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Abstract

Combustion still represents about 90% of the energy production in the world. Most industrial burners are fuelled
with liquid hydrocarbons. However, most studies have been dedicated to gaseous ßames and the impact of liquid
spray is still misunderstood. The purpose of this study is to improve the modelisation of two main phenomena
occurring between atomization and combustion, i.e. the droplet dispersion in the turbulent gaseous flow and the
evaporation process, in the context of Large Eddy Simulation (LES) of complex configurations.

First, the mesoscopic Euler-Euler approach (Février et al. (2005)) based on a conditioned ensemble averaging
and implemented in AVBP is improved. The closure model (Simonin et al. (2001), Kaufmann (2004)) for the
second-order moments appearing in the transport equations solved fails in mean-sheared configurations (Riber
(2007)). Several new models proposed by Masi (2010) and a priori tested in a particle-laden slab are tested a
posteriori in the same configuration. A quantitative analysis based on several calculations varying the Stokes
number, the gaseous Reynolds number and the grid resolution allows to retain a non-linear model using the particle
rate-of-strain tensor as timescale and called 2ΦEASM3.

The second part consists in improving the evaporation model implemented in AVBP which assumes infinite
conduction in the liquid and spherical symmetry in the gas phase along with simplified thermodynamics and
transport properties calculation. A new model is proposed, where the dependence of gaseous mixture viscosity
on local composition is accounted for, and the Prandtl and Schmidt numbers are fixed by a reference equilibrium
calculation using complex thermodynamics and transport properties. This method shows good agreement with
experimental measurements in the configuration of an isolated droplet evaporating in quiescent N2 without further
increasing the computational cost.

Finally, the impact of the new models is analysed in the LES of the MERCATO semi-industrial configuration
(García-Rosa (2008)). Although the experimental data are not sufficient to confirm the results, both the droplet
distribution and the fuel mass fraction are significantly affected, which would eventually affect the ignition process.
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Resumé

Dés nos jours, la combustion représente encore un 90% de la production totale d’énergie au monde. La plupart des
brûleurs de type industriel utilisent comme carburant des hydrocarbures en forme liquide. Cependant, un grand
nombre d’études ont été dédiés aux flammes gazeuses et l’impact du spray liquide est encore loin d’être totalement
compris. Le but de cet étude est l’amélioration de la modélisation des deux phénomènes principaux qui ont lieu
entre l’atomisation du spray et la combustion, i.e. la dispersion des gouttes par la turbulence gazeuse et le procès
d’évaporation dans le contexte de la Simulation Aux Grandes Echelles (SGE) des configurations complexes.

Premièrement, l’approche Euler-Euler mésoscopique (Février et al. (2005)), basée sur une moyenne
d’ensemble conditionnée et implémentée dans AVBP est amélioré. Le modèle de fermeture (Simonin et al.
(2001); Kaufmann (2004)) pour les moments de deuxième ordre qui apparait dans les équations de transport
résolues échoue quand appliqué à des configurations cisaillées (Riber (2007)). Plusieurs modèles proposés
récemment par Masi (2010) et qui ont été valides a priori dans une configuration de nappe chargée de particules
sont validés a posteriori dans la même configuration. Un analyse quantitative sur plusieurs cas avec diffèrent
nombres de Stokes, nombres de Reynolds de la phase gazeuse et résolutions du maillage ont permit de retenir
un modèle non-linéaire nommé 2ΦEASM3, qui utilise le tenseur de déformations de la phase dispersée comme
échelle de temps caractéristique.

La deuxième partie a pour but l’amélioration du modèle d’évaporation implémenté dans AVBP. Ce modèle
suppose une conduction infinie dans la phase liquide et symétrie sphérique dans la phase gazeuse ainsi que des
lois simplifiées pour les propriétés thermodynamiques et de transport. Un nouveau modèle prenant en compte la
dépendance de la viscosité du mélange gazeux avec la composition locale, et des nombres de Prandtl et Schmidt
fixés par les valeurs à l’équilibre obtenus par moyen d’une simulation prenant en compte des lois complèxes pour
les propriétés thermodynamiques et de transport est proposé. Cette nouvelle méthode produit des résultats en bon
accord avec les mesures expérimentales pour l’évaporation d’une goutte isolé en une atmosphère d’azote au calme
sans pourtant augmenter le cout du calcul.

Finalement, l’impacte des nouveaux modèles est analysé dans une SGE de la configuration semi-industrielle
MERCATO (García-Rosa (2008)). Bien que les données expérimentales ne soient pas suffisantes pour confirmer
les résultats, les distributions de gouttes et de carburant gazeux sont significativement affectés par les modèles, ce
qui pourrait avoir un impact directe sur le procès d’allumage.
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Chapter 1

General Introduction

In today’s industrial society more than 80% of the energy consumed on earth is produced by burning fossil fu-
els. However, the progressive exhaustion of fossil fuels and the ecological problems derived require an important
technological progress in order to optimize the combustion processes. In this context of fuel depletion, growing
pollution and global earth warming, this statement is globally recognized. Indeed, regulations on pollutant emis-
sions recently adopted by many countries oblige a drastic reduction of emissions and fuel consumption. Many
other energy sources, alternatives to combustion, exist such as nuclear, wind, solar and hydraulic power, biomass,
etc. However, in the domain of aeronautical transport, few other sources of energy other than hydrocarbons start
to be considered nowadays. This limited impact is mainly due to the necessity of a high power/weight ratio that
only combustion of liquid fuels can provide due to their high specific energy content and high volumetric energy
density.

Many chemical components are produced during combustion. Some, likeH2O or CO2, are intrinsic to the pro-
cess itself and cannot be avoided. Some others, like NOx, CO, unburnt hydrocarbons and soot are also produced
when burning hydrocarbon fuels. All these components can be grouped under the term "pollutant emissions". In
order to reduce the quantity of these species produced during combustion, several strategies may be adopted. The
production of CO2 is directly linked to the quantity of fuel burnt. For this reason, in order to reduce CO2 produc-
tion, fuel comsumption must be reduced meaning that more efficient engines must be designed. The formation of
other pollutants is mainly linked to the combustion mode. High temperature combustion increases the emissions
of NOx, lean combustion promotes the formation of CO and unburnt hydrocarbons. Pureness of the fuel itself has
also a direct impact on particle emissions.

Therefore, an improvement of the combustion process used in current aeronautical engines is necessary both
to increase the efficiency of combustion process and to reduce derived pollutant emissions. For this reason, many
efforts are being invested in research and development of new, more efficient and less pollutant engines. Numerical
simulations have become very important tools in this framework. Indeed, during the past decades, the advances in
computing resources and simulation methods allow sophisticated simulations at industrial scale (Boileau (2007),
Wolf et al. (2010)). This work is situated in this context since the improvement of the actual techniques can only
be achieved through a better comprehension of the processes and phenomena taking place inside the engines.

1



2 General Introduction

1.1 The Numerical Simulation as a powerful tool

As an illustrative example, Figure 1.1 displays a cut of an aircraft engine showing its main parts. Despite the speci-
ficity of this choice, the same general statements (with some modifications, especially regarding the configuration
and the thermodynamic cycle) may be applied to piston engines and other applications.

Figure 1.1: Mid-plane cut of an aircraft engine. (Source http://web.engr.oregonstate.edu).

The process to generate power is as follows: air enters the engine through the compressor, where the pressure
of the flow is increased. Then it enters the combustion chamber where it is mixed with the liquid fuel injected in
spray form. The spray evaporates, mixes with air and then burns. The exhaust gases exit the engine through the
turbine where the flow energy is transformed into work. The burnt gases may be diluted with some air to decrease
their temperature in order to reduce possible damages to the first stages of the turbine. From the thermodynamic
point of view, three main processes take place (Fig. 1.2):

1. Isentropic compression in the compressor

2. Isobaric combustion in the combustion chamber

3. Isentropic expansion in the turbine

Figure 1.2: Simplified sketch of the thermodynamic cycle of a gas turbine. Source Wikipedia.

In this work, only the processes taking place in the combustion chamber are of interest, and more precisely the
phenomena related to liquid fuel spray. For this reason, the compressor and the turbine will not be taken into
account. Moreover, since the phenomena involving the spray are of a high complexity, the scope of this work is
reduced to non-reactive cases.

In the past decades, Computational Fluid Dynamics (CFD) has become a very powerful tool both in academic
research and industrial applications. On one side, it permits the validation of analytical models in a simple and
fast manner. On the other side, they have partly replaced experiments in the industrial field for the design of
new components. Indeed, simulations are faster and much cheaper than experiments when complex geometries
are taken into account. This is due to the difficulties related to the simultaneous characterization of the different
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phenomena occuring in the flow (such as in two-phase reacting flows) and to access the flow field in complex
geometries. Moreover, it is rather simple to perform parametric studies using CFD which allows to study the
influence of individual parameters on the industrial device performances.

There are three main strategies regarding CFD simulations:

• Direct Numerical Simulation (DNS), which completely solves flow dynamics up to the smallest scales,
requiring no modeling (i.e. all turbulence scales are explicitly determined), but is computationally very ex-
pensive. Furthermore, when including two-phase flows, it can quickly become prohibitive and it is certainly
not applicable today to real industrial configurations. For this reason, its use is limited to canonical test
cases, where it greatly contributes to the understanding and related modeling efforts of many different types
of flows.

• Reynolds Averaged Navier-Stokes (RANS) simulations (Jameson (1991), Lathouwers & Bellan (2001)),
which only solve the mean flow field (Chassaing (2000), Pope (2000)). The balance equations for mass-
weighted averaged quantities are obtained by averaging the instantaneous balance equations. The average
equations require closure models for the turbulent dynamics of the flow. The greatest advantage of RANS is
its low computational cost and the years of research and development invested in this approach. However,
this approach is not suitable for the simulation of unsteady or transient flows.

• Large Eddy Simulation (LES) (Smagorinsky (1963), Lilly (1967), Deardorff (1974)), in the middle between
DNS and RANS simulations, solves the largest scales of the flow up to a certain length-scale and the scales
smaller than that are modeled by means of subgrid models. The balance equations are obtained by spatially
filtering the instantaneous equations. The size of this filter determines the size of the scales that are solved
and those that are modeled. This approach provides information about transient phenomena and is very suit-
able to perform unsteady flows simulations. Most developments on LES derive from the study of academic
configurations such as Homogeneous Isotropic Turbulence (Kraichnan (1976), Chasnov (1991)) or turbulent
channel flow (Deardorff (1970), Schumann (1975), Moin & Kim (1982)). However, it has also been used
in industrial configurations (Haworth et al. (2000)). The computational cost of LES is bigger than that of
RANS simulations and moderate compared to DNS (depending on the size of the scales that are solved), but
affordable in most cases. It is in fact a very good compromise between accuracy and computational time.

Nowadays CFD uses DNS for the validation of numerical models in canonical test cases. In real industrial
applications RANS is a suitable approach for the simulation of the compressor and the turbine in aircraft engines.
Due to the unsteady nature of the phenomena occuring in the combustion chamber, LES is the most suitable
approach for the simulations of this part of the engine. In the context of this work, stress is applied to model
validation in a first part. DNS of academic configurations is used to assess the validity of algebraic models. On a
second part, where the application to more complex configurations is studied, LES is used.



4 General Introduction

1.2 The role of the liquid sprays

Many industrial applications involve liquid sprays. Most of them are used for power generation (liquid rocket
engines, diesel engines, jet engines, etc.), but there are many other applications involving droplet/particle laden
flows (refrigeration, fluidized beds, etc.). The study of turbulent gaseous flows is a timely research topic. The
study of liquid sprays in turbulent flows is more recent. For this reason, there is still a long path to propose
models for the simulation of two-phase turbulent flows which account for all the phenomena involved in the
dynamics of sprays in turbulent gaseous flows. The lack of experimental data in industrial configurations at real
conditions is an important impediment for the validation of models and numerical results. This is due to the
high complexity of this type of systems. The measuring techniques used nowadays to perform experiments need
further developpement. It is crucial to obtain simultaneous data on different quantities (related to the gaseous and
the dispersed phase) to characterize the flow. Indeed, two-phase flows include a number of processes involving
very different time and length scales. Simplifications must be done in order to be able to reproduce part of these
phenomena. The characteristic length-scales of an evaporating two-phase flow range from the size of the smallest
droplets of the spray (of the order of a micrometer) to the size of the combustion chamber (of several centimeters).
The characteristic time-scales of the flow depend on the size of the droplet, which has a major impact on the inertia
and the lifetime of the droplets.

Here, a brief overview of the principal processes involving the dispersed phase is provided.

1.2.1 Injection

The injection system represents one of the essential components of the combustion chamber. It provides the liquid
fuel and plays an important part in internal reacting flow aerodynamics. The liquid fuel is injected in the form of
a cylindrical column or a thin liquid sheet that due to an aerodnamic destructive effect is atomized into a cloud of
droplets. The characteristics of this cloud, such as the droplet density and size, strongly depend on the injection
parameters and geometry.

There are many types of injectors. Here, only three types are recalled:

• Rotary atomizers. The liquid flow is forced into a rotating device before entering the combustion chamber.
The rotation velocity of this device determines the size of the droplets that are formed. These devices can
control very tightly the final diameter of the droplets and generate very fine clouds. However, they are too
complex to be employed in aeronautical combustion chambers.

• Airblast atomizers. The shear effect of accelerated air flow parallel to the the fuel injection is used to
atomize the liquid fuel. A complex interaction between the air and the fuel produces the formation of the
droplet cloud. These mechanisms work at low relative speed and high air flow. The configuratio of the
injection streams can be planar or annular.

• Pressure atomizers. The liquid is forced to flow through a small hole by means of a strong pressure force,
generating a conical spray. The inlet can have a planar or annular geometry, combined or not with a swirl
diffusor. The liquid sheet is subjected to strong shear on both sides, which provokes its disintegration into
small droplets.

In aircraft engines, fuel is generally injected by means of pressure swirl atomizers. The characteristics of the
spray pattern highly depends not only on the parameters of the injection device, but also on the gaseous flow inside
the combustion chamber and the properties of the liquid fuel: for example the viscosity (directly influencing the
droplet size) and the fuel volatility (which impacts the vaporization process). Pressure swirl atomizers and the
influence of the different parameters on the resulting droplet cloud have been extensively studied in the literature
(Lefebvre (1989), Taylor (1948), Bayvel & Orzechowski (1993), Jones & Whitelaw (1982)).
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1.2.2 Atomization

Fuels used in aircraft engines are not volatile enough to be ignited and burnt if the surface in contact with the
oxydizer is not augmented by pulverization. The liquid sheet exiting the injector must be atomized into a cloud
of droplets. The atomization process can be described as the ensemble of mechanisms that occur in the injection
of a high pressure liquid through a small fence. Two different phenomena can be distinguished in this process:
the primary atomization takes place in the region near the orifice, the secondary atomization usually extends much
further.

The mechanisms of liquid sheet disintegration have been widely studied. Several studies focus on the linear
stability analysis of the sheet oscillation by means of Navier-Stokes temporal stability analysis of liquid sheets
injected into still gaseous flow (Squire (1953), Taylor (1959)). These studies conclude that the atomization process
is caused by two types of instabilities (Reitz (1978)) formed in the liquid sheet interface (sinusoidal antisymmetrical
oscillations and symmetrical dilatation instabilities). The waves caused by the sinusoidal mode are not strong
enough to cause the liquid sheet break-up. Rangel & Sirignano (1991) stated that the sheet may disintegrate
following the growth of the amplitude of the dilatation waves, producing a pinch resulting in the sheet break-up.
Very fine liquid ligaments are formed that suffer further disintegration into droplets of different sizes (secondary
breakup). The primary atomization has been studied experimentally by Stapper & Samuelsen (1990), Marmottant
& Villermaux (2004), Carvalho et al. (2002), Lefebvre (1989) and Lozano et al. (2001) amongst others.

The numerical simulation of the primary atomization process requires the explicit resolution of the Navier-
Stokes (NS) equations for both phases and the coupling between them through jump relations at the interface. In
addition, the position and motion of the interface must be accurately described (Couderc & J.-L. (2003), Trontin
(2009)). DNS of the primary atomization process needs extremely high resolution meshes since the length scale
of the smallest liquid structures can become very small as the liquid ligaments approach their breakup. In general
the mesh size is determined by the smallest droplet diameter. At least two to five computational cells per droplets
are needed (Gorokhovski & Herrmann (2008)). This feature prevents the numerical simulations of the primary
atomization at industrial scale. However, as small droplets are only present at the periphery of the liquid sheet,
mesh adaptation techniques (Berger (1982), Almgren et al. (1993), Sussman et al. (1999), Zuzio (2010)) can
be used in order to reduce the computational cost. Level-Set (Osher & Fedwik (2003)) and Volume of Fluid
(VOF, DeBar (1974)) methods are suitable approaches for this task (Menard et al. (2007)). Desjardins et al.
(2008) developped a Level-Set method combined with high-order implicit transport schemes to preserve mass
conservation. Moreau & Desjardins (2008) implemented a high-order Ghost Fluid method. Both approaches
show accurate results. Due to the large range of length and timescales involved in the process, direct and detailed
numerical predictions of the primary atomization process are computationally very expensive and not affordable at
large scales. Their application is limited in terms of Reynolds number and geometry complexity. However, RANS
and LES approaches for the simulation of the primary atomisation exist (Beau et al. (2006, Paper 98166), Chesnel
(2010)).

Once the liquid sheet has decomposed into fine liquid ligaments, further disintegration occurs and droplets of
different sizes arise due to air entrainment and aerodynamical forces acting on the ligaments. This process is called
secondary breakup. Several regimes, depending on the Weber number, exist. The Weber number is a dimensionless
number relating the aerodynamic forces acting on the droplet and its surface tension. Those two forces have
opposite effects on a droplet: the surface tension stabilizes the droplet and the aerodynamic force tends to break
it. This is a process of high difficulty in terms of modeling and simulation. Indeed, there are many effects that
must be taken into account, such as the droplet deformations prior to breakup (which modifies the drag force law)
and collisions and coalescence which are predominant in this zone of the spray. Indeed, in the secondary breakup
zone, the spray is very dense, which increases the probability of collision between droplets. Numerical studies of
this problem may rely on different approaches (Fig 1.3 is an example for the case of the atomization of a liquid
column). DNS using an interface tracking method being out of reach for realistic applications, simplifications have
been proposed in literature. Apte et al. (2003a) use a Lagrangian method, neglecting the liquid column and taking
into account secondary breakup only. Rachner et al. (2002) use a Lagrangian method combined with modified laws
for drag force and models for the column breakup based on empirical correlations. Finally, a common solution
consists on considering the primary atomization as a boundary condition for the dispersed phase from which a
distribution of droplets is directly injected.
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Figure 1.3: Schematic of the modeling approaches for a liquid jet-in-cross-flow case. (Extracted from Jaegle (2009)).

Figure 1.4 shows a sketch of the main phenomena following the liquid injection. The secondary atomization
produces a cloud of droplets of different sizes. In this zone, far from the injection where the spray is much denser,
the volume fraction of droplets is very small compared to that of the gas phase. Droplet/particle laden two-phase
flows can be classified taking into account the particle volume (αp) and mass fractions (Mp) of the spray (Fede
et al. (2004)):

• αp < 10−4 and Mp < 10−2: very diluted flows. Inter-particle collisions and effects of particles on the
carrier fluid phase can be neglected due to the low inertia of the particles.

• αp < 10−4 and Mp > 10−2: diluted flows. Two-way coupling between the gaseous and the dispersed
phases must be taken into account.

• 10−4 < αp < 10−1: moderately dense sprays. Inter-particle collisions become important in this type of
flows. However, the carrier phase flow remains the main contribution to particle motion

• αp > 10−1: very dense sprays. Inter-particle collisions are the most important contribution to the particle
motion.

This work focuses on the diluted regime zone located after the secondary breakup zone. Only diluted and very
diluted flows are considered. Thus, inter-particle collisions are ignored and one-way or two-way coupling with the
carrier fluid is considered depending on the configuration. In this type of flows, the principal physical phenomena
is the particle dispersion due to the gaseous turbulence. If two-way coupling is considered, the fluid turbulent
energy tends to decrease due to the presence of the dispersed phase. Note that throughout this work particle phase
refers to a dispersed phase composed by solid particles, liquid phase to a dispersed phase composed by liquid
droplets and the term dispersed phase is used indistinctly for both.
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Figure 1.4: Phenomenology of the atomization of a spray. (Source M. Hermann, Summer Program of the CTR, Stanford).

1.2.3 Dipersion and Evaporation

In the diluted regime, dispersion and evaporation become predominant. In this case, particle trajectories are directly
influenced by the carrier flow turbulence. However, their response to the gaseous flow depends also on their
inertia. The Stokes number (St) relates the characteristic particle response timescale (τp) to the characterisitc fluid
timescale (τf ), giving a measure of the particle inertia. Very inertial particles (St >> 1) have trajectories quite
independent from the carrier fluid flow. On the contrary, very low inertial particles (St << 1) quickly respond
to changes in the gaseous flow. In industrial applications, the inertia of the particles varies because their size and
mass change due to evaporation and polydispersion effects. Very different behaviors take place at the same time.
When the evaporation timescale of the droplets (τev) is very short, droplets evaporate very quickly and very few
droplets are present far from the injection zone. If, on the contrary, the droplet lifetime is long, droplets are present
further downstream.

The dispersion of particles has been deeply studied. The first studies on particle motion date from the nineteenth
century. Later on, Tchen (1947) and Reeks (1991), amongst others, performed theoretical analysis of particle dis-
persion which led to the definition of the main length and time-scales of the particle motion in gaseous turbulence.
Maxey (1987) proposed analytical methods able to predict complex phenomena such as preferential concentra-
tion effects (i.e. cummulation of particles in low-vorticity and high-strain regions, also called particle segragation
(Squires & Eaton (1991a)), Eaton & Fessler (1994)) or particle trajectory crossing (Wells & Stock (1983)), which
characterise the interactions of the particles with the gaseous turbulence. The modulation of the turbulence by the
presence of the particles is also a process of interest. It is often assumed that the carrier fluid flow turbulence is
not affected by the presence of the particles (one-way coupling). This hypothesis is valid in very diluted regime.
However, in diluted regime inverse coupling in not negligible and the effects of the dispersed phase on the fluid
turbulence must be accounted for (Fede et al. (2004)). Turbulence modification due to the presence of particles has
been widely studied in particle-laden Homogeneous Isotropic Turbulence (HIT) flows (Squires & Eaton (1990),
Elghobashi & Truesdell (1993) (accounting for two-way coupling), Boivin et al. (1998) (using DNS of the gaseous
phase), Sundaram & Collins (1999)) and mean sheared configurations (Vermorel et al. (2003), Vermorel (2003)).

Particle dipersion in gaseous turbulence has been widely studied experimentally (Snyder & Lumley (1971))
and numerically (Squires & Eaton (1991a), Deutsch (1992), Mei et al. (1991) (accounting for Basset force and
gravity settling effects), Laviéille (1997) (taking into account interparticle collisions), Elghobashi & Truesdell
(1992) (using DNS) and Boivin et al. (2000) (using LES and accounting for two-way coupling) in HIT, Reeks
(1993) in simple shear flows, Simonin (1991) in particle-laden jets, Vance et al. (2006), Wang & Pletcher (1996)
(using LES), Yamamoto et al. (2001) (in vertical channel configuration using LES and accounting for collisions)
in particle-laden turbulent channel flows, Apte et al. (2003a) in swirling flows, etc).

Regarding the vaporization process many models exist. Models are mainly based on empirical results on
single isolated droplets, which have been modified to include the effects of neighbouring droplets, convection,
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multicomponent fuels, etc. (cf Part III). Many parameters have an influence on the vaporization process. Indeed,
the characteristics of the fuel, the spray and the carrier flow play an important role and directly influence the
evaporation of droplets inside the combustion chamber. An exhaustive review of the theoretical models for droplet
vaporization can be found in Sazhin (2006) or in classical textbooks such as Sirignano (1999), Kuo (2005) or
Williams (1985).

Experimental studies on droplet vaporization are often performed on isolated droplets, taking into account or
not the effects of convection (Wong & Lin (1992)), radiation, heat conduction through the support fiber (Yang &
Wong (2002), Chauveau et al. (2008)), multicomponent fuels (Ghassemi et al. (2006)) and for high pressure and
temperature (Matlosz et al. (1972), Kadota & Hiroyasu (1976), Nomura et al. (1996) Morin et al. (2004)).

From the numerical point of view, the effect of ambient gas and fuel properties has been studied by Hubbard
et al. (1975). Yang & Chang (2001) performed a numerical study on the effects of the heat conduction through the
support fiber and the radiation of the furnace in the experiments of Nomura et al. (1996).

Evaporation has an important effect on the dispersion of particles in turbulent flows. Albrecht et al. (1999)
studied the dispersion of evaporating droplets in HIT flow, Réveillon & Vervisch (2004) studied the dispersion of
evaporating droplets in turbulent flows taking into account polydispersion effects.

1.2.4 Combustion of droplets

The combustion process considered often involves chemical reactions that only take place in the gaseous phase
(Williams (1971)). Thus, the evaporation of liquid fuel droplets is a necessary step for the combustion to take
place. However, two main types of combustion exist: single-phase combustion and two-phase combustion. These
two regimes depend on the ratio between the characteristic evaporation time and the convection time of the carrier
phase. When the characteristic evaporation time of the droplets is very small compared to the convection time,
the droplets completely evaporate before reaching the flame front. Combustion taking place in the single-phase
regime, it only depends on the gaseous fuel repartition in the chamber. The gaseous fuel field will however depend
on the characteristics of the evaporation process and the dispersion of the droplets. On the other hand, when the
evaporation time is longer than the convection time, flame and spray are coupled. The droplets may reach the flame
front and the characteristics of the flame strongly depends on the spray parameters.

Isolated droplet combustion studies can be found in the work of Godsave (1953)

Numerical results obtained using DNS of sprays in different combustion regimes provide an extra classification
of the phenomena coupling spray and reaction (Réveillon & Vervisch (2005)). Two-phase flow combustion has
different characteristics than gaseous phase combustion. The characteristics of the flame are modified due to the
presence of liquid droplets and strongly depend on the quantity of fuel that has been evaporated before reaching the
flame front. Indeed, the gaseous field is modified by the presence of droplets upstream from the flame which may
lead to flame instabilities. Note also that the evaporation rate depends, amongst other things, on the concentration
of droplets. This may create zones of very high concentration of gaseous fuel and very lean zones too. The mixing
is then different from the case where gaseous fuel is directly injected into the chamber.

Furthermore, if the droplets reach the flame front, the evaporation and combustion zones overlap, leading
to different combustion regimes. Réveillon & Vervisch (2005) give a symmetric description of the spray flame
structures that is recalled here. They classify the different modes depending on a dimensionless number, G, which
is the ratio between the droplet evaporation rate and the diffusion rate of hot gases within the droplet cloud. When
convection is more important than diffusion, G is approximated as follows:

G ≈ 5N
2
3
p

S
(1.1)

whereNp is the number of droplets in the cloud and S is a mean doplet spacing parameter linking the characteristic
average distance between droplets to the diffusion flame radius.
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For large G numbers, the spray is very dense and diffusion inside the cloud is low, only the droplets located
at the periphery of the cloud evaporate. The flame enveloppes the whole cloud of droplets. It is referred to as
external sheath combustion. For diluted spray regimes, where G << 1 droplets are far from each other and
the evaporation rate increases due to hot gases diffusion. Separated flames surround each droplet, which burn
individually. Intermediate regimes exist between these two extremes: for G numbers slightly larger than one, the
flame surrounds the whole cloud of droplets but hot gases diffusion is high enough, thus the droplets in the center
of the cloud vaporize. When G < 1, the center of the cloud burns in an external combustion regime and the
droplets located at the periphery burn in an isolated manner. Figure 1.5, taken from Réveillon & Vervisch (2005),
illustrates four distinct modes of spray combustion regimes depending on G.

Figure 1.5: Classification of different spray combustion regimes. Extracted from Réveillon & Vervisch (2005).

Borghi (1996a) and Borghi & Champion (2000) propose another classification based on the characteristic
evaporation time τev , the characteristic time of the flame τf and the flame thickness δf . When τev << τf ,
droplets evaporate in the preheating zone upstream from the flame which burns in a premixed regime. In this case,
spray characteristics fluctuations may lead to partially-premixed flames. When the evaporation time is longer than
the flame characteristic timescale, two distinct regimes are possible depending on the ration between the flame
thickness and the droplet flame radius. If the radius of the flame surrounding the droplets is small compared to the
flame thickness, burning droplets cross the flame front and burn in a secondary reaction zone. On the contrary, for
flame thicknesses smaller than the radius of the flame surrounding the droplet, the presence of the last modify the
behavior of the flame front, thicknening it. This classification does not take into account turbulence effects and
equivalence ratio variations. Réveillon & Vervisch (2005) provide a different classification based on numerical
results of two-dimensional spray flames in counterflow:

• External combustion regime: in a case of low equivalence ratio, the premixed flame consumes the totality of
the fuel (liquid and gaseous). When the equivalence ratio is high, the fuel burns in diffusion regime.

• Group combustion regime: droplet clusters individually burn on rich premixed flames ussually followed by
diffusion flames.

• Hybrid combustion regime: intermediate conditions between the external and the group combustion regimes.

Reviews on droplet and spray combustion can be found in Faeth (1983), Faeth (1987), Law (1982) or Sirignano
(1983).
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1.2.5 Numerical simulation of sprays

Two-phase flows involve complex physical phenomena, such as liquid-gas, or liquid-surface interactions, atomiza-
tion process, droplet dynamics and heat and mass transfer. Up to date, no analytical treatment exist for a general
representation of the complete set of processes involving particle/droplet laden flows. Therefore, numerical model-
ing and simulations have been increasingly employed. Numerical simulations are often preferred over experiments
because they can usually be carried out faster due to a shorter lead-time and with less expense. Aditionally, control
is easier and they can be used to study a much wider range of conditions, some of which are physically inaccesible
(Liu (2000)). DNS of two-phase flows are not accesible for realistic configurations. Indeed, a direct simulation of
the dispersed phase implies the resolution of the flow field around each individual droplet and, in the case of liquid
droplets, inside the droplet too. In realistic configurations, where evaporation of liquid sprays is usually accounted
for, droplets can reach very small sizes (less than a micrometer), which need very fine computational grids. The
computational cost related is very high, both in time and memory requirements. Therefore, DNS of two-phase
flows is limited to canonical test cases in academical research. However, several options for the modelisation of
the dispersed phase exist. They can be coupled with DNS or LES of the gaseous phase. An exhaustive review on
LES approaches for the dispersed phase can be found in Fox (2012).

In this work, two modeling frameworks to simulate sprays in diluted regimes are used. The developments
presented in this work concern the Euler-Euler approach. The Euler-Lagrange approach is used for validation
when no experimental data are available:

• In the Lagrangian approach (Sankaran & Menon (2002), Apte et al. (2003a)), the individual trajectory of
each particle is tracked in its own frame of reference. Droplets are treated through the point source approx-
imation and their trajectories are evaluated through force balance at each point (Maxey & Patel (2001)).
The carrier fluid flow is usually computed by solving the Navier-Stokes (NS) equations. In the Lagrangian
computations, the location of the discrete particle not necessarily coincide with the computational grid.
Therefore, in order to account for coupling between the gaseous and the dispersed phases, the properties
of the carrier fluid must be interpolated at the location of the droplet or particle. An accurate numerical
algorithm is needed for this task, which increases the numerical complexity of this method. Moreover, the
difficulty increases when the gaseous flow is computed with a LES approach, since not all the scales of the
carrier phase are resolved, and the effects of the unresolved scales on the particle motion must be taken into
account (Dukowicz (1980)). On the other hand, polydispersity can easily be accounted for. The Lagrangian
methods may become computationally very expensive when the number of particles to be followed increases.
However, physical particles can be substituted by numerical particles representing a cluster of various real
particles, which reduces the computational cost. On the other hand, parallelization tasks must be carefully
handled, since in configurations where particle cummulation takes place (e.g. zones close to the injector), a
bad load balance between processors takes place, for which adapted partitioning algorithms should be used
(García (2009)).

• Another alternative approach is the Eulerian method, which considers both phases (the carrier and the dis-
persed phase) as continuum and captures only averaged quantities of the dispersed phase (Ferry & Bal-
achandar (2002)). Depending on the formalismm used, the spray properties are averaged in a volumetric
(Whitaker (1999)) or ensemble (Zhang & Prosperetti (1994), Simonin (1991)) sense and calculated through
the evolution of a probability density function (pdf) equation. In general, the dispersed phase is solved using
a set of conservation equations for the moments of the pdf equation. Accounting for polydispersity is less
obvious in this case. However, it may be reproduced by discretizing the droplet size distribution leading the
so called sectional methods (Greenberg et al. (1993), Laurent et al. (2004), Vié (2010)); a complete set of
transport equations is solved for each section, which increases the computational cost and the complexity
due to the exchanges between each section when phenomena such as evaporation are taken into account.

Both methods have advantages and drawbacks. Table 1.1 displays a non-exhaustive comparison between both
approaches. Here, the supplementary modeling effort and the special treatment for particle trajectory crossing
(PTC) are stressed. Indeed, the Mesoscopic Eulerian Formalism (MEF) used in this work needs closure for some
terms appearing in the transport equations for the dispersed phase. These terms are linked to the modelisation of
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PTC related phenomena. On the same way, the coupling terms between phases, such as drag force and evaporation
source terms also need modeling.

Euler-Euler Euler-Lagrange
Advantages

⊕ Numerical straightforward treatment of ⊕ Numerically straightforward modeling of
dense zones. particle movements and interations.
⊕ Similarity with gaseous equations. ⊕ Robust and accurate if enough particles

are used.
⊕ Direct transport of Eulerian quantities. ⊕ Size distributions are easy to describe.
⊕ Similarity with gaseous computer paralelism ⊕ Numerically straightforward to implement

physical phenomena (e.g heat and mass
transfer, wall-particle interaction).

Drawbacks
	 Difficult description of polydispersion. 	 Delicate coupling with combustion.
	 Difficulty of droplet crossing treatment. 	 Difficult parallel implementation.
	 Limitation of the method in very diluted 	 CPU time spent in locating particles
zones. on unstructured grids.

Table 1.1: Advantages and drawbacks of Euler-Euler and Euler-Lagrange approches. Extracted from García (2009).

The CFD code used in this work, AVBP, has two different solvers for the dispersed phase, a Lagrangian one and
an Eulerian one. Here, only the Eulerian solver is used. It is based on the Mesoscopic Eulerian Formalism (MEF,
Février et al. (2005)) defined in Chapter 2. The basic idea is the distinction between two different contributions in
the particle velocity: an ensemble velocity, shared by all the particles and an uncorrelated part, which is specific
to each individual particle. Due to the contribution of the uncorrelated part of the particle velocity field, unclosed
terms appear in the transport equations for the dispersed phase. These terms are closed by means of algebraic
models.

1.3 Objectives of the present work

This thesis has been supported by CERFACS (Centre Européen de Recherche et Formation Avancée en Calcul
Scientifique) and the European Union in the framework of the MYPLANET project (Massively Parallel Computa-
tions of Combustion and Emission Simulations) in an initiative to train a new generation of engineers in the field
of high performance computing applied to the numerical combustion simulation, energy conversion processes and
related atmospheric pollution issues.

This work proposes to improve the modeling of the dispersion and evaporation phenomena for diluted regimes
oriented to the pre-vaporised combustion of sprays on industrial aeronautical chambers. Several models are imple-
mented in the AVBP code, dedicated to LES in complex geometries and tested on academic and semi-industrial
configurations. The results obtained are compared with reference data (either Lagrangian simulations or experi-
mental measurements) in order to assess the validity of the models.

Combustion, both purely gaseous as well as spray combustion, is out of the scope of this study. This brief
overview of the main phenomena related to the dispersed phase in aeronautical combustion chambers helps limiting
the phenomena adressed in this work. Figure 1.6 displays a sketch of the processes followed by the dispersed phase
after the injection of the fuel in the combustion chamber. Here, only the dispersion and the evaporation of droplets
in non-reactive flows are taken into account.

Section 1.3.1 briefly recalls the previous developements performed on dispersed phase modeling with the MEF
for the Eulerian approach. Section 1.3.2 presents the global outline of this manuscript.
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Figure 1.6: Sketch of the principal phenomena related to the dispersed phase in combustion chambers.

1.3.1 Previous developments

The main tool used during this work is the code AVBP. This finite-volume and finite-element unstructured hybrid
solver has been jointly developped by CERFACS and IFP-EN (Institut Francais du Pétrole - Energies Nouvelles)
over the last 20 years. AVBP is a massively parallel code that explicitely solves both DNS and LES Navier-Stokes
equations in compressible form. It is based on the cell-vertex approach (Schønfeld & Poinsot (1999)). High-
order numerical schemes and characteristics boundary conditions (Poinsot & Lele (1992)) are available. More
information on AVBP can be found in Lamarque (2007).

Several studies involving the MEF for Eulerian approach for the simulation of two-phase flows have been
conducted until now. Février et al. (2005) introduced the MEF that allows the simulation of the dispersed phase
coupled with DNS or LES of the gaseous phase. Closure models for the transport equations for the dispersed phase
were firstly proposed by Simonin (2002) and Kaufmann et al. (2005). Kaufmann (2004) implemented the MEF
in AVBP and performed the first numerical simulations in particle-laden HIT using DNS for the simulation of the
carrier fluid flow. Validation of the implementation was performed through comparisons with reference data from
Lagrangian computations. Moreau (2006) and Riber (2007) extended the MEF, until that time available only in the
context of DNS, to LES. Closure models for the subgrid-scale terms were a priori developped in the particle-laden
decaying HIT (already studied by Kaufmann (2004)) and Moreau (2006) and a posteriori validated in the same
configuration by Riber (2007). Riber (2007) alse performed studies on more complex configurations (Hishida
et al. (1987), Borée et al. (2001)). Mossa (2005) extended the MEF in order to take into account polydispersion.
The MEF has also been employed in industrial configurations taking into account gaseous combustion (Pascaud
(2006)). Boileau (2007) demonstrated the capability of this approach to simulate complex industrial configurations
in real conditions presenting a LES of the two-phase reacting flow of a complete helicopter annular combustion
chamber. Sanjosé (2009) implemented the FIM-UR methodology for the modelisation of the spray injection.
Roux et al. (2009) developped new numerical schemes more adapted to the simulation of the dispersed phase.
Masi (2010) recently proposed new algebraic equations for the modelisation of the unclosed terms appearing in
the transport equations of the dispersed phase for DNS and LES and for the modelisation of the uncorrelated
part of the particle temperature field from a priori simulations of a mean-sheared particle-laden flow (Vermorel
(2003)). Vié (2010) included the possibility of taking into account polydispersion effects using a multi-section
method. Recently Dombard (2011) studied the effects of the uncorrelated motion in anisothermal mean-sheared
configurations.

The MEF is currently used for the simulation of reactive flows in complex geometries. Polydispersion effects
can be accounted for. However, spray combustion is not taken into account and reactions occur only in the gaseous
phase. Regarding the modelisation of the unclosed terms related to the uncorrelated motion (RUM, Février et al.
(2005)), only one model (Simonin et al. (2001)) has been tested until now in complex geometries. The studies per-
formed on particle-laden HIT showed that the RUM must be taken into account when low and high inertia particles
are simulated. Otherwise, the simulation is numerically unstable. However, the viscosity-type model proposed by
Simonin et al. (2001) based on a local-equilibrium assumption, leads to a re-laminarization of the dispersed phase
flow in configurations with mean-shear (Riber (2007)). Several studies have revealed the importance of the mesh
resolution in dispersed phase simulations. Indeed, a high resolution is needed in order to capture phenomena such
as the preferential concentration. Eulerian simulations of complex geometries not accounting for the RUM show
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accurate mean particle velocity distributions but lead to an underestimation of the velocity fluctuations.

1.3.2 Plan of the manuscript

This work is organized as follows:

• Part I describes the governing equations for both the gaseous and the liquid phases in the context of non-
reactive two-phase flows. Chapter 2 presents the Navier-Stokes (NS) equations for the gaseous phase in
DNS as well as the equations for the dispersed phase in the Euler-Lagrange and the Euler-Euler approaches.
The Mesoscopic Eulerian Formalism is presented and the transport equations and coupling terms with the
gas phase described.

Chapter 3 presents the concept of LES and briefly describes the filtering process underneath the approach.
It presents the filtered governing equations for the gas and the dispersed phases. The WALE model for
gaseous phase and the filtered equations for the dispersed phase (Moreau (2006)) used for the simulation of
the MERCATO configuration in Part IV are summarized.

• Part II is dedicated to the analysis and validation of different closure models for the deviatoric part of the
RUM stress tensor. First, Chapter 4 presents the different models (Masi (2010)) retained for their evaluation
in AVBP. These models have been proposed by Masi (2010) during her thesis performed at IMFT (Institut
de Mécanique de Fluides de Toulouse). Masi developped several closure models and performed an a priori
analysis in the configuration of a particle-laden slab (Vermorel (2003)). Nine out of the eleven models
developped by Masi along with the classic viscosity-type model already implemented in AVBP (Simonin
et al. (2001)) have been implemented in AVBP and a posteriori validated against the Euler-Lagrange results
of Masi (2010) in the same configuration (Fig. 1.7). A classification of the models following two criteria
(the order of the model and the characteristic time scale used) as proposed by Masi (2010) is provided.

Chapter 5 presents the results obtained for the configuration of Fig. 1.7. This academic configuration aims
at being representative of the phenomena encountered in a hollow-cone type spray injection, where the
liquid fuel droplets are subject to very strong shear due to the effect of air entrainment. Two different
levels of turbulence and three levels of particle inertia have been tested. The models have been evaluated
using the same numerical setup in order to simplify the comparisons. Low-order and high-order statistics
have been compared as well as instantaneous fields of the droplet number density, droplet velocity and
Random Uncorrelated Energy (RUE). The results obtained distinguish one model as the one giving the best
performances (2ΦEASM3). This model has been retained for the simulation of the configuration presented
in Part IV.

Figure 1.7: Sketch of the case studied in Part II corresponding to the configuration initialy studied by Vermorel (2003).

• Part III focuses on the development of a new model for the simulation of the evaporation process of liquid
fuel droplets. This part is motivated by the recent publication of experimental results on isolated droplet
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evaporation (Chauveau et al. (2008)) which are very different from the classical results (Nomura et al.
(1996).

Chapter 6 proposed a classification of the different evaporation models and introduces the assumptions em-
ployed in the model implemented in AVBP. The equations used for the calculation of the main thermo-
dynamic and transport properties are presented. A comparison between simulations performed with two
different calculations of the transport and thermodynamic properties (as previously done by Sanjosé (2009))
allowed the identification of the parameters having a major influence on the process. Taking this into ac-
count, a new approach for the simulation of the evaporation process is proposed. Chapter 7 shows the results
obtained with the classical approach implemented in AVBP and the new approach for both the Spalding and
the Abramzon-Sirignano models for the evaporation of single isolated droplets. The results are presented for
two fuels for a wide range of conditions (temperature and pressure).

• Finally, Part IV presents the simulations performed in the MERCATO configuration (Fig. 1.8) in order to
assess the applicability of RUM and evaporation models to complex configurations. The MERCATO test
rig is a semi-industrial configuration used for the study of spray autoignition at high altitude conditions.
Four cases are presented, they are issued by the combination between two evaporation approaches and two
RUM strategies (noRUM, which does not take into account the RUM contribution and 2ΦEASM3 model).
The mean and instantaneous gaseous and liquid fields are studied. Both the gaseous and the liquid mean
and root mean sqaure (RMS) velocity profiles are analyzed, as well as the mean and RMS droplet diameter
profiles. Particle velocity fields are validated against the experimental data of García-Rosa (2008). For those
quantities such as the particle volume fraction, for which experimental data is not available, comparison with
the classical models implemented in AVBP are performed. The effects of the evaporation approach and the
RUM model are assessed separately.

Figure 1.8: Sketch of the MERCATO configuration studied in Part IV. Extracted from Senoner (2010).

• Chapter presents the main conclusions obtained and proposes new paths for the continuation of this work.

• The Appendices include additional data which may be useful for a deeper analysis of the RUM models but
have not been included in the manuscript itself for the sake of simplicity.



Part I

Equations and models for turbulent
two-phase flows
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Chapter 2

Transport equations for dispersed
two-phase flows

This part aims at describing the compressible Navier-Stokes (NS) equations as found in many text books (Anderson
(1990), Hirsch (2007)). Section 2.1 presents the NS equations for the gaseous phase. Reactive terms are not be
considered as combustion is not studied in this work. Section 2.2 presents the conservation equations for the
dispersed phase, both in the Euler-Lagrange (EL) and in the Euler-Euler (EE) frameworks as implemented in
AVBP. The implementation retained in AVBP is based on the Mesoscopic Eulerian Formalism (MEF) for the Euler-
Euler framework. It is described in Section 2.2.4. As comparisons with the Euler-Lagrange approach are needed
for validation and assessment of the Eulerian closure models, the Euler-Lagrange approach is briefly described in
Section 2.2.2. Coupling terms between both phases which are common to both formalismsare finally described in
Section 2.3.

2.1 Conservation equations for compressible gaseous flows

Assuming no chemical reaction, one may write the set of conservation equations that describes a compressible gas
flow as follows:

∂
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[Pgδij − τg,ij ] (2.2)

∂

∂t
ρgEg +

∂

∂xj
ρgEgug,j = − ∂

∂xj
[ug,i(Pgδij − τg,ij) + qg,j ] . (2.3)

Equations (2.1) - (2.3) describe the conservation laws for species, momentum and total energy respectively,
where ρk is the density of each species k composing the gaseous mixture (ρk = ρgYk, Tk is the mass fraction
of species k), ρg is the gaseous mixture density (ρg =

∑N
k=1 ρk), Jj,k is the mass diffusive flux of species k

(Eq. (2.26)), ug,i is the i − th component of the gaseous velocity, Eg denotes the gaseous total non-chemical
energy, τg,ij denotes the viscous stress tensor and qg,j is the diffusive heat flux vector (Eq. (2.27)). The species
conservation imposes

∑N
k=1 Yk = 1.

This set of equations can be written in compressed form:

∂

∂t
w +∇·F = sl−g, (2.4)

17
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where w = (ρk, ρgug,i, ρgEg)T is the vector of conservative variables, F is the flux tensor and sl−g is the source
term vector due to the influence of the dispersed phase on the gaseous phase. The flux tensor can be decomposed
into an inviscid FI and a viscous FV part which read:

FI =

 ρkug,j
ρgug,iug,j + Pgδij
(ρgEg + Pgδij)ug,j

 , FV =

 Jj,k
−τg,ij

−(ug,iτg,ij) + qg,j

 . (2.5)

The hydrostatic pressure (Pg) is determined by the equation of state for perfect gases:

Pg = ρg
R
Wg

Tg (2.6)

where R = 8.3143J/(mol ·K) is the universal gas constant,Wg is the molecular weight of the gaseous mixture
and Tg its temperature. The gaseous phase is usually composed by multiple species. It is considered as a perfect
mixture of N perfect gases, whose state is defined by Eq. (2.6), where,Wg is the molecular weight of the mixture:

1
Wg

=
N∑
k=1

Yk
Wk

. (2.7)

The set of equations Eqs. (2.1) - (2.3) are closed provided the viscous flux tensor is modeled. In practical
situations, all fluids are assumed to be Newtonian, so the stress tensor is given by a Newton law (Eq. (2.8)):

τg,ij = 2µg

(
Sg,ij −

1
3
δijSg,ll

)
, (2.8)

where µg is the dynamic viscosity of the gaseous mixture. Sg,ij is the gaseous rate-of-strain tensor:

Sg,ij =
1
2

(
∂ug,j
∂xi

− ∂ug,i
∂xj

)
. (2.9)

2.1.1 Thermodynamical laws for the gaseous phase

The thermodynamical properties of the gaseous mixture are calculated as a mass average of the properties of each
individual species. Thus, the mixture constant r and the heat capacities at constant pressure or volume depend on
the local composition of the mixture and are written as follows:

r =
R
Wg

=
N∑
k=1

R Yk
Wk

=
N∑
k=1

Ykrk, (2.10)

Cp =
N∑
k=1

YkCp,k, (2.11)

Cv =
N∑
k=1

YkCv,k. (2.12)

For the sake of clarity, the subscript g for the gas phase has been omitted; the superscript m denotes molar quanti-
ties.

In AVBP, the thermodynamical properties (sensible enthalpy hs,k and sensible entropy sk) are tabulated for
each species. The tables include values from 0K to 5000K every 100K. They are referenced at T0 = 0K
and 1bar. The values in the tables are extracted from the JANAF tables (Stull & Prophet (1971)). The sensible
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enthalpy of each species is calculated from the tabulated values as in Eq. (2.13), as well as the sensible entropy as
in Eq. (2.14). Finally the sensible energy is calculated using Eq. (2.15).

hs,k(T ) =
∫ T

T0

Cp,k dT =
hms,k(T )− hms,k(T0)

Wk
, (2.13)

sk(T ) =
smk (T )− smk (T0)

Wk
, (2.14)

es,k(T ) =
∫ T

T0

Cv,k dT = hs,k(T )− rkT. (2.15)

The sensible enthalpy (hs) and sensible energy (es) are defined as follows:

hs =
N∑
k=1

Ykhs,k, (2.16)

es =
N∑
k=1

Ykes,k. (2.17)

The heat capacities are considered as constant on each interval of 100K corresponding to the gap between two
consecutive values in the tables. They are evaluated as:

Cp,k =
∂hs,k
∂T

, Cv,k =
∂es,k
∂T

. (2.18)

2.1.2 Transport laws for the gaseous phase

In gaseous flow, there are two main mechanisms involving diffusion: the molecular diffusion due to local differ-
ences in composition, and the heat diffusion due to local differences in temperature.

Diffusion coefficients for mass and heat transport

Molecular and heat diffusion laws depend on several transport properties, such as the dynamic viscosity of the
mixture (µg), its thermal conductivity (λg) or the diffusion coefficient of species k in the mixture (Dk).

The dynamic viscosity is assumed independent of the composition. It is calculated using a Power law which
takes into account the variations of temperature. µref and Tref are the reference viscosity and temperature whereas
b is the Power law exponent:

µg = µref

(
T

Tref

)b
. (2.19)

The thermal conductivity of the mixture is evaluated assuming a constant value for the Prandtl number (Pr), it
depends on the dynamic viscosity and the heat capacity of the mixture:

λg =
µgCp
Pr

. (2.20)

The Prandlt number is a dimensionless number representing the ratio of momentum diffusivity to thermal diffusiv-
ity:

Pr =
ν

α
=

viscous diffusion rate
thermal diffusion rate

. (2.21)
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The molecular diffusion of each species k into the mixture is calculated assuming that the Schmidt number of
each species (Sck) is constant; it depends on the dynamic viscosity and the density of the mixture:

Dk =
µg

ρgSck
. (2.22)

The Schmidt number is a dimensionless number representing the ratio of momentum diffusivity and mass diffu-
sivity. It relates the relative thickness of the hydrodynamic layer and the mass-transfer boundary layer:

Sck =
νk
Dk

=
viscous diffusion rate

molecular diffusion rate
. (2.23)

Mass transport law

When the gaseous phase is composed of several species, the conservation equation (2.24) must be satisfied. The
species diffusion velocity Vk,i is approximated by the Hirschfelder-Curtis relation (Hirsch (1990)):

YkVk,i = −Dk
Wk

W
∂Xk

∂xi
, (2.24)

where Dk is the diffusion coefficient of the species k into the mixture given by Eq. (2.22). This approximation
does not ensure the conservation of total mass for mixtures composed of more than two species. A correction
velocity V ci is thus introduced to ensure mass conservation (Poinsot & Veynante (2005)):

V ci =
N∑
k=1

Dk
Wk

W
∂Xk

∂xi
. (2.25)

The diffusive flux taking into account this correction reads:

Ji,k = −ρg
(
Dk
Wk

W
∂Xk

∂xi
− YkV ci

)
. (2.26)

Heat transport law

The total heat flux q is composed of two contributions: the conductive heat flux and the heat flux through species
diffusion. The conductive heat flux is modeled by Fourier’s law. λg is the thermal conductivity of the mixture
given by Eq. (2.20):

qi = −λg
∂T

∂xi
+

N∑
k=1

Ji,khs,k. (2.27)

2.2 Conservation equations for the dispersed phase

While the gaseous phase is usually described as a continuum iwith an Eulerian approach, there are different ap-
proaches for the description of the dispersed phase. Recently, Fox (2012) has provided a classification of the
different approaches for the DNS of two-phase flows (Fig. 2.1). CPS-RESUME DE FOX:2012

Two main frameworks for the simulation of the dispersed phase are used in this work: the Euler-Lagrange
approach and the so-called Mesoscopic Eulerian Formalism (MEF). Whatever the approach used, to describe the
behavior of droplets or particles in a gaseous flow, the first step os to determine the forces acting on them (Sec-
tion 2.2.1). Generally, then the conservation equations taking into account those forces can be written. Section 2.2.2
briefly describes the Euler-Lagrange approach, introducing the quantities of interest for this work. Section 2.2.3
positions the MEF among the multiple Euler-Euler approaches. Finally, Section 2.2.4 describes the MEF itself and
the transport equations which will be solved.
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Figure 2.1: Classification of modeling approaches for DNS of two-phase flows. Extracted from Fox (2012).

2.2.1 Review of forces acting on an isolated particle

The first descriptions of the forces acting on an isolated particle date from the end of the 19th century. Boussinesq
(1885), Basset (1888) and Oseen (1927) studied the settling motion of particles in a quiescent flow due to the action
of gravity. However, it was Tchen (1947) who applied their conclusions to particles in turbulent flows for the first
time. He extended their work to the motion of rigid spherical particles in Homogeneous Isotropic Turbulence
(HIT). Tchen took into account the main forces described by Boussinesq, Basset and Oseen, namely the Stokes
drag, the pressure gradient force, the added mass, the Basset force and the lift force. More recently, the work
of Tchen has been revisited by Maxey & Riley (1983). They considered isolated rigid spherical particles, with
constant diameter dp and density ρp.

The kinematic equation for a particle that translates at velocity (rotation is excluded) vp,i reads:

d

dt
xp,i = vp,i. (2.28)

The momentum conservation equation is written as:

mp
d

dt
vp,i = Fp,i = Fup,i + F pp,i. (2.29)

The total force Fp,i is the sum of two contributions: Fup,i is the force that would act on a fluid particle occupying
the position of the particle; F pp,i denotes the force exerted upon the particle due to the perturbation of the fluid
velocity fields caused by the presence of the particle.

It is assumed that the particle diameter is small compared to the smallest scales of the fluid motion (the Kol-
mogorov scale ηk in a turbulent flow as described in Chapter 3):

dp � ηk , (2.30)

and a small particle Reynolds number Rep which reads:

Rep =
dp|uf@p − vp|

νg
, (2.31)

where νg stands for the gaseous kinematic viscosity.

The term Fup,i assumes that the forces due to pressure and viscous stress, that would have acted on a fluid
particle occupying the volume where the particle is actually located, are transmitted to the particle. Maxey & Riley
(1983) and Gatignol (1983) suggest:

Fup,i =
πd3

p

6

[
ρg
D

Dt
uf@p,i + (ρp − ρg)gi

]
, (2.32)
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where gi denotes the i− th component of the gravity vector, uf@p is the undisturbed fluid velocity at the particle
location, ρ is the density. The subscript g and p stands for the gas (or fluid) and the particle respectively. D/Dt
represents the total derivative along particle trajectories:

D

Dt
=

∂

∂t
+ uf@p,i

∂

∂xi
. (2.33)

The first term in the Right-Hand-Side (RHS) of Eq. (2.32) accounts for pressure and viscous stresses and the
second one for buoyancy effects.

The term F pp,i stands for the aerodynamic forces acting on the particle: drag force, added-mass force, Basset
force and lift force.

Drag force

The drag force FD accounts for pressure and viscous stresses exerted on the particle surface. It corresponds to the
force originally derived by Stokes (1851) in quiescent fluid for small Rep, which allows to neglect inertial effects
of the fluid flow.

FD =
3
4
ρg
πd3

p

6
1
dp
CD|uf@p − vp|(uf@p − vp). (2.34)

where CD is the Stokes drag coefficient. Another definition introduces the particle response time τp to describe
the drag force:

FD =
mp

τp
(uf@p − vp) , (2.35)

where:
τp =

4
3
ρp
ρg

dp
CD
|uf@p − vp|−1. (2.36)

There are three main formulations for the Stokes drag coefficient CD, depending on the particle Reynolds
number. Stokes (1851) developped an analytical solution for Rep � 1:

CD =
24
Rep

, (2.37)

Oseen (1927) proposed a correction of the Stokes’ relation to take into account inertial effects which is valid for
1 ≤ Rep ≤ 5:

CD =
24
Rep

(
1 +

3
16
Rep

)
(2.38)

For larger Rep, semi-empirical correlations are available. Up to Rep = 1000, the correlation proposed by
Schiller & Nauman (1935) is widely accepted (this is, in fact, the correlation inplemented in AVBP and used in
this work):

CD =
24
Rep

(1 + 0.15Re0.687
p ). (2.39)

For applications where Rep > 1000, following Clift et al. (1978), the drag coefficient remains unaffected by the
wake behind the particle and stays constant:

CD = 0.44. (2.40)

Added-mass force

The added-mass force accounts for the acceleration of the fluid due to the particle motion. When a particle acceler-
ates in a fluid, it implies an acceleration of the surrounding fluid at the expense of the work exerted by the particle.
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It is usually written as:

FAM =
πd3

p

6
ρgCm

(
D

Dt
uf@p −

d

dt
vp

)
. (2.41)

where Cm is the added-mass force constant: Cm = 0.5.

Since the added-mass froce depends on the fluid density, it is often neglected for particles much denser than the
fluid (Hinze (1975), Desjonqueres et al. (1986)). In this work, it is assumed that the ratio between the particle’s
density and the density of the fluid is larger than 103 (ρp/ρg > 1000), so that the added-mass force can be
neglected. In those cases where the fluid is denser than the particles (or their densities are comparable), neglecting
the added-mass force may lead to significant errors, since the virtual added-mass may become larger than the
particle mass itself.

Basset force

The History or Basset force is linked to the memory of the particle, the history of its past accelerations. It accounts
for the temporal delay in the boundary layer development due to the changes in the relative velocity between the
particle and the fluid (Crowe et al. (1998)):

FH =
πd3

p

6
9ρg
dp

(νg
π

)1/2
∫ t

∞

d

dτ
(uf@p − vp)

dτ√
t− τ

. (2.42)

It is usually neglected due to the dificulties of implementation (that is the case in this work). However, neglect-
ing it may lead to significant errors when the particle is accelerated at high rate (Thomas (1992), Johnson (1998)),
which is not the case in the configurations studied in this work.

Lift force

The lift force is due to the fluid vorticity Ωg , it is non-negligible for large particles where the fluid velocity gradient
differs significantly from one side of the particle to the other. It usually reads:

FL =
πd3

p

6
ρgCL(uf@p − vp)× Ωg. (2.43)

Hinze (1975) and Desjonqueres et al. (1986) showed that not only the added-mass force, but also the pressure
gradient and the Basset forces can be neglected when ρp/ρg > 1000, since they are small compared to the particle
agitation and dispersion mechanisms. In HIT, Elghobashi & Truesdell (1993) showed that those two mechanisms
are mainly due to Stokes drag and gravity.

2.2.2 Euler-Lagrange

The Lagrangian approach for the simulation of two-phase flows considers that the discrete phase is composed of an
ensemble of particles (physical individual particles or numerical particles representing a cluster of real particles)
each one with its own velocity. The individual trajectory of each particle is tracked and the point mechanics equa-
tions are solved with momentum, mass and heat coupling with the gas phase (treated with an Eulerian approach).

This method is also referred as Discrete Particle Simulation (DPS). It has been widely used for the simulation
of gas-solid flows (Tchen (1947), Hinze (1975), Desjonqueres et al. (1986), Squires & Eaton (1990), Deutsch &
Simonin (1991), Druzhinin (1995), Boivin et al. (1998), Février et al. (2005), Moreau (2006)), Masi (2010) in
academic configurations. Following Boivin et al. (2000), this approach is limited to weakly loaded flows (αp ≤
0.001, where αp is the particle volume fraction, i.e. the ratio between the total mass of the particles and the total
mass of the gas) and particle response times larger than the characteristic time of the gaseous flow. Indeed, a large
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amount of particles implies that the individual equations of each particle must be solved, considerably increasing
the computational cost of this approach.

The Euler-Lagrange (EL) approach has, however, an important advantage: it requires few modeling efforts. The
treatment of polydispersion, for example, is straightforward. This method is commonly employed in Reynolds-
Averaged-Navier-Stokes (RANS) codes and its potential in LES has been stated (Mahesh et al. (2002), Mashayek
& Pandya (2003), Pandya & Mashayek (2002), García (2009)). It has also been applied to LES of industrial
configurations (Senoner (2010)). There are still numerical issues to be handled: the location of particles in the
Eulerian mesh needs very efficient algorithms. Another issue is the interpolation of the coupling terms from the
Eulerian mesh nodes to the particle position and vice-versa. In order to avoid numerical errors, high-order numer-
ical schemes are requested, which notably increases the computational cost. In parallel computing, the transfer
of particles exiting the domain of one processor and entering a different one is crucial and very efficient domain
partitioning algorithms are needed in order to avoir load balancing problems due to inhomogeneous repartition of
the particles in the computational domain (García (2009)).

Equations for the Euler-Lagrange approach:

In the EL approach, the gas phase is described by means of the Navier-Stokes equations described in Section 2.1.
Assuming that the only forces acting on a particle are the Stokes-drag and the gravity, the position x(k)

p and the
velocity v(k)

p of particle k are calculated at each time step as follows:

d

dt
x(k)
p = v(k)

p (2.44)

d

dt
(m(k)

p v(k)
p ) = F

(k)
p,i (2.45)

d

dt
m(k)
p = ṁ(k)

p (2.46)

d

dt
(m(k)

p C(k)
p T (k)

p ) = Q̇(k)
p , (2.47)

where m(k)
p is the mass of the particle k, C(k)

p is its specific heat at constant pressure, T (k)
p is its temperature, ṁ(k)

p

is the mass transfer rate due to evaporation (otherwise the mass of the particle remains constant) and Q̇(k)
p is the

heat transfert rate from the gas phase to the particle.

Useful Lagrangian quantities

The averaging operator associated with the particle-phase is noted 〈·〉p, it is defined, for every Lagrangian quantity
Φ(k), as:

〈Φ(k)(x(k)
p )〉p =

1
Np

k=Np∑
k=1

Φ(k)(x(k)
p − δxp) (2.48)

where Np is the total number of particles. The mean particle velocity is then expressed as:

Vp = 〈vp〉p (2.49)

and the fluctuating contribution as:
v′p = vp −Vp (2.50)

Then, the particle kinetic energy q2
p, and the fluid-particle correlation qfp (where the subscript f is used to

denote the carrier fluid) yield:

q2
p =

1
2
〈v(k)
p · v(k)

p 〉p (2.51)
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qfp = 〈v(k)
p · uf (x(k)

p )〉p. (2.52)

For the gas phase, the fluid turbulent kinetic energy q2
f can be defined using the classical Reynolds average

operator (Hinze (1975)), noted 〈·〉f and corresponding to a statistical mean of N flow realizations:

q2
f =

1
2
〈u′f · u′f 〉f , (2.53)

where u′f is the fluctuating part of the fluid velocity.

Tchen’s theory

Tchen (1947) proposed, for stationnary particle-laden HIT flows, a link between the previous quantities through
Eqs. (2.54)-(2.55), needed to have correspondance between the two operators applied to the fluid and particle fields.
These relations require two main assumptions: first, the aerodynamic force acting on the particle must consist only
of Stokes drag given by Eq. (2.35). Secondly, the relative velocity between the particle and the fluid must be very
small.

qfp =
2

1 + St
q2
f , (2.54)

2q2
p = qfp (2.55)

where St = τp/τ
t
f stands for the Stokes number, and τ tf is the Lagrangian turbulent time-scale (Haworth & Pope

(1986)).

Deutsch & Simonin’s extended theory

In order to relax the second assumption in Tchen’s theory, Deutsch & Simonin (1991) proposed an extension of
Tchen’s theory using the fluid velocity along particle trajectories uf@p introduced in Section 2.2.1. Consequently,
the fluid turbulent kinetic energy sampled along particle trajectories q2

f@p reads:

q2
f@p =

1
2
〈u′f@p · u′f@p〉p, (2.56)

qfp =
2

1 + St′
q2
f@p, (2.57)

2q2
p = qfp. (2.58)

where St′ = c/τp is a modified Stokes number and τ tf@p is a characteristic timescale using uf@p. In the limit of
very small Stokes numbers, τ tf@p → τ tf . Since τ tf@p and q2

f@p are difficult to quantify, Eqs. (2.54) and (2.55) are
often used as a first approximation to evaluate q2

p.

2.2.3 Euler-Euler approach

In the Euler-Euler approach (EE), the dispersed phase is treated as a continuous phase, and instead of computing
the properties of each individual particle, the local average properties are calculated. There are two main types
of average operator: the volume average and the statistical average. For these approaches, the same numerical
approach used for the gaseous phase may be applied to the dispersed phase, which greatly simplifies its implemen-
tation in parallel CFD codes. Moreover, no interpolation procedure is needed for the coupling between phases,
since the information for both liquid and gaseous phases are stored at the same nodes of the grid. However, an
important modeling effort is required which nowadays remains the main challenge.
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For very low-inertial particles, the modeling effort is reduced, since the particles behave like tracers and almost
follow the fluid flow. The equilibrium approach (Ferry & Balachandar (2002), Rani & Balachandar (2004)) has
proved its efficiency and accuracy in the simulation of this type of flows. It consists in the solution of one transport
equation for the particle number density (np, the number of particles per unit volume) and a Taylor expansion
of the fluid velocity in particle relaxation time τp to predict the particle velocity (Maxey (1987)). When heavier
particles are to be modeled, their response time become larger and the method reaches its applicability limits.

The two-fluid approach, originally developped by Druzhinin & Elghobashi (1998), is based on a spatial average
of the instantaneous equations for the gaseous and dispersed phases over a length scale of the order of the Kol-
mogorov length scale (assuming that the particle diameter and the smallest length scale of the particle velocity are
significantly smaller than the Kolmogorov length scale, so the unity of the particle velocity in the filtering volume
is ensured). The two-fluid approach shows good results in the simulation of particle-laden decaying HIT flow for
particles with small Stokes number.

In configurations where the average values are not sufficient for a realistic representation of the dispersed
phase, the complexity of modeling increases. This is the case, for example, for polydispersed sprays. Following
Greenberg et al. (1993), Laurent & Massot (2001) proposed to divide the dispersed phase into different sections,
each one containing one class of diameter. Then, a different set of Eulerian equations needs to be solved for each
of the sections. This increases notably the computational cost, but, the authors showed that a few sections are
sufficient to obtain an accurate representation of a spray with a wide distribution of diameters. Another challenge
of this approach, called Eulerian Multi Size Moment (EMSM), is the treatment of the exchanges between different
classes of diameters; when including evaporation, the droplet diameter reduces as they evaporate and they must be
transferred to a lower diameter class. Mossa (2005) proposed another approach where the addition of one equation
for the particle droplet surface allows the representation of polydispersion effects.

Collision and crossing trajectories are difficult to model in the Eulerian approach. Indeed, Eulerian models
derived from the Williams-Boltzmann equation through a near-equilibrium assumption along with closures for
the second-order velocity moments are unable to capture the multiple values of particle velocity at the same time
and location when particle trajectory crossing (PTC) takes place. The near-equilibrium assumption is a strong
hypothesis, and although those methods may be able to capture when PTC takes place, they lead to singularities
called δ-shocks (de Chaisemartin et al. (2008), de Chaisemartin (2009)). However, it has been stated (Desjardins
et al. (2006)) that it is possibe to predict the crossing of particle trajectories in an Eulerian framework using the
DQMOM approach (Marchisio & Fox (2005), Fox et al. (2008)). More recently, Kah (2010) proposed a new
method called Eulerian Multi-Fluid Multi-Velocity (EMVM), using quadrature-based moment methods (Fox et al.
(2008), Fox (2008), Fox (2009)), preserving the moment phase-space realizability. Indeed, Wright (2007) showed
that, in general, high-order, finite-volume schemes do not guarantee realizable moments (i.e. the independent
transport of the moments with schemes of order greater than one, may lead to invalid moment sets), and thus new
realizable high-order algorithms must be used (Kah et al. (2011)). More details about this high-order algorithm as
well as EMSM and EMVM methods can be found in Kah (2010).

Finally, it is to be noted that the Eulerian approach implies some difficulties from the numerical point of view
due to high compressibility effects that require to transport very stiff gradients difficult to handle numerically. Riber
et al. (2006) showed that the use of low dispersion numerical schemes along with an adapted artificial viscosity
operator may be a solution.

The methods based on volume filtering show important limits when simulating flows with high inertial par-
ticles. The reasons for this failure were first pointed out by Février et al. (2005). The authors proposed a new
method where the paticle velocity is split into two different contributions: a spatially correlated part and a spatially
uncorrelated part, which becomes negligible for very low inertial particles. The Mesoscopic Eulerian Formalism
(MEF) is based on a conditional ensemble averaging (Section 2.2.4). This average operator leads to unclosed terms
that need to be modeled (Part II). The resulting set of equations is presented in Section 2.3. Figure 2.2 shows a
classification of all these Euler-Euler formalisms.
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Figure 2.2: Classification of EE modelling approaches for the dispersed phase interacting with turbulent flows. Modified from
Masi (2010).

2.2.4 Mesoscopic Eulerian approach

The MEF is the approach that has been implement in AVBP (Kaufmann (2004)). The main idea in the MEF is the
distinction made between the properties of an ensemble of particles and the properties of an individual particle.
The statistically averaged Euler-Euler (EE) equations are obtained from a Probability Density function (PDF) used
to define a set of transport equations based on the kinetic theory of gases of Boltzmann (Chapman & Cowling
(1939 (digital reprint 1999), Reeks (1991)). Based on this PDF evolution equation, direct integrations yield the
transport equations of the desired moments for which unknowns naturally arise. Once the set of equations has
been established, models are to be supplied. Contrary to the volume filtering of the equilibrium and two-fluid
approaches, no assumption regarding the size of the filter is required at this stage.

The main steps in the procedure for the development of the MEF transport equations are:

1. The function W (k)
p describes the dynamics of the particles with respect to time and space. Each particle is

identified by its position x at time t, its mass µp, its velocity cp and its temperature ζp:

W (k)
p (cp, ζp, µp,x, t) = δ

(
cp − u(k)

p (t)
)
δ
(
ζp − ζ(k)

p (t)
)
δ
(
µp − µ(k)

p (t)
)
δ
(
x− x(k)

p (t)
)
. (2.59)

where δ is the Dirac’s delta function.

2. Applying an ensemble averaging over a large number of particle realisations Hp, conditioned by one reali-
sation of the carrier fluidHf , a PDF for the particle presence is defined as:

f̆p(cp, ζp, µp,x, t|Hf ) = lim
Np→∞

 1
Np

∑
Np

Np∑
k=1

W (k)
p (cp, ζp, µp,x, t,Hp|Hf )

 . (2.60)
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3. The Boltzmann type equation that describes the evolution of this PDF yields:

∂

∂t
f̆p +

∂

∂xj

[
cp,j f̆p

]
+

d
dcp,j

[
dup,j
dt

f̆p

]
+

d
dζp

[
dTp
dt

f̆p

]
+

d
dµp

[
dmp

dt
f̆p

]
=

(
df̆p
dt

)
coll

. (2.61)

where
(

df̆p
dt

)
coll

accounts for the inter-particle interactions.

4. A statistical average operator is defined to decribe the average properties of the dispersed phase. The meso-
scopic quantities Ψ̆ are defined by their mass ensemble average and correspond to the moments of the PDF
obtained by multiplication of Eq. (2.61) by Ψ and integration over the phase space:

Ψ̆ = 〈Ψ〉p =
1

ρpᾰp

∫
µpΨ(cp, ζp, µp)f̆p(cp, ζp, µp,x, t|Hf )dcpdζpdµp. (2.62)

5. The general Enskog equation describing the evolution of the mesoscopic quantity Ψ is written as follows:

∂

∂t
ρpᾰp〈Ψ〉p =

∂

∂xi
ρpᾰp〈up,jΨ〉p = C(mpΨ)

+ ρpᾰp〈
dup,j

dt
∂Ψ
∂up,j

〉p + ρpᾰp〈
dTp
dt

∂Ψ
∂Tp
〉p

+ ρpᾰp〈
dmp

dt

(
∂Ψ
∂mp

+
Ψ
mp

)
〉p (2.63)

6. The substitution of Ψ by the transported quantities produces a system of conservation equations that de-
scribes the mean mesoscopic field.

In AVBP, the first five moments are transported, they correspond to the following mesoscopic quantities: n̆p is the
particle number density (number of particles per unit volume), ᾰp is the volume fraction of particles, ŭp is the
particle velocity, δθ̆p is the uncorrelated energy and h̆p is the enthalpy. In the following inter-particle interactions
are neglected.

As an example, in order to obtain the transport equation for the first moment (the particle number density),
Ψ = 1

mp
, which gives:

∂

∂t
n̆p +

∂

∂xj
n̆pŭp,j = − ∂

∂xj
n̆p{δup,j}p (2.64)

where {}p is the particle number density weighted average operator. The first term on the RHS of Eq. (2.64) rep-
resents the change on particle number density due to turbulent mixing of particles with different diameter. For this
first moment transport equation this term is simply neglected. Note also that in AVBP, when in evaporating con-
text, the evaporation process is stopped when the droplets reach a sufficiently small diameter. Detailed information
about the derivation of the rest of transport equations can be found in Mossa (2005).

Definiton of correlated and uncorrelated motions.

The phenomenon of preferential concentration of particles in regions of low vorticity and/or high strain rate has
been widely studied (Squires & Eaton (1991b), Rouson & Eaton (2001), Rani & Balachandar (2004)). The origin
resides in the interactions between the particle phase and the carrier fluid and relates to the particle Stokes number.
For low Stokes numbers, the particles follow the fluid flow and their velocity vectors are close to those of the
carrier phase. Moreover, neighbouring particles have similar velocity vectors. On the contrary, for larger Stokes
numbers, the particles do no follow the carrier fluid flow and the velocities of neighboring particles are not similar.
This difference is due to the particle response time τp compared to a characteristic time of the fluid flow. For
small Stokes numbers, τp is small, which means that the particles react rapidly to the velocity changes that take
place in the carrier fluid flow. When τp increases, the particles are less sensitive to the surrounding changes, and
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the velocity samples obtained at a certain location correspond to particles coming from very distant regions of the
flow.

Such observations are at the origin of the formalism proposed by Février et al. (2005). The Lagrangian velocity
of each particle is splitted into a spatially correlated part and an uncorrelated part, sketched in Fig. 2.3, as follows:

u(k)
p (t) = ŭp(x(k)

p (t), t) + δu(k)
p (t), (2.65)

where ŭp is the mesoscopic velocity defined in the Eulerian framework, which corresponds to the velocity shared
by all the particles. It provides a description of the structure of the velocity distribution and is often called correlated
velocity and δu(k)

p (t) is the residual velocity component of the particle, or Random Uncorrelated Velocity (RUV),
defined for each individual particle along particle trajectories.

Figure 2.3: Sketch of the correlated and uncorrelated motions in the MEF. Extracted from Riber (2007).

The particle velocity may also be split in a mean and a fluctuating parts. As the Lagrangian mean field and the
mesoscopic mean field are identical (Février et al. (2005)), fluctuating velocity contributions may also be written
in terms of mesoscopic and residual contributions as follows:

u′p(t) = ŭ′p(x
(k)
p (t), t|Hf ) + δu′(k)

p (t). (2.66)

where the fluctuating part of the mesoscopic velocity is expressed as:

ŭ′p = ŭp − 〈ŭp〉p (2.67)

and the fluctuating part of the residual contribution is:

δu′p = δup − 〈δup〉p (2.68)

Using the properties of the statistical average operator 〈·〉, several relations for the Eulerian equivalent of the
quantities defined in Section 2.2.2 can be obtained:

• the ensemble average of the particle uncorrelated velocity is zero:

〈δu(k)
p |Hf 〉 = 0; (2.69)

• the particle uncorrelated velocity is spatially decorrelated from the fluid velocity:

〈ŭf · δu(k)
p |Hf 〉 = 0; (2.70)

• the particle uncorrelated velocity component is spatially decorrelated from the particle mesoscopic velocity:

〈ŭp · δu(k)
p |Hf 〉 = 0. (2.71)

The turbulent kinetic energy q2
p, the correlated kinetic energy q̆2

p and the Random Uncorrelated Energy δq2
p are

defined as follows:
q2
p = q̆2

p + δq2
p, (2.72)
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q̆2
p =

1
2
〈n̆pŭ′p,iŭ′p,i〉
〈n̆p〉

, (2.73)

δq2
p =
〈n̆pδθ̆p〉
〈n̆p〉

, (2.74)

where δθ̆p is the Random Uncorrelated Energy (RUE) that will be defined later in this section. Dependencies of
n̆p, ŭ′p,i and δθ̆p with space and time have been omitted in Eqs. (2.73) and (2.74) and summation convention is
adopted for Latin indices other than p.

A first attempt to evaluate the two contributions (mesoscopic and uncorrelated) was made by Février et al.
(2005) in a DPS of a particle-laden stationnary HIT flow. He found that the ratio of kinetic RUE to total particle
kinetic energy increased with the particle inertia. Vance et al. (2006) showed the same trend in a fully-developped
channel flow for both colliding and non-colliding particles.

Particle mesoscopic transport equations

The transport equations for the mesoscopic variables are given in Eqs. (2.75)-(2.78). Γ denotes the mass transfer
rate from the liquid to the gas phase, Φp is the enthalpy transfer rate from the gaseous to the liquid phase, FD is
the drag force exerted by the fluid on the particles and δR̆p,ij denotes the 2nd order particle uncorrelated velocity
correlations tensor, δR̆p,ij(x, t) = 〈ŭp,i(t)ŭp,j(t)|xp(t) = x,Hf 〉.

∂

∂t
n̆p +

∂

∂xj
n̆pŭp,j = 0 (2.75)

∂

∂t
ρpᾰp +

∂

∂xj
ρpᾰpŭp,j = − Γ (2.76)

∂

∂t
ρpᾰpŭp,i +

∂

∂xj
ρpᾰpŭp,iŭp,j = − ∂

∂xj
ρpᾰp δR̆p,ij − Γ ŭp,i + FD,i (2.77)

∂

∂t
ρpᾰph̆p +

∂

∂xj
ρpᾰpŭp,j h̆p = − Γh̆p + Φp (2.78)

¶ + · = ¸ + ¹ + º + »

where the terms noted ¶ correspond to the temporal variations, · to the advection terms due to the mesoscopic
motion, ¸ to the advection terms due to the uncorrelated motion, ¹ to the terms linked to the evaporation process,
º to the terms linked to drag force and » to the terms linked to thermal conduction.

Closure models for the drag force in Eq. (2.77), have been proposed in Section 2.2.1. Closure for the terms
linked to mass and heat transfer due to evaporation are worked on in Part III. In order to define closure models,
some assumptions are needed:

H1 -The particles are considered as rigid spheres.

H2 -ρp >> ρg so the only force exerted by the carrier phase on the dispersed phase is drag force.

H3 -Gravity is neglected.

H4 -Only diluted sprays are considered: ᾰp < 0.0001 and 1− ᾰp ≡ 1 .

H5 -Considering H4, the effects of coalescence and collisions are neglected.

H6 -The spray is locally monodispersed.
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Closure model for δR̆p,ij

Closure must be provided for δR̆p,ij . For the sake of simplicity, evaporation is not accounted for in the remaining
of this section. Thus, the transport equation for the uncorrelated stress tensor is written as:

∂

∂t
ρpᾰpδR̆p,ij +

∂

∂xj
ρpᾰpδR̆p,ij ŭp,j = − 2

ρpᾰp
τ̆p

δR̆p,ij − ρpᾰpδR̆p,im
∂ŭp,j
∂xm

− ρpᾰpδR̆p,mj
∂ŭp,i
∂xm

− ∂

∂xm
δQ̆p,ijm. (2.79)

In Eq. (2.79), the term representing the 3rd order particle uncorrelated velocity correlation tensor δQ̆p,ijm =
〈ŭp,iŭp,j ŭp,m〉 needs closure as well.

Several approaches have been proposed for the closure of δR̆p,ij . Simonin et al. (2002) proposed a method
consisting in directly solving Eq. (2.79) i.e. the six components of the tensor. However, this would be too expensive
for the LES of complex configurations and does not overcome the difficulty of modeling δQ̆p,ijm. Based on the
transport equation for this term:

∂

∂t
ρpᾰpδQ̆p,ijm +

∂

∂xj
ρpᾰpδQ̆p,ijm = − 3

ρpᾰp
τ̆p

δQ̆p,ijm + ρpᾰpδQ̆p,njm
∂

∂xn
ŭp,i

+ ρpᾰpδQ̆p,inm
∂

∂xn
ŭp,j − ρpᾰpδQ̆p,ijn

∂

∂xn
ŭp,m

+ δR̆p,ij
∂

∂xn
ρpᾰpδR̆p,mn + δR̆p,jm

∂

∂xn
ρpᾰpδR̆p,in

+ δR̆p,im
∂

∂xn
ρpᾰpδR̆p,jn −

∂

∂xn
ρpᾰpδM̆p,ijmn, (2.80)

where δM̆p,ijmn = 〈ŭp,iŭp,j ŭpmŭp,n〉 is the 4rd-order particle uncorrelated velocity correlation tensor. Assuming
equilibrium of δQ̆p,ijm and neglecting any deformation terms (2nd, 3rd and 4th terms on the RHS of Eq. (2.80)),
the transport equation reduces to (Moreau (2006)):

3
ρpᾰp
τ̆p

δQ̆p,ijm = δR̆p,jm
∂

∂xn
ρpᾰpδR̆p,in + δR̆p,im

∂

∂xn
ρpᾰpδR̆p,jn

+ δR̆p,ij
∂

∂xn
ρpᾰpδR̆p,mn −

∂

∂xn
ρpᾰpδM̆p,ijmn. (2.81)

It is now necessary to model the 4th order term δM̆p,ijmn. Simonin (1996) proposed to consider the Gaussian
value of δM̆p,ijmn in order to obtain a closure model:

δM̆p,ijmn = δR̆p,ijδR̆p,mn + δR̆p,imδR̆p,jn + δR̆p,inδR̆p,jm. (2.82)

Finally combining Eqs. (2.81) and (2.82) leads to (Kaufmann (2004)):

δQ̆p,ijm =
τ̆p
3

(
δR̆p,ml

∂

∂xl
δR̆p,ij + δR̆p,jl

∂

∂xl
δR̆p,im + δR̆p,il

∂

∂xl
δR̆p,jm

)
, (2.83)

which can be directly introduced in Eq. (2.79). However, this method is computationally very expensive and
modeling the δR̆p,ij tensor can follow simpler paths:

Simonin et al. (2002) introduced the particle RUE as half the trace of δR̆p,ij :

δθ̆p =
1
2
δR̆p,ll. (2.84)
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Then Eq. (2.77) can be rewritten as follows:

∂

∂t
ρpᾰpŭp,i +

∂

∂xj
ρpᾰpŭp,iŭp,j = − ∂

∂xj

2
3
ρpᾰpδθ̆p −

∂

∂xj
ρpᾰp δR̆

∗
p,ij + FD,i, (2.85)

where δR̆∗p,ij is the deviatoric part of δR̆p,ij , similar to the viscosity contribution in the theory of diluted gases.
δθ̆p is the spherical part, similar to a pressure term:

δR̆∗p,ij = δR̆p,ij −
2
3
δθ̆pδij . (2.86)

A transport equation for the particle RUE is derived from and substitutes the set of 2nd order particle correla-
tions conservation equations for the dispersed phase (Eq. (2.79)):

∂

∂t
ρpᾰpδθ̆p +

∂

∂xj
ρpᾰpŭp,jδθ̆p = − ∂

∂xj
ρpᾰpδQ̆p,iij − ρpᾰp

[
δR̆∗p,ij +

2
3
δθ̆pδij

]
∂

∂xj
ŭp,i +Wθ, (2.87)

where Wθ is a source term linked to drag force and its expression is deduced from Eq. (2.34):

Wθ =
2ρpᾰp
τ̆p

δθ̆p . (2.88)

A closure model for δQ̆p,iim is proposed hereinafter and there is only one more unclosed term left in Eq. (2.87),
δR̆∗p,ij . Different closure models for this term are studied in Part II.

Closure model for δQ̆p,iim

Eq. (2.87) for particle RUE is very similar to the transport equation for fluid temperature (with the exception of
the last two terms on the RHS, that are linked to evaporation and drag force source terms). Kaufmann et al. (2005)
proposed a simpler model consisting in modeling δQ̆p,iim in analogy with the Fick’s law for the fluid temperature:

1
2
δQ̆p,iim = −κRUM

∂δθ̆p
∂xm

, (2.89)

where κRUM stands for the uncorrelated diffusion coefficient and is modeled in analogy with the RANS two-fluid
approach (Simonin (1996)):

κRUM =
10
27
τ̆pδθ̆p. (2.90)

2.3 Final set of conservation equations for the dispersed phase in the EE
approach

In the remaining of the manuscript, the Mesoscopic Eulerian Approach is worked on (hereinafter it will be referred
indistinctly as MEF or EE). Part II is dedicated to the a posteriori analysis of the closure models developped by
Masi (2010) in the particle-laden slab HIT flow configuration. Part III presents a study on the evaporation of fuel
droplets. Different evaporation models are compared and a new approach for the computation of the evaporation
process of isolated droplets in AVBP is proposed. Finally, Part IV presents an example of joint application of the
model for the closure of the RUM terms retained in Part II and the new approach for the evaporation presented in
Part III. The configuration chosen is the MERCATO bench, whose experimental data were acquired at ONERA
(Toulouse, France) (García-Rosa (2008)), and computed using EE (Sanjosé (2009)) and EL approaches (Senoner
(2010)) in AVBP.
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The final set of conservation equations for the dispersed phase that are transported in AVBP and considered in
the rest of this work is:

∂

∂t
n̆p +

∂

∂xj
n̆pŭp,j = 0 (2.91)

∂

∂t
ρpᾰp +

∂

∂xj
ρpᾰpŭp,j = − Γ (2.92)

∂

∂t
ρpᾰpŭp,i +

∂

∂xj
ρpᾰpŭp,iŭp,j = − Γ ŭp,i + FD,i

− ∂

∂xj
ρpᾰp

[
δR̆∗p,ij +

2
3
δθ̆pδij

]
(2.93)

∂

∂t
ρpᾰph̆p +

∂

∂xj
ρpᾰpŭp,j h̆p = − Γh̆p + Φp (2.94)

∂

∂t
ρpᾰpδθ̆p +

∂

∂xj
ρpᾰpŭp,jδθ̆p = − Γδθ̆p +Wθ −

∂

∂xj
ρpᾰpδQ̆p,iij

− ρpᾰp

[
δR̆∗p,ij +

2
3
δθ̆pδij

]
∂

∂xj
ŭp,i. (2.95)

Note that in the set of equations (2.91)- (2.95), evaporation terms are present. Particularly, Eq. (2.93) includes
a term linked to the evaporation process (the first term in the RHS) that did not appeared in Eq. (2.85), where
evaporation was neglected. Similarly, Eq. (2.95) accounts for evaporation effects through the first term in the RHS
that did not appear in Eq. (2.87).

2.3.1 Transport equations for the dipersed phase in compressed form

Similarly to Section 2.1, the conservation equations for the dispersed phase can be written in a compressed form.
For the particle phase, one has:

∂

∂t
wp +∇·Fp = sp, (2.96)

where wp = (n̆p, ρpᾰp, ρpᾰpup,i, ρpᾰph̆p, ρpᾰpδθ̆p)T is the vector of conservative variables for the dispersed
phase, Fp is the flux tensor composed by two parts, one due to convection by the mesoscopic motion (FMp ) and
one due to the uncorrelated motion (FUp ). sp is the vector of source terms.

Convective fluxes due to the mesoscopic motion, FMp and to the uncorrelated motion FUp

The tensor of fluxes read:

FMp =


n̆pŭp,j
ρpᾰpŭp,j

ρpᾰpŭp,iŭp,j
ρpᾰpŭp,j h̆p
ρpᾰpŭp,jδθ̆p

 , FUp =


0
0

ρpᾰp

[
δR̆∗p,ij + 2

3δθ̆pδij

]
0

ρpᾰpδQ̆p,iij

 . (2.97)

Vector of source terms, sp

There are two contributions to the source terms: the first one is linked to the exchanges with the gas phase (sg−p)
and the second one is linked to the uncorrelated motion (sθ). sg−p groups the source terms of mass, momentum
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and energy with the gas phase whereas sθ contains only one term due to the exchanges between the uncorrelated
and the correlated motions. This term applies to the particle RUE transport equation. The vectors of source terms
read:

sp = sg−p + sθ (2.98)

sg−p =


0
−Γ

−Γŭp,i + FD,i
−Γh̆p + Φp
−Γδθ̆p +Wθ

 , sθ =


0
0
0
0

−ρpᾰp
[
δR̆∗p,ij + 2

3δθ̆pδij

]
∂
∂xj

ŭp,i

 . (2.99)

Inverse coupling between the dispersed and the gaseous phases

The source terms vector in Eq. (2.4) sp−g has not been defined yet. It represents the coupling terms that include
the influence of the particle phase on the gaseous phase. It reads:

sp−g =

 Γδk,F
−Γŭp,i − FD,i

Πg + Γ 1
2 ŭ

2
p,i − ŭp,iFD,i

 (2.100)

where Γ 1
2 ŭ

2
p,i and ŭp,iFD,i represent the gaseous kinetic energy transfer due to evaporation and drag force respec-

tively. Πg is the sensible energy transfer rate due to evaporation and thermal conduction. Γ and Πg will be defined
in Part III.



Chapter 3

Transport equations for LES of dispersed
two-phase flows

Nowadays, the available computational power limits the use of DNS to academic configurations. When a second
phase is taken into account, the complexity of the problem increases. The use of DNS becomes then prohibitive,
especially in complex comfigurations. In LES, the equations are filtered, the large scales of the motion are resolved
and only the high frequency scales, smaller than the filter width, are modeled.

In turbulent flows the largest scales strongly depend on the geometry of the system while the smallest ones
present an universal behavior which is determined almost entirely by the rate at which they receive energy from
the large scales (flow Reynolds numberRe (Eq. (3.1))), and by the fluid viscosity. In such flows, LES has therefore
a clear advantage compared to RANS since it is easier to develop models for the smallest structures than models
for the whole range of scales.

The application of LES to two-phase flows is more recent than for purely gaseous flows. Fox (2012) provides
a review of the different approaches for Large Eddy simulation of two-phase flows, pointing out the main fields of
application of each approach, as well as their advantages, drawbacks and a summary of the closures and models
for the sub-grid scale terms.

3.1 LES equations for the gaseous phase

The transition from laminar to turbulent flow is characterized by the Reynolds numberRe, a dimensionless number
representing the ratio of inertial to viscous forces:

Re =
LU
ν
, (3.1)

where L the characteristic size of the flow, U the characteristic velocity and ν the fluid kinematic viscosity. The
higher the Reynolds number, the more turbulent the flow.

The velocity in a turbulent flow suffers significant variations in time and space. It is characterized by the
pressence of vortices or eddies of different sizes. These eddies are in fact vortical structures that interact. The
energy cascade (Richardson (1922)) suggests that the kinetic energy is essentially fed by the turbulence at the
largest scales and is then transferred to smaller and smaller scales until its dissipation by the viscous forces at the
smallest scales (Pope (2000)).

When the Reynolds number large enough, the smallest eddies of the flow can be characterized (Kolmogorov
(1941)) being ε the dissipation rate of the flow, Kolmogorov (1941) stated that a unique set of length, velocity and
time scales can be expressed for the smallest scales:

35
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η ≡ (ν3/ε)1/4, (3.2)
uη ≡ (εν)1/4, (3.3)

τη ≡ (ν/ε)1/2. (3.4)

where η refers to the smallest scales of the flow.

It is then possible to link the length, velocity and time scales of the smallest eddies to those of the largest eddies
depending only on the Reynolds number:

η/l0 ∼ Re−3/4, (3.5)
uη/u0 ∼ Re−1/4, (3.6)

τη/τ0 ∼ Re−1/2, (3.7)

where the subscript 0 refers to the largest scales of turbulence.

Figure 3.1: Example of energy spectrum showing the distinction between integral, inertial and dissipation zones. Source Pope
(2000).

The energy spectrum E(κ) represents the turbulent contribution os all scales to the turbulent kinetic energy.
Figure 3.1 shows an example of energy spectrum. Three main zones can be distinguished (Pope (2000)):

• The integral or energy containing zone: the largest eddies belong to this part. They are characterized by the
lowest frequencies and their size is comparable to the largest scales of the flow.

• The inertial zone represents the large eddies breaking into smaller ones and transferring their energy to
smallest eddies.

• The dissipation range contains the high frequency structures, i.e. the smallest eddies. The viscous forces act
in this zone converting the turbulent energy of the eddies into heat.

3.1.1 Filtering procedure

The separation of the small and large scales is achieved through the application of a low-pass filter G∆ to the exact
equations (Leonard (1974)). The filtered quantity Φ is defined as the convolution of the non-filtered quantity Φ
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with the spatial filter G∆, whose characteristic lenght is ∆:

Φ(x) =
∫

Φ(x)G∆(x′ − x) dx′. (3.8)

The filtered quantity or resolved large scale field, Φ̄, is calculated solving its transport equation. The unsolved
residual field Φ′ contains all the flow scales smaller than the filter size 2∆:

Φ′ = Φ− Φ. (3.9)

For variable density flows, it is useful to use a mass weighted filtering or Favre averaging (Favre (1969)) in order
to avoid unclosed terms due to density fluctuations:

φ̂ =
1
ρ̄
ρφ. (3.10)

In the context of this work, both phases are compressible, so Favre averaging is applied to both the gaseous and
the dispersed phases.

3.1.2 Filtered Navier-Stokes equations

The final set of filtered Navier-Stokes equations for the gas phase are directly obtained by filtering Eqs. (2.1)-(2.3):

∂

∂t
ρg +

∂

∂xj
ρgûg,j = 0 (3.11)

∂

∂t
ρgûg,i +

∂

∂xj
ρgûg,iûg,j = − ∂

∂xj

[
Pgδij − τg,ij + ρgTg,ij

]
(3.12)

∂

∂t
ρgÊg +

∂

∂xj
ρgÊgûg,j = − ∂

∂xj

[
ûg,i(Pgδij − τg,ij) + qg,j + ρgQg,j)

]
. (3.13)

where the subgrid terms read:

Tg,ij = ûg,iug,j − ûg,iûg,j (3.14)

Qg,j = ûg,jEg − ûg,jÊg. (3.15)

The subgrid-scale terms are modeled by their dissipative effects on the computed scales following the idea of
energy transfer from the largest to the smallest scales (Kolmogorov (1941)). The Boussinesq hypothesis (Boussi-
nesq (1877)) assumes that the energy transfer mechanism from the resolved to the subgrid scales is analogous to
the molecular diffusion mechanism. Replacing the molecular viscosity by a turbulent kinematic viscosity νt, the
fluid subgrid model is written:

Tg,ij −
1
3
Tg,ll ≈ 2νt

(
Ŝg,ij −

1
3
δijŜg,ll

)
, (3.16)

where

Ŝg,ij =
1
2

(
∂ûg,i
∂xj

+
∂ûg,j
∂xi

)
. (3.17)

In Eq. (3.16) only the turbulent viscosity νt needs to be modeled. Various models for the turbulent viscosity
are available in AVBP (Smagorinsky (Smagorinsky (1963)), WALE (Ducros et al. (1998)), Filtered Smagorinsky
(Ducros et al. (1996)), Dynamic Smagorisnsky model (Germano et al. (1991), Lilly (1992)) and the k-equation
model). As it is not the scope of this work, the model used here is briefly presented in Section 3.1.3.

The subgrid-scale heat flux Qg,j model needs the determination of the turbulent thermal conductivity λt, that
is, the thermal conductivity due to the residual turbulent motion. Qg,j is written as:

Qg,j = −λt
ρg

∂T̂g
∂xj

, (3.18)
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with

λt =
ρgνtCpg
Prt

. (3.19)

In the LES presented in this work, the turbulent Prandtl number Prt has been set to 0.6.

Finally, the remaining filtered terms are approximated as follows:

τg,ij = 2µg

(
Ŝg,ij −

1
3
δijŜg,ll

)
, (3.20)

qg,j = λg
∂T̂g
∂xj

, (3.21)

P = ρgrT̂g. (3.22)

3.1.3 WALE model for the gaseous turbulent viscosity

Multiple models for the evaluation of the dissipative effects of the subgrid-scales (Lesieur (1997), Pope (2000))
exist. There are also several options to model the turbulent viscosity in AVBP. However, all the LES presented
in this work have been performed with the WALE (Wall-Adapting Local Eddy-viscosity) model (Ducros et al.
(1998)). This model automatically adapts the subgrid viscosity on boundary layer flows while preserving the
dissipative effects of turbulence in HIT flows.

The WALE turbulent viscosity reads:

νt = (Cw∆)2
(sdijs

d
ij)

3/2

(Ŝg,ijŜg,ij)5/2 + (sdijs
d
ij)5/4

. (3.23)

where Cw is the same constant as in the Smagorinsky model, fixed to Cw = 0.4929. sdij is the residual part in the
resolved rate-of-deformation tensor:

sdij = Ŝg,imŜg,mj + Ω̂g,imΩ̂g,mj −
1
3
δij

[
Ŝg,nlŜg,nl + Ω̂g,nlΩ̂g,nl

]
, (3.24)

where Ω̂g is the filtered rotation rate tensor:

Ω̂g,ij =
1
2

(
∂ûg,i
∂xj

− ∂ûg,j
∂xi

)
. (3.25)

3.2 LES equations for the dispersed phase

Filtering the mesoscopic Eulerian equations is done in analogy with the filtering of the gaseous phase equations
presented in Section 3.1.1. Favre averaging is performed replacing the gaseous density ρg in Eq. (3.26) by the
mesoscopic particle volume fraction ᾰp:

αpφ̂ = ᾰpφ̆ . (3.26)

An equivalence between the Favre average based on ᾰp and the particle number density n̆p can be obtained
assuming that the dispersed phase is locally monodisperse, i.e. within the filter size. Thus, the Favre average also
reads:

n̆pφ̆ =
6ᾰp
πd3

φ̆ = npφ̂. (3.27)

In the remaining of this chapter, the notation .̆ will be abandoned for the sake of simplicity.
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3.2.1 Filtered Mesoscopic Eulerian equations

The final set of LES equations for the dispersed phase reads:

∂

∂t
np +

∂

∂xj
npûp,j = 0 (3.28)

∂

∂t
ρpαp +

∂

∂xj
ρpαpûp,j = − Γ (3.29)

∂

∂t
ρpαpûp,i +

∂

∂xj
ρpαpûp,iûp,j = − Γ ûp,i + FD,i

− ∂

∂xj
ρpαp

[
δ̂R∗p,ij +

2
3
δ̂θpδij + Tp,ij

]
(3.30)

∂

∂t
ρpαpĥp +

∂

∂xj
ρpαpûp,j ĥp = − Γĥp + Φp (3.31)

∂

∂t
ρpαpδ̂θp +

∂

∂xj
ρpαpûp,j δ̂θp = − Γδ̂θp +Wθ −

∂

∂xj
ρpαpδ̂Qp,iij

− ρpᾰp

[
δR̆∗p,ij +

2
3
δθ̆pδij

]
∂

∂xj
ŭp,i. (3.32)

In the set of equations Eq. (3.28) - (3.32) several terms need closure. In this section, the closure approximations
for the source terms due to drag force and evaporation are recalled. The filtered evaporation source terms here
presented correspond to the classical model implemented in AVBP. The filtered terms corresponding to the models
presented in Part III are computed similarly.

• Filtered source terms linked to evaporation:

– Mass evaporation rate:

Γ ≈ πnpdSh
µ

ScF
ln(1 +BM ), (3.33)

Sh ≈ 2 + 0.55Re
1/2

p Sc
1/3
F , (3.34)

BM ≈ YF,ζ(T̂p)− ŶF
1− YF,ζ(T̂p)

. (3.35)

– Sensible energy variation rate du to thermal conduction:

Φp ≈ Γ(ĥp − hs,F (T̂p))− πnpdNu(T̂p − T̂ ), (3.36)

Nu ≈ 2 + 0.55Re
1/2

p Pr1/3. (3.37)

• Filtered source terms linked to drag force:

– Momentum variation rate due to drag:

FD,i ≈
ρpαp
τp

(ûi − ûl,i). (3.38)

• Filtered source term linked to the RUM:

– Rate of RUE variation due to drag force:

Wθ ≈ −
2ρpαp
τp

δ̂θp, (3.39)
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where the filtered particle relaxation time is approximated as follows:

τp ≈ (1 + 0.15Re
0.687

p )
ρpd

2

18µ
, (3.40)

and the filtered particle Reynolds number:

Rep ≈
|û− ûp|d

ν
. (3.41)

Special attention is needed for the terms related to the Random Uncorrelated Motion:

• Tp,ij is due to the subgrid correlated motion and is analogous to the fluid Reynolds tensor (Eq. (3.16)):

Tp,ij = ûp,iup,j − ûp,iûp,j . (3.42)

Analogous to the subgrid scale models used for the LES of the gaseous equations, Moreau et al. (2009)
propose to close the sub-grid correlated motion tensor Tp,ij with a voscosity-type Smagorinsky model.
However, due to the compressible nature of the mesoscopic dispersed phase, the compression part of the
mesoscopic velocities is not negligible. In order to model the subgrid scale compression effects, Moreau
et al. (2009) use the Yoshizawa model. Thus, the subgrid scale stress tensor is model as:

Tp,ij =
2
3
Cp,Y ∆2||Ŝp||2δij − 2(Cp,S∆)2||Ŝ∗p ||Ŝ∗p . (3.43)

where ||Ŝp|| =
√

2Ŝp,ijŜp,ij .

The dispersed phase rate-of-strein tensors are given by:

Ŝp,ij =
1
2

(
∂ûp,i
∂xj

+
∂ûp,j
∂xi

)
, (3.44)

Ŝ∗p,ij = Ŝp,ij −
1
3
∂ûp,k
∂xk

δij . (3.45)

(3.46)

• δ̂Qp,iij is modeled similarly to δQ̆p,iij in Eq. (2.89):

δ̂Qp,iij = −κ̂RUM
∂δ̂θp
∂xj

, (3.47)

where κ̂RUM = 10
27τp

ˆδθp.

• The filtered RUE production term is written as:

ρpᾰp

[
δR̆∗p,ij +

2
3
δθ̆pδij

]
︸ ︷︷ ︸

δR̆p,ij

∂

∂xj
ŭp,i = ρpαpδ̂Rp,ij

∂ûp,i
∂xj

−
[
ρpᾰpδR̆p,ij

∂ŭp,i
∂xj

− ρpαpδ̂Rp,ij
∂ûp,i
∂xj

]
︸ ︷︷ ︸

U
t
θ

,

(3.48)

where δ̂Rp,ij = δ̂R∗p,ij + 2
3 δ̂θpδij .

ˆδθp is captured through its transport equation (Eq. 3.32). ˆδR∗p,ij is evaluated
through the models described in Part II using filtered quantities.

U
t

θ is a RUE production term due to the subgrid scale motion and is assumed to have a dissipative effect on the
subgrid correalted energy. Assuming equilibrium in the subgrid correlated energy, Moreau (2006) modeled U

t

θ as:

U
t

θ = Tp,ij
∂ûp,i
∂xj

. (3.49)

For more details the reader is encouraged to see Moreau (2006) and Riber (2007).
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Chapter 4

Modeling the RUM stress tensor

This Chapter, inspired in the work of Masi (2010), is dedicated to the closure models for the deviatoric part of the
Random Uncorrelated Motion (RUM) stress tensor (δR̆∗p,ij) appearing for the MEF approach in the momentum
(Eq. (2.93)) and Random Uncorrelated Energy equations (Eq. (2.95)). Such tensor may be compared to the fluid
stress tensor due to thermal agitation in the Navier-Stokes equations for the gaseous phase. As stated in Chapter 2,
the second order uncorrelated velocity correlation tensor, or RUM tensor δR̆p,ij , is splitted into an spherical part,
the so-called RUE (δθ̆p) and a deviatoric part δR̆∗p,ij . Section 2.2.4 presented the development of a transport
equation for the RUE, while the deviatoric part remained unclosed. In this Chapter, several closure models for the
deviatoric RUM stress tensor are proposed. In this part of the manuscrit evaporation effects are neglected.

Simonin et al. (2002) proposed to close the deviatoric RUM stress tensor using a viscosity assumption, the
so-called VISCO model (Section 4.2). This model has proven to give satisfactory results in a posteriori iner-
tial particle-laden HIT flows simulations (Kaufmann (2004), Riber (2007), Kaufmann et al. (2008), Vié (2010)).
However, Riber (2007) showed that it failed when performing a posteriori tests in mean-sheared flows (Hishida
et al. (1987)). Recently, Masi (2010) proposed new models for the closure of δR̆∗p,ij , that are briefly recalled in
this Chapter. These new models are specially developped for the deviatoric RUM stress tensor and make use of
solution procedures originally developped in the context of gaseous turbulent flows. She performed an a priori
analysis of a particle-laden turbulent planar jet (Fig. 4.1) proposed and validated models on this configuration with
mean shear. The corresponding a posteriori study of the same configuration is presented in Chapter 5.

Figure 4.1: Particle-laden turbulent planar jet configuration (Particle-laden HIT slab). Initial carrier phase velocity
magnitude field.
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4.1 Preliminary considerations

In this Part of the manuscript, and in order to respect the notation used by Masi (2010), the equations are written
using n̆p instead of ρpᾰp. In a monodisperse context, both quantities are proportional:

ᾰp =
d3
p · π · n̆p

6
. (4.1)

Several quantites that are used throughout this Chapter are here defined. The RUM anisotropy stress tensor
reads:

b∗p,ij =
δR̆p,ij

2δθ̆p
− 1

3
δij =

δR̆∗p,ij

2δθ̆p
. (4.2)

The particle rate-of-strain is the symmetric part of the mesoscopic particle velocity gradient:

Sp,ij =
1
2

(
∂ŭp,i
∂xj

+
∂ŭp,j
∂xi

)
. (4.3)

The mesoscopic vorticity or rotation tensor Ω reads:

Ωp,ij =
1
2

(
∂ŭp,i
∂xj

− ∂ŭp,j
∂xi

)
. (4.4)

The mesoscopic velocity-gradient tensor is thus defined as:

∂ŭp,i
∂xj

= S∗ +
1
3
{S}I + Ω, (4.5)

where I is the identity matrix, bold notation denotes three-dimensional (3D) second order tensors and {.} represents
the tensor trace. Asterisk is used to denote traceless tensors when associated with bold notation, otherwise means
"deviatoric". The deviatoric particle rate-of-strain accounts for shearing and the spherical part for contraction or
expansion.

The alignment between the particle rate-of-strain tensor and the rotation tensor provides information about the
configuration of the flow. For information on the local behavior of the tensors the reader is referred to the works
of Lund & Rogers (1994), Simonin (1991), George & Hussein (1991) and Masi (2010)).

4.2 A local equilibrium assumption

In order to be coherent with the notation used by Masi (2010), the equations for the RUM model proposed by
Simonin et al. (2001) are here rewritten.

The transport equation for the 2nd order particle velocity stress tensor δR̆p,ij reads:

∂

∂t
n̆pδR̆p,ij +

∂

∂xj
n̆pδR̆p,ij ŭp,j = −2

n̆p
τ̆p
δR̆p,ij − n̆pδR̆p,ik

∂ŭp,j
∂xk

− n̆pδR̆p,kj
∂ŭp,i
∂xk

− ∂

∂xk
δQ̆p,ijk. (4.6)

Neglecting all transport terms, Eq. (4.6) reduces to:

δR̆p,ij = − τ̆p
2

[
δR̆p,ik

∂ŭp,j
∂xk

+ δR̆p,kj
∂ŭp,i
∂xk

]
. (4.7)

The RUM stress tensor is then splitted into an spherical and a deviatoric part (Eq. (2.86)). Substracting the trace
leads:

δR̆∗p,ij = − τ̆p
2

[
2
3
δθ̆p

(
∂ŭp,i
∂xj

+
∂ŭp,j
∂xi

− 2
3
∂ŭp,m
∂xm

δij

)]
− τ̆p

2

[
δR̆∗p,kj

∂ŭp,i
∂xk

+ δR̆∗p,ik
∂ŭp,j
∂xk

− 2
3
δR̆∗p,mn

∂ŭp,m
∂xn

δij

]
. (4.8)
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In order to close the deviatoric RUM stress tensor δR̆∗p,ij , a condition of equilibrium may be assumed. Assuming
light anisotropy leads to neglect the 2nd term in the RHS of Eq. (4.8) giving the known viscosity-like model
(Simonin et al. (2001)):

δR̆∗p,ij = − τ̆p
2

[
2
3
δθ̆p

(
∂ŭp,i
∂xj

+
∂ŭp,j
∂xi

− 2
3
∂ŭp,m
∂xm

δij

)]
= −2νRUMS∗p,ij , (4.9)

where νRUM = τ̆pδθ̆p/3 is the so-called RUM viscosity.

This model has been extensively used to perform Eulerian-Eulerian simulations (Kaufmann et al. (2008), Riber
(2007), Riber et al. (2009), Sanjosé (2009), Vié et al. (2009), Dombard (2011)). Riber (2007) showed that this
model conducts to a re-laminarization of the dispersed phase flow when in the presence of mean shear (configura-
tion of Hishida et al. (1987)). Hereinafter, Eq. (4.9) will be referred to as “VISCO" model.

Note that the viscosity model assumes that the deviatoric RUM and the particle rate-of-strain are related by a
linear equation through an eddy-viscosity which uses the particle relaxation time as timescale. This assumption
may be related to the kinetic theory of diluted gases. It implies that molecular motion adjust rapidly to the changes
imposed by the local strain. This basic assumption at the basis of the VISCO model is violated when the Knudsen
number (Kn, a dimensionless number relating the particle relaxation time and the mesoscopic shear timescale) is
large.

4.3 A viscosity-type model for axisymmetric tensors

Masi (2010) adapted an idea of Jovanović & Otić (2000) suggested for turbulent flows to the dispersed phase
behaving in one-component limit state. According to numerical onservations of turbulent flows, the tensors are
assumed axisymmetric with respect to a preferential direction. That is, fluctuations are developed in a privileged
direction of the flow. They can be written in bilinear form using eigenvalues (Batchelor (1946), Chandrasekhar
(1950)). By using the second invariants of the rate-of-strain (S, Eq. (4.3)), the anisotropy (b) tensors, and the signs
of their third invariants, one may write the following equation for δR̆∗p,ij :

δR̆∗p,ij = sign(IIIS)sign(IIIb)II
1/2
b 2δθ̆p

S∗p,ij
S

. (4.10)

The magnitude of the rate-of-strain tensor reads:

S = II
1/2
S = {S∗2}1/2, (4.11)

S is the second invariant of the rate-of-strain tensor. The third dimensional invariant reads:

IIIS = {S∗3}, (4.12)

The same invariants can be defined for the anisotropy tensor b respectively noted: IIb and IIIb.

In Eq. (4.10), the product of the invariants’ signs accounts for the possibility of both tensors being in the same
configuration of contraction or expansion if positive, or in the opposite configuration if negative. Numerical simu-
lations (Masi (2010)) showed that IIIb is locally positive and only the sign of IIIS changes, and that b behaves in
one-component limit state, which gives IIb = 2

3 . Taking into account these considerations, the Eq. (4.10) leads to:

δR̆∗p,ij = sign(IIIS)
(

2
3

)1/2

2δθ̆p
S∗p,ij
S

. (4.13)

Equation (4.13) still accounts for the possibility of reverse exchanges of energy through sign(IIIS). Under these
assumptions, the sign of IIIS reproduces both positive and negative viscosities, and thus energy exchanges from
the RUM to the mesoscopic motion are accounted for. Equation (4.13) may be rewritten without including the sign
of the third invariant of S:

δR̆∗p,ij = −
(

2
3

)1/2

2δθ̆p
S∗p,ij
S

. (4.14)
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Hereinafter, Eq. (4.14) will be referred as “AXISY" model and Eq. (4.13) as “AXISY-C", “-C" standing for
corrected, since the model includes a correction in the form of sign(IIIS).

4.3.1 Two different timescales

Section 4.2 presented a model for the deviatoric RUM stress tensor using the particle relaxation time τ̆p as timescale
for the relationship between δR̆∗p,ij and S∗p,ij (Eq. (4.9)). The so called AXISY model presented in Section 4.3
uses instead the mesoscopic-shear timescale to relate both tensors (Eq. (4.14)):

τ̆p
3︸︷︷︸

V ISCO

−→
II

1/2
b

S︸ ︷︷ ︸
AXISY

. (4.15)

Hence, VISCO and AXISY are both eddy-viscosity models differing in their timescale: F(τ̆p) for VISCO and
F(S−1) for AXISY.

4.4 Quadratic algebraic approximation

Assuming equilibrium of stress components (i.e. neglecting all transport terms) in Eq. (4.8) and applying an it-
erative procedure invoking the isotropic approximation (δR̆∗p,ij = 0) at the zeroth-order approximation, Zaichik
developped a non-linear model that, at the first approximation, is equivalent to VISCO model. The second approx-
imation gives:

δR̆∗p,ij = −2τ̆pδθ̆p
3

S∗p,ij +
2τ̆2
p δθ̆p

6

(
S∗p,ik

∂ŭp,j
∂xk

+ S∗p,jk
∂ŭp,i
∂xk

− 2
3
S∗p,mn

∂ŭp,m
∂xn

δij

)
. (4.16)

Equation (4.16) is referred as “QUAD" model in Masi (2010). It has not been implemented in AVBP and analysis
nor results concerning this model are presented in this work. However, it is a necessary step for the understanding
of the model presented in Section 4.4.1.

4.4.1 A “rescaled" quadratic algebraic approximation.

Masi (2010) used Eq. (4.15) to construct a new non-linear model from Eq. (4.16). Replacing τ̆p with the timescale
S−1 (cf Section 4.3.1) and applying the same iterative procedure to Eq. (4.8) that has been applied to obtain
Eq. (4.16) leads to:

δR̆∗p,ij = −2
(

2
3

)1/2

δθ̆p
S∗p,ij
S

+
2δθ̆p
S2

(
S∗p,ik

∂ŭp,j
∂xk

+ S∗p,jk
∂ŭp,i
∂xk

− 2
3
S∗p,mn

∂ŭp,m
∂xn

δij

)
. (4.17)

Equation (4.17) at the first order leads to “AXISY" model (Eq. (4.14)), if one-component limit state is assumed
and a positive viscosity is used. It can be rewritten for the anisotropy tensor b∗:

b∗ = −

[(
2
3

)1/2

− 2
3
{S+}

]
S∗+ − (S∗+Ω+ −Ω+S∗+) + 2

(
S∗+2 − 1

3
{S∗+2}I

)
, (4.18)

where the superscript + stands for dimensionless tensors (normalization by II1/2
S ). The assessment of the model

on the mean components of the stress tensor showed that including a coefficient of 0.5 in Eq. (4.18) produces
better agreement in the particle-laden turbulent planar jet configuration (Fig. 4.1) of (Masi (2010)). Hereinafter,
Eq. (4.18) will be referred as “QUAD-MOD" model. It has been implemented in AVBP with a coefficient of 0.5
for the study of Chapter 5 for the configuration shown in Fig. 4.1.
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4.5 A local weak-equilibrium assumption

In the context of gaseous turbulence, Rodi (1972) introduced a “weak-equilibrium" assumption which does not
need to neglect the transport terms in the stress equations. Instead, it supposes that the spatial and temporal varia-
tions of the stresses are related to the variations of the kinetic energy. The equilibrium hypothesis is thus transposed
onto the anisotropy tensor. From this idea, Pope (1975) suggested an effective-viscosity approach. Several authors
(Gatski & Speziale (1993), Girimaji (1996), Wallin & Johansson (2000)) contributed to the development of the
so-called Algebraic Stress Models (ASM) where an “E", for explicit, is often added (EASM).

From this idea, Masi (2010) proposed an implicit equation for the modelisation of the RUM (Eq. (4.22)) and
used the methods of Gatski & Speziale (1993), Girimaji (1996) and Wallin & Johansson (2000) to develop explicit
solutions for it. Here, the main steps leading to Eq. (4.22) are recalled and the explicit solutions obtained presented.

Introducing the same “weak-equilibrium" assumption to the RUM anisotropy stress tensor leads:

D

Dt
b∗p,ij = 0, (4.19)

or using Eq. (4.2) gives:
D

Dt
δR̆p,ij =

δR̆p,ij

δθ̆p

D

Dt
δθ̆p. (4.20)

Injecting Eq. (2.79) and (2.95) into Eq. (4.20) and assuming equality between third-order correlations yields:

δR̆p,ij

(
−δR̆p,nm

2δθ̆p

∂ŭp,n
∂xm

)
= −1

2
δR̆p,kj

∂ŭp,i
∂xk

− 1
2
δR̆p,ik

∂ŭp,j
∂xk

. (4.21)

The term inside the parenthesis represents the production of the local RUM kinetic energy by shear and com-
pression (normalized by 2δθ̆p). Equation (4.21) may be written for the anisotropy tensor:

b∗ (−2{b∗S∗}) = −2
3
S∗ −

(
b∗S∗ + S∗b∗ − 2

3
{b∗S∗}I

)
+ (b∗Ω−Ωb∗) , (4.22)

which is a non-linear implicit system. Masi (2010), developped explicit solutions for Eq. (4.22) following the
ideas of Gatski & Speziale (1993), Girimaji (1996) and Wallin & Johansson (2000). They are briefly recalled in
Sections 4.5.1 - 4.5.3. The family of models arising from the explicit solutions of Eq. (4.22) will be referred as
“2ΦEASM" models.

Equation (4.22) is a more generalized form of equilibrium “production-dissipation" that contains the models
presented in previous sections.

In order to provide an explicit solution, Eq. (4.22) is rearranged as follows:

b+ = −S+ −
(

b+S+ + S+b+ − 2
3
{b+S+}I

)
+
(
b+Ω+ −Ω+b+

)
, (4.23)

where b+ = 3
2b∗, S+ = S∗/(−2{b∗S∗}) and Ω+ = Ω/(−2{b∗S∗}). According to Pope (1975), the anisotropy

can be expressed in a general form:
b+ =

∑
ς

G(ς)T (ς), (4.24)

where a set of ten tensors T (ς) and coefficients G(ς) is needed to form the integrity basis shown in Table 4.1. The
coefficients are presented in Table 4.2. They are functions of the five dimensionless invariants:

η1 = {S+2}, η2 = {Ω+2}, η3 = {S+3}, η4 = {S+Ω+2}, η5 = {S+2Ω+2}, (4.25)

the denominator D reading:

D = 3− 7
2
η1 + η2

1 −
15
2
η2 − 8η1η2 + 3η2

2 − η3 +
2
3
η1η3 − 2η2η3 + 21η4 + 24η5 + 2η1η4 − 6η2η4. (4.26)
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T (1) = S+ T (6) = Ω+2S+ + S+Ω+2 − 2
3{S

+Ω+2}I
T (2) = S+Ω+ −Ω+S+ T (7) = Ω+S+Ω+2 −Ω+2S+Ω+

T (3) = S+2 − 1
3{S

+2}I T (8) = S+Ω+S+2 − S+2Ω+S+

T (4) = Ω+2 − 1
3{Ω

+2}I T (9) = Ω+2S+2 + S+2Ω+2 − 2
3{S

+2Ω+2}I
T (5) = Ω+S+2 − S+2Ω+ T (10) = Ω+S+2Ω+2 −Ω+2S+2Ω+

Table 4.1: The integrity basis for fully three-dimensional flows. Reproduced from Masi (2010).

G(1) = − 1
2 (6− 3η1 − 21η2 − 2η3 + 30η4)/D G(6) = −9/D

G(2) = −(3 + 3η1 − 6η2 + 2η3 + 6η4)/D G(7) = 9/D
G(3) = (6− 3η1 − 12η2 − 2η3 − 6η4)/D G(8) = 9/D
G(4) = −3(3η1 + 2η3 + 6η4)/D G(9) = 18/D
G(5) = −9/D G(10) = 0

Table 4.2: Coefficients associated to the integrity basis. Reproduced from Masi (2010).

Singularities may appear when the denominator D vanishes. For this reason Gatski & Speziale (1993) proposed
a regularization procedure applied to the two-dimensional formulation to ensure stability. In practice the 2D
formulation is also used for three-dimensional flows. Two-dimensional flows are mean-free in one of the three
directions. According to Gatski & Speziale (1993) in that case only three tensors from the integrity basis (Table 4.1)
are needed: T (1), T (2) and T (3). Moreover, in 2D: η3 = η4 = 0 and η5 = 1

2η1η2. The expression for 2D flows
reads:

b+ = − 3
3− 2η1 − 6η2

[
S+ +

(
S+Ω+ −Ω+S+

)
− 2

(
S+2 − 1

3
{S+2}I

)]
. (4.27)

4.5.1 Modeling the non-linearity

Equation (4.27) is implicit. In order to provide an explicit expression, an equation for −2{b∗S∗} has to be pro-
vided. b∗ and S∗ are both axisymmetric tensors, b∗ behaving in one-component limit state and S∗ in axisymmetric
expansion (Masi (2010)). Assuming alignment between the tensors and axisymmetric directions leads to:

− 2{b∗S∗} = 2
(

2
3

)1/2

II1/2
s . (4.28)

Equation (4.28) is invariant by definition. Using Eq. (4.28) to normalize the tensors in Eq. (4.27) guarantees that
the 2D form is always non-singular. Re-writting the denominator for two-dimensional flows using the variable
change η2 = η1, ζ2 = −η2 leads to:

D = 3− 2η2 + 6ζ2, (4.29)

which in the limit case where ζ2 = 0, η2 must be greater than 3
2 in order to avoidD becoming zero. This condition

is always fulfilled. Combination of Eq. (4.27) and Eq. (4.28) will be referred to as “2ΦEASM1" model.

4.5.2 An explicit solution accounting for non-linearity I

Girimaji (1996) suggested a fully-explicit and consistent solution for 2D flows in the context of gaseous turbulence.
Masi (2010) adapted the same approach to provide an explicit solution to Eq. (4.22). Equation (4.22) is rewritten
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in Girimaji’s notation as follows:

b∗
(
L0

1 − L1
1{b∗S+}

)
= L2S+ + L3

(
b∗S+ + S+b∗ − 2

3
{b∗S+}I

)
− L4

(
b∗Ω+ −Ω+b∗

)
(4.30)

where L0
1 = 0, L1

1 = 2, L2 = − 2
3 , L3 = −1 and L4 = −1 and where the normalization is done dividing by II1/2

S .
The general representation of the anisotropy tensor in 2D reads:

b∗ = G1S+ +G2

(
S+Ω+ −Ω+S+

)
+G3

(
S+2 − 1

3
{S+2}I

)
(4.31)

where the coefficients G are:
G2 =

L4

η1L1
1

, G3 = − 2L3

η1L1
1

, (4.32)

and

G2
1 = − 1

η1L1
1

[
L2 +

1
3
η1L3G3 − 2η2L4G2

]
. (4.33)

Here η1 = {S+2} and η2 = {Ω+2}. Unfortunately, as η2 is always negative, Eq. (4.33) admits real solutions only
for η1 ≥ −η2. In the implementation of this model, local negative values will be set to zero. Concerning the sign
of G1, in the simplest case it is taken as negative. Combination of Eq. (4.31) and the coefficients in Eq. (4.32) and
(4.33) (with negative sign) will be referred to as “2ΦEASM2" model.

4.5.3 An explicit solution accounting for non-linearity II

Another technique to provide explicit solutions was suggested by Wallin & Johansson (2000) in the context of
turbulent gaseous flows and used in the context of the RUM by Masi (2010) to provide new explicit solution to
Eq. (4.22). Using the integrity basis of Table 4.1, Eq. (4.23) is written for the dispersed phase, using the notation
of Wallin & Johansson (2000), as follows:

Nb∗ = −A1S+ −A2

(
b∗S+ + S+b∗ − 2

3
{b∗S+}I

)
+ (b∗Ω∗ −Ω∗b∗) , (4.34)

where
N = A3 +A4(−2{b∗S+}), (4.35)

A1 = 2
3 , A2 = 1, A3 = 0, A4 = 2 and the normalization is done as in Section 4.5.2. In very diluted flows, as

A3 = 0, the polynomial of N is depressed to the second order and reads:

N = 2η1 + 2η2. (4.36)

N admits real solutions only for η1 ≥ −η2. As it has been done for 2ΦEASM2 model, local negative values are
set to zero. Concerning the sign of N it must lead to a positive sign of the production and hence it will be chosen
as positive in the simplest case. Masi (2010) developped the limit solutions for three and two-dimensional flows.
Here, only the 2D form is presented. The final equation for the anisotropy tensor reads:

b∗ = G1T
(1) +G2T

(2) +G3T
(3), (4.37)

where the coefficients of the model depend on N as follows:

G1 = −A1N

Q
, G2 = −A1

Q
, G3 = 2

A1A2

Q
, (4.38)

with
Q = N2 − 2η2 −

2
3
AA2

2η1. (4.39)

Hereinafter this model will be referred to as “2ΦEASM3". 2ΦEASM2 and 2ΦEASM3 models lead to the same
solution under the two-dimensional flows assumption. Since only the 2D form has been implemented in AVBP,
only results using the 2D formulation will be shown in this work. The reader is encouraged to see Masi (2010) for
more details about the development of the models briefly presented in this section.
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4.5.4 Model correction

Section 4.3 showed that it is possible to acoount for a reverse exchange in the energy by introducing a correction by
means of sign(IIIS). In the so-called “2ΦEASM" models, the reverse sign in the energy exchange is related to the
sign of the coefficient G1, which is the same than that of the scalar quantity {b∗S∗}. This coefficient is negative in
single-phase turbulent flows (“weak-equilibrium", Girimaji (1996)). However, in dispersed phase interacting with
turbulent flows, it is usual to have a reverse exchange of energy from the RUM to the mesoscopic motion, which
would correspond to a reverse sign of G1. Masi (2010) proposed to model this reverse exchange of energy in the
2ΦEASM models in the same way than in AXISY-C, giving the so-called “2ΦEASM-C" models.

2ΦEASM1-C model is constructed by including in Eq. (4.28) the sign of the third invariant of S, sign(IIIS),
as follows:

− 2{b∗S∗} = −2sign(IIIS)
(

2
3

)1/2

II
1/2
S . (4.40)

The coefficient G1 of the model 2ΦEASM2 obtained by Eq. (4.33) is rewritten as

G1 = sign(IIIS)
√

2η1 + 2η2

2η1
(4.41)

giving the so-called 2ΦEASM2-C model.

Finally, 2ΦEASM3-C model is obtained through a modification of the quantity N (Eq. (4.36)) as follows:

N = −sign(IIIS)
√

2η1 + 2η2 . (4.42)

4.6 A hierarchy of models: Classification

Figure 4.2 shows a classification of the models presented in this Chapter taking into account wether they are linear
or not and depending on the timescale they use (cf Section 4.3.1). There are two linear models: VISCO and
AXISY that differ on their timescale (F(τ̆p) for VISCO and F(S−1) for AXISY). QUAD is a non-linear model
using the timescale of VISCO. However, since QUAD-MOD (a non-linear model using F(S−1) as timescale)
showed better a priori results in the particle-laden turbulent planar jet configuration (Masi (2010)) than QUAD
only QUAD-MOD has been implemented in AVBP and no results using QUAD model will be shown here. Finally,
all 2ΦEASM models are non-linear models using F(S−1) as characteristic timescale.

4.7 Verification of the realizability conditions of the model

It is well known in gaseous turbulence, that certain models for the Reynolds stress tensor, containing closure
assumptions relating algebraically unknown correlations to the known quantities, may not have a solution for a
given set of initial and boundary conditions in the sense that the realizability conditions (Vachat (1977), Schumann
(1977)) may be violated. The problem of non-realizable solutions has already been found in complicated analytical
models for the turbulence. In particular, negative energies may develop (André et al. (1976)) and some properties of
the turbulence can be violated (Orszag (1970)). Such realizability conditions for single-flow are written (Schumann
(1977), Ortega (1987)):

Rαβ ≥ 0 for α = β, (4.43)

R2
αβ ≤ RααRββ for α 6= β. (4.44)

Here, Rαβ is any velocity based stress tensor. Summation is adopted for latin indices but not for greek indices.
These conditions are the consequence of real velocities and Schwarz’s inequality. Equation (4.43) implies non-
negative energies and Eq. (4.44) states that the cross-correlations between different components of the fluctuating
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Figure 4.2: Schematic representation of models. L=Linear, NL=Non-Linear constitutive relations. Modified from Masi (2010).

velocity are bounded by the magitude of the autocorrelations. Another condition must be added to the set of
Eqs. (4.43)-(4.44):

det(Rαβ) ≥ 0. (4.45)

Equation (4.45) can be rearranged as follows:

R12R23R31

R11R22R33
≥ 1

2

[
R2

12

R11R22
+

R2
23

R22R33
+

R2
31

R11R33
− 1
]
. (4.46)

Equation (4.46) implies that the cross-correlations can not take arbitrary values (i.e. if two are well correlated with
the same signs, the third one must be positive). Equation (4.43) to (4.46) produce five independent inequalities.
However, Schumann (1977) showed that only three are independent.

Regarding the applicability of these conditions to numerical simulations, Deardorff (1973) and André et al.
(1976) proposed to clip the non-realizable solutions at each time step and at every node of the grid. That is,
for all points where the inequalities (4.43) - (4.46) do not hold, the stress tensor components take a new value
corresponding to the equal sign of the condition. However, as Schumann (1977) showed, these changes may depend
upon the orientation of the system and lead to nonsteady and noninvariant models. However, situations where the
stress tensor is close to the extreme state of equality in the realizability conditions are rare and models which do
not guarantee the realizability conditions at every location and instant might still be valid in most applications.

The models presented in this Chapter for the RUM stress tensor may lead to non-physical solutions in centain
conditions. Since the realizability of the models is not always verified and in order to avoid imaginary solutions,
the approach of Deardorff (1973) and André et al. (1976) has been retained to guarantee that the solutions produced
by the models verify the realizability conditions. Since only three inequalities are independent, only Eqs. (4.43)
and (4.44) have been implemented in AVBP. However, a number of tests including Eq. (4.45), and checking that
the order on which the conditions are verified has no impact on the instantaneous fields, have been performed. The
final set of equations retained for the conditioning of the models is:

δR̆p,αβ ≥ 0 for α = β, (4.47)

δR̆2
p,αβ ≤ δR̆p,ααδR̆p,ββ for α 6= β. (4.48)

In the cases where conditioning is required, a third equation is to guarantee that δR̆∗p,ij remains a traceless tensor
so:

δR̆∗p,ij = 0 for i = j . (4.49)
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This conditioning has been applied to all the simulations presented in this work.



Chapter 5

Modeling the RUM: an a posteriori
analysis.

In this Chapter, the different models for the deviatoric part of the RUM stress tensor presented in Chapter 4 are
validated a posteriori against projected fields (cf Appendix A) issued from Euler-Lagrange calculations performed
with the code NTMIX-2Φ (cf Appendix A). The test case chosen is presented in Section 5.1. It consists in a Direct
Numerical Simulation (DNS) of a temporal particle-laden turbulent planar jet subject to a homogeneous isotropic
decaying turbulence (Fig. 4.1). This test case aims at being representative of a control volume in the periphery of
a hollow-cone spray (Fig. 5.1), where the flow is subjected to a strong mean shear. It is indeed a model of the local
behavior of the dispersed phase in mean-sheared unsteady, inhomogeneous turbulent flows.

Figure 5.1: Generic representation of the flow in a hollow-cone spray. Modified from Vermorel (2003).

Masi (2010) performed an a priori analysis of the performances of the RUM models in this configuration (a
simplified sketch is shown in Fig. 5.3). She performed Euler-Lagrange simulations for different particle inertia (i.e.
Stokes numbers) and different levels of initial gaseous turbulence in the HIT field (i.e. acoustic Reynolds numbers,
Reac) with the code NTMIX-2Φ. The a priori analysis uses particle Eulerian fields extracted from Euler-Lagrange
DNS by means of a projection algorithm (Kaufmann et al. (2008)). Then, the models are tested against “exact"
Eulerian fields. Statistics are computed over all the planes (XZ) of the slab. Since these planes may be considered
as planes of homogeneity, the average gives an estimation of the theoretical ensemble average computed over a
large number of particle and fluid realizations. Instantaneous fields are shown in the (XY) plane at the coordinate
Z = 0 (Fig. 5.2).

The results obtained from the a priori analysis of the RUM models using the Eulerian projection of the La-
grangian fields computed with NTMIX-2Φ (Masi (2010)) are compared with a posteriori Euler-Euler simulations
of the same configuration performed with the code AVBP. The a priori study of the exact Lagrangian computations
of this configuration was used for the validation of the models presented in Chapter 4. The results of Masi (2010)

53
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are not influenced by the choice of the RUM model. Indeed, the a priori analysis consists in the calculation of
the RUM quantities (δθ̆p, the RUM production terms and the components of the deviatoric RUM stress tensor)
from the fields issued from an exact Lagrangian simulation. That is, from the fields of particle number density
and velocity, the values of RUE and the other RUM quantities are calculated for every physical time at which the
analysis is performed. Indeed, in the Lagrangian equations, there are no unclosed terms related to RUM, so no
RUM modeling is needed. On the other hand, in the a posteriori simulations performed with AVBP, the choice of
the model has an influence since the discrete phase flow field is affected by the field at the previous timestep, while
the a priori results are obtained postprocessing exact Lagrangian simulations. There is then an effet of history in
the a posteriori simulation. The magnitude of this effect is very difficult to quantify and this task is out of the
scope of this work.

Figure 5.2: Sketch of the (XY) cutting plane located at Z = 0 used to show instantaneous fields.

This Chapter is organized as follows. In Section 5.1 the configuration, along with the initial and boundary
conditions, and the numerical setup used for the simulations with AVBP, are presented. Section 5.2 presents a
validation of the carrier phase flow. In Sections 5.3, a first validation for a low turbulent case (Reac = 5500) with
a mean inertia (St ∼ 1) is presented: statistics of low and high order moments along with instantaneous fields of
the main moments are shown. Section 5.4 shows the results obtained for both a higher and a lower inertia (St ∼ 3
and St ∼ 0.33) flow. Section 5.5 shows the application to a higher turbulent case (Reac = 20000, St ∼ 1). For
all test cases, comparisons with the “exact" Eulerian fields obtained by Masi (2010) are provided. For the sake of
simplicity, the term “Lagrangian" is used here to denote the a priori Eulerian fields coming from the projection
of the Euler-Lagrange computations with NTMIX-2Φ (with the sense “from-Lagrangian") in order to distinguish
them from the a posteriori Euler-Euler results obtained with AVBP, which will be referred to as “Eulerian".

5.1 Description of the test case

Figure 5.3 shows a simplified sketch of the configuration chosen to assess the a posteriori performances of the
RUM models presented in Chapter 4. It consists in a temporal particle-laden turbulent planar jet embedded in a
homogeneous decaying isotropic turbulence first studied by Vermorel (2003). The simulation domain is a cubic
box with periodic boundary conditions in all directions. A slab with a mean gaseous velocity whose shape is
a double hyperbolic tangent is added in the centrer of the box. Solid particles are added to the slab. Diluted
conditions are assumed, and one-way coupling between the gas and the dispersed phase is taken into account. In
fact, since the configuration is in diluted regime, it can be assumed that the dispersed phase has no impact on the
carrier phase. A definition of the quantities used for the normalization and the equivalent in NTMIX-2Φ is briefly
presented in Section 5.1.3, more details can be found in Dombard (2011).
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Figure 5.3: Simplified sketch of the particle-laden turbulent planar jet configuration. (Extracted from Vermorel (2003)).

5.1.1 Initial and boundary conditions

The initial condition for the carrier phase is the same for NTMIX-2Φ and AVBP in all cases. A slab with a
gaseous mean velocity (U ) is added to a homogeneous decaying isotropic turbulence. In this way, the jet is already
turbulent at the initial time. The slab width Lslab is 0.25Lbox, where Lbox is the length of the cube. The HIT
is initialized with a Passot-Pouquet spectrum (Passot & Pouquet (1987)), setting the most energetic lengthscale
to Le = 0.4Lref , where Lref is a reference length. The choice of Le yields initial turbulent eddies with a size
approximately equal to one quarter of the slab width. This allows the jet to develop additional velocity fluctuations
from the mean velocity gradient (Masi (2010)). The initial velocity profile in the slab is imposed as a hyperbolic-
tangent profile:

φ(y) = φo + f(y)
(
φi − φo

)
, (5.1)

f(y) =
1
2

(
1 + tanh

1
2Lslab − |y|

2δθ

)
, (5.2)

where φi and φo denote the velocity in and outside the jet, y is the vertical coordinate and δθ refers to the initial
momentum thickness of the slab.

For the low turbulence case, the initial turbulent Reynolds number based on Le is Re ≈ 73. For the high
turbulence case, it is approximately Re ≈ 264.

In NTMIX-2Φ, particles are randomly embedded at the initial time at the same velocity than the gas phase. For
the low turbulence cases, 80 millions particles are introduced in the domain, 210 millions for the high turbulence
case. The corresponding particle velocities compared to the initial fluid velocities for both cases are listed in
Table 5.1. Note that the initial particle volume fraction profile from NTMIX-2Φ has a very steep gradient at the
periphery of the slab. The 3rd order schemes implemented in AVBP are however not capable of handling such a
steep gradient. For this reason, the initial particle volume fraction in AVBP has been initialized with a hyperbolic-
tangent profile (Eq. (5.1)). A very low particle volume fraction field (six orders of magnitude lower than the value
in the slab) is added to the whole domain to simulate the zones where no particles are present. Regarding the initial
RUE profile, in NTMIX-2Φ it is initially equal to zero. However, due to the transport equation for RUE solved
in AVBP, the RUM would never develop. A RUE profile is thus imposed at the initial time for the simulations
with AVBP since all the terms on the RHS of the RUE transport equation directly depend on RUE. This initial
RUE profile has been initialised in AVBP with two narrow hyperbolic-tangent profiles on each side of the slab, in
order to mimic two “relaxed" Dirac’s delta functions. This profile is assumed equivalent to the RUE profile of the
NTMIX-2Φ calculation close to the initial time.

Boundary conditions are periodic in all directions for both codes.

The mesh used for the simulations is a 1283 grid for NTMIX-2Φ and the low turbulence case. It is a 2563 grid
for the high turbulence simulations. Dombard (2011) analyzed the impact of the mesh resolution on the dispersed
phase in this configuration using AVBP. He deduced that although the carrier phase is converged for a given mesh,
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it might not be the case for the dispersed phase. Increasing the mesh resolution in the Euler-Euler simulations leads
to better agreement for the dispersed phase RMS quantities statistics. For this reason in AVBP, a 2563 grid is used
for both the low and the high turbulence cases. Some cases have also been performed on a 5123 grid to assess the
mesh resolution and for result comparison purposes. All meshes are composed by hexahedric cells.

Velocity Low turbulence High turbulence
MEAN-X U0

p = U0
f U0

p = U0
f

MEAN-Y V 0
p = V 0

f = 0 V 0
p = V 0

f = 0
MEAN-Z W 0

p = W 0
f = 0 W 0

p = W 0
f = 0

FLUCTUATION-X u0′

p = 0 u0′

p = 0
FLUCTUATION-Y v0′

p = v0′

f v0′

p = 0
FLUCTUATION-Z w0′

p = w0′

f w0′

p = 0

Table 5.1: Initial particle velocity conditions.

5.1.2 Summary of test cases

The configuration is unsteady and depends only on initial conditions and parameters of the carrier and the dispersed
phases. These parameters and initial conditions differ depending on the inertia and turbulence level simulated.
Different levels of turbulence have been simulated. For the low Reynolds case (LR), three different values of
particle inertia have been simulated. For the higher Reynolds (HR) case, one Stokes number has been simulated.
Table 5.2 summarizes the test cases presented in this work. The symbol # represents the different RUM models
tested for each case. Not all the RUM models have been evaluated for each case. Indeed, the results obtained in
cases LR_St1_# and LR_St3_# allowed to distinguish the models that produced the best results. Those models
were afterwards tested on both a lower inertia (LR_St033_#) and a higher turbulence cofigurations (HR_St1_#)
along with the classical model VISCO and noRUM when possible. Table 5.3 shows the different models tested
and in which configuration.

keyword Reac St
LR_St_# 5500 1
LR_St3_# 5500 3
LR_St033_# 5500 0.333
HR_St1_# 20000 1

Table 5.2: Matrix of the tests presented in this chapter.

Case
RUM model LR_St1_# LR_St3_# LR_St033_# HR_St1_#

noRUM X X(unstable) X(unstable) X(unstable)
VISCO X(unstable) X(unstable) X X(unstable)
AXISY X X - -

AXISY-C X X - -
QUAD-MOD X X X X

2ΦEASM1 X X - -
2ΦEASM1-C X X - -
2ΦEASM3 X X X X

2ΦEASM3-C X X - -

Table 5.3: Matrix of the RUM models tested on each case.

Note that some simulations performed with the VISCO model or without taking into account the contribution
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of the RUM in the dispersed phase equations (noRUM model) were not numerically stable with the numerical
setup chosen (cf Section 5.1.4). In all cases, the VISCO and noRUM models were tested as they may be taken as a
reference for the comparison, since they were the only two models for the Random Uncorrelated Motion available
until now in AVBP.

5.1.3 Normalization

This Section provides a summary of the quantities used for normalization that are needed to compare the results
issued from AVBP and NTMIX-2Φ. Indeed, NTMIX-2Φ uses non-dimensional variables, while AVBP does not.
In this Section, asterisk will denote non-dimensional quantities to make the difference with dimensional ones. This
notation will be abandoned afterwards.

The reference length is chosen as Lref = 10−3m, it is an arbitrary value. The simulation domain is a cubic
box of size L∗box = 2π. The carrier phase is composed of pure air (density ρf = 1.138 kg/m3, dynamic viscosity
µf ) at constant pressure Pref = 101325 Pa and temperature Tref = 300 K (γ = 1.4). Particles have the same
temperature as the carrier fluid. Under these conditions, the speed of sound in the flow is:

c =

√
γ
Pref
ρref

, (5.3)

the reference time reads:
tref =

Lref
c

. (5.4)

The non-dimensional numbers characterizing the carrier phase are:

• The acoustic Reynolds number, Reac:

Reac =
cLref
νf

, (5.5)

where νf = µf/ρf is the kinematic viscosity of the carrier fluid.

• The Mach number, M :

M =
U

c
, (5.6)

where U is the mean velocity of the carrier phase.

• The turbulence intensity:

I =
u′

U
, (5.7)

where u′ is the fluctuating velocity of the carrier phase

For the characterization of the dispersed phase the Stokes number is used:

• Dynamic Stokes number, St:

St =
τFfp
τf

, (5.8)

where τFfp = 〈1/τp〉−1
p is the characteristic particle relaxation time and τf is a characteristic timescale of the

carrier flow.

In fact, in the a posteriori simulations the Stokes number used corresponds to the one of the a priori analysis.
The Stokes number in the a priori analysis is computed over a characteristic timescale of the turbulence seen by the
particles (Deutsch & Simonin (1991)). Such a timescale is estimated using the Tchen equilibrium in the z-direction
(which is mean-flow free) (Simonin (1991)). The Stokes number is defined as done in Masi (2010). She estimates
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the Stokes number and τFfp at the end of a simulation of reference, referred as “St = 1". The Stokes number of
all other simulations is evaluated comparing the particle density (ρp), which is the only parameter modified. For
example, the simulation called “St = 3" is initialized with a particle density which is three times larger than the
particle density in the simulation St = 1, all other parameters remaining unchanged.

In order to calculate the dimensional values of the parameters for the calculation with AVBP, the following
procedure is used (Dombard (2011)):

From the chosen values for the reference lenght Lref = 10−3 m, mean pressure Pf = 101325 Pa and
temperature Tf = 300 K, the speed of sound is calculated (c = 352.9 m/s, Eq. (5.3)). The acoustic Reynolds
number Reac and the Mach number M are conserved since they are, by definition, dimensionless quantities. They
allow to evaluate the convective Reynolds number, Rec:

Rec =
ULbox
νf

=
U

c

Lbox
Lref

c · Lref
νf

= M · Lbox ·Reac . (5.9)

The mean velocity of the jet, is calculated from the Mach number and the sound speed:

U = M · c . (5.10)

The kinematic viscosity is:

νf =
cLref
Reac

, (5.11)

which allows to evaluate the dynamic viscosity needed for AVBP:

µf = νf · ρf . (5.12)

Specifying the convective Reynolds number, the initial mean velocity of the jet along with the charateristics of the
carrier fluid (pressure, temperature, density and viscosity), the gaseous fluid is defined. The characteristics of the
initial carrier flow field are described in Section 5.1.1.

Regarding the dispersed phase, the characteristics of the solid particles need to be defined:

The Stokes number must be the same in the Lagrangian and the Eulerian calculations:

StNTMIX−2Φ = StAV BP . (5.13)

The characteristic fluid timescales between NTMIX-2Φ and AVBP are linked:

τf = τ∗f · tref = τ∗f
Lref
c

, (5.14)

where the superscript ∗ denotes a non-dimensional time. Throughout this Chapter, the reference time tref will be
used to characterize the physical time of the Eulerian simulation for which results are compared. In the Lagrangian
simulation, since NTMIX-2Φ uses non-dimensional quantities, t∗ref = 1. The particle relaxation time is calculated
assuming a Stokes regime, so no Schiller-Naumann correction (Schiller & Nauman (1935), Eq. (2.39)) is taken
into account. Note that, the Schiller-Naumann correction is accounted for in the Euler-Euler simulations. However,
since the relative velocity between particles and fluid is small, the Schiller-Naumann correction has a very limited
influence on the results in this configuration. Simulations performed on all the cases studied in this Chapter with
2ΦEASM3 model (not presented here for the sake of conciseness) and without taking into account the Schiller-
Naumann correction did not show any noteworthy difference.

τp =
4
3

ρpdp

ρf
24
Rep
||urel||

=
1
18
ρpd

2
p

ρfνf
, (5.15)

where ||uref || is the relative velocity between the particles and the carrier fluid.

Equation (5.15) the allows to calculate the particle density ρp:

ρp =
18ρfνf
d2
p

τp =
18ρfνf
d2
p

τF∗fp · tref . (5.16)
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The particle diameter can be chosen arbitrarly, however, the Stokes regime must be conserved, and the particle’s
relaxation times must be as similar as possible between the Lagrangian and the Eulerian simulations. In this case,
the particle diameter used for the Lagrangian calculations with NTMIX-2Φ is too small, leading to dimensional
values of the diameter for AVBP lower than 1µm. This may lead to numerical stability problems when performing
calculations with AVBP: in AVBP, variables ᾰp and n̆p are transported whereas the particle diameter is recon-
structed. Small values of dp may lead to very small values of ᾰp, close to the zero machine, which may produce
numerical errors affecting the results or the stability of the code when reconstructing the diameter. A higher value
of the particle diameter is therefore chosen for the Euler-Euler computations: dp = 2µm for all cases.

Table 5.4 shows the values of the parameters used for the different simulations performed at low turbulence
(Reac = 5500, St ∼ 1). For case LR_St3_# only the particle density is modified :ρp = 3.633 · 104kg/m3. For
case LR_St033_#, ρp = 0.4037 · 104kg/m3. Table 5.5 shows the parameters of the high turbulence simulation
(case HR_St1_#).

Parameter AVBP
Lbox 2π · 10−3 [m]
Reac 5500 [−]
M 0.15 [−]
I 0.1 [−]
Rec 5183.63 [−]
Pf 101325 [Pa]
Tf 300 [K]
ρf 1.138 [kg/m3]
νf 6.42 · 10−5 [m2/s]
µf 7.31 · 10−5 [kg/m · s]
c 352.9 [m/s]
U 52.935 [m/s]
u′ 5.2935 [m/s]
tref 2.834 · 10−6 [s]
St 1
dp 2 · 10−6 [m]
Wp

Wf
3.69 [−]

ρp 1.2111 · 104 [kg/m3]

Table 5.4: Summary of AVBP initial parameters for the low turbulence mean inertia case (LR_St1_#).

Parameter AVBP
Reac 20000 [−]
Rec 18850 [−]
νf 1.7645 · 10−5 [m2/s]
µf 2.008001 · 10−5 [kg/m · s]
St 1
dp 2 · 10−6 [m]
ρp 2.417 · 103 [kg/m3]

Table 5.5: Summary of AVBP initial parameters for the high turbulence case (HR_St1_#). Only the parameters which differ
from those of the LR_St1_# case are shown.
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5.1.4 Numerical setup

Details about NTMIX-2Φ and the numerical setup used for the Euler-Lagrange reference simulations can be found
in Appendix A. AVBP simulations have been performed using 3rd order numerical scheme TTGC (Colin et al.
(2000)) coupled with artificial dissipation (AD) for the dispersed phase. No ADis applied on the gaseous phase.
The particle AV sensor used is CMS-Lite (Sanjosé (2009)). The values for the 2nd-order (ε2) and 4th-order (ε4)
parameters are shown in Table 5.6. These values have been optimized for the LR_St1_2ΦEASM1 test case. All
other simulations have been performed with exactly the same numerical setup. Thus, the only difference between
simulations is the RUM model (besides the carrier phase turbulence level and the particle inertia whenReac and St
change). In order to avoid numerical problems in the regions of void numerical dissipation is applied for particle
number densities lower than 2 · 107m−3, which corresponds to a minimal particle volume fraction of 8.37 · 10−11.
Moreover, only positive values of RUE are kept to avoid unphysical phenomena.

Note that in the Euler-Euler approach, there is no lower limit in terms of numerical resolution. Compared with
the gaseous flow, where the Kolmogorov length scale represents the lower limit for the energy transfer, there is
no length scale at which it may be considered that the energy is completely dissipated. For solid, non-deformable
particles, the particle diameter may be considered as the smallest length scale. On the contrary, for deformable
particles or liquid droplets, compressibility and deformation effects make this assumption not valid. This char-
acteristic of the dispersed flow treated with an Euler-Euler approach derives from the equations of conservation
themselves. For this reason, the numerical scheme and the resolution of the mesh grid may have an enlarged
importance compared to single-phase flows.

– Gaseous phase –
AV sensor ε2 ε4

no AV 0.00 0.00

– Dispersed phase –
AV sensor ε2 ε4

CMS-Lite 0.55 0.00

Table 5.6: Artificial Dissipation parameters for all the simulation performed with AVBP.

5.2 Gas phase validation

This Section presents a validation of the carrier phase flow. Comparisons between the Euler-Euler (AVBP) and
Euler-Lagrange (NTMIX-2Φ) simulations at low and high Reynolds numbers are proposed in terms of mean and
root mean squared fluctuations (RMS) fluid velocities as well as turbulent kinetic energy (q2

f ).

Since the simulations are performed taking into account the effect of the carrier flow on the dispersed phase, but
not the effect of the particles on the carrier fluid (i.e. one-way coupling) it is not needed to verify the carrier phase
flow for every simulation. Moreover, the carrier fluid flow is the same for all inertia (i.e. same Stokes number) if
the level of turbulence (i.e. the Reynolds number) is the same. This means that all the simulations of a given case
have the same carrier fluid flow whatever the RUM model used. Also, all simulations at low turbulence (LR_St1_#,
LR_St3_# and LR_St033_#) share the same carrier fluid flow at the same instant.

Section 5.2.1 presents a validation of the carrier phase flow for the low turbulence cases (LR_St1_#, LR_St3_#,
LR_St033_#). Section 5.2.2 presents the results for the high turbulence case (HR_St1_#).
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5.2.1 Low turbulence case

This section presents the validation of the carrier fluid flow for cases LR_St1_#, LR_St3_# and LR_St033_#. Mean
and RMS velocities in the three directions, along with the turbulent kinetic energy profiles at times corresponding
to 5, 40 and 80tref are shown. Instantaneous fields of fluid velocity magnitude are also shown.

Figures 5.4, 5.5 and 5.6 show the profiles of the mean velocity and the product of the fluid density ρf and the
RMS fluid velocity in the X-, Y- and Z-directions respectively. Note that X-direction is the main direction of the
flow. The agreement between AVBP and NTMIX-2Φ is very good for both the mean and the RMS values in all
directions. Some discrepancies appear in the profiles of Vg which are due to small differences in the fluid density
between AVBP and NTMIX-2Φ. Both codes solve the compressible NS equations, however, they differ in the
numerical schemes they use, which may lead to small discrepancies. Nevertheless, the differences remain small
and appear only in the Y- and Z- directions, where the order of magnitude of the velocity is much smaller than in
the X-direction. This is also the reason why the RMS profiles are shown multiplied by the fluid density. Since the
quantity transported in AVBP is the product of the density and the velocity, it has been chosen as the quantity to be
shown. However, the mean velocities are shown without taking into account the density in order to show the order
of magnitude of this difference. Finally in order to assess the quality of the carrier phase flow, Fig. 5.7 shows the
profiles of turbulent kinetic energy at the three times chosen for the analysis. Since the profiles are very similar, it
is guaranteed that the fluid flow is almost the same in the simulations performed with AVBP and with NTMIX-2Φ.
Thus, the discrepancies that may appear between the simulations performed with the different RUM models are
due to the models themselves and not to potential differences in the fluid phase flow.

In order to provide a qualitative comparison, the instantaneous fields of the fluid velocity magnitude are shown
in Fig. 5.8 at 5, 40 and 80tref . The results of both approaches are very close for the three times.

(a) (b)

Figure 5.4: Comparison of AVBP (—) and NTMIX-2Φ (–•–) carrier phase velocities in X-direction. LR_St1_# case. (a) Mean
velocity (Uf ) and (b) RMS velocity times the fluid density (ρfUf,RMS).
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(a) (b)

Figure 5.5: Comparison of AVBP (—) and NTMIX-2Φ (–•–) carrier phase velocities in Y-direction. LR_St1_# case. (a) Mean
velocity (Vf ) and (b) RMS velocity times the fluid density (ρfVf,RMS).

(a) (b)

Figure 5.6: Comparison of AVBP (—) and NTMIX-2Φ (–•–) carrier phase velocities in Z-direction. LR_St1_# case. (a) Mean
velocity (Wf ) and (b) RMS velocity times the fluid density (ρfWf,RMS).
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Figure 5.7: Comparison of AVBP (—) and NTMIX-2Φ (–•–) carrier phase turbulent kinetic energies (q2f ). LR_St1_# case.

Figure 5.8: Comparison of instantaneous NTMIX-2Φ and AVBP carrier phase fields ([m/s]) at 5, 40 and 80tref . LR_St1_#
case.
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5.2.2 High turbulence case

The carrier phase flow is modified with the Reynolds number changes. For this reason, it is necessary to verify that
the carrier fluid flow keeps the same for the Lagrangian and the Eulerian simulations also for the HR_St1_# case.
Since for the low turbulence cases, the agreement for the carrier phase profiles was very good, a good agreement
is also expected in this case. The high turbulence Euler-Lagrnage simulations have been carried out only up to
70tref due to limited computational resources. Comparisons between Euler-Euler and Euler-Lagrange results are
therefore shown at that time. Figure 5.9 shows the instantaneous carrier phase velocity magnitude fields for the
Euler-Lagrange and the Euler-Euler simulations at 70tref . It provides a qualitative assessment of the gaseous
phase simulations of both codes. The results are very similar although the differences between the two simulations
are more visible than in the low turbulence case (Fig. 5.8). In order to provide quantitative results, the profiles of
mean and RMS velocities in the three spatial directions are compared at 70tref . The profile of turbulent kinetic
energy is also displayed on Fig. B.4. The same profiles corresponding to 5 and 40tref can be found in Appendix B.
The agreement, as expected, is very good. The same discrepancies in the mean Y- and Z-velocity are present in
this case due to differences in the fluid density profiles. The agreement for the RMS velocity and the turbulent
kinetic energy profiles is again very good.

Figure 5.9: Comparison of instantaneous NTMIX-2Φ and AVBP carrier phase fields ([m/s]) at 70tref . HR_St1_# case.
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(a) (b)

Figure 5.10: Comparison of AVBP (—) and NTMIX-2Φ (–•–) carrier phase velocities in X-direction. HR_St1_# case. (a)
Mean velocity (Uf ) and (b) RMS velocity times the fluid density (ρfUf,RMS) at 70tref .

(a) (b)

Figure 5.11: Comparison of AVBP (—) and NTMIX-2Φ (–•–) carrier phase velocities in Y-direction. HR_St1_# case. (a)
Mean velocity (Uf ) and (b) RMS velocity times the fluid density (ρfUf,RMS) at 70tref .
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(a) (b)

Figure 5.12: Comparison of AVBP (—) and NTMIX-2Φ (–•–) carrier phase velocities in Z-direction. HR_St1_# case. (a)
Mean velocity (Uf ) and (b) RMS velocity times the fluid density (ρfUf,RMS) at 70tref .

Figure 5.13: Comparison of AVBP (—) and NTMIX-2Φ (–•–) carrier phase turbulent kinetic energy (q2f ) at 70tref . HR_St1_#
case.
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5.3 Dispersed phase validation. Case LR_St1_#

The simulations of case LR_St1_# with the six models proposed in Chapter 4 and their corrected versions have
been performed with AVBP. This case corresponds to a low turbulence, mean inertia simulation. The characteristic
particle relaxation time is τFfp ∼ 13tref .

The VISCO model crashed after few iterations. Indeed, the particle RUE is considerably overestimated using
VISCO for this range of particle inertia. Particle RUE has a diffusion effect in the fields of mesoscopic particle
number density and particle volume fraction, as well as in the particle velocity fields. VISCO producing too much
RUE from the beginning of the calculation, it leads to an excessive diffusion of the particles towards the periphery
of the jet, creating empty zones which can not be handled numerically by the code. This behavior was somehow
already pointed out by the a priori analysis of Masi (2010): VISCO overpredicted the shear-component of the
deviatoric RUM stress tensor (δR̆∗p,12) and underpredicted the diagonal components (δR̆∗p,11, δR̆∗p,22 and δR̆∗p,33).
In fact, the two models using τ̆p, the characteristic particle relaxation time, as timescale (VISCO and QUAD)
showed the same behavior, QUAD even overpredicting all the components of the tensor. Confirming the a priori
analysis, the simulations with AVBP and QUAD model have not been possible either, since this model crashed
even before VISCO does. In both cases a huge overproduction of particle RUE, makes the simulation unstable.
For this reason, no results are displayed concerning these two models for LR_St1_# case.

Section 5.3.1 presents the statistics of the main low-order moments and RMS mean particle number density and
particle velocity for three times: at the beginning of the simulation (5tref , after approx. 0.38τFfp), at the middle
(40tref , after 3.07τFfp) and at the end of the simulation (80tref , after 6.15τFfp). Results obtained in a particle-laden
stationary HIT configuration (Février et al. (2005)) showed that at least three particle relaxation times are required
to obtain statistics not influenced by the initial condition. This means that results at 5tref are not discriminatory
to evaluate the performance of the models, and that results after 40tref must be taken into account to assess
the validity of the models in this case. The results at 80tref allow to confirm the conclusions drawn at 40tref .
Instantaneous fields of particle number density and particle velocity at the end of the simulation are also displayed.
Section 5.3.2 presents the statistics of the main high-order moments, including the particle RUE and the total
particle agitation as well as the mean profiles of the tensor components and RUM production rates. Instantaneous
fields of RUE at the end of the simulation are also shown. Complementary data can be found in Appendix C.

5.3.1 Low order moments

Low order moments such as the particle number density or the particle velocity are important since they define
the main characteristics of a given dispersed phase flow field. In the presence of turbulence, the root-mean-
square (RMS) values are of importance too, since they measure the fluctuations in the flow. These are in fact
the variables of interest in most industrial applications. However, in this configuration, the particle preferential
concentration (Squires & Eaton (1991a)) is an important parameter too. Indeed, in turbulent flows, the particles
tend to accumulate in low-vorticity and high-shear regions, creating both high concentration and empty zones close
to each other. This produces very steep particle number density gradients in the flow field similarly to a highly
compressible gaseous flow. This behavior is strongly related to the particle number density and the particle velocity
divergency fields. The preferential concentration is measured by the so-called “segregation" parameter, noted seg:

seg =
〈n̆2
p〉

〈n̆p〉2
. (5.17)
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Figure 5.14 shows the statistics of the particle number density for three different times along the simulation.
The values are normalized by the initial particle number density at the center of the slab. The results at 5tref are
presented to show that when the simulation is close to the begining, the results are very influenced by the initial
condition. Indeed, Figs. 5.14(a), 5.15(a), 5.16(a), 5.17(a) and 5.18(a) show that all models give the same results.
All models perform equally in the prediction of the particle number density and the particle velocity at 5, 40 and
80tref , except AXISY and its corrected version AXISY-C. Figure 5.14(b) shows that both models predict peaks
at the borders of the plateau located at the center of the slab. Note that the peaks are stronger for AXISY than for
AXISY-C. At 80tref (Fig. 5.14(c)), the two peaks have disappeared, but both models overestimate the maximum
of 〈n̆p〉 at the center of the slab. Regarding the mean particle velocity (Fig. 5.15), all models give very close
results. Figure 5.15(a) underlines a slight inaccuracy of the projection algorithm. Indeed, the profiles obtained by
projection from NTMIX-2Φ deviate from the hyperbolic tangent profile at the borders of the jet. This is due to
the steepness of the velocity gradient or to a lack of particles in this region in the Lagrangian sumulations, which
introduces errors when projected onto the Eulerian grid.

The profiles of particle RMS number density (Fig. 5.16) and particle RMS velocity (Fig. 5.17) produced by the
models are also very similar. However, AXISY predicts a steeper gradient at the periphery of the slab. AXISY-C
and QUAD-MOD give the same maximum level of RMS number density but both models predict lower levels
towards the periphery producing a thinner slab. QUAD-MOD underestimates the maximum RMS particle velocity
and AXISY behaves even worse. This behavior is already visible at 40tref and remains at 80tref .

Figure 5.18 shows the profiles of particle segregation at 5, 40 and 80tref . AVBP is not able to capture the
initial shock. This is due to the influence of numerics which are not capable of handling such highly compressible
dispersed phase flows.

A qualitative analysis of the instantaneous fields of the particle number density and particle velocity (Figs. 5.19
and 5.20) is not sufficiently discriminatory. Indeed, from the instantaneous fields of these variables, the noRUM
model arises as the model who performs the best, but Section 5.3.2 will explain the reasons for this behavior.
Indeed, the noRUM model does not take into account the Random Unocrrelated Motion and thus, the balance
between the mesoscopic energy, the RUE and the total particle energie is not correct. Taking this into account,
only AXISY shows a clear weakness if compared to the rest of the models.

In conclusion, the results concerning the low order moments do not allow to differenciate between the models,
and are definitely not sufficient to discard a model in front of the others. Analysing the statistics of the higher order
moments is therefore necessary.
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(a)

(b)

(c)

Figure 5.14: Comparison of Eulerian and Lagrangian mean particle number density (< n̆p >) at 5, 40 and 80tref .
Normalized by the initial particle number density at the center of the slab. LR_St1_# case.
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(a)

(b)

(c)

Figure 5.15: Comparison of Eulerian and Lagrangian mean particle velocity in X-direction (< ŭp >p) at 5, 40 and 80tref .
Normalized by the initial particle velocity in X-direction at the center of the slab. LR_St1_# case.
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(a)

(b)

(c)

Figure 5.16: Comparison of Eulerian and Lagrangian RMS particle number density (< n̆p,RMS >) at 5, 40 and 80tref .
Normalized by the initial particle number density at the center of the slab. LR_St1_# case.
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(a)

(b)

(c)

Figure 5.17: Comparison of Eulerian and Lagrangian RMS particle velocity in X-direction (< ŭp,RMS >p) at 5, 40 and
80tref . Normalized by the initial particle velocity in X-direction at the center of the slab. LR_St1_# case.
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(a)

(b)

(c)

Figure 5.18: Comparison of Eulerian and Lagrangian RMS particle segregation (< n̆2
p > / < n̆p >

2) at 5, 40 and 80tref .
LR_St1_# case.
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Figure 5.19: Comparison of Lagrangian (NTMIX-2Φ) and Eulerian particle number density (Np) at 80tref . LR_St1_# case.



Modeling the RUM: an a posteriori analysis. 75

Figure 5.20: Comparison of Lagrangian (NTMIX-2Φ) and Eulerian particle velocity magnitude (Up) at 80tref . LR_St1_#
case.
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5.3.2 High order moments

The analysis of the higher order moments such as the RUE (δθ̆p) and mesoscopic energy (q̆2
p) energies, is expected

to enable to discriminate which models produce better a posteriori results in mean-sheared configuration. In
industrial applications, the only high-order moment really taken into account is the total energy or total particle
agitation (q2

p = q̆2
p + δq2

p). The importance of the Random Uncorrelated Motion is due to the particle trajectory
crossing (PTC, Falkovich et al. (2002)). Indeed, the prediction of the RUE is crucial in applications (industrial
or not) where particle collision and/or coalescence are taken into account (such as fluidized beds or non-diluted
regimes, i.e. injector-close zones in sprays). If the RUE is not well predicted, the dispersed phase will not have
enough energy for collisions or coalescence. For example, if δθ̆p is overestimated, it may lead to a relaminarization
of the dispersed phase flow (Riber (2007)). Masi (2010) performed an a priori analysis of the particle-laden
temporal turbulent planar-jet studied here taking into account the particle collisions. Masi rewrote the models
presented in Chapter 4 to the case of a colliding dispersed phase in diluted regime (one-way coupling with the gas
phase). However, as in AVBP the possibility of taking into account collisions or coalescence is not available yet,
these phenomena have not been studied here. Nevertheless, collisions may be taken into account in AVBP with
minor modifications along with the implementation of the corresponding RUM models.

Figure 5.21 shows the predicted mean RUE profiles at 5, 40 and 80tref . While AXISY overestimates the par-
ticle RUE, 2ΦEASM1 underestimates it. QUAD-MOD, 2ΦEASM3 and AXISY-C provide correct levels of RUE.
However, QUAD-MOD and 2ΦEASM3 are able to recover the good profile at 40tref while AXISY-C underesti-
mates the RUE level at 40tref and predicts a correct value at 80tref . Figure 5.22 shows the mesoscopic energy q̆2

p

and the total energy q2
p = q̆2

p + δq2
p for the three simulation times. The main conclusions obtained comparing the

statistics of δq2
p, q̆2

p and q2
p are:

1. The main contribution to the total agitation q2
p comes from the mesoscopic motion (i.e. from q̆2

p), while the
RUM has a limited impact for such particle inertia.

2. The models that overestimate the particle RUE (e.g. AXISY), predict a lower value of the mesoscopic
energy. In the same way, the models that underestimate the RUM energy (e.g. 2ΦEASM1) produce higher
values of q̆2

p than the Lagrangian reference. In all cases, the final energy budget gives the correct amount of
total agitation (q2

p).

The analysis of the high-order models is completed with the statistics of the productions of RUE by shear and
by compression. The production (Fig. 5.23) is defined as:

PShearRUM = −δR̆∗p,ij
∂ui
∂xj

. (5.18)

The production by compression (Fig. 5.24) depends on the divergence of the particle velocity and reads:

PCompressionRUM = −2
3
δθ̆p

[
∂ui
∂xi

]
. (5.19)

QUAD-MOD and 2ΦEASM3 give the best predictions of PShearRUM . However, the profile of PCompressionRUM

produced by 2ΦEASM3 is closer to the reference than that of QUAD-MOD. AXISY greatly overestimates the
production by shear. As well, the production by compression is no longer a production term but a dissipation
term when using this model. A test performed without taking into account the production by compression term
(Eq. (5.19)) in the RUE transport equation using the AXISY model has shown that the overestimation of RUE was
much larger neglecting this term, confirming the dissipative nature of PCompressionRUM in AXISY model. Finally for
all models, the shear term is one order of magnitude larger than the compression term.
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The main components of the deviatoric RUM stress tensor are also shown (Figs. 5.25 - 5.28). The diagonal
components (δR̆∗p,11, δR̆∗p,22 and δR̆∗p,33) are well predicted by QUAD-MOD and 2ΦEASM3 models, greatly
underpredicted by AXISY-C, 2ΦEASM1 and 2ΦEASM1-C models and slightly underpredicted by AXISY and
2ΦEASM3-C models. In fact, the a priori analysis showed that the diagonal components have a limited impact
in the prediction of the mean RUE compared to the components out of the diagonal. δR̆∗p,12 is shown in Fig. 5.28
for all the models. QUAD-MOD and 2ΦEASM3 profiles agree well with the Lagrangian reference, AXISY-
C produces as well good results, which is coherent with the RUE predictions of this three models. The good
agreement in the shear component for AXISY-C helps to overcome the small underestimation of the diagonal
components. On the contrary, AXISY greatly overestimates this component, which has a direct impact on PShearRUM

terms and creates large amounts of RUE (Fig. 5.21). Regarding 2ΦEASM1 models (with and without correction),
both models underestimate all components of the deviatoric RUM stress tensor, and thus underestimate the RUE as
well. In fact, the correction seems to have a more limited impact on this model than predicted by a priori analysis.
In the case of the 2ΦEASM3-C model, the a priori analysis showed that the correction improved the predictions
of the deviatoric tensor components (and thus the productions and the RUE). In the a posteriori simulations, the
correction has the opposite effect: it gives worse agreement.

A qualitative comparison of the model predictions for RUE is shown in Fig. 5.29. It shows the instantaneous
fields of RUE at 80tref (5 and 40tref fields can be found in Appendix C). All models capture the zones where the
RUE must be located referencing to the Lagrangian simulations. However, AXISY gives too high levels and the
structures overlap giving two continuous bands located at the limits of the slab. The rest of the models are able to
correctly reproduce the structures. 2ΦEASM1 and 2ΦEASM1-C show again very similar results but the predicted
level of RUE is smaller than the Lagrangian reference, as for 2ΦEASM3-C and AXISY models. QUAD-MOD and
2ΦEASM3 give the best predictions for both the location of the structures and the level of RUE.
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(a)

(b)

(c)

Figure 5.21: Comparison of Eulerian and Lagrangian mean Random Uncorrelated Energy (< δθ̆p >p) at 5, 40 and 80tref .
Normalized by the square of the initial particle velocity in X-direction at the center of the slab. LR_St1_# case.
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(a)

(b)

(c)

Figure 5.22: Comparison of Eulerian and Lagrangian mean total energy (< q2p >p) and mean mesoscopic energy (〈q̆2p〉p) at 5,
40 and 80tref . Normalized by the square of the initial particle velocity in X-direction at the center of the slab.

LR_St1_# case.



80 Modeling the RUM: an a posteriori analysis.

(a)

(b)

(c)

Figure 5.23: Comparison of Eulerian and Lagrangian mean productions of RUM energy by shear (< PShear
RUM >p) at 5, 40 and

80tref . Normalized by the square of the initial particle velocity in X-direction at the center of the slab and the
reference time (tref ). LR_St1_# case.
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(a)

(b)

(c)

Figure 5.24: Comparison of Eulerian and Lagrangian mean productions of RUM energy by compression
(< PCompression

RUM >p) at 5, 40 and 80tref . Normalized by the square of the initial particle velocity in
X-direction at the center of the slab and the reference time (tref ). LR_St1_# case.
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(a)

(b)

(c)

Figure 5.25: Comparison of Eulerian and Lagrangian mean deviatoric RUM stress tensor XX component (< δR̆∗
p,11 >p) at 5,

40 and 80tref . Normalized by the square of the initial particle velocity in X-direction at the center of the slab.
LR_St1_# case.
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(a)

(b)

(c)

Figure 5.26: Comparison of Eulerian and Lagrangian mean deviatoric RUM stress tensor YY component (< δR̆∗
p,22 >p) at 5,

40 and 80tref . Normalized by the square of the initial particle velocity in X-direction at the center of the slab.
LR_St1_# case.
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(a)

(b)

(c)

Figure 5.27: Comparison of Eulerian and Lagrangian mean deviatoric RUM stress tensor ZZ component (< δR̆∗
p,33 >p) at 5,

40 and 80tref . Normalized by the square of the initial particle velocity in X-direction at the center of the slab.
LR_St1_# case.
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(a)

(b)

(c)

Figure 5.28: Comparison of Eulerian and Lagrangian mean deviatoric RUM stress tensor XY component (< δR̆∗
p,12 >p) at 5,

40 and 80tref . Normalized by the square of the initial particle velocity in X-direction at the center of the slab.
LR_St1_# case.
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Figure 5.29: Comparison of Lagrangian (NTMIX-2Φ) and Eulerian Random Uncorrelated Energy at 80tref . LR_St1_# case.
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5.3.3 Effect of the user-defined artificial dissipation

Artificial dissipation (AD) is required in AVBP to guarantee the stability of the simulation using a centered nu-
merical scheme (TTGC). It plays an important role in the development of the two-phase flow simulation itself.
Artificial dissipation is applied in two steps. First, a sensor detecting too steep gradients to be resolved on the
current grid is computed. There are several expressions for this sensor in AVBP which can take values from 0 to
1, 0 being no AD applied and 1 denotes where the maximum value of AD is applied in the domain. Second, a
certain amount of 2nd (shock capturing) and 4th (background dissipation) AD is applied depending on the sensor
value and user-defined coefficients. As a matter of fact, the AV sensor (CMS-Lite) used during this work seems to
act similarly to the RUM, i.e. it has an effect of diffusion in the fields of the particle number density and velocity.
Actually, there seems to exist an inverse correlation between the activation of the AV sensor and the RUE.

The models which are not able to predict the correct amount of RUE (e.g. noRUM) compensate the lack of
diffusion naturally produced by the model by a higher amount of AD, which artificially smoothes the gradients
and allows the code to complete the simulation. On the contrary, the AV sensor activates much less when models
which overestimate the RUE are used (e.g. AXISY). The noRUM model for example, is able to correctly predict
the low order moments such as the particle number density, the particle velocity and their RMS values. AD helps to
stabilize the code producing an effect that mimics the one of the RUM. However, it is not able to produce RUE and
thus it predicts a wrong repartition between the energies (the only contribution to the total energy is the mesoscopic
energy, which leads to an underestimation of q2

p). On the one hand, a correct balance between the RUM and the
mesoscopic energy is a key point to reproduce complex effects such as PTC or collisions/coalescence. On the
other hand, the effect of RUM becomes more important as the particle inertia increases. This means that while at
St = 1 the simulations with models which underpredict the RUE are stable enough (due to the AD) to complete
the calculation, it is not guaranteed that these models will keep valid at larger Stokes (Section 5.4.1).

Recently, another numerical scheme called PSI (Lamarque (2007), Roux et al. (2010)) has been implemented
in AVBP. This residual distribution scheme is lower order than TTGC, but positive and linear preserving, which
are interesting properties to capture shocks or very steep gradients. No AD is required when using PSI. Some tests
performed during this work have shown that this scheme diffused too much at the limits of the slab due to the
initial condition gradients. Thus, the slab spreads in the Y-direction, giving worse predictions of the low order and
high order moments than the combination of TTGC scheme with a higher amount of AD. This effect was already
visible after 5tref only. For this reason, the use of PSI scheme was quickly discarded in this configuration.

Figure 5.30 shows profiles of AV sensor for all models (included the calculation without RUM (noRUM)) at
5, 40 and 80tref . It should be pointed out that due to the steep gradients at the limits of the slab in the initial
solution, the AV sensor initially activates whatever the RUM model, and always at the same locations and with
the same strength. This helps the code to overcome that extreme initial condition. Afterwards, the differences
between the models are clear: AXISY, which greatly overestimates the RUE, needs less AD than 2ΦEASM1,
which underestimates the RUE. Since Euler-Euler simulations need the application of a certain amount of AD in
order to numerically stabilize the computations, the goal is then to find a model which presents good compromise
between RUM and AD. That is, a model able to capture the physical phenomena related to RUM and that limits
the action of AD to the dissipation of numerical instabilities. QUAD-MOD and 2ΦEASM3 seem good candidates.

Figure 5.31 shows an instantaneous field AV sensor at 80tref . When neglecting the RUM contribution (noRUM
model), the AV sensor is activated in a wider way and with a higher level than when using a RUM model. The
sensor is very little activated with AXISY model. 2ΦEASM3 model seems again to be the best compromise.
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(a)

(b)

(c)

Figure 5.30: Mean Artificial Viscosity sensor activation at 5, 40 and 80tref . LR_St1_# case.
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Figure 5.31: Comparison of AV sensor levels at 80tref . LR_St1_# case.
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5.3.4 Effect of mesh resolution

The effect of mesh resolution is studied in this Section. Case LR_St1_# has been computed on a 5123 hexahedrical
grid with the 2ΦEASM3 model. That is, the resolution has been doubled compared to the 2563 mesh used in the
computations presented in the previous sections. It is conjectured that the mesh resolution has an important impact
on high order moments statistics of the dispersed phase. This effect has already been studied by Dombard (2011)
on the Euler-Euler simulations. However, the mesh resolution may impact the Euler-Lagrange simulations too.
Due to limited computational resources, the simulation has been carried out until 40tref and with one model
only. 2ΦEASM3 has been chosen to perform the high resolution simulation following the results obtained in
Sections 5.3.1-5.3.3. Furthermore, only the low order moments and the RUE have been computed.

Figure 5.32(a) shows the statistics of the non-dimensional particle number density obtained from the Euler-
Lagrange computation performed with NTMIX-2Φ and the Euler-Euler computations performed with AVBP using
2ΦEASM3 model and two different grids. Mesh_256 corresponds to the simulation on a 2563 grid and Mesh_512
to the 5123 grid simulation. The numerical setups are the same for the two Euler-Euler calculations, including
the Artificial Dissipation parameters. The scales of the graphs have been stretched to highlight the differences
between the two meshes, otherwise they are not visible and the profiles given by the two meshes superpose and
there is no noticeable difference. Figure 5.32(b) shows the profiles of the non-dimensional particle velocity. At
the center of the slab, Mesh_256 matches the reference NTMIX-2Φ, the same happens with Mesh_512. However,
at the periphery of the jet, only the simulation performed with the high resolution mesh (Mesh_512) reproduces
the opening of the jet. Indeed, Mesh_512 sticks to the profile of NTMIX-2Φ except at some points where the
differences are attributed to the projection algorithm used to recontruct the Eulerian fields from the Euler-Lagrange
computation with NTMIX-2Φ.

(a) Non-dimensional mean particle number density. (b) Non-dimensional mean particle velocity.

Figure 5.32: Comparison between Lagrangian and Eulerian results. The Lagrangian computation has been performed on a
1283 mesh grid. Mesh_256 corresponds to the Eulerian simulation on a 2563 mesh and Mesh_512 to the

Eulerian simulation on a 5123 mesh.

The increase in mesh resolution improves the predictions of RMS particle number density profiles (Fig. 5.33(a))
as well. The profile corresponding to Mesh_512 captures the maximum level predicted by NTMIX-2Φ at the
peaks located at the periphery. However, the opening of the jet is the same as for Mesh_256, narrower than
the corresponding to NTMIX-2Φ. On the contrary, Fig. 5.33(b) shows the RMS particle velocity statistics. The
increase in mesh resolution leads to a decrease in the maximum value of the profile. Otherwise, the opening of
the jet is wider in Mesh_512 case. Note that the projection algorithm produces inaccurate results at the periphery
of the slab for NTMIX-2Φ computations. The accuracy of the reference values at the periphery and thus the jet
opening can not be assessed in this case.
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(a) Non-dimensional RMS particle number density. (b) Non-dimensional RMS particle velocity.

Figure 5.33: Comparison between Lagrangian and Eulerian results. The Lagrangian computation has been performed on a
1283 mesh grid. Mesh_256 corresponds to the Eulerian simulation on a 2563 mesh and Mesh_512 to the

Eulerian simulation on a 5123 mesh.

Figure 5.34 shows the segregation profiles for both mesh resolutions. Mesh_512 simulation predicts a higher
segregation peak than Mesh_256 at one of the borders of the slab. However, the position of the second peak has
moved outwards the slab and its level has decreased. On both meshes, the level is too low compared to NTMIX-2Φ,
except at the center of the slab, where both simulations give a good approximation of preferential concentration.
Note that, the projection errors due to the presence of too few particles in the computational cells at the periphery
of the slab on the Lagrangian simulation, provide very high segregation levels in that zone. However, the stretching
on the graphs scale allows a better comparison between the simulations. Indeed, the accuracy with NTMIX-2Φ
decreases when reaching the periphery.

Figure 5.34: Comparison between Lagrangian and Eulerian results. The Lagrangian computation has been performed on a
1283 mesh grid. Mesh_256 corresponds to the Eulerian simulation on a 2563 mesh and Mesh_512 to the

Eulerian simulation on a 5123 mesh.

The high order moments statistics analyzed for Mesh_512 simulation reduce to the energy profiles. The finer
the mesh resolution the higher the RUE level, which leads to a slight overprediction of RUE (Fig. 5.35(a)). The
total agitation profiles are very similar, excepted at the slab borders where the total particle agitation predicted
by Mesh_512 case is higher (Fig. 5.35(c)). The overprediction of RUE leads to a slight underprediction of the
mesoscopic energy compared to Mesh_256 case (Fig. 5.35(b)). In general, increasing the mesh resolution has only
a limited impact on the statistics of the dispersed phase.
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(a) Non-dimensional RUE. (b) Non-dimensional particle mesoscopic energy.

(c) Non-dimensional total particle energy.

Figure 5.35: Comparison between Lagrangian and Eulerian results. The Lagrangian computation has been performed on a
1283 mesh grid. Mesh_256 corresponds to the Eulerian simulation on a 2563 mesh and Mesh_512 to the

Eulerian simulation on a 5123 mesh.

That is not the case for the instantaneous fields. Fig. 5.36 shows the instantaneous fields of particle number
density at 40tref . The regions where the differences between 2ΦEASM3_256 and 2ΦEASM3_512 cases are
the most visible have been highlighted using circles and arrows. Increasing the mesh resolution has an important
impact on the particle number density fields. Indeed, the small structures are better captured as well as the diffusion
at the periphery of the jet. The empty zones, as well as the zones of high concentration are also more precisely
reproduced when the mesh resolution is increased. In Fig. 5.37 the only visible effect on the particle velocity fields
is an increased diffusion at the borders (Fig. 5.37). Compared to NTMIX-2Φ, Mesh_256 gives the best qualitative
results. Nevertheless, the statistics of Mesh_512 case are in better agreement with the Lagrangian reference at the
periphery. The inaccuracy of the projection algorithm hinders any conclusion at this respect. Regarding the RUE
fields (Fig. 5.38), 2ΦEASM3_512 predicts, in general, higher RUE levels (Fig. 5.38). Confirming the statistics
(Fig. 5.35(a)), the RUE is slightly overpredicted when the mesh resolution is increased. Euler-Lagrange results on
a higher resolution grid are nevertheless needed in order to compare Eulerian and Lagrangian results on the same
conditions.
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Figure 5.36: Comparison betwenn Lagrangian and Eulerian particle number density instantaneous fields at 40tref . The
Lagrangian computation has been performed in a 1283 grid. 2ΦEASM3_256 corresponds to the Eulerian

simulation on a 2563 mesh and 2ΦEASM3_512 to an Eulerian simulation on a 5123 mesh.

Figure 5.37: Comparison between Lagrangian and Eulerian particle velocity instantaneous fields at 40tref . The Lagrangian
computation has been performed in a 1283 grid. 2ΦEASM3_256 corresponds to the Eulerian simulation on a

2563 mesh and 2ΦEASM3_512 to an Eulerian simulation on a 5123 mesh.
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Figure 5.38: Comparison between Lagrangian and Eulerian RUE instantaneous fields at 40tref . The Lagrangian computation
has been performed in a 1283 grid. 2ΦEASM3_256 corresponds to the Eulerian simulation on a 2563 mesh and

2ΦEASM3_512 to an Eulerian simulation on a 5123 mesh.
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5.4 Performances of the RUM models at different inertia

In real applications the particle or droplet size can range from less than 1µm (once they have evaporated) up to
millimeters (at injection). The range of particle Stokes numbers encountered is thus very large. This implies
that the performances of the different models presented in Chapter 4 must be analyzed on a wide range of Stokes
numbers too. Masi (2010) performed an a priori analysis for many Stokes numbers. This work only presents three,
the most significative ones.

The results presented in Section 5.3 distinguished 2ΦEASM3 and QUAD-MOD as the models giving the best
predictions for the low and the high-order moments for aReac = 5500 and St ∼ 1 particle-laden turbulent sheared
flow. The particles in case LR_St3_# are very inertial. Février et al. (2005) performed simulations on particle-laden
decaying HIT, the results showed that as the particle inertia increases, the contribution of the RUM component to
the particle velocity increases too. The phenomena of particles being pushed towards the upper and lower outer
regions observed on LR_St1_# case is expected to increase. This Section aims at analyzing if the two models still
behave correctly at St ∼ 3 (Section 5.4.1) confirming the potential of the 2ΦEASM3 and QUAD-MOD models.

Then in Section 5.4.2, the ability of the two models to correctly predict the dispersed phase in a low inertia
case is tested. Indeed, the Stokes number in LR_St033_# case (St ∼ 0.33) is very close to the value of the Stokes
number for which the preferential concentration phenomenon is maximal in this configuration, creating empty
spaces close to regions of very high particle concentration. The particle density gradients are thus very steep and
difficult to handle numerically potentially leading to simulation crashes.

5.4.1 High inertia case: Stokes=3

All RUM models are tested here in a low turbulence high inertia case. The Stokes number is St ∼ 3. The particle
relaxation time is τFfp ∼ 39. The simulation has been performed up to 120tref (3.07τFfp). Note that results at
120tref will not be equivalent to those of LR_St1_# case at 40tref (equally 3.07τFfp) since the corresponding
physical time is not the same from the fluid flow point of view. All results are then shown at 120tref . Additional
results at 40 and 80tref can be found in Appendix D.

In this case, the AD model is not sufficient to allow the simulation without any RUM (noRUM model) to finish
since numerical instabilities appear. This fact clearly reveals the importance of the RUM in this type of two-phase
flow configurations.

Low order moments

At high inertia, the particle laden slab, subjected to strong flow shear at its limits, diffuses towards the periphery of
the box as a result of the entrainment of particles by the fluid turbulence eddies. For this reason, the particle number
density profiles (Fig. 5.39(a)) are much flatter than in the LR_St1_# case. As already pointed out, the AD is not
able to sufficiently diffuse the profile for those models that underpredict the RUE (2ΦEASM1 and 2ΦEASM1-C)
showing a higher level of n̆p at the center of the jet. AXISY and its corrected version AXISY-C present the same
behavior as for the mean inertia case. The maximum of n̆p is highly overpredicted and consequently, the global
shape of the profile is not well captured: the slope of the predicted profile is too high in the center and too low
in the periphery. This effect is more visible for AXISY. On the contrary, QUAD-MOD and both 2ΦEASM3 or
2ΦEASM3-C models give very accurate results at the periphery and slightly overestimate the maximum level at
the center line.

The initial guess of QUAD-MOD and 2ΦEASM3 as the best models seems to be confirmed by the predictions
of the RMS values of n̆p and ŭp. Indeed, the agreement with the Lagrangian results is very good for these two
models (Fig. 5.40(a)). 2ΦEASM3 captures not only the good trend but also the correct level of n̆p,RMS . The
agreement is slightly worse with QUAD-MOD. The effect of the correction is more pronounced at high inertia
when compared to LR_St1_# case. The results obtained when using the correction in 2ΦEASM3 are worse than
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when not using it. The same happens with 2ΦEASM1. However, it seems that when applied to the linear model
(AXISY) the correction greatly improves the predictions. Figure 5.40(a) shows that AXISY-C and 2ΦEASM1-C
reproduce the shape of the n̆p,RMS profile although they overestimate the level of the peak at the center of the jet.
On the contrary, AXISY and 2ΦEASM1 show a flatter profile at the periphery of the slab followed by a steeper
slope near the center of the slab.

Regarding the particle velocity statistics, all models perfectly reproduce the mean particle velocity
(Fig. 5.39(b)) and all models except AXISY produce acceptable RMS velocity profiles (Fig. 5.40(b)). Again,
QUAD-MOD and 2ΦEASM3 give the best results together with 2ΦEASM1 (but 2ΦEASM1 fails to reproduce
mean and RMS particle number density).

The instantaneous fields of particle number density (Fig. 5.42) and particle velocity (Fig. 5.43) produce a
qualitative comparison of the performances of the models . The particle velocity is well predicted by all models
(except AXISY that diffuses too much at the border of the jet) but there are important differences in the particle
number density fields. AXISY produces a very concentrated jet at the center of the box and all the corrected
models (AXISY-C, 2ΦEASM1-C and 2ΦEASM3-C) predict well defined filaments towards the periphery of the
jet, which are not predicted by the Lagrangian reference simulations. 2ΦEASM is unable to recover the separated
spots of high particle concentration at the center of the slab. QUAD-MOD shows a lot of wiggles (node-to-node or
high-frequency oscillations). This can be avoided by adding some 4th-order artificial dissipation to the simulation.
However, as the idea is to keep the same numerical setup for all the simulations performed, it has been decided to
keep the results as they are shown. Indeed, the results for RUE could be biased by this additional dissipation term.

Figure 5.41 displays the segregation profiles. QUAD-MOD and 2ΦEASM3 agree very well with the Lagrangian
results. As a matter of fact, the agreement is better in this case than in LR_St1_# case. There is less preferential
concentration effect at this inertia, the slab being flattened, the segregation peaks at the limits of the jet present
in LR_St1_# case (cf Fig 5.18(c)) have disappeared. The segregation then shows a more uniform profile. The
model correction increases the segregation for all models, that is largely overestimated. All the corrected profiles
are very similar. Similarly, AXISY, which produces a very flat profile at the periphery, produces very small values
of segregation in this region.

(a) (b)

Figure 5.39: Comparison of Eulerian and Lagrangian (a) mean particle number density (< n̆p >, normalized by the initial
particle number density at the center of the slab) and (b) mean particle velocity in X-direction (< ŭp >p,

normalized by the initial particle velocity in X-direction at the center of the slab) at 120tref . LR_St3_# case.
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(a) (b)

Figure 5.40: Comparison of Eulerian and Lagrangian (a) RMS particle number density (< n̆p,RMS >, normalized by the
initial particle number density at the center of the slab) and (b) RMS particle velocity in X-direction

(< ŭp,RMS >p, normalized by the initial particle number density at the center of the slab)at 120tref . LR_St3_#
case.

Figure 5.41: Comparison of Eulerian and Lagrangian RMS particle segregation (< n̆2
p > / < n̆p >

2) at 120tref . LR_St3_#
case.
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Figure 5.42: Comparison of Lagrangian (NTMIX-2Φ) and Eulerian particle number density fields (Np) at 120tref . LR_St3_#
case.
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Figure 5.43: Comparison of Lagrangian (NTMIX-2Φ) and Eulerian particle velocity magnitude fields (Up) at 120tref .
LR_St3_# case.
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High order moments

The analysis of the high-order moments reveals that, globally, the models have the same behavior for the high
inertia case (St = 3) as observed in the mean inertia case (St = 1, cf Section 5.3). Indeed, 2ΦEASM3 and QUAD-
MOD give the best agreement with the Lagrangian results. Figure 5.44(a) shows the mean RUE profiles. QUAD-
MOD performs very well at the periphery of the slab but it is not able to recover the good level of the peaks and
at the center of the jet. 2ΦEASM1 gives very similar predictions. The correction degrades the performances of the
model, giving highly underestimated RUE levels. The same happens with 2ΦEASM3-C, while 2ΦEASM3 predicts
the good shape and level of the profile, 2ΦEASM3-C underestimates the level over the whole width of the slab.
The correction has the same impact on AXISY, AXISY-C underestimating the results. At the same time, AXISY
predicts (as it did for LR_St1_# case) too high RUE values, especially for the peaks location. Figure 5.44(b)
shows the mesoscopic energy (q̆2

p) profile and the total energy. The agreement of the non-linear models is very
good when the correction is not taken into account. Indeed, the corrected models give good predictions of total
agitation but overestimate the mesoscopic energy compensating the underestimation of the RUM energy. The
linear model AXISY does not capture well the levels with or without correction. The performances on the RUE
can be linked to the predictions of the RUM productions. As stated in Section 5.3.2, RUM production by shear
is more important than RUM production by compression. For this reason, models that underestimate PShearRUM (all
the corrected models) underestimate as well the RUE. AXISY shows at high inertia the same behavior as observed
in Fig. 5.23(c) for a mean inertial case. Even when the production by compression, PCompressionRUM , Fig. 5.45(b),
acts as a dissipation, PShearRUM is so overestimated that it cannot be overcome by the dissipative effects and thus, the
RUE level is too high. In this case, it is 2ΦEASM3 which gives the best predictions both for the shear and the
compression productions. For comparisons, QUAD-MOD produces a level of PShearRUM too low and overestimates
PCompressionRUM .

The results for the components of the deviatoric RUM stress tensor are in agreement with those of LR_St1_#
case. Indeed, AXISY slightly underestimates the diagonal components, but due to the huge overestimation of the
shear component, it shows too high values of PShearRUM and thus of δq2

p. When applying the correction to this model,
the levels of all components are damped resulting in productions and RUE levels that are too low (Figs. 5.46
and 5.47). QUAD-MOD slightly underestimates the diagonal components but gives very good agreement for
the shear component (the most important) and thus predicts acceptable values of RUE. 2ΦEASM1 model has an
intermediate behavior between AXISY and AXISY-C. In any case, it is 2ΦEASM3 that gives the best predictions
for the components of the tensor, the productions as well as for the energies. The instantaneous RUE fields shown in
Fig. 5.48 confirm this statement. 2ΦEASM1 and 2ΦEASM3 produce fields in very good agreement with NTMIX-
2Φ. 2ΦEASM3, however, reproduces better local RUE values. QUAD-MOD is also able to reproduce the shape
of the RUE field, however, wiggles are clearly present.
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(a)

(b)

Figure 5.44: Comparison of Eulerian and Lagrangian (a) mean Random Uncorrelated Energy (δq2p) and (b) mean total (q2p)
and mesoscopic (q̆2p) particle energies at 120tref . Normalized by the square of the initial particle velocity in

X-direction at the center of the slab. LR_St3_# case.
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(a) (b)

Figure 5.45: Comparison of Eulerian and Lagrangian (a) mean production of RUM energy by shear (< PShear
RUM >p) and (b)

mean productions of RUM energy by compression (< PCompression
RUM >p) at 120tref . Normalized by the square

of the initial particle velocity in X-direction at the center of the slab and the reference time (tref ). LR_St3_# case.

(a) (b)

Figure 5.46: Comparison of Eulerian and Lagrangian (a) mean deviatoric RUM stress tensor XX component (< δR̆∗
p,11 >p)

and (b) mean deviatoric RUM stress tensor XY component (< δR̆∗
p,12 >p) at 120tref . Normalized by the square

of the initial particle velocity in X-direction at the center of the slab. LR_St3_# case.
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(a) (b)

Figure 5.47: Comparison of Eulerian and Lagrangian (a) mean deviatoric RUM stress tensor YY component (< δR̆∗
p,22 >p)

and (b) mean deviatoric RUM stress tensor ZZ component (< δR̆∗
p,33 >p) at 120tref . Normalized by the square

of the initial particle velocity in X-direction at the center of the slab. LR_St3_# case.

Figure 5.48: Comparison of Lagrangian (NTMIX-2Φ) and Eulerian Random Uncorrelated Energy (δq2p) at 120tref .
LR_St3_# case.
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Effect of Artificial Dissipation

For this case (LR_St3_#), where AD is not powerful enough to allow the whole calculation without RUM (noRUM)
to finish, the activation of the AV sensor is very reduced when the models giving the best predictions (2ΦEASM3
and QUAD-MOD) are used. This effect can be observed in Fig. 5.49 where the profiles of the AV sensor are
shown. Again, as it happened with LR_St1_# case, the AD activates when the RUM models do not predict the
correct level of RUE. This fact is confirmed by Fig 5.50 where the instantaneous fields of AV sensor at 120tref are
shown. Indeed, non-corrected 2ΦEASM# models do not need much artificial viscosity. QUAD-MOD however,
needs much more artificial viscosity to overcome the problems due to the high-frequency oscillations.

In fact, it seems that, unexpectedly, the AV sensor CMS-Lite activates at the same locations where the RUE is
maximal. This may be due to a need to diffuse the steep concentration and velocity gradients. When the RUM
model correctly predicts the RUE field, the RUE diffuses those gradients, but in those cases where the RUE is not
active or its value is too low to diffuse the gradients, the sensor activates to stabilize the simulation. The AV sensor
has not been developped to this purpose and the effects observed are more a matter of coincidence.

Figure 5.49: Mean Artificial Viscosity sensor activation at 120tref . LR_St3_# case.
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Figure 5.50: Fields of Artificial Viscosity sensor activation at 120tref . LR_St3_# case.
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5.4.2 Low inertia case: Stokes=0.33

Sections 5.3 and 5.4.1 have shown the results of the RUM models proposed in Chapter 4 in a low turbulence case
for mean (St ∼ 1) and high (St ∼ 3) inertia respectively. From the assessment of the models, both qualitatively
and quantitatively, two models (QUAD-MOD and 2ΦEASM3) have been identified as the ones giving the best
performances when compared with the Lagrangian reference.

In this Section, the capability of QUAD-MOD and 2ΦEASM3 to correctly predict the low and high order
moments in a case of low turbulence and low inertia is analyzed. The Reynolds number keeps the same (Reac =
5500) but the Stokes number is now St ∼ 0.33. The particle relaxation time is τFfp ∼ 4.33. This case is in fact an
extreme case. Indeed, as already pointed out, the preferential concentration effect is maximal at St = 0.3, which
creates empty spaces close to very high concentration spots. The steep concentration gradients between both zones
are very difficult to handle numerically and the Artificial Diffusion is expected not to be powerful enough to diffuse
them.

Only noRUM, VISCO, QUAD-MOD and 2ΦEASM3 models have been tested in this case. noRUM crashed
shortly after 5tref . In contrast to LR_St1_# and LR_St3_# cases, VISCO model was able to complete the whole
simulation. This is due to the dependency of the model to τ̆p (Eq. 4.9). Since δR̆∗p,ij is directly proportional to τ̆p in
the VISCO model, the RUE production at small inertia (small particle response time) is reduced when decreasing
the Stokes number. In this case, the overestimation of RUE observed in cases St=1 and St=3 is no longer present.

Results are shown at 80tref . Complementary data at 5, 20 and 40tref can be found in Appendix E.

Figures 5.51(a) and 5.51(b) show the mean particle number density and the mean particle velocity profiles.
Figure 5.52 shows the RMS particle number density and particle velocity profiles, included here for the sake
of simplicity. Figure 5.53 shows the mean segregation profiles. The three models (VISCO, QUAD-MOD and
2ΦEASM3) give the same results for the low order moments, the mean and the RMS quantities and the segrega-
tion. The RMS particle number density and segregation profiles are underestimated by all models. There are no
differences on the instantaneous fields either (Figs. 5.54 and 5.55). None of the models captures the empty spaces
inside the slab as predicted by the Lagrangian reference. This is due to the reduced contribution of RUE in this
configuration (as conjectured).

(a) (b)

Figure 5.51: Comparison of Eulerian and Lagrangian (a) mean particle number density (< n̆p >, normalized by the initial
particle number density at the center of the slab) and (b) mean particle velocity in X-direction (< ŭp >p,

normalized by the initial particle velocity in X-direction at the center of the slab) at 80tref . LR_St033_# case.
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(a) (b)

Figure 5.52: Comparison of Eulerian and Lagrangian (a) RMS particle number density (< n̆p,RMS >, normalized by the
initial particle number density at the center of the slab) and (b) RMS particle velocity in X-direction

(< ŭp,RMS >p, normalized by the initial particle number density at the center of the slab) at 80tref .
LR_St033_# case.

Figure 5.53: Comparison of Eulerian and Lagrangian RMS particle segregation (< n̆2
p > / < n̆p >

2) at 80tref . LR_St033_#
case.
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Figure 5.54: Comparison of Lagrangian (NTMIX-2Φ) and Eulerian particle number density (Np) at 80tref . LR_St033_# case.

Figure 5.55: Comparison of Lagrangian (NTMIX-2Φ) and Eulerian particle velocity magnitude (Up) at 80tref . LR_St033_#
case.
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Indeed, compared to q̆2
p, δq2

p is much smaller (Figs. 5.56(a) and 5.56(b)). The main contribution to the total
particle agitation comes from the mesoscopic energy (q̆2

p) and thus the RUM has a very limited effect. However,
Fig. 5.56(a) shows that VISCO is not able to produce the correct level of RUE. Even when the low order moments
are well predicted, this model will not work in configurations with collisions or coalescence without being modi-
fied (besides the fact that it crashes for mean and high inertia). On the other hand, QUAD-MOD and 2ΦEASM3
provide very good agreement with the Lagrangian reference. They give very good results for the low order mo-
ments providing the correct repartition between the mesoscopic and the RUE at the same time. Indeed, the RUM
productions (Fig. 5.57) as well as the deviatoric RUM tensor components (Figs. 5.58 and 5.59) are very accurately
predicted by both models, whose results are in fact very similar.

The qualitative analysis of the instantaneous fields of RUE shows that, while VISCO underestimates the RUE,
QUAD-MOD and 2ΦEASM3 correctly predict the locations where the RUE is predicted by NTMIX-2Φ. However,
only the largest structures are reproduced. This is probably due to a lack of resolution of the Eulerian calculation
(Dombard (2011)) which prevents from capturing the small structures caused by the high segregation.

(a) (b)

Figure 5.56: Comparison of Eulerian and Lagrangian (a) mean Random Uncorrelated Energy (δq2p) and (b) mean total (q2p)
and mesoscopic (q̆2p) particle energies at 80tref . Normalized by the square of the initial particle velocity in

X-direction at the center of the slab. LR_St033_# case.
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(a) (b)

Figure 5.57: Comparison of Eulerian and Lagrangian (a) mean production of RUM energy by shear (< PShear
RUM >p) and (b)

mean productions of RUM energy by compression (< PCompression
RUM >p) at 80tref . Normalized by the square of

the initial particle velocity in X-direction at the center of the slab and the reference time (tref ). LR_St033_# case.

(a) (b)

Figure 5.58: Comparison of Eulerian and Lagrangian (a) mean deviatoric RUM stress tensor XX component (< δR̆∗
p,11 >p)

and (b) mean deviatoric RUM stress tensor XY component (< δR̆∗
p,12 >p) at 80tref . Normalized by the square of

the initial particle velocity in X-direction at the center of the slab. LR_St033_# case.
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(a) (b)

Figure 5.59: Comparison of Eulerian and Lagrangian (a) mean deviatoric RUM stress tensor YY component (< δR̆∗
p,22 >p)

and (b) mean deviatoric RUM stress tensor ZZ component (< δR̆∗
p,33 >p) at 80tref . Normalized by the square of

the initial particle velocity in X-direction at the center of the slab. LR_St033_# case.

Figure 5.60: Comparison of Lagrangian (NTMIX-2Φ) and Eulerian Random Uncorrelated Energy (δq2p) at 80tref .
LR_St033_# case.
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5.5 High turbulent conditions

The performances of QUAD-MOD and 2ΦEASM3 models have been until now validated in a low turbulence case
for three different inertia. However, the Reynolds numbers encountered in industrial configurations are very high
and flows are, in general, much more turbulent. In this Section, both models are evaluated in a higher turbulence
case (Reac = 20000, St ∼ 1, τFfp ∼ 9.44). This study aims at assessing the validity of these models and their
application in more complex cases such as the MERCATO test rig presented in Part IV.

From the a priori results, it is expected that the interaction of the particle phase with the vortical structures of
the carrier phase (stronger that in case LR_St1_#) will create much more smaller structures in the dispersed phase
fields that in the low turbulence case. The entrainment of the particles by the eddies will create very thin filaments
that will afterwards detach from the jet. The capability of QUAD-MOD and 2ΦEASM3 to capture this kind of
small structures is analyzed in this Section.

The Euler-Lagrange simulation of this case has been performed in a 2563 mesh (i.e. the resolution has been
doubled compared to the low turbulence computations). This means that in order to achieve the same level of
comparison as for the previous sections, it may be necessary to double the resolution of the grid used in the
Eulerian simulations of this case.

Figure 5.61 shows the statistics for the particle number density and particle velocity at 70tref (7.41τFfp). The
agreement with the Lagrangian reference is again very good for both models. They also give very good results
in the RMS particle velocity (Fig. 5.62(b)). However, the levels obtained for the RMS particle number density
(Fig. 5.62(a)) are too low. Figure 5.63 shows the segregation profiles. Both models give the same results. The
segregation levels are too low compared to the reference. This behavior has already been observed in the low
turbulence cases. It is again probably due to a lack of resolution.

(a) (b)

Figure 5.61: Comparison of Eulerian and Lagrangian (a) mean particle number density (< n̆p >, normalized by the initial
particle number density at the center of the slab) and (b) mean particle velocity in X-direction (< ŭp >p,

normalized by the initial particle velocity in X-direction at the center of the slab) at 70tref . HR_St1_# case.
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(a) (b)

Figure 5.62: Comparison of Eulerian and Lagrangian (a) RMS particle number density (< n̆p,RMS >, normalized by the
initial particle number density at the center of the slab) and (b) RMS particle velocity in X-direction

(< ŭp,RMS >p, normalized by the initial particle number density at the center of the slab)at 70tref . HR_St1_#
case.

Figure 5.63: Comparison of Eulerian and Lagrangian RMS particle segregation (< n̆2
p > / < n̆p >

2) at 70tref . HR_St1_#
case.
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Figure 5.64: Comparison of Lagrangian (NTMIX-2Φ) and Eulerian particle number density (Np) at 70tref . HR_St1_# case.

Figure 5.65: Comparison of Lagrangian (NTMIX-2Φ) and Eulerian particle velocity magnitude (Up) at 70tref . HR_St1_#
case.
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Although the resolution of the Eulerian grid may not be enough, both models show good agreement for the
profiles of RUE (Fig. 5.66(a)). However, none of them captures the level reached at the upper border of the jet.
Nevertheless, both closures are able to reproduce the non-symmetric profile. The production by shear (Fig. 5.67(a))
is well predicted by both models. δR̆∗p,12 is equally well reproduced (Fig. 5.68(b)). 2ΦEASM3 provides better
agreement for the production by compression (Fig. 5.67(b)), which may come from a better balance between the
components belonging to the diagonal of the deviatoric RUM tensor. Even when at first sight QUAD-MOD seems
to provide better agreement, its level is good for δR̆∗p,11 and δR̆∗p,22 components and too low for δR̆∗p,33. On the
other hand, 2ΦEASM3 gives very good δR̆∗p,22 results and an overestimation of the δR̆∗p,11 and δR̆∗p,33 components.
But the total balance between both terms is better than for QUAD-MOD.

Finally, the analysis of the instantaneous fields confirms that both models give very similar results.

(a) (b)

Figure 5.66: Comparison of Eulerian and Lagrangian (a) mean Random Uncorrelated Energy (δq2p) and (b) mean total (q2p)
and mesoscopic (〈q̆2p〉p) particle energies at 70tref . Normalized by the square of the initial particle velocity in

X-direction at the center of the slab. HR_St1_# case.
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(a) (b)

Figure 5.67: Comparison of Eulerian and Lagrangian (a) mean production of RUM energy by shear (< PShear
RUM >p) and (b)

mean productions of RUM energy by compression (< PCompression
RUM >p) at 70tref . Normalized by the square of

the initial particle velocity in X-direction at the center of the slab and the reference time (tref ). HR_St1_# case.

(a) (b)

Figure 5.68: Comparison of Eulerian and Lagrangian (a) mean deviatoric RUM stress tensor XX component (< δR̆∗
p,11 >p)

and (b) mean deviatoric RUM stress tensor XY component (< δR̆∗
p,12 >p) at 70tref . Normalized by the square of

the initial particle velocity in X-direction at the center of the slab. HR_St1_# case.
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(a) (b)

Figure 5.69: Comparison of Eulerian and Lagrangian (a) mean deviatoric RUM stress tensor YY component (< δR̆∗
p,22 >p)

and (b) mean deviatoric RUM stress tensor ZZ component (< δR̆∗
p,33 >p) at 70tref . Normalized by the square of

the initial particle velocity in X-direction at the center of the slab. HR_St1_# case.

Figure 5.70: Comparison of Lagrangian (NTMIX-2Φ) and Eulerian Random Uncorrelated Energy (δq̆p) at 70tref . HR_St1_#
case.
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5.5.1 Effect of mesh resolution

Case HR_St1 has been computed on a higher resolution mesh grid (5123 computational cells) with AVBP for
2ΦEASM3 model. Results are compared with the lower resolution mesh (2563) and with the reference (Eulerian
fields obtained by projection from Euler-Lagrange simulation performed on a 2563 grid). Due to computational
limitations in time and memory, the simulation has only been performed up to 40tref and only the fields of particle
number density, particle velocity and RUE stored. The fields corresponding to the RUM stress tensor components
and the productions are not accesible for this simulation.

Figures 5.71(a) and 5.71(b) shows the plane averages of the mesoscopic particle number density and parti-
cle velocity respectively. Increasing the mesh resolution does not have an impact on the statistics of these two
quantities. Indeed, no noticeable difference exists on the profiles of the mean quantities. On the contrary, the
profiles of the RMS quantities (Figs. 5.72(a) and 5.72(b)) are improved when using a higher resolution mesh for
the computations. The RMS particle number density is improved of 25% approximately. The improvement on
the RMS particle velocity is much more reduced. This improvement is transposed to the segregation profiles too
(Fig. 5.73). The segregation level is highly increased at the center of the slab and the level of the maximal peaks at
the periphery is greatly increased too. Thus, the agreement with the reference is improved.

Increasing the resolution of the mesh has a negative impact on the RUE profile (Fig. 5.74(a)). Indeed, the
level of uncorrelated energy increases, which produces an overestimation of the RUE already overestimated with
the lower resolution mesh. Nevertheless, the level increase is not very high and at the same time the mesoscopic
energy statistics are improved (Fig. 5.74(b)). This leads to a slight overestimation of the total particle agitation,
which is very accurately captured with the lower-resolution mesh (Fig. 5.74(c)).

(a) Non-dimensional mean particle number density. (b) Non-dimensional mean particle velocity.

Figure 5.71: Comparison Lagrangian and Eulerian results. The Lagrangian computation has been performed in a 1283 mesh
grid. Mesh_256 corresponds to the Eulerian simulation on a 2563 mesh and Mesh_512 to an Eulerian simulation

on a 5123 mesh.
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(a) Non-dimensional RMS particle number density. (b) Non-dimensional RMS particle velocity.

Figure 5.72: Comparison Lagrangian and Eulerian results. The Lagrangian computation has been performed in a 1283 mesh
grid. Mesh_256 corresponds to the Eulerian simulation on a 2563 mesh and Mesh_512 to an Eulerian simulation

on a 5123 mesh.

Figure 5.73: Comparison Lagrangian and Eulerian particle segregation. The Lagrangian computation has been performed in
a 1283 mesh grid. Mesh_256 corresponds to the Eulerian simulation on a 2563 mesh and Mesh_512 to an

Eulerian simulation on a 5123 mesh.

Regarding the qualitative comparison of the instantaneous fields, the structures of particle number density
(Fig. 5.75) are more defined when increasing the resolution, the diffusion seems to be reduced and thus the empty
spaces and high concentration spots are better captured. However, the overall appearence of the fields has not
changed much. Changes are even less obvious in the case of the particle velocity fields (Fig. 5.76), the fields
corresponding to the Eulerian simulations with the two computational meshes are very similar and changes appear
but may be due to small differences on the physical times of the simulations. The RUE field corresponding to the
high resolution mesh (Fig. 5.77) is more defined than the one corresponding to the lower resolution grid. More
small structures are present and the size of the spots of very high RUE has been reduced. This seems to be in
disagreement with the increased level of the RUE average profiles (cf Fig. 5.74(a)), however, the number of small
structures in the field has considerably increased which increases the global RUE level.
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(a) Non-dimensional RUE. (b) Non-dimensional particle mesoscopic energy.

(c) Non-dimensional total particle energy.

Figure 5.74: Comparison Lagrangian and Eulerian results. The Lagrangian computation has been performed in a 1283 mesh
grid. Mesh_256 corresponds to the Eulerian simulation on a 2563 mesh and Mesh_512 to an Eulerian simulation

on a 5123 mesh.
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Figure 5.75: Comparison Lagrangian and Eulerian particle number density instantaneous fields at 40tref . The Lagrangian
computation has been performed in a 1283 mesh grid. 2ΦEASM3_256 corresponds to the Eulerian simulation on

a 2563 mesh and 2ΦEASM3_512 to an Eulerian simulation on a 5123 mesh.

Figure 5.76: Comparison Lagrangian and Eulerian particle velocity instantaneous fields at 40tref . The Lagrangian
computation has been performed in a 1283 mesh grid. 2ΦEASM3_256 corresponds to the Eulerian simulation on

a 2563 mesh and 2ΦEASM3_512 to an Eulerian simulation on a 5123 mesh.
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Figure 5.77: Comparison Lagrangian and Eulerian RUE instantaneous fields at 40tref . The Lagrangian computation has
been performed in a 1283 mesh grid. 2ΦEASM3_256 corresponds to the Eulerian simulation on a 2563 mesh

and 2ΦEASM3_512 to an Eulerian simulation on a 5123 mesh.
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5.6 Conclusions

The different approaches for the modelisation of the deviatoric RUM tensor presented in Chapter 4 have been
a posteriori validated in a configuration with mean shear. Comparisons with a priori results issued from exact
Lagrangian calculations projected onto an Eulerian grid have been carried out for two levels of turbulence (Reac =
5000, 20000) and three levels of inertia (St ∼ 0.33, 1, 3). The observations resulting from these tests are:

• The model based on a viscosity assumption and τ̆p as timescale, VISCO, crashes after a few iterations
in all cases except for the low inertia case (LR_St0.33_#). When performing simulations without taking
into account the contribution of the RUM (noRUM), only the low turbulence unity Stokes number case
(LR_St1_#) is able to complete the simulation. If the turbulence is increased or the Stokes number changed,
the simulation crashes before reaching the end. The rest of the models presented have been tested in low
Reynolds, mean and high Stokes numbers with success (LR_St0.33_# and LR_St3_#).

• The results obtained in LR_St1_# and LR_St3_# cases show that AXISY model is too diffusive due to an
overestimation of the RUE level. The correction (AXISY-C) improves the results by reducing the RUE
levels and thus the diffusion of the particle number density and particle velocity fields. The overestimation
of RUE seems to be characteristic of the linear models (VISCO and AXISY). Increasing the order of the
model (QUAD-MOD) clearly improves the results. Indeed, from the comparisons performed in Sections 5.3
and 5.4.1, QUAD-MOD has been identified as one of the models to be retained.

• 2ΦEASM1 underestimates the RUE level at low turbulence and mean inertia. It gives better results when
increasing the inertia. The correction (2ΦEASM1-C) has a very limited effect for this model. 2ΦEASM3
gives very good results at low turbulence for mean and high inertia and for higher turbulence and mean
inertia. This model is to be retained for future simulations. In this case, the correction (2ΦEASM3-C)
reduces the RUE level yielding a degradation of the results.

• For low turbulence and low inertia limit case (LR_St0.33_#) both QUAD-MOD and 2ΦEASM3 correctly
downgrade: the RUM is reduced, giving accurate results. The two models have also been tested in a mean
inertia and high turbulence case (HR_St1_#), also providing good agreement with the Lagrangian reference.

Special attention must be paid to artificial dissipation:

• AD is needed for all models at the beginning to numerically stabilize the simulation due to the presence of
too steep gradients on the borders of the slab that the centered scheme TTGC is unable to handle.

• A link between the AD and the RUM has been observed: AD activates in the zones where RUE should be
produced but is not because RUM has not been accounted for or because the RUM model behaves uncor-
rectly. The models that overestimate the RUE show very low levels of AD and vice versa.

• Although the models that underestimate RUE produce good results of the low order moments, AD is not
able to substitute the RUM contribution in terms of high order moments and numerical stability.

The effect of the resolution needed to perform two-phase Eulerian calculations has also been adressed. Cases
LR_St1_2ΦEASM3 and HR_St1_2ΦEASM3 have been simulated on a 5123 grid. Due to limited computational
resources, the simulations have been carried out until 40tref only. The profiles of mean and RMS particle number
density and particle velocity, segregation and mean RUE have been compared with the simulations performed
on the lower resolution (2563) grid and the Lagrangian reference. Dombard (2011) studied the effect of the mesh
resolution on this configuration showing that it has an important impact on the statistics of the high order moments.
This statement has been confirmed by the results presented here. The mean particle number density and particle
velocity statistics are not affected by the increase in mesh resolution. However, the instantaneous fields of particle
number density are highly improved. The presence of small structures is better captured whit the 5123 grid. The
location of the spots of high and low particle concentration are better reproduced and the diffusion is reduced.
The simulations in the higher resolution mesh provide a better prediction of the RMS particle number density
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and particle velocity, especially on the higher turbulence simulation where the particle number density fluctuation
level (very underestimated by the lower grid resolution simulation) is highly improved. The impact on the RMS
particle velocity is much more limited. The RUE instantaneous fields are also improved when the grid resolution
is increased. The shape of the Lagrangian field is better reproduce and the presence and location of the small
structures are better captured. However, the mean RUE profiles are slightly overestimated by the higher resolution
simulations, while the total particle agitation is less affected.

The presence of wiggles in the instantaneous fields for the QUAD-MOD model provided a reason to choose
between 2ΦEASM3 and QUAD-MOD to perform the simulations of the configuration presented in Part IV. Those
wiggles are due to high frequency oscillations coming from numerical errors and potential low grid resolution,
which makes the simulation susceptible to numerical instabilities or to the need of additional AD. The reason why
they only appear in QUAD-MOD has not been identified yet. It may mean that this particular model needs a higher
resolution than the rest of the models. The simulations on a 5123 mesh with QUAD-MOD have not been performed
during this work due to a lack of time and computational resources.

Finally, the 2ΦEASM3 model provides very good agreement with the Lagrangian reference for all the cases
tested. This model represents a good compromise in terms of reproduction of physical phenomena and AD. The
model has been implemented in the code AVBP. On the short term, deeper analysis of the link between the RUM
and the AD is however necessary for future studies. Recently, new AV sensors have been implemented in AVBP
(Vié (2010)) which have proven to provide good results on particle-laden HIT and two-dimensional particle-laden
spatial jet configurations (Dombard (2011)). On the mean and long term, the implementation of high-order upwind
numerical schemes (de Chaisemartin (2009), Kah (2010)) in AVBP may solve the issues related to AD, providing
simpler analysis of the performances of the RUM models.

Masi (2010) studied the impact of LES in the configuration studied here. The performances of the models
were assessed and the coefficients of the dispersed phase turbulent viscosity model developed by Moreau (2006)
adjusted. The model proposed by Moreau (2006) was implemented in AVBP by Riber (2007). The same study
presented here in the case of a DNS approach needs to be conducted in the LES context in order to further validate
the RUM models with the perspective of their application to LES simulations of industrial configurations.

2ΦEASM3 model correctly reproduces the level of RUE in this configuration, which allows the consideration
of collisions in two-phase flows simulations, which was not the case of the model available until now (VISCO). The
modification of the dispersed transport equations in not extremely difficult and Masi (2010) provided an extense
Lagrangian data base on a colliding particle-laden turbulent planar jet which may be used for validation purposes
as has been done here.

The effect of the grid resolution needs further analysis. First, it is desirable to perform simulations on the higher
resolution mesh grid both with the Euler-Lagrange and the Euler-Euler approaches with the condition of being able
to obtain detailed information on the deviatoric RUM stress tensor components and RUM production terms. In-
deed, comparisons between Euler-Euler and Euler-Lagrange simulations performed with the same mesh resolution
eliminates a possible source of differences between the simulations. Having access to the tensor components and
production terms allows a deeper comparison.

Masi (2010) performed an analysis of the performances of the RUM models in the context of the LES of the
particle-laden temporal planar jet configuration studied here. The results showed that 2ΦEASM3 behaves correctly
when applied along with the model of Moreau (2006) for the dispersed phase turbulent viscosity (with minor
modifications). This justifies the application of the 2ΦEASM3 model to the LES of the MERCATO configuration
presented in Part IV. However, an a posteriori validation of the RUM models in the configuration presented her
using LES is of great importance. Due to a lack of time, it has not been done during this work, but it is planned for
the future.

Finally, the application of 2ΦEASM3 model to a complex semi-academic configuration is on sight. The con-
figurations of Hishida et al. (1987) or Sommerfeld & Qiu (1993) are good candidates for this task. For both
configurations, experimental data are available. For the configuration of Sommerfeld & Qiu (1993), numerical
data obtained from Euler-Lagrange simulations (Apte et al. (2003b)) are available too. The Euler-Euler LES of
both simulations with 2ΦEASM3 model is in prospect at CERFACS.



Part III

Evaporation of single isolated droplets
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Chapter 6

Modeling the evaporation of fuel droplets

The process of droplet vaporization is of great importance in many energy systems involving spray combustion
such as diesel engines, gas turbines, liquid rocket engines, industrial furnaces, etc. In a general way, without
accounting for droplet burning at injection, the liquid fuel atomizes into multiple droplets of different sizes, creating
a polydispersed spray, the fuel droplets vaporize, the gaseous fuel mixes with the oxydant and then burns. In this
type of studies the prediction of the gaseous fuel concentration is of primary importance for the correct evaluation
of critical parameters, such as flame position and heat release (Lefebvre (1999)).

The vaporization of droplets has been widely studied during the past century, experimentally and theoretically.
Many studies were performed on complex spray flows in similar conditions to those encountered in real applica-
tions (theoretically by Faeth (1996) and Borghi (1996b) and experimentally by Sommerfeld & Qiu (1998) and Li
et al. (2011) amongst others). The phenomena taking place in this type of configurations are very complex. Mul-
tiple interactions between the atomization, the dispersion and the evaporation of droplets take place at the same
time. For this reason, developping models from studies of complex configurations is almost an impossible task.

Another approach is to study the evaporation of single droplets, under different conditions, as a first step
towards the understanding of the process in a spray. An isolated droplet represents an ideal model of the physical
phenomena involved in the diluted regions of the spray. The vaporization of a single droplet is a process involving
heat, mass and momentum transfers in both gas and liquid phases, with coupling at the droplet interface. Its study
provides the basis for the development of complex spray flow modeling, which may be found in many textbooks:
Williams (1985), Kuo (2005), Sirignano (1999) and reviews: Sirignano (1983), Faeth (1977), Law (1982) and more
recently Birouk & Gokalp (2006). Heating, evaporation and combustion models of isolated droplets are widely
available in the literature (Sirignano (1983); Abramzon & Sirignano (1989), Sazhin (2006); Sazhin et al. (2006);
Harstad & Bellan (2001)).

Many experimental studies have been performed on suspended evaporating droplet. Studies on droplet evapo-
ration in convective streams have also been reported by several authors (Ranz & Marshall (1952), Yang & Wong
(2002), Maqua et al. (2008), Kristyadi et al. (2010)). Most non-convective droplet evaporation studies have been
conducted at normal gravity. However, under microgravity conditions (Nomura et al. (1996), Yang & Wong (2001),
Chauveau et al. (2008)), the spherical symmetry of the droplet is guaranteed and the models simplified. For this
reason experiments performed under microgravity conditions are better suited for the validation of theoretical and
numerical models which usually suppose droplet symmetry.

Numerical studies of isolated droplets in the literature are devoted to the study of theoretical models in com-
parison with experimental results. Zhang et al. (2008) studied the evaporation of single droplets in stagnant and
convective stream. Yang & Chang (2001) and Yang & Wong (2002) analyzed the effects of heat conduction
through the support fiber and furnace radiation in the evaporation of suspended droplets. Hubbard et al. (1975)
studied the effects of different properties on the evaporation of single droplets of different types of fuels into a
stagnant atmosphere. Hohmann & Renz (2003) studied the influence of real gas effects and gas solubility.
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The Chapter is organized as follows. Section 6.1 provides a classification of the evaporation models existing
in the literature and summarizes the main assumptions of the classical model implemented in AVBP. Section 6.2
gives the context of the work presented in this Part of the manuscript. Finally, Section 6.3 present the evaporation
models studied in this work and the formulation of the transport and themodynamic governing laws.

6.1 Review of the existing evaporation models

Following Sirignano (1999) the models of droplet-vaporization can be classified into the following six groups with
increasing complexity:

1. constant droplet-temperature model: the droplet surface temperature is uniform and does not change with
time; it yields the famous d2 law.

2. infinite liquid-conductivity model: the droplet surface temperature is uniform, time-varying and equal to the
temperature inside the droplet.

3. spherically symmetric transient droplet heating model: it takes into account finite liquid thermal conductiv-
ity, but not the recirculation inside the droplets (conduction limit).

4. effective-conductivity model: it takes into account both finite liquid thermal conductivity and recirculation.

5. vortex model for droplet heating: it describes the recirculation inside the droplet in terms of vortex dynamics.

6. Navier-Stokes solution: full exact solution of the Navier-Stokes equations inside the droplet and in the
gaseous flow.

The evaporation models can be more precisely classified by independently describing the models used on each
of the process taking place in the vaporization of a droplet. Four main phenomena take place in the evaporation of
an isolated droplet:

1. the heat in the gas phase diffuses to the droplet surface.

2. the heat arriving to the droplet surface is diffused inside the droplet.

3. the molecules of fuel detach fron the droplet surface due to their increased internal energy (vaporization
process).

4. the gaseous fuel is diffused from the droplet surface to the surrounding gas.

Most models assume the diffusion in the gas phase (from and to the droplet surface) to be spherically symmet-
ric. This assumption is at the root of the Spalding model (Spalding (1953)) used in AVBP. However, some effects
due to convection may modify the flow around the droplet. The spherically symmetric model takes into account the
convection effects through the Frössling correlations (Frössling (1938)) for the Sherwood and Nusselt numbers.
Other models include the effect of convection taking into account the presence of a film around the droplet, intro-
ducing correction factors in the spherically symmetric model (Abramzon & Sirignano (1989), Yao et al. (2003))
or completely solving the flow around the droplet (Sirignano (1999)). This last option is computationally very
expensive.

By addition, transport properties are often considered constant between the droplet surface and the infinity.
Miller et al. (1998) showed that the heat and mass fluxes to the droplet strongly depend on the evaluation of the
transport and thermodynamic properties of both the gas and the liquid phases. This will be specifically studied in
Section 6.3.1.

To model the temperature distribution inside the droplet (and thus the diffusion in the liquid phase), multiple
options exist: the simplest models neglect the heat diffusion inside the droplet and suppose constant droplet tem-
perature, assuming that all the heat arriving to the surface is employed for the vaporization process. The model
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implemented in AVBP takes a step further in the modelisation of the diffusion in the liquid phase by assuming
an infinitely rapid heat diffusion inside the droplet. The droplet temperature is considered uniform but may vary
with time. Sazhin et al. (2005) and Laurent (2008) supposed the droplet temperature to follow a polynomial pro-
file. More complex models solve the heat equation inside the droplet, suppose a Hill’s vortex flow type inside the
droplet (Abramzon & Sirignano (1989)) or even solve the complete set of equations inside the droplet (Rangel &
Sirignano (1989)). A comparison of the effects of each of these models may be found in Abramzon & Sirignano
(1989).

6.2 A new experimental approach for the characterization of evaporating
droplets.

Chauveau et al. (2008) recently presented new experimental measurements for the evaporation of n-heptane
droplets in the configuration previously studied by Nomura et al. (1996). In these experiments, a unique n-heptane
droplet of initial diameter d0 = 500 µm, suspended by quartz fibers, evaporates in a N2 quiescent atmosphere
at different temperatures and pressures under microgravity conditions. Chauveau used a new method to suspend
the droplets during the evaporation process: while Nomura used horizontal quartz fibers of 0.15 mm of diameter
(Fig 6.1(a)), Chauveau suspended the droplets by the center using a "cross-fiber" system of 14 µm (Fig 6.1(b)). He
claimed that this new method was more accurate, since it reduces the heat conduction through the fiber and keeps
the droplet spherical until the last stages of evaporation.

(a) (b)

Figure 6.1: Droplet suspending technique: classical fiber (a), cross-fiber (b). Extracted from
Chauveau et al. (2008).

The evaporation times measured by Chauveau et al. (2008) were much larger than those measured by Nomura
et al. (1996) or Ghassemi et al. (2006). To explain this difference he adduced that in Ghassemi and Nomura’s
experiments, the measurements were conditioned by the heat conduction through the support fiber. Yang & Wong
(2002) performed a numerical study of the experience carried out by Nomura to investigate the effects of radiation
and fiber heat conduction. They simulated the evaporation of a single n-heptane droplet under the same conditions
for a wide range of gaseous temperatures and pressures. They used three numerical models:

• the first model computes the evaporation process without any source term other than the exchanges between
the gas and the liquid phases (case 1).

• the second model takes into account an extra contribution due to the heat conduction through the fiber (case
2)

• the third model takes into account the radiation emitted by the internal walls of the furnace where the exper-
iments were performed and the fiber heat conduction (case 3).

They showed that when radiation and fiber conduction effects are not included, the computed evaporation rate is
slower, up to a 50% slower depending on pressure and temperature conditions. They also showed that the results of
Nomura are very sensitive to the contributions of the fiber and radiative source terms. Results including radiation
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and the effect of the fiber matched the results of Nomura for a wide range of pressures and temperatures as shown
in Fig. 6.2.

(a) P=1 atm (b) P=5 atm

(c) P=10 atm (d) P=20 atm

Figure 6.2: Computational results from Yang & Wong (2002) on evaporation of single isolated n-heptane droplets at different
pressures and temperatures. Comparison with the experimental results of Nomura et al. (1996). Extracted from

Yang & Wong (2002).

In AVBP, fiber heat conduction and radiation are often ignored. For this reason, only case 1 in Yang & Wong
(2001) will be used for comparison means in this work. Nevertheless, these terms may be accounted for coupling
AVBP with the codes AVTP (Duchaine et al. (2009)) to account for the heat conduction through the support fiber,
and PRISSMA (Joseph et al. (2005), Amaya et al. (2010) ) to take into account the radiation effects.

6.3 Evaporation models for single isolated droplet

Section 6.3 recalls the equations used in the evaporation model of Spalding (Spalding (1953)) and introduces the
modifications proposed by Abramzon and Sirignano (Abramzon & Sirignano (1989)) into this evaporation model.
Section 6.3.1 compares two procedures to evaluate the transport and thermodynamic properties and proposes a
new method for the calculation of the transport properties in the gas phase around the droplet with the code AVBP.
Following the classification proposed by Sazhin (2006), infinite conduction in the liquid and spherical symmetry
are assumed. In other words, inside the droplet, the thermal conductivity is considered infinitely fast and the
temperature is uniform (Fig 6.3). The gas is considered quasi-stationary, so the thermal and mass transferts in the
gaseous phase depend only on the distance to the surface of the droplet. Furthermore, the particle density being
larger than the fluid density (ρp >> ρg), the velocity of regression of the droplet surface is much smaller than that
of the gaseous fuel leaving the surface, so that the position of the liquid surface may be considered constant.
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Figure 6.3: Sketch of the heat fluxes and temperature profile in the evaporation of an isolated droplet following the infinite
liquid-conductivity model. Source AVBP Handbook.

The Spalding evaporation model (Spalding (1953))

The mass exchange through the droplet surface may be represented by the fuel mass flux leaving the surface (ζ
represents the surface of the droplet and u the droplet surface regression velocity):

ṁF = (4πρgur2
p)ζ . (6.1)

where rp is the droplet radius.

Another description of this mass exchange is obtained using the temporal evolution of the total mass of the
droplet mp:

ṁp =
dmp

dt
. (6.2)

As the mass loss of the droplet due to evaporation is totally converted into gaseous fuel, a simple relationship
between ṁp and ṁF can be obtained:

ṁF = −ṁp. (6.3)

Spalding (1953) proposed the following expression for the calculation of the droplet mass loss:

ṁp = −πdpShρgDF ln(1 +BM ), (6.4)

where ρgDF includes the diffusion coefficient (DF ) of the fuel species in the mixture and the density (ρg) of the
gaseous mixture. Sh is the Sherwood number, a dimensionless number that represents the ratio of convective to
diffusive mass transport and BM is the so-called mass Spalding number given by:

BM =
YF,ζ − YF,∞

1− YF,ζ
, (6.5)

where YF,ζ and YF,∞ are the mass fractions of evaporated fuel in the film surrounding the droplet surface and at
the far field respectively. The vapor mass fraction at the droplet surface is deduced from the Clausius-Clapeyron
law:

pF,ζ = pccexp

(
WpLevap
R

(
1
Tcc
− 1
Tζ

))
, (6.6)

where the subscript cc designates an arbitrary reference point on the saturation curve of the fuel. Wp is the
molecular weight of the liquid fuel, R is the universal gas constant and Levap is the latent heat of vaporization
of the liquid fuel. The vapor partial pressure pF,ζ yields the molar fraction XF,ζ which allows to obtain YF,ζ .
Tabulating the saturation pressure versus the temperature from 0K to the critical temperature of the fuel species,
Eq. (6.6) is not needed and the values of pF,ζ are directly looked up in the table.
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The Sherwood number is equal to 2 in the case of evaporation in quiescent atmosphere. When convection effects
are taken into account, different correlations are available: Ranz & Marshall (1952) proposed a modification of
the one originally derived by Frössling (Frössling (1938)), based on the particle Reynolds number Rep and the
Schmidt number of the fuel species ScF :

Sh = 2 + 0.55Re1/2
p Sc

1/3
F . (6.7)

The mass evaporation rate is evaluated with Eq. (6.4). In order to completely characterize the evaporation
process, an equation for the evolution of the droplet temperature needs to be provided. The energy conservation
equation on the gas side of the droplet surface leads to:

ρgur
2
p

dhs,g
dr

=
d
dr

(
r2
p

λ

Cp

dhs,g
dr

)
. (6.8)

Furthermore evaluating the conductive Φc and convective Φev heat fluxes in the gaseous and the liquid phases
(with subscripts g and p respectively, Fig 6.3) yields:

Φcp + Φevp + Φcg + Φevg = 0 . (6.9)

The fluxes leaving the liquid are due to the vaporization process itself and depend directly on the latent heat of
vaporization:

Φcp + Φevp = −ṁFhs,p(Tζ) + ṁphs,F (Tζ) = −ṁpLevap(Tζ) . (6.10)

The total heat flux out of the liquid phase Φp = Φcp + Φevp is directly linked to the temporal evolution of the
liquid enthalpy:

Φp =
d

dt
(mphs,p(Tp)) . (6.11)

The liquid conductive flux is opposite to the conductive flux in the gas phase (Φcp = −Φcg). Using Eq. (6.10) and
the relation dhs,p(Tp) = Cp,p dTp one may write:

d

dt
Tp =

1
mpCp,p

(
−Φcg − ṁpLevap(Tζ)

)
. (6.12)

Similarly to the saturation pressure, the latent heat of vaporization Levap may be tabulated versus temperature. The
equation for the conductive heat flux in the gas phase is obtained integrating Eq. (6.8) twice. Assuming constant
thermal conductivity, λ, yields:

Φcg = πdpλNu (Tζ − T∞)
ln(BT + 1)

BT
, (6.13)

where BT is the Spalding thermal number, analogous to the mass Splading number (Eq.(6.5)):

BT = (1 +BM )β − 1 , (6.14)

with
β =

Sh · Pr
Nu · ScF

. (6.15)

Pr is the Prandtl number of the gaseous mixture andNu is the Nusselt number, representing the ratio of convective
to conductive heat transfer normal to the droplet boundary. It is equal to 2 for evaporation in quiescent atmosphere.
When convection is taken into account, the Ranz-Marshall correlation (Ranz & Marshall (1952)) is used:

Nu = 2 + 0.55Re1/2
p Pr1/3. (6.16)

When the mass fraction of evaporated fuel at the surface of the droplet, YF,ζ , approaches 1, the evaporation
reaches saturation conditions. Accordingly, the Spalding mass number (Eq. (6.5)) becomes singular. When satu-
ration is reached, the droplet is assumed to be at its saturation point, that is, the evaporation takes place without
heating in the liquid and the droplet temperature stays constant. All the heat arriving to the droplet is invested on
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the evaporation of the liquid fuel. In this case, the mass transfer can be evaluated directly from the conductive heat
transfer:

ṁp =
Φcg

hs,F (Tζ)− hs,p(Tζ)
, (6.17)

where hs,F (Tζ) is the enthalpy of the gaseous fuel at the temperature of the droplet surface (Tζ) and hs,p(Tζ) is
the enthalpy of the liquid fuel at the same temperature. It is calculated from the tables of latent heat of evaporation
Levap and gaseous sensible enthalpy, hs,F :

hs,p(T ) = hs,F (T )− Levap(T ) . (6.18)

The Abramzon-Sirignano evaporation model (Abramzon & Sirignano (1989))

The Spalding model for evaporation does not take into account the existence of a vapour film around the droplet.
That is, it does not consider the finite thickness of the thermal and mass boundary layers around the droplet.
Taking into account these layers leads to the following modified expressions for the Sherwood and Nusselt numbers
appearing in the equations for the mass and heat fluxes respectively:

Sh = 2 + 0.55
Re

1/2
p Sc

1/3
F

F (BM )
(6.19)

Nu = 2 + 0.55
Re

1/2
p Pr1/3

F (BT )
, (6.20)

where

F (B) = (1 +B)0.7 ln(1 +B)
B

(6.21)

where B refers to BM for the Sherwood number and BT for the Nusselt number.

The parameter β in the relation between BM and BT (Eq.(6.15)) is also modified to take into account the
thickness of the thermal boundary layer as follows:

β =
CpF,ref
Cpg,ref

Sh · Pr
Nu · ScF

. (6.22)

CpF,ref and Cpg,ref are the heat capacity at constant pressure of the gaseous fuel and the gaseous mixture in the
film around the droplet (or reference state) respectively.

The composition and temperature of the mixture in the film (or reference state) are evaluated by interpolation
between their values at the droplet surface and the conditions in the far field (denoted by the subscript∞) using
the third law (Hubbard et al. (1975), Miller et al. (1998)). This law assumes that the properties of the gaseous mix-
ture in the film around the droplet, follow a quasi-stationary evolution. Afterwards, the different thermodynamic
properties are calculated at this temperature and composition (cf Section 6.3.1).

Tref = Tζ +
1
3

(T∞ − Tζ) (6.23)

Yk,ref = Yk,ζ +
1
3

(Yk,∞ − Yk,ζ) (6.24)

Due to the inter-dependency of BT and Nu through β (Eq.(6.22)), this model requires an iterative method to
find the converged value ofBT . A convergence study in a real test case (the MERCATO test rig studied in Part IV),
including evaporation and combustion, shows that few iterations (approximately five) allow to converge.

This model will be called from now on Abramzon-Sirignano or AS model. As shown by Sazhin (2006), the
AS model predicts larger evaporation times compared to the Spalding model in the same conditions, i.e. the
evaporation rate decreases when considering a finite thickness of the thermal and mass boundary layers around the
droplet (instead of an infinitely thin film).
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6.3.1 Governing laws for the thermodynamic and transport properties

Sanjosé (2009) performed a numerical study of the effects of the thermodynamic and transport properties in the
evaporation of single droplets, using the results of the experiments of Nomura et al. (1996) and Chauveau et al.
(2008) as reference. Using the Spalding evaporation model, Sanjosé showed that the models used for the transport
properties of the gaseous mixture have a considerable impact on the evaporation process. Two different approaches
for the calculation of the thermodynamics and transport properties were studied:

• the simplified calculation implemented in AVBP (called thermo_AVBP),

• a more complex evaluation based on collision potentials and CHEMKIN coefficients implemented in the
code CANTERA1 (Goodwin (2009)) (referred to as thermo_CANTERA)).

The use of detailed thermodynamics and transport properties implies the calculation of binary species collision
potentials, which considerably increases the complexity of the code as well as the computational cost.

In the following, the model for the transport and thermodynamic properties for the gaseous mixture
implemented in AVBP (thermo_AVBP) as well as the complex formulation implemented in CANTERA
(thermo_CANTERA, used as reference) are first described. Then, the results of a parametric study are de-
scribed to show the impact of the Prandtl and Schmidt numbers of the gaseous fuel species in the evaporation
process. Finally, a method is proposed to account for the mixture composition when computing the transport and
thermodynamic properties without explicitly evaluating the collision integrals which would be too expensive in
AVBP (thermo_AVBPmix).

Simplified transport and thermodynamic properties

To evaluate the mixture dynamic viscosity, the thermal conductivity and the heat capacity at the droplet surface the
third law is used (Eqs. (6.23) and (6.24)).

The product ρgDF is considered constant in the film, evaluated with a constant Schmidt number for the fuel
(ScF ):

ρgDF =
µ(Tref )
ScF

= const . (6.25)

Similarly, the thermal conductivity and the heat capacity of the mixture are evaluated at the reference state and
considered constant between the droplet surface and the far field. The heat capacity depends on the reference state
composition and on the species heat capacity evaluated at the reference temperature. A constant Prandtl number is
used to evaluate the thermal conductivity:

Cp =
N∑
k=1

Yk,ref · Cpk(Tref ) , (6.26)

λ =
Cp · µ(Tref )

Pr
. (6.27)

The viscosity of the mixture is computed using a Power law (Eq. (2.19)) that depends only on the temperature
of the reference state. Both the Prandtl and the Schmidt numbers are fixed by the chemical scheme used in reactive
conditions.

1CANTERA is an open-source code that computes reactive flows for zero and one-dimensional problems using detailed chemistry, thermo-
dynamic and transport properties based on CHEMKIN potentials.
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Complex transport and thermodynamic properties

The kinetic theory for gases (Hirschfelder et al. (1964), Chapman & Cowling (1939 (digital reprint 1999)) is used
to compute the transport and thermodynamic properties of the mixture. The Lennard-Jones potentials (Hirschfelder
et al. (1964), Bird et al. (1960)) are used to calculate the inter-molecular forces (Kee et al. (1986)). The expressions
for diffusivity, conductivity and viscosity are summarized in this section, more details can be found in Kuo (2005).

First, the diffussion coefficient of a species k into a gaseous mixture reads:

Dk =
1− Yk∑

j 6=kXj/Djk
, (6.28)

where Yk and Xk are the mass and molar fractions of species k and Djk is the binary mass diffusion coefficient of
species k into species j, which reads:

Djk =
3
16

√
2πκ3

BT
3/mjk

πPσ2
jkΩD,jk

. (6.29)

mjk is the reduced atomic mass of the pair j − k, σjk is the reduced collision diameter and ΩD,jk is the collision
integral for the diffusion coefficient.

Second, the thermal conductivity of the mixture is calculated using the Mathur’s equation (Kee et al. (1986)):

λ =
1
2

(∑
k

Xkλk +
1∑

kXk/λk

)
, (6.30)

where the thermal conductivity of each species λk is calculated using a complex function of the parameters de-
scribing the geometry of the molecule (here denoted FG, Kee et al. (1986)) and the dynamic viscosity of species
k:

λk =
µk
Wk

FG . (6.31)

The dynamic viscosity of species k is evaluated as:

µk =
5
16

√
πmkκBT

πσ2
kΩµ,k

(6.32)

with σk being the collision diameter, mk the mass of the molecule, κB the Boltzmann’s constant and Ωµ,k the
collision integral for the dynamic viscosity. The viscosity of the mixture is calculated following Wilke’s equation
(Bird et al. (1960)):

µ =
∑
i

Xiµi∑
j XjΦij

(6.33)

Φij =
1√
8

(
1 +

Wi

Wj

)−1/2
[

1 +
(
µi
µj

)1/2(
Wj

Wi

)1/4
]
. (6.34)

This formulation, is evaluated at the reference state (Eqs. (6.23) and (6.24)) when used for the calculation of
the evaporation processes presented in this work.

To evaluate the impact of the complex transport and thermodynamic properties on the evaporation process,
Sanjosé (2009) computed the evaporation of single monocomponent droplets in a quiescent atmosphere using the
Spalding model with simple and detailed thermodynamic and transport properties:

Results sowed a great impact of the thermodynamic and transport properties on the evaporation process, demon-
strating the necessity to take into account accurate transport properties in evaporation calculations. This however
is very expensive in terms of CPU time, and a methodology proposed here provides accurate results for transport
and thermodynamic properties without increasing drastically the CPU cost of the evaporation calculation in a CFD
code.
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A new methodology for the evaluation of the transport and thermodynamic properties in CFD codes

The Prandtl and Schmidt numbers used in simplified models are usually fixed by adjusting the reduced chemical
schemes in the context of reacting flows. However, there is no reason why the values required to adjust reduced
chemistry would be suitable to describe the evaporation process. Therefore, in this work, it is proposed to use
different values for the Prandtl and fuel Schmidt numbers (Prevap and ScevapF ) than those used for the gaseous
phase for evaporation. These values are adjusted from an evaporation calculation using detailed properties. This
new methodology will be referred to as thermo_AVBPmix.

Concerning viscosity, the Wilke’s formula (Eq.(6.33)) is used when each species viscosity µk is modeled by a
Power law, fitted on thermodynamic tables:

µk = µk,0

(
T

T0

)bk
. (6.35)

where µk,0 is a reference viscosity and bk is the exponent for the Power law, both depending on the species k,
T0 = 300 K is the reference temperature used for all the species.

This new methodology allows to take into account complex transport properties art a reduced cost in a CFD
calculation. It requires only one simple a priori evaporation calculation to fit the Prandtl and Schmidt evaporation
numbers (Prevap and ScevapF ). The delicate point is here to determine the reference state for this evaporation
calculation, which should be representative for the whole CFD simulation. This will be discussed in Section 7.4.



Chapter 7

Application to the evaporation of a single
droplet in stagnant atmosphere

7.1 Implementation

The CFD codes chosen to perform the study presented in this chapter are AVBP for thermo_AVBP and
thermo_AVBPmix methods and CANTERA to account for complex thermodynamic and transport properties
(thermo_CANTERA). This Section briefly describes the implementation of the new methodology in AVBP and
the methodology allowing to perform evaporation calculations with CANTERA.

The evaporation of liquid fuel in AVBP follows a model developped for single isolated droplet, where the
interactions between droplets are neglected. The Spalding evaporation model is the classical model used by AVBP
which was implemented in the code by Jaegle (2009). Here, it is referred to as ievap_1. During this work, the AS
model has been included in AVBP. It is referred to as ievap_11. Sanjosé (2009) developed a fortran tool coupling an
evaporation module from AVBP with the code CANTERA. This tool allowed to perform evaporation calculations
using complex thermodynamical and transport properties as in CANTERA. During this work, the tool has been
modified to include the Abramzon-Sirignano evaporation model. The methodology thermo_AVBPmix has also
been implemented. This tool is actually included in AVBP under the name “CANTEVOL_EVAP0D". It is used
to perform the preliminary evaporation calculation that allows to obtain the values of Prevap and ScevapF needed
to simulate evaporation processes with thermo_AVBPmix method. Finally, thermo_AVBPmix model has been
implemented in AVBP for both the Spalding and the Abramzon-Sirignano evaporation models (denoted ievap_2
and ievap_21 respectively).

Note that, in AVBP, the latent heat of evaporation and the saturation pressure are tabulated. The tables have been
provided by IPF-EN. They are issued from the code IFP-C3D, based on experimental results. However, the number
of fuels for which the tables are available is limited. For those fuels for which tabulated values are not available,
tables of saturation pressure and latent heat of evaporation have been calculated using the Clasius-Clapeyron law
(Eq. (6.6)) and assuming constant liquid heat capacity respectively.

The models presented in Chapter 6 are validated hereafter in the configuration of Nomura et al. (1996) where,
a n-heptane droplet of initial diameter dp = 500 µm, evaporates in a quiescent N2 atmosphere. The initial droplet
temperature is 300 K. The pressure is 1 bar and the initial gas temperature ranges from 473 K to 973 K. The
experimental results of Chauveau et al. (2008) and the results of the simulations of Yang & Wong (2001) are also
included for comparison. Table 7.1 describes the six calculations used in the following:

Section 7.2 shows the performances of the three models for the thermodynamic and transport properties using
the AS evaporation model. Section 7.3 shows the effect of the evaporation model (either Spalding or AS). In
real industrial applications, the fuel droplets are subject to different conditions of gaseous temperature and com-
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Evaporation model: Thermo and transport formulation Referred as:
Spalding thermo_CANTERA ievap_0

AS thermo_CANTERA ievap_01
Spalding thermo_AVBP ievap_1

AS thermo_AVBP ievap_11
Spalding thermo_AVBPmix ievap_2

AS thermo_AVBPmix ievap_21

Table 7.1: Classification of the different models studied in this work.

position, depending on their position in the combustion chamber. Therefore, Section 7.4 discusses the choice of
the temperature at which Prevap and ScevapF are evaluated to be afterwards applied to a wide rage of initial gas
temperatures. Section 7.5 shows the limits of the methodology thermo_AVBPmix presented in Section 6.3.1 when
used over a range of pressures, which is the case of piston engines for instance. Finally, Section 7.6 shows the
results for a kerosene droplet in similar conditions to those of the MERCATO configuration.

7.2 Effect of the thermodynamic and transport properties on the evapo-
ration

This Section presents the numerical results for the configuration of Nomura et al. (1996) at ambient pressure and
a temperature of 623 K using the AS evaporation model. The effect of the methodology used for the computation
of the thermodynamic and transport properties (ievap_01 (thermo_CANTERA), ievap_11 (thermo_AVBP) and
ievap_21 (thermo_AVBPmix)) on both the gaseous and liquid phases is analyzed.

Table 7.2 summarizes the values of the Prandtl and Schmidt numbers chosen for thermo_AVBP and
thermo_AVBPmix models. The values of the Prandtl and Schmidt numbers for thermo_AVBPmix model have
been obtained from a first calculation with thermo_CANTERA model. They correspond to the values at equilib-
rium obtained with thermo_CANTERA model. Note that in the calculations performed with thermo_CANTERA,
the Prandlt and Schmidt numbers are not constant. Figure 7.1 shows the evolution of the Prandtl and Schmidt
numbers during the evaporation process for the three calculations.

Name Properties Prandtl Schmidt
ievap_11 thermo_AVBP 0.71 2.10
ievap_21 thermo_AVBPmix 0.82536 1.4807
ievap_01 thermo_CANTERA variable variable

Table 7.2: Prandtl and Schmidt numbers used in the calculations presented in Section 7.2.
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(a) (b)

Figure 7.1: Prandtl and Schmidt numbers used in the calculations. n-heptane, Tg = 623K, Pg = 1bar. Numerical
simulations performed using the AS evaporation model.

Figure 7.2 shows that the diffferent methods produce important differences on the evolution and equilibrium
values of the main transport properties: the implementation of Wilke’s formula (Eq.(6.33)) in ievap_21 predicts
an evolution of the gaseous mixture viscosity at the reference state close to that of ievap_01. The main differences
are due to the fitting of the individual viscosities by a Power law instead of using the collision potentials as it is
done in CANTERA. Moreover, it demonstrates that the use of individual fittings of the dynamic viscosity using
Power laws along with Wilke’s formula (Eq.(6.33)), is a good compromise for the calculation of the viscosity of
the mixture in the film.

However, a study performed during this work revealed that the change in the computation of the viscosity
alone, was not a sufficient condition to obtain a correct prediciton of the thermal conductivity (λg , Fig. 7.2(b)) or
the diffusion coefficient (DF , Fig. 7.2(c)). However, including the use of the pre-calculated equilibrium values
for the Prandtl and Schmidt numbers, as shown in Fig. 7.1, allows a better agreement on the estimation of these
properties.

Figure 7.3 shows the temporal evolution of the droplet diameter normalized by its initial value.

• The characteristic evaporation time ranges, for n-heptane in the conditions of the experiment, from 1 s for
Nomura to 2 s for the results of Chauveau, i.e. the evaporation time predicted by Chauveau et al. (2008)
is approximately two times longer than that predicted by Nomura et al. (1996). Chauveau et al. (2008) and
Yang & Wong (2001) experimentally and numerically respectively, showed that the results of Nomura are, in
general, notably influenced by the heat conduction through the support fiber and by radiation of the internal
walls of the furnace. For this reason, the experimental results of Nomura et al. (1996) must be carefully
considered when performing comparisons with numerical results, especially when the computational code
used does not take into account those effects.

• The numerical results obtained using ievap_11 predict an evaporation process one third shorter than the
evaporation time predicted by ievap_01. The evaporation time obtained with ievap_21 is slightly longer than
that of ievap_01. However, ievap_01 and ievap_21 are very similar in terms of droplet diameter temporal
evolution.

• Compared with the experimental results, ievap_01 and ievap_21 agree well with the results of Chauveau
et al. (2008). ievap_11 produces results very close to the experimental measurements of Nomura et al.
(1996).
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(a)

(b) (c)

Figure 7.2: Temporal evolution of the main transport properties: (a) gaseous mixture viscosity, (b) thermal conductivity, (c)
diffusion coefficient. n-heptane, Tg = 623K, Pg = 1bar. Numerical simulations performed using the AS

evaporation model.

Figure 7.3: Temporal evolution of the non-dimensional droplet surface. n-heptane, Tg = 623K, Pg = 1bar. Numerical
simulations performed using the AS evaporation model. Experimental results of Chauveau et al. (2008) and

Nomura et al. (1996).
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The choice of the Prandtl and Schmidt numbers has a great impact on the calculation of the equilibrium or
wetbulb temperature. The wetbulb temperature Twb corresponds to the temperature of a droplet surrounded by hot
gases once the equilibrium state is reached:

Twb = Tg −
Levap(Tref )

Cp
BT , (7.1)

where Tg is the gaseous temperature in the far field, Levap is the latent heat of evaporation of the liquid fuel
evaluated at the reference temperature Tref (Eq. (6.23)), Cp is the heat capacity of the gaseous mixture in the film
around the droplet (Eq. (6.26)) and BT is the Spalding thermal number (Eq. (6.14)). The Prandtl and Schmidt
numbers have a direct impact on the parameter β (Eq. (6.22)) and thus onBT . As the choice of Prevap and ScevapF

for ievap_21 depends on the conditions, the effect on the liquid temperature will also vary with the conditions.
In this particular case, Prevap for ievap_21 is higher than the Pr used for ievap_11. On the contrary ScevapF is
smaller than the Schmidt number used for ievap_11. This choice produces an increase in β and a smaller value for
BT , resulting in an increase of the wetbulb temperature. Yuen & Chen (1976) measured the wetbulb temperature
of n-heptane droplets evaporating in N2 at atmospheric pressure for a wide range of initial gaseous temperatures.
An interpolation of the results of Yuen & Chen (1976) gives a wetbulb temperature of 344 K in the conditions of
the experiment of Nomura et al. (1996).

Figure 7.4 shows the influence of each model on the droplet temperature Tl. The liquid temperature has a
non-negligible impact on the evaporation process, but also on other phenomena in the combustion chamber such
as liquid films on the inner walls due to droplet impinging and heat losses at walls. The droplet temperature at
equilibrium obtained with ievap_11 is approximately 15 K lower than the temperature predicted with ievap_01.
ievap_21 gives a droplet temperature evolution very similar to ievap_01. The wetbulb temperature predicted by
ievap_01 and ievap_21 is in very good agreement with the wetbulb temperature experimentally measured by Yuen
& Chen (1976).

Figure 7.4: Temporal evolution of the droplet temperature. n-heptane, Tg = 623K, Pg = 1bar. Numerical simulations
performed using the AS evaporation model.

The new calculation methodology implemented in AVBP (ievap_21) have also a strong impact on the value
of mass transfer rate Γ (Fig. 7.5(a)), even when its impact in the heat transfer rate Φg is limited (Fig. 7.5(b)).
ievap_21 shows a behavior very close to the one predicted by ievap_01: the slope of the mass transfer rate during
the early stage of the vaporization process is less stiff than the corresponding to ievap_11, which predicts a more
rapid evaporation at the beginning of the process, while the evaporation rate decays very quickly. The evaporation
rates calculated with ievap_01 and ievap_21 are slower at the beginning but more sustained along the whole period
needed for the complete evaporation.
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(a) (b)

Figure 7.5: Evolution of the mass (a) and heat transfer rates (b). n-heptane, Tg = 623K, Pg = 1bar. Numerical simulations
performed using the AS evaporation model.

The differences in diameter and equilibrium droplet temperature temporal evolution have an important influence
on the variables involved in the vaporization process. Figure 7.6 shows the temporal evolution of the gaseous
mixture temperature, pressure and density, as well as the mass fraction of gaseous fuel.

(a) (b)

(c) (d)

Figure 7.6: Temporal evolution of the main gaseous mixture properties: (a) gaseous temperature, (b) pressure, (c) gaseous
density and (d) mass fraction of gaseous fuel. n-heptane, Tg = 623K, Pg = 1bar. Numerical simulations

performed using the AS evaporation model.
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The results of ievap_21 are very close to those of ievap_01, predicting a slower decrease in gaseous temperature
and pressure and a slower increase in gaseous fuel mass fraction and gaseous density. As expected, once the
evaporation is finished, the values at equilibrium are the same for the three models, as they depend only on the
final compostion of the mixture, driven by the initial quantity of liquid fuel.

7.3 Comparison of the Spalding and the Abramzon-Sirignano evapora-
tion models

Section 7.2 showed that the thermodynamic and transport properties strongly impact the evaporation process.
This Section proposes to evaluate the impact of the evaporation model itself once the thermodynamic and transport
properties are fixed, comparing the Spalding and AS models. The same configuration as in Section 7.2 is computed,
varying the evaporation model for the three methodologies for the calculation of the thermodynamic and transport
properties (thermo_AVBP, thermo_CANTERA, thermo_AVBPmix). Figure 7.7 displays the droplet diameter and
the droplet temperature temporal evolutions.

Whatever the thermodynamic and transport properties used, the AS model predicts a longer evaporation time
and a smaller liquid temperature at equilibrium. Comparing with the experimental results of Chauveau et al.
(2008), the AS model using complex thermodynamic and transport properties shows the best agreement in terms
of droplet diameter temporal evolution.

These comparisons show that the transport and thermodynamic properties have a stronger impact than the
evaporation model itself on the evaporation process.

(a) (b)

Figure 7.7: Comparison of the evolution of the non-dimensional droplet surface (a) and temperature (b) for the different
evaporation models. n-heptane droplet, Tg = 623K, Pg = 1bar. Simulations performed with the Spalding and

the AS evaporation models. Experimental results of Chauveau et al. (2008) and Nomura et al. (1996).

7.4 Application of a determined fitting to different ambient temperatures

Sections 7.2 and 7.3 showed that the new methodology proposed in Chapter 6, namely thermo_AVBPmix, cor-
rectly predicts the evaporation process as measured by Chauveau et al. (2008) and as computed with a complex
thermodynamic and transport properties calculation (thermo_CANTERA).

In real applications, such as aeronautical combustion chambers, the conditions (in the evaporation zone) are
not homogeneous. The droplets issued from the atomization process may reach very different regions in terms of
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gaseous temperature and mixture composition. For example, the biggest droplets (with high inertia) may penetrate
further inside the chamber than the smallest ones, therefore encountering much higher gaseous temperatures. The
effect of gaseous temperature used to evaluate Prevap and ScevapF at equilibrium for ievap_21 must therefore be
evaluated.

In this Section, the configuration of Nomura et al. (1996) is simulated using the AS evaporation model, for a
wide range of initial gaseous temperatures (Tg = 473 K, 548 K and 748 K). The values of Prevap and ScevapF

numbers are kept from the case at an initial gaseous temperature of 623K (Table 7.2). These values have been
used for all the other gaseous temperatures. The fitting has been performed at 623K because it approximately
corresponds to the middle of the temperature range and because experimental measurements are available at this
temperature.

Figure 7.8 shows the results for the three initial gaseous temperatures using the three methodologies for the
computation of the transport and thermodynamic properties. The experimental results of Nomura et al. (1996)
show evaporation times much shorter than the results of Chauveau et al. (2008). The numerical results of Yang &
Wong (2001) are very close to the experimental results of Chauveau et al. (2008) in all cases.

The agreement between ievap_21 and ievap_01 is good for 548K and 748K, however, the differences between
both methods increase at 473K. For the three temperatures, ievap_11 is in good agreement with Nomura, while
ievap_21 is closer to Chauveau and agrees very well with the results of Yang.

(a)

(b) (c)

Figure 7.8: Temporal evolution of the non-dimensional droplet surface. n-heptane, P = 1bar: (a) T = 473K, (b)
T = 548K, (c) T = 748K. Numerical simulations performed using the AS evaporation model. Experimental

results of Chauveau et al. (2008) and Nomura et al. (1996); numerical results of case 1 in Yang & Wong (2001).

Figure 7.9 shows the evaporation rates corresponding to the linear part of the squared diameter evolution curve
for a wide range of initial gaseous temperatures and at ambient pressure. The experimental results show that the
evaporation rate increases linearly with the gaseous temperature. The results of Nomura et al. (1996) and Morin
et al. (2000) are very similar. Ghassemi et al. (2006) predicts much higher evaporation rates for the whole range of
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gaseous temperatures. Chauveau et al. (2008), however, obtains evaporation rates 50% lower than Nomura et al.
(1996). The numerical results of Yang & Wong (2001), obtained without taking into account the radiation and fiber
conduction effects, are very close to the experimental measurements of Chauveau et al. (2008).

The numerical results obtained with thermo_AVBP method (ievap_1 and ievap_11) are close to the experiments
of Nomura and Ghassemi, and that for the whole range of temperatures. themo_CANTERA (ievap_0 and ievap_01)
and thermo_AVBPmix (ievap_2 and ievap_21) produce very similar results. In both cases, the evaporation rates
predicted are in very good agreement with the results of Chauveau et al. (2008) and Yang & Wong (2001).

Figure 7.9: Comparison of the vaporization rate of n-heptane isolated droplets, versus temperature. Experimental results of
Chauveau et al. (2008), Nomura et al. (1996), Yang & Wong (2001), Morin et al. (2000) and Ghassemi et al. (2006)

The results showed that the fitting of the Prandtl and Schmidt numbers for thermo_AVBPmix method at a
determined gaseous temperature can be used for the calculation of the evaporation over a wide range of gas tem-
peratures and produces good agreement with experimental results (Chauveau et al. (2008)) and numerical results
obtained with complex thermodynamic and transport calculation (Yang and thermo_CANTERA). This validates
the application of the new method (thermo_AVBPmix) for industrial configurations where the gaseous temperature
is not constant or homogenous.
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7.5 Evaluation of the fitting procedure for different pressures

The variations of pressure are not very significative in aeronautical combustion chambers. However, that is not
the case in piston engines. Indeed, in spark ignition piston engine, the evaporation process takes place at a narrow
interval of moderately high pressures (4 to 5 bars). The mixture is ignited shortly after ignition. On Diesel engines,
however, the pressure is much higher and the range larger. Indeed, the pressure in one cycle may vary from 20 bar
to 150 bar. The evaporation process takes place of pressures around 45 bar.

Several reviews are available on high pressure droplet vaporization (Givler & Abraham (1996), Bellan (2000)),
but only a few studies have been conducted on convective flows (Lee et al. (1990), Delplanque & Sirignano
(1993), Lee et al. (1990)). Nomura et al. (1996) and Matlosz et al. (1972) performed experiments on n-heptane
and n-hexadecane evaporation under normal and microgravity conditions at high pressures. Yang & Wong (2001)
and Gogos et al. (2003) studied the same test cases numerically. Both found that the numerical models for the
calculation of the thermodynamic properties and the assumptions made on the evaporation models used, are not
suitable for their application at high pressures.

The purpose being to assess the performances of the different approaches for the calculation of the thermo-
dynamic and transport properties and evaporation models at different initial conditions, four different gaseous
pressures have been tested: 1, 5, 10 and 20 bar. The gaseous temperature varies from one pressure to the other
depending on the availability of experimental measurements, but it is close to 500 K for the four pressures tested.

The results for the AS evaporation model along with the three different approaches for the calculation of the
thermodynamic and transport properties (ievap_01, ievap_11 and ievap_21) are compared with the experimental
results of Nomura et al. (1996) (and Chauveau et al. (2008) only for the case at 1 bar) as well as the numeri-
cal simulations Yang & Wong (2001) for different pressures: 1 bar (Fig. 7.10(a)), 5 bar (Fig. 7.10(b)), 10 bar
(Fig. 7.10(c)) and 20 bar (Fig. 7.10(d)).

Contrary to Section 7.4, the Prevap and ScevapF values for the computations performed with thermo_AVBPmix
(ievap_21) have been fitted with a pre-calculation with thermo_CANTERA for each pressure. Table 7.3 summa-
rizes the values of PrEvap and ScevapF obtained from the pre-calculations with thermo_CANTERA.

Pressure Prevap ScevapF

1 bar 0.804 1.5382
5 bar 0.829 1.566
10 bar 0.819 1.667
20 bar 0.826 1.7055

Table 7.3: Prandtl and Schmidt numbers used in the calculations presented in Section 7.5.

Figure 7.10 first shows that the agreement between ievap_21 and ievap_01 is very good for all pressures.
Second, the differences between ievap_11 and ievap_21 or ievap_01 keep constant when the pressure increases.
Using complex thermodynamic and transport properties leads to an evaporation time 1.5 times slower than using
simplified thermodynamic and transport properties.

Finally, whereas at low pressure (1 bar) the results of the models ievap_01 and ievap_21 are also close to those
of Yang & Wong (2001), the discrepancies increase when the pressure increases. Yang & Wong (2001) and Gogos
et al. (2003) already explained the sources of the differences between the numerical results and the experiments.
First, high pressure effects, such as the solubility of the gas into the droplet and the real-gas effects on vapor-liquid
equilibrium at the gaseous film surrounding the droplet, are not taken into account. Moreover, at high pressure,
the droplet may also deform, thus the spherical symmetry assumption is no longer valid, due to a decrease in
the surface tension. Natural convection effects also increase with the pressure. Note that to account for natural
convection, gravity must be considered, which is not the case in this work, nor in the work of Yang & Wong (2001).
Gogos et al. (2003) showed that taking into account the gravity effects through the inclusion of the Grashof number
in the correlations for the Sherwood and Nusselt numbers (Ranz & Marshall (1952)) leads to shorter evaporation
times, which would modify the results.
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Figure 7.11 shows the evolution of the evaporation rate for n-heptane droplets as a function of the surround-
ing pressure at different gaseous temperatures (Tg = [673 K, 973 K]). Ghassemi et al. (2006) found that the
evaporation rate increases with temperature and pressure, whereas Nomura et al. (1996) obtained almost constant
evaporation rates for a pressure range between 1 and 25 bar, except for the high temperature case. The numerical
results obtained with ievap_21 show very small variations with the gaseous temperature. The evaporation rates
predicted are constant for the whole range of pressures.

Note that on the one hand, Chauveau et al. (2008) and Yang & Wong (2001) showed that the experimental
results of Nomura and Ghassemi are questionable since they are biased by the setup used for the measurements in
terms of heat conduction through the support fiber and radiation. On the other hand, Yang discarded the data of
Nomura at 20 bar and high temperature considering that it was inconsistent with the rest of results.

(a) P = 1 bar (b) P = 5 bar

(c) P = 10 bar (d) P = 20 bar

Figure 7.10: Temporal evolution of the non-dimensional droplet surface. Evaporation of n-heptane droplet. T = 548K.
P = 1bar (a), P = 5bar (b), P = 10bar (c) and P = 20bar (d). Comparison of numerical results performed
using AS evaporation model, case 1 in Yang & Wong (2001) and eperimental results of Nomura et al. (1996).

7.6 Application to the evaporation of kerosene droplets

In the prospect of aeronautical combustion chamber simulations, this Section proposes to test the evaporation
models for isolated kerosene droplets on conditions that are representative of those of the MERCATO test rig.
Droplets are injected at an initial temperature of 400K approximately with an initial diameter of 55µm. The
pressure is 1 bar and the average gaseous temperature 440K. These conditions correspond to the outer part
of the hollow cone injection of the MERCATO configuration as simulated by Sanjosé (2009). Sanjosé (2009)



148 Application to the evaporation of a single droplet in stagnant atmosphere

Figure 7.11: Comparison of the vaporization rate of n-heptane isolated droplets, according to the pressure. Experimental
results of Ghassemi et al. (2006) and Nomura et al. (1996).

proposed a modelisation of the properties for the kerosene surrogate relying on the work of Luche (2003). This
surrogate is chosen because it is very similar to the kerosene models used by SNECMA and TURBOMECA. It
is composed of three main components: nC10H22, C9H12, C9H18 (Table 7.4). The properties of the so-called
surrogate KERO_LUCHE are calculated as averages of the properties of the three main components. The values
of the main thermodynamic and transport properties can be found in Franzelli et al. (2010) and in Sanjosé (2009)
for the liquid phase. The lack of data for liquid heat capacity and latent heat of vaporization for this surrogate as
a function of the temperature requires to tabulate the properties from a constant value of heat capacity at constant
pressure.

Composition Mass fraction [-] Molar weight [g/mol] Molar fraction [-]
Linear nC10H22 0.767 142.284 0.7396

Aromatic C9H12 0.132 120.1916 0.1507
Naphthenic C9H18 0.101 126.241 0.1097

KERO_LUCHE C9.73957H20.0542 1.000 137.195 1.0000

Table 7.4: Definition of the composition of the kerosene surrogate by Luche (2003) (KERO_LUCHE). Reproduced from
Franzelli et al. (2010).
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Figure 7.12(a) shows the temporal evolution of the non-dimensional droplet diameter using the AS model
and the three approaches for the thermodynamic and transport properties. The computations with ievap_01 and
ievap_21 shows very similar results and an evaporation time larger than ievap_11 (25%). Figure 7.12(b) shows the
evolution of the droplet temperature normalized by the initial droplet temperature: the evolution is similar for all
the calculations, the equilibrum values being 5 K lower with ievap_01 and ievap_21 than with ievap_11.

(a) (b)

Figure 7.12: Temporal evolution of the non-dimensional droplet surface (a) and droplet temperature (b). Evaporation of
KERO_LUCHE droplet. T = 440K, P = 1bar and T l0 = 426K.

Ghassemi et al. (2006) performed experiments on evaporation of kerosene droplets, obtaining the rates of
evaporation of the fuel in a N2 atmosphere. The results correspond to the evaporation of a kerosene droplet of
1mm of diameter at 0.1MPa and different gaseous temperatures. The experiment of Ghassemi et al. (2006)
have been reproduced in this work using the Spalding and the AS evaporation models and the three approaches
for the calculation of the properties implemented in AVBP. The results obtained using the thermo_CANTERA
approach are very close to those of the thermo_AVBPmix approach and are not presented. The evaporation rates
are extracted once the pre-heating period is finished (in the straight part of the curve in Fig. 7.12(a)).

The results of ievap_11 show good agreement with Ghassemi for low temperatures. As the temperature in-
creases, ievap_11 deviates and ievap_1 agrees better with the experimental results. As it happened with the test
for n-heptane, the AS model reduces the evaporation rate. This is also the case of the results obtained with
thermo_AVBPmix.

The calculations performed with complex transport and thermodynamic properties laws show worst agreement
with the experimental results of Ghassemi et al. (2006), except for 500◦C. None of the numerical models predict
the exponential behaviour of the curve. All of them predict a linear increase in the evaporation rate with the
temperature.

The ievap_21 model will be retained to be used when performing the simulation of the MERCATO configura-
tion in Part IV. Taking into account that the same experiments performed by Ghassemi et al. (2006) with n-heptane
overestimated the evaporation rate at high temperature (Fig. 7.9), the same results for kerosene are expected. The
conditions in the MERCATO configuration studied in Part IV correspond to a cold operating point close to 400K.
The good agreement between ievap_21 and the experiments at low temperature justifies the choice of ievap_21 as
the evaporation model for the simulations of this configuration.

7.7 Conclusions

This Chapter presents a study on the evaporation of single isolated droplets. This work is motivated by the publi-
cation of new experimental results (Chauveau et al. (2008)) that question the widely accepted results of Nomura
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Figure 7.13: Evaporation rates of kerosene as a function of the gaseous temperature. Comparison with experimental results of
Ghassemi et al. (2006)

et al. (1996). Chauveau et al. (2008) proposed a new experimental setup able to reduce the heat conduction through
the support fiber during the experiment keeping the spherical shape of the droplet at the same. This new technique
leads to much slower evaporation processes. The importance of the heat conduction though the fiber was already
pointed out by Yang & Chang (2001), who demonstrated, using numerical calculations, that the experimental data
obtained by Nomura et al. (1996) were biased by the contribution of a radiative source term coming from the inner
walls of the furnace were the experiments were conducted and by an extra heat contribution through the support
fiber.

Sanjosé (2009) showed that the thermodynamic and transport properties have a great impact on the evapora-
tion process and that taking into account complex laws for them is crucial to perform evaporation calculations.
However, the complex thermodynamics and transport laws are not adapted to perform industrial-type simulations
due to their increased computational cost. The evaporation model available in AVBP (ievap_1) uses the Spald-
ing evaporation model and simplified thermodynamic and transport properties (thermp_AVBP) and shows very
good agreement with the results of Nomura et al. (1996). The Abramzon-Sirignano evaporation model has been
implemented in AVBP, showing small di?erences with the former model, which confirms the importance of the
thermodynamical and transport properties. A new methodology consisting in using adapted Prandtl and Schmidt
numbers for the evaporation, di?erent from those optimized for the reduced chemical schemes implemented in
AVBP, along with a laminar viscosity law depending not only on the temperature but also on the mixture compo-
sition (thermo_AVBPmix) has been proposed. The new methodology produces results close to the experimental
results of Chauveau et al. (2008) and to the simulation using a complex evaluation of the thermodynamic and
transport properties, without increasing the computational cost of the simulation.

Table 7.5 shows a summary of the performances of the different approaches studied when comparing with the
reference (results obtained with thermo_CANTERA). All the approaches show the same evolution when applied to
a different range of temperatures or pressures and to different fuels too. Test have been performed on evaporation
of n-heptane droplets for temperatures in the range [473K, 748K] and pressures in the rage [1 bar, 20 bar]. When
the ambient pressure increases, the saturation state is reached sooner and the evaporation time further increases.
Evaporation of kerosene droplets in the conditions of the MERCATO combustion chamber configuration.

In real applications, the initial diameter of the droplets is usually smaller than 100 µm, the spray is injected
in most cases at ambient temperature. In non-reactive cases, the gas temperature is usually lower than 700 K,
resulting in relatively long evaporation times. In reactive cases, droplets may encounter the flame close to the
injection. Depending on the characteristics of the liquid fuel and the spray (diameter, initial droplet temperature)
they may then evaporate before reaching the flame or cross the flame front and enter a droplet burning regime.
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Agreement with reference:
Evaporation model: thermo_AVBP thermo_AVBPmix

Spalding - ++
AS + +++

Table 7.5: Summary of the performances of the different approaches studied in this Part, for the comparison with the reference
under the same conditions.

In this case the effect of the evaporation model in the global statistics of the gaseous and the dispersed phases is
reduced.

during this work, the impact of the evaporation has been studied in a complex configuration: the MERCATO
test rig (Part IV). In the MERCATO configuration, the characteristic droplet evaporation time ranges from about
45 to 60 ms, while the droplet response time ranges from 1.5 · 10−2 to 5.3 ms and convective time is 20 ms.
The life-time of the droplets is larger than the flow convective time. The droplets are expected to occupy a large
portion of the chamber and to interact with the largest scales of the gas flow, being trapped in the reciculation zones
where they finish their evaporation. The evaporation model should therefore have a major effect on the gaseous
fuel distribution in the recirculation zones.

The application of the new methodology to a wider variety of fuel species and conditions would confirm the
validity of the new method. To do so, a detailed experimental data based on liquid fuel evaporation is needed. As it
has been demonstrated by Chauveau et al. (2008), the improvement of the experimental measurement techniques
is key for the development and validation of numerical models. Accounting for natural and forced convection on
single isolated configuration for which experimental data is already available is straightforward with AVBP. This
step, however, has been skipped here but it would provide deeper insight in the behavior and performances of the
model. Moreover, convection effects may increase considerably the differences between the AS and the Spalding
models, although the general tendency is expected to remain unchanged. As it has been done in the methodology
proposed here for the mixture viscosity, an improvement of the evaluation of the diffusion coefficient and/or the
thermal conductivity by means of the implementation of more accurate expressions but without including collision
potentials may further improve the results. A step further in the validation of the methodology proposed here is to
perform simulations in more complex configurations and to compare with experiments which would provide both
the droplet and the gaseous fuel distributions.
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Chapter 8

MERCATO configuration: Experimental
and Numerical setups

This Part of the manuscript discusses the application of the developpements of RUM modeling presented in Part II
and the evaporation modeling presented in Part III on a semi-industrial configuration: the MERCATO test rig.
This configuration has been experimentally investigated by ONERA in a timely collaboration with CERFACS and
TURBOMECA. The goal being to obtain a better comprehension of the ignition sequences in a real aeronautical
combustion chamber in high altitude conditions, prior to the experiments in ignition conditions, the experimental
campaign has extensively measured both the single-phase and the two-phase flows for this setup. For this reason,
it is a very good candidate for the evaluation of two-phase flow LES: the experimental data on both phases is very
comprehensive and provides detailed comparisons.

The experimental investigations of this combustor were performed by García-Rosa (2008) under the supervi-
sion of R. Lecourt. Numerically, this configuration has been extensively investigated in the past. Lamarque (2007)
and Sanjosé (2009) performed simulations of the non-reacting two-phase flow using an Euler-Euler approach for
the liquid phase. Sanjosé (2009) performed comparisons using different numerical schemes, mesh resolutions and
numerical parameters, Roux (2009) also studied the influence of a more adapted numerical scheme (PSI) for the
LES of the dispersed phase. Senoner (2010) performed non-reacting simulations using a Lagrangian approach
for the dispersed phase and studied the effect of polydispersity and secondary-breakup modeling. Extensive com-
parisons between the results of Sanjosé and Senoner can be found in Sanjosé (2009) and Senoner (2010). Vié
(2010) performed simulations using a sectional approach (Laurent et al. (2004)) to account for polydispersity.
Sanjosé et al. (2011) developed a new model for spray injection adapted to the Euler-Euler approach and tested it
in this configuration. Finally, Eyssartier (2012) simulated a confined variation of the configuration to study ignition
phenomena.

In the present work, the non-confined evaporating configuration studied by García-Rosa (2008), Lamarque
(2007), Roux (2009), Sanjosé (2009) and Senoner (2010) is investigated.The aim is to analyze the performances
of the models retained in Parts II and III. This work benefits from past experiences and conclusions obtained in
previous works in terms of geometry description, boundary conditions, numerical scheme and parameters.

This Chapter is organized as follows: the experimental configuration and setup are described in Section 8.1, a
brief description of the mesurement techniques used is also provided. The numerical setup is then deeply described
in Section 8.2. The simulation domain, mesh, boundary conditions and numerical parameters used are specified.
In Section 8.2.3 a test matrix summarizing the different cases simulated is presented. Finally, the results are shown
in Chapter 9.
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8.1 Description of the experimental setup

Figure 8.1 shows two pictures of the MERCATO test rig experimentally investigated by ONERA at the Fauga-
Mauzac center located near Toulouse (France). It contains all elements of a standard aeronautical combustor:
plenum, swirler, liquid fuel injector and a combustion chamber. It is a relatively complex configuration. The air is
injected through an inlet channel into a plenum of square section (100×100 mm) and 200 mm in length. At the end
of the plenum a radial swirler system composed by 12 channels imposes a very strong rotating motion to the flow
entering the combustion chamber. Afterwards, but prior to the flow entry into the chamber, a cylindrical diffusor
of 30 mm in diameter leads the flow into the combustion chamber (13 cm2 square section and 285 mm in length).
The combustion chamber has plane walls in order to have optical access to the flow. If the combustion chamber is
rather simple it is not the same for the rest of components. The liquid fuel injection system is located at the center
of the diffusor and corresponds to a modified pilot injector of the Malika helicopter chamber (Turbomeca). The
atomizing system uses a pressure swirl type Delavan atomizer for the liquid kerosene. To finish, the flow leaves
the combustion chamber directly into the atmosphere.

(a) (b)

Figure 8.1: Views of the MERCATO experimental setup at Fauga (García-Rosa (2008)).

8.1.1 Experimental conditions

Many operating points have been experimentally investigated in this configuration (García-Rosa (2008)). Only one
operating point, defined by the reduced flow rate (WR, Eq. (8.1)) is investigated here (Table 8.1). The conditions
presented correspond to WR = 0.32 kg

√
K/(s · bar) and a liquid fuel flow rate of 1 g/s.

WR =
ṁair

√
Tair

P
. (8.1)

Air flow rate [g/s] TAir [K] TKerosene [K] Kerosene flow rate [g/s] Injection equiv. ratio
15 463 300 1 0.97

Table 8.1: Parameters of the operating point presented in this Part.
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8.1.2 Experimental data measurement

Laser Doppler Anemometry (LDA) was used to characterize the gaseous flow. This technique analyses the fre-
quency signal emmited by a particle when crossing a laser volume at the point where two distinct laser sheets
interfere. The measurements were performed in purely gaseous flow seeded with fine oil droplets (dp < 2 µm) in
order to obtain the gaseous velocity fields. Measurements were performed in five different axial planes at 6, 26,
56, 86 and 116mm away from the injector outlet located at an axial coordinate z = 0mm. The data was collected
along the vertical and horizontal orientations (Fig. 8.2). The measurements of the gaseous flow include mean and
root mean square (RMS) velocity values in the axial, radial and tangential directions.
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Figure 8.2: Sketch of the experimental measurement planes (Extracted from Sanjosé (2009)).

Phase Doppler Anemometry (PDA) technique was used for the liquid phase flow. It gives information about
the droplet diameters. The combination of LDA and PDA techniques provides a complete characterization of the
two-phase flow. However, the formation of a liquid film on the visualization windows limited the measurement
planes at which experimental data was collected. Indeed, droplet diameter and velocities are available only at
z = 6, 26 and 56 mm. Moreover, for the measurements at z = 56 mm, the air mass flow rate was increased to
18 g/s in order to reduce the liquid film formation on the visualization windows. For this reason, comparisons
between numerical and experimental results at this axial location must be taken with care due to this difference in
air mass flow rates.

The operating point detailed in Table 8.1 was used to adjust the optical diagnostics for the experimental mea-
surements. For this reason, redundant data was collected, which allows the calculation of an estimation of the error
in the experimental results (Table 8.2). Since the gaseous phase data was collected in single-phase conditions, an
extra contribution in the gaseous data due to two-way coupling, must be added to these values.

Measured Variable Standard Deviation Measured Variable Standard Deviation
Mean value between measurement sets RMS value between measurement sets

ug,z 9% ug,z|RMS 12%
ug,y 13% ug,y|RMS 6%
ul,z 18% ul,z|RMS 10%
ul,y 30% ul,y|RMS 20%
d10 25%

Table 8.2: Estimation of the measurement errors of the LDA system. Calculated over the measurements obtained at
z = 26mm. Reproduced from Sanjosé (2009).
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8.2 Description of the numerical setup

This section is devoted to the description of the numerical setup used for the Euler-Euler simulations performed
with AVBP in the MERCATO configuration. The computational domain includes all the elements relevant to the
characterization of the flow field inside the chamber (Fig. 8.3).

The experiments were performed in a configuration where the flow exited directly into the atmosphere. For
this reason, apart from the air inlet tube and all the other elements until the chamber exit, part of the atmosphere
at the chamber outlet is included in the computational domain. Indeed, the central toroidal recirculation zone
appearing at the center of the chamber is longer than the chamber itself. The combination of inflow and outflow in
the same boundary condition is very difficult to handle numerically, in particular due to the present formulation of
the NSCBC formalism (Poinsot & Lele (1992)) which is one-dimensional at boundaries. The atmosphere is taken
into account by means of a cubic box with a slight coflow of air. A simplified sketch of the simulation domain is
shown in Fig. 8.4.

Figure 8.3: Sketch of the MERCATO geometry (z is the axial coordinate). Extracted from Senoner (2010).
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Figure 8.4: Sketch of the domain retained for the numerical simulations. Extracted from Senoner (2010).

8.2.1 Computational mesh

The mesh grid used is totally composed by tetrahedra, which allows fine refinements in the zones of interest. In-
deed, the zones close to the swirler and the injector have been strongly refined. The grid is progressively coarsened
up to the chamber exit. Finally the atmosphere has been coarsely meshed in order to reduce the computational cost
since the flow field in this region is of no interest. Figure 8.5 shows total and partial views of the mesh grid in 3D
and 2D. Table 8.3 summarizes the main parameters describing the mesh grid used.

Parameter Value
Number of cells 14047346

Number of nodes 2486230
Smallest cell volume 1.54719 · 10−12 m3

Time step (CFL=0.7) 1.498 · 10−7 s

Table 8.3: Parameters describing the mesh grid.
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(a) (b)

(c) (d)

Figure 8.5: Different views of the mesh grid used. Total views including the atmosphere: (a) and (b). Partial views, zoom on
plenum and chamber: (c) and (d).

8.2.2 Boundary conditions

Table 8.4 shows the Boundary Conditions (BCs) for the gaseous phase. Table 8.5 shows the BCs for the liquid
phase. The liquid fuel used is kerosene, modeled by the species KERO_LUCHE already defined in Section 7.6.
The FIM_UR methodology (Sanjosé et al. (2011)) is used to mimic the liquid injection without simulating the
liquid jet itself, i.e. neglecting the primary and secondary atomizations. The parameters used are presented in
Table 8.6. Due to the Euler-Euler formulation, a small liquid volume fraction must be specified in the regions
where there are no droplets in practice. For this reason, a minimal value of liquid volume fraction and droplet
number density at a very small droplet diameter is injected along with the carrier fluid at the air injection and
the coflow injection with the same gas velocity to avoid drag force effects. At the beginning of the simulation,
considered at the moment when the liquid injection starts after several gaseous convection times, a uniform field
of droplets of diameter 3 µm of diameter and droplet number density 7 · 106 m−3 is added at the initial time with
the same velocity of the gas phase.

The injection parameters mimic the values measured in the experiments. Since the MEF implemented in AVBP
treats only monodispersed flows, the droplet diameter at the liquid injection has been chosen equal to the mean
droplet diameter experimentally measured at z = 6 mm.
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BC name Type Imposed value
Inlet channel Inlet NSCBC Tg = 463K

ṁg = 15.0g/s
YN2 = 0.767; YO2 = 0.232

Coflow Inlet NSCBC Tg = 463K
u = 0.15m/s

YN2 = 0.767; YO2 = 0.232
Injector Inlet NSCBC Tg = 463K

u = 1.3 · 10−3m/s
YN2 = 0.767; YO2 = 0.232

Plenum Wall No-slip adiabatic
Swirler Wall No-slip adiabatic

Chamber Wall No-slip adiabatic
Atmosphere lateral walls Wall Slip adiabatic

Outlet Outlet NSCBC P = 1atm

Table 8.4: Boundary conditions for the gaseous phase.

BC name Type Imposed value
Inlet channel Dirichlet Tl = 300K

αl = 7.7 · 10−9

nl = 5 · 108m−3

ul = 22m/s
Coflow Dirichlet Tl = 300K

αl = 7.7 · 10−9

nl = 5 · 108m−3

ul = 0.15m/s
Injector Dirichlet Tl = 300K

ṁl = 1g/s
dl = 55µm

Plenum Wall Slip
Swirler Wall Slip

Chamber Wall No-slip
Atmosphere lateral walls Wall Slip

Outlet Convective

Table 8.5: Boundary conditions for the liquid phase.

Parameter Imposed value
Mass flow rate ṁl = 1g/s

Atomizer orifice diameter D0 = 0.5mm
Half-spray angle θS = 40◦

Swirl rotation direction clockwise

Table 8.6: Characteristics of the liquid injection.
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8.2.3 Numerical parameters

This section describes the numerical parameters used for the simulations of the MERCATO configuration. As
it has been done with the configuration presented in Part III, the numerical parameters have been kept equal for
all the cases simulated in order to reduce the possible sources of variability and ease the comparisons. Table 8.7
summarizes the main parameters for both the gaseous and liquid phases. TTGC numerical scheme (3rd order in
time and space) is chosen for the convection of both phases because of its low numerical dissipation. Roux (2009)
performed Eulerian simulations using two different combinations of numerical schemes: TTGC and FCT PSI-LW.
However, the results showed for the second case were not sufficiently converged, so no clear conclusions could be
drawn. Since the FCT PSI-LW scheme was not available in AVBP at the moment when the simulations presented
here were performed, it was not possible to use it. Sanjosé (2009) performed comparisons using TTGC for both
phases and PSI for the liquid phase along with LW for the gaseous phase. The results were better when using
TTGC.

Subgrid scale modeling relies on the WALE model (Ducros et al. (1998)) for the gas phase since its behavior
is expected to be more physical in zones of pure shear compared to the Smagorinsky model. The Moreau (Moreau
(2006)) model is used for the liquid phase. The walls are non-slip and no model is used to take into account either
the boundary-layer effects or any liquid film at the walls. Indeed, near-wall phenomena are out of the scope of
this work. Colin sensor (Colin et al. (2000)) is used for artificial viscosity in the gaseous phase. The values of the
coefficients are limited to the lowest levels guaranteeing numerical stability. The CMS AD model (Sanjosé (2009))
is used for the liquid phase. The parameters of the model are the lowest values that ensure numerical stability.

Parameter Value
Numerical scheme TTGC
Diffusion operator 2∆

Sub-grid scale model WALE
AV model (gas phase): Colin ε2 = 0.01

ε4 = 0.01
AV model (liquid phase): CMS ε2 = 0.30

ε4 = 0.01

Table 8.7: Summary of the numerical parameters.

8.2.4 Test cases

The purpose being to assess the performances of the RUM model retained in Part II (2ΦEASM3) and the new
evaporation procedure proposed in Part III (ievap_21) four different combinations are tested.

Regarding the RUM modeling, a case that does not take into account the RUM at all (the RUE is zero during
the whole calculation) is opposed to a case for which the RUM is modeled with the 2ΦEASM3 model. Note
that, the classic RUM model implemented in AVBP, namely VISCO does not work for this configuration. Indeed,
the simulation is numerically unstable and the problem can not be overcome with the use of AD. Previous works
showed results using VISCO model (Sanjosé (2009)). However, in these studies, the maximum value of the RUE
was artificially limited to a percentage of the mesoscopic energy (around 20%) to ensure stability. Indeed, as shown
in Part II, VISCO model overpredicted the RUE and the simulations became unstable. Limiting the maximum value
of RUE was the only way to stabilize the simulations performed taking into account the RUM. However, the results
presented in Chapter 5 showed that, depending on the Stokes number, the RUE can be larger than the mesosocopic
energy (e.g. Figs. 5.44(a) and 5.44(b)). For these cases, limiting the RUE to a percentage of the mesoscopic energy
means ignoring a part of the flow physics. In this work, when a model needs to be limited in order to be numerically
stable, it is considered that the model does not work and it is discarded.

The new methodology for the evaporation of liquid droplets proposed in Part III (ievap_21) is compared to the
classical evaporation model (Spalding along with a gaseous viscosity depending only in the temperature and the
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gaseous Prandtl and Schmidt numbers) (ievap_1). At the time the results of Sanjosé (2009) were obtained, only
the ievap_1 model existed in AVBP. When studying the evaporation of kerosene isolated droplets and performing
comparisons with the results obtained with CANTERA, Sanjosé (2009) showed that the evaporation rate was
largely overestimated using ievap_1. The problem was overcome applying a correction factor to the evaporation
source terms. New models have been developed and implemented during this work which solve this problem.

Table 8.8 shows the matrix of test cases presented in this Part of the manuscript.

Case name RUM model Evaporation model
noRUM_Ev1 noRUM evap_1
noRUM_Ev21 noRUM evap_21

RUM_Ev1 2ΦEASM3 evap_1
RUM_Ev21 2ΦEASM3 evap_21

Table 8.8: Matrix of test cases.
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Chapter 9

MERCATO configuration: Numerical
Results

This Chapter presents the results obtained from the LES of the MERCATO configuration presented in Chapter 8.
The main purpose is to assess the impact of the evaporation model developed in Part III and the RUM model
retained in Part II in a complex geometry. Four cases have therefore been simulated (Table 8.8) that combine
two evaporation models and two RUM models. Since the objective is to validate the models ievap_21 for the
evaporation and 2ΦEASM3 for RUM, results will be compared with the classical evaporation model implemented
in AVBP (ievap_1) and without any RUM model (noRUM). Note that the classical RUM model used until now in
AVBP (VISCO) is not well suited for this configuration. It leads to the crash of the simulation.

Previous works (Sanjosé (2009), Senoner (2010)) have studied the MERCATO configuration on the same oper-
ating point as the one retained here, performing an extensive analysis of the carrier fluid flow. For this reason, only
the topology of the carrier flow will be presented here. No frequency analysis has been performed and interested
readers are redirected to Sanjosé (2009) since it is considered that the observations of Sanjosé are applicable.

The Chapter is organized as follows: Section 9.1 evaluates the main timescales of the flow field, for the gas
and liquid phases, which can be useful to understand the phenomena taking place. Section 9.2 presents the main
features of the carrier flow topology. Qualitative comparisons in the form of instantaneous and time-averaged
fields are shown. Quantitative analysis is performed by comparing the numerical results with the experimental
data of García-Rosa (2008) assessing the quality of the LES. Section 9.3 presents an analysis of the liquid phase.
In this Section, the effect of the evaporation model (cf Section 9.3.2) is first analyzed in a case where the RUM
effects are ignored (Cases noRUM_Ev1 and noRUM_Ev21 in Table 8.8). Finally, in Section 9.3.3, the effect of the
RUM model is analyzed by comparing the simulations performed with 2ΦEASM3 model and without RUM for
the same evaporation model (ievap_21) (Cases noRUM_Ev21 and RUM_Ev21). Qualitative as well as quantitative
comparisons are performed. Appendix G shows additional quantitative comparisons (i.e. time-averaged profiles
compared to the experimental data) of the four cases for the liquid phase.
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9.1 Characteristic timescales of the flow

The Reynolds number of the flow at the entrance of the chamber is evaluated using the bulk velocity, the gaseous
density, the gaseous dynamic viscosity and the diameter of the diffusor:

Re =
ρgubulkD

µg
≈ 25000. (9.1)

One way to characterize the flow inside the MERCATO configuration is to compare the characteristic timescales
of the phenomena taking place:

• The convective timescale τconv is the time that the flow takes for a complete passage through the chamber. It
can be linked to the axial velocity if the rotational motion due to the swirl is ignored. Since the axial velocity
is not constant in the whole domain, an approximation can be made using the bulk velocity calculated from
the mass flow rate at the entrance of the chamber, ubulk ≈ 28 m/s.

τconv =
Lchamber
ubulk

. (9.2)

• The swirl timescale τswirl is linked to the tangential velocity. It is the time for a complete rotation of the
flow. If the radial expansion of the flow is ignored, it can be calculated using the rotation velocity of the flow
at the exit of the diffusor, ug,x and the radius of the diffusor:

τswirl =
Rdπ

ug,x
. (9.3)

The dispersed or liquid phase may also be characterized by its own timescales:

• The droplet relaxation timescale τp represents the response time of a droplet to changes in the carrier fluid
flow. It depends on the droplet diameter. In this case where evaporation is accounted for, the diameter of the
droplets is not constant in the whole domain. Each droplet has its own response time, creating differences
in the drag force terms and thus, different behaviors depending on their diameter. In this work, the injection
model assumes a monodisperse distributions at the nozzle. Afterwards and depending on the topology of
both the gaseous and liquid phases, each droplet will encounter different conditions and the evaporation
process will be different for each one. A range of characteristic relaxation timescale is then evaluated:
1.52 · 10−5 s for the smallest droplets (dp = 3 µm) and 5.3 ms for the biggest ones (dp = 55 /mum).

This range of particle relation time leads to a range of Stokes numbers depending on the location inside the
chamber, which directly impacts the evolution of the dispersed phase flow fields and also the gaseous flow
since two-way coupling is accounted for. A Stokes number range can be calculated using a fluid timescale
based on the bulk velocity and the width of the chamber:

St =
τp
τf

=
ρpd

2

18µg
Lside
ubulk

, (9.4)

The Stokes number obtained ranges from 0.15 for the smallest droplets to 1.14 for the biggest ones. It is
desirable to compare this value to the Stokes numbers of the temporal particle-laden planar jet studied in
Chapter 5. However, since the fluid timescale used for the calculation of the Stokes number in the slab is
obtained from the Tchen’s equilibrium, a new evaluation of the Stokes number based on a fluid timescale
comparable to that used in the MERCATO configuration, must be computed. For the case LR_St1_# in
Chapter 5, a new timescale for the carrier phase can be calculated using the initial gaseous velocity in the
slab (u = 52.935 m/s) and the length of the box (Lbox = 2π mm). This leads to St ≈ 0.31.

Table 9.1 summarizes the equivalence between Stokes numbers based on Tchen’s equilibrium and based on
the initial slab velocity for the configuration presented in Chapter 5, as well as the Stokes numbers in the
MERCATO configuration.
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HIT SLAB MERCATO
Case St (Tchen’s equilibrium) St (Initial slab velocity) Stokes

LR_St0.33 0.33 0.10 Stmin = 0.15
LR_St1 1 0.31
LR_St3 3 0.93 Stmax = 1.14

Table 9.1: Equivalence of Stokes numbers based on Tchen’s equilibrium and on initial slab velocity for the temporal
particle-laden planar jet configuration of Chapter 5.

The Stokes numbers in MERCATO range from 0.5 to 3.5 times the value on the temporal particle-laden
planar jet. This means that in the MERCATO configuration the behaviors of the cases LR_St1, LR_St3 and
LR_St0.33, are present at the same time. The level of turbulence is however much higher.

• The evaporation timescale τevap: is the time needed for the complete evaporation of a droplet. Here, two
different evaporation models are used. The first one (ievap_1) is the classic model implemented in AVBP. It
uses simple transport laws and the Spalding evaporation model along with the gaseous Prandtl and Schmidt
numbers. The second one, ievap_21, uses more adapted Prandtl and Schmidt numbers along with a more
complex calculation of the viscosity in the gaseous film around the droplet and the Abramzon-Sirignano
evaporation model. As stated in Chapter 7, these two models give different results in single isolated droplet
evaporation. The associated evaporation timescales are thus different. They can be obtained from a 0D
calculation of the evaporation of a droplet exiting the injection system of MERCATO (dp = 55µm) assuming
the mean conditions for the gaseous pressure (P = 1 atm), gaseous and liquid temperatures (Tg = 440 K
and Tl = 340 K).

The evaporation timescale, corresponding to the droplet lifetime, is longer for ievap_21. This means that the
droplets will evaporate slower than with ievap_1. This may have an impact on the dispersed phase topology,
since bigger droplets could be convected further downstream, increasing gaseous kerosene concentration
further from the injection than in the ievap_1 case.

In all cases, the evaporation timescale is larger than any other timescale of the flow as shown in Table 9.2.
In a case without swirl motion, the droplets would exit the chamber before finishing their evaporation. Here the
swirl motion creates recirculation zones in the center and in the corners of the chamber where the droplets get
trapped and have enough time to completely evaporate. This is a very important feature regarding the possibility
of combustion in this configuration, since the presence of recirculation zones also has a stabilizing effect on the
flame position.

Timescale Value
τconv ≈ 19.6 ms
τswirl ≈ 2.65 ms
τp [1.52 · 10−5, 5.3] ms

τevap (ievap_1) ≈ 44.1 ms
τevap (ievap_21) ≈ 57.6 ms

Table 9.2: Summary of the characteristic timescales of the flow.
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9.2 Analysis of the carrier phase flow

The gaseous phase in the MERCATO configuration is characterized by the turbulent nature of the flow field. The
analysis performed by Sanjosé (2009) and Senoner (2010) revealed that the flow increases its turbulence while
passing through the swirler. Indeed, the gaseous phase is only weakly turbulent at the entrance of the swirler but
the rotating motion imposed by the swirler to the flow greatly modifies its nature. Furthermore, the rotational
motion combined with the increase in section at the entrance of the combustion chamber leads to a sudden opening
of the gaseous jet. At the border of the jet, the shear is strong due to the velocity difference with the quiescent
flow inside the chamber, which creates additional turbulence. The turbulence is then gradually dissipated while
the flow is convected downstream. Figure 9.1 shows an isosurface of Q-criterion at the entrance of the chamber.
This quantity gives an idea of the presence of vortical structures in the flow which have a longitudinal direction
and acquire a spiral shape due to the rotating motion imposed by the swirler. The results presented in this Section
correspond to Case RUM_Ev21 of Table 8.8.

Figure 9.1: Instantaneous isosurface of Q-criterion (Q = 2 · 108) at the entrance of the chamber.
Case RUM_Ev21.

Figure 9.2 shows a mean axial velocity field with zero axial velocity isolines in a longitudinal plane at the
center of the chamber. Figure 9.3 shows a transverse cut at z = 20 mm and z = 40 mm. These two figures
show the structure of the recirculation zones. A first recirculation zone, the CTRZ (Central Toroidal Recirculation
Zone), appears at the center of the chamber. Other recirculation zones appear in the corners of the configuration
(CRZ or Corner Recirculation Zones). They are clearly visible in Fig. 9.3(a) where the cross-shaped structure
of the CRZ delimited by zero velocity contours is observed. These CRZ are no longer present in the cut plane
located at z = 40 mm as shown by Fig. 9.3(b). These recirculation zones will be useful for the stabilization of a
flames in this configuration. Indeed, the negative axial velocities at the center of the domain anchor the flame in
front of the injection zone and avoid its convection downstream. The rotation motion creates a negative pressure
gradient at the center of the CRZ just in front of the injection nozzle. The gaseous jet opens due to the sudden
change in cross-section, however, the negative pressure gradient leads the flow at the center to invert its direction.
Figure 9.4 recapitulates the main characteristics of the flow topology: the two types of recirculation zones along
with the opening of the gaseous jet at the exit of the nozzle and the mean zones of gaseous shear. Note that the
fluid is strongly accelerated at the exit of the diffusor, the axial velocity is very high in this zone and allows the
observation of the gaseous jet opening direction.
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Figure 9.2: Mean gaseous axial velocity field with isolines of axial velocity in the range -20 m/s and 20 m/s in the longitudinal
cut x = 0 mm. Case RUM_Ev21.

(a) (b)

Figure 9.3: Mean gaseous axial velocity in transverse cuts at (a) z = 20 mm and (b) z = 40 mm. Isolines of axial velocity in
the range -10 m/s and 25 m/s. Case RUM_Ev21.

Figure 9.5 shows the mean swirl (or tangential) velocity field. The same behavior as found on the axial velocity
field is retrieved here. Indeed, the tangential velocity suddenly decreases at the entrance of the chamber since the
flow is no more confined by the diffusor and the rotation is no longer imposed by the geometry. However, the
swirl perdures in the chamber although weakening away from the swirler. Sanjosé (2009) performed a frequency
analysis of the gaseous flow and showed that the gaseous jet is characterized by a precessing vortex core (PVC)
located on a highly sheared zone close to the exit of the diffusor. The PVC is an oscillating structure typical of
swirling flows with Swirl number higher than 0.6 (Lucca-Negro & O’Doherty (2001)). For the MERCATO burner
the geometrical Swirl number is equal to 0.75 and the PVC rotates around the CTRZ with a frequency close to
830 Hz (Sanjosé (2009)).
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Figure 9.4: Main features of the gaseous flow topology in the longitudinal cut x = 0 mm. Case RUM_Ev21.

Figure 9.5: Mean gaseous tangential velocity field in the longitudinal cut x = 0 mm. Isolines of tangential velocity in the
range -25 m/s and 25 m/s. Case RUM_Ev21.

9.2.1 Comparison of the gaseous phase results with the experiments

The previous Section describes the flow topology. This Section presents the statistics of the gaseous field only for
the four cases in Table 8.8. The mean and RMS profiles of the axial, radial and tangential gaseous velocities are
compared with the experimental results. Profiles are shown at five different axial coordinates (6, 26, 56, 86 and
116 mm) for the four cases simulated (Fig. 9.6).

LES provides space-filtered values, while the experimental data are generally obtained with a different type of
filter. However, for constant density flows, time-averages of scalar quantities are left unchanged by the filtering op-
eration if the filter size is sufficiently small compared to the spatial evolution of the time-averaged scalar (Veynante
& Knikker (2006)). Since the gaseous flow in this configuration is weakly compressible and the filter width is as-
sumed small enough, numerical and experimental spatially filtered data can be directly compared. Time-averaging
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Figure 9.6: Location of the five sections used for comparisons. Extracted from Senoner (2010).

has been performed during approximately 50 ms for all the cases simulated. This corresponds to two and a half
convective times, which may be insufficient to obtain fully converged statistics.

Mean velocities

Figure 9.7 shows the mean axial velocity profiles in the five sections, Fig. 9.6, for the four cases, Table 8.8.
Figure 9.8 shows the mean profiles of the radial velocity and Fig. 9.9 the mean tangential velocity profiles. The
results of the four cases are very similar, and that, for the three components of the velocity vector. The profiles
match quite well the experimental results, except at the axial coordinates located the furthest downstream where
issues about grid resolution are possible.

Regarding the axial velocity, results at z = 56 mm show a small deviation from the experimental results. Note
that the experimental profiles are not symmetric at this location. Taking this into account, both the shape and
the level of the axial velocity is well captured by all cases. Nevertheless, at z = 86 mm the deviation is more
visible. Indeed, the peaks of maximum velocity are located more towards the walls of the chamber. The gaseous jet
impacts the lateral walls, while in the experiment the peaks are located closer to the center line. A good agreement
is however recovered at z = 116 mm. The same behavior has already been observed by Sanjosé (2009), who
studied the source of discrepancies at this position. She noticed that around that axial location, the gaseous jet
is subject to a sudden expansion which makes the flow approach the walls. She stated that the attachment of the
jet to the walls and the difficulties to capture this type of phenomena would be at the origin of the disagreements
between the numerical and the experimental results.

The experimental radial velocity profiles show important asymmetry downstream of z = 26 mm (Fig. 9.8).
On the contrary, the numerical results are perfectly symmetric for the four cases, noRUM_Ev1 showing slightly
higher levels, especially at the peaks. Nevertheless, the overall agreement is good. In all sections, the shape of the
profile is well reproduced and the maximum of at least one peak is captured. The agreement is even better for the
tangential component of the velocity (Fig. 9.9). Indeed, in this case the experimental results are almost perfectly
symmetric and the numerical results are in very good agreement with measurements. The exception is the profile
at z = 26 mm where, again, the experimental profile is not symmetric.
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Figure 9.7: Mean axial velocity profiles. Gaseous phase.

Figure 9.8: Mean radial velocity profiles. Gaseous phase.
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Figure 9.9: Mean tangential velocity profiles. Gaseous phase.
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RMS velocities

The RMS profiles shown in Fig. 9.10, 9.11 and 9.12 (for the axial, radial and tangential components of the velocity
respectively) show relatively good agreement with the experiment. The main features of the profiles are captured
by the LES but the level of the fluctuations progressively decreases downstream the chamber and the levels given
by the simulations seem too low compared to the experimental results. It is conjectured that this is caused by the
progressive de-refinement of the computational mesh, which increases the influence of the subgrid-scale fluctuation
terms not taken into account. Note also that a longer averaging time would in general lead to higher RMS values.
The profiles are not sufficiently converged. However, some differences between the models are already visible.
Case RUM_Ev21 predicts higher RMS values at the center of the chamber. noRUM_Ev21 predicts RMS levels
lower than the other three models at the center of the chamber. The section located at z = 86 mm presents the
worst agreement between the LES and the experiments.

Figure 9.10: RMS axial velocity profiles. Gaseous phase.
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Figure 9.11: RMS radial velocity profiles. Gaseous phase.

Figure 9.12: RMS tangential velocity profiles. Gaseous phase.
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9.2.2 Quality of the gaseous LES

This Section aims at providing an analysis of the quality of the LES in terms of turbulent and artificial gaseous
viscosities. Figure 9.13 displays the ratio of subgrid scale to dynamic laminar viscosities corresponding to an
instantaneous field at t = 56.76 ms of the simulation of Case RUM_Ev21. The maxima are saturated for better
visibility and isolines in the range 0 − 20 are included to hightlight the zones where the ratio is higher. The
contribution of the subgrid scale model is very local and follows the opening of the gaseous jet. Close to the exit
of the chamber the subgrid scale model contribution is increased due to the progressive mesh coarsening.

Figure 9.14 shows the ratio of artificial to laminar viscosities corresponding to the same instantaneous solution
shown in Fig. 9.13. The artificial viscosity is calculated with the formula proposed by Lamarque (2007) and
provides an estimation of the 2nd order artificial dissipation applied in the LES:

νAV,j =
ε2ζjV

2
3
j

4∆t
, (9.5)

where ε2 is a user defined parameter (Table 8.7), ζj is the artificial viscosity sensor, Vj represents the nodal volume
and ∆t is the local timestep. The artificial viscosity levels are one order of magnitude lower than the laminar
viscosity. Its application is localized at the jet edges and follows the shape of the gaseous jet. Globally, the quality
of the LES is ensured and meets the recommended values by Celik et al. (1999), Pope (2002) and others.

Figure 9.13: Ratio of turbulent to laminar viscosity corresponding to an instantaneous solution of Case RUM_Ev21.

Figure 9.14: Ratio of artificial to laminar viscosity corresponding to an instantaneous solution of Case RUM_Ev21.
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Conclusions

This Section has shown that LES is able to reproduce the behavior of the gaseous phase flow. The main features of
the flow are well captured. The profiles of the mean and the RMS velocities over the three spatial directions agree
well with the experimental results. However, the simulations are not able to reproduce the level of fluctuations for
the profiles located further downstream from the chamber entrance and room for improvement is clear here.

The four cases simulated (noRUM_Ev1, noRUM_Ev21, RUM_Ev1 and RUM_Ev21) show very similar results.
It is expected that the gaseous flow field will have a limited impact on the discrepancies between the four cases
concerning the liquid phase flow. The level of convergence of the simulation is yet not sufficient and time-averaging
should be performed over a longer duration. Despite this clear and acknowledge limitation, investigation of the
liquid phase modeling is presented in the following section.
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9.3 Analysis of the dispersed phase flow

This Section provides an analysis of the dispersed phase fields in the MERCATO configuration. First, an analysis
of the global topology of the dispersed phase is presented in Section 9.3.1. Then, Section 9.3.2 focuses on the
impact of the evaporation model comparing the cases noRUM_Ev1 and noRUM_Ev21. In these two LES, the
RUM is neglected to avoid any impact of the RUM model on the evaporation process.

Section 9.3.3 provides an analysis of the effect of the RUM model. Comparisons between cases noRUM_Ev21
and RUM_Ev21 are presented. The evaporation model is ievap_21, which gives the best agreement with the
reference (the code CANTERA) on single isolated droplet evaporation. The performances of 2ΦEASM3 RUM
model are assessed through comparison with a simulation without RUM. Comparisons are shown in terms of mean
and RMS profiles as well as time-averaged and instantaneous profiles.

The numerical setup is the same in terms of numerical scheme and artificial dissipation for both the gaseous
and the dispersed phases for all cases. A simulation with 2ΦEASM3 model for the RUM and ievap_1 model for
the evaporation has also been performed. For the sake of conciseness, the corresponding results are not included
here. However, they can be found in Appendix G.

9.3.1 Topology of the dispersed phase flow

This Section provides a general overview of the topology of the liquid phase flow field. Liquid droplets of 55µm
of diameter are injected at a temperature of 300 K in the chamber. The temperature of the gas field is initially
higher than that of the liquid spray. The injection nozzle is located on the swirler axis at one end of the chamber.
The spray is injected following a hollow cone pattern. Droplets are entrained by the gaseous flow and the liquid jet
pattern follows the gaseous jet opening. The general features of the liquid phase flow field are similar for the four
simulations performed. For the sake of simplicity, only the results corresponding to case RUM_Ev21 are included
in this Section. Figure 9.15(a) shows a time-averaged field of liquid mean axial velocity. The liquid spray opening
follows the shape of the gas jet. Similarly to the gaseous phase, two recirculation zones, a CRZ and a CTRZ are
present. The CTRZ is located close to the injector nozzle and extends downstream towards the exit of the chamber,
similarly to the gaseous CTRZ. However, the liquid phase shows a particular behavior close to the injector. The
CTRZ is divided in two parts. A small zone characterized by negative axial velocities is located near the injector
nozzle. This zone is separated from the main CTRZ located further downstream. The CRZ, on the other hand, are
disposed on the same way than in the gaseous phase.

Figure 9.15(b) displays the mean tangential velocity field. The spray is entrained by the rotating movement of
the gaseous swirl. The frequency analysis performed by Sanjosé (2009) showed that the liquid spray interacts with
the gaseous PVC, following the rotating motion of the gas phase at the exit of the diffusor. However, the intensity
of the liquid phase rotation movement is lower than that of the gaseous phase. The opening of the liquid phase
swirled jet is not the same either.

Figure 9.16(a) shows an instantaneous field of gaseous velocity magnitude taken at t = 48 ms. Figure 9.16(b)
shows the magnitude of the liquid velocity at the same instant. The liquid velocity field presents the same features
as the gaseous velocity field. It is maximal at the same locations of the gaseous velocity. This is due to the
entrainment of the droplets by the gaseous flow. The droplets are accelerated at the exit of the diffusor due to the
opening of the gaseous jet. Note that the structures present on the gaseous field are much smaller than those of the
liquid field. Indeed, the liquid phase is denser than the gaseous phase and the level of turbulence is much lower in
the dispersed phase.

Figure 9.17 shows binarized thresholded snapshots extracted from experimental tomographic visualization of
the fuel spray (Linassier et al. (2011)). It provides a visual description of the spray structure. Figure 9.18 shows
an instantaneous field of liquid volume fraction corresponding to case RUM_Ev21 (t = 48 ms). Both images
show similar features. There is a high concentration of liquid close to the injector nozzle as well as on the lips of
the diffusor. The liquid spray impacts the lips of the diffusor and impinges the inner walls at this location. Semi-
circular clusters of droplets detach from the main jet and are convected downstream by the gaseous flow. As shown
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(a) Liquid axial velocity

(b) Liquid tangential velocity

Figure 9.15: Average fields of liquid phase axial (a) and tangential (b) velocities. Case RUM_Ev21.

(a) Gaseous velocity magnitude (b) Liquid velocity magnitude

Figure 9.16: Instantaneous fields of gaseous (a) and Liquid (b) velocity magnitude at t = 48 ms. Case RUM_Ev21.
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by Fig. 9.18, LES is able to capture this phenomena. Nevertheless, due to the continuous nature of the liquid phase
in the Euler-Euler approach and the LES filtering, the field appears more diffused than the experimental images.

Figure 9.17: Tomographic visualization of the fuel spray. Binarized thresholded snapshots. Source Linassier et al. (2011).

Figure 9.18: Instantaneous field of liquid volume fraction at t = 48 ms. Case RUM_Ev21
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9.3.2 Effect of the evaporation model

The goal of this Section is to compare the performances of two different evaporation models in the MERCATO
configuration. Cases noRUM_Ev1 and noRUM_Ev21 are compared. Case noRUM_Ev1 uses the classical ap-
proach for the evaporation implemented in AVBP which corresponds to the Spalding model where the viscosity at
the droplet surface is calculated with a simple Power law depending only on the temperature of the mixture and
the Prandtl and Schmidt numbers fixed by chemistry (Pr = ScF = 0.739). Case noRUM_Ev21 uses the new
approach presented in Part III. The Abramzon-Sirignano model is used for the droplet evaporation, the viscosity
in the film around the droplet is calculated by means of the Bird’s formula (i.e. the viscosity is function of the
mixture temperature and composition) and adapted Prandtl and Schmidt numbers fitted with a pre-calculation per-
formed with CANTERA are used (Prevap = 0.782043, ScevapF = 2.0495). The test on isolated droplets presented
in Part III showed that ievap_21 (case noRUM_Ev21 in this Section) predicts slower evaporation process than
ievap_1 (case noRUM_Ev1).

Mean and RMS profiles of the components of the velocity vector are compared as well as mean fields of the
quantities of interest regarding evaporation.

Velocity profiles

Figure 9.19 shows a comparison of the mean and RMS liquid axial velocity profiles between cases noRUM_Ev1,
noRUM_Ev21 and the experiments. The mean velocity profiles are very similar between both cases simulated
and they agree very well with the experiments. Small differences are however visible at the axial coordinate
z = 56mm. The axial velocity corresponding to noRUM_Ev is higher at the center of the jet for this axial position.
This improves slightly the agreement with the experimental results. At this location, the droplets corresponding
to noRUM_Ev1 are larger (Fig. 9.20). The gaseous velocities at this location are very similar in both cases, and
of the order of −10 m/s. The liquid phase axial velocity, on the other hand, is smaller at this point. Larger
droplets have a larger response time and thus (for equal fluid characteristic time) a higher Stokes number. Droplets
are more inertial and less affected by the gaseous flow. This is why the negative axial velocity at this location
produces negative axial velocities on the smaller droplets of case noRUM_Ev21 but not on the big droplets of case
noRUM_Ev1, whose axial velocity is close to zero. Close to the chamber walls, noRUM_Ev21 produces slightly
better agreement with the experiment. Note that in the experiments the droplet spray is polydisperse, which is not
the case here. Polydispersity effects are very important when studying the droplet diameter fields. For this reason,
results regarding the diameter profiles must very carefully treated.

Figures 9.21(a) and 9.22(a) show the mean profiles of radial and tangential liquid velocities for cases no-
RUM_Ev1 and noRUM_Ev21. The overall agreement with the experiments is good. In both cases, there is no
noticeable difference between the two LES.

Figures 9.19(b), 9.21(b) and 9.22(b) shows the profiles of axial, radial and tangential velocity RMs fluctuations
respectively. The profiles of noRUM_Ev1 and noRUM_Ev21 are very similar. Case noRUM_Ev1 shows slightly
higher level of fluctuations at the center of the chamber. However, the RMS levels are too low compared to the
experiments.
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(a) Mean axial velocity. (b) RMS axial velocity.

Figure 9.19: Mean and RMS axial velocity profiles. Liquid phase. Cases noRUM_Ev1 and noRUM_Ev21. Comparison with
the experiments.

Figure 9.20: Profiles of mean droplet diameter. Cases noRUM_Ev1 and noRUM_Ev21. Comparison with the experiments.
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(a) Mean radial velocity. (b) RMS radial velocity.

Figure 9.21: Mean and RMS radial velocity profiles. Liquid phase. Cases noRUM_Ev1 and noRUM_Ev21. Comparison with
the experiments.

(a) Mean tangential velocity. (b) RMS tangential velocity.

Figure 9.22: Mean and RMS tangential velocity profiles. Liquid phase. Cases noRUM_Ev1 and noRUM_Ev21. Comparison
with the experiments.
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Impact of the evaporation model on the topology of the dispersed phase flow

The evaporation model has almost no impact on the liquid velocity profiles and impacts slightly the diameter
profiles close to the chamber walls. The evaporation models affects, however, in a stronger manner:

• the concentration of droplets close to the walls,

• the heat and mass transfer fields due to evaporation,

• and the gaseous kerosene distribution.

Figures 9.23 and 9.24 show the time-averaged fields of the liquid volume fraction and the droplet diameter
for both cases. The spray penetrates further downstream in noRUM_Ev21. The liquid spray impinges more the
chamber wall and the spray angle is smaller. Indeed, at the corners of the chamber, noRUM_Ev21 shows higher
values of liquid volume fraction. Figure 9.25 shows the profiles of liquid volume fraction extracted from the
averaged solutions of both cases. The profiles are very similar close to the longitudinal axis of the chamber and
differ close to the walls. From the axial location z = 6 mm, the level of liquid volume fraction predicted by case
noRUM_Ev21 is higher than that of case noRUM_Ev1. In case noRUM_Ev21, bigger droplets are present inside
the CRZ and close to the walls. This is due to the evaporation model ievap_21, which predicts lower evaporation
rates than ievap_1, as shown by the instantaneous fields of mass evaporation rate (Fig. 9.26). Both fields have
globally the same shape, however, the levels predicted by noRUM_Ev1 are higher.

Figure 9.23: Liquid volume fraction time-averaged fields. Cases noRUM_Ev1 (right) and noRUM_Ev21 (left).

Figure 9.24: Droplet diameter time-averaged fields. Cases noRUM_Ev1 (right) and noRUM_Ev21 (left).



MERCATO configuration: Numerical Results 185

Figure 9.25: Profiles of mean liquid volume fraction. Cases noRUM_Ev1 and noRUM_Ev21. Comparison with the
experiments.

Figure 9.26: Evaporation mass transfer rate instantaneous fields. Cases noRUM_Ev1 (right) and noRUM_Ev21 (left).

The heat transfer rate is not the same either. Figure 9.27 shows the time-averaged fields of the gaseous and liquid
temperatures. Hot gases from the plenum reach the combustion chamber through the swirler. Liquid kerosene is
injected at the center of the diffusor at a lower temperature. When both mix, there is a heat transfer from the
gaseous phase to the liquid phase which evaporates. Figure 9.27(a) shows that the gaseous temperature averaged
fields are very similar in both cases. However, the liquid temperature fields show several differences. Cold droplets
penetrate the chamber further downstream in case noRUM_Ev21 than in case noRUM_Ev1. Moreover, the liquid
temperature is globally higher in case noRUM_Ev1. The tests performed on single isolated droplets (cf Part III)
showed that the heat transfer rate is higher and faster when using ievap_1 model. Indeed, the pre-heating time of
the droplets is shorter and the droplet temperature higher than when ievap_21 is used.
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(a)

(b)

Figure 9.27: Gaseous (a) and liquid (b) temperatures. Time-averaged fields. Cases noRUM_Ev1 (right) and noRUM_Ev21
(left).

Fig. 9.28 presents the instantaneous fields of heat transfer rate for both cases. Note that the heat transfer rate
includes the transfers from the gaseous phase to the liquid phase and vice versa. For this reason this quantity has
a very wide scale range. Here, the scale has been saturated on purpose to show the locations where the higher
heat transfer rates take place. The dark blue zone close to injection delimits the zone where the bigger droplets are
present. In this zone, the liquid temperature is very cold and the gaseous temperature very high. Heat is transferred
from the gaseous to the liquid phase. The mass transfer rate in this zone is not very high. This is due to the
high concentration of liquid at low temperature, which favors a saturation regime. This zone is smaller in case
noRUM_Ev1 because the liquid temperature is higher in this case. Close to the inner walls of the chamber high
heat transfer zones are present. In these zones, the liquid volume fraction is smaller than close to the injection.
It is zone of high mass transfer rate where a large amount of heat needs to be provided to evaporate the already
pre-heated droplets. According to the fields of mass transfer rate (fig. 9.26), case noRUM_Ev1 presents higher
heat transfer rate in these zones, which in addition are bigger and extend further towards the center of the chamber.

The impact of the evaporation model is of high importance for the prediction of the gaseous fuel field, in
views of a reactive computation. Figure 9.29 displays the gaseous kerosene mass fraction time-averaged field. no-
RUM_Ev1, due to the higher evaporation and heat transfer rates predicted, shows higher concentration of gaseous
fuel in the whole chamber but especially close to the walls. This feature may be of key importance for ignition
studies in this configuration (Eyssartier (2012)).
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Figure 9.28: Evaporation heat transfer rate instantaneous fields. Cases noRUM_Ev1 (right) and noRUM_Ev21 (left).

Figure 9.29: Gaseous kerosene mass fraction averaged fields. Cases noRUM_Ev1 (right) and noRUM_Ev21 (left).

9.3.3 Effect of the RUM model

This Section aims at analyzing the performances of 2ΦEASM3 RUM model in complex configurations by com-
paring the results of a simulation performed with this model (RUM_Ev21) with a simulation performed with the
same evaporation model but without taking into account the RUM (noRUM_Ev21). 2ΦEASM3 model was cho-
sen over the models presented in Chapter 4 because it gives the best results in a non-evaporating configuration
with mean shear (cf Chapter 5) for different particle inertia (i.e. Stokes numbers) and fluid turbulence levels (i.e.
Reynolds numbers). Note that in the MERCATO configuration, evaporation is taken into account, which implies
that droplets of different sizes are present leading to different levels of particle inertia (cf Table 9.1). Moreover, the
Reynolds number is higher in the MERCATO configuration (Re = 25000) than in the configuration of Chapter 5
(Rec ≈ 18850). VISCO model classically used in AVBP does not work on this configuration.

Velocity profiles

First, the effect of the RUM on the configuration is analyzed through comparison of the mean and RMS velocity
profiles of cases noRUM_Ev21 and RUM_Ev21. Figure 9.30(a) shows the mean axial velocity profiles of both
cases compared to the experimental measurements. In the section z = 6 mm case noRUM_Ev21 shows higher



188 MERCATO configuration: Numerical Results

axial velocities at the borders of the liquid jet. This behavior has an impact on the profiles downstream. At
z = 56 mm, the location of the peaks are different between case noRUM_Ev21 and case RUM_Ev21. Indeed,
for noRUM_Ev21, the peaks of profile are located closer to the chamber walls. Moreover, the axial velocity at
the center of the chamber is negative (it corresponds to a recirculation point), where in case RUM_Ev21 is zero,
which corresponds to a stagnation point. The agreement with the experimental measurements is better for case
RUM_Ev21. The difference in jet opening angles are confirmed by the profiles of the mean radial velocity shown
in Fig. 9.31(a). Indeed, the maximum radial velocity value is higher in the case noRUM_Ev21. Note finally that
none of the simulations captures the position of the peaks of radial velocity observed on the experiments. In both
cases, the peaks are located closer to the chamber axis than in the experimental results. No noticeable differences
are visible on the profiles of mean tangential velocity (Fig. 9.32(a)), both cases show good agreement with the
experiments.

Accounting for the RUM increases the RMS velocity values, improving the agreement with the experimen-
tal results (especially close to the chamber walls), for the three velocity components (Figs. 9.30(b), 9.31(b) and
9.32(b)). At the center of the profiles, both cases give similar results at the axial locations close to the injection
point. Further downstream, accounting for the RUM improves the results. Note that a reason for the underestima-
tion of the RMS velocities downstream can be the progressive coarsening of the computational mesh. As shown
in Chapter 5, the mesh resolution needed for a correct reproduction of the dispersed phase phenomena is higher
than the one required for the gaseous phase. The high compressibility of the liquid phase needs a higher mesh
resolution to capture certain features such as the particle segregation and the RMS values of droplet number den-
sity and velocity. Polydispersity effects, which are not considered here, must be taken into account too. As shown
by Fig. 9.33, the RMS values of the droplet diameter are not captured by any of the cases simulated due to the
monodispersed nature of the dispersed phase considered here.

(a) Mean axial velocity. (b) RMS axial velocity

Figure 9.30: Mean and RMS axial velocity profiles. Liquid phase. Cases noRUM_Ev21 and RUM_Ev21. Comparison with the
experiments.

Impact of the evaporation model on the topology of the dispersed phase flow

Figure 9.34(a) shows the mean liquid volume fraction profiles corresponding to cases noRUM_Ev21 and
RUM_Ev21. Case RUM_Ev21 shows a flatter profile than noRUM_Ev21. The RUM acts on the liquid phase
diffusing the droplets located on the edges of the jet. The droplets are ejected away from the main jet both in the
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(a) Mean radial velocity. (b) RMS radial velocity

Figure 9.31: Mean and RMS radial velocity profiles. Liquid phase. Cases noRUM_Ev21 and RUM_Ev21. Comparison with
the experiments.

(a) Mean tangential velocity. (b) RMS tangential velocity

Figure 9.32: Mean and RMS tangential velocity profiles. Liquid phase. Cases noRUM_Ev21 and RUM_Ev21. Comparison
with the experiments.

inner and outer directions. For this reason, the liquid volume fraction at the center of the chamber and close to the
walls is higher in case RUM_Ev21, while the levels at the peaks are similar for both cases. The RUM contributes
to keep the spray jet in a more confined region. Indeed, the mean axial liquid volume flux profiles (Fig. 9.34(b))
show that the spray penetrates further downstream with a wider angle for case noRUM_Ev21. This is also visible
on the liquid volume fraction averaged fields displayed on Fig. 9.35.
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Figure 9.33: RMS droplet diameter profiles. Cases noRUM_Ev1, noRUM_Ev21 RUM_Ev1 and RUM_Ev21. Comparison with
the experiments.

(a) Mean liquid volume fraction. (b) Mean axial liquid volume flux.

Figure 9.34: Mean liquid volume fraction (a) and axial liquid volume flux (b) profiles. Cases noRUM_Ev21 and RUM_Ev21.

The field corresponding to case noRUM_Ev21 shows a spray with a higher quantity of liquid impinging the
chamber walls. For case RUM_Ev21, the spray is diffused towards the center creating a different repartition of
the liquid phase within the chamber and modifying the liquid behavior on the inner walls. Figure 9.36 shows the
time-averaged field of the mean droplet diameter. The simulation performed with RUM shows a field of diameter
in which bigger droplets penetrate further downstream along the central axis, as also shown by the profiles of
Fig. 9.37.

Figure 9.38 shows an instantaneous profile of mass transfer rate due to evaporation for both cases. The snap-
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Figure 9.35: Liquid volume fraction averaged fields. Cases noRUM_Ev21 (left) and RUM_Ev21 (right).

Figure 9.36: Droplet diameter averaged fields. Cases noRUM_Ev21 (left) and RUM_Ev21 (right).

shots have been taken 48 ms after injection. The mass transfer rate at the center of the chamber is higher in
noRUM_Ev21 case, which corresponds to the information shown by the mean profiles of droplet diameter. On the
contrary, in the CRZ the evaporation rate is higher for case RUM_Ev21. This is also the case for heat transfer rate
(Fig. 9.39). Inside the CRZ, heat transfer is much higher in case RUM_Ev21. Further downstream and close to the
walls, case noRUM_Ev21 shows a stranger heat transfer rate.
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Figure 9.37: Profiles of mean droplet diameter. Cases noRUM_Ev21and RUM_Ev21. Comparison with the experiments.

Figure 9.38: Evaporation mass transfer rate instantaneous fields. Cases noRUM_Ev21 (left) and RUM_Ev21 (right).

The differences of heat and mass transfer rates have a direct impact on the gaseous kerosene repartition inside
the chamber. Figure 9.40 shows instantaneous fields of gaseous kerosene mass fraction for both cases. The
quantity of kerosene inside the CRZ is higher in case RUM_Ev21 and close to the walls. This is very important in
real applications, because the ignition system is usually located close to the walls and in the CRZ, as it is the case
of the ignition tests performed in this configuration (Linassier et al. (2011)).
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Figure 9.39: Evaporation heat transfer rate instantaneous fields. Cases noRUM_Ev21 (left) and RUM_Ev21 (right).

Figure 9.40: Gaseous kerosene mass fraction instantaneous fields. Cases noRUM_Ev21 (left) and RUM_Ev21 (right).

Finally, the RUE has an important effect on the spray. The zones where the RUE is higher are located
(Fig. 9.41(b)):

1. on the diffusor lips, where the spray impinges the walls and where, as experimentally observed, the liquid
film formed is atomized by the swirled flow (Linassier et al. (2011)),

2. in highly sheared zones,

3. close to the walls in the zones where the spray impinges the chamber inner walls.

Liquid velocity shear is an important mechanism of RUE production. A link between the RUE and the phe-
nomenon of droplet cluster detachment and convection (cf Section 9.3.1) can be stated by comparing the instanta-
neous fields of RUE and liquid volume fraction (Fig. 9.41(a)). Indeed, similar structures are present on both fields.
A correct prediction of the RUE in these zones is very important since it is crucial for the prediction of phenomena
such as collisions and coalescence, which have a higher importance in these zones.

Figure 9.42 displays the mesoscopic kinetic energy averaged fields corresponding to noRUM_Ev21 and
RUM_Ev21 cases. As already pointed out in the configuration studied in Chapter 5, when the RUM is not taken
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into account, the level of mesoscopic energy increases. This is also the case here. Case noRUM_Ev21 shows
higher levels of mesoscopic energy located in the zones of high liquid velocity magnitude at the exit of the diffusor.
The field corresponding to the case with RUM (RUM_Ev21) shows lower maxima and a more diffused mesoscopic
energy field. Note that the level of mesoscopic energy is lower than the level of RUE. This is consistent with the
presence of highly inertial droplets, which is the case here (Table 9.2), as shown in Chapter 5 for the high inertia
case.

(a) Liquid volume fraction. (b) Uncorrelated energy.

Figure 9.41: Instantaneous fields of (a) liquid volume fraction and (b) RUE at t = 48 ms. Case RUM_Ev21.

Figure 9.42: Mesoscopic kinetic energy averaged fields. Cases noRUM_Ev21 (left) and RUM_Ev21 (right).

As observed in Chapter 5, the activation of the artificial viscosity sensor is reduced when the RUM is accounted
for. Figure 9.43 shows the activation of the AV sensor at a given instant in the chamber. Close to the chamber exit,
the artificial viscosity acts due to the low concentration of liquid in that zone in order to avoid numerical problems.
Nevertheless, in the zones where that is not a concern for the numerical stability of the code (i.e. closer to the
injection), the AV sensor is less activated in case RUM_Ev21, especially on the zones where the RUE acts (cf
Fig. 9.41(b)). Indeed, close to the injection, the sensor is activated in the zones where the liquid volume fraction is
smaller.
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Figure 9.43: Artificial viscosity sensor activation. Instantaneous field. Cases noRUM_Ev21 (left) and RUM_Ev21 (right).
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9.4 Conclusions

Four different cases combining two approaches for the RUM modeling and two evaporation models (Table 8.8)
have been simulated using LES in the MERCATO configuration. The gaseous flow topology has been analyzed
and compared with experimental results. Profiles of mean and RMS velocity in the three directions of space have
been computed and the flow field topology analyzed by means of averaged fields of axial, radial and tangential
velocities. Two recirculation zones, the CTRZ and the CRZ, have been identified. The same flow configuration
was already reported by Sanjosé (2009) and Senoner (2010). The mean velocity profiles agree well with the exper-
imental results, however, small differences between the LES and the experiments have been identified. The RMS
velocities corresponding to the LES show lower levels of fluctuations for the profiles located more downstream
of the chamber. This has been attributed to the progressive coarsening of the computational mesh. The results
presented showed that neither the RUM model nor the evaporation model produce great differences on the gaseous
flow field, even when two-way coupling is taken into account. Indeed, the mean and RMS velocity profiles of the
four simulations are very similar for all axial locations. However, the level of convergence of the gaseous field
is not optimum, averaging during a longer period should be performed in order to obtain definitive conclusions.
Finally an analysis of the quality of the LES simulation has been performed. Instantaneous fields of turbulent to
laminar viscosity and artificial to laminar viscosity ratios have been presented. The fields show that the contribu-
tion of the subgrid scale model is very local and follows the gaseous jet opening. The artificial viscosity levels,
calculated with the method proposed by Lamarque (2007) is lower than the laminar viscosity.

Then the liquid field topology has been analyzed. First, a general analysis of the topology of the liquid phase
flow has been presented. The averaged fields of liquid velocity show the same features previously observed on the
gaseous flow topology. Two recirculation zones are present, a CTRZ divided in two parts with a stagnation point
downstream the liquid injection and a CRZ zone located on the chamber corners. The opening of the liquid jet
follows that of the gaseous jet. The liquid spray is accelerated at the exit of the diffusor due to the sudden expansion
of the gaseous jet. Instantaneous fields of gaseous and liquid velocity magnitude have been presented too. Both
phases show similar fields, the liquid phase field being less turbulent, with fewer structures larger than those of the
gaseous phase, due to the higher density of the liquid phase. The droplet cluster detachment phenomena observed
experimentally (Linassier et al. (2011)) is also reproduced by the LES. However, the LES results are more diffused
due to the description of the dispersed phase as a continuum in the Euler-Euler approach and to filtering of the
smallest scales of the LES approach.

The effects of the evaporation model and the RUM model have been assessed:

• The impact of the evaporation model has been analyzed comparing the results of two simulations performed
first with the Spalding evaporation model coupled with simple thermodynamic and transport properties (the
only model existing in AVBP before this work), namely noRUM_Ev1, and secondly with the Abramzon-
Sirignano evaporation model along with a more complex calculation of the properties (cf Part III) or case
noRUM_Ev21. RUM has not been taken into account in these simulations in order to avoid the possibility of
coupling effects between the RUM and the evaporation. The results showed that the evaporation is stronger in
case noRUM_Ev1 than in case noRUM_Ev21. This is consistent with the results of the tests performed on the
evaporation of single isolated droplets in Chapter 7. However, the evaporation models have a limited impact
on the liquid velocity profiles. Indeed, few differences have been noticed on the mean and RMS profiles
of the three components of the liquid velocity vector. The stronger effects due to the evaporation model
are linked to the distribution of the biggest droplets inside the chamber and the production of gaseous fuel.
Indeed, case noRUM_Ev1 showed gaseous kerosene concentration much higher than case noRUM_Ev21,
especially close to the chamber walls. This may have a non-negligible impact on the study of the ignition
process of this configuration.

• The impact of the RUM modeling has been analyzed through comparisons of the results obtained from
cases noRUM_Ev21 and RUM_Ev21. The first case does not take into account the contribution of the
RUM, the second case uses the so-called 2ΦEASM3 model retained from the study of the configuration
presented in Chapter 5. Both cases use the same approach for the modeling of the evaporation. The analysis
of the mean and RMS velocity profiles shows that accounting for the RUM increases the level of RMS
fluctuations, which produces better agreement with the experiments. In any case the RMS levels are still far
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from the experimental results, especially at downstream locations. This may mainly be due to the progressive
coarsening of the computational mesh, and to polydispersion effects not taken into account. Regarding the
mean velocity profiles, the simulation performed with RUM is the only that captures the zero velocity point
on the chamber axis at an axial location z = 56 mm as reported by the experimental results. Ignoring the
RUM contribution leads to higher radial velocities, reducing the level of agreement with the experiments and
leading to a larger angle of the spray jet. The analysis of the dispersed flow field in these cases confirmed
the observations on the configuration studied in Chapter 5. The RUM has a diffusive effect on the fields
of liquid volume fraction. Indeed, the results of case noRUM_Ev21 presented a more penetrating liquid jet
with a smaller opening angle and a lower liquid concentration along the axis of the chamber. The RUM
has also an impact on the evaporation process. Indeed, the fields of mass and heat transfer rates as well as
the gaseous kerosene fields are affected by the RUM. Due to the diffusive effect of the RUE, the droplets
located on the borders of the spray are captured inside the CRZ where they evaporate. The mass and heat
transfer rates in this zone is higher for case RUM_Ev21. Case noRUM_Ev21 show higher evaporation rates
further downstream and close to the chamber walls. The gaseous kerosene field is thus modified by the
RUM modeling. Case RUM_Ev21 shows a higher kerosene concentration in the CRZ, which may have an
important impact on the ignition process, since the ignition devices are often located close to the walls and
near the injection plane.

Finally, the analysis of the instantaneous fields of liquid volume fraction and RUE showed that the RUE is
activated in the regions of high shear where clusters of droplets are detached from the main jet and convected
downstream by the gaseous flow. Zones of high RUE are also present on the diffusor lips, where the experi-
ments show an impingement of the wall by the spray and the liquid film formed is atomized by the swirled
flow. In agreement with the results on the configuration of Chapter 5, it has been observed that ignoring the
RUM contribution leads to an increase in the predicted mesoscopic energy. Moreover, in this case, the RUE
level is higher than the mesoscopic energy (due to the presence of highly inertial droplets). For this reason,
the RUM contribution must be absolutely accounted for. Moreover, the simulation performed with RUM
shows a more local and less strong activation of the artificial viscosity applied to the liquid phase than the
simulation performed without RUM.

This work is part of a set of studies performed in the MERCATO configuration both with the Euler-Euler and
the Euler-Lagrange approaches. In this sense, other works in the same configuration are in process at CERFACS.
Eyssartier (2012) studied the ignition effects on the confined version of the MERCATO test rig. However, the
effects of the RUM and the evaporation models tested here are expected to have a considerable impact on the
reactive simulations of this configuration. The evaporation models studied here predict very different gaseous fuel
distributions. Moreover, using the same evaporation model, the choice of the RUM model also have an impact on
the gaseous fuel field. This statement is to be confirmed by future studies.

The application of the new RUM and evaporation models to the multi-fluid (Laurent et al. (2004)) Euler-Euler
approach implemented by Vié (2010) in AVBP may considerably improve the results, especially regarding the
droplet diameter fluctuations which are not well reproduced by the monodispersed simulations. Further compar-
isons with Euler-Lagrange LES of this configuration (Senoner et al. (2009), Hannebique (2012)) are of interest
too. Indeed, the evaluation of the evaporation models on an Euler-Lagrange simulation will decouple the effects
of the evaporation model from those of the RUM. Finally, as it has been observed, the liquid spray impinges the
diffusor lips and the inner walls of the chamber, for which liquid film models (actually not included in AVBP for
the Euler-Euler approach) are needed in order to completely represent the physics of the dispersed phase flow. The
effect of these liquid films on the wall temperature can be assessed with a LES using AVBP coupled with the code
AVTP (Duchaine et al. (2009)).
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The main objective of this work is to develop and validate models for the two main phenomena occurring in a
combustion chamber after primary and secondary atomization and before combustion, i.e. the dispersion and the
evaporation of liquid droplets. Using the mesoscopic Euler-Euler approach (Février et al. (2005)), new RUM
models are being tested to be used in mean sheared two-phase flows and the evaporation model used in AVBP
has been improved. In both cases the models are first studied in academic configurations with the perspective of
applying them to a semi-academic configuration to assess their validity for their future use in LES of two-phase
flow industrial configurations. The results are validated against experimental data or Euler-Lagrange simulations
depending on the available data. The conservation equations for the gaseous and the dispersed phase both in DNS
and LES contexts are briefly described in Part I along with the models for the unclosed terms in the transport
equations. Part II is dedicated to the study of the Random Uncorrelated Motion. Part III presents a study of
the evaporation of single isolated droplets. Finally, Part IV presents the results obtained in LES of a complex
configuration (MERCATO) comparing two RUM modeling approaches and two evaporation models.

Numerous algebraic models for the RUM deviatoric tensor developed and a priori validated by Masi (2010)
have been a posteriori validated in a particle-laden temporal planar jet configuration in strong collaboration with
Dr. E. Masi and Pr. O. Simonin. Linear and non-linear models using two different characteristic timescales (the
particle relaxation timescale and the mesoscopic shear timescale) have been studied. Simulations at two levels
of gaseous turbulence and different particle Stokes numbers have been performed and compared to a Lagrangian
reference. The influence of the mesh resolution and the artificial dissipation has been assessed. The results show
that using the particle relaxation timescale to model the RUM (which is the case of the viscosity-type model
(“VISCO") proposed by Simonin et al. (2001)) leads to overestimated RUE fields and numerical instabilities when
the level of gaseous turbulence increases or the particle inertia is not moderate. This confirms the results of Riber
(2007) in LES of particle-laden turbulent jet (Hishida et al. (1987)). Linear models using the mesoscopic shear
timescale (‘AXISY" model) also lead to RUE overestimation but the application of a correction (“AXISY-C")
in order to account for reverse energy exchanges (from the RUM to the mesoscopic motion) greatly improves
the results. However, the performances of the corrected model strongly depend on the gaseous turbulence level
and particle inertia. The so-called non-linear “QUAD-MOD" model gives satisfactory results but high-frequency
oscillations are present in the instantaneous fields, which may eventually produce numerical instabilities and an
indiscriminate application of artificial dissipation when used in complex configurations. Other high order models
have been tested. The 2ΦEASM1 model underpredicts the particle RUE in all cases and needs high amounts of
artificial dissipation to keep the numerical stability of the code. The 2ΦEASM3 model predicts very accurate
statistics of the low and high order moments of the dispersed phase flow, at the same time giving good accuracy
on the instantaneous fields. Applying the correction proposed by Masi (2010) to this family of models decreases
the level of RUE which increases the necessity of artificial dissipation to numerically stabilize the simulation. The
artificial dissipation model used in AVBP has been shown capable of artificially playing the role of the RUM.
However, compared to the non-linear models, it does not degenerate correctly neither when the Stokes number
changes nor when the gaseous turbulence is increased. The effect of the mesh resolution has been assessed in
two cases with different levels of gaseous turbulence for a unity Stokes number using the 2ΦEASM3 model.
The dispersed phase needs higher grid resolution than the gaseous phase due to strong compressibility effects
present on the dispersed phase. Increasing the mesh resolution leads to a better prediction of RMS fluctuations and
segregation. Although, it has no noticeable effect on the low order moments statistics, it considerably improves
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both the high order statistics and the quality of the instantaneous fields. Finally, the 2ΦEASM3 model has been
retained for implementation in AVBP and is used in the LES of the MERCATO combustion chamber configuration
presented in Part IV of this work. A first conference paper showing the a priori results obtained with the AXISY
model was presented to the International Conference of Multiphase Flow, 2010. A second publication presenting
the models tested and the a priori results in the particle-laden temporal planar jet has been submitted to Journal of
Fluid Mechanics both with Dr. E. Masi and Pr. Simonin. A second one showing the a posteriori analysis is being
prepared to be submitted to JFM too.

Following another research line, a study on the evaporation of single isolated droplets motivated by the publica-
tion of new experimental results (Chauveau et al. (2008)) questioning the widely accepted results of Nomura et al.
(1996) has been carried out in Part III. The new experimental technique proposed by Chauveau et al. (2008) is
claimed to be less affected by heat conduction by the support fiber and by radiation from the furnace walls leading
to much slower evaporation processes. The importance of these effects on the experimental results of Nomura
et al. (1996) was already identified by Yang & Wong (2001) using numerical simulations including radiation and
heat conduction through the support fiber. The model available in AVBP (ievap_1) uses the Spalding evaporation
model and simplified thermodynamic and transport properties (thermo_AVBP) and shows very good agreement
with the results of Nomura et al. (1996). The Abramzon-Sirignano evaporation model has been implemented in
AVBP, showing small differences with the former model. The thermodynamic and transport properties are shown
to have a much larger impact on the evaporation process. A new methodology consisting in using adapted Prandtl
and Schmidt numbers for the evaporation different from those optimized for the reduced chemical schemes imple-
mented in AVBP along with a laminar viscosity law depending not only on the temperature but also on the mixture
composition (thermo_AVBPmix) has been proposed. The new methodology produces results close to the experi-
mental results of Chauveau et al. (2008) and to the simulation using a complex evaluation of the thermodynamic
and transport properties, which would considerably increase the computational cost in AVBP. The new method-
ology has been validated for a wide range of gaseous temperature and pressure conditions using the Spalding
(ievap_2, Spalding (1953)) and the Abramzon-Sirignano evaporation models (ievap_21, Abramzon & Sirignano
(1989)). A conference paper showing a LES of a complex aeronautical burner using the new methodology was
presented at the Mediterranean Combustion Symposium 2011 in collaboration with G. Hannebique.

Finally, Part IV presents the LES of the MERCATO configuration (García-Rosa (2008), Sanjosé (2009), Roux
(2009), Senoner (2010), Vié (2010)) using two evaporation models:

• the classical approach using the Spalding evaporation model and a simplified evaluation of the thermody-
namic and transport properties (ievap_1),

• and the Abramzon-Sirignano evaporation model along with thermo_AVBPmix approach (ievap_21),

and two approaches for the RUM:

• neglecting the RUM contribution (noRUM model in Part II),

• and using the 2ΦEASM3 model retained in Part II to model the RUM.

Note that the VISCO RUM model previously implemented in AVBP cannot be used in this configuration since it
considerably overpredicts the RUE in the shear regions and makes the simulation crash. First the gaseous flow is
validated. Second, the general features of the liquid phase flow are presented. The effects of the evaporation and
the RUM models are then analyzed separately. The new evaporation model leads to longer evaporation times. The
spray distribution, as well as its temperature and the gaseous fuel field are considerably affected by the choice of the
evaporation model, which may have an important impact on the ignition characteristics and the flame position in
reactive conditions. The lack of experimental data and the use of a monodisperse approach (not able to reproduce
the RMS fluctuations of droplet diameter) prevents further validation. The RUM model affects the results too.
Accounting for RUM improves the predictions of RMS velocities and has an impact on the evaporation process
too. The changes on the dispersed phase distribution due to the RUM lead to changes in the fields of mass and heat
transfers due to evaporation and on the gaseous fuel field. Phenomena such as spray impingement on the diffusor
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lips and detachment of clusters of droplets from the main jet observed in the experiments are also present on the
LES. The 2ΦEASM3 model also enables to decrease and localize more the application of the artificial dissipation.

There are still many working lines related to the evaporation and the RUM modeling as well as room for
improvement too. The RUM models have been a posteriori validated in the DNS of an academic configuration
and directly applied afterwards to the LES of a complex semi-industrial evaporating configuration. A posteriori
validation in LES of a non-evaporating academic configuration by comparison with a Lagrangian reference is the
main missing step. Note that this step was not studied in this work due to a lack of time. The a priori results shown
by Masi (2010) however provided confidence in the capacity of the 2ΦEASM3 model to be valid in LES with only
minor modifications. Including both dispersion and evaporation models increases the complexity of the analysis
not allowing to obtain final conclusion on the effect of the RUM (and the evaporation) models due to the mutual
interaction of the evaporation and the RUM processes. One solution would consist in comparing the evaporation
models in Euler-Lagrange simulations where the uncorrelated motion of the particles is implicitly accounted for.
There is however an obvious lack of experimental data providing at the same time the droplet distribution and the
gaseous fuel distribution. New techniques have recently been developed (Duchaine (2010)) and should provide
additional information to further validate the models.

Several options are foreseen as necessary steps to properly validate LES for real industrial two-phase flows
simulations. In order to account for a large number of physical phenomena the following is on perspective:

1. To further improve the MEF in LES context:

• Account for polydispersity, for which the multi-fluid method (Laurent et al. (2004)) implemented in
AVBP by Vié (2010) is an option.

• Account for collisions and coalescence. Since the RUE field is well reproduced with the 2ΦEASM3
model, the simulation of colliding two-phase flows can be accounted for with the MEF implemented
in AVBP.

• Implement higher order numerical schemes more adapted to the simulation of the dispersed phase
(de Chaisemartin (2009), Kah (2010)) in order to reduce the application of artificial diffusion and
provide better numerical accuracy and stability.

2. To test the impact of the models analyzed here in other phenomena taking place in the combustion chamber:

• Study the impact of RUM and evaporation models on ignition phenomena which is affected by the
gaseous fuel distribution.

3. Integration of new phenomena actually not taken into account:

• Model the formation of liquid films both on the diffusor walls and on the inner walls of the chamber.
LES in the combustion chamber could be coupled to conduction on the walls (Duchaine et al. (2009))
to predict mode accurately the wall temperature and thermal flux through the walls.

• Account for droplet burning regime is key to correctly predict flame instabilities, especially in config-
urations where the flame is located close to the injector.

• Account for primary atomization and secondary breakup to improve the description of the injection.
The numerical methods used in AVBP are not adapted to solve these phenomena using the classical
methods currently developed (VOF, level set, ghost fluid (Menard et al. (2007), Desjardins et al. (2008),
Zuzio et al. (2011) )). The idea would be to couple the primary and secondary atomization with a
polydispersed Euler-Euer (or Euler-Lagrange) simulation. Preliminary tests have recently been shown
by Zuzio et al. (2011). This is in fact a long term perspective.
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Appendix A

Eulerian-Lagrangian simulations with the
code NTMIX-2Φ

A.1 The code NTMIX-2Φ

NTMIX-2Φ is a parallel code. It solves the compressible Navier-Stokes equations in three-dimensions and non-
dimensional form. The temporal advancement uses third-order Runge-Kutta scheme and it uses a sixth-order
compact difference scheme on cartesians grids (Lele (1992)). Direct Particle Simulation by means of Lagrangian
tracking is performed through the Newton’s equations. The dispersed phase simulations use the same time ad-
vancement scheme that the gaseous phase. Two-way coupling between the gas and the dispersed phase is taken
into account. The interpolation of the gaseous properties at the particle’s position is done by means of a third-order
Lagrangian polynomial algorithm.

In the configuration of Chapter 5 boundary conditions are periodic in all directions. However, NTMIX-2Φ
can use non-reflecting boundary conditions (Poinsot et al. (1992)) if needed. The calculations performed by Masi
(2010) in the particle-laden temporal turbulent planar jet used a domain decomposition method (Vermorel (2003))
with MPI message passing protocol. More details about the code and its characteristics can be found in Masi
(2010).

A.2 Projection algorithm

Eulerian fields are obtained from Lagrangian quantities by means of a projection algorithm, that projects the
Lagrangian quantities into an Eulerian grid. Kaufmann & Moreau (2008) performed comparisons of different
projection algorithms. The retained projector is a Gaussian filter (Eq. (A.1), Kaufmann & Moreau (2008), Moreau
& Desjardins (2008)):

w(x(k)
p − x) =

(2∆p)3

erf(63/2)

(
6

π∆2
p

)
exp

(
−6|x(k)

p − x|2

∆2
p

)
, (A.1)

where w(x(k)
p is the weight function, ∆p is the filter width or the size of the projection, which is taken equal to the

grid spacing. x(k)
p is the particle position and x is the coordinates of each grid node in the mesh.
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218 Eulerian-Lagrangian simulations with the code NTMIX-2Φ

The projected Eulerian particle density and velocity read:

n̆p(x, t) =
1

(2∆p)3

∑
k

w(x(k)
p (t)− x), (A.2)

n̆p(x, t)ŭp(x, t) =
1

(2∆p)3

∑
k

w(x(k)
p (t)− x)ŭ(k)

p (t). (A.3)

Problems may appear in regions of the flow where the number of particles is not sufficient. This may lead to
discontinuities in the Eulerian projected fields. This problem can be overcome with an interpolation procedure
taking the values in the cells around the problematic point. In the simulations performed by Masi (2010), low-
inertia cases presented a higher level of preferential concentration, leading to more empty zones in the flow and
thus, the simulations of low Stokes numbers (between 0.1 and 0.5) were the most affected by this problem.



Appendix B

Gaseous phase validation for
particle-laden slab. Additional graphs.

B.1 High turbulence case (HR_St1_#).

(a) (b)

Figure B.1: Comparison of Eulerian and Lagrangian carrier phase velocities in X-direction. HR_St1_# case. (a) Mean
velocity (Uf ) and (b) RMS velocity times the fluid density (ρfUf,RMS) at 5 and 40tref . Simulations performed

with AVBP (—) and NTMIX-2Φ (–•–).
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220 Gaseous phase validation for particle-laden slab. Additional graphs.

(a) (b)

Figure B.2: Comparison of Eulerian and Lagrangian carrier phase velocities in Y-direction. HR_St1_# case. (a) Mean
velocity (Vf ) and (b) RMS velocity times the fluid density (ρfVf,RMS) at 5 and 40tref . Simulations performed

with AVBP (—) and NTMIX-2Φ (–•–).

(a) (b)

Figure B.3: Comparison of Eulerian and Lagrangian carrier phase velocities in Z-direction. HR_St1_# case. (a) Mean
velocity (Wf ) and (b) RMS velocity times the fluid density (ρfWf,RMS) at 5 and 40tref . Simulations performed

with AVBP (—) and NTMIX-2Φ (–•–).



Gaseous phase validation for particle-laden slab. Additional graphs. 221

Figure B.4: Comparison of Eulerian and Lagrangian carrier phase turbulent kinetic energy (q2f ) at 5 and 40tref . HR_St1_#
case. Simulations performed with AVBP (—) and NTMIX-2Φ (–•–).



222 Gaseous phase validation for particle-laden slab. Additional graphs.



Appendix C

Particle-laden slab. Case LR_St1_#.
Additional data.

Figure C.1: Comparison of Lagrangian (NTMIX-2Φ) and Eulerian particle number density (Np) at 5tref . LR_St1_# case.
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224 Particle-laden slab. Case LR_St1_#. Additional data.

Figure C.2: Comparison of Lagrangian (NTMIX-2Φ) and Eulerian particle number density (Np) at 40tref . LR_St1_# case.

Figure C.3: Comparison of Lagrangian (NTMIX-2Φ) and Eulerian particle velocity magnitude (Up) at 5tref . LR_St1_# case.



Particle-laden slab. Case LR_St1_#. Additional data. 225

Figure C.4: Comparison of Lagrangian (NTMIX-2Φ) and Eulerian particle velocity magnitude (Up) at 40tref . LR_St1_# case.

Figure C.5: Comparison of Lagrangian (NTMIX-2Φ) and Eulerian Random Uncorrelated Energy at 5tref . LR_St1_# case.



226 Particle-laden slab. Case LR_St1_#. Additional data.

Figure C.6: Comparison of Lagrangian (NTMIX-2Φ) and Eulerian Random Uncorrelated Energy at 40tref . LR_St1_# case.

Figure C.7: Comparison of AV sensor levels at 5tref . LR_St1_# case.



Particle-laden slab. Case LR_St1_#. Additional data. 227

Figure C.8: Comparison of AV sensor levels at 40tref . LR_St1_# case.



228 Particle-laden slab. Case LR_St1_#. Additional data.



Appendix D

Particle-laden slab. Case LR_St3_#.
Additional data.

D.1 Dispersed phase statistics at 40tref

(a) (b)

Figure D.1: Comparison of Eulerian and Lagrangian (a) mean particle number density (< n̆p >, normalized by the initial
particle number density at the center of the slab) and (b) mean particle velocity in X-direction (< ŭp >p,

normalized by the initial particle velocity in X-direction at the center of the slab) at 40tref . LR_St3_# case.
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230 Particle-laden slab. Case LR_St3_#. Additional data.

(a) (b)

Figure D.2: Comparison of Eulerian and Lagrangian (a) RMS particle number density (< n̆p,RMS >, normalized by the
initial particle number density at the center of the slab) and (b) RMS particle velocity in X-direction

(< ŭp,RMS >p, normalized by the initial particle number density at the center of the slab)at 40tref . LR_St3_#
case.

Figure D.3: Comparison of Eulerian and Lagrangian RMS particle segregation (< n̆2
p > / < n̆p >

2) at 40tref . LR_St3_#
case.



Particle-laden slab. Case LR_St3_#. Additional data. 231

(a)

(b)

Figure D.4: Comparison of Eulerian and Lagrangian (a) mean Random Uncorrelated Energy (< δq̆p >p) and (b) mean
mesoscopic (〈/mesoq2p〉p) and mesoscopic (〈q̆2p〉p) particle energies at 40tref . Normalized by the square of the

initial particle velocity in X-direction at the center of the slab. LR_St3_# case.



232 Particle-laden slab. Case LR_St3_#. Additional data.

(a) (b)

Figure D.5: Comparison of Eulerian and Lagrangian (a) mean production of RUM energy by shear components
(< PShear

RUM >p) and (b) mean productions of RUM energy by compression (< PCompression
RUM >p) at 40tref .

Normalized by the square of the initial particle velocity in X-direction at the center of the slab and the reference
time (tref ). LR_St3_# case.

(a) (b)

Figure D.6: Comparison of Eulerian and Lagrangian (a) mean deviatoric RUM stress tensor XX component (< δR̆∗
p,11 >p)

and (b) mean deviatoric RUM stress tensor XY component (< δR̆∗
p,12 >p) at 40tref . Normalized by the square of

the initial particle velocity in X-direction at the center of the slab. LR_St3_# case.



Particle-laden slab. Case LR_St3_#. Additional data. 233

(a) (b)

Figure D.7: Comparison of Eulerian and Lagrangian (a) mean deviatoric RUM stress tensor YY component (< δR̆∗
p,22 >p)

and (b) mean deviatoric RUM stress tensor ZZ component (< δR̆∗
p,33 >p) at 40tref . Normalized by the square of

the initial particle velocity in X-direction at the center of the slab. LR_St3_# case.

Figure D.8: Mean Artificial Viscosity sensor activation at 40tref . LR_St3_# case.



234 Particle-laden slab. Case LR_St3_#. Additional data.

D.2 Dispersed phase statistics at 80tref

(a) (b)

Figure D.9: Comparison of Eulerian and Lagrangian (a) mean particle number density (< n̆p >, normalized by the initial
particle number density at the center of the slab) and (b) mean particle velocity in X-direction (< ŭp >p,

normalized by the initial particle velocity in X-direction at the center of the slab) at 80tref . LR_St3_# case.

(a) (b)

Figure D.10: Comparison of Eulerian and Lagrangian (a) RMS particle number density (< n̆p,RMS >, normalized by the
initial particle number density at the center of the slab) and (b) RMS particle velocity in X-direction

(< ŭp,RMS >p, normalized by the initial particle number density at the center of the slab)at 80tref . LR_St3_#
case.



Particle-laden slab. Case LR_St3_#. Additional data. 235

Figure D.11: Comparison of Eulerian and Lagrangian RMS particle segregation (< n̆2
p > / < n̆p >

2) at 80tref . LR_St3_#
case.



236 Particle-laden slab. Case LR_St3_#. Additional data.

(a)

(b)

Figure D.12: Comparison of Eulerian and Lagrangian (a) mean Random Uncorrelated Energy (< δq̆p >p) and (b) mean total
(〈q2p〉p) and mesoscopic (〈q̆2p〉p) particle energies at 80tref . Normalized by the square of the initial particle

velocity in X-direction at the center of the slab. LR_St3_# case.



Particle-laden slab. Case LR_St3_#. Additional data. 237

(a) (b)

Figure D.13: Comparison of Eulerian and Lagrangian (a) mean production of RUM energy by shear components
(< PShear

RUM >p) and (b) mean productions of RUM energy by compression (< PCompression
RUM >p) at 80tref .

Normalized by the square of the initial particle velocity in X-direction at the center of the slab and the reference
time (tref ). LR_St3_# case.

(a) (b)

Figure D.14: Comparison of Eulerian and Lagrangian (a) mean deviatoric RUM stress tensor XX component (< δR̆∗
p,11 >p)

and (b) mean deviatoric RUM stress tensor XY component (< δR̆∗
p,12 >p) at 80tref . Normalized by the square

of the initial particle velocity in X-direction at the center of the slab. LR_St3_# case.



238 Particle-laden slab. Case LR_St3_#. Additional data.

(a) (b)

Figure D.15: Comparison of Eulerian and Lagrangian (a) mean deviatoric RUM stress tensor YY component (< δR̆∗
p,22 >p)

and (b) mean deviatoric RUM stress tensor ZZ component (< δR̆∗
p,33 >p) at 80tref . Normalized by the square

of the initial particle velocity in X-direction at the center of the slab. LR_St3_# case.

Figure D.16: Mean Artificial Viscosity sensor activation at 80tref . LR_St3_# case.



Particle-laden slab. Case LR_St3_#. Additional data. 239

D.3 Instantaneous fields at 40 and 80tref

Figure D.17: Comparison of Lagrangian (NTMIX-2Φ) and Eulerian particle number density (Np) at 40tref . LR_St3_# case.

Figure D.18: Comparison of Lagrangian (NTMIX-2Φ) and Eulerian particle number density (Np) at 80tref . LR_St3_# case.



240 Particle-laden slab. Case LR_St3_#. Additional data.

Figure D.19: Comparison of Lagrangian (NTMIX-2Φ) and Eulerian particle velocity magnitude (Up) at 40tref . LR_St3_#
case.

Figure D.20: Comparison of Lagrangian (NTMIX-2Φ) and Eulerian particle velocity magnitude (Up) at 80tref . LR_St3_#
case.



Particle-laden slab. Case LR_St3_#. Additional data. 241

Figure D.21: Comparison of Lagrangian (NTMIX-2Φ) and Eulerian Random Uncorrelated Energy at 40tref . LR_St3_# case.

Figure D.22: Comparison of Lagrangian (NTMIX-2Φ) and Eulerian Random Uncorrelated Energy at 80tref . LR_St3_# case.



242 Particle-laden slab. Case LR_St3_#. Additional data.

Figure D.23: Comparison of AV sensor levels at 40tref . LR_St3_# case.

Figure D.24: Comparison of AV sensor levels at 80tref . LR_St3_# case.



Appendix E

Particle-laden slab. Case LR_St0.33_#.
Additional data.

E.1 Dispersed phase statistics at 20tref

(a) (b)

Figure E.1: Comparison of Eulerian and Lagrangian (a) mean particle number density (< n̆p >, normalized by the initial
particle number density at the center of the slab) and (b) mean particle velocity in X-direction (< ŭp >p,

normalized by the initial particle velocity in X-direction at the center of the slab) at 20tref . LR_St033_# case.
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244 Particle-laden slab. Case LR_St0.33_#. Additional data.

(a) (b)

Figure E.2: Comparison of Eulerian and Lagrangian (a) RMS particle number density (< n̆p,RMS >, normalized by the
initial particle number density at the center of the slab) and (b) RMS particle velocity in X-direction

(< ŭp,RMS >p, normalized by the initial particle number density at the center of the slab)at 20tref . LR_St033_#
case.

Figure E.3: Comparison of Eulerian and Lagrangian RMS particle segregation (< n̆2
p > / < n̆p >

2) at 20tref . LR_St033_#
case.



Particle-laden slab. Case LR_St0.33_#. Additional data. 245

(a) (b)

Figure E.4: Comparison of Eulerian and Lagrangian (a) mean Random Uncorrelated Energy (< δq̆p >p) and (b) mean
mesoscopic (〈q̆2p〉p) particle energies at 20tref . Normalized by the square of the initial particle velocity in

X-direction at the center of the slab. LR_St033_# case.

(a) (b)

Figure E.5: Comparison of Eulerian and Lagrangian (a) mean production of RUM energy by shear components
(< PShear

RUM >p) and (b) mean productions of RUM energy by compression (< PCompression
RUM >p) at 20tref .

Normalized by the square of the initial particle velocity in X-direction at the center of the slab and the reference
time (tref ). LR_St033_# case.



246 Particle-laden slab. Case LR_St0.33_#. Additional data.

(a) (b)

Figure E.6: Comparison of Eulerian and Lagrangian (a) mean deviatoric RUM stress tensor XX component (< δR̆∗
p,11 >p)

and (b) mean deviatoric RUM stress tensor XY component (< δR̆∗
p,12 >p) at 20tref . Normalized by the square of

the initial particle velocity in X-direction at the center of the slab. LR_St033_# case.

(a) (b)

Figure E.7: Comparison of Eulerian and Lagrangian (a) mean deviatoric RUM stress tensor YY component (< δR̆∗
p,22 >p)

and (b) mean deviatoric RUM stress tensor ZZ component (< δR̆∗
p,33 >p) at 20tref . Normalized by the square of

the initial particle velocity in X-direction at the center of the slab. LR_St033_# case.



Particle-laden slab. Case LR_St0.33_#. Additional data. 247

E.2 Dispersed phase statistics at 40tref

(a) (b)

Figure E.8: Comparison of Eulerian and Lagrangian (a) mean particle number density (< n̆p >, normalized by the initial
particle number density at the center of the slab) and (b) mean particle velocity in X-direction (< ŭp >p,

normalized by the initial particle velocity in X-direction at the center of the slab) at 40tref . LR_St033_# case.

(a) (b)

Figure E.9: Comparison of Eulerian and Lagrangian (a) RMS particle number density (< n̆p,RMS >, normalized by the
initial particle number density at the center of the slab) and (b) RMS particle velocity in X-direction

(< ŭp,RMS >p, normalized by the initial particle number density at the center of the slab)at 40tref . LR_St033_#
case.



248 Particle-laden slab. Case LR_St0.33_#. Additional data.

Figure E.10: Comparison of Eulerian and Lagrangian RMS particle segregation (< n̆2
p > / < n̆p >

2) at 40tref . LR_St033_#
case.

(a) (b)

Figure E.11: Comparison of Eulerian and Lagrangian (a) mean Random Uncorrelated Energy (< δq̆p >p) and (b) mean
mesoscopic (〈q̆2p〉p) particle energies at 40tref . Normalized by the square of the initial particle velocity in

X-direction at the center of the slab. LR_St033_# case.



Particle-laden slab. Case LR_St0.33_#. Additional data. 249

(a) (b)

Figure E.12: Comparison of Eulerian and Lagrangian (a) mean production of RUM energy by shear components
(< PShear

RUM >p) and (b) mean productions of RUM energy by compression (< PCompression
RUM >p) at 40tref .

Normalized by the square of the initial particle velocity in X-direction at the center of the slab and the reference
time (tref ). LR_St033_# case.

(a) (b)

Figure E.13: Comparison of Eulerian and Lagrangian (a) mean deviatoric RUM stress tensor XX component (< δR̆∗
p,11 >p)

and (b) mean deviatoric RUM stress tensor XY component (< δR̆∗
p,12 >p) at 40tref . Normalized by the square

of the initial particle velocity in X-direction at the center of the slab. LR_St033_# case.



250 Particle-laden slab. Case LR_St0.33_#. Additional data.

(a) (b)

Figure E.14: Comparison of Eulerian and Lagrangian (a) mean deviatoric RUM stress tensor YY component (< δR̆∗
p,22 >p)

and (b) mean deviatoric RUM stress tensor ZZ component (< δR̆∗
p,33 >p) at 40tref . Normalized by the square

of the initial particle velocity in X-direction at the center of the slab. LR_St033_# case.



Particle-laden slab. Case LR_St0.33_#. Additional data. 251

E.3 Instantaneous fields at 40 and 20tref

Figure E.15: Comparison of Lagrangian (NTMIX-2Φ) and Eulerian particle number density (Np) at 20tref . LR_St033_#
case.

Figure E.16: Comparison of Lagrangian (NTMIX-2Φ) and Eulerian particle number density (Np) at 40tref . LR_St033_#
case.



252 Particle-laden slab. Case LR_St0.33_#. Additional data.

Figure E.17: Comparison of Lagrangian (NTMIX-2Φ) and Eulerian particle velocity magnitude (Up) at 20tref . LR_St033_#
case.

Figure E.18: Comparison of Lagrangian (NTMIX-2Φ) and Eulerian particle velocity magnitude (Up) at 40tref . LR_St033_#
case.



Particle-laden slab. Case LR_St0.33_#. Additional data. 253

Figure E.19: Comparison of Lagrangian (NTMIX-2Φ) and Eulerian Random Uncorrelated Energy at 20tref . LR_St033_#
case.

Figure E.20: Comparison of Lagrangian (NTMIX-2Φ) and Eulerian Random Uncorrelated Energy at 40tref . LR_St033_#
case.



254 Particle-laden slab. Case LR_St0.33_#. Additional data.

Figure E.21: Comparison of AV sensor levels at 20tref . LR_St033_# case.

Figure E.22: Comparison of AV sensor levels at 40tref . LR_St033_# case.



Particle-laden slab. Case LR_St0.33_#. Additional data. 255

Figure E.23: Comparison of AV sensor levels at 80tref . LR_St033_# case.



256 Particle-laden slab. Case LR_St0.33_#. Additional data.



Appendix F

Particle-laden slab. Case HR_St1_#.
Additional data.

F.1 Dispersed phase statistics at 5tref

(a) (b)

Figure F.1: Comparison of Eulerian and Lagrangian (a) mean particle number density (< n̆p >, normalized by the initial
particle number density at the center of the slab) and (b) mean particle velocity in X-direction (< ŭp >p,

normalized by the initial particle velocity in X-direction at the center of the slab) at 5tref . HR_St1_# case.
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258 Particle-laden slab. Case HR_St1_#. Additional data.

(a) (b)

Figure F.2: Comparison of Eulerian and Lagrangian (a) RMS particle number density (< n̆p,RMS >, normalized by the initial
particle number density at the center of the slab) and (b) RMS particle velocity in X-direction (< ŭp,RMS >p,

normalized by the initial particle number density at the center of the slab) at 5tref . HR_St1_# case.

Figure F.3: Comparison of Eulerian and Lagrangian RMS particle segregation (< n̆2
p > / < n̆p >

2) at 5tref . HR_St1_#
case.
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(a) (b)

Figure F.4: Comparison of Eulerian and Lagrangian (a) mean Random Uncorrelated Energy (< δq̆p >p) and (b) mean
mesoscopic (〈q̆2p〉p) particle energies at 5tref . Normalized by the square of the initial particle velocity in

X-direction at the center of the slab. HR_St1_# case.

(a) (b)

Figure F.5: Comparison of Eulerian and Lagrangian (a) mean production of RUM energy by shear components
(< PShear

RUM >p) and (b) mean productions of RUM energy by compression (< PCompression
RUM >p) at 5tref .

Normalized by the square of the initial particle velocity in X-direction at thecenter of the slab and t[h!]e reference
time (tref ). HR_St1_# case.



260 Particle-laden slab. Case HR_St1_#. Additional data.

(a) (b)

Figure F.6: Comparison of Eulerian and Lagrangian (a) mean deviatoric RUM stress tensor XX component (< δR̆∗
p,11 >p)

and (b) mean deviatoric RUM stress tensor XY component (< δR̆∗
p,12 >p) at 5tref . Normalized by the square of

the initial particle velocity in X-direction at the center of the slab. HR_St1_# case.

(a) (b)

Figure F.7: Comparison of Eulerian and Lagrangian (a) mean deviatoric RUM stress tensor YY component (< δR̆∗
p,22 >p)

and (b) mean deviatoric RUM stress tensor ZZ component (< δR̆∗
p,33 >p) at 5tref . Normalized by the square of

the initial particle velocity in X-direction at the center of the slab. HR_St1_# case.
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F.2 Dispersed phase statistics at 40tref

(a) (b)

Figure F.8: Comparison of Eulerian and Lagrangian (a) mean particle number density (< n̆p >, normalized by the initial
particle number density at the center of the slab) and (b) mean particle velocity in X-direction (< ŭp >p,

normalized by the initial particle velocity in X-direction at the center of the slab) at 40tref . HR_St1_# case.

(a) (b)

Figure F.9: Comparison of Eulerian and Lagrangian (a) RMS particle number density (< n̆p,RMS >, normalized by the initial
particle number density at the center of the slab) and (b) RMS particle velocity in X-direction (< ŭp,RMS >p,

normalized by the initial particle number density at the center of the slab)at 40tref . HR_St1_# case.



262 Particle-laden slab. Case HR_St1_#. Additional data.

Figure F.10: Comparison of Eulerian and Lagrangian RMS particle segregation (< n̆2
p > / < n̆p >

2) at 40tref . HR_St1_#
case.

(a) (b)

Figure F.11: Comparison of Eulerian and Lagrangian (a) mean Random Uncorrelated Energy (< δq̆p >p) and (b) mean
mesoscopic (〈q̆2p〉p) particle energies at 40tref . Normalized by the square of the initial particle velocity in

X-direction at the center of the slab. HR_St1_# case.
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(a) (b)

Figure F.12: Comparison of Eulerian and Lagrangian (a) mean production of RUM energy by shear components
(< PShear

RUM >p) and (b) mean productions of RUM energy by compression (< PCompression
RUM >p) at 40tref .

Normalized by the square of the initial particle velocity in X-direction at the center of the slab and the reference
time (tref ). HR_St1_# case.

(a) (b)

Figure F.13: Comparison of Eulerian and Lagrangian (a) mean deviatoric RUM stress tensor XX component (< δR̆∗
p,11 >p)

and (b) mean deviatoric RUM stress tensor XY component (< δR̆∗
p,12 >p) at 40tref . Normalized by the square of

the initial particle velocity in X-direction at the center of the slab. HR_St1_# case.



264 Particle-laden slab. Case HR_St1_#. Additional data.

(a) (b)

Figure F.14: Comparison of Eulerian and Lagrangian (a) mean deviatoric RUM stress tensor YY component (< δR̆∗
p,22 >p)

and (b) mean deviatoric RUM stress tensor ZZ component (< δR̆∗
p,33 >p) at 40tref . Normalized by the square of

the initial particle velocity in X-direction at the center of the slab. HR_St1_# case.
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F.3 Instantaneous fields at 5 and 40tref

Figure F.15: Comparison of Lagrangian (NTMIX-2Φ) and Eulerian particle number density (Np) at 5tref . HR_St1_# case.

Figure F.16: Comparison of Lagrangian (NTMIX-2Φ) and Eulerian particle number density (Np) at 40tref . HR_St1_# case.



266 Particle-laden slab. Case HR_St1_#. Additional data.

Figure F.17: Comparison of Lagrangian (NTMIX-2Φ) and Eulerian particle velocity magnitude (Up) at 5tref . HR_St1_# case.

Figure F.18: Comparison of Lagrangian (NTMIX-2Φ) and Eulerian particle velocity magnitude (Up) at 40tref . HR_St1_#
case.
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Figure F.19: Comparison of Lagrangian (NTMIX-2Φ) and Eulerian Random Uncorrelated Energy at 5tref . HR_St1_# case.

Figure F.20: Comparison of Lagrangian (NTMIX-2Φ) and Eulerian Random Uncorrelated Energy at 40tref . HR_St1_# case.



268 Particle-laden slab. Case HR_St1_#. Additional data.

Figure F.21: Comparison of AV sensor levels at 5tref . HR_St1_# case.

Figure F.22: Comparison of AV sensor levels at 40tref . HR_St1_# case.
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Figure F.23: Comparison of AV sensor levels at 70tref . HR_St1_# case.
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Appendix G

MERCATO configuration. Additional
graphs.

(a) (b)

Figure G.1: Mean (a) and RMS (b) droplet diameter profiles.
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272 MERCATO configuration. Additional graphs.

(a) (b)

Figure G.2: Mean (a) and RMS (b) liquid axial velocity profiles.

(a) (b)

Figure G.3: Mean (a) and RMS (b) liquid radial velocity profiles.



MERCATO configuration. Additional graphs. 273

(a) (b)

Figure G.4: Mean (a) and RMS (b) liquid tangential velocity profiles.

(a) (b)

Figure G.5: Mean liquid volume fraction (a) and liquid volume flux (b).
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