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Summary in french

Les données catégorielles sont fréquemment analysées dans différents domaines comme
les sciences sociales, la biologie, la santé ou encore l’économétrie. On parle d’une variable
catégorielle lorsque ses modalités forment un ensemble de catégories. Un tel ensemble
peut être constitué de réponses à des questionnaires (diagnostics médicaux, options de
choix), d’observations de certaines caractéristiques, de votes... De nombreuses variables
catégorielles ne comportent que deux catégories (vrai ou faux, succès ou échec, existence
ou non-existence). On parle alors de variables binaires. Avec plus de deux catégories,
on distingue principalement deux types de variables. Les variables dont les catégories
ne sont pas ordonnées sont appelées variables nominales (par exemple : les espèces dans
un genre, le mode de transport). Les variables dont les catégories sont naturellement
ordonnées sont appelées variables ordinales (par exemple : le niveau d’éducation, le
statut d’une maladie, les préférences ou opinions).

Dans de nombreuses situations, pour analyser ces données catégorielles, on dispose
d’informations complémentaires au travers d’autres variables que l’on souhaite relier
aux proportions des catégories. Cette relation est souvent analysée en statistique par
des modèles de régression. Au sein de ces modèles, les variables explicatives (également
appelées variables indépendantes, covariables ou prédicteurs) participent à l’explication
de la variable réponse (également appelée variable d’intérêt). Cette démarche de régres-
sion est largement répandue dans le cas d’une variable réponse gaussienne. Cependant,
la loi gaussienne n’étant pas adaptée aux réponses catégorielles, la méthodologie a été
étendue.

Les modèles linéaires généralisés (GLMs) ont été introduits par Nelder and Wed-
derburn (1972) pour relâcher le postulat d’une distribution gaussienne de la variable
réponse, en particulier pour prendre en compte une réponse discrète (données de comp-
tage ou catégorielles). Dans cette thèse, nous aborderons uniquement le cas des réponses
catégorielles (où J dénote le nombre de catégories) dans trois contextes distincts :

• dans le cas d’une réponse binaire (chapitre 2),

• lorsque la réponse comporte plus de deux catégories (chapitre 3),

• lorsqu’il existe une structure hiérarchique entre les catégories (chapitre 4).

Dans chaque chapitre de cette thèse, nous analysons les différents modèles possibles en
étudiant particulièrement le choix de la fonction de lien. Selon Nelder and Wedderburn
(1972), un modèle linéaire généralisé est caractérisé par trois composantes : la distribu-
tion de la réponse, le prédicteur linéaire (combinaison linéaire des variables explicatives)
et la fonction de lien. Dans le cas particulier d’une réponse catégorielle, la distribution
est forcément la loi de Bernoulli (lorsque J = 2) ou la loi multinomiale (lorsque J ≥ 2).
Ainsi, seuls le prédicteur linéaire et la fonction de lien caractérisent ces modèles. Comme
le prédicteur linéaire ne représente que les contraintes imposées sur les paramètres asso-
ciés aux covariables, la fonction de lien devient la clé pour la définition des modèles de
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régression catégorielle. Par conséquent, les différences fondamentales entre les modèles
des trois contextes mentionnés ci-dessus sont attribuables au choix de leur fonction de
lien. Notre travail de thèse se concentre ainsi sur l’étude de la fonction de lien dans les
modèles de régression catégorielle.

Le chapitre 1 replace la problématique statistique au cœur d’une problématique bi-
ologique, et présente un état de l’art sur la fonction de lien dans les trois contextes.
Nous commençons par présenter les données sur la diversité du riz qui ont motivé la
réalisation de cette thèse. La variable réponse dans ces données est la classification
taxonomique du riz. Elle est catégorielle, et en tenant compte des différents niveaux
de classification, elle présente alors une structure hiérarchique des catégories. Les vari-
ables explicatives sont des caractéristiques phénotypiques hétérogènes qui permettent
de décrire la structure du riz. Il est à noter que le paradigme classique de l’étude des
phénotypes en fonction de l’information génétique a ici été renversé. Pour modéliser les
données décrites ci-dessus, il est nécessaire d’examiner des modèles pour les réponses
binaires, nominales et ordinales, ainsi que des modèles qui admettent une structure
hiérarchique des catégories.

Dans ce chapitre, on rappelle tout d’abord la fonction de lien et l’estimation des
modèles logit, probit et cauchit (entre autres) pour les réponses binaires. On s’intéresse
à la question de la robustesse aux valeurs aberrantes, notamment à travers la fonction
d’influence. Pregibon (1982); Copas (1988) ont alors mis en évidence une limite des
modèles logit et probit, contrairement au modèle cauchit.

Ensuite, pour les variables ordinales, nous introduisons les modèles logit cumulatif
(McCullagh, 1980), séquentiel (Tutz, 1991) et adjacent, tandis que pour les variables
nominales, nous présentons le modèle logit multinomial (Luce, 1959). Puis nous rap-
pelons une méthodologie qui unifie tous les modèles susmentionnés en décomposant
la fonction de lien en deux parties : le ratio et la fonction de répartition (Peyhardi
et al., 2015). On présente les procédures (R, SAS et STATA) couramment utilisées pour
l’ajustement de ces modèles et nous soulignons l’absence d’une solution unique avec
laquelle il soit possible d’ajuster la diversité des modèles pour réponse catégorielle.

Enfin, pour les réponses hiérarchiques, deux modèles logit sont présentés. Le modèle
logit emboîté (McFadden et al., 1978) est défini dans le contexte des modèles de choix
(basés sur la maximisation de l’utilité). Le modèle partitionné conditionnel (Zhang and
Ip, 2012) est quant à lui défini comme un modèle linéaire généralisé, qui en plus de
considérer les variables nominales et ordinales, convient également aux variables par-
tiellement ordonnées. On en présente également une extension introduite par Peyhardi
et al. (2016) qui permet d’utiliser un lien autre que le lien logistique à chaque niveau
de la hiérarchie. Pour tous les cas précédents, il est supposé que l’arbre est connu à
l’avance.

Les trois chapitres suivants présentent des propositions pour répondre aux différentes
limites soulignées ci-dessus.

Dans le chapitre 2, nous considérons une variable réponse binaire, le cas le plus simple
et le plus connu. Malgré l’existence d’un riche ensemble de modèles de régression binaire,
dans la pratique seuls deux modèles sont largement utilisés : le modèle logit et le modèle
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probit. La fonction de lien du premier est l’inverse de la fonction de répartition logis-
tique, tandis que celle du deuxième est l’inverse de la fonction de répartition gaussienne.
Comme les modèles probit et logit sont très proches, les chercheurs ont longtemps sup-
posé qu’aucune autre fonction ne permettait d’améliorer notablement l’ajustement de
ce modèle. Pourtant les modèles logit et probit sont réputés être sensibles aux perturba-
tions des données contrairement au lien Student qui a été suggéré comme une alternative
robuste. Afin d’utiliser le lien Student, nous proposons un algorithme d’estimation du
degré de liberté. Ce chapitre étudie alors l’évolution de la robustesse en fonction des
différents degrés de séparation (ou inversement de chevauchement) des deux classes de
la réponse.

Une situation problématique en régression binaire est en effet celle de la séparation
complète des données qui se produit lorsqu’une ou plusieurs variables explicatives prédis-
ent parfaitement la réponse binaire. La séparation complète est un obstacle puisque
l’estimation par maximum de vraisemblance n’existe pas de façon unique dans ce cas.
Par conséquent, le chevauchement est nécessaire pour l’existence et l’unicité de cette
estimation. Toutefois, un chevauchement important n’est pas requis. Dans ce travail,
nous mettons en évidence qu’un faible chevauchement (c’est-à-dire proche de la sépara-
tion complète) permet d’obtenir simultanément l’existence et l’unicité des estimations
du maximum de vraisemblance ainsi qu’une qualité remarquablement élevée du modèle
(en termes d’ajustement et de classification). Ces bonnes performances peuvent être
fortement dégradées par l’ajout de points aberrants et/ou de variables de bruit lorsque
le modèle n’est pas robuste. Ainsi nous étudions le lien entre la robustesse du modèle
et le degré de séparation des données. Dans ce contexte, nous montrons que le modèle
Student est robuste, contrairement au modèle logit, surtout lorsque le chevauchement
est faible. De plus, on constate que plus le degré de liberté est faible, plus le modèle Stu-
dent est robuste. Nous obtenons ainsi un indicateur du degré de séparation des données
puisque nous trouvons une forte association entre le degré de liberté et la robustesse du
modèle Student. Sur la base de ces résultats, nous visons à promouvoir le lien Student
dans le cadre des modèles de régression binaire. L’article résultant de cette recherche a
été soumis à la revue Computational Statistics & Data Analysis.

Dans le chapitre 3, nous abordons la grande variété de modèles linéaires généralisés
existant pour les réponses catégorielles (nominales et ordinales). On dispose aussi de
plusieurs packages pour l’ajustement de réponses catégorielles (dans R : ordinal, VGAM,
nnet, polr, entre autres). Ces modèles et logiciels ont été développés dans diverses
disciplines et donc avec un manque d’uniformité, tant au niveau théorique que dans leur
implémentation. Il arrive même que certains modèles soient identiques mais portent
des noms différents car ils sont utilisés dans des contextes distincts. Par exemple, le
proportional odds model est également connu sous le nom de cumulative logit model,
ou tout simplement sous le nom de ordinal model (puisqu’il s’agit du modèle le plus
populaire pour les réponses ordinales). En termes de solutions logicielles, la plupart
d’entre eux ne couvrent qu’un ou quelques-uns des modèles disponibles pour les réponses
catégorielles. Il n’existe donc pas de logiciel qui englobe tous ces modèles dans un cadre
unique et générique. Dans ce troisième chapitre, nous répondons à ce problème en
introduisant dans R le package GLMcat. Il permet d’estimer des modèles linéaires
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généralisés pour réponse catégorielle implémentés sous la spécification unifiée (r, F, Z),
où r représente le ratio de probabilités (référence, cumulatif, adjacent ou séquentiel),
F la fonction de répartition pour le lien, et Z la matrice de design (Peyhardi et al.,
2015). Notez que pour ces réponses non binaires, la fonction de lien est une composition
des deux fonctions r et F . Tous les modèles classiques (et leurs variantes) pour les
données catégorielles peuvent être écrits sous la forme d’un triplet (r, F, Z), et peuvent
donc être estimés avec GLMcat. Cette spécification unifiée des modèles pour données
catégorielles permet de souligner les propriétés de chacun ainsi que les équivalences entre
certains d’entre eux. En outre, les extensions possibles pour chaque famille de modèles
deviennent évidentes et peuvent être facilement implémentées.

On propose de plus un guide méthodologique et pratique pour la sélection appro-
priée d’un modèle (via la fonction de lien et les contraintes sur la matrice de design)
en considérant la concordance entre la nature des données et les propriétés du modèle.
Pour optimiser les performances des fonctions de GLMcat, la partie calculatoire de notre
code a été écrite en C++ (intégrée au travers du package Rcpp). Les algorithmes sont
implémentés de manière modulaire, ce qui signifie qu’une amélioration ou un ajustement
peut être facilement étendu à toutes les familles de modèles. Le travail lié au développe-
ment de ce package est en révision dans la revue Journal of Statistical Software. Les
applications de ce travail sont nombreuses tant les données catégorielles sont répandues.
On espère que cet outil permettra de populariser l’utilisation des modèles de régression
catégorielle différents des modèles logit.

Le chapitre 4 propose une méthodologie pour modéliser une structure hiérarchique
parmi les J catégories de réponses. La fonction de lien est dans ce cas composée de
l’arbre qui représente la structure hiérarchique et des modèles classiques à ajuster à
chaque nœud de l’arbre. Pour obtenir ce modèle, deux tâches principales doivent être
effectuées. La première est la définition de la structure hiérarchique des catégories
de réponses. La deuxième consiste à trouver et à ajuster l’ensemble des modèles qui
génèreront des informations spécifiques pour chacun des nœuds (non terminaux). Pour
simplifier l’exécution de ces deux tâches, nous avons décidé de réduire l’espace des
arbres en ne considérant que les arbres binaires qui décrivent les groupements par paires
existant dans les différentes catégories de la réponse. En fait, la spécification du modèle
est simplifiée pour le cas binaire puisque la caractérisation de ce modèle est donnée
uniquement par F au lieu des trois composantes (r, F, Z). La fonction de lien pour ce
cas est alors composée de 1) l’ensemble des fonctions de répartition de chacun des J − 1
modèles binaires et 2) l’arbre lui-même.

Dans la plupart des applications, l’arbre de partition n’est pas connu a priori et
l’ensemble des arbres de partitions à tester est évidemment très vaste. Dans notre con-
texte, nous ne considérons que les arbres de partition binaires qui sont équivalents aux
dendrogrammes étiquetés et non ordonnés. Le nombre possible de ce type de dendro-
grammes est connu et augmente exponentiellement en fonction du nombre de catégories
J . Étant donné que l’inférence de tous les modèles serait trop longue, nous proposons
une méthode de construction du dendrogramme basée sur les distances entre classes.
Pour ce faire, on s’appuie sur l’algorithme de clustering hiérarchique ascendant dans
lequel, au lieu de regrouper les individus, on considère comme points de départ les clus-
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ters générés par les J catégories. Ensuite, nous réalisons une série de fusions successives
(basées sur les distances entre les groupes) jusqu’à ce que toutes les catégories soient
membres d’un seul groupe, la racine. Une fois l’arbre trouvé (ou connu), les autres
éléments de la fonction de lien doivent être spécifiés. Différents degrés de séparation
peuvent être observés dans les données binaires associées à chaque nœud de l’arbre
(qui normalement dépendra de la profondeur du nœud). Par conséquent, nous utilisons
les résultats obtenus au chapitre 2 pour sélectionner la distribution à utiliser comme
fonction de lien dans les modèles binaires.

En partant du principe que les paramètres sont différents d’un nœud à l’autre, le
modèle est facilement estimable puisque la log-vraisemblance du modèle total est alors
égale à la somme des log-vraisemblances de chaque nœud non terminal. Cela offre
une flexibilité que l’on ne trouve pas dans d’autres modèles. Bien que l’on constate que
l’arbre proposé tend à avoir l’un des scores les plus élevés, une heuristique ne garantit pas
de trouver la structure optimale parmi le vaste ensemble des possibilités. Par conséquent,
dans la recherche d’un arbre avec le meilleur score, nous proposons deux algorithmes
qui explorent l’espace des arbres voisins. Ces derniers ayant une structure de sous-arbre
commune, nous utiliserons la propriété de décomposition de la log-vraisemblance afin
d’éviter de la recalculer entièrement pour chaque nouveau voisin. À l’aide d’exemples
numériques et de simulations, nous évaluons les performances de ce type de modélisation
en terme de log-vraisemblance et de proportion de bien classés.

On terminera par présenter, dans le chapitre 5, les travaux en cours et les perspectives
sur chacun des thèmes abordés dans cette thèse.
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Chapter 1

State of the Art

Over the course of this chapter, we describe the state of the art of statistical modeling
methods for categorical responses. The topic of this thesis emerged when determining
the most appropriate statistical approach to explain the taxonomic classification of rice
based on phenotypic differences. We begin this chapter by presenting the data set on rice
diversity which motivates the statistical modeling methods to be treated in this thesis.
We then introduce the GLMs framework for categorical responses with a particular
emphasis on the link function. We describe the estimation and some characteristics
of these models for both the multivariate case (more than two categories) and the
univariate case (two categories). We present some of the most popular link functions
for the binary models (such as the logit, probit, and cauchit), and we briefly compare
the sensitivity to outliers of these models. As for the multivariate case, we present the
logit models: multinomial, cumulative, adjacent, and sequential, as alternatives with
different foundations. In addition, we detail a unifying modeling framework that allows
us to define all of the above models and some extensions. This framework is based on
a decomposition of the link function into two parts that largely shape the properties
of the model. We also discuss the computational implementations of the above models
and argue that none of these alternatives provides an integrated solution to fit all the
possible models for categorical responses. Finally, we present three regression models
for hierarchically structured responses. All of them assume that the structure is known
in advance. These models share a split conditional structure suitable for different scales:
nominal, ordinal, and partially ordered scales.

17
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1.1 Context and data

Quantitative genetics relies on random-effects models whose traditional functional view
is phenotype = f(genotype) (Gianola, 2008). In this context, the modeling of phenotypic
traits (response variable of the regression model) is strongly constrained, often a single
trait or a vector of traits using (generalized) linear mixed models. On the other hand,
the categorical genotype variable is often treated as a random-effect variable due to the
high number of its levels. For the analysis of plant diversity, we are interested in an
approach that reverses the functional view of the regression model, which results in

genotype = f(phenotype).
In this framework, there is no restriction on the phenotype variables’ nature, hence,
several structures can be considered. The aim is to be able to incorporate any num-
ber of heterogeneous phenotypic traits (qualitative nominal and ordinal, quantitative
discrete and continuous) while modeling various genotype families using hierarchies of
categories (for instance, species subdivided into subspecies, themselves having different
geographical origins).

The above proposition was motivated by the phenotypic database of rice panicles
developed by the UMR DIADE (Al-Tam et al., 2013) with different partnerships, includ-
ing the LMI RICE 2, a joint international IRD-CIRAD-UM-USTH-AGI laboratory in
Vietnam, CIAT in Colombia, and INERA in Burkina Faso. Panicle traits are among the
most representative features of rice diversity; their architecture is relevant for the bio-
logical classification of plants, as well as for the improvement of cultivated rice. The rice
phenotype database at hand has 752 panicles (observations). Each panicle was classified
according to its geographical origin, species, subspecies, and subpopulation. For each
continent (Asia, Africa), one cultivated and one wild species of rice (Oryza) are con-
sidered: Sativa (Asia-cultivated), Rufipogon (Asia-wild), Glaberrina (Africa-cultivated),
and Barthii (Africa-wild). The hierarchical structure of this response is partially known
since it is possible to create two different structures with information available about the
phylogenetic tree of rice. A first structure is obtained when the species (the tree leaves)
are aggregated according to first the geographical origin and then the domestication
condition. The second structure is obtained by aggregating inversely, i.e., according to
first the domestication condition and then to the geographical origin. The two possible
hierarchical structures are represented in Figure 1. The subspecies in this Figure and
in the following are coded as follows Obar I : ObI, Obar II : ObII, Ogla I : OgI, Ogla II :
OgII, Japonica: Ja, and Indica: In. As explanatory variables, the database includes:
rachis length, total length, number of grains, maximum number of branching order,
number of nodes, and number of nodes on the rachis.

The methodology’s application to the rice panicle diversity analysis was at the ori-
gin of this thesis subject. Still, the formalism is general, and other applications were
investigated throughout this work.
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Figure 1: Hierarchical structures of the categories of the rice panicle data set.

1.1.1 Link function in GLMs for categorical responses

The GLMs class is an extension of traditional linear models that i) allows the expectation
of a random variable to depend on a linear predictor through a link function and ii)
considers the response probability distribution to be any member of the exponential
family of distributions. This section presents the case of categorical responses in a
general framework, i.e., when J ≥ 2 from which the binary model can be deduced as a
particular case. To this end, the exponential family of distributions has to be introduced
in its multivariate form. Consider a random vector y = (y1, . . . , yK) that lies in RK whose
distribution depends on a parameter θ ∈ RK . Its distribution belongs to the exponential
family if its probability density function (pdf) can be written in the following standard
form (which is a generalization of the univariate form of the exponential family)

f(y; θ, φ) = exp{y⊺θ − b(θ)
φ

ω + c(y, φ)}, (1.1)

where θ is the so-called natural parameter vector, b and c are known functions, φ is the
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dispersion parameter and ω is a known weight.

Property 1. Let y be a random vector whose distribution belongs to the exponential
family. The function b is assumed to be twice differentiable with respect to θ. Its expected
value and covariance are:

(i) E(y) = ∇b(θ),
(ii) Cov(y) = φ

ω
Hb(θ) ,

where ∇b(θ) and Hb(θ) denote respectively the gradient and the Hessian matrix of b

with respect to θ.

Multinomial distribution as a member of the exponential family In the fol-
lowing, we consider the random variable Y with J ≥ 2 categories, or equivalently its
(truncated) indicator vector representation y = (y1, . . . , yJ−1)⊺ where yj = 1{Y =j}. The
null vector thus corresponds to the last category. The expectation of y is denoted by
the vector π⊺ = (π1, . . . , πJ−1) with the constraint ∑J

j=1 πj = 1. In this framework, the
discrete vector y follows the multinomial distribution

y ∼M(1, π)
which is a generalization of the Bernoulli distribution (obtained when J = 2). The
probability mass function written in terms of y is then

f(y; π) = ( J−1∏
j=1

π
yj

j )(1 − J−1∑
j=1

πj)
1−∑J−1

j=1
yj

.

Its natural parameter θ = (θ1, . . . , θJ−1)⊺ is defined by

θ = ( log( π1

1 −∑J−1
j=1 πj

), . . . , log( πJ−1

1 −∑J−1
j=1 πj

))⊺,
and

b(θ) = log(1 + J−1∑
j=1

eθj).
Based on the above decomposition, the probability mass function can be simply written
as

f(y; θ) = exp{y⊺θ − b(θ)}.
Using the weight ω = 1, the dispersion parameter φ = 1 and the null function c(y, φ) = 0,
we see that this distribution function belongs to the exponential family of dimension
K = J − 1 (see Equation (1.1)).

Regression model specification The aim is to model the effect on the multivariate
response variable y of a given set of p covariates x = (x1, . . . , xp), defined in a general
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form of dimension q with p ≤ q (i.e., categorical variables are represented by indica-
tor vectors). For convenience, models are presented at the individual level; thus, the
subscript i ∈ {1, . . . , n} is not mentioned in the following.

According to Nelder and Wedderburn (1972), a GLM is characterized by three com-
ponents: the random component, the systematic component, and the link function.
The random component accounts for the conditional distribution of the response vari-
able given the set of covariates. In the particular case of categorical outcomes, the
response distribution is necessarily the multinomial M(1, π(x)) (viewed as the multi-
variate extension of the Bernoulli). Hence, the only two parts that define a GLM for
categorical responses are:

1. The systematic component which is determined by the linear predictor η = (η1,

. . . , ηJ−1). Considering the parameter vector as β = (α1, . . . , αJ−1, δ1, . . . , δJ−1),
the linear predictor can be written as the matrix product

η = Zβ,

where Z denotes the design matrix composed of repetitions of 1 and x⊺.

2. The link function g which relates the conditional expectation of the response vari-
able π = E[y∣x] and the linear predictor η. It connects the random and systematic
components through the equality g(π) = η.

Note that the link function’s domain is the simplex ∆, and the range of the linear
predictor is RJ−1, i.e.,

g ∶ ∆ Ð→ R
J−1,

π z→ η,

with π = (π1, . . . , πJ−1) ∈∆ where ∆ = {π ∈ (0, 1)J−1 ∶ ∑J−1
j=1 πj < 1}. The linear predictor

and the mean parameter lie in different spaces. Hence, the link function should take the
form according to the constraints of those spaces.

For the inference of the model (through the Fisher scoring algorithm or the New-
ton Raphson algorithm), the link function must be differentiable. The link function
could also be invertible. Although invertibility is not a compulsory requirement, it is
a desirable property. Indeed, the invertibility property allows obtaining well-defined
models for any value of the linear predictor. Hence, considering together the properties
of invertibility and differentiability (of the link function and its inverse), the space of
possible link functions is reduced to all diffeomorphism from the simplex ∆ to RJ−1.
The most common diffeomorphism is the canonical link, defined such that the natural
parameter θ equals the linear predictor η. In this case the maximum likelihood esti-
mation (MLE) is easily reached because the log-likelihood is strictly concave. Although
most of the usual link functions are diffeomorphisms, some of them are not invertible
(like the cumulative link described in section 1.3.1). As such, they bear a drawback in
terms of interpretability that we will discuss later.
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1.2 Generalized linear models for binary responses

When considering only two categories (J = 2), the response distribution is necessarily
the Bernoulli. In this case, it is assumed that the probability of success π is characterized
by the explanatory variables through the link g(π) = z⊺β such that

g ∶ (0, 1) Ð→ R,

π z→ η.

A simple link function, which is not a diffeomorphism from (0, 1) to R, is the identity
function π = z⊺β. This linear model is used in some practical applications. Still, its
fundamental problem is that whereas π is a probability, the fitted values z⊺β may be
less than zero or greater than one. To ensure π to be restricted to the unit interval(0, 1), a strictly increasing cdf F is often used, such that

π = F (η). (1.2)

Note that the strict increasing assumption implies invertibility of the link function.
Because of that, we can obtain a straightforward interpretation of the effect of a covariate
on the response expected value. Regardless of the value of xk, if δk is positive, then
increasing xk will be associated with increasing π, and if δk is negative, then increasing
xk will be related to decreasing π.

Binary regression models can be motivated (although it is not a strict model re-
quirement) by the assumption of a latent continuous variable Ỹ , for which there exists a
threshold that defines whether the original observed variable Y is 0 or 1. Let the model
for the latent variable be Ỹ = α + x⊺δ + ε, where x = (x1, . . . , xp) denotes the covariate
vector, α ∈ R the intercept, δ ∈ Rp the slope parameter vector, and ε the latent residual.
Considering Y as a dichotomized version of Ỹ we obtain

π(x) = P (Y = 1∣x) = P (Ỹ ≥ 0∣x) = P (α +x⊺δ + ε ≥ 0) = P (−ε ≤ α +x⊺δ).
Allowing −ε to have the distribution function F , we get the simple form (1.2). As noticed
by Agresti (2018), the variance of ε is linked to the normalization of the parameters,
which we will discuss later in this section.

1.2.1 Usual link functions

Logistic cdf (canonical link) The most widely adopted GLM for binary responses
is the logit model which uses as inverse link the cumulative logistic distribution function

F (η) = 1
1 + exp(−η) = exp(η)

1 + exp(η) .
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The logit regression yields a linear model for the logarithmic odds: log(π/(1−π)). The
transformation using the exponential function results in the form

π

1 − π
= exp(α0) exp(δ1x1) . . . exp(δpxp),

which exhibits how the explanatory variables affect the odds in an exponential multi-
plicative form. Thus, the basic interpretation for the magnitude of δk is that the odds
increase multiplicatively by exp(δ) for every unit of increase in xk. Some early uses of
the logit link were in biomedical studies, and nowadays, it has been popularized in so-
cial sciences, marketing, genetics, among others. The logit link function is the canonical
link in binary models, which means that the linear predictor is directly equal to the
canonical parameter of the Bernoulli distribution (considering its form as a member of
the exponential family). The canonical link function for binary GLMs is then defined
as

g(π) = log( π

1 − π
).

Normal cdf A common model used in several areas of social and biological sciences
(prevalent in econometrics and genetic studies) is the probit model, which is based on
the standard normal distribution

F (η) = 1√
2π
∫ η

−∞
exp(−z2/2)dz.

The probit model usually yields approximately the same results as the logit link. We can
see in Figure 2 that both logistic and normal cdfs are symmetric s-shaped curves, but
the normal places less probability in the tails of the distribution than does the logistic.
By comparing their variances, we can see that the scale (and thus the spread) of the
logistic is greater than the normal. However, when standardizing the logistic curve to
have variance equal to 1, the curves become virtually indistinguishable, and so does the
fit. Therefore, large amounts of data are needed to obtain substantial differences be-
tween probit and logit models. A minor disadvantage of the probit model is the required
numerical evaluation of Φ(η) in the maximum likelihood estimation of the parameter β

(Ludwig Fahrmeir, 2013).

Cauchy cdf The cauchit link is defined as tan(π(π(x)− 1
2)), with π(x) the probability

and π = 3.14159 . . . and the cdf of the standard Cauchy distribution is

F (η) = 1
2
+ 1

π
arctan(η).

The use of the Cauchy cdf in the context of GLMs is suggested if outliers (i.e., high lever-
age points) are suspected in the space of the linear predictor (Smithson and Verkuilen,
2006). The Cauchy distribution is very heavy-tailed and makes less extreme predictions
for the expected value of the dependent variable than the normal or logistic distributions
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for large values of the linear predictor. From Figure 2 we can see that the Cauchy places
even less probability in the tails than the normal and thus the logistic cdfs.

Gumbel and Gompertz cdfs Another conventional model results when considering
the complementary log-log link, characterized by the the Gompertz (or the Gumbel min
cdf)

F (η) = 1 − exp(− exp(η)).
The Gumbel max (or simply Gumbel) cdf yields to the log-log model where

F (η) = exp(− exp(−η)).
The Gompertz and Gumbel distributions are not symmetrical. Those distributions are
closely connected; if a random variable X has a Gumbel distribution, then the condi-
tional distribution of −X, has a Gompertz distribution. For this reason, if β is the
parameter vector of the Gompertz model for the response Y , then −β is the parameter
vector for the response 1 − Y of the Gumbel model.

Figure 2: Shapes of the most common link functions for binary data F (η) = π.

1.2.2 Likelihood inference

The score for the binary regression model, described in (1.2), has the form

∂l

∂β
= f(η) y − F (η)

F (η)[1 − F (η)]z, (1.3)
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while the Fisher information matrix is given by

E( ∂2l

∂β⊺∂β
) = − f 2(η)

F (η)[1 − F (η)]zz⊺. (1.4)

The log-likelihood is strictly concave for the logit canonical link, for which the score and
the Fisher information functions are respectively reduced to (y − F (η))z and −f(η)zz⊺.
Strict concavity implies that there is a unique global optimum, so there is no risk of
convergence to a local optimum. But this is not the case for all the rest of link functions.
The condition that both log(F ) and log(1 −F ) be concave is sufficient for concavity of
the log-likelihood (Pratt, 1981). Bagnoli and Bergstrom (2005) showed that strict log-
concavity holds for distributions including normal, Gumbel, Gompertz, and Laplace,
but not for others such as the Cauchy or the Student distributions. Hence, convergence
problems on the estimation algorithm may occur.

Normalization of the parameters Models defined with different cdfs (i.e., different
link functions) are not comparable since they refer to specific means and variances
(Tutz, 2011). Often, the parameter estimates will turn out to be different even if there
is no apparent discrepancy in the goodness-of-fit indicators of the models. A common
approach to standardize the parameters of a binary regression model is based on the
expected value and variance of ε

α̃ = α −E(ε)√
Var(ε) , δ̃ = δ√

Var(ε) , where ε ∼ F.

Remark that this approach is not suitable when using a cdf with undefined mean or
variance as it is the case for the Cauchy cdf, or more generally, the Student (with ν

degrees of freedom) distribution whose mean and variance are not defined when ν ≤ 1,
and ν ≤ 2, respectively.

A propagated approach in econometrics that solves this problem is to consider the
average partial effect of the variable xk on π , i.e., ∂π/∂xk as the scale factor, If xk is a
continuous variable, its partial effect on π is obtained from the partial derivative:

∂π

∂xk

= ∂F

∂η
δ̂k . (1.5)

Considering a sample of observations (i = 1, . . . , n), the average partial effect of xk on π is
then given by n−1∑n

i=1 f(ηi)δ̂k, where f is the pdf of the associated inverse link function.
The downsides of this method are that the scale factor depends on the model’s input
data and that it is only valid for continuous explanatory variables. Note that if f is
a symmetric pdf around zero, the largest effect occurs when η = 0. For instance, for
the normal pdf, this will be at f(0) ≈ 0.4 and for the logistic pdf at f(0) = 0.25. A
simple approach to make the magnitudes of those two cdfs roughly comparable is to
multiply the probit estimates by 0.4/0.25 = 1.6 or to multiply the logit estimates by
0.25/0.4 = 0.625.

In chapter 3, we present a methodology that do not share the limitations of the two
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previous methods. It is thus defined for Cauchy (and Student) cdf and is independent of
the dataset. We detail its computational implementation, and an example of a proposal
presented by Peyhardi (2020) for the normalization of parameter estimates through the
location parameter and the scale parameter of the cdf F .

1.2.3 Sensitivity to perturbations

By definition, the term outlier implies the comparison of an observation with the rest of
the sample (Salsas et al., 1999). From a geometric interpretation, an outlier corresponds
to an observation that is far from the bulk of the data; however, there is limited scope
for binary data to move in the Y direction since there are only two options. As stated by
Copas (1988), an outlier for binary data is only defined from the probabilistic perspective
as follows: an outlier occurs in binary data when Y = 1 and the corresponding fitted
probability approaches zero, or when Y = 0 and the fitted probability approaches one.
Since fitted probabilities close to zero or one occur when the linear predictor has a large
absolute value, outliers are only found when the observations exhibit extreme values of
the explanatory variables (see Figure 3).

Figure 3: Scatter plot of the data set with a binary response (green and red colors
correspond to the two response levels) and two covariates (specified on the axes). The
observations represented with an asterisk are possible outliers on the direction of x1.

It has been shown that the two most popular links for modeling binary data, logit and
probit, are sensitive to the presence of outliers (see Pregibon, 1982). Authors including
Lange et al. (1989); Liu (2005) have shown that the influence function (IF) of a binary
model is unbounded for the logit and the probit link functions and bounded for other
functions such as the Student and the cauchit link functions. The IF formalizes the
bias caused by one outlier (Hampel, 1974). In the context of GLM, the IF of a new
observation (y∗, x∗) on the MLE, is given by

IF [(y∗, x∗), β̂] = {E( ∂2l

∂β⊺∂β
)

β=β̂

}
−1

(∂l∗

∂β
)

β=β̂

,

where the log-likelihood computed for the original dataset {(y, x)}i=1,...,n and for the new
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observation (y∗, x∗) are denoted by l and l∗, respectively (see Künsch et al. (1989)).
The presence of outliers is not the only disturbance that can occur in the data of

a regression model. Another common one is the presence of noisy variables. In this
work, we aim to assess the robustness of link functions for binary data comprehensively.
Hence, in chapter 2, we study the sensitivity of different links when outliers and/or
noisy variables are present in the data set. We will analyze this robustness property
from different separation settings of the response levels in the covariate space.

1.3 Generalized linear models for categorical responses

The response distribution is necessarily the multinomial when considering more than
two categories (J ≥ 2). In this case, we assumed that the vector of probabilities π is
characterized by the explanatory variables through the link g(π) = Zβ such that

g ∶ ∆ Ð→ R
J−1,

π z→ η,

with π = (π1(x), . . . , πJ−1(x)) ∈∆ where ∆ = {π ∈ (0, 1)J−1 ∶ ∑J−1
j=1 πj < 1}.

1.3.1 Logit models for categorical responses

Multinomial logit model (canonical link) The multinomial logit (MNL) model,
also referred to as the baseline-category logit model or as the polytomous model (Luce,
1959; Engel, 1988), is designed to analyse nominal scales where there are several cate-
gories. It is the most commonly used regression model for nominal response variables.
It is actually a generalization of the logistic regression for dichotomous responses where
the probability of category j is given by

P (Y = j∣x) = exp (αj +x⊺δj)
∑J

k=1 exp(αk +x⊺δk) ,
for j = 1, . . . , J . In this model, the logits are formed by comparing each response category
j to an arbitrarily chosen baseline response category. The common approach sets the
last category J as the baseline (reference) category and the corresponding parameters
αJ and δJ are assumed to be zero in order to avoid identifiability problems. We thus
obtain

P (Y = j∣x) = exp (αj +x⊺δj)
∑J−1

k=1 exp(αk +x⊺δk) ,
for j = 1, . . . , J −1. This model has been introduced in biology, sociology, and economet-
rics with different definitions. It can be viewed as a GLM for multivariate responses, as
J − 1 logit models with the same reference category or as a random utility model. The
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associated design matrix of this model is of the form

Z = ⎛⎜⎝
1 x⊺⋱ ⋱

1 x⊺

⎞⎟⎠ . (1.6)

with J−1 rows and (J−1)(1+p) columns. The link function of the MNL is the canonical
link in GLMs for categorical responses since the linear predictor is directly equal to the
canonical parameter of the multinomial distribution. The canonical link function for
categorical GLMs is defined as

gj(π) = log( πj

1 −∑J−1
k=1 πk

), (1.7)

for j = 1, . . . , J − 1 where ∆ = {π ∈ (0, 1)J−1 ∶ ∑J−1
j=1 πj < 1}.

The baseline-categories logits are then

log(πj

πJ

) = αj +x⊺δj,

for j = 1, . . . , J − 1. Those models lack of parsimony as each covariate xk has J − 1
parameters. In this framework, all the (J2) pairs of categories are described. The effects
change according to the response paired with the baseline. The J − 1 equations also
determine parameters for logits with other pairs since

log(πj

πk

) = log(πj

πJ

) − log(πk

πJ

),
for j, k ∈ {1, . . . , J − 1}.

For the following, let the vector ω = {ωj}j=1,...,J ∈ RqJ represent the set of q alternative
specific attributes. Depending on the form of the linear predictors ηj, we obtain different
logit models:

• MNL model: ηj = αj+x⊺δj; for which the attributes are the same for all alternatives
and the parameters depend on each alternative.

• Conditional logit model: ηj = α + x⊺δ + (ωj − ωJ)⊺γ; for which the attributes
dependent on each alternative and the parameters are the same for all alternatives
(see McFadden, 1973).

• Universal logit model: ηj = αj + x⊺δj + (ωj −ωJ)⊺γ; for which the attributes and
the parameters are dependent on each alternative.

Cumulative logit model The cumulative logit model is designed for ordinale scales
and is based on the accumulated response probabilities that denote the probability that
a randomly selected observation falls in the jth category of a variable (Agresti, 1981).



1.3. Generalized linear models for categorical responses 30

As considered by McCullagh (1980), this model can be seen as if the observed y was
originated from the categorization of a latent continuous variable Ỹ . This latent variable
follows a linear regression model

Ỹ = α̃ +x⊺δ̃ + ε, (1.8)

where −∞ = α′0 < α′1 < . . . α′J−1 < α′J = ∞ are the strictly-ordered cut-points, and ε is a
noisy variable with logistic cdf. To model this categorization process, the cumulative
ratio assumes that the J − 1 cut-points partition Ỹ into J observable ordered categories
of Y , i.e. {Y = j}⇔ α′j−1 < Ỹ ≤ α′j,

for j = 1, . . . , J . The cumulative probabilities are

P (Y ≤ j∣x) = P (Ỹ ≤ α′j)
= P (ε ≤ α′j − α̃ −x⊺δ̃)

P (Y ≤ j∣x) = exp(αj +x⊺δ)
1 + exp(αj +x⊺δ)

with αj = α′j − α̃, and δ = −δ̃. It is then evident that

πj = P (α′j−1 < Ỹ < α′j).
The order structure is more easily interpretable using the notion of the latent continuous
variable where the categories are considered as successive intervals (α′j−1, α

′
j].

The cumulative logit model is usually presented as

logit{P (Y ≤ j∣x)} = αj +x⊺δ, (1.9)

for j = 1, . . . , J − 1. Remark that the logit difference has the simple form

logit{P (Y ≤ j∣x1)} − logit{P (Y ≤ j∣x2)} = log{P (Y ≤ j∣x1)/P (Y > j∣x1)
P (Y ≤ j∣x2)/P (Y > j∣x2)}= (x1 −x2)⊺δ.

We can notice that the log odds ratio does not depend on category j and is propor-
tional to the distance between x1 and x2. Because of this proportional odds property,
the cumulative logit model is also called the proportional odds logit model (McCullagh,
1980).

Sequential logit model The sequential logit model can be derived from the assump-
tion that the response categories 1, . . . , J are reached successively. They reflect the
successive transition to higher categories in a stepwise fashion. This model assumes
that the successive choices between category j and the categories over j is determined
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by the latent variables
Ỹj = α̃ +x⊺δ̃ + εj, (1.10)

for j = 1, . . . , J −1, where the residuals εj are independent and identically distributed ac-
cording to the logistic cdf. This sequential mechanism can be viewed as a binary process
at each transition, thus, it is appropriate when the assumption of a single underlying
latent variable does not hold. We can write then

{Y = j} = j−1⋂
k=1

{Ỹk > α′k}⋂{Ỹj ≤ α′j},
so the conditional probabilities P (Y = j∣Y ≥ j) for j = 1, . . . , J can also be written as
P (Y = j∣Y ≥ j) = P (Ỹj ≤ α′j), then, we have

P (Y = j∣Y ≥ j; x) = exp(αj +x⊺δ)
1 + exp(αj +x⊺δ) ,

where αj = α′j − α̃, and δ = −δ̃. In this context, we can represent the probabilities of
each category as

πj = P (Ỹj < α̃j) j−1∏
k=1

P (Ỹk > α̃k).
Remark that the sequential logit model is usually presented as

logit{P (Y = j∣Y ≥ j; x)} = αj +x⊺δ,

for j = 1, . . . , J−1. The transition can be interpreted in terms of the difficulty of reaching
the next category. Upper levels can only be achieved only if previous levels were visited
earlier and not kept. Therefore the model is built around the conditionality principle.

Adjacent logit model The adjacent logits for j = 1, . . . , J − 1, have the basic form

logit{P (Y = j∣Y ∈ {j, j + 1})} = log{ P (Y = j)
P (Y = j + 1)}

= log{ πj

πj+1

},
for all pairs of adjacent categories. The adjacent proportional logit model is then defined
by relating adjacent logits to proportional linear predictors

logit{P (Y = j∣Y ∈ {j, j + 1}; x)} = αj +x⊺δ

for j = 1, . . . , J − 1. As for sequential models, the conditional form of adjacent models
implies independence between all linear predictors ηj. Therefore, no constraints are
required on η to obtain non-negative probabilities.
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1.3.2 Likelihood inference

For GLMs, the parameter vector β is estimated by maximum likelihood. In the follow-
ing, we present Fisher’s scoring algorithm at iteration t + 1

β[t+1] = β[t] − {E( ∂2l

∂β⊺∂β
)

β=β[t]
}
−1

( ∂l

∂β
)

β=β[t]
.

Using the chain rule for differentiation, the score is given by

∂l

∂β
= ∂η

∂β

∂π

∂η

∂θ

∂π

∂l

∂θ
,

where l(θ) = y⊺θ − b(θ). Using Property 1, the expression becomes

∂l

∂β
= Z⊺

∂π

∂η
Cov(y∣x)−1(y −π), (1.11)

where the Jacobian matrix
∂π

∂η
depends on the link function. The Fisher information

matrix is then given by

E( ∂2l

∂β⊺∂β
) = −∂π

∂β
Cov(y∣x)−1 ∂π

∂β⊺

= −Z⊺∂π

∂η
Cov(y∣x)−1 ∂π

∂η⊺
Z.

(1.12)

Remark that the score and the Fisher information functions for the canonical link are
simplified to the expressions Z⊺(y −π), and −Z⊺ ∂π

∂η⊺
Z.

1.3.3 Unified specification of GLMs for categorical data: (r, F, Z)
models

Peyhardi et al. (2015) showed that all the classical link functions can be decomposed
through the unified specification

gj = F −1 ○ rj ⇔ rj(π) = F (ηj) j = 1, . . . , J − 1, (1.13)

where F is a continuous and strictly increasing cdf, and r = (r1, ..., rJ−1) is a map from
the simplex ∆ to the open hypercube (0, 1)J−1. The authors introduced the notation(r, F, Z) with which any classical GLM for categorical responses can be fully described.

• The first component, r, is called the ratio. This part of the linking function
addresses the nature of the categorical response. The authors specified three ratios
that rely on an ordering assumption among categories: the adjacent, cumulative
and sequential, respectively defined as rj(π) = πj

πj + πj+1

, rj(π) = π1 + ... + πj, and
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rj(π) = πj

πj + ... + πJ

for j = 1, . . . , J − 1. For the nominal responses, they defined

the reference ratio as rj(π) = πj

πj + πJ

for j = 1, . . . , J − 1.

• The second component of the triplet is the cdf F . Several distributions exist and
are appropriate for these models. Adjusting the tail weight and skewness of this
distribution can markedly improve the model fit.

• The third component embodies the specification (allowing for constraints) of the
linear predictor. For instance, the design matrices without constraint or with the
common slope constraint have respectively the following forms

Zc = ⎛⎜⎝
1 x⊺⋱ ⋱

1 x⊺

⎞⎟⎠ and Zp = ⎛⎜⎝
1 x⊺⋱ ⋮

1 x⊺

⎞⎟⎠ .

All the classical GLMs for categorical responses can be decomposed into the three
components r, F , and Z. As an illustration, consider the cumulative logit model whose
original formulation is given in Equation (1.9). This same model is rewritten as the(r, F, Z) triplet: (cumulative, logistic, proportional). Hence, we can express the cu-
mulative model through the following equation

π1 +⋯+ πj = exp(αj +xtδ)
1 + exp(αj +xtδ) .

Note that the link function g ∶∆→ RJ−1 is differentiable if the ratio r ∶∆→ (0, 1)J−1

and the cdf F ∶ R → (0, 1) are both differentiable. The four ratios, as well as the
cdfs, are differentiable. Thus, the Fisher scoring algorithm is appropriate to estimate
these categorical models. Using the decomposition of the link function presented in
Equation (3.1), we can decompose further the score (1.11) as

∂l

∂β
= Z⊺

∂F

∂η

∂π

∂r
Cov(y∣x)−1(y −π) ,

and the Fisher information matrix as

E( ∂2l

∂β⊺∂β
) = −Z⊺∂F

∂η

∂π

∂r
Cov(y∣x)−1 ∂π

∂r⊺
∂F

∂η⊺
Z.

Remark that the Jacobian matrix ∂F /∂η is the diagonal matrix of densities, i.e.,{f(ηj)}j=1,...,J−1; the Jacobian matrices associated to each ratio ∂π/∂r are detailed in
Appendix B.2. Note that the above calculations of the score and the Fisher informa-
tion matrices concern only one observation. To obtain the total expected result, the
contributions of the n observations have to be added.

Software availability In R (R Core Team, 2021) there is a variety of packages to fit
categorical responses; however, most of them only cover one or a few of the types of
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models. For instance, the function multinom() of the package nnet (Ripley and Ven-
ables, 2021; Venables and Ripley, 2002) fits the MNL via neural networks. For ordinal
responses, the functions polr() of the package MASS (Ripley et al., 2021; Venables and
Ripley, 2002) and omr() from the rms (Harrell Jr, 2021) package are often used to fit
the odds proportional model. Few packages are aim to fit a whole family of models for
categorical responses, one of them is the tram (Hothorn et al., 2021; Hothorn, 2020)
package, which by means of the Polr() function allows for stratification, censoring and
truncation in the response of cumulative models. The ordinal package (Christensen,
2019) is another option to fit the family of cumulative models. It includes a compre-
hensive implementation of this class of models offering great flexibility, notably in the
specification of the linear predictor. To our knowledge, only the VGAM (Yee, 2021)
and the ordinalNet (Wurm et al., 2020) packages consider the three families of ordinal
models: cumulative, sequential, and adjacent. Nevertheless, the ratio of probabilities of
the adjacent models in VGAM seems to be valid only for the logistic distribution since
they consider the ratio to be πj/πj+1 = F (ηj) instead of πj/(πj + πj+1) = F (ηj). None of
the above-mentioned packages encloses the four model families for categorical responses,
and most of them have some limitations in terms of adding constraints to the design
or in the availability of the cdfs that one can use as part of the link function. These
gaps also exist in commercial statistical software like SAS (SAS Institute Inc., 2020),
Stata (Stata Corp., 2015), and SPSS (IBM Corporation, 2017). An additional prob-
lem of commercial packages is that they use different techniques (which are not strictly
equivalent) to fit the models. As a consequence, different estimations might be obtained
when using different software, even though the same theoretical model is specified. For
instance, Liu (2009) reported some differences in the estimation of an odds proportional
model using the functions PROC LOGISTIC in SAS, OLOGIT in Stata, and PLUM in
SPSS.

As part of the work of this thesis, we created an R package called GLMcat that we
introduce and describe in chapter 3. This software solution is designed under the unified
specification (r, F, Z) that allows the user to fit not only any classical generalized linear
model for either nominal or ordinal responses but also to fit the models that emerge when
changing specifications in the link function or the constraints of the linear predictor. In
addition, we provide a practical guide on how to choose an appropriate model among
a vast set of possibilities. We base our recommendations on the models’ theoretical
properties, which we explore in detail throughout the chapter.

1.4 Generalized linear models for categorical responses
with hierarchical structure

In the following, we present alternatives for modeling a hierarchical structure of the
response categories when such structure is known beforehand.

Nested logit model The nested logit model can be depicted by a tree structure that
represents all the categories. The MNL model treats all alternatives equally, whereas
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the nested logit model includes intermediate branches that group the categories. This
model was introduced by McFadden et al. (1978) to avoid the inconsistency of the
independence of irrelevant alternatives (IIA) property (also known as Luce’s choice
axiom) in specific scenarios. Let us illustrate these ideas through the well-known example
of the blue and red buses (Debreu, 1960). Suppose that an individual has no preference
between the two alternatives A = {blue bus, car}; so PA(blue bus) = PA(car) = 1/2.
Imagine now that the travel company introduces red buses, so the options are now
B = {blue bus, red bus, car}. The individual again has no preference between blue and
red buses; meaning that PB(blue bus) = PB(red bus). The IIA property states that the
ratio of any two-outcome probabilities is independent of the set containing the different
alternatives, using this notion we have

PA(blue bus)
PA(car) = PB(blue bus)

PB(car) = 1.

If the color of the bus does not affect the mode choice the expected probabilities are
PB(blue bus) = PB(red bus) = 1/4 and PB(car) = 1/2. However, due to the IIA property
and the non-preference of the bus color, we obtain that PB(blue bus) = PB(red bus) =
PB(car) = 1/3. This is a counterintuitive result because the additional irrelevant alter-
native (red bus) has decreased the choice probability of driving substantially.

In this example, the IIA property is not appropriate because two alternatives share
many characteristics. Therefore, the J alternatives can be divided into L nests (sets)
such that the choice process starts by choosing among the L choice sets and then making
the specific choice within the chosen set. The nested logit model captures the similar-
ities between close alternatives. In the presented example, the individual chooses first
between bus and car according to specific factors and then between the two buses ac-
cording to preferred color (see Figure 4). More generally, suppose that alternatives can

Figure 4: Illustration of the transport vehicle selection process.

be aggregated according to their similarities; this means that all alternatives of the same
nest Nl share attributes xl, whereas other alternatives do not. The nested logit model is
presented with only two levels in the following. Let L be the number of nests obtained
by partitioning the set of J alternatives and

{1, . . . , J} = L⋃
l=1

Nl.

If j denotes an alternative belonging to the nest Nl, then the probability of alternative
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j is decomposed as follows

P (Y = j∣x) = P (Y = j∣Y ∈ Nl; xl)P (Y ∈ Nl∣x0, IV ), (1.14)

where IV = (IV1, . . . , IVL) denotes the vector of inclusive values (described above), x0

are the attributes which influence only the first choice level between nests and x =(x0, x1, . . . , xL). Each probability of (1.14) is determined by a MNL model as follows

P (Y = j∣Y ∈ Nl; xl) = exp (ηl
j)

∑k∈Nl
exp (ηl

k) ,
and

P (Y ∈ Nl∣x0, IV ) = exp (η0
l + λlIVl)

∑L
k=1 exp (η0

k + λkIVk) ,
where the inclusive value is

IVl = ln{ ∑
k∈Nl

exp (ηl
k)}.

The predictors ηl
j and η0

l depend respectively on xl and x0. In practice, they are
linear with respect to x. Because of the inclusive values, the nested logit model must
be estimated in two steps. In the first step, the L models of the second level can be
estimated separately because the parameters βl are different in each nest. In a second
step, the inclusive values IVl of each nest can then be computed and used to estimate the
first level model. The nested logit model has been extended to three and higher levels.
However, the complexity of the model increases geometrically with the number of levels
(Greene, 2003). This model has been found to be extremely flexible, and it is widely
used to model consumer choices since it follows the utility-maximization principle. The
nested model has some limitations that result from complying with the random utility
model assumption. On one side, the model must include the inclusive values whose
artificial nature makes interpretation difficult. On the other side, there is the constraint
where 0 < λl ≤ 1 for l = 1, . . . , L (McFadden et al., 1978). Hence, the nested model would
be more flexible if the random utility maximization assumption is relaxed. Remark that
the particular case of λl = 1 leads to the simple multinomial logit model.

Partitioned conditional model for partially-ordered data Among the extensive
research devoted to GLM, few efforts have been focused on the analysis of partially
ordered responses. Zhang and Ip (2012) proposed the partitioned conditional model,
a new class of GLM intended primarily for partially ordered responses, but which also
includes nominal and ordinal responses as special cases. The main idea was to recursively
partition the J categories to transform the partial order into subsets of cases with a total
order or no order whatsoever. Thus, the authors proposed to use the odds proportional
logit model for the total order case and the MNL model for the nominal case. The basis
for the construction of the formal partitioned conditional model for partially-ordered
data is the proposition 1, for which we need first to introduce the following notions:
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• A partial ordered set (poset) is defined as the pair (P ;⪯), where P = 1, . . . , J is
the set of categories, and ⪯ indicates the partial order of P . Remark that a poset
can be summarized by a Hasse diagram as in Figure 5.

• The order relation j ⪯ k is represented by an edge between the two nodes (cate-
gories) where node k is above node j.

• A chain in a poset (P ;⪯) is a totally ordered subset C of P , whereas an antichain
is a set A of pairwise incomparable elements.

Proposition 1. A finite partially-ordered set can always be partitioned into antichains
that are totally weakly ordered (Zhang and Ip, 2012).

Let (P ;⪯) be the poset represented by the Hasse diagram in Figure 5. The partition
is defined by the antichains N1 = {1}, N2 = {2, 3, 4} and N3 = {5} corresponding to
each level of the Hasse diagram. As these antichains are totally (weakly) ordered, the
odds proportional logit model is used to describe the cumulative probabilities P (Y ∈
⋃l

k=1 Nk∣x) for l = 1, 2, 3. Within each antichain Nl, the elements are not comparable,
thus the MNL model is used to describe the conditional probabilities. The probability
of category 3 in Figure 5 can be fully specified as

P (Y = 3 ∣ x) = P (Y = 3 ∣ Y ∈ {2, 3, 4}; x) × P (Y ∈ {2, 3, 4}; x)
= P (Y = 3 ∣ Y ∈ N2; x) × P (Y ∈ N2; x)

where

P (Y ∈ N2; x) = exp (α2 +x⊺δ)
1 + exp (α2 +x⊺δ) − exp (α1 +x⊺δ)

1 + exp (α1 +x⊺δ) ,
and

P (Y = 3 ∣ Y ∈ N2; x) = exp (α2,2 +x⊺δ2,2)
1 + exp (α2,1 +x⊺δ2,1) + exp (α2,2 +x⊺δ2,2) .

Figure 5: Hasse diagram among 5 categories.

1.4.1 Partitioned conditional generalized linear models for cat-
egorical data

Recently, Peyhardi et al. (2016) introduced the PCGLMs to analyze the hierarchical
structure of a response with any number of categories. Their methodology is based on
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the (r, F, Z) specification of the categorical models and on a partition tree of categories.
Using the genericity of the (r, F, Z) GLMs for categorical responses, it is possible to
use different link functions and explanatory variables for each partitioning step. Thus,
it becomes possible to model hierarchically structured categorical responses, including
nominal, ordinal, and partially ordered responses. Formally, a k−PCGLM with J re-
sponse categories is specified by

• a partition tree T of {1, ..., J} with card(V∗) = k, where V∗ denote the set of
non-terminal vertices of T .

• a collection of binary regression models C = {(rv, F v, Zv) ∶ v ∈ V∗} for each condi-
tional probability vector.

The probability for each category j is obtained as

P (Y = j ∣ x) = P (Y = j ∣ Y ∈ Pa(j), xP a(j)) ∏
v∈An({j})

P (Y ∈ v∣Y ∈ Pa(v), xP a(v)),
where Pa(v) is the parent of v and An are the ancestors of v excluding the root.
Figure 25 illustrates the path of the conditional probabilities used to obtain P (Y = 2 ∣ x)
which is expressed as

P (Y = 2 ∣ x) = P (Y = 2 ∣ Y ∈ {1, 2, 3}, (x1, x6, x8)) × P (Y ∈ {1, 2, 3} ∣ (x4, x7, x8))
where

P (Y ∈ {1, 2, 3} ∣ (x4, x7, x8)) = exp (α1 +x⊺δ1)
1 + exp (α1 +x⊺δ1)

and

P (Y = 2 ∣ Y ∈ {1, 2, 3}, (x1, x6, x8)) = (1
2
+ 1

π
arctan(α1,2+x⊺δ)−1

2
+ 1

π
arctan(α1,1+x⊺δ)).

Due to the hierarchical structure of a PCGLM, the log-likelihood of the model is

l = ∑
v∈V∗

lv,

where lv represents the log-likelihood of the GLM for node v. Remark that at each
node, a model can be separately estimated since parameters are assumed to be different
between nodes.

The sequential (logit) model is a particular case of the PCGLMs. Indeed, it can be
represented as a (J −1)−PCGLM (see Figure 7) if all of the vertices v ∈ V∗ share the set
of explanatory variables x and the cdf is common (for this case the logistic distribution)
for all the non-terminal vertices.

Unkown partition tree The hierarchical structure is partially or even totally un-
known in many real data analysis situations. Finding and modeling such a structure
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Figure 6: Illustration of a PCGLM with 5 categories where the blue color arrows high-
light the path to obtain y = 2.
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Figure 7: (J − 1)-PCGLM.

becomes a matter of interest. However, the search for such a structure can be com-
putationally intensive when considering the total number of possible alternatives. In
fact, this number increases exponentially with the number of categories, so exploring
all the alternatives in an attempt to find the best one becomes relatively ineffective.
To reduce somewhat the space of possible trees, one could instead consider only binary
trees. A binary tree consists of J − 1 binary models, one at each non-terminal node of
the tree. The essential advantage of this approach is that i) the link is reduced to simply
(symmetric) cdfs and ii) the design matrix cannot be constrained, so it is the same (in
structure) for all the nodes. The above justifies why binary models are the simplest case
in the context of regression for categorical responses. Note that the estimation of this
binary tree model (parallelizable) is not a primary concern. The importance then lies in
the choice of the link function (equivalently, the choice of the cdf) at each non-terminal
node. In chapter 2, we discuss such a choice based on the most common characteristics
and/or problems of binary dependent variables.

The main objective in this modeling context is to find a proper representative struc-
ture of the presumed hierarchy. In chapter 4, we propose a methodology for finding
this tree structure. The methodology is based on the exploration of the dependent vari-
ables. From the obtained initial tree, we suggest using operations defined in the space
of trees in order to traverse the surrounding neighborhoods searching for a better tree
alternative.





Chapter 2

GLMs for Binary Data

Abstract

The link function is the key component of regression models for binary response vari-
ables. Despite the diverse potential fits obtained from different link functions, only the
logit and the probit links have been widely popularized. Models generated from these
links are known to be non-robust in the presence of outliers. We demonstrate that this
problem is exacerbated when the two response levels are strongly separated in the ex-
planatory space. To address this shortcoming, we propose and encourage the use of the
Student link function. We highlight its robustness to outliers and also to noisy variables,
particularly when the data exhibit a strong separation setting.

Keywords: Generalized linear models, Robustness, Link function, Outliers, Noisy
variables, Data separation setting
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2.1 Introduction

The present work is focused on GLMs for binary responses whose levels are usually
referred to as success and failure (coded respectively as y = 1 and y = 0). According
to Nelder and Wedderburn (1972), a GLM is characterized by three components: the
response distribution, the linear predictor, and the link function. In the particular case
of binary outcomes, the response distribution is necessarily the Bernoulli. The link
function thus plays a central role in the framework of binary regression models. In this
paper, we are particularly interested in the link function generated by the Student cdf.
In the following, we will use the term Student model to refer to a binary regression whose
link function is the inverse of the Student cdf. We aim to compare the robustness of the
logit and the Student models by assessing the models’ quality, i.e., the goodness-of-fit
(through the log-likelihood) and the classification performance (through the prediction
accuracy). We will show that the Student model is more robust than the logit model
when zeros and ones are well separated according to the explanatory variables.

Silvapulle (1981); Albert and Anderson (1984) showed that under (quasi-) complete
separation, finite maximum likelihood estimates do not exist in binary regression mod-
els. Moreover, they showed that the maximum likelihood estimates exist and are unique
for the logit and the probit models if and only if the data set has some overlap. Un-
fortunately, separation may go unnoticed since, after some cycles of the iterative fitting
process, the log-likelihood curve becomes flat, and either the convergence criteria are
met, or simply the predefined maximum number of iterations is reached. Consequently,
researchers tend to ignore the problems generated by the separation pattern. The model
obtained from a completely separated data set has infinite maximum likelihood estimates
since its log-likelihood approaches the maximum value (i.e., zero) suggesting a perfect
fit. Imagine now adding one new observation that disturbs the complete separation set-
ting (i.e., a zero among the ones or a one among the zeros). This additional observation
will create an overlap, and thus one can obtain both: a unique maximum likelihood
estimate and a near-perfect model fit for the data set at hand. In this paper, we relate
the number of such disturbing observations to the notion of degree of overlap (the coun-
terpart of the degree of separation). We propose to control (in simulated data) such a
degree of overlap by means of the scale parameter of the logistic cdf. We are interested
in investigating the impact of different degrees of overlap on the model’s quality (in
terms of fit and prediction), especially at analyzing the model’s sensitivity to common
perturbations like the presence of outliers.

Robust regression is a class of statistical methods that has the property of reducing
the sensitivity of the parameter estimates to perturbations in the data set. It has been
shown that logit and probit models are sensitive to outliers; hence, these links are not
considered robust alternatives (see Pregibon, 1982; Copas, 1988). Furthermore, it is
believed that due to the similarities between the logit and the probit links, no other
link function would produce substantial improvements to the model fit (Koenker and
Yoon, 2009), so little effort has been devoted to analyzing the robustness of other links.
Notable exceptions are authors like Lange et al. (1989); Liu (2005) who have recognized
the links obtained with the Cauchy and the Student cdfs as robust alternatives in the
presence of outliers. They have shown that the influence function (see Hampel, 1974)
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of a binary model is unbounded for the logit and the probit link functions and bounded
for the Student and the cauchit link functions. Indeed, the Cauchy and the Student
distribution (with a low degree of freedom, i.e., ν ≤ 1) are very heavy-tailed, and they
make less extreme predictions (further away from 0 and 1) than the normal or logistic
distributions for large values of the linear predictor (Smithson and Verkuilen, 2006).

Additionally to the presence of outliers, a model perturbation can be caused by
noisy variables, which would lead to over-fitting unless they are removed from the model.
Using a benchmark data set (with four response categories), Peyhardi (2020) empirically
showed that the Student model is less sensitive to noisy variables than the logit model.
As part of the robustness assessment of the Student link function, we also evaluate
and compare the sensitivity to noisy variables of the logistic and the Student regression
models.

Considering together the separation and the robustness characteristics of binary
regression models, we aim to investigate whether the sensitivity of the model is tied to a
certain extent to the degree of overlap of the data set. This will allow us to identify the
most robust model (between the logit and the Student) for particular conditions of the
data set. For this purpose, we investigate the sensitivity to outliers and noisy variables
on simulated data under four different degrees of overlap: one low, two intermediate
(which we consider encompassing most of the real data analyses), and one high. To
make use of the Student link, we propose an algorithm to estimate the unknown degree
of freedom. This will enable us, as a byproduct, to get an indicator of the degree of
overlap.

This chapter is structured as follows. In section 2.2 we introduce the basics of the
Student regression model. In section 2.3, we present the classical notion of separation,
and we extend this formulation by introducing the notion of degree of overlap. In
section 2.4 and 2.5, we illustrate the robustness of the Student link through various
simulations with different separation scenarios and according to the two settings 1) in
the presence of outliers and 2) in the presence of noisy variables.

2.2 Student link function

Binary regression models can be motivated (although it is not a strict model require-
ment) by the assumption of a latent (unobserved) variable ỹ, for which there exists a
threshold that defines whether the original observed variable y is 0 or 1. Let the model
for the latent variable be ỹ = α + xtδ + ε, where x = (x1, . . . , xp) denotes the covariate
vector, α ∈ R the intercept, δ ∈ Rp the slope parameter vector, and ε the latent residual.
Considering y as a dichotomized version of ỹ we obtain

π(x) = P (y = 1∣x) = P (ỹ ≥ 0∣x) = P (α +xtδ + ε ≥ 0) = P (−ε ≤ α +xtδ).
Allowing −ε to have the distribution function F , we get the simple form

π(x) = F (α +xtδ).
From this expression, we can identify the linear predictor as η = α + xtδ and the link
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function as the inverse cdf F −1. The most commonly cdfs used for the link function
specification are the logistic and the normal cdfs, which yield the logit and probit models,
respectively. In this work, our interest lies particularly in the Student link function. The
cdf of the Student distribution is given by

Fν(η) = 1
2
+ ηΓ(ν+1

2 )2F 1(1
2 , ν+1

2 ; 3
2 ;−x2

ν
)

√
νπΓ(ν

2),
where 2F1 denotes the hypergeometric function. The Student cdf is remarkably versatile,
particularly in the GLM context, since it is possible to obtain the three most popular
link functions by specifying different values of ν. The cauchit link is derived immediately
as it corresponds to a particular case of the Student distribution. Moreover, authors
such as Mudholkar and George (1978); Liu (2005) have illustrated the approximations
of the Student link to the logit and the probit links. All in all, at varying ν we have:

• ν = 1⇒ Fν = Cauchy,

• ν ∈ (7, 9)⇒ Fν ≃ logistic, and

• ν →∞⇒ Fν = normal.

Theoretically, the degree of freedom of the Student distribution can be any real greater
than 0. Some authors, including Lange et al. (1989); Peyhardi (2020) have discretized
ν along a grid to obtain a log-likelihood profile. From those profiles, one can identify
and keep the ν̂ with the highest log-likelihood value, l(ν̂). In several experiments on
data sets and in the papers mentioned above, we observed that the log-likelihood curve
becomes flat from ν = 1 and up to the highest values of ν. Thus, one can notice almost
no difference, for instance, between l(8) and l(30), a fact that can be related to the
proximity between the logit and the probit links. On the other hand, different shapes
of the log-likelihood were observed when ν < 1.

We propose examining these log-likelihood profiles through a simulation based on
the above information. We generated data sets with n = 100 observations of a binary
model with the true response function having a sigmoidal form given by the Student
distribution where ν∗ ∈ (0.3, 1.5, 6). The components of the linear predictor are α = 0,
δ = 1, and the covariate is drawn from a normal distribution x ∼ N (0, 1). For this
illustration, we adopt the strategy of fitting all the models within a grid from 0.25 to 8
by step = 0.05. Note that in this study, the minimum value considered for ν was 0.25
since the pdf and the cdf of the Student distribution are likely to encounter evaluation
problems whenever ν is quite close to zero (see Van der Paal, 2014). In the scenarios
described above and illustrated in Figure 8, we can distinguish essentially 3 types of
curves: a first one where the highest log-likelihood value occurs at the smallest values of
the grid (ν < 0.5) and then, after ν > 1 it stabilizes at a lower log-likelihood (left panel of
Figure 8), a second one in which the maximum log-likelihood value falls approximately
within the range (0.2, 0.8) (middle panel of Figure 8), and a third one that starts with
a low log-likelihood value and then increases rapidly until it plateaus when ν > 1 (right
panel of Figure 8). As it becomes evident, the logit or even the probit link would
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unquestionably be the preferred choice in the last data setting. However, this is not the
case for the other two scenarios, where visually, one should be encouraged to search for
the best fit, narrowing the search range to values of ν less than 1.

Figure 8: Log-likelihood profiles generated by different theoretical values of the degree
of freedom of the Student distribution. The vertical dotted line cuts the log-likelihood
profiles at the fit given by the Student(1) link function.

Considering the time-consuming computation for estimating all models within a grid
and based on the above observations, we propose in Algorithm 1 a heuristic to find the
ν̂ that best fits the data in terms of log-likelihood.

Algorithm 1: Heuristic to find the link function of a binary model.
Estimate the models with Student link where ν = 1 and ν = 8.
if lν=8 > lν=1 then

Estimate the log-likelihood lp of a binary model with the probit link.
if lp > lν=8 then

Use the probit link.
else

Use the logit link.
end

else
Use an optimization algorithm to find the best ν ∈ (0.25, 1) of the Student cdf.

end

Through the built-in R function optimize(), we use as optimization algorithm (in the
last step of Algorithm 1) a combination of the golden section search and the successive
parabolic interpolation. This combination results in a convenient option due to the
reliability of the golden section search and the fast convergence given by the parabolic
interpolation (refer to Vit, 1985; Renk et al., 2009, for more details). Of course, this is
not the only option. Other optimization algorithms can be implemented to search the
degree of freedom in the proposed interval (0.25, 1) (see Brent, 2013).



47 GLMs for Binary Data

2.3 Separation of data

2.3.1 Complete separation

Formally, Albert and Anderson (1984) said that there is a complete separation of the
n sample points if there exists a vector βt = (α, δt) ∈ Rp+1 that properly allocates (or
predicts) all observations to their group, i.e. ztβ > 0 when y = 1, ztβ < 0 when y = 0,

where zt = (1, xt). If the sample points are not completely separated, they can be quasi-
completely separated, if ztβ ≥ 0 when y = 1, ztβ ≤ 0 when y = 0, and with some points
with either yi = 0 or yi = 1 when zt

iβ = 0. If the sample points exhibit neither complete
separation nor quasi-complete separation, the points are said to overlap. Figure 9 shows
the three classical separation settings. Note that even if only one line is plotted in
the left plot, an infinity of lines can perfectly separate the data suggesting a complete
separation pattern. In the middle plot, three points lie on the line that best separates
the data; therefore, the data set exhibits a quasi-complete separation. The right plot
shows an overlap configuration since no line separates the two response levels perfectly.

Figure 9: Possible sample points settings of a binary response (the green and red colors
represent the response levels) to be explained by two explanatory variables x1 and x2.

Silvapulle (1981); Albert and Anderson (1984), demonstrated that overlap is neces-
sary for the parameters of a binary regression model to be identifiable. A geometrical
interpretation of this result, given by Christmann and Rousseeuw (2001), is that the
maximum likelihood estimate exists if and only if no hyperplane perfectly separates the
levels of the response, where the hyperplane itself may contain both ones and zeros.
Indeed, let β(k) = kβ for β ∈ Ac where k > 0, and Ac is the set of vectors satisfying
the complete separation configuration. The log-likelihood as a function of β(k) is then
given by

l(β(k)) = n∑
i=1

yi log(F (zi
tβ(k))) + (1 − yi) log(1 − F (zi

tβ(k)). (2.1)

When k → ∞, the cdf F returns a value close to 1 and 0 respectively for y = 1 and
y = 0, therefore, Equation (2.1) tends towards a sum of n logs of one. That is how the
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log-likelihood results roughly around zero (the global maximum) while the norm ∣∣β(k)∣∣
approaches infinity.

2.3.2 Degree of overlap

Despite the non-convergence of the MLE when data is (quasi-) completely separated,
there exists an infinite number of models with perfect prediction accuracies as the es-
timated probability π̂ will result to be close to 1 or 0 for the n observed responses. In
other words, the overlap is necessary for the existence and unicity of the MLE, but the
(quasi-) complete separation of data is desirable for a good class prediction accuracy.
Therefore, an ideal configuration of the data would be to overlap to a level near the
complete separation. To concretize the idea, imagine a completely separated data set
with 99 observations, then add a zero among the region of ones (not so far away from
the zeros). In this case, the MLE exists, is unique, and if the new observation does not
perturb the model too much, the proportion of correctly classified observations would
be 0.99.

In the following, we aim to study the impact of adding outliers on the model’s
prediction accuracy and the model’s log-likelihood. We will compare the performances
of the Student link versus the logit link on simulated data sets with a particular interest
in the overlap close to the complete separation. To perform this comparison, we need
to introduce the degree of overlap (denoted in the following by d), emphasizing that the
lower the degree of overlap, the closer the data configuration to complete separation.
To account for different data settings, we use the logistic cdf

1
1 + exp (−η/d) , (2.2)

by letting the shape parameter d to vary. In Figure 10, we illustrate four degrees of over-
lap considering only one explanatory variable represented in the x-axis. The parameters
of the linear predictor are α = 0 and δ = 1, and x is derived from a Normal distribution.
As d increases, more values of π are expected to be closer to 0.5. Thus, the overlap
interval (represented by the dotted lines for respectively the minimum and maximum
of each level) gets wider according to the size of d. For our following assessments on
the model’s robustness, we compare the Student link to the logit link according to three
scenarios: a low overlap (d = 0.05), standard degrees of overlap (d ∈ {0.1, 0.3}), and a
high degree of overlap (d = 0.8).

2.4 Robustness of the Student model to outliers

The most common concern of robust methods is to reduce the influence of outliers.
As Copas (1988) outlined, an outlier in a binary response invokes one or both of two
interpretations, a geometric one in which the point is far from the bulk of the data,
and a probabilistic one in which, if the fitted model were true, the offending value of y

would be most unlikely to occur, i.e., either y = 1 and π being close to 0, or y = 0 and π

being close to 1. In the following, we present an illustrative example and a theoretical
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Figure 10: Simulated overlap scenarios of a binary response variable with one explana-
tory variable x. The colors green and red represent respectively the response levels y = 1
and y = 0. The dotted lines are drawn at the maximum value of x when y = 0 and at
the minimum when y = 1.

justification of the robustness to outliers given by the Student link in contrast to the
logit link. Furthermore, through simulations, we will show that this robustness is closely
tied to the degree of overlap of the data.

2.4.1 Illustrative example

We illustrate the robustness of the Student model on the well-known vaso-constriction
data set, already studied by authors including Finney (1947); Pregibon (1981). These
authors highlighted the non-robustness of the maximum likelihood estimators in the
context of the logistic regression model. We aim to contrast their results with our
proposal that consists of a binary model using the Student link with a small ν. We
set ν = 0.6 since, in experiments with a separation setting like the current one, we have
observed the appropriateness of a degree of freedom around this value. The binary
outcome occurrence or non-occurrence of a reflex (vaso-constriction) of the skin of the
digits after air inspiration is explained by two explanatory variables: x1 the volume of
air inspired and x2 the inspiration rate (both represented in logarithms). To assess the
effect of one outlier on the maximum likelihood estimator, we added one point with
coordinates (x∗1, x∗2, y∗) = (s, s, 1) to the original sample. This point will be located on
different positions of the non-continuous line of Figure 11. Note that the observation
would not be unusual for s > 0 because it would fall within the apparent space of the
vaso-constriction presence (y = 1); for high values of s, the point is considered to be a
leverage point, and it should have relatively little influence on the estimated model. In
the opposite direction, i.e., s < 0, this observation gradually becomes an outlier, also
called a bad leverage point or contamination (see Copas, 1988). Based on the 40 data
points, we computed the estimated coefficients β̂ and the corresponding accuracies.

We can notice from Figure 12a that there is a clear distinction between the estimated
coefficients using the logistic cdf and the Student (0.6) cdf. Both, δ̂1 and δ̂2, move far
away from 0 using the Student (0.6) distribution when s > −7. In contrast, the estimates
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Figure 11: Scatterplot for the vaso-constriciton data set; the non-continuous line repre-
sents the position of the added observation (s, s, 1). The green and red points represent
the occurrence and non-occurrence of the vaso-constriction, respectively. The solid line
represents the differentiation between the categories given by the logistic model.

using the logistic link are close to 0 in a broader range (approximately when s < −3).
Hence, the obtained estimations using Student (0.6) link deteriorate less quickly as
the outlier moves away. As for the number of correctly classified observations (see
Figure 12b), the Student (0.6) cdf outperforms the accuracy obtained using the logistic
link in almost the entire range considered for s. Another point worth noting is that the
magnitude of s seems to have a constant impact on the percentage of correctly classified
points for the logistic link accuracy curve. In contrast, the Student curve has a steady
state after each of the few jumps along s.

Given the particular behavior of s in the above examples, let us now consider the
logarithm of the volume as the sole explanatory variable. To illustrate the influence of
the magnitude of x on the model fit, we added three points (one at a time) at different
positions of x. Figure 13 shows the different curves obtained using the logistic and the
Student(0.6) cdfs. Note that the original observations and their fitting curve are plotted
in black for both links. The first point, (x∗, y∗) = (−1, 1), is represented by the red color.
We can observe that the red line does not diverge far from the black line for the logit link
(left plot of Figure 13). However, this is not the case when considering x∗ = −3 or x∗ = −5
where we can see the s − shape vanishing towards a straight line with decreasing slope.
Note that the point at which the fit intercepts the horizontal line π = 0.5 (represented
with the dashed gray line) decreases as the value of ∣x∗∣ increases, implying an increase
of miss-classified points. On the other hand, the curves representing the fits using the
Student (0.6) cdf (right plot of Figure 13) are only slightly perturbed by the magnitude
of x∗. One can notice that the three curves are on top of each other in the complete
range of x and close to the fit without adding new observations. This example illustrates
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(a)
(b)

Figure 12: Figure 12a represents the estimators as a function of s (x-axis) using the
logistic link (solid lines) and normalized estimators using the Student (0.6) link (dashed
lines). Figure 12b represents the accuracies when adding the point (s, s, 1) to the data
sets

that the Student link is more stable than the logistic link to the type of perturbation
generated by adding an observation near the edge of the design space with the erroneous
response level.

2.4.2 Influence function

The maximum likelihood estimate of the canonical GLM is known to be sensitive to
outliers because the score function is unbounded. Hence, as an alternative, one can use
the Student distribution, which results in score equations with bounded influence for
regression models (see Pinheiro et al., 2001; Lange et al., 1989). The IF formalizes the
bias caused by one outlier (Hampel et al., 2011). In the context of GLMs, the IF of a
new observation (y∗, x∗) on the MLE, is given by

IF [(y∗, x∗), β̂] = {E( ∂2l

∂βt∂β
)

β=β̂

}−1(∂l∗

∂β
)

β=β̂

, (2.3)

where the log-likelihood computed for the original data set {(y, x)}i=1,...,n and for the
new observation (y∗, x∗) are denoted by l and l∗ respectively (see Künsch et al., 1989).
Given the observed data, the left factor on the right-hand side of Equation (2.3) does
not depend on the new observation. Thus, it is sufficient to analyze the bounding of the
new observation’s score (right factor) according to (y∗, x∗) ∈ {0, 1} × Rp. Without loss
of generality, we focus on one coordinate of this vector, i.e., for k ∈ 1, . . . , p we evaluate
the following upper bound

sup
y∈{0,1},x∈Rp

xk

f(η)
F (η)(1 − F (η))(y − π).
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Figure 13: Fitting curves of the logistic and the Student(0.6) links. Colors correspond
to the fit when adding one by one the points (x∗, y∗) = {(−1, 1), (−3, 1), (−5, 1)} to the
original observations.

Remark that (y − π) is bounded since it lies in (−1, 1). Therefore, it is sufficient to
demonstrate that the following simplified function

ηf(η)
F (η)(1 − F (η)) , (2.4)

is bounded. We need to study the behavior when η → +∞
lim

η→+∞

ηf(η)
F (η)(1 − F (η)) = lim

η→+∞

ηf(η)
1 − F (η) . (2.5)

By symmetry, this behavior is the same when η → −∞. Equation (2.5) results in the
following values for each distribution:

• logistic cdf: η,

• normal cdf: η2,

• Student(ν) cdf: ν,

(see Liu, 2005, for further details).
In Figure (14), we represent Equation 2.4 for the logistic, the normal, the Cauchy

(represented as the Student(1)), and the Student distribution with different values of its
degree of freedom. We can observe that while extreme values of η strongly impact the
logistic and the normal distributions, the curves of the Student distributions are hardly
disturbed. The cauchit link has already been recognized as an attractive option in the
presence of outliers (see Koenker and Yoon, 2009). Being just a case of the Student
distribution (ν = 1), we intend to broaden this notion by proposing the family of links
resulting from the Student (ν) (particularly, with a small ν) as a robust alternative in
the framework of GLMs for binary responses.
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Figure 14: Representation of the boundedness of the influence function (Equation 2.4)
for different link functions.

2.4.3 Impact of the overlap: a simulation study

Based on the simulation exercise designed to analyze the separation of the response
levels (see section 2.3), we aim now to study the influence of outliers in the model fit at
different levels of overlap. In this simulation, we consider the percentage of outliers τ

to vary between 0% and 20%, and we generate 100 repetitions for each instance where
ntraining = 100 and ntesting = 30. In the previous section, we used a fixed value of ν to
illustrate the robustness of the link function generated by the Student distribution. In
the following, we estimate the degree of freedom ν for each model.

We present in Figure 15 the log-likelihood box-plots (of the 100 simulations) of the
Student and the logit models. We can observe that the results differ notably around
6% of outliers in the sample and anywhere in the range between 1% and 15%. There
are no major differences between the models outside this range, i.e., when there is no
outlier, or more than 18%. These results are particularly noticeable for lower degrees
of overlap, so that, the lower the overlap degree, the greater the difference between the
two models. Since the response levels are highly combined as the degree of overlap
increases to d = 0.8, the values intended as outliers are no longer considered as such.
Therefore, the differences with respect to the canonical link fade out as the degree of
overlap increases.

In real problems with binary responses, we can expect the percentage of outliers to
range from 1% to 10% of the total of observations and the degree of overlap to be similar
to the setting we defined when d = 0.1. And it is precisely for these situations that the
Student’s link largely prevails over the logistic link. Also, and not surprisingly, the
percentages of correctly classified observations in the training set have similar profiles
to the reported log-likelihoods; see Figure 41 in Appendix.
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Figure 15: Log-likelihood boxplots for different percentages of outliers (x-axis) and for
different overlap degrees of the data set (from d = 0.05 to d = 0.8), of the fits obtained
from the logit model (yellow box-plots) and the Student model (blue box-plots).

2.5 Robustness of the Student model to noisy vari-
ables

When statistical models contain many parameters, there is a risk of overfitting the
specific data set at hand. For this reason, analysts need to detect those parameters that
are important and those that are not. In this section, we demonstrate how the logit
model is more sensitive to noisy variables (in the presence of outliers) than the Student
model. We show an illustrative example to clarify some initial notions, and then we
present a simulation study to compare the robustness of the Student and logit models.

2.5.1 Illustrative example

Consider a binary response resulting from the dichomotization of F (η) where η = x1,
i.e., α = 0 and δ1 = 1, and F is the logistic cdf with d = 0.1, i.e., a low degree of overlap
(refer to Equation 2.2). In the following, as in the previous section, we fix to 0.6 the
degree of freedom of the Student link. We represent this scenario in the top-left graph of
Figure 16 where the vertical line indicates the threshold −α̂/δ̂1 (for which the predicted
probability is equal to 1/2) of the Student and the logit models. Due to the absence of
outliers, the fitted model resulting from the logit link is roughly the same as the one
with the Student(0.6) link. In the top-right plot of Figure 16, we added a noisy variable
(whose associated slope parameter is equal to zero) x2, represented on the y-axis. As
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expected, the estimated slope δ̂2 is close to zero; hence, the lines are quasi-vertical, i.e.,
the noisy variable slightly perturbs the fit in the same way for both links. Based on
the previous section, if we add a few outliers (see the bottom-left graph of Figure 16),
we expect the logistic link to be more affected than the Student link. Precisely, this
anticipated result is visible in the graph as the separation line for the logit model moves
towards the outliers. In contrast, the Student(0,6) separation line remains at almost
the same position as without outliers. Note that in this case, outliers only concern the
discriminant variable with extreme values on x1 and a value near zero on x2. In the
bottom-right plot of Figure 16, we add outliers in both directions, the discriminant and
the noisy variable. We observe that the line of the logistic fit bends in the direction of
the outliers, which indicates that the logistic link gives greater weight to these outliers.
The consequence is that the logit model allows the noisy variable to influence the global
fit unlike the Student model.

Figure 16: The dotted and solid lines refer respectively to the classification induced
by the Student(0.6) and the logit models. In the top-left plot there is one explanatory
variable (represented on the x-axis); the vertical line indicates the point given by −α̂/δ̂1.
In the top-right plot, the y-axis represents an added noisy variable x2, and the lines

are given by the discriminating hyperplane: x2 = −α̂ − x1δ̂1

δ̂2

. In the bottom-left plot, we

added outliers only in the x1 direction, while on the bottom-right, we added outliers in
both directions of x1 and x2.
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2.5.2 Simulation study

In the following, we aim to show that, compared to the logistic link, the Student link
is less perturbed by noisy variables (according to the number of outliers), especially
when the degree of overlap is low. For this, we evaluate the frequencies of selected noisy
variables. For this study, we define p1 discriminant variables, x1, . . . , xp1

, and p2 noisy
variables xp1+1, . . . , xp1+p2

, as follows: a candidate variable is a discriminant variable if
its coefficient in the regression equation π = F (η) is nonzero, a noisy variable otherwise.
We define the parameters vector for different number of predictors as follows:

• p1 = 1, p2 = 1: δt = (1, 0)
• p1 = 2, p2 = 2: δt = (0.8,−0.6, 0, 0)
• p1 = 4, p2 = 2: δt = (0.8, 0.4,−0.4, 0.2, 0, 0)
• p1 = 4, p2 = 4: δt = (0.8, 0.4,−0.4, 0.2, 0, 0, 0, 0)

where the covariates matrix was generated as a x ∼ N(0p, Σ) with Σ = {σij}i,j∈{1,...,p},
where i ≠ j, σij = 0 and σii = 1. We conducted 100 simulation runs for each of the
settings with a sample size n = 100 and we consider a varying overlap of the data
set from d = 0.05, 0.1, 0.3 to 0.8. The outliers were placed in both directions of the
discriminant variables (with xk ∼ N(2δk, 0.5) for k = 1, . . . , p1) and the noisy variables
(with xk ∼ N(2, 0.5) for k = p1 + 1, . . . , p1 + p2). For example, when δt = (0.8,−0.6, 0, 0),
nout points were added where x1 ∼ N(1.6, 0.5), x2 ∼ N(−1.2, 0.5), x3 ∼ N(2, 0.5), and
x4 ∼ N(2, 0.5). The summary measure of the method’s performance was the average
times the variable selection procedure (in this case, the stepwise-backward algorithm)
retained the discriminant and the noisy variables.

In Figure 17, we represent the average number of times the Student and the logit
model selected the discriminant or the noisy variables when δt = (1, 0). It can be ob-
served that the number of times the discriminant variable is retained is similar for small
degrees of overlap but slightly different for d = 0.8, where the Student link outperforms
the logit link after 5% of outliers. For the noisy variable, the discrepancies are pro-
nounced at small degrees of overlap, notably between 2% and 15% of outliers. For the
low overlap cases, d = 0.05 and d = 0.1, the Student link selects less than 10% of the times
the noisy variable when there are less than 10% of outliers, while the logistic selection
curve grows rapidly and selects up to 100% of the times the noisy variable much earlier
than Student does.

We report in Appendix A.2 the corresponding plots of the previously defined sce-
narios for p = 4, 6, and 8. We note that the more covariates fewer differences exist
between the two links. But even in those cases, the Student link excels in retaining the
discriminant variables and rejecting the noisy variables, especially at lower degrees of
overlap.
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Figure 17: Average number of times the stepwise (backward) algorithm selects discrim-
inant variables (dashed lines) and noisy variables (solid lines) where δt = (1, 0). The
blue and yellow colors respectively represent the Student and logistic links.

2.6 Conclusion and perspectives

In this paper, we studied the key issue of the link function in the context of GLMs for
binary responses, especially when the data is subjected to any of the most characteristic
perturbations: outliers and noisy variables. We have focused our research on analyzing
the robustness of the Student link in reference to the classical logit link.

We examined one low, two intermediate, and one high degree of overlap to account
for the different data configurations. We also considered different perturbations scenar-
ios when adding different numbers of outliers and noisy variables. Through numerical
examples and simulations, we found that the degree of overlap differently affects the
quality of the model for the logit and Student models. These differences are minor
when there is a high degree of overlap; in this case, it would be more convenient to
choose either the logistic link (taking advantage of its benefits as the canonical link)
or the probit link. We observed that the closer the data is to the complete separation
configuration, the more the Student link differs from the logit link, excelling in the
log-likelihood and the prediction accuracy values.

We argued that the degree of overlap should help to determine the choice of the
link function. However, we remarked that the degree of overlap is closely related to
the degree of freedom ν of the Student cdf. Therefore, the inference of ν serves as an
indicator of the overlap configuration. If a large value of ν is obtained, indicating a high
degree of overlap, the model will result to be roughly the same as the logit or the probit
model. On the other hand, if it turns out to be small, then it is likely that a strong
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separation setting prevails in the data set, for which the best alternative will be to use
the Student link function with the estimated ν.

Furthermore, the inference of binary models might also be significantly affected if
a symmetric link function is incorrectly used in place of a non-symmetric link. The
Student distribution is symmetric and thus sensitive to skewed data, as the logistic
and normal distributions. To overcome this problem, and as an extension of this work,
we propose to use the non-central Student distribution. By setting its non-centrality
parameter to a value different from zero, one will be able to control the skewness of
the link function. An additional perspective would be to study the robustness of the
Student cdf used as part of the link function in the GLMs for more than two categories
since their basic structure is based on binary models.





Chapter 3

GLMcat: An R package for GLMs
for categorical responses

Abstract

In statistical modeling, there is a wide variety of generalized linear models for categorical
response variables (nominal or ordinal responses); yet, there is no software embracing
all these models together in a unique and generic framework. We propose and present
GLMcat, an R package to estimate generalized linear models implemented under the
unified specification (r, F, Z) where r represents the ratio of probabilities (reference, cu-
mulative, adjacent, or sequential), F the cumulative distribution function for the linkage,
and Z the design matrix. All classical models (and their variations) for categorical data
can be written as an (r, F, Z) triplet, thus, they can be fitted with GLMcat. The func-
tions in the package are intuitive and user-friendly. For each of the three components,
there are multiple alternatives from which the user should thoroughly select those that
best address the objectives of the analysis. The main strengths of the GLMcat package
are the possibility of choosing from a large number of link functions (defined by the
composition of F and r) and the simplicity for setting constraints in the linear predic-
tion, either on the intercepts or on the slopes. This paper proposes a methodological
and practical guide for the appropriate selection of a model considering the concordance
between the nature of the data and the properties of the model.

Keywords: GLM, categorical response, link function, cumulative models, sequential
models, adjacent models, reference models
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3.1 Introduction

Regression models for categorical responses have emerged in various disciplines and un-
der different names. The underlying structures of such models may be closely related
(or even the same) but they are often perceived as fundamentally different. The intrin-
sic differences among the classical models concern the assumed link function and the
specification of the linear predictor. Once defined the linear predictor, the question to
address concerns the most appropriate link function. The selected link function should
reflect the nature of the response variable; for categorical responses, a broad distinction
is made on the basis of the scale itself, being either nominal or ordinal.

For ordinal responses, there are three families of GLMs: the cumulative, the se-
quential, and the adjacent models. The family of cumulative models (simply known
as ordinal regression models) is the most popular. This family includes the odds pro-
portional logit model (McCullagh, 1980) which has been the most widely used model
for ordinal data. Sequential models have initially been discussed by authors including
Fienberg (1980), Armstrong and Sloan (1989) and Tutz (1991). The most iconic model
within this family is the proportional hazard model which was originally developed by
Cox (1972) for continuous responses. More recently, Fahrmeir and Tutz (2001) briefly
proposed an extension of the adjacent logit model (Goodman, 1983; Agresti, 1989) that
allows substituting the logistic distribution function by any other cdf. In this light, Pey-
hardi et al. (2015) detailed the estimation of such models and named them the family
of adjacent models. Adjacent models have been widely adopted in Item Response The-
ory, a widespread model within this framework is the polytomous Rasch model (Rasch,
1961; Andersen, 1995) which is an adjacent logit model with a specific form for the linear
predictor. In contrast to ordinal responses, for which there exists a variety of GLMs,
until recently, the only option for nominal responses was the MNL model, introduced
by Luce (1959). To fill this gap, Peyhardi et al. (2015) generalized the structure of the
MNL allowing the use of several cdfs as alternatives to the logistic cdf, the resulting set
of models is referred to as the family of reference models.

Notwithstanding the wide set of model options, the use of appropriate models for
categorical responses seems to be rather limited in the literature (Ananth and Klein-
baum, 1997; Liddell and Kruschke, 2018). Besides, on the rare occasions when they are
employed, there is often no consistency between the response variable characteristics and
the model’s assumptions. For instance, ordinal responses have been frequently treated
by researchers as standard nominal or metric problems. Another usual and inaccurate
approach is to dichotomize categorical responses with the aim of using the standard lo-
gistic or probit regression models (Sankey and Weissfeld, 1998). These pitfalls can lead
to non-optimal solutions and thus to erroneous statistical inferences (see Liddell and
Kruschke, 2018; Scott et al., 1997; Gutiérrez et al., 2016, for further details). Despite
the current availability of statistical software to fit models which take full advantage
of the ordinal nature of the response, the described poor practices are still common.
As noted by Mellenbergh (1995), one possible cause may be linked to the fact that
the literature for ordinal responses does not provide much support for preferring one
family of models over another. In addition, we suspect that the lack of homogeneity
that characterizes the literature and the software solutions for this subject may result
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confusing and overwhelming. Hence, it is not surprising that, risking a loss of accuracy
and interpretability, the user might opt for the most popularly used models.

In R (R Core Team, 2021) there is a variety of packages to fit categorical responses,
however, most of them only cover one or a few of the types of models. For instance,
the function multinom() of the package nnet (Ripley and Venables, 2021; Venables and
Ripley, 2002) fits the MNL via neural networks. For ordinal responses, the functions
polr() of the package MASS (Ripley et al., 2021; Venables and Ripley, 2002) and omr()

from the rms (Harrell Jr, 2021) package are often used to fit the odds proportional model.
Few packages are aimed to fit a whole family of models for categorical responses, one of
them is the tram (Hothorn et al., 2021; Hothorn, 2020) package, which by means of the
Polr() function allows for stratification, censoring and truncation in the response of
cumulative models. The ordinal package (Christensen, 2019) is another option to fit the
family of cumulative models, it includes a comprehensive implementation of this class
of models offering great flexibility, notably in the specification of the linear predictor.
To our knowledge, only the VGAM (Yee, 2021) and the ordinalNet (Wurm et al., 2020)
packages consider the three families of ordinal models: cumulative, sequential, and
adjacent. Nevertheless, the ratio of probabilities of the adjacent models in VGAM
seems to be valid only for the logistic distribution. None of the aforementioned packages
encloses the four model families for categorical responses and most of them have some
limitations in terms of adding constraints to the design, or in the availability of the
cdfs that one can use as part of the link function. These gaps also exist in commercial
statistical software like SAS (SAS Institute Inc., 2020), Stata (Stata Corp., 2015), and
SPSS (IBM Corporation, 2017). An additional problem of the commercial packages is
that those use different techniques (which are not strictly equivalent) to fit the models.
As a consequence, different estimations might be obtained when using different software,
even though the same theoretical model is specified. For instance, Liu (2009) reported
some differences in the estimation of an odds proportional model using the functions
PROC LOGISTIC in SAS, OLOGIT in Stata, and PLUM in SPSS.

Despite the diverse origins, names, applications, and implementations of the above-
mentioned models, they all share a common structure that was fully described by Pey-
hardi et al. (2015). The authors introduced a unified specification of GLMs for categor-
ical responses that encompass the four families of models based on a decomposition of
the link function. They introduced the notation (r, F, Z) for this decomposition where:
r is the ratio that characterizes the ordering type of the response variable, F is the cdf
of the link function, and Z is the design matrix where the form of the linear predictor
is specified. The comprehensive description of the taxonomy of the GLMs for categori-
cal data given by the (r, F, Z) decomposition exposes the fundamentals, relations, and
equivalences of the families of models. Furthermore, the possible extensions for each
model family become evident and can be easily implemented. These extensions are ob-
tained by structuring the design matrix (for intercepts and slopes), as well as broadening
the spectrum of cdfs.

We implemented the (r, F, Z) methodology in the GLMcat (León et al., 2021) pack-
age developed for R (available from the Comprehensive R Archive Network (CRAN)
at https://cran.r-project.org/web/packages/GLMcat). Our purpose is to provide
an alternative that covers all the classical models for categorical responses and which
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gives room to extend them through different components. The package supports a wide
range of cdfs and allows to adapt the linear predictor at any desired extent. In consid-
eration of all these possibilities, we intend to guide the user in the identification of the
most pertinent combination of the ratio, the cdf, and the design matrix, highlighting
the limitations or advantages of the resulting (r, F, Z) model. In the GLMcat package
there are two main functions: glmcat(), which covers the four families of models for
categorical responses, and discrete_cm(), which extends the family of reference models
to take into account explanatory variables that depend on response categories (useful
for discrete choice model).

The content of the paper is presented in three main sections. In section 3.2, we
recall the unified specification of GLMs through the (r, F, Z) triplet and we illustrate
its implementation in GLMcat. We also describe in detail each of the three components
as well as the possible extensions for them. In section 3.4, we aim to characterize
the different families of models for ordinal responses by outlying a series of properties
inherent to each of them. We emphasize the importance of identifying the model that
makes the appropriate assumptions in light of the nature of the response variable and
the goals of the analysis. In section 3.5, we revisit the family of reference models in
the framework of discrete choice models (Bouscasse et al., 2019; Peyhardi, 2020). We
motivate the use of this family of models presenting its strengths in contrast to existing
alternatives. The model fitting by means of the GLMcat package is illustrated in all the
sections using different datasets and its computational implementation is described in
section 3.3.

3.2 Unified specification of GLMs for categorical data

Consider the regression context where the response Y is a categorical variable (with J ≥ 2
categories). The aim is to model the effect on Y of a given set of q explanatory variables
x = (x1, . . . , xq) defined in a general form of dimension p with p ≥ q (i.e., categorical
variables are represented by indicator vectors). In the following, we will sometimes
use the univariate notation {Y = j} or, equivalently, the indicator vector notation Y =(Y1, . . . , YJ−1) with 1 in position j and 0 elsewhere. Note that {Y = J} would correspond
to Y = (0, . . . , 0). For convenience, models are presented at the individual level, thus,
the subscript i ∈ {1, . . . , n} is not mentioned. A GLM for categorical response can be
decomposed into three parts:

1. the random component which accounts for the conditional distribution of the re-
sponse variable given the set of the explanatory variables. In the framework of
categorical response variables, Y follows the multinomial distribution

Y ∣x ∼M(1, π(x))
with π = (π1(x), . . . , πJ−1(x)) ∈∆ where ∆ = {π ∈ (0, 1)J−1 ∶ ∑J−1

j=1 πj < 1}.
2. The systematic component which is determined by the linear predictor η = (η1,

. . . , ηJ−1). For each category j, the linear predictor has the form ηj = αj + x⊺δj,
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where αj ∈ R is the intercept and δj ∈ Rp is the vector of slopes. Considering the
parameter vector as β = (α1, . . . , αJ−1, δ1, . . . , δJ−1), the linear predictor can be
written as the product

η = Zβ,

where Z denotes the design matrix composed of repetitions of 1 and x⊺ (see section
3.2.3 for some examples of design matrices).

3. The link function g which relates the conditional expectation of the response vari-
able π = E[Y ∣x] and the linear predictor η. The equality g(π) = η corresponds
to the J − 1 equations gj(π) = ηj.

Peyhardi et al. (2015) showed that all the classical link functions can be decomposed
through the unified specification

gj = F −1 ○ rj ⇔ rj(π) = F (ηj) j = 1, . . . , J − 1, (3.1)

where F is a continuous and strictly increasing cdf, and r = (r1, ..., rJ−1) is a map from
the simplex ∆ to the open hypercube (0, 1)J−1. The authors introduced the notation(r, F, Z) with which any classical GLM for categorical responses can be fully described.
Throughout this paper and in this framework, we interchangeably use the terms (r, F, Z)
and GLM.

The GLMcat package is designed based on the (r, F, Z) decomposition. To facilitate
the user experience, instead of calling a specific function for each family of models
(determined by the ratio), we implemented a single function: glmcat(), with which
any (r, F, Z) model can be fitted. In the following, we will describe more closely the
components r, F , and Z and their modalities.

3.2.1 Ratio of probabilities r

In models for categorical responses, the linear predictor η is not directly related to the
expectation π but to a particular transformation r of the vector π called the ratio.
The ratios for categorical responses are defined in Table 3.1. The cumulative ratio of
category j is the result of the cumulated probabilities of the precedent categories. In the
sequential and adjacent ratios, each category j is compared to its following categories
j + 1, . . . , J , and its adjacent category j + 1, respectively. The adjacent, cumulative, and
sequential ratios rely on an ordering assumption among categories. On the contrary, the
reference ratio relates each category j only to a reference category (J by convention),
therefore, this ratio is devoted to nominal responses. The ratios are the essential units
from which a family of models is defined. For this reason, we named the model families
according to their corresponding ratio.

In GLMcat we cover the four ratios described above, whereby all known models for
categorical responses are within reach by handling one single package. The ratio should
be specified in the glmcat() function as a string in the argument ratio. If no ratio is
specified, the reference ratio will be used by default.
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Cumulative Sequential Adjacent Reference

rj(π) π1 + ... + πj

πj

πj + ... + πJ

πj

πj + πj+1

πj

πj + πJ

Y ordinal nominal

Table 3.1: Four ratios rj(π) of GLMs for categorical responses (j = 1, . . . , J − 1).

3.2.2 Cumulative distribution function F

The link function in the binary regression framework accounts only for the cdfs that
links the expected value of the response to the linear predictor of the model. Based on
the decomposition presented in Equation 3.1, it is evident that for the (r, F, Z) models
the cdf is just one part of the link function, which along with the ratio, characterizes
the relation between π and η. Remark that the cdf is assumed to be differentiable and
strictly increasing. The differentiability is necessary for the Fisher’s scoring algorithm
(or Newton Raphson’s algorithm) computation. The condition of strict increase is nec-
essary for parameter interpretation since the coefficients δj,k give the signs of the partial
effects of the corresponding explanatory variable xk on the probability rj(π).

The distinction between symmetric and asymmetric cdfs has an impact on the prop-
erties of the models as it will be demonstrated later. Moreover, the choice of the
distribution might markedly improve the model fit. In literature, there are different
recommendations to choose the cdf of a GLM, although the logistic distribution is the
most widely used. The choice is often related to disciplines or fields. For instance,
economists tend to favor the normal distribution due to its association with the utility
notion; the Gumbel distribution is popular in survival and hazard analysis, since it can
appropriately model the occurrence of events. The aforementioned cdfs are available
in many packages. GLMcat proposes, in addition, some less popular alternatives such
as the Cauchy, the Gompertz, the Laplace, the Student, and the non-central Student
cdfs. In particular, the Student cdf has proven to be a robust alternative for regression
models (see Lange et al., 1989; Peyhardi, 2020) and can be considered as a family of
functions given that the shape of the cdf varies according to ν, the degrees of freedom.
All of the cdfs presented in Table 3.2 are available in GLMcat and should be specified
by its name as a string in the argument cdf, or, if there are some parameters to specify,
the user should input a list, for instance, list(cdf = "student", df = 7). If the cdf
is not declared, the logistic distribution is used by default. In the following, the set of
cumulative distribution functions will be denoted by F.

3.2.2.1 Normalization of parameter estimates

Models with different cdfs used as part of the link function are not comparable since
they refer to specific means and variances (Tutz, 2011). Often, the parameter estimates
will turn out to be different even if there is not an apparent discrepancy in terms of
goodness-of-fit. Tutz (2011) illustrated an alternative to standardize the parameters of
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Distribution F (η) Shape

Logistic
1

1 + exp(−η) symmetric

Normal
1√
2π
∫ η

−∞
exp( − x2

2
)dx symmetric

Laplace

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
2

exp(η) if η < 0,

1 − 1
2

exp(−η) if η ≥ 0
symmetric

Cauchy
1
2
+ 1

π
arctan(η) symmetric

Student(ν)
1
2
+ ηΓ(ν + 1

2
) symmetric

Non-central t (ν, µ)
⎧⎪⎪⎨⎪⎪⎩

Fν,µ(η) if η ≥ 0,(1)

1 − Fν,−µ(η) if η < 0

- left skewed if µ < 0,
- symmetric if µ = 0,
- right skewed if µ > 0.

Gompertz 1 − exp(− exp(η)) left skewed

Gumbel exp(− exp(−η)) right skewed

Table 3.2: List of the cdfs available in GLMcat to use as part of the link function for
GLMs.
(1) Refer to Appendix B.1 for the complete form of Fν,µ.

a binary regression model:

α̃ = α − E(ε)√
VAR(ε) , δ̃ = δ√

VAR(ε) , where ε ∼ F.

Note that this approach is not suitable when using a cdf with undefined mean or variance
as it is the case of the Student distribution (whose mean and variance are not defined
when ν ≤ 1, and ν ≤ 2, respectively). A propagated approach in econometrics that solves
this problem is to consider the average partial effect of the variable xk on πj as the scale
factor, i.e., ∂πj(x)/∂xk (Wooldridge, 2012). If xk is a continuous variable, its partial
effect on πj(x) is obtained from the partial derivative:

∂πj(x)
∂xk

= ∂F

∂ηj

∂πj

∂rj

δ̂j,k . (3.2)

The average partial effect of xk on πj is then given by the mean value of the indi-
viduals. The downsides of this method are that the scale factor depends on the input
data and that it is only valid for continuous explanatory variables. Note that Equation
3.2 results in f(ηj)δ̂k for the binomial regression. In this case, if f is a symmetric pdf
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around zero, the largest effect occurs when η = 0. For instance, for the normal pdf, this
will be at f(0) ≈ 0.4 and for the logistic pdf at f(0) = 0.25. A simple approach to make
the magnitudes of those two cdfs roughly comparable is to multiply the probit estimates
by 0.4/0.25 = 1.6 or to multiply the logit estimates by 0.25/0.4 = 0.625.

Bouscasse et al. (2019) proposed a normalization of parameter estimates via the
location parameter m and the scale parameter s of the cdf F . Two real points a and
b are chosen such that all cdfs in F have the same values for F (a) and F (b). It is
imposed that F (0) = 1/2 to preserve the interpretability of the intercepts. Note that
the reference, the adjacent and the sequential ratios satisfy this condition. To illustrate
this, assume δj = 0 so that the linear predictor only depends on the intercept, i.e.,
ηj = αj. Consider the reference family where the ratio of probabilities is given by
πj/πJ = F (αj)/(1 − F (αj)), hence, if the intercept is null, and setting F (0) = 1/2, it is
evident that the probabilities πj and πJ are equal and so are all the elements in π. This
equality is also valid for the adjacent ratio but neither for sequential nor cumulative. For
the sequential family, we can find that the probabilities will correspond to πj = (1/2)j for
j = 1, . . . , J − 1, and πJ = (1/2)J−1. Conversely, for the cumulative ratio, the intercepts
must be strictly ordered and cannot be all equal to zero. Therefore for this ratio, the
constraint F (0) = 1/2 is not necessary. Remark that the condition F (0) = 1/2 is already
satisfied for the symmetric distributions and has to be imposed for asymmetric cdfs. The
logistic distribution is proposed as the reference cdf since it is part of the canonical link
function. Thus, the second point is given by F (b) = eb/(1 + eb). The authors suggested
to use the quantile of the logistic distribution such that b = qp for some p > 1/2. The
normalized space is then Fqp

= {F ∈ F ∶ F (0) = 1/2, F (qp) = p}. We have that Fm0,s0
∈ Fqp

if ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

m0 = F −1(1/2) ⋅ qp

F −1(p) − F −1(1/2)
s0 = qp

F −1(p) − F −1(1/2) .
The normalized parameters using the above approach are: α′j =m0+αjs0 and δ′j = δjs0

for j = 1, . . . , J −1. We implemented this normalization since it works for any number of
categories, for any type of explanatory variables, and because it does not depend on the
dataset. In the functions of GLMcat, the normalization using the quantile q0.95 (which
can be considered as the standard case, q0.95 ≈ 2.94) is obtained with the argument
normalization = 0.95. The summary() function returns the transformed parameters
when specifying the argument normalized = TRUE. An example of the normalization
of parameters is illustrated in section 3.5.

3.2.3 Design matrix Z

In a linear predictor, one can define constraints to model the effect of the explanatory
variables on the categorical response. Commonly, these constraints have been imposed
only on the slopes and not much attention has been given to the intercepts. In GLMcat,
we divide the design matrix into two blocks: I to control the intercepts and S to control
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the slopes, i.e.,
Z = ( I S ) .

The design matrix can be fully customized using this decomposition. By default for the
reference family of models, the GLMcat package proposes a complete design without
any constraint, i.e., Zc = (Ic∣Sc). This matrix is of dimension (J − 1) × (J − 1)(1 + p),
and has the form:

Zc = ⎛⎜⎝
1 x⊺⋱ ⋱

1 x⊺

⎞⎟⎠ .

Slope design matrix S: the most common constraint is to impose the effects of the
explanatory variables to be constant across the response categories, thus, it is assumed
the existence of a single global effect for each explanatory variable. This constraint
is known as the parallelism or proportional assumption, and the user should verify its
validity before using it (Harrell, 2015). The slope matrix associated with the parallel
design is of dimension (J − 1) × p and has the form:

Sp = ⎛⎜⎝
x⊺⋮
x⊺

⎞⎟⎠ .

A more flexible framework is to consider both kinds of effects, complete and parallel,
the resulting design is known as partial parallel. The following slope matrix of dimension(J−1)×((J−1)p1+p2) represents the design for p1 explanatory variables xc = (x1, . . . , xp1

)
with complete design effects, and p2 explanatory variables xp = (x1, . . . , xp2

) with parallel
effects:

Scp = ⎛⎜⎝
xc
⊺ xp

⊺

⋱ ⋮
xc
⊺ xp

⊺

⎞⎟⎠ .

The glmcat() function assumes by default a parallel design for the cumulative, sequen-
tial, and adjacent ratios. If all predictors are to be set with the complete design, one
should simply specify parallel = FALSE. If the user opts for the partial parallel design,
the variables with a parallel effect must be specified in a string vector in the argument
parallel.

In section 3.5, we further explore the design matrix particularly for nominal response
variables for which the function discrete_cm() allows to specify a particular response
category on which the explanatory variable(s) is expected to have an effect.

Intercept design matrix I: if a single intercept is expected in the linear predictor,
the intercept matrix Ip is simply the vector 1 of size J − 1. The design matrix Ip is
obtained by specifying the string "(Intercept)" in the argument parallel. Remark
that in categorical regression, the parallel design refers to the use of Ic together with
Sp; Ic is used instead of Ip since it refers to the minimal model which estimates the pro-
portions of the response categories without explanatory variables effects. The complete

design Zc = (Ic∣Sc) and the parallel design Zp = (Ic∣Sp) are sufficient to define all the
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classical models, nevertheless, the constraints on I can be further explored.
Christensen (2019) presented some constraints on the intercept for the cumulative

models. For instance, if the distances between the adjacent intercepts are required to
be the same for all pairs (j, j + 1), we can write the intercepts as αj = α1 + (j − 1)θ for
j = 1, . . . , J − 1. In that case, α1 corresponds to the first intercept and θ to the constant
distance between intercepts. This restriction implies that, regardless of the number of
categories, only two parameters must be estimated. The associated design matrix is of
dimension (J − 1) × 2 and has the form:

⎛⎜⎜⎜⎝
1 0
1 1⋮ ⋮
1 J − 2

⎞⎟⎟⎟⎠
.

Another form is given when the intercepts are symmetric around zero, i.e., the categories
are supposed to be equally distant from the central category/categories. For an even
and for an odd number of response categories, the dimension of the intercept matrix is(J − 1) × J/2 and (J − 1) × (J + 1)/2, respectively, and the intercepts and their design
matrices are respectively written as:

αj =
⎧⎪⎪⎨⎪⎪⎩

αJ/2 − θj if j < J/2,

αJ/2 + θJ−j otherwise,
and αj =

⎧⎪⎪⎨⎪⎪⎩
θ0 − θj if j < J/2,

θ0 + θJ−j otherwise,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1⋮ ⋱ −1
0 ⋯ 0

1⋰
1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1⋮ ⋱ −1
1⋰

1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The constraints on the intercepts are only available for the cumulative ratio and should
be specified through the argument threshold by chosing the option among "symmetric"

or "equidistant". The computational instability that is frequently found in the cumu-
lative models can be alleviated with the use of this constraint given that the number of
parameters is reduced. An example of the use of the structured intercepts for cumula-
tive models is presented by Reinhard et al. (2017). In the following, the set of design
matrices will be denoted by Z.

3.2.4 (r, F, Z) genericity

A large number of models for categorical responses have been proposed in the literature.
Depending on the scientific context, some of these models can be differently named
despite having the same formulation. In consequence, the relationships among them are
often unrecognized. Earlier in this paper, we mentioned that any GLM for categorical
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responses can be written as the triplet (r, F, Z). In Table 3.3 we present some of the best-
known models in their original formulation and decomposed into the three components
r, F , and Z. For categorical responses, the (r, F, Z) specification enlarges the number
of possible models to consider. Furthermore, it eases the comparison between them as
we are going to demonstrate in the following.

The multinomial logit model

P(Y = j) =
exp(αj +xtδj)

1 +∑J−1
k=1 exp(αk +xtδk)

(reference, logistic, complete)
πj

πj + πJ

= 1
1 + exp(−αj −xtδj)

The odds proportional logit model

ln
⎧⎪⎪⎨⎪⎪⎩

P(Y ≤ j)
1 − P(Y ≤ j)

⎫⎪⎪⎬⎪⎪⎭ = αj +xtδ

(cumulative, logistic, parallel)
π1 +⋯+ πj = 1

1 + exp(−αj −xtδ)
The proportional hazard model

ln{− ln{P(Y > j∣Y ≥ j)} = αj +xtδ

(sequential, Gompertz, parallel)
πj

πj +⋯+ πJ

= 1 − exp(− exp(αj +xtδ))
The adjacent logit model

ln
⎧⎪⎪⎨⎪⎪⎩

P(Y = j)
P(Y = j + 1)

⎫⎪⎪⎬⎪⎪⎭ = αj +xtδj

(adjacent, logistic, complete)
πj

πj + πj+1

= 1
1 + exp(−αj −xtδj)

The continuation ratio logit model

ln
⎧⎪⎪⎨⎪⎪⎩

P(Y = j)
P(Y > j + 1)

⎫⎪⎪⎬⎪⎪⎭ = αj +xtδj

(sequential, logistic, complete)
πj

πj +⋯+ πJ

= 1
1 + exp(−αj −xtδj)

Table 3.3: (r, F, Z) specification of some classical GLMs for categorical responses.

3.3 Computational details and implementation

The GLMcat package can be installed within R (R Core Team, 2021) using the line of
code: install.packages("GLMcat"). The standard arguments formula and data are
already known from the lm and glm functions from the stats package. The key difference
is that in the glmcat() function, the link of the model must be specified through the
two arguments ratio and cdf. In GLMcat, the response (categorical) variable must be
defined as a factor or an ordered factor. The user can specify/change the order of the
factor levels by means of the ordered() function. Alternatively, and for ease of use,
one can indicate the order as a character vector in the argument categories_order.
An example of the syntax of the glmcat() function for an ordinal response is

R> glmcat ( formula = Level ~ Age , data = DisturbedDreams ,
+ c a t e g o r i e s_order = c ( "Not . s eve r e " , " Severe . 1 " , " Severe . 2 " ,
+ "Very . s eve r e " ) , r a t i o = " adjacent " , cd f = " gompertz " )
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For non-ordered response variables, the user must use the reference ratio, for which by
default, the reference category is set to be the last level of the response factor variable.
The user can also specify manually the reference category in the argument ref_category

as in the following

R> glmcat ( formula = Level ~ Age , data = DisturbedDreams ,
+ r e f_category = "Very . s eve r e " , r a t i o = " r e f e r e n c e " ,
+ cdf = " gompertz " )

The object generated by the glmcat function is compatible with the usual generic meth-
ods: coef() for the parameter estimates β̂ and confint() for their confidence intervals,
logLik() for the log-likelihood, nobs() for the number of observations n, predict() to
obtain η̂ (if type = "linear.predictor") or π̂ (if type = "prob"), vcov() to obtain
the variance-covariance matrix of the parameters of the fitted object, plot() to repre-
sent graphically the log-likelihood profile over the iterations, and summary() to generate
the summary of the fitted model. The AIC() and the BIC() functions are available to
obtain the values of the Akaike’s information criterion (AIC) and the Bayesian informa-
tion criterion (BIC), respectively. As for the regressions tests (available in the function
anova()), we implemented the Wald test to check H0 ∶ βj = 0. In addition, to investigate
the relevance of terms in the linear predictor, one can obtain the likelihood-ratio test
that compares nested models by specifying the two models in the anova() function. We
also adapted the step() function of the stats package to incorporate the classical step-
wise variable selection for (r, F, Z) models. The resulting function, offers both forward
and backward directions. The specification direction = "backward" starts with the
full model and sequentially deletes predictors, it supports the definition of some or all
variables with the parallel design, while the forward direction is compatible with the
complete or with the parallel design but not with the partial parallel design.

Note that the link function g ∶∆→ RJ−1 is differentiable if the ratio r ∶∆→ (0, 1)J−1

and the cdf F ∶ R→ (0, 1) are both differentiable. All the cdfs available in GLMcat (see
Table 3.2) are differentiable (i.e., there exists a density function such that f = F ′). The
four ratios are also differentiable, thus, we use the Fisher’s scoring algorithm for the
estimation of the model. In the following, we present the form of the algorithm in the
iteration t

β[t+1] = β[t] − {E( ∂2l

∂β⊺∂β
)

β=β[t]
}
−1

( ∂l

∂β
)

β=β[t]
.

Applying the chain rule to l = ln P (y∣x; β) we obtain the score

∂l

∂β
= ∂η

∂β

∂π

∂η

∂θ

∂π

∂l

∂θ
.

Since the response distribution belongs to the exponential family, it becomes

∂l

∂β
= Z⊺

∂π

∂η
Cov(Y ∣x)−1(y −π).
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Then, using the decomposition of the link function presented in Equation 3.1, we obtain

∂l

∂β
= Z⊺

∂F

∂η

∂π

∂r
Cov(Y ∣x)−1(y −π) ,

and the Fisher’s information matrix

E( ∂2l

∂β⊺∂β
) = −Z⊺∂F

∂η

∂π

∂r
Cov(Y ∣x)−1 ∂π

∂r⊺
∂F

∂η⊺
Z.

Remark that the Jacobian matrix ∂F /∂η is the diagonal matrix of densities {f(ηj)}j=1,...,J−1;
the Jacobian matrices associated to each ratio ∂π/∂r are detailed in Appendix B.2. Note
that the above calculations of the score and the Fisher’s information matrices concern
only one observation. To obtain the total expected result, the contributions of the n

observations have to be added.

Computational difficulties for the maximum likelihood are expected when either
complete or quasi complete separation occurs in the dataset, this is due to the fact that
the MLE is not unique in that case. Another situation involving such difficulties occurs
for the cumulative ratio used together with a complete or partially parallel design; these
models are not invertible and the algorithm might fail to converge (more details are
given in section 3.4). The standard numerical optimization techniques have no way
of detecting this problem and will keep iterating until the iteration’s bound is reached
(Albert and Anderson, 1984). The convergence criteria for the Fisher’s scoring algorithm
is set to be reached in GLMcat when

∣l(β[t+1]) − l(β[t])∣
ε + ∣l(β[t+1])∣ > ε

n
, (3.3)

where ε = 0.0001 by default. Thus, the algorithm will stop iterating either when the
maximum number of iterations is met, or until the Expression 3.3 becomes true. In case
of convergence problems, an additional strategy is to initialize the model parameters
β[0] specifying a numerical vector in the argument control_glmcat. For the reference,
adjacent and sequential ratios, the algorithm is initiated with β[0] as the null vector.
Conversely, the intercepts of cumulative models are symmetrically and ascendingly de-
fined around 0, thus α0

1 < α0
2 < . . . < α0

J−1. In GLMcat, the user can also modify the num-
ber of iterations (which by default is 25), and the size of the convergence tolerance given
by ε with the argument control_glmcat, for example: control_glmcat(iterations

= 30, epsilon = 0.0001).

As Wickham (2015) states, R is a high-level expressive language, and that expressiv-
ity comes at a price: speed. In order to improve the speed of the functions in GLMcat,
we incorporated C++ code through the Rcpp package (Eddelbuettel et al., 2020). The
algorithms are implemented in a modular manner, meaning that enhancement or ad-
justment can be easily extended to all the families of models.
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3.4 Models for ordinal responses

Based on the common foundation exposed by the triplet (r, F, Z), it is possible to
describe some properties of the models for categorical responses (Peyhardi et al., 2015).
Such information empowers the practitioner to adequately choose (from a wide range of
options) the model that best suits the characteristics of the data. As indicated in the
past sections, the link function is composed of r and F . By changing either of them,
we can obtain improvements in terms of the goodness-of-fit measures. Nevertheless,
the performance of a model is not merely measured through the fit. The foremost
consideration for choosing a model should be the consistency among the nature of the
data, the modeling objectives, and the model’s features. In the following, we introduce
and illustrate on real datasets, by means of GLMcat, the properties of the GLMs for
ordinal responses. We intend to guide the practitioner in the selection process of the
link function.

3.4.1 Reversibility

To announce the reversibility property of the models for ordinal responses, we need to
recall the following definitions introduced by Peyhardi et al. (2015):

• The models (r, F, Z) and (r′, F ′, Z ′) are said to be equivalent if one is a repa-
rameterization of the other, i.e., there exists a bijection h from Θ to Θ′ such that
r−1 ○F {Z(x)β} = r′−1 ○F ′{Z ′(x)h(β)}, for all x ∈ X , and all β ∈ Θ.

• The models (r, F, Z) and (r′, F ′, Z ′) are said to be equal if the corresponding
distributions of y∣x are equal, i.e., if r−1 ○F {Z(x)β} = r′−1 ○F ′{Z ′(x)β}, for all
x ∈ X , and all β ∈ Θ.

Note that the equality between models implies that they are equivalent.

• An (r, F, Z) model is said to be invariant under a permutation σ of {1, . . . , J}, if
it is equivalent to the (r, F, Z)σ model which is defined on the permuted vector
πσ = (πσ(1), . . . , πσ(J−1)).

On the basis of the above definitions, an (r, F, Z) model is said to be reversible
if it is invariant under the reverse permutation σ̃ defined by σ̃(j) = J − j + 1 for all
j ∈ {1, . . . , J − 1}. The reversibility property was first studied for cumulative models
with some specific distributions by McCullagh (1980). Later, Peyhardi et al. (2015)
generalized it for all symmetric distributions as well as for the adjacent ratio.

Proposition 2. The (adjacent, F, Z) and the (cumulative, F, Z) models are reversible
for all symmetric cdfs F and all the design matrices Z proposed in this package.

McCullagh (1980) suggests that depending on the application, the reversibility may
be seen as an appealing property, for example, when the response is given by an ordered
scale.

Moreover, for any cdf F ∈ F and Z ∈ Z, we have that:
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Proposition 3. The (adjacent, F, Z)σ̃ model and the (cumulative, F, Z)σ̃ model
are respectively equal to the (adjacent, F̃ , −P̃Z) and the (cumulative, F̃ , −P̃Z), where
F̃ (η) = 1−F (−η), and P̃ is the restricted reverse permutation matrix of dimension J −1:

P̃ = ⎛⎜⎝
1⋰

1

⎞⎟⎠ . (3.4)

Refer to the Appendix B.3 for the demonstration.
Note that if a cdf is symmetric then F̃ = F ; for asymmetric distributions, as the

Gumbel cdf, F̃ corresponds to its symmetric counterpart, in this example, the Gom-
pertz cdf. For a practical illustration of Proposition 3, consider the observations of the
boys’ disturbing dreams benchmark dataset presented by Maxwell (1961). This study
cross-classified boys by their age x (which corresponds to the mid-point values for each
stratum of 2 or 3 years, and it is treated as a continuous explanatory variable), and
the severity of their disturbing dreams Y on a four-point scale of increasing severity.
The data is available as the object DisturbedDreams in the GLMcat package. The(adjacent, Gumbel, parallel) model is defined as:

R> adj_gumbel_p <− glmcat ( formula = Level ~ Age ,
+ data = DisturbedDreams , r a t i o = " adjacent " ,
+ cdf = " gumbel " , c a t e g o r i e s_order = c ( "Not . s eve r e " ,
+ " Severe . 1 " , " Severe . 2 " , " Very . s eve r e " ) )
R> logL ik ( adj_gumbel_p)

’ l og ␣Lik . ’ −279.9612 ( df=4)

R> summary( adj_gumbel_p)

Leve l ~ Age
r a t i o cd f nobs n i t e r l ogL ik

Model i n f o : ad jacent gumbel 223 (7 ) −279.9612
Estimate Std . Error z va lue Pr(>| z | )

( I n t e r c ep t ) Not . s eve r e 0 .22676 0.26157 0 .867 0 .386
( In t e r c ep t ) Severe . 1 −0.36548 0.24270 −1.506 0 .132
( In t e r c ep t ) Severe . 2 −0.33321 0.22899 −1.455 0 .146
Age 0.07146 0.01806 3 .957 7 .59 e−05 ∗∗∗

Now, inverting the order of the categories in the argument categories_order, and
using the symmetric counterpart cdf of the Gumbel, we fit the (adjacent, Gompertz,

parallel)σ̃ model:

R> adj_gompertz_rev <− glmcat ( formula = Level ~ Age ,
+ data = DisturbedDreams , r a t i o = " adjacent " , cd f = " gompertz " ,
+ c a t e g o r i e s_order = c ( "Very . s eve r e " ,
+ " Severe . 2 " , " Severe . 1 " , "Not . s eve r e " ) )
R> logL ik ( adj_gompertz_rev )
’ l og ␣Lik . ’ −279.9612 ( df=4)

R> summary( adj_gompertz_rev )

Leve l ~ Age
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r a t i o cd f nobs n i t e r l ogL ik
Model i n f o : ad jacent gompertz 223 7 −279.9612

Estimate Std . Error z va lue Pr(>| z | )
( I n t e r c ep t ) Very . s eve r e 0 .33321 0.22899 1 .455 0 .146
( In t e r c ep t ) Severe . 2 0 .36548 0.24270 1 .506 0 .132
( In t e r c ep t ) Severe . 1 −0.22676 0.26157 −0.867 0 .386
Age −0.07146 0.01806 −3.957 7 .59 e−05 ∗∗∗

Note that the estimations of the parameters of the last model are reversed but its log-
likelihood is the same. This would also be true using any symmetric cdf. Given Property
2, the cumulative and the adjacent models are suitable for the type of responses that have
an ordering scale associated with their categories. However, the reversibility property
is not valid for the sequential models since these are non-invariant under the reverse
permutation. The user should consider the sequential ratio if there is a time-related
notion or a time-ordered process (which cannot be reversed) implicit in the response.
For instance, the education level (see Figure 18) is conditioned on the completion of
the previous degrees. The sequential ratio is the only one that takes into account this
particularity of the response variable, for this reason, it is commonly employed in time
survival analysis.

Figure 18: Scale ordering in severity of disturbed dreams versus process ordering in the
educational path.

3.4.2 Latent variable interpretation

As considered by McCullagh (1980), the (cumulative, logistic, proportional)model can
be seen as if the observed Y was originated from the categorization of a latent continuous
variable Ỹ . This latent variable follows a linear regression model Ỹ = α̃+x⊺δ̃ + ε, where−∞ = α′0 < α′1 < . . . α′J−1 < α′J = ∞ are the strictly-ordered cut-points, and ε is a noise
variable with cdf F . To model this categorization process, the cumulative ratio assumes
that the J − 1 cut-points partition Ỹ into J observable ordered categories of Y , i.e.,

{Y = j}⇔ α′j−1 < Ỹ ≤ α′j,
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for j = 1, . . . , J . The cumulative probabilities are

P(Y ≤ j∣x) = P(Ỹ ≤ α′j)
= P(ε ≤ α′j − α̃ −x⊺δ̃)
= F (αj +x⊺δ)

with αj = α′j − α̃, and δ = −δ̃. We represent this structure (for J = 4) in Figure 19, where
we can see that

πj = P(α′j−1 < Ỹ < α′j).
The order structure is more easily interpretable using the notion of the latent continuous
variable where the categories are considered as successive intervals (α′j−1, α

′
j]. Remark

that this only holds when the constraint of proportionality is assumed for all explanatory
variables. In the other cases (complete or partial parallel design) the interpretation in
terms of the latent variable is no longer accurate.

Figure 19: The cumulative model represented through a latent continuous variable.

The sequential ratio assumes that the successive choices between category j and the
categories over j is determined by the latent variables Ỹj = α̃+x⊺δ̃j+εj, for j = 1, . . . , J−1,
where the residuals εj are independent and identically distributed according to the cdf
F . This sequential mechanism can be viewed as a binary process at each transition,
thus, it is appropriate when the assumption of a single underlying latent variable does
not hold. We can write then

{Y = j} = j−1⋂
k=1

{Ỹk > α′k}⋂{Ỹj ≤ α′j},
so the conditional probabilities of the event {Y = j∣Y ≥ j} for j = 1, . . . , J can also be
written as {Y = j∣Y ≥ j} = {Ỹj ≤ α′j}, then, we have

P(Y = j∣Y ≥ j; x) ∶= F (αj +x⊺δj),
where αj = α′j − α̃, and δj = −δ̃j. In Figure 20, we illustrated the sequential model with
a process that starts from category 1. If Ỹ1 ≤ α̃1 the process stops and we have Y = 1,
otherwise, i.e., Ỹ1 > α̃1, the process continues and we know that it will at least reach
category 2. The process continues in this way until the last category is reached. In this
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context, we can represent the probabilities of each category as

πj = P(Ỹj < α̃j) j−1∏
k=1

P(Ỹk > α̃k).
The transition can be interpreted in terms of the difficulty of reaching the next category.
Upper levels can only be achieved if previous levels were visited earlier and not kept.
Therefore the model is built around the conditionality principle.

Figure 20: The sequential model represented as latent continuous variables.

The adjacent ratio describes the probability that category j rather than category
j + 1 is achieved: {Y = j∣Y ∈ {j, j + 1}} = {Ỹj ≤ α′j}
for j = 1, . . . , J −1. In Figure 21, we represent the adjacent ratio using latent continuous
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variables. Note that each category j is present in two different latent variables Ỹj and
Ỹj+1. In contrast to the cumulative and the sequential ratio, πj cannot be written only
in terms of the latent variables:

πj = P(Ỹj < α̃j)(πj + πj+1).
As a result, this ratio lacks of interpretability since there is not a natural process that
leads to its formulation.

Figure 21: The adjacent model represented as a latent continuous variables.

3.4.3 Invertibility

An (r, F, Z) model is said to be invertible if its link function is invertible, i.e.,

π = r−1 ○ F (η) ∈∆, ∀η ∈ RJ−1.

For the cumulative ratio we have

πj = F (ηj) − F (ηj−1),
and thus, ηj−1 > ηj implies πj < 0. Therefore, the family of cumulative models is
not invertible. To illustrate the case of a non-invertible model, consider the effect on
road accident severity caused by the speed limit (speed_limit), the road type (road

and urban_or_rural_area), the light (light_conditions), and the weather condi-
tions (weather) of the road where the accident occurred. We also considered as an
explanatory variable the number of casualties (number_of_casualties) which is cer-
tainly an important factor in determining the severity of the accident. For this analysis,
we used the data from 2019 openly available in https://data.gov.uk and accessi-
ble using the stats19 package (Lovelace et al., 2019). In the presence of the ordered
response variable (accident severity with levels: slight, serious, and fatal), the ratio
candidates to consider are cumulative, sequential, and adjacent. We first tried to fit
the (cumulative, Cauchy, complete) model but due to the strong restriction of the
cumulative ratio, the model failed to converge:

R> glmcat ( acc ident_s e v e r i t y ~ road + urban_or_ru r a l_area +
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+ day_of_week + number_o f_c a s u a l t i e s + weather +
+ l i g h t_cond i t i on s + speed_l im i t , data = acc ident s ,
+ p a r a l l e l = F, r a t i o = " cumulat ive " , cd f = " cauchy " )

Warning messages :
1 : In .GLMcat( formula = formula , data = data , r a t i o = ra t i o ,

cd f = cdf , :
F i sher matrix i s not i n v e r t i b l e . Check f o r convergence problems

One of the simplest ways of tackling this problem is to impose the constraint ηj−1 < ηj

through the use of the parallel design. Evidently, the parallel constraint reduces the
complexity of the Fisher’s scoring algorithm since the condition to preserve the order
in the successive iterations is only linked to the intercepts, i.e., αj−1 < αj. However, to
our knowledge, no previous research has investigated the validity of this constraint in
iteration t after having imposed it in iteration 0. A widely used model with the parallel
constraint is the odds proportional logit model. Its widespread popularity is due to the
fact that it is ideal in terms of interpretation ease and of model parsimony (Abreu et al.,
2008). However, in practice, the parallel assumption does not usually hold when consid-
ering more than one explanatory variable (Lall, 2002), thus, this restrictive assumption
is often violated. Continuing with the example, the (cumulative, Cauchy, parallel)
model is successfully fitted through:
R> summary( glmcat ( acc ident_s e v e r i t y ~ road + urban_or_ru r a l_area +
+ day_of_week + number_o f_c a s u a l t i e s + weather +
+ l i g h t_cond i t i on s + speed_l im i t , data = acc ident s ,
+ p a r a l l e l = T, r a t i o = " cumulat ive " , cd f = " cauchy " ) )

acc ident_s e v e r i t y ~ road + urban_or_ru r a l_area + day_of_week +
number_o f_c a s u a l t i e s + weather + l i g h t_cond i t i on s + speed_l im i t

r a t i o cd f nobs n i t e r l ogL ik
Model i n f o : cumulat ive cauchy 109577 (10) −62593

Estimate Std . Error z va lue Pr(>| z | )
( I n t e r c ep t ) S l i g h t 1 .819854 0.103695 17 .55 < 2e−16 ∗∗∗
( In t e r c ep t ) Se r i ou s 22.134261 0.544747 40 .63 < 2e−16 ∗∗∗
roadOne way s t r e e t −0.082418 0.096072 −0.86 0 .39096
roadRoundabout 0.247637 0.066977 3 .70 0 .00022 ∗∗∗
roadS ing l e carr iageway −0.502254 0.030708 −16.36 < 2e−16 ∗∗∗
roadS l ip road 0.431389 0.115313 3 .74 0 .00018 ∗∗∗
urban_or_ru r a l_areaUrban 0.265489 0.026713 9 .94 < 2e−16 ∗∗∗
day_of_weekMonday 0.033254 0.035015 0 .95 0 .34226
day_of_weekSaturday −0.096729 0.033531 −2.88 0 .00392 ∗∗
day_of_weekSunday −0.196414 0.033577 −5.85 4 .9 e−09 ∗∗∗
day_of_weekThursday −0.036032 0.033538 −1.07 0 .28266
day_of_weekTuesday 0.045625 0.034784 1 .31 0 .18963
day_of_weekWednesday −0.007348 0.034093 −0.22 0 .82935
number_o f_c a s u a l t i e s −0.155693 0.009172 −16.98 < 2e−16 ∗∗∗
weatherFine no high winds 0.106271 0.077432 1 .37 0 .16993
weatherFog or mist 0 .370257 0.169997 2 .18 0 .02940 ∗
weatherRaining + high winds 0.081563 0.105066 0 .78 0 .43757
weatherRaining no high winds 0.226007 0.081171 2 .78 0 .00536 ∗∗
weatherSnowing 0.549765 0.207627 2 .65 0 .00810 ∗∗
l i g h t_cond i t i on sDay l i gh t 0 .209250 0.019735 10 .60 < 2e−16 ∗∗∗
speed_l im i t −0.010764 0.000921 −11.69 < 2e−16 ∗∗∗
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On the other hand, we observe that the adjacent and the sequential models are both
invertible using any form of the linear predictor. We can write the probabilities of the(adjacent, F, Z) models as:

πj = ∏J−1
k=j F (ηk)/(1 − F (ηk))

1 +∑J−1
k=1 F (ηk)/(1 − F (ηk)) ,

and the probabilities of (sequential, F, Z) models in the form:

πj = F (ηj) j−1∏
k=1

(1 − F (ηk)).
In both cases, one can readily identify that 0 < πj < 1 for all j ∈ {1, ..., J − 1} such that
∑J

j=1 πj = 1. If the slope effect is expected to be different for each category and the
cumulative ratio fails to fit the model, the practitioner should consider the adjacent or
sequential ratios instead. For our example, since the order of the response categories is
not time-dependent, we fit the (adjacent, Cauchy, complete) model obtaining:
R> summary( glmcat ( acc ident_s e v e r i t y ~ road + urban_or_ru r a l_area +
+ day_of_week + number_o f_c a s u a l t i e s + weather +
+ l i g h t_cond i t i on s + speed_l im i t , data = acc ident s ,
+ p a r a l l e l = F, r a t i o = " adjacent " , cd f = " cauchy " ) )

acc ident_s e v e r i t y ~ road + urban_or_ru r a l_area + day_of_week +
number_o f_c a s u a l t i e s + weather + l i g h t_cond i t i on s + speed_l im i t

r a t i o cd f nobs n i t e r l ogL ik
Model i n f o : ad jacent cauchy 109577 (14) −62060

Estimate Std . Error z va lue Pr(>| z | )
( I n t e r c ep t ) S l i g h t 1 .97092 0.11264 17 .50 < 2e−16 ∗∗∗
( In t e r c ep t ) Se r i ou s 9 .89386 0.95812 10 .33 < 2e−16 ∗∗∗
roadOne way s t r e e t S l i g h t −0.09133 0.10924 −0.84 0 .40312
roadOne way s t r e e t Se r i ou s 3 .46606 3.39346 1 .02 0 .30707
roadRoundabout S l i g h t 0 .27694 0.07647 3 .62 0 .00029 ∗∗∗
roadRoundabout Se r i ou s 6 .13180 2.42201 2 .53 0 .01135 ∗
roadS ing l e carr iageway S l i g h t −0.55281 0.03403 −16.25 < 2e−16 ∗∗∗
roadS ing l e carr iageway Se r i ou s −1.06469 0.22537 −4.72 2 .3 e−06 ∗∗∗
roadS l ip road S l i g h t 0 .48098 0.13217 3 .64 0 .00027 ∗∗∗
roadS l ip road Se r i ou s −0.36728 0.47703 −0.77 0 .44134
urban_or_ru r a l_areaUrban S l i g h t 0 .29358 0.02930 10 .02 < 2e−16 ∗∗∗
urban_or_ru r a l_areaUrban Se r i ou s 0 .58181 0.35379 1 .64 0 .10007
day_of_weekMonday S l i g h t 0 .03669 0.03844 0 .95 0 .33982
day_of_weekMonday Se r i ou s −0.37198 0.31697 −1.17 0 .24058
day_of_weekSaturday S l i g h t −0.10704 0.03657 −2.93 0 .00342 ∗∗
day_of_weekSaturday Se r i ou s −0.51803 0.29851 −1.74 0 .08267 .
day_o f_weekSunday S l i g h t −0.21198 0.03652 −5.80 6 .4 e−09 ∗∗∗
day_of_weekSunday Se r i ou s −0.44009 0.30439 −1.45 0 .14822
day_of_weekThursday S l i g h t −0.03646 0.03678 −0.99 0 .32151
day_of_weekThursday Se r i ou s −0.20658 0.32653 −0.63 0 .52695
day_of_weekTuesday S l i g h t 0 .05491 0.03830 1 .43 0 .15164
day_of_weekTuesday Se r i ou s −0.50526 0.30869 −1.64 0 .10168
day_of_weekWednesday S l i g h t −0.00162 0.03749 −0.04 0 .96559
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day_of_weekWednesday Se r i ou s −0.58575 0.30017 −1.95 0 .05101 .
number_o f_c a s u a l t i e s S l i g h t −0.17765 0.00967 −18.37 < 2e−16 ∗∗∗
number_o f_c a s u a l t i e s Se r i ou s −0.22305 0.03731 −5.98 2 .3 e−09 ∗∗∗
weatherFine no high winds S l i g h t 0 .12416 0.08344 1 .49 0 .13675
weatherFine no high winds Se r i ou s 0 .60544 0.42456 1 .43 0 .15385
weatherFog or mist S l i g h t 0 .38626 0.18480 2 .09 0 .03660 ∗
weatherFog or mist Se r i ou s −0.43593 0.54573 −0.80 0 .42441
weatherRaining + high winds S l i g h t 0 .10872 0.11401 0 .95 0 .34029
weatherRaining + high winds Se r i ou s 0 .28617 0.56831 0 .50 0 .61458
weatherRaining no high winds S l i g h t 0 .25111 0.08761 2 .87 0 .00415 ∗∗
weatherRaining no high winds Se r i ou s 1 .73089 0.53283 3 .25 0.00116 ∗∗
weatherSnowing S l i g h t 0 .59895 0.22914 2 .61 0 .00895 ∗∗
weatherSnowing Se r i ou s 2 .17619 2.17244 1 .00 0 .31648
l i g h t_cond i t i on sDay l i gh t S l i g h t 0 .23617 0.02150 10 .99 < 2e−16 ∗∗∗
l i g h t_cond i t i on sDay l i gh t Se r i ou s 0 .86121 0.15687 5 .49 4 .0 e−08 ∗∗∗
speed_l im i t S l i g h t −0.01167 0.00101 −11.60 < 2e−16 ∗∗∗
speed_l im i t Se r i ou s −0.11368 0.01157 −9.82 < 2e−16 ∗∗∗

In the analysis of the road accidents, the complete design could not be fitted using the
cumulative ratio. For this reason, we considered the (cumulative, Cauchy, parallel)
model for which the AIC results to be 125227. Then, we used the adjacent ratio aiming
to investigate the complete design. From the reported output of the (adjacent, Cauchy,

complete) model, one can observe that many of the explanatory variables are significant
in their complete form. Although the number of model parameters was increased, we
observed an improvement in terms of the AIC which for the adjacent model was 124199.

3.4.4 Total invariance

An (r, F, Z) model is said to be totally invariant if it is invariant under all permuta-
tions of the response categories. It is well known that the MNL or equivalently, the(reference, logistic, complete) model is totally invariant. Agresti (2010) demonstrated
that this model is equivalent to the (adjacent, logistic, complete) model. To illus-
trate this equivalence, consider the two models: (reference, logistic, complete) and(adjacent, logistic, complete), for the DisturbedDreams dataset:

R> mod_r e f_log_c <− glmcat ( formula = Level ~ Age , r a t i o = " r e f e r e n c e " ,
+ p a r a l l e l = F, data = DisturbedDreams , cd f = " l o g i s t i c " )
R> mod_adj_log_c <− glmcat ( formula = Level ~ Age , r a t i o = " adjacent " ,
+ p a r a l l e l = F, data = DisturbedDreams , cd f = " l o g i s t i c " )
R> logL ik (mod_r e f_log_c ) ; l ogL ik (mod_adj_log_c )

’ l og ␣Lik . ’ −277.1345 ( df=6)
’ l og ␣Lik . ’ −277.1345 ( df=6)

co e f (mod_r e f_log_c )

( I n t e r c ep t ) Not . s eve r e −2.454
( In t e r c ep t ) Severe . 1 −0.555
( In t e r c ep t ) Severe . 2 −1.125
Age Not . s eve r e 0 .310
Age Severe . 1 0 .060
Age Severe . 2 0 .112
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co e f (mod_adj_log_c )

( I n t e r c ep t ) Not . s eve r e −1.8998
( In t e r c ep t ) Severe . 1 0 .5700
( In t e r c ep t ) Severe . 2 −1.1246
Age Not . s eve r e 0 .2500
Age Severe . 1 −0.0523
Age Severe . 2 0 .1123

Remark that the log-likelihoods of the last two models are equal but the estimations
of the parameters are different. As demonstrated by Peyhardi et al. (2015), there exists
a matrix A (see Appendix B.3 for details), such that Aα = α′ for the intercepts, and
Aδ = δ′ for the slopes.

R> A <− matrix ( c (1 , 0 , 0 , −1 , 1 , 0 , 0 , −1 , 1 ) , nrow = 3)
R> A %∗% coe f (mod_r e f_log_c ) [ 1 : 3 ]

[ 1 , ] −1.8998
[ 2 , ] 0 .5700
[ 3 , ] −1.1246

R> A %∗% coe f (mod_r e f_log_c ) [ 4 : 6 ]

[ 1 , ] 0 .2500
[ 2 , ] −0.0523
[ 3 , ] 0 .1123

As well as the (reference, logistic, complete), the (adjacent, logistic, complete) model
is totally invariant and therefore, it is inappropriate for ordinal responses. Apart from
this model, any other model in the adjacent family preserves the order assumption, yet,
this family has usually been ignored when dealing with ordinal responses.

3.4.5 Choice of an ordinal model

Several authors have suggested that the choice of the model to fit ordinal responses
should correspond to the underlying nature of the response variable (Ananth and Klein-
baum, 1997; O’Connell, 2006; Agresti, 2010). On the basis of the above-mentioned
properties, we can define some general guidelines for this choice. Firstly, it is impor-
tant to differentiate whether the ordinal variable has a temporal foundation associated
with the occurrence of the categories (time-ordered process); or if it was drawn from an
ordered scale which would still be interpretable, even if the order of the categories is
reversed (Figure 18 illustrates an example of this differentiation). In the time-ordered
process scenario, it is assumed that to reach category j it was necessary to have vis-
ited the previous categories 1, . . . , j − 1. Consider the example of the level of education
attained by different people. Following a traditional academic path, it is possible to
attend high school only after the completion of both elementary and middle school. In
this case, the sequential ratio would be the best option to work with, since it is the one
that best captures this dynamic process.

For the ordered scale response variables, either the cumulative or adjacent ratio can
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be used since they are reversible. However, the adjacent ratio is invertible but there is no
interpretation in terms of a latent variable. By contrast, the cumulative ratio relies on
the latent variable formulation, but, it is not invertible (see Table 3.4). In practice, this
means that when the practitioner wants to specify either a complete or a partial parallel
design, some computation problems may occur when using the cumulative. Moreover,
the interpretation via a latent variable does not hold for the cumulative ratio with
a design different from the parallel. Therefore, as the adjacent ratio is invertible, the
adjacent family of models should be preferred. Still, the cumulative models are the most
widely used in literature. Perhaps, the unpopularity of the adjacent ratio is because,
in the current software, the only possible cdf to use as part of the link function is the
logistic cdf; even though, the (adjacent, logistic, complete) model is not appropriate
for ordered responses due to its total invariance property. GLMcat is the first package
that allows fitting any model from the family of models (adjacent, F, Z), where F and
Z can be chosen from the range of options presented in the previous section.

Reversibility
Latent variable
interpretation

Invertibility
Not totally
invariant

Sequential
Cumulative (i)
Adjacent (ii)

(i) true only with the parallel design Zp,
(ii) true only if F is different from Logistic or if Z ≠ Zp.

Table 3.4: Properties of the ratios for ordinal responses; shaded cells indicate that the
property is valid.

As for the matrix design, multiple alternatives can be considered. Some researchers
prefer to start by using the parallel design for all the explanatory variables. If the
model fits poorly they might include separate effects by considering the complete design
for some or all of the explanatory variables. Other options to address the concern of
an inadequate parallel assumption are using different cdfs or adding additional terms
to the linear predictor. Furthermore, models with different designs can be compared
using the AIC and/or the BIC as measures for parsimony. A conventional technique
that aims to minimize some of these criteria is the stepwise variable selection, also
available in GLMcat. Likewise, several options can be used for the cdf component. As
mentioned above, the comparison of parameter estimates requires special attention if
different distributions are specified. Furthermore, the assumptions of the model on the
response are strongly shaped by the choice of the cdf. This is the case of the interaction
between the adjacent ratio and the logistic cdf.

Figure 22 compiles the key points we have presented in this section. In summary,
we recommend to use a sequential model if there is a time-ordered process among cat-
egories. If there is a scale ordering, use a cumulative or adjacent model since they are
both reversible. Given that the interpretability through latent variables can be advan-
tageous, we suggest favoring the use of a cumulative model whenever the assumption
of parallelism is valid. Otherwise, opt for an adjacent model since it is invertible, and
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we urge to not use the logistic cdf to avoid the total invariance. We intended to give
some general recommendations, however, each analysis has its own particularities which
should be addressed from each of the three angles specified by the ratio r, the cdf F ,
and the design matrix Z. We encourage the user to fit and compare a set of models
under different criteria in order to find the (r, F, Z) triplet that best approaches their
research questions.

Figure 22: Schematic guide for choosing the appropriate ratio according to the charac-
teristics of the response.

3.5 Models for nominal responses

The MNL is the most popular regression model for categorical responses. In the case
of a nominal response, it is often the only model available; except in discrete choice
(DC) theory where some extensions have been proposed. In this specific DC framework,
the MNL can be interpreted in terms of an underlying behavioral model, the so-called
random utility maximisation (RUM) model, i.e., P(Y = j) = P(Uj = maxk Uk), where
Uj = ηj +εj and εj’s are independently Gumbel distributed. The Uj associated with each
alternative j (category j) is called random utility. Two classical extensions are frequently
used as RUM models: the multinomial probit (MNP) model, for which ε = (ε1, . . . , εJ)
follows a multivariate normal distribution, and the nested logit (NL) model, for which
the residuals εj are independent and follow a generalized Gumbel distribution. There
are some difficulties with the interpretation and the inference of these models. Since the
MLE of the NL model cannot be directly obtained, the model estimation is computed
either simultaneously (best alternative when there are less than four nested levels) or
sequentially (which might lead to a suboptimal log-likelihood at convergence); more
details about this are given by Forinash and Koppelman (1993) and Louviere et al.
(2000). On the other hand, the estimation of MNP models can be complex (specially
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when J > 3) due to the underlying multidimensional integrals of the multivariate normal
density function (Geweke et al., 1994).

We propose to use an extension of the MNL in the DC framework based on the
reference model’s family: (reference, F, Z), where Z can take into account variables
specific to the alternatives {ωj}j=1,...,J . The linear predictor takes the general form: ηj =
αj +x⊺δj +(ωj −ωJ)⊺γ, for j = 1, . . . , J −1, thus, the design matrix, where ω̃j = ωj −ωJ ,
has the form:

⎛⎜⎝
1 x⊺ ω̃⊺1⋱ ⋱ ⋮

1 x⊺ ω̃⊺J−1

⎞⎟⎠ .

Note that these models are invariant only under the permutation that fixes the
reference alternative (see Peyhardi et al., 2015, for details). In other words, contrary to
the MNL, changing the reference alternative leads to a different model (except if F =
logistic). The advantages of the reference models (versus MNP or NL) are:

• they include MNL as a special case (F = logistic),

• their simple inference procedure (Fisher’s scoring algorithm),

• their simple interpretation since each alternative is compared to a reference alter-
native πj

πj+πJ
= F (ηj).

Another good property is the invertibility which is evident from writing the probabilities
of the model in the form:

πj = F (ηj)/(1 − F (ηj))
1 +∑J−1

k=1 F (ηk)/(1 − F (ηk)) .
It should be remarked that the reference models are DC models but not RUM models.

Moreover, the (reference, normal, Z) model is different from the MNP model.
We propose to use the family of (reference, Student(ν), Z) models, which is an

alternative that grants robustness and flexibility through the Student cdf. Indeed, Pey-
hardi (2020) showed that the influence function is bounded with the Student cdf (con-
trary to the logistic or normal cdfs). Consequently, these models are less sensitive to
outliers than the MNL, in addition, they seem to be less sensitive to noisy explanatory
variables. The Student cdf itself generates a family of models as different fits are ex-
pected when changing ν. The flexibility we previously mentioned, lies in the increase
of the range of possible cdfs to consider as part of the link function. For instance, the
three most popular link functions can be obtained with

• ν = 1⇒ Fν = Cauchy,

• ν = 8⇒ Fν ≃ logistic, and

• ν →∞⇒ Fν = normal.
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The Student distribution has been further extended by using a non-centrality param-
eter µ. This generalization is known as the non-central t distribution. The resulting
cdf is also available in GLMcat and can be used by specifying its parameters: cdf =

list("noncentralt", df = 5, mu = 2). Note that the non-central t distribution is
asymmetric unless µ = 0 (in which case it is equivalent to the Student cdf). A detailed
description of this distribution can be found in Johnson et al. (1995) and its pdf is
recalled in Appendix B.1.

To estimate these models in GLMcat, we create the function discrete_cm() which
requires data in a long format (an example is given in the following). Thus, for each
individual (or decision-maker), there are multiple observations (rows), one for each of
the alternatives the individual could choose. We call the group of observations for
an individual a case. Each case represents a single statistical observation (although it
comprises multiple observations), and the identification column of the n cases should be
specified in the argument case_id. The user must be aware that the discrete_cm()

function has been built for the particular case of explanatory variables specific to the
alternatives. If not required, the user can call the glmcat() function using the reference
ratio.

Application

Consider the dataset studied by Louviere et al. (2000) in which 210 passengers choose
one travel mode among the J = 4 options: air, train, bus, and car (available in GLMcat as
the TravelChoice object). In this analysis, the individual’s attributes are the household
income (hinc) and the traveling group size (psize). The alternative specific attributes for
each travel mode are the generalized cost (gc) and the terminal waiting time (ttme). The
dataset has a long format, i.e., the variables concerning the n individuals are detailed
in n × J lines; an example for the first two individuals is:

R> head ( TravelChoice , 8)
indv mode cho i c e ttme invc invt gc hinc p s i z e

1 1 a i r FALSE 69 59 100 70 35 1
2 1 t r a i n FALSE 34 31 372 71 35 1
3 1 bus FALSE 35 25 417 70 35 1
4 1 car TRUE 0 10 180 30 35 1
5 2 a i r FALSE 64 58 68 68 30 2
6 2 t r a i n FALSE 44 31 354 84 30 2
7 2 bus FALSE 53 25 399 85 30 2
8 2 car TRUE 0 11 255 50 30 2

In the following, we estimate and compare a set of models with different cdfs and
with different specifications of the reference category.

Logistic cdf We first estimate the (reference, logistic, Z
(1)
car ) model (which corre-

sponds to the MNL) considering car as the reference category, the associated design
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matrix where h represents hinc, c for gc, t for ttme, and p for psize, is:

Z
(1)
car = ⎛⎜⎝

1 0 0 h 0 0 p 0 0 cair − ccar tair − tcar

0 1 0 0 h 0 0 p 0 cbus − ccar tbus − tcar

0 0 1 0 0 h 0 0 p ctrain − ccar ttrain − tcar

⎞⎟⎠ .

R> l o g i s t i c_car <− d i s c r e t e_cm( formula = cho i c e ~ hinc +
+ ps i z e + gc + ttme , case_id = " indv " , a l t e r n a t i v e s = "mode" ,
+ r e f e r e n c e = " car " , data = TravelChoice , a l t e r n a t i v e_s p e c i f i c = c ( " gc " ,
+ " ttme " ) , cd f = " l o g i s t i c " )
R> summary( l o g i s t i c_car )

r a t i o cd f nobs n i t e r l ogL ik
Model i n f o : r e f e r e n c e l o g i s t i c 210 (5 ) −177.4541

Estimate Std . Error z va lue Pr(>| z | )
X. I n t e r c ep t . a i r 7 .873608 0.986848 7 .979 1 .48 e−15 ∗∗∗
X. In t e r c ep t . bus 4 .433192 0.778334 5 .696 1 .23 e−08 ∗∗∗
X. In t e r c ep t . t r a i n 5.559205 0.699139 7 .952 1 .84 e−15 ∗∗∗
hinc a i r 0 .004071 0.012725 0 .320 0.749020
hinc bus −0.023324 0.016297 −1.431 0.152391
hinc t r a i n −0.055185 0.014482 −3.810 0.000139 ∗∗∗
p s i z e a i r −1.027423 0.265657 −3.867 0.000110 ∗∗∗
p s i z e bus −0.030010 0.333977 −0.090 0.928402
p s i z e t r a i n 0.302395 0.225616 1 .340 0.180144
gc −0.019685 0.005401 −3.644 0.000268 ∗∗∗
ttme −0.101566 0.011231 −9.044 < 2e−16 ∗∗∗

R> logL ik ( l o g i s t i c_car )

’ l og ␣Lik . ’ −177.4541 ( df=11)

A more specific design was studied by Louviere et al. (2000, p. 157) and Greene
(2003, p. 730). These analyses set the effect of the variables hinc and psize exclusively
for the category air, i.e.,

ηj = αj +x⊺δair1j=air + (ωj −ωcar)⊺γ (3.5)

for j ∈ {air, bus, train}. Hence, the associated design matrix is:

⎛⎜⎝
1 0 0 h p cair − ccar tair − tcar

0 1 0 0 0 cbus − ccar tbus − tcar

0 0 1 0 0 ctrain − ccar ttrain − tcar

⎞⎟⎠ .

As far as we know, there is no other package in R to fit this particular design. In
GLMcat, we can fit this model with the lines of code:

R> l o g i s t i c_car_a l t <− d i s c r e t e_cm( formula = cho i c e ~
+ hinc [ a i r ] + p s i z e [ a i r ] + gc + ttme , case_id = " indv " ,
+ a l t e r n a t i v e s = "mode" , r e f e r e n c e = " car " , data = TravelChoice ,
+ a l t e r n a t i v e_s p e c i f i c = c ( " gc " , " ttme " ) , cd f = " l o g i s t i c " )
R> summary( l o g i s t i c_car_a l t )
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" cho i c e ␣~␣ hinc [ a i r ] ␣+␣ p s i z e [ a i r ] ␣+␣gc␣+␣ttme+indv+mode"
r a t i o cd f nobs n i t e r l ogL ik

Model i n f o : r e f e r e n c e l o g i s t i c 210 (5 ) −185.9149
Estimate Std . Error z va lue Pr(>| z | )

X. I n t e r c ep t . a i r 7 .334807 0.946436 7 .750 9 .19 e−15 ∗∗∗
X. In t e r c ep t . bus 3 .591702 0.475771 7 .549 4 .38 e−14 ∗∗∗
X. In t e r c ep t . t r a i n 4.371913 0.478124 9 .144 < 2e−16 ∗∗∗
hinc a i r 0 .023815 0.011189 2 .128 0 .0333 ∗
p s i z e a i r −1.173817 0.258133 −4.547 5 .43 e−06 ∗∗∗
gc −0.023507 0.005084 −4.624 3 .76 e−06 ∗∗∗
ttme −0.100213 0.010543 −9.505 < 2e−16 ∗∗∗

R> logL ik ( l o g i s t i c_car_a l t )

’ l og ␣Lik . ’ −185.9149 ( df=7)

Student cdf Now, we use the Student cdf as one of the link function’s compo-
nents. Note that the design given by the linear predictor in Equation 3.5 depends
on the reference alternative j0. Since reference models are not invariant to a change
of the reference alternative j0, we have to select j0. To that end, we fitted the models(reference, Student(ν), Z

(1)
j0
) where the reference alternative j0 is either air, bus, train

or car, and the values of ν are taken with a 0.05-step from 0.2 to 2 and an integer-step
from 2 to 20. We notice in Figure 23 that for ν = 8 the log-likelihoods of the four models
(one for each alternative) are close to the same value around -177. This is not surprising
since the logistic cdf (which results in approximately the same fit as using Student(8))
is the only one to offer the invariance property under all permutations of alternatives.

Figure 23: Log-likelihood curves for models with reference category: car (green), bus
(yellow), train (red) and air (blue), and with ν with a 0.05-step from 0.2 to 2 and an
integer-step from 2 to 20.

The highest log-likelihood (−147) is obtained with car as reference category together
with F = Student(0.496):
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R> summary( d i s c r e t e_cm( formula = cho i c e ~ hinc + ps i z e +
+ gc + ttme , case_id = " indv " , a l t e r n a t i v e s = "mode" ,
+ r e f e r e n c e = " car " , a l t e r n a t i v e_s p e c i f i c = c ( " gc " ,
+ " ttme " ) , data = TravelChoice , norma l i za t i on = 0 .95 ,
+ cdf = l i s t ( " student " , df = 0 . 4 96 ) ) , normal ized = T)

Normalized c o e f f i c i e n t s with s0 = 0.069308
[ 1 ] " cho i c e ␣~␣ hinc ␣+␣ p s i z e ␣+␣gc␣+␣ttme+indv+mode"

r a t i o cd f nobs n i t e r l ogL ik
Model i n f o : r e f e r e n c e student 210 11 −147.15

Estimate Std . Error z va lue Pr(>| z | )
X. I n t e r c ep t . a i r 5 .68637 1.95182 2 .91 0 .0036 ∗∗
X. In t e r c ep t . bus 2 .32873 1.00254 2 .32 0 .0202 ∗
X. In t e r c ep t . t r a i n 2 .84782 0.93167 3 .06 0 .0022 ∗∗
hinc a i r 0 .00838 0.00789 1 .06 0 .2878
hinc bus 0 .00207 0.01145 0 .18 0 .8563
hinc t r a i n −0.00698 0.00773 −0.90 0 .3661
p s i z e a i r −0.22916 0.25595 −0.90 0 .3706
p s i z e bus 0 .41950 0.29757 1 .41 0 .1586
p s i z e t r a i n 0 .29810 0.15220 1 .96 0 .0502 .
gc −0.00465 0.00262 −1.78 0 .0754 .
ttme −0.09182 0.02916 −3.15 0 .0016 ∗∗

Based on the above model, only the terminal waiting time seems to have a significant
effect on the choice of travel mode. We can notice that the model with only this
explanatory variable has a log-likelihood quite close to −147:
R> logL ik ( d i s c r e t e_cm( formula = cho i c e ~ ttme , case_id = " indv " ,
+ a l t e r n a t i v e s = "mode" , r e f e r e n c e = " car " , data = TravelChoice ,
+ a l t e r n a t i v e_s p e c i f i c = " ttme " , cd f = l i s t ( " student " ,
+ df = 0 . 4 9 6 ) ) )

’ l og ␣Lik . ’ −149.0041 ( df=4)

This raises the question of whether the choice of transport mode can be completely
determined by the explanatory variable ttme. Since the terminal waiting time for the
alternative car is null, it is possible to represent the different values of this variable by
points in three dimensions (air, bus, and train) with a color indicating the observed
travel mode.

The reader can visualize in Figure 24 that the dataset is completely artificial. Note
that there are only two triplets (ttmeair, ttmebus, ttmetrain) for which users choose car,
these are: (69, 35, 34) and (64, 53, 44). These points are the intersection of the lines
formed by the other choices. Remark that, for instance, regardless of the value ttmeair,
users always choose the air option if ttmebus = 35 and ttmetrain = 34 or if ttmebus = 53
and ttmetrain = 44. Similar rules can be defined to determine when individuals choose
to travel by bus or by train. Concretely, knowing the terminal waiting time, the travel
mode choice becomes deterministic, all the other explanatory variables considered in
this analysis are only noise. In contrast to the logistic cdf, the Student cdf allows us
to discover the completely artificial nature of this classical dataset. This was possible
because the Student cdf seems to be more robust to outliers and noise variables (for
more details see Peyhardi (2020)).
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Figure 24: Three-dimensional representation of observed terminal time values. The sizes
of the points are proportional to the number of individuals who chose the travel option
among: air (blue), bus (yellow), car (green), train (red).

3.6 Discussion

Liu and Agresti (2005) presented an overview of developments in the analysis of ordinal
responses. In their final comments, they highlighted that the current main challenge
is to make these methods better known to researchers who commonly encounter this
kind of data. Up to now, the models for categorical responses have been popularized in
different disciplines separately. We consider that once all the models are assembled, their
specific characteristics can be better understood and, thus, users can readily compare
and choose a solution tailored to the objectives of their analysis. In the present article, we
illustrated a generalized modeling framework for categorical responses, while introducing
an R package that encompasses all these models. The contributions presented in this
paper have wide applicability given that several fields of research and industry deal
extensively with categorical responses. We discussed the properties of the different
families of models, as well as the relevance of the choice of both the cdf and the linear
predictor’s form. With the GLMcat package, it is now computationally possible to test
a variety of categorical regression models using one simple function. We consider that
this tool allows to popularize the area of categorical data regression which has not been
yet widespread on a large scale through non-logistic models.

Although the most popular cdfs often result in “similar” fits, this does not imply
that all cdfs are essentially equivalent when fixing the ratio. In distributions such as the
Pregibon (based on the generalized Tukey family) or the non-central t, some parameters
control the symmetry, the heaviness of the tails, and/or the skewness of the distribution.
Hence, one extension would be to consider an algorithm to estimate such parameters.
The vast set of new possible cdfs enlarges the toolkit for modeling categorical responses,
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with the use of them, subtle details might be uncovered as illustrated in the example
of section 3.5. An advantage of the modularized architecture of the package is that it
facilitates the inclusion of additional cdfs which will be immediately available for all
four model families.

The hierarchical structure of nominal, ordinal, or partially ordinal responses has
been already studied among others by Zhang and Ip (2012) and Peyhardi et al. (2016).
Based on the presented methodology, we can consider the (r, F, Z) triplets as basic units
of a hierarchically structured model. This general and flexible model allows taking into
account possible relations among response categories. The hierarchical model is then
defined by a partition tree where, for each non-terminal node, an (r, F, Z) model is
specified. Remark that in this case, the link function would be composed of the tree
partition, the set of ratios, and the cdfs specified for the non-terminal nodes.

The GLM presented in section 3.2 can be extended to include random effects. Some
authors have already made this extension for particular models in the context of cate-
gorical responses (see Hartzel et al., 2001; Coull and Agresti, 2000; Tutz and Hennevogl,
1996). The implementation of generalized linear mixed models is envisaged for the(r, F, Z) in GLMcat.

In the regression framework, other essential tasks are the model regularization and
the variable selection. These techniques aim to reduce the space of explanatory variables
while improving the model estimation and the prediction accuracy. We propose within
the functionalities of the GLMcat package the conventional stepwise approach. In high-
dimensional problems, it is also important to consider regularization methods. For
categorical variables, the elastic net penalty can be applied to categorical variables with
the ordinalNet package, however, it is only designed for three ratios. As future work,
we will attempt to define regularization and variable selection methods that are valid
for any (r, F, Z) triplet. We expect, with this extension, more detailed and accurate
results, for instance, by means of the Student cdf which is less sensitive to noise variables
and thus will improve the variable selection task.





Chapter 4

Hierarchically Structured GLMs for
categorical responses

Abstract

The hierarchical representation of data can be meaningful within the regression frame-
work for categorical responses. Indeed, response categories are likely to enclose others,
leading to successive subdivisions. In real problems, the hierarchical structure of the
categories is, in most cases, unknown beforehand. When known, the complexity is to
build a model at each of the non-terminal vertices of the hierarchical structure. When
unknown, an additional task is to infer the hierarchical structure of the response cate-
gories. Since the number of structures grows exponentially according to the number of
categories, estimating all the structures can be difficult and time-consuming. Hence, we
first propose a heuristic to build an initial structure. Then, we propose an algorithm to
visit the space of structures neighboring this baseline structure, aiming to find a better
fit for the data at hand.

Keywords: hierarchical GLM, categorical response, link function, binary models,
tree’s operations
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4.1 Introduction

Within categorical variables, two types of scales are broadly differentiated: the nominal
and the ordinal ones. There has been little discussion in the scientific literature about
partially ordered variables for which order scales may exist in subsets of the response
categories. The concept of hierarchical structure for such categories is even more general
(albeit poorly known) since it does not necessarily imply an ordered relationship but
refers to the grouping of categories under some similarity criterion. These structures
are commonly encountered in real data scenarios, yet they are under-recognized and
under-reported in the statistics literature (Zhang and Ip, 2012). For instance, when
diagnosing melanoma cancer, the objective is to detect its presence and severity. Hence,
a binary variable splits the levels of presence/absence, while an ordinal variable defines
the severity assessed in terms of melanoma thickness (Sánchez-Monedero et al., 2018).
This categorical variable is said then to be partially ordered. It can be represented
graphically through a partition tree in which a first ramification splits absence and
presence, and a second ramification (for the vertex presence) reveals the ordered stage
of the disease. Another typical example is observed frequently in choice theory. Initially,
the choice-makers are given a range of options that may be grouped according to their
preferences. Hence, the first decision corresponds to choosing a group of options. Then,
they evaluate the options within that chosen group. This kind of model may be defined
recursively for many levels. In this example, unlike that of the diseases, there is no
internal order associated with any of the response categories. However, there is still an
associated hierarchical structure. In this chapter, we consider categorical variables in
the broadest possible sense, which is when we expect a hierarchical structure to define
the relationships (of order, partial order, or no order at all) among not only the response
categories but also the possible groups of categories.

A hierarchical model for a categorical response is obtained by successively modeling
the response in groups formed by homogeneous categories. To model this response,
several partitioned conditional regression models have been proposed in different applied
fields, including econometrics, medicine, and psychology. In econometrics, McFadden
et al. (1978) introduced the nested logit model, which enables to decompose the decision
mechanism in different steps but whose estimation’s complexity increases when more
than 2 or 3 levels are used. Tutz (1989) introduced the two-step model (also known
as the cumulative compound model) to take account of subsets of categories such that
the explanatory variables are informative for the between subsets choice, but maybe
relatively uninformative within the subsets (see also Morawitz and Tutz, 1990). Zhang
and Ip (2012) proposed the partitioned conditional model, a class of GLM intended
primarily to model partially ordered responses, but which also includes nominal and
ordinal responses as special cases. More recently, Peyhardi et al. (2016) introduced
the partitioned conditional GLM (PCGLM) to analyze the hierarchical structure of a
response with any number of categories and with the flexibility of using any model
at each partition of the structure. The above-presented options are only operative if
the hierarchical structure is a priori known. If the structure is unknown or partially
unknown, the partition tree must first be defined based on the available data. To the
best of our knowledge, no methodology exists to find such a structure automatically.
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This task’s complexity is directly related to the number of response categories. As the
number of categories increases, the number of partition trees grows exponentially. Thus,
it becomes impractical to visit the entire set of partition trees to select the best among
them.

This chapter proposes a modeling approach for cases where a hierarchical structure
in the response categories is expected to exist and is not known in advance. The link
function in this model is specified by the partition tree, and the link functions at all
non-terminal vertices. Our proposal considers only binary partition trees because of
the two following advantages. The first one is that it reduces the space of possible
partition trees. The second one is that the model’s specification at each non-terminal
vertex is simplified since neither the ratio of probabilities r nor the design matrix Z

(see chapter 3) need to be tuned in binary regression models. Indeed only the cdf
F is required. To find a binary partition tree of the response categories according to
the explanatory variables, we make use of the notions of the hierarchical agglomerative
clustering (HAC) algorithm. With the particularity that instead of grouping individuals,
we consider the dissimilarities among the clusters generated by the J categories as
starting points of the algorithm. The final output of this algorithm is a labeled and
non-ranked dendrogram (equivalent to a binary partition tree). However, this proposal
being a heuristic does not guarantee finding the most optimal structure among the
large set of possibilities. Therefore, to search for a partition tree with a higher log-
likelihood, we propose two greedy algorithms to explore alternative options structurally
closer to the initially proposed tree. To restructure the binary partition trees in the
search algorithms, we used the basic operation of trees known as rotation (see Lucas,
1987). We define the space of neighboring partition trees based on the possible rotations
on all the non-terminal vertices of the baseline tree. As these rotated trees have a
common sub-tree structure, we thus use the decomposition property of the log-likelihood
to avoid recomputing the tree’s log-likelihood for each new neighbor.

This chapter is structured as follows. In section 4.2, we consider the case where
the partition structure is known. Here, we introduce the concepts about PCGLMs and
illustrate them using the data of the rice diversity. In section 4.3, we propose a repre-
sentation of a binary partition tree using a dendrogram and a matrix. In section 4.4, we
present the methodology for constructing a B-PCGLM in two steps: i) the construction
of the structure itself and ii) the specification of a binary model at each non-terminal
vertex. We illustrate our methodology by walking step by step through the construction
of a B-PCGLM for the rice diversity data set. Finally, in section 4.5, we evaluate our
methodology in terms of log-likelihood and classification accuracies using a benchmark
data set.

4.2 Known structure: the partitioned conditional
GLM

The class of PCGLMs was introduced by Peyhardi et al. (2016) as a flexible framework
for modeling nominal, ordinal, or even partially ordered responses. In the following, we
introduce the necessary notations and definitions to describe this class of models.
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A directed tree T is a connected graph G = (V, E) where V is the set of vertices (also
referred to as nodes) and E is the set of edges. In this framework, V∗ denotes the set of
non-terminal vertices, Pa(v) is the parent vertex of v, An∗(v) denotes the ancestors set
of v except the root. The children must be indexed because the GLMs are not necessarily
invariant under a permutation of the response categories (see section 3.4). Children
Ωv

1, . . . , Ωv
Jv

are presented from left to right and Ωv
Jv

is considered as the reference child
by convention. The vertex with no parents is said to be the tree’s root. For u, v ∈ V , a
directed edge e = (u, v) ∈ E implies that e is directed from u to v.

Definition 1. A directed tree T is said to be a partition tree of {1, . . . , J} if

• sibling vertices constitute a non-identical partition of their parent node,

• {1, ..., J} is the root of T ,

• each singleton {j} (the leaves) belongs to T .

Consider the regression context where the response Y is a categorical variable with
J categories. Suppose that these categories are subject to be grouped (possibly at more
than one level) according to specific criteria such as similarity, order, or partial order.
A partition tree T appropriately represents this scenario where the root is the complete
set of categories {1, . . . , J}, the leaves are the individual categories i ∈ {1, . . . , J}, V∗ is
the set of groups of categories, and T is directed from the root to the leaves.

Definition 2. A partitioned conditional GLM of categories {1, . . . , J} (PCGLM) is
specified by

• a partition tree T of {1, . . . , J},
• a collection of models C = {(rv, F v, Zv(xv)) ∣ v ∈ V∗} for each conditional proba-

bility vector πv = (πv
1 , . . . , πv

Jv−1), where πv
j = P (Y ∈ Ωv

j ∣Y ∈ v; xv) and xv is a
sub-vector of x associated with vertex v.

Based on the above definition, the probability of each category j is obtained as

P (Y = j∣x) = P (Y = j∣Y ∈ Pa(j), xP a(j)) ∏
v∈An∗({j})

P (Y ∈ v∣Y ∈ Pa(v), xP a(v)),
where P (Y ∈ v∣Y ∈ Pa(v), xP a(v)) is described by the GLM of C associated with ver-
tex Pa(v). Note that the GLMs in C are specified through the (r, F, Z) specification
proposed by Peyhardi et al. (2015) and discussed in detail in chapter 3. An example
of a PCGLM is shown in Figure 25 for a reponse with 6 categories. Remark that there
exists an order of the groups of response categories {{1, 2, 3},{4},{5, 6}} described by
the sequential ratio. In addition, the individual categories of the group {1, 2, 3} are also
ordered and, in this case, modeled with the cumulative ratio. Since the response of the
group {5, 6} is binary, there is no choice to be made about the ratio in this vertex.
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Cauchy

Cauchy

Figure 25: Illustration of a PCGLM with 6 categories.

Estimation of PCGLMs

Using the partitioned conditional structure of the model, the log-likelihood can be de-
composed as follows

l = ∑
v∈V∗

lv, (4.1)

where lv represents the log-likelihood of the model (rv, F v, Zv). If all parameters are not
constrained to equality from one vertex to another, each component lv can be maximized
separately on the sub-data set {(y, x)∣y ∈ v} using equation

∂lv

∂β
= Zv⊺∂F v

∂ηv

∂πv

∂rv
COV(Y v ∣xv)−1(yv −πv) .

Binary partitioned conditional GLM

A binary partition tree corresponds to a partition tree of a PCGLM with exactly J − 1
non-terminal vertices. We represent this type of structure in Figure 26. The collection
of binary regression models C is simplified. Hence, we obtain πv = F v(αv + xvδv) for
all v ∈ V∗. Remark that the (sequential, F, complete) model can be represented as a
B-PCGLM due to its successive ordered binary splits.

4.2.1 Application to the rice diversity data set

Panicle traits are among the most representative features of rice diversity; their architec-
ture is relevant for the biological classification of plants, as well as for the improvement
of cultivated rice. Groups of genotypes are often represented as a hierarchy of categories
(e.g., species subdivided into groups of varieties or subspecies). For this type of data, it
is usually aimed to unconstrainedly incorporate heterogeneous phenotypic traits (qual-
itative, quantitative, ordinal, and count variables) into a model decomposed according
to such structure. Based on the PCGLMs, we intend to explain the taxonomic classifi-
cation of rice given a collection of phenotypic features. The data set that we use in this
application consists of 960 panicles of rice (see Al-Tam et al., 2013, for further reference
on the data set). Each plant is classified according to its geographical origin, species,
subspecies, and sub-population. For each continent (Asia, Africa), one cultivated and
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Figure 26: Illustration of a B-PCGLM with 6 categories.

one wild species are considered: Sativa (Asia-cultivated), Rufipogon (Asia-wild), Glaber-
rina (Africa-cultivated), and Barthii (Africa-wild). The abbreviations for the species in
the following graphical representations of the rice diversity analysis are as follows: B for
Barthii, R for Rufipogon, G for Glaberrina, S for Sativa; and for the sub-species: OBI

for Obar I, OBII for Obar II, OGI for Ogla I, OGII for Ogla II, Ja for Japonica, Tr for
Tropical Japonica, Te for Temperate Japonica, In for Indica, and, Ad for Admix (Aro-
matic - Te). The explanatory variables in our context are the phenotypic traits. In the
results presented in this chapter, we represent them using the following abbreviations:
lr : length of the rachis, tl: total length, ng: number of grains, mo: maximum number
of branching order, nn: number of nodes, and nnr : number of nodes in the rachis. The
structure of this response is partially known since there are two possible ways of con-
structing the taxonomic hierarchy for the subspecies. In the partition tree presented in
Figure 27, the data are initially divided according to the geographical origin (Africa or
Asia), and secondly according to the domestication trait (wild or domestic). Whereas
in the second partitioning tree presented in Figure 28, the splits are initially based on
the domestication trait and subsequently on the geographic origin.

Since we knew the hierarchical structure of the categories beforehand, the task was
to identify the best model (r, F, Z) for each non-terminal vertex. That is, select among
the options for the ratio r: cumulative, sequential, adjacent, or reference. Select in
turn the cdf that best characterizes the response variable and matches r appropriately.
And select the relevant phenotypic variables for each of the non-terminal vertices of
the partitioning tree. If a vertex has more than two children, the choice of the ratio is
essential to reflect the notion of order among the categories correctly. For the particular
case of the three subspecies of Sativa (with 3 children), Huang et al. (2012) presented
a demographic scenario in which he claimes that Japonica was first domesticated from
the wild species Or-IIIa, while Indica later developed from Or-I with the adoption of
numerous domestication alleles from Japonica. The Aromatic group is considered to
have been domesticated shortly after Japonica and Indica came into existence. After
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fitting the models resulting from combinations of the four different ratio options and
various cdfs, we observed that the best fit in terms of log-likelihood was obtained with the
sequential ratio together with the Cauchy cdf. This result is in line with the chronological
approach outlined previously, as the sequential ratio is the one that best captures a
non-reversible temporal order (see chapter 3 for the reversibility property). Since the
remaining non-terminal vertices have only two children, their corresponding models are
binary; hence, all that remained to be chosen was the cdfs and the set of explanatory
variables that maximized the log-likelihood. For this analysis, we estimated all the
models with the logistic, normal, Cauchy, and Gompertz cdfs and used the BIC-stepwise
algorithm (combining the backward and the forward direction) to find the explanatory
variables in each of the non-terminal vertices. In Figures 27 and 28, we present the
models that yielded the highest log-likelihood.

Figure 27: PCGLM for rice diversity data where the data are divided according first
to the geographical origin (Africa or Asia) and second to the domestication trait (wild
or domestic). The vertex at the right position is the reference category for each model
estimation.

The tree presented in Figure 28 differs from the previous one only in the binary
models that consider wild and cultivated subspecies and then the geographic origin
as the response levels. When the two trees are compared using the BIC criterion,
the PCGLM in Figure 28 (BIC = 1636) is favoured over the PCGLM in Figure 27(BIC = 1689). Although the difference is not large, these results are consistent with
published studies showing that differences in phenotypic traits are more pronounced
between wild and cultivated groups than between Asian and African groups. However,
population genomic analyses and data sequencing techniques also demonstrate strong
genetic differentiation between Asian and African rice.

The number of nodes in the panicle is one of the most discriminating variables in
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Figure 28: PCGLM for rice diversity data where the data are divided according first to
the domestication trait (wild or domestic) and second to the geographical origin (Africa
or Asia). The vertex at the right position is the reference category for each model
estimation.

each PCGLM. It is strongly correlated with the grain quantity, i.e., the productivity, as
seen in the simple interaction model (not shown here), in which this variable is found
to be the most important in differentiating between cultivated and wild rice types.

We identified the effects of phenotypic traits on the description and differentiation
of taxonomic categories. Given the slight difference between the BICs of each tree, it is
not clear that one of the considered partitions is better than the other. One of the main
difficulties in analyzing plant diversity is that, although phenotypic traits are generally
specific to each taxonomic category, they also vary under different environmental condi-
tions. This limitation is evident in other studies that only manage to describe relatively
subtle differences for each taxonomic level.

4.3 Representation of a binary partition tree

The model for hierarchically structured categorical variables comprises the partition
tree (representing the structure) and the collection of classical models to be fitted at
each non-terminal vertex of the partition tree. This situation is common in different
disciplines; however, to our knowledge, there is no methodology to find such a hierar-
chical structure for the groups generated by the categories. One solution would be to
simply estimate all the possible models and to choose the best among them in terms of
log-likelihood (or any other measure with which to compare them). However, consid-
ering the number of models to be estimated, this methodology is naive and inefficient.
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To simplify the execution of this task, we decided to reduce the tree space by consid-
ering only binary trees, which describe the pairwise groupings that occur within the
different response categories. By considering binary models, the model specification
is furthermore simplified since it is characterized by only the cdf F instead of the full
combination (r, F, Z). The binary partition trees are represented through a dendrogram
and its associated matrix for the following implementations and analyses.

4.3.1 Dendrogram representation

Dendrograms are characterized by whether or not the terminal vertices are labeled and
whether or not ranks are associated with the vertices. In our context, we consider only
labeled, non-ranked (L-NR) dendrograms since those correspond to the binary partition
trees. The number of L-NR dendrograms defined for J objects is given by the formula
(see Murtagh, 1984):

b(J) = (2J − 2)!
2J−1(J − 1)! .

As an example, let us consider J = 5, in Figure 29, we illustrate their three possible
dendrograms’ shapes. There are 60 possible different labellings for dendrogram (i), 30
for dendrogram (ii), and 15 for dendrogram (iii).

Figure 29: Structures for all possible labelled, non-ranked dendrograms for 5 categories

For more than 5 categories, the amount of dendrograms grows to a point where it
becomes difficult to define and explore all possibilities (see Table 4.1).

J 3 4 5 6 7 8 9 10

b(J) 3 15 105 945 10395 135135 2027025 34459425

Table 4.1: Number of dendrograms according to the number of leaves J .

Since the binary partition tree can be represented as a labeled and non-ranked dendro-
gram, in the following, we will interchangeably use the terms dendrogram and binary
partition tree.

4.3.2 Matrix representation

The dendrograms can be computationally represented employing a merge matrix which
is a J − 1 × 2 array that shows at each step which two items are combined. In our
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framework, these items are either the individual categories (represented with a negative
sign) or the clusters created at a previous stage (represented with the row number of
the merge).

Figure 30: Representation of the hierarchical structure as a tree.

Let us consider the dendrogram with J = 5 leaves of Figure 30. Ignoring the heights at
which the vertices have been joined, this dendrogram can be represented as

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−2 −1−5 −4−3 2
1 3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, or

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−5 −4−3 1−2 −1
2 3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, or

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−5 −4−2 −1−3 1
2 3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (4.2)

or as any of all the other matrices that are generated by switching the elements in
the rows. Implementing the search algorithms requires a unique computational repre-
sentation of the dendrograms to avoid re-estimating the models and reduce thus the
computational burden of the algorithm. To obtain this unique representation, we pro-
pose the following rules for the merge matrix:

• for each row, the two values are ordered from left to right,

• the first rows are composed only of the negative elements, i.e., only categories
merging with other categories,

• the matrix is sorted based on the second column in ascending order.

The only representation that meets the previous rules is the one on the right in Ex-
pression (4.2). When representing its corresponding heights as a vector, we obtain the
unique expression: ⎡⎢⎢⎢⎢⎢⎢⎢⎣

−5 −4−2 −1−3 1
2 3

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
2
3
4

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
. (4.3)

The graphical representation of the above merging matrix is illustrated in Figure 31.
Note that for the purposes of our methodology, the tree represented in Figure 30 and
the one presented in Figure 31 are the same since the order of the merges is irrelevant
for the model estimation.
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Figure 31: Representation of the tree given by Expression 4.3.

4.4 Construction of a B-PCGLM

In the following, we propose a heuristic to build a model using the explanatory variables.
We then have to find the set of models C to generate specific insights for each of the
J −1 vertices. The link function for this case is then composed of the set of distribution
functions of each of the J − 1 binary models and the partition tree itself. We illustrate
the proposed methodology by performing each step on the rice diversity data set.

4.4.1 Binary tree construction

The inference of all possible binary trees can be computationally expensive when the
number of categories increases (as the number of dendrograms explodes when J in-
creases; see Table 4.1). We propose a heuristic for constructing the binary tree, based
on the hierarchical agglomerative clustering (HAC) algorithm but with a particular
modification. Instead of grouping individuals, we consider as starting points the groups
Ej ∶= {1 ≤ i ≤ n ∶ yi = j} for j = 1, . . . , J , and then we proceed with a series of successive
fusions of the groups until all of them are members of one single cluster, the root. To
make this concrete, we must define the meaning of similarity or difference for two ob-
jects: individuals as well as groups. This is often a domain-specific decision that must
be considered based on knowledge of the data set being studied.

Dissimilarity matrix (inter-individuals)

The essential tool for hierarchical clustering is a measure of dissimilarity or proximity
between two individuals. In order to find the distances between individuals according
to the p covariates, a previous common step is to transform all numerical covariates
to a common scale by a standardization procedure. However, wrong weights might be
assigned using inaccurate standardization approaches. For instance, the standardization
that results from the division by the standard deviation may imply that the importance
of a variable is assumed to decrease with an increasing variability. If all the explana-
tory variables have the same level of importance, the most appropriate procedure is to
standardize the kth covariate, dividing by its range rk =max

1≤i≤n
xi,k − min

1≤i≤n
xi,k.

There exist different measures of dissimilarity according to the type of variables. For
quantitative variables, the Euclidean and the Manhattan distances are the most popular,
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while for ordinal and nominal variables, the best-known dissimilarities are Bray-Curtys
and Sokal-Michener; for more details, see Michel Marie Deza (2016). Moreover, in most
regression problems, explanatory variables are of different nature. Some are continuous,
some are binary, and others are categorical on a nominal scale or an ordered scale, see
(Tutz and Berger (2015)). The most appropriate approach to deal with mixed variables
is to use the Gower distance (see Gower, 1971; Kaufman and Rousseeuw, 2009), defined
for two individuals i and i′ as:

Di,i′ = 1
p

p∑
k=1

dk
i,i′

where

• dk
i,i′ = ∣xi,k−xi′,k ∣

rk
if the kth covariate is numerical,

• dk
i,i′ = 1{xi≠xi′}

(indicator function) if it is categorical on a nominal scale,

• and if it is an ordinal variable, it should be replaced by integer codes representing
the order, and this new variable is then treated as a numerical covariate.

Other approaches are of interest, for example, the correlation-based distance, which
considers two observations to be similar if their features are highly correlated, even
though the observed values may be far apart in terms of Euclidean distance. The
correlation-based distance focuses on the shapes of observation profiles rather than on
their magnitudes. The choice of the measure of dissimilarity in any given application is
often a matter of subjective choice. Several authors have stressed the importance of the
selection of an appropriate dissimilarity measure, arguing that it has even more impact
on the results than the choice of the clustering algorithm (Friedman et al., 2001; James
et al., 2013). In the rice diversity data example, we used Gower’s distance (accounting
for the different types of covariates) and obtained an inter-individual dissimilarity ma-
trix (where the individuals are the rice panicles), in this case of size 960 × 960.

Dissimilarity matrix (inter-categories)

Based on the dissimilarity matrix between individuals D, we have to find the dissimilar-
ities between the J groups E1, . . . , EJ denoted by ∆J×J . Several dissimilarity definitions
between groups exist, and their associated methodologies are known as linkage meth-
ods. Among the most popular linkage methods are the single, complete, and average
linkages. The dissimilarity in single linkage is that of the closest pair of individuals,
with one individual in each group:

∆j,j′ ∶= min
i∈Ej ,i′∈Ej′

Di,i′ .

The single linkage is a good choice when clusters are obviously separated. On the other
hand, the complete linkage calculates the maximum distance between clusters before
merging. Hence, it can be sensitive to outliers. While the distance between two clusters
in the average linkage is the mean distance between an observation in one cluster and an
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observation in the other cluster (see Figure 32). None of these algorithms is uniformly the
best for all clustering problems because they all have different properties. For instance,
while the dendrograms of the single linkage and complete linkage methods are invariant
under monotone transformations of the dissimilarities between pairs, this property does
not hold for the average linkage method. Another difference is that average linkage
depends on the size of the clusters, whereas single linkage and complete linkage do not.
Single linkage usually results in long chains of clusters linked by single points close to
each other so that close elements of the same cluster have small distances. However,
elements at opposite ends of a cluster may be much farther away from each other than
two elements of different clusters. This result is not desirable in practice (Izenman,
2008). On the other hand, complete linkage tends to produce many small, compact
clusters. The average linkage method is a hybrid between the simple and complete
linkage methods, avoiding extremes of large or compact clusters. And, unlike other
methods, the average linkage method performs better on ball-shaped clusters in the
feature space (Yang, 2017). All in all, this method is known to be a robust alternative
(see Brian S. Everitt, 2011).

Figure 32: Single, complete, and average linkage methods.

We use the average linkage to find the dendrogram based on the dissimilarity matrix
between the panicles of the rice diversity data set. The first dissimilarity matrix calcu-
lated for the response categories is presented in matrix (4.4) where we also highlighted
the smallest entry which corresponds to the subspecies Obar-I and Obar-II.

In ObI ObII OgI OgII R Te Tr

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Ad 0.152 0.303 0.368 0.198 0.187 0.319 0.226 0.220
In 0.238 0.302 0.141 0.136 0.260 0.178 0.210

ObI 0.098 0.176 0.183 0.106 0.146 0.326
ObII 0.236 0.243 0.120 0.196 0.394
OgI 0.102 0.205 0.143 0.206
OgII 0.211 0.147 0.208

R 0.171 0.337
Te 0.249

(4.4)

Building the final hierarchy using ∆
Most approaches to hierarchical clustering are agglomerative algorithms that follow a
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simple methodology and proceed by repeatedly applying four steps: (i) choose the pair
of vertices with the highest similarity; (ii) merge the pair of vertices into a new node/-
cluster; (iii) update the dissimilarity matrix ∆ after having calculated the similarities
between the new vertex and the former existing vertices; and (iv) repeat the procedure
until only one vertex is left. The crucial step is the update of the similarity values. The
nature of the update is determined by the specification of the linkage method, which
embodies the similarity of subsets of vertices. Starting from the groups E1, . . . , Ej, new
groups are sequentially created as the union of the subgroups with greater similarity.
Remark that this is the same principle used in HAC (see Brian S. Everitt, 2011, for
more detail of the HAC), but in our framework, the initial vertices are already clusters.
This process sets the stages for creating the intended dendrogram, which summarizes
the hierarchical structure that reflects the response categories’ differences and/or simi-
larities.

In the rice analysis, the subspecies Obar-I and Obar-II constitute the first group V1

from matrix (4.4). Hence, a second dissimilarity matrix was calculated and presented in
(4.5). The elements with the smallest dissimilarity in this new matrix are the subspecies
Ogla-I and Ogla-II, thus fused to form a second group V2.

In V1 OgI OgII R Te Tr

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Ad 0.152 0.365 0.198 0.187 0.319 0.226 0.22
In 0.299 0.141 0.136 0.26 0.178 0.21
V1 0.233 0.24 0.119 0.193 0.391

OgI 0.102 0.205 0.143 0.206
OgII 0.211 0.147 0.208

R 0.171 0.337
Te 0.249

(4.5)

The dissimilarity matrix is updated sequentially as new groups are fused and until the
final merging of the two remaining clusters into one. As a result of these successive
groupings, we obtained the dendrogram presented in Figure 33 in which, through the
heights (although irrelevant for the estimation of the model), we can identify the order
in which groups were fused in each of the iterations of the algorithm.

In the previous analyses of the rice diversity, we used a subset of the database since
there were some missing labels for the response variable (the subspecies); nevertheless,
the labels corresponding to the species themselves were available. To make use of these
missing observations, we transformed the species label by creating the new categories{B∗, G∗, S∗} corresponding respectively to the missing data from Barthii, Glaberrina,
and Sativa. We implemented the previously described methodology to the data set
with the additional observations and in which there were 12 categories instead of 9.
We obtained the structure presented in Appendix C. In that dendrogram, the species
categories were positioned quite close to their related subspecies, so actually, this struc-
ture resulted in being essentially identical to the one presented in Figure 33. The new
data did not alter the dissimilarity matrices or the linkage method. This fact confirms
the reliability of the proposed methodology since we have obtained the expected tree
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Figure 33: Partition tree structure for the rice diversity data set.

structure according to the information known beforehand.

4.4.2 Binary model for each non-terminal vertex

An issue that emerges when partitioning the data set according to the hierarchical
structure is the fact that the binary responses at each vertex have specific degrees of
separation (or overlap). The separation configurations are highly dependent on the
linkage method employed when constructing the initial partition tree. For instance,
the most similar categories (being fused in the first step of the algorithm) may have a
low degree of separation in the covariate space. Conversely, the vertices closer to the
partition tree’s root are likely to have a high degree of separation of the response levels.
This separation’s characteristic has been described in scientific literature as a problem
since a unique maximum likelihood estimation might not exist in this case. At the same
time, as the explanatory variables in each non-terminal vertex remain to be selected,
the sub-datasets may contain noisy variables which are not immediately identifiable. To
overcome these issues, we suggest using the results reported in chapter 2 to find the
binary model that best fits the data at each non-terminal vertex while accounting for
the different degrees of separation. Through the algorithm 1 presented therein, one can
adequately address the most common perturbations in binary data (outliers and noisy
variables) in the frame of the separation problem.

Variable selection for each non-terminal vertex

Since J−1 models are to be estimated for the resulting groups of categories, the question
about the explanatory variables that influence each vertex should be addressed. In our
methodology, we proposed using the Least Absolute Shrinkage and Selection Operator
(LASSO) algorithm that performs both regularization and variable selection. To ensure
that the link function fully corresponds to the data, after selecting the covariates for
each non-terminal vertex, we recommend to re-estimate the link function given the cho-
sen set of covariates xv.
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We found the link function for each vertex v ∈ V∗ of the tree structure for the
rice diversity data set presented in Figure 33 by following algorithm 1. The global
model with its link represented by the partition tree structure and the set of models C

(and their corresponding explanatory variables) is represented in Figure 34. The log-
likelihood, as well as the BIC of this model, are respectively higher and lower than those
obtained for the pre-defined partition trees. The found partition tree is similar to the
partition tree that first splits the sub-species according to the domestication specification
(see Figure 28). However, these structures differ in the sub-partition generated for the
cultivated sub-species. The partition structure in Figure 28 was identified in section 4.2
as the best among the known partition trees for modeling rice diversity. Assuming the
structure as unknown, and with the methodology presented above, we were able to
obtain a better fit for this specific data.

Figure 34: B-PCGLM obtained for the rice diversity data set.

4.5 Visiting neighboring trees

Whatever the quality of the B-PCGLM obtained by the proposed method, there is no
certainty of having found the best one. Therefore, we now propose two search algorithms
to estimate the neighboring trees in an attempt to find a better score. For this purpose
and in the following, we define the operations on the binary partition trees known as
rotations, and we clarify other terms related to these operations.



111 Hierarchically Structured GLMs for categorical responses

• The J − 2 segments joining two vertices in a binary tree are called the internal
edges (IEs). We represent an IE with the digits that indicate the order in which
the groups were fused.

• Any internal edge αβ connects two non-terminal vertices α and β (each specified
by its height) such that β is the parent of α.

• One rotation consists of switching element a for element b, and the other results
from switching a and c (see Figure 35).

• There are two possible rotations for each internal edge so that in total, there are
2(J − 2) binary trees in the rotational neighborhood generated by one particular
binary tree.

Figure 35: Rotations of the internal edge αβ.

In the merge matrix representation 4.3, the set of internal edges is IE = {13, 24, 34}.
For illustration purposes, let us consider the rotations of IE = 24. The elements to
obtain the two rotations are identified as a = 3, b = −1, and c = −2. Note that the a

element is a tree itself. The obtained rotations of this dendrogram are represented in
Figure 36.

Figure 36: Trees obtained from rotation of the internal edge 24.

We aim now to find a higher score through a walk (to be defined iteratively) where
the starting point is the proposed tree T0 whose score is denoted as s0. For the following,
R(T ) = {T1, . . . , T2(J−2)} represents the set of trees generated by all possible rotations in
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T .

Algorithm 2: Estimating all partition trees in the generated neighborhoods
Input: T , s(T ), ǫ

sp = −∞
sc = s(T )
Tc = T

H = {T}
while sc − sp > ǫ do

R = R(Tc) ∖H

sp = sc

Tp = Tc

if R = ∅ then
break;

else
Tc = argmax{s(T ) ∶ T ∈ R}
H =H ∪R

sc = s(Tc)
return Tp, sc

The graphical representation in Figure 37 of algorithm 2 recreates a scenario in which
there are J = 4 categories so that in total, there are b(J) = 15 possible partition trees.
Suppose that the starting partition tree found following the methodology proposed in
section 4.4.1 is the number 6. We obtain 2 × (J − 2) = 4 different partition trees by
executing the possible rotations on its internal edges. Two of them (2 and 12) have a
lower score. Among the two with a higher score (4 and 11), 4 has the maximum score.
In the next iteration of the algorithm, partition tree 4 is the baseline, and its neighbors
are found. Note that it is possible to obtain partition trees that were already estimated
(in this case, 6 and 11). Those are discarded by identifying the equality between their
unique merge matrix. The two new partition trees have a higher score (3 and 10), and
the score of 3 is the maximum. In the next iteration, two repeated partition trees (6
and 10) are obtained again as the rotations of partition tree 3. Of the two new partition
trees, neither has a higher score; hence the algorithm’s output is the partition tree 3.

The graphical representation in Figure 38 recreates the same scenario described
above, but, in this case, we illustrate the iterations of algorithm 3. In the first iteration
of this algorithm, the score of one of the possible structures (randomly selected) within
the neighborhood of partition tree 6 is estimated. This score (corresponding to partition
tree 2) is not higher, so another partition tree within the neighborhood is randomly
chosen (partition tree 11). This time, the score is higher, thus, it becomes the baseline
for the next iteration. The first randomly selected partition tree (10) scored higher than
the baseline partition tree in the second iteration. A third iteration is performed with
partition tree 10 as the baseline, and partition tree 3 is selected for the next iteration.
In the fourth iteration, no higher score is found after estimating (in random order) all
the scores of the neighboring partition trees. Therefore, the output of the algorithm is
partition tree 3.
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Figure 37: Graphical representation of Algorithm 2. Each dashed circle stands for an
iteration. Within each dashed circle, the yellow color indicates the baseline partition
tree. The green and red colors represent the partition trees with higher and lower scores,
respectively. The green-filled circle depicts the partition tree with the highest score. The
cross-marked circles indicate that the score of that partition tree was already estimated
in a previous iteration.

Figure 38: Graphical representation of Algorithm 3 Each dashed circle stands for an
iteration. Within each dashed circle, the yellow color indicates the baseline partition
tree. The red color represents a partition tree with a lower score than the one of the
baseline partition tree. The green color represents the first found partition tree with a
higher score than the one of the baseline partition tree. The cross-marked circles indicate
that the score of that partition tree was already estimated in a previous iteration.

The log-likelihood decomposition of the PCGLM (see equation (4.1)) implies that for
each new partition tree, the maximum number of new binary models to be estimated is 2.
For instance, the first neighbor resulting from rotation 1 of the baseline partition tree in
Figure 36 only requires estimating the binary models with response levels {{3, 4, 5},{2}}
and {{3, 4, 5, 2},{1}} since all the others have already been calculated for the baseline
partition tree’s estimation. Nevertheless, such two models may as well have already been
estimated in previous iterations. Therefore, to avoid re-estimating models, it is essential
to keep a record of the response levels and their corresponding model’s summary.

4.5.1 Performance evaluation of the methodology

In the following, we aim to evaluate the quality of the obtained partition tree by con-
trasting it with all the other possible trees. There are 9 categories in the rice data
set, using equation (4.1), we found that there are 2027025 different partition trees to
estimate. The definition of all the structures, as well as the computational cost of the
calculations (considering applying cross-validation) are two very demanding tasks. To
simplify this evaluation, we work with the Cleveland heart disease data set, which has
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Algorithm 3: Random walk on the partition trees in the generated neighborhoods
Input: T , s(T ), ǫ

sp = −∞
sc = s(T )
Tc = T

H = {Tc}
while sc − sp > ǫ do

R = R(Tc) ∖H

Tp = Tc

sp = sc

if R = ∅ then
break;

Tc = Uniform(R)
sc = s(Tc)
H =H ∪ Tc

while sc − sp < ǫ & R ≠ ∅ do
R = R ∖ Tc

if R = ∅ then
break;

Tc = Uniform(R)
sc = s(Tc)
H =H ∪ Tc

return Tp, sp

5 categories, so there are a total of b(5) = 105 different binary partition trees. This data
set is originally located in the UCI machine learning repository (Dua and Graff, 2017).
The partitioned data sets (obtained using 10-folds cross-validation) were extracted from
the KEEL repository.

The Cleveland heart disease data set contains 303 instances with 13 attributes that
were taken from patients with heart problems. The task is to distinguish the presence
(values 1,2,3,4) from the absence (value 0) of the heart disease in the patient. In the
context of GLM for categorical data, the multinomial logit (MNL) is the default choice
for analyzing the effect of the explanatory variables on a categorical response since it
corresponds to the canonical link function. We aim to compare such a model with the one
obtained using the above-described methodology. To compare specifically the partition
tree structure, we must use logit models with the complete set of explanatory variables
in each of the J − 1 non-terminal vertices. In addition, to evaluate the performance of
the obtained structure (beyond the multinomial model), we intend to contrast it with
the other 104 B-PCGLMs.

Figure 39 presents the log-likelihoods of several models from which we formulate the
following comparisons:

• The first is that of the MNL (orange line), which is the only model invariant
to the permutations of the categories, against the B-PCGLM (blue line) whose
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Figure 39: Box plots of the 105 B-PCGLMs log-likelihoods corresponding to the 10 sam-
ples resulting from the 10-folds cross-validation procedure (x-axis). The orange, blue,
and dark green lines correspond respectively to the log-likelihood of the multinomial
model, the initial partition tree, and the best partition tree found using algorithm 2.
The above partition structures used the logistic link function at all non-terminal ver-
tices. The light green line is the log-likelihood of the model with the same partition tree
structure found in the neighborhood search, but the cdfs at each non-terminal vertex
were selected using algorithm 1.

link functions are in all cases the logistic cdf. The log-likelihood of the found
B-PCGLMs in all cases except the fourth fold turned out to be higher than the
log-likelihood of the MNL. It is considerably higher in 6 of these cases, while the
log-likelihoods are very close in the other 3 cases.

• The second comparison evaluates the selected structure inside the complete set of
possibilities described by the box plots. As for the selected B-PCGLM, we note
that for all cases, the log-likelihood is higher than the median of all possible B-
PCGLMs log-likelihoods. In fact, 7 of them are within the best quartile of the
likelihoods (while none of the MNLs in it).

• The third comparison is that of the B-PCGLM resulting from the search with
algorithm 2 (green line) against the complete set of structures and the baseline
partition tree itself. We found the best B-PCGLM in 8 folds (and in the other
2, the log-likelihood were very close to the best one) by visiting on average 21%
of the total binary partitions. Note that the percentage of visited trees for each
CV-fold is indicated in the labels of the x− axis.

• And the fourth comparison is the B-PCGLM (light green line) whose link functions
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are estimated according to algorithm 1 of chapter 2 against the best B-PCGLM
that uses the logistic link in all the set of models. The average log-likelihood
was reduced by approximately 7% when specific links were assigned to each non-
terminal vertex.

4.6 Conclusion and perspectives

In this chapter, we studied the modeling of a hierarchically structured categorical re-
sponse, and we focus on the case where the structure itself is unknown beforehand.
We opted to work with binary partition trees to simplify the task of searching and
the task of modeling the hierarchical structure. We first proposed a methodology for
finding a candidate baseline tree of such a hierarchical structure following the grounds
of the HAC. Further on, we proposed two greedy search algorithms that aim to walk
through the space of partition trees neighboring the initial partition tree in order to
find a partition tree with a better score. Here, we only considered the log-likelihood
score, but any other characteristic measure of the model, for instance, the percentage of
correct predicted classifications, can be optimized. The computational implementation
of the proposed methodologies involves the estimation of several models. However, the
log-likelihood decomposition of a model allows the different models to be estimated in
parallel. Moreover, the search for neighboring partition trees only involves estimating
two additional binary partition trees that can also be estimated in parallel. Thus, the
computational burden can be highly minimized through good programming practices.

The success of this proposal is primarily determined by having found a good baseline
partitioning tree, for which the methodology is based on the fundamentals of the HAC
algorithm. As usual in clustering tasks, different results may be obtained when using
different dissimilarity measures (to be defined for both individuals and groups). One
could obtain results that correctly capture the variability of the data but that do not
effectively address the problem’s objective. Similarly, the choice of linkage method
greatly determines the characteristics of the partition tree to be obtained. Therefore,
it is crucial to carefully select the dissimilarity measure, as well as the linkage method,
according to the data set at hand.

Different degrees of separation are possible for the vertices of the partition tree.
Despite the simplicity of binary regression models, these are greatly affected when there
is a high degree of separation of the response variable (see chapter 2). Hence, to select
the link function at each non-terminal vertex, we used an algorithm to address this
problem even in the presence of common perturbations for binary data.





Chapter 5

Conclusions and Perspectives

In this thesis, we addressed regression models for categorical responses from the simplest
case, which corresponds to binary variables, going through ordinal and nominal vari-
ables, to the most general case, when there is a hierarchical grouping structure among
the categories. Our approach and the common thread of this research were focused on
the specification, description, and characterization of the link function that connects
the linear predictor to the expected value of the categorical response variable. Accord-
ing to Nelder and Wedderburn (1972), a generalized linear model is characterized by
three components: the response distribution, the linear predictor (linear combination
of explanatory variables), and the link function. In the particular case of a categorical
response, the distribution is necessarily the Bernoulli distribution (when J = 2) or the
multinomial distribution (when J ≥ 2). Thus, only the linear predictor and the link func-
tion characterize the differences among these models. However, since the linear predictor
only represents the constraints on the parameters associated with the covariates, the link
function becomes the key to characterize categorical regression models. The robustness
to the presence of outliers, the order type, or the grouping structure of categories are
three challenges rarely addressed by analysts when modeling categorical responses. This
thesis focused on analyzing the composition of the link function to meet these challenges.

Chapter 2 focused on binary responses, for which, despite the existence of a rich
set of models, only the logit model and the probit model are widely used in practice.
Since they are very similar, researchers have long assumed that no other function could
significantly improve the fit of these models. However, the logit and probit models
are known to be sensitive to data perturbations, whereas the Student link has been
suggested as a robust alternative. To use the Student link, we proposed to estimate
its degree of freedom (ν) each time the Student model with ν = 1 results in a higher
log-likelihood value than the one with ν = 8. This allowed us to effectively differentiate
the fits of the Student model (with a small ν) from the logit and probit models. We
investigated the sensitivity of the models according to the different degrees of separation
(or, conversely, overlap) of the two levels of the response. We observed that the Student
model is robust, unlike the logit model, especially when the degree of overlap is small.
In other words, the lower the degree of overlap, the lower the estimated ν, and so the
more robust the Student link is compared to the logit link. Therefore, the estimation
of ν might be used as an indicator of the overlap configuration. An additional remark
for binary models is about their inference, which might be significantly affected if a
symmetric link function is incorrectly used instead of a non-symmetric one. The Stu-
dent distribution is symmetric and thus sensitive to skewed data, as the logistic and the
normal distributions. To overcome this problem, and as an extension of the work pre-
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sented in chapter 2, we propose to use the non-central Student distribution. By tuning
its non-centrality parameter, one will be able to control the skewness of the link function.

In chapter 3, we presented the problem of non-homogeneity of regression models for
categorical responses, both in formal writing and in software solutions. To overcome
this problem, we created and introduced GLMcat, an R package which enables the
estimation of generalized linear models for categorical responses. The models in this
package are implemented using the unified specification (r, F, Z), where r represents
the ratio (reference, cumulative, adjacent, or sequential), F the distribution function
for the link, and Z the design matrix (Peyhardi et al., 2015). All classical models (and
their variants) for categorical data can be written as a triplet (r, F, Z), and thus can be
estimated using GLMcat. Here, we implemented an alternative to the existing packages
that covers all classical models and offers the possibility of new models through the
different combinations of the components. The functions are user-friendly and fairly
intuitive, offering the possibility to choose from an extensive range of models. Indeed,
the package supports a wide range of cumulative distribution functions (cdfs) and allows
the linear predictor to be tailored as desired. The unified specification of the models
for categorical data enabled us to analyze their properties and highlight some existing
equivalences. We also proposed a methodological and practical guide for the appropriate
selection of a model (through the link function and the constraints of the design matrix),
considering the correspondence between the nature of the data and the properties of the
model. The contributions presented in this chapter have broad applicability since various
fields of research and industry deal extensively with categorical responses. We believe
that this tool makes it possible to popularize the area of categorical data regression,
which has not yet been extended on a large scale for non-logistic models.

One advantage of the modularized architecture of the package is that it facilitates
the inclusion of additional cdfs that will be immediately available for all four model
families. Although the most popular cdfs often result in “similar” fits, this does not
imply that all cdfs are essentially equivalent when describing the response. In chapter
2, we specifically investigated the properties of the Student distribution as the link
function in binary models. We found strengths regarding the robustness of the model
when specifying its degree of freedom as ν ≤ 1. As a methodological extension, we
propose to evaluate the properties of other cdfs with requirements that allow improving
the fit. For instance, in distributions such as Pregibon (based on the generalized Tukey
family) or the non-central Student, some parameters control the symmetry, the heaviness
of the tails, and/or the skewness of the distribution. An extension for the package is to
consider algorithms to estimate such parameters.

The unified structure (r, F, Z) can be extended to include random effects. Some
authors have proposed this extension for particular models in the context of categorical
responses (see Hartzel et al., 2001; Coull and Agresti, 2000; Tutz and Hennevogl, 1996).
The implementation of generalized linear mixed models is envisaged as an additional
functionality in the GLMcat package.

In the regression framework, other essential tasks are model regularization and vari-
able selection. These techniques aim to reduce the space of explanatory variables and
improve model estimation and prediction accuracy. In the case of categorical variables,
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the elastic net penalty can be obtained for categorical responses with the package or-
dinalNet. However, not all the families of models are available within this package. In
future work, we will attempt to define regularization and variable selection methods
that are valid for any triplet (r, F, Z).

The random utility maximisation (RUM) principle is used to model the choices
of individuals. It is assumed in these models that an individual’s preferences among
the available alternatives can be described by a utility function (Uj = ηj + ǫj). The
individual chooses the alternative with the highest utility. The utility of an alternative
depends on ηj, which is determined by the characteristics of the decision-maker and the
attributes of the alternatives, and on ǫj, which accounts for the effects on preferences
of unobserved attributes. The multinomial logit (MNL) emerges when one assumes
that the epsilons independently follow a Gumbel distribution. The MNL can also be
derived and represented as a GLM by using the triplet (reference, logistic, Zc) (see
Figure 40). There are also other alternatives as the multinomial probit (when ǫj ∼
Normal) or the nested logit model (when ǫj ∼ Generalized Gumbel). The multinomial
probit has a straightforward interpretation in terms of the latent utilities. However, as
a disadvantage, it does not have a closed-form expression, thus, in practice, this model
becomes difficult to estimate for more than four alternatives. This is not the case for
GLMs which are easily estimable. At using the family of reference models, there is also
a great flexibility in using different distributions for the link function. An additional
perspective of this work is to use the adjacent ratio as an alternative to the reference

ratio. The (adjacent, logistic, Zc) model is invariant under all the permutations of
categories, thus appropriate for nominal responses (although it has been reported as
a model for ordinal responses). Whenever the distribution is set differently from the
logistic, or the design is defined differently from the complete form, their combination
with the adjacent ratio (invariant only under the reverse permutation) could be employed
as a choice model. With this proposal, we would obtain the first model designed for
ordered choices, which can consider explanatory variables that might depend on the
ordered choice alternatives.

Chapter 4 studied the modeling of a hierarchically structured categorical response.
Whenever the partition tree structure is known, the task is simply to build the best
model for each non-terminal vertex; this means choosing the link function and the
pertinent covariates. Using the rice data set which motivated this work, we built two
PCGLMs corresponding to the two known partition trees. One considered first the
division of the subspecies according to the geographic origin and then according to the
domestication factor. The other considered the opposite splits, first according to the
domestication factor and then according to the geographic origin.

A particular emphasis is then given in this chapter to the case where the structure
itself is unknown beforehand. We opted to work with the assumption of binary partition
trees to simplify both the task of searching and the task of modeling the hierarchical
structure. We proposed a methodology for finding a candidate baseline tree of such
a hierarchical structure following the grounds of hierarchical agglomerative clustering
(HAC). This methodology has been tested on the rice data set and has led to find a
structure closely related to the (hypothesized) partition tree that first splits the data
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Figure 40: Types of choice models.

according to the domestication factor. This partition tree had better results in terms
of the log-likelihood and the BIC. By selecting the link functions for the non-terminal
vertices (based on the results of chapter 2), these measures were further improved for
this data set.

Further on, we proposed two greedy search algorithms to find a partition tree with
a better score. These algorithms aim to walk through the space of trees iteratively,
starting from the baseline found with the HAC-based methodology. The partition trees
to visit are the neighboring partition trees defined through operations on a baseline
structure. We considered the log-likelihood score as the summary measure of these
partition trees. However, any other characteristic measure of the model, for instance,
the percentage of correct predicted classifications, can be optimized. The computa-
tional implementation of the proposed methodologies involves the estimation of several
models. Nevertheless, the log-likelihood decomposition of a model allows the different
sub-models to be estimated in parallel. Moreover, the search for neighboring trees only
requires estimating two additional binary models that can also be estimated in parallel.
Hence, the computational burden can be highly minimized through good programming
practices.

This proposal’s success is primarily determined by having found a good baseline
partitioning tree, for which the methodology is based on the fundamentals of a clustering
algorithm. As usual in clustering tasks, different results may be obtained when using
different dissimilarity measures (to be defined for both individuals and groups). One
could obtain results that correctly capture the variability of the data but that do not
effectively address the problem’s objective. Therefore, it is crucial to carefully select the
dissimilarity measure to be employed. Similarly, the choice of linkage method greatly
determines the characteristics of the partition tree to be obtained. For example, single
linkage tends to produce unbalanced and straggly clusters. Complete linkage tends
to produce compact clusters with equal diameters. Average linkage is an intermediate



122

between single and complete methods, or Ward’s method, that tends to find clusters
of equal size and is known to be sensitive to outliers. Some of these linkage methods
even rely on one specific similarity measure. Taking advantage of all of these options,
in the proposed methodology, one can analyze the clusters obtained using different
dissimilarity measures and different linkage methods, attempting to find a common
structure in all of them. Consensus algorithms synthesize different dendrograms by
summarizing the concordant parts relative to the discrepant parts (Darlu and Tassy,
1993). In other words, the algorithm finds a consensus tree that optimally represents
various clustering approaches resulting from the choice of the dissimilarity measure and
the linkage method. Some approaches to obtain a consensus tree are given by Gordon
and Vichi (2001); Mouchet et al. (2008); Lapointe and Cucumel (1997). The performance
of our proposed methodology may be enhanced using these consensus trees.

As discussed by Tutz (2021), Likert-type items (defined by Likert (1932)) can be
analyzed assuming a hierarchical structure of the categories. In particular, he defined a
binary model (at the root level) to differentiate the neutral category, which corresponds
to the ambivalence of neither agrees nor disagrees, from the ordered categories. He also
proposed binary separations for the following levels (disagreement and agreement) to
take full advantage of the binary partitions, which allowed him to consider the problem
of the tendency of respondents to extreme categories. He proposed a particular contrast
in the form of a linear predictor that allows to increase symmetrically the tendency to
extreme categories. Extensions to the PCGLMs (not necessarily binary) would be to
tailor the linear predictor of the models to respond to specific requirements as the one
previously exposed. In this situation, the inference of the model is a topic to investigate
because the log-likelihood would no longer be separable due to the generated relation-
ship between linear predictors of two distinct partitions.

The selection of the link function as well as the selection of predictors has emerged
as a common discussion in all the chapters of this thesis. Nonparametric methods have
been proposed in the literature to select predictors and estimate the link function. Wang
et al. (2018) proposed an algorithm that uses p-splines to estimate the link function
that is guaranteed to be monotonic. More generally, Tutz and Petry (2012) employed a
boosting type method to select both the predictors and the link function simultaneously.
Given the great flexibility that can be achieved by using nonparametric methods, we
consider of interest to use and compare those with the parametric counterpart described
throughout this thesis.

In chapter 2 we showed that despite the simplicity of binary regression models, their
quality is greatly affected when there is a high degree of overlap of the data. We argued
that a good model fit can be obtained using the Student link function as long as there
is a small degree of overlap. According to that, we would expect the best model to
result from a partition tree whose non-terminal vertices sharply separate the response
levels according to the covariates. Consequently, the degree of freedom for the Student
link function estimated at each vertex of the partition tree is expected to be generally
lower than one. Following these ideas, the best B-PCGLM would correspond to the tree
with the lowest summary measure (for instance, the mean weighted by the number of
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observations at each vertex) of these degrees of freedom. Future work will be devoted
to the study of this.

Although the data that motivated this research comes from a biological context (as
they refer to the taxonomic diversity of rice), throughout this thesis, we managed to
situate the statistical problem in examples from different research areas, illustrating the
popularity of categorical responses and thus the high applicability of these regression
models.
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Appendix of chapter 2

A.1 Accuracies outliers simulation

Figure 41: Classification accuracies (y−-axis) of the simulations in section 2.4.3. The
x−-axis represents the percentage of outliers, and the blue and yellow colors correspond
respectively to Student and the logit link.

A.2 Simulations with different numbers of discrim-
inant and noisy variables
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Figure 42: Average number of times the stepwise (backward) algorithm selects discrimi-
nant variables (dashed lines) and noisy variables (solid lines) where δt = (0.8,−0.6, 0, 0).
The blue and yellow colors respectively represent the Student and logistic links.
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Figure 43: Average number of times the stepwise (backward) algorithm selects
discriminant variables (dashed lines) and noisy variables (solid lines) where δt =(0.8, 0.4,−0.4, 0.2, 0, 0). The blue and yellow colors respectively represent the Student
and logistic links.
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Figure 44: Average number of times the stepwise (backward) algorithm selects
discriminant variables (dashed lines) and noisy variables (solid lines) where δt =(0.8, 0.4,−0.4, 0.2, 0, 0, 0, 0). The blue and yellow colors respectively represent the Stu-
dent and logistic links.
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Appendix of chapter 3

B.1 Cumulative distribution function of the non-
central t distribution

Fν,µ(η) = Φ(−µ) + 1
2

∞∑
j=0

(pjIy (j + 1
2

,
ν

2
) + qjIy (j + 1,

1
2
)) ,

where:

• Φ is the cdf of the standard normal distribution,

• Iy(a, b) is the regularized incomplete beta function,

• y = η2

η2 + ν
,

• pj = exp(−µ2

2
)(µ2

2
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B.2 Jacobian matrices

The Jacobian matrices ∂π/∂r used as part of the Fisher’s scoring algorithm are presented
for each ratio.

Cumulative:

∂π

∂r
=
⎛⎜⎜⎜⎜⎜⎜⎝

1 −1
1 −1⋱ ⋱

1 −1
1

⎞⎟⎟⎟⎟⎟⎟⎠
.

In the following, we present the form of the element corresponding to row i and
column j of the Jacobian Matrix.

Adjacent:
∂πj

∂ri

= 1
F (ηi)[1 − F (ηi)]

⎧⎪⎪⎨⎪⎪⎩
πj(1 − γi) if i ≥ j,

−πjγi otherwise,
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where γi = Pr(Y ≤ i) = ∑i
k=1 πk.

Sequential:

∂πj

∂ri

=
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

j−1∏
k=1

{1 − F (ηk)} if i = j,

−F (ηj) j−1∏
k=1,k≠i

{1 − F (ηk)} if i < j,

0 otherwise.

Reference:

∂πj

∂ri

= COV(Yi, Yj)
F (ηi)[1 − F (ηi)] .

Refer to the Supplementary Material of Peyhardi et al. (2015) for further details.

B.3 Proofs

B.3.1 Proof of Proposition 1

Consider the distribution of Y defined by the (adjacent, F, Z) model. The adjacent
ratio for category J − j can be written as

r(J−j)(π) = πJ−j

πJ−j + πJ−j+1

(B.1)

for all j ∈ {1, ..., J − 1}. Simultaneously, consider the distribution of Ỹ defined by the(adjacent,

F, Z)σ̃ model (equivalent to r(πσ) = F (Zβ)), where σ̃ is the reverse permutation, i.e.,
σ̃(j) = J − j + 1 for all j ∈ {1, ..., J − 1}, we can prove the next equality

rj(πσ̃) = 1 − rσ̃(j+1)(π) (j = 1, ..., J − 1) (B.2)

through the ratio expressed for element σ̃(j + 1) = J − j in Equation B.1 where

1 − rσ̃(j+1)(π) = πJ−j+1

πJ−j + πJ−j+1

= πσ(j)

πσ(j+1) + πσ(j)= rj(πσ̃).
Given that rj(πσ̃) = F (ηj) and using Equality B.2, we obtain that rJ−j(π) = F̃ (−ηj). If
we denote i = J − j the last equality becomes

ri(π) = F̃ (−ηJ−i)
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for all j ∈ {1, ..., J − 1}. Hence ỹ follows the (adjacent, F̃ , −PZ) model, where P is
the restricted reverse permutation matrix of dimension J − 1 defined in Equation 3.4.
Since P has full rank, the design matrices Z and −PZ are equivalent, meaning the(adjacent, F, Z) model is equal to the (adjacent, F̃ , −PZ) model. The above can
be similarly demonstrated for the cumulative ratio, but not for the sequential ratio
given that Equality B.2 is invalid for these models. To prove it by contradiction, the
reader can assume that the statement is false, proceed from there, and at some point, a
contradiction will result.

B.3.2 Proof of (reference, logistic, AZ) = (adjacent, logistic, Z)
Assume that the distribution of Y is defined by the (reference, logistic, Z) model. For
j = 1, . . . , J we obtain

ln (πj

πJ

) = ηj.

The adjacent ratio can be rewritten in terms of the reference ratio since

ln ( πj

πj+1

) = ln (πj

πJ

) + ln ( πj

πj+1

),
therefore, using the reparametrization

= ⎧⎪⎪⎨⎪⎪⎩
η′j = ηj − ηj+1, for j = 1, . . . , J − 2,

η′J−1 = ηJ−1

represented by the matrix

A =
⎛⎜⎜⎜⎜⎜⎜⎝

1 −1
1 −1⋱ ⋱

1 −1
1

⎞⎟⎟⎟⎟⎟⎟⎠
of dimension J−1, we obtain the equality (reference, logistic, AZ) = (adjacent, logistic, Z),
and, given that A is invertible, we obtain (reference, logistic, Z) = (adjacent, logistic, A−1Z).
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Figure 45: Tree structure found for the rice diversity data set in which missing subspecies
labels are filled with the corresponding species labels.

C.0.1 Accuracies Cleveland data set
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Figure 46: Box plots of the 105 B-PCGLMs classification accuracies corresponding to the
10 samples resulting from the 10-folds cross-validation procedure (x-axis). The orange,
blue, and dark green lines correspond respectively to the accuracies of the multinomial
model, the initial partition tree, and the best tree found using algorithm 2. The above
partition structures used the logistic link function at all non-terminal vertices. The light
green line is the accuracy of the model with the same partition tree structure found in
the neighborhood search, but the cdfs at each non-terminal vertex were selected using
algorithm 1.
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Title: About the link function in generalized linear models for categorical
responses

Abstract: The logit, proportional-odds logit, and multinomial logit models are the
most common models for binary, ordinal, and nominal responses, respectively. Although
these models have outstanding properties, they are too sensitive to the presence of
outliers, and they do not capture specific characteristics of categorical data, such as the
order type or the potential grouping relationships among categories. The link function
is a key component of GLMs to address these particularities. The purpose of this
thesis is precisely to study this link function in various forms for categorical regression
models. We first investigate the robustness of the Student link function in the case
of binary outcomes according to different data separation settings. For the case of
more than two categories, we then propose in the framework of a unified R-package,
a practical guide to identify the most suitable model for ordered categories according
to the nature of the data and the properties of the model. Finally, when assuming a
binary hierarchical structure among categories, we elaborate a two-step methodology
to infer it. The first step is to construct a partition tree based on the agglomerative
hierarchical clustering algorithm. The second step consists of a search algorithm based
on rotations to efficiently visit the space of partition trees. Overall, this thesis aims to
explore, popularize, and extend the range of regression models for categorical responses.

Keywords: GLM for categorical response, Link function, Robustness, Data separation,
Binary partition tree.

Titre : À propos de la fonction de lien dans les modèles linéaires généralisés
pour réponses catégorielles

Résumé : Les modèles logit, logit à côtes proportionnelles et multinomial logit sont les
plus classiques pour modéliser respectivement les réponses binaires, ordinales et nom-
inales. Même si ces modèles ont des propriétés remarquables, ils sont sensibles à la
présence de valeurs aberrantes, et ne permettent pas de tenir compte de caractéris-
tiques spécifiques aux données catégorielles, comme le type d’ordre ou les possibles
groupements de catégories. La fonction de lien est une composante clé des GLMs pour
prendre en compte ces particularités. L’objet de cette thèse est précisément l’étude de
cette fonction de lien sous diverses formes pour les modèles de régression catégorielle.
Nous nous intéressons d’abord à la robustesse de la fonction de lien Student dans le
cas d’observations binaires selon différentes situations de séparation des données. Avec
plus de deux catégories, nous proposons ensuite, dans le cadre d’un package R unifié,
un guide pratique permettant de choisir le modèle ordinal le plus adapté selon la nature
des données et les propriétés des modèles. Enfin, lorsque l’on suppose une structure
hiérarchique binaire des catégories, nous définissons une méthodologie en deux étapes
pour l’inférer. La première étape construit un arbre de partition en se basant sur
l’algorithme de classification ascendante hiérarchique. La deuxième consiste en un algo-
rithme de recherche basé sur des rotations pour visiter efficacement l’espace des arbres
de partition. De manière générale, cette thèse vise à explorer, populariser et étendre
l’ensemble des modèles de régression pour données catégorielles.

Mots clés: GLM pour réponse catégorielle, Fonction de lien, Robustesse, Séparation
de données, Arbre de partition binaire.
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