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Abstract

Plankton organisms are a key component of the biosphere: they are at the base of marine food
webs and are important contributors to biogeochemical cycles, notably of carbon, nitrogen and
oxygen. Indeed, phytoplankton captures carbon dioxide from the atmosphere and produces
dioxygen; zooplankton contributes to aggregate and export this carbon at depth, where it is se-
questered for hundreds of years. This so-called ‘biological carbon pump’ is studied by ecologists
to estimate its efficiency nowadays and in the future, in response to climate change. A modern
approach consists in studying how the environment is linked with the functioning of ecosystems
through ‘traits’ (i.e., individual characteristics) of organisms. For example, a high correlation
has been observed between the size distribution of zooplankters and the carbon sequestration
efficiency. In situ imaging instruments and large image databases have been built for plankton,
allowing taxonomic classification of organisms and quantification of the total volume of each
group based on their morphology. The development of automated classification methods has
been essential to help ecologists process data. Among them, Artificial Neural Networks (ANNs)
have proven to be efficient and accurate, but their decisions are often hard to interpret. On one
hand, in this thesis, we put forward the idea that following the transform-then-classify-simply
approach of ANNs using a simple, explicit, transform can result in a classifier whose predictions
are both interpretable (thus, trustable) and accurate. The proposed transform is defined as a
linear combination of per-class targets, and the classification is performed, like with ANNs, by a
nearest-target decision. Furthermore, as a main theoretical result, we establish that the proposed
transform with equidistant targets defines a kernel associated with the Weigthed-k-Nearest-
Neighbor (W-kNN) classifier, and allows interpreting the W-kNN classifier as a member of a
larger family of target-based classifiers, which satisfies an optimality criterion. We propose a
modern W-kNN implementation of high enough computational efficiency to deal with large
datasets, like the ones collected every day by plankton imaging instruments. We were therefore
able to perform a leave-one-out cross-validation on large plankton images datasets. On another
hand, we tackle the correction of the estimation of copepods volume from two-dimensional in
situ images. Copepods are the most abundant zooplankton group and represent a significant
share of the biomass of animals on Earth. The standard volume estimation methods are biased
due to the effect of the projection onto the image plane. Two such methods exist: based on
the Equivalent Spherical Diameter (ESD) and based on extending the best-fitting ellipse to 3D.
We present a procedure for correcting the total volume estimations of both methods for this
zooplankton group. First, the projection of the body of the copepod is robustly extracted. Second,
we note that the exact projection of an ellipsoidal body model onto the image plane is an ellipse.
Therefore, based on the simulation of many realistic ellipsoids (relying on shape distributions
established from manual size measurements on a dataset) and their projections from random
point of views, we can compute a total volume correction factor for each standard method.
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vi Abstract

As opposed to a new volume estimation method from the images, the proposed correction
factors allow improving the estimations of past studies, while being applicable to future studies
as well. To validate the proposed method, we applied it to a database of 150,000 images of
copepods captured by the UVP, and found that the corrections decreased the gap between the
two standard methods by a factor of 50. The correction factors indicated that the ESD method
tends to over-estimate the total volume by around 20% and the ellipse method under-estimates
it by around 10%.

Keywords: kernel, nearest-neighbours, classification, plankton, zooplankton, bio-volume,
copepod, image, in situ



Résumé en français

Les organismes qui composent le plancton sont des éléments essentiels de la biosphère : à la
base de la chaine alimentaire marine, ils sont au cœur des cycles biogéochimiques, notamment
du carbone, de l’azote et de l’oxygène. En effet, le phytoplancton capte le dioxyde de carbone
de l’atmosphère et produit du dioxygène ; le zooplancton contribue à exporter ce carbone en
profondeur. Les écologues étudient cette « pompe à carbone biologique », afin d’évaluer son
efficacité actuelle et future face changement climatique. Une approche moderne consiste à
étudier la manière dont l’environnement est lié au fonctionnement des écosystèmes par le biais
des « traits » (caractéristiques individuelles) des organismes. Une corrélation importante a
été observée entre la distribution des tailles des zooplanctons et l’efficacité de la séquestration
du carbone. Des instruments d’imagerie in situ et de grands jeux de données d’images ont
été mis en œuvre pour le plancton, permettant la classification taxonomique des organismes
et la quantification du volume total par groupe. Le développement de méthodes de classific-
ation automatisée a été essentiel pour l’assistance au traitement des données. À ce titre, les
Réseaux de Neurones Artificiels (RNAs) se sont avérés très utiles et précis, mais leurs décisions
sont souvent difficiles à interpréter. Dans un premier temps, nous montrons que l’approche
transformation-puis-classification-simple des RNAs avec une transformation simple et explicite,
conduit à une méthode de classification dont les prédictions sont interprétables (donc fiables)
et précises. La transformation proposée est définie comme une combinaison linéaire de cibles
par classe. Ensuite, la classification est effectuée, comme avec les RNAs, en prenant la cible la
plus proche. Notre résultat principal démontre que, pour des cibles équidistantes, cette trans-
formation définit un noyau associé au classifieur des k-plus-Proches-Voisins-Pondérés (kPPP).
Ceci permet d’interpréter les kPPP comme un membre d’une famille plus large de classifieurs
utilisant des cibles. Nous proposons une implémentation moderne des kPPP suffisamment
efficace pour traiter de grands ensembles de données, tels que ceux collectés chaque jour par
les instruments d’imagerie du plancton. Nous avons ainsi effectué une validation croisée avec
l’omission d’un échantillon sur de grands jeux de données d’images de plancton. Dans un
second temps, nous étudions l’estimation du volume des copépodes à partir d’images bidi-
mensionnelles in situ. Les copépodes constituent le groupe zooplanctonique le plus abondant.
Les deux méthodes standards d’estimation du volume sont biaisées en raison de l’effet de la
projection sur le plan de l’image. L’une utilise le Diamètre Équivalent Sphérique (DES) et l’autre,
l’ajustement d’une ellipse. Nous présentons une procédure pour corriger les estimations de
volume total des deux méthodes pour ce groupe. La projection du corps du copépode seulement
est extraite. Nous observons en outre que la projection exacte d’une ellipsoïde sur le plan est
une ellipse. Par conséquent, à partir de la simulation de nombreuses ellipsoïdes réalistes (grâce
à des mesures de taille manuelles) et de leurs projections selon une orientation aléatoire, nous
calculons un facteur de correction du volume total par méthode. Contrairement à une nouvelle
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viii Résumé

méthode d’estimation, les corrections proposées permettent d’améliorer les estimations des
études passées, tout en étant applicables aux prochaines. À titre de validation, nous appliquons
la procédure de correction aux estimations du volume total de 150 000 copépodes à partir
d’images prises par un instrument in situ. Les facteurs corrections permettent de réduire l’écart
entre les deux estimations d’un facteur 50, et indiquent que la méthode DES tend à surestimer
le volume total d’environ 20 % et que celle utilisant l’ellipse tend à le sous-estimer d’environ 10 %.

Mots clés : noyau, plus-proches-voisins, classification, plancton, zooplancton, bio-volume,
copépode, image, in situ
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Chapter 1

Introduction

Key points – Plankton is crucial in the biosphere and automated processing methods for
plankton imaging system are essential to address marine ecology issues

1. Plankton organisms are very diverse.

2. They strongly contribute to Large scale biogeochemical fluxes.

3. Recent in situ imaging systems are efficient for the study of plankton.

4. There is a need for automatic methods to process the large amounts of data they generate.
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Chapter 1 – Introduction:
1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
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1.1 Definitions

Let us start with some useful definitions for the reading of this manuscript.

Plankton: Living organisms drifting with the current

Phytoplankton: Vegetal plankton

Zooplankton: Animal plankton

Meso-plankton: Plankton between ∼ 200 µm and ∼ 2 mm

Copepod: Small crustaceans, dominant group in the meso-plankton

Taxonomy: Hierarchical classification in groups

Taxon: Taxonomic group (plural taxa)

Oceanography: Study of the oceans

Marine Ecology: Ecology of the marine systems

Biogeochemistry: Study of the biological, physical, geological and chemical processes

in situ : in the environment

ex situ : out of the environment

PgC: Petagram Carbon (1015 gC)

1.2 Context

1.2.1 Plankton Ecology

Plankton consists of all aquatic living organisms that drift with the currents (in both marine and
fresh waters). It forms an extremely diverse community [de Vargas et al., 2015], the size spectrum
it covers is very wide (ranging from 10-8 m to 1 m, see fig. 1.1), and its members are keystone
components of Earth’s biosphere. First, photosynthetic plankton is responsible for about half
of the fixation of carbon dioxide from the atmosphere and therefore produces an equally large
amount of dioxygen [Behrenfeld et al., 2001]. It is therefore an important contributor to the
regulation of climate [Volk and Hoffert, 1985]. Second, plankton is also a critical component of
many marine food webs: it directly supports some of the largest fisheries on earth, off the coast
of Chile for example [Thiel et al., 2007], and some emblematic species such as corals. Finally,
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because plankton simply drifts, it cannot escape the conditions of the water mass it is embedded
in. This makes planktonic organisms very sensitive to environmental change. Therefore, the
contribution of plankton to the important processes described above will be influenced by the
changes in Earth’s climate [Hays et al., 2005].

Figure 1.1 Size range of plankton organisms, represented with their Equivalent Spherical Diameter (ESD).
Figure inspired from Lombard et al. [2019]; Sunagawa et al. [2020]. In lexicographic order virus, bacteria,
nano-plankton, micro-plankton, meso-plankton, macro-plankton and mega-plankton. The dotted line
shows the ZooScan imaging range (see section 4.2.1), the dashed-dotted line shows the same for the UVP5
camera (see section 4.3). Those are two popular imaging instruments.

Ecology aims at studying living organisms and the interactions among themselves and
with the environment. One usual first step to achieve this is the taxonomic classification of
organisms. Then, relationships among these taxonomic groups and with their environment
help to understand the functioning of ecosystems, including the transfer of energy from a
community to another, the biomass, and the biogeochemical cycles (e.g., carbon, nitrogen). While
the taxonomic classification of living beings is essential in ecology, a new approach has recently
emerged that focuses on the ‘functional traits’ of organisms and their interactions with their
environment. Functional traits are characteristics that describe an organism’s (or a community)
ability to grow, survive, and reproduce, e.g., size and lipid reserves both influence all these
three processes [Martini et al., 2021]. Functional approach is a complementary way to describe
ecosystems and study the distribution of organisms, compare to the taxonomic one. Still, it
is often challenging to measure functional traits accurately, especially in a generic way across
taxa (see Orenstein et al. [2022] for a study on trait estimation from plankton images). Crossing
approaches (taxonomic and functional) open the path to a new area in ecology, that is expected
to produce efficient results in the near future [Martini et al., 2021]. As an overview, let us say that
the ultimate goal in plankton ecology would be to have high resolution distribution of planktonic
traits through space and time for each taxonomic group. Hence, the interactions of plankton
organisms with their environment could be investigated.
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1.2.2 Biogeochemical fluxes at the ocean surface

Global scale biogeochemical fluxes contribute to climate regulation. They are due to physical,
geological, chemical and biological processes. In the oceans, the biological part is driven by the
photosynthesis of phytoplankton that occurs at the surface. Carbon dioxide is seized from the
atmosphere and dioxygen is released. Zooplankton participates in aggregating and exporting
this carbon into the depths. During their life, the organisms accumulate the carbon in the
phytoplankton by eating them; then, they produce fecal pellets that sink and when they die, their
carcasses also sink (both contain carbon). The carbon is sequestered for hundreds to thousands
of years. This cascade phenomenon generates a carbon flux from the atmosphere to the ocean
floor; it defines the so-called ‘biological carbon pump’ [Longhurst and Glen Harrison, 1989]. The
pump is represented in the figure 1.2, together with the carbon flux in the ocean (in cyan).
Multiple approaches tackle the quantification of its efficiency [Buitenhuis et al., 2013; Moriarty
and O’Brien, 2013]. As an indication, an estimation [Le Quéré et al., 2015] is 2.4 billion tonnes of
carbon per year (computed for the last decade). In this thesis, we focus on its relationship with
the size of the zooplankton organisms.

Figure 1.2 Schematic representation of the biological carbon pump. Figure inspired from the Kaggle
competition ‘National Data Science Bowl’ 1

A high correlation has been observed between the meso-plankton biomass (organisms
between ∼ 200 µm and ∼ 2 mm in size, see fig. 1.1 and section 1.1) and the intensity of the biolo-
gical carbon flux, particularly in the surface, mixed layer [Buitenhuis et al., 2006]. The biomass of
plankton is proportional to their volume through a density, that depends on the taxon. A general
way of describing the relationship between plankton organisms and the biological carbon pump,
is to say that plankton biomass distribution (in space) and, by extension, biovolume distribution,
can be considered as a proxy to investigate carbon absorption in the ocean. Hence, producing
accurate distribution of the volume of zooplankton organisms is an essential step toward the
understanding of global biogeochemical fluxes. Such estimates, have been easier to achieve by

1https://www.kaggle.com/c/datasciencebowl

https://www.kaggle.com/c/datasciencebowl
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the development of new in situ imaging instruments in recent years (see section 1.3.1 for details
and [Lombard et al., 2019] for a review).

From the databases, total volume estimations can be computed as the sum of the individual
volumes estimated from the 2-d in situ images. A common method for estimating the volume
from a 2-d image is to make the use of the Equivalent Spherical Diameter (ESD) of the object.
This method will be detailed in section 5.4.2, but let us already mention that it relies on the
surface area of the object and, most important, that it is biased when the object is not spherical
(which is often the case for plankton organisms). A comprehensive study of the total biomass
of mesozooplankton through volume measurements from 2-d in situ images, with inference to
global scale, can be found in Drago et al. [2022].

1.3 Images of plankton

1.3.1 EcoTaxa: processing millions of plankton images

Key imagery instruments used nowadays are, the Imaging FlowCytobot (IFCB) [Sosik and Olson,
2007] (<10 to 150 µm), the Underwater Vision Profiler (UVP) [Picheral et al., 2010, 2022] (see
section 4.3, 100 µm to 1 cm), the ZooScan [Gorsky et al., 2010; Grosjean et al., 2004] (> 200µm
) and the Video Plankton Recorder [Benfield et al., 1996]. Large scale marine campaigns of
in situ observations together with imaging systems in lab have produced (continue and will
continue to produce) considerable amount of images. For example, the Underwater Vision
Profiler 5 (UVP5) has been deployed in over 9,000 locations, through ∼150 cruises, organized
by ∼ 15 countries [Kiko et al., 2022]. These data feed the EcoTaxa2 [Picheral et al., 2017] web
platform on a continuous basis, which has been developed specifically for this purpose. Today, it
contains more than 250 million of images from around the world and thus, provides access to
a wide range of data sets, essential for addressing marine environmental issues. Examples of
plankton ZooScan images extracted from EcoTaxa are given in fig. 1.3.

1.3.2 Classifying plankton images

A challenging real-world case study

The classification of plankton images, manually or automatically, is challenging. There are
several reasons for this; we list a few here : (i) multiple instruments are needed to cover the size
spectrum of several orders of magnitude (see fig. 1.1) and each produces images with different
characteristics, (ii) the morphology and the opacity of organisms are very diverse (e.g., see
fig. 1.3 for the zooplankton) and last but not least, (iii) the distribution of the organisms per
taxonomic class is highly imbalanced. In view of the volume of data, the need for automation of
data processing is obvious. In a comprehensive review on automated techniques for plankton
images, Irisson et al. [2022] gives precise motivations (e.g., 2 million new objects per year for the
ZooScan). In recent years, several methods have been explored by the scientific community to
deal with this new, complex, real application of automated image classification. In this section,
we present a state of the art in plankton image classification. The purpose is to give a rough
idea of the existing methods, that we distinguish mainly between those based on handcrafted
features (section 1.3.2) and those based on Convolutional Neural Networks (CNNs) (section 1.3.2).
Diverse methods are used in the literature, depending on the data at hand and the scientific
goal. Let us remark that we focus our review on supervised methods (i.e., classification among
defined classes) since ecologists are generally interested in the taxonomic distribution of the

2https://ecotaxa.obs-vlfr.fr/

https://ecotaxa.obs-vlfr.fr/
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Figure 1.3 Images of plankton from the ZoosScan instrument (see section 4.2.1) provided by EcoTaxa. There
are 34 taxonomic groups represented (2 images per group). The scale is the same for all organisms, i.e., the
relative size is real. The purpose of this image is to expose the diversity of planktonic organisms (in size,
morphology, opacity, complexity). Note, that non-plankton objects such as algae, bubbles, dead insects are
also considered, mainly represented on the bottom right of the figure.
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samples, even for trait-based approaches. Moreover, there exists different taxa with similar
morphologies that need to be distinguished and only supervised methods can achieve that.
Nevertheless, unsupervised methods can be useful for exploring unknown data (i.e., when
there are no particular expectations) or detecting new classes. For this purpose, unsupervised
approaches combined with manual refinement have proven to be efficient (e.g., see Schröder
et al. [2020]).

Classification with handcrafted features

Defining a coherent distance between images is extremely challenging. Known distances (e.g., Eu-
clidean, Mahalanobis) are not meant to compare complex structures encoded into images. Instead
of designing methods that rely on the (very) high dimensional image space (e.g., number of
pixels of the image for a 2-d image), the standard methods for classifying images consist of
extracting summary features from the image as a first step, to then classify the samples in the
lower dimensional feature space. In particular, for plankton, the standard is to work with one
image per organism (using segmentation methods), on a homogenous background. Therefore,
the features are expected to describe the object of interest. It is clear that the extraction of the
features is essential and, somehow, subjective. Some basic features are: the size of the object
in the image and the moments of the pixel intensity of the image (e.g., mean, variance). Large
improvements have been reached with Scale Invariant Feature Transform (known as SIFT) [Lowe,
1999] and, then, Bag of Words [Lazebnik et al., 2006; Saluja et al., 2022]. For plankton images, one
can note the usage of co-occurrences matrices [Davis et al., 1979; Hu and Davis, 2005; Sosik and
Olson, 2007].

With these image features, machine learning classification methods aim at classifying samples
of unknown labels according to samples of known labels. Our classification framework is
introduced in section 2.1. Here we focus on referencing the methods for plankton images. The
first published study on plankton images that make the use of machine learning is Schlimpert
et al. [1980], for microscopy imagery. Already in the late 90s, some automated classification
techniques achieved human-level accuracy [Culverhouse et al., 1996; Tang et al., 1998]3 Then,
two sets of studies have had a particularly strong impact on the field, as evidenced by their high
citation counts. The first one is based on the ZooScan instrument and the Zooprocess software
[Gorsky et al., 2010; Grosjean et al., 2004], that are still in use today. The authors proposed a
pipeline for imaging zooplankton, extracting features and finally classifying samples. They
investigated multiples classification methods and obtained interesting performances (∼75% for
a few classes) with a Random Forest (RF) algorithm [Breiman, 2001]. The extracted features are
mainly based on geometric descriptors and image moments; the updated list of them is given in
appendix B, latter used in chapter 4. Second, the work of Sosik and Olson [2007] presented a
comparable study for the IFCB instrument and investigates more feature extraction methods.
This time, a Support Vector Machine (SVM) [Cortes and Vapnik, 1995] was used to achieve
high accuracy. The work of Benfield et al. [2007] gives an overview of the State-Of-The-Art in
plankton image classification at that time. The conclusion is that good accuracies (i.e., 70-80%)
are achieved for samples distributed into 10 to 20 classes. Since then, most of the works based on
handcrafted features attempts to apply such classification methods in ecological studies.

A main conclusion (that also holds for the next section section 1.3.2) of a recent review
[Irisson et al., 2022] is that understanding the actual State-Of-The-Art in real-world plankton
image automatic classification is difficult. This is mainly due to (i) the lack of reference data

3The former use a multilayer perceptron, but is referenced here since it does not make use of convolutional layers.
Still, it is interesting to note that one of the first impressive results was produced by Artificial Neural Networks (ANNs).
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sets to compare different methods consistently and (ii) the evolution of the complexity of the
classification task (mainly the number of classes) with the progression of the classifiers over time.

Convolutional Neural Networks: breakthroughs & limitations

As for many image applications domains, the introduction of CNNs revolutionized the field
[Rawat and Wang, 2017; Krizhevsky et al., 2017, 2012]. For plankton images, it crystallized around
the National Data Science Bowl Kaggle competition in 20154. Since then, multiples works were
based on CNNs. The major contribution of the CNN framework is that it offers the possibility to
optimize the features’ extraction together with the classification. While it is largely accepted, this
last statement is not completely accurate. As we will see in chapter 2, the CNN optimization
for classification is actually a regression. Nevertheless, it is an alternative to the manual and
subjective definition of handcrafted features, and has proven to be very useful for multiple image
classification applications. For plankton images, it brings classification performance further,
by discriminating finer taxonomic groups (up to more than 100 classes, e.g., Luo et al. [2018]).
An interesting, unexpected point is that patterns caught by CNNs methods seem to be similar
among various type of image data sets. Indeed, CNNs that have been optimized on large and
diverse enough data sets can produce relevant features for other applications than the one they
were trained for. This is known as ‘transfer learning’ [Weiss et al., 2016]. Note, it is also often used
for initiating the optimization of a specific classification task, which is then referenced as ‘fine
tuning’. A comprehensive study that shows the interest of transfer learning for plankton image
applications is Orenstein and Beijbom [2017].

As mentioned above, the improvements made by ANNs methods are huge. However,
they also have drawbacks. Indeed, our understanding of such networks remains poor. It has
often been said that ANNs are ‘black-boxes’ and, even with the developments of remarkable
work on the interpretation of such models by the scientific community (see Kutyniok [2022]),
the previous affirmation remains true. More precisely, ANNs excels at differentiating high-
dimensional samples (e.g., images) from different classes, but we are still unable to explain
why. Misunderstanding their functioning can lead to unexpected, problematic situations. A
well-known case is that of adversarial attacks, which cause drastic changes in performance by
adding a simple and imperceptible (at least to humans) change to the input. The absence of a
comprehensible framework is confusing. Ecologists, among others, need reliable, efficient, and
trustable models to produce replicable studies. Today, in the case of real-world applications, the
confidence in the results of ANN is based on the subjective and incomplete tests carried out by
the user, which, by construction, do to cover all cases. The existence of strong theoretical results
on ANNs is missing. It would add a new dimension to the confidence placed in these impressive
methods and provide insights for new outcomes. As an illustration, two improvements that
would be significant are (i) the understanding of the generalization error5 (e.g., determination of
a bound) and (ii) the proof of convergence to a global minimum of the network optimization6. To
conclude, there is a lack of theoretical foundations for ANNs, compared to ‘standard’ approaches
[Vapnik, 1999] and, in practice, this can mean a lack of confidence or a misunderstanding of the
results. To go a step further, the preprint Kutyniok [2022] addresses those questioning in detail.

4https://kaggle.com/c/datasciencebowl
5i.e., the expected error on unknown data, see details in section 2.1.2
6see Chizat and Bach [2018] for the convergence of a one-hidden layer ANN

https://kaggle.com/c/datasciencebowl
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1.4 Contributions

The development of modern machine learning and image processing methods is essential
to meet the challenges of marine ecology. In this context, the aim of this manuscript is to
present the research work done during this thesis, which address both machine learning and
plankton ecology questioning, with 2-d images as a common denominator. The contributions are
distinguished into two main parts. In the first one, we establish a result related to the standard
Nearest-Neighbour (NN) classification and apply the resulting method to the classification of
2-d plankton images. More precisely, in chapter 2, we define a sample transformation based on
class targets, for the classification. We study the influence of the targets positions and demonstrate
the equivalence to the Weigthed-Nearest-Neighbours (WNN) classifier for a specific choice of
targets. In this case, we define a kernel associated to WNN with the transformation. We propose
a modern implementation (with fast Leave-One-Out Cross-Validation (CVLOO) predictions) of
the resulting WNN classifier in chapter 3. We conclude this part with chapter 4, by showing that
the implementation can handle large data sets and help to produce reliable results for real-world
application such as 2-d plankton images. In a second part, focusing on the most abundant
taxonomic group, namely, the copepods; we tackle the estimations of the total biovolume of
copepods from 2-d in situ images in chapter 5. First, in chapter 6 we propose an image processing
procedure to extract the body of the copepods, which more appropriate to estimate the volume.
Second, in chapter 7) we highlight the biases of the standard methods due to the projection of
the organisms onto the image plane. With the help of a geometrical modelling, we define a
simulation pipeline for correcting the total copepods’ volume estimates. Finally, in chapter 8 we
apply the correction to a real data set of 2-d in situ copepods images. In chapter 9 we give an
additional application with the simulator. We end this manuscript with a general conclusion.
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A Nearest-Neighbours Kernel for
Classification: a case study of Plankton

Images
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Chapter 2

A Kernel Associated to the Nearest-Neighbours

Key points – Proposition of a classifier based on a supervised transformation

1. ANNs transform samples to a target space. The classification is done by the nearest-target
classifier.

2. We propose a supervised classification method that relies on a non-linear transformation
guided by the targets and the nearest-target classifier.

Contributions – Characterization of the proposed classifier

3. Definition of the nearest-target classifier and the proposed transformation to target space.

4. Study of the influence of targets positions for two and more classes

5. Conjecture on optimal targets for more than two classes

6. Demonstration of the equivalence to a weighted-k-nearest-neighbour classifier for equidistant
targets.

7. Definition of a kernel associated to the weighted-k-nearest-neighbour classifier.

13
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2.1 Reminders on supervised classification

2.1.1 Empirical Risk Minimization

Supervised classification aims at finding a classification function (or simply a classifier) that associ-
ates a label y ∈ Y among p pre-defined labels (Y = {1 · · · p}) to a sample x ∈ X ⊂ Rd, based on
a set of pairs of samples and their associated labels, i.e., a data set S = {(x1, y1) . . . (xn, yn)} (see
an example in fig. 2.1). The observations {xi, yi}n

i=1 are drawn from the underlying, unknown,
distribution P(x, y). More precisely, we consider a class of functions f ∈ F , F the space of
functions considered. For the supervised classification, the reference point is the Bayes classifier,
defined as

f Bayes(x) = arg max
k∈{1···p}

P(y = k|x). (2.1)

This optimal classifier can not be used in practice since it relies on the unknown class distributions
P(x|y = k). Instead, other classification functions have been proposed. In order to evaluate
them, we need to introduce a measure of quality. Let us consider the misclassification loss
function

l( f (·), y) =

{
0, if f (·) = y
1, otherwise

, (2.2)

and the associated risk

R( f ) =
ˆ
X×Y

l( f (x), y)dP(x, y). (2.3)
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Figure 2.1 Illustration of the distributions P(x|y = 1) and P(x|y = 2) for a binary classification setting in
one dimension. The blue squares and red circles are examples of samples.

Then, the learning process consists of solving

inf
f∈F

R( f ), (2.4)

that is, searching for the function f that minimize the risk.
However, in practice, the evaluation of the risk is not possible (recall P(x, y) is unknown).

Instead, let us we define the (computable) empirical risk

Remp( f ) =
1
n

n

∑
i=1

l( f (xi), yi). (2.5)

This time, the goal is to find the optimal function f that minimize the empirical risk, which
defines the Empirical Risk Minimization (ERM) principle

min
f∈F

Remp( f ). (2.6)

that gives the relative number of misclassified samples among all the data set.
In practice, the accuracy (ACC) is the metric generally used to judge the classification per-

formances and is directly linked to the empirical classification risk by

ACC = 1 −Rclf
emp (2.7)

2.1.2 Evaluating the generalization performances

Assessing whether a classifier will be accurate on new data cannot rely on the minimization of
the empirical. Indeed, the overall goal is to be able to classify samples unseen during training,
meaning to minimize the error of generalization, that is not accessible. Instead, a common
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approach is to derive statistical bounds on the deviation of the empirical risk (eq. (2.5)) from
the risk (eq. (2.3)), as a function of the number of samples n. It is clear that lower deviations
are preferable to expect better generalization performances. Such bounds are referenced for
standards classification methods such as SVM [Vapnik, 1999] or Weigthed-Nearest-Neighbours
(WNN) [Samworth, 2012].

In practice, with the data at hand, one uses Cross-Validation (CV) techniques [Stone, 1974],
to evaluate the generalization performances of a given method. One approach (probably the
most used) consists of dividing the data set into k subsets, learning from k − 1 subsets and
testing on the remaining subset to estimate a generalization error, then averaging the k errors
obtained when dealing with each of the possible learning/testing splits. This procedure is called
the k-fold CV. Classifiers usually depend on parameters that are optimized with a grid search
for parameter combinations (say m feasible combinations). The overall optimal parameters
are the ones that minimize the generalization error. This last can be done with CV. Then, for
each fold, the empirical risk is estimated m times. Except for classifiers that do not require
optimization during learning (e.g., k-Nearest-Neighbours (k-NN) [Cover and Hart, 1967]), the
overall evaluation can be time-consuming, specially for large values of k and/or m. On the other
hand, considering many folds reflects better the underlying generalization performances, since
the learning rounds rely on more data [Elisseeff et al., 2003]. In particular, the limit case k = n is
called the Leave-One-Out Cross-Validation (CVLOO). An illustration is given in fig. 2.2 for n = 4.

Figure 2.2 Scheme view of the CVLOO principle for n = 4. The red squares represent the training samples
for the classifier f {−i} and the blue square represent the test sample. The accuracy is computed for each of
the four predictions, and the final score is taken as the mean.

2.2 Motivations

The model proposed in this chapter rely on one key observation about ANNs. Here, we present
the functioning of such classification methods. The simpler ANN is the Perceptron [Mcculloch
and Pitts, 1943], a linear, binary classifier. For classes y ∈ {0, 1}, it is defined as

f P(x) = H(w · x + b) =
{

1 if ∑d
i wixi + b > 0

0 otherwise
, (2.8)

where H is the Heaviside function, the wis are the weights and b is the bias, that are the parameters
of the model (to optimize). The resulting model is an optimal parametric transformation, which
perform dimension reduction. The key observation is: the classification decision of a perceptron is a
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simple threshold on a transformation of the input sample (w · x + b here). This means there are two
stages in estimating the label of a sample. First, it is transformed from the input space to a target
space. Two, the classification is given by a simple threshold, in this target space.

The extension to the multi-class ANNs is done by defining p targets, one per class. Then, the
classification is defined as the Nearest Target (see section 2.3.1 for a definition), which predict
the sample label as the one of the nearest target in the target space (that includes the previous
binary case). In practice, for the ANNs, the targets are typically defined as the canonical basis
of Rp. This can be motivated by the use of loss functions coming from the probability theory,
such as the cross-entropy. Nevertheless, to the best of our knowledge, there is no other objective
motivation. The ANN approach to classification (among which the popular CNNs) can be seen
as a transform-then-classify-simply procedure.

While the behaviour of ANNs is not easy to understand (see section 1.3.2), the idea of
transforming samples around targets to then classify them easily is interesting to investigate1.

2.3 Proposed Classifier

2.3.1 Definition

The proposed classifier relies on some vectors, called targets, associated with each class. To
classify a sample, it is transformed into a target-compatible vector. This transformed sample is
then compared with the class targets in order to take the classification decision.

Let us recall that the learning samples are distinct vectors xi, i ∈ [1..n], of Rd, distributed
among p classes.

Definition 2.1. Proposed Classifier. We define targets as distinct vectors Tk, k ∈ [1..p], of Re where
Tk represents class k. The target associated with the learning sample xi is ti = Tk if xi belongs to class k.
For any x ∈ Rd, the proposed classifier is defined as

k̂(x) = arg min
k∈[1..p]

|u(x)− Tk|2 (2.9)

where the so-called transformed sample u(x) is defined as

u(x) =
n

∑
i=1

ws
i (x)ti (2.10)

and ws
i (x), i ∈ [1..n], are some positive weights such that

n

∑
i=1

ws
i (x) = 1. (2.11)

These weights are detailed in definition 2.2.

Definition 2.2. Proposed Weights. For two samples x and y of Rd, the weighting function is defined as

wγ(x, y) = wrad
γ (|x − y|) = γwrad(γ|x − y|), (2.12)

where γ is a positive constant, and wrad is, on R+, continuous, finite, positive (thus it has an infinite
support), monotonically decreasing, and has a limit of zero at infinity.

1Note the similitude with the kernel trick, largely used with SVMs (but without targets).
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Then, for j ∈ [1..n], we choose
ws

j (x) = α(x)wγj(x, xj), (2.13)

where α(x) is such that eq. (2.11) is true and γj is a positive constant tuning locally the weighting
function ‘width’. Note that eq. (2.11) has a sense only if the weights are not all equal to zero. This is
guaranteed since wrad has an infinite support. So finally,

ws
j (x) =

wrad(γj|x − xj|)
∑n

i=1 wrad(γi|x − xi|)
. (2.14)

2.3.2 Additional Notations

Sample-to-class function: c

• Learning sample class index: ci = c(xi).

• Class indicator matrix:
C = [ep

c1 ep
c2 · · · ep

cn ], (2.15)

where ep
i is the ith element of the canonical basis in Rp.

Targets

• Target set: {T1, . . . , Tp}.

• Target vector:

U = [U⊤
1 U⊤

2 · · ·U⊤
e ]⊤ (2.16)

where [U1U2 · · ·Ue] = [T1T2 · · · Tp]
⊤. (2.17)

Weights

• Per-learning-sample weight: ws
j (i) = ws

j (xi).

• Per-sample weight matrix (not symmetric in general):

Ωs = [ws
j (i), (i, j) ∈ [1..n]2]. (2.18)

• Per-class weight: for a sample x and k ∈ [1..p],

wc
k(x) = ∑

i
ti=Tk

ws
i (x). (2.19)

• Per-class weight of learning samples: wc
k(i) = wc

k(xi).

• Per-class weight matrix:

Ωc = [wc
k(i), (i, k) ∈ [1..n]×[1..p]] = CΩs. (2.20)

Transformed learning sample: ui = u(xi).

As a convention, indices i and j are used for learning samples and indices k, l, and m are used
for classes. Other, general notations used here are defined in appendix A.1.



2.3 Proposed Classifier 19

2.3.3 Properties

Property. For finite γj, j ∈ [1..n], and for all x ∈ Rd, the weight ws
j (x) belongs to the interval ]0, 1[. At

infinity, we focus on the case γj = γ ∀ j, and we have{
limγ→+∞ ws

j (j) = 1
limγ→+∞ ws

j (i) = 0 ∀ i ∈ [1..n], i ̸= j
. (2.21)

Proof. For finite γj, the property follows from the positivity of wrad and the constraint (2.11).
At infinity, we have

(2.14) ⇔ ws
j (x) =

1

1 + ∑n
i=1
i ̸=j

wrad(γ|x−xi |)
wrad(γ|x−xj |)

. (2.22)

Then, it can be checked that eq. (2.21) is true.

Property. For finite γj, j ∈ [1..n], the situation

∀(k, i) ∈ [1..p]×[1..n],
{

wc
k(i) = 1 if ti = Tk

wc
k(i) = 0 if ti ̸= Tk

(2.23)

cannot happen.

Proof. The situation (2.23) means that, for a learning sample xi which belongs to the class k, ‘all
the weight’ is put on the samples of that class, disregarding the samples of the other classes.
Since the weighting function wrad has an infinite support, it cannot happen.

For the sake of curiosity, let us check the case of weighting functions with a bounded support
and all γj, j ∈ [1..n], equal to a unique value γ. The situation (2.23) can only happen if the
learning samples are well separated by class. More precisely, if wγ has a bounded support with
radius ρ, then we must have that any two learning samples from different classes be at least at a
distance ρ from each other.

Property. It can be checked that ∑
p
k=1 wc

k(x) = 1 for all x.

Property. The transformed sample (2.10) can be rewritten as follows

u(x) =
p

∑
k=1

wc
k(x)Tk. (2.24)

Proof. From eq. (2.10), we have

u(x) =
p

∑
k=1

∑
i

ti=Tk

ws
i (x)ti =

p

∑
k=1

∑
i

ti=Tk

ws
i (x)Tk. (2.25)

Claim 1. If the targets are chosen to be the canonical basis ep
i , i ∈ [1..p], of Rp, then the proposed

classifier (see definition 2.1) is a weighted nearest-neighbour (WNN) classifier.
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Proof. For all x ∈ Rd and all k ∈ [1..p], if Tk = ep
k , we have

|u(x)− Tk|2 =
∣∣∣ n

∑
i=1

ws
i (x)ti − ep

k

∣∣∣2 (2.26)

=
∣∣∣ p

∑
l=1

wc
l (x)ep

l − ep
k

∣∣∣2 (2.27)

=
∣∣∣Vecp

l=1(w
c
l (x))− ep

k

∣∣∣2 (2.28)

= ∑
l

l ̸=k

(wc
l (x))2 + (wc

k(x)− 1)2 (2.29)

=
p

∑
l=1

(wc
l (x))2 − (wc

k(x))2 + (wc
k(x)− 1)2 (2.30)

=
p

∑
l=1

(wc
l (x))2 + 1 − 2wc

k(x). (2.31)

Then,

k̂(x) = arg min
k∈[1..p]

|u(x)− Tk|2 (2.32)

= arg max
k∈[1..p]

wc
k(x), (2.33)

which effectively amounts to selecting the class whose learning samples accumulate the highest
x-related weight.

Claim 2. Nearest-Neighbour Kernel The kernel defined by the dot product of two transformed samples
u(x) and u(x′) with the canonical basis ep

i , i ∈ [1..p], of Rp as targets is called the kernel associated to
the Nearest-Neighbours

KNN(x, x′) = ⟨u(x), u(x′)⟩, (2.34)

where u(x) = ∑
p
l=1 wc

l (x)ep
l is the transformation associated to the weighted nearest-neighbour classifier

(see Claim 1). For brevity, we refer to it as a ‘Nearest-Neighbours kernel’.

In the following, we will give elements allowing to conjecture that the canonical basis of Rp

is an optimal target choice in some sense. An actual proof is left for future research.

2.4 Influence of Target Positions

2.4.1 Problem Statement

To study the influence of the target positions on the performances of the proposed classifier, it
suffices to fix all the targets, then randomly select one target, say Tm, move it, and study the
influence of this change on classification. If there is an influence, then it can be concluded that the
classification performances depend on the target positions. If not, then the two configurations,
before and after moving Tm, are equivalent. Any two target configurations can then be linked
together through such elementary ‘jumps’ between equivalent configurations, which makes them
equivalent. It can therefore be concluded that the classification performances do not depend on
the target positions.
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The class k̂(x) (k̂ for simplicity here) assigned to a sample x by the proposed classifier is such
that

∀l ̸= k̂, |u(x)− Tk̂|
2 < |u(x)− Tl |2.2 (2.35)

The displacement of Tm can be modeled as

T′
m = MTm, M ∈ Re×e. (2.36)

For convenience, we define T′
l for all l where T′

l = Tl for l ̸= m. Let u′ denote the sample
transform defined using T′

m in place of Tm. Then,

u′(x) = ∑
i

ti ̸=Tm

ws
i (x)ti + ∑

i
ti=Tm

ws
i (x)MTm

+ ∑
i

ti=Tm

ws
i (x)Tm − ∑

i
ti=Tm

ws
i (x)Tm

(2.37)

= u(x) + wc
m(x)(M − Ie)Tm (2.38)

= u(x) + Um(x). (2.39)

The classification of x is not influenced by the displacement of Tm if the condition (2.35) still
holds after displacement, that is

∀l ̸= k̂, |u′(x)− T′
k̂|

2 < |u′(x)− T′
l |

2. (2.40)

Claim 3. The positions of the targets have no influence on the classification performances in the two-class
case. On the contrary, they may have an influence when there are three classes or more.

Proof. For two classes, sections 2.4.3 and 2.4.4 show that inequality (2.40) holds for any target
displacement matrix M. For three classes or more, sections 2.4.2 to 2.4.4 show that some choices
of M can break inequality (2.40).

2.4.2 Case 1/3: k̂ ̸= m and l ̸= m (applies only for p ≥ 3)

Claim 4. Inequality (2.40) can be broken by writing the target displacement matrix M as αN, where α is
a positive constant, and letting α grow arbitrarily large.

Proof. In this case, T′
k̂
= Tk̂ and T′

l = Tl . Then,

(2.40) ⇔ |u′(x)− Tk̂|
2 < |u′(x)− Tl |2 (2.41)

⇔ |u(x) + Um(x)− Tk̂|
2 < |u′(x)− Tl |2 (2.42)

⇔ |u(x)− Tk̂|
2 + |Um(x)|2 + 2⟨Um(x), u(x)− Tk̂⟩

< |u′(x)− Tl |2
(2.43)

⇔ |u(x)− Tk̂|
2 + 2⟨Um(x), u(x)− Tk̂⟩

< |u(x)− Tl |2 + 2⟨Um(x), u(x)− Tl⟩
(2.44)

⇔ |u(x)− Tl |2 > |u(x)− Tk̂|
2

+2wc
m(x)⟨(M − Ie)Tm, Tl − Tk̂⟩.

(2.45)

2Let us ignore equidistance.
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The sign of the inner product in eq. (2.45) depends on the relative positions of Tl , Tk̂, and
(M − Ie)Tm. If it is negative or equal to zero, then the inequality always holds. Otherwise, let
us remind that wc

m(x) is never equal to zero for a finite value of γi, i ∈ [1..n]. Let us write M
as αN, where α is a positive constant. Then, the right-hand side term of eq. (2.45) can be made
arbitrarily large by increasing α, which will eventually break the inequality.

2.4.3 Case 2/3: k̂ = m (consequently, l ̸= m)

Claim 5. With three classes or more, inequality (2.40) can be broken by choosing the target displacement
matrix M such that

MTm = Tm +
Tl − u(x)

wc
m(x)

. (2.46)

Proof. In this case, T′
k̂
= MTm and T′

l = Tl . Then,

(2.40) ⇔ |u(x)− Tl |2 > |u(x)− MTm|2

+2wc
m(x)⟨(M − Ie)Tm, Tl − MTm⟩.

(2.47)

We also have

|u(x)− MTm|2 = |u(x)− Tl − (MTm − Tl)|2 (2.48)

= |u(x)− Tl |2 + |MTm − Tl |2

−2⟨u(x)− Tl , MTm − Tl⟩
(2.49)

= |u(x)− Tl |2

+⟨MTm − Tl , MTm − Tl − 2(u(x)− Tl)⟩
(2.50)

= |u(x)− Tl |2

+⟨MTm − Tl , MTm + Tl − 2u(x)⟩
(2.51)

So

(2.47) ⇔ ⟨MTm − Tl , MTm + Tl − 2u(x)⟩
−2wc

m(x)⟨(M − Ie)Tm, MTm − Tl⟩ < 0

(2.52)

⇔ ⟨MTm − Tl , [(1 − 2wc
m(x))M + 2wc

m(x)Ie]Tm

+Tl − 2u(x)⟩ < 0.

(2.53)

If we choose the target displacement M such that

MTm = Tm +
Tl − u(x)

wc
m(x)

, (2.54)

then one can check that the inner product in eq. (2.53) is equal to |MTm − Tl |2, which breaks the
inequality.

Note that this target displacement cannot be used when there are only two classes. Indeed
(let us set l = 1 and m = 2),

MT2 = T2 +
T1 − u(x)

wc
2(x)

(2.55)

= T2 +
T1 − wc

1(x)T1 − wc
2(x)T2

wc
2(x)

(2.56)

= T2 +
(1 − wc

1(x))T1 − wc
2(x)T2

wc
2(x)

= T1, (2.57)
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thus moving the target onto the other one (which of course is illegal). See Claim 6 for the two-class
case.

Claim 6. With two classes, inequality (2.40) holds for any target displacement matrix M for samples
belonging to the class of the displaced target (k̂ = m).

Proof. Let us set l = 1 and m = 2. Then,

(2.53) ⇔ ⟨MT2 − T1, [(1 − 2wc
2(x))M + 2wc

2(x)Ie]T2

+T1 − 2wc
1(x)T1 − 2wc

2(x)T2⟩ < 0

(2.58)

⇔ ⟨MT2 − T1, (1 − 2wc
2(x))MT2

+(1 − 2wc
1(x))T1⟩ < 0

(2.59)

⇔ (1 − 2wc
2(x))|MT2 − T1|2 < 0. (2.60)

Since the sample x belongs to class 2, then wc
2(x) > 1/2, and therefore 1 − 2wc

2(x) < 0. So
eq. (2.60) indeed holds for any M.

2.4.4 Case 3/3: l = m (consequently, k̂ ̸= m)

Claim 7. With three classes or more, inequality (2.40) can be broken by choosing the target displacement
matrix M such that

MTm = −Tm −
Tk̂ − u(x)

wc
m(x)

. (2.61)

Proof. In this case, T′
k̂
= Tk̂ and T′

l = MTm. Then,

(2.40) ⇔ |u(x)− MTm|2 > |u(x)− Tk̂|
2

+2wc
m(x)⟨(M − Ie)Tm, MTm − Tk̂⟩

(2.62)

⇔ ⟨MTm − Tk̂, MTm + Tk̂ − 2u(x)⟩ >
2wc

m(x)⟨(M − Ie)Tm, MTm − Tk̂⟩
(2.63)

⇔ ⟨MTm − Tk̂, MTm + Tk̂ − 2u(x)

−2wc
m(x)(M − Ie)Tm⟩ > 0

(2.64)

⇔ ⟨MTm − Tk̂, [(1 − 2wc
m(x))M

+2wc
m(x)Ie]Tm + Tk̂ − 2u(x)⟩ > 0.

(2.65)

Equation (2.65) is similar to eq. (2.53). Therefore, for three classes or more, we can find a
displacement of the target Tm similar to eq. (2.54) which breaks inequality (2.65), namely

MTm = −Tm −
Tk̂ − u(x)

wc
m(x)

. (2.66)

See Claim 8 for the two-class case.

Claim 8. With two classes, inequality (2.40) holds for any target displacement matrix M for samples not
belonging to the class of the displaced target (k̂ ̸= m).

Proof. Let us set k̂ = 1 and m = 2. Similarly to the developments made in section 2.4.3, we have

(2.65) ⇔ (1 − 2wc
2(x))|MT2 − T1|2 > 0. (2.67)

Since the sample x belongs to class 1, then wc
2(x) < 1/2, and therefore 1 − 2wc

2(x) > 0. So
eq. (2.67) indeed holds for any M.
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2.5 Optimal Targets for 3 Classes or More

2.5.1 Variational Formulation

Looking for optimal targets could be done by minimizing the empirical risk, which is a complex
task in a multi-class context Zhang [2004]. A simpler approach is to instead minimize a cost
function comparing ui with ti, i ∈ [1..n], similar to a regression loss, but with the Tk’s, k ∈ [1..p],
as unknowns as opposed to some parameters that would define ui while using fixed Tk’s. We
propose to use definition 2.3.

Definition 2.3. Cost function. We define the cost function F as

F(T1, . . . , Tp) =
n

∑
i=1

|ui − ti|2. (2.68)

The intuition behind definition 2.3 is that targets producing a low value of F should also
ensure good classification performances. Note that, as already mentioned, minimizing a regres-
sion loss in hope that it would work for classification is also the principle of classification neural
network optimization. If regarding the optimization problem as dealing with some parameters
and the targets altogether, the difference is that, here, the parameters are predefined and fixed
while, with neural networks, it is the case of the targets.

Since ui is a weighted sum of the targets, a trivial way to reach the lowest possible value of
F is to set all the targets at the origin. Hence, to find useful targets, some constraints must be
added. One way is to impose a lower bound on the distance between any two targets

∀k < l, |Tk − Tl |2 ≥ δ2 (2.69)

where δ is a positive constant.

Definition 2.4. Constraint on Targets. Eδ denotes the target constraint domain defined by eq. (2.69),
and ∂Eδ denotes its boundary.

Conjecture 2.1. ∂Eδ contains the regular (p − 1)-simplices of side length δ.

Claim 9. F is a quadratic form in U defined by a real, symmetric matrix Q of the form Diage(Q
□).

Proof. We have

ui =
p

∑
k=1

wc
k(i)Tk (2.70)

= Vece
j=1

[wc
1(i) wc

2(i) · · · wc
p(i)]


T1[j]
T2[j]

...
Tp[j]


 (2.71)

= Vece
j=1

(
(CΩsen

i )
⊤Uj

)
(2.72)

= Diage((CΩsen
i )

⊤)U (2.73)

= AiU. (2.74)
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We also have
Tk = Diage(e

p
k
⊤
)U = BkU. (2.75)

Then,

F(T1, . . . , Tp) =
n

∑
i=1

|ui − ti|2 (2.76)

=
p

∑
k=1

∑
i

ti=Tk

|AiU − Tk|2 (2.77)

=
p

∑
k=1

∑
i

ti=Tk

|(Ai − Bk)U|2 (2.78)

=
p

∑
k=1

∑
i

ti=Tk

((Ai − Bk)U)⊤(Ai − Bk)U (2.79)

= U⊤
p

∑
k=1

∑
i

ti=Tk

(Ai − Bk)
⊤(Ai − Bk)U (2.80)

= U⊤QU. (2.81)

appendix A.3 shows that the matrix Q is equal to Diage(Q
□) with

Q□ = C
(
Ωs − In

)(
Ωs⊤ − In

)
C⊤. (2.82)

Clearly, Q□ is symmetric, and so is Q then.
Note that this expression of Q□ is not used here. However, it is provided for completeness

and might be useful in some future developments of the proposed method.

2.5.2 Minimization of F

Definition 2.5. Optimal Targets. A target set is called optimal if and only if it minimizes F while
belonging to Eδ.

Claim 10. F is constant on the set of regular simplices with side length δ. Its value has the form αδ2 where
α is a positive real number depending only on the learning sample weights ws

j (i), (i, j) ∈ [1..n]×[1..p],
and the class assignments of the learning samples.

Proof.

F(T1, . . . , Tp) =
p

∑
k=1

∑
i

ti=Tk

∣∣∣∣∣ p

∑
l=1

wc
l (i)Tl − Tk

∣∣∣∣∣
2

(2.83)

=
p

∑
k=1

∑
i

ti=Tk

∣∣∣∣∣ p

∑
l=1

wc
l (i)(Tl − Tk)

∣∣∣∣∣
2

︸ ︷︷ ︸
Ai,k

, (2.84)
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where

Ai,k =
p

∑
l=1

(wc
l (i))

2|Tl − Tk|2

+2 ∑
l<m

wc
l (i)w

c
m(i)(Tl − Tk) · (Tm − Tk).

(2.85)

If the target set belongs to ∂Eδ, then |Tl − Tk|2 is equal to δ2 if l ̸= k, by definition, and

(Tl − Tk) · (Tm − Tk) =

{
δ2 cos

(
∠l,m

k
)

if l ̸= k and m ̸= k
0 otherwise

, (2.86)

where ∠l,m
k is the angle at Tk formed with Tl and Tm, and is actually independent of k, l, and m,

and equal to π/3 since the target set forms a regular simplex. Therefore (see Appendix A.2),

Ai,k =
δ2

2

(
p

∑
l=1

(wc
l (i))

2 − 2wc
k(i) + 1

)
, (2.87)

and (see appendix A.4)

F(T1, . . . , Tp) =
δ2

2
(
|Ωc|2F − 2Tr(ΩcC⊤) + n

)
, (2.88)

where |M|F is the Frobenius norm of M. Clearly, the constant multiplying δ2/2 in eq. (2.88), say
α, cannot be negative since F is non-negative. Let us show that α is also not equal to zero if wγ

has an infinite support. We have

α =
p

∑
k=1

(
n

∑
i=1

(wc
k(i))

2 − 2 ∑
i

ti=Tk

wc
k(i) + ∑

i
ti=Tk

1

)
(2.89)

=
p

∑
k=1

(
∑

i
ti ̸=Tk

(wc
k(i))

2 + ∑
i

ti=Tk

(
(wc

k(i))
2 − 2wc

k(i) + 1
))

(2.90)

=
p

∑
k=1

(
∑

i
ti ̸=Tk

(wc
k(i))

2 + ∑
i

ti=Tk

(wc
k(i)− 1)2

)
. (2.91)

Because α is a sum of non-negative terms, it can be equal to zero if and only if all the terms are
equal to zero. According to section 2.3.3, this cannot happen.

Conjecture 2.2. Optimal Targets. Target sets representing regular simplices with side-length δ are
optimal in the sense of definition 2.5. Any such target set can be selected as a solution for an arbitrary
value of δ. Two ‘interesting’ values of δ are 1 and

√
2. If choosing

√
2, then an optimal target set can be

easily defined as follows

Tk = ep−1
k , k ∈ [1..p − 1], (2.92)

Tp =

√
p + 1

p − 1
1p−1. (2.93)
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Theorem 2.1. Equivalence to wNN Classifier. When choosing the targets optimally (see Conjec-
ture 2.2), then the proposed classifier (see definition 2.1) corresponds to a weighted Weigthed-Nearest-
Neighbours (WNN) classifier.

Proof. Note that the expression (2.87) of Ai,k for the sample xi is actually valid for any sample x.
Let us rename it Ak(x) in this case. Then, the Nearest Target (NT) classifier can be rewritten as
follows

k̂(x) = arg min
k∈[1..p]

|u(x)− Tk|2 (2.94)

= arg min
k∈[1..p]

Ak(x) (2.95)

= arg min
k∈[1..p]

δ2

2

(
p

∑
l=1

(wc
l (x))2 − 2wc

k(x) + 1

)
(2.96)

= arg max
k∈[1..p]

wc
k(x). (2.97)

2.5.3 Classification Point-of-View

The optimality condition of Conjecture 2.2 is related to the cost function (2.68) defined as
a tractable alternative to the empirical risk. To support the idea that choosing the targets
equidistant from each other is, if not provably optimal, also a good choice in terms of classification
performances, we propose to study these performances in terms of how the target set moves
away from equidistance. To allow for the existence of a regular polytope with triangular faces
formed by the targets, we must have e ≥ p − 1. Then, equidistance can be replaced with equality
of the angles formed by any two tangent edges of the target polytope. From this point of view,
aligned targets (which corresponds to degenerate, flat triangular faces) can be considered as
being as far as possible from equidistance. Claim 11 states what happens in this case.

Claim 11. The degenerate case where the targets are aligned can be viewed as being as far as possible
from the optimality condition of Conjecture 2.2. In that case, the proposed classifier only predicts two out
of the p classes, which indeed severely impairs its performances.

Proof. Let the targets Tk, k ∈ [1..p], be distinct and aligned. Since the classifier is invariant to
global translation and rotation of the targets (this can be easily verified from eq. (2.9)), it can be
assumed without loss of generality that

T1 ̸= 0e, (2.98)

∀k ∈ [1..p], Tk = αkT1, (2.99)

1 = α1 < α2 < · · · < αp. (2.100)
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Then,

u(x)− Tk =
p

∑
l=1

wc
l (x)Tl −

p

∑
l=1

wc
l (x)Tk (2.101)

=
p

∑
l=1

wc
l (x)(Tl − Tk) (2.102)

= T1

p

∑
l=1

wc
l (x)(αl − αk) (2.103)

= T1

p

∑
l=1

wc
l (x)αl − αk. (2.104)

Therefore,

eq. (2.9) ⇔ k̂(x) = arg min
k∈[1..p]

∣∣∣∣∣ p

∑
l=1

wc
l (x)αl − αk

∣∣∣∣∣ (2.105)

⇔ k̂(x) =
{

1 if ∑
p
l=1 wc

l (x)αl ≤ (α1 + αp)/2
p otherwise

. (2.106)

Note that eq. (2.106) should actually distinguish the cases ‘strictly lower’, ‘strictly higher’,
and ‘equal’, where equality requires to take an arbitrary decision between classes 1 and p.
Nevertheless, it is still true that the classifier can only predict two classes out of p.

Keeping the triangular faces’ regularity point-of-view of equidistance, the target set regularity
can be characterized by an appropriate function of the angles between any two tangent edges,
typically minimal for a regular polytope. For example, if p = 3 (the target polytope is a triangle),
the absolute difference between the extrema of the angles can be used. It ranges from zero
(equidistance) to π (aligned targets). Let us see how the classification performances vary as a
function of this quantity in the following experiment, see fig. 2.3. We observe that the lowest
values of the empirical risk are obtained for low differences between the extreme angles, i.e., for
equidistant targets and configurations close to it. This is in accordance with the Conjecture 2.2.
Details on the experiment and additional figures are given in appendix C.1 .

2.6 Selection of γ

In this section, we consider the case where all γj, j ∈ [1..n], are equal to a unique value γ and the
proportions of learning sample per class are the same.

2.6.1 Limit Cases

The sample weights ws
j (x), j ∈ [1..n], implicitly depend on γ (see eq. (2.13)). Let us check

their limit values when γ tends toward zero or infinity, and the consequences on the proposed
classifier.

Claim 12. When γ tends toward zero, the proposed classifier becomes unusable.

Proof. Let x be a sample to classify. From eq. (2.13), we have

lim
γ→0

ws
j (x) = γα(x)wrad(0), (2.107)
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Figure 2.3 Empirical risk of classification into 3 classes as a function of the absolute difference between the
extrema of the target triangle angles (ϕ, θ, ψ, in degrees). Each dot represents an iteration (among 1000)
of the classification of m = 900 test samples (based on other n = 900) with targets drawn from a random
and uniform distribution (in the range [0,1]). The parameters γj are all set to 100. The equidistant targets
corresponds to a null angle difference. See appendix C.1 for details and additional figures.

from which it can be checked that
lim
γ→0

ws
j (x) = 1/n (2.108)

since the weights must sum to one. Then,

∀k ∈ [1..p], wc
k(x) =

1
n

Card({i|ti = Tk}) (2.109)

and

u(x) =
1
n

p

∑
k=1

Card({i|ti = Tk})Tk. (2.110)

All the samples being transformed into a common point, it is of course not possible to take a
classification decision.

Theorem 2.2. Equivalence to Nearest-Neighbour Classifier. When γ tends toward infinity, the
learning samples are correctly classified. For samples not in the learning set, the behaviour depends on
the weighting function. For a Gaussian, the limit classifier is the Nearest-Neighbour (NN) classifier.
appendix A.6 analyzes another example of weighting function.

Proof. It follows from section 2.3.3 that, when γ tends toward infinity, the learning samples are
transformed into their corresponding target. Consequently, they are correctly classified.

For a sample x not in the learning set, the limit weights depend on the weighting function. If
the weighting function is a Gaussian, then

wrad(γ|x − xi|) = αγe−γ2|x−xi |2 , (2.111)
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where αγ is a normalization constant. Then, for i ̸= j,

lim
γ→+∞

wrad(γ|x − xi|)
wrad(γ|x − xj|)

= lim
γ→+∞

eγ2(|x−xj |2−|x−xi |2) (2.112)

=


+∞ if |x − xi| < |x − xj|
1 if |x − xi| = |x − xj|
0 otherwise

. (2.113)

Therefore,

lim
γ→+∞

ws
j (x) =


1 if ∀i ̸= j, |x − xj| < |x − xi|
0 if ∃i ̸= j, |x − xj| > |x − xi|

1
1+q otherwise

, (2.114)

where q = Card{i ̸= j | |x − xi| = |x − xj|}. In terms of classification, eq. (2.114) means that
if x is (strictly) inside the voronoi cell of a learning sample, it will be assigned the same class
as this sample (weight 1 for it, zero for the others), and if x is on a voronoi frontier, it will be
assigned the most present class among the tangent voronoi cells, or not classified in case of a
tie (weights 1/(1 + q) for the q tangent cells). Overall (i.e., samples not in the learning set and
learning samples), this corresponds to the Nearest-Neighbor classifier.

2.6.2 About an Optimal Value

We have conjectured an optimality condition on the targets using the cost function of defini-
tion 2.3. With such targets, we can now view eq. (2.68) as a function of γ to look for an optimal
value. Let us write

F(γ) =
n

∑
i=1

|ui − ti|2 (2.115)

=
n

∑
i=1

∣∣∣∣∣ n

∑
j=1

ws
j (i)(tj − ti)

∣∣∣∣∣
2

, (2.116)

where the dependence on γ is hidden in ws
j (i).

Claim 13. F, seen as a function of γ, cannot be used to find an optimal value of γ.

Proof. Due to the similitude between eq. (2.116) and eq. (2.84), we can use eq. (2.87) with the
replacements

p

∑
l=1

−→
n

∑
l=1

, (2.117)

wc
l −→ ws

l , (2.118)

Tl −→ tl , and Tk −→ ti, (2.119)

to get

F(γ) =
δ2

2

n

∑
i=1

(
n

∑
j=1

(ws
j (i))

2 − 2ws
i (i) + 1

)
(2.120)

=
δ2

2

n

∑
i=1

(
n

∑
j=1
j ̸=i

(ws
j (i))

2 + (ws
i (i)− 1)2

)
. (2.121)
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As a sum of non-negative terms, the expression (2.121) reaches its minimal value of zero only if
all the terms ws

j (i), j ̸= i and ws
i (i)− 1 are equal to zero. According to section 2.3.3, this cannot

happen for finite values of γ. Consequently, F cannot be used to find an optimal value of γ.

Instead of finding an optimal value for γ analytically, an alternative is to use CV.

2.7 Some Choices of parameters γi, i ∈ [1..n]

Instead of considering a unique parameter γ, one can use a parameter per learning samples
γi, i ∈ [1..n]. Exploring the parameter space by CV would be unfeasible for large data sets
(goes as mn for m parameters to explore). Instead, one can inspire from existing methods, that
also relies on defining similarities between samples, and in particular, non-linear Dimension
Reduction (DR) methods. A popular method is t-SNE [Van der Maaten and Hinton, 2008], It aims
at measuring significant similarities between samples that live in high-dimensional spaces, in
order to represent them in a lower-dimensional space, as good as possible i.e., based on an optimal
criterion. It takes into account the local density of samples to define weights between them. It
uses almost the same definition3 of the weights ws

i s between the samples as in definition 2.2, with
the parameters σi, i ∈ [1..n] such that γi = 1/(2σ2

i ). The authors propose to adapt the parameters
σi to the local density, which is also relevant for our case (see an example in fig. C.5). Indeed, it is
more appropriate to take a smaller value for σi (inverse for γi) in the denser regions. Hence, the
samples-to-samples weights will not be biased toward the denser regions. More recently, other
DR methods have been proposed. For example, UMAP (Uniform Manifold Approximation and
Projection) [McInnes et al., 2018] is also popular. It also relies on the definition of per-sample
parameters γis, which is different, but remains similar in the philosophy. We do not give more
details here since these definitions are not used in practice. Instead, we take the advantage of the
equivalence of the proposed method to the WNN (for equidistant targets). Then, we take into
account the sample local density with a definition of the weights ws

i s that rely on the neighbours
order. This definition is motivated by its property of optimality for the classification with a WNN
(see details in section 3.2.1).

3The difference comes from their definition of the weight of a sample to itself, that is set to zero.
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Implementation and Experimental Results

Key points – The method in practice

1. We give details on a specific implementation of the W-k-NN, designed to handle modern
image data sets with GPU support.

2. We show the efficiency of the proposed implementation.

Contributions – Details of the implementation

3. Definition of the sample weights used for the applications.
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6. Experimental results on CIFAR-10.
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3.1 Purpose

The literature contains a vast catalogue of supervised machine learning methods, with impressive
results on benchmark data sets, it is often time-consuming to dig into it and pick the right method
adapted to the desired application. Indeed, State-Of-The-Art methods are designed to perform
well in specific areas and according to certain metrics (e.g., accuracy, time, memory, etc) but
rarely take into account the interpretability of the predictions while it is often needed for real
applications. In chapter 2, we proposed a new interpretation of the WNN classifier. Here, we
propose a modern implementation of the WNN classifier. It features the definition of the optimal
weights from Samworth [2012] that relies on only one, interpretable, parameter: the number
of neighbours to consider. As we will see in chapter 4, this classifier can perform very well on
plankton image data sets. Therefore, we developed a modern implementation using Graphics
Processing Unit (GPU) computing. Hence, the method is easy to use in practice and interpretable.

This chapter aims at presenting the implementation in detail and showing its ability to deal
with modern, large data sets. Results on real plankton images data sets are left for the chapter 4.

3.2 The method in practice

This section gives details on the implementation used for the experiments presented here and in
chapter 4. The implementation using python is available on the Inria GitLab1.

3.2.1 Asymptotically optimal weights

The proposed classifier results in a WNN for the optimal choice of targets (see Theorem 2.1).
The model relies on the choice of the weights’ definition (in particular, the function wrad in
definition 2.2). A standard choice for wrad is a Gaussian with parameters γi = 1/(2σ2

i ), i ∈ [1..n],
but this choice is subjective and may be limiting in practice. Instead, we propose to use a result
from Samworth [2012] that defines asymptotically optimal weights for the WNN. To be exact, those
are weights that are asymptotically (i.e., n → ∞) optimal in the sense of minimizing the risk2

(eq. (2.3)). Let us denotes such weights as ‘optimal weights’.
In theory, the definition of the weights does not rely on a parameter. Nevertheless, in practice,

the authors propose to tune a unique parameter, k: the number of neighbours to consider. Hence,
we denote this specific implementation of the WNN as the Weigthed-k-Nearest-Neighbours (W-
k-NN). The weights are a function of the neighbours’ rank instead of the distance. Here the rank

1https://gitlab.inria.fr/cedubois/w-k-nn/
2see Theorem 2 in Samworth [2012]

https://gitlab.inria.fr/cedubois/w-k-nn/
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r denotes the index of the list of the k neighbours ordered in increasing order i.e., r ∈ {1 · · · k}.
The weight function between two samples is

w∗(x, x′) =

{
1
k∗

[
1 + d

2 − d
2k∗2/d

(
r1+2/d − (r − 1)1+2/d)] ∀r ≤ k∗

0 otherwise
, (3.1)

where r is the rank of the sample x′, d the dimension of the sample space and k∗ the number of
neighbours to consider, to be determined via CV. All possible values of k can be tested (from one
to n), which guarantees to provide the optimal k∗ among n for the data at hand. Nevertheless,
in practice, we do not expect a large value of k∗ since the samples should be ‘grouped’ in the
feature space (at least for a relevant one).

3.2.2 Leave-One-Out Cross-Validation

We propose to search for the optimal number of neighbours k∗ through the minimization
of the CVLOO risk (see section 2.1.2) for a given set of {ki|0 < k1 < k2 · · · kl ≤ n}l

i=1. In
order to compute efficiently (i.e., in reasonable time) a CVLOO score, we compute the CVLOO
transformation for the learning samples, omitting the contribution of the sample to itself

u{−j}(xj) =
n

∑
i ̸=j

ws
i ti, (3.2)

to then perform the NT classification. Note that, for the sake of completeness, we keep the
notation of the targets general (i.e., not restricted to the canonical basis).

In practice, to compute eq. (3.1), we first need to compute the search for the k neighbours.
Then we store the n × kmax rank matrix to re-use them for each prediction with k < kmax. Hence,
the nearest-neighbours search is computed only once for kmax.

Gathering everything together, the final implementation allows performing experiment on
real data-sets without the need of an expertise to tune the method. Indeed, the only parameter is
the number of neighbours to consider, and it is automatically set by minimizing the CVLOO risk.

3.2.3 Per-class weights for unbalanced data sets

Real data sets often present imbalance between classes, i.e., the number of samples per class is not
identical among classes. This is limiting, since most of the methods are generally not designed
for that situation. Nevertheless, a common usage in practice is to define weights according to the
class frequency (i.e., number of occurrences per class). This allows reducing the tendency of the
methods to perform better on the most represented classes. We propose to use this technique,
and we present its implication for the proposed classifier (including W-k-NN). Let us define the
‘scaled’ transformation as

u(x) =
p

∑
j=1

ηjwc
j tj, (3.3)

with
ηj =

α

|yj|
, (3.4)

where | · | is the cardinal, such that |yi| is the number of elements in the class ‘i’ and with the

normalization α = 1/ ∑
p
j=1

wc
j

|yj |
, such that ∑

p
j ηjwc

j = 1. In terms of classification, by considering
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the NT with optimal targets (W-k-NN), the predicted class is the one with the highest new class-
weight ηjwc

j (see Theorem 2.1). The impact of the scaling is a bias toward the less represented
classes. This bias is inversely proportional to the class frequency; this choice is subjective.

With the normalization, the ‘scaled’ transformation still corresponds to the definition 2.1.

3.2.4 Numerical implementation with KeOps

Distance-based methods such as k-NN are computationally intensive since they rely on calcu-
lating sample-to-sample distances. This limits their applications, specially for modern, large
scale data sets. Strategies have been proposed to reduce the computation cost. For example,
tree-based search methods have demonstrated high acceleration [Bentley, 1975; Jiang et al., 2017].
Another possibility is to use the approximate nearest neighbour search methods (e.g., Wang et al.
[2021]), that could be efficient for the W-k-NN.

We propose to use KeOps [Charlier et al., 2021], a recent library designed to compute fast
Kernel Operations on GPUs. Hence, the computation of the nearest neighbours search is efficient.
Note that we use the Euclidean distance to compute the search of the nearest-neighbours in all
our experiments.

Finally, our experiments were all performed on the same computer, a Dell workstation 7740
(2020) with an Intel® Xeon® E-2286M CPU @ 2.40 GHz, an Nvidia Quadro RTX 5000 GPU and 64
Go of Random Access Memory.

3.3 Experimental results on synthetic data

3.3.1 Comparison to standard methods

In this section we consider a synthetic data set of n = 8,000 samples, d = 2 dimensions and
p = 4 classes. Samples are represented on the first column of table 3.1. This defines a multi-
class and non-linear classification situation. We present classification results with the proposed
implementation for the k-NN and W-k-NN classifiers, and compare it with two other standard
methods, a SVM with a Gaussian kernel and a RF. Additionally, we detail the results of a SVM
with the Nearest-Neighbour-Kernel (NN-Kernel) in section 3.3.2.

We used a CV strategy to optimize the parameters of each method, based on the ACC. For
the k-NN and W-k-NN we used the CVLOO while for the RF and SVM we used a 10-folds CV
since the computation of the CVLOO would be time-consuming (due to the fit for each fold). For
the SVM, there are two parameters to optimize, the regularization C and the scale parameter γ
of the kernel (here γ = 1/(2σ2)). The ‘one-versus-one’ strategy is used for the multi-class setting.
We tested 3 values of C (1, 10, 100) and 3 values of γ (1, 10, 100), to cover a wide range. The set
of parameters that produces the best score over the 10 folds is (C = 10, γ = 100). For the RF,
the only parameter tested is the maximum depth of the trees, among (3, 5, 10, 15). The forest
is composed of 100 trees and the minimum numbers of samples per leaf is set to one. The best
score is obtained for a maximum depth of 10. For the W-k-NN, we used the optimal weights
given in section 3.2.1, the parameter to set is k, as for the k-NN. Let us remind that the rank
matrix is stored, after it is computed for kmax, and re-used for k < kmax (see section 3.2.2). Hence,
we were able to test nk = 20 values of k for both methods with a CVLOO for each, in a relatively
short amount of time, compare to a standard implementation. The optimal values are k = 20 for
W-k-NN and k = 30 for k-NN. The overall results are summarized in table 3.1, with an overview
of the decision frontiers. Note, all the methods are competitive as they have similar accuracy
scores (the deviation among methods is <1%).
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The implementations of the k-NN and the W-k-NN are based on KeOps , which takes
advantage of the GPU support for fast computation. In order to get comparable results, for the
SVM we also used an implementation with a GPU support: ThunderSVM [Wen et al., 2018].
For the RF method, we tested the XGBoost implementation [Chen and Guestrin, 2016] (that has
GPU support to estimate the best splits in the tree construction), but the computation time was
equivalent or worse than the standard scikit-learn implementation [Pedregosa et al., 2011] (in
that specific case). We choose to use the latter for simplicity. Note, we were not able to use the
ThunderGBM implementation [Wen et al., 2020] for tree-based methods. The computation times
for the fits and the predictions (normalized to the W-k-NN ones) are given on table 3.1.

One major observation (see table 3.1) that can be safely state is that k-NN is faster than W-k-
NN (the version with optimal weights). This is explained by the additional operations needed
for the W-k-NN. Indeed, the k-NN prediction can be computed by taking the most present label
among of the neighbourhood samples, while, for its weighted version, the weights have to be
computed and a sum over the neighbours is necessary. While, in this toy example, the ACC
is the same for both, it may differ for other applications (see Samworth [2012]). With the SVM
classifier, the fitting time depends on the optimization (gradient descent here) but is generally
expected to be time-consuming. On the other hand, the prediction time is comparable with the
others, which is interesting for real applications. Then, concerning the RF, the optimization is
faster than for the SVM, probably because of the simplicity of the model (splits). But on the other
hand, the prediction is slower (almost by a factor 3). These observations have to be mitigated
with the setting of the experience, and in particular the implementations of the methods.

As an additional test, we computed (i) the CVLOO of the k-NN with the standard scikit-
learn implementation (brute force search on CPU) for all the 20 values of k and observed that
the fitting procedure is 40 times slower than ours and is 35 times slower for the prediction.
The gain is mainly coming from the GPU support from the KeOps library, even only for the
prediction. Our main contribution here comes from the proposition for computing the CVLOO
(in section 3.2.2).

Gaussian-SVM RF k-NN W-k-NN
(ThunderSVM) (scikit-learn ) (KeOps ) (KeOps )

CV 10-folds 10-folds CVLOO CVLOO
Grid search size 3 × 3 4 20 20
Optimal params. C=10, γ=100 max depth = 10 k = 30 k = 20
CV fitting time 48.33 3.88 0.88 1
Prediction time 1.26 3.47 0.28 1
ACC (%) 90.6 90.2 90.5 90.5

Table 3.1 Classification results for the synthetic data set. The first image show the samples and their label
as colour. Those after show the same samples and the decision frontiers plotted in black from predictions
on a fine, regular sample grid. The last six rows give details on the CV procedure used to estimate the
optimal parameters (see text for details). The duration of the fitting and the prediction are normalized by
the ones from the W-k-NN method to improve the reading. For the prediction, it is repeated 1000 times to
get reliable estimations (since typical values are <0.1s).
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3.3.2 Procedure to use the NN-Kernel

In practice, the NN-Kernel (see definition in Claim 2) can be used with a linear classifier (another
than the NT) to improve the results of the W-k-NN method (that defines the so-called kernel trick).
This amounts to transforming the samples to the target space of dimension p (p − 1 or more to
be exact, see section 2.5) and fitting a linear classifier in that space. The standard linear classifiers
that take advantage of the kernel trick is the SVM classifier, that we use here.

First we propose to estimate k∗, the optimal parameter, of the transformation via CVLOO
with the NT classifier and then to optimize the regularization parameter C of the linear SVM
on these transformed samples, this time with a K-fold CV to accelerate the process. This result
in a ‘hybrid’ CVLOO - K-folds CV procedure to optimize the parameters (k∗ and C). An exact
CVLOO estimation would be very time-consuming (all combinations of k∗ and C for n folds).
Still, this pipeline is expected to be reliable regarding the results obtained with the NT classifier
only. As an example, let compute the NN-Kernel-SVM prediction for the previous synthetic data
set. The CV of the linear SVM increases the total fitting time from 0.9s (for W-k-NN) to 97.5s
(almost ×110). For the prediction, it increases by a factor 2.3 (from 5.8 for the W-k-NN to 13.1).
The classes-frontier is plotted on fig. 3.1; the mean ACC over 10-folds is 90.7 (similar with the
Gaussian-SVM, see table 3.1). This application demonstrates that the NN-Kernel can be used
with a SVM classifier in practice. Nevertheless, there may not be a practical benefit compared to
using a W-k-NN or a kernel-SVM given the fitting and prediction time it requires.

Figure 3.1 Decision boundaries for the W-k-NN (left) and NN-Kernel-SVM (right) classifiers over the
synthetic data set (see section 3.3.1). The coloured dots are the learning samples, with a colour per label.

3.4 Experimental results on CIFAR-10

We ran a set of experiments on the data set CIFAR-10 [Krizhevsky, 2009]. It is composed of
n =60,000 colour images among 10 classes. In order to extract some features of the images,
we rely on a pre-trained CNN. More precisely, we use the model called ‘MobileNetV3-Small’
[Howard et al., 2019] in its PyTorch [Paszke et al., 2019] implementation3. It requires rescaling the
images from 32 × 32 to 224 × 224, with a bi-linear interpolation, which is of course not optimal.

3https://pytorch.org/vision/main/models/mobilenetv3.html

https://pytorch.org/vision/main/models/mobilenetv3.html
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The network is used with weights (parameters of the network) obtained from an optimization
(pre-training) based on a subset of 1,000 classes from the ImageNet data set [Krizhevsky et al.,
2017]4. The dimension of the output vector is 1,000 (initial number of classes), additionally for
some experiments we use a Principal Component Analysis (PCA) for dimension reduction. For
the CIFAR-10 data set, the training set is composed of 50,000 samples and the test set of the
remaining 10,000 samples. We compute the covariance matrix of the samples from the training
set and then perform the dimension reduction through PCA on the training and test sets. We
reduce the dimension from d = 1,000 to d = 100. The 100 samples are standardized i.e., subtracted
by the mean and divided by the standard deviation of the training set.

The purpose of these experiments is not to obtain the best performance of classification but to
show that the proposed implementation is able to produce reasonable predictions (in time and
accuracy) compared to the tree-based methods, often used in the application to plankton images.

For all classifications methods, we used a CV on the training set to search for the best
parameters. For the k-NN and W-k-NN, we used CVLOO with all possible k from 1 to kmax = 300.
The best parameters are respectively k = 15 and k = 20. For the Gradient boosting method
(XGBoost implementation), we took advantage of the GPU support (used to estimate the best
splits) and used a 5-folds CV. We tested 5 values of tree depth (3, 5, 7, 10, 15) and 3 learning rates
(0.1, 0.5, 0.7) for 100 decision trees. The best couple of parameters was 7 for the depth and 0.5 for
the learning rate. With the best parameters, we then computed the prediction (for all methods)
on the test set. We observed a coherence with the CV scores (see table 3.2). As expected, the
prediction time is shorter for the tree-based method by a factor ∼ 3.5. The evolution of the ACC
as a function of the number of neighbours k is given on appendix C.3 for the k-NN and W-k-NN.
As a conclusion, the k-NN and W-k-NN implementations are competitive to the boosting method.
It can be remarked that the CVLOO estimations on neighbours-based methods are much faster
than the 5-folds CV (XGBoost) with this implementation, which make them useful in practice.

Method Prediction time [ms] CV time [s] CV methods ACC [%]

XGBoost 35 458 5-folds 83.4 (83.5)
k-NN 121 26.7 CVLOO 82.1 (82.2)

W-k-NN 124 39.6 CVLOO 82.7 (82.6)
k-NN (d=1000) 861 29.6 CVLOO 83.8 (84.6)

W-k-NN (d=1000) 886 44.5 CVLOO 84.6 (84.3)

Table 3.2 Summary of the results on the CIFAR-10 data set. The last column is the ACC score from the CV
with the set of best parameters, in parentheses is the ACC on the test set.

For the sake of curiosity, we ran the same experiments for the k-NN and W-k-NN on the raw
extracted features of dimension d = 1000. The surprising result is that the predictions were more
accurate in that high-dimensional space (see table 3.2 and figures in appendix C.3), while we
were expecting the opposite. Indeed, the meaning of the Euclidean distance between sample in
such a space is not trivial and the search of the neighbours was expected to face the so-called
curse of dimensionality.

4More details in https://github.com/pytorch/vision/tree/main/references/classification#
mobilenetv3-large--small.

https://github.com/pytorch/vision/tree/main/references/classification#mobilenetv3-large--small
https://github.com/pytorch/vision/tree/main/references/classification#mobilenetv3-large--small




Chapter 4

Experimental Results on Plankton Images

Key points – Main results on the classification of plankton images

1. We present classification results with the proposed implementation for two real plankton data
sets of reference.

2. We compare the results with a reference method used in practice (RF).

Contributions – Presentation of the data sets and description of the experiments

3. Description of the image data sets

4. Classification with the W-k-NN and a RF based on handcrafted features (ZooProcess), for
both data sets.

5. Same classifications with image features extracted with a CNN.

6. Accurate binary classification of copepods vs. others.

7. Advantages and limits of the W-k-NN in practice.
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4.1 Introduction

In this chapter, we deal with two real-world plankton image data sets. The goal is to show
that the proposed implementation of the W-k-NN (chapter 3) is efficient with real, large, and
complex classification tasks. For such classification tasks, the score to maximize is the Balanced
Accuracy (B-ACC). It is the mean of the accuracies per class. Therefore, it is more adapted for
our applications to plankton images, regarding the class imbalance (see figs. 4.2 and 4.5). The
ACC will be also given as an indication. This holds for all the chapter.

4.2 ZooScan instrument & ZooScanNet data set

4.2.1 Presentation

The ZooScan instrument [Gorsky et al., 2010] (see fig. 4.1) is a widespread instrument (∼300 units
across the world) designed to produce images of zooplankton using a line scanner. Collected
samples are placed on the scanner and all organisms are imaged together (∼1500 per scan). Then,
single image per organisms are isolated through segmentation. The instrument is produced
by the company Hydroptic1. Its main specifications are given in table 4.1. While the main
disadvantage of this instrument is to operate in the lab (as opposed to being in situ ), it can
produce high resolution images of zooplankton at a high rate. Its efficacy and widespread
use resulted in large data sets. EcoTaxa contains over 35 million ZooScan images. It allowed
taxonomists to manually label them and this resulted in the creation of a reference data set:
ZooScanNet, containing 1.4 million labelled images, all checked by several experts [Elineau
et al., 2018]. The finer taxonomic level is composed of 136 classes containing living and not-living
objects, with an extremely unbalanced class distribution (see fig. 4.2; from a few samples per
class to over a hundred thousands). In the following sections, we present some results of its
classification with the W-k-NN classifier. We use 70% of the data set to search for the best
parameters of the classifiers via Cross-Validation (CV). The remaining 30 % are used as a test set
to estimate the performances on unseen data.

4.2.2 ZooProcess: Handcrafted Features

In this section, we focus on the classification of the ZooScanNet images based on 46 handcrafted
features extracted with the ZooProcess software (ImageJ plugin). The list of these image features
and their associated definitions are given on fig. B.1 and table B.1).

1http://www.hydroptic.com/index.php/public/Page/product_item/ZOOSCAN
2From https://lov.imev-mer.fr/web/facilities/piqv/

http://www.hydroptic.com/index.php/public/Page/product_item/ZOOSCAN
https://lov.imev-mer.fr/web/facilities/piqv/
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Figure 4.1 ZooScan instrument, at LOV 2.

Dimensions (LxWxH) 60 x 54 x 36 cm (Cover closed)
Weight 25 Kg
Input voltage 110 to 230 VAC, 50 to 60 Hz
Interface USB 2.0
Robustness Resistant to salt water, diluted formaldehyde and diluted ethanol (5%).
Specifications Samples

ZooSCAN is designed to handle and digitize liquid samples
Sample volume 0.2 litre to 1 litre

Non-destructive with safe sample recovery
Specifications High resolution, optimized for objects larger than 200µm

in equivalent spherical diameter
Image resolution up to 2200 dpi (dots per inch)

Each image is 14,150 x 22,640 pixels
and contains ∼ 1500 individual animals.
Each image is processed as a single frame of 24.5cm x 15.8cm.
Optimized lighting system to enhance
image quality and contrast supplied
ZooScan is supported by a number of open-source
computer programs that runs on Windows 10 :
ImageJ with ZooProcess macros, EcoTaxa. ZooScan.

Table 4.1 ZooScan specifications, from Hydroptic
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Figure 4.2 Ordered ZooScanNet classes counts. The count scale is logarithmic.
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Using the implementation detailed in chapter 3, we computed the B-ACC and ACC scores
for each sample using a CVLOO, for 40 values of the parameter k, from 10 to 400 with a step of
10. The evolution of the scores with respect to the number of neighbours considered is given on
fig. 4.3. The optimal parameter is the one that maximize the value of B-ACC and is k∗ = 120.
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Figure 4.3 Evolution of the scores with respect to the number of neighbours k for the W-k-NN. Left: based
on features from ZooProcess; k from 10 to 400 with a step of 10; the optimal value is k∗ = 120. Right: based
on features from a fine-tuned CNN; k from 1 to 400, step of 10; the optimal value is k∗ = 110.

The total computation took less than 40 minutes, keeping the sample weights in memory (see
chapter 3). The prediction time on all the ∼400,000 test samples for k∗ = 120 was ∼2 minutes.

One main observation is that the scores are not very sensitive to the parameter k (at least in
the computed range). Indeed, the maximum deviation between the scores is less than 5% (<3%
for B-ACC). The decrease of the ACC score with the number of neighbours is certainly due to the
over-representation of samples from the detritus class. For low value of k a strong weight is given
to close neighbours, so it is likely to be classified as detritus since the probability to have detritus
samples in the neighbourhood is high. Then, the ACC is ‘high’ because the absolute number of
samples correctly classified is also high. Another way around is to note that if every sample was
classified as detritus, the ACC would be high since the most of the samples (i.e., detritus) would
be correctly classified. This is why the accuracy normalized per class, i.e., the B-ACC preferred
for the taxonomic classification of plankton. Nevertheless, in practice, the not-living objects are
the most abundant, so the user may want to have access to the ACC. Also, if the B-ACC score
does not evolve (or almost not) with k, the ACC can help to pick the optimal value k∗. Those
remarks also stand for the next experiments.

While the purpose here is to show the method is usable in practice, it is preferable to compare
it (on the same machine) with a standard classifier used in practice by the users, typically at
Laboratoire d’Océanographie de Villefranche (LOV): a Random Forest (RF) [Breiman, 2001]. It is
important to note that, in practice, decision-tree-based methods may be tedious in the tuning of
the parameters, mainly: impurity criterion, number of trees, maximum depth of the trees and the
minimum number of samples required to compute a split in a decision tree. For this experiment,
we limit the search of the optimal parameter of a RF to the latter and fix the formers. The search
for the best split is done by minimizing the ‘gini’ criterion, with 100 trees. The maximum depth
of the trees is only limited by the remaining parameter to tune: the minimum number of samples
to perform a new split (i.e., there is no limit in terms of absolute depth). We search for this best
parameter among the values (10, 100, 1000) using a 3-folds CV. In addition, to compensate for
the class imbalance, class weights are used. The ‘gini’ impurity (for each split in each tree) is
computed with a weight per sample. This weight is inversely proportional to the number of
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samples belonging to its class (used for this tree). The comparison, with the W-k-NN, of the
setting of the experiments is shown on table 4.2 (third column). The scores are given as an
indication to show that both can produce similar results. The RF can probably achieve a better
score by probing a larger parameter space (see a comprehensive experiment in Panaïotis et al.
[in press]). This actually shows the practical issues of the methods with multiple parameters:
they are not trivial to optimize. On the other hand, the proposed W-k-NN relies on a unique,
discrete parameter. Hence, it is simpler to set and to interpret (degree of confidence to the
neighbourhood). About the fitting and prediction times, we can notice the prediction time of the
RF method is shorter than for the W-k-NN by a factor 4 to 8. This is due to the nearest-neighbour
search, which is the main limitation of the proposed implementation. On the other hand, looking
at the very large number of samples (∼400,000 for the test set), the prediction time (< 2 minutes)
is relatively short for a laptop computer, thanks to the use of the GPU with the KeOps library.
An advantage of the proposed implementation is its ability to compute the search of the optimal
parameter using a CVLOO in a relatively short time, compare to the RF that was only computed
for 5 folds. This can be useful in practice, for example to test the influence of the features on the
classification (adding or removing features), which ask to fit the model multiple times.

ZooProcess, d=46 fine-tuned CNN + PCA, d=10

tested parameters 40 40
CV CVLOO CVLOO

W-k-NN CV fitting time [h] 0.44 0.43
pred. time [s] (test set) 119 57

B-ACC [%] (test set) 49 75

tested parameters 3 3
CV 3-folds 3-folds

RF CV fitting time [h] 0.35 0.29
pred. time [s] 15 13

B-ACC [%] 55 71

Table 4.2 Summary of classification results for the ZooScan data set with the W-k-NN and the RF methods.

4.2.3 ZooScan image features from fine-tuned CNN

To go a step further in the experimental setting, looking at what is done in practice at LOV, we
propose to compute the classification of the same samples, based on image features extracted
with a CNN. More precisely, the network ‘MobileNetV2’ [Sandler et al., 2018] is optimized on the
ImageNet data set (see section 3.4) and ‘fine-tuned’ (i.e., re-optimized with desired 136 classes), on
a few hundreds of plankton images. From the so-called ‘deep-features’ we performed a dimension
reduction with a PCA keeping only the 10 most relevant components. The PCA is based on the
covariance matrix of the hundreds of samples used for the fine-tuning only, and applied to all
the data.

We computed the same experiments as in the previous section. For the RF, the tested
parameters (i.e., minimum number of samples required to compute a split) were the same (10,
100, 1,000); 100 the best one. For the W-k-NN, we tested all the values of k from 1 to 400 with
a step of 10, see fig. 4.3 (right). The optimal parameter was k∗ = 110. From table 4.2 the same
conclusions can be drawn as in the previous section. It is interesting to note the gain in B-ACC
(for both methods) with the features extracted with a fine-tuned CNN, with only ten dimensions.
The confusion matrix and the recall score per class for the test set are given in figs. C.10 and C.11.
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This show that our method can be used and is useful in practice on the ZooScan data set.
In particular, it considerably simplifies the parameter tuning and can therefore help to explore
different combinations of features more easily, in compare to other standards methods such as
RF.

4.3 UVP5-HD instrument & data set

In this section, we present results similar to those of section 4.2 for a data set of 2-d in situ images
taken with the instrument Underwater Vision Profiler 5 - High Definition (UVP5-HD).

4.3.1 UVP5-HD in situ imaging instrument

Imaging instruments can be distinguished in two categories : ex situ , i.e., samples are collected
and analysed later in the lab (e.g., ZooScan), and in situ i.e., samples are directly imaged in their
environment.

The UVP5 camera [Picheral et al., 2010] is an in situ instrument designed for imaging plankton,
produced by Hydroptic3 (see fig. 4.4 and table 4.3). It is able to light up a fixed volume of water
(about 15cm × 20cm × 3.5cm which is ∼ 1 litre) in order to image a set of focused objects. The
camera is deployed from a ship with a winch, such that it image vertical profiles. These profiles
are sets of images from the surface to a fixed depth (down to 6000 m, but generally <500 m).
They are useful to characterize ecosystems.

Figure 4.4 Photography of the UVP5-HD instrument; deployed in the bay of Villefranche-sur-mer. Credit
David Luquet.

Multiple versions of this instrument exist. Here we focus the Underwater Vision Profiler 5 -
High Definition (UVP5-HD). The UVP5-HD data set is composed of 3 million images organized

3http://www.hydroptic.com/index.php/public/Page/product_item/UVP5_DISCONTINUED

http://www.hydroptic.com/index.php/public/Page/product_item/UVP5_DISCONTINUED
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Operational Depth 0 to 6000 meters
UVP Dimension (H) 110 cm
Weight in air 30 Kg
Input voltage 110 to 230 VAC, 50 to 60 Hz
Lighting Red LED at 625 nm in two glass cylinders
Standard Image volume 1.02 litres per frame (about 15cm x 20cm x 3.5 cm)
Image resolution Acquires images of objects > 100µm
Additional infos Real time processing
Mount Stand-alone, Rosette

Capable of acquiring and processing images from the surface
even in strong sunlight.
UVP is supported by ZooPocess

Table 4.3 UVP5-HD specifications, from Hydroptic

into 35 taxonomic classes. The number of classes is less than for the ZooScan (section 4.2.1)
notably because the image definition of the instrument is lower. Hence, it is more difficult to
guarantee the identification of the classes at a fine taxonomic level. In other words, there are
all kinds of organisms (and non-living objects are still present) as for the ZooScan data set, but
organized into fewer classes. The number of images per classes is even more imbalanced, see
the distribution in fig. 4.5. As for the ZooScanNet, we take 70% of the data to search for the best
parameters and the remaining 30% to test the performance.

4.3.2 UVP5-HD image classification with features from a fine-tuned CNN

As we saw in the introduction (section 1.3.2), CNNs are able to extract coherent image features
for the classification of plankton images. This is observed in section 4.2 and expected for the
UVP5-HD data set. We followed the same pipeline of feature extraction as in section 4.2.3 (CNN
fine-tuned on images of the training set and dimension reduction trough PCA). The total time
for the all the CVLOO estimations was about 2 hours, for kmin = 10, kmax = 600 with a step of 10.
The parameter that maximized the B-ACC (69.2%) was k∗ = 580, see fig. 4.6. On the test set, the
score is 67.1%. Note the variation of the score is less than 10% for all the tested values of k, which
is a hint on the stability of the method to its unique parameter. Further experiments with the
investigation of larger values of k would be an improvement of the experiment, since we do not
see a clear decrease of the B-ACC on fig. 4.6.

As a reference, we computed the classification with the RF method, on the same features.
We used the same set-up as in section 4.2.3 except that, this time, the values for the minimum
samples per split tested were 500, 1,000 and 5,000. The classification on the 3-folds gave a CV
B-ACC score of 64.8% with the optimal parameter of 1,000 and 66.8% on the test set.

Figure 4.7 (another representation in fig. C.13) show the recall scores on the test set i.e., the
number of samples correctly classified in a class, relative to the number of elements in that
class. The confusion matrix for the W-k-NN predictions on the test set is given in fig. C.12.
On fig. 4.7 we observe that both method follow a similar pattern. The main difference is that
RF seems to be more appropriated for the most represented classes (bottom of the figure),
e.g., copepods. On the other hand, W-k-NN tends to classify more accurately the less represented
classes. Drawing conclusions from this unique comparison would be hazardous. Indeed, it is
not clear if this unique observation would generalize. Note that, for both methods, the weights
used to re-balanced the classification are inversely proportional to the number of samples per
class. Nevertheless, they are not used in the same way. For the RF, it is used to search the best
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Figure 4.5 Ordered UVP5-HD classes count (∼3 million objects). The count scale is logarithmic. The
not-living objects are distinguished with a ∗ (note their dominance).
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Figure 4.6 Evolution of the scores with respect to the number of neighbours k for the W-k-NN; k from 10 to
600, step of 10; the optimal value is k∗ = 460.

split in a tree node, while for the W-k-NN it is used to weight the contribution of each sample in
the transformation (section 3.2.3).

4.3.3 UVP5-HD Copepods

The identification of images of a specific group can be useful for ecological application. For
example, the second part of this thesis relies on in situ 2-d images of copepods only. Here we
focus on the identification of the copepods in the data set i.e., binary classification copepods
vs. other. We use the W-k-NN to classify the images based on the images features extracted with
the fine-tuned CNN. The hope is to get a higher recall for the copepod class in this binary setting
(as opposed to the previous, multi-class setting).

The samples are the same as in the previous experiment (section 4.3.2). We work with the
same sample-to-sample weights, that we stored in memory. This highlight the modularity of
the proposed method. More precisely, based on the sample weights, different classification
can be performed. This is an advantage of the method compared to other parametric methods
(e.g., SVM, RF). We computed the CVLOO classification for k from 10 to 600 with a step of 10
(i.e., same as before) in less than 4 minutes. The curve of the score is given in fig. 4.8. It looks
like the B-ACC and the recall for the copepods continue to increase slightly for k > 600 ; the
optimal value was k = 600. Nevertheless, the B-ACC on the test set was 95% and the recall for
the copepods was 96%. This is a high improvement compared to the recall in the multi-class
setting (<70% for copepods, see fig. 4.7). This difference can be explained looking at the recall
and precision scores4 on fig. 4.9. Low values of precision and high values of recall translates a
detection bias toward the copepods, i.e., the classifier tends to over-predict samples as copepods.
Indeed, high values of recall means the majority of the copepod samples of the data set are well
identified as copepods ; low values of precision means a large amount of non-copepod objects
are predicted as copepods. This can be observed on figs. C.14 and C.15.

Similar classification performances are obtained with a RF classifier (same setting as in
section 4.3.2): B-ACC of 95 % and recall on copepods of 94 % on the test set. Nevertheless, due to
the optimization of the model, we could not rely on the previous RF model of the section 4.3.2

4Recall: number of samples correctly classified in a class, relative to the number of elements in that class.
Precision: number of samples correctly classified in a class, relative to the number of elements predicted in that class.
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Figure 4.7 Recall score on test set (number of samples correctly classified in a class, relative to the number
of elements in that class) for the classification based on the first 10 components of the deep-features with
the W-k-NN (k∗ = 580) and RF (minimum samples to compute a new split: 1000). The classes are ordered
according to the number of samples, as in fig. 4.5 (less represented at the top). The classes that represent
not-living objects are mentioned with the symbol ∗.
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to accelerate the procedure. Hence, it took 12 minutes to fit 3-folds with the 3 parameters (500,
1000, 5000).
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Figure 4.8 B-ACC and recall for the copepods class as a function of k.
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Figure 4.9 Recall, precision, and F1 scores for the copepod class as a function of k. The F1 score is the
harmonic average of the recall and the precision scores.

The empirical results from this chapter demonstrate that (i) W-k-NN can be used in practice
on real-world plankton data sets of millions of images (ex situ and in situ ), (ii) it is simple to tune
with a unique parameter, (iii) it can produce accurate predictions, (iv) it is easy to understand
since it relies on the similarity with the neighbours and (v) it is useful for classifying the same
samples into various class groupings (e.g., see section 4.3.3). On the other hand, its limitation is
on the prediction. Indeed, it can be time-consuming, which is an important point for real-world
applications.

For the plankton application, it would be benefic to enlarge the search for the optimal
parameter k to larger values, given its evolution in figs. 4.3 and 4.6. In order to evaluate if the
W-k-NN can produce as accurate results as other standard methods, a comprehensive study
would be necessary, notably including a full CNN classifier.
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Chapter 5

Copepods’ Bio-Volume Estimates from In Situ 2-d Images

Key points – Copepods’ volume estimations from 2-d images are biased

1. We present the so-called ‘biological carbon pump’ and the role of plankton organisms. We
introduce the use of plankton in situ imaging campaigns for estimating global scale biogeo-
chemical processes. We motivate the need for accurate total volume estimations for the
copepod group.

2. We highlight the limitations of volume estimation on 2-d images and bring forward the
ellipsoidal model for copepods.

Contributions – Highlight of the biases of two standard methods

3. Description of the dataset used for total volume estimations of copepods.

4. Presentation of the two State-Of-The-Art methods for copepods volume measurement for
2-d images.

5. Demonstration of their limits with examples.

6. Computation of the total copepods’ volume estimates and highlight of the discrepancy
between them.

55



56 Chapter 5 Copepods’ Bio-Volume Estimates from 2-d In Situ Images

Chapter 5 – Copepods’ Bio-Volume Estimates from 2-d In Situ Images:
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2 Imaging the copepods worldwide: the UVP5-Cop dataset . . . . . . . . . . . . 57

5.3 Standard geometrical measurements with ZooProcess . . . . . . . . . . . . . . 57

5.4 Standard methods for volume estimations . . . . . . . . . . . . . . . . . . . . . 59

5.4.1 Optical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.4.2 Using the equivalent spherical diameter (MESD) . . . . . . . . . . . . . 60

5.4.3 Using a best-fitting ellipse (MELL) . . . . . . . . . . . . . . . . . . . . . 60

5.5 Limits of the Standard Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.5.1 Illustration of the limits of the current method . . . . . . . . . . . . . . 61

5.5.2 Illustration of MESD & MELL error . . . . . . . . . . . . . . . . . . . . . 61

5.5.3 Discrepancy between total volume estimations . . . . . . . . . . . . . . 61

5.1 Introduction

Oceans cover 70% of the Earth surface. Global scale biogeochemical cycles, notably of carbon,
are largely driven by the oceans. Let us remind that the phytoplankton organisms capture
carbon through photosynthesis and zooplankton organisms aggregate and export it to the seabed
(biological cycle). This process is referred as the ’biological carbon pump’. While these processes
contributes to the regulation of climate, their quantification remains challenging, because of the
scales it demands to deal with. Multiples methods have been developed to this end [Le Quéré
et al., 2015]. A key contribution was to highlight the high correlation of the zooplankton major
trait, its size, with the carbon pump efficiency. More precisely, the relevant measure of size for
these organisms is their volume, which is related to their biomass through their density. As their
biomass increases, carbon sequestration increases too. In other words, zooplankton size can be
seen as a ‘proxy’ for carbon sequestration in the ocean (biological contribution).

In this part of the thesis, we focus on the global estimation of zooplankton biomass. This was
made possible by the world-wide in situ observation campaigns carried out those last decades
[Kiko et al., 2022], opening the way for high-resolution density estimations per taxon, together
with the taxonomic classification based on images, at the global scale. We deal with images of the
UVP5 in situ camera (see section 4.3) that captures the meso-zooplankton (from ∼0.1 to ∼1 mm,
mainly on the first 200 metres), where the carbon pump efficiency is at its maximum [Buitenhuis
et al., 2006]. Among mesoplankton, the most numerous taxonomic group is copepods, which
represents about 85% of the organisms for this layer (0-200 m) [Longhurst, 2007]. This can be
observed on fig. 4.5, where the copepods constitute the most represented (living) group. For now,
the sampling does not cover a large enough surface to conclude on the total number or volume of
copepods with the raw data only. The map fig. 5.1 shows the repartition and density of copepods
images (manually validated annotations) from the UVP5 at global scale. Nevertheless, combined
with high-resolution environmental variables, inferences of the total volume per taxa are already
accessible thanks to the comprehensive study by Drago et al. [2022] led by the LOV.

One main limitation of such works comes from estimation of individual organisms’ volumes
from 2-d images. Indeed, due to the projection onto the image plane, the true individual volume
can not be computed. Instead, as we will see later in this chapter, estimations are made based
on geometrical assumptions. Then, the total volume estimation is computed as the sum of the
individuals (biased) ones. In this part of the thesis, we focus on the correction of the total volume
estimations from 2-d in situ images, for the copepods. In this chapter, we will first present the
dataset (copepods images from the UVP5 camera), followed by the State-Of-The-Art methods
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for estimating the volume of a copepod from its projection onto the image plane. Then we will
highlight the limits of those methods using a specific example, and finally, we will present the
raw results of total copepod volume estimates, and their limits.

Figure 5.1 World UVP5 copepod sampling. The colour gives a hint on the sampling density

5.2 Imaging the copepods worldwide: the UVP5-Cop dataset

Details about the UVP5 instrument can be found in section 4.3.
Following the UVP5 acquisition process, a segmentation is performed to extract small images

containing a single organism (ideally, since organisms sometimes overlap). Metadata, such as
geographical position, depth, and time of the acquisition are stored. All information are loaded
on the EcoTaxa1 web platform. Then, a taxonomic classification of the organisms is performed.
First, a pre-trained model can be used to classify images and second, the label is validated or
corrected manually by an expert.

The Underwater Vision Profiler 5 Copepod (UVP5-Cop) dataset is composed of all the validated
images of copepods from the UVP5 instruments (SD & HD), that represent 158,487 samples.
Images were processed following the new image processing method (see chapter 6). When the
estimated volume (see section 5.4) was below 0.1 mm3, the copepod silhouette detection was
considered erroneous, and the image was excluded from the dataset. Images of partially cropped
copepods (i.e., with a part of the body outside the image) were also excluded, to avoid additional
biases. Around 2,500 images were excluded (<2% of the data set), leaving 155,945 copepod
images for analysis. Typical images of the dataset are shown on fig. 5.2. They are greyscale, with
a pixel size varying from 0.086 to 0.174 mm depending on the generation and configuration of the
UVP5. These pixel sizes are used to rescale all measurements to millimetres before processing.

5.3 Standard geometrical measurements with ZooProcess

To later infer the volume, we first need to isolate the copepod on the image. Then, we need to
compute some geometrical quantities, such as the surface area of the copepod prosome (i.e., its

1https://ecotaxa.obs-vlfr.fr/

https://ecotaxa.obs-vlfr.fr/
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Figure 5.2 Example of copepods images from UVP5. The colour represent the pixel intensity, it was chosen
for clarity; the pixels of null intensity are white (background).
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body) and its best-fitting ellipse. ZooProcess is a standard tool used by ecologists to achieve this
[Gorsky et al., 2010; Picheral et al., 2010], based on ImageJ [Schneider et al., 2012]. The image is
segmented through thresholding (the threshold may vary with the camera used) thus, yielding a
binary mask.

Area estimation : The area of the copepod prosome is estimated as the number of pixels of the
larger connected component of the binary mask, then converted to mm2 using the calibrated
pixel size.

Best-fitting ellipse : The copepod prosome is estimated as the larger connected component of
the same binary mask. The axes lengths of the best-fitting-ellipse are given by the eigenvalues
(1/

√
λi) of the covariance matrix of the pixel’s position2. Then, they are scaled such that the area

of the ellipse is the same as the binary mask. This is expected to reduce the volume estimation
errors for wrong ellipses fits.

After both of these measurements, we will derive two estimations of the same underlying
volume.

5.4 Standard methods for volume estimations

For estimating the volume from 2-d images, hypothesis on the third dimension are needed.
The two standard volume estimation methods are presented below. They are based on the key
observation that the shape of the (3-d ) copepod’s prosome is close to an ellipsoid of parameters
r1 ≥ r2 ≥ r3 (see multiples point of view in fig. 5.2). Carefully note that, the projection of an
ellipsoid onto a plane is an ellipse (this is show in chapter 7), such that the observed projection
of the prosome can be modelled with an ellipse of parameters ρ1 ≥ ρ2.

5.4.1 Optical model

Let us start by defining the context of our applications. To safely infer a volume in three
dimensions from a shape projected in two dimensions, the following assumptions are made:

• The distance between imaged objects and the camera is the same for all objects (or differ-
ences are negligible).

• One of the two following statements is true.

– The size of the object is negligible compared to its distance from the camera. Hence,
even if the camera has a perspective acquisition geometry, it can be approximated
well enough by a parallel one.

– The acquisition system follows a line scanner principle (then, its acquisition geometry
is intrinsically parallel);

With these hypotheses, the imaging process can be schematically represented as in fig. 5.3 (with
an ellipsoidal object). All in situ plankton imagers presented in [Lombard et al., 2019] (including
ZooScan and UVP5) satisfy these conditions.

2The orientation is given by the eigenvectors, but is useless here.
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Camera

Figure 5.3 Representation of the geometrical setup of the imaging, with some notations: r1, r2, and r3 the
true semi-axes of an ellipsoidal object, with r1 ≥ r2 ≥ r3 by convention; ρ1, ρ2 the semi-axes of the projected
ellipse, with ρ1 ≥ ρ2 by convention; A the area of the projected shape.

5.4.2 Using the equivalent spherical diameter (MESD)

There is a unique disk with the same area A as the organism’s projected silhouette (the silhouette

of the organism as observed on the image), and its diameter is ESD = 2
√

A
π . The Equivalent

Spherical Diameter estimation method (MESD) makes the assumption that the volume of the
organism can be approximated by the volume of the sphere of diameter ESD, that is

VESD =
4
3

π

(
ESD

2

)3

. (5.1)

If the organisms were indeed spherical and the 3-d -to- 2-d acquisition system performs a parallel
projection, then VESD would be the exact volume.

For ellipsoidal objects, like copepods, the projection silhouette is an ellipse of semi-axes
ρ1 and ρ2, with ρ1 ≥ ρ2 by convention (see fig. 5.3). Its area is equal to πρ1ρ2. Therefore, the
equivalent diameter is ESD = 2

√
ρ1ρ2.

5.4.3 Using a best-fitting ellipse (MELL)

A common alternative to MESD is to fit an ellipse shape on the projection and construct an
ellipsoid in three dimensions (MELL). It should be more appropriate for objects of ellipsoidal
shape, such as copepods (assuming the antennas and urosome (i.e., tail) are thin/small enough
for their influence on the volume to be negligible). It proceeds as follows: (i) an ellipse is fitted
on the object silhouette, defining two semi-axes: ρ1 and ρ2 (fig. 5.3), (ii) the smallest semi-axis of
the fitted ellipse (ρ2) is duplicated to form the triplet of semi-axes of an ellipsoid, (iii) the volume
is computed as

VELL =
4
3

πρ1ρ2
2. (5.2)
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5.5 Limits of the Standard Methods

5.5.1 Illustration of the limits of the current method

The purpose of this section is to give an overview of the area estimations and ellipse fits
implemented in ZooProcess. More details and argumentation will be given in chapter 6. Note
that we took a threshold of 8 over 256 grey levels to produce the binary mask, and that other
thresholds might be used by the user. On fig. 5.4, we give examples of randomly selected
images from the UVP5-Cop dataset with their best-fitting ellipse and binary mask. This allows
to study qualitatively the results (there are no quantitative results, since there is no ground truth
is available). For example, on (a) the ellipse fit well to the copepod and the mask (b) gives a
correct idea of the area of the copepod (at least what we can infer from the image). For the other
examples((c) to (f)), the presence of antennas (and/or pixel noise), pollute the results (both ellipse
fit and area estimation). Even if it is difficult to conclude on the quality of the results statistically,
after looking at hundreds of random examples, it appears that the number of examples such as
(c) and (e) is non-negligible. This motivates the implementation of a new method in chapter 6.

5.5.2 Illustration of MESD & MELL error

For this illustration, we model the copepod prosome in 3-d with an ellipsoid and assume the
measured ESD and semi-axes of the ellipse are exact. With this set-up, the error of the MESD

estimation can range from large underestimation to even larger overestimation, depending on
the orientation of the ellipsoid (fig. 5.5). Those individual errors transcribed to the total volume
estimations, but the pending question is ‘how does the total estimations are affected ?’. The purpose
of chapters 6 and 8 is to address this question.

For MELL, despite the fact that the estimation of the silhouette shape is more appropriate
than with MESD, errors due to the projection from 3-d to 2-d are still present (fig. 5.5). We can
remark that, within this ellipsoid model framework, VELL is always lower than or equal to VESD.
Indeed, we imposed by convention that ρ1 ≥ ρ2, therefore,

√
ρ1ρ2 ≥ ρ2

⇔√
ρ1ρ2

3 ≥ ρ1ρ2
2

⇔VESD ≥ VELL

with equality when the projection silhouette is a circle.

5.5.3 Discrepancy between total volume estimations

We saw two main error sources for the total copepod volume estimates. As a reference point, let
us compute the total volume of copepods from the UVP5-Cop dataset with the State-Of-The-
Art methods. The details of the methods are listed below, and the results are summarized in
table 5.1.

• ZooProcess & MESD : Area is extracted with ZooProcess, see section 5.3. The volume is
computed according to eq. (5.1).

• ZooProcess & MELL : The best-fitting ellipse is computed with ZooProcess, see section 5.3.
The volume is computed according to eq. (5.2).

A useful observation is the gap between the results of table 5.1, which would be zero for exact
volume estimation (or if both made the same error). In the following chapters, we will propose a
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(a) (b)

(c) (d)

(e) (f)

Figure 5.4 Examples images of copepods, their ellipse fits obtained from ZooProcess (orange solid line),
and binary mask. Note, even with the scaling of the ellipse area (section 5.5.3), the resulting ellipses do not
fit the prosome because of the influence of the antennas.

WESD [×105 mm3 ] WELL [×105 mm3 ] Gap [×105 mm3 ]
7.51 4.79 2.72

Table 5.1 Total volumes estimations WESD and WELL from MESD and MELL methods. The last column is the
absolute difference between the estimations.
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Front Side Top Oblique

Method Front Side Top

True 754

MESD 243 905 1947
-68% +20% +158%

MELL 188 452 1257
-75% -40% +67%

Figure 5.5 Examples of volume estimations and errors made by MESD and MELL for an ellipsoid E with
(r1, r2, r3) = (1, 0.42, 0.25) (see fig. 5.3 for the definition of ri). The errors are computed from the analytic
expressions of the projected semi-axes (ρ1, ρ2) detailed in chapter 7. The first row displays the simulated
ellipse from various viewing angles. The table gives, in black, the rounded values of the volume for each
method and, in colour, the percentage of under/over estimation compared to the true value, which is
computed from the ris and ρis. The lower right plot shows the volume computed with each method for
viewpoints regularly sampled along an arc turning around the ellipsoid; note that the MESD estimation is
always greater than or equal to the MELL one.

new method for the area extraction and the ellipse fit of the copepod’s prosome (in chapter 6),
and a statistical correction for the total volume estimation from MESD and MELL (in chapters 7
and 8).





Chapter 6

Extracting the Copepod Prosome from 2-d Images

Key points

1. We propose a new procedure for fitting an ellipse and estimating the area of the copepod’s
prosome only.

2. We apply it to a real dataset and compare the results with the State-Of-The-Art .

Contributions

3. Method for extracting the copepod’s prosome from 2-d images.

4. Computation of total copepods’ volume estimates.

5. Illustration of the benefits.
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6.1 Motivations : influence of antennas

Clearly, copepod antennas, when visible, can affect, sometimes dramatically, the measurement
of the projected area of their prosome (which constitutes the bulk of their volume) and/or the
fitting of an ellipse to their silhouette (see fig. 6.1). Therefore, in the current chapter, we propose
area estimation and ellipse fitting approaches tailored to copepods, to mitigate that phenomenon.
The area estimation is based on a procedure that mimics mathematical morphology opening that
first performs an erosion to discard the antennas and then a dilation to recover the area of the
copepod body. Ellipse fitting is also performed after this opening-like operation.

(a) (b)

Figure 6.1 Examples images of copepods and theirs ellipse fits obtained from Zooprocess (orange solid line).
Note, even with the scaling of the ellipse area (section 5.5.3), the resulting ellipses do not fit the prosome
because of the influence of the antennas.

6.2 Geometrical measurements

6.2.1 Common process

The general idea of the improved methods proposed in this chapter is to get rid of the antennas
(and urosome, i.e., the tail) before measuring the copepod silhouette surface or fitting an ellipse
onto it. It is assumed that the binary mask of the copepod has been determined previously. We
propose to compute the Inner Distance Map (IDM) of this mask and to erode it using a threshold.
We fix the threshold to max(IDM)× 0.5328 in our experiments, based on the visual results. This
step allows getting rid of the antennas. Note that the binary mask could have been eroded
directly using mathematical morphology. However, it would make use of a discrete so-called
structuring element (typically a discretized disk), which would lead to a coarser eroded shape,
given the small size of a copepod in our images (and hence, the small size of the discretized
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structuring element). This could have a negative impact on the subsequent steps. Next, to
recover the original copepod body size, the outer distance map of the eroded mask is computed
and thresholded using the same threshold as the one used for erosion. This amounts to dilate
the eroded mask, but again in a finer way than if using mathematical morphology. The various
steps are illustrated in fig. 6.2. An implementation with python is available at the Inria GitLab1.

(a) Input image
Proposed
ZooProcess

(b) Binary mask (c) Inner dist. map

(d) Eroded dist. map (e) Outer dist. map (f) Dilated body

Figure 6.2 Copepod body mask computation as a common preliminary step for surface estimation and
ellipse fit. Reading the figure in lexicographical order, each image is the result of the processing of the
previous one. They are: (a) the input greyscale image, (b) the binary mask obtained by thresholding, (c)
the inner distance map, (d) the eroded mask obtained by thresholding, (e) the outer distance map, and (f)
the dilated mask obtained by thresholding (same threshold). The orange ellipse is fitted on image (b) and
rescale to the area of the mask (b), while the red ellipse is fitted on the proposed body mask (f).

6.2.2 Area estimation and ellipse fitting

The copepod surface estimation is performed by counting the number of pixels of its binary
mask. The improved version simply counts the pixels of the mask obtained previously in 6.2 as
opposed to counting the pixels in the original binary mask which includes the antennas.

When an object is described by a binary mask of pixels, the most classical ellipse fitting
method interprets the pixels as the samples of a point cloud. The covariance matrix of the cloud
is computed. Its eigenvectors represent the best fitting ellipse orientation, while its eigenvalues
represent the semi-axes of the ellipse. A simple improvement of this method (or any other ellipse
fitting method, as a matter of fact) consists in rescaling the fitted ellipse so that its area matches
the object area. This is implemented by the software ImageJ that Zooprocess uses. However,
if this improvement allows correcting the fitted ellipse surface (which can be enough for some
applications), it does not help that much for copepod volume estimation. Indeed, the precision
of the small semi-axis is crucial, and it is not improved by the surface adjustment. As a reminder,

1https://gitlab.inria.fr/cedubois/Copepod-Volume-Correction

https://gitlab.inria.fr/cedubois/Copepod-Volume-Correction
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the MELL estimation of the volume is:

VELL =
4
3

πρ1ρ2
2 =

4
3

πρ1ρ2︸ ︷︷ ︸
Surface

ρ2︸︷︷︸
Minor

semi−axis

. (6.1)

Whatever the ellipse fitting method is, the starting point is the copepod mask. The standard
fitting method get distracted by the antennas, which can result in very bad ellipses (see the
orange ellipses in figs. 6.2 to 6.4). Therefore, we proposed to fit an ellipse on the mask obtained
in section 6.2 instead of the original binary mask (see the red ellipses in figs. 6.2 to 6.4).

6.3 Application to UVP5-Cop images

Some carefully chosen examples of ellipse fits are shown on fig. 6.3 and others randomly selected
on fig. 6.4. When antennas are visible, the proposed method fits better the prosome compare
to the Zooprocess one. The limitation of the proposed method is illustrated on fig. 6.3 panel
(b), where the best-fitted ellipse seems smaller than the actual copepod body. This is due to the
threshold used for the erosion (and dilatation) of the IDM, that was previously fixed. The total
volume estimations using the proposed image processing step for both methods are given on
table 6.1, using the same dataset as for the previous estimations of total volume in section 5.5.3 .
While no ground truth is available, it can be observed that the gap between both estimations
(MESD and MELL) reduces by a factor 1.68 using our image processing method compared to the
Zooprocess one. Knowing our process is motivated by the morphology of the copepods and
looking at the qualitative results on randomly selected examples (fig. 6.4), we believe the new
ellipses fit better the prosome of the copepod compared to the original method and result in a
more accurate estimation of the total volume of copepods.

Method WESD [×105mm3 ] WELL [×105mm3 ] Gap [×105mm3 ]
Zooprocess 7.51 4.79 2.72
Proposed fit 5.57 3.95 1.62

Table 6.1 Total volumes estimations WESD and WELL from MESD and MELL methods. The first row is the
same as table 5.1 i.e., computed with Zooprocess. The second row corresponds to the proposed method.
The last column is the absolute difference between the estimations.

6.4 Discussion

In this chapter, we proposed a method to estimate the projected area and to fit an ellipse on the
copepod body only, to avoid large biases caused by the antennas (and, more rarely, the urosome).
Neglecting the volume of the antennas and urosome compared to that of the prosome seems
appropriate in first order, and it is essentially what the standard ellipse fit does when it is not
affected by antennas. Still, the validity of this assumption would need to be tested. The volumes
of these different parts seem difficult to measure experimentally but could be assessed from
detailed 3D scans of individuals, which we now have the technology for.

An alternative to the standard and proposed methods, could be to fit the ellipse on the
greyscale version of the object, that is, using the pixel intensities as sample weights when
computing the covariance matrix. However, we found that this alternative does not work well
on the copepod images of our dataset.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.3 Examples images of copepods and theirs ellipse fits. On these projections, the bodies of copepods
can be well approximated by ellipses, which we assume to be ellipsoids in 3 dimensions (see appendix D).
Ellipse fits on copepod images are obtained by Zooprocess [Gorsky et al., 2010] (orange solid line), affected
by the antennas, and our method (dashed-dotted red), that fits the prosome of the copepod better.



70 Chapter 6 Extracting the Copepod Prosome from 2-d Images

Figure 6.4 Multiple randomly selected examples of ellipse fit based on the original mask (Zooprocess);
orange solid line and for the proposed method; dashed-dotted red. We see that when antennas are not
visible, the result is almost the same, but when they are visible, the classic method is not appropriate.
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Another aspect to test is whether our method indeed fits the projected silhouette better than
the standard one. We noticed it does on many images similar to figs. 6.3 and 6.4. A small
proportion of the results in fig. 6.4 still present wrong ellipse fits, which illustrates that there
is a place for improvement. An expected one is to adjust the threshold of the erosion (and
dilatation) automatically, depending on the size of the object or the image, for example. The fact
that we observed a significant reduction of the discrepancy between the total volume estimated
with MESD and MELL when using this approach compared to the classic one (see table 6.1)
also suggests a gain in accuracy. However, to assess its absolute performance, a ground-truth
segmentation should be performed on numerous images, by having human operators delineate
the prosome of the copepod. Then, a pixel-level match between this ground-truth and the two
automated approaches (Zooprocess and ours) could be computed. This extremely labor-intensive
effort is considered to be out of the scope of this thesis.





Chapter 7

Modelling the projection of a copepod’s prosome

Key points

1. The prosome (body) of copepods is modelled with an ellipsoid. We derive its projection onto
a plane, which is an ellipse.

2. Individual error of the volume estimation is scale invariant.

3. First characterization of the error.

Contributions

4. Derivation of the exact projection of an ellipsoid

5. Proof of the invariance to scaling of the individual volume estimation error

6. Measures of real shape parameters

7. Simulation of realistic ellipsoids

8. Distribution of the error
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7.1 Introduction

The purpose of this chapter and the following (chapter 8) is to compute correction factors for
the total volume estimates from the MESD and MELL methods, which are both biased by the
projection. A first step is to derive the effect of the projection of the copepod onto the image
plane. To this end, we propose to model the copepod’s prosome (i.e., body) by an ellipsoid. We
derive its exact projection onto a plane, depending on its shape and orientation. This allows to
compute the exact error of the individual volume estimation from both MESD and MELL methods,
for given parameters (shape and orientation). For the total volume error (i.e., the subject of
interest), we present a pipeline to simulate realistic ellipsoids (based on manual measures) in
various orientations, to compute their projection, and to estimate the correction factors.

7.2 Projection of an ellipsoid

7.2.1 Geometrical setup

A centred ellipsoid is defined by all 3-d vectors x verifying

x⊺Mx = 1, (7.1)

where M is a positive definite1 3 × 3-matrix whose elements are denoted by mij. More details
are given in appendix D. Let (i, j, k) denote an orthonormal basis and let O denote the origin (see
fig. 7.1). To study how this ellipsoid projects onto a plane using perspective projection, let us
define (i) an optical centre e

e =

 0
0
−ϵ

 (7.2)

where ϵ > 0 is such that e is outside the ellipsoid, and (ii) a projection plane Π described by its
normal

n =

0
0
1

 (7.3)

1positive definite matrices are, by definition, symmetric
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and its distance to the origin δ, ϵ > δ > 0, such that Π does not intersect the ellipsoid. The plane
Π is equipped with the orthonormal basis (u, v) where u and v correspond to i and j respectively.
Its origin OΠ is located at the intersection between Π and the segment linking e to O. All these
elements are illustrated on fig. 7.1.

e

O
Π

O

Π

ε

δ

k

j

i

v

u

Figure 7.1 Geometrical setup of the ellipsoid model and its projection onto a plane. The camera is represen-
ted by its optical centre e, the sensor plane Π, and the sensor orthonormal coordinate system (OΠ, u, v).
The global orthonormal coordinates system is represented by (O, i, j, k). The axes i and u are parallel,
and so are j and v. The ellipsoid centre is at distance δ from Π and ϵ from e. Without loss of generality
(for our problem), the ellipsoid centre is at O, and e is on the axis k with the optical axis aligned with k.
Consequently, OΠ is also on the axis k.

7.2.2 Ellipsoid silhouette in 3-d

For some unit vector d, let x be defined as

x = e + τd (7.4)

with τ > 0 and d · n > 0. The ellipsoid silhouette as seen from e is given by the set of vectors d
such that the half-line described by x when τ varies is tangent to the ellipsoid2.
The point x is on the ellipsoid if and only if

(d⊺Md)τ2 + (2d⊺Me)τ + (e⊺Me − 1) = 0, (7.5)

which is of the form
ατ2 + βτ + γ = 0. (7.6)

Therefore, the half-line described by x is tangent to the ellipsoid if and only if eq. (7.6) has a
unique solution3, that is if and only if β2 − 4αγ = 0, which is equivalent to

d⊺Sd = 0 (7.7)

where S is equal to
S = Me e⊺M + (1 − e⊺Me)M. (7.8)

2for such a vector d, there is a corresponding value for τ
3for completeness, note that this unique solution is τ = − β

2α .
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The ellipsoid silhouette is defined by the solutions of eq. (7.7) respecting, as mentioned earlier,
the following two conditions: |d| = 1 and d · n > 0.

Let Sϵ be defined as

Sϵ =
1
ϵ2 S. (7.9)

Note that Sϵ can be used in eq. (7.7) in place of S.
In appendix D.2, the following (block matrix) expression is derived,

Sϵ =

[
M⊺

21M21 − m′
33M11 (1/ϵ2)M⊺

21
(1/ϵ2)M21 (1/ϵ2)m33

]
, (7.10)

with m′
33 = m33 − 1

ϵ2 .

7.2.3 2-d silhouette

As mentioned earlier, eq. (7.7) defines the silhouette of the ellipsoid in a perspective projection
setup. On plane Π, this silhouette is defined by points p such that, for all solutions d to eq. (7.7),{

p = e + τ′d
(p − e) · n = ϵ − δ

(7.11)

where τ′ is a scalar4. The first equation of (7.11) is equivalent to

d =
1
τ′ (p − e). (7.12)

Equation (7.7) can now be rewritten in terms of p (and Sϵ as noted earlier) as follows

(p − e)⊺Sϵ(p − e) = 0. (7.13)

The point p can be written as
p = OΠ + q (7.14)

where q is a vector whose third component is equal to 0. Using a block formulation, we have

q =

[
q1
0

]
(7.15)

and

Sϵ =

[
S11 S⊺

21
S21 s33

]
. (7.16)

Then, eq. (7.13) is equivalent to
q⊺1 Pq1 + Qq1 = r (7.17)

where 5

P = S11, (7.18)

Q = 2(ϵ − δ)S21, (7.19)

r = −(ϵ − δ)2s33. (7.20)

One recognizes the equation of an ellipse which can be put into the following standard form

(q1 − c)⊺
(

1
r − Qc/2

P
)
(q1 − c) = 1 (7.21)

where c = −P−1Q⊺/2 is the centre of the ellipse.
4combining the two equations of (7.11) together, one gets τ′ = (ϵ − δ)/(d · n)
5in case P is definite negative, P, Q and r must be replaced with their opposite
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7.2.4 Semi-axes for parallel projection

In appendix D.3, the expressions for the semi-axes ρi for perspective projection are given from
the eigenvalues of P. For a parallel projection (i.e., ϵ = ∞), the semi-minor and semi-major axes
have the following simpler expression

ρi =

√
m33

λi
, i ∈ {1, 2} (7.22)

and

P = m33M11 − M⊺
21M21, (7.23)

λi = (tr(P) + σi
√

∆)/2, (7.24)

|σi| = 1 and σ1σ2 = −1, (7.25)

∆ = tr(P)2 − 4 det(P) (7.26)

where tr(P) is the trace of P, det(P) is its determinant, and the σi’s are chosen so that ρ1 ≥ ρ2.
From these developments, we therefore have analytical definitions of an ellipsoid, its volume,

its projection as an ellipse, the semi-axes and area of this projected ellipse.

7.3 Volume estimation errors

With the expression of the semi-axes, the analytical expression of the errors from the MESD and
MELL estimation methods can be easily computed.

7.3.1 Expressions for the standard methods

For an axis-aligned ellipsoid, M is diagonal. The diagonal components are related to the semi-
axes ri as follows

mii = r−2
i , i ∈ {1, 2, 3}. (7.27)

The ellipsoid volume is then classically given by

V =
4
3

πr1r2r3 (7.28)

=
4
3

π√
m11m22m33

. (7.29)

For a general ellipsoid (i.e., any orientation), the volume is

V =
4
3

π√
det(M)

(7.30)

where det(M) is the determinant of M. Let V∗ denote an estimation of the true volume V, where
∗ is ESD or ELL here. The relative error in volume estimation is defined as

E∗ =
V∗
V

. (7.31)

To write eq. (7.31) for MESD, it should be reminded that, since the projection silhouette is an
ellipse of area πρ1ρ2, the equivalent radius is equal to

√
ρ1ρ2. Then, the relative errors of the
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MESD or MELL methods are

EESD = (ρ1ρ2)
3/2
√

det(M) See eq. (5.1) (7.32)

EELL = ρ1ρ2
2

√
det(M). See eq. (5.2) (7.33)

The following section demonstrates the invariance of these individual errors to scaling, a result
that strongly impacts the practical procedure to simulate ellipsoids (presented in section 7.4).

7.3.2 Invariance of errors to scaling

Common remarks

The purpose is to show that EESD and EELL do not depend on the absolute volume of the ellipsoid,
which is a function of (r1, r2, r3), but rather on the ellipsoid’s proportions (r2/r1, r3/r1). One
way to prove this statement is to show that E∗(αM) = E∗(M) for any α > 0. Indeed, if this holds,
then choosing α equal to r2

1 implies that αM is defined by the triplet (1, r2/r1, r3/r1).
Let ρ, resp. λ, be a generic notation for ρ1 and ρ2, resp. λ1 and λ2. The other useful reminders

are

ρ =

√
m33

λ
(7.34)

λ : eigenvalue of P (7.35)

P = m33M11 − M⊺
21M21. (7.36)

Let us add a subscript α to these quantities to denote their expressions when M is replaced with
αM. We have

m33,α = αm33 (7.37)

Pα = α2P. (7.38)

It is also clear that if λ is an eigenvalue of P, then βλ is an eigenvalue of βP (Px = λx ⇒ βPx =
βλx) for any β ̸= 0. Therefore,

λα = α2λ. (7.39)

Hence, it can be concluded that
ρα =

ρ√
α

. (7.40)

Finally, note that we have the following property on the matrix determinant

det(αM) = α3 det(M) (7.41)

if M is a 3 × 3-matrix.

MESD method

As a reminder, the relative error in volume estimation of the MESD method is

EESD(M) = EESD(r1, r2, r3, θ) (7.42)

= (ρ1ρ2)
3/2
√

det(M), (7.43)
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where θ encode the orientation of the ellipsoid. Then

EESD(αM) = (ρ1,αρ2,α)
3/2
√

det(αM) (7.44)

=
(ρ1ρ2)

3/2
√

α3

√
α3 det(M) (7.45)

= EESD(M). (7.46)

MELL method

As a reminder, the relative error in volume estimation of the MELL method is

EELL(M) = EELL(r1, r2, r3, θ) (7.47)

= ρ1ρ2
2

√
det(M). (7.48)

Then

EELL(αM) = ρ1,αρ2
2,α

√
det(αM) (7.49)

=
ρ1ρ2

2
α
√

α

√
α3 det(M) (7.50)

= EELL(M). (7.51)

This concludes on the scaling invariance of errors in individual volume estimation. Thus, with
the appropriate size normalization α = 1/r1, the error E∗ can be computed in terms of r2/r1 and
r3/r1 only (which will be useful for the total volume correction in chapter 8).

7.4 Simulation of realistic ellipsoids

7.4.1 A simulation for the total volume correction factors

The theoretical total volume error is

T∗ =
˝

Er

´
Eθ

p(r, θ)V∗(r, θ) drdθ˝
Er

p(r)V(r) dr
(7.52)

where Er is the domain of ellipsoid semi-axes r = (r1, r2, r3) ({(r1, r2, r3) ∈ R3|r1 ≥ r2 ≥ r3 > 0}),
Eθ is the domain of ellipsoid orientations, p(r, θ) is the probability of observing a ‘copepod
ellipsoid’ with size r and orientation θ, and p(r) is the size probability. For both methods, it is

TELL =

˝
Er

´
Eθ

p(r, θ)ρ1(r, θ)ρ2
2(r, θ) drdθ˝

Er
p(r)V(r) dr

, (7.53)

TESD =

˝
Er

´
Eθ

p(r, θ)
√

ρ1(r, θ)ρ2(r, θ)
3

drdθ˝
Er

p(r)V(r) dr
. (7.54)

Given the complexity of the terms involved in eqs. (7.53) and (7.54), no attempt was made
to derive an analytical expression. Instead, in this section, we propose to simulate numerous
random ellipsoids that realistically represent the body shapes of copepods, as well as their exact
projection, to finally infer the correction factors (i.e., to calculate numerically the integrals). Then
they will be applied in the chapter 8.
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The simplest choice to generate ellipsoids would be to draw the semi-axes from uniform
distributions within appropriate ranges6 and the orientation uniformly. However, those para-
meters should ideally be adapted to the data set at hand, since copepods’ sizes, shapes, and
acquisition viewpoints (or orientations) are related to environmental and imaging conditions.
In the following, we propose a way to generate ellipsoids that follow a realistic, parametric
copepod body model.

To generate random ellipsoids, one can directly generate random matrices M. Alternatively,
random axis-aligned ellipsoids can be generated, which are then randomly rotated. The advant-
age of this later procedure is that constraints are more easily imposed to create copepod bodies
with realistic proportions.

Axis-aligned ellipsoids are defined by the three semi-axes r1, r2, and r3 (see details in ap-
pendix D). Since ellipsoids will be randomly rotated next, these values can be chosen such that
r1 ≥ r2 ≥ r3 without loss of generality. To generate random values of r1, r2, and r3, we need
to define one Probability Density Function (PDF, or ‘distribution’) per ri. These PDFs must be
defined in accordance with the reality of copepods’ body shapes, either generically (e.g., accord-
ing to the literature) or from the data at hand. Generating an ellipsoid then amounts to drawing
one random semi-axis value per PDF. If the semi-axes respect the ordering condition, then the
ellipsoid is validated; otherwise, it is discarded, and a new round of random drawing must be
performed. As such, the random process is of dimension three (r1, r2, r3) with two conditions
(r1 ≥ r2 and r2 ≥ r3).

Fortunately, the process can be simplified by noting that the error made by the MESD or
the MELL method on the total volume estimation is (almost) invariant to size normalization
1/r1. This is assumed for this chapter and show empirically in section 8.1.2. In other words,
the error computed from N ellipsoids defined by (r1,n, r2,n, r3,n), n ∈ [1..N] is (almost) equal to
the error computed with the same ellipsoids, each scaled by the constant 1/r1,n. This amounts
to normalizing the ellipsoids so that their largest semi-axis is equal to one (i.e., defined by
(1, r2,n/r1,n, r3,n/r1,n)). Thus, the random process becomes two-dimensional (defined only by
the axes ratios r2/r1 and r3/r1) with only one condition (r2/r1 ≥ r3/r1); the three per-axis
PDFs are replaced by two axes-ratio PDFs. This has two nice consequences: a statistical one
and a practical one. Statistically speaking, to describe a random process through simulation,
one needs ‘exponentially’ more samples as the dimension increases (this is known as the curse
of dimensionality). The number of samples, N, is limited by computational constraints; thus,
reducing the dimension provides a higher quality description for the same N. Practically
speaking, the shift from drawing semi-axes to drawing semi-axes ratios means that the proposed
method only depends on the shape of copepods (prosome height over prosome length and
prosome width over prosome length), not on their overall size, which can be considered more
general (size varies across regions) and more stable.

The remaining question is ‘how to define the PDFs of the semi-axes ratios r2/r1 and r3/r1?’. As for
the per-axis PDFs, two reasonable options are literature-based and data-based. The literature may
provide enough details to choose a PDF family (e.g., Gaussian) and set the parameters for each
ratio (e.g., mean and variance for Gaussian). Alternatively, the ratios can be measured on physical
samples or on images in which the copepods are seen from the side (r2/r1 ratio) and from the
top or bottom (r3/r1 ratio). Then, the required PDFs can be fitted on these measurements in a
parametric (e.g., Gaussian, Beta, Gaussian mixture [Redner and Walker, 1984]) or non-parametric
way (e.g., Kernel Density Estimation (KDE) [Parzen, 1962; Scott, 1979]).

Finally, these ellipsoids, generated to match the body shapes of copepods, must be rotated to
simulate a random acquisition viewpoint. In the absence of a strong a priori on the orientation

6valid ranges can be found in the literature e.g., Conway [2012]



7.4 Simulation of realistic ellipsoids 81

of copepods relative to the camera, these rotations can simply be uniformly random, in all
directions. But the procedure can easily be adapted to generate rotations favouring preferred
orientations (see section 8.3).

7.4.2 Estimating shape parameters

As explained in the previous section, simulating copepod bodies requires PDFs for the two
semi-axes ratios r2/r1 and r3/r1 and the rotation angle. Here we focus on the application with
the UVP5-Cop dataset. We assumed uniform random orientation of copepods in the water
column (see computational details in appendix E.3), since the data set is large, covers different
depths and locations on the globe, and we do not know of any justification for a preferred
orientation relative to the camera.

A set of axes ratios were measured on 295 images in which copepods were seen from the
side and 265 images in which they were seen from the top or bottom. To gather these samples,
operators manually selected images in which the orientation of the copepod was clear. The
selection was guided to obtain a distribution in latitude similar to that of the whole data set, and
distributions in length similar between the side and top/bottom samples (see appendix F). The
constraint on latitude was meant to avoid biasing the samples towards a particular environment,
since the morphology of copepod’s varies latitudinally. The constraint in prosome length should
ideally have been checked against the whole data set, to avoid estimating the axes ratios on
biased samples within the ∼150k simulated images. However, the true prosome length, or 2 × r1
in the 3-d ellipsoid, is unknown; only 2 × ρ1, the major axis of the projected ellipse, can be
estimated. While r1 ≃ ρ1 in the side and top/bottom views, r1 > ρ1 in any other view, so only
the distribution of ρ1 in the side and top/bottom views can be compared. The PDFs for r2/r1
and r3/r1 were then estimated from the measurements using a KDE with a Gaussian kernel of
optimal width [Scott, 1979] (see fig. 7.2).
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Figure 7.2 Distributions of r2/r1 (a) and r3/r1 (b) fitted on our dataset. The markers are the normalized
histograms of the samples, and the solid lines are the Gaussian Kernel Density Estimates.

7.4.3 Distribution of individual errors

From a simulation of N=106 ellipsoids with axes ratios distributed according to fig. 7.2, we
computed the distributions of the error, shown on fig. 7.3. It seems that the distribution of EESD is
less centred on one (no error) than the one of EELL. This let us conclude that more credit should
be given to the MELL method compare to the MESD one, at least for the individual estimations.
Also, the total volume estimated from MESD is expected to be overestimated (looking at fig. 7.3),
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while it is unclear to conclude for MELL ones. The following chapter provides a clearer picture of
those observations.
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Figure 7.3 Normalized histogram of the individual error EESD (EELL) in blue (red) and associated KDE (black
solid lines), obtained from the simulation of N=106 ellipsoids (r1 = 1). The extrema of the error are 0.21
(0.17) and 5.31 (4.11).



Chapter 8

Correcting Total Copepods’ Volume Estimates

Key points

1. The purpose of this chapter is to compute and apply the correction factors for the total volume
estimations of copepods in the UVP5-Cop data set.

2. We discuss the limitations and the robustness of the method.

Contributions

3. Empirical study of the invariance of the error to size normalization for the total volume.

4. Computation of the errors of the total volume estimations (and associated correction factors).

5. Main experimental results: total volume estimations, with the proposed extraction of the
copepod’s prosome and the proposed corrections factors.

6. Study on the robustness of the results with respect to the simulation parameters.
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8.1 Total volume correction

Instead of proposing a novel volume estimation method, our approach is to study the errors
made by the standard methods MESD or MELL in order to propose a procedure to compensate
for these errors. Thus, the figures of past studies could be re-interpreted in light of the proposed
corrections and marine ecologists could apply these corrections to future studies, sticking to
their standard estimation method of choice.

8.1.1 Proposed approach

A set of N random ellipsoids with realistic proportions and various orientations is generated
(as described in section 7.4), their projection silhouettes are computed following eq. (7.22), their
volumes are estimated using MESD (from the areas of the silhouettes) and MELL (from the semi-
axes of the silhouettes), and the error between the total, true, volume of all ellipsoids and the
sum of the estimated volumes is computed as

T∗ =
∑N

n=1 Vn
∗

∑N
n=1 Vn

=
W∗
W

(8.1)

where the Vns are the true volumes of the generated ellipsoids and the Vn
∗ s are the corresponding

estimated volumes by method ‘∗’ (ESD or ELL). Therefore, W is the true total volume of all
ellipsoids in the simulation and W∗ is the estimated total volume.

Once T∗ has been estimated from simulated ellipsoids, it can be used to correct the total
volume estimated from P actual images of copepods as follows

Wc
∗ =

∑P
p=1 Vp

∗

T∗
=

Wu
∗

T∗
(8.2)

where Vp
∗ is the set of volumes estimated from the acquired images by method ‘∗’, Wu

∗ is their
total, and Wc

∗ is the corrected total estimated volume.
Note that the correction proposed in eq. (8.2) provides no objective element to prefer MESD

over MELL, or vice versa. Indeed, the respective correction factors theoretically allow to perfectly
retrieve the true total volume. In practice, though, the MESD method might be a better option
since the area measurement it relies on is more robust (i.e., less sensitive to acquisition noise and
greyscale variations) than the ellipse fit performed in the MELL method.

An algorithmic description of the proposed method is given in appendix E. An implementa-
tion in python is available at the Inria GitLab1.

1https://gitlab.inria.fr/cedubois/Copepod-Volume-Correction

https://gitlab.inria.fr/cedubois/Copepod-Volume-Correction
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8.1.2 Invariance of total volume estimation error to size normalization

As mentioned earlier, in section 7.4, we generated ellipsoids normalized by their size (i.e., major
semi-axis r1). Until now, it was assumed that the total volume errors (and so corrections) were
invariant to this scaling. Here we present an empirical result that shows that it is indeed a
reasonable assumption.

Let Vi, i ∈ [1..n], be a set of true ellipsoid volumes, let Vi
∗ be the corresponding estimated

volumes by the method ‘∗’ and let E i
∗ be the associated individual volume estimation errors. The

total volume estimation error is

T∗ =
∑i Vi

∗
∑i Vi =

V̄∗
V̄

(8.3)

where X̄ denotes the average of X. Now, suppose that each ellipsoid volume is scaled by a factor
αi (Ui = αiVi), for example as a result of the normalization of the ellipsoid’s sizes by dividing
their semi-axes ri

1, ri
2, and ri

3 by ri
1. How will the estimated volumes Ui

∗ vary with respect to Vi
∗? From

section 7.3.2, we know that E i
∗ = Vi

∗/Vi is invariant to ellipsoid scaling. Therefore, Ui
∗/Ui must

still be equal to E i
∗, which implies that Ui

∗ = αiVi
∗. Hence, the total volume estimation error after

scaling is

T ′
∗ =

∑i Ui
∗

∑i Ui =
∑i αiVi

∗
∑i αiVi =

αV∗
αV

, (8.4)

which depends on the scaling. Nevertheless, it can be noted that for a constant value αi = β,
eq. (8.4) and eq. (8.3) are equivalent (i.e., T ′

∗ = T∗). Considering a non-constant αi, the deviation
between both equations might be more or less negligible. However, for the specific scaling
α = 1/r3

1 (size normalization), it can be observed empirically that the ratio T ′
∗/T∗ is almost equal

to one for various PDFs of r1 (see table 8.1 and figs. 8.1 and 8.2). It illustrates that the deviation is
negligible, hence, validating the approximation

T ′
∗ =

αV∗
αV

≃ V̄∗
V̄

= T∗. (8.5)

r1 PDF T ′
ESD/TESD [%] T ′

ELL/TELL [%]
Uniform [1, 10] 99.971 99.964

Exponential λ = 0.5 99.945 99.954
Normal µ = 3, σ = 0.5 100.002 100.015

r1 KDE 99.966 99.988

Table 8.1 The normalization factor for T ′
∗ is equal to α = 1/r3

1. For all experiments, the number of ellipsoids
is N = 106 and r1 ≥ r2 ≥ r3 > 0. The ‘r1 KDE’ is the KDE [Parzen, 1962; Scott, 1979] obtained with the
values of r1 measured on the images of copepods labelled as top/bottom or side. See figs. 8.1 and 8.2 for the
illustrations of the PDFs.

An intuition for explaining the validity of this approximation is that V∗ and V are correlated,
since the estimated volumes are expected to ‘follow’ the real volumes. An extreme position
would be to consider a linear dependency V∗ = βV. In this case, eq. (8.5) is effectively an equality.
Then, if their correlation is high enough, eq. (8.5) should still be an appropriate approximation.

To conclude, the error on the total volume can safely be considered invariant to size normaliz-
ation. As a consequence, the randomly generated ellipsoids used to determine the total volume
correction factor (see sections 7.4 and 8.1 and, in particular, eq. (8.1)) can be generated with a
constant r1 = 1 and using only the PDFs of the ratios r2/r1 and r3/r1, like before (section 7.4.2).
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Figure 8.1 Histograms of r1 samples (normalized by their maximum) corresponding to the PDFs used in
the experiments (see table 8.1). Top left: Uniform; top right: Exponential; bottom left: Normal; bottom right:
KDE.
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Figure 8.2 Schematic view of the r1 PDFs (normalized by their maximum) used in the experiments (see
table 8.1).
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Let us remark that (i) it allows performing the simulation in a 2-d space only, and (ii) the compu-
tation of the correction factor does not require any assumptions on the r1 PDF. This last point is
crucial, meaning that the correction factor for the total volume can be computed and applied on
data sets with any r1 distributions, as long as the copepods proportions (i.e., axes ratios) remain
similar.

8.2 Experimental results with the UVP5-Cop dataset

With the axes ratio PDFs fitted to the manually selected data (section 7.4.2), we followed the
previous simulation procedure to generate a set of realistic ellipsoids, compute their projection,
compute their true and estimated volumes and finally compute the error of the total estimations
T∗, for both methods. We generated 108 ellipsoids in order to cover the shape and orientation
parameters space with a high enough resolution (see section 8.3 for a study of the influence of the
number of ellipsoids). Using eq. (8.1), we obtained TESD = 122% and TELL = 87%. In other words,
on average, MESD overestimated the true volume by 22% while MELL underestimated it by 13%.

Let us note that, as expected, TESD is higher than TELL, since we showed that the MESD volume
is always greater than or equal to the MELL volume (see section 5.5.2). Also, the correction factors
are simply computed as 1/TESD and 1/TELL.

As a main experimental result of this part of the thesis, we estimated the total volume of
the ∼150k copepods in the UVP5-Cop data set using a variety of approaches: (i) the MESD or
MELL method as computed originally by ZooProcess (noted ZP here), with an ellipse fit based
on the image mask, or using our improved method based on the mask of the copepod’s body
only (chapter 6), and (ii) before (Wu) and after (Wc) correction by the factors defined above. This
produce a total of eight estimations, presented in fig. 8.3 and table 8.2.

Method WESD [×105mm3 ] WELL [×105mm3 ] Gap [×105mm3 ]
Zooprocess (Wu

∗ ZP) 7.51 4.79 2.72
Zooprocess & correction (Wc

∗ ZP) 6.16 5.51 0.65
Proposed fit (Wu∗) 5.57 3.95 1.62

Proposed fit & correction (Wc∗) 4.57 4.54 0.03

Table 8.2 Overview of the total volumes estimations. The results of the two first rows were computed with
the State-Of-The-Art area estimation and ellipse fit by ZooProcess (ZP). The two last ones were computed
using the new procedure presented in chapter 6. The second and fourth rows are results after applying
the correction factors (Wc). The Gap column represents the absolute difference between the total volume
estimations with MESD and MELL.

In theory (i.e., copepods are ellipsoids, the imaging system has perfect lenses and infinite
resolution, surface measurements and ellipse fits are exact, the simulation parameters match
the reality, an infinite number of samples are generated), we should obtain exactly the same
total volume estimations with MESD and MELL after correction. Naturally, this is not the case in
practice, but we can assess the effectiveness of the proposed volume correction by checking how
the discrepancy between the MESD or MELL estimations decreases after applying the correction.
This gap is divided by 4 when using the ZooProcess measurements and by 54 when using our
improved versions. The fact that the corrected volumes (Wc

ESD and Wc
ELL) seem to converge is no

proof that either one is the truth, but it at least suggests that the proposed correction method
brings a significant improvement.

The effect of the improved area and ellipse measurement alone can also be gauged in the
same way. The discrepancy is divided by 2 when comparing Wu

∗ ZP and Wu
∗ (as seen in chapter 6),
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Figure 8.3 Total volume estimated by MESD (blue) or MELL (red) obtained by ZooProcess (ZP) and our
improved measures, uncorrected (Wu) or corrected (Wc). The discrepancies between the methods are
highlighted by dashed lines and annotated by the corresponding absolute differences. The proposed
correction drastically reduces these discrepancies.

and by 22 when comparing the corrected versions, Wc
∗ ZP and Wc

∗ . Overall, if we compare the
current state of the art (uncorrected total volumes obtained using ZooProcess) and the corrected
total volumes obtained using improved image processing, the discrepancy is divided by 91,
bringing the MESD and MELL estimations very close to each other.

8.3 Robustness of the method

This section aims at testing the robustness of the proposed method with respect to its parameters,
in the context of the previous experiment, i.e., with manual shapes measurements from the
UVP5-Cop data set and a uniform random ellipsoid orientation. For each experiment, we let one
of the parameters free to observe its influence on the correction factors.

8.3.1 Shape

In our data set, the distribution of semi-axes ratios was unimodal (see fig. 7.2). Nevertheless, the
proposed method can accommodate any distribution thanks to the use of the KDE approach [Par-
zen, 1962; Scott, 1979]. Thus, it is interesting to verify how the correction factors vary in a
multimodal scenario, for example when two populations of copepods with different shapes
are present. Figure 8.4 shows some examples of synthetic PDFs of r3/r1 for a mixture of two
body shape distributions with varying proportions, and the effect on the correction factors,
the other distributions (r2/r1 and body orientation) being fixed. The top-left panel represents
organisms with a round cross-section, that is to say r3 ∼ r2 (i.e., resembling copepods of the order
Calanoida). Therefore, we used the same distributions for r3/r1 and r2/r1: a Normal law with
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mean 0.41 and variance 0.0076 (values based on the fit to the UVP5-Cop data). The bottom-right
panel represents organisms with a flatter cross-section i.e., r3 ≪ r2 (i.e., like the copepods in
the order Harpacticoida). We used a Beta distribution of parameters a = 2 and b = 15. The
parameter α ∈ [0, 1] determines the proportions of samples from the two populations (α = 0:
100% of the samples are from the first population; α = 1: 100% are from the second one). The
computed correction factors increase with α, i.e., as the proportion of flatter organisms increases.
This is to be expected since the viewing angle has more consequences on the appearance of the
projection of the organism for these flattened shapes. This illustrates that the correction factors
strongly depend on community composition (and therefore on a correct modelling of the data).
In particular, the correction factors obtained in section 8.2 for the global UVP5-Cop data set
should not be used blindly on other data sets. Instead, the required PDFs should be estimated
from the data and the correction factors recomputed.

(a) (b)

α

Figure 8.4 (a) Distribution of r3/r1 for various mixtures of two subpopulations, from α = 0 (Normal
distribution fitted on the r2/r1 data of the UVP5-Cop data set), to α = 1, Beta distribution with parameters
a = 2 and b = 15. (b) The corresponding correction factors for N = 106 ellipsoids. The black dashed line
indicates a correction factor of one, i.e., no error.

8.3.2 Orientation

In our simulations, the orientation of copepods relative to the camera was considered uniformly
random. Nevertheless, with other imaging instruments, the orientation may not be uniformly
distributed (e.g., with scanners like the ZooScan or in-flow imagers such as the FlowCam, the
orientation of organisms relative to the imaging sensor is mechanically constrained). It is possible
to relax the uniformity assumption and check how the correction factors vary with different
degrees of constraint on the orientation.

Rotation can be performed around the x-axis of the copepod/ellipsoid (i.e., the length) and
determines whether we get a dorsal, side or ventral view (or something in-between); along the
y-axis (i.e., the width) and, in the case of the UVP5, this changes the vertical tilt of the organism;
and along the z-axis, normal to the view plane, which, in the case of the UVP5, changes the
‘cardinal’ orientation of the organism. In the simulations, rotation along the z-axis is set to the
identity (i.e., no rotation) since this does not influence the results at all; the x-axis rotation is
free and uniform in [0, π] (so that ρ2 ∈ [r3, r2]); and the y-axis rotation is uniform in the interval
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[0, θmax]: the higher θmax, the more the ellipsoid can rotate vertically. Figure 8.5 shows the
correction factors obtained. When θmax = 0, all copepods are aligned on a plane (a ‘ZooScan-like’

θmax

Figure 8.5 Evolution of the correction factors for varying ranges of allowed vertical rotation. The rotation
angle around the y-axis, θ, is restricted to the interval [0, θmax]. Each dot of the plots corresponds to a
simulation for a particular θmax. The black dashed line indicates a correction factor of one, i.e., no error.

scenario). When θmax = π/2, the results are the same as with a random, uniform distribution.
It is interesting to note that: (i) the correction factor for the MELL method is relatively stable,
while it varies more significantly for the MESD method; (ii) the variation among the different
orientation scenarios is much lower than for the different shapes (Figure 8.4).

8.3.3 Number of simulated ellipsoids

The number of ellipsoids generated in the simulation (N) only determines the precision of the
estimation of the correction factors. As a matter of fact, the estimation of the correction factors
tends to be perfect when N tends towards infinity. But the value of N still influences the duration
of simulations and the computing power required, so it is interesting to get an idea of its influence
on the variance of the computed factors. Thus, we performed several simulations with various
numbers of ellipsoids Ni = 10i, i ∈ {3, 4, 5, 6, 7}, lower than N = 108 used in section 8.2 (50 times
for each i). Figure 8.6 shows that the variance of the correction factors becomes negligible for
Ni ≥ 106.

8.4 Discussion

This chapter described an application to the UVP5-Cop data set of the procedure presented
in chapter 7 for correcting the error (due to the 3-d to 2-d projection) on the estimation of the
total volume of copepods. A potential weakness of this application is that the distributions of
semi-axes ratios were estimated from a relatively small number of images (<300 for each). Since
identifying copepods in a given orientation is very time-consuming, a useful alternative would
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(a)

i
(b)

i

Figure 8.6 Corrections factors ((a) MESD, (b) MELL) for Ni = 10i, i ∈ {3, 4, 5, 6, 7}. For each i, we computed
the correction factors 50 times. The blue (red) line is the mean factor for the MESD (MELL) method. The
boxes and whiskers are drawn according to Tukey’s definition [McGill et al., 1978].
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be to use a classifier that could automatically identify copepods seen from above or from the side
within the total data set. Copepods were isolated from other organisms through a combination
of machine learning and human classification. The same tools were used to optimize a custom
classifier for side vs. top/bottom vs. other angle copepods. While it accelerated the collection
of the examples in the sample sets, it did not achieve great accuracy, largely because of the
overwhelming dominance of copepods seen from ‘other angles’.

The other assumption was in the choice of a uniform orientation distribution. While copepods
in a given environment may orient themselves in a particular manner, vertically towards the
surface for example [Benfield et al., 2000], quantitative information on such behaviour is very
scarce. However, it is very likely to change with location, depth, time of day, organism age,
condition, etc. Since our data set contains >150k organisms of various sizes, from different
locations, depths and dates, assuming a uniform distribution overall was the only possible
choice and likely reflects the reality. Still, to gauge the influence of the orientation distribution
for applications to other, more restricted, data sets, we designed simulations in a non-uniform
scenario and the influence on the correction factor proved to be limited (see section 8.3.2). In
situ instruments that do not disturb the water and image in three dimensions (e.g., through
holography) are the only viable solution to yield quantitative information on orientation, from
which an estimation of the PDF of the orientation angles could be performed. Such instruments
are, unfortunately, very scarcely used. Other alternatives would be to use realistic 3-d models of
copepods, generate 2-d views from them, and optimize either an image-to-orientation regressor
(to directly predict the orientation) or an augmented auto-encoder convolutional neural network
(to access the orientation encoded in the central part of the network, e.g., see Sundermeyer et al.
[2018]). Nevertheless, those ‘learning-based’ methods strongly rely on a ‘training’ data set of
synthetic images, and, by extension, on prior knowledge on the organisms’ shape and on the
acquisition system, many of which are not available for plankton imaging instruments.



Chapter 9

Insight on the error on Normalized Bio-volume Size Spectra

Key points – NBSS of simulated volumes of copepods

1. The NBSS is based on volume estimations.

2. We discuss the influence of the organism’s projection for NBSS measurements.

Contributions

3. Estimation of the distribution of the major semi-axis r1.

4. Simulation of absolute-size ellipsoids.

5. Error on the estimated NBSSs.
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9.1 Introduction

Plankton images are often used to estimate the size of organisms and, in particular, to compute
Normalized Bio-volume Size Spectra (NBSS). It is the histogram of the logarithm of the volumes,
and each count is normalized by the width of its bin [Kerr and Dickie, 2001]. The slope of these
spectra is a proxy for the efficacy of the energy transfer from small to large organisms within an
ecosystem [Sprules and Barth, 2016]. An NBSS obviously depends on the measurement of the
volume of the organisms it encompasses and, therefore, its slope may be affected by the error in
the volume estimation due to the 3-d to 2-d projection. We will test this through a simulation
procedure, similar to the one described in chapter 7, and compare the NBSS and the slope values
computed from the volumes of randomly generated ellipsoids (considered as the true value) to
that derived from estimations of volume from their projections using MESD and MELL .

Since the NBSS depends on absolute sizes, the simulator based on size-normalized ellipsoids,
defined by r1 = 1 and two semi-axes ratios (see details in chapters 7 and 8), must be modified
to use directly r1, r2, and r3, although this is a less favourable statistical context (see section
section 7.4). As mentioned previously, the distributions of r1, r2, and r3 can be defined from the
literature or estimated from measurements.

9.2 Method for estimating the major semi-axes r1 distribution

As explained above, computing a NBSS relies on absolute volumes and the distributions of
the three semi-axes (r1, r2, and r3) are the main parameters. They could have been estimated
directly on the 295 + 265 samples used to estimate the distributions of ratios above. However, the
distribution of r1 for the 295 copepods viewed from the side shows a bias towards larger sizes,
because it is difficult to tell whether a copepod is indeed viewed from its side when it is small
(see appendix F). This bias has limited influence on the estimation of the distributions of the
ratios, r2/r1 and r3/r1 (used in chapters 7 and 8), since the both relationships r1 vs. r2 and r1 vs.
r3 are fairly linear (fig. F.2). Here, we propose a method for estimating the distribution of r1 that
relies on one strong hypothesis: the expectation for the major semi-axis distribution is an exponential
decay P(r1) = λ exp(−λr1) (see Sprules and Barth [2016]). The simulation of an ellipsoid now
relies on the observation of r2 and r3, and on the inference of the r1 distribution (parametrized by
parameter λ). With the simulator and the volume data at hand, i.e., the volumes measurements
with MESD and MELL on the UVP5-Cop images, we propose to define λ by comparing the
observed volume estimations Wu

⋆ with the simulated ones, noted Ws
⋆ (here ⋆ is either ESD or

ELL). We use an absolute difference of their mean, one for each estimation method. Hence,
we search for the exponential law of parameter λ that minimize the absolute difference of the
estimated volumes (observed and simulated)

λ∗ = arg min
λ

| 1
P

Wu
⋆ − 1

N
Ws

⋆(λ)|, (9.1)

with P the number of copepods images (observations) and N the number of simulated ellipsoids.
Note that, in this chapter, the subscript ⋆ denotes the use of either MESD or MELL, while the
superscript ∗ denotes optimality.
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9.3 Experiment

With 100 test-values of λ, we compute the mean volume across N = 105 simulated ellipsoids, as
well as the estimations with both MESD and MELL from the projections of the ellipsoids. For each
test-value of λ, the major semi-axes r1 are drawn from the corresponding exponential distribution
(note, the minimum value of r1 is set to 1 mm, i.e., the distribution is truncated according to the
detection limit of the UVP5 camera1) and the others axes ratios are first sampled according to
the previous procedure (axes ratios in chapter 7) and then multiplied by the corresponding (just
drawn) semi-major axis r1.

We computed the absolute difference for 100 different λ values, defined with a linear range.
The extremal values are λ = 0.1 and λ = 2. In logarithm scale, the exponential decay is of
affine form −λr1 + log λ, with −λ the slope and log λ the intercept. A representation of the
slopes is shown in fig. 9.1 for the extremal values and λ∗, the one that minimizes the absolute
difference among(eq. (9.1)) for both MESD and MELL, among the tested values. The black solid
line shows the fit of the histogram of the projected semi-axis P(ρ1) measured from the images
(orange squares), as a reference. The slope of the distribution of r1 is expected to be less steep
than the one of ρ1 since ρ1 ≤ r1. The evolution of the absolute differences (for both MESD and
MELL) are given in fig. 9.2. The tested value that minimize the absolute difference (eq. (9.1)) is
λ∗ = 0.43, for both methods. Note that, even if the figure suggests that λ∗ = 0.43 is a reasonable
choice, there is no evidence that eq. (9.1) have a unique solution.
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Figure 9.1 Histogram of the major semi-axes ρ1 (measured as in chapter 6) of the UVP5-Cop dataset,
represented as orange squares. The coloured dashed, dotted or both are representations of the exponential
distributions of r1 for the minimum, the maximum and the optimal parameter (see legend); only the slope
is meaningful here, the intercepts have been chosen to improve the reading. Note the logarithmic scale.
The x-axis is the lenght of ρ1 and r1.

A set of 107 ellipsoids was generated with the optimal value λ∗ (i.e., values of r1 are drawn
from an exponential distribution of parameter λ∗ = 0.43). The ellipsoid volumes are used
to compute the simulated ground-truth NBSS. Each ellipsoid is also projected, its volume is

1the detection limit is ∼ 1 mm, which explain the decrease of the histogram for ρ1 < 1 mm in fig. 9.1
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estimated with both MESD and MELL, and the corresponding NBSS are computed (see fig. 9.3). In
all three cases, the bin size is 0.1 mm3 in log space. To assess whether the two volume estimation
methods influence the estimation of the efficacy of the energy transfer in ecosystems, the slopes
of a linear fit to each NBSS in the interval [2.7, 20.1] mm3 (or [1.7, 3.4] mm ESD) were computed
(see fig. 9.3).

The ground-truth NBSS was between the MELL and MESD estimations. More importantly, the
three slopes were very close to each other: -1.3 for the ground-truth vs. -1.2 for MESD and -1.3
for MELL. To compare this with the range of natural variability in the data set, we computed
the NBSS from images collected in polar (absolute value of latitude in [60◦,90◦]) and temperate
(absolute value of the latitude in [20◦,40◦]) regions, between 0 and 150 m depth. The mode of
energy transfer is expected to be very different between these two ecosystems, and indeed, the
slopes of these NBSS were -0.7 (polar) and -1.4 (temperate) with MESD and -0.7 and -1.6 with
MELL. The amplitude of natural variability is much larger than the variability induced by the
volume estimation method. Therefore, despite the errors the estimation methods induce on
individual volume (fig. 5.5), both MESD and MELL seem to be valid approaches to compute the
NBSS and to infer the energy transfer efficiency through a linear fit. Let us remark that, if a
choice between both methods was necessary, the NBSS estimated with MELL would be preferable
since it follows the ground-truth NBSS slightly better (see fig. 9.3).

The experiment presented here is based on the simulation of ellipsoids and their projections
(as defined in chapter 7). A main difference with the application in chapter 8 is the relaxation
of the size normalization. This allows to access to the distribution of the absolute (as opposed
to size normalized) simulated volumes, which is necessary to compute the NBSS. In addition,
it can be used to estimate the mean individual copepod volume (according to the simulation
parameters) which provides a new total volume estimation method, by simply multiplying the
mean value with the observed absolute number of copepods. The mean volume obtained from
the simulation used in this chapter is V̄=2.88 mm3, it corresponds to a total of W = 4.49 × 105

mm3 for 155,945 copepods, which is in line with the previous results in chapter 8 (4.57 × 105
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Figure 9.3 Simulated NBSSs: ground-truth (GT) in black; estimation from MELL (resp. MESD) in red (resp.
blue). The x-axis is given in volume (mm3) but also in ESD (mm) for comparability with other work. The
dashed lines show the linear fits (which are offset vertically for improved readability.

for MESD and 4.54 × 105 for MELL). Nevertheless, for the total volume estimation, the previous
method is preferred since it relies only on two distributions of the axis-ratios rather than three
distributions of the absolute axes here.





Chapter 10

Conclusion

The study of the plankton organisms is of primary interest for our understanding of marine
ecosystems machinery and the large biogeochemical fluxes in the ocean. The organisms move
with the water mass in which they are embedded in, making them accurate markers of local
aquatic environments. They are relatively small (even if their size spectrum is wide) but extremely
abundant. Hence, they feed the ocean animals and the sum of their individual contributions
have a strong impact on the climate regulation, through the biological carbon pump. Plankton
ecology aims at studying their interactions, with themselves and with their environment. For
this purpose, the work of marine ecologists partly rely on the observation of the planktonic
organisms. Those are not visible to the naked eye (at least the majority of them). This is why the
developments of digital imaging systems (from microscope in the lab to specific video cameras in
the ocean), has been a tipping point in the understanding of the marine ecosystems. It facilitated
the taxonomic classification and led to the discovery of new taxa. Moreover, it paved the way for
the study of functional traits, among which the size stands out. In particular, the elaboration
of in situ imaging instruments enabled to shed light on them directly in their environment.
Such technical improvements led to the acquisition of millions of images across the world.
Their manual analysis is time-consuming due to their number. Therefore, the development
of automated image processing methods has been critical. Although such approaches could
be much faster than a human relying on the computational power of computers, they have
limited performances compared to the human intelligence. In particular, the classification of
the organism images is a challenging task. The introduction of the Artificial Neural Networks
(ANNs) and, in particular, the Convolutional Neural Networks (CNNs), has been a breakthrough
for this purpose. In particular, their optimization using directly the images, as opposed to hand-
crafted image features, is a major strength. Those facilitate the identification of rare plankton taxa,
bringing the classification of plankton images to unprecedented levels of accuracy. On the other
hand, the predictions of such methods are not yet clearly explainable. This can be restrictive
in practice, since ecologists need reliable and trustworthy models. They also use standard
classification models on image features extracted with CNNs in practice. This procedure takes
advantages of both side as it is based on optimized features and trustable classifiers.

In the first part of this thesis, we proposed a method of classification inspired by a ANN
procedure, but with a simple and interpretable sample transformation. First, we noted that the
classification decision of ANNs is given by the Nearest Target (NT) classifier on the transformed
samples, with one target per class. Hence, we studied the influence of the position of the target
in our simple framework and conjectured that taking equidistant targets fulfilled an optimality
criterion. Second, we demonstrated that the resulting classifier with this choice of targets is a
Weigthed-Nearest-Neighbours (WNN) classifier. From this result, we highlighted the existence
of a kernel associated to the WNN, that we called a ‘nearest-neighbour kernel’. The existence of
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an optimal targets choice in the sense of the misclassification risk is rather unclear. Alternatively,
one would consider the imbalance of the number of samples per class in our development. In
practice, we proposed a modern implementation of the WNN classifier, and we show it can
produce accurate results on two reference plankton images data sets, one of collected samples
and another, more challenging, of in situ observations. We highlighted the advantages and
limitations of the proposed implementation compared to a classifier commonly used by the
community, namely a Random Forest (RF). Additionally, we showed that the proposed kernel
can be used with linear classifiers as Support Vector Machines (SVMs). Finally, other definitions
of the sample weights might be explored, in particular inspired from dimension reduction
techniques.

In the second part, we focused on one of the most abundant taxonomic group, the copepods.
We tackled their volume estimations from in situ 2-d images. We highlighted the limitations of
two standard methods used in the literature. Furthermore, we found two main sources of errors
and proposed to correct them. First, the copepods antennas can affect the volume estimations.
Hence, we proposed a method for selecting the copepods prosome only i.e., without the antennas.
Second, the projection of the prosome on the image plane make it impossible to estimate the true
volume. We tackled the estimation of the total volume of the copepods based on an ellipsoidal
model. With its exact projection onto a plane, we were able to simulate a set of realistic ellipsoids
and their projection. From those, we measured the error made for the total volume estimation
of the set with the two standard methods. The result is that one overestimate the total volume
by ∼ 20% and the other underestimate it by ∼ 10%. Our result relies on two core parameters:
the distributions of shape of the copepods and the distribution of their orientation. Concerning
the former, we used manual measurements on a hundred of axis-aligned views of copepods. A
major improvement would be to estimate the axis distributions on more data to have a more
precise estimations of the distributions. Regarding the orientation, we made the hypothesis
of a uniform distribution. In the absence of any priors on the orientation of the copepods at
the global scale, this is the default assumptions i.e., there is no clear evidence to put forward
a particular orientation. Obviously, estimations of the orientation of the copepods at global
scale could give a hint on our hypothesis relevance. Moreover, our model can adapt to other
distributions. Hence, the estimation of the distribution of the orientation could be taken into
account. As an application, from these simulated global errors, we derived two corrections
factors and applied them to correct the total volume estimations of the copepods from images
of the Underwater Vision Profiler 5 (UVP5) in situ camera. While we observed a significant
decrease of the gap between the two standard estimations by applying the corrections, there is
no evidence that the resulting estimation is close to the ground truth, as it is unknown. Therefore,
the development of an experimental set-up with a ground truth would be benefic to assess the
quality of correction method. Additionally, we showed that the simulator developed for the total
volume correction can be used for other applications. In particular, it was used to show that the
Normalized Bio-volume Size Spectra (NBSS) computed from individual volumes estimations on
2-d images is accurate for this data set.

To conclude, we addressed in this thesis the automatic classification of plankton images and
the estimation of the total volume of copepods from in situ 2-d images. We developed new
methods and demonstrated their performances in real applications cases.



Appendix A

Proposed classifier: development details

A.1 General notations

• The terms ‘positive’ and ‘negative’ are used in their strict, ‘not including zero’ sense. To
include zero, ‘non-negative’ and ‘non-positive’ are used, respectively.

• [1..n] is the set of integers from 1 to n.

• Card(S) is the cardinal of the set S.

• 0d and 1d are the vectors of zeros and ones in dimension d.

• Id is the d×d-identity matrix.

• v[i] is the ith component of the vector v.

• M[i, j] is the element of the matrix M at the intersection between the ith row and the jth
column. Replacing i, respectively j, with ‘:’ denotes the jth column, respectively ith row.

• Tr(M) is the trace of the square matrix M.

• Vecd
i=1(αi) is the vector of components αi for i ∈ [1..d].

• Diagd
i=1(αi) is the diagonal matrix obtained by placing αi along the diagonal for i ∈ [1..d].

• Diagn(x) is the block diagonal matrix obtained by repeating n times x along the diagonal.

• M□ is the matrix used to build the block diagonal matrix M, that is M = Diagn(M□).
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A.2 Expression of Ai,k

As a reminder (see eqs. (2.85) and (2.86)),

Ai,k =
p

∑
l=1

(wc
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l (i)w

c
m(i)(Tl − Tk) · (Tm − Tk),

(A.1)

and

(Tl − Tk) · (Tm − Tk) =

{
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. (A.2)

Then,
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Next,
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Finally,
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A.3 Expression of Q□

From eqs. (2.74), (2.75) and (2.81), we can define

Ai
□⊤ = CΩsen

i , (A.12)

Bk
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k , and (A.13)
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For clarity, the □ symbol will be dropped temporarily. We have
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So finally (mentioning the □ symbol again),

Q□ = CΩsΩs⊤C⊤ + CC⊤ − CΩs⊤C⊤ − CΩsC⊤ (A.24)
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A.4 Expression of F for equidistant targets

As a reminder (see eq. (2.84) and Appendix A.2),
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A.5 F is convex (but not strictly convex)

Although, the convexity of F is not used in the development, it is shown here as this is nonetheless
related to minimization.

Since F is a quadratic form in U defined by a matrix Q (see Claim 9), it is convex if and only
if Q is positive semi-definite, which can be proved by checking that U⊤QU ≥ 0 for any U. This
is granted by the definition (2.68) of F.

Note, however, that F is not strictly convex. Indeed, remembering that ui is a weighted sum
of the targets with the weights summing to one (see its definition based on eq. (2.10)), it is clear
that F is equal to zero whenever the targets are identical. So there exists U not equal to 0pe such
that U⊤QU = 0.
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A.6 Infinite γ with the Inverse Function as Weight

Let x be a sample not in the learning set. If the weighting function is defined as follows

∀xi, i ∈ [1..n], wrad(γ|x − xi|) =
1

1 + γ|x − xi|
, (A.32)

then
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Therefore,
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Let us make two remarks. First, we have

lim
γ→+∞

ws
i (x)

ws
j (x)

=
|x − xj|
|x − xi|

, (A.35)

so the ratio between the weights associated to two learning samples simply tends toward a
distance-to-learning-sample ratio.

Second, far away from the learning samples, all the distances from x to the learning samples
tend to be equal. So the weight ws

j (x) tends to 1/n. Hence, the samples away from the learning
set are transformed into a common point, so that the proposed classifier is unusable.
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Feature from Zooprocess
Name Description Remark
area Surface area of the object in square pixels
meanpos Average grey value within the object; sum of the grey values of all pixels in the object divided by the number of pixels
stddev Standard deviation of the grey value used to generate the mean grey value
mode Modal grey value within the object
Minor Minimum grey value within the object (0 = black)
max Maximum grey value within the object (255 = white)
x X position of the center of gravity of the object in the smallest rectangle enclosing the object
y Y position of the center of gravity of the object in the smallest rectangle enclosing the object
xstart X coordinate of the top left point of the image in the smallest rectangle enclosing the object
ystart Y coordinate of the top left point of the image in the smallest rectangle enclosing the object
XMg5 X position of the center of gravity of the object’s grey level in the smallest rectangle enclosing the object
YMg5 Y position of the center of gravity of the object’s grey level in the smallest rectangle enclosing the object
xmg5 X position of the center of gravity of the object, using a gamma value of 5
ymg5 Y position of the center of gravity of the object, using a gamma value of 5
bx X coordinate of the top left point of the smallest rectangle enclosing the object
by Y coordinate of the top left point of the smallest rectangle enclosing the object
width Width of the smallest rectangle enclosing the object
height Height of the smallest rectangle enclosing the object
perim The length of the outside boundary of the object
major Primary axis of the best fitting ellipse for the object
minor Secondary axis of the best fitting ellipse for the object
angle Angle between the primary axis and a line parallel to the x-axis of the image
circ Circularity = (4 * Pi * Area) / Perim2) ; a value of 1 indicates a perfect circle, a value approaching 0 indicates an increasingly elongated polygon
feret Maximum feret diameter, i.e., the longest distance between any two points along the object boundary
intden Integrated density. This is the sum of the grey values of the pixels in the object (i.e. = Area*Mean)
median Median grey value within the object 
skew Skewness of the histogram of grey level values
kurt Kurtosis of the histogram of grey level values 
%area Zooscan, FlowCam and Generic : Percentage of object’s surface area that is comprised of holes, defined as the background grey level 

UVP5 and UVP6 : 1 - Percentage of object’s surface area that is comprised of holes, defined as the background grey level 
area_exc Zooscan, FlowCam and Generic : Surface area of the object excluding holes, in square pixels (=Area*(1-(%area/100))

UVP5 and UVP6 : Surface area of the holes in the object, in square pixels (=Area*(1-(%area/100))
fractal Fractal dimension of object boundary (Berube and Jebrak 1999)
skelarea Surface area of skeleton in pixels.  In a binary image, skeleton is obtained by repeatedly removing pixels from the edges of objects until they are reduced 

to the width of a single pixel.
slope Slope of the grey level normalized cumulative histogram
histcum1 Grey level value at the first quartile of the normalized cumulative histogram of grey levels
histcum2 Grey level value at the second quartile of the normalized cumulative histogram of grey levels
histcum3 Grey level value at the third quartile of the normalized cumulative histogram of grey levels
nb1 Number of remaining objects in the image after thresholding on level Histcum1
nb2 Number of remaining objects in the image after thresholding on level Histcum2
nb3 Number of remaining objects in the image after thresholding on level Histcum3
symetrieh Bilateral horizontal symmetry index
symetriev Bilateral vertical symmetry index
symetriehc Symmetry of the largest remaining object in relation to the horizontal axis after thresholding at the grey level Histcum1 value
symetrievc Symmetry of the largest remaining object in relation to the vertical axis after thresholding at the grey level Histcum1 value
convperim The perimeter of the smallest polygon within which all points in the object fit
convarea The area of the smallest polygon within which all points in the object fit
fcons Measure of contrast based in the texture feature descriptor (Amadasun and King, 1989)
thickr Thickness ratio : relation between the maximum thickness of an object and the averag thickness of the object excluding the maximum
tag no more utilized
esd Equivalent Spherical Diameter
elongation major / minor
range max - min
meanpos (mean-max) / (mean-min)
centroids sqrt(pow(xm-x,2)+ pow(ym-y,2))
cv 100*(stddev/mean)
sr 100*(stddev/(max-min))
perimareaexc perim/(sqrt(area_exc))
feretareaexc feret/(sqrt(area_exc))
perimmajor perim/major
perimferet perim/feret
circex (4*PI*area_exc)/(pow(perim,2))
cdexc (1/(sqrt(area_exc))) * sqrt(pow(xm-x,2)+pow(ym-y,2)

Figure B.1 List of all the Zooprocess features and their definition, original file from https://sites.google.
com/view/piqv/softwares/flowcamzooscan

https://sites.google.com/view/piqv/softwares/flowcamzooscan
https://sites.google.com/view/piqv/softwares/flowcamzooscan
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Feature name Zooscan UVP5-HD
area × ×

mean × ×
stddev × ×
mode × ×
min × ×
max × ×

perim. × ×
width × ×
height × ×
major × ×
minor × ×
circ. × ×
feret × ×

intden × ×
median × ×

skew × ×
kurt × ×

% area × ×
exc × ×

fractal × ×
skelarea × ×

slope × ×
histcum1 × ×
histcum2 × ×
histcum3 × ×

nb1 × ×
nb2 × ×

symetrieh × ×
symetriev × ×
symetriehc × ×
symetrievc × ×
convperim × ×
convarea × ×

fcons × ×
thickr × ×

esd × ×
elongation × ×

range × ×
centroids × ×

sr × ×
perimareaexc ×
feretareaexc ×
perimferet × ×

perimmajor × ×
circex × ×
cdexc ×

Table B.1 List of the Zooprocess features used for the experiemnts of chapter 4.
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Additional figures

The numerical version of this appendix document is recommended for accurate reading of the
figures.

C.1 Experiment: Influence of targets’ definition on classification

This section gives details and additional figures about the experiment on the influence of the
targets’ definition on the classification, see section 2.5.3.

The n = 900 learning samples used for the experiment are shown on fig. C.1. The m = 900
test samples used to compute the empirical risk are drawn from the same distributions. Let us
remind that the transformation is computed for fixed parameter γ = 100 (γi = γ ∀i ∈ [1..n]). On
the other hand, for each iteration of the experiment, among 1000, the targets are drawn from a
uniform distribution (in the range [0, 1]× [0, 1]). The results of the experiment, i.e., the empirical
risk as a function of the absolute difference between the extrema of the target triangle angles
(ϕ, θ, ψ, in degrees) with the empirical risk, are given on fig. C.2. As mentioned in the main
text (section 2.5.3), we observe that the lowest values of the empirical risk are obtained for low
differences between the extreme angles, i.e., for equidistant targets and configurations close to
it. This is in accordance with the Conjecture 2.2. Figures C.3 and C.4 present configurations of
targets for small and large values of empirical risk.
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Figure C.1 Learning samples, each colour represents a class. The ‘moon distributions’ were used.
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Figure C.2 Result of the experiment. Same as fig. 2.3.
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Figure C.3 Representation of the ten target sets (dots) that returned small empirical risks over the test set
(better classification). Each colour represent a set of targets. Lines between targets have been added, and
each target set has been translated to improve the reading of the figure.
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Figure C.4 Representation of the ten target sets (dots) that returned large empirical risks over the test set
(worst classification). Each colour represent a set of targets. Lines between targets have been added to
improve the reading of the figure.

C.2 Parameter γi with t-SNE

Figure C.5 Each dot is a sample, the colour gives the value of γi, i ∈ [1 · · · n], computed with the t-SNE
method [Van der Maaten and Hinton, 2008].
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C.3 CIFAR-10

C.3.1 d=100 features
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Figure C.6 k-NN classification, for d = 100. Evolution of the ACC with respect to the number of neighbours
k, all predictions from 1 to 300.

0 50 100 150 200 250 300

k

0.78

0.79

0.80

0.81

0.82

CVloo ACC

Figure C.7 W-k-NN classification, for d = 100. Evolution of the ACC with respect to the number of
neighbours k, all predictions from 1 to 300.

C.3.2 All features (d=1000)
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Figure C.8 k-NN classification, for d = 1000 (all extracted features). Evolution of the ACC with respect to
the number of neighbours k, all predictions from 1 to 300.
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Figure C.9 W-k-NN classification, for d = 1000 (all extracted features). Evolution of the ACC with respect
to the number of neighbours k, all predictions from 1 to 300.

C.4 Zooscan data set
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Figure C.10 Normalized (by the number of element per class) confusion matrix of the W-k-NN predictions on
the test set, based on the deep-features extracted from a fine-tuned CNN (d = 10, see details in section 4.2.3).
The number of neighbours is k∗ = 110. The classes are organized from the less represented to the more
represented (see fig. 4.2). Note the proportion of detritus correctly classified (the last pixel on the bottom
right) is low.
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Figure C.11 Recall (number of samples correctly classified in a class, relative to the number of elements
in that class) of the W-k-NN predictions on the ZooScanNet test set, based on the deep-features extracted
from a fine-tuned CNN (d = 10, see details in section 4.2.3). The number of neighbours is k∗ = 110. The
classes are organized from the less represented to the more represented (see fig. 4.2). Note the proportion of
detritus correctly classified is low.
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C.5 UVP5-HD data set

C
ep

ha
lo

po
da

G
ym

no
so

m
at

a
Ac

tin
op

te
ry

gi
i

Sa
lp

id
a

N
ar

co
m

ed
us

ae
Th

ec
os

om
at

a_
ca

vo
_o

r_
cr

es
ei

s
Py

ro
so

m
a

Tr
ic

ho
de

sm
iu

m
C

ru
st

ac
ea

_o
th

er
s

to
_r

en
am

e
∗

M
ol

lu
sc

a_
ot

he
rs

C
ol

lo
da

ri
a_

ot
he

rs
∗

Fo
ra

m
in

ife
ra

C
ol

lo
da

ri
a_

co
lo

ni
al

∗

D
ol

io
lid

a
C

ni
da

ri
a_

ot
he

rs
R

hi
za

ri
a_

ot
he

rs
Li

m
ac

in
id

ae
An

ne
lid

a
C

te
no

ph
or

a
H

yd
ro

zo
a_

ot
he

rs
C

ha
et

og
na

th
a

Si
ph

on
op

ho
ra

e
bu

bb
le

∗

m
is

c
Ap

pe
nd

ic
ul

ar
ia

E
um

al
ac

os
tr

ac
a

Ac
an

th
ar

ea
O

st
ra

co
da

to
_r

es
or

t∗
tu

rb
id

∗

Ph
ae

od
ar

ia
∗

C
op

ep
od

a
ar

te
fa

ct
∗

de
tr

itu
s∗

Predicted

Cephalopoda
Gymnosomata
Actinopterygii

Salpida
Narcomedusae

Thecosomata_cavo_or_creseis
Pyrosoma

Trichodesmium
Crustacea_others

to_rename ∗

Mollusca_others
Collodaria_others ∗

Foraminifera
Collodaria_colonial ∗

Doliolida
Cnidaria_others
Rhizaria_others

Limacinidae
Annelida

Ctenophora
Hydrozoa_others

Chaetognatha
Siphonophorae

bubble ∗

misc
Appendicularia

Eumalacostraca
Acantharea
Ostracoda
to_resort ∗

turbid ∗

Phaeodaria ∗

Copepoda
artefact ∗
detritus ∗

Tr
ue

0.0

0.2

0.4

0.6

0.8

1.0

Figure C.12 Normalized (by the number of element per class) confusion matrix of the W-k-NN predictions
on the test set, based on the deep-features extracted from a fine-tuned CNN, for the UVP5-HD data set
(d = 10, see details in section 4.3.2). The number of neighbours is k∗ = 580. The classes are organized from
the less represented to the more represented (see fig. 4.5).



C.5 UVP5-HD data set 121

0.0 0.2 0.4 0.6 0.8 1.0

Cephalopoda

Gymnosomata

Actinopterygii

Salpida

Narcomedusae

Thecosomata_cavo_or_creseis

Pyrosoma

Trichodesmium

Crustacea_others

to_rename∗

Mollusca_others

Collodaria_others∗

Foraminifera

Collodaria_colonial∗

Doliolida

Cnidaria_others

Rhizaria_others

Limacinidae

Annelida

Ctenophora

Hydrozoa_others

Chaetognatha

Siphonophorae

bubble∗

misc

Appendicularia

Eumalacostraca

Acantharea

Ostracoda

to_resort∗

turbid∗

Phaeodaria∗

Copepoda

artefact∗

detritus∗

W-k-NN
RF

Figure C.13 Recall score (number of samples correctly classified in a class, relative to the number of elements
in that class) for the classification of the test set based on the first 10 components of the deep-features with
the W-k-NN (k∗ = 580) for the UVP5-HD data set.
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C.6 UVP5-HD Copepods

Figure C.14 is a 2-d histogram of 2 dimensions of the samples (among 10, see details in sec-
tions 4.2.3 and 4.3.3) of the UVP5-HD data set. The final image is a superposition of two
2-d histograms. One in green for the non-copepod samples, and another one in red for the cope-
pod samples. For both, the colour represents the true relative density (i.e., density for each class),
black indicates zero density. Figure C.15 is the same, but the two colours are for the predicted
labels, as opposed to the true labels for fig. C.14. With both figures, we can conjecture that the
classifier tends to over-predict non-copepod samples as copepod, which is in accordance with
the high values of recall and low values of precision obtained for the copepods (see section 4.3.3).
Note that the same figures with the absolute density would be more useful to conclude, but, due
to the high class imbalance, the copepods (red) would not be visible.

Figure C.14 2d-histogram of 2 dimensions of the samples. Colour intensity represent the relative density ;
red for copepod samples and green for non-copepod samples.
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Figure C.15 2d-histogram of 2 dimensions of the samples. Colour intensity represent the relative density ;
red for samples predicted as copepod and green for samples predicted as non-copepod.





Appendix D

Projection of an ellipsoid: Development details

This appendix aims at giving details for the reading of chapter 7.

D.1 Axes-align ellipsoid

An ellipsoid centred on the origin is composed of the ensemble of 3-d points x verifying

x⊺Mx = 1 (D.1)

where M is a real, symmetric, positive definite, 3×3-matrix whose elements are denoted by mij.
The volume of the ellipsoid is defined by

V =
4
3

π√
det(M)

. (D.2)

Matrix M encodes the overall size, shape (semi-axes ratios) and orientation of the ellipsoid. It
can be written using a block matrix notation

M =

[
M11 M⊺

21
M21 m33

]
(D.3)

where m33 is a scalar (the dimensions of the other terms follow). If the ellipsoid is aligned on the
axes of the coordinate system, then its form is

M =

1/r2
1 0 0

0 1/r2
2 0

0 0 1/r2
3

 (D.4)

where the ri’s are the semi-axes.

D.2 Deriving Sϵ

To propose a more explicit form of Sϵ, let us use the following block matrix formulation

M =

[
M11 M⊺

21
M21 m33

]
(D.5)

where M11 is a 2 × 2-matrix, M21 is a 1 × 2-vector, and m33 is a scalar. Using such a block
formulation, we have

e e⊺ =

[
011 0⊺21
021 ϵ2

]
(D.6)
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where 0ij denotes a matrix of zeros matching the dimension of Mij.
Then

Me e⊺M = ϵ2
[

M⊺
21M21 m33M⊺

21
m33M21 m2

33

]
. (D.7)

Similarly
e⊺Me = ϵ2m33. (D.8)

Therefore

Sϵ =

[
M⊺

21M21 m33M⊺
21

m33M21 m2
33

]
−
(

m33 −
1
ϵ2

)
M (D.9)

=

[
M⊺

21M21 − m′
33M11 (m33 − m′

33)M⊺
21

(m33 − m′
33)M21 (m33 − m′

33)m33

]
(D.10)

where m′
33 is defined as

m′
33 = m33 −

1
ϵ2 . (D.11)

So finally

Sϵ =

[
M⊺

21M21 − m′
33M11 (1/ϵ2)M⊺

21
(1/ϵ2)M21 (1/ϵ2)m33

]
. (D.12)

D.3 Semi-axes for perspective projection

Let λ1 and λ2 be the two (positive) eigenvalues of P, λ1 ≤ λ2. Then the semi-minor and
semi-major axes of the ellipse defined by eq. (7.21) are

ρi =

√
r − Qc/2

λi
, i ∈ {1, 2}. (D.13)

Gathering everything together, ρi can be rewritten in terms of M as follows

r = −(1 − δ/ϵ)2m33, (D.14)

Q = 2
ϵ − δ

ϵ2 M21, (D.15)

P = M⊺
21M21 −

(
m33 −

1
ϵ2

)
M11, (D.16)

c = −P−1Q⊺/2, (D.17)

λi = (tr(P) + σi
√

∆)/2, (D.18)

|σi| = 1 and σ1σ2 = −1, (D.19)

∆ = tr(P)2 − 4 det(P) (D.20)

where tr(P) is the trace of P, det(P) is its determinant, and the σi’s are chosen so that ρ1 ≥ ρ2.
For a parallel projection (i.e., ϵ = ∞), the semi-minor and semi-major axes have the following

simpler expression

ρi =

√
m33

λi
, i ∈ {1, 2} (D.21)

with
P = m33M11 − M⊺

21M21, (D.22)

while λi, σi, and ∆ are unchanged. Note that δ no longer appears in the equations.



Appendix E

The proposed method, step-by-step

This section gathers the results of the different sections into a step-by-step procedure for es-
timating the total volume of copepods given a data set of 2-D views. It is composed of two
stages: a learning stage which has to be performed once for all, or whenever the expert thinks
the proposed simulation procedure must be adapted to the data, and a “usage” stage which can
be applied at will.

E.1 Learning stage

1. Generate random ellipsoid samples that realistically represent a generic population of
copepods, or a population following some characteristics inferred from the data set. The
randomness must be constrained by the expert knowledge in the form of specific simulation
parameters.

2. Compute the total volume of the ellipsoid samples. This represents the true total volume.
See eqs. (8.1) and (D.2).

3. For each ellipsoid sample, compute the projection ellipse (see eq. (7.22)) and the estimated
volume using either the MESD (see eq. (5.1)) or the MELL method (see eq. (5.2)).

4. Sum all the estimated volumes to get the estimated total volume.

5. Compute the total volume estimation error T∗ from the true and estimated total volumes
(see eq. (8.1)). This is the final product of the learning stage.

E.2 ‘Prediction’ stage

1. For each copepod image of a data set, determine the copepod silhouette using an image
segmentation method. On UVP images, a simple binarization using a fixed threshold is
enough.

1.a. For the MESD method, compute the silhouette area A (see section 6.2.2) and the corres-
ponding estimated volume (see eq. (5.1)).

1.b. For the MELL method, fit an ellipse onto the silhouette (see section 6.2.2). Let ρ1 and ρ2
be the semi-major and semi-minor axes, respectively. Then compute the corresponding
estimated volume (see eq. (5.2)).

2. Sum all the estimated volumes to get the estimated total volume W̃∗ where ∗ is either ESD
or ELL.
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3. Compute the corrected total volume estimation Ŵ∗ by dividing W̃∗ with T∗ from the learning
stage (see eq. (8.2)).

E.3 Uniformly random rotations

This section defines the rotation matrices used to simulate random orientations of ellipsoids.
In order to generate an ellipsoid with a uniformly random orientation, we generate a random

rotation matrix R and rotate an axis-aligned ellipsoid with it. The generation of an axis-aligned
ellipsoid is described in section 7.4. If the axis-aligned ellipsoid is represented by a matrix M
(see eq. (D.3)), then the rotated ellipsoid is represented by the matrix

Mrot = RMR⊺. (E.1)

A general rotation matrix can be defined using three elementary rotation matrices

R = Rz(Φ)Ry(Θ)Rx(Ψ) (E.2)

with Ri(α), i ∈ {x, y, z}, defines the rotation by angle α around axis i. To generate a random
rotation matrix, one has to randomly choose the angle triplet (Ψ, Θ, Φ). In order to guarantee the
uniformity of the ellipsoid orientations, the angles Ψ, Θ, and Φ must be distributed adequately,
that is

Ψ = U[0, 2π[ (E.3)

Θ = arccos(1 − 2U[0, 1[)− π

2
(E.4)

Φ = U[0, 2π[ (E.5)

where U[a, b[ is the uniform distribution between a (included) and b (excluded).



Appendix F

Distribution of selected sample images

To define the real-world distribution of the semi axes of the ellipsoid representing the body of
copepods (r1, r2, and r3) as well as a the ratios between them, defining the shape of the ellipsoid
(r2/r1 and r3/r1), 295 copepods seen from the side (on which r1 and r2 are measurable) and 265
copepods seen from the top or bottom (on which r1 and r3 are measurable) were manually curated
from a collection of >150k images. To make sure that these small samples were representative
of the whole data set, we checked their latitudinal and size (i.e. r1) distributions. The shape of
the latitudinal distribution of the side and top/bottom views matches well that of the total data
set (fig. F.1). The side views show an excess at high latitude, likely linked with a bias in the size
distribution (see below; copepods are larger at high latitudes), and a linked under-representation
elsewhere. The pattern is opposite for the top-bottom views. However, no region is completely
missed in the samples and even some details of the distribution (such as the two peaks around
-40 ◦) are captured. Therefore, we consider them representative enough.

The length distribution is expected to be an exponential decay [Sprules and Barth, 2016],
i.e., a linear decrease, in log-scale. This is approximately true once the lower detection limit of
the camera is passed, after ∼ 1 mm (fig. F.3). However, the distribution of side views shows an
excess in the size range 2 to 3.5 mm. This is likely due to the fact that telling that a copepod is
viewed from the top/bottom can be determined from the geometry of its antennas relative to its
body, no matter its size; making sure that a copepod is viewed from the side requires additional
details, which are easier to assess on larger individuals, inducing a bias in the manual selection
of images. As explained in the main text, this has little consequence on the estimation of the
distribution of the semi-axes ratios (r2/r1 and r3/r1) but does not allow the estimation of the
distribution of r1 from these samples only.
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Figure F.1 Kernel density estimate of the latitudinal distribution of the images of all copepods and of the
side or top/bottom views.
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Figure F.2 (a) Relationship between r2 and r1 from 254 copepods seen from the side, for r1 >1 mm. (b)
Relationship between r3 and r1 from the 173 copepods seen from the top or bottom, for r1 >1 mm. The
coloured dashed line are linear regressions fits, significant in both cases (p<0.01, R2=88% for (a) and
R2=75% for (b)). The colour scale of points represents the density of samples.

r1 [mm]

Figure F.3 Distribution of the length of the semi-major axis of the ellipse fitted in the two views of the
copepods. The vertical axis is the number of observations, in log10 scale. The horizontal axis is the semi-
major axis r1, which is equal to ρ1 in these viewpoints and approximates the half of the prosome length, in
millimeters.
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