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Summary

The reliability of machine learning (ML) methods is critical in contexts that involve high-
stakes decisions. However, while ML methods have achieved impressive results in a wide
range of applications (Jordan and Mitchell, 2015), none of them are able to provide a small
error guarantee in all settings.

Since models cannot be perfect, they should at least "know that they do not know".
While there have been many efforts in the literature to address the issue of uncertainty
quantification, whether in the field of probability calibration (Guo et al., 2017), or prediction
sets (Angelopoulos and Bates, 2021), these solutions are not satisfactory when an actual
decision is required. By contrast, a key to keeping the error rate (or risk) below a certain
threshold is to make use of a type of abstention option, which amounts to abstain from
making a decision when there is too much uncertainty. The goal of this thesis is to propose
new methods for risk control, i.e. for keeping the risk below a certain user-specified threshold
α, in several learning tasks. Risk control is a long-standing paradigm in machine learning,
in binary classification and related tasks (Rigollet and Tong, 2011; Blanchard et al., 2010a;
Bartlett and Wegkamp, 2008; Barber and Candès, 2015; Bates et al., 2023; Angelopoulos
et al., 2021), and we aim to either extend existing methods or propose new ones for a certain
panel of tasks. Specifically, our idea is to enhance the best existing ML methods by developing
an additional layer on top of them that provides an interpretable guarantee on the error rate.

This is achieved by formalizing risk control in a certain task as a type of false discovery
rate (FDR) (Benjamini and Hochberg, 1995) control problem. The FDR is a notion that
originates from multiple testing (Benjamini and Hochberg, 1995). Single hypothesis testing
is the process of choosing between two hypotheses, the null and the alternative, and multiple
testing is the field of statistics that is concerned with taking decisions for multiple tests
simultaneously. Thus, multiple testing procedures return a set of rejected null hypotheses,
and the aim of multiple testing is to build procedures that keep a certain error rate below a
level α. The FDR is a popular error rate criterion, defined as the proportion of errors (false
discoveries) among the rejected set.

Since risk control involves a type of abstention option, it can be seen in general as a type of
FDR control task, where a discovery corresponds to making a decision, and a false discovery
corresponds to a decision that is incorrect. A strong advantage of the FDR is that it has a
clear interpretation: if α = 5% and a decision (whose specific form depends on the context) is
made for 100 observations, then on average there are less than 5 decisions that are incorrect.
Moreover, tools from the multiple testing literature on FDR control can be applied to the
problem of controlling an FDR-like criterion.

Our methods can be seen as wrappers that take as input an off-the-shelf ML technique,
designed for a certain learning task, and return a set of decisions such that the FDR is
controlled at a user-specified level α. Specifically, we focus on the following three learning
tasks: novelty detection, clustering and link prediction.



Contents viii

Adaptive novelty detection with FDR guarantee We start with the problem of FDR
control for novelty detection in Chapter 2, where the aim is to detect novelties in a test sam-
ple based on a sample of "normal" behaviors. This problem amounts to a classical multiple
testing setup, so that multiple testing tools for FDR control can be applied directly. Recent
seminal works Bates et al. (2023); Yang et al. (2021) from the literature on conformal inference
(Angelopoulos and Bates, 2021) and knockoffs (Barber and Candès, 2015), have shown that
the test statistic could be learned from the data while maintaining the FDR control guaran-
tee, hereby circumventing crucial limitations of historically-used strategies for FDR control.
Our contribution consists in an extension of these previous works by proposing a new way to
learn the test statistic that is more powerful than previously, while retaining the control of
the FDR. The new method leverages classification algorithms to efficiently detect novelties.
In particular, any off-the-shelf classification method, such as random forests or neural net-
works, can be used. FDR control is established in two main ways. First, we prove that the
resulting "conformal" p-values satisfy the PRDS property. The PRDS property (Benjamini
and Yekutieli, 2001) is a specific dependence assumption from the multiple testing literature,
which, among other things, entails FDR control when using the Benjamini-Hochberg proce-
dure (Benjamini and Hochberg, 1995). Secondly, we also provide new FDR bounds. Finally,
we provide a power analysis, where we show that the proposed procedure has a power close
to the one of the optimal likelihood ratio test with a suitable level. Numerical experiments
on both simulated and real data demonstrate the substantial gain of power with respect to
previous work.

Clustering with error rate control The problem of error rate control in a clustering task
is studied in Chapter 3. A crucial point is to define the notion of error in clustering, since there
is no unique definition of what a cluster is. To overcome this difficulty, we make the choice of
considering a mixture model, that defines a natural ground truth clustering. In order to keep
the risk smaller than a given level α, even in an unfavorable setting, we consider a procedure
with an abstention option, whose output is a set of indices corresponding to the observations
to which a cluster label is assigned. The problem is thus formalized in terms of controlling
the false membership rate (FMR) criterion, defined as the average proportion of errors in the
set of classified observations, up to label-switching. We propose a plug-in procedure inspired
from the empirical Bayes approaches in multiple testing (Sun and Cai, 2007). Essentially,
this procedure assigns cluster labels to observations for which the maximum class probability
is above a data-driven threshold. Our main contribution consists in the theoretical analysis
of this procedure: we quantify the FMR deviation with respect to the target level α with
explicit remainder terms. In particular, our results imply that if the model estimate is accurate
enough, the FMR is close to the target level, with a power close to optimal. Moreover, we
develop robust bootstrap procedures for improved empirical performance.

Link prediction with FDR control Finally, we consider the problem of FDR control in
a link prediction task in Chapter 4. FDR control in that specific setting does not correspond
to a standard multiple testing problem, but we argue that high-level ideas from the literature
on conformal inference and knockoffs (Barber and Candès, 2015; Weinstein et al., 2017; Bates
et al., 2023; Yang et al., 2021; Mary and Roquain, 2022) and of Chapter 2 can still be applied.
We propose a transposition of these ideas to the link prediction setup. The proposed method
acts as a wrapper that takes as input an off-the-shelf link prediction technique, whose output
consists of connection probabilities, and returns an FDR-controlling method. However, the
graph structure induces intricate dependence in the data, which makes the setup markedly
different from previous work, that must be taken into account in the procedure. The FDR



Contents ix

control is empirically demonstrated on both simulated and real data.
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1.1 Motivation

Machine learning (ML) methods aim at leveraging data to learn various tasks, typically by
optimizing a suitable data-based objective, whereas false discovery rate (FDR) control is a
staple of multiple testing (Benjamini and Hochberg, 1995) that is concerned with building
decision procedures that provide a finite-sample guarantee on the proportion of errors. In this
thesis, we make these two fields meet in order to perform reliable machine learning. Reliability
is critical in applications that involve high-stakes decisions, such as autonomous driving or
medical diagnosis. We identify three issues of modern ML methods in terms of reliability:

Issue n◦1: ML methods make mistakes ML methods have achieved impressive results
in a wide range of applications (Jordan and Mitchell, 2015), but none of them are able to
provide a small error guarantee in all settings: if the task at hand is intrinsically difficult,
then there exists a minimal error, even for an "oracle" relying on infinite samples. In many
sensitive contexts, however, the potential of error is not acceptable and should be dealt with.

Issue n◦2: ML methods (usually) do not provide reliable confidence estimation
Since models cannot be perfect, they should at least "know that they do not know". Modern
machine learning methods, however, do not provide this information in general, which makes
them unreliable. For instance, neural networks (NN) are known to be overly confident (Guo
et al., 2017): Figure 1.1 illustrates, in a classification context, that for modern NN architec-
tures the average confidence (i.e. the probability associated with the prediction on the test
examples) is substantially higher than the accuracy (the percentage of correct predictions).
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Figure 1.1: Source: (Guo et al., 2017). Histogram of the (estimated) probability associated
with the predicted label in a classification task on CIFAR-100, for two NN architectures: a
5-layer LeNet (left) and a 110-layer ResNet (right). The 110-layer ResNet (He et al., 2016)
represents a modern-day architecture compared to the 5-layer LeNet (LeCun et al., 1998) that
dates back to early works on CNN.

In the case of NN, this concern is made worse by the fact that they are uninterpretable black
boxes.

Issue n◦3: Confidence estimation is often not sufficient There are a variety of meth-
ods dedicated to making the probabilities associated to the predictions of a ML model closer
to the ’true’ probabilities, see e.g. Guo et al. (2017); Zaidi et al. (2021); Lakshminarayanan
et al. (2017). Moreover, conformal prediction (Angelopoulos and Bates, 2021) is a technique
that has gathered an important interest in the statistics and machine learning community in
the recent years, that provides valid prediction sets, that is, a set of predictions that contain
the truth with a pre-specified level of confidence, and for arbitrary machine learning models.
However, in any application that involves decision making, confidence estimation or prediction
sets are not satisfactory since ultimately, it does not produce a decision. By contrast, a key to
keeping the error rate low is to make use of a type of abstention (or selection) option, which
amounts to abstain from making a decision when there is too much uncertainty. For instance,
in autonomous driving, if the object detector is not confident at some point in time, then
the system should rely more on the other sensors for braking. Alternatively, in automated
medical diagnosis, if the prediction can not be made reliably, the system should defer to a
human expert. However, choosing the abstention rule to be used to get the desired guarantee
is difficult and cannot be deduced from confidence bounds in general, such as for instance,
the valid prediction sets provided by conformal prediction (Jin and Candès, 2022).

The afore-mentioned issues motivate a shift in paradigm, from risk minimization to risk
control, which refers to the goal of keeping the risk below a user-specified threshold. This
can be achieved by using a type of abstention option that does not count as an error in the
risk. However, to avoid that a method abstains for all observations, the cost of abstaining
can be taken into account by seeking a procedure that abstains as little as possible under the
constraint on the risk.



Chapter 1. Introduction 3

1.2 From risk minimization to risk control

1.2.1 Background

Risk control is a long-standing paradigm in binary classification. Early works can be divided
according to two main lines of research: Neyman-Pearson (NP) classification and classification
with a reject option. In NP classification (Cannon et al., 2002; Scott and Nowak, 2005; Rigollet
and Tong, 2011; Blanchard et al., 2010a), risk control is achieved by focusing on one type of
error at the expense of the other. In this framework, only a wrong classification into one
of two classes, say class "1" (versus class "0"), counts as a mistake. Instead, the decision of
classifying into class "0" corresponds to a "safer" option, where it is understood that there may
be a potentially large proportion of misclassifications under this label. From this viewpoint,
classifying into class "0" can be seen as a kind of abstention decision. Formally, the aim is to
ensure that the probability of making a wrongful classification into class "1" is below a fixed
margin of error, while minimizing the probability of making a wrong classification into class
"0".

By contrast, in classification with a reject option (Herbei and Wegkamp, 2006; Bartlett
and Wegkamp, 2008; Grandvalet et al., 2008), no focus is put on a particular type of error.
Low overall error is achieved with the use of a reject (or abstention) option, where a classifier
can abstain from making a class decision. In this framework, the reject option is accounted
for by a particular fixed cost in the risk, which is less than the cost of making a mistake.
A main drawback of this type of approach is the use of a cost instead of a confidence level.
In practice, it is not always clear how to fix the abstention cost with respect to the cost of
making a mistake.

These early works do not provide finite-sample guarantees. Recent breakthrough works
have filled the gap, in binary classification and related tasks. To start with, in the field of
variable selection, Barber and Candès (2015) introduced a "knockoff" method, with proven
finite-sample guarantees on the FDR control. Developed for the Gaussian linear regression
model, the core idea is to fabricate "knockoff" features that mimic the original features, in
such a way that a knockoff variable satisfies a type of exchangeability with the true noise
variables. Since the ground truth is known for the knockoffs, they can be used as benchmarks
to evaluate the error (that is, the proportion of false positives) of a certain selection. This
seminal work was followed by many extensions and refinements, see, e.g., Barber and Candès
(2019); Bates et al. (2021); Weinstein et al. (2017); Barber et al. (2020); Nguyen et al. (2020);
Sarkar and Tang (2022).

In the context of novelty (or outlier) detection, Haroush et al. (2022) used "conformal" p-
values to perform model-free outlier detection, proving finite-sample control of the probability
of making a wrongful novelty class decision for a single test point (which corresponds to a
NP paradigm guarantee). Conformal p-values (Vovk et al., 2005) is a concept originating
from the conformal prediction framework (Angelopoulos and Bates, 2021; Vovk et al., 2005;
Balasubramanian et al., 2014), that measure statistical significance based on a sample of
observations that have a "normal" behavior. Conformal p-values and knockoffs start from
a similar idea: both techniques rely on having a reference set that is exchangeable with the
observations corresponding to an absence of "signal", these being noise variables in the context
of variable selection, or observations with normal behavior in the context of novelty detection.
Subsequently, in a seminal work, Bates et al. (2023) showed that conformal p-values could be
used to obtain a finite-sample guarantee for multiple points, which is formalized in terms of
FDR control. Important works that followed include Yang et al. (2021) that consider a test
statistic that is more data-adaptive, Liang et al. (2022) that consider a setting where a few
examples of outliers are available, and Jin and Candès (2022) that consider a more general
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"selection" task, see also Mary and Roquain (2022).
Finally, going back to the classification task, Geifman and El-Yaniv (2017) and Angelopou-

los et al. (2021) perform classification with a reject option with finite-sample guarantees on
the error, with the later work considering a more general prediction-related task that also
includes, for instance, instance segmentation. In both of these works, the guarantee concerns
a single test point. Lastly, in the context of fair ML (Barocas et al., 2019), Rava et al. (2021)
achieve finite-sample guarantees for an FDR-like criterion, which can in addition take into
account a certain protected attribute, and ensure that decision errors are not concentrated in
protected groups.

1.2.2 Aim

Risk control involves a type of abstention option, that does not count as an error in the risk.
As such, risk control in general can be seen as a type of FDR control task, where a discovery
corresponds to making a decision, and a false discovery corresponds to a decision that is
incorrect. A strong advantage of FDR control at level α is that it has a clear interpretation:
if α = 5% and a decision (whose specific form depends on the context) is made for 100
observations, then on average there are less than 5 decisions that are incorrect. In this thesis,
we consider the problem of controlling an FDR-like criterion in several learning tasks:

• Novelty detection (ND): In novelty detection, the aim is to classify observations
into ’novelties’ and ’nominals’. There are two types of error that can be made and
depending on the context, one type is more serious than the other. Here, the context
considered is to avoid making a wrong classification into the novelty class (considered
as a false positive). This type of concern is typical for applications that seek to screen
a very large pool for promising candidates, which are investigated afterwards in a more
costly stage. The problem is illustrated in Figure 1.2 on a classical image dataset of
handwritten digits, where the aim is to detect digit ‘9’s in the test sample based on
a sample of digit ‘4’s. The procedure, that declares as novelties the images with red
boxes, can make false discoveries (digit ‘4’) and true discoveries (digit ‘9’). The FDR
is defined as the average proportion of errors among the detections. This problem has
been previously investigated in Bates et al. (2023); Yang et al. (2021), and we aim to
improve upon these previous works.

• Clustering: The aim of clustering is to partition the data into groups that are mean-
ingful in some sense. There are different ways to define a notion of error in that case. In
our work, we adopt a model-based viewpoint and use some kind of classification error. It
relies on the assumption that there exists a unique ground truth partition, and considers
that an error is made when an observation is classified into the wrong group. Moreover,
we use an abstention option, which corresponds to not assigning a cluster label. In this
set-up, an FDR criterion can be defined as the average proportion of errors among the
observations that are chosen to be classified into a cluster.

• Link prediction (LP): In link prediction, the aim is to identify missing links in a
partially observed graph. In an incomplete graph, the absence of an edge corresponds
to either a lack of information or unreported information. In general, adding a false link
in the graph is more serious than failing to identify a missing link. In this context, the
FDR is defined as the average proportion of errors among the pairs of vertices that are
declared to have a true edge, and controlling the FDR is appropriate to complete the
graph with a meaningful risk control.
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Nominal sample Test sample Procedure

Figure 1.2: Illustration of the novelty detection task on the MNIST data set.

Data ML algorithm Wrapper
for FDR control

Decision set
s.t. FDR ≤ α

Figure 1.3: High-level illustration of the aim and approach pursued in this thesis.

In a nutshell, the goal of this thesis is to address the tasks above by using tools from
multiple testing. To be clear, the new proposed methods do not replace the existing state-of-
the-art algorithms in outlier detection, clustering, or link prediction; our methods are meant
to be applied on top of those. In other words, our methods can be seen as wrappers that take
as input an off-the-shelf technique designed for a given learning task, and return an FDR-
controlling technique (see Figure 1.3). Thus, our approach has the full benefits of the best
existing ML methods and we add an additional layer to achieve a control of the error rate.

In Section 1.3, we present the learning tasks considered in this thesis, namely novelty
detection, clustering, and link prediction. Then Section 1.4 gives a primer on multiple testing.
Finally, an overview of our contributions is provided in Section 1.5.

1.3 Brief overview of the considered learning tasks

Machine learning (ML) is a vast research field including various methods and tasks, see Figure
1.4 for a pictorial view. ML can be divided according to three paradigms: supervised learning,
unsupervised learning and reinforcement learning. In supervised leaning, the data at hand
consists of a set of observations for which the ground truth is known, and can be used to learn
a predictor for new observations. In case no observed ground truth is provided, the term of
unsupervised learning is used. Moreover, between the two, semi-supervised learning refers
to tasks that contain both supervised and unsupervised elements. To complete the picture,
reinforcement learning is an area of machine learning that differs from the previous paradigms,
where the goal is to enable an agent to learn how to take actions in an interactive environment.
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Machine learning

Supervised
Learning

Classification
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Reinforcement
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Unsupervised
Learning
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Figure 1.4: A brief look at machine learning tasks.

Here, we will focus on three learning tasks that have a varying degree of supervision: clustering
(unsupervised), novelty detection (semi-supervised), and link prediction (supervised). We
next proceed to give a brief description of each task.

Novelty detection This task (also called anomaly detection, or outlier detection) consists
in the identification of observations in a sample that are anomalous in some sense. Examples
of definitions include:

• Observations that are far from the majority of the dataset (Liu et al., 2008). In that
case, the task is unsupervised because we have no ground truth examples. A typical
application is dataset cleaning where outliers must be removed: identifying these ob-
servations can help to clean the dataset of erroneous entries. Moreover, since these
observations deviate a lot from the rest of the data, they can have a substantial impact
when fitting a machine learning model, which is not desirable in some contexts.

• Observations that do not conform to a pre-defined notion of normal behavior (Schölkopf
et al., 2001). Here, the task is semi-supervised because ground truth knowledge is
partially available: it is assumed that normal behavior corresponds to some distribution
P0, where P0 is known or a sample from P0 is available. Applications include fraud
detection (Patcha and Park, 2007), medical diagnosis (Tarassenko et al., 1995), galaxy
detection (Mary and Roquain, 2022), and out-of-distribution detection (Lee et al., 2018).

The two settings are illustrated in Figure 1.5. In this thesis, we consider the semi-
supervised setting.

Clustering This task consists in partitioning a data sample into groups (called clusters) that
are meaningful in some sense. Applications include customer segmentation, e-recommendation,
data analysis, or gaining insights into biological processes (Grün, 2019). In general, the idea
is that observations of the same cluster are ’similar’, and observations in different clusters
are ’dissimilar’. The task is illustrated in Figure 1.6. In addition, Figure 1.7 illustrates a
key difficulty of this task, which is that outside of this general principle, there is no unique
definition for the notion of a cluster. In fact, there could be several interesting partitionings
(or structure) present in the data. A popular solution is to use a probabilistic model (see
Grün (2019) and references therein), called a mixture model. In a mixture model, the data
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(a) Unsupervised (b) Semi-supervised

Figure 1.5: The novelty detection task.

(a) Raw data (b) Clustering

Figure 1.6: The clustering task.

is sampled as follows: first, one samples a group label k for each individual i, then the obser-
vation for i is sampled from some distribution Pk. In that case, provided that the model is
identifiable, the clustering task is well defined as it amounts to recovering the labels.

Link prediction This task consists in identifying links in a graph that is only partially
observed. Graphs (or networks) denote data objects that consists of links (edges) between
entities (nodes). Real-world examples are ubiquitous and include social networks, computer
networks, food webs, molecules, etc. Examples are given in Figure 1.8 and Figure 1.9. In a
partially observed graph, the presence of an edge between a pair of nodes, or lack thereof,
is only reported for a part of them, and it is of interest to identify the missing edges. The
problem is illustrated in Figure 1.10. Applications include friend or product recommendation
(Li and Chen, 2013), and the reconstruction of biological networks, such as protein-protein
interaction networks (Kovács et al., 2019), metabolic networks (Bleakley et al., 2007), or food
webs (Terry and Lewis, 2020).

1.4 A primer on multiple testing

In this section, we provide an introduction on multiple testing, as well as the main multiple
testing tools used in this thesis.
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Clustering

Figure 1.7: The subjectivity of clustering.

Figure 1.8: A pollination network (Seo and Hutchinson, 2018): nodes represent pollinator or
plant species, edges denote interactions (the width indicates the frequency).
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Figure 1.9: A metabolic network (Weber Zendrera et al., 2019): nodes represent molecules,
edges denote chemical reactions. The right panel displays a zoom of the network.
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(a) Complete graph
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(b) Observed graph

Figure 1.10: Illustration of the link prediction task. In the left panel, we have the true complete
graph which is not observed. The right panel describes our observation: the true edges
(1, 2), (1, 4), (2, 3) are observed, along with the non-existent edge (1, 3), but the information
concerning the pairs (2, 4) and (3, 4) is missing. We aim to decide for (2, 4) and (3, 4) whether
there is a true edge or not.
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1.4.1 Preliminaries

Hypothesis testing

We start by recalling some basics about hypothesis testing. Let Z be a random variable (r.v.)
denoting the observation at hand, valued in some measurable space Z, and P its distribution,
belonging to a family of distributions P (model). Hypothesis testing is the process of choosing
between two hypotheses, H0 (the null hypothesis) and H1 (the alternative hypothesis), which
are formalized as: H0 : ”P ∈ P0” and H1 : ”P ∈ P1”, where P0,P1 are disjoint non empty
subsets of P. There are two types of errors that can occur:

• Rejecting the null hypothesis when it is true. The probability of making this mistake is
called the type I error.

• Accepting the null hypothesis when the alternative is true. The probability of making
this mistake is called the type II error.

The goal of hypothesis testing is to control the type I error at a given level α, while making
the type II error as small as possible. A central notion in hypothesis testing is that of the
p-value.

Definition 1 (p-value). A r.v. p is a valid p-value (or p-value for short) if it is super-uniform
under H0, i.e. ∀α ∈ [0, 1], ∀P ∈ P0, PZ∼P (p ≤ α) ≤ α .

By definition, if p is a p-value, then the test that rejects H0 when p ≤ α controls the type
I error at level α. Next, we give two examples of how to construct a p-value.

Let T : z ∈ Z → R be a test statistic for testing H0, such that we decide to reject when
T (Z) is large. As a first example, the r.v. p∗(Z) with

p∗ : z ∈ Z 7→ sup
P∈P0

PZ∼P (T (Z) ≥ T (z))

is a valid p-value. In general, when the term of p-value is used in the literature, it refers to
the p-value p∗. However p∗ is available only under strong model assumptions which is not the
case that we will consider. Hence p∗ will mostly serves as an oracle. In the sequel, we will
refer to p∗ as a theoretical p-value.

For the second example, let Z1, . . . , Zn be a sample of observations such that (Z,Z1, . . . , Zn)
is exchangeable under H0. Then, a p-value (called here empirical p-value) may be obtained
using only the computation of the rank of T (Z) among T (Z1), . . . , T (Zn). This is formalized
in the following result.

Lemma 1 (Romano and Wolf (2005); Arlot et al. (2010)). If the sequence (Z,Z1, . . . , Zn) is
exchangeable under H0, then the r.v. given by

p̂ =
1

n+ 1

(
1 +

n∑
i=1

1{T (Zi) ≥ T (Z)}

)

is a valid p-value.

Empirical p-values have been historically used, for instance, in two contexts. First, in
the context of two-sample testing, a sequence Z1, . . . , Zn that satisfy the exchangeability
assumption of Lemma 1 can be constructed by permuting observations in the two samples
and considering the resulting pair of data sets Zj (Romano and Wolf, 2005). In that context
the empirical p-value is referred to as a permutation-based p-value. Secondly, in the context of
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semi-supervised anomaly detection, P0 is a singleton: P0 = {P0}, and a sample of observations
Z1, . . . , Zn that are marginally distributed according to P0 is available (representing examples
of "normal" behavior). In that case, if exchangeability holds, an empirical p-value can be
computed directly, and its use for anomaly detection dates back to Vovk et al. (2005). In that
context the empirical p-value is referred to as a conformal p-value.

The multiplicity issue

Let H0,1, . . . ,H0,m be a set of m null hypotheses, H0 be the set of indices i such that H0,i

is true (true nulls) with m0 = |H0|, π0 = m0/m, and H1 = Hc0 the set of false nulls with
m1 = |H1|, π1 = m1/m. For instance, we have m = 10000 of genes and for each gene, we
want to test if they are associated with some phenotype, such as a disease. For this, we have
at hand observed expression levels on m genes for two groups of subjects, a treatment group
(or "affected" group) and a control group (or "unaffected" group). If we consider each test,
i.e. each gene, separately, compute a p-value for it and reject when the p-value is below α,
then we end up with the following result: among the rejected set of hypotheses, there are on
average m0α that are false, which gives 450 false rejections for m0 = 9000 inactive genes and
α = 5%. Hence, using as a selection rule a non-corrected p-value thresholding at level α = 5%
will lead to a non-reliable list of genes.

The issue is that the type I error guarantee is valid only in a marginal sense, whereas when
doing multiple tests we should think in terms of the joint distribution of the p-values. Thus
the notion of type I error must be extended to a suitable error criterion taking into account
the multiplicity aspect.

Selective inference The multiplicity issue is a part of a larger group of issues that come
from mis-using hypothesis testing and which are at the root of the "reproducibility" crisis
(Ioannidis, 2005; Zeevi et al., 2020; Shenhav et al., 2015; Heller et al., 2014), referring to the
failure of reproducing published scientific results. In particular, a very common mis-use is
data snooping, that refers to performing testing after looking at the data (i.e. deciding which
hypotheses to test based on the data) or manipulating the data (such as removing variables
from the data). Selective inference is the field of statistics that is dedicated to solving these
issues. It encompasses two main paradigms. The first is multiple testing and it consists of
producing a set of selected items with a guarantee on the error. Alternatively, if the user has
its own selection rule due to, e.g., common practice in the field, or budget constraints, selective
inference can be used to identify confidence bounds on the error rate for the selected set. This
second paradigm is known as post-hoc selective inference (Genovese and Wasserman, 2006;
Goeman and Solari, 2011; Lee et al., 2016; Benjamini et al., 2019; Blanchard et al., 2021).

Multiple testing

We define a multiple testing procedure as a (measurable) function R = R(Z) that returns a
subset of {1, . . . ,m} corresponding to the indices i of the rejected null hypotheses H0,i. The
main error rate criteria in the multiple testing literature are:

• Family-Wise Error Rate (FWER): the probability of making at least one false rejection,
i.e.

FWER(R) = PZ∼P (|R| ≥ 1).

• False Discovery Rate (FDR): the expected proportion of false rejections among the
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rejections, i.e.

FDR(R) = EZ∼P
[∑

i∈H0
1i∈R

1 ∨ |R|

]
.

• Marginal False Discovery Rate (mFDR): the expected number of false rejections over
the expected number of rejections, i.e.

mFDR(R) =
EZ∼P

[∑
i∈H0

1i∈R
]

EZ∼P [|R|]
,

with the convention 0/0 = 0.

How to choose among these criteria ? For very sensitive contexts it may be required to
control the probability of making any error, in which case the goal of controlling the FWER
is appropriate. However this criterion is very stringent: if m is large, in practical cases the
number of hypotheses that are rejected with this approach will be very few or none, which can
be problematic. The FDR criterion introduced by Benjamini and Hochberg (1995) fills this
gap by allowing for false rejections, in an amount proportional to the number of rejections.
This provides a clear interpretation: if we make, for instance, 100 rejections, then an FDR
below α = 5% guarantees that on average, there are at most 5 errors in the rejected set. The
FDR approach is well suited for "exploratory" research, that is, cases where we are screening
a very large pool for a set of promising candidates (such as genes associated to a phenotype of
interest), with the idea that in a later stage, these candidates are to be investigated carefully
for confirmation. By contrast, the FWER is more appropriate for "confirmatory" research,
when a definite result is desired. Finally, the mFDR (Genovese and Wasserman, 2002) is a
substitute of the FDR that involves a ratio of expectations rather than the expectation of a
ratio, which is easier to work with in some cases.
Remark 1 (mFDR versus FDR). The mFDR can be understood as a "single-point guarantee",
in contrast to the FDR that is a guarantee over multiple points. Indeed, assuming indepen-
dence of the rejections in the mFDR definition (admittedly this is an over-simplification,
practical procedures are data-driven), the mFDR reduces to the probability of making a
mistake for a single hypothesis point given that it is rejected.

We also need to extend the notion of type II error, that is, define a notion of power. In
general, we work with the True Discovery Rate (TDR), see e.g. (Dickhaus, 2014), defined as
the expected proportion of rejections among the false nulls, i.e.

TDR(R) = EZ∼P
[∑

i∈H1
1i∈R

1 ∨ |m1|

]
.

Another criterion is the expected number of rejections, EZ∼P (|R|), used for convenience when
the TDR is out of reach. The aim in multiple testing is to build a procedure R that controls
the FDR (or FWER, or mFDR) at the level α, while having a power as large as possible.

1.4.2 Existing strategies for FDR control

We present a panel of existing strategies for FDR control. We start with two main types of
historically-used approaches: the Benjamini-Hochberg (BH) (Benjamini and Hochberg, 1995)
procedure and its variants, and the empirical Bayes approaches (Efron et al., 2001; Sun and
Cai, 2007; Sun and Cai, 2009; Cai et al., 2019; Heller and Rosset, 2021; Jin and Cai, 2007;
Cai and Jin, 2010; Heller and Yekutieli, 2014; Roquain and Verzelen, 2022; Abraham et al.,
2022; Rebafka et al., 2022). Then, we move on to recent approaches, namely knockoffs and
related methods (Barber and Candès, 2015; Weinstein et al., 2017; Mary and Roquain, 2022;
Bates et al., 2023; Yang et al., 2021).
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The Benjamini-Hochberg procedure The BH procedure is given in Algorithm 1.

Algorithm 1 BH procedure
Input: p-values (pj)1≤j≤m
1. Sort the p-values: p(1) ≤ · · · ≤ p(m)

2. Find the largest k such that p(k) ≤ αk/m
3. Reject the null hypotheses H(1), . . . ,H(k) (reject nothing if k = 0)

Remark 2. The intuition behind the BH procedure is as follows. When we reject all hypotheses
with p-value ≤ t, then it is expected that m0t false rejections are made on average. Thus, the
false discovery proportion can be estimated by m0t/|R(t)| where R(t) denotes the rejection
set. Now, the quantitym0t/|R(t) cannot be computed, becausem0 is unknown, butmt/|R(t)|
is a computable upper-bound. The BH procedure chooses the cut-off t in a data-driven way
such that mt/|R(t)| ≤ α, while rejecting as much as possible under this constraint.

BH is guaranteed to control the FDR at the level απ0 under independence of the p-
values (Benjamini and Hochberg, 1995). The independence assumption can be relaxed to a
specific dependence assumption called the Positive Regression Dependent on a Subset (PRDS)
property (Benjamini and Yekutieli, 2001).

Definition 2 (PRDS). A random vector X = (Xi, 1 ≤ i ≤ m) is PRDS on a subset M ⊂
{1, . . . ,m} if, for any i ∈ M and increasing measurable set D, the function u 7→ P(X ∈
D |Xi = u) is nondecreasing.

A setD is said to be increasing if for any x ∈ D and y, we have y ∈ D provided that yi ≥ xi
for all i. In words, this assumption says if we condition on the value of one Xi, and increase
this value, X is more probable to have large values coordinate-wise. For instance, Benjamini
and Yekutieli (2001) give the following example of a PRDS distribution: for X ∼ N (µ,Σ)
and I0 = {1 ≤ i ≤ m : µj = 0}, if Σij ≥ 0 for each i ∈ I0 and j 6= i, then X is PRDS on I0.

Remark 3. In the FDR guarantee of the BH procedure, the control is at the level απ0 and not
α. If π0 is not close to one, this results in a loss of power, in the sense that the margin of error
is not fully used to make as much rejections as possible. Variants of the BH procedure have
been proposed to estimate π0 (Storey, 2002; Benjamini et al., 2006; Blanchard and Roquain,
2009). In particular, a well-known result from the literature is the following: for the Storey-BH
procedure, which consists in applying BH at the level α/π̂0 with π̂0 = (n/2)−1(1+n−|R(1/2)|),
the FDR control is guaranteed under independence of the p-values (Storey et al., 2004).

Empirical Bayes approaches The BH procedure requires p-values, which may not be
available in practice when the distribution of the null tests statistics is unknown or mis-
specified, as argued in a series of papers by Efron, see Efron et al. (2001) and Efron (2004,
2007, 2008, 2009) (see also Figure 1 in Roquain and Verzelen (2022) and references therein).
To avoid using p-values, the use of empirical Bayes procedures (Sun and Cai, 2007; Sun and
Cai, 2009; Cai et al., 2019; Heller and Rosset, 2021) is an approach popularized by Efron
et al. (2001) and widely used afterwards, that is based on so-called local FDR quantities
(Efron et al., 2001). More formally, Efron et al. (2001) introduced a two-group mixture
model, where the observation consists of m univariate measurements Z1, . . . , Zm, assumed to
be generated independently as

Hi ∼ B(π0), i = 1, . . . ,m

Zi|Hi ∼ f0 1Hi=0 +f1 1Hi=1, i = 1, . . . ,m.
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The local FDR is defined as the density ratio Lfdr : z 7→ π0f0(z)
π0f0(z)+π1f1(z) , where f0 and f1

are the unknown densities of Zi under the null and the alternative, respectively. The local
FDR value Lfdr(Zi) is equal to the probability that Hi is 0 given the observation Zi, and can
be used to act as a test statistic (that is more refined than Zi). We focus on the procedure
proposed in the seminal work Sun and Cai (2007), which paved the way for many studies that
followed (Heller and Rosset, 2021). The approach of Sun and Cai (2007) consists in identifying
the optimal mFDR-controlling procedure, which is obtained by thresholding the local FDR
values Lfdr(Zi). Since the densities f0 and f1 and the null proportion π0 are unknown in
practice, this procedure is called an "oracle" procedure. Relying on estimates f̂0, f̂1, π̂0, Sun
and Cai (2007) proposes a type of plug-in procedure based on the oracle, given in Algorithm
2.

Algorithm 2 Plug-in local FDR procedure (Sun and Cai, 2007)

Input: Estimates f̂0, f̂1, π̂0

1. Sort the local FDR values: L̂fdr(1) ≤ · · · ≤ L̂fdr(m)

2. Find the largest k such that
∑k

i=1 L̂fdr(i) ≤ α
3. Reject the null hypotheses H(1), . . . ,H(k) (reject nothing if k = 0)

The procedure is shown to control the mFDR asymptotically in Sun and Cai (2007), and
in a HMM set-up in Sun and Cai (2009), provided that the model parameters can be estimated
consistently. Moreover, under the same assumptions, it is power-optimal in an asymptotic
sense. Recently, in a general two-group mixture model where the measurements can be de-
pendent, Heller and Rosset (2021) identified the optimal procedure in terms of FDR control,
showing that it consists of a data-driven thresholding local FDR values, and gave an algorithm
based on linear programming to compute it.

Historically, the usual strategies for FDR control relied on the BH procedure with theoret-
ical p-values and the empirical Bayes approaches. However, both types of strategies display
serious practical limitations. On the one hand, theoretical p-values require to know the dis-
tribution of the test statistic under the null hypothesis. However, the null distribution can
be unknown or mis-specified in practice. Moreover, it constrains the test statistic to be pre-
specified, while it should be learned from data for the sake of power. On the other hand,
empirical Bayes avoids the use of p-values and learns the test statistic from the data, but the
control is only accurate as long as the quality of the estimates is good, and can be severely
violated otherwise. Recently, there has been a series of seminal works Barber and Candès
(2015); Weinstein et al. (2017); Bates et al. (2023); Yang et al. (2021); Mary and Roquain
(2022) that partially circumvent these limitations. We next proceed to give an overview of
these works, known in the literature as either knockoffs methods or conformal inference-based
methods, the later being strongly related to the former.

Knockoffs and related methods, part I: variable selection In a breakthrough work,
Barber and Candès (2015) introduced a "knockoff" method that comes with a finite-sample
FDR guarantee, while making use of a data-driven test statistic, in the specific context of
variable selection in the Gaussian linear regression model. Specifically, we observe X,Y in
the model Y = Xβ + ε, with β ∈ Rm, ε ∼ N (0, σ2IN ), in which X is a non-random matrix
valued in RN×m, σ is unknown, and m ≤ N . The aim is to test H0,j : βj = 0 against
the alternative H1,j : βj 6= 0, simultaneously for all 1 ≤ j ≤ m. The general idea of the
method is to introduce "fake" variables X̃ ∈ RN×m designed to be exchangeable with the
true null variables, so that they can be used as benchmarks to estimate the proportion of
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false positives in a certain selection. To be more precise, the knockoff variables are used
to construct test statistics that obey a "sign-flipping" property, in which the signs of null
test statistics are i.i.d. random. In particular, such test statistics can be constructed from
the LASSO (Tibshirani, 1996) solution fitted on the augmented matrix [XX̃]. Subsequently,
the method was extended in Barber and Candès (2019) to a setting where X is random and
m ≥ N ("model-X knockoffs"). Further, Weinstein et al. (2017) considered the particular case
where the entries of X are i.i.d. according to a known distribution G, in which case knockoffs
variables can be generated i.i.d. according to G in an arbitrary number n. In that setup,
Weinstein et al. (2017) proposed another FDR-controlling procedure, the counting knockoffs
(CK), with the aim of increasing power. Here, the null test statistics do not have to verify
the sign-flipping property, but instead, they should satisfy exchangeability with the statistics
computed for knockoffs; the LASSO coefficient is given as a possible choice.

Knockoffs and related methods, part 2: out-of-distribution testing A series of
subsequent works (Mary and Roquain, 2022; Bates et al., 2023; Yang et al., 2021) considered
out-of-distribution testing and provided model-free procedures that come with finite-sample
FDR control, and they are closely related with the knockoff methodology. In these works, we
have at hand a first sample of observations Z1, . . . , Zn sharing a common marginal distribution
P0, and a second sample of observations Zn+1, . . . , Zn+m (test sample), such that the aim is to
test H0,j : Zn+j ∼ P0 versus H1,j : Zn+j � P0. In the particular case where the measurements
Zj are real-valued (which is equivalent to assume that the test statistics are directly given),
Mary and Roquain (2022) studied the "empirical BH" procedure that consists of using the
empirical p-values p̂j = (1 +

∑n
i=1 1{Zi ≤ Zn+j})/(n + 1) into BH and proved FDR control

under exchangeability of the null measurements (Z1, . . . , Zn, Zj , j ∈ H0). In particular, Mary
and Roquain (2022) established that empirical BH is equivalent to CK, or in other words,
that CK is a particular case of empirical BH with specific test statistics designed for variable
selection (and for which the exchangeability assumption holds). Independently, Bates et al.
(2023) studied the use of conformal p-values into BH. Conformal p-values rely on reducing
each multivariate observation Zj to a univariate score Sj and computing the rank of the test
score among the scores of the nominal data:

pj =
1

n+ 1

(
1 +

n∑
i=1

1Si≥Sn+j

)
, 1 ≤ j ≤ m.

In this view, conformal p-values are empirical p-values, and thus, BH with conformal p-values
is equivalent to empirical BH with the test statistics Sj . However, with respect to Mary and
Roquain (2022), Bates et al. (2023) shows that the score Sj can be learned from the nominal
data by proceeding as follows: the nominal sample is split into two subsets, {Z1, . . . , Zk}
and {Zk+1, . . . , Zn}. The first part is used to learn the score (e.g., using one-class classifiers
Schölkopf et al., 2001), whereas the second is used to compute the ranks (hence n is replaced
by n−k in the above equation). Strikingly, the resulting p-values ("split-conformal" p-values)
are shown to satisfy the PRDS assumption (see Definition 2) under i.i.d. data, which entails
that FDR control is guaranteed with the BH procedure.

Finally, Yang et al. (2021) proved finite-sample FDR control for empirical BH with a test
statistic learned on the test data. Specifically, in their framework, the null distribution is
known, and the test statistic is a function of the mixed sample {Z1, . . . , Zn+m}. In particular,
they propose to use the estimated local FDR (Efron et al., 2001; Sun and Cai, 2007) as the
score function.
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1.5 Contributions

Adaptive novelty detection with FDR guarantee In Chapter 2, we consider the aim
of FDR control in a novelty detection task, where we have at hand a sample of nominal data
Z1, . . . , Zn sharing a common marginal distribution P0, and a test sample of unlabeled data
Zn+1, . . . , Zn+m (see Figure 1.2). This task amounts to a standard multiple testing problem,
with the null hypotheses H0,i : Zn+i ∼ P0, i = 1, . . . ,m. As seen in Section 1.4.2, recent
seminal works by Bates et al. (2023); Yang et al. (2021) have shown that the test statistic could
be learned from the data while maintaining the FDR control guarantee, hereby circumventing
crucial limitations of historically-used strategies for FDR control. The procedure studied in
both of these works is the empirical BH procedure (Mary and Roquain, 2022), equivalent to
the CK procedure (Weinstein et al., 2017), with certain model-free test statistics. However,
on the one hand, in Bates et al. (2023), the test statistic is learned from nominal data only,
and does not adapt to the alternatives. On the other hand, Yang et al. (2021) utilize only the
test sample: the null distribution is assumed to be known in their framework. Moreover, the
test statistic in Yang et al. (2021) is the local FDR, which involves unknown densities, that
are difficult to fit in high dimensions.

Our contribution consists in an extension of these previous works by proposing a new
way to learn the score that utilizes both the nominal sample and the test sample, while
retaining the control of the FDR. The idea is to learn a classification of {Z1, . . . , Zk } against
the mixed sample {Zk+1, . . . , Zn, Zn+1, . . . , Zn+m} and to use the probability of being in the
class corresponding to the mixed sample as score. When the classification algorithm performs
well, the scores tend to be larger for anomalies than for nulls, because anomalies are only
present in the mixed sample. Moreover, any classification algorithm can be used, including
the state-of-the art, which makes the method both flexible and powerful.

Mixing Zk+1, . . . , Zn with Zn+1, . . . , Zn+m allows to keep the null scores (Sk, . . . , Sn, Sj , j ∈
H0) exchangeable, which ultimately is the key to FDR control, as shown in Weinstein et al.
(2017) in the context of variable selection for the Gaussian linear regression model. We prove
that the PRDS property, established under independency in Bates et al. (2023), still holds
(which entails FDR control), and we propose new FDR bounds. We also prove FDR control
for a version of the procedure that estimates the null proportion π0. Finally, we provide a
power analysis, where we show that the proposed procedure has a power close to the one of
the optimal likelihood ratio test with a suitable level. Numerical experiments on both simu-
lated and real data demonstrate the substantial gain of power with respect to previous work.
This procedure has already generated an important interest in community, see Bashari et al.
(2023); Liang et al. (2023); Gao and Zhao (2023).

Clustering with error rate control In Chapter 3, we consider the problem of error rate
control in a clustering task. A main challenge is how to define the notion of error of a
clustering, since there is no unique definition of what a cluster is. To overcome this difficulty,
we make the choice of considering a mixture model, that defines a natural ground truth
clustering. More precisely, we assume that the observed data X = (X1, . . . , Xn) is such that
every Xi is independently generated according to :

Z ∼ ΣQ
q=1πqδq

X|Z = q ∼ Fφq , 1 ≤ q ≤ Q,

with {Fu, u ∈ U} a collection of probability distributions on Rd and (π1, . . . , πQ), (φ1, . . . , φq)
some parameters. In this setup, the clustering task amounts to recover the unobserved group
labels Zi. Thus, the clustering risk is naturally defined as the expectation of the difference
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(a) Separated clusters (b) Ambiguous clusters

Figure 1.11: Data from Gaussian mixtures with three components (n = 200), in a fairly sepa-
rated case (panel (a)) and an ambiguous case (panel (b)). In each panel, the left part displays
the true clustering, while the right part illustrates the new procedure (plug-in procedure at
level α = 10%), that does not cluster all items. The points not classified are depicted by grey
crosses. Red circles indicate erroneous labels.

between the estimation partition and the true one, that is,
∑n

i=1 1{Zi 6= Ẑi}, with a suitable
way of taking into account label-switching. In order to keep the risk smaller than a given level
α even in an unfavorable setting, we propose a procedure with an abstention option, whose
output is a set of indices S = S(X) ⊂ {1, . . . , n} corresponding to the observations to which
a cluster label is assigned. The problem is thus formalized in terms of controlling the false
membership rate (FMR) criterion, given by

FMR = E

(
min
σ∈[Q]

E

(∑n
i=1 1{Zi 6= σ(Ẑi)}1i∈S

max(|S|, 1)

∣∣∣∣X
))

.

In contrast to Chapter 2, the setting here is completely unsupervised, making the task of
risk control more challenging. We propose a plug-in procedure that is inspired from the
empirical Bayes approaches (Sun and Cai, 2007) in multiple testing (see Section 1.4). It
works by first computing an estimate θ̂ of the model parameter θ = (π, φ), which is used
to evaluate the class probabilities Pθ̂(Zi = q|Xi). Then the procedure assigns the cluster
label argmaxq Pθ̂(Zi = q|Xi) corresponding to the maximum class probability, provided that
this probability is above a data-dependent threshold (otherwise, the procedure abstains). The
method is illustrated in Figure 1.11. Our main contribution consists in the theoretical analysis
of this procedure: we quantify the FMR deviation of the plug-in procedure, with respect to
the target level α, in terms of the estimation error and the model complexity. In particular,
our results show that if the model estimate is accurate enough, the FMR is close to the target
level. However, the plug-in procedure inherits from the main limitation of the empirical Bayes
approaches in multiple testing: it relies on the quality of model estimation, which may not
be taken for granted in practice. To remedy this issue, we develop bootstrap procedures and
assess their performance in numerical experiments.

Link prediction with FDR control In Chapter 4, we consider the aim of FDR control in
a link prediction task (see Figure 1.10). This setting is the most supervised one compared to
those of Chapters 2 and 3, in the sense that we observe both a part of the true edges and a part
of the non-existing ones. FDR control in this specific setting does not correspond to a standard
multiple testing problem, but we argue that high-level ideas from the literature on conformal
p-values (Barber and Candès, 2015; Weinstein et al., 2017; Bates et al., 2023; Yang et al., 2021;
Mary and Roquain, 2022), namely, the comparison of a test score to scores of a reference set,
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can still be applied. We propose a transposition of the procedure of Weinstein et al. (2017);
Bates et al. (2023); Yang et al. (2021); Mary and Roquain (2022) and of Chapter 2 to the
link prediction setup. More precisely, we use an estimate of the connection probability for an
unobserved pair of nodes as a score indicating the relevance of an edge between them. Such an
estimate can be obtained using an off-the-shelf link prediction method. We then compare the
connection probability for a non-observed pair of nodes to connection probabilities of pairs
that are known to be non-existent edges for FDR control. However, the graph structure makes
the scores dependent on each other in an intricate way, that must be taken into account in the
procedure. The FDR control is empirically demonstrated on both simulated and real data.
Compared to previous work on knockoffs and conformal p-values, this problem presents an
interesting setup where exchangeability of the scores does not hold.

Outline of the manuscript Each chapter is independent and self-contained. Chapter 2 is
a joint work with Lihua Lei (Stanford University), David Mary (Université Nice Côte d’Azur),
and Etienne Roquain (Sorbonne Université), that is currently in revision. Chapter 3 is a joint
work with Tabea Rebafka (Sorbonne Université), Etienne Roquain (Sorbonne Université), and
Nataliya Sokolovska (Sorbonne Université), that has been submitted for publication. Chapter
4 is a personal work and has been submitted for publication.



Chapter 2

Adaptive novelty detection with FDR
guarantee

This paper studies the semi-supervised novelty detection problem where a set of “typical” mea-
surements is available to the researcher. Motivated by recent advances in multiple testing and
conformal inference, we propose AdaDetect, a flexible method that is able to wrap around any
probabilistic classification algorithm and control the false discovery rate (FDR) on detected
novelties in finite samples without any distributional assumption other than exchangeability.
In contrast to classical FDR-controlling procedures that are often committed to a pre-specified
p-value function, AdaDetect learns the transformation in a data-adaptive manner to focus the
power on the directions that distinguish between inliers and outliers. Inspired by the multiple
testing literature, we further propose variants of AdaDetect that are adaptive to the propor-
tion of nulls while maintaining the finite-sample FDR control. The methods are illustrated
on synthetic datasets and real-world datasets, including an application in astrophysics.
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2.1 Introduction

2.1.1 Novelty detection

In this paper, we consider a novelty detection problem (see, e.g., Blanchard et al. (2010b) and
references therein) where we observe:

• a null training sample (NTS hereafter) Y = (Y1, . . . , Yn) of “typical" measurements
where Yis share a common marginal distribution P0 which we refer to as the null distri-
bution;

• and a test sample X = (X1, . . . , Xm) of “unlabeled" measurements for which the
marginal distribution of Xi is denoted by Pi, which might be different from P0.

These measurements are assumed to take values in a general space Z endowed with a pre-
scribed σ-field. For example, the space can be the set of real matrices (Z = Rd×d′) or real
vectors (Z = Rd), whose dimension is potentially large.

Putting two samples together, we observe

Z = (Z1, . . . , Zn+m) = (Y1, . . . , Yn, X1, . . . , Xm).

The aim is to detect novelties, namely Xis with Pi 6= P0. This task is illustrated in Figure 2.1
on a classical image dataset, where we want to detect hand-written digit ‘9’s in the test sample
based on an NTS of digits ‘4’. The procedure, that declares as novelties the images with red
boxes, can make false discoveries (digit ‘4’) and true discoveries (digit ‘9’).

To avoid false positives that might be costly in practice, we seek to control the false
discovery rate (FDR), defined as the average proportion of errors among the discoveries,
while attempting to maximize the true discovery rate (TDR), defined as the average portion of
detected novelties. FDR has been a very popular criterion in multiple testing and exploratory
analysis since its introduction by Benjamini and Hochberg (1995); see Benjamini (2010) for
a detailed discussion and Barber and Candès (2015); Bogdan et al. (2015); Javanmard and
Javadi (2019); Barber et al. (2020); Ma et al. (2021a) for recent developments, among others.
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Null sample Test sample Procedure

Figure 2.1: Illustration of the novelty detection task on the MNIST dataset (LeCun and
Cortes, 2010); see Section 2.6.2 for more details on the setting.

2.1.2 Existing strategies

For a standard multiple testing problem where the null distribution P0 is known, the cel-
ebrated Benjamini-Hochberg (BH) procedure (Benjamini and Hochberg, 1995) controls the
FDR in finite samples uniformly over all alternative distributions, when the test statistics are
independent or satisfy the positive regression dependency on each one from a subset (PRDS)
property; see Benjamini and Hochberg (1995); Benjamini and Yekutieli (2001). Variants of
the BH procedure have been proposed to relax the conservatism when the fraction of true
nulls is not close to 1, such as the Storey-BH (Storey et al., 2004) or Quantile-BH proce-
dure (Benjamini et al., 2006; Sarkar, 2008; Blanchard and Roquain, 2009), and to robustify
the FDR control under more general dependence structures (see Fithian and Lei, 2020 and
references therein).

Despite this generality, BH-like methods have two major limitations in novelty detection
problems with multivariate measurements:

(i) it is based on p-values or, more generally, univariate scores with a known distribution
under the null, which is typically out of reach for such problems;

(ii) the score function that transforms the multivariate measurements into univariate test
statistics (e.g., the p-value transformation) is pre-specified, while it should be learned
from data for the sake of power.

We now discuss several existing solutions that partially circumvent these limitations. Table 2.1
provides a summary of the properties of each method, along with the corresponding applicable
settings.

A popular solution in the multiple testing literature is the empirical Bayes approach, which
operates on the local FDR instead of the p-values. Assuming a two-group mixture model
(Efron et al., 2001), the local FDR is defined as the probability of being null conditional on
the observed measurement values. The latter can be estimated by estimating the null and
alternative densities together with the proportion of nulls; see Efron (2004, 2007, 2008, 2009).
Combining local FDRs appropriately controls FDR asymptotically, under the assumptions
that allow the model to be consistently estimated, and achieves optimal power, as shown in
a series of paper by Sun and Cai (2007); Cai and Sun (2009); Sun and Cai (2009); Cai et al.
(2019). We refer to this procedure as the SC procedure hereafter. Despite the appealing
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optimality guarantees, the model assumptions tend to be fragile when the dimension d of the
test statistics is moderately high. In such cases, accurate model estimation is hard to come
by and the FDR of the SC procedure can thus be inflated; see our numerical experiments in
Section 2.6 for an illustration.

Another line of research stems from conformal inference. While this technique is designed
for prediction inference (see Angelopoulos and Bates (2021) for a recent review), it can also be
employed in the novelty detection problem. In particular, it can generate conformal p-values
that are super-uniform under the null without any model assumption beyond that the data
are exchangeable (e.g., Vovk et al., 2005; Balasubramanian et al., 2014; Bates et al., 2023).
This approach starts by transforming Zj into a univariate score Sj , called the non-conformity
score, that measures the conformity to the data and then computes an empirical p-value, also
known as the conformal p-value, to evaluate the statistical evidence of being a novelty:

pj = (n+ 1)−1
(

1 +

n∑
i=1

1Si≥Sn+j

)
. (2.1)

Each p-value is marginally super-uniform under the null due to exchangeability and hence
yields a valid test. Nonetheless, since the conformal p-values all use the same null sample, the
above operation induces dependence between the p-values, making it unclear whether common
multiple testing procedures are guaranteed to control FDR. Bates et al. (2023) carefully
study the dependence structure and show that the split (or inductive) conformal p-values
are PRDS. As a consequence, BH procedure applied on these conformal p-values controls the
FDR. However, the approach limits the construction of the scores to be based solely on null
examples and hence cannot learn the patterns of novelties in the mixed samples, unless extra
labelled novelties are available (Liang et al., 2022), which are not always possible. Even when
labelled novelties are present, they may behave differently than the ones in the mixed sample
that we aim to detect. For this reason, Bates et al. (2023) apply the one class classification
techniques (e.g. Schölkopf et al., 2001) that are not adaptive to the novelties. In sum, while
the method successfully solves the issue (i), it falls short of adequately addressing issue (ii).
On the other hand, while other versions of conformal p-values, like full conformal p-values
(Vovk et al., 2005) and cross conformal p-values (Vovk, 2015; Barber et al., 2021), can use
test samples and yield marginally valid p-values, they generally fail to satisfy the PRDS
property, making it unclear whether the BH procedure would control FDR.

A subsequent work by Yang et al. (2021) proposes the Bag Of Null Statistics (BONuS)
procedure for multiple testing problems with high dimensional test statistics, which largely
motivates our method. The BONuS procedure learns a score function of the form Si =
g(Zi, (Z1, . . . , Zn)) and the method is valid as long as g(Zi, ·) is permutation invariant thereby
allowing the transformation to be adapted to novelties. While the framework is flexible,
they focus on the parametric setting where the null distribution is known, like Gaussian or
multinomial, and the measurements are independent. In these cases, they propose using the
estimated local FDR as the score function for which the alternative distribution and null
proportion are learned by an empirical Bayes approach. The BONuS procedure controls the
FDR in finite samples regardless of the quality of the estimates, even if the working model is
completely wrong. However, for novelty detection problems, the local FDR involves unknown
null and alternative densities, which are difficult to fit in high dimensions. Hence, point (ii)
mentioned earlier remains partially addressed.

Lastly, we briefly review other related work that study different settings. The “counting
knockoffs" procedure introduced by Weinstein et al. (2017) is designed for multiple testing
for high-dimensional linear models with random design matrices. Mary and Roquain (2022)
show that it is equivalent to applying the BH procedure to the scores S1, . . . , Sn+m and closely
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Finite sample Adaptative Learning Unknown
Method FDR control score alternative null

Benjamini and Hochberg (1995) yes no no no
Sun and Cai (2007) no yes yes yes

Weinstein et al. (2017)
Mary and Roquain (2022) yes no no yes

Bates et al. (2023) yes yes no yes
Yang et al. (2021) yes yes yes no

AdaDetect (our approach) yes yes yes yes

Table 2.1: Properties of different methods and the specific settings in which they can be
applied for novelty detection.

related to the BONuS procedure. More recently, Rava et al. (2021) develop a method that is
equivalent to applying the BH procedure on the conformal p-values to obtain a finite sample
control of the false selection rate (FSR) for the task of (supervised) classification.

2.1.3 Contributions

In this work we introduce AdaDetect, an extension1 of the BONuS procedure for novelty
detection problems. In particular, we show how to leverage flexible off-the-shelf classification
algorithms in machine learning to address both issues (i) and (ii) without compromising the
FDR-controlling guarantees. In a nutshell, AdaDetect operates by initially splitting the null
sample in two parts, (Y1, . . . , Yk) and (Yk+1, . . . , Yn), generating a membership label Aj = −1
if Zj ∈ {Y1, . . . , Yk} and Aj = 1 otherwise, and subsequently calculating a score function using
a binary classifier trained on (Zi, Ai)

n+m
i=1 and applying the BH procedure on the empirical

p-values. For the example illustrated in Figure 2.1, Adadetect would split the null samples
(digits ‘4’) into two subsets and train a probabilistic classifier using both the null and test
samples to distinguish the first subset of the null sample and the mix of the second subset of
the null sample and the test sample (digits ‘4’ and ‘9’). The predicted probability to be in
the mixed sample is taken as the score. When the classification algorithm performs well, the
scores tend to be larger for novelties than for nulls, because novelties are only present in the
mixed sample. A comprehensive description of the procedure can be found in Section 2.2.4.

We summarize our main results below.

• In Section 2.3, we revisit the theoretical guarantees in Weinstein et al. (2017); Mary
and Roquain (2022); Bates et al. (2023) and provide new FDR bounds based on an
extension of the leave-one-out technique in the multiple testing literature. The bounds
show that AdaDetect, as well as its π0-adaptive variants Storey-AdaDetect and Quantile-
AdaDetect, controls the FDR in finite samples with arbitrary classification algorithms
even if the algorithm performs poorly. This is in sharp contrast to the SC procedure
which heavily relies on correct model specification and consistent estimation.

• In addition, we extend the result in Bates et al. (2023) to show that the empirical p-
values are PRDS under a more general exchangeability assumption, even if the score
function depends on both null and test samples. For instance, our condition covers the
Gaussian distributions with equi-correlation (Example 1). This PRDS property suggests

1More precisely, we extend the version of BONuS where the score function is fit only in the initial stage;
see the discussion in Section 2.8 for more details.
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that the resulting p-values can be applied in other contexts beyond the FDR control
(e.g., Goeman and Solari, 2011).

• In Section 2.4, we show that any score function that is monotone in the ratio between the
average density of novelties and the null density yields the optimal power. In particular,
the optimal classifier to distinguish between the null and mixed samples is efficient
despite that the null training is split and that the mixed sample is contaminated by
nulls. The optimal score function can be obtained by minimizing certain loss function
such as the cross-entropy loss that is commonly used in neural networks (NN hereafter).

• We provide non-asymptotic power analyses for AdaDetect in Section 2.5. First, we
investigate AdaDetect with the score function given by a constrained empirical risk
minimizer (ERM) of the 0-1 loss and show it approaches the optimal likelihood ratio
test in an appropriate sense. Next, we provide an oracle inequality for general score
functions and conditions under which the procedure mimics its oracle version. We
apply the results to analyze power for AdaDetect procedures based on NN and on non-
parametric kernel density estimation.

• We demonstrate the efficiency, flexibility, and robustness of AdaDetect2 in Sections 2.6 and 2.7
on synthetic, semi-synthetic, and real datasets, including the MNIST image dataset and
an astronomy dataset from the ’Sloan Digital Sky Survey’.

2.2 Preliminaries

2.2.1 Notation

As in Section 2.1.1, we let Y = (Y1, . . . , Yn) denote the null training sample (NTS) with a
common marginal distribution P0, X = (X1, . . . , Xm) the test sample with Xi ∼ Pi (1 ≤ i ≤
m), Z = (Z1, . . . , Zn+m) = (Y1, . . . , Yn, X1, . . . , Xm) the full sample, H0 = {1 ≤ i ≤ m : Pi =
P0} the set of nulls in the test sample with m0 = |H0|, π0 = m0/m, and H1 = {1, . . . ,m}\H0

the set of novelties with m1 = |H1|, π1 = m1/m. For notational convenience, we write n+H0

for the set {n + i, i ∈ H0}. Furthermore, we denote by P the joint distribution of Z, which
belongs to a family of distributions P (model).

Throughout the paper, we consider the semi-supervised setting (Mary and Roquain, 2022)
where the null distribution P0 is unknown and one can access it only through the measurements
in the NTS. In practice, the NTS can be obtained from external data, past experiments or
black-box samplers.

2.2.2 Criteria

A novelty detection procedure is a measurable function R(·) that takes Z as input and returns
a subset of {1, . . . ,m} corresponding to the indices of detected novelties within {X1, . . . , Xm}.
Throughout the paper, we will slightly abuse the notation by using R to refer to both the
procedure and the rejection set given by the procedure. Ideally, we want R(Z) to capture
novelties (i.e., alternative hypotheses in H1) and avoid inliers (i.e., null hypotheses in H0).
Given a procedure R, the false discovery rate (FDR) is defined as the expectation of the false

2The code is publicly available at https://github.com/arianemarandon/
adadetecthttps://github.com/arianemarandon/adadetect

https://github.com/arianemarandon/adadetect
https://github.com/arianemarandon/adadetect
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discovery proportion (FDP) with respect to the distribution P ∈ P:

FDR(P,R) = EZ∼P [FDP(P,R)], FDP(P,R) =

∑
i∈H0

1i∈R

1 ∨ |R|
. (2.2)

Similarly, the true discovery rate (TDR) is defined as the expectation of the true discovery
proportion (TDP):

TDR(P,R) = EZ∼P [TDP(P,R)], TDP(P,R) =

∑
i∈H1

1i∈R

1 ∨m1(P )
. (2.3)

Note thatm1(P ) = 0 implies TDP(P,R) = 0. Our goal is to build a procedure R that controls
the FDR and maximizes the TDR to the fullest extent.

2.2.3 BH algorithm and its π0-adaptive variants

Suppose a set of p-values (pi, 1 ≤ i ≤ m) is available, the BH algorithm (Benjamini and
Hochberg, 1995) returns

R = {i ∈ {1, . . . ,m} : pi ≤ αk̂/m},

where α is the target FDR level and

k̂ = max

{
k ∈ {0, . . . ,m} :

m∑
i=1

1pi≤αk/m ≥ k

}
. (2.4)

When the null p-values (pi, i ∈ H0) are independent, super-uniform, and independent of
alternative p-values (pi, i ∈ H1), the BH procedure is proved to control the FDR at level
απ0 in finite samples (Benjamini and Hochberg, 1995). The independence assumption can be
further relaxed to the PRDS condition (Benjamini and Yekutieli, 2001).

When π0 is not close to 1, the BH procedure is conservative because απ0 < π0. When
π0 is known, it can be applied at level α/π0 to close the gap. In practice, π0 is usually
unknown though. Nonetheless, there exists estimators π̂0 of π0 such that the BH procedure
with level α/π̂0 continues to control the FDR under independence. Two celebrated estimators
are introduced by Storey et al. (2004) and Benjamini et al. (2006):

π̂Storey0 =
1 +

∑m
i=1 1pi≥λ

m(1− λ)
, λ > 0; (2.5)

or π̂Quant0 =
m− k0 + 1

m(1− p(k0))
, k0 ∈ {1, . . . ,m}, (2.6)

where p(k0) is the k0-th smallest3 p-value. These procedures are often called the π0-adaptive
versions of the BH algorithm.

2.2.4 Our method

In this paper, we propose a method called AdaDetect. It is an adaptive novelty detection
procedure that extends the existing strategies described in Weinstein et al. (2017), Yang et al.
(2021), Mary and Roquain (2022), and Bates et al. (2023). It starts by splitting the null

3In this paper, a convention is to order the p-values from the smallest to the largest, while the test statistics
are ordered from the largest to the smallest.
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Figure 2.2: A schematic illustration of AdaDetect: •/◦ stands for a test/null observation,
respectively. The vertical dashed line corresponds to the largest threshold t for which
F̂DP(t) ≤ α and the • circled in blue correspond to the discoveries of AdaDetect procedure.

sample (Y1, . . . , Yn) in two samples (Y1, . . . , Yk) and (Yk+1, . . . , Yn) with k ≥ 0. To avoid
cluttering our notation, we define ` as the size of the second null sample, i.e.,

` = n− k.

It proceeds with the following steps.

1. Compute a data-driven score function of form

g(z) = g(z, (Z1, . . . , Zk), (Zk+1, . . . , Zn+m)), z ∈ Z, (2.7)

which satisfies the following invariance property: for any permutation π of {k+1, . . . , n+
m} and z, z1, . . . , zn+m ∈ Z, we have

g(z, (z1, . . . , zk), (zπ(k+1), . . . , zπ(n+m))) = g(z, (z1, . . . , zk), (zk+1, . . . , zn+m)). (2.8)

2. Transform the raw data into univariate scores

Si = g(Zi; (Z1, . . . , Zk), (Zk+1, . . . , Zn+m)), i ∈ {k + 1, . . . , n+m}. (2.9)

Here, we assume that novelties typically have large scores.

3. For each test point Xj , generate the empirical p-value by comparing Si with the scores
in the NTS:

pj =
1

`+ 1

(
1 +

n∑
i=k+1

1Si>Sn+j

)
, j ∈ {1, . . . ,m}. (2.10)
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4. Apply the BH algorithm to (p1, . . . , pm) at the target level α.

We will call this procedure AdaDetectα in the sequel to emphasize the target level. By
simple algebra, the last two steps together are equivalent to the “counting knockoff” algorithm
proposed by Weinstein et al. (2017) applied to the scores Sk+1, . . . , Sn+m. Specifically, the
method declares i as a novelty if Si ≥ t̂ where

t̂ = min
{
t ∈ {Si : k + 1 ≤ i ≤ n+m} : F̂DP(t) ≤ α

}
;

F̂DP(t) =
m

`+ 1

(
1 +

n∑
i=k+1

1Si≥t

)
/
n+m∑
i=n+1

1Si≥t .

Therefore, the counting knockoff procedure can be seen as a shortcut that avoids computing
the empirical p-values explicitly. The pipeline for AdaDetect is illustrated in Figure 2.2.

AdaDetect offers greater flexibility than existing methods in the types of score functions
that can be employed.

• Prespecified p-value transformations are score functions that do not depend on (Z1, . . . , Zk)
and (Zk+1, . . . , Zn+m). For example, when Z = Rd, the χ2 test chooses the non-adaptive
score g(z) =

∑d
j=1 z

2
j , z ∈ Rd.

• The one-class classification approach considered by Bates et al. (2023) corresponds to
score functions that only depend on (Z1, . . . , Zk), but not (Zk+1, . . . , Zn+m).

• The BONuS procedure (Yang et al., 2021) considers empirical Bayes-based score func-
tions that depend on the pooled sample {Z1, . . . , Zn+m} without distinguishing between
the null and mixed samples.

• Our proposed method constructs the score function g(·, (Z1, . . . , Zk), (Zk+1, . . . , Zn+m))
as the estimated probability by any probabilistic classifier that distinguishes between
(Z1, . . . , Zk) and (Zk+1, . . . , Zn+m); see Section 2.4 for details.

Lastly, we propose the Storey-AdaDetect and Quantile-AdaDetect as the π0-adaptive ver-
sions of AdaDetect applied at level α/π̂Storey0 and α/π̂Quant0 , respectively, in which the p-values
have been replaced by the empirical ones.
Remark 4. An appealing property of Adadetect and its adaptive versions is that the rejection
is invariant to strictly increasing transformations of score function. This feature proves useful
in the power analysis of AdaDetect, see Section 2.4.
Remark 5. By construction, the empirical p-values are multiples of 1/(` + 1). As Mary and
Roquain (2022) point out, the number of null samples ` needs to be larger than m/(α(1∨M))
in order to guarantee sufficient resolution of the p-values for the BH procedure, where M ≥ 0
is some high-probability lower bound on the number of rejections. Typically, if M is of the
order of m, a constant ` would suffice, while if M = 0 (i.e., without any prior knowledge on
the number of rejections), ` should be larger than m/α. In general practical situations where
n & m, we recommend setting ` = m and this choice works reasonably well in our numerical
experiments. When m > n, it might be more appropriate to impose further assumptions on
the distribution (e.g., the knowledge of M).

2.3 FDR control

In this section, we prove that AdaDetect and its π0-adaptive variants control the FDR. In Sec-
tion 2.3.1, we state the key assumption of exchangeability and show it translates to the scores
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as long as g satisfies the condition (2.8). Based on this observation, we prove in Section 2.3.2
that the empirical p-values are PRDS, which is a highly non-trivial extension of the results
by Bates et al. (2023). Though the PRDS property implies the FDR control of AdaDetect as
a result of Benjamini and Yekutieli (2001), we present in Section 2.3.3 an alternative proof
based on a new FDR expression that unify and extend the previous FDR bounds. Lastly, in
Section 2.3.4, we prove the FDR control for Storey-AdaDetect and Quantile-AdaDetect based
on an FDR bound for general π0-adaptive versions of AdaDetect.

2.3.1 Exchangeability

We make the following assumption on the raw measurements throughout the paper.

Assumption 1. (Y1, . . . , Yn, Xi, i ∈ H0) are exchangeable conditional on (Xi, i ∈ H1). 4

Clearly, Assumption 1 holds when the measurements are independent, as assumed by Yang
et al. (2021) and Bates et al. (2023). In general, Assumption 1 allows for dependencies among
the measurements.

Example 1. Consider the observation where Zi = µi + ρ1/2ξ + (1 − ρ)1/2εi, 1 ≤ i ≤ n + m,
with the variables ξ, ε1, . . . , εn+m being i.i.d. ∼ N (0, Id), ρ being a nonnegative correlation
coefficient, and µi = 0 for i ∈ {1, . . . , n} ∪ (n + H0) (hence Z = Rd). Then Assumption 1
holds. The case d = 1 corresponds to the Gaussian equi-correlated case, which is widely
studied in the multiple testing literature (e.g., Korn et al., 2004).

For our results, a necessary assumption is exchangeability of the scores under the null:

Assumption 2. (Sk+1, . . . , Sn, Sn+i, i ∈ H0) is exchangeable conditionally on (Sn+i, i ∈ H1).

It turns out the exchangeability of the raw measurements translates to the scores.

Lemma 2. Under Assumption 1, the adaptive scores defined by (2.9) satisfy Assumption 2
for any score function that satisfies the condition (2.8).

This result substantially simplifies the FDR analysis presented in the next section. To
avoid unnecessary mathematical complications, we make the following mild assumption.

Assumption 3. (Sk+1, . . . , Sn+m) have no ties almost surely.

2.3.2 The p-values are PRDS

Following Benjamini and Yekutieli (2001), we say a family of p-values (pi, 1 ≤ i ≤ m) is
PRDS on H0 if, for any i ∈ H0 and nondecreasing5 measurable set D ⊂ [0, 1]m, the function
u ∈ [0, 1] 7→ P((pj , 1 ≤ j ≤ m) ∈ D | pi = u) is nondecreasing.

Theorem 3. For any family of scores (Sk+1, . . . , Sn+m) satisfying Assumptions 2 and 3, the
empirical p-values defined in (2.10) are PRDS on H0 and the null p-values are super-uniform.
In particular, under Assumptions 1 and 3, this result holds for the p-values generated by
AdaDetect with a score function satisfying (2.8).

4Note that such an assumption implicitly assumes that such a conditional distribution exists, which is
always the case for instance when Z = Rd or Z is discrete.

5A set D ⊂ [0, 1]m is said to be nondecreasing if for any x ∈ D and y ∈ [0, 1]m, we have y ∈ D provided
that yi ≥ xi for all i.
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We present a proof of Theorem 3 in Section A.1.3. It extends Theorem 2 in Bates et al.
(2023) to dependent scores. Notably, the AdaDetect scores are dependent in general even if
the measurements Zi’s are independent because the data-adaptive score function depends on
the entire dataset.

Theorem 3 has interesting consequences. First, the celebrated result for the BH procedure
(Benjamini and Yekutieli, 2001; Romano and Wolf, 2005) implies that AdaDetect strongly
controls the FDR at level απ0. Second, the PRDS property is also useful for other purposes,
such as post hoc inference (Goeman and Solari, 2011), FDR control with structural constraints
(Ramdas et al., 2019a; Loper et al., 2019), online FDR control (Zrnic et al., 2021; Fisher, 2021),
hierarchical FDR control (Foygel Barber and Ramdas, 2015) and weighted FDR control with
prior knowledge (Ramdas et al., 2019b). Hence, our result paves the way for developing similar
AdaDetect-style procedures in these contexts.

2.3.3 A new FDR expression

While the PRDS property implies the FDR control for AdaDetect, we pursue an alternative
way based on a new expression for the FDR of the BH procedure in our setting, which would
also yield a lower bound for FDR that is not implied by the PRDS property.

Theorem 4. Consider any family of scores (Sk+1, . . . , Sn+m) satisfying Assumptions 2 and 3.
Let Rα denote the rejection set of BH procedure applied to p-values defined in (2.10) at level
α. Then, for any distribution P ∈ P,

FDR(P,Rα) =
∑
i∈H0

E
(
bα(`+ 1)Ki/mc

(`+ 1)Ki

)
, (2.11)

where Ki is a random variable that takes values in {1, . . . ,m} for any i ∈ H0. In particular,
under Assumptions 1 and 3, (2.11) holds with Rα = AdaDetectα, the AdaDetect procedure at
level α.

The proof of Theorem 4 is presented in Section A.1.4. It is similar to the classical leave-one-
out technique to prove the FDR control for step-up procedure (e.g. Ferreira and Zwinderman,
2006; Roquain and Villers, 2011; Ramdas et al., 2019b; Giraud, 2022), though it is non-trivial
to handle empirical p-values. Since for any x > 0 and integer k, we have bxck ≤ bxkc ≤ xk,
expression (2.11) immediately implies the following bounds.

Corollary 5. Under Assumptions 1 and 3, the following holds, for any values of k, `,m ≥ 1
and any parameter P ∈ P:

m0bα(`+ 1)/mc/(`+ 1) ≤ FDR(P,AdaDetectα) ≤ αm0/m. (2.12)

In particular, FDR(P,AdaDetectα) = απ0 when α(`+ 1)/m is an integer.

Corollary 5 recovers Theorem 3.1 in Mary and Roquain (2022) which imposes a slightly
more restrictive condition than Assumption 2. Their proofs are based on martingale tech-
niques and the proof for the lower bound is particularly involved. Here, we rely instead on
the exact expression (2.11), which is arguably simpler and more comprehensible.

2.3.4 New FDR bounds for π0-adaptive procedures

For each i ∈ H0, let Di be the distribution of (p′j , 1 ≤ j ≤ m), where
p′j = 0, j ∈ H1, p′i = 1/(`+ 1);
p′j , j ∈ H0\{i} are i.i.d. conditionally on U with a common c.d.f. FU ;
U = (U1, . . . , U`+1) has i.i.d. U(0, 1) components,

(2.13)
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where FU denotes the discrete c.d.f. FU (x) = (1−U(bx(`+1)c+1))11/(`+1)≤x<1 +1x≥1, x ∈ R,
and U(1) > · · · > U(`+1) denote the order statistics of the vector U . Note that the distribution
Di only depends on i, m, ` and H0. The following general result holds.

Theorem 6. In the setting of Theorem 4, denote p = (pi, 1 ≤ i ≤ m) the family of empirical
p-values defined in (2.10) and consider any function G : [0, 1]m → (0,∞) that is coordinate-
wise nondecreasing. Then the procedure, denoted by Rαm/G(p), combining the BH algorithm
at level αm/G(p) with these empirical p-values is such that, for any parameter P ∈ P,

FDR(P,Rαm/G(p)) ≤ α
∑
i∈H0

Ep′∼Di

(
1

G(p′)

)
, (2.14)

where Di is defined by (2.13). In particular, this FDR expression holds for Rαm/G(p) =
AdaDetectαm/G(p) under Assumptions 1 and 3.

Theorem 6 is proved in Section A.1.5. In a nutshell, the distribution Di is a least favorable
distribution for the FDR of the adaptive BH procedure applied to empirical p-values defined
in (2.10). It can be seen as an adaptation of the classical leave-one-out technique for adaptive
BH procedures; see Benjamini et al. (2006) and Theorem 11 of Blanchard and Roquain (2009).

This result generalizes Theorem 6 of Bates et al. (2023) which only works for the Storey-
BH procedure. Our proof technique is fundamentally different and works for a broad class of
estimators of π0. Applying Theorem 6 to the estimators defined in (2.5) and (2.6), we obtain
the following result.

Corollary 7. Under Assumptions 1 and 3, the following holds:

• Storey-AdaDetect controls the FDR at level α for any λ = K/(`+1) and K ∈ {2, . . . , `}.

• Quantile-AdaDetect controls the FDR at level α for any k0 ∈ {1, . . . ,m}.

The proof of Corollary 7 is presented in Section A.1.6. It bounds the RHS of (2.14) via
combinatoric arguments. The result for Quantile-AdaDetect is novel. The result for Storey-
AdaDetect was proved in Yang et al. (2021) for BONuS, with a different proof technique, in
the special case where the scores are independent. Hence, we extend it to the exchangeable
case.

To illustrate the robustness of π0-adaptive AdaDetect under dependence, consider Exam-
ple 1 with common alternative means µi ≡ µ ∈ Rd and a fixed score function Si = µTZi,
1 ≤ i ≤ n + m. One alternative approach to Storey-AdaDetect is to apply the Storey-BH
procedure on the marginal p-values pi = Φ̄(Sn+i/‖µ‖), 1 ≤ i ≤ m. Interestingly, Figure 2.3
shows that the Storey-BH procedure inflates the FDR substantially in the presence of high
correlation while Storey-AdaDetect with k = 0 controls the FDR for any correlation ρ (as
implied by Corollary 7). Hence, while Storey-AdaDetect is only based on an NTS without the
knowledge of the true null distribution, it is more robust to dependence than Storey-BH that
requires more information. Furthermore, Storey-AdaDetect is more powerful than Storey-BH
because the effect of the common variable ξ is cancelled out in the calculation of empirical
p-values.

Remark 6. Assumptions 2 and 3 hold true in other contexts. For example, this is the case for
LASSO-based scores in the Gaussian linear model where the design matrix has i.i.d. entries
with a known distribution (Weinstein et al., 2017). Hence, the FDR bounds we developed
also hold in those cases.
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Figure 2.3: FDR and TDR for Storey-BH and Storey-AdaDetect (both with oracle test statis-
tics/scores) in Example 1 with varying correlation ρ ∈ [0, 1]. The dimension d = 1 in the
two left panels and d = 10 in the two right panels. In all settings, m = 100, n = ` = 1000,
α = 0.2, π0 = 0.9, and λ = 500/1001.

2.4 Constructing score functions

While any score function satisfying (2.8) can be used in AdaDetect, we discuss principles and
various techniques to construct score functions that yield high power. Section 2.4.1 introduces
the assumptions and notation. In Section 2.4.2 we show that the optimal score function is
given by any monotone function of the ratio between the average density of novelties and the
average density of all points. We proceed by discussing two methods to approach the optimal
score based on direct density estimation (Section 2.4.3) and classification (Section 2.4.4). The
latter is more scalable and flexible in the sense that it is able to wrap around any probabilistic
classification algorithms. In Section 2.4.5, we discuss a cross-validation approach for hyper-
parameter tuning and model selection without compromising the finite-sample FDR control.

2.4.1 Assumptions and notation

In this section, we make the following two assumptions:

Assumption 4. Y1, . . . , Yn, X1, . . . , Xm are mutually independent.

Given the setting of Section 2.1.1, we thus have under Assumption 4 that (Y1, . . . , Yn, Xi, i ∈
H0) are i.i.d. ∼ P0 and independent of (Xi, i ∈ H1) which are mutually independent.

Assumption 5. For each i ∈ {0} ∪ H1, Pi has a positive density fi w.r.t. a measure ν.

Let

f = π0f0 + π1f̄1, (2.15)

f̄1 = m−1
1

∑
i∈H1

fi. (2.16)

Under Assumptions 4 and 5, f0 is the average density of (Z1, . . . , Zk), f̄1 is the average
alternative density, f is the average density of the test sample (X1, . . . , Xm). Similarly the
average density of (Zk+1, . . . , Zn+m) is fγ where

γ =
m1

`+m
; (2.17)

fγ = (1− γ)f0 + γf̄1 =
`

`+m
f0 +

m

`+m
f, (2.18)
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Compared to f , the mixture fγ is contaminated by more nulls, that is, π0 ≤ 1 − γ = `+m0
`+m .

Lastly, we define the density ratio

r(x) =
π1f̄1(x)

f(x)
, x ∈ Z. (2.19)

Note that r(x) ∈ (0, 1) for ν-almost every x ∈ Z by Assumption 5.

2.4.2 Optimal score function

Recall that AdaDetect is equivalent to applying the counting knockoff on the scores which
relies on an estimator F̂DP (Section 2.2.4). For each given t, when ` and m is large,

F̂DP(t) ≈ m PSi∼P0(Si ≥ t)
E[|R(t)|]

≈ E[|R(t) ∩ {k + 1, . . . , n}|]
E[|R(t)|]

,

where R(t) is set of rejections at threshold t. The RHS is called the marginal FDR (mFDR),
an error metric that is close to FDR when |R(t)| is large and often used for asymptotic
power analysis of FDR-controlling procedures (e.g. Sun and Cai, 2007; Lei and Fithian, 2018).
The following theorem derives the optimal score function among all procedures that reject
hypotheses with Si above some thresholds subject to mFDR control (see Weinstein, 2021;
Rosset et al., 2022 for results for FDR instead of mFDR).

Theorem 8. Assume Assumptions 4 and 5 hold. The likelihood ratio function r(·) defined in
(2.19) is an optimal score function in the sense that the rejection set R = {i ∈ {1, . . . ,m} :
r(Xi) ≥ c(α)}, where c(α) ∈ (0, 1) is chosen such that mFDR(R) = α (assuming it exists),
has a higher TPR than any rejection set R′ = {i ∈ {1, . . . ,m} : r′(Xi) ≥ c′} where c′ ∈ R
and r′ : Z 7→ R is measurable with mFDR at most α.

The proof can be found in Section A.2.1. Theorem 8 suggests the following oracle proce-
dure.

Definition 3. The oracle AdaDetect procedure, denoted by AdaDetect∗, is defined as the
AdaDetect procedure with the score function r(·) defined in (2.19).

Since AdaDetect is invariant under any strictly monotone transformation of the score
function (see Remark 4), AdaDetect∗ can be realized as any AdaDetect procedure with a
score function of the form

g∗ = Ψ ◦ r, for some increasing continuous Ψ : (0, 1)→ R, (2.20)

where Ψ could depend on unknown parameters. This is a crucial property of AdaDetect that
enables flexible classification methods to construct score functions without concerning about
the composition of nulls and novelties that may change the oracle score r.

Since r (or g∗) is unknown, the oracle procedure AdaDetect∗ is not directly accessible in
practice. Our goal is to learn a g∗ in the form of (2.7) that satisfies the constraint (2.8).

2.4.3 Density estimation

A first example of score function is built from density estimation. From (2.15) and (2.18), the
following score

g∗(x) = fγ(x)/f0(x) = 1− γ/π1 + (π0γ/π1)(1− r(x))−1 (2.21)

is indeed of the form (2.20). A straightforward approach is to directly estimate the densities
as follows.
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• Estimate f0 by a density estimator f̂0 based on the sample (Z1, . . . , Zk)

• Estimate fγ by a density estimator f̂γ based on the mixed sample (Zk+1, . . . , Zn+m) via
a mixture estimation approach.

• Estimate g∗(x) by ĝ(x) = f̂γ(x)/f̂0(x) assuming that f̂0(Zi) > 0.

Above, the density estimators can be either parametric or non-parametric. Both versions will
be considered in the sequel (see Section 2.4.3 and the numerical experiments in Section 2.6).
Note that Yang et al. (2021) applies this approach when f0 is known.

2.4.4 PU classification

While density estimation is straightforward, it is not scalable when the dimension d is large;
see the numerical experiments in Section 2.6 for an illustration. In this section, we con-
sider a different strategy that estimate density ratios through probabilistic classification (e.g.
Friedman, 2003; Sugiyama et al., 2012; Lei et al., 2021; Wang et al., 2022).

Define (Z1, . . . , Zk) as the “positive sample" and the sample (Zk+1, . . . , Zn+m) as the
“unlabeled sample", and let (A1, . . . , Ak) = (−1, . . . ,−1) and (Ak+1, . . . , An+m) = (1, . . . , 1)
the corresponding labels. In this context, the classification task is typically referred to as the
PU (positive unlabeled) classification, which is an active research area; see Du Plessis et al.
(2014); Calvo et al. (2007); Guo et al. (2020); Ivanov (2020) among others and Bekker and
Davis (2020) for a recent review. Here, we are considering a slightly different setting where
the unlabeled samples are independent but not identically distributed.

Usually, the classifier is learned by empirical risk minimization (ERM) where the objective
function is in the form of

Ĵλ(g) =
n+m∑
i=1

λAi`(Ai, g(Zi)) =
k∑
i=1

`(−1, g(Zi)) + λ
n+m∑
i=k+1

`(1, g(Zi)),

where ` : {−1,+1}×R→ R+ is a loss function and λa = λ1a≥0 +1a≤0 with λ > 0 measuring
the relative cost misclassifying a positive sample to misclassifying an unlabeled sample. Here, g
is a function that belongs to G, a class of measurable functions from Z to R and the classifier
corresponds to the sign of g. Typical choices of the loss function include the hinge loss
`(a, u) = 0.5(1− au)+ and the cross entropy loss `(a, u) = − log(1− u)1a=−1− log(u)1a=+1.
The population objective function is given by

Jλ(g) = E Ĵλ(g) = kEZ∼f0 `(−1, g(Z)) + λ(`+m)EZ∼fγ `(1, g(Z)), (2.22)

where fγ is defined in (2.18). The following result shows that the minimizer of (2.22) over all
measurable functions yields an optimal score in the form of (2.20) when the loss function ` is
appropriately chosen.

Lemma 9. Let g] denote the minimizer of (2.22) over all measurable functions.

(i) When `(·, ·) is the hinge loss, assuming that the set {x ∈ Z : fγ(x) = cf0(x)} is of
ν-measure zero for any c > 0, where ν is defined in Assumption 5,

g](x) = sign

(
λ(`+m)

k

fγ(x)

f0(x)
− 1

)
= sign

(
λ`

k
+
λm0

k
(1− r(x))−1 − 1

)
,

and the minimum is unique ν-almost everywhere.
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(ii) When `(·, ·) is the cross entropy,

g](x) =
λ(`+m)fγ(x)

λ(`+m)fγ(x) + kf0(x)
=

(
1 +

{
λ`

k
+
λm0

k
(1− r(x))−1

}−1
)−1

,

and the minimum is unique ν-almost everywhere.

The proof is presented in Section A.2.2. Clearly, g] is an optimal score function in the
form of (2.20) with the cross-entropy loss but not so with the hinge loss because the sign
function is not strictly monotone. For cross-entropy loss, when λ = 1,

g](x) =
`+m
n+mfγ(x)

`+m
n+mfγ(x) + k

n+mf0(x)
, (2.23)

which can be roughly interpreted as the posterior probability to be in class 1.
In practice, it is computationally infeasible and statistically inefficient to optimize over

all measurable functions. Instead, we often choose a function class G and estimate the score
function by

ĝ ∈ argming∈G Ĵλ(g). (2.24)

By construction, Ĵλ(g) is invariant to permutations of (Zk+1, . . . , Zn+m), ĝ always satisfies
the condition (2.8). When G has low complexity, we should expect ĝ ≈ g]G where

g]G ∈ argming∈G Jλ(g). (2.25)

On the other hand, when G is sufficiently rich, we can expect g]G ≈ g]. In summary, when the
function class G and the loss function `(·, ·) are chosen appropriately, ĝ ≈ g]G ≈ g], which is
an optimal score function.

We illustrate the roles of function classes and loss functions in a simple setting where
the positive class and the unlabeled class are generated from two gaussian distributions with
dimension 1 or 2. The results are presented in Figure 2.4, with each row corresponding to
a data-generating process. For all settings, the first panel displays the null and alternative
distributions and the second panel displays the distributions of the positive and unlabeled
classes. In all settings, we plot ĝ and g] for hinged loss (SVM) and cross-entropy losses with
two function classes, an inaccurate one (Logistic Regression) and an accurate one (Neural
Networks). In the two-dimensional settings, we display the functions by contour plots. For
instance, for the cross entropy loss, we can observe the NN function class outperforms the
logistic function class for approximating g].

In conclusion, both the loss function `(·, ·) and the function class G are pivotal. Among
the two loss functions we discuss, the cross entropy loss with a sufficiently rich function
class (e.g., fully-connected neural networks) is particularly suitable for AdaDetect in that
it is computationally feasible and approximately optimal. In contrast to the classification
literature, hinged loss is undesirable for our purpose since the estimator does not converge to
an optimal score.

2.4.5 AdaDetect with cross-validation

In previous sections, we focus on a single score function. Nevertheless, most density estima-
tion and classification algorithms involve hyperparameters that require data-driven tuning to
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Figure 2.4: Plot of g∗ and g] in different settings (rows) with different loss functions `(·, ·)
and function classes G (with default parameters in scikit-learn). In all settings, m = 1000,
m0 = 500, m1 = 500, n = 3000, and k = 2000. The top two rows correspond to d = 1 and
the bottom two rows correspond to d = 2. In all cases, P0 = N (0, Id). For the first and
third rows, P1 = N ((2, . . . , 2), Id) (one-sided alternatives); for the second and fourth rows,
P1 = 0.5N ((2, . . . , 2), Id) + 0.5N ((−2, . . . ,−2), Id) (two-sided alternatives).
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maximize the power. Examples include the bandwidth for kernel density estimation, the max-
imum depth for random forests, the width and number of hidden layers for neural networks,
and the numerical algorithm to optimize the loss.

Formally, we assume the researcher has a class of candidate score functions {gυ, υ ∈ U}
indexed by the hyper-parameter υ. The goal is to choose υ̂ based on data and use gυ̂ as the
score function without breaking the FDR guarantee. By Theorem 4, the FDR is controlled so
long as gυ̂ satisfies the condition (2.8). Motivated by the “double BONuS” procedure proposed
in Yang et al. (2021), we propose the following version of AdaDetect with cross-validation,
which we abbreviate as the AdaDetect cv procedure.

1. Split (Y1, . . . , Yk) further into two parts (Y1, . . . , Ys) and (Ys+1, . . . , Yk) for some s < k.

2. Generate a class of score functions gυ that satisfy a stronger condition than (2.8):

gυ(z, (z1, . . . , zs), (zπ(s+1), . . . , zπ(n+m))) = g(z, (z1, . . . , zs), (zs+1, . . . , zn+m)).

3. For each gυ, apply AdaDetect with (Yk+1, . . . , Yn, X1, . . . , Xm) being the test sample
and (Y1, . . . , Yk) = (Y1, . . . , Ys;Ys+1, . . . , Yk) being the NTS. Denote by rυ the number
of rejections.

4. Choose υ̂ ∈ argmaxυ∈U rυ

5. Apply AdaDetect with score function gυ̂ to the original problem (with (X1, . . . , Xm)
being the test sample and (Y1, . . . , Yn) = (Y1, . . . , Yk;Yk+1, . . . , Yn) being the NTS).

The pipeline to compute gυ̂ is illustrated in Figure 2.5. By definition, each gυ is invariant
to permutation of (Ys+1, . . . , Yn, X1, . . . , Xm) and hence invariant to permutation of the mixed
sample (Yk+1, . . . , Yn, X1, . . . , Xm). Thus, rυ is also invariant to (Yk+1, . . . , Yn, X1, . . . , Xm),
implying that υ̂ is so as well. As a result, gυ̂ satisfies the condition (2.8). Therefore, the
results in Section 2.3 all carry over to the AdaDetect cv procedure.

In principle, we can use any other objective function that is invariant to the mixed sample
than the number of rejections rυ. Nonetheless, rυ tends to be a good proxy for the number
of rejections in the last step and hence a better objective to optimize than the indirect ones
like classification accuracy.

Remark 7. When fitting the hyper-parameter υ, the sample sizes s, k − s, ` + m, ` do not
maintain the same proportions as the original sizes k, `,m. Our recommendation, following
the guidelines in Remark 5, is to choose s such that k − s is of the same order as `+m and
s is of the same order as m (e.g., ` = m, s = 3m, k = 4m).

Remark 8. The cross-validation can rule out overfitted models that performs well in training
data but does poorly out of sample. By including nonsophisticated baseline models that likely
generalize, the power of AdaDetect becomes less sensitive to overfitting of other complicated
models or other failure modes that we have yet discovered. For example, the researcher can
always add a non-adaptive score that cannot incur overfitting and might be underpowered.

2.5 Power results

In this section, we analyze the power of AdaDetect with appropriately chosen score functions.
Throughout this section we assume that the measurements take values in Z = Rd. We start
in Section 2.5.1 with a specific score function given by a constrained empirical risk minimizer
(ERM) with the 0-1 loss and show it is as powerful as the classification approach based on the
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gυ

NTS Test

Y1 Ys⋯ Yk+1 Yn⋯ X1 Xm−2X3X2 XmXm−1⋯

Yk+1 Yn⋯ X1 Xm−2X3X2 XmXm−1⋯

Sk+1 Sn⋯ S1 Sm−2S3S2 SmSm−1⋯

⋯Sn ⋯S1 Sm−2S3S2 ⋯Sk+1

gυ

Learn gv

Transform raw data into scores

Applying counting knockoffs ⋯

Ys+1 Yk⋯

Ys+1 Yk⋯

Ss+1 Sk⋯

S2 S2 S2# anomalies rυ

⋮

⋯Sn ⋯S1 Sm−2S3S2 ⋯Sk+1 ⋯S2 S2S2Choose  that maximizes ̂υ rυ

Figure 2.5: The pipeline to compute score function gυ̂ for AdaDetect cv. Same pictural
conventions as in Figure 2.2.

optimal score functions defined in (2.20) when the function class is sufficiently flexible and up
to asymptotically vanishing remainder terms. In Section 2.5.2, we turn to a general estimated
score function that is close to an oracle (deterministic) score function on all measurements
in the mixed sample. When the latter is sufficiently smooth, we show that AdaDetect with
the estimated score function is as efficient as AdaDetect with the oracle score function, up to
explicit remainder terms that are asymptotically vanishing.

2.5.1 A constrained ERM score function

For the convenience of theoretical analysis, we study a constrained empirical risk minimizer
(ERM) score function with 0-1 loss motivated by the Neyman-Pearson (NP) formulation of
classification problems given in Blanchard et al. (2010b); see also Cannon et al. (2002) and
Scott and Nowak (2005). Define

R̂0(g) = k−1
k∑
i=1

1g(Zi)≥0, R0(g) = E R̂0(g) = PZ∼f0(g(Z) ≥ 0), (2.26)

R̂γ(g) = (m+ `)−1
n+m∑
i=k+1

1g(Zi)<0, Rγ(g) = E R̂γ(g) = (1− γ)(1−R0(g)) + γR1(g),

R1(g) = PZ∼f̄1(g(Z) < 0),

where γ, f0, and f̄1 are defined in (2.17) and (2.18), respectively. We consider a function class
G with a finite Vapnik-Chervonenkis (VC) dimension V (G) (Vapnik, 1998) and the following
constrained ERM score function

ĝ ∈ argming∈G

{
R̂γ(g) : R̂0(g) ≤ β + ε0

}
, (2.27)
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for some ε0 > 0, as well as its population version

g]G ∈ argming∈G {Rγ(g) : R0(g) ≤ β} . (2.28)

Theorem 10. Consider the setting of Theorem 8. Assume α, β ∈ (0, 1), k,m1 ≥ 1, and
g]G, defined in (2.28), satisfies R0(g]G) = β. Fix any δ ∈ (0, 1/2). Then there exist constants
C,C ′ > 0 that only depend on δ such that, if

ε0 = C

√
V (G) + log(1/δ)

k
, ∆ = C ′γ−1

√
V (G) + log(1/δ)

k ∧ `
, (2.29)

where γ is defined in (2.17), the following results hold.

(i) With probability at least 1− δ, R0(ĝ) ≤ β + ∆ and R1(ĝ) ≤ R1(g]G) + ∆.

(ii) Let M = d(1−R1(g]G)−∆)m1e. Assume that

1−R1(g]G) ≥ (1 + α−1)∆, ` ≥ 2m

αM
, β ≤ 0.4αM

m
. (2.30)

Then, with probability at least 1− δ,

AdaDetectα ⊃ {i ∈ {1, . . . ,m} : ĝ(Xi) ≥ 0}, (2.31)

|AdaDetectα ∩H1|/m1 ≥ 1−R1(g]G)−∆, (2.32)

where AdaDetectα denotes the rejection set of AdaDetect with score function ĝ.

The proof of Theorem 10 is presented in Section A.3.1. The idea is to show that there
are many alternatives with a nonnegative score, while there are only a few true nulls with
nonnegative scores. This yields small empirical p-values for hypotheses with nonnegative
scores, which implies that the procedure AdaDetectα detects these nonnegative scores, see
Lemma 24.

Theorem 10 (i) shows that ĝ has a similar classification accuracy to g]G on both the NTS
and mixed sample. It is analogous to Theorem 2 in Blanchard et al. (2010b), though Blanchard
et al. (2010b) considers a different setting where the proportion of nulls is random. Theorem
10 (ii) entails that, with high probability, all hypotheses with nonnegative scores will be
rejected and the power of AdaDetect with ĝ is nearly as large as the power of the classification
procedure given by g]G .

Note that the Lagrangian form of the above problem is in the form of the weighted loss
defined in (2.22). Thus, by Lemma 9 (i), there exists λβ > 0 such that

g]G(x) = g∗(x) =
λβ(`+m)

k

fγ(x)

f0(x)
− 1,

if the constraint is feasible and G is sufficiently rich to include the above function. Above,
g∗(x) satisfies (2.20) and hence yields the optimal power. If we define b = R1(g]G)−R1(g∗) as
the bias due to the constraint, Theorem 10 (ii) implies that, with probability 1− δ, the power
of AdaDetect with ĝ is at most ∆ + b below the optimal power. Thus, the function class G
incurs a tradeoff that a richer class yields a smaller b but a larger ∆ and vice versa.

Here, we aim at making G as flexible as possible while ensuring ∆ = o(1). When k, `, and

m are of the same order and δ is a constant, ∆ � m
m1

√
V (G)
m . Hence, ∆ = o(1) if

m1

m
�
√
V (G)

m
. (2.33)
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For illustration, consider the class GN,L,s of ReLU feed forward neural networks with fixed
topology, maximum width N � mc (c ∈ (0, 1)), depth L � logm and sparsity s � N logm.
Bartlett et al. (2019) show that

V (GN,L,s) ≤ 2sL log(4eN) . mc(logm)3.

Hence, condition (2.33) reads in this case

m1/m� m
c−1
2 (logm)3/2.

This implies that ∆ = o(1) unless the novelties are too sparse. On the other hand, given
the approximation ability of class of neural networks, we should expect 1 − R1(g]GN,L,s) ≈
1−R1(g∗). Thus, Theorem 10 (ii) implies the resulting score function is nearly optimal.

Remark 9 (Choice of β). Since AdaDetectα controls FDR at level α, it is necessary to impose
an upper bound on β in Theorem 10 (ii). Roughly speaking, our condition on β guarantees
that the classifier g]G controls the FDR at level α, up to remainder terms.

Remark 10. The condition on ` in (2.30) is needed to ensure that the minimum value 1/(1+`)
that p-values can take is sufficiently small so that the BH procedure can reject. A similar
condition was introduced in Mary and Roquain (2022), see also Remark 5.

2.5.2 General score functions

Now we move to general score functions. Let g∗ be any measurable function Rd → R in the
form of (2.20) and

G0(s) = PX∼P0(g∗(X) ≥ s), s ∈ R; (2.34)

ζr(η) = max
u∈[α(r∨1)/m,α]

{
G0(G

−1
0 (u)− 2η)− u

u

}
, η > 0, r ∈ {0, . . . ,m}. (2.35)

Here, ζr(·) measures the local fluctuation of G0. We suppress the dependence on α and m to
ease notation. Furthermore, consider any data-driven score function ĝ satisfying the condition
(2.8) and let

η̂ = max
k+1≤i≤n+m

|ĝ(Zi; (Z1, . . . , Zk), (Zk+1, . . . , Zn+m))− g∗(Zi)|, (2.36)

which measures the maximal discrepancy of scores in the mixed sample. In the following,
AdaDetectα denotes the procedure with score function ĝ and AdaDetect∗α denotes the proce-
dure with score function g∗.

Theorem 11. Fix any r ∈ {0, . . . ,m} and let R = {|AdaDetect∗α| ≥ r}. Assume m ≥
1, `, k ≥ 0, n = k + ` ≥ 1, and G0 (2.34) is continuous and strictly decreasing. Under
Assumptions 4 and 5, for any δ, η ∈ (0, 1) such that (`+ 1)δα(r ∨ 1)/m ≥ 2,

P (R∩ {AdaDetect∗α ⊂ AdaDetectα′}c) ≤ P (η̂ > η) + 2me−(3/28)(`+1)δ2α(r∨1)/m, (2.37)

where α′ = α(1 + 3δ)(1 + ζr(η)) and ζr(·) and η̂ are defined in (2.35) and (2.36), respectively.
Furthermore, (2.37) is also true with AdaDetect∗α replaced by BH∗α, the BH algorithm applied
to the oracle p-values p∗i = G0(g∗(Xi)), 1 ≤ i ≤ m.
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The proof is presented in Section A.3.2. The condition (`+1)δα(r∨1)/m ≥ 2 is analogous
to the one studied (Mary and Roquain, 2022) for fixed score functions. When we choose r = 0,
we have P(R) = 1 and thus (2.37) implies

P (AdaDetect∗α ⊂ AdaDetectα′) ≥ 1− P (η̂ > η)− 2me−(3/28)(`+1)δ2α/m,

for any δ with (` + 1)δα/m ≥ 2. If `/m >> logm, we can choose δ = o(1) such that
(`+ 1)δ2α/m >> logm and η such that P(η̂ ≥ η) = o(1), in which case

P (AdaDetect∗α ⊂ AdaDetectα′) = 1− o(1),

where α′ = α(1 + ζ0(η))(1 + o(1)). Thus, when ζ0(η) is small, we show that AdaDetect with
the estimated score function and slight inflation of the target level is strictly more powerful
than its oracle version.

In general, when |AdaDetect∗α| is larger with high probability, we can choose a larger r to
relax the condition on δ, reduces ζr(η) (and hence α′), and improve the RHS of (2.37). In
particular, we can set r appropriately to obtain the following result on the asymptotic TDR.

Corollary 12. Consider the setting of Theorem 11. Fix any ε > 0. Assume m1 ≥ 1 and
(`+ 1)δαdm1εe/m ≥ 2. Then

TDR(AdaDetectα′) ≥ TDR(AdaDetect∗α)− P (η̂ > η)− 2me−(3/28)(`+1)δ2αdm1εe/m − ε,
(2.38)

where α′ = α(1 + 3δ)(1 + ζdm1εe(η)). In particular, if there exist sequences δ = δ(k, `,m,m1),
ε = ε(k, `,m,m1), and η = η(k, `,m,m1) such that, as `,m,m1 tend to infinity,

δ, ε→ 0, `δ2εm1/m→∞, P (η̂ > η)→ 0 and ζdm1εe(η)→ 0, (2.39)

then

lim inf
`,m,m1

{TDR(AdaDetectα̃)− TDR(AdaDetect∗α)} ≥ 0, for any fixed α̃ > α. (2.40)

Furthermore, these results hold with AdaDetect∗α replaced by BH∗α defined in Theorem 11.

The proof is presented in Section A.3.3. Corollary 12 shows that AdaDetect is nearly as
powerful as the oracle version, as well as the BH procedure with the optimal score.

Now we discuss the choice of η. Note that η is a parameter that only shows up in the
bound but not in the algorithm. It incurs a tradeoff that a larger η would improve the tail
bound by decreasing P (η̂ > η) but inflate α′ through increasing ζr(η). Ideally, we would want
η so that P (η̂ > η) and ζr(η) are both negligible. For illustration, assume

P
(
η̂ > (n+m)−κ

)
= o(1), (2.41)

for some κ ∈ (0, 1/2) and ζr(η) . η/γ, where γ is defined in (2.17). In this case, P (η̂ > η)
and ζr(η) are both o(1) if

(n+m)−κ = o(γ) = o

(
m1

m+ `

)
.

Again, this would hold unless the novelties are too sparse.
We show in Lemma 29 that the score function given by density estimation satisfies (2.41)

under regularity conditions. Another example is given by Theorem 3.2 in Audibert and
Tsybakov (2007) in the case where g∗ is the posterior probability under a different setting;
see Section A.5.3). For ζr(η), we provide bounds in Section A.5.1 for two examples. In the
Gaussian example, we show that ζr(η) . η/γ, where γ is defined in (2.17).



Chapter 2. Adaptive novelty detection with FDR guarantee 41

Remark 11. Theorem 3 in Yang et al. (2021) provides another asymptotic power analysis
showing that the symmetric difference between the rejection set for the data-driven score
function and its oracle version has a size oP (m). Unlike Theorem 11 and Corollary 12, it does
not have implications when the oracle procedure can only reject oP (m) hypotheses, as in the
case where m1/m = o(1).

2.6 Experiments

In this section, we examine the performance of AdaDetect on both simulated data (Sec-
tion 2.6.1) and real data (Section 2.6.2). We apply AdaDetect with various score functions,
including the oracle score defined in (2.20) (AdaDetect oracle), the density estimation-
based score (AdaDetect parametric and AdaDetect KDE), the PU classification-based score
(AdaDetect SVM, AdaDetect RF, AdaDetect NN, and AdaDetect NN cv). We also include
the SC procedures proposed by Sun and Cai (2007) (SC parametric and SC KDE) and the
conformal novelty detection procedures proposed by Bates et al. (2023) (CAD SVM and CAD
IForest). Note that both CAD SVM and CAD IForest are instances of AdaDetect with one-
class classification-based scores. See Section A.6.1 for a full description of these methods. For
all our experiments, we use the Python package scikit-learn for Expectation Maximization
(EM) algorithm, kernel density estimation, random forests, and neural networks, with the
default hyper-parameters from the packages unless otherwise specified.

Note that these procedures all provably control the FDR under Assumption 4 (see Corol-
lary 5) except for SC parametric and SC KDE, which only control the FDR asymptotically
with a consistent estimator of the density ratio (Sun and Cai, 2007).

2.6.1 Simulated data

In all experiments considered this section, we generate measurements under Assumption 4
with all novelties generated from the same distribution P1. Unless otherwise specified, we
set n = 3000,m = 1000, π0 = m0/m = 0.9, and calculate FDR and TDR based on 100
Monte-Carlo simulations. Following Remark 5, we set k = 2m and ` = m for all AdaDetect
methods.

Gaussian setting We start with a setting where P0 = N (0, Id) and P1 = N (µ, Id), where
µ ∈ Rd is a sparse vector with the first 5 coordinates equal to

√
2 log(d) and the remaining

ones equal to 0. The results are presented in Figure 2.6 with the dimension d varying.
First, we note that neither SC parametric nor SC KDE control the FDR, even if the model is
correctly specified for the former, and the FDR inflation is substantial in high dimensions. By
contrast, as implied by our theory, all other procedures control the FDR at level π0α. Next,
we compare the TDR of procedures which control the FDR. In low dimensions (d ≤ 100),
AdaDetect parametric has the highest power that is close to AdaDetect oracle, which is
expected since the model is correctly specified and parametric estimation is accurate when
the dimension is low. In high dimensions (d = 500), AdaDetect parametric becomes much
more noisy while AdaDetect RF maintains a stable and high power.

Non-gaussian setting We now consider a non-gaussian setting, where the first two coordi-
nates of nulls and novelties are independent draws from Beta(5, 5) and Beta(1, 3), respectively,
and the other coordinates are independent draws from Beta(1, 1) for both nulls and novel-
ties. Note that AdaDetect parametric is now based on a misspecified parametric model;
see Section A.6.1 for detail. Figure 2.7 presents the results with the dimension d varying.
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Figure 2.6: Gaussian setting. FDR (top) and TDR (bottom) as a function of d. The dashed
line indicates the target level.

Figure 2.7: Non-gaussian (beta) setting. FDR (top) and TDR (bottom) as a function of d.
The dashed line indicates the target level.

AdaDetect parametric is now clearly dominated by AdaDetect RF, especially in high di-
mensions. This shows that machine learning-based classification methods are more robust to
model misspecification when combined with AdaDetect.

2.6.2 Semi-synthetic data

In this section we study the performance of AdaDetect on real datasets. Each dataset contains
measurements that are labeled as either typical or novelty. We summarize the datasets in
Table 2.2. The first four datasets are also used in Section 5.3 of Bates et al. (2023); see
the descriptions and references therein. The Musk data contains a set of molecules that
are identified as either musk (nulls) or non-musk (novelties). The MNIST data (LeCun and
Cortes, 2010) contains a set of labeled images of size 28×28 of handwritten digits from ‘0’ to ‘0’.
We restrict the analysis to ‘4’ (nulls) and ‘9’ (novelties). The categorical features are converted
via one-hot encoding. We construct test samples and null training samples by subsampling
the dataset with n = 5000, m = 1000, and a fixed null proportion π0 = m0/m = 0.9. For
AdaDetect, we choose k = 4m, ` = m, s = 3m for cross-validation, and the target level
α = 0.1. For the MNIST dataset, we consider two more methods based on a convolutional
neural network (CNN), with two convolution layers and one fully connected layer. The first
method CAD SVDD CNN is the conformal novelty detection procedure of Bates et al. (2023) with
a special one-class classifier, given by the Support Vector Data Description (SVDD) method
introduced in Ruff et al. (2018) used with a family of functions given by the CNN. The second



Chapter 2. Adaptive novelty detection with FDR guarantee 43

Table 2.2: Summary of datasets.

Shuttle Credit card KDDCup99 Mammography Musk MNIST
Dimension d 9 30 40 6 166 28× 28

Feature type Real Real Real,
categorical Real Real Real

Inliers 45586 284315 47913 10923 5581 5842
Novelties 3511 492 200 260 1017 5949

Table 2.3: FDR (top) and TDR (bottom) of AdaDetect with different score functions on real
datasets. The target FDR level is α = 0.1. We report the mean value and the standard
deviation (in brackets) over 100 runs. The two best-performing methods are highlighted in
bold.

Shuttle Credit card KDDCup99 Mammography Musk MNIST

FDR

CAD SVM 0.04 (0.08) 0.00 (0.00) 0.00 (0.00) 0.05(0.10) 0.00 (0.00) 0.00 (0.00)
CAD IForest 0.10 (0.07) 0.09 (0.06) 0.08 (0.07) 0.05 (0.09) 0.00 (0.00) 0.00 (0.00)
AdaDetect parametric 0.01 (0.05) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
AdaDetect KDE 0.07 (0.07) 0.05 (0.08) 0.02 (0.06) 0.08 (0.07) 0.02 (0.08) 0.00 (0.00)
AdaDetect SVM 0.08 (0.04) 0.07 (0.05) 0.07 (0.05) 0.07 (0.06) 0.08 (0.06) 0.02 (0.03)
AdaDetect RF 0.08 (0.04) 0.09 (0.04) 0.08 (0.04) 0.04 (0.10) 0.03 (0.06) 0.03 (0.07)
AdaDetect NN 0.07 (0.05) 0.09 (0.04) 0.06 (0.07) 0.09 (0.06) 0.06 (0.09) 0.06 (0.08)
AdaDetect cv NN 0.08 (0.04) 0.09 (0.05) 0.08 (0.11) 0.08 (0.05) 0.06 (0.08) 0.01 (0.03)
CAD SVDD + CNN - - - - - 0.03 (0.14)
AdaDetect CNN - - - - - 0.09 (0.05)

TDR

CAD SVM 0.10 (0.18) 0.00 (0.00) 0.00 (0.00) 0.03 (0.06) 0.00 (0.00) 0.00 (0.00)
CAD IForest 0.45 (0.09) 0.39 (0.22) 0.56 (0.35) 0.05 (0.09) 0.00 (0.00) 0.00 (0.00)
AdaDetect parametric 0.02 (0.07) 0.00 (0.00) 0.00 (0.00) 0.07 (0.09) 0.00 (0.00) 0.00 (0.00)
AdaDetect KDE 0.44 (0.33) 0.12 (0.20) 0.11 (0.24) 0.22 (0.17) 0.02 (0.06) 0.00 (0.00)
AdaDetect SVM 0.85 (0.17) 0.68 (0.28) 0.66 (0.32) 0.43 (0.13) 0.40 (0.17) 0.52 (0.21)
AdaDetect RF 0.99 (0.01) 0.85 (0.03) 0.99 (0.01) 0.48 (0.10) 0.04 (0.09) 0.03 (0.08)
AdaDetect NN 0.76 (0.15) 0.80 (0.07) 0.52 (0.41) 0.47 (0.14) 0.11 (0.13) 0.01 (0.03)
AdaDetect cv NN 0.84 (0.12) 0.76 (0.13) 0.74 (0.41) 0.42 (0.16) 0.13 (0.12) 0.01 (0.03)
CAD SVDD + CNN - - - - - 0.03 (0.15)
AdaDetect CNN - - - - - 0.93 (0.06)

method is AdaDetect with the two-class classifier based on the CNN, denoted by AdaDetect
CNN.

The FDR and TDR for the methods are evaluated by using 100 runs and the results are
reported in Table 2.3. As expected, all methods control the FDR. Compared to Bates et al.
(2023), AdaDetect with classification-based scores substantially boosts the power because it
incorporates the novelties in learning the score function. Overall, the best performing method
is AdaDetect RF, with AdaDetect NN (possibly cross-validated) coming in second. AdaDetect
CNN is particularly efficient on the classical MNIST dataset, which is unsurprising because
CNN-type classifiers are appropriate for such an image dataset (Goodfellow et al., 2016). We
however note that the one-class classifier based upon CNN behaves poorly, which shows that
two-class classification is the key for the power boost instead of the better representation
given by CNN. In addition, further comparisons are made in Appendix A.6.3 for other values
of n,m,m1 in more challenging regimes and the conclusions are qualitatively similar.

To conclude, if a classification method is expected to distinguish between typical and
anomalous measurements, combining it with AdaDetect is expected to achieve high power
without threatening FDR control.

2.7 An astronomy application

In this section, we apply AdaDetect to detect variable stars using the Sloan Digital Sky
Survey (Ivezić et al., 2005), a large labeled dataset with 92, 658 nonvariable (null) and 483
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variable (novelties) stars. Each star is encoded as a 4-dimensional vector containing the star’s
flux in specific bands (colors) of the visible light. This dataset is particularly appealing for
demonstrating our method. First, the two classes occupy similar regions in the considered
color space, with slight overlap leading to complex decision boundaries. Second, the large
number of nonvariable stars allows us to vary the size of the NTS in a large range in the
Monte-Carlo simulations. Third, this dataset has been extensively studied by astronomers
and has become a standard for benchmarking classification methods (see Chapter 9 of Ivezić
et al., 2019). Lastly, we can compute the achieved FDR and TDR for any novelty detection
method based on the labeled data.

For each experiment, we sample n nonvariable stars as the NTS along with m1 variable
stars and m0 = m − m1 additional nonvariable stars as the test sample. We set m = 100
and vary n and m1 across experiments. We apply AdaDetect with Kernel Density Estimation
(KDE), Random Forest (RF), and Neural Networks (NN). For comparison, we also include
two Empirical BH procedures (Mary and Roquain, 2022), which are special cases of AdaDetect
with non-adaptive scores as the squared `2 norm of the demeaned vectors, where the mean
is calculated on all nulls outside of the NTS (“Emp BH full”) and on the NTS (“Emp BH
current”), respectively. The “Emp BH current” method is closer to the current practice,
though it is not granted to control the FDR since the score function does not satisfy (2.8). In
addition, we apply the Empirical BH procedure without demeaning the data as well as the
SC procedure with estimated local FDR. Neither detects any novelties so we will not report
them.

Figure 2.8 presents the results for m1 = 50 and varying n with target FDR level α = 0.05.
The FDR and TDR are calculated based on 100 Monte-Carlo simulations. To aid visualization,
we represents the uncertainty by a shaded area whose width is equal to the standard error of
estimated FDR/TDR divided by 10. This can be viewed as an approximation of the standard
error with 10, 000 Monte-Carlo simulations. In this setting, π0 = 0.5 and thus all methods
provably control the FDR at level π0α = 0.025 (except “Emp BH current”). This is confirmed
in the left panel of Figure 2.8. From the right panel, we observe that AdaDetect with RF
achieves the highest power, substantially improving upon AdaDetect with non-adaptive scores
(Emp BH). This demonstrates the advantages of utilizing classification-based score functions.
In Section A.7, we present results in additional experimental settings that exhibit qualitative
similarities to Figure 2.8.
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Figure 2.8: Estimated FDR (left) and TDR (right) as a function of n, the size of the NTS,
with m = 100,m1 = 50 and α = 0.05. All methods shown in the plot provably control the
FDR at level π0α = 0.025 (except “Emp BH current”).
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2.8 Conclusion and discussion

In this work, we propose AdaDetect as a generic framework that can wrap around any classi-
fication methods and provably control the FDR in finite samples when the null measurements
are exchangeable conditional on the novelties. It generalizes and often substantially outper-
forms previous methods that only work with one-class classification methods which are not
adaptive to the novelty distribution. We also develop the π0-adaptive AdaDetect that further
improves the power in the presence of many novelties as well as the cross-validated AdaDetect
that allows model selection. The theoretical analysis is based on a novel FDR expression that
unifies and generalizes the existing results. In addition, we provide power analysis showing
that (1) the optimal score function is given by any monotonic transformation of the ratio
between the average density of novelties and the null density and (2) the estimated score
function can be asymptotically optimal in terms of power. We demonstrate the versatility of
AdaDetect on a variety of tasks.

2.8.1 Limitations of AdaDetect

Here we discuss several limitations of our method and potential solutions.

• Heterogeneous null distributions. A key assumption for the FDR control is that the
null distribution P0 is the same across the NTS and the test sample. This excludes the
case where the null can be generated from a bag of distributions {P0,k, 1 ≤ k ≤ K}.
Under heterogeneity, the empirical p-values can be invalid even marginally since the
nulls are no longer exchangeable. One possible way to reconcile this issue is to assume
the nulls are generated from a mixture distribution

∑K
k=1 πkP0,k, thereby retaining the

exchangeability. We leave this for future research.

• Directional null hypotheses. Throughout the paper we focus on testing whether a new
observation has the same distribution as the typical measurements. In some applications,
it may be more appropriate to test directional nulls, which are often characterized by
the sign of a parameter for parametric models. However, it is unclear how this can be
done in nonparametric cases. One possibility is to consider the nulls Pi � P0 where
� denotes the stochastic dominance, meaning that there exists a random vector (A,B)
such that A ∼ P0, B ∼ Pi and A ≥ B in an entrywise fashion. By restricting the score
function to be entrywise increasing, we may still apply AdaDetect and retain the FDR
control.

• Randomness of data splitting. AdaDetect is intrinsically randomized due to the data
splitting step. Without carefully documenting random seeds, the researcher can “hack”
the results by reporting the best results across different splits. A subsequent work by
Bashari et al. (2023) proposes an elegant solution to derandomize AdaDetect by treating
the test statistics as e-values and aggregating over all data splits. They show that the
e-AdaDetect successfully stabilizes the output of AdaDetect.

• Semi-supervised data. In some applications, labeled novelties are available in the train-
ing sample. For example, the researcher may have historical data on fraud transactions
recorded in the system and can train a two-class classifier to distinguish between the
nulls and labeled novelties. When future novelties are similar to labeled novelties, it
should yield an efficient score function. This has been studied by Liang et al. (2022).
Combining their approach with ours in a nonstationary setting where future novelties
behave differently from the past ones is a promising avenue for future research.
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• Sparse novelties: when the novelties are too sparse, two-class classifiers may not be the
best at discriminating between nominals and novelties and can be out-performed by
simpler one-class classifiers; see Liang et al. (2022). One possible solution is to apply
AdaDetect cv by including both one-class and two-class classification methods and let
data decide which score function is more efficient. We leave the full examination of this
approach for future research.

2.8.2 Other future works

First, we could provide a more detailed power analysis by quantifying the bias term R1(g]G)−
R1(g]) for a broader class of algorithms. For example, we can consider G = GN,L,s, the set
of realizations of NN with width N , depth L and sparsity s (Bos and Schmidt-Hieber, 2021).
Such a quantitative analysis could provide guidelines for choosing hyper-parameters or at least
a default range in the cross-validated AdaDetect procedure.

Next, a core assumption of the FDR controlling theory is exchangeability of the null scores
conditional on the novelties. This can be satisfied beyond our setting, e.g., the knockoff setting
discussed in Remark 6. This suggests a possible path to further improve the knockoffs method.

Lastly, the BONuS algorithm in Yang et al. (2021) can iteratively remove null observations
and update the score function correspondingly using a masking technique introduced by Lei
and Fithian (2018). While this increases the computation cost, it gradually reduces the
attenuation caused by the null sample in the mixed sample and hence improves the accuracy
of the estimated score function. It would be interesting to apply their idea in AdaDetect.



Chapter 3

False membership rate control in
mixture models

The clustering task consists in partitioning elements of a sample into homogeneous groups.
Most datasets contain individuals that are ambiguous and intrinsically difficult to attribute
to one or another cluster. However, in practical applications, misclassifying individuals is
potentially disastrous and should be avoided. To keep the misclassification rate small, one
can decide to classify only a part of the sample. In the supervised setting, this approach
is well known and referred to as classification with an abstention option. In this paper the
approach is revisited in an unsupervised mixture-model framework and the purpose is to
develop a method that comes with the guarantee that the false membership rate (FMR)
does not exceed a predefined nominal level α. A plug-in procedure is proposed, for which a
theoretical analysis is provided, by quantifying the FMR deviation with respect to the target
level α with explicit remainder terms. Bootstrap versions of the procedure are shown to
improve the performance in numerical experiments.
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3.1 Introduction

3.1.1 Background

Clustering is a standard statistical task that aims at grouping together individuals with sim-
ilar features. However, it is common that data sets include ambiguous individuals that are
inherently difficult to classify, which makes the clustering result potentially unreliable. To
illustrate this point, consider a Gaussian mixture model with overlapping mixture compo-
nents. Then it is difficult, or even impossible, to assign the correct cluster label to data points
that fall in the overlap of those clusters, see Figure 3.1. Hence, when the overlap is large
(Figure 3.1 panel (b)), the misclassification rate of a standard clustering method is inevitably
elevated.

This issue is critical in applications where misclassifications come with a high cost for
the user and should be avoided. This is for example the case for medical diagnosis, where
an error can have severe consequences on the individual’s health. When there is too much
uncertainty, a solution is to avoid classification for such individuals, and to adopt a wiser
“abstention decision”, that leaves the door open for further medical exams.

In a supervised setting, classification with a reject (or abstention) option is a long-standing
statistical paradigm, that can be traced back to Chow (1970), with more recent works includ-
ing Herbei and Wegkamp (2006); Bartlett and Wegkamp (2008); Wegkamp and Yuan (2011),
among others. In this line of research, rejection is accounted for by adding a term to the risk
that penalizes any rejection (i.e., non classification).

Recently, still in the supervised setting, Geifman and El-Yaniv (2017) and Angelopoulos
et al. (2021) have considered the problem of having a prescribed control of the classification
error among the classified items (those that are not rejected). In these works the proposed
method consists of thresholding the estimated class probabilities estimated by a pre-trained
classifier, in a data-driven manner. Both of these works provide the guarantee that the result-
ing selective classifier has its true risk bounded by a prescribed level with high probability.

3.1.2 Aim and approach

The goal of the present work is to propose a labelling guarantee on the classified items in
the more challenging unsupervised setting, where no training set is available and data are
assumed to be generated from a finite mixture model. This is achieved by the possibility
to refuse to cluster ambiguous individuals and by using the false membership rate (FMR),
which is defined as the average proportion of misclassifications among the classified objects.
Our procedures are devised to keep the FMR below some nominal level α, while classifying a
maximum number of items.

It is important to understand the role of the nominal level α in our approach. It is
chosen by the user and depends on their acceptance or tolerance for misclassified objects.
Since the FMR is the misclassification risk that is allowed on the classified objects, the final
interpretation of an FMR control at level α is clear: if, for instance, α is set to 5% and
100 items are finally chosen to be classified by the method, then the number of misclassified
items is expected to be at most 5. This high interpretability is similar to the one of the false
discovery rate (FDR) in multiple testing, which has known a great success in applications
since its introduction by Benjamini and Hochberg (1995). This is a clear advantage of our
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(a) Separated clusters (b) Ambiguous clusters

Figure 3.1: Data from Gaussian mixtures with three components (n = 200), in a fairly sepa-
rated case (panel (a)) and an ambiguous case (panel (b)). In each panel, the left part displays
the true clustering, while the right part illustrates the new procedure (plug-in procedure at
level α = 10%), that does not cluster all items. The points not classified are depicted by grey
crosses. Red circles indicate erroneous labels.

approach for practical use compared to the methods with a rejection option that are based
on a penalized risk.

In our framework, a procedure is composed of two intertwined decisions:

• a clustering method inferring the labels;

• a selection rule deciding which items to label.

Importantly, the selection rule is only applied after a clustering method is fitted on the (entire)
sample. In other words, the procedure consists of two subsequent steps: a clustering step,
after which cluster labels are kept fixed, and a selection step, that chooses which items to
classify – in which case, the label from the previous clustering step is assigned. For the items
that are not selected, we discard the cluster label, that is, we effectively abstain to make a
classification decision for those items. In particular, we emphasize that the clustering method
is not fitted again after selection (which would lead to bias in general).

The quality of the selection heavily relies on the appropriate quantification of the uncer-
tainty of the cluster labels. For this, our approach is model-based, and can be viewed as a
method that thresholds the posterior probabilities of the cluster labels with a data-driven
choice of the threshold. The performance of the method will depend on the quality of the
estimates of these posterior probabilities in the mixture model.

The adaptive character of our method is illustrated in Figure 3.1: when the clusters are
well separated (panel (a)), the new procedure only discards few items and provides a clustering
close to the correct one. However, when clusters are overlapping (panel (b)), to avoid a high
misclassification error, the procedure discards most of the items and only provides few labels,
for which the uncertainty is low. In both cases, the proportion of misclassified items among
the selected ones is small and in particular close to the target level α (here 10%). Hence,
by adapting the amount of labeled or discarded items, our method always delivers a reliable
clustering result, inspite of the varying intrinsic difficulty of the clustering task.

3.1.3 Presentation of the results

Let us now describe in more details the main contributions of the paper.

• We introduce three new data-driven procedures that perform simultaneously selection
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and clustering: the plug-in procedure (illustrated in Figure 3.1) and two bootstrap
procedures (parametric and non-parametric), see Section 3.3.2.

• We provide a theoretical analysis of the plug-in procedure, quantifying the FMR devia-
tion with respect to the target level α with explicit remainder terms, which become small
when the sample size grows. In addition, this procedure is shown to satisfy the follow-
ing optimality property: any other procedure that provides an FMR control necessarily
classifies as many or less items than the plug-in procedure, up to a small remainder term
(Theorem 17).

• Numerical experiments1 establish that the bootstrap procedures improve the plug-in
procedure, and thus are more reliable for practical use, where the sample size may
be moderate, see Section 3.5.1. In particular, the FMR control is shown to be valid
in various scenarios, including those where the overall misclassification risk (with no
abstention option) is too large.

• Our analysis also shows that a fixed threshold procedure that only labels items with a
maximum posterior probability larger than 1 − α is generally suboptimal for an FMR
control at level α, see Section 3.5.1. To this extent, our procedures can be seen as refined
algorithms that classify more individuals while maintaining the FMR control.

• The practical impact of our approach is demonstrated on a real data set, see Sec-
tion 3.5.2.

3.1.4 Relation to previous work

Other clustering guarantees in unsupervised learning While we provide a specific
FMR control guarantee on the clustering, other criteria, not particularly linked to a rejection
option, have been previously proposed in an unsupervised setting. Previous works provided
essentially two types of guarantees: while early works focused on the probability of exact re-
covery (Arora and Kannan, 2005; Vempala and Wang, 2004; Abbe, 2018), recent contributions
rather considered minimizing the misclassification risk (Lei and Rinaldo, 2015; Lu and Zhou,
2016; Giraud and Verzelen, 2018; Chretien et al., 2019). Other criteria include the probability
to make a different decision than the Bayes rule (Azizyan et al., 2013), or the fact that all
clusters are mostly homogeneous with high probability (Najafi et al., 2020). All these works
provide a guarantee only if the setting is favorable enough. By contrast, providing a rejection
option is the key to obtain a guarantee in any setting (in the worst situation, the procedure
will not classify any item).

Comparison to Denis and Hebiri (2020) and Mary-Huard et al. (2021) We describe
here two recent studies that are related to ours, because they also use a FMR-like criterion.
The first one is the work of Denis and Hebiri (2020), which also relies on a thresholding
of the (estimated) posterior probabilities. However, the control is different, because it does
not provide an FMR control, but rather a type-II error control concerning the probability
of classifying an item. Also, the proposed procedure therein requires an additional labeled
sample (semi-supervised setting), which is not needed in our context.

The work of Mary-Huard et al. (2021) also proposes a control of the FMR. However, the
analysis therein is solely based on the case where the model parameters are known (thus
corresponding to the oracle case developed in Section 3.3.1 here). Compared to Mary-Huard

1 We publicly release the code of these experiments at https://github.com/arianemarandon/fmrcontrol.
We have also included a Jupyter notebook that demonstrates the use of our procedures.

https://github.com/arianemarandon/fmrcontrol
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et al. (2021), the present work provides number of new contributions, which are all given in
Section 3.1.3. Let us also emphasize that we handle the label switching problem in the FMR,
which seems to be overlooked in Mary-Huard et al. (2021).

Relation to the false discovery rate The FMR is closely related to the false discovery rate
(FDR) in multiple testing, defined as the average proportion of errors among the discoveries.
In fact, we can roughly view the problem of designing an abstention rule as testing, for each
item i, whether the clustering rule correctly classifies item i or not. With this analogy, our
selection rule is based on quantities similar to the local FDR values (Efron et al., 2001), a key
quantity to build optimal FDR controlling procedures in multiple testing mixture models, see,
e.g., Storey (2003); Sun and Cai (2007); Cai et al. (2019); Rebafka et al. (2022). In particular,
our final selection procedure shares similarities with the procedure introduced in Sun and Cai
(2007), also named cumulative `-value procedure (Abraham et al., 2022). In addition, our
theoretical analysis is related to the work of Rebafka et al. (2022), although the nature of the
algorithm developed therein is different from here: they use the q-value procedure of Storey
(2003), while our method rather relies on the cumulative `-value procedure.

3.1.5 Organization of the paper

The paper is organized as follows: Section 3.2 introduces the model and relevant notation,
namely the FMR criterion, with a particular care for the label switching problem. Section 3.3
presents the new methods: the oracle, plug-in and the bootstrap approaches. Our main
theoretical results are provided in Section 3.4, after introducing appropriate assumptions.
Section 3.5 presents numerical experiments and an application to a real data set, while a
conclusion is given in Section 3.6. Proofs of the results and technical details are deferred to
appendices.

3.2 Setting

This section presents the notation, model, procedures and criteria that will be used throughout
the manuscript.

3.2.1 Model

Let X = (X1, . . . , Xn) be an observed random sample of size n. Each Xi is an i.i.d. copy of
a d-dimensional real random vector, which is assumed to follow the standard mixture model:

Z ∼M(π1, . . . , πQ),

X|Z = q ∼ Fφq , 1 ≤ q ≤ Q,

whereM(π1, . . . , πQ) denotes the multinomial distribution of parameter π (equivalently, πq =
P(Z = q) for each q). The model parameters are given by

• the probability distribution π on {1, . . . , Q} that is assumed to satisfy πq > 0 for all q.
Hence, πq corresponds to the probability of being in class q;

• the parameter φ = (φ1, . . . , φQ) ∈ UQ, where {Fu, u ∈ U} is a collection of distributions
on Rd. Every distribution Fu is assumed to have a density with respect to the Lebesgue
measure on Rd, denoted by fu. Moreover, we assume that the φq’s are all distinct.
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The number of classes Q is assumed to be known and fixed throughout the manuscript (see
Section 3.6 for a discussion). Thus, the overall parameter is θ = (π, φ), the parameter set
is denoted by Θ, and the distribution of (Z,X) is denoted by Pθ. The distribution family
{Pθ, θ ∈ Θ} is the considered statistical model. We also assume that Θ is an open subset of
RK for some K ≥ 1 with the corresponding topology.

In this mixture model, the latent vector Z = (Z1, . . . , Zn) encodes a partition of the n
observations into Q classes given by {1 ≤ i ≤ n : Zi = q}, 1 ≤ q ≤ Q. We refer to this
model-based, random partition as the true latent clustering in the sequel.

In what follows, the “true” parameter that generates (Z,X) is assumed to be fixed and is
denoted by θ∗ ∈ Θ.

3.2.2 Procedure and criteria

Our approach starts with a given clustering rule, that aims at recovering the true latent
clustering for all observed items. In general, a clustering rule is defined as a (measurable)
function of the observation X returning a vector of labels Ẑ = (Ẑi)1≤i≤n ∈ {1, . . . , Q}n for
which the label q is assigned to individual i if and only if Ẑi = q. Note that in the unsupervised
setting only the partition of the observations is of interest, not the labels themselves. Switching
the labels of Ẑ does not change the corresponding partition.

The classification error of Ẑ, with respect to specific labels, is given by ε(Ẑ,Z) =
∑n

i=1 1{Zi 6=
Ẑi}. A label-switching invariant error is the clustering risk of Ẑ defined by

R(Ẑ) = Eθ∗
(

min
σ∈[Q]

Eθ∗
(
n−1ε(σ(Ẑ),Z) |X

))
, (3.1)

where [Q] denotes the set of all permutations on {1, . . . , Q}. The minimum over all permuta-
tions σ is the way to handle the aforementioned label-switching problem.

Remark 12. The position of the minimum w.r.t. σ in the risk (3.1) matters: the permutation
σ is allowed to depend on X but not on Z. Hence, this risk has to be understood as being
computed up to a data-dependent label switching. This definition coincides with the usual
definition of the misclassification risk in the situation where the true clustering is deterministic,
see Lei and Rinaldo (2015); Lu and Zhou (2016). Hence, it can be seen as a natural extension
of the latter to a mixture model where the true clustering is random.

Classically, we aim to find a clustering rule Ẑ such that the clustering risk is “small”.
However, as mentioned above, whether this is possible or not depends on the intrinsic difficulty
of the clustering problem and thus of the true parameter θ∗ (see Figure 3.1). Therefore, the
idea is to provide a selection rule, that is, a (measurable) function of the observation X
returning a subset of indices S ⊂ {1, . . . , n}, such that the clustering risk with restriction to
S is small. Throughout the paper, a procedure refers to a couple C = (Ẑ, S), where Ẑ is a
clustering rule and S is a selection rule.

Definition 4 (False membership rate). The false membership rate (FMR) of a procedure
C = (Ẑ, S) is given by

FMRθ∗(C) = Eθ∗
(

min
σ∈[Q]

Eθ∗
(
εS(σ(Ẑ),Z)

max(|S|, 1)

∣∣∣∣X
))

, (3.2)

where εS(Ẑ,Z) =
∑

i∈S 1{Zi 6= Ẑi} denotes the misclassification error restricted to subset S.

In this work, the aim is to find a procedure C such that the false membership rate is
controlled at a nominal level α, that is, FMRθ∗(C) ≤ α. Obviously, choosing S empty implies
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εS(σ(Ẑ),Z) = 0 a.s. for any permutation σ and thus satisfies this control. Hence, while
maintaining the control FMRθ∗(C) ≤ α, we aim to classify as much individuals as possible,
that is, to make Eθ∗ |S| as large as possible.

The definition of the FMR (3.2) involves an expectation of a ratio, which is more difficult
to handle than a ratio of expectations. Hence, the following simpler alternative criterion will
also be useful in our analysis.

Definition 5 (Marginal false membership rate). The marginal false membership rate (mFMR)
of a procedure C = (Ẑ, S) is given by

mFMRθ∗(C) =

Eθ∗
(

min
σ∈[Q]

Eθ∗
(
εS(σ(Ẑ),Z)

∣∣∣∣X))
Eθ∗(|S|)

, (3.3)

with the convention 0/0 = 0.

Note that the mFMR is similar to the criterion introduced in Denis and Hebiri (2020) in
the supervised setting.

3.2.3 Notation

We will extensively use the following notation: for all q ∈ {1, . . . , Q} and θ = (π, φ) ∈ Θ, we
let

`q(X, θ) = Pθ(Z = q|X) =
πqfφq(X)∑Q
`=1 π`fφ`(X)

; (3.4)

T (X, θ) = 1− max
q∈{1,...,Q}

`q(X, θ) ∈ [0, 1− 1/Q]. (3.5)

We can see that `q(X, θ) is the posterior probability of belonging to class q given the mea-
surement X under the distribution Pθ. The quantity T (X, θ) is a measure of the risk when
classifying X: it is close to 0 when there exists a class q such that `q(X, θ) is close to 1, that
is, when X can be classified with large confidence.

3.3 Methods

In this section, we introduce new methods for controlling the FMR. We start by identifying
an oracle method, that uses the true value of the parameter θ∗. Substituting the unknown
parameter θ∗ by an estimator in that oracle provides our first method, called the plug-in
procedure. We then define a refined version of the plug-in procedure, that accounts for the
variability of the estimator and is based on a bootstrap approach.

3.3.1 Oracle procedures

MAP clustering Here, we proceed as if an oracle had given us the true value of θ∗

and we introduce an oracle procedure C∗ = (Ẑ∗, S∗) based on this value. As the follow-
ing lemma shows, the best clustering rule is well-known and given by the Bayes clustering
Ẑ∗ = (Ẑ∗1 , . . . , Ẑ

∗
n), which can be written as

Ẑ∗i ∈ argmax
q∈{1,...,Q}

`q(Xi, θ
∗), i ∈ {1, . . . , n}, (3.6)

where `q(·) is the posterior probability given by (3.4).
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Algorithm 3 Oracle procedure
Input: Parameter θ∗, sample (X1, . . . , Xn), level α.
1. Compute the posterior probabilities Pθ*(Zi = q|Xi), 1 ≤ i ≤ n, 1 ≤ q ≤ Q;
2. Compute the Bayes clustering Ẑ∗i , 1 ≤ i ≤ n, according to (3.6);
3. Compute the probabilities T ∗i , 1 ≤ i ≤ n, according to (3.7);
4. Order these probabilities in increasing order T ∗(1) ≤ · · · ≤ T

∗
(n);

5. Choose k∗ the maximum of k ∈ {0, . . . , n} such that max(k, 1)−1
∑k

j=1 T
∗
(j)(X) ≤ α;

6. Select S∗α, the index corresponding to the k∗ smallest elements among the T ∗i ’s.
Output: Oracle procedure Cα = (Ẑ∗, S∗α).

Lemma 13. We have min
Ẑ
R(Ẑ) = R(Ẑ∗) = n−1

∑n
i=1 Eθ∗(T ∗i ), for the Bayes clustering Ẑ∗

defined by (3.6) and for

T ∗i = T (Xi, θ
∗) = Pθ*(Zi 6= Ẑ∗i |Xi), i ∈ {1, . . . , n}, (3.7)

where T (·) is given by (3.5).

In words, Lemma 13 states that the oracle statistics T ∗i correspond to the posterior mis-
classification probabilities of the Bayes clustering. To decrease the overall misclassification
risk, it is natural to avoid classification of points with a high value of the test statistic T ∗i .

Thresholding selection rules In this section, we introduce the selection rule, that decides
which items are to be classified. From the above paragraph, it is natural to consider a
thresholding-based selection rule of the form S = {i ∈ {1, . . . , n} : T ∗i ≤ t}, for some
threshold t to be chosen suitably. The following result gives insights for the choice of such a
threshold t.

Lemma 14. For a procedure C = (Ẑ∗, S) with Bayes clustering and an arbitrary selection S,

FMRθ∗(C) = Eθ∗
( ∑

i∈S T
∗
i

max(|S|, 1)

)
. (3.8)

As a consequence, a first way to build an (oracle) selection is to set

S = {i ∈ {1, . . . , n} : T ∗i ≤ α}.

Since an average of numbers smaller than α is also smaller than α, the corresponding procedure
controls the FMR at level α. This procedure is referred to as the procedure with fixed threshold
in the sequel. It corresponds to the following naive approach: to get a clustering with a risk
of α, we only keep the items that are in their corresponding class with a posterior probability
of at least 1− α. By contrast, the selection rule considered here is rather

S = {i ∈ {1, . . . , n} : T ∗i ≤ t(α)},

for a threshold t(α) ≥ α maximizing |S| under the constraint
∑

i∈S T
∗
i ≤ α|S|. It uniformly

improves the procedure with fixed threshold and will in general lead to a (much) broader
selection. This gives rise to the oracle procedure, that can be easily implemented by ordering
the T ∗i ’s, see Algorithm 3.



Chapter 3. False membership rate control in mixture models 55

Algorithm 4 Plug-in procedure
Input: Sample (X1, . . . , Xn), level α.
1. Compute an estimator θ̂ of θ;
2. Run the oracle procedure given in Algorithm 3 with θ̂ in place of θ∗.
Output: Plug-in procedure Ĉ

PI

α = (ẐPI, ŜPI
α ).

Algorithm 5 Bootstrap procedure
Input: Sample (X1, . . . , Xn), level α, number B of bootstrap runs.
1. Choose a grid of increasing levels (α(k))1≤k≤K ;

2. Compute F̂MR
B

α(k), 1 ≤ k ≤ K, according to (3.10);
3. Choose k̃ according to (3.11).
Output: Bootstrap procedure Ĉ

boot

α = Ĉ
PI

α(k̃).

3.3.2 Empirical procedures

Plug-in procedure The oracle procedure cannot be used in practice since θ∗ is generally
unknown. A natural idea then is to approach θ∗ by an estimator θ̂ and to plug this estimate
into the oracle procedure. The resulting procedure, denoted Ĉ

PI
= (ẐPI, ŜPI

α ), is called the
plug-in procedure and is implemented in Algorithm 4.

In Section 3.4, we establish that the plug-in procedure has suitable properties: when n
tends to infinity, provided that the chosen estimator θ̂ behaves well and under mild regularity
assumptions on the model, the FMR of the plug-in procedure is close to the level α, while it
is nearly optimal in terms of average selection number.

Bootstrap procedure Despite the favorable theoretical properties shown in Section 3.4,
the plug-in procedure achieves an FMR that can exceed α in some situations, as we will see
in our numerical experiments (Section 3.5). This is in particular the case when the estimator
θ̂ is too rough. Indeed, the uncertainty of θ̂ near θ∗ is ignored by the plug-in procedure.

To take into account this effect, we propose to use a bootstrap approach. It is based on
the following result.

Lemma 15. For a given level α ∈ (0, 1), the FMR of the plug-in procedure Ĉ
PI

α is given by

FMR(Ĉ
PI

α ) = EX∼Pθ∗

min
σ∈[Q]

∑n
i=1{1− `σ(ẐPI

i (X))(Xi, θ
∗)}1{i ∈ ŜPI

α (X)}

max(|ŜPI
α (X)|, 1)

 . (3.9)

The general idea is as follows: since FMR(Ĉ
PI

α ) can exceed α, we choose α′ as large as
possible such that F̂MRα′ ≤ α, for which F̂MRα′ is a bootstrap approximation of FMR(Ĉ

PI

α′)
based on (3.9).

The bootstrap approximation reads as follows: in the RHS of (3.9), we replace the true
parameter θ∗ by θ̂ and X ∼ Pθ∗ by X′ ∼ P̂ , where P̂ is an empirical substitute of Pθ∗ .
This empirical distribution P̂ is Pθ̂ for the parametric bootstrap and the uniform distribution
over the Xi’s for the non-parametric bootstrap. This yields the bootstrap approximation of
FMR(Ĉ

PI

α ) given by

F̂MRα = EX′∼P̂

min
σ∈[Q]

∑n
i=1{1− `σ(ẐPI

i (X′))(X
′
i, θ̂(X))}1{i ∈ ŜPI

α (X′)}

max(|ŜPI
α (X′)|, 1)

∣∣∣∣X
 .
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Classically, the latter is itself approximated by a Monte-Carlo scheme:

F̂MR
B

α =
1

B

B∑
b=1

min
σ∈[Q]

∑n
i=1{1− `σ(ẐPI

i (Xb))(X
b
i , θ̂(X))}1{i ∈ ŜPI

α (Xb)}

max(|ŜPI
α (Xb)|, 1)

, (3.10)

with X1, . . . ,XB i.i.d. ∼ P̂ corresponding to the bootstrap samples of X.
Let (α(k))1≤k≤K ∈ (0, 1)K be a grid of increasing nominal levels (possibly with restriction

to values slightly below the target level α). Then, the bootstrap procedure at level α is defined
as Ĉ

boot

α = Ĉ
PI

α(k̃), where

k̃ = max

{
k ∈ {1, . . . ,K} : F̂MR

B

α(k) ≤ α
}
. (3.11)

This procedure is implemented in Algorithm 5.

Remark 13 (Parametric versus non parametric bootstrap). The usual difference between para-
metric and non parametric bootstrap also holds in our context: the parametric bootstrap is
fully based on Pθ̂, while the non parametric bootstrap builds an artificial sample (with re-
placement) from the original sample, which does not come from a Pθ-type distribution. This
gives rise to different behaviors in practice: when θ̂ is too optimistic (which will be typically
the case here when the estimation error is large), the correction brought by the parametric
bootstrap (based on Pθ̂) is often weaker than that of the non parametric one. By contrast,
when θ̂ is close to the true parameter, the parametric bootstrap approximation is more faithful
because it uses the model, see Section 3.5.

3.4 Theoretical guarantees for the plug-in procedure

In this section, we derive theoretical properties for the plug-in procedure: we show that its
FMR and mFMR are close to α, while its expected selection number is close to be optimal
under some conditions.

3.4.1 Additional notation and assumptions

We make use of an optimality theory for mFMR control, that will be developed in detail in
Section B.1.2. This approach extensively relies on the following quantities (recall the definition
of T (X, θ) in (3.5)):

mFMR∗t = Eθ∗ (T (X, θ∗) | T (X, θ∗) < t) ; (3.12)
t∗(α) = sup {t ∈ [0, 1] : mFMR∗t ≤ α} (3.13)
αc = inf{mFMR∗t : t ∈ (0, 1],mFMR∗t > 0}; (3.14)
ᾱ = mFMR∗1 . (3.15)

In words, mFMR∗t is the mFMR of an oracle procedure that selects the T ∗i smaller than some
threshold t (Lemma 36). Then, t∗(α) is the optimal threshold such that this procedure has an
mFMR controlled at level α. Next, αc and ᾱ are the lower and upper bounds for the nominal
level α, respectively, for which the optimality theory can be applied.

Now, we introduce our main assumption, which will be ubiquitous in our analysis.

Assumption 6. For all θ ∈ Θ and q ∈ {1, . . . , Q}, under Pθ∗, the r.v. `q(X, θ) given by (3.4)
is continuous. In addition, the function t 7→ Pθ* (T (X, θ) < t) is increasing on (αc, ᾱ), where
T (X, θ) is given by (3.5).
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Note that Assumption 6 implies the continuity of the r.v. T (X, θ). Indeed, P(T (X, θ) =
t) ≤

∑Q
q=1 P(`q(X, θ) = 1 − t). Hence, this assumption implies that t 7→ Pθ* (T (X, θ) < t)

is both continuous on [0, 1] and increasing on (αc, ᾱ). This is useful in several regards: first,
it prohibits ties in the T (Xi, θ)’s, 1 ≤ i ≤ m, so that the selection rule (see Algorithm 3)
can be truly formulated as a thresholding rule (see Lemma 37). Second, it entails interesting
properties for function t 7→ mFMR∗t , see Lemma 36 (this in particular ensures that the
supremum in (3.13) is a maximum). Also note that the inequality 0 ≤ αc < ᾱ < 1 − 1/Q
holds under Assumption 6.

The next assumption ensures that the density family {fu, u ∈ U} is smooth, and will be
useful to establish consistency results.

Assumption 7. For Pθ∗-almost all x ∈ Rd, u ∈ U 7→ fu(x) is continuous.

Moreover, we can derive convergence rates under the following additional regularity con-
ditions.

Assumption 8. There exist positive constants r = r(θ∗), C1 = C1(θ∗), C2 = C2(θ∗, α), C3 =
C3(θ∗, α) such that

(i) for Pθ*-almost all x, u ∈ U 7→ fu(x) is continuously differentiable, and∑
1≤q≤Q

Eθ∗ sup
θ∈Θ

‖θ−θ∗‖≤r

‖∇θ`q(X, θ)‖ ≤ C1;

(ii) for all t, t′ ∈ [0, 1], |Pθ*(T (X, θ∗) < t)− Pθ*(T (X, θ∗) < t′)| ≤ C2|t− t′|;

(iii) for all β ∈ [(αc + α)/2, (α+ ᾱ)/2], |t∗(β)− t∗(α)| ≤ C3|β − α|.

Example 2. In Appendix B.4, it is proved that Assumptions 6, 7 and 8 hold true in the
homoscedastic two-component multivariate Gaussian mixture model, see Lemma 46.

Next, we consider the following complexity assumption to ensure concentration of the
underlying empirical processes. It is given in terms of the VC dimension of specific function
classes involving `q. In the sequel, the VC dimension of a function set F is defined as the VC
dimension of the set family {{x ∈ Rd : f(x) ≥ u}, f ∈ F , u ∈ R}, see, e.g., Baraud (2016).
We denote

V = VC dimension of {`q(., θ), θ ∈ Θ, 1 ≤ q ≤ Q}; (3.16)
V − = VC dimension of {1{`q(., θ)− `q′(., θ) ≥ 0}, θ ∈ Θ, 1 ≤ q, q′ ≤ Q}. (3.17)

Assumption 9. The VC dimensions V and V − are finite.

Example 3. In the two-component case Q = 2 where Pθ belongs to an exponential family, we
have that V ,V − . k2 log(k) (see Lemma 41) with k the dimension of the sufficient statistic
vector. For instance, k = d + d2 for the Gaussian family, hence V ,V − . d4 log(d) in that
case. (For the specific case of the homoscedastic Gaussian family, we have that V ,V − . d,
see Lemma 47).

Let us now discuss conditions on the estimator θ̂ on which the plug-in procedure is based.
We start by introducing the following assumption (used in the concentration part of the proof,
see Lemma 39).

Assumption 10. The estimator θ̂ is assumed to take its values in a countable subset D of
Θ.
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This assumption is a minor restriction, because we can always choose D ⊂ QK (recall
Θ ⊂ RK). Next, we additionally define a quantity measuring the quality of the estimator: for
all ε > 0,

η(ε, θ∗) = Pθ*
(

min
σ∈[Q]

‖θ̂σ − θ∗‖2 ≥ ε
)
. (3.18)

Example 4. The literature provides several results regarding the estimation of Gaussian mix-
tures, see e.g. Regev and Vijayaraghavan (2017) for a review. Proposition 44 revisits some of
these results, for the estimator derived from EM algorithm (Dempster et al., 1977; Balakrish-
nan et al., 2017) and the constrained MLE (Ho and Nguyen, 2016).

3.4.2 Results

We now state our main results, starting with the consistency of the plug-in procedure.

Theorem 16 (Asymptotic optimality of the plug-in procedure). Let Assumptions 6, 7, and 9
be true. Consider an estimator θ̂ satisfying Assumption 10 and which is consistent in the sense
that for all ε > 0, the probability η(ε, θ∗) given by (3.18) tends to 0 as n tends to infinity.
Then the corresponding plug-in procedure Ĉ

PI

α (Algorithm 4) satisfies the following: for any
α ∈ (αc, ᾱ), we have

lim sup
n

FMR(Ĉ
PI

α ) ≤ α, lim sup
n

mFMR(Ĉ
PI

α ) ≤ α,

and for any procedure C = (Ẑ, S) that controls the mFMR at level α, we have

lim inf
n
{n−1 Eθ∗(|ŜPI

α |)− n−1 Eθ∗(|S|)} ≥ 0.

Next, we derive convergence rates under the additional regularity conditions given by
Assumption 8.

Theorem 17 (Optimality of the plug-in procedure with rates). Consider the setting of The-
orem 16, where in addition Assumption 8 holds. Recall η(ε, θ∗) defined by (3.18) and V ,V −
defined by (3.16), (3.17) respectively. Let s∗ denote the selection rate of the oracle procedure
mentioned in Section 3.4.1, with threshold t∗(α) and applied at level (α + αc)/2. With con-
stants A > 0 and B > 0 only depending on Q,C1, C2, C3,V ,V − and s∗, we have for any
sequence εn > 0 tending to zero, for n larger than a constant only depending on α and θ∗,

FMR(Ĉ
PI

α ) ≤ α+A
√
εn +B

√
log n/n+ 5/n2 + η(εn, θ

∗) (3.19)

n−1 Eθ∗(|ŜPI
α |)− n−1 Eθ∗(|S|) ≥ −A

√
εn −B

√
log n/n− 5/n2 − η(εn, θ

∗), (3.20)

for any procedure C = (Ẑ, S) that controls the mFMR at level α.

The proof is based on a more general non-asymptotical result, for which the remainder
terms are more explicit, see Theorem 31 and Appendix B.1. It employs techniques that share
similarities with the work of Rebafka et al. (2022) developed in a different context. Here, a
difficulty is to handle the new statistic T (Xi, θ̂) which is defined as an extremum, see (3.5).

Theorem 17 establishes that, given a model which is regular enough and a consistent
estimator, the plug-in procedure controls the FMR and is asymptotically optimal up to re-
mainder terms which are of the order of

√
εn +

√
log n/n+ η(εn, θ

∗). Here, εn dominates the
convergence rate of the parameter estimate, and is taken large enough to ensure that η(εn, θ

∗)
vanishes.

For instance, in the multivariate Gaussian mixture model (with further assumptions) and
by considering either the EM estimator or the constrained MLE, we have η(εn, θ

∗) ≤ 1/n for
εn = C

√
log(n)/n, see Proposition 44. This implies that the remainder terms in (3.19) and

(3.20) are at most of order ((log n)/n)1/4.
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3.5 Experiments

In this section, we evaluate the behavior of the new procedures: plug-in (Algorithm 4), para-
metric bootstrap and non parametric bootstrap (Algorithm 5). For this, we use both synthetic
and real data.

3.5.1 Synthetic data set

The performance of our procedures is studied via simulations in different settings with var-
ious difficulties. All of them are Gaussian mixture models, with possible restrictions on the
parameter space. For parameter estimation, the classical EM algorithm is applied with 100
iterations and 10 starting points chosen with Kmeans++ (Arthur and Vassilvitskii, 2006). In
the bootstrap procedures B = 1000 bootstrap samples are generated. The performance of
all procedures is assessed via the sample FMR and the proportion of classified data points,
which is referred to as the selection frequency. For every setting and every set of parameters,
depicted results display the mean over 100 simulated datasets. As a baseline, we consider the
fixed threshold procedure in which one selects data points that have a maximum posterior
group membership probability that exceeds 1−α. The oracle procedure (Algorithm 3) is also
considered in our experiments for comparison.

Known proportions and covariances In the first setting, the true mixture proportions
and covariance matrices are known and used in the EM algorithm. We consider the case
Q = 2, π1 = π2 = 1/2 and Σ1 = Σ2 = Id with Id the (d × d)-identity matrix. For the mean
vectors, we set µ1 = 0 and µ2 = (ε/

√
d, . . . , ε/

√
d). The quantity ε corresponds to the mean

separation, that is, ‖µ1 − µ2‖2 = ε and accounts for the difficulty of the clustering problem.
Figure 3.2 displays the FMR for nominal level α = 0.1, sample size n = 100, dimension

d = 2 and varying mean separation ε ∈ {1,
√

2, 2, 4}. Globally, our procedures all have an
FMR close to the target level α (excepted for the very well separated case ε = 4 for which
the FMR is much smaller because a large part of the items can be trivially classified). In
addition, the selection rate is always close to the one of the oracle procedure. On the other
hand, the baseline procedure is too conservative: its FMR can be well below the nominal level
and it selects up to 50% less than the other procedures. This is well expected, because unlike
our procedures, the baseline has a fixed threshold and thus does not adapt to the difficulty of
the problem.

We also note that the FMR of the plug-in approach is slightly inflated for a weak separation
(ε = 1). This comes from the parameter estimation, which is difficult in that case. This also
illustrates the interest of the bootstrap methods, that allow to recover the correct level in
that case, by appropriately correcting the plug-in approach.

Diagonal covariances In this setting, the true parameters are the same as in the previous
paragraph, but the true mixture proportions and covariance matrices are unknown. However,
to help the estimation, we suppose a diagonal structure for Σ1 and Σ2, which is used in the
EM algorithm.

Figure 3.3a displays the FMR and the selection frequency as a function of the separation
ε. The conclusion is qualitatively the same as in the previous case, but with larger FMR
values for a weak separation. Overall, it shows that the plug-in procedure is anti-conservative
and that the bootstrap corrections are able to recover an FMR and a selection frequency
close to the one of the oracle. However, for a weak separation, namely ε = 1, the parametric
bootstrap correction is not enough and the latter procedure still overshoots the nominal level
α. Indeed, in our simulations, it appears that Pθ̂ is often a distribution that is more favorable
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Figure 3.2: FMR (left panel) and selection frequency (right panel) as a function of the mean
separation ε. Known mixture proportions and covariances setting with Q = 2, n = 100, d = 2,
α = 0.1.

than Pθ∗ from a statistical point of view (for instance, with more separated clusters). These
conclusions also hold for varying sample size n, see Figure 3.3b.

Figure 3.3c displays the FMR and the selection frequency for varying nominal level α, with
ε =
√

2 and n = 200. The plug-in is still anti-conservative, while the bootstrap procedures
have an FMR that is close to α uniformly on the considered α range. Moreover, we note that
for all our procedures (including the plug-in), the gap between the FMR and the nominal
level is roughly constant with α: this illustrates the adaptive aspect of our procedures. This
is in contrast with the baseline procedure, for which this gap highly depends on α, and which
may be either anti-conservative or sub-optimal depending on the α value.

Three-component mixture We next increase the number of classes to Q = 3. Figure
3.4 displays the FMR and the selection frequency for varying α, with a mean separation
‖µ1 − µ2‖2 = ‖µ1 − µ3‖2 = ‖µ2 − µ3‖2 = ε = 3. The mean separation is chosen so that the
selection frequency of the oracle rule is approximately the same as in the previous paragraph.
The increase in Q leads to a deterioration of the performances. Specifically, the FMR of
the plug-in overshoots the nominal level by a large amount, and when n is too small, the
parametric bootstrap procedure can be anti-conservative while the non parametric bootstrap
is over-conservative. This deterioration is expected since from the theory established in Section
3.4 (see Theorem 17), the residual terms increase with Q, and since the difficulty of the
estimation is also increased. However, for a fairly large sample size (n = 1000), both bootstrap
procedures are correctly mimicking the oracle.

Larger dimension We now increase the dimension to d = 10. In that case, parameter
estimation is deteriorated. In particular, the maximum posterior probability for any point
tends to be very over-estimated. To remedy this issue, we project the data onto a two-
dimensional space using PCA. We then apply the EM algorithm to the projected data. This is
similar in spirit to spectral clustering and it has the added benefit of combining the objectives
of data reduction with clustering. Results are displayed in Figure 3.5. The conclusions are
qualitatively the same as in the previous paragraph.

3.5.2 Real data set

We consider the Wisconsin Breast Cancer Diagnosis (WDBC) dataset from the UCI ML
repository. The data consists of features computed from a digitalized image of a fine needle
aspirate (FNA) of a breast mass, on a total of 569 patients (each corresponds to one FNA
sample) of which 212 are diagnosed as Benign and 357 as Malignant. Ten real-valued measures
were computed for each of the cell nucleus present in the images (e.g. radius, perimeter,
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(a)

(b)

(c)

Figure 3.3: FMR (left panel) and selection frequency (right panel) as a function of: (a) the
mean separation; (b) the sample size n; (c) the nominal level α. Diagonal covariances setting
with Q = 2, d = 2. Default settings are: n = 200, α = 0.1, ε =

√
2.

(a) n = 200 (b) n = 1000

Figure 3.4: FMR (left panel) and selection frequency (right panel) as a function of the nominal
level α. Diagonal covariances setting with Q = 3, d = 2, ε = 3.
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(a) n = 200 (b) n = 1000

Figure 3.5: FMR (left panel) and selection frequency (right panel) as a function of the nominal
level α. Diagonal covariances setting with Q = 2, d = 10, ε =

√
2.

texture, etc.). Then, the mean, standard error and mean of the three largest values of these
measures were computed for each image, resulting in a total of 30 features. Here, we restrict
the analysis to the variables that correspond to the means of these measures.

We choose to model the data as a mixture of Student’s t-distributions as proposed in Peel
and McLachlan (2000). Student mixtures are appropriate for data containing observations
with longer than normal tails or atypical observations leading to overlapping clusters. Com-
pared to Gaussian mixtures, Students are less concentrated and thus produce estimates of
the posterior probabilities of class memberships that are less extreme, which is favorable for
our selection procedures. In our study, the degree of freedom of each component is set to 4,
and no constraints are put on the rest of the parameters. The t-mixture is fit via the EM
algorithm provided by the Python package studenttmixture (Peel and McLachlan, 2000).

To start with, we restrict the analysis to the first two variables of the dataset, the mean
radius and the mean texture of the images. For illustration, Figure 3.6 (panel (a)) displays
the data. Different colors indicate the ground truth labels (this information is not used in the
clustering). One can see that the Student approximation is fairly good for each of the groups,
and there is some overlap between them. Figure 3.6 (panel (b)) displays the MAP clustering
result for the t-mixture model without any selection. The FMR is computed with respect to
the ground truth labels and amounts to 14 %. Figure 3.6 (panel (c)) provides the result of our
parametric bootstrap procedure with nominal level α = 5%. The procedure does not classify
points that are at the intersection of the clusters, resulting in the classification of 70% of the
data, and the FMR equals 3%, which is below the target level.

Finally, Figure 3.7 displays the results when restricting the analysis to the first ten variables
of the dataset and applying PCA to reduce the dimension to 2. In that case, the FMR
computed with respect to the ground truth labels without selection is 14 %, while using the
bootstrap procedures, this reduces to 10 %, with a selection frequency of 80%.

3.6 Conclusion and discussion

We have presented new data-driven methods providing both clustering and selection that en-
sure an FMR control guarantee in a mixture model. The plug-in approach was shown to be
theoretically valid both when the parameter estimation is accurate and the sample size is large
enough. When this is not necessarily the case, we proposed two second-order bootstrap cor-
rections that have been shown to increase the FMR control ability on numerical experiments.
Finally, applying our unsupervised methods to a supervised data set, our approach has been
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(a) Ground truth labels (b) MAP clustering (c) Bootstrap procedure

Figure 3.6: Comparison of the clustering result using t-mixture modelling with ground truth
labels on the WDBC dataset, restricted to the variables radius and texture, with and without
selection. With the parametric bootstrap procedure applied at α = 5%, the FMR w.r.t. the
ground truth labels is of 3% versus 14% without selection.

(a) Ground truth labels (b) MAP clustering (c) Bootstrap procedure

Figure 3.7: Comparison of the clustering result using PCA and t-mixture modelling with
ground truth labels on the WDBC dataset, restricted to the first ten variables, with and
without selection. With the parametric bootstrap procedure applied at α = 5%, the FMR
w.r.t. the ground truth labels is of 10% versus 14% without selection.
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qualitatively validated by considering the attached labels as revealing the true clusters.
We underline that the cluster number Q is assumed to be fixed and known throughout the

study. In practice, it can be fitted from the data by using the standard AIC or BIC criteria,
using the entire data before application of the selection rule. In addition, if several values of
Q make sense from a practical viewpoint, we recommend to provide to the practitioner the
collection of the corresponding outputs.

Concerning the pure task of controlling the FMR in the mixture model, our methods
provide a correct FMR control in some region of the parameter space, leaving other less
favorable parameter configurations with a slight inflation in the FMR level. This phenomenon
is well known for FDR control in the two-component mixture multiple testing model (Sun and
Cai, 2007; Roquain and Verzelen, 2022), and facing a similar problem in our framework is well
expected. On the one hand, in some cases, this problem can certainly be solved by improving
on parameter estimation: here the EM algorithm seems to over-estimate the extreme posterior
probabilities, which makes the plug-in procedure too anti-conservative. On the other hand, it
could be hopeless to expect a robust FMR control uniformly valid over all configurations, while
being optimal in the favorable cases. To illustrate that point, we refer to the work Roquain
and Verzelen (2022) that shows that such a procedure does not exist in the FDR controlling
case, when the null distribution is Gaussian with an unknown scaling parameter (which is
a framework sharing similarities with the one considered here). Investigating such a “lower
bound” result in the current setting would provide better guidelines for the practitioner and is
therefore an interesting direction for future research. In addition, in these unfavorable cases,
adding labeled samples and considering a semi-supervised framework can be an appropriate
alternative for practical use. This new sample is likely to considerably improve the inference.
Studying the FMR control in that setting is another promising avenue.
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Link prediction with FDR control

Most link prediction methods return estimates of the connection probability of missing edges
in a graph. Such output can be used to rank the missing edges from most to least likely to
be a true edge, but it does not directly provide a classification into true and non-existent.
In this work, we consider the problem of identifying a set of true edges with a control of
the false discovery rate (FDR). We propose a novel method based on high-level ideas from
the literature on conformal inference. The graph structure induces intricate dependence in
the data, which we carefully take into account, as this makes the setup different from the
usual setup in conformal inference, where exchangeability is assumed. The FDR control is
empirically demonstrated for both simulated and real data.

Contents
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.1.1 Problem and aim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.1.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.1.3 Relation to previous work . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2.2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.2.3 Training the scoring function g . . . . . . . . . . . . . . . . . . . . . 71

4.3 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.3.1 Simulated data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.3.2 Real data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.1 Introduction

4.1.1 Problem and aim

Graphs (or networks) denote data objects that consist of links (edges) between entities (nodes).
Real-world examples are ubiquitous and include social networks, computer networks, food
webs, molecules, etc. A fundamental problem in network analysis is link prediction, where
the goal is to identify missing links in a partially observed graph. Biological networks such as
protein-protein interaction networks (Kovács et al., 2019) or food webs (Terry and Lewis, 2020)
are typical examples of incomplete networks: because experimental discovery of interactions
is costly, many interactions remain unrecorded. Link prediction can be used to identify
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promising pairs of nodes for subsequent experimental evaluations. Other applications include
friend or product recommendation (Li and Chen, 2013), or identification of relationships
between terrorists (Clauset et al., 2008).

In this work, we consider a link prediction problem, where a graph with a set of vertices
V = {1, . . . , n} and a set of edges E is only partially observed: namely, we observe a sample
of node pairs recorded as interacting (true edges) and a sample of node pairs recorded as non-
interacting (false edges). The graph can be directed or undirected and self-loops are allowed.
The two observed samples of node pairs make up only a part of the set of all pairs V × V ,
and the non-observed pairs correspond to missing information, where it is not known whether
there is an edge or not. The aim is to identify the true edges among the pairs of nodes for
which the interaction status has not been recorded.

There exists a variety of approaches for link prediction and they are mainly divided ac-
cording to two viewpoints. In Ben-Hur and Noble (2005); Bleakley et al. (2007); Li and Chen
(2013); Zhang and Chen (2018), link prediction is treated as a classification problem. That
is, examples are constructed by associating the label 1 (or 0) with all true (or false) edges.
Then, a classifier is learned by using either a data representation for each edge (Zhang and
Chen, 2018), or kernels (Ben-Hur and Noble, 2005; Bleakley et al., 2007; Li and Chen, 2013).
Another line of research views link prediction rather as an estimation issue, namely as the
problem of estimating the true matrix of the probabilities of connection between node pairs.
In this line, Tabouy et al. (2020) propose an estimation procedure for the Stochastic Block
Model (SBM) with missing links based on maximum likelihood. In Gaucher et al. (2021), a
similar aim is pursued and a technique based on matrix completion tools is proposed, which
is also robust to outliers. Finally, Mukherjee and Chakrabarti (2019) give an algorithm for
graphon estimation in a missing data set-up.

Concretely, the output of all of these methods are scores for all missing edges, ranking them
from most likely to least likely to interact. Such an output is satisfying when the application
constrains the number of pairs of vertices to be declared as true edges to be fixed, as e.g. in
e-recommendation, where we could have to recommend the top 3-best products most likely to
interest the consumer. Alternatively, other practical cases may instead require a classification
of the missing edges into true and false edges together with a control of the amount of edges
that are wrongly declared as true (false positives). Putting the emphasis on false positives is
appropriate in many contexts. For instance, in the reconstruction of biological networks, the
edges that are classified as true are then tested experimentally in a costly process, which makes
it desirable for the user to avoid false positives in the selection step. This is increasingly true
for real-world networks that are in general very sparse. The decision of declaring a missing
pair as a false edge can be viewed as a type of abstention option: based on the data, we do
not have enough evidence to confidently predict it as a true edge.

How to build a reliable classification procedure? Using an ad hoc rule like declaring as
true edges the node pairs with a connection probability above the 50% threshold, may lead
to a high number of false positives since a) probabilities may not be estimated correctly and
b) even if they were, the probability of making a mistake may still be high if there are many
node pairs with moderately elevated connection probability.

In this work, we consider the goal of identifying a subset of the missing pairs of nodes for
which we can confidently predict the presence of an edge, with a guarantee on the number of
edges that are falsely predicted as true. Our problem can be viewed as finding the appropriate
threshold (not 50%) for the connection probabilities such that the number of false positives
remains below a prescribed level. The optimal threshold depends on the problem itself.
In simple settings a low threshold may be satisfactory, as for instance when most connected
triplets are indeed triangles. However, on a graph with much stochasticity, the exact prediction
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of links is a very uncertain endeavor.
The problem is formalized in terms of controlling the false discovery rate (FDR), defined

as the average proportion of errors among the pairs of vertices declared to be true edges
(proportion of false discoveries). More precisely, the goal is to develop a procedure such
that the FDR is below a user-specified level α, which is an error margin that represents the
acceptance level for the proportion of false edges in the selection. The interpretation for the
user is clear: if, for instance, α is set to 5% and the method returns a set of 100 node pairs,
then the number of non-existent edges in this set is expected to be at most 5.

4.1.2 Approach

We propose a method that takes as input the partially observed graph and, using an off-the-
shelf link prediction method, returns a set of node pairs with an FDR control at level α. The
method can be seen as a general wrapper that transforms any link prediction technique into
an FDR-controlling procedure. Crucially, even when the quality of the link predictor is not
particularly good, our method provides control of the FDR.

Our approach relies on conformal p-values (Bates et al., 2023; Barber and Candès, 2015;
Yang et al., 2021), which are a powerful model-free approach in multiple testing that measure
statistical significance by comparing the test statistic (or score) to a reference set consisting
of statistics of observations under the null. This approach comes with guarantees on the FDR
control under a suitable exchangeability assumption on the test statistics (Bates et al., 2023;
Weinstein et al., 2017; Mary and Roquain, 2022; Marandon et al., 2022), and has been used
in novelty detection (Bates et al., 2023; Yang et al., 2021; Marandon et al., 2022; Liang et al.,
2022), variable selection (Barber and Candès, 2015; Weinstein et al., 2017), as well as binary
classification (Rava et al., 2021).

We propose to use this high-level idea of comparing a score to a set of scores under the null,
in order to properly threshold the link prediction probabilities for FDR control. In our link
prediction set-up, the connection probability for a pair of nodes (i, j) can be seen as a score
indicating the relevance of an edge between i and j. The afore-mentioned score comparison
then turns into a comparison of the connection probability for a non-observed pair of nodes
to connection probabilities of pairs that are known to be non-existent edges. However, the
setup is markedly different from previous literature, making this transposition challenging. In
particular, the graph structure makes the scores dependent on each other in an intricate way,
which requires to build the scores with care.

Contributions The contributions of this work are summarized as follows:

• We introduce a novel method to obtain FDR control in link prediction (Section 4.2),
which extends ideas from the conformal inference literature to graph-structured data.
The proposed method is model-free: it does not rely on distributional assumptions,
instead, it leverages off-the-shelf link prediction (LP) techniques. It is designed to
provide FDR control regardless of the difficulty of the setting and of the quality of the
chosen LP technique. Moreover, the ability to use any LP technique of choice, including
the state-of-the-art, makes it flexible and powerful.

• Extensive numerical experiments 1 (Section 4.3) assess the excellent performance of the
approach and demonstrate its usefulness compared to the state of the art.

1 We publicly release the code of these experiments at https://github.com/arianemarandon/
linkpredconf. We have also included a Jupyter notebook that illustrates the use of our procedure.

https://github.com/arianemarandon/linkpredconf
https://github.com/arianemarandon/linkpredconf
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4.1.3 Relation to previous work

Error rate control in statistical learning Error rate control has notably been considered
in novelty detection (Bates et al., 2023; Yang et al., 2021; Marandon et al., 2022; Liang et al.,
2022), binary classification (Geifman and El-Yaniv, 2017; Angelopoulos et al., 2021; Rava
et al., 2021; Jin and Candès, 2022), clustering (Marandon et al., 2023) and graph inference
(Rebafka et al., 2022). The setting closest to ours is that of binary classification, in the sense
that here the goal is to classify non-observed pairs of nodes as a ’true’ or ’false’ edge, given
that we observe part of both true edges and non-existent edges. In this line, some approaches
(e.g., Zhang and Chen, 2018) view link prediction as a binary classification problem. These
approaches use the graph structure to produce edge embeddings, i.e. data objects representing
an edge, that are fed to a classifier as learning examples along with labels corresponding
to existence or non-existence. The methods introduced in Geifman and El-Yaniv (2017);
Angelopoulos et al. (2021); Rava et al. (2021); Jin and Candès (2022) in the context of general
binary classification all provide finite-sample guarantees, but the approaches and the type of
guarantees vary. To be more precise, the algorithms in Rava et al. (2021); Jin and Candès
(2022) control the FDR and are very close to the conformal-based approach of Bates et al.
(2023), whereas Geifman and El-Yaniv (2017); Angelopoulos et al. (2021) consider controlling
the mis-classification error for a single new point and use certain bounds of the empirical risk
with respect to the true risk.

However, these approaches cannot be applied in our situation because here data examples
are based on the graph structure and thus depend on each other in a complex way. In
particular, we do not have i.i.d. data examples as assumed in the classical binary classification
setting. In this regard, our method is related to the work of Marandon et al. (2022) that
extends the conformal novelty detection method of Bates et al. (2023) to the case where the
learner is not previously trained, but uses the test sample to output class predictions, which
makes the class predictions dependent. This is similar to our problem in the sense that here
we aim to calibrate connection probabilities that depend on each other through the graph
structure.

Conformal inference applied to graph data A few recent works (Huang et al., 2023;
Lunde et al., 2023) have considered the application of conformal prediction (Angelopoulos
and Bates, 2021) to graph data. Conformal prediction generally refers to the part of con-
formal inference that is concerned with producing prediction sets that are provably valid in
finite samples, rather than error rate control as considered here. Moreover, in these works,
the prediction task concerns the nodes: Huang et al. (2023) considers node classification,
while Lunde et al. (2023) studies prediction of node covariates (also called network-assisted
regression). By contrast, in our work, the prediction task concerns the edges, and therefore,
the specific dependency issue that arises differs from Huang et al. (2023); Lunde et al. (2023).
Finally, a closely related work is that of Luo et al. (2021), which uses conformal p-values to
detect anomalous edges in a graph. However, their method relies on edge-exchangeability,
which is a restrictive assumption. Moreover, the guarantee is only for a single edge.

Link with multiple testing The FDR criterion is a staple of multiple testing, where
recent works on knockoffs and conformal p-values (Barber and Candès, 2015; Weinstein et al.,
2017; Bates et al., 2023; Yang et al., 2021; Marandon et al., 2022) have provided model-free
procedures that come with an FDR control guarantee in finite samples. However in this work,
while we do use tools of Weinstein et al. (2017); Bates et al. (2023), our setting does not strictly
conform to a known multiple testing framework such as the p-value framework (Benjamini
and Hochberg, 1995) (the hypotheses being random) or the empirical Bayes framework (Efron
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Figure 4.1: Illustration of the learning problem. The left panel shows the true complete graph
A∗, which is not observed. The right panel describes our observation: the true edges (1, 2),
(1, 4), (2, 3), (2, 5), (3, 5) are observed, along with the non-existent edges (1, 3),(1, 5), (4, 5)
but the information concerning the pairs (2, 4) and (3, 4) is missing. We aim to decide for
(2, 4) and (3, 4) whether there is a true edge or not.

et al., 2001; Sun and Cai, 2007) (the number of hypotheses being itself random). Hence,
previous theory in that area cannot be applied.

4.2 Methodology

4.2.1 Preliminaries

Let A∗ = (A∗i,j)1≤i,j≤n be the adjacency matrix of the true complete graph G, X ∈ Rn×d a
matrix of node covariates (if available), and Ω = (Ωi,j)1≤i,j≤n the sampling matrix such that
Ωi,j = 1 if the interaction status (true/false) of (i, j) is observed, and 0 otherwise. We assume
that the entries Ωij are i.i.d. random variables and that Ω is independent from A∗ and X.
We denote by A the observed adjacency matrix with Ai,j = Ωi,jA

∗
i,j . Thus, Ai,j = 1 indicates

that there is an observed true edge between i and j, whereas Ai,j = 0 indicates either the
observed lack of an edge or an unreported edge. The sampling matrix Ω is assumed to be
observed, so that it is known which zero-entries Ai,j = 0 correspond to observed false edges
and which ones correspond to missing information. The missing information concerns only
A∗, and not X. The setting is illustrated in Figure 4.1. We denote by P the joint distribution
of Z∗ = (A∗, X,Ω), Z the observation (A,X,Ω) and Z the observation space.

We are interested in classifying the unobserved node pairs {(i, j) : Ωi,j = 0} into true
edges and false edges, or in other words, selecting a set of unobserved node pairs to be
declared as true edges, based on the observed graph structure. In order to be consistent with
the notation of the literature on conformal p-values (Bates et al., 2023; Liang et al., 2022;
Marandon et al., 2022), we use the following notations:

• We denote by Dtest(Z) = {(i, j) : Ωi,j = 0} the set of non-sampled (or missing) node
pairs and by D(Z) = {(i, j) : Ωi,j = 1} the set of sampled pairs, with D0 = {(i, j) ∈
D : A∗i,j = 0} the set of observed non-existent edges and D1 = {(i, j) ∈ D : A∗i,j = 1}
the set of observed true edges. We refer to Dtest(Z) as the test set.

• We denote by H0 = {(i, j) : Ωi,j = 0, A∗i,j = 0} the (unobserved) set of false edges in
the test set and H1 = {(i, j) : Ωi,j = 0, A∗i,j = 1} the (unobserved) set of true edges in
the test set.

The notations are illustrated in Figure 4.2.
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Figure 4.2: Illustration of the notations introduced in Section 4.2.1. The test edges Dtest (left
panel) are divided into two subsets (unobserved): true edges H1, and false edges H0 (right
panel).

In our framework, a selection procedure is a (measurable) function R = R(Z) that returns
a subset of Dtest corresponding to the indices (i, j) where an edge is declared. The aim is to
design a procedure R close to H1, or equivalently, with R ∩ H0 (false discoveries) as small
as possible. For any such procedure R, the false discovery rate (FDR) of R is defined as the
average of the false discovery proportion (FDP) of R under the model parameter P ∈ P, that
is,

FDR(R) = EZ∗∼P [FDP(R)], FDP(R) =

∑
i∈H0

1i∈R

1 ∨ |R|
.

Similarly, the true discovery rate (TDR) is defined as the average of the true discovery pro-
portion (TDP), that is,

TDR(R) = EZ∗∼P [TDP(R)], TDP(R) =

∑
i∈H1

1i∈R

1 ∨ |H1|
.

Our aim is to build a procedure R that controls the FDR while having a TDR (measuring
the power of the procedure) as large as possible.

4.2.2 Procedure

Let g : V × V ×Z → R be a scoring function, which takes as input a node pair (i, j) and an
observation z ∈ Z and returns a score Si,j ∈ R, estimating how likely it is that i is connected
to j. The score does not have to be in [0, 1]: for instance, Si,j can be the number of common
neighbors between i and j.

To obtain a set of edges with FDR below α, we borrow from the literature on knockoffs
and conformal inference (Weinstein et al., 2017; Bates et al., 2023) to formulate the following
idea: some of the observed false edges can be used as a reference set, by comparing the score
for a node pair in the test set to scores computed on false edges to determine if it is likely to
be a false positive. Effectively, we will declare as edges the pairs that have a test score higher
than a cut-off t̂ computed from the calibration set and depending on the level α. In detail,
the steps are as follows:

1. Use the set of observed node pairs D to define a reference (or calibration) set Dcal ⊂ D0

of false edges and a training set Dtrain ⊂ D\Dcal of true and false edges for learning the
predictor;

2. Learn a scoring function g on Dtrain and compute the scores for the reference set and
for the test set;
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Algorithm 6 Counting Knockoff (Weinstein et al., 2017)
Input: test scores (Sw)w∈Dtest , knockoff scores (Sw)w∈Dcal .
1. Order the scores from lowest to highest, that is S(1) ≥ S(2) ≥ · · · ≥ S(| Dcal |+| Dtest |)
2. Let s` be the label (0/1) of S(`)

3. Set FDP = 1, V = | Dcal |, ` = | Dcal |+ | Dtest |, K = | Dtest |
4. While FDP ≤ α and K ≥ 1 do ` = `− 1

• if s`+1 = 1, V = V − 1

• else, K = K − 1

• do FDP = V+1
| Dcal |+1

| Dtest |
K (or FDP = 1 if K = 0)

5. Set t̂ = S(K) (or +∞ if K = 0).
Output: {w ∈ Dtest : Sw ≥ t̂} (return the empty set if t̂ = +∞).

t̂

Dcal

Dtest

R

Figure 4.3: Illustration of the CK algorithm (Algorithm 6). The procedure looks for the
cut-off t̂ by going from the smallest values of the scores (left) to the largest values (right), and
stops as soon as the corresponding FDP falls below α. At each step, the FDP is estimated
by the proportion of calibration scores among the scores in the left part.

3. Declare as true edges the node pairs in the test set that are returned by the Counting
Knockoff (CK) algorithm (Weinstein et al., 2017) given in Algorithm 6.

The CK algorithm (Weinstein et al., 2017) comes from the knockoff literature and is equivalent
to the conformal p-value procedure of Bates et al. (2023) (see Mary and Roquain, 2022). It
is a stepwise procedure which looks for the appropriate cut-off t̂ among a suitable range of
values T by using the calibration scores as benchmarks to evaluate how many false discoveries
there are among the selected set of test edges for any cut-off t ∈ T . The CK algorithm is
illustrated in Figure 4.3.

The full procedure is given in Algorithm 7 and Figure 4.5 provides a sketch of the approach.
We next describe our proposal for choosing the scoring function g.

Remark 14. This type of procedure is designed to control the FDR at level |H0|
| Dtest |α < α. To

maximize power, we recommend to apply the procedure at level α/π̂0 where π̂0 ∈]0, 1[ is an
estimate of |H0|

| Dtest | . In our setting, it is assumed that Ω is independent of A∗, so π̂0 = | D0 |
|D| is

expected to be a reliable estimate. Alternatively, tools from the multiple testing literature on
the estimation of the proportion of null hypotheses may be employed, e.g. by using Storey’s
estimator (Marandon et al., 2022).

4.2.3 Training the scoring function g

There are two desiderata concerning the properties of the scoring function g:

(i) A key point is that the reference scores mimic the scores (Si,j)i,j∈H0 of the false edges in
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Algorithm 7 Conformal link prediction
Input: Adjacency matrix A, node covariate matrix X, sampling matrix Ω, link prediction
function g, sample size of the reference set
1. Sample Dcal uniformly from D0

2. Learn g on Dtrain ⊂ D\Dcal
3. For each (i, j) ∈ Dcal ∪Dtest, compute the score Si,j = g((i, j), Z)
4. Apply Algorithm 6 using as input (Si,j)(i,j)∈Dtest for the test scores and (Si,j)(i,j)∈Dcal for
the reference scores, provinding a set R(Z) ⊂ Dtest.
Output: R(Z)

the test set in such a way that, if (i, j) ∈ H0 then the rank of Si,j among the reference
scores should be uniformly distributed, allowing good estimation of the FDP in the CK
algorithm. This property is properly formalized and discussed in Appendix C.2. Here, it
entails that the scoring function g must be chosen carefully, because of the dependence
structure in the data.

(ii) To fulfill the above property, it is not needed that the quality of the estimates Si,j be
particularly good. However, what is important to maximize power is that the ranking
provided by the scores is as close as possible to the one given by the true probabilities
P(A∗i,j = 1 | Z).

To address the afore-mentioned points, the scoring function g will be taken as the output
of a link prediction technique of choice, that will be learned with a suitable subset of the
data. Let P̂ : (i, j) ∈ V × V, z ∈ Z 7→ P̂i,j(z) ∈ R be a link prediction algorithm , where P̂i,j
is the prediction for the node pair (i, j) given the observation z. In a nutshell, given a link
prediction algorithm P̂ , the scoring function g(·, Z) is taken as P̂ (·, Ztrain), with Ztrain given
by

Ztrain = (A,X,Ωtrain), (Ωtrain)i,j =

{
0 if (i, j) ∈ Dcal,

Ωi,j otherwise.
(4.1)

In words, taking g(·, Z) = P̂ (·, Ztrain) 6= P̂ (·, Z) amounts to learn the link predictor by treating
the edge examples in the reference set as missing node pairs in the algorithm. We elaborate
on this later, after formalizing explicitly the output of LP methods.

Link prediction For simplicity of presentation, let us consider here an undirected graph
without node covariates. Let us introduce, for a given K ∈ {1, . . . , n} the r.v.

Wi,j = (Ai,•, Aj,•, A
2
i,•, A

2
j,•, . . . , A

K
i,•, A

K
j,•), (4.2)

where Aki,• = (Aki,u)1≤u≤n for 1 ≤ k ≤ K. The r.v. Wi,j can be thought of as the "K-hop
neighborhood" of (i, j). It represents an embedding for the node pair (i, j), that describes a
pattern of connection around i and j. If the graph has some structure, it should be observed
that the pattern differs when i and j are connected, compared to when they are not. Moreover,
there should be some similarity between the patterns observed for true edges, as compared to
false edges. Figure 4.4 gives an illustration in the case of a graph with community structure.
When there is an edge between i and j (Figure 4.4a), i and j are involved in a same group
of nodes that is densely connected (community). Conversely, when there is no edge between
them (Figure 4.4b), i and j belong to separate groups of densely connected nodes that share
few links between them.
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i j

(a) True edge

i j

(b) False edge

Figure 4.4: Example of K-hop (K=2) neighborhood of (i, j) (in color), for when (a) i and j
are connected and (b) i and j are not connected.

Link prediction methods output a prediction P̂i,j ∈ R, indicating the relevance of an edge
between i and j. In general, the prediction can be written as

P̂i,j(Z) = h(Wi,j ; {(Wu,v, Au,v), (u, v) ∈ Dtrain}), (4.3)

with h some real-valued measurable function and Dtrain a certain subset of D. In (4.3), the
set {(Wu,v, Au,v), (u, v) ∈ Dtrain} represents a set of learning examples, where Wu,v is an em-
bedding for the pair (u, v) and Au,v is its label. For instance, in the case of the common
neighbors (CN) heuristic, the number of common neighbors is given by the scalar product
ATi,•Aj,•. In that case, the prediction is P̂i,j = h(Wi,j) = ATi,•Aj,•. Alternatively, when con-
sidering supervised approaches such as binary classification (Zhang and Chen, 2018; Bleakley
et al., 2007), maximum likelihood (Kipf and Welling, 2016b; Tabouy et al., 2020) or matrix
completion (Li et al., 2023; Gaucher et al., 2021), the link prediction function can be written
as the minimizer of an empirical risk (ERM):

P̂i,j(Z) = ĥ(Wi,j), with ĥ ∈

argmin
h∈F

∑
(i,j)∈Dtrain⊂D

L[Pi,j , Ai,j ]

 , Pi,j = h(Wi,j) (4.4)

with L : [0, 1]×{0, 1} → R a loss function and F a function class. In (4.4), Pi,j is an estimate
of the probability that there is an edge between i and j, and the error term L[Pi,j , Ai,j ]
quantifies the difference between the prediction Pi,j and the true Ai,j . The ERM formulation
for the afore-mentioned supervised approaches can be justified as follows:

• Binary classification approaches (Zhang and Chen, 2018; Bleakley et al., 2007): In
that case the ERM formulation (4.4) is obvious. For instance, for SEAL (Zhang and
Chen, 2018), Pi,j is given by a GNN that takes as input the K-hop subgraph around
(i, j), excluding the edge between (i, j) if there is one observed, and augmented with
node features that describe the distance of each node in the subgraph to i and to j.
The parameters of the GNN are fitted by minimizing the cross-entropy loss over a set
Dtrain ⊂ D of observed true/false edges. In practice, Dtrain is subsampled from D in
order to have a 50%− 50% partitioning between true and false edges.

• Maximum likelihood approaches (Kipf and Welling, 2016b; Tabouy et al., 2020): Max-
imum likelihood approaches aim to optimize a lower bound on the likelihood (ELBO).
This lower bound is an expectation and therefore, using Monte-Carlo approximation,
we end up with a function of the form (4.4). For instance, for VGAE (Kipf and Welling,
2016b), Pi,j is given by the scalar product HT

i Hj where Hu is a node embedding for
node u, the embedding matrix H ∈ Rn×n being the output of a GNN. It follows that
Hu = h(Au,•, A

2
u,•, . . . , A

L
u,•) for some function h, with L the number of layers of the

GNN.
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Set of edges
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Split

Learn score

Figure 4.5: Sketch of the procedure proposed in this work.

• Matrix completion (Li et al., 2023; Gaucher et al., 2021): e.g., for Li et al. (2023), one can
rewrite the estimated probability matrix P̂ as P̂ = argminP {

∑
(u,v)∈D(Au,v−Pu,v)2, P =

ATinΘAin, rank(Θ) ≤ r} where Ain is the sub-matrix of A consisting only of the observed
entries. Hence, in that case, P̂i,j is of the form (4.4) with Pi,j = h(Ai,•, Aj,•) for some
function h.

Construction of the scoring function g Given a link prediction algorithm P̂ , the scoring
function g is learned by training P̂ on a subset Dtrain of D\Dcal. Removing Dcal from the
possible set of learning examples allows to enforce that the edge examples (i, j) in the reference
set Dcal are treated as unreported information (i.e., the same as Dtest) by the algorithm, which
is necessary to fabricate good reference scores and avoid biasing the comparison of the test
scores to the reference scores in the CK Algorithm. Otherwise, the scoring g may use the
knowledge that the pairs in the reference set are false edges and produce an overfitted score
for those. In summary, the scoring function g is thus of the form

g((i, j), Z) = h(Wi,j ; {(Wu,v, Au,v), (u, v) ∈ D\Dcal}) (4.5)

with h some real-valued measurable function.
We outline a key property of our method. Many LP algorithms (e.g. Zhang and Chen,

2018) are not trained on the entire set of observed edges D but on a subset Dtrain ⊂ D with a
50-50% distribution of true and false edges. As most real-world networks are sparse, typically
all observed edges D1 are used for training and a randomly chosen subset of false edges in D0

of the same size as D1. Then the reference set Dcal is naturally chosen among the false edges
in D0 that are not used in Dtrain for learning the predictor. Consequently, in practice choosing
a reference set Dcal does not diminish the amount of data Dtrain on which the predictor is
learned.
Remark 15. The sample size of the reference set Dcal must be large enough to ensure a good
power, as pointed out in previous work using conformal p-values in the novelty detection con-
text (Mary and Roquain, 2022; Marandon et al., 2022; Yang et al., 2021). In particular, Mary
and Roquain (2022) give a power result under the condition that | Dcal | & m/(kα), where k is
the number of "detectable" novelties. Consequently, our recommendation is to choose | Dcal |
of the order of m/α; this choice works reasonably well in our numerical experiments.

4.3 Numerical experiments

In this section, we study the performance of our method both on simulated data (Section 4.3.1)
and real data (Section 4.3.2). We consider two choices for the scoring function g, SEAL (Zhang
and Chen, 2018) (see Appendix C.1 for details) and CN, yielding the procedures CN-conf
and SEAL-conf. We compare the performance of our method to two "naive" procedures for
FDR control (here we assume that g ∈ [0, 1], otherwise, scores are normalized into [0, 1] by
standardizing the values and applying the sigmoid function):
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Figure 4.6: Illustration of the SBM model considered in Section 4.3.1. Nodes represent classes,
edges indicate connection patterns between classes.

• Naive thresholding (NT): We select inR(Z) the edges (i, j) ∈ Dtest for which g((i, j), Z) ≥
1 − α. If the probabilities g((i, j), Z) are poorly estimated, this procedure is expected
to not control the FDR at level α in general.

• Cross-validated thresholding (CVT): We set aside a validation sampleDval ⊂ D and learn
g on the remaining data, then compute from a range of values T ⊂ [0, 1] the maximum
threshold t̂ ∈ T for which the FDP on Dval is below α. Then we select for R(Z) the
edges (i, j) ∈ Dtest for which g((i, j), Z) ≥ t̂. To start with, this procedure is not very
convenient because it needs to be fed a range of cut-off values T , whose specification is
not obvious. Moreover, it is expected to perform well only if the validation set is large
enough. For small n, this is a clear disadvantage compared to our method: ours requires
only false edge examples, which are always largely available due to real-world networks
being sparse, and the full set of observed true edges is utilized for training. Here, we
set | Dval | to 20%|E| with a 50%-50% distribution between true and false edges, and
T = {(1− α)/k, k ∈ {1, 5, 10, 20, 50, 100}}.

In each experiment, the FDR and TDR of the different methods are evaluated by using
100 Monte-Carlo replications.

4.3.1 Simulated data

In this section, we evaluate our method on a simulated dataset. We generate a graph A∗ of
n = 100 nodes from a Stochastic Block Model (SBM) with 5 classes, mixture proportions
π = (1/5, . . . 1/5), and connectivity matrix γ given by

γ =


ε p p p ε
p ε p ε ε
p p p ε ε
p ε ε ε ε
ε ε ε ε p

 ,

with p = 0.5 and ε = 0.05. The expected number of edges in this setting is ≈ 1150. In
this model, the graph displays both community structure and hubs, see Figure 4.6 for an
illustration.

We construct training samples D(Z) and test samples Dtest(Z) by subsampling at ran-
dom the observed edges and the observed non-existent edges from E and from (V × V )\E
respectively, such that the proportion of missing edges in A is equal to πmiss = 10% and
|H0|/|H1| = 50%. We use | Dcal | = 5000 for our method. The FDR and TDR are displayed
in Figure 4.7a for the choice of CN for the scoring and in Figure 4.7b for SEAL.

When using CN for link prediction, the connection probabilities are not well estimated.
This is well-expected since A∗ contains nodes that display low probability of connection within
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(a) g = CN (b) g = SEAL

Figure 4.7: FDR (left panel) and TDR (right panel) as a function of the nominal level α. Here
πmiss = 10%, |H0|/|H1| = 50%, and | Dcal | = 5000. In (a) for the scoring function we use
Common Neighbors and in (b) we use SEAL (Zhang and Chen, 2018). The bands indicate
the standard deviation.

Table 4.1: Summary of the datasets used. In case covariates are available, the dimension is
indicated in parentheses.

Cora Yeast C. ele T. Albus Florida Food Web
Number of nodes 2708 2375 297 1056 81
Number of edges 5429 11693 2148 1433 442
Covariates yes (1433) no no no no
Directed no no no yes yes

their class while being well connected with other classes. In other words, for many pairs of
such nodes, it occurs that they share neighbors despite not being connected, so CN is not
a good predictor in that case. This leads to NT failing to control the FDR in Figure 4.7a.
CVT also fails to control the FDR and it is only our procedure that controls the FDR, with
a FDR close to α across all level values. When SEAL is used, we observe again in Figure
4.7b that it occurs that the FDR of CVT exceeds α, while NT can be over-conservative. Our
procedure controls the FDR. Moreover, it dominates in terms of power, by having a TDR
higher than the others under the FDR constraint. In particular, even when all procedures
have an FDR that is close to α, ours displays the most power. Indeed, our method uses an
adaptive threshold, unlike NT, and leverages all true edge examples when learning g, unlike
CVT.

4.3.2 Real data

In this section, we evaluate our method on real datasets, including benchmarks from Kipf and
Welling (2016b); Zhang and Chen (2018); Zhao et al. (2017). A summary of the considered
datasets is given in Table 4.1 (see Appendix C.1 for more details).

We construct training samples D(Z) and test samples Dtest(Z) as in Section 4.3.1 and set
| Dcal | = 5000, except for the Florida Food web dataset where we use | Dcal | = 1000 because
of its smaller size. The FDR and TDR are displayed in Table 4.2 for α = 0.1. The results
are qualitatively the same as in Section 4.3.1: it occurs that the FDR of the baselines exceed
the nominal level while our procedure (using either CN or SEAL for the scoring function)
consistently controls the FDR at level α with a substantial power gain.
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Table 4.2: Link prediction performance on different data sets: FDR (top) and TDR (bottom).
The nominal level is α = 0.1. We report the mean value and the standard deviation (in
parentheses) over 100 runs. The best performance for each dataset is printed in bold. FDR
exceedances are underlined.

Cora Yeast C. ele T. Albus Florida Food Web
FDR

CN-conf 0.019 (0.008) 0.026 (0.005) 0.088 (0.034) 0.030 (0.099) 0.020 (0.140)
CN-NT 0.001 (0.005) 0.000 (0.001) 0.027 (0.043) 0.705 (0.245) 0.500 (0.000)
CN-CVT 0.001 (0.004) 0.001 (0.002) 0.042 (0.050) 0.000 (0.000) 0.000 (0.000)
SEAL-conf 0.096 (0.017) 0.098 (0.011) 0.102 (0.025) 0.096 (0.038) 0.097 (0.048)
SEAL-NT 0.050 (0.009) 0.008 (0.003) 0.050 (0.023) 0.037 (0.029) 0.061 (0.071)
SEAL-CVT 0.064 (0.007) 0.017 (0.006) 0.064 (0.030) 0.053 (0.045) 0.058 (0.062)

TDR
CN-conf 0.476 (0.022) 0.794 (0.012) 0.339 (0.099) 0.000 (0.000) 0.000 (0.000)
CN-NT 0.062 (0.020) 0.060 (0.004) 0.056 (0.013) 0.590 (0.490) 1.000 (0.000)
CN-CVT 0.026 (0.051) 0.048 (0.073) 0.093 (0.066) 0.000 (0.000) 0.000 (0.000)
SEAL-conf 0.757 (0.041) 0.956 (0.010) 0.603 (0.031) 0.495 (0.057) 0.783 (0.088)
SEAL-NT 0.601 (0.033) 0.792 (0.056) 0.314 (0.151) 0.302 (0.051) 0.359 (0.169)
SEAL-CVT 0.620 (0.036) 0.827 (0.030) 0.300 (0.177) 0.249 (0.114) 0.341 (0.223)

4.4 Discussion

We have presented a new method that calibrates the output of a given link prediction technique
for FDR control, using recent ideas from the conformal inference literature. The approach
is validated using both simulated data and real data and its interest is demonstrated by its
superior performance compared to the state of the art.

Let us first mention that if the user wishes to control the probability of making more than
a certain number of false positives (Lehmann and Romano, 2005; Janson and Su, 2016), the
method can easily be extended in that sense.

In this work, it is assumed that the missing data pattern is independent from the true
complete graph and moreover, that the entries of the sampling matrix are i.i.d. It would be
interesting to investigate the extension of the method in the general case, where the entries
of the sampling are not i.i.d., such as in egocentric sampling (Li et al., 2023).

It is outside of the scope of this work to prove theoretical guarantees, because the setup is
markedly different from previous work and the dependence in the data makes the analysis very
complex. In particular, we expect that the exchangeability condition on the scores (Marandon
et al. (2022)) cannot be verified here outside of trivial cases. Finding a suitable relaxation of
this condition for the setup considered here represents a promising avenue for future work.
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Chapter 5

Discussion

Conformal FDR control In conformal inference, a key assumption is that the data is
exchangeable. A first research direction is moving beyond this setting, in the following two
ways. First, by considering the case of structured data. In this line, Chapter 4 proposed
a transposition of the conformal p-value procedure to a link prediction setup, where the
graph structure induces non-exchangeability. Due to this, the work therein demonstrated
FDR control empirically but it lacked theoretical guarantees; it would be desirable to fill the
gap. Secondly, distribution shift (which refers to a general phenomenon in learning when
a certain data distribution changes over time) is an important practical concern, which has
been recently investigated in the context of conformal prediction (Tibshirani et al., 2019;
Podkopaev and Ramdas, 2021; Barber et al., 2022). In the context of Chapter 2, distribution
shift may occur in the sense that the distribution of the nulls between the training sample
and the test sample may be slightly different. In particular, if the null comes from a mixture
of distributions, it could be that some of the component distributions are in the test sample
and not in the nominal sample, in which case they will be wrongly declared as anomalies.
Studying this issue is an interesting question for future investigations.

Next, we have only considered a subpart of selective inference in this thesis, namely how
to select a set of items such as to get a pre-specified FDR guarantee (multiple testing). In
practical applications, users may manipulate the data, e.g. to follow common practice in the
field and/or budget constraints. In that case, the inverse problem arises, of identifying bounds
on the FDR in the selected set (Goeman and Solari, 2011; Blanchard et al., 2021). Thus,
another research direction concerns the problem of designing FDP bounds for the conformal
p-values of Chapter 2, for instance by adapting the work of Katsevich and Ramdas (2020).
The main challenge will be to deal with the specific dependence structure that is inherent to
the p-value process.

Finally, a future application of the AdaDetect procedure introduced in Chapter 2 could
be the task of anomaly detection on graph data (Ma et al., 2021b). This task takes two main
forms: graph-level anomaly detection, which is the problem of detecting anomalous graphs in a
set of graphs, and node-level anomaly detection, which is concerned with detecting anomalous
nodes in a single graph. AdaDetect would allow to leverage state-of-the-art graph or node
classification techniques (such as Shervashidze et al. (2011); Kipf and Welling (2016a); Xu
et al. (2018), see also Wu et al. (2020) and Errica et al. (2020) for reviews) to perform these
tasks with a FDR control guarantee.

Error rate control in unsupervised learning Chapter 3 is only a first step in error
rate control in unsupervised learning, which remains largely an unsolved question. To start
with, the FMR criterion is constraining since it requires the number of classes to be known.
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As a consequence, it cannot compare two clusterings with a different number of clusters.
Moreover, from a partitioning point of view, it could be seen as more relevant to measure
the error in terms of pairwise clusters assignments, that is, to penalize pairs of elements that
are incorrectly labeled as belonging or not to the same cluster. Thus, possible developments
include the extension to other criteria relevant for clustering (Grün, 2019), such as the Rand
Index (Rand, 1971).

In addition, our approach is a parametric one, where it is assumed that the specification
of distribution family for the components distributions is correct; otherwise, there are no
guarantees. It would be desirable to take into account model mis-specification in future
research.

Lastly, even in a setup where the model specifications are correct, a main limitation of the
procedures proposed here is that they rely on the quality of the parameter estimates. This
raises the open question of whether finite-sample FMR control can be achieved in this context,
and more generally, what are the limits for this problem. In this line, we note the work of
Roquain and Verzelen (2022) that shows, in the context of unsupervised novelty detection
(which is a framework sharing similarities with the one considered here), that there does not
exists an FDR-controlling procedure that is asymptotically power-optimal if the number of
false nulls is too large. Alternatively, the extension to a semi-supervised learning setting where
a few labeled samples are available, which is likely to considerably improve the inference, is
an interesting avenue.
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Appendix A

Supplementary material of Chapter 2

A.1 Proofs and results for Section 3

A.1.1 Proof of Lemma 2

Let

U = (U1, . . . , Un+m0) = (Y1, . . . , Yn, Xi, i ∈ H0);

V = (V1, . . . , Vm1) = (Xi, i ∈ H1);

W = h(U, V ) = ((Z1, . . . , Zk), {Zk+1, . . . , Zn+m});
Si = g(Ui,W ), i ∈ {1, . . . , n+m0},

for given measurable function g that satisfies the condition (2.8). Then, for any permutation
π of {1, . . . , n+m0} that do not permute {1, . . . , k}, Assumption 1 implies that U |V ∼ Uπ |V
and thus (U, V ) ∼ (Uπ, V ). This entails (U, V,W ) ∼ (Uπ, V, h(Uπ, V )) = (Uπ, V, h(U, V )) =
(Uπ, V,W ). Hence,

(g(U1,W ), . . . , g(Un+m0 ,W )) | V,W ∼ (g(Uπ(1),W ), . . . , g(Uπ(n+m0),W )) | V,W

Since π(i) = i for all i ∈ {1, . . . , k}, we obtain that

(g(Uk+1,W ), . . . , g(Un+m0 ,W )) | (g(V1,W ), . . . , g(Vm1 ,W ))

∼ (g(Uπ(k+1),W ), . . . , g(Uπ(n+m0),W )) | (g(V1,W ), . . . , g(Vm1 ,W )),

which completes the proof.

A.1.2 Key properties

In this section, we present key properties of empirical p-values derived from exchangeable
scores. The first result provides a representation that characterizes the dependence structure
of the empirical p-values that is a key step for the proof of FDR control. It generalizes the
representation by Bates et al. (2023) for independent scores. The proof is deferred to Section
A.1.7.

Theorem 18. Consider any family of scores (Sk+1, . . . , Sn+m) that satisfy Assumptions 2 and 3
and the corresponding family of empirical p-values (2.10). For any i ∈ H0, define

Wi =
(
{Sk+1, . . . , Sn, Sn+i}, (Sn+j , j ∈ H0, j 6= i), (Sn+j , j ∈ H1)

)
(A.1)
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and, for any j ∈ {1, . . . ,m}\{i},

Ci,j = (`+ 1)−1
∑

s∈{Sk+1,...,Sn,Sn+i}

1 s > Sn+j . (A.2)

Further, let S(1) > · · · > S(`+1) be the order statistics of {Sk+1, . . . , Sn, Sn+i}. Then the
following holds:

(i) The sequences (Sn+j)j∈{1,...,m}\{i} and (Ci,j)j∈{1,...,m}\{i} are both measurable with re-
spect to Wi.

(ii) For all j ∈ {1, . . . ,m}\{i},

pj = Ci,j + 1Sn+i ≤ Sn+j/(`+ 1) = Ci,j + 1S((`+1)pi) ≤ Sn+j/(`+ 1), (A.3)

which is a nondecreasing function of pi for any given Wi.

(iii) pi is independent of Wi.

(iv) (`+ 1)pi is uniform distributed on {1, . . . , `+ 1}.

The second result characterizes the distribution of other null p-values conditional on a
given null p-value as well as the ordered scores. We defer the proof to Section A.1.8.

Theorem 19. In the setting of Theorem 18, the distribution of the family (pj , j ∈ H0)
satisfies

(pj , j ∈ H0\{i}) | pi = 1/(`+ 1), {S(1), . . . S(`+1)}
∼ (Ci,j + 1S(1) ≤ Sn+j/(`+ 1), j ∈ H0\{i}) | {S(1), . . . S(`+1)}
∼ (p′j , j ∈ H0\{i}) | {U(1), . . . U(`+1)}

for which U(1) > · · · > U(`+1) denote the order statistics of `+1 i.i.d. U(0, 1) random variables
U1, . . . , U`+1, and where p′j, j ∈ H0\{i}, are conditionally on {U(1), . . . U(`+1)}, i.i.d. with
common distribution F (x) = (1− U(bx(`+1)c+1))1 1/(`+ 1) ≤ x < 1 + 1x ≥ 1, x ∈ R.

Noting that U(b) follows a beta distribution, Theorem 19 can be used to compute the
distribution of (pj , j ∈ H0\{i}) conditionally on pi = 1/(`+ 1) by a simple integration. This
is used in the proof of FDR control for π0-adaptive AdaDetect (Theorem 6 and Corollary 7).

A.1.3 Proof of Theorem 3

By Theorem 18 (iii), pi is independent ofWi. Hence, by integration, it is sufficient to establish
that for any nondecreasing measurable set D ⊂ [0, 1]m−1, the function

r ∈ {1, . . . , `+ 1} 7→ P((pj , j 6= i) ∈ D | pi = r/(`+ 1),Wi) (A.4)

is nondecreasing. By Theorem 18 (ii), we have that (pj , j 6= i) is a deterministic function of
pi and Wi, which is nondecreasing in pi. This gives (A.4) and proves Theorem 3.
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A.1.4 Proof of Theorem 4

This proof combines Theorem 18 with Lemma 25, a property of the BH algorithm that slightly
extends the classical result.

Recall that the AdaDetect procedure is the BH algorithm applied to the empirical p-values
given by (2.10). We apply Lemma 25 with the empirical p-values (pj , 1 ≤ j ≤ m) being the
empirical p-values, any i ∈ H0, p′i = 1/(` + 1), and p′j = Ci,j defined in (A.2) for j 6= i.
By definition, the condition (A.23) holds. Moreover, if pj > pi, we have Sn+i > Sn+j in
which case 1Sn+i ≤ Sn+j = 0, implying that p′j = pj . Letting k̂ = k̂(pi, 1 ≤ i ≤ m) and
k̂′i = 1 ∨ k̂(p′i, 1 ≤ i ≤ m), Lemma 25 entails that

{pi ≤ αk̂/m} = {pi ≤ αk̂′i/m} ⊂ {k̂ = k̂′i}.

Let Wi be defined in (A.1). Then

FDR(AdaDetectα) =
∑
i∈H0

E

[
1 pi ≤ αk̂/m

k̂ ∨ 1

]

=
∑
i∈H0

E

[
1 pi ≤ αk̂′i/m

k̂′i

]

=
∑
i∈H0

E

[
E

[
1 pi ≤ αk̂′i/m

k̂′i

∣∣Wi

]]

=
∑
i∈H0

E

P
(

(`+ 1)pi ≤ α(`+ 1)k̂′i/m
∣∣Wi

)
k̂′i

 ,
where the last line is due to that k̂′i is measurable with respect to Wi, which is implied by
Theorem 18 (i). Then Theorem 18 (iii) and (iv) implies

FDR(AdaDetectα) =
∑
i∈H0

E

(
bα(`+ 1)k̂′i/mc

(`+ 1)k̂′i

)
.

The result is then proved by letting Ki = k̂′i.

A.1.5 Proof of Theorem 6

Letting k̂ = k̂(pi, 1 ≤ i ≤ m) the number of rejections of AdaDetectαm/G(p), we have

FDR(AdaDetectαm/G(p)) =
∑
i∈H0

E

[
1 pi ≤ αk̂(p)/G(p)

k̂(p) ∨ 1

]

=
∑
i∈H0

E

[
1 pi ≤ α(k̂(p) ∨ 1)/G(p)

k̂(p) ∨ 1

]
By Theorem 18 (ii), we can write (pj , j 6= i) as Ψ1(Wi, pi) for some deterministic function Ψ1

that is nondecreasing in pi where Wi is defined in (A.1). As a result, we can write k̂(p) ∨ 1
(resp. 1/G(p)) as Ψ2(Wi, pi) (resp. Ψ3(Wi, pi)) for some deterministic functions Ψ2, Ψ3 that
are nonincreasing in pi since k̂ and 1/G are both coordinate-wise nonincreasing. Let

c∗(Wi) = maxN (Wi)

N (Wi) = {j/(`+ 1) : 1 ≤ j ≤ `+ 1, j/(`+ 1) ≤ αΨ2(Wi, j/(`+ 1))Ψ3(Wi, j/(`+ 1))}.
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Above, we define c∗(Wi) = 1/(`+ 1) if N (Wi) = ∅. By definition, N (Wi) is thus the set of all
values that the empirical p-value pi can take if it is rejected and c∗(Wi) is the largest possible
value. Thus, {pi ≤ αk̂(p)/G(p)} = {pi ∈ N (Wi)} = {pi ≤ c∗(Wi),N (Wi) 6= ∅}. This entails

FDR(AdaDetectαm/G(p)) ≤
∑
i∈H0

E

[
E

[
1 pi ≤ c∗(Wi)

k̂(p) ∨ 1
1N (Wi) 6= ∅ |Wi

]]

≤
∑
i∈H0

E
[
E
[
1 pi ≤ c∗(Wi)

Ψ2(Wi, c∗(Wi))
1N (Wi) 6= ∅ |Wi

]]
=
∑
i∈H0

E
[
P [pi ≤ c∗(Wi) |Wi]

Ψ2(Wi, c∗(Wi))
1N (Wi) 6= ∅

]
≤
∑
i∈H0

E
[

c∗(Wi)

Ψ2(Wi, c∗(Wi))
1N (Wi) 6= ∅

]
,

where the last two lines use Theorem 18 (iii) and (iv), respectively. By definition of c∗(Wi),
we obtain

FDR(AdaDetectαm/G(p)) ≤ α
∑
i∈H0

E [Ψ3(Wi, c
∗(Wi))]

≤ α
∑
i∈H0

E [Ψ3(Wi, 1/(`+ 1))]

≤ α
∑
i∈H0

E

(
1

G(q′j , 1 ≤ j ≤ m)

)
,

where q′i = 1/(`+ 1), q′j = 0 for j ∈ H1 and q′j = Ci,j + 1S(1) ≤ Sn+j/(`+ 1) for j ∈ H0\{i}.
The proof is completed by applying Theorem 19.

A.1.6 Proof of Corollary 7

By using (2.14) in Theorem 6, the result is established if we prove in each case

∑
i∈H0

E

(
1

G(p′j , 1 ≤ j ≤ m)

)
≤ 1, (A.5)

with p′ = (p′j , 1 ≤ j ≤ m) ∼ Di defined in (2.13).

Proof for the Storey estimator In this case,

G(p′) =
1 +

∑m
j=1 1 p

′
j ≥ λ

1− λ
=

1 +
∑

j∈H0\{i} 1 p
′
j ≥ λ

1− λ
,

with λ = K/(`+ 1) for K ∈ {2, . . . , `}. Recall that, conditionally on {U(1), . . . , U(`+1)}, (p′j :
j ∈ H0\{i}) are i.i.d. with the c.d.f. F (x) = (1−U(bx(`+1)c+1))1 1/(`+ 1) ≤ x < 1 +1x ≥ 1,
x ∈ R. Therefore, we have for j ∈ H0\{i},

P(p′j ≥ λ | {U(1), . . . , U(`+1)}) = P(p′j ≥ K/(`+ 1) | {U(1), . . . , U(`+1)})
= P(p′j > (K − 1)/(`+ 1) | {U(1), . . . , U(`+1)})
= 1− (1− U(K)) = U(K).
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Thus, it is enough to prove

E
(

1

1 + B(m0 − 1, U(K))

)
≤ 1

m0(1− λ)
, (A.6)

where B(m0−1, U(K)) denotes a Binomial random variable with parameters m0−1 and U(K).
By Lemma 1 in Benjamini et al. (2006),

E
(

1

1 + B(m0 − 1, U(K))
| {U(1), . . . , U(`+1)}

)
≤ 1

m0U(K)
.

Hence, the LHS of (A.6) is bounded by E
(

1
m0U(K)

)
. It is well-known that U(K) ∼ β(`+ 2−

K,K) (note that U(1), . . . , U(`+1) is a decreasing sequence) and the expectation of the inverse
of a Beta random variable with scale parameters a and b is (a+ b− 1)/(a− 1). Hence,

E
(

1

m0U(K)

)
=

`+ 1

m0(`+ 1−K)
=

1

m0(1− λ)
.

Proof for the Quantile estimator In that case,

G(p′) =
m− k0 + 1

1− p′(k0)

,

where p′(k0) denotes the k0-smallest element of (p′j , 1 ≤ j ≤ m). If k0 ≤ m − m0 + 1, we
have G(p′) ≥ m0 and (A.5) holds. Thus, we assume k0 ≥ m − m0 + 2, in which case
k0 +m0 −m− 1 ≥ 1. Let j0 = k0 +m0 −m− 1 ∈ [1,m0]. For the rest of the proof, we will
fix i and write E[·] for Ep′∼Di [·] in short. Then

E

(
1

G(p′j , 1 ≤ j ≤ m)

)
= E

(
1− p′(j0:H0\{i})

m− k0 + 1

)
,

where p′(j0:H0\{i}) denotes the j0-smallest element of (p′j , j ∈ H0\{i}). To prove (A.5), it is
left to prove

E
(

1− p′(j0:H0\{i})

)
≤ m− k0 + 1

m0
⇐⇒ E(p′(j0:H0\{i})) ≥ j0/m0. (A.7)

By definition of Di,

E(p′(j0:H0\{i}) | {U(1), . . . , U(`+1)}) =

∫ ∞
0
P(p′(j0:H0\{i}) > x | {U(1), . . . , U(`+1)})dx

=

∫ ∞
0
P

 ∑
j∈H0\{i}

1 p′j ≤ x < j0 | {U(1), . . . , U(`+1)}

 dx

=

∫ ∞
0
P (B(m0 − 1, F (x)) < j0) dx,

where B(m0−1, F (x)) denotes a Binomial random variable with parameters m0−1 and F (x),
where F (x) = (1−U(bx(`+1)c+1))1 1/(`+ 1) ≤ x < 1+1x ≥ 1, x ∈ R. Hence, the last display
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is equal to

(`+ 1)−1 +

`+1∑
b=2

∫ 1

0
1 bx(`+ 1)c+ 1 = bP

(
B(m0 − 1, 1− U(b)) < j0

)
dx

= (`+ 1)−1 + (`+ 1)−1
`+1∑
b=2

P
(
B(m0 − 1, 1− U(b)) < j0

)
≥ (`+ 1)−1

`+1∑
b=1

P
(
B(m0 − 1, 1− U(b)) < j0

)
.

Hence,

E(p′(j0:H0\{i})) ≥
j0−1∑
k=0

(
m0 − 1

k

)
(`+ 1)−1

`+1∑
b=1

E[(1− U(b))
kUm0−1−k

(b) ].

Since U(b) ∼ β(`+ 2− b, b) (recall that U(1), . . . , U(`+1) being a decreasing sequence), we have
1− U(b) ∼ β(b, `+ 2− b). Hence,

E[(1− U(b))
kUm0−1−k

(b) ] =
(`+ 1)!

(b− 1)!(`+ 1− b)!

∫
R
xk(1− x)m0−1−kxb−1(1− x)`+2−b−1dx

=
(`+ 1)!

(b− 1)!(`+ 1− b)!
(k + b− 1)!(m0 + `− (k + b))!

(m0 + `)!
,

where the last line uses the fact that the integrand is proportional to the density of β(k +
b,m0 − k + `+ 1− b). As a result, we get(

m0 − 1

k

)
(`+ 1)−1

`+1∑
b=1

E[(1− U(b))
kUm0−1−k

(b) ]

= m−1
0

(
m0 + `

m0

)−1 `+1∑
b=1

(
k + b− 1

k

)(
m0 − k − 1 + `− b+ 1

m0 − k − 1

)

= m−1
0

(
m0 + `

m0

)−1 ∑̀
b′=0

(
k + `− b′

k

)(
m0 − k − 1 + b′

m0 − k − 1

)
.

By applying Lemma 21 with j = m0 − k − 1, u = k, v = ` (hence j + u = m0 − 1 and
j+u+v = `+m0−1), the RHS is equal to 1/m0. This proves (A.7) and hence the theorem..

A.1.7 Proof of Theorem 18

By Assumption 3, we can assume (Sk+1, . . . , Sn+m) has no ties throughout the proof. The
result (i) is obvious. For (ii), note that (` + 1)pi = 1 +

∑
s∈{Sk+1,...,Sn} 1 s > Sn+i is the

rank of Sn+i within the set {Sk+1, . . . , Sn, Sn+i}. Hence, S((`+1)pi) = Sn+i and, for all j ∈
{1, . . . ,m}\{i},

pj = (`+ 1)−1

1 +
∑

s∈{Sk+1,...,Sn,Sn+i}
s 6=S((`+1)pi)

1 s > Sn+j


= (`+ 1)−1

 ∑
s∈{Sk+1,...,Sn,Sn+i}

1 s > Sn+j + 1S((`+1)pi) ≤ Sn+j

 .
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This proves (ii). By Assumption 2, for any permutation σ of {k + 1, . . . , n, n+ i}, we have

((Sk+1, . . . , Sn, Sn+i),Wi) ∼ ((Sσ(k+1), . . . , Sσ(n), Sσ(n+i)),W
σ
i ) = ((Sσ(k+1), . . . , Sσ(n), Sσ(n+i)),Wi),

where

W σ
i =

(
{Sσ(k+1), . . . , Sσ(n), Sσ(n+i)}, (Sn+j , j ∈ H0, j 6= i), (Sn+j , j ∈ H1)

)
= Wi.

This implies that (Sk+1, . . . , Sn, Sn+i) is exchangeable conditionally onWi. Now letR1, . . . , R`+1

be the ranks of (Sk+1, . . . , Sn, Sn+i) within the same set. Then Sj+k = S(Rj) (j = 1, . . . , `)
and Sn+i = S(R`+1), where S(1) > S(2) > · · · > S(`+1) are the order statistics. Since
(Sk+1, . . . , Sn, Sn+i) are exchangeable conditionally on Wi and almost surely mutually dis-
tinct, we have that

(R1, . . . , R`+1) |= Wi, and (R1, . . . , R`+1) ∼ Unif(S({1, . . . , n− k + 1})),

where S({1, . . . , ` + 1}) denotes the set of permutations of {1, . . . , ` + 1}. The results (iii)
and (iv) then follow from the fact that pi = R`+1/(`+ 1).

A.1.8 Proof of Theorem 19

By (A.3), pj is a function of pi and Wi for all j ∈ H0\{i}. Replacing pi by 1/(`+ 1) in that
expression, we get

pj = (`+ 1)−1
∑

s∈{Sk+1,...,Sn,Sn+i}

1 s > Sn+j + 1S(1) ≤ Sn+j/(`+ 1)

= (`+ 1)−1
`+1∑
q=1

1S(q) > Sn+j + 1S(1) ≤ Sn+j/(`+ 1)

= (`+ 1)−1

1 +

`+1∑
q=2

1S(q) > Sn+j

 .

By Lemma 23, we have

(pj , j ∈ H0\{i}) | pi = 1/(`+ 1), {S(1), . . . S(`+1)}
∼ (p′j , j ∈ H0\{i}) | p′i = 1/(`+ 1), {U(1), . . . U(`+1)}
∼ (p′j , j ∈ H0\{i}) | {U(1), . . . U(`+1)}

where p′j =
1+

∑`+1
q=2 1U(q)>Vj
`+1 , U1, . . . , U`+1, Vj(j ∈ H0) are i.i.d. from U(0, 1), and U(1) > · · · >

U(`+1) denote the order statistics of U1, . . . , U`+1. As a result, conditional on {U(1), . . . U(`+1)},
(p′j , j ∈ H0\{i}) are i.i.d. with a c.d.f.

F (x) = P(p′j ≤ x | U(1), . . . , U(`+1))

= P

`+1∑
q=2

1U(q) > Vj ≤ bx(`+ 1)c − 1 | U(1), . . . , U(`+1)


= P(U(bx(`+1)c+1) ≤ Vj) = 1− U(bx(`+1)c+1).

because
∑`+1

q=2 1U(q) > v ≥ bx(` + 1)c is equivalent to U(bx(`+1)c+1) > v. This completes the
proof.
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A.2 Proofs for Section 4

A.2.1 Proof of Theorem 8

Let T (x) = 1 − r(x) = π0f0(x)/f(x) and t(α) = 1 − c(α) ∈ (0, 1). Then R = {i :
T (Xi) ≤ t(α)}. Consider any procedure R′ = {i : T ′(Xi) ≤ t′} with mFDR(R′) ≤ α.
Since mFDR(R) = α, we have both

0 =

∫
1T (x) ≤ t(α)(T (x)− α)f(x)dν(x)

0 ≥
∫
1T ′(x) ≤ t′(T (x)− α)f(x)dν(x).

The first equality implies t(α) ≥ α. If t(α) = α, then T (X) = α almost surely under f . This
implies that all hypotheses are rejected with probability 1 and hence R is never less powerful
than R′.

Assume t(α) > α. Then the two equalities imply∫
(1T (x) ≤ t(α)− 1T ′(x) ≤ t′)(T (x)− α)f(x)dν(x) ≥ 0. (A.8)

Since T (x) ≤ t(α) is equivalent to T (x)−α
1−T (x) ≤

t(α)−α
1−t(α) (even when T (x) = 1), we obtain

t(α)− α
1− t(α)

∫
(1T (x) ≤ t(α)− 1T ′(x) ≤ t′)(1− T (x))f(x)dν(x) ≥ 0.

Since t(α) > α, ∫
(1T (x) ≤ t(α)− 1T ′(x) ≤ t′)f̄1(x)dν(x) ≥ 0. (A.9)

A.2.2 Proof of Lemma 9

For case (i), (2.22) can be expressed as

2Jλ(g) =

∫ {
k(1 + g(x))+ + λ(`+m)(1− g(x))+fγ(x)/f0(x)

}
f0(x)dν(x).

For any u, v > 0 and a ∈ R,

u(1+a)+ +v(1−a)+ = v(1−a)1 a < −1+(u+v+a(u−v))1−1 ≤ a ≤ 1+u(1+a)1 a > 1.

As a function of a, it is continuous and piecewise linear with two turning points (−1, 2v)
and (1, 2u). When u 6= v, the unique minimum is attained at a = sign(v/u − 1). The proof
is then completed by setting u = k and v = λ(` + m)fγ(x)/f0(x) and the assumption that
P(fγ(X)/f0(X) = k/λ(`+m)) = 0.

For case (ii), (2.22) is given by

Jλ(g) =

∫ {
− k log(1− g(x))− λ(`+m) log(g(x))fγ(x)/f0(x)

}
f0(x)dν(x).

For any u > 0, v ≥ 0, the map a ∈ [0, 1] 7→ u log(1− a) + v log(a) has a unique maximizer at
a = v/(u+ v).
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A.3 Proofs for Section 5

A.3.1 Proof of Theorem 10

For all g ∈ G, let

R̃0(g) = `−1
n∑

i=k+1

1 g(Zi) ≥ 0; (A.10)

R̂γ,0(g) = (m0 + `)−1

 n∑
i=k+1

1 g(Zi) < 0 +
∑
i∈H0

1 g(Zn+i) < 0

 ; (A.11)

R̂γ,1(g) = m−1
1

∑
i∈H1

1 g(Zn+i) < 0, (A.12)

so that R̂γ(g) = (m + `)−1
∑n+m

i=k+1 1 g(Zi) < 0 = (1 − γ)R̂γ,0(g) + γR̂γ,1(g). For notational
convenience, for any i ≥ 1, let

ei =

√
V (G) + log(1/δ)

i
.

Define the following events:

Ω0 =

{
sup
g∈G
|R̂0(g)−R0(g)| ≤ bek

}
;

Ω̃0 =

{
sup
g∈G
|R̃0(g)−R0(g)| ≤ be`

}
;

Ωγ,0 =

{
sup
g∈G
|R̂γ,0(g)− (1−R0(g))| ≤ bem0+`

}
;

Ωγ,1 =

{
sup
g∈G
|R̂γ,1(g)−R1(g)| ≤ bem1

}
.

We choose b such that
P(Ω0 ∩ Ω̃0 ∩ Ωγ,0 ∩ Ωγ,1) ≥ 1− δ. (A.13)

The well-known result for empirical processes on finite VC classes (e.g., Example 7.10 of Sen
(2018)) implies that b only depends on δ. Throughout the rest of the proof, we choose

C = b, C ′ = 30b, (A.14)

where C and C ′ are the constants in expressions of ε0 and ∆, respectively.
Note that on Ωγ,0 ∩ Ωγ,1, we have

sup
g∈G
|R̂γ(g)−Rγ(g)| ≤ b(1− γ)em0+` + bγem1

= b

(√
m0 + `

m+ `
+

√
m1

m+ `

)
em+` ≤ 2bem+`. (A.15)

On Ω0, (2.27) implies that

R0(ĝ) = R̂0(ĝ) +R0(ĝ)− R̂0(ĝ) ≤ β + ε0 + bek = β + 2bek.
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Clearly, 2bek ≤ 30γ−1bek ≤ ∆. This proves the first claim of (i). Moreover, on Ω0 ∩ Ω̃0, we
have

R̃0(ĝ) = R0(ĝ) + R̃0(ĝ)−R0(ĝ) ≤ β + 3b(ek ∨ e`) ≤ β + 0.1γ∆.

Equivalently,
n∑

i=k+1

1 ĝ(Zi) ≥ 0 ≤ `(β + 0.1γ∆). (A.16)

By the assumption that R0(g]G) = β, on the event Ω0, R̂0(g]G) ≤ R0(g]G) + bek = β + ε0. By
definition (2.27) of ĝ, we have

R̂γ(ĝ) ≤ R̂γ(g]G). (A.17)

By (A.15) and (A.17), on Ω0 ∩ Ωγ,0 ∩ Ωγ,1,

Rγ(ĝ) = R̂γ(ĝ) +Rγ(ĝ)− R̂γ(ĝ) ≤ R̂γ(g]G) + 2bem+` ≤ Rγ(g]G) + 4bem+`.

Together with (2.26), this implies

(1− γ)(1−R0(ĝ)) + γR1(ĝ) ≤ (1− γ)(1−R0(g]G)) + γR1(g]G) + 4bem+`

and thus
R1(ĝ) ≤ R1(g]G) + γ−1(R0(ĝ)−R0(g]G) + 4bem+`).

By definition, R0(ĝ) ≤ β + ε0 = R0(g]G) + ε0 = R0(g]G) + bek. Thus,

R1(ĝ) ≤ R1(g]G) + γ−1b[4em+` + ek] ≤ R1(g]G) + 5γ−1bek.

Clearly, 5γ−1bek ≤ 30γ−1bek ≤ ∆. This proves the second claim of (i). Then, on the event
Ωγ,1, we have

R̂γ,1(ĝ) ≤ R1(ĝ) + bem1 ≤ R1(g]G) + bem1 + 5γ−1bek.

Since em1 = γ−1/2em+` ≤ γ−1em+` ≤ γ−1ek, we have

R̂γ,1(ĝ) ≤ R1(g]G) + 6γ−1bek.

Since C ′ ≥ 6b,
∆ = C ′γ−1(ek ∨ e`) ≥ 6γ−1bek.

Thus, on Ω0 ∩ Ωγ,0 ∩ Ωγ,1,

1

m1

∑
i∈H1

1 ĝ(Zn+i) < 0 = R̂γ,1(ĝ) ≤ R1(g]G) + ∆.

Equivalently, recalling that Xi = Zn+i,∑
i∈H1

1 ĝ(Xi) ≥ 0 ≥M. (A.18)

Let η = 1/`+ β + 0.1γ∆. Then (A.16) implies that

1 +

n∑
i=k+1

1 ĝ(Zi) ≥ 0 ≤ η`.
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To validate the conditions in Lemma 24, we only need to show η ≤ αM/m. Since 1−R1(g]G) ≥
(1 + α−1)∆, we have

∆ ≤ α(1−R1(g]G)−∆) ≤ αM

m1
≤ αM

γm
.

By the assumptions that ` ≥ 2m/(αM) and β ≤ 0.4αM/m, we have

η ≤ αM

2m
+

0.4αM

m
+

0.1αM

m
=
αM

m
.

By Lemma 24, on the event Ω0 ∩ Ω̃0 ∩ Ωγ,0 ∩ Ωγ,1,

AdaDetectα ⊃ {i ∈ {1, . . . ,m} : ĝ(Xi) ≥ 0}.

By (A.18),
|AdaDetectα ∩H1|/m1 ≥M/m1 ≥ 1−R1(g]G)−∆.

By (A.13), this occurs with probability at least 1− δ.

A.3.2 Proof of Theorem 11

We first prove the result for BH∗α, i.e.,

P
(
R′ ∩ {BH∗α ⊂ AdaDetectα(1+δ)(1+ζr(η))}c

)
≤ P (η̂ > η)−me−(3/28)(`+1)δ2α(r∨1)/m, (A.19)

where R′ = {|BH∗α| ≥ r}. First we note that, while ĝ(Yi) are dependent through the score
function ĝ(·), the g∗(Yi) are i.i.d., allowing us to apply concentration inequalities. For s ∈ R,
define

Ĝ0(s) = (`+ 1)−1

(
1 +

n∑
i=k+1

1 ĝ(Yi) ≥ s

)
;

Ĝ∗0(s) = (`+ 1)−1

(
1 +

n∑
i=k+1

1 g∗(Yi) ≥ s

)
.

For notational convenience, let α̃ = α(r ∨ 1)/m. Consider in addition the following events:

Ω1 =

{
max

k+1≤i≤n+m
|ĝ(Zi)− g∗(Zi)| ≤ η

}
;

Ω2 =

{
sup

1≤i≤m

(
Ĝ∗0(g∗(Xi)− 2η)−G0(g∗(Xi)− 2η) ∨ α̃

G0(g∗(Xi)− 2η) ∨ α̃

)
≤ δ

}
.

On Ω1 ∩ Ω2, we have for all i ∈ {1, . . . ,m},

Ĝ0(ĝ(Xi)) ≤ Ĝ∗0(ĝ(Xi)− η) ≤ Ĝ∗0(g∗(Xi)− 2η) ≤ (G0(g∗(Xi)− 2η) ∨ α̃)(1 + δ)

= (G0(g∗(Xi)) ∨ α̃)

(
1 +

G0(g∗(Xi)− 2η) ∨ α̃−G0(g∗(Xi)) ∨ α̃
G0(g∗(Xi)) ∨ α̃

)
(1 + δ).

Let u = G0(g∗(Xi)) ∨ α̃. Since G0 is nonincreasing, u = G0(g∗(Xi) ∧G
−1
0 (α̃)). Thus,

G0(g∗(Xi)− 2η) ∨ α̃−G0(g∗(Xi)) ∨ α̃
G0(g∗(Xi)) ∨ α̃

=
G0((g∗(Xi)− 2η) ∧G−1

0 (α̃))− u
u

≤ G0(G
−1
0 (u)− 2η)− u

u
.



Appendix A. Supplementary material of Chapter 2 104

Since u ≥ α̃, the LHS is bounded by ζr(η). As a result, on Ω1 ∩ Ω2,

Ĝ0(ĝ(Xi)) ≤ (G0(g∗(Xi)) ∨ α̃)(1 + ζr(η))(1 + δ). (A.20)

Then, for all t ∈ {αk/m, r ∨ 1 ≤ k ≤ m},

1G0(g∗(Xi)) ≤ t = 1G0(g∗(Xi)) ∨ α̃ ≤ t ≤ 1 Ĝ0(ĝ(Xi)) ≤ t(1 + δ)(1 + ζr(η)).

By applying Lemma 20 with pi = G0(g∗(Xi)), p′i = Ĝ0(ĝ(Xi)), β = α, and β′ = α(1 +
ζr(η))(1 + δ), we obtain that BH∗α ⊂ AdaDetectα(1+δ)(1+ζr(η)) on Ω1 ∩Ω2 ∩R′. We are left to
show that

P(Ωc
2) ≤ m exp(−(3/28)(`+ 1)δ2α̃).

Since Xi’s and Yi’s are independent, the union bound implies

P(Ωc
2) ≤ P

(
sup

1≤i≤m

(
Ĝ∗0(g∗(Xi)− 2η)−G0(g∗(Xi)− 2η) ∨ α̃

G0(g∗(Xi)− 2η) ∨ α̃

)
≥ δ

)

≤
m∑
i=1

P

(
Ĝ∗0(g∗(Xi)− 2η)−G0(g∗(Xi)− 2η) ∨ α̃

G0(g∗(Xi)− 2η) ∨ α̃
≥ δ

)

≤
m∑
i=1

P

(
Ĝ∗0(g∗(Xi)− 2η)−G0((g∗(Xi)− 2η) ∧G−1

0 (α̃))

G0((g∗(Xi)− 2η) ∧G−1
0 (α̃))

≥ δ

)

≤
m∑
i=1

P

(
Ĝ∗0((g∗(Xi)− 2η) ∧G−1

0 (α̃))−G0((g∗(Xi)− 2η) ∧G−1
0 (α̃))

G0((g∗(Xi)− 2η) ∧G−1
0 (α̃))

≥ δ

)

≤ m sup
s≤G−1

0 (α̃)

P

(
Ĝ∗0(s)−G0(s)

G0(s)
≥ δ

)
.

For all s ≤ G−1
0 α̃,

P
(
Ĝ∗0(s)−G0(s) ≥ δG0(s)

)
≤ P

(
n∑

i=k+1

(1 g∗(Yi) ≥ s−G0(s)) ≥ (`+ 1)δG0(s)− 1

)

≤ P

(
n∑

i=k+1

(1 g∗(Yi) ≥ s−G0(s)) ≥ 0.5(`+ 1)δG0(s)

)
,

where the last line uses the fact that (`+1)δG0(s) ≥ (`+1)δα̃ ≥ 2. Let A = 0.5(`+1)δG0(s).
Since the g∗(Yi)’s are independent, By Bernstein’s inequality,

P(Ωc
2) ≤ m sup

s≤G−1
0 (α̃)

exp

(
− A2

2(`+ 1)G0(s) + 2A/3

)

= m sup
s≤G−1

0 (α̃)

exp

(
−0.5

A2

4A/δ + 2A/3

)

≤ m sup
s≤G−1

0 (α̃)

exp

(
−0.5

A2

4A/δ + 2A/3δ

)

= m sup
s≤G−1

0 (α̃)

exp

(
−3(`+ 1)δ2G0(s)

28

)
≤ m exp(−(3/28)(`+ 1)δ2α̃). (A.21)
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The proof of (A.19) is then completed.
Next, we prove (2.37), i.e., the result for AdaDetectα. Recall that R = {|AdaDetect∗α| ≥

r}. Similar to Ω2, we define

Ω3 =

{
sup

1≤i≤m

(
G0(g∗(Xi)) ∨ α̃− Ĝ∗0(g∗(Xi)) ∨ α̃

Ĝ∗0(g∗(Xi)) ∨ α̃

)
≤ δ

}

=

{
sup

1≤i≤m

(
G0(g∗(Xi) ∧G

−1
0 (α̃))− Ĝ∗0(g∗(Xi) ∧G

−1
0 (α̃))

Ĝ∗0(g∗(Xi) ∧G
−1
0 (α̃))

)
≤ δ

}
.

By (A.20), on Ω1 ∩ Ω2 ∩ Ω3, for all i ∈ {1, . . . ,m} and t ∈ {αk/m, r ∨ 1 ≤ k ≤ m},

Ĝ0(ĝ(Xi)) ≤ (G0(g∗(Xi)) ∨ α̃)(1 + ζr(η))(1 + δ)

≤ (Ĝ∗0(g∗(Xi)) ∨ α̃)(1 + ζr(η))(1 + δ)2

≤ (Ĝ∗0(g∗(Xi)) ∨ α̃)(1 + ζr(η))(1 + 3δ).

Thus, on Ω1 ∩ Ω2 ∩ Ω3,

1 Ĝ∗0(g∗(Xi)) ∨ α̃ ≤ t ≤ 1 Ĝ0(g(Xi)) ≤ t(1 + 3δ)(1 + ζr(η)).

Applying Lemma 20 with pi = Ĝ∗0(g∗(Xi)), p′i = Ĝ0(g(Zi)), β = α, and β′ = α(1 + ζr(η))(1 +
3δ)), we obtain that AdaDetect∗α ⊂ AdaDetectα(1+3δ)(1+ζr(η)) on Ω1∩Ω2∩Ω3∩R. It remains
to prove that

P(Ωc
3) ≤ m exp(−(3/28)(`+ 1)δ2α̃).

Similar to P(Ωc
2), we have

P(Ωc
3) ≤ P

(
sup

1≤i≤m

(
G0(g∗(Xi) ∧G

−1
0 (α̃))− Ĝ∗0(g∗(Xi) ∧G

−1
0 (α̃))

Ĝ∗0(g∗(Xi) ∧G
−1
0 (α̃))

)
≥ δ

)

≤ m sup
s≤G−1

0 (α̃)

P

(
G0(s)− Ĝ∗0(s)

Ĝ∗0(s)
≥ δ

)
≤ m sup

s≤G−1
0 (α̃)

P
(
Ĝ∗0(s)−G0(s) ≤ −0.5δG0(s)

)
,

where the last line uses the fact that (1 + δ)−1 ≤ 1− 0.5δ for any δ ∈ [0, 1]. Now, for for all
s ≤ G−1

0 (α̃),

P
(
Ĝ∗0(s)−G0(s) ≤ −0.5δG0(s)

)
= P

(
n∑

i=k+1

(1 g∗(Yi) ≥ s−G0(s)) ≤ −0.5(`+ 1)δG0(s)− 1 +G0(s)

)

≤ P

(
n∑

i=k+1

(1 g∗(Yi) ≥ s−G0(s)) ≤ −0.5(`+ 1)δG0(s)

)
.

Applying the Bernstein inequality as in (A.21), we conclude that P(Ωc
3) ≤ m exp(−(3/28)(`+

1)δ2α̃).

Remark 16. The inequality (A.19) generalizes the power oracle inequality of Mary and Roquain
(2022) for a fixed score function and r = 0.
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A.3.3 Proof of Corollary 12

Letting R = {|AdaDetect∗α| ≥ m1ε}, we have

TDR(AdaDetect∗α) ≤ E[TDP(AdaDetect∗α)]

≤ ε+

∫ 1

ε
P(TDP(AdaDetect∗α) ≥ u)du

= ε+

∫ 1

ε
P(R∩ {TDP(AdaDetect∗α) ≥ u})du

Now applying Theorem 11 with r = dm1εe, we obtain

TDR(AdaDetect∗α) ≤ ε+

∫ 1

ε
P(TDP(AdaDetectα′) ≥ u)du+ P (η̂ > η) + 2me−(3/28)(`+1)δ2αdm1εe/m

≤ TDR(AdaDetectα′) + ε+ P (η̂ > η) + 2me−(3/28)(`+1)δ2αdm1εe/m

which gives (2.38).

A.4 Useful lemmas

Lemma 20. Let (pi, 1 ≤ i ≤ m) and (p′i, 1 ≤ i ≤ m) be two sets of p-values and β, β′ ∈ (0, 1),
r ∈ {0, . . . ,m}. Assume that for all t ∈ {βk/m, r ∨ 1 ≤ k ≤ m},

1 pi ≤ t ≤ 1 p′i ≤ tβ′/β. (A.22)

Then, on the event where the BH algorithm applied to p-values (pi, 1 ≤ i ≤ m) at level β
has at least r rejections, all these rejections would be rejected by the BH algorithm applied to
p-values (p′i, 1 ≤ i ≤ m) at level β′.

Proof. Recall that BH algorithm applied to p-values (pi, 1 ≤ i ≤ m) at level β rejects the i-th
hypothesis iff pi ≤ βk̂/m where

k̂ = max

{
k ∈ {0, . . . ,m} :

m∑
i=1

1 pi ≤ βk/m ≥ k

}
.

Similarly, the BH algorithm at level β′ rejects i-th hypothesis iff p′i ≤ βk̂′/m where

k̂′ = max

{
k ∈ {0, . . . ,m} :

m∑
i=1

1 p′i ≤ βk/m ≥ k

}
.

When k̂ = 0, the conclusion is trivial. Now assume k̂ ≥ r ∨ 1. Setting t = βk̂/m in (A.22),
we obtain that

1 pi ≤ βk̂/m ≤ 1 p′i ≤ β′k̂/m, 1 ≤ i ≤ m.

This implies k̂′ ≥ k̂ ≥ r ∨ 1. Hence, for all i,

1 pi ≤ βk̂/m ≤ 1 p′i ≤ β′k̂/m ≤ 1 p′i ≤ β′k̂′/m.
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Lemma 21 (Vandermonde’s equality). For all 0 ≤ j ≤ k ≤ n, we have(
n+ 1

k + 1

)
=

n−k+j∑
m=j

(
m

j

)(
n−m
k − j

)
.

Equivalently, for all j, u, v ≥ 0(
j + u+ v + 1

j + u+ 1

)
=

v∑
b=0

(
j + b

j

)(
u+ v − b

u

)
.

Lemma 22. Consider any set of scores (Sk+1, . . . , Sn+m) and the corresponding empirical
p-values (p1, . . . , pm) defined in (2.10). Then on the event where the scores (Sj , j ∈ {k +
1, . . . , n} ∪ (n+H0)) are mutually distinct, the null p-values (pj , j ∈ H0) are mesurable with
respect to the ranks of (Sj , j ∈ {k + 1, . . . , n} ∪ (n+H0)).

Proof. Let R1, . . . , Rn−k+m0 and S(1), . . . , S(n−k+m0) be the ranks and the order statistics of
(Sj , j ∈ {k+1, . . . , n}∪(n+H0)), respectively. Since the score (Sj , j ∈ {k+1, . . . , n}∪(n+H0))
are mutually distinct, we have that Si > Sj iff Ri < Rj . Hence, by (2.10), we obtain for all
j ∈ H0,

pj =
1

n− k + 1

(
1 +

n∑
i=k+1

1Si > Sn+j

)
=

1

n− k + 1

(
1 +

n∑
i=k+1

1Ri < Rn+j

)
.

Lemma 22 implies the following equivalent representation of the distribution of p-values.

Lemma 23. For any set of scores (Sk+1, . . . , Sn+m) satisfying Assumptions 2 and 3, the joint
distribution of the null empirical p-values (pj , j ∈ H0) does not depend on the joint distribution
of scores. In particular, it can be characterized by generating (Sj , j ∈ {k+1, . . . , n}∪(n+H0))
i.i.d. from U(0, 1).

Proof. By Lemma 22, almost surely, (pj , j ∈ H0) is a function of the ranks of (Sj , j ∈ {k +
1, . . . , n}∪(n+H0)), which is uniformly distributed on the permutations of {1, . . . , n−k+m0}
according to Assumption 2. The result follows.

Lemma 24. Fix M ∈ {1, . . . ,m} and η ∈ (0, 1). Assume that the scores Sk+1, . . . , Sn in
the NTS satisfy 1 +

∑n
i=k+1 1Si ≥ 0 ≤ η` and the scores Sn+1, . . . , Sn+m in the test sample

satisfy
∑m

j=1 1Sn+j ≥ 0 ≥ M. Then, if η ≤ αM/m, AdaDetectα would reject all hypotheses
with nonnegative scores, i.e.,

{j ∈ {1, . . . ,m} : Sn+j ≥ 0} ⊂ AdaDetectα.

Proof. By definition, for each j ∈ {1, . . . ,m}, the empirical p-value pj (2.10) satisfies

pj =
1

`+ 1

(
1 +

n∑
i=k+1

1Si > Sn+j

)

≤ 1

`+ 1

(
1 +

n∑
i=k+1

(1Si ≥ 0 + 1Sn+j < 0)

)
≤ η + 1Sn+j < 0,



Appendix A. Supplementary material of Chapter 2 108

by the assumptions. Hence, letting M ′ =
∑m

j=1 1Sn+j ≥ 0 ≥M , we have

m∑
j=1

1 pj ≤ αM ′/m ≥
m∑
j=1

1 pj ≤ αM/m ≥
m∑
j=1

1 pj ≤ η ≥
m∑
j=1

1Sn+j ≥ 0 = M ′

Since AdaDetectα is the BH algorithm applied to the empirical p-values, the result follows.

Lemma 25. Write the number of rejections k̂ = k̂(pi, 1 ≤ i ≤ m) given by (2.4) a function
of p-values. Fix any i ∈ {1, . . . ,m} and consider two sets of p-values (pj , 1 ≤ j ≤ m) and
(p′j , 1 ≤ j ≤ m) which satisfy almost surely that

∀j ∈ {1, . . . ,m},
{
p′j ≤ pj if pj ≤ pi
p′j = pj if pj > pi

(A.23)

Let k̂ = k̂(pi, 1 ≤ i ≤ m) and k̂′ = 1 ∨ k̂(p′i, 1 ≤ i ≤ m). Then

{pi ≤ αk̂/m} = {pi ≤ αk̂′/m} ⊂ {k̂ = k̂′}.

This lemma is closely related to many previous results on the structure of the BH algo-
rithm; see, e.g., Ferreira and Zwinderman (2006); Roquain and Villers (2011); Ramdas et al.
(2019b). It states that the rejected p-values can be made arbitrarily smaller without changing
the number of rejections.

Proof. First, since p′j ≤ pj for all j ∈ {1, . . . ,m}, we clearly have k̂ ≤ k̂′. Now we prove the
equivalence

pi ≤ αk̂/m⇐⇒ pi ≤ αk̂′/m. (A.24)

Clearly, pi ≤ αk̂/m implies pi ≤ αk̂′/m. Now we prove the other direction that pi ≤ αk̂′/m
implies k̂ ≥ k̂′. Note that

m∑
j=1

1 pj ≤ αk̂′/m =
m∑
j=1

1 pj ≤ pi 1 pj ≤ αk̂′/m+
m∑
j=1

1 pj > pi 1 pj ≤ αk̂′/m

=

m∑
j=1

1 pj ≤ pi +

m∑
j=1

1 pj > pi 1 p
′
j ≤ αk̂′/m

=

m∑
j=1

1 pj ≤ pi 1 p′j ≤ αk̂′/m+

m∑
j=1

1 pj > pi 1 p
′
j ≤ αk̂′/m

=
m∑
j=1

1 p′j ≤ αk̂′/m ≥ 1 ∨ k̂(p′i, 1 ≤ i ≤ m) = k̂′,

where the second and third lines is due to (A.23) and that pi ≤ αk̂′/m. The fourth line
uses the definition of k̂(p′i, 1 ≤ i ≤ m) and that pi ≤ αk̂′/m). By definition of k̂, the above
inequality implies k̂ ≥ k̂′. Thus, we must have k̂ = k̂′ and the result follows.

A.5 Auxiliary results for Section 5

A.5.1 Bounding ζr(·)

In this section, we provide explicit bounds on ζr(·) for any given r ∈ {0, . . . ,m} and sample
size m in the two following cases.
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Lemma 26. Assume P0 = U([0, 1]d) and Pi = U([0, 1]d−1) ⊗ Q for any i ∈ H1 where Q is
a distribution supported on [0, 1] with a strictly decreasing and differentiable density function
h(x) on (0, 1). Assume h(0) > 0 and c = infx∈(0,1) |h′(x)| > 0. For any α ∈ (0, 1), m ≥ 1,
and r ∈ {0, . . . ,m}, the following results hold.

(i) If g∗(x) = A + Bf1(x)/f0(x) for some A ∈ R and B > 0, then, for any η < (B/2) ·
(h(α)− h(1)),

ζr(η) ≤ m

α(r ∨ 1)

2

Bc
η. (A.25)

(ii) If g∗(x) = Ψ(f1(x)/f0(x)) where Ψ(y) = 1/(1 + (A+ By)−1) for some A,B > 0, then,
for any η < (1/2)(Ψ ◦ h(α)−Ψ ◦ h(1)),

ζr(η) ≤ m

α(r ∨ 1)

2(A+Bh(0) + 1)2

Bc
η. (A.26)

Proof of Lemma 26. Under the assumptions, f1(x)/f0(x) = h(xd) where xd is the d-th co-
ordinate of x. For case (i), g∗(x) = A + Bf1(x)/f0(x) = A + Bh(xd). Since h is strictly
decreasing, for any s ∈ [A+Bh(1), A+Bh(0)],

G0(s) = PXd∼U([0,1])(A+Bh(Xd) ≥ s) = P(Xd ≤ h−1((s−A)/B)) = h−1((s−A)/B).

Thus, G−1
0 (u) = A+Bh(u) for all u ∈ [0, 1]. Fix any η < (B/2)(h(α)− h(1)). Then for any

u ∈ [0, α],

A+Bh(0) ≥ G−1
0 (u) ≥ G−1

0 (u)−2η ≥ G−1
(α)−2η > A+Bh(α)−B(h(α)−h(1)) = A+Bh(1).

Note that both G0 and G−1
0 are decreasing,

ζr(η) = max
u∈[α(r∨1)/m,α]

{
G0(G

−1
0 (u)− 2η)− u

u

}
≤ m

α(r ∨ 1)
max

u∈[α(r∨1)/m,α]
(h−1(h(u)− 2η/B)− h−1(h(u)))

≤ m

α(r ∨ 1)

2η

B
max

u∈[α(r∨1)/m,α]
|(h−1)′(u)|.

The result is then proved by noting that (h−1)′(u) = 1/h′(h−1(u)) and the assumption that
|h′(h−1(u))| > c.

For case (ii), g∗(x) = 1/(1 + (A+Bh(xd))
−1) = Ψ ◦ h(x1), where Ψ(u) = (A+Bu)/(A+

Bu + 1) for any u ∈ [h(1), h(0)]. Note that Ψ′(u) = B/(A + Bu + 1)2. Then for any s in
[1/(1 + (A+Bh(1))−1), 1/(1 + (A+Bh(0))−1)], the image of Ψ,

G0(s) = PXd∼U([0,1])(Ψ(h(Xd)) ≥ s) = (Ψ ◦ h)−1(s).

Hence, for all u ∈ [0, 1], G−1
0 (u) = Ψ ◦h(u). Fix any η < (1/2)(Ψ ◦h(α)−Ψ ◦h(1)). Then for

any u ∈ [α(r ∨ 1)/m,α],

Ψ ◦ h(0) ≥ G−1
0 (u) ≥ G−1

0 (u)− 2η ≥ G−1
0 (α)− 2η > Ψ ◦ h(1).
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Note that both G0 and G−1
0 are decreasing,

ζr(η) = max
u∈[α(r∨1)/m,α]

{
G0(G

−1
0 (u)− 2η)− u

u

}
≤ m

α(r ∨ 1)
max

u∈[α(r∨1)/m,α]

(
(Ψ ◦ h)−1(Ψ ◦ h(u)− 2η)− u

)
≤ m

α(r ∨ 1)
max

u∈[α(r∨1)/m,α]

(
(Ψ ◦ h)−1(Ψ ◦ h(u)− 2η)− (Ψ ◦ h)−1(Ψ ◦ h(u))

)
≤ m

α(r ∨ 1)
(2η) max

u∈[α(r∨1)/m,α]
|((Ψ ◦ h)−1)′(u)|

≤ m

α(r ∨ 1)
(2η)

1

infx∈(0,1) |h′(x)| × infy∈[h(1),h(0)] |Ψ′(y)|
.

The result is proved by noting that infy∈[h(1),h(0)] |Ψ′(y)| = B/(A+Bh(0) + 1)2.

Lemma 27. Assume P0 = N (µ0, Id) and Pi = N (µ, Id) for any i ∈ H1, where µ0 6= µ1

are the null and alternative mean vectors, respectively. For any α ∈ (0, 1), m ≥ 1, and
r ∈ {0, . . . ,m}, the following results hold.

(i) If g∗(x) = A + Bf1(x)/f0(x) for some A ∈ R and B > 0, then for any α ∈ (0,Φ(1))
and η ∈ [0, 1] with 4η ≤ (eb2B′) ∧B′,

ζr(η) ≤ Cη, (A.27)

where C = C(B,µ, µ0) = 8
b2B′ , B

′ = Be−b
2/2 and b = ‖µ− µ0‖.

(ii) If g∗(x) = 1/(A + Bf0(x)/f1(x)), A > 0, B > 0, and α ∈ (0,Φ(1)), η ∈ [0, 1] with
4η(A+B′′e−bΦ

−1
(α)) ≤ 1 and ηCe(b+1)

√
2 log(m/(α(r∨1)))/(2e) ≤ 1,

ζr(η) ≤ Cηe(b+1)
√

2 log(m/(α(r∨1))), (A.28)

for C = C(A,B, µ, µ0) = 8e(A+B′′)2/(bB′′) with B′′ = Beb
2/2 and b = ‖µ− µ0‖.

(iii) For g∗(x) = 1/(1 + (A+Bf1(x)/f0(x))−1), A > 0, B > 0, and α ∈ (0,Φ(1)), η ∈ [0, 1]

with 16η
(

(A+B′eb
√

2 log(m/(α(r∨1))))2 ∨ 1
)
/B′ ≤ 1 ∧ b, then

ζr(η) ≤ Cη
(

(A+B′eb
√

2 log(m/(α(r∨1))))2 ∨ 1
)
, (A.29)

for C = C(B,µ, µ0) = 64e/(bB′), B′ = Be−b
2/2 and b = ‖µ− µ0‖.

Proof. Let us first consider the case of g∗(x) = A+Bf1(x)/f0(x). We thus have

g∗(x) = A+B exp
{

(x− µ0)T (µ− µ0)− (1/2)‖µ− µ0‖2
}

= Ψ((x− µ0)T (µ− µ0)/‖µ− µ0‖)

where we let Ψ(t) = A+B′ exp(bt), t ∈ R, for B′ = Be−(1/2)‖µ−µ0‖2 and b = ‖µ−µ0‖. Hence
Ψ−1(v) = b−1 log ((v −A)/B′) for v > A. In that case, we have

Ψ−1(Ψ(t)− 2η) = Ψ−1(A+B′ebt − 2η) = b−1 log
(
ebt − 2η/B′

)
= t+ b−1 log

(
1− 2ηe−bt/B′

)
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Since log(1−x) ≥ −2x for all x ∈ [0, 1/2], we have log
(
1− 2ηe−bt/B′

)
≥ −4ηe−bt/B′ because

4ηe−bt/B′ ≤ 1. This entails that for 4ηe−bΦ
−1

(α)/B′ ≤ 1, for u ∈ [α(r ∨ 1)/m,α], (by taking
t = Φ

−1
(u) in the above relations)

Φ ◦Ψ−1(Ψ ◦ Φ
−1

(u)− 2η)− u ≤ Φ
(

Φ
−1

(u)− 4ηe−bΦ
−1

(u)/(bB′)
)
− u.

Now, we can use (A.30) in Lemma 28 with y = 4ηe−bΦ
−1

(u)/(bB′) (checking that u ≤ α ≤
Φ(1)) to obtain that

Φ ◦Ψ−1(Ψ ◦ Φ
−1

(u)− 2η) ≤ 8uηe−bΦ
−1

(u)(bB′)−1Φ
−1

(u) exp(4ηe−bΦ
−1

(u)(bB′)−1Φ
−1

(u))

≤ 8u

eb2B′
η exp(4η/(eb2B′)),

because ∀x ≥ 1, we have xe−xb ≤ 1/(eb). This gives (A.27).
Let us now turn to prove (A.28) by considering g∗(x) = 1/(A + Bf0(x)/f1(x)), A > 0,

B > 0. Similarly to above, we have

g∗(x) = Ψ((x− µ0)T (µ− µ0)/‖µ− µ0‖)

where we let Ψ(t) = 1/(A+ B′′ exp(−bt)), t ∈ R, for B′′ = Be(1/2)‖µ−µ0‖2 and b = ‖µ− µ0‖.
Hence Ψ−1(v) = −b−1 log ((1/v −A)/B′′) for v < 1/A. In that case, we have

Ψ−1(Ψ(t)− 2η) = Ψ−1(1/(A+B′′e−bt))− 2η)

= −b−1 log

((
A+B′′e−bt

1− 2η(A+B′′e−bt)
−A

)
/B′′

)
.

Now using that 1/(1− x) ≤ 1 + 2x for all x ∈ [0, 1/2], we have that for 4η(A+B′′e−bt) ≤ 1,(
A+B′′e−bt

1− 2η(A+B′′e−bt)
−A

)
/B′′ ≤ e−bt + 4η(A+B′′e−bt)2/B′′

This entails

Ψ−1(Ψ(t)− 2η) ≥ −b−1 log
(
e−bt + 4η(A+B′′e−bt)2/B′′

)
= t− b−1 log

(
1 + 4η(A+B′′e−bt)2ebt/B′′

)
≥ t− 4η(A+B′′e−bt)2ebt/(bB′′)

≥ t− 4η(A+B′′)2ebt/(bB′′),

because log(1+x) ≤ x for all x ≥ 0. Hence for 4η(A+B′′e−bΦ
−1

(α)) ≤ 1, for u ∈ [α(r∨1)/m,α],

Φ ◦Ψ−1(Ψ ◦ Φ
−1

(u)− 2η)− u ≤ Φ
(

Φ
−1

(u)− 4η(A+B′′)2ebΦ
−1

(u)/(bB′′)
)
− u.

Now, we can use (A.30) in Lemma 28 with y = 4η(A+B′′)2ebΦ
−1

(u)/(bB′′) to obtain

Φ ◦Ψ−1(Ψ ◦ Φ
−1

(u)− 2η) ≤ 2uh
(

4(A+B′′)2ηe(b+1)Φ
−1

(u)(bB′′)−1
)

≤ 2uh
(

4(A+B′′)2ηe(b+1)
√

2 log(m/(α(r∨1)))(bB′′)−1
)
,
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for h(x) = xex and because Φ
−1

(u) ≤ Φ
−1

(α(r ∨ 1)/m) ≤
√

2 log(m/(α(r ∨ 1))) (and using
that ∀x ≥ 0, we have x ≤ ex). This gives (A.28) because xex ≤ ex when x ≤ 1.

Let us now turn to prove (A.29) by considering g∗(x) = 1/(1 + (A + Bf1(x)/f0(x))−1),
A > 0, B > 0. Similarly to above, we have

g∗(x) = Ψ((x− µ0)T (µ− µ0)/‖µ− µ0‖)

where Ψ(t) = 1/(1 + (A + B′ebt)−1), t ∈ R, for B′ = Be−(1/2)‖µ−µ0‖2 and b = ‖µ − µ0‖.
Hence Ψ−1(v) = b−1 log

(
((1/v − 1)−1 −A)/B′

)
for v ∈ (0, 1). In that case, we have for

4ηΨ(t)−1 ≤ 1,

1

Ψ(t)− 2η
− 1 = Ψ(t)−1 1

1− 2ηΨ(t)−1
− 1

≤ Ψ(t)−1(1 + 4ηΨ(t)−1)− 1

= (1 + (A+B′ebt)−1)(1 + 4ηΨ(t)−1)− 1

= 4ηΨ(t)−1 + (A+B′ebt)−1(1 + 4ηΨ(t)−1),

by using 1/(1− x) ≤ 1 + 2x, x ∈ [0, 1/2]. Hence,(
1

Ψ(t)− 2η
− 1

)−1

≥ A+B′ebt

1 + 4ηΨ(t)−1

1

1 + 4ηΨ(t)−1 A+B′ebt

1+4ηΨ(t)−1

≥ A+B′ebt

1 + 4ηΨ(t)−1

1

1 + 4ηΨ(t)−1(A+B′ebt)

≥ (A+B′ebt)(1− 4ηΨ(t)−1)
(

1− 4ηΨ(t)−1(A+B′ebt)
)

≥ (A+B′ebt)
(

1− 8ηΨ(t)−1
(

(A+B′ebt) ∨ 1
))

≥ (A+B′ebt)

(
1− 16η

(A+B′ebt)2 ∨ 1

A+B′ebt

)
,

by using 1/(1 + x) ≥ 1 − x and (1 − x)2 ≥ 1 − 2x, x ∈ [0, 1], Ψ(t)−1
(
(A+B′ebt) ∨ 1

)
≤

2 (A+B′ebt)2∨1
A+B′ebt

, and provided that 16η (A+B′ebt)2∨1
A+B′ebt

≤ 1. This entails((
1

Ψ(t)− 2η
− 1

)−1

−A

)
/B′ ≥ ebt − 16η

(
(A+B′ebt)2 ∨ 1

)
/B′.

Thus, we have

Ψ−1(Ψ(t)− 2η) ≥ b−1 log
(
ebt − 16η

(
(A+B′ebt)2 ∨ 1

)
/B′
)

= t+ b−1 log
(

1− 16η
(

(A+B′ebt)2 ∨ 1
)
e−bt/B′

)
≥ t+ b−1 log

(
1− 16η

(
(A+B′ebt)2 ∨ 1

)
/B′
)

≥ t− 32η
(

(A+B′ebt)2 ∨ 1
)
/(bB′),

because log(1− x) ≥ −2x for all x ∈ [0, 1/2] and provided that 16η
(
(A+B′ebt)2 ∨ 1

)
/B′ ≤

1/2. (Also note that the latter condition implies both previous conditions 4ηΨ(t)−1 = 4η(1 +

(A+B′ebt)−1) ≤ 1 and 16η (A+B′ebt)2∨1
A+B′ebt

≤ 1).
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Hence for 16η
(

(A+B′ebΦ
−1

(α/m))2 ∨ 1
)
/B′ ≤ 1/2 and u ∈ [α(r ∨ 1)/m,α],

Φ ◦Ψ−1(Ψ ◦ Φ
−1

(u)− 2η)− u ≤ Φ
(

Φ
−1

(u)− 32η
(

(A+B′ebΦ
−1

(u))2 ∨ 1
)
/(bB′)

)
− u.

Now, we can use (A.30) in Lemma 28 with y = 32η
(

(A+B′ebΦ
−1

(u))2 ∨ 1
)
/(bB′) to obtain

Φ ◦Ψ−1(Ψ ◦ Φ
−1

(u)− 2η) ≤ 2uh
(

32η
(

(A+B′ebΦ
−1

(u))2 ∨ 1
)
/(bB′)

)
≤ 2uh

(
32η

(
(A+B′eb

√
2 log(m/(α(r∨1))))2 ∨ 1

)
/(bB′)

)
,

for h(x) = xex and because Φ
−1

(u) ≤ Φ
−1

(α(r ∨ 1)/m) ≤
√

2 log(m/(α(r ∨ 1))) (and using
that ∀x ≥ 0, we have x ≤ ex). This gives (A.29).

Lemma 28. For all y ≥ 0 and u ∈ (0,Φ(1)], we have

Φ(Φ
−1

(u)− y)− u ≤ 2uyΦ
−1

(u) exp(yΦ
−1

(u)). (A.30)

Proof. By using the classical relations on upper-tail distribution of standard Gaussian, we
have

Φ(Φ
−1

(u)− y)− u ≤ y
(
φ(Φ

−1
(u)− y) ∨ φ(Φ

−1
(u))

)
= yφ(Φ

−1
(u))

(
1 ∨ exp(yΦ

−1
(u)− y2/2)

)
≤ 2uyΦ

−1
(u) exp(yΦ

−1
(u)),

since Φ
−1

(u) ≥ 1, because φ(x) ≤ 2xΦ(x) for all x ≥ 1.

A.5.2 Case of density estimation

Consistency

Consider g∗ given by (2.21), that is g∗(x) = fγ(x)/f0(x). Assuming for simplicity that f0 is
known (hence k = 0 and n = ` here), we propose the estimator g(x) = f̂γ(x)/f0(x), where f̂γ
is the histogram estimator of fγ given by

f̂γ(x) = Md
Md∑
j=1

(n+m)−1
n+m∑
i=1

1Zi ∈ Dj 1x ∈ Dj , x ∈ [0, 1]d, (A.31)

where {D1, . . . ,DMd} is a regular partition of [0, 1]d formed by Md d-dimensional cubes of
side size 1/M and Lebesgue measure |D1| = 1/Md, with M = d(n+m)1/(2+d)e.

Remember that the corresponding AdaDetect procedure controls the FDR even if the
estimation quality of f̂γ is poor. In addition, we show in this section that, in a suitable case
where the estimation quality is good enough, the power of AdaDetect consistently converges
to that of the oracle, that is, (2.40) holds. We use for this Corollary 12.

Assume m � ` = n� m/m1, let Assumptions 4 and 5 be true and consider the uniformly
bounded case described in Section A.5.1. Then we have both (2.41) with κ ∈ (0, 1/(2 + d))
(Lemma 29, see next section) and ζdm1εe(η) . ε−1 m

αm1
η/γ � ε−1η/(m1/m)2 for η small enough

(observe that γ ∼ m1/m). Hence, in the not too sparse scenario

m1/m� m−κ/2

(including the dense case m1 � m), choosing η � m−κ, δ = ε = 1/ log((m1/m)2/m−κ), we
have `δ2εm1/m = m1−κ/2 (m1/m)/m−κ/2

log3((m1/m)2/m−κ)
� 1, which ensures (2.39) and thus proves the

consistency (2.40).
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Bounding η̂ in case of density estimation

Lemma 29. Let Assumptions 4 and 5 be true and consider the case where P0 = U([0, 1]d)
and Pi, i ∈ H1 have a common distribution, supported on [0, 1]d, with a density f1 which is
L-Lipschitz and uniformly upper-bounded by Cd. Then the estimator g(x) = f̂γ(x)/f0(x) of
g∗ given above satisfies that for n+m ≥ N(C, d),

P
(
η̂ ≥ c0(n+m)−1/(2+d)

√
log(n+m)

)
≤ 2/(n+m), (A.32)

where η̂ is given by (2.36) and c0(d,C, L) = 2L+ 8(2C)d/2.

Proof. First note that when f1 is L-Lipschitz and upper bounded by Cd, then fγ is also L-
Lipschitz and upper bounded by Cd (because γ ≤ 1). Hence, by Lemma 30 we have for some
constant c0 = c(d,C, L) > 0 and N = N(C), for all m ≥ N , for all x ∈ [0, 1]d,

P
(
|f̂γ(x)− fγ(x)| ≥ c0(n+m)−1/(2+d)

√
log(n+m)

)
≤ 2/(n+m)2. (A.33)

Now, we have for all η > 0,

P(η̂ ≥ η) = P
(

max
1≤i≤n+m

|g∗(Zi)− g(Zi)| ≥ η
)
≤

n+m∑
i=1

P
(
|f̂γ(Zi)− fγ(Zi)| ≥ η

)
,

because f0 is the density of the uniform distribution on [0, 1]d. A technical point here is that
Zi also appears in f̂γ (at one place), nevertheless, denoting f̂ ′γ the quantities (A.34) for which
Zi has been changed to an independent copy Z ′i (at that place), we have for all x ∈ [0, 1]d,

|f̂γ(x)− f̂ ′γ(x)| ≤Md(n+m)−1 ≤ 2d(n+m)−2/(2+d).

Combined with (A.33), this gives

P(η̂ ≥ η) ≤
n+m∑
i=1

P
(
|f̂ ′γ(Zi)− fγ(Zi)| ≥ η − 2d(n+m)−2/(2+d)

)
≤ 2/(n+m),

by choosing η such that η ≥ 2d(n + m)−2/(2+d) + c0(n + m)−1/(2+d)
√

log(n+m). We have
established Lemma 29.

Lemma 30. [Histogram density estimator, non i.i.d. version] Consider Z1, . . . , Zn indepen-
dent random variables take values in [0, 1]d where Zi has for density fi, 1 ≤ i ≤ n. We assume
that all the fi’s are L-Lipschitz and pointwise upper bounded by Cd (for some constant value
C ∈ (0, 1)), where L,C does not depend on i. Let f(x) = n−1

∑n
i=1 fi(x) for x ∈ [0, 1]d. We

consider the histogram estimator of f given by

f̂n(x) = Md
Md∑
j=1

n−1
n∑
i=1

1Zi ∈ Dj 1x ∈ Dj , x ∈ [0, 1]d, (A.34)

where {D1, . . . ,DMd} is a regular partition of [0, 1]d formed by Md d-dimensional cubes of
side size 1/M and Lebesgue measure |D1| = 1/Md. Then, choosing M = dn1/(2+d)e, for
n ≥ N(C), we have for all x ∈ [0, 1]d,

P
(
|f̂n(x)− f(x)| ≥ c0(d,C, L)n−1/(2+d)

√
log n

)
≤ 2/n2, (A.35)

where c0(d,C, L) = L+ 4(2C)d/2.
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Proof. We have for all x ∈ [0, 1]d,

|f̂n(x)− f(x)| ≤ |f̂n(x)− E f̂n(x)|+ |E f̂n(x)− f(x)|,

which contains a bias and a variance term. For the bias, we have

|E f̂n(x)− f(x)| ≤
Md∑
j=1

1x ∈ Dj |Dj |−1

∫
Dj
n−1

n∑
i=1

|fi(y)− fi(x)|dy ≤ L/M,

because sup1≤k≤d |xk − yk| ≤ 1/M when x, y belongs to the same Dj .
For the variance term, by denoting jx the only j such that x ∈ Dj and pi,x = P(Zi ∈

Djx) ∈ [0, (C/M)d], we have

P(|f̂n(x)− E f̂n(x)| ≥ δ) ≤ P

(∣∣∣∣∣
n∑
i=1

(1Zi ∈ Djx − pi,x)

∣∣∣∣∣ ≥ δnM−d
)

≤ 2 exp

(
−1

2

A2∑n
i=1 pi,x +A/3

)
≤ 2 exp

(
−1

2

A2

n(C/M)d +A/3

)
,

by letting A = δnM−d and applying Bernstein’s inequality. Choosing δ such that A ≤
n(C/M)d, that is, δ ≤ Cd, we obtain

P(|f̂n(x)− E f̂n(x)| ≥ δ) ≤ 2 exp

(
−(3/8)

A2

n(C/M)d

)
= 2 exp

(
−(3/8)nδ2M−dC−d

)
,

by choosing δ such that (3/8)nδ2M−dC−d = 2 log n, that is, δ = (4/
√

3)(MC)d/2
√

(log n)/n
gives

P(|f̂n(x)− E f̂n(x)| ≥ δ) ≤ 2/n2,

provided that δ ≤ Cd. Now, we choose M = dn1/(2+d)e, so that for n ≥ N(C), δ =
4(2C)d/2n−1/(2+d)

√
log n is a valid choice. This gives the bound (A.35).

A.5.3 From the two-sample setting to classical two-group setting

Existing results of the form (2.41) typically assume that the observations are i.i.d. draws from
a two-group mixture model under which the class labels are random. By contrast, we focus
on a two-sample setting with fixed labels in which case the observations are non-identically
distributed because the assumptions are weaker than the two-group setting. Nevertheless, we
can easily adapt our theory in the two-group setting, in which case a plethora of existing
results can be applied to understand the scale of ζr(η) and η̂. The two-group setting can be
formalized by the following assumptions.

Assumption 11. The sample (Z1, . . . , Zn+m) is obtained in the following way:

• (Z1, . . . , Zk) = (Wi, 1 ≤ i ≤ n+m : Ai = 0, Bi = 0, Ci = 1);

• (Zk+1, . . . , Zn) = (Wi, 1 ≤ i ≤ n+m : Ai = 0, Bi = 0, Ci = 0);

• (Xi, i ∈ H0) = (Wi, 1 ≤ i ≤ n+m : Ai = 0, Bi = 1, Ci = 0);

• (Xi, i ∈ H1) = (Wi, 1 ≤ i ≤ n+m : Ai = 1, Bi = 1, Ci = 0),
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where (Ai, Bi, Ci,Wi), 1 ≤ i ≤ n + m, are i.i.d. with Ai ∼ B(π1) (indicator of being a
novelty), Bi ∼ B(πB) (indicator of being in the test sample), Ci ∼ B(πC) (indicator of being
in the first NTS), for some proportions πA, πB, πC ∈ (0, 1) and Wi | Ai ∼ f0 if Ai = 0 and
Wi |Ai = 1 ∼ f1, where f0 is the density of P0 and f1 is the common density of all Pi, i ∈ H1.

Under Assumption 11, the sample size n+m (number of trials) is fixed while the sample
sizes k, `, m and m1 are random. Also, we easily see that, conditionally on A,B,C, the
sample (Z1, . . . , Zn+m) satisfies Assumptions 4 and 5 with fi = f1 for i ∈ H1.

As a result, under Assumption 11, and letting Li = 1 − (1 − Ai)(1 − Bi)Ci we have
(Z1, . . . , Zk) = (Wi, 1 ≤ i ≤ n+m : Li = 0), and (Zk+1, . . . , Zn+m) = (Wi, 1 ≤ i ≤ n+m :
Li = 1) with (Wi, Li)1≤i≤n+m i.i.d., Li ∼ B(1 − (1 − πA)(1 − πB)πC) and Wi | Li = 0 ∼ f0

and Wi | Li = 1 ∼ (1 − π)f0 + πf1, for some π ∈ (0, 1). Also, the knowledge of the samples
(Z1, . . . , Zk) and (Zk+1, . . . , Zn+m) is equivalent to the knowledge of (Wi, Li)1≤i≤n+m. This
means that, under Assumption 11, the score function (2.7) is based on (Wi, Li)1≤i≤n+m, which
is a standard classification setting where the covariates and labels are jointly i.i.d..

A.6 Details of simulation studies in Section 6

A.6.1 Methods

First, we describe the score functions used in each version of AdaDetect.

• AdaDetect oracle: the oracle score function r defined in (2.19).

• AdaDetect parametric and AdaDetect KDE: g(x) = f̂γ(x)/f̂0(x), where f̂γ is a density
estimator of fγ (2.18) computed on mixed sample (Zk+1, . . . , Zn+m) and f̂0 is a den-
sity estimator of f0 based on (Z1, . . . , Zk). For AdaDetect parametric, f̂0 is estimated
by the Ledoit-Wolf method and f̂γ is estimated by a two-component mixture of Gaus-
sians via an expectation-maximization (EM) algorithm with 100 random restarts. For
AdaDetect KDE, they are given by non-parametric Gaussian kernel density estimators
(KDE).

• AdaDetect SVM: ĝ is obtained by minimizing the empirical risk (2.24) with the hinge
loss, λ = 1 and a suitable regularization with the cost parameter C set to 1; see Hastie
et al. (2009).

• AdaDetect RF: ĝ is obtained by random forest with the maximum depth 10;

• AdaDetect NN: ĝ is obtained by minimizing the cross entropy loss (2.24) with λ = 1
and the NN function class with 1 hidden layer, 100 neurons, and the ReLU activation
function.

• AdaDetect NN cv: AdaDetect NN with the number of hidden layers and the number of
neurons per layer chosen by the cross-validation procedure described in Section 2.4.5.

They are compared to several existing methods:

• SC parametric and SC KDE: the procedure of Sun and Cai (2007) based on local FDR
estimates `i = π̂0f̂0(Xi)/f̂(Xi), where the densities are estimated by the same methods
for AdaDetect parametric and SC KDE, respectively, except that f̂0 is based on the
whole NTS Y = (Y1, . . . , Yn) and f̂ is only based on the test sample X = (X1, . . . , Xm).
We set π̂0 = 1 for a fair comparison with the non-adaptive versions of AdaDetect;

• CAD SVM and CAD IForest: the conformal anomaly detection procedure proposed by
Bates et al. (2023) based on one-class SVM and Isolation Forest, respectively.
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A.6.2 Additional experiments with varying k and `

To examine the effect of k and `, we study the performance of AdaDetect RF with AdaDetect
oracle in the simple setting where P0 = N (0, Id) and P1 = N (µ, Id) with d = 4 and µ =
(
√

2, . . . ,
√

2).
Figure A.1a presents the results for k = m = 1000 and varying `. Interestingly, the TDR

is not monotone in `. This is because a small ` makes p-value inaccurate while a large ` dilutes
the signal in the mixed sample (Xk+1, . . . , Xm+n) and degrades the quality of classification-
based score function.

For ` = m = 1000 and varying values of k, a similar pattern is observed in Figure A.1b.
This suggests that an imbalanced classification problem may arise due to the presence of
extreme values of k.

(a) (b)

Figure A.1: FDR and TDR as a function of ` (panel (a)) and k (panel (b)). The dashed line
indicates the nominal level.

A.6.3 Additional experiments with varying n, m, and m1

In this section, we report results for additional experiments in more challenging settings for
AdaDetect.

• Small sample sizes: m = 200, with k = 4m and ` = m as before. The results are
reported in Table A.1.

• Small null sample sizes with n < m: n = m/2, with k = m/4 and ` = m/4. The results
are reported in Table A.2.

• Sparse novelties: we set m1/m = 2%, with m = 1000, k = 4m and ` = m as before.
The results are reported in Table A.3.

As in Section 2.6.2, we set the target FDR level α = 0.1 and report the mean value and the
standard deviation (in brackets) over 100 runs. We only highlight in bold the best-performing
method if its FDR is below α.
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Table A.1: Same as Table 2.3 for m = 200 (k = 4m, ` = m).

Shuttle Credit card KDDCup99 Mammography Musk MNIST

FDR

CAD SVM 0.04 (0.09) 0.00 (0.00) 0.00 (0.00) 0.02 (0.09) 0.00 (0.00) 0.00 (0.00)
CAD IForest 0.07 (0.10) 0.05 (0.08) 0.07 (0.11) 0.01 (0.06) 0.00 (0.00) 0.00 (0.00)
AdaDetect parametric 0.03 (0.09) 0.00 (0.00) 0.00 (0.00) 0.01 (0.08) 0.00 (0.00) 0.00 (0.00)
AdaDetect KDE 0.05 (0.10) 0.01 (0.05) 0.00 (0.00) 0.02 (0.06) 0.00 (0.00) 0.00 (0.00)
AdaDetect SVM 0.04 (0.10) 0.02 (0.07) 0.01 (0.04) 0.01 (0.06) 0.00 (0.00) 0.01 (0.03)
AdaDetect RF 0.07 (0.09) 0.07 (0.09) 0.08 (0.09) 0.05 (0.11) 0.00 (0.00) 0.02 (0.12)
AdaDetect NN 0.05 (0.09) 0.06 (0.09) 0.06 (0.14) 0.03 (0.09) 0.01 (0.10) 0.02 (0.10)
AdaDetect cv NN 0.05 (0.08) 0.06 (0.08) 0.05 (0.11) 0.04 (0.10) 0.01 (0.10) 0.00 (0.00)
CAD SVDD + CNN - - - - - 0.01 (0.07)
AdaDetect CNN - - - - - 0.01 (0.10)

TDR

CAD SVM 0.12 (0.22) 0.00 (0.00) 0.00 (0.00) 0.03 (0.10) 0.00 (0.00) 0.00 (0.00)
CAD IForest 0.28 (0.28) 0.25 (0.32) 0.42 (0.47) 0.02 (0.11) 0.00 (0.00) 0.00 (0.00)
AdaDetect parametric 0.13 (0.25) 0.00 (0.00) 0.00 (0.00) 0.01 (0.07) 0.00 (0.00) 0.00 (0.00)
AdaDetect KDE 0.22 (0.33) 0.01 (0.07) 0.00 (0.00) 0.06 (0.17) 0.00 (0.00) 0.00 (0.00)
AdaDetect SVM 0.16 (0.26) 0.03 (0.11) 0.06 (0.21) 0.01 (0.05) 0.00 (0.00) 0.02 (0.11)
AdaDetect RF 0.57 (0.30) 0.71 (0.21) 0.97 (0.04) 0.11 (0.21) 0.00 (0.00) 0.00 (0.01)
AdaDetect NN 0.31 (0.35) 0.46 (0.34) 0.28 (0.40) 0.07 (0.19) 0.00 (0.00) 0.01(0.05)
AdaDetect cv NN 0.28 (0.36) 0.47 (0.33) 0.31 (0.39) 0.10 (0.22) 0.00 (0.00) 0.00 (0.00)
CAD SVDD + CNN - - - - - 0.00 (0.02)
AdaDetect CNN - - - - - 0.02 (0.10)

Table A.2: Same as Table 2.3 for n = m/2 (k = m/4, ` = m/4).

Shuttle Credit card KDDCup99 Mammography Musk MNIST

FDR

CAD SVM 0.03 (0.06) 0.00 (0.00) 0.00 (0.00) 0.02 (0.08) 0.00 (0.00) 0.00 (0.00)
CAD IForest 0.05 (0.07) 0.04 (0.07) 0.04 (0.07) 0.01 (0.06) 0.00 (0.00) 0.00 (0.00)
AdaDetect parametric 0.03 (0.05) 0.00 (0.00) 0.00 (0.00) 0.23 (0.39) 0.00 (0.00) 0.00 (0.00)
AdaDetect KDE 0.05 (0.08) 0.01 (0.07) 0.00 (0.00) 0.04 (0.09) 0.00 (0.00) 0.00 (0.00)
AdaDetect SVM 0.06 (0.07) 0.03 (0.06) 0.00 (0.04) 0.00 (0.04) 0.00 (0.00) 0.00 (0.00)
AdaDetect RF 0.07 (0.06) 0.07 (0.06) 0.08 (0.06) 0.05 (0.09) 0.00 (0.00) 0.00 (0.00)
AdaDetect NN 0.05 (0.06) 0.06 (0.07) 0.01 (0.05) 0.05 (0.08) 0.01 (0.10) 0.00 (0.00)
AdaDetect cv NN 0.05 (0.07) 0.04 (0.08) 0.02 (0.06) 0.04 (0.08) 0.02 (0.14) 0.00 (0.00)
CAD SVDD + CNN - - - - - 0.03 (0.03)
AdaDetect CNN - - - - - 0.03 (0.09)

TDR

CAD SVM 0.07 (0.16) 0.00 (0.00) 0.00 (0.00) 0.02 (0.08) 0.00 (0.00) 0.00 (0.00)
CAD IForest 0.22 (0.24) 0.20 (0.29) 0.34 (0.46) 0.01 (0.07) 0.00 (0.00) 0.00 (0.00)
AdaDetect parametric 0.12 (0.23) 0.00 (0.00) 0.00 (0.00) 0.05 (0.09) 0.00 (0.00) 0.00 (0.00)
AdaDetect KDE 0.19 (0.30) 0.01 (0.06) 0.00 (0.00) 0.07 (0.16) 0.00 (0.00) 0.00 (0.00)
AdaDetect SVM 0.47 (0.29) 0.20 (0.32) 0.00 (0.02) 0.00 (0.03) 0.00 (0.00) 0.00 (0.00)
AdaDetect RF 0.66 (0.20) 0.72 (0.16) 0.98 (0.02) 0.11 (0.18) 0.00 (0.00) 0.00 (0.00)
AdaDetect NN 0.30 (0.36) 0.39 (0.35) 0.07 (0.24) 0.16 (0.22) 0.00 (0.00) 0.00 (0.00)
AdaDetect cv NN 0.30 (0.36) 0.21 (0.31) 0.09 (0.27) 0.13 (0.21) 0.00 (0.00) 0.00 (0.00)
CAD SVDD + CNN - - - - - 0.03 (0.03)
AdaDetect CNN - - - - - 0.06 (0.17)

Table A.3: Same as Table 2.3 for m1/m = 2% (k = 4m, ` = m).

Shuttle Credit card KDDCup99 Mammography Musk MNIST

FDR

CAD SVM 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
CAD IForest 0.05 (0.11) 0.03 (0.11) 0.03 (0.08) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
AdaDetect parametric 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
AdaDetect KDE 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
AdaDetect SVM 0.03 (0.09) 0.03 (0.08) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
AdaDetect RF 0.09 (0.10) 0.07 (0.09) 0.08 (0.08) 0.03 (0.11) 0.00 (0.00) 0.00 (0.00)
AdaDetect NN 0.06 (0.12) 0.06 (0.10) 0.03 (0.07) 0.03 (0.09) 0.00 (0.00) 0.00 (0.00)
AdaDetect cv NN 0.04 (0.10) 0.05 (0.09) 0.02 (0.05) 0.02 (0.09) 0.00 (0.00) 0.00 (0.00)
CAD SVDD + CNN - - - - - 0.01 (0.10)
AdaDetect CNN - - - - - 0.02 (0.14)

TDR

CAD SVM 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
CAD IForest 0.10 (0.20) 0.04 (0.13) 0.13 (0.31) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
AdaDetect parametric 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
AdaDetect KDE 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
AdaDetect SVM 0.10 (0.27) 0.11 (0.26) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
AdaDetect RF 0.60 (0.29) 0.64 (0.27) 0.98 (0.03) 0.05 (0.14) 0.00 (0.00) 0.00 (0.00)
AdaDetect NN 0.12 (0.24) 0.38 (0.34) 0.22 (0.38) 0.04 (0.13) 0.00 (0.00) 0.00 (0.00)
AdaDetect cv NN 0.08 (0.21) 0.37 (0.35) 0.18 (0.36) 0.03 (0.11) 0.00 (0.00) 0.00 (0.00)
CAD SVDD + CNN - - - - - 0.01 (0.09)
AdaDetect CNN - - - - - 0.01 (0.07)
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A.7 Additional experimental results for the astronomy appli-
cation

In this section, we provide more results for more settings. Recall that, for each experiment, we
sample n nonvariable stars from as the NTS along with m1 variable stars and m0 = m−m1

additional nonvariable stars as the test sample. For all experiments, we set m = 100.
First, we show how TDR varies with sparsity measured by m1. Figure A.2 presents the

TDR for m1 ∈ {5, 15, 40, 90} with different target FDR levels shown in the title of each panel.
When α is low, the left two panels show that AdaDetect RF substantially outperforms the
other methods. When the novelties are sparse, the panels in the middle column shows that
AdaDetect RF still performs well when α = 0.2 but underperforms when α = 0.5, though
α = 0.5 is arguably less relevant in practice. When the novelties are dense, the right panels
show that AdaDetect with adaptive scores outperform AdaDetect with non-adaptive scores
when α = 0.05 and they are nearly indistinguishable when α = 0.5.
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Figure A.2: TDR for different sparsity regimes: see m1 and α in the titles. In all plots
m = 100.

Next, we compare the FDR and TDR of AdaDetect KDE and Empirical BH with both
m1 and n varying in Figure A.3. For the purpose of visualization, we only show the point
estimates of FDR and TDR without uncertainty measures. The left column shows that both
methods control the FDR, though AdaDetect KDE is generally less conservative. The right
column shows that AdaDetect KDE almost always has a higher power and it starts to reject
at a higher sparsity level. An interesting observation is that the power of AdaDetect KDE is
decreasing in n when the novelties are sparse (e.g., m1 ≈ 40). This can be explained by the
fact that the ‘contamination’ of the NTS increases with increasing n, leading to a more noisy
estimation of the test statistic.
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Figure A.3: FDR (left column) and TDR (right column) for AdaDetect KDE (top row) and
Empirical BH (bottom row). In all plots m = 100 and α = 0.05.
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B.1 Proof of Theorems 16 and 17

B.1.1 A general result

In this section, we establish a general result, from which Theorems 16 and 17 can be deduced.
It provides non-asymptotic bounds on the mFMR and the FMR of the plug-in procedure and
on its average selection number, by relying only on Assumption 6. To state the result, we
introduce some additional quantities measuring the regularity of the model which will appear
in our remainder terms. Recall definitions (3.4), (3.5) and (3.13) of `q(X, θ), T (X, θ) and
t∗(α) respectively, and let for ε, δ, v > 0,

W`(ε) = sup

{
sup
x∈Rd

[
max

1≤q≤Q
|`q(x, θ∗)− `q(x, θ)|

]
, ‖θ − θ∗‖2 ≤ ε, θ ∈ Θ

}
; (B.1)

WT (δ) = sup{|Pθ*(T (X, θ∗) < t′)− Pθ*(T (X, θ∗) < t)| , (B.2)
t, t′ ∈ [0, 1], |t′ − t| ≤ δ}; (B.3)

Ψ(ε) =WT (W`(ε)
1/2) +W`(ε)

1/2; (B.4)
Wt∗,α(v) = sup {|t∗(α+ β)− t∗(α)| , |β| ≤ v} . (B.5)

Theorem 31. Let Assumption 6 be true. For any α ∈ (αc, ᾱ) and constants s∗ = s∗(α, θ∗) ∈
(0, 1) and e∗ = e(α, θ∗) > 0 depending only on α and θ∗, the following holds. Consider the
plug-in procedure Ĉ

PI

α = (ẐPI, ŜPI
α ) introduced in Algorithm 4 and based on an estimator θ̂

satisfying Assumption 10, with η(ε, θ∗) defined by (3.18). Then for ε ≤ e∗ and n ≥ (2e)3,
letting

∆n(ε) = 2 (WT (Wt∗,α(2δn + 8Ψ(ε)/s∗)) + 4Ψ(ε) + 2δn) ,

for δn = C
√

(log n)/n/s∗ where C = 2 + 56Q
√

V + 28Q2
√

V − and with the quantities WT ,
W`, Ψ, Wt∗,α defined by (B.3), (B.1), (B.4), (B.5), respectively, it holds:

• The procedure Ĉ
PI

α controls both the FMR and the mFMR at level close to α in the
following sense:

FMR(Ĉ
PI

α ) ≤ α+ ∆n(ε)/s∗ + 5/n2 + η(ε, θ∗);

mFMR(Ĉ
PI

α ) ≤ α+ ∆n(ε)/s∗ + s∗−1
[
50/n2 + 10η(ε, θ∗)

]
.
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• The procedure Ĉ
PI

α is nearly optimal in the following sense: for any other procedure
C = (Ẑ, S) that controls the mFMR at level α,

n−1 Eθ∗(|ŜPI
α |) ≥ n−1 Eθ∗(|S|)−∆n(ε).

Before proving this result (which will be done in the next subsections), let us first show
that Theorem 31 implies Theorems 16 and 17.

Proof of Theorem 16 By Lemma 32 below, ∆n(ε) tends to 0 when n tends to infinity and
ε tends to 0. Moreover, by consistency of θ̂, η(ε, θ∗) tends to 0 for all ε > 0. This implies the
result.

Lemma 32. Under Assumption 6, we have limδ→0WT (δ) = 0, limv→0Wt∗,α(v) = 0. Under
Assumption 7, we have limε→0W`(ε) = 0. Under both assumptions, we have limε→0 Ψ(ε) = 0.

Proof. The only non-trivial fact is for Wt∗,α(v). Assumption 6 and Lemma 36 provide that
t 7→ mFMR∗t is a one-to-one continuous increasing map from (t∗(αc), t

∗(ᾱ)) to (αc, ᾱ). Hence,
for α ∈ (αc, ᾱ), β 7→ t∗(α+ β) is continuous in 0 and limv→0Wt∗,α(v) = 0.

Proof of Theorem 17 By using Assumption 8 (with the notation therein) and Lemma 33
below, we have

∆n(ε) = 2 (WT (Wt∗,α(2δn + 8Ψ(ε)/s∗)) + 4Ψ(ε) + 2δn)

≤ 2C2C3

(
2δn + (8/s∗)

√
C1(C2 + 1)

√
ε
)

+ 8
√
C1(C2 + 1)

√
ε+ 4δn

= 8
√
C1(C2 + 1)(1 + 2C2C3)

√
ε/s∗ + 4(C2C3 + 1)C

√
log n/n/s∗,

because s∗ ≤ 1 and by definition of δn. This gives (3.19) and (3.20) with A = 8
√
C1(C2 +

1)(1 + 2C2C3)/s∗2 and B = 4(C2C3 + 1)C/s∗2.

Lemma 33. Under Assumption 8, we have W`(ε) ≤ C1ε, WT (δ) ≤ C2δ, Wt∗,α(v) ≤ C3v and
Ψ(ε) ≤

√
C1(C2 + 1)

√
ε for ε, δ, v small enough.

B.1.2 An optimal procedure

We consider in this section the procedure that serves as an optimal procedure in our theory.
For t ∈ [0, 1], let C∗t = (Ẑ∗, S∗t ) be the procedure using the Bayes clustering Ẑ∗ (3.6) and the
selection rule S∗t = {i ∈ {1, . . . , n} : T ∗i < t}. Let us consider the map t ∈ [0, 1] 7→ mFMR(C∗t )
and note that mFMR(C∗t ) = mFMR∗t as defined by (3.12). Lemma 36 below provides the key
properties for this function.

Definition 6. The optimal procedure at level α is defined by C∗t∗(α) where t∗(α) is defined by
(3.13).

Note that the optimal procedure is not the same as the oracle procedure defined in Sec-
tion 3.3.1, although these two procedures are expected to behave roughly in the same way (at
least for a large n).

Under Assumption 6, Lemma 36 entails that, for α > αc, mFMR(C∗t∗(α)) ≤ α. Hence,
C∗t∗(α) controls the mFMR at level α. In addition, it is optimal in the following sense: any
other mFMR controlling procedure should select less items than C∗t∗(α).

Lemma 34 (Optimality of C∗t∗(α)). Let Assumption 6 be true and choose α ∈ (αc, ᾱ]. Then
the oracle procedure C∗t∗(α) = (Ẑ∗, S∗t∗(α)) satisfies the following:
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(i) mFMR(C∗t∗(α)) = α;

(ii) for any procedure C = (Ẑ, S) such that mFMR(C) ≤ α, we have Eθ∗(|S|) ≤ Eθ∗(|S∗t∗(α)|).

B.1.3 Preliminary steps for proving Theorem 31

To keep the main proof concise, we need to define several additional notation. Let for t ∈ [0, 1]
and θ ∈ Θ (recall (3.5))

L̂0(θ, t) =
1

n

n∑
i=1

T (Xi, θ)1T (Xi,θ)<t; (B.6)

L̂1(θ, t) =
1

n

n∑
i=1

1T (Xi,θ)<t . (B.7)

Denote L̂ = L̂0/L̂1, L0 = Eθ∗ L̂0, L1 = Eθ∗ L̂1, L = L0/L1 (with the convention 0/0 = 0).
Note that for any α > αc, the mFMR of the optimal procedure C∗t∗(α) defined in Section B.1.2
is given by mFMR(C∗t∗(α)) = L(θ∗, t∗(α)) = α.

Also, we denote from now on `∗i,q = Pθ*(Zi = q|Xi) for short and introduce for any
parameter θ ∈ Θ (recall (3.4) and (3.5))

q̄(Xi, θ) ∈ argmax
q∈{1,...,Q}

`q(Xi, θ), 1 ≤ i ≤ n; (B.8)

U(Xi, θ) = 1− `∗i,q̄(Xi,θ), 1 ≤ i ≤ n; (B.9)

M̂0(θ, t) =
1

n

n∑
i=1

U(Xi, θ)1T (Xi,θ)<t, t ∈ [0, 1], (B.10)

Note that M̂0(θ∗, t) = L̂0(θ∗, t) but in general M̂0(θ, t) is different from L̂0(θ, t). We denote
M̂ = M̂0/L̂1, M0 = Eθ∗ M̂0 and M = M0/L1 (with the convention 0/0 = 0).

When α ∈ (αc, ᾱ] (recall (3.14) and (3.15)), we also let

s∗ = s∗(α, θ∗) = n−1 Eθ∗
(
|S∗
t∗(α+αc

2
)
|
)

= L1(θ∗, t∗((α+ αc)/2)) > 0. (B.11)

We easily see that the latter is positive: if it was zero then S∗t∗((α+αc)/2)) would be empty
which would entails that mFMR(C∗t∗((α+αc)/2)) is zero. This is excluded by definition (3.14)
of αc because (α+ αc)/2 > αc.

Also, we are going to extensively use the event

Ωε =

{
min
σ∈[Q]

‖θ̂σ − θ∗‖2 < ε

}
.

On this event, we fix any permutation σ ∈ [Q] (possibly depending on X) such that ‖θ̂σ −
θ∗‖2 < ε. Now using Lemma 37, the plug-in selection rule can be rewritten as ŜPI

α = {i ∈
{1, . . . , n} : T̂i < t̂(α)} (denoted by Ŝ in the sequel for short), where

t̂(α) = sup{t ∈ [0, 1] : L̂(θ̂, t) ≤ α}. (B.12)

With the above notation, we can upper bound what is inside the brackets of FMR(Ĉ
PI

)

and mFMR(Ĉ
PI

) as follows.
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Lemma 35. For the permutation σ in Ωε realizing ‖θ̂σ − θ∗‖2 < ε, we have on the event Ωε

the following relations:

|Ŝ| = L̂1(θ̂σ, t̂(α));

min
σ′∈[Q]

Eθ∗
(
ε
Ŝ

(σ′(Ẑ),Z)

∣∣∣∣X) ≤ M̂0(θ̂σ, t̂(α));

min
σ′∈[Q]

Eθ∗
(
ε
Ŝ

(σ′(Ẑ),Z)

max(|Ŝ|, 1)

∣∣∣∣X
)
≤ M̂(θ̂σ, t̂(α)).

Finally, we make use of the concentration of the empirical processes L̂0(θ, t), L̂1(θ, t), and
M̂0(θ, t), uniformly with respect to θ ∈ D (where D is defined in Assumption 10). Thus, we
define the following events, for δ > 0 (recall s∗ defined by (B.11)):

Γ0,δ,t =

{
sup
θ∈D

∣∣∣L̂0(θ, t)− L0(θ, t)
∣∣∣ ≤ δ} ;

Γ1,δ,t =

{
sup
θ∈D

∣∣∣L̂1(θ, t)− L1(θ, t)
∣∣∣ ≤ δ} ;

Γδ,t =

 sup
θ∈D,

L1(θ,t)≥s∗

∣∣∣L̂(θ, t)− L(θ, t)
∣∣∣ ≤ δ

 ;

Υ0,δ,t =

{
sup
θ∈D

∣∣∣M̂0(θ, t)−M0(θ, t)
∣∣∣ ≤ δ} .

Note that the following holds:

Γ0,δs∗/2,t ∩ Γ1,δs∗/2,t ⊂ Γδ,t. (B.13)

Indeed, on the event Γ0,δs∗/2,t ∩ Γ1,δs∗/2,t, provided that L1(θ, t) ≥ s∗, we have∣∣∣∣∣ L̂0(θ, t)

L̂1(θ, t)
− L0(θ, t)

L1(θ, t)

∣∣∣∣∣
≤

∣∣∣∣∣L0(θ, t)− L̂0(θ, t)

L1(θ, t)

∣∣∣∣∣+ L̂0(θ, t)

∣∣∣∣∣ 1

L̂1(θ, t)
− 1

L1(θ, t)

∣∣∣∣∣
≤ (δs∗/2)/s∗ + (δs∗/2)/s∗ = δ,

because L̂0(θ, t) ≤ L̂1(θ, t). This proves the desired inclusion.

B.1.4 Proof of Theorem 31

Let us now provide a proof for Theorem 31.

Step 1: bounding t̂(α) w.r.t. t∗(α) Recall (3.13), (B.12) and (B.11). In this part, we
only consider realizations on the event Ωε. Let β ∈ [2α+αc

3 , α+ᾱ
2 ]. By Lemma 38, we have

L1(θ̂σ, t∗(β)) ≥ L1(θ∗, t∗(β))−Ψ(‖θ̂σ − θ∗‖2) ≥ L1(θ∗, t∗((2α+ αc)/3))−Ψ(ε),

because t∗(β) ≥ t∗(2α+αc
3 ) since t∗(·) is non decreasing by Lemma 36. Hence L1(θ̂σ, t∗(β)) ≥

s∗ for ε smaller than a threshold only depending on θ∗ and α. Hence, we have on Γδ,t∗(β) that

L(θ̂σ, t∗(β))− δ ≤ L̂(θ̂σ, t∗(β)) ≤ δ + L(θ̂σ, t∗(β)).
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By using again Lemma 38, we have

L(θ∗, t∗(β))− 3Ψ(ε)/s∗ ≤ L(θ̂σ, t∗(β)) ≤ L(θ∗, t∗(β)) + 3Ψ(ε)/s∗.

Given that L(θ∗, t∗(β)) = mFMR(C∗t∗(β)) = β (see Lemma 34 (i)), it follows that for γ =

γ(ε, δ) = δ + 4Ψ(ε)/s∗, on the event Γδ,t∗(α−γ) ∩ Γδ,t∗(α+γ),

L̂(θ̂σ, t∗(α− γ)) ≤ α, L̂(θ̂σ, t∗(α+ γ)) > α,

where we indeed check that α − γ ≥ 2α+αc
3 and α + γ ≤ α+ᾱ

2 for δ and ε smaller than some
threshold only depending on θ∗ and α. In a nutshell, we have established

Γδ,t∗(α−γ) ∩ Γδ,t∗(α+γ) ∩ Ωε ⊂
{
t∗(α− γ) ≤ t̂(α) ≤ t∗(α+ γ)

}
. (B.14)

Step 2: upper-bounding the FMR Let us consider the event

Λα,δ,ε := Γ0,δs∗/2,t∗(α−γ) ∩ Γ1,δs∗/2,t∗(α−γ) ∩ Γ0,δs∗/2,t∗(α+γ)

∩ Γ1,δs∗/2,t∗(α+γ) ∩Υ0,δ,t∗(α+γ) ∩ Ωε,

where the different events have been defined in the previous section.
Let us prove (3.19). By using Lemma 35 and (B.14),

FMR(Ĉ) ≤ Eθ∗ [M̂(θ̂σ, t̂(α))1Λα,δ,ε ] + P((Λα,δ,ε)
c)

≤ Eθ∗
[
M̂0(θ̂σ, t∗(α+ γ))

L̂1(θ̂σ, t∗(α− γ))
1Λα,δ,ε

]
+ P((Λα,δ,ε)

c).

Now using a concentration argument on the event Λα,δ,ε ⊂ Γ1,δ,t∗(α−γ) ∩Υ0,δ,t∗(α+γ), we have

FMR(Ĉ) ≤ Eθ∗
[
M0(θ̂σ, t∗(α+ γ)) + δ

L1(θ̂σ, t∗(α− γ))− δ
1Λα,δ,ε

]
+ P((Λα,δ,ε)

c)

≤ M0(θ∗, t∗(α+ γ)) + 3Ψ(ε) + δ

L1(θ∗, t∗(α− γ))−Ψ(ε)− δ
+ P((Λα,δ,ε)

c)

=
L0(θ∗, t∗(α+ γ)) + 3Ψ(ε) + δ

L1(θ∗, t∗(α− γ))−Ψ(ε)− δ
+ P((Λα,δ,ε)

c), (B.15)

by using Lemma 38 and that M0(θ∗, t) = L0(θ∗, t) for all t by definition. Now, using again
Lemma 38, we have

L0(θ∗, t∗(α+ γ)) ≤ L0(θ∗, t∗(α− γ)) +WT (t∗(α+ γ)− t∗(α− γ))

≤ L0(θ∗, t∗(α− γ)) +WT (Wt∗,α(2γ))

This entails

FMR(Ĉ) ≤ L0(θ∗, t∗(α− γ)) +WT (Wt∗,α(2γ)) + 3Ψ(ε) + δ

L1(θ∗, t∗(α− γ))−Ψ(ε)− δ
+ P((Λα,δ,ε)

c)

≤ L0(θ∗, t∗(α− γ))

L1(θ∗, t∗(α− γ))−Ψ(ε)− δ
+ (s∗/2)−1 (WT (Wt∗,α(2γ)) + 3Ψ(ε) + δ) + P((Λα,δ,ε)

c),
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by choosing ε, δ smaller than a threshold (only depending on θ∗ and α) so that L1(θ∗, t∗(α−
γ))−Ψ(ε)− δ ≥ s∗/2. Now using L0(θ∗, t∗(α− γ)) = (α− γ)L1(θ∗, t∗(α− γ)), we have

L0(θ∗, t∗(α− γ))

L1(θ∗, t∗(α− γ))−Ψ(ε)− δ
= (α− γ)

(
1 +

Ψ(ε) + δ

L1(θ∗, t∗(α− γ))−Ψ(ε)− δ

)
≤ α

(
1 + (s∗/2)−1(Ψ(ε) + δ)

)
.

This leads to

FMR(Ĉ) ≤ α+ (2/s∗) [WT (Wt∗,α(2δ + 8Ψ(ε)/s∗)) + 4Ψ(ε) + 2δ] + P((Λα,δ,ε)
c),

which holds true for δ, ε smaller than a threshold only depending on θ∗ and α.

Step 3: upper-bounding the mFMR We apply a similar technique as for step 2. By
using Lemma 35 and (B.14),

mFMR(Ĉ) ≤
Eθ∗ [M̂0(θ̂σ, t̂(α))1Λα,δ,ε ] + P((Λα,δ,ε)

c)

Eθ∗ [L̂1(θ̂σ, t̂(α))1Λα,δ,ε ]

≤
Eθ∗ [M̂0(θ̂σ, t∗(α+ γ))1Λα,δ,ε ] + P((Λα,δ,ε)

c)

Eθ∗ [L̂1(θ̂σ, t∗(α− γ))1Λα,δ,ε ]
.

Now using a concentration argument on Λα,δ,ε ⊂ Γ1,δ,t∗(α−γ) ∩Υ0,δ,t∗(α+γ), we have

mFMR(Ĉ) ≤
Eθ∗ [(M0(θ̂σ, t∗(α+ γ)) + δ)1Λα,δ,ε ] + P((Λα,δ,ε)

c)

Eθ∗ [(L1(θ̂σ, t∗(α− γ))− δ)1Λα,δ,ε ]

≤
M0(θ∗, t∗(α+ γ)) + 3Ψ(ε) + δ + P((Λα,δ,ε)

c)

L1(θ∗, t∗(α− γ))−Ψ(ε)− δ − P((Λα,δ,ε)c)

=
L0(θ∗, t∗(α+ γ)) + 3Ψ(ε) + δ + P((Λα,δ,ε)

c)

L1(θ∗, t∗(α− γ))−Ψ(ε)− δ − P((Λα,δ,ε)c)
,

by using Lemma 38 and that M0(θ∗, t) = L0(θ∗, t) by definition. Letting x = L0(θ∗, t∗(α +
γ)) + 3Ψ(ε) + δ, y = L1(θ∗, t∗(α− γ))−Ψ(ε)− δ and u = P((Λα,δ,ε)

c), we have obtained the
bound (x+ u)/(y − u), which has to be compared with the FMR bound (B.15), which reads
x/y + u. Now, when y ∈ [0, 1], x ≥ 0, x/y ≤ 2, u/y ≤ 1/2, y − u ≥ s∗/2, we have

(x+ u)/(y − u) ≤ x/y

1− u/y
+ (2/s∗)u ≤ x/y(1 + 2u/y) + (2/s∗)u ≤ x/y + (10/s∗)u.

As a result, for ε, δ small enough, and P((Λα,δ,ε)
c) ≤ s∗/4, we obtain the same bound as for

the FMR, with P((Λα,δ,ε)
c) replaced by (10/s∗)P((Λα,δ,ε)

c).

Step 4: lower-bounding the selection rate In Step 3, when bounding the mFMR, we
derived a lower bound for the denominator of the mFMR, that is, Eθ∗(|Ŝ|). It reads

n−1 Eθ∗(|Ŝ|) ≥ L1(θ∗, t∗(α− γ))−Ψ(ε)− δ − P((Λα,δ,ε)
c)

≥ L1(θ∗, t∗(α))−WT (t∗(α)− t∗(α− γ))−Ψ(ε)− δ − P((Λα,δ,ε)
c)

≥ n−1 Eθ∗(|S∗t∗(α)|)−WT (Wt∗,α(γ))−Ψ(ε)− δ − P((Λα,δ,ε)
c),

by using (B.3) and (B.5). Now consider another procedure C = (Ẑ, S) that controls the mFMR
at level α, that is, mFMR(C) ≤ α. By Lemma 34, we then have Eθ∗(|S∗t∗(α)|) ≥ Eθ∗(|S|).
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Step 5: concentration Finally, we bound P((Λα,δ,ε)
c) by using Lemma 39 with x = (1 +

2c)
√

logn
n (with c defined in Lemma 39). This gives for δ = 2x/s∗, and n ≥ (2e)3

P((Λα,δ,ε)
c) ≤ 5/n2 + P(Ωc

ε).

B.2 Proofs of lemmas

Proof of Lemma 13 The clustering risk of Ẑ is given by

R(Ẑ) = Eθ∗
(

min
σ∈[Q]

Eθ∗
(
n−1

n∑
i=1

1{Zi 6= σ(Ẑi)}
∣∣∣∣X
))

= Eθ∗
(

min
σ∈[Q]

n−1
n∑
i=1

Pθ*(Zi 6= σ(Ẑi) |X)

)

≥ Eθ∗
(

min
Ẑ

n−1
n∑
i=1

Pθ*(Zi 6= Ẑi |X)

)
,

where, by independence, the minimum in the lower bound is achieved for the Bayes clustering.
Thus, R(Ẑ) ≥ n−1

∑n
i=1 Eθ∗(T ∗i ). Moreover, n−1

∑n
i=1 Eθ∗(T ∗i ) ≥ R(Ẑ∗), since

R(Ẑ∗) = Eθ∗
(

min
σ∈[Q]

n−1
n∑
i=1

Pθ*(Zi 6= σ(Ẑ∗i ) |X)

)

≤ Eθ∗
(
n−1

n∑
i=1

Pθ*(Zi 6= Ẑ∗i |X)

)
.

Thus, min
Ẑ
R(Ẑ) = R(Ẑ∗) and the proof is completed.

Proof of Lemma 14 Following the reasoning of the proof of Lemma 13, we have

FMRθ∗(C) = Eθ∗
(

min
σ∈[Q]

Eθ∗
(∑

i∈S 1{Zi 6= σ(Ẑ∗i )}
max(|S|, 1)

∣∣∣∣X
))

= Eθ∗
( ∑

i∈S T
∗
i

max(|S|, 1)

)
.

Proof of Lemma 15 By definition, we have

FMR(Ĉ
PI

α ) = Eθ∗

min
σ∈[Q]

Eθ∗

∑n
i=1 1Zi 6=σ(ẐPI

i (X)) 1{i ∈ Ŝ
PI(X)}

max(|ŜPI(X)|, 1)

∣∣∣∣X
 ,

so that (3.9) follows by a direct integration w.r.t. the latent variable Z.

Proof of Lemma 34 By Lemma 36, we have that mFMR(C∗t ) is monotonous in t and
continuous w.r.t. t on (t∗(αc), 1], thus for α ∈ (αc, ᾱ], mFMR(C∗t∗(α)) = α which gives (i). For
(ii), let C = (Ẑ, S) be a procedure such that mFMR(C) ≤ α. Let us consider the procedure
C′ with the Bayes clustering Ẑ∗ and the same selection rule S. Since C′ is based on a Bayes
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clustering, by the same reasoning leading to R(Ẑ∗) ≤ R(Ẑ) in Section 3.3.1, we have that
mFMR(C′) ≤ mFMR(C) ≤ α with

mFMR(C′) =
Eθ∗

(∑
i∈S T

∗
i

)
Eθ∗(|S|)

.

Hence,

Eθ∗
(∑
i∈S

T ∗i

)
≤ αEθ∗(|S|). (B.16)

Now we use an argument similar to the proof of Theorem 1 in Cai et al. (2019). By definition
of S∗t∗(α), we have that

n∑
i=1

(
1i∈S∗

t∗(α)(X)−1i∈S(X)

)
(T ∗i − t∗(α)) ≤ 0

which we can rewrite as
n∑
i=1

(
1i∈S∗

t∗(α)(X)−1i∈S(X)

)
(T ∗i − t∗(α) + α− α) ≤ 0

and so

Eθ∗
(

n∑
i=1

(
1i∈S∗

t∗(α)(X)−1i∈S(X)

)
(T ∗i − α)

)

≤ (t∗(α)− α)Eθ∗
(

n∑
i=1

(
1i∈S∗

t∗(α)(X)−1i∈S(X)

))
= (t∗(α)− α)(Eθ∗(|S∗t∗(α)|)− Eθ∗(|S|)).

On the other hand, mFMR(C∗t∗(α)) = α together with (B.16) implies that

Eθ∗
(

n∑
i=1

(
1i∈S∗

t∗(α)(X)−1i∈S(X)

)
(T ∗i − α)

)

= Eθ∗

 ∑
i∈S∗

t∗(α)

T ∗i − α|S∗t∗(α)| −
∑
i∈S

T ∗i + α|S|

 ≥ 0.

Combining, the relations above provides

(t∗(α)− α)(Eθ∗(|S∗t∗(α)|)− Eθ∗(|S|)) ≥ 0.

Finally, noting that t∗(α) − α > 0 since α = mFMR(C∗t∗(α)) < t∗(α) by (ii) Lemma 36, this
gives Eθ∗(|S∗t∗(α)|)− Eθ∗(|S|) ≥ 0 and concludes the proof.

Proof of Lemma 35 First, we have by definition `q(Xi, θ
σ) = `σ(q)(Xi, θ) and thus T (Xi, θ̂) =

T (Xi, θ̂
σ) by taking the maximum over q. This gives Ŝσ = Ŝ and yields the first equality.

Next, we have on Ωε,

min
σ′∈[Q]

Eθ∗
(
ε
Ŝ

(σ′(Ẑ),Z)

∣∣∣∣X) ≤ Eθ∗ (εŜ(σ(Ẑ),Z)

∣∣∣∣X)
≤ Eθ∗

(
ε
Ŝσ

(σ(Ẑ),Z)

∣∣∣∣X) ,
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still because Ŝσ = Ŝ. Now observe that,

Eθ∗
(
ε
Ŝσ

(σ(Ẑ),Z)

∣∣∣∣X) =
1

n

n∑
i=1

Pθ*(Zi 6= σ(q̄(Xi, θ̂))
∣∣X)1T (Xi,θ̂σ)<t̂(α)

=
1

n

n∑
i=1

(1− `∗
i,σ(q̄(Xi,θ̂))

)1T (Xi,θ̂σ)<t̂(α)

= M̂0(θ̂σ, t̂(α)),

because σ(q̄(Xi, θ̂)) = q̄(Xi, θ̂
σ). This proves the result.

B.3 Auxiliary results

Lemma 36. Let us consider the procedure C∗t defined in Section B.1.2 and the functional
mFMR∗t defined by (3.12). Then we have

mFMR(C∗t ) =
Eθ∗

(∑n
i=1 T

∗
i 1T

∗
i <t

)
Eθ∗

(∑n
i=1 1T

∗
i <t

) = mFMR∗t , t ∈ [0, 1]. (B.17)

Moreover, the following properties for the function t ∈ [0, 1] 7→ mFMR(C∗t ):

(i) mFMR(C∗t ) is non-decreasing in t ∈ [0, 1] and, under Assumption 6, it is increasing in
t ∈ (t∗(αc), t

∗(ᾱ));

(ii) mFMR(C∗t ) < t for t ∈ (0, 1];

(iii) Under Assumption 6, mFMR(C∗t ) is continuous w.r.t. t on (t∗(αc), 1], where t∗(αc) is
given by (3.14).

Proof. First, (B.17) is obtained similarly than (3.8). For proving (i), let t1, t2 ∈ [0, 1] such that
t1 < t2. We show that mFMR(C∗t1) ≤ mFMR(C∗t2). Remember here the convention 0/0 = 0
and that mFMR(C∗t ) = Eθ∗ (T (X, θ∗) | T (X, θ∗) < t). First, if Pθ* (T (X, θ∗) < t1) = 0 then
the result is immediate. Otherwise, we have that

mFMR(C∗t1)−mFMR(C∗t2)

= (Pθ* (T (X, θ∗) < t1))−1

· Eθ∗
(
T (X, θ∗)

{
1T (X,θ∗)<t1 −

Pθ* (T (X, θ∗) < t1)

Pθ* (T (X, θ∗) < t2)
1T (X,θ∗)<t2

})
,

where, given that t1 < t2, the quantity in the brackets is positive when T (X, θ∗) < t1 and is
negative or zero otherwise. Hence,

T (X, θ∗)

{
1T (X,θ∗)<t1 −

Pθ* (T (X, θ∗) < t1)

Pθ* (T (X, θ∗) < t2)
1T (X,θ∗)<t2

}
≤ t1

{
1T (X,θ∗)<t1 −

Pθ* (T (X, θ∗) < t1)

Pθ* (T (X, θ∗) < t2)
1T (X,θ∗)<t2

}
.

Taking the expectation makes the right-hand-side equal to zero, from which the result follows.
Now, to show the increasingness, if mFMR(C∗t1) = mFMR(C∗t2) for t∗(αc) < t1 < t2 < t∗(ᾱ),
then the above reasoning shows that

(T (X, θ∗)− t1)

{
1T (X,θ∗)<t1 −

Pθ* (T (X, θ∗) < t1)

Pθ* (T (X, θ∗) < t2)
1T (X,θ∗)<t2

}
≤ 0
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and has an expectation equal to 0. Hence, given that T (X, θ∗) is continuous, we derive that
almost surely

Pθ* (T (X, θ∗) < t2)1T (X,θ∗)<t1 = Pθ* (T (X, θ∗) < t1)1T (X,θ∗)<t2 ,

that is, Pθ*(t1 ≤ T ∗i < t2) = 0, which is excluded by Assumption 6. This entails mFMR(C∗t1) <
mFMR(C∗t2).

For proving (ii), let t > 0. If Pθ* (T (X, θ∗) < t) = 0 then the result is immediate. Other-
wise, we have that mFMR(C∗t ) − t = (Pθ* (T (X, θ∗) < t))−1 Eθ∗((T (X, θ∗) − t)1{T (X, θ∗) <
t}). The latter is clearly not positive, and is moreover negative because (T (X, θ∗)−t)1{T (X, θ∗) <
t} ≤ 0 and Pθ*(T (X, θ∗) = t) = 0 by Assumption 6.

For proving (iii), let ψ0(t) = Eθ∗(T (X, θ∗)1{T (X, θ∗) < t}) and ψ1(t) = Pθ*(T (X, θ∗) <
t), the numerator and denominator of mFMR(C∗t ) = mFMR∗t , respectively. ψ1(t) is non-
decreasing in t, with ψ1(0) = 0 and ψ1(1) > 0. Moreover, ψ0 and ψ1 are both continuous
under Assumption 6. Then denote by tc the largest t s.t. ψ1(t) = 0. ψ1 is zero on [0, tc]
then strictly positive and non-decreasing on (tc, 1], and we have that tc = t∗(αc). Hence,
mFMR(C∗t ) is zero on [0, tc] then strictly positive and continuous on (tc, 1].

Remark 17. With the notation of the above proof, t 7→ mFMR(C∗t ) may have a discontinuity
point at tc since for tn →

tn>tc
tc, as ψ1(tn)→ 0, one does not necessarily have that mFMR(C∗t )→

0.

Lemma 37 (Expression of plug-in procedure as a thresholding rule). For any α ∈ (0, 1),
let us consider the plug-in procedure Ĉ

PI

α = (ẐPI, ŜPI
α ) defined by Algorithm 4 and denote

K = |ŜPI
α | the maximum of the k ∈ {0, . . . , n} such that max(k, 1)−1

∑k
j=1 T̂(j) ≤ α for

T̂i = 1−maxq `q(Xi, θ̂), 1 ≤ i ≤ n. Consider also t̂(α) defined by (B.12). Let Assumption 6 be
true and consider an estimator θ̂ satisfying Assumption 10. Then it holds that t̂(α) = T̂(K+1)

and

ŜPI
α = {i ∈ {1, . . . , n} : T̂i < t̂(α)}.

Proof. If T̂(K) < T̂(K+1) then the result is immediate. Thus it suffices to show that T̂(K) =

T̂(K+1) occurs with probability 0. From Assumption 10 (with the countable set D defined
therein), we have

Pθ*(T̂(K) = T̂(K+1)) ≤ Pθ*

⋃
i 6=j
{T̂i = T̂j}

 ≤ Pθ*
⋃
θ∈D

⋃
i 6=j
{T (Xi, θ) = T (Xj , θ)}

 .

Now, the right term is a countable union of events which are all of null probability under
Assumption 6. The result follows.

Lemma 38. We have for all θ ∈ Θ,

sup
t∈[0,1]

|L1(θ, t)− L1(θ∗, t)| ≤ Ψ(‖θ∗ − θ‖); (B.18)

sup
t∈[0,1]

|L0(θ, t)− L0(θ∗, t)| ≤ 2Ψ(‖θ∗ − θ‖); (B.19)

sup
t∈[t∗((α+αc)/2),1]

|L(θ, t)− L(θ∗, t)| ≤ 3Ψ(‖θ∗ − θ‖)/s∗; (B.20)

sup
t∈[0,1]

|M0(θ, t)−M0(θ∗, t)| ≤ 3Ψ(‖θ∗ − θ‖); (B.21)

sup
t∈[t∗((α+αc)/2),1]

|M(θ, t)−M(θ∗, t)| ≤ 4Ψ(‖θ∗ − θ‖)/s∗; (B.22)
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where α ∈ (αc, ᾱ] and s∗ > 0 is given by (B.11). In addition, for all θ ∈ Θ and t, t′ ∈ [0, 1],

|L0(θ, t)− L0(θ, t′)| ≤ 4Ψ(‖θ∗ − θ‖) +WT (|t− t′|). (B.23)

Proof. Fix θ ∈ Θ and t ∈ [0, 1]. We have for any δ > 0,

|Pθ*(T (X, θ) < t)− Pθ*(T (X, θ∗) < t)|
≤ (Pθ*(T (X, θ∗) < t+ δ)− Pθ*(T (X, θ∗) < t)) ∨ (Pθ*(T (X, θ∗) < t)− Pθ*(T (X, θ∗) < t− δ))

+ Pθ*(|T (X, θ∗)− T (X, θ)| > δ)

≤ WT (δ) + Eθ∗(|T (X, θ∗)− T (X, θ)|)/δ.

In addition, by definition (3.5),

|T (X, θ∗)− T (X, θ)| ≤ | max
1≤q≤Q

`q(X, θ
∗)− max

1≤q≤Q
`q(X, θ)|

≤ max
1≤q≤Q

|`q(X, θ∗)− `q(X, θ)|.

Hence,

|Pθ*(T (X, θ) < t)− Pθ*(T (X, θ∗) < t)| ≤ inf
δ∈(0,1)

{WT (δ) +W`(‖θ∗ − θ‖)/δ} ≤ Ψ(‖θ∗ − θ‖),

which establishes (B.18).
Next, we have

L0(θ, t)− L0(θ∗, t)

= Eθ∗ [T (X, θ)(1T (X,θ)<t − 1T (X,θ∗)<t) + 1T (X,θ∗)<t(T (X, θ)− T (X, θ∗))]

≤ t|Pθ*(T (X, θ) < t)− Pθ*(T (X, θ∗) < t)|
+ |Eθ∗ [1T (X,θ∗)<t(T (X, θ)− T (X, θ∗))]|
≤ |Pθ*(T (X, θ) < t)− Pθ*(T (X, θ∗) < t)|+ Eθ∗ |T (X, θ)− T (X, θ∗)|
≤ 2Ψ(‖θ∗ − θ‖)

By exchanging the role of θ and θ∗ in the above reasoning, the same bound holds for L0(θ∗, t)−
L0(θ, t), which gives (B.19). To prove (B.20), we use for any t ∈ [t∗(α+αc

2 ), 1],∣∣∣∣L0(θ, t)

L1(θ, t)
− L0(θ∗, t)

L1(θ∗, t)

∣∣∣∣
≤
∣∣∣∣L0(θ, t)− L0(θ∗, t)

L1(θ∗, t)

∣∣∣∣+ L0(θ, t)

∣∣∣∣ 1

L1(θ∗, t)
− 1

L1(θ, t)

∣∣∣∣
≤ 2Ψ(‖θ∗ − θ‖)/s∗ +

1

L1(θ∗, t)

L0(θ, t)

L1(θ, t)
|Pθ*(T (X, θ∗) < t)− Pθ*(T (X, θ) < t)|

≤ 3Ψ(‖θ∗ − θ‖)/s∗,

because L0(θ, t) ≤ L1(θ, t) and L1(θ∗, t) ≥ s∗ by monotonicity. Similarly to the bound on L0,
we derive

|M0(θ, t)−M0(θ∗, t)|
≤ |Pθ*(T (X, θ) < t)− Pθ*(T (X, θ∗) < t)|+ Eθ∗ |U(X, θ)− U(X, θ∗)|.
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Define q̄(X, θ) ∈ argmax
q∈{1,...,Q}

`q(X, θ). Now, since U(X, θ∗) ≤ U(X, θ) by definition (B.9), we

have

Eθ∗ |U(X, θ)− U(X, θ∗)| = Eθ∗ [U(X, θ)− U(X, θ∗)]

= Eθ∗ [`q̄(X,θ)(X, θ∗)− `q̄(X,θ∗)(X, θ∗)]
= Eθ∗ [`q̄(X,θ)(X, θ∗)− `q̄(X,θ)(X, θ)

+ `q̄(X,θ)(X, θ)− `q̄(X,θ∗)(X, θ∗)]
≤ Eθ∗ [ max

1≤q≤Q
|`q(X, θ∗)− `q(X, θ)|]

+ Eθ∗ [ max
1≤q≤Q

`q(X, θ)− max
1≤q≤Q

`q(X, θ
∗)]

≤ 2Eθ∗ [ max
1≤q≤Q

|`q(X, θ∗)− `q(X, θ)|] ≤ 2Ψ(‖θ∗ − θ‖).

This proves (B.21) and leads to (B.22) by following the reasoning that provided (B.20).
Next, we have for 0 ≤ t′ ≤ t ≤ 1, by (B.19),

|L0(θ, t)− L0(θ, t′)| ≤ |L0(θ∗, t)− L0(θ∗, t′)|+ 4Ψ(‖θ∗ − θ‖).

Moreover,

|L0(θ∗, t)− L0(θ∗, t′)| = L0(θ∗, t)− L0(θ∗, t′) = Eθ∗ [T (X, θ∗)1t′≤T (X,θ∗)<t]

≤ Eθ∗ [1t′≤T (X,θ∗)<t]

= Pθ*(T (X, θ∗) < t)− Pθ*(T (X, θ∗) < t′),

which is below WT (t− t′) by (B.3). This leads to (B.23).

Lemma 39 (Concentration of L̂0 (B.6), L̂1 (B.7), and M̂0 (B.10)). Let Assumption 6 be
true. Recall V ,V − defined by (3.16), (3.17) respectively, set c := 14Q

√
V + 7Q2

√
V − and

consider any countable set D ⊂ Θ. For all t ∈ (0, 1] and for n ≥ (2e)3, we have

Pθ*
(

sup
θ∈D

∣∣∣L̂0(θ, t)− L0(θ, t)
∣∣∣ > x

)
≤ n−2; (B.24)

Pθ*
(

sup
θ∈D

∣∣∣L̂1(θ, t)− L1(θ, t)
∣∣∣ > x

)
≤ n−2; (B.25)

Pθ*
(

sup
θ∈D

∣∣∣M̂0(θ, t)−M0(θ, t)
∣∣∣ > x

)
≤ n−2, (B.26)

for any x ≥ (1 + 2c)
√

logn
n and provided that (1 + 2c)

√
logn
n ≤ 1.

Proof. For a fixed t ∈ (0, 1], let FL0 = {T (., θ)1{T (., θ) ≤ t}, θ ∈ D}, FL1 = {1{T (., θ) ≤
t}, θ ∈ D}, and FM0 = {U(., θ)1{T (., θ) ≤ t}, θ ∈ D}. We apply Lemma 42 and Lemma 43
for ξi = Xi, 1 ≤ i ≤ n, b = 1, a = 0 and for each F ∈ {FL0 ,FL1 ,FM0} to get that the
corresponding probability in (B.24)-(B.25)-(B.26) is at most n−2 by taking

x ≥
√

log n

n
+ 2ERn(F ),
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where Rn(F ) denotes the Rademacher complexity of F , see (B.30). We now bound each
Rn(F ) by using Lemma 40:

ERn(FL0) ≤ ERn(FL1) + ERn({T (., θ), θ ∈ Θ})

≤ ERn(FL1) +

Q∑
q=1

ERn({`q(., θ), θ ∈ Θ}); (B.27)

ERn(FL1) ≤
Q∑
q=1

ERn({1{`q(., θ) < 1− t}, θ ∈ Θ}); (B.28)

ERn(FM0) ≤ ERn(FL1) + ERn({U(., θ), θ ∈ Θ}),

where for (B.27) and (B.28), we used that T (., θ) = 1 − maxq `q(., θ) and 1{T (., θ) ≤ t} =

1 −
∏Q
q=1 1{`q(., θ) < 1 − t} and the fact that the variables `q(Xi, θ) are continuous by

Assumption 6. Similarly, we have U(., θ) =
∑Q

q=1 `q(., θ
∗)
∏
k 6=q 1{`q(., θ) ≥ `k(., θ)}. Hence,

Lemma 40 once again entails that

ERn({U(., θ), θ ∈ Θ}) ≤
Q∑
q=1

Q∑
k=1,k 6=q

ERn({1{`q(., θ)− `k(., θ) ≥ 0}, θ ∈ Θ})

+

Q∑
q=1

ERn({`q(., θ), θ ∈ Θ}). (B.29)

To bound both ERn({`q(., θ), θ ∈ Θ}) and ERn({1{`q(., θ) < 1− t}, θ ∈ Θ}), we use the
results of Baraud (2016) (more specifically the proof of Theorem 1 therein), to obtain that
they are bounded by √

V log
2en

V

√
2√
n

+ 4 V log
2en

V

1

n
≤ 7

√
V

log n

n
,

provided that V (log n)/n ≤ 1 and for n ≥ (2e)3. Similarly, ERn({1{`q(., θ) − `k(., θ) ≥
0}, θ ∈ Θ}) is bounded by√

V − log
2en

V −

√
2√
n

+ 4 V − log
2en

V −

1

n
≤ 7

√
V −

log n

n
,

V −(log n)/n ≤ 1 and for n ≥ (2e)3. Combining this with what is above entails

ERn(FL1) ≤ 7Q

√
V

log n

n

ERn(FL0) ≤ 14Q

√
V

log n

n

ERn(FM0) ≤ 14Q

√
V

log n

n
+ 7Q2

√
V −

log n

n
.

In particular, all expectations are upper-bounded by c
√

logn
n , which leads to the result.

Lemma 40. If F is a class of indicator functions and G is a class of functions from Rd to
[0, 1], we have

ERn(F · G) ≤ ERn(F) + ERn(G)

ERn(max(F ,G)) ≤ ERn(F) + ERn(G),

where we denoted F · G = {fg, f ∈ F , g ∈ G} and max(F ,G) = {f ∨ g, f ∈ F , g ∈ G}.
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Proof. We have

ERn(F · G) = E

(
sup

f∈F ,g∈G

∣∣∣∣∣
n∑
i=1

εif.g(Xi)

∣∣∣∣∣
)

≤ E

(
sup

f∈F ,g∈G

∣∣∣∣∣
n∑
i=1

εi(f(Xi) + g(Xi))

∣∣∣∣∣
)

≤ Rn(F + G),

because fg = (f + g − 1)+ = 0.5(f + g − 1 + |f + g − 1|) and by applying the contraction
lemma of Talagrand (see e.g. Lemma 5.7 in Mohri et al. (2012)) with x 7→ 0.5(x− 1 + |x− 1|)
which is 1-Lipchitz. Then we conclude by using the triangular inequality. For the max we
use max(f, g) = 0.5(f + g + |f − g|).

Lemma 41. Consider the case where Q = 2 and {Fu, u ∈ U} is an exponential family, i.e.
there exists some functions A,B,C,D such that f(x, u) = exp

(
A(u)tB(x)− C(u) +D(x)

)
.

Let k be the dimension of the sufficient statistic vector B(x). If k ≥ 3, then V ,V − defined by
(3.16), (3.17) satisfy V ,V − ≤ Qk(k+ 1) [3 log(k(k + 1)) + 2(Q− 1)]. In addition, this bound
still holds for V − in the case Q ≥ 3.

Proof. Let us first bound V . Given that, for Q = 2, θ = (π1, π2, φ1, φ2), `1(x, θ) ≥ t is
equivalent to π1f(x, φ1)/π2f(x, φ2) ≥ g(t) for some function g, we get that `1(x, θ) ≥ t if
and only if a(θ)tB(x) − b(θ) ≥ h(t) for some functions a, b, h. The set family is a subset
of {{x ∈ Rd, atB(x) + b ≥ 0}, a ∈ Rk, b ∈ R}, whose VC dimension is bounded by k(k +
1) [3 log(k(k + 1)) + 2] for k ≥ 3, see Lemma 10.3 in Shalev-Shwartz and Ben-David (2014).
By symmetry, this bound also holds for the VC dimension of {`2(·, θ), θ ∈ Θ}. It follows that
V ≤ Qk(k+ 1) [3 log(k(k + 1)) + 2] + 2(Q− 1) (see, e.g., Exercice 3.24 in Mohri et al. (2012)
on the VC dimension of the union of two classes with bounded VC dimension).

For V −, we have that for any q 6= q′ ∈ {1, . . . , Q}, `q(x, θ)− `q′(x, θ) ≥ 0 is equivalent to
πqf(x, φq)/πq′f(x, φq′) ≥ 1. The rest of the proof follows similarly as for V .

Lemma 42 (Talagrand’s inequality, Theorem 5.3. in Massart (2007)). Let ξ1, . . . , ξn inde-
pendent r.v., F a countable class of measurable functions s.t. a ≤ f ≤ b for every f ∈ F for
some real numbers a ≤ b, and W = supf∈F |

∑n
i=1 f(ξi)− E(f(ξi))|. Then, for any x > 0,

P(W − E(W ) ≥ x) ≤ e−
2x2

n(b−a)2 .

Lemma 43 (Rademacher complexity bound, see, e.g., Lemma 1 in Baraud (2016)). In the
setting of Lemma 42 (and with the notation therein), we have

E(W ) ≤ 2Rn(F ),

where

Rn(F ) = sup
f∈F

∣∣∣∣∣
n∑
i=1

εif(ξi)

∣∣∣∣∣ (B.30)

is the Rademacher complexity of the class F (with ε1, . . . , εn being i.i.d. random signs).
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B.4 Auxiliary results for the Gaussian case

B.4.1 Convergence rate for parameter estimation

The following result presents two situations where the parameter of a Gaussian mixture model
can be consistently estimated, with an explicit rate.

Proposition 44. Consider the mixture model (Section 3.2.1) in the d-multivariate Gaussian
case with true parameter θ∗ = (π∗, φ∗), where φ∗q = (µ∗q ,Σ

∗
q), 1 ≤ q ≤ Q. Then η(ε, θ∗) defined

by (3.18) is such that η(εn, θ
∗) ≤ 1/n for εn ≥ C

√
log n/n, where C > 0 is a sufficiently large

constant, in two following situations:

(i) θ̂ is the constrained MLE, that is, computed for φq = (µq,Σq) ∈ U with constrained
parameter space U = [−an, an]d × {Σ ∈ S++

d , λ ≤ λ1(Σ) ≤ λd(Σ) ≤ λ̄}1 where an ≤
L(log n)γ for some L, γ > 0 and S++

d denotes the space of positive definite matrices,
with λ, λ̄ > 0. In that case, C only depends on θ∗ and L, γ, λ, λ̄.

(ii) θ̂ is the estimator coming from EM algorithm (when the iteration number is infinite)
for an initialization µ(0)

1 , µ
(0)
2 such that ‖(µ(0)

1 − µ
(0)
2 ) − (µ1 − µ2)‖ ≤ ∆/4, where ∆ =

‖µ1−µ2‖2 is the separation between the true means. Here, we consider an homoscedastic
model with Σ1 = Σ2 = Σ = νId with known ν. The conclusion applies if the signal-to-
noise ratio ∆/ν is large enough, and for a constant C of the form c(ν,∆)

√
d.

Proof. Since case (ii) is a direct application of Balakrishnan et al. (2017), we focus in what
follows on proving case (i), by revisiting the result of Ho and Nguyen (2016). First, in the
considered model, any mixture can be defined in terms of {fu, u ∈ U} and a discrete mixing
measure G =

∑Q
q=1 πqδφq with Q support points, as

∑Q
q=1 πqfφq =

∫
fu(x)dG(u). As shown

by Ho and Nguyen (2016), the convergence of mixture model parameters can be measured in
terms of a Wasserstein distance on the space of mixing measures. Let G1 =

∑Q
q=1 π

1
qδφ1q and

G2 =
∑Q

q=1 π
2
qδφ2q be two discrete probability measures on some parameter space, which is

equipped with metric ‖.‖. The Wasserstein distance of order 1 between G1 and G2 is given
by

W1(G1, G2) = inf
p

∑
q,l

pq,l‖φ1
q − φ2

l ‖

where the infimum is over all couplings (pq,l)1≤q,l≤Q ∈ [0, 1]Q×Q such that
∑

l pq,l = π1
q

and
∑

q pq,l = π2
l . Let G∗, Ĝn denote the true mixing measure and the mixing measure

that corresponds to the restricted MLE considered here, respectively. Theorem 4.2. in Ho
and Nguyen (2016) implies that, with the notation of Ho and Nguyen (2016), for any εn ≥
(
√
C1/c)δn, and δn ≤ C

√
log n/n, we have Pθ*(W1(Ĝn, G

∗) ≥ (c/C1)εn) ≤ ce−nε2n . We apply
this relation for εn = max((

√
C1/c)δn,

√
log(cn)/n). In that case, we have still εn of order√

log n/n and the upper-bound is at most 1/n. On the other hand, if we have a convergence
rate in terms of W1, then we have convergence of the mixture model parameters in terms of
‖.‖ at the same rate, see Lemma 45. This concludes the proof.

Lemma 45. Let Gn =
∑Q

q=1 π
n
q δφnq be a sequence of discrete probability measures on U ,

and let G∗,W1 be defined as in the proof of Proposition 44. There exists a constant C only
depending on G∗ such that if W1(Gn, G

∗)→ 0, then for sufficiently large n,

W1(Gn, G
∗) ≥ C min

σ∈[Q]
‖θσn − θ∗‖.

1Here, λ1(Σ) (resp. λd(Σ)) denotes the smallest (resp. largest) eigenvalue of Σ.
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Proof. In what follows, we let {pnq,l} denote the corresponding probabilities of the optimal
coupling for the pair (Gn, G

∗). We start by showing that (φnq )q → (φ∗q)q in ‖.‖ up to a
permutation of the labels. Let σn the permutation of the labels such that ‖φnq − φ∗l ‖ ≥
‖φnσn(l) − φ

∗
l ‖ for all q, l ∈ {1, ..., Q}. Then, by definition,

W1(Gn, G
∗) ≥

∑
1≤q,l≤Q

pnq,l‖φnσ(l) − φ
∗
l ‖

=
∑
l

π∗l ‖φnσn(l) − φ
∗
l ‖.

It follows that each ‖φnσn(l) − φ∗l ‖ must converge to zero. Since (φnq )q → (φ∗q)q up to a
permutation of the labels, without loss of generality we can assume that φnq → φ∗q for all q.
Let ∆φnq := φnq − φ∗q and ∆πnq := πnq − π∗q . Write W1(Gn, G

∗) as

W1(Gn, G
∗) =

∑
q

pnqq‖∆φnq ‖+
∑
q 6=l

pnql‖φnq − φ∗l ‖

Define Cql = ‖φ∗q − φ∗l ‖ and C = minq 6=l Cql > 0. It follows from the convergence of φn

that for q 6= l, ‖φnq − φ∗l ‖ ≥ C/2 for sufficiently large n. Thus,

W1(Gn, G
∗) ≥ C

2

∑
q 6=l

pnql

We deduce that
∑

q 6=l p
n
ql → 0. As a result, pnqq = π∗q −

∑
l 6=q p

n
lq → π∗q , and so, pnqq ≥

(1/2)π∗min := minl π
∗
l for sufficiently large n. On the other hand,

∑
q 6=l p

n
ql =

∑
q π

n
q − pnqq =∑

q π
∗
q−pnqq where pnqq ≤ min(πnq , π

∗
q ). Thus,

∑
q 6=l p

n
ql ≥

∑
q π

n
q −min(πnq , π

∗
q ) =

∑
q,πnq≥π∗q π

n
q −

π∗q =
∑

q,πnq≥π∗q |π
n
q −π∗q | and similarly we have that

∑
q 6=l p

n
ql ≥

∑
q,π∗q≥πnq |π

n
q −π∗q |. It follows

that 2
∑

q 6=l p
n
ql ≥

∑
q |πnq − π∗q |. Therefore, for sufficiently large n,

W1(Gn, G
∗) ≥ 1

2
π∗min

∑
q

‖∆φnq ‖+
C

4

∑
q

|∆πnq |.

This gives the result.

B.4.2 Gaussian computations

The following lemma holds.

Lemma 46. Let us consider the multivariate Gaussian case where φq = (µq,Σq), 1 ≤ q ≤ Q,
with Q = 2, Σ1 = Σ2 is an invertible covariance matrix and µ1 and µ2 are two different
vectors of Rd. Then Assumptions 6, 7 and 8 hold true for αc = 0 and for a level α ∈ (0, ᾱ)\E
for E a set of Lebesgue measure 0.

Proof. Let us first prove that `q(X, θ) is a continuous random variable under Pθ* (this is
established below without assuming Σ1 = Σ2 for the sake of generality). We have

Pθ* (`1(X, θ) = t)

= Pθ* (fφ1(X)/fφ2(X) = tπ2/π1)

= Pθ*
(
(X − µ1)tΣ−1

1 (X − µ1)− (X − µ2)tΣ−1
2 (X − µ2) = −2 log (tπ2/π1)− log(|Σ1|/|Σ2|)

)
.
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Now,

(X − µ1)tΣ−1
1 (X − µ1)− (X − µ2)tΣ−1

2 (X − µ2)

= (X − µ1)tΣ−1
1 (X − µ1)− (X − µ1)tΣ−1

2 (X − µ2)− (µ1 − µ2)tΣ−1
2 (X − µ2)

= (X − µ1)t(Σ−1
1 − Σ−1

2 )(X − µ1)− (X − µ1)tΣ−1
2 (µ1 − µ2)− (µ1 − µ2)tΣ−1

2 (X − µ2)

= (X − µ1)t(Σ−1
1 − Σ−1

2 )(X − µ1)− (µ1 − µ2)tΣ−1
2 (2X − µ2 − µ1).

Since the real matrix Σ−1
1 − Σ−1

2 is symmetric, we can diagonalize it and we end up with a
subset of Rd of the form y ∈ Rd :

d∑
j=1

(
αjy

2
j + βjyj

)
+ γ = 0

 ,

for some real parameters αj , βj , γ. The result follows because this set has a Lebesgue measure
equal to 0 in any case.

Now, since Σ1 = Σ2 = Σ, we have for all t ∈ (0, 1),

{T (X, θ) > t} =

{
∀q ∈ {1, . . . , Q}, πqfφq(X) < (1− t)

Q∑
`=1

π`fφ`(X)

}
= {π1fφ1(X) < (1/t− 1)π2fφ2(X)} ∩ {π2fφ2(X) < (1/t− 1)π1fφ1(X)}

=

{
(1/t− 1)−1 <

π1fφ1(X)

π2fφ2(X)
< (1/t− 1)

}
.

Applying 2 log(·) on each part of the relation, we obtain

{T (X, θ) > t} =
{
−2 log(1/t− 1) < atX + b < 2 log(1/t− 1)

}
,

for

a = a(θ) = 2Σ−1(µ1 − µ2) ∈ Rd\{0}
b = b(θ) = −(µ1 − µ2)tΣ−1(µ1 + µ2) + 2 log(π1/π2) ∈ Rd.

Since under Pθ∗ we have X ∼ π∗1N (µ∗1,Σ
∗) + π∗2N (µ∗2,Σ

∗), we have atX + b ∼ π∗1N (atµ∗1 +
b, atΣ∗a) + π∗2N (atµ∗2 + b, atΣ∗a). This yields for all t ∈ (0, 1),

Pθ∗(T (X, θ) > t) =π1

[
Φ

(
2 log(1/t− 1)− atµ∗1 − b

(atΣ∗a)1/2

)
−Φ

(
−2 log(1/t− 1)− atµ∗1 − b

(atΣ∗a)1/2

)]
+ π2

[
Φ

(
2 log(1/t− 1)− atµ∗2 − b

(atΣ∗a)1/2

)
−Φ

(
−2 log(1/t− 1)− atµ∗2 − b

(atΣ∗a)1/2

)]
. (B.31)

A direct consequence is that for all t ∈ (0, 1), we have Pθ∗(T (X, θ) > t) < 1, that is,
Pθ∗(T (X, θ) ≤ t) = Pθ∗(T (X, θ) < t) > 0. Hence, αc defined in (3.14) is equal to zero.
Moreover, from (B.31), we clearly have that t ∈ (0, 1) 7→ Pθ∗(T (X, θ) > t) is decreasing, so
that t ∈ (0, 1) 7→ Pθ∗(T (X, θ) ≤ t) is increasing. This proves that Assumption 6 holds in that
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case.

Let us now check Assumptions 7 and 8. Assumptions 7 and 8 (i) follow from Result 2.1
in Melnykov (2013).

As for Assumption 8 (ii), from (B.31), we only have to show that the function t ∈ (0, 1) 7→
∂
∂tΦ

(
log(1/t−1)−α∗

β∗

)
is uniformly bounded by some constant C = C(α∗, β∗), for any α∗ ∈ R

and β∗ > 0. A straightforward calculation leads to the following: for all t ∈ (0, 1),

∣∣∣∣ ∂∂tΦ
(

log(1/t− 1)− α∗

β∗

)∣∣∣∣ =
e
−(

log(1/t−1)−α∗
β∗ )2/2

β∗
√

2π

1

t(1− t)
. (B.32)

Consider now t0 = t0(α∗, β∗) ∈ (0, 1/2) such that ( log(1/t−1)−α∗
β∗ )2 ≥ 2 log(1/t) for all t ∈

(0, t0). It is clear that the right-hand-side of (B.32) is upper-bounded by 1
β∗
√

2π(1−t0)
on

t ∈ (0, t0). Similarly, let t1 = t1(α∗, β∗) ∈ (1/2, 1) such that ( log(1/t−1)−α∗
β∗ )2 ≥ 2 log(1/(1− t))

for all t ∈ (t1, 1). It is clear that the right-hand-side of (B.32) is upper-bounded by 1
β∗
√

2πt1

on t ∈ (t1, 1). Finally, for t ∈ [t0, t1], the upper-bound 1
β∗
√

2πt0(1−t1)
is valid. This proves that

Assumption 8 (ii) holds.

Let us now finally turn to Assumption 8 (iii). Lemma 36 ensures that t ∈ (0, t∗(ᾱ)) 7→
mFMR∗t is continuous increasing. Hence, t∗ : β ∈ (0, ᾱ) 7→ t∗(β) defined in (3.13) is the
inverse of this function and is also continuous increasing. It is therefore differentiable almost
everywhere in (0, ᾱ), so everywhere in (0, ᾱ)\E where E is a set of Lebesgue measure 0. By
taking α in (0, ᾱ)\E , this ensures that t∗ is differentiable in α and thus that Assumption 8
(iii) holds.

Lemma 47. In the multivariate gaussian case with Q = 2 and Σ1 = Σ2, we have that
V ≤ 2d+ 4 and V − ≤ 2d+ 4.

Proof. In that case, we have that (see the proof of Lemma 46)

{`q(x, θ) ≤ u, x ∈ Rd} = {atθx+ bθ ≥ g(u), x ∈ Rd}.

Since the VC dimension of the vector space of real-valued affine functions is bounded by d+1
(see, e.g., Exercice 3.19 in Mohri et al. (2012)). We obtain the result by applying the usual
bound on the VC dimension of the union of two classes with bounded VC dimension (see,
e.g., Exercice 3.24 in Mohri et al. (2012)).
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C.1 Additional experimental details

Datasets Cora (Sen et al., 2008) is a citation network. Each publication in the dataset
is described by a 0/1-valued vector indicating the absence/presence of a each word of a
dictionary that consists of 1433 unique words. Yeast (Von Mering et al., 2002) is a protein-
protein interaction network of S. cerevisiae. T. Albus (Weber Zendrera et al., 2021) is a
metabolic network of Thermocrinis Albus. C. ele (Watts and Strogatz, 1998) is a neural
network of C. elegans. Florida Food web (Christian and Luczkovich, 1999) is a food web
network downloaded from the Web of Life Repository (https://www.web-of-life.es/).

Hyper-parameters for SEAL SEAL (Zhang and Chen, 2018) is used with a hop number
of 2, for the GNN we use GIN (Xu et al., 2018) with 3 layers and 32 neurons, and we train
for 10 epochs with a learning rate of 0, 001.

C.2 Exchangeability condition for FDR control

Recent works (Bates et al., 2023; Mary and Roquain, 2022; Marandon et al., 2022) proved
finite-sample FDR control guarantees for the use of conformal p-values in the context of nov-
elty detection. Specifically, given a data sample Z1, . . . , Zn+m where Z1, . . . , Zn are marginally
distributed as some unknown P0, the aim is to test the null hypotheses H0j : Zn+j ∼ P0

simultaneously for all 1 ≤ j ≤ m. Consider H0 ⊂ {1, . . . ,m} the set of nominals and
H1 ⊂ {1, . . . ,m} the set of novelties in the test sample, and for j ∈ {1, . . . ,m} the score
Sj = ĝ(Zj) with ĝ is some real-valued function that may depend on the data. We have the
following result (Weinstein et al., 2017; Mary and Roquain, 2022; Marandon et al., 2022): if
the null scores (Si)i∈{1,...,n}∪H0

are exchangeable i.e. if, for all permutation π of {1, . . . , n+m}
that lets invariantH1, we have that (Sπ(i))1≤i≤n+m ∼ (Si)1≤i≤n+m, then the Counting Knock-
off algorithm (Weinstein et al., 2017) (i.e. Algorithm 6 with Dtest = {n+ 1, . . . , n +m} and
Dcal = {1, . . . , n}) controls the FDR at level α.

In our set-up, we have that H1, H0, Dtest = H0∪H1 and Dcal are all random. In that case,
the afore-mentioned exchangeability condition can be extended to the following: conditionally
on (Dcal,H0,H1), for π ∼ Unif[Π] where Π is the set of permutations of Dcal ∪Dtest that lets
invariant the set H1,

(Sπ(i,j))1≤i,j≤n ∼ (Si,j)1≤i,j≤n. (C.1)

However this is not a standard exchangeability assumption, because the permutation π in
(C.1) is random due to Dtrain and Dtest being random in our set up.

https://www.web-of-life.es/
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