
HAL Id: tel-04266339
https://theses.hal.science/tel-04266339

Submitted on 31 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning goal-oriented agents with limited supervision
Lina Mezghani

To cite this version:
Lina Mezghani. Learning goal-oriented agents with limited supervision. Artificial Intelligence [cs.AI].
Université Grenoble Alpes [2020-..], 2023. English. �NNT : 2023GRALM032�. �tel-04266339�

https://theses.hal.science/tel-04266339
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ GRENOBLE ALPES

École doctorale : MSTII - Mathématiques, Sciences et technologies de l'information, Informatique
Spécialité : Mathématiques et Informatique
Unité de recherche : Laboratoire Jean Kuntzmann

Apprentissage d'agents multi-tâches sous une supervision minimale

Learning goal-oriented agents with limited supervision

Présentée par :

Lina MEZGHANI
Direction de thèse :

Karteek ALAHARI
Chargé de recherche HDR, INRIA Centre Grenoble-Rhône-Alpes

Directeur de thèse

Piotr BOJANOWSKI
Ingénieur docteur, Meta AI

Co-encadrant de thèse

Rapporteurs :
ABHINAV GUPTA
Full professor, Carnegie Mellon University
OLIVIER SIGAUD
Professeur des Universités, SORBONNE UNIVERSITE

Thèse soutenue publiquement le 3 juillet 2023, devant le jury composé de :
KARTEEK ALAHARI
Chargé de recherche HDR, INRIA CENTRE GRENOBLE-RHONE-
ALPES

Directeur de thèse

ABHINAV GUPTA
Full professor, Carnegie Mellon University

Président

OLIVIER SIGAUD
Professeur des Universités, SORBONNE UNIVERSITE

Rapporteur

PIERRE-YVES OUDEYER
Directeur de recherche, INRIA CENTRE BORDEAUX SUD-OUEST

Examinateur

ANNE SPALANZANI
Professeur des Universités, UNIVERSITE GRENOBLE ALPES

Examinatrice

Invités :
PIOTR BOJANOWSKI
Ingénieur docteur, Meta AI
SAINBAYAR SUKHBAATAR
Ingénieur docteur, Meta AI

i

Abstract

The development of intelligent agents has seen significant progress in the last
decade, showing impressive capabilities in various tasks, such as video games or
robot navigation. These advances were made possible by the advent of deep re-
inforcement learning (RL), which allows to train neural network-based policies,
through interaction of the agent with its environment. However, in practice, the
implementation of such agents requires significant human intervention and prior
knowledge on the task at hand, which can be seen as forms of supervision. In this
thesis, we tackle three different aspects of supervision in RL, and propose methods
to reduce the amount of human intervention required to train agents.

We first investigate the impact of supervision on the choice of observations seen by
the agent. In robot navigation for example, the modalities of the environment ob-
served by the agent are an important design choice that can have a significant impact
on the difficulty of the task. To tackle this question, we focus on image-goal naviga-
tion in photo-realistic environments, and propose a method for learning to navigate
from raw visual inputs, i.e., without relying on depth or position information.

Second, we target the problem of reward supervision in RL. Standard RL algorithms
rely on the availability of a well-shaped reward function to solve a specific task.
However, the design of such functions is often a difficult and time-consuming pro-
cess, which requires prior knowledge on the task and environment. This limits the
scalability and generalization capabilities of the designed approaches. To address
this issue, we tackle the problem of learning state-reaching policies without reward
supervision, and design methods that leverage intrinsic reward functions to learn
such policies.

Finally, we study the problem of learning agents offline, from pre-collected demon-
strations, and question the availability of such data. Collecting expert trajectories is
often a difficult and time-consuming process, which can be more difficult than the
downstream task itself. Offline algorithms should therefore rely on existing data,
and we propose a method for learning goal-conditioned agents from tutorial videos,
which contains expert demonstrations aligned with natural language captions.

iii

Contents

1 Introduction 1
1.1 Context and Scope . 1
1.2 Goals and Challenges . 3
1.3 Outline and Contributions . 4

1.3.1 Navigation and planning from pixels 5
1.3.2 Learning state-reaching policies without supervision 6
1.3.3 Leveraging offline datasets for learning goal-conditioned agents 7

1.4 List of publications and softwares . 9

2 Background 11
2.1 Reinforcement Learning . 11

2.1.1 Online, Off-Policy, and Offline RL 12
2.1.2 Unsupervised RL . 13
2.1.3 Goal-conditioned RL . 16

2.2 Tasks and Environments . 18
2.2.1 Navigation in Maze-based Environments 18
2.2.2 Continuous control tasks . 20

3 Learning to Navigate from Pixels 23
3.1 Introduction . 23
3.2 Related Work . 25
3.3 Image-Goal Navigation . 27
3.4 Memory-Augmented Navigation Policy 28

3.4.1 Data Augmentation . 28
3.4.2 Navigation Policy . 29
3.4.3 External Memory . 29

3.5 Experimental Results . 32
3.5.1 Implementation Details . 32
3.5.2 Comparison with the state of the art 33
3.5.3 Ablation Study and Analysis . 35
3.5.4 Impact of a Long-Term Memory 37
3.5.5 Qualitative Visualizations . 38

3.6 Conclusion . 39

iv

4 Image-Goal Navigation without Supervision 41
4.1 Introduction . 41
4.2 Related Work . 43
4.3 Image-Goal Navigation without External Rewards 45
4.4 A three-stage approach to Unsupervised Image-Goal Navigation . . . 45

4.4.1 Stage 1: Visual representation of the environment 45
4.4.2 Stage 2: Learning to Explore . 46
4.4.3 Stage 3: Learning to Navigate . 47

4.5 Experimental Evaluation . 49
4.5.1 The Gibson Dataset . 49
4.5.2 Implementation Details . 49
4.5.3 Main Results . 50
4.5.4 Analysis of Exploration . 53

4.6 Conclusion . 55

5 Discovering and Reaching Goals Autonomously 57
5.1 Introduction . 58
5.2 Related Work . 59
5.3 Problem Formulation . 60
5.4 Method . 60

5.4.1 Reachability Network . 61
5.4.2 Goal Memory . 62
5.4.3 Distance function for policy training 63

5.5 Experiments . 64
5.5.1 Maze environment . 64
5.5.2 Pusher Task . 66

5.6 Conclusion . 69

6 Learning State-Reaching Policies Offline 71
6.1 Introduction . 72
6.2 Related Work . 73
6.3 Preliminaries . 74
6.4 Self-Supervised Reward Shaping . 74

6.4.1 Reachability network . 75
6.4.2 Directed graph . 76
6.4.3 Distance function for policy training 77
6.4.4 Policy training . 79

6.5 Experiments . 80
6.5.1 Environments & data collection 80
6.5.2 Ablation & design choices . 81
6.5.3 Comparison to prior work . 82

6.6 Conclusion . 85

v

7 Using Text as Supervision for Language-Conditioned Agents 87
7.1 Introduction . 88
7.2 Related Work . 89
7.3 Learning Language-Conditioned Agent Offline 91
7.4 Transformer-based model for unifying actions and language reasoning 92

7.4.1 Unifying actions and language reasoning 92
7.4.2 Auto-regressive transformer for generating both language and

actions . 93
7.5 Experiments . 94

7.5.1 Data generation in BabyAI . 94
7.5.2 Training details . 95
7.5.3 Comparison to caption-free Baselines 96
7.5.4 Highlighting the role of captions 97
7.5.5 Importance of positional encoding 97

7.6 Conclusion . 98

8 Conclusion 99
8.1 Summary of contributions . 99
8.2 Perspectives for future work . 100

1

Chapter 1

Introduction

1.1 Context and Scope

In the last decade, the development of intelligent agents has seen impressive
progress in many tasks, from beating human players in the difficult game of Go [Sil-
ver et al., 2016], to achieving complex locomotion behavior in robotics [Chaplot et al.,
2020c], to learning to play open-ended video games like MineCraft [Baker et al.,
2022]. This progress, in environments and tasks that seem dramatically dissimi-
lar at first sight, is due to the advent of a common framework that formalizes the
problem of learning agents. This formalism starts with the definition of an agent,
described in the acclaimed book “Artificial Intelligence: A Modern Approach” of
Russell and Norvig [1995], as “anything that can be viewed as perceiving its envi-
ronment through sensors and acting upon that environment through actuator”. In
the game of Go, the agent sees the current state of the board, and acts by executing
a valid move in the game. In the case of robotics, the sensors are cameras or various
types of radars, and the robot acts by moving its joints with specific motors.

Given this definition, the interaction between the agent and the environment is for-
malized in the mathematical and computational framework of reinforcement learn-
ing (RL) [Kaelbling et al., 1996]. In this paradigm, the agent can interact with the
environment over consecutive episodes, in which the time scale is divided into dis-
crete steps. During each episode, the agent sequentially interacts with the environ-
ment by performing an action in the current state, transitioning to the next state,
and receiving a reward. This reward, provided by the environment, is a scalar value
that indicates to the agent how good the action was (from a certain state) for accom-
plishing a specific task. Standard RL algorithms optimize the behavior of the agent
by maximizing the expected cumulative reward over time. The reward definition
critically influences the learned behavior of the agent. For general-purpose navigat-
ing robots, computing rewards as a function of the distance to the goal will cause a
goal-reaching behavior, while rewarding the agent for discovering novel parts of the
environment will induce an exploration behavior.

2 Chapter 1. Introduction

However, designing a reward function and training an agent for every single task
that we want to solve hinders the scalability of standard RL methods. In many
applications, it can indeed be desirable to develop multi-purpose agents, that are
prompted to perform various tasks, and are able to execute multiple behaviors. In
that respect, goal-oriented (or goal-conditioned) RL [Kaelbling, 1993] focuses on learn-
ing agents that act towards a given goal. At the beginning of each episode, the agent
is given a goal information, and needs to perform actions in order to achieve it. The
reward function here is defined as a function of the distance to the goal, or as an
indicator upon reach. This goal can be given in different ways, such as a textual
description [Chevalier-Boisvert et al., 2019], a visual representation [Beattie et al.,
2016], or a certain score to reach [Tassa et al., 2018]. In the case of navigating robots,
the goal can thus be given as a specific location in the environment [Wijmans et al.,
2019], or as a snapshot taken from the target location [Zhu et al., 2017], or even as an
instruction to reach a certain object [Chaplot et al., 2020a]. One advantage of goal-
oriented RL is that it allows for learning agents that can be prompted to perform
different tasks, by simply changing the goal given as input. It requires, however,
knowledge about the environment and the task at hand in order to first determine
the set of goals on which to train the agent, and then define a metric to measure the
distance to the goal, or at least, a goal-reaching function.

More generally, crafting a reward function appropriately is a key step in the develop-
ment of an agent, and requires a deep understanding of the target task, and the struc-
ture of the environment. This is particularly true since, in practice, RL algorithms
struggle to learn in cases where the reward function is sparse, that is, when nonzero
rewards occur rarely [Vecerik et al., 2017, Andrychowicz et al., 2017]. Following this,
since reward engineering requires knowledge about the task and human interven-
tion, it can be seen as a form of supervision: in the same way that images require class
labels in a supervised classification task, state-action transitions require reward la-
beling in RL. Several works, grouped under the term of unsupervised RL, propose to
overcome this problem by developing agents that can learn without any reward sig-
nal from the environment [Bellemare et al., 2016, Pathak et al., 2017, Andrychowicz
et al., 2017, Eysenbach et al., 2018]. They often rely on the idea that the agent should
learn to explore the environment in a task-agnostic manner, in order to discover
general and re-usable skills.

To sum up, designing a truly intelligent system requires to learn and reason about
the world without the intervention of explicit human supervision. Moreover, relying
on task-specific characteristics and prior environment knowledge hinders the scala-
bility and generality of the learned agents. Our main focus in this thesis, is therefore
to understand the interaction between classical RL algorithms and these forms of
supervision, as well as to design methods that do not rely on prior knowledge, a
question that we explore from the following three perspectives. We first investigate
the technical assumptions behind the design of specific tasks and environments in

1.2. Goals and Challenges 3

RL, in order to question the constraints they involve. We then study the dependence
of standard RL algorithms on the different modalities of supervision. Finally, we
propose and empirically validate methods for learning RL agents in the absence of
diverse forms of supervision.

1.2 Goals and Challenges

The goal of this thesis is to study the impact of supervision on the learning of RL
agents. We argue that there exist several forms of supervision, which intervene at
different levels of the learning pipeline, and that require various types of human
intervention and prior knowledge of the task. We focused in particular, on multi-
purpose goal-oriented agents, and on three forms of supervision, that we will detail
in this section.

Learning from less modalities. A crucial point when learning agents in the RL
framework, is the type of inputs that the agent receives, i.e., the nature of its ob-
servations. In the case of navigating robots, the most realistic choice for the ob-
servations is to use the sensors that are available on the robots, such as cameras,
radars, accelerometers, or depth sensors [Zhu et al., 2017, Chaplot et al., 2018, 2020c].
However, in practice, for simulated navigation tasks, the observations are often aug-
mented with additional modalities, such as the absolute position of the agent in the
environment [Wijmans et al., 2019, Zhao et al., 2021]. This assumption is unrealistic
as the agent does not have access to the entire map of the environment, and consti-
tutes an additional form of hand-crafted supervision. Moreover, we, as humans, are
able to navigate using only our visual sensors, and do not require to know our abso-
lute coordinates in the world. Designing truly intelligent navigating robots therefore
requires to learn from raw observations alone. More generally, for any task, the na-
ture of modalities on which to rely on is an important design choice when learning
autonomous agents.

RL without external rewards. In its original formulation, reinforcement learning
is defined as a sequential decision-making problem, where the agent consecutively
interacts with the environment by performing actions in the current state, transition-
ing to the next state, and receiving a reward. The reward function is therefore a key
component of the RL framework. Although it is assumed to be given by the envi-
ronment, it must actually be carefully engineered to capture the desired behavior of
the agent for every specific task [Tassa et al., 2018, Laskin et al., 2021]. In many cases
however, defining the reward function is impractical, time-consuming and tedious.
In goal-oriented RL, a natural choice for the reward is to define it as a function of
the distance to the goal, or as an indicator upon reach [Liu et al., 2022]. However,
in both cases, there is no easy way of computing it without prior knowledge about
the environment and the task at hand. Indeed, computing the distance to the goal

4 Chapter 1. Introduction

requires to have a notion of distance between states in the environment, which is
not always easily computable or defined. In robot navigation for instance, the dis-
tance between two locations in the environment might be tricky to implement as
the shortest path between them might not be known [Chaplot et al., 2019]. In the
second case, where the reward function is defined as an indicator upon reaching the
goal, one must assume access to such a function. If this can be assumed in some
simple, discrete cases, it is not easily computable in more complex environments,
for instance with visual observations. In visual navigation for example, when the
goal is given to the agent as an image, naively computing the distance to the goal by
calculating the Euclidean distance between images would not be meaningful [Nair
et al., 2018, Pong et al., 2020]. Moreover in that case, the rewards would occur only
at the end of the episode, which will make the reward distribution very sparse, and
thus increasing the difficulty of the problem.

Leveraging fixed datasets. In standard RL, the agent improves its policy while si-
multaneously interacting with the environment. The training process is therefore
online, as the agent uses its latest policy to collect training data, and to improve on
it. For some applications, this process can be impractical, either because the inter-
action is expensive, for example in robotics, or for safety reasons, for example in
autonomous driving, where deploying a poorly trained agent can be dangerous [Ki-
ran et al., 2021]. In a recent line of study, called offline RL [Levine et al., 2020], the
agent uses a fixed dataset of trajectories, collected beforehand, to learn its policy
without additional online interaction. This field is particularly interesting in tasks
where data can be easily collected, such as video games, or where interaction data
is already available. A major challenge of learning from offline datasets, is the fact
that the pre-collected trajectories must be representative of the environment and the
task at hand, that is, the state space must be sufficiently explored, and the behavior
of the agent must be diverse enough [Yarats et al., 2022]. The data collection process
can therefore be human-guided, by deploying specific exploration strategies, or by
directly using human-generated demonstrations. In both these cases, it constitutes
a form of supervision, and properly investigating the impact of this supervision on
the learning process constitutes an important question.

1.3 Outline and Contributions

We present a detailed background on reinforcement learning, and an overview of the
tasks and environments tackled in the manuscript in Chapter 2. We then discuss the
different contributions made as part of this PhD to the field of self-supervised learn-
ing for learning goal-conditioned agents. A schematic visualization of the structure
of the manuscript is shown in Fig. 1.1.

1.3. Outline and Contributions 5

Chapter 1
Introduction

Chapter 2
Background

Chapter 3
Learning to navigate from

pixels

Learning state-reaching policies without supervision

Chapter 4
Image-Goal navigation

without supervision

Chapter 5
Discovering & reaching

goals autonomously

Leveraging offline datasets for learning goal-conditioned agents

Chapter 6
Learning state-reaching

policies offline

Chapter 7
Using text as supervision for
language-conditioned agents

Chapter 8
Conclusion

FIGURE 1.1: Structure of the manuscript. The chapters are organized in three main parts,
corresponding to the three main contributions of the thesis. Chapter 3 tackles the prob-
lem of learning to navigate in photo-realistic environments from visual information alone,
without using position information. Then, Chapters 4 and 5 investigate ways of learning
state-reaching policies without supervision of any form. Finally, Chapters 6 and 7 propose
methods for leveraging datasets of pre-collected trajectories for learning goal-conditioned

agents.

1.3.1 Navigation and planning from pixels

Goal-oriented navigation in photo-realistic environment is one of the most
widespread task in the field of robotics [Zhu et al., 2017], as it has many applica-
tions, and is often a starting point for more complex tasks, such as visual-question
answering [Das et al., 2018], or instruction following [Hill et al., 2020]. In the task
of image-goal navigation, the agent is given a goal image, and must navigate to the
location in the environment where the image was taken from [Savinov et al., 2018a].
It requires the agent to have a good understanding of the environment, as well as de-
cent planning capabilities to move intelligently towards the goal. Most prior works,
including RL-based approaches, rely heavily on the availability of the absolute po-
sition of the agent in the environment, an assumption which is often unrealistic.
Indeed, if simulators allow for accessing such information, it is not the case for real

6 Chapter 1. Introduction

robots, that are instead only equipped with RGB cameras or depth sensors. In Chap-
ter 3, we investigate the problem of learning to navigate in real-world environments
from RGB input only, without access to position information. The main challenge of
this task is that, in the absence of such information, the agent must learn an informa-
tive representation of the environment from the RGB inputs. Our goal in Chapter 3
is therefore to present a novel method for learning to navigate in real-world envi-
ronments from RGB input, that uses self-supervised representation learning to plan
from images.

Outline. Chapter 3 presents the problem of image-goal navigation with general-
ization to unseen environments, and introduces a novel memory-augmented ap-
proach for learning to visually navigate in real-world environments. The proposed
method is based on an attention-based end-to-end model that leverages an episodic
memory to learn to navigate. We then validate our approach with extensive evalua-
tions, and show that our model establishes a new state of the art on unseen environ-
ments from the challenging Gibson dataset [Xia et al., 2018].

Publication. Chapter 3 is largely based on the publication “Memory-augmented
Reinforcement Learning for Image-Goal Navigation”, Lina Mezghani, Sainbayar
Sukhbaatar, Thibaut Lavril, Oleksandr Maksymets, Dhruv Batra, Piotr Bojanowski,
Karteek Alahari, IROS 2022 (see [Mezghani et al., 2022c]). Along with the publica-
tion, we released the image-goal navigation dataset, available at
https://github.com/facebookresearch/image-goal-nav-dataset, that contains
training and validation episodes for the task of image-goal navigation.

1.3.2 Learning state-reaching policies without supervision

The problem of image-goal navigation, tackled in Chapter 3, is a particular case
of the more general problem of learning to reach a given state in an environment,
which amounts to learning state-reaching policies. In its standard formulation, this
problem assumes access to a well-shaped reward function that informs the agent
about its distance to the goal, and makes it easy for the policy to learn the desired
goal-oriented behavior [Wijmans et al., 2019]. For navigation, it requires the ability
to compute the length of the shortest path between locations in the environment,
which can be tricky in the presence of obstacles or bottlenecks. For other types of
tasks, like locomotion or manipulation, defining such a function might not even
be feasible [Pong et al., 2020]. The first challenge that arises when learning state-
reaching policies without supervision is therefore the need to learn a distance func-
tion that can be used to shape a reward signal for the policy. Another important
challenge comes from the fact that the set of goals on which the agent is trained
might not be known in advance. For a goal-oriented agent to be truly intelligent
and autonomous, it should understand what goals are in its scope of capabilities,
and which ones would be interesting to pursue. In Chapters 4 and 5, we therefore

https://github.com/facebookresearch/image-goal-nav-dataset

1.3. Outline and Contributions 7

investigate the problem of learning state-reaching policies without supervision, and
propose methods for learning to reach states without access to well-shaped reward
or distance functions.

Outline. Chapter 4 tackles the problem of learning to visually navigate in photo-
realistic environments without any supervision, that is, from RGB input only and
without access to neither a reward function, nor a notion of distance in the envi-
ronment. We present a three-stage approach for this problem that consists in first,
learning a representation of the environment in a self-supervised fashion, then ex-
ploring the environment to build a graph over the states and then learning to navi-
gate by leveraging this graph. In Chapter 5, we extend this method to diverse tasks,
such as locomotion and manipulation, and show that our approach can be used to
learn to reach states in a variety of environments without supervision. More pre-
cisely, we propose to jointly learn the representation of the environment and the
state-reaching policy by alternating between goal-oriented trajectories and random
exploration. This process allows for fostering exploration at all stages of the train-
ing of the goal-conditioned policy, and to further improve the representation of the
environment.

Publication. Chapter 4 is based on our technical report “Learning to Visually Nav-
igate in Photorealistic Environments Without any Supervision”, Lina Mezghani, Sainba-
yar Sukhbaatar, Arthur Szlam, Armand Joulin and Piotr Bojanowski (see [Mezghani
et al., 2020]), and Chapter 5 is based on the paper “Walk the Random Walk: Learning to
Discover and Reach Goals Without Supervision”, Lina Mezghani, Sainbayar Sukhbaatar,
Piotr Bojanowski and Karteek Alahari, published at the ICLR 2022 workshop on
Agent Learning in Open-Endedness (see [Mezghani et al., 2022a]).

1.3.3 Leveraging offline datasets for learning goal-conditioned agents

An important aspect of learning agents with reinforcement learning is the ability to
interact with the environment at train time. In some cases, interacting with the envi-
ronment is not possible, or non desirable, for instance when the environment is not
accessible, or when it is unsafe. In such cases, the agent can be trained offline with
standard RL methods, using a dataset of already collected data, as shown by Yarats
et al. [2022]. However, as in traditional RL problems, the dataset needs to be labeled
with rewards for solving a specific task, a process that requires manual engineering
and prior knowledge. Chebotar et al. [2021] proposed an offline method for learning
a policy that can reach any state in the environment, without any supervision by us-
ing hindsight relabeling [Andrychowicz et al., 2017]. However, these methods suffer
from the issue of sparsity of the rewards, and therefore fail at long-horizon tasks. In
Chapters 6 and 7, we present two methods for tackling this problem by providing
dense self-supervision to the agent.

8 Chapter 1. Introduction

Outline. In Chapter 6, we show how pre-collected trajectories can be used to learn
policies that can reach any state in the environment, offline and without supervision.
For that, we perform a self-supervised representation learning stage on the environ-
ment, and then use the learned representation to shape a dense reward signal for
the goal-conditioned policy. In an orthogonal direction, we propose in Chapter 7 to
provide self-supervision to the agent by leveraging text-aligned video data, that is,
datasets of trajectories augmented with text captions. We show that leveraging this
type of offline data allows for learning language-conditioned agents, that can, given
a natural language instruction, execute a task in the environment.

Publication. Chapter 6 is largely based on the publication “Learning Goal-
Conditioned Policies Offline with Self-Supervised Reward Shaping”, Lina Mezghani, Sain-
bayar Sukhbaatar, Piotr Bojanowski, Karteek Alahari, published at CoRL 2022 (see
[Mezghani et al., 2022b]). Along with the paper, we released the code for the method
at https://github.com/facebookresearch/go-fresh. Chapter 7, for its part, is
based on the paper “Think Before You Act: Unified Policy for Interleaving Language Rea-
soning with Actions”, Lina Mezghani, Piotr Bojanowski, Karteek Alahari, and Sainba-
yar Sukhbaatar, published at the Reincarnating Reinforcement Learning Workshop
at ICLR 2023 (see [Mezghani et al., 2023]).

https://github.com/facebookresearch/go-fresh

1.4. List of publications and softwares 9

1.4 List of publications and softwares

This manuscript is based on material published in the following papers:

• Learning to Visually Navigate in Photorealistic Environments Without any Super-
vision, Lina Mezghani, Sainbayar Sukhbaatar, Arthur Szlam, Armand Joulin,
and Piotr Bojanowski, arXiv preprint arXiv:2004.04954, 2020.

• Memory-Augmented Reinforcement Learning for Image-Goal Navigation, Lina
Mezghani, Sainbayar Sukhbaatar, Thibaut Lavril, Oleksander Maksymets,
Dhruv Batra, Piotr Bojanowski, and Karteek Alahari, IROS 2022.

• Walk the Random Walk: Learning to Discover and Reach Goals Without Supervision,
Lina Mezghani, Sainbayar Sukhbaatar, Piotr Bojanowski, and Karteek Alahari,
ICLR 2022 Workshop on Agent Learning in Open-Endedness.

• Learning Goal-Conditioned Policies Offline with Self-Supervised Reward Shaping,
Lina Mezghani, Sainbayar Sukhbaatar, Piotr Bojanowski, Alessandro Lazaric,
and Karteek Alahari, CoRL 2022.

• Think Before You Act: Unified Policy for Interleaving Language Reasoning with
Actions, Lina Mezghani, Piotr Bojanowski, Karteek Alahari, and Sainbayar
Sukhbaatar, ICLR 2023 Workshop on Reincarnating Reinforcement Learning.

The work conducted in this thesis has led to the following softwares and datasets:

• The image-goal navigation dataset, available at:
https://github.com/facebookresearch/image-goal-nav-dataset

• Go-Fresh, the source code for the implementation of our CoRL 2022 pa-
per [Mezghani et al., 2022b], available at:
https://github.com/facebookresearch/go-fresh

https://github.com/facebookresearch/image-goal-nav-dataset
https://github.com/facebookresearch/go-fresh

11

Chapter 2

Background

Recent advances in the problem of learning agents have been driven by the devel-
opment of a common formalism that comes with its own set of tools and algorithms,
namely reinforcement learning (RL). Then, a wide range of research directions that
derive from RL have emerged, including unsupervised RL, that aims to learn ex-
ploration behavior without any external reward signal, and goal-oriented RL, which
purpose is to learn agents that can achieve a variety of goals. In this chapter, we
first provide an overview of the RL formalism, and then discuss the specificities of
unsupervised and goal-oriented RL. We also present the tasks, environments, and
the underlying challenges that are tackled in this manuscript.

2.1 Reinforcement Learning

Reinforcement learning provides a mathematical formalism for learning controllable
agents. In its standard formulation, RL addresses the problem of learning a dynam-
ical system, fully-defined by a Markov decision process (MDP). The MDP is defined
by a tupleM = 〈S ,A, P, r, γ〉, where S is the set of states s ∈ S , A is the set of ac-
tions a ∈ A, P defines a conditional probability distribution of the form P(st+1|st, at)

that describes the dynamics of the system, r : S ×A → R defines a reward function,
and γ ∈ (0, 1] is a discount factor.

In this work, we focus on the partially observed setup, where the agent does not
have access to the full state of the environment, and instead receives an observation.
Formally, the partially observed Markov decision process (POMDP) is therefore
defined as a tuple M = 〈S ,O,A, P, r, γ〉, where O is the set of observations
o ∈ O. The ultimate goal of reinforcement learning is to learn a policy π, that
defines a conditional distribution over actions, which maximizes the discounted
cumulative reward: R = ∑∞

t=0 γt rt. In the fully-observed formulation, the
policy is conditioned on the state st, while in the partially-observed formulation,
it can either be conditioned on the observation ot, or on the history of previous
observations o0:t [Parr and Russell, 1995].

12 Chapter 2. Background

Agent

Environment

Action atNext obs ot+1 Reward rt

FIGURE 2.1: Diagram of the interaction between the agent and the environment. At timestep
t, the agent receives an observation ot from the environment, selects an action at according
to its policy, and receives a reward rt and the next observation ot+1. Inspired from Sutton

[1988].

2.1.1 Online, Off-Policy, and Offline RL

Most RL algorithms are based on the following training loop, depicted in Fig. 2.1:
the agent interacts with the MDP by using its policy, observes the current obser-
vation ot, selects an action at according to its policy, and receives a reward rt, as
well as the next observation ot+1. The policy is commonly represented as a neural
network [Arulkumaran et al., 2017] with parameters θ, which is updated over the
environment interactions. There exist several ways of updating the policy given the
agent’s interactions in the environment, which make up the family of RL algorithms.
These can be divided into three main categories, as highlighted in Fig. 2.2.

Online RL. In online reinforcement learning, the policy is updated with streaming
data collected by itself, and the collected data is not reused. Common online rein-
forcement learning algorithms include the vanilla policy-gradient method [Williams,
1992] (also called REINFORCE), actor-critic methods [Mnih et al., 2016], and Proxi-
mal Policy Optimization (PPO) [Schulman et al., 2017]. Learning the policy with data
collected using the policy itself makes the training relatively stable, but also highly
data inefficient, as it requires a large number of interactions with the environment to
learn the policy.

Off-Policy RL. In contrast to online RL, off-policy RL algorithms are more efficient
as they store a buffer of past experience and can learn from it. Indeed, in the classic
off-policy setting (Fig. 2.2 (b)), the agent’s experience is appended to a data buffer D
(also called a replay buffer), and each new policy πk collects additional data, such that
D is composed of samples from π0, π1, ..., πk, and all of this data is used to train an
updated new policy πk+1. These methods therefore have better data efficiency prop-
erties than online RL algorithms. The most common off-policy RL algorithms are
temporal difference (TD) methods [Sutton, 1988], Deep Q-Networks (DQN) [Mnih
et al., 2013], Deep Deterministic Policy Gradients (DDPG) [Lillicrap et al., 2015], and
Soft Actor-Critic (SAC) [Haarnoja et al., 2018].

2.1. Reinforcement Learning 13

(a) online reinforcement learning

rollout(s)

update

rollout data

(b) off-policy reinforcement learning

rollout(s)

update

rollout data

buffer

(c) offline reinforcement learning

rollout(s)

learn

buffer

data collected once
with any policy

deployment

training phase

FIGURE 2.2: Pictorial illustration of online reinforcement learning (a), off-policy reinforce-
ment learning (b), and offline reinforcement learning (c). In online reinforcement learning
(a), the policy πk is updated with streaming data collected by πk itself. In the classic off-
policy setting (b), the agent’s experience is appended to a data buffer D (also called a replay
buffer), and each new policy πk collects additional data, such that D is composed of sam-
ples from π0, π1, ..., πk, and all of this data is used to train an updated new policy πk+1.
In contrast, offline reinforcement learning employs a dataset D collected by some (poten-
tially unknown) behavior policy πβ. The dataset is collected once, and is not altered during
training, which makes it feasible to use large previous collected datasets. The training pro-
cess does not interact with the MDP at all, and the policy is only deployed after being fully

trained. Source: Levine et al. [2020].

Offline RL. Finally, a limit case of off-policy RL is offline RL, where the agent
does not interact with the environment at all, and learns from a fixed dataset. More
precisely, offline reinforcement learning employs a dataset D fixed, and collected by
some – potentially unknown – behavior policy. The dataset is collected once, and is
not altered during training, which makes it feasible to use large previously-collected
datasets. Offline RL algorithms include Behavioral Cloning [Torabi et al., 2018],
Imitation Learning [Ho and Ermon, 2016], and more recently, Decision Trans-
former [Chen et al., 2021].

In this manuscript, we will present methods that use algorithms for all of these three
categories: DD-PPO [Wijmans et al., 2019], a Decentralized and Distributed vari-
ant of Proximal Policy Optimization (PPO) [Schulman et al., 2017], Soft-Actor Critic
(SAC) [Haarnoja et al., 2018], and Decision Transformer (DT) [Chen et al., 2021].

2.1.2 Unsupervised RL

Standard reinforcement learning methods, as mentioned so far, heavily rely on the
availability of a reward function, that associates the behavior of the agent to a nu-
merical value. In several tasks, like continuous control, crafting such a reward func-
tion is not trivial, and can be very tedious and time-consuming. In other cases, the
reward function might be too sparse in the state space, which makes it difficult for
the agent to learn a good policy. This can be the case for long-horizon tasks, when
the reward is computed as a positive value upon achieving the goal. To tackle these
problems, a new paradigm has emerged to learn policies without the need for an
external reward function, called unsupervised reinforcement learning, as it does not
rely on reward supervision. For classic RL algorithms to work in this context, the

14 Chapter 2. Background

Reachability network

Comparator
network

Embedding
network

o1

o2

o3
o4

o5

o6

o7

o8

positive

negative

a1

a2
a3 a4

a5

a6

a7

FIGURE 2.3: Left: siamese architecture of the reachability network. Right: the reachability
network is trained based on a sequence of observations that the agent encounters while
acting. The temporally close (within threshold) pairs of observations are positive examples,

while temporally far ones — negatives. Source: Savinov et al. [2018b].

agent must craft a reward function for itself, an intrinsic reward, that is used to train
the policy. Such approaches are task-agnostic, and consist in encouraging the agent
to explore the environment in different ways.

The first methods for implementing intrinsic rewards were based on the idea of state-
visitation counts [Bellemare et al., 2016, Ostrovski et al., 2017], which consists in
counting the number of times the agent has visited a given state, and encouraging
the less-visited ones. However, this approach is limited to finite state spaces, and
does not scale well to large state spaces. To cope with this problem, some approaches
rely on the idea of state-visitation entropy maximization [Hazan et al., 2019, Mutti
et al., 2021, Liu and Abbeel, 2021], which encourages the agent to visit states that
are less likely to be visited. Other methods rely on the idea of curiosity [Pathak
et al., 2017], which consists in fostering the agent to explore state-action pairs for
which it does not have a good prediction of the outcome. Additionally, a line of
research [Eysenbach et al., 2018, Lee et al., 2019, Liu and Abbeel, 2021] focuses on
learning competence-based agents, that learn a diverse set of skills. Finally, other
approaches include, among others, distilling random networks [Burda et al., 2018]
and ensemble disagreement [Sekar et al., 2020].

In a major part of this manuscript, we drew inspiration from a particular method of
unsupervised RL, presented in the paper “Episodic Curiosity Through Reachability”
[Savinov et al., 2018b], in which the authors propose an exploration method based on
a network trained with a self-supervised learning objective, namely, the Reachability
Network. This method proposes to reward the agent for reaching states that are
novel with respect to states it has previously visited, and measures novelty with the
help of the reachability network. The general idea of the reachability network is
to approximate the spatial distance between locations as the number of time steps
taken by an agent with a random policy to reach one location starting from the other.
Indeed, the expected distance covered by a random walk is the square root of the
number of time steps. Savinov et al. [2018b] use the temporal distance between

2.1. Reinforcement Learning 15

Current
observation

Current
embedding

Memory buffer

Embedding
network

Reachability
buffer

Reward
bonus

estimation
module

Reward
bonus

Append to memory if large curiosity reward

Comparator
network

FIGURE 2.4: The use of episodic curiosity (EC) module for reward bonus computation. The
module takes a current observation as input and computes a reward bonus which is higher

for novel observations. Source: Savinov et al. [2018b].

observations as a surrogate similarity measure, and craft an intrinsic reward signal
based on this measure.

More formally, the reachability network, depicted in Fig. 2.3 (Left) is represented by
a siamese neural network R : O×O → R whereO is the observation space. It takes
as input two observations, and outputs a scalar value which represents the reachabil-
ity score between these two observations. This network is trained by forming pairs
of positive and negative samples from random trajectories, as depicted in Fig. 2.3
(Right). More precisely, we let a random agent interact with the environment for T
time steps, and denote by (x1, ..., xT) the sequence of observations. We then define
a reachability label yi,j for each pair of observations (xi, xj) based on their distance
in the sequence, i.e., the label yi,j is equal to 1 if |i− j| ≤ τ, and 0 otherwise, where
τ, the reachability threshold, is a hyperparameter. The network is then trained to
predict the reachability label yi,j from the input pair (xi, xj) in a supervised fashion,
with a logistic regression loss.

Once the reachability network is trained, the agent uses it to compute an intrinsic
reward signal for each observation, as shown in Fig. 2.4. To do so, the agent stores
a set of previously encountered observations in a memory buffer. For efficiency
reasons, the memory buffer is limited in size, and the agent filters out observations
by only keeping the ones that are novel enough (as measured by the reachability
network). At every timestep, the agent compares the current observation with those
already in the memory buffer. It then aggregates this result with a given function
(such as argmax) to obtain a single reachability score, which is used to compute
the intrinsic reward signal. In this manuscript, we used several components of this
exploration strategy in our experiments.

16 Chapter 2. Background

2.1.3 Goal-conditioned RL

A specific branch of reinforcement learning studies the problem of learning a pol-
icy that is able to achieve a given goal [Kaelbling, 1993]. The formalism of goal-
conditioned RL is slightly different from the one of standard RL. The agent is given
a goal g in a goal space G at the beginning of the episode, and must learn to achieve
it. Both the policy and the reward function are therefore conditioned on the goal g.
The main challenge of goal-conditioned RL is to learn policies that are able to gener-
alize to goals unseen during training. A subclass of goal-conditioned policies, called
state-reaching policies, focuses on the specific case where the goals are represented by
observations (or states in the fully-observed case), i.e., G ⊆ O (resp. G ⊆ S). In this
case, the goal-conditioned policy is conditioned on an observation, and the goal of
the agent is to reach this observation.

Learning state-reaching policies. Several works studies the problem of learning
state-reaching policies in the supervised context [Kaelbling, 1993, Schaul et al., 2015,
Nasiriany et al., 2019], that is, assuming that the goal space is known at train
time, and that a reward function is available to guide the agent towards the goal.
However, these assumptions might not hold for every task: as pointed out in Sec-
tion 2.1.2, crafting such a reward function can be difficult, and the targeted goal
space might be unavailable at train time. Some approaches propose solutions for
generating goals automatically when training goal-conditioned policies, including
self-play [Sukhbaatar et al., 2018b,a, OpenAI et al., 2021], where an agent learns
to reach goals with an adversarial objective and a second agent proposes goals of
increasing difficulty. In the same spirit, Campero et al. [2020] presents a student-
teacher policy trained in a single module with an adversarial learning loss. These
methods assume access to a hand-crafted goal achievement function and therefore
require supervision.

Unsupervised goal-conditioned RL. Another line of research [Warde-Farley et al.,
2018, Nair et al., 2018, Péré et al., 2018, Ecoffet et al., 2019, Colas et al., 2022, Men-
donca et al., 2021] focuses on learning goal-conditioned policies in a fully unsuper-
vised setting, where the goal space is unknown at train time, and no reward func-
tion is available. There are two challenges that these methods have to overcome:
first, how to generate goals at train time, and second how to assess whether a goal
was reached or not. To tackle these challenges, Warde-Farley et al. [2018] propose
to learn a goal achievement reward function jointly with the goal-conditioned pol-
icy using a mutual information objective. In an orthogonal research direction, Nair
et al. [2018] train a variational auto-encoder and generate goals in its latent space,
while using the Euclidean distance in this space to compute a dense reward func-
tion. Pong et al. [2020] improves this approach by “skewing" the set of goals to
encourage exploration. More recently, Mendonca et al. [2021] train a model-based
agent that learns to discover novel goals with an explorer model, and reach them

2.1. Reinforcement Learning 17

FIGURE 2.5: The U-shaped UMaze environment.

with an achiever policy via imagined rollouts. Finally, Venkattaramanujam et al.
[2019] and Hartikainen et al. [2019] learn a distance function in the state space jointly
with the goal-conditioned policy. This distance function is not only used to compute
rewards for the policy, but also to sample goals in clever ways: by encouraging
far-away goals [Hartikainen et al., 2019] or by sampling goals of intermediate diffi-
culty [Venkattaramanujam et al., 2019, Colas et al., 2019].

RL with language instructions. Goal-oriented RL is not limited to the case of state-
reaching tasks, and also comprises other forms of goal specifications. In fact, defin-
ing the goal as a state can be restrictive in some cases, since the goal configura-
tion may require more than one observation to be specified. To illustrate this point,
consider a humanoid agent, whose goal is to perform a back-flip. The final obser-
vation of the agent – corresponding to the agent standing up – is not enough to
specify the desired behavior. In that respect, language instructions are an interest-
ing form of goal specification [Luketina et al., 2019, Akakzia et al., 2021], as they are
more descriptive than state-reaching goals, and can be used to specify more com-
plex and abstract behaviors. Several works [Hermann et al., 2017, Misra et al., 2017,
Chevalier-Boisvert et al., 2019, Colas et al., 2020] study this problem for diverse tasks
in a variety of environments. Moreover, working with textual information allows
for exploiting recent advances in the field of natural language processing, especially
regarding large language models (LLM) [Radford et al., 2018]. Indeed, a very re-
cent line of study proposes to use large language models on offline datasets for
decision-making tasks: Zhang et al. [2022] show that task instructions can be ef-
fectively used to pre-train offline policies and Carta et al. [2023] train an adaptive
LLM-based policy in language-grounded tasks. In an orthogonal direction, Li et al.
[2022b] show the effectiveness of LLMs on decision-making tasks, specifically on the
BabyAI [Chevalier-Boisvert et al., 2019] environment. This research direction sug-
gests that there exists an interesting synergy between reinforcement learning and
natural language processing, that can be intuitively explained by their sequential
nature.

18 Chapter 2. Background

FIGURE 2.6: Visualization of the ImageGoal Navigation task in Habitat [Savva et al., 2019].
In the original formulation, the agent gets as input an RGB image of the goal, as well as its
current observation, composed of its xy coordinates in the environment, as well as the RGB
and depth sensors. The action space is discrete, and composed of 3 actions: move forward,

turn left and turn right.

2.2 Tasks and Environments

The experimental setup studied in this thesis can be divided into two categories:
maze-based environments on which we perform navigation-like tasks, and continu-
ous control environments for manipulation tasks.

2.2.1 Navigation in Maze-based Environments

We studied three distinct navigation tasks: UMaze [Kanagawa, 2021], a continuous
agent in a U-shaped maze, navigation in Habitat [Savva et al., 2019], a simulator in
photo-realistic houses, and BabyAI [Chevalier-Boisvert et al., 2019], a multi-modal
agent for learning language-conditioned agents.

UMaze. Introduced by Kanagawa [2021], UMaze is a two-dimensional U-shaped
maze with four rooms, as shown in Fig. 2.5. The point agent starts always at the
same position, in the top left corner, and can move in the maze by performing ac-
tions in a continuous space. Here, the observations are state-based: they contain the
agent’s position, direction and velocity. The goals are defined as states, as in the
state-reaching formulation defined in Sec. 2.1.3. We generate an evaluation set of
500 goals sampled at random in the environment, and we assess the performance of
the agent by measuring the distance between its final position and the goal position.
The main challenge of this task is the fact that the exploration of the state space is
made difficult by the fixed initial position, and the presence of the three doors, that
represent bottlenecks.

Navigation in Habitat. Habitat [Savva et al., 2019] is a simulation platform for
photo-realistic environments, with a large variety of embodied tasks, including

2.2. Tasks and Environments 19

PutNextLocal Synth BossLevel

go to the red ball
pick up a blue key after you
put the purple box behind
you next to the grey ball

put the yellow box next to
the purple key

FIGURE 2.7: Three example levels for the BabyAI [Chevalier-Boisvert et al., 2019] environ-
ment.

navigation, instruction following, and visual question answering. It includes a
high-performance physics-enabled 3D simulator with support for three dimensional
scans of indoor and outdoor spaces. In this manuscript, we focused on scans from
Gibson [Xia et al., 2018], a dataset of 3D scans of indoor houses made for learning
a real-world perception for active agents. Navigation tasks can be broken down in
three categories, depending on how the goal is specified: (i) PointGoal navigation,
where the goal is specified by an xy-coordinate in the environment, (ii) ImageGoal
navigation, where the goal is specified by an image taken from the target location,
and (iii) ObjectGoal navigation, where the goal is specified by an object (with text)
and the agent must find an instance of it. We focused on the task of ImageGoal navi-
gation, depicted in Fig. 2.6. In our work, we make an important assumption that the
agent does not have access to its xy coordinates in the environment, neither to the
depth sensor. In other words, the agent gets as input its current view of the environ-
ment, through an RGB observation, as well as the image of the goal it has to navigate
to. This extra assumption aims at making the task more challenging and more realis-
tic, since knowing the exact position of the agent in the environment is unfeasible in
many scenarios, and the depth sensor is not always available on embodied robots.

In the standard setting of image-goal navigation, the initial position of the agent is
randomized, making random exploration of the environment possible. Moreover,
the action space is discrete, and composed of three actions: move forward (of 0.25
meters), turn left and turn right (10 degrees). We studied two distinct setups: in the
first one, the agent is trained and evaluated in the same house and in the second one
the agent is trained on a set of train scenes, and evaluated on a test set of unseen
scenes. For the latter setup, a standard split of the Gibson dataset [Xia et al., 2018]
consists of 72 train scenes and 14 test scenes, as used in prior works [Chaplot et al.,
2020c, 2018].

20 Chapter 2. Background

FIGURE 2.8: The Pusher environment.

BabyAI. As a third navigation task, we studied the BabyAI environ-
ment [Chevalier-Boisvert et al., 2019], a multi-modal environment for learning
language-conditioned agents. BabyAI is based on the MiniGrid environ-
ment [Chevalier-Boisvert et al., 2018], a grid-based environment with a large
variety of tasks, that involve navigating in several rooms, and interacting with
objects, like doors, keys and boxes. The environment is partially observable, and the
agent can see a 7x7 grid of the environment around it. The action space is discrete,
and contains a few actions, such as moving forward, turning left or right, picking up
an object and opening a door. One particularity of BabyAI is that goals are specified
to the agent as natural language instructions, as shown in Fig. 2.7. It contains levels
of various difficulty, ranging from PutNextLocal, where the agent has to put an
object next to another one, to the BossLevel, the hardest level, where the agent has
to execute a sequence of instructions, requiring planning and long-term reasoning.

2.2.2 Continuous control tasks

In addition to navigation environments, we also studied two continuous control
tasks: the Pusher environment, a manipulation task involving a robotic arm and
a moveable puck, as well as the RoboYoga Walker task, a locomotion task in which
a humanoid agent has to hold yoga poses.

Pusher. The Pusher environment [Nair et al., 2018] is a simulated task in which a
robotic arm with four degrees of freedom has to push a puck on a table to a target
position. The action space is therefore continuous, as the agent controls the different
joints of the arm. For this task, we study two distinct setups: the state-based one,
in which the observation contains the position of the end-effector and the puck, and
the RGB setup, where the observation is a snapshot showing the position of the puck
and the arm. The goal is specified by the position of the puck, and the agent has to
push it to the goal position. The initial position of both the puck and the arm are
fixed, which makes it challenging for the agent to explore the whole state space.

RoboYoga Walker. The DeepMind control suite [Tassa et al., 2018] is a widespread
collection of continuous control tasks, that are used to benchmark reinforcement

2.2. Tasks and Environments 21
K

itc
he

n
Q

ua
dr

up
ed

W
al

ke
r

B
in

s

Reach Left Reach Right Push Front Push Back Push Both Front Push Both Back

Lie Back Lie Front Legs Up Lunge Side Angle Stand

Burner Light Slide Hinge Microwave Kettle

Lean Back Boat Bridge Stand One Feet Head Stand Arabesque

Lie Back Stretch Lie Back 2 Legs Up Lie Side Lie Side 2 Stand Stand 2 Point Attack Balance Balance 2

Light + Slide Light + Hinge Light + Kettle Slide + Hinge Slide + Kettle Hinge + Kettle

Place Front Place Both Front

K
itc

he
n

Q
ua

dr
up

ed
W

al
ke

r
B

in
s

Reach Left Reach Right Push Front Push Back Push Both Front Push Both Back

Lie Back Lie Front Legs Up Lunge Side Angle Stand

Burner Light Slide Hinge Microwave Kettle

Lean Back Boat Bridge Stand One Feet Head Stand Arabesque

Lie Back Stretch Lie Back 2 Legs Up Lie Side Lie Side 2 Stand Stand 2 Point Attack Balance Balance 2

Light + Slide Light + Hinge Light + Kettle Slide + Hinge Slide + Kettle Hinge + Kettle

Place Front Place Both Front

FIGURE 2.9: Goals for the RoboYoga Walker task. The agent has to hold the target pose until
the end of the episode.

learning algorithms [Fu et al., 2020, Laskin et al., 2021, Yarats et al., 2022]. Although
very challenging, most of the tasks are designed for standard RL algorithms, with
a single objective and a well-shaped reward function. Among the tasks, the Walker
domain presents a humanoid agent, whose objective is either to stand up, walk or
run. Based on this humanoid, Mendonca et al. [2021] introduced the RoboYoga
Walker task, which consists of a goal-conditioned version of the Walker domain,
where the agent has to perform a set of yoga poses. The set of 12 goals that corre-
spond to body poses inspired from yoga (e.g., lying down, raising one leg or bal-
ancing) is shown in Fig. 2.9. Both state and action spaces are continuous, as the
observation contains information about the relative position of its different joints,
and the action is a multi-dimensional vector containing the force that should be ap-
plied to the joints. The starting position of the agent is randomized, which makes
the coverage of the state space relatively uniform, even with a random policy. The
difficulty of the task lies in the fact that the agent has to hold the pose until the end
of the episode, which requires delicate balancing skills.

23

Chapter 3

Learning to Navigate from Pixels

Goal-oriented navigation in photo-realistic environments is one of the most
widespread task in the field of robotics, as it has many applications, and is often
a starting point for more complex problems, such as embodied question answering
[Das et al., 2018], or instruction following [Hill et al., 2020]. In the task of image-
goal navigation, the agent is given a goal image, and must navigate to the location
in the environment where the image was taken from. It requires for the agent to
have a good understanding of the environment, as well as decent planning capabil-
ities to move intelligently towards the goal. Most prior works, including RL-based
[Zhu et al., 2017, Fang et al., 2019] approaches, rely heavily on the availability of
the absolute position of the agent in the environment, an assumption which is often
unrealistic. Indeed, simulators may allow access to such information, but it is not
the case for real robots, that are instead only equipped with RGB cameras or depth
sensors.

In this chapter, we investigate the problem of learning to navigate from RGB input
only, without access to position information. The main challenge of this task is that,
in the absence of such information, the agent must learn an informative representa-
tion of the environment from the visual inputs. Our method relies on an attention-
based end-to-end model that leverages an episodic memory to learn to navigate.
First, we train a state-embedding network in a self-supervised fashion, and then use
it to embed previously-visited states into the agent’s memory. Our navigation policy
takes advantage of this information through an attention mechanism. We validate
our approach with extensive evaluations, and show that our model establishes a
new state of the art on the challenging Gibson dataset.

3.1 Introduction

The challenges of addressing navigation tasks go beyond the classical computer-
vision setup of learning from pre-defined fixed datasets. They consist of problems
such as low-level control point-goal navigation [Wijmans et al., 2019], object-goal
navigation [Batra et al., 2020] or even tasks requiring natural language understand-
ing, e.g., embodied question answering [Das et al., 2018].

24 Chapter 3. Learning to Navigate from Pixels

goal image

current observation

FIGURE 3.1: We tackle the problem of image-goal navigation. The agent (shown as the blue
dot) is given an image from a goal location (green dot) which it must navigate to. To address
this task, our agent stores an episodic memory of visited states (black dots), and uses a

navigation policy that puts attention (lines) on this memory (best viewed in pdf).

We focus on one such critical problem: image-goal navigation [Zhu et al., 2017],
wherein an agent has to learn to navigate to a location specified by visual obser-
vations taken from there. Consider the agent in Fig. 3.1, which is spawned at the
location in blue on the map, where it observes a sofa. The agent’s task is to find
the location in the house where it would see the washing machine shown in the goal
image. In terms of difficulty, this task lies in between point-goal and object-goal nav-
igation. Indeed, it does not require learning the association between visual inputs
and manual labels (as in object-goal navigation), but it needs a higher-level under-
standing of scenes for navigating through them. There are several facets to this task,
which make it challenging.

The first challenge is to design methods that are completely end-to-end. This allows
for approaches that require less expert knowledge and are easily transferable to new
simulators and tasks. Classical methods for agent navigation, based on simultane-
ous localization and mapping [Thrun, 2002], comprise multiple hand-crafted mod-
ules, and require a large amount of annotated data. Reinforcement learning (RL) is a
popular framework for tackling navigation problems in an end-to-end manner [Zhu
et al., 2017, Fang et al., 2019]. However, in the context of photorealistic data, exist-
ing methods have either shown results in a limited setting with synthetic data [Fang
et al., 2019] or suffer from poor RL-based performance [Chaplot et al., 2020c].

The second challenge in image-goal navigation is the need for a high-level under-
standing of the surrounding scene. In photorealistic environments, agents trained
with RL are subject to overfitting due to the high dimensionality of the data and the
limited number of environments available for training [Xia et al., 2018]. Learning
to navigate in such visually complex environments, therefore, requires learning a
more informative representation than pixels, which captures the visual diversity of
the scene and is generalizable to unseen environments. Previous methods use the
position of the agent and/or a depth map [Chaplot et al., 2020c, Fang et al., 2019]

3.2. Related Work 25

to improve the generalization of the model. Approaches that learn from RGB input
only have not shown generalization to unseen environments [Savinov et al., 2018a,
Mezghani et al., 2020].

Finally, a requirement for navigating agents is to build and exploit a representation
of the states visited. Indeed, the agent should be able to remember the places it
has already visited within an episode for efficient exploration [Mezghani et al., 2020,
Fang et al., 2019]. This “memory” can take the form of a buffer [Fang et al., 2019], or a
metric [Thrun, 2002, Chaplot et al., 2018] or a topological map [Savinov et al., 2018a,
Chaplot et al., 2020c]. In most methods, the agent exploits this information with an
explicit planner [Savinov et al., 2018a, Chaplot et al., 2020c], but some work [Fang
et al., 2019] has also leveraged it with an implicit attention. However, the general-
ization properties of these schemes remain unclear: the approach by [Savinov et al.,
2018a] requires exploration videos collected by a human when navigating to an un-
seen environment, while [Fang et al., 2019] only shows limited generalization results
on synthetic data.

We tackle these three challenges with a memory-augmented reinforcement learn-
ing approach. First, the agent learns representations of the environment in a self-
supervised fashion, and acquires a high-level understanding of the surrounding
scene. It then learns a policy for image-goal navigation in an end-to-end manner.
In order to explore and navigate effectively, the policy is conditioned on an exter-
nal memory module that remembers useful information from the current episode.
With this approach we establish the new state of the art on the challenging image-
goal navigation task on the Gibson dataset [Xia et al., 2018] by a large margin. We
achieve this performance from RGB input alone, without access to position informa-
tion, which is a major improvement compared to previous works like [Chaplot et al.,
2020c].

3.2 Related Work

SLAM-based Methods The task of navigation has been studied in the context
of simultaneous localization and mapping (SLAM) in robotics [Thrun, 2002]. Sev-
eral SLAM methods comprise multiple hand-crafted modules to address strictly-
defined problems in specific environments [Tomatis et al., 2001, Mur-Artal et al.,
2015, Choset and Nagatani, 2001]. These modules have been progressively replaced
with learning-based functions: some approaches [Chaplot et al., 2018] implement
the localization module with a neural network, while others [Gupta et al., 2017a]
replace the metric map with a latent mapping of the environment. Variants of la-
tent mapping also include a topological map whose nodes contain geometric and
semantic information about the environment, as well as a global planner that relies
on it [Chaplot et al., 2020c]. Other works replace SLAM entirely by deep models
without explicit planning, and instead rely on a map or memory structure [Parisotto

26 Chapter 3. Learning to Navigate from Pixels

and Salakhutdinov, 2018, Zhang et al., 2017, Avraham et al., 2019]. The major draw-
back of such methods is that they contain multiple modules that are often trained in
a supervised fashion, requiring a large amount of annotated data. Moreover, a vari-
ety of methods inspired by SLAM rely on the availability of position [Zhang et al.,
2017, Parisotto and Salakhutdinov, 2018] and depth [Taketomi et al., 2017, Avraham
et al., 2019, Chaplot et al., 2020c] sensors. In our work, we focus on the realistic and
challenging case with access to RGB input only.

RL-based Navigation Another popular class of methods involves training deep
models with reinforcement learning to solve navigation tasks without an explicit
world representation. They use end-to-end frameworks with modules that are less
hand-crafted than SLAM-based methods, and have shown good performance on
synthetic mazes [Mirowski et al., 2017] as well as real-world data [Mirowski et al.,
2018, Chancán and Milford, 2020, Kadian et al., 2020, Wijmans et al., 2019]. Such
methods have also been explored on indoor-scenes datasets, similar to our setup on
image-goal [Zhu et al., 2017] and object-goal [Yang et al., 2018, Maksymets et al.,
2021, Chaplot et al., 2020a] navigation tasks. They use an actor-critic model whose
policy is a function of both the target and the current state. While episodic RL is a
simple and elegant framework for navigation, it ignores the fact that useful informa-
tion comes from previous episodes. In our work, we propose to augment the policy
used in RL frameworks with an external memory and to attend on it with a novel,
dedicated module.

Combining RL and Planning A few recent works have augmented RL-based
methods with topological structures, like graphs [Wu et al., 2019, Beeching et al.,
2020b, Savinov et al., 2018a, Chen et al., 2019, Mezghani et al., 2020] or memory
buffers [Fang et al., 2019, Beeching et al., 2020a, Kumar et al., 2018]. They store rep-
resentations of the visited locations and exploit them at navigation time. The process
of building these representations can be done offline [Savinov et al., 2018a, Beech-
ing et al., 2020b, Mezghani et al., 2020], and requires human-generated data in some
cases [Savinov et al., 2018a]. For example, the test phase in [Savinov et al., 2018a]
contains a warm-up stage where the agent builds a graph memory from human tra-
jectories. Alternatives to this manual annotation do exist, such as building a graph
directly with reinforcement learning, using the value function of a goal-conditioned
policy as edges weights [Eysenbach et al., 2019], or buffer of past observations [Fang
et al., 2019]. These methods were evaluated on synthetic datasets, and have not
been scalable to high-dimensional visually-realistic setups. In particular, [Fang et al.,
2019] proposes a method related to our model, with a policy that puts attention on an
observation buffer. In contrast, we learn a representation in a self-supervised fash-
ion to store memory efficiently. We also present results on a large-scale photorealistic
dataset, while [Fang et al., 2019] is limited to synthetic setups.

3.3. Image-Goal Navigation 27

resnet

LSTM

tied
weights

sum

concat

fully-
connectedobs

resnet

concat

fully-
connected

Attention
module

episodic long-termadd noise
add noise

Data augmentation Navigation policy External memory

goal
action

Pa
no

ra
m

ic
 v

ie
w

s

FIGURE 3.2: An overview of our model that consists of three parts: a data augmentation
module (green) for better generalization, a navigation policy (blue) for picking actions, and

an external memory (orange) for conditioning on previous observations.

Exploration and Representation Learning Closely related to navigation, the task
of exploration has also been extensively studied and has led to interesting break-
throughs in representation learning. In particular, learning to explore unseen envi-
ronments has been seen through the spectrum of computer vision [Jayaraman and
Grauman, 2018, Chaplot et al., 2020b], SLAM-based [Chaplot et al., 2019], and RL-
based [Chen et al., 2018, Devo et al., 2020] approaches. Methods such as [Savinov
et al., 2018b, Mezghani et al., 2020] leverage a self-supervised representation learning
stage to prepare the exploration phase. Our work extends this line of study by first
showing that a self-supervised pre-training phase allows to learn useful information
that generalizes to unseen environments, as well as proposing a novel attention-
based navigation policy that takes advantage of this information. Posterior to our
work, there have been extensions of our method, including [Sang et al., 2022] that
exploits a similar approach for object-goal navigation in unseen environments. This
work uses the same components than our method: both short-term and long-term
memories, as well as an attention mechanism to leverage past experience. The main
difference with our work relies on the task being tackled: contrary to our work,
[Sang et al., 2022] focuses on object-goal navigation, which consists in navigating to
an instance of a target object.

3.3 Image-Goal Navigation

We consider the classical formulation of episodic image-goal navigation as defined
in [Chaplot et al., 2020c]. At the beginning of a navigation episode, an agent is given
a target observation x∗, composed of an RGB image from the target location. At each
timestep t, the agent performs an action at and receives the next observation xt+1 as
well as a reward rt from the environment. The objective is to learn a navigation
policy function π(at|xt, x∗) that brings the agent closer to the target location. We
complete the definition of our setup with the following details.

Action Space It comprises four actions: MOVE_FORWARD, TURN_LEFT, TURN_RIGHT
and STOP. Please refer to Sec. 3.5.1 for numerical details.

28 Chapter 3. Learning to Navigate from Pixels

Success Criterion An episode is considered successful if the agent performs the
stop action within a range of l from the target location. In cases where the agent
performs the stop action outside of this range, or if the maximum number of steps
is exceeded before the agent performs the stop action, the episode is considered a
failure.

Observation Space The observation of the agent xt as well as the goal observation
x∗ are the RGB images of the first-person view at those locations. Each RGB image
is a panoramic sensor of size v× 3× 128× 128. We compute this panoramic input
by gathering observations from v successive rotations of angle (360/v)◦ from our
agent’s location. Note that we do not have access to neither the agent’s position nor
any depth sensor information.

Reward We follow the classic setup for image-goal navigation [Chaplot et al.,
2020c] where the reward is split into three components: (i) sparse success reward: that
rewards the agent for performing the stop action within the success range around
the target location, (ii) dense shaping reward: that is equal to the decrease in distance
to the goal, (iii) dense slack reward: that penalizes the agent for being alive at each
step (through a constant negative value), and encourages shorter trajectories.

3.4 Memory-Augmented Navigation Policy

As shown in Fig. 3.2, our agent model has three parts: a data augmentation part for
improving generalization, a navigation policy that learns to pick appropriate actions,
and an external memory for leveraging past experiences.

3.4.1 Data Augmentation

To improve the generalization capacity of our agent to unseen environments, we
apply random transformations on the observations of the simulator by using clas-
sic data augmentation techniques. We use two kinds of data transformations: (i)
random cropping that increases the input image size and takes a random crop of
the original size in it, and (ii) color jitter that randomly changes the brightness, con-
trast, saturation and hue levels of the image. An illustration of these transformations
is shown in Fig. 3.3. At navigation time, the agent receives the current and the goal
observations from the simulator at each timestep. We apply both transformations se-
quentially to each of the v views of the current and goal observations independently,
producing xt and x∗ respectively. This process allows for more visual diversity in
the training data.

3.4. Memory-Augmented Navigation Policy 29

orig color augment orig crop augment

FIGURE 3.3: Illustration of data augmentation that we use to train our model. We consider
both color jittering (left) and random crops (right). For a panoramic observation with v

views, the parameters of the augmentation are sampled independently.

3.4.2 Navigation Policy

Once the current and goal observations pass through the data augmentation phase,
we use them in the navigation policy module, which computes the probability dis-
tribution over all possible actions: π(at|xt, x∗).

First, the policy encodes each observation separately, as shown in Fig. 3.2. We encode
the current observation by feeding each of the v views separately to the same con-
volutional neural network. The v vectors resulting from this operation are concate-
nated and passed into a fully-connected network. This dimension-reduced output
is then fed into a 2-layer Long Short-Term Memory (LSTM) along with a representa-
tion of previous actions, and the resulting vector wobs

t represents the embedding of
the current observation at step t.

To encode the goal observation x∗, we process it through the same convolutional
neural network as the current observation. However, the outputs corresponding to
the different views are added together instead of being concatenated, so as to make
the representation of the goal rotation-invariant. We denote by wgoal

t the resulting
feature vector at step t.

Next, we make a joint representation by concatenating the current and goal feature
vectors, before passing it through a fully-connected network to output an action at

as follows:

wjoint
t = cat(wobs

t , wgoal
t), (3.1)

π(at|xt, x∗) = FC(wjoint
t). (3.2)

3.4.3 External Memory

To add an external memory mechanism to the navigation policy, we first train a state-
embedding network in a self-supervised fashion. This network, trained to detect
nearby locations, allows us to build an external memory containing representations

30 Chapter 3. Learning to Navigate from Pixels

resnet

tied
weights or

obs1 FC

FC

resnetobs2

cat

add noise
add noise

Data augmentation Reachability Network

sum

cat + FC

FIGURE 3.4: Architecture of the Reachability Network. We adapted the architecture
from Savinov et al. [2018b] by using a data augmentation module and a layer that han-
dles panoramic observations. The output of the last fully-connected module is the similarity

score between the two observations.

of past observations. To leverage this memory, we add an attention module to the
navigation policy.

Training a State-Embedding Network. Before learning the navigation policy, we
train a state-embedding network to learn representations of the environment’s loca-
tions. The motivation for introducing this network is to encourage nearby locations
in the environment to have similar representations, while ensuring distant locations
to have different ones. However, since we do not have access to the agent’s position,
the notion of distance between locations in the environment cannot be computed
directly. As in Savinov et al. [2018b], we will use the number of steps taken by an
agent with a random policy to approximate this distance.

We let an agent with random policy explore the environment for T steps and denote
by (x1, ..., xT) the corresponding sequence of observations.1 We then define a reach-
ability label yij for each pair of observations (xi, xj) that depends on their distance in
the sequence. More precisely,

yij =

1 if |i− j| ≤ k,

0 otherwise,
for 1 ≤ i, j ≤ T (3.3)

where k is a hyperparameter.

We train a siamese neural network R, to predict the reachability label yij from a pair
of observations (xi, xj). The architecture of R is shown in Fig. 3.4. R is defined by a
convolutional network g to embed the observations, and a fully-connected network
f to compare the embeddings, i.e.,

R(xi, xj) = f (g(xi), g(xj)). (3.4)

1We ensure that the length of the computed sequence is T by removing the STOP action from the
action space.

3.4. Memory-Augmented Navigation Policy 31

We apply the same data augmentation techniques to observations during this reach-
ability network training phase.

Episodic Memory. Once we have the reachability network that can distinguish ob-
servations from nearby and distant locations, the agent can collect a compact mem-
ory of previously visited states.

We follow a process similar to Savinov et al. [2018b] for building episodic memory.
At timestep t, the agent has a memory buffer Mt−1 with embeddings from observa-
tions seen at previous timesteps. Since storing every observation seen by the agent
would be inefficient, we store only observations that are considered novel, i.e., dis-
tant from the current memory vectors. In other words, at each timestep, we use the
network R to compute a reachability score between the current observation xt and
the memory buffer Mt−1. This score corresponds to the maximum value obtained
when comparing the current observation to every vector in the memory, i.e.,

r(xt, Mt−1) = max{ f (g(xt), m) | m ∈ Mt−1}. (3.5)

We then add the embedding of current observation to the memory if the reachability
score is lower than a threshold, i.e., distant enough from the memory vectors. In
other words,

Mt =

Mt−1 ∪ g(xt) if r(xt, Mt−1) < τ,

Mt−1 otherwise,
(3.6)

where τ is the reachability threshold hyperparameter. The episodic memory is reset
after each episode.

This process for building episodic memory can be extended so that it persists across
episodes within the same scene. The impact of using such a cross-episodic memory
is studied in Sec. 3.5.4

Attention Module. The navigation policy can leverage the episodic memory to
move towards the target observation. Rather than using an explicit planner on the
memory, we take advantage of the information stored in them implicitly, using an
attention module.

Our attention module has a multi-layer architecture similar to transform-
ers [Vaswani et al., 2017]. Each layer consists of a multi-head attention sublayer
(Attn), followed by a feedforward sublayer (FF). See Vaswani et al. [2017] for more
details about these sublayers. However, unlike transformers our attention module
attends over a fixed set of vectors. It comprises N layers,

zl
t = FF

(
Attn(zl−1

t , Mt)
)

, for l ≤ N. (3.7)

32 Chapter 3. Learning to Navigate from Pixels

Here, zl
t is the output from the l-th layer, but the initial input z0

t is obtained from a
linear transformation of the joint representation computed in Equation 3.1, wjoint

t .

The output from the attention module is then concatenated with the joint represen-
tation in Equation 3.2, so the final action is now computed as:

π(at|xt, x∗) = FC(cat(wjoint
t , zN

t)). (3.8)

3.5 Experimental Results

3.5.1 Implementation Details

Task Setup. We conducted all of our experiments on the Habitat [Savva et al., 2019]
simulator with the Gibson [Xia et al., 2018] dataset, which contains a set of visually-
realistic indoor scenes. We used the standard 72/14 train/test scene split for this
dataset. As stated earlier, we do not use the agent’s pose or depth sensor infor-
mation. The forward step range and turn angle are set to their standard values
(0.25m, 10◦) for navigation episodes and (1m, 30◦) when training the reachability
network. The maximum number of steps in an episode is 500, and the success dis-
tance l is 1m. In addition to the success rate, we also use success weighted by inverse
path length (SPL) [Anderson et al., 2018] as an evaluation metric. SPL takes into ac-
count the length of the path that the agent has taken to the goal.

Training the Reachability Network. We generate one trajectory per train scene
from an agent with a random policy. We allow 5k steps for each trajectory and re-
move the stop action from the action space. This results in a total of 360k steps from
72 scenes to train the reachability network. From each trajectory, we sample 1k pos-
itive pairs (within 10 timesteps) and 1k negative pairs, yielding a dataset of 144k
image pairs. We implement the reachability network as a siamese network with
ResNet18 for the embedding function g. Each of the v views from the RGB obser-
vation is passed through the ResNet separately. We sum the resulting outputs to
form the embedding vector of a panoramic observation. The comparison function f
is composed of two hidden layers of dimension 512 with ReLU activations. We train
this network using SGD for 30 epochs with a batch size of 256, a learning rate of 0.01,
a momentum of 0.9, a weight decay of 1e− 7, and no dropout.

Training Data for the Navigation Policy. We generated 9k navigation episodes in
each training scene, following the protocol of [Chaplot et al., 2020c]. 2 We split our
navigation episodes into three levels of difficulty, based on the distance between the
start and the goal locations: easy (1.5 - 3m), medium (3 - 5m), and hard (5 - 10m). For
each scene, we sample 3k start-goal location pairs per level of difficulty, resulting in

2We obtained the generation procedure from the authors of [Chaplot et al., 2020c] by e-mail. The
dataset is available at: https://github.com/facebookresearch/image-goal-nav-dataset

https://github.com/facebookresearch/image-goal-nav-dataset

3.5. Experimental Results 33

Observation Type Easy Medium Hard Overall

Model RGB Pose Depth Succ SPL Succ SPL Succ SPL Succ SPL

NTS-D 7 7 7 0.87 0.65 0.58 0.38 0.43 0.26 0.63 0.43

ResNet + GRU + IL

7 7 -

0.57 0.23 0.14 0.06 0.04 0.02 0.25 0.10
Target-Driven RL 0.56 0.22 0.17 0.06 0.06 0.02 0.26 0.10
Active Neural SLAM 0.63 0.45 0.31 0.18 0.12 0.07 0.35 0.23
NTS 0.80 0.60 0.47 0.31 0.37 0.22 0.55 0.38

SPTM 7 - - 0.64 0.35 0.52 0.27 0.36 0.19 0.51 0.27

Ours 7 - - 0.78 0.63 0.70 0.57 0.60 0.48 0.69 0.56

TABLE 3.1: Comparison of our proposed model with several baselines and state-of-the-art
approaches. The “observation type" column shows the type of observation for each method:
raw pixel observations (RGB), depth map (Depth), and position information (Pose). We
report success rate and SPL, over three levels of difficulty. Our method establishes a new
state of the art, e.g., doubling the SPL on hard episodes, while not requiring any pose or

depth information.

648k train episodes. Similarly, we sample 100 episodes per test scene and per level
of difficulty, resulting in 4.2k test episodes.

Navigation Policy Implementation. At the beginning of each episode, the simula-
tor generates the observation from the goal location as a v× 3× 128× 128 panoramic
RGB image and gives it to the agent as target observation. We used ResNet18 with
shared weights for encoding the current and target observations in the policy. The
size of the embedding space is 512. We concatenate the encoder’s outputs for the
v views of the observation and feed them into an LSTM with two recurrent layers.
Our attention module consists of 4 stacked layers of a 4-headed attention network.
We set the buffer’s capacity to 20 for the episodic memory. We train the policy us-
ing DD-PPO [Wijmans et al., 2019] for 50k updates, with 2 PPO epochs, a forward
of 64 steps, an entropy coefficient of 0.01, and a clipping of 0.2. We used the Adam
optimizer with a learning rate of 9e− 5.

Data Augmentation. For the training stages of both the reachability network and
the navigation policy, we used random cropping with a minimum scale of 0.8 and
color jittering with value 0.2 for brightness, contrast, saturation, and hue levels.
These transformations are applied at two different levels when training the naviga-
tion policy: (i) when the agent samples the action at from the policy, and (ii) during
the forward-backward in PPO. Note that, for these two steps, the transformation
applied to the images is independent and results in different input images.

3.5.2 Comparison with the state of the art

We consider several methods in this comparison: an adaptation of SPTM [Savinov
et al., 2018a] to Habitat, as well as four approaches taken from [Chaplot et al., 2020c].

34 Chapter 3. Learning to Navigate from Pixels

• ResNet + GRU + IL [Chaplot et al., 2020c]: A simple baseline consisting of
ResNet18 image encoder and a GRU-based policy trained with imitation learn-
ing.

• Target-Driven RL [Zhu et al., 2017]: A vanilla baseline trained with reinforce-
ment learning, similar to our ablated variant.

• Active Neural SLAM [Chaplot et al., 2019]: An exploration model based on
metric maps, adapted to navigation.

• Neural Topological SLAM (NTS) [Chaplot et al., 2020c]: The previous state-
of-the-art method for navigation in unseen environments, based on neural
SLAM and endowed with a topological graph for long-term planning. We
compare against two versions of this method: NTS, that uses as input the RGB
observation and the pose sensor, and NTS-D that uses the depth map in addi-
tion to the two other modalities.

• SPTM [Savinov et al., 2018a]: A navigation model based on explicit construc-
tion of a graph over past experience. The method requires an exploration
episode given a priori. To run this baseline, we adapt the available code3 to
Habitat. We train the reachability and locomotion networks on trajectories
from the training set. For evaluation we used a random exploration trajectory
of 10k steps, and build a graph with 100k top-scoring edges. As this method
does not implement a STOP action, we give it advantage and automatically end
the episode when the agent gets within 1m of the goal.

The first four methods are designed for episodic navigation, i.e. the validation
episodes are performed on completely unseen scenes, without pre-exploration.
Conversely, SPTM is intended for setups where a pre-exploration phase is allowed
on the test scenes before starting the actual navigation phase, and therefore uses
more privileged information.

We trained our model on the easy, medium, hard combined dataset for 500M steps for
three random seeds, and evaluated it on the corresponding test set. As shown in
Table 3.1, the performance obtained with our memory-augmented model is superior
to that of previous work by a significant margin: +13% SPL on average compared
to NTS-D and +29% SPL vs. SPTM. We obtain this strong performance while, un-
like NTS-D, not using position nor depth information. We note that the success rate
on easy episodes is lower for our method than NTS-D (−9%). This is potentially
due to the lack of position and depth features or the use of discretized panoramic
observations, both of which are particularly useful for nearby goals. Note that the
four methods from [Chaplot et al., 2020c] require 25M steps of training until conver-
gence in comparison to our 500M steps. This difference in training horizon is due

3https://github.com/nsavinov/SPTM

https://github.com/nsavinov/SPTM

3.5. Experimental Results 35

Easy Medium Hard Overall
0.25

0.35

0.45

0.55

0.65

S
P

L

RL baseline

+ Data Aug.

+ Ep. Memory

FIGURE 3.5: Ablation study. We present the SPL for three variants of our model. All models
are trained for 500M steps on a combination of easy, medium, and hard episodes.

to several factors, including the absence of position information in the observations
for our setup, and the absence of an explicit planner in our method. Rather than
comparing all the methods at a fixed-step budget, when they may not be trained
optimally, we made the fair choice to compare all the methods after the convergence
of their respective optimization processes.

3.5.3 Ablation Study and Analysis

Ablation. We perform an ablation study to empirically validate the design choices
of our model. We evaluate the performance of the simple target-driven RL baseline,
as well as the improvements brought by the data augmentation module and the
episodic memory. To this end, we train three variants of our model: (i) RL baseline,
the vanilla target-driven RL baseline to which we consecutively add (ii) Data Aug.,
the data augmentation module, and (iii) Ep. Memory, the episodic memory module.
We train all models on this dataset for 500M steps for three random seeds and report
the average SPL for each level of difficulty in Fig. 3.5.

First, we see that using data augmentation when training a RL-based navigation
policy in this context improves SPL significantly: the gap with the vanilla baseline
is +12% overall. Second, we observe that the episodic memory-based policy im-
prove over the very competitive data-augmented baseline (+6% overall). Finally,
we note that the data-augmented baseline significantly outperforms the state of the
art method NTS (+12% overall), highlighting the power of this simple end-to-end
model.

Number of views (v) 1 3 4 6

SPL 0.08 0.31 0.36 0.36
Frames per sec. 1890 2000 2080 2340

TABLE 3.2: Analysis of SPL obtained with the RL baseline for various panoramic view
configurations. We report average SPL and the number of frames processed per second for

each configuration.

Panoramic Observations. As described in section 3.3, we generate panoramic ob-
servations by equally spaced planar observations around the agent. In this experi-
ment, we compare the performance of the vanilla RL baseline model trained with

36 Chapter 3. Learning to Navigate from Pixels

1, 3, 4 and 6 views around the agent. We let the model train for 500M steps for three
random seeds and report the average SPL obtained by this agent in Table 3.2.

We note that an agent trained with a single view, i.e., without panoramic obser-
vations, completely fails to learn a successful policy, obtaining only 0.08 SPL. This
result is quite intuitive, as the relative localization with respect to the goal is made
easier by multiple views. Better performance is obtained with either four or six
views, with an SPL of 0.36. We also see that there is a tradeoff between performance
and additional runtime required with more views. Thus, we run all the variants of
the models with four views.

0 1 2 3 4 5

steps ×108

0.0

0.2

0.4

0.6

0.8

S
P

L

RL baseline

+ Data Aug.

+ More Scenes

FIGURE 3.6: Performance measured in SPL as a function of training steps taken in the envi-
ronment for the RL baseline, with data augmentation (+ Data Aug.) and by adding more
training scenes (+ More Scenes). We report both the training (dashed line) and test (solid
line) SPL on the same figure. The generalization gap is large and can be reduced by using
data augmentation. It can be reduced significantly further by training the model on a larger
set of scenes. The black mark at 25M steps corresponds to the Target-Driven RL baseline as

reported in [Chaplot et al., 2020c].

Data Augmentation and Overfitting. We investigate how data augmentation and
adding more training scenes allow us to bridge the train / test gap observed when
navigating an unseen environment. To this end, we generate an extended training
set by considering 150 additional scans, which are usually rated as being of poor
quality. We perform this experiment for the vanilla RL Baseline, as well as its data-
augmented version trained on the standard dataset (Data Aug.), and the extended
one (More Scenes).

As seen from the train and test SPL for the three methods in Figure 3.6, the general-
ization gap is large (almost 65% for the RL baseline). The use of data augmentation
allows to remedy this problem reducing this gap to about 40%. Training the model
on more scenes reduces this discrepancy even further to only 15%. We also observe
that data augmentation not only improves the test performance but also helps faster
convergence (+2% on the train SPL), as opposed to what is usually observed in su-
pervised learning.

Notice that in the figure, we indicate the 25M step mark – this is the number of
environment steps used to train the Target-Driven RL baseline reported in [Chap-
lot et al., 2020c]. We see that the performance of a reinforcement-based model with

3.5. Experimental Results 37

Model Easy Med. Hard Extra Overall

Ep. Memory 0.560 0.505 0.428 0.138 0.407
LT Memory 0.569 0.528 0.455 0.161 0.428

TABLE 3.3: Evaluating the impact of a memory that persists across episode. We train both
models for 500M steps on a combination of easy, medium, hard, extra episodes. The long-term

memory improves the performance of the model, especially on the hard and extra splits.

such a limited number of steps is quite poor, and that convergence is far from be-
ing achieved at this point. Though sample efficiency is an important challenge in
robotics applications, the RL baseline should be trained sufficiently to leverage its
full potential. Indeed, after 500M steps of training, it reaches 0.37 SPL overall, which
is almost on par (−1%) with the performance of the method proposed in [Chaplot
et al., 2020c].

(a) (b) (c) (d)

(e) (f) (g) (h)

FIGURE 3.7: The top (resp. bottom) row shows trajectories from test episodes with the high-
est (resp. lowest) SPL on the Eastville scene. Start and goal locations are shown in black,
with the goal being circled by a line showing the success area. Results are shown for our
model with memory trained on the standard dataset, for 3 seeds (corresponding to the 3

colors) on the hard validation split.

3.5.4 Impact of a Long-Term Memory

We also studied the impact of a memory that persists across episodes in the same
scene, motivated by the observation that embodied agents, once deployed, do not
simply cease to exist after an episode has ended: they persist, and so should their
memories. We therefore added an additional memory to the episodic one, that re-
mains for 100 episodes in the same scene. We compare this model with long-term
memory (LT Memory) to the one with episodic memory only (Ep. Memory) in Ta-
ble 3.3. For this experiment, we generated an additional split to the easy, medium, and
hard episodes, named “extra,” for which the distance between start and goal locations
is 10 - 15m. This dataset, voluntarily more challenging, is intended to highlight the
importance of a memory that persists across episodes. The long-term memory im-
proves the performance of the model over the episodic one (+2.1% overall), and the
difference is more important on hard and extra episodes (+2.7% and +2.3% respec-
tively) than on easy ones (+0.9%).

38 Chapter 3. Learning to Navigate from Pixels

(a) (b) (c)

(d) (e) (f)

FIGURE 3.8: Heat-maps of the similarity score between the observation (the red point) and
the observations at N = 2000 points sampled randomly in the environment. The color at
a location corresponds to the similarity score at that location: low values, close to 0, are in
dark violet and high values, close to 1, in yellow. These visualizations were performed on

Eastville: an environment of the validation set.

3.5.5 Qualitative Visualizations

Trajectories. Figure 3.7 shows example success and failure cases from episodes of
the test dataset. We see that our agent successfully learns to navigate to challenging
locations, which are distant from the start location (3.7-a) and/or located at extrem-
ities of the scenes (3.7-c, 3.7-d). Moreover, our agent shows interesting skills, like
bypassing obstacles (3.7-c) or looking around in a room (3.7-b). From the failure
cases (bottom row in the figure), we see that our agent has some undesired behavior.
For example, it can get stuck in a loop (3.7-f), stop too early (3.7-h), or fail to reach
some extremely challenging goals (3.7-g).

Reachability Network. We visualize the quality of the Reachability Network with
the following experiment. First, we put the agent at a random location in the en-
vironment and sample an observation x from there. Then, we randomly sample
N observations in the environment and for each of these observations, we com-
pute their similarity score with observation x, using the Reachability Network. We
present these results on a heat-map, where the color at a location represents the cor-
responding similarity score, in Figure 3.8. We see that the high similarity scores
are at locations that are around the comparison observation, which implies that the
Reachability Network performs well at learning representations that are similar for
nearby locations, and dissimilar for representations that are far away. Since these
experiments are shown on a validation environment, we note that the Reachability
Network generalizes well to unseen environments.

3.6. Conclusion 39

Episodic and Long-term Memories. Finally, we visualize the state of the episodic
and long-term memories for consecutive validation episodes in Fig. 3.9. From this,
we observe how these memories are filled through consecutive validation episodes.
After 100 navigation episodes (3.9-d), the long-term memory is well filled and covers
most of the environment. This allows the agent to reach challenging goals.

3.6 Conclusion

In this chapter, we have presented a memory-endowed agent that we train end-to-
end with reinforcement learning. This memory is accessed in the navigation policy
using a transformer-inspired neural network with attention modules. We evaluated
our agent on the challenging task of image-goal navigation, and have shown that it
surpasses previous work by a large margin. This impressive performance is obtained
from RGB observations alone, i.e., without using any position information or depth
sensors.

40 Chapter 3. Learning to Navigate from Pixels

(a) Step 1

(b) Step 2

(c) Step 5

(d) Step 100

FIGURE 3.9: Visualization of the agent’s trajectory, episodic and long-term memories for
first, second, fifth and 100th episode in the Eastville environment. The start and goal lo-
cations are shown in black, goal location being circled by a line showing the success area.
The blue points represent the location of the episodic and long-term memory vectors. The
episodic memory is reset after each episode, while the long-term memory remains for 100

episodes in the same scene.

41

Chapter 4

Image-Goal Navigation without
Supervision

In Chapter 3, we studied the problem of image-goal navigation in the absence of
an important supervision modality, namely the position of the agent in the envi-
ronment. In that sense, the proposed method encourages learning agents that do
not rely on human-engineered data, and instead leverage what is available on real
robots – inputs from RGB cameras. However, one limitation of the method pre-
sented in the previous chapter is that it relies on external rewards, provided by the
environment. Indeed, in its original formulation, the task of image-goal navigation
assumes the availability of a dense reward function that recompenses the agent for
getting closer to the goal. In practice, this function is computed by calculating the
shortest-path from the agent to the goal, which can be both tricky and expensive to
compute for certain tasks.

In this chapter, we study the problem of navigation from image inputs without exter-
nal supervision or reward, in photorealistic environments. We present a three-stage
approach, where the agent first learns good representations of the environment from
visual inputs, then explores using a memory-based mechanism, and finally learns to
navigate by setting its own goals. The navigation agent is trained using only intrinsic
rewards, computed using the learned representations, thus not relying on external
hand-crafted rewards. We show the benefits of our approach by training an agent
to navigate challenging photo-realistic environments from the Gibson dataset [Xia
et al., 2018] with RGB inputs only.

4.1 Introduction

As mentioned in the previous chapter, the problem of learning to navigate is chal-
lenging, especially in settings where it is necessary to do without accurate depth or
position information; or more generally, with as little supervision as possible. Fur-
thermore, if the goal location is specified as an image, the agent needs to learn a

42 Chapter 4. Image-Goal Navigation without Supervision

Representation Learning Learning to Explore Learning to Navigate

Objective:
(dense reward =)

Objective:
is new location?

Have similar
representations:

FIGURE 4.1: Three stages of training: the agent learns to distinguish locations from its
visual inputs, then it explores the environment and builds a map of the environment, finally
it uses this map to learn how to navigate the environment. Each step requires no external
supervision or reward and the agent has only access to a visual RGB input, and has no

information about its position.

good visual representation and an efficient exploration strategy in addition to the
navigation policy.

There has been some interest in using techniques from deep learning in the context
of SLAM, or more generally, in the context of navigation [Avraham et al., 2019, Fang
et al., 2019, Gupta et al., 2017a, Henriques and Vedaldi, 2018, Khan et al., 2018, Oh
et al., 2016, Parisotto and Salakhutdinov, 2018, Wierstra et al., 2010, Zhang et al.,
2017]. Deep learning-based methods typically require a large number of trials dur-
ing training and have been rarely considered outside of simulators. However, the
growing number of photo realistic environments [Chang et al., 2017, Xia et al., 2018],
efficient simulators [Dosovitskiy et al., 2017, Savva et al., 2019] and dedicated meth-
ods to transfer from simulated to real environments [Sadeghi and Levine, 2017, To-
bin et al., 2017] have fueled the research in deep learning-based navigation methods.

In a separate line of study, there has been great progress in learning image represen-
tations through “self-supervised” approaches [Caron et al., 2018, Doersch et al., 2015,
Goyal et al., 2019, Zhang et al., 2016]. In these works, using prior knowledge about
the basic regularities of images, researchers find pretext tasks that, when solved, give
good feature representations for other tasks of interest. While self-supervised learn-
ing is interesting for understanding learning methods abstractly, it also promises to
be important in applications, as it is often the case that a pretext task is easier to come
by and more general than strong supervision.

In this chapter, we introduce an entirely unsupervised method for learning to
navigate through simulators like Habitat [Savva et al., 2019] in photorealistic en-
vironments and large-scale three-dimensional point clouds such as the Gibson
dataset [Xia et al., 2018]. In particular, we assume that the agent only has access
to image observations and that the target location is also given as an image. The
method is composed of three stages. First, the agent learns a visual representation
that can distinguish between nearby and far-away pairs of points in a similar way

4.2. Related Work 43

to [Savinov et al., 2018b]. The fundamental prior knowledge we use is that in most
situations, an agent’s representation of the world should not change very fast as it
moves; but on the other hand, for most pairs of far-away points, the representations
should be different. Next, the agent learns to explore, adding states to a memory
buffer when their feature representations are dissimilar to any in the buffer. Finally,
the agent trains itself to complete navigation tasks, using the buffer to shape the re-
ward for the navigation policy. An important component of our model is that the
agent uses a Scene Memory Buffer for both its policy and reward. In particular, the
agent takes actions via a Transformer [Vaswani et al., 2017] applied to the memory
buffer. Because our approach can be applied in situations where the practitioner has
no control over the environment - and in particular, with no ability to give super-
vision or move to arbitrary positions in the environment - the method is general.
We show that despite this generality, its final navigation policy outperforms other
approaches.

Our contributions, in this chapter, are the following:

• We propose a novel three-stage algorithm for learning to navigate using only
RGB vision without any external supervision or reward in photorealistic envi-
ronments that simulates actual houses.

• We introduce several improvements to the exploration policy [Savinov et al.,
2018b] such as conditioning on past memory and using discrete rewards.

• We evaluate our model and show that it outperforms all baselines on scenes
from the Gibson dataset.

4.2 Related Work

Iteratively building a map of an environment to perform localization or navigation
tasks has been extensively studied in robotics in the context of SLAM [Thrun, 2002].
Standard SLAM is composed of multiple hand-crafted modules to fit with the phys-
ical constraints of a robot [Mur-Artal et al., 2015].

Recently, several works have replaced components of SLAM with neural networks;
for example, Chaplot et al. [2018] replace the localization module. Gupta et al.
[2017a] propose a model composed of two successive modules, a mapper to build a
latent world map, and a planner, that takes actions based on this map. The mapper
does not have dedicated external rewards but the planner performs tasks associated
with external rewards and back-propagates the resulting gradients to the mapper.
This map has been further extended with image features [Gupta et al., 2017b] or
with a dynamic structure [Avraham et al., 2019, Henriques and Vedaldi, 2018]. Other
works replace SLAM entirely by deep models with no planning but explicit map-like
or SLAM inspired memory structures [Khan et al., 2018, Oh et al., 2016, Parisotto and
Salakhutdinov, 2018, Zhang et al., 2017]. Closer to our work, Kumar et al. [2018] use

44 Chapter 4. Image-Goal Navigation without Supervision

human-made trajectories stored as sequences of feature representations of views,
and Fang et al. [2019] show the potential of the Transformer layer [Vaswani et al.,
2017] as a scene memory for navigating realistic environments. As opposed to these
works, our model is trained with intrinsic reward only.

Alternatively, several work train deep models to solve a navigation task without
explicit world representations. Mirowski et al. [2017] learn a navigation policy with
a recurrent network in synthetic mazes, and later, in real-world data from Google
Maps [Mirowski et al., 2018]. Similar to our work, they use a surrogate loss on loop
closure to help the training of the model, but they use sparse external reward to
guide its training. Similarly, Zhu et al. [2017] show the benefit of deep models on a
localization task framed as finding an observation taken from the goal. Later, Yang
et al. [2018] extend this to navigation to an object described only by its name.

Many works train agents to explore the world with an intrinsic reward [Chentanez
et al., 2005, Pathak et al., 2017, Schmidhuber, 1991]. For example, the curiosity-
driven reward of Pathak et al. [2017] encourages agents to move to states that are
hard to predict. Of particular interest, Chen et al. [2018] propose a coverage reward
that encourages the agent to explore every part of its latent map. This reward is
quite general and benefits both exploration and navigation, but it does not directly
optimize for navigation like ours.

Finally, our approach is most related to a recent line of research that uses multiple
stages of learning to build a set or graph of scene observations [Eysenbach et al.,
2019, Savinov et al., 2018a,b, Zhang et al., 2018]. Savinov et al. [2018a] internalize
a landmark memory obtained from human trajectories. They store representations
of the locations visited in the trajectories and build a navigation graph based on
their similarities. Our work follows their self-supervised training of a reachabil-
ity network R to distinguish between nearby observations, but we extend the self-
supervision to both exploration and navigation. Savinov et al. [2018b] also use a
curiosity-driven intrinsic reward based on a memory buffer. Our exploration phase
follows an intrinsic reward inspired by their work, but we also use the memory
buffer in our Transformer-based policy. Finally, Eysenbach et al. [2019] propose a
method to learn an agent to explore and navigate an environment with intrinsic re-
wards. Their training follows the same sequence of steps as ours, with the exception
that they clean the graph by testing existing edges and adding new ones and then
learning to navigate on the graph, and not the environment. Instead, our agent trains
itself to navigate the environment directly by shaping dense rewards from the mem-
ory buffer. It means that our agent can potentially learn more efficient navigation
strategies not constrained to paths on the memory-graph.

4.3. Image-Goal Navigation without External Rewards 45

4.3 Image-Goal Navigation without External Rewards

In this chapter, we simulate a realistic setting where an agent must learn to navigate
in a 3D environment. We formulate this problem using the following assumptions:

– No extrinsic reward. We do not have control over the environment and thus
cannot add extrinsic reward to guide the training of the agent.

– No human guidance. The environment is new and has never been explored. We
do not have access to human trajectories or other forms of external informa-
tion.

– 3d scan environments. We focus on photo-realistic environments such as the
ones in the Habitat platform.

We are interested in the capability of the agent to explore and navigate an environ-
ment and we report the following metrics to measure its success:

– Coverage. We measure the coverage of an environment by an agent by discretiz-
ing the map into C cells of the same size and counting the ratio pt of visited
cells ct by the agent after t steps.

– Image driven navigation. We measure the capability of an agent to navigate the
environment to an image target. That is: we give the agent an image observa-
tion from the location and we measure the number of steps it takes to reach the
destination so that the agent’s observation matches the image target, starting
from the entry point of the map.

Finally, as a secondary goal, we are also interested in the robustness of an agent to
limited sensor data. To that end, we focus on RGB inputs in this chapter. We do not
use depth, gps coordinate or relative position as inputs.

4.4 A three-stage approach to Unsupervised Image-Goal
Navigation

In this section, we describe our algorithm and its three stage training: first the agent
learns a visual representation of the environment from random trajectories, then it
learns to explore the environment to build a latent map, and finally it trains itself to
navigate using the map. Each step has a module trained without external supervi-
sion.

4.4.1 Stage 1: Visual representation of the environment

As the agent moves around the environment, it receives data from its visual sen-
sor, which in this work produces RGB images. From this first-person input, the
agent builds a representation of its current location that should encode information
to distinguish the current location from other locations, as well as give an idea of

46 Chapter 4. Image-Goal Navigation without Supervision

R(,) = 1
R(,) = 0

R(x,y)

FIGURE 4.2: Reachability network [Savinov et al., 2018b]. Given a set of observations made
by an agent with a random walk policy (left), we train the (local) reachability network R to
distinguish between observations that are temporally near or distant. For a given obser-
vation (marked in blue), the nearest observations are in green and the distant ones in red.
The reachability network (right) is a siamese network composed of a convolutional network

followed by a fully-connected network.

Exploration
intrinsic
reward

Scene Memory Buffer

Exploration policyCurrent Positive reward

No reward

Update graph

Action

Transformer

CNN

CNN

Transformer

Navigation policy

Goal
Navigation

intrinsic reward

Action

CNN

CNN

CNN

Current

FIGURE 4.3: Exploration and navigation stages. The agent first learns to explore (left) the
environment using a memory of visited regions for its policy and intrinsic reward. Next, the
agent learns to navigate (right) using memory to set image oriented goals to itself and learn

to navigate towards them.

the distance between locations. This is achieved by encouraging nearby locations to
have similar representations while pushing distant locations to have different rep-
resentations. However, in the absence of information about the agent position or a
map, we do not have an explicit notion of distance between locations.

As in the previous chapter, we use the reachability network [Savinov et al., 2018b]
to learn a visual representation of the environment. This stage is summarized in
Fig. 4.2.

4.4.2 Stage 2: Learning to Explore

Once the agent can differentiate images of nearby locations from distant locations, it
can explore and map the environment. In this section, we describe how to train our
exploration module with a curiosity-driven intrinsic reward, which is our second
training stage.

Exploration module. The agent explores the environment to dynamically build an
internal map. At each step, this map and the current observation are used to plan
an action that moves the agent toward unexplored regions. We model the internal

4.4. A three-stage approach to Unsupervised Image-Goal Navigation 47

map as a memory that contains important past observations, and the agent takes
actions by applying a Transformer on this memory buffer. This stage is shown in
Fig 4.3 (left).

Episodic Memory. In a similar fashion than in the previous chapter, the agent has
an Episodic Memory that stores some of its previous observations. At each time
step t, the memory Mt−1 stores an unstructured set of visual features. Storing every
observation is not efficient and we follow the mechanism of Savinov et al. [Savinov
et al., 2018b], explained in the previous chapter, to select which observation to store
in the memory. The idea is to add only observations that are distant (with respect to
the Reachability Network) from the current memory vectors. The memory is reset at
the end of each episode.

Transformer on the memory. Again, as in the previous chapter, the naviga-
tion policy exploits the information contained in the memory through a trans-
former [Vaswani et al., 2017]. The details for this module are given in Section 3.4.2.

Intrinsic exploration reward. Intrinsic curiosity rewards the agent for exploring
parts of the environment that looks unfamiliar to the agent. This reward is based on
the agent’s intrinsic representation of the environment. In our case, this represen-
tation is the memory and a positive reward is given if the current observation has
been added to the memory, i.e.,

rcuriosity(t) = α1{s(xt,Mt−1)<τ}. (4.1)

This reward is a discrete version of the episodic curiosity [Savinov et al., 2018b]. Dis-
cretizing the reward removes the trivial solutions noticed in [Savinov et al., 2018b]
where the agent stops in a location that gives a reward that is greater than any reach-
able location.

4.4.3 Stage 3: Learning to Navigate

In this section, we describe the third stage of our algorithm: the training of our
navigation module. Every episode will start with an exploration phase where the
exploration module builds an internal map of the environment. This is followed by a
navigation phase that trains the navigation module to reach a goal sampled from the
map. The internal map is also used for generating the intrinsic navigation reward.
The trained navigation module does not need to follow the visited locations on the
map — these are only used during training to shape the reward. In particular, the
navigation policy can be more efficient than policies that plan over visited locations
on the map at test time. This stage of the training is depicted in Fig 4.3 (right).

48 Chapter 4. Image-Goal Navigation without Supervision

Building an internal map. In the exploration phase of an episode, an internal map
of the environment is built by the exploration policy that is already trained in the
previous stage. The exploration policy runs for T steps and fills the memory with
visual representations of JT locations. While the memory alone is sufficient for train-
ing the navigation module with sparse rewards, we also record the connectivity of
those JT locations to be leveraged in the dense-reward version of the training.

The path followed by the agent connects different vectors in the memory. We use this
path to form a graph Gt on top the memory Mt. More precisely, we keep track of the
closest element pt of the current observation xt after updating the memory. Note
that this means that pt is equal to xt if it is added to the memory. If pt is different
from pt−1, we add an edge e = (pt−1, pt) to Gt. This results in a directed graph
representing paths between the vectors of the memory.

Navigation module. The navigation module takes as an input the current observa-
tion xt as well as a target observation x∗. The module transforms these observations
into features with a CNN, and concatenates the resulting features. We then apply a
Transformer layer on top of this vector and the memory, resulting in a feature ht. We
compute the feature ht as follows:

ct = [CNN(xt), CNN(x∗)], (4.2)

et = LN(Att(ct, Mt−1) + ct), (4.3)

ht = LN(MLP(et) + et). (4.4)

Similar to the exploration module, the policy and value function are linear functions
of a feature ht. Note that set of parameters for the attention modules for the explo-
ration and navigation modules are different, but not the CNNs.

Memory based navigation reward. After the exploration phase of an episode, the
navigation phase starts by setting a randomly selected element mj of the memory as
a goal to navigate towards. A positive intrinsic reward is given if the agent considers
that it has reached the target location based on its reachability network, i.e.,

rsparse navigation(t) = β1R(xt,x∗)>τ. (4.5)

This is an intrinsic reward built solely on the capability of the agent to perceive if it
has reached the goal sampled from its memory. However this reward is sparse and
we propose to densify the reward by further exploiting the memory.

Dense intrinsic navigation reward. We leverage the graph Gt to form dense nav-
igation reward by computing a graph based approximation of the distance to the
goal. More precisely, at each time step t, we compute the shortest path between pt

and x∗ in Gt and denote by lt its length. We thus add a dense reward based on this

4.5. Experimental Evaluation 49

TABLE 4.1: Navigation performance as measured by the SPL metric for our method (Ours)
and selected baselines on all considered environments.

Adrian Albert. Arkan. Ballou Capist. Goffs Mosq. Sanc. Mean

Random 13.5 19.3 16.4 10.5 26.0 9.3 10.6 12.6 14.8
SPTM 25.5 23.5 20.2 9.7 38.6 9.3 16.9 10.1 19.2
Supervised 27.5 30.5 21.9 11.1 45.8 14.8 13.0 17.4 22.8

Ours-sparse 27.8 39.9 30.6 17.0 60.9 15.1 16.3 32.9 30.1
Ours-dense 35.6 45.2 32.3 27.8 65.9 16.8 18.8 24.5 33.4

distance as:
rdense navigation(t) = max

(
0, min

t′<t
lt′ − lt

)
. (4.6)

Note that, since we update the graph Gt as we navigate the environment, this re-
ward may change over time for a same target x∗ and memory vector pt. Note that
this bonus reward only absolute progress towards the goal and the total reward ac-
cumulated over an episode is equal to the length of the shortest path as estimated
at the beginning of the episode. Overall, we use both the dense and sparse reward
during the navigation phase.

4.5 Experimental Evaluation

We evaluate both the exploration and the navigation modules. We start by describ-
ing the data we use and providing technical details of our experimental setup.

4.5.1 The Gibson Dataset

For a realistic setup we perform all of our experiments on scenes taken from the
Gibson dataset [Xia et al., 2018]. We run the simulations for these experiments inside
the Habitat-sim framework [Savva et al., 2019]. We have selected a subset of eight
scenes from the Gibson dataset, based on the quality of the 3d mesh, surfaces, and
the number of floors, following the study presented in [Savva et al., 2019]. The scenes
are fairly complex as they have 16 rooms on average spanning multiple floors. The
action set contains three actions: moving forward by one meter, and turning right or
left by 45 degrees. We only keep the RGB data, discarding the depth channel, and
use images of size 160× 120 pixels.

In this work, we make the assumption that the agent is always spawned in the same
location of a scene. To achieve this, for each scene we manually select a starting
position corresponding to the entrance door in the house.

4.5.2 Implementation Details

Visual Representation Learning. We implement the network R as a siamese net-
work with resnet18 as the function g, and use a comparison function f composed of

50 Chapter 4. Image-Goal Navigation without Supervision

0 1 2 3 4 5

Iterations ×107

0

50

100

150

C
ov

er
ag

e
(m

2
)

Supervised

Ours

EC [27]

FIGURE 4.4: Performance of exploration policies as measured by the coverage metric in
squared meters. We compare the performance of our model to a baseline (EC) and a super-

vised topline.

two hidden layers of dimension 512. For each scene, we sample 20 random trajec-
tories of 20k steps. From each trajectory we extract 40k pairs, yielding a dataset of
800k image pairs. The maximal action distance for a positive pair is set to five steps.
We train this network using SGD for 20 epochs with a batch size of 128, a learning
rate of 0.1, a momentum of 0.9, a weight decay of 10−7 and no dropout. We do not
share parameters between scenes.

Exploration and Navigation. For our CNN module, we use a network with 3 con-
volutional layers with kernels of size [9, 7, 5], strides of size [5, 4, 3] and number of
channels [32, 64, 128]. For the attention on the memory, we use an attention with
two heads, a hidden dimension of 64 and a feedforward network with a hidden di-
mension of 128. We train the policy using PPO, where each batch consists of 16 full
episodes, each with 1000 steps. We run 4 PPO epochs, with γ set to 0.99, an entropy
coefficient set to 0.01 and clipping of 0.1. We optimize the parameters using RM-
Sprop with a learning rate of 10−4, a weight decay of 10−7, and parameters α and ε

set to 0.98 and 10−5 respectively. For this model we do use dropout with p = 0.1,
and a learning rate warm up phase of 300 steps. As with the R network, we do not
share parameters between scenes.

4.5.3 Main Results

The main experiment in our evaluation checks how well our agent navigates to new
test goals. After training itself to navigate to elements of the memory, the agent can
be given a new goal feature as a target. In this experiment, we sampled 100 random
locations from each scene, and saved the corresponding RGB observation and loca-
tion. For each scene, and each target location, we first run 1000 steps of exploration
to fill the memory and launch the navigation episode. The total navigation episode
lasts for 1000 steps, and as soon as a goal is reached, a new goal is sampled.

4.5. Experimental Evaluation 51

0 5 10 15 20 25
Distance to Goal

0

50

100

150

200

250

Co
un

ts

5 10 15 20
Distance to Goal

0.0

0.1

0.2

0.3

0.4

0.5

0.6

SP
L

ours-dense
ours-sparse
SPTM

5 10 15 20
Distance to Goal

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

FIGURE 4.5: Navigation performance is broken down by physical shortest distance from
start to goal location. Left: Histogram of distances from start to goal in our evaluation
dataset. We see that most goals are located between 5m and 10m from the entrance. Center:
Breakdown of the SPL metrics by distance. Right: Breakdown of the flat success rate by
distance. We clearly see the advantage of using the dense rewards for learning to navigate

to far-away locations.

Evaluation Metrics. We evaluate success by computing the number of targets that
the agent reached successfully out of 100. The target is considered reached if the
agent navigates to a distance of at most one meter from the target location. The first
metric that we compute is the success rate, which simply corresponds to the fraction
of goals that were reached within the allocated 1000 steps. Since this measure does
not account for the length of the path taken, the second metric we report is the SPL
metric [Anderson et al., 2018]. Let us assume that we have access to the length of
the shortest path from the starting location to the goal i, computed by the simulator,
that we denote li. If we write si the indicator of success as defined above, and di

the metric length of the trajectory obtained with our algorithm, the SPL is defined as
follows:

SPL =
1
N

N

∑
i=1

si
li

max(li, di)
. (4.7)

Baselines. In order to evaluate the quality of our navigation algorithm, we com-
pare our model to three baselines: SPTM, Supervised and Random. We describe
these baselines in more detail here.

First, we compare our algorithm to the Semi-Parametric Topological Memory [Savi-
nov et al., 2018a]. In order to adapt SPTM to the environments used in our experi-
ments, we train the action and edge prediction networks on them. For each scene,
we train the networks for 300 epochs of 1000 batches each, with a batch size of 64.
Samples in the batches are obtained from random trajectories that are sampled on-
line. This number of training iterations amounts to approximately 90M steps in each
environment - which is comparable to the number of steps used to train our method
(exploration and navigation). Since SPTM requires an expert human-provided ex-
ploration trajectory, we use random exploration in place.

Second, we also compare against a feedforward policy trained with supervised re-
wards (Supervised). This policy is trained using RL, assuming that at each step the

52 Chapter 4. Image-Goal Navigation without Supervision

first floor second floor

FIGURE 4.6: Visualization of the graph build during exploration in the Ballou environment.

distance d(t) from the agent to the goal is known: d(t) = ‖pagent(t) − pgoal(t)‖2.
In that setup, the agent receives a reward of 10 if d(t) < 1 - which is equivalent
to the success criterion defined above. Please note that this feedforward policy is
trained on the same set of 100 goals that are used during evaluation. For reference,
we provide the performance of random navigation.

Results. We run the evaluation for the baselines and our method with sparse or
dense rewards and report the results for each scene in Table 4.1. There are a couple
observations that we can make about this experiment. First of all, we see that our
method outperforms all the baselines by a large margin on all of the scenes. Sur-
prisingly, it even works better than the supervised agent which utilizes the location
information - data to which our method has no access. However, this can be ex-
plained by our architectural choice of conditioning the navigation module on the
memory of previously visited states. As opposed to that, the Supervised baseline is
only a feedforward network, and has no representation of the past observations.

Second, the SPTM baseline performs poorly compared to our method with only little
improvement over the randomly acting agent. This can be explained by the fact
that SPTM only has access to a random exploration trajectory, therefore limiting the
set of goals that it can ever reach. Moreover, SPTM restricts the navigation to its
exploration graph, severely limiting the possible routes to the goal. In comparison,
our method encourages the agent to reach the goal as fast as possible taking any
possible route. Our dense reward does use the graph, but only as a guide that can
be completely ignored if more optimal solutions exist.

Finally, we see that the dense reward generated using the graph Gt as described in
Sec. 4.4.3 allows to train a better navigation policy, outperforming the sparse reward
on most of the scenes. Indeed, for our agent, this dense reward corresponds to a
discrete distance over the graph which leads to the goal if minimized. This effect is
clearer when we measure the performance for different goal distances as shown in
Fig. 4.5. The gap between the dense and sparse reward widens for far-away goals.
This is likely because the graph Gt provides intermediate goals, helping a lot when
the goal cannot be reached easily.

4.5. Experimental Evaluation 53

0 1 2 3 4 5

Iterations ×107

0

50

100

150

200

250

300

In
tr

in
si

c
re

w
ar

d

Ours

Ours (no memory)

EC [27]

0 1 2 3 4 5

Iterations ×107

0

50

100

150

200

C
ov

er
ag

e
(m

2
)

FIGURE 4.7: Ablation study of our exploration policy. We report the performance for our
model, the EC baseline, as well as a variant of our model with no attention mechanism on
the memory. Left: Evolution of the intrinsic bonus reward as a function of iterations. Right:

Evolution of the coverage metric.

4.5.4 Analysis of Exploration

As mentioned in Sec. 4.4.3, the coverage obtained during the exploration stage is
critical for the final navigation task. In this section, we want to evaluate the quality
of this exploration stage alone.

Evaluation Metrics. The goal of the exploration stage is to train an agent to explore
and map an environment without any form of supervision. For this experiment, we
follow previous work and evaluate the quality of the exploration using a coverage
metric. In order to define this metric, we discretize the environment using a grid,
with cells of size 1× 1 meter. At the end of the episode, we report the number of
cells that were visited by the agent. Since the environments we consider can have
multiple floors, we infer the floors in the environment. We do so by sampling ran-
dom locations and keeping most frequent heights that are at least .5 meters away by
doing non-maximal suppression. We then keep one coverage grid per floor.

Baselines. First, we compare our exploration module to Episodic Curiosity
(EC) [Savinov et al., 2018b]. In that baseline - unlike our method - the policy has
no dependency on the past. Another difference between our method and the EC
baseline, is the nature of the intrinsic rewards. While the original bonus proposed
in [Savinov et al., 2018b] was continuous, we propose to use a discretized version
instead. Note that we cannot compare to EC on the navigation task in Sec. 4.5.3
because it does not provide means of navigation without supervision.

Second, we include a Supervised policy trained using the “oracle” reward, being the
measure that we use for evaluation. In this case, we densely reward the agent ev-
ery time a new cell is visited. Apart from using a different source of reward, all
parameters for this model are taken the same as for our model.

54 Chapter 4. Image-Goal Navigation without Supervision

Continuous Discrete

fir
st

 fl
oo

r
se

co
nd

 fl
oo

r

continuous reward, =0.1

fir
st

 fl
oo

r
se

co
nd

 fl
oo

r

binary reward, =0.1

FIGURE 4.8: Visualization of the trajectories obtained with a policy trained with continuous
and discrete bonus rewards.

Results. The performance evaluation of our method and the baselines during
training is shown in Fig. 4.4. The coverage metric is averaged over the eight scenes.
Our method performs comparable to the supervised agent, which can be considered
as the upper bound as it directly optimizes the coverage metric. In Fig. 4.6, we show
an example of exploration behavior learnt by our agent. The nodes of this graph are
states added to the memory by the agent, and they are connected following the rule
described in Sec. 4.4.3. We see that the agent has explored most of the house suc-
cessfully and made connections consistent with its topology, which will assist the
training of the navigation module. Surprisingly, we observed that the agent trained
using vanilla EC does not learn a good exploration policy. We investigate the reason
for this in the following experiment.

Ablation of the exploration model. In Savinov et al. [2018b], the authors propose
a continuous curiosity reward: r(t) = α.(β− s(xt, Mt−1)). In this ablation study, we
want to exhibit the importance of our improvements over [Savinov et al., 2018b],
namely using a discrete bonus and an attention mechanism over the memory. To
this end, we show the evolution of the intrinsic reward as well as of the coverage
metric for three models on the Ballou environment. We compare our full model to
the vanilla EC and an exploration policy such as ours but with no memory in Fig. 4.7.

We observe that using the continuous reward makes the agent find trivial maxima
by exploiting the reward design. In that case the total episode reward converges to a
value just below N × τ, where N is the number of steps - see Fig. 4.7 (Left). Despite
the fact that the agent trains properly, and optimizes the reward, it does not work
well when measured by the metric we care about, the coverage metric, as shown in
Fig. 4.7 (Right). We provide a qualitative representation of the phenomenon, by vi-
sualizing the agent’s path, as well as the spatial location of elements in the memory.
We show these visualizations for both continuous and discrete rewards in Fig. 4.8.
We see that the agent trained with discrete rewards manages to explore the scene

4.6. Conclusion 55

properly. However, when trained with continuous intrinsic rewards, the agent gets
stuck in a specific subpart of the environment where it receives a continuous reward
just below the threshold τ.

4.6 Conclusion

We have shown how to train an agent to perform goal-directed navigation in pho-
torealistic environments without using any extrinsic rewards. Our agent trains in a
purely self-supervised manner, only using RGB image observations. The model is
composed of three interconnected components: one which learns visual represen-
tations, a second which explores the environment, and a third that teaches itself to
navigate. We have shown that our self-supervised navigation models manage to
navigate to novel and unseen test goals.

57

Chapter 5

Discovering and Reaching Goals
Autonomously

In the previous chapter, we presented a method for learning to navigate in photo-
realistic environments without position information and external rewards. It is also
crucial to consider how the proposed method would scale to different type of tasks,
and investigate the design choices that would harm the performance of the model
on specific tasks. A probable cause of failure relies on the fact that the representation
learning phase is performed only once, on trajectories collected by a random policy,
at the first stage of the method. For this representation stage to be successful, the
state space needs to be easily covered by random trajectories. If this is a reason-
able assumption for classic navigation tasks, where the initial position of the agent
is randomized, it is not necessarily the case for more complex environments. In con-
tinuous control tasks, such as controlling a robot arm to stack blocks, the state space
cannot be covered uniformly with random trajectories, since stacking a block on top
of another is a very rare event when performing random actions.

In this chapter, we investigate the more general problem of learning state-reaching
policies that can reach any state in the environment, in the absence of external re-
wards. Building up on the ideas proposed in the previous chapters, we train a
Reachability Network to predict the similarity between states, in a self-supervised
fashion, on trajectories collected by a random policy. We use it to build a memory
over the state space, and to shape a dense intrinsic reward signal for the navigation
policy. Contrary to the method from chapter 4, the Reachability Network and the
memory are updated along with the navigation policy training, and are thus im-
proved continuously as the agent explores the environment. We apply our method
to continuous control navigation and robotic manipulation tasks, where exploration
is challenging.

58 Chapter 5. Discovering and Reaching Goals Autonomously

5.1 Introduction

Standard applications of Reinforcement Learning (RL) methods rely on optimizing
an objective based on a specific hand-crafted reward function. However, designing
these functions for every specific behavior that we want the agent to learn is ex-
tremely time-consuming, and sometimes not even feasible. Moreover, optimizing a
single reward function restricts the agent to learning a specific behavior [Zhu et al.,
2017, Yarats et al., 2022], while it would be more powerful to learn agents that are
able to execute diverse skills [Stulp and Sigaud, 2013]. Research efforts have thus
been focusing on designing unsupervised agents, that are able to learn without exter-
nal rewards at all. These agents are usually developed in a two-stage protocol: in
the first stage, the agent can interact with the environment and acquire experience
without external reward, and in the second stage, it is evaluated on human-designed
tasks, with or without adaptation.

The resulting agents are most often trained to explore the environment, and then
fine-tuned with few interactions to perform specific tasks. This adaptation stage
still requires a hand-crafted reward function, and the fine-tuned agent is still able
to perform only one particular task. Recently, some works made the link between
unsupervised RL and the goal-conditioned RL paradigm: in the first stage, the agent
would sample goals from its past experience and learn by attempting to reach them,
and in the second stage, it would be given user-specified goals to be evaluated on.
This allows for a training protocol where the agent does not need any adaptation to
the evaluation task, as the goals are specified in the same way at train and test time,
and can execute several behaviors, simply by giving it diverse goals. However, this
paradigm induces several challenges.

First, the agent must have a set of intrinsic goals on which to train. These goals must
be diverse enough, so that the agent learns several behaviors, but not too hard, to
make learning feasible. Previous works rely on past states and sample goals from
the replay buffer [Nair et al., 2018, Pong et al., 2020], use generative models to create
intrinsic goals [Warde-Farley et al., 2018], or exploit an explorer policy to generate
novel goals [Mendonca et al., 2021]. Second, in the absence of supervision, the agent
must have an intrinsic reward function shaped for goal-reaching. Even though this
function can be easily hand-crafted in some simple cases like mazes, it can be in-
feasible in complex real-world environments. For instance, with high-dimensional
inputs like images or complex control tasks such as moving humanoids, assessing
whether a goal has been achieved can be infeasible.

In a recent line of study, some methods [Hartikainen et al., 2019, Venkattaramanujam
et al., 2019] proposed to tackle these two challenges by learning a distance network
in the state space. This network can be directly used to shape the intrinsic reward
function towards reaching a goal, and can also be used for sampling training goals
in a clever way. These approaches offer a simple and interpretable way of tackling

5.2. Related Work 59

policy trajectory
random trajectory

sample

memory

reachability network
training reward

novelty
filteradd

candidate

time steps

training
labels

state space

criteria

goal-conditioned
policy

act

goal

FIGURE 5.1: Overview of our method. The agent performs two consecutive stages. In the
first stage (orange arrow), it samples a goal g from the memoryM and executes a trajectory
with policy π towards a goal with reward rt = −d(st, g). In the second stage (blue arrow),
the agent performs random steps in order to discover novel goals to be added to the memory

M, and to generate training data for the Reachability Network R.

the unsupervised goal-conditioned problem, as the quality of the learned policy de-
pends mostly on the quality of the distance function.

A possible flaw of these methods is that learning of the distance function and the
goal-conditioned policy are intrinsically tied. Indeed, the distance is learned on
samples generated by the policy, and the policy is trained using distance-based re-
wards. In contrast to these works, we propose to learn the distance function inde-
pendently from the goal-conditioned policy, by learning from randomly generated
trajectories in the environment. This self-supervised process, inspired by Savinov
et al. [2018b], results in more stability and interpretability when training the distance
function jointly with the policy.

5.2 Related Work

In its original formulation, goal-conditioned reinforcement learning was tackled by
several methods [Kaelbling, 1993, Schaul et al., 2015, Andrychowicz et al., 2017,
Nasiriany et al., 2019]. The policy learning process is supervised in these works: the
set of evaluation goals is available at train time as well as a shaped reward function
that guides the agent to the goal.

Several works propose solutions for generating goals automatically when train-
ing goal-conditioned policies [Ecoffet et al., 2019, Pitis et al., 2020], including self-
play [Sukhbaatar et al., 2018b,a, OpenAI et al., 2021], where an agent learns to reach
goals with an adversarial objective and a second agent that proposes goals of increas-
ing difficulty. In the same spirit, Campero et al. [2020] presents a student-teacher
policy trained in a single module with an adversarial learning loss. These methods
assume access to a hand-crafted goal achievement function and therefore require
supervision.

In a recent line of research, some works [Nair et al., 2018, Pong et al., 2020, Warde-
Farley et al., 2018, Mendonca et al., 2021, Gehring et al., 2021] focused on learning

60 Chapter 5. Discovering and Reaching Goals Autonomously

goal-conditioned policies in an unsupervised fashion. In these works, the objective is
to train general agents that can reach any goal state in the environment without any
supervision (reward, goal-reaching function) at train time. There are two challenges
that these methods have to overcome: first, how to generate goals at train time, and
second how to assess whether a goal was reached or not.

To tackle these challenges, Warde-Farley et al. [2018] propose to learn a goal achieve-
ment reward function jointly with the goal-conditioned policy with a mutual infor-
mation objective. Nair et al. [2018] train a variational auto-encoder and generate
goals in its latent space while using the Euclidean distance in this space to compute
a dense reward function. Pong et al. [2020] improves this approach by “skewing"
the set of goals to encourage exploration. More recently, Mendonca et al. [2021] pre-
sented a model-based method, composed of an explorer, which proposes novel goals
in the latent space and an achiever that learns to reach these goals.

Closer to our work, Venkattaramanujam et al. [2019] and Hartikainen et al. [2019]
learn a distance function in the state space jointly with the goal-conditioned policy.
This distance function is used to compute rewards for the policy, but also to sample
goals in clever ways: by encouraging far-away goals [Hartikainen et al., 2019] or
by sampling goals of intermediate difficulty [Venkattaramanujam et al., 2019]. Our
work extends this line of research with a new way of learning the distance function:
independently from the policy by training it on trajectories sampled by a random
policy at every stage of the policy learning process.

5.3 Problem Formulation

In the classical RL setup, the agent observes a state st ∈ S at time t, selects action
at according to a policy π(at|st) and receives a reward rt ∈ R. The agent learns
by maximizing the cumulative return ∑T

t=1 rt where T is the episode length. This
classical RL setup relies on the design of a hand-crafted reward function to solve a
specific task.

In this work, however, we are interested in learning agents that have diverse be-
haviors, and are not limited to mastering a single task. Given a set of target states
Geval ⊆ S , the agent is evaluated on its ability to achieve these goals. We assume
Geval is not known during training, so our objective is to learn a goal-conditioned
policy π(at|st, g) capable of reaching any goal state g ∈ S .

5.4 Method

We propose a novel method to tackle the problem of unsupervised training of a
goal-conditioned agent. Our method comprises three components as shown in Fig-
ure 5.1. The first component is a reachability network (RNet) that learns to predict
the similarity between any given two states. We train this RNet using random walk

5.4. Method 61

Algorithm 1 Training of our method

Initialize: random buffer B ← ∅, goal memoryM← ∅

Warm-up: collect random trajectories and store them in B
for each training stage do

Train the reachability network R on trajectories from B
Update the goal memoryM with states from B using R as a criteria.

for each episode do

Sample a goal g from the memoryM
Run the policy π(at|st, g) for T steps and train it with rewards rt = −d(st, g)

Take N random steps and add that trajectory to B
end for

end for

trajectories generated by a random policy. The second component is a goal memory
M that stores previously seen states that are diverse. To ensure this diversity, we
employ the RNet as a criterion to avoid adding similar states toM. The last compo-
nent is a goal-conditioned policy π(at|st, g) that is trained to reach goals g sampled
fromM. The policy is trained with rewards rt = −d(st, g) using a distance metric.
Since we do not have access to a hand-crafted distance metric, we propose two ways
to approximate it using the RNet andM.

The important aspect of our method is continued exploration of an environment that
allows the agent to discover new areas. This exploration is accompanied by gradual
progression from easy goals to increasingly difficult goals, which acts as curriculum
for better training of the policy. This is achieved by first starting an episode with the
policy π acting towards a goal sampled g ∈ M as shown by the orange trajectory in
Figure 5.1. Once the policy trajectory ends, we start a random walk (blue trajectory),
which is likely to cover areas that are beyond the reach of the current policy. As both
RNet and the goal memoryM are updated by those random trajectories, the agent
will be discovering new goals that are sufficiently different from existing ones. This,
in turn, will train the policy to reach increasingly further away goals. Since this
discovery of increasingly harder goals need to continue throughout the training,
all three components are continuously updated as shown in Figure 1. Let us now
describe each component in more detail and how they interact with each other.

5.4.1 Reachability Network

As in previous chapters, we approximate the distance between states in the environ-
ment by learning a Reachability Network [Savinov et al., 2018b]. During training,
we collect random trajectories (sa

1, ..., sa
N) in random buffer B where a is a trajectory

index. We define a reachability label yab
ij for each pair of observations (sa

i , sb
j) that

62 Chapter 5. Discovering and Reaching Goals Autonomously

depends on their distance in the sequence and if a, b are the same trajectory. More
precisely, we recall that,

yab
ij =

1 if a = b and |i− j| ≤ τreach,

0 otherwise,
for 1 ≤ i, j ≤ T (5.1)

where the reachability threshold τreach is a hyperparameter. We train a siamese neural
network R, the RNet, to predict the reachability label yab

ij from a pair of observations
(sa

i , sb
j) in B. The RNet consists of an embedding network g, and a fully-connected

network f to compare the embeddings, i.e.,

R(sa
i , sb

j) = σ
[

f (g(sa
i), g(sb

j))
]

, (5.2)

where σ is a sigmoid function. A higher R value will indicate that two states easily
reachable with random walk, so can be considered close in the environment. The
training of the RNet is self-supervised, as the supervised labels needed to train the
network are automatically generated.

5.4.2 Goal Memory

Since the set of evaluation goals Geval is not known at train time, the agent needs to
come up with goals on which to train on for itself. One possible solution would be
to sample goals from states that the agent has previously seen (i.e., from the replay
buffer). The main downfall of this solution is that there is no incentive in discovering
novel states, and the agent would potentially learn to reach only a small proportion
of the state space. Instead, we propose to incrementally build a set of intrinsic goals,
or goal memoryM on which the agent trains on. We use the random trajectories B
to build M rather than the policy trajectories because the random walks are more
likely to contain novel states.

Memory filtering: The states in B have to go through a filter: a state is added
to the memory M only if it is distant enough from all other goals in M. More
precisely, a state s ∈ B is added to M if and only if ∀m ∈ M, R(s, m) < τmemory,
where the memory threshold τmemory is a hyperparameter. As presented in previous
chapters, this filtering avoids redundancy by preventing similar states to be added
to the memory. It also has a balancing effect because it limits the number of goals
that can be added from a certain area even if it is visited by the agent many times.
This is especially important if episodes always start from the same initial state s0 and
most samples in B are concentrated around s0.

Weighted goal sampling: Optionally, the same balancing effect as the filtering can
be achieved by giving appropriate sampling weights to the goals. Let us consider a
state si in the memory M and its reachable area defined as Ai = {sj|R(si, sj) > 0}.

5.4. Method 63

The filtering ensures that there is only one state inM from Ai, so the probability of
sampling a goal from Ai is the same as any other reachable area. While this keeps
the memory more balanced and evenly distributed, it also limits the number of goals
we train on, and can make the policy overfit to these goals. So instead, we can use a
weighting scheme that will allow k states from Ai to be added toM. In turn, goals
from Ai are sampled with a probability proportional to 1/k so each reachable area is
still equally represented in the sampled goals.

5.4.3 Distance function for policy training

When an appropriate distance function d in the state space is available, designing a
reward function to learn a goal-conditioned policy towards a goal g is straightfor-
ward, by setting rt = −d(st, g). However, in realistic environments with complex
high-dimensional inputs like images, designing a distance between states is gener-
ally not feasible. We therefore assume that we do not have access to any kind of
distance in the state space a priori. Instead, we propose two different ways to con-
struct a distance function.

RNet distance: The RNet predicts the similarity between si and sj so we can di-
rectly use it as a distance metric. However, the RNet has a sigmoid function σ

for binary classification. We remove it, and define a distance metric as d(si, sj) =

− f (e(si), e(sj)).

Graph distance: Since the RNet is trained to determine whether states are close to
each other or not, there is no guarantee that the aforementioned RNet distance will
have good global properties. Instead of using directly the RNet, we construct an
unweighted graph on the memory, whose nodes are the memory states, and edges
are between nodes that have high reachability score. More precisely, the memory
graph contains an edge between states si and sj if and only if R(si, sj) > τgraph,
where τgraph, the graph threshold, is a hyperparameter.

Using this memory graph, we can easily derive a distance function d between any
pair of states inM by computing the length of the shortest path in this graph, pro-
viding that the graph is connected. Moreover, we can extend this distance to all
states in the state space S by computing, for a state s ∈ S , its closest node ns in the
memory w.r.t the RNet i.e. ns = argmax

m∈M
R(s, m). The distance d between two states

in the state space becomes the length of the shortest path between their respective
closest nodes in the graph. This process allows for propagating the good local prop-
erties of the RNet in order to get a well-shaped distance function for faraway states.

64 Chapter 5. Discovering and Reaching Goals Autonomously

(A) Maze environment (B) Evaluation performance

FIGURE 5.2: Performance on the Maze environment.

5.5 Experiments

We test our method on two continuous control tasks: maze navigation and robotic
arm manipulation. For the policy training, we use Soft actor-critic [Haarnoja et al.,
2018]. The policy training steps are limited to 1M steps. For each model, we report
mean and standard deviation over 5 random seeds.

5.5.1 Maze environment

We first evaluate our model on a simple maze environment [Kanagawa, 2021] with
four rooms, as shown in Figure 5.2a. The point agent always starts at the same po-
sition, in the top left corner, and can move in the maze by performing actions in a
continuous space. Here, the observations are state-based: they contain the agent’s
position, direction and velocity. We generate an evaluation set of 500 goals sam-
pled at random in the environment, and we assess the performance of the agent by
measuring the distance between its final position and the goal position.

We compare the following three models: (i) topline the fully-supervised topline: the
agent samples goal uniformly at random in the evaluation set at train time and uses
the Euclidean distance in the maze for dense reward computation, (ii) ours-RNet
our method with rewards computed directly from the RNet distance, and (iii) ours-
RNet-graph our method with rewards computed as the shortest path in the memory
graph.

(A) final distance to goal - ours-
RNet

(B) final distance to goal - ours-
RNet-graph

FIGURE 5.3: Heatmaps of final distance to goal for (A) ours-RNet and (B) ours-RNet-graph

5.5. Experiments 65

Evaluating the performance of the model We first show the evaluation perfor-
mance of the 3 models during training in Figure 5.2b. We see that the unsupervised
model ours-RNet performs significantly worse than the supervised one (topline),
but that the gap is largely reduced by using graph-based rewards (ours-RNet-
graph).

We then perform a qualitative evaluation of the final distance to the goal for the two
different rewards in Figure 5.3a and 5.3b. It shows that the policy trained with graph
rewards is able to reach almost all goals in the environment, including the ones that
are in the fourth room, while the model with the RNet rewards is not able to achieve
them.

(A) step = 0 (B) step = 200k (C) step = 1M

FIGURE 5.4: Memory of the ours-RNet-graph model during training.

Analysis of the Reachability Network In order to understand how our unsuper-
vised agent learns to discover and achieve novel goals, we visualize the memoryM
at several steps of training in Figure 5.4. We see that throughout training, the mem-
ory gets filled with vectors that are further and further away from the initial state,
and that after 1M steps, it is well distributed in the state space.

(A) RNet distance (B) Graph distance

FIGURE 5.5: Visualization of rewards computed with the RNet (a) and graph (b) distances.

We then compare the shape of the reward computed from the RNet reward function,
and using the graph memory in Figure 5.5. We see that the graph-based reward is
necessary in order to have a reward function that takes into account the true dynam-
ics of the environment. Indeed, the shape of the reward based on the RNet distance
will make the agent bump into the wall to go from room 1 to room 4, while the
graph-based reward has a smooth shape that follows the room order.

Finally, we visualize the features learned by the RNet embedding for the ours-RNet-
graph model in Figure 5.6. We generate a set of points in the environment, and

66 Chapter 5. Discovering and Reaching Goals Autonomously

(A) step = 0 (B) step = 200k (C) step = 500k (D) step = 1M

FIGURE 5.6: Visualization of the RNet embedding g(s) for the ours-RNet-graph model. We
compute the 2D-PCA for a set of points sampled in the environment at several steps of

training.

compute their features with the embedding part of the RNet. We then reduce the
dimension of the embeddings by computing the 2D-PCA and visualize the resulting
projection. We see that throughout training, the RNet learns to disentangle observa-
tions in consecutive rooms. After 1M steps, the embeddings describe well the entire
state space.

0.2 0.4 0.6 0.8 1

·106

0

2

4

6

8
·10−2

policy training steps

di
st

an
ce

to
go

al Topline
Ours-RNet
Ours-RNet-graph

FIGURE 5.7: Left: Pusher environment. The robot arm has to move the puck to a specified
location. Right: Learning curve on the Pusher-Vec environment showing the distance to the

goal.

5.5.2 Pusher Task

Next, we apply our method to a realistic robotic environment from Nair et al. [2018].
In particular, we use the Pusher task shown in Figure 5.7 (left) where a robot arm
(red) needs to push a puck (blue) to a specified location on a table. The performance
of this task is measured by the final Euclidean distance d∗(st, g) between the puck
and its target location. See Nair et al. [2018] for more details about the environment.

We experiment with two versions of this environment: Pusher-RGB where observa-
tions are RGB images, and Pusher-Vec where observations are a vector containing the
hand and puck locations. Even with the vector observations, this task is challeng-
ing because our method is not given any information particular to this task such as
the importance of moving the puck, or the distance between the puck and its target
location. Instead, our method has to learn all this solely from interacting with the
environment without any external reward.

We start with Pusher-Vec and compare our model against a supervised topline that is
rewarded by the oracle distance rt = −d∗(st, g). As shown in Figure 5.7 (right), the
topline learns quickly to move the puck closer to the target location. Our method

5.5. Experiments 67

also learns to move the puck to the target location, with the RNet reward working
slightly better than the graph reward. For all remaining experiments, we use the
RNet reward.

Our method does not know that moving the puck is the goal. Instead, it tries to
match the current state to the target state according to its own distance metric. In
fact, we can see the effect of this if we look at the hand distance. The target obser-
vation contains a hand location, but it has no effect on the evaluation metric. While
the topline has no incentive to match the hand location, our method also learned to
match the hand position (hand distance 0.08 vs 0.02), which can be a useful skill in
general.

Method Goal distance (·10−2)

Skew-fit 4.9
LEXA 2.3

Topline 1.34 ± 1.09
Our method 4.11 ± 0.53

TABLE 5.1: The performance on Pusher-RGB

We compare our method against two existing baselines: Skew-Fit [Pong et al., 2020]
and LEXA [Mendonca et al., 2021] on the Pusher-RGB task in Table 5.1. We evaluated
our model on the same set of evaluation goals than these methods, and reported the
performance available in their paper. We see that our method performs better than
the existing model-free method Skew-Fit, but is still far behind the model-based
model LEXA. One possible explanation for this bad performance is the quality of
the RNet on RGB, which could be greatly improved to match the performance of the
model on Pusher-Vec.

(A) step=160k (B) step=331k (C) step=673k (D) step=995k

FIGURE 5.8: Distribution of the puck locations in random buffer B at different stages of
training.

Importance of keep updating the reachability network One important aspect of
our method is that the reachability network is kept updated throughout the train-
ing. Let us demonstrate why that is important. Figure 5.8 shows the puck location
distribution within the collected random trajectories at different stages of training.

Early in the training, the goals in the memory are concentrated around the initial
state s0, so a policy trajectory does not go far from the initial state. Since a random
trajectory starts from the last state of a policy trajectory, it is also biased towards the

68 Chapter 5. Discovering and Reaching Goals Autonomously

oracle oracle
reward

oracle
memory

unsup
0

2

4

·10−2

di
st

an
ce

to
go

al

FIGURE 5.9: Ablation on Pusher-Vec where the reachability network is replaced by the oracle
puck distance. We compare the performance of the unsupervised model against the three

oracle variations.

initial state, which can be seen in Figure 5.8a. Note that a similar thing will happen
if random trajectories are started from s0 instead.

However, as training progress, more states are added to the memory that are farther
away from the initial state s0. So a random trajectory is more likely to start from a
state that is less biased towards s0 and will be more evenly distributed. This, in turn,
allows the reachability network to be trained on more evenly distributed samples,
and even farther away states to be added to the memory. We can see this trend
towards more uniformity in random trajectories shown in Figure 5.8.

(A) Oracle distance (B) Reachability network

FIGURE 5.10: Puck positions of the states stored in the memory for the oracle model (A) and
the unsupervised one (B).

Effectiveness of the Reachability Network. The RNet R(si, sj) is an integral part
of our method and it has to function well for our method to succeed. Here, we
test the quality of the RNet with an ablation study. We replaced the RNet in our
method with the oracle distance metric d∗(si, sj). Since our method rely on R(si, sj)

in two places, when giving a reward to the policy and as a criterion for adding to the
memory, we ended up with three oracle variations:

• oracle-reward: the oracle distance is used as a reward rt = −d∗(st, g) for the
policy.

• oracle-memory: the oracle distance is used as a criterion for adding a state to
the memory. A state s is added when d∗(s, m) > 0.0075 for ∀m ∈ M.

• oracle: the oracle distance is used for both, replacing the RNet completely.

5.6. Conclusion 69

The results are shown in Figure 5.9 where we do not see much difference between
our method and its oracle variations in terms of performance. This indicates that the
RNet is as effective as the oracle distance metric.

However, the RNet predictions differ from the oracle distance, which can be seen
from the states stored in the memory. Figure 5.10 shows the puck positions of the
states that are stored in the memory. The oracle distance is based on the exact puck
position, so the memory looks more uniform and evenly spaced. This is not true
when the RNet is used, which takes into account the hand position as well. It also
depends on the agent’s experience, so the memory is more biased towards puck
locations that are relatively easy to achieve.

Memory Threshold Goal Goal distance
Filter τmemory weighting (·10−2)

X 0.5 × 2.05 ± 0.21
X 0.73 × 2.47 ± 0.84
X 0.95 × 5.75 ± 2.27
× - × 6.04 ± 2.32
X 0.95 X 1.77 ± 0.21

TABLE 5.2: Effect of the memory filtering and goal weighting on the Pusher-Vec perfor-
mance.

The Effect of The Memory Filtering. As discussed in Sec. 5.4.2, one goal of filter-
ing states added to the memory is to make the memory more evenly distributed over
explored areas. To measure the effect of the filtering, we trained several variations of
our method. First, we made the filter loose by increasing its threshold τmemory from
its default value of 0.5, to allow more states to be added to the memory. This clearly
had a negative impact on the performance as shown in the top 3 rows of Table 5.2.
Removing the filter altogether, as shown in the 4th row, leads to the worst perfor-
mance. Next, we use the weighting scheme from Sec. 5.4.2 that take on the role of
the filtering and keep the goals well balanced. When it is applied to a loose filtering
threshold of 0.95, it improved the performance and actually gave the best perfor-
mance we obtained on Pusher-Vec. The reason why the weighting worked better
than the filtering alone is probably because it had more goals that made over-fitting
less likely.

5.6 Conclusion

In this chapter, we proposed a novel method for training a goal-conditioned agent
without any external supervision. The method utilizes random walk to learn the
similarity between states, which then is used to build a goal memory that is diverse
and well-balanced. On the maze task, we showed that our method can discover
increasingly difficult goals. In this task the graph distance built on the memory
worked better than the similarity metric, mainly because the global structure of the

70 Chapter 5. Discovering and Reaching Goals Autonomously

rooms is more important than the local dynamics. The Pusher task showed that our
method can learn to manipulate an object without any external supervision.

71

Chapter 6

Learning State-Reaching Policies
Offline

In online reinforcement learning, the agent interacts with the environment in or-
der to collect experience to improve its policy. However, in some cases, this live
interaction can be impractical, expensive, or even unsafe. In robotics for example,
performing actions on a physical robot can be very slow, and applying online RL
algorithms, that require millions of environment interactions, for such tasks is not
scalable. Moreover, it can be unsafe to train a policy from scratch on such robots,
as it can cause damage to the robot or its environment. The same argument applies
to other types of tasks, like autonomous driving, where deploying a learning agent
in the real world must be done with extreme caution. Recently, a line of study has
emerged that uses pre-collected datasets of trajectories, and trains policies offline,
i.e., without any additional interaction in the environment [Yarats et al., 2022, Lam-
bert et al., 2022]. This setup is particularly useful in robotics, where data collection is
extremely time-consuming: disentangling data collection and policy learning in this
context allows for faster policy iteration. Leveraging such datasets to learn multi-
task policies has been done from the state-reaching perspective [Chebotar et al., 2021,
Yang et al., 2022, Li et al., 2022a], by training agents to reach any state in the dataset.
However, such methods either rely heavily on human supervision [Yang et al., 2022,
Li et al., 2022a], or are subject to the pitfall of learning from sparse rewards [Chebotar
et al., 2021].

In this chapter, we introduce a self-supervised learning stage in order to shape a
dense reward function for training a goal-conditioned policy offline. This learning
stage aims to learn the structure and dynamics of the environment without human
intervention or prior knowledge. We evaluate our method on complex continuous
control tasks, and compare it to previous state-of-the-art offline approaches [Cheb-
otar et al., 2021, Andrychowicz et al., 2017]. We show that, contrary to prior work
that uses datasets collected with a policy trained with supervised rewards [Chebo-
tar et al., 2021], our method allows for learning goal-conditioned policies even from
datasets of poor quality, e.g., containing trajectories sampled with a random policy.

72 Chapter 6. Learning State-Reaching Policies Offline

Our method is thus the first to learn goal-conditioned policies from offline datasets
without any supervision, as it does not require any hand-crafted reward function at
any stage: data collection, policy training and evaluation.

6.1 Introduction

A recent line of study has emerged that uses pre-collected datasets of trajectories
and trains policies offline (i.e., without additional interactions with the environment)
[Yarats et al., 2022, Lambert et al., 2022]. More precisely, given a dataset of reward-
free trajectories and a reward function designed to solve a specific task, the agent
learns offline by relabeling the transitions in the dataset with the reward function.
This setting is particularly relevant in robotics, where data collection is extremely
time-consuming: disentangling data collection and policy learning in this context
allows for faster policy iteration. However, it would require designing one specific
reward function and learning one policy for each individual task.

An important question to scale offline robot learning is therefore to find ways of
learning multi-task policies from already collected datasets. Recent works [Chebo-
tar et al., 2021, Yang et al., 2022, Li et al., 2022a], have targeted this problem from
a goal-conditioned perspective: given a dataset of previously collected trajectories,
the objective is to learn a goal-oriented agent that can reach any state in the dataset.
The advantages of this formulation are two-fold: first, it makes it easy to interpret
skills, and second it does not require any adaptation at test time. Making this frame-
work unsupervised requires to break free from hand-crafted rewards, as proposed
by Chebotar et al. [2021], where they learn goal-conditioned policies offline through
hindsight relabeling [Andrychowicz et al., 2017]. However, their approach is subject
to the pitfall of learning from sparse rewards, and can be inefficient in long-horizon
tasks.

In this work, we present a self-supervised reward shaping method that enables
building an offline dataset with dense rewards. To this end, we develop a self-
supervised learning phase that aims at learning the structure and dynamics of the
environment before training the policy. During this phase, we: (i) train a reachabil-
ity network [Savinov et al., 2018b] to estimate the local distance in the state space S ,
then (ii) extract a set of representative states that covers S , and finally (iii) build a
graph on this set to approximate the global distance in S . When training the goal-
conditioned policy, we use the graph in two ways: to compute rewards through
shortest path distance, and to create transitions of intermediate difficulty on the path
to the goal.

We evaluate our method on complex continuous control tasks, and compare it to
previous state-of-the-art offline [Chebotar et al., 2021, Andrychowicz et al., 2017]
approaches. We show that our graph-based reward method learns good goal-
conditioned policies by leveraging transitions from a dataset of past experience with

6.2. Related Work 73

neither any additional interactions with the environment nor manually-designed re-
wards. Moreover, we show that, contrary to prior work that uses datasets collected
with a policy trained with supervised rewards [Chebotar et al., 2021], our method
allows for learning goal-conditioned policies even from datasets of poor quality, e.g.,
containing trajectories sampled with a random policy. Our work is thus the first
to learn goal-conditioned policies from offline datasets without any supervision, as
it does not require any hand-crafted reward function at any stage: data collection,
policy training and evaluation.

6.2 Related Work

Goal-conditioned RL. In its original formulation, goal-conditioned reinforcement
learning was tackled by several methods [Kaelbling, 1993, Schaul et al., 2015,
Andrychowicz et al., 2017, Nasiriany et al., 2019]. The policy learning process is su-
pervised in these works: the set of evaluation goals is available at train time as well
as a reward function that guides the agent to the goal. Several works propose so-
lutions for generating goals automatically when training goal-conditioned policies,
including self-play [Sukhbaatar et al., 2018b,a, OpenAI et al., 2021], and adversarial
student-teacher policies [Campero et al., 2020]. A recent line of research [Warde-
Farley et al., 2018, Nair et al., 2018, Ecoffet et al., 2019, Pong et al., 2020, Venkat-
taramanujam et al., 2019, Hartikainen et al., 2019, Mendonca et al., 2021, Mezghani
et al., 2022a] focuses on learning goal-conditioned policies in an unsupervised fash-
ion. The objective is to train general agents that can reach any goal state in the en-
vironment without any supervision (reward, goal-reaching function) at train time.
In particular, Mendonca et al. [2021] trains a model-based agent that learns to dis-
cover novel goals with an explorer model, and reach them with an achiever policy
via imagined rollouts.

Offline RL. The data collection technique is an important aspect when studying
the training of policies from pre-collected datasets. In this context, the first works as-
sumed access to policies trained with task-specific rewards [Fu et al., 2020, Gulcehre
et al., 2020]. More recently, methods proposed to leverage unsupervised exploration
to collect datasets for offline RL [Yarats et al., 2022, Lambert et al., 2022]. In par-
ticular, Yarats et al. [2022] creates a dataset of pre-collected trajectories, ExoRL, on
the DeepMind control suite [Tassa et al., 2018] generated without any hand-crafted
rewards. Similar to URLB [Laskin et al., 2021], ExoRL benchmarks a number of ex-
ploration algorithms [Pathak et al., 2017, Eysenbach et al., 2018, Pathak et al., 2019,
Yarats et al., 2021], and evaluates the performance of a policy trained on the corre-
sponding offline datasets relabeled with task-specific rewards.

Multi-task Offline RL. Recent works proposed to learn multiple tasks from pre-
collected datasets, starting with methods [Endrawis et al., 2021] that generate goals

74 Chapter 6. Learning State-Reaching Policies Offline

to improve the offline data collection process in a self-supervised way. This con-
nection has also been studied in the supervised setting [Yang et al., 2022, Ma et al.,
2022] and when learning hierarchical policies [Li et al., 2022a]. In a setting closely
related to our work, Actionable Models [Chebotar et al., 2021] considers the problem
of learning goal-conditioned policies from offline datasets without interacting with
the environment, and with no task-specific rewards. They employ goal-conditioned
Q-learning with hindsight relabeling [Andrychowicz et al., 2017]. As opposed to
their work that relies on learning from sparse rewards, we propose to leverage a
self-supervised training stage to densely shape rewards.

6.3 Preliminaries

Let E = (S ,A, P, p0, γ, T) define a reward-free Markov decision process (MDP),
where S and A are state and action spaces respectively, P : S × A × S → IR+ is
a state-transition probability function, p0 : S → IR+ is an initial state distribution, γ

is the discount factor, and T is the task horizon. In the goal-conditioned setting, the
objective is to learn a policy π : S × G → A that maximizes the expectation of the
cumulative return over the goal distribution, where G denotes the goal space. Here,
we make the common assumption that states and goals are defined in the same form,
i.e., G ⊂ S .

We assume that we have access to a dataset D of pre-collected episodes generated
by using any data collection algorithm in E . Each episode is stored in D as a series
of (s, a, s′) tuples, where s, s′ ∈ S and a ∈ A. In the general offline formulation
introduced by Yarats et al. [2022], the dataset D can be relabeled by evaluating any
reward function r : S × A → IR at each tuple in D, and adding the resulting tuple
(s, a, r(s, a), s′) in the relabeled dataset Dr. We can extend this protocol to the goal-
oriented setting by considering a goal distribution pG in the goal space, and any
goal-conditioned reward function r : S × A × G → IR. Given a tuple (s, a, s′) in
D, we relabel it by sampling a goal g ∼ pG , computing r(s, a, g) and adding the
resulting tuple (s, a, g, r(s, a, g), s′) in the relabeled dataset Dr,pG .

Once the relabeled datasetDr,pG is generated, we can learn a goal-conditioned policy
by executing any offline RL algorithm. The algorithm runs completely offline, by
sampling tuples from Dr,pG and without any interaction with the environment. The
goal-conditioned policy is then evaluated online in E on a set of fixed evaluation
goals that is not known during training.

6.4 Self-Supervised Reward Shaping

We now describe our self-supervised reward shaping method. It comprises three
stages that we will detail below. In the first stage, we train a Reachability Network
(RNet) [Savinov et al., 2018b] on the trajectories in D to predict whether two states

6.4. Self-Supervised Reward Shaping 75

FIGURE 6.1: Training labels generation for RNet: given a state si, positive pairs are sampled
in the same trajectory within a threshold τreach, and the rest of the trajectory forms negative

pairs.

are reachable from one another. The second stage consists in building a directed
graph M whose nodes are a subset of states in D, and edges connect reachable
states. We employ the RNet as a criterion to avoid adding similar states toM so that
its nodes cover the states inD uniformly. The final stage consists in training the goal-
conditioned policy on transitions and goals sampled fromD. It is trained with dense
rewards computed as the sum of a global (based on the graph distance inM) and
local (based on the RNet) distance terms. The important aspect of our method is that
the whole training only uses trajectories from the pre-collected dataset D without
running a single action in the environment. We now describe each component in
more detail.

6.4.1 Reachability network

In order to learn a good local distance between states in D, we adopt an asymmet-
ric version of the Reachability Network (RNet) [Savinov et al., 2018b]. The general
idea of RNet is to approximate the distance between states in the environment by
the average number of steps it takes for a random policy to go from one state to
another. We adapted the original formulation with two modifications: first, we use
exploration trajectories from D instead of random trajectories and second, we lever-
age the temporal direction because a state can be reachable from another without the
converse being true. Let (sa

1, ..., sa
T) denote a trajectory in D, where a is a trajectory

index. We define a reachability label yab
ij for each pair of observations (sa

i , sb
j) by

yab
ij =

1 if a = b and 0 ≤ j− i ≤ τreach,

0 otherwise,
for 1 ≤ i, j ≤ T, (6.1)

where the reachability threshold τreach is a hyperparameter. The reachability label is
equal to 1 iff the states are in the same trajectory and the number of steps from
sa

i to sb
j is below τreach, as shown in Figure 6.1. Note that yab

ij 6= yab
ji . We train a

siamese neural network R, the RNet, to predict the reachability label yab
ij from a pair

of observations (sa
i , sb

j) in D. The RNet consists of an embedding network g, and a

76 Chapter 6. Learning State-Reaching Policies Offline

add edge

add node

FIGURE 6.2: Overview of the graph building algorithm. Given a transition (si, si+1) ∈ D,
we add si as node if it is distant enough from existing nodes in the graph. Moreover, we add
an edge in the graph between the incoming nearest neighbor of si and the outgoing nearest

neighbor of si+1.

fully-connected network f to compare the embeddings, i.e.,

R(sa
i , sb

j) = σ
[

f (g(sa
i), g(sb

j))
]

, (6.2)

where σ is a sigmoid function. A higher R value indicates two states reachable eas-
ily with random walk, so they can be considered close in the environment. More
precisely, R takes values in (0, 1) and s′ is reachable from s if R(s, s′) ≥ 0.5. RNet is
learned in a self-supervised fashion, as the ground-truth labels needed to train the
network are generated automatically.

6.4.2 Directed graph

In the next phase, we use trajectories in D to build a directed graphM that captures
high-level dynamics of the environment, as illustrated in Figure 6.2. We want the
nodes of M to evenly represent the states in D. This is achieved by filtering the
states inD: a state is added toM only if it is distant enough from all the other nodes
inM. More precisely, a state s ∈ D is added toM if and only if

R(s, n) < 0.5 and R(n, s) < 0.5, for all n ∈ M. (6.3)

Note that we require both the directions to be novel. This filtering avoids redun-
dancy by preventing similar states to be added to the memory. It also has a balanc-
ing effect because it limits the number of states that can be added from a certain area
even if it is visited by the agent many times in D.

Once the nodes are selected, we connect pairs that are reachable from one to an-
other. To this end, we employ trajectories in D because they contain actual feasi-
ble transitions. Given a transition si → sj in D, we add edge ni → nj if si can be
reached from node ni and node nj can be reached from sj. This way, we have a chain
ni → si → sj → nj and can assume nj is reachable from ni. Concretely, we select
node ni to be the incoming nearest neighbor (NNin) to si, and nj to be the outgoing

6.4. Self-Supervised Reward Shaping 77

1

0.2
0.5
0.8

shortest path

FIGURE 6.3: Visualization of the reward computation process. The total reward is a combi-
nation of (i) a global distance term (green), computed with the shortest path in the graph
between the outgoing nearest neighbor (NNout) of the state st+1 and the incoming nearest
neighbor of the goal (NNin), and (ii) a local distance term (red) computed using the RNet

value between NNin and g.

Algorithm 2 Building the directed graphM
Input: pre-collected dataset D, Reachability Network R

Initialize:M = {}
/ * Build the set of nodes * /

for each state s in D do

if R(s,M) < 0.5 and R(M, s) < 0.5 then

UpdateM :=M∪{s}
end if

end for

/ * Build edges * /

for each transition (st, st+1) in D do

Let nt := NNin(st) = argmaxn∈M R(n, st)

Let nt+1 := NNout(st+1) = argmaxn∈M R(st+1, n)

Create directed edge from nt to nt+1

end for

nearest neighbor (NNout) from sj, i.e.,

ni = NNin(si) = argmax
n∈M

R(n, si), nj = NNout(sj) = argmax
n∈M

R(sj, n). (6.4)

By performing this action over all the transitions in D, we turn M into a directed
graph where edges represent reachability from one node to another. The directed
graph building process is summarized in Algorithm 2.

6.4.3 Distance function for policy training

We then use the obtained directed graph to compute a global distance in the state
space. Indeed, RNet predicts reachability between si and sj so we can directly use it

78 Chapter 6. Learning State-Reaching Policies Offline

Algorithm 3 Building replay buffer B for offline policy training

Input: pre-collected dataset D, Reachability Network R,

directed graphM
Initialize: B = {}
while B is not full do

Sample a transition (st, at, st+1) at random in D
Sample a goal g at random in D
Compute dl(st+1, g) := 1− R(st+1, g)

Let nt+1 := NNout(st+1) = argmaxn∈M R(st+1, n)

Let ng := NNin(g) = argmaxn∈M R(n, g)

Compute dg(st+1, g) := ShortestPathLength(nt+1, ng)

Compute reward rt := −(dl(st+1, g) + dg(st+1, g))

Relabel transition with goal g and reward rt, and

Push (st, at, g, rt, st+1) to B
end while

as a distance metric

dl(si, sj) = 1− R(si, sj), ∀si, sj ∈ S . (6.5)

However, this reachability metric is confined to a certain threshold, so there is no
guarantee that the RNet predictions will have good global properties.

In contrast, the directed graphM captures high-level global dynamics of the envi-
ronment. We can easily derive a distance function dM(ni, nj) between any pair of
nodes inM by computing the length of the shortest path in this graph, provided the
graph is connected. In practice, we can use a trick to connect the graph if necessary,
by adding an edge between the pair of nodes from different connected components
with the maximum RNet value. Moreover, we can extend this distance dM to a
global distance function dg in the state space S by finding, for any pair si and sj in S
their nearest neighbors in the corresponding direction. More precisely,

dg(si, sj) = dM(NNout(si), NNin(sj)), ∀si, sj ∈ S . (6.6)

The distance dg between two states in the state space becomes the length of the short-
est path between their respective closest nodes in the graph. This process, summa-
rized in Figure 6.3, propagates the good local properties of RNet to get a well-shaped
distance function for states that are further away. Since dg captures global distances
while dl captures local fine-grained distance, we use their combination as a final
distance function: ∀si, sj ∈ S , d(si, sj) = dg(si, sj) + dl(si, sj).

6.4. Self-Supervised Reward Shaping 79

(A) UMaze environment

Avg Room1Room2Room3Room4
0.0

0.25

0.5

Su
cc

es
s R

at
e

Graph Reward
RNet Reward

(B) RNet vs. Graph Rewards

FIGURE 6.4: (A) Visualization of UMaze environment, and (B) Performance of the goal-
conditioned policy trained with RNet and graph-based rewards on UMaze.

6.4.4 Policy training

The last phase of our method is training the goal-conditioned policy offline. Here,
we create an offline replay buffer B that is filled with relabeled data. We randomly
sample a transition (st, at, st+1) from D as well as a goal g and relabel the transition
with reward rt = −d(st+1, g). We then push the relabeled transition (st, at, g, rt, st+1)

to B. The pseudo-code of this process is given in Algorithm 3. In order to create a
curriculum that artificially guides the agent towards the goal, we experimented with
two different transition augmentation techniques:

Sub-goal augmentation. Let (st, at, g, rt, st+1) denote a relabeled transition and
(n0, ..., nP−1) the shortest path in the graphM between n0 = NNout(st) and nP−1 =

NNin(g). The augmentation technique consists in adding to the replay buffer every
transition (st, at, ni, ri

t, st+1) for all i ∈ {0, P− 1}, where ri
t = −d(st+1, ni). In other

words, given a transition (st, at, st+1) and a goal g from D, we push to the replay
buffer a set of relabeled transitions with all goals on the shortest path from st to g
(and their corresponding rewards).

Edge augmentation. Similar to the subgoal augmentation technique, we consider
a relabeled transition (st, at, g, rt, st+1) and the associated shortest path (n0, ..., nP−1).
This time, we keep the same goal g for every augmented transition, but for every
edge (ni−1, ni), i ∈ {1, P− 1}, we add the relabeled transition (si

t, ai
t, g, ri

t, si
t+1) to B

where (si
t, ai

t, si
t+1) ∈ D, NNout(si

t) = ni−1, NNin(si
t+1) = ni and ri

t = −d(si
t, g). Note

that the existence of such a transition in D is guaranteed by construction: an edge is
added to the graph from one node to another iff there exist a transition in D whose
corresponding nearest neighbors are these two nodes (in the same order).

Once the replay buffer B is filled, the goal-conditioned policy can be trained
using any off-policy algorithm. In our implementation, we chose Soft Actor-
Critic [Haarnoja et al., 2018], as it is known to require few hyper-parameter tuning,
and is widely used in the literature.

80 Chapter 6. Learning State-Reaching Policies Offline

(A) RNet distance (B) Graph distance

FIGURE 6.5: Heatmaps of rewards computed with RNet (A) and graph (B) distances. High
rewards are shown in yellow, and low rewards in black.

6.5 Experiments

6.5.1 Environments & data collection

We perform experiments on three continuous control tasks with state-based inputs.

UMaze [Kanagawa, 2021]. The first environment, shown in Figure 6.4a, is a two-
dimensional U-shaped maze with continuous action space and a fixed initial posi-
tion. We generate the training data for this environment by deploying a random
policy with randomized start position in the maze. We collect 10k trajectories of
length 1k. We evaluate the goal-conditioned agent by giving the agent a goal sam-
pled at random in the environment and computing the final Euclidean distance to
the goal.

RoboYoga Walker [Mendonca et al., 2021]. Introduced by Mendonca et al. [2021],
the challenging RoboYoga benchmark is based on the Walker domain of the Deep-
Mind control suite [Tassa et al., 2018], and consists of 12 goals that correspond to
body poses inspired from yoga (e.g., lying down, raising one leg or balancing). We
consider the state-based version of the task, and use the task-agnostic dataset from
Yarats et al. [2022] generated with an unsupervised exploration policy. It contains
10k trajectories of length 1k obtained by deploying the “proto" [Yarats et al., 2021]
algorithm in the Walker domain. The success metric of the evaluation policy is as-
sessed by the pose of the humanoid at the end of the episode.

Pusher [Nair et al., 2018]. We also apply our method on Pusher, a realistic robotic
environment shown in Figure 6.13 (left), where a robot arm (red) needs to push
a puck (blue) to a specified location on a table. To build the offline dataset, we
generated 10k random trajectories of length 200. Similar to prior works [Nair et al.,
2018, Pong et al., 2020, Mezghani et al., 2022a], we generated 500 goals at random
in the state space, and we measured the performance as the final Euclidean distance
between the puck and its target location.

6.5. Experiments 81

Avg Room1 Room2 Room3 Room4
0.0

0.25

0.5

Su
cc

es
s R

at
e

Directed
Undirected

FIGURE 6.6: Importance of graph directness on the UMaze task

6.5.2 Ablation & design choices

We first show that the graph structure is necessary for long-term planning. Then,
we explain the importance of the directness of the graph on tasks with asymmetric
behaviors. Finally, we show the impact of transition augmentation techniques when
labeling data for the goal-conditioned policy.

Necessity of graph-based rewards. An important component of our method is the
construction of the graph M that enables computing a distance with good global
properties. To empirically validate this hypothesis, we performed a comparison
between the goal-conditioned policy trained with RNet rewards (i.e., by using the
distance dl from equation (5)) and the one trained with both distance terms as re-
ward. We run this experiment on the UMaze environment, and show results in Fig-
ure 6.4b. We note that the model trained with graph rewards outperforms the one
trained with RNet rewards overall, particularly for distant goals (ie. rooms 3 and 4).
We also notice that the model trained with RNet rewards is slightly better for goals
that are close to the initial position. This highlights the fact that RNet is good at es-
timating local distances. The qualitative visualization in Figure 6.5a & 6.5b confirms
this observation, as it shows low values between states in the first and fourth rooms.

Importance of graph directness. We then investigate the importance of the asym-
metry of the RNet and the directness of the graph. To this end, we implement an
undirected version of our method where the RNet is symmetric and the graph is
undirected. All other components of our method are unchanged. First, we com-
pare the performance of both variants in the UMaze task in Figure 6.6, and note that
asymmetric RNet and directed graph in our approach significantly improve the goal-
conditioned policy performance (+11% on success rate), especially on goals close to
the initial location, i.e., goals in rooms 1 and 2. We then analyze qualitative visual-
izations of the shortest path in the undirected and directed graphs in the RoboYoga
task, as shown in Figure 6.7. In the undirected case, the humanoid defies the laws
of gravity and is encouraged to stand its head by flipping backwards, which might

82 Chapter 6. Learning State-Reaching Policies Offline

undirected

directed

FIGURE 6.7: Shortest Path visualization for undirected (top) and directed (bottom) graphs
in the RoboYoga Walker task.

0.0

0.2

0.4

Su
cc

es
s R

at
e Subgoal + Edge

Subgoal Only
Edge Only
No Augmentation

FIGURE 6.8: Impact of Transition Augmentation on the RoboYoga Walker task.

be extremely difficult, or even infeasible. In the directed case, the shortest path fos-
ters the agent to first get back on its legs, and then lean forward. In this example,
the gravity makes the dynamics of the environment non-symmetric and non-fully
reversible, which justifies the directed formulation described in our method.

Transition sampling strategy. As a final ablation study, we study the utility of the
transition augmentation techniques described in section 6.4.4. We evaluate four pos-
sible variants of our method: (i) without any augmentation, (ii) with edge augmen-
tation only, (iii) with subgoal augmentation only, and (iv) with both augmentations.
We execute this experiment on the RoboYoga task, and show results in Figure 6.8. We
observe that both of the augmentation techniques improve the performance of the
goal-conditioned agent, with subgoal augmentation showing greater improvement.
Moreover, we note that combining both augmentations improves the performance
further. For the reminder of the experiments, we use both these augmentation tech-
niques.

6.5.3 Comparison to prior work

Baselines. We compare our method to prior work on unsupervised goal-
conditioned policy learning. We perform an apples-to-apples comparison by im-
plementing the baselines using the same learning framework as our method, and
changing the reward relabeling process. We compare with the following baselines:

• Hindsight Experience Replay [HER] [Andrychowicz et al., 2017] This is a re-
implementation of the standard unsupervised RL technique, adapted to the

6.5. Experiments 83

0 500 1000
epoch

0.0

0.2

0.4

0.6
Su

cc
es

s R
at

e
Average

0 500 1000
epoch

Room 1

0 500 1000
epoch

Room 2

0 500 1000
epoch

Room 3

0 500 1000
epoch

Room 4

Ours HER HER + random negative action Actionable Models

FIGURE 6.9: Performance on the UMaze task. We show the success rate for goals sampled at
random in each of the four rooms, as well as the average over all rooms.

0 500 1000
epoch

0.0

0.2

0.4

Su
cc

es
s R

at
e Ours

HER
HER + random neg action
Actionable Models

FIGURE 6.10: Comparison to baselines on the RoboYoga Walker task.

offline setting. More precisely, we relabel sub-trajectories fromD with a sparse
reward, which is equal to 1 only for the final transition of the sub-trajectory,
and 0 everywhere else. Following Chebotar et al. [2021], we also label sub-
trajectories with goals sampled at random in D and zero reward.

• HER [Andrychowicz et al., 2017] with random negative action is a variant of
HER where, for a transition in D we sample an action uniformly at random
in the action space and label it with zero reward. This helps overcoming the
problem of over-estimation of the Q-values for unseen actions mentioned in
Chebotar et al. [2021].

• Actionable Models [Chebotar et al., 2021] This approach is based on goal-
conditioned Q-learning with hindsight relabeling. We re-implemented the
goal relabeling procedure that uses the Q-value at the final state of sub-
trajectories in D to enable goal chaining, as well as the negative action sam-
pling trick.

Comparison on UMaze. We compare our method to the baselines on the UMaze
task, and show results in Figure 6.9. We observe that our model outperforms all
baselines overall, and shows greater improvements on challenging goals that are
far from the initial position. Interestingly, we note that Actionable Models reaches
goals in the first room only. This confirms the intuition that sparse rewards make it
difficult for the policy to learn long-horizon tasks.

84 Chapter 6. Learning State-Reaching Policies Offline

Comparison on RoboYoga Walker. In a second experiment, we compare our
method to baselines on the RoboYoga task, as shown in Figure 6.10. Here again, our
method outperforms prior work, and Actionable Models does not make any signif-
icant improvement over HER. The results for each goal are shown in Figure 6.11.
These goals are illustrated in Figure 6.12. We see that our method masters most of
the goals that do not require balancing (Lie Back & Front, Legs Up, Lunge), and suc-
ceeds quite well at more complicated goals like Side Angle, Lean Back and Bridge,
but is unable to progress in complex goals like Head Stand or Arabesque. Overall
these results suggest that our dense reward shaping method allows for faster and
more robust offline goal-conditioned policy training.

0.0

0.5

1.0

Su
cc

es
s R

at
e

Lie Back Lie Front Legs Up Lunge

0.0

0.5

1.0

Su
cc

es
s R

at
e

Side Angle Stand Lean Back Boat

0 500 1000
epoch

0.0

0.5

1.0

Su
cc

es
s R

at
e

Bridge

0 500 1000
epoch

Stand One Feet

0 500 1000
epoch

Head Stand

0 500 1000
epoch

Arabesque

Ours HER HER + random neg action Actionable Models

FIGURE 6.11: Performance on the RoboYoga Walker talk for each of the 12 goals.

K
itc

he
n

Q
ua

dr
up

ed
W

al
ke

r
B

in
s

Reach Left Reach Right Push Front Push Back Push Both Front Push Both Back

Lie Back Lie Front Legs Up Lunge Side Angle Stand

Burner Light Slide Hinge Microwave Kettle

Lean Back Boat Bridge Stand One Feet Head Stand Arabesque

Lie Back Stretch Lie Back 2 Legs Up Lie Side Lie Side 2 Stand Stand 2 Point Attack Balance Balance 2

Light + Slide Light + Hinge Light + Kettle Slide + Hinge Slide + Kettle Hinge + Kettle

Place Front Place Both Front

K
itc

he
n

Q
ua

dr
up

ed
W

al
ke

r
B

in
s

Reach Left Reach Right Push Front Push Back Push Both Front Push Both Back

Lie Back Lie Front Legs Up Lunge Side Angle Stand

Burner Light Slide Hinge Microwave Kettle

Lean Back Boat Bridge Stand One Feet Head Stand Arabesque

Lie Back Stretch Lie Back 2 Legs Up Lie Side Lie Side 2 Stand Stand 2 Point Attack Balance Balance 2

Light + Slide Light + Hinge Light + Kettle Slide + Hinge Slide + Kettle Hinge + Kettle

Place Front Place Both Front

FIGURE 6.12: Visualization of the 12 evaluation goals for the RoboYoga Walker task.

6.6. Conclusion 85

0 500 1000
epoch

0.00

0.04

0.08

0.12 Average Distance

0 500 1000
epoch

Hand Distance

0 500 1000
epoch

Puck Distance

Ours HER HER + random neg action Actionable Models

FIGURE 6.13: Performance on the Pusher task (lower is better). We report the final average,
hand, and puck distance to the goal for our model and all baselines.

Comparison on Pusher. As a final experiment, we compared our method to prior
work on a realistic robotic environment, as shown in Figure 6.13. Our policy trained
offline is evaluated by sampling a goal at random in the state space, and measuring
three different metrics: (i) the hand distance, which corresponds to the final distance
between the end of the robot arm and the target, (ii) the puck distance, which mea-
sures the distance between the final puck location and the target, and (iii) the average
distance, the average of the first two metrics. Our method outperforms the baselines
on this task, and our goal-conditioned agent is able to sequentially place the puck
at the goal location, and then place the hand at its target location. On the contrary,
HER [Andrychowicz et al., 2017] places the puck at the target location with a per-
formance similar to our method, but lacks precision on the hand location.

6.6 Conclusion

In this chapter, we proposed a method for learning multi-task policies from pre-
generated datasets in an offline and unsupervised fashion, i.e., , without requiring
any additional interaction with the environment, nor manually designed rewards.
Our method leverages a self-supervised stage that aims at learning the dynamics of
the environment from the offline dataset, and that allows for shaping a dense reward
function. It shows significant improvement over prior works based on hindsight
relabeling, especially on long-horizon tasks, where dense rewards are crucial for
learning a good policy.

The main limitation of our method is that it relies on the availability of a pre-
collected dataset of trajectories, with a sufficiently large coverage of the state space
for proper policy learning. Although such data can be already available, as for the
RoboYoga Walker task, or that offline dataset collection could be done with random
policies, as we did on the UMaze and Pusher tasks, this step can be challenging for
other environments.

87

Chapter 7

Using Text as Supervision for
Language-Conditioned Agents

When developing goal-oriented agents, goal specification is an important design
choice. In Chapters 3 to 6, we studied the state-reaching case, where the goal is
specified as a state (or an observation) in the environment. There are, in fact, some
limitations to such a formulation. It might be difficult to access some states of the
environment that we want to use as goals, since it requires to actually put the agent
in the goal position and collect the observation from there. It is the case, for example,
for the RoboYoga task presented in the previous chapter, where defining the “head
stand" state needs manual engineering. Another important limitation is that all de-
sirable goals might not be defined as a state. For example, if the desired goal is to
perform a back-flip in the RoboYoga case, the final state represents the humanoid
standing up, and will therefore not capture the correct behavior.

Recent works [Fontoura et al., 2014, Küttler et al., 2020] suggest that a more natural
and general way of specifying goals is to use language instructions. Text is indeed
a flexible and interpretable way to express a desired behavior, and can be used to
either describe a specific goal state, or to specify the way in which the goal should
be reached. However, using text in RL requires access to environments with a rich
language component, and to have models that understand the alignment between
the behavior of the agent and natural language. In this chapter, we propose to lever-
age subgoal descriptions in the BabyAI environment [Chevalier-Boisvert et al., 2019]
to train a language-conditioned agent. We collect a dataset fo expert trajectories on
several levels of the environment, as well as text aligned with the intermediate sub-
goals reached by the expert. We train a transformer-based agent on these expert tra-
jectories, by predicting both actions and language-based subgoals. We evaluate the
performance of our model zero-shot, on language-specified instructions, and show
that it outperforms the text-free baseline.

88 Chapter 7. Using Text as Supervision for Language-Conditioned Agents

7.1 Introduction

Transformer-based [Vaswani et al., 2017] large language models (LLMs) trained on a
massive amount of text data have shown impressive results in various language un-
derstanding tasks [Brown et al., 2020]. Their application also goes beyond language
domains, ranging from instruction following [Hill et al., 2020] to vision-language
navigation [Majumdar et al., 2020]. This progress suggests that LLMs are powerful
not only for purely linguistic modeling, but they can also be used in setups that re-
quire planning and sequential reasoning. Interestingly, Li et al. [2022b] show that
this even holds for tasks that do not involve actual language at all, but only sequen-
tial string tokens, which highlights the compositional power of these models.

Along with the rise of LLMs, the field of reinforcement learning (RL) has also been
impacted by the advances in sequential decision-making. Indeed, the develop-
ment of offline RL [Levine et al., 2020], that is, exploiting pre-collected datasets to
learn policies without interacting with the environment, has enabled a new way of
learning controllable agents—from the sequence modeling perspective [Janner et al.,
2021]. In this light, Decision Transformer [Chen et al., 2021] shows how to learn a
policy using a causal transformer [Vaswani et al., 2017], and follow-up works [Put-
terman et al., 2021, Correia and Alexandre, 2022] propose ways of training them
without rewards, in a goal-conditioned formulation.

Replicating the success of LLMs in RL also requires large-scale training data, such as
Minedojo [Fan et al., 2022] that gathers, among other things, a collection of YouTube
video tutorials on MineCraft. These videos contain captions that often explain what
the human is doing while playing, creating an exciting opportunity to leverage
language-based reasoning with decision making in RL.

In this chapter, we propose a method for training an agent that is capable of interlac-
ing language reasoning with performing actions in an environment. This allows us
to fully leverage captions in offline training data, in addition to actions and obser-
vations. Our method relies on a unified policy that is capable of choosing between
thinking verbally and acting. We achieve this by equipping the policy with addi-
tional word outputs so it can decide when to act and when to perform language
reasoning. To this end, we train an auto-regressive transformer, conditioned on the
instruction and observations, to predict both actions and text captions in a unified
way. At test time, given a language instruction, our model predicts actions towards
the goal, as well as text tokens to reason, as shown in Fig. 7.1, where the captions
define which subgoals it has to reach to solve the task.

In order to study this problem in a controlled setting, we experiment on BabyAI
[Chevalier-Boisvert et al., 2019], a grid world platform to study language-grounded
tasks. Specifically, we focus on language reasoning that lays out the next subgoal.

7.2. Related Work 89

Autoregressive Transformer

“pickup” “box” “explore”

“explore”

instruction

a1

o1 a1 o2

a2

at ot+1…

at+1

…

“goto” “box”

“goto” “box”ot+1 ot+1o1

caption observation action

FIGURE 7.1: Given an instruction, our transformer policy can generate language based rea-
soning tokens interleaved with sequence of actions in the environment.

We generated a dataset of trajectories with the expert bot provided by Chevalier-
Boisvert et al. [2019], and leveraged the underlying subgoals used by the bot to cre-
ate text descriptions aligned with the trajectories, i.e., captions. We evaluate the
performance of our model zero-shot, on language-specified instructions, and study
its generalization to unseen maze configurations on several setups, including the
BossLevel, the most difficult task of BabyAI. We show that leveraging text captions
greatly improves the performance compared to the caption-free baseline, particu-
larly for harder tasks that require planning and long-term reasoning.

In summary, we make the following contributions: (i) we propose an algorithm for
generating text-augmented expert trajectories on BabyAI [Chevalier-Boisvert et al.,
2019] that constitutes a toy environment for emulating tutorial videos, (ii) we present
an auto-regressive transformer architecture to learn to predict both actions and cap-
tions in a unified way, and (iii) we show that it outperforms the caption-free baseline,
particularly on tasks that involve long-term sequential planning.

7.2 Related Work

Offline datasets in RL. The data collection technique is an important aspect when
studying the training of policies from pre-collected datasets. In this context, prior
works assumed access to policies trained by task-specific rewards [Fu et al., 2020,
Gulcehre et al., 2020] or proposed to leverage unsupervised exploration policies [Ey-
senbach et al., 2018, Yarats et al., 2021] to collect datasets for offline RL [Yarats et al.,
2022, Lambert et al., 2022]. These works are often limited to learning a restricted
set of tasks, specified with hand-crafted reward functions. More recently, the acces-
sibility of large-scale datasets [Baker et al., 2022, Fan et al., 2022] from the internet
enabled new possibilities for learning offline policies with language-based task spec-
ification. Indeed, these works propose to exploit a dataset of Youtube videos, that
are augmented with text sources at several stages, including captions throughout the
video. However, this data source has one crucial drawback, as the actions that the
player is executing (i.e., the keyboard buttons or the mouse movements) are missing,
and consequently, the videos cannot be considered as expert trajectories. To overcome

90 Chapter 7. Using Text as Supervision for Language-Conditioned Agents

this issue, Baker et al. [2022] propose to collect a small dataset of trajectories anno-
tated by human experts. Using this data, the authors propose to train an Inverse
Dynamics Model [Nguyen-Tuong et al., 2008] to predict the actions given past and
future frames, and use it to annotate the large dataset of YouTube videos with corre-
sponding actions.

Transformers in RL. Using Transformers in sequential decision-making [Li et al.,
2023] was first proposed by Janner et al. [2021], and Chen et al. [2021]. The latter
present Decision Transformer, a causal transformer model with masked attention
layer used to train policies on offline datasets. One particularity of this model is that
it uses returns-to-go to derive optimal behavior from the training data. By lever-
aging these cumulative rewards, the model learns the interesting transitions, even
when the offline dataset is not collected with an expert policy. The drawback of
this method, however, is that the initial return-to-go value must be arbitrarily cho-
sen at test time. To avoid relying on these, Correia and Alexandre [2022] propose a
hierarchical formulation of the decision transformer, where a high-level policy out-
puts subgoals for the low-level policy. Alternatively, Putterman et al. [2021] propose
a goal-conditioned version of the Decision Transformer, where demonstrations are
preceded with a language instruction describing the goal of the trajectory. In this
setup, trajectories must be collected by expert policies since the transformer only
imitates the demonstrations present in the dataset. Related to this line of works, our
model leverages not only language instructions, but also text description along the
trajectory, for faster learning and better generalization.

Language-conditioned Offline RL. Advances in both offline RL and transformer
models for sequential decision-making led to an interesting research direction, that
aims at taking advantage of text data for offline RL. Several works showed promis-
ing results on datasets as large as MineDojo [Fan et al., 2022] by designing specific
reward functions on top of the offline data, either manually for a specific task like
crafting diamonds [Baker et al., 2022], or by learning the alignment between text
and images in the video [Fan et al., 2022], in a CLIP Radford et al. [2021] fashion. A
very recent line of study propose to use large language models on offline datasets
for decision-making tasks: Zhang et al. [2022] show that task instructions can be ef-
fectively used to pre-train offline policies and Carta et al. [2023] train an adaptive
LLM-based policy in language-grounded tasks. Closely related to our work, Li et al.
[2022b] show the effectiveness of LLMs on decision-making tasks, specifically on
the BabyAI [Chevalier-Boisvert et al., 2019] environment. Their idea is to convert
actions and observations to text input, and fine-tune a pre-trained GPT-2 Radford
et al. [2019] language model on a set of expert trajectories. Apart from the observa-
tion conversion part, our model is trained on the same type of data than this work,
and our goal is to show the importance of using subgoal descriptions for the stability
and performance of training.

7.3. Learning Language-Conditioned Agent Offline 91

Algorithm 4 Sequence from trajectory

Input: trajectory T = (ot, at, ct)0≤ t<T

s0, x0 := o0, c0

s1, x1 := o0, a0

i := 1

for t = 1 to T − 1 do

if ct 6= ct−1 then

i := i + 1

si, xi := ot, ct

end if

i := i + 1

si, xi := ot, at

end for

7.3 Learning Language-Conditioned Agent Offline

We consider a goal-conditioned partially observable Markov decision process
(POMDP), defined by a set of states, actions, observations, goals and a transition
model, that maps the current state and action to the next state. In a POMDP, the ob-
servation ot at timestep t only captures a portion of the underlying state, and an opti-
mal policy must take as input not only the last observation ot, but also the history of
previous observations and actions [Parr and Russell, 1995] ht = (o0, a0, ..., ot−1, at−1).
Our goal is to learn a goal-conditioned policy π(at|m, ht, ot) which, given an instruc-
tion (or mission) m, history of previous observations and actions ht, and last obser-
vation ot, outputs a probability over the set of actions.

In this work, we assume that we do not have access to the POMDP at train time, but
instead, that the policy must be trained offline, on a dataset of pre-collected expert
trajectories D. D contains trajectories (m, (ot, at)0≤t<T) where m is the goal of the
trajectory specified with natural language (and can be thought of as an instruction),
such that the sequence (ot, at)0≤t<T satisfies goal m. We also assume that the train
trajectories are augmented with natural language captions ct at every timestep, that
is, trajectories are of the form: (m, (ot, at, ct)0≤t<T). However, these captions are not
available during the evaluation stage. The goal is therefore to learn a policy, which
at test time, is given a instruction, and must perform the actions that satisfies the
goal described by the instruction.

92 Chapter 7. Using Text as Supervision for Language-Conditioned Agents

observations:

captions:

actions:

unified
sequence:

explore go yellow box go yellow box go yellow box go yellow box pickup

right rightforward forward forward pick

explore right go yellow
box rightforward forward forward pickup pick

FIGURE 7.2: Visualization of the trajectory to sequence process. The top row shows the
original trajectory, with observations, actions and captions, and the bottom row shows how
observations are duplicated, and how action and captions organized in the unified sequence.

7.4 Transformer-based model for unifying actions and lan-
guage reasoning

We will now present our approach, which relies on the idea that language anno-
tations, e.g., captions from YouTube gaming tutorials, provide useful information
about which subgoals the player is solving while playing. In MineCraft for instance,
in a tutorial on how to craft diamonds, the video will explain the different steps
that should be executed to achieve the goal, including crafting a table and a pick-
axe. Since captions are not available at test time, i.e. when the agent is deployed in
the environment, we propose to train an auto-regressive transformer on the offline
dataset that, given the instruction and sequence of observations, will not only learn
to predict actions, but also captions.

7.4.1 Unifying actions and language reasoning

In the formalism described in Sec. 7.3, we assume that captions and actions have
the same temporal granularity, i.e. that a new caption appears exactly when a new
action is executed. In practice however, in tutorial videos, the granularity of action
and caption sequences might be different, as same captions can last for several steps,
or conversely, a long caption can occur while no new action appeared.

In our approach, we propose to unify actions and language reasoning in a joint se-
quence, and train a model that can predict both modalities. We therefore create a
new sequence (si, xi)0≤ i<N from the T = (ot, at, ct)0≤ t<T trajectory. The newly
created sequence includes a list of tokens (xi)0≤ i<N that can be either caption to-
kens or actions, as well as a list (si)0≤ i<N of observations, obtained by duplicating
elements in (ot)0≤ t<T. The general idea is to go through the trajectory T , and when-
ever a new caption is encountered, insert its tokens in the sequence by duplicating
the corresponding observation. In practice, we convert actions to natural language,
as done in prior work [Li et al., 2022b, Carta et al., 2023], so that actions and captions

7.4. Transformer-based model for unifying actions and language reasoning 93

unified
sequence: explore right go yellow

box rightforward forward forward pickup pick

t = 0
i = 0

t = 0
i = 1

t = 1
i = 2

t = 1
i = 3

t = 2
i = 4

t = 3
i = 5

t = 4
i = 6

t = 5
i = 7

t = 5
i = 8

sampled
subsequence: go yellow

box rightforward forward forward

0 1 2 3 4

Index of token

position encoding:

1 1 2 3 4timestep encoding:

2 3 4 5 6sequence encoding:

K = 5

FIGURE 7.3: Example of the different encoding types. We first sample a sub-sequence of
length K (here, 5) from the unified sequence, and then show the index of token fed to the

transformer for the three different types of encodings: position, timestep and sequence.

stand in the same vocabulary. The process is described in detail in Alg. Figure 4,
and an illustrated example is shown in Fig. 7.2. The dataset of trajectoriesD is there-
fore transformed into a dataset B of unified action-caption sequences of the form
(m, (si, xi)0≤ i<N).

7.4.2 Auto-regressive transformer for generating both language and ac-
tions

We train an auto-regressive transformer on the set of sequences B, as shown in
Fig. 7.1. The model first encodes the instruction sentence m by tokenizing it into
a sequence of length m = (m0, ..., mn−1), and embedding every token. For com-
putational efficiency, we sample sub-sequences (si, xi)t≤i<t+K of length K from the
full sequences in B. We pass the observations (si)t≤i<t+K through a convolutional
network, and embed the action or caption tokens (xi)t≤i<t+K before passing them to
the transformer model. The model predicts the action or caption token at every step
in the trajectory in an auto-regressive manner, and is trained to minimize the token
prediction error across the trajectory using the cross-entropy loss.

Similarly to Vaswani et al. [2017], each element in the sequence is summed with a
positional encoding, to make sure that the model takes advantage of the order of
the sequence. While instruction tokens mj are summed with encodings of j indi-
cating their absolute positions, si and xi tokens are summed with the encoding of
i informing their position in the sequence. Note that this is different from timestep
encodings because i is incremented by both caption tokens and environmental steps.
The different types of encodings are illustrated in Fig. 7.3.

At test time when the agent has to act in the environment, we sequentially generate
tokens from the transformer model by feeding the current observation. If the gen-
erated token belongs to the caption vocabulary, we simply feed it back to the model

94 Chapter 7. Using Text as Supervision for Language-Conditioned Agents

PutNextLocal Synth BossLevel

go to the red ball
pick up a blue key after you
put the purple box behind
you next to the grey ball

put the yellow box next to
the purple key

FIGURE 7.4: The three levels from BabyAI that we consider in this work, and an example of
observation and instruction for each of these environments.

and continue the generation similar to language models. Only when the model gen-
erates an action token, we perform this action in the environment and feed the up-
dated observation to the model. This way the model itself decides when to reason
and when to act, interleaving multiple reasoning captions throughout an episode.

7.5 Experiments

7.5.1 Data generation in BabyAI

We generate a dataset of expert trajectories aligned with natural language captions
in the BabyAI [Chevalier-Boisvert et al., 2019] environment. BabyAI is a grid world
platform developed to train agents grounded with natural language instructions.
The platform contains several levels that vary in difficulty, with different types of
instructions and distractors. In this chapter, we consider the following three levels,
of increasing difficulty:

• PutNextLocal: the agent must put an object next to another object, with dis-
tractors.

• Synth: the agent must perform one of the four possible instruction (i) open a
door specified by its color, (ii) go to an object specified by its nature and color,
(iii) pick up an object specified by its nature and color, and (iv) put an object
next to another object.

• BossLevel: the hardest task of the BabyAI suite. The mission is a combination
of tasks from the Synth level, where objects can be specified by their type and
color, but also by their location on the map (e.g. “the door on your left” or “the
ball behind you”). Moreover, the task combination might have to be realized
in a particular order.

An example of environment and text instruction for each level is shown in Fig. 7.4.
In all three environments, the observations cover the 7× 7 area visible to the agent,

7.5. Experiments 95

TABLE 7.1: Success rate (mean and standard error) on the three BabyAI levels with different
amounts of training data. We show results for our method, as well as two caption-free base-
lines, including BabyAI-Ori-1M, the imitation learning baseline from the original BabyAI

paper.

PutNextLocal-100k Synth-500k BossLevel-1M

BabyAI-Ori-1M 99.2 97.3 77.0

Baseline 99.5 ± 0.2 97.9 ± 0.2 73.6 ± 8.0

Our Method 99.6 ± 0.1 96.4 ± 0.3 85.2 ± 0.5

and is given as a tensor of size 7× 7× 3, where the last dimension describes the type
of object present at the corresponding location, its color and its state (e.g. for doors,
either open, locked or closed).

Together with the platform, Chevalier-Boisvert et al. [2019] also provide an expert
bot, that can solve any language-grounded instruction in the environment. It is im-
plemented by setting subgoals to itself and solving them sequentially. We therefore
used this bot to collect expert trajectories, and processed the underlying subgoals
used by the bot to generate natural language descriptions of the sub-tasks that the
agent is achieving.

Note that for each trajectory, the environment configuration is different, i.e. the loca-
tion of doors, objects, as well as the initial agent location if randomized. Moreover,
the seed for generating evaluation episodes is distinct from the train one, which
means that environment configurations from the evaluation set are not seen during
training. We thus generate datasets of varying size, ranging from 50k to 1M trajec-
tories, and evaluate all models on a fixed set of 512 environment configurations and
text instruction pairs.

7.5.2 Training details

To implement our auto-regressive transformer model, we used the GPT-2 Radford
et al. [2019] model architecture and tokenizer from the HuggingFace Library Wolf
et al. [2020]. In all experiments, we used a reduced architecture with 4 layers, 2
attention heads and a dropout of 0.1, and we tested two hidden size configurations
for the transformer: 256 and 512. We train our model on the generated dataset using
AdamW optimizer [Loshchilov and Hutter, 2019] with a learning rate of 1e-4.

At every epoch, we perform 5000 model updates, during which we sample 128 sub-
trajectories of size K from the dataset. Instructions, actions and captions are tok-
enized using the pre-trained GPT-2 tokenizer, and embedded with a common em-
bedding layer. Observations are encoded using a 3-layer convolutional network,
then flattened with a linear layer. To predict the action or caption token, we use a
linear layer on the transformer hidden state followed by softmax.

96 Chapter 7. Using Text as Supervision for Language-Conditioned Agents

105 106

Training data size

0.5

0.6

0.7

0.8
Su

cc
es

s r
at

e
(%

)

K=30 hid=256

105 106

Training data size

0.5

0.6

0.7

0.8

K=30 hid=512

105 106

Training data size

0.5

0.6

0.7

0.8

K=50 hid=256

105 106

Training data size

0.5

0.6

0.7

0.8

K=50 hid=512

Baseline Our method

FIGURE 7.5: Success rate on BossLevel for varying amount of training samples in 4 different
settings (varying sub-trajectory length K and the model hidden size). Our method consis-
tently outperforms the caption-free baseline. We repeat each experiment 3 times and plot

standard error.

7.5.3 Comparison to caption-free Baselines

We first compare our unified policy to the baseline that does not use subgoals. Our
baseline is trained using the exact same process as the caption-based policy, except
that the captions were removed from the dataset, and only actions remain. This base-
line can therefore been seen as reasoning-free model, which at train time, only sees
the instruction, observations and the actions. We run all experiment on 3 random
seeds on the three babyAI levels, and show results in Table 7.1. We also reported
the numbers from the Imitation Learning baseline (BabyAI-Ori-1M) of the original
BabyAI paper [Chevalier-Boisvert et al., 2019]. This model was trained on expert
demonstrations with language-grounded instructions, in the exact same setup than
our baseline, with the only difference being the dataset size: all models from the orig-
inal BabyAI imitation learning baseline were trained on 1M trajectories, vs. twice as
less for our baseline on the Synth task, and 10 times less on PutNextLocal. We see
that both baselines perform similarly on all three levels.

Concerning the caption-based model, we observe that it perform similarly to the
baselines on PutNextLocal-100k, the simplest task, but that the baseline is slightly
better on Synth-500k. On the harder BossLevel-1M task however, the model that
leverages captions outperforms baselines, showing on average +10% success rate.
These results can be explained by the nature of the tasks. Indeed the BossLevel
requires long-term reasoning and sequential planning, while a good exploration be-
havior and a decent understanding of the instruction is enough for solving most of
the tasks from the Synth environment. This result is strengthen by the graphs shown
in Fig. 7.5, which compare our method and the baseline for varying training dataset
sizes, sub-trajectory length K and hidden size. We see that our method consistently
outperforms the caption-free baseline for all three parameters, highlighting the effi-
ciency of leveraging captioned subgoals for challenging sequential tasks.

7.5. Experiments 97

0 50 100
epoch

0.4

0.6

0.8

1.0 Success

0 50 100
epoch

0.7

0.8

0.9

1.0 Subgoal Accuracy

0 50 100
epoch

0.9

1.0 Action Accuracy

Ours dummy subgoals w/o subgoals

FIGURE 7.6: Success rate, subgoal and action prediction accuracy on BossLevel for our
method and two ablated variants: (i) dummy subgoals, the method where subgoals are re-
placed by dummy tokens, and (ii) w/o subgoals, the caption-free baseline. We see that the
model with dummy captions, despite showing good accuracy at predicting subgoals at train
time, performs much worse than the model with captions. This confirms that the model with
captions really learns to leverage the information contained in the captions to solve the task.

7.5.4 Highlighting the role of captions

The model with captions therefore outperforms the baseline on the harder task, that
require planning and long-term reasoning. However, it is not clear whether the
model really learns to understand and exploit the captions, or if it simply uses the
caption tokens as an extra compute power to predict the right actions. In order to
validate the importance of captions for sequential reasoning, we perform an addi-
tional ablation experiment, shown in Fig. 7.6. We compared the performance of our
method with captions to a model trained on dummy captions, i.e., captions that are
arbitrarily sampled from the vocabulary. More precisely, we replaced the subgoal
tokens by a sequence of tokens of the same length as the original caption, but that
have no meaning for the task. For this sequence to be still predictable by the model,
we generate it always with the tokens in the same order.

Interestingly, we see that the model with dummy captions performs much worse
than the model with captions, and its performance is similar to the caption-free base-
line. Moreover, we see from the subgoal accuracy plot that the model with dummy
captions is better at predicting subgoals than the model with captions. This means
that the model knows when subgoals should be predicted. Overall, this experiment
confirms the theory that the model with captions really learns to understand and
exploit the information contained in the captions.

7.5.5 Importance of positional encoding

Finally, we investigate the role of the positional encoding in our model and the base-
line. The positional encoding embeds the relative position of elements stored in the
batch fed as input to the transformer. Its role is of tantamount importance as its al-
lows the model to put attention on the right elements. We compare three different
types of encodings: (i) the position encoding, which is simply the absolute position

98 Chapter 7. Using Text as Supervision for Language-Conditioned Agents

TABLE 7.2: Comparison of encoding strategies for the caption-free baseline and our method.

Encoding PutNextLocal-100k BossLevel-1M

Baseline
position 98.9 ± 0.1 57.8 ± 3.9

timestep/sequence 99.5 ± 0.2 73.6 ± 8.0

Our Method
position 99.0 ± 0.3 78.1 ± 0.6

timestep - 79.6 ± 1.1

sequence 99.6 ± 0.1 85.2 ± 0.5

in the sub-sequence fed to the model, as in the original transformer implementation,
(ii) the timestep encoding, that encodes the actual environment timestep of the corre-
sponding observation and action, and (iii) the sequence encoding which corresponds
to the index in the modified sequence, a default one as described in Section 7.4.1.
Note that for the caption-free baseline, (ii) and (iii) are the same since that, in the
absence of captions, the modified sequence is the same as the original trajectory.

We report results in Table 7.2, for PutNextLocal-100k and BossLevel-1M tasks. We
see that , on the simpler task, the switching to position encoding only slightly de-
grades the performance (< 1%) for the baseline and our method. On BossLevel how-
ever, the performance of position encoding is much worse than the sequence one:
-16% for the baseline, and -7% for our method. This confirms the intuition that se-
quence encoding is necessary for tasks that require knowing where the agent is in
the episode for predicting the right actions and subgoals. We also notes that timestep
encoding, while being slightly better than position encoding, is much worse than se-
quence ones. A potential reason for that is the fact that actions and captions from the
same timesteps have the same encoding, and it might make it hard for the model to
disentangle both elements.

7.6 Conclusion

We proposed a unified policy that is capable of switching between reasoning with
language and selecting the next action to take. When trained on offline data that
contains subgoal descriptions, we saw consistent improvements over the baseline
that skips this language reasoning. One possible explanation for this improvement
is that language reasoning splits complex tasks into smaller chunks that are easier
for the model to learn. This promising result suggests the possibility of improving
RL training efficiency with language reasoning.

99

Chapter 8

Conclusion

In this thesis, we studied the problem of learning goal-conditioned agents under
limited supervision by focusing on three main challenges: relying on minimal obser-
vation modalities, training RL agents in the absence of external rewards, and lever-
aging fixed datasets for learning agents. We presented novel approaches for learn-
ing goal-oriented agents under various conditions, and evaluated them on a variety
of tasks, including continuous control, navigation, and language-conditioned tasks.
In this last chapter, we summarize the contributions of the thesis in Section 8.1 and
then conclude with perspectives for future research in Section 8.2. Table 8.1 provides
a summary – and comparison – of the different results presented in this thesis.

8.1 Summary of contributions

Navigation and planning from pixels. In Chapter 3, we presented the problem
of image-goal navigation with generalization to unseen environments, and intro-
duced a novel memory-augmented approach for learning to visually navigate in
real-world environments. The proposed method builds on an attention-based end-
to-end model that leverages an episodic memory to learn to navigate. Our approach
was validated with extensive evaluations, and we showed that our model estab-
lishes a new state of the art on unseen environments from the challenging Gibson
dataset [Xia et al., 2018].

Learning to discover and reach states without supervision. In Chapter 4 we tack-
led the problem of learning to visually navigate in photo-realistic environments
without any supervision, that is, from RGB input only and without access to nei-
ther a reward function, nor a notion of distance in the environment. We presented a
three-stage approach for this problem that consists in first, learning a representation
of the environment in a self-supervised fashion, then exploring the environment to
build a graph over the states and then learning to navigate by leveraging this graph.
In Chapter 5, we extended this method to other tasks, such as locomotion and ma-
nipulation, and showed that our approach can be used to learn to reach states in a
variety of environments without supervision. More precisely, we proposed to jointly

100 Chapter 8. Conclusion

Chapter
External
Rewards

RGB
Observations

Setup
Goal

specification
Environments

Chapter 3 X X online obs Habitat
Chapter 4 - X online obs Habitat
Chapter 5 - - off-policy obs UMaze, Pusher
Chapter 6 - - offline obs + RoboYoga
Chapter 7 - - offline text BabyAI

TABLE 8.1: Summary of the results presented in this thesis. The table shows the different
setups used in each chapter, and the environments used for the experiments. It compares
the availability of external rewards, the type of observations used, the setup used to train
the agent (online, off-policy or offline), the type of goal specification (observations or text),

and the environments used for the experiments.

learn the representation of the environment and the state-reaching policy by alter-
nating between goal-oriented trajectories and random exploration. This process al-
lowed for fostering exploration at all stages of the training of the goal-conditioned
policy, and further improved the representation of the environment.

Leveraging pre-collected datasets for learning goal-conditioned agents. Finally,
in Chapter 6, we showed how pre-collected trajectories can be used to learn poli-
cies that can reach any state in the environment, offline and without supervision. To
this end, we deployed a self-supervised representation learning stage on the envi-
ronment, and then used the resulting representations to shape a dense reward signal
for the goal-conditioned policy. In a complimentary direction, we proposed in Chap-
ter 7 to provide self-supervision to the agent by leveraging text-aligned video data,
i.e., , datasets of trajectories augmented with text captions. We showed that lever-
aging this type of offline data allows for learning language-conditioned agents, that
can, given a natural language instruction, execute a task in the environment.

8.2 Perspectives for future work

This thesis takes place at the starting point of the field of self-supervision for learn-
ing goal-oriented agents. We now discuss some of the (subjectively) most exciting
directions for future investigation in this field, as well as the practical limitations
that remain.

Representation learning in RL. In the absence of supervision, and prior knowl-
edge on the tasks, the agent needs to learn a representation of the environment that
is useful for solving the task. Indeed, in goal-oriented RL, the agent needs to un-
derstand the goals that it must achieve, and for that, it needs to understand the
structure of the environment from its observations and experience. In this thesis,
we have shown several approaches for learning such representations, mainly based
on the following self-supervised model: the reachability network [Savinov et al.,

8.2. Perspectives for future work 101

2018b]. We have shown that this method has several advantages, including the fact
that it can be trained on trajectories generated by a random policy, and that it can
generalize well from RGB inputs, even in situations unseen during training. Other
works have shown that self-supervised learning techniques could be applied to RL,
such as the prototypical representations [Yarats et al., 2021] that draws inspiration
from SwAV [Caron et al., 2020] and BYOL [Grill et al., 2020], or CURL [Laskin et al.,
2020] that extracts features using contrastive learning [Henaff, 2020, He et al., 2020,
Chen et al., 2020]. These results open up an exciting opportunity for future research
in applying recent progress in self-supervised learning on images and videos to the
field of RL.

RL as a sequential decision-making problem. The impressive progress of large
language models (LLM) in the field of natural language processing, has brought a
novel view point to RL. Indeed, training an agent to achieve a task with RL amounts
to a sequential decision-making problem, where the agent needs to predict the best
action at every timestep. The same models and recipes that are applied for LLMs,
can therefore be applied to train RL agents, as done in recent work [Chen et al.,
2021, Li et al., 2022b, Carta et al., 2023]. This opens up for promising opportunities,
at the crossroads between RL and natural language processing, especially for tasks
that involve learning agents with text-based modalities, such as WebShop [Fontoura
et al., 2014] and NetHack [Küttler et al., 2020].

Datasets for RL and language. A crucial point for research in offline RL is the
availability of datasets of pre-collected trajectories. Learning agents offline makes
sense only when such datasets are available – the data collection process can oth-
erwise be more complex than the downstream task itself [Endrawis et al., 2021].
These datasets can come from a number of sources, including human demonstra-
tions [Chebotar et al., 2021], and trajectories generated automatically with specific
policies [Laskin et al., 2021, Yarats et al., 2022]. In the absence of a reward annotation
strategy, the question of how to exploit such data without supervision remains un-
clear. A promising direction, explored in Chapter 7, is to use offline data for which
there exist a text-alignment modality. These can be of the form of human demonstra-
tions with captions, as is the case for tutorial videos on YouTube. In the same way
that progress in computer vision and natural language processing happened thanks
to the availability of massive datasets [Deng et al., 2009, Chen et al., 2017], a revolu-
tion in RL can come from the our ability to harness billions of demonstrations. This
perspective is more than ever possible, since the release of large datasets of videos
on MineCraft [Fan et al., 2022, Baker et al., 2022].

Exploration vs. exploitation. The emergence of methods for learning agents from
offline datasets raises the question of the importance of exploration. Reinforcement
learning algorithms are indeed known to suffer from the exploration-exploitation

102 Chapter 8. Conclusion

dilemma [Sutton, 1988, Colas et al., 2018], that is, finding the right balance between
exploiting the learned policy by performing the best action, and exploring the envi-
ronment to discover new states and actions. When learning an agent offline, how-
ever, the agent cannot further interact with the environment, and the exploration is
therefore limited to state-action transitions available in the training set. As showed
by Yarats et al. [2022], the quality of the learned agent is then highly correlated to
that of the offline dataset. This, by essence, naturally disentangles the challenge of
exploration from the problem of learning from offline datasets, which, as such, con-
stitute distinct research directions.

103

Bibliography

Ahmed Akakzia, Cédric Colas, Pierre-Yves Oudeyer, Mohamed Chetouani, and
Olivier Sigaud. Grounding language to autonomously-acquired skills via goal
generation. In ICLR, 2021.

Peter Anderson, Angel Chang, Devendra Singh Chaplot, Alexey Dosovitskiy,
Saurabh Gupta, Vladlen Koltun, Jana Kosecka, Jitendra Malik, Roozbeh Mottaghi,
Manolis Savva, and Amir R. Zamir. On evaluation of embodied navigation agents.
arXiv preprint arXiv:1807.06757, 2018.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter
Welinder, Bob McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba.
Hindsight experience replay. In NeurIPS, 2017.

Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony
Bharath. Deep reinforcement learning: A brief survey. IEEE Signal Processing
Magazine, 34:26–38, 2017.

Gil Avraham, Yan Zuo, Thanuja Dharmasiri, and Tom Drummond. Empnet: Neural
localisation and mapping using embedded memory points. In ICCV, 2019.

Bowen Baker, Ilge Akkaya, Peter Zhokhov, Joost Huizinga, Jie Tang, Adrien Ecoffet,
Brandon Houghton, Raul Sampedro, and Jeff Clune. Video pretraining (VPT):
Learning to act by watching unlabeled online videos. In NeurIPS, 2022.

Dhruv Batra, Aaron Gokaslan, Aniruddha Kembhavi, Oleksandr Maksymets,
Roozbeh Mottaghi, Manolis Savva, Alexander Toshev, and Erik Wijmans. Ob-
jectnav revisited: On evaluation of embodied agents navigating to objects. arXiv
preprint arXiv:2006.13171, 2020.

Charles Beattie, Joel Z. Leibo, Denis Teplyashin, Tom Ward, Marcus Wainwright,
Heinrich Küttler, Andrew Lefrancq, Simon Green, Víctor Valdés, Amir Sadik, Ju-
lian Schrittwieser, Keith Anderson, Sarah York, Max Cant, Adam Cain, Adrian
Bolton, Stephen Gaffney, Helen King, Demis Hassabis, Shane Legg, and Stig Pe-
tersen. Deepmind lab. arXiv preprint arXiv:1612.03801, 2016.

Edward Beeching, Jilles Dibangoye, Olivier Simonin, and Christian Wolf. Egomap:
Projective mapping and structured egocentric memory for deep RL. In ECML
PKDD, 2020a.

104 BIBLIOGRAPHY

Edward Beeching, Jilles Dibangoye, Olivier Simonin, and Christian Wolf. Learning
to plan with uncertain topological maps. In ECCV, 2020b.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton,
and Remi Munos. Unifying count-based exploration and intrinsic motivation. In
NeurIPS, 2016.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon
Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christo-
pher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language Models are Few-Shot Learners. In NeurIPS, 2020.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by
random network distillation. In ICLR, 2018.

Andres Campero, Roberta Raileanu, Heinrich Kuttler, Joshua B Tenenbaum, Tim
Rocktäschel, and Edward Grefenstette. Learning with amigo: Adversarially moti-
vated intrinsic goals. In ICLR, 2020.

Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze. Deep clus-
tering for unsupervised learning of visual features. In ECCV, 2018.

Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Ar-
mand Joulin. Unsupervised learning of visual features by contrasting cluster as-
signments. In NeurIPS, 2020.

Thomas Carta, Clément Romac, Thomas Wolf, Sylvain Lamprier, Olivier Sigaud,
and Pierre-Yves Oudeyer. Grounding large language models in interactive en-
vironments with online reinforcement learning. arXiv preprint arXiv:2302.02662,
2023.

Marvin Chancán and Michael Milford. MVP: Unified motion and visual
self-supervised learning for large-scale robotic navigation. arXiv preprint
arXiv:2003.00667, 2020.

Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Halber, Matthias Niessner,
Manolis Savva, Shuran Song, Andy Zeng, and Yinda Zhang. Matterport3d: Learn-
ing from rgb-d data in indoor environments. In 3DV, 2017.

Devendra Singh Chaplot, Emilio Parisotto, and Ruslan Salakhutdinov. Active neural
localization. In ICLR, 2018.

Devendra Singh Chaplot, Dhiraj Gandhi, Saurabh Gupta, Abhinav Gupta, and Rus-
lan Salakhutdinov. Learning to explore using active neural SLAM. In ICLR, 2019.

BIBLIOGRAPHY 105

Devendra Singh Chaplot, Dhiraj Prakashchand Gandhi, Abhinav Gupta, and Russ R
Salakhutdinov. Object goal navigation using goal-oriented semantic exploration.
In NeurIPS, 2020a.

Devendra Singh Chaplot, Helen Jiang, Saurabh Gupta, and Abhinav Gupta. Seman-
tic curiosity for active visual learning. In ECCV, 2020b.

Devendra Singh Chaplot, Ruslan Salakhutdinov, Abhinav Gupta, and Saurabh
Gupta. Neural topological SLAM for visual navigation. In CVPR, 2020c.

Yevgen Chebotar, Karol Hausman, Yao Lu, Ted Xiao, Dmitry Kalashnikov, Jake
Varley, Alex Irpan, Benjamin Eysenbach, Ryan Julian, Chelsea Finn, and Sergey
Levine. Actionable models: Unsupervised offline reinforcement learning of
robotic skills. In ICML, 2021.

Danqi Chen, Adam Fisch, Jason Weston, and Antoine Bordes. Reading wikipedia to
answer open-domain questions. In ACL, 2017.

Kevin Chen, Juan Pablo De Vicente, Gabriel Sepulveda, Fei Xia, Alvaro Soto,
Marynel Vázquez, and Silvio Savarese. A behavioral approach to visual navi-
gation with graph localization networks. arXiv preprint arXiv:1903.00445, 2019.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin,
Pieter Abbeel, Aravind Srinivas, and Igor Mordatch. Decision transformer: Rein-
forcement learning via sequence modeling. In NeurIPS, 2021.

Tao Chen, Saurabh Gupta, and Abhinav Gupta. Learning exploration policies for
navigation. In ICLR, 2018.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple
framework for contrastive learning of visual representations. In ICML, 2020.

Nuttapong Chentanez, Andrew G Barto, and Satinder P Singh. Intrinsically moti-
vated reinforcement learning. In NeurIPS, 2005.

Maxime Chevalier-Boisvert, Lucas Willems, and Suman Pal. Minimalistic
gridworld environment for gymnasium, 2018. URL https://github.com/

Farama-Foundation/Minigrid.

Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem Lahlou, Lucas Willems, Chit-
wan Saharia, Thien Huu Nguyen, and Yoshua Bengio. Babyai: A platform to study
the sample efficiency of grounded language learning. In ICLR, 2019.

Howie Choset and Keiji Nagatani. Topological simultaneous localization and map-
ping (SLAM): Toward exact localization without explicit localization. IEEE Trans-
actions on Robotics and Automation, 17:125–137, 2001.

Cédric Colas, Olivier Sigaud, and Pierre-Yves Oudeyer. GEP-PG: Decoupling ex-
ploration and exploitation in deep reinforcement learning algorithms. In ICML,
2018.

https://github.com/Farama-Foundation/Minigrid
https://github.com/Farama-Foundation/Minigrid

106 BIBLIOGRAPHY

Cédric Colas, Pierre Fournier, Mohamed Chetouani, Olivier Sigaud, and Pierre-
Yves Oudeyer. Curious: intrinsically motivated modular multi-goal reinforcement
learning. In ICML, 2019.

Cédric Colas, Tristan Karch, Nicolas Lair, Jean-Michel Dussoux, Clément Moulin-
Frier, Peter Dominey, and Pierre-Yves Oudeyer. Language as a cognitive tool to
imagine goals in curiosity driven exploration. In NeurIPS, 2020.

Cédric Colas, Tristan Karch, Olivier Sigaud, and Pierre-Yves Oudeyer. Autotelic
agents with intrinsically motivated goal-conditioned reinforcement learning: a
short survey. Journal of Artificial Intelligence Research, 74:1159–1199, 2022.

André Correia and Luís A Alexandre. Hierarchical decision transformer. arXiv
preprint arXiv:2209.10447, 2022.

Abhishek Das, Samyak Datta, Georgia Gkioxari, Stefan Lee, Devi Parikh, and Dhruv
Batra. Embodied question answering. In CVPR, 2018.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A
large-scale hierarchical image database. In CVPR, 2009.

Alessandro Devo, Giacomo Mezzetti, Gabriele Costante, Mario L Fravolini, and
Paolo Valigi. Towards generalization in target-driven visual navigation by using
deep reinforcement learning. IEEE Transactions on Robotics, 36:1546–1561, 2020.

Carl Doersch, Abhinav Gupta, and Alexei A Efros. Unsupervised visual representa-
tion learning by context prediction. In ICCV, 2015.

Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen
Koltun. CARLA: An open urban driving simulator. In CoRL, 2017.

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune.
Go-explore: a new approach for hard-exploration problems. arXiv preprint
arXiv:1901.10995, 2019.

Shadi Endrawis, Gal Leibovich, Guy Jacob, Gal Novik, and Aviv Tamar. Efficient
self-supervised data collection for offline robot learning. In ICRA, 2021.

Ben Eysenbach, Russ R Salakhutdinov, and Sergey Levine. Search on the replay
buffer: Bridging planning and reinforcement learning. In NeurIPS, 2019.

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is
all you need: Learning skills without a reward function. In ICLR, 2018.

Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Mandlekar, Yuncong Yang, Haoyi
Zhu, Andrew Tang, De-An Huang, Yuke Zhu, and Anima Anandkumar. Mine-
dojo: Building open-ended embodied agents with internet-scale knowledge. In
NeurIPS Datasets and Benchmarks Track, 2022.

BIBLIOGRAPHY 107

Kuan Fang, Alexander Toshev, Li Fei-Fei, and Silvio Savarese. Scene memory trans-
former for embodied agents in long-horizon tasks. In CVPR, 2019.

Marcus Fontoura, Wolfgang Pree, and Bernhard Rumpe. The webshop e-commerce
framework. arXiv preprint arXiv:1409.6596, 2014.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine.
D4rl: Datasets for deep data-driven reinforcement learning. arXiv preprint
arXiv:2004.07219, 2020.

Jonas Gehring, Gabriel Synnaeve, Andreas Krause, and Nicolas Usunier. Hierarchi-
cal skills for efficient exploration. In NeurIPS, 2021.

Priya Goyal, Dhruv Mahajan, Abhinav Gupta, and Ishan Misra. Scaling and bench-
marking self-supervised visual representation learning. In ICCV, 2019.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond,
Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Moham-
mad Gheshlaghi Azar, Bilal Piot, Koray Kavukcuoglu, Rémi Munos, and Michal
Valko. Bootstrap your own latent-a new approach to self-supervised learning. In
NeurIPS, 2020.

Caglar Gulcehre, Ziyu Wang, Alexander Novikov, Tom Le Paine, Sergio Gomez Col-
menarejo, Konrad Zolna, Rishabh Agarwal, Josh Merel, Daniel Mankowitz, Cos-
min Paduraru, Gabriel Dulac-Arnold, Jerry Li, Mohammad Norouzi, Matt Hoff-
man, Ofir Nachum, George Tucker, Nicolas Heess, and Nando de Freitas. RL
unplugged: A suite of benchmarks for offline reinforcement learning. In NeurIPS,
2020.

Saurabh Gupta, James Davidson, Sergey Levine, Rahul Sukthankar, and Jitendra
Malik. Cognitive mapping and planning for visual navigation. In CVPR, 2017a.

Saurabh Gupta, David Fouhey, Sergey Levine, and Jitendra Malik. Unifying
map and landmark based representations for visual navigation. arXiv preprint
arXiv:1712.08125, 2017b.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with a stochastic actor.
In ICML, 2018.

Kristian Hartikainen, Xinyang Geng, Tuomas Haarnoja, and Sergey Levine. Dy-
namical distance learning for semi-supervised and unsupervised skill discovery.
In ICLR, 2019.

Elad Hazan, Sham Kakade, Karan Singh, and Abby Van Soest. Provably efficient
maximum entropy exploration. In ICML, 2019.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum
contrast for unsupervised visual representation learning. In CVPR, 2020.

108 BIBLIOGRAPHY

Olivier Henaff. Data-efficient image recognition with contrastive predictive coding.
In ICML, 2020.

Joao F Henriques and Andrea Vedaldi. Mapnet: An allocentric spatial memory for
mapping environments. In CVPR, 2018.

Karl Moritz Hermann, Felix Hill, Simon Green, Fumin Wang, Ryan Faulkner, Hu-
bert Soyer, David Szepesvari, Wojciech Marian Czarnecki, Max Jaderberg, Denis
Teplyashin, Marcus Wainwright, Chris Apps, Demis Hassabis, and Phil Blun-
som. Grounded language learning in a simulated 3d world. arXiv preprint
arXiv:1706.06551, 2017.

Felix Hill, Sona Mokra, Nathaniel Wong, and Tim Harley. Human instruction-
following with deep reinforcement learning via transfer-learning from text. arXiv
preprint arXiv:2005.09382, 2020.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In
NeurIPS, 2016.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one
big sequence modeling problem. In NeurIPS, 2021.

Dinesh Jayaraman and Kristen Grauman. Learning to look around: Intelligently
exploring unseen environments for unknown tasks. In CVPR, 2018.

Abhishek Kadian, Joanne Truong, Aaron Gokaslan, Alexander Clegg, Erik Wijmans,
Stefan Lee, Manolis Savva, Sonia Chernova, and Dhruv Batra. Sim2real predictiv-
ity: Does evaluation in simulation predict real-world performance? IEEE Robotics
and Automation Letters, 2020.

Leslie Pack Kaelbling. Learning to achieve goals. In IJCAI, 1993.

Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement
learning: A survey. Journal of Artificial Intelligence Research, 4:237–285, 1996.

Yuji Kanagawa. mujoco-maze, 2021. URL https://github.com/kngwyu/

mujoco-maze.

Arbaaz Khan, Clark Zhang, Nikolay Atanasov, Konstantinos Karydis, Vijay Kumar,
and Daniel D Lee. Memory augmented control networks. In ICLR, 2018.

B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A Al Sal-
lab, Senthil Yogamani, and Patrick Pérez. Deep reinforcement learning for au-
tonomous driving: A survey. IEEE Transactions on Intelligent Transportation Systems,
23:4909–4926, 2021.

Ashish Kumar, Saurabh Gupta, David Fouhey, Sergey Levine, and Jitendra Malik.
Visual memory for robust path following. In NeurIPS, 2018.

https://github.com/kngwyu/mujoco-maze
https://github.com/kngwyu/mujoco-maze

BIBLIOGRAPHY 109

Heinrich Küttler, Nantas Nardelli, Alexander Miller, Roberta Raileanu, Marco Sel-
vatici, Edward Grefenstette, and Tim Rocktäschel. The nethack learning environ-
ment. In NeurIPS, 2020.

Nathan Lambert, Markus Wulfmeier, William Whitney, Arunkumar Byravan,
Michael Bloesch, Vibhavari Dasagi, Tim Hertweck, and Martin Riedmiller. The
challenges of exploration for offline reinforcement learning. arXiv preprint
arXiv:2201.11861, 2022.

Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Curl: Contrastive unsuper-
vised representations for reinforcement learning. In ICML, 2020.

Michael Laskin, Denis Yarats, Hao Liu, Kimin Lee, Albert Zhan, Kevin Lu, Cather-
ine Cang, Lerrel Pinto, and Pieter Abbeel. URLB: Unsupervised reinforcement
learning benchmark. In NeurIPS Workshop on Deep Reinforcement Learning, 2021.

Lisa Lee, Benjamin Eysenbach, Emilio Parisotto, Eric Xing, Sergey Levine, and
Ruslan Salakhutdinov. Efficient exploration via state marginal matching. arXiv
preprint arXiv:1906.05274, 2019.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement
learning: Tutorial, review, and perspectives on open problems. arXiv preprint
arXiv:2005.01643, 2020.

Jinning Li, Chen Tang, Masayoshi Tomizuka, and Wei Zhan. Hierarchical planning
through goal-conditioned offline reinforcement learning. IEEE Robotics and Au-
tomation Letters, 2022a.

Shuang Li, Xavier Puig, Yilun Du, Clinton Wang, Ekin Akyurek, Antonio Torralba,
Jacob Andreas, and Igor Mordatch. Pre-trained language models for interactive
decision-making. In NeurIPS, 2022b.

Wenzhe Li, Hao Luo, Zichuan Lin, Chongjie Zhang, Zongqing Lu, and Deheng Ye. A
survey on transformers in reinforcement learning. arXiv preprint arXiv:2301.03044,
2023.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep rein-
forcement learning. arXiv preprint arXiv:1509.02971, 2015.

Hao Liu and Pieter Abbeel. Aps: Active pretraining with successor features. In
ICML, 2021.

Minghuan Liu, Menghui Zhu, and Weinan Zhang. Goal-conditioned reinforcement
learning: Problems and solutions. In IJCAI: Survey Track, 2022.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In ICLR,
2019.

110 BIBLIOGRAPHY

Jelena Luketina, Nantas Nardelli, Gregory Farquhar, Jakob Foerster, Jacob Andreas,
Edward Grefenstette, Shimon Whiteson, and Tim Rocktäschel. A survey of rein-
forcement learning informed by natural language. In IJCAI, 2019.

Yecheng Jason Ma, Jason Yan, Dinesh Jayaraman, and Osbert Bastani. How far i’ll
go: Offline goal-conditioned reinforcement learning via f -advantage regression.
arXiv preprint arXiv:2206.03023, 2022.

Arjun Majumdar, Ayush Shrivastava, Stefan Lee, Peter Anderson, Devi Parikh, and
Dhruv Batra. Improving vision-and-language navigation with image-text pairs
from the web. In ECCV, 2020.

Oleksandr Maksymets, Vincent Cartillier, Aaron Gokaslan, Erik Wijmans, Wojciech
Galuba, Stefan Lee, and Dhruv Batra. THDA: Treasure hunt data augmentation
for semantic navigation. In CVPR, 2021.

Russell Mendonca, Oleh Rybkin, Kostas Daniilidis, Danijar Hafner, and Deepak
Pathak. Discovering and achieving goals via world models. In NeurIPS, 2021.

Lina Mezghani, Sainbayar Sukhbaatar, Arthur Szlam, Armand Joulin, and Piotr Bo-
janowski. Learning to visually navigate in photorealistic environments without
any supervision. arXiv preprint arXiv:2004.04954, 2020.

Lina Mezghani, Piotr Bojanowski, Karteek Alahari, and Sainbayar Sukhbaatar. Walk
the random walk: Learning to discover and reach goals without supervision. In
ICLR Workshop on Agent Learning in Open-Endedness, 2022a.

Lina Mezghani, Sainbayar Sukhbaatar, Piotr Bojanowski, Alessandro Lazaric, and
Karteek Alahari. Learning goal-conditioned policies offline with self-supervised
reward shaping. In CoRL, 2022b.

Lina Mezghani, Sainbayar Sukhbaatar, Thibaut Lavril, Oleksandr Maksymets,
Dhruv Batra, Piotr Bojanowski, and Karteek Alahari. Memory-augmented rein-
forcement learning for image-goal navigation. In IROS, 2022c.

Lina Mezghani, Sainbayar Sukhbaatar, Piotr Bojanowski, and Karteek Alahari.
Think before you act: Unified policy for interleaving language reasoning with
actions. In ICLR Workshop on Reincarnating Reinforcement Learning, 2023.

Piotr Mirowski, Razvan Pascanu, Fabio Viola, Hubert Soyer, Andrew J Ballard, An-
drea Banino, Misha Denil, Ross Goroshin, Laurent Sifre, Koray Kavukcuoglu,
Dharshan Kumaran, and Raia Hadsell. Learning to navigate in complex envi-
ronments. In ICLR, 2017.

Piotr Mirowski, Matt Grimes, Mateusz Malinowski, Karl Moritz Hermann, Keith
Anderson, Denis Teplyashin, Karen Simonyan, Andrew Zisserman, and Raia Had-
sell. Learning to navigate in cities without a map. In NeurIPS, 2018.

BIBLIOGRAPHY 111

Dipendra Misra, John Langford, and Yoav Artzi. Mapping instructions and visual
observations to actions with reinforcement learning. In EMNLP, 2017.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep rein-
forcement learning. In NeurIPS Workshop on Deep Learning, 2013.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timo-
thy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous
methods for deep reinforcement learning. In ICML, 2016.

Raul Mur-Artal, Jose Maria Martinez Montiel, and Juan D Tardos. ORB-SLAM: A
versatile and accurate monocular SLAM system. IEEE Transactions on Robotics, 31:
1147–1163, 2015.

Mirco Mutti, Lorenzo Pratissoli, and Marcello Restelli. Task-agnostic exploration via
policy gradient of a non-parametric state entropy estimate. In AAAI, 2021.

Ashvin V Nair, Vitchyr Pong, Murtaza Dalal, Shikhar Bahl, Steven Lin, and Sergey
Levine. Visual reinforcement learning with imagined goals. In NeurIPS, 2018.

Soroush Nasiriany, Vitchyr Pong, Steven Lin, and Sergey Levine. Planning with
goal-conditioned policies. In NeurIPS, 2019.

Duy Nguyen-Tuong, Jan Peters, Matthias Seeger, and Bernhard Schölkopf. Learn-
ing inverse dynamics: a comparison. In European Symposium on Artificial Neural
Networks, 2008.

Junhyuk Oh, Valliappa Chockalingam, Satinder Singh, and Honglak Lee. Control of
memory, active perception, and action in minecraft. In ICML, 2016.

OpenAI OpenAI, Matthias Plappert, Raul Sampedro, Tao Xu, Ilge Akkaya, Vi-
neet Kosaraju, Peter Welinder, Ruben D’Sa, Arthur Petron, Henrique Ponde
de Oliveira Pinto, Alex Paino, Noh Hyeonwoo, Lilian Weng, Qiming Yuan, Casey
Chu, and Wojciech Zarembe. Asymmetric self-play for automatic goal discovery
in robotic manipulation. arXiv preprint arXiv:2101.04882, 2021.

Georg Ostrovski, Marc G Bellemare, Aäron Oord, and Rémi Munos. Count-based
exploration with neural density models. In ICML, 2017.

Emilio Parisotto and Ruslan Salakhutdinov. Neural map: Structured memory for
deep reinforcement learning. In ICLR, 2018.

Ronald Parr and Stuart Russell. Approximating optimal policies for partially ob-
servable stochastic domains. In IJCAI, 1995.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-
driven exploration by self-supervised prediction. In ICML, 2017.

112 BIBLIOGRAPHY

Deepak Pathak, Dhiraj Gandhi, and Abhinav Gupta. Self-supervised exploration via
disagreement. In ICML, 2019.

Alexandre Péré, Sébastien Forestier, Olivier Sigaud, and Pierre-Yves Oudeyer. Un-
supervised learning of goal spaces for intrinsically motivated goal exploration. In
ICLR, 2018.

Silviu Pitis, Harris Chan, Stephen Zhao, Bradly Stadie, and Jimmy Ba. Maximum
entropy gain exploration for long horizon multi-goal reinforcement learning. In
ICML, 2020.

Vitchyr Pong, Murtaza Dalal, Steven Lin, Ashvin Nair, Shikhar Bahl, and Sergey
Levine. Skew-fit: State-covering self-supervised reinforcement learning. In ICML,
2020.

Aaron L Putterman, Kevin Lu, Igor Mordatch, and Pieter Abbeel. Pretraining for
language conditioned imitation with transformers. In NeurIPS Workshop on Offline
Reinforcement Learning, 2021.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving
language understanding by generative pre-training. OpenAI blog, 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. Language models are unsupervised multitask learners. OpenAI blog,
2019.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,
Gretchen Krueger, and Ilya Sutskever. Learning transferable visual models from
natural language supervision. In ICML, 2021.

Stuart J Russell and Peter Norvig. Artificial intelligence: a modern approach. Prentice-
Hall, Inc., 1995.

Fereshteh Sadeghi and Sergey Levine. Cad2rl: Real single-image flight without a
single real image. In RSS, 2017.

Hongrui Sang, Rong Jiang, Zhipeng Wang, Yanmin Zhou, and Bin He. A novel neu-
ral multi-store memory network for autonomous visual navigation in unknown
environment. IEEE Robotics and Automation Letters, 2022.

Nikolay Savinov, Alexey Dosovitskiy, and Vladlen Koltun. Semi-parametric topo-
logical memory for navigation. In ICLR, 2018a.

Nikolay Savinov, Anton Raichuk, Damien Vincent, Raphael Marinier, Marc Polle-
feys, Timothy Lillicrap, and Sylvain Gelly. Episodic curiosity through reachability.
In ICLR, 2018b.

BIBLIOGRAPHY 113

Manolis Savva, Abhishek Kadian, Oleksandr Maksymets, Yili Zhao, Erik Wijmans,
Bhavana Jain, Julian Straub, Jia Liu, Vladlen Koltun, Jitendra Malik, Devi Parikh,
and Dhruv Batra. Habitat: A platform for embodied AI research. In CVPR, 2019.

Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value func-
tion approximators. In ICML, 2015.

Jürgen Schmidhuber. Curious model-building control systems. In IJCNN, 1991.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Ramanan Sekar, Oleh Rybkin, Kostas Daniilidis, Pieter Abbeel, Danijar Hafner, and
Deepak Pathak. Planning to explore via self-supervised world models. In ICML,
2020.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George
van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalch-
brenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu,
Thore Graepel, and Demis Hassabis. Mastering the game of go with deep neural
networks and tree search. Nature, 529:484–489, 2016.

Freek Stulp and Olivier Sigaud. Robot skill learning: From reinforcement learning
to evolution strategies. Paladyn, Journal of Behavioral Robotics, 4:49–61, 2013.

Sainbayar Sukhbaatar, Emily Denton, Arthur Szlam, and Rob Fergus. Learning goal
embeddings via self-play for hierarchical reinforcement learning. arXiv preprint
arXiv:1811.09083, 2018a.

Sainbayar Sukhbaatar, Zeming Lin, Ilya Kostrikov, Gabriel Synnaeve, Arthur Szlam,
and Rob Fergus. Intrinsic motivation and automatic curricula via asymmetric self-
play. In ICLR, 2018b.

Richard S Sutton. Learning to predict by the methods of temporal differences. Ma-
chine learning, 3:9–44, 1988.

Takafumi Taketomi, Hideaki Uchiyama, and Sei Ikeda. Visual slam algorithms: A
survey from 2010 to 2016. IPSJ Transactions on Computer Vision and Applications,
2017.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las
Casas, David Budden, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, Tim-
othy Lillicrap, and Martin Riedmiller. Deepmind control suite. arXiv preprint
arXiv:1801.00690, 2018.

Sebastian Thrun. Probabilistic robotics. Communications of the ACM, 45:52–57, 2002.

114 BIBLIOGRAPHY

Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter
Abbeel. Domain randomization for transferring deep neural networks from sim-
ulation to the real world. In IROS, 2017.

Nicola Tomatis, Illah Nourbakhsh, and Roland Siegwart. Combining topological
and metric: A natural integration for simultaneous localization and map building.
In European Workshop on Advanced Mobile Robots, 2001.

Faraz Torabi, Garrett Warnell, and Peter Stone. Behavioral cloning from observation.
In IJCAI, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS,
2017.

Mel Vecerik, Todd Hester, Jonathan Scholz, Fumin Wang, Olivier Pietquin, Bilal Piot,
Nicolas Heess, Thomas Rothörl, Thomas Lampe, and Martin Riedmiller. Lever-
aging demonstrations for deep reinforcement learning on robotics problems with
sparse rewards. arXiv preprint arXiv:1707.08817, 2017.

Srinivas Venkattaramanujam, Eric Crawford, Thang Doan, and Doina Precup. Self-
supervised learning of distance functions for goal-conditioned reinforcement
learning. arXiv preprint arXiv:1907.02998, 2019.

David Warde-Farley, Tom Van de Wiele, Tejas Kulkarni, Catalin Ionescu, Steven
Hansen, and Volodymyr Mnih. Unsupervised control through non-parametric
discriminative rewards. In ICLR, 2018.

Daan Wierstra, Alexander Förster, Jan Peters, and Jürgen Schmidhuber. Recurrent
policy gradients. Logic Journal of the IGPL, 18:620–634, 2010.

Erik Wijmans, Abhishek Kadian, Ari Morcos, Stefan Lee, Irfan Essa, Devi Parikh,
Manolis Savva, and Dhruv Batra. DD-PPO: Learning near-perfect pointgoal navi-
gators from 2.5 billion frames. In ICLR, 2019.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine learning, 8:229–256, 1992.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,
Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davi-
son, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Can-
wen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and
Alexander M. Rush. Transformers: State-of-the-art natural language processing.
In EMNLP: System Demonstrations, 2020.

Yi Wu, Yuxin Wu, Aviv Tamar, Stuart Russell, Georgia Gkioxari, and Yuandong Tian.
Bayesian relational memory for semantic visual navigation. In ICCV, 2019.

BIBLIOGRAPHY 115

Fei Xia, Amir R Zamir, Zhiyang He, Alexander Sax, Jitendra Malik, and Silvio
Savarese. Gibson env: Real-world perception for embodied agents. In CVPR,
2018.

Rui Yang, Yiming Lu, Wenzhe Li, Hao Sun, Meng Fang, Yali Du, Xiu Li, Lei Han,
and Chongjie Zhang. Rethinking goal-conditioned supervised learning and its
connection to offline rl. In ICLR, 2022.

Wei Yang, Xiaolong Wang, Ali Farhadi, Abhinav Gupta, and Roozbeh Mottaghi. Vi-
sual semantic navigation using scene priors. arXiv preprint arXiv:1810.06543, 2018.

Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Reinforcement
learning with prototypical representations. In ICML, 2021.

Denis Yarats, David Brandfonbrener, Hao Liu, Michael Laskin, Pieter Abbeel,
Alessandro Lazaric, and Lerrel Pinto. Don’t change the algorithm, change the
data: Exploratory data for offline reinforcement learning. In ICLR Workshop on
Generalizable Policy Learning in Physical World, 2022.

Amy Zhang, Adam Lerer, Sainbayar Sukhbaatar, Rob Fergus, and Arthur Szlam.
Composable planning with attributes. In ICML, 2018.

Jesse Zhang, Karl Pertsch, Jiahui Zhang, Taewook Nam, Sung Ju Hwang, Xiang Ren,
and Joseph J Lim. Sprint: Scalable semantic policy pre-training via language in-
struction relabeling. In NeurIPS Workshop on Deep Reinforcement Learning, 2022.

Jingwei Zhang, Lei Tai, Joschka Boedecker, Wolfram Burgard, and Ming Liu. Neural
SLAM: Learning to explore with external memory. arXiv preprint arXiv:1706.09520,
2017.

Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful image colorization. In
ECCV, 2016.

Xiaoming Zhao, Harsh Agrawal, Dhruv Batra, and Alexander G Schwing. The sur-
prising effectiveness of visual odometry techniques for embodied pointgoal navi-
gation. In ICCV, 2021.

Yuke Zhu, Roozbeh Mottaghi, Eric Kolve, Joseph J Lim, Abhinav Gupta, Li Fei-Fei,
and Ali Farhadi. Target-driven visual navigation in indoor scenes using deep re-
inforcement learning. In ICRA, 2017.

	Introduction
	Context and Scope
	Goals and Challenges
	Outline and Contributions
	Navigation and planning from pixels
	Learning state-reaching policies without supervision
	Leveraging offline datasets for learning goal-conditioned agents

	List of publications and softwares

	Background
	Reinforcement Learning
	Online, Off-Policy, and Offline RL
	Unsupervised RL
	Goal-conditioned RL

	Tasks and Environments
	Navigation in Maze-based Environments
	Continuous control tasks

	Learning to Navigate from Pixels
	Introduction
	Related Work
	Image-Goal Navigation
	Memory-Augmented Navigation Policy
	Data Augmentation
	Navigation Policy
	External Memory

	Experimental Results
	Implementation Details
	Comparison with the state of the art
	Ablation Study and Analysis
	Impact of a Long-Term Memory
	Qualitative Visualizations

	Conclusion

	Image-Goal Navigation without Supervision
	Introduction
	Related Work
	Image-Goal Navigation without External Rewards
	A three-stage approach to Unsupervised Image-Goal Navigation
	Stage 1: Visual representation of the environment
	Stage 2: Learning to Explore
	Stage 3: Learning to Navigate

	Experimental Evaluation
	The Gibson Dataset
	Implementation Details
	Main Results
	Analysis of Exploration

	Conclusion

	Discovering and Reaching Goals Autonomously
	Introduction
	Related Work
	Problem Formulation
	Method
	Reachability Network
	Goal Memory
	Distance function for policy training

	Experiments
	Maze environment
	Pusher Task

	Conclusion

	Learning State-Reaching Policies Offline
	Introduction
	Related Work
	Preliminaries
	Self-Supervised Reward Shaping
	Reachability network
	Directed graph
	Distance function for policy training
	Policy training

	Experiments
	Environments & data collection
	Ablation & design choices
	Comparison to prior work

	Conclusion

	Using Text as Supervision for Language-Conditioned Agents
	Introduction
	Related Work
	Learning Language-Conditioned Agent Offline
	Transformer-based model for unifying actions and language reasoning
	Unifying actions and language reasoning
	Auto-regressive transformer for generating both language and actions

	Experiments
	Data generation in BabyAI
	Training details
	Comparison to caption-free Baselines
	Highlighting the role of captions
	Importance of positional encoding

	Conclusion

	Conclusion
	Summary of contributions
	Perspectives for future work

