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Abstract

Modern automated services rely on concurrent software where multiple requests are processed
by different processes at the same time. These processes execute concurrently either in a single ma-
chine or in a distributed system with multiple machines built on top of a network. The requests
are typically about processing data which is stored in data structures that provide implementa-
tions of common abstract data types (ADTs) such as queues, key-value stores, and sets. The data
structures themselves are concurrent in the sense that they support operations that can execute
concurrently at the same time.

Developing such concurrent data structures or even understanding and reasoning about them
can be tricky. This is coming from the fact that synchronization between operations of these data
structures must be minimized to reduce response time and increase throughput, yet this minimal
amount of synchronization must also be adequate to ensure conformance to their specification.
These opposing statements, along with the general challenge in reasoning about interleavings be-
tween operations make concurrent data structures a ripe source of insidious programming errors
that are difficult to reproduce, locate, or fix. Therefore, verification techniques that can check the
correctness of a concurrent data structure or (if it is not correct) that can detect, pinpoint and fix
the errors in it, are invaluable.

In this thesis, we introduce new algorithmic approaches for improving the reliability of con-
current data structures. For shared-memory data structures (where processes communicate using
a shared memory), we introduce new algorithms for finding safety violations (if any) and repairing
the implementation in order to exclude these violations. For data structures running on top of a
network, we focus on the underlying consensus protocols and provide a new proof methodology
for checking their safety specification which is based on refinement.

Keywords: Formal Verification, Concurrent Data Structures, Linearizability, Model Checking,
Partial Order Reduction, Consensus Protocols, Refinement
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Résumé

Les services automatisés modernes reposent sur des logiciels concurrents où plusieurs deman-
des sont traitées par différents processus en même temps. Ces processus s’exécutent simultané-
ment sur une seule machine ou dans un système distribué avec plusieurs machines reliés par un
réseau. Les demandes concernent généralement le traitement de données stockées dans des struc-
tures de données qui fournissent des implémentations de types de données abstraits (ADT) cour-
ants tels que des files d’attente, des tables clé-valeur et des ensembles. Les structures de don-
nées elles-mêmes sont concurrentes dans le sens où elles permettent des opérations qui peuvent
s’exécuter simultanément.

Développer de telles structures de données concurrentes ou même les comprendre et raisonner
dessus peut être difficile. Cela vient du fait que la synchronisation entre les opérations de ces struc-
tures de données doit être minimisée pour réduire le temps de réponse et augmenter le débit, mais
cette synchronisation doit également être adéquate pour assurer la conformité à leur spécification.
Ces contraintes qui s’opposent, ainsi que le défi général du raisonnement sur les entrelacements
entre les opérations, font des structures de données concurrentes une source d’erreurs de program-
mation insidieuses, difficiles à reproduire, localiser ou corriger. Par conséquent, les techniques de
vérification qui peuvent vérifier la correction d’une structure de données concurrente ou (si elle
n’est pas correcte) qui peuvent détecter, identifier et corriger les erreurs qu’elle contient, sont très
importantes.

Dans cette thèse, nous introduisons de nouvelles approches algorithmiques pour améliorer la fi-
abilité des structures de données concurrentes. Pour les structures de données à mémoire partagée
(où les processus communiquent à l’aide d’une mémoire partagée), nous introduisons de nou-
veaux algorithmes pour trouver les violations de sûreté (le cas échéant) et réparer l’implémentation
afin d’exclure ces violations. Pour les structures de données qui m’exécutent au-dessus d’un réseau,
nous nous concentrons sur les protocoles de consensus sous-jacents et nous fournissons une nou-
velle méthodologie de preuve basée sur le raffinement pour vérifier leur spécification de sûreté.

Mots-clés: Vérification formelle, Structures de données concurrentes, Linéarisabilité, Model Che-
cking, Réduction d’ordre partielle, Protocoles de consensus, Raffinement
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Résumé
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Ces contraintes qui s’opposent, ainsi que le défi général du raisonnement sur les entrelacements
entre les opérations, font des structures de données concurrentes une source d’erreurs de program-
mation insidieuses, difficiles à reproduire, localiser ou corriger. Par conséquent, les techniques de
vérification qui peuvent vérifier la correction d’une structure de données concurrente ou (si elle
n’est pas correcte) qui peuvent détecter, identifier et corriger les erreurs qu’elle contient, sont très
importantes.

Dans cette thèse, nous introduisons de nouvelles approches algorithmiques pour améliorer la fi-
abilité des structures de données concurrentes. Pour les structures de données à mémoire partagée
(où les processus communiquent à l’aide d’une mémoire partagée), nous introduisons de nou-
veaux algorithmes pour trouver les violations de sûreté (le cas échéant) et réparer l’implémentation
afin d’exclure ces violations. Pour les structures de données qui m’exécutent au-dessus d’un réseau,
nous nous concentrons sur les protocoles de consensus sous-jacents et nous fournissons une nou-
velle méthodologie de preuve basée sur le raffinement pour vérifier leur spécification de sûreté.
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Résumé

1 Vérification de propriétés de sûreté pour des programmes
à mémoire partagée

1.1 Énoncé du problème

Notre premier objectif est de vérifier les structures de données concurrentes qui s’exécutent au-
dessus d’une mémoire partagée. Le critère de correction standard dans ce cas est la linéarisabilité.
Nous nous intéressons au problème de la vérification de la linéarisabilité d’une structure de don-
nées concurrente donnée.

Ce problème peut être vu comme une instance d’un problème plus général qui consiste à véri-
fier une propriété de sûreté pour un programme concurrent donné. Le programme concurrent
est un client de la structure de données, qui appelle ses méthodes à partir d’un certain nombre
(éventuellement illimité) de threads.

1.2 L’approche

Nous allons considérer une approche qui consiste à appliquer la vérification de modèle à un client
borné constitué d’un nombre borné de threads, chaque thread effectuant un nombre borné d’appels.
La vérification de modèle [24, 25, 84] explore l’espace d’états d’un programme donné de manière
systématique et vérifie que chaque état atteignable satisfait une propriété donnée. Il fournit une
couverture élevée des comportements du programme, mais il souffre du célèbre problème d’explosion
d’état, c’est-à-dire que le nombre d’entrelacements possibles augmente de manière exponentielle
dans la taille du code source. Pour résoudre le problème d’explosion d’état, nous utiliserons la
réduction d’ordre partiel (POR) [24, 40, 41, 44, 51, 82, 93] qui limite le nombre d’entrelacements
explorés sans sacrifier la couverture.

1.3 L’état de l’art

L’ensemble des entrelacements explorés par une technique POR est défini en restreignant l’ensemble
des transitions explorées à partir de chaque état (point d’ordonnancement). Selon la classe de
spécifications, les hypothèses sur les programmes ou les objectifs d’optimalité, il existe différentes
définitions pour cet ensemble de threads, y compris les sleep sets [41], stubborn sets[41, 44, 93],

persistent sets [40, 43, 60], ample sets [24, 51] et source sets [3].

La conception d’un algorithme de vérification de modèle basé sur POR doit prendre en compte
plusieurs compromis de calcul. Premièrement, un tel algorithme peut sauvegarder les états ex-
plorés dans le passé ou pas [39], ce qui correspond à un compromis entre consommation mémoire
et temps d’exécution. Deuxièmement, le calcul de l’ensemble des threads explorés à partir d’un
certain état peut être plus ou moins complexe. Se concentrer sur l’optimalité théorique, c’est-à-
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2 Identifier la cause fondamentale des violations de linéarisabilité

dire explorer exactement un entrelacement de chaque trace de Mazurkiewicz, peut rendre ce cal-
cul plus complexe. Troisièmement, les algorithmes POR peuvent calculer les informations qu’ils
utilisent à des fins de réduction de manière statique, par une analyse statique du code source,
ou dynamiquement, lors de l’exploration des entrelacements. Le calcul statique est généralement
moins cher et moins précis que le calcul dynamique.

1.4 Nos contributions

Nous proposons plusieurs algorithmes de vérification de modèle basés sur POR qui sauvegar-
dent les états explorés dans le passé, en mettant l’accent sur la performance globale plutôt que sur
l’optimalité théorique. Ces algorithmes combinent des calculs statiques et dynamiques des ensem-
bles de threads à explorer à partir d’un état donné, dont la définition est basée sur les source sets.
Nous avons montré que la performance des algorithmes dépend principalement du potentiel de
réduction dans l’espace d’état. Nous avons identifié des utilisations souhaitables de ces algorithmes
en fonction des ressources disponibles. Nous avons également analysé les effets potentiels de dif-
férentes stratégies de recherche (énumérations de pas d’exécution).

2 Identifier la cause fondamentale des violations de
linéarisabilité

2.1 Énoncé du problème

Nous considérons le problème du débogage des violations de linéarisabilité, en trouvant leur cause
fondamentale et suggérant des réparations possibles. Il s’agit d’un problème difficile car les viola-
tions de linéarisabilité peuvent contenir un large nombre de pas de calcul et imbriquer les calculs
de différents threads de manière très compliqué.

Nous pouvons aborder ce problème en trois étapes. Tout d’abord, nous devrions définir une
certaine notion de cause fondamentale pour la non-linéarisabilité. Deuxièmement, nous devons
proposer des algorithmes efficaces pour trouver la cause fondamentale d’une violation. Et comme
troisième étape, nous devons fournir une méthodologie efficace pour supprimer la violation qui
a cette cause fondamentale.

2.2 L’approche

L’approche que nous avons choisie pour identifier les causes fondamentales des erreurs de linéaris-
abilité consiste à trouver des blocs de code (réparations) dans le code du programme dont l’atomicité
est requise pour exclure toutes les exécutions non linéarisables données. L’idée clé de cette ap-
proche est que le problème peut être réduit à un problème algorithmique plus simple d’identification
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Résumé

de causes fondamentales minimales des violations de la sérialisabilité des conflits dans une exécu-
tion erronée. Dans un programme concurrent avec une décomposition donnée de son code en
blocs de code, une exécution satisfait la sérialisabilité des conflits si elle est équivalente à une exé-
cution dans laquelle tous les blocs de code sont exécutés de manière séquentielle non entrelacée.
Une réparation peut être défini en utilisant une décomposition de l’ensemble de pas d’une exé-
cution en un ensemble de blocs appelés intervalles, de sorte que cette exécution ne satisfait pas la
sérialisabilité des conflits par rapport à cette décomposition. Ces intervalles correspondront à des
sections atomiques qui seront recommandées comme réparations en utilisant notre approche.

2.3 L’état de l’art

Il existe différents travaux tels que [22, 54, 55, 56, 57, 59, 81, 99] pour la localisation de fautes,
l’explication des erreurs, la minimisation de contre-exemples et la synthèse des bogues pour les
programmes concurrents. Un autre ensemble de travaux [8, 15, 17, 23, 48, 73, 94, 95] concerne
la correction des erreurs de concurrence en utilisant des techniques de synthèse de synchronisa-
tion qui peuvent aider les développeurs à réparer ces erreurs. À notre connaissance, Flint [70]

est la seule autre approche qui se concentre sur le calcul de causes fondamentales des violations de
linéarisabilité. Cependant, il se concentre sur un seul type de données abstrait, les tables clé-valeur.

2.4 Nos contributions

Dans cette thèse, nous présentons une nouvelle approche qui diagnostique les causes fondamen-
tales des erreurs de linéarisabilité. Nous calculons les réparations optimales où l’optimalité fait
référence au fait de permettre un nombre maximal d’entrelacements. Cependant, il peut y avoir
plusieurs réparations optimales et nous devons déterminer laquelle est la plus susceptible de cor-
respondre à la cause fondamentale. Par conséquent, nous définissons une heuristique pour classer
ces réparations optimales en privilégiant celles qui désactivent le moin d’exécutions linéarisables.
Nous proposons des résultats théoriques décrivant la réduction du problème principal à un prob-
lème lié aux violations de la sérialisabilité des conflits, et un algorithme polynomial pour résoudre
ce dernier. Nous avons implémenté notre approche et mené plusieurs expériences en utilisant des
structures de données concurrentes réalistes pour démontrer son efficacité.

3 Vérification de la sûreté des protocoles de consensus

3.1 Énoncé du problème

La mise en œuvre de structures de données concurrentes linéarisables qui fonctionnent sur un
réseau repose généralement sur des algorithmes utilisés pour résoudre un problème plus générique
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3 Vérification de la sûreté des protocoles de consensus

appelé la réplication de machine d’état. En général, les protocoles de réplication de machine d’état
font partie d’une classe plus large de protocoles appelés protocoles de consensus. Les protocoles de
consensus sont construits pour se mettre d’accord sur une seule valeur (décret unique) ou plusieurs
valeurs ordonnées (multi-décret). Développer des implémentations pratiques correctes de pro-
tocoles de consensus ou même raisonner sur leur correction est très difficile. Leur complexité
découle des différentes hypothèses sur l’environnement dans lequel ils fonctionnent (c’est-à-dire,
défaillances de processus ou de liaison réseau, défaillances byzantines, etc.). Dans cette thèse, nous
considérons le problème du raisonnement sur la sûreté des protocols de consensus.

3.2 L’approche

Pour raisonner sur la sûreté des protocoles de consensus, notre approche est basée sur le raffine-
ment. Cela consiste à montrer que les comportements d’un protocole donné peuvent être mis
en correspondance avec les comportements d’une spécification opérationnelle abstraite (définie
comme une machine à états) dont la sûreté a déjà été prouvée. Ce mapping doit garantir que la
sûreté de la spécification implique la sûreté du protocole d’origine. Concevoir de telles abstractions
peut être très utile pour maîtriser la complexité lors de la conception de nouveaux protocoles, ou
pour gagner en confiance quant à leur correction sans passer par des arguments de preuve ad hoc et
fragiles comme dans les preuves de sûreté basées sur des invariants inductifs. Néanmoins, trouver
le bon compromis entre l’expressivité d’une abstraction et la "facilité" de la relier à des protocoles
concrets est une question importante et non triviale en général.

3.3 L’état de l’art

Le problème de prouver la correction des protocoles de consensus a été étudié dans la literature.
Il existe des travaux qui utilisent des invariants inductifs [78, 79], qui sont cependant difficiles à
inventer puisqu’ils doivent décrire tous les états intermédiaires produits par tous les ordres pos-
sibles de réception des messages. Certains autres travaux [6, 9, 36, 37, 38, 49, 63, 102] sont basés
sur le raffinement. La plupart de ces travaux [36, 37, 38, 49, 63, 102] utilisent le raffinement pour
prouver un seul protocole spécifique et les abstractions qu’ils dérivent au cours de ce processus ne
se généralisent pas au-delà de ce protocole. Quelques-uns d’entre eux comme [6, 9] ont étudié des
abstractions plus génériques mais lier un protocole concret à de telles abstractions est assez lourd
et complexe.

3.4 Nos contributions

Nous proposons une nouvelle représentation abstraite de la dynamique des protocoles de con-
sensus qui se concentre sur les quorums de réponses (votes) à une demande (proposition) qui se
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Résumé

forment au cours d’une exécution du protocole. Cette abstraction, formalisée sous la forme d’un
objet arbre séquentiel appelé QTree, se ressemble à la description des protocoles récents utilisés
dans les infrastructures Blockchain, par exemple, le protocole supportant Bitcoin ou Hotstuff.
Nous montrons que cette abstraction peut être utilisée pour raisonner de manière uniforme sur
la sûreté de divers algorithmes, par exemple, Paxos, PBFT, Raft et HotStuff. En général, elle four-
nit un nouvel argument basé sur l’induction pour prouver que de tels protocoles sont sûrs.
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1 Introduction

In today’s world, the Internet has become essential as most industries are growing online, and
this does not seem to be changing in the near future. Each new day, more people are using web-
based applications and their demands from them are increasing. To handle this high demand,
the systems are concurrent in the sense that multiple requests are executed by different processes
at the same time. These requests can be executed concurrently either in a single machine or in
a distributed system with multiple machines built on top of a network. Since these requests are
typically about processing data, one must consider how these requests interfere with each other.
For instance one process can try to read a piece of data that is being deleted in parallel by some other
process or some group of processes may fail arbitrarily. This data is typically stored in some data
structure that provide implementations of common abstract data types (adts) such as queues,
key-value stores, and sets. For processing the data concurrently, also these data structures must be
concurrent in the way that they need to support operations to be done at the same time. Hence,
concurrent systems are dependent on reliable concurrent data structures.

Developing such data structures or even understanding and reasoning about them can be tricky.
This is coming from the fact that synchronization between operations of these data structures
must be minimized to reduce response time and increase throughput, yet this minimal amount of
synchronization must also be adequate to ensure that programs satisfy their specification. These
opposing statements, along with the general challenge in reasoning about interleavings between
operations make concurrent data structures a ripe source of insidious programming errors that
are difficult to reproduce, locate, or fix. Therefore, verification techniques that can check the cor-
rectness of a concurrent data structure or (if it is not correct) that can detect, pinpoint and fix the
errors in it, are invaluable.

Implementations of concurrent data structures either assume that processes communicate with
each other using a shared memory or message passing. Generally speaking, shared memory is used
between processes of a single machine system or between the threads in the same process in which
processes read and write to common set of locations. On the other hand, message passing is used
in a distributed system in which processes communicate through the network. When the pro-
cesses execute requests that are transferred via a network, they must agree on the total order be-
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tween these requests. This is achieved using complicated consensus protocols where the correct-
ness is an infamously difficult problem.

In shared memory systems, one must reason about the possible interleavings between read and
write operations to identify which of them are safe to run in parallel. To restrict the additional
interleavings between the operations, synchronization primitives such as semaphores or monitors
are used. As expected, using more synchronization primitives decreases the number of interleav-
ings and thus, it is easier to reason about them. However, usage of these primitives deteriorates
the level of concurrency and the performance. That’s why implementations of concurrent data
structures use these primitives in a very limited way and they become highly complex.

In message passing systems, processes have their own local memories and communicate through
the network by exchanging (sending and receiving) messages. These messages invoke processes to
take some actions as long as the predefined conditions in their source codes are satisfied. Mes-
sages can be transferred with either synchronous or asynchronous message passing. In synchronous
message passing, sender processes remain busy until their requests are finalized by the receiver pro-
cesses. On the other hand in asynchronous message passing, processes can stay active and carry out
requests from others based on the order in their local queue, without waiting for their requests
to be completed. In the presence of concurrent and asynchronous message exchanges as well as
possible message loss or corruption, consensus or state-machine replication protocols are essential
ingredients for maintaining strong consistency. Hence, developing practical implementations or
reasoning about correctness of such protocols is notoriously difficult.

In this dissertation, due to differences stated perviously, we investigated concurrent data struc-
tures separately, based on their communication type between processes. Our main goal is to offer
algorithmic approaches for improving reliability of these concurrent data structures. Mainly we
focused on two research areas for the data structures that are built on top of shared memory: (1)
checking safety by locating the errors (if there is any) and (2) repairing these errors. For the data
structures that are built on top of a network, we analyzed particularly the consensus protocols
and offered a new proof methodology for checking their safety according to the protocols’ own
specifications.

1.1 Checking Safety of SharedMemory Programs

1.1.1 Problem Statement

Our first objective is verifying concurrent data structures that are built on top of shared mem-
ory. We assume that the memory is sequentially consistent throughout this thesis. The de-facto
correctness criterion for concurrent data structures is linearizability. It ensures that methods of
these data structures behave as if they were executed atomically, one after the other to rely on the
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(sequential) adt specification. Violation of linearizability is witnessed by a finite erroneous execu-
tion in which the outputs of individual operations do not match those of a sequential execution
of the same operations.

We are interested in the problem of checking linearizability of a given concurrent data structure.
This problem can be seen as an instance of a more general problem which is checking a safety
property for a given concurrent program. As mentioned above, linearizability violations are finite
executions and therefore, linearizability is a safety property. The concurrent program is a client
of the data structure, which calls methods of the data structure from some (possibly unbounded)
number of threads. We will use the terms concurrent data structure and library interchangeably.

We investigate the problem of checking the correctness of a library in the context of a specific
client by checking linearizability of its executions and locating the linearizability errors in it, if any.

1.1.2 The Approach

We will consider an approach which consists in applying model checking to a bounded client that
consists of a bounded number of threads, each thread doing a bounded number of calls. Along
with a complete enumeration of bounded clients, using a tool such as Violat [29], this approach
is sound and complete in the limit (every linearizability violation can be captured in the context
of a bounded client).

Model checking [24, 25, 84] explores the state space of a given program in a systematic manner
and verifies that each reachable state satisfies a given property. It provides high coverage of program
behavior, but it faces the infamous state explosion problem, i.e., the number of possible thread
interleavings grows exponentially in the size of the source code.

To address the state explosion problem, we will use partial order reduction (POR) [24, 40, 41, 44,

51, 82, 93] which limits the number of explored interleavings without sacrificing coverage. Partial
order reduction relies on an equivalence relation between interleavings, where two interleavings
are equivalent if one can be obtained from the other by swapping consecutive independent (non-
conflicting) execution steps. It guarantees that at least one interleaving from each equivalence class
(called a Mazurkiewicz trace [74]) is explored. Optimal POR techniques explore exactly one in-
terleaving from each equivalence class. Beyond this classic notion of optimality, POR techniques
may aim for optimality by avoiding visiting states from which no optimal execution may pass.

1.1.3 State of the Art

There is a large body of work on POR techniques that address its soundness when checking a
certain class of specifications for a certain class of programs, or its theoretical optimality (see Sec-
tion 2.2.4 for more details). The set of interleavings explored by some POR technique is defined
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by restricting the set of transitions that are explored from each state (scheduling point). We assume
that individual threads are deterministic, and therefore, equate sets of transitions from a given
state to a set of threads (that act in that state). Depending on the class specifications, assump-
tions about programs, or optimality targets, there are various definitions for this set of threads,
including sleep sets[41], stubborn sets [41, 44, 93], persistent sets [40, 43, 60], ample sets [24, 51],

and source sets [3].

The design of a model checking algorithm based on POR has to consider several computational
tradeoffs. First, such an algorithm can be stateful or stateless [39], which corresponds to a trade-
off between memory consumption versus execution time. Stateful model checking records visited
states, thereby consuming more memory, but stateless model checking performs redundant explo-
ration from already visited states. Second, the computation of the set of threads that are explored
from some state can be more or less complex. Focusing on theoretical optimality, i.e., exploring ex-
actly one interleaving from each Mazurkiewicz trace, may make this computation more complex.
This complexity in turn may diminish the overall performance when the potential for reducing
the state space is not large, i.e., most Mazurkiewicz traces contain a small number of interleav-
ings. In such a case, exploring more interleavings can take less time than computing more precise
constraints on the explored schedules. Third, POR algorithms may compute the information
they use for the purpose of reduction statically, by some kind of conservative static analysis of
the source code, or dynamically, during the exploration of interleavings. Static computation is
usually cheaper and less precise than dynamic computation.

1.1.4 Our Contributions

In this dissertation, we investigate the use of POR in model checking from a practical point of
view. We propose several POR-based stateful model checking algorithms with a focus on overall
performance rather than theoretical optimality. These algorithms combine static and dynamic
computations of sets of threads to explore from a given state, whose definition is based on the
recently proposed source sets.

We evaluated several possible variations of our algorithms and existing ones, implemented in the
context of the Java Pathfinder (JPF) model checker [96]. We showed that the performance of the
algorithms depends mainly on the potential for reduction in the state space. We recommended
desirable usages of these algorithms based on the resources of the setup. We also analyzed the
potential effects of different search strategies (enumerations of execution steps).
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1.2 Root-Causing Linearizability Violations

1.2.1 Problem Statement

As a continuation of the work presented above, which focused on identifying linearizability vio-
lations, we consider the problem of debugging linearizability violations, finding their root-cause
and suggest possible repairs. This is a difficult problem because linearizability violations can be
large (even if they are obtained in the context of a client with few methods, the number of in-
ternal steps performed in those methods can be large) and interleave steps of different threads in
complicated ways. Fixing a linearizability violation can be easy if one is willing to disregard or
sacrifice performance, e.g., by enforcing coarse-grain atomic sections that span a whole method
body. On the other hand, it is difficult to localize the problem to a degree that fixing it would not
affect the otherwise correct behaviors of the concurrent data structure, and its performance.

We can tackle this problem in three steps. First of all, we should define some notion of root-
cause for non-linearizability. Secondly, we need to come up with efficient algorithms to find the
root causes of the bug. And as a third step, we must provide an effective methodology for removing
the bug with that root cause.

In this dissertation, we consider the problem of identifying the root causes of linearizability
errors by providing useful hints or guidelines to repair these errors when they are discovered. This
is a problem relevant in practice because it is time consuming and very difficult for a developer to
determine the origin of the violation manually and fix the program accordingly.

1.2.2 The Approach

The approach that we chose to identify the root causes of linearizability errors is finding code
blocks (repairs) in program’s code whose atomicity is required to rule out all given non-linearizable
executions. The key insight of this approach is that the problem can be reduced to a simpler al-
gorithmic problem of identifying minimal root causes of conflict serializability violations in an
erroneous execution. In a concurrent program with a given decomposition of its code into code
blocks, an execution is conflict serializable if it is equivalent to an execution in which all code
blocks are executed in a sequential non-interleaved fashion. A repair can be retrieved using a de-
composition of the set of operations in an execution into a set of blocks called intervals, such that
this execution is not conflict serializable with respect to this decomposition. These intervals will
correspond to atomic sections which will be recommended as repairs by using our approach.
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1.2.3 State of the Art

There are various works such as [22, 54, 55, 56, 57, 59, 81, 99] for fault localization, error expla-
nation, counterexample minimization and bug summarization for concurrent programs. These
works try to derive a report for the reasons of encountered bug but our work differs from them
due to the choice of correctness criterion which is linearizability.

Another branch of works [8, 15, 17, 23, 48, 73, 94, 95] for fixing concurrency errors is on synchro-
nization synthesis techniques that can aid developers repair concurrency related bugs. Again, this
group of works does not focus on linearizability as the correctness criterion, but rather on asser-
tion local violations. Additionally, Afix [56] and ConcurrencySwapper [16] automatically repair
bugs related to concurrency. Unlike our approach, ConcurrencySwapper works with error in-
variants to generalize a linear error trace to a partially ordered trace that is used for synthesizing a
repair.

To our knowledge, Flint [70] is the only other approach that focuses on root-causing lineariz-
ability violations. However, it concentrates on only one particular abstract data type which is
maps. Also differently than our approach, it is based on enumeration-based synthesis and does
not depend on concrete linearizability errors.

1.2.4 Our Contributions

In this dissertation, we present a novel approach that diagnoses the root causes of linearizability
errors. As explained above, this is done by producing repairs as code segments which must be non-
interleaved with actions from other threads (executed sequentially) to reestablish linearizability.

We compute optimal repairs where optimality refers to allowing a maximal number of inter-
leavings. Optimal repairs can be obtained by eliminating the ones that are subsumed by some
other repair which disables the same set of non-linearizable executions. However, there can still
be multiple optimal repairs and we need to determine which one is more likely to correspond to
the root-cause. Therefore, we rank these optimal repairs with an heuristic by favoring the one
that disable less linearizable executions. This heuristic relies on a hypothesis that cyclic memory
accesses appearing in linearizable executions are not “dangerous”.

We propose theoretical results outlining the reduction of the main problem to one related to
conflict serializability violations, and a polynomial algorithm to solve the latter. We have imple-
mented our approach and carried out several experiments using realistic concurrent data struc-
tures to demonstrate its efficiency.
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1.3 Verifying Safety of Consensus Protocols

1.3.1 Problem Statement

Implementing linearizable concurrent data structures that work over a network typically relies on
algorithms used to solve a more generic problem called state machine replication. In state machine
replication, the goal is to make a number of processes agree on a sequence of commands (tran-
sitions) on a state machine. Therefore, interpreting the state machine as an ADT specification,
such algorithms can be used to implement a linearizable concurrent data structure.

In general, state machine replication protocols are part of a larger class of protocols called con-
sensus protocols. Consensus protocols are constructed for agreement on a single value (single-
decree) or multiple ordered values (multi-decree) which is the basis of state-machine replication
protocols. A standard example of a single-decree consensus protocol is the classic Paxos [67] intro-
duced by Lamport. Multi-decree consensus protocols can be defined as a composition of multiple
independent instances of a single-decree protocol where each decided value (in some instance) will
be matched with a unique sequence number to represent an order between these values. One such
example is the Practical Byzantine Fault Tolerance (PBFT) protocol [14]. Multi-decree consensus
protocols can also be defined as an agreement over a common log (e.g., Raft [102] protocol) or a
branch in a tree (e.g., HotStuff [105] protocol).

In consensus protocols, processes receive requests (values) from clients and clients receive a con-
firmation response when processes agree on some (sequence of) values. Most of these protocols
work in a succession of communication-closed rounds [27] and in each round, there is a unique
designated leader (known by all processes) propagating the request of the client to all other pro-
cesses. When the leader of some round becomes unresponsive, then the processes request to pro-
ceed to the next round to have a new leader. In each round, processes progress through several
phases and in each phase, at least a quorum of responses are needed to advance to the next phase.
During a phase, processes acknowledge received messages by their response if the messages satisfy
some conditions (e.g., accepting at most one proposal for a certain round). If all the phases can be
passed (by a quorum of processes) during some round, then the value that is proposed is decided
in the same round and can be sent back to the client as a response.

In consensus protocols, some processes may stop arbitrarily (crash failure) or fail intentionally
(Byzantine failure) and the system must be resilient to such failures, or in other words, fault tol-
erant. Byzantine failures occur when a process continues to operate but acts differently than its
expected behavior, possibly due to malicious actions of an adversary. Adversarially acting faulty
processes can send messages without the obligation of checking conditions specified in the proto-
col. Thus, Byzantine fault tolerant (BFT) protocols require additional cryptographic primitives
to prevent an adversary from breaking the system by tricking correct processes with corrupted
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messages. For instance, cryptographic collision-resistant hash functions [88] can be used in order
to prevent an adversary to generate a message with the same hash but different content. Other
fundamental primitives are related to public-key signatures [87] for preventing an adversary from
acting on behalf of an honest (correct) process.

Developing correct practical implementations of consensus protocols or even reasoning about
their correctness is very challenging. Their complexity stems from the different assumptions (i.e.,
process or network link failures, Byzantine failures etc.) on the environment they operate with
as explained previously. The correctness of consensus protocols under these assumptions is ex-
pressed through the following properties:

• Validity: The decided value must be proposed by a process (who received it from a client).

• Agreement: Every correct process must decide on the same value.

• Termination: Eventually, there will be a decision on some value.

If a protocol satisfies the notions of Validity and Agreement, we say that the protocol is safe.
In this dissertation, we consider the problem of reasoning about the safety of consensus proto-

cols. This is a very challenging problem and with many practical applications as mentioned above.

1.3.2 The Approach

Our approach in reasoning about the safety of consensus protocols is based on refinement. This
consists in showing that the behaviors of a given protocol can be mapped to behaviors of an ab-
stract operational specification (defined as a state machine) which is already proved to be safe
(satisfies Validity and Agreement). This mapping must ensure that the safety of the specification
implies the safety of the original protocol.

Designing useful abstractions can be very helpful in taming complexity while designing new
protocols, or in gaining confidence about their correctness without going through ad-hoc and
brittle proof arguments like in inductive invariant based safety proofs. Nevertheless, finding the
right trade-off between the expressivity of an abstraction and the "easiness" of relating it to con-
crete protocols is an important and non-trivial issue in general.

1.3.3 State of the Art

The problem of proving the correctness of consensus or state-machine replication protocols has
been studied in previous works. There are some works that use inductive invariants [78, 79], which
however, are hard to invent since they have to describe all intermediate states produced by all pos-
sible orders of receiving messages. Some other works [6, 9, 36, 37, 38, 49, 63, 102] are based on
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refinement. Most of these works [36, 37, 38, 49, 63, 102] use refinement to prove just one spe-
cific protocol and the abstractions that they derive during this process does not generalize beyond
that protocol. A few of them such as [6, 9] studied more generic abstractions but relating a con-
crete protocol to such abstractions is quite cumbersome and involved (we give more details in
Section 3.9). Intuitively, these abstractions are too permissive and make refinement proofs harder.

1.3.4 Our Contributions

We propose a novel abstract representation of the dynamics of consensus protocols which focuses
on quorums of responses (votes) to a request (proposal) that form during a run of the protocol.
We show that focusing on such quorums, a run of a protocol can be viewed as working over a tree
structure where different branches represent different possible outcomes of the protocol, the goal
being to stabilize on the choice of a fixed branch. This abstraction, formalized as a sequential tree
object called QTree, resembles the description of recent protocols used in Blockchain infrastruc-
tures, e.g., the protocol supporting Bitcoin or Hotstuff. We show that this abstraction supports
reasoning about the safety of various algorithms, e.g., Paxos, PBFT, Raft, and HotStuff, in a uni-
form way. In general, it provides a novel induction based argument for proving that such protocols
are safe.

Proving that a given protocol refines QTree is similar to proving that a concurrent data struc-
ture admits fixed linearization points, i.e., each method takes effect whenever executing a fixed
statement in its code. That is, one has to identify specific steps of the protocol that correspond to
executing some QTree method.

We show that QTree supports reasoning about the safety of consensus protocols in a uniform
way. In general, it provides a novel induction based argument for proving that such protocols are
safe. Compared to previous works, we demonstrate applicability to a much larger class of pro-
tocols: state machine replication protocols, single-decree and multi-decree consensus protocols
with various optimizations. We believe that QTree is also helpful in taming complexity while de-
signing new protocols, or in gaining confidence about their correctness without going through
ad-hoc and brittle proof arguments.

1.4 Thesis Outline

The rest of this dissertation is organized as follows:

• Chapter 2 focuses on finding and fixing linearizability violations in concurrent data struc-
ture implementations:
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– After the preliminary material in Section 2.1, Section 2.2 introduces new model check-
ing algorithms based on POR that focus on improving overall performance.

– Section 2.3 describes an approach for identifying root causes of linearizability viola-
tions and suggesting possible repairs.

• Chapter 3 presents the QTree abstraction of consensus protocols and shows how to estab-
lish refinement for a diverse class of protocols.

• Chapter 4 concludes the dissertation with final remarks and future research directions.
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2 Debugging Linearizability in
Shared-Memory Concurrent Data
Structures

In this chapter, we present new methodologies for discovering and repairing linearizability bugs in
concurrent data structures implemented on top of shared memory. Section 2.1 introduces a set of
definitions that will be used throughout this chapter about multi-threaded programs, linearizabil-
ity, and partial order reduction techniques. Then in Section 2.2, we investigate several techniques
for improving the performance of POR-based model checking algorithms. Section 2.3 introduces
a method for root-causing and repairing linearizability bugs by identifying minimal code segments
that must be executed in isolation (without interference from other threads).

2.1 Preliminaries

Assuming that programs run under sequential consistency, we model a multi-threaded program
implemented on top of a shared memory with a bounded number of threads as a labeled transition
system (LTS) L = (S, sI ,Γ,A), where

• S is a (possibly infinite) set of statess representing a set of shared objects visible to all threads
and a finite set of local objects visible to a single fixed thread, and a program counter for each
thread.

• The state sI ∈ S is the unique initial state.

• A is a set of actions a where a is an action (transition label) representing the execution of
an atomic statement in the code.

• Γ is a set of labeled transitions (s, a, s′) such that s, s′ ∈ S and a ∈ A.

There are two main types of actions:

• invisible actions: a = (t, k, pc, type, ϵ) where a thread t executes a statement of a method
invocation k ∈ N (we assume method invocation identifiers to be natural numbers) at
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program counter pc that accesses no shared object. For simplicity, we consider only two
specific types of invisible actions related to calling or returning from a method, which will
be formalized shortly.

• visible actions: a = (t, k, pc, r/w, o) where t executes a statement of a method invocation
k at pc and its type is either r or w which represent reading from and writing to a shared
object o, respectively.

We fix an arbitrary set T of thread ids. For an action a, tid(a) is the thread id t ∈ T, act(a)
is the action type and obj (a) is the accessed shared object when a is visible (otherwise it is unde-
fined). The method invocation identifier of an action a is denoted by iid(a).

A transition labeled by a visible (resp. invisible) action is called visible (resp. invisible). In the
context of a full-fledged programming language, invisible transitions are related to control-flow
manipulations (e.g., calling or returning from a method, starting and joining threads), local com-
putations or accesses to “low-level” shared objects that are irrelevant for the intended (functional)
specification. Visible transitions correspond to the execution of a single access to a shared object
followed by a maximal sequence of accesses to the local objects.

We fix arbitrary sets M and V of method names and parameter/return values. For given sets
M and V of method names and values, we formalize invisible actions related to calling (acall) or
returning from (aret) a method. For each call action acall of a method invocation k, type is call
m(v) such that m ∈M and v ∈ V. Similarly, for each return action aret of a method invocation
k type is ret v such that v ∈ V. Method invocation identifiers are used to pair call and return
actions.

An action a is enabled in state s if there exists s′ such that (s, a, s′) ∈ Γ. We use next(s, t) to
denote the transition (s, a, s′) ∈ Γ for some a and s′ with tid(a) = t, if it exists, and succ(s, t)

to denote the successor s′ in this transition. Otherwise, we say that t is blocked in s. The set
enabled(s) is the set of threads that are not blocked in s. A state s is final if enabled(s) = ∅.

Two actionsa anda′ of different threads are independent if they are both enabled in a states and
either one of them is an invisible action, or they are both visible and access different shared objects
(obj (a) ̸= obj (a′)), or they both perform a read access (act(a) = act(a′) = r). The actions a
and a′ are called dependent, denoted by a ≁ a′, if they are not independent. We assume that if an
action a enables or disables another action a′, then a ≁ a′. Two transitions are (in)dependent if
and only if they contain actions that are (in)dependent.

An execution E from a state s is a finite sequence of alternating states and actions such that
E = s0, a0, s1, a1, . . . , sn with s0 = s and (si, ai, si+1) ∈ Γ for each 0 ≤ i ≤ n − 1. We
assume all executions satisfy standard well-formedness properties, e.g., in the projection of E on
considered actions (above) of the same thread, every return action is preceded by a call action of
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the same method invocation k where all the other actions between them are also the actions of k.
We also assume that every atomic section (block) is interpreted as an uninterrupted sequence of
actions that correspond to the instructions in that atomic section.

The set of executions starting from s in the LTS L is denoted by E(L, s). An initialized ex-
ecution is an execution from sI . Initialized executions that end with a final state are called full
executions.

The happens-before relation in an execution E, denoted by→E , captures the causal relation
among actions in E, where a1 <E a2 represents that a1 occurs before a2 in E (we omit the
subscript E and use just a1 < a2 if E is clear from the context), and→E= poE ∪ cfE where

• the program order relation poE relates any two actions a1 and a2 with the same thread id
such that a1 <E a2, and

• the conflict relation cfE relates any two actions a1 and a2 with different threads ids that
accessing the same shared object, at least one of them being a write, such that a1 <E a2.

Given two actions a and a′ in E, a →E a′ holds iff a ≁ a′ and a < a′. Two executions E
and E′ are called equivalent if→E=→E′ (poE = poE′ and cfE = cfE′) and they are called
cf-equivalent when only cfE = cfE′ . For a full execution E, we use [E] to denote the set of full
executions E′ that are equivalent to E.

Given an LTS L = (S, sI ,Γ) that models a concurrent program, an LTS Lr = (Sr, sI ,Γr)

with Sr ⊆ S and Γr ⊆ Γ is called sound for L if for each full execution E of L, there exists a full
execution E′ of Lr that is equivalent to E.

2.1.1 Linearizability

We model a library L containing a set of methods M with an LTS L which models all the execu-
tions of L under a most general client that makes an arbitrary number of invocations of methods
in M from a arbitrary number of threads. The projection of an execution E of a library L over
call and return actions of methods in M is called a history and denoted by h(E). A history is se-
quential when each call action acall is immediately followed by a return action aret of the same
method invocation k = iid(aret) = iid(acall).

A linearization of a history h1 is a sequential history h2 that is a permutation of h1 which pre-
serves the order between return and call actions, i.e., a given return action occurs before a given call
action in h1 if and only if the same holds in h2. An execution E of a libraryL is linearizable ifL
contains some sequential execution whose history is a linearization of h(E). Intuitively, E is lin-
earizable if for every call action acall followed by a return action aret with iid(acall) = iid(aret),
there exist a linearization point at some moment between the occurrences of acall and aret where

13



2 Debugging Linearizability in Shared-Memory Concurrent Data Structures

the invocation takes effect instantaneously. A library is linearizable if all its executions are lineariz-
able1. In the following, since linearizability [50] is used as the main correctness criterion, a bug of
a library is an execution E that is not linearizable.

2.1.2 Partial Order Reduction

The purpose of POR is to reduce the number of states to be searched by model checking without
sacrificing coverage, i.e., ensuring that at least one element (exactly one if it is optimal) from each
equivalence class called Mazurkiewicz trace is discovered. The set of executions explored by POR
techniques is defined by restricting the set of threads whose actions are explored from each state.
Needed information to restrict the threads can be gathered either statically by observing the source
code a-priori or dynamically by analyzing the already explored state space on-the-fly, during the
search of other states. There are already various definitions for restricted sets of threads such as
stubborn sets, persistent sets, source sets etc. where all guarantee soundness, i.e., at least one exe-
cution from each equivalence class is explored. Note that, we define persistent and source sets as
sets of threads, which correspond to sets of transitions in the classical sense, under the assumption
of determinacy of individual threads.

The algorithms discussed in this chapter fall into two categories based on their restricting set
of threads definition: persistent sets and source sets. We selected these two sets because all of
the algorithms before the introduction of source sets that are based on other sets such as ample
sets, stubborn sets etc. are actually computing persistent sets and hence, persistent sets generalize
others [40]. On the other hand, source sets are introduced recently in 2017 by Abdulla and it is
an advancement of the technique based on persistent sets since they are provably optimal [2] (i.e.,
the set of explored threads from some state must be a source set in order to guarantee exploration
of all Mazurkiewicz traces).

Intuitively, a set of threads T is persistent for a state s if in any execution starting from s, the
first transition that is dependent on some transition starting from s of some thread t ∈ T is taken
by some thread t′ ∈ T (t and t′ may be equal). A set of threads T is a source set for s if for any
execution starting from s, there is some thread inT that can take the first step, modulo reorderings
of independent transitions.

Definition 1 (Persistent Set [40]). A set of threads T is called a persistent set for a state s if for
every execution E from s that contains only transitions from thread t′ ̸∈ T , every transition in E is
independent of every transition next(s, t) with t ∈ T .

1Linearizability is typically defined with respect to a sequential adt. Here, we take the simplifying assumption that
the adt is defined by the set of sequential histories of the library. This holds for all concurrent libraries that we are
aware of.

14



2.1 Preliminaries

For an execution E from a state s that ends in a final state, a thread t is called a weak initial of
E if there exists an execution E′ that is equivalent to E and starts with a transition of t.

Definition 2 (Source Set [3]). A set of threadsT is called a source set for a state s if every execution
from s that ends with a final state has a weak initial thread in T .

An exploration where each state is expanded w.r.t. the threads in a persistent or source set is
sound [2] (when finished under the assumption of absence of deadlocks, i.e., a full execution E

contains every action enabled in a state of E, it produces an LTS that is sound for the “full” LTS
of the program which is deterministic and acyclic). However, source sets guarantee a stronger
notion of optimality as mentioned previously. There exist programs where any persistent set (for
the initial state) is strictly larger than a source set, but every persistent set is also a source set [2].

Note that source sets are monotonic in the sense that any superset of a source set is also a source
set. This property does not hold for other definitions such as stubborn sets, persistent sets, or
ample sets.

To demonstrate the optimality of source sets, we go through the example from [3]:

Figure 2.1: Example code taken from [3]

In Figure 2.1, flow of a simple program with three threads (represented with 1, 2 and 3) is de-
picted. There exists a shared object x where each thread contains a single transition that accesses
it and these transitions are denoted with (a), (b) and (c), respectively. Since other transitions
are independent from the rest, only the permutations of (a), (b) and (c) can lead to distinct
Mazurkiewicz traces. As both (b) and (c) are reading fromx, we have six different orders between
these transitions that lead to four different equivalence classes in total:

1. (a), (b), (c) or (a), (c), (b)

2. (b), (a), (c)

3. (c), (a), (b)

4. (b), (c), (a) or (c), (b), (a)

In all the POR algorithms, when a new state is visited for the first time, one of its enabled
transitions from a certain thread must be selected to proceed and since it is a new state, there is no
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information from the future of this transition that can be used for the selection. For instance in
the initial state s of the state space that is generated from executing the code in the given example,
all three threads are enabled and one can select the first transition to be executed based on the
ascending order of thread ids of these transitions. In this case (a) will be the first transition, and
as (a) is dependent on both future transitions (b) and (c), {1, 2, 3} is the only persistent set of s
that can contain 1. But source set based algorithms permit {1, 2} or {1, 3}, as both 2 and 3 are weak
initial threads. Thus, {1, 2} and {1, 3} are the only two optimal sets that can contain 1 whereas {1,
2, 3} is clearly not optimal. Hence, a source set based algorithm can explore exactly one trace from
each of those 4 equivalence classes even the first transition to be executed is selected from thread
1, but this is not true for persistent set based algorithms as they must explore at least both (b), (c),
(a) and (c), (b), (a) orders (even though exploring only one of them is sufficient) because of the
persistent set definition.
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2.2 A Pragmatic Approach to Stateful Partial Order Reduction

2.2 A Pragmatic Approach to Stateful Partial Order
Reduction

In this Section, we investigate the use of partial order reduction (POR) from a practical point of
view. In the context of verifying concurrent data structures, we investigate the following research
question: what tradeoffs in POR families of algorithms may lead to practical net gains in verifica-
tion or bug-finding times? We focus on the application domain of verification of Java concurrent
data structures using a tool like Violat [29] which can be utilized to collect client programs that
admit executions leading to linearizability bugs, using assertions to check that any combination of
return values observed in an execution belongs to a statically precomputed set of adt-admitted
return-value outcomes. Violat is integrated with the Java Pathfinder (JPF) model checker [96],

which enables complete systematic coverage of a given test program and outputting executions
leading to consistency violations, thus facilitating diagnosis and repair. We investigate POR algo-
rithms implementable in JPF.

We study several stateful model checking algorithms with POR in the context of Violat’s test
programs. This choice was inspired by experiments that demonstrated that it is much faster than
the stateless variation (see Section 2.2.3). We introduce POR algorithms that combine static and
dynamic computations of sets of threads to explore from a given state. In the context of state-
ful model checking, static techniques may seem like the better option. A dynamic computation
usually requires re-traversing the state space starting in an already visited state which can be time
consuming. Note however that re-traversing the state space that is already loaded in memory takes
less time than generating that state space in the first place, which involves executing program state-
ments.

Our starting point is a simple static POR algorithm, called S-POR, that makes use of invisible
transitions which correspond to the safe actions introduced in [51]. Based on a syntactic analy-
sis of the code, we identify shared and synchronization objects, and assume that every transition
that does not access such an object is invisible. For clients of concurrent data structures, such ob-
jects correspond to class fields accessed in a method of the data structure. The S-POR algorithm
prioritizes the exploration of invisible transitions over visible ones, i.e., if an invisible transition is
enabled in a given state then this is the only explored transition from that state, and otherwise,
all enabled transitions are explored. We demonstrate that S-POR has a small overhead and the
potential for substantial reductions, and therefore leads to significant speedups with respect to
standard JPF which employs a very conservative heuristic for its POR (see Section 2.2.3).

S-POR is effective, but by the nature of being lightweight, does not always reduce the state space
effectively. We introduce two new algorithms as extensions of S-POR, with the idea of perform-
ing a more aggressive reduction while keeping the overhead reasonably low. They dynamically
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compute source sets, which restrict the set of threads explored from a state with only visible en-
abled transitions. We focus on source sets since they are provably minimal and monotonicity of
source sets makes their computation less sensitive to the order in which transitions from a given
state are enumerated, compared to definitions such as persistent set.

The design principle behind our algorithms is to favor efficiency over theoretical optimality.
Our algorithms are not theoretically optimal. However, we demonstrate that they are more effi-
cient than the optimal algorithm [3] where the overhead of source set computation subsumes any
gains from not exploring the redundant interleavings.

In general, a dynamic computation of source sets relies on tracking dependencies between ac-
tions in the already explored executions. Our two proposed algorithms differ in the way in which
the tracking is performed: one is eager and called DE-S-POR, and the other is lazy and called
DL-S-POR. Intuitively, DE-S-POR advances the computation of source sets for predecessors in
the current execution in a style similar to previous dynamic POR algorithms, e.g. [3, 35], while
DL-S-POR advances the computation of the source set in a given state only when the exploration
backtracks to that state and one must decide if a new transition has to be explored.

The thesis of this section is that when there is a big enough potential for reducing the state
space of a concurrent program, i.e., many Mazurkiewicz traces are large enough, non-optimal
but carefully customized algorithms, likeDE-S-POR andDL-S-POR, can have the largest impact
compared to the two extremes of the spectrum, that is, S-POR or theoretically optimal algorithms
like [3]. If the potential for reduction is small, then a simple static algorithm like S-POR provides
the best overhead-gain tradeoff.

To support this thesis, we implemented these algorithms in JPF and evaluated them on a num-
ber of clients of concurrent data structures from the Synchrobench repository [46]. Our evalua-
tion shows that they outperform (1) their variations that are directly built on top of the standard
setup of JPF, (2) their stateless variations, and (3) a best-effort implementation of a stateful varia-
tion of the optimal algorithm in [3]. The lazy algorithmDL-S-POR is more efficient than the eager
DE-S-POR, and more efficient than S-POR on clients with a big enough potential for reducing
the state space.

The remainder of this section is organized as follows:

• In Section 2.2.1, we present two stateful POR algorithms; first S-POR that has no dynamic
computation and thenDE-S-POR (which is build on top of S-POR) that computes source
sets on-the-fly while searching the state space.

• In Section 2.2.2, we introduce another stateful POR algorithmDL-S-POR (which is again
build on top of S-POR) that computes source sets lazily by need (when it backtracks to
a state which has still undiscovered enabled transitions) using additional traversals of the
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explored state space. Then we talk about some optimizations that can be done on DL-S-
POR but not possible on DE-S-POR.

• In Section 2.2.3, we present the empirical evaluation of our algorithms by comparing them
based on time and space consumption and show how different enumerations of transitions
can affect the bug finding times.

• Section 2.2.4 presents related work.

2.2.1 Eager Source Set POR (DE-S-POR)

We present a first stateful POR algorithm that selects a sufficient set of threads to expand a state
based on two criteria: (1) a static criterion based on (in)visible actions, and (2) a dynamic criterion
based on source sets computed on-the-fly during the exploration. Source sets are maintained ea-
gerly for each new transition that is explored, in a style similar to previous algorithms [3, 35]. For
presentation reasons, we start with a simplified version that includes only the static criterion and
continue with the full version afterwards.

2.2.1.1 Safe Set POR (S-POR)

Algorithm 1: Safe Set POR (S-POR)
Initialize: Stack ← ∅; Stack.push(sI); Lr ← ∅;

1 Explore()
2 s← Stack.top;
3 if notVisited(s) then
4 forall t ∈ safeSet(s) do
5 (s, a, s′)← next(s, t);
6 Stack.push(s′); // (s, a, s′) is added to Lr

7 Explore();
8 Stack.pop();

notV isited(s) holds if s is final in Lr but enabled(s) ̸= ∅

safeSet(s) =

{
{t}, ∃t ∈ enabled(s) : next(s, t) = (s, a, s′) and a is invisible
enabled(s), otherwise

Algorithm 1 presents a stateful DFS traversal of a concurrent program, represented by an LTS,
which restricts the traversal to so called safe sets. Figure 2.2 illustrates the core idea of this algo-
rithm. The safe sets prioritize the exploration of invisible transitions over visible ones.
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Figure 2.2: Full traversal vs. partial safe set POR (in blue)

For a state s, if there is an enabled thread t ∈ enabled(s) whose enabled transition is invisible,
then safeSet(s) = {t}. Otherwise, safeSet(s) contains all the threads enabled in s, and s is called
an irreducible state. In Figure 2.2, only state s′ is irreducible since any other state has at least one
enabled invisible transition, and all other states are reducible.

In Algorithm 1,Stack represents the stack of the DFS traversal and it is considered to be a global
variable, and Lr records transitions explored during the traversal. Note that the DFS traversal
stops the exploration whenever it visits a state s that has been visited in the past (see the condition
at line 3). The choice of safe sets then provides additional savings on top of the standard DFS
traversal strategy. When the traversal ends, Lr is sound (for the “full” LTS of the program).

Observe that Algorithm 1 can reduce the number of visited states in a significant way. The
diagram in Figure 2.2 corresponds to a fully explored program LTS while the path marked by the
blue arrow is the result of Algorithm 1. It is easy to observe that one can obtain an exponential
reduction (with the base of the number of consecutive invisible transitions and the exponent of
the number of threads) with this algorithm.

2.2.1.2 Full Algorithm

Algorithm 2 builds on top of Algorithm 1 by computing on-the-fly source sets to limit exploration
of transitions from the irreducible states. More precisely, reducible states are traversed according
to the strategy of Algorithm 1 (i.e., only one enabled invisible transition is followed) and for irre-
ducible states, source sets determine what transitions are followed. Since safe sets are also source
sets, the overall algorithm remains sound if the new source sets are computed correctly.

Figure 2.3 provides a declarative description of the key components of Algorithm 2. For a
state s in the current execution (stored on the stack), the s.current set may be updated every
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Algorithm 2: Eager Source Set POR (DE-S-POR)
Initialize: Stack ← ∅; Stack.push(sI); Lr ← ∅;

1 Explore()
2 s← Stack.top;
3 if notVisited(s) then
4 if ∃t ∈ safeSet(s) then
5 s.backtrack← {t};
6 s.current← ∅;
7 s.done← ∅;
8 while ∃t′ ∈ s.backtrack \ s.done do
9 (s, a, s′) = next(s, t′);

10 Stack.push(s′);
11 s.done = s.done ∪ {t′};
12 s.current[t′]← {t′};
13 if a is visible then
14 UpdateCurr(a)

15 Explore();
16 s.backtrack← UpdateBack(s, a);
17 Stack.pop();

18 else
19 As ← {a′ : a′ occurs in an execution from E(Lr, s)};
20 foreach a′ ∈ As do UpdateCurr(a′);

21 UpdateCurr(a)
22 E is the initialized execution of Lr following states in Stack;
23 (s, a′, s′) is the last transition of E witha≁a′∧tid(a) ̸=tid(a′)
24 if (s, a′, s′) ̸= null then
25 s.current[tid(a′)] = s.current[tid(a′)] ∪ {tid(a)};

time a new visible transition is explored, and the s.backtrack set may be updated every time the
exploration backtracks to s. The update of s.backtrack relies on the sets s.current computed
while traversing successors of s.

When a new transition (s, a, s′) from a state s is traversed, the active thread tid(a) is added to
the current setsl.current[t], wheresl is the last state from which the current execution performs
a transition that is dependent ona such that t ̸= tid(a) is the thread of that transition. See line 14
and the UpdateCurr function. When a transition is followed to a visited state s, the same
update is done for every transition that is reachable from s, as if these transitions are traversed
again. See lines 19-20 and note that the declarative definition of As at line 19 corresponds to a
traversal of all the executions starting from s. This may be time-consuming, and yet, such updates
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UpdateBack(s, a) =


safeSet(s), ∃t ∈ s.current[tid(a)] \ safeSet(s)
s.done, ∃T ⊂ s.done : T =

⋃
t∈T

s.current[t]⋃
t∈s.done

s.current[t], otherwise

s.current[t]: set of threads that execute a transition dependent on next(s, t) which appears
after it in an execution.
s.done: set of threads whose transitions have been fully explored from s.
s.backtrack: when equal to s.done, a source set for s.

Figure 2.3: Description of important components in Algorithm 2.

are unavoidable in stateful POR algorithms because the current execution reaching s (stored on
the stack) may belong to a different Mazurkiewicz trace compared to a previous execution reaching
s (whose sequence of transitions leading to s was different).

When backtracking to a state s, the set s.backtrack is updated to take into account the tran-
sitions which are dependent on and occur after the last explored transition starting from s, called
τs. If τs is a transition of thread t, the threads performing those dependent transitions are stored
in s.current[t]. If there is a dependent transition τ performed by a thread t′ that is not in the safe
set of s, then s.backtrack is updated conservatively to contain the safe set of s. This situation
occurs when τ becomes enabled after executing some other thread t′′ enabled in s, and observing
an execution where τs occurs after τ requires first executing the transition of t′′. Otherwise, the
algorithm checks to see if a subset T of threads enabled in s which have already been explored
are sufficient to cover s.current[t], and that T ’s transitions in s are independent from future
transitions of threads not in T . In that case, s.backtrack is assigned with s.done and the ex-
ploration from s is halted. The subset of threads T defines a persistent set and a source set for s.
Since source sets are monotonic, s.done is a source set for s. If none of the previous conditions
hold, then s.current[t] is simply added to s.backtrack. This computation is defined by the
macro UpdateBack in Fig. 2.3.

We illustrate the algorithm using Figure 2.4. In (a), s is reached for the first time and the transi-
tion labeled by (1, w, o1) is selected first to be executed. This is a visible transition of thread 1 that
writes to the shared object o1. After this transition is taken, s.current[1] and s.done become
{1}. In (b), from some state which is reached later, the transition labeled by action (2, r, o1) is
selected to be followed next. Since this action is dependent on (1, w, o1), thread 2 is added to
s.current[1]. Then in (c), a transition of thread 3 with an action dependent on (1, w, o1) is
taken, and 3 is added to s.current[1]. After backtracking to s in (d), s.backtrack is updated
by simply copying s.current[1]. The next transition to be taken from s belongs to thread 2
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2.2 A Pragmatic Approach to Stateful Partial Order Reduction

<latexit sha1_base64="J4RJlq2D41hagJdlfdZWLcW3l8A=">AAAB6HicbVA9SwNBEJ2LXzF+RS1tFoNgFe4kqGXAxsIiARMDyRH2NnPJmr29Y3dPCEd+gY2FIrb+JDv/jZvkCk18MPB4b4aZeUEiuDau++0U1tY3NreK26Wd3b39g/LhUVvHqWLYYrGIVSegGgWX2DLcCOwkCmkUCHwIxjcz/+EJleaxvDeTBP2IDiUPOaPGSk3dL1fcqjsHWSVeTiqQo9Evf/UGMUsjlIYJqnXXcxPjZ1QZzgROS71UY0LZmA6xa6mkEWo/mx86JWdWGZAwVrakIXP190RGI60nUWA7I2pGetmbif953dSE137GZZIalGyxKEwFMTGZfU0GXCEzYmIJZYrbWwkbUUWZsdmUbAje8surpH1R9S6rtWatUr/L4yjCCZzCOXhwBXW4hQa0gAHCM7zCm/PovDjvzseiteDkM8fwB87nD+SVjQo=</latexit>s <latexit sha1_base64="AtDsMWSIE81h7Bwp3HzKpJiFVMg=">AAAB6HicdVDJSgNBEK2JW4xb1KOXxiB4GibJZLsFvHjwkIBZIBlCT6cnadOz0N0jhCFf4MWDIl79JG/+jT1JBBV9UPB4r4qqem7EmVSW9WFkNja3tneyu7m9/YPDo/zxSVeGsSC0Q0Ieir6LJeUsoB3FFKf9SFDsu5z23NlV6vfuqZAsDG7VPKKOjycB8xjBSkttOcoXLLNRrtdLDaRJpWyXaympVip2AxVNa4kCrNEa5d+H45DEPg0U4VjKQdGKlJNgoRjhdJEbxpJGmMzwhA40DbBPpZMsD12gC62MkRcKXYFCS/X7RIJ9Kee+qzt9rKbyt5eKf3mDWHl1J2FBFCsakNUiL+ZIhSj9Go2ZoETxuSaYCKZvRWSKBSZKZ5PTIXx9iv4n3ZJZrJp22y40b9ZxZOEMzuESilCDJlxDCzpAgMIDPMGzcWc8Gi/G66o1Y6xnTuEHjLdPgQeNdg==</latexit>s
<latexit sha1_base64="J4RJlq2D41hagJdlfdZWLcW3l8A=">AAAB6HicbVA9SwNBEJ2LXzF+RS1tFoNgFe4kqGXAxsIiARMDyRH2NnPJmr29Y3dPCEd+gY2FIrb+JDv/jZvkCk18MPB4b4aZeUEiuDau++0U1tY3NreK26Wd3b39g/LhUVvHqWLYYrGIVSegGgWX2DLcCOwkCmkUCHwIxjcz/+EJleaxvDeTBP2IDiUPOaPGSk3dL1fcqjsHWSVeTiqQo9Evf/UGMUsjlIYJqnXXcxPjZ1QZzgROS71UY0LZmA6xa6mkEWo/mx86JWdWGZAwVrakIXP190RGI60nUWA7I2pGetmbif953dSE137GZZIalGyxKEwFMTGZfU0GXCEzYmIJZYrbWwkbUUWZsdmUbAje8surpH1R9S6rtWatUr/L4yjCCZzCOXhwBXW4hQa0gAHCM7zCm/PovDjvzseiteDkM8fwB87nD+SVjQo=</latexit>s <latexit sha1_base64="J4RJlq2D41hagJdlfdZWLcW3l8A=">AAAB6HicbVA9SwNBEJ2LXzF+RS1tFoNgFe4kqGXAxsIiARMDyRH2NnPJmr29Y3dPCEd+gY2FIrb+JDv/jZvkCk18MPB4b4aZeUEiuDau++0U1tY3NreK26Wd3b39g/LhUVvHqWLYYrGIVSegGgWX2DLcCOwkCmkUCHwIxjcz/+EJleaxvDeTBP2IDiUPOaPGSk3dL1fcqjsHWSVeTiqQo9Evf/UGMUsjlIYJqnXXcxPjZ1QZzgROS71UY0LZmA6xa6mkEWo/mx86JWdWGZAwVrakIXP190RGI60nUWA7I2pGetmbif953dSE137GZZIalGyxKEwFMTGZfU0GXCEzYmIJZYrbWwkbUUWZsdmUbAje8surpH1R9S6rtWatUr/L4yjCCZzCOXhwBXW4hQa0gAHCM7zCm/PovDjvzseiteDkM8fwB87nD+SVjQo=</latexit>s <latexit sha1_base64="J4RJlq2D41hagJdlfdZWLcW3l8A=">AAAB6HicbVA9SwNBEJ2LXzF+RS1tFoNgFe4kqGXAxsIiARMDyRH2NnPJmr29Y3dPCEd+gY2FIrb+JDv/jZvkCk18MPB4b4aZeUEiuDau++0U1tY3NreK26Wd3b39g/LhUVvHqWLYYrGIVSegGgWX2DLcCOwkCmkUCHwIxjcz/+EJleaxvDeTBP2IDiUPOaPGSk3dL1fcqjsHWSVeTiqQo9Evf/UGMUsjlIYJqnXXcxPjZ1QZzgROS71UY0LZmA6xa6mkEWo/mx86JWdWGZAwVrakIXP190RGI60nUWA7I2pGetmbif953dSE137GZZIalGyxKEwFMTGZfU0GXCEzYmIJZYrbWwkbUUWZsdmUbAje8surpH1R9S6rtWatUr/L4yjCCZzCOXhwBXW4hQa0gAHCM7zCm/PovDjvzseiteDkM8fwB87nD+SVjQo=</latexit>s <latexit sha1_base64="J4RJlq2D41hagJdlfdZWLcW3l8A=">AAAB6HicbVA9SwNBEJ2LXzF+RS1tFoNgFe4kqGXAxsIiARMDyRH2NnPJmr29Y3dPCEd+gY2FIrb+JDv/jZvkCk18MPB4b4aZeUEiuDau++0U1tY3NreK26Wd3b39g/LhUVvHqWLYYrGIVSegGgWX2DLcCOwkCmkUCHwIxjcz/+EJleaxvDeTBP2IDiUPOaPGSk3dL1fcqjsHWSVeTiqQo9Evf/UGMUsjlIYJqnXXcxPjZ1QZzgROS71UY0LZmA6xa6mkEWo/mx86JWdWGZAwVrakIXP190RGI60nUWA7I2pGetmbif953dSE137GZZIalGyxKEwFMTGZfU0GXCEzYmIJZYrbWwkbUUWZsdmUbAje8surpH1R9S6rtWatUr/L4yjCCZzCOXhwBXW4hQa0gAHCM7zCm/PovDjvzseiteDkM8fwB87nD+SVjQo=</latexit>s

<latexit sha1_base64="lHLLoSJV4YmNH913IPGNrlmzZik=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2FXgnoMeNBjRPOAZAmzk95kyOzsMjMrhJBP8OJBEa9+kTf/xkmyB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3cz81hMqzWP5aMYJ+hEdSB5yRo2VHsr0vFcsuRV3DrJKvIyUIEO9V/zq9mOWRigNE1Trjucmxp9QZTgTOC10U40JZSM6wI6lkkao/cn81Ck5s0qfhLGyJQ2Zq78nJjTSehwFtjOiZqiXvZn4n9dJTXjtT7hMUoOSLRaFqSAmJrO/SZ8rZEaMLaFMcXsrYUOqKDM2nYINwVt+eZU0LyreZaV6Xy3VbrM48nACp1AGD66gBndQhwYwGMAzvMKbI5wX5935WLTmnGzmGP7A+fwBjRqNWA==</latexit>

(a)
<latexit sha1_base64="WHzQ5+VpAo6ZS9zz6K2vwUBubs0=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2FXgnoMeNBjRPOAZAmzk95kyOzsMjMrhJBP8OJBEa9+kTf/xkmyB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3cz81hMqzWP5aMYJ+hEdSB5yRo2VHsrBea9YcivuHGSVeBkpQYZ6r/jV7ccsjVAaJqjWHc9NjD+hynAmcFrophoTykZ0gB1LJY1Q+5P5qVNyZpU+CWNlSxoyV39PTGik9TgKbGdEzVAvezPxP6+TmvDan3CZpAYlWywKU0FMTGZ/kz5XyIwYW0KZ4vZWwoZUUWZsOgUbgrf88ippXlS8y0r1vlqq3WZx5OEETqEMHlxBDe6gDg1gMIBneIU3RzgvzrvzsWjNOdnMMfyB8/kDjp+NWQ==</latexit>

(b)
<latexit sha1_base64="WOVgQMt23yJKhN15rqQjMFl2GQc=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2FXgnoMeNBjRPOAZAmzk95kyOzsMjMrhJBP8OJBEa9+kTf/xkmyB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3cz81hMqzWP5aMYJ+hEdSB5yRo2VHsrsvFcsuRV3DrJKvIyUIEO9V/zq9mOWRigNE1Trjucmxp9QZTgTOC10U40JZSM6wI6lkkao/cn81Ck5s0qfhLGyJQ2Zq78nJjTSehwFtjOiZqiXvZn4n9dJTXjtT7hMUoOSLRaFqSAmJrO/SZ8rZEaMLaFMcXsrYUOqKDM2nYINwVt+eZU0LyreZaV6Xy3VbrM48nACp1AGD66gBndQhwYwGMAzvMKbI5wX5935WLTmnGzmGP7A+fwBkCSNWg==</latexit>

(c)
<latexit sha1_base64="RFWpg9w2aNEbYr/NywaByWwRKLA=">AAAB6nicbVBNSwMxEJ3Ur1q/qh69BItQL2VXinoseNBjRfsB7VKy2Wwbms0uSVYoS3+CFw+KePUXefPfmLZ70NYHA4/3ZpiZ5yeCa+M436iwtr6xuVXcLu3s7u0flA+P2jpOFWUtGotYdX2imeCStQw3gnUTxUjkC9bxxzczv/PElOaxfDSThHkRGUoeckqMlR6qwfmgXHFqzhx4lbg5qUCO5qD81Q9imkZMGiqI1j3XSYyXEWU4FWxa6qeaJYSOyZD1LJUkYtrL5qdO8ZlVAhzGypY0eK7+nshIpPUk8m1nRMxIL3sz8T+vl5rw2su4TFLDJF0sClOBTYxnf+OAK0aNmFhCqOL2VkxHRBFqbDolG4K7/PIqaV/U3Mta/b5eadzmcRThBE6hCi5cQQPuoAktoDCEZ3iFNyTQC3pHH4vWAspnjuEP0OcPkamNWw==</latexit>

(d)
<latexit sha1_base64="j9Zxd2s72b2v23lTHXnuWNof2Bo=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2FXgnoMeNBjRPOAZAmzk95kyOzsMjMrhJBP8OJBEa9+kTf/xkmyB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3cz81hMqzWP5aMYJ+hEdSB5yRo2VHsp43iuW3Io7B1klXkZKkKHeK351+zFLI5SGCap1x3MT40+oMpwJnBa6qcaEshEdYMdSSSPU/mR+6pScWaVPwljZkobM1d8TExppPY4C2xlRM9TL3kz8z+ukJrz2J1wmqUHJFovCVBATk9nfpM8VMiPGllCmuL2VsCFVlBmbTsGG4C2/vEqaFxXvslK9r5Zqt1kceTiBUyiDB1dQgzuoQwMYDOAZXuHNEc6L8+58LFpzTjZzDH/gfP4Aky6NXA==</latexit>

(e)
<latexit sha1_base64="qn0r374fvi0lt29Ii5UCTWu5Tcw=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2FXgnoMeNBjRPOAZAmzk95kyOzsMjMrhJBP8OJBEa9+kTf/xkmyB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3cz81hMqzWP5aMYJ+hEdSB5yRo2VHsrhea9YcivuHGSVeBkpQYZ6r/jV7ccsjVAaJqjWHc9NjD+hynAmcFrophoTykZ0gB1LJY1Q+5P5qVNyZpU+CWNlSxoyV39PTGik9TgKbGdEzVAvezPxP6+TmvDan3CZpAYlWywKU0FMTGZ/kz5XyIwYW0KZ4vZWwoZUUWZsOgUbgrf88ippXlS8y0r1vlqq3WZx5OEETqEMHlxBDe6gDg1gMIBneIU3RzgvzrvzsWjNOdnMMfyB8/kDlLONXQ==</latexit>

(f)

<latexit sha1_base64="gztSeA4QUf5Id2TJgCLQK5qne9Y=">AAAB9XicbVBNS8NAEJ34WetX1aOXxSJ4Ckkp6kUoevFYwX5AEstmu2mXbjZhd6OU0P/hxYMiXv0v3vw3btsctPXBwOO9GWbmhSlnSjvOt7Wyura+sVnaKm/v7O7tVw4O2yrJJKEtkvBEdkOsKGeCtjTTnHZTSXEcctoJRzdTv/NIpWKJuNfjlAYxHggWMYK1kR6UTbxagK6Qn9f8Sa9SdWxnBrRM3IJUoUCzV/ny+wnJYio04Vgpz3VSHeRYakY4nZT9TNEUkxEeUM9QgWOqgnx29QSdGqWPokSaEhrN1N8TOY6VGseh6YyxHqpFbyr+53mZji6DnIk001SQ+aIo40gnaBoB6jNJieZjQzCRzNyKyBBLTLQJqmxCcBdfXibtmu2e2/W7erVxXcRRgmM4gTNw4QIacAtNaAEBCc/wCm/Wk/VivVsf89YVq5g5gj+wPn8As6qRXA==</latexit>

s.c[2] = {2}
<latexit sha1_base64="+umjueaI82OxzM7oeZg7rggFGL4=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M1gEFyUktagboejGZQX7gCaUyXTSDp08mJkINfRL3LhQxK2f4s6/cdpmoa0HLhzOuZd77/ETzqSy7W+jsLa+sblV3C7t7O7tl82Dw7aMU0Foi8Q8Fl0fS8pZRFuKKU67iaA49Dnt+OPbmd95pEKyOHpQk4R6IR5GLGAEKy31zbK0fHSN3Myp1qrn7rRvVmzLngOtEicnFcjR7Jtf7iAmaUgjRTiWsufYifIyLBQjnE5LbippgskYD2lP0wiHVHrZ/PApOtXKAAWx0BUpNFd/T2Q4lHIS+rozxGokl72Z+J/XS1Vw5WUsSlJFI7JYFKQcqRjNUkADJihRfKIJJoLpWxEZYYGJ0lmVdAjO8surpF2znAurfl+vNG7yOIpwDCdwBg5cQgPuoAktIJDCM7zCm/FkvBjvxseitWDkM0fwB8bnDwqQkWg=</latexit>

s.b = {1, 2, 3}
<latexit sha1_base64="/y7JMf+NLyHNVw2UVXYstSiAnz4=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LBbBg5SkFPUiFL14rGA/oAlls9m0SzebuLsplNDf4cWDIl79Md78N27bHLT1wcDjvRlm5vkJZ0rb9rdVWFvf2Nwqbpd2dvf2D8qHR20Vp5LQFol5LLs+VpQzQVuaaU67iaQ48jnt+KO7md8ZU6lYLB71JKFehAeChYxgbSRPVQN0g9zMuai50365YlftOdAqcXJSgRzNfvnLDWKSRlRowrFSPcdOtJdhqRnhdFpyU0UTTEZ4QHuGChxR5WXzo6fozCgBCmNpSmg0V39PZDhSahL5pjPCeqiWvZn4n9dLdXjtZUwkqaaCLBaFKUc6RrMEUMAkJZpPDMFEMnMrIkMsMdEmp5IJwVl+eZW0a1Xnslp/qFcat3kcRTiBUzgHB66gAffQhBYQeIJneIU3a2y9WO/Wx6K1YOUzx/AH1ucPtS2Qxg==</latexit>

s.d = {1, 2}

<latexit sha1_base64="UnmAGIvv1EzVWOVSCWEhRyYaZ3g=">AAAB+XicbVBNS8NAEJ34WetX1KOXxSJ4kJKUol6EohePFewHJKFstpt26WYTdjeFEvpPvHhQxKv/xJv/xm2bg7Y+GHi8N8PMvDDlTGnH+bbW1jc2t7ZLO+Xdvf2DQ/vouK2STBLaIglPZDfEinImaEszzWk3lRTHIaedcHQ/8ztjKhVLxJOepDSI8UCwiBGsjdSzbVUlnhugW+Tn7mXNn/bsilN15kCrxC1IBQo0e/aX309IFlOhCcdKea6T6iDHUjPC6bTsZ4qmmIzwgHqGChxTFeTzy6fo3Ch9FCXSlNBorv6eyHGs1CQOTWeM9VAtezPxP8/LdHQT5EykmaaCLBZFGUc6QbMYUJ9JSjSfGIKJZOZWRIZYYqJNWGUTgrv88ipp16ruVbX+WK807oo4SnAKZ3ABLlxDAx6gCS0gMIZneIU3K7derHfrY9G6ZhUzJ/AH1ucPCMuR/Q==</latexit>

s.c[1] = {1, 2} <latexit sha1_base64="cdNR2x1pYWJv1x5vi4FUpRHhCmA=">AAAB+3icbVDLSsNAFJ3UV62vWJduBovgooSkFnUjFN24rGAfkIQymU7aoZNJmJmIJeRX3LhQxK0/4s6/cdpmoa0HLhzOuZd77wkSRqWy7W+jtLa+sblV3q7s7O7tH5iH1a6MU4FJB8csFv0AScIoJx1FFSP9RBAUBYz0gsntzO89EiFpzB/UNCF+hEachhQjpaWBWZUWdh0fXkMvc+qN+rmXD8yabdlzwFXiFKQGCrQH5pc3jHEaEa4wQ1K6jp0oP0NCUcxIXvFSSRKEJ2hEXE05ioj0s/ntOTzVyhCGsdDFFZyrvycyFEk5jQLdGSE1lsveTPzPc1MVXvkZ5UmqCMeLRWHKoIrhLAg4pIJgxaaaICyovhXiMRIIKx1XRYfgLL+8SroNy7mwmvfNWuumiKMMjsEJOAMOuAQtcAfaoAMweALP4BW8GbnxYrwbH4vWklHMHIE/MD5/AOuVknA=</latexit>

s.c[1] = {1, 2, 3}
<latexit sha1_base64="6JWaK8mhDKaM3+NTks7ANj2amAM=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0ikqBeh6MVjBfsBSSibzaZdutmE3Y1QQn+GFw+KePXXePPfuG1z0NYHA4/3ZpiZF2acKe0431ZlbX1jc6u6XdvZ3ds/qB8edVWaS0I7JOWp7IdYUc4E7WimOe1nkuIk5LQXju9mfu+JSsVS8agnGQ0SPBQsZgRrI3nKjtAN8gvXnw7qDcd25kCrxC1JA0q0B/UvP0pJnlChCcdKea6T6aDAUjPC6bTm54pmmIzxkHqGCpxQFRTzk6fozCgRilNpSmg0V39PFDhRapKEpjPBeqSWvZn4n+flOr4OCiayXFNBFovinCOdotn/KGKSEs0nhmAimbkVkRGWmGiTUs2E4C6/vEq6F7Z7aTcfmo3WbRlHFU7gFM7BhStowT20oQMEUniGV3iztPVivVsfi9aKVc4cwx9Ynz/WuJBU</latexit>

s.d = {1}

<latexit sha1_base64="gztSeA4QUf5Id2TJgCLQK5qne9Y=">AAAB9XicbVBNS8NAEJ34WetX1aOXxSJ4Ckkp6kUoevFYwX5AEstmu2mXbjZhd6OU0P/hxYMiXv0v3vw3btsctPXBwOO9GWbmhSlnSjvOt7Wyura+sVnaKm/v7O7tVw4O2yrJJKEtkvBEdkOsKGeCtjTTnHZTSXEcctoJRzdTv/NIpWKJuNfjlAYxHggWMYK1kR6UTbxagK6Qn9f8Sa9SdWxnBrRM3IJUoUCzV/ny+wnJYio04Vgpz3VSHeRYakY4nZT9TNEUkxEeUM9QgWOqgnx29QSdGqWPokSaEhrN1N8TOY6VGseh6YyxHqpFbyr+53mZji6DnIk001SQ+aIo40gnaBoB6jNJieZjQzCRzNyKyBBLTLQJqmxCcBdfXibtmu2e2/W7erVxXcRRgmM4gTNw4QIacAtNaAEBCc/wCm/Wk/VivVsf89YVq5g5gj+wPn8As6qRXA==</latexit>

s.c[2] = {2}
<latexit sha1_base64="/y7JMf+NLyHNVw2UVXYstSiAnz4=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LBbBg5SkFPUiFL14rGA/oAlls9m0SzebuLsplNDf4cWDIl79Md78N27bHLT1wcDjvRlm5vkJZ0rb9rdVWFvf2Nwqbpd2dvf2D8qHR20Vp5LQFol5LLs+VpQzQVuaaU67iaQ48jnt+KO7md8ZU6lYLB71JKFehAeChYxgbSRPVQN0g9zMuai50365YlftOdAqcXJSgRzNfvnLDWKSRlRowrFSPcdOtJdhqRnhdFpyU0UTTEZ4QHuGChxR5WXzo6fozCgBCmNpSmg0V39PZDhSahL5pjPCeqiWvZn4n9dLdXjtZUwkqaaCLBaFKUc6RrMEUMAkJZpPDMFEMnMrIkMsMdEmp5IJwVl+eZW0a1Xnslp/qFcat3kcRTiBUzgHB66gAffQhBYQeIJneIU3a2y9WO/Wx6K1YOUzx/AH1ucPtS2Qxg==</latexit>

s.d = {1, 2}

<latexit sha1_base64="YmJ1lfp6TSSS/EACm7w074IBDCk=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LBbBg4SkFPUiFL14rGA/oAlls920SzebuLsplNDf4cWDIl79Md78N27bHLT1wcDjvRlm5gUJZ0o7zrdVWFvf2Nwqbpd2dvf2D8qHRy0Vp5LQJol5LDsBVpQzQZuaaU47iaQ4CjhtB6O7md8eU6lYLB71JKF+hAeChYxgbSRf2QG6QV7mXlS9aa9ccWxnDrRK3JxUIEejV/7y+jFJIyo04Viprusk2s+w1IxwOi15qaIJJiM8oF1DBY6o8rP50VN0ZpQ+CmNpSmg0V39PZDhSahIFpjPCeqiWvZn4n9dNdXjtZ0wkqaaCLBaFKUc6RrMEUJ9JSjSfGIKJZOZWRIZYYqJNTiUTgrv88ippVW330q491Cr12zyOIpzAKZyDC1dQh3toQBMIPMEzvMKbNbZerHfrY9FasPKZY/gD6/MHshGQxA==</latexit>

s.b = {1, 2}<latexit sha1_base64="6JWaK8mhDKaM3+NTks7ANj2amAM=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0ikqBeh6MVjBfsBSSibzaZdutmE3Y1QQn+GFw+KePXXePPfuG1z0NYHA4/3ZpiZF2acKe0431ZlbX1jc6u6XdvZ3ds/qB8edVWaS0I7JOWp7IdYUc4E7WimOe1nkuIk5LQXju9mfu+JSsVS8agnGQ0SPBQsZgRrI3nKjtAN8gvXnw7qDcd25kCrxC1JA0q0B/UvP0pJnlChCcdKea6T6aDAUjPC6bTm54pmmIzxkHqGCpxQFRTzk6fozCgRilNpSmg0V39PFDhRapKEpjPBeqSWvZn4n+flOr4OCiayXFNBFovinCOdotn/KGKSEs0nhmAimbkVkRGWmGiTUs2E4C6/vEq6F7Z7aTcfmo3WbRlHFU7gFM7BhStowT20oQMEUniGV3iztPVivVsfi9aKVc4cwx9Ynz/WuJBU</latexit>

s.d = {1}

<latexit sha1_base64="j2AThPcEquPWu2nwBHlGDV0XLt8=">AAAB9XicbVBNS8NAEJ3Ur1q/qh69LBbBU0ikqBeh6MVjBfsBSSyb7aZdutmE3Y1SQv+HFw+KePW/ePPfuG1z0NYHA4/3ZpiZF6acKe0431ZpZXVtfaO8Wdna3tndq+4ftFWSSUJbJOGJ7IZYUc4EbWmmOe2mkuI45LQTjm6mfueRSsUSca/HKQ1iPBAsYgRrIz0om3hugK6Qn7v+pFetObYzA1ombkFqUKDZq375/YRkMRWacKyU5zqpDnIsNSOcTip+pmiKyQgPqGeowDFVQT67eoJOjNJHUSJNCY1m6u+JHMdKjePQdMZYD9WiNxX/87xMR5dBzkSaaSrIfFGUcaQTNI0A9ZmkRPOxIZhIZm5FZIglJtoEVTEhuIsvL5P2me2e2/W7eq1xXcRRhiM4hlNw4QIacAtNaAEBCc/wCm/Wk/VivVsf89aSVcwcwh9Ynz+wl5Fa</latexit>

s.c[1] = {1}
<latexit sha1_base64="6JWaK8mhDKaM3+NTks7ANj2amAM=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0ikqBeh6MVjBfsBSSibzaZdutmE3Y1QQn+GFw+KePXXePPfuG1z0NYHA4/3ZpiZF2acKe0431ZlbX1jc6u6XdvZ3ds/qB8edVWaS0I7JOWp7IdYUc4E7WimOe1nkuIk5LQXju9mfu+JSsVS8agnGQ0SPBQsZgRrI3nKjtAN8gvXnw7qDcd25kCrxC1JA0q0B/UvP0pJnlChCcdKea6T6aDAUjPC6bTm54pmmIzxkHqGCpxQFRTzk6fozCgRilNpSmg0V39PFDhRapKEpjPBeqSWvZn4n+flOr4OCiayXFNBFovinCOdotn/KGKSEs0nhmAimbkVkRGWmGiTUs2E4C6/vEq6F7Z7aTcfmo3WbRlHFU7gFM7BhStowT20oQMEUniGV3iztPVivVsfi9aKVc4cwx9Ynz/WuJBU</latexit>

s.d = {1}

<latexit sha1_base64="WDeTCAgbBEdnoUBrTgGrYpbdyCQ=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRbBQym7UtRj0YvHCvYD2qVk02wbmk2WJKuUpT/CiwdFvPp7vPlvzLZ70NYHA4/3ZpiZF8ScaeO6305hbX1jc6u4XdrZ3ds/KB8etbVMFKEtIrlU3QBrypmgLcMMp91YURwFnHaCyW3mdx6p0kyKBzONqR/hkWAhI9hYqeNVn6py4A3KFbfmzoFWiZeTCuRoDspf/aEkSUSFIRxr3fPc2PgpVoYRTmelfqJpjMkEj2jPUoEjqv10fu4MnVlliEKpbAmD5urviRRHWk+jwHZG2Iz1speJ/3m9xITXfspEnBgqyGJRmHBkJMp+R0OmKDF8agkmitlbERljhYmxCZVsCN7yy6ukfVHzLmv1+3qlcZPHUYQTOIVz8OAKGnAHTWgBgQk8wyu8ObHz4rw7H4vWgpPPHMMfOJ8/HRSOyA==</latexit>

1, w, o1

<latexit sha1_base64="WDeTCAgbBEdnoUBrTgGrYpbdyCQ=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRbBQym7UtRj0YvHCvYD2qVk02wbmk2WJKuUpT/CiwdFvPp7vPlvzLZ70NYHA4/3ZpiZF8ScaeO6305hbX1jc6u4XdrZ3ds/KB8etbVMFKEtIrlU3QBrypmgLcMMp91YURwFnHaCyW3mdx6p0kyKBzONqR/hkWAhI9hYqeNVn6py4A3KFbfmzoFWiZeTCuRoDspf/aEkSUSFIRxr3fPc2PgpVoYRTmelfqJpjMkEj2jPUoEjqv10fu4MnVlliEKpbAmD5urviRRHWk+jwHZG2Iz1speJ/3m9xITXfspEnBgqyGJRmHBkJMp+R0OmKDF8agkmitlbERljhYmxCZVsCN7yy6ukfVHzLmv1+3qlcZPHUYQTOIVz8OAKGnAHTWgBgQk8wyu8ObHz4rw7H4vWgpPPHMMfOJ8/HRSOyA==</latexit>

1, w, o1
<latexit sha1_base64="WDeTCAgbBEdnoUBrTgGrYpbdyCQ=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRbBQym7UtRj0YvHCvYD2qVk02wbmk2WJKuUpT/CiwdFvPp7vPlvzLZ70NYHA4/3ZpiZF8ScaeO6305hbX1jc6u4XdrZ3ds/KB8etbVMFKEtIrlU3QBrypmgLcMMp91YURwFnHaCyW3mdx6p0kyKBzONqR/hkWAhI9hYqeNVn6py4A3KFbfmzoFWiZeTCuRoDspf/aEkSUSFIRxr3fPc2PgpVoYRTmelfqJpjMkEj2jPUoEjqv10fu4MnVlliEKpbAmD5urviRRHWk+jwHZG2Iz1speJ/3m9xITXfspEnBgqyGJRmHBkJMp+R0OmKDF8agkmitlbERljhYmxCZVsCN7yy6ukfVHzLmv1+3qlcZPHUYQTOIVz8OAKGnAHTWgBgQk8wyu8ObHz4rw7H4vWgpPPHMMfOJ8/HRSOyA==</latexit>

1, w, o1

<latexit sha1_base64="q1OV6+jnpUoi3LpyCCt5E0l61lU=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRbBQym7tqjHohePFewHtEvJptk2NJssSVYpS3+EFw+KePX3ePPfmLZ70NYHA4/3ZpiZF8ScaeO6305ubX1jcyu/XdjZ3ds/KB4etbRMFKFNIrlUnQBrypmgTcMMp51YURwFnLaD8e3Mbz9SpZkUD2YSUz/CQ8FCRrCxUrtafirLvtcvltyKOwdaJV5GSpCh0S9+9QaSJBEVhnCsdddzY+OnWBlGOJ0WeommMSZjPKRdSwWOqPbT+blTdGaVAQqlsiUMmqu/J1IcaT2JAtsZYTPSy95M/M/rJia89lMm4sRQQRaLwoQjI9HsdzRgihLDJ5Zgopi9FZERVpgYm1DBhuAtv7xKWhcV77JSu6+V6jdZHHk4gVM4Bw+uoA530IAmEBjDM7zCmxM7L86787FozTnZzDH8gfP5AyAojso=</latexit>

3, w, o1

<latexit sha1_base64="orjn3UgjA6hfK5I1DqkEe8JBFfo=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRbBQym7pajHohePFewHtEvJptk2NJssSVYoS3+EFw+KePX3ePPfmG73oK0PBh7vzTAzL4g508Z1v53CxubW9k5xt7S3f3B4VD4+6WiZKELbRHKpegHWlDNB24YZTnuxojgKOO0G07uF332iSjMpHs0spn6Ex4KFjGBjpW69qqpyWB+WK27NzYDWiZeTCuRoDctfg5EkSUSFIRxr3ffc2PgpVoYRTuelQaJpjMkUj2nfUoEjqv00O3eOLqwyQqFUtoRBmfp7IsWR1rMosJ0RNhO96i3E/7x+YsIbP2UiTgwVZLkoTDgyEi1+RyOmKDF8ZgkmitlbEZlghYmxCZVsCN7qy+ukU695V7XGQ6PSvM3jKMIZnMMleHANTbiHFrSBwBSe4RXenNh5cd6dj2VrwclnTuEPnM8fGHqOxQ==</latexit>2, r, o
2

<latexit sha1_base64="yt4ufykEFHIbHx5/Inr8w2tFqnw=">AAAB7HicbVBNT8JAEJ3iF+IX6tHLRmLiAUirRD0SvXjExAIJNGS7bGHDdtvsbk1Iw2/w4kFjvPqDvPlv3EIPCr5kkpf3ZjIzz485U9q2v63C2vrG5lZxu7Szu7d/UD48aqsokYS6JOKR7PpYUc4EdTXTnHZjSXHoc9rxJ3eZ33miUrFIPOppTL0QjwQLGMHaSO5ltVatDcoVu27PgVaJk5MK5GgNyl/9YUSSkApNOFaq59ix9lIsNSOczkr9RNEYkwke0Z6hAodUeen82Bk6M8oQBZE0JTSaq78nUhwqNQ190xliPVbLXib+5/USHdx4KRNxoqkgi0VBwpGOUPY5GjJJieZTQzCRzNyKyBhLTLTJp2RCcJZfXiXti7pzVW88NCrN2zyOIpzAKZyDA9fQhHtogQsEGDzDK7xZwnqx3q2PRWvBymeO4Q+szx8j642a</latexit>3,�
,�

<latexit sha1_base64="WDeTCAgbBEdnoUBrTgGrYpbdyCQ=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRbBQym7UtRj0YvHCvYD2qVk02wbmk2WJKuUpT/CiwdFvPp7vPlvzLZ70NYHA4/3ZpiZF8ScaeO6305hbX1jc6u4XdrZ3ds/KB8etbVMFKEtIrlU3QBrypmgLcMMp91YURwFnHaCyW3mdx6p0kyKBzONqR/hkWAhI9hYqeNVn6py4A3KFbfmzoFWiZeTCuRoDspf/aEkSUSFIRxr3fPc2PgpVoYRTmelfqJpjMkEj2jPUoEjqv10fu4MnVlliEKpbAmD5urviRRHWk+jwHZG2Iz1speJ/3m9xITXfspEnBgqyGJRmHBkJMp+R0OmKDF8agkmitlbERljhYmxCZVsCN7yy6ukfVHzLmv1+3qlcZPHUYQTOIVz8OAKGnAHTWgBgQk8wyu8ObHz4rw7H4vWgpPPHMMfOJ8/HRSOyA==</latexit> 1,
w

, o
1

<latexit sha1_base64="WDeTCAgbBEdnoUBrTgGrYpbdyCQ=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRbBQym7UtRj0YvHCvYD2qVk02wbmk2WJKuUpT/CiwdFvPp7vPlvzLZ70NYHA4/3ZpiZF8ScaeO6305hbX1jc6u4XdrZ3ds/KB8etbVMFKEtIrlU3QBrypmgLcMMp91YURwFnHaCyW3mdx6p0kyKBzONqR/hkWAhI9hYqeNVn6py4A3KFbfmzoFWiZeTCuRoDspf/aEkSUSFIRxr3fPc2PgpVoYRTmelfqJpjMkEj2jPUoEjqv10fu4MnVlliEKpbAmD5urviRRHWk+jwHZG2Iz1speJ/3m9xITXfspEnBgqyGJRmHBkJMp+R0OmKDF8agkmitlbERljhYmxCZVsCN7yy6ukfVHzLmv1+3qlcZPHUYQTOIVz8OAKGnAHTWgBgQk8wyu8ObHz4rw7H4vWgpPPHMMfOJ8/HRSOyA==</latexit> 1,
w

, o
1

<latexit sha1_base64="orjn3UgjA6hfK5I1DqkEe8JBFfo=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRbBQym7pajHohePFewHtEvJptk2NJssSVYoS3+EFw+KePX3ePPfmG73oK0PBh7vzTAzL4g508Z1v53CxubW9k5xt7S3f3B4VD4+6WiZKELbRHKpegHWlDNB24YZTnuxojgKOO0G07uF332iSjMpHs0spn6Ex4KFjGBjpW69qqpyWB+WK27NzYDWiZeTCuRoDctfg5EkSUSFIRxr3ffc2PgpVoYRTuelQaJpjMkUj2nfUoEjqv00O3eOLqwyQqFUtoRBmfp7IsWR1rMosJ0RNhO96i3E/7x+YsIbP2UiTgwVZLkoTDgyEi1+RyOmKDF8ZgkmitlbEZlghYmxCZVsCN7qy+ukU695V7XGQ6PSvM3jKMIZnMMleHANTbiHFrSBwBSe4RXenNh5cd6dj2VrwclnTuEPnM8fGHqOxQ==</latexit>2, r, o
2

<latexit sha1_base64="iU8QH+L9kX/FPtpaHAuaw1sfie8=">AAAB7nicdZDLSgMxFIbPeK31VnXpJlgEF6XMlNLqrujGZQV7gXYomTTThmaSIckIZehDuHGhiFufx51vY6ateEF/CHz85xxyzh/EnGnjuu/Oyura+sZmbiu/vbO7t184OGxrmShCW0RyqboB1pQzQVuGGU67saI4CjjtBJOrrN65o0ozKW7NNKZ+hEeChYxgY61OpaRKcuANCkW37Lqee1FDc/Dc+hd4FjIVYanmoPDWH0qSRFQYwrHWPc+NjZ9iZRjhdJbvJ5rGmEzwiPYsChxR7afzdWfo1DpDFEplnzBo7n6fSHGk9TQKbGeEzVj/rmXmX7VeYsJzP2UiTgwVZPFRmHBkJMpuR0OmKDF8agETxeyuiIyxwsTYhPI2hM9L0f/QrpS9Wrl6Uy02Lpdx5OAYTuAMPKhDA66hCS0gMIF7eIQnJ3YenGfnZdG64ixnjuCHnNcPSCuO5g==</latexit>

2, r, o1

Figure 2.4: An example for Algorithm 2. Solid grey circles represent states stored on the stack, hollow
dotted circles represent states on the top of the stack, and solid black circles represent states from which
the exploration has been completed, i.e. their backtrack sets are equal to their done sets. Transitions
follow the same pattern: dotted transitions are the latest to have been explored, solid grey ones are between
states on the stack, and solid black ones are the ones taken in the past. Solid black triangles represent
completed explorations starting from some state. We omit program counters from actions. backtrack,
current, and done are abbreviated by the first letter.

which is in s.backtrack \ s.done. This entails the initialization of s.current[2] = {2}
and the addition of 2 to s.done. In (e), we backtrack to s for the second time and without
having changed s.current[2]. This means that (2, r, o2) is independent of any later action of
another thread. Therefore, {2} is a persistent set of s and s.done = {1, 2} a source set of s, and
s.backtrack is assigned with s.done to stop the exploration from s, as pictured in (f).

This example shows that Algorithm 2 explores sets of transitions from a given state s that may
correspond to a source set which is not a persistent set. The exploration in Figure 2.4 stops when
s.backtrack = s.done = {1, 2}, but the only persistent set that includes thread 1 is{1, 2, 3}.

2.2.1.3 Soundness

Theorem 1. Given a program represented by an LTS L, Algorithm 2 terminates with an LTS Lr

that is sound for L.
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Proof. Based on the soundness of source sets (see Section 2.1.2), it is enough to show that for every
state s in Lr,

s.backtrack is a source set for s in L when it becomes equal to s.done

(2.1)

Due to the condition of while in line 8 of Algorithm 2, equality of s.backtrack and s.done

is the only condition for stopping an exploration from a state s. Therefore, if some successor state
s′ of s is already explored and the search is backtracked to s, then s′.backtrack = s′.done,
because otherwise, while loop in line 8 wouldn’t be terminated for s′. Since s.done keep tracks
of threads whose enabled transitions from s is already executed, the proof is reduced to showing
that the following proposition holds:

For any state s, s.backtrack is a source set when the exploration from s is finished
(2.2)

If s is a reducible state, then only one transition is explored from swhich is an invisible transition.
The fact that the thread performing this invisible transition is a persistent set and hence a source set
follows directly from definitions as every persistent set is also a source set. When s.backtrack =

s.done is different from safeSet(s) = enabled(s) (which is trivially a source set), it must be
the case that there exists T ⊂ s.done such that T =

⋃
t∈T

s.current[t] due to the definition of

UpdateBack method. Now we show thatT is a persistent set fors inL. Assume by contradiction
that this is not the case, then due to the definition of persistent set, L admits an execution E

starting from s that contains only transitions of threads different from those in T and at least
one of these transitions τ of a thread t′ ̸∈ T is dependent on some transition next(s, t) with
t ∈ T . For every t ∈ T , the successor state s′ of s reached by next(s, t) must be in Lr. Due
to deadlock freedom assumption, some transition that has the same transition label with τ must
be enabled eventually in some successor state of s′. Let E′ ∈ Lr be that execution from s which
starts with next(s, t) and contains such transition that shares the same label with τ . Now we will
move forward by showing that the following proposition is correct, which will be used in the rest
of the proof:

If Lr admits an execution E′′ from s whose last transition that depends on and occurs before τ ′

is next(s, t) where act(τ ′) = act(τ) and tid(τ ′) = tid(τ) = t′, then t′ ∈ T

(2.3)
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When τ ′ is executed from some successor state of s, t′ will be added to s.current[t] (and even-
tually toT due toUpdateBack method) by invoking theUpdateCurr function as next(s, t)
will be the transition in line 23 of Algorithm 2. This contradicts the assumption of t′ ̸∈ T and
therefore, it is enough to show that proposition below is correct for concluding the proof:

If Lr admits such an execution E′, then Lr admits such an execution E′′

(2.4)

To show that Proposition 2.4 holds, we proceed by induction on the order of next(s, t) when
we go backwards in E′. The base step is trivial since E′′ can be E′ when next(s, t) is the first
transition. Assuming by induction that next(s, t) is the n-th transition that is dependent on
and occurs before τ ′ in E′ and Lr admits such execution E′′, we show that this also holds when
next(s, t) is (n+1)-th transition with the same properties. Let s′′ be the state that is reached
from s by executing E′

p which is the prefix of E′ until (not included) the last transition τ ′′ that
is dependent on and occurs before τ ′ and hence, τ ′′ is enabled in s′′. Using Proposition 2.3, as
tid(τ ′) must be in T of s′′, there must be another execution E′′′ from s′′ such that τ ′′′ occurs
before τ ′′ where act(τ ′) = act(τ ′′′) and tid(τ ′) = tid(τ ′′′) = t′ . Since in the execution
starting from s as E′

p and continues as E′′′, next(s, t) is the n-th transition that is dependent
on and occurs before τ ′′′ (when we go backwards), proposition 2.4 is correct by using induction
assumption. As mentioned, this contradicts the assumption of t′ ̸∈ T in proof of proposition 2.2
and thus, T is a persistent set and a source set. By monotonicity of source sets, s.backtrack is
also a source set.

2.2.2 Lazy Source Set POR (DL-S-POR)

Algorithm 2 tracks dependencies between transitions in an eager manner, i.e., every new transition
leads to updates of current sets. In this section, we present a lazy variation that computes such
dependencies only when the exploration backtracks to a state. The incentive is to compute such
dependencies only when needed to decide if the exploration from a given state should continue
or not. Also, this enables several optimizations when traversing the state space to compute such
dependencies that are not possible in the eager version.

Algorithm 3 presents our POR algorithm based on a lazy computation of source sets. Rather
than updating the current sets on-the-fly for states on the stack, this algorithm re-traverses part
of the state space each time it backtracks to a state s in order to update just current sets of
s. This is done in the function IsComplete. As a result, s.done is populated with a new
thread t just before computing dependencies with t’s transition in s and not after executing that
transition in the style of Algorithm 2 (see line 19). For every transition τ of a thread t from s
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Algorithm 3: Lazy Source Set POR (DL-S-POR)
Initialize: Stack ← ∅; Stack.push(sI); Lr ← ∅;

1 Explore()
2 s← Stack.top;
3 s.backtrack← ∅; s.done← ∅; s.current← ∅;
4 while true do
5 if ∃t1 ∈ s.backtrack \ s.done then
6 t← t1
7 else
8 choose t ∈ safeSet(s) \ s.done
9 (s, a, s′) = next(s, t);

10 Stack.push(s′);
11 if notVisited(s′) then
12 Explore();
13 if IsComplete(s) then
14 Stack.pop();
15 return
16 Stack.pop();

17 IsComplete(s)
18 forall (s, a, s′) ∈ {s′ ∈ Lr : t = tid(a) ̸∈ s.done} do
19 s.done = s.done ∪ {t};
20 T ← safeSet(s);
21 if s.done = T ∨ (∀t′ ∈ T : isVisited(succ(s, t′)) ∨ t′ ∈ s.done) then
22 add transitions (s, a, s′) to Lr;
23 s.done← T ;
24 s.backtrack← s.done;
25 return true;
26 s.current[t]← {t};
27 As′ ← {a′ : a′ occurs in an execution from E(Lr, s

′)};
28 s.current[t] = s.current[t] ∪ {tid(a′) : a′ ∈ As′ and a ≁ a′});
29 s.backtrack← UpdateBack(s, a);
30 if s.backtrack = s.done then
31 return true;

32 return false;

that has been followed since the last time the algorithm backtracks to s (i.e., t is not already in
s.done – see line 18), the algorithm updates s.current[t] to include all threads t′ that later
execute a transition that is dependent on τ (see lines 26-28). Subsequently, the s.backtrack set
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is updated exactly in the style of Algorithm 2 (see line 29). If s.backtrack becomes equal to
s.done then IsComplete returns true and the exploration from s stops.

<latexit sha1_base64="AtDsMWSIE81h7Bwp3HzKpJiFVMg=">AAAB6HicdVDJSgNBEK2JW4xb1KOXxiB4GibJZLsFvHjwkIBZIBlCT6cnadOz0N0jhCFf4MWDIl79JG/+jT1JBBV9UPB4r4qqem7EmVSW9WFkNja3tneyu7m9/YPDo/zxSVeGsSC0Q0Ieir6LJeUsoB3FFKf9SFDsu5z23NlV6vfuqZAsDG7VPKKOjycB8xjBSkttOcoXLLNRrtdLDaRJpWyXaympVip2AxVNa4kCrNEa5d+H45DEPg0U4VjKQdGKlJNgoRjhdJEbxpJGmMzwhA40DbBPpZMsD12gC62MkRcKXYFCS/X7RIJ9Kee+qzt9rKbyt5eKf3mDWHl1J2FBFCsakNUiL+ZIhSj9Go2ZoETxuSaYCKZvRWSKBSZKZ5PTIXx9iv4n3ZJZrJp22y40b9ZxZOEMzuESilCDJlxDCzpAgMIDPMGzcWc8Gi/G66o1Y6xnTuEHjLdPgQeNdg==</latexit>s

<latexit sha1_base64="J4RJlq2D41hagJdlfdZWLcW3l8A=">AAAB6HicbVA9SwNBEJ2LXzF+RS1tFoNgFe4kqGXAxsIiARMDyRH2NnPJmr29Y3dPCEd+gY2FIrb+JDv/jZvkCk18MPB4b4aZeUEiuDau++0U1tY3NreK26Wd3b39g/LhUVvHqWLYYrGIVSegGgWX2DLcCOwkCmkUCHwIxjcz/+EJleaxvDeTBP2IDiUPOaPGSk3dL1fcqjsHWSVeTiqQo9Evf/UGMUsjlIYJqnXXcxPjZ1QZzgROS71UY0LZmA6xa6mkEWo/mx86JWdWGZAwVrakIXP190RGI60nUWA7I2pGetmbif953dSE137GZZIalGyxKEwFMTGZfU0GXCEzYmIJZYrbWwkbUUWZsdmUbAje8surpH1R9S6rtWatUr/L4yjCCZzCOXhwBXW4hQa0gAHCM7zCm/PovDjvzseiteDkM8fwB87nD+SVjQo=</latexit>s <latexit sha1_base64="J4RJlq2D41hagJdlfdZWLcW3l8A=">AAAB6HicbVA9SwNBEJ2LXzF+RS1tFoNgFe4kqGXAxsIiARMDyRH2NnPJmr29Y3dPCEd+gY2FIrb+JDv/jZvkCk18MPB4b4aZeUEiuDau++0U1tY3NreK26Wd3b39g/LhUVvHqWLYYrGIVSegGgWX2DLcCOwkCmkUCHwIxjcz/+EJleaxvDeTBP2IDiUPOaPGSk3dL1fcqjsHWSVeTiqQo9Evf/UGMUsjlIYJqnXXcxPjZ1QZzgROS71UY0LZmA6xa6mkEWo/mx86JWdWGZAwVrakIXP190RGI60nUWA7I2pGetmbif953dSE137GZZIalGyxKEwFMTGZfU0GXCEzYmIJZYrbWwkbUUWZsdmUbAje8surpH1R9S6rtWatUr/L4yjCCZzCOXhwBXW4hQa0gAHCM7zCm/PovDjvzseiteDkM8fwB87nD+SVjQo=</latexit>s
<latexit sha1_base64="lHLLoSJV4YmNH913IPGNrlmzZik=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2FXgnoMeNBjRPOAZAmzk95kyOzsMjMrhJBP8OJBEa9+kTf/xkmyB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3cz81hMqzWP5aMYJ+hEdSB5yRo2VHsr0vFcsuRV3DrJKvIyUIEO9V/zq9mOWRigNE1Trjucmxp9QZTgTOC10U40JZSM6wI6lkkao/cn81Ck5s0qfhLGyJQ2Zq78nJjTSehwFtjOiZqiXvZn4n9dJTXjtT7hMUoOSLRaFqSAmJrO/SZ8rZEaMLaFMcXsrYUOqKDM2nYINwVt+eZU0LyreZaV6Xy3VbrM48nACp1AGD66gBndQhwYwGMAzvMKbI5wX5935WLTmnGzmGP7A+fwBjRqNWA==</latexit>

(a)

<latexit sha1_base64="WHzQ5+VpAo6ZS9zz6K2vwUBubs0=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2FXgnoMeNBjRPOAZAmzk95kyOzsMjMrhJBP8OJBEa9+kTf/xkmyB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3cz81hMqzWP5aMYJ+hEdSB5yRo2VHsrBea9YcivuHGSVeBkpQYZ6r/jV7ccsjVAaJqjWHc9NjD+hynAmcFrophoTykZ0gB1LJY1Q+5P5qVNyZpU+CWNlSxoyV39PTGik9TgKbGdEzVAvezPxP6+TmvDan3CZpAYlWywKU0FMTGZ/kz5XyIwYW0KZ4vZWwoZUUWZsOgUbgrf88ippXlS8y0r1vlqq3WZx5OEETqEMHlxBDe6gDg1gMIBneIU3RzgvzrvzsWjNOdnMMfyB8/kDjp+NWQ==</latexit>

(b)
<latexit sha1_base64="WOVgQMt23yJKhN15rqQjMFl2GQc=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2FXgnoMeNBjRPOAZAmzk95kyOzsMjMrhJBP8OJBEa9+kTf/xkmyB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3cz81hMqzWP5aMYJ+hEdSB5yRo2VHsrsvFcsuRV3DrJKvIyUIEO9V/zq9mOWRigNE1Trjucmxp9QZTgTOC10U40JZSM6wI6lkkao/cn81Ck5s0qfhLGyJQ2Zq78nJjTSehwFtjOiZqiXvZn4n9dJTXjtT7hMUoOSLRaFqSAmJrO/SZ8rZEaMLaFMcXsrYUOqKDM2nYINwVt+eZU0LyreZaV6Xy3VbrM48nACp1AGD66gBndQhwYwGMAzvMKbI5wX5935WLTmnGzmGP7A+fwBkCSNWg==</latexit>

(c)
<latexit sha1_base64="AKOf44IY1ikHxXBcr6gACXufops=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5GSyCixCSWh8boejGZQX7gCSUyXTaDp1MwsxEqKH4K25cKOLW/3Dn3zhts9DWAxcO59zLvfeECaNSOc63UVhaXlldK66XNja3tnfM3b2mjFOBSQPHLBbtEEnCKCcNRRUj7UQQFIWMtMLhzcRvPRAhaczv1SghQYT6nPYoRkpLHfNA2thzgys/c62KdWpVrTN/3DHLju1MAReJm5MyyFHvmF9+N8ZpRLjCDEnpuU6iggwJRTEj45KfSpIgPER94mnKUURkkE2vH8NjrXRhLxa6uIJT9fdEhiIpR1GoOyOkBnLem4j/eV6qepdBRnmSKsLxbFEvZVDFcBIF7FJBsGIjTRAWVN8K8QAJhJUOrKRDcOdfXiTNiu2e29W7arl2ncdRBIfgCJwAF1yAGrgFddAAGDyCZ/AK3own48V4Nz5mrQUjn9kHf2B8/gAFQpMF</latexit>

s.c[1] = {1, 2, 3, 4, 5}
<latexit sha1_base64="5RgJAMMs7oUSuw0REM0vyHpFv9M=">AAAB9XicbVBNS8NAEJ34WetX1aOXxSJ4kJDUol6EohePFewHJLFsttt26WYTdjdKCf0fXjwo4tX/4s1/47bNQVsfDDzem2FmXphwprTjfFtLyyura+uFjeLm1vbObmlvv6niVBLaIDGPZTvEinImaEMzzWk7kRRHIaetcHgz8VuPVCoWi3s9SmgQ4b5gPUawNtKDsolXCa78rHJ65o87pbJjO1OgReLmpAw56p3Sl9+NSRpRoQnHSnmuk+ggw1Izwum46KeKJpgMcZ96hgocURVk06vH6NgoXdSLpSmh0VT9PZHhSKlRFJrOCOuBmvcm4n+el+reZZAxkaSaCjJb1Es50jGaRIC6TFKi+cgQTCQztyIywBITbYIqmhDc+ZcXSbNiu+d29a5arl3ncRTgEI7gBFy4gBrcQh0aQEDCM7zCm/VkvVjv1sesdcnKZw7gD6zPH+RfkXs=</latexit>

s.c[2] = {2, 3}

<latexit sha1_base64="SKoEQDLhqQFQGsuG70jwJ6UgGh0=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBg5SkFPUiFL14rGA/IAlls9m0SzebsLsRSujP8OJBEa/+Gm/+G7dtDtr6YODx3gwz84KUM6Vt+9sqra1vbG6Vtys7u3v7B9XDo65KMklohyQ8kf0AK8qZoB3NNKf9VFIcB5z2gvHdzO89UalYIh71JKV+jIeCRYxgbSRX1cMbL3cuGt50UK3ZdXsOtEqcgtSgQHtQ/fLChGQxFZpwrJTr2Kn2cyw1I5xOK16maIrJGA+pa6jAMVV+Pj95is6MEqIokaaERnP190SOY6UmcWA6Y6xHatmbif95bqajaz9nIs00FWSxKMo40gma/Y9CJinRfGIIJpKZWxEZYYmJNilVTAjO8surpNuoO5f15kOz1rot4ijDCZzCOThwBS24hzZ0gEACz/AKb5a2Xqx362PRWrKKmWP4A+vzBwX0kHI=</latexit>

s.d = {1, 2}

<latexit sha1_base64="rIJv7QemgkhPmnNfLAPs/SNQBss=">AAAB+nicbVDLSsNAFJ3UV62vVJduBovgIoSk1sdGKLpxWcE+oAllMp20QyeTMDNRSuynuHGhiFu/xJ1/47TNQlsPXDiccy/33hMkjErlON9GYWV1bX2juFna2t7Z3TPL+y0ZpwKTJo5ZLDoBkoRRTpqKKkY6iSAoChhpB6Obqd9+IELSmN+rcUL8CA04DSlGSks9syzt4MrLXKtqnVo168yb9MyKYzszwGXi5qQCcjR65pfXj3EaEa4wQ1J2XSdRfoaEopiRSclLJUkQHqEB6WrKUUSkn81On8BjrfRhGAtdXMGZ+nsiQ5GU4yjQnRFSQ7noTcX/vG6qwks/ozxJFeF4vihMGVQxnOYA+1QQrNhYE4QF1bdCPEQCYaXTKukQ3MWXl0mrarvndu2uVqlf53EUwSE4AifABRegDm5BAzQBBo/gGbyCN+PJeDHejY95a8HIZw7AHxifPyJOkf0=</latexit>

s.b = {1, 2, 3, 4, 5}

<latexit sha1_base64="AKOf44IY1ikHxXBcr6gACXufops=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5GSyCixCSWh8boejGZQX7gCSUyXTaDp1MwsxEqKH4K25cKOLW/3Dn3zhts9DWAxcO59zLvfeECaNSOc63UVhaXlldK66XNja3tnfM3b2mjFOBSQPHLBbtEEnCKCcNRRUj7UQQFIWMtMLhzcRvPRAhaczv1SghQYT6nPYoRkpLHfNA2thzgys/c62KdWpVrTN/3DHLju1MAReJm5MyyFHvmF9+N8ZpRLjCDEnpuU6iggwJRTEj45KfSpIgPER94mnKUURkkE2vH8NjrXRhLxa6uIJT9fdEhiIpR1GoOyOkBnLem4j/eV6qepdBRnmSKsLxbFEvZVDFcBIF7FJBsGIjTRAWVN8K8QAJhJUOrKRDcOdfXiTNiu2e29W7arl2ncdRBIfgCJwAF1yAGrgFddAAGDyCZ/AK3own48V4Nz5mrQUjn9kHf2B8/gAFQpMF</latexit>

s.c[1] = {1, 2, 3, 4, 5}

<latexit sha1_base64="dAkiOPcnPXolEaaB2sMirEg9sKI=">AAAB9XicbVDLSsNAFL3xWeur6tLNYBFcSEhsUTdC0Y3LCvYBSSyT6aQdOpmEmYlSQv/DjQtF3Pov7vwbp4+Fth64cDjnXu69J0w5U9pxvq2l5ZXVtfXCRnFza3tnt7S331RJJgltkIQnsh1iRTkTtKGZ5rSdSorjkNNWOLgZ+61HKhVLxL0epjSIcU+wiBGsjfSgbOJVgis/r5xW/VGnVHZsZwK0SNwZKcMM9U7py+8mJIup0IRjpTzXSXWQY6kZ4XRU9DNFU0wGuEc9QwWOqQryydUjdGyULooSaUpoNFF/T+Q4VmoYh6Yzxrqv5r2x+J/nZTq6DHIm0kxTQaaLoowjnaBxBKjLJCWaDw3BRDJzKyJ9LDHRJqiiCcGdf3mRNM9s99yu3lXLtetZHAU4hCM4ARcuoAa3UIcGEJDwDK/wZj1ZL9a79TFtXbJmMwfwB9bnD+j6kX4=</latexit>

s.c[3] = {3, 4}
<latexit sha1_base64="VcR/bwQGsGhFlyZAZ1aDStO3BNg=">AAAB+XicbVBNS8NAEJ3Ur1q/oh69LBbBQwlJDepFKHrxWMHaQhLKZrttl24+2N0USug/8eJBEa/+E2/+G7dtDtr6YODx3gwz88KUM6ls+9sora1vbG6Vtys7u3v7B+bh0ZNMMkFoiyQ8EZ0QS8pZTFuKKU47qaA4Cjlth6O7md8eUyFZEj+qSUqDCA9i1mcEKy11TVNaxHODGz+v1y5qrj/tmlXbsudAq8QpSBUKNLvml99LSBbRWBGOpfQcO1VBjoVihNNpxc8kTTEZ4QH1NI1xRGWQzy+fojOt9FA/Ebpihebq74kcR1JOolB3RlgN5bI3E//zvEz1r4OcxWmmaEwWi/oZRypBsxhQjwlKFJ9ogolg+lZEhlhgonRYFR2Cs/zyKnmqW86l5T641cZtEUcZTuAUzsGBK2jAPTShBQTG8Ayv8GbkxovxbnwsWktGMXMMf2B8/gBC/5Ii</latexit>

s.c[4] = {2, 3, 4}
<latexit sha1_base64="n01ODs8jwRfmdLlKj4cT8ls7q0w=">AAAB+HicbVBNS8NAEJ3Ur1o/GvXoJVgEDyUktagXoejFYwX7AU0om+2mXbrZhN2NUEN/iRcPinj1p3jz37htc9DWBwOP92aYmRckjErlON9GYW19Y3OruF3a2d3bL5sHh20ZpwKTFo5ZLLoBkoRRTlqKKka6iSAoChjpBOPbmd95JELSmD+oSUL8CA05DSlGSkt9syzt4NrL3Gqtel6te9O+WXFsZw5rlbg5qUCOZt/88gYxTiPCFWZIyp7rJMrPkFAUMzIteakkCcJjNCQ9TTmKiPSz+eFT61QrAyuMhS6urLn6eyJDkZSTKNCdEVIjuezNxP+8XqrCKz+jPEkV4XixKEyZpWJrloI1oIJgxSaaICyovtXCIyQQVjqrkg7BXX55lbRrtnth1+/rlcZNHkcRjuEEzsCFS2jAHTShBRhSeIZXeDOejBfj3fhYtBaMfOYI/sD4/AE9Q5GI</latexit>

s.b = {1, 2, 3, 4}
<latexit sha1_base64="o9VcLkhSMs+9pFxApigWWG6+pv4=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M1gEFyUktagboejGZQX7gCaUyWTaDp08mJkINfRL3LhQxK2f4s6/cdpmoa0HLhzOuZd77/ETzqSy7W+jsLa+sblV3C7t7O7tl82Dw7aMU0Foi8Q8Fl0fS8pZRFuKKU67iaA49Dnt+OPbmd95pEKyOHpQk4R6IR5GbMAIVlrqm2VpBddu5lRr1fNq3Z32zYpt2XOgVeLkpAI5mn3zyw1ikoY0UoRjKXuOnSgvw0Ixwum05KaSJpiM8ZD2NI1wSKWXzQ+folOtBGgQC12RQnP190SGQyknoa87Q6xGctmbif95vVQNrryMRUmqaEQWiwYpRypGsxRQwAQlik80wUQwfSsiIywwUTqrkg7BWX55lbRrlnNh1e/rlcZNHkcRjuEEzsCBS2jAHTShBQRSeIZXeDOejBfj3fhYtBaMfOYI/sD4/AFAY5GK</latexit>

s.d = {1, 2, 3, 4}

<latexit sha1_base64="5RgJAMMs7oUSuw0REM0vyHpFv9M=">AAAB9XicbVBNS8NAEJ34WetX1aOXxSJ4kJDUol6EohePFewHJLFsttt26WYTdjdKCf0fXjwo4tX/4s1/47bNQVsfDDzem2FmXphwprTjfFtLyyura+uFjeLm1vbObmlvv6niVBLaIDGPZTvEinImaEMzzWk7kRRHIaetcHgz8VuPVCoWi3s9SmgQ4b5gPUawNtKDsolXCa78rHJ65o87pbJjO1OgReLmpAw56p3Sl9+NSRpRoQnHSnmuk+ggw1Izwum46KeKJpgMcZ96hgocURVk06vH6NgoXdSLpSmh0VT9PZHhSKlRFJrOCOuBmvcm4n+el+reZZAxkaSaCjJb1Es50jGaRIC6TFKi+cgQTCQztyIywBITbYIqmhDc+ZcXSbNiu+d29a5arl3ncRTgEI7gBFy4gBrcQh0aQEDCM7zCm/VkvVjv1sesdcnKZw7gD6zPH+RfkXs=</latexit>

s.c[2] = {2, 3}<latexit sha1_base64="DSs/otLGM3tGcbw7Y+b2owP1uy4=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptcvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukfVH1Lqu1Zq1Sv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPfYuMvg==</latexit>

1
<latexit sha1_base64="DSs/otLGM3tGcbw7Y+b2owP1uy4=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptcvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukfVH1Lqu1Zq1Sv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPfYuMvg==</latexit>

1
<latexit sha1_base64="YMsxORc1qROyZt/Sshecb25Lu40=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYJUY9ELx4hkUcCGzI79MLI7OxmZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfju7nffkKleSwfzCRBP6JDyUPOqLFSo9IvltyyuwBZJ15GSpCh3i9+9QYxSyOUhgmqdddzE+NPqTKcCZwVeqnGhLIxHWLXUkkj1P50ceiMXFhlQMJY2ZKGLNTfE1MaaT2JAtsZUTPSq95c/M/rpia88adcJqlByZaLwlQQE5P512TAFTIjJpZQpri9lbARVZQZm03BhuCtvrxOWpWyd1WuNqql2m0WRx7O4BwuwYNrqME91KEJDBCe4RXenEfnxXl3PpatOSebOYU/cD5/AH8PjL8=</latexit>

2
<latexit sha1_base64="YMsxORc1qROyZt/Sshecb25Lu40=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYJUY9ELx4hkUcCGzI79MLI7OxmZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfju7nffkKleSwfzCRBP6JDyUPOqLFSo9IvltyyuwBZJ15GSpCh3i9+9QYxSyOUhgmqdddzE+NPqTKcCZwVeqnGhLIxHWLXUkkj1P50ceiMXFhlQMJY2ZKGLNTfE1MaaT2JAtsZUTPSq95c/M/rpia88adcJqlByZaLwlQQE5P512TAFTIjJpZQpri9lbARVZQZm03BhuCtvrxOWpWyd1WuNqql2m0WRx7O4BwuwYNrqME91KEJDBCe4RXenEfnxXl3PpatOSebOYU/cD5/AH8PjL8=</latexit>

2
<latexit sha1_base64="PvkqMPf0KQ2ZiRgX4QPbidqMLN8=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHaVqEeiF4+QyCOBDZkdemFkdnYzM2tCCF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR3cxvPaHSPJYPZpygH9GB5CFn1FipftkrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa88SdcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmhdl76pcqVdK1dssjjycwCmcgwfXUIV7qEEDGCA8wyu8OY/Oi/PufCxac042cwx/4Hz+AICTjMA=</latexit>

3
<latexit sha1_base64="PvkqMPf0KQ2ZiRgX4QPbidqMLN8=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHaVqEeiF4+QyCOBDZkdemFkdnYzM2tCCF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR3cxvPaHSPJYPZpygH9GB5CFn1FipftkrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa88SdcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmhdl76pcqVdK1dssjjycwCmcgwfXUIV7qEEDGCA8wyu8OY/Oi/PufCxac042cwx/4Hz+AICTjMA=</latexit>

3

<latexit sha1_base64="y+WDoqttszdexELZg6EJPDYoWM8=">AAAB5HicbVBNS8NAEJ3Urxq/qlcvi0XwVBIp6rHoxWMF+wFtKJvtpF272YTdjVBCf4EXD4pXf5M3/43bNgdtfTDweG+GmXlhKrg2nvftlDY2t7Z3yrvu3v7B4VHFPW7rJFMMWywRieqGVKPgEluGG4HdVCGNQ4GdcHI39zvPqDRP5KOZphjEdCR5xBk1VnqoDypVr+YtQNaJX5AqFGgOKl/9YcKyGKVhgmrd873UBDlVhjOBM7efaUwpm9AR9iyVNEYd5ItDZ+TcKkMSJcqWNGSh/p7Iaaz1NA5tZ0zNWK96c/E/r5eZ6CbIuUwzg5ItF0WZICYh86/JkCtkRkwtoUxxeythY6ooMzYb14bgr768TtqXNf+qVq82boswynAKZ3ABPlxDA+6hCS1ggPACb/DuPDmvzseyseQUEyfwB87nDxedi5c=</latexit>

4
<latexit sha1_base64="y+WDoqttszdexELZg6EJPDYoWM8=">AAAB5HicbVBNS8NAEJ3Urxq/qlcvi0XwVBIp6rHoxWMF+wFtKJvtpF272YTdjVBCf4EXD4pXf5M3/43bNgdtfTDweG+GmXlhKrg2nvftlDY2t7Z3yrvu3v7B4VHFPW7rJFMMWywRieqGVKPgEluGG4HdVCGNQ4GdcHI39zvPqDRP5KOZphjEdCR5xBk1VnqoDypVr+YtQNaJX5AqFGgOKl/9YcKyGKVhgmrd873UBDlVhjOBM7efaUwpm9AR9iyVNEYd5ItDZ+TcKkMSJcqWNGSh/p7Iaaz1NA5tZ0zNWK96c/E/r5eZ6CbIuUwzg5ItF0WZICYh86/JkCtkRkwtoUxxeythY6ooMzYb14bgr768TtqXNf+qVq82boswynAKZ3ABPlxDA+6hCS1ggPACb/DuPDmvzseyseQUEyfwB87nDxedi5c=</latexit>

4

<latexit sha1_base64="pukKC4/a/4Vumdv9C1rDgxpFPro=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYNPo5ELx4hkUcCGzI79MLI7OxmZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eTW1jc2t/LbhZ3dvf2D4uFRU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWju5nfekKleSwfzDhBP6IDyUPOqLFS/bJXLLlldw6ySryMlCBDrVf86vZjlkYoDRNU647nJsafUGU4EzgtdFONCWUjOsCOpZJGqP3J/NApObNKn4SxsiUNmau/JyY00nocBbYzomaol72Z+J/XSU1440+4TFKDki0WhakgJiazr0mfK2RGjC2hTHF7K2FDqigzNpuCDcFbfnmVNC/K3lW5Uq+UqrdZHHk4gVM4Bw+uoQr3UIMGMEB4hld4cx6dF+fd+Vi05pxs5hj+wPn8AYObjMI=</latexit>

5
<latexit sha1_base64="pukKC4/a/4Vumdv9C1rDgxpFPro=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYNPo5ELx4hkUcCGzI79MLI7OxmZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eTW1jc2t/LbhZ3dvf2D4uFRU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWju5nfekKleSwfzDhBP6IDyUPOqLFS/bJXLLlldw6ySryMlCBDrVf86vZjlkYoDRNU647nJsafUGU4EzgtdFONCWUjOsCOpZJGqP3J/NApObNKn4SxsiUNmau/JyY00nocBbYzomaol72Z+J/XSU1440+4TFKDki0WhakgJiazr0mfK2RGjC2hTHF7K2FDqigzNpuCDcFbfnmVNC/K3lW5Uq+UqrdZHHk4gVM4Bw+uoQr3UIMGMEB4hld4cx6dF+fd+Vi05pxs5hj+wPn8AYObjMI=</latexit>

5

<latexit sha1_base64="aGBbB26tzzqXwHJ/m7fLu2EzfXk=">AAAB6nicdVBNSwMxEJ2tX7V+VT16CRbB07KxpdZbwYveKtoPaJeSTbNtaDa7JFmhlP4ELx4U8eov8ua/MW1XUNEHA4/3ZpiZFySCa+N5H05uZXVtfSO/Wdja3tndK+4ftHScKsqaNBax6gREM8ElaxpuBOskipEoEKwdjC/nfvueKc1jeWcmCfMjMpQ85JQYK93qPu4XS557gWu1ShktCa5mpIwRdr0FSpCh0S++9wYxTSMmDRVE6y72EuNPiTKcCjYr9FLNEkLHZMi6lkoSMe1PF6fO0IlVBiiMlS1p0EL9PjElkdaTKLCdETEj/dubi3953dSENX/KZZIaJulyUZgKZGI0/xsNuGLUiIklhCpub0V0RBShxqZTsCF8fYr+J60zF1fdyk2lVL/O4sjDERzDKWA4hzpcQQOaQGEID/AEz45wHp0X53XZmnOymUP4AeftE5RJjgs=</latexit>s1
<latexit sha1_base64="aGBbB26tzzqXwHJ/m7fLu2EzfXk=">AAAB6nicdVBNSwMxEJ2tX7V+VT16CRbB07KxpdZbwYveKtoPaJeSTbNtaDa7JFmhlP4ELx4U8eov8ua/MW1XUNEHA4/3ZpiZFySCa+N5H05uZXVtfSO/Wdja3tndK+4ftHScKsqaNBax6gREM8ElaxpuBOskipEoEKwdjC/nfvueKc1jeWcmCfMjMpQ85JQYK93qPu4XS557gWu1ShktCa5mpIwRdr0FSpCh0S++9wYxTSMmDRVE6y72EuNPiTKcCjYr9FLNEkLHZMi6lkoSMe1PF6fO0IlVBiiMlS1p0EL9PjElkdaTKLCdETEj/dubi3953dSENX/KZZIaJulyUZgKZGI0/xsNuGLUiIklhCpub0V0RBShxqZTsCF8fYr+J60zF1fdyk2lVL/O4sjDERzDKWA4hzpcQQOaQGEID/AEz45wHp0X53XZmnOymUP4AeftE5RJjgs=</latexit>s1

<latexit sha1_base64="ZovStVhQZ0URDajsbnw3WkotCaA=">AAAB6nicdVBNS8NAEJ3Ur1o/WvXoZbEInkLSllpvBS96q2g/oA1ls920SzebsLsRSuhP8OJBEa/+Im/+G7dtBBV9MPB4b4aZeX7MmdKO82Hl1tY3Nrfy24Wd3b39YungsKOiRBLaJhGPZM/HinImaFszzWkvlhSHPqddf3q58Lv3VCoWiTs9i6kX4rFgASNYG+lWDSvDUtmxL9xGo1ZFK+LWM1J1kWs7S5QhQ2tYeh+MIpKEVGjCsVJ914m1l2KpGeF0XhgkisaYTPGY9g0VOKTKS5enztGpUUYoiKQpodFS/T6R4lCpWeibzhDrifrtLcS/vH6ig4aXMhEnmgqyWhQkHOkILf5GIyYp0XxmCCaSmVsRmWCJiTbpFEwIX5+i/0mnYrt1u3ZTKzevszjycAwncAYunEMTrqAFbSAwhgd4gmeLW4/Wi/W6as1Z2cwR/ID19gmVzY4M</latexit>s2
<latexit sha1_base64="ZovStVhQZ0URDajsbnw3WkotCaA=">AAAB6nicdVBNS8NAEJ3Ur1o/WvXoZbEInkLSllpvBS96q2g/oA1ls920SzebsLsRSuhP8OJBEa/+Im/+G7dtBBV9MPB4b4aZeX7MmdKO82Hl1tY3Nrfy24Wd3b39YungsKOiRBLaJhGPZM/HinImaFszzWkvlhSHPqddf3q58Lv3VCoWiTs9i6kX4rFgASNYG+lWDSvDUtmxL9xGo1ZFK+LWM1J1kWs7S5QhQ2tYeh+MIpKEVGjCsVJ914m1l2KpGeF0XhgkisaYTPGY9g0VOKTKS5enztGpUUYoiKQpodFS/T6R4lCpWeibzhDrifrtLcS/vH6ig4aXMhEnmgqyWhQkHOkILf5GIyYp0XxmCCaSmVsRmWCJiTbpFEwIX5+i/0mnYrt1u3ZTKzevszjycAwncAYunEMTrqAFbSAwhgd4gmeLW4/Wi/W6as1Z2cwR/ID19gmVzY4M</latexit>s2

<latexit sha1_base64="Q11/yJSx8FYOAWE+yBrqFmU81X4=">AAAB6nicdVBNS8NAEJ3Ur1q/qh69LBbBU0hsqPVW8KK3ivYD2lA22027dLMJuxuhhP4ELx4U8eov8ua/cdtGUNEHA4/3ZpiZFyScKe04H1ZhZXVtfaO4Wdra3tndK+8ftFWcSkJbJOax7AZYUc4EbWmmOe0mkuIo4LQTTC7nfueeSsVicaenCfUjPBIsZARrI92qQXVQrjj2hVuve1W0JG4tJ1UXubazQAVyNAfl9/4wJmlEhSYcK9VznUT7GZaaEU5npX6qaILJBI9oz1CBI6r8bHHqDJ0YZYjCWJoSGi3U7xMZjpSaRoHpjLAeq9/eXPzL66U6rPsZE0mqqSDLRWHKkY7R/G80ZJISzaeGYCKZuRWRMZaYaJNOyYTw9Sn6n7TPbLdmezdepXGdx1GEIziGU3DhHBpwBU1oAYERPMATPFvcerRerNdla8HKZw7hB6y3T5dRjg0=</latexit>s3

<latexit sha1_base64="xjfKM+ZC/qcAYco0D543dtBF2Dk=">AAAB6nicdVBNS8NAEJ3Ur1q/qh69LBbBU0hsqPVW8KK3ivYD2lA22027dLMJuxuhhP4ELx4U8eov8ua/cdtGUNEHA4/3ZpiZFyScKe04H1ZhZXVtfaO4Wdra3tndK+8ftFWcSkJbJOax7AZYUc4EbWmmOe0mkuIo4LQTTC7nfueeSsVicaenCfUjPBIsZARrI92qgTcoVxz7wq3XvSpaEreWk6qLXNtZoAI5moPye38YkzSiQhOOleq5TqL9DEvNCKezUj9VNMFkgke0Z6jAEVV+tjh1hk6MMkRhLE0JjRbq94kMR0pNo8B0RliP1W9vLv7l9VId1v2MiSTVVJDlojDlSMdo/jcaMkmJ5lNDMJHM3IrIGEtMtEmnZEL4+hT9T9pntluzvRuv0rjO4yjCERzDKbhwDg24gia0gMAIHuAJni1uPVov1uuytWDlM4fwA9bbJ5jVjg4=</latexit>s4
<latexit sha1_base64="bcGV7v6xhsX4W7to9AuAE1mtpPY=">AAAB6nicdZDLSgMxFIbP1Futl1ZdugkWwVXJSGl1V3Cju4r2Au1QMmmmDc1khiQjlKGP4MaFIm59Ine+jZm24gX9IfDxn3PIOb8fC64Nxu9ObmV1bX0jv1nY2t7ZLZb29ts6ShRlLRqJSHV9opngkrUMN4J1Y8VI6AvW8ScXWb1zx5Tmkbw105h5IRlJHnBKjLVu9KA6KJVxBWMXn9fQHFxc/wLXQqYyLNUclN76w4gmIZOGCqJ1z8Wx8VKiDKeCzQr9RLOY0AkZsZ5FSUKmvXS+6gwdW2eIgkjZJw2au98nUhJqPQ192xkSM9a/a5n5V62XmODMS7mME8MkXXwUJAKZCGV3oyFXjBoxtUCo4nZXRMdEEWpsOgUbwuel6H9on1bcWqV6XS03rpZx5OEQjuAEXKhDAy6hCS2gMIJ7eIQnRzgPzrPzsmjNOcuZA/gh5/UDPtyN0A==</latexit>s4

<latexit sha1_base64="H7mDrSX8WQkkbcVsvtFRKVmg2CE=">AAAB6nicdZDLSgMxFIbP1Futt6pLN8EiuCoZqa3uCm50V9FeoB1KJs20oZnMkGSEMvQR3LhQxK1P5M63MdNWvKA/BD7+cw455/djwbXB+N3JLS2vrK7l1wsbm1vbO8XdvZaOEkVZk0YiUh2faCa4ZE3DjWCdWDES+oK1/fFFVm/fMaV5JG/NJGZeSIaSB5wSY60b3T/tF0u4jLGLz6toBi6ufYFrIVMJFmr0i2+9QUSTkElDBdG66+LYeClRhlPBpoVeollM6JgMWdeiJCHTXjpbdYqOrDNAQaTskwbN3O8TKQm1noS+7QyJGenftcz8q9ZNTHDmpVzGiWGSzj8KEoFMhLK70YArRo2YWCBUcbsroiOiCDU2nYIN4fNS9D+0TsputVy5rpTqV4s48nAAh3AMLtSgDpfQgCZQGMI9PMKTI5wH59l5mbfmnMXMPvyQ8/oBQGCN0Q==</latexit>s5

<latexit sha1_base64="+QfAp+fRS7FlTAR55rhj4OANtDI=">AAAB6nicdZDLSgMxFIbP1Futt6pLN8EiuCoZLa3uCm50V9FeoB1KJs20oZnMkGSEMvQR3LhQxK1P5M63MdNWvKA/BD7+cw455/djwbXB+N3JLS2vrK7l1wsbm1vbO8XdvZaOEkVZk0YiUh2faCa4ZE3DjWCdWDES+oK1/fFFVm/fMaV5JG/NJGZeSIaSB5wSY60b3T/tF0u4jLGLz6toBi6ufYFrIVMJFmr0i2+9QUSTkElDBdG66+LYeClRhlPBpoVeollM6JgMWdeiJCHTXjpbdYqOrDNAQaTskwbN3O8TKQm1noS+7QyJGenftcz8q9ZNTHDmpVzGiWGSzj8KEoFMhLK70YArRo2YWCBUcbsroiOiCDU2nYIN4fNS9D+0TsputVy5rpTqV4s48nAAh3AMLtSgDpfQgCZQGMI9PMKTI5wH59l5mbfmnMXMPvyQ8/oBPViNzw==</latexit>s3

<latexit sha1_base64="H7mDrSX8WQkkbcVsvtFRKVmg2CE=">AAAB6nicdZDLSgMxFIbP1Futt6pLN8EiuCoZqa3uCm50V9FeoB1KJs20oZnMkGSEMvQR3LhQxK1P5M63MdNWvKA/BD7+cw455/djwbXB+N3JLS2vrK7l1wsbm1vbO8XdvZaOEkVZk0YiUh2faCa4ZE3DjWCdWDES+oK1/fFFVm/fMaV5JG/NJGZeSIaSB5wSY60b3T/tF0u4jLGLz6toBi6ufYFrIVMJFmr0i2+9QUSTkElDBdG66+LYeClRhlPBpoVeollM6JgMWdeiJCHTXjpbdYqOrDNAQaTskwbN3O8TKQm1noS+7QyJGenftcz8q9ZNTHDmpVzGiWGSzj8KEoFMhLK70YArRo2YWCBUcbsroiOiCDU2nYIN4fNS9D+0TsputVy5rpTqV4s48nAAh3AMLtSgDpfQgCZQGMI9PMKTI5wH59l5mbfmnMXMPvyQ8/oBQGCN0Q==</latexit>s5

Figure 2.5: An example exploration of Lazy Source Set POR. We use the same conventions as in Figure 2.4.

We explain how Algorithm 3 works by an example. Figure 2.5(a) illustrates a scenario in which
the exploration backtracks to a state s for the second time. After the first backtrack to s, the
state space starting from the successor s1 (resulted from following a transition of thread 1) was
re-traversed in order to compute s.current[1]. We assume that s.current[1] is changed to
{1, 2, 3, 4, 5}due to the dependent transitions encountered during this traversal. The sets.back-
track is set to s.current[1] as the latter contains all the enabled transitions. The exploration
continues with a transition from s of thread 2, which is possible because thread 2 is in s.back-
track \ s.done. After backtracking to s for the second time, the re-traversal of the state space
starting in s2 leads to s.current[2] = {2, 3}. The set s.backtrack remains the same after this
computation. Then, in Figure 2.5(b), when backtracking to s for the fourth time, we assume that
s.current[3] = {3, 4} and s.current[4] = {2, 3, 4}. Since transitions of threads 2, 3, and 4
starting in s are independent of transitions of other threads that occur later, we can conclude that
{2, 3, 4} is a persistent set and {1, 2, 3, 4} is a source set, and update s.backtrack to s.done.
Therefore, the exploration from s stops, as pictured in Figure 2.5(c). The set of transitions ex-
plored from s corresponds to a source set which is not a persistent set. The only persistent set that
includes thread 1 is {1, 2, 3, 4, 5}.

2.2.2.1 Curbing Re-traversals for Efficiency

The re-traversals used to track dependencies in current sets are time-consuming, but several op-
timizations can be applied. The simplest optimization is not performing a traversal from the last
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<latexit sha1_base64="lHLLoSJV4YmNH913IPGNrlmzZik=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2FXgnoMeNBjRPOAZAmzk95kyOzsMjMrhJBP8OJBEa9+kTf/xkmyB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3cz81hMqzWP5aMYJ+hEdSB5yRo2VHsr0vFcsuRV3DrJKvIyUIEO9V/zq9mOWRigNE1Trjucmxp9QZTgTOC10U40JZSM6wI6lkkao/cn81Ck5s0qfhLGyJQ2Zq78nJjTSehwFtjOiZqiXvZn4n9dJTXjtT7hMUoOSLRaFqSAmJrO/SZ8rZEaMLaFMcXsrYUOqKDM2nYINwVt+eZU0LyreZaV6Xy3VbrM48nACp1AGD66gBndQhwYwGMAzvMKbI5wX5935WLTmnGzmGP7A+fwBjRqNWA==</latexit>

(a)
<latexit sha1_base64="WHzQ5+VpAo6ZS9zz6K2vwUBubs0=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2FXgnoMeNBjRPOAZAmzk95kyOzsMjMrhJBP8OJBEa9+kTf/xkmyB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3cz81hMqzWP5aMYJ+hEdSB5yRo2VHsrBea9YcivuHGSVeBkpQYZ6r/jV7ccsjVAaJqjWHc9NjD+hynAmcFrophoTykZ0gB1LJY1Q+5P5qVNyZpU+CWNlSxoyV39PTGik9TgKbGdEzVAvezPxP6+TmvDan3CZpAYlWywKU0FMTGZ/kz5XyIwYW0KZ4vZWwoZUUWZsOgUbgrf88ippXlS8y0r1vlqq3WZx5OEETqEMHlxBDe6gDg1gMIBneIU3RzgvzrvzsWjNOdnMMfyB8/kDjp+NWQ==</latexit>

(b)
<latexit sha1_base64="WOVgQMt23yJKhN15rqQjMFl2GQc=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2FXgnoMeNBjRPOAZAmzk95kyOzsMjMrhJBP8OJBEa9+kTf/xkmyB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3cz81hMqzWP5aMYJ+hEdSB5yRo2VHsrsvFcsuRV3DrJKvIyUIEO9V/zq9mOWRigNE1Trjucmxp9QZTgTOC10U40JZSM6wI6lkkao/cn81Ck5s0qfhLGyJQ2Zq78nJjTSehwFtjOiZqiXvZn4n9dJTXjtT7hMUoOSLRaFqSAmJrO/SZ8rZEaMLaFMcXsrYUOqKDM2nYINwVt+eZU0LyreZaV6Xy3VbrM48nACp1AGD66gBndQhwYwGMAzvMKbI5wX5935WLTmnGzmGP7A+fwBkCSNWg==</latexit>

(c)
<latexit sha1_base64="RFWpg9w2aNEbYr/NywaByWwRKLA=">AAAB6nicbVBNSwMxEJ3Ur1q/qh69BItQL2VXinoseNBjRfsB7VKy2Wwbms0uSVYoS3+CFw+KePUXefPfmLZ70NYHA4/3ZpiZ5yeCa+M436iwtr6xuVXcLu3s7u0flA+P2jpOFWUtGotYdX2imeCStQw3gnUTxUjkC9bxxzczv/PElOaxfDSThHkRGUoeckqMlR6qwfmgXHFqzhx4lbg5qUCO5qD81Q9imkZMGiqI1j3XSYyXEWU4FWxa6qeaJYSOyZD1LJUkYtrL5qdO8ZlVAhzGypY0eK7+nshIpPUk8m1nRMxIL3sz8T+vl5rw2su4TFLDJF0sClOBTYxnf+OAK0aNmFhCqOL2VkxHRBFqbDolG4K7/PIqaV/U3Mta/b5eadzmcRThBE6hCi5cQQPuoAktoDCEZ3iFNyTQC3pHH4vWAspnjuEP0OcPkamNWw==</latexit>

(d)

<latexit sha1_base64="yt4ufykEFHIbHx5/Inr8w2tFqnw=">AAAB7HicbVBNT8JAEJ3iF+IX6tHLRmLiAUirRD0SvXjExAIJNGS7bGHDdtvsbk1Iw2/w4kFjvPqDvPlv3EIPCr5kkpf3ZjIzz485U9q2v63C2vrG5lZxu7Szu7d/UD48aqsokYS6JOKR7PpYUc4EdTXTnHZjSXHoc9rxJ3eZ33miUrFIPOppTL0QjwQLGMHaSO5ltVatDcoVu27PgVaJk5MK5GgNyl/9YUSSkApNOFaq59ix9lIsNSOczkr9RNEYkwke0Z6hAodUeen82Bk6M8oQBZE0JTSaq78nUhwqNQ190xliPVbLXib+5/USHdx4KRNxoqkgi0VBwpGOUPY5GjJJieZTQzCRzNyKyBhLTLTJp2RCcJZfXiXti7pzVW88NCrN2zyOIpzAKZyDA9fQhHtogQsEGDzDK7xZwnqx3q2PRWvBymeO4Q+szx8j642a</latexit>3,�
,�

<latexit sha1_base64="WDeTCAgbBEdnoUBrTgGrYpbdyCQ=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRbBQym7UtRj0YvHCvYD2qVk02wbmk2WJKuUpT/CiwdFvPp7vPlvzLZ70NYHA4/3ZpiZF8ScaeO6305hbX1jc6u4XdrZ3ds/KB8etbVMFKEtIrlU3QBrypmgLcMMp91YURwFnHaCyW3mdx6p0kyKBzONqR/hkWAhI9hYqeNVn6py4A3KFbfmzoFWiZeTCuRoDspf/aEkSUSFIRxr3fPc2PgpVoYRTmelfqJpjMkEj2jPUoEjqv10fu4MnVlliEKpbAmD5urviRRHWk+jwHZG2Iz1speJ/3m9xITXfspEnBgqyGJRmHBkJMp+R0OmKDF8agkmitlbERljhYmxCZVsCN7yy6ukfVHzLmv1+3qlcZPHUYQTOIVz8OAKGnAHTWgBgQk8wyu8ObHz4rw7H4vWgpPPHMMfOJ8/HRSOyA==</latexit> 1,
w

, o
1

<latexit sha1_base64="ghRuqBZPq/rKOlNJOM+2G9l+wGw=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexKiB4DgniMaB6QLGF2MpsMmZ1dZnqFsAT8AS8eFPHqF3nzb5w8DppY0FBUddPdFSRSGHTdbye3tr6xuZXfLuzs7u0fFA+PmiZONeMNFstYtwNquBSKN1Cg5O1EcxoFkreC0fXUbz1ybUSsHnCccD+iAyVCwSha6d70vF6x5JbdGcgq8RakBAvUe8Wvbj9macQVMkmN6Xhugn5GNQom+aTQTQ1PKBvRAe9YqmjEjZ/NTp2QM6v0SRhrWwrJTP09kdHImHEU2M6I4tAse1PxP6+TYnjlZ0IlKXLF5ovCVBKMyfRv0heaM5RjSyjTwt5K2JBqytCmU7AheMsvr5LmRdmrlit3lVLt5mkeRx5O4BTOwYNLqMEt1KEBDAbwDK/w5kjnxXl3PuatOWcR4TH8gfP5Ay40jig=</latexit>s1
<latexit sha1_base64="ghRuqBZPq/rKOlNJOM+2G9l+wGw=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexKiB4DgniMaB6QLGF2MpsMmZ1dZnqFsAT8AS8eFPHqF3nzb5w8DppY0FBUddPdFSRSGHTdbye3tr6xuZXfLuzs7u0fFA+PmiZONeMNFstYtwNquBSKN1Cg5O1EcxoFkreC0fXUbz1ybUSsHnCccD+iAyVCwSha6d70vF6x5JbdGcgq8RakBAvUe8Wvbj9macQVMkmN6Xhugn5GNQom+aTQTQ1PKBvRAe9YqmjEjZ/NTp2QM6v0SRhrWwrJTP09kdHImHEU2M6I4tAse1PxP6+TYnjlZ0IlKXLF5ovCVBKMyfRv0heaM5RjSyjTwt5K2JBqytCmU7AheMsvr5LmRdmrlit3lVLt5mkeRx5O4BTOwYNLqMEt1KEBDAbwDK/w5kjnxXl3PuatOWcR4TH8gfP5Ay40jig=</latexit>s1

<latexit sha1_base64="3lPZ62RtQ8MD87+RnaD6QvOCXL8=">AAAB6nicdVDLSsNAFL3xWeur6tLNYBFchSS2qe4KgrisaB/QhjKZTtqhkwczE6GEgj/gxoUibv0id/6Nk7aCih64cDjnXu69x084k8qyPoyl5ZXVtfXCRnFza3tnt7S335JxKghtkpjHouNjSTmLaFMxxWknERSHPqdtf3yR++07KiSLo1s1SagX4mHEAkaw0tKN7Dv9Utkyz09t13WRJlXLcuyc1KpO1UG2ac1QhgUa/dJ7bxCTNKSRIhxL2bWtRHkZFooRTqfFXippgskYD2lX0wiHVHrZ7NQpOtbKAAWx0BUpNFO/T2Q4lHIS+rozxGokf3u5+JfXTVVw5mUsSlJFIzJfFKQcqRjlf6MBE5QoPtEEE8H0rYiMsMBE6XSKOoSvT9H/pOWYtmtWrivl+uX9PI4CHMIRnIANNajDFTSgCQSG8ABP8Gxw49F4MV7nrUvGIsID+AHj7ROg0453</latexit>s2

<latexit sha1_base64="ghRuqBZPq/rKOlNJOM+2G9l+wGw=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexKiB4DgniMaB6QLGF2MpsMmZ1dZnqFsAT8AS8eFPHqF3nzb5w8DppY0FBUddPdFSRSGHTdbye3tr6xuZXfLuzs7u0fFA+PmiZONeMNFstYtwNquBSKN1Cg5O1EcxoFkreC0fXUbz1ybUSsHnCccD+iAyVCwSha6d70vF6x5JbdGcgq8RakBAvUe8Wvbj9macQVMkmN6Xhugn5GNQom+aTQTQ1PKBvRAe9YqmjEjZ/NTp2QM6v0SRhrWwrJTP09kdHImHEU2M6I4tAse1PxP6+TYnjlZ0IlKXLF5ovCVBKMyfRv0heaM5RjSyjTwt5K2JBqytCmU7AheMsvr5LmRdmrlit3lVLt5mkeRx5O4BTOwYNLqMEt1KEBDAbwDK/w5kjnxXl3PuatOWcR4TH8gfP5Ay40jig=</latexit>s1

<latexit sha1_base64="3lPZ62RtQ8MD87+RnaD6QvOCXL8=">AAAB6nicdVDLSsNAFL3xWeur6tLNYBFchSS2qe4KgrisaB/QhjKZTtqhkwczE6GEgj/gxoUibv0id/6Nk7aCih64cDjnXu69x084k8qyPoyl5ZXVtfXCRnFza3tnt7S335JxKghtkpjHouNjSTmLaFMxxWknERSHPqdtf3yR++07KiSLo1s1SagX4mHEAkaw0tKN7Dv9Utkyz09t13WRJlXLcuyc1KpO1UG2ac1QhgUa/dJ7bxCTNKSRIhxL2bWtRHkZFooRTqfFXippgskYD2lX0wiHVHrZ7NQpOtbKAAWx0BUpNFO/T2Q4lHIS+rozxGokf3u5+JfXTVVw5mUsSlJFIzJfFKQcqRjlf6MBE5QoPtEEE8H0rYiMsMBE6XSKOoSvT9H/pOWYtmtWrivl+uX9PI4CHMIRnIANNajDFTSgCQSG8ABP8Gxw49F4MV7nrUvGIsID+AHj7ROg0453</latexit>s2
<latexit sha1_base64="ij+pBa9GJJtIUAJK4UfDProVv/U=">AAAB6nicdVDLSsNAFL3xWeur6tLNYBFchaQ2qe4KgrisaB/QhjKZTtqhkwczE6GEgj/gxoUibv0id/6Nk7aCih64cDjnXu69x084k8qyPoyl5ZXVtfXCRnFza3tnt7S335JxKghtkpjHouNjSTmLaFMxxWknERSHPqdtf3yR++07KiSLo1s1SagX4mHEAkaw0tKN7Dv9Utkyz09t13WRJo5lVeyc1JyKU0G2ac1QhgUa/dJ7bxCTNKSRIhxL2bWtRHkZFooRTqfFXippgskYD2lX0wiHVHrZ7NQpOtbKAAWx0BUpNFO/T2Q4lHIS+rozxGokf3u5+JfXTVVw5mUsSlJFIzJfFKQcqRjlf6MBE5QoPtEEE8H0rYiMsMBE6XSKOoSvT9H/pFUxbdesXlfL9cv7eRwFOIQjOAEbalCHK2hAEwgM4QGe4NngxqPxYrzOW5eMRYQH8APG2yelX456</latexit>s5

<latexit sha1_base64="JrGhHq/s3wAbXhg5Fj19tlsbje0=">AAAB6nicdVDLSgNBEOyNrxhfUY9eBoPgadmNycbcAoJ4jGgekCxhdjKbDJl9MDMrhCXgD3jxoIhXv8ibf+NsEkFFCxqKqm66u7yYM6ks68PIrayurW/kNwtb2zu7e8X9g7aMEkFoi0Q8El0PS8pZSFuKKU67saA48DjteJOLzO/cUSFZFN6qaUzdAI9C5jOClZZu5KA+KJYss35mO46DNKlaVtnOSK1arpaRbVpzlGCJ5qD43h9GJAloqAjHUvZsK1ZuioVihNNZoZ9IGmMywSPa0zTEAZVuOj91hk60MkR+JHSFCs3V7xMpDqScBp7uDLAay99eJv7l9RLln7spC+NE0ZAsFvkJRypC2d9oyAQlik81wUQwfSsiYywwUTqdgg7h61P0P2mXTdsxK9eVUuPyfhFHHo7gGE7Bhho04Aqa0AICI3iAJ3g2uPFovBivi9acsYzwEH7AePsEq2+Ofg==</latexit>s9

<latexit sha1_base64="2DDdkKpFKcodr/1BuTQ0e7GyTzM=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexKUI8BQTwmYB6QLGF20puMmZ1dZmaFsAS8e/GgiFc/yZt/4+Rx0MSChqKqm+6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRzdRvPaLSPJb3ZpygH9GB5CFn1Fip7vWKJbfszkBWibcgJVig1it+dfsxSyOUhgmqdcdzE+NnVBnOBE4K3VRjQtmIDrBjqaQRaj+bHTohZ1bpkzBWtqQhM/X3REYjrcdRYDsjaoZ62ZuK/3md1ITXfsZlkhqUbL4oTAUxMZl+TfpcITNibAllittbCRtSRZmx2RRsCN7yy6ukeVH2LsuVeqVUvX2ax5GHEziFc/DgCqpwBzVoAAOEZ3iFN+fBeXHenY95a85ZRHgMf+B8/gCkv41C</latexit>

1
<latexit sha1_base64="qFOQRgfCndZQ1zHWuEhu8MokBvc=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hd0Q1GNAEI8JmAckS5id9CZjZmeXmVkhLAHvXjwo4tVP8ubfOHkcNLGgoajqprsrSATXxnW/nbX1jc2t7dxOfndv/+CwcHTc1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8HoZuq3HlFpHst7M07Qj+hA8pAzaqxUL/cKRbfkzkBWibcgRVig1it8dfsxSyOUhgmqdcdzE+NnVBnOBE7y3VRjQtmIDrBjqaQRaj+bHToh51bpkzBWtqQhM/X3REYjrcdRYDsjaoZ62ZuK/3md1ITXfsZlkhqUbL4oTAUxMZl+TfpcITNibAllittbCRtSRZmx2eRtCN7yy6ukWS55l6VKvVKs3j7N48jBKZzBBXhwBVW4gxo0gAHCM7zCm/PgvDjvzse8dc1ZRHgCf+B8/gCmQ41D</latexit>

2

<latexit sha1_base64="WDe60Aeohn8x4UNeI0vPcQi3hsk=">AAAB6HicdVBNS8NAEJ3Ur1q/qh69LBbBU0hq7MetIIjHFmwrtKFstpt27eaD3Y1QQsG7Fw+KePUnefPfuG0qqOiDgcd7M8zM82LOpLKsDyO3srq2vpHfLGxt7+zuFfcPOjJKBKFtEvFI3HhYUs5C2lZMcXoTC4oDj9OuN7mY+907KiSLwms1jakb4FHIfEaw0lLrbFAsWaZTqTv1MspItbYktXNkm9YCJViiOSi+94cRSQIaKsKxlD3bipWbYqEY4XRW6CeSxphM8Ij2NA1xQKWbLg6doROtDJEfCV2hQgv1+0SKAymngac7A6zG8rc3F//yeonya27KwjhRNCTZIj/hSEVo/jUaMkGJ4lNNMBFM34rIGAtMlM6moEP4+hT9Tzpl066YTsspNS7vszjycATHcAo2VKEBV9CENhCg8ABP8GzcGo/Gi/GateaMZYSH8APG2ydECY2w</latexit>

3

<latexit sha1_base64="9S9MOAdlJeYlRMU9z3+y5n4DQeM=">AAAB6HicdVDJSgNBEK2JW4xb1KOXxiB4CjMaoseAIB4TMAskQ+jp1CRteha6e4QwBLx78aCIVz/Jm39jTxLB9UHB470qqup5seBK2/a7lVtaXlldy68XNja3tneKu3stFSWSYZNFIpIdjyoUPMSm5lpgJ5ZIA09g2xtfZH77FqXiUXitJzG6AR2G3OeMaiM1TvvFkl227UrVsclv4hiSoQQL1PvFt94gYkmAoWaCKtV17Fi7KZWaM4HTQi9RGFM2pkPsGhrSAJWbzg6dkiOjDIgfSVOhJjP160RKA6UmgWc6A6pH6qeXiX953UT7527KwzjRGLL5Ij8RREck+5oMuESmxcQQyiQ3txI2opIybbIpmBA+PyX/k9ZJ2amWK41KqXZ5N48jDwdwCMfgwBnU4Arq0AQGCPfwCE/WjfVgPVsv89actYhwH77Bev0A14KNZQ==</latexit>

3
<latexit sha1_base64="umbJqnizzkII8l78SiCe5w7xYps=">AAAB6HicdVDJSgNBEK2JW4xb1KOXxiB4CjMhRI8BQTwmYBZIhtDTqUna9Cx09whhCHj34kERr36SN//GniSC64OCx3tVVNXzYsGVtu13K7eyura+kd8sbG3v7O4V9w/aKkokwxaLRCS7HlUoeIgtzbXAbiyRBp7Ajje5yPzOLUrFo/BaT2N0AzoKuc8Z1UZqVgbFkl227WrNsclv4hiSoQRLNAbFt/4wYkmAoWaCKtVz7Fi7KZWaM4GzQj9RGFM2oSPsGRrSAJWbzg+dkROjDIkfSVOhJnP160RKA6WmgWc6A6rH6qeXiX95vUT7527KwzjRGLLFIj8RREck+5oMuUSmxdQQyiQ3txI2ppIybbIpmBA+PyX/k3al7NTK1Wa1VL+8W8SRhyM4hlNw4AzqcAUNaAEDhHt4hCfrxnqwnq2XRWvOWkZ4CN9gvX4A1f6NZA==</latexit>

2
<latexit sha1_base64="2DDdkKpFKcodr/1BuTQ0e7GyTzM=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexKUI8BQTwmYB6QLGF20puMmZ1dZmaFsAS8e/GgiFc/yZt/4+Rx0MSChqKqm+6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRzdRvPaLSPJb3ZpygH9GB5CFn1Fip7vWKJbfszkBWibcgJVig1it+dfsxSyOUhgmqdcdzE+NnVBnOBE4K3VRjQtmIDrBjqaQRaj+bHTohZ1bpkzBWtqQhM/X3REYjrcdRYDsjaoZ62ZuK/3md1ITXfsZlkhqUbL4oTAUxMZl+TfpcITNibAllittbCRtSRZmx2RRsCN7yy6ukeVH2LsuVeqVUvX2ax5GHEziFc/DgCqpwBzVoAAOEZ3iFN+fBeXHenY95a85ZRHgMf+B8/gCkv41C</latexit>

1
<latexit sha1_base64="3lPZ62RtQ8MD87+RnaD6QvOCXL8=">AAAB6nicdVDLSsNAFL3xWeur6tLNYBFchSS2qe4KgrisaB/QhjKZTtqhkwczE6GEgj/gxoUibv0id/6Nk7aCih64cDjnXu69x084k8qyPoyl5ZXVtfXCRnFza3tnt7S335JxKghtkpjHouNjSTmLaFMxxWknERSHPqdtf3yR++07KiSLo1s1SagX4mHEAkaw0tKN7Dv9Utkyz09t13WRJlXLcuyc1KpO1UG2ac1QhgUa/dJ7bxCTNKSRIhxL2bWtRHkZFooRTqfFXippgskYD2lX0wiHVHrZ7NQpOtbKAAWx0BUpNFO/T2Q4lHIS+rozxGokf3u5+JfXTVVw5mUsSlJFIzJfFKQcqRjlf6MBE5QoPtEEE8H0rYiMsMBE6XSKOoSvT9H/pOWYtmtWrivl+uX9PI4CHMIRnIANNajDFTSgCQSG8ABP8Gxw49F4MV7nrUvGIsID+AHj7ROg0453</latexit>s2

<latexit sha1_base64="AcvhsNkB+vzY8jggXFrdGEHtUlA=">AAAB6nicdVDLSgNBEOyNrxhfUY9eBoPgKexKiB4DgniMaB6QLGF2MkmGzM4uM71CWAL+gBcPinj1i7z5N84mEXwWNBRV3XR3BbEUBl333cktLa+sruXXCxubW9s7xd29pokSzXiDRTLS7YAaLoXiDRQoeTvWnIaB5K1gfJ75rVuujYjUDU5i7od0qMRAMIpWuja9aq9YcsuuW6l6LvlNPEsylGCBeq/41u1HLAm5QiapMR3PjdFPqUbBJJ8WuonhMWVjOuQdSxUNufHT2alTcmSVPhlE2pZCMlO/TqQ0NGYSBrYzpDgyP71M/MvrJDg481Oh4gS5YvNFg0QSjEj2N+kLzRnKiSWUaWFvJWxENWVo0ynYED4/Jf+T5knZq5YrV5VS7eJuHkceDuAQjsGDU6jBJdShAQyGcA+P8ORI58F5dl7mrTlnEeE+fIPz+gFlg45O</latexit>s6

<latexit sha1_base64="Tpa4gL/BADnsG2DbQAHqz1dxjB8=">AAAB6nicdVDLSgNBEOyNrxhfUY9eBoPgadlNYjbeAoJ4jGgekCxhdjKbDJl9MDMrhCXgD3jxoIhXv8ibf+MkG0FFCxqKqm66u7yYM6ks68PIrayurW/kNwtb2zu7e8X9g7aMEkFoi0Q8El0PS8pZSFuKKU67saA48DjteJOLud+5o0KyKLxV05i6AR6FzGcEKy3dyEFlUCxZ5nmtYtctpIlzVnFqGbHLDrJNa4ESLNEcFN/7w4gkAQ0V4VjKnm3Fyk2xUIxwOiv0E0ljTCZ4RHuahjig0k0Xp87QiVaGyI+ErlChhfp9IsWBlNPA050BVmP525uLf3m9RPl1N2VhnCgakmyRn3CkIjT/Gw2ZoETxqSaYCKZvRWSMBSZKp1PQIXx9iv4n7bJp18zqdbXUuLzP4sjDERzDKdjgQAOuoAktIDCCB3iCZ4Mbj8aL8Zq15oxlhIfwA8bbJ7rBjok=</latexit>s3

<latexit sha1_base64="WDeTCAgbBEdnoUBrTgGrYpbdyCQ=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRbBQym7UtRj0YvHCvYD2qVk02wbmk2WJKuUpT/CiwdFvPp7vPlvzLZ70NYHA4/3ZpiZF8ScaeO6305hbX1jc6u4XdrZ3ds/KB8etbVMFKEtIrlU3QBrypmgLcMMp91YURwFnHaCyW3mdx6p0kyKBzONqR/hkWAhI9hYqeNVn6py4A3KFbfmzoFWiZeTCuRoDspf/aEkSUSFIRxr3fPc2PgpVoYRTmelfqJpjMkEj2jPUoEjqv10fu4MnVlliEKpbAmD5urviRRHWk+jwHZG2Iz1speJ/3m9xITXfspEnBgqyGJRmHBkJMp+R0OmKDF8agkmitlbERljhYmxCZVsCN7yy6ukfVHzLmv1+3qlcZPHUYQTOIVz8OAKGnAHTWgBgQk8wyu8ObHz4rw7H4vWgpPPHMMfOJ8/HRSOyA==</latexit> 1,
w

, o
1

<latexit sha1_base64="ghRuqBZPq/rKOlNJOM+2G9l+wGw=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexKiB4DgniMaB6QLGF2MpsMmZ1dZnqFsAT8AS8eFPHqF3nzb5w8DppY0FBUddPdFSRSGHTdbye3tr6xuZXfLuzs7u0fFA+PmiZONeMNFstYtwNquBSKN1Cg5O1EcxoFkreC0fXUbz1ybUSsHnCccD+iAyVCwSha6d70vF6x5JbdGcgq8RakBAvUe8Wvbj9macQVMkmN6Xhugn5GNQom+aTQTQ1PKBvRAe9YqmjEjZ/NTp2QM6v0SRhrWwrJTP09kdHImHEU2M6I4tAse1PxP6+TYnjlZ0IlKXLF5ovCVBKMyfRv0heaM5RjSyjTwt5K2JBqytCmU7AheMsvr5LmRdmrlit3lVLt5mkeRx5O4BTOwYNLqMEt1KEBDAbwDK/w5kjnxXl3PuatOWcR4TH8gfP5Ay40jig=</latexit>s1

<latexit sha1_base64="3lPZ62RtQ8MD87+RnaD6QvOCXL8=">AAAB6nicdVDLSsNAFL3xWeur6tLNYBFchSS2qe4KgrisaB/QhjKZTtqhkwczE6GEgj/gxoUibv0id/6Nk7aCih64cDjnXu69x084k8qyPoyl5ZXVtfXCRnFza3tnt7S335JxKghtkpjHouNjSTmLaFMxxWknERSHPqdtf3yR++07KiSLo1s1SagX4mHEAkaw0tKN7Dv9Utkyz09t13WRJlXLcuyc1KpO1UG2ac1QhgUa/dJ7bxCTNKSRIhxL2bWtRHkZFooRTqfFXippgskYD2lX0wiHVHrZ7NQpOtbKAAWx0BUpNFO/T2Q4lHIS+rozxGokf3u5+JfXTVVw5mUsSlJFIzJfFKQcqRjlf6MBE5QoPtEEE8H0rYiMsMBE6XSKOoSvT9H/pOWYtmtWrivl+uX9PI4CHMIRnIANNajDFTSgCQSG8ABP8Gxw49F4MV7nrUvGIsID+AHj7ROg0453</latexit>s2

<latexit sha1_base64="AcvhsNkB+vzY8jggXFrdGEHtUlA=">AAAB6nicdVDLSgNBEOyNrxhfUY9eBoPgKexKiB4DgniMaB6QLGF2MkmGzM4uM71CWAL+gBcPinj1i7z5N84mEXwWNBRV3XR3BbEUBl333cktLa+sruXXCxubW9s7xd29pokSzXiDRTLS7YAaLoXiDRQoeTvWnIaB5K1gfJ75rVuujYjUDU5i7od0qMRAMIpWuja9aq9YcsuuW6l6LvlNPEsylGCBeq/41u1HLAm5QiapMR3PjdFPqUbBJJ8WuonhMWVjOuQdSxUNufHT2alTcmSVPhlE2pZCMlO/TqQ0NGYSBrYzpDgyP71M/MvrJDg481Oh4gS5YvNFg0QSjEj2N+kLzRnKiSWUaWFvJWxENWVo0ynYED4/Jf+T5knZq5YrV5VS7eJuHkceDuAQjsGDU6jBJdShAQyGcA+P8ORI58F5dl7mrTlnEeE+fIPz+gFlg45O</latexit>s6

<latexit sha1_base64="Tpa4gL/BADnsG2DbQAHqz1dxjB8=">AAAB6nicdVDLSgNBEOyNrxhfUY9eBoPgadlNYjbeAoJ4jGgekCxhdjKbDJl9MDMrhCXgD3jxoIhXv8ibf+MkG0FFCxqKqm66u7yYM6ks68PIrayurW/kNwtb2zu7e8X9g7aMEkFoi0Q8El0PS8pZSFuKKU67saA48DjteJOLud+5o0KyKLxV05i6AR6FzGcEKy3dyEFlUCxZ5nmtYtctpIlzVnFqGbHLDrJNa4ESLNEcFN/7w4gkAQ0V4VjKnm3Fyk2xUIxwOiv0E0ljTCZ4RHuahjig0k0Xp87QiVaGyI+ErlChhfp9IsWBlNPA050BVmP525uLf3m9RPl1N2VhnCgakmyRn3CkIjT/Gw2ZoETxqSaYCKZvRWSMBSZKp1PQIXx9iv4n7bJp18zqdbXUuLzP4sjDERzDKdjgQAOuoAktIDCCB3iCZ4Mbj8aL8Zq15oxlhIfwA8bbJ7rBjok=</latexit>s3

<latexit sha1_base64="BVl0symv38d70o/WWkhGyAyt/gY=">AAAB7HicdVBNS8NAEN3Ur1q/qh69LBbBQxuSttoci148VjBtoQ1ls920SzebsLsRSuhv8OJBEa/+IG/+GzdtBBV9MPB4b4aZeX7MqFSW9WEU1tY3NreK26Wd3b39g/LhUVdGicDExRGLRN9HkjDKiauoYqQfC4JCn5GeP7vO/N49EZJG/E7NY+KFaMJpQDFSWnKb1Vq1NipXLNOyW85FA2bEsRr1nNQdaJvWEhWQozMqvw/HEU5CwhVmSMqBbcXKS5FQFDOyKA0TSWKEZ2hCBppyFBLppctjF/BMK2MYREIXV3Cpfp9IUSjlPPR1Z4jUVP72MvEvb5CowPFSyuNEEY5Xi4KEQRXB7HM4poJgxeaaICyovhXiKRIIK51PSYfw9Sn8n3Trpn1pNm+blfZVHkcRnIBTcA5s0AJtcAM6wAUYUPAAnsCzwY1H48V4XbUWjHzmGPyA8fYJd/uN1A==</latexit>4,�
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Figure 2.6: Optimizations to avoid re-traversing the state space. We use the same conventions as in Fig-
ure 2.4.

successor of s, called s′, when backtracking to s. Then, s.done becomes equal to safeSet(s)

after adding the thread t leading to s′ (see the first disjunct at line 21). This implies that no re-
traversal is initiated for a state s that is reducible or it is irreducible but has only one enabled tran-
sition; for an example see Figure 2.6(a).

Second, a traversal from a successor of s does not have to be performed if after adding t to
s.done, all the threads enabled in s and not already in s.done lead to already visited states (see
the second disjunct at line 21). The successors of those transitions may have not been pushed to
the stack so they are added to the current LTS Lr (see line 22). This optimization also relies on
initiating re-traversals of the state space only when backtracking from a new state (see the condi-
tion at line 11). Stopping the traversal is sound because there are no new states to explore from s

and the exploration from s is already complete. A scenario where this optimization is enabled is
shown in Figure 2.6(b). When backtracking to s8 for the first time (from s9), all the other threads
enabled in s8 lead to an already visited state. The re-traversal of the state space starting in s9 is
stopped since the exploration from s8 is already complete (before returning, the transitions of
threads 2 and 3 from s8 are added to the current LTS).

While the optimizations above stop re-traversals altogether, several optimizations concern stop-
ping a traversal early before reaching every state. In a concrete implementation, the declarative
definitions at lines 27-28 translate to a (DFS) traversal of all the executions starting in s′ and pop-
ulating s.current[t] as new dependent transitions are found. This traversal can be stopped as
soon as s.current[t] becomes “complete”, i.e., it stores all threads in safeSet(s). An example is
shown in Figure 2.6(c) where the traversal starting in s2 can stop immediately after the first tran-
sition since only threads 1 and 2 are enabled in s1. Similarly, the traversal can be stopped immedi-
ately as s.current[t] contains a thread which is not enabled in s. In this case, s.backtrackwill
anyway be updated conservatively to include all the threads in safeSet(s). An example is shown
in Figure 2.6(d).
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2.2 A Pragmatic Approach to Stateful Partial Order Reduction

None of these optimizations are applicable in the eager version, or if they are, they are much
harder to apply. Here, we take advantage of having to compute dependencies using forward traver-
sals that explore full executions starting in a certain state as opposed to a backward traversal of
states in the stack.

2.2.2.2 Soundness

The soundness of Algorithm 3, stated in the following theorem, is also based on proving that every
state is expanded according to a source set. As in Theorem 1, it can be shown that s.backtrack
is a source set for swhen it becomes equal to s.done. When backtracking to a state, thecurrent
sets satisfy the same specification as in the eager version.

Theorem 2. Given a program represented by an LTS L, Algorithm 3 terminates with an LTS Lr

that is sound for L.

Proof. Similar to the proof of Theorem 1, it is enough to show that Proposition 2.1 holds. To end
an exploration from a state s, while loop in line 4 of Algorithm 3 must be terminated. For this,
return statement in line 15 must be reached and therefore, IsComplete in line 13 should re-
turn true. First, we show that IsComplete method eventually returns true. Due to to method
UpdateBack , we know that s.backtrack can not contain a thread t ̸∈ safeSet(s). Hence, all
the transitions of s that can be executed are only from threads in safeSet(s) because of lines 5–8.
Each time a transition of s is executed and then the search backtracks to s, IsComplete(s) is
initiated. By the for loop in line 18, every transition from s that is executed is considered and by
line 19, we know that all these transitions will be added to s.done. Thus, s.done eventually be-
comes equal to safeSet(s) which satisfies the condition in line 21 and as a result, IsComplete

method returns true.
For IsComplete method to return true, either condition in line 21 or line 30 should be sat-

isfied, where in both conditions s.backtrack must be equal to s.done before the return state-
ment. That’s why, equality of s.done and s.back-
track is the only condition for stopping an exploration from a state s. Similar to Algorithm 2,
since s.done keep tracks of threads whose enabled transitions from s is already executed, the
proof is deduced to showing that Proposition 2.2 holds for Algorithm 3 as well. The part be-
tween Proposition 2.2 and Proposition 2.3 in the proof of Theorem 1 applies totally the same
and we show that T is a persistent set for s in L using the fact that Lr admits such an execution
E′ as it is concluded in the same proof. Assume by contradiction that T is not a persistent set for
s. But as a result of backtracking to s after executing E′ and invoking IsComplete method, t′

will be added to s.current[t] (and eventually to T due to UpdateBack method) in line 28 of
Algorithm 3 since the transition label of τ ′ is an element of As′ (t′ ̸∈ T and act(τ) ≁ act(τ ′))
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in line 27. Since it contradicts the assumption, T (and also s.backtrack by monotonicity of
source sets) is a persistent set and a source set.

2.2.3 Experimental Evaluation

We evaluate an implementation of the three algorithms S-POR, DE-S-POR, and DL-S-POR,
presented in Section 2.2.1 and Section 2.2.2, in the context of the Java Pathfinder (JPF) model
checker. As benchmark, we use bounded-size clients of Java concurrent data structures.

2.2.3.1 Implementation

We implement our algorithms as an extension of the DFSHeuristic class in JPF. To identify
(in)visible actions (for computing safe sets), the only manual input is a list of class names that con-
stitute the implementation of the concurrent data structure. The (in)visible transitions are auto-
matically inferred from these class names and Java synchronization-related native methods used to
implement compare-and-swap (CAS) for instance, which are all known. Every action reading or
writing a field of an object in one of these classes, or which corresponds to a native method call are
marked as visible (JPF makes it possible to parse the Bytecode instructions executed in a transition
and determine the read/written object fields). Calls to the lock and unlock methods of a lock
object are both considered as writes to the lock object, and therefore, visible. Any other action is
considered as invisible. The dependency relation between visible actions is defined as usual, i.e.,
two actions that access the same object field, one of them being a write, are considered dependent.
The way we define (in)visible actions is sound because the clients we consider do not contain ad-
ditional computation. They simply call methods of the data structure (from different threads),
the verification goal being related to combinations of return values observed in their executions.

2.2.3.2 Benchmarks

Our benchmark consists of bounded-size clients of 7 concurrent data structures from JDK8 or
Synchrobench [46]: two set implementations based on coarse-grain and fine-grain locking, re-
spectively (RWLockCoarseGrainedListIntSet and OptimisticListSortedSetWaitFreeContains), a
set implementation based on a binary search tree and CAS, a wrapper on top of java.util.concur-
rent.ConcurrentLinkedQueue, java.util.concurrent.ConcurrentHashMap and a wrapper on top
of it, and a hash map implementation based on coarse-grain locking. Since these implementations
update shared memory using compare-and-swap or guarded by locks, they are data-race free and
the restriction to sequential consistency is sound.
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To evaluate our algorithms, we sampled 75 clients of these data structures where each client
calls add and remove methods from 3 threads. Each thread contains up to 5 calls. We varied the
contention on shared objects using less or more distinct inputs for add and remove methods.

We also use a number of buggy variations of the lock-based sets, RWLockCoarseGrainedList-
IntSet and OptimisticListSortedSetWaitFreeContains. We used Violat to generate client pro-
grams of these variations that admit consistency violations. Violat generates these client programs
in three steps. First, Violat enumerates arbitrary test programs of a given data structure based
on other inputs such as number of threads, maximum number of programs and so on. Next, it
computes expected (adt-admitted return-value) outcomes for each test program by computing
and then recording the outcomes of all possible sequential executions. Finally, it runs the threads
of each test program in parallel (using a stress testing tool or JPF), checks if the results are as ex-
pected, and reports the test programs that violates linearizability which is witnessed by observing
an unexpected outcome.

To introduce bugs in the selected data structures before inputting them to Violat, we modify
the placement of locks dynamically under certain conditions in certain methods (e.g., when the
set contains a specific element). These conditions make it possible to control the difficulty of a
bug. We consider four different classes of clients based on the number of invocations to methods
that lead to bugs: (1) all of the invocations, (2) half of the invocations, (3) just a single invocation
and (4) none of the invocations. We sampled 310 clients of these buggy variations with 3 threads
and up to 4 calls per thread using Violat.

2.2.3.3 Results

We use S-POR, DL-S-POR, DE-S-POR to denote the three algorithms presented in this paper.
For the same algorithms, we use JPF, DL-JPF, DE-JPF to represent the standard setup of JPF,
and variations of the DL-S-POR and DE-S-POR when the safe set of a state s contains all the
enabled threads in s (safeSet(s) = enabled(s)). The latter are used to evaluate the performance
of the eager and lazy approaches while disabling the benefit of the static S-POR method. We
compare implementations of S-POR, DL-S-POR and DE-S-POR between them, with JPF, DL-
JPF and DE-JPF, with their stateless variations, and with a stateful variation of the optimal source
set algorithm in [3] (called O-DPOR). For a fair comparison, we implement O-DPOR on top of
S-POR without wakeup trees as their operations are quite expensive. The experiments were run
on a 2,3 GHz Dual-Core Intel Core i5 processor with 8GB of RAM. We consider a timeout of
30 minutes.
Execution time comparison. Figure 2.7 and Figure 2.8 present a comparison in terms of execu-
tion time between different sets of algorithms. In Figure 2.7, we compare JPF, S-POR,DL-S-POR
and DE-S-POR to observe the advantages of using our algorithms against the standard setup of
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Figure 2.7: Quantile plot of running times for S-POR, DL-S-POR, DE-S-POR and JPF (for each algo-
rithm, clients are ordered w.r.t. time in ascending order). The top left part shows a scatter plot for com-
paring S-POR and DL-S-POR.

JPF. In Figure 2.8, we compare DL-S-POR, DE-S-POR, DL-JPF and DE-JPF for investigating
the gain by applying static filtering using S-POR as a baseline in dynamic algorithms. To ease the
interpretation of the results, for each algorithm, we order clients according to execution time in
ascending order. The numbers in the legend represent the number of clients on which a given
algorithm terminates before the timeout. We omit O-DPOR because it times out for a large part
of the benchmark, i.e., 39 out of the 46 clients on which it was run (our implementation of the
algorithm in [3] does not support programs using locks which makes it inapplicable to the rest of
the clients). This optimal algorithm manipulates happens-before constraints between steps in an
execution, which results in a large overhead compared to our simpler tracking of pairwise depen-
dencies. We also omit stateless variations of our algorithms since none of them finished before the
timeout for any client. Note that stateless versions are obtained by disabling the state matching1

in JPF, which also disables storing the full reachability graph.
Results based on Figure 2.7 show that the lazy source set computation inDL-S-POR gives a sig-

nificant speedup w.r.t. DE-S-POR (and intuitively O-DPOR) while outperforming JPF. While
S-POR processes few more clients faster w.r.t. DL-S-POR, the scatter plot on the top-left of Fig-
ure 2.7 shows that it is mostly in favor to DL-S-POR when clients are observed individually (this

1JPF uses hashing for state matching which is theoretically imperfect and can lead to incomplete results on rare occa-
sions
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Figure 2.8: Quantile plot of running times for DL-JPF, DE-JPF, DL-S-POR and DE-S-POR (for each al-
gorithm, clients are ordered w.r.t. time in ascending order as in Figure 2.7).

plot is given in logarithmic scale). DL-S-POR performs better than S-POR if there is a high poten-
tial for reduction, i.e., the ratio between the number of states explored byDL-S-POR over S-POR
is smaller, and otherwise, S-POR is the best. This supports the hypothesis that if the potential for
reduction is high enough then a carefully customized dynamic computation of source sets has a
significant impact on performance. DL-S-POR gives an average speedup (average of speedups for
each client) of 2.6 compared to S-POR. Overall picture suggests using a portfolio model checker
where S-POR and DL-S-POR are run in parallel.

Similar to Figure 2.7, Figure 2.8 illustrates a comparison in terms of time between DL-S-POR,
DE-S-POR, DL-JPF and DE-JPF. It shows that our algorithms outperforms their variations that
are directly built on top of JPF (DL-S-POR against DL-JPF and DE-S-POR against DE-JPF). It
also highlights the fact that the lazy approach is still better than the eager one even when the lazy
approach is not based on S-POR.

Memory consumption comparison. Figure 2.9 presents a comparison in terms of memory con-
sumption between S-POR and DL-S-POR, the most efficient algorithms according to Figure 2.7
and Figure 2.8, against the standard setup of JPF. We compared the maximum heap sizes using
74 clients that terminate before timeout for all algorithms. In all the experiments, the highest
allocated heap size is 4.2GB. S-POR and DL-S-POR consume more memory than JPF because
they have to store the transition labels which are used to reduce the explored state space. This
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Figure 2.9: Quantile plot of memory consumption for S-POR, DL-S-POR, and JPF (for each algorithm,
clients are ordered w.r.t. memory in ascending order). The top left part shows a scatter plot for comparing
S-POR and DL-S-POR.

overhead is unavoidable for any form of dynamic partial order reduction. However, this mem-
ory consumption overhead is counterbalanced by significant speedups in terms of time. There is
some memory overhead also due to storing the sets of transition labels manipulated by the algo-
rithms, e.g., s.current. But since these sets are maintained only for irreducible states and they
are deleted for a state s when s.done equals s.backtrack, their effects are not significant as
storing transition labels.

For 32% of the clients, S-POR and DL-S-POR consume at most twice the memory consumed
by JPF. For these clients, the average memory overhead is 1.00 for S-POR and 1.34 forDL-S-POR
while the average speedup against JPF is 2.54 and 6.67, respectively. For 50% of the clients, S-
POR and DL-S-POR consume in between 2 and 4 times the memory used by JPF. The average
memory overhead for these clients is 2.20 for S-POR and 2.63 for DL-S-POR while the average
speedup is 2.86 and 7.81, respectively. For the rest of the clients, the memory overhead is at most
7.79 and in average 4.11 for S-POR and 5.39 for DL-S-POR while the average speedup 3.28 and
5.31, respectively.

The top-left part of Figure 2.9 shows a pair-wise comparison of allocated maximum heap sizes
in S-POR and DL-S-POR. These algorithms are incomparable in general. After investigating the
clients individually, the results confirm thatDL-S-POR consumes less memory than S-POR when
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there is a high potential for reduction. The memory consumed for computing source sets is com-
pensated by the reduction in the state space.

When we take a look at to Figure 2.10, it illustrates a comparison between DL-S-POR, DE-S-
POR, DL-JPF and DE-JPF as in Figure 2.7, but in terms of memory consumption. As in Fig-
ure 2.9, we compared the maximum heap sizes of clients that finished before it timed out for all
algorithms, which are 58 of them. It demonstrates that our algorithms are slightly better than
their variations that are directly built on top of JPF. This memory overhead is mainly because of
the additional transition labels that are not removed by the static filter. The overhead is also due
to storing the sets of transition labels manipulated by the algorithms for all of the states rather
than just for the irreducible ones but as mentioned previously, this overhead is negligible. This
figure also shows that tracking dependencies with an eager approach does not increase the heap
size as much as the lazy approach, although they explore the same state space. This difference in
the memory overhead can not be explained by the memory that is used for storing the sets of tran-
sition labels or LTSs as they are all the same for both algorithms and they are kept in the same data
structures. We suspect that this overhead can be due to low-level, internal details of JPF or due to
the garbage collection process which might not keep up.

Transition enumeration. The performance of dynamic POR algorithms is generally affected by
the order in which transitions starting in a certain state are enumerated. This order influences the
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size of the computed persistent/source sets. This order is also important when enumerating states
only until the first error is detected. We evaluate two strategies for defining this order, called se-
quential and random. For both of these strategies, the algorithm first selects a transition that leads
to an already visited state, if one exists. We made this choice because it leads to better performance
(this is adopted by the standard setup of JPF as well). In the sequential strategy, if there is no such
transition, then the algorithm picks a transition by respecting a pre-defined order between the
thread ids. In random, the next transition is selected uniformly at random.

We ran S-POR and DL-S-POR, the best algorithms as shown above, with all 6 permutations
of the 3 threads for sequential and 3 different seeds for random. For each strategy, we report the
average and minimum time over different instances as follows:

• The first set of experiments are for computing all reachable states, only with DL-S-POR.
For S-POR, the enumeration strategy is not important since there is no dynamic computa-
tion of backtrack sets. We present separate figures for each different class of clients based on
the number of invocations to methods that lead to bugs: (1) none of the invocations, (Fig-
ure 2.11), (2) just a single invocation (Figure 2.12) (3) half of the invocations (Figure 2.13)
and (4) all of the invocations (Figure 2.14).

• The second set of experiments are for computing reachable states only until the first error,
both with S-POR (Figures from 2.15 to 2.17) and DL-S-POR (Figures from 2.18 to 2.20).
As the purpose is to find the first bug, clients in which none of the invocations are buggy,
are not included in this set of experiments. Figures for the rest of the classes of clients are
represented with the same order and visualization as in the first set. Differently from the
first set of figures, the figures in second set are in logarithmic scale.

The results show that the random strategy performs better in average, shown on the left of
Fig. 2.11–2.20, but worse w.r.t. minima, shown on the right of Fig. 2.11–2.20. The differences
are more significant when enumerating states only until the first error as Fig. 2.15–2.20 reporting
on this case are given in logarithmic scale. Thus, the sequential strategy should be preferred when
using a portfolio model checker, i.e., parallel runs for each permutation of thread ids, and other-
wise, the random strategy is better. This follows also from the average standard deviation being 28
seconds for random and 60 seconds for sequential, where the means are 17 and 20 seconds, resp.
Note that, there is no significant impact observed from changing the algorithms or the number
of buggy method invocations in the clients.

2.2.4 RelatedWork

Over the years various different techniques have been introduced to deal with the state explosion
problem in model checking. For concurrent programs specifically, depth bounding [39], delay
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Figure 2.11: ALL STATES \ DL-S-POR \ BUG: NO INVOCATION
Time comparison between sequential and random strategies whenDL-S-POR computes all states, using
clients in which none of the invocations are buggy.
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Figure 2.12: ALL STATES \ DL-S-POR \ BUG: SINGLE INVOCATION
Time comparison between sequential and random strategies whenDL-S-POR computes all states, using
clients in which only a single invocation is buggy.
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Figure 2.13: ALL STATES \ DL-S-POR \ BUG: ½ OF THE INVOCATIONS
Time comparison between sequential and random strategies whenDL-S-POR computes all states, using
clients in which half of the invocations are buggy.
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Figure 2.14: ALL STATES \ DL-S-POR \ BUG: ALL OF THE INVOCATIONS
Time comparison between sequential and random strategies whenDL-S-POR computes all states, using
clients in which all of the invocations are buggy.
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Figure 2.15: FIRST ERROR \ S-POR \ BUG: SINGLE INVOCATION
Time comparison (log scale) between sequential and random strategies when S-POR enumerates states
only until the first error, using clients in which only a single invocation is buggy.
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Figure 2.16: FIRST ERROR \ S-POR \ BUG: ½ OF THE INVOCATIONS
Time comparison (log scale) between sequential and random strategies when S-POR enumerates states
only until the first error, using clients in which half of the invocations are buggy.
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Figure 2.17: FIRST ERROR \ S-POR \ BUG: ALL OF THE INVOCATIONS
Time comparison (log scale) between sequential and random strategies when S-POR enumerates states
only until the first error, using clients in which all of the invocations are buggy.
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Figure 2.18: FIRST ERROR \ DL-S-POR \ BUG: SINGLE INVOCATION
Time comparison (log scale) between sequential and random strategies when DL-S-POR enumerates
states only until the first error, using clients in which only a single invocation is buggy.
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Figure 2.19: FIRST ERROR \ DL-S-POR \ BUG: ½ OF THE INVOCATIONS
Time comparison (log scale) between sequential and random strategies when DL-S-POR enumerates
states only until the first error, using clients in which half of the invocations are buggy.
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Figure 2.20: FIRST ERROR \ DL-S-POR \ BUG: ALL OF THE INVOCATIONS
Time comparison (log scale) between sequential and random strategies when DL-S-POR enumerates
states only until the first error, using clients in which all of the invocations are buggy.
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bounding [32], context bounding (bounding the number of context switches) [83], preemption
bounding [75] and phase bounding [10] bring tractability to the model checking problem and
have been shown to be effective for bug finding. These techniques are all incomplete, in the sense
that lack of bugs does not guarantee the correctness of the system.

POR techniques reduce the search space by not exploring multiple executions from the same
equivalence class, and are complete. Early techniques like ample sets [24, 51] and stubborn sets
[41, 44] were based on static analysis. Sleep sets[41] were the first to guarantee optimality (one
execution from each equivalence class) [42] by keeping track of information from the history of
the exploration. However, they only prune transitions and cannot eliminate any state when used
alone. Persistent sets [43, 60] generalized stubborn and ample sets and enabled development of
dynamic POR (DPOR) methods.

In [35], an efficient stateful algorithm is proposed for computing persistent sets dynamically
by considering currently explored parts of the state space. This algorithm needed large memory
for keeping discovered states and the happens-before relation. The algorithm is improved in [103]

with a more efficient state representation, and in [104] with a summary-based representation of
the happens before.

In [68, 92], stateless dynamic POR techniques were introduced. Source sets [3] were introduced
in the context of dynamic POR techniques such that the state space can be reduced up to the limit
that is theoretically possible. They are generalizations of persistent sets and their relation with per-
sistent sets are investigated in [2]. Our DE-S-POR and DL-S-POR algorithms rely on source sets
but operate in the context of stateful model checking. The technique from [76] is similar to our
S-POR algorithm for the GPU setting, but their choice of invisible actions is different than ours.
While we focus on shared-memory programs running on top of a sequential consistency memory
model, POR techniques have been also investigated in the context of weak memory models such
as TSO or C11, e.g., [1, 4, 61, 62].

41



2 Debugging Linearizability in Shared-Memory Concurrent Data Structures

2.3 Root Causing Linearizability Violations

In this Section, we present an approach for identifying non-linearizability root-causes in a given
execution, which equates root causes with optimal repairs that rule out the non-linearizable ex-
ecution and as few linearizable executions as possible (from a set of linearizable executions given
as input). Our approach can be extended to a set of executions and therefore in the limit, iden-
tify the root cause of the non-linearizability of a concurrent data structure as a whole. Sequential
executions of a concurrent object are linearizable, and therefore, linearizability bugs can always
be ruled out by introducing one atomic section per each method in the implementation of the
corresponding object. Thus, focusing on atomic sections as repairs, there is a guarantee of exis-
tence of a repair in all scenarios. We emphasize the fact that our goal is to interpret such repairs
as root-causes. Implementing these repairs in the context of a concrete concurrent object using
synchronization primitives (eg., locks) is orthogonal and beyond the scope of this section. Some
solutions are proposed in [56, 57, 99].

As a first step, we investigate the problem of finding all optimal repairs in the form of sets of
atomic sections that rule out a given (non-linearizable) execution. A repair is considered optimal
when roughly, it allows a maximal number of interleavings. We identify a connection between this
problem and conflict serializability, an atomicity condition originally introduced in the context
of database transactions. A repair that rules out a non-linearizable execution E can be obtained
using a decomposition of the set of actions in E into a set of blocks that we call intervals, such
thatE is not conflict serializable with respect to this decomposition. Each interval will correspond
to an atomic section in the repair (obtained by mapping events in the execution to statements in
the code). A naive approach to compute all optimal repairs would enumerate all decompositions
into intervals and check conflict-serializabiliy with respect to each one of them. Such an approach
would be inefficient because the number of possible decompositions is exponential in both the
number of events in the execution and the number of threads. We show that this problem is ac-
tually polynomial time assuming a fixed number of threads. This is quite non-trivial and requires
a careful examination of the cyclic dependencies in non conflict-serializable executions. Assum-
ing a fixed number of threads is not an obstacle in practice since recent work shows that most
linearizability bugs can be caught with client programs with two threads only [28, 30].

In general, there may exist multiple optimal repairs that rule out a non-linearizable execution.
To identify which repairs are more likely to correspond to root-causes, we rely on a given set of
linearizable executions. We rank the repairs depending on how many linearizable executions they
disable, prioritizing those that exclude fewer linearizable executions. This is inspired by the hy-
pothesis that cyclic memory accesses ocurring in linearizable executions are harmless.
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We evaluated this approach on several concurrent objects, which are variations of lock-based
concurrent sets/maps from the Synchrobench repository. We considered a set of non-linearizable
implementations obtained by modifying the placement of the lock/unlock primitives, and ap-
plied Violat to obtain client programs that admit non-linearizable executions. We applied our
algorithms on the executions obtained by running these clients using JPF. Our results show that
our approach is highly effective in identifying the precise root cause of linearizability violations
since in every case, our tool precisely identifies the root cause of a violation that is discoverable by
the client of the library used to produce the erroneous executions.

2.3.1 Overview

Figure 2.21: A non-linearizable concurrent stack.

Figure 2.21 lists a variation of a concurrent stack introduced by Afek et al. [5]. The values
pushed into the stack are stored into an unbounded array items; a shared variable range keeps
the index of the first unused position in items. The push method stores the input in the array
and it increments range using a call to an atomic fetch and increment (F&I) primitive. This
primitive returns the current value of range while also incrementing it at the same time. The
pop method reads range and then traverses the array backwards starting from the predecessor
of this position, until it finds a position storing a non-null value. It also nullifies all the array cells
encountered during this traversal. If it reaches the bottom of the array without finding non-null
values, it returns that the stack is empty.

This concurrent stack is not linearizable as witnessed by the execution in Figure 2.22. This is
an execution of a client with three threads executing two push and two pop operations in total.
Thepush in the first thread is interrupted by operations from the other two threads which makes
both pop operations return the same value b. The execution is not linearizable because the value
b was pushed only once and it cannot be returned by two different pop operations.

43



2 Debugging Linearizability in Shared-Memory Concurrent Data Structures

// Thread 2: push(b)
  i = F&I(range) //0

  items[0] = b
// Thread 2: pop()
  t = range - 1 // 1
  x = items[1] // null
  items[1] = null
  x = items[0] // b

  items[0] = null
  return b

// Thread 1: push(a)
  i = F&I(range) // 1

  items[1] = a

𝖼𝖿

𝖼𝖿

𝖼𝖿

𝖼𝖿

// Thread 3: pop()
  t = range -1 // 1
  x = items[1] // null
  items[1] = null
  x = items[0] // b
  items[0] = null

  return b

Figure 2.22: A client program of the concurrent stack of Figure 2.21 and one of its non-linearizable execu-
tions.

The root-cause of this violation is the non-atomicity of the statements at lines 8 and 9 of pop,
reading items[i] and updating it to null. The stack is linearizable when the two statements
are executed atomically (see [5]).

Our goal is to identify such root-causes. We start with a non-linearizable execution like the one
in Figure 2.22. The first step is to compute all optimal repairs in the form of atomic sections that
disable the non-linearizable execution. There are two such optimal repairs for the execution in
Figure 2.22: (1) an atomic section containing the statements at lines 8 and 9 in pop (representing
the root-cause), and (2) an atomic section that includes the two statements in the push method.

These repairs disable the execution because each pair of statements is interleaved with conflict-
ing memory accesses in that execution. This is illustrated by the boxes that includes these two pair
of statement and cf edges. po edges are already implied by the vertical alignment of actions. In
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Section 2.3.3, we formalize this by leveraging the notion of conflict serializability. The execution is
not conflict-serializable assuming any decomposition of the code in Figure 2.21 into a set of code
blocks (transactions) such that one of them contains one of these two pairs. These repairs are op-
timal because they consist of a single atomic section of minimal size (with just two statements).
We formalize a generic notion of optimality in Section 2.3.2 through the introduction of an order
relation between repairs, defined as component-wise inclusion of atomic sections and compute
the minimal repairs w.r.t. this order.

At the end of the first phase, our approach produces a set of all such optimal (incomparable)
repairs. To isolate one as the best candidate, we use a heuristic to rank the optimal repairs. The
heuristic relies on the hypothesis that repairs which disable fewer linearizable executions are more
likely to represent the best candidate for the true root-cause of a linearizability bug.

For instance, the client in Figure 2.22 admits a linearizable execution where the first two threads
are interleaved exactly as in Figure 2.22 and where the pop in the third thread executes after the
first two threads finished. This is linearizable because thepop in the third thread returns the value
awritten by the push in the first thread in items[1] (this is the first non-null array cell starting
from the end). Focusing on the two optimal repairs mentioned above, enforcing only the atomic
section in the pushwill disable this linearizable execution. The atomic section in the pop, which
permits this execution, is ranked higher to indicate it as the more likely root-cause. This is the
expected result for our example.

This ranking scheme can easily be extended to a set of linearizable executions. Given a set of
linearizable executions, we rank optimal repairs by keeping track of how many of the linearizable
executions each disables.

2.3.2 Linearizability Violations and Their Root Causes

Given a non-linearizable library, our goal is to identify the root cause of non-linearizability in the
library code. Let us start by formally describing the state space of all such causes and state some
properties of the space that will aid the understanding of our algorithm. First, our focus is on a
specific category of causes, namely those that can be removed through the introduction of new
atomic code blocks to the library code without any other code changes.

Definition 3 (Non-linearizability Root Cause). For a non-linearizable library L, the root cause
is formally identified byR, a set of atomic blocksA such thatL is linearizable with the addition of
blocks fromA.

Observe that the set of atomic blocks identified in Definition 3 can conceptually be viewed as
blocks of code whose non-atomicity is the root cause of non-linearizability and their introduction
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would repair the library. For the rest of this section, we use the two terminologies interchange-
ably since for this specific class, the two notions perfectly coincide. The immediate question that
comes to mind is whether Definition 3 is general enough. Observe that since linearizability is fun-
damentally an atomicity type property for individual methods in a library, if every single method
of the library is declared atomic at the code level, then the library is trivially linearizable. The only
valid executions of the library are the linear (sequential) executions in this case. Therefore,

Remark 1. Every non-linearizable library can be made linearizable by adding atomic code blocks
inR according to Definition 3.

Since there always is a trivial repair, one is interested in finding a good one. The quality of a
repair is contingent on the amount of parallelism that the addition of the corresponding atomic
blocks removes from the executions of an arbitrary client of the library. Generally, it is understood
that the fewer the number of introduced atomic blocks and the shorter their length, the more
permissive they will be in terms of the parallel executions of a client of this library. This motivates
a simple formal subsumption relationship between repairs of a bug. We say an atomic code block
b subsumes another atomic code block b′, denoted as b ⊒c b

′, if and only if b′ is contained within
b.

Definition 4 (Repair Subsumption). A repairR subsumes another repairR′, we writeR ⊒c R′

if and only if for all atomic blocks b′ ∈ R′, there exists an atomic block b ∈ R such that b ⊒c b
′.

It is easy to see that⊒c is a partial order, and combined with the finite set of all possible program
repairs gives rise to the concept of a set of optimal repairs, namely those that do not subsume
any other repair. It can be lifted to sets of repairs in the natural way: R ⊒c R′ if and only if
∀R′ ∈ R′, ∃R ∈ R : R ⊒c R′.

Remark 2. The set of executions of a library L with a repairR is a superset of the set of executions
ofL with the repairR′ ifR′ ⊒c R.

This means that an optimal repair identification according to Definition 4 should lead to an
optimal amount of parallelism in the library repaired by forcing the corresponding code blocks to
execute atomically. The goal of our algorithm is to identify such a set of optimal repairs.

Now, let us turn our attention to an algorithmic setup to solve this problem. The non-lineariz-
ability of a library L is witnessed by a non-empty set of non-linearizable executions E. These are
the concrete erroneous executions of (a client of) the library, for which we intend to identify the
repair.

Note that if E is a non-linearizable execution, then all the executions E′ ∈ [E] (that are equiv-
alent to E) are also non-linearizable. Indeed, if E′ is equivalent to E, then the values that are read
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in E′ are the same as in E1, which implies that the return values in E′ are the same as in E, and
therefore, E′ is non-linearizable when E is.

Consider a conceptual oracle,OL(E), that takes a set of non-linearizable executions of a library
L and produces the set of all optimal repairs R such that eachR ∈ R excludes all the executions
that are equivalent to those in E. Then the following iterative algorithm produces R for a library
L:

1. Let E = ∅ and R = ∅.

2. Check ifLwith the addition of atomic blocks from R is linearizable:

• Yes? Return R.

• NO? Produce a set of non-linearizability witnesses E′ and let E = E ∪ E′.

3. CallOL(E) and update2 the set of repairs R with the result.

4. Go to back to step 2.

Proposition 1. The above algorithm produces an optimal set of repairsR that make its input library
linearizable.

It is easy to see that if oracleOL(E) can be relied on to produce perfect results, then the algo-
rithm satisfies a progress property in the sense that Rk+1 ⊒c Rk, where Rk is the value of R in
the k-th iteration of the loop. Following Remark 1, this chain of increasingly stronger repairs is
bounded by the specific repair in which every method of the libraryL has to be declared atomic.
Therefore, the algorithm converges. The assumption of optimality forOL(E) implies that on the
iteration that the algorithm terminates, it will produce the optimal R.

Note that in oracleOL, the focus shifts from identifying the source of error for the entire library
to identifying the source of error in a specific set of non-linearizability witnesses. First, we propose
a solution for implementing OL for a singleton set, i.e. precisely one erroneous execution, and
later argue why the solution easily generalizes to finitely many erroneous executions.

2.3.2.1 Repair Oracle Approximation

Given an executionE as a violation of linearizability, we wish to implementOL that takes a single
execution E and proposes an optimal set of repairs for it.

Observe that if every execution ofL is conflict serializable (i.e., equivalent to a sequential execu-
tion), assuming method boundaries as transaction boundaries, then it is necessarily linearizable.

1As a remark, we assume that program instructions are deterministic, which is usually the case.
2See Section 2.3.2.2 for more detail
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Therefore, knowing that it is not linearizable, we can conclude that there exists some execution
of L which is not serializable. Following the same line of reasoning, we can conclude that the
erroneous execution E itself is not conflict serializable, for some choice of transaction bound-
aries. This observation is the basis of our solution for approximating repairs for non-linearizability
through an oracle that is actively seeking to repair for non-serializability violations.

Definition 5 (Execution Eliminator). For an erroneous execution (a bug) E, a set of atomic blocks
R is called an execution eliminator if and only if every execution E′ ∈ [E] is not an execution of
the new library with the addition of blocks fromR.

Any execution eliminator that removesE as a valid execution of a client of the libraryL (and all
the executions in [E]), by amending the library for the conflict serializability violation, (indirectly)
eliminates it as a witness to non-linearizability as well. Note that the universes of execution elimi-
nators and non-linearizability repairs are the same set of objects, and therefore the subsumption
relation ⊒c is well defined for execution eliminators, and the concept of optimality is similarly
defined. Moreover, Definition 5 is agnostic to linearizability and can be interchangeably used for
serializability repairs.

Theorem 3. R is an execution eliminator for E if and only if E is not conflict serializable with
transaction boundaries that subsumeR (statements that are not included in the atomic sections from
R are assumed to form singleton transactions).

Proof. For the if direction, assume by contradiction thatR is not an execution eliminator for E.
This implies that there exists an execution E′ ∈ [E] where the sequences of actions correspond-
ing to the atomic sections inR occur uninterrupted (not interleaved with other actions). This
is a direct contradiction to E not being conflict serializable when transaction boundaries are de-
fined precisely by the atomic sections inR because, if E′ is cf-equivalent to its serial execution,
then E must be cf-equivalent to the same serial execution as well, which is not the case. For the
only if direction, assume by contradiction that E is conflict serializable. By definition, there is an
equivalent execution E′ where the sequences of actions corresponding to the atomic sections in
R occur uninterrupted. Therefore, the library L′ obtained by adding the atomic code blocks in
R admits E′, which contradicts the fact thatR is an execution eliminator for E.

The relationship between the set of execution eliminators for E andOL(E) can be made pre-
cise. Since every execution eliminator is a linearizability repair by definition, but not necessarily
an optimal one, we have:

Proposition 2. Let OL(E) represent the optimal set of repairs that eliminate E as a witness to
non-linearizability andR be the set of optimal execution eliminators forE. We haveR ⊇ OL(E).

48



2.3 Root Causing Linearizability Violations

This is precisely why the set of execution eliminators safely overapproximates the set of lineariz-
ability repairs for a single execution. Note that Theorem 3 links any execution eliminator (a set of
code blocks) to a collection of dynamic (runtime) transactions. It is fairly straightforward to see
that given the latter as an input, the former can be inferred in a way that the dynamic transactions
generated by the static code blocks are as close as possible to the input transaction boundaries,
assuming no structural changes occur in the code. In Section 2.3.3, we discuss how an optimal set
of dynamic transaction boundaries can be computed, which give rise to a set of optimal execution
eliminators.

2.3.2.2 Generalization toMultiple Executions

If we have an implementation for an oracleOL(E) that takes a single execution and produces the
set of optimal execution eliminators for it, then the following algorithm implements an oracle for
OL({E1, . . . , En}) for any finite number of executions:

1. Let R = ∅.

2. For each Ei (1 ≤ i ≤ n): let Ri = OL(Ei).

3. Let X = R1 × · · · × Rn.

4. For eachX ∈ X: let R = R ∪ flatten(X ).

5. For eachR ∈ R: if ∃R′ ∈ R s.t.R ⊒c R′ then R = R− {R}.

where flatten(X ) basically takes the union of repairs suggested by individual components of
X while merging any overlapping atomic blocks. Note that the ith component of X suggests
an optimal execution eliminator for Ei. If we want a tight combination of all such execution
eliminators, we need the minimal set of atomic blocks that covers all atomic blocks suggested by
each eliminator. Formally:

flatten(⟨R1, . . . ,Rn⟩) = smallestRwrt ⊒c st ∀1 ≤ i ≤ n : R ⊒c Ri

we can then conclude:

Theorem 4. IfOL(E) produces the optimal set of execution eliminators for execution E, then the
above algorithm correctly implements OL({E1, . . . , En}), that is, it produces the optimal set of
repairs for the set of error executions {E1, . . . , En}.

Proof. Assume by contradiction thatOL(E) produces the optimal set of execution eliminators
for execution E and there exist an optimal repair R′ ̸∈ R (that is missed) where ∄R ∈ R :
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R′ ⊒c R. Note that, R′ ̸∈ R is true at any point of the algorithm since by the contradiction
assumption, it can not be removed fromR after it is added. Then, there exist aX ′ ̸∈ X but,X ′ ∈
X′ = R′

1×· · ·×R′
n where flatten(X ′) = R′. This shows that ∃R′

k : 0 < k ≤ n∧R′ ⊒c R′
k

and ∄R ∈ R : R = flatten(X ) ∧ X ∈ X = R1 × · · · × Rn ∧ R′
k ⊒c Rk which contradicts

the assumption asOL(Ek) must have produced the optimal repair R′
k.

2.3.3 Conflict-Serializability Repairs

In this section, we investigate the theoretical properties of conflict serializability repairs to provide
a set up for an algorithm that implements the oracleOL for a single input execution. The goal of
this algorithm is to take an execution E as an input and return the optimal execution eliminator
for E, under the assumption that E witnesses the violation of linearizability.

2.3.3.1 Repairs and Conflict Cycles

We start by introducing a few formal definitions and some theoretical connections that will give
rise to an algorithm for identifying an optimal set of atomic blocks that can eliminate an execution
E as a witness to violation of conflict serialiazability.

Definition 6 (Decompositions and Intervals). A decomposition of an execution E is an equiva-
lence relation D over its set of actions such that:

• D relates only actions of the same method invocation, i.e. if (a1, a2) ∈ D, then mi(a1) =

mi(a2), and

• the equivalence classes ofD are continuous sequences of actions of the same method invocation,
i.e., if (a1, a3) ∈ D and {(a1, a2), (a2, a3)} ⊆ poE , then {(a1, a2), (a2, a3)} ⊆ D

The equivalence classes of a decomposition D, denoted by IE,D are called intervals.

Observe that the relation⊒c is well defined partial order over the universal all possible intervals
(of all possible decompositions) of an execution E.

Definition 7 (Interval Graphs). Given an execution E, and decomposition D, an interval graph
is defined as GE,D = (V,E) where the set of vertices V is the set of intervals of D and the set of edges
E is defined as follows

E = {(i, i′)| i ̸= i′ ∧ ∃a ∈ i, a′ ∈ i′ : (a, a′) ∈ poE ∪ cfE}
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Since, by definition, each edge in the interval graph is induced by an edge from either relation
poE or cfE , but not both. We lift these relations over the sets of intervals in the natural way, that
is:

(i, i′) ∈ cfiE ⇐⇒ ∃a ∈ i, a′ ∈ i′ : a ̸= a′ ∧ (a, a′) ∈ cfE

(i, i′) ∈ poiE ⇐⇒ ∃a ∈ i, a′ ∈ i′ : a ̸= a′ ∧ (a, a′) ∈ poE

Given an interval graph edge (i, i′) ∈ cfiE ∪ poiE , let

tre(i, i′) = {(a, a′) | a ∈ i ∧ a′ ∈ i′ ∧ (a, a′) ∈ cfE ∪ poE}

Figure 2.23: An interval graph.
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Figure 2.23 illustrates an interval graph. Node mi : aj denotes an action aj of method in-
vocation mi, actions of the same thread are aligned vertically. As in Figure 2.22, we draw only
cfE edges since the poE edges are implied by the vertical alignment of actions. Non-singleton
intervals of D are i1 = {a1, a2, a3, a4}, i2 = {a5, a6} and i3 = {a7, a8}. Singleton intervals
are identified by the corresponding action identifiers. Edges among interval nodes correspond
to cfE or poE . For instance, (i1, i2) ∈ cfiE and (i2, i3) ∈ poiE since (a1, a6) ∈ cfE where
a1 ∈ i1, a6 ∈ i2, and (a6, a7) ∈ poE where a7 ∈ i3, respectively. As an example for the
function tre , we have tre(i2, i3) = {(a5, a7), (a5, a8), (a6, a7), (a6, a8)} that consists of poE
edges and tre(i3, i1) = {(a8, a3), (a8, a4)} that consists of cfE edges.
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For the degenerate decomposition in which each action is an interval of size one by itself, the
interval graph collapses into an execution graph, denoted by GE . Note that GE is acyclic since the
relations poE and cfE are consistent with the order between the actions in E.

Intervals are closely related to the static notion of transactions and the induced transaction
boundaries on executions. For example, in the decomposition in which the intervals coincide
with the boundaries of transactions (e.g. method boundaries), it is straightforward to see that the
interval graph becomes precisely the conflict graph [34] widely known in the conflict serializability
literature. It is a known fact that an execution is conflict serializable if and only if its conflict graph
is acyclic [80]. Since E is not conflict serializable with respect to the boundaries of methods from
L, we know the interval graph with those boundaries is cyclic.

With intervals set as single actions, GE is acyclic, and with the intervals set at method bound-
aries, it is cyclic. The high level observation is that there exist a decomposition D in the middle of
this spectrum, so to speak, such that GE,D is cyclic, but GE,D′ for any D ⊒c D

′ is acyclic. In the
following we will formally argue why such a decomposition D is at the centre of identification of
serializability repairs.

Additionally, a cycle in a graph is simple if only one vertex is repeated more than once. In graph
theory, a chord of a simple cycle is an edge connecting two vertices in the cycle where these two
vertices are not connected by a single edge in the cycle. A cycle is called chordless when it contains
no chords (or chord edges).

Definition 8 (Critical Segment Sets). LetD be a decomposition such that the interval graphGE,D

is cyclic and α = i0 . . . in−1, i0 be a simple cycle. Define

edges(α) = tre(i0, i1)× tre(i1, i2)× · · · × tre(in−1, i0)

segs(e⃗) = {[a⊙k , a⊗k ] | 0 ≤ k ≤ n− 1 ∧ e⃗ ∈ edges(α) ∧ (a⊙k , a
⊗
(k+1) mod n) = e⃗k}

critSegs(e⃗) = {[a⊙k , a⊗k ] ∈ segs(e⃗) | (a⊙k , a⊗k ) ∈ poE}
CritSegs(α) = {s | ∃e⃗ ∈ edges(α) : s = critSegs(e⃗)}

where the set CritSegs(α) is the set of all critical segments sets of cycle α.

Note that each cycle may induce several different segment sets, determined by |edges(α)|.
More importantly, each segment set includes at least one critical segment.

Lemma 1. For any e⃗ ∈ edges(α), we have critSegs(e⃗) ̸= ∅.

Proof. Assume by contradiction that e⃗ ∈ edges(α) and critSegs(e⃗) = ∅whereα = i0 . . . in−1

, i0 is a simple cycle. Then, ∀[a⊙k , a⊗k ] ∈ segs(e⃗) : 0 ≤ k ≤ n− 1, it must be (a⊙k , a
⊗
k ) ̸∈ poE ,

which implies that every a⊗k occurs before a⊙k (a⊗k < a⊙k ) as the intervals that contains these
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actions (therefore, their thread ids) are already the same. Since ∀(a⊙k , a⊗(k+1) mod n) = e⃗k ∈ e⃗ :

0 ≤ k ≤ n − 1, e⃗k ∈ poE ∪ cfE , we know that a⊙k < a⊗(k+1) mod n. After combining these
occurrence relations, we have a⊙0 < a⊗1 < a⊙1 . . . a⊗n−1 < a⊙n−1 < a⊗0 which contradicts the
assumption as a⊙0 < a⊗0 and therefore, (a⊙0 , a

⊗
0 ) ∈ poE .

Example 1. In Figure 2.23, α1 = i1, i2, i3, i1 is a simple cycle. Included in edges(α) are the
following three example cycles and their corresponding segments:

α1
1 = ⟨(a1, a6), (a6, a7)(a8, a3)⟩ segs(α1

1) = {[a1, a3], [a6, a6], [a8, a7]}
α2
1 = ⟨(a1, a6), (a6, a7), (a8, a4)⟩ segs(α2

1) = {[a1, a4], [a6, a6], [a8, a7]}
α3
1 = ⟨(a1, a6), (a5, a8), (a8, a3)⟩ segs(α3

1) = {[a1, a3], [a5, a6], [a8, a8]}

The critical segments for these are critSegs(α1
1) = {[a1, a3]}, critSegs(α2

1) = {[a1, a4]} and
critSegs(α3

1 ) = {[a1, a3], [a5, a6]}.

There is a direct connection between the notion of critical segment sets and conflict serializabil-
ity repairs that the following lemma captures. A segment is called uninterrupted in an execution
E when all its actions occur continuously one after another in E without an interruption from
actions of another interval.

Lemma 2. Let α be a cycle in some interval graph GE,D of execution E which is not conflict serial-
izable wrt. to the decomposition D and critSegα ∈ CritSegs(α). There does not exist execution
E′ which is equivalent to E in which all segments from critSegα are uninterrupted in E′.

Proof. Assume by contradiction that there exists an execution E′ ∈ [E] where the sequences of
actions in all segments from critSegα are uninterrupted. As in Theorem 3, this is a direct con-
tradiction to E not being conflict serializable because, if E′ is cf-equivalent to its serial execution,
then E must be cf-equivalent to the same serial execution as well.

The immediate Corollary of Lemma 2 is that:

Corollary 1. If one ensures the atomicity of the segments of actions in CritSegs(α) by adding
atomic blocks at the code level, then E can no longer be an execution of the library. In other words, a
set of such atomic code blocks is precisely an execution eliminator (Definition 5) for E.

2.3.3.2 A Simple Algorithm

Lemma 2 and Corollary 1 suggest a simple enumerative algorithm to discover the set of all execu-
tion eliminators for a buggy execution E.

• Let D be the set of all decompositions of E and R = ∅.
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• For each D ∈ D:

– Let C be the set of all simple cycles in GE,D.

– For each α ∈ C:

* Let S = CritSegs(α).

* R = R ∪ S

• For eachR ∈ R:

– If ∃R′ ∈ R : R ⊒c R′ then R = R− {R}.

Theorem 5. The above algorithm produces the optimal set of execution eliminators for a buggy
execution E.

This theorem is non-trivial, because the set of cycles considered are limited to simple cycles and
an argument is required for why no optimal solution is missed as the result of this limitation. An
important point is that any optimal execution eliminatorR defines a decompositionD where the
non-singleton intervals are precisely those defined byR such that GE,D contains a simple cycle
α and the set of code blocks inR is a member of CritSegs(α). To prove, it is sufficent to show
that the following lemma holds:

Lemma 3. For every (non-simple) cycle α, there exist a simple cycle α′ included in α such that
CritSegs(α) subsumes CritSegs(α′).

Proof. This is true because for every cycleα,CritSegs(α) is equal to the union ofCritSegs(α′) :

α′ ∈ A′ where A′ is a set of simple cycles α′ which are included in α. In other words, for
every critSegα ∈ CritSegs(α), there exist a simple cycle α′ inside α such that critSegα ∈
CritSegs(α′). As simple cycles are minimal and there is no missing critSeg when the considered
set is just simple cycles, the above algorithm produces the optimal set of execution eliminators for
a buggy execution E.

Example 2. The first loop of the above algorithm includes in R the execution eliminators induced
by the critical segments mentioned in Example 1. After the last loop, however, only critSegs(α1

1) =

{[a1, a3]} will remain in R since the other two are subsumed by it.

The algorithm is obviously very inefficient. There are two levels of enumeration: all decom-
positions and all cycles of each decomposition. Assuming that there are O(|poE |) actions in a
method invocation, then there areO(2|poE |)different decompositions for it. Assuming that there
are O(|T|) method invocations, we conclude that |D| = O(2|poE ||T|). There could be O(2|EE |)

possible cycles for each decomposition where EE = poE ∪ cfE . Therefore, the first loop may
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generate O(22|EE ||T|) many repairs. The last loop iterates over R and each repair takes O(R)
time. The algorithm operates in time O(24|EE ||T|). It is exponential both in the size of threads
set and the graph. There are many redundancies in the output of the first loop, however. These
are exploited to propose an optimized version of this algorithm.

2.3.3.3 A SoundOptimization

Consider an arbitrary cycle α in the interval graph GE,D. If we want to trace the cycle α over the
execution graph GE , we would potentially need additional edges that would let us go against the
program order inside some intervals that appear on α. Let us call the graph extended with such
edgesGD

E . Formally,GD
E includes all the nodes and edges from a execution graph and incorporates

additional edges between the actions of each interval of D to turn it into a clique1 which is by
definition strongly connected and therefore accommodates the connectivity of any action of an
interval to another action in it.

The converse also holds, that is, every simple cycle with at least one conflict edge in the GD
E

with the aforementioned additional edges corresponds to a cycle in the interval graphGE,D. Note
that the inclusion of at least one conflict edge is essential, since every interval graph cycle always
includes one such edge by default; since the program order relation is acyclic. Formally:

Lemma 4. For each simple cycle α of GE,D , there exists a simple cycle α′ of GD
E that contains at

most two actions from each interval in α.

Proof. This lemma is trivially true since for any e⃗ ∈ α, a⊙k and a⊗k of every [a⊙k , a
⊗
k ] in segs(e⃗)

are strongly connected in GD
E which additionally contains every edge in GE,D, including every

e⃗k ∈ e⃗. Thus, α′ = a⊙0 , a
⊗
0 , a

⊙
1 . . . a⊙n−1, a

⊗
n−1, a

⊙
0 is a valid simple cycle of GD

E with at most
two actions from each interval.

The above lemma can immediately be generalized. Consider the graphGM
E whereM indicates

the decomposition whose intervals coinciding with the library method boundaries. Since for any
arbitrary decomposition D, we have M ⊒c D, we can conclude that GM

E includes all possible
additional edges that one may want to consider as part of a cycle in an arbitraryGD

E for an arbitrary
decomposition D. Hence, the set of edges of GM

E is a superset of the set of edges of all graphs GD
E

for all D. This immediately implies that the set of cycles of GM
E is the superset of the set of cycles

of all such graphs. This fact, combined with Lemma 4 leads us to the new simplified algorithm
below in place of the one in Section 2.3.3.2:

• Let R = ∅.
1A clique is a complete subgraph of a given graph.
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• Let C′ be the set of all simple cycles in GM
E .

• For each α ∈ C:

– Let S = critSegs(α).

– R = R ∪ S

• For eachR ∈ R:

– If ∃R′ ∈ R : R ⊒c R′ then R = R− {R}.

Note that we are slightly bending the definition of critSegs in the above algorithm, compared
to the one given in Definition 8 since the input cycle there is formally a tuple, and here it is simply
a list. The function is semantically the same, however and therefore we do not redefine it.

Observe that ever cycle of GM
E corresponds to a cycle in some graph GD

E for some decomposi-
tion D. This observation together with Lemma 4 and Theorem 5 implies the correctness of the
above algorithm. Every cycle of every GD

E is covered by the algorithm, and conversely every cycle
considered is valid.

We can simplify the above algorithm one step further by further limiting the set of cycles C′

that need to be enumerated.

Theorem 6. The above algorithm produces the set of optimal execution eliminators for E if C′ is
limited to the set of simple chordless cycles of GM

E .

Theorem 6 makes a non-trivial and algorithmically subtle observation. Enumerating the set of
all simple chordless cycles of GD

E is a much simpler algorithmic problem to solve compared to the
initial one from Section 2.3.3.2. Lemma 4 supports part of this argument since it ensures that all
repairs explored in the algorithm from Section 2.3.3.2 are also explored by the above algorithm.
For Theorem 6 to hold, it is enough to show that following Lemmas hold:

Lemma 5. Critical segments of each cycles in GM
E correspond to a valid (do not produce any junk)

execution eliminator for E.

Proof. This is trivially true because critical segments can include every action from the same thread
as long as the method invocations of these actions are the same and this is the limit for the above
algorithm as well. This is because of the fact that there is no additional edge ̸∈ poE ∪ cfE intro-
duced between actions of different methods.

Lemma 6. For every simple cycle α, there exist a simple chordless cycle α′ included in α where
CritSegs(α) subsumes CritSegs(α′).
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Proof. This is correct because chord of a simple cycle (if it exists) can only be a cf edge and there
always exists a chordless cycleα′ included inα by following the chords recursively, which can only
make the critical segments smaller. Thus, for every simple cycle α there always exists a chordless
cycle α′ such that CritSegs(α) subsumes CritSegs(α′).

When we combine Lemma 3 and 6, we have the following;

Corollary 2. For every (non-simple) cycle α, there exist a simple chordless cycle α′ included in α

where CritSegs(α) subsumes CritSegs(α′).

In Section 2.3.4.1, we present an algorithm that solves the problem of enumerating CritSegs(α)
for all simple chordless cycles α ∈ C′ effectively.

2.3.4 Repair List Generation

In this section, we first start by giving a detailed algorithm that produces the set of all optimal ex-
ecution eliminators. These repairs suggest incomparable optimal ways of removing an erroneous
execution from the library. We then present a novel heuristic that orders this set into a list such
that the the ones ranked higher in the list are more likely to correspond to something that a human
programmer would identify (amongst the entire set) as the ideal repair.

2.3.4.1 Optimal Repairs Enumeration Algorithm

In this section, we present an algorithm for enumerating all critical segments of simple chordless
cycles α ∈ GM

E with at least one cfE edge. Next, we prove its correctness, and formally analyze
its time complexity. The algorithm is the following:

• Let C = ∅.

• For each sequence α = c1, c2, . . . , cn where ci ∈ cfE and 0 < n ≤ |T|:
– Let ci = (a⊗i , a

⊙
i ) for all i ∈ [1, n].

– If (a⊙i , a
⊗
(i+1) mod n) ∈ EM

E \cfE and a⊙i ̸= a⊙j : i, j ∈ [1, n] s.t. i ̸= j:

* C = C ∪ {α}

It enumerates all non-empty cfE sequences of length less than or equal to |T|. If the sequence
forms a valid simple cycle and visits each thread at most once (i.e. there are no two distinct con-
flict edges such that its end points are on the same thread), then it is added to the result set C.
Correctness of the algorithm relies on combining Corollary 2 and the following observation:

Lemma 7. Ifα is a chordless simple cycle ofGD
E with at least one cfE edge, thenα visits each thread

at most once and it visits at least two threads.
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Proof. Since a cfE edge is connecting two actions with different thread ids, if any cycleα contains
at least one cfE edge, it visits at least two threads with this edge. Now assume by contradiction that
α visits a thread twice but it is a chordless simple cycle. Then, there will be at least two actions with
the same thread, visited by two different cfE edges. If these two actions are the same, this cycle is
not simple. Else, there will be a path between these two actions by poE edges and if this path is
included in α, again it is not simple. Otherwise, this path is a chord and hence, it contradicts the
assumption.

As a corollary of Lemma 7:

Corollary 3. A chordless cycle α could have at most |T| conflict edges.

Proof. Otherwise, by the pigeon hole principle, at least two conflict edges end up in the same
thread.

Therefore, the algorithm can soundly enumerate only sequences of cfE edges of length less
than or equal to |T|. Moreover, the choice of cfE determines the rest of the edges in the cycle.
Therefore, there are at most O(|cfE ||T|) chordless cycles with at least one cfE edge of a graph
GD

E .
Note that, in general, the number of simple cycles can be exponential in the number of edges.

This means that enumerating only chordless cycles reduces the size asymptotically. In other words,
our proposed sound optimization of Section 2.3.3.3 is at the roof of the polynomial complexity
results presented here.

Interestingly, this upper bound is not loose. There is a class of executions parametrized by
|T| such that the number of chordless cycles with at least one cfE edge is |cfE ||T|. Let T =

{t1, . . . , tn}be the set of threads andGM
E hask parallel conflict edges between ti and t(i mod n)+1

for all i ∈ [1, n]. Moreover, conflict edges that start from ti is above the conflict edges that end
at ti in terms of program order. This graph is depicted in Figure 2.24. To form a cycle, one needs
to pick one of k edges between ti and t(i mod n)+1 for all i ∈ [1, n]. So, there are kn cycles.

Since k = |cfE |
|T| , there are

(
|cfE |
|T|

)|T|
chordless cycles with a conflict edge. If we consider |T| as a

constant, there are Ω(|cfE ||T|) chordless cycles with at least one cfE edge. We are finally ready to
state the main complexity result:

Theorem 7. Above enumeration algorithm generates all chordless cycles with at least one cfE edge
of GD

E in O((|poE |+ |cfE |)|cfE ||T|) time.

Proof. The loop enumerates all the cfE sequences of length at most |T| in O(|cfE ||T|) time. For
each such sequence, it takes O(|poE |+ |cfE |) time to check whether this sequence forms a cycle
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(if each consecutive conflict edges are connected through a EM
E \cfE edge) and whether it visits a

thread more than once. As a consequence, the above bound holds.

Lastly, there may be as many optimal repairs as there are chordless cycles in GM
E . Consider

the class of executions depicted in Figure 2.24. Each chordless cycle with at least one cfE edge
has exactly n critical segments (illustrated in red). Consider two distinct chordless cycles α1 and
α2. There exists a thread ti such that there is a different edge between ti and t(i mod n)+1 in α1

compared to α2. Without loss of generality, assume that the corresponding edge of α1 has source
and destination actions that appear before the source and destination actions of the corresponding
edge ofα2 in program order (poE). Then,α1 has a larger critical segment on ti and smaller critical
segment in t(i mod n)+1 compared to α2. Therefore, the neither critical segment subsumes the
other. Therefore, each chordless cycle with at least one cfE edge produces an optimal repair.

This implies that the bound presented in Theorem 7, namely O((|poE | + |cfE |)|cfE ||T|),
applies any other algorithm that outputs all optimal repairs.

2.3.4.2 Ranking Optimal Repairs

We argued through the example in Section 2.3.1 and a formal statement in Section 2.3.2.1 that
not every eliminator of a buggy execution E is an optimal root cause for non-linearizability. All
that we know is that they are all optimal execution eliminators. As a heuristic to identify optimal
linearizability repairs out of a set of execution eliminators, we rely on another input in the form
of a set Γ of linearizable executions, and rank execution eliminators depending on how many lin-
earizable executions from Γ they disable, giving preference to execution eliminators that disable
fewer ones. This heuristic relies on an experimental hypothesis that there are harmless cyclic de-
pendencies that occur in linearizable executions.

Given a buggy execution E, and a set Γ of linearizable executions, we use the following algo-
rithm to rank execution eliminators for E:

• Let R be the set of optimal execution eliminators for E

• For eachR ∈ R:

– Let f(R) = |{E′ ∈ Γ : R is an execution eliminator for E′}|

• Sort R in ascending order depending on f(R) withR ∈ R.

Since the above algorithm is heuristic in nature, there are no theoretical guarantees for the op-
timality of its results. For instance, its effectiveness depends on the set of linearizable executions
Γ given as input. We discuss the empirical aspects of the underlying hypothesis in more detail in
Section 2.3.5.
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2.3.5 Experimental Evaluation

We demonstrate the efficacy of our approach for computing linearizability root-causes on several
variations of lock-based concurrent sets/maps from the Synchrobench repository. We consider
three libraries from this repository: two linked-list set implementations, with coarse-grain and
fine-grain locking, respectively, and a map implementation based on an AVL tree overlapping with
two singly-linked lists, and fine-grain locking. We define three non-linearizable variations for each
library by shrinking one atomic section only in the add method, only in the remove method, or
an atomic section in each of these two methods. For each non-linearizable variation, we use Vio-
lat to randomly sample three library clients that admit non-linearizable executions1. We use Java
Pathfinder [96] to extract all executions of each client, up to partial-order reduction, partitioning
them into linearizable and non-linearizable executions. Executions are extracted as sequences of
call/return actions and read/write accesses to explicit memory addresses, associated to line num-
bers in the source code of each of the API methods. The latter is important for being able to map
critical segments (which refer to actions in an execution) to atomic code blocks in the source code.

In Table 2.1, we list some quantitative data about our benchmarks, the clients, and the non-
linearizable variations identified by the line numbers of the modified atomic sections (the orig-
inal libraries can be found in the Synchrobench repository). For instance, the first variation of
RWLockCoarseGrainedListIntSet is obtained by shrinking the atomic section in the add method
between lines [26, 32/35] to [32, 32/35] (there are two line numbers for the end of the atomic
section because it ends with an if conditional).

For each non-linearizable execution E of a client C , we compute the set of optimal execution
eliminators for E using the algorithm in Section 2.3.3.3 with the cycle enumeration described in
Section 2.3.4.1. We then compute the ranking of these execution eliminators using as input the
set of linearizable executions of C (the restriction to linearizable executions of the same client is
only for convenience). Note that multiple execution eliminators can be ranked first since they
disable exactly the same number of linearizable executions. Also, note that an optimal root-cause
can disable a number of linearizable executions. This is true even for the ground truth repair (i.e.
a repair that a human would identify trough manual inspection).

The results are presented in Table 2.2 and are self-explanatory. In the majority of cases, the
first elements in this ranking are atomic sections which are precisely or very close to the expected
results, i.e., atomic sections that belong to the original (error-free) version of the corresponding
library. In some cases, the output of our approach is close, but not precisely the expected one. This
is only due to the particular choice of the client used to generate the executions. In general, the
quality of the produced repairs (compared to the ground truth) depends the types of behaviours

1These linearizability violations are quite rare. The frequencies reported by Violat in the context of a fixed client
(when using standard testing) are in the order of 1/1000.
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Table 2.1: Benchmark data. Column Library shows the transformation on the atomic section(s) of the original library
(we write atomic sections as pairs of line numbers in square brackets), Client shows the clients (we abbreviate the
names of add and remove to a and r, respectively.), # n-lin. (# lin. resp.,) gives the number of outcomes (set of
return values) witnessing for non-linearizability (linearizability resp.,), similarly, # bugs and #valid give the number
of non-linearizable and linearizable executions extracted using Java Pathfinder, respectively, # ev. and # conf. give the
average number of actions and conflict edges in these executions, Total(s) and E El.(s) give the clock time in seconds
for applying our approach, the latter excluding the Java Pathfinder time for extracting executions.

RWLockCoarseGrainedListIntSet (120 LOC)
Id Library Client # lin. # n-lin. # bugs # valid # ev. # conf. Total(s) E El.(s)
1 a: [26, 32/35]
→[32, 32/35]

{r(0); r(1); a(1)} || {a(0); a(1); r(1)} 10 1 9 136 58 18 12 1
2 {a(0); a(1); r(1); a(1);} || {a(1); r(0); r(0); a(0)} 6 13 225 109 80 30 33 4
3 {a(1); a(1)} || {r(1); r(0)} || {a(0); r(1)} 4 12 60 325 57 36 266 4
4 r: [47, 54/56]
→[53, 54/56]

{a(1); a(1); r(1)} || {r(0); a(0); r(1);} 3 1 18 37 56 18 10 1
5 {a(0); a(1); r(1); r(1)} || {a(1); r(0); r(1); a(1)} 22 3 54 319 80 34 24 4
6 {r(1); a(0)} || {a(1); r(1)} || {a(1); a(0)} 14 12 240 265 56 38 152 2
7 a: [26, 32/35]
→[32, 32/35]
r: [47, 54/56]
→[53, 54/56]

{a(1); r(1); a(1)} || {a(1); r(1); a(1)} 12 15 109 135 55 19 16 1
8 {r(1); a(1); r(0); r(0)} || {a(0); r(1); a(0); a(1)} 11 13 153 172 74 27 29 3

9 {a(1); r(1)} || { a(0); a(1)} || {r(0); r(1)} 13 7 168 301 57 38 485 7

OptimisticListSortedSetWaitFreeContains (193 LOC)
Id Library Client # lin. # n-lin. # bugs # valid # ev. # conf. Total(s) E El.(s)
1 a: [51, 52/56]
→[52, 52/56]

{r(1); r(0); a(0)} || {a(1); r(1); a(0)} 6 3 27 91 96 37 10 2
2 {a(0); a(1); a(1); r(0)} || {a(0); a(1); r(1); a(1)} 11 22 243 232 153 75 54 11
3 {a(0); r(1)} || {a(0); a(1)} || {a(0); a(0)} 6 8 240 217 110 62 347 9
4 r: [78, 80/82]
→[79, 80/82]

{r(0); a(0); r(0)} || {a(0); r(0); a(1)} 7 3 39 94 96 41 12 2
5 {r(1); a(0); r(1); r(1)} || {a(0); a(0); a(1); r(0)} 9 3 48 220 140 60 22 6
6 {a(1); r(0)} || {a(0); a(1)} || {r(0); r(1)} 13 3 92 541 109 95 457 10
7 a: [51, 52/56]
→[52, 52/56]
r: [78, 80/82]
→[79, 80/82]

{r(1); r(1); a(0)} || {a(1); r(0); r(1)} 6 4 39 97 92 33 11 3
8 {a(1); r(1); a(1); r(0)} || {r(0); r(1); a(1); r(0)} 6 4 24 55 115 44 12 1

9 {a(0); r(1)} || {a(0); a(1)} || {a(0); a(0)} 6 8 224 201 111 63 314 14

LogicalOrderingAVL (1088 LOC)
Id Library Client # lin. # n-lin. # bugs # valid # ev. # conf. Total(s) E El.(s)
1 a: [267, 291]
→[268, 269]

[274, 291]

{a(0,1); a(1,0);} || {r(0,1); a(1,0)} 4 1 40 70 127 43 75 3
2 {a(1,0); r(1,0); a(1,1)} || {a(0,0); a(1,0); r(1,0)} 7 1 27 279 209 77 233 16

3 {a(1,0); a(0,0); a(1,0); a(0,1)} || 10 1 15 213 207 85 179 8{a(0,0); a(0,1); r(0,1); r(1,1)}
4 r: [432, 451]
→[433, 434]

[436, 451]

{a(1,0); r(1,1); r(1,0)} || {a(0,1); r(1,0); r(0,0)} 2 1 54 112 168 64 120 5
5 {a(0,0); a(1,1); r(1,1)} || {r(1,1); a(1,0); r(1,1)} 5 2 84 229 183 83 146 12

6 {a(0,1); a(1,0); a(1,0); r(1,0)} || 22 6 132 769 234 115 379 40{a(1,1); a(0,0); a(1,0); r(1,0)}

7 a: [267, 291]
→[268, 269]

[274, 291]
r: [432, 451]
→[433, 434]

[436, 451]

{a(1,1); a(1,0);} || {a(1,0); r(1,0)} 6 1 9 82 112 37 21 2

8 {a(0,0); a(1,1); r(1,1)} || {r(1,1); a(1,0); r(1,1)} 5 3 93 229 188 82 174 11

9 {a(1,1); a(0,1); a(1,1); r(0,1)} || 12 2 17 229 211 89 143 5{a(0,1); a(0,0); a(0,1); a(1,0)}

of the library that the client exercises. However, if our tool ranks repairR first, in the context of
a client C , then after repairing the library according toR the client C produces no linearizability
violations.

The methods in the libraries OptimisticListSortedSetWaitFreeContains and LogicalOrdering-
AVL use optimistic concurrency, i.e., unbounded loops that restart when certain interferences are
detected. This could potentially guide our heuristic in the wrong direction of giving the ground
truth a lower rank. Indeed, a ground truth that concerns statements in the loop body could disable
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Table 2.2: Experimental data. Column #res gives the number of different results (sequences of execution
eliminators) returned by our algorithm when applied on each of the non-linearizable executions of a client,
and E El. gives the first or the first two execution eliminators in the ranking obtained with our approach.
For each execution eliminator we give the number of linearizable executions it disables (after→).

RWLockCoarseGrainedListIntSet
Id Library # res. E El.
1 a: [26, 32/35]
→[32, 32/35]

1 [ [27, 35] ]→ 0
2 1 [ [27, 35] ]→ 81
3 1 [ [27, 35] ]→ 252
4 r: [47, 54/56]
→[53, 54/56]

1 [ [48, 54] ]→ 9
5 1 [ [48, 54] ]→ 153
6 1 [ [48, 54] ]→ 144
7 a: [26, 32/35]
→[32, 32/35]
r: [47, 54/56]
→[53, 54/56]

1 [ [27, 35] [48, 54] ]→ 81
8 1 [ [27, 35] [48, 54] ]→ 135

9 1 [ [27, 35] [48, 54] ]→ 156

OptimisticListSortedSetWaitFreeContains
Id Library # res. E El.
1 a: [51, 52/56]
→[52, 52/56]

1 [ [51, 56] ]→ 0
2 1 [ [51, 56] ]→ 150
3 1 [ [51, 56] ]→ 124
4 r: [78, 80/82]
→[79, 80/82]

1 [ [78, 80] ]→ 15
5 1 [ [78, 80] ]→ 108
6 1 [ [78, 80] ]→ 48
7 a: [51, 52/56]
→[52, 52/56]
r: [78, 80/82]
→[79, 80/82]

1 [ [51, 56] [78, 80] ]→ 78
8 1 [ [51, 56] [78, 80] ]→ 15

9 1 [ [51, 56] ]→ 152

LogicalOrderingAVL
Id Library #res E El.
1 a: [267, 291]
→[268, 269]

[274, 291]

1 [ [267, 290] ]→ 0
2 1 [ [271, 279] [448, 451] ]→ 8
3 1 [ [271, 279] [448, 451 ] ]→ 15
4 r: [432, 451]
→[433, 434]

[436, 451]

1 [ [436, 451] ]→ 0
5 1 [ [436, 451] ]→ 0
6 1 [ [436, 451] ]→ 0

7 a: [267, 291]
→[268, 269]

[274, 291]
r: [432, 451]
→[433, 434]

[436, 451]

2 [ [271, 279] [448, 451] ]→ 0
[ [448, 454] ]→ 0

8 2 [ [271, 279] [448, 451] ]→ 0
[ [436, 451] ]→ 0

9 2 [ [271, 279] [448, 451] ]→ 0
[ [451, 454] ]→ 0

a large number of executions which only differ in the number of loop iterations. This, however,
does not happen for small-size clients (like the ones used in our evaluation) since the number of
invocations are bounded, which bounds the number of interferences and therefore the number
of restarts.

Optimistic concurrency has the potential to mess with the heuristic, but this does not happen
in small bounded clients as witnessed by our benchmark that does just fine.

To conclude, our empirical study demonstrates that given a good client (one that exercises the
problems in the library properly), our approach is very effective in identifying the method at fault
and the part of its code that is the root cause of the linearizability violation.

2.3.6 RelatedWork

Linearizability Violations. There is a large body of work on automatic detection of specific
bugs such as data races, atomicity violations, e.g. [33, 89, 90, 97]. The focus of this paper is on lin-
earizability errors. Wing and Gong [101] proposed an exponential-time monitoring algorithm for
linearizability, which was later optimized by Lowe [71] and by Horn and Kroening [52]; neither
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avoided exponential-time asymptotic complexity. Burckhardt et al. [12] and Burnim et al. [13] im-
plement exponential-time monitoring algorithms in their tools for testing of concurrent objects
in .net and Java. Emmi and Enea [29, 30] introduce the tool Violat (used in our experiments) for
checking linearizability of Java objects.
Concurrency Errors. There have been various techniques for fault localization, error explana-
tion, counterexample minimization and bug summarization for sequential programs. We restrict
our attention to relevant works for concurrent programs. More relevant to our work are those
that try to extract simple explanations (i.e. root causes) from concurrent error executions. In [59],

the authors focus on shortening counterexamples in message-passing programs to a set of “crucial
actions” that are both necessary and sufficient to reach the bug. In [55], the authors introduce
a heuristic to simplify concurrent error executions by reducing the number of context-switches.
Tools that attempt to minimize the number of context switches, such as SimTrace [54] and Tiner-
tia [55], are orthogonal to the approach presented in this paper. To gain efficiency and robustness,
some works rely on simple patterns of bugs for detection and a simple family of matching fixes to
remove them, e.g., [22, 56, 57, 81]. Our work is set apart from these works by addressing lineariz-
ability (in contrast to simple atomicity violation patterns) as the correctness property of choice,
and by being more systematic in the sense that it enumerates all execution eliminators for a given
linearizability violation. We also present crisp results for the theoretical guarantees behind our ap-
proach and an analysis of the time complexity. Weeratunge et al. [99] use a set of good executions
to derive an atomicity “specification”, i.e., pairs of accesses that are atomic, and then enforce it
using locks.

There is large body of work on synchronization synthesis [8, 15, 16, 17, 23, 48, 73, 94, 95]. The
approaches in [23, 95] are based on inferring synchronization by constructing and exploring the
entire product graph or tableaux corresponding to a concurrent program. A different group of
approaches infer synchronization incrementally from executions [94] or generalizations of bad
executions [16, 17]. These techniques [16, 17, 94] also infer atomic sections but they do not focus
on linearizability as the underlying correctness property but rather on assertion local violations.
Several works investigate the problem of deriving an optimal lock placement given as input a pro-
gram annotated with atomic sections, e.g., [21, 31, 106]. Afix [56] and ConcurrencySwapper [16]

automatically fix concurrency-related errors. The latter uses error invariants to generalize a linear
error execution to a partially ordered execution, which is then used to synthesize a fix.
Linearizability Repairs. Flint [70] is the only approach we know of that focuses on repairing
non-linearizable libraries, but it has a very specific focus, namely fixing linearizability of composed
map operations. It uses a different approach based on enumeration-based synthesis and it does not
rely on concrete linearizability bugs.
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Consensus Protocols

In this chapter, we are interested in verifying consensus protocols such as Paxos, PBFT, Hot-
Stuff, etc.. We propose a new abstraction for representing the executions of these consensus
protocols that can be used in particular, to reason about their safety, i.e., ensuring Agreement
and Validity. As mentioned before, (usually) protocol executions are composed of a number
of communication-closed rounds, and each round consists of several phases in which a process
broadcasts a request and expects to collect responses from a quorum of processes before advanc-
ing to the next phase. The abstraction is defined as a sequential object called Quorum Tree (QTree)
which maintains a tree structure where each node corresponds to a different round in an execu-
tion. The operations of QTree, to add or change the status of a node, model quorums of responses
that have been received in certain phases of a round.

For instance, a round in single-decree Paxos consists of two phases: a prepare phase where a pre-
determined leader broadcasts a request for joining that round and expects a quorum of responses
from the other processes before advancing to a vote phase where it broadcasts a value to agree
upon and expects a quorum of responses (votes) in order to declare that value as decided in that
round. Rounds are initiated by their respective leaders and can run concurrently. The idea behind
QTree is to represent a Paxos execution using a rooted tree where each node different from the root
corresponds to a round where the leader has received a quorum of responses in the prepare phase.
The parent-child relation models the data flow from one round to a later round: responses to join
requests contain values voted for in previous rounds (if any) and one of them will be included
by the leader in the vote phase request. The round in which that value was voted defines the
parent. Then, each node has one out of three possible statuses: ADDED if the vote phase can still
be successful (the leader can collect a quorum of votes) but this did not happen yet, GHOST if the
vote phase can not be successful (e.g., a majority of processes advanced to the next round without
voting), and COMMITTED if the leader has received a quorum of responses in the vote phase. This is
a tree structure because before reaching a quorum in the vote phase of a round, other rounds can
start and their respective leaders can send other vote requests (with possibly different values). The
specific construction of requests and responses in Paxos ensures that all the COMMITTED nodes in
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this tree belong to a single branch, which entails the Agreement property (this will become clearer
when presenting the precise definition of QTree in Section 3.2).

The QTree abstraction is applicable to a wide range of protocols beyond the single-decree Paxos
sketched above. It applies to state-machine replication protocols like Raft and HotStuf where the
tree structure represents logs of commands (inputted by clients) stored at different processes and
organized according to common prefixes (each node corresponds to a single command) and multi-
decree consensus protocols like multi-Paxos [67] and its variants [47, 53, 65, 72], or PBFT where
different consensus instances (for different indices in a sequence of commands) are modeled using
different QTree instances.

We show that all these protocols are refinements of QTree in the sense that their executions can
be intuitively, “linearized” to a sequence of operations on a QTree state, which are about agree-
ing on a branch of the tree called the trunk. These operations are defined as invocations of two
methods add and commit for adding a new leaf to the tree (during which some other nodes may
turn to GHOST) and changing the status of a node from ADDED to COMMITTED, respectively. Any
sequence of invocations to these methods ensures that all the COMMITTED nodes lie on the same
branch of the tree (the trunk). In relation to protocol executions, add and commit invocations
that concern the same node correspond to receiving a quorum of responses in two specific phases
of a round, which vary from one protocol to another.

The mapping between protocol executions and QTree executions is defined as in proofs of lin-
earizability for concurrent objects with fixed linearization points. Analogous to linearizability,
where the goal is to show that an object method takes effect instantaneously at a point in time
called linearization point, we show that it is possible to mark certain steps of a given protocol as
linearization points of add or commit operations1, such that the sequence of add and commit

invocations defined by the order between linearization points along a protocol execution is a cor-
rect QTree execution. We introduce a declarative characterization of correct QTree executions
that simplifies the proof of the latter (see Section 3.3).

The QTree abstraction offers a novel view on the dynamics of classic consensus or state-machine
replication protocols like Paxos, Raft, and PBFT, which relates to the description of recent Block-
chain protocols like HotStuff and Bitcoin, i.e., agreeing on a branch in a tree. It provides a formal
framework to reason uniformly about single-decree consensus protocols and state-machine repli-
cation protocols like Raft and HotStuff. For single-decree protocols (or compositions thereof),
the parent-child relation between QTree nodes corresponds to the data-flow between a quorum
of responses to a leader and the request he sends in the next phase while for Raft and HotStuff,

1These linearization points are fixed in the sense that they correspond to specific instructions in the code of the
protocol, and they do not depend on the future of an execution. For an expert reader, this actually corresponds to
a proof of strong linearizability [45].
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it corresponds to an order set by a leader between different commands. It enables new correct-
ness proofs that we believe are much more intuitive and “explainable” compared to classic proofs
based on inductive invariants. An inductive invariant has to describe all intermediate states pro-
duced by all possible orders of receiving messages and a precise formalization is quite complex.
As an indication, the Paxos invariant used in recent work [78] (see formulas (4) to (12) in Section
5.2) is a conjunction of eight quantified first-order formulas which are hard to reason about and
not re-usable in the context of a different protocol. Compared to previous abstract specifications
for reasoning about consensus protocols, e.g., [9, 36], QTree is designed to be less abstract so that
the refinement proof, establishing the relationship between a given protocol and QTree, is less
complex (see Section 3.9 for details). Also, we believe that QTree helps in improving the under-
standing of such protocols and writing correct implementations. For instance, our proofs are very
clear about the phases of a round in which quorums need to intersect, which provides flexibility
and optimization opportunities for deciding on quorum sizes in each phase. Depending on envi-
ronment assumptions, quorum sizes can be optimized while preserving correctness.

3.1 Preliminaries

Similar to Section 2.1, we model a distributed (multiple processes in different machines) program
implemented on top of message passing as a labeled transition system (LTS) L = (S, sI ,Γ,A),
where

• A state in S is a tuple of process’ local states and a set of messages in transit.

• The state sI ∈ S is the unique initial state.

• A is a set of actions a where a is an indivisible action of a process such as receiving a set of
messages, performing a local computation step, or sending a message.

• Γ is a set of labeled transitions (s, a, s′) such that s, s′ ∈ S and a ∈ A.

As in Section 2.1, an execution E from a state s is a sequence of alternating states and actions.
Trace τ is the sequence of actions projected from some execution E by respecting the program
order and T (L) denotes all the traces of L.

For two LTSsL andL′, we usually say thatL is a refinement ofL′ when T (L) ⊂ T (L′). This
refinement relation implies that any safety specification of L′ holds for L as well as long as it can
be stated on sequences of actions. Note that liveness properties can not be transferred since the
inclusion concerns only finite traces.

We will consider a slight variation of this definition of refinement that applies to LTSs that
do not share the same set of actions. This notion of refinement is parametrized by a mapping
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Γ between actions of L and L′, and it is defined by Γ(T (L)) ⊂ T (L′). Here, a mapping
Γ : AL → AL′ is extended to sequences and sets of sequences as expected, e.g., Γ(a1. . .an) =
Γ(a1) . . .Γ(an). With this extension, the preservation of safety specifications requires certain
constraints on the mapping Γ that will be discussed later.

3.2 Quorum Tree

We describe the QTree sequential object which operates on a tree and has two methods add and
commit for adding a new node and modifying an attribute of a node (committing a node), re-
spectively. When used as an abstraction of consensus protocols, invocations of these two methods
correspond to certain quorums that are reached during a round of the protocol.

3.2.1 Overview

QTree is a sequential rooted-tree, a possible state being depicted in Figure 3.1. The nodes with
black dashed margins are not members of the tree and they are discussed later. Each node in the
tree contains a round number, a value, and a status field set to ADDED, GHOST, or COMMITTED.
The round number acts as an identifier of a node since there can not exist two nodes with the
same round number. The Root node is part of the initial state and its status is COMMITTED. A
QTree state consists of a trunk, alive branches, and dead branches; a branch is a chain of nodes
connected by the parent relation. Alive branches are extensible with new ADDED nodes but dead
branches are not. The trunk is a particular branch of the tree that starts from the root. It contains
all the COMMITTED nodes and it ends with a COMMITTED node. It may also contain ADDED or
GHOST nodes. For example, in Figure 3.1, the trunk consists of Root and n3. All alive branches
are connected to the last COMMITTED node of the trunk (alive branches can include ADDED or
GHOST nodes). For instance, in Figure 3.1, the subtree rooted at n3 contains a single alive branch
whose leaf node is n5. Dead branches can contain only GHOST nodes. In Figure 3.1, the tree
contains a single dead branch containing the node n1.

Nodes can be added to the tree as leaves. The status of a newly added node is either ADDED
or GHOST. The status ADDED may turn to GHOST or COMMITTED. The GHOST status is “final”
meaning that it can never turn into COMMITTED afterwards. However, GHOST nodes can be part
of alive branches, and they can help in growing the tree.

QTree has two methods add and commit :

• add generates a new leaf node with a round number r, value v, and parent p identified by
the round number rp given as input. Its status is set to ADDED or GHOST, provided that
some conditions hold. If the status of the new node is set as ADDED, then it either extends
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(has a path to the end of) an existing alive branch or creates a new alive branch from the
trunk. The new node may also “invalidate” some other nodes by changing their status
from ADDED to GHOST.

• commit extends the trunk by turning the status of a node from ADDED to COMMITTED.
This extension of the trunk may prevent some branches to be extended in the future (some
alive branches may become dead), i.e., future invocations ofadd that extend those branches
will add only GHOST nodes.

Each node models the evolution of a round in a consensus protocol and the value attribute rep-
resents the value proposed by the leader of that round. The round and value attributes of a node
are immutable and cannot be changed later. We assume that round numbers are strictly positive
except for Root whose round number is 0.

QTree applies uniformly to a range of consensus or state-machine replication protocols. We
start by describing a variation that applies to single-decree consensus protocols, where a number
of processes aim to agree on a single value. Multi-decree consensus protocols that are used to
solve state-machine replication can be simulated using a number of instances of QTree, one for
each decree (the instances are independent one from another). Then, state-machine replication
protocols like HotStuff that rely directly on a tree structure to order commands can be simulated
by the QTree for single-decree consensus modulo a small change that we discuss later.

3.2.2 Definition of the Single-Decree Version

Algorithm 4 lists a description of QTree in pseudo-code. The following set of predicates are used
as conditions inside methods:

1. link(n)≡ n.parent∈Nodes∧ n.parent.round < n.round

2. newRound(n) ≡ ∀n′ ∈Nodes. n′.round ̸= n.round

3. maxCommitted(n) ≡ n.status = COMMITTED∧
(∀n′ ∈Nodes. n′.status = COMMITTED =⇒ n′.round < n.round)

4. extendsTrunk(n) ≡ ∃n′ ∈Nodes. maxCommitted(n′)∧
(n extends n′ ∨ n.round < n′.round)

5. valid(n) ≡ link(n) ∧ newRound(n) ∧ extendsTrunk(n)

6. valueConstraint(n) ≡ n.parent ̸= Root =⇒ n.value = n.parent.value
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Algorithm 4: The Quorum Tree object
1 Initialize: /* ⊥ denotes non-initialized values */
2 Root.round = 0; Root.status = COMMITTED;
3 Root.value =⊥; Root.parent = Root;
4 Nodes = {Root};
5 Method add (r, v, rp)
6 Pre: r > 0
7 n = new Node(round = r, status =⊥, value = v, parent = p : p.round = rp);
8 if valid(n)∧ valueConstraint(n) then
9 Nodes = Nodes∪ {n};

10 n.status = ADDED;
11 if ∃n′ ∈ Nodes. n′.round > n.round then
12 n.status = GHOST;
13 forall n′ ∈ Nodes. n′.round < n.round do
14 if n is conflicting with n′ then
15 n′.status← GHOST;

16 return OK
17 return FAIL
18 Method commit (r)
19 if ∃ n ∈Nodes. n.round = r ∧ n.status = ADDED then
20 n.status← COMMITTED;
21 return OK
22 return FAIL

The add method (lines 5-17) generates a new node n with round, value, and parent set accord-
ing to the method’s inputs. Then, it adds n to the tree by linking it to the selected parent if n
satisfies the following validity conditions:

• n’s parent belongs to the tree and its round number is smaller than r (predicate link at (1)),

• the tree does not contain another node with round number r (predicate newRound at (2)),

• if r is bigger than the round number of the last node of the trunk, then n must extend the
trunk (predicate extendsTrunk at (4)),

• n’s value must be the same as its parent’s value unless the parent is the Root (predicate
valueConstraint at (6)).

The valid predicate at (5) is the conjunction of the first three constraints.
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Figure 3.1: A state of QTree. We represent ADDED nodes with green solid margins, GHOST nodes with
red double-line margins, and COMMITTED nodes with blue thick margins. The nodes with black dashed
margins are not part of the state, they are fictitious nodes used to explain the method for adding new nodes.

For example, let us consider an invocation of add in a state of QTree that contains the non-
dashed nodes in Figure 3.1. If the invocation generates n2, n4, or n6 (receiving as input the corre-
sponding attributes), then n2 and n6 do satisfy all these constraints and can be added to the tree.
The noden4 fails the extendsTrunk predicate because it is not extending the last node of the trunk
(n3) and its round number is higher.

If a node n satisfies the conditions above, the add method turns its status to either ADDED
or GHOST. If there is another node in the tree with a higher round number, n’s status becomes
GHOST. Otherwise, it becomes ADDED. As a continuation of the example above, the status of n2

is set to GHOST because the tree contains node n3 with a higher round number and the status of
n6 is set to ADDED.

Moreover, the addition of n can “invalidate” some other nodes, turn their status to GHOST.
This is based on a notion of conflicting nodes. We say that two nodes are conflicting if they are on
different branches, i.e., there is no path from one node to the other. An add invocation that adds
a node n changes the status of all the nodes n′ in the tree that conflict with n and have a lower
round number than n, to GHOST. For example, the top part of Figure 3.2 pictures a sequence
of QTree states in an execution, to be read from left to right (for the moment, ignore the Paxos
part). The first state represents the result of executing add(1, v1, 0) on the initial state of QTree,
adding node n1. Executing add(3, v2, 0) on this first state creates another node n3 and sets its
status to ADDED. This invocation will also turn the status of n1 to GHOST since its round number
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Figure 3.2: Top: QTree - Explaining the behavior of add and commit methods. Colors should be inter-
preted as in Figure 3.1.
Bottom: Paxos - A single-decree Paxos execution simulated by the QTree execution above. We abbreviate
types of messages with their first letter, e.g., START with S, and payloads are given in parenthesis. Con-
cerning the vertical lines, green solid ones represent the beginning of a new round, red dashed ones show a
round that is lagging behind (delayed) and green dotted ones represent returning to a newest round from
a delayed round.

is less than the round number of n3 and they are on different branches. Afterwards, by executing
add(2, v1, 1), a node n2 is added to the tree with status GHOST since there is a node n3 on a
different branch which has a higher round number.

The method add returns OK when the created node is effectively added to the tree (it satisfies
the conditions described above) and FAIL, otherwise.

Lastly, the commit method takes a round number r as input and turns the status of the node
containing r to COMMITTED if it was ADDED. If successful, it returnsOK andFAIL, otherwise.
As a continuation of the example above, the top-right part of Figure 3.2 pictures a state obtained
by executing commit(3) on the state to the left. This sets the status of n3 to COMMITTED as n3

was previously ADDED. Note that the conditions in add ensure that the tree can not contain two
nodes with the same round number.
Safety Properties. We show that the QTree object in Algorithm 4 can be used to reason about
the safety of single-decree consensus protocols, in the sense that it satisfies a notion of Validity
and Agreement. More precisely, we show that every state that is reachable by executing a sequence
of invocations of add and commit (in Algorithm 4), called simply reachable state, satisfies the
following:

• Validity: every node different from Root contains the same value as a child of Root, and

• Agreement: every two COMMITTED nodes different from Root contain the same value.
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Proposition 3 (Validity). Every node in a reachable state that is different from Root contains the
same value as a child of Root.

Proof. A node n is added to the tree only if the predicate valueConstraint holds, which implies
that it is either a child ofRoot or it has the same value as its parent which is a descendant ofRoot.
Also, since the value attribute of a node is immutable, any COMMITTED node contains the same
value that it had when it was created by an add invocation.

Therefore, the fact that a consensus protocol refining QTree satisfies validity, i.e., processes de-
cide on a value proposed by a client of the protocol, reduces to proving that the phases of a round
simulated by add invocations that add children of Root use values proposed by a client. This is
ensured using additional mechanisms, i.e., a client broadcasts its value to all participants in the
protocol, so that each participant can check the validity of a value proposed by a leader.

Next, we focus on Agreement, and show that COMMITTED nodes belong to a single branch of
the tree.

Proposition 4. Let n1 and n2 be two COMMITTED nodes in a reachable state. Then, n1 and n2

are not conflicting.

Proof. Assume towards contradiction that QTree reaches a state where two COMMITTED nodes
n1 and n2 are conflicting. Let r1 = n1.round and r2 = n2.round. Without loss of generality,
we assume that r1 < r2. Such a state is reachable if add(r1, _, _) and add(r2, _, _) resulted in
adding the nodes n1 and n2 and set their status to ADDED (we use _ to denote arbitrary values),
and subsequently, commit(r1) and commit(r2) switched the status of both n1 and n2 to COM-
MITTED. If add(r1, _, _) were to execute before add(r2, _, _), then add(r2, _, _) would have
changed the status of n1 to GHOST because it is conflicting with n2. Otherwise, if add(r2, _, _)
were to execute before add(r1, _, _), then the latter would have set the status of n1 to GHOST

since the tree contains n2 that has a higher round number. In both cases, executing commit(r1)

can never turn the status of n1 to COMMITTED.

Proposition 4 allows to conclude that any two COMMITTED nodes (different from Root) con-
tain the same value. Indeed, a node can become COMMITTED only if it was ADDED, which implies
that is has the same value as its parent (the predicate valueConstraint holds), and by transitivity, as
any of its ancestors, except for Root.

Proposition 5 (Agreement). Let n1 and n2 be two COMMITTED nodes in a reachable state, which
are different from Root. Then, n1.value = n2.value.
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3.2.3 StateMachine Replication Versions

The single-decree version described above can be extended easily to a multi-decree context. As
multi-decree consensus protocols, used in state machine replication, can be seen as a composi-
tion of multiple instances of single-decree consensus protocols, a multi-decree version of QTree
is obtained by composing multiple instances of the single-decree version. Each of these instances
manipulates a tree as described above without interference from other instances. The validity and
agreement properties above apply separately to each instance.

The single-decree version can also be extended for state machine replication protocols like Hot-
Stuff and Raft where the commands (values) are a-priori structured as a tree, i.e., each command
given as input is associated to a predetermined parent in this tree. Then, the goal of such a proto-
col is to agree on a sequence in which to execute these commands, i.e., a branch in this tree. Simply
removing the valueConstraint condition in the add method (underlined in Algorithm 4) enables
QTree to simulate such protocols. A node’s value need not be the same as its parent’s value to
be valid for add . Proposition 4 that implies the agreement property of such protocols still holds
(Proposition 5 does not hold when the valueConstraint condition is removed; this property is spe-
cific to single-decree consensus). Since the value field remains immutable, the validity property of
such protocols reduces to ensuring that the values generated during phases simulated by add cor-
respond to commands issued by the client (Proposition 3 is also specific to single-decree consensus
and it does not hold). As before, this requires additional mechanisms, i.e., a client broadcasting a
command to all the participants in the protocol, whose correctness can be established quite easily.

3.3 Consensus Protocols Refining QTree

In the following, we show that a number of consensus protocols are refinements of QTree in the
sense that their executions can be mimicked with add and commit invocations. This is similar
to a linearizable concurrent object being mimicked with invocations of a sequential specification.
The refinement relation allows to conclude that the Validity and Agreement properties of QTree
imply similar properties for any of its refinements.

The definition of the refinement relation relies on a formalization of protocols and QTree as
labeled transition systems. For a given protocol, a state is a tuple of process local states and a set of
messages in transit, and a transition corresponds to an indivisible step of a process (receiving a set
of messages, performing a local computation step, or sending a message). For QTree, a state is a
tree of nodes as described above and a step corresponds to an invocation to add or commit . An
execution is a sequence of transitions from the initial state.

Refinement corresponds to a mapping between protocol executions and QTree executions.
This mapping is defined as in proofs of linearizability for concurrent objects with fixed lineariza-
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tion points, where the goal is to show that each concurrent object method appears to take effect in-
stantaneously at a point in time that corresponds to executing a fixed statement in its code. There-
fore, certain steps of a given protocol are considered as linearization points of add and commit

QTree invocations (returning OK), and one needs to prove that the sequence of invocations de-
fined by the order of linearization points in a protocol execution is a correct execution of QTree.
With respect to the terminology in Section 3.1, this is an effective definition for a mapping Γ be-
tween actions of the protocol and actions of QTree, i.e., add/commit invocations such that Γ
applied to protocol executions results in correct QTree executions. In the following, we provide a
characterization of correct QTree executions that simplifies such refinement proofs.

An invocation label add(r, v, rp) ⇒ RET or commit(r) ⇒ RET combines a QTree
method name with input values and a return value RET ∈ {OK,FAIL}. An invocation
label is called successful when the return value is OK . A sequence σ of invocation labels is called
correct when there exist QTree states q0, . . ., q|σ|, such that q0 is the QTree initial state and for
each i ∈ [1, |σ|], executing σi starting from qi−1 leads to qi.

Theorem 8. A sequence σ of successful invocation labels is correct if and only if the following hold
(we use _ to denote arbitrary values):

1. for every r, σ contains at most one invocation label add(r, _, _) and at most one invocation
label commit(r)

2. every commit(r) is preceded by an add(r, _, _)

3. if rp > 0, every add(r, v, rp) is preceded by add(rp, v′, _) where 0 < rp < r

a) and v = v ′

4. if σ contains add(r, _, _) and add(r′, _, r′′) with r′′ < r < r′, then σ does not contain
commit(r)

Properties 1–3 are straightforward consequences of theadd andcommit definitions. Indeed, it
is impossible to add two nodes with the same round number r, which implies that there can not
be two successful add(r, _, _) invocations, the status of a node can be flipped to COMMITTED

exactly once, which implies that there can not be two successful commit(r) invocations, and
a commit(r) is successful only if a node with round number r already exists, hence Property 2
must hold. Moreover, a node’s parent defined by the input rp must already exist in the tree, which
implies that Property 3 must also hold. Property 4 is more involved and relies on the fact that a
node n with round number r can be COMMITTED only if there exist no other conflicting node n′

with a bigger round number r′ (the parent of n′ having a round smaller than r implies that n and
n′ are conflicting). This is an inductive invariant of reachable QTree states.
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Proof. (⇒): Assume that σ is correct. We show that it satisfies the above properties:

• Property 1: The newRound(n) predicate used at line 8 in Algorithm 4 ensures that it
is impossible to add two nodes with the same round number r, and therefore σ can not
contain two successful add(r, _, _)⇒ OK invocations. The conditions at line 19 ensure
that commit(r) ⇒ OK can flip the status of a node only once, and therefore only one
such successful invocation can occur in σ.

• Property 2: The conditions at line 19 in Algorithm 4 imply that the state in which commit

(r)⇒ OK is executed contains a node with round number r. This node could have only
added by a previous add(r, _, _)⇒ OK invocation.

• Property 3: The link(n) predicate used at line 8 in Algorithm 4 ensures that the state in
which add(r, v, rp) ⇒ OK is executed contains a node with round number rp. This
node could have only added by a previous add(rp, v′, _)⇒ OK invocation, for some v′.

– Property 3a: It is a direct consequence of the valueConstraint(n) predicate used
at line 8 in Algorithm 4.

• Property 4: Letn andn′ be the nodes of the QTree state q reached after executingσ, which
have been added by add(r, _, _) ⇒ OK and add(r′, _, r′′) ⇒ OK , respectively. We
have thatn′.round> n.round> n.parent.round. Since the round numbers decrease when
going from one node towards Root in a reachable QTree state, it must be the case that
n and n′ are conflicting. By Lemma 8, we get that n.status is GHOST. Since the GHOST
status can not be turned to COMMITTED and vice-versa, it follows that σ can not contain
commit(r)⇒ OK .

(⇐): We prove that every sequence σ that satisfies properties 1–4 is correct. We proceed by in-
duction on the size of σ. The base step is trivial. For the induction step, let σ be a sequence of
size k+ 1. If σ satisfies properties 1-4, then the prefix σ′ containing the first k labels of σ satisfies
properties 1-4 as well. By the induction hypothesis, σ′ is correct. We show that the last invocation
ofσ, denoted byσk+1 can be executed in the QTree state q|σ′| reached after executingσ′. We start
with a lemma stating an inductive invariant for reachable QTree states:

Lemma 8. For every node n in any state q reached after executing a correct sequence σ of successful
invocations, n.status is COMMITTED if n is Root or σ contains a commit(r) invocation. Else,
n.status is GHOST if q contains a node n′ with n′.round > n.round and n′ is conflicting with n,
and it is ADDED, otherwise.
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Proof. We proceed by induction on the size of σ. The base step is trivial. For the induction step,
let σ be a sequence of size m + 1. Let qm be the state reached after executing the prefix of size
m of σ, and let σm+1 be the last invocation label of σ. We show that the property holds for any
possible σm+1 that takes the QTree state qm to some other state qm+1:

• σm+1 = add(r, v, rp) ⇒ OK , for some r, v, rp: Let n be the new node added by
this invocation. The status of n can be ADDED or GHOST. If qm contains a node n′ with
n′.round > r (since round numbers are decreasing going towards the Root and n is a
new leaf node, any existing node with a higher round number such as n′ is also conflicting
with n), then the status of n becomes GHOST by the predicate at line 11 in Algorithm 4
(otherwise, it remains ADDED). This implies that n’s status satisfies the statement in the
lemma. This invocation may also turn the status of some set of nodes N from ADDED to
GHOST by the statement at line 13 in Algorithm 4. The nodes in N have a lower round
number than r and conflicting with n. Therefore, the statement of the lemma is satisfied
for the nodes in N .

• σm+1 = commit(r)⇒ OK , for some r: For commit(r) to be successful the conditions
at line 19 in Algorithm 4 must be satisfied. If it is satisfied, only the status of node n is
changed from ADDED to COMMITTED. Note that Root exists by definition and its status is
COMMITTED. Since the statuses of the rest of the nodes stay the same, the statement of the
lemma holds.

There are two cases to consider depending on whether σk+1 is an add or commit invocation
label:

• add(r, v, rp): This invocation label is successful if and only if the predicates valid(n) and
valueConstraint(n) at line 8 in Algorithm 4 are satisfied after generating a new node n
with the given inputs in the state q|σ′|:

– newRound(n): Due to Property 1, r ̸= n′.round for any other node n′ ∈ q|σ′| and
the predicate is satisfied.

– link(n): To satisfy this predicate, there must exist a node in q|σ′| with round rp

where rp < r. By Property 3, if σ contains add(r, _, rp) ⇒ OK with rp ̸= 0,
then add(rp, _, _)⇒ OK also exists in σ. Hence, there exists a node p with round
rp in q|σ′|, and the predicate is satisfied. If rp = 0, then q|σ′| contains the Root node
(with round 0) which ensures that the predicate is satisfied.
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– extendsTrunk(n): This predicate states that n extends the node n′ which has the
highest round number among the nodes withCOMMITTED status, ifn.round >n′.ro-
und. Assume by contradiction that this is not the case, i.e., n.round > n′.round but
n and n′ are conflicting. Let n1 be the lowest common ancestor of n and n′ (the first
common node on the paths fromn andn′ to theRoot). Since the round numbers de-
crease when going from one node towards Root, we have that n1.round < n′.round.
If we consider the nodes on the path from n to n1, since n.round > n′.round, there
must exist a noden2 such thatn2.round >n′.round butn2.parent.round <n′.round.
The noden2 in q|σ′| corresponds to the invocation labeladd(n2.round,_, n2.parent.
round) inσ′. Moreover, theCOMMITTED status ofn′ implies the existence ofcommit

(n′.round) in σ′ as stated in Lemma 8. However, it is impossible that σ′ contains
both these invocation labels if Property 4 holds.

– valueConstraint(n): It is implied trivially as Property 3a holds.

• commit(r): It is successful if and only if the conditions at line 19 in Algorithm 4 are sat-
isfied. Then by Property 1 and 2, there exist add(r, _, _) in σ′ but not commit(r). As
add(r, _, _) is successful, there already exist a node n in q|σ′| where its round is r but its
status can be either ADDED or GHOST. Towards a contradiction, assume that n.status =
GHOST in q|σ′|. This means that there exists a noden′ conflicting withn such thatn′.round
> n.round as stated in Lemma 8. Let n1 be the least common ancestor of n and n′. Since
round numbers are decreasing going towards the Root, n1.round < n.round. If we con-
sider nodes on the path fromn′ ton1, there exists a noden2 such thatn2.round >n.round
andn2.parent.round <n.round. That’s why, there is an invocation label add(n2.round,_,
n2.parent.round) in σ′. However, σ cannot contain both of these invocation labels to-
gether according to Property 4.

3.4 Linearization Points

We describe an instrumentation of consensus protocols with linearization points of successful
QTree invocations, and illustrate it using Paxos as a running example. Section 3.5–3.8 will discuss
other protocols like HotStuff, Raft, PBFT, and Multi-Paxos.

The identification of linearization points relies on the fact that protocol executions pass through
a number of rounds, and each round goes through several phases (rounds can run asynchronously
– processes need not be in the same round at the same time). The protocol imposes a total order
over the phases inside a round and among distinct rounds. Processes executing the protocol can
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only move forward following the total order on phases/rounds. Going from one phase to the next
phase in the same round is possible if a quorum of processes send a particular type of message.
The refinement proofs require identifying two quorums for each round where a value is first pro-
posed to be agreed upon and then decided. They correspond to linearization points of successful
add(r, _, _) and commit(r), respectively.

The linearization point of add(r, v, rp) ⇒ OK occurs when intuitively, the value v is pro-
posed as a value to agree upon in round r. For the protocols we consider, v is determined by a
designated leader after receiving a set of messages from a quorum of processes. For single-decree
consensus, members of the quorum send the latest round number and value they adopted (voted)
in the past and the leader picks a value corresponding to the maximum round number rp. If no
one in the quorum has adopted any value yet, then the leader is free to propose any value received
from a client, and rp equals a default value 0. For state-machine replication protocols like Raft
or HotStuff, the round rp is defined in a different manner – see Section 3.5 and Section 3.6. The
linearization point of commit(r) ⇒ OK occurs when a quorum of nodes adopt (vote for) a
value v proposed at round r.

By Theorem 8, proving that the order between linearization points along a protocol execution
defines a correct QTree execution reduces to showing Properties 1–4. In general, Properties 1–3
are quite straightforward to establish and follow from the control-flow of a process. Property 3a
is specific to single-decree consensus protocols or compositions thereof, e.g., (multi-)Paxos and
PBFT. It will not hold for Raft or Hotstuff. Property 4 is related to the fact that any two quorums
of processes intersect in a correct process.

Above, we have considered the case of a protocol that is a refinement of a single instance of
QTree. State machine replication protocols that are composed of multiple independent consensus
instances, e.g., PBFT (see Section 3.7), are refinements of a set of QTree instances (identified using
a sequence number) and every linearization point needs to be associated with a certain QTree
instance.

3.4.1 Linearization Points over Paxos

For concreteness, we exemplify the instrumentation with linearization points on the single-decree
Paxos protocol. We start with a brief description of this protocol that focuses on details relevant
to this instrumentation.

3.4.1.1 Description of the Protocol

Paxos proceeds in rounds and each round has a unique leader. Since the set of processes running
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the protocol is fixed and known by every process, the leader of each round can be determined by
an a-priorly fixed deterministic procedure (e.g., the leader is defined as r mod N where r is the
round number and N the number of processes). For each round, the leader acts as a proposer of
a value to agree upon.

A round contains two phases. In the first phase, the leader broadcasts a START message to all
the processes to start the round, executing the START action below, and processes acknowledge
with a JOIN message if some conditions are met, executing the JOIN action:

• START Action:
The leader p of round r > 0 (the proposer) broadcasts a START(r) message to all pro-
cesses.

• JOIN Action:
When a processp′ receives a START(r) message, ifp′ has not sent a JOIN or VOTE message
(explained below) for a higher round in the past1, it replies by sending a JOIN(r) message to
the proposer. This message includes the maximum round number (maxVotedRound ) for
which p′ has sent a VOTE message in the past and the value (maxVotedValue) proposed
in that round. If it has not voted yet, these fields are 0 and⊥.

If the leader receives JOIN messages from a quorum of processes, i.e., at least f + 1 processes
from a total number of 2f + 1, the second phase starts. The leader broadcasts a PROPOSE mes-
sage with a value, executing the PROPOSE action below. Processes may acknowledge with a
VOTE message if some conditions are met, executing a VOTE action. If the leader receives VOTE

messages from a quorum of processes, then the proposed value becomes decided (and sent to the
client) by executing a DECIDE action:

• PROPOSE Action:
When the proposer p receives JOIN(r) messages from a quorum of (f + 1) processes, it
selects the one with the highest vote round number and proposes its value by broadcasting
a PROPOSE(r) message (which includes that value). If there is no such highest round (all
vote rounds are 0), then the proposer selects the proposed value randomly simulating a
value given by the client (whose modeling we omit for simplicity).

• VOTE Action:
When a processp′ receives a PROPOSE(r) message, ifp′ has not sent a JOIN or VOTE mes-
sage for a higher round in the past, it replies by sending a VOTE(r) message to the proposer
with round number r.

1Each process has a local variable maxJoinedRound that stores the maximal round it has joined or voted for in the
past and checks whether maxJoinedRound < r
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• DECIDE Action:
When the proposer p receives VOTE(r) messages from a quorum of processes, it updates
a local variable called decidedVal to be the value it has proposed in this round r. This
assignment means that the value is decided and sent to the client.

3.4.1.2 Linearization points in Paxos

We instrument Paxos with linearization points as follows:

• the linearization point of add(r, v, r′) ⇒ OK occurs when the proposer broadcasts the
PROPOSE(r) message containing value v after receiving a quorum of JOIN(r) messages
(during the PROPOSE action in round r). The round r′ is extracted from the JOIN(r)
message selected by the proposer.

• the linearization point of commit(r)⇒ OK occurs when the proposer who is the leader
of the round r updates decidedVal with value v after receiving a quorum of VOTE(r)
messages (during the DECIDE Action in round r).

We illustrate the mapping between linearization points in Paxos and QTree using Paxos execu-
tion in Figure 3.2 (Paxos):

• The leader p1 of round 1 starts the round by broadcasting a START(1) message; p1 and p2

reply with JOIN messages containing empty payloads as they have not sent a VOTE yet.
Since p1 receives a quorum of JOIN messages and there is no highest voted round yet, p1
selects a random value (v1), and broadcasts PROPOSE(1). In this step, the linearization
point of add(1, v1, 0) occurs and it is simulated in QTree with an invocation that adds
node n1 with status ADDED. Only p2 replies with a VOTE message, and all the other mes-
sages sent in this round are lost.

• The leader p2 of round 2 initiates the round. Only p1 and p2 reply with JOIN messages.
Since p2 has voted in round 1, it sends the round and the value of the vote. The leader p2 is
slow and will resume later.

• The leader p3 initiates round 3, and only p1 and p3 reply with JOIN messages that con-
tain empty payloads (they have not voted yet). Hence, p3 selects a random value v2 and
broadcasts PROPOSE(3). Here, the linearization point of add(3, v2, 0) occurs and it is
simulated with a QTree invocation that results in changing the status of n1 to GHOST and
adding a new node n3 with status ADDED.
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• Process p2 resumes and since it received a quorum of JOIN messages in round 2, p2 broad-
casts PROPOSE(2) by selecting v1 as the value of the highest voted round from the JOIN

messages. At this point, the linearization point of add(2, v1, 1) occurs and it is simulated
by the QTree invocation that adds node n2 with status GHOST.

• Processes p1 and p3 continue by voting for the proposal in round 3. As a quorum of VOTE

messages is received by p3, it decides on v2. Now, the linearization point of commit(3)

occurs which is simulated by changing the status of n3 to COMMITTED in QTree.

Our main correctness theorem for Paxos is as follows:

Theorem 9. Paxos refines QTree.

Proof. We show that the sequence of successful add and commit invocations defined by lin-
earization points along a Paxos execution satisfies the properties in Theorem 8 and therefore, it
represents a correct QTree execution:

• Property 1: Each round has a unique leader and the leader follows the rules of the protocol (no
Byzantine failures), thereby, making a single proposal. Therefore, the linearization point of an
add(r, _, _)⇒ OK will occur at most once for a round r. Since a single value can be proposed
in a round, and all processes follow the rules of the protocol, they can only vote for that single
value. Thus, at most one linearization point of commit(r)⇒ OK can occur for a round r.

• Property 2: This holds trivially as all the processes follow the rules of the protocol and they
need to receive a PROPOSE(r) message (which can occur only after the linearization point of
an add(r, _, _)⇒ OK) from the leader of round r to send a VOTE(r) message.

• Property 3: By the definition of the PROPOSE action, the proposer selects a highest vote
round number r′ from a quorum of JOIN(r) messages that it receives, before broadcasting a
PROPOSE(r) message. If such a highest vote round number r′ > 0 exists, then there must be a
VOTE(r′) message which is a reply to a PROPOSE(r′) message. Thus, if the linearization point
of add(r, _, r′) ⇒ OK occurs where r′ ̸= 0, then it is preceded by add(r′, _, _). Also, by
the definition of JOIN, a process can not send a JOIN(r) message after a VOTE(r′) message
if r ≯ r′.

– Property 3a: By the definition of PROPOSE, the proposer selects the JOIN message
with the highest vote round number and proposes its value. Thus, if the linearization
points of both add(r, v, r′)⇒ OK and add(r′, v′, _)⇒ OK occur, then v = v ′.

• Property 4: Assume by contradiction that the linearization point of commit(r) ⇒ OK

occurs along with the linearization points of add(r, _, _)⇒ OK and add(r′, _, r′′)⇒ OK ,
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for some r′′ < r < r′. The linearization point of commit(r) occurs because of a quorum of
VOTE(r) messages sent by a set of processesP1, and add(r′, _, r′′) occurs because of a quorum
of JOIN(r′) messages sent by a set of processes P2. Since P1 and P2 must have a non-empty
intersection, by the definition of JOIN, it must be the case that r′′ ≥ r, which contradicts the
hypothesis.

The proof of Property 4 relies exclusively on the quorum of processes in the first phase of a
round intersecting the quorum of processes in the second phase of a round. It is not needed that
quorums in first, resp., second, phases of different rounds intersect. This observation is at the
basis of an optimization that applies to non-Byzantine protocols like Flexible Paxos [53] or Raft
(see Section 3.8 and Section 3.6, respectively).

3.4.2 Inferring Safety

We exhibited that if a protocol is shown to be a refinement of QTree (or a composition of inde-
pendent QTree instances), i.e., its executions are mapped to correct QTree executions (satisfying
the properties in Theorem 8), then it satisfies agreement and validity. We showed that for a proto-
col, there can be only one linearization point of successful add invocation and one linearization
point of successful commit invocation for a certain round r. This is because there can be only one
proposal of a protocol that can take approval from a quorum of processes and this proposal on a
value v in a round r corresponds to linearization point of successful add(r, v, r′). If r′ ̸= 0 and
therefore, v′ ̸= ⊥, then there exist another proposal on a value v′ in a round r′ < r with the same
properties, which is selected by the leader of the round r to propose the same value or connect
it with the proposal of round r when commands (values) lie on a log or a branch. This implies
that corresponding QTree state contains a node n with n.round = r, n.value = v, and n.status =
ADDEDwhich also contains another noden′ withn′.round = r′,n′.value =v′. Similarly, a decision
on a value v in a round r of a protocol corresponds to linearization point of successful commit

invocation, which implies that the QTree state contains a node n with n.round = r, n.value = v,
and n.status = COMMITTED.

For single-decree consensus (or multi-decree consensus protocols designed as multiple instances
of single-decree consensus protocols), Proposition 5 ensures that there is only one value which is
decided and it is guaranteed by valueConstraint(n) and extendsTrunk(n) predicates. For
state machine replication protocols like Raft and HotStuff, where the goal is to agree on a sequence
of commands, Proposition 4 ensures that all the decided values lie on the same branch of the tree
since the values propagated between different rounds by the selection of leaders is preserved by the
properties of linearization points, which concludes that all processes agree on the same sequence
of commands.
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For validity, when valueConstraint(n) is considered, successful add(r, v, 0) invocations
represent proposals of client values since the quorums of acceptors that joined this round have
not voted yet. Theorem 8 ensures that these invocations correspond to nodes n that are immedi-
ate children of Root and for any such node n, n.value = v. Therefore, by Proposition 3, we can
conclude that only client values can be decided. When valueConstraint(n) is not considered,
the fact that the value of each node is obtained from a client is ensured using additional mecha-
nisms that are straightforward, e.g., a client broadcasting a command to all the participants in the
protocol.

3.5 HotStuff Refines QTree

We present an instrumentation of HotStuff with linearization points of successful add and com-
mit invocations. We use HotStuff as an example of a state machine replication protocol where
processes agree over a sequence of commands to execute, and any new command proposed by a
leader to the other processes comes with a well-identified immediate predecessor in this sequence.
Agreement over a command entails agreement over all its predecessors in the sequence. This is
different from protocols such as PBFT or Multi-Paxos, discussed in Section 3.7 and Section 3.8,
respectively, where commands are associated to indices in the sequence and they can be agreed
upon in any order. Next section presents an instrumentation of Raft which behaves in a similar
manner.

3.5.1 Description of the Protocol

In HotStuff, f out of a total of N = 3f + 1 processes might be Byzantine in the sense that they
might show arbitrary behavior and send corrupt or spurious messages. However, they are limited
by cryptographic protocols. HotStuff requires that messages are signed using public-key cryp-
tography, which implies that Byzantine processes cannot imitate messages of correct (non-faulty)
processes. Additionally, after receiving a quorum of messages, leaders must include certificates in
their own messages to prove that a quorum has been reached. These certificates are constructed us-
ing threshold signature schemes and correct processes will not accept any message from the leader
if it is not certified. Because of Byzantine processes, HotStuff requires quorums of size of 2f + 1

which ensures that the intersection of any two quorums contains at least one correct process.
Each process stores a tree of commands. When a node in this tree (representing some com-

mand) is decided, all the ancestors of this node in the tree (nodes on the same branch) are also de-
cided. For a node to become decided, a leader must receive a quorum of messages in 3 consecutive
phases after the proposal. After each quorum is established, the leader broadcasts a different cer-
tificate to state which quorum has been achieved and the processes update different local variables
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accordingly, with the same node (if the certificate is valid). These local variables are preNode,
votedNode and decidedNode in the order of quorums.

To start a new round, processes send theirpreNode’s to the leader of the next round in ROUND-

CHANGE(r) messages and increment their round number. After getting a quorum of messages
and selecting the preNodewith the highest round, the leader broadcasts a PROPOSE(r) message
with a new node (value is taken from the client) whose parent is the selected preNode. When the
message is received by a process, it first checks if the new node extends the selectedpreNode. Then
it accepts the new node if the node extends its own votedNode (it is a descendant of votedNode

in the tree) or it has a higher round number than the round number of its votedNode, and
sends1 a JOIN(r) message with the same content. In the second (resp., third) phase, if a quo-
rum of JOIN(r) (resp., PRECOMMIT_VOTE(r)) messages is received by the leader, it broad-
casts a PRECOMMIT(r) (resp., COMMIT(r)) message, and processes update theirpreNode (resp.,
votedNode) with the new node, sending a PRECOMMIT_VOTE(r) (resp., COMMIT_VOTE(r))
message. In the fourth phase, when the leader receives a quorum of COMMIT_VOTE(r), it broad-
casts a DECIDE(r) message and processes update their decided-Node accordingly. You can find
for more detailed description below:

In the first phase, the leader broadcasts a PROPOSE message to all the processes with a node by
executing the PROPOSE action below. This nodes value is sent by a client whose modeling we
omit for simplicity. Parent of this node is obtained from processes’ ROUND-CHANGE messages.
Processes acknowledge with a JOIN message if some conditions are met, executing a JOIN action
below:

• PROPOSE Action:
When a proposer p who is the leader of the new round r, receives a quorum (2f + 1)
of ROUND-CHANGE(r) with preNode, it selects the node with the highest round from
this set of preNode’s. Then it extends the selected node by a newly created node which is
initialized with the current round and some value. If there is no such highest round, then
the proposer extends the Genesis Block. Finally, proposer p broadcasts PROPOSE(r) to all
processes alongside with the new node.

• JOIN Action:
When a process p′ receives a PROPOSE(r) with node n, if n extends votedNode or the
round of the votedNode is less than the round of n.parent, then p′ sends a JOIN(r) to
the leader of the current round.

1For all received messages, a correct process also checks if the round number of the node sent by the leader is equal to
the current round number of its own, and can send only one message for each phase in each round.
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If the leader receives acknowledgement messages from a quorum of processes, the second phase
starts. The leader broadcasts a PRECOMMIT message with the same node by executing PRE-

COMMIT action and accepters acknowledge with the PRECOMMIT_VOTE message, executing
PRECOMMIT_VOTE action.

• PRECOMMIT Action:
When the proposer p receives a quorum of JOIN(r) with its current round and the same
node, p combines (generates certificate) and sends them by broadcasting a PRECOMMIT(r)
with the same node n to all processes.

• PRECOMMIT_VOTE Action:
When a process p′ receives a PRECOMMIT(r) from the leader of its current round, p′ up-
dates preNode with the node n that it received and sends a PRECOMMIT_VOTE(r) with
the same node to the leader of the current round.

Like the previous phase, if the leader receives acknowledgement messages from a quorum of
processes, the third phase starts. The leader broadcasts a COMMIT message with the same node
by executing COMMIT action and accepters acknowledge with the COMMIT_VOTE message,
executing COMMIT_VOTE action. Then if the leader receives COMMIT_VOTE messages from a
quorum of processes, the proposed value becomes decided (and sent to the client) by executing a
DECIDE action.

• COMMIT Action:
When the proposerp receives a quorum of PRECOMMIT_VOTE(r) with its current round
and the same node, p combines and sends them by broadcasting a COMMIT(r) with the
same node n to all processes.

• COMMIT_VOTE Action:
When a process p′ receives a COMMIT(r) from the leader of its current round, p′ updates
votedNodewith the noden that it received and sends a COMMIT_VOTE(r) with the same
node to the leader of the current round.

• DECIDE Action:
When the proposer p receives a quorum of COMMIT_VOTE(r) with its current round and
the same node, p combines and sends them by broadcasting a DECIDE(r) with the same
node n to all processes. When a process p′ receives a DECIDE(r) from the leader of its
current round, p′ updates decidedNode as n and execute commands through the branch
where the leaf node is n.

If timeout is reached for a process, ROUND-CHANGE action will be executed.
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• ROUND-CHANGE Action:
When the timeout is reached, a process p′ sends a ROUND-CAHNGE(r) with preNode to
the leader of the next round. Additionally, p′ increments its round number.

3.5.2 Linearization Points in HotStuff

For HotStuff, the linearization points ofadd and commit occur with the broadcasts of PRECOM-
MIT(r) and DECIDE(r) messages, respectively, that are valid , i.e., (1) they contain certificates for
quorums of JOIN(r) or COMMIT_VOTE(r) messages, respectively, which respect the thresh-
old signature scheme, and (2) they contain the same node as in those messages. More precisely,

• the linearization point ofadd(r, v, r′)⇒ OK occurs the first time when a valid PRECOM-
MIT(r) message containing node v is sent. r′ is the round of the node which is the parent
of v and it is contained in a previous PROPOSE(r) message (r′ can be 0 in which case
parent of v is a distinguished root node that exists in the initial state).

• the linearization point of commit(r)⇒ OK occurs the first time when a valid DECIDE

(r) message is sent.

Note that a Byzantine leader can send multiple valid PRECOMMIT(r) messages that include cer-
tificates for different quorums of JOIN(r) messages. A linearization point occurs when the first
such message is sent. Even if processes reply to another valid PRECOMMIT(r) message sent later,
this later PRECOMMIT(r) message contains the same preNode value, and their reply will have
the same content. The same holds for DECIDE(r) messages. This remark along with the restric-
tion to valid messages and the fact that any two quorums intersect in at least one correct process
implies that the sequence of successful add and commit invocations defined by these lineariza-
tion points satisfies the properties in Theorem 8 and therefore,

Theorem 10. HotStuff refines QTree.

Proof. We show that the sequence of successfuladd andcommit invocations defined by lineariza-
tion points along a HotStuff execution satisfies the properties in Theorem 8 and therefore, it rep-
resents a correct QTree execution:

• Property 1: To generate a valid (certified under threshold signatures) PRECOMMIT(r)
(resp., DECIDE(r)), a leader must collect a quorum of JOIN(r) (resp., COMMIT_VOTE(r
)) messages with the same content i.e., the same node with the same client request, con-
nected to the same parent. As all the correct replicas will send at most one message per phase
in a single round r, there can’t be two quorums of JOIN(r) (resp., COMMIT_VOTE(r))
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resulting two PRECOMMIT(r) with different contents. Since the linearization point of
add(r, _, ) (resp., commit(r)) occurs when thefirst valid PRECOMMIT(r) (resp., DECI-
DE(r)) message is broadcasted, property holds by the definition.

• Property 2: This holds trivially as there won’t be a quorum of COMMIT_VOTE(r) mes-
sages without a quorum of PRECOMMIT_VOTE(r) messages which do not exist as there
is no valid PRECOMMIT(r).

• Property 3: By the definition of JOIN action, a correct process will accept a PRO-

POSE(r) message if the node that is sent alongside with this message is extending some
preNode which can be certified only if a quorum of JOIN(r′) messages (that forms a
PRECOMMIT(r′)) are sent to the leader for some round r′ > 0. Since a quorum of
JOIN(r′) messages and PROPOSE(r) message are formed before and after a quorum of
ROUND-CHANGE(r) respectively, r > r′. Note that processes can only vote for their cur-
rent round and the round number monotonically increases. Therefore, to reach a quorum
of JOIN(r) (which is imperative to generate PRECOMMIT(r)), PRECOMMIT(r′) must
exists.

– Property 3a: This property doesn’t hold (and not needed) for HotStuff.

• Property 4: Assume by contradiction that commit(r) occurred along with the other two
linearization points of add . Linearization point of commit(r) exists because of a quorum
of COMMIT_VOTE(r) messages sent by a set of processes P1, and add(r′, _, r′′) exists
because of a quorum of JOIN(r′) messages sent by a set of processes P2. All the correct
processes in P1 must updated their votedNode with a node whose round is r when they
sent COMMIT_VOTE(r) message. But also, all the correct processes in P2 must have a
votedNode whose round number is less than or equal to r′′ by the predicates in the def-
inition of the JOIN(r) action. Note that none of the correct processes in P2 can send
COMMIT_VOTE(r) message anymore since their current round number is at least r′ which
is greater than r. Since P1 and P2 must have an intersecting correct process, it contradicts
the hypothesis as r′′ < r.

3.6 Raft Refines QTree

3.6.1 Description of the Protocol

Raft is a partially synchronous, multi-decree consensus protocol that is resilient to only crash-
restart failures. Each process of Raft keeps a durable log for storing the sequence of commands.

88



3.6 Raft Refines QTree

Raft has the notion of terms that does not exactly match with our round notion. For each term,
there is at most one leader that does not change throughout the term. When the current term’s
leader is suspected to fail, processes start a new leader election for a new bigger term number. The
leader might propose values for different commands (log indices) inside a term as long as it stays
alive. In order to differentiate values proposed and decided for distinct commands within a term,
we keep term-index pairs (r = (t, idx)) as rounds. We assume the usual lexicographical total
ordering on rounds.

Logs keep term-value pair at each index. Here, the first field represents the term at which this
element is created and inserted to the log and the second field represents the command offered for
this index. For each process, a prefix of the log is called decided. If it is decided, then this prefix
is supposed to be the same for a majority of process logs. Remaining parts of the logs (suffixes)
might be different among processes. Length of the uncommon suffix might be more than one and
different between processes since a leader might append multiple items to the log at once and these
new entries might arrive to a subset of processes. For each process, we keep two special indices:
didxp marks the end of the decided prefix whereas lidxp shows the last entry’s index for the log
of process p.

Raft rounds consist of a single main phase ignoring the leader election phase that does not
happen at every round. Leader election phases are only executed during term changes. The leader
election phase can be considered as the first phase of the first round of the new term.

When a process p suspects from the inactivity of the current leader, it broadcasts VOTEREQ

message to initiate the leader election phase and it becomes the candidate leader for the new term.
When a process p′ receives this message, it responds to p with a VOTERESP message if some
conditions are met. If p can get VOTERESP messages from a majority, it becomes the leader of
the new term.

• VOTEREQ Action:
This action is executed when process p times out while waiting for a message from the
leader of the term t− 1. Process p broadcasts VOTEREQ(t, lidxp) message alongside with
logp[lidxp] and updates its term termp to t.

• VOTERESP Action: This action can only be executed by processp′ after receiving some VOT-
EREQ(t, lidxp) action from the candidate leader p. With this action, p′ sends the mes-
sage VOTERESP(t, lidxp′) to p and updates its term termp′ to t if (1) it has not sent any
VOTERESP message for the term t or higher before (t ≥ termp′), and (2) (logp′ [lidxp′ ].
term, lidxp′) ≤ (logp[lidxp].term, lidxp). Second condition means that the last item
in p’s log has been proposed in a bigger or the same round than the last item in p′’s log.
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If p can collect VOTERESP messages from a majority, p becomes the leader of term t and start
proposing values. Since a process can send at most one VOTERESP message for any term, there
is at most one leader for each term.

After the leader is elected, it starts sending requests to processes to append new values to their
logs by iterating the main phase of rounds. When new commands come from clients, the leader
p first appends them to its own log with the current term, increments lidxp and then broadcasts
LOGREQ messages that include the new entries. When a process p′ receives this message, it checks
some conditions. If conditions are satisfied, it updates its didxp′ , lidxp′ and logp′ and then re-
sponds with a LOGRESP message to the leader. If the leader receives a LOGRESP message from
a majority, it confirms that the new commands became permanent in a majority of processes and
updates its didxp value.

• LOGREQ Action:
This action is executed by the leader process p of termp. If this action is not the first LO-

GREQ action of this term, the leader first checks if there is a set of LOGRESP messages
from a majority for the previous LOGREQ action. If this is the case, it updates didxp value
to lidxp and decides on the entries appended in the previous turn. Then, it appends new
entries to logp and updates lidxp so that it now points to the end of logp. As the last thing,
it broadcasts LOGREQ(t, lidxp) message with its logp and didxp.

• LOGRESP Action:
This action can be only executed by process p′ after receiving a LOGREQ message. First,
p′ checks whether termp ≥ termp′ and lidxp ≥ lidxp′ . If this is the case, it updates
termp′ , lidxp′ anddidxp′ to termp, lidxp anddidxp, respectively. Moreover, for each in-
dex i : 0 ≤ i ≤ lidxp, it replaces logp′ [i]with logp[i]. Then it sends LOGRESP(t, lidxp′)
response back to the leader process p.

Even if the leaderpdoes not receive a new value from the clients for a long time, it still broadcasts
a LOGREQ message with the same logp and lidxp value as the previous LOGREQ message to signal
to other processes that it is still alive. These LOGREQ messages are called heartbeat messages.
They can only differ on didxp values since a majority quorum might send LOGRESP messages
in between two heartbeat messages that can change the didxp values. We also include heartbeat
messages in our formulation.

3.6.2 Linearization Points in Raft

Inside a term t, if the leader p receives a LOGRESP message from a majority, this quorum be-
comes a witness for the decision of entries in the log and proposal of the new entries that will be
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coming from the clients. In some sense, they correspond to VOTE and JOIN quorums of Paxos,
respectively. When the leader broadcasts a LOGREQ message first time in a new term, the wit-
ness quorum for the proposal of new entries is formed by VOTERESP messages received from
a majority. Therefore, both add and commit linearization points correspond to the LOGREQ

actions.
Assume that old_didxp to represent the didxp value before executing the LOGREQ action.

Then,

• the linearization point of add((logp[i].term, i), logp[i].value, (logp[i − 1].term, i −
1)) ⇒ OK occurs in LOGREQ action for all indices i such that lidxp ≥ i > didxp and
logp[i].term = termp. For the case i = 0, we replace the round (logp[i−1].term, i−1)
with⊥.

• the linearization point of commit((logp[i].term, i)) ⇒ OK occurs for (again during
LOGREQ action) for all indices i such that didxp ≥ i > old_didxp and logp[i].term =

termp. Note that old_didxp is not defined if LOGREQ is the first such action of termp.
Indeed, this action is not a commit linearization point in this case.

Theorem 11. Raft refines QTree.

Proof. We show that the sequence of successfuladd andcommit invocations defined by lineariza-
tion points along a Raft execution satisfies the properties in Theorem 8 but before explaining that,
we introduce two additional properties of Raft that will be used during the proofs.

(a) Consider a log of a process in a reachable Raft state. For any two indices i ≤ i′ ≤ lidx,
we have log[i].term ≤ log[i′].term.

(b) Assume that commit(r) action is generated for some r = (t, i). Now, consider the log of
a leader p for some term t′ ≥ t during this term t′. We have logp[i].term = t.

Raft’s leader election mechanism ensures that there is a unique leader that can execute LOGREQ

action and append entries to logs at any time and the term of the current leader is bigger than all
previously active terms. These ensure property (a).

During the leader election process, processes with the longest logs are the ones that received the
latest updates from the previous leader. Since LOGRESP and VOTERESP quorums intersect, if
there is a decided entry in one of the previous terms, the new leader has the same entry in its log
as well. This ensures property (b).

The proof of the properties for the linearization points along a Raft execution is as the follow-
ing:
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• Property 1: Consider any round r = (t, i). Leader election phase of Raft ensures that a
unique leader can execute LOGREQ actions inside the term t. Moreover, log of the leader
only grows and items in previously entered indices never change through a term. There-
fore, there is a unique add(r, _, _) linearization point for each round r. There is a unique
commit(r) linearization point due to previously mentioned properties of the leader and
didx of the leader is non-decreasing through a term.

• Property 2: Consider a commit(r) linearization point for somer = (t, i). Since commit

(r) linearization action exists, LOGREQ action a that leads to this point is not the first LO-

GREQ action of this term. Moreover, the last non-heartbeat LOGREQ action before this
one is the linearization point for add(r, _, _).

• Property 3: Consider anadd(r, v, r′) linearization point where r = (log[i].term, i) and
r′ = (log[i − 1].term, i − 1) for some i > 0. Property (a) ensures that log[i].term ≥
log[i − 1].term. Therefore r > r′ according to the lexicographical ordering we have
on rounds. Moreover, since there is an item in log[i − 1], there must be a LOGREQ ac-
tion that caused this item to be inserted into a log first time. This action must have led to
add(r, v, r′) linearization point.

– Property 3a: This property does not hold for Raft.

• Property 4: Towards a contradiction, assume that there are add(r, _, _), add(r′, _, r′′)
and commit(r, _) linearization points where r = (t, i), r′ = (t′, i′) and r′′ = (t′′, i′′).
Total ordering on rounds ensures that t′ ≥ t ≥ t′′. In terms of the second fields, the
second add linearization point ensures that i′ = i′′ + 1.

Consider the log of the leader of the term t′ that generates the second add at the state
it generated this linearization point. Since there is a commit(r, _) linearization point,
property (b) ensures that log[i].term = t. Moreover, we have log[i′].term = t′ and
log[i′′] = log[i′ − 1].term = t′′. Next, we consider different cases on i.

First of all i = i′ cannot be true. If this was the case, since t = log[i].term = log[i′].term

= t′, we would have r = r′. Therefore, we consider i > i′ as the first case. For this case,
we have t′ > t ≥ t′′. This case violates property (a) since i > i′ but term[i] = t < t′ =

term[i′].

The last case we consider is i < i′. For this case, we have t′ ≥ t > t′′. But, again prop-
erty (a) is violated since i ≤ i′′ but term[i] = t > t′′ = term[i′′].
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If we look at the proofs of our properties, the restriction we have on quorums is that LOGRESP

and VOTERESP quorums intersect. We do not need two LOGRESP or two VOTERESP quo-
rums to intersect. Therefore, different correct Raft variants can be developed with different quo-
rum sizes. For instance, if the leaders are mostly stable and the network is reliable, one can modify
the LOGRESP quorum size to a smaller value so that entries can be appended more efficiently, but
VOTERESP quorum size must be increased by the same amount to still enforce safety guarantees.

3.7 PBFT Refines QTree

The protocols discussed above are refinements of a single instance of QTree. State-machine repli-
cation protocols based Multi-decree consensus like Multi-Paxos or PBFT can be seen as composi-
tions of a number of single-decree consensus instances that run concurrently, one for each index
in a sequence of commands to agree upon, and they are refinements of a set of independent QTree
instances.

3.7.1 Description of the Protocol

PBFT is a multi-decree consensus protocol in which processes aim to agree on a sequence of val-
ues. As in HotStuff, f out of a total number of 3f+1processes might be Byzantine and quorums
are of size at least 2f + 1. To ensure authentication, messages are signed using public-key cryp-
tography. Messages sent after receiving a quorum of messages in a previous phase include that set
of messages as a certificate.

A new round r starts with the leader receiving a quorum of ROUND-CHANGE(r) messages
(like in HotStuff). Each such message from a process p includes the VOTE message with the high-
est round (similarly to the JOIN action of Paxos) that p sent in the past, for each sequence num-
ber that is not yet agreed by a quorum. For an arbitrary set of sequence numbers sn, the leader
selects the VOTE message with the highest round and broadcasts a PROPOSE(r,sn) message that
includes the same value as in the VOTE message or a value received from a client if there is no such
highest round. As mentioned above, this message also includes the VOTE messages that the leader
received as a certificate for the selection. When a process receives a PROPOSE(r,sn) message, if
r equals its current round, the process did not already acknowledge a PROPOSE(r,sn) message,
and the value proposed in this message is selected correctly w.r.t. the certificate, then it broadcasts
a JOIN(r,sn) message with the same content (this is sent to all processes not just the leader). If a
quorum of JOIN(r,sn) messages is received by a process, then it broadcasts a VOTE(r,sn) mes-
sage with the same content. If a process receives a quorum of VOTE(r,sn) messages, then the value
in this message is decided for sn. When a process sends its highest round number VOTE messages
to the leader of the next round (in ROUND-CHANGE messages), it also includes the quorum of
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JOIN messages that it received before sending the VOTE, as a certificate. You can find the detailed
description below:

In the first phase, the leader broadcasts a PROPOSE message to all the processes with a value
by executing the PROPOSE action below. This value can be a value sent by a client (whose mod-
eling we omit for simplicity) or it can be obtained from processes’ ROUND-CHANGE messages
that started this round. Processes accept this proposal with broadcasting a JOIN message if some
conditions are met, executing a JOIN action below:

• PROPOSE Action:
When a proposer p who is the leader of the new round r, receives a quorum of ROUND-

CHANGE(r) with certificates, it selects the valid (contains quorum of matching JOIN along-
side) VOTE with the highest round for some available sequence number sn and propose
its value by broadcasting a new PROPOSE(r, sn) for the current round r. If there is no
such highest round, then p selects the proposed value randomly simulating the value com-
ing from the client. The proposer p also sends the set of VOTE messages included in the
ROUND-CHANGE(r) messages it received, to prove that it selected a valid VOTE with the
highest round.

• JOIN Action:
When a processor p′ receives some number of PROPOSE with its current round, it can
only act to one of them if their sequence numbers are the same. During a round, if p′ didn’t
see any PROPOSE with the same sequence number, then it checks whether the proposers
selection is correct. After validating that proposer p selected the VOTE with the highest
round, p′ broadcasts JOIN(r, sn) to all processes using the same content.

If a process receives a quorum of JOIN messages, the second phase starts. The processes broad-
cast a VOTE message, executing VOTE action. Then if a process receives a quorum of VOTE

messages, the proposed value becomes decided for this process (and sent to the client) during the
execution of DECIDE action.

• VOTE Action:
When a process p′ receives a PROPOSE and a quorum of JOIN with its current round
and the same sequence number, it broadcasts a VOTE(r, sn) to all processes using the same
values.

• DECIDE Action:
When a process p′ receives a PROPOSE and quorums of JOIN and VOTE with its current
round and the same sequence number, it updates a local variable decidedV al[sn]with the
value that it received for the order. This assignment means that the value is decided for the
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order sn and sent to the client. Since there may be f Byzantine processes, the client accept
the decision if it receives f + 1 of the same decided value for the same sequence number.

If timeout is reached for a process, ROUND-CHANGE action will be executed.

• ROUND-CHANGE Action:
When the timeout is reached, a process p′ sends a ROUND-CAHNGE(r) to the proposer
of the next round. Additionally, for all the sequence numbers which are not decided by
a quorum yet, if p′ sent VOTE for some of these sequence numbers before, then p′ sends
the one with the highest round for each of these sequence numbers. The process p′ sends
them as a certificate which consists of VOTE, the matching PROPOSE and the quorum of
JOIN that it received. Finally, the process p′ increments its round number.

3.7.2 Linearization Points in PBFT

PBFT is a refinement of a set of independent QTree instances, one for each sequence number.
The linearization points will refer to a specific instance identified using a sequence number, e.g.,
sn.add(r, v, r′) denotes an add(r, v, r′) invocation on the QTree instance sn. Therefore,

• the linearization point of sn.add(r, v, r′) ⇒ OK occurs the first time when a process p
sends a VOTE(r, sn) message, assuming that p is “honest”, i.e., it already received a quorum
of JOIN(r, sn) messages with the same content. v is the value of the VOTE(r′, sn) message
that is included in the PROPOSE(r,sn) message (it is possible that r′ = 0 and v is selected
randomly).

• the linearization point of sn.commit(r) ⇒ OK occurs the first time when a process p
decides value v for sn, assuming that p is “honest”, i.e., it already received a quorum of
JOIN(r, sn), resp., VOTE(r, sn), messages with the same content.

We illustrate the mapping between protocol steps and QTree steps using the PBFT execution
for sequence number 1 in Figure 3.3 (PBFT). The corresponding QTree execution is given just
above. Therefore:

• The leader p1 of round 1 starts the round by broadcasting a PROPOSE(1) message where v1 is
selected randomly; p1, p2 and p3 acknowledge the proposal by broadcasting JOIN messages.
Now only p2 broadcasts VOTE(1, 1, v1) message after recieveing a quorum of JOIN. In this
step, the linearization point of 1.add(1, v1, 0) occurs and it is simulated in QTree with an in-
vocation that adds node n1 with status ADDED.

• When p1, p2 and p4 becomes active, they send ROUND-CHANGE messages to the leader of
round 2 which is p2. Here, since p2 is already voted for this sequence number, it sends its vote
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Figure 3.3: Top: QTree - Explaining the behavior of add and commit methods. Colors should be inter-
preted as in Figure 3.1
Bottom: PBFT - A PBFT execution (for sequence number 1) simulated by the QTree execution above.
We abbreviate types of messages with their first letter, e.g., ROUND-CHANGE with R, and payloads are
given in parenthesis. Concerning the vertical lines, colors should be interpreted as in Figure 3.2

.

alongside ROUND-CHANGE, others send empty payloads. Thenp2 starts round 2 with sending
PROPOSE by selecting v1 as the value of the highest voted round. But due to some connection
loss, no more progress can be done in round 2 as the next quorum is not achieved (there is 1
missing message).

• After that p2 crashes and so, p1, p3 and p4 send ROUND-CHANGE messages with empty pay-
loads as they haven’t voted yet. Hence, p3 (which is the leader of the round 3) selects a random
value v2 and broadcasts PROPOSE message for round 3. Later in the same round, p1, p3 and p4
continue by sending JOIN and VOTE messages to the leader of the round. Here, the lineariza-
tion point of 1.add(3, v2, 0) occurs and it is simulated with a QTree invocation that results in
changing the status of n1 to GHOST and adding a new node n3 with status ADDED

• Process p2 becomes active again and since it receives a quorum of JOIN messages in round 2
by sending one final message to itself (which is the current round of p2), p2 broadcasts VOTE

message. At this point, the linearization point of 1.add(2, v1, 1) occurs and it is simulated by
the QTree invocation that adds node n2 with status GHOST.

• Finally, as a quorum of VOTE messages is received, p3 decides on v2 and this changes the status
of n3 to COMMITTED due to the occurrence of the linearization point of commit(3).
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Our main correctness theorem for PBFT is as follows:

Theorem 12. PBFT refines a composition of independent QTree instances.

Proof. A protocol refines a set of QTree instances identified using sequence numbers when it
satisfies Properties 1-4 in Theorem 8 for each sequence number, e.g., Property 1 becomes for every
sn and every r, a protocol execution contains a linearization point for at most one invocation
sn.add(r, _, _)⇒ OK and at most one invocation sn.commit(r)⇒ OK .

We show that the sequence of successful add and commit invocations on a QTree instance sn
defined by linearization points along a PBFT execution satisfies the properties in Theorem 8 and
therefore, it represents a correct QTree execution:

• Property 1: By the definition of JOIN action, a correct process can only send a JOIN(r,
sn) message if this process has not sent a JOIN message for the same round and sequence
number yet. Hence, there can be at most 1 quorum (2f+1) of JOIN messages with the same
sequence number and round since any two quorums must intersect with a correct process.
This implies that the linearization point of sn.add(r, _, _) will occur at most once for a
round r with the same sequence number sn. Therefore, a correct process can only vote for
a single propose in a round and only 1 proposal can be decided each round. Thus, at most
one linearization point of sn.commit(r) can occur for a round r with the same sequence
number sn.

• Property 2: This holds trivially as there won’t be a quorum of VOTE(r, sn) messages
without a VOTE(r, sn) from an honest process since there is no quorum of JOIN(r, sn)
messages.

• Property 3: By the definition of PROPOSE action, proposer selects a highest vote round
number r′ from a quorum of ROUND-CHANGE(r) messages that it receives for each se-
quence number, before broadcasting a PROPOSE(r, sn) message. Since all processes also
send the quorum of JOIN messages that they receive as a certificate for each VOTE that
they send in their ROUND-CHANGE messages, a correct proposer can validate VOTE mes-
sages. If the proposer is faulty, it may select a non-existing vote but correct processes do
not proceed with the current proposal since it is not valid. If correct processes can progress
with the current proposal where there is a highest vote round number r′ > 0 selected by
the proposer, and one of the processes sends a VOTE(r, sn), then there must be a VOTE(r′,
sn) message. Hence, if the linearization point of sn.add(r, _, r′) occurs in PBFT where
r′ ̸= 0, then it is preceded by sn.add(r′, _, _).

– Property 3a: If the proposer is correct, it must propose the same value with the vote
that is selected from a quorum of ROUND-CHANGE messages by definition. Else if
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the proposer omit the definition and send a different value, correct processes do not
accept the current proposal and the quorum will not be formed.Therefore, when the
linearization point of both sn.add(r, v, r′) and sn.add(r′, v′, _) occur in a PBFT
execution, v = v ′.

• Property 4: Assume by contradiction that sn.commit(r) occurred along with the other
two linearization points of add . The linearization point of sn.commit(r) occurs because
of a quorum of VOTE(r, sn) messages sent by a set of processes P1, and sn.add(r′, _, r′′)
occurs because of a quorum of JOIN(r′, sn) messages sent by a set of processesP2. All the
correct processes in P1 must send VOTE(r, sn) messages to the leader of the next round
therefore they must send VOTE(r1, sn) to the leader of round r′ where r ≤ r1 < r′. But
sn.add(r′, _, r′′) shows that during round r′, quorum of JOIN(r′, sn) messages could
be sent because all the correct processes in P2 accepts that VOTE(r′′, sn) is the message
with the highest round (in ROUND-CHANGE(r′) messages). Since P1 and P2 must have a
an intersecting correct process and r′′ < r1, it is a contradiction.

3.8 Multi-Paxos (and its variants) Refines QTree

3.8.1 Description of the Protocol

Multi-Paxos runs a single-decree protocol instance like Paxos concurrently for each sequence num-
ber. Since Single-decree Paxos decides on one value, the easy way to agree on sequence of numbers
would be to run Paxos multiple times for each sequence number. Multi-Paxos is more efficient
version of such an approach. The main optimization in Multi-Paxos is to skip the first phase in
Single-decree Paxos and not start a new round when the leader is stable. In other words, after the
proposer updates decidedV al with some decided value for sequence number sn in round r, it
will directly propose some value for sn+1 in r. When the leader crashes, the next leader starts the
round as Single-Decree Paxos but as an optimization, it sends a single START message for each
sequence number simultaneously. Then processes send JOIN responses alongside with the high-
est voted rounds and values for each sequence number. The leader will continue with proposals
one by one by selecting highest votes if there exist.

In the first phase, the leader broadcasts a generic START message to all the processes to start
the round, executing the START action below, and processes acknowledge with a JOIN message
if some conditions are met, executing the JOIN action below:
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• START Action:
The leader p of round r > 0 (the proposer) broadcasts a START(r) message to all pro-
cesses, waiting their highest votes for each sequence number sn.

• JOIN Action:
When a processp′ receives a START(r) message, ifp′ has not sent a JOIN or VOTE message
(explained below) for a higher round in the past, it replies by sending a JOIN(r) message
to the proposer. This message includes maximum round numbers (maxVotedRound )
of all sequence numbers for which p′ has sent a VOTE message in the past and the value
(maxVotedValue) proposed in that round. For each sequence number that it has not
voted yet, these fields are 0 and⊥.

If the leader receives JOIN messages from a quorum of processes, the second phase starts. The
leader broadcasts PROPOSE message for the next sequence number, executing the PROPOSE

action below. Processes may acknowledge with a VOTE message if some conditions are met, exe-
cuting a VOTE action. If the leader receives VOTE messages from a quorum of processes, then the
proposed value becomes decided (and sent to the client) by executing a DECIDE action. When
the leader decides on some value for sequence number sn without any failure in round r, the
leader continues with PROPOSE action for sn+ 1 in r. Otherwise a new round is inititated:

• PROPOSE Action:
When the proposer p receives JOIN(r) messages from a quorum of (f + 1) processes,
it selects the one with the highest vote round number for the current sequence number
and proposes its value by broadcasting a PROPOSE(r, sn) message (which includes that
value). If there is no such highest round (all vote rounds are 0), then the proposer selects the
proposed value randomly simulating the value coming from the client (whose modeling we
omit for simplicity).

• VOTE Action:
When a process p′ receives a PROPOSE(r, sn) message, if p′ has not sent a JOIN or VOTE

message for a higher round in the past for sn, it replies by sending a VOTE(r, sn) message
to the proposer with round number r and the same sequence number sn.

• DECIDE Action:
When the proposer p receives VOTE(r, sn) messages from a quorum of processes, it up-
dates a local variable called decidedVal [sn] to be the value it has proposed in this round r

for sn. This assignment means that the value is decided and sent to the client after deciding
for all sequence number sn′ < sn.

99



3 Quorum Tree Abstractions of Consensus Protocols

Now we look at the descriptions of protocols which are variants of Multi-Paxos. The protocols
that we consider in this section are Cheap Paxos [47], Stoppable Paxos [72], Fast Paxos [65] and
Flexible Paxos [53].

Cheap Paxos is a variation of Multi-Paxos where additionally, f of the processes are idle as long
as remaining f + 1 of them are the processes that generated the quorum in the first phase and
remain alive. This optimization relies on the fact that, any leader can decide on sequence of values
as long as all the processes in a fixed quorum are active. When there is a failure in this fixed quorum,
current round ends and the new round starts after the crashed process is replaced with one of the
idle process. Since there can be at most f faulty processes, there will be always (at least) one process
which will exist in two consecutive quorums, not being idle.

Stoppable Paxos contains special stp command that can be proposed by a leader in some round
for a sequence number sn and when this proposal is decided, no more commands are executed for
sequence numbers sn′ > sn. Since this variant enables to stop the current protocol and starts a
new one using the final state, a replicated state machine can work as a sequence of stoppable state
machines.

In Multi-Paxos, when there is no vote for some sequence number sn, the leader receives the
value from the client and broadcasts to the processes. In Fast Paxos, when the first phase is skipped
as in Multi-Paxos and the leader doesn’t receive any vote for the current sequence number, the
leader informs clients to send their request directly to all processes rather than to itself. The pur-
pose of this approach is to reduce the end-to-end latency by allowing clients to send their requests
directly to the processes but not through the leader (decreasing message delay). Then the processes
send fast votes according to the request that they receive and the leader decides on a value if there
is a quorum of votes on the same value. In Fast Paxos, a quorum requires 2f +1 processes where
the number of all processes is 3f +1. When the new round starts, for each sequence number, the
leader select highest votes as listed below:

• If there is not a single vote, the leader selects the value to propose randomly.

• If there is only a single highest vote, the leader selects the value of that vote.

• If there are multiple votes, the one which is voted by f + 1 processes must be selected. If
there is no such vote even though there are multiple votes, the leader selects the value of the
proposal randomly.

Flexible Paxos is a variation of Multi-Paxos that allows different quorum sizes for first and sec-
ond phases of the protocol as long as these two quorums intersect. Since the first phase is not
executed as long as the leader is stable but the second phase is executed constantly, decreasing the
number of processes to reach to a second quorum (also increasing the number of processes to
reach to a first quorum), can increase the throughput by being capable of handling more failures.
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3.8.2 Linearization Points inMulti-Paxos (and its variants)

We instrument Multi-Paxos with linearization points of successful QTree invocations. Multi-
Paxos is a refinement of a set of QTree instances, one instance for each sequence number. The lin-
earization points will refer to a specific instance identified using a sequence number, e.g., sn.add(
r, v, r′) denotes an add(r, v, r′) invocation on the QTree instance sn. Therefore

• the linearization point of sn.add(r, v, r′)occurs when the proposer broadcasts the PROP-
OSE(r, sn) message containing value v (during the PROPOSE action in round r). v is the
value of the JOIN(r, sn) message selected by the proposer. If r′ = 0 then, v is selected
randomly.

• the linearization point of sn.commit(r) occurs when the proposer who is the leader of
the round r updates decidedV al for the sequence number sn.

Our main correctness theorem for Multi-Paxos (and its variants) is as follows:

Theorem 13. Multi-Paxos (and its variants) refines a composition of independent QTree instances.

Proof. We show that the sequence of successful add and commit invocations on a QTree in-
stance sn defined by linearization points along a Multi-Paxos execution satisfies the properties in
Theorem 8 and therefore, it represents a correct QTree execution:

• Property 1: By definition, proposers can not propose two different proposals in the same
round for the same sequence number. Since a leader can not propose for the next sequence
number before deciding on the current one and round numbers are monotonically increas-
ing when the leader is changed, the linearization point ofsn.add(r, _, _)will occur at most
once for a round r with the same sequence number sn. Therefore, processes can only vote
for a single propose with the same round and sequence number. This implies that at most
one linearization point of sn.commit(r) can occur for a round r with the same sequence
number sn.

• Property 2: This holds trivially as all the processes follow the rules of the protocol and
they need to receive a PROPOSE(r, sn) message (which can occur only after the lineariza-
tion point of sn.add(r, _, _)) from the leader of the current round to send VOTE(r, sn)
message.

• Property 3: In Multi-Paxos, leaders select the value that will be proposed for each sequence
number separately, it can be accepted as running different instances PROPOSE action of
Single-decree Paxos. Therefore, the proof will follow as the proof of Property 3 in Sec-
tion 3.4.1.2, by considering that the property holds for each sequence number sn. Note
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that, skipping first phases in a round for the next sequence numbers after the first decision
under a stable leader does not affect the proof because at the beginning of this round, the
leader has already received highest votes (if there exist) from a quorum of processes for all
sequence numbers.

– Property 3a: It holds by the proof of Property 3a in Section 3.4.1.2, by considering
it for each sn.

• Property 4: Assume by contradiction that sn.commit(r) occurred along with the other
two linearization points of add . The linearization point of sn.commit(r) occurs because
of a quorum of VOTE(r, sn) messages sent by a set of processes P1, and sn.add(r′, _, r′′)
because of a quorum of JOIN(r′) messages sent by a set of processes P2. Since P1 and P2

must have a non-empty intersection, by the definition of the JOIN action, it must be the
case that r′′ ≥ r, which contradicts the hypothesis.

Cheap Paxos and Stoppable Paxos are just restricted versions of Multi-Paxos in which indices
of sequences are independent. Therefore Multi-Paxos and both protocols refine QTree. Since the
quorums are independent from which processes are included, Multi-Paxos will work the same
with Cheap Paxos using the same processes. As a side note, in Cheap Paxos, since quorum of active
(not idle) processes and any quorum decided a value must intersect, these values will be propagated
the next rounds without any problem. In Stoppable Paxos, a decided value for a sequence number
cannot turn into undecided or change its value due to a decided stp value in another sequence
number. Decided stp value can only prevent execution on a higher sequence number. Since both
Multi-Paxos and Stoppable Paxos progress the same until a stp command is executed, Multi-Paxos
and therefore Stoppable Paxos refine a set of QTree instances.

In Fast Paxos, when the processes receive request directly from the clients and propose accord-
ingly, there can be multiple proposals due to network which are not proposed by the leader. There-
fore we need to redefine the linearization points for Fast Paxos:

• the linearization point of sn.add(r, v, r′) occurs when the leader broadcasts the PROPO-
SE(r, sn) message containing value v (during the PROPOSE action in round r). v is the
value of the JOIN(r, sn) message selected by the proposer. If r′ = 0 then v is selected
randomly. If the proposer is not the leader, then sn.add(r, v, r′) occurs when the leader
of the round r updates decidedV al with value v fo sequence number sn, after obtaining
a quorum of votes for v. Note that r′ = 0 and v is selected randomly as no highest vote
seen by the leader, for the sequence number sn.
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• the linearization point of sn.commit(r) occurs when the proposer who is the leader of
the round r updates decidedV al with value v fo sequence number sn.

Simply, when the processes receive the proposal from the client directly, the linearization point
of sn.add(r, v, r′) occurs at the same time with sn.commit(r) (if it is added) according to the
definition of sn.commit(r). This is also intuitive and shows how this protocol received his name.
Properties still hold because it is ensured that there was no vote beforehand for current sequence
number if the request is directly received from the client and votes from these rounds are not
considered when a new round starts:

• Property 1: Property 1 in Multi-Paxos holds. Additionally, when the proposal is directly
received from the client, as there can be only 1 quorum of fast votes for this proposal in the
same round, there can be at most one linearization point of sn.add(r, _, _) and at most
one linearization point of sn.commit(r).

• Property 2: It holds by the proof of Property 2 in Multi-Paxos.

• Property 3: It holds by the proof of Property 3 in Multi-Paxos. When the linearization
point of sn.add(r, _, _) occurs after the proposal that is received by a process directly from
the client, since r′ = 0, this property is not considered.

– Property 3a: It holds by the proof of Property 3a in Multi-Paxos. Again, when the
linearization point of sn.add(r, _, _) occurs after the proposal that is received by a
process directly from the client, since r′ = 0, this property is not considered.

• Property 4: Assume by contradiction that sn.commit(r) occurred along with the other
two linearization points of add . The linearization point of sn.commit(r) occurs because
of a quorum of VOTE(r) messages sent by a set of processes P1, and sn.add(r′, _, r′′)
exists because:

– There was only one value in highest votes for sn (which is voted in round r′) in
JOIN(r′) messages sent by a set of processes P2 or

– There were multiple values in highest votes (which are voted in round r′) but one of
them is voted by at least f + 1 of the processes in P2.

In both cases, since P1 and P2 must have f + 1 processes intersecting, by the definition of
the JOIN action, it must be the case that r′′ ≥ r, which contradicts the hypothesis.

Flexible Paxos refines QTree as the proof of properties perfectly fit for this protocol, without a
modification on linearization points. In proof of properties for Multi-Paxos, the only two quo-
rum that we are interested on their intersection is quorums from first and second phases (quorum
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of JOIN and VOTE respectively, used in Property 4). Therefore, changing their sizes as long as
they intersect doesn’t affect the proof and the proof for Multi-Paxos holds as it is for Flexible
Paxos.

3.9 RelatedWork

The problem of proving the correctness of such protocols has been studied in previous work.
We give an overview of the existing approaches that starts with safety proof methods based on
refinement, which are closer to our approach.
Refinement based safety proofs. Verdi [100] is a framework for implementing and verifying
distributed systems that contains formalizations of various network semantics and failure models.
Verdi provides system transformers useful for refining high-level specifications to concrete imple-
mentations. As a case study, it includes a fully-mechanized correctness proof of Raft [102]. This
proof consists of 45000 lines of proof code (manual annotations) in the Coq language for a 5000
lines RAFT implementation, showing the difficulty of reasoning on consensus protocols and the
manual effort required. Iron Fleet [49] uses TLA [66] style transition-system specifications and
refine them to low-level implementations described in the Dafny programming language [69].

Boichat et al. [9] defines a class of specifications for consensus protocols, which are more abstract
than QTree and can make correctness proofs harder. Proving Paxos in their case is reduced to
a linearizability proof towards an abstract specification, which is quite complex because the lin-
earization points are not fixed. As a possibly superficial quantitative measure, their Paxos proof
reduces to 7 lemmas that are formalized by Garcia-Perez et al. [36, 37] in 12 pages (see Appendix
B and C in [37]), much more than our QTree proof. Our refinement proof is also similar to a lin-
earizability proof, but the linearization points in our case are fixed (do not depend on the future
of an execution) which brings more simplicity. In principle, the specifications in [9] could apply
to more protocols, but we are not aware of such a case. The inductive sequentialization proof
rule [63] is used for a fully mechanized correctness proof of a realistic Paxos implementation. This
implementation is proved to be a refinement of a sequential program whose definition is quite
close to the original implementation, much less abstract than QTree, and relies on commutativity
arguments implied by the communication-closed round structure [27]. A similar idea is explored
in [38], but in a more restricted context.
Inductive invariant based safety proofs. Ivy [79] is an SMT-based safety verification tool that
can be used for verifying inductive invariants about global states of a distributed protocol. In
order to stay in a decidable fragment of first-order logic, both the modeling and the specification
language of IVY are restricted. A simple model of Paxos obeying these restrictions is proven correct
in [78].
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Beyond safety. The TLA+ infrastructure [66] of Lamport has been used to verify both safety
and liveness (termination) of several variations of Paxos, e.g., Fast Paxos [65] or Multi-Paxos [18].

Bravo et al. [11] introduce a generic synchronization mechanism for round changes, called the view
synchronizer, which guarantees liveness for various Byzantine consensus protocols including our
cases studies HotStuff and PBFT. This work includes full correctness proofs for single-decree ver-
sions of HotStuff and PBFT and a two-phase version of HotStuff. PSync [26] provides a partially
synchronous semantics for distributed protocols assuming communication-closed rounds in the
Heard-Of model [20]. PSync is used to prove both safety and liveness of a Paxos-like consensus
protocol called lastVoting.
Relating different consensus protocols. Lamport defines a series of refinements of Paxos that
leads to a Byzantine fault tolerant version, which is refined by PBFT [64]. Our proof that Paxos
refines QTree can be easily extended to this Byzantine fault tolerant version in the same manner
as we did for PBFT. Wang et al. [98] shows that a variation of RAFT is a refinement of Paxos,
which enables porting some Paxos optimizations to RAFT. Renesse et al. [86] compare Paxos,
Viewstamped Replication [77] and ZAB [58]. They define a rooted tree of specifications repre-
sented in TLA style whose leaves are concrete protocols. Each node in this tree is refined by its
children. Common ancestors of concrete protocols show similarities whereas conflicting specifi-
cations show the differences. Similarly, [91] shows that Paxos, Chandra-Toueg [19] and Ben-Or [7]

consensus algorithms share common building blocks. Aublin et al. [6] propose an abstract data
type for specifying existing and possible future consensus protocols. Unlike our QTree, core com-
ponents of this data type are not implemented and intentionally left abstract so that it can adapt
to different network and process failure models.
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In this dissertation, we explored different approaches to improve reliability of concurrent data
structures built either on top of shared memory or message passing. We provided several algo-
rithms for finding and fixing linearizability violations in shared-memory concurrent data struc-
tures. For discovering these violations more efficiently, we proposed several stateful model check-
ing algorithms based on POR that focus on overall time performance. Next, we offered a novel
approach for root causing the lineraziability violations by suggesting repairs in the form of atomic
code segments in the source code of the library that allow for maximum concurrency. Then we
turned our direction to distributed systems, specifically to consensus protocols, and we proposed
a uniform abstraction called QTree for showing that various types of protocols are safe. Looking
at these contributions in more detail:

• Section 2.2 presents three stateful POR algorithms: one basic static algorithm named S-
POR, and two novel algorithms that compute the recently proposed source sets dynami-
cally, called DE-S-POR and DL-S-POR which are built on top of S-POR. Our algorithms
focus on overall performance instead of theoretical optimality. To evaluate, we compared
them with (1) their variations that are built on top of the standard setup of JPF, (2) O-
DPOR (stateful version of Source-DPOR in [3]) and (3) their stateless variations. We
showed that even though DL-S-POR is not an optimal algorithm, it outperforms all the
other algorithms when there is high potential for reduction and otherwise, S-POR is faster
due to its simple nature which suggest running both algorithms in parallel in the context
of a portfolio model checker. Then we also examined how the enumeration of transitions
affects the performance of DL-S-POR and S-POR for finding bugs and we concluded that
selecting the next transition uniformly at random is better in average but if there is enough
parallelism, then using a portfolio model checker where there will be parallel runs for each
permutation of thread ids would outperform another portfolio model checker based on
randomization with different seeds.

• Section 2.3 presents a novel technique for root-causing linearizability violations by identi-
fying minimal code blocks, called optimal repairs, that must be executed without any in-
terference from other threads in order to eliminate those violations. We showed that the
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algorithm for identifying optimal repairs works in polynomial time when the number of
threads is fixed. We define an heuristic to select the best optimal repairs from many candi-
dates. To check the efficacy of our approach, we generated non-linearizable variations for
several lock-based libraries by shrinking their atomic sections and showed that the obtained
results as optimal repairs are precise as they mostly cover the positions of original locks.

• Chapter 3 describes a new methodology for proving safety of consensus or state-machine
replication protocols, which relies on a novel abstraction of their dynamics. This abstrac-
tion is defined as a sequential QTree object whose state represents a global view of a protocol
execution and its operations correspond to some process doing a step that witnesses for the
receipt a quorum of messages. These operations of QTree construct a tree structure and
model agreement on values or a sequence of state-machine commands as agreement on a
fixed branch in the tree. Our methodology applies uniformly to a range of protocols and
the ones considered in this chapter can be grouped in three classes: single-decree consensus
(Paxos), multi-decree consensus (PBFT, Multi-Paxos) and state machine replication (Raft,
HotStuff)1. We showed that they all refine QTree: a single instance for Paxos and HotStuff,
and a set of independent instances (one for each sequence number in a command log) for
PBFT, Multi-Paxos, and Raft. We believe that this QTree helps in improving the under-
standing of such protocols and writing correct implementations or optimizations thereof.

4.1 FutureWork

The results in this thesis suggest several possible directions for future work:

• Chapter 2 assumes that programs run under sequential consistency. Modern processors
or programming languages work under weak memory models such as TSO, and extending
these algorithms to cover such semantics is a possible avenue for further research.

• In Section 2.2, we compared stateful POR algorithms with stateless ones and stateful ver-
sions of the algorithms outperform their stateless variations in terms of time. This happens
in the context of a tradeoff between space and time, since stateful versions consume much
less memory. One possible direction for future work is investigating ”hybrid” algorithms
that are in between stateless and stateful model checking to find a sweet-spot where the
overall gain is maximized.

• Moreover, our POR algorithms are defined in the context of explicit-state model checking.
Evaluating their variations in the context of symbolic model checking where sets of states

1This is a slight abuse of terminology since multi-decree consensus protocols are typically used to implement state
machine replication.
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are maintained symbolically and not in an explicit manner is an interesting direction to
investigate.

• In Section 2.3, we are describing an independent component for searching execution elimi-
nators where the inputs are non-linearizable executions of some client of the data structure.
This relies on running the model checker first to identify the non-linearizable executions
and then, apply this component. We would like to investigate whether merging the two
can improve overall performance.

• In Chapter 3, we presented QTree for proving that consensus protocols such as Paxos are
safe. As future work, we might explore the use of QTree in reasoning about liveness. This
would require some fairness condition on infinite sequences of add/commit invocations,
and a suitable notion of refinement which ensures that infinite sequences of protocol steps
cannot be mapped to infinite sequences of stuttering QTree steps.

• Most of the consensus protocols (also the ones considered in this dissertation) behave in
a sequence of ordered rounds. There are however protocols such as Texel [85] which do
not admit such a decomposition in rounds. An interesting direction for future work is to
investigate whether QTree applies or can be extended to protocols without the concept of
rounds. Another such assumption of these protocols is that the rounds are communication-
closed and again checking protocols that do not assume it can be an interesting direction
to explore.
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