control is empirically demonstrated on both simulated and real data.
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Summary

The reliability of machine learning (ML) methods is critical in contexts that involve highstakes decisions. However, while ML methods have achieved impressive results in a wide range of applications [START_REF] Candès | Machine learning: Trends, perspectives, and prospects[END_REF], none of them are able to provide a small error guarantee in all settings.

Since models cannot be perfect, they should at least "know that they do not know". While there have been many efforts in the literature to address the issue of uncertainty quantification, whether in the field of probability calibration [START_REF] Guo | On calibration of modern neural networks[END_REF], or prediction sets (Angelopoulos and Bates, 2021), these solutions are not satisfactory when an actual decision is required. By contrast, a key to keeping the error rate (or risk) below a certain threshold is to make use of a type of abstention option, which amounts to abstain from making a decision when there is too much uncertainty. The goal of this thesis is to propose new methods for risk control, i.e. for keeping the risk below a certain user-specified threshold α, in several learning tasks. Risk control is a long-standing paradigm in machine learning, in binary classification and related tasks [START_REF] Rigollet | Neyman-pearson classification, convexity and stochastic constraints[END_REF]Blanchard et al., 2010a;[START_REF] Bartlett | Classification with a reject option using a hinge loss[END_REF][START_REF] Barber | Controlling the false discovery rate via knockoffs[END_REF][START_REF] Bates | Testing for outliers with conformal p-values[END_REF]Angelopoulos et al., 2021), and we aim to either extend existing methods or propose new ones for a certain panel of tasks. Specifically, our idea is to enhance the best existing ML methods by developing an additional layer on top of them that provides an interpretable guarantee on the error rate. This is achieved by formalizing risk control in a certain task as a type of false discovery rate (FDR) [START_REF] Benjamini | Controlling the false discovery rate: a practical and powerful approach to multiple testing[END_REF] control problem. The FDR is a notion that originates from multiple testing [START_REF] Benjamini | Controlling the false discovery rate: a practical and powerful approach to multiple testing[END_REF]. Single hypothesis testing is the process of choosing between two hypotheses, the null and the alternative, and multiple testing is the field of statistics that is concerned with taking decisions for multiple tests simultaneously. Thus, multiple testing procedures return a set of rejected null hypotheses, and the aim of multiple testing is to build procedures that keep a certain error rate below a level α. The FDR is a popular error rate criterion, defined as the proportion of errors (false discoveries) among the rejected set.

Since risk control involves a type of abstention option, it can be seen in general as a type of FDR control task, where a discovery corresponds to making a decision, and a false discovery corresponds to a decision that is incorrect. A strong advantage of the FDR is that it has a clear interpretation: if α = 5% and a decision (whose specific form depends on the context) is made for 100 observations, then on average there are less than 5 decisions that are incorrect. Moreover, tools from the multiple testing literature on FDR control can be applied to the problem of controlling an FDR-like criterion.

Our methods can be seen as wrappers that take as input an off-the-shelf ML technique, designed for a certain learning task, and return a set of decisions such that the FDR is controlled at a user-specified level α. Specifically, we focus on the following three learning tasks: novelty detection, clustering and link prediction.

Contents viii

Adaptive novelty detection with FDR guarantee We start with the problem of FDR control for novelty detection in Chapter 2, where the aim is to detect novelties in a test sample based on a sample of "normal" behaviors. This problem amounts to a classical multiple testing setup, so that multiple testing tools for FDR control can be applied directly. Recent seminal works [START_REF] Bates | Testing for outliers with conformal p-values[END_REF]; [START_REF] Yang | Bonus: Multiple multivariate testing with a data-adaptivetest statistic[END_REF] from the literature on conformal inference (Angelopoulos and Bates, 2021) and knockoffs [START_REF] Barber | Controlling the false discovery rate via knockoffs[END_REF], have shown that the test statistic could be learned from the data while maintaining the FDR control guarantee, hereby circumventing crucial limitations of historically-used strategies for FDR control. Our contribution consists in an extension of these previous works by proposing a new way to learn the test statistic that is more powerful than previously, while retaining the control of the FDR. The new method leverages classification algorithms to efficiently detect novelties. In particular, any off-the-shelf classification method, such as random forests or neural networks, can be used. FDR control is established in two main ways. First, we prove that the resulting "conformal" p-values satisfy the PRDS property. The PRDS property [START_REF] Benjamini | The control of the false discovery rate in multiple testing under dependency[END_REF]) is a specific dependence assumption from the multiple testing literature, which, among other things, entails FDR control when using the Benjamini-Hochberg procedure [START_REF] Benjamini | Controlling the false discovery rate: a practical and powerful approach to multiple testing[END_REF]. Secondly, we also provide new FDR bounds. Finally, we provide a power analysis, where we show that the proposed procedure has a power close to the one of the optimal likelihood ratio test with a suitable level. Numerical experiments on both simulated and real data demonstrate the substantial gain of power with respect to previous work.

Clustering with error rate control The problem of error rate control in a clustering task is studied in Chapter 3. A crucial point is to define the notion of error in clustering, since there is no unique definition of what a cluster is. To overcome this difficulty, we make the choice of considering a mixture model, that defines a natural ground truth clustering. In order to keep the risk smaller than a given level α, even in an unfavorable setting, we consider a procedure with an abstention option, whose output is a set of indices corresponding to the observations to which a cluster label is assigned. The problem is thus formalized in terms of controlling the false membership rate (FMR) criterion, defined as the average proportion of errors in the set of classified observations, up to label-switching. We propose a plug-in procedure inspired from the empirical Bayes approaches in multiple testing [START_REF] Sun | Oracle and adaptive compound decision rules for false discovery rate control[END_REF]. Essentially, this procedure assigns cluster labels to observations for which the maximum class probability is above a data-driven threshold. Our main contribution consists in the theoretical analysis of this procedure: we quantify the FMR deviation with respect to the target level α with explicit remainder terms. In particular, our results imply that if the model estimate is accurate enough, the FMR is close to the target level, with a power close to optimal. Moreover, we develop robust bootstrap procedures for improved empirical performance.

Link prediction with FDR control Finally, we consider the problem of FDR control in a link prediction task in Chapter 4. FDR control in that specific setting does not correspond to a standard multiple testing problem, but we argue that high-level ideas from the literature on conformal inference and knockoffs [START_REF] Barber | Controlling the false discovery rate via knockoffs[END_REF][START_REF] Weinstein | A power and prediction analysis for knockoffs with lasso statistics[END_REF][START_REF] Bates | Testing for outliers with conformal p-values[END_REF][START_REF] Yang | Bonus: Multiple multivariate testing with a data-adaptivetest statistic[END_REF][START_REF] Mary | Semi-supervised multiple testing[END_REF] and of Chapter 2 can still be applied. We propose a transposition of these ideas to the link prediction setup. The proposed method acts as a wrapper that takes as input an off-the-shelf link prediction technique, whose output consists of connection probabilities, and returns an FDR-controlling method. However, the graph structure induces intricate dependence in the data, which makes the setup markedly different from previous work, that must be taken into account in the procedure. The FDR 

Motivation

Machine learning (ML) methods aim at leveraging data to learn various tasks, typically by optimizing a suitable data-based objective, whereas false discovery rate (FDR) control is a staple of multiple testing [START_REF] Benjamini | Controlling the false discovery rate: a practical and powerful approach to multiple testing[END_REF] that is concerned with building decision procedures that provide a finite-sample guarantee on the proportion of errors. In this thesis, we make these two fields meet in order to perform reliable machine learning. Reliability is critical in applications that involve high-stakes decisions, such as autonomous driving or medical diagnosis. We identify three issues of modern ML methods in terms of reliability:

Issue n • 1: ML methods make mistakes ML methods have achieved impressive results in a wide range of applications [START_REF] Candès | Machine learning: Trends, perspectives, and prospects[END_REF], but none of them are able to provide a small error guarantee in all settings: if the task at hand is intrinsically difficult, then there exists a minimal error, even for an "oracle" relying on infinite samples. In many sensitive contexts, however, the potential of error is not acceptable and should be dealt with.

Issue n • 2: ML methods (usually) do not provide reliable confidence estimation Since models cannot be perfect, they should at least "know that they do not know". Modern machine learning methods, however, do not provide this information in general, which makes them unreliable. For instance, neural networks (NN) are known to be overly confident [START_REF] Guo | On calibration of modern neural networks[END_REF]: Figure 1.1 illustrates, in a classification context, that for modern NN architectures the average confidence (i.e. the probability associated with the prediction on the test examples) is substantially higher than the accuracy (the percentage of correct predictions).

Figure 1.1: Source: [START_REF] Guo | On calibration of modern neural networks[END_REF]. Histogram of the (estimated) probability associated with the predicted label in a classification task on CIFAR-100, for two NN architectures: a 5-layer LeNet (left) and a 110-layer ResNet (right). The 110-layer ResNet [START_REF] He | Deep residual learning for image recognition[END_REF] represents a modern-day architecture compared to the 5-layer LeNet (LeCun et al., 1998) that dates back to early works on CNN.

In the case of NN, this concern is made worse by the fact that they are uninterpretable black boxes.

Issue n • 3: Confidence estimation is often not sufficient There are a variety of methods dedicated to making the probabilities associated to the predictions of a ML model closer to the 'true' probabilities, see e.g. [START_REF] Guo | On calibration of modern neural networks[END_REF]; [START_REF] Zaidi | Neural ensemble search for uncertainty estimation and dataset shift[END_REF]; [START_REF] Lakshminarayanan | Simple and scalable predictive uncertainty estimation using deep ensembles[END_REF]. Moreover, conformal prediction (Angelopoulos and Bates, 2021) is a technique that has gathered an important interest in the statistics and machine learning community in the recent years, that provides valid prediction sets, that is, a set of predictions that contain the truth with a pre-specified level of confidence, and for arbitrary machine learning models. However, in any application that involves decision making, confidence estimation or prediction sets are not satisfactory since ultimately, it does not produce a decision. By contrast, a key to keeping the error rate low is to make use of a type of abstention (or selection) option, which amounts to abstain from making a decision when there is too much uncertainty. For instance, in autonomous driving, if the object detector is not confident at some point in time, then the system should rely more on the other sensors for braking. Alternatively, in automated medical diagnosis, if the prediction can not be made reliably, the system should defer to a human expert. However, choosing the abstention rule to be used to get the desired guarantee is difficult and cannot be deduced from confidence bounds in general, such as for instance, the valid prediction sets provided by conformal prediction [START_REF] Candès | Machine learning: Trends, perspectives, and prospects[END_REF].

The afore-mentioned issues motivate a shift in paradigm, from risk minimization to risk control, which refers to the goal of keeping the risk below a user-specified threshold. This can be achieved by using a type of abstention option that does not count as an error in the risk. However, to avoid that a method abstains for all observations, the cost of abstaining can be taken into account by seeking a procedure that abstains as little as possible under the constraint on the risk.

From risk minimization to risk control

Background

Risk control is a long-standing paradigm in binary classification. Early works can be divided according to two main lines of research: Neyman-Pearson (NP) classification and classification with a reject option. In NP classification [START_REF] Cannon | Learning with the neyman-pearson and min-max criteria[END_REF][START_REF] Scott | A neyman-pearson approach to statistical learning[END_REF][START_REF] Rigollet | Neyman-pearson classification, convexity and stochastic constraints[END_REF]Blanchard et al., 2010a), risk control is achieved by focusing on one type of error at the expense of the other. In this framework, only a wrong classification into one of two classes, say class "1" (versus class "0"), counts as a mistake. Instead, the decision of classifying into class "0" corresponds to a "safer" option, where it is understood that there may be a potentially large proportion of misclassifications under this label. From this viewpoint, classifying into class "0" can be seen as a kind of abstention decision. Formally, the aim is to ensure that the probability of making a wrongful classification into class "1" is below a fixed margin of error, while minimizing the probability of making a wrong classification into class "0".

By contrast, in classification with a reject option [START_REF] Herbei | Classification with reject option[END_REF][START_REF] Bartlett | Classification with a reject option using a hinge loss[END_REF][START_REF] Grandvalet | Support vector machines with a reject option[END_REF], no focus is put on a particular type of error. Low overall error is achieved with the use of a reject (or abstention) option, where a classifier can abstain from making a class decision. In this framework, the reject option is accounted for by a particular fixed cost in the risk, which is less than the cost of making a mistake. A main drawback of this type of approach is the use of a cost instead of a confidence level. In practice, it is not always clear how to fix the abstention cost with respect to the cost of making a mistake.

These early works do not provide finite-sample guarantees. Recent breakthrough works have filled the gap, in binary classification and related tasks. To start with, in the field of variable selection, [START_REF] Barber | Controlling the false discovery rate via knockoffs[END_REF] introduced a "knockoff" method, with proven finite-sample guarantees on the FDR control. Developed for the Gaussian linear regression model, the core idea is to fabricate "knockoff" features that mimic the original features, in such a way that a knockoff variable satisfies a type of exchangeability with the true noise variables. Since the ground truth is known for the knockoffs, they can be used as benchmarks to evaluate the error (that is, the proportion of false positives) of a certain selection. This seminal work was followed by many extensions and refinements, see, e.g., [START_REF] Barber | A knockoff filter for high-dimensional selective inference[END_REF]; [START_REF] Bates | Metropolized knockoff sampling[END_REF]; [START_REF] Weinstein | A power and prediction analysis for knockoffs with lasso statistics[END_REF]; [START_REF] Barber | Robust inference with knockoffs[END_REF]; [START_REF] Nguyen | Aggregation of multiple knockoffs[END_REF]; [START_REF] Sarkar | Adjusting the benjamini-hochberg method for controlling the false discovery rate in knockoff-assisted variable selection[END_REF].

In the context of novelty (or outlier) detection, [START_REF] Haroush | A statistical framework for efficient out of distribution detection in deep neural networks[END_REF] used "conformal" pvalues to perform model-free outlier detection, proving finite-sample control of the probability of making a wrongful novelty class decision for a single test point (which corresponds to a NP paradigm guarantee). Conformal p-values [START_REF] Vovk | Algorithmic learning in a random world[END_REF] is a concept originating from the conformal prediction framework (Angelopoulos and Bates, 2021;[START_REF] Vovk | Algorithmic learning in a random world[END_REF][START_REF] Balasubramanian | Conformal prediction for reliable machine learning: theory, adaptations and applications[END_REF], that measure statistical significance based on a sample of observations that have a "normal" behavior. Conformal p-values and knockoffs start from a similar idea: both techniques rely on having a reference set that is exchangeable with the observations corresponding to an absence of "signal", these being noise variables in the context of variable selection, or observations with normal behavior in the context of novelty detection. Subsequently, in a seminal work, [START_REF] Bates | Testing for outliers with conformal p-values[END_REF] showed that conformal p-values could be used to obtain a finite-sample guarantee for multiple points, which is formalized in terms of FDR control. Important works that followed include [START_REF] Yang | Bonus: Multiple multivariate testing with a data-adaptivetest statistic[END_REF] that consider a test statistic that is more data-adaptive, [START_REF] Liang | Integrative conformal p-values for powerful out-ofdistribution testing with labeled outliers[END_REF] that consider a setting where a few examples of outliers are available, and Jin and Candès (2022) that consider a more general "selection" task, see also [START_REF] Mary | Semi-supervised multiple testing[END_REF].

Finally, going back to the classification task, [START_REF] Geifman | Selective classification for deep neural networks[END_REF] and Angelopoulos et al. (2021) perform classification with a reject option with finite-sample guarantees on the error, with the later work considering a more general prediction-related task that also includes, for instance, instance segmentation. In both of these works, the guarantee concerns a single test point. Lastly, in the context of fair ML [START_REF] Barocas | Fairness and machine learning[END_REF], [START_REF] Rava | A burden shared is a burden halved: A fairness-adjusted approach to classification[END_REF] achieve finite-sample guarantees for an FDR-like criterion, which can in addition take into account a certain protected attribute, and ensure that decision errors are not concentrated in protected groups.

Aim

Risk control involves a type of abstention option, that does not count as an error in the risk. As such, risk control in general can be seen as a type of FDR control task, where a discovery corresponds to making a decision, and a false discovery corresponds to a decision that is incorrect. A strong advantage of FDR control at level α is that it has a clear interpretation: if α = 5% and a decision (whose specific form depends on the context) is made for 100 observations, then on average there are less than 5 decisions that are incorrect. In this thesis, we consider the problem of controlling an FDR-like criterion in several learning tasks:

• Novelty detection (ND): In novelty detection, the aim is to classify observations into 'novelties' and 'nominals'. There are two types of error that can be made and depending on the context, one type is more serious than the other. Here, the context considered is to avoid making a wrong classification into the novelty class (considered as a false positive). This type of concern is typical for applications that seek to screen a very large pool for promising candidates, which are investigated afterwards in a more costly stage. The problem is illustrated in Figure 1.2 on a classical image dataset of handwritten digits, where the aim is to detect digit '9's in the test sample based on a sample of digit '4's. The procedure, that declares as novelties the images with red boxes, can make false discoveries (digit '4') and true discoveries (digit '9'). The FDR is defined as the average proportion of errors among the detections. This problem has been previously investigated in [START_REF] Bates | Testing for outliers with conformal p-values[END_REF]; [START_REF] Yang | Bonus: Multiple multivariate testing with a data-adaptivetest statistic[END_REF], and we aim to improve upon these previous works.

• Clustering: The aim of clustering is to partition the data into groups that are meaningful in some sense. There are different ways to define a notion of error in that case. In our work, we adopt a model-based viewpoint and use some kind of classification error. It relies on the assumption that there exists a unique ground truth partition, and considers that an error is made when an observation is classified into the wrong group. Moreover, we use an abstention option, which corresponds to not assigning a cluster label. In this set-up, an FDR criterion can be defined as the average proportion of errors among the observations that are chosen to be classified into a cluster.

• Link prediction (LP): In link prediction, the aim is to identify missing links in a partially observed graph. In an incomplete graph, the absence of an edge corresponds to either a lack of information or unreported information. In general, adding a false link in the graph is more serious than failing to identify a missing link. In this context, the FDR is defined as the average proportion of errors among the pairs of vertices that are declared to have a true edge, and controlling the FDR is appropriate to complete the graph with a meaningful risk control. In a nutshell, the goal of this thesis is to address the tasks above by using tools from multiple testing. To be clear, the new proposed methods do not replace the existing state-ofthe-art algorithms in outlier detection, clustering, or link prediction; our methods are meant to be applied on top of those. In other words, our methods can be seen as wrappers that take as input an off-the-shelf technique designed for a given learning task, and return an FDRcontrolling technique (see Figure 1.3). Thus, our approach has the full benefits of the best existing ML methods and we add an additional layer to achieve a control of the error rate.

In Section 1.3, we present the learning tasks considered in this thesis, namely novelty detection, clustering, and link prediction. Then Section 1.4 gives a primer on multiple testing. Finally, an overview of our contributions is provided in Section 1.5.

Brief overview of the considered learning tasks

Machine learning (ML) is a vast research field including various methods and tasks, see Figure 1.4 for a pictorial view. ML can be divided according to three paradigms: supervised learning, unsupervised learning and reinforcement learning. In supervised leaning, the data at hand consists of a set of observations for which the ground truth is known, and can be used to learn a predictor for new observations. In case no observed ground truth is provided, the term of unsupervised learning is used. Moreover, between the two, semi-supervised learning refers to tasks that contain both supervised and unsupervised elements. To complete the picture, reinforcement learning is an area of machine learning that differs from the previous paradigms, where the goal is to enable an agent to learn how to take actions in an interactive environment. Here, we will focus on three learning tasks that have a varying degree of supervision: clustering (unsupervised), novelty detection (semi-supervised), and link prediction (supervised). We next proceed to give a brief description of each task.

Novelty detection This task (also called anomaly detection, or outlier detection) consists in the identification of observations in a sample that are anomalous in some sense. Examples of definitions include:

• Observations that are far from the majority of the dataset [START_REF] Liu | Isolation forest[END_REF]. In that case, the task is unsupervised because we have no ground truth examples. A typical application is dataset cleaning where outliers must be removed: identifying these observations can help to clean the dataset of erroneous entries. Moreover, since these observations deviate a lot from the rest of the data, they can have a substantial impact when fitting a machine learning model, which is not desirable in some contexts.

• Observations that do not conform to a pre-defined notion of normal behavior [START_REF] Schölkopf | Estimating the support of a high-dimensional distribution[END_REF]. Here, the task is semi-supervised because ground truth knowledge is partially available: it is assumed that normal behavior corresponds to some distribution P 0 , where P 0 is known or a sample from P 0 is available. Applications include fraud detection [START_REF] Patcha | An overview of anomaly detection techniques: Existing solutions and latest technological trends[END_REF], medical diagnosis [START_REF] Tarassenko | IET Conference Proceedings[END_REF], galaxy detection [START_REF] Mary | Semi-supervised multiple testing[END_REF], and out-of-distribution detection [START_REF] Lee | Training confidence-calibrated classifiers for detecting out-of-distribution samples[END_REF].

The two settings are illustrated in Figure 1.5. In this thesis, we consider the semisupervised setting.

Clustering This task consists in partitioning a data sample into groups (called clusters) that are meaningful in some sense. Applications include customer segmentation, e-recommendation, data analysis, or gaining insights into biological processes [START_REF] Grün | Model-based clustering[END_REF]. In general, the idea is that observations of the same cluster are 'similar', and observations in different clusters are 'dissimilar'. The task is illustrated in Figure 1.6. In addition, Figure 1.7 illustrates a key difficulty of this task, which is that outside of this general principle, there is no unique definition for the notion of a cluster. In fact, there could be several interesting partitionings (or structure) present in the data. A popular solution is to use a probabilistic model (see [START_REF] Grün | Model-based clustering[END_REF] and references therein), called a mixture model. In a mixture model, the data is sampled as follows: first, one samples a group label k for each individual i, then the observation for i is sampled from some distribution P k . In that case, provided that the model is identifiable, the clustering task is well defined as it amounts to recovering the labels.

Link prediction This task consists in identifying links in a graph that is only partially observed. Graphs (or networks) denote data objects that consists of links (edges) between entities (nodes). Real-world examples are ubiquitous and include social networks, computer networks, food webs, molecules, etc. Examples are given in Figure 1.8 and Figure 1.9. In a partially observed graph, the presence of an edge between a pair of nodes, or lack thereof, is only reported for a part of them, and it is of interest to identify the missing edges. The problem is illustrated in Figure 1.10. Applications include friend or product recommendation [START_REF] Li | Recommendation as link prediction in bipartite graphs: A graph kernel-based machine learning approach[END_REF], and the reconstruction of biological networks, such as protein-protein interaction networks [START_REF] Kovács | Network-based prediction of protein interactions[END_REF], metabolic networks [START_REF] Bleakley | Supervised reconstruction of biological networks with local models[END_REF], or food webs [START_REF] Terry | Finding missing links in interaction networks[END_REF].

A primer on multiple testing

In this section, we provide an introduction on multiple testing, as well as the main multiple testing tools used in this thesis.

Clustering

Figure 1.7: The subjectivity of clustering. (1, 2), (1, 4), (2,3) are observed, along with the non-existent edge (1, 3), but the information concerning the pairs (2, 4) and (3, 4) is missing. We aim to decide for (2, 4) and (3, 4) whether there is a true edge or not.

Preliminaries

Hypothesis testing

We start by recalling some basics about hypothesis testing. Let Z be a random variable (r.v.) denoting the observation at hand, valued in some measurable space Z, and P its distribution, belonging to a family of distributions P (model). Hypothesis testing is the process of choosing between two hypotheses, H 0 (the null hypothesis) and H 1 (the alternative hypothesis), which are formalized as: H 0 : "P ∈ P 0 " and H 1 : "P ∈ P 1 ", where P 0 , P 1 are disjoint non empty subsets of P. There are two types of errors that can occur:

• Rejecting the null hypothesis when it is true. The probability of making this mistake is called the type I error.

• Accepting the null hypothesis when the alternative is true. The probability of making this mistake is called the type II error.

The goal of hypothesis testing is to control the type I error at a given level α, while making the type II error as small as possible. A central notion in hypothesis testing is that of the p-value.

Definition 1 (p-value). A r.v. p is a valid p-value (or p-value for short) if it is super-uniform under H 0 , i.e. ∀α ∈ [0, 1], ∀P ∈ P 0 , P Z∼P (p ≤ α) ≤ α .
By definition, if p is a p-value, then the test that rejects H 0 when p ≤ α controls the type I error at level α. Next, we give two examples of how to construct a p-value.

Let T : z ∈ Z → R be a test statistic for testing H 0 , such that we decide to reject when T (Z) is large. As a first example, the r.v. p * (Z) with p * : z ∈ Z → sup

P ∈P 0 P Z∼P (T (Z) ≥ T (z))
is a valid p-value. In general, when the term of p-value is used in the literature, it refers to the p-value p * . However p * is available only under strong model assumptions which is not the case that we will consider. Hence p * will mostly serves as an oracle. In the sequel, we will refer to p * as a theoretical p-value.

For the second example, let Z 1 , . . . , Z n be a sample of observations such that (Z, Z 1 , . . . , Z n ) is exchangeable under H 0 . Then, a p-value (called here empirical p-value) may be obtained using only the computation of the rank of T (Z) among T (Z 1 ), . . . , T (Z n ). This is formalized in the following result.

Lemma 1 [START_REF] Romano | Exact and approximate stepdown methods for multiple hypothesis testing[END_REF]; [START_REF] Arlot | Some nonasymptotic results on resampling in high dimension, i: Confidence regions[END_REF]). If the sequence (Z, Z 1 , . . . , Z n ) is exchangeable under H 0 , then the r.v. given by

p = 1 n + 1 1 + n i=1 1{T (Z i ) ≥ T (Z)} is a valid p-value.
Empirical p-values have been historically used, for instance, in two contexts. First, in the context of two-sample testing, a sequence Z 1 , . . . , Z n that satisfy the exchangeability assumption of Lemma 1 can be constructed by permuting observations in the two samples and considering the resulting pair of data sets Z j [START_REF] Romano | Exact and approximate stepdown methods for multiple hypothesis testing[END_REF]. In that context the empirical p-value is referred to as a permutation-based p-value. Secondly, in the context of semi-supervised anomaly detection, P 0 is a singleton: P 0 = {P 0 }, and a sample of observations Z 1 , . . . , Z n that are marginally distributed according to P 0 is available (representing examples of "normal" behavior). In that case, if exchangeability holds, an empirical p-value can be computed directly, and its use for anomaly detection dates back to [START_REF] Vovk | Algorithmic learning in a random world[END_REF]. In that context the empirical p-value is referred to as a conformal p-value.

The multiplicity issue

Let H 0,1 , . . . , H 0,m be a set of m null hypotheses, H 0 be the set of indices i such that H 0,i is true (true nulls) with m 0 = |H 0 |, π 0 = m 0 /m, and H 1 = H c 0 the set of false nulls with

m 1 = |H 1 |, π 1 = m 1 /m.
For instance, we have m = 10000 of genes and for each gene, we want to test if they are associated with some phenotype, such as a disease. For this, we have at hand observed expression levels on m genes for two groups of subjects, a treatment group (or "affected" group) and a control group (or "unaffected" group). If we consider each test, i.e. each gene, separately, compute a p-value for it and reject when the p-value is below α, then we end up with the following result: among the rejected set of hypotheses, there are on average m 0 α that are false, which gives 450 false rejections for m 0 = 9000 inactive genes and α = 5%. Hence, using as a selection rule a non-corrected p-value thresholding at level α = 5% will lead to a non-reliable list of genes.

The issue is that the type I error guarantee is valid only in a marginal sense, whereas when doing multiple tests we should think in terms of the joint distribution of the p-values. Thus the notion of type I error must be extended to a suitable error criterion taking into account the multiplicity aspect.

Selective inference

The multiplicity issue is a part of a larger group of issues that come from mis-using hypothesis testing and which are at the root of the "reproducibility" crisis [START_REF] Ioannidis | Why most published research findings are false[END_REF][START_REF] Zeevi | Ignored evident multiplicity harms replicability-adjusting for it offers a remedy[END_REF][START_REF] Shenhav | Quantifying replicability in systematic reviews: the r-value[END_REF]Heller et al., 2014), referring to the failure of reproducing published scientific results. In particular, a very common mis-use is data snooping, that refers to performing testing after looking at the data (i.e. deciding which hypotheses to test based on the data) or manipulating the data (such as removing variables from the data). Selective inference is the field of statistics that is dedicated to solving these issues. It encompasses two main paradigms. The first is multiple testing and it consists of producing a set of selected items with a guarantee on the error. Alternatively, if the user has its own selection rule due to, e.g., common practice in the field, or budget constraints, selective inference can be used to identify confidence bounds on the error rate for the selected set. This second paradigm is known as post-hoc selective inference [START_REF] Genovese | Exceedance control of the false discovery proportion[END_REF][START_REF] Goeman | Multiple Testing for Exploratory Research[END_REF][START_REF] Lee | Exact post-selection inference, with application to the lasso[END_REF][START_REF] Benjamini | Confidence intervals for selected parameters[END_REF][START_REF] Blanchard | On agnostic post-hoc approaches to false positive control[END_REF].

Multiple testing

We define a multiple testing procedure as a (measurable) function R = R(Z) that returns a subset of {1, . . . , m} corresponding to the indices i of the rejected null hypotheses H 0,i . The main error rate criteria in the multiple testing literature are:

• Family-Wise Error Rate (FWER): the probability of making at least one false rejection, i.e. FWER(R) = P Z∼P (|R| ≥ 1).

• False Discovery Rate (FDR): the expected proportion of false rejections among the rejections, i.e.

FDR(R) = E Z∼P i∈H 0 1 i∈R 1 ∨ |R| .
• Marginal False Discovery Rate (mFDR): the expected number of false rejections over the expected number of rejections, i.e.

mFDR(R) = E Z∼P i∈H 0 1 i∈R E Z∼P [|R|]
,

with the convention 0/0 = 0.

How to choose among these criteria ? For very sensitive contexts it may be required to control the probability of making any error, in which case the goal of controlling the FWER is appropriate. However this criterion is very stringent: if m is large, in practical cases the number of hypotheses that are rejected with this approach will be very few or none, which can be problematic. The FDR criterion introduced by [START_REF] Benjamini | Controlling the false discovery rate: a practical and powerful approach to multiple testing[END_REF] fills this gap by allowing for false rejections, in an amount proportional to the number of rejections. This provides a clear interpretation: if we make, for instance, 100 rejections, then an FDR below α = 5% guarantees that on average, there are at most 5 errors in the rejected set. The FDR approach is well suited for "exploratory" research, that is, cases where we are screening a very large pool for a set of promising candidates (such as genes associated to a phenotype of interest), with the idea that in a later stage, these candidates are to be investigated carefully for confirmation. By contrast, the FWER is more appropriate for "confirmatory" research, when a definite result is desired. Finally, the mFDR [START_REF] Genovese | Operating characteristics and extensions of the false discovery rate procedure[END_REF]) is a substitute of the FDR that involves a ratio of expectations rather than the expectation of a ratio, which is easier to work with in some cases. Remark 1 (mFDR versus FDR). The mFDR can be understood as a "single-point guarantee", in contrast to the FDR that is a guarantee over multiple points. Indeed, assuming independence of the rejections in the mFDR definition (admittedly this is an over-simplification, practical procedures are data-driven), the mFDR reduces to the probability of making a mistake for a single hypothesis point given that it is rejected.

We also need to extend the notion of type II error, that is, define a notion of power. In general, we work with the True Discovery Rate (TDR), see e.g. [START_REF] Dickhaus | Simultaneous statistical inference: with applications in the life sciences[END_REF], defined as the expected proportion of rejections among the false nulls, i.e.

TDR(R) = E Z∼P i∈H 1 1 i∈R 1 ∨ |m 1 | .
Another criterion is the expected number of rejections, E Z∼P (|R|), used for convenience when the TDR is out of reach. The aim in multiple testing is to build a procedure R that controls the FDR (or FWER, or mFDR) at the level α, while having a power as large as possible.

Existing strategies for FDR control

We present a panel of existing strategies for FDR control. We start with two main types of historically-used approaches: the Benjamini-Hochberg (BH) [START_REF] Benjamini | Controlling the false discovery rate: a practical and powerful approach to multiple testing[END_REF] procedure and its variants, and the empirical Bayes approaches [START_REF] Efron | Empirical Bayes analysis of a microarray experiment[END_REF][START_REF] Sun | Oracle and adaptive compound decision rules for false discovery rate control[END_REF][START_REF] Sun | Large-scale multiple testing under dependence[END_REF][START_REF] Cai | Covariate-assisted ranking and screening for largescale two-sample inference[END_REF][START_REF] Heller | Optimal control of false discovery criteria in the twogroup model[END_REF][START_REF] Cai | Estimating the null and the proportion of nonnull effects in largescale multiple comparisons[END_REF][START_REF] Cai | Optimal rates of convergence for estimating the null density and proportion of nonnull effects in large-scale multiple testing[END_REF][START_REF] Heller | Replicability analysis for genome-wide association studies[END_REF][START_REF] Roquain | False discovery rate control with unknown null distribution: Is it possible to mimic the oracle?[END_REF][START_REF] Abraham | Empirical bayes cumulative -value multiple testing procedure for sparse sequences[END_REF][START_REF] Rebafka | Powerful multiple testing of paired null hypotheses using a latent graph model[END_REF]. Then, we move on to recent approaches, namely knockoffs and related methods [START_REF] Barber | Controlling the false discovery rate via knockoffs[END_REF][START_REF] Weinstein | A power and prediction analysis for knockoffs with lasso statistics[END_REF][START_REF] Mary | Semi-supervised multiple testing[END_REF][START_REF] Bates | Testing for outliers with conformal p-values[END_REF][START_REF] Yang | Bonus: Multiple multivariate testing with a data-adaptivetest statistic[END_REF].

The Benjamini-Hochberg procedure The BH procedure is given in Algorithm 1. BH is guaranteed to control the FDR at the level απ 0 under independence of the pvalues [START_REF] Benjamini | Controlling the false discovery rate: a practical and powerful approach to multiple testing[END_REF]. The independence assumption can be relaxed to a specific dependence assumption called the Positive Regression Dependent on a Subset (PRDS) property [START_REF] Benjamini | The control of the false discovery rate in multiple testing under dependency[END_REF].

Definition 2 (PRDS). A random vector X = (X i , 1 ≤ i ≤ m) is PRDS on a subset M ⊂ {1, . . . , m} if, for any i ∈ M and increasing measurable set D, the function u → P(X ∈ D | X i = u) is nondecreasing.
A set D is said to be increasing if for any x ∈ D and y, we have y ∈ D provided that y i ≥ x i for all i. In words, this assumption says if we condition on the value of one X i , and increase this value, X is more probable to have large values coordinate-wise. For instance, [START_REF] Benjamini | The control of the false discovery rate in multiple testing under dependency[END_REF] give the following example of a PRDS distribution: for X ∼ N (µ, Σ) and

I 0 = {1 ≤ i ≤ m : µ j = 0}, if Σ ij ≥ 0 for each i ∈ I 0 and j = i, then X is PRDS on I 0 .
Remark 3. In the FDR guarantee of the BH procedure, the control is at the level απ 0 and not α. If π 0 is not close to one, this results in a loss of power, in the sense that the margin of error is not fully used to make as much rejections as possible. Variants of the BH procedure have been proposed to estimate π 0 [START_REF] Storey | A direct approach to false discovery rates[END_REF][START_REF] Benjamini | Adaptive linear step-up procedures that control the false discovery rate[END_REF][START_REF] Blanchard | Adaptive false discovery rate control under independence and dependence[END_REF]. In particular, a well-known result from the literature is the following: for the Storey-BH procedure, which consists in applying BH at the level α/π 0 with π0 = (n/2) -1 (1+n-|R(1/2)|), the FDR control is guaranteed under independence of the p-values [START_REF] Storey | Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: a unified approach[END_REF].

Empirical Bayes approaches

The BH procedure requires p-values, which may not be available in practice when the distribution of the null tests statistics is unknown or misspecified, as argued in a series of papers by Efron, see [START_REF] Efron | Empirical Bayes analysis of a microarray experiment[END_REF] and [START_REF] Efron | Large-scale simultaneous hypothesis testing: the choice of a null hypothesis[END_REF][START_REF] Efron | Doing thousands of hypothesis tests at the same time[END_REF][START_REF] Efron | Microarrays, empirical Bayes and the two-groups model[END_REF][START_REF] Efron | Empirical Bayes estimates for large-scale prediction problems[END_REF]) (see also Figure 1 in [START_REF] Roquain | False discovery rate control with unknown null distribution: Is it possible to mimic the oracle?[END_REF] and references therein). To avoid using p-values, the use of empirical Bayes procedures [START_REF] Sun | Oracle and adaptive compound decision rules for false discovery rate control[END_REF][START_REF] Sun | Large-scale multiple testing under dependence[END_REF][START_REF] Cai | Covariate-assisted ranking and screening for largescale two-sample inference[END_REF][START_REF] Heller | Optimal control of false discovery criteria in the twogroup model[END_REF]) is an approach popularized by [START_REF] Efron | Empirical Bayes analysis of a microarray experiment[END_REF] and widely used afterwards, that is based on so-called local FDR quantities [START_REF] Efron | Empirical Bayes analysis of a microarray experiment[END_REF]. More formally, [START_REF] Efron | Empirical Bayes analysis of a microarray experiment[END_REF] introduced a two-group mixture model, where the observation consists of m univariate measurements Z 1 , . . . , Z m , assumed to be generated independently as

H i ∼ B(π 0 ), i = 1, . . . , m Z i |H i ∼ f 0 1 H i =0 +f 1 1 H i =1 , i = 1, . . . , m.
The local FDR is defined as the density ratio Lfdr : z → z) , where f 0 and f 1 are the unknown densities of Z i under the null and the alternative, respectively. The local FDR value Lfdr(Z i ) is equal to the probability that H i is 0 given the observation Z i , and can be used to act as a test statistic (that is more refined than Z i ). We focus on the procedure proposed in the seminal work [START_REF] Sun | Oracle and adaptive compound decision rules for false discovery rate control[END_REF], which paved the way for many studies that followed [START_REF] Heller | Optimal control of false discovery criteria in the twogroup model[END_REF]. The approach of [START_REF] Sun | Oracle and adaptive compound decision rules for false discovery rate control[END_REF] consists in identifying the optimal mFDR-controlling procedure, which is obtained by thresholding the local FDR values Lfdr(Z i ). Since the densities f 0 and f 1 and the null proportion π 0 are unknown in practice, this procedure is called an "oracle" procedure. Relying on estimates f0 , f1 , π0 , [START_REF] Sun | Oracle and adaptive compound decision rules for false discovery rate control[END_REF] proposes a type of plug-in procedure based on the oracle, given in Algorithm 2.

π 0 f 0 (z) π 0 f 0 (z)+π 1 f 1 (
Algorithm 2 Plug-in local FDR procedure [START_REF] Sun | Oracle and adaptive compound decision rules for false discovery rate control[END_REF] Input: Estimates f0 , f1 , π0 1. Sort the local FDR values:

Lfdr (1) ≤ • • • ≤ Lfdr (m) 2. Find the largest k such that k i=1 Lfdr (i) ≤ α 3. Reject the null hypotheses H (1) , . . . , H (k) (reject nothing if k = 0)
The procedure is shown to control the mFDR asymptotically in [START_REF] Sun | Oracle and adaptive compound decision rules for false discovery rate control[END_REF], and in a HMM set-up in [START_REF] Sun | Large-scale multiple testing under dependence[END_REF], provided that the model parameters can be estimated consistently. Moreover, under the same assumptions, it is power-optimal in an asymptotic sense. Recently, in a general two-group mixture model where the measurements can be dependent, [START_REF] Heller | Optimal control of false discovery criteria in the twogroup model[END_REF] identified the optimal procedure in terms of FDR control, showing that it consists of a data-driven thresholding local FDR values, and gave an algorithm based on linear programming to compute it.

Historically, the usual strategies for FDR control relied on the BH procedure with theoretical p-values and the empirical Bayes approaches. However, both types of strategies display serious practical limitations. On the one hand, theoretical p-values require to know the distribution of the test statistic under the null hypothesis. However, the null distribution can be unknown or mis-specified in practice. Moreover, it constrains the test statistic to be prespecified, while it should be learned from data for the sake of power. On the other hand, empirical Bayes avoids the use of p-values and learns the test statistic from the data, but the control is only accurate as long as the quality of the estimates is good, and can be severely violated otherwise. Recently, there has been a series of seminal works [START_REF] Barber | Controlling the false discovery rate via knockoffs[END_REF]; [START_REF] Weinstein | A power and prediction analysis for knockoffs with lasso statistics[END_REF]; [START_REF] Bates | Testing for outliers with conformal p-values[END_REF]; [START_REF] Yang | Bonus: Multiple multivariate testing with a data-adaptivetest statistic[END_REF]; [START_REF] Mary | Semi-supervised multiple testing[END_REF] that partially circumvent these limitations. We next proceed to give an overview of these works, known in the literature as either knockoffs methods or conformal inference-based methods, the later being strongly related to the former.

Knockoffs and related methods, part I: variable selection In a breakthrough work, [START_REF] Barber | Controlling the false discovery rate via knockoffs[END_REF] introduced a "knockoff" method that comes with a finite-sample FDR guarantee, while making use of a data-driven test statistic, in the specific context of variable selection in the Gaussian linear regression model. Specifically, we observe X, Y in the model Y = Xβ + , with β ∈ R m , ∼ N (0, σ 2 I N ), in which X is a non-random matrix valued in R N ×m , σ is unknown, and m ≤ N . The aim is to test H 0,j : β j = 0 against the alternative H 1,j : β j = 0, simultaneously for all 1 ≤ j ≤ m. The general idea of the method is to introduce "fake" variables X ∈ R N ×m designed to be exchangeable with the true null variables, so that they can be used as benchmarks to estimate the proportion of false positives in a certain selection. To be more precise, the knockoff variables are used to construct test statistics that obey a "sign-flipping" property, in which the signs of null test statistics are i.i.d. random. In particular, such test statistics can be constructed from the LASSO [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF] solution fitted on the augmented matrix [X X]. Subsequently, the method was extended in [START_REF] Barber | A knockoff filter for high-dimensional selective inference[END_REF] to a setting where X is random and m ≥ N ("model-X knockoffs"). Further, [START_REF] Weinstein | A power and prediction analysis for knockoffs with lasso statistics[END_REF] considered the particular case where the entries of X are i.i.d. according to a known distribution G, in which case knockoffs variables can be generated i.i.d. according to G in an arbitrary number n. In that setup, [START_REF] Weinstein | A power and prediction analysis for knockoffs with lasso statistics[END_REF] proposed another FDR-controlling procedure, the counting knockoffs (CK), with the aim of increasing power. Here, the null test statistics do not have to verify the sign-flipping property, but instead, they should satisfy exchangeability with the statistics computed for knockoffs; the LASSO coefficient is given as a possible choice.

Knockoffs and related methods, part 2: out-of-distribution testing A series of subsequent works [START_REF] Mary | Semi-supervised multiple testing[END_REF][START_REF] Bates | Testing for outliers with conformal p-values[END_REF][START_REF] Yang | Bonus: Multiple multivariate testing with a data-adaptivetest statistic[END_REF] considered out-of-distribution testing and provided model-free procedures that come with finite-sample FDR control, and they are closely related with the knockoff methodology. In these works, we have at hand a first sample of observations Z 1 , . . . , Z n sharing a common marginal distribution P 0 , and a second sample of observations Z n+1 , . . . , Z n+m (test sample), such that the aim is to test H 0,j : Z n+j ∼ P 0 versus H 1,j : Z n+j P 0 . In the particular case where the measurements Z j are real-valued (which is equivalent to assume that the test statistics are directly given), [START_REF] Mary | Semi-supervised multiple testing[END_REF] studied the "empirical BH" procedure that consists of using the empirical p-values pj = (1 + n i=1 1{Z i ≤ Z n+j })/(n + 1) into BH and proved FDR control under exchangeability of the null measurements (Z 1 , . . . , Z n , Z j , j ∈ H 0 ). In particular, [START_REF] Mary | Semi-supervised multiple testing[END_REF] established that empirical BH is equivalent to CK, or in other words, that CK is a particular case of empirical BH with specific test statistics designed for variable selection (and for which the exchangeability assumption holds). Independently, [START_REF] Bates | Testing for outliers with conformal p-values[END_REF] studied the use of conformal p-values into BH. Conformal p-values rely on reducing each multivariate observation Z j to a univariate score S j and computing the rank of the test score among the scores of the nominal data:

p j = 1 n + 1 1 + n i=1 1 S i ≥S n+j , 1 ≤ j ≤ m.
In this view, conformal p-values are empirical p-values, and thus, BH with conformal p-values is equivalent to empirical BH with the test statistics S j . However, with respect to [START_REF] Mary | Semi-supervised multiple testing[END_REF], [START_REF] Bates | Testing for outliers with conformal p-values[END_REF] shows that the score S j can be learned from the nominal data by proceeding as follows: the nominal sample is split into two subsets, {Z 1 , . . . , Z k } and {Z k+1 , . . . , Z n }. The first part is used to learn the score (e.g., using one-class classifiers [START_REF] Schölkopf | Estimating the support of a high-dimensional distribution[END_REF], whereas the second is used to compute the ranks (hence n is replaced by n -k in the above equation). Strikingly, the resulting p-values ("split-conformal" p-values) are shown to satisfy the PRDS assumption (see Definition 2) under i.i.d. data, which entails that FDR control is guaranteed with the BH procedure. Finally, [START_REF] Yang | Bonus: Multiple multivariate testing with a data-adaptivetest statistic[END_REF] proved finite-sample FDR control for empirical BH with a test statistic learned on the test data. Specifically, in their framework, the null distribution is known, and the test statistic is a function of the mixed sample {Z 1 , . . . , Z n+m }. In particular, they propose to use the estimated local FDR [START_REF] Efron | Empirical Bayes analysis of a microarray experiment[END_REF][START_REF] Sun | Oracle and adaptive compound decision rules for false discovery rate control[END_REF] as the score function.

Contributions

Adaptive novelty detection with FDR guarantee In Chapter 2, we consider the aim of FDR control in a novelty detection task, where we have at hand a sample of nominal data Z 1 , . . . , Z n sharing a common marginal distribution P 0 , and a test sample of unlabeled data Z n+1 , . . . , Z n+m (see Figure 1.2). This task amounts to a standard multiple testing problem, with the null hypotheses H 0,i : Z n+i ∼ P 0 , i = 1, . . . , m. As seen in Section 1.4.2, recent seminal works by [START_REF] Bates | Testing for outliers with conformal p-values[END_REF]; [START_REF] Yang | Bonus: Multiple multivariate testing with a data-adaptivetest statistic[END_REF] have shown that the test statistic could be learned from the data while maintaining the FDR control guarantee, hereby circumventing crucial limitations of historically-used strategies for FDR control. The procedure studied in both of these works is the empirical BH procedure [START_REF] Mary | Semi-supervised multiple testing[END_REF], equivalent to the CK procedure [START_REF] Weinstein | A power and prediction analysis for knockoffs with lasso statistics[END_REF], with certain model-free test statistics. However, on the one hand, in [START_REF] Bates | Testing for outliers with conformal p-values[END_REF], the test statistic is learned from nominal data only, and does not adapt to the alternatives. On the other hand, [START_REF] Yang | Bonus: Multiple multivariate testing with a data-adaptivetest statistic[END_REF] utilize only the test sample: the null distribution is assumed to be known in their framework. Moreover, the test statistic in [START_REF] Yang | Bonus: Multiple multivariate testing with a data-adaptivetest statistic[END_REF] is the local FDR, which involves unknown densities, that are difficult to fit in high dimensions.

Our contribution consists in an extension of these previous works by proposing a new way to learn the score that utilizes both the nominal sample and the test sample, while retaining the control of the FDR. The idea is to learn a classification of {Z 1 , . . . , Z k } against the mixed sample {Z k+1 , . . . , Z n , Z n+1 , . . . , Z n+m } and to use the probability of being in the class corresponding to the mixed sample as score. When the classification algorithm performs well, the scores tend to be larger for anomalies than for nulls, because anomalies are only present in the mixed sample. Moreover, any classification algorithm can be used, including the state-of-the art, which makes the method both flexible and powerful.

Mixing Z k+1 , . . . , Z n with Z n+1 , . . . , Z n+m allows to keep the null scores (S k , . . . , S n , S j , j ∈ H 0 ) exchangeable, which ultimately is the key to FDR control, as shown in [START_REF] Weinstein | A power and prediction analysis for knockoffs with lasso statistics[END_REF] in the context of variable selection for the Gaussian linear regression model. We prove that the PRDS property, established under independency in [START_REF] Bates | Testing for outliers with conformal p-values[END_REF], still holds (which entails FDR control), and we propose new FDR bounds. We also prove FDR control for a version of the procedure that estimates the null proportion π 0 . Finally, we provide a power analysis, where we show that the proposed procedure has a power close to the one of the optimal likelihood ratio test with a suitable level. Numerical experiments on both simulated and real data demonstrate the substantial gain of power with respect to previous work. This procedure has already generated an important interest in community, see [START_REF] Bashari | Derandomized novelty detection with fdr control via conformal e-values[END_REF]; [START_REF] Liang | Conformal inference is (almost) free for neural networks trained with early stopping[END_REF]; [START_REF] Gao | Simultaneous hypothesis testing using internal negative controls with an application to proteomics[END_REF].

Clustering with error rate control In Chapter 3, we consider the problem of error rate control in a clustering task. A main challenge is how to define the notion of error of a clustering, since there is no unique definition of what a cluster is. To overcome this difficulty, we make the choice of considering a mixture model, that defines a natural ground truth clustering. More precisely, we assume that the observed data X = (X 1 , . . . , X n ) is such that every X i is independently generated according to :

Z ∼ Σ Q q=1 π q δ q X|Z = q ∼ F φq , 1 ≤ q ≤ Q,
with {F u , u ∈ U} a collection of probability distributions on R d and (π 1 , . . . , π Q ), (φ 1 , . . . , φ q ) some parameters. In this setup, the clustering task amounts to recover the unobserved group labels Z i . Thus, the clustering risk is naturally defined as the expectation of the difference between the estimation partition and the true one, that is, n i=1 1{Z i = Ẑi }, with a suitable way of taking into account label-switching. In order to keep the risk smaller than a given level α even in an unfavorable setting, we propose a procedure with an abstention option, whose output is a set of indices S = S(X) ⊂ {1, . . . , n} corresponding to the observations to which a cluster label is assigned. The problem is thus formalized in terms of controlling the false membership rate (FMR) criterion, given by

FMR = E min σ∈[Q] E n i=1 1{Z i = σ( Ẑi )} 1 i∈S max(|S|, 1) X .
In contrast to Chapter 2, the setting here is completely unsupervised, making the task of risk control more challenging. We propose a plug-in procedure that is inspired from the empirical Bayes approaches [START_REF] Sun | Oracle and adaptive compound decision rules for false discovery rate control[END_REF] in multiple testing (see Section 1.4). It works by first computing an estimate θ of the model parameter θ = (π, φ), which is used to evaluate the class probabilities P θ(Z i = q|X i ). Then the procedure assigns the cluster label argmax q P θ(Z i = q|X i ) corresponding to the maximum class probability, provided that this probability is above a data-dependent threshold (otherwise, the procedure abstains). The method is illustrated in Figure 1.11. Our main contribution consists in the theoretical analysis of this procedure: we quantify the FMR deviation of the plug-in procedure, with respect to the target level α, in terms of the estimation error and the model complexity. In particular, our results show that if the model estimate is accurate enough, the FMR is close to the target level. However, the plug-in procedure inherits from the main limitation of the empirical Bayes approaches in multiple testing: it relies on the quality of model estimation, which may not be taken for granted in practice. To remedy this issue, we develop bootstrap procedures and assess their performance in numerical experiments.

Link prediction with FDR control In Chapter 4, we consider the aim of FDR control in a link prediction task (see Figure 1.10). This setting is the most supervised one compared to those of Chapters 2 and 3, in the sense that we observe both a part of the true edges and a part of the non-existing ones. FDR control in this specific setting does not correspond to a standard multiple testing problem, but we argue that high-level ideas from the literature on conformal p-values [START_REF] Barber | Controlling the false discovery rate via knockoffs[END_REF][START_REF] Weinstein | A power and prediction analysis for knockoffs with lasso statistics[END_REF][START_REF] Bates | Testing for outliers with conformal p-values[END_REF][START_REF] Yang | Bonus: Multiple multivariate testing with a data-adaptivetest statistic[END_REF][START_REF] Mary | Semi-supervised multiple testing[END_REF], namely, the comparison of a test score to scores of a reference set, can still be applied. We propose a transposition of the procedure of [START_REF] Weinstein | A power and prediction analysis for knockoffs with lasso statistics[END_REF]; [START_REF] Bates | Testing for outliers with conformal p-values[END_REF]; [START_REF] Yang | Bonus: Multiple multivariate testing with a data-adaptivetest statistic[END_REF]; [START_REF] Mary | Semi-supervised multiple testing[END_REF] and of Chapter 2 to the link prediction setup. More precisely, we use an estimate of the connection probability for an unobserved pair of nodes as a score indicating the relevance of an edge between them. Such an estimate can be obtained using an off-the-shelf link prediction method. We then compare the connection probability for a non-observed pair of nodes to connection probabilities of pairs that are known to be non-existent edges for FDR control. However, the graph structure makes the scores dependent on each other in an intricate way, that must be taken into account in the procedure. The FDR control is empirically demonstrated on both simulated and real data.

Compared to previous work on knockoffs and conformal p-values, this problem presents an interesting setup where exchangeability of the scores does not hold. Chapter 2
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Adaptive novelty detection with FDR guarantee

This paper studies the semi-supervised novelty detection problem where a set of "typical" measurements is available to the researcher. Motivated by recent advances in multiple testing and conformal inference, we propose AdaDetect, a flexible method that is able to wrap around any probabilistic classification algorithm and control the false discovery rate (FDR) on detected novelties in finite samples without any distributional assumption other than exchangeability.

In contrast to classical FDR-controlling procedures that are often committed to a pre-specified p-value function, AdaDetect learns the transformation in a data-adaptive manner to focus the power on the directions that distinguish between inliers and outliers. Inspired by the multiple testing literature, we further propose variants of AdaDetect that are adaptive to the proportion of nulls while maintaining the finite-sample FDR control. The methods are illustrated on synthetic datasets and real-world datasets, including an application in astrophysics. 

Introduction

Novelty detection

In this paper, we consider a novelty detection problem (see, e.g., [START_REF] Blanchard | Semi-supervised novelty detection[END_REF] and references therein) where we observe:

• a null training sample (NTS hereafter) Y = (Y 1 , . . . , Y n ) of "typical" measurements where Y i s share a common marginal distribution P 0 which we refer to as the null distribution;

• and a test sample X = (X 1 , . . . , X m ) of "unlabeled" measurements for which the marginal distribution of X i is denoted by P i , which might be different from P 0 .

These measurements are assumed to take values in a general space Z endowed with a prescribed σ-field. For example, the space can be the set of real matrices (Z = R d×d ) or real vectors (Z = R d ), whose dimension is potentially large. Putting two samples together, we observe

Z = (Z 1 , . . . , Z n+m ) = (Y 1 , . . . , Y n , X 1 , . . . , X m ).
The aim is to detect novelties, namely X i s with P i = P 0 . This task is illustrated in Figure 2.1 on a classical image dataset, where we want to detect hand-written digit '9's in the test sample based on an NTS of digits '4'. The procedure, that declares as novelties the images with red boxes, can make false discoveries (digit '4') and true discoveries (digit '9').

To avoid false positives that might be costly in practice, we seek to control the false discovery rate (FDR), defined as the average proportion of errors among the discoveries, while attempting to maximize the true discovery rate (TDR), defined as the average portion of detected novelties. FDR has been a very popular criterion in multiple testing and exploratory analysis since its introduction by [START_REF] Benjamini | Controlling the false discovery rate: a practical and powerful approach to multiple testing[END_REF]; see [START_REF] Benjamini | Discovering the false discovery rate[END_REF] for a detailed discussion and [START_REF] Barber | Controlling the false discovery rate via knockoffs[END_REF]; [START_REF] Bogdan | SLOPEadaptive variable selection via convex optimization[END_REF]; [START_REF] Javanmard | False discovery rate control via debiased lasso[END_REF]; [START_REF] Barber | Robust inference with knockoffs[END_REF]; Ma et al. (2021a) for recent developments, among others.

Null sample

Test sample Procedure Figure 2.1: Illustration of the novelty detection task on the MNIST dataset (LeCun and Cortes, 2010); see Section 2.6.2 for more details on the setting.

Existing strategies

For a standard multiple testing problem where the null distribution P 0 is known, the celebrated Benjamini-Hochberg (BH) procedure [START_REF] Benjamini | Controlling the false discovery rate: a practical and powerful approach to multiple testing[END_REF] controls the FDR in finite samples uniformly over all alternative distributions, when the test statistics are independent or satisfy the positive regression dependency on each one from a subset (PRDS) property; see [START_REF] Benjamini | Controlling the false discovery rate: a practical and powerful approach to multiple testing[END_REF]; [START_REF] Benjamini | The control of the false discovery rate in multiple testing under dependency[END_REF]. Variants of the BH procedure have been proposed to relax the conservatism when the fraction of true nulls is not close to 1, such as the Storey-BH [START_REF] Storey | Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: a unified approach[END_REF] or Quantile-BH procedure [START_REF] Benjamini | Adaptive linear step-up procedures that control the false discovery rate[END_REF][START_REF] Sarkar | On methods controlling the false discovery rate[END_REF][START_REF] Blanchard | Adaptive false discovery rate control under independence and dependence[END_REF], and to robustify the FDR control under more general dependence structures (see Fithian and Lei, 2020 and references therein). Despite this generality, BH-like methods have two major limitations in novelty detection problems with multivariate measurements:

(i) it is based on p-values or, more generally, univariate scores with a known distribution under the null, which is typically out of reach for such problems;

(ii) the score function that transforms the multivariate measurements into univariate test statistics (e.g., the p-value transformation) is pre-specified, while it should be learned from data for the sake of power.

We now discuss several existing solutions that partially circumvent these limitations. Table 2.1 provides a summary of the properties of each method, along with the corresponding applicable settings.

A popular solution in the multiple testing literature is the empirical Bayes approach, which operates on the local FDR instead of the p-values. Assuming a two-group mixture model [START_REF] Efron | Empirical Bayes analysis of a microarray experiment[END_REF], the local FDR is defined as the probability of being null conditional on the observed measurement values. The latter can be estimated by estimating the null and alternative densities together with the proportion of nulls; see [START_REF] Efron | Large-scale simultaneous hypothesis testing: the choice of a null hypothesis[END_REF][START_REF] Efron | Doing thousands of hypothesis tests at the same time[END_REF][START_REF] Efron | Microarrays, empirical Bayes and the two-groups model[END_REF][START_REF] Efron | Empirical Bayes estimates for large-scale prediction problems[END_REF]. Combining local FDRs appropriately controls FDR asymptotically, under the assumptions that allow the model to be consistently estimated, and achieves optimal power, as shown in a series of paper by [START_REF] Sun | Oracle and adaptive compound decision rules for false discovery rate control[END_REF]; [START_REF] Cai | Simultaneous testing of grouped hypotheses: finding needles in multiple haystacks[END_REF]; [START_REF] Sun | Large-scale multiple testing under dependence[END_REF]; [START_REF] Cai | Covariate-assisted ranking and screening for largescale two-sample inference[END_REF]. We refer to this procedure as the SC procedure hereafter. Despite the appealing optimality guarantees, the model assumptions tend to be fragile when the dimension d of the test statistics is moderately high. In such cases, accurate model estimation is hard to come by and the FDR of the SC procedure can thus be inflated; see our numerical experiments in Section 2.6 for an illustration.

Another line of research stems from conformal inference. While this technique is designed for prediction inference (see Angelopoulos and Bates (2021) for a recent review), it can also be employed in the novelty detection problem. In particular, it can generate conformal p-values that are super-uniform under the null without any model assumption beyond that the data are exchangeable (e.g., [START_REF] Vovk | Algorithmic learning in a random world[END_REF][START_REF] Balasubramanian | Conformal prediction for reliable machine learning: theory, adaptations and applications[END_REF][START_REF] Bates | Testing for outliers with conformal p-values[END_REF]. This approach starts by transforming Z j into a univariate score S j , called the non-conformity score, that measures the conformity to the data and then computes an empirical p-value, also known as the conformal p-value, to evaluate the statistical evidence of being a novelty:

p j = (n + 1) -1 1 + n i=1 1 S i ≥S n+j .
(2.1) Each p-value is marginally super-uniform under the null due to exchangeability and hence yields a valid test. Nonetheless, since the conformal p-values all use the same null sample, the above operation induces dependence between the p-values, making it unclear whether common multiple testing procedures are guaranteed to control FDR. [START_REF] Bates | Testing for outliers with conformal p-values[END_REF] carefully study the dependence structure and show that the split (or inductive) conformal p-values are PRDS. As a consequence, BH procedure applied on these conformal p-values controls the FDR. However, the approach limits the construction of the scores to be based solely on null examples and hence cannot learn the patterns of novelties in the mixed samples, unless extra labelled novelties are available [START_REF] Liang | Integrative conformal p-values for powerful out-ofdistribution testing with labeled outliers[END_REF], which are not always possible. Even when labelled novelties are present, they may behave differently than the ones in the mixed sample that we aim to detect. For this reason, [START_REF] Bates | Testing for outliers with conformal p-values[END_REF] apply the one class classification techniques (e.g. [START_REF] Schölkopf | Estimating the support of a high-dimensional distribution[END_REF] that are not adaptive to the novelties. In sum, while the method successfully solves the issue (i), it falls short of adequately addressing issue (ii). On the other hand, while other versions of conformal p-values, like full conformal p-values [START_REF] Vovk | Algorithmic learning in a random world[END_REF] and cross conformal p-values [START_REF] Vovk | Cross-conformal predictors[END_REF][START_REF] Barber | Predictive inference with the jackknife+[END_REF], can use test samples and yield marginally valid p-values, they generally fail to satisfy the PRDS property, making it unclear whether the BH procedure would control FDR.

A subsequent work by [START_REF] Yang | Bonus: Multiple multivariate testing with a data-adaptivetest statistic[END_REF] proposes the Bag Of Null Statistics (BONuS) procedure for multiple testing problems with high dimensional test statistics, which largely motivates our method. The BONuS procedure learns a score function of the form S i = g(Z i , (Z 1 , . . . , Z n )) and the method is valid as long as g(Z i , •) is permutation invariant thereby allowing the transformation to be adapted to novelties. While the framework is flexible, they focus on the parametric setting where the null distribution is known, like Gaussian or multinomial, and the measurements are independent. In these cases, they propose using the estimated local FDR as the score function for which the alternative distribution and null proportion are learned by an empirical Bayes approach. The BONuS procedure controls the FDR in finite samples regardless of the quality of the estimates, even if the working model is completely wrong. However, for novelty detection problems, the local FDR involves unknown null and alternative densities, which are difficult to fit in high dimensions. Hence, point (ii) mentioned earlier remains partially addressed.

Lastly, we briefly review other related work that study different settings. The "counting knockoffs" procedure introduced by [START_REF] Weinstein | A power and prediction analysis for knockoffs with lasso statistics[END_REF] is designed for multiple testing for high-dimensional linear models with random design matrices. [START_REF] Mary | Semi-supervised multiple testing[END_REF] show that it is equivalent to applying the BH procedure to the scores S 1 , . 

Contributions

In this work we introduce AdaDetect, an extension1 of the BONuS procedure for novelty detection problems. In particular, we show how to leverage flexible off-the-shelf classification algorithms in machine learning to address both issues (i) and (ii) without compromising the FDR-controlling guarantees. In a nutshell, AdaDetect operates by initially splitting the null sample in two parts, (Y 1 , . . . , Y k ) and (Y k+1 , . . . , Y n ), generating a membership label A j = -1 if Z j ∈ {Y 1 , . . . , Y k } and A j = 1 otherwise, and subsequently calculating a score function using a binary classifier trained on (Z i , A i ) n+m i=1 and applying the BH procedure on the empirical p-values. For the example illustrated in Figure 2.1, Adadetect would split the null samples (digits '4') into two subsets and train a probabilistic classifier using both the null and test samples to distinguish the first subset of the null sample and the mix of the second subset of the null sample and the test sample (digits '4' and '9'). The predicted probability to be in the mixed sample is taken as the score. When the classification algorithm performs well, the scores tend to be larger for novelties than for nulls, because novelties are only present in the mixed sample. A comprehensive description of the procedure can be found in Section 2.2.4.

We summarize our main results below.

• In Section 2.3, we revisit the theoretical guarantees in [START_REF] Weinstein | A power and prediction analysis for knockoffs with lasso statistics[END_REF]; [START_REF] Mary | Semi-supervised multiple testing[END_REF]; [START_REF] Bates | Testing for outliers with conformal p-values[END_REF] and provide new FDR bounds based on an extension of the leave-one-out technique in the multiple testing literature. The bounds show that AdaDetect, as well as its π 0 -adaptive variants Storey-AdaDetect and Quantile-AdaDetect, controls the FDR in finite samples with arbitrary classification algorithms even if the algorithm performs poorly. This is in sharp contrast to the SC procedure which heavily relies on correct model specification and consistent estimation.

• In addition, we extend the result in [START_REF] Bates | Testing for outliers with conformal p-values[END_REF] to show that the empirical pvalues are PRDS under a more general exchangeability assumption, even if the score function depends on both null and test samples. For instance, our condition covers the Gaussian distributions with equi-correlation (Example 1). This PRDS property suggests that the resulting p-values can be applied in other contexts beyond the FDR control (e.g., [START_REF] Goeman | Multiple Testing for Exploratory Research[END_REF].

• In Section 2.4, we show that any score function that is monotone in the ratio between the average density of novelties and the null density yields the optimal power. In particular, the optimal classifier to distinguish between the null and mixed samples is efficient despite that the null training is split and that the mixed sample is contaminated by nulls. The optimal score function can be obtained by minimizing certain loss function such as the cross-entropy loss that is commonly used in neural networks (NN hereafter).

• We provide non-asymptotic power analyses for AdaDetect in Section 2.5. First, we investigate AdaDetect with the score function given by a constrained empirical risk minimizer (ERM) of the 0-1 loss and show it approaches the optimal likelihood ratio test in an appropriate sense. Next, we provide an oracle inequality for general score functions and conditions under which the procedure mimics its oracle version. We apply the results to analyze power for AdaDetect procedures based on NN and on nonparametric kernel density estimation.

• We demonstrate the efficiency, flexibility, and robustness of AdaDetect2 in Sections 2.6 and 2.7 on synthetic, semi-synthetic, and real datasets, including the MNIST image dataset and an astronomy dataset from the 'Sloan Digital Sky Survey'.

Preliminaries

Notation

As in Section 2.1.1, we let Y = (Y 1 , . . . , Y n ) denote the null training sample (NTS) with a common marginal distribution P 0 , X = (X 1 , . . . , X m ) the test sample with

X i ∼ P i (1 ≤ i ≤ m), Z = (Z 1 , . . . , Z n+m ) = (Y 1 , . . . , Y n , X 1 , . . . , X m ) the full sample, H 0 = {1 ≤ i ≤ m : P i = P 0 } the set of nulls in the test sample with m 0 = |H 0 |, π 0 = m 0 /m, and H 1 = {1, . . . , m} \ H 0 the set of novelties with m 1 = |H 1 |, π 1 = m 1 /m.
For notational convenience, we write n + H 0 for the set {n + i, i ∈ H 0 }. Furthermore, we denote by P the joint distribution of Z, which belongs to a family of distributions P (model).

Throughout the paper, we consider the semi-supervised setting [START_REF] Mary | Semi-supervised multiple testing[END_REF] where the null distribution P 0 is unknown and one can access it only through the measurements in the NTS. In practice, the NTS can be obtained from external data, past experiments or black-box samplers.

Criteria

A novelty detection procedure is a measurable function R(•) that takes Z as input and returns a subset of {1, . . . , m} corresponding to the indices of detected novelties within {X 1 , . . . , X m }. Throughout the paper, we will slightly abuse the notation by using R to refer to both the procedure and the rejection set given by the procedure. Ideally, we want R(Z) to capture novelties (i.e., alternative hypotheses in H 1 ) and avoid inliers (i.e., null hypotheses in H 0 ). Given a procedure R, the false discovery rate (FDR) is defined as the expectation of the false discovery proportion (FDP) with respect to the distribution P ∈ P:

FDR(P, R) = E Z∼P [FDP(P, R)], FDP(P, R) = i∈H 0 1 i∈R 1 ∨ |R| . (2.2)
Similarly, the true discovery rate (TDR) is defined as the expectation of the true discovery proportion (TDP):

TDR(P, R) = E Z∼P [TDP(P, R)], TDP(P, R) = i∈H 1 1 i∈R 1 ∨ m 1 (P ) . (2.3)
Note that m 1 (P ) = 0 implies TDP(P, R) = 0. Our goal is to build a procedure R that controls the FDR and maximizes the TDR to the fullest extent.

BH algorithm and its π 0 -adaptive variants

Suppose a set of p-values (p i , 1 ≤ i ≤ m) is available, the BH algorithm [START_REF] Benjamini | Controlling the false discovery rate: a practical and powerful approach to multiple testing[END_REF] returns

R = {i ∈ {1, . . . , m} : p i ≤ α k/m},
where α is the target FDR level and

k = max k ∈ {0, . . . , m} : m i=1 1 p i ≤αk/m ≥ k .
(2.4)

When the null p-values (p i , i ∈ H 0 ) are independent, super-uniform, and independent of alternative p-values (p i , i ∈ H 1 ), the BH procedure is proved to control the FDR at level απ 0 in finite samples [START_REF] Benjamini | Controlling the false discovery rate: a practical and powerful approach to multiple testing[END_REF]. The independence assumption can be further relaxed to the PRDS condition [START_REF] Benjamini | The control of the false discovery rate in multiple testing under dependency[END_REF]. When π 0 is not close to 1, the BH procedure is conservative because απ 0 < π 0 . When π 0 is known, it can be applied at level α/π 0 to close the gap. In practice, π 0 is usually unknown though. Nonetheless, there exists estimators π0 of π 0 such that the BH procedure with level α/π 0 continues to control the FDR under independence. Two celebrated estimators are introduced by [START_REF] Storey | Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: a unified approach[END_REF] and [START_REF] Benjamini | Adaptive linear step-up procedures that control the false discovery rate[END_REF]:

π Storey 0 = 1 + m i=1 1 p i ≥λ m(1 -λ) , λ > 0; (2.5) or π Quant 0 = m -k 0 + 1 m(1 -p (k 0 ) ) , k 0 ∈ {1, . . . , m}, (2.6) 
where p (k 0 ) is the k 0 -th smallest3 p-value. These procedures are often called the π 0 -adaptive versions of the BH algorithm.

Our method

In this paper, we propose a method called AdaDetect. It is an adaptive novelty detection procedure that extends the existing strategies described in [START_REF] Weinstein | A power and prediction analysis for knockoffs with lasso statistics[END_REF], [START_REF] Yang | Bonus: Multiple multivariate testing with a data-adaptivetest statistic[END_REF], [START_REF] Mary | Semi-supervised multiple testing[END_REF], and [START_REF] Bates | Testing for outliers with conformal p-values[END_REF]. It starts by splitting the null It proceeds with the following steps.
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1. Compute a data-driven score function of form

g(z) = g(z, (Z 1 , . . . , Z k ), (Z k+1 , . . . , Z n+m )), z ∈ Z, (2.7) 
which satisfies the following invariance property: for any permutation π of {k+1, . . . , n+ m} and z, z 1 , . . . , z n+m ∈ Z, we have

g(z, (z 1 , . . . , z k ), (z π(k+1) , . . . , z π(n+m) )) = g(z, (z 1 , . . . , z k ), (z k+1 , . . . , z n+m )). (2.8) 2.
Transform the raw data into univariate scores

S i = g(Z i ; (Z 1 , . . . , Z k ), (Z k+1 , . . . , Z n+m )), i ∈ {k + 1, . . . , n + m}.
(2.9)

Here, we assume that novelties typically have large scores.

3. For each test point X j , generate the empirical p-value by comparing S i with the scores in the NTS:

p j = 1 + 1 1 + n i=k+1 1 S i >S n+j , j ∈ {1, . . . , m}.
(2.10) 4. Apply the BH algorithm to (p 1 , . . . , p m ) at the target level α.

We will call this procedure AdaDetect α in the sequel to emphasize the target level. By simple algebra, the last two steps together are equivalent to the "counting knockoff" algorithm proposed by [START_REF] Weinstein | A power and prediction analysis for knockoffs with lasso statistics[END_REF] applied to the scores S k+1 , . . . , S n+m . Specifically, the method declares i as a novelty if S i ≥ t where

t = min t ∈ {S i : k + 1 ≤ i ≤ n + m} : FDP(t) ≤ α ; FDP(t) = m + 1 1 + n i=k+1 1 S i ≥t / n+m i=n+1 1 S i ≥t .
Therefore, the counting knockoff procedure can be seen as a shortcut that avoids computing the empirical p-values explicitly. The pipeline for AdaDetect is illustrated in Figure 2.2. AdaDetect offers greater flexibility than existing methods in the types of score functions that can be employed.

• Prespecified p-value transformations are score functions that do not depend on (Z 1 , . . . , Z k ) and (Z k+1 , . . . , Z n+m ). For example, when

Z = R d , the χ 2 test chooses the non-adaptive score g(z) = d j=1 z 2 j , z ∈ R d .
• The one-class classification approach considered by [START_REF] Bates | Testing for outliers with conformal p-values[END_REF] corresponds to score functions that only depend on (Z 1 , . . . , Z k ), but not (Z k+1 , . . . , Z n+m ).

• The BONuS procedure [START_REF] Yang | Bonus: Multiple multivariate testing with a data-adaptivetest statistic[END_REF] considers empirical Bayes-based score functions that depend on the pooled sample {Z 1 , . . . , Z n+m } without distinguishing between the null and mixed samples.

• Our proposed method constructs the score function g(•, (Z 1 , . . . , Z k ), (Z k+1 , . . . , Z n+m )) as the estimated probability by any probabilistic classifier that distinguishes between (Z 1 , . . . , Z k ) and (Z k+1 , . . . , Z n+m ); see Section 2.4 for details.

Lastly, we propose the Storey-AdaDetect and Quantile-AdaDetect as the π 0 -adaptive versions of AdaDetect applied at level α/ π Storey 0 and α/ π Quant 0 , respectively, in which the p-values have been replaced by the empirical ones.

Remark 4. An appealing property of Adadetect and its adaptive versions is that the rejection is invariant to strictly increasing transformations of score function. This feature proves useful in the power analysis of AdaDetect, see Section 2.4.

Remark 5. By construction, the empirical p-values are multiples of 1/( + 1). As [START_REF] Mary | Semi-supervised multiple testing[END_REF] point out, the number of null samples needs to be larger than m/(α(1 ∨ M )) in order to guarantee sufficient resolution of the p-values for the BH procedure, where M ≥ 0 is some high-probability lower bound on the number of rejections. Typically, if M is of the order of m, a constant would suffice, while if M = 0 (i.e., without any prior knowledge on the number of rejections), should be larger than m/α. In general practical situations where n m, we recommend setting = m and this choice works reasonably well in our numerical experiments. When m > n, it might be more appropriate to impose further assumptions on the distribution (e.g., the knowledge of M ).

FDR control

In this section, we prove that AdaDetect and its π 0 -adaptive variants control the FDR. In Section 2.3.1, we state the key assumption of exchangeability and show it translates to the scores as long as g satisfies the condition (2.8). Based on this observation, we prove in Section 2.3.2 that the empirical p-values are PRDS, which is a highly non-trivial extension of the results by [START_REF] Bates | Testing for outliers with conformal p-values[END_REF]. Though the PRDS property implies the FDR control of AdaDetect as a result of [START_REF] Benjamini | The control of the false discovery rate in multiple testing under dependency[END_REF], we present in Section 2.3.3 an alternative proof based on a new FDR expression that unify and extend the previous FDR bounds. Lastly, in Section 2.3.4, we prove the FDR control for Storey-AdaDetect and Quantile-AdaDetect based on an FDR bound for general π 0 -adaptive versions of AdaDetect.

Exchangeability

We make the following assumption on the raw measurements throughout the paper.

Assumption 1. (Y 1 , . . . , Y n , X i , i ∈ H 0 ) are exchangeable conditional on (X i , i ∈ H 1 ). 4
Clearly, Assumption 1 holds when the measurements are independent, as assumed by [START_REF] Yang | Bonus: Multiple multivariate testing with a data-adaptivetest statistic[END_REF] and [START_REF] Bates | Testing for outliers with conformal p-values[END_REF]. In general, Assumption 1 allows for dependencies among the measurements.

Example 1. Consider the observation where

Z i = µ i + ρ 1/2 ξ + (1 -ρ) 1/2 ε i , 1 ≤ i ≤ n + m, with the variables ξ, ε 1 , . . . , ε n+m being i.i.d. ∼ N (0, I d ), ρ being a nonnegative correlation coefficient, and µ i = 0 for i ∈ {1, . . . , n} ∪ (n + H 0 ) (hence Z = R d ).
Then Assumption 1 holds. The case d = 1 corresponds to the Gaussian equi-correlated case, which is widely studied in the multiple testing literature (e.g., [START_REF] Korn | Controlling the number of false discoveries: application to high-dimensional genomic data[END_REF].

For our results, a necessary assumption is exchangeability of the scores under the null:

Assumption 2. (S k+1 , . . . , S n , S n+i , i ∈ H 0 ) is exchangeable conditionally on (S n+i , i ∈ H 1 ).
It turns out the exchangeability of the raw measurements translates to the scores. Lemma 2. Under Assumption 1, the adaptive scores defined by (2.9) satisfy Assumption 2 for any score function that satisfies the condition (2.8).

This result substantially simplifies the FDR analysis presented in the next section. To avoid unnecessary mathematical complications, we make the following mild assumption.

Assumption 3. (S k+1 , . . . , S n+m ) have no ties almost surely.

The p-values are PRDS

Following [START_REF] Benjamini | The control of the false discovery rate in multiple testing under dependency[END_REF], we say a family of p-values

(p i , 1 ≤ i ≤ m) is PRDS on H 0 if, for any i ∈ H 0 and nondecreasing 5 measurable set D ⊂ [0, 1] m , the function u ∈ [0, 1] → P((p j , 1 ≤ j ≤ m) ∈ D | p i = u) is nondecreasing.
Theorem 3. For any family of scores (S k+1 , . . . , S n+m ) satisfying Assumptions 2 and 3, the empirical p-values defined in (2.10) are PRDS on H 0 and the null p-values are super-uniform. In particular, under Assumptions 1 and 3, this result holds for the p-values generated by AdaDetect with a score function satisfying (2.8).

We present a proof of Theorem 3 in Section A.1.3. It extends Theorem 2 in [START_REF] Bates | Testing for outliers with conformal p-values[END_REF] to dependent scores. Notably, the AdaDetect scores are dependent in general even if the measurements Z i 's are independent because the data-adaptive score function depends on the entire dataset.

Theorem 3 has interesting consequences. First, the celebrated result for the BH procedure [START_REF] Benjamini | The control of the false discovery rate in multiple testing under dependency[END_REF][START_REF] Romano | Exact and approximate stepdown methods for multiple hypothesis testing[END_REF] implies that AdaDetect strongly controls the FDR at level απ 0 . Second, the PRDS property is also useful for other purposes, such as post hoc inference [START_REF] Goeman | Multiple Testing for Exploratory Research[END_REF], FDR control with structural constraints (Ramdas et al., 2019a;[START_REF] Loper | Smoothed nested testing on directed acyclic graphs[END_REF], online FDR control [START_REF] Zrnic | Asynchronous online testing of multiple hypotheses[END_REF][START_REF] Fisher | Saffron and lord ensure online control of the false discovery rate under positive dependence[END_REF], hierarchical FDR control (Foygel [START_REF] Foygel Barber | The p-filter: multi-layer fdr control for grouped hypotheses[END_REF] and weighted FDR control with prior knowledge (Ramdas et al., 2019b). Hence, our result paves the way for developing similar AdaDetect-style procedures in these contexts.

A new FDR expression

While the PRDS property implies the FDR control for AdaDetect, we pursue an alternative way based on a new expression for the FDR of the BH procedure in our setting, which would also yield a lower bound for FDR that is not implied by the PRDS property.

Theorem 4. Consider any family of scores (S k+1 , . . . , S n+m ) satisfying Assumptions 2 and 3. Let R α denote the rejection set of BH procedure applied to p-values defined in (2.10) at level α. Then, for any distribution P ∈ P,

FDR(P, R α ) = i∈H 0 E α( + 1)K i /m ( + 1)K i , (2.11) 
where K i is a random variable that takes values in {1, . . . , m} for any i ∈ H 0 . In particular, under Assumptions 1 and 3, (2.11) holds with R α = AdaDetect α , the AdaDetect procedure at level α.

The proof of Theorem 4 is presented in Section A.1.4. It is similar to the classical leave-oneout technique to prove the FDR control for step-up procedure (e.g. [START_REF] Ferreira | On the Benjamini-Hochberg method[END_REF][START_REF] Roquain | Exact calculations for false discovery proportion with application to least favorable configurations[END_REF]Ramdas et al., 2019b;[START_REF] Giraud | Introduction to high-dimensional statistics[END_REF], though it is non-trivial to handle empirical p-values. Since for any x > 0 and integer k, we have x k ≤ xk ≤ xk, expression (2.11) immediately implies the following bounds.

Corollary 5. Under Assumptions 1 and 3, the following holds, for any values of k, , m ≥ 1 and any parameter P ∈ P:

m 0 α( + 1)/m /( + 1) ≤ FDR(P, AdaDetect α ) ≤ αm 0 /m.
(2.12)

In particular, FDR(P, AdaDetect α ) = απ 0 when α( + 1)/m is an integer.

Corollary 5 recovers Theorem 3.1 in [START_REF] Mary | Semi-supervised multiple testing[END_REF] which imposes a slightly more restrictive condition than Assumption 2. Their proofs are based on martingale techniques and the proof for the lower bound is particularly involved. Here, we rely instead on the exact expression (2.11), which is arguably simpler and more comprehensible.

New FDR bounds for π 0 -adaptive procedures

For each i ∈ H 0 , let D i be the distribution of (p j , 1 ≤ j ≤ m), where

   p j = 0, j ∈ H 1 , p i = 1/( + 1); p j , j ∈ H 0 \{i} are i.i.d. conditionally on U with a common c.d.f. F U ; U = (U 1 , . . . , U +1 ) has i.i.d. U (0, 1) components, (2.13) where F U denotes the discrete c.d.f. F U (x) = (1 -U ( x( +1) +1) ) 1 1/( +1)≤x<1 + 1 x≥1 , x ∈ R, and U (1) > • • • > U ( +1)
denote the order statistics of the vector U . Note that the distribution D i only depends on i, m, and H 0 . The following general result holds. Theorem 6. In the setting of Theorem 4, denote p = (p i , 1 ≤ i ≤ m) the family of empirical p-values defined in (2.10) and consider any function G : [0, 1] m → (0, ∞) that is coordinatewise nondecreasing. Then the procedure, denoted by R αm/G(p) , combining the BH algorithm at level αm/G(p) with these empirical p-values is such that, for any parameter P ∈ P,

FDR(P, R αm/G(p) ) ≤ α i∈H 0 E p ∼D i 1 G(p ) , (2.14)
where D i is defined by (2.13). In particular, this FDR expression holds for R αm/G(p) = AdaDetect αm/G(p) under Assumptions 1 and 3.

Theorem 6 is proved in Section A.1.5. In a nutshell, the distribution D i is a least favorable distribution for the FDR of the adaptive BH procedure applied to empirical p-values defined in (2.10). It can be seen as an adaptation of the classical leave-one-out technique for adaptive BH procedures; see [START_REF] Benjamini | Adaptive linear step-up procedures that control the false discovery rate[END_REF] and Theorem 11 of [START_REF] Blanchard | Adaptive false discovery rate control under independence and dependence[END_REF].

This result generalizes Theorem 6 of [START_REF] Bates | Testing for outliers with conformal p-values[END_REF] which only works for the Storey-BH procedure. Our proof technique is fundamentally different and works for a broad class of estimators of π 0 . Applying Theorem 6 to the estimators defined in (2.5) and ( 2.6), we obtain the following result.

Corollary 7. Under Assumptions 1 and 3, the following holds:

• Storey-AdaDetect controls the FDR at level α for any λ = K/( + 1) and K ∈ {2, . . . , }.

• Quantile-AdaDetect controls the FDR at level α for any k 0 ∈ {1, . . . , m}.

The proof of Corollary 7 is presented in Section A.1.6. It bounds the RHS of (2.14) via combinatoric arguments. The result for Quantile-AdaDetect is novel. The result for Storey-AdaDetect was proved in [START_REF] Yang | Bonus: Multiple multivariate testing with a data-adaptivetest statistic[END_REF] for BONuS, with a different proof technique, in the special case where the scores are independent. Hence, we extend it to the exchangeable case.

To illustrate the robustness of π 0 -adaptive AdaDetect under dependence, consider Example 1 with common alternative means µ i ≡ µ ∈ R d and a fixed score function

S i = µ T Z i , 1 ≤ i ≤ n + m.
One alternative approach to Storey-AdaDetect is to apply the Storey-BH procedure on the marginal p-values p i = Φ(S n+i / µ ), 1 ≤ i ≤ m. Interestingly, Figure 2.3 shows that the Storey-BH procedure inflates the FDR substantially in the presence of high correlation while Storey-AdaDetect with k = 0 controls the FDR for any correlation ρ (as implied by Corollary 7). Hence, while Storey-AdaDetect is only based on an NTS without the knowledge of the true null distribution, it is more robust to dependence than Storey-BH that requires more information. Furthermore, Storey-AdaDetect is more powerful than Storey-BH because the effect of the common variable ξ is cancelled out in the calculation of empirical p-values. Remark 6. Assumptions 2 and 3 hold true in other contexts. For example, this is the case for LASSO-based scores in the Gaussian linear model where the design matrix has i.i.d. entries with a known distribution [START_REF] Weinstein | A power and prediction analysis for knockoffs with lasso statistics[END_REF]. Hence, the FDR bounds we developed also hold in those cases. 

Constructing score functions

While any score function satisfying (2.8) can be used in AdaDetect, we discuss principles and various techniques to construct score functions that yield high power. Section 2.4.1 introduces the assumptions and notation. In Section 2.4.2 we show that the optimal score function is given by any monotone function of the ratio between the average density of novelties and the average density of all points. We proceed by discussing two methods to approach the optimal score based on direct density estimation (Section 2.4.3) and classification (Section 2.4.4). The latter is more scalable and flexible in the sense that it is able to wrap around any probabilistic classification algorithms. In Section 2.4.5, we discuss a cross-validation approach for hyperparameter tuning and model selection without compromising the finite-sample FDR control.

Assumptions and notation

In this section, we make the following two assumptions:

Assumption 4. Y 1 , . . . , Y n , X 1 , . . . , X m are mutually independent.
Given the setting of Section 2.1.1, we thus have under Assumption 4 that (Y 1 , . . . , Y n , X i , i ∈ H 0 ) are i.i.d. ∼ P 0 and independent of (X i , i ∈ H 1 ) which are mutually independent. Assumption 5. For each i ∈ {0} ∪ H 1 , P i has a positive density f i w.r.t. a measure ν.

Let

f = π 0 f 0 + π 1 f1 , (2.15) f1 = m -1 1 i∈H 1 f i . (2.16)
Under Assumptions 4 and 5, f 0 is the average density of (Z 1 , . . . , Z k ), f1 is the average alternative density, f is the average density of the test sample (X 1 , . . . , X m ). Similarly the average density of (Z k+1 , . . . , Z n+m ) is f γ where

γ = m 1 + m ;
(2.17)

f γ = (1 -γ)f 0 + γ f1 = + m f 0 + m + m f, (2.18) 
Compared to f , the mixture f γ is contaminated by more nulls, that is, π 0 ≤ 1 -γ = +m 0 +m . Lastly, we define the density ratio

r(x) = π 1 f1 (x) f (x) , x ∈ Z. (2.19)
Note that r(x) ∈ (0, 1) for ν-almost every x ∈ Z by Assumption 5.

Optimal score function

Recall that AdaDetect is equivalent to applying the counting knockoff on the scores which relies on an estimator FDP (Section 2.2.4). For each given t, when and m is large,

FDP(t) ≈ m P S i ∼P 0 (S i ≥ t) E[|R(t)|] ≈ E[|R(t) ∩ {k + 1, . . . , n}|] E[|R(t)|]
,

where R(t) is set of rejections at threshold t. The RHS is called the marginal FDR (mFDR), an error metric that is close to FDR when |R(t)| is large and often used for asymptotic power analysis of FDR-controlling procedures (e.g. [START_REF] Sun | Oracle and adaptive compound decision rules for false discovery rate control[END_REF][START_REF] Lei | Adapt: an interactive procedure for multiple testing with side information[END_REF].

The following theorem derives the optimal score function among all procedures that reject hypotheses with S i above some thresholds subject to mFDR control (see [START_REF] Weinstein | On permutation invariant problems in large-scale inference[END_REF][START_REF] Rosset | Optimal and maximin procedures for multiple testing problems[END_REF] for results for FDR instead of mFDR).

Theorem 8. Assume Assumptions 4 and 5 hold. The likelihood ratio function r(•) defined in (2.19) is an optimal score function in the sense that the rejection set R = {i ∈ {1, . . . , m} : r(X i ) ≥ c(α)}, where c(α) ∈ (0, 1) is chosen such that mFDR(R) = α (assuming it exists), has a higher TPR than any rejection set R = {i ∈ {1, . . . , m} : r (X i ) ≥ c } where c ∈ R and r : Z → R is measurable with mFDR at most α.

The proof can be found in Section A.2.1. Theorem 8 suggests the following oracle procedure.

Definition 3. The oracle AdaDetect procedure, denoted by AdaDetect * , is defined as the AdaDetect procedure with the score function r(•) defined in (2.19).

Since AdaDetect is invariant under any strictly monotone transformation of the score function (see Remark 4), AdaDetect * can be realized as any AdaDetect procedure with a score function of the form g * = Ψ • r, for some increasing continuous Ψ : (0, 1) → R, (2.20) where Ψ could depend on unknown parameters. This is a crucial property of AdaDetect that enables flexible classification methods to construct score functions without concerning about the composition of nulls and novelties that may change the oracle score r.

Since r (or g * ) is unknown, the oracle procedure AdaDetect * is not directly accessible in practice. Our goal is to learn a g * in the form of (2.7) that satisfies the constraint (2.8).

Density estimation

A first example of score function is built from density estimation. From (2.15) and (2.18), the following score

g * (x) = f γ (x)/f 0 (x) = 1 -γ/π 1 + (π 0 γ/π 1 )(1 -r(x)) -1 (2.21)
is indeed of the form (2.20). A straightforward approach is to directly estimate the densities as follows.

• Estimate f 0 by a density estimator f 0 based on the sample (Z 1 , . . . , Z k )

• Estimate f γ by a density estimator f γ based on the mixed sample (Z k+1 , . . . , Z n+m ) via a mixture estimation approach.

• Estimate g * (x) by g(x) = f γ (x)/ f 0 (x) assuming that f 0 (Z i ) > 0.
Above, the density estimators can be either parametric or non-parametric. Both versions will be considered in the sequel (see Section 2.4.3 and the numerical experiments in Section 2.6). Note that [START_REF] Yang | Bonus: Multiple multivariate testing with a data-adaptivetest statistic[END_REF] applies this approach when f 0 is known.

PU classification

While density estimation is straightforward, it is not scalable when the dimension d is large; see the numerical experiments in Section 2.6 for an illustration. In this section, we consider a different strategy that estimate density ratios through probabilistic classification (e.g. [START_REF] Friedman | On multivariate goodness-of-fit and two-sample testing[END_REF][START_REF] Sugiyama | Density ratio estimation in machine learning[END_REF][START_REF] Lei | Distribution-free assessment of population overlap in observational studies[END_REF][START_REF] Wang | Approximate bayesian computation via classification[END_REF]. Define (Z 1 , . . . , Z k ) as the "positive sample" and the sample (Z k+1 , . . . , Z n+m ) as the "unlabeled sample", and let (A 1 , . . . , A k ) = (-1, . . . , -1) and (A k+1 , . . . , A n+m ) = (1, . . . , 1) the corresponding labels. In this context, the classification task is typically referred to as the PU (positive unlabeled) classification, which is an active research area; see Du Plessis et al. ( 2014); [START_REF] Calvo | Learning bayesian classifiers from positive and unlabeled examples[END_REF]; [START_REF] Guo | On positiveunlabeled classification in gan[END_REF]; [START_REF] Ivanov | Dedpul: Difference-of-estimated-densities-based positive-unlabeled learning[END_REF] among others and Bekker and Davis (2020) for a recent review. Here, we are considering a slightly different setting where the unlabeled samples are independent but not identically distributed.

Usually, the classifier is learned by empirical risk minimization (ERM) where the objective function is in the form of

J λ (g) = n+m i=1 λ A i (A i , g(Z i )) = k i=1 (-1, g(Z i )) + λ n+m i=k+1 (1, g(Z i )),
where : {-1, +1} × R → R + is a loss function and λ a = λ 1 a≥0 + 1 a≤0 with λ > 0 measuring the relative cost misclassifying a positive sample to misclassifying an unlabeled sample. Here, g is a function that belongs to G, a class of measurable functions from Z to R and the classifier corresponds to the sign of g. Typical choices of the loss function include the hinge loss (a, u) = 0.5(1 -au) + and the cross entropy loss (a, u) = -log(1 -u) 1 a=-1 -log(u) 1 a=+1 .

The population objective function is given by

J λ (g) = E J λ (g) = k E Z∼f 0 (-1, g(Z)) + λ( + m) E Z∼fγ (1, g(Z)), (2.22)
where f γ is defined in (2.18). The following result shows that the minimizer of (2.22) over all measurable functions yields an optimal score in the form of (2.20) when the loss function is appropriately chosen.

Lemma 9. Let g denote the minimizer of (2.22) over all measurable functions.

(i) When (•, •) is the hinge loss, assuming that the set {x ∈ Z : f γ (x) = cf 0 (x)} is of ν-measure zero for any c > 0, where ν is defined in Assumption 5,

g (x) = sign λ( + m) k f γ (x) f 0 (x) -1 = sign λ k + λm 0 k (1 -r(x)) -1 -1 ,
and the minimum is unique ν-almost everywhere.

(ii) When (•, •) is the cross entropy,

g (x) = λ( + m)f γ (x) λ( + m)f γ (x) + kf 0 (x) = 1 + λ k + λm 0 k (1 -r(x)) -1 -1 -1
, and the minimum is unique ν-almost everywhere.

The proof is presented in Section A.2.2. Clearly, g is an optimal score function in the form of (2.20) with the cross-entropy loss but not so with the hinge loss because the sign function is not strictly monotone. For cross-entropy loss, when λ = 1,

g (x) = +m n+m f γ (x) +m n+m f γ (x) + k n+m f 0 (x) , (2.23) 
which can be roughly interpreted as the posterior probability to be in class 1.

In practice, it is computationally infeasible and statistically inefficient to optimize over all measurable functions. Instead, we often choose a function class G and estimate the score function by g ∈ argmin g∈G J λ (g).

(2.24)

By construction, J λ (g) is invariant to permutations of (Z k+1 , . . . , Z n+m ), g always satisfies the condition (2.8). When G has low complexity, we should expect g ≈ g G where g G ∈ argmin g∈G J λ (g).

(2.25)

On the other hand, when G is sufficiently rich, we can expect g G ≈ g . In summary, when the function class G and the loss function (•, •) are chosen appropriately, ĝ ≈ g G ≈ g , which is an optimal score function.

We illustrate the roles of function classes and loss functions in a simple setting where the positive class and the unlabeled class are generated from two gaussian distributions with dimension 1 or 2. The results are presented in Figure 2.4, with each row corresponding to a data-generating process. For all settings, the first panel displays the null and alternative distributions and the second panel displays the distributions of the positive and unlabeled classes. In all settings, we plot ĝ and g for hinged loss (SVM) and cross-entropy losses with two function classes, an inaccurate one (Logistic Regression) and an accurate one (Neural Networks). In the two-dimensional settings, we display the functions by contour plots. For instance, for the cross entropy loss, we can observe the NN function class outperforms the logistic function class for approximating g .

In conclusion, both the loss function (•, •) and the function class G are pivotal. Among the two loss functions we discuss, the cross entropy loss with a sufficiently rich function class (e.g., fully-connected neural networks) is particularly suitable for AdaDetect in that it is computationally feasible and approximately optimal. In contrast to the classification literature, hinged loss is undesirable for our purpose since the estimator does not converge to an optimal score.

AdaDetect with cross-validation

In previous sections, we focus on a single score function. Nevertheless, most density estimation and classification algorithms involve hyperparameters that require data-driven tuning to maximize the power. Examples include the bandwidth for kernel density estimation, the maximum depth for random forests, the width and number of hidden layers for neural networks, and the numerical algorithm to optimize the loss.

Formally, we assume the researcher has a class of candidate score functions {g υ , υ ∈ U} indexed by the hyper-parameter υ. The goal is to choose υ based on data and use g υ as the score function without breaking the FDR guarantee. By Theorem 4, the FDR is controlled so long as g υ satisfies the condition (2.8). Motivated by the "double BONuS" procedure proposed in [START_REF] Yang | Bonus: Multiple multivariate testing with a data-adaptivetest statistic[END_REF], we propose the following version of AdaDetect with cross-validation, which we abbreviate as the AdaDetect cv procedure.

1. Split (Y 1 , . . . , Y k ) further into two parts (Y 1 , . . . , Y s ) and (Y s+1 , . . . , Y k ) for some s < k.
2. Generate a class of score functions g υ that satisfy a stronger condition than (2.8): g υ (z, (z 1 , . . . , z s ), (z π(s+1) , . . . , z π(n+m) )) = g(z, (z 1 , . . . , z s ), (z s+1 , . . . , z n+m )). 

For each

) = (Y 1 , . . . , Y k ; Y k+1 , . . . , Y n ) being the NTS).
The pipeline to compute g υ is illustrated in Figure 2.5. By definition, each g υ is invariant to permutation of (Y s+1 , . . . , Y n , X 1 , . . . , X m ) and hence invariant to permutation of the mixed sample (Y k+1 , . . . , Y n , X 1 , . . . , X m ). Thus, r υ is also invariant to (Y k+1 , . . . , Y n , X 1 , . . . , X m ), implying that υ is so as well. As a result, g υ satisfies the condition (2.8). Therefore, the results in Section 2.3 all carry over to the AdaDetect cv procedure.

In principle, we can use any other objective function that is invariant to the mixed sample than the number of rejections r υ . Nonetheless, r υ tends to be a good proxy for the number of rejections in the last step and hence a better objective to optimize than the indirect ones like classification accuracy.

Remark 7. When fitting the hyper-parameter υ, the sample sizes s, k -s, + m, do not maintain the same proportions as the original sizes k, , m. Our recommendation, following the guidelines in Remark 5, is to choose s such that k -s is of the same order as + m and s is of the same order as m (e.g., = m, s = 3m, k = 4m).

Remark 8. The cross-validation can rule out overfitted models that performs well in training data but does poorly out of sample. By including nonsophisticated baseline models that likely generalize, the power of AdaDetect becomes less sensitive to overfitting of other complicated models or other failure modes that we have yet discovered. For example, the researcher can always add a non-adaptive score that cannot incur overfitting and might be underpowered.

Power results

In this section, we analyze the power of AdaDetect with appropriately chosen score functions. Throughout this section we assume that the measurements take values in Z = R d . We start in Section 2.5.1 with a specific score function given by a constrained empirical risk minimizer (ERM) with the 0-1 loss and show it is as powerful as the classification approach based on the
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Choose that maximizes υ r υ optimal score functions defined in (2.20) when the function class is sufficiently flexible and up to asymptotically vanishing remainder terms. In Section 2.5.2, we turn to a general estimated score function that is close to an oracle (deterministic) score function on all measurements in the mixed sample. When the latter is sufficiently smooth, we show that AdaDetect with the estimated score function is as efficient as AdaDetect with the oracle score function, up to explicit remainder terms that are asymptotically vanishing.

A constrained ERM score function

For the convenience of theoretical analysis, we study a constrained empirical risk minimizer (ERM) score function with 0-1 loss motivated by the Neyman-Pearson (NP) formulation of classification problems given in [START_REF] Blanchard | Semi-supervised novelty detection[END_REF]; see also [START_REF] Cannon | Learning with the neyman-pearson and min-max criteria[END_REF] and [START_REF] Scott | A neyman-pearson approach to statistical learning[END_REF]. Define

R0 (g) = k -1 k i=1 1 g(Z i )≥0 , R 0 (g) = E R0 (g) = P Z∼f 0 (g(Z) ≥ 0), (2.26 
)

Rγ (g) = (m + ) -1 n+m i=k+1 1 g(Z i )<0 , R γ (g) = E Rγ (g) = (1 -γ)(1 -R 0 (g)) + γR 1 (g), R 1 (g) = P Z∼ f1 (g(Z) < 0),
where γ, f 0 , and f1 are defined in (2.17) and (2.18), respectively. We consider a function class G with a finite Vapnik-Chervonenkis (VC) dimension V (G) [START_REF] Vapnik | Statistical learning theory[END_REF] and the following constrained ERM score function

ĝ ∈ argmin g∈G Rγ (g) : R0 (g) ≤ β + 0 , (2.27) 
for some 0 > 0, as well as its population version g G ∈ argmin g∈G {R γ (g) : R 0 (g) ≤ β} .

(2.28)

Theorem 10. Consider the setting of Theorem 8. Assume α, β ∈ (0, 1), k, m 1 ≥ 1, and g G , defined in (2.28), satisfies R 0 (g G ) = β. Fix any δ ∈ (0, 1/2). Then there exist constants C, C > 0 that only depend on δ such that, if

0 = C V (G) + log(1/δ) k , ∆ = C γ -1 V (G) + log(1/δ) k ∧ , (2.29)
where γ is defined in (2.17), the following results hold.

(i) With probability at least 1 -δ, R 0 (ĝ) ≤ β + ∆ and R 1 (ĝ) ≤ R 1 (g G ) + ∆. (ii) Let M = (1 -R 1 (g G ) -∆)m 1 . Assume that 1 -R 1 (g G ) ≥ (1 + α -1 )∆, ≥ 2m αM , β ≤ 0.4αM m .
(2.30)

Then, with probability at least 1 -δ,

AdaDetect α ⊃ {i ∈ {1, . . . , m} : ĝ(X i ) ≥ 0}, (2.31) |AdaDetect α ∩ H 1 |/m 1 ≥ 1 -R 1 (g G ) -∆, (2.32) 
where AdaDetect α denotes the rejection set of AdaDetect with score function ĝ.

The proof of Theorem 10 is presented in Section A.3.1. The idea is to show that there are many alternatives with a nonnegative score, while there are only a few true nulls with nonnegative scores. This yields small empirical p-values for hypotheses with nonnegative scores, which implies that the procedure AdaDetect α detects these nonnegative scores, see Lemma 24.

Theorem 10 (i) shows that ĝ has a similar classification accuracy to g G on both the NTS and mixed sample. It is analogous to Theorem 2 in [START_REF] Blanchard | Semi-supervised novelty detection[END_REF], though [START_REF] Blanchard | Semi-supervised novelty detection[END_REF] considers a different setting where the proportion of nulls is random. Theorem 10 (ii) entails that, with high probability, all hypotheses with nonnegative scores will be rejected and the power of AdaDetect with ĝ is nearly as large as the power of the classification procedure given by g G .

Note that the Lagrangian form of the above problem is in the form of the weighted loss defined in (2.22). Thus, by Lemma 9 (i), there exists λ β > 0 such that

g G (x) = g * (x) = λ β ( + m) k f γ (x) f 0 (x) -1,
if the constraint is feasible and G is sufficiently rich to include the above function. Above, g * (x) satisfies (2.20) and hence yields the optimal power. If we define b = R 1 (g G ) -R 1 (g * ) as the bias due to the constraint, Theorem 10 (ii) implies that, with probability 1 -δ, the power of AdaDetect with ĝ is at most ∆ + b below the optimal power. Thus, the function class G incurs a tradeoff that a richer class yields a smaller b but a larger ∆ and vice versa.

Here, we aim at making G as flexible as possible while ensuring ∆ = o(1). When k, , and m are of the same order and δ is a constant,

∆ m m 1 V (G) m . Hence, ∆ = o(1) if m 1 m V (G) m . (2.33)
For illustration, consider the class G N,L,s of ReLU feed forward neural networks with fixed topology, maximum width N m c (c ∈ (0, 1)), depth L log m and sparsity s N log m. [START_REF] Bartlett | Nearly-tight vc-dimension and pseudodimension bounds for piecewise linear neural networks[END_REF] show that

V (G N,L,s ) ≤ 2sL log(4eN ) m c (log m) 3 .
Hence, condition (2.33) reads in this case

m 1 /m m c-1 2 (log m) 3/2 .
This implies that ∆ = o(1) unless the novelties are too sparse. On the other hand, given the approximation ability of class of neural networks, we should expect

1 -R 1 (g G N,L,s ) ≈ 1 -R 1 (g * ).
Thus, Theorem 10 (ii) implies the resulting score function is nearly optimal.

Remark 9 (Choice of β). Since AdaDetect α controls FDR at level α, it is necessary to impose an upper bound on β in Theorem 10 (ii). Roughly speaking, our condition on β guarantees that the classifier g G controls the FDR at level α, up to remainder terms.

Remark 10. The condition on in (2.30) is needed to ensure that the minimum value 1/(1+ ) that p-values can take is sufficiently small so that the BH procedure can reject. A similar condition was introduced in Mary and Roquain (2022), see also Remark 5.

General score functions

Now we move to general score functions. Let g * be any measurable function R d → R in the form of (2.20) and

G 0 (s) = P X∼P 0 (g * (X) ≥ s), s ∈ R; (2.34) ζ r (η) = max u∈[α(r∨1)/m,α] G 0 (G -1 0 (u) -2η) -u u , η > 0, r ∈ {0, . . . , m}. (2.35)
Here, ζ r (•) measures the local fluctuation of G 0 . We suppress the dependence on α and m to ease notation. Furthermore, consider any data-driven score function ĝ satisfying the condition (2.8) and let

η = max k+1≤i≤n+m |ĝ(Z i ; (Z 1 , . . . , Z k ), (Z k+1 , . . . , Z n+m )) -g * (Z i )|, (2.36) 
which measures the maximal discrepancy of scores in the mixed sample. In the following, AdaDetect α denotes the procedure with score function ĝ and AdaDetect * α denotes the procedure with score function g * .

Theorem 11. Fix any r ∈ {0, . . . , m} and let

R = {|AdaDetect * α | ≥ r}. Assume m ≥ 1, , k ≥ 0, n = k + ≥ 1,
and G 0 (2.34) is continuous and strictly decreasing. Under Assumptions 4 and 5, for any δ, η ∈ (0, 1) such that ( + 1)δα(r ∨ 1)/m ≥ 2, 

P (R ∩ {AdaDetect * α ⊂ AdaDetect α } c ) ≤ P (η > η) + 2me -(3/28)( +1)δ 2 α(r∨1)/m , ( 2 
= G 0 (g * (X i )), 1 ≤ i ≤ m.
The proof is presented in Section A.3.2. The condition ( +1)δα(r ∨1)/m ≥ 2 is analogous to the one studied [START_REF] Mary | Semi-supervised multiple testing[END_REF] for fixed score functions. When we choose r = 0, we have P(R) = 1 and thus (2.37) implies

P (AdaDetect * α ⊂ AdaDetect α ) ≥ 1 -P (η > η) -2me -(3/28)( +1)δ 2 α/m ,
for any δ with ( + 1)δα/m ≥ 2. If /m > > log m, we can choose δ = o(1) such that ( + 1)δ 2 α/m > > log m and η such that P(η ≥ η) = o(1), in which case

P (AdaDetect * α ⊂ AdaDetect α ) = 1 -o(1)
,

where α = α(1 + ζ 0 (η))(1 + o(1)
). Thus, when ζ 0 (η) is small, we show that AdaDetect with the estimated score function and slight inflation of the target level is strictly more powerful than its oracle version.

In general, when |AdaDetect * α | is larger with high probability, we can choose a larger r to relax the condition on δ, reduces ζ r (η) (and hence α ), and improve the RHS of (2.37). In particular, we can set r appropriately to obtain the following result on the asymptotic TDR.

Corollary 12. Consider the setting of Theorem 11. Fix any > 0. Assume m 1 ≥ 1 and

( + 1)δα m 1 /m ≥ 2. Then TDR(AdaDetect α ) ≥ TDR(AdaDetect * α ) -P (η > η) -2me -(3/28)( +1)δ 2 α m 1 /m -, (2.38 
)

where α = α(1 + 3δ)(1 + ζ m 1 (η)).
In particular, if there exist sequences δ = δ(k, , m, m 1 ), = (k, , m, m 1 ), and η = η(k, , m, m 1 ) such that, as , m, m 1 tend to infinity, (2.40)

δ, → 0, δ 2 m 1 /m → ∞, P (η > η) → 0 and ζ m 1 (η) → 0, (2.39 
Furthermore, these results hold with AdaDetect * α replaced by BH * α defined in Theorem 11. The proof is presented in Section A.3.3. Corollary 12 shows that AdaDetect is nearly as powerful as the oracle version, as well as the BH procedure with the optimal score. Now we discuss the choice of η. Note that η is a parameter that only shows up in the bound but not in the algorithm. It incurs a tradeoff that a larger η would improve the tail bound by decreasing P (η > η) but inflate α through increasing ζ r (η). Ideally, we would want η so that P (η > η) and ζ r (η) are both negligible. For illustration, assume

P η > (n + m) -κ = o(1), (2.41) 
for some κ ∈ (0, 1/2) and ζ r (η) η/γ, where γ is defined in (2.17). In this case, P (η > η) and ζ r (η) are both o(1) if

(n + m) -κ = o(γ) = o m 1 m + .
Again, this would hold unless the novelties are too sparse. We show in Lemma 29 that the score function given by density estimation satisfies (2.41) under regularity conditions. Another example is given by Theorem 3.2 in [START_REF] Audibert | Fast learning rates for plug-in classifiers[END_REF] in the case where g * is the posterior probability under a different setting; see Section A.5.3). For ζ r (η), we provide bounds in Section A.5.1 for two examples. In the Gaussian example, we show that ζ r (η) η/γ, where γ is defined in (2.17).

Remark 11. Theorem 3 in [START_REF] Yang | Bonus: Multiple multivariate testing with a data-adaptivetest statistic[END_REF] provides another asymptotic power analysis showing that the symmetric difference between the rejection set for the data-driven score function and its oracle version has a size o P (m). Unlike Theorem 11 and Corollary 12, it does not have implications when the oracle procedure can only reject o P (m) hypotheses, as in the case where m 1 /m = o(1).

Experiments

In this section, we examine the performance of AdaDetect on both simulated data (Section 2.6.1) and real data (Section 2.6.2). We apply AdaDetect with various score functions, including the oracle score defined in (2.20) (AdaDetect oracle), the density estimationbased score (AdaDetect parametric and AdaDetect KDE), the PU classification-based score (AdaDetect SVM, AdaDetect RF, AdaDetect NN, and AdaDetect NN cv). We also include the SC procedures proposed by [START_REF] Sun | Oracle and adaptive compound decision rules for false discovery rate control[END_REF] (SC parametric and SC KDE) and the conformal novelty detection procedures proposed by [START_REF] Bates | Testing for outliers with conformal p-values[END_REF] (CAD SVM and CAD IForest). Note that both CAD SVM and CAD IForest are instances of AdaDetect with oneclass classification-based scores. See Section A.6.1 for a full description of these methods. For all our experiments, we use the Python package scikit-learn for Expectation Maximization (EM) algorithm, kernel density estimation, random forests, and neural networks, with the default hyper-parameters from the packages unless otherwise specified.

Note that these procedures all provably control the FDR under Assumption 4 (see Corollary 5) except for SC parametric and SC KDE, which only control the FDR asymptotically with a consistent estimator of the density ratio [START_REF] Sun | Oracle and adaptive compound decision rules for false discovery rate control[END_REF].

Simulated data

In all experiments considered this section, we generate measurements under Assumption 4 with all novelties generated from the same distribution P 1 . Unless otherwise specified, we set n = 3000, m = 1000, π 0 = m 0 /m = 0.9, and calculate FDR and TDR based on 100 Monte-Carlo simulations. Following Remark 5, we set k = 2m and = m for all AdaDetect methods.

Gaussian setting We start with a setting where P 0 = N (0, I d ) and P 1 = N (µ, I d ), where µ ∈ R d is a sparse vector with the first 5 coordinates equal to 2 log(d) and the remaining ones equal to 0. The results are presented in Figure 2.6 with the dimension d varying. First, we note that neither SC parametric nor SC KDE control the FDR, even if the model is correctly specified for the former, and the FDR inflation is substantial in high dimensions. By contrast, as implied by our theory, all other procedures control the FDR at level π 0 α. Next, we compare the TDR of procedures which control the FDR. In low dimensions (d ≤ 100), AdaDetect parametric has the highest power that is close to AdaDetect oracle, which is expected since the model is correctly specified and parametric estimation is accurate when the dimension is low. In high dimensions (d = 500), AdaDetect parametric becomes much more noisy while AdaDetect RF maintains a stable and high power.

Non-gaussian setting We now consider a non-gaussian setting, where the first two coordinates of nulls and novelties are independent draws from Beta(5, 5) and Beta(1, 3), respectively, and the other coordinates are independent draws from Beta(1, 1) for both nulls and novelties. Note that AdaDetect parametric is now based on a misspecified parametric model; see Section A.6.1 for detail. Figure 2.7 presents the results with the dimension d varying. AdaDetect parametric is now clearly dominated by AdaDetect RF, especially in high dimensions. This shows that machine learning-based classification methods are more robust to model misspecification when combined with AdaDetect.

Semi-synthetic data

In this section we study the performance of AdaDetect on real datasets. Each dataset contains measurements that are labeled as either typical or novelty. We summarize the datasets in Table 2.2. The first four datasets are also used in Section 5.3 of [START_REF] Bates | Testing for outliers with conformal p-values[END_REF]; see the descriptions and references therein. The Musk data contains a set of molecules that are identified as either musk (nulls) or non-musk (novelties). The MNIST data (LeCun and Cortes, 2010) contains a set of labeled images of size 28×28 of handwritten digits from '0' to '0'. We restrict the analysis to '4' (nulls) and '9' (novelties). The categorical features are converted via one-hot encoding. We construct test samples and null training samples by subsampling the dataset with n = 5000, m = 1000, and a fixed null proportion π 0 = m 0 /m = 0.9. For AdaDetect, we choose k = 4m, = m, s = 3m for cross-validation, and the target level α = 0.1. For the MNIST dataset, we consider two more methods based on a convolutional neural network (CNN), with two convolution layers and one fully connected layer. The first method CAD SVDD CNN is the conformal novelty detection procedure of [START_REF] Bates | Testing for outliers with conformal p-values[END_REF] with a special one-class classifier, given by the Support Vector Data Description (SVDD) method introduced in Ruff et al. ( 2018) used with a family of functions given by the CNN. The second The FDR and TDR for the methods are evaluated by using 100 runs and the results are reported in Table 2.3. As expected, all methods control the FDR. Compared to [START_REF] Bates | Testing for outliers with conformal p-values[END_REF], AdaDetect with classification-based scores substantially boosts the power because it incorporates the novelties in learning the score function. Overall, the best performing method is AdaDetect RF, with AdaDetect NN (possibly cross-validated) coming in second. AdaDetect CNN is particularly efficient on the classical MNIST dataset, which is unsurprising because CNN-type classifiers are appropriate for such an image dataset [START_REF] Goodfellow | Deep Learning[END_REF]. We however note that the one-class classifier based upon CNN behaves poorly, which shows that two-class classification is the key for the power boost instead of the better representation given by CNN. In addition, further comparisons are made in Appendix A.6.3 for other values of n, m, m 1 in more challenging regimes and the conclusions are qualitatively similar.

To conclude, if a classification method is expected to distinguish between typical and anomalous measurements, combining it with AdaDetect is expected to achieve high power without threatening FDR control.

An astronomy application

In this section, we apply AdaDetect to detect variable stars using the Sloan Digital Sky Survey [START_REF] Ivezić | The selection of RR lyrae stars using single-epoch data[END_REF], a large labeled dataset with 92, 658 nonvariable (null) and 483 variable (novelties) stars. Each star is encoded as a 4-dimensional vector containing the star's flux in specific bands (colors) of the visible light. This dataset is particularly appealing for demonstrating our method. First, the two classes occupy similar regions in the considered color space, with slight overlap leading to complex decision boundaries. Second, the large number of nonvariable stars allows us to vary the size of the NTS in a large range in the Monte-Carlo simulations. Third, this dataset has been extensively studied by astronomers and has become a standard for benchmarking classification methods (see Chapter 9 of [START_REF] Ivezić | Statistics, data mining, and machine learning in astronomy: A practical python guide for the analysis of survey data[END_REF]. Lastly, we can compute the achieved FDR and TDR for any novelty detection method based on the labeled data.

For each experiment, we sample n nonvariable stars as the NTS along with m 1 variable stars and m 0 = m -m 1 additional nonvariable stars as the test sample. We set m = 100 and vary n and m 1 across experiments. We apply AdaDetect with Kernel Density Estimation (KDE), Random Forest (RF), and Neural Networks (NN). For comparison, we also include two Empirical BH procedures [START_REF] Mary | Semi-supervised multiple testing[END_REF], which are special cases of AdaDetect with non-adaptive scores as the squared 2 norm of the demeaned vectors, where the mean is calculated on all nulls outside of the NTS ("Emp BH full") and on the NTS ("Emp BH current"), respectively. The "Emp BH current" method is closer to the current practice, though it is not granted to control the FDR since the score function does not satisfy (2.8). In addition, we apply the Empirical BH procedure without demeaning the data as well as the SC procedure with estimated local FDR. Neither detects any novelties so we will not report them.

Figure 2.8 presents the results for m 1 = 50 and varying n with target FDR level α = 0.05. The FDR and TDR are calculated based on 100 Monte-Carlo simulations. To aid visualization, we represents the uncertainty by a shaded area whose width is equal to the standard error of estimated FDR/TDR divided by 10. This can be viewed as an approximation of the standard error with 10, 000 Monte-Carlo simulations. In this setting, π 0 = 0.5 and thus all methods provably control the FDR at level π 0 α = 0.025 (except "Emp BH current"). This is confirmed in the left panel of Figure 2.8. From the right panel, we observe that AdaDetect with RF achieves the highest power, substantially improving upon AdaDetect with non-adaptive scores (Emp BH). This demonstrates the advantages of utilizing classification-based score functions. In Section A.7, we present results in additional experimental settings that exhibit qualitative similarities to Figure 2.8. 

Conclusion and discussion

In this work, we propose AdaDetect as a generic framework that can wrap around any classification methods and provably control the FDR in finite samples when the null measurements are exchangeable conditional on the novelties. It generalizes and often substantially outperforms previous methods that only work with one-class classification methods which are not adaptive to the novelty distribution. We also develop the π 0 -adaptive AdaDetect that further improves the power in the presence of many novelties as well as the cross-validated AdaDetect that allows model selection. The theoretical analysis is based on a novel FDR expression that unifies and generalizes the existing results. In addition, we provide power analysis showing that (1) the optimal score function is given by any monotonic transformation of the ratio between the average density of novelties and the null density and ( 2) the estimated score function can be asymptotically optimal in terms of power. We demonstrate the versatility of AdaDetect on a variety of tasks.

Limitations of AdaDetect

Here we discuss several limitations of our method and potential solutions.

• Heterogeneous null distributions. A key assumption for the FDR control is that the null distribution P 0 is the same across the NTS and the test sample. This excludes the case where the null can be generated from a bag of distributions {P 0,k , 1 ≤ k ≤ K}.

Under heterogeneity, the empirical p-values can be invalid even marginally since the nulls are no longer exchangeable. One possible way to reconcile this issue is to assume the nulls are generated from a mixture distribution K k=1 π k P 0,k , thereby retaining the exchangeability. We leave this for future research.

• Directional null hypotheses. Throughout the paper we focus on testing whether a new observation has the same distribution as the typical measurements. In some applications, it may be more appropriate to test directional nulls, which are often characterized by the sign of a parameter for parametric models. However, it is unclear how this can be done in nonparametric cases. One possibility is to consider the nulls P i P 0 where denotes the stochastic dominance, meaning that there exists a random vector (A, B) such that A ∼ P 0 , B ∼ P i and A ≥ B in an entrywise fashion. By restricting the score function to be entrywise increasing, we may still apply AdaDetect and retain the FDR control.

• Randomness of data splitting. AdaDetect is intrinsically randomized due to the data splitting step. Without carefully documenting random seeds, the researcher can "hack" the results by reporting the best results across different splits. A subsequent work by [START_REF] Bashari | Derandomized novelty detection with fdr control via conformal e-values[END_REF] proposes an elegant solution to derandomize AdaDetect by treating the test statistics as e-values and aggregating over all data splits. They show that the e-AdaDetect successfully stabilizes the output of AdaDetect.

• Semi-supervised data. In some applications, labeled novelties are available in the training sample. For example, the researcher may have historical data on fraud transactions recorded in the system and can train a two-class classifier to distinguish between the nulls and labeled novelties. When future novelties are similar to labeled novelties, it should yield an efficient score function. This has been studied by [START_REF] Liang | Integrative conformal p-values for powerful out-ofdistribution testing with labeled outliers[END_REF].

Combining their approach with ours in a nonstationary setting where future novelties behave differently from the past ones is a promising avenue for future research.

• Sparse novelties: when the novelties are too sparse, two-class classifiers may not be the best at discriminating between nominals and novelties and can be out-performed by simpler one-class classifiers; see [START_REF] Liang | Integrative conformal p-values for powerful out-ofdistribution testing with labeled outliers[END_REF]. One possible solution is to apply AdaDetect cv by including both one-class and two-class classification methods and let data decide which score function is more efficient. We leave the full examination of this approach for future research.

Other future works

First, we could provide a more detailed power analysis by quantifying the bias term R 1 (g G ) -R 1 (g ) for a broader class of algorithms. For example, we can consider G = G N,L,s , the set of realizations of NN with width N , depth L and sparsity s (Bos and Schmidt-Hieber, 2021). Such a quantitative analysis could provide guidelines for choosing hyper-parameters or at least a default range in the cross-validated AdaDetect procedure.

Next, a core assumption of the FDR controlling theory is exchangeability of the null scores conditional on the novelties. This can be satisfied beyond our setting, e.g., the knockoff setting discussed in Remark 6. This suggests a possible path to further improve the knockoffs method.

Lastly, the BONuS algorithm in [START_REF] Yang | Bonus: Multiple multivariate testing with a data-adaptivetest statistic[END_REF] can iteratively remove null observations and update the score function correspondingly using a masking technique introduced by [START_REF] Lei | Adapt: an interactive procedure for multiple testing with side information[END_REF]. While this increases the computation cost, it gradually reduces the attenuation caused by the null sample in the mixed sample and hence improves the accuracy of the estimated score function. It would be interesting to apply their idea in AdaDetect.

Chapter 3

False membership rate control in mixture models

The clustering task consists in partitioning elements of a sample into homogeneous groups. Most datasets contain individuals that are ambiguous and intrinsically difficult to attribute to one or another cluster. However, in practical applications, misclassifying individuals is potentially disastrous and should be avoided. To keep the misclassification rate small, one can decide to classify only a part of the sample. In the supervised setting, this approach is well known and referred to as classification with an abstention option. In this paper the approach is revisited in an unsupervised mixture-model framework and the purpose is to develop a method that comes with the guarantee that the false membership rate (FMR) does not exceed a predefined nominal level α. A plug-in procedure is proposed, for which a theoretical analysis is provided, by quantifying the FMR deviation with respect to the target level α with explicit remainder terms. Bootstrap versions of the procedure are shown to improve the performance in numerical experiments. 

Introduction

Background

Clustering is a standard statistical task that aims at grouping together individuals with similar features. However, it is common that data sets include ambiguous individuals that are inherently difficult to classify, which makes the clustering result potentially unreliable. To illustrate this point, consider a Gaussian mixture model with overlapping mixture components. Then it is difficult, or even impossible, to assign the correct cluster label to data points that fall in the overlap of those clusters, see Figure 3.1. Hence, when the overlap is large (Figure 3.1 panel (b)), the misclassification rate of a standard clustering method is inevitably elevated. This issue is critical in applications where misclassifications come with a high cost for the user and should be avoided. This is for example the case for medical diagnosis, where an error can have severe consequences on the individual's health. When there is too much uncertainty, a solution is to avoid classification for such individuals, and to adopt a wiser "abstention decision", that leaves the door open for further medical exams.

In a supervised setting, classification with a reject (or abstention) option is a long-standing statistical paradigm, that can be traced back to [START_REF] Chow | On optimum recognition error and reject tradeoff[END_REF], with more recent works including [START_REF] Herbei | Classification with reject option[END_REF]; [START_REF] Bartlett | Classification with a reject option using a hinge loss[END_REF]; [START_REF] Wegkamp | Support vector machines with a reject option[END_REF], among others. In this line of research, rejection is accounted for by adding a term to the risk that penalizes any rejection (i.e., non classification).

Recently, still in the supervised setting, Geifman and El-Yaniv (2017) and Angelopoulos et al. (2021) have considered the problem of having a prescribed control of the classification error among the classified items (those that are not rejected). In these works the proposed method consists of thresholding the estimated class probabilities estimated by a pre-trained classifier, in a data-driven manner. Both of these works provide the guarantee that the resulting selective classifier has its true risk bounded by a prescribed level with high probability.

Aim and approach

The goal of the present work is to propose a labelling guarantee on the classified items in the more challenging unsupervised setting, where no training set is available and data are assumed to be generated from a finite mixture model. This is achieved by the possibility to refuse to cluster ambiguous individuals and by using the false membership rate (FMR), which is defined as the average proportion of misclassifications among the classified objects. Our procedures are devised to keep the FMR below some nominal level α, while classifying a maximum number of items.

It is important to understand the role of the nominal level α in our approach. It is chosen by the user and depends on their acceptance or tolerance for misclassified objects. Since the FMR is the misclassification risk that is allowed on the classified objects, the final interpretation of an FMR control at level α is clear: if, for instance, α is set to 5% and 100 items are finally chosen to be classified by the method, then the number of misclassified items is expected to be at most 5. This high interpretability is similar to the one of the false discovery rate (FDR) in multiple testing, which has known a great success in applications since its introduction by [START_REF] Benjamini | Controlling the false discovery rate: a practical and powerful approach to multiple testing[END_REF]. This is a clear advantage of our approach for practical use compared to the methods with a rejection option that are based on a penalized risk.

In our framework, a procedure is composed of two intertwined decisions:

• a clustering method inferring the labels;

• a selection rule deciding which items to label.

Importantly, the selection rule is only applied after a clustering method is fitted on the (entire) sample. In other words, the procedure consists of two subsequent steps: a clustering step, after which cluster labels are kept fixed, and a selection step, that chooses which items to classify -in which case, the label from the previous clustering step is assigned. For the items that are not selected, we discard the cluster label, that is, we effectively abstain to make a classification decision for those items. In particular, we emphasize that the clustering method is not fitted again after selection (which would lead to bias in general).

The quality of the selection heavily relies on the appropriate quantification of the uncertainty of the cluster labels. For this, our approach is model-based, and can be viewed as a method that thresholds the posterior probabilities of the cluster labels with a data-driven choice of the threshold. The performance of the method will depend on the quality of the estimates of these posterior probabilities in the mixture model.

The adaptive character of our method is illustrated in Figure 3.1: when the clusters are well separated (panel (a)), the new procedure only discards few items and provides a clustering close to the correct one. However, when clusters are overlapping (panel (b)), to avoid a high misclassification error, the procedure discards most of the items and only provides few labels, for which the uncertainty is low. In both cases, the proportion of misclassified items among the selected ones is small and in particular close to the target level α (here 10%). Hence, by adapting the amount of labeled or discarded items, our method always delivers a reliable clustering result, inspite of the varying intrinsic difficulty of the clustering task.

Presentation of the results

Let us now describe in more details the main contributions of the paper.

• We introduce three new data-driven procedures that perform simultaneously selection and clustering: the plug-in procedure (illustrated in Figure 3.1) and two bootstrap procedures (parametric and non-parametric), see Section 3.3.2.

• We provide a theoretical analysis of the plug-in procedure, quantifying the FMR deviation with respect to the target level α with explicit remainder terms, which become small when the sample size grows. In addition, this procedure is shown to satisfy the following optimality property: any other procedure that provides an FMR control necessarily classifies as many or less items than the plug-in procedure, up to a small remainder term (Theorem 17).

• Numerical experiments1 establish that the bootstrap procedures improve the plug-in procedure, and thus are more reliable for practical use, where the sample size may be moderate, see Section 3.5.1. In particular, the FMR control is shown to be valid in various scenarios, including those where the overall misclassification risk (with no abstention option) is too large.

• Our analysis also shows that a fixed threshold procedure that only labels items with a maximum posterior probability larger than 1 -α is generally suboptimal for an FMR control at level α, see Section 3.5.1. To this extent, our procedures can be seen as refined algorithms that classify more individuals while maintaining the FMR control.

• The practical impact of our approach is demonstrated on a real data set, see Section 3.5.2.

Relation to previous work

Other clustering guarantees in unsupervised learning While we provide a specific FMR control guarantee on the clustering, other criteria, not particularly linked to a rejection option, have been previously proposed in an unsupervised setting. Previous works provided essentially two types of guarantees: while early works focused on the probability of exact recovery [START_REF] Arora | Learning mixtures of separated nonspherical Gaussians[END_REF][START_REF] Vempala | A spectral algorithm for learning mixture models[END_REF][START_REF] Abbe | Community detection and stochastic block models: Recent developments[END_REF], recent contributions rather considered minimizing the misclassification risk [START_REF] Lei | Consistency of spectral clustering in stochastic block models[END_REF][START_REF] Lu | Statistical and computational guarantees of lloyd's algorithm and its variants[END_REF][START_REF] Verzelen | Partial recovery bounds for clustering with the relaxed K-means[END_REF][START_REF] Chretien | The Guedon-Vershynin Semi-Definite Programming approach to low dimensional embedding for unsupervised clustering[END_REF]. Other criteria include the probability to make a different decision than the Bayes rule [START_REF] Azizyan | Minimax theory for high-dimensional gaussian mixtures with sparse mean separation[END_REF], or the fact that all clusters are mostly homogeneous with high probability [START_REF] Najafi | Reliable clustering of Bernoulli mixture models[END_REF]. All these works provide a guarantee only if the setting is favorable enough. By contrast, providing a rejection option is the key to obtain a guarantee in any setting (in the worst situation, the procedure will not classify any item).

Comparison to Denis and Hebiri (2020) and [START_REF] Mary-Huard | Error rate control for classification rules in multiclass mixture models[END_REF] We describe here two recent studies that are related to ours, because they also use a FMR-like criterion. The first one is the work of [START_REF] Denis | Consistency of plug-in confidence sets for classification in semi-supervised learning[END_REF], which also relies on a thresholding of the (estimated) posterior probabilities. However, the control is different, because it does not provide an FMR control, but rather a type-II error control concerning the probability of classifying an item. Also, the proposed procedure therein requires an additional labeled sample (semi-supervised setting), which is not needed in our context. The work of [START_REF] Mary-Huard | Error rate control for classification rules in multiclass mixture models[END_REF] also proposes a control of the FMR. However, the analysis therein is solely based on the case where the model parameters are known (thus corresponding to the oracle case developed in Section 3.3.1 here). Compared to [START_REF] Mary-Huard | Error rate control for classification rules in multiclass mixture models[END_REF], the present work provides number of new contributions, which are all given in Section 3.1.3. Let us also emphasize that we handle the label switching problem in the FMR, which seems to be overlooked in [START_REF] Mary-Huard | Error rate control for classification rules in multiclass mixture models[END_REF].

Relation to the false discovery rate The FMR is closely related to the false discovery rate (FDR) in multiple testing, defined as the average proportion of errors among the discoveries. In fact, we can roughly view the problem of designing an abstention rule as testing, for each item i, whether the clustering rule correctly classifies item i or not. With this analogy, our selection rule is based on quantities similar to the local FDR values [START_REF] Efron | Empirical Bayes analysis of a microarray experiment[END_REF], a key quantity to build optimal FDR controlling procedures in multiple testing mixture models, see, e.g., [START_REF] Storey | The positive false discovery rate: a bayesian interpretation and the q-value[END_REF]; [START_REF] Sun | Oracle and adaptive compound decision rules for false discovery rate control[END_REF]; [START_REF] Cai | Covariate-assisted ranking and screening for largescale two-sample inference[END_REF]; [START_REF] Rebafka | Powerful multiple testing of paired null hypotheses using a latent graph model[END_REF]. In particular, our final selection procedure shares similarities with the procedure introduced in [START_REF] Sun | Oracle and adaptive compound decision rules for false discovery rate control[END_REF], also named cumulative -value procedure [START_REF] Abraham | Empirical bayes cumulative -value multiple testing procedure for sparse sequences[END_REF]. In addition, our theoretical analysis is related to the work of [START_REF] Rebafka | Powerful multiple testing of paired null hypotheses using a latent graph model[END_REF], although the nature of the algorithm developed therein is different from here: they use the q-value procedure of [START_REF] Storey | The positive false discovery rate: a bayesian interpretation and the q-value[END_REF], while our method rather relies on the cumulative -value procedure.

Organization of the paper

The paper is organized as follows: Section 3.2 introduces the model and relevant notation, namely the FMR criterion, with a particular care for the label switching problem. Section 3.3 presents the new methods: the oracle, plug-in and the bootstrap approaches. Our main theoretical results are provided in Section 3.4, after introducing appropriate assumptions. Section 3.5 presents numerical experiments and an application to a real data set, while a conclusion is given in Section 3.6. Proofs of the results and technical details are deferred to appendices.

Setting

This section presents the notation, model, procedures and criteria that will be used throughout the manuscript.

Model

Let X = (X 1 , . . . , X n ) be an observed random sample of size n. Each X i is an i.i.d. copy of a d-dimensional real random vector, which is assumed to follow the standard mixture model:

Z ∼ M(π 1 , . . . , π Q ), X|Z = q ∼ F φq , 1 ≤ q ≤ Q,
where M(π 1 , . . . , π Q ) denotes the multinomial distribution of parameter π (equivalently, π q = P(Z = q) for each q). The model parameters are given by • the probability distribution π on {1, . . . , Q} that is assumed to satisfy π q > 0 for all q.

Hence, π q corresponds to the probability of being in class q;

• the parameter φ = (φ 1 , . . . , φ Q ) ∈ U Q , where {F u , u ∈ U} is a collection of distributions on R d . Every distribution F u is assumed to have a density with respect to the Lebesgue measure on R d , denoted by f u . Moreover, we assume that the φ q 's are all distinct.

The number of classes Q is assumed to be known and fixed throughout the manuscript (see Section 3.6 for a discussion). Thus, the overall parameter is θ = (π, φ), the parameter set is denoted by Θ, and the distribution of (Z, X) is denoted by P θ . The distribution family {P θ , θ ∈ Θ} is the considered statistical model. We also assume that Θ is an open subset of R K for some K ≥ 1 with the corresponding topology.

In this mixture model, the latent vector Z = (Z 1 , . . . , Z n ) encodes a partition of the n observations into Q classes given by {1 ≤ i ≤ n : Z i = q}, 1 ≤ q ≤ Q. We refer to this model-based, random partition as the true latent clustering in the sequel.

In what follows, the "true" parameter that generates (Z, X) is assumed to be fixed and is denoted by θ * ∈ Θ.

Procedure and criteria

Our approach starts with a given clustering rule, that aims at recovering the true latent clustering for all observed items. In general, a clustering rule is defined as a (measurable) function of the observation X returning a vector of labels Z = ( Ẑi ) 1≤i≤n ∈ {1, . . . , Q} n for which the label q is assigned to individual i if and only if Ẑi = q. Note that in the unsupervised setting only the partition of the observations is of interest, not the labels themselves. Switching the labels of Z does not change the corresponding partition.

The classification error of Z, with respect to specific labels, is given by ε

( Z, Z) = n i=1 1{Z i = Ẑi }. A label-switching invariant error is the clustering risk of Z defined by R( Z) = E θ * min σ∈[Q] E θ * n -1 ε(σ( Z), Z) | X , (3.1) 
where [Q] denotes the set of all permutations on {1, . . . , Q}. The minimum over all permutations σ is the way to handle the aforementioned label-switching problem.

Remark 12. The position of the minimum w.r.t. σ in the risk (3.1) matters: the permutation σ is allowed to depend on X but not on Z. Hence, this risk has to be understood as being computed up to a data-dependent label switching. This definition coincides with the usual definition of the misclassification risk in the situation where the true clustering is deterministic, see [START_REF] Lei | Consistency of spectral clustering in stochastic block models[END_REF]; [START_REF] Lu | Statistical and computational guarantees of lloyd's algorithm and its variants[END_REF]. Hence, it can be seen as a natural extension of the latter to a mixture model where the true clustering is random.

Classically, we aim to find a clustering rule Z such that the clustering risk is "small". However, as mentioned above, whether this is possible or not depends on the intrinsic difficulty of the clustering problem and thus of the true parameter θ * (see Figure 3.1). Therefore, the idea is to provide a selection rule, that is, a (measurable) function of the observation X returning a subset of indices S ⊂ {1, . . . , n}, such that the clustering risk with restriction to S is small. Throughout the paper, a procedure refers to a couple C = ( Z, S), where Z is a clustering rule and S is a selection rule.

Definition 4 (False membership rate). The false membership rate (FMR) of a procedure C = ( Z, S) is given by

FMR θ * (C) = E θ * min σ∈[Q] E θ * ε S (σ( Z), Z) max(|S|, 1) X , (3.2) 
where ε S ( Z, Z) = i∈S 1{Z i = Ẑi } denotes the misclassification error restricted to subset S.

In this work, the aim is to find a procedure C such that the false membership rate is controlled at a nominal level α, that is, FMR θ * (C) ≤ α. Obviously, choosing S empty implies ε S (σ( Z), Z) = 0 a.s. for any permutation σ and thus satisfies this control. Hence, while maintaining the control FMR θ * (C) ≤ α, we aim to classify as much individuals as possible, that is, to make E θ * |S| as large as possible.

The definition of the FMR (3.2) involves an expectation of a ratio, which is more difficult to handle than a ratio of expectations. Hence, the following simpler alternative criterion will also be useful in our analysis.

Definition 5 (Marginal false membership rate). The marginal false membership rate (mFMR) of a procedure C = ( Z, S) is given by

mFMR θ * (C) = E θ * min σ∈[Q] E θ * ε S (σ( Z), Z) X E θ * (|S|) , (3.3)
with the convention 0/0 = 0.

Note that the mFMR is similar to the criterion introduced in Denis and Hebiri (2020) in the supervised setting.

Notation

We will extensively use the following notation: for all q ∈ {1, . . . , Q} and θ = (π, φ) ∈ Θ, we let

q (X, θ) = P θ (Z = q|X) = π q f φq (X) Q =1 π f φ (X) ; (3.4) T (X, θ) = 1 -max q∈{1,...,Q} q (X, θ) ∈ [0, 1 -1/Q]. (3.5) 
We can see that q (X, θ) is the posterior probability of belonging to class q given the measurement X under the distribution P θ . The quantity T (X, θ) is a measure of the risk when classifying X: it is close to 0 when there exists a class q such that q (X, θ) is close to 1, that is, when X can be classified with large confidence.

Methods

In this section, we introduce new methods for controlling the FMR. We start by identifying an oracle method, that uses the true value of the parameter θ * . Substituting the unknown parameter θ * by an estimator in that oracle provides our first method, called the plug-in procedure. We then define a refined version of the plug-in procedure, that accounts for the variability of the estimator and is based on a bootstrap approach.

Oracle procedures

MAP clustering Here, we proceed as if an oracle had given us the true value of θ * and we introduce an oracle procedure C * = ( Z * , S * ) based on this value. As the following lemma shows, the best clustering rule is well-known and given by the Bayes clustering Z * = ( Z * 1 , . . . , Z * n ), which can be written as

Z * i ∈ argmax q∈{1,...,Q} q (X i , θ * ), i ∈ {1, . . . , n}, (3.6) 
where q (•) is the posterior probability given by (3.4).

Algorithm 3 Oracle procedure Input: Parameter θ * , sample (X 1 , . . . , X n ), level α.

Compute the posterior probabilities

P θ * (Z i = q|X i ), 1 ≤ i ≤ n, 1 ≤ q ≤ Q; 2.
Compute the Bayes clustering Z * i , 1 ≤ i ≤ n, according to (3.6); 3. Compute the probabilities T * i , 1 ≤ i ≤ n, according to (3.7); 4. Order these probabilities in increasing order T *

(1) ≤ • • • ≤ T * (n) ; 5. Choose k * the maximum of k ∈ {0, . . . , n} such that max(k, 1) -1 k j=1 T * (j) (X) ≤ α; 6. Select S * α , the index corresponding to the k * smallest elements among the T * i 's. Output: Oracle procedure C α = ( Z * , S * α ).

Lemma 13. We have

min Z R( Z) = R( Z * ) = n -1 n i=1 E θ * (T * i ),
for the Bayes clustering Z * defined by (3.6) and for

T * i = T (X i , θ * ) = P θ * (Z i = Ẑ * i |X i ), i ∈ {1, . . . , n}, (3.7) 
where T (•) is given by (3.5).

In words, Lemma 13 states that the oracle statistics T * i correspond to the posterior misclassification probabilities of the Bayes clustering. To decrease the overall misclassification risk, it is natural to avoid classification of points with a high value of the test statistic T * i .

Thresholding selection rules In this section, we introduce the selection rule, that decides which items are to be classified. From the above paragraph, it is natural to consider a thresholding-based selection rule of the form S = {i ∈ {1, . . . , n} : T * i ≤ t}, for some threshold t to be chosen suitably. The following result gives insights for the choice of such a threshold t.

Lemma 14. For a procedure C = ( Z * , S) with Bayes clustering and an arbitrary selection S,

FMR θ * (C) = E θ * i∈S T * i max(|S|, 1) . (3.8)
As a consequence, a first way to build an (oracle) selection is to set

S = {i ∈ {1, . . . , n} : T * i ≤ α}.
Since an average of numbers smaller than α is also smaller than α, the corresponding procedure controls the FMR at level α. This procedure is referred to as the procedure with fixed threshold in the sequel. It corresponds to the following naive approach: to get a clustering with a risk of α, we only keep the items that are in their corresponding class with a posterior probability of at least 1 -α. By contrast, the selection rule considered here is rather

S = {i ∈ {1, . . . , n} : T * i ≤ t(α)},
for a threshold t(α) ≥ α maximizing |S| under the constraint i∈S T * i ≤ α|S|. It uniformly improves the procedure with fixed threshold and will in general lead to a (much) broader selection. This gives rise to the oracle procedure, that can be easily implemented by ordering the T * i 's, see Algorithm 3. 

α = C PI α( k) .

Empirical procedures

Plug-in procedure The oracle procedure cannot be used in practice since θ * is generally unknown. A natural idea then is to approach θ * by an estimator θ and to plug this estimate into the oracle procedure. The resulting procedure, denoted C PI = ( Z PI , S PI α ), is called the plug-in procedure and is implemented in Algorithm 4.

In Section 3.4, we establish that the plug-in procedure has suitable properties: when n tends to infinity, provided that the chosen estimator θ behaves well and under mild regularity assumptions on the model, the FMR of the plug-in procedure is close to the level α, while it is nearly optimal in terms of average selection number.

Bootstrap procedure Despite the favorable theoretical properties shown in Section 3.4, the plug-in procedure achieves an FMR that can exceed α in some situations, as we will see in our numerical experiments (Section 3.5). This is in particular the case when the estimator θ is too rough. Indeed, the uncertainty of θ near θ * is ignored by the plug-in procedure.

To take into account this effect, we propose to use a bootstrap approach. It is based on the following result.

Lemma 15. For a given level α ∈ (0, 1), the FMR of the plug-in procedure C PI α is given by

FMR( C PI α ) = E X∼P θ *   min σ∈[Q] n i=1 {1 -σ( ẐPI i (X)) (X i , θ * )} 1{i ∈ ŜPI α (X)} max(| ŜPI α (X)|, 1)   . (3.9)
The general idea is as follows: since FMR( C PI α ) can exceed α, we choose α as large as possible such that FMR α ≤ α, for which FMR α is a bootstrap approximation of FMR( C PI α ) based on (3.9).

The bootstrap approximation reads as follows: in the RHS of (3.9), we replace the true parameter θ * by θ and X ∼ P θ * by X ∼ P , where P is an empirical substitute of P θ * . This empirical distribution P is P θ for the parametric bootstrap and the uniform distribution over the X i 's for the non-parametric bootstrap. This yields the bootstrap approximation of FMR( C PI α ) given by

FMR α = E X ∼ P   min σ∈[Q] n i=1 {1 -σ( ẐPI i (X )) (X i , θ(X))} 1{i ∈ ŜPI α (X )} max(| ŜPI α (X )|, 1) X   .
Classically, the latter is itself approximated by a Monte-Carlo scheme:

FMR B α = 1 B B b=1 min σ∈[Q] n i=1 {1 -σ( ẐPI i (X b )) (X b i , θ(X))} 1{i ∈ ŜPI α (X b )} max(| ŜPI α (X b )|, 1) , (3.10)
with X 1 , . . . , X B i.i.d. ∼ P corresponding to the bootstrap samples of X. Let (α(k)) 1≤k≤K ∈ (0, 1) K be a grid of increasing nominal levels (possibly with restriction to values slightly below the target level α). Then, the bootstrap procedure at level α is defined as

C boot α = C PI α( k) , where k = max k ∈ {1, . . . , K} : FMR B α(k) ≤ α . (3.11)
This procedure is implemented in Algorithm 5.

Remark 13 (Parametric versus non parametric bootstrap). The usual difference between parametric and non parametric bootstrap also holds in our context: the parametric bootstrap is fully based on P θ, while the non parametric bootstrap builds an artificial sample (with replacement) from the original sample, which does not come from a P θ -type distribution. This gives rise to different behaviors in practice: when θ is too optimistic (which will be typically the case here when the estimation error is large), the correction brought by the parametric bootstrap (based on P θ) is often weaker than that of the non parametric one. By contrast, when θ is close to the true parameter, the parametric bootstrap approximation is more faithful because it uses the model, see Section 3.5.

Theoretical guarantees for the plug-in procedure

In this section, we derive theoretical properties for the plug-in procedure: we show that its FMR and mFMR are close to α, while its expected selection number is close to be optimal under some conditions.

Additional notation and assumptions

We make use of an optimality theory for mFMR control, that will be developed in detail in Section B.1.2. This approach extensively relies on the following quantities (recall the definition of T (X, θ) in (3.5)):

mFMR * t = E θ * (T (X, θ * ) | T (X, θ * ) < t) ; (3.12) t * (α) = sup {t ∈ [0, 1] : mFMR * t ≤ α} (3.13) α c = inf{mFMR * t : t ∈ (0, 1], mFMR * t > 0}; (3.14) ᾱ = mFMR * 1 . (3.15)
In words, mFMR * t is the mFMR of an oracle procedure that selects the T * i smaller than some threshold t (Lemma 36). Then, t * (α) is the optimal threshold such that this procedure has an mFMR controlled at level α. Next, α c and ᾱ are the lower and upper bounds for the nominal level α, respectively, for which the optimality theory can be applied. Now, we introduce our main assumption, which will be ubiquitous in our analysis.

Assumption 6. For all θ ∈ Θ and q ∈ {1, . . . , Q}, under P θ * , the r.v. q (X, θ) given by (3.4) is continuous. In addition, the function t → P θ * (T (X, θ) < t) is increasing on (α c , ᾱ), where T (X, θ) is given by (3.5).

Note that Assumption 6 implies the continuity of the r.v. T (X, θ). Indeed, P(T (X, θ) = t) ≤ Q q=1 P( q (X, θ) = 1 -t). Hence, this assumption implies that t → P θ * (T (X, θ) < t) is both continuous on [0, 1] and increasing on (α c , ᾱ). This is useful in several regards: first, it prohibits ties in the T (X i , θ)'s, 1 ≤ i ≤ m, so that the selection rule (see Algorithm 3) can be truly formulated as a thresholding rule (see Lemma 37). Second, it entails interesting properties for function t → mFMR * t , see Lemma 36 (this in particular ensures that the supremum in (3.13) is a maximum). Also note that the inequality 0 ≤ α c < ᾱ < 1 -1/Q holds under Assumption 6.

The next assumption ensures that the density family {f u , u ∈ U } is smooth, and will be useful to establish consistency results.

Assumption 7. For P θ * -almost all x ∈ R d , u ∈ U → f u (x) is continuous.
Moreover, we can derive convergence rates under the following additional regularity conditions.

Assumption 8. There exist positive constants r = r(θ * ),

C 1 = C 1 (θ * ), C 2 = C 2 (θ * , α), C 3 = C 3 (θ * , α) such that (i) for P θ * -almost all x, u ∈ U → f u (x) is continuously differentiable, and 1≤q≤Q E θ * sup θ∈Θ θ-θ * ≤r ∇ θ q (X, θ) ≤ C 1 ; (ii) for all t, t ∈ [0, 1], | P θ * (T (X, θ * ) < t) -P θ * (T (X, θ * ) < t )| ≤ C 2 |t -t |; (iii) for all β ∈ [(α c + α)/2, (α + ᾱ)/2], |t * (β) -t * (α)| ≤ C 3 |β -α|.
Example 2. In Appendix B.4, it is proved that Assumptions 6, 7 and 8 hold true in the homoscedastic two-component multivariate Gaussian mixture model, see Lemma 46. Next, we consider the following complexity assumption to ensure concentration of the underlying empirical processes. It is given in terms of the VC dimension of specific function classes involving q . In the sequel, the VC dimension of a function set F is defined as the VC dimension of the set family {{x ∈ R d : f (x) ≥ u}, f ∈ F , u ∈ R}, see, e.g., [START_REF] Baraud | Bounding the expectation of the supremum of an empirical process over a (weak) vc-major class[END_REF]. We denote V = VC dimension of { q (., θ), θ ∈ Θ, 1 ≤ q ≤ Q};

(3.16)

V -= VC dimension of {1{ q (., θ)q (., θ) ≥ 0}, θ ∈ Θ, 1 ≤ q, q ≤ Q}.

(3.17)

Assumption 9. The VC dimensions V and V -are finite.

Example 3. In the two-component case Q = 2 where P θ belongs to an exponential family, we have that V , V -k 2 log(k) (see Lemma 41) with k the dimension of the sufficient statistic vector. For instance, k = d + d 2 for the Gaussian family, hence V , V - d 4 log(d) in that case. (For the specific case of the homoscedastic Gaussian family, we have that V , V -d, see Lemma 47).

Let us now discuss conditions on the estimator θ on which the plug-in procedure is based. We start by introducing the following assumption (used in the concentration part of the proof, see Lemma 39).

Assumption 10. The estimator θ is assumed to take its values in a countable subset D of Θ.

This assumption is a minor restriction, because we can always choose D ⊂ Q K (recall Θ ⊂ R K ). Next, we additionally define a quantity measuring the quality of the estimator: for all > 0, η( , θ * ) = P θ * min

σ∈[Q] θσ -θ * 2 ≥ . (3.18)
Example 4. The literature provides several results regarding the estimation of Gaussian mixtures, see e.g. [START_REF] Regev | On learning mixtures of well-separated gaussians[END_REF] for a review. Proposition 44 revisits some of these results, for the estimator derived from EM algorithm [START_REF] Dempster | Maximum likelihood from incomplete data via the em algorithm[END_REF][START_REF] Balakrishnan | Statistical guarantees for the EM algorithm: From population to sample-based analysis[END_REF] and the constrained MLE [START_REF] Ho | On strong identifiability and convergence rates of parameter estimation in finite mixtures[END_REF].

Results

We now state our main results, starting with the consistency of the plug-in procedure.

Theorem 16 (Asymptotic optimality of the plug-in procedure). Let Assumptions 6, 7, and 9 be true. Consider an estimator θ satisfying Assumption 10 and which is consistent in the sense that for all > 0, the probability η( , θ * ) given by (3.18) tends to 0 as n tends to infinity.

Then the corresponding plug-in procedure C PI α (Algorithm 4) satisfies the following: for any α ∈ (α c , ᾱ), we have

lim sup n FMR( C PI α ) ≤ α, lim sup n mFMR( C PI α ) ≤ α,
and for any procedure C = ( Z, S) that controls the mFMR at level α, we have

lim inf n {n -1 E θ * (| S PI α |) -n -1 E θ * (|S|)} ≥ 0.
Next, we derive convergence rates under the additional regularity conditions given by Assumption 8.

Theorem 17 (Optimality of the plug-in procedure with rates). Consider the setting of Theorem 16, where in addition Assumption 8 holds. Recall η( , θ * ) defined by (3.18) and V , V - defined by (3.16), (3.17) respectively. Let s * denote the selection rate of the oracle procedure mentioned in Section 3.4.1, with threshold t * (α) and applied at level (α + α c )/2. With constants A > 0 and B > 0 only depending on Q, C 1 , C 2 , C 3 , V , V -and s * , we have for any sequence n > 0 tending to zero, for n larger than a constant only depending on α and θ * ,

FMR( C PI α ) ≤ α + A √ n + B log n/n + 5/n 2 + η( n , θ * ) (3.19) n -1 E θ * (| S PI α |) -n -1 E θ * (|S|) ≥ -A √ n -B log n/n -5/n 2 -η( n , θ * ), (3.20)
for any procedure C = ( Z, S) that controls the mFMR at level α.

The proof is based on a more general non-asymptotical result, for which the remainder terms are more explicit, see Theorem 31 and Appendix B.1. It employs techniques that share similarities with the work of [START_REF] Rebafka | Powerful multiple testing of paired null hypotheses using a latent graph model[END_REF] developed in a different context. Here, a difficulty is to handle the new statistic T (X i , θ) which is defined as an extremum, see (3.5).

Theorem 17 establishes that, given a model which is regular enough and a consistent estimator, the plug-in procedure controls the FMR and is asymptotically optimal up to remainder terms which are of the order of √ n + log n/n + η( n , θ * ). Here, n dominates the convergence rate of the parameter estimate, and is taken large enough to ensure that η( n , θ * ) vanishes.

For instance, in the multivariate Gaussian mixture model (with further assumptions) and by considering either the EM estimator or the constrained MLE, we have η( n , θ * ) ≤ 1/n for n = C log(n)/n, see Proposition 44. This implies that the remainder terms in (3.19) and (3.20) are at most of order ((log n)/n) 1/4 .

Experiments

In this section, we evaluate the behavior of the new procedures: plug-in (Algorithm 4), parametric bootstrap and non parametric bootstrap (Algorithm 5). For this, we use both synthetic and real data.

Synthetic data set

The performance of our procedures is studied via simulations in different settings with various difficulties. All of them are Gaussian mixture models, with possible restrictions on the parameter space. For parameter estimation, the classical EM algorithm is applied with 100 iterations and 10 starting points chosen with Kmeans++ [START_REF] Arthur | k-means++: The advantages of careful seeding[END_REF]. In the bootstrap procedures B = 1000 bootstrap samples are generated. The performance of all procedures is assessed via the sample FMR and the proportion of classified data points, which is referred to as the selection frequency. For every setting and every set of parameters, depicted results display the mean over 100 simulated datasets. As a baseline, we consider the fixed threshold procedure in which one selects data points that have a maximum posterior group membership probability that exceeds 1 -α. The oracle procedure (Algorithm 3) is also considered in our experiments for comparison.

Known proportions and covariances

In the first setting, the true mixture proportions and covariance matrices are known and used in the EM algorithm. We consider the case

Q = 2, π 1 = π 2 = 1/2 and Σ 1 = Σ 2 = I d with I d the (d × d)-identity matrix. For the mean vectors, we set µ 1 = 0 and µ 2 = ( / √ d, . . . , / √ d).
The quantity corresponds to the mean separation, that is, µ 1 -µ 2 2 = and accounts for the difficulty of the clustering problem.

Figure 3.2 displays the FMR for nominal level α = 0.1, sample size n = 100, dimension d = 2 and varying mean separation ∈ {1, √ 2, 2, 4}. Globally, our procedures all have an FMR close to the target level α (excepted for the very well separated case = 4 for which the FMR is much smaller because a large part of the items can be trivially classified). In addition, the selection rate is always close to the one of the oracle procedure. On the other hand, the baseline procedure is too conservative: its FMR can be well below the nominal level and it selects up to 50% less than the other procedures. This is well expected, because unlike our procedures, the baseline has a fixed threshold and thus does not adapt to the difficulty of the problem.

We also note that the FMR of the plug-in approach is slightly inflated for a weak separation ( = 1). This comes from the parameter estimation, which is difficult in that case. This also illustrates the interest of the bootstrap methods, that allow to recover the correct level in that case, by appropriately correcting the plug-in approach.

Diagonal covariances In this setting, the true parameters are the same as in the previous paragraph, but the true mixture proportions and covariance matrices are unknown. However, to help the estimation, we suppose a diagonal structure for Σ 1 and Σ 2 , which is used in the EM algorithm.

Figure 3.3a displays the FMR and the selection frequency as a function of the separation . The conclusion is qualitatively the same as in the previous case, but with larger FMR values for a weak separation. Overall, it shows that the plug-in procedure is anti-conservative and that the bootstrap corrections are able to recover an FMR and a selection frequency close to the one of the oracle. However, for a weak separation, namely = 1, the parametric bootstrap correction is not enough and the latter procedure still overshoots the nominal level α. Indeed, in our simulations, it appears that P θ is often a distribution that is more favorable than P θ * from a statistical point of view (for instance, with more separated clusters). These conclusions also hold for varying sample size n, see Figure 3.3b.

Figure 3.3c displays the FMR and the selection frequency for varying nominal level α, with = √ 2 and n = 200. The plug-in is still anti-conservative, while the bootstrap procedures have an FMR that is close to α uniformly on the considered α range. Moreover, we note that for all our procedures (including the plug-in), the gap between the FMR and the nominal level is roughly constant with α: this illustrates the adaptive aspect of our procedures. This is in contrast with the baseline procedure, for which this gap highly depends on α, and which may be either anti-conservative or sub-optimal depending on the α value.

Three-component mixture We next increase the number of classes to Q = 3. Figure 3.4 displays the FMR and the selection frequency for varying α, with a mean separation µ 1 -µ 2 2 = µ 1 -µ 3 2 = µ 2 -µ 3 2 = = 3. The mean separation is chosen so that the selection frequency of the oracle rule is approximately the same as in the previous paragraph. The increase in Q leads to a deterioration of the performances. Specifically, the FMR of the plug-in overshoots the nominal level by a large amount, and when n is too small, the parametric bootstrap procedure can be anti-conservative while the non parametric bootstrap is over-conservative. This deterioration is expected since from the theory established in Section 3.4 (see Theorem 17), the residual terms increase with Q, and since the difficulty of the estimation is also increased. However, for a fairly large sample size (n = 1000), both bootstrap procedures are correctly mimicking the oracle.

Larger dimension

We now increase the dimension to d = 10. In that case, parameter estimation is deteriorated. In particular, the maximum posterior probability for any point tends to be very over-estimated. To remedy this issue, we project the data onto a twodimensional space using PCA. We then apply the EM algorithm to the projected data. This is similar in spirit to spectral clustering and it has the added benefit of combining the objectives of data reduction with clustering. Results are displayed in Figure 3.5. The conclusions are qualitatively the same as in the previous paragraph.

Real data set

We consider the Wisconsin Breast Cancer Diagnosis (WDBC) dataset from the UCI ML repository. The data consists of features computed from a digitalized image of a fine needle aspirate (FNA) of a breast mass, on a total of 569 patients (each corresponds to one FNA sample) of which 212 are diagnosed as Benign and 357 as Malignant. Ten real-valued measures were computed for each of the cell nucleus present in the images (e.g. radius, perimeter, texture, etc.). Then, the mean, standard error and mean of the three largest values of these measures were computed for each image, resulting in a total of 30 features. Here, we restrict the analysis to the variables that correspond to the means of these measures.

We choose to model the data as a mixture of Student's t-distributions as proposed in [START_REF] Peel | Robust mixture modelling using the t distribution[END_REF]. Student mixtures are appropriate for data containing observations with longer than normal tails or atypical observations leading to overlapping clusters. Compared to Gaussian mixtures, Students are less concentrated and thus produce estimates of the posterior probabilities of class memberships that are less extreme, which is favorable for our selection procedures. In our study, the degree of freedom of each component is set to 4, and no constraints are put on the rest of the parameters. The t-mixture is fit via the EM algorithm provided by the Python package studenttmixture [START_REF] Peel | Robust mixture modelling using the t distribution[END_REF].

To start with, we restrict the analysis to the first two variables of the dataset, the mean radius and the mean texture of the images. For illustration, Figure 3.6 (panel (a)) displays the data. Different colors indicate the ground truth labels (this information is not used in the clustering). One can see that the Student approximation is fairly good for each of the groups, and there is some overlap between them. Figure 3.6 (panel (b)) displays the MAP clustering result for the t-mixture model without any selection. The FMR is computed with respect to the ground truth labels and amounts to 14 %. Figure 3.6 (panel (c)) provides the result of our parametric bootstrap procedure with nominal level α = 5%. The procedure does not classify points that are at the intersection of the clusters, resulting in the classification of 70% of the data, and the FMR equals 3%, which is below the target level.

Finally, Figure 3.7 displays the results when restricting the analysis to the first ten variables of the dataset and applying PCA to reduce the dimension to 2. In that case, the FMR computed with respect to the ground truth labels without selection is 14 %, while using the bootstrap procedures, this reduces to 10 %, with a selection frequency of 80%.

Conclusion and discussion

We have presented new data-driven methods providing both clustering and selection that ensure an FMR control guarantee in a mixture model. The plug-in approach was shown to be theoretically valid both when the parameter estimation is accurate and the sample size is large enough. When this is not necessarily the case, we proposed two second-order bootstrap corrections that have been shown to increase the FMR control ability on numerical experiments. Finally, applying our unsupervised methods to a supervised data set, our approach has been qualitatively validated by considering the attached labels as revealing the true clusters.

We underline that the cluster number Q is assumed to be fixed and known throughout the study. In practice, it can be fitted from the data by using the standard AIC or BIC criteria, using the entire data before application of the selection rule. In addition, if several values of Q make sense from a practical viewpoint, we recommend to provide to the practitioner the collection of the corresponding outputs.

Concerning the pure task of controlling the FMR in the mixture model, our methods provide a correct FMR control in some region of the parameter space, leaving other less favorable parameter configurations with a slight inflation in the FMR level. This phenomenon is well known for FDR control in the two-component mixture multiple testing model [START_REF] Sun | Oracle and adaptive compound decision rules for false discovery rate control[END_REF][START_REF] Roquain | False discovery rate control with unknown null distribution: Is it possible to mimic the oracle?[END_REF], and facing a similar problem in our framework is well expected. On the one hand, in some cases, this problem can certainly be solved by improving on parameter estimation: here the EM algorithm seems to over-estimate the extreme posterior probabilities, which makes the plug-in procedure too anti-conservative. On the other hand, it could be hopeless to expect a robust FMR control uniformly valid over all configurations, while being optimal in the favorable cases. To illustrate that point, we refer to the work [START_REF] Roquain | False discovery rate control with unknown null distribution: Is it possible to mimic the oracle?[END_REF] that shows that such a procedure does not exist in the FDR controlling case, when the null distribution is Gaussian with an unknown scaling parameter (which is a framework sharing similarities with the one considered here). Investigating such a "lower bound" result in the current setting would provide better guidelines for the practitioner and is therefore an interesting direction for future research. In addition, in these unfavorable cases, adding labeled samples and considering a semi-supervised framework can be an appropriate alternative for practical use. This new sample is likely to considerably improve the inference. Studying the FMR control in that setting is another promising avenue.

Chapter 4

Link prediction with FDR control

Most link prediction methods return estimates of the connection probability of missing edges in a graph. Such output can be used to rank the missing edges from most to least likely to be a true edge, but it does not directly provide a classification into true and non-existent. In this work, we consider the problem of identifying a set of true edges with a control of the false discovery rate (FDR). We propose a novel method based on high-level ideas from the literature on conformal inference. The graph structure induces intricate dependence in the data, which we carefully take into account, as this makes the setup different from the usual setup in conformal inference, where exchangeability is assumed. The FDR control is empirically demonstrated for both simulated and real data. 

Introduction

Problem and aim

Graphs (or networks) denote data objects that consist of links (edges) between entities (nodes).

Real-world examples are ubiquitous and include social networks, computer networks, food webs, molecules, etc. A fundamental problem in network analysis is link prediction, where the goal is to identify missing links in a partially observed graph. Biological networks such as protein-protein interaction networks [START_REF] Kovács | Network-based prediction of protein interactions[END_REF] or food webs [START_REF] Terry | Finding missing links in interaction networks[END_REF] are typical examples of incomplete networks: because experimental discovery of interactions is costly, many interactions remain unrecorded. Link prediction can be used to identify promising pairs of nodes for subsequent experimental evaluations. Other applications include friend or product recommendation [START_REF] Li | Recommendation as link prediction in bipartite graphs: A graph kernel-based machine learning approach[END_REF], or identification of relationships between terrorists [START_REF] Clauset | Hierarchical structure and the prediction of missing links in networks[END_REF].

In this work, we consider a link prediction problem, where a graph with a set of vertices V = {1, . . . , n} and a set of edges E is only partially observed: namely, we observe a sample of node pairs recorded as interacting (true edges) and a sample of node pairs recorded as noninteracting (false edges). The graph can be directed or undirected and self-loops are allowed. The two observed samples of node pairs make up only a part of the set of all pairs V × V , and the non-observed pairs correspond to missing information, where it is not known whether there is an edge or not. The aim is to identify the true edges among the pairs of nodes for which the interaction status has not been recorded.

There exists a variety of approaches for link prediction and they are mainly divided according to two viewpoints. In Ben-Hur and Noble (2005); [START_REF] Bleakley | Supervised reconstruction of biological networks with local models[END_REF]; [START_REF] Li | Recommendation as link prediction in bipartite graphs: A graph kernel-based machine learning approach[END_REF]; [START_REF] Zhang | Link prediction based on graph neural networks[END_REF], link prediction is treated as a classification problem. That is, examples are constructed by associating the label 1 (or 0) with all true (or false) edges. Then, a classifier is learned by using either a data representation for each edge [START_REF] Zhang | Link prediction based on graph neural networks[END_REF], or kernels [START_REF] Ben-Hur | Kernel methods for predicting protein-protein interactions[END_REF][START_REF] Bleakley | Supervised reconstruction of biological networks with local models[END_REF][START_REF] Li | Recommendation as link prediction in bipartite graphs: A graph kernel-based machine learning approach[END_REF]. Another line of research views link prediction rather as an estimation issue, namely as the problem of estimating the true matrix of the probabilities of connection between node pairs. In this line, [START_REF] Tabouy | Variational inference for stochastic block models from sampled data[END_REF] propose an estimation procedure for the Stochastic Block Model (SBM) with missing links based on maximum likelihood. In [START_REF] Gaucher | Outlier detection in networks with missing links[END_REF], a similar aim is pursued and a technique based on matrix completion tools is proposed, which is also robust to outliers. Finally, [START_REF] Mukherjee | Graphon estimation from partially observed network data[END_REF] give an algorithm for graphon estimation in a missing data set-up.

Concretely, the output of all of these methods are scores for all missing edges, ranking them from most likely to least likely to interact. Such an output is satisfying when the application constrains the number of pairs of vertices to be declared as true edges to be fixed, as e.g. in e-recommendation, where we could have to recommend the top 3-best products most likely to interest the consumer. Alternatively, other practical cases may instead require a classification of the missing edges into true and false edges together with a control of the amount of edges that are wrongly declared as true (false positives). Putting the emphasis on false positives is appropriate in many contexts. For instance, in the reconstruction of biological networks, the edges that are classified as true are then tested experimentally in a costly process, which makes it desirable for the user to avoid false positives in the selection step. This is increasingly true for real-world networks that are in general very sparse. The decision of declaring a missing pair as a false edge can be viewed as a type of abstention option: based on the data, we do not have enough evidence to confidently predict it as a true edge.

How to build a reliable classification procedure? Using an ad hoc rule like declaring as true edges the node pairs with a connection probability above the 50% threshold, may lead to a high number of false positives since a) probabilities may not be estimated correctly and b) even if they were, the probability of making a mistake may still be high if there are many node pairs with moderately elevated connection probability.

In this work, we consider the goal of identifying a subset of the missing pairs of nodes for which we can confidently predict the presence of an edge, with a guarantee on the number of edges that are falsely predicted as true. Our problem can be viewed as finding the appropriate threshold (not 50%) for the connection probabilities such that the number of false positives remains below a prescribed level. The optimal threshold depends on the problem itself. In simple settings a low threshold may be satisfactory, as for instance when most connected triplets are indeed triangles. However, on a graph with much stochasticity, the exact prediction of links is a very uncertain endeavor.

The problem is formalized in terms of controlling the false discovery rate (FDR), defined as the average proportion of errors among the pairs of vertices declared to be true edges (proportion of false discoveries). More precisely, the goal is to develop a procedure such that the FDR is below a user-specified level α, which is an error margin that represents the acceptance level for the proportion of false edges in the selection. The interpretation for the user is clear: if, for instance, α is set to 5% and the method returns a set of 100 node pairs, then the number of non-existent edges in this set is expected to be at most 5.

Approach

We propose a method that takes as input the partially observed graph and, using an off-theshelf link prediction method, returns a set of node pairs with an FDR control at level α. The method can be seen as a general wrapper that transforms any link prediction technique into an FDR-controlling procedure. Crucially, even when the quality of the link predictor is not particularly good, our method provides control of the FDR.

Our approach relies on conformal p-values [START_REF] Bates | Testing for outliers with conformal p-values[END_REF][START_REF] Barber | Controlling the false discovery rate via knockoffs[END_REF][START_REF] Yang | Bonus: Multiple multivariate testing with a data-adaptivetest statistic[END_REF], which are a powerful model-free approach in multiple testing that measure statistical significance by comparing the test statistic (or score) to a reference set consisting of statistics of observations under the null. This approach comes with guarantees on the FDR control under a suitable exchangeability assumption on the test statistics [START_REF] Bates | Testing for outliers with conformal p-values[END_REF][START_REF] Weinstein | A power and prediction analysis for knockoffs with lasso statistics[END_REF][START_REF] Mary | Semi-supervised multiple testing[END_REF][START_REF] Marandon | Adaptive novelty detection with false discovery rate guarantee[END_REF], and has been used in novelty detection [START_REF] Bates | Testing for outliers with conformal p-values[END_REF][START_REF] Yang | Bonus: Multiple multivariate testing with a data-adaptivetest statistic[END_REF][START_REF] Marandon | Adaptive novelty detection with false discovery rate guarantee[END_REF][START_REF] Liang | Integrative conformal p-values for powerful out-ofdistribution testing with labeled outliers[END_REF], variable selection [START_REF] Barber | Controlling the false discovery rate via knockoffs[END_REF][START_REF] Weinstein | A power and prediction analysis for knockoffs with lasso statistics[END_REF], as well as binary classification [START_REF] Rava | A burden shared is a burden halved: A fairness-adjusted approach to classification[END_REF].

We propose to use this high-level idea of comparing a score to a set of scores under the null, in order to properly threshold the link prediction probabilities for FDR control. In our link prediction set-up, the connection probability for a pair of nodes (i, j) can be seen as a score indicating the relevance of an edge between i and j. The afore-mentioned score comparison then turns into a comparison of the connection probability for a non-observed pair of nodes to connection probabilities of pairs that are known to be non-existent edges. However, the setup is markedly different from previous literature, making this transposition challenging. In particular, the graph structure makes the scores dependent on each other in an intricate way, which requires to build the scores with care.

Contributions The contributions of this work are summarized as follows:

• We introduce a novel method to obtain FDR control in link prediction (Section 4.2), which extends ideas from the conformal inference literature to graph-structured data.

The proposed method is model-free: it does not rely on distributional assumptions, instead, it leverages off-the-shelf link prediction (LP) techniques. It is designed to provide FDR control regardless of the difficulty of the setting and of the quality of the chosen LP technique. Moreover, the ability to use any LP technique of choice, including the state-of-the-art, makes it flexible and powerful.

• Extensive numerical experiments1 (Section 4.3) assess the excellent performance of the approach and demonstrate its usefulness compared to the state of the art.

Relation to previous work

Error rate control in statistical learning Error rate control has notably been considered in novelty detection [START_REF] Bates | Testing for outliers with conformal p-values[END_REF][START_REF] Yang | Bonus: Multiple multivariate testing with a data-adaptivetest statistic[END_REF][START_REF] Marandon | Adaptive novelty detection with false discovery rate guarantee[END_REF][START_REF] Liang | Integrative conformal p-values for powerful out-ofdistribution testing with labeled outliers[END_REF], binary classification [START_REF] Geifman | Selective classification for deep neural networks[END_REF]Angelopoulos et al., 2021;[START_REF] Rava | A burden shared is a burden halved: A fairness-adjusted approach to classification[END_REF][START_REF] Candès | Machine learning: Trends, perspectives, and prospects[END_REF], clustering [START_REF] Marandon | False membership rate control in mixture models[END_REF] and graph inference [START_REF] Rebafka | Powerful multiple testing of paired null hypotheses using a latent graph model[END_REF]. The setting closest to ours is that of binary classification, in the sense that here the goal is to classify non-observed pairs of nodes as a 'true' or 'false' edge, given that we observe part of both true edges and non-existent edges. In this line, some approaches (e.g., [START_REF] Zhang | Link prediction based on graph neural networks[END_REF] However, these approaches cannot be applied in our situation because here data examples are based on the graph structure and thus depend on each other in a complex way. In particular, we do not have i.i.d. data examples as assumed in the classical binary classification setting. In this regard, our method is related to the work of [START_REF] Marandon | Adaptive novelty detection with false discovery rate guarantee[END_REF] that extends the conformal novelty detection method of [START_REF] Bates | Testing for outliers with conformal p-values[END_REF] to the case where the learner is not previously trained, but uses the test sample to output class predictions, which makes the class predictions dependent. This is similar to our problem in the sense that here we aim to calibrate connection probabilities that depend on each other through the graph structure.

Conformal inference applied to graph data A few recent works [START_REF] Huang | Uncertainty quantification over graph with conformalized graph neural networks[END_REF][START_REF] Lunde | Conformal prediction for network-assisted regression[END_REF] have considered the application of conformal prediction (Angelopoulos and Bates, 2021) to graph data. Conformal prediction generally refers to the part of conformal inference that is concerned with producing prediction sets that are provably valid in finite samples, rather than error rate control as considered here. Moreover, in these works, the prediction task concerns the nodes: [START_REF] Huang | Uncertainty quantification over graph with conformalized graph neural networks[END_REF] considers node classification, while [START_REF] Lunde | Conformal prediction for network-assisted regression[END_REF] studies prediction of node covariates (also called network-assisted regression). By contrast, in our work, the prediction task concerns the edges, and therefore, the specific dependency issue that arises differs from [START_REF] Huang | Uncertainty quantification over graph with conformalized graph neural networks[END_REF]; [START_REF] Lunde | Conformal prediction for network-assisted regression[END_REF]. Finally, a closely related work is that of [START_REF] Luo | Anomalous edge detection in edge exchangeable social network models[END_REF], which uses conformal p-values to detect anomalous edges in a graph. However, their method relies on edge-exchangeability, which is a restrictive assumption. Moreover, the guarantee is only for a single edge.

Link with multiple testing

The FDR criterion is a staple of multiple testing, where recent works on knockoffs and conformal p-values [START_REF] Barber | Controlling the false discovery rate via knockoffs[END_REF][START_REF] Weinstein | A power and prediction analysis for knockoffs with lasso statistics[END_REF][START_REF] Bates | Testing for outliers with conformal p-values[END_REF][START_REF] Yang | Bonus: Multiple multivariate testing with a data-adaptivetest statistic[END_REF][START_REF] Marandon | Adaptive novelty detection with false discovery rate guarantee[END_REF] have provided model-free procedures that come with an FDR control guarantee in finite samples. However in this work, while we do use tools of [START_REF] Weinstein | A power and prediction analysis for knockoffs with lasso statistics[END_REF]; [START_REF] Bates | Testing for outliers with conformal p-values[END_REF], our setting does not strictly conform to a known multiple testing framework such as the p-value framework [START_REF] Benjamini | Controlling the false discovery rate: a practical and powerful approach to multiple testing[END_REF] (the hypotheses being random) or the empirical Bayes framework (Efron (1, 4), (2,3), (2,5), (3, 5) are observed, along with the non-existent edges (1, 3),(1, 5), (4, 5) but the information concerning the pairs (2, 4) and (3, 4) is missing. We aim to decide for (2, 4) and (3, 4) whether there is a true edge or not. et al., 2001;[START_REF] Sun | Oracle and adaptive compound decision rules for false discovery rate control[END_REF] (the number of hypotheses being itself random). Hence, previous theory in that area cannot be applied.

Methodology

Preliminaries

Let A * = (A * i,j ) 1≤i,j≤n be the adjacency matrix of the true complete graph G, X ∈ R n×d a matrix of node covariates (if available), and Ω = (Ω i,j ) 1≤i,j≤n the sampling matrix such that Ω i,j = 1 if the interaction status (true/false) of (i, j) is observed, and 0 otherwise. We assume that the entries Ω ij are i.i.d. random variables and that Ω is independent from A * and X. We denote by A the observed adjacency matrix with A i,j = Ω i,j A * i,j . Thus, A i,j = 1 indicates that there is an observed true edge between i and j, whereas A i,j = 0 indicates either the observed lack of an edge or an unreported edge. The sampling matrix Ω is assumed to be observed, so that it is known which zero-entries A i,j = 0 correspond to observed false edges and which ones correspond to missing information. The missing information concerns only A * , and not X. The setting is illustrated in Figure 4.1. We denote by P the joint distribution of Z * = (A * , X, Ω), Z the observation (A, X, Ω) and Z the observation space.

We are interested in classifying the unobserved node pairs {(i, j) : Ω i,j = 0} into true edges and false edges, or in other words, selecting a set of unobserved node pairs to be declared as true edges, based on the observed graph structure. In order to be consistent with the notation of the literature on conformal p-values [START_REF] Bates | Testing for outliers with conformal p-values[END_REF][START_REF] Liang | Integrative conformal p-values for powerful out-ofdistribution testing with labeled outliers[END_REF][START_REF] Marandon | Adaptive novelty detection with false discovery rate guarantee[END_REF], we use the following notations:

• We denote by D test (Z) = {(i, j) : Ω i,j = 0} the set of non-sampled (or missing) node pairs and by D(Z) = {(i, j) : Ω i,j = 1} the set of sampled pairs, with D 0 = {(i, j) ∈ D : A * i,j = 0} the set of observed non-existent edges and D 1 = {(i, j) ∈ D : A * i,j = 1} the set of observed true edges. We refer to D test (Z) as the test set.

• We denote by H 0 = {(i, j) : Ω i,j = 0, A * i,j = 0} the (unobserved) set of false edges in the test set and H 1 = {(i, j) : Ω i,j = 0, A * i,j = 1} the (unobserved) set of true edges in the test set. In our framework, a selection procedure is a (measurable) function R = R(Z) that returns a subset of D test corresponding to the indices (i, j) where an edge is declared. The aim is to design a procedure R close to H 1 , or equivalently, with R ∩ H 0 (false discoveries) as small as possible. For any such procedure R, the false discovery rate (FDR) of R is defined as the average of the false discovery proportion (FDP) of R under the model parameter P ∈ P, that is,

The notations are illustrated in

FDR(R) = E Z * ∼P [FDP(R)], FDP(R) = i∈H 0 1 i∈R 1 ∨ |R| .
Similarly, the true discovery rate (TDR) is defined as the average of the true discovery proportion (TDP), that is,

TDR(R) = E Z * ∼P [TDP(R)], TDP(R) = i∈H 1 1 i∈R 1 ∨ |H 1 | .
Our aim is to build a procedure R that controls the FDR while having a TDR (measuring the power of the procedure) as large as possible.

Procedure

Let g : V × V × Z → R be a scoring function, which takes as input a node pair (i, j) and an observation z ∈ Z and returns a score S i,j ∈ R, estimating how likely it is that i is connected to j. The score does not have to be in [0, 1]: for instance, S i,j can be the number of common neighbors between i and j.

To obtain a set of edges with FDR below α, we borrow from the literature on knockoffs and conformal inference [START_REF] Weinstein | A power and prediction analysis for knockoffs with lasso statistics[END_REF][START_REF] Bates | Testing for outliers with conformal p-values[END_REF] to formulate the following idea: some of the observed false edges can be used as a reference set, by comparing the score for a node pair in the test set to scores computed on false edges to determine if it is likely to be a false positive. Effectively, we will declare as edges the pairs that have a test score higher than a cut-off t computed from the calibration set and depending on the level α. In detail, the steps are as follows:

1. Use the set of observed node pairs D to define a reference (or calibration) set D cal ⊂ D 0 of false edges and a training set D train ⊂ D\ D cal of true and false edges for learning the predictor;

2. Learn a scoring function g on D train and compute the scores for the reference set and for the test set;

Algorithm 6 Counting Knockoff [START_REF] Weinstein | A power and prediction analysis for knockoffs with lasso statistics[END_REF] Input: test scores (S w ) w∈Dtest , knockoff scores (S w ) w∈D cal . 1. Order the scores from lowest to highest, that is

S (1) ≥ S (2) ≥ • • • ≥ S (| D cal |+| Dtest |) 2.
Let s be the label (0/1) of S ( )

3. Set FDP = 1, V = | D cal |, = | D cal | + | D test |, K = | D test | 4. While FDP ≤ α and K ≥ 1 do = -1 • if s +1 = 1, V = V -1 • else, K = K -1 • do FDP = V +1 | D cal |+1 | Dtest | K (or FDP = 1 if K = 0) 5. Set t = S (K) (or +∞ if K = 0). Output: {w ∈ D test : S w ≥ t} (return the empty set if t = +∞). t D cal D test R Figure 4
.3: Illustration of the CK algorithm (Algorithm 6). The procedure looks for the cut-off t by going from the smallest values of the scores (left) to the largest values (right), and stops as soon as the corresponding FDP falls below α. At each step, the FDP is estimated by the proportion of calibration scores among the scores in the left part.

3. Declare as true edges the node pairs in the test set that are returned by the Counting Knockoff (CK) algorithm [START_REF] Weinstein | A power and prediction analysis for knockoffs with lasso statistics[END_REF] given in Algorithm 6.

The CK algorithm [START_REF] Weinstein | A power and prediction analysis for knockoffs with lasso statistics[END_REF] comes from the knockoff literature and is equivalent to the conformal p-value procedure of [START_REF] Bates | Testing for outliers with conformal p-values[END_REF] (see [START_REF] Mary | Semi-supervised multiple testing[END_REF]. It is a stepwise procedure which looks for the appropriate cut-off t among a suitable range of values T by using the calibration scores as benchmarks to evaluate how many false discoveries there are among the selected set of test edges for any cut-off t ∈ T . The CK algorithm is illustrated in Figure 4.3. The full procedure is given in Algorithm 7 and Figure 4.5 provides a sketch of the approach. We next describe our proposal for choosing the scoring function g.

Remark 14. This type of procedure is designed to control the FDR at level |H 0 | | Dtest | α < α. To maximize power, we recommend to apply the procedure at level α/π 0 where

π0 ∈]0, 1[ is an estimate of |H 0 | | Dtest | . In our setting, it is assumed that Ω is independent of A * , so π0 = | D 0 |
|D| is expected to be a reliable estimate. Alternatively, tools from the multiple testing literature on the estimation of the proportion of null hypotheses may be employed, e.g. by using Storey's estimator [START_REF] Marandon | Adaptive novelty detection with false discovery rate guarantee[END_REF].

Training the scoring function g

There are two desiderata concerning the properties of the scoring function g: (i) A key point is that the reference scores mimic the scores (S i,j ) i,j∈H 0 of the false edges in Algorithm 7 Conformal link prediction Input: Adjacency matrix A, node covariate matrix X, sampling matrix Ω, link prediction function g, sample size of the reference set 1. Sample D cal uniformly from D 0 2. Learn g on D train ⊂ D\ D cal 3. For each (i, j) ∈ D cal ∪ D test , compute the score S i,j = g((i, j), Z) 4. Apply Algorithm 6 using as input (S i,j ) (i,j)∈Dtest for the test scores and (S i,j ) (i,j)∈D cal for the reference scores, provinding a set R(Z) ⊂ D test . Output: R(Z) the test set in such a way that, if (i, j) ∈ H 0 then the rank of S i,j among the reference scores should be uniformly distributed, allowing good estimation of the FDP in the CK algorithm. This property is properly formalized and discussed in Appendix C.2. Here, it entails that the scoring function g must be chosen carefully, because of the dependence structure in the data.

(ii) To fulfill the above property, it is not needed that the quality of the estimates S i,j be particularly good. However, what is important to maximize power is that the ranking provided by the scores is as close as possible to the one given by the true probabilities

P(A * i,j = 1 | Z).
To address the afore-mentioned points, the scoring function g will be taken as the output of a link prediction technique of choice, that will be learned with a suitable subset of the data. Let P : (i, j) ∈ V × V, z ∈ Z → Pi,j (z) ∈ R be a link prediction algorithm , where Pi,j is the prediction for the node pair (i, j) given the observation z. In a nutshell, given a link prediction algorithm P , the scoring function g(•, Z) is taken as P (•, Z train ), with Z train given by

Z train = (A, X, Ω train ), (Ω train ) i,j = 0 if (i, j) ∈ D cal , Ω i,j otherwise. (4.1)
In words, taking g(•, Z) = P (•, Z train ) = P (•, Z) amounts to learn the link predictor by treating the edge examples in the reference set as missing node pairs in the algorithm. We elaborate on this later, after formalizing explicitly the output of LP methods.

Link prediction For simplicity of presentation, let us consider here an undirected graph without node covariates. Let us introduce, for a given K ∈ {1, . . . , n} the r.v.

W i,j = (A i,• , A j,• , A 2 i,• , A 2 j,• , . . . , A K i,• , A K j,• ), (4.2) 
where

A k i,• = (A k i,u ) 1≤u≤n for 1 ≤ k ≤ K.
The r.v. W i,j can be thought of as the "K-hop neighborhood" of (i, j). It represents an embedding for the node pair (i, j), that describes a pattern of connection around i and j. If the graph has some structure, it should be observed that the pattern differs when i and j are connected, compared to when they are not. Moreover, there should be some similarity between the patterns observed for true edges, as compared to false edges. Figure 4.4 gives an illustration in the case of a graph with community structure. When there is an edge between i and j (Figure 4.4a), i and j are involved in a same group of nodes that is densely connected (community). Conversely, when there is no edge between them (Figure 4.4b), i and j belong to separate groups of densely connected nodes that share few links between them. Link prediction methods output a prediction Pi,j ∈ R, indicating the relevance of an edge between i and j. In general, the prediction can be written as

Pi,j (Z) = h(W i,j ; {(W u,v , A u,v ), (u, v) ∈ D train }), (4.3) 
with h some real-valued measurable function and D train a certain subset of D. In (4.3), the set {(W u,v , A u,v ), (u, v) ∈ D train } represents a set of learning examples, where W u,v is an embedding for the pair (u, v) and A u,v is its label. For instance, in the case of the common neighbors (CN) heuristic, the number of common neighbors is given by the scalar product

A T i,• A j,• . In that case, the prediction is Pi,j = h(W i,j ) = A T i,• A j,• .
Alternatively, when considering supervised approaches such as binary classification [START_REF] Zhang | Link prediction based on graph neural networks[END_REF][START_REF] Bleakley | Supervised reconstruction of biological networks with local models[END_REF], maximum likelihood [START_REF] Kipf | Variational graph auto-encoders[END_REF][START_REF] Tabouy | Variational inference for stochastic block models from sampled data[END_REF] or matrix completion [START_REF] Li | Link prediction for egocentrically sampled networks[END_REF][START_REF] Gaucher | Outlier detection in networks with missing links[END_REF], the link prediction function can be written as the minimizer of an empirical risk (ERM):

Pi,j (Z) = ĥ(W i,j ), with ĥ ∈

   argmin h∈F (i,j)∈D train ⊂D L[P i,j , A i,j ]    , P i,j = h(W i,j ) (4.4)
with L : [0, 1] × {0, 1} → R a loss function and F a function class. In (4.4), P i,j is an estimate of the probability that there is an edge between i and j, and the error term L[P i,j , A i,j ] quantifies the difference between the prediction P i,j and the true A i,j . The ERM formulation for the afore-mentioned supervised approaches can be justified as follows:

• Binary classification approaches [START_REF] Zhang | Link prediction based on graph neural networks[END_REF][START_REF] Bleakley | Supervised reconstruction of biological networks with local models[END_REF]: In that case the ERM formulation (4.4) is obvious. For instance, for SEAL (Zhang and Chen, 2018), P i,j is given by a GNN that takes as input the K-hop subgraph around (i, j), excluding the edge between (i, j) if there is one observed, and augmented with node features that describe the distance of each node in the subgraph to i and to j.

The parameters of the GNN are fitted by minimizing the cross-entropy loss over a set D train ⊂ D of observed true/false edges. In practice, D train is subsampled from D in order to have a 50% -50% partitioning between true and false edges.

• Maximum likelihood approaches [START_REF] Kipf | Variational graph auto-encoders[END_REF][START_REF] Tabouy | Variational inference for stochastic block models from sampled data[END_REF]: Maximum likelihood approaches aim to optimize a lower bound on the likelihood (ELBO). This lower bound is an expectation and therefore, using Monte-Carlo approximation, we end up with a function of the form (4.4). For instance, for VGAE [START_REF] Kipf | Variational graph auto-encoders[END_REF], P i,j is given by the scalar product H T i H j where H u is a node embedding for node u, the embedding matrix H ∈ R n×n being the output of a GNN. It follows that

H u = h(A u,• , A 2 u,• , . . . , A L u,•
) for some function h, with L the number of layers of the GNN. • Matrix completion [START_REF] Li | Link prediction for egocentrically sampled networks[END_REF][START_REF] Gaucher | Outlier detection in networks with missing links[END_REF]): e.g., for [START_REF] Li | Link prediction for egocentrically sampled networks[END_REF], one can rewrite the estimated probability matrix P as

P = argmin P { (u,v)∈D (A u,v -P u,v ) 2 , P = A T in ΘA in , rank(Θ) ≤ r}
where A in is the sub-matrix of A consisting only of the observed entries. Hence, in that case, Pi,j is of the form (4.4) with P i,j = h(A i,• , A j,• ) for some function h.

Construction of the scoring function g Given a link prediction algorithm P , the scoring function g is learned by training P on a subset D train of D\ D cal . Removing D cal from the possible set of learning examples allows to enforce that the edge examples (i, j) in the reference set D cal are treated as unreported information (i.e., the same as D test ) by the algorithm, which is necessary to fabricate good reference scores and avoid biasing the comparison of the test scores to the reference scores in the CK Algorithm. Otherwise, the scoring g may use the knowledge that the pairs in the reference set are false edges and produce an overfitted score for those. In summary, the scoring function g is thus of the form

g((i, j), Z) = h(W i,j ; {(W u,v , A u,v ), (u, v) ∈ D\ D cal }) (4.5) 
with h some real-valued measurable function.

We outline a key property of our method. Many LP algorithms (e.g. [START_REF] Zhang | Link prediction based on graph neural networks[END_REF] are not trained on the entire set of observed edges D but on a subset D train ⊂ D with a 50-50% distribution of true and false edges. As most real-world networks are sparse, typically all observed edges D 1 are used for training and a randomly chosen subset of false edges in D 0 of the same size as D 1 . Then the reference set D cal is naturally chosen among the false edges in D 0 that are not used in D train for learning the predictor. Consequently, in practice choosing a reference set D cal does not diminish the amount of data D train on which the predictor is learned.

Remark 15. The sample size of the reference set D cal must be large enough to ensure a good power, as pointed out in previous work using conformal p-values in the novelty detection context [START_REF] Mary | Semi-supervised multiple testing[END_REF][START_REF] Marandon | Adaptive novelty detection with false discovery rate guarantee[END_REF][START_REF] Yang | Bonus: Multiple multivariate testing with a data-adaptivetest statistic[END_REF]. In particular, [START_REF] Mary | Semi-supervised multiple testing[END_REF] give a power result under the condition that | D cal | m/(kα), where k is the number of "detectable" novelties. Consequently, our recommendation is to choose | D cal | of the order of m/α; this choice works reasonably well in our numerical experiments.

Numerical experiments

In this section, we study the performance of our method both on simulated data (Section 4.3.1) and real data (Section 4.3.2). We consider two choices for the scoring function g, SEAL (Zhang and Chen, 2018) (see Appendix C.1 for details) and CN, yielding the procedures CN-conf and SEAL-conf. We compare the performance of our method to two "naive" procedures for FDR control (here we assume that g ∈ [0, 1], otherwise, scores are normalized into [0, 1] by standardizing the values and applying the sigmoid function): • Naive thresholding (NT): We select in R(Z) the edges (i, j) ∈ D test for which g((i, j), Z) ≥ 1 -α. If the probabilities g((i, j), Z) are poorly estimated, this procedure is expected to not control the FDR at level α in general.

• Cross-validated thresholding (CVT): We set aside a validation sample D val ⊂ D and learn g on the remaining data, then compute from a range of values T ⊂ [0, 1] the maximum threshold t ∈ T for which the FDP on D val is below α. Then we select for R(Z) the edges (i, j) ∈ D test for which g((i, j), Z) ≥ t. To start with, this procedure is not very convenient because it needs to be fed a range of cut-off values T , whose specification is not obvious. Moreover, it is expected to perform well only if the validation set is large enough. For small n, this is a clear disadvantage compared to our method: ours requires only false edge examples, which are always largely available due to real-world networks being sparse, and the full set of observed true edges is utilized for training. Here, we set | D val | to 20%|E| with a 50%-50% distribution between true and false edges, and

T = {(1 -α)/k, k ∈ {1, 5, 10, 20, 50, 100}}. 
In each experiment, the FDR and TDR of the different methods are evaluated by using 100 Monte-Carlo replications.

Simulated data

In this section, we evaluate our method on a simulated dataset. We generate a graph A * of n = 100 nodes from a Stochastic Block Model (SBM) with 5 classes, mixture proportions π = (1/5, . . . 1/5), and connectivity matrix γ given by

γ =       p p p p p p p p p p      
, with p = 0.5 and = 0.05. The expected number of edges in this setting is ≈ 1150. In this model, the graph displays both community structure and hubs, see Figure 4.6 for an illustration.

We construct training samples D(Z) and test samples D test (Z) by subsampling at random the observed edges and the observed non-existent edges from E and from (V × V )\E respectively, such that the proportion of missing edges in A is equal to π miss = 10% and |H 0 |/|H 1 | = 50%. We use | D cal | = 5000 for our method. The FDR and TDR are displayed in Figure 4.7a for the choice of CN for the scoring and in Figure 4.7b for SEAL.

When using CN for link prediction, the connection probabilities are not well estimated. This is well-expected since A * contains nodes that display low probability of connection within CVT also fails to control the FDR and it is only our procedure that controls the FDR, with a FDR close to α across all level values. When SEAL is used, we observe again in Figure 4.7b that it occurs that the FDR of CVT exceeds α, while NT can be over-conservative. Our procedure controls the FDR. Moreover, it dominates in terms of power, by having a TDR higher than the others under the FDR constraint. In particular, even when all procedures have an FDR that is close to α, ours displays the most power. Indeed, our method uses an adaptive threshold, unlike NT, and leverages all true edge examples when learning g, unlike CVT.

Real data

In this section, we evaluate our method on real datasets, including benchmarks from [START_REF] Kipf | Variational graph auto-encoders[END_REF]; [START_REF] Zhang | Link prediction based on graph neural networks[END_REF]; [START_REF] Zhao | Link prediction for partially observed networks[END_REF]. A summary of the considered datasets is given in Table 4.1 (see Appendix C.1 for more details).

We 4.2 for α = 0.1. The results are qualitatively the same as in Section 4.3.1: it occurs that the FDR of the baselines exceed the nominal level while our procedure (using either CN or SEAL for the scoring function) consistently controls the FDR at level α with a substantial power gain. 

Discussion

We have presented a new method that calibrates the output of a given link prediction technique for FDR control, using recent ideas from the conformal inference literature. The approach is validated using both simulated data and real data and its interest is demonstrated by its superior performance compared to the state of the art.

Let us first mention that if the user wishes to control the probability of making more than a certain number of false positives [START_REF] Lehmann | Generalizations of the familywise error rate[END_REF][START_REF] Janson | Familywise error rate control via knockoffs[END_REF], the method can easily be extended in that sense.

In this work, it is assumed that the missing data pattern is independent from the true complete graph and moreover, that the entries of the sampling matrix are i.i.d. It would be interesting to investigate the extension of the method in the general case, where the entries of the sampling are not i.i.d., such as in egocentric sampling [START_REF] Li | Link prediction for egocentrically sampled networks[END_REF].

It is outside of the scope of this work to prove theoretical guarantees, because the setup is markedly different from previous work and the dependence in the data makes the analysis very complex. In particular, we expect that the exchangeability condition on the scores [START_REF] Marandon | Adaptive novelty detection with false discovery rate guarantee[END_REF]) cannot be verified here outside of trivial cases. Finding a suitable relaxation of this condition for the setup considered here represents a promising avenue for future work.

Chapter 5

Discussion

Conformal FDR control In conformal inference, a key assumption is that the data is exchangeable. A first research direction is moving beyond this setting, in the following two ways. First, by considering the case of structured data. In this line, Chapter 4 proposed a transposition of the conformal p-value procedure to a link prediction setup, where the graph structure induces non-exchangeability. Due to this, the work therein demonstrated FDR control empirically but it lacked theoretical guarantees; it would be desirable to fill the gap. Secondly, distribution shift (which refers to a general phenomenon in learning when a certain data distribution changes over time) is an important practical concern, which has been recently investigated in the context of conformal prediction [START_REF] Tibshirani | Conformal prediction under covariate shift[END_REF][START_REF] Podkopaev | Distribution-free uncertainty quantification for classification under label shift[END_REF][START_REF] Barber | Conformal prediction beyond exchangeability[END_REF]. In the context of Chapter 2, distribution shift may occur in the sense that the distribution of the nulls between the training sample and the test sample may be slightly different. In particular, if the null comes from a mixture of distributions, it could be that some of the component distributions are in the test sample and not in the nominal sample, in which case they will be wrongly declared as anomalies. Studying this issue is an interesting question for future investigations.

Next, we have only considered a subpart of selective inference in this thesis, namely how to select a set of items such as to get a pre-specified FDR guarantee (multiple testing). In practical applications, users may manipulate the data, e.g. to follow common practice in the field and/or budget constraints. In that case, the inverse problem arises, of identifying bounds on the FDR in the selected set [START_REF] Goeman | Multiple Testing for Exploratory Research[END_REF][START_REF] Blanchard | On agnostic post-hoc approaches to false positive control[END_REF]. Thus, another research direction concerns the problem of designing FDP bounds for the conformal p-values of Chapter 2, for instance by adapting the work of [START_REF] Katsevich | Simultaneous high-probability bounds on the false discovery proportion in structured, regression and online settings[END_REF].

The main challenge will be to deal with the specific dependence structure that is inherent to the p-value process.

Finally, a future application of the AdaDetect procedure introduced in Chapter 2 could be the task of anomaly detection on graph data [START_REF] Ma | A comprehensive survey on graph anomaly detection with deep learning[END_REF]. This task takes two main forms: graph-level anomaly detection, which is the problem of detecting anomalous graphs in a set of graphs, and node-level anomaly detection, which is concerned with detecting anomalous nodes in a single graph. AdaDetect would allow to leverage state-of-the-art graph or node classification techniques (such as [START_REF] Shervashidze | Weisfeiler-lehman graph kernels[END_REF]; Kipf and Welling (2016a); [START_REF] Xu | How powerful are graph neural networks?[END_REF], see also [START_REF] Wu | A comprehensive survey on graph neural networks[END_REF] and [START_REF] Errica | A fair comparison of graph neural networks for graph classification[END_REF] for reviews) to perform these tasks with a FDR control guarantee.

Error rate control in unsupervised learning Chapter 3 is only a first step in error rate control in unsupervised learning, which remains largely an unsolved question. To start with, the FMR criterion is constraining since it requires the number of classes to be known.

As a consequence, it cannot compare two clusterings with a different number of clusters. Moreover, from a partitioning point of view, it could be seen as more relevant to measure the error in terms of pairwise clusters assignments, that is, to penalize pairs of elements that are incorrectly labeled as belonging or not to the same cluster. Thus, possible developments include the extension to other criteria relevant for clustering [START_REF] Grün | Model-based clustering[END_REF], such as the Rand Index [START_REF] Rand | Objective criteria for the evaluation of clustering methods[END_REF].

In addition, our approach is a parametric one, where it is assumed that the specification of distribution family for the components distributions is correct; otherwise, there are no guarantees. It would be desirable to take into account model mis-specification in future research.

Lastly, even in a setup where the model specifications are correct, a main limitation of the procedures proposed here is that they rely on the quality of the parameter estimates. This raises the open question of whether finite-sample FMR control can be achieved in this context, and more generally, what are the limits for this problem. In this line, we note the work of [START_REF] Roquain | False discovery rate control with unknown null distribution: Is it possible to mimic the oracle?[END_REF] that shows, in the context of unsupervised novelty detection (which is a framework sharing similarities with the one considered here), that there does not exists an FDR-controlling procedure that is asymptotically power-optimal if the number of false nulls is too large. Alternatively, the extension to a semi-supervised learning setting where a few labeled samples are available, which is likely to considerably improve the inference, is an interesting avenue.

A.1.4 Proof of Theorem 4

This proof combines Theorem 18 with Lemma 25, a property of the BH algorithm that slightly extends the classical result.

Recall that the AdaDetect procedure is the BH algorithm applied to the empirical p-values given by (2.10). We apply Lemma 25 with the empirical p-values (p j , 1 ≤ j ≤ m) being the empirical p-values, any i ∈ H 0 , p i = 1/( + 1), and p j = C i,j defined in (A.2) for j = i. By definition, the condition (A.23) holds. Moreover, if p j > p i , we have S n+i > S n+j in which case 1 S n+i ≤ S n+j = 0, implying that p j = p j . Letting k = k(p i , 1 ≤ i ≤ m) and

k i = 1 ∨ k(p i , 1 ≤ i ≤ m), Lemma 25 entails that {p i ≤ α k/m} = {p i ≤ α k i /m} ⊂ { k = k i }.
Let W i be defined in (A.1). Then

FDR(AdaDetect α ) = i∈H 0 E 1 p i ≤ α k/m k ∨ 1 = i∈H 0 E 1 p i ≤ α k i /m k i = i∈H 0 E E 1 p i ≤ α k i /m k i W i = i∈H 0 E   P ( + 1)p i ≤ α( + 1) k i /m W i k i   ,
where the last line is due to that k i is measurable with respect to W i , which is implied by Theorem 18 (i). Then Theorem 18 (iii) and (iv) implies

FDR(AdaDetect α ) = i∈H 0 E α( + 1) k i /m ( + 1) k i .
The result is then proved by letting K i = k i .

A.1.5 Proof of Theorem 6

Letting k = k(p i , 1 ≤ i ≤ m) the number of rejections of AdaDetect αm/G(p) , we have

FDR(AdaDetect αm/G(p) ) = i∈H 0 E 1 p i ≤ α k(p)/G(p) k(p) ∨ 1 = i∈H 0 E 1 p i ≤ α( k(p) ∨ 1)/G(p) k(p) ∨ 1
By Theorem 18 (ii), we can write (p j , j = i) as Ψ 1 (W i , p i ) for some deterministic function Ψ 1 that is nondecreasing in p i where W i is defined in (A.1). As a result, we can write k(p) ∨ 1 (resp. 1/G(p)) as Ψ 2 (W i , p i ) (resp. Ψ 3 (W i , p i )) for some deterministic functions Ψ 2 , Ψ 3 that are nonincreasing in p i since k and 1/G are both coordinate-wise nonincreasing. Let

c * (W i ) = max N (W i )
N (W i ) = {j/( + 1) : 1 ≤ j ≤ + 1, j/( + 1) ≤ αΨ 2 (W i , j/( + 1))Ψ 3 (W i , j/( + 1))}.

Above, we define c * (W i ) = 1/( + 1) if N (W i ) = ∅. By definition, N (W i ) is thus the set of all values that the empirical p-value p i can take if it is rejected and c * (W i ) is the largest possible value. Thus,

{p i ≤ α k(p)/G(p)} = {p i ∈ N (W i )} = {p i ≤ c * (W i ), N (W i ) = ∅}. This entails FDR(AdaDetect αm/G(p) ) ≤ i∈H 0 E E 1 p i ≤ c * (W i ) k(p) ∨ 1 1 N (W i ) = ∅ | W i ≤ i∈H 0 E E 1 p i ≤ c * (W i ) Ψ 2 (W i , c * (W i )) 1 N (W i ) = ∅ | W i = i∈H 0 E P [p i ≤ c * (W i ) | W i ] Ψ 2 (W i , c * (W i )) 1 N (W i ) = ∅ ≤ i∈H 0 E c * (W i ) Ψ 2 (W i , c * (W i )) 1 N (W i ) = ∅ ,
where the last two lines use Theorem 18 (iii) and (iv), respectively. By definition of c * (W i ), we obtain

FDR(AdaDetect αm/G(p) ) ≤ α i∈H 0 E [Ψ 3 (W i , c * (W i ))] ≤ α i∈H 0 E [Ψ 3 (W i , 1/( + 1))] ≤ α i∈H 0 E 1 G(q j , 1 ≤ j ≤ m)
,

where q i = 1/( + 1), q j = 0 for j ∈ H 1 and q j = C i,j + 1 S (1) ≤ S n+j /( + 1) for j ∈ H 0 \{i}.

The proof is completed by applying Theorem 19.

A.1.6 Proof of Corollary 7

By using (2.14) in Theorem 6, the result is established if we prove in each case (2.13).

i∈H 0 E 1 G(p j , 1 ≤ j ≤ m) ≤ 1, (A.5) with p = (p j , 1 ≤ j ≤ m) ∼ D i defined in
Proof for the Storey estimator In this case,

G(p ) = 1 + m j=1 1 p j ≥ λ 1 -λ = 1 + j∈H 0 \{i} 1 p j ≥ λ 1 -λ ,
with λ = K/( + 1) for K ∈ {2, . . . , }. Recall that, conditionally on {U (1) , . . . , U ( +1) }, (p j :

j ∈ H 0 \{i}) are i.i.d. with the c.d.f. F (x) = (1 -U ( x( +1) +1) ) 1 1/( + 1) ≤ x < 1 + 1 x ≥ 1,
x ∈ R. Therefore, we have for j ∈ H 0 \{i}, P(p j ≥ λ | {U (1) , . . . , U ( +1) }) = P(p j ≥ K/( + 1) | {U (1) , . . . , U ( +1) }) = P(p j > (K -1)/( + 1) | {U (1) , . . . , U ( +1) })

= 1 -(1 -U (K) ) = U (K) .
Thus, it is enough to prove

E 1 1 + B(m 0 -1, U (K) ) ≤ 1 m 0 (1 -λ) , (A.6)
where B(m 0 -1, U (K) ) denotes a Binomial random variable with parameters m 0 -1 and U (K) . By Lemma 1 in [START_REF] Benjamini | Adaptive linear step-up procedures that control the false discovery rate[END_REF],

E 1 1 + B(m 0 -1, U (K) ) | {U (1) , . . . , U ( +1) } ≤ 1 m 0 U (K)
.

Hence, the LHS of (A.6) is bounded by

E 1 m 0 U (K)
. It is well-known that U (K) ∼ β( + 2 -K, K) (note that U (1) , . . . , U ( +1) is a decreasing sequence) and the expectation of the inverse of a Beta random variable with scale parameters a and b is (a + b -1)/(a -1). Hence,

E 1 m 0 U (K) = + 1 m 0 ( + 1 -K) = 1 m 0 (1 -λ)
.

Proof for the Quantile estimator In that case,

G(p ) = m -k 0 + 1 1 -p (k 0 ) ,
where p (k 0 ) denotes the k 0 -smallest element of (p j , 1 ≤ j ≤ m). If k 0 ≤ m -m 0 + 1, we have G(p ) ≥ m 0 and (A.5) holds. Thus, we assume k 0 ≥ m -m 0 + 2, in which case

k 0 + m 0 -m -1 ≥ 1. Let j 0 = k 0 + m 0 -m -1 ∈ [1, m 0 ].
For the rest of the proof, we will fix i and write

E[•] for E p ∼D i [•] in short. Then E 1 G(p j , 1 ≤ j ≤ m) = E 1 -p (j 0 :H 0 \{i}) m -k 0 + 1 ,
where p (j 0 :H 0 \{i}) denotes the j 0 -smallest element of (p j , j ∈ H 0 \{i}). To prove (A.5), it is left to prove

E 1 -p (j 0 :H 0 \{i}) ≤ m -k 0 + 1 m 0 ⇐⇒ E(p (j 0 :H 0 \{i}) ) ≥ j 0 /m 0 . (A.7) By definition of D i , E(p (j 0 :H 0 \{i}) | {U (1) , . . . , U ( +1) }) = ∞ 0 P(p (j 0 :H 0 \{i}) > x | {U (1) , . . . , U ( +1) })dx = ∞ 0 P   j∈H 0 \{i} 1 p j ≤ x < j 0 | {U (1) , . . . , U ( +1) }   dx = ∞ 0 P (B(m 0 -1, F (x)) < j 0 ) dx,
where B(m 0 -1, F (x)) denotes a Binomial random variable with parameters m 0 -1 and F (x),

where

F (x) = (1 -U ( x( +1) +1) ) 1 1/( + 1) ≤ x < 1 + 1 x ≥ 1, x ∈ R.
Hence, the last display is equal to

( + 1) -1 + +1 b=2 1 0 1 x( + 1) + 1 = bP B(m 0 -1, 1 -U (b) ) < j 0 dx = ( + 1) -1 + ( + 1) -1 +1 b=2 P B(m 0 -1, 1 -U (b) ) < j 0 ≥ ( + 1) -1 +1 b=1 P B(m 0 -1, 1 -U (b) ) < j 0 .
Hence,

E(p (j 0 :H 0 \{i}) ) ≥ j 0 -1 k=0 m 0 -1 k ( + 1) -1 +1 b=1 E[(1 -U (b) ) k U m 0 -1-k (b)
].

Since U (b) ∼ β( + 2 -b, b) (recall that U (1) , . . . , U ( +1) being a decreasing sequence), we have

1 -U (b) ∼ β(b, + 2 -b). Hence, E[(1 -U (b) ) k U m 0 -1-k (b) ] = ( + 1)! (b -1)!( + 1 -b)! R x k (1 -x) m 0 -1-k x b-1 (1 -x) +2-b-1 dx = ( + 1)! (b -1)!( + 1 -b)! (k + b -1)!(m 0 + -(k + b))! (m 0 + )! ,
where the last line uses the fact that the integrand is proportional to the density of β(k + b, m 0 -k + + 1 -b). As a result, we get

m 0 -1 k ( + 1) -1 +1 b=1 E[(1 -U (b) ) k U m 0 -1-k (b) ] = m -1 0 m 0 + m 0 -1 +1 b=1 k + b -1 k m 0 -k -1 + -b + 1 m 0 -k -1 = m -1 0 m 0 + m 0 -1 b =0 k + -b k m 0 -k -1 + b m 0 -k -1 .
By applying Lemma 21 with j = m 0 -k -1, u = k, v = (hence j + u = m 0 -1 and j + u + v = + m 0 -1), the RHS is equal to 1/m 0 . This proves (A.7) and hence the theorem..

A.1.7 Proof of Theorem 18

By Assumption 3, we can assume (S k+1 , . . . , S n+m ) has no ties throughout the proof. The result (i) is obvious. For (ii), note that ( + 1)p i = 1 + s∈{S k+1 ,...,Sn} 1 s > S n+i is the rank of S n+i within the set {S k+1 , . . . , S n , S n+i }. Hence, S (( +1)p i ) = S n+i and, for all j ∈ {1, . . . , m}\{i},

p j = ( + 1) -1      1 + s∈{S k+1 ,...,Sn,S n+i } s =S (( +1)p i ) 1 s > S n+j      = ( + 1) -1   s∈{S k+1 ,...,Sn,S n+i } 1 s > S n+j + 1 S (( +1)p i ) ≤ S n+j   .
This proves (ii). By Assumption 2, for any permutation σ of {k + 1, . . . , n, n + i}, we have ((S k+1 , . . . , S n , S n+i ), W i ) ∼ ((S σ(k+1) , . . . , S σ(n) , S σ(n+i) ), W σ i ) = ((S σ(k+1) , . . . , S σ(n) , S σ(n+i) ), W i ),

where

W σ i = {S σ(k+1) , . . . , S σ(n) , S σ(n+i) }, (S n+j , j ∈ H 0 , j = i), (S n+j , j ∈ H 1 ) = W i .
This implies that (S k+1 , . . . , S n , S n+i ) is exchangeable conditionally on W i . Now let R 1 , . . . , R +1 be the ranks of (S k+1 , . . . , S n , S n+i ) within the same set. Then S j+k = S (R j ) (j = 1, . . . , ) and S n+i = S (R +1 ) , where where S({1, . . . , + 1}) denotes the set of permutations of {1, . . . , + 1}. The results (iii) and (iv) then follow from the fact that p i = R +1 /( + 1).

S (1) > S (2) > • • • > S (

A.1.8 Proof of Theorem 19

By (A.3), p j is a function of p i and W i for all j ∈ H 0 \{i}. Replacing p i by 1/( + 1) in that expression, we get

p j = ( + 1) -1 s∈{S k+1 ,...,Sn,S n+i } 1 s > S n+j + 1 S (1) ≤ S n+j /( + 1) = ( + 1) -1 +1 q=1 1 S (q) > S n+j + 1 S (1) ≤ S n+j /( + 1) = ( + 1) -1   1 + +1 q=2 1 S (q) > S n+j   .
By Lemma 23, we have

(p j , j ∈ H 0 \{i}) | p i = 1/( + 1), {S (1) , . . . S ( +1) } ∼ (p j , j ∈ H 0 \{i}) | p i = 1/( + 1), {U (1) , . . . U ( +1) } ∼ (p j , j ∈ H 0 \{i}) | {U (1) , . . . U ( +1) } where p j = 1+ +1 q=2 1 U (q) >V j +1
, U 1 , . . . , U +1 , V j (j ∈ H 0 ) are i.i.d. from U (0, 1), and U (1) > • • • > U ( +1) denote the order statistics of U 1 , . . . , U +1 . As a result, conditional on {U (1) , . . . U ( +1) }, (p j , j ∈ H 0 \{i}) are i.i.d. with a c.d.f.

F (x) = P(p j ≤ x | U (1) , . . . , U ( +1) ) = P   +1 q=2 1 U (q) > V j ≤ x( + 1) -1 | U (1) , . . . , U ( +1)   = P(U ( x( +1) +1) ≤ V j ) = 1 -U ( x( +1) +1) . because +1 q=2 1 U (q) > v ≥ x( + 1) is equivalent to U ( x( +1) +1) > v.
This completes the proof.

A.2 Proofs for Section 4

A.2.1 Proof of Theorem 8

Let T (x) = 1 -r(x) = π 0 f 0 (x)/f (x) and t(α) = 1 -c(α) ∈ (0, 1). Then R = {i : T (X i ) ≤ t(α)}. Consider any procedure R = {i : T (X i ) ≤ t } with mFDR(R ) ≤ α. Since mFDR(R) = α, we have both

0 = 1 T (x) ≤ t(α)(T (x) -α)f (x)dν(x) 0 ≥ 1 T (x) ≤ t (T (x) -α)f (x)dν(x).
The first equality implies t(α) ≥ α. If t(α) = α, then T (X) = α almost surely under f . This implies that all hypotheses are rejected with probability 1 and hence R is never less powerful than R .

Assume t(α) > α. Then the two equalities imply

(1 T (x) ≤ t(α) -1 T (x) ≤ t )(T (x) -α)f (x)dν(x) ≥ 0. (A.8) Since T (x) ≤ t(α) is equivalent to T (x)-α 1-T (x) ≤ t(α)-α 1-t(α) (even when T (x) = 1), we obtain t(α) -α 1 -t(α) (1 T (x) ≤ t(α) -1 T (x) ≤ t )(1 -T (x))f (x)dν(x) ≥ 0.
Since t(α) > α,

(1 T (x) ≤ t(α) -1 T (x) ≤ t ) f1 (x)dν(x) ≥ 0.

(A.9)

A.2.2 Proof of Lemma 9

For case (i), (2.22) can be expressed as

2J λ (g) = k(1 + g(x)) + + λ( + m)(1 -g(x)) + f γ (x)/f 0 (x) f 0 (x)dν(x).
For any u, v > 0 and a ∈ R,

u(1 + a) + + v(1 -a) + = v(1 -a) 1 a < -1 + (u + v + a(u -v)) 1 -1 ≤ a ≤ 1 + u(1 + a) 1 a > 1.
As a function of a, it is continuous and piecewise linear with two turning points (-1, 2v) and (1, 2u). When u = v, the unique minimum is attained at a = sign(v/u -1). The proof is then completed by setting u = k and v = λ( + m)f γ (x)/f 0 (x) and the assumption that P(f γ (X)/f 0 (X) = k/λ( + m)) = 0.

For case (ii), (2.22) is given by

J λ (g) = -k log(1 -g(x)) -λ( + m) log(g(x))f γ (x)/f 0 (x) f 0 (x)dν(x).
For any u > 0, v ≥ 0, the map a ∈ [0, 1] → u log(1 -a) + v log(a) has a unique maximizer at a = v/(u + v).

To validate the conditions in Lemma 24, we only need to show η ≤ αM/m. Since 1-R 1 (g G ) ≥

(1 + α -1 )∆, we have

∆ ≤ α(1 -R 1 (g G ) -∆) ≤ αM m 1 ≤ αM γm .
By the assumptions that ≥ 2m/(αM ) and β ≤ 0.4αM/m, we have

η ≤ αM 2m + 0.4αM m + 0.1αM m = αM m .
By Lemma 24, on the event

Ω 0 ∩ Ω0 ∩ Ω γ,0 ∩ Ω γ,1 , AdaDetect α ⊃ {i ∈ {1, . . . , m} : ĝ(X i ) ≥ 0}. By (A.18), |AdaDetect α ∩ H 1 |/m 1 ≥ M/m 1 ≥ 1 -R 1 (g G ) -∆.
By (A.13), this occurs with probability at least 1 -δ.

A.3.2 Proof of Theorem 11

We first prove the result for BH * α , i.e.,

P R ∩ {BH * α ⊂ AdaDetect α(1+δ)(1+ζr(η)) } c ≤ P (η > η) -me -(3/28)( +1)δ 2 α(r∨1)/m , (A.19) where R = {|BH * α | ≥ r}.
First we note that, while ĝ(Y i ) are dependent through the score function ĝ(•), the g * (Y i ) are i.i.d., allowing us to apply concentration inequalities. For s ∈ R, define

G 0 (s) = ( + 1) -1 1 + n i=k+1 1 ĝ(Y i ) ≥ s ; G * 0 (s) = ( + 1) -1 1 + n i=k+1 1 g * (Y i ) ≥ s .
For notational convenience, let α = α(r ∨ 1)/m. Consider in addition the following events:

Ω 1 = max k+1≤i≤n+m |ĝ(Z i ) -g * (Z i )| ≤ η ; Ω 2 = sup 1≤i≤m G * 0 (g * (X i ) -2η) -G 0 (g * (X i ) -2η) ∨ α G 0 (g * (X i ) -2η) ∨ α ≤ δ .
On Ω 1 ∩ Ω 2 , we have for all i ∈ {1, . . . , m},

G 0 (ĝ(X i )) ≤ G * 0 (ĝ(X i ) -η) ≤ G * 0 (g * (X i ) -2η) ≤ (G 0 (g * (X i ) -2η) ∨ α)(1 + δ) = (G 0 (g * (X i )) ∨ α) 1 + G 0 (g * (X i ) -2η) ∨ α -G 0 (g * (X i )) ∨ α G 0 (g * (X i )) ∨ α (1 + δ). Let u = G 0 (g * (X i )) ∨ α. Since G 0 is nonincreasing, u = G 0 (g * (X i ) ∧ G -1 0 (α)). Thus, G 0 (g * (X i ) -2η) ∨ α -G 0 (g * (X i )) ∨ α G 0 (g * (X i )) ∨ α = G 0 ((g * (X i ) -2η) ∧ G -1 0 (α)) -u u ≤ G 0 (G -1 0 (u) -2η) -u u .
Since u ≥ α, the LHS is bounded by ζ r (η). As a result, on

Ω 1 ∩ Ω 2 , G 0 (ĝ(X i )) ≤ (G 0 (g * (X i )) ∨ α)(1 + ζ r (η))(1 + δ). (A.20)
Then, for all t ∈ {αk/m, r ∨ 1 ≤ k ≤ m},

1 G 0 (g * (X i )) ≤ t = 1 G 0 (g * (X i )) ∨ α ≤ t ≤ 1 G 0 (ĝ(X i )) ≤ t(1 + δ)(1 + ζ r (η)).
By applying Lemma 20 with p i = G 0 (g * (X i )), p i = G 0 (ĝ(X i )), β = α, and

β = α(1 + ζ r (η))(1 + δ), we obtain that BH * α ⊂ AdaDetect α(1+δ)(1+ζr(η)) on Ω 1 ∩ Ω 2 ∩ R .
We are left to show that P(Ω c 2 ) ≤ m exp(-(3/28)( + 1)δ 2 α). Since X i 's and Y i 's are independent, the union bound implies

P(Ω c 2 ) ≤ P sup 1≤i≤m G * 0 (g * (X i ) -2η) -G 0 (g * (X i ) -2η) ∨ α G 0 (g * (X i ) -2η) ∨ α ≥ δ ≤ m i=1 P G * 0 (g * (X i ) -2η) -G 0 (g * (X i ) -2η) ∨ α G 0 (g * (X i ) -2η) ∨ α ≥ δ ≤ m i=1 P G * 0 (g * (X i ) -2η) -G 0 ((g * (X i ) -2η) ∧ G -1 0 (α)) G 0 ((g * (X i ) -2η) ∧ G -1 0 (α)) ≥ δ ≤ m i=1 P G * 0 ((g * (X i ) -2η) ∧ G -1 0 (α)) -G 0 ((g * (X i ) -2η) ∧ G -1 0 (α)) G 0 ((g * (X i ) -2η) ∧ G -1 0 (α)) ≥ δ ≤ m sup s≤G -1 0 ( α) P G * 0 (s) -G 0 (s) G 0 (s) ≥ δ .
For all s ≤ G -1 0 α,

P G * 0 (s) -G 0 (s) ≥ δG 0 (s) ≤ P n i=k+1 (1 g * (Y i ) ≥ s -G 0 (s)) ≥ ( + 1)δG 0 (s) -1 ≤ P n i=k+1 (1 g * (Y i ) ≥ s -G 0 (s)) ≥ 0.5( + 1)δG 0 (s) ,
where the last line uses the fact that ( + 1)δG 0 (s) ≥ ( + 1)δ α ≥ 2. Let A = 0.5( + 1)δG 0 (s).

Since the g * (Y i )'s are independent, By Bernstein's inequality,

P(Ω c 2 ) ≤ m sup s≤G -1 0 ( α) exp - A 2 2( + 1)G 0 (s) + 2A/3 = m sup s≤G -1 0 ( α) exp -0.5 A 2 4A/δ + 2A/3 ≤ m sup s≤G -1 0 ( α) exp -0.5 A 2 4A/δ + 2A/3δ = m sup s≤G -1 0 ( α) exp - 3( + 1)δ 2 G 0 (s) 28 ≤ m exp(-(3/28)( + 1)δ 2 α). (A.21)
The proof of (A.19) is then completed. Next, we prove (2.37), i.e., the result for AdaDetect α . Recall that R = {|AdaDetect * α | ≥ r}. Similar to Ω 2 , we define

Ω 3 = sup 1≤i≤m G 0 (g * (X i )) ∨ α -G * 0 (g * (X i )) ∨ α G * 0 (g * (X i )) ∨ α ≤ δ = sup 1≤i≤m G 0 (g * (X i ) ∧ G -1 0 (α)) -G * 0 (g * (X i ) ∧ G -1 0 ( α)) G * 0 (g * (X i ) ∧ G -1 0 (α)) ≤ δ . By (A.20), on Ω 1 ∩ Ω 2 ∩ Ω 3 , for all i ∈ {1, . . . , m} and t ∈ {αk/m, r ∨ 1 ≤ k ≤ m}, G 0 (ĝ(X i )) ≤ (G 0 (g * (X i )) ∨ α)(1 + ζ r (η))(1 + δ) ≤ ( G * 0 (g * (X i )) ∨ α)(1 + ζ r (η))(1 + δ) 2 ≤ ( G * 0 (g * (X i )) ∨ α)(1 + ζ r (η))(1 + 3δ). Thus, on Ω 1 ∩ Ω 2 ∩ Ω 3 , 1 G * 0 (g * (X i )) ∨ α ≤ t ≤ 1 G 0 (g(X i )) ≤ t(1 + 3δ)(1 + ζ r (η)). Applying Lemma 20 with p i = G * 0 (g * (X i )), p i = G 0 (g(Z i )), β = α, and β = α(1 + ζ r (η))(1 + 3δ)), we obtain that AdaDetect * α ⊂ AdaDetect α(1+3δ)(1+ζr(η)) on Ω 1 ∩ Ω 2 ∩ Ω 3 ∩ R. It remains to prove that P(Ω c 3 ) ≤ m exp(-(3/28)( + 1)δ 2 α). Similar to P(Ω c
2 ), we have

P(Ω c 3 ) ≤ P sup 1≤i≤m G 0 (g * (X i ) ∧ G -1 0 (α)) -G * 0 (g * (X i ) ∧ G -1 0 (α)) G * 0 (g * (X i ) ∧ G -1 0 (α)) ≥ δ ≤ m sup s≤G -1 0 ( α) P G 0 (s) -G * 0 (s) G * 0 (s) ≥ δ ≤ m sup s≤G -1 0 ( α) P G * 0 (s) -G 0 (s) ≤ -0.5δG 0 (s) ,
where the last line uses the fact that

(1 + δ) -1 ≤ 1 -0.5δ for any δ ∈ [0, 1]. Now, for for all s ≤ G -1 0 ( α), P G * 0 (s) -G 0 (s) ≤ -0.5δG 0 (s) = P n i=k+1 (1 g * (Y i ) ≥ s -G 0 (s)) ≤ -0.5( + 1)δG 0 (s) -1 + G 0 (s) ≤ P n i=k+1 (1 g * (Y i ) ≥ s -G 0 (s)) ≤ -0.5( + 1)δG 0 (s) .
Applying the Bernstein inequality as in (A.21), we conclude that P(Ω c 3 ) ≤ m exp(-(3/28)( + 1)δ 2 α).

Remark 16. The inequality (A.19) generalizes the power oracle inequality of [START_REF] Mary | Semi-supervised multiple testing[END_REF] for a fixed score function and r = 0. by the assumptions. Hence, letting M

= m j=1 1 S n+j ≥ 0 ≥ M , we have m j=1 1 p j ≤ αM /m ≥ m j=1 1 p j ≤ αM/m ≥ m j=1 1 p j ≤ η ≥ m j=1 1 S n+j ≥ 0 = M
Since AdaDetect α is the BH algorithm applied to the empirical p-values, the result follows.

Lemma 25. Write the number of rejections k = k(p i , 1 ≤ i ≤ m) given by (2.4) a function of p-values. Fix any i ∈ {1, . . . , m} and consider two sets of p-values (p j , 1 ≤ j ≤ m) and (p j , 1 ≤ j ≤ m) which satisfy almost surely that ∀j ∈ {1, . . . , m},

p j ≤ p j if p j ≤ p i p j = p j if p j > p i (A.23) Let k = k(p i , 1 ≤ i ≤ m) and k = 1 ∨ k(p i , 1 ≤ i ≤ m). Then {p i ≤ α k/m} = {p i ≤ α k /m} ⊂ { k = k }.
This lemma is closely related to many previous results on the structure of the BH algorithm; see, e.g., [START_REF] Ferreira | On the Benjamini-Hochberg method[END_REF]; [START_REF] Roquain | Exact calculations for false discovery proportion with application to least favorable configurations[END_REF]Ramdas et al. (2019b). It states that the rejected p-values can be made arbitrarily smaller without changing the number of rejections.

Proof. First, since p j ≤ p j for all j ∈ {1, . . . , m}, we clearly have k ≤ k . Now we prove the equivalence

p i ≤ α k/m ⇐⇒ p i ≤ α k /m. (A.24)
Clearly, p i ≤ α k/m implies p i ≤ α k /m. Now we prove the other direction that

p i ≤ α k /m implies k ≥ k . Note that m j=1 1 p j ≤ α k /m = m j=1 1 p j ≤ p i 1 p j ≤ α k /m + m j=1 1 p j > p i 1 p j ≤ α k /m = m j=1 1 p j ≤ p i + m j=1 1 p j > p i 1 p j ≤ α k /m = m j=1 1 p j ≤ p i 1 p j ≤ α k /m + m j=1 1 p j > p i 1 p j ≤ α k /m = m j=1 1 p j ≤ α k /m ≥ 1 ∨ k(p i , 1 ≤ i ≤ m) = k ,
where the second and third lines is due to (A.23) and that p i ≤ α k /m. The fourth line uses the definition of k(p i , 1 ≤ i ≤ m) and that p i ≤ α k /m). By definition of k, the above inequality implies k ≥ k . Thus, we must have k = k and the result follows.

A.5 Auxiliary results for Section 5

A.5.1 Bounding ζ r (•)
In this section, we provide explicit bounds on ζ r (•) for any given r ∈ {0, . . . , m} and sample size m in the two following cases.

Lemma 26. Assume P 0 = U ([0, 1] d ) and P i = U ([0, 1] d-1 ) ⊗ Q for any i ∈ H 1 where Q is a distribution supported on [0, 1] with a strictly decreasing and differentiable density function h(x) on (0, 1). Assume h(0) > 0 and c = inf x∈(0,1) |h (x)| > 0. For any α ∈ (0, 1), m ≥ 1, and r ∈ {0, . . . , m}, the following results hold.

(i) If g * (x) = A + Bf 1 (x)/f 0 (x) for some A ∈ R and B > 0, then, for any η < (B/2)

• (h(α) -h(1)), ζ r (η) ≤ m α(r ∨ 1) 2 Bc η. (A.25) (ii) If g * (x) = Ψ(f 1 (x)/f 0 (x)) where Ψ(y) = 1/(1 + (A + By) -1 ) for some A, B > 0, then, for any η < (1/2)(Ψ • h(α) -Ψ • h(1)), ζ r (η) ≤ m α(r ∨ 1) 2(A + Bh(0) + 1) 2 Bc η. (A.26)
Proof of Lemma 26. Under the assumptions,

f 1 (x)/f 0 (x) = h(x d ) where x d is the d-th co- ordinate of x. For case (i), g * (x) = A + Bf 1 (x)/f 0 (x) = A + Bh(x d ). Since h is strictly decreasing, for any s ∈ [A + Bh(1), A + Bh(0)], G 0 (s) = P X d ∼U ([0,1]) (A + Bh(X d ) ≥ s) = P(X d ≤ h -1 ((s -A)/B)) = h -1 ((s -A)/B). Thus, G -1 0 (u) = A + Bh(u) for all u ∈ [0, 1]. Fix any η < (B/2)(h(α) -h(1)). Then for any u ∈ [0, α], A+Bh(0) ≥ G -1 0 (u) ≥ G -1 0 (u)-2η ≥ G -1 (α)-2η > A+Bh(α)-B(h(α)-h(1)) = A+Bh(1).
Note that both G 0 and G -1

0 are decreasing, ζ r (η) = max u∈[α(r∨1)/m,α] G 0 (G -1 0 (u) -2η) -u u ≤ m α(r ∨ 1) max u∈[α(r∨1)/m,α] (h -1 (h(u) -2η/B) -h -1 (h(u))) ≤ m α(r ∨ 1) 2η B max u∈[α(r∨1)/m,α] |(h -1 ) (u)|.
The result is then proved by noting that (h -1 ) (u) = 1/h (h -1 (u)) and the assumption that

|h (h -1 (u))| > c. For case (ii), g * (x) = 1/(1 + (A + Bh(x d )) -1 ) = Ψ • h(x 1 ), where Ψ(u) = (A + Bu)/(A + Bu + 1) for any u ∈ [h(1), h(0)]. Note that Ψ (u) = B/(A + Bu + 1) 2 . Then for any s in [1/(1 + (A + Bh(1)) -1 ), 1/(1 + (A + Bh(0)) -1 )], the image of Ψ, G 0 (s) = P X d ∼U ([0,1]) (Ψ(h(X d )) ≥ s) = (Ψ • h) -1 (s). Hence, for all u ∈ [0, 1], G -1 0 (u) = Ψ • h(u). Fix any η < (1/2)(Ψ • h(α) -Ψ • h(1)). Then for any u ∈ [α(r ∨ 1)/m, α], Ψ • h(0) ≥ G -1 0 (u) ≥ G -1 0 (u) -2η ≥ G -1 0 (α) -2η > Ψ • h(1). Note that both G 0 and G -1 0 are decreasing, ζ r (η) = max u∈[α(r∨1)/m,α] G 0 (G -1 0 (u) -2η) -u u ≤ m α(r ∨ 1) max u∈[α(r∨1)/m,α] (Ψ • h) -1 (Ψ • h(u) -2η) -u ≤ m α(r ∨ 1) max u∈[α(r∨1)/m,α] (Ψ • h) -1 (Ψ • h(u) -2η) -(Ψ • h) -1 (Ψ • h(u)) ≤ m α(r ∨ 1) (2η) max u∈[α(r∨1)/m,α] |((Ψ • h) -1 ) (u)| ≤ m α(r ∨ 1) (2η) 1 inf x∈(0,1) |h (x)| × inf y∈[h(1),h(0)] |Ψ (y)| .
The result is proved by noting that inf y∈[h(1),h(0)] |Ψ (y)| = B/(A + Bh(0) + 1) 2 .

Lemma 27. Assume P 0 = N (µ 0 , I d ) and P i = N (µ, I d ) for any i ∈ H 1 , where µ 0 = µ 1 are the null and alternative mean vectors, respectively. For any α ∈ (0, 1), m ≥ 1, and r ∈ {0, . . . , m}, the following results hold.

(i) If g * (x) = A + Bf 1 (x)/f 0 (x) for some A ∈ R and B > 0, then for any α ∈ (0, Φ(1)) (iii) For g *

and η ∈ [0, 1] with 4η ≤ (eb 2 B ) ∧ B , ζ r (η) ≤ Cη, (A.27) where C = C(B, µ, µ 0 ) = 8 b 2 B , B = Be -b 2 /2 and b = µ -µ 0 . (ii) If g * (x) = 1/(A + Bf 0 (x)/f 1 (x)), A > 0, B > 0,
(x) = 1/(1 + (A + Bf 1 (x)/f 0 (x)) -1 ), A > 0, B > 0, and α ∈ (0, Φ(1)), η ∈ [0, 1] with 16η (A + B e b √ 2 log(m/(α(r∨1))) ) 2 ∨ 1 /B ≤ 1 ∧ b, then ζ r (η) ≤ Cη (A + B e b √ 2 log(m/(α(r∨1))) ) 2 ∨ 1 , (A.29) for C = C(B, µ, µ 0 ) = 64e/(bB ), B = Be -b 2 /2 and b = µ -µ 0 .
Proof. Let us first consider the case of g * (x) = A + Bf 1 (x)/f 0 (x). We thus have

g * (x) = A + B exp (x -µ 0 ) T (µ -µ 0 ) -(1/2) µ -µ 0 2 = Ψ((x -µ 0 ) T (µ -µ 0 )/ µ -µ 0 )
where we let

Ψ(t) = A + B exp(bt), t ∈ R, for B = Be -(1/2) µ-µ 0 2 and b = µ -µ 0 . Hence Ψ -1 (v) = b -1 log ((v -A)/B ) for v > A.
In that case, we have

Ψ -1 (Ψ(t) -2η) = Ψ -1 (A + B e bt -2η) = b -1 log e bt -2η/B = t + b -1 log 1 -2ηe -bt /B
Since log(1-x) ≥ -2x for all x ∈ [0, 1/2], we have log 1 -2ηe -bt /B ≥ -4ηe -bt /B because 4ηe -bt /B ≤ 1. This entails that for 4ηe -bΦ -1 (α) /B ≤ 1, for u ∈ [α(r ∨ 1)/m, α], (by taking t = Φ -1 (u) in the above relations)

Φ • Ψ -1 (Ψ • Φ -1 (u) -2η) -u ≤ Φ Φ -1 (u) -4ηe -bΦ -1 (u) /(bB ) -u.
Now, we can use (A.30) in Lemma 28 with y = 4ηe -bΦ -1 (u) /(bB ) (checking that u ≤ α ≤ Φ(1)) to obtain that

Φ • Ψ -1 (Ψ • Φ -1 (u) -2η) ≤ 8uηe -bΦ -1 (u) (bB ) -1 Φ -1 (u) exp(4ηe -bΦ -1 (u) (bB ) -1 Φ -1 (u)) ≤ 8u eb 2 B η exp(4η/(eb 2 B )),
because ∀x ≥ 1, we have xe -xb ≤ 1/(eb). This gives (A.27).

Let us now turn to prove (A.28) by considering g * (x) = 1/(A + Bf 0 (x)/f 1 (x)), A > 0, B > 0. Similarly to above, we have

g * (x) = Ψ((x -µ 0 ) T (µ -µ 0 )/ µ -µ 0 )
where we let

Ψ(t) = 1/(A + B exp(-bt)), t ∈ R, for B = Be (1/2) µ-µ 0 2 and b = µ -µ 0 . Hence Ψ -1 (v) = -b -1 log ((1/v -A)/B ) for v < 1/A. In that case, we have Ψ -1 (Ψ(t) -2η) = Ψ -1 (1/(A + B e -bt )) -2η) = -b -1 log A + B e -bt 1 -2η(A + B e -bt )
-A /B . Now using that 1/(1 -x) ≤ 1 + 2x for all x ∈ [0, 1/2], we have that for 4η(A + B e -bt ) ≤ 1,

A + B e -bt 1 -2η(A + B e -bt ) -A /B ≤ e -bt + 4η(A + B e -bt ) 2 /B
This entails

Ψ -1 (Ψ(t) -2η) ≥ -b -1 log e -bt + 4η(A + B e -bt ) 2 /B = t -b -1 log 1 + 4η(A + B e -bt ) 2 e bt /B ≥ t -4η(A + B e -bt ) 2 e bt /(bB ) ≥ t -4η(A + B ) 2 e bt /(bB ), because log(1+x) ≤ x for all x ≥ 0. Hence for 4η(A+B e -bΦ -1 (α) ) ≤ 1, for u ∈ [α(r∨1)/m, α], Φ • Ψ -1 (Ψ • Φ -1 (u) -2η) -u ≤ Φ Φ -1 (u) -4η(A + B ) 2 e bΦ -1 (u) /(bB ) -u.
Now, we can use (A.30) in Lemma 28 with y = 4η(A + B ) 2 e bΦ -1 (u) /(bB ) to obtain

Φ • Ψ -1 (Ψ • Φ -1 (u) -2η) ≤ 2uh 4(A + B ) 2 ηe (b+1)Φ -1 (u) (bB ) -1 ≤ 2uh 4(A + B ) 2 ηe (b+1) √ 2 log(m/(α(r∨1))) (bB ) -1 , for h(x) = xe x and because Φ -1 (u) ≤ Φ -1 (α(r ∨ 1)/m) ≤ 2 log(m/(α(r ∨ 1)
)) (and using that ∀x ≥ 0, we have x ≤ e x ). This gives (A.28) because xe x ≤ ex when x ≤ 1.

Let us now turn to prove (A.29) by considering g * (x) = 1/(1 + (A + Bf 1 (x)/f 0 (x)) -1 ), A > 0, B > 0. Similarly to above, we have

g * (x) = Ψ((x -µ 0 ) T (µ -µ 0 )/ µ -µ 0 ) where Ψ(t) = 1/(1 + (A + B e bt ) -1 ), t ∈ R, for B = Be -(1/2) µ-µ 0 2 and b = µ -µ 0 . Hence Ψ -1 (v) = b -1 log ((1/v -1) -1 -A)/B for v ∈ (0, 1). In that case, we have for 4ηΨ(t) -1 ≤ 1, 1 Ψ(t) -2η -1 = Ψ(t) -1 1 1 -2ηΨ(t) -1 -1 ≤ Ψ(t) -1 (1 + 4ηΨ(t) -1 ) -1 = (1 + (A + B e bt ) -1 )(1 + 4ηΨ(t) -1 ) -1 = 4ηΨ(t) -1 + (A + B e bt ) -1 (1 + 4ηΨ(t) -1 ), by using 1/(1 -x) ≤ 1 + 2x, x ∈ [0, 1/2]. Hence, 1 Ψ(t) -2η -1 -1 ≥ A + B e bt 1 + 4ηΨ(t) -1 1 1 + 4ηΨ(t) -1 A+B e bt 1+4ηΨ(t) -1 ≥ A + B e bt 1 + 4ηΨ(t) -1 1 1 + 4ηΨ(t) -1 (A + B e bt ) ≥ (A + B e bt )(1 -4ηΨ(t) -1 ) 1 -4ηΨ(t) -1 (A + B e bt ) ≥ (A + B e bt ) 1 -8ηΨ(t) -1 (A + B e bt ) ∨ 1 ≥ (A + B e bt ) 1 -16η (A + B e bt ) 2 ∨ 1 A + B e bt , by using 1/(1 + x) ≥ 1 -x and (1 -x) 2 ≥ 1 -2x, x ∈ [0, 1], Ψ(t) -1 (A + B e bt ) ∨ 1 ≤ 2 (A+B e bt ) 2 ∨1
A+B e bt , and provided that 16η (A+B e bt ) 2 ∨1 A+B e bt ≤ 1. This entails

1 Ψ(t) -2η -1 -1 -A /B ≥ e bt -16η (A + B e bt ) 2 ∨ 1 /B .
Thus, we have

Ψ -1 (Ψ(t) -2η) ≥ b -1 log e bt -16η (A + B e bt ) 2 ∨ 1 /B = t + b -1 log 1 -16η (A + B e bt ) 2 ∨ 1 e -bt /B ≥ t + b -1 log 1 -16η (A + B e bt ) 2 ∨ 1 /B ≥ t -32η (A + B e bt ) 2 ∨ 1 /(bB ),
because log(1 -x) ≥ -2x for all x ∈ [0, 1/2] and provided that 16η (A + B e bt ) 2 ∨ 1 /B ≤ 1/2. (Also note that the latter condition implies both previous conditions 4ηΨ(t) -1 = 4η(1 + (A + B e bt ) -1 ) ≤ 1 and 16η (A+B e bt ) 2 ∨1

A+B e bt ≤ 1).

Hence for 16η (

A + B e bΦ -1 (α/m) ) 2 ∨ 1 /B ≤ 1/2 and u ∈ [α(r ∨ 1)/m, α], Φ • Ψ -1 (Ψ • Φ -1 (u) -2η) -u ≤ Φ Φ -1 (u) -32η (A + B e bΦ -1 (u) ) 2 ∨ 1 /(bB ) -u.
Now, we can use (A.30) in Lemma 28 with y = 32η (A + B e bΦ -1 (u) ) 2 ∨ 1 /(bB ) to obtain

Φ • Ψ -1 (Ψ • Φ -1 (u) -2η) ≤ 2uh 32η (A + B e bΦ -1 (u) ) 2 ∨ 1 /(bB ) ≤ 2uh 32η (A + B e b √ 2 log(m/(α(r∨1))) ) 2 ∨ 1 /(bB ) , for h(x) = xe x and because Φ -1 (u) ≤ Φ -1 (α(r ∨ 1)/m) ≤ 2 log(m/(α(r ∨ 1)
)) (and using that ∀x ≥ 0, we have x ≤ e x ). This gives (A.29).

Lemma 28. For all y ≥ 0 and u ∈ (0, Φ(1)], we have

Φ(Φ -1 (u) -y) -u ≤ 2uyΦ -1 (u) exp(yΦ -1 (u)). (A.30)
Proof. By using the classical relations on upper-tail distribution of standard Gaussian, we have

Φ(Φ -1 (u) -y) -u ≤ y φ(Φ -1 (u) -y) ∨ φ(Φ -1 (u)) = yφ(Φ -1 (u)) 1 ∨ exp(yΦ -1 (u) -y 2 /2) ≤ 2uyΦ -1 (u) exp(yΦ -1 (u)), since Φ -1 (u) ≥ 1, because φ(x) ≤ 2xΦ(x) for all x ≥ 1.

A.5.2 Case of density estimation

Consistency Consider g * given by (2.21), that is g * (x) = f γ (x)/f 0 (x). Assuming for simplicity that f 0 is known (hence k = 0 and n = here), we propose the estimator g(x) = fγ (x)/f 0 (x), where fγ is the histogram estimator of f γ given by fγ 2+d) . Remember that the corresponding AdaDetect procedure controls the FDR even if the estimation quality of fγ is poor. In addition, we show in this section that, in a suitable case where the estimation quality is good enough, the power of AdaDetect consistently converges to that of the oracle, that is, (2.40) holds. We use for this Corollary 12.

(x) = M d M d j=1 (n + m) -1 n+m i=1 1 Z i ∈ D j 1 x ∈ D j , x ∈ [0, 1] d , (A.31) where {D 1 , . . . , D M d } is a regular partition of [0, 1] d formed by M d d-dimensional cubes of side size 1/M and Lebesgue measure |D 1 | = 1/M d , with M = (n + m) 1/(
Assume m = n m/m 1 , let Assumptions 4 and 5 be true and consider the uniformly bounded case described in Section A.5.1. Then we have both (2.41) with κ ∈ (0, 1/(2 + d)) (Lemma 29, see next section) and ζ m 1 (η) -1 m αm 1 η/γ -1 η/(m 1 /m) 2 for η small enough (observe that γ ∼ m 1 /m). Hence, in the not too sparse scenario

m 1 /m m -κ/2 (including the dense case m 1 m), choosing η m -κ , δ = = 1/ log((m 1 /m) 2 /m -κ ), we have δ 2 m 1 /m = m 1-κ/2 (m 1 /m)/m -κ/2 log 3 ((m 1 /m) 2 /m -κ )
1, which ensures (2.39) and thus proves the consistency (2.40).

Proof. We have for all

x ∈ [0, 1] d , | fn (x) -f (x)| ≤ | fn (x) -E fn (x)| + | E fn (x) -f (x)|,
which contains a bias and a variance term. For the bias, we have

| E fn (x) -f (x)| ≤ M d j=1 1 x ∈ D j |D j | -1 D j n -1 n i=1 |f i (y) -f i (x)|dy ≤ L/M, because sup 1≤k≤d |x k -y k | ≤ 1/M when x, y belongs to the same D j .
For the variance term, by denoting j x the only j such that x ∈ D j and p

i,x = P(Z i ∈ D jx ) ∈ [0, (C/M ) d ], we have P(| fn (x) -E fn (x)| ≥ δ) ≤ P n i=1 (1 Z i ∈ D jx -p i,x ) ≥ δnM -d ≤ 2 exp - 1 2 A 2 n i=1 p i,x + A/3 ≤ 2 exp - 1 2 A 2 n(C/M ) d + A/3 , by letting A = δnM -d and applying Bernstein's inequality. Choosing δ such that A ≤ n(C/M ) d , that is, δ ≤ C d , we obtain P(| fn (x) -E fn (x)| ≥ δ) ≤ 2 exp -(3/8) A 2 n(C/M ) d = 2 exp -(3/8)nδ 2 M -d C -d , by choosing δ such that (3/8)nδ 2 M -d C -d = 2 log n, that is, δ = (4/ √ 3)(M C) d/2 (log n)/n gives P(| fn (x) -E fn (x)| ≥ δ) ≤ 2/n 2 , provided that δ ≤ C d . Now, we choose M = n 1/(2+d) , so that for n ≥ N (C), δ = 4(2C) d/2 n -1/(2+d) √
log n is a valid choice. This gives the bound (A.35).

A.5.3 From the two-sample setting to classical two-group setting

Existing results of the form (2.41) typically assume that the observations are i.i.d. draws from a two-group mixture model under which the class labels are random. By contrast, we focus on a two-sample setting with fixed labels in which case the observations are non-identically distributed because the assumptions are weaker than the two-group setting. Nevertheless, we can easily adapt our theory in the two-group setting, in which case a plethora of existing results can be applied to understand the scale of ζ r (η) and η. The two-group setting can be formalized by the following assumptions.

Assumption 11. The sample (Z 1 , . . . , Z n+m ) is obtained in the following way:

• (Z 1 , . . . , Z k ) = (W i , 1 ≤ i ≤ n + m : A i = 0, B i = 0, C i = 1); • (Z k+1 , . . . , Z n ) = (W i , 1 ≤ i ≤ n + m : A i = 0, B i = 0, C i = 0); • (X i , i ∈ H 0 ) = (W i , 1 ≤ i ≤ n + m : A i = 0, B i = 1, C i = 0); • (X i , i ∈ H 1 ) = (W i , 1 ≤ i ≤ n + m : A i = 1, B i = 1, C i = 0), where (A i , B i , C i , W i ), 1 ≤ i ≤ n + m, are i.i.d. with A i ∼ B(π 1 ) (indicator of being a novelty), B i ∼ B(π B ) (indicator of being in the test sample), C i ∼ B(π C ) (indicator of being in the first NTS), for some proportions π A , π B , π C ∈ (0, 1) and W i | A i ∼ f 0 if A i = 0 and W i | A i = 1 ∼ f 1
, where f 0 is the density of P 0 and f 1 is the common density of all P i , i ∈ H 1 .

Under Assumption 11, the sample size n + m (number of trials) is fixed while the sample sizes k, , m and m 1 are random. Also, we easily see that, conditionally on A, B, C, the sample (Z 1 , . . . , Z n+m ) satisfies Assumptions 4 and 5 with

f i = f 1 for i ∈ H 1 .
As a result, under Assumption 11, and letting

L i = 1 -(1 -A i )(1 -B i )C i we have (Z 1 , . . . , Z k ) = (W i , 1 ≤ i ≤ n + m : L i = 0), and (Z k+1 , . . . , Z n+m ) = (W i , 1 ≤ i ≤ n + m : L i = 1) with (W i , L i ) 1≤i≤n+m i.i.d., L i ∼ B(1 -(1 -π A )(1 -π B )π C ) and W i | L i = 0 ∼ f 0 and W i | L i = 1 ∼ (1 -π)f 0 + πf 1 ,
for some π ∈ (0, 1). Also, the knowledge of the samples (Z 1 , . . . , Z k ) and (Z k+1 , . . . , Z n+m ) is equivalent to the knowledge of (W i , L i ) 1≤i≤n+m . This means that, under Assumption 11, the score function (2.7) is based on (W i , L i ) 1≤i≤n+m , which is a standard classification setting where the covariates and labels are jointly i.i.d..

A.6 Details of simulation studies in Section 6

A.6.1 Methods First, we describe the score functions used in each version of AdaDetect.

• AdaDetect oracle: the oracle score function r defined in (2.19).

• AdaDetect parametric and AdaDetect KDE: g(x) = f γ (x)/ f 0 (x), where f γ is a density estimator of f γ (2.18) computed on mixed sample (Z k+1 , . . . , Z n+m ) and f 0 is a density estimator of f 0 based on (Z 1 , . . . , Z k ). For AdaDetect parametric, f0 is estimated by the Ledoit-Wolf method and fγ is estimated by a two-component mixture of Gaussians via an expectation-maximization (EM) algorithm with 100 random restarts. For AdaDetect KDE, they are given by non-parametric Gaussian kernel density estimators (KDE).

• AdaDetect SVM: g is obtained by minimizing the empirical risk (2.24) with the hinge loss, λ = 1 and a suitable regularization with the cost parameter C set to 1; see [START_REF] Hastie | The elements of statistical learning: data mining, inference, and prediction[END_REF].

• AdaDetect RF: g is obtained by random forest with the maximum depth 10;

• AdaDetect NN: g is obtained by minimizing the cross entropy loss (2.24) with λ = 1 and the NN function class with 1 hidden layer, 100 neurons, and the ReLU activation function.

• AdaDetect NN cv: AdaDetect NN with the number of hidden layers and the number of neurons per layer chosen by the cross-validation procedure described in Section 2.4.5.

They are compared to several existing methods:

• SC parametric and SC KDE: the procedure of [START_REF] Sun | Oracle and adaptive compound decision rules for false discovery rate control[END_REF] based on local FDR estimates i = π0 f0 (X i )/ f (X i ), where the densities are estimated by the same methods for AdaDetect parametric and SC KDE, respectively, except that f0 is based on the whole NTS Y = (Y 1 , . . . , Y n ) and f is only based on the test sample X = (X 1 , . . . , X m ).

We set π0 = 1 for a fair comparison with the non-adaptive versions of AdaDetect;

• CAD SVM and CAD IForest: the conformal anomaly detection procedure proposed by [START_REF] Bates | Testing for outliers with conformal p-values[END_REF] based on one-class SVM and Isolation Forest, respectively. In this section, we report results for additional experiments in more challenging settings for AdaDetect.

A.6.2 Additional experiments with varying k and

• Small sample sizes: m = 200, with k = 4m and = m as before. The results are reported in Table A.1.

• Small null sample sizes with n < m: n = m/2, with k = m/4 and = m/4. The results are reported in Table A.2.

• Sparse novelties: we set m 1 /m = 2%, with m = 1000, k = 4m and = m as before.

The results are reported in Table A.3.

As in Section 2.6.2, we set the target FDR level α = 0.1 and report the mean value and the standard deviation (in brackets) over 100 runs. We only highlight in bold the best-performing method if its FDR is below α. TDR CAD SVM 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) CAD IForest 0.10 (0.20) 0.04 (0.13) 0.13 (0.31) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) AdaDetect parametric 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) AdaDetect KDE 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) AdaDetect SVM 0.10 (0.27) 0.11 (0.26) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0. • The procedure C PI α is nearly optimal in the following sense: for any other procedure C = ( Z, S) that controls the mFMR at level α,

n -1 E θ * (| S PI α |) ≥ n -1 E θ * (|S|) -∆ n ( ).
Before proving this result (which will be done in the next subsections), let us first show that Theorem 31 implies Theorems 16 and 17.

Proof of Theorem 16 By Lemma 32 below, ∆ n ( ) tends to 0 when n tends to infinity and tends to 0. Moreover, by consistency of θ, η( , θ * ) tends to 0 for all > 0. This implies the result.

Lemma 32. Under Assumption 6, we have lim δ→0 W T (δ) = 0, lim v→0 W t * ,α (v) = 0. Under Assumption 7, we have lim →0 W ( ) = 0. Under both assumptions, we have lim →0 Ψ( ) = 0.

Proof. The only non-trivial fact is for W t * ,α (v). Assumption 6 and Lemma 36 provide that t → mFMR * t is a one-to-one continuous increasing map from (t * (α c ), t * ( ᾱ)) to (α c , ᾱ). Hence, for α ∈ (α c , ᾱ), β → t * (α + β) is continuous in 0 and lim v→0 W t * ,α (v) = 0.

Proof of Theorem 17 By using Assumption 8 (with the notation therein) and Lemma 33 below, we have 

B.1.2 An optimal procedure

We consider in this section the procedure that serves as an optimal procedure in our theory. For t ∈ [0, 1], let C * t = ( Z * , S * t ) be the procedure using the Bayes clustering Z * (3.6) and the selection rule S * t = {i ∈ {1, . . . , n} : T * i < t}. Let us consider the map t ∈ [0, 1] → mFMR(C * t ) and note that mFMR(C * t ) = mFMR * t as defined by (3.12). Lemma 36 below provides the key properties for this function. Definition 6. The optimal procedure at level α is defined by C * t * (α) where t * (α) is defined by (3.13).

Note that the optimal procedure is not the same as the oracle procedure defined in Section 3.3.1, although these two procedures are expected to behave roughly in the same way (at least for a large n).

Under Assumption 6, Lemma 36 entails that, for α > α c , mFMR(C * t * (α) ) ≤ α. Hence, C * t * (α) controls the mFMR at level α. In addition, it is optimal in the following sense: any other mFMR controlling procedure should select less items than C * t * (α) . Finally, we make use of the concentration of the empirical processes L 0 (θ, t), L 1 (θ, t), and M 0 (θ, t), uniformly with respect to θ ∈ D (where D is defined in Assumption 10). Thus, we define the following events, for δ > 0 (recall s * defined by (B.11)): Note that the following holds: Γ 0,δs * /2,t ∩ Γ 1,δs * /2,t ⊂ Γ δ,t .

(B.13) Indeed, on the event Γ 0,δs * /2,t ∩ Γ 1,δs * /2,t , provided that L 1 (θ, t) ≥ s * , we have L 0 (θ, t)

L 1 (θ, t) -L 0 (θ, t) L 1 (θ, t) ≤ L 0 (θ, t) -L 0 (θ, t) L 1 (θ, t) + L 0 (θ, t) 1

L 1 (θ, t) - 1 L 1 (θ, t)
≤ (δs * /2)/s * + (δs * /2)/s * = δ, because L 0 (θ, t) ≤ L 1 (θ, t). This proves the desired inclusion.

B.1.4 Proof of Theorem 31

Let us now provide a proof for Theorem 31.

Step 1: bounding t(α) w.r.t. t * (α) Recall (3.13), (B.12) and (B.11). In this part, we only consider realizations on the event Ω . Let β ∈ [ 2α+αc 3 , α+ By using again Lemma 38, we have L(θ * , t * (β)) -3Ψ( )/s * ≤ L( θσ , t * (β)) ≤ L(θ * , t * (β)) + 3Ψ( )/s * .

Given that L(θ * , t * (β)) = mFMR(C * t * (β) ) = β (see Lemma 34 (i)), it follows that for γ = γ( , δ) = δ + 4Ψ( )/s * , on the event Γ δ,t * (α-γ) ∩ Γ δ,t * (α+γ) , L( θσ , t * (α -γ)) ≤ α, L( θσ , t * (α + γ)) > α, where we indeed check that α -γ ≥ 2α+αc 3 and α + γ ≤ α+ ᾱ 2 for δ and smaller than some threshold only depending on θ * and α. In a nutshell, we have established Γ δ,t * (α-γ) ∩ Γ δ,t * (α+γ) ∩ Ω ⊂ t * (α -γ) ≤ t(α) ≤ t * (α + γ) .

(B.14)

Step 1 Λ α,δ, + P((Λ α,δ, ) c ).

Now using a concentration argument on the event Λ α,δ, ⊂ Γ 1,δ,t * (α-γ) ∩ Υ 0,δ,t * (α+γ) , we have This entails FMR( Ĉ) ≤ L 0 (θ * , t * (α -γ)) + W T (W t * ,α (2γ)) + 3Ψ( ) + δ L 1 (θ * , t * (α -γ)) -Ψ( ) -δ + P((Λ α,δ, ) c ) ≤ L 0 (θ * , t * (α -γ)) L 1 (θ * , t * (α -γ)) -Ψ( ) -δ + (s * /2) -1 (W T (W t * ,α (2γ)) + 3Ψ( ) + δ) + P((Λ α,δ, ) c ), by choosing , δ smaller than a threshold (only depending on θ * and α) so that L 1 (θ * , t * (αγ)) -Ψ( ) -δ ≥ s * /2. Now using L 0 (θ * , t * (α -γ)) = (α -γ)L 1 (θ * , t * (α -γ)), we have L 0 (θ * , t * (α -γ)) L 1 (θ * , t * (α -γ)) -Ψ( ) -δ = (α -γ) 1 + Ψ( ) + δ L 1 (θ * , t * (α -γ)) -Ψ( ) -δ ≤ α 1 + (s * /2) -1 (Ψ( ) + δ) .

This leads to FMR( Ĉ) ≤ α + (2/s * ) [W T (W t * ,α (2δ + 8Ψ( )/s * )) + 4Ψ( ) + 2δ] + P((Λ α,δ, ) c ), which holds true for δ, smaller than a threshold only depending on θ * and α.

Step 3: upper-bounding the mFMR We apply a similar technique as for step 2. By using Lemma 35 and (B.14), mFMR( Ĉ) ≤ E θ * [ M 0 ( θσ , t(α)) 1 Λ α,δ, ] + P((Λ α,δ, ) c ) E θ * [ L 1 ( θσ , t(α)) 1 Λ α,δ, ] ≤ E θ * [ M 0 ( θσ , t * (α + γ)) 1 Λ α,δ, ] + P((Λ α,δ, ) c )

E θ * [ L 1 ( θσ , t * (α -γ)) 1 Λ α,δ, ]
. Now using a concentration argument on Λ α,δ, ⊂ Γ 1,δ,t * (α-γ) ∩ Υ 0,δ,t * (α+γ) , we have mFMR( Ĉ) ≤ E θ * [(M 0 ( θσ , t * (α + γ)) + δ) 1 Λ α,δ, ] + P((Λ α,δ, ) c ) E θ * [(L 1 ( θσ , t * (α -γ)) -δ) 1 Λ α,δ, ] ≤ M 0 (θ * , t * (α + γ)) + 3Ψ( ) + δ + P((Λ α,δ, ) c ) L 1 (θ * , t * (α -γ)) -Ψ( ) -δ -P((Λ α,δ, ) c ) = L 0 (θ * , t * (α + γ)) + 3Ψ( ) + δ + P((Λ α,δ, ) c ) L 1 (θ * , t * (α -γ)) -Ψ( ) -δ -P((Λ α,δ, ) c ) , by using Lemma 38 and that M 0 (θ * , t) = L 0 (θ * , t) by definition. Letting x = L 0 (θ * , t * (α + γ)) + 3Ψ( ) + δ, y = L 1 (θ * , t * (α -γ)) -Ψ( ) -δ and u = P((Λ α,δ, ) c ), we have obtained the bound (x + u)/(y -u), which has to be compared with the FMR bound (B.15), which reads x/y + u. Now, when y ∈ [0, 1], x ≥ 0, x/y ≤ 2, u/y ≤ 1/2, y -u ≥ s * /2, we have As a result, for , δ small enough, and P((Λ α,δ, ) c ) ≤ s * /4, we obtain the same bound as for the FMR, with P((Λ α,δ, ) c ) replaced by (10/s * )P((Λ α,δ, ) c ).

Step 4: lower-bounding the selection rate In Step 3, when bounding the mFMR, we derived a lower bound for the denominator of the mFMR, that is, E θ * (| Ŝ|). It reads Step 5: concentration Finally, we bound P((Λ α,δ, ) c ) by using Lemma 39 with x = (1 + 2c) log n n (with c defined in Lemma 39). This gives for δ = 2x/s * , and n ≥ (2e) 3 P((Λ α,δ, ) c ) ≤ 5/n 2 + P(Ω c ).

B.2 Proofs of lemmas

Proof of Lemma 13 The clustering risk of Z is given by

R( Z) = E θ * min σ∈[Q] E θ * n -1 n i=1 1{Z i = σ( Ẑi )} X = E θ * min σ∈[Q] n -1 n i=1 P θ * (Z i = σ( Ẑi ) | X) ≥ E θ * min Z n -1 n i=1 P θ * (Z i = Ẑi | X) ,
where, by independence, the minimum in the lower bound is achieved for the Bayes clustering. Thus, R(

Z) ≥ n -1 n i=1 E θ * (T * i ). Moreover, n -1 n i=1 E θ * (T * i ) ≥ R( Z * ), since R( Z * ) = E θ * min σ∈[Q] n -1 n i=1 P θ * (Z i = σ( Ẑ * i ) | X) ≤ E θ * n -1 n i=1 P θ * (Z i = Ẑ * i | X) .
Thus, min Z R( Z) = R( Z * ) and the proof is completed.

Proof of Lemma 14 Following the reasoning of the proof of Lemma 13, we have

FMR θ * (C) = E θ * min σ∈[Q] E θ * i∈S 1{Z i = σ( Ẑ * i )} max(|S|, 1) X = E θ * i∈S T * i max(|S|, 1
) .

Proof of Lemma 15 By definition, we have

FMR( C PI α ) = E θ *   min σ∈[Q] E θ *   n i=1 1 Z i =σ( ẐPI i (X)) 1{i ∈ ŜPI (X)} max(| ŜPI (X)|, 1) X     ,
so that (3.9) follows by a direct integration w.r.t. the latent variable Z.

Proof of Lemma 34 By Lemma 36, we have that mFMR(C * t ) is monotonous in t and continuous w.r. 1 i∈S * t * (α) (X) -1 i∈S(X) (T * i -t * (α) + α -α) ≤ 0

and so Proof of Lemma 35 First, we have by definition q (X i , θ σ ) = σ(q) (X i , θ) and thus T (X i , θ) = T (X i , θσ ) by taking the maximum over q. This gives S σ = S and yields the first equality. Next, we have on Ω ,

E θ * n i=1 1 i∈S * t * (α) (X) -1 i∈S(X) (T * i -α) ≤ (t * (α) -α) E θ *
min σ ∈[Q] E θ * ε S (σ ( Z), Z) X ≤ E θ * ε S (σ( Z), Z) X ≤ E θ * ε S σ (σ( Z), Z) X ,
still because S σ = S. Now observe that, E θ * ε S σ (σ( Z), Z) X = 1 n n i=1 P θ * (Z i = σ(q(X i , θ)) X) 1 T (X i , θσ )< t(α)

= 1 n n i=1
(1 - * i,σ(q(X i , θ)) ) 1 T (X i , θσ )< t(α)

= M 0 ( θσ , t(α)), because σ(q(X i , θ)) = q(X i , θσ ). This proves the result.

B.3 Auxiliary results

Lemma Proof. First, (B.17) is obtained similarly than (3.8). For proving (i), let t 1 , t 2 ∈ [0, 1] such that t 1 < t 2 . We show that mFMR(C * t 1 ) ≤ mFMR(C * t 2 ). Remember here the convention 0/0 = 0 and that mFMR(C * t ) = E θ * (T (X, θ * ) | T (X, θ * ) < t). First, if P θ * (T (X, θ * ) < t 1 ) = 0 then the result is immediate. Otherwise, we have that mFMR(C * t 1 ) -mFMR(C * t 2 ) = (P θ * (T (X, θ * ) < t 1 )) -1 and has an expectation equal to 0. Hence, given that T (X, θ * ) is continuous, we derive that almost surely P θ * (T (X, θ * ) < t 2 ) 1 T (X,θ * )<t 1 = P θ * (T (X, θ * ) < t 1 ) 1 T (X,θ * )<t 2 , that is, P θ * (t 1 ≤ T * i < t 2 ) = 0, which is excluded by Assumption 6. This entails mFMR(C * t 1 ) < mFMR(C * t 2 ). For proving (ii), let t > 0. If P θ * (T (X, θ * ) < t) = 0 then the result is immediate. Otherwise, we have that mFMR(C * t ) -t = (P θ * (T (X, θ * ) < t)) -1 E θ * ((T (X, θ * ) -t) 1{T (X, θ * ) < t}). The latter is clearly not positive, and is moreover negative because (T (X, θ * )-t) 1{T (X, θ * ) < t} ≤ 0 and P θ * (T (X, θ * ) = t) = 0 by Assumption 6.

For proving (iii), let ψ 0 (t) = E θ * (T (X, θ * ) 1{T (X, θ * ) < t}) and ψ 1 (t) = P θ * (T (X, θ * ) < t), the numerator and denominator of mFMR(C * t ) = mFMR * t , respectively. ψ 1 (t) is nondecreasing in t, with ψ 1 (0) = 0 and ψ 1 (1) > 0. Moreover, ψ 0 and ψ 1 are both continuous under Assumption 6. Then denote by t c the largest t s.t. ψ 1 (t) = 0. ψ 1 is zero on [0, t c ] then strictly positive and non-decreasing on (t c , 1], and we have that t c = t * (α c ). Hence, mFMR(C * t ) is zero on [0, t c ] then strictly positive and continuous on (t c , 1].

Remark 17. With the notation of the above proof, t → mFMR(C * t ) may have a discontinuity point at t c since for t n → tn>tc t c , as ψ 1 (t n ) → 0, one does not necessarily have that mFMR(C * t ) → 0.

Lemma 37 (Expression of plug-in procedure as a thresholding rule). For any α ∈ (0, 1), let us consider the plug-in procedure C PI α = ( Z PI , S PI α ) defined by Algorithm 4 and denote K = | S PI α | the maximum of the k ∈ {0, . . . , n} such that max(k, 1) -1 k j=1 T(j) ≤ α for Ti = 1-max q q (X i , θ), 1 ≤ i ≤ n. Consider also t(α) defined by (B.12). Let Assumption 6 be true and consider an estimator θ satisfying Assumption 10. Then it holds that t(α) = T(K+1) and S PI α = {i ∈ {1, . . . , n} : Ti < t(α)}.

Proof. If T(K) < T(K+1) then the result is immediate. Thus it suffices to show that T(K) = T(K+1) occurs with probability 0. From Assumption 10 (with the countable set D defined therein), we have

P θ * ( T(K) = T(K+1) ) ≤ P θ *   i =j { Ti = Tj }   ≤ P θ *   θ∈D i =j {T (X i , θ) = T (X j , θ)}   .
Now, the right term is a countable union of events which are all of null probability under Assumption 6. The result follows.

Lemma 38. We have for all θ ∈ Θ, where R n (F ) denotes the Rademacher complexity of F , see (B.30). We now bound each R n (F ) by using Lemma 40:

E R n (F L 0 ) ≤ E R n (F L 1 ) + E R n ({T (., θ), θ ∈ Θ}) ≤ E R n (F L 1 ) + Q q=1 E R n ({ q (., θ), θ ∈ Θ}); (B.27) E R n (F L 1 ) ≤ Q q=1 E R n ({1{ q (., θ) < 1 -t}, θ ∈ Θ}); (B.28) E R n (F M 0 ) ≤ E R n (F L 1 ) + E R n ({U (., θ), θ ∈ Θ}),
where for (B.27) and (B.28), we used that T (., θ) = 1 -max q q (., θ) and 1{T (., θ) ≤ t} = 1 -Q q=1 1{ q (., θ) < 1 -t} and the fact that the variables q (X i , θ) are continuous by Assumption 6. Similarly, we have U (., θ) = Q q=1 q (., θ * ) k =q 1{ q (., θ) ≥ k (., θ)}. Hence, Lemma 40 once again entails that E R n ({U (., θ), θ ∈ Θ})

≤ Q q=1 Q k=1,k =q E R n ({1{ q (., θ) -k (., θ) ≥ 0}, θ ∈ Θ}) + Q q=1 E R n ({ q (., θ), θ ∈ Θ}). (B.29)
To bound both E R n ({ q (., θ), θ ∈ Θ}) and E R n ({1{ q (., θ) < 1 -t}, θ ∈ Θ}), we use the results of [START_REF] Baraud | Bounding the expectation of the supremum of an empirical process over a (weak) vc-major class[END_REF] (more specifically the proof of Theorem 1 therein), to obtain that they are bounded by

V log 2en V √ 2 √ n + 4 V log 2en V 1 n ≤ 7 V log n n ,
provided that V (log n)/n ≤ 1 and for n ≥ (2e) 3 . Similarly, E R n ({1{ q (., θ)k (., θ) ≥ 0}, θ ∈ Θ}) is bounded by

V -log 2en V - √ 2 √ n + 4 V -log 2en V - 1 n ≤ 7 V - log n n ,
V -(log n)/n ≤ 1 and for n ≥ (2e) 3 . Combining this with what is above entails

E R n (F L 1 ) ≤ 7Q V log n n E R n (F L 0 ) ≤ 14Q V log n n E R n (F M 0 ) ≤ 14Q V log n n + 7Q 2 V - log n n .
In particular, all expectations are upper-bounded by c log n n , which leads to the result.

Lemma 40. If F is a class of indicator functions and G is a class of functions from R d to [0, 1], we have

E R n (F • G) ≤ E R n (F) + E R n (G) E R n (max(F, G)) ≤ E R n (F) + E R n (G),
where we denoted F • G = {f g, f ∈ F, g ∈ G} and max(F, G) = {f ∨ g, f ∈ F, g ∈ G}.

case.

Let us now check Assumptions 7 and 8. Assumptions 7 and 8 (i) follow from Result 2.1 in [START_REF] Melnykov | On the distribution of posterior probabilities in finite mixture models with application in clustering[END_REF].

As for Assumption 8 (ii), from (B.31), we only have to show that the function t ∈ (0, 1) → ∂ ∂t Φ log(1/t-1)-α * β * is uniformly bounded by some constant C = C(α * , β * ), for any α * ∈ R and β * > 0. A straightforward calculation leads to the following: for all t ∈ (0, 1), Consider now t 0 = t 0 (α * , β * ) ∈ (0, 1/2) such that ( log(1/t-1)-α * β *

∂
) 2 ≥ 2 log(1/t) for all t ∈ (0, t 0 ). It is clear that the right-hand-side of (B.32) is upper-bounded by

1 β * √
2π(1-t 0 ) on t ∈ (0, t 0 ). Similarly, let t 1 = t 1 (α * , β * ) ∈ (1/2, 1) such that ( log(1/t-1)-α * β * ) 2 ≥ 2 log(1/(1 -t)) for all t ∈ (t 1 , 1). It is clear that the right-hand-side of (B.32) is upper-bounded by

1 β * √ 2πt 1
on t ∈ (t 1 , 1). Finally, for t ∈ [t 0 , t 1 ], the upper-bound

1 β * √ 2πt 0 (1-t 1 )
is valid. This proves that Assumption 8 (ii) holds.

Let us now finally turn to Assumption 8 (iii). Lemma 36 ensures that t ∈ (0, t * (ᾱ)) → mFMR * t is continuous increasing. Hence, t * : β ∈ (0, ᾱ) → t * (β) defined in (3.13) is the inverse of this function and is also continuous increasing. It is therefore differentiable almost everywhere in (0, ᾱ), so everywhere in (0, ᾱ)\E where E is a set of Lebesgue measure 0. By taking α in (0, ᾱ)\E, this ensures that t * is differentiable in α and thus that Assumption 8 (iii) holds.

Lemma 47. In the multivariate gaussian case with Q = 2 and Σ 1 = Σ 2 , we have that V ≤ 2d + 4 and V -≤ 2d + 4.

Proof. In that case, we have that (see the proof of Lemma 46)

{ q (x, θ) ≤ u, x ∈ R d } = {a t θ x + b θ ≥ g(u), x ∈ R d }.
Since the VC dimension of the vector space of real-valued affine functions is bounded by d + 1 (see, e.g., Exercice 3.19 in [START_REF] Mohri | Foundations of Machine Learning[END_REF]). We obtain the result by applying the usual bound on the VC dimension of the union of two classes with bounded VC dimension (see, e.g., Exercice 3.24 in [START_REF] Mohri | Foundations of Machine Learning[END_REF]).
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 12 Figure 1.2: Illustration of the novelty detection task on the MNIST data set.

Figure 1

 1 Figure 1.4: A brief look at machine learning tasks.

Figure 1

 1 Figure 1.5: The novelty detection task.

  Figure 1.6: The clustering task.

Figure 1

 1 Figure 1.8: A pollination network (Seo and Hutchinson, 2018): nodes represent pollinator or plant species, edges denote interactions (the width indicates the frequency).

Figure 1 Figure 1

 11 Figure 1.9: A metabolic network (Weber Zendrera et al., 2019): nodes represent molecules, edges denote chemical reactions. The right panel displays a zoom of the network.

Figure 1

 1 Figure 1.11: Data from Gaussian mixtures with three components (n = 200), in a fairly separated case (panel (a)) and an ambiguous case (panel (b)). In each panel, the left part displays the true clustering, while the right part illustrates the new procedure (plug-in procedure at level α = 10%), that does not cluster all items. The points not classified are depicted by grey crosses. Red circles indicate erroneous labels.
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 22 Figure 2.2: A schematic illustration of AdaDetect: •/• stands for a test/null observation, respectively. The vertical dashed line corresponds to the largest threshold t for which FDP(t) ≤ α and the • circled in blue correspond to the discoveries of AdaDetect procedure.

Figure 2 .

 2 Figure 2.3: FDR and TDR for Storey-BH and Storey-AdaDetect (both with oracle test statistics/scores) in Example 1 with varying correlation ρ ∈ [0, 1]. The dimension d = 1 in the two left panels and d = 10 in the two right panels. In all settings, m = 100, n = = 1000, α = 0.2, π 0 = 0.9, and λ = 500/1001.

Figure 2 .

 2 Figure 2.4: Plot of g * and g in different settings (rows) with different loss functions (•, •) and function classes G (with default parameters in scikit-learn). In all settings, m = 1000, m 0 = 500, m 1 = 500, n = 3000, and k = 2000. The top two rows correspond to d = 1 and the bottom two rows correspond to d = 2. In all cases, P 0 = N (0, I d ). For the first and third rows, P 1 = N ((2, . . . , 2), I d ) (one-sided alternatives); for the second and fourth rows, P 1 = 0.5N ((2, . . . , 2), I d ) + 0.5N ((-2, . . . , -2), I d ) (two-sided alternatives).

Figure 2 .

 2 Figure 2.5: The pipeline to compute score function g υ for AdaDetect cv. Same pictural conventions as in Figure 2.2.

  α) -TDR(AdaDetect * α )} ≥ 0, for any fixed α > α.

Figure 2 .

 2 Figure 2.6: Gaussian setting. FDR (top) and TDR (bottom) as a function of d. The dashed line indicates the target level.

Figure 2 .

 2 Figure 2.7: Non-gaussian (beta) setting. FDR (top) and TDR (bottom) as a function of d. The dashed line indicates the target level.

  Figure 2.8: Estimated FDR (left) and TDR (right) as a function of n, the size of the NTS, with m = 100, m 1 = 50 and α = 0.05. All methods shown in the plot provably control the FDR at level π 0 α = 0.025 (except "Emp BH current").
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Figure 3

 3 Figure 3.1: Data from Gaussian mixtures with three components (n = 200), in a fairly separated case (panel (a)) and an ambiguous case (panel (b)). In each panel, the left part displays the true clustering, while the right part illustrates the new procedure (plug-in procedure at level α = 10%), that does not cluster all items. The points not classified are depicted by grey crosses. Red circles indicate erroneous labels.
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 32 Figure 3.2: FMR (left panel) and selection frequency (right panel) as a function of the mean separation . Known mixture proportions and covariances setting with Q = 2, n = 100, d = 2, α = 0.1.

Figure 3

 3 Figure 3.3: FMR (left panel) and selection frequency (right panel) as a function of: (a) the mean separation; (b) the sample size n; (c) the nominal level α. Diagonal covariances setting with Q = 2, d = 2. Default settings are: n = 200, α = 0.1, = √ 2.

Figure 3

 3 Figure 3.4: FMR (left panel) and selection frequency (right panel) as a function of the nominal level α. Diagonal covariances setting with Q = 3, d = 2, = 3.

Figure 3

 3 Figure 3.5: FMR (left panel) and selection frequency (right panel) as a function of the nominal level α. Diagonal covariances setting with Q = 2, d = 10, = √ 2.

  Figure 3.6: Comparison of the clustering result using t-mixture modelling with ground truth labels on the WDBC dataset, restricted to the variables radius and texture, with and without selection. With the parametric bootstrap procedure applied at α = 5%, the FMR w.r.t. the ground truth labels is of 3% versus 14% without selection.

Figure 3

 3 Figure 3.7: Comparison of the clustering result using PCA and t-mixture modelling with ground truth labels on the WDBC dataset, restricted to the first ten variables, with and without selection. With the parametric bootstrap procedure applied at α = 5%, the FMR w.r.t. the ground truth labels is of 10% versus 14% without selection.
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  view link prediction as a binary classification problem. These approaches use the graph structure to produce edge embeddings, i.e. data objects representing an edge, that are fed to a classifier as learning examples along with labels corresponding to existence or non-existence. The methods introduced in Geifman and El-Yaniv (2017); Angelopoulos et al. (2021); Rava et al. (2021); Jin and Candès (2022) in the context of general binary classification all provide finite-sample guarantees, but the approaches and the type of guarantees vary. To be more precise, the algorithms in Rava et al. (2021); Jin and Candès (2022) control the FDR and are very close to the conformal-based approach of Bates et al. (2023), whereas Geifman and El-Yaniv (2017); Angelopoulos et al. (2021) consider controlling the mis-classification error for a single new point and use certain bounds of the empirical risk with respect to the true risk.

Figure 4

 4 Figure 4.1: Illustration of the learning problem. The left panel shows the true complete graph A * , which is not observed. The right panel describes our observation: the true edges (1, 2),(1, 4),(2, 3),(2, 5), (3, 5) are observed, along with the non-existent edges (1, 3),(1, 5), (4, 5) but the information concerning the pairs(2, 4) and (3, 4) is missing. We aim to decide for (2, 4) and (3, 4) whether there is a true edge or not.

FigureFigure 4 . 2 :

 42 Figure 4.2: Illustration of the notations introduced in Section 4.2.1. The test edges D test (left panel) are divided into two subsets (unobserved): true edges H 1 , and false edges H 0 (right panel).

Figure 4 . 4 :

 44 Figure 4.4: Example of K-hop (K=2) neighborhood of (i, j) (in color), for when (a) i and j are connected and (b) i and j are not connected.

Figure 4 . 5 :

 45 Figure 4.5: Sketch of the procedure proposed in this work.

  Figure 4.6: Illustration of the SBM model considered in Section 4.3.1. Nodes represent classes, edges indicate connection patterns between classes.

  Figure 4.7: FDR (left panel) and TDR (right panel) as a function of the nominal level α. Here π miss = 10%, |H 0 |/|H 1 | = 50%, and | D cal | = 5000. In (a) for the scoring function we use Common Neighbors and in (b) we use SEAL (Zhang and Chen, 2018). The bands indicate the standard deviation.

  construct training samples D(Z) and test samples D test (Z) as in Section 4.3.1 and set | D cal | = 5000, except for the Florida Food web dataset where we use | D cal | = 1000 because of its smaller size. The FDR and TDR are displayed in Table

  and α ∈ (0, Φ(1)), η ∈ [0, 1] with 4η(A + B e -bΦ -1 (α) ) ≤ 1 and ηCe (b+1) √ 2 log(m/(α(r∨1))) /(2e) ≤ 1, ζ r (η) ≤ Cηe (b+1) √ 2 log(m/(α(r∨1))) , (A.28) for C = C(A, B, µ, µ 0 ) = 8e(A + B ) 2 /(bB ) with B = Be b 2 /2 and b = µ -µ 0 .

  To examine the effect of k and , we study the performance of AdaDetect RF with AdaDetect oracle in the simple setting where P 0 = N (0, I d ) and P 1 = N (µ, I d ) with d = 4 and µ = (

  Figure A.1a presents the results for k = m = 1000 and varying . Interestingly, the TDR is not monotone in . This is because a small makes p-value inaccurate while a large dilutes the signal in the mixed sample (X k+1 , . . . , X m+n ) and degrades the quality of classificationbased score function. For = m = 1000 and varying values of k, a similar pattern is observed in Figure A.1b. This suggests that an imbalanced classification problem may arise due to the presence of extreme values of k.

  Figure A.1: FDR and TDR as a function of (panel (a)) and k (panel (b)). The dashed line indicates the nominal level.

∆

  n ( ) = 2 (W T (W t * ,α (2δ n + 8Ψ( )/s * )) + 4Ψ( ) + 2δ n ) ≤ 2C 2 C 3 2δ n + (8/s * ) C 1 (C 2 + 1) √ + 8 C 1 (C 2 + 1) √ + 4δ n = 8 C 1 (C 2 + 1)(1 + 2C 2 C 3 ) √ /s * + 4(C 2 C 3 + 1)C log n/n/s * , because s * ≤ 1 and by definition of δ n . This gives (3.19) and (3.20) with A= 8 √ C 1 (C 2 + 1)(1 + 2C 2 C 3 )/s * 2 and B = 4(C 2 C 3 + 1)C/s * 2 .Lemma 33. Under Assumption 8, we have W ( )≤ C 1 , W T (δ) ≤ C 2 δ, W t * ,α (v) ≤ C 3 v and Ψ( ) ≤ √ C 1 (C 2 + 1)√ for , δ, v small enough.

Lemma 34 (

 34 Optimality of C * t * (α) ). Let Assumption 6 be true and choose α ∈ (α c , ᾱ]. Then the oracle procedure C * t * (α) = ( Z * , S * t * (α) ) satisfies the following:Lemma 35. For the permutation σ in Ω realizing θσ -θ * 2 < , we have on the event Ω the following relations:| S| = L 1 ( θσ , t(α)); min σ ∈[Q] E θ * ε S (σ ( Z), Z) X ≤ M 0 ( θσ , t(α)); min σ ∈[Q] E θ * ε S (σ ( Z), Z)max(| S|, 1) X ≤ M( θσ , t(α)).

Γ

  0,δ,t = sup θ∈D L 0 (θ, t) -L 0 (θ, t) ≤ δ ; Γ 1,δ,t = sup θ∈D L 1 (θ, t) -L 1 (θ, t) ≤ δ ; Γ δ,t = θ,t)≥s * L(θ, t) -L(θ, t) ≤ δ δ,t = sup θ∈D M 0 (θ, t) -M 0 (θ, t) ≤ δ .

ᾱ 2 ]

 2 . By Lemma 38, we haveL 1 ( θσ , t * (β)) ≥ L 1 (θ * , t * (β)) -Ψ( θσ -θ * 2 ) ≥ L 1 (θ * , t * ((2α + α c )/3)) -Ψ( ), because t * (β) ≥ t * ( 2α+αc 3 ) since t * (•)is non decreasing by Lemma 36. Hence L 1 ( θσ , t * (β)) ≥ s * for smaller than a threshold only depending on θ * and α. Hence, we have on Γ δ,t * (β) that L( θσ , t * (β)) -δ ≤ L( θσ , t * (β)) ≤ δ + L( θσ , t * (β)).

FMR

  ( Ĉ) ≤ E θ * M 0 ( θσ , t * (α + γ)) + δ L 1 ( θσ , t * (α -γ)) -δ 1 Λ α,δ, + P((Λ α,δ, ) c ) ≤ M 0 (θ * , t * (α + γ)) + 3Ψ( ) + δ L 1 (θ * , t * (α -γ)) -Ψ( ) -δ + P((Λ α,δ, ) c ) = L 0 (θ * , t * (α + γ)) + 3Ψ( ) + δ L 1 (θ * , t * (α -γ)) -Ψ( ) -δ + P((Λ α,δ, ) c ), (B.15)by using Lemma 38 and that M 0 (θ * , t) = L 0 (θ * , t) for all t by definition. Now, using again Lemma 38, we haveL 0 (θ * , t * (α + γ)) ≤ L 0 (θ * , t * (α -γ)) + W T (t * (α + γ) -t * (α -γ))≤ L 0 (θ * , t * (α -γ)) + W T (W t * ,α (2γ))

  (x + u)/(y -u) ≤ x/y 1 -u/y + (2/s * )u ≤ x/y(1 + 2u/y) + (2/s * )u ≤ x/y + (10/s * )u.

n - 1

 1 E θ * (| Ŝ|) ≥ L 1 (θ * , t * (α -γ)) -Ψ( ) -δ -P((Λ α,δ, ) c ) ≥ L 1 (θ * , t * (α)) -W T (t * (α) -t * (α -γ)) -Ψ( ) -δ -P((Λ α,δ, ) c ) ≥ n -1 E θ * (|S * t * (α) |) -W T (W t * ,α (γ)) -Ψ( ) -δ -P((Λ α,δ, ) c ),by using (B.3) and (B.5). Now consider another procedure C = ( Z, S) that controls the mFMR at level α, that is, mFMR(C) ≤ α. By Lemma 34, we then have E θ * (|S * t * (α) |) ≥ E θ * (|S|).

  t. t on (t * (α c ), 1], thus for α ∈ (α c , ᾱ], mFMR(C * t * (α) ) = α which gives (i). For (ii), let C = ( Z, S) be a procedure such that mFMR(C) ≤ α. Let us consider the procedure C with the Bayes clustering Z * and the same selection rule S. Since C is based on a Bayes clustering, by the same reasoning leading to R( Z * ) ≤ R( Z) in Section 3.3.1, we have that mFMR(C ) ≤ mFMR(C) ≤ α with mFMRan argument similar to the proof of Theorem 1 in[START_REF] Cai | Covariate-assisted ranking and screening for largescale two-sample inference[END_REF]. By definition of S * t * (α) , we have thatn i=1 1 i∈S * t * (α) (X) -1 i∈S(X) (T * i -t * (α)) ≤ 0which we can rewrite as n i=1

  t * (α) (X) -1 i∈S(X) = (t * (α) -α)(E θ * (|S * t * (α) |) -E θ * (|S|)). On the other hand, mFMR(C * t * (α) ) = α together with (B.16) implies that relations above provides(t * (α) -α)(E θ * (|S * t * (α) |) -E θ * (|S|)) ≥ 0. Finally, noting that t * (α) -α > 0 since α = mFMR(C * t * (α) ) < t * (α) by (ii) Lemma 36, this gives E θ * (|S * t * (α) |) -E θ *(|S|) ≥ 0 and concludes the proof.

  θ, t) -L 1 (θ * , t)| ≤ Ψ( θ * -θ ); θ, t) -L 0 (θ * , t)| ≤ 2Ψ( θ * -θ ); (B.19) sup t∈[t * ((α+αc)/2),1] |L(θ, t) -L(θ * , t)| ≤ 3Ψ( θ * -θ )/s * ; (B.20) sup t∈[0,1] |M 0 (θ, t) -M 0 (θ * , t)| ≤ 3Ψ( θ * -θ ); (B.21) sup t∈[t * ((α+αc)/2),1] |M(θ, t) -M(θ * , t)| ≤ 4Ψ( θ * -θ )/s * ; (B.22)

  

  Remark 2. The intuition behind the BH procedure is as follows. When we reject all hypotheses with p-value ≤ t, then it is expected that m 0 t false rejections are made on average. Thus, the false discovery proportion can be estimated by m 0 t/|R(t)| where R(t) denotes the rejection set. Now, the quantity m 0 t/|R(t) cannot be computed, because m 0 is unknown, but mt/|R(t)| is a computable upper-bound. The BH procedure chooses the cut-off t in a data-driven way such that mt/|R(t)| ≤ α, while rejecting as much as possible under this constraint.

Algorithm 1 BH procedure Input: p-values (p j ) 1≤j≤m 1. Sort the p-values: p (1) ≤ • • • ≤ p (m) 2. Find the largest k such that p (k) ≤ αk/m 3. Reject the null hypotheses H (1) , . . . , H (k) (reject nothing if k = 0)

  . . , S n+m and closely

		Finite sample Adaptative	Learning	Unknown
	Method	FDR control	score	alternative	null
	Benjamini and Hochberg (1995)	yes	no	no	no
	Sun and Cai (2007)	no	yes	yes	yes
	Weinstein et al. (2017) Mary and Roquain (2022)	yes	no	no	yes
	Bates et al. (2023)	yes	yes	no	yes
	Yang et al. (2021)	yes	yes	yes	no
	AdaDetect (our approach)	yes	yes	yes	yes
	Table 2.1: Properties of different methods and the specific settings in which they can be
	applied for novelty detection.				
	related to the BONuS procedure. More recently, Rava et al. (2021) develop a method that is
	equivalent to applying the BH procedure on the conformal p-values to obtain a finite sample
	control of the false selection rate (FSR) for the task of (supervised) classification.

  g υ , apply AdaDetect with (Y k+1 , . . . , Y n , X 1 , . . . , X m ) being the test sample and (Y 1 , . . . , Y

k ) = (Y 1 , . . . , Y s ; Y s+1 , . . . , Y k ) being the NTS. Denote by r υ the number of rejections. 4. Choose υ ∈ argmax υ∈U r υ 5. Apply AdaDetect with score function g υ to the original problem (with (X 1 , . . . , X m ) being the test sample and (Y 1 , . . . , Y n

Table 2 .

 2 2: Summary of datasets.

		Shuttle Credit card KDDCup99 Mammography Musk MNIST
	Dimension d	9	30	40	6	166	28 × 28
	Feature type	Real	Real	Real, categorical	Real	Real	Real
	Inliers	45586	284315	47913	10923	5581	5842
	Novelties	3511	492	200	260	1017	5949

Table 2 .

 2 3: FDR (top) and TDR (bottom) of AdaDetect with different score functions on real datasets. The target FDR level is α = 0.1. We report the mean value and the standard deviation (in brackets) over 100 runs. The two best-performing methods are highlighted in bold.

		Shuttle	Credit card	KDDCup99	Mammography	Musk	MNIST
					FDR		
	CAD SVM	0.04 (0.08)	0.00 (0.00)	0.00 (0.00)	0.05(0.10)	0.00 (0.00)	0.00 (0.00)
	CAD IForest	0.10 (0.07)	0.09 (0.06)	0.08 (0.07)	0.05 (0.09)	0.00 (0.00)	0.00 (0.00)
	AdaDetect parametric	0.01 (0.05)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)
	AdaDetect KDE	0.07 (0.07)	0.05 (0.08)	0.02 (0.06)	0.08 (0.07)	0.02 (0.08)	0.00 (0.00)
	AdaDetect SVM	0.08 (0.04)	0.07 (0.05)	0.07 (0.05)	0.07 (0.06)	0.08 (0.06)	0.02 (0.03)
	AdaDetect RF	0.08 (0.04)	0.09 (0.04)	0.08 (0.04)	0.04 (0.10)	0.03 (0.06)	0.03 (0.07)
	AdaDetect NN	0.07 (0.05)	0.09 (0.04)	0.06 (0.07)	0.09 (0.06)	0.06 (0.09)	0.06 (0.08)
	AdaDetect cv NN	0.08 (0.04)	0.09 (0.05)	0.08 (0.11)	0.08 (0.05)	0.06 (0.08)	0.01 (0.03)
	CAD SVDD + CNN	-	-	-	-	-	0.03 (0.14)
	AdaDetect CNN	-	-	-	-	-	0.09 (0.05)
					TDR		
	CAD SVM	0.10 (0.18)	0.00 (0.00)	0.00 (0.00)	0.03 (0.06)	0.00 (0.00)	0.00 (0.00)
	CAD IForest	0.45 (0.09)	0.39 (0.22)	0.56 (0.35)	0.05 (0.09)	0.00 (0.00)	0.00 (0.00)
	AdaDetect parametric	0.02 (0.07)	0.00 (0.00)	0.00 (0.00)	0.07 (0.09)	0.00 (0.00)	0.00 (0.00)
	AdaDetect KDE	0.44 (0.33)	0.12 (0.20)	0.11 (0.24)	0.22 (0.17)	0.02 (0.06)	0.00 (0.00)
	AdaDetect SVM	0.85 (0.17)	0.68 (0.28)	0.66 (0.32)	0.43 (0.13)	0.40 (0.17)	0.52 (0.21)
	AdaDetect RF	0.99 (0.01)	0.85 (0.03)	0.99 (0.01)	0.48 (0.10)	0.04 (0.09)	0.03 (0.08)
	AdaDetect NN	0.76 (0.15)	0.80 (0.07)	0.52 (0.41)	0.47 (0.14)	0.11 (0.13)	0.01 (0.03)
	AdaDetect cv NN	0.84 (0.12)	0.76 (0.13)	0.74 (0.41)	0.42 (0.16)	0.13 (0.12)	0.01 (0.03)
	CAD SVDD + CNN	-	-	-	-	-	0.03 (0.15)
	AdaDetect CNN	-	-	-	-	-	0.93 (0.06)

method is AdaDetect with the two-class classifier based on the CNN, denoted by AdaDetect CNN.

  Algorithm 4 Plug-in procedure Input: Sample (X 1 , . . . , X n ), level α. 1. Compute an estimator θ of θ; 2. Run the oracle procedure given in Algorithm 3 with θ in place of θ * .

	Output: Plug-in procedure C	PI α = ( Z PI , S PI α ).
	Algorithm 5 Bootstrap procedure
	Input: Sample (X 1 , . . . , X n ), level α, number B of bootstrap runs.
	1. Choose a grid of increasing levels (α(k)) 1≤k≤K ;
	2. Compute FMR	B α(k) , 1 ≤ k ≤ K, according to (3.10);
	3. Choose k according to (3.11).
	Output: Bootstrap procedure C	boot

Table 4 .

 4 1: Summary of the datasets used. In case covariates are available, the dimension is indicated in parentheses.

		Cora	Yeast C. ele T. Albus Florida Food Web
	Number of nodes	2708	2375	297	1056	81
	Number of edges	5429	11693 2148	1433	442
	Covariates	yes (1433)	no	no	no	no
	Directed	no	no	no	yes	yes
	their class while being well connected with other classes. In other words, for many pairs of
	such nodes, it occurs that they share neighbors despite not being connected, so CN is not
	a good predictor in that case. This leads to NT failing to control the FDR in Figure 4.7a.

Table 4 .

 4 2: Link prediction performance on different data sets: FDR (top) and TDR (bottom). The nominal level is α = 0.1. We report the mean value and the standard deviation (in parentheses) over 100 runs. The best performance for each dataset is printed in bold. FDR exceedances are underlined.

		Cora	Yeast	C. ele	T. Albus	Florida Food Web
				FDR		
	CN-conf	0.019 (0.008)	0.026 (0.005)	0.088 (0.034)	0.030 (0.099)	0.020 (0.140)
	CN-NT	0.001 (0.005)	0.000 (0.001)	0.027 (0.043)	0.705 (0.245)	0.500 (0.000)
	CN-CVT	0.001 (0.004)	0.001 (0.002)	0.042 (0.050)	0.000 (0.000)	0.000 (0.000)
	SEAL-conf	0.096 (0.017)	0.098 (0.011)	0.102 (0.025)	0.096 (0.038)	0.097 (0.048)
	SEAL-NT	0.050 (0.009)	0.008 (0.003)	0.050 (0.023)	0.037 (0.029)	0.061 (0.071)
	SEAL-CVT 0.064 (0.007)	0.017 (0.006)	0.064 (0.030)	0.053 (0.045)	0.058 (0.062)
				TDR		
	CN-conf	0.476 (0.022)	0.794 (0.012)	0.339 (0.099)	0.000 (0.000)	0.000 (0.000)
	CN-NT	0.062 (0.020)	0.060 (0.004)	0.056 (0.013)	0.590 (0.490)	1.000 (0.000)
	CN-CVT	0.026 (0.051)	0.048 (0.073)	0.093 (0.066)	0.000 (0.000)	0.000 (0.000)
	SEAL-conf	0.757 (0.041) 0.956 (0.010) 0.603 (0.031) 0.495 (0.057)	0.783 (0.088)
	SEAL-NT	0.601 (0.033)	0.792 (0.056)	0.314 (0.151)	0.302 (0.051)	0.359 (0.169)
	SEAL-CVT 0.620 (0.036)	0.827 (0.030)	0.300 (0.177)	0.249 (0.114)	0.341 (0.223)

  +1) are the order statistics. Since (S k+1 , . . . , S n , S n+i ) are exchangeable conditionally on W i and almost surely mutually distinct, we have that (R 1 , . . . , R +1 ) |= W i , and (R 1 , . . . , R +1 ) ∼ Unif(S({1, . . . , n -k + 1})),

Table A .

 A 1: Same as Table2.3 for m = 200 (k = 4m, = m).

		Shuttle	Credit card	KDDCup99	Mammography	Musk	MNIST
				FDR		
	CAD SVM	0.04 (0.09)	0.00 (0.00)	0.00 (0.00)	0.02 (0.09)	0.00 (0.00)	0.00 (0.00)
	CAD IForest	0.07 (0.10)	0.05 (0.08)	0.07 (0.11)	0.01 (0.06)	0.00 (0.00)	0.00 (0.00)
	AdaDetect parametric	0.03 (0.09)	0.00 (0.00)	0.00 (0.00)	0.01 (0.08)	0.00 (0.00)	0.00 (0.00)
	AdaDetect KDE	0.05 (0.10)	0.01 (0.05)	0.00 (0.00)	0.02 (0.06)	0.00 (0.00)	0.00 (0.00)
	AdaDetect SVM	0.04 (0.10)	0.02 (0.07)	0.01 (0.04)	0.01 (0.06)	0.00 (0.00)	0.01 (0.03)
	AdaDetect RF	0.07 (0.09)	0.07 (0.09)	0.08 (0.09)	0.05 (0.11)	0.00 (0.00)	0.02 (0.12)
	AdaDetect NN	0.05 (0.09)	0.06 (0.09)	0.06 (0.14)	0.03 (0.09)	0.01 (0.10)	0.02 (0.10)
	AdaDetect cv NN	0.05 (0.08)	0.06 (0.08)	0.05 (0.11)	0.04 (0.10)	0.01 (0.10)	0.00 (0.00)
	CAD SVDD + CNN	-	-	-	-	-	0.01 (0.07)
	AdaDetect CNN	-	-	-	-	-	0.01 (0.10)
				TDR		
	CAD SVM	0.12 (0.22)	0.00 (0.00)	0.00 (0.00)	0.03 (0.10)	0.00 (0.00)	0.00 (0.00)
	CAD IForest	0.28 (0.28)	0.25 (0.32)	0.42 (0.47)	0.02 (0.11)	0.00 (0.00)	0.00 (0.00)
	AdaDetect parametric	0.13 (0.25)	0.00 (0.00)	0.00 (0.00)	0.01 (0.07)	0.00 (0.00)	0.00 (0.00)
	AdaDetect KDE	0.22 (0.33)	0.01 (0.07)	0.00 (0.00)	0.06 (0.17)	0.00 (0.00)	0.00 (0.00)
	AdaDetect SVM	0.16 (0.26)	0.03 (0.11)	0.06 (0.21)	0.01 (0.05)	0.00 (0.00)	0.02 (0.11)
	AdaDetect RF	0.57 (0.30)	0.71 (0.21)	0.97 (0.04)	0.11 (0.21)	0.00 (0.00)	0.00 (0.01)
	AdaDetect NN	0.31 (0.35)	0.46 (0.34)	0.28 (0.40)	0.07 (0.19)	0.00 (0.00)	0.01(0.05)
	AdaDetect cv NN	0.28 (0.36)	0.47 (0.33)	0.31 (0.39)	0.10 (0.22)	0.00 (0.00)	0.00 (0.00)
	CAD SVDD + CNN	-	-	-	-	-	0.00 (0.02)
	AdaDetect CNN	-	-	-	-	-	0.02 (0.10)

Table A .

 A 2: Same as Table2.3 for n = m/2 (k = m/4, = m/4).

		Shuttle	Credit card	KDDCup99	Mammography	Musk	MNIST
				FDR		
	CAD SVM	0.03 (0.06)	0.00 (0.00)	0.00 (0.00)	0.02 (0.08)	0.00 (0.00)	0.00 (0.00)
	CAD IForest	0.05 (0.07)	0.04 (0.07)	0.04 (0.07)	0.01 (0.06)	0.00 (0.00)	0.00 (0.00)
	AdaDetect parametric	0.03 (0.05)	0.00 (0.00)	0.00 (0.00)	0.23 (0.39)	0.00 (0.00)	0.00 (0.00)
	AdaDetect KDE	0.05 (0.08)	0.01 (0.07)	0.00 (0.00)	0.04 (0.09)	0.00 (0.00)	0.00 (0.00)
	AdaDetect SVM	0.06 (0.07)	0.03 (0.06)	0.00 (0.04)	0.00 (0.04)	0.00 (0.00)	0.00 (0.00)
	AdaDetect RF	0.07 (0.06)	0.07 (0.06)	0.08 (0.06)	0.05 (0.09)	0.00 (0.00)	0.00 (0.00)
	AdaDetect NN	0.05 (0.06)	0.06 (0.07)	0.01 (0.05)	0.05 (0.08)	0.01 (0.10)	0.00 (0.00)
	AdaDetect cv NN	0.05 (0.07)	0.04 (0.08)	0.02 (0.06)	0.04 (0.08)	0.02 (0.14)	0.00 (0.00)
	CAD SVDD + CNN	-	-	-	-	-	0.03 (0.03)
	AdaDetect CNN	-	-	-	-	-	0.03 (0.09)
				TDR		
	CAD SVM	0.07 (0.16)	0.00 (0.00)	0.00 (0.00)	0.02 (0.08)	0.00 (0.00)	0.00 (0.00)
	CAD IForest	0.22 (0.24)	0.20 (0.29)	0.34 (0.46)	0.01 (0.07)	0.00 (0.00)	0.00 (0.00)
	AdaDetect parametric	0.12 (0.23)	0.00 (0.00)	0.00 (0.00)	0.05 (0.09)	0.00 (0.00)	0.00 (0.00)
	AdaDetect KDE	0.19 (0.30)	0.01 (0.06)	0.00 (0.00)	0.07 (0.16)	0.00 (0.00)	0.00 (0.00)
	AdaDetect SVM	0.47 (0.29)	0.20 (0.32)	0.00 (0.02)	0.00 (0.03)	0.00 (0.00)	0.00 (0.00)
	AdaDetect RF	0.66 (0.20)	0.72 (0.16)	0.98 (0.02)	0.11 (0.18)	0.00 (0.00)	0.00 (0.00)
	AdaDetect NN	0.30 (0.36)	0.39 (0.35)	0.07 (0.24)	0.16 (0.22)	0.00 (0.00)	0.00 (0.00)
	AdaDetect cv NN	0.30 (0.36)	0.21 (0.31)	0.09 (0.27)	0.13 (0.21)	0.00 (0.00)	0.00 (0.00)
	CAD SVDD + CNN	-	-	-	-	-	0.03 (0.03)
	AdaDetect CNN	-	-	-	-	-	0.06 (0.17)

  Table A.3: Same as Table 2.3 for m 1 /m = 2% (k = 4m, = m).

		Shuttle	Credit card	KDDCup99	Mammography	Musk	MNIST
				FDR		
	CAD SVM	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)
	CAD IForest	0.05 (0.11)	0.03 (0.11)	0.03 (0.08)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)
	AdaDetect parametric	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)
	AdaDetect KDE	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)
	AdaDetect SVM	0.03 (0.09)	0.03 (0.08)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)
	AdaDetect RF	0.09 (0.10)	0.07 (0.09)	0.08 (0.08)	0.03 (0.11)	0.00 (0.00)	0.00 (0.00)
	AdaDetect NN	0.06 (0.12)	0.06 (0.10)	0.03 (0.07)	0.03 (0.09)	0.00 (0.00)	0.00 (0.00)
	AdaDetect cv NN	0.04 (0.10)	0.05 (0.09)	0.02 (0.05)	0.02 (0.09)	0.00 (0.00)	0.00 (0.00)
	CAD SVDD + CNN	-	-	-	-	-	0.01 (0.10)
	AdaDetect CNN	-	-	-	-	-	0.02 (0.14)

  2: upper-bounding the FMR Let us consider the eventΛ α,δ, := Γ 0,δs * /2,t * (α-γ) ∩ Γ 1,δs * /2,t * (α-γ) ∩ Γ 0,δs * /2,t * (α+γ) ∩ Γ 1,δs * /2,t * (α+γ) ∩ Υ 0,δ,t * (α+γ) ∩ Ω ,where the different events have been defined in the previous section.Let us prove (3.19). By using Lemma 35 and (B.14),

FMR( Ĉ) ≤ E θ * [ M( θσ , t(α)) 1 Λ α,δ, ] + P((Λ α,δ, ) c ) ≤ E θ * M 0 ( θσ , t * (α + γ))

L 1 ( θσ , t * (α -γ))

  36. Let us consider the procedure C * t defined in Section B.1.2 and the functional mFMR * t defined by (3.12). Then we have Moreover, the following properties for the function t ∈ [0, 1] → mFMR(C * t ): (i) mFMR(C * t ) is non-decreasing in t ∈ [0, 1] and, under Assumption 6, it is increasing in t ∈ (t * (α c ), t

	mFMR(C * t ) =	E θ * E θ *	n i=1 T * i 1 T * i <t n i <t i=1 1 T *	= mFMR * t , t ∈ [0, 1].	(B.17)

* ( ᾱ)); (ii) mFMR(C * t ) < t for t ∈ (0, 1]; (iii) Under Assumption 6, mFMR(C * t ) is continuous w.r.t. t on (t * (α c ), 1],

where t * (α c ) is given by (3.14).

More precisely, we extend the version of BONuS where the score function is fit only in the initial stage; see the discussion in Section

2.8 for more details.

The code is publicly available at https://github.com/arianemarandon/ adadetecthttps://github.com/arianemarandon/adadetect

In this paper, a convention is to order the p-values from the smallest to the largest, while the test statistics are ordered from the largest to the smallest.

Note that such an assumption implicitly assumes that such a conditional distribution exists, which is always the case for instance when Z = R d or Z is discrete.

A set D ⊂ [0, 1] m is said to be nondecreasing if for any x ∈ D and y ∈ [0, 1] m , we have y ∈ D provided that yi ≥ xi for all i.

We publicly release the code of these experiments at https://github.com/arianemarandon/fmrcontrol. We have also included a Jupyter notebook that demonstrates the use of our procedures.

We publicly release the code of these experiments at https://github.com/arianemarandon/ linkpredconf. We have also included a Jupyter notebook that illustrates the use of our procedure.
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Appendix A

Supplementary material of Chapter 2

A.1 Proofs and results for Section 3

for given measurable function g that satisfies the condition (2.8). Then, for any permutation π of {1, . . . , n + m 0 } that do not permute {1, . . . , k}, Assumption 1 implies that U | V ∼ U π | V and thus (U, V ) ∼ (U π , V ). This entails (U, V, W ) ∼ (U π , V, h(U π , V )) = (U π , V, h(U, V )) = (U π , V, W ). Hence, (g(U 1 , W ), . . . , g(U n+m 0 , W )) | V, W ∼ (g(U π(1) , W ), . . . , g(U π(n+m 0 ) , W )) | V, W

Since π(i) = i for all i ∈ {1, . . . , k}, we obtain that (g(U k+1 , W ), . . . , g(U n+m 0 , W )) | (g(V 1 , W ), . . . , g(V m 1 , W ))

∼ (g(U π(k+1) , W ), . . . , g(U π(n+m 0 ) , W )) | (g(V 1 , W ), . . . , g(V m 1 , W )), which completes the proof.

A.1.2 Key properties

In this section, we present key properties of empirical p-values derived from exchangeable scores. The first result provides a representation that characterizes the dependence structure of the empirical p-values that is a key step for the proof of FDR control. It generalizes the representation by [START_REF] Bates | Testing for outliers with conformal p-values[END_REF] for independent scores. The proof is deferred to Section A.1.7.

Theorem 18. Consider any family of scores (S k+1 , . . . , S n+m ) that satisfy Assumptions 2 and 3 and the corresponding family of empirical p-values (2.10). For any i ∈ H 0 , define W i = {S k+1 , . . . , S n , S n+i }, (S n+j , j ∈ H 0 , j = i), (S n+j , j ∈ H 1 ) (A.1)

and, for any j ∈ {1, . . . , m}\{i}, C i,j = ( + 1) -1 s∈{S k+1 ,...,Sn,S n+i } 1 s > S n+j .

(A.2)

Further, let S (1) > • • • > S ( +1) be the order statistics of {S k+1 , . . . , S n , S n+i }. Then the following holds:

(i) The sequences (S n+j ) j∈{1,...,m}\{i} and (C i,j ) j∈{1,...,m}\{i} are both measurable with respect to W i .

(ii) For all j ∈ {1, . . . , m}\{i}, p j = C i,j + 1 S n+i ≤ S n+j /( + 1) = C i,j + 1 S (( +1)p i ) ≤ S n+j /( + 1),

which is a nondecreasing function of p i for any given W i .

(iii) p i is independent of W i .

(iv) ( + 1)p i is uniform distributed on {1, . . . , + 1}.

The second result characterizes the distribution of other null p-values conditional on a given null p-value as well as the ordered scores. We defer the proof to Section A.1.8. Theorem 19. In the setting of Theorem 18, the distribution of the family (p j , j ∈ H 0 ) satisfies (p j , j ∈ H 0 \{i}) | p i = 1/( + 1), {S (1) , . . . S ( +1) } ∼ (C i,j + 1 S (1) ≤ S n+j /( + 1), j ∈ H 0 \{i}) | {S (1) , . . . S ( +1) } ∼ (p j , j ∈ H 0 \{i}) | {U (1) , . . . U ( +1) } for which U (1) > • • • > U ( +1) denote the order statistics of +1 i.i.d. U (0, 1) random variables U 1 , . . . , U +1 , and where p j , j ∈ H 0 \{i}, are conditionally on {U (1) , . . . U ( +1) }, i.i.d. with

Noting that U (b) follows a beta distribution, Theorem 19 can be used to compute the distribution of (p j , j ∈ H 0 \{i}) conditionally on p i = 1/( + 1) by a simple integration. This is used in the proof of FDR control for π 0 -adaptive AdaDetect (Theorem 6 and Corollary 7).

A.1.3 Proof of Theorem 3

By Theorem 18 (iii), p i is independent of W i . Hence, by integration, it is sufficient to establish that for any nondecreasing measurable set D ⊂ [0, 1] m-1 , the function

is nondecreasing. By Theorem 18 (ii), we have that (p j , j = i) is a deterministic function of p i and W i , which is nondecreasing in p i . This gives (A.4) and proves Theorem 3.

A.3 Proofs for Section 5

A.3.1 Proof of Theorem 10

For all g ∈ G, let

Define the following events:

We choose b such that

The well-known result for empirical processes on finite VC classes (e.g., Example 7.10 of Sen ( 2018)) implies that b only depends on δ. Throughout the rest of the proof, we choose

where C and C are the constants in expressions of 0 and ∆, respectively. Note that on Ω γ,0 ∩ Ω γ,1 , we have

On Ω 0 , (2.27) implies that

Clearly, 2be k ≤ 30γ -1 be k ≤ ∆. This proves the first claim of (i). Moreover, on Ω 0 ∩ Ω0 , we have

(A.17) By (A.15) and (A.17), on

Together with (2.26), this implies

Clearly, 5γ -1 be k ≤ 30γ -1 be k ≤ ∆. This proves the second claim of (i). Then, on the event Ω γ,1 , we have

Since e m 1 = γ -1/2 e m+ ≤ γ -1 e m+ ≤ γ -1 e k , we have

Equivalently, recalling that .18) Let η = 1/ + β + 0.1γ∆. Then (A.16) implies that

A.3.3 Proof of Corollary 12

Letting R = {|AdaDetect * α | ≥ m 1 }, we have

Now applying Theorem 11 with r = m 1 , we obtain

which gives (2.38).

A.4 Useful lemmas

Lemma 20. Let (p i , 1 ≤ i ≤ m) and (p i , 1 ≤ i ≤ m) be two sets of p-values and β, β ∈ (0, 1), r ∈ {0, . . . , m}. Assume that for all t ∈ {βk/m, r ∨ 1 ≤ k ≤ m}, 

Similarly, the BH algorithm at level β rejects i-th hypothesis iff

When k = 0, the conclusion is trivial. Now assume k ≥ r ∨ 1. Setting t = β k/m in (A.22), we obtain that

This implies k ≥ k ≥ r ∨ 1. Hence, for all i,

Lemma 21 (Vandermonde's equality). For all 0 ≤ j ≤ k ≤ n, we have

Equivalently, for all j, u, v ≥ 0

Lemma 22. Consider any set of scores (S k+1 , . . . , S n+m ) and the corresponding empirical p-values (p 1 , . . . , p m ) defined in (2.10). Then on the event where the scores (S j , j ∈ {k + 1, . . . , n} ∪ (n + H 0 )) are mutually distinct, the null p-values (p j , j ∈ H 0 ) are mesurable with respect to the ranks of (S j , j ∈ {k + 1, . . . , n} ∪ (n + H 0 )).

Proof. Let R 1 , . . . , R n-k+m 0 and S (1) , . . . , S (n-k+m 0 ) be the ranks and the order statistics of (S j , j ∈ {k+1, . . . , n}∪(n+H 0 )), respectively. Since the score (S j , j ∈ {k+1, . . . , n}∪(n+H 0 )) are mutually distinct, we have that S i > S j iff R i < R j . Hence, by (2.10), we obtain for all j ∈ H 0 ,

Lemma 22 implies the following equivalent representation of the distribution of p-values.

Lemma 23. For any set of scores (S k+1 , . . . , S n+m ) satisfying Assumptions 2 and 3, the joint distribution of the null empirical p-values (p j , j ∈ H 0 ) does not depend on the joint distribution of scores. In particular, it can be characterized by generating (S j , j ∈ {k +1, . . . , n}∪(n+H 0 )) i.i.d. from U (0, 1).

Proof. By Lemma 22, almost surely, (p j , j ∈ H 0 ) is a function of the ranks of (S j , j ∈ {k + 1, . . . , n}∪(n+H 0 )), which is uniformly distributed on the permutations of {1, . . . , n-k+m 0 } according to Assumption 2. The result follows.

Lemma 24. Fix M ∈ {1, . . . , m} and η ∈ (0, 1). Assume that the scores S k+1 , . . . , S n in the NTS satisfy 1 + n i=k+1 1 S i ≥ 0 ≤ η and the scores S n+1 , . . . , S n+m in the test sample

Proof. By definition, for each j ∈ {1, . . . , m}, the empirical p-value p j (2.10) satisfies

Bounding η in case of density estimation Lemma 29. Let Assumptions 4 and 5 be true and consider the case where P 0 = U ([0, 1] d ) and P i , i ∈ H 1 have a common distribution, supported on [0, 1] d , with a density f 1 which is L-Lipschitz and uniformly upper-bounded by C d . Then the estimator g(x) = fγ (x)/f 0 (x) of g * given above satisfies that for n + m ≥ N (C, d),

where η is given by (2.36) and c 0 (d,

Proof. First note that when f 1 is L-Lipschitz and upper bounded by C d , then f γ is also L-Lipschitz and upper bounded by C d (because γ ≤ 1). Hence, by Lemma 30 we have for some

Now, we have for all η > 0,

because f 0 is the density of the uniform distribution on [0, 1] d . A technical point here is that Z i also appears in fγ (at one place), nevertheless, denoting f γ the quantities (A.34) for which Z i has been changed to an independent copy Z i (at that place), we have for all

Combined with (A.33), this gives 

We assume that all the f i 's are L-Lipschitz and pointwise upper bounded by C d (for some constant value C ∈ (0, 1)), where L, C does not depend on i.

A.7 Additional experimental results for the astronomy application

In this section, we provide more results for more settings. Recall that, for each experiment, we sample n nonvariable stars from as the NTS along with m 1 variable stars and m 0 = m -m 1 additional nonvariable stars as the test sample. For all experiments, we set m = 100. First, we show how TDR varies with sparsity measured by m 1 . Figure A.2 presents the TDR for m 1 ∈ {5, 15, 40, 90} with different target FDR levels shown in the title of each panel. When α is low, the left two panels show that AdaDetect RF substantially outperforms the other methods. When the novelties are sparse, the panels in the middle column shows that AdaDetect RF still performs well when α = 0.2 but underperforms when α = 0.5, though α = 0.5 is arguably less relevant in practice. When the novelties are dense, the right panels show that AdaDetect with adaptive scores outperform AdaDetect with non-adaptive scores when α = 0.05 and they are nearly indistinguishable when α = 0.5. Next, we compare the FDR and TDR of AdaDetect KDE and Empirical BH with both m 1 and n varying in Figure A.3. For the purpose of visualization, we only show the point estimates of FDR and TDR without uncertainty measures. The left column shows that both methods control the FDR, though AdaDetect KDE is generally less conservative. The right column shows that AdaDetect KDE almost always has a higher power and it starts to reject at a higher sparsity level. An interesting observation is that the power of AdaDetect KDE is decreasing in n when the novelties are sparse (e.g., m 1 ≈ 40). This can be explained by the fact that the 'contamination' of the NTS increases with increasing n, leading to a more noisy estimation of the test statistic. 

Supplementary material of Chapter 3

B.1 Proof of Theorems 16 and 17

B.1.1 A general result

In this section, we establish a general result, from which Theorems 16 and 17 can be deduced. It provides non-asymptotic bounds on the mFMR and the FMR of the plug-in procedure and on its average selection number, by relying only on Assumption 6. To state the result, we introduce some additional quantities measuring the regularity of the model which will appear in our remainder terms. Recall definitions (3.4), (3.5) and (3.13) of q (X, θ), T (X, θ) and t * (α) respectively, and let for , δ, v > 0, 

(ii) for any procedure C = ( Z, S) such that mFMR(C) ≤ α, we have

B.1.3 Preliminary steps for proving Theorem 31

To keep the main proof concise, we need to define several additional notation. Let for t ∈ [0, 1] and θ ∈ Θ (recall (3.5))

Note that for any α > α c , the mFMR of the optimal procedure C * t * (α) defined in Section B.1.2 is given by mFMR(C * t * (α) ) = L(θ * , t * (α)) = α. Also, we denote from now on * i,q = P θ * (Z i = q|X i ) for short and introduce for any parameter θ ∈ Θ (recall (3.4) and (3.5))

(B.10)

Note that M 0 (θ * , t) = L 0 (θ * , t) but in general M 0 (θ, t) is different from L 0 (θ, t). We denote M = M 0 / L 1 , M 0 = E θ * M 0 and M = M 0 /L 1 (with the convention 0/0 = 0). When α ∈ (α c , ᾱ] (recall (3.14) and (3.15)), we also let

We easily see that the latter is positive: if it was zero then S * t * ((α+αc)/2)) would be empty which would entails that mFMR(C * t * ((α+αc)/2) ) is zero. This is excluded by definition (3.14) of α c because (α + α c )/2 > α c . Also, we are going to extensively use the event

On this event, we fix any permutation σ ∈ [Q] (possibly depending on X) such that θσθ * 2 < . Now using Lemma 37, the plug-in selection rule can be rewritten as S PI α = {i ∈ {1, . . . , n} : Ti < t(α)} (denoted by S in the sequel for short), where where α ∈ (α c , ᾱ] and s * > 0 is given by (B.11). In addition, for all θ ∈ Θ and t, t ∈ [0, 1],

(B.23)

Proof. Fix θ ∈ Θ and t ∈ [0, 1]. We have for any δ > 0,

In addition, by definition (3.5),

Hence,

which establishes (B.18). Next, we have

By exchanging the role of θ and θ * in the above reasoning, the same bound holds for L 0 (θ * , t)-L 0 (θ, t), which gives (B.19). To prove (B.20), we use for any t ∈ [t * ( α+αc 2 ), 1],

and L 1 (θ * , t) ≥ s * by monotonicity. Similarly to the bound on L 0 , we derive

Define q(X, θ) ∈ argmax q∈{1,...,Q} q (X, θ). Now, since U (X, θ * ) ≤ U (X, θ) by definition (B.9), we have 

Moreover,

which is below W T (t -t ) by (B.3). This leads to (B.23).

Lemma 39 (Concentration of L 0 (B.6), L 1 (B.7), and M 0 (B.10)). Let Assumption 6 be true. Recall V , V -defined by (3.16), (3.17) respectively, set c := 14Q √ V + 7Q 2 V -and consider any countable set D ⊂ Θ. For all t ∈ (0, 1] and for n ≥ (2e) 3 , we have

(B.24)

for any x ≥ (1 + 2c) log n n and provided that (1 + 2c) log n n ≤ 1.

Proof. For a fixed t ∈ (0, 1], let F L 0 = {T (., θ) 1{T (., θ) ≤ t}, θ ∈ D}, F L 1 = {1{T (., θ) ≤ t}, θ ∈ D}, and F M 0 = {U (., θ) 1{T (., θ) ≤ t}, θ ∈ D}. We apply Lemma 42 and Lemma 43

and by applying the contraction lemma of Talagrand (see e.g. Lemma 5.7 in [START_REF] Mohri | Foundations of Machine Learning[END_REF]) with x → 0.5(x -1 + |x -1|) which is 1-Lipchitz. Then we conclude by using the triangular inequality. For the max we use max(f, g) = 0.5(f + g + |f -g|).

Lemma 41. Consider the case where Q = 2 and {F u , u ∈ U} is an exponential family, i.e. there exists some functions

Let k be the dimension of the sufficient statistic vector B(x).

In addition, this bound still holds for V -in the case Q ≥ 3. For V -, we have that for any q = q ∈ {1, . . . , Q}, q (x, θ)q (x, θ) ≥ 0 is equivalent to π q f (x, φ q )/π q f (x, φ q ) ≥ 1. The rest of the proof follows similarly as for V .

Lemma 42 (Talagrand's inequality, Theorem 5.3. in [START_REF] Massart | Concentration Inequalities and Model Selection Ecole d'Eté de[END_REF]). Let ξ 1 , . . . , ξ n independent r.v., F a countable class of measurable functions s.t. a ≤ f ≤ b for every f ∈ F for some real numbers a ≤ b, and

Then, for any x > 0,

Lemma 43 (Rademacher complexity bound, see, e.g., Lemma 1 in [START_REF] Baraud | Bounding the expectation of the supremum of an empirical process over a (weak) vc-major class[END_REF]). In the setting of Lemma 42 (and with the notation therein), we have

where

is the Rademacher complexity of the class F (with ε 1 , . . . , ε n being i.i.d. random signs).

B.4 Auxiliary results for the Gaussian case

B.4.1 Convergence rate for parameter estimation

The following result presents two situations where the parameter of a Gaussian mixture model can be consistently estimated, with an explicit rate.

Proposition 44. Consider the mixture model (Section 3.2.1) in the d-multivariate Gaussian case with true parameter θ * = (π * , φ * ), where φ * q = (µ * q , Σ * q ), 1 ≤ q ≤ Q. Then η( , θ * ) defined by (3.18) is such that η( n , θ * ) ≤ 1/n for n ≥ C log n/n, where C > 0 is a sufficiently large constant, in two following situations:

where a n ≤ L(log n) γ for some L, γ > 0 and S ++ d denotes the space of positive definite matrices, with λ, λ > 0. In that case, C only depends on θ * and L, γ, λ, λ.

(ii) θ is the estimator coming from EM algorithm (when the iteration number is infinite)

for an initialization µ

2 such that (µ

is the separation between the true means. Here, we consider an homoscedastic model with Σ 1 = Σ 2 = Σ = νI d with known ν. The conclusion applies if the signal-tonoise ratio ∆/ν is large enough, and for a constant C of the form c(ν, ∆) √ d.

Proof. Since case (ii) is a direct application of [START_REF] Balakrishnan | Statistical guarantees for the EM algorithm: From population to sample-based analysis[END_REF], we focus in what follows on proving case (i), by revisiting the result of [START_REF] Ho | On strong identifiability and convergence rates of parameter estimation in finite mixtures[END_REF]. First, in the considered model, any mixture can be defined in terms of {f u , u ∈ U } and a discrete mixing measure G = Q q=1 π q δ φq with Q support points, as Q q=1 π q f φq = f u (x)dG(u). As shown by [START_REF] Ho | On strong identifiability and convergence rates of parameter estimation in finite mixtures[END_REF], the convergence of mixture model parameters can be measured in terms of a Wasserstein distance on the space of mixing measures. Let G 1 = Q q=1 π 1 q δ φ 1 q and G 2 = Q q=1 π 2 q δ φ 2 q be two discrete probability measures on some parameter space, which is equipped with metric . . The Wasserstein distance of order 1 between G 1 and G 2 is given by

where the infimum is over all couplings (p q,l ) 1≤q,l≤Q ∈ [0, 1] Q×Q such that l p q,l = π 1 q and q p q,l = π 2 l . Let G * , Ĝn denote the true mixing measure and the mixing measure that corresponds to the restricted MLE considered here, respectively. Theorem 4.2. in [START_REF] Ho | On strong identifiability and convergence rates of parameter estimation in finite mixtures[END_REF] implies that, with the notation of [START_REF] Ho | On strong identifiability and convergence rates of parameter estimation in finite mixtures[END_REF], for any n ≥ ( √ C 1 /c)δ n , and δ n ≤ C log n/n, we have

In that case, we have still n of order log n/n and the upper-bound is at most 1/n. On the other hand, if we have a convergence rate in terms of W 1 , then we have convergence of the mixture model parameters in terms of . at the same rate, see Lemma 45. This concludes the proof.

Lemma 45. Let G n = Q q=1 π n q δ φ n q be a sequence of discrete probability measures on U, and let G * , W 1 be defined as in the proof of Proposition 44. There exists a constant C only depending on G * such that if W 1 (G n , G * ) → 0, then for sufficiently large n,

1 Here, λ1(Σ) (resp. λ d (Σ)) denotes the smallest (resp. largest) eigenvalue of Σ.

Proof.

In what follows, we let {p n q,l } denote the corresponding probabilities of the optimal coupling for the pair (G n , G * ). We start by showing that (φ n q ) q → (φ * q ) q in . up to a permutation of the labels. Let σ n the permutation of the labels such that φ n q -φ * l ≥ φ n σ n (l) -φ * l for all q, l ∈ {1, ..., Q}. Then, by definition,

It follows that each φ n σ n (l) -φ * l must converge to zero. Since (φ n q ) q → (φ * q ) q up to a permutation of the labels, without loss of generality we can assume that φ n q → φ * q for all q. Let ∆φ n q := φ n q -φ * q and ∆π n q := π n q -π * q . Write W 1 (G n , G * ) as

It follows from the convergence of φ n that for q = l, φ n q -φ * l ≥ C/2 for sufficiently large n. Thus,

We deduce that q =l p n ql → 0. As a result, p n qq = π * ql =q p n lq → π * q , and so, p n qq ≥ (1/2)π * min := min l π * l for sufficiently large n. On the other hand, q =l p n ql = q π n q -p n qq = q π * q -p n qq where p n qq ≤ min(π n q , π * q ). Thus, q =l p n ql ≥ q π n q -min(π n q , π * q ) = q,π n q ≥π * q π n qπ * q = q,π n q ≥π * q |π n q -π * q | and similarly we have that q =l p n ql ≥ q,π * q ≥π n q |π n q -π * q |. It follows that 2 q =l p n ql ≥ q |π n q -π * q |. Therefore, for sufficiently large n,

This gives the result.

B.4.2 Gaussian computations

The following lemma holds.

Lemma 46. Let us consider the multivariate Gaussian case where φ q = (µ q , Σ q ), 1 ≤ q ≤ Q, with Q = 2, Σ 1 = Σ 2 is an invertible covariance matrix and µ 1 and µ 2 are two different vectors of R d . Then Assumptions 6, 7 and 8 hold true for α c = 0 and for a level α ∈ (0, ᾱ)\E for E a set of Lebesgue measure 0.

Proof. Let us first prove that q (X, θ) is a continuous random variable under P θ * (this is established below without assuming Σ 1 = Σ 2 for the sake of generality). We have

Since the real matrix Σ -1 1 -Σ -1 2 is symmetric, we can diagonalize it and we end up with a subset of R d of the form

for some real parameters α j , β j , γ. The result follows because this set has a Lebesgue measure equal to 0 in any case. Now, since Σ 1 = Σ 2 = Σ, we have for all t ∈ (0, 1),

Applying 2 log(•) on each part of the relation, we obtain

. This yields for all t ∈ (0, 1),

A direct consequence is that for all t ∈ (0, 1), we have P θ * (T (X, θ) > t) < 1, that is, P θ * (T (X, θ) ≤ t) = P θ * (T (X, θ) < t) > 0. Hence, α c defined in (3.14) is equal to zero. Moreover, from (B.31), we clearly have that t ∈ (0, 1) → P θ * (T (X, θ) > t) is decreasing, so that t ∈ (0, 1) → P θ * (T (X, θ) ≤ t) is increasing. This proves that Assumption 6 holds in that Supplementary material of Chapter 4

C.1 Additional experimental details

Datasets Cora [START_REF] Sen | Collective classification in network data[END_REF] is a citation network. Each publication in the dataset is described by a 0/1-valued vector indicating the absence/presence of a each word of a dictionary that consists of 1433 unique words. Yeast (Von [START_REF] Mering | Comparative assessment of large-scale data sets of protein-protein interactions[END_REF] is a proteinprotein interaction network of S. cerevisiae. T. Albus (Weber Zendrera et al., 2021) is a metabolic network of Thermocrinis Albus. C. ele [START_REF] Watts | Collective dynamics of 'small-world'networks[END_REF]) is a neural network of C. elegans. Florida Food web [START_REF] Christian | Organizing and understanding a winter's seagrass foodweb network through effective trophic levels[END_REF]) is a food web network downloaded from the Web of Life Repository (https://www.web-of-life.es/).

Hyper-parameters for SEAL SEAL [START_REF] Zhang | Link prediction based on graph neural networks[END_REF]) is used with a hop number of 2, for the GNN we use GIN [START_REF] Xu | How powerful are graph neural networks?[END_REF] with 3 layers and 32 neurons, and we train for 10 epochs with a learning rate of 0, 001.

C.2 Exchangeability condition for FDR control

Recent works [START_REF] Bates | Testing for outliers with conformal p-values[END_REF][START_REF] Mary | Semi-supervised multiple testing[END_REF][START_REF] Marandon | Adaptive novelty detection with false discovery rate guarantee[END_REF] proved finite-sample FDR control guarantees for the use of conformal p-values in the context of novelty detection. Specifically, given a data sample Z 1 , . . . , Z n+m where Z 1 , . . . , Z n are marginally distributed as some unknown P 0 , the aim is to test the null hypotheses H 0j : Z n+j ∼ P 0 simultaneously for all 1 ≤ j ≤ m. Consider H 0 ⊂ {1, . . . , m} the set of nominals and H 1 ⊂ {1, . . . , m} the set of novelties in the test sample, and for j ∈ {1, . . . , m} the score S j = ĝ(Z j ) with ĝ is some real-valued function that may depend on the data. We have the following result [START_REF] Weinstein | A power and prediction analysis for knockoffs with lasso statistics[END_REF][START_REF] Mary | Semi-supervised multiple testing[END_REF][START_REF] Marandon | Adaptive novelty detection with false discovery rate guarantee[END_REF]: if the null scores (S i ) i∈{1,...,n}∪H 0 are exchangeable i.e. if, for all permutation π of {1, . . . , n+m} that lets invariant H 1 , we have that (S π(i) ) 1≤i≤n+m ∼ (S i ) 1≤i≤n+m , then the Counting Knockoff algorithm [START_REF] Weinstein | A power and prediction analysis for knockoffs with lasso statistics[END_REF] (i.e. Algorithm 6 with D test = {n + 1, . . . , n + m} and D cal = {1, . . . , n}) controls the FDR at level α.

In our set-up, we have that H 1 , H 0 , D test = H 0 ∪H 1 and D cal are all random. In that case, the afore-mentioned exchangeability condition can be extended to the following: conditionally on (D cal , H 0 , H 1 ), for π ∼ Unif[Π] where Π is the set of permutations of D cal ∪ D test that lets invariant the set H 1 , (S π(i,j) ) 1≤i,j≤n ∼ (S i,j ) 1≤i,j≤n .

(C.1) However this is not a standard exchangeability assumption, because the permutation π in (C.1) is random due to D train and D test being random in our set up.