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General Introduction

Motivation

Lesémissions acoustiques représentent un des problèmes majeures du transport aérien qui concer-
nent l’environnement. Ǵeńeralement on classe les bruitsémis en fonction de leur origine mécanique,
aérodynamique et ceux liésaux systèmes secondaires. On s’intéresse ici au bruit́emis au voisi-
nage des áeroports, et il provient pour l’essentiel (voir figures1 et 2) de l’écoulement autour du
train d’atterrissage, de celui des jets de réacteurs et de différentes cavit́es pŕesentes sur l’avion.
Nous allons dans la suite considéré uniquement la ǵeoḿetrie de la cavit́e dont l’́ecoulement est
sch́ematiquement donné sur la figure3 et 4, en fonction du rapport d’aspect. Le travail présent́e
ici consistèa analyser la physique de l’écoulement et de la propagation du bruit et surtoutà chercher
à réduire leśemissions acoustiques.

Différents approches expérimentales par un contrôle passif ou actif de l’́ecoulement ont pu déjà
être test́ees avec plus ou moins de succès, gr̂ace en particulier aux avancées techniques dans les
moyens de mesures et de de contrôle, et dans le domaine des ressources informatiques. Actuellement,
en utilisant les Simulations Numériques Directes (DNS) ou les Simulationsà Grandes Echelles (LES)
nous sommes en mesure de mieux comprendre la physique de cetécoulement. Par contre, compte
tenu de l’́enorme dimension du problème, leśetudes nuḿeriques et th́eoriques du contr̂ole acoustique
doivent ńecessairement passer par la réduction de mod̀ele (ROM, voir figure5). Ici nous appliquerons
la Décomposition en Valeurs Propres Orthogonales (POD), qui permettent finalement de réduire
la complexicit́e deséquations de Navier-Stokesà la résolution et donc au contrôle, d’un syst̀emes
d’équations au d́erivées ordinaires (ODE, voir figure6), plus simpleà manipuler et ŕesoudre. En
se basant sur les travaux préćedents deRowleyet al. (2003), Gloerfelt(2008), Kasnakŏglu (2007),
Samimyet al. (2007) et deCordier et al. (2009), nous allons proposer un contrôle du syst̀eme ŕeduit,
une fois celui-ci calibŕe et l’appliquer ensuite sur le système complet issu des Simulations Numériques
Directes.

Ce travail a ét́e effectúe dans le cadre d’un projet Marie-Curie appelé AeroTraNet, meńe en
collaboration avec3 universit́esétrang̀eres. Le LEA de Poitiers a largement contribué aux diff́erentes
parties: L. Cordier pour ce qui concerne la réduction de mod̀ele, P. Compte pour les DNS.
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Organisation du document

La chapitre 1 introduit l’outil de simulation nuḿerique de base (DNS). Leséléments de la th́eorie du
contrôle utilisés plus tard sont présent́es dans le chapitre 2. Le chapitre suivant est consacré à la
réduction de mod̀ele et son application sur l’écoulement de cavité. Le syst̀eme dynamique obtenu est
fortement instable aussi le chapitre 5 est dédíe à la calibration et la stabilisation du modèle ŕeduit.
De multiples approches sont abordées. Le contr̂ole du syst̀eme dynamique forcé et son effet sur
l’ écoulement complet, sur la base de la théorie du contr̂ole linéaire quadratique gaussien sont finale-
ment pŕesent́es dans le chapitre 5. Une conclusion suivi de quelques annexes achèvent le document.

Motivation

The recent rise in the air travel has given rise to a number of environmental concerns of which an
important issue is the noise. Exposure to noise, particularly near the airports have been known to cause
a number of health problems, like stress, hearing problems, hypertension, cardio-vascular problems,
sleeping disorders. A constant exposure to noise levels beyond 65−70 dB is known to cause life term
health effects.

Noise emitted from an aircraft can be broadly classif ed as mechanical noise, aerodynamic noise
and aircraft system noise. Mechanical noise is usually caused due to propeller, jet engines. The main
source of mechanical noise in an aircraft occurs during cruise conditions, due to the high velocity of
jet from the engine. The aerodynamic noise arises due to the airf ow around the different geometric
conf gurations such as fuselages, high lift devices devices, landing gears, head and tail rotors of a
helicopter etc. Aircraft system noise is mainly due to the cabin pressurisation as well as due to the
auxiliary power units used to start the main engines, to provide power during ground conditions.
Although during cruise conditions the mechanical noise dominates, the aerodynamic noise assumes
an equal proportion during landing and takeoffs. Most of the aerodynamic noise during landing and
take-offs can be associated to the landing gear, the geometry of which can be modelled as a cavity.
Figure 1 shows the various components of noise sources during the landing or takeoff of aircrafts.
Typical values of perceived noise, due to various components, during take off and landing is shown
in f gure 2.

A similar phenomenon can also be seen in other conf gurations such as weapon bays, joints be-
tween high speed train bogies, car body openings. This brings to interest the study of cavity f ows,
particularly when in search of quieter aircrafts as envisaged in the report European aeronautics: a
vision for 2020 by EC (2001) .

A typical cavity f ow conf guration is as shown in f gure 3. The physics of the cavity can be ex-
plained by the formation of the shear layer at the upstream cavity edge. As the shear layer propagates
it breaks down due to the Kelvin-Helmholtz mechanism resulting in a membrane like oscillation. The
shear layer impinges the downstream edge of the cavity and splits, resulting in the formation of vorti-
cal structure close to the downstream edge, and is of the size of the depth of the cavity. This results in
the formation of acoustic waves which propagates into the upstream, causing the far-f eld noise. The
cavity can be classif ed based upon the f ow mechanism it generates, as an open cavity or a closed

2



Figure 1 - Typical airframe cavities. (Picture courtesy Ben Pritchard, airliners.com)

Figure 2 - Aircraft noise sources, during approach and takeoffOwens(1979).

cavity. Open cavities are characterised by the shear layer which attaches near the downstream corner,
whereas closed cavities are characterised by the shear layer attachment at the bottom of the cavity
and separation downstream. The basic difference can be summarised in f gure 4. Open cavities are
further divided into deep cavities and shallow cavities based on the aspect ratio L

D
. Deep cavities are

charecterized by an aspect ratio L
D
< 1, and shallow cavities by aspect ratio L

D
> 1. Many of the

airframe structures shown in f gure 1 can be treated as a shallow open cavity. The main interest of
this work is then to study these f ows and to reduce the noise due to the acoustics.

There has also been numerous attempt to reduce the noise emitted from a cavity, by many heuristic

3
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Figure 4 - Schematic representation of open and closed cavities.

means such as modifying the geometry by means of castellations, spoilers at the upstream edge of the
cavity, so as to change the turbulent scales and hence reduce acoustic emissions. Use of synthetic jets
delays the re-attachment of the shear layer and has been used in many experiments. With the advent of
high performance computing as well as advanced experimental techniques such as the Particle Image
Velocimetry (PIV), Laser Doppler Velocimetry (LDV) deep insights into the physics of cavity f ows
can be explored, with an aim to reduce the noise.

The traditional approaches like Direct Numerical Simulation (DNS) involve fully resolving the
equations governing the f ow dynamics i.e. the Navier-Stokes’ equations down to the f nest scale. Al-
though this approach seems attractive it has inherent diff culties like the computational resources. An
approach to reduce the computational time is the utilisation of Large Eddy Simulation (LES) where
the major structures governing the f ow (large eddies as they are called) are resolved and the f ner
scales are modelled. This approach also poses diff culties, particularly when used as an iterative tool
for f ow control, due to their high dimensional nature. The next proposition to reduce the dimen-
sionality of the problem is by restricting our interest to the ”most essential structures” which governs
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the dynamics. The basic observation of f uid f ow as a cascading phenomenon gives us the hint of
this ”essential” structures in terms of the energy, to obtain a low dimensional space. The reduced
order model is then constructed as a projection of the high dimensional dynamics onto this lower
dimensional subspace as summarised in f gure 5.

Navier-Stokes DNS/LES ROM

Figure 5 - Philosophy of reduced order modelling.

The aim of this thesis is to construct reduced order models for the cavity f ows. The basic idea is
to retain the most essential features of the f ow called Proper Orthogonal Decomposition POD modes,
which contain the maximum amount of information about the f ow dynamics. By performing a DNS
of the compressible Navier-Stokes equations to compute the f ow of a large cavity, the POD modes
are extracted. The Reduce Order Model (ROM) is then obtained by projecting the governing equation
of f uid f ow i,e the Navier Stokes equations on the subspace spanned the POD modes. This results in
one having to solve a system of Ordinary Differential Equations (ODE) rather than the complicated
system of Partial Differential Equations (PDE) and hence the name reduced order modelling. The well
developed control theory is applied on this system of ODE’s to obtain the noise reduction. Apart from
being used in-lieu of the high f delity model for control studies, the reduced order model obtained
can also be used as a predictive tool to save computational resources. The overall strategy of using a
reduced order model (ROM) can be summarised as shown in the f gure 6.

Physical system + Data

S : ODEs Discretization PDEs

Ŝ : Low number of ODEs
Simulation

Control

Modelling

Reduced order model

Figure 6 - A Schematic representation of Reduced Order Modelling.

Flow past an open cavity has been studied using ROM by Rowley et al. (2003) and Gloerfelt (2008)
but without any application to f ow control. More recently, ROM for controlled conf gurations has
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been proposed by Kasnakoğlu (2007). In Samimy et al. (2007) the ROM for f ows issued from an
experiment has been used to design a controller. The major hurdle in using the ROM for control
applications is the accuracy of the model in predicting the dynamics of the system even for short
periods. Also diff culty arises when the control parameters are changed as in a real time simulation.
Various numerical strategies termed as calibration techniques has been developed in the recent past
to treat this problem as found in Cordier et al. (2009). The major contribution of this thesis is then to
complete the full development as applied to cavities, like building up the ROM, including the effect
of control, calibrating the model and f nally performing control studies.

The outcome of the interest in reducing the cavity noise has resulted in the frame work of Aero-
TraNet (Aerodynamic Training Network) projected which was a collaboration of 4 academic partners
in Europe. The academic partners which included University of Leicester (U.K.), the Università degli
Studi Roma Tre (Rome, Italy), Politecnico di Torino (Turin, Italy) and Institut de Mécanique des
Fluides de Toulouse (Toulouse, France) were interested in various aspect of the cavity f ow, like, nu-
merical, experimental and f ow control. This thesis was done in collaboration with LEA Poitiers, P.
Comte for the DNS and L. Cordier for reduced order modelling. The thesis can be summarized as
follows.

Organisation of the thesis
In chapter 1 we give a brief description of the numerical tool, namely the DNS used in this study and
present some validation results. In chapter 2 the basic tools from control theory are introduced.

Chapter 3 concerns the basic theory of the technique of POD based ROM. The various techniques
to include the effect of actuation in the ROM are summarized, with an application to the cavity f ow.

In Chapter 4 the various def nitions of errors between the calibrated dynamics and the original
temporal dynamics are introduced and the different methods of calibration summarized are applied to
the cavity f ows. The methods are compared for accuracy. The calibration of the ROM is performed
using a Tikhonov based regularization to obtain an accurate representation of the dynamics. We also
present an improvement of the technique by introducing various type of weight matrix used in the
def nition of error. In the f rst method, we use a sensitivity analysis of the ROM, to determine the
weights of the relevant terms which needs to be calibrated. The second approach is to use the energy
content of the POD representation in forming the weight matrix to represent the errors.

In Chapter 5 a feedback control law based on the estimation of the observer dynamics has been
presented. The observer matrix is constructed using a linear stochastic estimation. A sensititivity
study of the actuated dynamics has been performed to determine the relevant terms in the linearisation
of the model. Finally an Linear Quadratic Gaussian (LQG) controller is designed to obtain an optimal
solution, which is introduced in the Direct Numerical Simulation to obtain a decrease in spectra of
the cavity acoustic mode.
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Chapter 1

Description and validation of the numerical
tool

Description et validation de l’outil numérique
Dans cette partie, les outils numériques utiliśes pour leśetudes de mod̀ele ŕeduit et du contr̂ole sont
décrits. Le jet synth́etique est introduit pour contrôler les instabilit́es de cavit́e. L’écoulement de
cavit́e est largement́etudíee dans la litt́erature. Il pŕesente des instabilités auto-entretenues qui sont
difficiles à prédire nuḿeriquement (sensibilité aux diff́erents param̀etres nuḿeriques). La cavit́e est
aussi le sìege d’int́eractions áeroacoustiques qui ńecessitent un schéma nuḿerique d’ordre suṕerieur
et peu dissipatif pour capter les ondes acoustiques. Le code NIGLO utilisé est d́evelopṕe par Pierre
Comte de l’Universit́e de Poitiers. Il est capable de résoudre leśequations de Navier Stokes com-
pressibles en instationnaire et en tridimensionnel. La discrétisation diff́erences finies de quatrième
ordre est faite sous forme conservative.

Paramètres de non-dimensionalisation

Le code ŕesout leśequations sous forme adimensionnelle. L’adimensionalisation dépend fortement
deséchelles caract́eristiques pour rendre les variables adimensionnelles. La forme adimensionnelle
deséquations de Navier-Stokes incorpore trois nombres adimensionnel, les nombres de Reynolds, de
Mach et de Prandtl.

Equations du mouvement en coordonnées cartésiennes

Les équations de Navier Stokes compressibles sontécrites sous forme conservatives. Il s’agit des
équations de continuité, de conservation de la quantité de mouvement et de l’énergie. Le tenseur des
contraintes de cisaillement est exprimé sous l’hypoth̀ese de Newton-Stokes et le flux thermique est
donńe à l’aide de la loi de Fourier. La viscosité en fonction de la température est expriḿee avec la loi
de en puissance.
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1. Description and validation of the numerical tool

Avancement en temps
Le sch́ema temporel utiliśe est un sch́ema explicite aux différences finies utilisant la procédure
prédicteur-correcteur. Une différenciation d́ecentŕee conservative est utilisée pour les deux pas
temporels du sch́ema en alternant la direction de discrétisation entre le pas prédicteur et correcteur.
Il en résulte globalement un schéma spatial centŕe de quatrìeme ordre pour les termes d’advection et
de second ordre pour ceux de la diffusion. La discrétisation temporelle est du second ordre.

Conditions aux limites
Pour les parois, la condition d’adh́erence est appliqúee. La forme simplifíee de l’́equation dynamique
reliant la pression et le tenseur de cisaillement est aussi utilisée. Pour l’́etat thermodynamique on
définit soit une paroi adiabatique ou soit une paroi isotherme.

Conditions aux limites non-réféchissantes
Pour éviter toute ŕeflexion sur les limites du domaine de calcul, deux types de conditions peuvent
être adopt́ees: des conditions physiques dictées par le probl̀eme continu initial ou des conditions
nuḿeriques ńecessaires̀a la méthode discr̀ete pour compĺeter l’ensemble des conditions physiques.
Les conditions aux limites basées sur les caractéristiques (NSCBC) dePoinsot & Lele(1992) est une
méthodepour sṕecifier à la fois les conditions physiques et numériques pour leśequations d’Euler
et pour celles de Navier Stokes. La méthode NSCBC est basée sur une analyse monodimensionnelle
locale en non-visqueux (LODI) des ondes traversant les limites du domaine. Les amplitudes des ondes
caract́eristiques associéesà chaque vitesse caractéristique sont donńees (́equations1.19à 1.21). On
distingue les conditions aux limites non-réf́echissantespour une entrée subsonique (équations1.22à
1.27) de celles pour une sortie subsonique (équations1.28et 1.29).

Validation du code numérique pour le cas de la cavité
On pŕesente les ŕesultats pour une cavité de rapport d’aspectL/D = 2. L’écoulement est initialiśe
par une couche limite laminaire pour avoir uneépaisseurδ/D = 0.28 au coin amont de la cavité.
Le nombre de Reynolds basé sur la profondeur de la cavité est de 1500 et le nombre de Mach est
de 0.6.Le domaine de calcul a une longueur de14D et une hauteur de7D (figure1.1). Le tableau
1.1 donne la taille des diff́erentsmaillages utiliśes. Le maillage choisi est donné sur la figure1.2
et correspond au maillage M. La figure1.4 montre les niveaux de pression sonore (SPL) pour le
champ acoustique au-dessus de la cavité et le spectre de vitesse normal en un point de la couche
cisaillée. Le niveau de pression sonore maximal est de 170 dB qui est inférieur à celui obtenu par
Rowleyet al. (2002) (180 db). Ceci peut s’expliquer par la différencede pŕecision des sch́emas (4eme

ici et 6eme pour eux). Les niveaux SPL sont cependant en accord avec les résultats exṕerimentaux de
Krishnamurthi(1956) (168 dB). Le spectre montre la valeur typique correspondant au second mode
de Rossiter (avec deux tourbillons en moyenne entre les deux coins de la cavité). Les oscillations
auto-entretenues sont quasi-périodiques, avec un spectre présentant une fréquence dominante.
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Introduction au contrôle
Le contrôle de la cavit́e résonante est réaliśe à l’aide d’un jet synth́etique en modifiant la condition
au limite convenablement. Le contrôle par jet synth́etique aét́e réaliśe auparavant nuḿeriquement
et exṕerimentalement. L’objectif du contôle est de d́evier la couche cisailĺee pour qu’elle n’impacte
pas sur le coin aval et́eviter le ph́enom̀ene du retour (feedback). Comme on peut le voir sur la figure
1.6, sous l’effet du jet, la couche cisaillée peutimpacter totalement, partiellement ou pas du tout.
Plusieurs positions ont́et́e test́ees avant le coin amont pour améliorer l’efficacit́e. Ceci peut̂etre fait
en mesurant la sensibilité de l’́ecoulement au coin amont. Il áet́e montŕee que c’est le point le plus
sensible aux perturbations externes. Le forçage est typiquement de la formeA sin(ωt) et l’actionneur
est introduit juste avant le coin de cavité (x ∈ [−0.15;−0.05] et y = 0). Le spectre de vitesse pour
un forçage de la formeA sin(wt) (figure1.7) conduistant̀a la diminution du mode de Rossiter. Il y a
une redistribution de l’́energie sur d’autres pics. L’actionnement est cependant non optimal. Un des
objectifs de ce travail est de déterminer la fŕequence et l’amplitude optimales en utilisant le contrôle
dans le le mod̀ele d’ordre ŕeduit.

Conclusion
Dans ce chapitre nous utilisées introduit l’outil nuḿerique, leséquations, la discŕetisation et les
conditions aux limites utiliśe. Le code áet́e valid́e sur le cas de la cavité. L’introduction du contr̂ole
avec un jet synth́etique plaće avant le coin amont est décrite. On note la diminution du mode de
Rossiter et la distribution de l’énergie sur d’autres pics. Les outils pour réaliser un contr̂ole optimal
seront d́ecrits dans la suite.
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1. Description and validation of the numerical tool

1.1 Introduction

In this chapter the basic numerical tool used in this work is described. We perform a DNS resolving of
a 2D cavity f ow. Regarding the introduction of actuation a synthetic jet is introduced at the upstream
boundary to control the instabilities. There has been a large body of literature on physics of the cav-
ity f ow as can be found in Rowley et al. (2002), Larchevêque et al. (2004), Bres & Colonius (2008),
Rowley & Williams (2006). Flows with self sustained oscillations are diff cult to model as they are
very sensitive to the disturbances, due to shear layer amplif cation. Even a small error in the numerical
discretisation at the cavity leading edge can result in a large amplif cation of the errors downstream
of the cavity. Problems can also arise due to the artif cial ref ections at the computational boundary,
and may sometimes be indistinguishable from the physical disturbances, causing the appearance of
non-physical frequencies. Also in the case of cavity f ows the feedback mechanism is acoustic and
of many orders smaller than the hydrodynamic disturbances, which necessitates the utilisation of a
high order, low-dissipative numerical method to resolve them. The code NIGLO used in this study is
capable of solving three dimensional unsteady compressible Navier-Stokes equations on multi-block
curvilinear grid. The discretisation is through a fourth order f nite difference scheme for the advective
f uxes and second order scheme for the diffusive f uxes. The temporal discretisation is second order
accurate. The code was initially developed by Professor Pierre Comte at the University of Poitiers.

1.2 Non-dimensionalisation parameters

Non-dimensionalising the f ow-f eld parameters removes the necessity of converting from one system
to another within the code. The process of non-dimensionalisation depends on the choice of the
parameter for the problem. In the code all the parameters of the simulation are non-dimensionalised
by the reference values, which are the characteristics of the f ow namely the Reynolds number, Mach
number & Prandtl number. The Reynolds number is used to quantify the convective effects to the
viscous effects, whereas Mach number gives the ratio between the reference velocity and the speed
of the sound, f nally the Prandtl number gives the ratio between the heat transfer by viscous diffusion
and heat transfer by thermal conduction.

x∗= x
L0

y∗= y
L0

z∗= z
L0

u∗= u
U0

v∗= v
U0

w∗= w
L0

P ∗= P
P0

ρ∗= ρ
ρ0

T ∗= T
T0

t∗=U0t
L0

Where all the quantities with (⋆) are the non-dimensionalised scales used in the code, and values with
(0) are reference values of the f ow-f eld. In the following we use only non dimensional variables
without ∗
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1.3. Governing equations in cartesian coordinate system

1.3 Governing equations in cartesian coordinate system
The fully compressible Navier-Stokes equation in a conservative form can be written for the non
dimensionalised variables as

∂U

∂t
− divF = 0 (1.1)

with F = (E, F,G) and U = (ρ, ρu, ρv, ρw, ρe).
In Cartesian coordinates we have,

∂U

∂t
+
∂E

∂x
+
∂F

∂y
+
∂G

∂z
= 0 (1.2)

where E, F, G are the non-dimensionalised f uxes def ned by:

E =





−ρu
−ρu2 − 1

γM2
p+

µ

Re
τxx

−ρuv +
µ

Re
τxy

−ρuw +
µ

Re
τxz

−u(ρe+ p) + γM2 µ

Re
(uτxx + vτxy + wτxz) +

γ

γ − 1

µ

RePr
qx





F =





−ρv
−ρuv − 1

γM2
p +

µ

Re
τxy

−ρv2 − 1

γM2
p+

µ

Re
τyy

−ρuw +
µ

Re
τyz

−v(ρe + P ) + γM2 µ

Re
(uτxy + vτyy + wτyz) +

γ

γ − 1

µ

RePr
qy





G =





−ρw
−ρuw − 1

γM2
p+

µ

Re
τxz

−ρvw +
µ

Re
τyy

−ρw2 − 1

γM2
p+

µ

Re
τzz

−w(ρe + p) + γM2 µ

Re
(uτxz + vτyz + wτzz) +

γ

γ − 1

µ

RePr
qz





The Reynolds number is based on the characteristic length L0 of the cavity, and velocity U0, which
represents the characteristics of the f ow can be def ned by:

Re =
ρ0U0L0

µ0
(1.3)
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1. Description and validation of the numerical tool

With µ0 is the dynamic viscosity calculated at the same point of reference chosen for the velocity U0

and for the density ρ0. In the same manner, the Mach number based on a reference temperature T0

M =
U0√
RγT0

(1.4)

The Prandtl number which corresponds to the ratio of the kinematic viscosity and thermal diffusivi-
ties:

Pr =
µ0Cp
λ0

(1.5)

The total energy E is given by the equation of state as:

ρE =
1

γ − 1
p+

γM2

2
ρ(u2 + v2 + w2) (1.6)

With the Stokes hypothesis the viscous stress tensor is proportional to the trace free part of the strain
rate tensor.

τij =

(
∂ui
∂xj

+
∂uj
∂xi

− 2

3

∂ul
∂xl

δij

)
(1.7)

With the above non-dimensionalisation, the Fourier law reads as

qi = −k ∂T
∂xi

(1.8)

For taking into account the variation of dynamic viscosity with temperature a power law has been
used and is given by

µ(T ) =

{
µ(T0)

(
T

T0

)0.7

(1.9)

1.4 Time advancement
The time advancement scheme employed in NIGLO is an explicit f nite difference scheme of
predictor-corrector type as proposed by Gottlieb & Turkel (1975). Conservative decentered differ-
encing is utilised for two steps of time advancement scheme which alters the discretisation between
the predictor and corrector steps, resulting in a globally centered scheme which is 4th order for the
advection term and 2nd order for the diffusion term in space respectively. The discretisation is given
by
Predictor step:

U
n+1/2
i = Un

i +





∆t

∆x
[−7

6
En
i +

8

6
En
i+1 −

1

6
En
i+2]

∆t

∆y
[−7

6
F n
i +

8

6
F n
i+1 −

1

6
F n
i+2]

∆t

∆z
[−7

6
Gn
i +

8

6
Gn
i+1 −

1

6
Gn
i+2]





(1.10)
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1.5. Boundary conditions

Corrector step:

Un+1
i =

1

2
(U

n+1/2
i + Un

i ) +





∆t

∆x
[
7

12
E
n+1/2
i +

8

12
E
n+1/2
i+1 − 1

12
E
n+1/2
i+2 ]

∆t

∆y
[
7

12
F
n+1/2
i +

8

12
F
n+1/2
i+1 − 1

12
F
n+1/2
i+2 ]

∆t

∆z
[−7

6
G
n+1/2
i +

8

12
G
n+1/2
i+1 − 1

12
G
n+1/2
i+2 ]





(1.11)

The predictor-corrector scheme described above is valid for uniform mesh. In our case when we use
mesh ref nement to resolve the boundary layer, corners of cavity the mesh spacing is not constant.
In that case we use a transformation of the physical variables into a new coordinates of constant
length and perform the discretisation. The derivatives are then transformed back onto the physical
coordinates by the inverse transform.

1.5 Boundary conditions

1.5.1 Wall boundary condition
No slip condition at the wall is applied, so that all the velocity components at the wall are zero i.e.

uwall = 0

vwall = 0

wwall = 0 (1.12)

The conservation of momentum equation is reduced to the following form

− 1

γM2

∂p

∂xn
+ (

µ

Re
)(
∂τij
∂xj

) = 0 (1.13)

It only remains to determine the thermodynamic state at the wall, which is chosen as isothermal for
the case of the cavity f ow.

1.5.2 Non-ref ective boundary conditions
The accuracy of unsteady f ow calculations relies on accurate treatment of boundary conditions. Due
to the limit of computational resource, usually only a limited computational domain is considered
for an unsteady f ow calculations. This means that we have to ”cut off” the domain that is not of our
primary interest. However, the cut boundaries may cause artif cial wave ref ections which may include
both physical and numerical waves. Such waves may bounce back and forth within the computational
domain and may seriously contaminate the solutions.

Two types of conditions have to be provided to solve numerically the fully compressible Euler or
Navier-Stokes equations

13



1. Description and validation of the numerical tool

• Physical conditions which are the boundary conditions dictated by the original non-discretised
problem.

• Soft conditions which are numerical conditions required by the discrete method to complete the
set of physical conditions.

As described in Poinsot & Lele (1992), the Navier-Stokes characteristic boundary condition
(NSCBC) specif es both the physical and soft boundary conditions for Euler and for Navier-
Stokes equations. In this method physical conditions are specif ed according to the well-posedness of
Navier-Stokes equation.

Viscous condition for Navier-Stokes are added to the inviscid Euler equations to obtain the right
number of boundary conditions for Navier-Stokes. The viscous conditions are used only to compute
the viscous terms in the conservation equations at the boundary and, therefore are not strictly enforced.
The method relaxes smoothly to the Euler boundary condition when the viscosity goes to zero.

Soft conditions are constructed without any extrapolation. The NSCBC method is based on a local
one dimensional inviscid (termed LODI) analysis of the waves crossing the boundary. The amplitude
variation of the waves entering the domain are estimated from an analysis of the local one dimensional
inviscid equations. To explain further consider the quasi-linear form of the Euler equation

∂V

∂t
+ A

∂V

∂x
+B

∂V

∂y
+ C

∂V

∂z
= 0 (1.14)

Which can also be written in the following compact form:

∂V

∂t
+ ( ~A.~∇)V = 0 (1.15)

Where V = (u, v, w, T, p)t is the vector of primitive variables and the matrices A, B, C are def ned
as:

A =





u ρ 0 0 0
0 u 0 0 1/ρ
0 0 u 0 0
0 0 0 u 0
0 γp 0 0 u




B =





v 0 ρ 0 0
0 v 0 0 0
0 0 v 0 1/ρ
0 0 0 v 0
0 0 γp 0 v




C =





w 0 0 ρ 0
0 w 0 0 0
0 0 w 0 0
0 0 0 w 1/ρ
0 0 0 γp w





In our case , we are interested in the propagation of the vector V normal to the boundary. So we
introduce the matrix En such that

En = Anx +Bny + Cnz (1.16)

or
En = ~A.~n (1.17)
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1.5. Boundary conditions

where n = (nx, ny, nz)
t is the unit normal. The matrix of the eigenvalues obtained by diagonalizing

En is

λn = LnEnL
−1n = diag(λ1, λ2, λ3, λ4, λ5) = diag(u1 − c, u1, u1, u1, u1 + c) (1.18)

Here c is the speed of sound. The amplitudes of the characteristics waves L′
is associated with each

characteristic velocity are given by:

L1 = λ1(
∂p

∂x1
− ρc

∂u1

∂x1
)

L2 = λ2(c
2 ∂ρ

∂x1

− ∂p

∂x1

)

L3 = λ3
∂u2

∂x1

L4 = λ4
∂u3

∂x1

L5 = λ5(
∂p

∂x1

+ ρc
∂u1

∂x1

) (1.19)

The LODI system can be cast in many different forms depending on the choice of variables. In terms
of the primitive variable, this system can be written as

∂ρ

∂t
+

1

c2
[L2 +

1

2
(L5 + L1)] = 0

∂p

∂t
+

1

2
(L5 + L1) = 0

∂u1

∂t
+

1

2ρc
(L5 − L1) = 0

∂u2

∂t
+ L3 = 0

∂u3

∂t
+ L4 = 0 (1.20)

The LODI relations are used to obtain the relations on the L′
is which will be used later in the system

of conservation equation. Using the LODI relation alone may also provide a simple but approximate
method to derive boundary conditions. For example assuming non-ref ection at the outlet is equivalent
to imposing L1 = 0.

∂p

∂t
− ρc

∂u1

∂t
= 0 (1.21)

1.5.3 Subsonic inf ow boundary condition
For the case of inf ow we consider the case where all components of velocity u1, u2, and u3 as well
as the temperature T are imposed. At the inlet u1 is imposed, the LODI relation suggest the following
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1. Description and validation of the numerical tool

expression for L5:

L5 = L1 − 2ρc
∂U

∂t
(1.22)

L2 =
1

2
(γ − 1)(L5 + L1) +

ρc2

T

dT

dt
(1.23)

Also we have
L3 = −∂V

∂t
(1.24)

and

L4 = −∂W
∂t

(1.25)

The density can now be obtained by using the equation

∂ρ

∂t
+ d1 = 0 (1.26)

Where d1 is given by

d1 =
1

c2
[L2 +

1

2
(γ − 1)(L5 + L1] (1.27)

In this case L1 is computed using the interior points from (1.19).

1.5.4 Subsonic non-ref ecting outf ow boundary condition

For subsonic f ow at exit, the eigenvalue λ1 = u − c is negative and the disturbance propagates into
the domain from outside. L2 to L5 can be still calculated from the interior points. However, L1

corresponding to the eigenvalue of u − c must be treated differently. The conventional method to
provide a well posed boundary condition is to impose p = p∞ at the outf ow boundary.

This treatment however will create acoustic wave ref ections, which may be diffused and even-
tually disappear at the steady state. In case of unsteady f ows, the wave ref ection may contaminate
the f ow solutions. To avoid wave ref ections, the following soft boundary condition as suggested by
Poinsot & Lele (1992) is used.

L1 = K(p− p∞) (1.28)

where K is a constant and is determined by

K = σ(1 −M2)c/L (1.29)

M is the maximum Mach number in the f ow, L is a characteristic size of the domain, and σ is a
constant. The preffered range for constant σ is 0.2 − 0.5. When σ = 0 (1.29) imposes the amplitude
of ref ected waves to 0 as suggested by Thompson (1987) and termed as ”perfectly non-ref ecting”.
In this study we choose the value of σ = 0.25.
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1.6. Modelling cavity f ows using NIGLO

1.6 Modelling cavity f ows using NIGLO

In this section we present the results of validation for the cavity of Le/D ratio of 2. The f ow is
initialised by a laminar boundary layer so as to have a thickness of δ/D = 0.28 at the leading edge
of the cavity. The Reynolds number of the f ow based on the cavity depth is 1500 and the f ow Mach
number is 0.6 as in Rowley et al. (2002). The representative f ow in our case is laminar due to the
restriction of computational resources for a real time turbulent simulations. Also it is worthwhile to
use scale down the problem to laminar regions to test the basic developments. The computational
domain consists of 14D in the stream-wise direction and 7D in the vertical direction. The cavity f ow
conf guration is as shown in f gure 1.1. For the mesh a double hyperbolic tangent distribution is used
in both the stream-wise and vertical directions, with a stretch ratio of 5%. The inf uence of mesh

êx

êy

0

Le = 2D

D

U∞

”Buffer zone”

”B
uf

fe
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on
e”

6D

2.5D 10.D

Figure 1.1 - Schematic diagram of cavity configuration and computational domain.

resolution on numerical results is measured by performing a mesh convergence studies to obtain grid
independent results. The different mesh sizes used in the studies is given in table 1.1. The typical
mesh used in this study is shown in f gure 1.2 and corresponds to mesh M.

Figure 1.3 shows the instantaneous contours of vorticity, the size of the recirculation zone being
the same order as the depth. Figure 1.4(a) shows the overall sound pressure level (SPL) for the
acoustic f eld above the cavity. The maximum SPL is about 170 dB at a point near the downstream
edge.

This is lower than the value reported in Rowley et al. (2002) where a value of 180 dB is reported.
This may be due to the artifact of the numerical scheme used in computation which is 4th order
accurate in the present study whereas it is 6th order accurate in the case of Rowley et al. (2002). The
SPL levels is however is in agreement with the experimental results of Krishnamurthi (1956) where a
typical value of around 168 dB is reported.
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1. Description and validation of the numerical tool

Mesh Type Block 1 Block 2 (cavity) CFL
Coarse (C) 185 × 80 60 × 40 0.75
Medium (M) 260 × 80 102 × 80 0.6
Fine (F) 335 × 108 120 × 100 0.6

Table 1.1 - Mesh sizes used in computation.

The spectra corresponding to the normal component of velocity at a point in the shear layer is
shown in Figure 1.4(b) and shows a single frequency. The value of Strouhal number is St2 = f2L

U∞
=

0.72 in good agreement with the value of 0.74 determined by the Rossiter’s formula Delprat (2006)

St =
(n− 0.25)

(M + 1/0.57)
for n = 2

Figure 1.2 - Typical mesh used in cavity corresponding to M in table1.1. One in every fourth cell is plotted.
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Figure 1.3 - Instantaneous snapshots of vorticity.15 contours in the rangeωDU ∈ [−5, 1.67] are plotted. Only
a small portion of the computational domain near the cavity is shown.
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Figure 1.4 - SPL and spectra of the normal component of velocity aty = 0 andx = 1.8D in the shear layer.
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Jet upstream
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Figure 1.5 - Schematic representation of the action of jet and its effect on the impingement of the shear layer.

1.7 Introduction of control
The control of the cavity is achieved by means of a synthetic jet, which is achieved by modifying the
boundary condition in a suitable way. The introduction of control by means of the synthetic jet has
been previously performed by Shutian et al. (2007) for the case of f ow separation around an airfoil,
Kestens (1999) and Samimy et al. (2007) for the case of the cavity. for the experimental control of
cavity.

The basic physics behind the control of cavity resonance is to def ect the shear layer from imping-
ing on the downstream edge of the cavity thereby arresting the feedback mechanism. As a result of
the jet the shear layer can impinge on the downstream edge either fully, partially or can just pass over
without any impingement as shown in f gure 1.5. Different positions of the jet has been tried, and the
position just before the upstream edge of the cavity proves to be more effective. This can be explained
by measuring the sensitivity of the f ow, where the upstream edge is more sensitive to external f ow
disturbances as shown in Moret-Gabarro (2009). The forcing is typically of the form A sin(ωt), and
the actuation is introduced just before the leading edge of the cavity (x ∈ [−0.15;−0.05] and y = 0),
the length of actuation is dependent on cost factors, such as the cost of the actuator in case of exper-
iments or the computational cost in case of numerical simulation. The snapshots of the stream wise
component of velocity is shown in f gure 1.6, showing the case of no impact and partial impact of the
shear layer on the trailing edge.
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(a) No impact of shear layer on the downstream edge.

-1 -0.5 0 0.5 1 1.5 2 2.5 3
-1

-0.5

0

0.5

1

1.5

2

2.5

u: -0.200 0.086 0.371 0.657

(b) Partial impact of the shear layer on the downstream edge.

Figure 1.6 - Instantaneous snapshots of the stream wise component of velocity depicting the effect of
actuation. The forcing is introduced atx ∈ [−0.15;−0.05] andy = 0 and is of the form0.2 sin(0.4t).

22



1.8. Conclusion

The spectra for a typical forcing of the form A sin(ωt) is shown in the f gure 1.7, Here the peak
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Figure 1.7 - Spectra aty = 0 andx = 1.8D in the shear layer for the normal component of velocity for the
actuated flow (dashed line). The forcing is of the form0.2 sin(0.4t). The spectra is compared for flow without

any actuation (solid line).

corresponding to the Rossiter mode is reduced. One of the objects of the current work is to determine
the optimal forcing frequency and amplitude by utilising a reduced order model and check its effect
by introducing it in the DNS code.

1.8 Conclusion
In this chapter we have introduced the basic numerical tool used in this study with respect to the
governing equations, numerical discretisation and the various boundary conditions used. The code has
been validated for the cavity f ow conf guration and will be used through in this study. Introduction
of control by means of a synthetic jet at the upstream edge of the cavity, where the f ow is more
sensitive to perturbations is performed. The associated spectra shows a decrease at the peak Rossiter
mode followed by the appearance of new peaks suggesting the need for optimal criteria for injection.
Various tools to perform the optimal control using ROM will be developed in the subsequent chapters.
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Chapter 2

Basic tools from control theory

Introduction
Ce chapitre pŕesente brìevement les différentes th́eories du contr̂ole actifBewley & Agarwal(1996),
Bewley & Liu(1998),Kim & Bewley(2007),Bagheriet al. (2009b) qui ont trouv́e des applications en
mécanique des fluides lors de ces 15 dernières anńees, et qui sont utiliśees en partie dans ce travail.
On qualifie en premier lieu le type de contrôle en fonction de la loi de contrôle et de son action.
On parle de contr̂ole en boucle ouverte (open loop) lorsque la loi de contrôle est d́etermińee opti-
malement pour stabiliser un système initialement instable. La loi n’est pas modifiable au cours du
processus de contrôle. A l’oppośe, dans le contr̂ole en boucle ferḿee (close-loop), une loi de re-
tour (feedback) lie le contrôle à l’ état ŕeel et ŕeactualiśe du syst̀eme, assurant une stabilisation plus
efficace.

Avant de chercher une loi de contrôle, on doit aussi regarder les aspects de contrôlabilité (ou com-
mandabilit́e) et d’observabilit́e. La contr̂olabilité qualifie la capacit́e du syst̀emeà atteindre uńetat
souhait́e à partir d’une certaine loi de contr̂ole et d’une bonne condition initiale. La stabilisabilité,
assocíee à la contr̂olabilité, assure qu’il existe une loi de retour capable de stabiliser le système.
Cela revientà dire que les modes non commandables sont tous stables. Enfin l’observabilité, qui
math́ematiquement est une notion dualeà la notion de contr̂olabilité, indique que l’observation des
entŕees et sorties du système, pendant un intervalle de temps fini, permet de retrouver l’état initial et
donc l’état complet.

Contrôle des écoulements en boucle ouvert et optimisation sous
contrainte
Un probl̀eme de contr̂ole est bien pośe si on peut clairement définir :

• la variable d’́etat du syst̀emeφ.

• la variable de contr̂olec.
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2. Basic tools from control theory

• une fonctionnelle côut à minimiserJ (φ, c), assocíeeà la recherche d’une ŕeduction de trâınée
ou de bruit, par example.

• des contraintesF (φ, c) = 0, qui sont leśequations d’́etat avec les conditions aux limites ou
initiales éventuellement.

Pour minimiser la fonctionnelle coût, on introduit une fonctionnelle Lagrangienne qui,à la fonc-
tionnelle côut, ajoute les contraintes multipliées scalairement par des multiplicateurs de Lagrange
ξ, qui sont en ŕealité des variables d’un problème adjoint restant̀a définir. La minimisation de la
fonctionnelle Lagrangienne se fait en calculant les dérivées de Fŕechet par rapport̀a une variation
de l’étatφ, qu’on annule par la suite. Une fois les gradients de la fonctionnelle calculés, on utilise
une ḿethode it́erative pour aboutir au contr̂ole optimal, solution de notre problème. Le calcul des
gradients peut aussiêtre effectúe en appliquant la ḿethode des sensibilités. Il s’agit alors de d́eriver
les contraintes par rapport̀a la variable de contr̂ole pour aboutirà la résolution directe d’un système
où les d́erivées sont les variables principales. Finalement, une discussion sur les intérêts et les in-
conv́enients entre les deux approches conclut cette section :

• différentiation puis discŕetisation : en diff́erentiant le syst̀eme et ses contraintes, on obtient
les gradients continus. Ensuite on discrétise l’ensemble du problème pour obtenir la solution
nuḿerique.

• discŕetisation puis diff́erentiation : on discŕetise l’ensemble du problème (contrainte, fonction-
nelle), puis on cherche les gradients des grandeurs discrètes par diff́erentiation deśequations
discr̀etes.

Contrôle en boucle fermée
Dans cette partie est dévelopṕee l’approche classique du contrôle optimal avec loi de retour. A partir
de mesure des sorties du système, on estime l’état du syst̀eme optimalement. C’est l’observation et
l’estimation. Ensuite, on suppose que l’état estiḿe est l’́etat ŕeel, et on b̂atit la loi de contr̂ole, c’est
l’ étape de contr̂ole.

Contrôle linéaire quadratique régulier (LQR)
On consid̀ere dans un premier temps un système dans le cadre d’information complète, c’est-̀a-dire,
qu’on peut connâıtre à tout instant l’́etat du syst̀eme. Par l’approche adjointe on obtient facilement
une loi de contr̂ole de retour (ŕetroaction) fonction lińeairement de l’́etat, en minimisant une fonc-
tionnelle baśee sur l’́etat et le côut du contr̂ole. La solution est en fait obtenue en résolvant une
équation de Riccati stationnaire, ce qui signifie qu’on chercheà stabiliser le syst̀eme sur un horizon
infini (t→ ∞).

Dans une second́etape, sur la base des mesures en sortie, on chercheà reconstruire l’́etat. Pour
cela on applique la th́eorie du filtre de Kalman-Bucy qui suppose que statistiquement le système est
soumisà des bruits gaussiens qui engendrent une erreur dans les mesures. Cette erreur se traduit
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par un terme source dit de retour analogueà un contrôle dans l’́equation d’estimation de l’état.
La minimisation de cette erreur de mesure revientà résoudre une nouvelléequation de Riccati qui
permet de trouver la forme du contrôle dans l’́equation d’estimation de l’état. On montre eńecrivant
le syst̀eme complet (état ŕeel etétat estiḿe) que le probl̀eme de contr̂ole et d’estimation sont duaux.

Contrôle linéaire quadratique gaussien (LQG),H2)
Cette fois-ci, on consid̀ere que l’́etat ŕeel du syst̀eme est perturb́e par des bruits gaussiens, sur les
mesures et sur le contrôle. L’approche et la solution sont identiques au cas préćedent. La diff́erence
majeure est dans l’introduction du bruit directement dans leséquations. Unéetude du système com-
plet montre que cela empêche l’́etat du syst̀eme de tendre vers une solution complètement stationnaire
au bout d’un horizon infini, le bruit gaussien présent alimentant toujours le système.

Contrôle robuste (H∞)
Le contr̂ole robuste est une extension du contrôle LQG. Dans cette approche, la forme du bruit est
devenue aussi une inconnue du problème. Le probl̀eme d’optimisation devient un problème min max
: on cherche le contr̂ole optimal qui va minimiser la fonctionnelle coût et le pire des bruits qui va
maximiser cette m̂eme fonctionnelle. La solution est encore basée sur deux́equations de Riccati,
mais des matrices supplémentaires relatives̀a l’influence du bruit dans le contrôle et les mesures
interviennent. Une br̀eve pŕesentation de l’utilisation du contrôle en boucle ferḿee conclut cette
section.
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2. Basic tools from control theory

2.1 Introduction
This chapter summarizes the various tools from control theory. The results from this chapter are used
in this thesis, while performing the LQG control on our ROM. Also the method of adjoint as intro-
duced in this chapter is evoked on numerous occasions, in chapters on calibration, sensitivity analysis
of the ROM, linearization of the model while performing feedback. To introduce the basic ideas we
closely follow the work contained in Zabczyk (1996), and Evans (1983). For the application of the
control theory in f uid mechanics an exhaustive treatment can be found in Bewley & Agarwal (1996),
Bewley & Liu (1998), Kim & Bewley (2007) and more recently Bagheri et al. (2009b). To begin with
we introduce the various terms frequently encountered in the control theory. The starting point of con-
trol theory is the differential equation

ẋ(t) = f(x, u), x(0) = x0 ∈ R
n (2.1)

with the right-hand side depending on a parameter u from a set U ⊂ R
m called as the set of control

parameters. An important question in the theory of differential equations is the continuous depen-
dence of solutions on parameters and has been answered under appropriate conditions. In control
theory we pose questions of different type, and depending on the nature of the control two def nitions
of control can be found: open loopand closed loop. An open loopcontrol is basically an arbitrary
function u(:) : [0,+∞) −→ U for which the equation

ẋ(t) = f(x(t), u(t)), t ≥ 0, x(0) = x0 (2.2)

has a well def ned solution. A closed loopcontrol is a mapping k : R
n −→ U which may depend of

time t ≥ 0, such that the equation

ẋ(t) = f(x(t), k(x(t))), t ≥ 0, x(0) = x0 (2.3)

has a well def ned solution. The mapping k(.) is called feedback. Control are also called the inputsof
the system and the corresponding solutions of (2.2) or (2.3) are called the outputsof the system.

Controllability
A state z ∈ R

n is said to be reachablefrom x in time T , if there exists an open loop control u(.) such
that, for the output x(.), x(0) = x0, x(T ) = z. If the state z is reachable from an arbitrary state x in
time T , then the system (2.1) is controllable. In many cases we require transferring an arbitrary state
into the given one, in particular the origin. The effective characterisation of controllable systems is a
partially solved problem in control theory.

Stabilizability
An important issue is that of stabilizability. If for some x̄ ∈ R

n and ū ∈ U , f(x̄, ū) = 0. A function
k : R

n −→ U such that k(x̄) = ū is called a stabilizing feedbackif x̄ is a stable equilibrium for the
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2.2. Open loop control and constrained optimisation

system.

ẋ(t) = f(x(t), k(x(t))), t ≥ 0, x(0) = x0

There exist many methods to determine weather a given equilibrium state is a stable one.

Observability
In many practical situations one observes not the state x(t) but its function h(x(t)), t ≥ 0. It is
therefore necessary to consider the pair of equations

ẋ = f(x, u), x(0) = x0 (2.4)

y = h(x) (2.5)

equation (2.5) is called an observation equation. The system is (2.4)-(2.5) is said to be observableif,
knowing a control u(.) and an observation y(.), on a given interval [0, T ], one can determine uniquely
the initial condition x.

Optimality
In control theory besides the above questions of structural character one also asks optimality ques-
tions. In the time optimal problem we seek a control which transfers a state x onto z in a minimal time
T . In other problems the time T is f xed and one seeks a control u(.) which minimises the integral

J (x, u) =

∫ T

0

P (x(t), u(t))dt+Q(x(t))

where P and Q are given functions. The methods of control theory can be broadly classif ed based
on the right hand side of the system (2.4) being linear or non-linear where we describe the control
as linear or non-linear. In case of non-linear control problems subjected to constraints the method
of Lagrange multipliers is well known as described in Gunzburger (1997a), Gunzburger (1997b),
Gunzburger (1997c). The method is described in the next section and is largely inspired from
Gunzburger (1997a).

2.2 Open loop control and constrained optimisation
Most of the f ow control or optimisation problem can be set in an abstract setting for which we def ne
the following

1. state variablesφ: which are described by the governing equations, such as velocity, pressure,
temperatures etc.
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2. Basic tools from control theory

2. The controlc which is usually introduced as an external source, such as mass inf ux, heating on
the boundary.

3. cost functional: J (φ, c) which is the desired objective we want to achieve by the application of
control such as minimisation of the exit energy, reduction in noise, drag, etc.

4. The constraintF (φ, c) = 0 is the f ow equations or any side constraint to be satisf ed such as
the initial or boundary condition.

The constrained optimisation problem is then to f nd controls c and states φ such that J (φ, c)
is minimised (or maximised), subject to the constraint F (φ, c) = 0. In many cases the functional
to be minimised do not explicitly depend on the control parameters, resulting in ill-posed problems
Gunzburger (1997c). This may force one to restrict the size of the control, which can be done two-

fold

1. Limit the size of the control so that one looks for optimal control within a bounded set, e.g.,
one could look for optimal controls such that under some suitable norm

‖c‖ ≤ M

2. To penalize the objective functional with some norm of the control so that the new functional
becomes

J (φ, c) = ε(φ) + ℓ2‖c‖2 (2.6)

The parameter ℓ is chosen empirically. The smaller the value of ℓ the more the control available
to make the f rst term small which is presumable the goal of the optimisation. This strategy is
easier to implement than the earlier one which results in variational inequalities.

In the method of Lagrange multipliers to enforce constraints we introduce an adjoint or co-state
variable ξ to def ne a new objective functional

L(φ, c, ξ) = J (φ, c) − 〈F (φ, c), ξ〉 (2.7)

where 〈.〉 denotes an appropriate inner product which depends on the setting of the problem. The
constrained optimisation problem can be stated as f nding

To find controlsc, statesφ and co-statesξ such thatL(φ, c, ξ) is stationary.The above def nition
of the functional (2.7) ensures that each argument is independent of the other contrary to the original
problem in which the argument had to satisfy F (φ, c) = 0. The Lagrangian functional L admits an
extremum at the stationary points of L which is obtained by setting the f rst variation of L with respect
to each variable δL = 0 i.e.

δL =
∂L
∂φ

δφ+
∂L
∂c
δc+

∂L
∂ξ
δξ = 0 (2.8)
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2.2. Open loop control and constrained optimisation

We suppose that the variables φ, c, ξ are independent 1 and the Fréchet derivative 2 with respect to
each variable is identically equal to 0 with respect to each variables φ, c, and ξ. i.e.

∂L
∂φ

δφ =
∂L
∂c
δc =

∂L
∂ξ
δξ = 0

The expressions above represents a necessary and suff cient conditions for the determination of
an extremum in case the functional is convex and gives a local extremum of the functional. We
do not consider the global optimisation methods as they are too expensive in f uid dynamic com-
putation, and is still an active area of research as found in the works of Mohammadi (2007),
Mohammadi & Pironneau (2004). The local optimisation methods may be stuck in a local extremum,
which mat not be of interest. Also the presence of many local extrema may seriously affect the
performance of the algorithm. Global optimisation method such as genetic algorithms is still less
utilised in the f eld of f uid dynamic optimisation as the number of parameters is limited applications,
as can be found in Quagliarella & Vicini (1997), Obayashi (1997), Makinen et al. (1999). Setting the
f rst variation of L with respect to the Lagrange multiplier ξ equal to zero gives

∂L
∂ξ
δξ = lim

ǫ−→0

L(φ, c, ξ + ǫδξ) −L(φ, c, ξ)

ǫ
= 0

= lim
ǫ−→0

−〈F (φ, c), ξ + ǫδξ〉 + 〈F (φ, c), ξ〉
ǫ

= 0

Where the variation δξ is arbitrary. On simplif cation we obtain

〈F (φ, c), δξ〉 = 0

or

F (φ, c) = 0 (2.9)

which is nothing but the equation of state, which is the constraint of the optimisation problem. Setting
the f rst variation of L with respect to the state φ in the direction δφ yields

∂L
∂φ

δφ = lim
ǫ−→0

L(φ+ ǫδφ, c, ξ) − L(φ, c, ξ)

ǫ
= 0

= lim
ǫ−→0

[J (φ+ ǫδφ, c) − J (φ, c)

ǫ
− 〈F (φ+ ǫδφ, c), ξ〉 − 〈F (φ, c), ξ〉

ǫ

]
= 0

1Rigorously speaking this is not a fully correct assumption as the control and the state variables, c, φ are related by the
equation of state F (φ, c) = 0.

2The Fréchet derivative of L at the point x0 in the direction δx is given by

lim
ǫ−→0

L(x0 + ǫδx) − L(x0)

ǫ
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We consider the Taylor series expansion upto order O(ǫ), the above relation becomes

lim
ǫ−→0

(
∂J
∂φ

δφ− 〈∂F
∂φ

δφ, ξ〉 +O(ǫ)

)

On further simplif cation

∂J
∂φ

δφ− 〈∂F
∂φ

δφ, ξ〉 = 0

The f rst term can be written in terms of the inner product as

〈∂J
∂φ

δφ, 1〉 − 〈∂F
∂φ

δφ, ξ〉 = 0

On using the def nition of the adjoint denoted by (.)∗:

〈δφ,
(
∂J
∂φ

)∗

〉 − 〈δφ,
(
∂F

∂φ

)∗

ξ〉 = 0

Since the variation δφ is arbitrary we obtain the adjoint or co-state equations
(
∂F

∂φ

)∗

ξ =

(
∂J
∂φ

)∗

(2.10)

Note that the adjoint equations are linear in the adjoint variables ξ. In fact the adjoint of the state
equations are linearised about the state. Finally setting the variation of the L with respect to the
control c in the direction δc yields

∂L
∂c
δc = lim

ǫ−→0

L(φ, c+ ǫδc, ξ) − L(φ, c, ξ)

ǫ
= 0

= lim
ǫ−→0

[J (φ, c+ ǫδc) − J (φ, c)

ǫ
− 〈F (φ, c+ ǫδc), ξ〉 − 〈F (φ, c), ξ〉

ǫ

]
= 0

As previously, we consider the Taylor series expansion upto order O(ǫ) to obtain

∂J
∂c

δc− 〈∂F
∂c
δc, ξ〉 = 0

On introducing the inner product for the f rst term

〈∂J
∂c

δc, 1〉 − 〈∂F
∂c
δc, ξ〉 = 0

again introducing the adjoint operator we have

〈δc,
(
∂J
∂c

)∗

〉 − 〈δc,
(
∂F

∂c

)∗

ξ〉 = 0
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2.2. Open loop control and constrained optimisation

Finally the optimality condition is given as
(
∂F

∂c

)∗

ξ =

(
∂J
∂c

)∗

= ℓ2c (2.11)

System (2.9)-(2.11), also called as the Euler-Lagrange equations are a system of coupled partial dif-
ferential equations whose solution yields the optimal control c, the optimal state φ and the optimal
co-state ξ. The coupled system is more complicated than the original system and computationally
expensive to obtain the solution directly (also called ”The one shot method”), especially in the case
of computational f uid dynamics where the number of degrees of freedom can go upto the order of
107. One therefore resorts to an iterative method in which one iterates between different equations,
the algorithm for which can be summarized as below.

1. for n = 0 initialise the guess value for the control c(0).

2. Solve F (φ(n), c(n)) (2.4) to obtain the state φ(n)

3. Determine the adjoint state ξ(n) by resolving equation (2.10) as

(
∂F

∂φ

)∗(n)

ξ(n) =

(
∂J
∂φ

)∗(n)

4. The new control c(n+1) is obtained by solving the optimality condition (2.11) to obtain the
gradient

(
∂J
∂c

)∗(n)

=

(
∂F

∂c

)∗(n)

ξ

5. The new value of the control is obtained as

c(n+1) = c(n) + s(n)

(
∂J
∂c

)∗(n)

where s(n) is the step length of descent obtained from any descent algorithm.

6. iterate the above step till a convergence criteria.is satisf ed

We remark that the above iterative algorithm is equivalent to the method of steepest descent for the
unconstrained functional J (φ(c), c) where φ(c) is the state corresponding to the control c. One im-
portant component of the optimisation problem is the determination of the gradient in step 4, which
can be obtained by different methods as will be explained in the next section. Since the main aspect
is the calculation of the state variables, we wish to keep the number of computation small and the
principle of model reduction is one such strategy.
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2. Basic tools from control theory

2.2.1 Functional gradients through sensitivities
To determine the functional gradient in step 3 of the algorithm, we use the chain rule to obtain

dJ (φ, c)

dc
=
∂J (φ, c)

∂φ

dφ

dc
+
∂J (φ, c)

∂c
(2.12)

Since the functional J depends explicitly on φ and c, the terms ∂J
∂φ

and ∂J
dc

can be determined easily.
Since the state variable φ depends implicitly on the control parameter c it is more subtle to determine
the sensibility dφ

dc
. A simple idea is to use a f nite difference approximation given by

dφ

dc
|cn ≈ φ(cn) − φ(c̃)

cn − c̃
(2.13)

where c̃ is a value in the neighborhood of cn and φ(c̃) is a solution of the state equation at c̃ i.e.
F (φ(c̃), c̃) = 0. This is a costly solution as it is required to solve an additional nonlinear state equation
for each sensitivities and is prone to inaccuracies. A better method to determine the sensitivities is
to differentiate the constraint equation F (φ, c) = 0 again by chain rule to obtain a linear system for
sensitivities as

dF =
∂F

∂φ
dφ+

∂F

∂c
dc = 0 (2.14)

therefore
(
∂F

∂φ
|cn
)
dφ

dc
|cn= −∂F

∂c
|cn (2.15)

The major disadvantage of this method is to resolve a linear system with the optimal parameters. The
terms ∂F

∂φ
|cn and ∂F

∂c
|cn can be determined at the beginning of the iteration just after the resolution of

the state.

2.2.2 Functional gradients using adjoint equations
One can also use the adjoint equations to determine the gradients of the functional. To demonstrate
we write the adjoint equation (2.10) for the sake of convenience as

(
∂F

∂φ

)∗

ξ =

(
∂J
∂φ

)∗

which is equivalent to the equation

ξ∗
∂F

∂φ
=
∂J
∂φ

(2.16)

Substituting this in equation (2.12) we obtain

dJ (φ, c)

dc
= ξ∗

∂F (φ, c)

∂c

dφ

dc
+
∂J (φ, c)

∂c
(2.17)
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2.2. Open loop control and constrained optimisation

Finally on using 2.15

dJ (φn, cn)

dc
= −(ξn)∗

∂F

∂c
|cn +

∂J
∂c

|cn (2.18)

The advantage of this method is that to determine the sensibilities, we need to resolve the adjoint
system once independent of the number of optimal parameters. Also the adjoint of the optimality
condition (2.11) is valid for non zero values of the gradient of the cost functional dJ

dc
. When the

optimality condition is satisf ed we have dJ
dc

= 0. For problems with many design parameters this
approach is much cheaper than using sensitivities. However sensitivities are useful in their own right
as they help in determining how a variation in a parameter affect the f ow.

2.2.3 Differentiation then Discretisation
Sensitivities can be determined in two ways. One can differentiate the continuous f ow system at
the partial differential equation (PDE) level to obtain a system of equations for sensitivities and then
discretise the continuous sensitivity system. Alternatively one can also discretise the continuous f ow
equations and then differentiate to obtain the sensitivities of the discrete system. It is also worth-
while to note that the differentiation and discretisation process do not commute and yields a different
approximation to the sensitivities. The difference between the two approach can be summarized in
f gure 2.1. In the following section we give a brief discussion between the two approaches.

2.2.4 Discretisation-Differentiation
This approach consists of discreting the equation of state and then differentiating the discrete expres-
sion to obtain the gradients. The main advantage of this method is the sensitivities of the optimi-
sation problem are obtained exactly. Contrary to the case of discretisation-differentiation approach
there is no need of calculating new solutions of the discretised equations. This method requires a
choice of parameter in the code and returns a new code which computes the approximate param-
eters and exact sensitivities without any user intervention. Although this method has gained some
popularity in f eld like shape optimisation it has been very less utilised for f uid dynamic problems
Hinze & Slawing (2003) is one such work. The overhead cost of this operation is very large as it
requires more CPU time than the differentiate-discreisation approach.

2.2.5 Differentiation-Discretisation
In this approach the continuous state system is differentiated with respect to the parameters to yield
a continuous system of equations for sensitivities of the exact solution with respect to the param-
eter. The sensitivities then might be descretized with respect to the given parameter to obtain an
approximation for the exact sensitivities. Although the approach is cost effective, the diff culty lies in
approximating the sensitivities as they are not the exact derivatives of anything. This leads to incon-
sistent gradients of functional i.e. the approximate gradient is not the true gradient of anything. Also
in applications where inherent discontinuities in the solution are present such as shocks the approach
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Objective Functional

Equation of State +
+

Equation of State +

Optimality Condition

  Discrete in Time
  Discrete in Space

Discretization

  Discrete in Space

Equation of State +
Objective Functional

  Discrete in Time

Adjoint Equation

D
ifferentiation

  Continuous in Time

  Continuous in Space

(a) Differentiation then discretisation

Objective Functional

Equation of State + Equation of State +
Objective Functional
Optimality Condition

+

Equation of State +
Objective Functional
Optimality Condition

  Discrete in Time
  Discrete in Space

Differentiation

D
iscretization

  Continuous in Time

  Continuous in Space
  Continuous in Time
  Continuous in Space

(b) Discretisation then differentiation

Figure 2.1 - Schematic representation of the different approaches of resolution of the optimal system.
Discussion of the commutativity between the discretisation and differentiation operator.

need not be feasible as the weak solution of the shock namely the Rankine-Hugoniot condition need
to be considered as a constraint Castro et al. (2008), Bardos & Pironneau (2003). In literature we do
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2.3. Feedback control

f nd a large application of this method in the f uid dynamic context notably in Bewley & Liu (1998),
Walther et al. (2001), Spagnoli & Airiau (2008), Shrif. (2008),Marquet et al. (2008) and will be used
for the later developments in the context of reduced order modelling. An interesting study of compar-
ison of the comparison of the various adjoint techniques is found in Noack & Walther (2007) where
the difference between the discrete adjoint and continuous adjoint are compared.

2.3 Feedback control
In this section we demonstrate the principles of a feedback control. The control on the physical
system can be applied by computing the effect of control in advance such that the desired state of
the physical system is achieved. This strategy is known as open-loop control. However when there
are disturbances in the physical system, due to the presence of uncertainties open-loop control fails
to give the desired effect. Closed-loop control or feedback control is based on the concept that one
is able to monitor the model by means of output measurements and establishes a connection between
the measurements and the input of the system. Figure 2.2 illustrates the concept of a feedback control.
Here P is the plant that describes our model and is usually given by a dynamical system of the form

P

K

Eu

ym

x̂

Perturbation

Measured state

Estimated state

Control

Figure 2.2 - Block diagram of control with estimation

ẋ = Ax+Bu (2.19a)
ym = Cx+Du (2.19b)

37
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Where the matrix A also known as the state matrix determines the evolution of the state x, the control
u is applied to the system to drive the state towards zero, the control is based on measurements ym.
The matrices B, C, D are mainly problem dependent and depends on the way the control is applied
(weather a boundary control or an internal forcing) and the way the measurements are made. In many
cases the state is an internal variable and cannot be observed. Instead a few noisy measurements ŷm
are made, and used to estimate the state x̂, which is then fed to the controller to determine the control
u which is then applied back to the plant to drive the state towards zero. The estimation problem can
be stated more precisely as follows

˙̂x = Ax̂+Bu− û (2.20a)
ŷm = Cx̂+Du (2.20b)
û = L(ym − ŷm) (2.20c)

Where û can be interpreted as forcing applied to the plant P and ŷm denotes the measurement asso-
ciated with the state x̂. Once the state x̂ has been determined using the estimator E the control can be
determined as

u = −K(x̂) (2.21)

The problem now lies in determining the operators L, K such that the term û forces the state vari-
able x̂ toward the actual state x and the control u drives the state x towards zero. The equivalent
criteria for determining the controllability and Observability for a f nite dimensional system is dis-
cussed in appendix A. We present the methods in section §2.4, and section §2.5 the different strate-
gies of determining the control, based on the solution of the Ricatti equation. Based on the func-
tional space in which the optimisation problem is solved the control can be classif ed as H2 and
H∞ which will be discussed in the next section. For details one can refer Lewis & Syrmos (1995),
Bewley & Agarwal (1996), Zhou et al. (1996), Kim & Bewley (2007).

2.4 H2 control theory

2.4.1 Linear Quadratic Regulator LQR control
One considers a linear system continuous, invariant in time of the form.

ẋ = Ax+Bu (2.22a)
u = −KLQRx (2.22b)

with x representing the state, u representing the control law, the second equation represents the feed-
back law. We assume that there is no external disturbances and we are able to measure the full state.
The LQR consists is to f nd a control law that stabilises the system (2.22), and minimises the cost
functional given by

JLQR =
1

2

∫ ∞

0

(
xTQx+ uTRu

)
dt (2.23)
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2.4. H2 control theory

where the weight matrices Q, R are assumed positive def nite. The control is found out in knowing
the full information in that the state of the system at the input and output is known in advance for
all time. As in the previous section we introduce the Lagrange multipliers ξ to def ne the augmented
functional

L =

∫ ∞

0

(
1

2
xTQx+

1

2
uTRu− ξT [ẋ−Ax− Bu])dt (2.24)

Variation of the above functional gives

δL =
[
−ξT δx

]∞
0

+

∫ ∞

0

({xTQ+ ξTA+ ξ̇T}δx+ {uTR + ξTB}δu)dt (2.25)

The minimisation is achieved if

ξ̇ = −AT ξ −Qx (2.26)
u = −R−1BT ξ (2.27)[

−ξT δx
]∞
0

= 0 (2.28)

We assume a linear relation between the state and the adjoint variable as

ξ = X(t)x (2.29)

where X is any positive def nite matrix. The feedback law (2.27) becomes

KLQR = R−1BTX (2.30)

On using (2.22) and (2.29), equation (2.26) becomes

Xẋ+ Ẋx = −(ATX +Q)x = Ẋx+X(Ax+Bu) = Ẋx+X(Ax+B[−R−1BTXx])

This equation is verif ed for some value of x, if X is the solution of Riccati equation given

− Ẋ = ATX +XA+Q−XBR−1BTX (2.31)

In general the inf nite time horizon problem is solved by taking the term Ẋ = 0 in (2.31)

2.4.2 Lyapunov equation and minimum of the functional JLQR
The functional JLQR being a scalar can be written using the feedback law as

JLQR = Trace
[∫ ∞

0

(
1

2
xTQx+

1

2
uTRu)dt

]
=

Trace
2

[∫ ∞

0

(xT (Q+KT
LQRRKLQR)x)dt

]

=
Trace

2

[
(Q+KT

LQRRKLQR)L
]

(2.32)
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2. Basic tools from control theory

Where the matrix L =
∫∞

0
xxTdt. The equation of state can be now written as

ẋ = Afx with Af = A−BKLQR

The solution of the above equation can be characterised as

x(t) = exp(Af t)x0

We now recall a result from the Lyapunov theory which states that the above system is asymptotically
stable if

AfL+ LATf = −x0x
T
0

It can be shown that using the equation of state and the Riccati equation XAf + ATfX = −(Q +
KT
LQRRKLQR), the minimum of the functional is given as

Jmin =
Trace

2

[
(Q+KT

LQRRKLQR)L
]

= −Trace
2

[
(XAf + ATfX)

]

where J = JLQR for notational convenience. On observing that Trace(AB) = Trace(BA) and
Trace(A+B) = Trace(A) + Trace(B) the minimum can be written as

Jmin =
1

2
xT0Xx0 (2.33)

A typical LQR plant model can be summarized as shown in the f gure 2.3

PLQR

KLQR

u x

y

Figure 2.3 - Typical block diagram of an LQR control

2.4.3 Estimation and the Kalman-Bucy Filter (KBF)
In real time systems it is often natural to encounter external disturbances that enter into the system
and hence the state is not precisely known. For example when acoustic measurements of f ow are
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2.4. H2 control theory

made using a microphone one can expect the presence of the instrument noise affecting the measure-
ment. This leads us to the estimation problem in which the state (a part of it) needs to estimated
before designing the control. The Kalman-Bucy Filter (KBF) is a well known tool for the estimation
problem. The external disturbances for the state w1 and the measurements w2 is assumed to be uncor-
related white Gaussian process with zero mean and the covariance matrix def ned by E[w∗

1w1] = I ,
E[w∗

2w2] = I , where E[.] is any expectation operator. We def ne the square root of the covariance of
the disturbance to the state equation and measurements by G1, G2 respectively. The system P can be
written as

ẋ = Ax+G1w1 +B2u (2.34a)
ym = Cx+G2w2 +Du (2.34b)

The objective of the Kalman Bucy Filter is to estimate the state x as accurately as possible based on
the measurements ym. In other words the KBF tries to minimise the estimation error ex def ned by

ex = x− x̂ (2.35)

where the state x̂ is determined using a f lter. The cost functional can be written as

JKBF = E[‖χe‖2]

where χe ≡ ex for the sake of notation, and E is any expectation operator 3. For the sake of gen-
eralisation in latter sections we introduce the following notations, assuming G2 nonsingular. The
disturbance vector can be def ned as

w =

(
w1

w2

)

we also def ne

B1 ≡ (G1, 0) C2 ≡ G−1
2 C D21 ≡ (0, I)

On using a simple change of variable the observation vectors y, ŷ is def ned as

y ≡ G−1
2 (ym −Du) ŷ ≡ G−1

2 (ŷm −Du)

With the change of variable (2.34) and (2.20) can be written as

y = C2x+D21w (2.36a)
ŷ = C2x̂ (2.36b)

3The def nition of the functional by means of an integral on t ∈ [0,∞] is not convenient due to the problem of
convergence, the expectation being the suitable measure.
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2. Basic tools from control theory

It is also appropriate to def ne the output estimation error ey ≡ y − ŷ. The equations for the state
estimation error and output estimation error can be written by the def nition of errors ex, ey and
equations (2.20), (2.36) as

ėx = Aex +B1w + û (2.37a)
χe = ex (2.37b)
ey = C2ex +D21w (2.37c)

The Kalman-Bucy estimator matrixLKBF is estimated such that the control û, forces the state variable
of the estimation error êx towards the minimisation of JKBF (χe) in the presence of disturbances w.
The above facts can be written in a shorthand form as shown in table. Where PKBF represents the

=

A B1

I

I

C2 D21

00

0

w ûex

ėx

χe

ey

PKBF

plant and LKBF represents the f lter gain. We introduce the Hamiltonian as

HKBF =

(
AT −CTC

−B1B
T
1 −A

)

The Ricatti equation associated with HKBF can be written as

AY T + Y AT − Y (CT
2 C2)Y + (B1B

T
1 ) = 0 (2.38)

also denoted by Y = Ric(HKBF ). Note that the gain obtained from the KBF is the dual of the gain
obtained from the LQR control described in (2.31). The feedback operator L can be written as

L = −Y CT
2 (2.39)

and the Kalman-Bucy f lter LKBF given by

û = Ley = −Y CT
2 ey (2.40)

The estimator ŷ is given by the equation

˙̂y = Ax̂+B2u− L(y − C2x̂) (2.41)

and minimisesE(‖ex‖2) for a system with Gaussian disturbances. The block diagram of the KBF can
be summarized as shown in f gure 2.4.3
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PKBF

KKBF

u x

yw

Figure 2.4 - Block diagram of Kalman Filter.

2.4.4 Linear Quadratic Gaussian LQG control
We combine the results obtained from LQR for the control and the KBF for the estimation part to
obtain a system PLQG subjected to Gaussian disturbances. The cost functional for minimisation can
be written as

JLQG = E
[
‖x‖2 + ℓ2u2

]
(2.42)

Note that Q = I and R = ℓ2 in the def nition of (2.23), ‖.‖ represents the euclidian norm or the L2

norm. The functional (2.42) can be written in a form similar to that of the Kalman-Bucy f lter by
introducing the transformation variable

χ =

(
Q1/2x/ℓ

u

)

to obtain the new functional of minimisation as

JLQG = E[‖χ‖2] (2.43)

The term LQG comes from the fact that the plant being linear, the cost functional being quadratic,
and the external disturbances being Gaussian. Using the same way the plant (2.34) can be written as

ẋ = Ax+B1w +B2u (2.44a)
χ = C1x+D12u (2.44b)
y = C2x+D21w (2.44c)

where

C1 =

(
Q1/2/ℓ

0

)
D12 =

(
0
I

)

An H2 controller relates the measurements y and the control u such that when applied to the plant
controls the evolution of the state x so as to minimise the cost functional JLQG(χ). We state a result
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as found in Lewis & Syrmos (1995), in that the H2 controller which minimises JLQG can be found
as a combination of optimal controller and the Kalman-Bucy f lter. The estimator is given by the
equation

u = −Kx̂ (2.45a)
˙̂x = Ax̂+B2u− L(y − C2x̂) (2.45b)

Where

K = −BT
2 X X = Ric

(
A −B2B

T
2

−CT
1 C1 −AT

)
(2.46a)

L = −Y TCT
2 Y = Ric

(
AT −C2C

T
2

−B1B
T
1 −A

)
(2.46b)

One observes the separation structure of the solution in that the computation of the control gain
K2 does not depend on the external disturbances which are taken care of by the terms B1 and C2.
Similarly the estimation gain L does not depend on the cost functional which are taken care of by the
term C1 or the way the state is measured as accounted for by B2, thus resulting in a decoupling of the
problem for control and estimation, which is usually reffered to as the principle of separation.

2.5 H∞ control: robust control
The formulation of the H∞ is similar to the H2 controller, only difference is that one considers the
worst disturbance which destabilises the system, rather than a Gaussian disturbance. The governing
equation are similar to the system of equation (2.44) and can be written as

ẋ = Ax+B1w +B2u (2.47a)
χ = C1x+D12u (2.47b)
y = C2x+D21w (2.47c)

in that one replaces the Gaussian disturbance w with the worst case disturbance w which destabilises
the system. One considers the transfer function Tχw of the perturbationw which is obtained by solving
the estimator problem for the feedback law χ. In an H∞ control one tries to bound the ∞ norm of the
transfer function to be less than a chosen value γ i.e. ‖Tχw‖∞ < γ, where γ is a constant and ‖.‖∞ is
the inf nity norm of the transfer function and as def ned in Zhou et al. (1996)

‖Tχw‖∞ = sup
ω
σmax(Tχw)(jω) (2.48)

where σmax corresponds to the largest singular value. The objective functional for minimisation can
be written as

J∞ = E[xTQx+ ℓ2uTu− γ2wTw]
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2.5. H∞ control: robust control

and the control u is chosen to minimiseJ∞, while simultaneously f nding the maximal external distur-
bance κ which destabilises the system. Thus the H∞ control is termed as a min-max problem. As in
the previous section the covariance matrices G1 and G2 which characterises the system disturbances
and the measurement disturbances are assumed to be known. As described in Lewis & Syrmos (1995)
the H∞ controller minimises J∞ for the worst possible disturbance κ and is given by

u = −K∞x̂ (2.49a)
˙̂x = Ax̂+B2u− L∞(y − C2x̂) (2.49b)

where the controller feedback K∞ and the estimator feedback L∞ are given by

K∞ = −BT
2 X∞ X∞ = Ric

(
A γ−2B1B

T
1 − B2B

T
2

−CT
1 C1 −AT

)
(2.50a)

L∞ = −Y∞CT
2 Y∞ = Ric

(
AT γ−2C1C

T
1 − C2C

T
2

−B1B
T
1 −A

)
(2.50b)

The case of a LQG controller of H2 theory is obtained as a limit of γ −→ ∞. Also the terms
γ−2B1B

T
1 −B2B

T
2 and γ−2C1C

T
1 − C2C

T
2 need not be necessarily negative def nite, so a solution of

the Ricatti equation exist for suff ciently large values of γ. The smallest value of γ = γ0 for which
the solution exist is determined numerically. For γ > γ0 the controller is termed as suboptimal. Also
another important thing is that contrary to the H2 formulation the control and state estimation are
coupled in the H∞ formulation, as the computation of state feedback gainK∞ depends on the covari-
ance of state disturbances which are handled by the term B1, and the estimator gain L∞, depending
on the weights of the cost functional which are accounted for in C1. In comparison the H∞ controller
performs better than the H2 in terms of the stability.

Regarding the application of feedback control an extensive survey has been provided in
Kim & Bewley (2007). Estimation based feedback control for spatially developing f ows has
been studied by Chevalier et al. (2007). Optimal and Robust control of channel f ow in the presence
of normal magnetic f elds has been studied by Debbagh et al. (2007). Application of feedback
control to cavity f ows using reduced order modelling has been performed by Samimy et al. (2007).
Recent developments includes the work of Bagheri et al. (2009a) who propose the use of balanced
modes to obtain a reduction in the dimensionality of the full Navier Stokes equation and then design
a feedback controller. Extension of the control design to the case of a spatially developing f ows
has been studied by Bagheri et al. (2009b) for the case of the linear complex Ginzburg-Landau
equations. The use of global modes to perform control studies for the case of cavity f ow has been
studied by Barbagallo et al. (2009). Feedback control for the f ow around a bluff body has been
studied by Pastoor et al. (2008), and more recently Weller et al. (2009a). Ahuja & Rowley (2009)
have studied the f ow past a f at plate by constructing a reduced order model for the stable reduced
order space of the Navier-Stokes equation which is determined using global unstable eigenmodes,
and then designing an LQG control to stabilise the f ow. Application of robust control has been
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studied by Zuccher et al. (2004) for boundary layers and Gavarini et al. (2005) for the case of pipe
f ows. Application of feedback control to the linearised Navier-Stokes equation by solving a low
dimensional Ricatti equation, which corresponds to the dimension of the unstable subspace is found
in the work of Raymond & Thevenet (2009). This approach is similar in principle to model reduction
in terms of the reduction in the dimensionality of the Ricatti equation being solved, but is different
in that we seek a control for the high f delity system. Other work include the application of the
feedback control to study the f ow around the f at plate, around a stationary state, in the presence
of perturbations which has implications in turbulence control as in Buchot & Raymond (2009a),
Buchot & Raymond (2009b).

2.6 Conclusions
To conclude this chapter is basically a glossary introduction to the various terms in the control lit-
erature which will be frequently used in this thesis. Control of a dynamical system can be basically
classif ed as open loop or closed loop depending on the output observation of the response. The con-
strained optimisation technique based on the method of Lagrange multipliers has been described. The
determination of functional gradients is accomplished through a sensitivity based approach and an
adjoint based approach. The adjoint based method of determining the gradients can be further classi-
f ed as discretise-differentiate, differentiate-discretise based on the order in which the differentiation
is applied, the two approaches are not commutative.

The closed loop control also known as the feedback control has been discussed. Closed loop
control is basically used when there are disturbances in the physical system, due to the presence of
uncertainties and when open-loop control fails to give the desired effect. It is based on the concept
of being able to monitor the model by means of output measurements and establishes a connection
between the measurements and the input of the system. This involves the solution of an estimation
problem. Based on the functional space setting in which the control is determined the feedback control
can be classif ed as an H2 or a H∞ problem. The H2 is based on minimising a quadratic functional
and can be further classif ed as an LQR or an LQG feedback control. In LQR control we assume that
the external disturbances do not inf uence the plant dynamics and the states are estimated accurately.
In the presence of external Gaussian noise the control is termed as an LQG. LQG control is equivalent
to coupling of a LQR problem and a Kalman f lter for estimation. The principle of separation ensures
that the plant dynamics and observer dynamics are uncoupled. The H∞ is similar to the H2 controller,
only difference being that one considers the worst disturbance which destabilises the system, rather
than a Gaussian disturbance. This results in the solution of a min-max problem in which one tries
to f nd a control which minimises the cost functional subjected to the maximisation of the external
disturbance. Also the principle of separation is no longer valid as in case of H∞ control. In terms of
the stability the H∞ controller performs better than the H2 controller.
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Chapter 3

Proper Orthogonal Decomposition (POD)
based Reduced Order M odelling (ROM)

Décompposition orthogonale aux valeurs propres (POD) baśee sur
modèle d’ordre r éduit (ROM)

Introduction

La mod́elisation des structures cohérentes constitue un des aspects les plus excitant des simula-
tions desécoulements instationnaires. Ces structures qui maintiennent leur individualité pendant
l’ évolution de l’́ecoulement pŕesentent un d́efi pour les chercheurs du domaine aérodynamique. La
description deśecoulements passe par la résolution deśequations de Navie–Stokes. La résolution
d’un tel syst̀eme pour d́ecrire finement les propriét́es de l’́ecoulement peut ne pasêtre possible dans
ces types d’́ecoulements̀a cause du côut prohibitif demand́e. Une façon de contourner cette diffi-
culté est d’adopter les modèles d’ordre ŕeduit baśes sur le principe de la d́ecomposition orthogonale
aux valeurs propres (POD). Le ROM basé sur le projections de Galerkin est introduit dans le cas
d’écoulements compressibles. Son extension pour inclure l’effet d’actionnement est discutée suivie
par l’application au cas d’́ecoulement de cavité.

Approche modèle d’ordre r éduit

La réduction du mod̀ele sur une base autre que la POD peutêtre ŕealiśee. La pŕesentation ǵeńerale
de la ŕeduction du mod̀ele est simplement donnéeà travers leśequations3.1à 3.5. Les propríet́es que
doit vérifier l’espace ŕeduit sont́egalement donńees. Dans le cas présent la projection de Galerkin
est utiliśee.

Etat de l’art sur la POD

La POD emploýee pour d́eterminer la base optimale de reconstruction de données est bien connue
depuis 1943. Elle áet́e utilisée pour des objectifs autres que l’identification des structures cohérentes:
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traitement d’image, analyse des signaux, compression de données, etc ... Pour la dynamique des flu-
ides, la POD áet́e introduite par Lumley (1987) pour analyser lesécoulements turbulents. Une revue
détaillée de la POD peut̂etre trouv́ee dans (Holmeset al.(1996), Delville et al.(1999). La POD
comme moyen d’identification des structures aét́e largement utiliśee parFiedler (1998) pour les jets
et sillages,Delville et al.(1998) pour les couches cisaillées turbulentes et pour le post-traitement des
donńees en ŕef́erence de phase obtenues par PIVPerrin et al.(2007)). Les propríet́es mathématiques
et l’estimation d’erreur ontét́e étudíees. L’application au cas de la cavité a ét́e propośee par
Rowleyet al.(2003) et Gloerfelt(2008).

Appl ication de la POD dans le contr̂ole desécoulements et la turbulence

L’utilisation de la POD comme moyen pour le contrôle desécoulements turbulents áet́e faite la
premìere fois parAubryet al. (1988). Ukeileyet al.(2001) l’ont utilisée pour analyser les structures
de grandeséchelles dans une couche de mélange turbulente. Les modèles d’ordre ŕeduit pour le
contrôle ontét́e traités parUkeileyet al.(2001). Les principes ǵeńeraux du cont̂ole optimal utilisant
la mod́elisation d’ordre ŕeduit deśequations de Navier–Stokes aét́e l’oeuvre deRavindran(2000a),
Ravindran(2000b). Le contr̂ole d’écoulements utilisant les régions de confiance áet́e emploýe par
Fahl (2000). Bergmann & Cordier(2008) ont réaliśe le contr̂ole optimal du sillage d’un cylindre cir-
culaire en utilisant une ŕegion de confiance.Luchtenburget al. (2009) l’a fait pour une configuration
portante. Une extension pour inclure les effets des actionneurs aét́e étudíee parKasnakŏglu (2007),
Welleret al.(2009b). Le contr̂ole du bruit émis par l’écoulement de cavité baśe sur les mesures
exṕerimentales peut̂etre consult́e dansSamimyet al.(2007).

La décomposition orthogonale aux valeurs propres

La Décomposition Orthogonale aux valeurs Propres ou Proper Orthogonal Decomposition (POD)
est une technique efficace d’analyse de données, qui permet d’approximer un système de dimension
élev́ee par un autre de dimension nettement plus faible. Essentiellement, cette méthode est lińeaire
et consistèa déterminer une base de modes propres orthogonaux représentatifs par d́efinition des
réalisations les plus probables.

La décomposition orthogonale propre suivantHolmeset al. (1996), est une technique pour ex-
traire les structures coh́erentes de donńees nuḿeriques d’unécoulement pour le représenter dans le
contexte d’une dimension finie plus pratique pour une simulation numérique. Cette section présente
les id́ees ǵeńerales et les propríet́es de la POD en s’inspirant deCordier & Bergmann(2002) et de
Chatarjee(2000).

Le principe fondamental de toute approximation théorique est d’extraire une base satisfaisant
une contrainte donńee, par exemple une relation d’optimalité pour l’énergie. Comme l’a proposée
Lumley(1967) une structure coh́erente est une fonction d́eterministe qui est bien corrélée avec les
réalisationsu(X). L’approximation pouru dans un espace adapté est donńee par l’́equation3.6. Le
choix de la base orthogonale de projection est obtenu par la minimisation de l’erreur exprimée par
l’ équation3.7. L’optimisation sous contrainte est donnée par l’ équation3.8. Cetteéquation qui est
unemaximisation peut̂etre trait́ee comme un problème aux valeurs propres pour lequel un opérateur
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de corŕelation est fournie (R). La relation donnant les valeurs propres est donnée par l’́equation3.9.
Cette équation peut́egalement̂etre obtenue par une autre méthodeCordier & Bergmann(2002).

Les propriétés de la POD sont résumées ainsi :

1. L’existence de la solution est assurée par l’́equation3.13

2. Les valeurs propres sont réelles et positives

3. Les fonctions propres (Φn) forment une base orhogonale (équation3.14) et elles peuvent̂etre
orthonormales

4. Les coefficients temporelsan peuvent̂etre obtenus par l’́equation3.15

5. Le tenseur de corrélation en deux points peutêtre d́ecompośe en śerie convergente (équation
3.16)

6. Lescoefficients doivent vérifier l’ équation3.17

7. Le th́eor̀eme de Mercers et l’orthonormalité des fonctions propres conduisentà l’ équation3.18

Dans la ŕeduction de mod̀ele utilisant la POD, la condition d’optimalit́e énerǵetique sugg̀ere
l’existence d’un petit nombre de modes POD nécesssaire pour d́ecrire efficacement les données.
L’erreur de troncature est d́efinie par l’́equation3.21. Le cas de dimension finie est d’un grand
intérêt pour le traitement de données exṕerimentales ou nuḿeriques. Le probl̀eme d’approximation
est de trouver une base de fonctions orthonormales résolvant le probl̀eme de minimisation (équation
3.23).

Pour faciliter la résolution de ce problème, l’ensemble des données est ranǵe dans une matrice
(équation3.24). Les modes sont donnés par l’ équation (3.25) et l’approximation de toute réalisation
est donńee par l’́equation3.28. La d́ecomposittion aux valeurs singulières de toute matrice est donnée
par l’ équation3.30. Le calcul direct des valeurs singulièreset vecteurs singuliers associés est souvent
fastidieux, et il est pŕef́erable de les d́eterminer par la ŕesolution de probl̀emes aux valeurs propres
équivalents.

A toute matriceA de dimensionM × Nt, il est possible d’associer une application linéaire qui
envoie tout vecteur deǫNt, espace vectoriel de dimensionNt, dansǫM , espace vectoriel de dimension
M . Soit la sph̀ere unit́e dansǫNt i.e. l’ensemble des vecteurs de longueur unité, multiplier ces
vecteurs par la matriceA donne de nouveaux vecteurs qui définissent une ellipsoı̈de de dimension
r dans l’espaceǫM où r est le nombre de valeurs non singulières deA. Les valeurs singulières
σ1,σ2, ...,σr correspondent aux longueurs respectives des axes principaux de cette ellipsoı̈de (figure
3.1). Intuitivement donc, les valeurs singulièrescaract́erisent le facteur de d́eformation que va subir
chacun des vecteurs initiaux par action deA. Par ailleurs, puisque la matriceV est orthogonale,
l’ équation3.30s’écrit encoreAV = UΣ. Les directions de ces axes principaux sont donc données
par les colonnes deU et les ant́ećedents de ces m̂emes axes par les colonnes deV .

Une seconde interprétation geoḿetrique peutêtre donńee à la décomposition en valeurs sin-
gulières (SVD). Pour cela, nous considérons la matriceA comme la liste des coordonnées deM

49



3. Proper Orthogonal Decomposition (POD) based Reduced Order Modelling (ROM)

points not́esP1, P2,... , PM dans un espace vectoriel de dimensionNt. Chaque pointPk est repre-
sent́e sur la figure3.2. Quel que soitk ≤ Nt, nous cherchons un sous-espace de dimensionk tel
que la distance quadratique moyenne de l’ensemble de ces pointsà ce sous-espace soit minimisée,

en d’autres termes nous cherchons le vecteurΦk tel que
M∑

i=1

|PiHi|2 soit minimiśee. Cette proćedure

peut être geoḿetriquement interpŕet́ee comme une rotation de l’espace des phases, du système de
coordonńees initialesà un nouveau système de coordonńees dont les axes orthogonaux coı̈ncident
avec les axes d’inertie des données. Cette formulation de la SVD correspondà la manìere utiliśee
géńeralement dans la lit́erature pour introduire l’Analyse en Composantes PrincipalesJoliffe (1986).

Il existe une ḿethode de calcul des valeurs singuliéresσi et des vecteurs singuliers gauches et
droites d’une matrice rectangulaireA quelconque. Cette ḿethode est basée sur la ŕesolution des
problèmes aux valeurs propres associésà des matrices carréesAT A etA AT . Par comparaison des
deux expressions deAT A, on trouve la matricea des valeurs propresΣ2 = Λ et celle des vecteurs
propresW = V . En d’autres termes,σi =

√
λi et (V ,Λ) représente la d́ecomposition aux valeurs

propres de la matriceATA. Cette ḿethode de calcul est bien plus lég̀ere que le calcul direct de la
SVD deA. Dans le contexte de la POD, on m’apelle méthode des snapshots.

L’approximation du rang minimum deA s’obtient en utilisant l’́equation3.31. On a ainsi une
relation entre le rangk de l’approximationX deA et la valeur singulìere d’ordre (k + 1) deA.
Par conśequent, si les valeurs singulières d́ecroissent suffisamment rapidement alors nous pouvons
esṕerer d́eterminer une approximation deA posśedant un rang tr̀es faible.

Dans le cas de dimension infinie basée sur l’oṕerateur de la moyenne choisie, il existe deux
approches au problème aux valeurs propres, la méthode directes comme introduite parLumley(1967)
et la ḿethode de snapshots comme décrite parSirovich(1987b). Dans l’approche directe, la moyenne
est temporelle et elle est́evalúeeà l’aide d’une moyenne d’ensemble en invoquant des hypothèses de
stationnarit́e et d’ergodicit́e. La variableX est assimiĺe à la variable spatialex = (x, y, z) définie
sur tout le domaine spatialΩ. L’équation int́egrale de Fredholm̀a résoudre est donnée par3.32.

la POD est une ǵeńeralisation de l’analyse de Fourier aux directions inhomogènes comme montré
dansCordier & Bergmann(2002). Une manìere d’ éviter d’̂etre faceà un probl̀eme aux valeurs
propres de grande taille, consistèa décomposer les directions de l’écoulement en directions ho-
mog̀enes , pour lesquelles on appliquera la transformation de Fourier, et en directions inhomogènes
pour lesquelles, on appliquera la POD. Cette approche est géńeralement utiliśee dans leśetudes
exṕerimentalesDelville et al.(1999), Ukeileyet al.(2001) afin de simplifier la ŕesolution nuḿerique
du probl̀eme POD. Si le nombre de réalisations ńecessaires pour d́ecrire l’ecoulement est́egaleà
Nt ≤ M , on peut́economiser beaucoup de temps de calcul, même si le probl̀eme aux valeurs propres
peutêtre ŕesolu de manière pŕecise, en ŕesolvant uniquement un problème de tailleNt. C’est la base
de la ḿethode des snapshots

La méthode des snapshots, introduite parSirovich(1987b), est exactement symétrique de la POD
classique. L’oṕerateur de moyenne correspond alorsà une moyenne spatialéevalúee sur tout le
domaineΩ et la variableX est assimiĺee at. Le probl̀eme aux valeurs propres est directement déduit
de l’équation3.33 et les modes temporels sont déduits des modes POD spatiaux (équation3.34).
Dansle cas de dimension finie, on peutécrire la matrice ”snapshot” comme donnée par3.35. Les
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modes temporels sont une combinaison linéaire deséchantillons (snapshots) (équation3.36). Les
modes spatiaux sont donnés par l’́equation3.39.

L’utilisation de la ḿethode des snapshots repose sur l’hypothèse d’ergodicit́e , ainsi la ǵeńeration
de snapshots d́epend largement de la compréhension physique de l’utilisateur et peutêtre diff́erente
avec le probl̀eme. L’extrapolation des fonctions POD aux différentes ǵeoḿetries et au paraḿetres
du contr̂ole peutêtre difficile et aét́e mentionńee dans le passé par Bergmannet al.(2009). Une
récente étude de la sensibilié des coefficients de la POD̀a un paraḿetre donńe a ét́e réaliśee par
Hayet al.(2009) dans laquelle la base POD est utilisée avec la sensibilit́e pour augmenter la taille
de l’attracteur du mod̀ele de dimension réduite. L’́echantillonage des données donne une erreur
nuḿerique qui affecte la PODRathinam & Petzold(2003). Bui-Thanhet al.(2008) utilisent le fac-
teurde sensibilit́e de la POD comme une mesure de la sensibilité relative de la projection par rapport
à l’erreur d’échantillonage. En conclusion la snapshot POD reste fortement dépendante de la fonc-
tionalité recherch́ee par l’utilisateur et a besion d’être affińee pour que la POD soit applicablèa des
problèmes plus ǵeńeraux d’optimisation.

La ROM dans la lit érature

Aubryet al.(1988) sont les premiers̀a l’utiliser la réduction de mod́ele pourétudier les structures
coh́erentes. De nombreuses autres applications, toujours pour desécoulements incompressibles
ont alors vu le jour. L’application au fluide compressible reste limitée (Rowleyet al.(2003),
Gloerfelt(2008), Bourgetet al.(2007)). La réduction de mod́elesur la base POD et de projectionde
Galerkin aét́e étendue au contrôle desécoulements en fluide incompressible e t commenceà l’ être
pour le cas compressible (Samimyet al.(2007),Kasnakŏglu (2007)). Le principe de la projection de
Galerkin est pŕesent́e à la section3.10(équations3.44 à 3.52). L’application du mod̀ele ŕeduit au
cas incompressible est donné au paragraphe3.11(équations3.53à 3.60).

Cas compressible

Dans le cas d’́ecoulement compressible, les variables cinématiques et thermodynamiques sont
coupĺees. Le tenseur des corrélations contient des termes liés aux variables cińematiques et ther-
modynamiques.Rowleyet al.(2003) a cherch́e un produit scalaire pour les variables d’écoulement
isentropique qui donne un sensénerǵetique. Ce produit áet́e largement utiliśeGloerfelt(2008).

Le modèle d’ordre ŕeduit isentropique est donné dans le cas d́equations sans dimension. Cette adi-
mensionalisation fait apparaitre explicitement le nombre de Reynolds et le nombre de Mach (équation
3.61). Après projection de Galerkin du modèle isentropique, le mod̀ele d’ordre ŕeduit obtenu est
donńe par l’équation3.64.

Extension au cas du contr̂ole

Dans ce paragraphe on prend en compte dans le modèle d’ordre ŕeduit l’effet d’un actionnement.
Nous recherchons un modèle dynamique òu l’introduction de l’actionnement est très simple. L’id́ee
repose sur la ḿethode de śeparation deKasnakŏglu et al. (2008) qui consistèa diviser le domaine
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d’écoulement en sous-domaines comprenant ceux sans contrôleet ceux òu op̀ere le contr̂ole. Le pro-
duit scalaire est ainsi red́efini pour tenir compte de cette subdivision. La procédure conduit̀a un
syst́eme d’́equations diff́erentielles simples (équation3.65) avec l’actionnement (γ) et le mode spa-
tial (ψ). Les propríet́es que doivent v́erifier l’action sont donńees. On doit imposer une condition
d’optimalité de sorte que l’́energie non capturée paréquation3.66soit minimale. Ces conditions
peuventêtre syst́ematiquement obtenues en respectant le théor̀eme deKasnakŏglu (2007) comme ex-
plicité en annexeE.

Le modèle d’ordre ŕeduit pour le cas contr̂olé est explicit́e par leséquations3.67 à 3.72. Une
notation polyn̂omiale qui peut simplifier le modèle est donńeeà travers leśequations3.73à 3.77. Il
est trivial d’ étendre la pŕećedente proćedure pour inclure le contr̂oleà entŕees multiples. Le d́etail de
la procédure est donńe a travers leśequations3.78à 3.82.

Appl ication à l’ écoulement de cavit́e

On applique la POD aux configurations de cavité traitées dans le chapitre1. 98, 5% de l’énergie
est contenue dans les quatre premières valeurs propres (figure3.4). L’évolution des six premiers
coefficients temporels de la POD est donnée sur la figure3.5. La vorticité et la dilatation des six pre-
miers modes sont présent́ees sur les figures3.6et 3.7. Les modes apparaissent par paire présentant
des valeurs propres distinctes mais avec une même topologie pour leur mode. La dilatation est liée
à la propagation des ondes sonores. Pour les modes POD supérieurs, la dilation montre claire-
ment l’angle de propagation de l’onde sonore, suggérant son utilisation si l’on veut appliquer des
mod̀eles d’ordes ŕeduits pour les ph́enom̀enes acoustiques. La figure3.8montre la capture de l’effet
de l’actionnement. La figure3.9donne la diff́erence entre les cas avec et sans contrôle. L’erreur de
projection moyenne présent́ee sur la figure3.10montre que les erreurs sont faibles pour les modes
les plusénerǵetiques. L’́evolution temporelle et le portrait des phases sont donnés respectivement sur
les figures3.11et 3.12.

Conclusion

Dans ce chapitre nous avons exposé les principes de base de la décomposition orthogonale propre.
Nous avonśegalement donńe certaines propríet́es qui rendent facile le choix du modèle ŕeduit des
écoulements, principalement l’optimalité de la repŕesentation relativèa toute base orthonormale.
Le choix des produits scalaires pour les cas d´coulements incompressibles et compressibles aét́e
discut́e. Nous allons maintenant passerà l’utilisation des modes POD pour former des modèles
réduits pratiques pour modéliser la dynamique de modèle de haute fid́elité et dif́erentes proćedures
pour introduire les effets du contrôle dans notre mod̀ele d’ordre ŕeduit, en vue de l’application de la
théorie du contr̂ole. Son extension pour tenir compte d’effet d’actions multiples aét́e discut́e. Les
résultats du mod̀ele ŕeduit montrent une divergence par rapport aux résultats obtenus par la POD.
Ceci a motiv́e d’envisager sa stabilisation, ce qui fait l’objet du chapitre suivant.
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3.1. Introduction

3.1 Introduction

In this chapter we present the principles of model reduction based on the principles of Proper Orthog-
onal Decomposition (POD). In this method one decomposes the flow field into energy ranked coherent
and is one such technique which has been used widely for flow control applications. The POD bases
is then used to form the Reduced Order Model by the projection of the governing equations on the
POD bases. The theory of POD and the various properties that make them useful choice for ROM
in case of fluid dynamics are discussed. The ROM based on the Galerkin projections is introduced
for the case of compressible flows. The extension of the ROM to include the effect of actuation is
discussed, followed by an application to the cavity flow case.

3.2 Reduced order modelling an overview

Model reduction on bases other than the one obtained from POD can be performed. A general ap-
proach to ROM in case of linear finite dimensional systems is presented in section, to motivate the
general ideas. To present the general idea of model reduction one considers a physical system of the
form

S :

{
ȧ(t) = f(t, a(t), γ(t)),
b(t) = g(t, a(t), γ(t)),

(3.1)

The RHS can be considered as any evolutionary model representing the dynamics, for example the
Navier-Stokes equations. Although the ideas are easily extended to infinite dimension we present
them for a finite dimensional case which is just considering the usual approach of numerically re-
solving the equations by means of discretisation inn space dimension.a ∈ R

n represents the state
variables,γ ∈ R

m represents the inputs or the control applied to the flow, andb ∈ R
p represents the

output of observables. To apply the general principles of linear control theory, the RHS of (3.1) can
be linearised to obtain a state-space form given by

SLTI :

{
E ȧ(t) = A a(t) +Bγ(t),
b(t) = C a(t) +Dγ(t).

(3.2)

whereE ∈ R
n×n, A ∈ R

n×n, B ∈ R
n×m, C ∈ R

p×n andD ∈ R
p×m. E need not necessarily be

invertible. The dimension of the model usually corresponds to the dimension of the spatial discretisa-
tion which can be very large, hence the principle of model reduction seeks a subspaceV of dimension
r ≪ n. The non-linear reduced order model can be written as

Ŝ :

{
˙̂a(t) = f̂(t, â(t), γ(t)), where â ∈ R

r with r ≪ n

b̂(t) = ĝ(t, â(t), γ(t)), and b̂ ∈ R
p.

(3.3)

and the corresponding linear time invariant (LTI) model can be written as

ŜLTI :

{
Ê ˙̂a(t) = Â â(t) + B̂ γ(t)

b̂(t) = Ĉ â(t) + D̂ γ(t).
(3.4)

The reduced subspace has to have the following desirable properties when used as an approximation
to the high fidelity model (3.1)
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1. ‖b− b̂‖ < ǫ× ‖γ‖ ∀γ whereǫ is the tolerance

2. The approximated need to preserve the stability and be passive (no additional generation of
energy) of the high fidelity modelS.

3. The reduced model must be numerically stable and be efficient.

4. Possible automatic generation of models

To present the idea of projection, from now on we just consider the linear modelŜ, we seek biorthog-
onal matricesV andW of sizeR

n×r such thatW TQV = Ir whereQ ∈ R
n×n is a weight matrix. The

Reduced Order Model is obtained by a projection of the state variablea on the matrixV such that
a = V â andb̂ ≃ b. One defines the residueR to measure the accuracy of the projection,a ≃ V â as

R = E V ˙̂a(t) − A V â(t) − B γ(t)

b̂(t) = C V â(t) +D γ(t).
(3.5)

The Petrov-Galerkin projection is obtained by requiring the residue orthogonal to the approximated
space,i.e. W T QR = 0r. The projection matrices of the system̂SLTI can now be obtained after a
simple calculation as

Â = W T Q A V B̂ = W T Q B

Ĉ = C V D̂ = D

Ê = W T Q E V

The well known Galerkin projection is obtained by takingV ≡ W . Several projection meth-
ods exist for the linear system (3.2). Example are the Krylov subspace method of the con-
trollability matrix which relies on the identification of the moments of transfer function as in
Gugercin & Antoulas(2004), projection on the dominant modes of controllability and Observ-
ability matrix as in Moore(1981), Rowley(2005), projection of global stability modes as in
Barbagalloet al. (2008), POD based projection method on the subspace determined from thesnap-
shots as inSirovich(1987b) in which the flow fields are decomposed into energy ranked coherent
structures, which is the method used in this study. We now proceed to introduced the general theory
of POD.

3.2.1 Historical background of POD

The POD technique to determine the optimal basis for the reconstruction of a data set has
been well known sinceKosambi(1943), Karhunen(1946), Loève(1945) although they were
used for different purposes other than coherent structure identification like image processing,
Sirovich(1987a), Sirovich(1987b) signal analysisAlgazi & Sarkinson(1969), data compression,
Andrewset al. (1967). The POD was first introduced in the context of fluid dynamics by Lumley
(1987) in the study of turbulent flows. Since then there has been a rapid increase in the application
of the POD technique, and good reviews can be found inHolmeset al. (1996), Delville et al. (1999)
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3.3. Proper Orthogonal Decomposition

andGordeyev(1999). The POD technique as a means of structure identification has beenwidely
used byFiedler(1998) for identification of jets and wakes,Delville et al. (1998) to study turbulent
shear flows, for data obtained from particle image velocimetryPerrinet al. (2007). The math-
ematical properties and error estimate of the POD approach along with the Galerkin projection
is found in the works ofVolkwein (1999). For the other systems of conservation laws one can
consult Lucia & Beran(2003) for hyperbolic systems with shocks,Cizmaset al. (2003) for sys-
temswith species conservation. Application to cavity flows but without control can be found in
Rowleyet al. (2003), Gloerfelt(2008).

3.2.2 Application of POD in control and turbulence

In the context of using POD for the control of turbulent flowsUkeileyet al. (2001) have used POD
to study large scale structures in turbulent mixing layers. Reduced order modelling based control of
fluid flow problems have been studied byHinze(2000). The general principles of optimal control
using reduced order modelling of Navier-Stokes equations has been described inRavindran(2000a),
Ravindran(2000b). Flow control using trust regions has been employed byFahl(2000). Optimal
control of the wake flows behind a circular cylinder using a trust region frame work has been studied
by Bergmann & Cordier(2008) , for high lift configuration byLuchtenburget al. (2009). An exten-
sionto include the effect of actuation has been studied byKasnakoğlu(2007), Welleret al. (2009b).
Control of cavity flows based on experimental measurements and its application to perform a model
based control of cavity flows can be found inSamimyet al. (2007).

Extrapolation of the POD functions to different geometry or control parameters has been ad-
dressed byBergmannet al. (2009). A recent study on the sensitivity of POD coefficients to given
parameter has been performed byHay et al. (2009) in which the POD basis is enriched using a sen-
sitivity analysis. Usually the sampled data have inherent numerical error which affect the model
reduction procedure, and has been investigated byRathinam & Petzold(2003). A greedy algorithm
to estimate the sampling space in an efficient way has been proposed byBui-Thanhet al. (2008), who
introduce the POD sensitivity factor as a measure of the relative sensitivity of the projection.

3.3 Proper Orthogonal Decomposition

We introduce the the Proper Orthogonal Decomposition followingHolmeset al. (1996), as technique
of extracting the coherent structures from the numerical flow data in the context of an infinite dimen-
sional setting. The context of the finite dimensional case, which is used for more practical purpose
of numerical simulation will be discussed as a particular case. To present the general for the case of
POD ideas we closely followChatarjee(2000) andCordier & Bergmann(2002).

General Principles

The fundamental principle in any approximation theory is to extract a bases satisfying a given con-
straint, for example an optimality relation for the energy, projection error etc. Consider the example
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3. Proper Orthogonal Decomposition (POD) based Reduced Order Modelling (ROM)

of a spatio temporal realisationsu(X) ∈ H(Ω × [0, T ]) whereH is a Hilbert space (usually ofL2

integrable functions, other choices are possible) andΩ ⊂ R
3 represent spatial domain andT > 0 is

the time. As given byLumley(1967) a coherent structure is a deterministic function which is best cor-
related on an average with the realisationsu(X). If we define the usual inner product on the space of
L2 integrable functions as〈φ, ψ〉 =

∫
Ω
φ(X)ψ(X)dX such thatφ, ψ ∈ L2, we seek an approximation

for u in a suitable subspace.

u(X) ≈

∞∑

i=1

〈u, φi(X)〉φi(X) (3.6)

We wish to chose an orthogonal basisφi ∈ H(Ω) which minimises the average projection error given
by

〈‖ u−
∞∑

i=1

(u, φi(X))φi(X) ‖2〉A (3.7)

where〈.〉A is any averaging operator applied over the family of realisations and‖ . ‖ is the norm
induced by the inner product onH(Ω).

We also desire the basisφi(X) be orthogonali.e. 〈φi, φi〉 =‖ φ(X) ‖2= 1 which casts (3.7) as a
constrained optimisation problemBerkoozet al. (1993) given by

maxψ∈L2(Ω)

〈| (u, ψ) |2〉A
‖ ψ ‖2

=
〈| (u, φ) |2〉A

‖ φ ‖2
(3.8)

such that
〈φ, φ〉 =‖ φ ‖2= 1

The above maximisation problem (3.8) can be re-casted as an eigen value problem for which we
define the correlation operatorR : L2(Ω) −→ L2(Ω) as

Rφ(X) =

∫

X

R(X
′

, X)φ(X
′

)dX
′

whereR(X,X
′
) = 〈u(X) ⊗ u(X

′
)〉 then an easy calculation shows that the operatorR̃ : H(Ω) −→

H(Ω), defined byR̃φ(X) = 〈Rφ, φ〉 is positive semidefinite,i.e.

〈Rφ, φ〉 =

〈∫

X

〈u(X) ⊗ u(X
′

)〉φ(X
′

)dX
′

, φ(X
′

)

〉

A

=

∫

X

∫

X

〈
u(X) ⊗ u(X

′

)
〉
φ(X

′

)dX
′

, φ(X)dX

=

〈∫

X

u(X).φ(X)dX,

∫

X
′
u(X

′

).φ(X
′

)dX
′

〉

=
〈
| (u, φ) |2

〉
A
≥ 0

Also the operator̃R can be shown to be symmetrici.e.
〈
R̃φ, ψ

〉
=
〈
φ, R̃ψ

〉
, ∀φ, ψ ∈ L2(Ω)
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R̃ is thus a linear, self adjoint operator onL2(Ω) and as a consequence of spectral theory
Riesz & Nagy(1955), and is given by the largest eigenvalue of the problem

R̃φ = λφ (3.9)

The above equation can be also obtained by a variational principle of the original problem, for which
(3.8) can be recasted as a maximisation problem of finding aφ which maximisesλ where

λ =
〈| (u, φ) |2〉A

‖ φ ‖2
=

〈Rφ, φ〉
〈φ, φ〉 (3.10)

and verifies for allφ ∈ H(Ω):
dF (ǫ)

dǫ
= 0

where

F
′

(ǫ) =
d

dǫ

〈R (φ+ ǫψ) , (φ+ ǫψ)〉
〈(φ+ ǫψ) , (φ+ ǫψ)〉 |ǫ=0

=
d

dǫ

〈Rφ, φ〉 + ǫ 〈Rφ, ψ〉 + ǫ 〈φ,Rψ〉 + ǫ2 〈Rφ, ψ〉
〈φ, φ〉 + ǫ 〈φ, ψ〉 + ǫ 〈φ, ψ〉 + ǫ2 〈φ, ψ〉 |ǫ=0 (3.11)

=

〈
R̃φ, ψ

〉
‖φ‖2 −

〈
R̃φ, φ

〉
〈φ, ψ〉

‖φ‖4
(3.12)

which is satisfied for anyψ if
R̃φ = λφ

showing the equivalence with (3.9). We now proceed discuss some properties of POD that make them
an useful tool in the low order modelling of fluid flows.

3.4 Properties of POD

1. For a bounded domainX, Hilbert-Schmidt theory assures a denumerable infinity of solutions
of equation (3.9), which implies the existence of discrete solutions satisfying

∫

X

R(X
′

, X)φn(X
′

)dX
′

= λnφn(X) (3.13)

whereλn andφn(X) denote the POD eigenvalues and eigenfunctions of order1, 2, 3, . . . ,∞
Each eigenfunctions is a solutions of the optimisation problem subject to the constraint of being
orthogonal to all the previously determined eigenfunctions. They can also be chosen orthonor-
mal.
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3. Proper Orthogonal Decomposition (POD) based Reduced Order Modelling (ROM)

2. R̃ being self-adjoint and positive the eigen values are real and positive

λ1 ≥ λ2 ≥ . . . λ∞ ≥ 0

and the corresponding series convergesi.e.
∞∑

n=1

λn <∞

3. The eigenfunctionsφn forms a complete orthogonal set, which implies that every member of
the snapshot (except on a set of measure zero) can be reconstructed as

u(X) =

∞∑

n=1

anφn(X) (3.14)

4. The eigen functionsφn can be chosen mutually orthonormali.e.

〈φm, φn〉 = δmn

whereδmn is the Kronecker symbol. with this the coefficientsan can be calculated by a projec-
tion of u ontoφ given by

an = 〈u, φ〉 =

∫

X

u(X)φn(X)dX (3.15)

5. The two-point correlation tensorR can be decomposed as a uniformly convergent series as:

Rij(X,X
′

) =
∞∑

n=1

λnφni(X)φnj(X
′

) (3.16)

This result is also known as Mercers theorem, seeCourant & Hilbert(1953).

6. By the Orthogonality of the eigenfunctionsφ and the decomposition of the correlation tensor
as given above in (3.16) the coefficientsan can be shown to be mutually uncorrelated with their
mean square values being the eigenvalues themselves

〈anam〉 = δmnλn (3.17)

Rij(X,X
′

) =

〈
∞∑

n=1

anφni(X)
∞∑

m=1

amφmj(X
′

)

〉

=
∞∑

n=1

∞∑

m=1

〈anam〉φni(X)φmj(X
′

)

also from (3.16) we have that:

Rij(X,X
′

) =

∞∑

n=1

λnφni(X)φnj(X
′

)

and using the ortho-normality ofφ we have that〈anam〉 = δmnλn
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7. It can be shown from the Mercers theorem and the ortho-normality of φn that:
∫

X

Rij(X,X
′

)dX =

∞∑

n=1

λn = 〈a2
i 〉 = 2E (3.18)

where E corresponds to the total turbulent kinetic energy over the whole domainΩ, i.e. every
structure in the representation contributes independently to the total kinetic energy, the ampli-
tudeλn measures the relative importance of these structures with respect to the energy. We now
discuss the optimality of the POD bases in representing the total kinetic energy of the approx-
imation with respect to any other orthonormal bases. Let{φ1(X), φ2(X), . . . , φ∞(X)} denote
the orthonormal set given by the POD bases, with corresponding eigenvaluesλ1, λ2, . . . , λ∞,
with the representation ofu(X) given by

u(X) =
∞∑

n=1

anφni(X)

Let ψn(X), n = 1, 2, . . . ,∞ be another set of orthonormal bases with the representation of
u(X) given by

u(X) =

∞∑

n=1

bnψni(X)

with 〈bnbn〉 representing the average kinetic energy in thenth mode, we have, seeHolmeset al. (1996)

N∑

n=1

〈anan〉 =
N∑

n=1

λn ≥
N∑

n=1

〈bnbn〉 (3.19)

This follows when we notice that the correlation tensorRij can be expressed in terms ofψn,
n = 1, . . . ,∞ as:

Rij =

∞∑

n=1

∞∑

n=1

〈bnbm〉ψniψnj

which can be written in a matrix form as

R =





〈b1b1〉 〈b1b2〉 〈b1b3〉 . . .
〈b2b1〉 〈b2b2〉 . . . . . .
〈b3b1〉 . . . . . . . . .

...
...

...
...




(3.20)

The result ofTemam(1988) on linear operators which states that the sum of firstN dimen-
sional eigenvalues of a self-adjoint operator is greater than or equal to its trace in any of itsN
dimensional projection gives:

N∑

n=1

λn ≥ Tr(R) =
N∑

n=1

〈bnbm〉

which proves that among all decompositions, the POD contains the maximum possible kinetic
energy on an average.
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3. Proper Orthogonal Decomposition (POD) based Reduced Order Modelling (ROM)

Model reduction using POD

The energy optimality condition (3.19) suggests that only a very small number of POD modes, say
Npod, may be necessary to efficiently describe the datau(X). The error of representation using theM
modes is given by

ǫ(M) = 〈‖u(X) −
M∑

n=1

(u(X), φn(X))φn(X)‖2〉A

= ‖
Npod∑

n=M+1

〈u(X), φn(X)〉φn(X)‖2 (3.21)

The quantityǫ(M) denotes the accumulated squared error of representation, due to the neglected
POD basis elements that corresponds to small eigenvalues. We also define another quantity namely
the Relative Information Content (RIC):

RIC(Npod) =

∑Npod

i=1 λi∑M
i=1 λi

(3.22)

which measures the average ensemble energy captured by the firstNpod modes of the representation.
Usually the number of modes in the truncation is chosen so as to capture a certain percentage of
reconstruction of our data set (say99%). This criteria is largely used in the literature to define the
truncated bases. The choice of the truncated bases using the definition of (3.22) is one such definition.
Other definitions which uses a linear correlation between the flow and the observable termed as ”least-
order model” has been proposed byJordanet al. (2007). In other words the effect of the lower modes
which corresponds to the slow evolution of the mean flow may be necessary to represent the relevant
dynamics of the system as in many physical systems. Example of such a case arises while studying
the acoustics, like the cavity flow.

3.5 Finite dimensional case

The finite dimensional case is more relevant in problems of practical interest, like data issued from
experiment or even a numerical simulation as the number discretisation points is finite. The approx-
imation problem (3.6) is to find a set of orthonormal functions{φk}Mk=1 solving the minimisation
problem

min
Nt∑

i=1

‖u(x, ti) −
M∑

k=1

〈u(x, ti), φk(x)φk(x)〉 ‖2 (3.23)

Nt is the number of realisations also called as snapshots, which are issued from the experimental or
numerical simulations at given intervals. Here‖.‖2 is the norm induced by theL2 inner product. Also
note that for anyx ∈ R

M , we have‖x‖2 =
√

xT x. The data setU = {u(x, t1), . . . , u(x, tNt
)}, can
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3.5. Finite dimensional case

be arranged as anM ×Nt matrix given by

U =





u(x1, t1) u(x1, t2) . . . u(x1, tNt
)

u(x2, t1) u(x2, t2) . . . u(x2, tNt
)

...
...

...
u(xM , t1) u(xM , t2) . . . u(xM , tNt

)




∈ R

M×Nt (3.24)

The productM norm between two spatial modeφ andψ can be defined as

〈φ, ψ〉 = φtMψ (3.25)

whereM is the weighted mass matrix of integration. We can employ a Cholesky decomposition for

the matrixM = M 1
2M 1

2

T

, theweighted norm (3.25) can be related to the usual Euclidean norm as

‖u‖M = 〈u, u〉
1
2
M = ‖(M 1

2 )Tu‖2

the correlation tensor in the finite dimensional case can be written as

C =
1

Nt
UTU where Cij =

1

Nt

Nt∑

i=1

u(x, ti)u(x, tj) (3.26)

The POD are modes given by the solution of the discrete eigenvalue problem:

CMφ = λφ (3.27)

whereφ stands for the matrix of the POD modes{φNt

i=1}. The matrixC̃ = CM is symmetric positive
definite. As a consequence of the spectral theorem it has a set of real eigenvalues, and is completely
diagonisable with respect to the POD modes except on the null space of the operatorC̃. The approx-
imation of any realisationu with respect to the firstNpod modes is given by the relation

u(x, ti) ≈
Npod∑

j=1

aijφj with aij = uTi Mφj (3.28)

the orthogonality relations for the POD modesφi and the coefficientsaj satisfy

φTi Mφj = δij and
1

Nt

Nt∑

k=1

aki a
k
j = λiδij (3.29)

At this stage we would like to remark that the POD procedure explained above was extensively de-
veloped in the context of modelling coherent structures that arise while modelling turbulent flows as
demonstrated inLumley(1967). In the general context of the finite dimensional setting it is worth-
while to mention that the procedure described above to determine the POD modes, can be linked to
the Singular Value Decomposition (SVD) of the snapshot matrixU . To illustrate this connection we
introduce the SVD and its connection to POD in the next section.
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3.6 Singular V alue Decomposition (SVD)

LetA bea complex matrix of dimensionM ×Nt. The Singular Value Decomposition (SVD) of A is
given by the the factorisation

A = UΣV T (3.30)

where1 U andV are unitary matrices of dimensionM ×M andNt×Nt respectively,i.e.UUT = IM
andV V T = INt

, Σ = diag(σ1, σ2, . . . , σr) with σ1 ≥ σ2 ≥ . . . σr ≥ 0 wherer = min(M,Nt) and is
called the singular values ofA, the firstr columns ofV = (vi)

Nt

i=1 the right singular vectors, the first
r columns ofU = (ui)

M
i=1 the left singular vectors andi the index of the singular value also called as

the singular value number. The rank ofA is the number of nonzero singular value of its SVD. The
SVD has a nice geometric interpretations as will be made clear in the next section.

3.6.1 Geometric interpretations of SVD

Any matrix A of dimensionM × Nt can be interpreted as the action of a linear operator on the
bases of the linear space sayεNt

of dimensionNt onto the bases of theM dimensional subspaceεM .
The illustration is shown in figure3.1 by the action ofA on the unit sphere ofεNt

to produce anr
dimensional ellipsoid inεM wherer denotes the rank ofA. The singular valuesσ1, σ2, . . . , σr are the
lengths of the principal radii of the ellipsoid. One can conceive of the singular values as the extent of
deformation of the unit sphere produced by the matrixA. Moreover since the matrixV is unitary we
can rearrange equation (3.30) asAV = UΣ, which implies that the directions of the principal radii are
given by the columns ofU and the pre-images by columns ofV . A second geometric interpretation of

A
σ1

σ2

Figure 3.1 -Geometric interpretation of the SVD of matrix A.

SVD, which emerges from the Principal Component Analysis (PCA), when we view the the columns
of the matrixA as a set ofM pointsP1, P2, . . . , PM , in anNt dimensional space as shown in the figure
3.2 then for anyk ≤ Nt, thePCA seeks a subspace such that the projection of the pointsPi onto the
line of the position vectorφ1 given by

∑M
i=1 |PiHi|2 is minimised. The problem of minimising the

projection norm is equivalent to the constrained optimisation problem (3.8) and the process can be
interpreted as a change of bases such the axes of inertia coincide. When SVD is used for data analysis,

1hereV T denotes the adjoint matrix ofV given by the conjugate transpose of V
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3.6. Singular Value Decomposition (SVD)

usually the mean value is subtracted from each column which meansa shift of the center of mass of
the data cloud onto the origin of the coordinate system seeJoliffe (1986)

Original Coordinate

Opt
im

al 
Coo

rd
ina

te

Pi

Hi

σ1

σ2

Figure 3.2 -Geometric interpretation of the SVD of matrix A: as change of inertial coordinate

3.6.2 Connection between the SVD and eigenvalue problems

There is relation between the SVD and eigenvalue problem. LetA = UΣV T be the singular value
decomposition ofA ∈ R

M×Nt. ThenATA = V ΣUTUΣV T = V Σ2V T whereΣ2 is a diagonal
matrix. Also note that sinceATA is a hermitian matrix, its eigenvalue decomposition is given by
ATA = WΛW−1 = WΛW T . On comparing the two expressions, we conclude thatΣ2 = Λ i.e.
σi =

√
λ andW = V , whereλ denotes the singular values ofATA. The pair(V,Λ) is called the

eigenvector-eigenvalue decomposition ofATA ∈ R
Nt×Nt. Similarly one can obtain the eigenvector-

eigenvalue decomposition(U,Λ) of AAT ∈ R
M×M asAAT = UΣV TV ΣUT = UΣ2UT = WΛW T .

We note that if the number of snapshotsNt is much lesser than the number of data points as it happens
in the case of a Direct Numerical Simulation (DNS) of fluid flows, it is more practical to solve the
eigenvalue-eigenvector problem corresponding toATA. On the other hand as it is experienced in
case of experimental situations the number of data pointsM is lesser than the snapshot setNt. The
eigenvector-eigenvalue problem ofAAT is then more feasible. This gives rise to two approaches to
POD the classical and the snapshot method which will be described in the next section. Before we
move on to the discuss the difference between the two methods, a quick reference to the work of
Higham(1989) which gives an estimate of error of the low dimensional approximation given by POD
and the decrease in the magnitude of singular values is worth mentioning. IfA ∈ R

M×Nt, and if the
matrixX ∈ R

M×Nt with rank(X) = k ≤ rank(A) is such that the appropriate norm of the error
E = A−X is minimised then the Eckhart-Young theorem which states that:

minrank(X)≤k‖A−X‖F = ‖A− Ak‖F =

√√√√
r∑

i=k+1

σ2
i (A) (3.31)
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whereF denotes the usual matrix Frobenius norm. The above expression gives a relation between the
rank k of the approximant, and the(k+ 1)th largest singular value ofA. It also expresses the fact that
the quality of the approximant is related to the rate of decrease of eigenvalues,i.e. if the eigenvalues
decrease rapidly we can hope to capture the given data with lesser number of singular values.

3.7 Direct and snapshot method

We have seen in the previous section that based on the choice of the correlation matrixAAT orATA
we have different dimensions of the eigen value problem, the choice of course depends on the size
of the data set. In case of the infinite dimensional case based on the choice of the averaging operator
〈.〉, we choose in equation (3.19), we have different approaches to the eigenvalue problem reffered
to as the direct method as originated byLumley(1967) or the method of snapshot as described by
Sirovich(1987b). In the case of the direct method the average operator〈.〉 is temporal:

〈.〉A =
1

T

∫

T

.dt

and is evaluated as an ensemble average, based on the assumption of ergodicity and stationarity. On
the other hand variableX is assimilated to the spatial variablesx defined overΩ. The corresponding
eigenvalue (3.9) follows from replacing the domain of integrationX by Ω andthe variableX by x.
The integral Fredholm equation (3.13) is given

∫

Ω

Npod∑

j=1

Rij(x,x
′)φnj(x)dx = λnφni(x) (3.32)

whereRij(x,x
′) is the two point spatial correlation tensor defined by

Rij(x,x
′) =

1

T

∫

T

ui(x, t)uj(x
′, t)dt =

Npod∑

n=1

λnφni(x)φnj(x)

whereT is the period of time over which the signalu(x) is sampled andNpod represents the number
of POD modes. Also the eigenfunctions determined in this case is spatial.

3.7.1 On the application of the classical eigenvalue problem:

GivenM number of spatial points and we assume that we samplenc component of our vectoru(x),
we have the size of POD problem asNpod = M × nc. In case of a numerical simulation like DNS
in which the average number of points even in case of2D simulation is of the order of104 − 105

and is of order106 − 107 in case of a3D simulation, the size of the eigenvalue problem becomes
huge. It is also the case with experimental measurement like the Particle Image Velocimetry where a
large spatial data is sampled in a short period of time. The solution of the POD problem demands a
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3.7. Direct and snapshot method

huge storage of memory and even with a numerical library like ARPACK 2 the numerical precision is
difficult. The POD can be viewed as the generalization of the harmonic decomposition to the inhomo-
geneous direction as demonstrated inCordier & Bergmann(2002). This method has been exploited
by Delville et al. (1999), Ukeileyet al. (2001), on data obtained from experiments, by decomposing
the flow field into homogenous and inhomogeneous component, thereby reducing the size of the POD
problem. If the number of ensemble membersNt ≪ M then even though the eigenvalue problem
can be accurately solved, time can be saved by solving a problem of sizeNt, which gives rise to the
method of snapshots as described in the next section.

3.7.2 Snapshot POD

In snapshot method as illustrated bySirovich(1987b), the average operator〈.〉 is evaluated as a space
average over the domainΩ of interest:

〈.〉A =

∫

Ω

.dx

and the variableX is assimilated in time. The corresponding eigenvalue problem is immediately
deduced as ∫

T

C(t, t′)an(t
′)dt′ = λnan(t) (3.33)

whereC(t, t′) is the two point spatial correlation tensor defines as:

C(t, t′) =
1

T

∫

Ω

u(x, t)u(x, t′)dx =
1

T

Npod∑

n=1

an(t)an(t
′)

once the temporal modesan(t) are determined the spatial POD modes are determined as

φi(x) =
1

λiT

∫ T

0

u(x, t)ai(t)dt for λi > 0 (3.34)

In the case of finite dimension we can write the snapshot matrix as

Q =





u(x1, t1) u(x1, t2) . . . u(x1, tNt
)

u(x2, t1) u(x2, t2) . . . u(xNx
, tNt

)
...

...
...

...
u(xNx

, t1) u(xNx
, t2) . . . u(xNx

, tNt
)




(3.35)

whereNx is the dimension of the spatial variables, andNt is the number of snapshots. we notice that
the temporal modesφ can be expressed as a linear combination of the snapshotu(x, tk) as

φ(x) =

Nt∑

i=1

a(tk)u(x, tk) (3.36)

2http://www.caam.rice.edu/software/ARPACK
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where the coefficientsa(tk) are determined so thatφ obtained from (3.36) solves the maximisation
problem (3.8). Written for convenience the point correlation tensorC(t, t′) = Ct is given as

C(t) =
1

Nt

QTMQ (3.37)

where M is the mass matrix for spatial integration, the discrete eigenvalue problem becomes

Ctai = λiai with
1

Nt

aTi aj = λiδij (3.38)

the spatial modes are determined as

φi =
1

λiNt

Qai (3.39)

In this method we assume that snapshots are linearly independent. The choice between the direct
method and the snapshot depends on the pertinent method we use to study the system. In case of the
numerical simulation where the spatial resolution is of high order as also in the case of the particle
image velocimetry, with a moderate time history,i.e.,Nt ≪ Nx, the snapshot method greatly reduces
the size of the problem and is widely utilised, for a well converged value of the temporal correlation
tensorC(t, t′). On the other hand experimental approaches like Laser Doppler Velocimetry which
gives a good temporal resolution and a moderate spatial resolution,i.e., Nx ≪ Nt , the spatial cor-
relation tensorR(x,x′) is well converged and the direct method is preferred. Before we move on
to the next section to discuss the various choice of inner product, we would like to mention an im-
portant property of the spatial POD modes. As demonstrated in equation (3.39) the spatial modes is
a linear combination of the snapshots and hence all the properties of the snapshot carry over to the
spatial POD modes. This is a useful property in incompressible flows, in that, if the snapshots field is
solenoidal, then the spatial modes are also solenoidal :

∇.u = 0 =⇒ ∇.φi = 0 ∀i = 1, . . . , Npod

If the snapshot satisfy homogenous Dirichlet boundary condition the spatial POD modes also satis-
fies the homogenous boundary condition. This property has been utilised when performing control
studies using POD byBergmann & Cordier(2005), where the snapshots where generated for a value
of actuation satisfying a suitable homogenous boundary condition.

3.8 Choice of inner product

The Hilbert space of functionsH(Ω, [0, T ]) is usually assumed to beL2 with the standard inner
product, which guarantees a finite kinetic energy of the system3. It is also worthwhile looking into
other definitions of inner product based on the underlying physics of the problem we are modelling.
We summarise a few definitions of inner products used in literature

3NotetheL2Ω consists of functionsf(x) such that
∫
Ω
|f(x)|2dx <∞
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3.8. Choice of inner product

3.8.1 L2 inner product

The Hilbert spaceL2(Ω) is the most naturally encountered in the study of incompressible fluids. the
norm arising from the inner product naturally giving rise to kinetic energy of the fluid occupyingΩ.
For a vector valued fieldu having componentsu, v, w, theL2(Ω) inner product and the corresponding
norm is defined by:

〈u, v〉 =

∫

Ω

(u1u2 + v1v2 + w1w2)dΩ; ‖u‖2 = 〈u, u〉 (3.40)

The energy aspect of theL2 inner product makes it a most natural choice in the application of POD
in fluid mechanics.

3.8.2 H1 inner product

TheH1(Ω) is the Sobolev space ofL2(Ω) functions and their first derivative.Iollo et al. (1998)
demonstrated the instability of the Galerkin model developed bythe L2(Ω) inner product for the
Euler equations of gas dynamics. For the system of incompressible flowIollo (1997), demonstrates
the improvement of the numerical result by the use of Sobolev inner product defined by

〈u, v〉H1(Ω) =

∫

Ω

u vdΩ + ǫ

∫

Ω

∇u ∇vdΩ (3.41)

whereǫ is a user defined numerical parameter.

3.8.3 Compressible inner product

For the case of compressible flows, the velocity variables are dynamically coupled with the thermo-
dynamic variables. The inner product which defined the correlation tensor adds the flow variables and
the thermodynamic variables. A question arises when we add two variables of different dimensions
to make sense when we use the usualL2 inner product. The scalar inner product can be computed for
each variable as has been used byRowley(2002). For vector valued variables one choice could be to
non-dimensionalise the variables, but then the sense of non-dimensionalisation on the optimality of
the projections poses a problem.Rowley(2002) seeks an inner product, for the isentropic flow vari-
ables which makes an intuitive sense in terms of the energy. This inner product has been used widely
to study cold isentropic flows at low Mach numbers byRowleyet al. (2003), Gloerfelt(2008), for
which the equations of Navier-Stokes can be simplified by replacing the variables the state variables
by the speed of sound. For a vector variableq = (u, v, c), whereu andv are flow variables andc the
local speed of sound. The inner product is defined by.

〈q1, q2〉 =

∫

Ω

(
u1u2 + v1v2 +

2α

γ − 1
c1c2

)
dΩ (3.42)

whereγ is the ratio of specific heats andα is a parameter to be chosen. Ifα = 1 it corresponds to the
integration of the stagnation enthalpy. This inner product has been used in this thesis. Another inner
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product suggested byBourgetet al. (2007) for a vector variablesv, with d componentsvi is given by

〈
v1, v2

〉
=

d∑

i=1

∫

Ω

v1
i v

2
i

σ2
i + ǫ

dΩ (3.43)

whereσ2
i is the temporal statistical invariance ofvi and is defined as

σ2
i (x) =

1

T

∫ T

0

(vi(x, t) − vi(x))2dt

wherevi(x) is the temporal average over the span of the snapshots.ǫ is asmall positive constant. This
method has been successfully applied to study the buffeting phenomenon of the unsteady transonic
flow around airfoil.

Having discussed the basic theory of POD, we now move on to the utilisation of the POD modes
to form reduced-order models which are useful to model the dynamics of the high fidelity model.
Various procedures to introduce the effect of control on our reduced-order model are discussed.

3.9 ROM in literature

The earliest application of ROM to study the near wall coherent structures has been studied
by Aubry et al. (1988). Boundary layer transition of shear flows has been studied using ROM
by Rempfer(1996), Rempfer(2000). Mixing layers has been studied byRajaeeet al. (1994),
Ukeileyet al. (2001), wake flows byMa & Karniadikis(2002), Noacket al. (2003), Galettiet al. (2004).
Turbulent channel flows using a minimal flow unit can be found inSmithet al. (2005) and using a
squire coordinate inJuttijudataet al. (2005). Bifurcation and stability of the high fidelity model for
lid driven cavity flows has been performed byCazemieret al. (1998). Reduced-order model to study
the scale transfers of a turbulent separated flows can be found inCoupletet al. (2003).

All t he references above represents the application of the ROM for incompressible flows. Appli-
cation to compressible flows has been limited and one can find applications inRowleyet al. (2003)
where a simplified isentropic model has been applied to study the self sustained instabilities of a2D
cavity in conjunction with a high fidelity DNS solver.3D cavity simulations with reduced order
modelling has been performed byGloerfelt(2008). An approach to extend the ROM to full equa-
tions of compressible flows has been given byVigo (1998) by recasting the Navier-Stokes equations
in terms of the specific volume. Hyperbolic systems with shocks has been studied using ROM by
Lucia & Beran(2003) and transonic flows around airfoils byBourgetet al. (2007).

Util ising ROM to perform control has been studied for the incompressible case byRavindran(1999),
where the general principles of POD based optimal control has been discussed. Influence of control
on the ROM of wall bounded turbulent shear flows has been studied byGrahamet al. (1999a),
Grahamet al. (1999b). Bergmann & Cordier(2005), have used the ROM to perform optimal control
of wake flows. Luchtenburget al. (2009) to study high lift configurations with actuation. Feedback
control laws using the ROM has been performed byWelleret al. (2009b).
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3.10. Galerkin projection, principles

In the compressible regime reference can be made toSamimyet al. (2007), Kasnakoğlu(2007)
for the extension of the ROM to controlled configuration. The ROM can be built on bases other
than the one obtained from POD. Example of which can be found inBurkardtet al. (2006) where the
bases is obtained by minimising the tesslation energy. In the next few sections, we discuss the general
principles of the POD based Galerkin projection for the reduced order modelling. After giving an
overview of the ROM for incompressible case, we introduce the compressible case of the isentropic
model which is used in this thesis. The method of introducing the effect of actuation into the ROM
will be further discussed with an application to the compressible cavity flow.

3.10 Galerkin projection, principles

Consider a dynamical system which evolves on a Hilbert spaceH. The form of the dynamical system
can be written in a canonical way as

u̇ = X (u) (3.44)

whereu(t) ∈ H andX is any differential operator onH. For example, consider a partial differential
equation governed by the variableu(x, t), defined on some domainΩ × [0, T ], whereΩ ∈ R

n rep-
resents the spatial domain of evolution, over a period[0, T ]. Given a finite dimensional subspaceS
of H, the Galerkin projection specifies a dynamical system which evolves onS and approximates the
original equation (3.44) in some approximate sense. This approximate dynamical system is obtained
by an orthogonal projection of the vector fieldX (u) onto the subspaceS and is denoted by a operator
Xs giving rise to a new dynamical system

ṙ = Xs(r) (3.45)

Wherer is the projection variable. Galerkin projection specifies this vector field as

Xs(r) = PX (r) (3.46)

wherePs : H → S denotes the projection map. From projection theorem,Robinson(2007), this
approximation minimises the error‖Xs(r) − X (r)‖ if

〈Xs(r) − X (r), wk〉 = 0 (3.47)

for any set of bases functionswk ∈ S. This gives a hint of choosing the basis functions for the
subspaceS as the POD modes. Writingr(t) in terms of the coordinatesak(t) of the POD bases we
have

r(t) =

n∑

k=1

ak(t)φk (3.48)

On using (3.47) and the orthogonality of the POD modes we obtain a system of ODE’sas

ȧk(t) = 〈X (r(t)), φk〉 , k = 1, · · · , n (3.49)
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For many types of equations, the ODE’s given by (3.49) can be computed analytically in terms of
the coordinatesak. This is useful as the inner product need not be computed at each time step. The
Galerkin procedure as described can also be easily extended to affine spaces,i.e. given a linear space
S and an elementb ∈ H the affine subspaceSb := {b + v|v ∈ S}. In this case the expansion (3.48)
takes the form

r(t) = b+
n∑

k=1

ak(t)φk (3.50)

Usually in the application of POD to fluid flow simulations the elementb is chosen to be the mean of
the snapshots, denoted byū. It is also helpful to note the projection for a quadratic operatorX (u), as
it arises in many applications of fluid mechanicsi.e

X (u) = L(u) +Q(u, u) (3.51)

whereL : H → H is linear andQ : H×H → H is bilinear, the reduced order model can be obtained
by the projection onto the affine subspace. Using (3.50) in (3.49) we obtain the reduced-order model
as,

ȧk(t) = 〈L(r) +Q(r, r), φk〉

=

〈
L

(
b+

∑

i

ai(t)φi

)
+Q

(
b+

∑

i

ai(t)φi, b+
∑

j

aj(t)φj

)
, φk

〉

= Ck +
∑

i

Lkiai(t) +
∑

ij

Qkijai(t)aj(t)

where

Ck = 〈L(b) +Q(b, b), φk〉
Lki = 〈L(φi) +Q(b, φi) +Q(φi, b), φk〉
Qkij = 〈Q(φi, φj), φk〉 (3.52)

The coefficients are independent of time, and can be determined before integrating. We will refer to
the above system when we discuss the isentropic compressible case of the cavity, for which we find a
quadratic dynamics of the flow equation.

3.11 Incompressible case

We now highlight the basic principles of ROM for the incompressible case, just to highlight the
differences for the compressible flows. In incompressible we assume that the velocity fieldu =
(u, v, w) is divergence freei,e∇u = 0. The Navier-Stokes equation in this case can be written as

Du

Dt
= −∇p + ν∇2u (3.53)
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ν denotes the kinematic viscosity,p thepressure, andD
Dt

= ∂
∂t

+ u.∇ denotes the material derivative.
On using the notation

N (u) = −(u.∇)u + ν∇2u

equation (3.53) can be written as
u̇ = N (u) −∇p (3.54)

We use the POD expansion for the velocityu as:

u(x, t) = ū +

n∑

k=1

ak(t)φk(x) (3.55)

where our Hilbert space isL2(Ω)3 with the usual inner-product given by

〈u,v〉 =

∫

Ω

u(x)v(x)dΩ (3.56)

On using the expansion (3.55) in (3.53) and using the definition of inner-product (3.56) we have the
reduced-order model of incompressible equation as

ȧk = 〈N (u), φk〉 − 〈∇p, φk〉 (3.57)

The second term can be written after integration by parts and using Green’s theorem

〈∇p, φk〉 = 〈p,∇φk〉 − [pφk] (3.58)

where[pφk] =
∫
∂Γ
p.φkndΓ denotes the surface integral withn denoting the normal to the boundary.

The first term on the right hand side of equation (3.58) is zero due to the divergence criteria and if the
velocity is zero along the boundaries the second term also vanishes. Thus we have the reduced order
model of the incompressible case as

ȧk = 〈N (u), φk〉 = Ck +
∑

i

Lkiai(t) +
∑

ij

Qkijai(t)aj(t)

with the initial conditions

ak(0) = 〈u− ū, φk〉 (3.59)

The coefficients of the ODE given by (3.59) are written as,

Ck = −〈(ū.∇)ū, φk〉 − ν〈(∇⊗ φk)
T ,∇⊗ ū〉 + ν[(∇⊗ ū)φk]

Lki = −〈(ū.∇)φi, φk〉 − 〈(φi.∇)ū, φk〉 − ν〈∇φi, φk〉 + ν[(∇φj)φk]
Qkij = −〈(φi.∇)φj, φk〉 (3.60)

Note in this study we have assumed that the boundaries as a wall, and hence we neglect the pressure
terms. In case the boundaries are treated as artificial boundaries, by considering only a limited portion
of the domain of the whole flow, the pressure terms represent a significant contribution as shown
by Noacket al. (2005). Also one more feature is that the mean field is assumed to be constant, but
Aubry et al. (1988) considers a slow variation of the mean field with time and try to model the mean in
terms of the fluctuation, which gives rises to cubic terms in the ROM, corresponding to the Reynolds
stress. One challenge is to extend the development to the compressible case.
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3.12 Compressible case

We now move on to the case of compressible flow. The main feature which distinguishes from the
incompressible case is the velocity variables which are dynamically coupled with the thermodynamic
variables. A question which arises due to this coupling is the formulation of the governing equations
which in some cases can be simplified to the formulation of the quadratic dynamics as discussed in
§3.10. As suggested byRowleyet al. (2003) using the isentropic formulation which is valid for cold-
flows at low mach number one simplify the formulation to the quadratic case.Vigo (1998) suggests
the use of specific volume to simplify the dynamics. Choice of inner product is also one issue and has
been discussed in detail in§3.8. The coupled equations can be treated as a scalar in each variableor
as a vector variable.Rowley(2002) has shown the distinct advantage of using a vector formulation,
in which the stability of the attractor at the origin is preserved. In this work we mainly discuss the
vector formulations which are used to build the ROM of the cavity flows.

Isentropic reduced order model

Scaling the velocitiesu, v by the free stream velocityU∞, the local sound speedc by the ambient
sound speedc∞, the lengths by the cavity depthD, and time byD/U∞, the equations are given by

ut + uux + vuy +
1

M2

2

γ − 1
ccx =

1

Re
(uxx + uyy)

vt + uvx + vvy +
1

M2

2

γ − 1
ccy =

1

Re
(vxx + vyy)

ct + ucx + vcy +
γ − 1

2
c(ux + vy) = 0

whereM = U∞/c∞ is the Mach number andRe = U∞D/ν is the Reynolds number. The non-
dimensionalisation is useful in that the Mach number which appears explicitly in the Galerkin projec-
tions, helps to investigate the parametric dependence of the reduced order model. There has also been
studies of rescaling the cavity length by the momentum thickness to investigate its effect. Denoting
q = (u, v, c) the vector of flow variables, the above equations can be re-casted to obtain a quadratic
form as

q̇ =
1

Re
L(q) +

1

M2
Q1(q, q) + Q2(q, q) with (3.61)

L(q) =




uxx + uyy
vxx + vyy

0



 , Q1(q
1, q2) = − 2

γ−1




c1c2x
c1c2y
0





Q2(q
1, q2) = −




u1u2

x + v1u2
y

u1v2
x + v1v2

y

u1c2x + v1c2y + γ−1
2
c1(u2

x + v2
y)



 (3.62)
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To obtain the reduced order model by means of a Galerkin projection we define an inner product on
the state space as explained in equation (3.42).

〈
q1, q2

〉
Ω

=

∫

Ω

(u1u2 + v1v2 +
2α

γ − 1
c1c2) dΩ

whereα is a constant andγ is the ratio of specific heats. In this work we choose the value ofα = 1,
which gives the definition of stagnation enthalpy while calculating the norm. We use the expansion
of the vector variableq as

q(x, t) = q(x) +

n∑

k=1

ak(t)φk(x) (3.63)

whereq̄ denote the mean of the snapshot for the vector variable. On using (3.63) and the definition
of the inner product given above to perform the Galerkin projection onto the firstn ≪ NPOD spatial
eigenfunctions, we obtain after some manipulation, the Reduced Order Model given by

ȧRk (t) =
1

Re
C1
k +

1

M2
C2
k + C3

k +
n∑

i=1

(
1

Re
L1
ki +

1

M2
L2
ki + L3

ki

)
aRi (t)

+

n∑

i,j=1

(
1

M2
Q1
kij +Q2

kij

)
aRi (t)aRj (t)

= Ck +
n∑

i=1

Lkia
R
i (t) +

n∑

i,j=1

Qkija
R
i (t)aRj (t) = fk(Ck,Lk,Qk, a

R(t))

(3.64)

wherefk is a polynomial of degree 2 inaR and where the coefficients are given by

C1
k = 〈φk,L(q)〉Ω

C2
k = 〈φk,Q1(q, q)〉Ω

C3
k = 〈φk,Q2(q, q)〉Ω

L1
ki = 〈φk,L(φi)〉Ω

L2
ki = 〈φk,Q1(q, φi) + Q1(φi, q)〉Ω

L3
ki = 〈φk,Q2(q, φi) + Q2(φi, q)〉Ω

Q1
kij = 〈φk,Q1(φi, φj)〉Ω

Q2
kij = 〈φk,Q2(φi, φj)〉Ω

As already mentioned instead of the isentropic equations one can as well use the full Navier-Stokes
equations which leads to cubic terms in the ROM. The use of specific volume defined asς = 1

ρ
which

preserves the quadratic nature of the dynamical system both these methods have been discussed in
AppendixB andC

3.13 Extension to actuated case

Having discussed the ROM for the un-actuated case we now move on to introduce the effect of
actuation on our ROM. The advantage of the reduced order models can be fully exploited when
they are capable of being used in control studies, also we would like to have a dynamical system
where the actuation effect is naturally embedded. There has been recent attempts to take care of the
introduction of actuation byBergmann & Cordier(2005),Welleret al. (2009b) for a feedback control
where snapshots from the controlled case are augmented with the un-actuated modes (baseline flow as
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usually called) to obtain a global representation for the controlled case. The regions where the control
is introduced is explicitly identified while performing the projections, these methods are referred to
as input separation methods as found inKasnakoğluet al. (2008). To explain further the flow domain
Ω into two sub-regions, such thatΩ = Ωac + Ωunac whereΩac, Ωunac represents the actuated and
the un-actuated part of the domain respectively. The inner product for the corresponding domains
is defined as〈., .〉 = 〈., .〉Ωac

+ 〈., .〉Ωunac
, with the corresponding boundary condition imposed for

Ωac. This procedure yields an autonomous system of ODE’s of the form, (on using the summation
convention)

ȧk = Ck + Lkiai +Qkijaiaj + h1kγ + h2kiaiγ + h3kγ
2 (3.65)

whereγ is the actuation signal. This methods suffers the disadvantage in that one must be able
to explicitly identify the control regions, while taking care to reproduce the un-actuated dynamics
when the actuation value tends to zero. Also the information of the input actuation is hidden in the
model. Another procedure of introducing actuation is to identify the system coefficients based on a
stochastic estimation technique, to give a ROM of the form (3.65). More details of the method can be
found in Caraballoet al. (2008), an explanation of which can be found in AppendixD. This involves
determining additional POD actuation modes combined with a stochastic estimation. One would then
look for an alternative separation methodsi.e. look for an expansion of the form

q(x, t) = q(x) +

n∑

k=1

ak(t)φk(x) + γ(t)ψ(x) (3.66)

whereγ is the actuation andψ is the spatial actuated coefficient and which would satisfy the following
condition

1. The actuation effect should be explicitly available in our ROM and should be able to reproduce
the un-actuated dynamics in case the value of actuation tends to zero.

2. Most of the actuated dynamics in the space spanned by the un-actuated POD modes are well
captured by the un-actuated POD modes and hence the completion of the full actuated dynamics
is obtained by an extension of the bases. This condition is an additional constraint to condition 1
in that we require a constraint on the dimension of our actuation by specifying that the base-line
modes capture most of the dynamics and is the crux of the whole problem.

3. We further strengthen this condition by imposing an optimality condition in that the energy not
captured by (3.66) is minimal.

Figure 3.3 summaries the above condition to give a basis extension problem.The conditions can be
systematically algorithmized as below followed by the theorem due toKasnakoğlu(2007) as found
in appendixE.

Algorithm 1:

1. To start with, let the actuated snapshot sets be denoted as{qack , γk}mk=1, whereγk = γ(tk) is the
value of the actuation,qack = qac(x, tk) andm is the number of actuated snapshots

74



3.13. Extension to actuated case

Un-actuated Space

∑n
i=1 aiφi

γψ

Figure 3.3 -Diagrammatic representation of the actuated expansion, the un-actuated subspace must be able to
capture most of the dynamics and the actuated space is the completion of our subspace in an optimal way to

include the actuation effect.

2. We subtract the meanq of the un-actuated base flow from the snapshot set. We define a new set
of realisations by an innovation operator defined by

q̃k = qack − PSq
ac
k = qack −

n∑

i=1

〈qack , φi〉φi

to take care of the part of the actuated mode which can be captured by the un-actuated subspace.

3. We then wish to construct an orthogonal subspace to the un-actuated space to capture the effect
of actuation. This is done by solving anL2 minimisation problem for the functional given by

J (ψ) = E
[
‖q̃k − γkψ‖2

]

whereE is any averaging operator.

4. The solution of the above minimisation problem for the actuated modeψ is given by

ψ =
E[γkq̃k]

E[γ2
k ]

5. The expansion for the flow field can now be written for the actuated case as

qack (x, t) = qac(x) +

n∑

k=1

aack (t)φk(x) + γ(t)ψ(x)

3.13.1 Reduced order model for the actuated case

Let V = q + span{φ1, . . . , φn, ψ
∗}. Consider the dynamical system that evolves onX given by

ṙ = X (r) (3.67)
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3. Proper Orthogonal Decomposition (POD) based Reduced Order Modelling (ROM)

The reduced order dynamical system that approximates (3.67) can be obtained by a Galerkin projec-
tion as

XV (r) = PVX (r) (3.68)

and is optimal in the sense that it minimises‖XV (r) − X (r)‖. sinceXV (r) −X (r) ⊥ V we have

〈XV (r) − X (r), φk〉 = 0, k = 1, . . . , n (3.69)

substitutingr = q + akφk + γψ∗ in (3.69) one can write

〈ȧkφk + γ̇ψ∗ −X (r), φk〉 = 0

ȧk〈φk, φk〉 + γ̇〈ψ∗, φk〉 − 〈X (r), φk〉 = 0

ȧk〈φk, φk〉 − 〈X (r), φk〉 = 0

ȧk = 〈X (r), φk〉 (3.70)

As in the un-actuated case, we now derive the reduced-order model for the special case of the quadratic
dynamics as

X (q) = L(q) +Q(q, q) (3.71)

substituting (3.71) in (3.70) gives

ȧk = 〈X (r), φk〉

= 〈L(q + aiφi + γψ∗) +Q(q + aiφi + γψ∗, q + aiφi + γψ∗)〉

= 〈L(q), φk〉 + 〈L(φi), φk〉ai + 〈L(ψ∗), φk〉γ + 〈Q(q, q), φk〉

+ 〈Q(q, φj), φk〉aj + 〈Q(q, ψ∗), φk〉γ + 〈Q(φi, q), φk〉ai + 〈Q(φi, φj), φk〉aiaj

+ 〈Q(φi, ψ
∗), φk〉aiγ + 〈Q(ψ∗, q), φk〉γ + 〈Q(ψ∗, φi), ψ

∗〉aiγ + 〈Q(ψ∗, ψ∗), φk〉γ2

= Ck + Lkjaj +Qkijaiaj + h1kγ + h2kiaiγ + h3kγ
2 (3.72)
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where

Ck = 〈L(q), φk〉 + 〈Q(q, q), φk〉

Lkj = 〈L(φj), φk〉 + 〈Q(q, φj), φk〉 + 〈Q(φj, q), φk〉

h1k = 〈L(ψ∗), φk〉 + 〈Q(q, ψ∗), φk〉 + 〈Q(ψ∗, q), φk〉

Qkij = 〈Q(φi, φj), φk〉

h2ki = 〈Q(φi, ψ
∗), φk〉 + 〈Q(ψ∗, φi), ψ

∗〉

h3k = 〈Q(ψ∗, ψ∗), φk〉

3.13.2 A polynomial notation for the reduced-order model

We give a notation for the ROM (3.72) which will be helpful in simplifying the model, if we note
that the ROM is nothing but a polynomial of degree2 in the unknown variableaR = {a1, . . . , an}.
Equation (3.72) can be written by separating the actuated and the un-actuated parts in a compact
notation as

ȧk
R = fk(yk, a

R(t)) + gk(zk, a
R(t), γ) (3.73)

where
fk(yk, a

R(t)) = Ck + Lkjaj(t) +Qkijai(t)aj(t) (3.74)

gk(zk, a
R(t), γ) = h1kγ(t) + h2kiai(t)γ(t) + h3kγ(t)

2 (3.75)

with j = 1, . . . , n andi = 1, . . . , j the coefficientsyk andzk in (3.73) denote the unknown coefficients
for the actuated and the un-actuated part respectively and is given by

yk =





Ck
Lk1

...
Lkn
Qk11

...
Qknn





∈ R
Nyk and zk =





hk
h21k

...
h2nk

h3k




∈ R

Nzk

To reduce the size ofyk we use the properties of symmetry of the quadratic termsQijk by noting that
Qijk = 1/2(Qijk +Qikj) and hence the size of vectoryk = Nyk

= 1 + n + n(n+1)
2

andNzk
= 2 + n.
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3. Proper Orthogonal Decomposition (POD) based Reduced Order Modelling (ROM)

The unknown coefficients of the ROM can be written in a vectorial notation as

m(t) =





1
a1(t)

...
an(t)

a1(t)a1(t)
...

an(t)an(t)





∈ R
Nyk and n(t) =





γ(t)
γ(t)a1(t)

...
γ(t)an(t)
γ2(t)




∈ R

Nzk

with this notation (3.74) and (3.75) can be written as

fk(yk, a
R(t)) = m(t).yk

gk(zk, a
R(t), γ) = n(t).zk (3.76)

Equation (3.76) can be further written in a vector notation to give the final form of the ROM as1

ȧR = f(y, aR) + g(z, aR, γ) (3.77)

where for the uncontrolled contribution we have:

f =




f1
...
fN



 ∈ R
n and y =




y1
...
yN



 ∈ R
Ny with Ny = nNyk

and for the controlled contribution:

g =




g1
...
gN



 ∈ R
n and z =




z1
...
zN



 ∈ R
Nz with Nz = nNzk

3.13.3 Extension to multiple modes

In the case of multiple inputs, it is trivial to extend the above procedure to include multiple control
inputs for example assume we have determined{ψj}Mj=1 actuation modes corresponding to{γj(t)}Mj=1

inputs. We have an expansion of the form,

qac(x, t) = qac(x) +

n∑

i=1

aaci (t)φi(x) +

M∑

j=1

γj(t)ψj(x) (3.78)

1Computationallyf can be computed at any time instantt as a product of a block diagonal matrixM where each block
is equal tomT multiplied by the vectory. Similarlyg can be obtained as the product of a block diagonal matrixQ where
each block is equal tonT multiplied by the vectorz.
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and the corresponding Galerkin model is obtained just by a summation over the corresponding inputs
as

ȧk = Ck + Lkjaj +Qkijaiaj + h1kiγi + h2kijaiγj + h3kijγiγj (3.79)

It is also possible to include the effect of the derivatives of the input as in many cases the derivatives
will be known. For example assuming that the derivative of the inputγ̇(t) is available, the algorithm
can be summarized as follows.

Algorithm 2:

1. To start with, let the actuated snapshot sets be denoted as{qack , γk, γ̇k}mk=1, whereγk = γ(tk) is
the value of the actuation,̇γk = γ̇(tk) is the derivative of the input,qack = qac(x, tk) andm is the
number of actuated snapshots.

2. We subtract the meanq of the un-actuated base flow from the snapshot set. We define a new set
of realisations using an innovation operator given by

q̃k = qack − PSq
ac
k = qack −

n∑

i=1

〈qack , φi〉φi

3. We then wish to construct an orthogonal subspace to the un-actuated space to capture the effect
of actuation. This is done by solving anL2 minimisation problem for the functional given by

J (ψ) = E
[
‖q̃k − γkψ‖2

]

whereE is any averaging operator, to obtain an actuation modeψ1 for input.

4. Defineq̆k = qack − PS1q
ac
k whereS1 = span{φ1, . . . , φN , ψ1}. In general‖ψ1‖ 6= 1 and hence

while projecting on the actuation mode we define the projection operator of the form

Pψ1qk = ‖ψ1‖−1〈qk, ψ1〉ψ1

5. To include the effect of the derivative of the actuation, we follow the same procedure as above
with q̆ replacingq̃ to solve a minimisation problem for the functional given by

J (ψ) = E
[
‖q̆k − γkψ1‖2

]

to obtain an actuation mode for the derivative given byψ2.

6. The expansion for the flow field can now be written for the actuated case as

qac(x, t) = qac(x) +
n∑

i=1

aaci (t)φi(x) + γ(t)ψ1(x) + γ̇(t)ψ2(x) (3.80)
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3. Proper Orthogonal Decomposition (POD) based Reduced Order Modelling (ROM)

As mentioned before the above procedure can be easily extended toinclude the derivatives of multiple
inputs in which case the expansion for the flow field is given by

qac(x, t) = qac(x) +

n∑

i=1

aaci (t)φi(x) +

M∑

j=1

γj(t)ψ1j(x) +

M∑

j=1

γ̇j(t)ψ2j(x) (3.81)

The Galerkin model for the multiple control inputs with its derivative can be written in the form

ȧk = Ck + Lkjaj +Qkijaiaj + h1kiγi + h2kijaiγj + h3kijγiγj

+ g1kiγ̇i + g2kijaiγ̇j + g3kijγ̇iγ̇j + g4kijγiγ̇j (3.82)

3.14 Application to cavity flows

We present results for the cavity flow configuration described in chapter1. The DNS is performed
and snapshots are taken once the flow has stabilised for a non-dimensional time of80. 56 snapshots
are uniformly sampled which corresponds to about1 periods of the flow oscillation (2.8 in non di-
mensional time) corresponding to the first Rossiter mode. Figure3.4demonstrates a degenerate eigen
spectrum showing eigenvalues which occur in pairs. Also the first 4 eigenmodes capture around
98.5% of the total fluctuation energy as shown by the Relative Information Content (RIC), and the
first 6 modes capture99.99% of the total energy. In this work we construct the ROM keeping6 modes
from the POD representation. The POD temporal coefficients in figure3.5shows that the modes oc-

curring in pair have a phase shift of
π

2
. Therepresentation of the first 6 spatial POD modes for the

vorticity and dilatation is shown in3.6, and3.7. The dilatation represents the directivity of sound and
is given by the equation

Θ =
∂u

∂x
+
∂v

∂y

Although the spatial modes occur in pairs and their values are distinct, the representation is topologi-
cally equivalent. The vorticity and dilatation has been determined using a6th order accurate compact
scheme. The wiggles in the representation are mainly the artifact of the numerical scheme used in
the DNS computation. We suspect that using a higher order compact scheme may improve the result.
There is also a strong evidence of the effect of discretisation when we compute the dilatation modes
which are mainly acoustic, and very sensitive to numerical discretisation. The vorticity modes mainly
represent the hydrodynamic component and the dilatation the acoustic phenomenon. The two vortic-
ity modes occur in pair with a phase shift ofπ/2 as can be seen in the representation of the temporal
coefficient in figure3.5. The dilatation being a high frequency phenomenon, is clearly depicted for the
higher POD modes where the angle of the wave propagation at135o is distinctly visible. Cavity flows
represent a distinct coupling between these two phenomenon in which the high frequency acoustic
components feedback into the low frequency hydrodynamic component, resulting in self sustained
oscillations. Hence to have a faithful behaviour of the ROM it is necessary to consider the prominent
acoustic modes represented by the high frequency POD coefficients.
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Regarding ROM snapshots are obtained from the DNS by introducing an actuation of the form
A sin(ωt) just before the leading edge of the cavity (x ∈ [−0.15;−0.05] andy = 0) where the flow
is more sensitive to actuation. The spatial modes as shown in3.8exhibit a local behaviour capturing
the effect of actuation which is the salient feature of theL2 optimisation method introduced in the
preceeding sections. Since the actuated subspace is orthogonal to the un-actuated subspace we have
from (3.66), the actuated temporal modesaaci given by:

aaci (t) = 〈φi, qac − qac − γ(t)ψ〉Ω
Here we make the assumption that the average of the mean flow in un-actuated and actuated cases are
equal, (qac = q), since the value of actuation introduced is small. The termδqac := qac − qac can now
beinterpreted as a translation of the reduced order subspace. We also introduce, an error to take care
of the difference in the average values while performing the Galerkin projections as

εi =
〈δqac, φi〉
〈φi, qac〉

(3.83)

Also since the actuated mode is orthogonal to the un-actuated subspacei.e.ψ ⊥ φ the termaaci (t) −→
0. This is an essential point as the temporal dynamics of our model is mainly represented by the un-
actuated subspace, the actuated mode represents the completion of the basis to include the effect
of actuation. The difference in average valuesδqac for the stream-wise and normal component of
velocity is shown in figure3.9, and the value of the error in the projectionεi in figure3.10, showing
a small errors for the most energetic modes. We are unable to explain the behaviour of the error at
the certain higher modes which seem pretty large. The time traces and the phase portrait of the first
6 modes of the Galerkin model is shown in figure3.11and3.12. The Galerkin model compares well
with the POD coefficients for the initial time and shows a divergence as time progresses. Also the
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deviation from the expected behaviour is large in the case of higher modes. One of the reason for
the divergence can be attributed to the truncation of the terms in our Galerkin model, but increasing
the number of modes does not improve the results, as shown byRempfer(1996) even the full order
system can converge to a wrong attractor. This brings in the problem of calibration of the ROM
i.e., to correctly determine the coefficients of the ROM so as to reproduce the POD dynamics. The
reasons for the divergence of our ROM model as well as the various techniques of calibration will be
discussed in the next chapter.

3.15 Conclusion

In this chapter, we have discussed the basic principles of the Proper Orthogonal Decomposition.
We have also given some of the properties of POD that make them an useful choice in the model
reduction of fluid flows. Choice of inner-products for both in-compressible and compressible case
has been discussed.

The principles of a ROM based on a Galerkin projection has been discussed. A comparison
between the incompressible and compressible case has been presented. To model the cavity flows we
construct the ROM of the isentropic Navier-Stokes equations. Extension of the model to include the
effect of actuation, is by means of constructing an actuated mode based on solving anL2 optimisation
problem, and the corresponding ROM presented. The extension of the ROM to include the effect of
multiple actuation as well as the derivative of the actuation has been discussed. Results of the ROM
shows a divergence from the predicted dynamics obtained from the POD, which motivates the next
chapter on the stabilisation of the ROM.
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Figure 3.6 -Vorticity contours of the first6 POD modes.15 contours in the range[−5, 1.67] are plotted. We
note that the cascade of the energy in the POD representation in terms of the size of the eddies represented.

The vorticity being a hydrodynamic phenomenon represents the low frequency dynamics of the flow.
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Figure 3.7 -Dilatation contours of the first6 POD modes.15 contours in the range[−0.2, 0.2] are plotted.
Dilatation mainly represent the acoustic phenomenon which occurs at high frequency and we can see the
dilatation more prominent in the higher modes, where the angle of wave propagation is clearly visible.
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Figure 3.8 -u andv velocity components of the actuation modeψ corresponding to an actuation defined by
vwall = 0.2 sin(0.4t). The plot shows a local behaviour capturing the effect of actuation.
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Figure 3.9 -u andv of the difference in the average valueδqac between the actuated and the un-actuated case.
The average of the mean flow in un-actuated and actuated cases are equal, (qac = q), since the value of

actuation introduced is small.
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Figure 3.10 -Average projection errorεi and shows a small errors for the most energetic modes.
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Figure 3.11 -Temporal comparison of the first6 modes, with the POD coefficients:ROM prediction(solid line),
reference POD dynamics (o). The Galerkin model compares well with the POD coefficients for the initial time

and shows a divergence as time progresses.
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Figure 3.12 -Phase portrait comparison of the first6 modes, with the POD coefficients:ROM prediction(solid
line), reference POD dynamics (o). The Galerkin model compares well with the POD coefficients for the

initial time and shows a divergence as time progresses.
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Chapter 4

Int egration and calibration of ROM

Introduction

Ce chapitre concerne essentiellement les différentes techniques de calibration utiliser pour stabiliser
le mod̀eles d’ordre ŕeduit. Il est souvent difficile de représenter avec suffisament de précision, m̂eme
sur un temps court la dynamique du système initial, ce qui interdit l’utilisation des modèles d’ordre
réduits pour deśetudes de sensibilité, d’optimisation et de contrôle optimal. L’id́ee principale de la
calibration est d’identifier les coefficients du modèle POD Galerkin (ROM) de sorte que sa dynamique
propres cöıncide avec la dynamique temporelle de la POD issue des simulations numériques directes
et qui est connuèa l’avance. Les raisons de la mauvaise précision du mod̀ele ROM peut̂etre attribúee
à la troncature des bases POD où les échelles dissipatives incluses dans les modes POD d’ordres
élev́es ne sont pas prises en compte. C’est un problème analoguèa celui rencontŕe en Simulation de
Grandes Echelles (LES) où la dissipation des petiteśechelles est manquante. Même si tous les modes
de la projection de Galerkin sont pris en compte, on peut aboutirà un mauvais attracteur̀a cause
des instabilit́es structurales comme celles observées parRempfer(2000),Noacket al. (2003). Les
techniques de calibration peuventêtre clasśees en deux catégories, la premìere consistèa traiter le
problème de calibration comme un problème de fermeture de la turbulence. La seconde considère un
problème d’identification de coefficients, ce qui revientà une probl̀eme d’optimisation ou de contrôle
optimal.Coupletet al. (2005) donne une vue ǵeńerale des diff́erentes erreurs qui apparaissent dans le
ROM et propose une technique de calibration basée sur la minimisation d’une fonctionnelle linéaire
de l’erreur. Ŕecemment une aḿelioration des propositions deCoupletet al. (2005) a ét́e pŕesent́ee
dansCordier et al. (2009). Nous proposons une amélioration suppĺementaire de cette technique en
introduisant diff́erents types de matrice de pondération dans la d́efinition de l’erreur. Dans la première
méthode les poids sont détermińesà partir d’une analyse de sensibilité de l’́energie. Dans la seconde
approche les poids sont définiesà partir du contenúenerǵetique de la repŕesentation en ROM.
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4. Integration and calibration of ROM

Définition des erreurs

L’actionnement dans le systèmes ROM est détermińe par une proćedure d’optimisationL2 se retrouve
principalement restreint dèa un mode spatial. Par conséquent il est suffisant de présenter les princi-
pales id́ees sur la calibration associée Les dynamiques temporelles aux cas sans actionnement. Les
erreurs pour une identification polynômiale du mod̀ele d’ordre ŕeduit (ROM) peuvent̂etre essentielle-
ment clasśees en:

1. La calibration d’́etat, òu les coefficient du modèle ROM sont identifíes pour repŕesenter avec
précision l’́etat temporel du ROM en accord avec les coefficient temporels de la POD du système
original.

2. La calibration d’́ecoulement, òu les coefficients sont identifiés pour repŕesenter les champs de
vecteurs de l’integration temporelle du ROM en accord avec les champs de vecteurs obtenus
par la POD.

Trois erreurs peuvent̂etre d́efinies par leśequations4.2, 4.4 et 4.6. Une fois l’erreur choisi,
l’i dentification polyn̂omiale est obtenue par minimisation des fonctionnelles coût baśees sur cette
erreur comme donńees par leśequations4.3, 4.5, 4.7. Dans la fonctionnelles côut tous les modes
sont donńes de poidśegaux. La minimisation des fonctionnelles4.5, 4.7conduità la résolution d’un
syst̀eme lińeaire puisque les erreurs (équations4.4 et 4.6) sont des fonctions affines des coefficients
polynômiaux.

Méthode de calibration de Couplet

La méthode deCoupletet al. (2005) introduit la minimisation de fonctionnelles baséessur la combi-
naison liǹeaire convexe des termes qui représentent l’erreur normaliśee et une mesure de la variation
des coefficients du modèle par rapport aux valeurs obtenues par la POD. Cependant, Il s’avère que
le syst̀eme lińeaire est mal conditionńe et diverge apr̀es un temps court comme on peut le voir sur la
figure 4.1. Pour résoudre cela on régularise la fonction côut. Cependant le choix du paramétre de
régularisation d́epend de l’utilisateur. Pour y reḿedierCordieret al. (2009) utilisent la ḿethode de
régularisation de Tikhonov pour mieux conditionner le problème.

Approche pondérée de ŕegularisation de Tikhonov

Dans ce travail une nouvelle ḿethode de calibration basée sur l’aḿelioration de la ḿethode de
Cordier et al. (2009) est utiliśee en introduisant des poids convenables dans la définition de l’erreur
dans la fonctionnelle côut, en donnant ainsi une importance aux modes qui le sont. Deux voies pour
définir les poids sont proposées:

1. Dans , nous consid́erons que le plus intéressant est dans la modélisation de l’effet des structures
énerǵetiques et ainsi les spectres propres servent comme une mesure de l’importance des modes.
C’est le choix le plus naturel pour la définition des poids dans l’erreur.
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2. Dans , l’erreur est baśeesur une sensibilit́e globale de la foncionnelle coût.

Les deux matrices poids comme représent́ees sur la figure4.10sont similaires,́etant donńe que les
poids sont baśes sur l’utilisation d’un crit̀ereénerǵetique.

Application aux écoulements de cavit́e

La méthode de ŕegularisation pond́erée baśee sur la sensibilit́e globale aét́e appliqúee au cas de
lécoulement de cavité. La ḿethode reproduit les dynamiques temporelles de la POD comme on peut
le voir sur les figures4.11et4.12. La ḿethode áet́ecompaŕee avec d’autres techniques de calibration
comme on peut le constater dans4.4 et sur la figure4.13. La régularisation pond́erée de Tikhonov
surpasse les autres techniques de calibration en termes d’erreurs normalisées et d’erreurs modales.
La principale force de cette régularisation ŕeside dans le fait que les paramétres de ŕegularisation
sont d́etermińes sans aucune intervention de l’utilisateur. Finalement nous vérifions l’ad́equation du
mod̀ele de calibration pour de longues périodes d’int́gration temporelle comme on peut le voir sur
la figure 4.14. Ainsi le mod̀ele prédit les dynamiques pour̀a peu pr̀es4 périodes d’oscillation de
l’ écoulement, mais diverge rapidement quand on intègre au-del̀a. Ceci est d̂u au fait que les modes
négligés (tronqúes) ne sont pas pris en compte et le problème de fermeture reste ouvert, même en
déterminant correctement les coefficients. Nous devons donc calibrer sur plus de périodes si nous
souhaitons utiliser le mod̀ele pour deśetudes de contrôle.
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4. Integration and calibration of ROM

4.1 Introduction

As demonstrated in the previous chapter it is often diff cult to represent with suff cient accuracy even
the short time dynamics of the original system which bars the utility of the Reduced Order Model
for applications in sensitivity studies, optimisation and optimal control. Methods in the literature that
pertain to improving the accuracy of the Reduced Order Model is termed as calibration The main
idea of calibration is to identify the coeff cients of the POD Galerkin model so as to match the tem-
poral dynamics of the POD which are known in advance. This strategy is usually called as a system
identif cation or black-box model in control literature when the dynamical system is determined with
respect to an identif able dynamics of the process. The reasons for the inaccurate behaviour of the
ROM can be attributed to the truncation of the POD bases. An analogous problem occurs in the
Large Eddy Simulation (LES) of f ows where there is lack of dissipation, due to truncation of the
smaller scales. Even including all the modes in Galerkin projection may still lead to the wrong at-
tractor due to structural instability as has been demonstrated in Rempfer (2000),Noack et al. (2003) .
Other problems may arise due to the contribution of pressure at the boundaries of the domain, which
is usually neglected Noack et al. (2005). The stability properties of the compressible POD-Galerkin
approximation has been studied by Iollo et al. (2000) and shows that just the stability of the numerical
scheme is not suff cient for the stability of the ROM and a suitable numerical stabilisation is required.
Consecutively a Sobolev inner product has been def ned for the norm to improve the accuracy of the
ROM. The calibration techniques can be broadly classif ed into two categories,

1. To treat the problem of calibration similar to the closure problem of turbulence

2. As a process of system identif cation for the coeff cients, leading to an optimisation problem.

Regarding the calibration techniques for the ROM, based on treating them as a closure problem, the
earliest attempt is due to Aubry et al. (1988). In this work inter-modal transfer of energy between the
truncated POD modes and the resolved POD modes by means of an artif cial viscosity are modeled.
Podvin (2001) proposes a connection between the closure problems encountered in the large eddy
simulation of turbulence and the truncation terms of the ROM where one has to model the missing
terms. An approach to model the inter-modal transfers by means of artif cial viscosity assuming
the conservation of the average kinetic energy in the ROM can be found in Cazemier et al. (1998).
A spectral vanishing viscosity method has been proposed by Karamanos & Karniadakis (2000),
which was initially developed for LES to improve the long term integration of the ROM. The
time dependent modal eddy viscosity can be found as a solution of an optimisation as given in
Bergmann & Cordier (2005), for the stabilisation of ROM for wake f ows.

Regarding the problem of calibration, based on an optimisation procedure, most of the calibration
techniques tries to identify the system coeff cients, so as to minimise the error between the POD tem-
poral dynamics and that predicted by the ROM. The methods mainly relay on the def nition of the error
leading to an optimisation problem, which can be solved iteratively as found in Galetti et al. (2004).
Couplet et al. (2005) gives a general frame work of the various error which arises in the ROM and
proposes a calibration technique based on minimising a linear functional of error. Stabilisation of the
ROM by means of a polynomial identif cation of the ROM independent of the physical system can
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4.2. Def nition of errors

be found in Perret et al. (2006). A method called as ”Intrinsic stabilisation” has been proposed by
Kalb & Deanne (2007) which takes into account the instantaneous error with respect to the reference
dynamics, and is obtained by replacing the original ROM, with another ROM with the polynomial
coeff cients obtained from the temporal POD dynamics. Recently an improvement of the above ideas
of Couplet et al. (2005) has been presented in Cordier et al. (2009).

In this work we evaluate different methods of calibration based on the solution of the optimisation
problem. We begin by introducing various def nitions of errors, between the calibrated dynamics and
the original temporal dynamics. The optimisation problem of minimising the error leads to a solution
of a linear system, in case the errors are aff ne functions of the predicted dynamics. The linear
system is ill conditioned and needs to be regularised. Cordier et al. (2009) have used the method of
Tikhonov regularization to solve the ill-conditioned problem. We present a further improvement of
this technique by introducing the various type of weight matrix used in the def nition of error. The
f rst method is by performing a sensitivity analysis of the ROM with respect to a given cost functional,
to determine the weights of the relevant dynamics of calibration. The second method is by using the
energy content of the representation in forming the weight matrix to be used in calibration.

4.2 Definition of errors

4.2.1 State calibration method with nonlinear constraints

We start with the polynomial form of the ROM explained in the previous chapter, which we restate as

ȧR = f(y, aR) + g(z, aR, γ) (4.1)

As previously shown, the temporal dynamics obtained by adding the actuation mode, determined by
an L2 optimisation procedure is mainly restricted to the un-actuated space, it is suff cient to present
the main ideas for the case of g = 0. The objective of the POD based model (4.1) is to accurately
represent the dynamics of the POD temporal modes aP , and the problem of calibration is to identify
the coeff cients y such that this representation is possible. One then naturally seeks to minimise the
error

e1(y, t) = aP (t) − aR(t) (4.2)
with the constraints

PC

{
ȧR(t) = f(y, aR(t))
aR(0) = aP (0)

e1 ∈ R
N is time dependent and we seek to minimise

I1(y) =
〈
‖e1(y, t)‖2

Λ

〉
T0

(4.3)

where 〈.〉T0 is a time averaging operator over [0, T0], for Nt equally spaced elements on [0, T0] we
have

〈f(t)〉T0 =
1

Nt

Nt∑

i=1

f(ti) with ti = (i− 1)∆t and ∆t =
T0

Nt − 1
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4. Integration and calibration of ROM

‖.‖Λ is a norm on R
N . For any positive def nite matrix Λ ∈ R

N×N the norm of any vector e ∈ R
N is

given by
‖e‖2

Λ = eTΛe

The matrix Λ acts as a weight function giving importance to the specif c POD modes, when Λ = IN
it means that all the POD modes have the same importance in terms of the error. Later in this chapter
we shall describe a method to utilise this weight matrix to def ne the relative importance of the error
with respect to the POD mode. Minimisation of I1 under the constraints PC leads to a non-linear
constrained optimisation problem of minimising

I1(y) =
1

Nt

Nt∑

k=1

N∑

i=1

(aPi (tk) − aRi (tk))
2

The optimisation problem can be solved iteratively as in Bergmann & Cordier (2005) to f nd the op-
timal eddy viscosity or using a single shot constrained optimisation problem with a pseudo-spectral
discretisation of the variables as found in Galetti et al. (2004)

4.2.2 State calibration method

Couplet et al. (2005) have argued that the method based on the I1 formulation does not have a unique
solution and also there are problems of convergence when the well known gradient methods are used
to f nd the minimum. As a result the nonlinear constraint is suppressed in the def nition of e1. By
integrating the POD ROM the error e1 can be written as

e1(y, t) = aP (t) − aP (0) −
∫ t

0

f(y, aR(τ))dτ

The nonlinear constraint is suppressed by replacing aR with aP . We have a new def nition of the error
e2 def ned as

e2(y, t) = aP (t) − aP (0) −
∫ t

0

f(y, aP (τ))dτ (4.4)

Minimisation of the error def ned by I2(y) = 〈‖e2(y, t)‖2
Λ〉T0

has been used more recently by
Bourget et al. (2007) to determine the constant and linear coeff cients, for the study of transonic f ows
around airfoils. All the modes have equivalent weights leading to the minimisation of the error def ned
by

I2(y) =
1

Nt

Nt∑

k=1

N∑

i=1

(
aPi (tk) − aPi (0) −

∫ t

0

fi(y, a
P (τ))dτ

)2

(4.5)

4.2.3 Flow calibration method

A third criterion of error is obtained by taking the temporal derivative of the e1 criterion.

d

dt
e1(y, t) = ȧP (t) − f(y, aR(t))

94



4.2. Def nition of errors

the error is given by replacing aR(t) with aP (t) in order to suppress the nonlinear constraint, to obtain
the def nition of error given by

e3(y, t) = ȧP (t) − f(y, aP (t)) (4.6)

The corresponding minimisation can be def ned for the error def ned by I3(y) = 〈‖e3(y, t)‖2
Λ〉T0

. In
this method we impose that the temporal POD eigen functions are the solutions of the f ow, given by
f . This method as described in Couplet et al. (2005) has been applied to experimental data obtained
from PIV measurements by Perret et al. (2006). If we assume an identity matrix for Λ giving equal
weights to all the modes. We have the minimisation problem for the functional def ned by

I3(y) =
1

Nt

Nt∑

k=1

N∑

i=1

(
ȧPi (tk) − fi(y, a

P (τ))dτ
)2 (4.7)

4.2.4 Affine function of error

For i = 2 and 3, we have ei an aff ne function with respect to y ∈ R
Ny , i.e. we def ne

ei(., t) : R
Ny −→ R

N

y −→ Ei(t)y + ei(0, t) with Ei(t) ∈ R
N×Ny

where for i = 2

E2(t)y = −
∫ t

0

f(y, aP (τ))dτ and e2(0, t) = aP (t) − aP (0)

and for i = 3
E3(t)y = −f(y, aP (t)) and e3(0, t) = ȧP (t)

Assuming a symmetric Λ, we have for i = 2, 3

I(i)(y) =
〈
‖ei(y, t)‖2

Λ

〉
T0

= yT 〈E(i)(t)TΛE(i)(t)〉T0y + 2〈e(i)(0, t)TΛE(i)(t)〉T0y

+ 〈e(i)(0, t)TΛe(i)(0, t)〉T0

= yTA(i)y − 2b(i)
T

y + c(i)

where

A(i) = 〈E(i)(t)TΛE(i)(t)〉T0 ∈ R
Ny×Ny

b(i) = −〈E(i)(t)TΛe(i)(0, t)〉T0 ∈ R
Ny

c(i) = 〈e(i)(0, t)TΛe(i)(0, t)〉T0 ∈ R

If Λ is symmetric then so is A(i) by def nition and minimising the quadratic function I(i) reduces to
solving the linear system:

A(i)y = b(i)
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4. Integration and calibration of ROM

4.3 Calibration method of Couplet

As mentioned in Couplet et al. (2005), the general idea is to determine the coeff cients y
(i)
α , as a

solution to an optimisation problem which minimises the cost functional given by

J (i)
α (y) = (1 − α)ε(i)(y) + αD(y) for i = 2, 3 (4.8)

α ∈ [0, 1] is a regularising parameter. ε(i)(y) measures the normalised error between the actual
temporal data aP (t) and that predicted by the model aR(t). D is a measure of the difference between
the coeff cients of the model y and coeff cients obtained from the Galerkin projection yGP . ε(i) and
D are def ned as

ε(i)(y) =
〈‖e(i)(y, t)‖2

Λ〉T0

〈‖e(i)(yGP , t)‖2
Λ〉T0

=
I(i)(y)

I(i)(yGP )
(4.9)

and

D(y) =
‖y − yGP‖2

Π

‖yGP‖2
Π

(4.10)

where ‖.‖Π is a semi-norm on the polynomial vector space and for any y ∈ R
Ny is def ned as

‖y‖2
Π = yTΠy (4.11)

where Π ∈ R
Ny×Ny is a non-negative symmetric matrix. For Π = INy

it means that all the coeff cients
are given equal importance in the calibration. A partial calibration for different values of INy

is
possible as reported by Couplet et al. (2005). The functional in (4.8) can be written as

J i
α(y) = χαA I(i)(y)︸ ︷︷ ︸

f1(y)

+χαΠ ‖y − yGP‖2
Π︸ ︷︷ ︸

f2(y)

(4.12)

where

χαA =
1 − α

I(i)(yGP )
and χαΠ =

α

‖yGP‖2
Π

As demonstrated in section §4.2.4 when Λ is symmetric we have f1(y) = yTA(i)y − 2b(i)
T

y + c(i).
Similarly for a symmetric Π it can be shown that f2(y) = yTΠy − 2yGP

T

Πy + yGP
T

ΠyGP . For the
quadratic functions, f1 and f2 one obtains the gradient as

∇f1(y) = 2
(
A(i)y − b(i)

)
and ∇f2(y) = 2Π

(
y − yGP

)
(4.13)

Minimisation of the functional J (i)
α is obtained at y

(i)
α where ∇J (i)

α (y
(i)
α ) = 0 and is equivalent to

solving the system of linear equations for y
(i)
α given by

A(i)
α y(i)

α = b(i)α (4.14)
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with

A(i)
α = χαAA

(i)
α + χαΠΠ

b(i)α = χαAb
(i) + χαΠΠyGP

The parameter α is user dependent and needs to be f xed. The question on its optimality remains
open.

4.4 Application to cavity flow

4.4.1 Introduction

The method described in the preceding section has been applied to the cavity f ow. The normalised
errors ε(i) and the cost of calibration is reported in table 4.1. The constrained optimisation problem is
solved for the minimisation of the error I(1). For the case of minimisation of I(3) different parameters
are experimented for the determination of the linear, constant and eddy viscosity term. Also the
results are compared with the intrinsic calibration method. The most effective method of calibration
is obtained by minimising I(1) subjected to the constraint PC , for any criterion ε(i). The normalised
error decreases as the number of terms in the calibration increases as seen from the minimisation of I3.
There is a similar trend when one notices that the criterion ε(2) is more stringent as the corresponding
error is greater for most of the cases. For the corresponding costs of calibration represented by√

D(y), it is found that minimising I(1) under the constraint PC , the cost is around 27% as compared
to 22% of minimising I(3) for both the constant and the linear terms. The cost of the calibration
evaluated only based on the values of D(y) is not a real measure of the cost as there are many criteria
for the utility of the POD ROM. The cost of the calibration can be treated as twofold namely:

1. CPU time and memory cost

2. Numerical implementation of the method

Couplet et al. (2005) argues out that for methods based on the identif cation of parameters, the cost
corresponds to the numerical implementation of the calibration and not to the variation of parameters.
As argued out in Cordier et al. (2009) the benef t of an accurate model out-weighs the cost, especially
when used to perform control studies, as one always prefers a correct prediction for the variation of
the controlled dynamics.

The intrinsic stabilisation method as demonstrated in Table 4.1 is less accurate in terms of the
normalised errors. Since the constrained optimisation problem I(1) and the minimisation of I(3)

compares well in terms of the error, we have tried to determine all the coeff cients of I(3) and as seen
in the f gure 4.1, the POD ROM diverges even for a very short period of numerical integration. This
is due to the ill-conditioning of the corresponding matrix A(3)

0 as will explained in the next section.
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Method Control terms
√

E (1)(y)
√

E (2)(y)
√

E (3)(y)
√
D(y)

Minimisation of I(3) L 2.87 · 10−2 3.33 · 10−1 7.9 · 10−2 3.15 · 10−1

Minimisation of I(3) L and C 3.61 · 10−3 3.35 · 10−1 2.4 · 10−2 2.24 · 10−1

Minimisation of I(3) V 8.3 · 10−1 8.22 · 10−1 9.3 · 10−1 1.00 · 10−1

Minimisation of I(1)

under constraint PC
C and L 1.62 · 10−2 3.5 · 10−1 1.86 · 10−1 2.68 · 10−1

Intrinsic Stabilisation C and L 7.91 · 10−2 1.67 · 10−1 2.2 · 10−1 2.6 · 10−1

Table 4.1 - Normalised errorε(i) and cost of calibrationD. 1. Comparison between the results by minimising
I(3) with identifying the Linear term (L), Constant and Linear term (L and C), Eddy viscosity terms (V). 2.

MinimisingI(1) with constraintPC . 3. Intrinsic Stabilisation.

4.4.2 Minimisation ofJ (2)
α and J (3)

α

The calibration by minimisation of J (2)
α and J (3)

α as described in §4.3 is performed. The diff culty
of the method is the choice of the regularising parameter α. Figure 4.2 represents the evolutions
of the normalised error and the calibration for the two functionals J (i)

α as the parameter α is varied
(α ∈ {0.05, 0.1, · · · , 1}). From f gure 4.2 we observe that the errors vary rapidly as the parameter
α → 1. To observe the behaviour of the error close to 1, Couplet et al. (2005) introduces a new
scaling by a parameter δ which is in a monotonic bijection with α on [0, 1], and def ned by

α =
δ

ζ (i)(1 − δ) + δ
with ζ (i) =

I(i)(yGP )

I(i)(0)

The variation of the new parameter δ with respect to α is shown in f gure 4.3. The cost functional
(4.8) with respect to the parameter δ becomes

J̃ (i)
δ (y) = [ζ(1 − δ) + δ]J (i)

α (y) (4.15)

We can see in f gure 4.2 that only ε(2)(y
(2)
α ) , ε(3)(y

(3)
α ), D(y

(2)
α ), D(y

(3)
α ) are monotone functions of

α. This has a signif cance when we consider that the optimal solution yα of (4.8) satisf es a sub-
optimality criteria given by:

(1 − α)ε(i)(yα) + αD(yα) ≤ (1 − α)ε(i)(y) + αD(y)

For any given polynomial y, we expect a monotone behaviour of the error with respect to the optimal
solution satisfying the above condition. Numerically as α→ 0, the trend is to decrease the normalised
error (also interpreted as an increase in the cost of the calibration) and hence the result is a better
calibrated model. However it is diff cult in practice to utilise the results of the curve 4.2 to determine
the value of α so as to have a balance between the reduction of the normalised error and the cost of
calibration. As already mentioned the cost of calibration is not very relevant when seeking an accurate
model. One may then be tempted to minimise the normalised error by setting α = 0. This results
in an ill-conditioning of the matrix A(2)

α and A(3)
α as α → 0 as demonstrated in 4.4. This leaves us
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Figure 4.1 - Comparison between the temporal evolutions of the projected (black line) POD and the POD
ROM (dashed line).The POD ROM is calibrated using theI(3) minimisation for all coefficients. The linear

system is not regularisedi.e. the value ofα = 0.

with no choice other than to regularise the cost functional, but then the choice of the parameter is
arbitrary. We therefore propose in the next section a method to solve the ill-conditioned system (4.14)
corresponding to α = 0 by another method of regularization, due to Tikhonov, Hansen (1994), which
corresponds directly to the minimisation of I(3).
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4.5 Calibration by the method of Tikhonov regularization

4.5.1 Filter factors and Picard’s criteria

The minimisation of the functional I(3) amounts to solving the linear system A(3)y = b3. To explain
the ideas we henceforth omit the superscripts and simply write the linear system as Ay = b. In
practice, the right hand side may be contaminated by approximation errors related to the evaluation
of the time derivatives of the POD eigenfunctions (as e(3)(0, t) = ȧP (t)). To understand the inf uence
of errors on the solution of the linear system we introduce the concept of a f lter factor. To do so we
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4. Integration and calibration of ROM

note that the singular value decomposition of A given by

A = UΣV T =

Ny∑

j=1

ujσjv
T
j

where U = (u1, · · · , uNy
) and V = (v1, · · · , vNy

) are orthogonal matrices containing the left and
right singular vectors, given by uj and vj respectively and Σ = diag(σ1, · · · , σNy

) is a diagonal
matrix of singular values of σj arranged in an increasing order

σ1 ≥ · · ·σNy

Since U and V are orthonormal matrices (UUT = V V T = INy
) the solution of the linear system y is

given as

y =

Ny∑

j=1

1

σj
uTj bvj =

Ny∑

j=1

hj
1

σj
uTj bvj with hj = 1

where hj are the f lter factors. Numerical diff culties arises if the coeff cients |uTj b|, corresponding
to the smaller singular values σj , do not decrease suff ciently rapidly as compared to the singular
values. This behaviour is illustrated by the discrete Picard condition shown as illustrated in f gure
4.5. For j ≃ 20, the singular value decay faster than the coeff cients |uTj b|. As a result the solution
obtained, oscillates around zero, and appears random. Figure 4.6 depicts the solution without any
regularization. To f x this, the f lter factor hj is modif ed so as to behave as a low-pass f lter def ned
as:

hj =

{
1 if j ≥ 20
0 if j > 20

(4.16)

For the case of cavity f ows the temporal dynamics are simple as can be seen from the abrupt fall of
the singular value for j ≃ 20. In case of more complex dynamics as encountered in turbulent f ows,
the singular values increase suff ciently and hence it is necessary to modify the f lter factors in a more
sophisticated way.

4.5.2 Tikhonov regularization

The method of Tikhonov regularization for solving ill-conditioned system has been well known as
in Hansen (1994). The idea is to seek a regularised solution yp as the minimiser of the following
weighted functional:

φρ(y) = ‖Ay − b‖2
2 + ρ‖L(y − y0)‖2

2

The f rst term corresponds to the residual norm, and the second to a side constraint imposed on the
solution. ρ is a regularization parameter and L represents the discrete approximation matrix of a
differential operator. The matrix is typically the identity matrix of order Ny (derivative of order
zero) or a banded matrix dimension (Ny − d) × Ny of order d. In particular d = {0, 1, 2} and the
approximation is termed as zeroth, f rst and second order respectively. Hereafter, these operators will
be denoted by L = I (d = 0), L = FOD (d = 1) and L = SOD (d = 2). The regularization above
can be intuitively thought of as a balance satisfying the criterion:
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Figure 4.5 - Discrete Picard visualisation, corresponding to the minimisation ofI(3) with determination of all
coefficientsi.e. constant, linear, quadratic, the Tikhonov regularization is applied for (L = 0,y0 = 0).

1. yρ should be determined so as to give a small residue Ayρ − b.

2. L(yρ − y0) should be small with respect to the 2-norm.

The f lter factors hj introduced in the previous section can be reintroduced here. For the case of
y0 = 0, the regularised solution yρ can be written as follows:

yρ =

Ny∑

j=1

hj
1

σj
uTj bvj with hj =

σ2
j

σ2
j + ρ

if L = INy

and

yρ =

Ny−d∑

j=1

hj
1

σj
uTj bxj +

Ny∑

j=Ny−d+1

uTj bxj with hj =
γ2
j

γ2
j + ρ

if L 6= INy

γj(j = 1, · · · , Ny − d) are the the generalised singular values of (A,L), (see appendix D for details)
and xj the jth column ofX ∈ R

Ny×Ny . The regularization parameter ρ is computed using the L-curve
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Figure 4.6 - Comparison between solutions obtained with and without regularization, for the minimisation of
I(3) with determination of all coefficientsi.e. constant, linear, quadratic, the Tikhonov regularization is

applied for (L = 0,y0 = 0). N = 6,Ny = 168.

method implemented in the ”regularization tools” package of Hansen (1994). The L-curve method is
based on f nding the inf exion point of the curve representing the semi-norm of the regularised solution
L‖yρ‖2, versus the corresponding residual norm ‖A(3)yρ − b(3)‖2. The inf exion point represents the
compromise between the minimisation of the norm of the residual (horizontal axis) and the semi-norm
of the solution (vertical axis) and is based on the maximisation of the curvature of the L-curve. The
temporal evolution after calibration is shown in f gure 4.8. This brings a immediate consequence in
the modal energy distribution associated to the calibrated model. The model energy Ei is def ned as

2Ei = 〈ai, ai〉 = λi for i = 1 . . . n (4.17)

Figure 4.9 shows that the calibrated model is in perfect agreement with the POD energy distribu-
tion. As already stated before the temporal dynamics of the cavity is relatively simple, and the
decrease of the eigen value is rapid. The calibration proposed may fail in more complicated case
(although it has not been tried so far in the literature as far as our knowledge). A recent development
of Noack et al. (2008), called ”Finite Time Thermodynamics” (FTT), which unif es the weakly non-
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constant, linear, quadratic, the Tikhonov regularization is applied for (L = 0,y0 = 0). The inflexion of

L-curve is atρ = 3.88 · 10−12.

linear stability theory and the statistical physics limit of turbulence theory, resulting in parameter-free
Galerkin model is worth exploring. In the next section an improvement of the method where the f ow
sensitivity is used as measure while def ning the corresponding errors is described.

4.5.3 A weighted approach to Tikhonov regularization

We have the error def ned for the minimisation of the functional I(i) as

I(i)(y) =
〈
‖ei(y, t)‖2

Λ

〉
T0

The matrix Λ is chosen as Identity, for the cases we have discussed so far, which means that we give
equal weights to all the modes in the def nition of calibration. However as already mentioned this
matrix can be chosen in suitable way so as to include the effect of mode selection in the def nition.
Two ways of def ning the weights can be proposed:

1. We consider that the main interest is in modelling the effect of the energetic structures and
hence the eigen spectra themselves serve as a measure of the relative importance of the modes,
which is the most natural choice of the weights for the def nition of error.
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Figure 4.8 - Comparison between the temporal evolutions of the projected� (POD) and the predicted� POD
ROM.The POD ROM is calibrated using theI(3) minimisation for all coefficients. The Tikhonov

regularization is applied for (L = 0,y0 = 0).

2. The error can be based on an overall sensitivity of the model with respect to a cost functional.

The weight matrix Λ for the def nition of error for the case (1) can be simply written as a diagonal
matrix:

Λii =
σi

max σi
for i = {1, · · · , N}

For the case (2) we consider the state equations

ȧR = f(y, aR) (4.18)

Variation of any convex cost functional J with respect to the state variables aR = {aRi }Ni=1 gives the
adjoint equation of (4.18) as

ξ̇R = g(y, aR, ξR) (4.19)
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Figure 4.9 - Comparison between the modal energetic contents obtained before and after calibration. The
POD eigenvalues are plotted for reference. The POD ROM is calibrated by minimisingI(3) with

determination of all coefficientsi.e. constant, linear, quadratic, the Tikhonov regularization is applied for
(L = 0,y0 = 0).

Where ξR(t) = {ξRi }Ni=1 is the adjoint variable. The overall sensitivity of the cost functional J with
respect to aR is obtained as

Si =
dJ
d aRi

= 〈aRi (t)ξi
R(t)〉 (4.20)

where 〈.〉 is any time averaging operator. We can then def ne the weight matrix Λ with respect to the
sensitivity as

Λii =
Si

max Si
for i = {1, · · · , N} (4.21)

In this study we have taken the cost functional J based on the energy of the temporal modes as

J =
1

2

∫ T

0

N∑

i=1

(aRi (t))2dt (4.22)

where α is a positive constant. The above functional is minimised subject to the constraint (4.18), by
the method of Lagrange multipliers. The adjoint state equation (4.19) is given by

ξ̇i = −ai(t) −
N∑

i=1

(
Lij +

N∑

j=1

(Qjik +Qjki) ak(t)

)
ξj(t) (4.23)
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eigen spectra of the PODi.e. σk
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(b) Weight matrix based on the sensitivity analysis for the cost functional

based on energyi.e. Sk

maxSk
.

In f gure 4.10 a comparison of the two weight matrix is given. We note a similar behaviour
between the two weights introduced as an energy based criteria is used in both cases 1. The sensitivity
based weight is different for mode 3, and this allows to speculate that in the case where the ROM
is not built using the POD bases, but on a different criteria, such as the Observability as described
in Jordan et al. (2007), the above analysis may yield a sensitivity weight for the lower modes which
may be acoustically important. The temporal evolution and phase plot for the case of the sensitivity
based calibration is shown in f gure 4.11 and f gure 4.12 respectively and shows a very good visual
agreement with the POD dynamics.

4.5.4 Comparison of different types of Tikhonov regularization

The various type of Tikhonov regularization are compared in table 4.2 for the normalised errors and
the cost of calibration, obtained for the zeroth, f rst and second order Tikhonov regularization. The
error in all the cases remains the same. When comparing the cost of calibration the regularization
L = SOD;y0 = 0 is more economical. The result is more effective than the errors obtained for
the different type of calibration described in table 4.1 although the cost is an order times more, but
then again to reiterate this cost is not important than the accuracy we desire. The different errors
for the weighted regularization are compared in table 4.3. The errors do not differ much when
compared to the classical case when all the modes are given equal weights, but then the temporal
dynamics which we are treating is rather simple to conclude the advantages of the weighted Tikhonov
regularization over the classical method. More complicated dynamics like turbulent f ows, acoustics,

1Although the sense of energy is different in two cases, it is a energy of projection in the case of POD and the energy
contained of the f ow dynamics, for the sensitivity based analysis.
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Figure 4.11 - Temporal comparison of the first6 modes, with the POD coefficients:ROM calibrated (solid
line), reference POD dynamics (o). POD ROM is calibrated using theI(3) minimisation for all coefficients.
The Tikhonov regularization is applied for (L = 0,y0 = 0), and the weight matrixΛ based on the overall

sensitivity.
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Figure 4.12 - Phase portrait comparison of the first6 modes, with the POD coefficients:ROM calibrated (solid
line), reference POD dynamics (o). POD ROM is calibrated using theI(3) minimisation for all coefficients.
The Tikhonov regularization is applied for (L = 0,y0 = 0), and the weight matrixΛ based on the overall

sensitivity.
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4.6. Comparison with other calibration methods

Type of Tikhonov regularization
√
E (1)(y)

√
E (2)(y)

√
E (3)(y)

√
D(y)

L = I;y0 = 0 4.0 · 10−4 6.13 · 10−3 2.11 · 10−2 2.74
L = I;y0 = yGP 4.0 · 10−4 6.13 · 10−3 2.11 · 10−2 2.72
L = FOD;y0 = 0 4.0 · 10−4 6.13 · 10−3 2.11 · 10−2 4.9
L = FOD;y0 = yGP 4.0 · 10−4 6.13 · 10−3 2.11 · 10−2 4.7
L = SOD;y0 = 0 4.0 · 10−4 6.13 · 10−3 2.11 · 10−2 1.22
L = SOD;y0 = yGP 4.0 · 10−4 6.13 · 10−3 2.11 · 10−2 6.7

Table 4.2 - Normalised errorε(i) and cost of calibrationD. POD ROM is calibrated using theI(3)

minimisation for all coefficients (constant, linear, quadratic) for different type of Tikhonov regularization with
the weight matrixΛ = I.

Type of Tikhonov regularization
√

E (1)(y)
√
E (2)(y)

√
E (3)(y)

√
D(y)

L = I;y0 = 0 5.0 · 10−4 2.96 · 10−2 2.16 · 10−2 2.88
L = I;y0 = yGP 5.0 · 10−4 2.96 · 10−2 2.16 · 10−2 2.84
L = FOD;y0 = 0 3.49 · 10−3 2.96 · 10−2 2.16 · 10−2 5.32
L = FOD;y0 = yGP 1.53 · 10−3 2.96 · 10−2 2.16 · 10−2 4.9
L = SOD;y0 = 0 5.38 · 10−4 2.96 · 10−2 2.16 · 10−2 7.0
L = SOD;y0 = yGP 5.38 · 10−4 2.96 · 10−2 2.16 · 10−2 6.0

Table 4.3 - Normalised errorε(i) and cost of calibrationD. POD ROM is calibrated using theI(3)

minimisation for all coefficients (constant, linear, quadratic) for different type of Tikhonov regularization with
the weight matrixΛii = Si

maxSi
obtained from the sensitivity analysis.

which have different scales of dynamics need to be studied to establish the advantage of the method.
In any case both the methods of Tikhonov regularization compare much better than the other methods.

4.6 Comparison with other calibration methods

We compare in this section the three most effective methods of calibration for the cavity f ow conf g-
uration. Table 4.4 gives the normalised errors and cost of calibration obtained by minimisation of I(1)

under the constraint PC , minimisation of J (3)
α with α = 0.001 and determining all the coeff cients,

and application of the most effective weighted Tikhonov regularization i.e. for L = I and y0 = 0.
The weighted Tikhonov method is most effective when comparing the normalised errors, which is
minimum than the other two methods. A further analysis can be done if we analyse the modal errors
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I(j)
i def ned 2 for i = 1, · · · , N and j = {1, 2, 3} as

I(j)(y) =

N∑

i=1

I(j)
i (y)

The modal errors I(3)
i are represented in f gure 4.13 for the various calibration techniques presented

in table 4.4. The method of weighted Tikhonov regularization is most effective for all POD modes.
Minimisation of J (3)

α for α = 0.001 compares with the weighted Tikhonov for the initial POD modes,
but for higher modes the Tikhonov method clearly out performs. Both the methods of minimisation
of J (3)

α and the method of weighted Tikhonov regularization are far better than the minimisation of
I(1) under the constraint PC for the higher modes. The main strength of the weighted Tikhonov
regularization is that the choice of the parameter ρ is determined by the L-curve without any user
intervention. Also the higher modes are well calibrated which is important from an acoustic point of
view.

Method of calibration control terms
√

E (1)(y)
√

E (2)(y)
√
E (3)(y)

√
D(y)

Minimisation of I(1) under
constraint PC

C and L 1.62 · 10−2 3.5 · 10−1 1.86 · 10−1 2.68 · 10−1

Minimisation of J (3)
α with

α = 0.001
C , L and Q 1.23 · 10−3 2.97 · 10−2 2.36 · 10−2 4.0 · 10−1

Minimisation of I(3) with the
weighted Tikhonov regular-
ization (L = I : y0 = 0)

C, L and Q 5.0 · 10−4 2.96 · 10−2 2.16 · 10−2 2.88

Table 4.4 - Normalised errorε(i) and cost of calibration. Comparison between the results obtained by: (a)

minimisation ofI(1) under the constraintPC . (b) minimisation ofJ (3)
α with α = 0.001. (c) minimisation of

J (3)
α with determination of all the coefficients (constant, linear and quadratic) and application of the weighted

Tikhonov regularization (L = I andy0 = 0).

4.7 Long time time integration of the POD ROM

Since we are dealing with periodic f ow it is natural to expect that the temporal coeff cients once
determined is valid for a time longer than the period of snapshot acquisition. As shown by
Sirisup & Karniadakis (2004) although the system is initialised with correct state the solution may
drift away for a long period of integration. Figure 4.14 shows that the calibrated model predicts the
dynamics for a non-dimensional time 11, which corresponds to around 4 cycle of the f ow period,
after which it diverges rapidly. This is different from the results where the calibrated model is shown
to work for a much longer periods. The reason is that the neglected modes which contribute to the

2Rigorously speaking these errors can be introduced only when Λ = I the identity matrix of size N .
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i . Comparison between the results obtained by: (a) minimisation ofI(1) under

the constraintPC , denoted by(⋆). (b) minimisation ofJ (3)
α with α = 0.001 denoted by(△). (c) minimisation

ofJ (3)
α with determination of all the coefficients (constant, linear and quadratic) and application of the

weighted Tikhonov regularization (L = I andy0 = 0) denoted by(◦). The no calibration case is denoted by

(+). NoteI(3)(y) =
∑N

i=1 I
(3)
i (y).

regularization of the system is not modeled during calibration. The validity of ROM for a longer
time of integration is still open, where the coeff cients need to be given suitable weights to model the
neglected term. While performing control since the time period where the control is determined is
much larger than the period of validity of the model, it is imperative that we calibrate more than one
period of the f ow as will be demonstrated in the next chapter.

4.8 Conclusion

In this chapter a unif ed framework for the different calibration methods described in the literature
is given, with an application to the cavity f ow. It is found that the method based on minimisation
of I(1), under the constraint of the Cauchy problem PC is more effective than the methods based on
the minimisation of I(3), or the intrinsic stabilisation method. We have then applied the method of
Couplet et al. (2005) based on the minimisation of functional based on the convex linear combination
of terms which represent the normalised error and a measure of the variation of the coeff cients of
the model to their values obtained from POD. The benef t of an accurate model outweighs the cost
consideration. It can be shown that adding the regularising term, improves the conditioning number
of the linear system associated to the minimisation of I(2) and I(3). The choice of the parameter α in
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Figure 4.14 - Evolution of first4 temporal modesai(t) of the POD ROM for period greater than the period of
validity of the model. The model diverges after a time11.

the regularising term is quite tricky and is problem dependent.
The method of Tikhonov regularization for the error associated to the minimisation of I(3) is

formed. The weight matrix in the def nition of errors for the minimisation of I(3), is chosen based
on two criteria. One based on the eigen spectra and the other based on the sensitivity of the POD
temporal coeff cients with respect to a energy based cost functional. We compared the errors for the
two type of Tikhonov regularization and it is found that the zeroth order regularization (L = I) with
y0 = 0 is the most effective among all the types of Tikhonov regularization considered.

Numerical experiments demonstrates that the weighted Tikhonov regularization outperforms, in
terms of the normalised errors, the minimisation of I(1) with constraint PC and the minimisation of
J (3)
α with α = 0.001. The main strength of the weighted Tikhonov regularization is that the choice of

the parameter ρ is determined by the L-curve without any user intervention. Also the higher modes are
well calibrated which is important from an acoustic point of view. Finally we verify the suitability of
the calibrated model for longer periods of time integration. Although the model predicts the dynamics
for about 4 periods of f ow oscillation, it diverges rapidly when integrated beyond. This is due to the
fact that the neglected modes are not taken into consideration and the problem of closure remains
open, even after correctly determining the coeff cients. We therefore required to calibrate for more
periods if we have to utilise the model for control studies.

Having established all the tools of ROM, i.e. extension to actuated case, stabilisation of ROM, we
are now proceed to utilise the above development for control studies, in the next chapter.
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Chapter 5

Feedback control of cavity flows

Introduction

Dans ce chapitre est mis en oeuvre un contrôle optimal en boucle ferḿee du syst̀eme dynamique forcé
assocíe à la cavit́e. Un contr̂ole optimal a d́ejà ét́e appliqúe sur des mod̀eles ŕeduits, par exemple
pour le cas du sillage d’un cylindre, comme dansGrahamet al. (1999a), Grahamet al. (1999b) et
Bergmann & Cordier(2005). Parce que le contr̂olemodifie intrins̀equement le système dynamique il
faut pouvoir prendre en compte correctement le forçage dans le modèle, comme cela est proposé par
Welleret al. (2009a). Pour le contr̂oleen boucle ferḿee de l’́ecoulement de cavité, nous nous sommes
inspirés des travaux nuḿeriques deRowley & Juttijudata(2005) et des travaux exṕerimentaux de
Samimyet al. (2007) qui ont obtenus des résultats mitiǵes. Le chapitre est découṕe en deux parties,
l’une consacŕeeà la linéarisation du système dynamique forcé, l’autre à l’application d’un contr̂ole
linéaire quadratique gaussien età son utilisation dans l’espace physique.

Construction du syst̀emeà contrôler

Le syst̀eme est d́ecrit par la figure5.2. Il repose sur une estimation de l’état à partir de l’observation
de la pression en certains points de l’écoulement (6 au total) sur la base d’une estimation stochas-
tique linéaire (LES) qui est obtenue très simplement par projéction sur l’espace des coefficients POD
temporels et qui s’av̀ere extr̂emement pŕecise comme la reconstruction le montre (figure5.3), à cause
del’orthogonalité de la base POD.

Une analyse de sensibilité des coefficients du modèle ŕeduit prenant en compte un forçage (fig-
ure 5.4) met enévidence la ńecessit́e de lińeariser le syst̀eme fortement non lińeaire avec soin. La
linéarisation se fait autour d’uńetat d’́equilibre calcuĺe par une ḿethode de Newton.

Calcul de la loi de contrôle

La loi de contr̂ole en boucle ferḿee implique une relation lińeaire (matrice gain) entre l’́etat du
syst̀eme et le contr̂ole lui-même. Ce gain est obtenùa partir de la ŕesolution d’uneéquation de
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5. Feedback control of cavity f ows

Riccati. On peut aussi montrer que l’estimation de l’état (l’observateur) est obtenue par la résolution
d’une autreéquation de Riccati, en se basan sur la théorie du filtre de Kalmann-Bucy. En appliquant
le principe de śeparation, on simule finalement le comportement du système complet comprenant le
vecteur d’́etat et l’erreur d’estimation. On observe que la réponse du système d́epent de la condition
initiale, de la forme du contr̂ole et des bruits extérieurs qui viennent perturber le système.

Pour l’applicationà l’ écoulement de cavité, rappelons la proćedure ǵeńerale. Dans un premier
temps, nous effectuons une simulation sans contrôle et par projection de Galerkin nous contruisons
et calibrons une mod̀ele ŕeduit non forće. Ensuite, le système ŕeel (leséquations de Navier–Stokes)
sont forćees par un signal (eq.5.26) contenant de nombreuses fréquenćes (fig. 5.6). Un mod̀ele
réduit prenant en compte ce forçage est ensuite construit et sert de base pour la détermination du
contrôle optimal. Le contr̂ole LQG permet de stabiliser le système lińeariśe comme le montre le
spectre des valeurs propres du système avant et après application de la loi de feedback (fig.5.7).
Il apparâıt que l’approche se contente de stabiliser les valeurs propresà partie ŕeelle positive, sans
toucherà la partie imaginaire, c’est-̀a-dire aux fŕequenćes. On remarque aussi que le gain du contrôle
||Kc|| ≈ 950 est extr̂emement́elev́e, si on comparèa l’amplitude du forçage dans le modèle complet
(de l’ordre de 0.08). Il n’est donc pas réaliste. Il s’explique par le fait qu’on cherche un contrôle
sur un temps infini pour le modèle ŕeduit alors que pour le modèle complet on cherche un contrôle
possible sur un temps très limit́e, de quelques périodes au maximun. Suivant l’approche proposée
dansSamimyet al. (2007), on introduit un nouveau param̀etre α qui donne au final l’amplitude du
contrôle (fig. 5.8). α = 0.5 fournit la valeur minimale pour obtenir une stabilisation du modèle
réduit.

La matrice gain de l’observateur est construite aussià partir de la solution d’unéequation de
Riccati et nous trouvons (fig.5.9) une solution stabilisant l’erreur d’estimation (si on ne prend pas
en compte le bruit gaussien qui existera toujours).

Pour obtenir la forme du contrôle optimal, on simule le système augmenté constitúe du syst̀eme
linéárisé et du syst̀eme b̂ati à partir de l’erreur d’estimation, avec comme entrée, le forçage multi-
fréquentiel utiliśe plus haut. On obtient l’évolution de l’́etat et par conśequent du contôle par la
loi de feedback. Cette fonction est donnée sur la figure5.10, en comparaisont avec le contrôle mul-
tifr équentiel. On trouve une loi très simple qu’on approxime par un sinus (eq.5.28) dont on d́etermine
la phase, la fŕequence et l’amplitude. La fréquence est celle de la moins stable des valeurs propres
du syst̀eme. Ce nouveau forçage est alors introduit dans le problème complet (la DNS), moyennant
cependant une réduction de l’amplitude pouŕeviter la divergence nuḿerique. La figure5.11présente
la densit́e spectrale de puissance de la vitesse verticale dans un point de la couche de cisaillement,
et on observe une petite réduction du pic pour le second mode de Rossiter. Par contre d’autres
fréquences mal prises en compte dans le modèle sont amplifíees, ce qui est une forte limitation de
notre approche.

Enfin la ŕeponse complète du mod̀ele ŕeduit ainsi que l’erreur d’estimation en boucle fermée sont
montŕees sur les figures5.12et 5.13. Encore une fois on remarque que la théorie fonctionne mais
que les amplitudes obtenus ne sont pas réalistes pour l’application dans les simulations numériques
directes.
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5.1. Introduction

5.1 Introduction

In this chapter we extend the developments of the previous chapter to perform closed loop con-
trol of cavity f ows. Regarding the use of ROM for optimal control studies one can refer
Graham et al. (1999a), Graham et al. (1999b) and Bergmann & Cordier (2005) where the opti-
mal control has been applied for the control of wake f ows behind a cylinder. Since the ROM
is designed for a particular f ow condition Fahl (2000) propose a method where the model is re-
f ned during the optimisation process, to take care of the validity of the model to the variation
of control parameters. This method has been applied for the optimal control of wake f ows by
Bergmann & Cordier (2008). Weller et al. (2009b), Weller et al. (2009a) proposes a method to
include the effect of actuation in the ROM to obtain a feedback control. Control of cavity f ows,
using experimental data to build the ROM and its application to perform a model based control has
been proposed in Rowley & Juttijudata (2005), Samimy et al. (2007). This chapter can be divided
into two parts, in the f rst part we introduce the various tools necessary for the feedback design,
namely the construction of the observer and linearisation of the model. The observer is constructed
by a Linear Stochastic Estimation (LSE) of the state based on the observed pressure measurements.
A sensitivity analysis is performed to identify the terms which are important while linearising the
model. The second part consists of designing a feedback control of the LQG type. The obtained
control is introduced into the DNS to obtain an overall reduction in the spectra corresponding to the
second Rossiter mode of the cavity.

5.2 Tools used for the feedback design

In this section we propose a feedback law based on an observer design, obtained from the pres-
sure measurements inside the cavity. The plant model utilised in this study is shown in the f gure
5.2. Control of cavity f ows, using experimental data to build the ROM has been performed by
Samimy et al. (2007), but without any calibration of the temporal dynamics. When we cannot mea-
sure the states a we construct an observer C, usually using wall pressure sensors, and try to predict
the f ow f eld by measuring the output y. Prediction of f ow f eld from the observed states has been
studied in the past by performing a Linear Stochastic Estimation(LSE) by Adrian & Moin (1998),
Ukeiley et al. (2001). It consist in correlating the sensor signals with f ow data base informa-
tion, to predict the f ow f eld. A higher order correlations is also possible as demonstrated in
Buffoni et al. (2008), where a Quadratic Stochastic Estimation (QSE) is performed. The main draw-
back of the LSE or the QSE is that they take into account the correlations at a particular time only,
without considering the time history of the previous measurements, hence they are termed as ’static’
estimators. In an experimental setup this poses a problem due to the measurement noise and also on
the limitations of the number of sensors that can be placed. Rowley & Juttijudata (2005) have used
a dynamic estimator i.e. of combining the estimation with a reduced order model to take care of the
time history of sensor measurements. A combination of the isentropic model with the data obtained
from experiments has been studied by Samimy et al. (2007). The technique of LSE which is used in
this work for the observer is brief y explained in the next section.
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Figure 5.1 - Plant and Observer for feedback control.C̃: observer,K0: Estimator,Kc: Feedback

5.2.1 Linear Stochastic Estimation (LSE)

The LSE technique enables us to determine the observer matrix C̃, as shown in f gure 5.2, given a
limited number of pressure measurements obtained from sensors along the walls of the cavity. For
each sensor i ∈ [1 Ns], we can estimate the pressure p̃i(t) coeff cients by a series expansion of the
discrete temporal POD coeff cients aj(t) as

p̃i(t) =

Ns∑

j=1

C̃ij aj(t) +

Ns∑

j=1

Ns∑

k=1

D̃ijk aj(t)ak(t) + . . . (5.1)

The expansion can be truncated above the linear term or the quadratic term which corresponds to the
LSE or QSE problem. The coeff cients C̃ij and D̃ijk are determined so as to minimise the mean square
error between the estimated pressure signal p̃i(t) and the one obtained from measurement pi(t).

ei =

∫ T

0

[p̃i(t) − pi(t)]
2 dt = 〈[p̃i(t) − pi(t)]

2〉 (5.2)

Since the number of snapshots is much larger than pressure sensors, the above system is overdeter-
mined and the coeff cients are determined using the method of least squares by solving an overdeter-
mined linear system given by

dei

dC̃ij
= 0 and

dei

dD̃ijk

= 0 (5.3)
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5.2. Tools used for the feedback design

On noting the orthogonality of the temporal modes 〈aj, ak〉 = λiδjk, the pressure f eld can be simply
expanded in terms of the temporal modes as

p̃i(t) =
Ns∑

i

C̃ijaj(t) where C̃ij =
〈pi, aj〉
〈aj, aj〉

(5.4)

In this study Ns = 6 sensors along the wall and the shear layer are used to measure the pressure
as shown in f gure 5.2. It is also worthwhile mentioning that solving the system of equation given

Incoming flow
D

L

(0,D/4)

(0,3D/4)

(D/2,0) (3D/2,0)

(L,3D/4)

(L,D/4)

Figure 5.2 - Location of pressure sensors for observer design

by (5.3) leads to an ill conditioned problem. A luxury afforded by numerical simulations is that we
can modify the condition number by changing the location of the pressure sensors, however for data
obtained from experimental simulations where the sensor positions are f xed we can use the method
of Tikhonov regularization mentioned in section §4.5.2. The observer dynamics for the construction
of the pressure signals, issued from (5.4) is shown in f gure 5.3, and provides a good estimation of
the wall pressure, due to the orthogonality property of the eigen modes.

5.2.2 Sensitivity analysis of the actuated terms

Sensitivity studies help in analysing the variation of a given quantity (generally given by a functional)
with respect to a parameter of the model. In this study a sensitivity analysis is performed to identify
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Figure 5.3 - LSE reconstruction of the pressure signals. The pressure value from the sensor are denoted by
solid line, and the coefficients obtained from LSE denoted by�. The sensors are located at positions(0,D/4),

(0, 3D/4), (L,D/4), (L, 3D/4) along the cavity walls, and(D/2, 0), (3D/2, 0) in the shear layer.
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5.2. Tools used for the feedback design

the terms to be neglected in the linearisation of the model. The state equation can be written as

ȧk = N (a, γ(t))

= Ck + Ljkaj +Qijkaiaj + h1kγ + h2ikaiγ + h3kγ
2 (5.5)

In the present case we seek for sensitivity with respect to the time-independent actuated coeff cients
h1i, h2ij and h3i of the model. The functional J is based on the energy of the modes and is given by

J (a, γ(t)) =

∫ T

0

∫

Ω

J(a, γ(t))dΩdt

=
1

2

∫ T

0

n∑

i=1

(ai(t))
2dt

(5.6)

A variation of the augmented functional based on an adjoint vector ξ and the state equation (5.5)
yields the sensitivities :

∂J
∂h1i

= 〈ξi(t)γ(t)〉,
∂J
∂h2ij

= 〈aj(t)ξi(t)γ(t)〉,
∂J
∂h3i

= 〈ξi(t)γ2(t)〉 (5.7)

and
∂J
∂γ

=
∑

i

h1iξi(t) +
∑

i

∑

j

h2ijξi(t)aj(t) + 2
∑

i

h3iξi(t)γ(t)

where the adjoint equation is given by :

ξ̇i(t) = gi(Ci,Li,Qi, a(t), ξ(t)) +
∑

i

h2jiξj(t)γ(t) − ai(t) (5.8)

Here 〈.〉 is the time averaging operator. The sensitivities are plotted in f gure 5.4 and shows that the
constant term of the actuated model h1i has a higher sensitivity when compared to the quadratic terms
h3i by an order of magnitude and hence plays an important role in linearisation. It is also important
to note that the f rst two mode which drives the actuation dynamics does not contribute signif cantly
to the sensitivity of the terms h1i and h3i as compared to h2ij , this signif es that more care has to be
taken while linearising these terms.

5.2.3 Linearisation of the plant

Once through the observer design, the plant (eq. (5.5)) is built by linearising the ROM around a
suitable equilibrium point a0. Determination of the equilibrium point involves the task of solving a
nonlinear algebraic matrix equation for the un-actuated case γ = 0. Equation (5.5) can be re-casted
for the un-actuated part as:

f(a) := C + La +




aTQ1a

...
aTQNa



 (5.9)
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5.2. Tools used for the feedback design

In this study a Newton’s iterative method is used to calculate the equilibrium point a0 as given by the
following algorithm :

ak+1 = ak − J−1(ak)f(ak) (5.10)

where J(a) is the Jacobian matrix : J = ∂f(a)
∂a

. Also note that the solution of the Newton’s method
(eq. (5.10)) depends on initial conditions and is not unique. The initial value of guess, is chosen as
the initial conditions of the dynamical system at t = 0. To linearise the plant, consider the equation
(5.5) which can be recasted as

f(a) := C + La +




aTQ1a

...
aTQNa



+ h1γ +




(h1

21jγ)
Ta

...
(hN2Njγ)

Ta



 (5.11)

In this system the quadratic term γ2 is neglected. A linearisation is possible but since the mean value
of γ(t) is zero, it gives the same results as neglecting it. As the equilibrium point is unaltered in the
presence of a feedback, we perform a linearisation by introducing the perturbation ã = a − a0 to
write the above system as:

˜̇a = ȧ = C + L(ã + a0) +




(ã + a0)

TQ1(ã + a0)
...

(ã + a0)
TQN(ã + a0)



+ h1γ +




(h1

21jγ)
T (ã + a0)
...

(hN2Njγ)
T (ã + a0)





= C + La0 +




aT0Q

1a0
...

aT0Q
Na0



+ Lã +




ãTQ1a0 + aT0Q

1ã
...

ãTQNa0 + aT0Q
N ã



+




ãTQ1ã

...
ãTQ1ã





+ h1γ +




(h1

21jγ)
Ta0

...
(hN2Njγ)

Ta0



+




(h1

21jγ)
T ã

...
(hN2Njγ)

T ã



 (5.12)

Since a0 is the equilibrium point of the un-actuated model it satisf es equation (5.9). The terms in
(5.12) can be rearranged perturbed state ã as

˜̇a = L̃ã +




ãTQ1ã

...
ãTQN ã



+ h̃1γ +




(h1

21jγ)
T ã

...
(hN2Njγ)

T ã



 (5.13)

where

L̃ = L+




ãT0 (Q1 +Q1)T )

...
ãT0 (QN +QN)T )



 , h̃1 = h1 +




(h1

21j)
T

...
(hN2Nj)

T



 a0

123
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The observer model can be similarly linearised by introducing the transformation p̃ = p − p0 as :

p̃ = p− p0 = C̃a− C̃a0 = C̃ã (5.14)

On using a linearisation at the origin of equation (5.13), the linearised plant system can be written as

˙̃a = Ãã + B̃γ

p̃ = C̃ã (5.15)

where Ã = L̃ and B̃ = h̃1,

5.3 Feedback design.

5.3.1 Controller

After linearising the plant, one can perform a feedback control. The full plant, control and estimator
model are shown on f gure 5.2. The model for the controller is given by the equations for a LQG
design as

ȧ = Ãa + B̃γ + w1

y = C̃a + w2
(5.16)

where for the sake of clarity we denote a = ã and y = p̃. The controller noisew1 and the measurement
noisew2 are assumed to be uncorrelated, zero mean, white Gaussian processes with modelled spectral
densities Q1 and Q2 as described in 2.4.3. In this work the matrices Q1 and Q2 matrices are set to
identity. We also introduce the noise perturbation vector w = [w1 w2]. The response of the state can
be separated into three components, the natural response a0(Ã, a(0); t) which depends on the eigen
values of the main plant matrix Ã and on the initial condition a(0), the response to a given control
γ(t) denoted by aγ(Ã, B̃, γ; t) and the response to the noise w1 given by aw(Ã, w1; t). The solution
of the plant model (5.16) can be written as

a(t) = e Ãta(0) +

∫ t

0

e Ã(t−τ) B̃ γ(τ) dτ +

∫ t

0

e Ã(t−τ) w1(τ) dτ

= a0(Ã, a(0); t) + aγ(Ã, B̃, γ; t) + aw(Ã, w1; t). (5.17)

Assuming a full information state, the feedback law is given by

γ = −Kc a (5.18)

where the matrix Kc is chosen so as to stabilise the plant and minimise the quadratic cost functional
given by :

J =

∫ T

0

(
aTWa + ℓ2γ2

)
dt (5.19)
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5.3. Feedback design.

where W is a weight matrix (chosen as identity in our case) and ℓ represents the cost of the control.
By a simple variational approach, it can be demonstrated that the gain vector Kc is given by

Kc =
1

ℓ2
B̃TX (5.20)

where X is the solution of the steady Ricatti equation to get inf nite horizon stabilisation:

ÃTX +XÃ− 1

ℓ2
XB̃B̃TX +W = 0 (5.21)

5.3.2 Observer

In many cases the state a is known only from a limited number of output measurements y, and must
be built from an observation ŷ which is an approximation of the real value of the measurement y.
Denoting â the approximation of the state, the observer equations can be written as :

˙̂a = Ãâ + B̃γ +Ko(y − ŷ)

ŷ = C̃â
(5.22)

The observer gain matrixKo is obtained by solving the Ricatti equation for Y and the observer matrix
C̃ and is given by

Ỹ AT + ÃY − Y C̃T C̃Y +Q2 = 0 (5.23)

As described in Bewley & Liu (1998) the observer problem is dual of the controller problem described
in equation (5.21). The estimation gain Ko is obtained f nally as

Ko = Y C̃T (5.24)

5.3.3 Simulation of the full system

The full system for the controller and observer, def ned in terms of the state and the estimator error
ea = a − â, with the state denoted by x = [a, ea], and the observer ỹ = [y, ey] can be written as :

ẋ = Atx +Dt w

˙̃y = Ctx (5.25)

where At =

[
Ã− B̃Kc B̃Kc

(0)dimÃ Ã−KoC̃

]
Dt =

[
Id 0
Id −Ko

]
Ct =

[
C̃ 0dim C̃

(0)dim C̃ C̃

]

To get the system the feedback is applied on the observer state â as γ = −Kcâ. The eigenvalue of the
full matrixAt are the same as the eigenvalue of the matrices Ã− B̃Kc and Ã−KoC̃. By the principle
of separation as described in chapter 2 the At is stable, if the corresponding gain matrices Kc and
Ko obtained by the solution of the Ricatti equations are stable. In the absence of any noise, the state
errors goes to zero in the inf nite horizon, hence the estimation state â goes to the real state a, and in
the same way, the observer error ey = y − ŷ = C̃ea goes to zero. In presence of Gaussian noise w,
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errors ea and ey remains under a given threshold, and are functions of the correlation matricesQ1 and
Q2 as stated in Bagheri et al. (2009b). Following the notation of equation (5.17), the solution of the
full plant model can written as :

x(t) = x0(At,x(0); t) + xw(At, Dt w; t).

where ||x0|| → 0 when t→ ∞.

5.3.4 Application to cavity

To remind of the overall procedure, a simulation without control is performed, and the un-actuated
ROM model is constructed using a Galerkin projection. The model is further calibrated to avoid the
divergence of solution when integrated in time. To introduce the effect of actuation, the high f delity
model is forced with a chirp excitation of the form.

γg(t) = A1 sin(2πSt1t) × sin (2πSt2t− A2 sin(2πSt3t)) (5.26)

at the upstream corner of the cavity where A1 = 0.1, A2 = 27, f1 = 1/60, f2 = 2/3, f3 = 1/30. The
form of the excitation is as shown in f gure 5.5. The spectra of the chirp is represented in f gure 5.6
depicting a large spectral band in the range 0.2−1.5 with a concentration around the value of 1.5. 300
snapshots are sampled, which corresponds to a time T = 15, i.e. half the period of excitation of the
full chirp. The actuated mode and the plant model are constructed with the help of these realisations.
The control has been design for different values of the cost ℓ ∈ [0.01, 5000], and the result was found
to be independent of the value of ℓ. Finally the value of ℓ = 1 was chosen for this study. In f gure 5.7
the eigen values of the open loop matrix Ã and the closed loop matrix Ã− B̃Kc are represented. The
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5.3. Feedback design.
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Figure 5.7 - Eigen values of the plant: eigen values ofÃ, (o) : eigen values of̃A− B̃Kc, (+).

feedback control clearly mirrors the unstable eigenvalues, with dominant eigen values of the closed
loop λmax = −0.038± i2.26. For values of ℓ > 5000, it seems numerically diff cult to use the Matlab
system toolbox for the solution of the Ricatti equation, to f nd an accurate and stable eigenvalue of
Ã − B̃Kc. The value of the feedback gain ||Kc|| ≈ 950 which seems quite large. When ℓ → ∞ the
cost of the control goes to zero and the system can not be stabilised, as the the norm of the gain goes
to zero. Similarly when ℓ is small, the eff ciency of the control increases due to the large amplitude
of the control. However in practical cases the value of the control that can be fed into the actuator is
limited by a range of the input signal as a large gain may damage the actuator Samimy et al. (2007).

To scale down the large gain, a new parameter α such that the amplitude of the control could
decrease is introduced such that γα(t) = αKc with α ∈ [0, 1.1]. In f gure 5.8 the real part of the
largest eigenvalue of Ã−αB̃Kc is represents. The value of α = 1 corresponds to the optimal control,
while α = 0 corresponds to the uncontrolled case. The value of α = 0.5 corresponds to the stability
limit of the controlled system, and is the result of mirroring of the unstable eigenvalues about the
imaginary axis. It means that to stabilise the plant, the norm of the gain control vector should be
at least equal to 475, which is quite large. The observer response is directly related to the largest
eigenvalue of the matrix Ã −KoC̃. For our case we found a real value of −0.45 which is suff cient
to ensure the decrease of the estimation errors ea with time. To determine the optimal control input
γ(t)opt, we solve the full system (5.25), and use the feedback law γ(t)opt = −Kc(a−ea). In this work
the noise w = [w1 w2] is neglected while performing the full state simulation. The estimator eigen
values are represented in f gure 5.9 and shows three eigen values which are marginally stable. The
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5. Feedback control of cavity f ows
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Figure 5.10 - Comparison of the initial value and optimal value of the closed loop system.

problem now is to determine the value of control γDNS(t) to be introduced in the numerical simulation
to stabilise the f ow or the acoustic f uctuations.

The plant model with the input γg(t) is simulated. The feedback law γ(t) = −Kcag obtained
corresponds to the solution given by:

γ(t) = −Kc(e
Ã ta(0) +

∫ t

0

e Ã(t−τ) B γg(τ) dτ) (5.27)

The new updated control is found to be of large magnitude max(γ(t)) = Gmax ≈ 250. The evolution
of the f nal optimal control in comparison with the initial solution is as shown in f gure 5.10. A f tting
approach demonstrates that γ(t) is given by

γ(t) = Gmax sin(ωt+ ϕ) (5.28)

where ω = 2.27, corresponding to a frequency f = 0.3617 and a phase ϕ = −0.164. The frequency
is in good approximation to the imaginary part of the largest eigenvalue of the controlled plant (matrix
Ã − B̃Kc). As is seen from equation (5.27), the gain vector Kc acts as a f lter and signals out the
frequency which correspond to the shear layer instability of the second Rossiter mode.

To avoid numerical divergence of the numerical solution on the introduction of control, the ampli-
tude (gain) G0 of any control is set to a maximum value of G0 = 0.08, so the updated control is of the
same form as γ(t) but with an amplitude G0. The power spectral density for the vertical component
of velocity at a point in the shear layer is compared with the simulation from the un-actuated case as
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5. Feedback control of cavity f ows

shown in f gure 5.11 and shows a decrease in amplitude of the second Rossiter mode. However there
is an increase in amplitude at other frequency due to the effect of actuation. The full system response
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Figure 5.11 - Comparison of Spectra of the DNS solution: Actuated (dashed line), Un-actuated (solid line).

of the closed loop system is shown in f gure 5.12 for the f rst two modes showing an asymptotic
stability.

The errors are plotted in f gure 5.13, also the response of the observer model is shown in f gure
5.14. The response of the observer shows that the state for the pressure goes to zero asymptotically,
but we f nd large values of gain for the short period of the DNS simulation, where we implement the
control. This necissates the scaling of the f nal control introduced.

5.4 Conclusion

A feedback control law based on the estimation of the observer dynamics has been presented. The
observer matrix is constructed using a linear stochastic estimation. A sensititivity study of the actuated
dynamics has been performed to determine the relevant terms to be retained in the linearisation of the
model. Finally an LQG based feedback law is obtained to f nd the optimal solution. The optimal
control law is shown to have a single frequency, corresponding to the second Rossiter mode of the
cavity f ow. The LQG control provides stabilisation over inf nite time horizon with a huge control
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5. Feedback control of cavity f ows
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amplitude, unrealistic to be utilised in the Direct Numerical Simulation which are solved over a short
time interval. To resolve this problem, the control amplitude has been scaled down before introducing
in Direct Numerical Simulation. The control provides a decrease in spectra corresponding to the
second Rossiter mode.
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Conclusions and Perspectives

Nous avons dans ce travail nous avons appliqué la réduction de mod̀ele sur unécoulement de cavité
puis nous l’avonśetendu dans le cas d’uńecoulement contrôlé dans le but ultime de réduire les
émissions acoustiques. Les champs de vitesse et de pression sont détermińes, sans ou avec un forçage
de type jet synth́etique ou multifŕequentiel par des simulations numériques directes, au voisinage du
coin amont de la cavité, zone la plus sensiblèa une perturbation. Pour notre configuration, c’est le
second mode de Rossiter qui est excité.

La base ŕeduite est obtenue par décomposition orthogonal en modes propres, et un système dy-
namique d’ordre faible est d́etermińee par projection de Galerkin deséquations isentropiques avec
un produit scalaire baśe sur l’énergie. Les quatre premiers modes représentent98.5% de l’énergie
fluctuante totale La prise en compte, dans le modèle ŕeduit du forçage est faitèa partir d’un probl̀eme
d’optimisationKasnakŏglu et al. (2008), en d́eterminant un mode spatial spécifique orthogonal aux
autres modes non forcés d́ejà connus. Dans ce cadre, il est supposé que l’́ecoulement moyen dans le
cas forće et non forće sont identiques. Suitèa l’introduction d’une erreur mesurant ce possiblè effet,
l’hypothèse s’av̀re justifier pour des amplitudes du contrôle inf́erieur à 10% environ.

Les mod̀eles dynamiques obtenus par cette approche POD et projection de Galerkin sont
connus pour̂etre naturellement fortement instable. Nous avons donc stabilis les modèles en tes-
tant trois ḿethodes de calibration. L’approche deCoupletet al. (2005) qui met en oeuvre un
problème d’optimisation o est minimisée l’erreur entre le champ des vitesse donné par la simulation
nuḿerique directe et celui obtenu par intégration du syst̀eme dynamique. Suite aux travaux de
Cordier et al. (2009), nous avons proposé d’ajouter une ŕegularisation de la fonctionnelle coût à
minimiser par une approche de Tikhonov dans laquelle nous avons introduit des poids basés sur la
sensibilit́e la fonctionnelle par rapport aux coefficients temporels du système dynamique. Quoi qu’il
en soit, on conclut qu’une régularisation sur un long temps d’intégration est ńecessaire pouŕeviter
toute divergence du système dynamique.

Le syst̀eme dynamique forcé, apr̀es lińearisation a servi de base pour concevoir un contrôle
linéaire quadratique Gaussien (loi de contrôle en boucle ferḿee). Un mod́ele d’observation liant
la pression en certains points de l’écoulement et les variables d’état (vitesses) áet́e construit sur
la base d’une estimation stochastique linéaire. A partir d’une loi de forçage multifréquentielle in-
troduite dans les simulations numériques directes, et donc dans le mode de forçage du syst ‘eme
dynamique, nous obtenons une loi de contrôle optimale qui se ŕev̀ele être parfaitement harmonique
à une fŕequence tr̀es proche du second mode de Rossiter. Cette nouvelle loi, introduite dans les sim-
ulations nuḿeriques directes a conduit̀a une ŕeduction sensible deśemissions acoustiques sur le
second mode de Rossiter. Par contre, de faibles excitations sur d’autres fréquences subharmoniques
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ou harmoniques sont visibles.
Apparemment, les modes POD tels qu’ils sont détermińes actuellement (critère énerǵetiques) ne

sont pas les modes optimaux pour analyser ou réduire l’acoustique. Comme perspective de ce travail,
il pourrait être judicieux de ŕefléchir sur l’introduction de l’approche deJordanet al. (2007) baśee
sur une d́ecomposition en des modes les plus observables vis-à-vis de l’acoustique en champ lointain.
Il faudrait aussi certainement regarder l’influence de la taille du système dynamique (troncature) sur
le contr̂ole áeroacoustique, les modes négligés pouvant jouer un grand rôle dans leśemissions.

Une autre perspective serait d’étudier la ŕeduction de mod̀ele et la construction du mode de
forçage sur la base d’un fora̧ge stochastique plutôt que d́eterministe comme cela est fait actuellement.

Lesétudes de sensibilités et l’utilisation d’oṕerateurs adjoints devraient aussiêtre accrues pour
tenter d’aḿeriorer soit le mod̀ele ŕeduit avec fora̧age, soit la calibration.

Le contr̂ole optimal en boucle ouverte avec région de confiance áet́e meńe dans
Bergmannet al. (2009) sur le cylindre et une extensionà la cavit́e pourraitêtre exploŕee.

L’estimation d’́etat, qui est une partie du probléme de contr̂ole en boucle ferḿee pourraitêtre
améliorée, par exemple en utilisant une estimation stochastique quadratique qui conduiraità une
observateur non lińeaire. La non lińearité apparâait aussi dans le système dynamique forcé. On
pourrait donc envisager d’appliquer un contrôle non lińeaire dans ce cadre.
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In this thesis we have developed and applied the various tools of a POD based reduced order
modelling to study the self-sustained instabilities in a cavity. The ROM has been applied to perform
control studies with the ultimate aim of reducing the noise level in the cavity.

Direct Numerical Simulation of the cavity f ow has been performed. The cavity f ow results has
been validated with the results from literature. Control is introduced by means of a synthetic jet at the
upstream edge of the cavity where the f ow is more sensitive to perturbations. Analysis of the spectra
shows a decrease in the amplitude corresponding to the second Rossiter mode of the cavity, which
suggest the need of performing an optimal control study.

The basic theory of POD and their various properties which make them useful in the approxima-
tion of f uid f ow has been discussed. The usual innerpoduct gives the natural def nition of the norm of
the energy of the f uid f ow in case of incompressible f ows. The choice of inner-product for the case
of compressible, which gives the def nition of energy has been discussed. The energy based inner-
product as described in Rowley et al. (2003) has been used in this work to obtain the POD modes and
for the Galerkin projection.

The eigen spectra demonstrates that the f rst 4 eigenmodes capture around 98.5% of the total f uc-
tuation energy as shown by the Relative Information Content (RIC). A degenerate eigen spectrum
showing eigenvalues which occur in pairs demonstrates the phasing behaviour of the f ow. The vor-
ticity modes mainly represent the hydrodynamic component and the dilatation the propagation of the
acoustic waves. We note the energy cascade in the POD representation of the vorticity in terms of the
size of the eddies represented. The vorticity being a hydrodynamic phenomenon represents the low
frequency dynamics of the f ow. The dilatation which represents the direction of the sound propaga-
tion, a high frequency phenomenon, is clearly depicted for the higher POD modes, where the angle of
the wave propagation is distinctly visible thus indicating the presence of a multi-scale phenomenon.

ROM based on the isentropic Navier-Stokes equations which are used to model the cavity f ows
has been constructed. Extension of the ROM to include the effect of actuation, is done by con-
structing an actuated mode, obtained by solving an L2 optimisation problem as demonstrated in
Kasnakoğlu et al. (2008). The main feature of this approach is that the effect of actuation is explicitly
available in our ROM and the un-actuated dynamics reproduced exactly in case the value of actuation
tends to zero. The spatial modes exhibit a local behaviour capturing the effect of actuation. For small
values of actuation (less than 10%) the mean value of the actuated and the un-actuated case can be
assumed to be equal. In that case the difference in the average error can be interpreted as a translation
of the reduced order subspace, which means that it is suff cient to consider the temporal coeff cients
of the un-actuated case. An error to take care of the difference in the average values while performing
the Galerkin projections has been introduced, and shows a small errors for the most energetic modes.

The ROM compares well with the POD coeff cients for the initial time and shows a divergence as
time progresses. To take care of the divergence of the model, various techniques known as calibration
techniques has been studied and a unif ed framework for the different calibration methods described
in the literature is given. An application to the cavity f ow demonstrates that the method of calibration
which involves the solution of a constraint optimisation problem Bergmann & Cordier (2005) is better
than the method of intrinsic stabilisation Kalb & Deanne (2007). The method of Couplet et al. (2005)
based on the minimisation of functional based on the convex linear combination of terms which
represent the normalised error and a measure of the variation of the coeff cients of the model to
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their values obtained from POD is found to be the better of the two above methods in terms of the
normalised errors.

The only disadvantage of this method being the arbitrary parameter to be chosen while regular-
ising the ill-conditioned linear system. The method presented in Cordier et al. (2009), remedies the
problem by using the method of Tikhonov regularization, which chooses the parameter so as to bal-
ance between the solution norm and the residual norm. This is applied to the case of cavity f ow and
shown to perform better than the method of Couplet et al. (2005) for the normalised error. However
the cost of calibration is more. The cost as argued out is shown to outweigh the benef ts of a good
model especially when we perform control studies.

A new contribution toward the calibration method has been the weighted Tikhonov regularization
which takes care of the sensitivity of the modes with respect to a given cost functional, while def ning
the errors for calibration. The second way of introducing the weight matrix is to consider the spectra
content of the POD decomposition. We compared the errors for the two type of Tikhonov regular-
ization and it is found that the zeroth order regularization is the most effective among all the type of
Tikhonov regularization considered. The proposed method outweighs the other methods in terms of
errors. It is also shown that the model diverges for a long time of integration even after calibration,
and it is necessary to calibrate over a long period of time, especially when performing control studies
as shown in Nagarajan et al. (2009b).

A feedback control law based on the estimation of the observer dynamics has been presented.
The observer matrix is constructed using a linear stochastic estimation. A sensititivity study of the
actuated dynamics has been performed to determine the relevant terms in the linearisation of the
model. Finally an LQG based feedback law is obtained to f nd the optimal solution. The optimal
control law is shown to have a single frequency, corresponding to the second Rossiter mode of the
cavity f ow. The LQG control provides stabilisation over inf nite time horizon with a huge control
amplitude, unrealistic to be utilised in the Direct Numerical Simulation which are solved over a short
time interval. To resolve this problem, the control amplitude has been scaled down before introducing
in Direct Numerical Simulation. The control provides a decrease in spectra corresponding to the
second Rossiter mode Nagarajan et al. (2009a).

As a future perspective it is observed that the POD modes which is an optimal representation
of the energy f elds is not suitable to resolve the far f eld acoustic, one of the extension of POD to
include the effect of far f eld acoustic noise is the Most Observable Decomposition, as demonstrated
in Jordan et al. (2007) which represent a good choice of bases to perform control studies for acoustics.
Also it is interesting to minimise a cost functional which measures the acoustic propagation rather
than the functional based on the energy. It will be interesting to note that the higher modes which
are hydrodynamically in-signif cant will play a signif cant role in the acoustics, hence a comparison
to determine the minimum number of POD modes to tackle the acoustics would be interesting (for a
preliminary derivation for the open loop control see appendix H).

For the development of the reduced order model an interest would be to construct the ROM for a
given random noise rather than the deterministic forcing we have used in this work. Sensitivity studies
to external forcing to determine the position of the actuator is worth exploring. Open loop control by
the method of trust regions is another area which can be explored. Improvement of the reduced order
subspace during the optimisation process when the control parameter changes so that the f rst few
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modes represent the dynamics of the new conf guration as demonstrated in Bergmann et al. (2009)
can be applied to the study of the cavity f ow conf guration. It is also interesting to build and calibrate
the ROM from experimental data.

For the application of the closed loop control the problem of estimation can be improved by a
higher order Quadratic Stochastic Estimation (QSE) i.e. the by constructing a non-linear observer. It
would also be interesting to consider the quadratic terms in the actuation and hence perform a non-
linear control. The real challenge of a reduced order model is in using measurements from real time
simulations (experimental or high turbulence simulation), to build up the control.
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Appendix A

Controllability and observability of linear
systems

The equation of the plant with a feedback can be written as

ẋ = Ax+Bu (A.1a)
yc = Cx (A.1b)

where A ∈ R
n×n, B ∈ R

n×m, C ∈ R
p×n

Theorem The following conditions for the controllability are equivalent

1. system (A.1) is controllable

2. An arbitrary state x is attainable from 0

3. The matrix QT :=
∫ T
0
eAtBBT eA

T tdt is non singular for any arbitrary T > 0. This condition is
equivalent to determining the norm of the state matrix for an impulse response.

4. Rank of the matrix [A|B] := [B,AB, · · ·An−1B] = n, also reffered to as the Kalman’s condi-
tion

5. QT satisfy the Lyapnov equation

AQT +QTA
T +BBT = 0 (A.2)

The above theorem can be reformulated for the Observibility by, considering the controllability of the
dual system given by

ż = AT z + CTu (A.3a)
y = BT z (A.3b)

where z is the dual state vector.
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Appendix B

Galerkin projections for the full NS equations

As described in Rowley et al. (2003) the full Navier-Stokes equation can be written as

Dρ

Dt
+ divu = 0

ρ
Dui
Dt

= − ∂p

∂xi
+

1

Re

∂

∂xj

(
2Sij −

2

3
δijdivu

)

ρ
DT

Dt
+ (γ − 1)ρTdivu =

γ

Re

(
2SijSij −

2

3
(divu)2

)
+

γ

RePr
∇2T (B.1)

The equations are non-dimensionalised using the length scale L, the speed of sound c∞ and the
ambient density ρ∞. Temperature is non-dimensionalised by c2∞

cp
and pressure by ρc2∞. Here P =

(γ − 1)ρT and Sij = 1
2
( ∂ui

∂xj
+ ∂ui

∂xj
) is the symmetric part of the stress tensor, denoting the strain rate.

On introducing the notation q = (ρ, ui, T ) the above equations can be re-casted as

∂ρ

∂t
= R(q), ρ

∂ui
∂t

= Ui(q), ρ
∂T

∂t
= θ(q)

where,

R(q) = −(u.∇)ρ− divu

Ui(q) = −ρ(u.∇)ui −
∂p

∂xi
+

1

Re

∂

∂xj

(
2Sij −

2

3
δijdivu

)

θ(q) = −(γ − 1)ρTdivu +
γ

Re

(
2SijSij −

2

3
(divu)2

)
+

γ

RePr
∇2T (B.2)

The equations can be further written in a concise form as

A(q)q̇ = f(q) (B.3)

where A(q) = diag(1, ρ, ρ, ρ) and f(q) = (R(q),Ui(q), θ(q)) Since A is a aff ne function of q we can
write

A(q) = B + L(q) = diag(1, 0, 0, 0) + diag(0, ρ, ρ, ρ)
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also since f is cubic it can be written as a sum of multi-linear forms fi as

f(q) = f1(q) + f2(q, q) + f3(q, q, q)

We now perform a Galerkin projection of the POD bases φk and expressing

q =
∑

k

ak(t)φk

B.3 becomes [

B + L(
∑

l

alφl)

]
∑

k

ȧkφk = f(q) (B.4)

on taking the inner-product with φk we obtain:

∑

k

ȧk

(

〈φj, Bφk〉 +
∑

l

al〈φj, L(φl)φk〉
)

= 〈φj, f(q)〉 (B.5)

In matrix form equation B.5 can be written as

M(a)ȧ = f̃(a) (B.6)

where a = (a1, . . . , an) and

M(a)jk = 〈φj, Bφk〉 +
∑

l

al〈φj, L(φl)φk〉

f̃j(a) = 〈φj, f(q)〉
=

∑

l

al〈φj, f1(φl)〉 +
∑

l,m

alam〈φj, f2(φl, φm)〉 +
∑

l,m,n

alaman〈φj, f3(φl, φm, φn)〉

Note that all the coeff cients of the equation B.7 can be determined before solving the ODE’s. In the
case of constant density we have B = I , L = 0 also if we chose the spatial modes orthogonal i.e.
we have 〈φi, φj〉 = δij and the mass matrix M is identity. Although equation B.7 is in principle not
diff cult to solve the choice of the quadratic approximations with the isentropic equations simplif es
the implementation. Also the choice of the energy based inner-product which preserves the energy is
quite natural to the cold f ows we treat.
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Appendix C

Specific volume formulations of ROM

As noted in the appendix A, the low-order model of the full Navier-Stokes equation has cubical
implicit terms, Vigo (1998) suggests the use of a formulation by using the primitive variables (u, v, p)

and the specif c volume ς = 1
ρ
. The fully compressible Navier-Stokes equation in terms of these

variables can be written as:

ςt = −uςx + uxς + vyς − vςy

ut = −uux − vuy − ςpx +
1

Re
ς

[(
4

3
ux −

2

3
vy

)

x

+ (ux + uy)y

]

vt = −uvx − vvy − ςpy +
1

Re
ς

[(
4

3
vy −

2

3
ux

)

y

+ (vx + uy)x

]

pt = −upx − vpy − γp(ux + vy) +
γ

RePr
[(pς)xx + (pς)yy]

+
γ − 1

Re

[
ux

(
4

3
ux −

2

3
vy

)
+ vy

(
4

3
vy −

2

3
ux

)
+ (vx + uy)

2

]
(C.1)

On introducing q = (ς, u, v, p) the above equation can be re-casted as

q̇ = Q1(q
1, q2) +

1

Re
Q2(q

1, q2) (C.2)

with

Q1(q
1, q2) = −




u1v2

x − u2
xς

1 − v2
yς

1 + v1ς2y
u1u2

x + v1u2
y + ς1p2

x

u1v2
x + v1v2

y + ς1p2
yu

1p2
x + v1p2

y + γp1(u2
x + v2

y)





Q2(q
1, q2) =





0

ς1
[(

4
3
u2
x − 2

3
v2
y

)
x

+
(
u2
x + u2

y

)
y

]

ς1
[(

4
3
v2
y − 2

3
u2
x

)
y
+
(
v2
x + u2

y

)
x

]

γ
Pr

[(p2ς1)xx + (p2ς1)yy]+
(γ − 1)

[
u1
x

(
4
3
u2
x − 2

3
v2
y

)
+ v1

y

(
4
3
v2
y − 2

3
u2
x

)
+
(
v1
x + u1

y

) (
v2
x + u2

y

)]




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The above formulation preserves the quadratic dynamics and hence the deriving a ROM is straight
forward as in the case of the isentropic case. If q is expressed in terms of the POD bases as:

q(x, t) = q(x) +
N∑

i

ai(t)φi(x) (C.3)

with the def nition of inner product for the non-dimensional variables given by:

〈q1, q2〉 =

∫

Ω

(
ς1ς2 + u1u2 + v1v2 + p1p2

)
dΩ (C.4)

inserting C.3 in C.2 we have the ROM as:

ȧk =

N∑

i=1

ai〈Q1(q, φi) + Q1(φi, q), φk〉 +

N∑

i,j=1

aiaj〈Q1(φi, φj), φk〉

+

N∑

i=1

ai〈Q2(q, φi) + Q2(φi, q), φk〉 +

N∑

i,j=1

aiaj〈Q1(φi, φj), φk〉 (C.5)

=
N∑

i=1

(L1
ik + L2

ik)ai +
N∑

i,j=1

(Q1
ijk + Q2

ijk)aiaj (C.6)

where

Q1
ijk = 〈Q1(φi, φj), φk〉

Q2
ijk = 〈Q2(φi, φj), φk〉
L1
ik = 〈Q1(q, φi) + Q1(φi, q), φk〉

L2
ik = 〈Q2(q, φi) + Q2(φi, q), φk〉

The system above can be solved with or without the subtraction of the mean in the latter case we have
L1
ik = L2

ik = 0
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Appendix D

Actuated POD by the method of stochastic
estimation

The method as described in Caraballo et al. (2008) relies on a POD expansion, followed by a stochas-
tic estimation to correlate the time coeff cients with the actuation input. The method can be summa-
rized as follows

Algorithm:

1. To start , let the actuated snapshot sets be denoted as {qack , γk}Mk=1, where γk = γ(tk) is the
value of the actuation, qack = qac(x, tk) and M is the number of actuated snapshots

2. We subtract the mean q of the un-actuated base f ow from the snapshot set. We def ne a new set
of realisations by an innovation operator given as

q̃k = qack − PSq
ac
k = qack −

n∑

i=1

〈qack , φi〉φi

3. Perform the POD on the innovative snapshots {q̃k} to obtain an expansion for the f ow f eld of
the form.

q(x, t) =
N∑

i=1

ai(t)φi(x) +
M∑

i=1

aaci (t)φaci (x) (D.1)

where aaci (t) = 〈q, φaci 〉

4. We wish to correlate the coeff cient aaci (t) to the input signal γ(t) by means of a linear stochastic
estimation of the form

aaci (t) ≈ Aiγ(t) +Biγ
2(t) (D.2)
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where Ai and Bi are the linear and quadratic terms of the estimator. Substituting D.2 in D.1 we
have

q(x, t) =
N∑

i=1

ai(t)φi(x) + γ(t)ψ1(x) + γ(t)ψ1(x)

where

ψ1(x) :=
M∑

i=1

φaci (x)Ai and ψ2(x) :=
M∑

i=1

φaci (x)Bi

The Galerkin model with the above expansion is of the form

ȧk = Ck + Ljkaj +Qijkaiaj + h1kγ + h2ikaiγ

+ (h3k + g1k)γ
2 + g2ikaiγ

2 + g3kγ
4 + g4kγ

3 (D.3)

where

Ck = 〈L(q), φk〉 + 〈Q(q, q), φk〉

Ljk = 〈L(φj), φk〉 + 〈Q(q, φj), φk〉 + 〈Q(φj,q), φk〉

h1k = 〈L(ψ1), φk〉 + 〈Q(q, ψ1), φk〉 + 〈Q(ψ1, q), φk〉

Qijk = 〈Q(φi, φj), φk〉

h2ik = 〈Q(φi, ψ1), φk〉 + 〈Q(ψ1, φi), ψ1〉

h3k = 〈Q(ψ1, ψ1), φk〉

g1k = 〈L(ψ2), φk〉

g2ik = 〈Q(φk, ψ2), φk〉 + 〈Q(ψ2, φk), φk〉

g3k = 〈Q(ψ1, ψ2), φk〉

g4k = 〈Q(ψ2, ψ2), φk〉
The above method involves an additional procedures of determining the extra POD actuation modes
combined with a stochastic estimation technique and is more complicated than the L2 optimisation
method described in chapter 2, but is much simpler than the sub-domain separation method which
involves the identif cation of the control region.
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Appendix E

Theorem concerning actuated mode

Theorem . Let J (ψ) = E [‖q̃k − γkψ‖2]

1. The minimum value of J (ψ) is achieved at

ψ∗ =
E[γkq̃k]

E[γ2
k]

2. ψ∗ ∈ X

3. ψ∗ ⊥ φi for i = 1, . . . , n

Proof: Note

1.

J (ψ) = E
[
‖q̃k − γkψ‖2

]

= E
[
‖q̃k‖2 − 2γk〈q̃k, ψ〉 + γ2

k‖ψ‖2
]
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J is quadratic with positive leading coeff cient E[γ2
k ] and hence has a unique minimum, given

by f nding the variation of J with respect to ξ ∈ X given by

d

dδ
|δ=0J (ψ + δξ) =

d

dδ
|δ=0E

[
‖q̃k‖2 − 2γk〈q̃k, ψ + δξ〉 + γ2

k‖ψ + δξ‖2
]

= E
[
−2γk〈q̃k, ξ〉 + γ2

k〈ψ + δξ, ξ〉+ γ2
k〈ξ, ψ + δξ〉

]
|δ=0

= E
[
−2γk〈q̃k, ξ〉 + γ2

k〈ψ, ξ〉 + γ2
k〈ξ, ψ〉

]

= E
[
−2γk〈q̃k, ξ〉 + 2γ2

k〈ψ, ξ〉
]

= E
[
〈−2γkq̃k + 2γ2

kψ, ξ〉
]

= 〈E
[
−2γkq̃k + 2γ2

kψ
]
, ξ〉

for ψ to be an extremum its f rst variation must vanish ∀ξ ∈ X hence we have

E
[
−2γkq̃k + 2γ2

kψ
]

= 0

which by linearity of E implies

ψ∗ =
E[γkq̃k]

E[γ2
k]

2. ψ∗ ∈ X follows from the linearity of E and noting that γkq̃k ∈ X and E(γ2
k) ∈ R

3. To show that ψ∗ ⊥ φi for i = 1, . . . , N , we note that q̃k ∈ Span{φi} we have for any i and k

〈q̃k, φi〉 = 〈qack −
n∑

i=1

(qack , φi)Ω φi, φi〉

= 〈qack , φi〉 −
N∑

i=1

〈qack , φi〉〈qack , φj〉

= 〈qack , φi〉 − 〈qack , φi〉
= 0
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Using the linearity of the averaging operator E and the inner product we have

〈ψ∗, φi〉 =

〈
E[γkq̃k]

E[γ2
k]
, φi

〉

=
E [γk〈q̃k, φ〉]

E[γ2
k]

=
E[0]

E[γ2
k ]

= 0

Hence we have φi ⊥ ψ∗ for i = 1, . . . , N
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Appendix F

Generalized Singular V alue Decomposition
(GSVD)

Let A ∈ R
m×n and L ∈ R

p×n be given with m ≥ n ≥ p. There exists orthogonal matrices U ∈ R
m×n

and V ∈ R
p×p and a nonsingular matrix X ∈ R

n×n such that

A = U

(
Σ 0
0 In−p

)
X−1 L = V (M, 0)X−1

Where Σ = diag(σ1, · · · , σp) and M = diag(µi, · · · , µp) with 0 ≤ σ1 ≤ · · · ≤ σp ≤ 1 and
1 ≥ µ1 ≥ · · · ≥ µp ≥ 0. Also we have σ2

j + µ2
j = 1 for j = 1, · · · , p.The values γj =

σj

µj

(j = 1, · · · , p) are called the generalised singular values of (A,L). The jth column xj of X is the
right singular vector associated with σj
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Appendix G

Open loop control

G.1 Open loop control of cavity flows

Regarding the use of ROM for optimal control studies using an open loop one can refer to
Bergmann & Cordier (2005) where the optimal control has been applied for the control of wake
f ows behind a cylinder. Since the ROM is designed for a particular f ow condition Fahl (2000)
propose a method where the model is ref ned during the optimisation process, to take care of the
validity of the model to the variation of control parameters. This method has been applied for the
optimal control of wake f ows by Bergmann & Cordier (2008).

In this Appendix the basic equations and results are given for the open loop control. The aim is
to reduce the noise level in the cavity, for which as a f rst step, a control based on cost functional
which reduces the total energy of the system hence also reduces the noise level. Mathematically this
is equivalent to minimising the functional given by

J (q̃, γ(t)) =

∫ T

0

∫

Ω

J(q(x, t), γ(t))dΩdt

=
α

2

∫ T

0

∫

Ω

‖q(x, t)‖2
2dΩdt+

β

2

∫ T

0

γ2(t)dt

(G.1)

Where α > 0 and β > 0 represents the regularising term and serves as a measure of the cost of the
control we would like to utilise in our optimisation process. The minimisation of the cost functional
is subjected to the constraint satisfying the ROM, given here for the sake of convenience as

ȧk = N (a, γ(t))

= Ck + Ljkaj +Qijkaiaj + h1kγ + h2ikaiγ + h3kγ
2 (G.2)

Using the expression for the POD expansion

q(x, t) = q(x) +

n∑

i=1

ai(t)φi(x) + γ(t)ψ(x) (G.3)
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the above objective functional becomes

J (a, γ(t)) =

∫ T

0

∫

Ω

J(a, γ(t))dΩdt

=
α

2

∫ T

0

n∑

i=1

(a(t))2dt+
β

2

∫ T

0

γ2(t)dt

(G.4)

The optimisation problem to be resolved can be written in a concise form as





minγ(t) J (a, γ(t))
s.t.

N (a, γ(t)) = 0

The constrained optimisation problem can be reduced to an unconstrained by the method of Lagrange
multipliers by introducing the adjoint variable ξ and def ning a new functional given by

L(a, γ, ξ) = J (a, γ(t)) − 〈ξ,N (a, γ)〉

= J (a, γ(t)) −
n∑

i=1

∫ T

0

ξi(t)Ni(a, γ)dt
(G.5)

The above optimisation problem is solved for stationary values of the above functional given as

δL =
∂L
∂ai

δai +
∂L
∂γ

δγ +
∂L
∂ξi

δξi = 0

where δa, δγ and δξ we also suppose that all the arguments of L is independent and the optimal
system is determined by equating each term of the above to zero. On resolving the equation ∂L

∂ξi
ξi = 0

we recover the equation of state N (a, γ(t)) = 0. On equating the derivative with respect to the state
variable a we recover the adjoint system of equation given by

dξi(t)

dt
= −αai(t) −

n∑

i=1

(

Lij + γ(t)h2ij +

n∑

j=1

(Qjik +Qjki) ak(t)

)

ξj(t) (G.6)

with the terminal condition given by
ξi(T ) = 0

Finally on cancelling the derivative with respect to the control we obtain the optimality condition
given as

δγ(t) = βγ +

n∑

i=1

(
h1i +

n∑

j=1

h2ijaj + 2h3iγ(t)

)
ξi (G.7)

G.2 Resolving the optimal system

An iterative method which uses the method of conjugate gradient coupled with the Armijo method is
used to resolve the above optimal system for which the f nal algorithm can be summarized as follows

156



Algorithm We initialise the control γ(t)

1. Solve the direct system (G.2) to resolve the equation of state a(t)

2. We utilise the state obtained from the step 1, to solve the adjoint equation (G.6) to obtain the
adjoint variables ξi(t)

3. We use the state and the adjoint variable obtained in step 1 and step 2 to evaluate the optimality
condition (G.7)

4. The new control law is obtained as γnew(t) = γold(t) + ωd(t) where d(t) is the direction of
descent which is obtained by solving the optimality system dJ

dγ
= δγ where ω is the direction

of descent given by the Armijo method

5. We verify a convergence criteria, and return to step 1

The whole procedure can be summarized as follows

   

γopt(t)

Minimisation of J
Resolving and stabilising

the state (G.2)

an, γn(t),ξn

γn+1(t)

γn = γe(t)

∇γJ nan,γn(t)

Resolving the adjoint system (G.6) Solve the Optimality system (G.7)

conjugate gradient & Armijo method

Reduced Order Optimal System

Figure G.1 - optimal algorithm.
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Figure G.3 - Spectra of the initial chirp.

G.3 Open loop control of cavity

In this study we build the actuation mode explained in section §3.13 by introducing a chirp excitation
of the form.

A1 sin(2πSt1t) × sin (2πSt2t−A2 sin(2πSt3t)) (G.8)

where A1 = 0.1, A2 = 27, St1 = 1/60, St2 = 2/3, St3 = 1/30. Figure G.2, shows the spectra of the
excitation as shown in the f gure G.3 shows a frequency width in the range between 0.2 − 1.5 with
a concentration around the frequency 1.5. The Navier Stokes equation is excited with this frequency
and about 300 snapshots are sampled which corresponds to the period of excitation T = 15 which
corresponds to half the period of excitation for the full signal. The actuated mode is constructed
with the help of these realisations The parameters α = 16.0, β = 0.015 is chosen in this study.
The Algorithm is repeated until we satisfy the convergence criteria for the cost functional given by
|∆J (a, γ)| = |Jnew(a, γ) − Jold(a, γ) ≤ 10−5|. The Evolution of the cost functional is as shown
in the f gure G.6 and shows a reduction of 10−2, over a period of 1800 iteration of the algorithm.
The cpu time of the algorithm is about 900s. The optimal solution and the spectra of the optimal
solution is shown in f gure G.4, and G.5 showing a typical amplitude of 0.08 and a frequency of 0.36,
which corresponds to the natural frequency of f ow oscillation. We take this value of amplitude and
frequency and introduce in the DNS and compare the value of the velocity spectra taken a point in the
shear layer at the downstream edge of the cavity as shown in f gure G.7. At this stage it is worthwhile
to note that the initial actuated mode we have added has a rich dynamics, of various frequencies, and
hence our solution is only optimal for these range of frequencies and nothing can be said about the
global optimality of the NS equation, until we have a fair idea about the sensitivities of the full NS
equations. This represents a drawback in the utility of the reduced order model for control purposes
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Figure G.5 - Spectra of the optimal solution.

when the global optimality of the full system is unknown. However given the time required for the
computation of ROM, we can conclude that a coupling of the High f delity model and ROM is an
essential part for the successful application of control.
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solution and the optimal solution.
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Appendix H

An open loop approach to handle the acoustic
terms in ROM

To minimise the acoustic noise it is natural to def ne a functional based on the dilatation operator
def ned by

D : H2(Ω) −→ R

(u, v, c) −→
∫

Ω

(ux + vy)
2dΩ (H.1)

The f ow f eld expansion for the actuated case can be written as

q = q + γ(t)ψ +
n∑

i=1

ai(t)φi (H.2)

On applying the operator D we obtain

D(q) = D(q) + γ(t)D(ψ) +
n∑

i=1

ai(t)D(φi)

= P + γ(t)M +

n∑

i=1

ai(t)Ni (H.3)

For the optimisation problem we propose to minimise the functional given by

J̃ (a) =

∫ T

0

J (a)dt where

J (a) =

n∑

i=1

ai(t)Ni (H.4)

The above def nition of the functional gives the time average of the dialation over the period of
optimisation. Also note that the above def nition of our functional is not quadratic unlike the def nition
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we have used before and hence the process does not guarantee a minimiser. This choice of functional
is utilised in Bergmann & Cordier (2008) to minimise the drag around a cylinder. The constraint for
our minimisation as in appendix G written here for the sake of convenience as

ȧk = N (a, γ(t))

= Ck + Ljkaj +Qijkaiaj + h1kγ + h2ikaiγ + h3kγ
2 (H.5)

The problem then can be written in a compact form as





min(γ,a) J̃ (a, γ)
s.t.

N (a, γ) = 0

The Lagrangian for the above problem can be def ned as can be def ned by introducing the adjoint
variable ξ

L(a, γ, ξ) = J̃ (a, γ) − 〈ξ,N (a, γ)〉

= J̃ (a, γ) −
n∑

i=1

∫ T

0

ξi(t)Ni(a, γ)dt
(H.6)

minimisation of the above functional with respect to the state variable a gives the adjoint equations

dξi(t)

dt
= −

n∑

i=1

(

Lij + γ(t)h2ij +

n∑

j=1

(Qjik +Qjki) ak(t)

)

ξj(t) −Ni (H.7)

with the terminal condition given by
ξi(T ) = 0

Finally the optimality system s obtained by f nding the stationary value with respect to the control
parameter γ as

∆γL =

∫ T

0

n∑

i=1

Pi∇γdt (H.8)

where

Pi =

n∑

i=1

(

h1i +

n∑

j=1

h2ijaj + 2h3iγ(t)

)

ξi

For the form of the forcing γ(t) = A sin(ωt) which we have used the optimality condition with
respect to the amplitude A and the frequency ω can be written as

∂L
∂A

=

∫ T

0

(
n∑

i=1

Pi) sin(ωt)dt

∂L
∂ω

=

∫ T

0

ωAt(

n∑

i=1

Pi) cos(ωt)dt (H.9)
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KASNAKOĞLU, C., SERRANI, A. & EFE, M. O. 2008 Control input separation by actuation mode
expansion for f ow control problems. International Journal of Control.81 (9), 1475–1492. 51, 74,
133, 135

KESTENS, TIM. 1999 Etude numérique du contrôle adaptif multivoies des instabilités
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Résuḿe

On considère un écoulement compressible bidimensionnel, autour d’une cavité ouverte. Des
d’instabilité, auto-entretenues par l’effet de rétroaction de l’écrasement de la couche de cisaillement
sur le bord aval de la cavité, génèrent des émissions acoustiques qu’il faut réduire. Des simulations
numériques directes (DNS) permettent d’obtenir, avec ou sans actionnement, un modèle précis de
l’écoulement. A partir des champs issus de la simulation, des décompositions orthogonales de modes
propres (POD) sont proposèes pour bâtir, par projection de Galerkin sur les équations isentropiques,
des modèles d’ordre réduit non linéaires en prenant en compte l’actionnement (le contrôle). Pour
éviter la divergence temporelle, les coeff cients du système dynamique non forcé sont calibrés par
diverses approches originales dont une basée sur la sensiblité modale. A partir du système dynamique
forcé par un actionnement multifréquentiel (présent aussi dans les DNS), un contrôle en boucle
fermée linéaire quadratique gaussien est proposé sur un système linéarisé. La reconstruction de
l’état est basée sur une estimation stochastique linéaire sur 6 points de pression. Le contrôle optimal
obtenu s’avére être périodique à la fréquence du second mode de Rossiter, qui est exactement celles
des instabilits auto-entretenues dans la cavité. Par introduction de ce contrôle dans les simulations
numériques directes, nous avons obtenu une réduction du bruit (faible) sur la fréquence du contrôle.
Mots clefs: Ecoulements en cavit́e, Modélisation d’ordre r éduit, contrôle rétroactif

Abstract

We consider a two dimensional compressible f ow around an open cavity. The Flow around a cav-
ity is characterised by a self-sustained mechanism in which the shear layer impinges on the down-
stream edge of the cavity resulting in an acoustic feedback mechanism which must be reduced. Direct
Numerical Simulations (DNS) of the f ow at a representative Reynolds number has been carried to ob-
tain pressure and velocity f elds, both for the case of unactuated and multi frequency actuation. These
f elds are then used to extract energy ranked coherent structures also called as the Proper Orthogonal
Decomposition (POD) modes. A Reduced Order Model is constructed by a Galerkin projections of
the isentropic compressible equations. The model is then extended to include the effect of control. To
avoid the divergence of the model while integrating in time various calibration techniques has been
utillized. A new method of calibration which minimizes a linear functional of error, based on modal
sensitivity is proposed. The calibrated low order model is used to design a feedback control of the
Linear Quadratic Gaussian (LQG) type, coupled with an observer. For the experimental implemen-
tation of the controller, a state estimate based on the observed pressure measurements at 6 different
locations, is obtained through a Linear Stochastic Estimation (LSE). The optimal control obtained is
periodic with a frequency corresponding to the second Rossiter mode of the cavity. Finally the control
obtained is introduced into the DNS to obtain a decrease in spectra of the cavity acoustic mode.
Keywords: Cavity flows, Reduced Order Modelling, feedback control
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