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"All the rivers run into the sea; 

yet the sea is not full; 

unto the place from whence the rivers come, thither they return again." 

Ecclesiastes 

 

 

“水流心不競，雲在意俱遲” 

唐·杜甫 《江亭》 
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Estuaries are highly dynamic and productive ecosystems, linking continents and oceans. 

Organic Matter (OM) represents a complex mixture of organic compounds, which is channeled 

through the estuaries into the costal seas. During transit, OM from different sources can be removed 

and/or processed within estuaries, and they can have a significant impact on the microbial loop as 

well as biogeochemical cycles (Brankovits et al., 2017; Canuel and Hardison, 2016; McCallister et 

al., 2006). Such processes are closely linked to OM composition (Derrien et al., 2019). 

Characterizing OM is thus a major environmental concern, which is important for monitoring and 

controlling the estuarine water quality. 

Categorized by size, OM can be operationally divided into Dissolved Organic Matter 

(DOM) and Particulate Organic Matter (POM). Both of these carbon pools play important roles in 

nutrient dynamics and biogeochemical processes in estuaries (Bianchi, 2007; Bianchi and Canuel, 

2011; Canuel and Hardison, 2016; Derrien et al., 2019). However, most studies investigated 

dynamics of estuarine DOM and POM separately. Simultaneous characterization of DOM and 

POM in estuaries is still lacking and should be prioritized, as each OM pool has its own properties 

(Thibault et al., 2019). The compositions of POM and DOM within estuaries can undergo spatial 

and temporal fluctuations due to factors such as the mixing of water masses, seasonality, and 

complex transformation processes (Bittar et al., 2016; Guo et al., 2014; Xie et al., 2018; Chupakova 

et al., 2018; Guo et al., 2019). Such variability makes the characterization of estuarine POM and 

DOM especially challenging. This further complicates our understanding of the ecological 

functioning of estuaries, notably how they regulate the different types of DOM and POM.  

Studying the biogeochemical functioning of human-impacted estuaries may facilitate 

sustainable management of these essential ecosystems. This is particularly relevant to the Seine 

Estuary (France), which is a human-impacted estuary and is important from ecological, 
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economical, and biogeochemical points of view (Romero et al., 2019). Before undertaking costly 

restoration operations, it is critical to assess the functioning of this estuary, particularly in terms of 

DOM and POM dynamics, which influence global biogeochemical cycles. 

Within the framework of the SARTRE (GIP Seine-Aval) and RUNTIME (EC2CO 

CNRS/INSU/OFB) projects, the aim of this PhD thesis is to evaluate the ecological role of the 

Seine estuary in the regulation of different types of DOM and POM, and assess the impact of 

natural (i.e. hydroclimate conditions) and anthropogenic (i.e. land use characteristics) changes on 

this role. This PhD manuscript consists of six chapters: 

Chapter 1 provides a literature review on estuaries and the dynamics of estuarine POM and 

DOM. Different approaches to characterize POM and DOM are also reviewed, including elemental 

and isotopic analysis, lipid biomarkers, as well as absorbance and fluorescence spectroscopy. 

Chapter 2 presents the sampling strategy and the different analytical and statistical 

techniques used in this thesis. 

Chapter 3 investigates the POM dynamics across the Seine River basin at the bulk and 

molecular scales, through elemental and isotopic analyses as well as lipid biomarkers (i.e. bacterial 

tetraethers). A novel proxy, Riverine IndeX (RIX) is proposed in this chapter to trace riverine 

organic matter inputs, which can be broadly applicable in modern samples as well as in 

paleorecords. This chapter is organized for peer–reviewed publication and will be submitted to 

Biogeosciences in September 2023. 

Chapter 4 explores the fate of different types of POM along the estuary and investigates the 

relationships between POM composition and hydroclimate conditions/land use using bulk analysis 

and complementary lipid biomarkers (i.e. sterols, stanols, fatty acids, and n-alkanes). The Seine 

estuary is further categorized into 3 zones based on variations of distinct types of POM. This 

chapter is in preparation for submission to Chemical Geology. 
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Chapter 5 investigates the sources, transformations, and fate of DOM in the Seine estuary 

using absorbance and fluorescence spectroscopy. DOM composition along this human-impacted 

estuary is further disentangled by unsupervised and supervised machine learning as well as 

explainable artificial intelligence. A machine learning model (light Gradient Boosting Machine 

classification for DOM, GBM_DOM) is developed in this chapter to classify estuarine zonation 

and identify main DOM characteristics within each zone. This chapter is organized as an article for 

submission to Science of The Total Environment. 

Chapter 6 presents conclusions of this PhD thesis and synthesizes a conceptual model to 

assess the functioning of estuarine ecosystems in terms of DOM and POM dynamics across various 

land use types under high and low-flow scenarios. 
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1.1 Estuary and the carbon cycling 

According to Fairbridge's definition, an estuary is an inlet of the sea reaching a river valley 

as far as the upper limit of tidal rise (Fairbridge, 1980). It represents the major boundary that link 

the continents to oceans (Figure 1-1), which is a highly dynamic and productive zone (Canuel et 

al., 2012). Large estuaries are common in low relief coastal regions (i.e. the east coast of North 

America and broad coastal plains of Europe), whereas they are much less common in uplifted 

coastlines (i.e. the Pacific edge of South and North America) (Day Jr. et al., 2012). 

 

Figure 1-1. Carbon cycling in estuarine systems (Canuel and Hardison, 2016) 

 

Estuaries are important zones from ecological, economical, and biogeochemical points of 

view. They play an essential role in the production and transformation of Organic Matter (OM) 

(Bianchi, 2007; Cai, 2011; Canuel and Hardison, 2016). OM exported from land is channelled 

through the estuaries into the coastal seas. During transit, OM is modified through abiotic 

(Aufdenkampe et al., 2001) and biotic (Sobczak et al., 2002) processes prior its export to the sea. 
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In addition, continental shelves are locations of terrestrial OM degradation/ sedimentation, but they 

also serve as a CO2 sink (0.25±0.25 Pg C y−1) (Cai, 2011). At a global inventory of~662±32 Pg C, 

marine dissolved organic carbon (DOC) exceeds the carbon inventory of ocean organic biomass 

by a factor of 200, making it one of the ocean's greatest bioreactive carbon pools (Hansell et al., 

2009, 2012). In addition, carbon burial rates in estuarine and oceanic systems equal 237.6 ± 45.4 

TgC (Nellemann and Corcoran, 2009). Estuaries have the potential to contribute as much as 81 Tg 

of carbon per year to organic carbon burial rates, corresponding to approximately 64% of the 

organic carbon burial rates found in the coastal ocean (Canuel et al., 2012). Hence, estuaries are 

important carbon storage and exchange sites between the land, ocean and atmosphere, and they 

play an important part in the global carbon cycle (Bianchi, 2007; Canuel et al., 2012; Cai, 2011). 

However, the magnitudes and mechanisms of the modifications of organic matter within estuaries 

remain poorly understood (Bianchi, 2007; Derrien et al., 2019). Global carbon budgets and accurate 

climate models for climate change prediction need an improved understanding of carbon cycling 

within estuary systems (Cai, 2011; Canuel and Hardison, 2016).  

1.2 Organic matter in estuaries 

Organic matter is a complex and heterogeneous mixture of organic compounds, which is 

made up of a large number of molecules from different classes (e.g. proteins, tannins, lignin, 

aromatic compounds, carbohydrates and polysaccharides, saturated and unsaturated hydrocarbons) 

with distinct size, bioavailability, and polarity (hydrophilic, hydrophobic, and transphilic) (Antony 

et al., 2017; Derrien et al., 2019; Leenheer and Croué, 2003; Volkman and Tanoue, 2002). 

Estuarine waters are highly dynamic and productive systems, which receive significant 

external (allochthonous) material as well as local (autochthonous) production. The allochthonous 
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OM has different natural sources, from land (i.e. soils, terrestrial plants, and leaves) and the 

atmosphere (i.e. dust storms) (Derrien et al., 2018; Hamza, 2021; Lee et al., 2020; Osburn et al., 

2015; Wei et al., 2009). Anthropogenic activities are also important allochthonous OM sources, 

including untreated and/or treated sewage (He et al., 2018; Meng et al., 2013), industrial 

wastewaters (Hao et al., 2021), and oil spills (Zhou et al., 2013). On the other hand, the 

autochthonous OM is formed within water bodies and processed in the aquatic food web. 

Autochthonous OM can be derived from aquatic biota (e.g. algae and bacteria) as well as viruses 

via viral lysis (Castillo et al., 2010; Kuhlisch et al., 2021; Patriarca et al., 2021). OM from distinct 

sources can be further removed and/or processed within estuaries, and they can have a significant 

impact on the biogeochemical cycle and microbial loop (Brankovits et al., 2017; Canuel and 

Hardison, 2016; McCallister et al., 2006). 

 

Figure 1-2. Diagram showing the size distribution of natural organic matter in aquatic systems 

adapted after Monroy et al. (2017)  

 

OM in aquatic systems can be divided into Dissolved Organic Matter (DOM) and 

Particulate Organic Matter (POM) based on the size of the OM (Figure 1-2). In addition, there is a 

continuum between DOM and POM, termed as colloids (Figure 1-2). DOM (including most 
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colloids) and POM have been separated using the relatively arbitrary criteria of filter pore sizes 

ranging from 0.1 to 0.7 μm (Asmala et al., 2013). In marine studies, the Whatman GF/F glass fiber 

filters with the pore size of 0.7 μm are commonly used for filtration according to practical 

considerations, as these filters are non-contaminating, easy to clean and have great flow 

characteristics (Repeta, 2015). 

Exchanges between DOM and POM are regulated by processes including flocculation, 

aggregation, sorption, solubilization, and microbial degradation (Figure 1-3) (Derrien et al., 2019; 

He et al., 2016). Additionally, DOM and POM are subject to photochemical processes, thus 

mediating the production of Reactive Oxygen Species (ROS), carbon monoxide (CO), and carbon 

dioxide (CO2) (Figure 1-3) (Porcal et al., 2015; Vione et al., 2014; Wolf et al., 2018). Such 

processes are controlled by distinct environmental conditions (i.e. temperature, salinity, pH, and 

solar irradiance) (He et al., 2016; Porcal et al., 2013).  

Most studies performed until now investigated estuarine DOM and POM separately. 

Simultaneous DOM and POM characterization in estuaries is still lacking and should be prioritized, 

as each OM pool has its own properties and dynamics (Thibault et al., 2019). Hence, characterizing 

DOM and POM simultaneously is important for understanding the exchange processes and overall 

dynamics of OM in such complex systems (Derrien et al., 2019; He et al., 2016).  
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Figure 1-3.  Controlling factors of DOM and POM in aquatic environment adapted after Derrien 

et al. (2019). Sources, sinks, and transformation processes are indicated by red arrows, black 

arrows, and blue arrows, respectively. The dotted line indicates the recycled inorganic nutrient 

pathway. 

1.3 POM characterization  

Understanding the composition, transport, and fate of POM in estuaries is essential for 

assessing carbon budget, nutrient dynamics, and biogeochemical processes (Bianchi, 2007; Bianchi 

and Canuel, 2011; Canuel et al., 2012). The characterization of POM can be determined using a 

combination of bulk geochemical analysis and lipid biomarkers (Bianchi, 2007; Bianchi and 

Canuel, 2011).  

Bulk geochemical analysis involves the measurement of various chemical properties of 

POM samples, including total organic carbon content, total nitrogen content, and their stable 
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isotopic ratios. These analyses provide information about the global characteristics of POM 

(Bianchi and Canuel, 2011).  

On the other hand, lipid biomarkers are more specific organic molecules, which are defined 

as compounds synthesized by organisms that are extractable by organic solvents, but insoluble in 

water. They are derived from distinct sources, including soils, plants, algae, bacteria, and other 

organisms. The complementary use of lipid biomarkers, such as tetraethers lipids, sterols, stanols, 

fatty acids, and n-alkanes, can indicate the OM contributions from allochthonous or autochthonous 

sources, which will be described in detail in this chapter.  

1.3.1 Bulk geochemical parameters  

1.3.1.1 Elemental analyses 

The atomic C to N ratios can provide basic information about the sources of POM (Lamb 

et al., 2006). Generally, C/N ratios in terrestrial plants are higher than those in aquatic organisms. 

For example, the vascular plants are composed of carbon-rich compounds (e.g., lignin), leading to 

high C/N ratios (>17). In contrast, microalgae are composed of protein-rich compounds, leading to 

low C/N ratios (5 to 7). However, caution should be taken when using C/N ratios in aquatic systems 

as C/N ratios could be influenced by complex processes. For example, the presence of inorganic 

nitrogen and the selective degradation of amino acids during diagenetic processes could affect C/N 

ratios, leading to uncertainties in assessing POM sources using this proxy (Lamb et al., 2006; 

Müller, 1977). 
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Figure 1-4.  Typical C/N ratios and δ13C in organic matter adapted after Lamb et al. (2006) 

1.3.1.2 Stable carbon isotopic composition (δ13C) 

As a supplement to C/N ratios, stable carbon isotopic analysis is also widely used for tracing 

organic matter sources. Carbon has two stable isotopes, including 12C (the most abundant form 

with 6 protons and 6 neutrons in its nucleus) and 13C (much less abundant form with 6 protons and 

7 neutrons). To express the proportion of 13C in the environment, the notation δ is used to quantify 

the difference between the 13C/12C ratio of a sample relative to an international standard: the Vienna 

Pee Dee Belemnite (VPDB; Eq. 1).  
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δ13C(‰) =

(

 
 
(
𝐶 

13

𝐶 12
)
sample

(
𝐶 

13

𝐶 
12 )

VPDB

− 1

)

 
 
× 1000                (1) 

Generally, aquatic organisms have more positive δ13C values than terrestrial plants (Lamb 

et al., 2006). Based upon this, the δ13C has been used for determining the proportions of distinct 

sources in the mixture, using mixing models (Moore and Semmens, 2008). However, overlaps in 

δ13C (and C/N ratios) of distinct source materials could complicate the applications of these bulk 

geochemical proxies in complex environments (Figure 1-4). Additionally, range of values in δ13C 

values can be considerable, and terrestrial C4-plants can have higher δ13C values (−12‰), which 

may lead to inaccuracies in calculating the relative amounts of terrestrial organic matter in marine 

systems using δ13C values of TOC (Hedges et al., 1997). For example, C/N ratio showed an obvious 

decreasing trend from land to sea along the Dagu River-estuary-marine system, suggesting 

decreasing terrestrial input from upstream to downstream  Liu et al., 2021). However, no obvious 

trend was observed for δ13C values, which was interpreted by the significant influence of the 

heavier δ13C of C4 plants (Liu et al., 2021). The bulk proxies should therefore be supported by lipid 

biomarkers, which could provide reliable source assessment of organic matter in estuaries. 

Nitrogen (N) is an essential component of proteins, nucleic acids, and other biomolecules 

that are important for the growth and development of organisms. The availability of N can control 

the rate of primary production on a variety of temporal and spatial scales, which can influence the 

structure and functioning of ecosystems  (Casciotti, 2016).  

Stable isotopes of nitrogen serve as powerful tools for understanding the sources, 

transformations, and fates of nitrogen compounds (Denk et al., 2017). The most abundant nitrogen 

isotope is 14N (99.67%), whereas the less abundant nitrogen isotope is 15N, which makes up about 
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0.33% of nitrogen in the natural environment. Similar to stable carbon isotope, the notation δ is 

used to quantify the difference between the 15N/14N ratio of a sample relative to air (Eq. 2). 

δ15N(‰) = (
(

𝑁 
15

𝑁 
14 )

sample

(
𝑁 

15

𝑁 
14 )

air

− 1) × 1000            (2) 

Nitrogen isotopes (δ15N) are influenced by complex microbial processes (i.e. nitrogen 

fixation, nitrification, and denitrification) and anthropogenic activities (Bianchi and Canuel, 2011; 

Casciotti, 2016; Denk et al., 2017). While δ15N analysis can provide valuable insights into the 

sources and cycling of nitrogen in aquatic systems, its interpretation can be complex and requires 

careful consideration (Bianchi and Canuel, 2011). 

Despite these challenges, the nitrogen isotopes are still considered to be a useful tool to 

study OM sources in estuaries. For example, the δ15N values of suspended matter are much higher 

(18-24 ‰) during the flowering periods of phytoplankton in the Scheldt estuary, which was 

interpreted as the nitrogenous nutrient assimilated by phytoplankton (Mariotti et al., 1984). 

1.3.2 Lipid biomarkers 

Bulk geochemical proxies can be influenced by decomposition processes, remineralization, 

and distinct terrigenous sources, which could inevitably complicate their applications (Lamb et al., 

2006). To overcome the limitations of the bulk proxies, source-specific lipid biomarkers can be 

applied for tracing the sources of organic matter. The latter could provide more reliable information 

on POM sources compared with bulk parameters (Bianchi and Canuel, 2011).   
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1.3.2.1 GDGTs 

Glycerol dialkyl glycerol tetraethers (GDGTs) are membrane lipids of Archaea and some 

Bacteria. They occur ubiquitously in a wide range of terrestrial and aquatic environments, including 

soils (Hopmans et al., 2004), lakes (Tierney and Russell, 2009), marine settings (Schouten et al., 

2002), peats (Sinninghe Damsté et al., 2000), cold seeps (Zhang et al., 2020), hydrothermal vents 

(Hu et al., 2012), and estuaries (Wu et al., 2014). Generally, based on structures and sources, 

GDGTs are divided into two groups (Figure 1-5), isoprenoid GDGTs (isoGDGTs) and branched 

GDGTs (brGDGTs). The isoGDGTs (cf. structures in Figure 1-5) are synthesized by Archaea, 

whereas the brGDGTs are produced by some Bacteria according to the distinct stereoconfiguration 

of their glycerol moieties and alkyl chains (Weijers et al., 2006). The exact producers of brGDGTs 

are not identified yet, even though some of them are attributed to the phylum Acidobacteria (Chen 

et al., 2022; Halamka et al., 2022; Sinninghe Damsté et al., 2011).  

The structures of the major isoGDGTs (GDGT-0, -1, -2, -3, Crenarchaeol, and 

Crenarchaeol’) show differences in the number of cyclopentane moieties (0-4) in their alkyl chains 

(Figure 1-5). It was shown that the number of cyclopentane moieties of the GDGTs produced by 

cultured hyperthermophillic archaea increased with growth temperature, which was suggested to 

be a response of the cell membrane for adapting to temperature changes (Gliozzi et al., 1983; Uda 

et al., 2001). This mechanism thus allowed for reconstructing the temperature at which the 

isoGDGTs were synthesized in marine settings, by calculating the average number of cyclopentane 

rings. The TEX86 (tetraether index of tetraethers consisting of 86 carbons) proxy, which reflects 

the aforementioned average number of cyclopentane rings in isoGDGTs, was linearly correlated to 

sea surface temperatures (Schouten et al., 2002). This isoGDGT-based proxy is now used globally 
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for paleotemperature reconstructions in marine as well as lacustrine settings on a wide variety of 

timescales (Schouten et al., 2013). 

The brGDGTs were shown to be produced by unknown heterotrophic bacteria (Blewett et 

al., 2022; Huguet et al., 2017; Weijers et al., 2010). Similar to isoGDGTs, brGDGTs also contain 

varying numbers of cyclopentane rings, with 0 (suffix a), 1 (suffix b), and 2 (suffix c) cyclopentane 

moieties. In addition to these cyclopentane moieties, there is also a varying number of methyl 

groups. Specifically, brGDGTs with tetramethylated (prefix I), pentamethylated (prefix II), and 

hexamethylated (prefix III) alkyl backbones can be distinguished (Figure 1-5). In soils, the degree 

of cyclisation of brGDGTs (CBT) was shown to be related with pH, whereas the degree of 

methylation (MBT) was found to be related to mean annual air temperature (MAAT) and pH in a 

global soil dataset (n=134) (Weijers et al., 2007). This would reflect the adaptation mechanism of 

brGDGT-producing bacteria to environmental changes based on the hypothesis that the 

temperature could impact on the membrane fluidity and permeability, whereas the pH could affect 

the proton gradient across the membrane (Pearson and Ingalls, 2013; Weijers et al., 2007).  

The brGDGT-based proxies were largely applied for reconstructing continental temperature 

and soil pH (Schouten et al., 2013). Recently, the improved chromatography methods allowed for 

separation of brGDGTs with distinct position of alkyl-chain methylations (De Jonge et al., 2014, 

2013; Ding et al., 2016; Hopmans et al., 2016). The 5-methyl (methyl groups at the fifth position), 

6-methyl (methyl groups at the sixth position), and 7-methyl (methyl groups at the seventh 

position) brGDGTs could then be separated and quantified. The fractional abundances of 6-methyl 

brGDGTs were significantly correlated with soil pH and were excluded from the MBT, leading to 

the development of MBT’5Me. The latter index is only influenced by MAAT and no more by pH 

(De Jonge et al., 2014), improving the MAAT reconstructions based on this proxy. In recent years, 
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global MAAT calibrations have been developed both in terrestrial and aquatic settings, with 

different models and increasing number of samples (Russell et al., 2018; Véquaud et al., 2022). 

The IR6Me index represents the proportion of 6-methyl brGDGTs vs. 5-methyl brGDGTs, 

with high values indicating higher abundance of 6- vs. 5-methyl brGDGTs (De Jonge et al., 2015). 

In aquatic systems, 6-methyl brGDGTs were considered as being related to in situ production (De 

Jonge et al., 2015; Kirkels et al., 2022b). IR6Me (Eq. 3) was calculated according to De Jonge et al. 

(2015) with Roman numbers referring to the structures in Figure 1-5.  

IR6Me  =  
IIa6+IIb6+IIc6+IIIa6+IIIb6+IIIc6

IIa5+IIb5+IIc5+IIa6+IIb6+IIc6+IIIa5+IIIb5+IIIc5+IIIa6+IIIb6+IIIc6
  (3) 

 

Figure 1-5. Structures of the main GDGTs and GMGTs studied 

Initially, the brGDGTs were suggested to be mainly produced in soils and one specific 

isoGDGT, the crenarchaeol, by marine Thaumarchaeota (a phylum of Archaea) in aquatic 

ecosystems (Hopmans et al., 2004). Therefore, the Branched and Isoprenoid Tetraether (BIT) 
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index, based on the relative abundance ratio of soil-derived brGDGTs to crenarchaeol, was 

proposed for quantifying river-transported soil organic matter in aquatic environments (Hopmans 

et al., 2004).  

BIT =  
Ia+IIa5+IIa6+IIIa5+IIIa6

Ia+IIa5+IIa6+IIIa5+IIIa5+crenarchaeol
           (4) 

BIT values were suggested to be high in soil samples (close to 1) and low in open marine 

samples (close to 0). Consequently, high BIT values were considered as indicators of substantial 

soil organic matter inputs to aquatic settings. However, the application of BIT is complicated by 

the fact that crenarchaeol can be largely produced in soils and in-situ produced brGDGTs in aquatic 

environments (Schouten et al., 2013). Furthermore, the applicability of brGDGT-based proxies in 

estuaries still remains debatable because of the complex biogeochemical processes and/or long 

transport distance from land to sea (Cheng et al., 2021). For example, higher BIT values could be 

observed offshore due to more fluvial-derived terrestrial organic matter buried offshore (Wu et al., 

2014). Moreover, the BIT index can be significantly influenced by elevated crenarchaeol 

concentration, e.g. in the Thames Estuary where it was interpreted as anthropogenic disturbance 

(Lopes dos Santos and Vane, 2016). Hence, additional molecular proxies for quantifying the 

riverine OM inputs are still needed.  

1.3.2.2 brGMGTs 

The branched glycerol monoalkyl glycerol tetraethers (brGMGTs) are a much less studied 

group of lipids compared to brGDGTs. To date, brGMGTs have been identified in marine 

sediments (Liu et al., 2012), peats (Elling et al., 2023; Naafs et al., 2018), soils (Baxter et al., 2021), 

rivers (Kirkels et al., 2022a), and lake sediments (Baxter et al., 2021, 2019).  

They are structurally similar to brGDGTs, but possess an additional covalent carbon–

carbon bond between the alkyl chains, leading to “H-shaped” structure (Figure 1-5). The bridge of 
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brGMGTs was considered to be a primary adaptation to heat stress (Baxter et al., 2019; Naafs et 

al., 2018). Although the rigorous chemical characterization of brGMGTs is lacking and the source 

organisms of brGMGTs are unknown, the correlations between fractional abundances of brGMGTs 

and MAAT were still observed, showing their potential as temperature indicators in lakes and peats 

(Baxter et al., 2019; Naafs et al., 2018).  

A recent study indicates that shifts in microbial community composition in response to other 

unknown environmental factors may also control the production of brGMGTs in peats and lignites 

(Elling et al., 2023). In order to use the brGMGT as environmental proxies in sedimentary records, 

it is still important to determine which factors influence their distributions in soils, riverine and 

marine environments, which are currently poorly understood (Bijl et al., 2021). 

1.3.2.3 n-alkanes  

The straight-chain alkanes (n-alkanes) are abundant and common lipid biomarkers from 

terrestrial plants, aquatic plants and aquatic organisms, with CnH2n+2 as molecular formula (Figure 

1-6). The carbon chain length for n-alkanes varies depending on source organisms. For example, 

short-chain n-alkanes (C<20) are mainly found in photosynthetic bacteria and algae  (Cranwell et 

al., 1987; Pisani et al., 2013). Middle-chain n-alkanes (C20-C25) are enriched in aquatic plants 

(submerged and floating aquatic macrophytes) (Cranwell, 1984; Ficken et al., 2000). Long-chain 

n-alkanes (C>25) with a strong odd-to-even carbon preference are predominant in terrestrial higher 

plants (Ficken et al., 2000; Silva et al., 2012). Hence, sources of organic matter could be 

distinguished based on n-alkane distributions (Derrien et al., 2017). Several proxies based on n-

alkane distributions have been proposed for identifying OM sources, including Average Chain 

Length ratio (ACL, also known as Mean Carbon Number), Carbon Preference Index (CPI), and 

aquatic proxy (Paq). 
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Figure 1-6. Structure of C16 alkane 

ACL (Eq. 5) reflects the average chain length of the n-alkanes and is a weighted average of 

the relative abundance of the different homologs. It can be used to distinguish the n-alkanes derived 

from terrestrial higher plants from those of microbial and algal sources (Derrien et al., 2017). In 

addition, ACL values can be utilized to predict climate-dependent vegetation change. The 

vegetation in drier and warmer temperatures biosynthesizes longer chain alkyl lipids than that in 

temperate settings, with higher ACL values indicating drier and warmer temperatures 

(Rommerskirchen et al., 2003; Sarkar et al., 2014). Nevertheless, this has no universal validity. 

𝐴𝐶𝐿 = [
(∑𝐶𝑖 × 𝑖)

𝐶𝑖
] (5) 

CPI ratio (Eq. 6) is a proxy showing odd carbon forms relative to their even carbon 

homologs in a certain range of carbon numbers. The n-alkanes from terrestrial higher plants usually 

have higher CPI values (>5). Compared to natural biogenic forms, petroleum-derived n-alkanes 

generally lack the odd carbon predominance. The anthropogenic hydrocarbon pollution in aquatic 

systems could therefore be identified by low CPI values (close to 1). In addition, natural 

degradation can also result in a more homogenous distribution of plant-derived (long-chain) n-

alkanes, as reflected by low CPI values (Zhu et al., 2011).  

CPI =
1

2
[
(C25+C27+C29+C31+C33)

(C24+C26+C28+C30+C32)
+
(C25+C27+C29+C31+C33)

(C26+C28+C30+C32+C34)
] (6) 

Paq (Eq. 7) is calculated based on the relative proportion of two middle-chain n-alkanes (C23 

and C25) to two long-chain n-alkanes (C29 and C31) (Ficken et al., 2000; Sikes et al., 2009). It can 

be used for differentiating the n-alkane inputs from terrestrial plants and aquatic plants. For 

example, 0.01<Paq < 0.25 reflects a predominance of n-alkanes derived from terrestrial plants, 0.4–
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0.6 from emergent aquatic plant and >0.6 from aquatic plants and marine macrophytes (Ficken et 

al., 2000; Sikes et al., 2009).  

𝑃𝑎𝑞 = [
(C23 + C25)

(C23 + C25 + C29 + C31)
] (7) 

The n-alkane-derived proxies could support source information of organic matter obtained 

from other biomarkers and bulk proxies. For example, in the Conwy Estuary, Paq was compared 

with bulk proxies (δ13C and C/N) and GDGT-derived proxy (BIT) (Lopes dos Santos and Vane, 

2020). These authors observed that δ13C increased in the seaward direction and showed a negative 

correlation with C/N and BIT and a positive correlation to Paq, which supports the seaward declines 

in the terrestrial contribution from the land to Conwy Bay. 

1.3.2.4 Fatty acids 

A fatty acid consists of a straight chain with distinct numbers of carbon atoms and a 

carboxyl group (―COOH) at the end of the chain (Figure 1-7). Fatty acids can be classified into 

saturated and unsaturated fatty acids (Figure 1-7). The fatty acid is saturated if the carbon-to-carbon 

bonds are all single. On the other hand, the fatty acid is unsaturated and more labile if one or more 

double bonds exists between carbon atoms. Unsaturated fatty acids can be further divided into 

monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs) based on the 

number of double bonds.  

Fatty acids generally exist in bound forms (esterified forms), free forms, and in combination 

with biochemical classes (such as glycolipids and lipoproteins). Most fatty acids are present in 

bound forms in neutral and polar lipids, whereas free fatty acids are less abundant in natural 

environments (Bianchi and Canuel, 2011). 
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The nomenclature for fatty acids is based on its carbon chain length, number of double 

bonds and position of the double bonds. For example, C16:1ω7 indicates that i) the number of carbon 

atoms is 16, ii) the number of double bonds is 1, and iii) ω7 is the position of the double bond 

relative to the aliphatic end (Figure 1-7). 

 

Figure 1-7. Structures of saturated and unsaturated fatty acids 

Fatty acids are commonly used as lipid biomarkers for microbial ecology, trophic studies, 

and for characterizing organic matter in aquatic environments (Bianchi and Canuel, 2011). C16:0 

(palmitic acid) and C18:0 (stearic acid) are nonspecific fatty acids, as they are abundant and widely 

distributed compounds in most organisms in a number of environments (terrestrial, marine, 

bacteria, and animals). The long chain saturated fatty acids are abundant in terrestrial higher plants 

(C16-C30), whereas the short chain (C12-C19) saturated fatty acids are commonly observed in 

autochthonous organisms (Bianchi and Canuel, 2011; Kawamura et al., 1987). 
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Fatty acids are thus valuable tools to trace the sources of natural organic matter in aquatic 

systems. For instance, as diatoms are characterized by high levels of C16:1/C16:0, this ratio can be 

used as a general diatom biomarker (Budge et al., 2001; Claustre et al., 1989). 

Fatty acids have been widely utilized in estuaries as they provide valuable insights into 

sources and transformations of POM (Bianchi and Canuel, 2011). For example, in the Altamaha 

estuary, the contents of total fatty acids showed similar variations with the chlorophyll a, 

highlighting significant algal contribution into the samples (Dai and Sun, 2007). 

1.3.2.5 Sterols and stanols 

Sterols (cf. structures in Figure 1-8), important lipids for eukaryotes, are synthesized by 

various types of organisms. For instance, sterol distribution varies across plants and animals, with 

phytosterols being more frequent in plants and cholesterol predominating in animals (Lagarda et 

al., 2006; Weete et al., 2010). Specifically, fungi and plants mostly synthesize ergosterols and 

phytosterols with 28 to 29 carbon atoms (C-28 and C-29 sterols), whereas animals primarily 

synthesize the cholesterol (C-27 sterol). Given their distinct distribution in various 

organisms/environments, sterols are widely used as biomarkers for identifying sources of natural 

organic matter in aquatic systems (Bianchi and Canuel, 2011).  

The stigmasterol (stigmasta-5,22E-dien-3β-ol), β-Sitosterol (stigamast-5-en-3β-ol), 

brassicasterol (ergosta-5,22E-dien-3β-ol), and cholesterol (cholest-5-en-3β-ol) could be used for 

tracing the sources of natural organic matter. For instance, the stigmasterol and β-Sitosterol are 

biomarkers for terrestrial organic matter, whereas brassicasterol is a biomarker of aquatic 

organisms (Moreau et al., 2002; Volkman, 1986).  

A recent study suggests that some animals can also synthesize phytosterols (Michellod et 

al., 2023). These authors found that sitosterol (one of the phytosterols) can be synthesized de novo 
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by gutless marine annelids. This indicates that, in addition to terrestrial sources, phytosterols may 

also be produced in situ in marine environments.  

Stanols are saturated sterols as they have no double bonds in the ring (Figure 1-8). Some 

stanols are widely used biomarkers for assessing sewage contamination in aquatic environments 

(He et al., 2018). For example, the coprostanol (5β-cholestan-3α-ol) and epicoprostanol (5β-

cholestan-3α-ol) are fecal biomarkers, derived from urban sewage inputs (Carreira et al., 2004; 

Grimalt et al., 1990; Leeming et al., 1996; Vane et al., 2010). Coprostanol and cholestanol are 

degradation products of cholesterol and are derived from different pathways. Specifically, 

coprostanol is derived from cholesterol when digested by omnivorous and carnivorous organisms 

(sewage contamination), whereas cholestanol is derived from cholesterol by microbial degradation 

(natural degradation product). Based upon this, the presence of sewage in aquatic environments 

can be identified using the ratio of  coprostanol  vs. coprostanol + cholestanol, with values higher 

than 0.7 as the criteria for sewage contamination (Grimalt et al., 1990). In addition, epicoprostanol 

is commonly converted from coprostanol by microbial activities and is usually found in digested 

sludge samples (McCalley et al., 1981). Hence, the presence of epicoprostanol could indicate that 

the sewage has been microbially degraded or partially digested by wastewater treatment. Based 

upon this, the level of wastewater treatment can be identified by the epicoprostanol/coprostanol 

ratio, with values lower than 0.2 for untreated sewage and higher than 0.2 for treated sewage 

(Mudge and Lintern, 1999). 

The proxies based on sterols and stanols have been applied in estuaries for evaluating (i) 

the sources of natural organic matter (Mudge and Bebianno, 1997) and (ii) fecal contamination 

(Cordeiro et al., 2008). For example, sterols were analyzed for distinguishing sewage and 

marine/terrestrial organic matter inputs in the Paranaguá Estuarine System (Martins et al., 2011). 

These authors use principal component analysis to find distinctions between sterols from marine, 
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fecal, and terrestrial inputs, showing the applicability of sterols for identifying sources of natural 

and anthropogenic organic matter.  

 

Figure 1-8. Structures of sterols and stanols (2D structure and 3D conformer downloaded from 

https://pubchem.ncbi.nlm.nih.gov) 
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The biomarker proxies used in this thesis and the information they provide are summarized 

in Table 1-1. 

Table 1-1. Biomarker proxies used in this thesis 
Family Proxy Calculation Source assignment References 

GDGTs BIT Ia + IIa5 + IIa6 + IIIa5 + IIIa6
Ia + IIa5 + IIa6 + IIIa5 + IIIa5 + crenarchaeol

 Higher values indicate 

higher inputs of soil-derived 

OM 

 

(Hopmans et al., 

2004) 

GDGTs IR6Me  
IIa6 + IIb6 + IIc6 + IIIa6 + IIIb6 + IIIc6

IIa5 + IIb5 + IIc5 + IIa6 + IIb6 + IIc6 + IIIa5 + IIIb5 + IIIc5 + IIIa6 + IIIb6 + IIIc6
 Higher values indicate more 

in situ 6-methyl brGDGT 

production 

 

(De Jonge et al., 

2015) 

Stanols S1 Coprostanol

Coprostanol + Cholestanol
 Presence of sewage (S1>0.7) 

 

(Grimalt et al., 

1990) 

Sterols S2 Brassicasterol

Total sterols
 Higher values indicate 

increasing algal contribution 

 

(Moreau et al., 

2002; Volkman, 

1986) 

Fatty acids F1 𝐶16: 1

𝐶16: 0
 Higher values indicate 

diatoms contribution 

(Claustre et al., 

1989; Parrish et 

al., 2000) 

n-alkanes CPI 1

2
[
(C25 + C27 + C29 + C31 + C33)

(C24 + C26 + C28 + C30 + C32)
+
(C25 + C27 + C29 + C31 + C33)

(C26 + C28 + C30 + C32 + C34)
] Terrestrial higher plants 

(CPI>5); Petrogenic/marine 

(CPI≈1) 

(Bray and 

Evans, 1961) 

n-alkanes ACL [
(∑ 𝐶𝑖 × 𝑖)

𝐶𝑖
] Terrestrial higher plants 

(ACL>25); Aquatic plants 

(20<ACL<25); 

Microorganisms/plankton 

(ACL<25) 

 

(Cranwell, 

1984; Ficken et 

al., 2000) 

n-alkanes Paq [
(C23 + C25)

(C23 + C25 + C29 + C31)
] 

 

Terrestrial plants 

(0.01<Paq<0.25); Emergent 

aquatic plants (0.4<Paq<0.6); 

Submerged aquatic plants 

(Paq>0.6) 

(Ficken et al., 

2000; Sikes 

et al., 2009) 
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1.3.3 POM dynamics in estuaries and challenges 

Evaluating the sources and fate of estuarine POM is crucial for understanding global carbon 

budget, ecological impacts, and fisheries (Bianchi, 2007; Cai, 2011; Canuel et al., 2012; 

Carvajalino-Fernández et al., 2020). However, understanding the sources and fate of estuarine 

POM is especially challenging due to their multiple sources (i.e. riverine, estuarine, and marine 

contribution) and complex biogeochemical processes (i.e. autochthonous production and 

degradation) (Bianchi, 2007; Bianchi and Canuel, 2011; Bibi et al., 2020; Goñi et al., 2021). Such 

complexity could be associated with variations in riverine discharge. For example, higher water 

discharge can lead to increased riverine input of nutrients and terrestrial loadings of POM into the 

estuary, whereas low discharge affects the water residence time, thus controlling the settling and 

degradation of estuarine POM (Bibi et al., 2020; He et al., 2014; Xiong and Shen, 2022). 

In addition to the natural factors, human activities (i.e. dam construction) are recently 

highlighted and are thought to play an important role in regulating the dynamics of estuarine OM 

(Wang et al., 2022). Such anthropogenic activities may lead to changes in nutrient inputs and 

primary productivity, thus influencing the processing of estuarine POM. However, it remains 

unknown how human activities (i.e. land use changes) control distinct types of estuarine POM.  

Investigating the complex relationships between land use changes, water discharge, and 

POM dynamics is crucial for understanding estuarine functioning and sustainable management, 

which requires multi-proxy approaches that consider both natural processes and human activities. 

To date, the relationships between land use changes, hydroclimate conditions and POM dynamics 

are primarily studied at the bulk level (Jeong et al., 2023), hampering a comprehensive 

understanding of the behaviors of estuarine POM. 
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1.4 DOM characterization 

DOM is one of the largest reservoir of organic carbon on Earth, playing a key role in the 

global carbon cycle and in all biogeochemical cycles (Hansell and Orellana, 2021; Lønborg et al., 

2020). It acts as a reservoir for nutrients (i.e. nitrogen and phosphorus), preventing their immediate 

availability to microbes in the upper water column (Repeta, 2015). DOM also provides energy for 

microbes (Tranvik, 1992) and influences the transport and bioavailability of essential trace metals 

(Yamashita and Jaffé, 2008) and organic and inorganic pollutants (Bauer and Blodau, 2006). These 

biogeochemical processes are closely linked to DOM composition (Derrien et al., 2019). 

Characterizing DOM is thus a major environmental concern, which is important for monitoring 

and controlling the water quality. 

In the early stages of characterizing DOM, efforts mainly focused on extracting the 

substances from water to obtain sufficient quantities for chemical analysis (Coble, 2007; Repeta, 

2015). Several methods (i.e. resin adsorption recommended by the International Humic Substances 

Society (IHSS), solid-phase extraction, ultrafiltration, and reverse osmosis coupled with 

electrodialysis) have been utilized to selectively concentrate and extract specific fractions of DOM 

for further characterization (Dittmar et al., 2008; Koprivnjak et al., 2009; Leenheer and Croué, 

2003; Simjouw et al., 2005; Thurman and Malcolm, 1981). However, such approaches often led to 

inevitable modifications of the DOM composition (Coble, 2007; Repeta, 2015). Despite this, 

membrane separations (such as ultrafiltration, nanofiltration, reverse osmosis/electrodialysis) are 

considered less invasive than other methods (Thibault et al., 2019). 

In aquatic systems, a portion of DOM is colored, which is known as Colored Dissolved 

Organic Matter (CDOM). CDOM has been studied since the early 1900s (Kalle, 1938) when it was 

referred to as "yellow substance" or "Gelbstoff" in German (Kalle, 1949). Thereafter, a subset of 
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CDOM was observed to emit fluorescence, which was termed fluorescent DOM (FDOM) (Kalle, 

1966). The relationships between DOM, CDOM, and FDOM are shown in Figure 1-9. The specific 

chemical structures of compounds within CDOM and FDOM can encompass various molecules 

such as aromatic molecules, highly unsaturated compounds, and peptides (Stubbins et al., 2014), 

which can undergo complex interactions and transformations in natural aquatic environments, 

leading to the diverse and variable nature of CDOM and FDOM. 

The optical properties of DOM, particularly absorption and fluorescence properties, could 

provide information on amount of material and the chemical characteristics of the bulk water 

samples, which were associated with physical, biological, and chemical processes (Coble, 2007). 

Optical spectroscopic methods that do not require pre-concentration processes have emerged as 

sensitive, inexpensive, fast, and non-destructive approaches, which could provide valuable insights 

into the dynamics of DOM at a much higher temporal and spatial resolution compared to other 

chemical approaches (Stedmon and Nelson, 2015). Given these advantages, such approaches have 

become increasingly popular in aquatic science in the last decades (Derrien et al., 2019; Nelson 

and Siegel, 2013). 
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Figure 1-9. Schematic plot showing relationships between CDOM and FDOM adapted after 

Stubbins et al.  (2014).  

1.4.1 The Jablonski diagram  

The Jablonski diagram is commonly used to show the processes that occur between light 

absorption and emission (Figure 1-10). When molecules absorb energy (light), they can pass from 

a lower energy state (singlet ground state, S0) to a higher energy state (excited state, S1 or S2). 

Subsequently, the molecules return to the ground state (S0) by emitting light of longer wavelength 

than the absorbed light. This emitted light (known as fluorescence), can be detected and measured 

to provide information about the molecules' optical properties. Furthermore, as the size of the 

aromatic compound increases, the energy difference between the ground and excited states 

decreases. Hence, the fluorescence signal of compounds with higher aromaticity typically 

undergoes a redshift (longer emission wavelength)(Stedmon and Nelson, 2015). 
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Figure 1-10. Jablonski diagram adapted after Lakowicz. (2006) 

1.4.2 Absorption properties of DOM 

The electromagnetic radiation is a form of energy, which can be distinguished by 

wavelength (Figure 1-11). The relationship between wavelength and energy is inverse. For 

example, as the wavelength of electromagnetic radiation increases, the energy of the radiation 

decreases. 

Spectrometry is the study of the interaction of electromagnetic radiation with materials (e.g. 

OM). Spectrophotometry is a subset of spectrometry, which is the measurement of electromagnetic 

radiation (light) absorption as a function of wavelength. UV-Vis spectrophotometry refers to the 

measurement of absorption in the wavelength range between 200 nm and 800 nm, spanning 

ultraviolet radiation and visible parts of the spectrum (Figure 1-11). In these ranges, 

electromagnetic radiation-material interactions (absorption) are characterized by relatively high 

energy electron promotion from a lower ground energy state to an excited higher energy state 
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(Figure 1-10). The wavelength of ultraviolet or visible light absorbed is determined by the ease of 

electron promotion, which is determined by molecule structure and electron configuration. 

 

Figure 1-11. The spectrum of light. 

In the ultraviolet (UV) region (200-400 nm) and the visible region (400-800 nm), photons 

have enough energy to promote bond electrons in molecules to higher energy levels, which can 

cause the organic molecules in CDOM to absorb light (Stedmon and Nelson, 2015). The UV-Vis 

spectrophotometer emits a broad spectrum of UV and visible light, which passes through the 

sample. As the light passes through the water sample, certain organic compounds present in the 

sample absorb specific wavelengths of light. The spectrophotometer measures the intensity of the 

transmitted light after it interacts with the sample. This is considered as a fast and nondestructive 

approach to analyze the CDOM properties.  

Generally, the absorbance spectra of CDOM exponentially increases with shorter 

wavelengths (Figure 1-12). The UV-Vis spectra of CDOM are nearly featureless, with no single 

compound dominating (Leenheer and Croué, 2003). This featureless absorption spectrum might be 

due to the complex mixture of chromophores in CDOM, which overlap and interact with each other 
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to produce a broad absorption spectrum (Andrew et al., 2013; Boyle et al., 2009; Seritti et al., 1994; 

Stedmon and Nelson, 2015).  

 

Figure 1-12. The UV-Vis absorbance spectra from a sub-surface water sample collected in July 

2021 at Petit Couronne (Seine Estuary, France; Kilometric Point (KP) 251.3 - distance in 

kilometers from the city of Paris). S275-295 represents slope for wavelengths in the 275–295 nm 

region, whereas S350-400 represents slope for wavelengths in the 350–400 nm region, and SR is the 

ratio of these two slopes. The specific UV absorbance (SUVA254) is measured at 254 nm. 
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To extract meaningful information from the UV-Vis absorbance spectra, several absorbance 

indices have been tested and widely applied in aquatic systems (Li and Hur, 2017). These indices 

are used for estimating quality and quantity of CDOM (Derrien et al., 2017). For example, the 

specific UV absorbance (SUVA254) (Figure 1-12) is a parameter utilized to assess the quality of 

CDOM. It is calculated by dividing the absorbance at 254 nm (Abs254) by the Dissolved Organic 

Carbon (DOC) concentration (mg/L), and has units of L mg-C−1 m−1 (Eq. 8). SUVA254 provides 

information about the intensity of color of CDOM and is positively correlated with the molecular 

weight and aromaticity of the organic matter (Chin et al., 1994; Weishaar et al., 2003). It is a useful 

indicator of DOM quality in freshwater and industrial water treatment applications, and is also 

commonly used in estuaries (Asmala et al., 2013; Hounshell et al., 2022; Osburn et al., 2019; 

Zhuang et al., 2023). High SUVA254 values (>4) indicate hydrophobic (aromatic) material. On the 

other hand, low SUVA254 values (<3) indicate hydrophilic material (Edzwald and Tobiason, 1999; 

Matilainen et al., 2011). 

SUVA254 = Abs254 / (L×DOC)       (8) 

where Abs254 is the measured absorbance at 254 nm, L is the path length (m), and DOC is the 

dissolved organic carbon concentration (mg/L). 

Moreover, the Slope Ratio (SR) is a parameter used to evaluate the variation in molecular 

weight of CDOM, as SR correlates negatively with molecular weight of DOM (Helms et al., 2008). 

It is calculated by dividing the spectral slope (S) obtained for a small UVB wavelength range (275-

295 nm) by the S value obtained for a larger UVA wavelength range (350-400 nm) (Figure 1-12). 

Several studies have assessed the molecular weight of CDOM in estuaries using SR (Guo et al., 

2014; Yang et al., 2013). The absorbance indices used in this thesis are summarized in Table 1-2. 

These absorbance indices have been widely applied to evaluate aromaticity and molecular 

weight of estuarine DOM (Bergamaschi et al., 2012; Couturier et al., 2016; Dixon et al., 2014; 
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Osburn et al., 2019; Zhang et al., 2022; Zhuang et al., 2023). For example, in the Changjiang River 

Estuary, terrestrial DOM is less modified during transport downstream at high flows, as reflected 

by elevated SUVA254 and lower SR (Zhang et al., 2022). In addition, aromatic content of DOM, 

reflected by SUVA254, was highest in the river and decreased with salinity in the Newport River 

Estuary (Osburn et al., 2019). 

Table 1-2. Absorbance indices used in this thesis 

Parameter Calculation Description References 

SUVA254 
Abs254 / 

(L×DOC)  

Proxy for aromaticity. High values 

(SUVA>4) indicate hydrophobic (aromatic) 

material. Low values (SUVA<3) indicate 

hydrophilic material 

 

(Edzwald and 

Tobiason, 

1999; 

Matilainen et 

al., 2011) 

 

SR S275-295/S350-400 

Proxy for average molecular weight (AMW). 

Higher values (1<SR<2) indicate lower 

AMW. Lower values (SR<1) indicate higher 

AMW 

(Helms et al., 

2008) 

 

1.4.3 Fluorescence properties of DOM 

FDOM refers to a subset of CDOM that displays fluorescence when exposed to light (Figure 

1-9). Since Kalle. (1949), different methods of fluorescence spectroscopy have been applied to 

characterize DOM in terrestrial and marine settings. These methods include (i) emission scans at 

specific excitation wavelengths (Miano et al., 1988), (ii) synchronous scans with a consistent 

wavelength offset between excitation and emission wavelengths (Lloyd, 1971), and (iii) excitation-

emission matrix (EEM) that has become increasingly popular over the last decades (Coble et al., 

1990; Derrien et al., 2019; Huguet et al., 2009; Kowalczuk et al., 2009, 2003; Parlanti et al., 2000). 

Several fluorescence bands (α’, α, β, γ) can be identified in the EEM spectra (Figure 1-13), 

which allow to indicate distinct sources and transformation processes of DOM (Parlanti et al., 
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2000). The fluorescence bands, source information, and their Excitation/Emission wavelength at 

maximum fluorescence intensity are summarized in Table 1-3. 

The α band (Excitation/Emission (Ex/Em) = 340-370/420-480nm) represents aromatic 

substances that can be derived from allochthonous or autochthonous sources (Coble, 2007; 

Haywood et al., 2018; Parlanti et al., 2000). Compared with the α band, the β band (Ex/Em = 310-

320/360-410) is slightly blue shifted (shorter wavelength), which is associated with recently 

produced autochthonous material (Coble, 2007; Haywood et al., 2018; Parlanti et al., 2000). This 

band can thus indicate biological activity in aquatic systems (Parlanti et al., 2000). In addition, the 

γ band (Ex/Em = 270-280/300-350) is linked to protein-like compounds, which is an indicator of 

compounds from autochthonous and anthropogenic sources (e.g. wastewater treatment plant 

discharge) (Coble, 2007; Fellman et al., 2009, 2009; Haywood et al., 2018; Parlanti et al., 2000; 

Riopel et al., 2014). 

Table 1-3. Spectral characteristics of the fluorescence bands 

Fluoropho

re 

Wavelength 

range (nm) 
Potential origin and characteristic References 

α 

Ex 340-370 

/ Em 420-

480 

Aromatic, mature, hydrophobic 

substances. Terrestrial or aquatic 

origin (difference in the position of the 

fluorescence emission maximum) 

(Parlanti et al., 2000; 

Coble, 2007; Haywood 

et al., 2018) 

α’ 

Ex 230-260 

/ Em 380-

500 

Mixture of aromatic, mature, 

Hydrophobic substances of terrestrial 

or aquatic origin and material of 

aquatic/biological origin freshly 

produced in the environment 

(Parlanti et al., 2000; 

Coble, 2007; Haywood 

et al., 2018) 

β 

Ex 310-320 

/ Em 360-

410 

Recent autochthonous production 

(Parlanti et al., 2000; 

Coble, 2007; Haywood 

et al., 2018) 

γ 

Ex 270-280 

/ Em 300-

350 

Protein-like compounds; 

biodegradable fraction; biological 

activity 

(Parlanti et al., 2000; 

Coble, 2007; Fellman et 

al., 2009; Haywood et 

al., 2018) 
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In addition to these fluorescence bands, several fluorescence indices (Table 1-4) have been 

proposed and applied for tracing sources of DOM (Derrien et al., 2017; Huguet et al., 2009; 

McKnight et al., 2001; Zsolnay et al., 1999). Specifically, γ/α represents the proportion of protein-

like DOM compared to more aromatic and/or mature DOM, with high values indicating higher 

biological activity and higher biodegradability of DOM (Parlanti et al., 2000; Huguet et al., 2009). 

Humification Index (HIX) is a proxy for the degree of humification of DOM, which increases with 

humification transformation processes and aromaticity of organic material (Zsolnay et al., 1999). 

Biological Index (BIX) is a proxy for the degree of freshly produced DOM with microbial or 

biological origin (Huguet et al., 2009). Higher BIX values indicate higher contribution of 

fluorophore β, which is related to recent production of autochthonous DOM in aquatic systems 

(Huguet et al., 2009; Parlanti et al., 2000). Biological/aquatic bacterial DOM has a low HIX and a 

high BIX while allochthonous DOM has a high HIX and a low BIX (Huguet et al., 2009). 

Fluorescence Index (FI) is a proxy for distinguishing between terrigenous and microbial DOM. 

High FI (FI=1.9) indicates a microbial origin while low FI values (FI=1.3) reflect DOM derived 

from higher plants (McKnight et al., 2001).  
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Figure 1-13. EEM spectrum of a subsurface water sample collected in July 2021 at Petit Couronne 

(Seine Estuary, France). Position of the main fluorescence bands α’, α, β and γ observed by the 

peak picking technique. 

 

These fluorescence indices have been used to trace FDOM sources and transformations in 

estuaries worldwide, such as the Gironde estuary (Huguet et al., 2009), Seine Estuary (Huguet et 

al., 2010),  Pearl River Estuary (Liu et al., 2020), Minjiang estuary (Xie et al., 2023), and 

Changjiang River Estuary (Zhang et al., 2022).  

For example, seasonal variability of fluorescence proxies are observed in the Pearl River 

Estuary, with higher HIX in the wet season (Liu et al., 2020). DOM chemistry in this estuary was 

thus considered to be significantly influenced by river discharge. In the Pearl River Estuary, DOM 

was observed to be mainly from autochthonous origin as indicated by high values of BIX (>0.8) 

(Xie et al., 2018).  

 

 

’ 
 

 
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Table 1-4.  Fluorescence spectroscopic indices used in this thesis 

Parameter Calculation Description References 

γ/α 

The ratio of the 

intensities of the bands 

γ (Ex280/Em330) and α 

(Ex370/maximum 

emission)  

Indicator of the proportion of protein-like 

DOM compared to more aromatic and/or 

mature DOM (terrestrial or aquatic). Higher 

values indicate higher biological activity 

and higher biodegradability of DOM. 

 

(Parlanti et 

al., 2000; 

Huguet et al., 

2009) 

HIX 

The ratio of emission 

spectrum areas 

between 435-480nm 

and 300-345nm, with 

excitation 255nm 

 

Estimation of the degree of aromaticity of 

DOM. High values indicate the presence of 

processed DOM (polymerization, 

polycondensation) while low values indicate 

more recent and less aromatic DOM. 

HIX>16: more aromatic material 

(significant terrigenous contribution); 

HIX<4: aquatic biological or bacterial origin 

 

 

(Huguet et 

al., 2009) 

BIX 

The ratio of 

fluorescence intensities 

at emission 380nm to 

that at 430nm, with 

excitation 310nm 

Estimation of autochthonous DOM 

production and the presence of freshly 

produced DOM. Increases with biological 

activity. BIX>1: aquatic biological or 

bacterial origin; BIX<0.6: low biological 

activity. Linked to the biodegradability of 

DOM. 

 

(Huguet et 

al., 2009) 

FI 

The ratio of 

fluorescence intensities 

at emission 450nm to 

Estimate of DOM sources, high values 

(>1.9) indicate microbial DOM, while low 

(McKnight et 

al., 2001) 
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that at 500nm, with 

excitation 370nm 

values (<1.3) indicate DOM from higher 

plants 

 

The EEM spectra could be further decomposed by parallel factor analysis (PARAFAC) into 

distinct fluorescent components that represent groups of similar fluorophores (Stedmon et al., 

2003a). This statistical technique has the capability to overcome the limitations of the conventional 

peak picking technique (Cory et al., 2011; Yamashita et al., 2008), as DOM in the natural 

environment is composed of different types of overlapping fluorophores. The decomposed 

fluorescent groups can provide valuable insights into distinct DOM sources (i.e. allochthonous or 

autochthonous) and transformation processes (i.e. photodegradation) (Ishii and Boyer, 2012; Jaffé 

et al., 2014; Kowalczuk et al., 2013). Furthermore, PARAFAC components were associated with 

molecular families determined by ultrahigh resolution mass spectrometry (FTICR-MS), which 

indicates that fluorescence measurements can provide insight into the biogeochemical cycling of a 

large proportion of the DOM pool including non-fluorescent molecules (Stubbins et al., 2014). 

Over the last years, spectroscopic techniques coupled with PARAFAC have been widely 

used for characterizing DOM in a variety of natural environments (Chai et al., 2019; Hu et al., 

2021; Kowalczuk et al., 2009; Y. Liu et al., 2021; Luo et al., 2021; Mielnik and Kowalczuk, 2018; 

Qin et al., 2020) as well as in engineered systems (Sanchez et al., 2014; Sciscenko et al., 2022a; 

Yang et al., 2015). For example, EEM-PARAFAC was shown to have important implications to 

study photodegradation (Mangalgiri et al., 2017; Murphy et al., 2018), microbial processes (Parr 

et al., 2015), priming effects (Zhuang et al., 2021), pollution sources (Wang et al., 2022), binding 

properties of Cu (II) (Liu et al., 2022), fluoroquinolones oxidative transformation processes 

(Sciscenko et al., 2022b, 2021), potable water reuse monitoring (Wells et al., 2022), as well as 

understanding aging mechanism of microplastics (Priyanka and Saravanakumar, 2022).  
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EEM-PARAFAC has notably been used to identify distinct sources and transformation of 

DOM in estuaries (Hounshell et al., 2017; Xie et al., 2018; Zhang et al., 2022; Zhu et al., 2017; 

Zhuang et al., 2023). For example, seaward decrease of the terrestrial and protein-like PARAFAC 

components was observed in the Pearl River Estuary, which was attributed to estuarine mixing 

processes (Xie et al., 2018). In the Qiantang Estuary, terrestrial and protein-like PARAFAC 

components decreased with increasing salinity, which was explained by physical mixing of 

freshwater and saltwater (Zhou et al., 2019). 

1.4.4 DOM dynamics in estuaries and challenges 

Estuaries represent highly dynamic zones where complex chemical, physical, and 

biological processes interact (Bianchi, 2007; Fairbridge, 1980). The DOM composition in such 

systems varies spatially and temporally due to mixing of water masses (Osburn et al., 2015; Santos 

et al., 2014; Xie et al., 2018), seasonality (Vidal et al., 2023) and different (biotic and abiotic) 

transformation processes, including microbial degradation (Asmala et al., 2013; Q. Chen et al., 

2021), photochemical degradation (Santos et al., 2014), aggregation (Søndergaard et al., 2003), 

and adsorption/desorption from suspended particles (Wang et al., 2016).  

Enhanced anthropogenic activities such as urbanization and wastewater runoff also 

contribute to anthropogenic DOM into estuaries (García-Martín et al., 2021; Hounshell et al., 

2017). Such human activities can also lead to high concentrations of inorganic nutrients in 

estuaries, triggering autochthonous production of DOM (Wilson and Xenopoulos, 2009). 

Autochthonous DOM can be, at least in part, quickly degraded by microbial activity, leading to 

non-conservative DOM behavior and contributing to the release of CO2, CH4, and N2O to the 

atmosphere (Amaral et al., 2021; García-Martín et al., 2021).  
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Different land uses types, such as urban, agricultural, and forested areas have distinct 

influence on the DOM characteristics in nearby water bodies, by erosion, oxidation and shallow 

flow path (Asmala et al., 2013; Bhattacharya and Osburn, 2020; Boukra et al., 2023; García-Martín 

et al., 2021; Shang et al., 2018; Williams et al., 2010; Zhang et al., 2021). For example, wetland 

and agricultural coastal streams have high levels of aromatic and complex DOM, whereas forested 

and urban streams have low levels of aromatic DOM (Bhattacharya and Osburn, 2020). 

In addition, many studies have shown that water discharge plays a significant role in 

shaping estuarine DOM compositions, with higher discharge leading to increased terrestrial DOM 

inputs and low-water periods allowing for intensive in-estuary DOM processing (Bittar et al., 2016; 

Peer et al., 2022; Regier and Jaffé, 2016; Singh et al., 2019; Xie et al., 2018).  

Considering these factors, it is challenging to identify an estuarine zonation in terms of 

generalized DOM characteristics, despite its importance for sustainable estuarine management. A 

comprehensive dataset across a wide range of land use types over distinct hydroclimate conditions 

is thus necessary to investigate the variabilities of estuarine DOM and their controlling factors. 

However, to date, such estuarine dataset is still relatively limited, as it requires extensive 

monitoring sampling. More importantly, the analysis of such a complex dataset requires the use of 

advanced statistical techniques to extract meaningful insights and to identify hidden patterns 

(Bieroza et al., 2012; Cuss and Guéguen, 2016; He and Fan, 2016; Wheeler et al., 2017; Zhang et 

al., 2015).  

1.5 Machine learning in environmental science 

Machine Learning (ML) is a powerful technique, which is defined as follows: “ML 

algorithms build a model based on sample data, known as ‘training data’, to make predictions or 

decisions without being explicitly programmed to do so” (Koza et al., 1996). ML algorithms extract 



Chapter 1: State of the art 

- 56 - 

 

patterns and relationships from the (provided) training data to build a model that can make 

predictions or generate clusters. In the past decade, ML has been utilized in a variety of scientific 

fields, including medicine (Swanson et al., 2023), material science (Hart et al., 2021; H. Tao et al., 

2021), and chemistry (Fedik et al., 2022; Jorner et al., 2021).  

In environmental sciences, the amount and complexity of data has significantly expanded 

(Fleming et al., 2021; Zhong et al., 2021a). Traditional statistical tools (e.g. Analysis of Variance 

and linear regression) may not be sufficient to handle such large and complex datasets. Instead, 

machine learning can efficiently handle and evaluate these complex datasets, uncovering hidden 

patterns and relationships (Peters et al., 2014; Tahmasebi et al., 2020). For example, ML has been 

used to predict reactivity of contaminants (Zhong et al., 2021b), arsenic concentrations in 

groundwater (Podgorski and Berg, 2020), and plant uptake efficiency (Bagheri et al., 2020). In 

addition, ML can identify the important factors that contribute to a particular environmental 

outcome, including pollutant concentrations (Hu et al., 2017), and uptake of contaminants (Bagheri 

et al., 2019). ML can also detect anomalies or abnormal patterns in environmental dataset, such as 

the assessment of contamination (Housh and Ostfeld, 2015).   

While ML has recently gained significant popularity and success in environmental sciences, 

its applicability in estuarine OM research still needs to be explored. This might be due to the 

challenges and complexities associated with studying estuarine OM dynamics, which are 

influenced by both natural processes (Li et al., 2023) and anthropogenic activities (Bhattacharya 

and Osburn, 2020). Additionally, obtaining high-resolution and high-quality data on estuarine OM 

could be time-consuming and challenging. ML algorithms often require substantial amounts of 

training data to build robust models, and the scarcity of data can hinder the application of ML 

approaches in DOM research. Despite these challenges, there is growing interest in exploring the 

potential of ML in studying DOM dynamics. For example, a recent study has applied ML and 
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advanced mass spectrometry techniques to observe the complex relationships between the 

molecular features and δ13C values in water samples collected in the China Coastal Environments 

(Yi et al., 2023). In addition, Ju et al. (2023) applied ML for prediction of ultraviolet absorption 

spectra of CDOM. Photochemical properties of DOM can also be predicted by ML models (Liao 

et al., 2023). 

1.6. Research gaps 

Tracing the input of terrestrial organic matter to marine environments is crucial for 

understanding global carbon cycling (Dai et al., 2022). Over the last years, a number of terrestrial 

proxies have been proposed and widely used to trace POM dynamics in estuaries (Bianchi, 2007; 

Bianchi and Canuel, 2011; Canuel and Hardison, 2016; Savoye et al., 2012). However, a number 

of research gaps remain to be filled. For example, different proxies have their own limitations. 

Specifically, the bulk geochemical proxies are influenced by diagenetic processes (Lamb et al., 

2006), whereas the widely used molecular proxy (BIT) is controlled by various factors, including 

the selective degradation of branched vs. isoprenoid GDGTs (Smith et al., 2012). The development 

of additional proxies to trace riverine runoff processes is thus needed. 

Furthermore, DOM sources, compositions, transformation processes have been extensively 

investigated in estuaries (Jaffé et al., 2014). Considering its multiple sources, various controlling 

factors, and complex transformation processes in estuaries, it remains challenging to properly 

assess the main DOM characteristics within specific estuarine zone. As machine learning 

techniques can effectively handle complex dataset and capture hidden data patterns, its 

applicability in disentangling DOM heterogeneity should be further explored.  

Last, most of the previous studies investigated DOM and POM separately (Derrien et al., 

2019). As each OM pool has its own properties and dynamics (Thibault et al., 2019), simultaneous 
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investigation of DOM and POM should be prioritized. In addition, the relationship between land 

use characteristics, water discharge, and distinct types of POM and DOM is currently not clear.  

1.7. Research objective and questions 

Within the framework of the SARTRE (GIP Seine-Aval) and RUNTIME (EC2CO 

CNRS/INSU/OFB) projects, the objective of this thesis is to evaluate the ecological functioning of 

an urbanized estuary in France (Seine Estuary) by simultaneously investigating the DOM and POM 

dynamics. To fill the mentioned research gaps, this thesis aims to answer the following scientific 

questions: 

 How to trace riverine runoff processes in the Seine Estuary? What are sources of DOM and 

POM in the Seine Estuary? What are spatiotemporal variations of DOM and POM in the 

Seine Estuary? 

 What are relationships between natural processes (i.e. water discharge), anthropogenic 

processes (i.e. land use changes), and distinct types of DOM and POM? 

 What is the ecological functioning of the Seine Estuary in terms of POM and DOM cycling? 

Does the application of the machine learning and explainable artificial intelligence make it 

possible to identify estuarine zonation? Is there a generalized estuarine zonation for OM 

cycling in the Seine Estuary? 

These scientific questions are achieved in the following chapters (Chapter 3 to 5), which 

represent 3 manuscripts for peer–reviewed publication. Chapter 2 presents the detailed material 

and methods in this thesis. Chapter 3 investigates the POM dynamics in the Seine River basin and 

explores novel indicators for riverine runoff processes. Chapter 4 assesses the relationships 

between water discharge, land use characteristics, and different types of POM in the Seine Estuary. 
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Chapter 5 attempts to study DOM dynamics in the Seine Estuary and tests the potential of using 

machine learning and explainable artificial intelligence for disentangling DOM composition and 

identifying estuarine zonation. Chapter 6 synthesizes the results and provides future perspectives.  
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2.1. Study area  

The Seine River basin (Seine River and its estuary; Figure 2-1) has a surface area over 

76000 km2 and is characterized by high population density, draining through the greater Paris 

region (over 17 million inhabitants) to the English Channel (Flipo et al., 2021). The Seine estuary, 

approximately 160 km in length, extends from Poses (the upper limit of tidal influence; Figure 2-

1) to the English Channel and is characterized as a macrotidal estuary based on its small depth, 

high tidal range, and morphology (Avoine et al., 1981; Guézennec et al., 1999). 

 

Figure 2-1. Hydrological network of the Seine River basin. Kilometric Point (KP) represents the 

distance in kilometers from the city of Paris (KP 0). A dam at Poses (KP 202) constitutes the 

boundary between the Seine River and the Seine Estuary. 
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The river basin is 97% contained inside the sedimentary Paris basin, Europe's largest 

groundwater reservoir (Triassic to Tertiary, Figure 2-2). The basin lithology includes carbonates 

(69.6%) and sandy formations (13.6%), which are interbedded with poorly permeable clayey and 

marl units (9.1%), and are covered by alluvial deposits (5.4%) (Guillocheau et al., 2000).  

 

Figure 2-2. Geological structure of the Seine basin (Flipo et al., 2021). 

 

The Seine River basin has a pluvial/oceanic hydrological regime (Flipo et al., 2021). The 

average annual rainfall over the basin is 800 mm, and it varies spatially. Near the coast and in the 

Morvan mountain range, the maximum rainfall reaches approximately 1200 mm per year, while in 

the center of the basin, it is only 650 mm per year (Flipo et al., 2020; Quintana-Segui et al., 2008; 

Vidal et al., 2010). The river flow regime is influenced by seasonal variations in real 
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evapotranspiration, resulting in high flows during winter and low flows during summer (Flipo et 

al., 2021). 

Over the past two centuries, the urbanized area of the basin has expanded significantly. 

Population density near urban tributaries in the Paris area ranges from 1000 to 5000 inhabitants per 

square kilometer, while it is considerably lower, averaging less than 20 inhabitants per square 

kilometer, in the upstream regions of the basin (Flipo et al., 2021). For over a century, the city of 

Paris, and later the expansion of the Parisian conurbation, have caused urban pollution, resulting 

in a significant impact on the water quality of the lower Seine River and its estuary, with depleted 

oxygen levels, elevated concentrations of ammonia and nitrite, and the presence of fecal bacteria 

(Flipo et al., 2021; Mouchel et al., 2021; Servais et al., 2007). Due to modernization of wastewater 

treatment plants (WWTPs), the water quality of the Seine River has shown significant improvement 

over the past two decades (Romero et al., 2016). However, there are still occasional crises, such as 

summer low-flow conditions, that pose a threat to maintaining the good ecological status of riverine 

and estuarine waters (Garnier et al., 2021). 

2.2 Sampling 

During 5 low-frequency campaigns from June 2019 to June 2021, 130 samples were 

collected at Les Andelys (KP 175; KP represents kilometric point and is defined as the distance in 

kilometers from the city of Paris), Oissel (KP 229.4), Val-des-Leux (KP 265.55), Caudebec (KP 

310.5), and Tancarville (KP 337) (Figure 2-3 and Table 2-1). Pictures taken during these sampling 

campaigns are shown in Figure 2-4. Both sub-surface and bottom water (2.2-16 m depth) samples 

were retrieved using a pump into precleaned 20L FLPE Nalgene carboys. Estuarine water samples 

(Oissel, Val-des-Leux, Caudebec, and Tancarville) were collected at three tide periods (high tide, 

low tide and mid tide). In November 2020, 4 water samples were collected at Poses (KP 202), 
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Triel-sur-Seine (KP 80), Bougival (KP 40), and Marnay-sur-Seine (KP-200) (Figure 2-3, 2-5 and 

Table 2-1). For these sites, 0.25-43L of water were immediately filtered using pre-combusted 

Whatman GF/F 0.7 µm glass fiber filters. After filtration, filters were freeze-dried, scratched and 

stored frozen at -20°C prior to analysis.  

 

Figure 2-3. Map showing the sample locations and land use characteristics along the Seine Estuary. 

The land use data was retrieved from GLOBELAND30 (http://www.globallandcover.com/). Inland 

water body and seawater are combined into a single category as water body. KP (kilometric point) 

is defined as the distance in kilometers from the city of Paris 

 

During 19 monitoring campaigns from June 2019 to November 2022, surface water (ca. 1m 

depth) samples (n=249) were collected at 15 locations in high-flow (over 250 m3/s) and low-flow 

(below 250 m3/s) conditions across the Seine Estuary with distinct land cover regimes (Figure 2-3 

and Table 2-1). For these sites, water samples were immediately filtered on board through pre-

combusted (450 °C) 0.7 µm glass fiber filters (GF/F Whatman) and stored in darkness at 4 °C until 

analysis. Filters were freeze-dried, scratched and stored frozen at -20°C prior to analysis. 

http://www.globallandcover.com/
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Figure 2-4. Pictures taken during sampling campaigns showing some of the sampling sites at the 

(a) Les Andelys, (b-c) Val-des-Leux, and (d) Tancarville. Photo by Zhe-Xuan Zhang. 

 

In 2021, surficial soils (n=9) were collected in the lateral area of the upstream part of the 

Seine River (Figure 2-5). In 2018, 2020, and 2021, additional wetland soils and mudflat sediments 

(n=42) were collected in the downstream estuary (Figure 2-3), representing allochthonous material 

that can be flushed into the estuary by tidal effects. These samples were collected at low tide with 

a plexiglass® core (4.5 cm depth), then homogenized, freeze-dried, and ground in a ball mill 

(model MM400, Retsch®). 
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Figure 2-5. Map showing sample locations around the Seine River and land use characteristics. 

The land use data was retrieved from GLOBELAND30 (http://www.globallandcover.com/). KP 

(kilometric point) is defined as the distance in kilometers from the city of Paris (KP 0). 

 

The land use data across the Seine River basin was retrieved from the worldwide surface 

coverage product GLOBELAND30 (http://www.globallandcover.com/) with a resolution of 30 

meters in 2020. Seawater and inland water body are combined into a single category as water body. 

Eight land use types, including urban (industrial land use included), agricultural, forested, water 

body, shrubland, bareland, grassland, and wetland, can be identified across the Seine River basin 

(Figure 2-3 and 2-5). To calculate the land use type proportion for sampling sites, a 1 km (radius) 

buffer zone around each site was created using ArcGIS (10.7) software. A 1 km buffer is chosen 

as it can capture the effects of land use patterns in the nearby environment on the target variables 

(i.e. organic matter characteristics) within the water column (Hu et al., 2016; Zhang et al., 2023). 

http://www.globallandcover.com/
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Figure 2-6. Mean monthly water discharge for the Seine River measured at the Paris Austerlitz 

station from 2019 to 2022 (data from https://www.hydro.eaufrance.fr/). Bullets represent the 

sampling period in high-flow (>250 m3/s - blue) and low-flow (<250 m3/s - red) periods. 

 

 

Generally, maximum flows occur during winter (>250 m3/s), while minimum flows are 

observed in summer (<250 m3/s) (Figure 2-6). Given the seasonally variable water discharge 

(Figure 2-6) and diverse land use characteristics across the estuary (Figure 2-3), this estuary is an 

ideal region for studying DOM and POM cycling and their relationships between human activities 

(i.e., land use characteristics) and natural processes (i.e., water discharge). Additionally, studying 

the biogeochemical functioning of the Seine Estuary in terms of DOM and POM dynamics can 

provide valuable insights that may also contribute to a better understanding of other urbanized 

estuaries. 
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Table 2-1. DOM and POM sample information 

Location KP (km) Longitude (°) Latitude (°) Zone Type 

Balise A 360.8 0.110671 49.431828 Estuary DOM 

Honfleur 355.8 0.232682 49.432638 Estuary DOM and POM 

Berville-Sur-

Mer 346 0.3682 49.441587 Estuary DOM and POM 

Tancarville 337 0.463442 49.472351 Estuary DOM and POM 

Petitville 326.6 0.577669 49.435988 Estuary DOM 

Vatteville-La-

Rue 318 0.66614 49.472695 Estuary DOM and POM 

Caudebec 310.5 0.72753 49.522585 Estuary DOM and POM 

Le Trait 303 0.776177 49.483864 Estuary DOM 

Heurtauville 297.65 0.816867 49.447614 Estuary DOM and POM 

Duclair 278 0.873297 49.478666 Estuary DOM and POM 

Val-des-Leux 265.55 0.92 49.4 Estuary DOM and POM 

La Bouille 259.7 0.934366 49.35228 Estuary DOM 

Haulot Sur Seine 255.6 0.98475 49.356683 Estuary DOM and POM 

Petit Couronne 251.3 1.008118 49.379279 Estuary DOM and POM 

Le Grand 

Quevilly 246.6 1.030269 49.432815 Estuary DOM 

Rouen 243 1.06979 49.4428698 Estuary DOM 

Oissel 229.4 1.1 49.34 Estuary POM 

Poses 202 1.24 49.31 Estuary POM 

Les Andelys 175 1.4 49.24 River POM 

Triel-sur-Seine 80 2 48.98 River POM 

Bougival 40 2.13 48.87 River POM 

Marnay-sur-

Seine -200 3.56 48.51 River POM 

 

2.3. Elemental and isotopic analyses 

Elemental and isotopic analyses were performed on soils (surficial soils and mudflat 

sediments) and SPM using the approach described by Thibault et al. (2019). In brief, 1 g of 

soils/sediments and 40 mg of SPM were decarbonated for 2 hours with magnetic stirring at room 

temperature after adding 10 mL of 3 M HCl. Following that, samples were rinsed with ultrapure 

water and centrifuged until they reached neutral pH. The decarbonated samples were kept at −20 
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°C and freeze dried. Both decarbonated and non-decarbonated samples (20 mg for soils and 6 mg 

for SPM) were enclosed in a tin capsule. Total Organic Carbon content (TOC) and stable carbon 

isotopic composition (δ13C) were measured in decarbonated samples at the ALYSES platform 

(Sorbonne University / IRD, Bondy, France) using an elemental analyzer coupled with an isotope 

ratio mass spectrometer (Thermo Fisher Scientific Delta V Advantage). Total nitrogen (TN) and 

nitrogen isotope (δ15N) were analyzed using non-decarbonated samples, because acidification 

could affect N contents (Ryba and Burgess, 2002). The isotopic composition (δ15N or δ13C) was 

expressed as the ratio of isotope ratios in samples and standards (atmospheric N2 for nitrogen or 

Vienna Pee Dee Belemnite for carbon). 

 

2.4. Lipid extraction and analyses 

The lipids were extracted ultrasonically (3×), using 20 to 40 mL of dichloromethane 

(DCM): methanol (MeOH) (5/1, v/v) per extraction, from surficial soils and mudflat sediments (4-

20 g) as well as SPM samples (150 mg). The total lipid extracts were separated on an activated 

silica gel column into fractions of increasing polarity using (i) 30 mL of heptane, (ii) 30 mL of 

heptane:DCM (1/4, v/v), and (iii) 30 mL of DCM/MeOH (1/1, v/v) as eluents. 

An aliquot (30%) of the polar fraction containing GDGTs and GMGTs was dried, re-

dissolved in heptane, and then passed through a 0.2μm polytetrafluoroethylene (PTFE) filter 

(Ultrafree-MC; Merck). 5 µl of the internal standard (C46 Glycerol Trialkyl Glycerol Tetraether; 

0.01025 mg/mL) was typically added to 45 µl of sample. GDGTs and GMGTs were analyzed using 

a Shimadzu LCMS 2020 high pressure liquid chromatography coupled with mass spectrometry 

with an atmospheric pressure chemical ionization source (HPLC-APCI-MS) using Selected Ion 

Monitoring (SIM) mode, modified from Hopmans et al. (2016) and Huguet et al. (2019). Tetraether 
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lipids were separated with two silica columns in tandem (BEH HILIC columns, 2.1 × 150 mm, 1.7 

μm; Waters) thermostated at 30℃. Injection volume was 30 μL, with the flow rate set at 0.2 

mL/min. GDGTs and GMGTs were eluted isocratically for 25 min with 82% A/18% B (A= hexane, 

B=hexane/isopropanol 9/1, v/v), followed by a linear gradient to 65% A/35% B in 25 min, then a 

linear gradient to 100% B in 30 min, and back to 82% A/18% B in 4 min, maintained for 50 min. 

Semi-quantification of tetraether lipids was performed by comparing the integrated signal of the 

respective compound with the signal of a C46 synthesized internal standard, assuming their response 

factors to be identical (Huguet et al., 2006). LabSolutions software (Shimadzu) was used to process 

the data. 

Another aliquot (6%) of the polar fraction containing sterols, stanols, and fatty acids was 

dried, re-dissolved in DCM, and derivatized with a mixture of N,O-bis-(trimethylsilyl) 

trifluoroacetamide and trimethylchlorosilane (BSTFA + TMCS, 99/1, v/v) at 70 °C for 1 hour with 

0.7995 or 1.5 µg 5α-cholestane added as the internal standard. These compounds were analyzed by 

GC-MS using a Thermo Scientific Trace 1310 gas chromatograph fitted with a Rxi® -5Sil MS 

column (60 m × 250 µm × 0.25 µm; RESTEK) interfaced to a ISQ 7000 single quadrupole mass 

spectrometer. 1 µL of the derivatized polar fraction was injected at 2 mL/min in split mode (10:1) 

using He as the carrier gas. The oven temperature started at 70 °C (held 1 minute), increased 

to  130 °C at 20 °C/min, then increased to 320 °C (held 25 minutes) at 4 °C/min. The mass 

spectrometer was simultaneously operated in full scan mode (m/z 35-700) and SIM mode (m/z 75 

for fatty acids, 129 for sterols, 215 for stanols, and 217 for the internal standard). The transfer line 

temperature was set at 320 °C and the EI voltage was set at 45 eV. Chromeleon software was used 

to process the data. Identification of sterols, stanols, and fatty acids was based on their retention 

time and mass spectra. 



Chapter 2: Material and methods 

 

- 73 - 

 

An aliquot (40%) of the apolar fraction containing n-alkanes was dried and re-dissolved in 

heptane with 0.03 or 0.05 µg n-tetracosane-d50 added as an internal standard. n-alkanes were 

analyzed with the same instrument and GC capillary column as the sterols, stanols, and fatty acids. 

The oven temperature program started at 50 °C and increased to 320 °C (held 30 min) at 4°C/min. 

1 µl of the apolar fractions were injected using splitless mode. Carrier gas (He) was at a constant 

flow rate (2 mL/min). The apolar fraction was analyzed simultaneously in full scan mode (m/z 35–

700) and SIM mode (m/z 57 for n-alkanes and m/z 66 for the internal standard). The transfer line 

temperature was set at 320 °C and EI voltage at 45 eV. Data was processed using Chromeleon 

software. Identification of n-alkanes was based on their retention time and mass spectra.  

2.5. Water quality measurements 

Water temperature, salinity, dissolved oxygen, and pH were measured by an automated YSI 

6000 multi-parameter probe (YSI inc., Yellow springs, OH, USA). Water turbidity was measured 

with a CTD Probe Sea-bird®. Chlorophyll a (Chl a) concentrations were measured on water 

samples after filtration on Whatman GF/F glass fiber filters (0.7 µm). These filters were stored 

frozen (-20° C) before analysis. Chl a was extracted from filters with incubation in 90% acetone 

(10 mL) in the dark at 4°C for 12 hours. After two centrifugations (1700 g, 5 min), Chl a 

concentrations were measured by a Turner Designs Fluorometer according to the method of 

Strickland and Parsons (1972) as described in the reference protocol of SNO SOMLIT (Service 

d’observation du Milieu Littoral). These measurements were performed at the Université de 

Toulouse and Université de Caen Normandie. 
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2.6. DOC concentration measurement 

The DOC concentrations were determined by using an aliquot of water sample that was 

acidified and analyzed in Non-Purgeable Organic Carbon (NPOC) mode on a Total Organic 

Carbon Analyzer (Shimadzu, Tokyo, Japan). For each sample, three replicate analyses were 

performed. The average value is reported, with the relative standard deviation below 1%. 

2.7. Spectroscopic analyses 

The spectroscopic analyses (absorbance and fluorescence) were performed in a 1 cm (path 

length) Hellma Suprasil® quartz cell. A Jasco® V-760 spectrophotometer was used to record the 

UV-Visible absorbance spectra of water samples. The absorbance spectra were acquired at 200 

nm/min between 210 and 700 nm. The absorbance spectra of the ultrapure water blank daily 

acquired was subtracted from the spectrum of each sample. When the highest absorbance was 

above 0.1, samples were diluted with ultrapure water to avoid an inner-filtering effect in subsequent 

fluorescence analyses. 

The excitation-emission matrix (EEM) fluorescence spectra were obtained between the 

wavelengths 240 and 800 nm at excitation (2 s integration time, 5 nm intervals) and 245-830 nm 

at emission (high CCD detector gain, 1 pixel (ca. 0.58 nm intervals)), by using an Aqualog 

spectrofluorometer (Horiba Scientific, France) equipped with a xenon lamp (150W), a double 

monochromator at excitation, and a CCD detector. To eliminate Raman and Rayleigh scatter peaks, 

each EEM was subtracted from the ultrapure water blank EEM spectrum daily acquired. The area 

of the Raman scattering peak of ultrapure water was calculated daily at the excitation of 350 nm, 

allowing the spectra to be normalized. The fluorescence intensities are expressed in Raman Units 

(RU). The EEM spectra were then processed to record fluorescence intensities and calculate 
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distinct indices, including γ/α (Huguet et al., 2009; Parlanti et al., 2000), HIX (Zsolnay et al., 1999), 

BIX (Huguet et al., 2009), and FI (McKnight et al., 2001), with the TreatEEM software (Omanović 

et al., 2023). These Fluorescence indices are summarized in Chapter 1 (Table 1-3). 

2.8. Parallel factor analysis (PARAFAC) 

A multi-way PARAllel FACtor analysis (PARAFAC) can decompose the EEM fluorescence 

spectra into distinct underlying fluorescent components (Stedmon et al., 2003b). This statistical 

approach helps to identify the fluorophores that contribute to the overall spectrum dataset and 

estimate their relative contribution to total DOM fluorescence. The PARAFAC model was 

performed for 4 to 8 components with non-negativity constraints using the DOM Fluor toolbox 

(version 1.7) in Matlab R2021b (Stedmon and Bro, 2008). An optimal model can be validated after 

split-half validation analysis and residual assessment (Murphy et al., 2013; Stedmon and Bro, 

2008). The spectral characteristics of the PARAFAC components were then compared to those 

identified in other studies through an online spectral library (Openfluor) (Murphy et al., 2014). 

Tucker's congruence coefficient was used to determine the similarity between the model 

determined in this thesis and those in the online database, with criteria set at 95%. 

 

2.9. Machine learning 

Generally, Machine Learning (ML) can be categorized into unsupervised and supervised 

machine learning. Unsupervised learning techniques focus on discovering patterns in unlabeled 

data, clustering samples into distinct groups (Figure 2-7a). On the other hand, supervised machine 

learning models use labeled data for predictions (Figure 2-7b). Exploration and application of both 
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unsupervised and supervised machine learning techniques in estuarine OM research is still 

relatively limited, but has the potential to enhance our understanding of estuarine OM sources, 

transformation processes, and develop data-driven strategies for future sample collection (Tao et 

al., 2021; Yi et al., 2023; Zhao et al., 2023). ML algorithms can efficiently analyze the complex 

environmental datasets, identifying hidden patterns, trends, and correlations that may not be 

apparent through traditional methods (e.g. linear regression and analysis of variance). 

2.9.1 Unsupervised machine learning 

Unsupervised machine learning techniques, such as clustering algorithms, have been used 

in environmental sciences to divide data into different groups with similar properties and therefore 

reduce data complexity (Kim et al., 2021; Narvaez-Montoya et al., 2023; Rejano et al., 2023).  

K-means clustering is a widely used unsupervised clustering technique given its high 

efficiency and concise algorithm (Li et al., 2016; MacQueen, 1967). This algorithm splits the data 

into K groups (clusters) and seeks to find centroids that minimize the average Euclidian distance 

between data points in the same cluster to the centroid (Figure 2-8) (Hartigan and Wong, 1979). 

The optimal number of clusters (K) can be identified by using the standard elbow method which 

plots the Within-Cluster Sum of Squares (WCSS) as a function of the number of clusters and selects 

the elbow of the curve as the number of optimal clusters (K). 

WCSS=∑ (∑ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑑𝑖 , 𝐶𝑘 )
2𝑑𝑚

𝑑𝑖 𝑖𝑛 𝐶𝑖 

𝐶𝑛
𝐶𝑘

) 

Where d is the data point in each Cluster and C is the cluster centroids. 
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Figure 2-7. Schematic plot showing differences between unsupervised and supervised machine 

learning. 

 

 

K-means clustering was used in this thesis to find clusters for the DOM optical parameters 

in an unlabeled dataset, which was performed using the KMeans function from the cluster module 

of the scikit-learn library (https://github.com/scikitlearn/) (Pedregosa et al., 2011) in Python 3.9.16. 

The optimal number of clusters (K) was chosen using the elbow method, after plotting WCSS 

(Within-Cluster Sum of Square) with varying K values from 1 to 10. 

https://github.com/scikitlearn/
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Figure 2-8. Schematic plot showing the mechanism of k-means clustering 

 

2.9.2 Supervised machine learning 

Compared with unsupervised machine learning, supervised machine learning techniques 

use labeled data to train models and make predictions. The Gradient Boosting Machines (GBM) is 

a popular supervised machine learning technique, which uses an ensemble of decision trees (weak 

learners) and makes more accurate predictions on tabular data compared to other machine learning 

algorithms. GBM algorithms are based on decision trees and are thus robust to multicollinearity. 

In addition, they can handle missing values, without the need for deletion/imputation of data. 

Generally, GBM implementations use level-wise tree growth or leaf-wise tree growth. The 

level-wise tree growth is a strategy of building decision trees by expanding the tree one level at a 

time before moving to the next level (Figure 2-9), which can be computationally expensive. Instead 

of developing all nodes at each level, the leaf-wise tree growth strategy only expands the leaf nodes 

that contribute the most to minimizing the loss function, which is computationally efficient. 

Light Gradient Boosting Machine (LightGBM) is a widely-used GBM framework that takes 

a leaf-wise tree growth approach, which reduces memory usage and increases the model efficiency 
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(Ke et al., 2017). LightGBM iteratively trains an ensemble of decision trees to minimize a loss 

function. This iterative process is repeated until a stopping criterion is reached. LightGBM 

introduces two techniques that increase the efficiency and scalability: the Gradient-based One Side 

Sampling (GOSS) and Exclusive Feature Bundling (EFB) (Ke et al., 2017). GOSS retains instances 

with higher gradients while performing random sampling on instances with smaller gradients, 

which is a useful technique for obtaining accurate estimation. Meanwhile, EFB decreases the 

number of features by bundling the exclusive features in the sparse feature space, which increases 

the training speed without sacrificing accuracy.  

 

Figure 2-9. Schematic plot showing the mechanism of level-wise and leaf-wise tree growth model 

adapted after LightGBM documentation (https://lightgbm.readthedocs.io/en/latest/Features.html). 

 

https://lightgbm.readthedocs.io/en/latest/Features.html
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In this thesis, LightGBM was used to classify the estuarine zones based on DOM optical 

properties, implemented using the LightGBM package (https://lightgbm.readthedocs.io) in Pyhton 

3.9.16. Before classification, the dataset was firstly divided into training dataset (75%) and test set 

(25%). The training set is used to fit the machine learning model, whereas the test set (an 

independent set of new data that was never used in training) is used to assess model performance. 

The class imbalance problem can be solved using a common framework (Synthetic Minority 

Oversampling Technique, SMOTE), which occurs when one class includes significantly fewer 

samples than the other classes (Chawla et al., 2002). This technique is used to oversample an 

imbalanced training set and is implemented in Python (version 3.9.16) with the imblearn library 

(Lemaître et al., 2017) (https://github.com/scikit-learn-contrib/imbalanced-learn). 

2.9.3 Evaluation of the supervised machine learning model 

To avoid overfitting and assess the model performance, 10-fold cross-validation 

experiments were performed. With the 10-fold cross-validation, the training set was divided into 

10 parts randomly. The model was trained with nine of these parts and tested using the remaining 

one, which was repeated for ten times.  

The overall accuracy in the independent test set, recall (sensitivity of model prediction), 

precision (hitting ratio of positive predictions), AU-ROC (area under the receiver operating 

characteristic curve), and AU-PRC (area under the precision-recall curve) were also used to 

evaluate the performance of the machine learning model. The ROC curve shows how well the 

classification model differentiates between classes, with a larger AU-ROC suggesting better model 

performance. Furthermore, the Precision-Recall Curve (PRC) was used to demonstrate the tradeoff 

between precision and recall for various thresholds. The PRC is a graph that shows recall on the x-

https://github.com/scikit-learn-contrib/imbalanced-learn
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axis and precision on the y-axis. It is often utilized when classes are imbalanced, with higher AU-

PRC indicating better classifier performance. 

2.9.4 Explainable artificial intelligence 

Machine learning models are often seen as black boxes, which makes it difficult to get 

explanations for the predictions they make. As interpretability and transparency are crucial in 

understanding and explaining the machine learning model, model explainability has recently 

become a basic part of the machine learning pipeline. Explainable artificial intelligence is a set of 

tools (frameworks) to interpret predictions made by the black box machine learning models. 

SHapley Additive exPlanations (SHAP) is an explainable artificial intelligence technique 

based on cooperative game theory. It provides a unified framework for interpreting the output of 

complex machine learning models, including GBM models (Lundberg and Lee, 2017; Lundberg et 

al., 2020). It offers a way to evaluate the importance/contribution of each feature to the prediction 

by calculating the SHAP values. This makes it possible to assess how much each feature influences 

the prediction and if it has a positive or negative impact on the model output (Lundberg et al., 

2020). The SHAP method was used in this study to evaluate the weight/importance of distinct 

features in the trained machine learning model, with higher SHAP values indicating a stronger 

positive influence of that feature on the prediction, implemented with the SHAP package 

(https://github.com/slundberg/shap) in Python (3.9.16). The main DOM characteristics in each 

class were further identified.  

 

https://github.com/slundberg/shap
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2.10. Other Statistical analyses 

All statistical analyses were performed using the R software (version 4.2.1). The non-

parametric statistical tests were used due to the non-normal distribution of the dataset (tested by 

Shapiro–Wilk normality test; p-values < 0.05). Specifically, the Spearman’s correlation was used 

to investigate potential correlations among different features, and the unpaired two-samples 

Wilcoxon test (also known as Mann-Whitney test or Wilcoxon rank sum test) was used for two 

independent group comparisons. Significance level is indicated by asterisks: *p-value < 0.05; **p-

value < 0.01; ***p-value < 0.001; ****p-value < 0.0001; ns (not significant), p-value > 0.05. 

Principal Component Analysis (PCA) is often used for visualizing high-dimensional data 

in lower-dimensional spaces. This visualization helps in exploring patterns, clusters, and 

relationships that might not be apparent in the original high-dimensional space. In this thesis, PCA 

was performed to statistically investigate the relationships between samples and variables, 

implemented with the R packages factoextra and FactoMineR. The different groups of samples 

were highlighted by adding 95% concentration ellipses.  

Redundancy analysis (RDA) was performed using the R package vegan to investigate the 

relationship between variables. Angles between distinct variables were used to identify the 

potential correlations. Right angles (90°) reflect a lack of linear correlations, whereas small or 

straight angles (close to 0° or 180°, respectively) imply positive or negative linear correlations. The 

variables that are close to each other were assumed to be strongly linked, representing similar 

distribution patterns. To evaluate the relative importance of each explanatory variable 

(environmental parameters) on dependent variables, a hierarchical partitioning method 

implemented in the R package rdacca.hp was utilized. This method calculated the individual 
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importance (sum of the unique and total average shared effects) from all subset models, generating 

an unordered assessment of variable importance (Lai et al., 2022).   

Spatio-temporal variations in environmental factors and variables were assessed after 

applying a locally estimated scatterplot smoothing (LOESS) method. This method allows the 

identification of nonlinear data patterns and buffers the effect of aberrant data and outliers. LOESS 

was implemented by the geom_smooth function of the R package ggplot2.  

 

2.11. Summary of the analysis 

Soil samples and mudflat sediments were all analyzed for their elemental and isotopic 

composition, as well as for brGDGTs and brGMGTs. The analyses performed on the water samples 

(POM and DOM characterization) are summarized in the Table 2-2. 

Table 2-2. List of water samples with corresponding analysis 

    POM characterization 

DOM 

characterization 

Date Location 

elemental 

and 

isotopic 

analysis 

n-

alkanes 

sterols 

and 

stanols 

fatty 

acids 

brGDGTs 

and 

brGMGTs 

UV-

visible 
EEMs 

Jun-19 Honfleur √ √ √ √ √ √ √ 

 Berville-Sur-

Mer √ √ √ √ √ √ √ 
 Tancarville √ √ √ √ √ √ √ 
 Petitville      √ √ 

 Vatteville-La-

Rue √ √ √ √ √ √ √ 
 Caudebec √ √ √ √ √ √ √ 
 Le Trait      √ √ 
 Heurtauville √ √ √ √ √ √ √ 
 Duclair      √ √ 
 Val des Leux √ √ √ √ √   
 La Bouille      √ √ 
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 Haulot Sur 

Seine √ √ √ √ √ √ √ 
 Petit Couronne      √ √ 

 Le Grand 

Quevilly      √ √ 
 Rouen      √ √ 
 Oissel √ √ √ √ √   

  Les Andelys √ √ √ √ √     

Jul-19 Honfleur      √ √ 

 Berville-Sur-

Mer      √ √ 
 Tancarville √ √ √ √ √ √ √ 
 Petitville      √ √ 

 Vatteville-La-

Rue      √ √ 
 Caudebec √ √ √ √ √ √ √ 
 Le Trait      √ √ 
 Heurtauville      √ √ 
 Duclair      √ √ 
 Val des Leux √ √ √ √ √   
 La Bouille      √ √ 

 Haulot Sur 

Seine      √ √ 
 Petit Couronne      √ √ 

 Le Grand 

Quevilly      √ √ 
 Oissel √ √ √ √ √   

  Les Andelys √ √ √ √ √     

Sep-19 Honfleur           √ √ 

 Berville-Sur-

Mer      √ √ 
 Tancarville      √ √ 
 Petitville      √ √ 

 Vatteville-La-

Rue      √ √ 
 Caudebec      √ √ 
 Le Trait      √ √ 
 Heurtauville      √ √ 
 Duclair      √ √ 
 La Bouille      √ √ 

 Haulot Sur 

Seine      √ √ 
 Petit Couronne      √ √ 
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Le Grand 

Quevilly           √ √ 

Mar-

20 Honfleur           √ √ 

 Berville-Sur-

Mer      √ √ 
 Tancarville      √ √ 
 Petitville      √ √ 

 Vatteville-La-

Rue      √ √ 

  Caudebec           √ √ 

Jun-20 Honfleur           √ √ 

 Berville-Sur-

Mer      √ √ 
 Tancarville      √ √ 
 Petitville      √ √ 

 Vatteville-La-

Rue      √ √ 
 Caudebec      √ √ 
 Le Trait      √ √ 
 Heurtauville      √ √ 
 Duclair      √ √ 
 La Bouille      √ √ 

 Haulot Sur 

Seine      √ √ 
 Petit Couronne      √ √ 

  
Le Grand 

Quevilly           √ √ 

Jul-20 Honfleur           √ √ 

 Berville-Sur-

Mer      √ √ 
 Tancarville      √ √ 
 Petitville      √ √ 

 Vatteville-La-

Rue      √ √ 
 Caudebec      √ √ 
 Le Trait      √ √ 
 Heurtauville      √ √ 
 Duclair      √ √ 
 La Bouille      √ √ 

 Haulot Sur 

Seine      √ √ 
 Petit Couronne      √ √ 

  
Le Grand 

Quevilly           √ √ 
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Sep-20 Honfleur √ √ √ √ √ √ √ 

 Berville-Sur-

Mer      √ √ 
 Tancarville √ √ √ √ √ √ √ 
 Petitville      √ √ 

 Vatteville-La-

Rue      √ √ 
 Caudebec √ √ √ √ √ √ √ 
 Le Trait      √ √ 
 Heurtauville      √ √ 
 Duclair √ √ √ √ √ √ √ 
 Val des Leux √ √ √ √ √ √ √ 
 La Bouille      √ √ 

 Haulot Sur 

Seine      √ √ 
 Petit Couronne √ √ √ √ √ √ √ 

 Le Grand 

Quevilly      √ √ 
 Oissel √ √ √ √ √   

  Les Andelys √ √ √ √ √     

Nov-

20 Honfleur           √ √ 

 Berville-Sur-

Mer      √ √ 
 Tancarville      √ √ 
 Petitville      √ √ 

 Vatteville-La-

Rue      √ √ 
 Caudebec      √ √ 
 Le Trait      √ √ 
 Heurtauville      √ √ 
 Duclair      √ √ 
 La Bouille      √ √ 

 Haulot Sur 

Seine      √ √ 
 Petit Couronne      √ √ 

 Le Grand 

Quevilly      √ √ 
 Poses √ √ √ √ √   
 Triel sur Seine √ √ √ √ √   
 Bougival √ √ √ √ √   

  
Marnay sur 

Seine √ √ √ √ √     

Feb-21 Balise A           √ √ 



Chapter 2: Material and methods 

 

- 87 - 

 

 Honfleur √ √ √ √ √ √ √ 

 Berville-Sur-

Mer      √ √ 
 Tancarville √ √ √ √ √ √ √ 
 Petitville      √ √ 

 Vatteville-La-

Rue      √ √ 
 Caudebec √ √ √ √ √ √ √ 
 Le Trait      √ √ 
 Heurtauville      √ √ 
 Duclair √ √ √ √ √ √ √ 
 La Bouille      √ √ 

 Haulot Sur 

Seine      √ √ 
 Petit Couronne √ √ √ √ √ √ √ 

  
Le Grand 

Quevilly           √ √ 

Mar-

21 Balise A           √ √ 
 Honfleur √ √ √ √ √ √ √ 

 Berville-Sur-

Mer      √ √ 
 Tancarville √ √ √ √ √ √ √ 
 Petitville      √ √ 

 Vatteville-La-

Rue      √ √ 
 Caudebec √ √ √ √ √ √ √ 
 Le Trait      √ √ 
 Heurtauville      √ √ 
 Duclair √ √ √ √ √ √ √ 
 La Bouille      √ √ 

 Haulot Sur 

Seine      √ √ 
 Petit Couronne √ √ √ √ √ √ √ 

  
Le Grand 

Quevilly           √ √ 

May-

21 Balise A           √ √ 
 Honfleur      √ √ 

 Berville-Sur-

Mer      √ √ 
 Tancarville √ √ √ √  √ √ 
 Petitville      √ √ 

 Vatteville-La-

Rue      √ √ 
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 Caudebec √ √ √ √  √ √ 
 Le Trait      √ √ 
 Heurtauville      √ √ 
 Duclair      √ √ 
 Val des Leux √ √ √ √    
 La Bouille      √ √ 

 Haulot Sur 

Seine      √ √ 
 Petit Couronne      √ √ 

 Le Grand 

Quevilly      √ √ 
 Oissel √ √ √ √    

  Les Andelys √ √ √ √       

Jun-21 Honfleur           √ √ 

 Berville-Sur-

Mer      √ √ 
 Tancarville √ √ √ √  √ √ 
 Petitville      √ √ 

 Vatteville-La-

Rue      √ √ 
 Caudebec √ √ √ √  √ √ 
 Le Trait      √ √ 
 Heurtauville      √ √ 
 Duclair      √ √ 
 Val des Leux √ √ √ √  √ √ 
 La Bouille      √ √ 

 Haulot Sur 

Seine      √ √ 
 Petit Couronne      √ √ 

 Le Grand 

Quevilly      √ √ 
 Oissel √ √ √ √  √ √ 

  Les Andelys √ √ √ √   √ √ 

Jul-21 Balise A           √ √ 
 Honfleur      √ √ 

 Berville-Sur-

Mer      √ √ 
 Tancarville      √ √ 
 Petitville      √ √ 

 Vatteville-La-

Rue      √ √ 
 Caudebec      √ √ 
 Le Trait      √ √ 
 Heurtauville      √ √ 
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 Duclair      √ √ 
 La Bouille      √ √ 

 Haulot Sur 

Seine      √ √ 
 Petit Couronne      √ √ 

  
Le Grand 

Quevilly           √ √ 

Sep-21 Balise A           √ √ 
 Honfleur      √ √ 

 Berville-Sur-

Mer      √ √ 
 Tancarville      √ √ 
 Petitville      √ √ 

 Vatteville-La-

Rue      √ √ 
 Caudebec      √ √ 
 Le Trait      √ √ 
 Heurtauville      √ √ 
 Duclair      √ √ 
 La Bouille      √ √ 

 Haulot Sur 

Seine      √ √ 
 Petit Couronne      √ √ 

  
Le Grand 

Quevilly           √ √ 

Jan-22 Balise A           √ √ 
 Honfleur      √ √ 

 Berville-Sur-

Mer      √ √ 
 Tancarville      √ √ 
 Petitville      √ √ 

 Vatteville-La-

Rue      √ √ 
 Caudebec      √ √ 
 Le Trait      √ √ 
 Heurtauville      √ √ 
 Duclair      √ √ 
 La Bouille      √ √ 

 Haulot Sur 

Seine      √ √ 
 Petit Couronne      √ √ 

  
Le Grand 

Quevilly           √ √ 

May-

22 Balise A           √ √ 
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 Honfleur      √ √ 

 Berville-Sur-

Mer      √ √ 
 Tancarville      √ √ 
 Petitville      √ √ 

 Vatteville-La-

Rue      √ √ 
 Caudebec      √ √ 
 Heurtauville      √ √ 
 Duclair      √ √ 
 La Bouille      √ √ 

 Haulot Sur 

Seine      √ √ 
 Petit Couronne      √ √ 

  
Le Grand 

Quevilly           √ √ 

Jul-22 Balise A           √ √ 
 Honfleur      √ √ 

 Berville-Sur-

Mer      √ √ 
 Tancarville      √ √ 
 Petitville      √ √ 

 Vatteville-La-

Rue      √ √ 
 Caudebec      √ √ 
 Le Trait      √ √ 
 Heurtauville      √ √ 
 Duclair      √ √ 
 La Bouille      √ √ 

 Haulot Sur 

Seine      √ √ 
 Petit Couronne      √ √ 

  
Le Grand 

Quevilly           √ √ 

Sep-22 Balise A           √ √ 
 Honfleur      √ √ 

 Berville-Sur-

Mer      √ √ 
 Tancarville      √ √ 
 Petitville      √ √ 

 Vatteville-La-

Rue      √ √ 
 Caudebec      √ √ 
 Le Trait      √ √ 
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 Heurtauville      √ √ 
 Duclair      √ √ 
 La Bouille      √ √ 

 Haulot Sur 

Seine      √ √ 
 Petit Couronne      √ √ 

  
Le Grand 

Quevilly           √ √ 

Nov-

22 Balise A      √ √ 
 Honfleur      √ √ 

 Berville-Sur-

Mer      √ √ 
 Tancarville      √ √ 
 Petitville      √ √ 

 Vatteville-La-

Rue      √ √ 
 Caudebec      √ √ 
 Le Trait      √ √ 
 Heurtauville      √ √ 
 Duclair      √ √ 
 La Bouille      √ √ 

 Haulot Sur 

Seine      √ √ 
 Petit Couronne      √ √ 

  
Le Grand 

Quevilly           √ √ 
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Abstract 

Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are bacterial lipids that have been 

largely used as environmental proxies in continental paleorecords. Another group of related lipids, 

branched glycerol monoalkyl glycerol tetraethers (brGMGTs), has recently been proposed as a 

potential paleotemperature proxy. Nevertheless, the sources and environmental dependencies of 

both brGDGTs and brGMGTs along the river-sea continuum are still poorly understood, 

complicating their application as paleoenvironmental proxies in aquatic settings. In this study, the 

sources of brGDGTs and brGMGTs and the potential factors controlling their distributions are 

explored across the Seine River basin (NW France), which encompasses the freshwater to seawater 

continuum. To this aim, brGDGTs and brGMGTs were analyzed in soils, Suspended Particulate 

Matter (SPM) and sediments (n=237) collected all along this basin, from land to sea. Both types of 

compounds are shown to be produced in situ, in freshwater as well as saltwater. Redundancy 

analysis further shows that both salinity and nitrogen loadings dominantly control the brGDGT 

distributions. Furthermore, the relative abundance of 6-methyl vs. 5-methyl brGDGTs (IR6Me ratio), 

Total Nitrogen (TN), δ15N and chlorophyll a concentration co-vary in a specific zone with low 

salinity, suggesting that 6-methyl brGDGTs are preferentially produced under low-salinity and 

high-productivity conditions. In contrast with brGDGTs, brGMGT distribution appears to be 

primarily regulated by salinity, with a distinct influence on the individual homologues. Salinity is 

positively correlated with homologues H1020a and H1020b, and negatively correlated with 

compounds H1020c and H1034b. This suggests that bacteria thriving in freshwater preferentially 

produce compounds H1020c and H1034b, whereas bacteria primarily growing in saltwater appear 

to be predominantly responsible for the production of homologues H1020a and H1020b. Based on 
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the abundance ratio of the freshwater-derived compounds (H1020c and H1034b) vs. saltwater-

derived homologues (H1020a and H1020b), a novel proxy, Riverine IndeX (RIX) is proposed to 

trace riverine organic matter inputs, with high values (>0.5) indicating higher riverine contribution. 

As RIX relies on compounds that are specifically produced in certain settings (freshwater or 

saltwater), this index has potential to serve as a powerful proxy for riverine runoff in modern 

samples as well as in paleorecords. 

 

Keywords: branched GDGTs; branched GMGTs; environmental proxies; land-ocean continuum; 

riverine runoff  
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3.1. Introduction 

Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are membrane lipids produced 

by unknown bacteria, although some of them were attributed to the phylum Acidobacteria 

(Sinninghe Damsté et al., 2011; Chen et al., 2022; Halamka et al., 2022). These compounds were 

observed to occur ubiquitously in a wide range of terrestrial and aquatic environments (Schouten 

et al., 2013; Raberg et al., 2022). The distribution of brGDGTs (number of cyclopentane moieties 

and methyl groups; cf. structures in Figure 1-5 in Chapter 1) was empirically linked with pH and 

Mean Annual Air Temperature (MAAT) in soils (Weijers et al., 2007; De Jonge et al., 2014; 

Véquaud et al., 2022), peats (Naafs et al., 2017; Véquaud et al., 2022) and lake sediments 

(Martínez-Sosa et al., 2021). The brGDGT-based proxies (i.e. MBT’5ME and CBT’) have been 

largely applied to reconstruct MAAT and pH from sedimentary archives (Coffinet et al., 2018; 

Harning et al., 2020; Wang et al., 2020).  

In aquatic settings, brGDGTs were initially suggested to be predominantly derived from 

watershed soils and transported by erosion in the sediments (Hopmans et al., 2004). Based on this 

assumption, the Branched and Isoprenoid Tetraethers (BIT) index was defined as the abundance 

ratio of the major brGDGTs to crenarchaeol (isoprenoid GDGT mainly produced by marine 

Thaumarchaeota). It is comprised between 0 and 1, with high BIT values (around 1) reflecting 

higher contribution of terrestrial organic matter compared to marine organic matter (Hopmans et 

al., 2004). Over the last years, the BIT index has been broadly used for quantifying the relative 

contribution of terrestrial organic matter in aquatic systems (Xu et al., 2020; Yedema et al., 2023) 

and evaluating the reliability of TEX86 palaeothermometer (Cramwinckel et al., 2018). However, 

several studies have shown that brGDGTs can also be produced in situ in aquatic settings, either in 

rivers (e.g. De Jonge et al., 2015; Freymond et al., 2017; Kim et al., 2015; Zell et al., 2014, 2013)  
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or lakes (Tierney and Russell, 2009), adding complication for the identification of brGDGT sources 

in aquatic ecosystems and for the application of the brGDGTs as (paleo)environmental proxies, 

including the BIT index. The BIT values have all the more to be carefully interpreted as they could 

also be influenced by the selective degradation of branched vs. isoprenoid GDGTs (Smith et al., 

2012). Thus, complementary molecular proxies for quantifying the input of terrestrial organic 

matter to aquatic settings are still needed, which may cross-validate other available terrestrial 

proxies, such as the δ13C of organic carbon (Lamb et al., 2006), heterocyst glycolipids (Kang et al., 

2023), and long-chain diols (Lattaud et al., 2017). 

The improvement of analytical methods allowed the separation and quantification of 5-, 6- 

and 7-methyl brGDGTs (methyl groups at the fifth, sixth, and seventh positions; Supplementary 

Figure 3-1), that in previous chromatographic protocols co-eluted (De Jonge et al., 2014, 2013; 

Ding et al., 2016). Compounds eluting later than 7-methyl brGDGTs are tentatively designated 

1050d and 1036d, as their exact chemical structures are currently unknown (Wang et al., 2021). 

The fractional abundance of the individual brGDGT isomers was shown to be influenced by distinct 

environmental factors. For example, the relative abundance of 5-methyl brGDGTs was correlated 

with temperature, whereas that of 6-methyl brGDGTs was correlated with pH (De Jonge et al., 

2014). In addition to temperature and pH, other environmental factors may influence brGDGT 

distributions in terrestrial and aquatic settings and hence the application and interpretation of 

brGDGT-derived proxies. For example, recent studies in lakes observed an influence of salinity on 

the relative abundance of 6-methyl, 7-methyl brGDGTs and their late-eluting compounds (Wang 

et al., 2021; Kou et al., 2022). This suggests that salinity could also control the distribution of these 

compounds in other systems like river-sea continuums but this assumption has not yet been studied.  

Compared with brGDGTs, the branched glycerol monoalkyl glycerol tetraethers 

(brGMGTs) are a much less studied group of lipids. Recent studies have revealed their presence in 
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diverse environments, including peatlands (Naafs et al., 2018; Tang et al., 2021), marine settings 

(Liu et al., 2012; Xie et al., 2014), rivers (Kirkels et al., 2022a), soils (Baxter et al., 2021; Kirkels 

et al., 2022a) and lakes (Baxter et al., 2021, 2019). BrGMGTs are labelled as H1020, H1034, and 

H1048 respectively (cf. in Figure 1-6 in Chapter 1), with isomers suggested by a suffix letter (a-c) 

following the order in which they elute according to Baxter et al. (2019). These compounds are 

structurally similar to brGDGTs, but possess an additional covalent carbon–carbon bond between 

the alkyl chains, leading to “H-shaped” structure. The bridge of brGMGTs was considered to be a 

primary adaptation to heat stress (Naafs et al., 2018; Baxter et al., 2019). Their presumed membrane 

stability under high temperature conditions was inferred from the behaviour of isoprenoid glycerol 

monoalkyl glycerol tetraethers (isoGMGTs), which were identified in a hyperthermophilic 

methanogen (Morii et al., 1998) and deep-sea hydrothermal vents (Schouten et al., 2008). Although 

a rigorous chemical characterization of brGMGTs is lacking and the source organisms of 

brGMGTs are unknown, correlations between the relative abundances of brGMGTs and MAAT 

were observed in peat soils (Naafs et al., 2018) and lakes (Baxter et al., 2019), showing their 

potential as temperature proxies. In addition to temperature, anoxic conditions may also trigger 

brGMGT production in the anoxic zone of peats (Naafs et al., 2018; Tang et al., 2021), anoxic part 

of the water column and/or sediments in lakes (Baxter et al., 2021), in regularly inundated soils 

(Kirkels et al., 2022a), as well as in the oxygen minimum zone in the marine environments (Xie et 

al., 2014). Furthermore, shifts in microbial community composition in response to other unknown 

environmental factors seem to control the relative abundances of brGMGTs in peats and lignites 

(Elling et al., 2023). Henceforth, in order to use the brGMGT as environmental proxies in 

sedimentary records, it is still necessary to understand which factors control their distributions in 

riverine and marine water columns and sediments, which remain to date poorly understood (Bijl et 

al., 2021; Sluijs et al., 2020). 
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Based on previous studies of brGDGTs and brGMGTs in terrestrial and marine settings 

(Dearing Crampton-Flood et al., 2019; Wang et al., 2021; Kirkels et al., 2022a, 2022b; Kou et al., 

2022), we hypothesize (1) that both brGDGTs and brGMGTs can be produced in situ in aquatic 

systems and (2) that brGDGT and brGMGT distribution are influenced by surrounding 

environmental factors and vary spatially along the land-sea continuum. These compounds have a 

potential to be used as proxies of riverine organic matter inputs along estuaries. These hypotheses 

were tested by examining and comparing the distribution of brGDGTs and brGMGTs in soils, 

suspended particulate matter (SPM) and sediments (n = 237) collected all along the Seine River 

basin (NW France), covering its riverine and estuarine parts. The aim of the present study was (1) 

to investigate the sources of brGDGTs and brGMGTs along the Seine land-sea continuum, (2) to 

determine the predominant environmental controls affecting the distribution of these molecules 

and (3) to assess the potential of brGMGTs as a riverine runoff proxy. 

 

3.2. Material and methods 

3.2.1. Study area 

The Seine River basin (Seine River and its estuary; Figure 3-1a) is more than 760km long 

and is characterized by high population density, draining through the greater Paris region (over 12 

million inhabitants) to the English Channel (Flipo et al., 2021). The Seine Estuary is a macrotidal 

estuary according to its high tidal range, small depth and morphology. The maximum flows are 

generally observed in winter (over 700 m3/s; Figure 3-1b), whereas the minimum flows are 

observed in summer (below 250 m3/s; Figure 3-1b). The tide influences the estuary up to the city 

of Poses (site 5, KP 202 in Figure 3-1a; KP represents kilometric point and is defined as the distance 
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in kilometers from the city of Paris), where a dam constitutes the boundary between the river and 

the estuary. The estuary can be divided into two major parts: the upper section mainly influenced 

by freshwater (KP 202 to KP 298, from site 5 to site 12; Figure 3-1a and Table 3-1) and the lower 

section (starting at KP 298, from site 12 to the coastal area; Figure 3-1a and Table 3-1). 

Table 3-1. Location of the sampling sites along the Seine Basin, with the type of samples collected 

 

Site Name Longitude 

(°) 

Latitude 

(°) 

KP  Zone Date Type  

1 Marnay-sur- 

Seine 

3.56 48.51 -200  River 2020-11 SPM (n=1) 

2 Bougival 2.13 48.87 40  River 2020-11 SPM (n=1) 

3 Triel sur 

Seine 

2.00 48.98 80  River 2020-11 SPM (n=1) 

4 Les Andelys 1.40 49.24 175  River 2019-6; 

2019-7; 

2020-9 

SPM (n=6) 

5 Poses 1.24 49.31 202  Upstream 

estuary 

2016-4; 

2020-11 

SPM (n=2) 

6 Oissel 1.10 49.34 229.4  Upstream 

estuary 

2019-6; 

2019-7; 

2020-9 

SPM (n=18) 

7 Rouen 1.03 49.43 243  Upstream 

estuary 

2016-4 SPM (n=1);  

Sediments 

(n=10) 

8 Petit 

Couronne 

1.01 49.38 251.3  Upstream 

estuary 

2020-9; 

2021-2; 

2021-3 

SPM (n=3) 

9 Haulot Sur 

Seine 

0.98 49.36 255.6  Upstream 

estuary 

2019-6 SPM (n=1) 

10 Val-des- 

Leux 

0.92 49.40 265.55  Upstream 

estuary 

2019-6; 

2019-7; 

2020-9 

SPM (n=18) 

11 Duclair 0.87 49.48 278  Upstream 

estuary 

2020-9; 

2021-2; 

2021-3 

SPM (n=3) 

12 Heurtauville 0.82 49.45 297.65  Downstream 

estuary 

2019-6 SPM (n=1) 

13 Caudebec 0.75 49.52 310.5  Downstream 

estuary 

2015-4; 

2015-9; 

2016-4; 

2019-6;  

2019-7; 

2020-9; 

SPM (n=24) 
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2021-2; 

2021-3 

14 Vatteville-

La-Rue 

0.67 49.47 318  Downstream 

estuary 

2019-6 SPM (n=1) 

15 Tancarville 0.47 49.47 337  Downstream 

estuary 

2015-1; 

2015-4; 

2015-9; 

2019-6;  

2019-7; 

2020-9; 

2021-2; 

2021-3 

SPM  (n=24);  

Sediments 

(n=20) 

16 Berville-

Sur-Mer 

0.37 49.44 346  Downstream 

estuary 

2019-6 SPM (n=1) 

17 Fatouville 0.32 49.44 350  Downstream 

estuary 

2015-4; 

2015-7; 

2015-9; 

2016-4 

SPM (n=4);  

Sediments 

(n=28) 

18 Honfleur 0.23 49.43 355.8  Downstream 

estuary 

2015-4; 

2015-9; 

2019-6;  

2020-9; 

2021-2; 

2021-3 

SPM (n=6) 

19 La Carosse 0.03 49.48 370  Downstream 

estuary 

2015-7; 

2016-4; 

2016-4 

SPM (n=2);  

Sediments 

(n=10) 

A n.a. 3.72 48.56 n.a.  Soil (around 

the river) 

2021-9 Soil (n=1) 

B n.a. 3.23 

3.26 

48.43 

48.42 

n.a.  Soil (around 

the river) 

2021-9 Soil (n=5) 

C n.a. 3.11 

3.13 

48.83 

48.85 

n.a.  Soil (around 

the river) 

2021-10 Soil (n=3) 

D n.a. 0.38 

0.38 

0.38 

49.47 

49.46 

49.45 

n.a.  Soil (around 

the 

downstream 

estuary) 

2021-3; 

2021-9 

 

Soil (n=8) 

E n.a. 0.41 

0.41 

49.44 

49.45 

n.a.  Soil (around 

the 

downstream 

estuary) 

2018-2; 

2018-6; 

2018-8; 

2018-10; 

2020-9; 

2021-3 

Soil (n=34) 
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3.2.2. Sampling 

From June 2019 to March 2021, water samples (n=102) were collected across the Seine 

River (Figure 3-1a). Sub-surface water (ca. 1m depth) samples were collected in high-flow (over 

250 m3/s) and low-flow (below 250 m3/s) periods from the three zones (river, upstream estuary and 

downstream estuary) of the Seine River basin (Table 3-1). At 5 sites (sites 4, 6, 10, 13, and 15, 

Figure 3-1a and Table 3-1), both sub-surface and bottom water (2.2-16 m depth) samples were 

retrieved using a pump into precleaned 20L FLPE Nalgene carboys. Estuarine water samples (sites 

6, 10, 13, and 15; Figure 3-1a and Table 3-1) were collected at three tide periods (high tide, low 

tide and mid tide). For these sites, 0.25-43 L of water were immediately filtered using pre-

combusted Whatman GF/F 0.7 µm glass fiber filters. After filtration, filters were freeze-dried, 

scratched and stored frozen at -20°C prior to analysis.  

Additional SPM samples (n=16; Table 3-1) used in this study for brGDGT and brGMGT 

analysis were collected from the upstream and downstream estuary (site 5, 7, 13, 15, 17, 18, and 

19; Figure 3-1a and Table 3-1) in 2015 and 2016, as detailed by Thibault et al. (2019). Sediments 

(n=68) from 8 cores (10cm depth) were collected in the river channel at the same sites as these 

SPM samples in 2015 and 2016 using a UWITEC corer as described by Thibault et al. (2019) 

(Table 3-1). These sediments were further sliced (1-cm thickness) and freeze-dried. Surficial soils 

(n=9) were collected in the lateral area of the upstream section of the Seine river in 2021 (site A, 

B, and C, Figure 3-1a and Table 3-1) and freeze-dried. Additional wetland soils and mudflat 

sediments (n=42) were collected in the downstream estuary in 2018, 2020, and 2021 (site D and E, 

Figure 3-1a and Table 3-1), representing allochthonous material transported into the estuary by 

tidal effect. These samples were collected at low tide using a plexiglass® core (4.5 cm depth), and 
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back to the laboratory, homogenized, freeze-dried, and ground using a ball mill (model MM400, 

Retsch®). 

3.2.3. Elemental and isotopic analyses 

Elemental and isotopic analyses of the soils (surficial soils and mudflat sediments, n=51) 

and SPM (n=102) collected from 2018 to 2021 were performed following the method described in 

Thibault et al. (2019). Briefly, 40 mg of SPM and 1 g of soils/sediments samples were firstly 

decarbonated by adding 10 mL of 3 M HCl for 2 h with magnetic stirring at room temperature. 

Subsequently, these samples were rinsed using ultrapure water and centrifuged until reaching 

neutral pH. The obtained decarbonated samples were stored at −20 °C and freeze dried. Both 

decarbonated and non-decarbonated samples (~6 mg for SPM and ~20 mg for soils) were enclosed 

in a tin capsule. Total Organic Carbon content (TOC) and stable carbon isotopic composition (δ13C) 

were measured in decarbonated samples using an elemental analyzer coupled with an isotope ratio 

mass spectrometer (Thermo Fisher Scientific Delta V Advantage) at the ALYSES platform 

(Sorbonne University / IRD, Bondy, France). Total Nitrogen (TN) and nitrogen isotope (δ15N) were 

measured in non-decarbonated samples as acidification could impact the N contents (Ryba and 

Burgess, 2002). The isotopic composition (δ13C or δ15N) was expressed as relative difference 

between isotopic ratios in samples and in standards (Vienna Pee Dee Belemnite for carbon or 

atmospheric N2 for nitrogen). Additional elemental and isotopic analyses of SPM and sediments 

collected in 2015 and 2016 (n=84) were carried out as described in Thibault et al. (2019). 
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Figure 3-1. (a) Geographical locations of sampling sites in the Seine River Basin (KP: kilometric 

point, the distance in kilometers from the city of Paris (KP 0)). (b) Mean monthly water discharge 

for the Seine River at the Paris Austerlitz station from 2015 to 2021 (data from 

https://www.hydro.eaufrance.fr/). Bullets represent the sampling period in high-flow (>250 m3/s - 

blue) and low-flow (<250 m3/s - red) conditions.  
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3.2.4. Lipid extraction and analyses 

The lipids from surficial soils and mudflat sediments (4-20g, n=51) and from SPM samples 

(~150mg, n=102) were extracted ultrasonically (3×) with 20 to 40 mL of dichloromethane (DCM): 

methanol (MeOH) (5/1, v/v) per extraction. Lipids from the SPM and sediments samples (n=84) 

collected in 2015 and 2016 were previously extracted by Thibault (2018) following the same 

method. The total lipid extracts were then separated into fractions of increasing polarity on an 

activated silica gel column, using (i) 30 mL of heptane, (ii) 30 mL of heptane:DCM (1/4, v/v), and 

(iii) 30 mL of  DCM/MeOH (1/1, v/v) as eluents. An aliquot (30%) of the third (polar) fraction 

containing GDGTs and GMGTs was dried, re-dissolved in heptane, and passed through a 0.2μm 

polytetrafluoroethylene (PTFE) filter (Ultrafree-MC; Merck). C46 Glycerol Trialkyl Glycerol 

Tetraether (GTGT) was used as an internal standard (Huguet et al., 2006). 5 µl of this standard 

(0.01025 mg/mL) was typically added to 45 µl of sample. 

GDGTs and GMGTs were analyzed using a Shimadzu LCMS 2020 high pressure liquid 

chromatography coupled with mass spectrometry with an atmospheric pressure chemical ionization 

source (HPLC-APCI-MS) in selected ion monitoring mode, modified from Hopmans et al. (2016) 

and Huguet et al. (2019). Tetraether lipids were separated with two silica columns in tandem (BEH 

HILIC columns, 2.1 × 150 mm, 1.7 μm; Waters) thermostated at 30℃. Injection volume was 30 

μL. The flow rate was set at 0.2 mL/min. GDGTs and GMGTs were eluted isocratically for 25 min 

with 82% A/18% B (A= hexane, B=hexane/isopropanol 9/1, v/v), followed by a linear gradient to 

65% A/35% B in 25 min, then a linear gradient to 100% B in 30 min, and back to 82% A/18% B 

in 4 min, maintained for 50 min. Identification of the different brGMGT isomers was achieved by 

comparison of peak retention time with that of known brGMGTs in Baxter et al. (2019) and Kirkels 

et al. (2022a). Semi-quantification of brGDGTs and brGMGTs was performed by comparing the 
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integrated signal of the respective compound with the signal of a C46 synthesized internal standard 

(Huguet et al., 2006) assuming their response factors to be identical. 

The detection limit was set at a signal-to-noise ratio (SNR) of 3. Peaks with lower SNR 

(<3) are not distinguishable from the background noise and are considered below the limit of 

quantification. 

3.2.5. Calculation of GDGT proxies 

The IR6Me index represents the proportion of 6-methyl brGDGTs vs. 5-methyl brGDGTs 

and was calculated according to De Jonge et al. (2015; Eq. 1) with Roman numbers referring to the 

structures in annex (Supplementary Figure 3-1): 

IR6Me  =  
IIa6+IIb6+IIc6+IIIa6+IIIb6+IIIc6

IIa5+IIb5+IIc5+IIa6+IIb6+IIc6+IIIa5+IIIb5+IIIc5+IIIa6+IIIb6+IIIc6
    (1) 

The BIT index including the 6-methyl brGDGTs was calculated following De Jonge et al. 

(2015; Eq. 2): 

BIT =  
Ia+IIa5+IIa6+IIIa5+IIIa6

Ia+IIa5+IIa6+IIIa5+IIIa5+crenarchaeol
        (2) 

Based on duplicate injections, the average analytical error was 0.005 for IR6Me and 0.06 for BIT. 

3.2.6. Water quality measurements 

Water turbidity was measured by a CTD Probe Sea-bird®. Water temperature, dissolved 

oxygen, salinity, and pH were measured using an automated YSI 6000 multi-parameter probe (YSI 

inc., Yellow springs, OH, USA). Chlorophyll a (Chl a) concentrations were measured on water 

samples after filtration on Whatman GF/F 0.7 µm glass fiber filters, which were stored frozen (-

20° C) before analysis. Chl a was extracted from filters with incubation in 10 ml of 90% acetone 

for 12 hours in the dark at 4°C. After two centrifugations (1700 g, 5 min), Chl a concentrations 
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were measured using a Turner Designs Fluorometer according to the method of Strickland and 

Parsons (1972) as described in the reference protocol of SNO SOMLIT (Service d’observation du 

Milieu Littoral). Water quality measurements were performed at the Laboratoire Ecologie 

Fonctionnelle et Environnement (Université de Toulouse) as well as at UMR BOREA (Université 

de Caen Normandie). 

3.2.7. Statistical analyses 

All statistical analyses were performed using the R software (version 4.2.1). The non-

parametric statistical tests were used due to the non-normal distribution of the dataset (tested by 

Shapiro–Wilk normality test; p-values < 0.05). Specifically, the Spearman’s correlation was used 

to investigate potential correlations among different features (environmental parameters, fractional 

abundances of brGDGTs and brGMGTs, and proxies derived from these compounds), and the 

unpaired two-samples Wilcoxon test (also known as Mann-Whitney test or Wilcoxon rank sum 

test) was used for two independent group comparisons. Significance level is indicated by asterisks: 

*p-value < 0.05; **p-value < 0.01; ***p-value < 0.001; ****p-value < 0.0001; ns (not significant), 

p-value > 0.05. 

A Principal Component Analysis (PCA) was performed on the fractional abundances of 

brGDGTs and brGMGTs, using the R packages factoextra and FactoMineR. The different groups 

of samples were highlighted by adding 95% concentration ellipses. The proportion of variance in 

brGDGT and brGMGT compositions that can be explained by different groups was evaluated by 

permutational multivariate analysis of variance using distance matrices (adonis) in the adonis2 

function of the R package Vegan, using the Bray-Curtis distances and 999 permutations. 

A Redundancy analysis (RDA) was performed using the R package vegan to investigate 

the relationship between environmental parameters and brGDGT or brGMGT distributions in 



Chapter 3: Environmental controls on the brGDGT and brGMGT distributions 

- 108 - 

 

SPM. Angles between brGDGTs or brGMGTs and environmental factors were used to identify the 

potential correlations. Right angles (90°) reflect a lack of linear correlations, whereas small or 

straight angles (close to 0° or 180°, respectively) imply positive or negative linear correlations. The 

compounds that are close to each other were assumed to be strongly linked, representing similar 

distribution patterns and comparable responses to the environmental conditions. To evaluate the 

relative importance of each explanatory variable (environmental parameters) on brGDGT or 

brGMGT distributions, a hierarchical partitioning method implemented in the R package rdacca.hp 

was used. This method calculated the individual importance (sum of the unique and total average 

shared effects) from all subset models, generating an unordered assessment of variable importance 

(Lai et al., 2022).  

 Spatio-temporal variations of environmental factors and proxies derived from brGDGTs 

and brGMGTs were assessed after applying a locally estimated scatterplot smoothing (LOESS) 

method. This method allows the identification of nonlinear data patterns and buffers the effect of 

aberrant data and outliers. LOESS was implemented by the geom_smooth function of the R 

package ggplot2.  
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Figure 3-2. Extracted chromatograms of brGDGTs and brGMGTs for the SPM samples collected 

in (a) site 15 (Tancarville, September 2020), (b) site 6 (Oissel, July 2019) and (c) site 4 (Les 

Andelys, July 2019). The nomenclature for the penta- and hexamethylated brGDGTs: 5-methyl 

brGDGTs (IIIa5, IIIb5, IIIc5, IIa5, IIb5, and IIc5); 6-methyl brGDGTs (IIIa6, IIIb6, IIIc6, IIa6, IIb6, 

and IIc6); 7-methyl brGDGTs (IIIa7, IIIb7, and IIa7).  
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3.3. Results 

3.3.1. Distribution of bulk parameters from land to sea 

            The total organic carbon (TOC) content was significantly higher in the upstream estuary 

(4.64±1.42 %, based on SPM and river channel sediments) than in downstream estuary (3.30±1.69 

%, based on SPM and sediments), soils (3.02±3.49 %, based on surficial soils and mudflat 

sediments) and river (2.88±1.14 %, based on SPM) (Figure 3-3). The total nitrogen (TN) content 

was higher in the upstream estuary (0.51±0.17 %, based on SPM and sediments) than in the river 

(0.37±0.15 %, based on SPM), downstream estuary (0.31±0.14 %, based on SPM and river channel 

sediments), and soils (0.24±0.17 %, based on surficial soils and mudflat sediments) (Figure 3-3). 

Much lower values of δ13Corg were observed in river (-31.30±1.91 ‰, based on SPM) and upstream 

estuary (-30.62±1.66 ‰, based on SPM and sediments) than in the downstream estuary (-

26.45±1.34 ‰, based on SPM and sediments) and soils (-26.55±1.13 ‰, based on surficial soils 

and mudflat sediments) (Figure 3-3). In addition, no significant differences in δ15N were observed 

along the river basin (Figure 3-3). 

3.3.2. Distribution of brGDGTs from land to sea 

The different brGDGTs were detected in all studied samples. The brGDGT chromatograms 

from upstream samples (SPM and river channel sediments) differed markedly from downstream 

estuarine samples (SPM and sediments). For example, 6-methyl brGDGTs were much more 

abundant than 5-methyl brGDGTs in the river (SPM) and upstream estuary (SPM), whereas the 

strong predominance of 6-methyl vs. 5-methyl brGDGTs decreased in the downstream SPM 

samples (Figure 3-2). Furthermore, the peaks of the recently described 7-methyl brGDGTs and 



Chapter 3: Environmental controls on the brGDGT and brGMGT distributions 

- 111 - 

 

their late-eluting isomers (i.e. 1050d) were more pronounced in the downstream estuary than in the 

rest of the Seine basin (Figure 3-2).  

 

Figure 3-3. Distribution of bulk parameters (TOC, TN, δ13Corg and δ15N) from soils (surficial soils 

and mudflat sediments) as well as river, upstream estuary and downstream estuary samples across 

the Seine River basin. Box plots of upstream and downstream estuary samples are based on SPM 

and sediments, whereas those of river samples are based only on SPM. Statistical testing was 

performed by a Wilcoxon test (*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; ns, not 

significant, p >0.05). 
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Figure 3-4. Relative abundances of selected individual brGDGTs from soils (surficial soils and 

mudflat soils/sediments, n=51), river (n=9), upstream estuary (n=56), and downstream estuary 

(n=121) samples across the Seine River basin: cyclopentane-containing tetramethylated brGDGTs 

(Ib and Ic), 6-methyl brGDGTs (IIa6, IIIa6, IIb6, IIIb6, and IIIc6), 7-methyl brGDGTs (IIa7 and IIIa7) 

and brGDGTs 1050d. Box plots of upstream and downstream estuary samples are based on SPM 

and sediments, whereas those of river samples are based only on SPM. Boxes are color-coded based 

on the sample type (soil in brown, river in red, upstream estuary in yellow, and downstream estuary 

in blue). Statistical testing was performed by a Wilcoxon test (*p < 0.05; **p < 0.01; ***p < 0.001; 

****p < 0.0001; ns, not significant, p >0.05). 

 

The relative abundances of the brGDGTs were determined all along the Seine River basin 

(Figure 3-4 and Supplementary Figure 3-1, 3-2). The 6-methyl brGDGTs (IIIa6, IIa6, IIIb6, IIb6, 

and IIIc6) were significantly higher in river (SPM) and upstream estuary (SPM and river channel 

sediments) than in soils (surficial soils and mudflat sediments) and downstream estuary (SPM and 

river channel sediments). In addition, the relative abundances of 7-methyl brGDGTs (IIIa7 and IIa7) 

and their late-eluting compound (1050d) in downstream estuary (SPM and river channel sediments) 

and soils (surficial soils and mudflat sediments) were significantly higher than those in river (SPM) 

and the upstream estuary (SPM and river channel sediments).  
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The concentration of total brGDGTs also showed differences along the land to sea 

continuum (Supplementary Figure 3-3a). The total brGDGTs concentration decreased from river 

(10.51 ± 5.91 μg/g organic carbon (Corg), based on SPM samples) to upstream estuary (7.52 ± 5.09 

μg/g Corg, based on SPM and sediments) and downstream estuary (4.95 ± 4.09 μg/g Corg, based 

SPM and sediments). In soils from all the Seine basin, the concentration in total brGDGTs (1.55 ± 

1.61 μg/g Corg, based on surficial soils and mudflat sediments) was significantly lower than that in 

SPM and sediments (Supplementary Figure 3-3a). 

A Principal Component Analysis (PCA) was performed to statistically compare the 

fractional abundances of brGDGTs from different location (river, upstream and downstream 

estuary, based on SPM and sediments collected in the river channel), which explained 40.9% of 

the variance in two dimensions, with negative loadings for most of the 6-methyl brGDGTs and 

positive loadings for the remaining brGDGTs (Figure 3-5a). Samples from the downstream estuary 

clustered well apart from those from the river and upstream parts. Specifically, the brGDGT 

distribution was dominated by 6-methyl brGDGTs (IIIa6, IIIb6, IIIc6, IIa6, and IIb6) in river and 

upstream estuarine samples, whereas in downstream estuary, it was driven by 5-methyl brGDGTs 

(III5, IIa5, IIc5, IIb5 and IIIb5), tetramethylated brGDGTs (Ia, Ib, and Ic), 7-methyl brGDGTs (IIIa7, 

IIa7, and IIb7), and their late-eluting compounds (1050d and 1036d). The brGDGT distributions of 

soils (surficial soils and mudflat sediments) were included in the PCA biplot performed on SPM 

and river channel sediments. This revealed that the brGDGT distribution in soils mostly overlap 

with the one in downstream SPM and river channel sediments (Figure 3-5a). 
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Figure 3-5. PCA analysis of fractional abundances of (a) brGDGTs and (b) brGMGTs. PCA scores 

of soils were added passively as an overlay. Their coordinates are predicted based on the 

information provided by the PCA performed on SPM and sediments (active individuals). Adonis 

analysis was used to evaluate how variation can be explained by the variables (999 permutations). 

 

A Redundancy analysis (RDA) was performed to investigate the influence of the 

environmental factors (TOC, TN, temperature, water discharge and salinity) on the brGDGT 

distributions in SPM samples (Figure 3-6a and Supplementary Table 3-2). It allowed to explain 

39.79% of the variability through two dimensions. The RDA triplot (Figure 3-6) showed how these 

factors correlate to the distributions of individual brGDGTs. The first axis of the RDA explained 

33.16% of the variability and was primarily correlated with salinity and TN, whereas the second 

axis explained 6.63% of the variability and was associated with temperature, water discharge and 

TOC (Figure 3-6a and Supplementary Table 3-2). Based on hierarchical partitioning, salinity and 

TN were the two most important variables in explaining the brGDGT variations (individual 

importance of 14.97 % for salinity and 13.47 % for TN; Figure 3-6b and Supplementary Table 3-

2). Compared with the salinity and TN, other available parameters have much lower individual 

importance (3.68 % for water discharge, 3.6 % for temperature and 2.12 % for TOC; Figure 3-6b 

and Supplementary Table 3-2). 
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Figure 3-6. RDA analysis showing relationships between environmental factors (TN, TOC, 

salinity, temperature, discharge, red arrows) and fractional abundances of (a) brGDGTs and (c) 

brGMGTs. The individual importance of the environmental factors (TN, TOC, salinity, 

temperature, and discharge) explaining the variation in (b) brGDGT and (d) brGMGT distributions 

was determined by hierarchical partitioning analysis. The dataset used for RDA analysis is 

composed of SPM from river (n=6; red), upstream estuary (n=42; yellow) and downstream estuary 

(n=59; blue). Significance level is indicated by asterisks: *p < 0.05; **p < 0.01; ***p < 0.001; ns, 

not significant, p > 0.05. p-values are derived from permutation tests (999 randomizations). 
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3.3.3 Distribution of brGMGTs from land to sea 

The brGMGTs identified in previous studies were detected in the samples collected across 

the Seine River basin (Figure 3-2). H1034a is the least abundant isomer and is below detection 

limit for most of the samples in the Seine River basin (Supplementary Figure 3-4). The 

chromatograms revealed distinct distributions in brGMGTs in the different parts of the basin (SPM 

and sediments), with e.g. a higher intensity for the homologue H1020c in the river samples (SPM) 

than in those from the upstream (SPM) and downstream estuary (SPM) (Figure 3-2). These spatial 

variations were apparent when calculating the fractional abundances of the individual brGMGTs 

(Figure 3-7 and Supplementary Figure 3-4, 3-5). From upstream to downstream, the relative 

abundances in H1020a and H1020b increased, whereas those in 1020c and H1034b decreased 

(Figure 3-7). In SPM and river channel sediments, the total brGMGT concentration was observed 

to be slightly higher in the riverine part (0.26 ± 0.24 μg/g Corg) than in downstream (0.20 ± 0.13 

μg/g Corg) and upstream estuary samples (0.17 ± 0.18 μg/g Corg; Supplementary Figure 3-3b). The 

total brGMGT concentrations were the lowest in soils (surficial soils and mudflat sediments) all 

over the basin (0.07 ± 0.09 μg/g Corg; Supplementary Figure 3-3b). 

The PCA analysis based on the brGMGT relative abundances (Figure 3-5b) explained 70 

% of the variance, which allows to observe that samples from the different parts of the basin 

clustered well apart from each other. The first axis explained 54.9 % of the variance, separating 

downstream samples from riverine and upstream samples, with negative loadings for two 

brGMGTs (H1020a and H1020b), and positive loadings for the remaining brGMGTs (H1020c, 

H1034a, H1034b, H1034c, and H1048). The second axis explained 15.1% of the variance and 

mainly separated the riverine and upstream samples, with higher relative abundances of compounds 

H1020c and H1034b in riverine samples (Figure 3-5b). The soil brGMGT distributions were 
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passively added to the PCA biplot based on SPM and sediments, revealing that the soils largely 

overlap with the SPM and sediments collected in the downstream estuary (Figure 3-5b). 

 

Figure 3-7. Relative abundance of selected individual brGMGTs from soils (surficial soils and 

mudflat soils/sediments, n=51), river (n=9), upstream estuary (n=56) and downstream estuary 

(n=121) across the Seine River basin. Box plots of upstream and downstream estuary are composed 

of SPM and river channel sediments, whereas those of river are composed of SPM. Boxes are color-

coded based on the sample type (soil in brown, river in red, upstream estuary in yellow, and 

downstream estuary in blue). Statistical testing was performed by a Wilcoxon test (*p < 0.05; 

**p < 0.01; ***p < 0.001; ****p < 0.0001; ns, not significant, p >0.05). 

 

The RDA was performed to investigate the factors that could explain the variability of 

brGMGT distributions in SPM samples (Figure 3-6c and Supplementary Table 3-2) and allows to 
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explain 30.2 % of the variance. The RDA triplot showed that the first axis, accounting for 23.52 % 

of the variability, was mainly associated with salinity and to a lesser extent TN, while the second 

axis (6.68 %) was mainly driven by temperature, TOC and water discharge (Figure 3-5c and 

Supplementary Table 3-2). Based on hierarchical partitioning, salinity had the highest individual 

importance (17.45 %) in explaining the variability of brGMGT distribution followed by TN (4.18 

%), TOC (3.5 %), and water discharge (2.16 %) (Figure 3-6d and Supplementary Table 3-2).  

 

3.4. Discussion 

3.4.1. Sources of brGDGTs and environmental controls on their distribution 

3.4.1.1 Sources of brGDGTs  

            In order to determine the predominant origin of brGDGTs in the Seine River basin, the 

overall brGDGT concentrations and distributions in SPM and river channel sediments (n=186) 

were compared with those in soils (surficial soils and mudflat sediments, n=51). The brGDGT 

concentrations (normalized to Corg) and relative abundances of several brGDGTs (i.e. IIIa6, IIa6, 

IIIb6, IIb6, and IIIc6) in the SPM and sediments were significantly higher than those in soils (p<0.05, 

Wilcoxon test; Supplementary Figure 3-3a and Figure 3-4). Such differences in brGDGT 

concentrations and relative abundances between soils and aquatic settings (SPM and sediments) 

imply that at least part of the brGDGTs in the water column and sediments of the Seine River basin 

is produced in situ. This is in agreement with previous findings which suggested an in situ aquatic 

contribution to the brGDGT pool (Crampton-Flood et al., 2021; De Jonge et al., 2015; Kirkels et 

al., 2022b; Peterse et al., 2009). 
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More specifically, the fractional abundances of the two major 6-methyl brGDGTs (IIa6 and 

IIIa6) are significantly higher in the Seine River and upstream estuary than in soils (Figure 3-4). 

This confirms that these brGDGTs are mostly produced within the river, adding to the growing 

body of evidence supporting riverine 6-methyl brGDGT production in water column and/or 

sediment (De Jonge et al., 2015; Bertassoli et al., 2022; Kirkels et al., 2022b). A subsequent shift 

in the brGDGT distributions in the downstream compared to the upstream areas is observed in the 

Seine River basin. The PCA analysis shows a separation of downstream estuarine samples 

(influenced by seawater intrusion) from riverine and upstream estuary ones (without significant 

seawater intrusion) (Figure 3-5a). This difference is predominantly driven by the higher 

abundances of 6-methyl brGDGTs in riverine and upstream estuarine samples vs. higher 

abundances of 5- and 7-methyl brGDGTs as well as compounds Ib, Ic, and late eluting brGDGTs 

1050d, 1036d in downstream estuarine samples (Figures 3-4, 3-5a and Supplementary Figure 3-2). 

It may reflect the fact that riverine 6-methyl brGDGTs are more easily degraded than soil-derived 

homologues and only partially transferred downstream. In addition to that, the riverine brGDGT 

signal may be diluted by brGDGTs from other sources during downstream transport. The first 

hypothesis is based on a previous study, which showed a shift in brGDGT distribution from the 

Yenisei River to the Kara Sea (De Jonge et al., 2015). They interpreted this to be a preferential 

degradation of labile (riverine) 6-methyl brGDGTs and the enrichment in less labile (soil-derived) 

5-methyl brGDGTs during transport (De Jonge et al., 2015). This suggests that only limited 

amounts of riverine 6-methyl brGDGTs are transferred to the ocean, as also shown in other recent 

studies (Cao et al., 2022; Kirkels et al., 2022b). Such preferential degradation of 6-methyl 

brGDGTs over other brGDGTs could be attributed to variations in how these molecules are 

attached to soil particles (Huguet et al., 2008). In addition, a shift in brGDGT distribution during 

downstream transport could be explained by mixing with autochthonous (i.e. estuarine-produced) 
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brGDGTs (Crampton-Flood et al., 2021). The relative abundance of several brGDGTs (i.e. Ib, Ic, 

IIIa7, IIa7 and 1050d) in the downstream part of the Seine River basin is indeed significantly higher 

than the one in the upstream part (p<0.05, Wilcoxon test; Figure 3-4), suggesting in situ brGDGT 

production in saltwater. Such a saltwater contribution can be visualized by the PCA based on 

brGDGT distribution, showing the positive score of the aforementioned compounds with the first 

axis (Figure 3-5a). This axis is dominated by downstream samples influenced by seawater intrusion 

in the Seine Estuary (Figure 3-5a). It should be noted that brGDGT distributions in soils were 

roughly similar to those observed in downstream samples (SPM and river channel sediments; 

Figure 3-5a). Hence, it cannot be excluded that brGDGTs detected in downstream samples are at 

least partly derived from soils of the watershed. Nevertheless, the soil-derived brGDGT 

contribution to the downstream samples is expected to be much lower than the autochthonous one, 

as the average brGDGT concentration in soils was ca. 3 times lower than the one in downstream 

(i.e. SPM and river channel sediment) samples (Supplementary Figure 3-3a). 

 

3.4.1.2. Environmental controls on the brGDGT distribution 

As several individual brGDGTs are suggested to be preferentially produced either in the 

riverine or estuarine parts of the Seine basin, their distribution might be related to ambient 

environmental factors. The RDA (performed on SPM samples) highlights the relationships 

between the available environmental variables (salinity, TN, TOC, water discharge and 

temperature) and the relative abundances of brGDGTs. Hierarchical partitioning indicates that 

salinity is the most important factor influencing the brGDGT distribution (14.97 %) in the Seine 

River basin (Figure 3-6b and Supplementary Table 3-2). Salinity is related to the relative 

abundances of compounds Ib, Ic, 7-methyl brGDGTs and the late-eluting homologs 1050d and 
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1036d that scored negatively on the first axis of the RDA (Figure 3-6a). This is in line with the 

positive significant correlations between salinity and the relative abundances of these compounds 

(Supplementary Figure 3-6). This trends also support the assumption made about the aquatic 

production of ring-containing tetramethylated brGDGTs (Ib and Ic) in Svalbard fjords which was 

thought to be linked to a salinity change (Dearing Crampton-Flood et al., 2019). The 7-methyl 

brGDGTs and their late-eluting isomers were also shown to be much more abundant in hypersaline 

lakes than those of lower salinity (Wang et al., 2021). Such a salinity-dependent brGDGT 

composition has previously been interpreted by membrane adaptation to salinity changes or by a 

shift in bacterial community composition (Dearing Crampton-Flood et al., 2019; Wang et al., 

2021). Hence, the significant positive correlations between salinity and these compounds in the 

Seine River basin suggest that brGDGT-producing bacteria have similar physiological mechanisms 

(i.e., membrane adaptation) to those reported in other aquatic settings (lakes and fjords) and/or that 

the diversity of these bacteria is changing along the river-sea continuum. 
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Figure 3-8. Spatio-temporal variations of IR6Me and several environmental factors, including TN 

(%), δ15N (‰), Chla (μg/L), TOC (%), turbidity (NTU) pH, and dissolved oxygen saturation (DO, 

%). The trends showing variations were based on locally estimated scatterplot smoothing (LOESS) 

method with 95% confidence intervals. KP (kilometric point) represents the distance in kilometers 

from the city of Paris (KP 0). Dataset is composed of SPM. The shaded area highlights a zone (260 

< KP < 340) where IR6Me and several environmental parameters co-vary. 

 

The relative abundances of several 6-methyl brGDGTs (i.e. IIa6, IIIa6, and IIb6) in the Seine 

River basin reveal significant negative correlations with salinity (p<0.05, Wilcoxon test; 

Supplementary Figure 3-6), which is in contrast with the positive relationships previously found in 

lakes (Wang et al., 2021). The distinct behavior of 6-methyl brGDGTs between lakes and the Seine 

river-sea continuum might be due to the lower salinity range in the Seine River basin (0-32 psu) 

vs. the lakes (0-376 psu) investigated by Wang et al. (2021). This suggests that the limited range 
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of salinity variation in the Seine River basin might be insufficient to trigger significant 6-methyl 

brGDGT production as observed in hypersaline lakes. 

Alternatively, the significant negative correlations between the salinity and the relative 

abundance of 6-methyl brGDGTs in the Seine basin suggest that the bacteria producing 6-methyl 

brGDGTs are preferentially present in the low salinity area of the estuary. To explore this 

hypothesis, we investigate the spatio-temporal variations of the 6-methyl vs. 5-methyl brGDGTs 

ratio: IR6Me (Figure 3-8). High IR6Me values (0.69 ± 0.10) are associated with enhanced in situ 

production of 6-methyl brGDGTs within the Yenisei river (De Jonge et al., 2015). In the Seine 

River basin, seasonal variation in IR6me is observed. Specifically, much higher IR6Me values are 

observed in a specific zone of the estuary (260 < KP < 340) with a low salinity range (1.18 ± 2.71 

psu) during low-flow season (Figure 3-8), suggesting that 6-methyl brGDGTs are preferentially 

produced in this zone when water discharge is low. Similarly, preferential production of 6-methyl 

brGDGT at low discharges was previously observed in other river systems, including the Amazon 

River basin (Kirkels et al., 2020; Crampton-Flood et al., 2021; Bertassoli et al., 2022) as well as 

Black and White Rivers (Dai et al., 2019). It was suggested that the enhanced 6-methyl brGDGT 

production at low flows was due to slow flow velocity and reduced soil mobilization. Although 

these hypotheses could account for the temporal variation in IR6Me in the Seine River basin, they 

are unlikely to explain the substantially high IR6Me values in this specific zone. Other 

environmental variables such as dissolved oxygen contents (Wu et al., 2021) and pH (De Jonge et 

al., 2014, 2015) were previously suggested to have a potential influence on 6-methyl brGDGT 

distributions. Nevertheless, these two environmental factors do not co-vary with IR6Me in the 

present study and can be ruled out as causes of variation in 6-methyl brGDGT distribution along 

the Seine river-sea continuum (Figure 3-8). Hence, the production of 6-methyl brGDGTs in this 

zone of the Seine Estuary has to be triggered by other factors, such as the nutrient concentration. 
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High nutrient levels were shown to favor the production of 6-methyl versus 5-methyl 

brGDGTs in the water column of mesocosm experiments (Martínez-Sosa and Tierney, 2019). As 

the nutrient concentration is higher in the upstream part of the Seine estuary (Wei et al., 2022), the 

substantial 6-methyl brGDGT production observed in the aforementioned zone (260 < KP < 340, 

Figure 3-8) at low flows could be due to the high amount of nutrients, especially nitrogen. This is 

supported by the RDA triplot showing strong correlation of TN with the brGDGT distribution in 

the Seine basin, with the major 6-methyl brGDGTs (i.e. IIa6 and IIIa6) plotting close to TN in the 

RDA triplot (Figure 3-6a). In addition, TN and δ15N are observed to co-vary with IR6Me and to peak 

in the same zone (260 < KP < 340; Figure 3-8) during the low-flow season. Nitrate from sewage 

effluents and manure are generally enriched in 15N compared to other sources, leading to much 

elevated δ15N values (10–25‰) (Andrisoa et al., 2019; Leavitt et al., 2006). Nutrients, in the form 

of nitrogen, can be concentrated at low discharges, thus triggering phytoplankton blooms (Romero 

et al., 2019). Hence, the elevated TN and δ15N signals in a specific zone of the estuary (260 < KP 

< 340) could be attributed to the increase of nitrogen loadings and 15N-enriched nitrate uptake by 

phytoplankton developing intensively during the low-flow season. The much higher chlorophyll a 

concentrations in this zone under low discharge conditions support the hypothesis of phytoplankton 

blooms (Figure 3-8). This high phytoplankton biomass might consequently create an environment 

that accelerates the growth and production of heterotrophic bacteria, which can in turn transform 

phytoplankton-derived organic matter (Buchan et al., 2014). As the brGDGT-producers were 

suggested to have a heterotrophic lifestyle (Weijers et al., 2010; Huguet et al., 2017; Blewett et al., 

2022), they may transform phytoplankton-derived organic matter and thus participate in N-cycling 

during blooms. Hence, the co-variations of all the parameters (IR6Me, TN, δ15N, and Chl a 

concentration) peaking in the low salinity area during low-flow season suggest that low salinity 
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range and high phytoplankton productivity represent favorable conditions for 6-methyl brGDGT 

production. 

3.4.2. Sources of brGMGTs and environmental controls on their distribution  

3.4.2.1 Sources of brGMGTs  

Similarly to the brGDGTs, the brGMGTs can also be produced in situ within the water 

column and/or sediments  (Baxter et al., 2021; Kirkels et al., 2022a). In previous studies, brGMGTs 

were detected only in part of the soils surrounding the Godavari River basin (India; Kirkels et al., 

2022a) and Lake Chala (East Africa; Baxter et al., 2021), suggesting a limited brGMGT production 

in soils in comparison to aquatic settings. Consistently, in the Seine River basin, concentrations of 

brGMGTs in SPM and sediment samples are significantly higher than those in soils (p<0.05, 

Wilcoxon test; Supplementary Figure 3-3b), pointing out their predominant aquatic source.  

A notable compositional shift in brGMGT distribution is observed along the Seine River 

basin, as revealed by the separation of riverine, upstream and downstream estuarine samples in the 

PCA (Figure 3-5b). The relative abundance of 2 brGMGTs (H1020c and H1034b) gradually 

decreases across the basin (Figure 3-7) and is significantly correlated with those of 6-methyl 

brGDGTs (Supplementary Figure 3-7). As 6-methyl brGDGTs are mainly produced in freshwaters 

in the Seine basin, this suggests that brGMGTs H1020c and H1034b and 6-methyl brGDGTs have 

a common freshwater origin and that the mixture of fresh and marine waters along the estuary leads 

to the dilution of these compounds during downstream transport. H1020c is the dominant brGMGT 

homologue in SPM from the riverine zone of the Seine and one of the most abundant brGMGT in 

the upstream part of the estuary (Figure 3-7). Such a trend was also observed in SPM and riverbed 

sediments from the upper part of the Godavari River basin, which was attributed to in situ riverine 

brGMGT production of this compound (Kirkels et al., 2022a).  
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The fractional abundance of H1020a and H1020b homologues gradually increases along 

the Seine River basin. This is consistent with the higher abundances of H1020a and H1020b 

previously reported in marine sediments from the Bay of Bengal (Kirkels et al., 2022a). The 

predominance of these compounds in such samples was attributed to their in situ production in the 

marine realm. In line with this hypothesis, the relative abundances of brGMGTs H1020a and 

H1020b positively correlate with brGDGTs Ib, Ic, IIIa7, IIa7 and 1050d (Supplementary Figure 3-

7) in the Seine Estuary, suggesting a similar marine origin.  

3.4.2.2. Environmental controls on the distribution of brGMGTs 

The current knowledge on the parameters controlling the brGMGT distributions in the 

terrestrial and marine realm is still limited. The correlations between the brGDGT and brGMGT 

relative abundances in the Seine River basin (Supplementary Figure 3-7) suggest that both types 

of compounds might be derived from overlapping source microorganisms, with common 

environmental factors controlling their membrane lipid composition. In the Seine River basin, 

salinity is shown to be the main environmental parameter influencing the brGMGT distribution, as 

also observed for brGDGTs (Figure 3-6). This is reflected in the significant (p<0.05) increase in 

the relative abundances of homologues H1020a and H1020b with salinity and a concomitant 

significant negative correlation between this parameter and the relative abundances of homologues 

H1020c and H1034b (p<0.05, Wilcoxon test; Figures 3-9, a-d). Nevertheless, the individual effect 

of TN on brGMGT relative abundances is observed to be much lower compared to that observed 

for brGDGTs (Figure 3-6 and Supplementary Table 3-2). This implies that, while having common 

controlling factors such as the salinity, they are also influenced by distinct parameters (i.e. TN), 

likely indicating distinct sources. This is consistent with a recent study showing that brGDGTs and 

brGMGTs likely originate from overlapping, but not identical origins (Elling et al., 2023). 
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The shift in brGMGT distribution observed across the Seine River basin (Figure 3-6) could 

be due to a change in the diversity of brGMGT-producing bacteria and/or to an adaptation of these 

microorganisms to environmental changes occurring from upstream to downstream. The latter 

hypothesis seems unlikely, as a physiological adaptation of a given bacterial community would 

make it difficult to explain why the relative abundance of three isomers of compound H1020, which 

share a similar structure, varies differently in response to salinity changes. Hence, a shift in 

brGMGT-producing bacterial communities across the basin is more likely. Compounds H1020c 

and H1034b could predominantly be produced by bacteria preferentially growing in freshwater, 

and homologues H1020a and H1020b by bacteria preferentially living in brackish or saltwater.  

3.4.3. Potential implications for brGMGTs as a proxy for riverine runoff 

The distinct brGMGT distributions in freshwater and saltwater could be used to trace the 

Organic Matter (OM) produced upstream all along the Seine basin. To trace such a riverine runoff 

signal, we propose a new proxy, the Riverine IndeX (RIX), based on the fractional abundances of 

brGMGTs H1020c and H1034b versus H1020a and H1020b (Eq. 3): 

RIX =
𝐻1020𝑐+𝐻1034𝑏

𝐻1020𝑐+𝐻1034𝑏+𝐻1020𝑎+𝐻1020𝑏
   (3) 

The RIX is calculated for the SPM and sediment samples from the Seine River basin, 

showing an obvious decreasing trend from upstream to downstream (Figure 3-9e). The RIX in river 

(0.51±0.06, SPM) and upstream estuarine (0.40±0.07, SPM and sediments) samples is significantly 

higher than for downstream estuarine (0.23±0.06, SPM and sediments) samples. RIX values around 

0.50 could therefore be considered reflecting the riverine endmember, while those below 0.30 could 

represent the saltwater endmember.  

A significant overlap between brGMGT distribution soils and downstream samples was 

observed (Figure 3-5b). This suggests that part of the brGMGT signal in the water masses of the 
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Seine may be partially derived from surrounding soils. Hence, RIX was also calculated for the soil 

samples. The RIX values of the soil samples were 0.21±0.13, close to those of the downstream 

estuarine samples. However, the average concentrations of brGMGTs are an order of magnitude 

lower in the soils than in the river channel sediments and SPM samples of the Seine basin 

(Supplementary Figure 3-3b). Therefore, it can be assumed that the impact of soil-derived 

brGMGTs on the observed RIX signal in the water column of the Seine basin is low. 

In order to test the general applicability of the RIX, it was then applied to riverine and 

marine samples (SPM and sediments) collected in the Godavari River basin and Bay of Bengal 

(Kirkels et al., 2022a). This site represents the only other river-sea continuum besides the Seine 

basin for which brGMGT data are presently available. Significant differences in RIX between the 

SPM and sediment samples from the Godavari River basin are observed (p<0.05, Wilcoxon test; 

Figure 9f). In addition, 96% of the RIX values in riverine SPM and riverbed sediments from the 

Godavari basin exceed 0.5, whereas all of the RIX values observed in marine sediments from the 

Bay of Bengal are below 0.3. This suggests that the RIX cutoff values defined using the samples 

from the Seine basin may be broadly applicable and valid across other river-sea continuums. This 

deserves further studies. 

Further confirmation of the RIX potential as a tracer of riverine OM comes from the 

significant correlations observed between this index and other commonly used proxies for tracing 

OM sources, i.e. the BIT and δ13Corg (p<0.05, Wilcoxon test; Figure 3-9, g-h). These proxies show 

roughly similar spatial and temporal variations in the Seine River basin. In the low-flow season, 

RIX and BIT gradually decrease while δ13Corg increase across the basin (Figure 3-9, i-k). Such 

trends during the low discharge periods likely reflects the continuous dilution process of riverine 

OM caused by the mixing of fresh and marine water masses (Thibault et al., 2019). The gradual 

dilution of the riverine OM signal along the Seine River basin could be due to the increase of 
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seawater intrusion, and thus marine-derived OM, at low discharges (Kolb et al., 2022; Ralston and 

Geyer, 2019). In contrast, during the high-flow season, no such gradual dilution trend is observed. 

Instead, at high discharges, the RIX, BIT and δ13Corg remain roughly stable from KP 202 to 310.5, 

before, steeply decreasing for BIT and RIX, and increasing for δ13Corg. This trend can be explained 

by the fact that at high flow rates, the limit of saltwater intrusion in the estuary shifts seawards 

rather than landwards, allowing the riverine OM to be flushed further downstream than under low 

discharge conditions. After this region, the riverine OM is diluted because of the mixing with 

marine water masses, as observed during the low-flow season. The trends observed in the Seine 

Estuary are consistent with previous studies in other regions, showing that terrestrial OM was only 

effectively transported downstream at high flow rates (Kirkels et al., 2022b, 2020).  
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Figure 3-9. (a-d) Salinity plotted versus relative abundance of brGMGTs. Shaded area represents 

95% confidence intervals. Vertical error bars indicate mean ± s.d for samples with the same 

salinity. Dataset is composed of SPM. (e) Distribution of RIX across the Seine River basin. Boxes 

are color-coded based on the sample type (river in red, upstream estuary in yellow, and downstream 

estuary in blue). Dataset is composed of SPM and river channel sediments. (f) RIX in the Godavari 

River basin (India) and Bay of Bengal sediments (data from Kirkels et al. (2022a)). Statistical 

testing was performed by a Wilcoxon test. (g-h) RIX plotted versus δ13C and BIT. Shaded area 

represents 95% confidence intervals. (i-k) Spatio-temporal variations of RIX and several other 

terrestrial proxies, including BIT and δ13C (‰). The trends showing spatio-temporal variations 

were based on locally estimated scatterplot smoothing (LOESS) method with 95% confidence 

intervals. KP (kilometric point) represents the distance in kilometers from the city of Paris (KP 0). 

Dataset is composed of SPM 
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Although the BIT is successfully used in the Seine River basin as well as in previous studies 

to trace riverine (terrestrial) OM inputs (Hopmans et al., 2004; Xu et al., 2020), this index can be 

biased by in situ production of brGDGTs in the water column and/or sediments (Dearing 

Crampton-Flood et al., 2019; Sinninghe Damsté, 2016) and selective degradation of crenarchaeol 

vs. brGDGTs (Smith et al., 2012). Hence, high BIT values do not necessarily indicate higher 

contribution of terrestrial OM in some settings (Smith et al., 2012). Unlike the BIT index, based 

on two different families of compounds (isoGDGTs and brGDGTs), the RIX is based on 4 

compounds from the same family (brGMGTs) that likely have similar degradation rates and 

therefore not influenced by selective degradation. Furthermore, the RIX is based on the relative 

abundances of abundant brGMGTs which are all predominantly produced in aquatic settings, two 

of them (H1020c and H1034b) being mainly produced in freshwater and two of them (H1020a and 

H1020b) mainly in saltwater. Therefore, the RIX is based on compounds which are more 

specifically produced in the two endmembers (freshwater or saltwater), which could avoid the 

biases encountered with the BIT. Overall, our work shows that, in addition to the BIT and δ13Corg, 

the RIX successfully captures the spatio-temporal dynamics of riverine OM in the Seine River 

basin, making this proxy a promising and complementary one tracing riverine runoff in modern 

samples as well as paleorecords. A potential application to paleorecords is still necessary to further 

test the applicability of the RIX as a riverine proxy. 

 

  



Chapter 3: Environmental controls on the brGDGT and brGMGT distributions 

- 132 - 

 

3.5. Conclusions 

In this study, the brGDGT and brGMGT concentrations and distributions in soils, SPM and 

sediments (n=237) across the Seine River basin were investigated. Higher concentrations and 

distinct distributions of brGDGTs and brGMGTs in SPM and sediments compared with soils imply 

that both types of compounds can be produced in situ in aquatic settings. The distribution of both 

brGDGTs and brGMGTs are largely related to salinity, but only brGDGT distributions are 

significantly influenced by nitrogen nutrient loadings. In addition, covariations of IR6Me, TN, δ15N, 

and Chl a concentration within the low salinity region suggest that riverine (6-methyl) brGDGT 

production is favored by low-salinity and high-productivity conditions. 

In the Seine River basin, salinity correlates positively with H1020a and H1020b, and 

negatively with H1020c and H1034b. This indicates that compounds H1020c and H1034b could 

be produced by bacteria that preferentially grow in freshwater, while homologues H1020a and 

H1020b could be produced by bacteria that mainly live in saltwater. Based on this, a novel proxy, 

the Riverine IndeX (RIX) is proposed to trace riverine OM input. The average value of RIX for the 

riverine samples is 0.51, which is much higher than that in downstream estuarine (0.23 on average) 

samples. This suggests that RIX values over 0.5 imply considerable riverine contributions, whereas 

RIX values below 0.3 indicate higher marine contributions. This cutoff value defined in the Seine 

River basin also works in the Godavari River basin (India), which implies that this novel proxy 

based on brGMGTs may be broadly applicable and warrants further exploration in present 

ecosystems as well as paleorecords. 
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3.6. Annexes 

Supplementary Table 3-1 bulk geochemical data as well as proxies derived from brGDGTs and 

brGMGTs    
Date Site Type Season TOC (%) TN (%) δ13C (‰) δ15N (‰) BIT IR6Me RIX 

2015-1 site 15 SPM High-flow 4.70 0.54 -27.23 7.04 0.88 0.57 0.21 

2015-4 site 13 SPM High-flow 2.28 0.30 -29.89 6.47 0.98 0.64 0.36 

2015-4 site 15 SPM High-flow 3.64 0.47 -25.83 7.62 0.84 0.56 0.19 

2015-4 site 17 SPM High-flow 1.24 0.16 -26.12 7.18 0.75 0.53 0.17 

2015-4 site 18 SPM High-flow 2.45 0.32 -26.93 7.20 0.75 0.54 0.17 

2015-7 site 17 SPM Low-flow 4.26 0.52 -25.99 7.60 0.78 0.55 0.15 

2015-7 site 19 SPM Low-flow 4.54 0.52 -22.52 5.70 0.77 0.53 0.16 

2015-9 site 13 SPM Low-flow 4.31 0.46 -28.24 8.85 0.96 0.73 0.30 

2015-9 site 15 SPM Low-flow 2.66 0.34 -25.39 7.86 0.78 0.57 0.16 

2015-9 site 17 SPM Low-flow 2.80 0.35 -25.38 7.41 0.76 0.56 0.15 

2015-9 site 18 SPM Low-flow 3.37 0.40 -25.61 7.17 0.78 0.55 0.15 

2016-4 site 5 SPM High-flow 3.10 0.34 -29.20 6.32 0.98 0.60 0.41 

2016-4 site 7 SPM High-flow 4.46 0.48 -29.25 6.46 0.98 0.60 0.38 

2016-4 site 13 SPM High-flow 4.18 0.51 -29.10 6.21 0.98 0.63 0.41 

2016-4 site 17 SPM High-flow 4.04 0.48 -25.98 6.79 0.81 0.57 0.21 

2016-4 site 19 SPM High-flow 2.09 0.30 -23.70 6.60 0.64 0.53 0.19 

2015-4 site 15 Sediment n.a. 5.13 0.62 -25.88 6.91 0.82 0.66 0.33 

2015-4 site 15 Sediment n.a. 4.82 0.56 -26.13 6.58 0.77 0.66 0.24 

2015-4 site 15 Sediment n.a. 4.96 0.57 -26.09 6.75 0.78 0.63 0.20 

2015-4 site 15 Sediment n.a. 4.50 0.51 -26.08 6.57 0.80 0.65 0.26 

2015-4 site 15 Sediment n.a. 3.06 0.33 -26.57 6.63 0.81 0.63 0.26 

2015-4 site 15 Sediment n.a. 1.72 0.19 -27.07 7.18 0.77 0.57 0.22 

2015-4 site 15 Sediment n.a. 5.22 0.61 -25.99 6.91 0.78 0.64 0.19 

2015-4 site 15 Sediment n.a. 4.07 0.46 -26.19 6.39 0.80 0.61 0.25 
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2015-4 site 15 Sediment n.a. 4.36 0.49 -26.36 8.11 0.80 0.66 0.24 

2015-4 site 15 Sediment n.a. 4.58 0.54 -25.90 7.07 0.81 0.60 0.24 

2015-4 site 17 Sediment n.a. 4.33 0.54 -26.33 7.28 0.80 0.65 0.22 

2015-4 site 17 Sediment n.a. 4.58 0.55 -25.73 6.89 0.75 0.63 0.21 

2015-4 site 17 Sediment n.a. 3.51 0.40 -26.25 6.34 0.74 0.55 0.35 

2015-4 site 17 Sediment n.a. 3.58 0.40 -26.37 6.63 0.77 0.61 0.21 

2015-4 site 17 Sediment n.a. 3.03 0.35 -26.28 7.77 0.76 0.60 0.23 

2015-4 site 17 Sediment n.a. 1.52 0.18 -26.05 7.10 0.73 0.56 0.17 

2015-4 site 17 Sediment n.a. 1.90 0.21 -25.97 7.52 0.77 0.64 0.26 

2015-4 site 17 Sediment n.a. 1.26 0.13 -27.06 6.48 0.71 0.56 0.18 

2015-4 site 17 Sediment n.a. 1.83 0.18 -26.16 6.37 0.72 0.55 0.24 

2015-4 site 17 Sediment n.a. 1.25 0.14 -26.56 6.90 0.79 0.64 0.25 

2015-9 site 15 Sediment n.a. 3.79 0.45 -25.78 7.20 0.79 0.63 0.23 

2015-9 site 15 Sediment n.a. 1.19 0.12 -25.88 7.78 0.74 0.56 0.25 

2015-9 site 15 Sediment n.a. 0.36 0.03 -26.14 7.69 0.80 0.61 0.32 

2015-9 site 15 Sediment n.a. 0.15 0.02 -25.73 9.16 0.72 0.58 0.22 

2015-9 site 15 Sediment n.a. 0.44 0.05 -26.58 7.81 0.78 0.64 0.23 

2015-9 site 15 Sediment n.a. 0.96 0.11 -25.98 8.23 0.74 0.56 0.19 

2015-9 site 15 Sediment n.a. 2.05 0.22 -25.97 7.87 0.78 0.62 0.24 

2015-9 site 15 Sediment n.a. 2.55 0.28 -26.06 7.84 0.75 0.64 0.21 

2015-9 site 15 Sediment n.a. 0.63 0.07 -26.00 7.21 0.71 0.57 0.21 

2015-9 site 15 Sediment n.a. 2.06 0.23 -25.90 7.25 0.79 0.68 0.24 

2015-9 site 17 Sediment n.a. 3.53 0.41 -25.40 6.83 0.76 0.65 0.23 

2015-9 site 17 Sediment n.a. 2.28 0.26 -25.68 7.05 0.68 0.56 0.19 

2015-9 site 17 Sediment n.a. 3.24 0.37 -25.85 7.46 0.75 0.64 0.18 

2015-9 site 17 Sediment n.a. 2.20 0.25 -25.78 8.01 0.68 0.56 0.19 

2015-9 site 17 Sediment n.a. 2.91 0.34 -25.66 7.22 0.69 0.56 0.17 

2015-9 site 17 Sediment n.a. 3.33 0.37 -25.93 7.86 0.76 0.65 0.19 

2015-9 site 17 Sediment n.a. 3.15 0.37 -25.85 6.90 0.76 0.65 0.22 

2015-9 site 17 Sediment n.a. 2.92 0.33 -25.76 7.55 0.47 0.54 0.15 

2015-9 site 17 Sediment n.a. 0.38 0.05 -25.80 7.74 0.76 0.63 0.34 
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2015-9 site 17 Sediment n.a. 1.24 0.13 -25.81 7.44 0.85 0.50 0.27 

2016-4 site 7 Sediment n.a. 7.26 0.82 -28.60 6.11 0.98 0.69 0.42 

2016-4 site 7 Sediment n.a. 6.81 0.74 -28.53 5.86 0.50 0.55 0.16 

2016-4 site 7 Sediment n.a. 6.50 0.72 -28.51 5.61 0.97 0.67 0.45 

2016-4 site 7 Sediment n.a. 6.22 0.70 -28.44 5.81 0.97 0.65 0.40 

2016-4 site 7 Sediment n.a. 7.71 0.84 -28.57 5.69 0.98 0.68 0.44 

2016-4 site 7 Sediment n.a. 6.50 0.69 -28.61 5.49 0.98 0.67 0.42 

2016-4 site 7 Sediment n.a. 6.93 0.76 -28.45 5.39 0.98 0.69 0.46 

2016-4 site 7 Sediment n.a. 7.10 0.79 -28.67 5.92 0.97 0.64 0.44 

2016-4 site 7 Sediment n.a. 6.92 0.77 -28.51 5.63 0.97 0.65 0.42 

2016-4 site 7 Sediment n.a. 5.98 0.67 -28.55 5.28 0.98 0.63 0.38 

2016-4 site 17 Sediment n.a. 1.34 0.14 -26.50 7.00 0.86 0.60 0.23 

2016-4 site 17 Sediment n.a. 1.04 0.10 -26.30 6.50 0.78 0.57 0.21 

2016-4 site 17 Sediment n.a. 1.32 0.14 -26.87 6.98 0.86 0.62 0.29 

2016-4 site 17 Sediment n.a. 0.99 0.10 -26.20 6.40 0.80 0.54 0.26 

2016-4 site 17 Sediment n.a. 0.11 0.01 -26.30 9.50 0.75 0.56 0.23 

2016-4 site 17 Sediment n.a. 1.85 0.20 -26.40 6.30 0.82 0.63 0.32 

2016-4 site 17 Sediment n.a. 2.51 0.29 -26.00 5.90 0.75 0.56 0.21 

2016-4 site 17 Sediment n.a. 1.04 0.11 -26.10 7.30 0.81 0.63 0.29 

2016-4 site 19 Sediment n.a. 1.98 0.22 -24.71 5.61 0.58 0.61 0.21 

2016-4 site 19 Sediment n.a. 1.21 0.13 -24.77 6.21 0.97 0.59 0.47 

2016-4 site 19 Sediment n.a. 1.28 0.15 -24.82 6.83 0.57 0.62 0.12 

2016-4 site 19 Sediment n.a. 1.22 0.14 -24.33 5.49 0.53 0.61 0.23 

2016-4 site 19 Sediment n.a. 1.25 0.15 -24.36 6.03 0.52 0.58 0.21 

2016-4 site 19 Sediment n.a. 1.00 0.12 -24.20 7.10 0.68 0.56 0.18 

2016-4 site 19 Sediment n.a. 1.19 0.14 -24.40 7.40 0.51 0.59 0.16 

2016-4 site 19 Sediment n.a. 1.85 0.22 -24.18 6.73 0.51 0.61 0.19 

2016-4 site 19 Sediment n.a. 0.76 0.09 -24.40 7.00 0.53 0.63 0.15 

2016-4 site 19 Sediment n.a. 1.40 0.17 -24.21 7.38 0.54 0.56 0.16 

2019-6 site 4 SPM Low-flow 4.22 0.58 -33.53 10.35 0.99 0.68 0.46 

2019-6 site 4 SPM Low-flow 4.06 0.57 -33.13 10.01 0.98 0.67 0.44 



Chapter 3: Environmental controls on the brGDGT and brGMGT distributions 

- 136 - 

 

2019-7 site 4 SPM Low-flow 2.72 0.44 -32.79 10.25 0.97 0.69 0.50 

2019-7 site 4 SPM Low-flow 2.41 0.43 -33.12 10.40 0.97 0.70 0.52 

2020-9 site 4 SPM Low-flow 3.33 0.31 -31.42 7.60 0.95 0.68 0.51 

2020-9 site 4 SPM Low-flow 2.95 0.32 -30.33 7.36 0.96 0.69 0.53 

2019-6 site 13 SPM Low-flow 4.04 0.49 -29.37 11.10 0.96 0.72 0.29 

2019-6 site 13 SPM Low-flow 5.28 0.52 -30.70 13.42 0.96 0.73 0.27 

2019-6 site 13 SPM Low-flow 4.22 0.39 -28.38 10.68 0.92 0.70 0.27 

2019-6 site 13 SPM Low-flow 4.58 0.42 -28.32 9.35 0.91 0.68 0.25 

2019-6 site 13 SPM Low-flow 3.55 0.39 -29.53 10.83 0.87 0.69 0.24 

2019-6 site 13 SPM Low-flow 4.24 0.53 -29.47 11.00 0.91 0.68 0.25 

2019-7 site 13 SPM Low-flow 3.78 0.27 -26.73 8.66 0.71 0.64 0.20 

2019-7 site 13 SPM Low-flow 3.60 0.28 -27.18 8.52 0.70 0.65 0.24 

2019-7 site 13 SPM Low-flow 5.94 0.30 -26.54 8.39 0.70 0.66 0.24 

2019-7 site 13 SPM Low-flow 4.72 0.36 -26.55 8.53 0.69 0.61 0.23 

2019-7 site 13 SPM Low-flow 4.92 0.35 -27.16 8.33 0.71 0.67 0.30 

2019-7 site 13 SPM Low-flow 4.43 0.40 -27.87 8.97 0.66 0.63 0.17 

2020-9 site 13 SPM Low-flow 7.35 0.40 -28.46 7.27 0.78 0.72 0.24 

2020-9 site 13 SPM Low-flow 5.18 0.43 -28.30 7.15 0.77 0.72 0.22 

2020-9 site 13 SPM Low-flow 5.44 0.40 -28.25 7.25 0.71 0.67 0.19 

2020-9 site 13 SPM Low-flow 5.22 0.36 -27.73 6.92 0.73 0.68 0.25 

2020-9 site 13 SPM Low-flow 5.99 0.34 -26.63 6.59 0.71 0.66 0.24 

2020-9 site 13 SPM Low-flow 4.64 0.36 -27.29 6.81 0.74 0.69 0.22 

2019-6 site 6 SPM Low-flow 4.71 0.57 -31.80 7.65 0.99 0.70 0.42 

2019-6 site 6 SPM Low-flow 4.20 0.53 -32.74 7.86 0.99 0.69 0.42 

2019-6 site 6 SPM Low-flow 3.91 0.42 -31.23 7.85 0.99 0.68 0.38 

2019-6 site 6 SPM Low-flow 4.64 0.51 -31.98 7.68 0.99 0.71 0.35 

2019-6 site 6 SPM Low-flow 3.93 0.55 -32.23 6.90 0.98 0.72 0.40 

2019-6 site 6 SPM Low-flow 4.86 0.62 -32.78 8.17 0.99 0.71 0.44 

2019-7 site 6 SPM Low-flow 3.72 0.48 -33.42 9.67 0.97 0.73 0.40 

2019-7 site 6 SPM Low-flow 3.93 0.48 -33.57 9.47 0.97 0.73 0.38 

2019-7 site 6 SPM Low-flow 3.31 0.44 -31.71 9.20 0.97 0.75 0.45 
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2019-7 site 6 SPM Low-flow 4.57 0.43 -31.94 8.33 0.97 0.75 0.43 

2019-7 site 6 SPM Low-flow 5.14 0.40 -31.12 8.29 0.97 0.74 0.34 

2019-7 site 6 SPM Low-flow 4.30 0.48 -32.21 8.47 0.96 0.73 0.35 

2020-9 site 6 SPM Low-flow 4.03 0.36 -31.42 7.91 0.96 0.71 0.47 

2020-9 site 6 SPM Low-flow 4.46 0.39 -31.37 7.86 0.96 0.71 0.47 

2020-9 site 6 SPM Low-flow 5.49 0.37 -30.09 7.28 0.96 0.72 0.40 

2020-9 site 6 SPM Low-flow 4.53 0.36 -31.71 8.36 0.97 0.72 0.44 

2020-9 site 6 SPM Low-flow 4.82 0.37 -30.94 7.78 0.96 0.72 0.47 

2020-9 site 6 SPM Low-flow 4.49 0.38 -32.45 8.28 0.96 0.72 0.47 

2019-6 site 15 SPM Low-flow 4.51 0.34 -26.61 8.54 0.88 0.60 0.21 

2019-6 site 15 SPM Low-flow 6.00 0.39 -26.74 8.57 0.89 0.58 0.20 

2019-6 site 15 SPM Low-flow 6.38 0.42 -25.96 8.25 0.89 0.47 0.24 

2019-6 site 15 SPM Low-flow 6.79 0.40 -26.08 8.96 0.87 0.58 0.21 

2019-6 site 15 SPM Low-flow 6.00 0.39 -25.95 8.44 0.76 0.58 0.22 

2019-6 site 15 SPM Low-flow 3.05 0.27 -26.52 9.54 0.84 0.57 0.22 

2019-7 site 15 SPM Low-flow 3.66 0.30 -26.26 8.57 0.67 0.57 0.17 

2019-7 site 15 SPM Low-flow 2.99 0.23 -26.49 9.23 0.65 0.59 0.21 

2019-7 site 15 SPM Low-flow 6.53 0.33 -25.61 8.79 0.64 0.58 0.23 

2019-7 site 15 SPM Low-flow 2.99 0.21 -25.88 10.02 0.65 0.58 0.17 

2019-7 site 15 SPM Low-flow 5.74 0.34 -25.88 8.47 0.64 0.58 0.23 

2019-7 site 15 SPM Low-flow 2.02 0.23 -25.97 9.52 0.63 0.59 0.20 

2020-9 site 15 SPM Low-flow 5.52 0.39 -26.03 6.67 0.69 0.60 0.23 

2020-9 site 15 SPM Low-flow 4.93 0.35 -26.55 6.95 0.68 0.62 0.20 

2020-9 site 15 SPM Low-flow 5.69 0.37 -25.92 6.88 0.65 0.61 0.17 

2020-9 site 15 SPM Low-flow 4.37 0.31 -25.63 6.91 0.67 0.58 0.24 

2020-9 site 15 SPM Low-flow 5.89 0.42 -25.66 6.62 0.66 0.61 0.17 

2020-9 site 15 SPM Low-flow 2.85 0.20 -26.51 7.57 0.65 0.59 0.21 

2019-6 site 10 SPM Low-flow 4.16 0.53 -32.29 8.52 0.98 0.74 0.38 

2019-6 site 10 SPM Low-flow 4.06 0.58 -33.78 9.55 0.99 0.71 0.38 

2019-6 site 10 SPM Low-flow 4.92 0.56 -31.83 9.58 0.98 0.73 0.37 

2019-6 site 10 SPM Low-flow 6.16 0.57 -30.62 10.89 0.98 0.73 0.38 
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2019-6 site 10 SPM Low-flow 3.71 0.54 -33.67 9.57 0.98 0.73 0.42 

2019-6 site 10 SPM Low-flow 4.64 0.70 -33.15 9.30 0.98 0.73 0.37 

2019-7 site 10 SPM Low-flow 3.22 0.38 -28.99 9.65 0.93 0.77 0.33 

2019-7 site 10 SPM Low-flow 4.50 0.57 -29.91 10.43 0.91 0.76 0.28 

2019-7 site 10 SPM Low-flow 4.51 0.47 -29.15 8.72 0.93 0.76 0.30 

2019-7 site 10 SPM Low-flow 4.65 0.65 -29.72 9.41 0.89 0.74 0.33 

2019-7 site 10 SPM Low-flow 4.10 0.51 -30.23 10.33 0.93 0.78 0.37 

2019-7 site 10 SPM Low-flow 4.09 0.69 -30.76 9.49 0.90 0.77 0.29 

2020-9 site 10 SPM Low-flow 6.68 0.47 -29.16 8.29 0.94 0.77 0.33 

2020-9 site 10 SPM Low-flow 3.67 0.51 -31.11 8.23 0.94 0.77 0.33 

2020-9 site 10 SPM Low-flow 4.93 0.42 -29.10 8.84 0.93 0.78 0.38 

2020-9 site 10 SPM Low-flow 5.69 0.51 -29.53 7.64 0.92 0.78 0.35 

2020-9 site 10 SPM Low-flow 5.46 0.64 -30.67 9.88 0.94 0.78 0.40 

2020-9 site 10 SPM Low-flow 6.05 0.68 -31.01 10.79 0.93 0.78 0.35 

2019-6 site 18 SPM Low-flow 4.29 0.29 -26.31 9.37 0.76 0.59 0.19 

2020-9 site 18 SPM Low-flow 2.46 0.18 -25.84 7.21 0.66 0.58 0.17 

2019-6 site 9 SPM Low-flow 3.48 0.47 -32.12 7.90 0.97 0.72 0.41 

2020-9 site 8 SPM Low-flow 2.86 0.29 -30.79 7.04 0.95 0.76 0.37 

2019-6 site 16 SPM Low-flow 3.89 0.34 -27.08 9.98 0.87 0.60 0.16 

2020-9 site 15 SPM Low-flow 4.48 0.32 -26.04 7.34 0.67 0.60 0.24 

2019-6 site 14 SPM Low-flow 5.23 0.43 -28.58 10.22 0.94 0.70 0.30 

2020-9 site 13 SPM Low-flow 3.54 0.37 -29.60 8.93 0.78 0.71 0.27 

2019-6 site 12 SPM Low-flow 4.33 0.53 -32.75 14.10 0.98 0.74 0.27 

2020-9 site 11 SPM Low-flow 3.27 0.42 -31.34 10.04 0.89 0.77 0.37 

2020-11 site 3 SPM Low-flow 1.61 0.27 -29.48 2.76 0.98 0.67 0.61 

2021-9 site B Soil n.a. 0.30 0.01 -26.85 11.62 0.96 0.44 0.62 

2021-9 site B Soil n.a. 0.40 0.04 -26.75 9.33 0.94 0.53 0.69 

2021-9 site B Soil n.a. 4.92 0.30 -26.86 6.78 0.85 0.61 0.15 

2021-9 site B Soil n.a. 13.75 0.44 -28.73 1.11 0.75 0.78 0.12 

2021-9 site A Soil n.a. 4.73 0.32 -26.71 7.14 0.75 0.68 0.18 

2021-10 site C Soil n.a. 3.64 0.34 -27.94 3.20 0.86 0.71 0.37 
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2021-10 site C Soil n.a. 3.74 0.29 -29.25 3.43 0.95 0.59 0.35 

2021-9 site B Soil n.a. 22.28 1.07 -27.87 1.58 0.91 0.71 0.35 

2021-10 site C Soil n.a. 1.07 0.13 -25.14 5.36 0.93 0.34 0.60 

2021-2 site 11 SPM High-flow 2.92 0.22 -28.48 4.77 0.97 0.57 0.49 

2021-3 site 11 SPM High-flow 2.54 0.21 -29.05 5.11 0.97 0.66 0.48 

2021-2 site 13 SPM High-flow 3.26 0.22 -28.45 4.90 0.97 0.58 0.38 

2021-3 site 13 SPM High-flow 2.60 0.17 -29.23 6.77 0.96 0.65 0.45 

2021-3 site 15 SPM High-flow 2.78 0.21 -28.85 6.75 0.94 0.66 0.44 

2021-2 site 15 SPM High-flow 3.12 0.19 -28.74 5.71 0.97 0.60 0.37 

2021-3 site 8 SPM High-flow 3.10 0.24 -29.24 4.97 0.98 0.63 0.51 

2021-2 site 8 SPM High-flow 1.61 0.12 -28.43 5.35 0.97 0.50 0.53 

2021-3 site 18 SPM High-flow 5.02 0.24 -27.05 6.49 0.81 0.59 0.28 

2021-2 site 18 SPM High-flow 3.40 0.20 -27.59 6.14 0.87 0.58 0.30 

2020-11 site 5 SPM Low-flow 0.75 0.19 -29.66 7.23 0.97 0.68 0.57 

2020-11 site 1 SPM Low-flow 0.82 0.12 -29.10 8.02 0.97 0.70 0.42 

2020-11 site 2 SPM Low-flow 3.80 0.28 -28.82 5.24 0.97 0.72 0.57 

2021-3 site D Soil n.a. 3.23 0.22 -29.33 5.70 0.88 0.48 0.07 

2020-9 site D Soil n.a. 3.15 0.39 -28.83 6.47 0.88 0.47 0.12 

2021-3 site D Soil n.a. 1.13 0.14 -26.21 n.a. 0.77 0.62 0.31 

2020-9 site D Soil n.a. 1.78 0.21 -26.24 n.a. 0.75 0.52 0.20 

2021-3 site D Soil n.a. 4.37 0.30 -26.48 7.76 0.75 0.56 0.13 

2020-9 site D Soil n.a. 3.94 0.25 -26.40 8.34 0.77 0.54 0.17 

2021-3 site D Soil n.a. 2.74 0.16 -27.12 7.17 0.81 0.58 0.22 

2020-9 site D Soil n.a. 1.49 0.13 -26.41 7.51 0.79 0.52 0.24 

2021-3 site E Soil n.a. 4.41 0.37 -28.76 8.72 0.91 0.63 0.13 

2020-9 site E Soil n.a. 4.87 0.35 -28.81 9.06 0.90 0.64 0.11 

2021-3 site E Soil n.a. 2.17 0.17 -26.95 8.00 0.84 0.57 0.13 

2020-9 site E Soil n.a. 4.36 0.28 -26.23 7.55 0.73 0.59 0.19 

2021-3 site E Soil n.a. 3.44 0.28 -25.97 7.64 0.73 0.61 0.16 

2020-9 site E Soil n.a. 4.42 0.29 -25.68 7.55 0.71 0.58 0.16 

2021-3 site E Soil n.a. 3.90 0.23 -25.99 7.59 0.73 0.59 0.16 
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2020-9 site E Soil n.a. 3.72 0.25 -25.74 7.64 0.73 0.58 0.19 

2021-3 site E Soil n.a. 1.72 0.16 -25.93 7.55 0.73 0.58 0.18 

2020-9 site E Soil n.a. 1.33 0.14 -25.85 7.67 0.72 0.56 0.19 

2018-8 site E Soil n.a. 1.32 0.15 -26.46 n.a. 0.93 0.55 0.14 

2018-8 site E Soil n.a. 1.55 0.17 -26.90 n.a. 0.92 0.54 0.14 

2018-8 site E Soil n.a. 3.63 0.44 -24.80 n.a. 0.91 0.54 0.14 

2018-8 site E Soil n.a. 1.88 0.22 -25.47 n.a. 0.93 0.54 0.14 

2018-8 site E Soil n.a. 1.57 0.18 -26.32 n.a. 0.92 0.54 0.17 

2018-8 site E Soil n.a. 2.57 0.29 -25.89 n.a. 0.91 0.55 0.16 

2018-6 site E Soil n.a. 3.11 0.39 -25.36 n.a. 0.92 0.55 0.16 

2018-6 site E Soil n.a. 3.65 0.41 -25.81 n.a. 0.93 0.55 0.16 

2018-6 site E Soil n.a. 4.02 0.44 -25.85 n.a. 0.93 0.55 0.16 

2018-6 site E Soil n.a. 3.24 0.34 -26.17 n.a. 0.91 0.56 0.16 

2018-6 site E Soil n.a. 3.93 0.44 -25.38 n.a. 0.90 0.54 0.17 

2018-6 site E Soil n.a. 2.45 0.26 -26.31 n.a. 0.89 0.55 0.17 

2018-10 site E Soil n.a. 1.94 0.25 -25.54 n.a. 0.70 0.55 0.18 

2018-10 site E Soil n.a. 0.88 0.13 -25.14 n.a. 0.68 0.54 0.08 

2018-10 site E Soil n.a. 0.97 0.12 -26.89 n.a. 0.70 0.52 0.20 

2018-10 site E Soil n.a. 1.29 0.15 -26.58 n.a. 0.68 0.54 0.18 

2018-2 site E Soil n.a. 0.47 0.06 -25.45 n.a. 0.77 0.54 0.15 

2018-2 site E Soil n.a. 0.80 0.08 -25.91 n.a. 0.72 0.56 0.14 

2018-2 site E Soil n.a. 0.24 0.03 -25.17 n.a. 0.71 0.53 0.14 

2018-2 site E Soil n.a. 0.39 0.05 -25.22 n.a. 0.74 0.55 0.16 

2018-10 site E Soil n.a. 1.54 0.17 -27.09 n.a. 0.77 0.54 0.17 

2018-10 site E Soil n.a. 1.17 0.14 -26.89 n.a. 0.86 0.54 0.20 

2018-2 site E Soil n.a. 0.62 0.06 -26.48 n.a. 0.79 0.54 0.30 

2018-2 site E Soil n.a. 0.22 0.03 -27.80 n.a. 0.74 0.53 0.23 

 

n.a.= not applicable 
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Supplementary Table 3-2 RDA results  

 variables 
RDA scores 

Individual Importance (%) 
 Axis 1 Axis 2 

brGDGTs TOC 0.17 -0.49 2.12 * 

 TN 0.72 -0.23 13.47 *** 

 Temperature 0.41 -0.82 3.6 ** 

 Salinity -0.73 -0.10 14.97 *** 

 Water discharge -0.30 0.93 3.68 ** 

brGMGTs TOC 0.08 0.68 3.5 ** 

 TN -0.34 0.09 4.18 ** 

 Temperature 0.04 0.64 1.17 ns 

 Salinity 0.83 -0.50 17.45 *** 

 Water discharge -0.17 -0.71 2.16 * 
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Supplementary Figure 3-1. Distribution of brGDGTs from soils (surficial soils and mudflat 

sediments, n=51) as well as river (n=9), upstream estuary (n=56) and downstream estuary (n=121) 

samples across the Seine River basin. 
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Supplementary Figure 3-2. Relative abundance of brGDGTs across the Seine River basin. Box 

plots of upstream and downstream estuary are composed of SPM and river channel sediments, 

whereas those of river are composed of SPM. Statistical testing was performed by a Wilcoxon test 

(*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; ns, not significant, p >0.05).  
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Supplementary Figure 3-3. Concentrations (normalized to total organic carbon) of (a) total 

brGDGTs and (b) total brGMGTs from soils (surficial soils and mudflat sediments, n=51) as well 

as river (n=9), upstream estuary (n=56) and downstream estuary (n=121) samples across the Seine 

River basin. Box plots of upstream and downstream estuary samples are based on SPM and river 

channel sediments, whereas those of river samples are based only on SPM. Statistical testing was 

performed by a Wilcoxon test (*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; ns, not 

significant, p >0.05). 
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Supplementary Figure 3-4. Distribution of brGMGTs from soils (surficial soils and mudflat 

sediments, n=51) as well as river (n=9), upstream estuary (n=56) and downstream estuary (n=121) 

samples across the Seine River basin. 
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Supplementary Figure 3-5. Relative abundance of brGMGTs across the Seine River basin. Box 

plots of upstream and downstream estuary are composed of SPM and sediments, whereas those of 

river are composed of SPM. Statistical testing was performed by a Wilcoxon test (*p < 0.05; 

**p < 0.01; ***p < 0.001; ****p < 0.0001; ns, not significant, p >0.05).  
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Supplementary Figure 3-6. Salinity plotted versus relative abundance of 6-methyl and 7-methyl 

brGDGTs (IIIa6, IIa6, IIb6, IIIa7 and IIa7) as well as compounds 1050d, 1036d, Ib, and Ic. Shaded 

area represents 95% confidence intervals. Vertical error bars indicate mean ± s.d for samples with 

the same salinity. Dataset is composed of SPM. 



Chapter 3: Environmental controls on the brGDGT and brGMGT distributions 

- 148 - 

 

 
Supplementary Figure 3-7. (a) Correlation plot between fractional abundance of brGDGTs 

(relative to all brGDGTs) and brGMGTs (relative to all brGMGTs). 

 

 

 



 

- 149 - 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 4: 

Dynamics of particulate organic matter in a human-

impacted estuary influenced by hydroclimate 

conditions and land use characteristics 

This chapter is in preparation for submission to Chemical Geology 



 

- 150 - 

 



Chapter 4: Dynamics of particulate organic matter in a human-impacted estuary 

- 151 - 

 

Abstract 

Estuaries play an important role in regulating Particulate Organic Matter (POM), which is 

controlled by natural (hydroclimate conditions) and anthropogenic (land use changes) processes. 

To date, the interactions between these processes and POM dynamics are mainly investigated at 

the bulk level, hampering our understanding of POM behavior and estuarine functioning. Here, we 

investigate the spatio-temporal variations of POM characteristics using water samples (n=172) 

collected along the land-sea continuum of a human-impacted estuary (Seine Estuary, NW France) 

under low-flow and high-flow conditions. POM dynamics are studied at the bulk and molecular 

levels using elemental and isotopic analysis, as well as lipid biomarkers (sterols, stanols, fatty acids, 

and n-alkanes). Our results show that the dispersal and dynamics of distinct types of POM, are 

closely related to hydroclimate conditions and land use types. Specifically, anthropogenic POM 

gradually decreases along the estuary in both high-flow and low-flow seasons, which is related 

with water discharge and urban land use. Furthermore, phytoplankton blooms and potential priming 

effect are observed in an agriculturally impacted zone, whereas at high flows, the zone for these 

processes shifts downstream. Our study suggests that estuaries act as effective filters that dilute 

sewage contaminants, as well as natural reactors that promote phytoplankton blooms and 

potentially trigger the priming effect. 

 

Keywords: POM; biomarker; Land-ocean continuum; Land use  
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4.1. Introduction 

Estuaries are dynamic systems that contribute to over 80% of the global organic carbon 

burial (Gattuso et al., 1998) and play an important role in controlling the spatio-temporal 

variabilities of organic matter and associated biogeochemical cycling (Bianchi, 2007; Bianchi and 

Canuel, 2011). Understanding the sources, transformations and fate of Particulate Organic Matter 

(POM) in estuaries is crucial in assessing climate change, fisheries management, and 

biogeochemical impacts (Bianchi, 2011; Canuel et al., 2012; Darnaude, 2005; Cai, 2011). 

However, investigating the dynamics of estuarine POM is especially challenging due to the 

multiple sources of the latter and complex biogeochemical processes as well as high variability of 

the environmental parameters influencing POM characteristics (Bianchi, 2007; Bianchi and 

Canuel, 2011; Bibi et al., 2020; Goñi et al., 2021).  

Estuarine waters are productive and dynamic systems containing organic matter from 

natural and anthropogenic sources. Dynamics of POM from these sources could be associated with 

natural processes (i.e. hydroclimate conditions). For example, low discharge increases residence 

time of nutrient, thus regulating the processing of estuarine POM (Li et al., 2021; Romero et al., 

2019). In addition, anthropogenic activities (i.e. land use changes) may alter nutrient inputs and 

primary productivity, hence significantly influencing estuarine biogeochemical processing (David 

et al., 2020). To date, the relationships between land use changes, hydroclimate conditions and 

POM dynamics are primarily studied at the bulk level (Jeong et al., 2023). Further in-depth 

investigations into estuarine POM dynamics, performed at the molecular level through the use of 

complementary lipid biomarkers (stanols, sterols, fatty acids, and n-alkanes, as detailed in Chapter 

1), are essential for a comprehensive understanding of the complex behaviors of POM within 
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estuaries. Such investigations contribute to the evaluation of estuarine functioning, particularly the 

role that estuaries play in regulating POM dynamics. 

Based on the investigation of bacterial tetraethers and bulk geochemical parameters 

presented in Chapter 3, which revealed a specific zone characterized by high productivity and 

intense activity of heterotrophic bacteria, particularly during the low-flow season, we propose two 

hypotheses. Firstly, we hypothesize that phytoplankton-derived biomarkers are also prevalent in 

this specific estuarine zone. Secondly, we hypothesize that this preferential production is associated 

with land use characteristics and hydroclimate conditions. To test these hypotheses and explore 

how estuaries influence different types of POM under varying hydroclimate conditions and land 

use characteristics, we investigate the POM dynamics along the Seine Estuary using bulk analysis 

and complementary biomarkers. Previous POM studies in this estuary has mainly focused on bulk 

characterization (Etcheber et al., 2007; Savoye et al., 2003); however, more detailed analyses using 

complementary biomarkers are still needed. The aim of this study is to (i) investigate the spatio-

temporal variations of distinct types of POM (i.e. anthropogenic POM, phytoplankton-derived 

POM, and plant-derived POM) along the land-sea continuum, (ii) explore the interactions between 

hydroclimate conditions, land use characteristics and distinct types of POM, and (iii) assess the 

estuarine functioning in terms of POM dynamics (i.e. how estuaries regulate different types of 

POM). 

4.2. Material and methods 

4.2.1 Study area  

The Seine River basin (Figure 4-1) is more than 760 kilometers long, passing through the 

greater Paris region (nearly 12 million people) to the English Channel, which is notable for its high 
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population density, intensive industrial and agricultural activities (Flipo et al., 2021; Romero et al., 

2019). Maximum water discharge is typically observed in winter (>700 m3/s; Figure 4-1c), while 

minimum discharge is generally observed in summer (<250 m3/s; Figure 4-1c). A dam at Poses 

(site 5; Figure 4-1a) constitutes the boundary between the Seine River and the Seine Estuary. The 

upper section of the estuary extends from site 5 (KP 202) to site 11 (KP 278), displaying distinct 

proportions of riverine POM when compared to the lower section (from site 12 to the coastal region, 

starting at KP 298) of the estuary, as shown in chapter 3. 

The land use data across the Seine River basin was retrieved from the worldwide surface 

coverage product GLOBELAND30 (http://www.globallandcover.com/) with a resolution of 30 

meters in 2020. Eight land use types, including urban, agricultural, forested, water body, shrubland, 

bareland, grassland and wetland, can be identified in the Seine River basin (Figure 4-1, a-c). To 

calculate the land use type proportion for each sampling site, a 1km (radius) buffer zone around 

each site was created using ArcGIS (10.7) software. 

4.2.2 Sampling 

From June 2019 to June 2021, water samples (n=156) were collected in high-flow (over 

250 m3/s) and low-flow (below 250 m3/s) seasons across distinct land use types of the Seine River 

basin (Figure 4-1 and Table 4-1). Both sub-surface (ca. 1m depth) and bottom water (2.2-16m 

depth) samples were retrieved at 5 sites (sites 4, 6, 10, 13 and 15, Figure 4-1a and Table 4-1) using 

a pump into precleaned FLPE Nalgene carboys (20L). At 4 estuarine sites (sites 6, 10, 13 and 15; 

Figure 4-1a and Table 4-1), water samples were collected at three tide periods (low tide, mid tide, 

and high tide). Water samples (0.25-43L) from these sampling sites were immediately filtered by 

using pre-combusted Whatman GF/F 0.7 µm glass fiber filters. These filters were freeze-dried, 

scratched, and kept frozen (-20°C) before to recover Suspended Particulate Matter (SPM) and 
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analyze POM. Additional SPM samples (n=16; Table 4-1) used in this study were collected in 2015 

and 2016 from the upper and lower section of the estuary (site 5, 7, 13, 15, 17, 18, and 19; Figure 

4-1a and Table 4-1) by Thibault et al. (2019). 

 

Figure 4-1. (a) Map showing the sampling sites (orange bullets) and land use characteristics 

(agricultural, urban, forested, grass land, water body, shrubland, wetland, and bareland) in the Seine 

Estuary and downstream part of the Seine River. (b) Map showing the sampling sites (orange 

bullets) in the upstream section of the Seine River. The white bullet indicates the city of Paris. (c) 

Relative abundances of distinct land use types along the Seine River basin. (d) Mean monthly water 

discharge of the Seine River measured at the Paris Austerlitz station from 2015 to 2021 (retrieved 

from https://www.hydro.eaufrance.fr/). The sampling period is represented by bullets with 

different colors, with blue bullets representing samples collected during the high-flow (>250 m3/s) 

season and red ones representing samples collected during the low-flow (<250 m3/s) season. 

Kilometric Point (KP) indicates the distance in kilometers from the city of Paris (KP 0). 
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Table 4-1. Sampling location 

Sit

e 

Name Longitud

e (°) 

Latitude 

(°) 

KP Zone Date 

1 Marnay sur 

Seine 

3.56 48.51 -200 River 2020-11 

2 Bougival 2.13 48.87 40 River 2020-11 

3 Triel sur Seine 2 48.98 80 River 2020-11 

4 Les Andelys 1.4 49.24 175 River 2019-6; 2019-7; 2020-

9; 2021-5; 2021-6 

5 Poses 1.24 49.31 202 Upstream 

estuary 

2020-11 

6 Oissel 1.1 49.34 229.4 Upstream 

estuary 

2019-6; 2019-7; 2020-

9; 2021-5; 2021-6 

7 Rouen 1.03 49.43 243 Upstream 

estuary 

2016-4 

8 Petit Couronne 1.01 49.38 251.3 Upstream 

estuary 

2020-9; 2021-2; 2021-3 

9 Grand-

Couronne 

0.98 49.36 255.6 Upstream 

estuary 

2019-6 

10 Val des Leux 0.92 49.4 265.5

5 

Upstream 

estuary 

2019-6; 2019-7; 2020-

9; 2021-5; 2021-6 

11 Duclair 0.87 49.48 278 Upstream 

estuary 

2020-9; 2021-2; 2021-3 

12 Heurtauville 0.82 49.45 297.6

5 

Downstrea

m estuary 

2019-6 

13 Caudebec 0.75 49.52 310.5 Downstrea

m estuary 

2019-6;2019-7; 2020-9; 

2021-2; 2021-3; 2021-

5; 2021-6 

14 Vatteville-La-

Rue 

0.67 49.47 318 Downstrea

m estuary 

2019-6 

15 Tancarville 0.47 49.47 337 Downstrea

m estuary 

2019-6;2019-7; 2020-9; 

2021-2; 2021-3; 2021-

5; 2021-6 

16 Berville-Sur-

Mer 

0.37 49.44 346 Downstrea

m estuary 

2019-6 

17 Fatouville 0.32 49.44 350 Downstrea

m estuary 

2015-4; 2015-7; 2015-

9; 2016-4 

18 Honfleur 0.23 49.43 355.8 Downstrea

m estuary 

2019-6;2020-9;2021-2; 

2021-3; 2021-5 

19 La Carosse 0.03 49.48 370 Downstrea

m estuary 

2015-7; 2016-4 
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4.2.3 Measurement of chlorophyll a 

An aliquot of water samples collected from May 2021 and June 2021 was filtered using 

Whatman GF/F 0.7 μm glass fiber filters. These filters (n=52) were kept frozen (-20° C) before 

chlorophyll a (Chl a) analysis. Chl a  was extracted from filters by incubating them in 10 ml of 

90% acetone for 12 hours at 4°C in the dark. Chl a concentrations were measured by a Turner 

Designs Fluorometer after two centrifugations (1700 g, 5 min), which was based on reference 

protocol of SNO SOMLIT (Service d’observation du Milieu Littoral) according to Strickland and 

Parsons (1972). Measurement of Chl a was performed at the Laboratoire Ecologie Fonctionnelle 

et Environnement (Université de Toulouse) as well as at UMR BOREA (Université de Caen 

Normandie). Chl a concentrations of the samples collected from June 2019 to March 2021 were 

from Chapter 3. 

4.2.4 Elemental and isotopic analyses 

Elemental and isotopic analyses of SPM (n=54) collected from May 2021 and June 2021 

were performed following Chapter 3. Briefly, 10mL of HCl (3 M) were added to freeze-dried SPM 

(40mg) with magnetic stirring at room temperature for 2 hours. Samples were then rinsed by 

ultrapure water and centrifuged until the pH of the supernatant was neutral. Decarbonated samples 

were kept at −20 °C overnight and then freeze dried for one day. Subsequently, non-decarbonated 

and decarbonated samples (~6mg) were enclosed in the tin capsule for further measurement. Total 

Organic Carbon content (TOC) and stable carbon isotopic composition (δ 13C) of decarbonated 

samples were determined using an elemental analyzer coupled with an isotope ratio mass 

spectrometer (Thermo Fisher Scientific Delta V Advantage) at the ALYSES platform (Sorbonne 

University / IRD). Given that acidification could impact on the N contents (Ryba and Burgess, 

2002), non-decarbonated samples are used for Total Nitrogen (TN) and nitrogen isotope (δ15N) 
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measurement using the same instrument as for decarbonated samples. The isotopic composition 

was expressed as relative difference between isotopic ratios in samples and standards (Vienna Pee 

Dee Belemnite (VPDB) for C and atmospheric N2 for N). Additional elemental and isotopic 

analyses of SPM collected from January 2015 to March 2021 were retrieved from Chapter 3 and 

Thibault et al. (2019). 

4.2.5 Lipid extraction and analyses 

SPM (~150 mg, n=172) were extracted ultrasonically with dichloromethane (DCM): 

methanol (MeOH) (5:1, v/v, 3×). The total lipid extracts were then separated into apolar and polar 

fractions on an activated silica gel column, using 30 mL of heptane, 30 mL of heptane:DCM (1/4, 

v/v), and 30 mL of  DCM/MeOH (1/1, v/v) as eluents. n-alkanes are contained in the first (apolar) 

fraction, whereas fatty acids, sterols and stanols are contained in the third (polar) fraction. An 

aliquot (6%) of the polar fraction containing sterols and stanols was dried, re-dissolved in DCM 

and derivatized with a mixture of N,O-bis-(trimethylsilyl)trifluoroacetamide and 

trimethylchlorosilane (BSTFA + TMCS, 99/1, v/v) at 70 °C for 1h with 5α-cholestane added as the 

internal standard. An aliquot (40%) of the apolar fraction containing n-alkanes was dried and re-

dissolved in heptane after addition of n-tetracosane-d50 as an internal standard.  

Sterols, stanols and fatty acids were analyzed by GC-MS using a Thermo Scientific Trace 

1310 gas chromatograph fitted with a Rxi® -5Sil MS column (60 m × 250 µm × 0.25 µm; 

RESTEK) interfaced to a ISQ 7000 single quadrupole mass spectrometer. 1 µL of the derivatized 

polar fraction was injected in split mode (10:1) with He as the carrier gas at 2 mL/min. The oven 

temperature started at 70 °C (held 1 min), increased to 130 °C at 20 °C/min, then to 320 °C (held 

25 min) at 4 °C/min. The mass spectrometer was simultaneously operated in full scan mode (m/z 

35-700) and selective ion monitoring (SIM) mode (m/z 75 for fatty acids, 129 for sterols, 215 for 
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stanols and 217 for the internal standard), with the transfer line temperature at 320 °C and EI 

voltage at 45 eV. Sterols, stanols and fatty acids were identified based on their retention time and 

mass spectra. Data were processed with Chromeleon software. 

n-alkanes were analyzed with the same instrument and GC capillary column as the polar 

organic compounds. The oven temperature program was initially at 50 °C and increased to 320 °C 

(held 30 min) at 4°C/min. 1 µl of the apolar fractions was injected on the same column as the polar 

fractions in splitless mode. Carrier gas (He) was at a constant flow rate (2 mL/min). The apolar 

fraction was analyzed in selected ion monitoring (SIM) mode (m/z 57 for n-alkanes and m/z 66 for 

the internal standard) and in full scan mode (m/z 35–700) simultaneously. The transfer line 

temperature was set at 320 °C and EI voltage at 45 eV. n-alkanes were identified based on their 

retention time and mass spectra. Chromeleon software was used to process the data. 

4.2.6 Calculation of molecular proxies 

The molecular proxies based on sterols, stanols, fatty acids and n-alkanes used in this 

chapter are summarized in Chapter 1 (Table 1-1). Based on replicate injections (n=6), the analytical 

error was 0.002 for Coprostanol/(Coprostanol+Cholestanol), 0.13 for Brassicasterol (%), 0.01 for 

C16:1/C16:0, 0.15 for CPI, 0.33 for ACL and 0.01 for Paq. 

4.2.7 Statistical analyses 

All statistical analyses in this study were performed using R (4.2.1). The Spearman’s 

correlation was utilized to investigate correlations among distinct variables (bulk and molecular 

proxies, water discharge and land use types). For two independent group comparisons, the unpaired 

two-samples Wilcoxon test (also known as Mann-Whitney test or Wilcoxon rank sum test) was 
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used. Distinct levels of significance were distinguished: *p < 0.05, **p < 0.01, ***p < 0.001, 

****p < 0.0001. ns (not significant): p-value > 0.05. 

Principal Component Analysis (PCA) was performed on the bulk and molecular proxies, 

land use characteristics, and water discharge using the R packages factoextra and FactoMineR. 

Different groups (samples from river, upstream estuary and downstream estuary) were highlighted 

by 95% concentration ellipses.  

Spatio-temporal variations of bulk and molecular proxies were assessed based on a locally 

estimated scatterplot smoothing method (LOESS), which enables the detection of nonlinear data 

trends and buffers the impact of aberrant data and outliers. 

 

4.3. Results 

In Chapter 3, samples were categorized into river (before KP 202), upstream (KP 202 to 

KP 278), and downstream (starting at KP 298) estuary groups, with each of these categories 

demonstrating distinct proportions of riverine POM (i.e. POM coming from upstream). We start 

by employing the same categorization scheme to investigate the differences in POM composition 

along the estuary based on different families of biomarkers (stanols, sterols, fatty acids, and n-

alkanes). 

 

4.3.1 Distribution of stanols 

Six stanols (coprostanol, epi-coprostanol, cholestanol, 24-ethyl coprostanol, campestanol, 

and stigmastanol) were identified in the samples collected across the Seine River basin (Figure 4-

2). Stanol distribution was dominated by coprostanol in river and upstream estuary, averaging 
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40.93 % and 31.72 % of the total stanols, respectively (Figure 4-2). The stigmastanol was present 

in higher proportions in the downstream estuary (29.17 % on average) compared with river (8.99 

% on average) and upstream estuary (21.02 % on average) (Figure 4-2). 

 

Figure 4-2. Relative abundances of the individual stanols for (a) river, (b) upstream estuary, and 

(c) downstream estuary samples. 
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4.3.2 Distribution of sterols 

In the Seine River basin, five sterols (cholesterol, brassicasterol, campesterol, stigmasterol, 

and sitosterol) were identified (Figure 4-2). In rivers, sterols are mainly dominated by cholesterol, 

whereas in the upstream and downstream estuaries, they are dominated by sitosterol (Figure 4-3). 

Brassicasterol is higher in upstream estuary (9.47 ± 7.04 %) compared with river (8.60 ± 3.63 %) 

and downstream estuary (7.83 ± 7.68 %) samples. 

 

Figure 4-3. Relative abundances of the individual sterols for (a) river, (b) upstream estuary, and 

(c) downstream estuary samples. 
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4.3.3 Distribution of fatty acids 

In Seine River basin, fatty acids were dominated by C16:0 and C18:0 (Figure 4-4). C16:1 is 

higher in downstream estuary (5.15 ± 7.68 %) compared with upstream estuary (5.09 ± 6.11 %) 

and river (2.76 ± 4.45 %). 

 

Figure 4-4. Relative abundances of the fatty acids for (a) river, (b) upstream estuary, and (c) 

downstream estuary samples. 
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4.3.4 Distribution of n-alkanes 

The n-alkanes identified in the Seine River basin have chain lengths ranging from 16 to 35 

(Figure 4-5). C29 represents the dominating n-alkanes throughout the river basin (12.08 ± 6.83 % 

in river; 12.15 ± 4.46 % in upstream estuary; 12.07 ± 5.50 % in downstream estuary). 

 

Figure 4-5. Relative abundances of the n-alkanes for (a) river, (b) upstream estuary, and (c) 

downstream estuary samples. 
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4.4. Discussion 

4.4.1 Spatio-temporal variations of anthropogenic POM 

As coprostanol can be produced by microbial reduction of cholesterol in the digestive 

system of humans and higher vertebrates (Venkatesan and Mirsadeghi, 1992), it has been widely 

used as an anthropogenic biomarker for fecal (sewage) contamination in aquatic systems (Grimalt 

et al., 1990; He et al., 2018; Rada et al., 2016). Higher relative abundances of coprostanol in the 

Seine River (40.9 ± 12.7 %) and upstream estuary (31.7 ± 16.0 %) compared with downstream 

estuary (19.18 ± 12.18 %) suggest higher sewage contributions in upstream regions. The highest 

coprostanol concentration (33.1 μg/g dry weight) is observed in a region with high urban land use 

(Site 7; Figure 4-1) during the high-flow season. Such a value is much higher than the threshold of 

sewage contamination (0.7 μg/g dry weight) (Rada et al., 2016), suggesting that the Seine Estuary 

is especially subject to sewage contamination in this area with high portions of urban land use.  

Due to the potential in situ production of coprostanol in anoxic sediments, Grimalt et al. 

(1990) proposed that there are limits in using coprostanol concentration as a robust indicator to 

trace sewage contamination, and presented the coprostanol/(coprostanol + cholestanol) ratio to 

solve this problem. The spatio-temporal variations of sewage contamination in the Seine Estuary 

is further assessed by this diagnostic ratio, with higher than 0.7 as the criteria for sewage inputs 

(Grimalt et al., 1990). This ratio shows decreasing trends from upstream to downstream in high-

flow and low-flow conditions, suggesting a dilution of sewage contamination during the mixing of 

riverine and marine waters regardless of the seasonality (Figure 4-6a). Indeed, the highly urbanized 

area in the upstream estuary (Figure 4-1, a-b) is more likely to experience high levels of sewage 

contamination because it is closer to possible pollution sources such as industrial and urban 

wastewater (Touron et al., 2007). The contaminants from the urban region can be diluted as they 
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move downstream and mix with the seawater, where there is less urban land use and more water 

body (Figure 4-1b). This suggests that estuaries act as effective natural filters and buffers for 

anthropogenic contaminants (Celis-Hernandez et al., 2021). The purification capacity of estuaries 

has been observed in many other estuaries worldwide, such as the Xiaoqing River-Laizhou Bay 

system in China, where the seaward decreasing trend of coprostanol / (coprostanol + cholestanol) 

was also noticed (He et al., 2018). 

In addition to a clear spatial variation, coprostanol / (coprostanol + cholestanol) also shows 

seasonal variabilities. This ratio is significantly higher in the high-flow season (0.7 ± 0.1) than in 

the low-flow season (0.5± 0.2) (p<0.05, Wilcoxon test; Figure 4-6c). Greater sewage contamination 

in the water column at high flows could be explained by different hydrodynamic conditions. During 

the high-flow season, the volume of water may exceed the capacity of the sewage treatment plants, 

which may lead to the release of untreated sewage into the water body (Al Aukidy and Verlicchi, 

2017). This could explain the seasonal variations of the coprostanol / (coprostanol + cholestanol) 

ratio in the Seine Estuary.  
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Figure 4-6 Spatio-temporal variations of proxies based on sterols and stanols, including (a) 

Coprostanol/(Coprostanol+Cholestanol) and (b) Brassicasterol (%). Kilometric Point (KP) 

represents the distance in kilometers from the city of Paris (KP 0). The trends showing proxy 

variations from site 4 (KP 175) to site 19 (KP 370) were based on locally estimated scatterplot 

smoothing (LOESS), with the shaded area representing 95% confidence intervals. Box plots 

comparing the indices based on sterols and stanols, including (c) 

Coprostanol/(Coprostanol+Cholestanol) and (d) Brassicasterol (%) between low-flow (<250 m3/s 

- red) and high-flow (>250 m3/s - blue) seasons. Statistical testing was performed by using a 

Wilcoxon test (*p < 0.05 and ****p < 0.0001). 
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4.4.2 Spatio-temporal variations of phytoplankton-derived POM 

Sterols are produced by different types of algae and plants (Rontani et al., 2018; Saeidnia 

et al., 2014; Volkman, 1986; Xiao et al., 2015). For example, campesterol, stigmasterol, and 

sitosterol are typical phytosterols, and they have been found abundantly in terrestrial plants 

(Saeidnia et al., 2014). In addition, cholesterol is considered as a non-specific compound, which is 

found in various organisms, including animals, plants, and phytoplankton (Volkman, 1986). 

Compared with cholesterol that have multiple sources, brassicasterol is often a predominant sterol 

of diatoms, a group of phytoplankton commonly found in marine and freshwater environments 

(Gladu et al., 1990; Rampen et al., 2010), although it has also been attributed to many groups of 

marine phytoplankton (Volkman, 2003). 

Spatially, the relative abundances of brassicasterol reach their high levels at the interface 

between the upstream and downstream estuary (260 < KP < 340) during the low-flow season 

(Figure 4-6b). Brassicasterol relative abundances are significantly higher at low flows than at high 

flows (p<0.05, Wilcoxon test; Figure 4-6d), which implies that diatom-derived POM is particularly 

accumulated during that period. The low flow period primarily occurs during spring and summer 

(Figure 4-1c), which could provide favorable conditions for the growth of phytoplankton. 
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Figure 4-7. (a) Spatio-temporal variations of C16:1/C16:0. (b) Box plots comparing the 

C16:1/C16:0 between low-flow (<250 m3/s - red) and high-flow (>250 m3/s - blue) seasons. 

Statistical testing was performed by using a Wilcoxon test (ns, not significant, p >0.05). 

 

The contribution of diatoms can also be identified by specific fatty acids (Figure 4-7). As 

diatoms are characterized by high values of C16:1/C16:0, this ratio has been used as a general diatom 

biomarker (Budge et al., 2001; Claustre et al., 1989). In the Seine Estuary, no significant difference 

in the C16:1/C16:0 ratio is observed between high flows and low flows (Figure 4-7c). This lack of 

difference could be explained by the presence of multiple sources of fatty acids, particularly C16:0, 

which might dilute the impact of seasonal variations. However, the spatial distribution of this ratio 

and the relative abundance of brassicasterol seems to be linked, both exhibiting a peak at the 

interface (260 < KP < 340) between the upstream and downstream areas of the estuary when flow 
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levels are low (Figure 4-6, 4-7). Similar variations are observed in the bulk parameters (TOC, TN 

and δ15N) and a phytoplankton biomass proxy (Chl a) in this region (Supplementary Figure 4-1). 

The peak for these parameters observed at low flow seems to be shifted about 10 km downstream 

at high flow (Figure 4-6, 4-7, and Supplementary Figure 4-1). This shift could be attributed to the 

flushing of phytoplankton biomass further downstream by the increased water discharge. 

The fact that all the above-mentioned parameters peak (260 < KP < 340) during the low-

flow season could be explained by various processes. This zone (260 < KP < 340) represents an 

agriculturally impacted area, which is characterized by high proportions of agricultural land use 

(Sites 9-15; Figure 4-1b). Intense agricultural activities in the Seine River basin may release 

significant amounts of organic fertilisers, manure, as well as urban and industrial wastewater into 

waters (Billen et al., 2021; Romero et al., 2022). Nitrite derived from these sources could have 

relatively higher δ15N values (10-25‰) (Andrisoa et al., 2019; Leavitt et al., 2006). During the 

low-flow season, the residence time of the water masses would increase, which may extend the 

nutrient retention (Li et al., 2021; Romero et al., 2019). Hence, the nitrate with elevated δ15N values 

(Supplementary Figure 4-1) can be extensively assimilated by phytoplankton, further triggering 

phytoplankton blooms. Indeed, the development of phytoplankton blooms in this region is 

supported by elevated levels of phytoplankton biomass (chl a, Supplementary Figure 4-1d), TOC 

(Supplementary Figure 4-1a), TN (Supplementary Figure 4-1b), and phytoplankton biomarkers 

(brassicasterol and C16:1/C16:0; Figures 4-6, 4-7). During downstream transport, these parameters 

decrease, which could be attributed to the dilution with seawater. This dilution effect is more 

pronounced when the water discharge is low, during which the seawater mixes well with freshwater 

(Kolb et al., 2022; Ralston and Geyer, 2019).  

On the other hand, the phytoplankton-derived POM (based on brassicasterol) remains 

constant throughout most areas of the estuary during the high-flow period, with a significant rise 
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in the coastal region (Figure 4-6b). Under high-flow conditions, nutrients derived from agricultural 

activities can be effectively transported into downstream waters (Xia et al., 2020). As the nutrient-

rich river water flows downstream and reaches the coastal region, it brings large amounts of 

nutrients, potentially fueling phytoplankton growth in the coastal waters.  

4.4.3 Spatio-temporal variations of plant-derived POM 

Generally, middle-chain n-alkanes (C20-C25) are enriched in aquatic plants (submerged and 

floating aquatic macrophytes), whereas long-chain n-alkanes (C>25) with a strong odd-to-even 

carbon preference are predominant in terrestrial higher plants (Cranwell, 1984; Ficken et al., 2000; 

Silva et al., 2012). Hence, plant-derived POM could be identified based on n-alkane distributions 

(Derrien et al., 2017). Under low-flow conditions, the average values of ACL are >25, suggesting 

a predominance of long chain n-alkanes at low flows. ACL shows limited spatial variations (Figure 

4-8a), suggesting the ability of plant biomarkers to transport for long distances. This could be 

attributed to potential associations with clay particles (Keil et al., 1997; Yedema et al., 2023). 

Furthermore, the restricted spatial variations of ACL could potentially be attributed to the 

consistent plant inputs all along the estuary. During the high-flow season, substantial fluctuations 

in ACL are observed (Figure 4-8a), implying dynamic changes in the sources and/or 

transformations of n-alkanes. This decrease can be explained by higher inputs of aquatic-plant 

derived n-alkanes as reflected by high levels of Paq. 
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Figure 4-8. Spatio-temporal variations of proxies based on n-alkanes, including (a) ACL, (b) Paq 

and (c) CPI. Kilometric Point (KP) represents the distance in kilometers from the city of Paris (KP 

0). The trends showing proxy variations from site 4 (KP 175) to site 19 (KP 370) were based on 

locally estimated scatterplot smoothing (LOESS), with the shaded area representing 95% 

confidence intervals. Box plots comparing the indices based on n-alkanes, including (d) ACL, (e) 

Paq, and (f) CPI between low-flow (<250 m3/s - red) and high-flow (>250 m3/s - blue) seasons. 

Statistical testing was performed by using a Wilcoxon test (*p < 0.05; ****p < 0.0001; ns, not 

significant, p >0.05). 

 

To differentiate distinct types of plants (terrestrial or aquatic), the aquatic proxy (Paq) was 

proposed (Ficken et al., 2000; Sikes et al., 2009), based on the relative proportion of two middle-

chain n-alkanes (C23 and C25) to two long-chain n-alkanes (C29 and C31). Specifically, 

0.01<Paq<0.25 reflects a predominance of n-alkanes derived from terrestrial plants, 0.4–0.6 from 

emergent aquatic plants and >0.6 from submerged aquatic plants (Ficken et al., 2000; Sikes et al., 
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2009). In the Seine Estuary, Paq is significantly higher in the high-flow season (0.6±0.2) compared 

with the low-flow season (0.4±0.1) (p<0.05, Wilcoxon test; Fig. 3e). Hence, n-alkanes are mostly 

contributed by aquatic plants at high flows and a mix of terrestrial and aquatic plants at low flows. 

Greater inputs from aquatic plants at high flows were also observed in other estuaries, such as the 

Danzhou Bay (China) (Chu et al., 2020). It should be noted that, other processes, such as 

preferential degradation of middle-chain alkanes, could also explain the decrease of Paq values. 

Microbial degradation processes can notably be evaluated by Carbon Preference Index 

(CPI) (Derrien et al., 2017; Martens et al., 2023). Generally, higher CPI  values (>5) are 

characteristic of well-preserved (non-degraded) long chain n-alkanes, whereas lower CPI values 

suggest intense degradation of n-alkanes (Bray and Evans, 1961; Cranwell, 1981; Meyers and 

Ishiwatari, 1993). Low CPI values (<5) are typically observed in the Seine River basin, which 

indicates that the plant-derived POM is subject to substantial microbial degradation across the river 

basin. Enhanced microbial degradation activities (as evidenced by a slight decrease in CPI) are 

particularly observed during the low-flow season at the interface (260 < KP < 340) between 

upstream and downstream estuaries (Figure 4-8c), where a phytoplankton bloom occurs, as 

explained in section 4.4.2. Indeed, high heterotrophic bacterial activities have been found, as 

evidenced by the abundant heterotrophic bacterial-derived lipids in this zone under low-flow 

conditions shown in chapter 3. These heterotrophic microbes may be fueled by the labile organic 

matter released from the phytoplankton (Bachi et al., 2023). Active heterotrophs can further 

enhance the remineralization of the plant-derived organic matter (Halvorson et al., 2019). This 

process is termed as priming effect (Bianchi, 2011; Guenet et al., 2010), which refers to the 

increased decomposition rate of recalcitrant organic matter by the addition of labile organic matter. 

The priming effect may be a widespread biogeochemical process across a number of settings 

ranging from freshwater to the ocean (Bianchi, 2011; Bianchi et al., 2015; Guenet et al., 2010; 
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Ward et al., 2016). In the Seine Estuary, it is likely that middle chain alkanes are preferentially 

degraded, considering the slight decrease of Paq in this zone (260 < KP < 340) under low-flow 

conditions (Figure 4-8). Hence, slightly lower values of Paq, CPI, and high levels of phytoplankton 

biomarkers (brassicasterol and C16:1/C16:0) in this zone could potentially indicate the occurrence of 

the priming effect. Furthermore, as detailed in 4.4.2, higher levels of brassicasterol are observed in 

coastal waters at high flows (Figure 4-6b). During the high-flow period, the most downstream part 

of the estuary (KP>340) is characterized by low Paq levels (Figure 4-8b), which most likely 

indicates a priming effect. Overall, our results show that priming effect possibly occurs within the 

agriculturally impacted area during the low-flow period, whereas at high flows, the zone for this 

process moves further downstream (Figures 4-6, 4-7, 4-8). 

4.4.4 POM dynamics associated with hydroclimate conditions and land use characteristics 

In the Seine Estuary, anthropogenic POM, phytoplankton-derived POM, and plant-derived 

POM show distinct spatial and temporal patterns (Figure 4-6, 4-7, 4-8), which are potentially linked 

to hydroclimate conditions and land use characteristics. Phytoplankton-derived POM especially 

accumulated in an agriculturally impacted region at the interface between upstream and 

downstream estuary (260<KP<340) during low flows, as reflected by high levels of molecular 

proxies (brassicasterol and C16:1/C16:0; Figure 4-6, 4-7) as well as bulk parameters (TN, δ15N, chl 

a, and TOC; Supplementary Figure 4-1). Such characteristics could further divide the estuary into 

three distinct zones: Zone I (KP<260), Zone II (260<KP<340), and Zone III (KP>340). These 

zones are distinguished by contrasting land use characteristics and POM dynamics as shown by 

principal component analysis (PCA) (Figure 4-9).  

The first principal component (PC1) explains 20.7% of the variance, with strong negative 

loadings for agricultural land use and several phytoplankton-related proxies (i.e. brassicasterol and 
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Chl a) (Figure 4-9). Hence, PC1 effectively separates samples based on distinct levels of 

phytoplankton biomarkers and agricultural land use (Figure 4-9). Zone II with negative values of 

PC1 indicates a specific region with accumulation of phytoplankton biomass as well as a potential 

priming effect under low-flow conditions, characterized by high portions of agricultural land use, 

low Paq, low CPI, low discharge, and high levels of phytoplankton biomarkers (Figure 4-9). This 

highlights the potential influence of agricultural activities on the phytoplankton blooms and related 

biogeochemical processes within Zone II especially at low flows. Indeed, increased agricultural 

activities are often associated with higher nutrient inputs and subsequent blooms of phytoplankton 

(Michael Beman et al., 2005). This is consistent with positive correlations observed between 

agricultural land use and phytoplankton biomarkers in the Seine Estuary (Supplementary Figure 4-

3).  On the other hand, the second principal component (PC2) explains 14.4 % of the variance, with 

significant negative loadings for urban land use and sewage biomarker, and water discharge (Figure 

4-9). This indicates that PC2 mainly separates samples with different levels of sewage 

contamination, hydrodynamic conditions, and urban land use. Samples with negative PC2 values 

are mainly from Zone I with higher portions of urban land use (Figure 4-9). This implies that Zone 

I is characterized by intense urban land use and substantial contributions from anthropogenic 

(sewage-derived) POM. Additionally, Zone III separates well with Zone I in the PCA biplot, with 

higher portions of water body and enriched δ13C (Figure 4-9). This suggests that Zone III is 

characterized by high proportions of water body, with low contributions from anthropogenic 

(sewage) POM. 
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Figure 4-9. PCA analysis of distinct (bulk and molecular) proxies, water discharge and land use 

types. Samples collected in different zones were highlighted with 95% concentration ellipses. 

 

Overall, the PCA results (Figure 4-9) and variations of different types of POM (Figure 4-6, 

4-7, 4-8, and Supplementary Figure 4-1) in the Seine Estuary imply that distinct pools of POM are 

subjected to contrasting dynamics and transformations, which is closely linked to hydroclimate 

conditions and land use characteristics. Estuarine zonation is identified considering POM 

dynamics, natural and anthropogenic factors. Specifically, Zone I has high portions of urban land 
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use and significant contributions from anthropogenic (sewage-derived) POM in both high-flow and 

low-flow conditions. Zone II is mostly characterized by high portions of agricultural land use, with 

phytoplankton bloom and potential priming effect occurring in the low-flow season. Zone III is 

characterized by high portions of water body and is representative of costal environments, with low 

anthropogenic (sewage-derived) POM contributions. Phytoplankton bloom and potential priming 

effect occur in this zone in the high-flow season. Hence, the biogeochemical processes within these 

zones can be categorized into low-flow and high-flow scenarios (Figure 4-10). Estuarine 

functioning in terms of POM dynamics is further assessed. 

During the low-flow scenario, reduced water discharge leads to an increase in water 

residence time. This prolonged residence time enhances retention of nutrients derived from 

agricultural activities in Zone II. Estuaries thus play a crucial role as reactors, facilitating 

biogeochemical uptake of nutrients, thereby promoting phytoplankton growth and potentially 

triggering priming effect. Additionally, anthropogenic POM (sewage contamination) derived from 

urban area in Zone I decreases gradually along the estuary. This indicates that estuaries serve as 

natural filters/buffers, diluting sewage contaminants in downstream region (Zone III). 

During the high-flow scenario, the increased water discharge effectively flushes nutrient-

rich waters into the coastal region (Zone III), leading to phytoplankton blooms and possibly 

triggering priming effect in this area. Estuaries act as biogeochemical reactors particularly in this 

zone at high flows. Moreover, sewage contaminations derived from Zone I become particularly 

pronounced during high-flow scenarios. In response, estuaries play an important role as effective 

filters/buffers, mitigating sewage contamination levels in downstream areas (Zone III). 
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Figure 4-10. Schematic diagrams showing the biogeochemical functioning of the Seine Estuary in 

terms of POM dynamics in low-flow and high-flow scenarios. 

 

4.5. Conclusion 

In this study, distributions of sterols, stanols, fatty acids, and n-alkanes were investigated 

in SPM (n=172) collected in high-flow and low-flow seasons across the Seine River basin. Spatio-

temporal variations of anthropogenic POM, phytoplankton-derived POM, and plant-derived POM 

indicate that the different pools of POM (based on their sources) are subjected to contrasting 

dynamics and transformations. The dispersal and dynamics of these POM pools are closely related 

to hydroclimate conditions and land use types. Specifically, sewage-derived POM is positively 

correlated with water discharge and urban land use. The proportion of this anthropogenic carbon 

pool gradually decreases along the estuary in both high-flow and low-flow periods, implying that 
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estuaries act as effective filters/buffers, diluting sewage contaminations. During low-flow 

conditions in regions dominated by agricultural land use, phytoplankton blooms and potential 

priming effects occur; however, during high flows, these processes shift downstream, indicating 

that estuaries also act as biogeochemical reactors, stimulating phytoplankton blooms and possibly 

initiating priming effects. Finally, we propose a conceptual model to assess the functioning of 

estuarine ecosystems in high-flow and low-flow scenarios, which is crucial for sustainable 

estuarine management. 
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4.6 Annexes 

 

Supplementary Figure 4-1. Spatio-temporal variations of bulk geochemical indices, including (a) 

TOC (%), (b) TN, (c) δ15N (‰), and (d) Chla (μg/L). Kilometric Point (KP) represents the distance 

in kilometers from the city of Paris (KP 0). The trends showing proxy variations from site 4 (KP 

175) to site 19 (KP 370) were based on locally estimated scatterplot smoothing (LOESS), with the 

shaded area representing 95% confidence intervals.  
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Supplementary Figure 4-2. Box plots comparing the bulk geochemical indices, including (a) TOC 

(%), (b) TN (%), (c) δ15N (‰), and (d) Chla (μg/L) between low-flow (<250 m3/s - red) and high-

flow (>250 m3/s - blue) seasons. Statistical testing was performed by using a Wilcoxon test 

(**p < 0.01; ****p < 0.0001; ns, not significant, p >0.05). 

 



Chapter 4: Dynamics of particulate organic matter in a human-impacted estuary 

- 182 - 

 

 

Supplementary Figure 4-3. Correlation plot between distinct (bulk and molecular) proxies, water 

discharge and land use types.  
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Abstract 

Disentangling Dissolved Organic Matter (DOM) composition in estuaries is a major 

environmental concern, as the DOM properties are closely linked to critical biogeochemical 

cycling. However, tracing spatio-temporal variations of estuarine DOM is challenging due to 

multiple sources and complex transformation processes. Here, we investigate the dynamics of 

estuarine DOM using cutting-edge machine learning algorithms and explainable artificial 

intelligence. To this aim, we collected surface water samples (n=249) from a human-impacted 

estuary with intense industrialization and urbanization in France (Seine Estuary) across distinct 

land use characteristics in contrasting hydrological conditions. We then applied unsupervised and 

supervised machine learning to DOM optical properties, which were determined by UV–visible 

absorbance and Excitation-Emission Matrix (EEM) fluorescence spectroscopy combined parallel 

factor analysis (PARAFAC). Our results show that unsupervised machine learning (K-means 

clustering) captures the variabilities of DOM, identifying three estuarine zones based on 

pronounced spatial variations of several DOM optical parameters (relative abundances of 

PARAFAC components C2 (terrestrial origin), C3 (microbial/biological origin), C5 (protein-like 

substances), and fluorescence index (FI) especially within two clusters. Supervised machine 

learning (Light Gradient Boosted Machine, LightGBM) further validates the rationality of the 

defined zonation. Subsequently, explainable artificial intelligence based on SHapley Additive 

exPlanations (SHAP) analysis shows that DOM in each zone has specific characteristics. Our 
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model indicates that DOM in the Seine Estuary is primarily influenced by aromatic material and 

autochthonous contribution in the upper estuary (Zone I; Kilometre Point (KP) <260). The 

dominant contribution to DOM in the mid-estuary (Zone II; 260<KP<340) comes from 

autochthonous and aromatic material as well as transformation and (photo)degradation products. 

Lower estuary (Zone III; KP>340) is mainly characterized by aromatic DOM (subject to 

photodegradation), low molecular weight compounds, autochthonous DOM, as well as 

transformation and (photo)degradation products. Overall, this study presents a workflow for 

disentangling the composition of DOM, tracing its variability and dynamics along the land-to-sea 

continuum, and elucidating the involved processes. 

 

Keywords: DOM; Fluorescence; Land-ocean continuum; Machine learning; Land use  

 

5.1. Introduction 

Estuaries refer to transition zones between freshwater and marine systems and play an 

important role in carbon cycling (Canuel and Hardison, 2016). Global rivers export a Dissolved 

Organic Carbon (DOC) flux of ~130 TgC.yr−1 to the ocean for the past two decades (Fabre et al., 

2020). Dissolved Organic Matter (DOM) accounts for an important reservoir of organic carbon on 

Earth. Within estuaries, DOM originates from distinct sources, which encompass allochthonous 

DOM from soils and plant litters, autochthonous DOM produced by biomass in the water column, 
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as well as anthropogenic DOM from agricultural runoff, industrial and urban effluents (Li et al., 

2023; Xie et al., 2018; Zhou et al., 2021). DOM is linked to critical biogeochemical cycling in 

aquatic systems, including greenhouse gas emissions (Amaral et al., 2021; Begum et al., 2023), 

complexation with pollutants and metals (Jiang et al., 2017; Mori et al., 2019), and trophic network 

(Liu et al., 2023). Therefore, investigating the dynamics of estuarine DOM is a major 

environmental concern, which has recently received significant attention (Hounshell et al., 2022; 

Tang and Wang, 2022; Thibault et al., 2019; Vidal et al., 2023). However, constraining the sources 

and investigating the fate of estuarine DOM is still challenging, given its multiple sources, complex 

in-estuary processing (i.e. microbial and photochemical alterations), and varying factors (i.e. 

hydroclimate conditions and land use characteristics) (Asmala et al., 2013; Vidal et al., 2023; 

Zhang et al., 2022). A significant research gap is the lack of quantitative approach to disentangle 

different types of DOM and assess main DOM characteristics within specific estuarine area, which 

is important for understanding the ecological functioning of estuaries. 

Advanced statistical techniques, such as machine learning algorithms, have been applied 

for pattern recognition and analysis of complex environmental datasets dealing with DOM 

(Harjung et al., 2023; Liao et al., 2023; Yi et al., 2023; Zhao et al., 2023). Generally, machine 

learning can be classified into unsupervised and supervised learning. Unsupervised learning 

algorithms are used to uncover the inherent traits and hidden patterns within unlabeled (data points 

without corresponding labels) dataset (Huang et al., 2021). On the other hand, supervised learning 

algorithms are typically applied to handle labeled (each data point with a corresponding label) 
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dataset and make predictions by regression (regression tasks; prediction of a continuous numeric 

value) or by classification (classification tasks; assignment of input data into predefined 

categories). Explainable artificial intelligence is an emerging approach to provide a reasonable 

interpretation of the black box machine learning model by evaluating the importance of each input 

variable (Liao et al., 2023; Park et al., 2022; Zhao et al., 2023). The machine learning and 

explainable artificial intelligence have been successfully used for regression tasks within the field 

of environmental science. For example, complex correlations between DOM properties and 

apparent quantum yields of photochemically produced reactive intermediates are identified by 

these approaches (Liao et al., 2023). However, to the best of our knowledge, the use of machine 

learning and explainable artificial intelligence for classification tasks, notably disentangling DOM 

composition and identifying main DOM characteristics within specific estuarine zones, is currently 

lacking and needs to be explored. 

Previous studies (Butturini et al., 2016; S. Chen et al., 2021; Hu et al., 2022; Singh et al., 

2019) showed that DOM characteristics are highly dynamic under varying hydroclimate conditions 

(i.e. temperature and water discharge) and land use characteristics (i.e. urban and agricultural land 

use), making it challenging to identify spatio-temporal variations of DOM and to evaluate the 

estuarine functioning (e.g. the role that estuaries play in regulating DOM dynamics). Advanced 

statistical approaches, including unsupervised, supervised machine learning, and explainable 

artificial intelligence may help to disentangle DOM composition and to identify main DOM 

characteristics in specific estuarine regions. The hypothesis was tested by investigating the DOM 
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optical properties of the surface water samples (n=249) in low-flow and high-flow periods from 

the Seine Estuary (NW France), which spans urbanized, industrialized, and agricultural regions. 

This estuary is highly stressed by both natural fluctuations and anthropogenic pressures, making it 

representative of human-impacted estuaries, and it is one of the most contaminated hydrosystems 

in the Northern hemisphere. The aim of the present study is to (ii) investigate the dynamics of 

DOM along the land-sea continuum, (ii) identify the main DOM characteristics in specific estuarine 

zones, and (iii) evaluate the potential of machine learning and explainable artificial intelligence to 

disentangle the heterogeneity of DOM, tracing its dynamics and provide biogeochemical 

interpretations. 

5.2. Materials and methods 

5.2.1 Study area and sampling 

The Seine Estuary (NW France, Figure 5-1a) is approximately 160 km in length, occupying 

an area of 50 km2, and is characterized as a macrotidal estuary based on its small depth, high tidal 

range and morphology (Grasso et al., 2018; Romero et al., 2019). The average monthly water 

discharge of the Seine River from 2019 to 2022 at the Paris Austerlitz station (F700 0001 03, 

retrieved from HydroPortail - https://www.hydro.eaufrance.fr/) is generally higher in winter (above 

250 m³/s, Figure 5-1b) and lower in the other seasons (below 250 m³/s, Figure 5-1b). Samples 

collected during the 5 high-flow campaigns are represented by the 'high-flow period' (in blue, 

Figure 5-1b), and during all other periods, represented by the 'low-flow period' (in red, Figure 5-
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1b).The Seine Estuary acts as the outlet for the Seine drainage basin and stands out for its high 

population density (200 inhabitants per square kilometer on average), as well as its substantial 

agricultural and industrial activities (Romero et al., 2019). Eight land use types were identified in 

the Seine Estuary, categorized as agricultural, forested, shrubland, water body, bareland, grassland, 

urban (industrial zones included), and wetland (Figure 5-1a, c). The land use information was 

obtained from the global surface coverage product GLOBELAND30 

(http://www.globallandcover.com/) with 30 m resolution recorded in 2020. Seawater and inland 

water body are grouped together under the single category of "water body." A 1km (radius) buffer 

zone surrounding each sampling site was constructed to calculate the land use type proportions 

using the ArcGIS (10.7) software. A 1 km buffer is selected because it is capable of capturing the 

influence of nearby land use patterns on the DOM characteristic within the water column (Hu et 

al., 2016; Zhang et al., 2023). 

During 19 monitoring campaigns from June 2019 to November 2022, sub-surface water 

(ca. 1m depth; 20mL) samples (n=249) were collected at 15 locations in contrasted seasons across 

the Seine Estuary with distinct land cover regimes (Figure 5-1 and Table 5-1). For these sites, water 

samples were immediately filtered through pre-combusted (450 °C) 0.7 µm glass fiber filters (GF/F 

Whatman) on board and stored in darkness at 4 °C until analysis. 
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Table 5-1. Sampling sites 

Site Name Longitude (°) Latitude (°) KP (km) 

Number 

of samples 

0 Balise A 0.110671 49.431828 360.8 10 

1 Honfleur 0.232682 49.432638 355.8 19 

2 Berville-Sur-Mer 0.3682 49.441587 346 19 

3 Tancarville 0.463442 49.472351 337 19 

4 Petitville 0.577669 49.435988 326.6 19 

5 Vatteville-La-Rue 0.66614 49.472695 318 19 

6 Caudebec 0.72753 49.522585 310.5 19 

7 Le Trait 0.776177 49.483864 303 17 

8 Heurtauville 0.816867 49.447614 297.65 18 

9 Duclair 0.873297 49.478666 278 18 

10 La Bouille 0.934366 49.35228 259.7 18 

11 Haulot Sur Seine 0.98475 49.356683 255.6 18 

12 Petit Couronne 1.008118 49.379279 251.3 17 

13 Le Grand Quevilly 1.030269 49.432815 246.6 18 

14 Rouen 1.06979 49.4428698 243 1 

 

5.2.2 DOC concentration measurement 

The DOC concentrations were determined using an aliquot of water sample (50 μL), which 

was acidified with 0.75 μL HCl (2 mol/L) and analyzed in Non-Purgeable Organic Carbon (NPOC) 

mode using Total Organic Carbon Analyzer (Shimadzu, Tokyo, Japan). 3 replicate analyses were 

made for each sample. The average value is reported here, with the relative standard deviation 

below 1%. 
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Figure 5-1. (a) Map of the study area (Seine Estuary) showing the land use classification 

(agricultural, urban, forested, grass land, water body, shrubland, wetland, and bareland), with 

orange bullets representing sampling sites. The land use information was retrieved from the global 

surface coverage product GLOBELAND30 (http://www.globallandcover.com/). Seawater and 

inland water body are combined into a single category of “water body”. Industrial regions are 

included in “urban”. (b) Water discharge (mean monthly) of the Seine River from 2019 to 2022 

measured at the Paris Austerlitz station (data retrieved from https://www.hydro.eaufrance.fr/). 

Sampling period of this study is shown by bullets with different color. The red bullets represent 

samples were collected in the low-flow (<250 m3/s) period and the blue bullets denote samples 

were collected in the high-flow (>250 m3/s) period. (c) Variation of the land use relative 

abundances along the Seine Estuary. 
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5.2.3 Spectroscopic analyses  

The spectroscopic analyses (absorbance and fluorescence) were carried out in a Hellma 

Suprasil® quartz cell with a path length of 1 cm. The UV–Visible absorbance spectrum of water 

samples (n = 249) was recorded using a Jasco® V-760 spectrophotometer. The absorbance spectra 

for water samples were acquired between 210 nm and 700 nm at 200 nm/min. The absorbance 

spectrum of the ultrapure water blank daily acquired was subtracted from the spectrum of each 

sample. Samples were diluted with ultrapure water when the maximum of absorbance was above 

0.1 to avoid an inner-filtering effect in subsequent fluorescence analyses. The variation of DOM 

molecular weight was assessed by spectral Slope Ratio (SR), which corresponds to the ratio of the 

slope for wavelengths in the 275–295 nm region to that in the 350–400 nm region, with higher 

values indicating a lower DOM molecular weight (Helms et al., 2008). The specific ultraviolet 

absorbance at 254 nm (SUVA254), with high values indicating greater aromatic content (Weishaar 

et al., 2003), was calculated as follows and expressed in L mg-C−1 m−1: 

SUVA254 = Abs254 / (L×DOC) (1) 

In Eq. 1, Abs254 is the measured absorbance at 254 nm, L is the path length (m), and DOC is the 

dissolved organic carbon concentration (mg/L). 

The excitation-emission matrix (EEM) fluorescence spectra (n = 249) were obtained 

between the wavelengths 240–800 nm at excitation (2 s integration time, 5 nm intervals) and 245-

830 nm at emission (high CCD detector gain, 1 pixel (ca. 0.58 nm intervals)), using an Aqualog 
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spectrofluorometer (Horiba Scientific, France) equipped with a xenon lamp (150W), a double 

monochromator at excitation, and a CCD detector. To eliminate Rayleigh and Raman scatter peaks, 

each sample EEM spectrum was subtracted from the ultrapure water blank EEM spectrum daily 

acquired. The area of the Raman scattering peak of ultrapure water is calculated daily at the 

excitation of 350 nm and allows the spectra to be normalized. The fluorescence intensities are thus 

expressed in Raman Units (RU). The EEM spectra were then processed to record fluorescence 

intensities and calculate fluorescence indices, including γ/α (Huguet et al., 2009; Parlanti et al., 

2000), FI (McKnight et al., 2001), BIX (Huguet et al., 2009) and HIX (Zsolnay et al., 1999), using 

the TreatEEM software (Omanović et al. 2023). Fluorescence indices are summarized in Chapter 

1 (Table 1-4). 

5.2.4 Parallel factor analysis (PARAFAC) 

The 3D EEM fluorescence spectra can be decomposed by a multi-way PARAllel FACtor 

analysis (PARAFAC) into independent underlying fluorescent components  (Stedmon et al., 

2003b). This statistical method helps to identify the fluorophores contributing to the overall spectral 

dataset and to estimate their relative contribution to the total DOM fluorescence. The PARAFAC 

model was carried out using the DOM Fluor toolbox (version 1.7) in Matlab R2021b and run for 4 

to 8 components with non-negativity constraints (Stedmon and Bro, 2008). A six-component model 

was validated after split-half validation analysis and examination of the residuals (Murphy et al., 

2013; Stedmon and Bro, 2008). The spectral characteristics of the components determined by 
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PARAFAC were further compared to those identified in other environments by an online spectral 

library (Openfluor) (Murphy et al., 2014). The similarity between the six components determined 

in this study and those in the database was measured using Tucker’s congruence coefficient, with 

criteria set at 95%. 

5.2.5 Unsupervised machine learning 

K-means clustering, an unsupervised machine learning technique, was used to find clusters 

(group together similar samples) based on DOM optical parameters in an unlabeled dataset 

(n=249). K-means clustering was performed using the KMeans function from the cluster module 

of the scikit-learn library (https://github.com/scikitlearn/) (Pedregosa et al., 2011) in Python 3.9.16. 

The optimal number of clusters (K) was chosen using the elbow method.  

5.2.6 Supervised machine learning 

A cutting-edge supervised machine learning algorithm (Light Gradient Boosting Machine, 

LightGBM) (Ke et al., 2017) was trained for classifying the estuarine zones based on DOM optical 

properties in a labelled dataset (i.e. zonation of the estuary), implemented with the LightGBM 

package (https://lightgbm.readthedocs.io) in Pyhton (3.9.16). This algorithm is a tree-based 

gradient boosting framework, which works by combining weak decision trees to create a strong 

model (Ke et al., 2017). Specifically, it starts by constructing a single decision tree based on the 

input data that predicts the target variable. Further decision trees are added to the model iteratively, 

https://github.com/scikitlearn/
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with each tree aiming to correct the errors of the previous tree. It has been widely used across many 

domains because of its high accuracy, high training speed, and low memory consumption (Aiken 

et al., 2022; Alova et al., 2021; Ke et al., 2017).  

We split our dataset into 75% training dataset and 25% test set randomly. The training set 

is used for fitting the machine learning model, whereas the test set (independent set of new data 

that has never been used in training) is used to evaluate the model performance. We further used a 

standard framework (Synthetic Minority Oversampling Technique, SMOTE) to solve the class 

imbalance problem, which occurs when one class (zone) contains significantly fewer samples than 

the other classes (Chawla et al., 2002). This technique is used to oversample an imbalanced training 

set, implemented with the imblearn library (Lemaître et al., 2017) (https://github.com/scikit-learn-

contrib/imbalanced-learn) in Python (version 3.9.16). 

5.2.7 Evaluation of the supervised machine learning model 

We run 10-fold cross-validation experiments to avoid overfitting and assessed the model 

performance. With the 10-fold cross-validation, we divided our training set into 10 parts randomly. 

The model was trained using nine of these parts and tested with the remaining one. This procedure 

was repeated ten times.  

The performance of the machine learning classification model was also evaluated by the 

recall (sensitivity of model prediction), precision (hitting ratio of positive predictions), AU-ROC 

(area under the receiver operating characteristic curve), and AU-PRC (area under the precision-
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recall curve). In the Receiver Operating Characteristic (ROC) curve, True Positive (TP; the number 

of positive samples correctly classified) rate was plotted against the False Positive (FP; the number 

of negative samples wrongly classified as positive) rate for distinct thresholds. The ROC curve 

demonstrates how well the classification model distinguishes between classes (zones), with higher 

AU-ROC indicating a better model performance. In addition, the Precision-Recall Curve (PRC) 

was used to show the tradeoff between precision and recall for distinct thresholds. The PRC is a 

graph displaying recall values on the x-axis and precision values on the y-axis. It is typically used 

when classes (zonation of the estuary) are significantly imbalanced, with higher AU-PRC 

elucidating a better classifier performance.  

5.2.8 Explainable Artificial Intelligence 

The explainable artificial intelligence framework (SHapley Additive exPlanations, SHAP) 

is a game theoretical approach, which is used for interpreting black-box models such as gradient-

boosting machines (Lundberg et al., 2020). The SHAP method was used in this study to evaluate 

the weight/importance of distinct features (individual DOM optical properties) in the trained 

machine learning model, with high SHAP values indicating a stronger positive influence of that 

feature on the specific prediction, implemented with the SHAP package 

(https://github.com/slundberg/shap) in Python (3.9.16). The main DOM characteristics in each 

class (zonation of the estuary) were further identified.  

https://github.com/slundberg/shap
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5.2.9 Other statistical analyses 

Other statistical analyses were performed using R (version 4.2.1). Due to the non-normal 

distribution of our dataset (p < 0.05; Shapiro–Wilk normality test), non-parametric statistical tests 

were performed in this study. The unpaired two-sample Wilcoxon test (also known as Wilcoxon 

rank sum test or Mann-Whitney test) was used for comparing two independent groups, while 

Spearman’s correlation was used to explore correlation patterns among distinct variables. The 

significance level is based on p-value and denoted by distinct symbols: * represents p < 0.05, ** 

represents p < 0.01, *** represents p < 0.001, **** represents p < 0.0001, and "ns" represents not 

significant, with p >0.05. 

Principal Component Analysis (PCA) was performed based on optical parameters with the 

R packages factoextra and FactoMineR. Samples clustered in distinct groups were highlighted with 

95% concentration ellipses. The significance of separation of different groups (clusters) was further 

assessed by permutational multivariate analysis of variance using distance matrices (Adonis test, 

999 permutations), which was implemented using the adonis2 function of the R package vegan. 

Redundancy analysis (RDA) was used to investigate the impact of land use and water 

discharge on DOM optical proxies and was performed with the R package vegan. Straight or small 

angles (close to 180° or 0°) indicate negative or positive correlations, respectively, whereas right 

angles (90°) imply a lack of linear correlations between variables. Thus, the DOM optical 

parameters that are close to each other in the RDA are strongly correlated and can be considered 
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as responding to environmental factors similarly. We further used a hierarchical portioning 

approach to calculate the individual importance of explanatory variables on response variables 

(optical properties), which can generate an unordered assessment of individual importance. This 

approach was implemented with the R package rdacca.hp (Lai et al., 2022).  

A locally estimated scatterplot smoothing (LOESS) method was used to investigate the 

spatio-temporal variations of optical and environmental parameters. It can capture the nonlinear 

pattern of the dataset and buffer the outliers. This method was carried out using the smooth function 

from the R package ggplot2. The colored region represented the 95% confidence intervals for each 

group (cluster). 
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5.3. Results and discussion 

5.3.1 Complexity of DOM characterization across the land-sea continuum 

The final six-component model determined by PARAFAC analysis (C1-C6; Figure 5-2 and 

Supplementary Figure 5-1) accounted for>99.6% of the measured spectral variation for the 249 

surface water samples from the Seine Estuary collected between June 2019 and November 2022. 

A summary of spectral characteristics, potential origin of these components and number of 

PARAFAC models matched with Tucker congruence coefficient of over 0.95 on the excitation and 

emission spectra simultaneously in the online spectral database (OpenFluor) are provided in Table 

5-2.  

 

Figure 5-2. Contour plots of the six components determined by PARAFAC for surface water 

samples (n=249) collected in the Seine Estuary during 19 monitoring campaigns from June 2019 

to November 2022. 
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Table 5-2. Spectral characteristics of the six PARAFAC components 

Component Ex(max)/Em(max) Potential origins and characteristics References 
Number of 

OpenFluor matches 

C1 240(325)/429  

Terrestrial substancesa,b,c; Common in 

freshwatera,b,c; Biologically degraded and 

producedd; Subject to photodegradationd; 

Exported from agricultural catchmentse 

(aWeigelhofer et al., 2020; bStedmon and 

Markager, 2005; cYamashita et al., 2011; 
dZhuang et al., 2022; eGraeber et al., 

2012) 

82 

C2 245/510 

Terrestrial substancesb,f,g; Common in 

freshwaterb,f,g; High-molecular-weight and 

aromatic compoundsb,h; Subject to 

photodegradationd; Terrestrial components in 

coastal environmentsi,j 

(fLambert et al., 2016; gWünsch et al., 

2017; hYamashita et al., 2008;  
iKowalczuk et al., 2009; jYamashita et al., 

2011b) 

64 

C3 240(300)/374 Biological/Microbial origine,k,l 
(kParlanti et al., 2000; lWilliams et al., 

2010) 
28 

C4 265(375)/445 
Bacterial originm,n,o; Terrestrial origin in 

agricultural aerasp 

(mFox et al., 2017; nFox et al., 2021; 
oLee et al., 2018; pAmaral et al., 2020) 

13 

C5 280/335 Protein-like substancesb,k,q,r (qCatalán et al., 2021; rKim et al., 2022) 83 

C6 240/431 
Transformation and degradation products; 

Photodegradation productt,u,v 

(sOsburn et al., 2017; tStedmon et al., 

2007; uDe Francesco and Guéguen, 2021; 
vIshii and Boyer, 2012) 

43 

OpenFluor comparison conducted on 18/07/2023
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C1 [Excitation/Emission (Ex/Em) maxima: 240(325)/429 nm] and C2 [Ex/Em maxima: 

245/510 nm] are fluorophores commonly observed in freshwaters and attributed to terrigenous, 

aromatic and hydrophobic DOM (Lambert et al., 2016; Stedmon and Markager, 2005; Weigelhofer 

et al., 2020). Component C1 was also described as terrestrial DOM exported from agricultural 

catchments (Graeber et al., 2012) and components similar to C2 were attributed to terrestrial 

components in coastal environments (Kowalczuk et al., 2009; Yamashita et al., 2011, 2008). It 

should be noted that both C1 and C2 can be photodegraded (Zhuang et al., 2022), while only C2 

could be produced photochemically (Ishii and Boyer, 2012). C3 [Ex/Em maxima: 240(300)/374 

nm] is categorized as a material recently produced autochthonously or transformed by 

biological/microbial activity (Graeber et al., 2012; Guéguen et al., 2014; Parlanti et al., 2000). C4 

[Ex/Em maxima: 265(375)/445 nm] has often been reported as a component from terrestrial 

sources (Murphy et al., 2013; Stedmon et al., 2003b), particularly in agricultural areas (Amaral et 

al., 2020). The EEM spectrum of this component is actually similar to that of the siderophore 

pyoverdine (Cornu et al., 2022; Dartnell et al., 2013), which is an extracellular metabolite produced 

notably by the bacterium Pseudomonas aeruginosa (Fox et al., 2017) mainly observed in places 

subject to human activities (Crone et al., 2020; Pirnay et al., 2005). C5 [Ex/Em maxima: 280/335 

nm] is closely related to proteins or amino acids, and associated with biological activity (Catalán 

et al., 2021; Hambly et al., 2015; Huguet et al., 2009; Kim et al., 2022). C6 [Ex/Em maxima: 

240/431 nm] is attributed to DOM transformation/degradation residue (Osburn et al., 2017) and 

has been identified as a common product of photodegradation in various environments 

(DeFrancesco and Guéguen, 2021; Stedmon et al., 2007). It is thought to be aromatic product of 

photochemical degradation that is resistant to further photodegradation (Ishii and Boyer, 2012). 
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Figure 5-3. Contour plots showing the spatial and temporal variations of the relative percentage of 

the six PARAFAC components: (a) C1, (b) C2, (c) C3, (d) C4,(e) C5, (f) C6; the fluorescence 

indices (g) fluorescence index – FI, (h) humification index – HIX, (i) biological index – BIX, (j) 

fluorescence intensity ratio /; and the absorbance indices (k) specific UV absorbance - SUVA254, 

(l) spectral slope ratio – SR; for the samples collected in the Seine Estuary from upstream 

(kilometre point (KP) 246) to downstream (KP 361) during 19 campaigns between June 2019 and 

November 2022 (n=249). 
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The relative abundances of these components (fluorescence intensity of each component to 

the total fluorescence intensity for each sample) show significant temporal variations in the Seine 

Estuary (Figure 5-3). Specifically, average relative proportions of C1, C2 and C4 are much higher 

in the high-flow periods (above 250 m³/s) than in the low-flow periods (below 250 m³/s; p<0.05; 

Figure 5-4). Such variability linked to hydrological conditions is also shown by the intensities of 

these components, absorbance (SR and SUVA254) and fluorescence (HIX, BIX and FI) indices 

(Figure 5-3, 5-4 and Supplementary Figure 5-2).  

The distinct hydrological conditions may lead to higher proportions of aromatic compounds 

with high molecular weight at high flows in the Seine Estuary. Indeed, we observe that all 

aromatic/terrestrial indicators (intensities as well as relative abundances of C1, C2, C4; SUVA254 

and HIX) significantly increase with increasing water discharge in the Seine Estuary (p<0.05, 

Spearman’s correlation; Supplementary Figure 5-3, 5-4). Such significant relationship indicates 

that higher proportions of terrestrial/aromatic DOM are flushed into the water column due to 

enhanced precipitation during high-flow events, as previously observed in other land-sea 

continuums such as the Neuse River Estuary (Hounshell et al., 2022) and the Changjiang River 

Estuary (Zhang et al., 2022). Moreover, the intensities and relative abundances of photogenerated 

aromatic component (C6) are significantly higher at high flows compared to the low-flow period 

(p<0.05, Wilcoxon test; Figure 5-4f and Supplementary Figure 5-2f). This photodegradation 

product has high aromaticity and is suggested to be produced from terrestrial material (Du et al., 

2016; Grunert et al., 2021; Ishii and Boyer, 2012). Therefore, the significantly higher portion of 

C6 during high flows could be attributed to the greater amount of terrestrial DOM that is flushed 

into the Seine Estuary, providing more material for photochemical alteration. This is particularly 

true for the flood period of July 2021, with an increase in terrestrial DOM inputs concomitantly 

with higher levels of solar irradiation in summer (Figure 5-3). In addition, highest intensities and 
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relative proportions of C6 (photoproducts) are observed during periods of low flow in summer 

(June 2019; Supplementary Figure 5-5f and 5-6f). This further indicates that seasonal variations 

may also regulate DOM dynamics, in addition to hydrological conditions. 

 
Figure 5-4. Box plots comparing the DOM optical parameters between high-flow (>250 m3/s - 

blue) and low-flow (<250 m3/s - red) seasons. Statistical testing was performed using a Wilcoxon 

test (**p < 0.01; ****p < 0.0001). 

 

Indeed, the RDA triplot shows that the first axis (24.24 % of the variability) was mainly 

linked to temperature and water discharge, highlighting the impact of seasonal and hydrological 
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conditions on the DOM spectral characteristics in the Seine Estuary (Figure 5-5). Hierarchical 

partitioning further elucidates that temperature and water discharge are the most important 

parameter controlling the DOM characteristics in the Seine Estuary (13.8 % and 13.15% of the 

variance, respectively; Figure 5-5 and Supplementary Table 5-1). In contrast to previous studies in 

other river watersheds which showed that land use can significantly control the DOM dynamics 

(Bhattacharya and Osburn, 2020; Hu et al., 2022), there is a minor impact of land use type in the 

Seine Estuary, with urban land use accounting for 1.43 % of the total variance (Figure 5-5), which 

suggests that the influence of land use characteristics on the DOM optical compositions is likely 

masked to some extent by the dominating natural driver (i.e. hydroclimate conditions).  

 

 

Figure 5-5. (a) RDA analysis between available environmental variables (purple arrows) and DOM 

optical parameters (black arrows). Samples are colored according to hydrological conditions, 

including high-flow (>250 m3/s - blue) and low-flow (<250 m3/s - red) periods. (b) The individual 

importance of different environmental variables explaining the variation in DOM optical 

parameters were assessed by hierarchical partitioning analysis. Significance level is indicated by 

asterisks: *p < 0.05; **p < 0.01; ***p < 0.001; ns, not significant, p > 0.05. p-values are from 

permutation tests (999 randomizations). Physical parameters (turbidity, temperature, dissolved 

oxygen - DO), inorganic nutrients, and Chlorophyll a (Chl a) are measured by Serre-Fredj et al. 

(2023). Dissolved Inorganic Nitrogen (DIN) = NO3
−-N + NH4

+-N + NO2
−-N. 
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In addition to regulating the terrestrial/aromatic DOM, hydroclimate conditions can also 

influence the production and reactivity of autochthonous DOM (Butturini et al., 2016; Ejarque et 

al., 2017; Hounshell et al., 2022; Li et al., 2023). For example, protein-like DOM is strongly 

produced in the Tordera River during the drought condition (Butturini et al., 2016). Low 

precipitation can increase the water residence time, which allows for considerable production and 

degradation of autochthonous DOM (Singh et al., 2019). The river thus become a reactive system 

for autochthonous DOM at low flows (Butturini et al., 2016). In the Seine Estuary, optical 

parameters for autochthonous contributions (intensity and relative abundances of C3 and C5; FI, 

BIX, and γ/α) are significantly higher in the low-flow condition (p<0.05, Wilcoxon test; Figure 5-

4 and Supplementary Figure 5-2). In addition, these indicators significantly decrease with 

increasing water discharge (p<0.05, Spearman’s correlation; Supplementary Figure 5-3, 5-4). This 

shows that DOM in the low-flow condition is largely comprised of autochthonous material.  

During the low-flow period, the high temperature and slow water flow velocity promote 

the phytoplankton growth and associated microbial activities, thus releasing more autochthonous 

DOM into the water column. Indeed, temperature is related to the phytoplankton biomass (Chl a) 

and indicators for autochthonous DOM (i.e. %C3 and %C5) that scored negatively on the first axis 

of the RDA (Figure 5-5a). Such seasonal variability of autochthonous DOM is also observed in 

many other estuaries (Ejarque et al., 2017; Hounshell et al., 2022; Singh et al., 2019).  

While the variation of DOM in the Seine Estuary is clearly captured by dividing the dataset 

based on the water discharge, the spatial distribution of DOM seems to be much more complex 

(Figure 5-3). Spatially, the relative fluorescence of the terrestrial/aromatic components (i.e. %C1, 

%C2, and %C4) is much higher than for the rest of the components over the whole estuary during 

the high discharge periods occurring in winter (December to March generally), as reflected in the 

high HIX values, with no particular trends between upstream and downstream (Figure 5-3). 
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However, these terrestrial/aromatic indicators do not show similar trends as the absorbance proxies 

used for assessing the aromaticity (SUVA254) and molecular weight (SR) of DOM along the estuary 

(Figure 5-3). Furthermore, two autochthonous components (%C3 and %C5) and fluorescence 

proxies (FI, BIX and γ/α) do not show similar spatial variations. When samples are grouped based 

on hydrological conditions (high-flow and low-flow conditions), there are also distinct spatial 

variations observed for these indicators (Supplementary Figure 5-5). Such a heterogeneity could 

be due to distinct sources and transformation processes of estuarine DOM (Asmala et al., 2018). 

Hence, it remains difficult to identify the spatial trends in DOM composition along the estuary by 

simply visualizing the variations of the DOM optical properties or by grouping samples based on 

hydrological conditions (Figure 5-3 and Supplementary Figure 5-5).  

 

5.3.2 DOM heterogeneity captured by unsupervised machine learning  

To discover the hidden patterns of the complex estuarine DOM data and explore the 

potential (temporal and spatial) variability, we perform an unsupervised machine learning approach 

with unlabeled data. Specifically, we applied the K-means clustering to identify clusters of similar 

samples based on DOM optical compositions.  
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Figure 5-6. (a) Determination of optimal number of clusters (K) in K-means clustering based on 

the elbow method. (b) PCA analysis of DOM optical parameters. Samples (n=249) within different 

clusters were highlighted with 95% concentration ellipses. Adonis analysis (999 permutations) was 

performed to assess how many variations of DOM optical proxies are explained by the grouping 

(clusters). (c-d) Box plots showing the distribution of (c) KP (Kilometric Point; defined as the 

distance in kilometers from the city of Paris) and (d) mean monthly water discharge for the 4 

clusters determined by K-means clustering. Statistical testing in (c-d) was performed with a 

Wilcoxon test (*p < 0.05; **p < 0.01; ****p < 0.0001). (e) Proportion of different seasons within 

each cluster. 

 

After plotting WCSS (Within-Cluster Sum of Square) with the varying K value (from 1 to 

10), we chose 4 clusters (K=4) in our dataset as this is the point of inflection on the curve (Figure 

5-6a). Samples of these 4 clusters are clearly separated apart from each other in the corresponding 
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PCA (Figure 5-6b). The first axis (PC1) explains 55% of the variance, with negative loadings from 

aromatic/terrestrial indicators (%C1, %C2, %C4, HIX and SUVA254), and positive loadings from 

the optical parameters associated with autochthonous contribution (C3, C5, BIX, FI, and γ/α) and 

molecular weight (SR). This axis thus separates water samples with different allochthonous vs. 

autochthonous contributions. More specifically, all samples in Cluster 3 and most data in Cluster 

1 are located on the left side of PC1. This suggests that Cluster 3 and Cluster 1 mainly group 

together samples with higher aromaticity. Indeed, we observe significantly higher values of 

aromatic/terrestrial proxies (%C1, %C2, %C4, HIX and SUVA254) especially in Cluster 3 and to 

some extent in Cluster 1, as compared to Cluster 2 and Cluster 4 (p<0.05, Wilcoxon test; Figure 5-

7). Most samples in Cluster 2 and Cluster 4 are located on the right side of PC1, which implies that 

these two clusters (especially for cluster 2) contain water samples with more autochthonous 

material with lower molecular weight. This is in line with the significantly higher values of 

autochthonous indicators (%C3, %C5, BIX, FI, and γ/α) in Cluster 2 and Cluster 4 compared to 

other clusters (p<0.05, Wilcoxon test; Figure 5-7). Hence, Cluster 3 and Cluster 2 likely represent 

the highest allochthonous and highest autochthonous contributions, respectively, while Cluster 1 

and Cluster 4 represent intermediate levels of allochthonous and autochthonous contributions, 

respectively. 

Even though all the clusters contain samples spanning across the estuary, clusters 1 and 3 

contain a higher number of samples from lower section of the estuary, whereas clusters 2 and 4 

integrate more samples from upper section of the estuary (Figure 5-6c). This is reflected in the 

average KP (Kilometric Point; distance in kilometers from the city of Paris), which is significantly 

higher in clusters 1 (310.1 km) and 3 (314.1 km) than in clusters 2 (290 km) and 4 (297 km) 

(p<0.05, Wilcoxon test; Figure 5-6c). 
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Figure 5-7. Box plots showing the distribution of DOM optical parameters within each cluster 

determined by K-means clustering. Statistical testing was performed using a Wilcoxon test 

(**p < 0.01; ***p < 0.001; ****p < 0.0001; ns, not significant, p >0.05). 

 

The different clusters also represent distinct hydrological conditions. Specifically, the 

average water discharge in Cluster 3 (572 m3/s) and Cluster 1 (233.3 m3/s) is significantly higher 

than that in Cluster 2 (145.7 m3/s) and Cluster 4 (142.7 m3/s) (p<0.05, Wilcoxon test; Figure 5-6d 

and Supplementary Table 5-2), which implies that cluster 3 represents high flow conditions, 
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whereas cluster 1 represents a mixture of low and high-water discharge conditions. As for clusters 

2 and 4, they both represent low-flow conditions. Additionally, the clusters gather samples from 

distinct seasons (Figure 5-6e and Supplementary Table 5-2), i.e. mainly summer and winter for 

cluster 1, autumn and summer for cluster 2, only winter for cluster 3, and mainly summer and 

spring for cluster 4.  

 
Figure 5-8. RDA analysis between available environmental variables and DOM optical 

parameters. Samples are colored according to clusters determined by K-means clustering. Physical 

parameters (turbidity, temperature, dissolved oxygen - DO), inorganic nutrients, and Chlorophyll 

a (Chl a) are measured by Serre-Fredj et al. (2023). Dissolved Inorganic Nitrogen (DIN) = NO3
−-

N + NH4
+-N + NO2

−-N. 

 

Further insights into these clusters can be obtained by grouping samples using these 4 

clusters in the RDA triplot (Figure 5-8). This highlights the relationship between phytoplankton 

biomass (Chl a) and autochthonous DOM parameters, especially %C3, which scored negatively on 

the first axis of the RDA, where Cluster 4 is located (Figure 5-8). Thus, Cluster 4 captures water 
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samples characterized by high contributions from biological/microbial origin, which may be linked 

to primary productivity. In addition, temperature is related with the transformation and 

(photo)degradation product (%C6) that scored negatively on the second axis of the RDA, where 

Cluster 1 is mainly located (Figure 5-8). This further suggests that Cluster 1 captures the waters 

associated with transformation and (photo)degradation processes.  

The unsupervised machine learning approach is thus able to classify the DOM data into 

distinct clusters, each representing waters with unique DOM characteristics as well as hydrological 

and seasonal conditions. The interpretation of these clusters is summarized in Table 5-3. 

Table 5-3. Interpretation of 4 clusters 

  Cluster 1 Cluster 2 Cluster 3 Cluster 4 

Discharge 

condition 
low flow and high flow low flow  high flow low flow 

     

Season summer and winter 
summer and 

autumn 
winter 

summer and 

spring 

     

DOM 

characteristics 

mainly allochthonous 

contribution as well as 

transformation and 

(photo)degradation 

products 

highest 

autochthonous 

contribution  

highest 

allochthonous 

contribution 

mainly 

autochthonous 

contribution 

(linked to 

phytoplankton-

related 

processes) 

 

We further explore the spatial dynamics of DOM optical properties for each cluster in the 

Seine Estuary, observing diverse behaviors of the optical parameters of DOM within these clusters 

from upstream to downstream (Figure 5-9). Notably, the spatial trend of %C3 (biological/microbial 

component) within Cluster 4 shows an initial increase followed by a decrease (Figure 5-9c). Given 

that Cluster 4 captures waters during periods of low flow in spring and summer (Table 5-3), the 

elevated %C3 values within this cluster could potentially be attributed to higher primary 
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productivity in this region during such low-flow conditions. Indeed, phytoplankton bloom occurs 

around this region (260<KP<340) particularly in low-flow periods, as shown in chapter 3 and 

chapter 4. Hence, the increased contributions from biological/microbial sources might be 

associated with phytoplankton-related processes. However, the other autochthonous component 

(%C5) within Cluster 4 shows a contrasting trend (Figure 5-9e), suggesting distinct sources and/or 

transformation processes for these components. In addition, within Cluster 1, %C5 and especially 

FI show an initial increase followed by a decreasing trend (Figure 5-9, e and g). This indicates 

higher contributions from protein-like component and microbial DOM in the aforementioned zone 

(260<KP<340) during both summer and winter, encompassing a combination of low and high-

water discharge conditions. Furthermore, in this zone (260<KP<340), a significant decrease in 

%C2 and %C4 within Cluster 1 is observed (Figure 5-9, b and d), indicating lower contributions 

from terrestrial substances and/or DOM with bacterial origin. Given these pronounced spatial 

variations, this specific region (260<KP<340) can separate the estuary into three parts: Zone I 

(KP<260 km); Zone II (260 km<KP<340 km); Zone III (KP>340 km). 

Overall, this unsupervised machine learning approach more efficiently traces DOM 

dynamics compared to traditional methods such as simply visualizing the data or grouping based 

on hydrological conditions. Notably, the unsupervised machine learning approach takes both 

hydrological conditions and seasonality into account, grouping together similar DOM samples, 

tracing pronounced spatial variabilities that cannot be captured by traditional methods. Estuarine 

zonation is further identified based on pronounced spatial variations of several parameters (%C3, 

%C5, %C2, and FI) especially in Cluster 1 and Cluster 4. However, identifying the primary DOM 

characteristics within each zone remains a challenge as distinct DOM parameters show different 

variabilities in each zone (Figure 5-9). In addition, the rationality of the defined zonation needs to 

be assessed. 
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Figure 5-9. Spatial variations of DOM optical parameters for each of the clusters determined by 

K-means clustering. The trends showing spatial variations were according to locally estimated 

scatterplot smoothing (LOESS), with shaded area representing 95% confidence intervals. Samples 

(n=249) were grouped into 4 clusters determined by K-means clustering. Kilometric Point (KP) 

denotes the distance in kilometers from the city of Paris. 
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5.3.3 Rationality of the estuarine zonation evaluated by supervised machine learning  

We combine samples from Cluster 1 and Cluster 3 to represent a high-flow scenario, which 

includes winter and flood periods in summer, as well as high-flow and a mixture of low and high-

water discharge conditions (Table 5-3). In contrast, samples from Cluster 2 and Cluster 4 are 

combined to indicate a low-flow scenario, primarily involving spring, summer, and autumn, 

characterized by low flow (Table 5-3). Notably, this categorization takes into account both 

seasonality and hydrological conditions. We further evaluate the rationality of the defined zonation 

in these high-flow and low-flow scenarios. 

To evaluate the rationality of the defined zonation in 5.3.2, we performed a supervised 

machine learning classification model to relate specific DOM optical compositions to each zone of 

the estuary in high-flow and low-flow scenarios. A cutting-edge ensemble machine learning 

classification method, named Light Gradient Boosted Machine (LightGBM) was evaluated in this 

study. The overall high scores for distinct parameters indicate the machine learning model could 

classify DOM optical properties as belonging to one of three zones with good performance 

(Supplementary Figure 5-7). We name the developed machine learning model as light Gradient 

Boosting Machine classification for DOM (GBM_DOM), further confirming the rationality of the 

defined estuarine zonation. 

 

5.3.3 Explainable artificial intelligence and biogeochemical interpretations  

We then used an explainable artificial intelligence approach, named SHAP (Shapley 

Additive exPlanations) analysis (Lundberg et al., 2020), to interpret the black box machine learning 

model (GBM_DOM) and evaluate the effect of input variables (DOM optical properties) on the 

model prediction (outcome in Zone I, Zone II, or Zone III). This would mean that such approach 
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enables us to identify the dominating DOM characteristics within each zone. The 

weight/importance of DOM parameters for GBM_DOM in high-flow and low-flow scenarios is 

sorted by SHAP values (Figure 5-10), with higher SHAP values indicating stronger positive feature 

importance (Lundberg et al., 2020).  

 

 

Figure 5-10. The ranking of feature importance for each zone for (a) Cluster 1 and Cluster 3 (high-

flow scenario) and (b) Cluster 2 and Cluster 4 (low-flow scenario) based on LightGBM and SHAP 

library, with each bullet indicating a training example. The colorbar denotes the value of DOM 

optical parameters from low (blue) to high (pink). 

 

The SHAP summary plots go into further detail about how each DOM parameter influences 

the model outcome in each zone. In these plots (Figure 5-10), the input variables (DOM optical 

properties) with higher impact on the model performance are shown at higher positions. The 
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colored bullets reflect the SHAP value of each sample in the training set, and their hue indicates 

the observed data value, ranging from low (blue) to high (pink). The bullets on the right side of the 

SHAP summary plot represent positive SHAP values (positive effect on the model output), whereas 

the bullets on the left side of the plot reflect negative SHAP values (negative effect on the model 

output).  

Hence, variables positioned higher with pink bullets that have high SHAP values indicates 

a strong positive effect. In other words, these variables represent the main DOM characteristics 

within this zone for a specific scenario. For example, during the high-flow scenario, %C2 is at the 

top position in Zone III, with pink bullets having high SHAP values (Figure 5-10a), indicating the 

main DOM characteristics in this zone at high-flow scenario is %C2. 

The ranking of the primary DOM characteristics and their interpretations in each zone for 

both high-flow and low-flow scenarios is then summarized in Table 5-4 and Table 5-5, 

respectively, taking into account the top 3 important variables with a positive effect. 

 

Table 5-4. Ranking of main DOM characteristics in distinct zones in high-flow and low-flow 

scenario evaluated by GBM_DOM and SHAP library 

 

  Zone I Zone II Zone III 

High-flow scenario SUVA254> %C5> %C3 FI> SUVA254> %C6 %C2> %C4> BIX 

Low-flow scenario SUVA254> FI> %C5 %C3> %C6> %C2 %C2> SR> %C6 

 

During both high-flow and low-flow scenarios, Zone I is mainly contributed by SUVA254 

(Figure 5-10 and Table 5-4). This indicates that CDOM in the upper estuary (Zone I) is 

characterized by higher aromatic content (high SUVA254) regardless of the seasonality. 

Interestingly, autochthonous contribution is also prominent in this zone, as higher FI, %C3, and 

%C5 positively impact the model output for this zone (Figure 5-10 and Table 5-4, 5-5). Such 
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information is less clearly captured through traditional approaches (i.e., simple visualization; 

Figure 5-3) or by unsupervised machine learning (Figure 5-9), which might be masked by complex 

hydrological conditions and/or the mixing of land use types within this highly dynamic area, along 

with the large number of parameters that need to be considered. By using machine learning and 

explainable artificial intelligence, we can effectively uncover hidden DOM signatures, identifying 

the spatial specificity of distinct DOM characteristics and potential controlling factors. In the Neuse 

River Basin, agricultural and urban land use were closely linked to higher proportions of high 

molecular weight and autochthonous DOM, respectively (Bhattacharya and Osburn, 2020). Hence, 

in the upper Seine Estuary (Zone I), simultaneous observation of high aromatic and high 

proportions of autochthonous material could be explained by significant contributions from both 

soil erosion and anthropogenic inputs (i.e. domestic and/or urban effluents). The high contributions 

from %C3 and especially %C5 may be linked to the discharge from urban wastewater treatment 

plants, which increases biological activity in the aquatic environment, leading to an increase in the 

proportion of proteinaceous and autochthonous compounds. Indeed, this zone is characterized by 

relatively higher agricultural and urban land use (Figure 5-1; site 10-14). In addition to the 

influence of the Seine watershed itself, the mixed agricultural and urban land use types in this area 

introduces extra complexity in DOM characterization. Monitoring and characterizing the variations 

in absorbance (SUVA254) and florescence (FI, %C3, and %C5) indicators within this zone can thus 

provide insights into the dynamics of DOM with distinct sources.  
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Table 5-5. Interpretation of DOM characteristics in distinct zones in high-flow and low-flow 

scenario 

  Zone I Zone II Zone III 

High-flow 

scenario 

(Cluster 1 + 

Cluster 3) 

Dominated by 
aromatic material; 

high contribution 

from protein-like 
substances, 

followed by DOM 

with 

biological/microbial 
origin 

Dominated by DOM 

with microbial origin; 
high contribution from 

aromatic material, 

followed by 

transformation and 
(photo)degradation 

products 

Dominated by aromatic 

compounds that are subject to 
photodegradation; High 

contribution from DOM with 

bacterial origin or terrestrial 

origin in agricultural area, 
followed by DOM with 

biological/microbial origin 

Low-flow 
scenario 

(Cluster 2+ 

Cluster 4) 

Dominated by 

aromatic material; 

high contribution 
from DOM with 

microbial origin, 

followed by 

protein-like 
substances 

Dominated by DOM 

with 

biological/microbial 
origin; high 

contribution from 

transformation and 

(photo)degradation 
products, followed by 

aromatic compounds 

that are subject to 
photodegradation 

Dominated by aromatic 
compounds that are subject to 

photodegradation; High 

contribution from low-

molecular-weight DOM, 
followed by transformation and 

(photo)degradation products 

 

The DOM properties in zone II (mid-estuary) in the high-flow scenario are mainly 

influenced by FI, whereas in the low-flow scenario are predominantly influenced by %C3 (Figure 

5-10 and Table 5-4). This suggests that DOM in this zone is generally dominated by DOM with 

biological/microbial origin. As shown in chapter 3 and chapter 4, a phytoplankton bloom was 

observed in this zone as indicated by high Chl a concentration. During phytoplankton bloom 

demise, viral infection could be significantly intensive, further releasing phytoplankton-derived 

metabolites (autochthonous DOM) into the water column (Kuhlisch et al., 2021). This process was 

termed the “viral shunt”, which links primary production with the DOM cycling (Fuhrman, 1999; 
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Wilhelm and Suttle, 1999). In addition to the viral shunt, autochthonous DOM can also be produced 

directly by phytoplankton and microbial degradation. Therefore, the release and subsequent 

transformation of phytoplankton-derived DOM could explain the dominant contributions of 

autochthonous DOM in Zone II, which potentially documents the footprint of the phytoplankton-

related processes. Additionally, it is likely that agricultural land use contributes to the export of 

soil-derived DOM, leading to an increase in aromatic content of DOM in adjacent aquatic 

environments (Chen et al., 2021). Hence, the elevated signatures of aromatic CDOM (high 

SUVA254; Figure 5-10 and Table 5-4, 5-5) during the high-flow scenario can also be attributed to 

the high portions of agricultural land use in this zone (Figure 5-1). In addition, the abundant 

terrestrial/aromatic DOM in this region may further undergo photobleaching (Ishii and Boyer, 

2012). Indeed, significant photochemical degradation processes are evidenced by positive 

contributions of photodegradation products (%C6) in Zone II (Figure 5-10 and Table 5-4, 5-5). 

Overall, the use of the machine learning and explainable artificial intelligence suggests that 

transformation processes (both microbial and photochemical processing) and land use types control 

the DOM characteristics.  

In the lower section of the Seine Estuary (zone III), the DOM properties are identical to 

typical marine environments, with low molecular weight CDOM (high SR) and high autochthonous 

contribution (high BIX) (Figure 5-10 and Table 5-4, 5-5). The elevated water discharge has the 

potential to flush nutrient-rich waters into this zone, which could potentially trigger phytoplankton 

blooms in this area, as demonstrated in chapter 4. Such processes could also result in the release of 

substantial amounts of autochthonous DOM. In addition, DOM characteristics in this zone are 

mainly influenced by %C2 both in high-flow and low flow scenarios (Figure 5-10 and Table 5-4). 

Interestingly, this component has an opposite influence on the model prediction compared to the 

other terrestrial component (%C1). %C1 shows negative contributions for this zone in both 
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scenarios (Figure 5-10). This suggests that %C1 and %C2, both previously categorized as terrestrial 

aromatic components, actually show different behaviors in Zone III. One possible explanation for 

such a distinction is that these components are influenced by varying levels of photodegradation. 

Previous studies have shown that only C2 can be produced through photochemical processes, 

whereas C1 cannot (Ishii and Boyer, 2012). The positive contribution of %C2 in this zone thus 

implies the possible accumulation of photochemically produced material in this area. Distinct 

behavior of terrestrial fluorescent components in this area highlights the complex sources and 

transformation processes of estuarine DOM, which could be assessed by machine learning and 

explainable artificial intelligence. 

Overall, a generalized estuarine zonation in this study typically consists of 3 zones, 

including the upper (Zone I), mid (Zone II), and lower (Zone III) estuary, with each zone showing 

specific DOM characteristics and biogeochemical processes in high-flow and low-flow scenarios 

(Figure 5-11). Our model suggests that DOM in the Seine Estuary is dominated by aromatic 

material and autochthonous contribution in the upper estuary (KP<260; Figure 5-11). In the mid-

estuary (260<KP<340), the main contribution to DOM comes from autochthonous sources as well 

as aromatic material, suggesting enhanced transformation (microbial and photochemical) 

processes. Subsequently, a transition to photochemically produced material, low molecular weight, 

and varying portions of autochthonous DOM in the lower estuary (KP>340) is observed, indicating 

the significant influence of marine water mass on DOM properties and other processes such as 

photodegradation, flocculation and precipitation. Our results demonstrate that the estuarine DOM 

originates from distinct sources and undergoes varying levels of in-estuary processing within 

specific zones. Machine learning is shown to be a powerful approach to disentangle the DOM 

complexity. 
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Figure 5-11. Schematic diagrams showing the zonation of the Seine Estuary in terms of DOM 

dynamics in low-flow and high-flow scenarios. Kilometric Point (KP) denotes the distance in 

kilometers from the city of Paris. 

 

5.4. Conclusions and environmental implications 

Combining unsupervised and supervised machine learning can provide novel insights into 

disentangling the DOM composition related to both seasonal and spatial variations in estuaries. 

Specifically, by applying unsupervised machine learning, groups of samples characterized by 

comparable DOM optical parameters, can be identified, providing an initial understanding of the 

DOM dynamics and zonation. Thereafter, supervised machine learning can validate and evaluate 

the rationality (i.e. according to accuracy in the classification results) of the generalized zonation 
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defined from unsupervised learning. The application of explainable artificial intelligence can 

further help to identify the dominating DOM parameters within each zone. The approach proposed 

in this study can be easily applied to other systems beyond estuaries, such as rivers, lakes, or coastal 

oceans. The established workflow can significantly contribute to environmental management and 

decision-making processes, which may lead to more sustainable and effective policies. 
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5.5. Annexes 

Supplementary Table 5-1. RDA results 

Variables Axis 1 Axis 2 Individual Importance (%) 

Temperature -0.87 -0.36 13.8 *** 

Discharge 0.84 -0.33 13.15*** 

Turbidity 0.28 0.34 2.55** 

PO4
3- -0.33 0.10 1.97* 

Chl a -0.35 0.10 1.48* 

Urban -0.22 0.32 1.43* 

DIN 0.22 0.27 1.36* 

DO 0.14 0.22 ns 

Agricultural 0.12 -0.19 ns 

Water body 0.15 -0.17 ns 
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Supplementary Table 5-2. Description of the 4 clusters 

  Cluster 1 Cluster 2 Cluster 3 Cluster 4 

Number of samples (total) 82 46 31 90 

Number of samples (spring) 2 0 0 25 

Number of samples (summer) 65 19 0 64 

Number of samples (autumn) 0 27 0 0 

Number of samples (winter) 15 0 31 1 

     

Min KP (km) 246.6 246.6 246.6 243 

Max KP (km) 360.8 360.8 360.8 360.8 

Mean KP (km) 310.1 290 314.1 297 

     

Min Discharge (m3/s) 99 95.6 342 95.6 

Max Discharge (m3/s) 404 203 928 404 

Mean Discharge (m3/s) 233.3 145.7 572 142.7 
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Supplementary Figure 5-1. Spectral characteristics of the six components determined by 

PARAFAC. 
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Supplementary Figure 5-2. Box plots showing the distribution of the fluorescence intensity (in 

Raman Units – R.U.) of the six PARAFAC components between high-flow (>250 m3/s - blue) 

and low-flow (<250 m3/s - red) periods. Statistical testing was performed using a Wilcoxon test 

(**p < 0.01; ***p < 0.001; ****p < 0.0001). 
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Supplementary Figure 5-3. Mean monthly water discharge plotted against the fluorescence 

intensity (in Raman Units – R.U.) of the six PARAFAC components, with shaded region 

representing 95% confidence intervals (Spearman's correlation). Samples (n=249) were colored by 

high-flow (>250 m3/s - blue) and low-flow (<250 m3/s - red) periods.  
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Supplementary Figure 5-4. Mean monthly water discharge plotted against distinct DOM optical 

parameters, including the relative percentage of the six PARAFAC components: (a) C1, (b) C2, (c) 

C3, (d) C4, (e) C5, (f) C6; the fluorescence indices (g) fluorescence index – FI, (h) humification 

index – HIX, (i) biological index – BIX, (j) fluorescence intensity ratio γ/α; and the absorbance 

indices (k) specific UV absorbance - SUVA254, (l) spectral slope ratio – SR, with shaded region 

representing 95% confidence intervals (Spearman's correlation). Samples (n=249) were colored by 

hydrological conditions, including high-flow (>250 m3/s - blue) and low-flow (<250 m3/s - red) 

periods.  
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Supplementary Figure 5-5. Spatio-temporal variations of DOM optical parameters, including the 

relative percentage of the six PARAFAC components: (a) C1, (b) C2, (c) C3, (d) C4, (e) C5, (f) 

C6; the fluorescence indices (g) fluorescence index – FI, (h) humification index – HIX, (i) 

biological index – BIX, (j) fluorescence intensity ratio γ/α; and the absorbance indices (k) specific 

UV absorbance - SUVA254, (l) spectral slope ratio – SR. The trends showing spatial variations were 

according to locally estimated scatterplot smoothing (LOESS), with shaded area representing 95% 

confidence intervals. Samples (n=249) were grouped into high-flow (>250 m3/s - blue) and low-

flow (<250 m3/s - red) periods. Kilometric Point (KP) denotes the distance in kilometers from the 

city of Paris.  
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Supplementary Figure 5-6. Spatio-temporal variations of fluorescence intensities of PARAFAC 

components (in Raman Unit -R.U.). The trends showing spatial variations were according to locally 

estimated scatterplot smoothing (LOESS), with shaded area representing 95% confidence intervals. 

Samples (n=249) were grouped into high-flow (>250 m3/s - blue) and low-flow (<250 m3/s - red) 

periods. Kilometric Point (KP) denotes the distance in kilometers from the city of Paris. 
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Supplementary Figure 5-7. (a-b) Receiver Operating Characteristic curve (ROC curve) (a) and 

the Precision-Recall Curve (PRC) (b) evaluated by LightGBM for the high-flow scenario (Cluster 

1 + Cluster 3). (c-d) ROC curve (c) and PRC (d) evaluated by LightGBM for the low-flow 

scenario (Cluster 2 + Cluster 4). 
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This PhD thesis aims to assess the estuarine functioning by simultaneously investigate the 

dynamics of Particulate Organic Matter (POM) and Dissolved Organic Matter (DOM). To this aim, 

the spatio-temporal variations of POM and DOM characteristics were determined using water 

samples (n=383) collected along the land-sea continuum of a human-impacted estuary (Seine 

Estuary, France) during 24 sampling campaigns (June 2019 to November 2022). 

6.1. Development of a novel riverine runoff proxy 

This thesis starts by investigating the POM dynamics in the Seine River basin. To date, 

reliable proxies for quantifying the relative contribution of terrestrial organic matter in aquatic 

systems are still lacking. Current available terrestrial proxies, such as the δ13C of organic carbon 

(Lamb et al., 2006), Branched and Isoprenoid Tetraethers (BIT) index (Hopmans et al., 2004) and 

long-chain diols (Lattaud et al., 2017) have their own uncertainties and limitations. Additional 

molecular proxies for riverine runoff are thus needed, which may cross-validate available ones. 

In Chapter 3, the POM dynamics was investigated at the bulk and molecular levels, through 

elemental and isotopic analyses as well as lipid biomarkers (i.e. branched glycerol dialkyl glycerol 

tetraethers, brGDGTs; branched glycerol monoalkyl glycerol tetraethers, brGMGTs). Both types 

of compounds can be produced in situ in water column and/or sediments in aquatic settings. Both 

of their distributions are strongly correlated to salinity, whereas only brGDGT distributions are 

significantly influenced by nitrogen nutrient loadings. Salinity correlates positively with two 

brGMGT homologues (H1020a and H1020b), and negatively with the other two brGMGTs 

(H1020c and H1034b), which leads to the development of a novel molecular proxy (Riverine 

IndeX, RIX), with higher RIX indicating more riverine contribution.  

In addition, a specific zone in the Seine estuary (260<KP<340; KP: kilometric point, the 

distance in kilometers from the city of Paris) is identified, which is characterized by strong 
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phytoplankton productivity and heterotrophic bacteria activity, particularly during the low-flow 

period. This further shows the potential for identifying estuarine zonation based on POM dynamics. 

6.2. Dynamics of different types of POM and their relationships with land use 

and hydroclimate conditions  

Based on the results presented in chapter 3, the aforementioned zone (260<KP<340) is 

further hypothesized to relate with land use changes and hydroclimate conditions. To test this, the 

spatio-temporal variations of distinct types of POM (i.e. anthropogenic POM, phytoplankton-

derived POM, and plant-derived POM) are investigated using bulk geochemical analysis as well 

as complementary lipid biomarkers (sterols, stanols, fatty acids, and n-alkanes) in chapter 4.  

It is demonstrated how the dispersion and dynamics of various types of POM are linked to 

hydroclimate conditions and land use patterns. Specifically, anthropogenic POM (indicated by a 

sewage proxy) has a positive correlation with water discharge and urban land use. The sewage 

indicator gradually decreases along the estuary, suggesting a dilution of sewage contamination 

during the mixing of water masses. In addition to the spatial variability, anthropogenic POM also 

shows seasonal variations, with greater sewage contamination at high flows.  

Furthermore, phytoplankton blooms (indicated by a diatom biomarker and a proxy for 

phytoplankton biomass - Chlorophyll a) are observed in the aforementioned zone (260<KP<340), 

which represents an agriculturally impacted region. Intense agricultural activities may release large 

amounts of nutrients that can be assimilated by phytoplankton at low flows, triggering 

phytoplankton blooms. During high-flow season, nutrients from agricultural activities can be 

transported further downstream (Xia et al., 2020), fueling phytoplankton growth in the coastal 

waters. 
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The plant-derived POM is mostly contributed by aquatic plants at high flows and a mix of 

terrestrial and aquatic plants at low flows. In addition, microbial degradation processes and 

potential priming effect may occur especially at that agriculturally impacted region (260<KP<340).  

As a result, this region (260<KP<340), where phytoplankton blooms occur during low 

flows, could divide the estuary into three distinct zones, each showing unique characteristics under 

high-flow and low-flow scenarios: Zone I (KP<260), Zone II (260<KP<340), and Zone III 

(KP>340). Samples from these zones are distinguished and separated well by Principal Component 

Analysis (PCA) based on POM parameters, land use characteristics, and hydroclimate conditions. 

6.3. Disentangling DOM composition by machine learning 

Chapter 3 and Chapter 4 present a zonation of the Seine Estuary regarding POM dynamics. 

To explore DOM dynamics and its related estuarine zonation/functioning, DOM properties are 

further investigated by UV–Visible absorbance and Excitation-Emission Matrix fluorescence 

spectroscopy in Chapter 5. The DOM parameters are firstly visualized in a contour plot and 

grouped by hydrological conditions. However, it remains difficult to capture the spatial trends in 

DOM composition along the Seine estuary by these approaches.  

The potential (temporal and spatial) variability of DOM is then explored by using 

unsupervised machine learning. This approach effectively captures DOM variability, identifying 

three estuarine zones (Zone I (KP<260), Zone II (260<KP<340), and Zone III (KP>340)) based on 

pronounced spatial variations in several DOM optical parameters (relative abundances of 

PARAFAC components C2 (terrestrial origin), C3 (microbial/biological origin), C5 (protein-like 

substances), and fluorescence index FI), particularly within two clusters. Thus, the same three 

functional zones of the Seine Estuary are identified by analyzing DOM and POM data separately. 
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Thereafter, the rationality of the defined zonation and main DOM characteristics within 

each zone are assessed by supervised machine learning as well as explainable artificial intelligence. 

This led to the development of a novel model (light Gradient Boosting Machine classification for 

DOM, GBM_DOM). This model successfully disentangles the DOM composition and captures 

main DOM characteristics in different zones of the Seine Estuary. Our model shows that aromatic 

material dominates DOM characteristics, with an autochthonous contribution in the upper estuary 

(KP<260). The predominant contribution to DOM in the mid-estuary (260<KP<340) originates 

from autochthonous sources as well as aromatic material, implying significant transformation 

(microbial and photochemical) processes. Following that, a change to photochemically produced 

material, low molecular weight, and autochthonous DOM is observed in the lower estuary 

(KP>340), suggesting a considerable influence of marine water masses and other processes such 

as photodegradation. 

6.4. Estuarine functioning in terms of POM and DOM dynamics 

Based on the results presented in chapters 3 to 5, a synthesized diagram showing POM and 

DOM dynamics, as well as associated estuarine zonation is shown in Figure 6-1. 

Zone I (KP<260; Figure 6-1) is characterized by intensive urban land use and significant 

contributions from terrestrial (riverine) POM, anthropogenic POM, aromatic CDOM, and protein-

like FDOM in both high-flow and low-flow scenarios. This could be explained by considerable 

contributions from both soil erosion and anthropogenic inputs (i.e. residential and/or municipal 

effluents).  

Zone II (260<KP<340; Figure 6-1) is characterized by high portions of agricultural land 

use. This zone is especially contributed by phytoplankton-derived POM, FDOM with 

biological/microbial origin (phytoplankton-related) and FDOM produced by transformation and 
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(photo) degradation, notably at the low-flow scenario. Intense agricultural activity in this zone may 

result in substantial amounts of organic fertilizers, manure, as well as urban and industrial 

wastewater being released into the waters. The residence time of the water masses would increase 

during the low-flow season, potentially extending nutrient retention. As a result, the nutrient can 

be extensively assimilated by phytoplankton, triggering subsequent phytoplankton blooms as 

reflected by accumulation of phytoplankton-derived POM. The enhanced autochthonous DOM 

contributions in this zone at low flows might be associated with the presence of phytoplankton-

derived POM. During phytoplankton bloom demise, viral infection and microbial degradation 

could release phytoplankton-derived autochthonous DOM into the water column. During high-flow 

scenario, this zone is characterized by high levels of anthropogenic POM, terrestrial (riverine) 

POM, aquatic plant-derived POM, FDOM with microbial origin, and aromatic CDOM that are 

likely derived from the upstream region.  

Zone III (KP>340; Figure 6-1) is representative of costal environments with less 

contributions from anthropogenic POM, terrestrial (riverine) POM, aromatic CDOM, and protein-

like FDOM inputs. Instead, DOM characteristics in this zone are mainly influenced by 

photochemically produced material both in high-flow and low flow scenarios. During the high-

flow scenario, the increased water discharge effectively flushes nutrient-rich waters into this zone, 

thus leading to phytoplankton blooms and accumulation of phytoplankton-derived POM and 

FDOM with biological/microbial origin. 

Estuaries thus act as effective filters/buffers that dilute anthropogenic POM and protein-

like FDOM that likely originate from upstream regions characterized by significant portions of 

urban land use. Such functioning is more pronounced during the high-flow scenario.  

On the other hand, estuaries play a crucial role as biogeochemical reactors, especially in 

low-flow scenarios, stimulating the growth of phytoplankton and accumulating phytoplankton-
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derived POM and FDOM within an agriculturally impacted region (Zone II; Figure 6-1). 

Transformation processes may also play a key role in this zone during low-flow scenario as 

reflected by substantial contributions from transformation and (photo) degradation product. 

 
Figure 6-1. Schematic diagrams showing the dynamics of (a-b) POM and (c-d) DOM in the 

Seine Estuary in (a, c) low-flow and (b, d) high-flow scenarios. 
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6.5. Perspectives 

This PhD thesis aimed at understanding the biogeochemical functioning of a human-

impacted estuary, specifically focusing on how it regulates different types of DOM and POM.  

First, it might be necessary to assess the general applicability of the novel proxy (RIX) 

proposed in this thesis to paleorecords and compare it with other available terrestrial proxies across 

the critical geological period, such as the Paleocene-Eocene thermal maximum.  

It could also be interesting to explore molecular composition of DOM using Fourier-

transform ion cyclotron resonance mass spectrometry (FT-ICR MS). This approach presents an 

opportunity to evaluate relationships between molecular composition of DOM and (microbial and 

photochemical) transformation processes. It is thus possible to explore which molecular formulas 

dominate each estuarine zone and how they relate to POM, as well as CDOM and FDOM. 

A conceptual model of POM and DOM dynamics in the Seine estuary is proposed under 

varying flow conditions (Figure 6-1). Additionally, it could be interesting to use unsupervised and 

supervised machine learning to cross-interpret estuarine DOM and POM data. In this thesis, 

machine learning and explainable artificial intelligence show potential for assessing DOM 

dynamics and capturing main DOM characteristics within specific region. The approach proposed 

in Chapter 5 could also be applied to understand POM dynamics and to find dominating POM 

characteristics in each zone. By applying machine learning to larger datasets containing DOM and 

POM, we could uncover new insights into DOM and POM dynamics as well as related 

biogeochemical processes.  

One of the main results of this PhD thesis is to propose a conceptual model to assess the 

functioning of estuarine ecosystems in terms of DOM and POM dynamics across different types 

of land use under high and low flow scenarios. However, a critical question remains: Are these 
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scenarios applicable to other estuaries? Although this thesis provides insights into the 

biogeochemical functioning of the Seine Estuary, it would be essential for exploring whether the 

similar patterns/ scenarios occur in different estuaries. 
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Dynamique de la matière organique dissoute et particulaire le long du continuum terre-mer 

de l'estuaire de la Seine (France)  

 

Résumé: 

 

Les estuaires sont des zones critiques d'un point de vue écologique, économique et biogéochimique, 

qui jouent un rôle important dans la régulation de la Matière Organique Dissoute (MOD) et de la 

Matière Organique Particulaire (MOP). À ce jour, la MOD et la MOP ont le plus souvent été 

étudiées séparément dans les estuaires, ce qui freine la compréhension de leur dynamique globale 

et du fonctionnement biogéochimique estuarien associé. L'objectif de cette thèse était de déterminer 

les sources, les transformations et le devenir de la MOP et de la MOD dans l’estuaire de Seine 

(Nord-Ouest de la France). Dans ce but, les variations spatio-temporelles de leurs caractéristiques 

ont été étudiées à partir d'échantillons d'eau (n=383) collectés le long du continuum terre-mer de 

cet estuaire lors de 24 campagnes de prélèvements de juin 2019 à novembre 2022. Dans un premier 

temps, la dynamique de la MOP a été étudiée à l’échelle globale et moléculaire, via des analyses 

élémentaires et isotopiques et celles de biomarqueurs lipidiques. Un nouveau marqueur moléculaire 

(Riverine IndeX, RIX) basé sur des lipides membranaires d’origine bactérienne a ainsi été 

développé pour tracer les apports de MO provenant de la rivière en amont de l’estuaire. La MOP 

est un mélange de molécules d'origines variées (terrestre, algale/microbienne, anthropique), avec 

des dynamiques distinctes le long de l'estuaire de Seine. Cela montre que les transformations 

complexes auxquelles la MOP est soumise sont étroitement liées à sa composition. De plus, les 

propriétés de la MOD ont été étudiées en combinant les techniques optiques (absorbance UV-

visible et matrice d'excitation-émission de fluorescence) à des algorithmes d’apprentissage 

automatique non supervisé et supervisé. Cela a conduit à l'élaboration d'un modèle démêlant la 

complexité de la MOD et révélant des caractéristiques spécifiques de cette dernière dans différentes 

zones de l'estuaire de Seine, avec des niveaux de masse moléculaire, d'aromaticité et de matière 

autochtone variables. De telles signatures de MOD ne sont pas identifiées efficacement en utilisant 

les approches traditionnelles. Enfin, ce travail de thèse a montré que les dynamiques de la MOD et 

de la MOP sont découplées le long du continuum terre-mer de Seine et que l’estuaire contrôle les 

processus de transport et transformation des constituants variés de la matière organique, qui sont 

liés, notamment, aux conditions hydroclimatiques et aux modes d'occupation des sols.  

 

Mots-clés : Matière organique ; Estuaire de Seine ; biomarqueurs lipidiques ; spectroscopie de 

fluorescence ; dynamique ; algorithmes d’apprentissage automatique  
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Dynamics of dissolved and particulate organic matter along the land-sea continuum of the 

Seine Estuary (France) 

 

Abstract: 

 

Estuaries are critical zones from ecological, economical, and biogeochemical points of view and 

play an important role in regulating Dissolved Organic Matter (DOM) and Particulate Organic 

Matter (POM). To date, estuarine DOM and POM were mostly studied separately, hampering our 

understanding of their overall dynamics and associated estuarine biogeochemical functioning. The 

aim of this PhD thesis was to determine the sources, transformations and fate of estuarine POM 

and DOM in the Seine Estuary (North Western France). To this aim, the spatio-temporal variations 

of POM and DOM characteristics were determined using water samples (n=383) collected along 

the land-sea continuum of this estuary during 24 sampling campaigns from June 2019 to November 

2022. First, the POM dynamics was investigated at the bulk and molecular scales, through 

elemental and isotopic analyses as well as lipid biomarkers. A novel molecular proxy (Riverine 

IndeX, RIX) based on bacterial membrane lipids was developed to trace the riverine POM inputs 

into estuaries. POM is a mixture of molecules from different sources (terrestrial, algal/microbial, 

anthropogenic), which showed distinct dynamics along the Seine estuary, highlighting that the 

complex transformations to which POM is subjected is closely dependent on its composition. 

Furthermore, DOM properties were investigated by optical techniques (UV–Visible absorbance 

and Excitation-Emission Matrix fluorescence spectroscopy) coupled with unsupervised and 

supervised machine learning. This led to the development of a model disentangling the complexity 

of DOM and capturing specific characteristics of the latter in different zones of the Seine Estuary, 

with varying levels of molecular weight, aromaticity, and autochthonous material. Such DOM 

signatures are not effectively identified using traditional approaches. Finally, this PhD work shows 

that DOM and POM dynamics are decoupled along the Seine land-sea continuum and that the 

estuary controls the transport and transformation of various constituents of organic matter, which 

are linked, in particular, to hydroclimatic conditions and land use. 

 

Keywords: Organic matter; Seine Estuary; lipid biomarkers; fluorescence spectroscopy; dynamics; 

machine learning algorithms  

 

 


