam 

site in the desired binding mode. By combining the experimentally validated results of the virtual 

screening pipelines implemented in this thesis and the separate work of Dr. Perez-Peña, we were 

able to create a list of 7 distinct molecular scaffolds that bind to the todalam binding site in the 

binding mode that’s similar to the native ligand’s one (Figure 88). 

 

Figure 88. Six distinct scaffolds that target the todalam binding site 
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4.2.8. Results and discussion 

Our virtual screening efforts of the in-house library have allowed us to select five 

molecules for synthesis and experimental evaluation. X-ray crystallography experiments have 

shown distinct binding of the three compounds to the todalam site. Two of the three bound in-

house molecules caused notable microtubule polymerization inhibition action. Additionally, two 

other virtual hits from the in-house library, for whom only the anchoring moiety was determined 

in the site, were also shown to inhibit microtubule polymerization to some extent. In total, we 

obtained five hit molecules from this campaign. 

As predicted by the docking computations, the binding mode of compounds VH-14 and 

VH-16 aligns well with todalam’s binding mode. We observed that the triazole ring of these 

compounds is well-situated in the region of the binding site where todalam’s thiazole fragment 

residues. Additionally, we established that both phenylacetamide and phenylprop-2-enamide 

fragments in the anchor moiety allowed for binding of the ligand at the site. 

From the thirteen virtual hits coming from the pharmacophore screening of the Enamine 

libraries, X-ray crystallography experiments have outlined five molecules as binding to the 

todalam site. Bound poses of four hit molecules have been resolved. None of them had any effect 

on microtubule polymerization.  

At the same time, another virtual hit from the Enamine libraries that was not detected in 

the binding site through crystallography was demonstrated to inhibit microtubule polymerization 

in vitro. Altogether, this screening campaign yielded six hit molecules. 

In total, screening the in-house library and the Enamine libraries yielded eleven hit 

molecules. Experimental validation of the virtual hits allowed us to understand which molecular 

scaffolds facilitate binding with the todalam site. Additionally, we could estimate the length of the 

molecular fragments that is required to ensure a ligand’s binding and a desired location of the 

ligand’s outward-facing fragments in the hydrophobic pocket. 

The reason for some molecules binding at the site without inhibiting tubulin 

polymerization, and others that follow the todalam’s pharmacophore model but do not bind at the 

site while inhibiting polymerization, remains elusive. The possibilities may range from insufficient 

protein conformational changes upon ligand binding to the specifics of experimental conditions of 

the crystallography and in vitro tests. Further research is required to elucidate these findings. 

The study broadened the structural diversity of molecules capable of binding to the todalam 

site. After it, we had a list of nine hit molecules, seven of which had a resolved structure in the 

todalam binding site after co-crystallization with tubulin, and the remaining two with notable 

microtubule polymerization inhibiting action. The diverse range of these molecules served as 

valuable starting points for the design of novel tubulin inhibitors discussed in the next section. The 
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unexpected effects of some molecules on tubulin polymerization also provided an intriguing 

insight into the complexities of protein-ligand interactions and the importance of experimental 

validation in conjunction with computational predictions. 

 

4.3. Design of covalent todalam site binders 

 

4.3.1. Overview of available data  

Following the experimental testing of the virtual hits that were yielded by virtual screening 

of Enamine and our in-house libraries, we identified seven molecular scaffolds that bind to the 

todalam site. X-ray crystallography confirmed the in silico predicted orientations of these 

compounds within the binding site. Close to this hydrophobic domain in the a-tubulin lies the 

αCys4 cysteine residue. The aim of this project was to modify some of the found scaffolds by 

introducing a reactive functional group (a warhead) in such an orientation to promote a covalent 

interaction with this cysteine residue, leading to the creation of the first rationally designed 

covalent binder for the todalam site. 

To achieve this, we first sought to evaluate the reactivity of the αCys4 residue within the 

binding site environment. Based on this data, we then planned to come up with a list of potential 

warheads for covalent bonding with the target cysteine. We would subsequently use the data on 

known molecular scaffolds that bind to the site, to either search for purchasable molecules with 

the required warheads, or generate a list of efficiently synthetically accessible scaffolds, seeking 

purchasable fragments that could be introduced into them to produce the desired covalent binders. 

 

4.3.2. Estimating cysteine reactivity 

While cysteine is one of the least abundant amino acids in many proteins, it plays a pivotal 

role in catalysis, signal transduction, and gene expression regulation114. With a pKa of ∼8.5, its 

side chain thiol group can become deprotonated and thus nucleophilic under physiological pH 

conditions114. This behavior, which is unique among the natural amino acids, has triggered a surge 

of interest in cysteine-targeting warheads of diverse chemical compositions. Factors such as 

solvent exposure and dissociation of the thiol group into the thiolate anion influence cysteine 

reactivity115. Consequently, understanding the reactivity of the targeted cysteine is key for 

selecting an appropriate reactive group. Our objective was thus to examine the reactivity of the 

Cys4 residue of α-tubulin before attempting the design. 
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4.3.2.1. Literature review 

Firstly, we surveyed the literature, looking for published results of experimental analysis 

of cysteine reactivity in tubulin. This led us to a study by Britto et al. which examined the reactivity 

of tubulin cysteines’ SH groups for thioether formation115. They employed trypsin to cleave the 

tubulin protein downstream of every lysine or arginine, generating tryptic peptides. Post-

separation by reverse-phase high-performance liquid chromatography, these peptides were 

analyzed using radio-labeled reactive probes and mass spectroscopy to determine cysteine residue 

interactions. This study identified the Cys4 residue of α-tubulin as exhibiting low reactivity. 

 

4.3.2.2. Sequence-based machine learning model 

Then, we attempted to use a recently published machine learning tool called sbPCR 

(sequence-based prediction of cysteine reactivity), to estimate the reactivity of the αCys4 

residue116. The tool uses a "skip-gram"-like algorithm to generate motif features from local 

sequences containing cysteines, which are then passed to a pre-trained support vector machine 

(SVM) model to estimate reactivity, framed as a binary classification problem. This model also 

predicted the αCys4 residue as non-reactive when given a-tubulin’s structure sequence from the 

5SB7 PDB structure as input. 

 

4.3.2.2. Structure-based pKa prediction 

We also tried reformulating the problem as the task of pKa value estimation. The pKa value 

signifies the strength of a Bronsted acid, indicating how tightly it holds to a proton. A lower pKa 

indicates that a Bronsted acid can easily give up its proton, while a higher pKa suggests that the 

proton is more tightly held and is less likely to be released. 

Determining pKa values using experimental methods, especially for complex biological 

systems, can be challenging. PROPKA is a widely used software for estimating pKa values based 

on protein three-dimensional structure117. It’s favored because of its speed, accuracy, and ability 

to give insight into the structure behind the predicted pKa values. PROPKA calculates the pKa 

values of ionizable residues in a protein by considering how the protein’s environment changes 

the modelled pKa value. Specifically regarding the reactivity of cysteine residues, PROPKA 

predicts the pKa based on features like hydrogen bonds, desolvation effects, and charge-charge 

interactions. These factors and their associated parameters are determined empirically. The method 

is designed to be computationally efficient and manageable, even for larger proteins or protein 

complexes, with the relationship between the perturbation and the structure explained by simple 

distance- and angle-dependent functions. 
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For our purposes, the pKa value predicted for the αCys4 residue was 12.15, based on an 

input of the todalam-hosting a-tubulin chain from the 5SB7 PDB structure, suggesting a low 

reactivity due to the difficulty in detaching a proton from the sulphur atom of this residue given 

the hydrophobic and solvent-inaccessible nature of the local environment. 

 

4.3.2.3. Combined sequence- and structure-based approach 

While most computational methods to evaluate cysteine reactivity are either sequence-

based or structure-based, the Cpipe web server uses a combination of the two approaches118. The 

specifically developed HAL-Cy algorithm leverages both types of approaches to assess reactivity 

through parameters such as local hydrogen bond networks, solvent exposure, and resemblance to 

known nucleophilic cysteines. The different approached implemented in the algorithm act as an 

ensemble of weak predictors. Given an input three-dimensional structure, a majority consensus 

approach is then applied to their predictions: a cysteine is deemed reactive if predicted to be so by 

multiple methods, but if it was just one method, the prediction is putative. 

We utilized Cpipe to predict the reactivity of all cysteine residues in the a-tubulin chain 

extracted from the 5SB7 PDB structure, seeking to compare these predictions with the 

experimental results reported by Wolff et al. The Cpipe tool’s final predictions regarding all 

cysteine residues in a-tubulin were in good agreement with Wolff et al.’s findings. However, the 

Cpipe tool also predicted low reactivity for the αCys4 residue due to the nature of its surrounding 

binding site environment. 

These findings suggest a challenge in targeting the αCys4 residue due to its possible low 

reactivity. Proceeding further by considering potential warheads to target the αCys4 residue within 

the todalam binding site, we accounted for these data. In a similar setting, Lu et al. have 

demonstrated that by employing a highly reactive warhead in combination with high-affinity 

binding molecular scaffold, it is possible to target non-reactive cysteine residues119. Moving on, 

we aspired that by employing a highly reactive warhead and optimizing the ligand structure for 

strong interaction with the binding pocket, we can maximize the exposure time and thus facilitate 

the formation of a covalent bond with the αCys4 residue. 

 

4.3.3. Literature search for cysteine-targeting warheads 

Our objective at this stage of the project was to design compounds capable of forming a 

covalent bond with the cysteine residue within the todalam binding site. To this end, we needed a 

diverse selection of reactive groups (also called “warheads”) that could be incorporated into our 

molecules to ensure the covalent bond formation. The αCys4 residue’s predicted non-reactivity, 

based on literature search and in silico modelling, required careful curation of such list. 
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To compile this list, we referred to three comprehensive databases: CovPDB120, 

CovalentInDB121, and CovBinderInPDB122. 

CovPDB, a public-access web database, is an exhaustive resource of high-resolution 3D 

structures of covalent protein-ligand complexes, gathered from the Protein Data Bank. Created to 

assist structure-based approaches in chemical biology and drug design, it helps in identifying 

warheads and reaction mechanisms that lead to covalent modification of the targetable residues in 

the binding sites. The information in this database is manually annotated by experts. The CovPDB 

database encompasses 2294 covalent complexes, 93 reactive warheads, 21 covalent mechanisms, 

and 14 targetable residues. 

Likewise, the CovalentInDB (Covalent Inhibitor Database) is a vast web repository for 

covalent inhibitors and their corresponding targets. Its latest version has data on 8561 covalent 

inhibitors and 343 related protein targets, garnered from comprehensive literature research. 

Finally, the CovBinderInPDB database encompasses 7375 covalent modifications mined 

from the PDB database, with 2189 unique covalent binders targeting nine types of amino acid 

residues (including cysteine) from 3555 protein-ligand complex structures. 

These databases collectively offer extensive data on nearly all known protein complexes 

with covalently bound ligands. We leveraged all three to extract as much information on covalent 

warheads as possible. 

From this research, we curated a list of 31 potential warheads, which we categorized into 

five groups based on their structure (Figure 89). Figure 90 shows the example possible 

mechanisms of cysteine reacting with each group of warheads. We intended for our potential 

covalent binders to the todalam site to incorporate one of these groups within molecular scaffolds 

known to bind at the todalam site. 

  

Figure 89. Widely-used reactive groups mined from the three databases of covalent protein-

ligand complex data. Red color highlights leaving group’s atoms or breaking bonds. Green 
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color highlights atoms that may get attacked by the nucleophilic sulfur atom in the thiolate anion 

of the cysteine residue. 

 

 

Figure 90. Possible reaction mechanisms between cysteine residue and several popular warhead 

types 

 

Subsequently, our strategy involved identifying purchasable molecules that follow the 

well-binding molecular scaffolds and contain any of the identified warheads. Furthermore, out of 

the seven established molecular scaffolds suitable for binding, we chose scaffolds V and VI for 

additional modifications (Figure 91). The practical reason being, molecules from these scaffolds 

can be synthesized efficiently in one or two-step reactions from readily available starting 

components. Hence, one of our goals was to identify warhead-containing purchasable fragments 

that can be utilized in these one-step synthesis reactions to yield cysteine-targeting modifications 

of well-binding molecular scaffolds. 

 

Figure 91. Scaffolds subjected to further modifications to obtain a covalent binder 
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4.3.4. Virtual screening for warhead-containing analogues of confirmed binders 

 

Initially, we aimed to identify purchasable molecules that aligned with any of the seven 

established well-binding scaffolds and contained any of the 31 shortlisted warheads. For this 

purpose, we planned to conduct a substructure search using the generic structures of the seven 

scaffolds as queries. 

To this end, we chose the ZINC library123, comprising 727,549,993 purchasable 

compounds and small molecular fragments from various vendors, as our source for this search. 

Prior to computational work, the library was standardized using the standardization procedure, 

identical to the one outlined in section 4.2.3. Briefly, this involved structure aromatization, 

dealkylation, conversion to canonical SMILES strings, removal of salts and mixtures, species 

neutralization, and tautomer generation using ChemAxon tools. 

Given the extensive size of the library, we were looking to develop an efficient approach 

for substructure search. For this, we used the substructure library class implemented the RDKit 

chemoinformatics toolchain. We first divided the large library into 73 segments, each consisting 

of 10,000,000 compounds (except for the 73rd segment which included the remaining 7,549,993 

compounds). We then calculated special pattern fingerprints for each compound in each segment. 

This fingerprint type is unique to RDKit. Such fingerprints are used to detect molecular features 

through substructure searches using a limited number of very generic SMARTS patterns.  

Pattern fingerprints act as pre-filters, indicating whether a substructure search is required 

for a given query. These fingerprints are calculated once for the whole dataset and stored locally 

as binary objects for quick reusability. 

Hence, we built a substructure library correlating the SMILES strings of each compound 

in each segment with the locally stored hashed pattern fingerprints. This allowed for efficient 

querying of the library class by a required SMARTS pattern. The substructure library class object 

by default employs all available CPU threads to parallelize the substructure search, further 

accelerated by pre-filtering based on binary pattern fingerprints. 

This method significantly expedited the screening process. As such, the screening of the 

entire ZINC library for a single query was reduced from a day with a straightforward looped RDKit 

substructure search to roughly an hour, indicating a substantial performance boost. 

Once we have constructed the substructure library class object and populated it with 

SMILES and pattern fingerprints for the ZINC compounds, we queried it with the generic 

structures of the seven effective molecular scaffolds. The substructure search yielded 4853 

potential hits. To refine this list, we conducted a simpler substructure search using RDKit’s 
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SMARTS pattern matching capabilities, which resulted in 2188 compounds that contained any of 

the 31 warheads at any moiety within their structure. 

To further refine this list, we conducted protein-ligand docking of these molecules into the 

todalam binding site using the PLANTS program, along with the native ligand itself. The binding 

site was defined as all atoms of all residues within an 8 Å radius of todalam’s bound pose. This 

included both the α-tubulin and β-tubulin parts of the binding site. Solvent molecules, small 

organic molecules, and metal ions were removed from the protein. Both the protein and all ligands 

were prepared using the SPORES software. Ten poses were calculated for each compound, each 

described by the docking score value of the chemplp scoring function and four derivative ligand 

efficiency scores, as described in section 2.3.6. 

Following this, molecules were ranked by the docking score value of the best-scoring pose, 

and those scoring worse than the native ligand were excluded. This left us with 1018 compounds. 

A Pareto front optimization was then applied over the docking and ligand efficiency scores, 

ensuring that compounds were selected based on their valuable interactions with the binding site, 

rather than the sheer number of atoms they contained. This further narrowed the list down to 65 

potential hits. 

Subsequent visual inspection of their best docked poses specifically assessed the location 

of the warhead within the site. Molecules unable to interact with αCys4 due to their length were 

discarded, leaving only compounds that placed the warhead within 3.7 Å to the αCys4 residue. 

The threshold distance of 3.7 Å was chosen arbitrarily as it was considered to allow for potential 

bond formation. 

This resulted in a refined list of 9 potential hits (Figure 92). Only three of these could be 

procured at the time: FS-7, FS-8, and FS-9. These were purchased from the Ambinter chemical 

vendor company for experimental testing. The three procured molecules underwent the standard 

experimental tests outlined in this thesis: X-ray crystallography and microtubule polymerization 

bioassay. The exact details of the experimental setup as described in section 2.3.7. 
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Figure 92. Virtual hits found after exhaustive substructure search in the ZINC library 

Our results demonstrated that of the three procured virtual hits, only one molecule was 

definitively identified by X-ray crystallography to bind at the todalam site. Regrettably, no 

covalent bond was formed with αCys4 in this instance. The sulphur atom of the ligand that was 

expected to partake in a disulphide bond formation with the sulphur atom of αCys4 is located 4.42 

Å away from the targeted cysteine’s sulphur atom in the crystal structure, seemingly pushed away 

upon ligand binding. Figure 93 shows the overlap between the experimentally determined pose of 

hit FS-8 with the docking result, showing the change in αCys4 position between the rigid system 

used for docking (orange) and its experimentally determined position upon ligand binding (light 

gray). 

 

Figure 93. Docked (orange) and experimentally resolved (gray) poses of FS-8 in the todalam 

binding site. Notice the change in αCys4 position, orange - used in the rigid system for docking, 

light gray – experimental, after ligand binding. 
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However, another virtual hit molecule, despite not being detected as binding to the todalam 

site, has shown pronounced microtubule polymerization inhibition action in vitro (Figure 22).  

 

Figure 94. One of the virtual hits found in the ZINC library has a noticeable microtubule 

polymerization inhibitory action 

 

Thus, further modification of these two molecules could potentially result in the desired 

formation of a covalent bond with αCys4, opening up new opportunities for drug development. 

 

4.3.5. Optimization of scaffold V 

Our TubInTrain consortium collaborators from the synthetic chemistry group of Prof. 

Daniele Passarella at the University of Milan, Italy, have profound expertise with the copper-

catalyzed azide-alkyne cycloaddition reaction that facilitates the efficient and selective synthesis 

of 1,2,3-triazoles from alkyne and azide-containing compounds124. These triazole-containing 

molecules retain their structural stability in physiological media. Although our previous 

observations suggest that triazole-containing hits may not form as specific interactions at the 

todalam site compared to amide, acrylamide, or urea molecular scaffolds, the synthetic feasibility 

of triazole-containing molecules makes them a compelling focus. Our goal at this stage of the 

project was to design derivatives of this scaffold that could accommodate a reactive group 

proximate to αCys4 upon binding. 

The particular reaction that results in molecules adhering to scaffold V involves a 

molecular fragment with a terminal alkyne bond and another fragment with an azide group. 

Therefore, we aimed to find purchasable “double-sided” small fragments, which needed to have 

any of the 31 shortlisted warheads on one side and a terminal triple bond on the other. We allowed 

up to four atoms (or small functional groups) in between the two, which should not be in a ring 
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structure and could include: a simple -CH2- group; an oxygen atom; a nitrogen atom with 1 explicit 

hydrogen; a carbonyl group; a carbon atom connected with an alcohol functional group with 1 

explicit hydrogen on the oxygen atom; a carbon atom connected with an amine functional group 

with 2 explicit hydrogens on the nitrogen atom; or an enamine group with 1 explicit hydrogen on 

the nitrogen atom (Figure 95). Our reasoning was that these specific types of atoms in between the 

two essential moieties would ensure the ligand’s linear character to easily penetrate into the 

binding site, and at the same time establish useful interactions with the residues in the binding site. 

 

Figure 95. Overview of the azide-alkyne cycloaddition reaction and the SMARTS patterns used 

to find required fragments 

Following this approach, we created 124 SMARTS pattern strings (with variable lengths 

of the linker chains (1-4) between the 31 warheads and the terminal alkyne). We then employed 

the previously described RDKit-based substructure screening routine to efficiently identify 439 

purchasable fragments from the ZINC library that adhered to the rules outlined by the SMARTS 

patterns. We further enumerated the possible reaction products between all 439 fragments and the 

N-(4-azidophenyl)acetamide fragment, resulting in 439 warhead-containing derivative molecules 

of the scaffold V. 

Next, we needed a method to assess how likely these molecules would be to bind and form 

a covalent bond with the αCys4 residue in the site. Therefore, we decided to perform two types of 

docking simulations for these compounds. The first type of simulation allowed the molecules to 

be conformationally sampled in an unconstrained manner in a rigid protein environment, similar 

to all docking campaigns described so far in this thesis. This approach provides a docked pose 

with the best docking score value, interpreted as the most likely placement of the molecule within 

the site, if we assume that it does bind. 

The second type of simulation constrains the optimization space of a molecule’s 

conformations by modelling the system as if a covalent reaction between the ligand and the 
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cysteine residue has occurred. For each ligand, we identified the targeted atom (and occasionally 

a leaving functional group). We then deleted the leaving group, if needed, and introduced a new 

bond between the ligand’s reactive atom and a methanethiol fragment. By using this new 

methanethiol-bound structure to replace the cysteine residue in the binding site, we could model 

potential poses that a ligand could have in the site if the reaction proceeded by the mechanism we 

envisaged. Only the sulphur atom of the methanethiol group in the cysteine residue is allowed to 

move, as the backbone of the cysteine residue remains rigid. If the best pose following covalent 

docking closely resembled the best pose after unconstrained docking, we considered a reaction 

with the cysteine residue probable. If a ligand found another conformation not similar to the 

unconstrained docking pose, we considered the reaction less likely, but still possible. However, if 

the covalent docking approach could not identify any conformation of the bound ligand in the site, 

we considered a covalent reaction unlikely. 

Applying this logic, we performed unconstrained docking using the PLANTS software on 

all 439 molecules, along with the native ligand, todalam, as a reference. The binding site was 

defined as all atoms within an 8Å radius from the center of mass of the native ligand. The protein 

was prepared by removing solvent molecules, ions, and other small organic molecules. Both the 

protein and ligands were pre-processed using the SPORES software before docking. We used the 

chemplp scoring function and generated 10 poses for each ligand, each pose characterized by a 

docking score value. 

After performing unconstrained docking, the compounds were ranked by the value of their 

best pose’s docking score, which reduced the number of considered compounds to 50. For these 

selected compounds, we performed covalent docking using the AutoDock 4 software. The binding 

site was similarly defined as all atoms within an 8Å radius from the center of mass of the native 

ligand, todalam. Manual structural editing was carried out for each ligand in the ChemAxon 

MarvinSketch program. Initial low-energy conformations of the methanethiol-bound ligands were 

computed using MarvinSketch’s embedded conformational sampler tool utilizing the MMFF94 

force field. Superimposition and docking preparations were conducted using scripts from the 

AutoDock suite. The grid parameter file and docking parameter file were created using default 

settings, including the default AutoDock scoring function. We then configured the software to 

calculate 10 poses for the covalently-bound ligands. 

Once covalent docking was complete, we identified 16 molecules for which no covalently 

bound pose could be produced, excluding them from further investigation. This left us with 34 

remaining virtual hits to consider. Among these, 13 had their covalently bound pose within the 

site, directed towards b-tubulin, and 19 had a covalent pose directed outside, not towards the 

pocket in the b-tubulin. 
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When considering which hits to synthesize, we also took into account the price of the 

identified fragments. The 34 fragments used to generate these compounds were sourced from 

vendors such as Ambinter, AKOS, Enamine, Fluorochem, Sigma Aldrich, Key Organics, BLD 

pharm, and TCI. The price per gram of these fragments ranged from 56 EUR to 2020 EUR. 

Following extensive consultations with our colleagues from the TubInTrain consortium, we 

shortlisted 15 fragments for purchase and subsequent synthesis of modified scaffold V compounds 

(Figure 96). 

 

Figure 96. Fifteen virtual hits enumerated from small fragments found in the ZINC library 

The synthesis of these compounds was performed by our TubInTrain collaborators, 

specifically Dr. Zlata Boiarska from the group of Prof. Daniele Passarella, University of Milano, 

Italy. Upon completion, the synthesized compounds were subjected to two experimental tests: X-

ray crystallography and a microtubule polymerization assay, as defined in section 2.3.7. X-ray 

crystallography detected three of the synthesized compounds in the todalam site (T-6, T-11, T-

12). Of these, compound T-11 demonstrated strong binding affinity, particularly in the presence 

of vinblastine (Figure 97). Vinblastine is known to induce certain conformational changes in the 

todalam binding site, opening it up and providing more space for ligand binding. The difference 

between the docked and crystallographically resolved poses is 1.64 Å. We did not observe the 

formation of the covalent bond between the Michael acceptor prop-2-enoate fragment of T-11 and 

the αCys4 residue. In the crystallographically resolved pose, the distance between the reactive 

atoms of ligand and binding site is 3.58 Å. The two other compounds (T-6, T-12), on the other 

hand, were not soaked with vinblastine, and only had the electron densities for their anchor parts 
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defined in the site, implying their intrinsic flexibility in the site. We also did not observe the 

formation of the desired covalent bond for any of them, neither did we observe any microtubule 

polymerization-related action from them. 

 

Figure 97. (A) Comparison of the best docked pose of T-11 (orange) and the experimentally 

determined pose (gray); (B) Overlap of best pose after free docking (orange) and best pose after 

covalent docking (teal); (C) overlap between T-11 best docked pose and todalam’s 

pharmacophore model 

However, an interesting observation was that one of the compounds, though not visible in 

the binding site, exhibited a substantial inhibitory effect on microtubule polymerization. This 

inhibition was even more pronounced than that caused by todalam (Figure 98). 

 

Figure 98. Hit molecule T-14 has a pronounced microtubule-depolymerizing effect 
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To summarize, the combination of substructure search, reaction product enumeration, and 

both free and constrained docking simulations resulted in the identification of four scaffold V 

derivatives. Three of these derivatives (T-6, T-11, T-12) exhibited some level of binding to the 

todalam site, and one (T-14) demonstrated a significant inhibitory effect on microtubule 

polymerization. The binding characteristics of the four hits were not ideal, but further optimization 

could potentially improve their affinity for the todalam site. The compound with a clear 

microtubule polymerization inhibitory effect contains a highly reactive maleimide warhead, and 

it’s unclear whether its absence from the binding site is due to reactivity with other cysteine 

residues on the tubulin surface. This aspect warrants further investigation. 

 

4.3.6. Optimization of scaffold VI 

In collaboration with the TubInTrain consortium members, we also decided to explore 

covalent optimization of scaffold VI. Economic considerations and synthetic feasibility of this 

scaffold’s derivatives were instrumental factors in this decision. The envisaged synthesis involved 

generating an amide bond between two molecular fragments: one with a reactive warhead and a 

carboxylic acid functional group, the other being an amine, specifically, N-[4-

(aminomethyl)phenyl]acetamide (Figure 99). 

 

Figure 99. Suggested reaction scheme to obtain scaffold VI 

Given the effective strategy employed in the modification of scaffold V (section 4.3.5), we 

decided to adopt a similar approach here. The aim was to find small, purchasable molecular 

fragments with dual-sided characteristics; having a warhead and a carboxylic acid functional group 

separated by up to four atoms or functional groups. The SMARTS patterns applied for this search 

mirrored the ones used to screen for fragments modifying scaffold V (section 4.3.5), the sole 

difference this time being the terminal group of the SMARTS patterns was a carboxylic acid rather 

than a terminal alkyne. 

Similarly, we employed RDKit’s efficient substructure screening algorithm to perform a 

substructure search in the ZINC library of purchasable compounds and small molecular fragments. 

This search produced 237 purchasable fragments containing the carboxylic acid functional group 

and at least one of the 31 desired warheads. However, some fragments featured multiple carboxylic 

acid groups or additional alcohol groups, which could potentially disrupt the regioselectivity of 

reactions. Upon eliminating these, 156 fragments of interest remained. 
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Following the strategy outlined in 4.3.5, we then enumerated potential products of 

reactions between the 156 purchasable fragments and the N-[4-(aminomethyl)phenyl]acetamide 

fragment. Next, docking simulations were executed for these 156 scaffold VI products. Firstly, the 

molecules were docked alongside todalam in an unconstrained fashion using the PLANTS 

software. We used the same binding site definitions and software parameters described in section 

4.3.5. The molecules were then ranked based on the docking score values of their best-scoring 

poses. We excluded compounds with a worse docking score than todalam, leaving 42 compounds 

for the covalent docking step. Upon executing the covalent docking step (using the setup described 

in section 4.3.5), we narrowed the list down to 21 compounds. 

The economic feasibility of synthesis remained a crucial factor. Most fragments identified 

in this screening were from the Enamine and Ambinter vendors, priced between 75 and 1125 EUR. 

Therefore, we filtered out the most expensive fragments, finalizing a list of six virtual hits 

suggested for synthesis and evaluation (Figure 100). Figure 101 shows the results of unconstrained 

and covalent docking simulations for these molecules. As can be seen, the calculated covalently 

bound poses mostly remain in the binding site and, in most cases, overlap the calculated 

unconstrained poses, which in turn retain the todalam’s binding mode.  

 

Figure 100. List of suggested scaffold VI derivatives for synthesis and evaluation 
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Figure 101. Results of unconstrained (orange) and covalent (cyan) docking for virtual hits A1-6 

Upon synthesis, performed by Dr. Zlata Boiarska at the group of Prof. Daniele Passarella, 

University of Milano, Italy, the compounds underwent two experimental tests: X-ray 

crystallography and a microtubule polymerization bioassay, performed by our collaborators within 

the TubInTrain consortium as described in 2.3.7. X-ray crystallography confirmed the binding of 

four molecules, albeit not covalently. Bound conformations could be determined for two hits, A-

1 and A-3 (Figure 102), while for two others – A-2 and A-5 – the electron density in the binding 

site is evident and is under ongoing resolution (Figure 103). Compound  A-1 is of particular notice 

as in the resolved structure, the distance between the warhead and the cysteine residue’s sulfur 

atom is 2.579 Å. Compounds A-4 and A-6 were not seen in the todalam binding site in 

crystallographic experiments. Noticeably, despite binding to the site, neither of the compounds 

displays any action towards modulating tubulin polymerization in vitro in the standard microtubule 

polymerization bioassay. 

 

Figure 102. Comparison of the docked and experimentally determined poses shows good overlap 
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Figure 103. Experimentally determined electron densities for compounds A-5 and A-2 within the 

todalam binding site 

However, one of the two virtual hits, undetected in the binding site (A-6), demonstrated a 

pronounced inhibitory effect on microtubule polymerization (Figure 104). Interestingly, the virtual 

hits with a significant inhibitory impact on microtubule polymerization, namely T-14 and A-6, 

featured the maleimide reactive group, which is renowned for its high reactivity stemming from 

the electrophilic character of the carbon atom, which makes it susceptible to nucleophilic attack, 

especially from thiols such as the side chain of a cysteine residue. This allows it to form stable 

covalent bonds with proteins. However, this heightened reactivity could also lead to off-target 

interactions, implying potential non-specific action. As a result, fragments bearing this group could 

possibly react elsewhere on tubulin, perhaps binding somewhere on the protein’s surface, and 

interfere with microtubule polymerization, but remain mobile, and hence, undetectable in the 

crystal structure. 
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Figure 104. Hit molecule A-6 demonstrates considerable microtubule polymerization inhibitory 

action 

Consequently, we deduced that scaffold VI provides a promising avenue for further 

molecular optimization. The warhead-bearing fragments required for synthesis are readily 

available. By selecting fragments with inherent linear structure, it is possible to have the 

synthesized derivatives bind to the todalam binding site. In this work, we used a substructure 

screening and combined free and constrained protein-ligand docking approaches to shortlist a set 

of six small fragments, that, upon synthesis into scaffold VI derivatives, produced four hit 

molecules that bound to the targeted site (A-1, A-2, A-3, A-5) and one hit molecule that did not 

bind to the site, but showed significant effect on microtubule polymerization (A-6). 

 

4.4. Conclusion and perspectives 

 

In conclusion, our research has substantially expanded our understanding of the small 

ligand chemistry that can be used to target the todalam binding site. We successfully devised 

several efficient and accurate virtual screening workflows, which included substructure search, 

pharmacophore screening, unconstrained rigid protein-ligand docking, and constrained (covalent) 

rigid protein-ligand docking. 

Initially, we explored our in-house chemical library and the Enamine libraries of 

purchasable compounds, identifying eleven structurally diverse hit molecules. These served as a 

foundation for the strategic design of a molecule that could form a covalent bond with the site. 

In the subsequent phase of the project, our focus shifted towards generating derivatives of 

established molecular scaffolds. The goal was to design molecules that would covalently interact 
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with the αCys4 residue within the binding site. We narrowed down a selection of warheads that 

could specifically target a low-reactive cysteine residue. At this stage of the project, we searched 

for purchasable analogues of known binding molecules that already included a warhead of interest. 

This effort led to the discovery of two additional hits that targeted the site and displayed inhibitory 

action on microtubule polymerization. 

Our final phase focused on generating derivatives of two easily-accessible molecular 

scaffolds with the aim of covalently targeting the cysteine residue in the site. We searched for 

dual-sided small fragments that included any of the warheads on one end, and a functional group 

needed for the synthesis of scaffold derivatives on the other. This strategic design of known 

scaffold derivatives yielded eight promising hit molecules, some of which showcased strong 

microtubule polymerization inhibition along with good binding characteristics. 

Ultimately, our research has significantly advanced the realm of rational small molecule 

design targeting the tubulin protein. In total, we have discovered 21 hit molecules with promising 

binding modes and, in some cases, potent inhibitory action on microtubule polymerization. Further 

exploration is warranted to unravel the intricate interplay between binding to the site and effective 

inhibition of microtubule polymerization. 
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Chapter 5. De novo design of colchicine site-targeting agents using the inverse QSAR 

approach 

 

5.1. Introduction 

 

Positioned at the interface between the α and β subunits of the tubulin heterodimer, the 

colchicine site is predominantly nestled within the β-subunit39,125. It is made by the residues of the 

T7 loop, H7 and H8 helices, and the S8 and S9 strands of β-tubulin, complemented by the T5 loop 

of α-tubulin5 (Figure 105). The site features three hydrophobic pockets, which serve as key 

locations for ligand interaction, along with two hydrophilic regions capable of forming additional 

stabilizing hydrogen bonds with ligands39. This effectively divides the site into a central zone 

(Figure 105, zone 2, red) and two additional zones, one facing the α-tubulin subunit (Figure 105, 

zone 1, orange) and the other residing deeper within the β-tubulin subunit (Figure 105, zone 3, 

pink)5,39. Agents targeting the colchicine site usually occupy zones 1 and 2 or zones 2 and 3, but 

no known ligand simultaneously occupies all three zones5. 

 

Figure 105. The colchicine binding site and its three zones 

Ligand binding at the colchicine site inhibits microtubule formation by obstructing the 

“curved-to-straight” conformational shift in tubulin. This transition, key to microtubule assembly, 

involves movements of both α- and β-tubulin subunits’ intermediate domains, bringing strands S8 

and S9 closer to helix H85,100. The presence of a colchicine-site binding ligand provokes a 

structural switch in the T7 loop, leading to a contraction of the colchicine site and thus preventing 

the required conformational change, consequently inhibiting microtubule formation5,100. Binding 
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of a ligand to the colchicine site predominantly occurs through hydrophobic interactions, 

supplemented by a minimal number of polar contacts 5,125. 

Targeting the colchicine binding site has several benefits, including its distinctive 

structural and functional features compared to other binding sites of the tubulin protein, potentially 

leading to unique mechanisms of action of the ligands that target it, and its effectiveness against a 

wide array of cancer types, including drug-resistant variants39,125. 

However, colchicine site-targeted drugs also present challenges, such as their low 

selectivity for cancer cells which could induce off-target effects and toxicity, poor 

pharmacokinetic traits like low solubility, brief half-life, and suboptimal bioavailability. These 

factors collectively limit their clinical application. Additionally, resistance may develop over time 

due to tubulin mutations or efflux transporter upregulation, and the absence of compounds binding 

to all three zones of the colchicine site could limit the efficacy of these drugs126. 

Many inhibitors targeting the colchicine site have been developed from representative and 

commonly used scaffolds, limiting structural innovation and constraining exploration of the 

chemical space127. De novo drug design, particularly using inverse quantitative structure-activity 

relationship (i-QSAR) modeling, could help circumvent these issues. 

Quantitative structure-activity relations (QSAR) are either regression or classification 

models capable of estimating a compound’s property value given its molecular structure. This 

relationship can be expressed as activity = f (structure), where the function f requires tuning of 

internal parameters to produce accurate property value approximations for a given structure48 

(Figure 106). Typically, the “structure” argument in f (structure) is a molecular graph where 

vertices represent chemical elements and edges represent bond types. The molecular graph’s 

information content is first translated into a numerical representation – a vector of N real numbers, 

also known as the molecular descriptor vector D. Then, in classical QSAR, a machine learning 

model is used to determine a relationship between a set of molecular descriptor vectors and the 

measured property values48. If such relationship between molecular structure and property holds, 

inverse mapping could be employed to retrieve the optimal chemical structure that would 

correspond to a specific property value66. Thus, the inverse QSAR problem can be formalized as 

two steps: firstly, identification of a “seed” descriptor vector Dseed that corresponds to the desired 

property value; secondly, finding valid molecular structures that correspond to Dseed
66. The second 

task may be facilitated by an autoencoder neural network model that is pre-trained to map 

descriptor vectors to valid molecular structures66. 
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Figure 106. Overview of the difference between classical QSAR and inverse QSAR approaches 

This methodology requires structure-activity data to build the initial QSAR model that will 

be used to select the seed descriptor vector to generate molecules from. The colchicine site, due to 

being extensively studied, provides enough small molecule structure-activity data for QSAR 

model training. Hence, the goal of this project was to design novel binders for the colchicine site 

using the inverse QSAR approach, thereby demonstrating the efficacy of this method. 

 

5.2. Building a QSAR model for colchicine site binding propensity 

 

This project aimed to generate novel molecules that inhibit tubulin polymerization by 

binding at the colchicine binding site. To identify seed descriptor vectors associated with 

structurally novel compounds that bind to the colchicine site, we opted first to train a QSAR model 

to map the relationship between the two-dimensional structure of colchicine site-targeting 

compounds and a property indicative of their binding efficiency. Our goal was to later use this 

model to perform virtual screening to find existing and synthetically accessible molecules with 

high predicted value of a property related to the affinity to the colchicine binding site. This way, 

we ensure that the chosen seed points actually correspond to chemical structures with 

pharmacology-compliant physicochemical properties. Thus, we initiated a survey of available 

structure-activity data for colchicine site-targeting compounds to understand what structure-

activity data are available and what this property may be. 
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5.2.1. Survey of available structure-activity data 

Since the discovery of anti-tubulin action of colchicine leading to significant anti-

proliferative action on cells in the 1950s, the colchicine binding site has been well-studied, 

amassing substantial structure-activity data128. 

In a recent study, López-López et al. compiled a dataset of 851 unique compounds designed 

as tubulin inhibitors, including ones designed to target the colchicine binding site, with reported 

half maximal inhibitory concentration (IC50) values against different cancer cell lines129. The 

published dataset also included the SMILES strings, pIC50 values, and an activity label for all 

compounds. Thus, we decided that this experimentally measured value could serve as the target 

property that we would like to optimize in the potential de novo designed colchicine site-targeting 

compounds. To this end, we specifically selected a subset of 379 molecules that targeted the 

colchicine binding site and had an experimentally measured IC50 value against HeLa cells. We 

chose to focus on the measurements against HeLa cells because this subset had the highest number 

of related records in the data published by López-López et al. These IC50 values, coming from 

several individual bioassays, can be combined into a single set due to the standardized protocol 

followed during these tests and the consistent use of colchicine as the reference compound 

throughout. 

 

5.2.2. Data preparation for QSAR modeling 

From our chosen subset, 229 molecules were classified as active and 150 as inactive, with 

the "active" label denoting molecules with sub-micromolar range dose-response activity against 

HeLa cells, and "inactive" otherwise. 

All compounds underwent standardization following ChemAxon tools’ default protocol, 

including removal of large molecules, counter-ions, conversion to major microspecies of the most 

probable tautomeric form, and removal of stereochemical information (as the calculated molecular 

descriptors are stereochemistry-independent). We verified there were no conflicts in data 

annotations, such as differing activity labels or variances in their dose-dependent pIC50 values. 

The selected compounds were initially represented by 95 sets of descriptors based on 

diverse ISIDA fragmentation schemes serving as the choice for descriptor representation50. These 

schemes included sequences, circular fragments, triplet counts, atom pairs color-coded by atom 

symbols, as well as pharmacophore features and force field types. 
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5.2.3. Model building and validation pipeline 

We framed the problem as regression modeling, because our goal was to identify "seed" 

descriptor vectors correlating with high predicted activity values. We aimed to train a model that 

learns the relationship between the two-dimensional structure and pIC50 value, using the subset 

of 379 colchicine site-targeting molecules, to make predictions on a new set of compounds. The 

top-scoring compounds would be then selected as seed molecules for further generation. 

Our modelling pipeline consisted of an evolutionary model-building procedure using the 

Random Forest Regressor estimator to optimize descriptor sets among the 95 proposed ISIDA 

fragmentation schemes. Models’ hyperparameters were optimized and ranked based on a fitness 

score reflecting the mean coefficient of determination R2 over a 12-times repeated 3-fold cross-

validation scheme, implemented using the scikit-learn130 and sklearn-genetic-opt python packages. 

 

5.2.4. QSAR modeling results 

The results of model building indicated that the optimal ISIDA fragmentation scheme was 

to count atom pair numbers at given topological distance, where atoms were rendered by their 

consistent-valence force field molecular mechanics force field types and topological distances 

(number of separating bonds) ranged from 1 to 5 (ISIDA notation: IA-FF-P-2-6). The top-

performing random forest model built on this descriptor set achieved an R2 value of 0.63 following 

the rigorous cross-validation procedure (Figure 107). Consequently, the model could be utilized 

to predict pIC50 values against HeLa cells for any compound within the model’s applicability 

domain.  

 

Figure 107. Model performance plotted as a real vs. predicted plot 
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5.3. Choosing seed descriptor vectors to generate from 

 

Next, we needed to identify seed molecular descriptor vectors closely associated with 

colchicine site-targeting compounds and anticipated to possess high pIC50 values against HeLa 

cells, possibly indicative of potent binding affinity to the colchicine site. At this point, we could 

enumerate all possible artificial descriptor vectors and utilize our trained model until we identified 

some artificial descriptor vectors yielding high predicted pIC50 values. However, the issue was 

that the vector 𝒟 , which maximizes the predictive QSAR function pIC50 = f (𝒟), could be 

mathematically feasible, but may not correspond to any physical molecular structure. To counter 

this issue, we decided to perform a screening of a library of purchasable compounds. Molecules 

from such a library would not only possess pharmacologically compliant physicochemical 

properties but would be also commercially available for testing. The implementation of such an 

approach facilitated the exploration of intriguing regions of the chemical space while ensuring that 

the seed points that we select are not meaningless 𝒟 vectors. 

Thus, we decided to apply the trained QSAR model to an alternative set of compounds, 

selecting those with the highest predicted activity and generating molecules around these 

compounds. The colchicine site-targeting structural properties of the compound set would be 

ensured by initial filtering using the trained QSAR model’s applicability domain. 

 

5.3.1. Choosing data to filter by our predictive model 

Thus, we needed to choose a library of compounds for filtering by the QSAR model. Our 

selection criteria included the purchase availability of the molecules, to ensure the generated 

compounds or their close analogs could be relatively easily synthesized or directly purchased. 

Additionally, the set should have been small yet diverse, ensuring a variety of scaffolds among 

top-ranking molecules predicted by pIC50 value. 

Considering these aspects, we selected the Enamine phenotypic screening library 

comprising 5760 compounds. These compounds are structurally diverse and are known to have 

biological action on different targets in vitro. All compounds from the library are cell-permeable 

and possess pharmacology-compliant physicochemical properties. 

 

5.3.2. Pre-processing the data 

The data underwent standardization using the in-house ChemAxon-based procedure, 

including removal of large molecules, counter-ions, conversion to major microspecies of the most 

probable tautomeric form, and removal of stereochemical information for stereochemistry-

independent descriptor calculation. 
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For these compounds, we calculated the IA-FF-P-2-6 ISIDA fragment descriptors, 

matching the ones used to train the QSAR model in section 5.2. The compounds from the chosen 

library needed to fall within the applicability domain of our trained QSAR model. We estimated 

it using the bounding box method, determining the minimum and maximum descriptor values for 

each dimension of the descriptor vector matrix used to train the QSAR model. The compounds 

from the Enamine phenotypic library that fell outside the established min-max range were 

removed, reducing the dataset from 5760 to 421 compliant compounds. Inherently, these 

compounds contained structural fragments characteristic of colchicine site-targeting compounds, 

suitable for prediction using our trained model. 

 

5.3.3. Making predictions 

Predictions were performed by inputting the 421 compliant compounds into the trained 

QSAR model, yielding predicted pIC50 values against HeLa cells. After ranking the compounds 

by predicted value in decreasing order, the IA-FF-P-2-6 descriptor vectors of the top 15 molecules 

by predicted pIC50 score were chosen as seed vectors for further compound generation (Figure 

108). Some selected compounds included structural fragments that are present in the known 

binders (e.g., 1,3-diphenylprop-2-en-1-one or 1,2,3-trimethoxybenzene), while others have 

fragments not previously observed in crystallographically confirmed colchicine site binders (e.g., 

2-(phenylamino)pyridine-3-carbaldehyde and phenylbenzamide).  

 

Figure 108. Fifteen seed molecules selected by predictions of a QSAR model. Numbers under 

molecular structures are predicted pIC50 values. 
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5.4. Training a variational autoencoder 

 

Our approach considered the seed molecular descriptor vectors as points within a chemical 

space, where molecules can be sampled around this point. The sampled molecules are anticipated 

to possess the predicted property. The key challenge was to have a way of sampling chemically 

valid molecules from this chemical space around the seed points of interest. We addressed it by 

training an autoencoder neural network model. 

 

5.4.1. What is a variational autoencoder 

Autoencoders are specialized neural networks designed to reproduce their input as output. 

They achieve this by compressing the input into a lower-dimensional representation, or latent-

space representation, and then reconstructing the output from this compressed form131. An 

autoencoder comprises three components: encoder, latent representation, and decoder. The 

encoder compresses the input to create the latent representation, and the decoder reconstructs the 

input using this latent representation. The learned latent representations form a latent space. In 

brief, autoencoders learn a function to map each input to a latent representation, and decoder learns 

the reverse mapping (Figure 109). 

 

Figure 109. Schematic overview of an autoencoder neural network model (adapted from 
132

). 

 

Autoencoders are typically trained using raw input data, and are regarded as unsupervised 

learning techniques since they do not require explicit labels. More precisely, they can be 

considered self-supervised as they generate their own labels from the training data131. 

Standard autoencoders may not ensure continuity in the latent space formed by latent 

representations, which can complicate interpolation. Variational autoencoders (VAEs) address this 
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issue by modeling their latent representations as a probability distribution, thereby creating a 

continuous latent space that is easily sampled and interpolated133 (Figure 110). VAEs are 

generative in nature, meaning these models are able to generate new instances that are similar to 

the original training dataset. Rather than mapping the input to a static vector, as simple autoencoder 

models, they map it to a specific distribution. However, while powerful, VAEs do not offer explicit 

control over the characteristics of the generated data133. 

 

Figure 110. Schematic overview of a variational autoencoder (adapter from 
132

). 

Conditional variational autoencoders (CoVAEs) differ from VAEs by allowing for more 

controlled and versatile data generation134 (Figure 111). By introducing conditional variables into 

the architecture of the encoder and decoder components, CVAEs can be instructed to generate data 

samples that not only resemble the original dataset but also satisfy a given set of conditions. 

Essentially, CVAEs learn the distribution of the input data, conditioned on specific attributes134. 

This conditional aspect can be any relevant feature or parameter of the data, which the model then 

leverages to guide the generation process. 

 

Figure 111. General scheme of a conditional variational autoencoder (adapted from 
135

) 
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In our work, we aimed to train a conditional autoencoder to generate syntactically valid 

SMILES strings based on the input molecular descriptors. Specifically, we used ACoVAE, an 

attention-based conditional variational autoencoder architecture proposed by Bort et al66. This 

model is trained on a set of SMILES strings and corresponding descriptor vectors. The training 

process involves a gated recurrent unit-based encoder parametrizing a random latent vector 

distribution, forming a (0, 1) hyperspherical distribution as the target latent vector distribution. 

During inference, the latent vector is sampled from the prior distribution, and a desired descriptor 

vector is used as a condition to generate the intended SMILES from the random and condition 

vector. 

 

5.4.2. Preparing data for autoencoder training 

To train the ACoVAE autoencoder, we required a large and diverse chemical library. For 

this purpose, we utilized the ChEMBL database (v. 26), which contains 1,721,154 molecules. The 

molecules were standardized through our typical in-house procedure involving the removal of 

large molecules, counter-ions, conversion to the major microspecies of the most probable 

tautomeric form, and removal of stereochemical information. We then computed the IA-FF-P-2-6 

ISIDA fragment descriptors for all the molecules, resulting in a descriptor vector with 2901 

fragment features for each molecule. 

Next in our preprocessing pipeline, feature selection was conducted to reduce 

dimensionality of the resulting vector to constrain the amount of GPU RAM required to process 

the data. This was achieved by pruning features based on their standard deviation. We computed 

the standard deviation for each feature in the dataset and pruned those with a standard deviation 

of 0, meaning features with constant value throughout the dataset that provides no discriminatory 

information, as it doesn’t vary across observations. This ensured that only features with substantial 

variability were retained, as they are more likely to contribute meaningful information to the 

machine learning model. Following this, the features were sorted by their standard deviations in 

descending order, and only the top 1207 features were selected for the subsequent autoencoder 

training. 

 

5.4.3. Training a variational autoencoder 

The ACoVAE implementation comprises of an encoder and a decoder. The encoder 

processes the input data and computes a latent representation, while the decoder generates data 

conditioned on the latent variables. It was specifically designed to handle SMILES strings and 

molecular descriptor vectors. 
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The construction of the model begins with an embedding layer that transforms the input 

SMILES strings into a higher-dimensional space by the process of SMILES tokenization. The 

encoder then processes the embedded input using an internal transformer model and returns two 

outputs: a mean and a log variance. A sample from the latent space is then drawn based on these 

outputs. This sample is generated using the reparameterization trick136 to allow gradients to pass 

through the sample to the encoder. This sampled latent vector is passed to the decoder along with 

the input descriptor vector. The output of the model is the probability distribution of SMILES 

strings. 

The model is trained with two components of the loss function: the reconstruction loss, 

computed as the sparse categorical cross-entropy between the input and the output, and the 

Kullback-Leibler divergence between the learned latent distribution and the prior distribution, 

which acts as a regularization term. The Kullback-Leibler divergence loss is scaled by a factor of 

20 to control its influence relative to the reconstruction loss137. 

In this work, the AdaBelief optimizer138 was used to optimize the model parameters. This 

optimizer has been shown to converge faster and generalize better than traditional optimizers such 

as Adam138. 

The model was trained for 200 epochs with a batch size of 512. The input SMILES strings 

were limited to a maximum length of 100 characters, and the latent space was a 64-dimensional 

hypersphere. The internal dimension of the transformer model was set to 256, with 4 layers and 8 

heads in the multi-head attention mechanism. 

During training, the model weights that achieved the best validation accuracy for any given 

epoch of training were saved for later use during inference, the exact one selected by the user. 

Moreover, the learning rate schedule was monitored using a custom callback, which allowed the 

model to adjust quickly early in the training process when the weights are randomly initialized, 

then slowly fine-tune as the training process progresses. 

 

5.5. Generation of molecules around selected seed vectors 

 

5.5.1. Description of the generation process 

The ACoVAE transformer enables the sampling process by taking a descriptor vector as 

input to the trained decoder part of the model. Each descriptor vector acts as the “condition” part 

of the ACoVAE and is paired with a batch of random vectors drawn from a power spherical 

distribution. This distribution forms the latent space. Each pair of descriptor and random latent 

vector produces a generated SMILES sample. Through categorical sampling, which allows the 

exploration of different possibilities for the same input, a given descriptor vector can generate 
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multiple different SMILES. The ACoVAE software also incorporates a check for the validity of 

generated text strings, eliminating any incoherent or incorrect SMILES. 

 

5.5.2. Generation results 

Upon inputting the seed descriptor vectors into the trained ACoVAE model, we obtained 

6623 generated molecules. Noting the presence of duplicates, we employed a standardization 

routine to eliminate these redundant molecules, resulting in a set of 782 unique molecules. A 

random sample of 10 generated compounds is shown in Figure 112. These molecules were derived 

from the 15 seed molecules, selected by the QSAR model due to their high predicted pIC50 values 

against HeLa cells. 

 

Figure 112. Examples of de novo generated molecules 

 

5.5.3. Computational and experimental validation 

For validation of the inverse QSAR approach, the 782 generated compounds were 

subjected to another round of QSAR model prediction. Our objective was to verify if the generated 

compounds retained high activity levels as predicted by the model, similar to the seed molecules 

used to generate them. We began this process by checking how many of the generated molecules 

were inside the model’s applicability domain, which were determined using the bounding box 

method. This preliminary step revealed that only 163 out of the 782 generated molecules fell within 

the trained QSAR model’s applicability domain.  

We then proceeded to make activity predictions for these 163 molecules using the trained 

model.  We present these results in Figure 113, which shows the distribution of predicted pIC50 

values for these molecules. The pIC50 values offer a measure of the potency of the compounds, 

and higher values correspond to higher activity levels. 
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Figure 113. Distribution of the predicted pIC50 values against HeLa cells for 163 de novo 

generated compounds that are within the model's applicability domain 

In our case, the predicted pIC50 values were found to be above 6, which meets the activity 

threshold set in this study. To provide a visual reference, we marked the predicted pIC50 values 

for the seed compounds on the histogram using blue dashed lines. This gives a sense of how the 

activity of the newly generated compounds compares to that of the original seeds. In addition, we 

included a kernel density estimate, represented by the red line. It serves to illustrate the probability 

density of the predicted pIC50 values, helping to indicate the most likely activity levels for 

compounds generated by our inverse QSAR approach. We see that all generated compounds were 

predicted active, but in general their predicted pIC50 values are lower than those predicted for the 

seed molecules. 

Furthermore, docking simulations were conducted for these molecules. AutoDock GPU 

software was used for all the docking experiments in this section. Ligands were first represented 

using the standardized SMILES strings and then converted into SDF file format using 

ChemAxon’s MolConvert software. This in turn allowed us to save them as PDBQT, which is the 

required input file format for AutoDock, by using Meeko, a python package that preserves 

connectivity information that is usually missing from PDBQT files by default. The resulting files 

included atomic coordinates, partial charges, and AutoDock atom types. 

The protein structure was taken from the 4O2B PDB structure, retaining only the C and D 

chains (corresponding to α,β-subunits) while removing solvent and ions. We identified the binding 

site as all residues within 12 Angstroms from colchicine’s center of mass to include all three zones 

of the binding site. Because the colchicine site is close to the nucleotide binding site on a-tubulin, 

we did not delete the GTP molecule bound to the a-tubulin. For the docking process, we selected 

the Lamarckian Genetic Algorithm as the search method due to its effectiveness in exploring the 
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ligand conformational space. Grid box parameters were defined to match the earlier described 

binding site. The size of the grid box was 32, determined based on the extent of the defined binding 

site, with a spacing of 0.375 Angstroms between the grid points. The grid box was centered on the 

colchicine binding site to ensure proper coverage. We performed 200 independent runs for each 

ligand to adequately sample the conformational space, with a maximum number of energy 

evaluations set to 2.5 million and an initial population size of 300.  

Firstly, we checked if our software of choice could reproduce the binding mode of the 

native ligand, colchicine, to estimate the applicability of this software to modeling this system. 

Indeed, we were able to re-dock colchicine in the binding site with an RMSD value of 1.10 Å, 

indicating that our software can correctly model the native ligand’s binding pose (Figure 114). 

 

Figure 114. Re-docked pose of colchicine in the binding site (orange) vs crystallographically 

determined one (gray, 4O2B) 

Then, we docked the 163 molecules, along with colchicine, into the colchicine binding site. 

Post docking, the molecules with docking scores superior to colchicine were ranked, and the top-

20 were selected for further exploration (Figure 115). 
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Figure 115. Top-20 de novo generated molecules by docking score 

While none of the generated compounds were directly available for purchase from 

chemical vendors, close analogs for four of the de novo generated compounds (G-3, G-7, G-10, 

G-14) were found to be available in the Enamine store (Figure 116). The search was performed 

manually using the Enamine store web search engine. The similarity criterion was Tanimoto score 

higher than a threshold value of 0.7. Found analogs were inside the model’s applicability domain, 

and so were subjected to another round of QSAR prediction and docking. Both QSAR prediction 

and docking results indicated high pIC50 values and a good fit within the colchicine binding site 

for all four compounds (Figure 117). Additionally, protein-ligand docking calculations have 

shown that the purchasable analogues of generated compounds still remain largely in the same 

pose within the binding site, indicating their good fit. Both generated compounds G-3, G-7, G-10 

and their purchasable analogues have structural fragments common to known colchicine site 

binders. Interestingly, generated compound G-14 and its purchasable analogue has a structure that 

is not present in crystallographically confirmed colchicine site binders. 
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Figure 116. Comparison of the molecular structure and predicted pIC50 values against HeLa 

cells of de novo generated molecules and their purchasable analogues 

 

Figure 117. Comparison of the best scoring docked poses of generated compounds and their 

purchasable analogues 

The four molecules P-1, P-2, P-3, and P-4 were then tested experimentally using X-ray 

crystallography. However, the binding of these compounds at the colchicine site was not evident 

in the results. The effect of these molecules on tubulin polymerization in vitro remains to be 

determined and is currently under investigation. 

Such lack of detection during X-ray crystallography experiments might be attributed to 

several factors inherent in the technique and the nature of the ligand-protein interaction. As such, 

ligand occupancy is a crucial aspect in determining the visibility of a ligand in an X-ray 

crystallography experiment. If the ligand binding is weak or the binding event is transient, the 

ligand may not be present in the binding site long enough or at a sufficient occupancy level for 

detection. Moreover, the crystallographic experiment is performed under conditions that may not 
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exactly replicate the physiological environment in which the ligand-protein interaction occurs. 

Variables such as temperature, pH, and crystal packing forces can impact the binding event and 

may lead to discrepancies between the experiment and the actual biological system. 

Thus, further experimental studies of the potential inhibitory action of these molecules on 

tubulin polymerization are ongoing to elucidate this. 

 

5.6. Conclusion and future perspectives 

 

In this study, an inverse QSAR modeling method was applied to explore the chemical space 

of potential therapeutic agents targeting the colchicine binding site in tubulin. This method has 

two key aspects: identifying a "seed" descriptor vector that embodies the desired properties of a 

potential drug, and finding chemically valid molecular structures that align with the selected 

vector. This strategy may overcome some limitations in drug design, such as structural redundancy 

and narrow exploration of chemical space. 

We used a set of 379 compounds known to target the colchicine binding site and exhibit 

activity against HeLa cells to train and validate a Random Forest Regressor model. This model, 

which demonstrated satisfactory predictive performance of R2 = 0.63, was then applied to filter a 

diverse library of compounds from Enamine for high predicted pIC50 values against HeLa cells. 

Top-15 filtered compounds were used as seed vectors. 

The resulting seed descriptor vectors were used as input for an autoencoder model trained 

using the ACoVAE transformer method on a large, diverse set of molecules from the ChEMBL 

database. This approach allowed us to generate 6623 molecules, 782 of which were unique, 

indicating the robustness and potential for discovery using this technique. 

These de novo generated molecules were subsequently predicted to have high pIC50 values 

using the trained QSAR model, implying their potential for high activity against HeLa cells. To 

further validate their potential, the molecules were subjected to docking simulations, revealing that 

many had docking scores superior to colchicine, the native ligand. The top-20 generated molecules 

by docking score were selected for further investigation. Although the exact compounds generated 

were not commercially available, close analogs of four were found and were also predicted to have 

high pIC50 values and to fit well within the colchicine binding site. 

While experimental validation of the generated compounds by X-ray crystallography has 

presented some challenges, they are being addressed, and further in vitro studies are ongoing. The 

comprehensive approach used in this study shows great promise for future research in drug 

discovery. This work exemplifies the potential of combining inverse QSAR modelling and 

experimental approaches to accelerate the discovery of novel therapeutic compounds. 
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Chapter 6. Application of transfer learning for QSAR modeling 

6.1. Introduction 

 

Quantitative structure-activity relationship modelling, established nearly half a century ago, 

has been instrumental in drug design and optimization. For a given set of molecules, the goal of 

QSAR modelling is to correlate specific target property values 𝒫 , typically measured 

experimentally, with structural features of the molecules139,140. The modeling process involves four 

key steps: (1) the computation of numerical representations of molecular structure (molecular 

descriptors 𝒟); (2) descriptor selection, which involves identifying the subset of descriptors most 

relevant to modelling the desired property; (3) discovering an optimal, often nonlinear, 

relationship 𝐹 between the descriptors and target property variable 𝒫 = 𝐹 𝒟 ; and (4) validating 

the model by assessing its predictive power, robustness, and applicability domain140. 

The success of QSAR modeling relies heavily on accurately numerically describing molecules 

in a manner that captures their relevant structural properties140. Various types of chemical 

descriptors, embodying different degrees of chemical structure representation, have been 

proposed, ranging from molecular formula (1D), two-dimensional structural formula (2D), three-

dimensional, conformation-dependent (3D), to even higher levels considering mutual orientation 

and time-dependent molecular dynamics (4D and beyond)48. 

With many empirically appealing choices for the molecular descriptor set (DS) to be used as 

input 𝒟, it’s challenging to predict beforehand which descriptors will facilitate the most robust 

learning of 𝒫 = 𝐹 𝒟 . This can be seen as a feature selection issue, where vectors of all potential 

DS candidates can be concatenated and filtered using a feature mask. With a large number of 

potential DS to be considered, each comprising large number of dimensions, selecting from the 

many possible descriptors represents a substantial computational challenge110. 

Various methods for descriptor set selection have been developed, including brute force 

enumeration, forward addition/backward elimination statistical techniques, Bayesian approaches 

such as automatic relevance determination, genetic algorithms, clustering methods, and self-

organized maps. Sometimes the choice of a suitable descriptor set may be also guided by 

professional expertise and expert domain knowledge. However, none of these methods are optimal 

as they are computationally demanding or based on the assumption that the best descriptor set for 

a task is included in the optimized descriptor space, which might not be the case110,139,140. 

On the flip side, given sufficient data, deep learning methods can learn useful molecular 

representations from large molecular data sets that can significantly enhance predictive modelling 

performance. These methods, which do not require the meticulous design or selection of 

descriptors, have shown significant performance improvement over conventional methods. The 
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molecular representations learned by deep learning methods are task-specific and encode relevant 

information on par or even more effectively than traditional fingerprints or descriptors. However, 

these models require substantial amount of labelled data for training, and their performance 

decreases significantly when the training data is limited141. 

In this context, transfer learning emerges as a promising alternative. Transfer learning is an 

emerging concept within the field of deep learning, which has demonstrated promising results 

across various applications including computer vision and natural language processing. The idea 

behind transfer learning is to use the knowledge gained from learning one task, often with abundant 

available data, to improve the model’s performance on another, related task, usually with less 

available data142 (Figure 118). The typical routine for transfer learning at a minimum involves two 

core stages: pre-training and fine-tuning. 

Within the context of chemoinformatics, pre-training involves learning representations of 

molecular structures from a substantial corpus of unlabelled molecular data in a self-supervised 

fashion. By exposing the model to a diverse set of molecular structures, it develops a broad 

understanding of various molecular features and relationships between them. The pre-training step 

is always followed by fine-tuning. This process involves adjusting the learned representations 

using a smaller structure-activity dataset specific to the task at hand. This fine-tuning process helps 

tailor the learned representations to model the specific task efficiently, thus optimizing the 

performance of the predictive model. This dual-stage approach in transfer learning not only 

enhances the model’s predictive accuracy but also addresses data scarcity issues, often 

encountered in specialized tasks within the field of chemoinformatics142,143. 

 

Figure 118. High level schematic overview of the transfer learning concept 

Transfer learning has gained traction in chemoinformatics, proving particularly useful in de 

novo drug design. Several works have been published that have a model initially trained to 

understand SMILES grammar rules using a large pool of unlabelled data, and then generating valid 

SMILES strings under specific conditions. The potential of complex neural networks to learn 
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valuable features from unlabelled molecular data has also been demonstrated, indicating promising 

avenues for further research in this domain.142,143 

The primary objective of this project was to investigate the effectiveness of transfer learning 

in QSAR modeling and compare it to a current state-of-the-art method that employs a support 

vector machine (SVM) in conjunction with a genetic algorithm-driven optimization process, 

involving descriptor selection and optimization, as the genetic algorithm simultaneously refines 

the hyperparameters of the SVM and the descriptor set used to train the models110. In contrast, 

transfer learning may allow to bypass the descriptor optimization step entirely. This approach 

learns useful molecular representations in an unsupervised end-to-end manner and then fine-tunes 

these representations to a specific downstream task143. 

Therefore, we aimed to assess whether these unsupervisedly learned and fine-tuned molecular 

representations lead to a predictive performance that at least matches, or even exceeds, that 

achieved by the genetic algorithm-optimized descriptor sets. By conducting this comparison, we 

sought to determine the potential of transfer learning as a more efficient and effective strategy for 

modeling in QSAR modelling. 

 

6.2. Survey of open-source tools for transfer learning on molecular data 

 

We aimed to test an existing methodology for learning representations from unstructured 

molecular data, rather than developing a new one. Thus, first we had to identify open-source tools 

that implement transfer learning on molecular data, following the pre-training, fine-tuning, and 

prediction workflow. Any given tool needed to meet several key criteria to be considered. Firstly, 

it should learn the general purpose representations in a self-supervised fashion from unlabeled 

molecular data with chemical intuition behind the design of the representation learning task. 

Secondly, the tool needed to offer models pre-trained on substantial data, while providing a 

convenient way to perform pre-training on user-defined datasets. Thirdly, it needed to implement 

fine-tuning of pre-trained models on any given downstream QSAR task, extraction of learned 

molecular representations for any given input molecule, and making predictions on new data. 

Upon reviewing the literature, we identified several tools fitting these criteria: GeoSSL144, 

TorchDrug145, MolCLR146, 3DInfoMax147, Chemformer148, and GROVER149. 

GeoSSL is a graph-based method for learning molecular representations which incorporates 

3D conformation data into its learning process. The learning is framed under a 3D coordinate 

denoising pretraining framework, computing continuous motion of molecules in 3D Euclidean 

space to model an energy landscape. It simplifies the denoising task to denoising the pairwise 

atomic distances in a molecule in different conformations. This allows GeoSSL to capture a more 
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comprehensive view of the molecules, considering not only their topological structure but also 

their spatial conformation. 

TorchDrug is a machine learning platform for drug discovery, employing self-supervised 

Graph Neural Network strategies during pre-training. Methods such as InfoGraph and Attribute 

Masking are utilized, leveraging structural information and node/edge attributes in molecules. 

MolCLR (Molecular Contrastive Learning of Representations) is a graph-based method that 

uses a contrastive learning framework to embed molecules into graph-level representations with 

the task of distinguishing between similar and dissimilar data instances. The fundamental idea of 

this method is to have the model produce similar representations for similar (or related) molecules 

and dissimilar representations for dissimilar (or unrelated) molecules. 

3DInfoMax is another graph-based method that incorporates both 2D and 3D molecular data 

in representation learning, while requiring only 2D data for fine-tuning and making predictions. 

This is achieved by training a graph neural network on molecular data with available 3D 

conformation data, inherently learning to generate implicit 3D data in latent representations. 

Chemformer is a Transformer-based model which operates on SMILES strings by treating the 

task as a sequence-to-sequence problem. The process begins with tokenization of the SMILES 

strings into individual components representing atoms, bonds, or special characters. These tokens 

are then embedded into high-dimensional vectors, which are fed into the Transformer model. The 

Transformer, with its self-attention mechanisms, models the dependencies between tokens in the 

sequence, effectively capturing long-range interactions between atoms that are crucial in 

determining molecular properties. 

Lastly, GROVER, Graph Representation frOm self-superVised mEssage passing 

tRansformer, employs a novel framework using self-supervised tasks in node-, edge- and graph-

level for molecular representation learning. GROVER integrates message-passing networks into 

the Transformer-style architecture to devise more expressive molecular representations. 

The selection of the most suitable tool for this study required careful consideration of the 

unique attributes and limitations of each open-source tool at our disposal. As such, GeoSSL was 

excluded due to its reliance on 3D representations of molecules, both for pre-training and 

downstream task fine-tuning. The computational burden associated with this requirement, 

combined with the tool’s lack of a straightforward mechanism for extracting learned 

representations, rendered it unsuitable for our purposes. 

TorchDrug, despite its potential, was also ruled out. The tool implements two graph-based 

pre-training methods, which proved highly time-consuming to train. Moreover, it did not provide 

any pre-trained models, and lacked a convenient interface for working with training/prediction 

data or straightforwardly extracting learned representations. Similarly, MolCLR, another graph-
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based method, was eliminated from consideration due to its lack of an easy method for extracting 

learned representations or generating predictions for new data. 

In the case of 3DInfoMax, despite its promising graph-based methodology, we encountered 

significant difficulties installing the tool and making it function properly. Chemformer, the sole 

SMILES-based method among the tools considered, was also deemed unsuitable due to installation 

difficulties arising from package version inconsistencies. 

After extensive review and comparison, we chose to work with the GROVER tool. A graph-

based method, GROVER provides convenient command-line implementations for model pre-

training, model fine-tuning on any given downstream task, extraction of learned representations, 

and prediction using the fine-tuned representations and a multilayer perceptron model. The 

encoder model implemented in GROVER contains only graph convolution networks and operates 

on undirected graphs, and so, the latent representation is learned without any influence of atoms’ 

order. Thus, GROVER was identified as the most appropriate tool for implementing transfer 

learning on molecular data in this study. 

 

6.3. Transfer learning workflow with GROVER 

 

The pre-training step with GROVER begins with the input of a list of SMILES strings, from 

which the tool generates a graph representation for each molecule. This step has two distinct pre-

training tasks, both of which have user-definable hyperparameters within GROVER's interface. 

The first task concerns individual nodes and edges of each graph, which represent atoms and 

bonds, respectively. In contrast, the second task concerns the entire molecular graph. 

For the atom- and bond-level pre-training task, each input graph is subdivided into smaller 

fragments, which are subsequently counted. Then, each graph is represented as a bit string, whose 

length corresponds to the total count of these generated fragments. Here, an active bit signifies the 

presence of a given fragment in the molecular graph, while a disabled bit indicates its absence. 

Next, a portion of each graph corresponding to some fragment is masked, ensuring that the 

masked node and edge labels account for no more than 15% of the graph. Then, atom- and bond-

level graph convolutions generate embeddings for the masked graph. The first self-supervised 

learning task is to use these embeddings of the masked graph to predict which fragment of the 

molecular graph has been masked (Figure 119). This task encapsulates the objective of learning 

molecular representations from the inherent structural features of the molecules. 
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Figure 119. First self-supervised representation learning task. 

 

For the second, graph-level pre-training task, each molecular graph is represented as a 

fixed-length fragment bit string, where each bit indicates the presence of one of 85 chemical 

fragments defined by a default fragmentation scheme in the RDKit Python package. Message-

passing operations are applied to the entire unmasked graph, generating a graph-level embedding 

of the molecule. The second self-supervised learning task is to correctly identify which of the 85 

fragments is present within the graph based on this graph-level embedding (Figure 120). This 

process further emphasizes the tool’s capability to capture comprehensive structural information 

from molecular data. 

 

 

Figure 120. Second self-supervised representation learning task. 

 

As a result, the final embedding obtained from both tasks constitutes atom- and bond-level 

embeddings for both tasks (Figure 121). 
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Figure 121. Final learned representation contains features from atom- and bond-level graph 

convolutions. 

 

According to the authors, pre-training is an extremely time-and resource-consuming 

process, which required them to procure 250 top-budget NVIDIA graphics cards. Luckily, the 

authors provide two pre-trained models: GROVERlarge and GROVERbase. GROVERlarge was 

pre-trained on 11 million unlabelled molecules sampled from ZINC15 and ChEMBL datasets. The 

authors randomly split 10% of unlabelled molecules as the validation sets for model selection. 

The lighter version, GROVERbase, was trained on the same data using the same 

architecture, but with smaller neural network layers, using a lesser number of hidden parameters. 

Specifically, GROVERbase contains ∼48M parameters, and GROVERlarge contains ∼100M 

parameters. The authors used 250 NVIDIA V100 GPUs to pre-train GROVERbase and 

GROVERlarge. Pre-training GROVERbase and GROVERlarge took 2.5 days and 4 days 

respectively.  

Hence, for this work, we used the pre-trained GROVERlarge model to avoid having to pre-

train it ourselves. Moreover, the original paper showed this model to have state-of-the-art 

performance on benchmark downstream QSAR tasks. 

Fine-tuning of a pre-trained model with GROVER requires the input of a text file. Each 

line of this file should contain a SMILES string of a molecule and its corresponding target property 

value. For classification tasks, the target property should be a discrete integer value. In this project, 

we specifically focused on binary classification problems, leaving the tool’s multi-class 

classification capabilities untested. For regression tasks, the target property should be denoted by 

a continuous number. 

Only two metrics are supported to fine-tune regression or classification downstream tasks. 

For regression problems, the optimized metric is the coefficient of determination, R2. The R2 
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metric is a statistical measure that assesses the goodness of fit of a regression model to the observed 

data. It provides an indication of how well the model's predictions explain the variability in the 

dependent variable. R2 is a real value between 0 and 1. It represents the proportion of the variance 

in the dependent variable that can be explained by the independent variables included in the model. 

In other words, it measures the proportion of the total variation in the dependent variable that is 

captured by the regression model. The R2 value is calculated following equation 9, where SSR (the 

residual sum of squares) is the sum of the squared differences between the predicted values and 

the actual values of the dependent variable, and SST (total sum of squares) is the sum of the squared 

differences between the actual values. 

R2 = 1 – (SSR / SST) (9) 

 

To assess the predictive performance of classification models, we used the balanced 

accuracy (BA) metric, defined by equation 10, where TP stands for true positives (correctly 

labelled positive data points), FN stands for false negatives (incorrectly labelled positive data 

points), TN stands for true negatives (correctly labelled negative data points), FP stands for false 

positives (incorrectly labelled negative data points). In other words, it is calculated as the average 

of the proportion of correctly predicted observations in each class, namely, the sensitivity (true 

positive rate) and specificity (true negative rate). BA takes values from 1 (ideal case) to 0.5 

(random predictions). 

𝐵𝐴 =
1

2
(

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
+

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
) 

(10) 

 

Upon providing the input file, the tool randomly splits the dataset into training, testing, and 

validation sets in an 80-10-10 ratio (Figure 122). The user controls the number of different splits 

that will be generated from the input dataset. In this work, for all fine-tuning experiments, we fix 

this number to five data splits to ensure a robust and efficient sampling of the input data. 

This sampling approach diverges from conventional K-fold cross-validation, as the 

partitioning into training, testing, and validation subsets occurs randomly. Therefore, it is not 

guaranteed that each molecule from the provided fine-tuning dataset is utilized for both training 

and testing. 

During each optimization epoch, molecules from the training and validation sets are used 

to update the neural network's internal weights. After training concludes, the best weights are 

selected based on the best value of a task-defined metric on the validation set. These parameters 

are then utilized to make predictions for the compounds in the test set. Lastly, the metric values 

for these test set predictions are reported and used to compute the overall performance statistics. 
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Figure 122. Schematic representation of used cross-validation strategy. 

 

It is worth mentioning that the GROVER tool provides opportunity to concatenate other 

features to the learned representations. This often leads to better predictive performance, because 

selected additional features get concatenated with the learned representations. 

After a pre-trained model was used to fine-tune representations for a downstream task, the 

prediction step is straightforward. The tool requires a fine-tuned model and a list of SMILES for 

prediction. If the user used additional features for fine-tuning, they also need to be pre-calculated 

for the prediction set before running a prediction job. The tool produces learned representations of 

the input molecules, concatenates them with pre-calculated additional features (if any are 

provided), and then uses a simple multilayer perceptron neural network model to make predictions 

of the target value. The output is a .csv file with each line containing a SMILES string and a 

predicted target value. 

 

6.4. Optimization of hyperparameters 

 

Our first task was to understand which hyperparameters of the GROVER tool lead to better 

predictive performance in the fine-tuning task when using a GROVERlarge pre-trained model. For 

benchmarking, we selected two datasets from MoleculeNet, which is a collection of structure-

activity datasets widely accepted in machine learning community for benchmarking new 

contributions150. Specifically, we used datasets named freesolv and lipo. Freesolv is a benchmark 

dataset comprised of 642 small molecules along with their corresponding experimentally measured 

values of hydration free energy in water. Lipo is a benchmark dataset that contains experimentally 

measured values of octanol/water distribution coefficient (logD at pH 7.4) for 4200 small 

molecules. Both datasets concern the regression modelling task. However, lipo contains 4200 

structure-property data pairs, while freesolv contains 642 such pairs. We deliberately chose these 

specific datasets because optimizing the hyperparameters using differently-sized benchmark 
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datasets allowed us to mitigate the effect of the dataset size on performance, focusing only on 

hyperparameter contributions.  

The GROVER tool contains many configurable parameters that influence all parts of the 

transfer learning workflow. We arbitrarily selected 11 parameters that, in our opinion, had an 

influence on the quality of the resulting models. They are listed in Table 2 along with their 

conceptual meaning. 

 

Table 2. Optimized parameters of the GROVER tool 

Parameter Conceptual meaning 

features_generator During fine-tuning, which additional features to concatenate with learned 

features 

num_folds How many different train, test, validation splits will be performed 

split_type How would molecules be selected into train, test, and validation sets for 

each fold 

ensemble_size How many GROVER models will be trained for each train, test, 

validation split 

no_features_scaling This is a flag that, if present, tells the tool not to scale the input features 

from 0 to 1 

ffn_hidden_size Size of the layer of a multi-layer perceptron network used in fine-tuning 

ffn_num_layers Number of hidden layers in a multi-layer perceptron network using in 

fine-tuning 

self-attention A flag that, if present, changes the way graph embeddings are calculated 

bond_drop_rate Probability of dropping random bonds from a graph (to prevent 

overfitting) 

batch_size During fine-tuning, how many molecules from the dataset will be used 

for a single iteration of internal weights change 

epochs During fine-tuning, how many times would the network iterate over the 

input dataset 

 

The process of hyperparameter optimization consisted of performing fine-tuning on the 

freesolv and lipo datasets with different combinations of the parameters listed in Table 2. Each 

successfully finished fine-tuning run was described by an average value of the optimized metric 

over all the folds (specified by num_folds parameter), and a standard deviation of the R2 metric 

value. 
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Thus, we were able to establish a set of the GROVER tool’s hyperparameters that 

consistently lead to higher quality predictions than the default parameters. These parameters are 

listed in Table 3. 

 

Table 3. Best hyperparameters of the GROVER tool found by iterative fine-tuning on freesolv and 

lipo datasets 

Hyperparameter Best value after optimization 

features_generator 

(optional) 

Normalized 2D descriptors derived from the topology of the molecule 

or counts of specific types of atoms or bonds; Counts-based Morgan 

fingerprint characterizing the local chemical environment around each 

atom in the molecule up to a specified radius, encoded as a fixed-length 

binary vector. 

num_bits (optional) 2048 

split_type Random 

ensemble_size 5 

num_folds 5 

no_features_scaling (flag turned on) 

ffn_hidden_size 400 

ffn_num_layers 2 

self_attention (flag turned on) 

bond_drop_rate 0.5 

batch_size 32 

epochs 100 

init_lr 0.00015 

select_by_loss (flag turned on) 

 

Then, we aimed to evaluate the predictive performance of the fine-tuned GROVER models 

against a state-of-the-art QSAR modeling approach. It relies on support vector machine models 

optimized through an evolutionary model building process that explores up to ninety-five ISIDA 

fragmentation schemes to select the best descriptor space. In this approach (henceforth referred to 

as libsvm-GA), models that perform optimally are identified through the evolutionary procedure 

and ranked based on their fitness score, which is calculated as the average BA across a 12-fold 

repetition of a leave-1/3-out cross-validation scheme. 
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For the purpose of benchmarking, five different datasets from the MoleculeNet benchmark 

set were used, namely bace, bbbp, esol, freesolv, and lipo. BACE is a dataset of 1513 compounds 

labelled with qualitative (binary label) binding results for human β-secretase 1 (BACE-1). BBBP 

is a dataset of 2039 compounds with binary labels of blood-brain barrier permeability. ESOL is 

regression modelling dataset with 1128 common organic small molecules and their water 

solubility data (log solubility in mols per litre).  

Firstly, we used the state-of-the-art approach of using libsvm-GA on ISIDA descriptors. 

That means we computed 95 sets of ISIDA descriptors and used a genetic algorithm to find optimal 

descriptor set and hyperparameters of support vector machine models for all of the five datasets. 

Secondly, we used default GROVER parameters to model these datasets. Thirdly, we used the best 

GROVER hyperparameters, not using additional features. Finally, we used the best GROVER 

hyperparameters with additional features (two hundred normalized physicochemical 2D RDKit 

descriptors, and a count vector of Morgan fingerprints with radius of 2 and number of bits of 2048).  

As a result of that, we saw that for the binary classification task involving the BACE and 

BBBP datasets, molecular representations learned by fine-tuning the GROVER model using best 

hyperparameters (Fir. 123, green) led to better performance that default GROVER 

hyperparameters (Figure 123, orange) and were on par with classification performance shown by 

the libsvm-GA approach (Figure 123, blue). Concatenation of additional features (normalized 2D 

RDKit and count of Morgan fingerprints (r=2, num_bits=2048)) to the learned representations did 

not necessarily improve the classification performance (Figure 123, red). 

 

 

Figure 123. Reported are cross-validation scores achieved by four different methods. 
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Table 4. Cross-validation statistics of models' performance on binary classification datasets 

Method Balanced accuracy score 

(BACE) 

Balanced accuracy score 

(BBBP) 

Libsvm-GA 0.829 ± 0.006 0.863 ± 0.005 

GROVER default 0.658 ± 0.109 0.766 ± 0.049 

GROVER best (no added 

features) 

0.791 ± 0.051 0.883 ± 0.044 

GROVER best (with added 

features) 

0.804 ± 0.042 0.807 ± 0.020 

 

 In a similar manner, regression modelling performance of the fine-tuned GROVER models 

with best found hyperparameters (Figure 124, green) was constantly higher than that achieved by 

fine-tuning with default parameters (Figure 124, orange). However, learned representations could 

not produce models scoring higher than the state-of-the-art approach (Figure 124, blue). At the 

same time, concatenation of the learned representations to the additional descriptors (normalized 

2D RDKit and count of Morgan fingerprints (r=2, num_bits=2048) led to significant boost of 

performance (Figure 124, red). 

 

 

Figure 124. Reported are cross-validation scores achieved by four different methods. 
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Table 5. Cross-validation statistics of models' performance on regression datasets 

Method R
2
 score (ESOL) R

2
 score (FREESOLV) R

2
 score (LIPO) 

Libsvm-GA 0.902 ± 0.004 0.879 ± 0.007 0.673 ± 0.005 

GROVER default 0.663 ± 0.111 0.630 ± 0.150 0.308 ± 0.051 

GROVER best (no 

added features) 

0.816 ± 0.031 0.776 ± 0.050 0.575 ± 0.023 

GROVER best 

(with added 

features) 

0.892 ± 0.011 0.870 ± 0.042 0.710 ± 0.032 

 

 Thus, we were able to establish the best hyperparameters of the GROVER models that 

constantly led to better predictive performance than the default parameters on various datasets and 

modelling tasks. We also show that combined use of the learned representations with other 

descriptors may further increase predictive performance of the models. 

 

6.5. Downstream task fine-tuning performance 

 

To assess the performance of the GROVER model applied via transfer learning on unseen 

data, we subjected it to the task of classifying compounds based on their cytotoxicity towards 

different cancer cell lines most likely caused by binding at the tubulin protein’s colchicine binding 

site. For this purpose, we employed a dataset published by López-López et al. consisting of 766 

structure-activity data points, each representing a molecular structure along with its corresponding 

activity label129. The dataset constitutes a binary classification task, with the activity label 

reflecting the compound's ability to inhibit the proliferation of various cancer cell lines. Molecules 

were labelled as active if they induced cytotoxic effects on any cell line at concentrations below 

micromolar. 

This dataset was split into a training set for hyperparameters selection via cross-validation and 

an external validation set for assessing the predictive performance of the cross-validated models. 

The validation set contained 50 randomly chosen active and inactive molecules (25 of each class). 

We used the BA metric for cross-validation and performance assessment. 
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The classification performance benchmarking was carried out for the following models 

(Figure 125): 

• Libsvm-GA using ISIDA descriptors (representing the state-of-the-art approach) 

• A random forest model trained on 2D RDKit descriptors (representing a widely used 

baseline approach) 

• The GROVER model with optimal parameters and without additional features 

• The GROVER model with optimal parameters, incorporating additional features. 

 

 

Figure 125. Scheme of model training and validation. 

 

Figure 126 shows average balanced accuracy score of cross-validation attempts and 

prediction for the four tested models. 

 

 

Figure 126. Performance of four different models on colchicine compounds classification. 
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As can be seen from the figure, transfer learning with GROVER is able to learn 

representations that allow for comparable performance with state-of-the-art libsvm-GA on ISIDA 

descriptors approach, outperforming the basic baseline of random forest on 2D RDKit descriptors. 

Additional features (normalized 2D RDKit descriptors and count vector of Morgan fingerprints 

(r=2, num_bits=2048)) concatenated to the learned representations further boost the performance 

(see GROVER (with add. feat.) on Figure 126). 

Thus, transfer learning with GROVER shows comparable performance to the state-of-the-

art approach, that can be further boosted by concatenating the learned representations to other 

descriptors, proving the utility of transfer learning for molecular representation learning in QSAR 

modeling. 

 

6.6. Extraction of learned representations 

 

We then wanted to understand whether learned representations from pre-trained and fine-

tuned models could be successfully utilized with other machine learning methods beyond 

multilayer perceptron to yield high-performing models. For this, we isolated atom-level and bond-

level representations from the GROVERlarge pre-trained model, provided by the authors of the 

original publication, for 716 molecules from the training set. These representations were then 

employed to train libsvm-GA models, during which only the hyperparameters of the SVM models 

were optimized. The numbers were compared to the performance results shown by libsvm-GA 

models after optimization over ISIDA fragment descriptor sets as performed in the previous 

section. 

Building on this, we repeated the process but with representations extracted from a fine-tuned 

model, anticipating these would improve cross-validation and external validation predictive 

performance metrics. Although our predictions were correct and there was indeed an 

improvement, the increase was only modest and did not surpass the performance level of libsvm-

GA trained on ISIDA descriptors. Figure 127 provides a visual representation of these findings. 

This suggests that while fine-tuned representations may offer some advantages, pre-trained 

models are already quite proficient in capturing key molecular features, as reflected in their 

competitive performance. This conclusion underscores the robustness of the transfer learning 

methodology and its applicability in QSAR modelling, even if the performance gains from fine-

tuning are not substantial. Our exploration serves as a valuable step forward in harnessing the full 

potential of transfer learning in chemoinformatics. 
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Figure 127. Pre-trained and fine-tuned features work well with other machine learning methods. 

 

 

Table 6. Libsvm-GA performance on pre-trained and fine-tuned GROVER representations and 

ISIDA descriptors 

 Representation level 
Cross-validation 

BA 

External validation 

BA 

Not tuned GROVER 

representations 

Atom 0.900 0.860 

Bond 0.912 0.860 

Tuned GROVER 

representations 

Atom 0.903 0.880 

Bond 0.942 0.880 

ISIDA descriptors – 0.912 0.880 

 

6.7. Conclusion and perspectives 

 

In summary, this work shows that the transfer learning approach is useful for QSAR 

modelling. It is capable of learning representations that are at least comparable in predictive 

performance to state-of-the-art evolutionary optimization of SVM models over the ISIDA 

fragment descriptor sets approach. As such, it indeed becomes possible to learn useful 

representations for a task at hand, rather than optimize descriptors sets. However, there are certain 

difficulties that need to be addressed if this approach is to be taken further. 

The GROVER tool, selected for this project, implements a sub-optimal cross-validation 

strategy. Random sampling of the fine-tuned dataset repeatedly causes situations when 
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performance metric values considerably differ from fold to fold due to composition of train, 

validation, and test sets. We envisage that implementation of a more conventional N-fold cross-

validation strategy to ensure that each data point has at least once been in train and validation sets 

would bring more robustness to the results. 

The speed of fine-tuning highly depends on the batch size. Unfortunately, our GPUs did not 

allow us to use batch sized larger than 128. It means that for bigger datasets (where GROVER 

works best, e.g., for datasets containing more than 600 points), fine-tuning could take as much as 

several days. A workaround may be to utilize distributed GPU use. 

For each fold of the fine-tuning dataset, it is possible to build not one, but several fine-tuned 

models. This is controlled by the ensemble_size parameter of the GROVER tool. Our study shows 

that this is a beneficial approach that improves performance overall. Most likely in a similar way 

to random forest, where an ensemble of weak predictors gives a good overall prediction. However, 

when it comes to extracting features, it is unclear which fine-tuned model should be used for 

feature extraction. In this work, we used first models from folds that reported the highest metric 

values. However, this doesn't feel optimal. Maybe a better approach would be to extract features 

from all models from the ensemble and take the average value of the features. 

Although this was not the purpose of the project, we observed that concatenating learned 

representations with normalized 2D RDKit descriptors and a vector that counts unique Morgan 

fingerprint bits (r=2, num_bits=2048) adds considerable boost for modelling performance. Thus, 

when simply concerned with resulting model’s quality, and not with learning representations per 

se, this may be a recommended strategy to apply. 

Descriptor selection is a tedious task prone to finding sub-optimal solutions. Transfer learning 

is a concept that promises to learn useful molecular representations instead of selecting them from 

a pre-defined list of descriptors sets. Theoretical applicability of this approach for QSAR 

modelling has been demonstrated on classification and regression task. We have shown that, with 

right hyperparameters, transfer learning with the GROVER tool reaches the predictive 

performance level of the state-of-the-art evolutionary optimization of SVM models over the ISIDA 

fragment descriptor sets approach. However, challenges related to cross-validation strategy, 

ensemble modelling, and applicability domain of the learned representations remain open. They 

may be subjects of further research on this topic. 
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Chapter 7. Exploration of cryptic binding pockets in tubulin using Gaussian-accelerated 

molecular dynamics simulations 

 

7.1. Introduction 

 

Proteins are dynamic entities that continuously undergo conformational changes, which 

fundamentally define their biological structure151. This dynamism is intricately linked to the 

biological function of proteins. The conformational diversity that arises from protein dynamics is 

a crucial factor in understanding how a protein functions. A key aspect of protein structure and 

dynamics is the existence of binding sites, which are often open and ready for ligand interaction152. 

A binding site is a specific region on a protein where a ligand, such as a small molecule, can bind. 

Binding sites usually appear as pockets or grooves on the protein’s surface and are typically 

present in the protein structure even in the absence of the drug. Ligand interaction with a binding 

pocket is typically specific, meaning that the binding site corresponds to the shape, size, and 

chemical characteristics of the ligand. The binding of ligands to these sites can induce alterations 

in the protein’s structure and, hence, it’s biological function152. 

However, the dynamic nature of proteins also gives rise to what are known as cryptic 

pockets. Cryptic binding pockets present a unique case where the pocket or groove only forms 

during the process of drug binding, and prior to this, the site lacks the usual geometric features of 

a typical binding site. As such, they are transiently occurring binding sites in proteins that are not 

present in the protein’s static structure but emerge due to conformational changes intrinsic to the 

protein or induced by a given ligand (Figure 128). These pockets can be thought of as hidden 

opportunities for molecular interaction that only become apparent under certain conditions153,154. 

 

Figure 128. Schematic representation of two possible mechanisms of cryptic pockets formation 

(adapted from Kuzmanic et al.
155

) 

Cryptic pockets can sometimes be targetable by small molecules, and their study holds 

significant potential for drug discovery152. Such pockets are often found at the interfaces between 

proteins, suggesting that drugs designed to target these sites could potentially modulate specific 

protein-protein interactions, a strategy with considerable therapeutic promise152. They offer unique 
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and potentially more specific opportunities for drug binding, which can lead to the development 

of more effective and targeted therapeutics, particularly in cases where other known binding sites 

have proven challenging to target154,155. The identification and study of cryptic pockets thus 

provides a deeper understanding of protein function and dynamics, revealing potential new targets 

for drug discovery and contributing to the development of more effective and specific therapeutics. 

Despite this potential, the practical application of targeting cryptic sites is challenging, largely due 

to our limited ability to identify such cryptic pockets, which are often found by serendipity, and 

understanding of how small molecules interact with these cryptic sites compared to conventional 

well-defined binding sites155. 

Computational simulations play a crucial role in identifying such cryptic pockets156. 

Advanced computational methods, such as atomistic molecular dynamics simulations, can capture 

the protein’s conformational changes over time, revealing the transient pockets that may not be 

visible in a static structure. Technological advancements in computer architectures specifically 

designed for MD simulations, coupled with the rise of distributed computing and the optimization 

of MD simulation packages for parallel processing and GPU utilization, have allowed scientists to 

simulate systems of unprecedented size and duration. It is now commonplace to conduct 

simulations spanning microseconds. Simultaneously, the accuracy of both protein and ligand force 

fields has improved to the point where they can reliably capture the key aspects of target dynamics 

and ligand binding mechanisms. These simulations can provide a dynamic view of the protein, 

allowing for the identification and characterization of cryptic pockets156. 

Conventional MD simulations are not without their limitations. Despite the substantial 

progress, conventional approaches in MD simulations cannot adequately sample many 

biologically and pharmaceutically relevant conformational changes. In classical molecular 

dynamics simulations, the system evolves over time according to Newton’s laws of motion, with 

the potential energy surface (a multi-dimensional representation of the energy of a system as a 

function of its atomic positions) guiding the movements of the atoms. However, this approach can 

be inefficient when dealing with systems that have high energy barriers on their potential energy 

surfaces, as the system can get trapped in local minima for long periods, thereby hindering efficient 

conformational sampling. This is particularly problematic when studying cryptic pockets, which 

may only be transiently present during rare conformational changes84,154,155,157. 

To overcome these limitations, several enhanced sampling techniques have been developed 

for MD simulations. One such technique is Gaussian-accelerated molecular dynamics (GaMD). 

GaMD differs from conventional molecular dynamics in that it introduces a harmonic boost 

potential to the system’s potential energy surface, effectively smoothing the energy landscape and 

facilitating easier conformational transitions Figure 129). This boost potential lowers the energy 
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barriers, allowing the system to escape from local minima more easily and explore the 

conformational space more efficiently. The boost potential is constructed using a Gaussian 

distribution, hence the name of the method. The parameters of the Gaussian distribution are 

adjusted dynamically during the simulation to ensure that the boost potential is always appropriate 

for the current state of the system84,157. 

 

Figure 129. Scheme of GaMD boosting 

GaMD has numerous advantages over classical MD. Firstly, it allows for more efficient 

sampling of the conformational space, which is crucial in studies of protein dynamics. Proteins 

can adopt a vast number of different conformations, and understanding this conformational 

variability is key to understanding protein function. By enabling the system to overcome high 

energy barriers more easily, GaMD allows for a more comprehensive exploration of the 

conformational space. Secondly, GaMD simulations can be performed without prior knowledge 

of the system's potential energy surface, making it a versatile tool for studying a wide range of 

systems84,157. 

In this study, we aimed to apply GaMD to the simulation of the tubulin protein, with the 

objective of identifying potential cryptic pockets on its surface. Previously, Muhlethaler et al. have 

performed classical MD simulation-based study of the tubulin protein’s conformational dynamics 

and identified 26 distinct pockets on the tubulin surface, often related to known binding sites106. 

Hence, our goal in this project was to determine whether the analysis of the tubulin trajectory 

obtained by enhanced sampling with GaMD could not only reproduce the known binding sites but 

also discover new possible cryptic pockets. The discovery of such pockets could provide valuable 

insights for future research targeting tubulin. This work was done as part of my academic 

secondment to the Univeristy of Barcelona, Barcelona, Spain, under the guidance of Prof. J. Rubio 

and Prof. M. Cascante, in the framework of the TubInTrain curriculum. 
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7.2. Modelled system setup for simulations 

 

We retrieved the three-dimensional structure of the α,β-tubulin heterodimer from the 

Protein Data Bank (PDB) record 7E4Z. The preparation of the protein structure involved the 

removal of all solvent molecules and small organic molecules, excluding GTP. We kept the 

manganese ions. We deleted all chains except for chains C and D, corresponding to α-tubulin and 

β-tubulin parts of the heterodimer. The residues of the gap in the loop between strand S7 and helix 

H8 of b-tubulin were sourced from the 4I4T PDB complex, where this loop is resolved. The 

missing atoms from these residues were completed using the LEaP module of the AMBER18 

software158. 

We performed three Gaussian-accelerated molecular dynamics runs of 1 µs. All 

calculations were performed using the PMEMD (Particle Mesh Ewald Molecular Dynamics) code 

of the AMBER18 software in its CUDA version, employing the AMBER ff14SB force field159. 

The systems were prepared for molecular dynamics simulations following a common 

protocol. Initially, the prepared protein was immersed in a cubic box filled with equilibrated TIP3P 

water molecules. To neutralize the system, some water molecules were replaced with Na+ or Cl− 

ions, based on the electrostatic potential before solvation. The cubic periodic box was constructed 

to maintain a minimum distance of 16 Å between the protein and the box edges. We also deleted 

water molecules that were closer than 1 Å to the protein. 

Subsequent to system preparation, energy minimization was carried out in a stepwise 

manner. The positions of the water molecules and ions were first optimized using the steepest 

descent (SD) algorithm up to 5000 cycles of minimization, while keeping the rest of the system 

fixed. The modeled residues were then relaxed in two stages, each consisting of 5000 cycles of 

SD, with the backbone positions of these modeled residues kept fixed and a decreasing force 

constant of 5.0 and 0.1 kcal/Å. Lastly, the minimization of the entire system was carried out 

without any restrictions using 10000 cycles of the SD method. 

Following minimization, the system was heated in increments of 30 K every 20 ps, using 

a force constant of 1.0 kcal/mol·Å to maintain all backbone atoms constrained. The heating process 

was performed under the canonical (NVT) ensemble. After the heating process, a 200 ps trajectory 

at constant pressure (NPT ensemble) was performed for density equilibration using the Berendsen 

barostat to control and maintain the pressure at 1 atm. 

The final structure served as the starting point for the production MD simulations in the 

NVT ensemble. Trajectories were calculated at 300 K using the Langevin thermostat to maintain 

a constant temperature with a collision frequency of 3.0 ps-1. The SHAKE algorithm was used to 

fix all bonds involving hydrogen atoms, enabling us to use a time step of 2 fs for all the 
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simulations160. Nonbonded interactions were truncated using a cutoff of 9 Å, and long-range 

interactions were treated with the particle-mesh Ewald summation method with a grid spacing in 

the direct lattice of about 1 Å, a fourth-order B-spline interpolation for the gridded charge array, 

and a direct sum tolerance of 10−5. 

 

7.3. Root mean square deviation and fluctuation analysis 

 

To evaluate the structural stability of the systems throughout the simulation, we calculated 

the root-mean square deviation using the cpptraj module from Amber18. The RMSD was 

computed relative to the initial structure obtained from LEaP. We reoriented each frame of all 

trajectories over all residues from both α-tubulin and β-tubulin subunits, utilizing the α carbons 

(Cα) of all the residues. In addition, we computed the root-mean square fluctuations (RMSF) for 

all tubulin residues using the cpptraj module of Amber18. This analysis provided insight into the 

local conformational flexibility of each residue during the MD simulations. 

We calculated the RMSD for the entire trajectory to determine the structural stability of 

the Gaussian accelerated MD simulation. Figure 130 displays the average values from all three 

replicas of each system. As depicted, all systems achieved structural stability after a brief 

stabilization period. The RMSD of the Cα atoms of the α,β-tubulin heterodimer from the initial X-

ray structure is plotted as a function of time, both with (red) and without (blue) the H1-S2, M, and 

S9-S10 loops of both tubulin monomers, following the same analysis done by Muhlethaler et al.106 

The lighter color represents the effective sampling of the RMSD during the simulation, while the 

darker lines represent a Bezier curve approximation of the data to minimize noise. 
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Figure 130. RMSD plots for the trajectory 

We also computed the RMSF to evaluate the fluctuations of different regions of the tubulin 

structure (Figure 131). As anticipated, the structurally-important loops exhibited considerably 

higher fluctuations compared to the residues forming loops that do not participate in bonding with 

laterally or longitudinally located tubulin dimers to form a microtubule. 

 

Figure 131. The degree of conformational flexibility across the residues in the tubulin protein 

during the molecular dynamics simulation 

7.4. Principal component analysis 

 

We used the principal component analysis (PCA), a multivariate statistical technique, to 

determine and analyze the primary structural variations of the studied system. PCA is particularly 

useful in capturing the most important features of protein dynamics while minimizing the 
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dimensions required for description. This dimensionality reduction is achieved through a 

decomposition process that ranks motions from the largest to the smallest spatial scales, thereby 

preserving as much variation in the data as possible. 

The PCA methodology161 involves the construction of a covariance matrix using the atomic 

coordinates of the alpha carbons (Cα) of each residue. This 3N × 3N symmetric matrix is 

subsequently diagonalized to yield a set of Principal Components or eigenvectors, along with their 

corresponding eigenvalues λ(i). The transformation of correlated variables into uncorrelated ones 

through PCA allows the first principal modes or eigenvectors to characterize large-scale protein 

motions. These first modes are sufficient to define the "essential" space or motions of the protein. 

The contribution of the i-th principal component PC(i) to the structural variance in the data set is 

given by equation 11, where the summation is performed over all 3N components, and N is the 

number of residues in the protein. 

 

𝑐% = 100	×	
𝜆%

𝜆%We
%fS

 (11) 

 

For our PCA analysis, we constructed the covariance matrix using the alpha carbons (Cα) 

of the α,β-tubulin residues, excluding both termini of each tubulin subunit. The first Principal 

Component (PC1) accounted for approximately 31% of protein fluctuations, and in conjunction 

with the second component, the two initial PCs described about 45% of protein fluctuations 

(Figure 132). 

 

 

Figure 132. Scree plot illustrating the explained variance by each principal component in our 

PCA analysis of tubulin dynamics 
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The projection of each MD trajectory snapshot onto the respective two principal 

components is depicted in Figure 4. A comparison of these figures reveals that the sampling of the 

three replicas is not necessarily identical, reinforcing the notion that conducting multiple MD runs 

may be more efficient than generating a single trajectory from a single run. Each of the three 

GaMD runs explored distinct sections of the conformational space. 

 

 

 

Figure 133. The conformational landscape of tubulin dynamics sampled by GaMD simulations 

 

7.5. Cluster analysis 

 

We then sought to identify the distinct structural features of tubulin by categorizing similar 

structures from the entire simulation trajectory into 15 different clusters. This was achieved using 

the average linkage algorithm, as implemented in the cpptraj module of AMBER18. The Root 

Mean Square Deviation (RMSD) of the Cα in residues αMet1-αVal440 and βArg1-βAsp441 

served as the distance metric for this process. These residues were selected because they 

comprehensively represent the entire protein system. 

The combined trajectory from the three runs was utilized for the clustering analysis to 

ensure the inclusion of all accessible states throughout the full length of the MD. This amounted 

to the clustering of 150,000 frames, equivalent to the extraction of one structure every 2 
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picoseconds. Furthermore, a sieve option of 4 was employed in the clustering process, which 

implies the use of only 37,500 frames, with the remaining frames added to the closest cluster in 

each instance. Consequently, the centroids of each of the 15 clusters were selected as 

representatives to shed light on the potential hotspots in the tubulin structure. 

Figure 134 shows the coordinates of the representative structures mapped onto the 

PC1/PC2 plot. The representatives are numbered in accordance with the fraction of the total 

trajectory they describe, indicating that representatives with higher numbers cover a larger portion 

of the trajectory.  

 

 

Figure 134. Representative structures selected after clustering projected on the sampled 

conformational landscape 

7.6. Identification of cryptic pockets 

 

We used the FTMap server to identify protein hotspots within our systems162. FTMap is a 

computational mapping server that is widely used to pinpoint binding hot spots in macromolecules. 

The algorithm operates by distributing a vast array of small organic molecules, or probes, of 

varying size, shape, and polarity. These probes are then scored based on a detailed ligand binding 

free energy calculation. The probes used in FTMap include acetaldehyde, acetamide, acetone, 

acetonitrile, benzaldehyde, benzene, cyclohexane, dimethyl ether, ethane, ethanol, isobutanol, 

isopropanol, methylamine, N,N-dimethylformamide, phenol, and urea. Binding hot spots are 

identified as regions where clusters of multiple probe types bind. FTMap distributes these probes 

on the protein surface, identifies the most favorable positions for each probe type, clusters the 

probes, and ranks the clusters based on their average energy. Regions that bind several different 

probe clusters are referred to as consensus sites and are predicted to be binding energy hot spots. 
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We utilized the FTMap server to identify cryptic pockets in tubulin and subsequently 

characterized these pockets for their potential as allosteric sites. This analysis was conducted on 

the representative structures of the 15 clusters. Our aim was to identify any binding pockets that 

did not correspond to the locations of known ligand binding, did not correspond to the locations 

where small fragments bound experimentally during fragment screening, and were not the pockets 

found by classical MD in a study published by Muhlethaler et al.106 

Our analysis revealed that in all of the representative structures, we consistently found the 

gatorbulin site, the colchicine site, and the GTP on α-tubulin. Additionally, in some representative 

structures, we identified the taxane site, the vinblastine site, and the common entrance part of the 

todalam/pironetin sites. This not only validates the FTMap approach but also indicates that some 

binding sites are particularly susceptible to opening and closing due to the dynamics of the tubulin 

protein. Furthermore, all of the representative structures identified βIII, βV, and αII binding sites 

found experimentally in fragment screening (pocket names given following the notation used in 
106). The FTMap tool was also successful in identifying binding sites αI, aΙΙ, and bIV, which were 

found in a previous computational study by classical MD simulations (pocket names given 

following the notation used in 106). 

Intriguingly, our study unveiled four novel cryptic pockets (Figure 135), which have not 

been previously identified by either X-ray crystallography or classical MD simulations, and are 

not known to host any known ligands. 

The first novel pocket (Pocket 1) is situated at the interface of α,β-tubulin. This pocket was 

identified through the binding of a variety of probes, including phenol, isopropanol, dimethyl 

ether, isobutanol, benzaldehyde, ethanol, ethane, benzene, N,N-dimethylformamide, acetonitrile, 

acetamide, acetone, and acetaldehyde. The residues that constitute this pocket include βAsp329, 

βGlu330, βMet332, βLeu333, βVal335, βGln336, αArg221, αTyr210, αGln176, and αArg214. 

The second novel pocket (Pocket 2) is also located at the α,β-tubulin interface. It was 

discovered through the binding of benzaldehyde, cyclohexane, phenol, benzene, ethanol, N,N-

dimethylformamide, isobutanol, acetone, and acetonitrile probes. This pocket is composed of 

residues βLeu248, βGln247, βPro245, αTyr224, αGln15, and αGln11. 

The third novel pocket (Pocket 3) is located on α-tubulin. This pocket was identified 

through the binding of phenol, isopropanol, dimethyl ether, isobutanol, benzaldehyde, and 

cyclohexane probes. The residues that constitute this pocket include αLeu189, αThr193, and 

αHis192. 

The fourth novel pocket (Pocket 4) is also situated on α-tubulin. It was discovered through 

the binding of urea, methylamine, acetaldehyde, ethanol, and ethane probes. This pocket is 
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composed of residues αSer198, αGlu155, αMet154, αGlu168, αThr194, αHis139, αThr150, 

αSer151, αThr190, and αTyr103. 

 

 

Figure 135. Location of the cryptic pockets identified by FTMap 

7.7. Protein pocket dynamics analysis 

 

To explore the dynamic properties of protein pockets within our molecular dynamics (MD) 

simulation trajectory, we utilized the D3Pockets web server163. This tool allows for the 

examination of pocket stability, continuity, and correlation, calculated using a set of trajectory 

points from all MD simulations. The process involves three fundamental steps: first, potential 

pockets in the various conformations within the trajectory are identified. Then, a grid of points is 

established for each detected pocket in each conformation. Lastly, the dynamic properties of the 

pocket are calculated by analyzing the frequency of a particular grid point's appearance throughout 

the MD trajectory. 

The time-resolved stability of each pocket (𝑃g) is defined by the ratio of the number of 

conformations that include the i-th grid point (n) to the total number of conformations in the 

trajectory (𝑁) for all points of the grid that make up this pocket (𝑆%), as shown by equation 12161,163. 

If 𝑚 is the number of grid points in the pocket, the stability of the pocket (𝑃g	) is defined as an 

array containing the 𝑆% ratios of all the grid points defining the pocket (equation 13). D3Pockets 

color-codes the grid points that make up a pocket, with red points indicating the most frequently 
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occurring points during the MD, and blue points indicating the least frequent. Consequently, the 

red regions of a pocket are more stable than other regions. 

𝑆% =
𝑛

𝑁
 (12) 

𝑃g = 𝑆S, 𝑆V, … , 𝑆% , … , 𝑆I  (13) 

 

Pocket correlation is determined by first clustering all potential binding pockets that appear 

in an MD trajectory, based on residues161,163. This generates sets of protein conformations 

corresponding to each cluster (𝐶%). The volume of each conformation belonging to cluster i (𝑉%) is 

then calculated. Finally, the coexistence and correlation matrices are calculated using Equations 

14 and 15.  

𝐶%,k = 𝐶% ∩ 𝐶k (14) 

𝜌%,k =
𝑐𝑜𝑣 𝑉% , 𝑉k

𝜎qr𝜎qs
 

(15) 

In these equations, 𝐶% and 𝐶k represent the conformation sets of the protein corresponding 

to the i-th and j-th cluster pockets, respectively. 𝑉% and 𝑉k denote the volume sets of the i-th and j-

th cluster pockets in the corresponding conformations. The term 𝑐𝑜𝑣 𝑉% , 𝑉k  refers to the 

covariance of 𝑉% and 𝑉k, while σ represents the variance of V. 

The correlation coefficient derived from these calculations provides insight into the 

relationship between the pockets. A positive correlation coefficient, which can reach a maximum 

of +1, indicates a positive correlation between pockets. This means that as the volume of pocket i 

increases, the volume of pocket j also increases. Conversely, a negative correlation coefficient, 

which can reach a minimum of -1, signifies a negative correlation between pockets. This implies 

that as the volume of pocket i increases, the volume of pocket j decreases. This correlation analysis, 

therefore, provides valuable insights into the interplay between different pockets during the 

dynamics of the protein. 

We used the D3Pockets software to analyze the dynamics of protein pockets in our system. 

In this analysis, we focused solely on the four unique binding pockets identified by FTMap that 

were not identified in either X-ray screen or classical MD simulations reported by Muhlethaler et 

al.106 

Upon comparing the stability of the predicted pockets in the tubulin system (Figure 136), 

it is evident that new pockets 1 and 3 are part of a larger pocket identified on the α,β-tubulin 

interface and remain stable throughout the MD simulation trajectory. New pocket 3 also exhibits 

stability throughout the trajectory, while new pocket 4 is not stable on the scale of the whole 

trajectory, and was not detected by D3Pockets. 
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Figure 136. Analysis of protein pocket stability by D3Pockets 

 

D3Pockets was also used to calculate a correlation between cryptic pockets appearing 

during the MD trajectory. D3Pockets could not distinguish new pockets 1 and 2 separately, instead, 

it perceived them as part of the large pocket on the α,β-tubulin interface. New pocket 4 was not 

detected due to, apparently, being rarely present in the trajectory in the open form. Therefore, we 

conducted this analysis solely for new pocket 3 (Figure 137). The results indicate that the size of 

new pocket 3 during tubulin dynamics has a direct correlation with the size of the taxane binding 

site (positive correlation coefficient of 0.81). 

 

Figure 137. Pocket correlation analysis highlighted positive correlation between volumes of 

pocket 4 (red) and taxane binding site (orange) 



 250 

7.8. Conclusion 

 

In this study, we performed Gaussian-accelerated molecular dynamics simulations to 

explore the dynamics of the α,β-tubulin heterodimer in an aqueous environment. Our analysis of 

the simulation trajectory revealed that tubulin is a remarkably stable protein throughout the 

simulation period. 

We utilized the FTMap computational server to identify potential binding pockets on the 

surface of tubulin. Our primary interest was in discovering pockets that have not been previously 

known to host ligands or small fragments and have not been highlighted in prior computational 

studies. This approach led to the identification of four such pockets. 

Subsequently, we employed the D3Pockets analysis tool to evaluate the stability of these 

binding pockets over the course of the simulation. Our findings indicated that while one of the 

pockets was unstable, the remaining three were stable. Interestingly, two of these three stable 

pockets form part of a larger protein-protein interface. The third pocket is a novel finding and was 

demonstrated to have a direct correlation in size with the taxane binding site. 

These newly identified pockets may present promising targets for compound screenings 

and docking studies. However, further investigation is required to fully understand these binding 

sites. Importantly, our findings underscore the value of integrating Gaussian-accelerated MD with 

classical MD and experimental work to gain a more comprehensive understanding of the system 

under study. This synergistic approach can provide deeper insights and open up new avenues for 

exploration in the field of computational chemistry and molecular dynamics simulations. Pocket 

drugability needs to be assessed for all identified pockets. 

Looking forward, we aim to further explore these novel pockets, particularly focusing on 

their potential as drug targets. We plan to conduct docking studies with a range of compounds to 

assess their binding affinities. Additionally, we intend to refine our simulation parameters to better 

capture the dynamic behavior of these pockets. Ultimately, we hope that our work will contribute 

to the development of new therapeutic strategies targeting tubulin, and underscore the importance 

of integrating different computational approaches to fully understand complex biological systems. 
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Chapter 8. Development of a graphical application for automatic analysis of microtubule 

fiber diffraction pattern images 

 

8.1. Introduction 

 

Interaction of small organic molecules with tubulin can significantly impact the physical 

characteristics of microtubules, including the microtubule diameter, the number of constituent 

protofilaments, distance between the protofilaments in a microtubule, and the average length of 

the tubulin monomers in the tubular structure164. Experimental study of such changes is important 

to elucidate mechanisms of action of microtubule-targeting agents. 

One approach to quantitatively study these changes involves shear flow X-ray microtubule 

fiber diffraction assay164,165. Fiber diffraction, a widely used technique in structural biology, is 

utilized to explore the structure of biological filaments, specifically microtubules, under 

physiological conditions without the necessity for fixation, crystallization, or freezing. The 

samples under investigation are often arranged, either naturally or artificially, in a line of 

filamentous structures exhibiting a degree of regularity, periodicity, or helical pattern. Fiber 

diffraction offers a more comprehensive structural understanding than alternative X-ray 

diffraction-based techniques, providing detailed information on the longitudinal periodicity and 

lateral spacing of molecules within an arranged filament165. 

The initial step of a microtubule fiber diffraction experiment is the alignment of the filaments 

in solution. Several methods exist for achieving this alignment, one of which is the technique of 

shear flow. This technique leverages the fluid-dynamic properties of the microtubule filaments in 

a medium stream with a certain gradient of flow velocity to a given shear. This method is not only 

cost-effective in terms of the materials required but also fast, enabling real-time experiments. It 

also allows for the simultaneous study of both physical and chemical parameters in real time as 

the shearing tool continuously mixes the specimen during ongoing data acquisition of 

diffraction165,166. 

In a typical microtubule fiber diffraction experiment, X-ray fiber diffraction images are 

captured in synchrotron radiation beamlines. The diffracted X-rays are collected by a detector, 

yielding a single diffraction image per beam exposure. Typically, 16-24 diffraction images are 

collected from 4-6 independent samples for a given experiment (Figure 138). Additionally, 

background images are obtained under the same conditions using a buffer solution. The final step 

is the spatial calibration, performed using Ag-Behenate powder diffraction, which considers an 

elastic scattering and provides the distances to the beam center of the scattering vectors’ diffraction 

intensities165,167. 
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Thus, the results of a typical microtubule fiber diffraction experiment include a file with the 

parameters of the detector, a calibration file of the Ag-Behenate powder diffraction experiment, 

the images of the buffer solution, and most importantly, the X-ray diffraction patterns obtained 

from aligned microtubules in the presence of tested microtubule-targeting agents. The first step in 

the typical analysis of the experimental results is the subtraction of buffer images to produce 

averaged experimental diffraction images167. 

 
Figure 138. Experimental setup of a microtubule fiber diffraction assay 

 
A typical X-ray microtubule diffraction pattern is shown in Figure 139. It has two regions 

of particular importance for the determination of microtubule structural parameters: the equatorial 

profile and the meridional profile. By integrating the diffraction intensities of the equatorial 

profile, it is possible to determine the average lateral microtubule structural parameters (radius, 

inter-protofilament distance, and protofilament number). The meridional intensity profile is used 

for the average axial monomer length determination167,168. 
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Figure 139. An example of a microtubule X-ray diffraction pattern 

 
The equatorial profile is a scattering pattern that mirrors what is typically seen in molecules 

with a random orientation in solution. For microtubules, the primary scattering can be 

characterized by a zero-order Bessel function, which primarily consists of four peaks that are 

related to the microtubule diameter. The initial strong peak of scattering is masked and overlaid 

with background beam noise originating from the materials of the shear-flow device. However, 

the second and third peaks serve as useful tools for estimating the average diameter of the MTs. 

Peaks that occur at scattering angles beyond the fourth peak carry additional signals that reflect 

the number of protofilaments in MTs, which can be utilized to estimate the distribution of MTs 

with varying numbers of protofilaments165,168. 

The meridional signal profile aligns with a Fourier transform of the periodic organization 

of tubulin molecules. This is characterized by a 4 nm (x) peak, equivalent to the size of the tubulin 

monomer, and additional harmonic patterns that manifest as N × 1/x, where N is an integer denoting 

the Nth-order diffraction. The variance in the intensity of each peak primarily depends on the 

helical configuration of tubulin dimers. The fourth-order signal (approximately 1 nm) typically 

exhibits the highest intensity on the meridional axis, and thus is employed to estimate the length 

of the tubulin molecules. During the analysis of the meridional profile, the meridional intensity 

profile of the 1 nm layer line peak is fitted to a Lorentzian distribution to accurately locate the 

intensity maximum. The intensities (height) of the signals offer insights into the density of the 



 254 

structural regularity and the population of aligned molecules (Figure 140). This can be leveraged 

to monitor microtubule assembly and disassembly. Therefore, given the semi-crystalline structure 

of MTs, with tubulin units stacked in a regular pattern, X-ray diffraction serves as a potent tool for 

detecting minor yet significant structural changes in tubulin following the binding of specific 

ligands164,165. 

 

 
Figure 140. Schematic summary of the analysis of diffraction patterns and information that can 

be inferred from it. Adapted from 
167

. 

 
The analysis of the images produced by shear flow X-ray microtubule fiber diffraction 

assay experiments involves image processing, numerical integration of visual data, and functional 

approximation of the integration results. Typically, this analysis has been manual and labor-

intensive, necessitating the use of multiple specialized image processing and statistical data 

processing applications. The necessity of a time-consuming analysis limited the number of 

experiments researchers could perform during very limited and expensive experimental time they 

have on the synchrotron facilities. Therefore, the aim of this project was to develop a program for 

automated analysis of microtubule fiber X-ray diffraction patterns with a user-friendly graphical 

interface that would increase the speed of the analysis and, as such, allow for more experiments to 

be done quicker, increasing the throughput of shear flow X-ray microtubule fiber diffraction 

experiments. This work was performed in fruitful collaboration with Óscar Fernandez Blanco 

under the guidance of Dr. J. F. Díaz during my industrial secondment as part of the TubInTrain 

consortium curriculum at the AnkarPharma company, part of the Spanish National Research 

Council (CSIC), Madrid, Spain. 
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8.2. Overview of the developed software 

Our efforts resulted in the creation of FiDAT (Fiber Diffraction Analysis for microTubules), 

a standalone graphical application that streamlines the three steps of experimental data analysis. It 

features a graphical interface, enhancing the throughput and adaptability of microtubule diffraction 

experiments. Developed using the Python 3.9 programming language, FiDAT’s graphical interface 

is built with the Tkinter Python library, enhanced by the CustomTkInter Python package. Its image 

plotting functionality is based on matplotlib, while numerical integration and curve fitting were 

implemented using the pyFAI and scipy Python packages. Due to this, the application is fully 

cross-platform. It does not require any experience with programming to be installed or operated. 

It also doesn’t require previous experience with analyzing fiber diffraction experiments results, 

since most of the steps have been completely automated. At the same time, advanced users can 

refine the results by changing the fully customizable settings. 

 
8.3. Input images preprocessing 

To start the analysis of experimental results with FiDAT, the user first needs to select a 

directory on their local machine where the results of the analysis will be stored (Figure 141). If a 

user wants to store the results of multiple analyses in the same directory, there is an option to 

provide a unique prefix that would be used to identify the files related to a particular analysis. 

Next, the user can define the values of a normalization factor and buffer intensity. Both values 

are used to adjust the range of pixel intensity values in sample and buffer images, respectively. 

This is useful in cases where an image has poor contrast. A default value of 1.0 is usually enough 

for most applications. 

Then, the user is required to provide a list of buffer images. These experimental images do 

not contain any diffraction pattern. They are used to subtract the buffer and background noise from 

the sample images in a subsequent step to enhance the signal-to-noise ratio. When loading a list 

of images, the user has an option to preview the images and choose which they would like to use 

for the analysis, and which they would like to discard (Figure 142). The same process is repeated 

for the sample images. 

Finally, the user is asked to provide a point of normal incidence file, which contains a 6-

parameter geometry definition from the synchrotron detector. This file is used to define the 

position of the beam relative to the image. 

Once all files are loaded, the user can pre-process the images by pressing the “Prepare data” 

button (Figure 141). With this, the mean intensity value for each pixel across a given list of sample 

and buffer images is computed, thereby generating an averaged image representation that will be 

used for subsequent analysis. 
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Figure 141. First screen of the FiDAT application 

 

Figure 142. The user can pre-view selected buffer and sample images 
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8.4. Two-dimensional integration 

Once an average image of the sample is produced, the user can perform a two-dimensional 

integration (also known as azimuthal regrouping) of this image. This is done to convert the 2D 

scattering pattern into a 2D image where the x-axis is the scattering angle, and the y-axis is the 

azimuthal angle. Each pixel in this image represents the integrated intensity over a small range of 

scattering angles and azimuthal angles. This is useful for visualizing the symmetry and orientation 

of the scattering pattern. The user can configure the parameters of the integration (Figure 143), or 

use default parameter values. In any case, after pressing the “Run 2D integration” button, the user 

obtains the required regrouped plot (Figure 144). The “Minimum” and “Maximum” input fields 

are used to control the contrast of the resulting image. 

 

Figure 143. The user can configure the parameters of azimuthal regrouping 
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Figure 144. Result of the azimuthal regrouping 

8.5. One-dimensional integration 

 

The regrouped image is used in the second step, where the user selects an azimuthal angle 

range for one-dimensional integration using an interactive slider or an input field (Figure 145). 

This is done to transform the 2D diffraction pattern into a 1D plot of intensity versus scattering 

angle. This is achieved by averaging the intensity of pixels that are at the same distance from the 

center of the diffraction pattern, thus regrouping them into bins according to their radial distance, 

or azimuth, to simplify the analysis and interpretation of the diffraction data. The 2D diffraction 

pattern contains a wealth of information about the structure of the sample, but it can be challenging 

to interpret due to its complexity. By transforming it into a 1D plot, one can more easily identify 

and analyze the peaks of intensity, which correspond to specific structural features of the sample. 

The selection of the azimuthal angle that will be used for 1D integration thus defines the axes of 

the equatorial and meridional profiles (Figure 146). There are two possible equatorial profiles, EP1 

and EP2, referring to the left and right halves of the equatorial profile with respect to the beam 

position (see Figure 139 for reference). 
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Figure 145. Selection of the azimuthal angle for 1D integration 

 

Figure 146. Selected azimuthal angle influences the selection of the axes for equatorial (EP1, 

EP2) and meridional (MP) profiles for subsequent analysis 
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8.6. Integration data analysis 

 

Then, one dimensional integration is performed along the EP1, EP2, and MP axes specified 

on the previous step. What results from this are simple plots that are easy to analyze visually 

(Figure 147). It is useful to see whether the integration parameters used on the two previous steps 

were appropriate. However, to extract the structural parameters of microtubules from these data, 

a function fitting procedure is required.  

 

Figure 147. One-dimensional plots useful for the analysis of the integration results 

The analysis of the meridional profile involves fitting a Lorentzian function to the 

meridional profile data (Figure 148). This is done to extract the value of the single tubulin 

monomer subunit length in Angstroms (see Figure 140). A Lorentzian function is defined by 

equation 16, where x is the input data, y0 is the base level, a is the amplitude, x0 is the center, and 

b is the width of the Lorentzian peak.  

𝑓 𝑥 = 𝑦v +
𝑎

1 +	
𝑥 − 𝑥v
𝑏

E
 

(16) 

 

The curve fitting is done using the Levenberg-Marquardt algorithm implemented in the 

scipy library. The function finds the optimal parameters that minimize the residual sum of squares 

between the target outputs and the outputs predicted by the Lorentzian function. The R2 coefficient 

of determination metric is used as a quality of fit. Finally, after the best parameters have been 
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found, the average tubulin monomer length is calculated using equation 17, where x0 is the center 

of the Lorentzian peak. The factor of 4 comes from the fact that the scattering vector is 4 times the 

reciprocal of the monomer length167. 

𝐴𝑣𝑔𝑀𝑜𝑛𝐿𝑒𝑛𝑔𝑡ℎ =
2𝜋

𝑥v
×4 (17) 

 

Figure 148. Results of the Lorentzian function fitting of a meridional profile plot data 

 

 The analysis of the equatorial profile involves fitting a Bessel function to the equatorial 

profile data (Figure 149). This is done to extract the value of luminal radius of the microtubule 

and investigate the protofilament composition of the microtubule (see Figure 140). The 

microtubule diffraction pattern comprises of several layer lines (𝑙) each defined by a group of 

Bessel functions of order n. Their structural factor 𝐹C,� in the reciprocal space (R) is described by 

equation 18, where 𝐽� is the Bessel function of the n-th order, 𝑟I is the radius of a microtubule 

made of m protofilaments, and 𝑓(𝑅) is the structural factor defined by equation 19, where 𝑟t is the 

radius of the tubulin monomer considered as a sphere, with a value of 2.48 nm. This expression is 

used to include the structural factor of the tubulin wall in the calculation.  

𝐹C,� 𝑅 = 𝐽� 2𝜋𝑟I𝑅 𝑓 𝑅  (18) 

 

𝑓 𝑅 = 4𝜋𝑟K
W
sin 2𝜋𝑟I𝑅 cos 2𝜋𝑟I𝑅

2𝜋𝑟I𝑅
W

 
(19) 
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The Bessel functions are then weighted to model the scattering intensity from microtubules 

with different numbers of protofilaments. The weights (PN10, PN11, PN12, PN13, PN14, PN15) 

represent the relative proportions of microtubules with 10, 11, 12, 13, 14, and 15 protofilaments, 

respectively. By adjusting these weights, the model can better fit the experimental data. The 

weighting ensures that the model accurately reflects the physical properties of the system and can 

be defined as equation 20, where PNi is the absolute ratio of i number of protofilaments.  

𝑓(𝑥) =
𝑃𝑁%

𝑃𝑁k
S�

kfSv

⋅ 𝑓(𝑥′)

S�

%fSv

 
(20) 

 

Consequently,  𝑓(𝑥′)  is defined by equation 21, where Amp is the amplitude of the 

function, An is the numerical aperture, 𝑟I	is the microtubule radius, and n is the order of the Bessel 

function.  

 

𝑓(𝑥′) = 𝐴𝑚𝑝(𝐽v(𝑥 ⋅ 𝑟I) ⋅ 𝐹(𝑈))
V + 𝐴𝑛(𝐽�(𝑥 ⋅ 𝑟I) ⋅ 𝐹(𝑈))

V (21) 

 

The curve fitting is done using the Trust Region Reflective algorithm implemented in the 

scipy package. The function finds the optimal parameters that minimize the residual sum of 

squares between the observed outputs in the dataset, and the outputs predicted by the mixture of 

weighted Bessel functions.  

Finally, the interprotofilament distance (IPFD) is calculated as defined by equation 22, 

where AvgN is the average number of protofilaments and 𝑟I is the microtubule radius. 

𝐼𝑃𝐹𝐷 = 2sin	(
𝜋

𝐴𝑣𝑔𝑁
) ⋅ 𝑟I (22) 
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Figure 149. Results of a Bessel function fitting to the equatorial profile data 

 Having derived all the required microtubule parameters by fitting both Lorentzian and 

Bessel functions to the data obtained from one-dimensional integration of the azimuthal regrouped 

plot, the user can save a report as a Microsoft Office Word document with all the plots and 

parameters produced during data processing and function fitting. Additionally, raw data is saved 

for each plot, should a user decide to build the plots in other software. 

 

8.7. Conclusion and perspectives 

 

In conclusion, we have successfully developed FiDAT, a tool that facilitates the process of 

analysing the results of microtubule fiber diffraction experiments. This tool is designed to be user-

friendly, requires no prior expertise, and significantly accelerates the throughput of these 

experiments. FiDAT is equipped to handle all stages of fiber diffraction experiment results 

analysis, making it a comprehensive solution for researchers in this field. 

The software comes with pre-configured default parameters, ensuring reliable data processing 

and model fitting right out of the box. However, we have also catered to the needs of experienced 

users by providing the flexibility to customize the parameters for each step of the analysis. 

The effectiveness of FiDAT has been validated by our colleagues from the TubInTrain 

consortium, led by Dr. J.F. Díaz at CSIC, Madrid, Spain. They successfully applied FiDAT to 

samples obtained during the research time at the Alba synchrotron in Barcelona, Spain, in June 
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2022. The efficiency of FiDAT’s automated analysis process not only facilitated the execution of 

additional experiments but also empowered researchers to swiftly incorporate emerging ideas into 

their experimental design. This real-time adaptability has enabled on-the-spot decision-making 

and immediate verification of hypotheses, eliminating the need for time-consuming and labor-

intensive manual analysis. 

Looking ahead, we plan to further enhance FiDAT by resolving minor bugs related to image 

plotting and incorporating additional logging features, as suggested by our colleagues. These 

improvements aim to further streamline data reporting and enhance the user experience. 

In our commitment to fostering open science, we also plan to release FiDAT as an open-source 

software, thereby making this powerful tool accessible to the wider scientific community. 

Furthermore, the management of the Alba synchrotron in Barcelona, Spain, has shown 

considerable interest in integrating FiDAT into their mainframe. Once the planned enhancements 

are implemented, FiDAT will be made available as a default tool for all researchers at the 

synchrotron, further solidifying its role as an indispensable asset in microtubule fiber diffraction 

experiments. 
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General conclusion and perspectives 

 

The present Ph.D. thesis titled "Computer-aided design of tubulin polymerization 

modulators" employed computational chemistry techniques to discover novel small molecule 

agents targeting underexplored binding sites on tubulin. By targeting these binding sites, we 

aspired to develop novel modulators of tubulin polymerization with diverse structure and mode of 

action, what has implications for cancer- and neurodegeneration-related research. We used virtual 

screening methodologies applied to a selection of drug-like, commercially available, and in-house 

developed chemical libraries. Through substructure and similarity search, pharmacophore 

screening, and different protein-ligand docking strategies, we were able to successfully identify 

small molecules of diverse chemical structure that bind to several sites on the tubulin protein. 

Additionally, we employed novel deep learning techniques to develop a computational pipeline 

for de novo design of small molecule tubulin polymerization modulators. Given the large size of 

the studied protein system, we performed accelerated molecular dynamics simulations to uncover 

potential cryptic binding pockets on the surface of the tubulin protein. Finally, we developed a 

software with a graphical user interface that facilitates the analysis of microtubule fiber diffraction 

experiments results.  

In chapter 2 of this work, our goal was to discover novel microtubule-targeting agents that 

bind to the maytansine binding site of the tubulin protein. The motivation behind this was the 

complexity and high-cost associated with the synthesis of currently known macrocyclic binders 

for the maytansine site. To achieve this, we performed virtual screening of two resources: the 

ChEMBL database, which consists of drug-like compounds with known bioactivity properties, 

and a library of commercially available compounds provided by the Enamine company. This 

process led to the identification of six potential hits in the ChEMBL database, which were listed 

as cytotoxic compounds, although the origin of their cytotoxic effect remained unknown. We 

proposed a hypothesis that this cytotoxicity might be due to binding at the maytansine site, given 

the observed fit of these molecules with the pharmacophore model of a crystallographically 

confirmed binder. Notably, one of these hits is a natural product – a class of compounds with a 

rich history of acting as tubulin-targeting agents – thereby justifying its further synthesis and 

analysis. The screening of the commercially available compounds yielded a set of chemically 

diverse candidates that could potentially bind to the maytansine site. These were later subjected to 

experimental validation. Of the 11 molecules proposed, 2 were found to inhibit microtubule 

polymerization, as confirmed by the microtubule polymerization bioassay. These findings lay a 

robust groundwork for future development and computer-aided structural optimization of the 

identified scaffolds, driving the research toward potential maytansine site binders. 
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In chapter 3 of this work, our goal was to discover novel microtubule-targeting agents that 

bind to the pironetin binding site of the tubulin protein. The motivation behind this was the 

complexity and high-cost associated with the synthesis of the single currently known ligand that 

binds to the prionetin binding site. To this end, we performed virtual screening of several libraries 

of commercially available compounds provided by the Enamine company. We also implemented 

a machine learning-driven protein-ligand docking protocol, which allowed us to screen the largest 

Enamine library with protein-ligand docking. Combined, the screening of different libraries led to 

the identification of 47 virtual hits, which were subjected to experimental validation. Three small 

fragments were found to have significant inhibitory effect on microtubule polymerization, as 

confirmed by the microtubule polymerization bioassay. Additionally, two ligands were found to 

bind not at the pironetin, but at the colchicine binding site. One of the compounds had significant 

inhibitory effect on microtubule polymerization, with some experiments highlighting its 

specificity towards a βIII-tubulin isotype, especially relevant in cancer research. Thus, future work 

would see the further optimization of this hit molecule's structure to ensure even higher isotype 

specificity, as it would have a large impact on cancer research and could be developed into a 

therapeutic agent. The exploration of the pironetin binding site should continue as well by 

accounting for high flexibility of the binding site. 

In chapter 4 of the present thesis, our goal was to develop novel molecules that target the 

recently discovered todalam binding site of the tubulin protein. We were motivated to explore this 

binding site because it was targeted by structurally simpler, rationally designed ligands, and 

contained a cysteine residue in proximity to the ligand binding pocket, which could be used to 

potentially design covalent ligands targeting this binding site, which has implications in molecular 

probe design. The virtual screening effort with subsequent experimental validation has been 

successful in identifying a novel set of chemically diverse compounds that bind to the todalam site 

on the tubulin protein. Out of 18 proposed molecules, 5 were confirmed to bind to the todalam site 

by X-ray crystallography. Interestingly, 3 other molecules were found to exert substantial 

inhibitory effects on microtubule polymerization, despite not being detected in the binding site. 

These results led to the discovery of five unique scaffolds capable of targeting the todalam site. 

These scaffolds were then developed into covalent binders, employing computer-aided design 

strategies. Our research efforts led to the design of 30 potential covalent binders for the todalam 

site. Of these, 8 were confirmed to bind to the site through X-ray crystallography experiments, 

albeit without forming a covalent bond with the targeted cysteine residue. Additionally, we 

observed that 3 molecules caused an inhibitory effect on microtubule polymerization, even though 

they were not detected in the binding site. The todalam site binders that we have discovered 

represent a significant advancement in our understanding of tubulin’s biochemistry and set the 
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stage for the development of more potent and selective binders. This breakthrough opens up 

exciting avenues for future research, with potential implications for drug discovery and the 

treatment of diseases related to microtubule function. 

In chapter 5 of the present work, we aimed to apply the inverse QSAR methodology to the 

task of de novo design of novel, structurally diverse small molecules targeting the colchicine 

binding site. Many inhibitors targeting the colchicine site have been developed from representative 

and commonly used scaffolds, limiting structural innovation and constraining exploration of the 

chemical space. We aspired that de novo drug design using inverse QSAR could help circumvent 

these issues. To this end, we have first trained and validated an attention-based conditional 

variational autoencoder neural network model using unlabeled molecular data from the ChEMBL 

database. This model made it possible to sample SMILES strings of compounds corresponding to 

a user-defined point in a latent descriptor space. Next, we trained and validated a QSAR model on 

the HeLa cells cytotoxicity data collected for small molecules designed to target the colchicine 

binding site. Using this model, we screened a library of structurally diverse commercially available 

compounds from the Enamine company. Molecular descriptors of purchasable molecules with the 

highest predicted cytotoxic action were used as seed vectors for de novo generation using the 

trained autoencoder model. This was done to ensure that the chosen seed points actually 

correspond to chemical structures with pharmacology-compliant physicochemical properties. The 

generated molecules were then docked into the colchicine binding site, and top-20 molecules were 

selected by docking score. From these molecules, none were readily-available for purchase. 

However, for 4 of them, close structural analogues were found in catalogues of purchasable 

compounds. Additional cytotoxicity prediction and protein-ligand docking of these molecules 

have confirmed their high potential activity. These molecules were purchased and evaluated by X-

ray crystallography. Unfortunately, none of the compounds were detected in the colchicine binding 

site. In vitro studies of these molecules’ effect on microtubule polymerization are currently being 

performed. Despite the experimental validation of the generated compounds has presented some 

challenges, the comprehensive approach used in this study shows great promise for future research 

in drug discovery.  This work exemplifies the potential of combining inverse QSAR modelling 

and experimental approaches to accelerate the discovery of novel therapeutic compounds. Future 

work would include different strategies of selecting the seed vectors for compound generation.  

Chapter 6 of the present thesis is dedicated to exploring the utility of molecular 

representations learned in an unsupervised way in QSAR modeling. Specifically, we investigated 

the concept of transfer learning that has seen broad applications in the fields of computer vision 

and natural language processing, and sought to apply it to molecular structures. We conducted a 

comparative analysis of the predictive performance between a state-of-the-art support vector 
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machine model with evolutionarily optimized hyperparameters and descriptor sets, and a multi-

layer perceptron model using learned molecular representations. The molecular representations 

were derived from a state-of-the-art graph neural network. Further, we compared the performance 

of evolutionarily optimized support vector machine models trained on extensively engineered 

descriptors, unsupervisedly learned molecular representations, and molecular representations fine-

tuned for a specific downstream task. The results illustrated that unsupervisedly learned molecular 

representations yielded models with comparable performance to those trained on tailored 

descriptors. Fine-tuning these representations slightly improved the predictive performance, 

although the extent of this increase may be related to the specific downstream task. Thus, our 

findings highlight that molecular representations derived from large data corpus are highly 

effective as is. Future work will involve comparing different methods for learning these 

representations. In particular, we are interested in using a SMILES-based state-of-the-art neural 

network for learning these representations. 

Chapter 7 of the present work is concerned with characterization and analysis of 

conformational dynamics of the tubulin protein in solution that may lead to the emergence of 

cryptic binding pockets. To efficiently sample tubulin’s conformational dynamics, we employed 

the Gaussian-accelerated molecular dynamics simulation method. This method consists in adding 

a harmonic boost potential to smoothen the potential energy surface of the modelled system and 

decrease the energy barriers to accelerate the transitions between different low-energy states. The 

setup involved simulating an α,β-tubulin heterodimer in water. The simulation was separately 

performed three times starting from the same initial coordinates of the modelled system, exploring 

distinct sections of the conformational space. The resulting concatenated trajectory was then 

subjected to clustering analysis to include all the accessible states. The clustering has identified 15 

distinct conformations of the α,β-tubulin heterodimer. The distinct conformations were then 

subjected to hotspot analysis by distributing small organic probes over the protein surface. The 

identified pockets were compared to the results of a previously published comprehensive analysis 

of the binding pockets of the tubulin protein, to highlight only those that have not been detected 

previously. As a result, we were able to discover four cryptic binding pockets. Additional analysis 

of the pocket dynamics has shown that from these four, only one is a distinct pocket that is stable 

during the simulation time and has a correlation with the taxane binding site. Future directions of 

work thus include a more detailed investigation of the size, shape, and electrostatic properties of 

the found pocket. Another promising direction involves conducting virtual screening campaigns 

to identify potential ligands for the newly discovered pocket. The selected hits can then be 

experimentally validated, potentially leading to the discovery of novel tubulin-targeting agents. 

Additionally, the application of machine learning techniques could prove beneficial in predicting 



 269 

other cryptic pockets in the tubulin protein or in other related proteins. Given the success of 

machine learning in other areas of study, its application in the detection and analysis of cryptic 

pockets is certainly an exciting prospect. 

Finally, chapter 8 of this thesis describes the development of FiDAT, a comprehensive and 

user-friendly software tool designed to streamline and expedite the process of analyzing the results 

of microtubule fiber diffraction experiments. FiDAT is capable of handling all stages of fiber 

diffraction experiment results analysis, with pre-configured default parameters for immediate use 

and customizable options for experienced users. The software’s effectiveness has been validated 

by our colleagues from the TubInTrain consortium, who applied it to analyze experimental results 

obtained during their time at a synchrotron facility, demonstrating its ability to facilitate real-time 

decision-making and hypothesis testing. Future directions of work include enhancing FiDAT by 

resolving minor bugs and incorporating additional logging features to further streamline data 

reporting. We are also committed to releasing FiDAT as an open-source software, making this 

powerful tool accessible to the wider scientific community. Furthermore, we are in discussions 

with the management of the Alba synchrotron to integrate FiDAT into their mainframe, making it 

a default tool for all researchers at the synchrotron. 

The computational ligand- and structure-based approaches used in the different studies for 

the exploration of new scaffolds and hit compounds that bind to the well-known and underexplored 

tubulin binding sites alike yielded numerous hits that were experimentally validated. In this work, 

we used state-of-the-art approaches such as efficient substructure and similarity search, automated 

pharmacophore modeling and screening, binding site similarity search, unconstrained protein-

ligand docking, covalent protein-ligand docking, machine learning-driven protein-ligand docking, 

accelerated molecular dynamics simulations, deep learning-based de novo molecular design to 

identify potential tubulin-targeting agents. The study involved multiple iterations of design, 

testing, and optimization of various compounds, which ultimately provided novel insights into 

different binding sites on the α,β-tubulin heterodimer, offering promising avenues for further 

investigation. 

The discovery of novel potential compounds for immobilizing tubulin and the design of 

molecular probes for studying microtubule dynamics are significant advancements with far-

reaching therapeutic implications. These achievements could catalyze the development of 

innovative drugs that specifically target tubulin and modulate its polymerization, thus providing 

improved treatment strategies for diseases such as cancer and neurodegenerative disorders. Future 

research can focus on further optimization of compounds identified in this study to enhance their 

binding efficiency and specificity to different tubulin isotypes. Further in vivo testing could assess 

their efficacy and safety profiles, which are essential steps in the drug development process. 
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This Ph.D. thesis is a testament to the power of interdisciplinary collaboration, as 

evidenced by the successful integration of various areas of expertise within the TubInTrain team. 

The consortium’s multifaceted approach encompassed the design of chemical scaffolds with 

target-oriented and customized biochemical properties. Computational chemistry served as a 

critical pillar in this endeavor, underpinning the design and optimization of chemical compounds. 

It guided the organic synthesis efforts and set the stage for X-ray crystallography, biochemical, 

and cellular experiments. TubInTrain’s interdisciplinary approach has effectively established a 

new benchmark for future microtubule research. It underscores the value of cross-disciplinary 

cooperation, bringing together professionals in computational chemistry, organic chemistry, 

biochemistry, and structural biology. This thesis offers a compelling demonstration of how such 

collaboration can surmount challenges more efficiently and drive successful molecular design 

strategies. In essence, the combined efforts of these diverse fields enable a holistic, integrative 

approach to MT research, paving the way for future advancements. 
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List of abbreviations 

ACO Ant Colony Optimization 

ACoVAE Attention-Based Conditional Variational Autoencoder 

ADC Antibody-Drug Conjugate 

BA Balanced Accuracy 

CADD Computer-Aided Drug Design 

ChemPLP Chemical Piecewise Linear Potential 

CIB  Center For Biological Research (Centro De Investigaciones Biológicas) 

CPU Central Processing Unit 

CSIC Spanish National Research Council  

(Consejo Superior De Investigaciones Científicas) 

CUDA Compute Unified Device Architecture 

CVAE Conditional Variational Autoencoder 

DNA Deoxyribonucleic Acid 

DS  Descriptor Set 

EWG Electron-Withdrawing Group 

FDA Food And Drug Administration 

γ-TuRC γ-Tubulin Ring Complex 

GDP Guanosine Diphosphate 

GPU Graphics Processing Unit 

GROVER Graph Representation From Self-supervised Message Passing Transformer 

GTP Guanosine Triphosphate 

GUI Graphical User Interface 

HTS High-Throughput Screening 

IC50  Half-Maximal Inhibitory Concentration 

ISIDA In Silico Design And Data Analysis 

ITN International Training Network 

MAP Microtubule-Associated Protein 

MCTS Monte-Carlo Tree Search 

MD Molecular Dynamics 

MDA Microtubule-Destabilizing Agents 

MMFF Merck Molecular Force Field 

MSA Microtubule-Stabilizing Agents 

MT  Microtubule 

MTA Microtubule-Targeting Agents 
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MTOC  Microtubule-Organizing Center 

NP Natural Product 

PCA Principal Component Analysis 

PCM  Pericentriolar Material 

PDB Protein Data Bank 

PDBQT  Protein Data Bank, Partial Charge And Atom Type 

PLANTS Protein-Ligand Ant System 

QSAR Quantitative Structure-Activity Relationship 

RAM Random-Access Memory 

RCSB Research Collaboratory For Structural Bioinformatics 

RMSD Root Mean Square Deviation 

RMSF Root Mean Square Fluctuation 

SDF Structure-Data File 

SMARTS SMILES Arbitrary Target Specification 

SMILES Simplified Molecular Input Line Entry System 

SPORES Structure Protonation And Recognition System 

SVM Support Vector Machine 

USPTO United States Patent And Trademark Office 

VAE Variational Autoencoder 

VS Virtual Screening 
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Maxim SHEVELEV 

 

Conception assistée par ordinateur des modulateurs de 
polymérisation de la tubuline 

Résumé 

La protéine tubuline, cruciale pour la division cellulaire et le transport intracellulaire, est une cible 
clé dans la recherche sur le cancer et la neurodégénérescence. Les difficultés de synthèse et les 
propriétés pharmacologiques médiocres des agents existants ciblant la tubuline nécessitent de 
nouvelles découvertes. L'objectif de cette thèse était d'utiliser la conception de médicaments 
assistée par ordinateur pour identifier de nouvelles molécules qui ciblent des sites de liaison moins 
explorés et qui sont plus accessibles. La thèse a ciblé les sites peu étudiés de la maytansine, de la 
pironétine et du todalam avec des approches de criblage virtuel basées sur les ligands et la 
structure, et a conçu de nouvelles molécules pour le site de la colchicine en utilisant des 
technologies avancées d'apprentissage profond. La recherche a permis d'obtenir un total de 28 
agents déstabilisateurs de microtubules nouveaux et structurellement diversifiés, ciblant les sites 
todalam, maytansine et colchicine. En outre, un logiciel d'analyse automatisée des images de 
microscope provenant d'expériences de diffraction de fibres de microtubules a été développé. 
 
Mots clés : criblage virtuel, apprentissage profond, les agents antitubulines 

 

Résumé en anglais 

The tubulin protein, crucial for cell division and intracellular transport, is a key target in cancer and 
neurodegeneration research. Synthetic challenges and poor pharmacological properties of existing 
tubulin-targeting agents necessitate new discoveries. The goal of this thesis was to use computer-
aided drug design to identify novel molecules that target less explored binding sites and are more 
synthetically accessible. The thesis targeted the understudied maytansine, pironetin, and todalam 
sites with ligand- and structure-based virtual screening approaches, and designed new molecules 
for the colchicine site using advanced deep learning technologies. The research yielded a total of 
twenty-eight structurally diverse and novel microtubule-destabilizing agents targeting the todalam, 
maytansine, and colchicine sites. Moreover, a software for automated analysis of microscope 
images from microtubule fiber diffraction experiments was developed. 
 
Keywords: virtual screening, deep learning, microtubule-targeting agents 

 




