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General Introduction

Motivation

Lesémissions acoustiques r&@entent un des prashes majeures du transporéren qui concer-
nent I'environnement. &éralement on classe les bruésnis en fonction de leur originegoanique,
aérodynamique et ceuxésaux systmes secondaires. On s@mnésse ici au bruiemis au voisi-
nage des aroports, et il provient pour I'essentiel (voir figurdset 2) de I'ecoulement autour du
train d’atterrissage, de celui des jets déacteurs et de d#fentes cavés pesentes sur I'avion.
Nous allons dans la suite cong&i@ uniquement la gonetrie de la cavié dont I'ecoulement est
sclematiquement do@nsur la figure3 et 4, en fonction du rapport d’aspect. Le travail gseng
ici consistea analyser la physique dedtoulement et de la propagation du bruit et surtawhercher
a réduire lesemissions acoustiques.

Differents approches egpmentales par un conbte passif ou actif de #coulement ont puag
étre teskées avec plus ou moins de sescgéce en particulier aux avames techniques dans les
moyens de mesures et de de colatret dans le domaine des ressources informatiques. Actuellement,
en utilisant les Simulations Nurques Directes (DNS) ou les Simulatian&randes Echelles (LES)
nous sommes en mesure de mieux comprendre la physique @eoaé&ment. Par contre, compte
tenu de Ienorme dimension du praiahe, le€tudes nu@rigues et teoriques du conféile acoustique
doivent recessairement passer par kduction de mogle (ROM, voir figuré). Ici nous appliquerons
la Déconposition en Valeurs Propres Orthogonales (POD), qui permettent finalemerédigre
la complexicié deséquations de Navier-Stokesla résolution et donc au corite, d'un systmes
d’équations au @rivées ordinaires (ODE, voir figuré), plus simplea manipuler et resoudre. En
se basant sur les travaux @edents deRowleyet al. (2003, Gloerfelt(2008, Kasnak@lu (2007,
Samimyet al. (2007 et deCordier et al. (2009, nous allons proposer un coidtie du yseéme éduit,
une fois celui-ci calibe et 'appliquer ensuite sur le syshe complet issu des Simulations Nwigues
Directes.

Ce travail aét effecté dans le cadre d’'un projet Marie-Curie appeRAeroTraNet, menen
collaboration ave@ universiésétrangeres. Le LEA de Poitiers a largement contr@aux diferentes
parties: L. Cordier pour ce qui concerne l&duction de magle, P. Compte pour les DNS.



Organisation du document

La chaptre 1 introduit I'outil de simulation nurarique de base (DNS). Létements de la #orie du
contrdle utilisés plus tard sont @senés dans le chapitre 2. Le chapitre suivant est consaclta
réduction de moele et son application surécoulement de ca@t Le systme dynamique obtenu est
fortement instable aussi le chapitre 5 egd@ a la calibration et la stabilisation du made réduit.
De multiples approches sont abé&ek. Le confile du systme dynamique fogcet son effet sur
I’ écoulement complet, sur la base de ladhe du contéle linéaire quadratique gaussien sont finale-
ment pesenés dans le chapitre 5. Une conclusion suivi de quelques annexesgettie document.

Motivation

The recent rise in the air travel has given rise to a number of environmental concerns of which an
important issue is the noise. Exposure to noise, particularly near the airports have been known to cause
a number of health problems, like stress, hearing problems, hypertension, cardio-vascular problems,
sleeping disorders. A constant exposure to noise levels beyond 65 — 70 dB is known to cause life term
health effects.

Noise emitted from an aircraft can be broadly classif ed as mechanical noise, aerodynamic noise
and aircraft system noise. Mechanical noise is usually caused due to propeller, jet engines. The main
source of mechanical noise in an aircraft occurs during cruise conditions, due to the high velocity of
jet from the engine. The aerodynamic noise arises due to the airf ow around the different geometric
conf gurations such as fuselages, high lift devices devices, landing gears, head and tail rotors of a
helicopter etc. Aircraft system noise is mainly due to the cabin pressurisation as well as due to the
auxiliary power units used to start the main engines, to provide power during ground conditions.
Although during cruise conditions the mechanical noise dominates, the aerodynamic noise assumes
an equal proportion during landing and takeoffs. Most of the aerodynamic noise during landing and
take-offs can be associated to the landing gear, the geometry of which can be modelled as a cavity.
Figure 1 shows the various components of noise sources during the landing or takeoff of aircrafts.
Typical values of perceived noise, due to various components, during take off and landing is shown
in f gure 2.

A similar phenomenon can also be seen in other conf gurations such as weapon bays, joints be-
tween high speed train bogies, car body openings. This brings to interest the study of cavity f ows,
particularly when in search of quieter aircrafts as envisaged in the report European aeronautics: a
vision for 2020 by EC (2001) .

A typical cavity fow conf guration is as shown in f gure 3. The physics of the cavity can be ex-
plained by the formation of the shear layer at the upstream cavity edge. As the shear layer propagates
it breaks down due to the Kelvin-Helmholtz mechanism resulting in a membrane like oscillation. The
shear layer impinges the downstream edge of the cavity and splits, resulting in the formation of vorti-
cal structure close to the downstream edge, and is of the size of the depth of the cavity. This results in
the formation of acoustic waves which propagates into the upstream, causing the far-f eld noise. The
cavity can be classif ed based upon the fow mechanism it generates, as an open cavity or a closed
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Figure 1 - Typical airframe cavities. (Picture courtesy Ben Pritchard, airliners.com)
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Figure 2 - Aircraft noise sources, during approach and takedfiens(1979).

cavity. Open cavities are characterised by the shear layer which attaches near the downstream corner,
whereas closed cavities are characterised by the shear layer attachment at the bottom of the cavity
and separation downstream. The basic difference can be summarised in f gure 4. Open cavities are
further divided into deep cavities and shallow cavities based on the aspect ratio %. Deep cavities are
charecterized by an aspect ratio % < 1, and shallow cavities by aspect ratio % > 1. Many of the
airframe structures shown in f gure 1 can be treated as a shallow open cavity. The main interest of
this work is then to study these f ows and to reduce the noise due to the acoustics.

There has also been numerous attempt to reduce the noise emitted from a cavity, by many heuristic
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Figure 3 - A typical cavity flow.
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Figure 4 - Schematic representation of open and closed cavities.

means such as modifying the geometry by means of castellations, spoilers at the upstream edge of the
cavity, so as to change the turbulent scales and hence reduce acoustic emissions. Use of synthetic jets
delays the re-attachment of the shear layer and has been used in many experiments. With the advent of
high performance computing as well as advanced experimental techniques such as the Particle Image
Velocimetry (PIV), Laser Doppler Velocimetry (LDV) deep insights into the physics of cavity f ows
can be explored, with an aim to reduce the noise.

The traditional approaches like Direct Numerical Simulation (DNS) involve fully resolving the
equations governing the f ow dynamics i.e. the Navier-Stokes’ equations down to the f nest scale. Al-
though this approach seems attractive it has inherent diff culties like the computational resources. An
approach to reduce the computational time is the utilisation of Large Eddy Simulation (LES) where
the major structures governing the fow (large eddies as they are called) are resolved and the fner
scales are modelled. This approach also poses diff culties, particularly when used as an iterative tool
for fow control, due to their high dimensional nature. The next proposition to reduce the dimen-
sionality of the problem is by restricting our interest to the “most essential structures” which governs
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the dynamics. The basic observation of fuid fow as a cascading phenomenon gives us the hint of
this “essential” structures in terms of the energy, to obtain a low dimensional space. The reduced
order model is then constructed as a projection of the high dimensional dynamics onto this lower
dimensional subspace as summarised in f gure 5.

Navier-Stokes .4"

Figure 5 - Philosophy of reduced order modelling.

The aim of this thesis is to construct reduced order models for the cavity f ows. The basic idea is
to retain the most essential features of the f ow called Proper Orthogonal Decomposition POD modes,
which contain the maximum amount of information about the f ow dynamics. By performing a DNS
of the compressible Navier-Stokes equations to compute the fow of a large cavity, the POD modes
are extracted. The Reduce Order Model (ROM) is then obtained by projecting the governing equation
of fuid f ow i,e the Navier Stokes equations on the subspace spanned the POD modes. This results in
one having to solve a system of Ordinary Differential Equations (ODE) rather than the complicated
system of Partial Differential Equations (PDE) and hence the name reduced order modelling. The well
developed control theory is applied on this system of ODE’s to obtain the noise reduction. Apart from
being used in-lieu of the high fdelity model for control studies, the reduced order model obtained
can also be used as a predictive tool to save computational resources. The overall strategy of using a
reduced order model (ROM) can be summarised as shown in the f gure 6.

Modelling  |Physical system |+ | Data

Discretization

Reduced order model /Simu lation
§ - | Low number of ODEs

Control

Figure 6 - A Schematic representation of Reduced Order Modelling.

Flow past an open cavity has been studied using ROM by Rowley et al. (2003) and Gloerfelt (2008)
but without any application to f ow control. More recently, ROM for controlled conf gurations has

5



been proposed by Kasnakoglu (2007). In Samimy et al.(2007) the ROM for fows issued from an
experiment has been used to design a controller. The major hurdle in using the ROM for control
applications is the accuracy of the model in predicting the dynamics of the system even for short
periods. Also diff culty arises when the control parameters are changed as in a real time simulation.
Various numerical strategies termed as calibration techniques has been developed in the recent past
to treat this problem as found in Cordier et al.(2009). The major contribution of this thesis is then to
complete the full development as applied to cavities, like building up the ROM, including the effect
of control, calibrating the model and f nally performing control studies.

The outcome of the interest in reducing the cavity noise has resulted in the frame work of Aero-
TraNet (Aerodynamic Training Network) projected which was a collaboration of 4 academic partners
in Europe. The academic partners which included University of Leicester (U.K.), the Universita degli
Studi Roma Tre (Rome, Italy), Politecnico di Torino (Turin, Italy) and Institut de Mécanique des
Fluides de Toulouse (Toulouse, France) were interested in various aspect of the cavity f ow, like, nu-
merical, experimental and f ow control. This thesis was done in collaboration with LEA Poitiers, P.
Comte for the DNS and L. Cordier for reduced order modelling. The thesis can be summarized as
follows.

Organisation of the thesis

In chapter 1 we give a brief description of the numerical tool, namely the DNS used in this study and
present some validation results. In chapter 2 the basic tools from control theory are introduced.

Chapter 3 concerns the basic theory of the technique of POD based ROM. The various techniques
to include the effect of actuation in the ROM are summarized, with an application to the cavity f ow.

In Chapter 4 the various def nitions of errors between the calibrated dynamics and the original
temporal dynamics are introduced and the different methods of calibration summarized are applied to
the cavity fows. The methods are compared for accuracy. The calibration of the ROM is performed
using a Tikhonov based regularization to obtain an accurate representation of the dynamics. We also
present an improvement of the technique by introducing various type of weight matrix used in the
def'nition of error. In the frst method, we use a sensitivity analysis of the ROM, to determine the
weights of the relevant terms which needs to be calibrated. The second approach is to use the energy
content of the POD representation in forming the weight matrix to represent the errors.

In Chapter 5 a feedback control law based on the estimation of the observer dynamics has been
presented. The observer matrix is constructed using a linear stochastic estimation. A sensititivity
study of the actuated dynamics has been performed to determine the relevant terms in the linearisation
of the model. Finally an Linear Quadratic Gaussian (LQG) controller is designed to obtain an optimal
solution, which is introduced in the Direct Numerical Simulation to obtain a decrease in spectra of
the cavity acoustic mode.




Chapter 1

Description and validation of the numerical
tool

Description et validation de I’outil numérique

Dans cette partie, les outils niamnques utili€s pour leetudes de maxe reduit et du contle sont
décrits. Le jet syntétique est introduit pour conbter les instabilies de cavé. L'@coulement de
cavite est largemenrgtudiee dans la littrature. Il presente des instabiéis auto-entretenues qui sont
difficilesa prédire nungriquement (sensibiétaux diferents pararatres nurgriques). La cavé est
aussi le stge d’inéractions &roacoustiques quigtessitent un séma nurarique d’ordre suprieur

et peu dissipatif pour capter les ondes acoustiques. Le code NIGLCGewdisg¢velop@ par Pierre
Comte de I'Universi de Poitiers. |l est capable dé&soudre le€quations de Navier Stokes com-
pressibles en instationnaire et en tridimensionnel. La d@s8sation diferences finies de quaéme
ordre est faite sous forme conservative.

Parametres de non-dimensionalisation

Le code ésout lequations sous forme adimensionnelle. L'adimensionalisatepead fortement
deséchelles caradristiques pour rendre les variables adimensionnelles. La forme adimensionnelle
deséquations de Navier-Stokes incorpore trois nombres adimensionnel, les nombres de Reynolds, ¢
Mach et de Prandtl.

Equations du mouvement en coordonnées cartésiennes

Leséquations de Navier Stokes compressibles gorites sous forme conservatives. Il s’agit des
équations de continudt de conservation de la quariitie mouvement et détiergie. Le tenseur des
contraintes de cisaillement est expé@msous I'hypothse de Newton-Stokes et le flux thermique est
donrea l'aide de la loi de Fourier. La viscosten fonction de la ten@pature est exprie avec la loi

de en puissance.



1. Description and validation of the numerical tool

Avancement en temps

Le sclema temporel utili® est un sobma explicite aux didfrences finies utilisant la prédure
prédicteur-correcteur. Une d#fenciation @&centée conservative est utibe pour les deux pas
temporels du s@ma en alternant la direction de digtisation entre le pas @dicteur et correcteur.

Il en résulte globalement un setma spatial cen& de quatréme ordre pour les termes d’advection et
de second ordre pour ceux de la diffusion. La digisation temporelle est du second ordre.

Conditions aux limites

Pour les parois, la condition d’addrence est appliee. La forme simpli#ie de lequation dynamique
reliant la pression et le tenseur de cisaillement est aussi @élisPour |état thermodynamique on
définit soit une paroi adiabatique ou soit une paroi isotherme.

Conditions aux limites non-réféchissantes

Pour éviter toute eflexion sur les limites du domaine de calcul, deux types de conditions peuvent
étre adopées: des conditions physiques @&t par le prol#me continu initial ou des conditions
nunerigques @cessaires: la méthode disaéte pour comg@ter I'ensemble des conditions physiques.
Les conditions aux limites bass sur les caraétistiques (NSCBC) deoinsot & Lele(1992 est une
méthodepour sgecifier a la fois les conditions physiques et nemgues pour leequations d’Euler

et pour celles de Navier Stokes. L&tmode NSCBC est bas sur une analyse monodimensionnelle
locale en non-visqueux (LODI) des ondes traversant les limites du domaine. Les amplitudes des onde
caracéristiques assoéesa chaque vitesse caraaistique sont donges gquationsl.19a 1.21). On
distingue les conditions aux limites noéfechissantespour une ea# subsoniquesquationsl.22a

1.27) de celles pour une sortie subsoniqégatons1.28et1.29.

Validation du code numérique pour le cas de la cavité

On présente lesésultats pour une cadtde rapport d'aspect./D = 2. L’écoulement est initialés
par une couche limite laminaire pour avoir ugpaisseus/D = 0.28 au coin amont de la ca\t

Le nombre de Reynolds lasur la profondeur de la cawtest de 1500 et le nombre de Mach est
de 0.6.Le domaine de calcul a une longueurld® et une hauteur déD (figure1.1). Le tableau
1.1 donne la taille des difrentsmaillages utili€s. Le maillage choisi est doarsur la figurel.2

et correspond au maillage M. La figue4 montre les niveaux de pression sonore (SPL) pour le
champ &oustique au-dessus de la c&vit le spectre de vitesse normal en un point de la couche
cisaillée. Le niveau de pression sonore maximal est de 170 dB qui eseinfa celui obtenu par
Rowleyet al. (2002 (180 db). Ceci peut s’expliquer par la dfencede piécision des s@mas {<¢

ici et 6°¢ pour eux). Les niveaux SPL sont cependant en accord aveedekats exprimentaux de
Krishnamurthi(1956 (168 dB). Le spectre montre la valeur typique correspondant aunsegmde

de Rossiter (avec deux tourbillons en moyenne entre les deux coins de B).ches oscillations
auto-entretenues sont quagdiques, avec un spectregaentant une &quence dominante.
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Introduction au controle

Le cantrole de la cavié resonante estéali a I'aide d’un jet syntietique en modifiant la condition
au limite convenablement. Le codle par jet syntbtique aéte réalise auparavant nugriqguement

et exg@rimentalement. L'objectif du cadie est de @vier la couche cisaile pour qu’elle n'impacte
pas sur le coin aval gtviter le plenongne du retour (feedback). Comme on peut le voir sur la figure
1.6, sous l'effet du jet, la couche cisd@t peutimpacter totalement, partiellement ou pas du tout.
Plusieurs positions oréte tesées avant le coin amont pour &trorer I'efficacite. Ceci peuétre fait

en mesurant la sensibiétde I'ecoulement au coin amont. ll&e montée que c’est le point le plus
sensible aux perturbations externes. Le forgage est typiquement de ladcimet) et I'actionneur

est introduit juste avant le coin de ca&itr € [—0.15; —0.05] ety = 0). Le spectre de vitesse pour
un forcage de la formel sin(wt) (figure1.7) conduistant la diminution du mode de Rossiter. Ily a
une redistribution de Bnergie sur d’autres pics. L'actionnement est cependant non optimal. Un des
objectifs de ce travail est deeterminer la fequence et I'amplitude optimales en utilisant le cofer
dans le le modle d’ordre duit.

Conclusion

Dans ce chapitre nous utiie®s introduit I'outil nun@rique, leséquations, la dis@tisation et les
conditions aux limites utilis. Le code &t valicé sur le cas de la cat L'introduction du contdle
avec un jet syngtique plaé avant le coin amont estdrite. On note la diminution du mode de
Rossiter et la distribution de&nergie sur d’autres pics. Les outils powaliser un contdle optimal
seront ecrits dans la suite.




1. Description and validation of the numerical tool

1.1 Introduction

In this chapter the basic numerical tool used in this work is described. We perform a DNS resolving of
a 2D cavity f ow. Regarding the introduction of actuation a synthetic jet is introduced at the upstream
boundary to control the instabilities. There has been a large body of literature on physics of the cav-
ity f ow as can be found in Rowley et al.(2002), Larchevéque et al. (2004), Bres & Colonius (2008),
Rowley & Williams (2006). Flows with self sustained oscillations are diff cult to model as they are
very sensitive to the disturbances, due to shear layer amplif cation. Even a small error in the numerical
discretisation at the cavity leading edge can result in a large amplif cation of the errors downstream
of the cavity. Problems can also arise due to the artif cial ref ections at the computational boundary,
and may sometimes be indistinguishable from the physical disturbances, causing the appearance of
non-physical frequencies. Also in the case of cavity fows the feedback mechanism is acoustic and
of many orders smaller than the hydrodynamic disturbances, which necessitates the utilisation of a
high order, low-dissipative numerical method to resolve them. The code NIGLO used in this study is
capable of solving three dimensional unsteady compressible Navier-Stokes equations on multi-block
curvilinear grid. The discretisation is through a fourth order f nite difference scheme for the advective
fuxes and second order scheme for the diffusive fuxes. The temporal discretisation is second order
accurate. The code was initially developed by Professor Pierre Comte at the University of Poitiers.

1.2 Non-dimensionalisation parameters

Non-dimensionalising the f ow-f eld parameters removes the necessity of converting from one system
to another within the code. The process of non-dimensionalisation depends on the choice of the
parameter for the problem. In the code all the parameters of the simulation are non-dimensionalised
by the reference values, which are the characteristics of the f ow namely the Reynolds number, Mach
number & Prandtl number. The Reynolds number is used to quantify the convective effects to the
viscous effects, whereas Mach number gives the ratio between the reference velocity and the speed
of the sound, fnally the Prandtl number gives the ratio between the heat transfer by viscous diffusion
and heat transfer by thermal conduction.

T Y71, 710 YTu Vo
¥ W x_— P *_— P x_ T x_Ugt
wr=w pr=P p_p T Ut
Lo Py P £0 To Lo

Where all the quantities with (%) are the non-dimensionalised scales used in the code, and values with
(0) are reference values of the fow-feld. In the following we use only non dimensional variables
without *
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1.3. Governing equations in cartesian coordinate system

1.3 Governing equations in cartesian coordinate system

The fully compressible Navier-Stokes equation in a conservative form can be written for the non
dimensionalised variables as

oU
ivF = 1.1
BT divF =0 (1.1)

with F = (E, F,G) and U = (p, pu, pv, pw, pe).

In Cartesian coordinates we have,
oU L OF oF 8F 8G
ot ox 83/ 9z

where E, F, G are the non-dimensionalised f uxes def ned by:

(1.2)

1 p
_pu2 - 7M2p + ﬁﬂcx
—puv + ing
E= Re ™
—puw + Zg
_ —u(pe + p) +7M2}’; (UTpz + VTgy + WT,z) + %RGMPT @ |
- . -
1 f
—puv — ’)/MQp + ﬁTiEy
2 1 H
F= —pu _”}/sz—i_R_ Yy
—puw + — R
H v H
I (p€+P)+’}/M2R (uTmy—FUTyy—'—UJTyz)‘i‘mmqy_
- ~pw -
1 2
—puw — 7M2p + ETM
W
G — —pow + @Tyy
—pw? — ! p+
~yM? Re
H 2 H
—w(pe +p) + fyMQE(uTmZ + oty + W) + jReP’r > |

The Reynolds number is based on the characteristic length L of the cavity, and velocity Uy, which
represents the characteristics of the f ow can be def ned by:

__Po UoLy
o

Re = (1.3)
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1. Description and validation of the numerical tool

With p is the dynamic viscosity calculated at the same point of reference chosen for the velocity U
and for the density py. In the same manner, the Mach number based on a reference temperature 7

Uo
RV R’)/ TO
The Prandtl number which corresponds to the ratio of the kinematic viscosity and thermal diffusivi-
ties:

(1.4)

C
pr =t (1.5)
Ao
The total energy FE' is given by the equation of state as:
M2
pE:7_1p+72 p(u? +v? + w?) (1.6)
With the Stokes hypothesis the viscous stress tensor is proportional to the trace free part of the strain
rate tensor.
(‘3ul— 8Uj 2 8ul
= — ——=—0;; 1.7
Tis <(’9xj * Ozr; 30 j) 17
With the above non-dimensionalisation, the Fourier law reads as
oT
i = —k 1.8
q o, (1.8)

For taking into account the variation of dynamic viscosity with temperature a power law has been

used and is given by
7\ 07
1) = { (o)1) 19)
0

1.4 Time advancement

The time advancement scheme employed in NIGLO is an explicit fnite difference scheme of
predictor-corrector type as proposed by Gottlieb & Turkel (1975). Conservative decentered differ-
encing is utilised for two steps of time advancement scheme which alters the discretisation between
the predictor and corrector steps, resulting in a globally centered scheme which is 4" order for the
advection term and 2"? order for the diffusion term in space respectively. The discretisation is given
by

Predictor step:

At T 8 1

Z——Er 4 _ZET

A.T[ 6 7 + 6 i+1 6 Z+2]
n At T 8 1

At 8 1

7 n n n
E[—BGZ- + 6G¢+1 - EG”Q]
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1.5. Boundary conditions

Corrector step:

ﬁ[lEnH/Q n EE_n—i—l/Q _ iEn—i—l/Q]

Az'1277 127 1272
n 1 n+1/2 n At 7 n+1/2 8 n+1/2 1 n+1/2
U, +1:§(UZ~+/ +U") + A—y[EFZ / ‘|‘EFZ‘+1/ _EE+2/] (1.11)
At T 2 8 iz L gy
E[—éGi + EGZ‘—H - EGH? ]

The predictor-corrector scheme described above is valid for uniform mesh. In our case when we use
mesh ref nement to resolve the boundary layer, corners of cavity the mesh spacing is not constant.
In that case we use a transformation of the physical variables into a new coordinates of constant
length and perform the discretisation. The derivatives are then transformed back onto the physical
coordinates by the inverse transform.

1.5 Boundary conditions

1.5.1 Wall boundary condition

No slip condition at the wall is applied, so that all the velocity components at the wall are zero i.e.

Uy = 0
Uyat = 0
Wwyall — 0 (1 . 12)
The conservation of momentum equation is reduced to the following form
1 3p % aTij
— — =0 1.13
7M28xn+(Re)(8xj) (1.13)

It only remains to determine the thermodynamic state at the wall, which is chosen as isothermal for
the case of the cavity f ow.

1.5.2 Non-ref ective boundary conditions

The accuracy of unsteady f ow calculations relies on accurate treatment of boundary conditions. Due
to the limit of computational resource, usually only a limited computational domain is considered
for an unsteady f ow calculations. This means that we have to ’cut off”” the domain that is not of our
primary interest. However, the cut boundaries may cause artif cial wave ref ections which may include
both physical and numerical waves. Such waves may bounce back and forth within the computational
domain and may seriously contaminate the solutions.

Two types of conditions have to be provided to solve numerically the fully compressible Euler or
Navier-Stokes equations

13



1. Description and validation of the numerical tool

e Physical conditions which are the boundary conditions dictated by the original non-discretised
problem.

e Soft conditions which are numerical conditions required by the discrete method to complete the
set of physical conditions.

As described in Poinsot & Lele (1992), the Navier-Stokes characteristic boundary condition
(NSCBC) specifes both the physical and soft boundary conditions for Euler and for Navier-
Stokes equations. In this method physical conditions are specif ed according to the well-posedness of
Navier-Stokes equation.

Viscous condition for Navier-Stokes are added to the inviscid Euler equations to obtain the right
number of boundary conditions for Navier-Stokes. The viscous conditions are used only to compute
the viscous terms in the conservation equations at the boundary and, therefore are not strictly enforced.
The method relaxes smoothly to the Euler boundary condition when the viscosity goes to zero.

Soft conditions are constructed without any extrapolation. The NSCBC method is based on a local
one dimensional inviscid (termed LODI) analysis of the waves crossing the boundary. The amplitude
variation of the waves entering the domain are estimated from an analysis of the local one dimensional
inviscid equations. To explain further consider the quasi-linear form of the Euler equation

ov. oV a9V 9V
§+A%+Ba—y+ca_o (1.14)

— 4+ (AV)V =0 (1.15)

Where V = (u,v,w, T, p)" is the vector of primitive variables and the matrices A, B, C are def ned
as:

u p 0 0 O v 0 p 0 0 w 0 0 p O
0 uw 0 0 1/p 0Ov 0 0 0 0O w 0 0 0
A=10 0 w 0 0 B=|00 v 0 1/p|C=0 0 w 0 0
0 0 0 uw O 00 0 v 0 00 0 w 1/p
0O vp 0 0 wu 00 vp 0 w 0 0 0 vwp w

In our case , we are interested in the propagation of the vector I normal to the boundary. So we
introduce the matrix E,, such that

E, = An, 4+ Bn, + Cn, (1.16)

or
E, = A.i (1.17)
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1.5. Boundary conditions

where n = (n, n,, n,)" is the unit normal. The matrix of the eigenvalues obtained by diagonalizing
E, is

)\n - LnEanln = diag()\lu )\27 >\37 )\47 )\5) = dlag<u1 — C, U1, U, U, U =+ C) (118)

Here c is the speed of sound. The amplitudes of the characteristics waves s associated with each
characteristic velocity are given by:

L, = Al(ﬁ—m_pcﬁ—:ﬁ)

Ly, = Aﬁféﬁﬁ)

Ly = 38—2

S

Ly = A5(§—p+ gzl) (1.19)

The LODI system can be cast in many different forms depending on the choice of variables. In terms
of the primitive variable, this system can be written as

gf 1[L2+;(L5+L1)] S
?Z 1(L5+L) — 0
%+%<L5—Ll) _—
%+L3 ~ 0

%+L4 ~ 0 (1.20)

The LODI relations are used to obtain the relations on the Ls which will be used later in the system
of conservation equation. Using the LODI relation alone may also provide a simple but approximate
method to derive boundary conditions. For example assuming non-ref ection at the outlet is equivalent
to imposing L; = 0.
Op Ouy
— —pc——— =10 1.21
ot "o (1.21)

1.5.3 Subsonic inf ow boundary condition

For the case of inf ow we consider the case where all components of velocity uy, us, and ug as well
as the temperature T are imposed. At the inlet u; is imposed, the LODI relation suggest the following
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1. Description and validation of the numerical tool

expression for Ls:

ou
Ls =L — 2pc— 1.22
5 1 pe ot ( )
1 pc? dT
Ly=—-(y—1)(Ls+ L — 1.23
2= 50 = DLs + L) + 225 (123)
Also we have
ov
Ly =——— 1.24
= (1-24)
and
ow
Ly=—— 1.25
= (1.25)
The density can now be obtained by using the equation
dp
—+d; =0 1.26
By +dy (1.26)
Where d; is given by
1 1
dy = E[Lz + 5(7 — 1)(Ls + L] (1.27)

In this case L; is computed using the interior points from (1.19).

1.5.4 Subsonic non-ref ecting outf ow boundary condition

For subsonic fow at exit, the eigenvalue A\; = u — c is negative and the disturbance propagates into
the domain from outside. L, to Ls can be still calculated from the interior points. However, L
corresponding to the eigenvalue of u — ¢ must be treated differently. The conventional method to
provide a well posed boundary condition is to impose p = p at the outf ow boundary.

This treatment however will create acoustic wave ref ections, which may be diffused and even-
tually disappear at the steady state. In case of unsteady f ows, the wave ref ection may contaminate
the f ow solutions. To avoid wave ref ections, the following soft boundary condition as suggested by
Poinsot & Lele (1992) is used.

Ly = K(p— pso) (1.28)

where K is a constant and is determined by
K =0(1 - M?*)c/L (1.29)

M is the maximum Mach number in the fow, L is a characteristic size of the domain, and o is a
constant. The preffered range for constant o is 0.2 — 0.5. When ¢ = 0 (1.29) imposes the amplitude
of ref ected waves to 0 as suggested by Thompson (1987) and termed as “’perfectly non-ref ecting”.
In this study we choose the value of o = 0.25.
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1.6. Modelling cavity f ows using NIGLO

1.6 Modelling cavity f ows using NIGLO

In this section we present the results of validation for the cavity of L./D ratio of 2. The fow is
initialised by a laminar boundary layer so as to have a thickness of §/D = (.28 at the leading edge
of the cavity. The Reynolds number of the f ow based on the cavity depth is 1500 and the f ow Mach
number is 0.6 as in Rowley et al. (2002). The representative f ow in our case is laminar due to the
restriction of computational resources for a real time turbulent simulations. Also it is worthwhile to
use scale down the problem to laminar regions to test the basic developments. The computational
domain consists of 14D in the stream-wise direction and 7D in the vertical direction. The cavity f ow
conf guration is as shown in f gure 1.1. For the mesh a double hyperbolic tangent distribution is used
in both the stream-wise and vertical directions, with a stretch ratio of 5%. The infuence of mesh

”Buffer zone”

6D s Uso

”Buffer zone”

D i 0
2.5D L.=2D 10.D

Figure 1.1 - Schematic diagram of cavity configuration and computational domain.

resolution on numerical results is measured by performing a mesh convergence studies to obtain grid
independent results. The different mesh sizes used in the studies is given in table 1.1. The typical
mesh used in this study is shown in f gure 1.2 and corresponds to mesh M.

Figure 1.3 shows the instantaneous contours of vorticity, the size of the recirculation zone being
the same order as the depth. Figure 1.4(a) shows the overall sound pressure level (SPL) for the
acoustic feld above the cavity. The maximum SPL is about 170 dB at a point near the downstream
edge.

This is lower than the value reported in Rowley et al.(2002) where a value of 180 dB is reported.
This may be due to the artifact of the numerical scheme used in computation which is 4 order
accurate in the present study whereas it is 6'* order accurate in the case of Rowley et al.(2002). The
SPL levels is however is in agreement with the experimental results of Krishnamurthi (1956) where a
typical value of around 168 dB is reported.
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1. Description and validation of the numerical tool

Mesh Type Block 1 | Block 2 (cavity) | CFL
Coarse (C) 185 x 80 60 x 40 0.75
Medium (M) 260 x 80 102 x 80 0.6
Fine (F) 335 x 108 120 x 100 0.6

Table 1.1 - Mesh szes used in computation.

The spectra corresponding to the normal component of velocity at a point in the shear layer is
_ L

shown in Figure 1.4(b) and shows a single frequency. The value of Strouhal number is St; = 2= =

0.72 in good agreement with the value of 0.74 determined by the Rossiter’s formula Delprat (20606)

(n —0.25)
St= T2 e =2
(Mt 1j057) o "

Figure 1.2 - Typicd mesh used in cavity corresponding to M in tatil& One in every fourth cell is plotted.
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1.6. Modelling cavity f ows using NIGLO

2 2
vort 5 -1.665 167 vort 5 -1.665 161

15 15

1 1

(© (d)

Figure 1.3 - Instantaneous snapshots of vorticity. contours in the rangé’U2 € [-5,1.67] are dotted. Only
a small portion of the computational domain near the cavity is shown.
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1. Description and validation of the numerical tool
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Figure 1.4 - SPL and spectra of the normal component of velocity &t0 andxz = 1.8D in the shear layer.
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1.7. Introduction of control

Jet upstream
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Jet Cavity \%
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Figure 1.5 - Schematic representation of the action of jet and its effect on the impingement of the shear layer.

1.7 Introduction of control

The control of the cavity is achieved by means of a synthetic jet, which is achieved by modifying the
boundary condition in a suitable way. The introduction of control by means of the synthetic jet has
been previously performed by Shutian et al.(2007) for the case of f ow separation around an airfoil,
Kestens (1999) and Samimy et al.(2007) for the case of the cavity. for the experimental control of
cavity.

The basic physics behind the control of cavity resonance is to def ect the shear layer from imping-
ing on the downstream edge of the cavity thereby arresting the feedback mechanism. As a result of
the jet the shear layer can impinge on the downstream edge either fully, partially or can just pass over
without any impingement as shown in f gure 1.5. Different positions of the jet has been tried, and the
position just before the upstream edge of the cavity proves to be more effective. This can be explained
by measuring the sensitivity of the f ow, where the upstream edge is more sensitive to external f ow
disturbances as shown in Moret-Gabarro (2009). The forcing is typically of the form A sin(wt), and
the actuation is introduced just before the leading edge of the cavity (x € [—0.15; —0.05] and y = 0),
the length of actuation is dependent on cost factors, such as the cost of the actuator in case of exper-
iments or the computational cost in case of numerical simulation. The snapshots of the stream wise
component of velocity is shown in f gure 1.6, showing the case of no impact and partial impact of the
shear layer on the trailing edge.
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1. Description and validation of the numerical tool

~1 05 0 0.5 1 . 2 2.5 3

(b) Partial impact of the shear layer on the downstream edge.

Figure 1.6 - Instantaneous snapshots of the stream wise component of velocity depicting the effect of
actuation. The forcing is introduced ate [—0.15; —0.05] andy = 0 and is of the forn®.2 sin(0.4¢).
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1.8. Conclusion

The spectra for a typical forcing of the form A sin(wt) is shown in the f gure 1.7, Here the peak

08}
06}

04}

Power Spectral Density (W/St)

0.2}

Lo

0 0.2 04 06 08
Strouhal number(St = IJ;_D)

>

Figure 1.7 - Spectra aty = 0 andx = 1.8D in the shear layer for the normal component of velocity for the
actuated flow (dashed line). The forcing is of the for2sin(0.4¢). The spectra is compared for flow without
any actuation (solid line).

corresponding to the Rossiter mode is reduced. One of the objects of the current work is to determine
the optimal forcing frequency and amplitude by utilising a reduced order model and check its effect
by introducing it in the DNS code.

1.8 Conclusion

In this chapter we have introduced the basic numerical tool used in this study with respect to the
governing equations, numerical discretisation and the various boundary conditions used. The code has
been validated for the cavity f ow conf guration and will be used through in this study. Introduction
of control by means of a synthetic jet at the upstream edge of the cavity, where the fow is more
sensitive to perturbations is performed. The associated spectra shows a decrease at the peak Rossiter
mode followed by the appearance of new peaks suggesting the need for optimal criteria for injection.
Various tools to perform the optimal control using ROM will be developed in the subsequent chapters.
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Chapter 2

Basic tools from control theory

Introduction

Ce chapitre pesente b@vement les défentes tbories du conible actifBewley & Agarwal1996,
Bewley & Liu(1998,Kim & Bewley(2007),Bagheriet al. (2009) qui ont trou\e des aplications en
mécanique des fluides lors de ces 15 deras anges, et qui sont utilees en partie dans ce travail.
On qualifie en premier lieu le type de codlee en fonction de la loi de cordile et de son action.
On parle de contdle en boucle ouverte (open loop) lorsque la loi de coletrest @termirée opti-
malement pour stabiliser un sgshe initialement instable. La loi n’est pas modifiable au cours du
processus de cortife. A I'oppo®, dans le confile en boucle ferge (close-loop), une loi de re-
tour (feedback) lie le condie a I état reel et eactuali€ du systme, assurant une stabilisation plus
efficace.

Avant de chercher une loi de cobte, on doit aussi regarder les aspects de colatbilité (ou com-
mandabilig) et d’'observabilié. La contblabilité qualifie la capacé du systmea atteindre urétat
souhaié a partir d’'une certaine loi de conéile et d’'une bonne condition initiale. La stabilisal#ljt
assocgea la contllabilite, assure qu’il existe une loi de retour capable de stabiliser leesyst
Cela revienta dire que les modes non commandables sont tous stables. Enfin I'obsegyajuilit
matrematiquement est une notion dualéa notion de conilabilité, indique que I'observation des
entréees et sorties du syshe, pendant un intervalle de temps fini, permet de retrougttlinitial et
donc l'etat complet.

Controle des écoulements en boucle ouvert et optimisation sous
contrainte

Un probleme de confie est bien passi on peut clairementé&dinir :
e la variable detat du systmee.

e la variable de contdlec.
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2. Basic tools from control theory

e une fonctionnelle dat & minmiser 7 (¢, ¢), assodéea la recherche d’'uneé&duction de trinée
ou de bruit, par example.

e des contrainted’(¢, c¢) = 0, qui sont lesequations cétat avec les conditions aux limites ou
initiales éventuellement.

Pour minimiser la fonctionnelle €a, on introduit une fonctionnelle Lagrangienne qaila fonc-
tionnelle cdit, ajoute les contraintes multi@es scalairement par des multiplicateurs de Lagrange
&, qui sont en galité des variables d’'un probme adjoint restand définir. La minimisation de la
fonctionnelle Lagrangienne se fait en calculant |€sides de Fechet par rappor& une variation
de I'état ¢, qu’on annule par la suite. Une fois les gradients de la fonctionnelle cascudn utilise
une néthode iérative pour aboutir au conéile optimal, solution de notre prolne. Le calcul des
gradients peut auséitre effecté en appliquant la i@hode des sensibiis. Il s’agit alors de @river
les contraintes par rappos la variable de contble pour aboutira la résolution directe d’un sysine
ou les cerivees sont les variables principales. Finalement, une discussion sur &8étmet les in-
conenients entre les deux approches conclut cette section :

o difféerentiation puis disa@tisation : en diferentiant le systme et ses contraintes, on obtient
les gradients continus. Ensuite on digtise 'ensemble du prodime pour obtenir la solution
nunérique.

e discrétisation puis diférentiation : on discetise 'ensemble du prodie (contrainte, fonction-
nelle), puis on cherche les gradients des grandeurs dissrpar diférentiation degquations
discretes.

Controle en boucle fermée

Dans cette partie estavelop@e I'approche classique du cobte optimal avec loi de retour. A partir
de mesure des sorties du ®ysie, on estimedtat du systme optimalement. C’est I'observation et
'estimation. Ensuite, on suppose quetét esting est Ietat réel, et on Atit la loi de contle, c’est

I étape de conbie.

Controle linéaire quadratique régulier (LQR)

On consi@re dans un premier temps un gyse dans le cadre d’information corgpg, c’esta-dire,
gu’on peut conntre a tout instant letat du systme. Par I'approche adjointe on obtient facilement
une loi de contdle de retour (etroaction) fonction liéairement de Btat, en minimisant une fonc-
tionnelle bage sur létat et le cét du contble. La solution est en fait obtenue e@splvant une
équation de Riccati stationnaire, ce qui signifie qu'on cherm@lstabiliser le systme sur un horizon
infini (t — o).

Dans une seconétape, sur la base des mesures en sortie, on chérecheonstruire létat. Pour
cela on applique la thorie du filtre de Kalman-Bucy qui suppose que statistiguement lensgstst
soumisa des bruits gaussiens qui engendrent une erreur dans les mesures. Cette erreur se tradui
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par un terme source dit de retour analogaeun corirble dans Iequation d’estimation de &tat.
La minimisation de cette erreur de mesure reviamésoudre une nouvellequation de Riccati qui
permet de trouver la forme du codte dans Iequation d’estimation deé&tat. On montre eécrivant
le syseme completgtat réel etétat esting) que le prol®me de contile et d’estimation sont duaux.

Controle linéaire quadratique gaussien (LQG), Hs)

Cette fois-ci, on conséte que létat réel du systme est pertu par des bruits gaussiens, sur les
mesures et sur le coritle. L'approche et la solution sont identiques au casgdent. La diftrence
majeure est dans I'introduction du bruit directement dansgggations. Uné&tude du sysime com-
plet montre que cela ergphe Ietat du systme de tendre vers une solution coatpiment stationnaire
au bout d’un horizon infini, le bruit gaussiengsent alimentant toujours le sgste.

Controle robuste (H..)

Le contble robuste est une extension du comgrLQG. Dans cette approche, la forme du bruit est
devenue aussi une inconnue du paohk. Le prol@me d’optimisation devient un prashe min max

: on cherche le confile optimal qui va minimiser la fonctionnelle @oet le pire des bruits qui va
maximiser cette Bme fonctionnelle. La solution est encore &asur deuxquations de Riccati,
mais des matrices sugphentaires relativea l'influence du bruit dans le coriite et les mesures
interviennent. Une lve pésentation de l'utilisation du coritfe en boucle ferge conclut cette
section.

27



2. Basic tools from control theory

2.1 Introduction

This chapter summarizes the various tools from control theory. The results from this chapter are used
in this thesis, while performing the LQG control on our ROM. Also the method of adjoint as intro-
duced in this chapter is evoked on numerous occasions, in chapters on calibration, sensitivity analysis
of the ROM, linearization of the model while performing feedback. To introduce the basic ideas we
closely follow the work contained in Zabczyk (1996), and Evans (1983). For the application of the
control theory in fuid mechanics an exhaustive treatment can be found in Bewley & Agarwal (1996),
Bewley & Liu (1998), Kim & Bewley (2007) and more recently Bagheri et al. (2009b). To begin with
we introduce the various terms frequently encountered in the control theory. The starting point of con-
trol theory is the differential equation

(t) = f(z,u), x(0)=u1z9€R" (2.1)

with the right-hand side depending on a parameter v from a set &/ C R called as the set of control
parameters. An important question in the theory of differential equations is the continuous depen-
dence of solutions on parameters and has been answered under appropriate conditions. In control
theory we pose questions of different type, and depending on the nature of the control two def nitions
of control can be found: open loopand closed loop An open loopcontrol is basically an arbitrary
function u(:) : [0, +00) — U for which the equation

#(t) = f(x@t),u(t), t=0,2(0) = (2.2)

has a well def ned solution. A closed looprontrol is a mapping k : R" — U which may depend of
time ¢t > 0, such that the equation

#(t) = flxt), k(x(t)), t=0,2(0) = o (2.3)

has a well def ned solution. The mapping k(.) is called feedbackControl are also called the inputsof
the system and the corresponding solutions of (2.2) or (2.3) are called the outpus of the system.

Controllability

A state z € R" is said to be reachablefrom x in time 7', if there exists an open loop control u(.) such
that, for the output z(.), (0) = zo, 2(7T") = z. If the state z is reachable from an arbitrary state x in
time 7’, then the system (2.1) is controllable. In many cases we require transferring an arbitrary state
into the given one, in particular the origin. The effective characterisation of controllable systems is a
partially solved problem in control theory.

Stabilizability

An important issue is that of stabilizability. If for some z € R" and u € U, f(z,u) = 0. A function
k : R"™ — U such that k(Z) = u is called a stabilizing feedbackf z is a stable equilibrium for the
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2.2. Open loop control and constrained optimisation

system.

#(t) = f(x(t), k(z(t)), ¢ =0,2(0) =z

There exist many methods to determine weather a given equilibrium state is a stable one.

Observability

In many practical situations one observes not the state z(¢) but its function h(z(t)),t > 0. It is
therefore necessary to consider the pair of equations

t = f(z,u), x(0)=ux (2.4)

y = h(z) (2.5)

equation (2.5) is called an observation equation. The system is (2.4)-(2.5) is said to be obsenableif,
knowing a control (.) and an observation y(.), on a given interval [0, 7’|, one can determine uniquely
the initial condition x.

Optimality

In control theory besides the above questions of structural character one also asks optimality ques-
tions. In the time optimal problem we seek a control which transfers a state x onto z in a minimal time
T. In other problems the time 7" is f xed and one seeks a control «(.) which minimises the integral

T () = / Pla(t), u(t))dt + Qa(t))

where P and () are given functions. The methods of control theory can be broadly classif ed based
on the right hand side of the system (2.4) being linear or non-linear where we describe the control
as linear or non-linear. In case of non-linear control problems subjected to constraints the method
of Lagrange multipliers is well known as described in Gunzburger (1997a), Gunzburger (1997b),
Gunzburger (1997c). The method is described in the next section and is largely inspired from
Gunzburger (1997a).

2.2 Open loop control and constrained optimisation

Most of the f ow control or optimisation problem can be set in an abstract setting for which we def ne
the following

1. state variablesp: which are described by the governing equations, such as velocity, pressure,
temperatures etc.
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2. Basic tools from control theory

2. The control ¢ which is usually introduced as an external source, such as mass inf ux, heating on
the boundary.

3. cost functional 7 (¢, ¢) which is the desired objective we want to achieve by the application of
control such as minimisation of the exit energy, reduction in noise, drag, etc.

4. The constraintF' (¢, ¢) = 0 is the f ow equations or any side constraint to be satisf ed such as
the initial or boundary condition.

The constrained optimisation problem is then to fnd controls ¢ and states ¢ such that 7 (¢, ¢)
is minimised (or maximised), subject to the constraint F'(¢,c¢) = 0. In many cases the functional
to be minimised do not explicitly depend on the control parameters, resulting in ill-posed problems
Gunzburger (1997¢). This may force one to restrict the size of the control, which can be done two-
fold

1. Limit the size of the control so that one looks for optimal control within a bounded set, e.g.,
one could look for optimal controls such that under some suitable norm

el < M

2. To penalize the objective functional with some norm of the control so that the new functional
becomes

T (d,c) = e(¢) + & c]® (2.6)

The parameter ¢ is chosen empirically. The smaller the value of ¢ the more the control available
to make the frst term small which is presumable the goal of the optimisation. This strategy is
easier to implement than the earlier one which results in variational inequalities.

In the method of Lagrange multipliers to enforce constraints we introduce an adjoint or co-state
variable £ to def ne a new objective functional

L(¢,c, &) = T(¢,¢) = (F(¢,0),€) 2.7

where (.) denotes an appropriate inner product which depends on the setting of the problem. The
constrained optimisation problem can be stated as f nding

To find controls:, statesp and co-stateg such thatZ(¢, ¢, £) is stationary.The above def nition
of the functional (2.7) ensures that each argument is independent of the other contrary to the original
problem in which the argument had to satisfy F'(¢,c) = 0. The Lagrangian functional £ admits an
extremum at the stationary points of £ which is obtained by setting the frst variation of £ with respect

to each variable L =0 i.e.

5¢ %& 8£55—0 (2.8)

a¢ o€
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2.2. Open loop control and constrained optimisation

We suppose that the variables ¢, ¢,  are independent ! and the Fréchet derivative 2 with respect to
each variable is identically equal to 0 with respect to each variables ¢, ¢, and £. i.e.

oL oL oL

8¢5<z5— 8650— 6§5£ =0
The expressions above represents a necessary and suff cient conditions for the determination of
an extremum in case the functional is convex and gives a local extremum of the functional. We
do not consider the global optimisation methods as they are too expensive in fuid dynamic com-
putation, and is still an active area of research as found in the works of Mohammadi (2007),
Mohammadi & Pironneau (2004). The local optimisation methods may be stuck in a local extremum,
which mat not be of interest. Also the presence of many local extrema may seriously affect the
performance of the algorithm. Global optimisation method such as genetic algorithms is still less
utilised in the f eld of fuid dynamic optimisation as the number of parameters is limited applications,
as can be found in Quagliarella & Vicini (1997), Obayashi (1997), Makinen et al. (1999). Setting the
frst variation of £ with respect to the Lagrange multiplier £ equal to zero gives

OLse i LO0EHO) ~ L@
0& e—0 €
e—0 €
Where the variation &£ is arbitrary. On simplif cation we obtain
(F(¢,c),06) =0
or
F(g,¢) =0 (2.9)

which is nothing but the equation of state, which is the constraint of the optimisation problem. Setting
the frst variation of £ with respect to the state ¢ in the direction d¢ yields

OLsy — g LT 6,08 ~ L(c.8)

= =0
8¢ e—0 €
i [J@F 6.0 = (6.0 (Fo+€66.0.6) — (F6.0.8] _
e—0 € €

IRigorously speaking this is not a fully correct assumption as the control and the state variables, c, ¢ are related by the
equation of state F'(¢,c) = 0.
2The Fréchet derivative of £ at the point x in the direction dz is given by

lim L(xg + edx) — L(x0)

e—0 €
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2. Basic tools from control theory

We consider the Taylor series expansion upto order O(¢), the above relation becomes

tin, (5766~ (5200.6) +.000)

On further simplif cation

5¢ < 5¢£>—0

8gz5 96

The frst term can be written in terms of the inner product as

<—¢5<Z57> < 29

On using the def nition of the adjoint denoted by (.)*:

0. (53) - 00, (55 ) @1 =0

Since the variation d¢ is arbitrary we obtain the adjoint or co-state equations

oF OT\"
(5:) ¢~ (50) @1

Note that the adjoint equations are linear in the adjoint variables £. In fact the adjoint of the state
equations are linearised about the state. Finally setting the variation of the £ with respect to the
control ¢ in the direction dc yields

oL . L(¢p,c+ede,§) — L(¢, ¢, €)

5<z5€>—0

805 B 11—I>nO € =0
— lim j(¢,c+e5c)—j(¢,c) . <F(¢7C+€5C)7§>_<F(¢7C)7§> -0
e—0 € €

As previously, we consider the Taylor series expansion upto order O(¢) to obtain

oJ or
200 e

On introducing the inner product for the frst term

N4 OF
<E(SC7 1) - <§

again introducing the adjoint operator we have

e, (5) ) - t0e. (50 ) @1 =0

de, &) =0

6c, &) =0
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2.2. Open loop control and constrained optimisation

Finally the optimality condition is given as

OF\" VAN
() e () -+

System (2.9)-(2.11), also called as the Euler-Lagrange equations are a system of coupled partial dif-
ferential equations whose solution yields the optimal control ¢, the optimal state ¢ and the optimal
co-state £. The coupled system is more complicated than the original system and computationally
expensive to obtain the solution directly (also called ”The one shot method”), especially in the case
of computational fuid dynamics where the number of degrees of freedom can go upto the order of
107. One therefore resorts to an iterative method in which one iterates between different equations,
the algorithm for which can be summarized as below.

1. for n = 0 initialise the guess value for the control ¢(?).
2. Solve F(¢™, ¢™)) (2.4) to obtain the state ¢(™

3. Determine the adjoint state £(™) by resolving equation (2.10) as

<6’_F)*("’ £ — (6‘_7)*(”)
Bl — \ 0¢

4. The new control ¢"*1) is obtained by solving the optimality condition (2.11) to obtain the

gradient
8j *(n) aF *(n)
(%) =(%) ¢

5. The new value of the control is obtained as

()
L) ) () <6_~7>
oc

where s is the step length of descent obtained from any descent algorithm.
6. iterate the above step till a convergence criteria.is satisf ed

We remark that the above iterative algorithm is equivalent to the method of steepest descent for the
unconstrained functional 7 (¢(c), ¢) where ¢(c) is the state corresponding to the control ¢. One im-
portant component of the optimisation problem is the determination of the gradient in step 4, which
can be obtained by different methods as will be explained in the next section. Since the main aspect
is the calculation of the state variables, we wish to keep the number of computation small and the
principle of model reduction is one such strategy.
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2. Basic tools from control theory

2.2.1 Functional gradients through sensitivities

To determine the functional gradient in step 3 of the algorithm, we use the chain rule to obtain

dJ(¢,c) 0T (¢.c)dg 9T (¢,c)
de  0¢ dc T dc 2.12)

Since the functional 7 depends explicitly on ¢ and c, the terms 2 e and 7 can be determined easily.
Since the state Vanable ¢ depends implicitly on the control parameter ¢ 1t 1s more subtle to determine
the sen51b111ty . A simple idea is to use a f nite difference approximation given by

Ao o) =000

2.13
de ¢ — ¢ ( )

where ¢ is a value in the neighborhood of ¢ and ¢(¢) is a solution of the state equation at ¢ i.e.
F(¢(¢),¢) = 0. This is a costly solution as it is required to solve an additional nonlinear state equation
for each sensitivities and is prone to inaccuracies. A better method to determine the sensitivities is
to differentiate the constraint equation F'(¢, c) = 0 again by chain rule to obtain a linear system for
sensitivities as

OF OF

dF = % g o+ 5 de=0 (2.14)

therefore

<6F‘ ) Ao, _OF 015)

5 P
The major disadvantage of this method is to resolve a linear system with the optimal parameters. The

terms g 5 |n and 2F |cn can be determined at the beginning of the iteration just after the resolution of

the state.
2.2.2 Functional gradients using adjoint equations

One can also use the adjoint equations to determine the gradients of the functional. To demonstrate
we write the adjoint equation (2.10) for the sake of convenience as

(5:) = (55)

which is equivalent to the equation

LOF 0T
13 9 9o (2.16)
Substituting this in equation (2.12) we obtain

de N Oc dc Oc
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2.2. Open loop control and constrained optimisation

Finally on using 2.15

dJ (", c") s OF T
— (€") Ep |en + 9% |en (2.18)

The advantage of this method is that to determine the sensibilities, we need to resolve the adjoint
system once independent of the number of optimal parameters. Also the adjoint of the optimality
condition (2.11) is valid for non zero values of the gradient of the cost functional %. When the
optimality condition is satisf ed we have % = 0. For problems with many design parameters this
approach is much cheaper than using sensitivities. However sensitivities are useful in their own right
as they help in determining how a variation in a parameter affect the f ow.

2.2.3 Differentiation then Discretisation

Sensitivities can be determined in two ways. One can differentiate the continuous fow system at
the partial differential equation (PDE) level to obtain a system of equations for sensitivities and then
discretise the continuous sensitivity system. Alternatively one can also discretise the continuous f ow
equations and then differentiate to obtain the sensitivities of the discrete system. It is also worth-
while to note that the differentiation and discretisation process do not commute and yields a different
approximation to the sensitivities. The difference between the two approach can be summarized in
f gure 2.1. In the following section we give a brief discussion between the two approaches.

2.2.4 Discretisation-Differentiation

This approach consists of discreting the equation of state and then differentiating the discrete expres-
sion to obtain the gradients. The main advantage of this method is the sensitivities of the optimi-
sation problem are obtained exactly. Contrary to the case of discretisation-differentiation approach
there is no need of calculating new solutions of the discretised equations. This method requires a
choice of parameter in the code and returns a new code which computes the approximate param-
eters and exact sensitivities without any user intervention. Although this method has gained some
popularity in feld like shape optimisation it has been very less utilised for fuid dynamic problems
Hinze & Slawing (2003) is one such work. The overhead cost of this operation is very large as it
requires more CPU time than the differentiate-discreisation approach.

2.2.5 Differentiation-Discretisation

In this approach the continuous state system is differentiated with respect to the parameters to yield
a continuous system of equations for sensitivities of the exact solution with respect to the param-
eter. The sensitivities then might be descretized with respect to the given parameter to obtain an
approximation for the exact sensitivities. Although the approach is cost effective, the diff culty lies in
approximating the sensitivities as they are not the exact derivatives of anything. This leads to incon-
sistent gradients of functional i.e. the approximate gradient is not the true gradient of anything. Also
in applications where inherent discontinuities in the solution are present such as shocks the approach
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Objective Functional
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Discrete in Time
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(b) Discretisation then differentiation

Figure 2.1 - Schematic representation of the different approaches of resolution of the optimal system.
Discussion of the commutativity between the discretisation and differentiation operator.

need not be feasible as the weak solution of the shock namely the Rankine-Hugoniot condition need
to be considered as a constraint Castro et al.(2008), Bardos & Pironneau (2003). In literature we do
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2.3. Feedback control

fnd a large application of this method in the fuid dynamic context notably in Bewley & Liu (1998),
Walther et al.(2001), Spagnoli & Airiau (2008), Shrif. (2008),Marquet et al. (2008) and will be used
for the later developments in the context of reduced order modelling. An interesting study of compar-
ison of the comparison of the various adjoint techniques is found in Noack & Walther (2007) where
the difference between the discrete adjoint and continuous adjoint are compared.

2.3 Feedback control

In this section we demonstrate the principles of a feedback control. The control on the physical
system can be applied by computing the effect of control in advance such that the desired state of
the physical system is achieved. This strategy is known as open-loop control. However when there
are disturbances in the physical system, due to the presence of uncertainties open-loop control fails
to give the desired effect. Closed-loop control or feedback control is based on the concept that one
is able to monitor the model by means of output measurements and establishes a connection between
the measurements and the input of the system. Figure 2.2 illustrates the concept of a feedback control.
Here P is the plant that describes our model and is usually given by a dynamical system of the form

Perturbation
> P
Measured state
Ym
Y
Control
= g
Uu
Estimated state
z
K
Figure 2.2 - Block diagram of control with estimation
t = Ax+ Bu (2.19a)
Ym = Cx+ Du (2.19b)
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2. Basic tools from control theory

Where the matrix A also known as the state matrix determines the evolution of the state z, the control
u is applied to the system to drive the state towards zero, the control is based on measurements y,,.
The matrices B, C', D are mainly problem dependent and depends on the way the control is applied
(weather a boundary control or an internal forcing) and the way the measurements are made. In many
cases the state is an internal variable and cannot be observed. Instead a few noisy measurements 4.,
are made, and used to estimate the state z, which is then fed to the controller to determine the control
u which is then applied back to the plant to drive the state towards zero. The estimation problem can
be stated more precisely as follows

i = Ai+Bu—1 (2.20a)
Jm = Ci+ Du (2.20b)
@ = L(Ym—im) (2.20c)

Where @ can be interpreted as forcing applied to the plant P and v, denotes the measurement asso-
ciated with the state . Once the state = has been determined using the estimator £ the control can be
determined as

u=—K(#) (2.21)

The problem now lies in determining the operators £, K such that the term « forces the state vari-
able & toward the actual state x and the control u drives the state  towards zero. The equivalent
criteria for determining the controllability and Observability for a fnite dimensional system is dis-
cussed in appendix A. We present the methods in section §2.4, and section §2.5 the different strate-
gies of determining the control, based on the solution of the Ricatti equation. Based on the func-
tional space in which the optimisation problem is solved the control can be classifed as Hy and
'H~ which will be discussed in the next section. For details one can refer Lewis & Syrmos (1995),
Bewley & Agarwal (1996), Zhou et al.(1996), Kim & Bewley (2007).

2.4 'H, control theory

2.4.1 Linear Quadratic Regulator LQR control

One considers a linear system continuous, invariant in time of the form.

= Az + Bu (2.22a)
= —Kigrr (2.22b)

with x representing the state, u representing the control law, the second equation represents the feed-
back law. We assume that there is no external disturbances and we are able to measure the full state.
The LQR consists is to fnd a control law that stabilises the system (2.22), and minimises the cost
functional given by

JLor = % / (z"Qx + u" Ru) dt (2.23)
0
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2.4. 'Hs control theory

where the weight matrices (), R are assumed positive def nite. The control is found out in knowing
the full information in that the state of the system at the input and output is known in advance for
all time. As in the previous section we introduce the Lagrange multipliers £ to def ne the augmented
functional

L= /Om(%xTQx + %UTRU — &' — Az — Bul)dt (2.24)

Variation of the above functional gives
0L = [—€7ox] 7 + / {27 Q + " A+ "Yox + {u" R + " B}ou)dt (2.25)
0

The minimisation is achieved if

£ = —AT¢—Qu (2.26)
v = —R'BT¢ (2.27)
[-¢Tox] = 0 (2.28)

We assume a linear relation between the state and the adjoint variable as
=Xz (2.29)
where X is any positive def nite matrix. The feedback law (2.27) becomes
Kior=R'B'X (2.30)
On using (2.22) and (2.29), equation (2.26) becomes
Xi+ Xe=—(ATX 4+ Q)z = Xo+ X(Az + Bu) = Xx + X (Az + B[-R'BTXz))
This equation is verif ed for some value of x, if X is the solution of Riccati equation given
— X =ATX +XA+Q - XBR'B'X (2.31)

In general the inf nite time horizon problem is solved by taking the term X = 0 in (2.31)

2.4.2 Lyapunov equation and minimum of the functional J7or

The functional J;qr being a scalar can be written using the feedback law as

1 1 T o°
Jror = Trace {/ (§xTQx + §uTRu)dt} = r;ce {/ (z"(Q + K[ orRKqgr)x)dt
0 0
Trace
- [(Q + Kl orRErgr)L] (2.32)
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2. Basic tools from control theory

Where the matrix L = fooo xx’dt. The equation of state can be now written as
t=Apr with Ay=A—-BKigr
The solution of the above equation can be characterised as
x(t) = exp(Ast)zg

We now recall a result from the Lyapunov theory which states that the above system is asymptotically
stable if

It can be shown that using the equation of state and the Riccati equation X Ay + A:]fX = —(Q+
K EQ rRKrgr), the minimum of the functional is given as

Trace Trace
Tmin = BN [(Q + KEQRRKLQR)L} T

[(XAp+ A7 X)]
where J = Jpor for notational convenience. On observing that Trace(AB) = Trace(BA) and
Trace(A + B) = Trace(A) + Trace(B) the minimum can be written as

1
Tonin = 53;5)(3;0 (2.33)

A typical LQR plant model can be summarized as shown in the f gure 2.3

Y

Pror

Kror ~

Figure 2.3 - Typicd block diagram of an LQR control

2.4.3 Estimation and the Kalman-Bucy Filter (KBF)

In real time systems it is often natural to encounter external disturbances that enter into the system
and hence the state is not precisely known. For example when acoustic measurements of f ow are
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made using a microphone one can expect the presence of the instrument noise affecting the measure-
ment. This leads us to the estimation problem in which the state (a part of it) needs to estimated
before designing the control. The Kalman-Bucy Filter (KBF) is a well known tool for the estimation
problem. The external disturbances for the state w; and the measurements w is assumed to be uncor-
related white Gaussian process with zero mean and the covariance matrix def ned by E[wjw,| = I,
Elwiws] = I, where E.] is any expectation operator. We def ne the square root of the covariance of
the disturbance to the state equation and measurements by GG, GG5 respectively. The system P can be
written as

& = Ax -+ G1w1 -+ BQU (2343.)
Ym = Cx+ Gows+ Du (2.34b)

The objective of the Kalman Bucy Filter is to estimate the state x as accurately as possible based on
the measurements v,,,. In other words the KBF tries to minimise the estimation error e, def ned by

€y =T — 2T (2.35)
where the state 2 is determined using a f lter. The cost functional can be written as
Txnr = Bllxe|’]
where . = e, for the sake of notation, and E is any expectation operator *. For the sake of gen-

eralisation in latter sections we introduce the following notations, assuming (5 nonsingular. The
disturbance vector can be def ned as

we also defne
B; = (G1,0) Cy, =Gy 0 Dy = (0,1)
On using a simple change of variable the observation vectors ¥,  is def ned as
Y= Gy (Yym — Du) 4= Gy (fm — Du)
With the change of variable (2.34) and (2.20) can be written as

y = Cox+ Dyw (2.36a)
§ = O (2.36b)

3The defnition of the functional by means of an integral on ¢t € [0, 0] is not convenient due to the problem of
convergence, the expectation being the suitable measure.
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It is also appropriate to def ne the output estimation error e, = y — ¢. The equations for the state

estimation error and output estimation error can be written by the defnition of errors e,, e, and
equations (2.20), (2.36) as

e, = Ae,+ Biw-+1u (2.37a)
Xe = € (2.37b)
€y = CQGJ; + Dglw (2370)

The Kalman-Bucy estimator matrix L i g is estimated such that the control 4, forces the state variable
of the estimation error é, towards the minimisation of Jx pr(x.) in the presence of disturbances w.
The above facts can be written in a shorthand form as shown in table. Where Py pr represents the

€s w U
én A By I
PrBr = Xe 1 0 0
€y Cy Doy 0

plant and L g represents the flter gain. We introduce the Hamiltonian as

AT —CTC
Hicpr = —B,BT -4

The Ricatti equation associated with H g can be written as
AYT + Y AT —Y(CICo)Y + (BiBY) =0 (2.38)

also denoted by Y = Ric(Hgpr). Note that the gain obtained from the KBF is the dual of the gain
obtained from the LQR control described in (2.31). The feedback operator L can be written as

L=-vco (239)
and the Kalman-Bucy flter £ gr given by
o= Le, =-YCje, (2.40)
The estimator ¢ is given by the equation
§ = A& 4 Byu — L(y — Cyt) (2.41)

and minimises F(||e,||*) for a system with Gaussian disturbances. The block diagram of the KBF can
be summarized as shown in f gure 2.4.3
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7DKBF

w
u

Krpr ~

Figure 2.4 - Block diagram of Kalman Filter.

2.4.4 Linear Quadratic Gaussian LQG control

We combine the results obtained from LQR for the control and the KBF for the estimation part to
obtain a system P subjected to Gaussian disturbances. The cost functional for minimisation can
be written as

Jrqc = E [||lz|? + *u?] (2.42)

Note that Q = [ and R = (? in the defnition of (2.23), ||.|| represents the euclidian norm or the L,
norm. The functional (2.42) can be written in a form similar to that of the Kalman-Bucy flter by
introducing the transformation variable
_ (Qx/t
(9

to obtain the new functional of minimisation as

Jrea = Ellx|I’] (2.43)

The term LQG comes from the fact that the plant being linear, the cost functional being quadratic,
and the external disturbances being Gaussian. Using the same way the plant (2.34) can be written as

T = Az + Biw+ Byu (2.44a)
y = Cox+ Dyw (2.44¢)

where

() nu-()

An H, controller relates the measurements y and the control v such that when applied to the plant
controls the evolution of the state x so as to minimise the cost functional J;,o¢(x). We state a result
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as found in Lewis & Syrmos (1995), in that the H, controller which minimises J¢¢ can be found
as a combination of optimal controller and the Kalman-Bucy flter. The estimator is given by the
equation

u = —Ki& (2.45a)
I = A+ Bou— L(y — Cy7) (2.45b)
Where
A  —B,BY
= — r = 1 2 2
K =-BI'x X = Ric (_ cTe, A ) (2.46a)
AT —o,CoT
_ _\TAT — Ri D)
L=-YTC!] Y = Ric (_ BB A ) (2.46b)

One observes the separation structure of the solution in that the computation of the control gain
K5 does not depend on the external disturbances which are taken care of by the terms B; and Cb.
Similarly the estimation gain L does not depend on the cost functional which are taken care of by the
term (' or the way the state is measured as accounted for by By, thus resulting in a decoupling of the
problem for control and estimation, which is usually reffered to as the principle of separation.

2.5 'H. control: robust control

The formulation of the H, is similar to the H, controller, only difference is that one considers the
worst disturbance which destabilises the system, rather than a Gaussian disturbance. The governing
equation are similar to the system of equation (2.44) and can be written as

Tz = Ax+ Byw+ Byu (2.47a)
x = Ciz+ Dpu (2.47b)
y = Cor+ Dyw (2.47¢)

in that one replaces the Gaussian disturbance w with the worst case disturbance w which destabilises
the system. One considers the transfer function 7,,, of the perturbation w which is obtained by solving
the estimator problem for the feedback law . In an H ., control one tries to bound the oo norm of the
transfer function to be less than a chosen value 7 i.€. || 7, ||~ < 7, Where 7 is a constant and ||. || is
the inf nity norm of the transfer function and as def ned in Zhou et al. (1996)

HTXw HOO = sup Umax<wa)(jw> (248)

w

where 0,,,, corresponds to the largest singular value. The objective functional for minimisation can
be written as
Tse = Elz" Qz + Pu"u — v*w"w]
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and the control u is chosen to minimise 7., while simultaneously f nding the maximal external distur-
bance x which destabilises the system. Thus the H ., control is termed as a min-max problem. As in
the previous section the covariance matrices (G; and G, which characterises the system disturbances
and the measurement disturbances are assumed to be known. As described in Lewis & Syrmos (1995)
the H ., controller minimises 7, for the worst possible disturbance « and is given by

w = —K @ (2.49a)
I = Ai+ Bou— Loo(y — Coit) (2.49b)

where the controller feedback K, and the estimator feedback L., are given by

-2 T T

Ko = —BI X X, = Ric (_C?Cl i BlfleT BQB?) (2.50a)
T -2 T T

Lo = —Y..CT Y., = Ric <_ é‘l Br i 010_1 ) 0202) (2.50b)

The case of a LQG controller of H, theory is obtained as a limit of v — oo. Also the terms
v 2B, BT — B, BT and v~2C,CT — C,CY need not be necessarily negative def nite, so a solution of
the Ricatti equation exist for suff ciently large values of 7. The smallest value of v = 7, for which
the solution exist is determined numerically. For v > v, the controller is termed as suboptimal. Also
another important thing is that contrary to the H, formulation the control and state estimation are
coupled in the H ., formulation, as the computation of state feedback gain K, depends on the covari-
ance of state disturbances which are handled by the term B;, and the estimator gain L., depending
on the weights of the cost functional which are accounted for in C;. In comparison the H, controller
performs better than the H, in terms of the stability.

Regarding the application of feedback control an extensive survey has been provided in
Kim & Bewley (2007). Estimation based feedback control for spatially developing fows has
been studied by Chevalier et al. (2007). Optimal and Robust control of channel f ow in the presence
of normal magnetic felds has been studied by Debbagh et al.(2007). Application of feedback
control to cavity f ows using reduced order modelling has been performed by Samimy et al.(2007).
Recent developments includes the work of Bagheri et al.(2009a) who propose the use of balanced
modes to obtain a reduction in the dimensionality of the full Navier Stokes equation and then design
a feedback controller. Extension of the control design to the case of a spatially developing f ows
has been studied by Bagheri et al.(2009b) for the case of the linear complex Ginzburg-Landau
equations. The use of global modes to perform control studies for the case of cavity fow has been
studied by Barbagallo et al.(2009). Feedback control for the fow around a bluff body has been
studied by Pastoor et al.(2008), and more recently Weller et al.(2009a). Ahuja & Rowley (2009)
have studied the fow past a fat plate by constructing a reduced order model for the stable reduced
order space of the Navier-Stokes equation which is determined using global unstable eigenmodes,
and then designing an LQG control to stabilise the fow. Application of robust control has been
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studied by Zuccher et al.(2004) for boundary layers and Gavarini et al. (2005) for the case of pipe
fows. Application of feedback control to the linearised Navier-Stokes equation by solving a low
dimensional Ricatti equation, which corresponds to the dimension of the unstable subspace is found
in the work of Raymond & Thevenet (2009). This approach is similar in principle to model reduction
in terms of the reduction in the dimensionality of the Ricatti equation being solved, but is different
in that we seek a control for the high fdelity system. Other work include the application of the
feedback control to study the fow around the fat plate, around a stationary state, in the presence
of perturbations which has implications in turbulence control as in Buchot & Raymond (2009a),
Buchot & Raymond (2009b).

2.6 Conclusions

To conclude this chapter is basically a glossary introduction to the various terms in the control lit-
erature which will be frequently used in this thesis. Control of a dynamical system can be basically
classif'ed as open loop or closed loop depending on the output observation of the response. The con-
strained optimisation technique based on the method of Lagrange multipliers has been described. The
determination of functional gradients is accomplished through a sensitivity based approach and an
adjoint based approach. The adjoint based method of determining the gradients can be further classi-
fed as discretise-differentiate, differentiate-discretise based on the order in which the differentiation
is applied, the two approaches are not commutative.

The closed loop control also known as the feedback control has been discussed. Closed loop
control is basically used when there are disturbances in the physical system, due to the presence of
uncertainties and when open-loop control fails to give the desired effect. It is based on the concept
of being able to monitor the model by means of output measurements and establishes a connection
between the measurements and the input of the system. This involves the solution of an estimation
problem. Based on the functional space setting in which the control is determined the feedback control
can be classifed as an Hs or a H,, problem. The Hs is based on minimising a quadratic functional
and can be further classif ed as an LQR or an LQG feedback control. In LQR control we assume that
the external disturbances do not inf uence the plant dynamics and the states are estimated accurately.
In the presence of external Gaussian noise the control is termed as an LQG. LQG control is equivalent
to coupling of a LQR problem and a Kalman f'Iter for estimation. The principle of separation ensures
that the plant dynamics and observer dynamics are uncoupled. The H ., is similar to the H5 controller,
only difference being that one considers the worst disturbance which destabilises the system, rather
than a Gaussian disturbance. This results in the solution of a min-max problem in which one tries
to fnd a control which minimises the cost functional subjected to the maximisation of the external
disturbance. Also the principle of separation is no longer valid as in case of H,, control. In terms of
the stability the H,, controller performs better than the 5 controller.
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Chapter 3

Proper Orthogonal Decomposition (POD)
basal Reduced Qder M odelling (ROM)

Déeconpposition orthogonale aux valeurs propres (POD) base sur
modele d’ordre réduit (ROM)

Introduction

La mocklisation des structures cérentes constitue un des aspects les plus excitant des simula-
tions desécoulements instationnaires. Ces structures qui maintiennent leur indivielysditdant

I’ évolution de lecoulement gsentent un &k pour les chercheurs du domainéradynamique. La
description de€coulements passe par lasolution de€quations de Navie—Stokes. Lé&solution

d’'un tel syséme pour écrire finement les propgiés de Iecoulement peut ne pé&sre possible dans

ces types @coulementsa cause du ct prohibitif demané. Une facon de contourner cette diffi-
culté est d’adopter les mades d’ordre eduit bags sur le principe de lagtomposition orthogonale
aux valeurs propres (POD). Le ROM t&asur le projections de Galerkin est introduit dans le cas
d’écoulements compressibles. Son extension pour inclure I'effet d’actionnement estedsscuie

par I'application au cas cecoulement de ca¥t

Approche modele d’ordre réduit

La réduction du moéle sur une base autre que la POD pétre réalisse. La pésentation grérale
de la reduction du moele est simplement doaea travers lequations3.1a 3.5. Les proprétes qie
doit vérifier 'espace eduit sonttgalement dorges. Dans le cas psent la projection de Galerkin
est utili®e.

Etat de I'art sur la POD

La POD emploge pour @&terminer la base optimale de reconstruction de dmamest bien connue
depuis 1943. Elle &t utiliste pour des objectifs autres que l'identification des structuresreites:
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traitement d’image, analyse des signaux, compression deéggretic ... Pour la dynamique des flu-
ides, la POD &&té introduite par Lumley (1987) pour analyser Eesoulements turbulents. Une revue
détaillee de la POD peuétre trouee dans lolmeset al.(19%), Delville et al.(199). La POD
comne moyen d’identification des structuregte largement utilie parFiedler (1998 pour les jets
et silages,Delville et al.(1998) pour les couches cisadkes tirbulentes et pour le post-traitement des
donrees en &ference de phase obtenues par P&frin et al.(2007)). Les propréetes nathematiques
et I'estimation d’erreur ontéte étudiees. L’application au cas de la cagita éte propoge par
Rowleyet al.(2003) et Gloerfelt(2008.

Application de la POD dans le contble deseécoulements et la turbulence

L'utilisation de la POD comme moyen pour le cdiler desécoulements turbulents &é faite la
premere fois parAubryet al. (1988). Ukeileyet al.(200L) I'ont utilisée pour analyser les structures
de gandeséchelles dans une couche délange turbulente. Les mekks d’ordre Eduit pour le
contrdle ontété traites parUkeileyet al.(2001). Les principes gréraux du conble optimal utilisant
la mocklisation d’ordre eduit dessquations de Navier—Stoke$# |I'oeuvre deRavindran(20003,
Ravindran(20000. Le contble d’écailements utilisant leségions de confiance @é emplog par
Fahl (2000. Bergmann & Cordie (2008 ont réalis le contble optimal du sillage d’un cylindre cir-
culaire en utilisant une&gion de confianceLuchtenburget al (2009 I'a fait pour une configuration
portante. Une extension pour inclure les effets des actionneats&udee parKasnak@lu (2007),
Welleret al.(200b). Le contble du bruitéms par I'écoulement de ca@tba® sur les mesures
experimentales peugtre consuk dansSamimyet al.(2007).

La demmposition orthogonale aux valeurs propres

La Décomposition Orthogonale aux valeurs Propres ou Proper Orthogonal Decomposition (POD)
est une technique efficace d’analyse de @@ qui permet d’approximer un syste de dimension
éleee par un autre de dimension nettement plus faible. Essentiellement, égtiedm est ligaire

et consistea determiner une base de modes propres orthogonawésgmtatifs par @finition des
réalisations les plus probables.

La décomposition orthogonale propre suivadblmeset al. (199%), est une technique pour ex-
traire les structures cdirentes de dorées nurariques d’unécoulement pour le repsenter dans le
contexte d’'une dimension finie plus pratique pour une simulatiorénigore. Cette section psente
les ickes @rérales et les propétes de la POD en s’inspirant déordier & Bergmann(2002 et de
Chatarjee(2000.

Le principe fondamental de toute approximatiorediique est d’extraire une base satisfaisant
une contrainte donge, par exemple une relation d’optimélipour I'eénergie. Comme l'a propés
Lumley(1967) une structure cobrerte est une fonction&terministe qui est bien caslée avec les
réalisationsu(X). L'approximation pour: dans un espace ada@péest donée par l'eéquation3.6. Le
choix de la base orthogonale de projection est obtenu par la minimisation de I'erreur ex@nbar
I’ équation3.7. L'optimisation sous contrainte est da@mpa I’ équation3.8. Cetteéquation qui est
unemaximisation peugtre traitte comme un probie aux valeurs propres pour lequel urecgteur
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de corilation est fournie R). La relation donnant les valeurs propres est déarpar I'equation3.9.
Cete équation peuégalemenétre obtenue par une autreathodeCordier & Bergmann(2002.
Les popriétés de la POD sont résumeées ainsi :

1. L'existence de la solution est asgerpar I'equation3.13
2. Les valeurs propres sonéeles et positives

3. Les fonctions propresi(*) forment une base orhogonalequation3.14) et elles peuveritre
orthonormales

4. Les coefficients temporet8 peuvengétre obtenus par €quation3.15

5. Le tenseur de coélation en deux points pew@ire cecomposé en &rie convergentegquation
3.16

6. Lescoefficients doiventérifier I'équation3.17

7. Le theorene de Mercers et I'orthonormaktdes fonctions propres conduis@rtéquation3.18

Dans la eduction de magle utilisant la POD, la condition d’optimalé& énergetique suggre
I'existence d’'un petit nombre de modes POBcesssaire pouré&trire efficacement les doaes.
L'erreur de troncature est &finie par l'équation3.21 Le cas de dimension finie est d’'un grand
intérét pour le traitement de dor@es exprimentales ou nuariques. Le prol#me d’approximation
est de trouver une base de fonctions orthonormadssivant le prol#me de minimisatiorequation
3.23.

Pour faciliter la résolution de ce probme, 'ensemble des dores est rang dans une matrice
(equation3.24). Les modes sont doas pa I équation (3.25) et I'approximation de toutealisation
est donge par I'equation3.28 La decomposittion aux valeurs singeites de toute matrice est doae
par I'équation3.30Q Le calcul direct des valeurs singateset vecteurs singuliers assésiest souvent
fastidieux, et il est @rferable de les dterminer par la €solution de proldmes aux valeurs propres
equivalents.

A toute matriced de dimensionV/ x N, il est possible d’associer une applicationéaire qui
envoie tout vecteur dey;, espace vectoriel de dimension, danse,,, espace vectoriel de dimension
M. Soit la splere unié dansey; i.e. I'ensemble des vecteurs de longueur @nihultiplier ces
vecteurs par la matricel donne de nouveaux vecteurs géfidissent une ellipgde de dimension
r dans I'espace:;; ou r est le nombre de valeurs non singués deA. Les valeurs singudires
01,02, ..., 0, cOrrespondent aux longueurs respectives des axes principaux de cetteiediffsgure
3.1). Intuitivement donc, les valeurs singernescaracérisent le facteur de&formation que va subir
chacun des vecteurs initiaux par action de Par ailleurs, puisque la matric& est orthogonale,
I’ équation3.30s’écrit encoreAV = UX. Les directions de ces axes principaux sont donc édesn
par les colonnes d& et les ankcedents de ces@&mes axes par les colonneside

Une seconde interpgtation georatrique peutétre donee a la decomposition en valeurs sin-
gulieres (SVD). Pour cela, nous congrdns la matriceA comme la liste des coordoaes deM
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points noés Py, P,,... , Py, dans un espace vectoriel de dimensign Chaque pointP, est repre-
sené sur la figure3.2 Quel que soitt < NV;, nows cherchons un sous-espace de dimensioel

gue la distance quadratigue moyenne de I'ensemble de ces pot&sous-espace Soit minides
M

en d’autres termes nous cherchons le vecteutel quez |PZHZ-|2 soit minimige. Cette proedure

peutétre georatriquement interggtee comme une ro{atlion de I'espace des phases, damsgstle
coordonrees initialesa un nouveau sy8ie de coordorées dont les axes orthogonauxrmdent
avec les axes d’inertie des da¥es. Cette formulation de la SVD correspanth manere utilisee
géreralement dans la i@rature pour introduire I’Analyse en Composantes Principd@sfe (1986.

Il existe une methode de calcul des valeurs singuéso; et des vecteurs singuliers gauches et
droites d’'une matrice rectangulaird quelconque. Cette @hode est ba&se sur la Esolution des
problemes aux valeurs propres assesi des matrices cagesA” A et A AT. Par comparaison des
deux expressions d&” A, on trouve la matricea des valeurs propig$ = A et celle des vecteurs
propresW = V . En d’autres termesy; = /)\; et (V,A) représente la @composition aux valeurs
propres de la matriced” A. Cette nethode de calcul est bien plusgere que le calcul direct de la
SVD deA. Dans le contexte de la POD, on m’apellétimode des snapshots.

L'approximation du rang minimum dd s’obtient en utilisant Equation3.31 On a ainsi une
relation entre le rangk de I'approximationX de A et la valeur singulere d’ordre (k + 1) de A.
Par congquent, si les valeurs singates ecroissent suffisamment rapidement alors nous pouvons
esferer determiner une approximation dé pos€dant un rang tes faible.

Dans le cas de dimension infinie &&ssur I'ogerateur de la moyenne choisie, il existe deux
approches au proime aux valeurs propres, lagtihode directes comme introduite garmley(1967)
et la nethode de snapshots comnéeite par Sirovich(1987%). Dans I'approche directe, la moyenne
est emporelle et elle edvalieea I'aide d'une moyenne d’ensemble en invoquant des hggethde
stationnarié et d’ergodicié. La variableX est assimi a la variable spatialer = (z,y, z) définie
sur tout le domaine spatidl. L’'équation inégrale de Fredholnd résoudre est dorae par3.32

la POD est une @réralisation de I'analyse de Fourier aux directions inhoreogs comme mor&r
dans Cordier & Bergmann(2002. Une manére déviter détre facea un probEme aux valeurs
propres de grande taille, consiste decomposer les directions deetoulement en directions ho-
mogenes , pour lesquelles on appliquera la transformation de Fourier, et en directions inkoesg
pour lesquelles, on appliquera la POD. Cette approche ésegalement utiliée dans le€tudes
exerimentaleDelville et al. (199), Ukeileyet al.(2001) afin de simplifier la @soltion nungérique
du probeme POD. Si le nombre déalisations &cessaires pouré&trire 'ecoulement estgalea
N; < M, on peuttconomiser beaucoup de temps de calcéhma si le prol#me aux valeurs propres
peutétre résolu de mam@re piecise, en &solvant uniquement un pravhe de tailleV;. C'est la base
de la néthode des snhapshots

La méthode des snapshots, introduite [@rovich(1987), est exactement sytmique de la POD
classique. L'ograteur de moyenne correspond al@sune moyenne spatiakvallee sur tout le
domaine? et la variableX est assimie at. Le probEme aux valeurs propres est directemezd wit
de I'equation3.33 et les modes temporels sorédiits des modes POD spatiaugguation3.34).
Dansle cas de dimension finie, on pedrire la matrice "snapshot” comme doie par3.35 Les
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modes temporels sont une combinaisogdire deséchantillons (snapshotsgguation3.36). Les
modes spatiaux sont dor@s par I'equation3.39

L'utilisation de la néthode des snapshots repose sur I'hypsthd’ergodici , ainsi la gerération
de snapshotsapend largement de la congrension physique de l'utilisateur et péite diferente
avec le probtme. L'extrapolation des fonctions POD aux &liféintes gonetries et au para@tres
du contdle peutétre difficile et aé mentionde dans le pagspar Bergmanret al.(2009). Une
récene étude de la sensibéides coefficients de la PO®un parangétre done a éte réalisse par
Hay et al.(2009 dans laquelle la base POD est utéis aec la sensibilié pour augmenter la taille
de l'attracteur du modle de dimensionéduite. Léchantillonage des dokes donne une erreur
nunerique qui affecte la PODRathinam & Petzold2003. Bui-Thanhet al.(2008) utilisent le fac-
teurde sensibilié de la POD comme une mesure de la sensgiiditative de la projection par rapport
a I'erreur d’échantillonage. En conclusion la snapshot POD reste fortemgmemdante de la fonc-
tionalité recherclge par I'utilisateur et a besion étre affiree pour que la POD soit applicabiedes
problemes plus @reraux d’optimisation.

La ROM dans la lit erature

Aubryet al.(1983) sont les premiers |'utiliser la réduction de moele pourétudier les structures
cokérentes. De nombreuses autres applications, toujours pourédeslements incompressibles
ont alors vu le jour. Lapplication au fluide compressible reste lgaitRowleyet al.(2003),
Gloerfelt(2008, Bourgetet al.(2007)). La reduction de magle sur la base POD et de projectionde
Galerkin aéte étendue au conbile desécoulements en fluide incompressible e t commarig&re
pour le cas compressibleSamimyet al.(2007),Kasnak@lu (2007)). Le principe de la projection de
Galerkin est peseng a la section3.10 (équations3.44 a 3.52). L’application du moéle reduit au
cas incompressible est domau paragraph&.11(équations3.53a 3.60).

Cas mmpressible

Dans le cas d&coulement compressible, les variableséomatiques et thermodynamiques sont
coupkes. Le tenseur des céfations contient des terme$4 aux variables ceEmatiques et ther-
modynamiquesRowleyet al.(2003) a chercle un produit scalaire pour les variables&tailement
isentropique qui donne un seésergtique. Ce produit &te largement utilie Gloerfelt(2008.

Le malele d’ordre feduit isentropique est doBridans le caséuations sans dimension. Cette adi-
mensionalisation fait apparaitre explicitement le nombre de Reynolds et le nombre de@daakign
3.61). Apres projection de Galerkin du meék isentropique, le maogle d’ordre ©duit obtenu est
donre par I'équation3.64

Extension au cas du contble

Dans ce paragraphe on prend en compte dans leateod’ordre eduit I'effet d’'un actionnement.
Nous recherchons un mel@ dynamique o I'introduction de I'actionnement estés simple. Liée
repose sur la rathode de @paration deKasnak@lu et d. (2008 qui consistea diviser le domaine
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d’écoulement en sous-domaines comprenant ceux san®lemettceux o opere le contble. Le pro-
duit scalaire est ainsi regfini pour tenir compte de cette subdivision. La @dere conduita un
syséme déquations diirentielles simplesequation3.65 avec I'actionnementy et le mode spa-
tial (v). Les proprétes que doiventarifier I'action sont donges. On doit imposer une condition
d’optimalité de sorte que &nergie non capte paréquation3.66 soit minimale. Ces conditions
peuwentétre systmatiquement obtenues en respectantdeime deKasnak@lu (2007) comme ex-
plicité en annexé&.

Le malele d’ordre eduit pour le cas con@ilé est explick par leséquations3.67a 3.72 Une
notaion polyromiale qui peut simplifier le m@de est doneea travers lesquations3.73a 3.77. |l
est tivial d’ étendre la pecedente proedure pour inclure le conéile a entiées multiples. Le&tail de
la procedure est donma travers legequations3.78a 3.82

Application a I'écoulement de cavié

On applique la POD aux configurations de ca&vitaitees dans le chapitré. 98, 5% de I'énergie
est contenue dans les quatre préemes valeurs propres (figurd.4). L’évolution des six premiers
codficients temporels de la POD est d@ssur la figure8.5. La vorticite et b dilatation des six pre-
miers modes sont psenkes sur les figure3.6 et 3.7. Les modes apparaissent par paireeperant
des valeurs propres distinctes mais avec uéenm topologie pour leur mode. La dilatation e&ili
a la propagation des ondes sonores. Pour les modes POPrigyps, la dilation montre claire-
ment I'angle de propagation de I'onde sonore, seigt son utilisation si I'on veut appliquer des
mockles d’ordes eduits pour les pbnonenes acoustiques. La figuse8 montre la capture de I'effet
de l'actionnement. La figur8.9donne la diférerce entre les cas avec et sans coigr L'erreur de
projection moyenne @isenge sur la figure3.10 montre que les erreurs sont faibles pour les modes
les dusénergetiques. Levolution temporelle et le portrait des phases sont @smaspectivement sur
les figures3.11et3.12

Condusion

Dans ce chapitre nous avons expdss principes de base de I&ebmposition orthogonale propre.
Nous avonggalement doréncertaines propBtes qui rendent facile le choix du melé réduit des
ecoulements, principalement I'optim&ite la repesentation relativaé toute base orthonormale.
Le choix des produits scalaires pour les cas d coulements incompressibles et compresgibles a
discué. Nous allons maintenant passer’utilisation des modes POD pour former des ratas
réduits pratiques pour maétiser la dynamique de mete de haute fieglité et dierentes proedures
pour introduire les effets du coritie dans notre magle d’ordre ©duit, en vue de I'application de la
théorie du contdle. Son extension pour tenir compte d’effet d’actions multiplégaliscué. Les
résultats du mogle réduit montrent une divergence par rapport asultats obtenus par la POD.
Ceci a motie d’envisager sa stabilisation, ce qui fait I'objet du chapitre suivant.
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3.1 Introduction

In this chapter we present the principles of model reduction based on the principles of Proper Orthog-
onal Decomposition (POD). In this method one decomposes the flow field into energy ranked coheren
and is one such technique which has been used widely for flow control applications. The POD base
is then used to form the Reduced Order Model by the projection of the governing equations on the
POD bases. The theory of POD and the various properties that make them useful choice for ROV
in case of fluid dynamics are discussed. The ROM based on the Galerkin projections is introducec
for the case of compressible flows. The extension of the ROM to include the effect of actuation is
discussed, followed by an application to the cavity flow case.

3.2 Reduced order modelling an overview

Model reduction on bases other than the one obtained from POD can be performed. A general ap
proach to ROM in case of linear finite dimensional systems is presented in section, to motivate the
general ideas. To present the general idea of model reduction one considers a physical system of tt

o (0) = F(t.a(0).7(0)
) oalt) = f(tal(t),y(1)),

3'{mw=guﬂuxwwx &1
The RHS can be considered as any evolutionary model representing the dynamics, for example th
Navier-Stokes equations. Although the ideas are easily extended to infinite dimension we presen
them for a finite dimensional case which is just considering the usual approach of numerically re-
solving the equations by means of discretisation space dimensionz € R" represents the state
variables;y € R™ represents the inputs or the control applied to the flow,taadR? represents the
output of observables. To apply the general principles of linear control theory, the RB)odgn
be linearised to obtain a state-space form given by

Ea(t) = Aa(t) + By(t)
: ’ 3.2
Suri { b(t) = C a(t) + DA(D). (32)
whereE € R, A € R™", B € R™™, C' € RP*™ andD € RP*™. E need not necessarily be
invertible. The dimension of the model usually corresponds to the dimension of the spatial discretisa-
tion which can be very large, hence the principle of model reduction seeks a subspbdenension

r < n. The non-linear reduced order model can be written as

~

g a(t) = f(t,a(t),y(t)), where ae€R" with r<n
1 b(t) = g(t.alt),1(t), and be R
and the corresponding linear time invariant (LTI) model can be written as
< Ea(t) = Aa(t)+ B~(t)
S RN A . 3.4
v { b(t) = C a(t) + D ~(t). (34)

The reduced subspace has to have the following desirable properties when used as an approximatis
to the high fidelity model3.1)

(3.3)
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1. |[b—b| <ex |yl ¥y whereeis the tolerance

2. The approximated need to preserve the stability and be passive (no additional generation o
energy) of the high fidelity modef.

3. The reduced model must be numerically stable and be efficient.
4. Possible automatic generation of models

To present the idea of projection, from now on we just consider the linear Soske seek biorthog-
onal matriced/ andW of sizeR™*" such thatV?QV = I, whereQ € R™ " is a weight matrix. The
Reduced Order Model is obtained by a projection of the state variabfethe matrix” such that
a =V a andb ~ b. One defines the residde to measure the accuracy of the projection;y V' a as
R=EVa(t)— AVa(t) — B~(t) (3.5)
b(t) =C V a(t) + D ~(t). '
The Petrov-Galerkin projection is obtained by requiring the residue orthogonal to the approximated
spacej.e. WT QR = 0,. The projection matrices of the systefp,;; can now be obtained after a
simple calculation as

A=WTQAV B=w"QB
C=CV D=D
E=WTQEV

The well known Galerkin projection is obtained by takih = W. Several projection meth-

ods exist for the linear systenB.@). Example are the Krylov subspace method of the con-
trollability matrix which relies on the identification of the moments of transfer function as in
Gugercin & Antoulag2004), projection on the dominant modes of controllability and Observ
ability matrix as in Moore(1981), Rowley(2005, projection of global stability modes as in
Barbagallcet al. (2008, POD based projection method on the subspace determined frosmaipe

shots as irSirovich(1987) in which the flow fields are decomposed into energy ranked coherent
structures, which is the method used in this study. We now proceed to introduced the general theory
of POD.

3.2.1 Historical background of POD

The POD technique to determine the optimal basis for the reconstruction of a data set has
been well known sinceKosambi(1943, Karhunen(1946, Loeve(1945 although they were

used for different purposes other than coherent structure identification like image processing,
Sirovich(1987a), Sirovich(1987) signal analysisAlgazi & Sarkinson(1969, data compression,
Andrewset al. (1967). The POD was first introduced in the context of fluid dynamics by leym
(1987) in the study of turbulent flows. Since then there has been a rapid increase in the applicatior
of the POD technique, and good reviews can be fourtdaimeset al. (199%), Delville et al. (199)
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and Gordeye(1999. The POD technique as a means of structure identification hasviieerty

used byFiedler(1998 for identification of jets and wakegfelville et al. (1998) to study turbulent
shea flows, for data obtained from particle image velocimeRgrrinet al. (2007). The math-
emaitcal properties and error estimate of the POD approach along with the Galerkin projection
is found in the works oMolkwein (1999. For the other systems of conservation laws one can
congllt Lucia & Beran(2003 for hyperbolic systems with shock€izmaset al. (2003) for sys-
temswith species conservation. Application to cavity flows but without control can be found in
Rowleyet al. (2003), Gloerfelt(2008.

3.22 Application of POD in control and turbulence

In the context of using POD for the control of turbulent floWkeiley et al. (2001) have used POD

to study large scale structures in turbulent mixing layers. Reduced order modelling based control of
fluid flow problems have been studied bynze (2000. The general principles of optimal control
using reduced order modelling of Navier-Stokes equations has been descriRadimran(20003,
Ravindran(20008. Flow control using trust regions has been employed-akl(2000. Optimal

contol of the wake flows behind a circular cylinder using a trust region frame work has been studied
by Bergmann & Cordief2008 , for high lift configuration byLuchtenburget al. (2009. An exten-
sionto include the effect of actuation has been studieiKagnakogly2007), Weller et al. (20(b).

Contol of cavity flows based on experimental measurements and its application to perform a model
based control of cavity flows can be foundSamimyet al. (2007).

Extrapolation of the POD functions to different geometry or control parameters has been ad-
dressed byBergmanret al. (2009). A recent study on the sensitivity of POD coefficients to given
paraneter has been performed blay et al. (2009 in which the POD basis is enriched using a sen-
sitivity analysis. Usually the sampled data have inherent numerical error which affect the model
reduction procedure, and has been investigateRditpinam & Petzold2003. A greedy algorithm
to edimate the sampling space in an efficient way has been propogRditiyjhanhet al. (2008, who
introduce the POD sensitivity factor as a measure of the relative sensitivity of the projection.

3.3 Proper Orthogonal Decomposition

We introduce the the Proper Orthogonal Decomposition followdngmeset al. (1996), as technique

of extracting the coherent structures from the numerical flow data in the context of an infinite dimen-
sional setting. The context of the finite dimensional case, which is used for more practical purpose
of numerical simulation will be discussed as a particular case. To present the general for the case ¢
POD ideas we closely folloChatarjeg2000 andCordier & Bergmanr{2002.

Geneaal Principles

The fundamental principle in any approximation theory is to extract a bases satisfying a given con-
straint, for example an optimality relation for the energy, projection error etc. Consider the example
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of a spatio temporal realisationg X) € H (2 x [0,7]) where H is a Hilbert space (usually of?
integrable functions, other choices are possible)@nd R? represent spatial domain afid> 0 is

the time. As given by.umley (1967 a coherent structure is a deterministic function which is bast co
related on an average with the realisatio(X). If we define the usual inner product on the space of
L? integrable functions a&, v') = [, ¢(X)¥(X)dX such thai, ¢ € L?, we seek an approximation
for u in a suitable subspace.

u(X) =y (u,¢i(X)) 6i(X) (3.6)
=1
We wish to chose an orthogonal bagjs= H (€2) which minimises the average projection error given
by

(1w =" (u,00(X)) 6:(X) [I*)a 3.7)
=1
where(.) 4 is any averaging operator applied over the family of realisations|and| is the norm
induced by the inner product di(€2).
We also desire the basis(X) be orthogonal.e. (¢;, ¢;) =|| ¢(X) ||*= 1 which casts3.7) as a
congrained optimisation problemerkoozet al. (1993) given by

2 2
such that
(0,0) =l ¢ I>=1

The above maximisation probler8.8) can be re-casted as an eigen value problem for which we
define the correlation operat@® : L?(Q2) — L?*(Q) as

Rop(X) = /X R(X', X)p(X)dX'

whereR(X, X') = (u(X) ® u(X")) then an easy calculation shows that the oper&tor () —
H(Q), defined byRo(X) = (R¢, ¢) is positive semidefinité,e.

(Ro,d) — < e u(X/))¢(X')dX',¢(X/)>
X A
- // u(X)®u(X’)>¢(X’)dX’,¢(X)dX
(e oo

Also the operatoR? can be shown to be symmetiie.

(Bo.v) = (6. Fv ) Vo,0 € ()
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R is thus a linear, self adjoint operator oh*(2) and as a consequence of spectral theory
Riesz & Nagy(1955, and is given by the largest eigenvalue of the problem

Ro = \o (3.9)

The above equation can be also obtained by a variational principle of the original problem, for which
(3.8) can be recasted as a maximisation problem of findingwich maximises\ where

L m0) P (R6.0)

— 3.10
67~ 60 (310
and verifies for allp € H():
dF(e) 0
de
where
de ((p+ep),(+ep))
4 (R:9) +€(Ro, ) + (o, RY) + & (R, ¥) | (3.11)
de (6,0)+e(d,0)+elo,0)+e (o) '
(Ro,0) 101 = (Ro,0) (9, 4)
(3.12)
o]l
which is satisfied for any if
R$ = A

showing the equivalence witB.©). We now proceed discuss some properties of POD that make them
an u®ful tool in the low order modelling of fluid flows.

3.4 Properties of POD

1. For a bounded domaiii, Hilbert-Schmidt theory assures a denumerable infinity of solutions
of equation 8.9), which implies the existence of discrete solutions satisfying

[ ROC X060, = 06,() (3.13)
X

where),, and¢, (X) denote the POD eigenvalues and eigenfunctions of ardes, ..., co

Each eigenfunctions is a solutions of the optimisation problem subject to the constraint of being
orthogonal to all the previously determined eigenfunctions. They can also be chosen orthonor-
mal.
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2. R being self-adjoint and positive the eigen values are real and positive
AM>A > A0 >0

and the corresponding series convernges

o0
Z)\n < 00
n=1

3. The eigenfunctions,, forms a complete orthogonal set, which implies that every member of
the snapshot (except on a set of measure zero) can be reconstructed as

Z (nfn (X (3.14)

n=1
4. The eigen functions,, can be chosen mutually orthonorma.

<¢m7 ¢n> = 6mn

whered,,.,, is the Kronecker symbol. with this the coefficienfscan be calculated by a projec-
tion of u onto¢ given by

= (u,¢) = /Xu(X)Qﬁn(X)dX (3.15)

5. The two-point correlation tens@® can be decomposed as a uniformly convergent series as:

Zwm )i (X) (3.16)

This result is also known as Mercers theorem,@eerant & Hilbert(1953.

6. By the Orthogonality of the eigenfunctiogsand the decomposition of the correlation tensor
as given above in3(16) the coefficients:,, can ke shown to be mutually uncorrelated with their
mean square values being the eigenvalues themselves

(Anam) = OmnAn (3.17)

R”(X X/) = <Zan¢m(X)Zam¢mJ(X/)>

= <anam>¢m'(X)¢mj(X/>

also from (3.16 we have that:

ZAnqu )i (X)

and using the ortho-normality efwe have thata,a,,) = 6,nn\n
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7. It can be shown from the Mercers theorem and the ortho-nosnudilit,, that:
/ Rij(X,X)dX =) A\, = (a]) =2E (3.18)
X n=1

where E corresponds to the total turbulent kinetic energy over the whole déimae every
structure in the representation contributes independently to the total kinetic energy, the ampli-
tude\,, measures the relative importance of these structures with respect to the energy. We now
discuss the optimality of the POD bases in representing the total kinetic energy of the approx-
imation with respect to any other orthonormal bases.{kgt.X ), p2(X),. .., ¢-(X)} denote

the orthonormal set given by the POD bases, with corresponding eigenvalues. .., A\,

with the representation of(.X') given by

w(X) =) angni(X)

Let ¢, (X),n = 1,2,...,00 be another set of orthonormal bases with the representation of
u(X) given by

u(X) = 3 bna(X)

with (b,,b, ) representing the average kinetic energy intttenode, we have, sétolmeset al. (19%)

N N N
S anan) =" A =D (bab) (3.19)

This follows when we notice that the correlation ten®)r can be expressed in terms«f,

n=1,...,00as:

n=1 n=1

which can be written in a matrix form as

(b1b1)  (biba)  (D1b3)

boby) (boby) ... ...
R = Ebgbli <...> (3.20)

The result ofTemam(1988 on linear operators which states that the sum of fWstlimen-
sional eigenvalues of a self-adjoint operator is greater than or equal to its trace in anyof its
dimensional projection gives:

i A > Tr(R) = i(bnbm)

which proves that among all decompositions, the POD contains the maximum possible kinetic
energy on an average.
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Model reduction using POD

The energy optimality condition3.19 suggests that only a very small number of POD modes, say
Npod» may be necessary to efficiently describe the dafs). The error of representation using the
modes is given by

e(M) = (Ju(X) = (u( On(X)[?)
= || > (u(X),¢u(X)) ¢u(X)]” (3.21)
n=M+1

The quantitye(M) denotes the accumulated squared error of representation, due to the neglectec
POD basis elements that corresponds to small eigenvalues. We also define another quantity name
the Relative Information Content (RIC):

ED DAY
Zz‘]\il Ai

which measures the average ensemble energy captured by thé.firstodes of the representation.
Usually the number of modes in the truncation is chosen so as to capture a certain percentage c
reconstruction of our data set (s89%). This criteria is largely used in the literature to define the
truncated bases. The choice of the truncated bases using the definiBoP2f{ one such definition.

Othe definitions which uses a linear correlation between the flow and the observable termed as "least
order model” has been proposedJnyrdanret al. (2007). In other words the effect of the lower modes
which corresponds to the slow evolution of the mean flow may be necessary to represent the relevar
dynamics of the system as in many physical systems. Example of such a case arises while studyin
the acoustics, like the cavity flow.

3.5 Finite dimensional case

The finite dimensional case is more relevant in problems of practical interest, like data issued from
experiment or even a numerical simulation as the number discretisation points is finite. The approx-
imation problem 8.6) is to find a set of orthonormal functions);.}?”, soling the minimisation
problem

mmz 1) — 3 Cul, 69, u 0 (0) (3.23)

k=1

N, is the number of realisations also called as snapshots, which are issued from the experimental c
numerical simulations at given intervals. Hélr@, is the norm induced by the? inner product. Also
note that for anyk € R, we havel|x|, = vxT x. The data s/ = {u(x,,),...,u(x,ty,)}, can
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be arranged as al¥ x N; matix given by

U(ZL‘l,tl) U(ZL‘l,tQ) .. .u(:zcl,tNt)
. u(xQI,tl) u(xQ, ta) .. .U(ﬂ?g, tn,) c RMxN (3.24)
u(zar, t) uwl(xpr,ta) ...ou(za,ty,)

The productM norm between two spatial mogeand:> can be defined as

(¢, 0) = ¢' MY (3.25)

where M is the weighted mass matrix of integration. We can employ a Cholesky decomposition for
the matrixM = Mz M3 | theweighted norm3.25 can be related to the usual Euclidean norm as

1
2

lull = (u,w)3e = [1(M2) Tl

the morrelation tensor in the finite dimensional case can be written as

Nt

= iLITZ/{ wher C;; = L Zu(x, tiu(x,t;) (3.26)

C =
N Ne i=1

The POD are modes given by the solution of the discrete eigenvalue problem:
CMp=X\¢ (3.27)

where¢ stands for the matrix of the POD modgs"', }. The matrixC' = C M is symmetric positive
definite. As a consequence of the spectral theorem it has a set of real eigenvalues, and is complete
diagonisable with respect to the POD modes except on the null space of the operate approx-
imation of any realisatiom with respect to the firsiv,,q modes is given by the relation

Npod
u(x,t;) &= Y ale; with a = ul M, (3.28)

J=1

the orthogonality relations for the POD modgsand the coefficients; satisfy
1 &
T _ k_ k __
Qbi Mgbj = 5ij and ﬁt kgl a;a; = )\z(sz] (329)

At this stage we would like to remark that the POD procedure explained above was extensively de-
veloped in the context of modelling coherent structures that arise while modelling turbulent flows as
demonstrated ihumley (1967). In the general context of the finite dimensional setting it isttvor
while to mention that the procedure described above to determine the POD modes, can be linked t
the Sngular Value Decomposition (SVD) of the snapshot mattix To illustrate this connection we
introduce the SVD and its connection to POD in the next section.
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3.6 Sngular V alue Decomposition (SVD)

Let A bea complex matrix of dimensiof/ x NV;,. The Singular Value Decomposition (SVD) of A is
given by the the factorisation
A=UxvVT (3.30)

where! U andV are unitary matrices of dimensidd x M and N, x N, respectivelyi.e. UUT = I,
andVVT = Iy, ¥ = diag(oy, 09, ...,0,) With oy > 0y > ... 0, > 0 wherer = min(M, N;) and is
called the singular values of, the firstr columns ofl” = (v;), the right singular vectors, the first
r columns ofU = (u;)}, the left singular vectors anithe index of the singular value also called as
the singular value number. The rank.éfis the number of nonzero singular value of its SVD. The
SVD has a nice geometric interpretations as will be made clear in the next section.

3.6.1 Geometric interpretations of SVD

Any matrix A of dimensionM x N, can be interpreted as the action of a linear operator on the
bases of the linear space say of dimensionV, onto the bases of th&/ dimensional subspacs;.

The illustration is shown in figur8.1 by the action ofA on the unit sphere ot , to produce amr
dimensional ellipsoid im,; wherer denotes the rank od. The singular values,, 0, . . ., o, are the
lengths of the principal radii of the ellipsoid. One can conceive of the singular values as the extent of
deformation of the unit sphere produced by the matrixMoreover since the matriX is unitary we

can rearrange equatio®.80 asAV = UX, which implies that the directions of the principal radii are
given by the columns df’ and the pre-images by columnsiof A second geometric interpretation of

Figure 3.1 -Geometric interpretation of the SVD of matrix A.

SVD, which emerges from the Principal Component Analysis (PCA), when we view the the columns
of the matrixA as a set of\/ pointsP;, P, ..., Py, in anN; dimensional space as shown in the figure
3.2then for anyk < N, thePCA seeks a subspace such that the projection of the pBimatsto the

line of the position vectop; given bnyVi1 | P;H;|? is minimised. The problem of minimising the
projection norm is equivalent to the constrained optimisation prob&8) &nd the process can be
interpreted as a change of bases such the axes of inertia coincide. When SVD is used for data analysi

thereV' T denotes the adjoint matrix df given by the conjugate transpose of V
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usually the mean value is subtracted from each column which neesahit of the center of mass of
the data cloud onto the origin of the coordinate systemlséffe (1986

&
T2 Q e

Original Coordinate

Figure 3.2 -Geometric interpretation of the SVD of matrix A: as change of inertial coordinate

3.6.2 Connection between the SVD and eigenvalue problems

There is relation between the SVD and eigenvalue problem.ALet ULV be the singular value
decomposition ofA € RM*Nt. ThenATA = VUTUZVT = V¥2VT whereX? is a diagonal
matrix. Also note that sincel” A is a hermitian matrix, its eigenvalue decomposition is given by
ATA = WAW-! = WAWT. On comparing the two expressions, we conclude Htat= A i.e.

o, = VX andW = V, where \ denotes the singular values @f A. The pair(V, A) is called the
eigenvector-eigenvalue decompositionddfA ¢ RY >Nt Similarly one can obtain the eigenvector-
eigenvalue decompositidi/, A) of AAT € RM*M asAAT = USVIVSUT = US2UT = WAWT.

We note that if the number of snapshaisis much lesser than the number of data points as it happens
in the case of a Direct Numerical Simulation (DNS) of fluid flows, it is more practical to solve the
eigenvalue-eigenvector problem correspondingifod. On the other hand as it is experienced in
case of experimental situations the number of data pdihis lesser than the snapshot 8t The
eigenvector-eigenvalue problem 4fA” is then more feasible. This gives rise to two approaches to
POD the classical and the snapshot method which will be described in the next section. Before we
move on to the discuss the difference between the two methods, a quick reference to the work o
Higham(1989 which gives an estimate of error of the low dimensional approkonayiven by POD

and the decrease in the magnitude of singular values is worth mentionidgz IR <" and if the
matrix X € RM*Nt with rank X) = k < rank(A) is such that the appropriate norm of the error

E = A — X is minimised then the Eckhart-Young theorem which states that:

MiNanx)<il|A — X[r = [[A = Aillr = (3.31)
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whereF’ denotes the usual matrix Frobenius norm. The above expression gives a relation between th
rark k of the approximant, and th& + 1)™ largest singular value of. It also expresses the fact that

the quality of the approximant is related to the rate of decrease of eigenvadudshe eigenvalues
decrease rapidly we can hope to capture the given data with lesser number of singular values.

3.7 Direct and snapshot method

We have seen in the previous section that based on the choice of the correlationAvdtrix A” A

we have different dimensions of the eigen value problem, the choice of course depends on the siz
of the data set. In case of the infinite dimensional case based on the choice of the averaging operat
(.), we choose in equatior8(19, we have different approaches to the eigenvalue problem eeiffer

to as the direct method as originated loymley (1967 or the method of snapshot as described by
Sirovich(198). In the case of the direct method the average ope(atis temporal:

(Va= %/T.dt

and is evaluated as an ensemble average, based on the assumption of ergodicity and stationarity. C
the other hand variabl& is assimilated to the spatial variabbeslefined ovef2. The corresponding
eigenvalue 3.9) follows from replacing the domain of integration by 2 andthe variableX by x.

The integral Fredholm equatioB.(L3 is given

N, pod

/ D Rij (%, X )i (X)dx = Anhni(x) (3.32)
Q54
whereR,;;(x, x') is the two point spatial correlation tensor defined by
1 Npod
Ri(x,x') = T /Tui(x, tu(x', t)dt = ; A @i (X) P (%)

whereT is the period of time over which the signalx) is sampled andV,.4 represents the number
of POD modes. Also the eigenfunctions determined in this case is spatial.

3.7.1 On the application of the classical eigenvalue problem:

Given M number of spatial points and we assume that we sampt@mponent of our vectar(x),

we have the size of POD problem 3§,y = M x n.. In case of a numerical simulation like DNS

in which the average number of points even in case/@fsimulation is of the order of0* — 10°

and is of orderl0° — 107 in case of a&3D simulation, the size of the eigenvalue problem becomes
huge. It is also the case with experimental measurement like the Particle Image Velocimetry where ¢
large spatial data is sampled in a short period of time. The solution of the POD problem demands ¢
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3.7. Direct and snapshot method

huge storage of memory and even with a numerical library like ABRA the numerical precision is
difficult. The POD can be viewed as the generalization of the harmonic decomposition to the inhomo-
geneous direction as demonstratecCordier & Bergmanr{2002. This method has been exploited

by Delville et al. (199), Ukeiley et al.(2001), on data obtained from experiments, by decomposing
the flow field into homogenous and inhomogeneous component, thereby reducing the size of the POL
problem. If the number of ensemble membéis< M then even though the eigenvalue problem
can be accurately solved, time can be saved by solving a problem aWVsizéhich gives rise to the
method of snapshots as described in the next section.

3.7.2 Snapshot POD

In snapshot method as illustrated iyovich (198b), the average operator is ewvaluated as a space
average over the domaihof interest:
<->A = / dx
Q

and the variableX is assimilated in time. The corresponding eigenvalue problem is immediately
deduced as

/ C(t, ta,(t)dt' = \a,(t) (3.33)
T

where(C'(¢,t') is the two point spatial correlation tensor defines as:

/ 1 / 1 /
Ct.t) = /Qu(x, Bu(x, #)dx = ;an(t)an(t)
once the temporal modes(¢) are determined the spatial POD modes are determined as
1 T
64(x) = / w(x, Hag(B)dt for A > 0 (3.34)

In the case of finite dimension we can write the snapshot matrix as

u(xl,tl) U(l‘l,tg) u(:zcl,tNt)
Q _ u(l‘g, tl) U(I‘Q, tg) . . u(l‘Ngf’ tNt) (335)
u(zn,, t1) ulen,,ta) ... ulzn,,ty,)

whereN,, is the dimension of the spatial variables, aWids the number of snapshots. we notice that
the temporal modes can be expressed as a linear combination of the snapskgt,) as

N

$(x) = > alty)u(x, t) (3.36)

i=1

2http://www.caam.rice.edu/software/ARPACK
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where the coefficients(¢,) are cetermined so thap obtained from 8.36) solves the maximisation
probdem (3.8). Written for convenience the point correlation tené@t, t') = C, is given as

1

Cit) = —Q"MQ (3.37)
Ny

where M is the mass matrix for spatial integration, the discrete eigenvalue problem becomes
. 1

Ctai = )\iai with Fﬁa?aj = /\Z-5Z~j (338)

the spatial modes are determined as

1
NN,

Gi Qa; (3.39)

In this method we assume that snapshots are linearly independent. The choice between the dire
method and the snapshot depends on the pertinent method we use to study the system. In case of
numerical simulation where the spatial resolution is of high order as also in the case of the particle
image velocimetry, with a moderate time histarg,, N, < N,, the snapshot method greatly reduces

the size of the problem and is widely utilised, for a well converged value of the temporal correlation
tensorC(t,t'). On the other hand experimental approaches like Laser Doppler Velocimetry which
gives a good temporal resolution and a moderate spatial resolugony, < N, , the spatial cor-
relation tensorR(x, x’) is well converged and the direct method is preferred. Before we move on
to the next section to discuss the various choice of inner product, we would like to mention an im-
portant property of the spatial POD modes. As demonstrated in equat&8) (he spatial modes is

a linear combination of the snapshots and hence all the properties of the snapshot carry over to th
spatial POD modes. This is a useful property in incompressible flows, in that, if the snapshots field is
solenoidal, then the spatial modes are also solenoidal :

Vau=0=V.¢;=0Vi=1... Ny

If the snapshot satisfy homogenous Dirichlet boundary condition the spatial POD modes also satis
fies the homogenous boundary condition. This property has been utilised when performing control
studies using POD bBergmann & Cordief2005, where the snapshots where generated for a value
of aduation satisfying a suitable homogenous boundary condition.

3.8 Choice of inner product

The Hilbert space of function&/ (Q2, [0, 7) is usually assumed to be* with the standard inner
product, which guarantees a finite kinetic energy of the systelis also worthwhile looking into

othe definitions of inner product based on the underlying physics of the problem we are modelling.
We summarise a few definitions of inner products used in literature

3Notethe L*Q consists of functiong (x) such thatf,, | f(x)|*dz < oo
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3.8. Choice of inner product

3.8.1 L?inner product

The Hilbert spacd.?(2) is the most naturally encountered in the study of incompressible fluids. the
norm arising from the inner product naturally giving rise to kinetic energy of the fluid occupying
For a vector valued field having components, v, w, the L*(2) inner product and the corresponding
norm is defined by:

(u,v) = /(u1u2 + V109 + wywe)d2; HuH2 = (u, u) (3.40)
Q

The energy aspect of the’ inner product makes it a most natural choice in the application of POD
in fluid mechanics.

3.8.2 H'inner product

The H'(Q) is the Sobolev space df?(2) functions and their first derivativelollo et al. (1998)
demonstrated the instability of the Galerkin model developedhieyZ?(2) inner product for the
Euler equations of gas dynamics. For the system of incompressiblédilmr(1997), demonstrates
the improvement of the numerical result by the use of Sobolev inner product defined by

(U, V) ) = / wvdQ) + 6/ Vu VodS) (3.41)
Q Q

wheree is a user defined numerical parameter.

3.8.3 Compressible inner product

For the case of compressible flows, the velocity variables are dynamically coupled with the thermo-
dynamic variables. The inner product which defined the correlation tensor adds the flow variables anc
the thermodynamic variables. A question arises when we add two variables of different dimensions
to make sense when we use the udifainner product. The scalar inner product can be computed for
each variable as has been usedRoyley (2002. For vector valued variables one choice could be to
non-dimensionalise the variables, but then the sense of non-dimensionalisation on the optimality of
the projections poses a probleRowley (2002 seeks an inner product, for the isentropic flow vari-
ables which makes an intuitive sense in terms of the energy. This inner product has been used widel
to study cold isentropic flows at low Mach numbers Rgwleyet al. (2003), Gloerfelt(2008, for

which the equations of Navier-Stokes can be simplified by replacing the variables the state variables
by the speed of sound. For a vector variaple (u, v, c), whereu andv are flow variables andthe

local speed of sound. The inner product is defined by.

200
(q1,q2) = / (Uluz + vV + 10102) df2 (3.42)
Q

where~ is the ratio of specific heats amdis a parameter to be chosenaolt= 1 it corresponds to the
integration of the stagnation enthalpy. This inner product has been used in this thesis. Another inne
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product suggested Bourgetet al. (2007) for a vector variables, with d components; is given by

(0!, 0?) = Z/UZJ:EdQ (3.43)

whereo? is the temporal statistical invariancewfand is defined as

700 = 7 [ ()~ nGo

wherevz( ) is the temporal average over the span of the snapshistasmall positive constant. This
method has been successfully applied to study the buffeting phenomenon of the unsteady transon
flow around airfoil.

Having discussed the basic theory of POD, we now move on to the utilisation of the POD modes
to form reduced-order models which are useful to model the dynamics of the high fidelity model.
Various procedures to introduce the effect of control on our reduced-order model are discussed.

3.9 ROM in literature

The earliest application of ROM to study the near wall coherent structures has been studiec
by Aubryet al.(1983). Boundary layer transition of shear flows has been studied us®il R

by Rempfer(1996, Rempfer(2000. Mixing layers has been studied yajaeeet al.(19%),
Ukeiley et al. (2001), wake flows byMa & Karniadikis (2002, Noacket al. (2003), Galettiet al. (2004).
Turbulent channel flows using a minimal flow unit can be foun&mith et al. (2006) and using a
squre coordinate inuttijudataet al. (2006). Bifurcation and stability of the high fidelity model for

lid driven cavity flows has been performed 6gazemielet al. (1998). Reduced-order model to study

the gale transfers of a turbulent separated flows can be fouG@dirpletet al. (2003).

All the references above represents the application of the ROM for incompressible flows. Appli-
cation to compressible flows has been limited and one can find applicati®tsnleyet al. (2003)
where a simplified isentropic model has been applied to studyeffheisstained instabilities of 2D
cavity in conjunction with a high fidelity DNS solvel3D cavity simulations with reduced order
modelling has been performed IBloerfelt(2008. An approach to extend the ROM to full equa-
tions of compressible flows has been given\igo (1998 by recasting the Navier-Stokes equations
in terms of the specific volume. Hyperbolic systems with shocks has been studied using ROM by
Lucia & Beran(2003 and transonic flows around airfoils Bourgetet al. (2007).

Utilising ROM to perform control has been studied for the incompressible cdauviydran(1999,
where the general principles of POD based optimal control has been discussed. Influence of contro
on the ROM of wall bounded turbulent shear flows has been studieGrapamet al.(1993),
Grahamet al. (199b). Bergmann & Cordie2005, have used the ROM to perform optimal control
of wake flows. Luchtenburget al. (2009 to study high lift configurations with actuation. Feedback
contol laws using the ROM has been performedWgller et al. (2000b).
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3.10. Galerkin projection, principles

In the compressible regime reference can be madgataimyet al. (2007), Kasnakogly2007)
for the extension of the ROM to controlled configuration. The RC&h ©e built on bases other
than the one obtained from POD. Example of which can be fouliirkardtet al. (2006) where the
base is obtained by minimising the tesslation energy. In the next few sections, we discuss the genera
principles of the POD based Galerkin projection for the reduced order modelling. After giving an
overview of the ROM for incompressible case, we introduce the compressible case of the isentropic
model which is used in this thesis. The method of introducing the effect of actuation into the ROM
will be further discussed with an application to the compressible cavity flow.

3.10 Galerkin projection, principles

Consider a dynamical system which evolves on a Hilbert spacEhe form of the dynamical system
can be written in a canonical way as

i = X(u) (3.44)

whereu(t) € H andX is any differential operator oi. For example, consider a partial differential
equation governed by the variahléx, ¢), defined on some domain x [0, 7], whereQ2 € R™ rep-
resents the spatial domain of evolution, over a pefipd’]. Given a finite dimensional subspate
of H, the Galerkin projection specifies a dynamical system which evolvésand approximates the
original equation3.44) in some approximate sense. This approximate dynamical systebtained
by an orthogonal projection of the vector fielt{ «) onto the subspacg and is denoted by a operator
X, giving rise to a new dynamical system

Wherer is the projection variable. Galerkin projection specifies this vector field as
Xs(r) =PX(r) (3.46)

whereP, : H — S denotes the projection map. From projection theorBwhinson(2007), this
appoximation minimises the errgrx;(r) — X (r)|| if

(Xs(r) — X(r),w) =0 (3.47)

for any set of bases functions, € S. This gives a hint of choosing the basis functions for the
subspacé as the POD modes. Writing¢) in terms of the coordinates;(¢) of the POD bases we
have

r(t) =Y ax(t) o (3.48)
k=1
On using 8.47) and the orthogonality of the POD modes we obtain a system of O&F&'’s

ak(t) = <X(T(t))7¢k> ) k= L--n (349)
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For many types of equations, the ODE’s given By0 can be computed analytically in terms of

the wordinates:,. This is useful as the inner product need not be computed at each time step. The
Galerkin procedure as described can also be easily extended to affine spages&n a linear space

S and an elemerit € H the affine subspac, := {b + v|v € S}. In this case the expansioB.48

takes the form

r(t) =b+ > ax(t)dn (3.50)
k=1

Usually in the application of POD to fluid flow simulations the elemeistchosen to be the mean of
the snapshots, denoted bylt is also helpful to note the projection for a quadratic operatou), as
it arises in many applications of fluid mechanies

X(u) = L(u) + Q(u,u) (3.51)

whereL : H — H islinearand) : H x H — H is bilinear, the reduced order model can be obtained
by the projection onto the affine subspace. UsBi§@ in (3.49 we obtain the reduced-order model
as,

dk(t) = <L(T) + Q(Tv r)a ¢k>
= <L (b + Z ai(t)¢i> +Q (b + Z ai(t)gi, b+ Z aj(t)ﬁbj) ; ¢k>
= Cp+ Z Lya;(t) + Z Qrijai(t)a;(t)

Ly = (L(¢i) + Q(b, &) + Q(¢4,b), dr)
Qrij = (Q(di,95), Or) (3.52)

The coefficients are independent of time, and can be determined before integrating. We will refer to
the above system when we discuss the isentropic compressible case of the cavity, for which we find .
guadratic dynamics of the flow equation.

3.11 Incompressible case

We now highlight the basic principles of ROM for the incompressible case, just to highlight the
differences for the compressible flows. In incompressible we assume that the velocity field
(u,v,w) is divergence frege Vu = 0. The Navier-Stokes equation in this case can be written as

D
Fltl — —Vp+ vV (3.53)
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3.11. Incompressible case

v denotes the kinematic viscosigythe pressure, an% = % + u.V dendes the material derivative.
On using the notation
N(u) = —(u.V)u + vVu
equation 8.53 can be written as
u=MN(u)—-Vp (3.54)
We use the POD expansion for the veloaitys:

n

u(x,t) =u+ > a(t)dr(x) (3.55)
=1

where our Hilbert space i5%(€2)? with the usual inner-product given by

(u,v) :/Qu(x)v(x)dQ (3.56)

On using the expansioR .69 in (3.53 and using the definition of inner-produ@&.%6 we have the
redwced-order model of incompressible equation as

ar = N (), ¢r) — (Vp, dr) (3.57)
The second term can be written after integration by parts and using Green’s theorem
(Vp, o) = (p, Vo) — [por] (3.58)

where[poy| = far p.¢pndl’ denotes the surface integral withdenoting the normal to the boundary.

The first term on the right hand side of equati8rb@) is zero due to the divergence criteria and if the
velocity is zero along the boundaries the second term also vanishes. Thus we have the reduced ord
model of the incompressible case as

ar = (N(u),¢n) = Cp + Z Lyiai(t) + Z Qrijai(t)a;(t)

with the initial conditions

ax(0) = (u—1,¢) (3.59)
The coefficients of the ODE given b$.69 are written as,
Ck = —<(l_,l.V)l_1, ¢k> - V((v & ¢k)T7 \% ® ﬁ> + V[(V ® ﬁ)¢k]
L = —((@V)i, o) — ((¢:-V)U, ¢x) — v(V i, ¢x) + v[(Vd;) ]
Quij = —((0:.V)o;, dr) (3.60)

Note in this study we have assumed that the boundaries as a wall, and hence we neglect the presst
terms. In case the boundaries are treated as artificial boundaries, by considering only a limited portiol
of the domain of the whole flow, the pressure terms represent a significant contribution as showr
by Noacket al. (2006). Also one more feature is that the mean field is assumed to be otristh

Aubry et al. (1983) considers a slow variation of the mean field with time and try to @itk mean in

terms of the fluctuation, which gives rises to cubic terms in the ROM, corresponding to the Reynolds
stress. One challenge is to extend the development to the compressible case.
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3.12 Compressible case

We nov move on to the case of compressible flow. The main feature which distinguishes from the
incompressible case is the velocity variables which are dynamically coupled with the thermodynamic
variables. A question which arises due to this coupling is the formulation of the governing equations
which in some cases can be simplified to the formulation of the quadratic dynamics as discussed i
63.10 As suggested bRRowleyet al. (200) using the isentropic formulation which is valid for cold-
flows at low mach number one simplify the formulation to the quadratic ceim (1998 suggests

the wse of specific volume to simplify the dynamics. Choice of inner product is also one issue and has
been discussed in detail #3.8. The coupled equations can be treated as a scalar in each varmable

as a vector variableRowley (2002 has shown the distinct advantage of using a vector formulation,

in which the stability of the attractor at the origin is preserved. In this work we mainly discuss the
vector formulations which are used to build the ROM of the cavity flows.

Isentropic reduced order model

Scaling the velocities, v by the free stream velocity,, the local sound speetlby the ambient
sound speed,,, the lengths by the cavity depih, and time byD /U, the equations are given by

1 2 1

Up + Uty + VU, + ny = ﬁ(um + Uyy)
2 1
U + UV, + VUy + Wﬁccy = E(’Uﬂp + Uyy)
¢+ ue, +vey + T c(ugy +vy) =0
where M = U, /cs is the Mach number an®&e = U, D/v is the Reynolds number. The non-

dimensionalisation is useful in that the Mach number which appears explicitly in the Galerkin projec-

tions, helps to investigate the parametric dependence of the reduced order model. There has also be
studies of rescaling the cavity length by the momentum thickness to investigate its effect. Denoting
q = (u, v, c) the vector of flow variables, the above equations can be re-casted to obtain a quadratic
form as

) 1 1 .
q= ﬁL(Q) + WQl(q, q) +Q2(q,q) with (3.61)
Uy + Uy cte?
L(q) = | Uga + Vyy | » Ql(q1>q2) = _% 01032;
0 0

u'u? + vl
Q:2(¢",¢%) = — uv? + v'o; (362)
w2 + ol + et (u2 + v2)
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To obtain the reduced order model by means of a Galerkin projeatedefine an inner product on
the state space as explained in equati®ad).

<q1,q2>Q=/(uu + v’ +
Q

where « is a constant and is the ratio of specific heats. In this work we choose the value of 1,
which gives the definition of stagnation enthalpy while calculating the norm. We use the expansion
of the vector variable as

2c
v—1

c'c?) dQ

g(x.t) =q(x) + Y _ ar(t)pu(x) (3.63)

whereg denote the mean of the snapshot for the vector variable. On U368 and the definition
of the inner product given above to perform the Galerkin projection onto thexfkst Npop Spatial
eigenfunctions, we obtain after some manipulation, the Reduced Order Model given by

. 1 1
+ Z <WQ}“] + Qiz]) af(t)af(t) (3.64)
ij=1
= Cp+ Y Lal'(t) + Z Qrija; (t)aj (t) = fiu(C, Ly, Qu, a (1))
=1 i,7=1

wheref; is a polynomial of degree 2 ia’* and where the coefficients are given by

C/i = (¢, L(q))q Lllci = (¢k, L(9:))q 1. o
= (60 u@D)a L= 0n Q@)+ Quond)y o o (Gt
Ci = (fr, Q2(7,9))q L} = (or, Qa(T, ¢:) + Qa(04,7))q i R Tl

As already mentioned instead of the isentropic equations one can as well use the full Navier-Stoke!
equations which leads to cubic terms in the ROM. The use of specific volume defined asvhich
preserves the quadratic nature of the dynamical system both these methods have been discussed
AppendixB andC

3.13 Extension to actuated case

Having discussed the ROM for the un-actuated case we now move on to introduce the effect of
actuation on our ROM. The advantage of the reduced order models can be fully exploited when
they are capable of being used in control studies, also we would like to have a dynamical systen
where the actuation effect is naturally embedded. There has been recent attempts to take care of tl
introduction of actuation bpergmann & Cordief2005,Weller et al. (200b) for a feedback control

whetre snapshots from the controlled case are augmented with the un-actuated modes (baseline flow ;
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usually called) to obtain a global representation for the ctlett@ase. The regions where the control

is introduced is explicitly identified while performing the projections, these methods are referred to
as input separation methods as foun&asnakoglwet al. (2008. To explain further the flow domain

Q2 into two sub-regions, such th&t = Q.. + Qe WhereQ,., Qu.qc represents the actuated and

the un-actuated part of the domain respectively. The inner product for the corresponding domains
is defined ag.,.) = (., .)a.. + (., )au..., With the corresponding boundary condition imposed for
Q.. This procedure yields an autonomous system of ODE’s of the form, (on using the summation
convention)

ar = Ck + Liia; + Qrijaia; + hapy + hogiairy + hapy” (3.65)

where~ is the actuation signal. This methods suffers the disadvantage in that one must be able
to explicitly identify the control regions, while taking care to reproduce the un-actuated dynamics
when the actuation value tends to zero. Also the information of the input actuation is hidden in the
model. Another procedure of introducing actuation is to identify the system coefficients based on a
stochastic estimation technique, to give a ROM of the fa3r65). More details of the method can be
found in Caraballcet al. (2008), an explanation of which can be found in AppenBixThis involves
detemining additional POD actuation modes combined with a stochastic estimation. One would then
look for an alternative separation methods look for an expansion of the form

q(x,t) = G(x) + Y _ ap(t)pr(x) + (D) (x) (3.66)

wherey is the actuation and is the spatial actuated coefficient and which would satisfy the following
condition

1. The actuation effect should be explicitly available in our ROM and should be able to reproduce
the un-actuated dynamics in case the value of actuation tends to zero.

2. Most of the actuated dynamics in the space spanned by the un-actuated POD modes are we
captured by the un-actuated POD modes and hence the completion of the full actuated dynamic
is obtained by an extension of the bases. This condition is an additional constraint to condition 1
in that we require a constraint on the dimension of our actuation by specifying that the base-line
modes capture most of the dynamics and is the crux of the whole problem.

3. We further strengthen this condition by imposing an optimality condition in that the energy not
captured by 3.66) is minimal.

Figure 3.3 summaries the above condition to give a basis extension proflamconditions can be
systematically algorithmized as below followed by the theorem du€asnakoglu2007) as found
in appendixE.

Algorithm 1:

1. To start with, let the actuated snapshot sets be denotgg‘as; },. ,, wherey, = (i) is the
value of the actuationy = ¢*“(x, t;) andm is the number of actuated snapshots
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Y

Cfém s

Un-actuated Spac

Figure 3.3 -Diagrammatic representation of the actuated expansion, the un-actuated subspace must be able tc
capture most of the dynamics and the actuated space is the completion of our subspace in an optimal way to
include the actuation effect.

2. We subtract the meapof the un-actuated base flow from the snapshot set. We define a new set
of realisations by an innovation operator defined by

n

Gi = 4 — Psqi® = qi° = > _ (qi°, &1) o
i=1

to take care of the part of the actuated mode which can be captured by the un-actuated subspac

3. We then wish to construct an orthogonal subspace to the un-actuated space to capture the effe
of actuation. This is done by solving da minimisation problem for the functional given by

T (@) = E [llgs — ml|’]
whereF is any averaging operator.

4. The solution of the above minimisation problem for the actuated nmiadeiven by

5. The expansion for the flow field can now be written for the actuated case as
gie(x, 1) = 3°(%) + ) ag (D)%) + 1 (D)¥(x)
k=1

3.13.1 Reduced order model for the actuated case
LetV =G+ spad ¢,..., on,?*}. Consider the dynamical system that evolveXogiven by

7= X(r) (3.67)
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The reduced order dynamical system that approxim&@3)(can be obtained by a Galerkin projec-
tion as

Xy (r) =Py X(r) (3.68)
and is optimal in the sense that it minimigg, (1) — X (r)|. sinceXy (r) — X(r) L V we have
(X (r) — X(r), ) =0,k =1,....n (3.69)
substituting: = g + ax¢, + ~¢* in (3.69) one can write
(drdp + " = X(r), or) = 0
(P, Ox) + YW, ) — (X (1), k) = 0
Ay (Pr, or) — (X (1), ) = 0
dr = (X(r), dr) (3.70)

As in the un-actuated case, we now derive the reduced-order model for the special case of the quadrat
dynamics as

X(q) = L(q) + Q(q, q) (3.71)
substituting 8.71) in (3.70) gives
ar = (X(r), on)
= (L(G+ aidi +7¢") + QT + aihi + y¥", T+ aigs + 7¢"))
= (L(@), bx) + (L(1), Sr)ai + (L(V7), d)y + {Q(T D) dw)
+ QT ¢5), dr)a; +(Q@Y7), o)y + (@4, ), dw)ai + (Q(di, 8)), i) aia
+ {Q(¢i,¥"), d)aiy +(Q(*, ), o)y + (QU*, ¢4), ¥ )aiy + (Q(U,47), ¢r)y”

= C)+ Lyja; + Quijaia; + hipy + hopairy + hapy? (3.72)
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3.13. Extension to actuated case

where

Ce = (L(q), o) +(Q,7), ¢x)

Lij = (L(¢;), o) +(Q(q, 95), dn) + (Q(5, ), Pk)
hie = (L"), o) +(Q@, V"), o) + (Q(V7, Q) dr)
Qrij = (Q(di,05), dk)

hori = (Q(¢i, ), ) + (R, 6i), ¥7)

hae = (QW", V"), dn)

3.13.2 A polynomial notation for the reduced-order model

We give a notation for the ROM3(72 which will be helpful in simplifying the model, if we note
thatthe ROM is nothing but a polynomial of degrgen the unknown variable® = {a,,...,a,}.
Equation 8.72 can be written by separating the actuated and the un-actuatedipa compact
notation as

ay" = fi(yi, a(t)) + g(zi, a™(1),7) (3.73)
where
fe(yioa(t)) = Ci + Liga; () + Quijai(t)a;(t) (3.74)
(216, @7 (), 7) = hary(8) + hagia; (£)7(t) + hay(t)? (3.75)
withj =1,...,nandi = 1,..., jthe coefficients, andz, in (3.73 denote the unknown coefficients

for the actuated and the un-actuated part respectively and is given by

o
Ly hy,
: o1k
yk=| Lin | R and z,=| : | eRY=
Qr11 honk
: hiy,
Qknn

To reduce the size of;, we use the properties of symmetry of the quadratic tepmsby noting that

Qiji = 1/2(Qijx + Qur;) and hence the size of vectgr = N, = 1+ n + 22 andN,, = 2 +n.
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3. Poper Qthogonal ecomposition (POD) basedeRuced @der Modelling (ROM)

The unknown coefficients of the ROM can be written in a vectorightion as

1
ai(t) ()
; Y(t)ai(t)
m(t) = an(t) cRY: and n(t) = : € RY=
ay(t)as (t) V(t)an(t)
: 7*(1)
an(t)an(t)

with this notation 8.74) and 3.75 can be written as

fe(yr,a®™(t)) = m(t).ys
gk(zk,aR(t),fy) = n(t).z (3.76)

Equation 8.76) can be further written in a vector notation to give the final fofth@e ROM as'
at = f(y,a") + g(z,a",7) (3.77)
where for the uncontrolled contribution we have:

fi Y1
: ] eR” and y=| : | eRY™ with N,=nN,
In YN

f:

and for the controlled contribution:

a1 <1
g=| :|erR” and z=| : [ eRY™ with N.,=nN,

gN ZN

3.13.3 Extension to multiple modes

In the case of multiple inputs, it is trivial to extend the above procedure to include multiple control
inputs for example assume we have determiped }~, actuation modes correspondingftg () }}2,
inputs. We have an expansion of the form,

G, 1) = 500 + 3 a0 + (1)) (378)

lComputationallyf can be computed at any time instaiis a product of a block diagonal matfix where each block
is equal tom™ multiplied by the vectoy. Similarly g can be obtained as the product of a block diagonal mé@tnixhere
each block is equal ta” multiplied by the vectog.
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3.13. Extension to actuated case

and the corresponding Galerkin model is obtained just by a suilmmater the corresponding inputs
as

ap = Ck + Lija; + Qrijaia; + hagiyi + horijaiy; + hsiijviv; (3.79)

It is also possible to include the effect of the derivatives of the input as in many cases the derivatives
will be known. For example assuming that the derivative of the ifptitis available, the algorithm
can be summarized as follows.

Algorithm 2:

1. To start with, let the actuated snapshot sets be denotegi‘asy, Vi },-,, wherey, = y(t;) is
the value of the actuation, = 7(t;) is the derivative of the inpuf;® = ¢°°(x, t;) andm is the
number of actuated snapshots.

2. We subtract the meapof the un-actuated base flow from the snapshot set. We define a new set
of realisations using an innovation operator given by

n

G = 4 — Psqi® = qi° = > _ (4i, &) o
=1

3. We then wish to construct an orthogonal subspace to the un-actuated space to capture the effe
of actuation. This is done by solving d3 minimisation problem for the functional given by

T (@) = E [llgr — mtl|’]
whereF is any averaging operator, to obtain an actuation mgd®r input.

4. Defineg, = ¢i¢ — Ps, ¢ whereS, = spaf{ ¢1, ..., én, 11 }. In generall|y,|| # 1 and hence
while projecting on the actuation mode we define the projection operator of the form

Py = [[¢1]] ™ qe, ¥1)in

5. To include the effect of the derivative of the actuation, we follow the same procedure as above
with ¢ replacingg to solve a minimisation problem for the functional given by

T W) = E [llgk — v |?]
to obtain an actuation mode for the derivative given/by

6. The expansion for the flow field can now be written for the actuated case as

" (x, 1) = 7°(x) + Z a®(t)éi(x) + ()1 (x) + 4 ()2 (x) (3.80)
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3. Poper Qthogonal ecomposition (POD) basedeRuced @der Modelling (ROM)

As mentioned before the above procedure can be easily extenuhetlite the derivatives of multiple
inputs in which case the expansion for the flow field is given by

q"(x,t) = q"(x) + Z ai“(t)i(x) + Z 7 ()¢ (%) + Z i ()12 (x) (3.81)

The Galerkin model for the multiple control inputs with its derivative can be written in the form

ap = Ci+ Lija; + Qrijaia; + hagiys + hogijaiyy + harij i
+  G1kVi + 92kij@iYj + Gskig ViV + GakiiViVj (3.82)

3.14 Application to cavity flows

We present results for the cavity flow configuration described in chaptéhe DNS is performed

and snapshots are taken once the flow has stabilised for a non-dimensional &nmé&®tnapshots

are uniformly sampled which corresponds to abbpieriods of the flow oscillation2(8 in non di-
mensional time) corresponding to the first Rossiter mode. Figidrdemonstrates a degenerate eigen
sped¢rum showing eigenvalues which occur in pairs. Also the first 4 eigenmodes capture around
98.5% of the total fluctuation energy as shown by the Relative Information Content (RIC), and the
first 6 modes captur@9.99% of the total energy. In this work we construct the ROM keegimgodes

from the POD representation. The POD temporal coefficients in figibrehows that the modes oc-

curring in pair have a phase shift &f. Therepresentation of the first 6 spatial POD modes for the

vorticity and dilatation is shown iB.6, and3.7. The dilatation represents the directivity of sound and
is given by the equation

ou  Ov
- Oz * dy
Although the spatial modes occur in pairs and their values are distinct, the representation is topologi
cally equivalent. The vorticity and dilatation has been determined usifigader accurate compact
scheme. The wiggles in the representation are mainly the artifact of the numerical scheme used i
the DNS computation. We suspect that using a higher order compact scheme may improve the resul
There is also a strong evidence of the effect of discretisation when we compute the dilatation mode:
which are mainly acoustic, and very sensitive to numerical discretisation. The vorticity modes mainly
represent the hydrodynamic component and the dilatation the acoustic phenomenon. The two vortic
ity modes occur in pair with a phase shiftof2 as can be seen in the representation of the temporal
coefficient in figure8.5. The dilatation being a high frequency phenomenon, is cleagicted for the
higher POD modes where the angle of the wave propagatitdbais distinctly visible. Cavity flows
represent a distinct coupling between these two phenomenon in which the high frequency acousti
components feedback into the low frequency hydrodynamic component, resulting in self sustainec
oscillations. Hence to have a faithful behaviour of the ROM it is hecessary to consider the prominent
acoustic modes represented by the high frequency POD coefficients.

©
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100
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Figure 3.4 eigen spectra and Relative Information

Content (RIC) Figure 3.5 Hirst 6 POD temporal coefficients

Regarding ROM snapshots are obtained from the DNS by introducing an actuation of the form
Asin(wt) just before the leading edge of the cavity€ [—0.15; —0.05] andy = 0) where the flow
IS more sensitive to actuation. The spatial modes as sho@Bexhibit a local behaviour capturing
the dfect of actuation which is the salient feature of the optimisation method introduced in the
preceeding sections. Since the actuated subspace is orthogonal to the un-actuated subspace we h
from (3.66), the actuated temporal modes given by:

ai®(t) = (¢s, ¢" — 7 = v(t)Y)q

Here we make the assumption that the average of the mean flow in un-actuated and actuated cases
equal, §*° = 7q), since the value of actuation introduced is small. The t&fth:= ¢*“ — g*° can now
beinterpreted as a translation of the reduced order subspace. We also introduce, an error to take ca
of the difference in the average values while performing the Galerkin projections as

- (g _7¢z'> (383)

(0i,7°)

Also since the actuated mode is orthogonal to the un-actuated subgpace ¢ the termaf“(t) —
0. This is an essential point as the temporal dynamics of our model is mainly represented by the un
actuated subspace, the actuated mode represents the completion of the basis to include the effe
of actuation. The difference in average value%® for the stream-wise and normal component of
velocity is shown in figure.9, and the value of the error in the projectionn figure 3.10 showing
a smdl errors for the most energetic modes. We are unable to explain the behaviour of the error at
the certain higher modes which seem pretty large. The time traces and the phase portrait of the firs
6 modes of the Galerkin model is shown in figuldd1and3.12 The Galerkin model compares well
with the POD coefficients for the initial time and shows a divergence as time progresses. Also the

81



3. Poper Qthogonal ecomposition (POD) basedeRuced @der Modelling (ROM)

deviation from the expected behaviour is large in the case ofehigiodes. One of the reason for

the divergence can be attributed to the truncation of the terms in our Galerkin model, but increasing
the number of modes does not improve the results, as shoRempfer(1996 even the full order
sysem can converge to a wrong attractor. This brings in the problem of calibration of the ROM
i.e., to correctly determine the coefficients of the ROM so as to reproduce the POD dynamics. The
reasons for the divergence of our ROM model as well as the various techniques of calibration will be
discussed in the next chapter.

3.15 Conclusion

In this chapter, we have discussed the basic principles of the Proper Orthogonal Decomposition
We have also given some of the properties of POD that make them an useful choice in the mode
reduction of fluid flows. Choice of inner-products for both in-compressible and compressible case
has been discussed.

The principles of a ROM based on a Galerkin projection has been discussed. A comparison
between the incompressible and compressible case has been presented. To model the cavity flows \
construct the ROM of the isentropic Navier-Stokes equations. Extension of the model to include the
effect of actuation, is by means of constructing an actuated mode based on solyinggimisation
problem, and the corresponding ROM presented. The extension of the ROM to include the effect of
multiple actuation as well as the derivative of the actuation has been discussed. Results of the RON
shows a divergence from the predicted dynamics obtained from the POD, which motivates the nex
chapter on the stabilisation of the ROM.
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Figure 3.6 -Vorticity contours of the firse POD modes15 contours in the rangé—5, 1.67] are plotted. We
note that the cascade of the energy in the POD representation in terms of the size of the eddies represented.
The vorticity being a hydrodynamic phenomenon represents the low frequency dynamics of the flow.
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3. Proper Qthogonal Recomposition (POD) basedRuced @der Modelling (ROM)

(e) mode 5 (f) mode 6

Figure 3.7 -Dilatation contours of the firss POD modes15 contours in the rangé—0.2, 0.2] are plotted.
Dilatation mainly represent the acoustic phenomenon which occurs at high frequency and we can see the
dilatation more prominent in the higher modes, where the angle of wave propagation is clearly visible.

84



3.15. Conclusion

=
o

e

ﬁ(%

m

TN AR BRI R
-05 0

[\

25

(@ u (b) v

Figure 3.8 -u andwv velocity components of the actuation madeorresponding to an actuation defined by
vwar = 0.2 sin(0.4t). The plot shows a local behaviour capturing the effect of actuation.

(@u (b) v

Figure 3.9 -u andv of the difference in the average valéig' between the actuated and the un-actuated case.
The average of the mean flow in un-actuated and actuated cases are egjtiak, ¢), since the value of
actuation introduced is small.
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Figure 3.10 -Average projection errog; and shows a small errors for the most energetic modes.
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Figure 3.11 -Temporal comparison of the fir6tmodes, with the POD coefficients:ROM prediction(solid line),

reference POD dynamics (0). The Galerkin model compares well with the POD coefficients for the initial time

and shows a divergence as time progresses.
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Figure 3.12 Phase portrait comparison of the fistmodes, with the POD coefficients:ROM prediction(solid
line), reference POD dynamics (0). The Galerkin model compares well with the POD coefficients for the
initial time and shows a divergence as time progresses.
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Chapter 4

Int egration and calibration of ROM

Introduction

Ce chapitre concerne essentiellement le€difiites techniques de calibration utiliser pour stabiliser
le mockles d’ordre Eduit. 1l est souvent difficile de resenter avec suffisament depision, néme
sur un temps court la dynamique du gyse initial, ce qui interdit l'utilisation des metkes d’ordre
réduits pour de€tudes de sensibiéit d’optimisation et de conie optimal. L’icee principale de la
calibration est d’'identifier les coefficients du n&del POD Galerkin (ROM) de sorte que sa dynamique
propres cancide avec la dynamique temporelle de la POD issue des simulatior&rigues directes
et qui est connua I'avance. Les raisons de la mauvaisé&pision du modle ROM peuétre attriblee

a la troncature des bases PO des échelles dissipatives incluses dans les modes POD d’ordres
éle\es ne sont pas prises en compte. C’est un @il analogue celui renconté en Simulation de
Grandes Echelles (LES)ida dissipation des petitechelles est manquante &ihe si tous les modes
de la projection de Galerkin sont pris en compte, on peut ab@utin mauvais attracteud cause
des instabilies structurales comme celles obsss parRempfel(2000,Noacket al. (2003). Les
techniques de calibration peuvegtre clasges en deux cagories, la premére consista traiter le
probleme de calibration comme un préhe de fermeture de la turbulence. La seconde céresigh
probleme d’identification de coefficients, ce qui revignine probéme d’optimisation ou de cordtie
optimal. Coupletet al. (2005) donne une vueérérale des diferentes erreurs qui apparaissentdans le
ROM et propose une technique de calibrationémsur la minimisation d’une fonctionnelle &aire

de 'erreur. Recemment une athoration des propositions d€oupletet al. (2005) a éte presenée
dansCordieret al. (2009). Nous proposons une d@tioration suppémentaire de cette technique en
introduisant diferents types de matrice de p@ndtion dans la éfinition de I'erreur. Dans la prergre
méthode les poids sonétermiresa partir d'une analyse de sensib&itle l'énergie. Dans la seconde
approche les poids sonéfiniesa partir du contenienergetique de la repgsentation en ROM.
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4. Integration and calibration of ROM

Définition des erreurs

L’actionnement dans le sgshes ROM estadermiré par une proédure d’optimisatiorn., se retrouve
principalement restreint da un mode spatial. Par cogguent il est suffisant de ggenter les princi-
pales ickes sur la calibration assoee Les dynamiques temporelles aux cas sans actionnement. Les
erreurs pour une identification polgmiale du modle d’ordre eduit (ROM) peuverétre essentielle-
ment clasées en:

1. La calibration d&état, ai les coefficient du m@de ROM sont identiis pour repesenter avec
précision I'etat temporel du ROM en accord avec les coefficient temporels de la POD édmsyst
original.

2. La calibration decoulement, o les coefficients sont iden&é pour repesenter les champs de
vecteurs de l'integration temporelle du ROM en accord avec les champs de vecteurs obtenu:
par la POD.

Trois erreurs peuvengtre cefinies par lesequations4.2, 4.4 et 4.6. Une fois I'erreur choisi,
I'i dentification polybmiale est obtenue par minimisation des fonctionnellds ba$es sur cette
erreur comme dorges par lequations4.3, 4.5, 4.7. Dans la fonctionnelles dd tous les modes
sont donis de poid€gaux. La minimisation des fonctionneltes, 4.7 conduita la résolution d’un
syseme lireaire puisque les erreur&€uationst.4 et 4.6) sont des fonctions affines des coefficients
polyndbmiaux.

Meéthode de calibration de Couplet

La méthode deCoupletet al. (2005) introduit la minimisation de fonctionnelles lssssur la combi-
naison lireaire convexe des termes qui repentent I'erreur normalise et une mesure de la variation
des coefficients du meke par rapport aux valeurs obtenues par la POD. Cependant, lleseque

le syséme lireaire est mal conditiorinet diverge aps un temps court comme on peut le voir sur la
figure 4.1 Pour résoudre cela onagularise la fonction cat. Cependant le choix du parétne de
régularisation @pend de l'utilisateur. Pour y reedier Cordieret al. (2009) utilisent la nethode de
régularisation de Tikhonov pour mieux conditionner le pesbé.

Approche ponderée de egularisation de Tikhonov

Dans ce travail une nouvelle &thode de calibration b&e sur I'anglioration de la néthode de
Cordieret al. (2009) est utili€e en introduisant des poids convenables danfaition de I'erreur

dans la fonctionnelle dt, en donnant ainsi une importance aux modes qui le sont. Deux voies pour
définir les poids sont propées:

1. Dans, nous cons&ons que le plus igressant est dans la melisation de I'effet des structures
énergetiques et ainsi les spectres propres servent comme une mesure de I'importance des mode
C’est le choix le plus naturel pour lagfinition des poids dans l'erreur.
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2. Dans, I'erreur est basesur une sensibilé globale de la foncionnelle o.

Les deux matrices poids comme repenées sur la figuret.10 sont similaires étant donré que les
poids sont bais sur l'utilisation d’un criereénergetique.

Application aux écoulements de cavé

La méthode de &gularisation pondrée bage sur la sensibilé globale aéte appliqiee au cas de
lécoulement de ca¥t La néthode reproduit les dynamiques temporelles de la POD comme on peut
le voir sur les figuredg.11et4.12 La methode a&te compage avec d’autres techniques de calibration
comme on peut le constater dafgl et sur la figure4.13 La régularisation ponérée de Tikhonov
surpasse les autres techniques de calibration en termes d’erreurs nogemks$ d’erreurs modales.
La principale force de cetteégularisation eside dans le fait que les paré&tnes de egularisation
sont cetermirés sans aucune intervention de l'utilisateur. Finalement n@usions I'acequation du
mockle de calibration pour de longue€podes d’infration temporelle comme on peut le voir sur
la figure 4.14 Ainsi le moele prédit les dynamiques pour peu pes4 péeriodes d'oscillation de

I’ écoulement, mais diverge rapidement quand oégre au-ded. Ceci est @ au fait que les modes
négligés (tronq&s) ne sont pas pris en compte et le pesbé de fermeture reste ouvertemme en
déterminant correctement les coefficients. Nous devons donc calibrer sur plésiddgs si nous
souhaitons utiliser le ma#e pour de€tudes de conire.

91



4. Integration and calibration of ROM

4.1 Introduction

As demonstrated in the previous chapter it is often diff cult to represent with suff cient accuracy even
the short time dynamics of the original system which bars the utility of the Reduced Order Model
for applications in sensitivity studies, optimisation and optimal control. Methods in the literature that
pertain to improving the accuracy of the Reduced Order Model is termed as calibration The main
idea of calibration is to identify the coeff cients of the POD Galerkin model so as to match the tem-
poral dynamics of the POD which are known in advance. This strategy is usually called as a system
identif cation or black-box model in control literature when the dynamical system is determined with
respect to an identif able dynamics of the process. The reasons for the inaccurate behaviour of the
ROM can be attributed to the truncation of the POD bases. An analogous problem occurs in the
Large Eddy Simulation (LES) of fows where there is lack of dissipation, due to truncation of the
smaller scales. Even including all the modes in Galerkin projection may still lead to the wrong at-
tractor due to structural instability as has been demonstrated in Rempfer (2000),Noack et al.(2003) .
Other problems may arise due to the contribution of pressure at the boundaries of the domain, which
is usually neglected Noack et al.(2005). The stability properties of the compressible POD-Galerkin
approximation has been studied by Iollo et al. (2000) and shows that just the stability of the numerical
scheme is not suff cient for the stability of the ROM and a suitable numerical stabilisation is required.
Consecutively a Sobolev inner product has been def ned for the norm to improve the accuracy of the
ROM. The calibration techniques can be broadly classif ed into two categories,

1. To treat the problem of calibration similar to the closure problem of turbulence
2. As a process of system identif cation for the coeff cients, leading to an optimisation problem.

Regarding the calibration techniques for the ROM, based on treating them as a closure problem, the
carliest attempt is due to Aubry et al. (1988). In this work inter-modal transfer of energy between the
truncated POD modes and the resolved POD modes by means of an artif cial viscosity are modeled.
Podvin (2001) proposes a connection between the closure problems encountered in the large eddy
simulation of turbulence and the truncation terms of the ROM where one has to model the missing
terms. An approach to model the inter-modal transfers by means of artif cial viscosity assuming
the conservation of the average kinetic energy in the ROM can be found in Cazemier et al. (1998).
A spectral vanishing viscosity method has been proposed by Karamanos & Karniadakis (2000),
which was initially developed for LES to improve the long term integration of the ROM. The
time dependent modal eddy viscosity can be found as a solution of an optimisation as given in
Bergmann & Cordier (2005), for the stabilisation of ROM for wake f ows.

Regarding the problem of calibration, based on an optimisation procedure, most of the calibration
techniques tries to identify the system coeff cients, so as to minimise the error between the POD tem-
poral dynamics and that predicted by the ROM. The methods mainly relay on the def nition of the error
leading to an optimisation problem, which can be solved iteratively as found in Galetti et al.(2004).
Couplet et al. (2005) gives a general frame work of the various error which arises in the ROM and
proposes a calibration technique based on minimising a linear functional of error. Stabilisation of the
ROM by means of a polynomial identif cation of the ROM independent of the physical system can
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be found in Perret et al. (2006). A method called as Intrinsic stabilisation” has been proposed by
Kalb & Deanne (2007) which takes into account the instantaneous error with respect to the reference
dynamics, and is obtained by replacing the original ROM, with another ROM with the polynomial
coeff cients obtained from the temporal POD dynamics. Recently an improvement of the above ideas
of Couplet et al. (2005) has been presented in Cordier et al. (2009).

In this work we evaluate different methods of calibration based on the solution of the optimisation
problem. We begin by introducing various def nitions of errors, between the calibrated dynamics and
the original temporal dynamics. The optimisation problem of minimising the error leads to a solution
of a linear system, in case the errors are aff ne functions of the predicted dynamics. The linear
system is ill conditioned and needs to be regularised. Cordier et al.(2009) have used the method of
Tikhonov regularization to solve the ill-conditioned problem. We present a further improvement of
this technique by introducing the various type of weight matrix used in the def nition of error. The
frst method is by performing a sensitivity analysis of the ROM with respect to a given cost functional,
to determine the weights of the relevant dynamics of calibration. The second method is by using the
energy content of the representation in forming the weight matrix to be used in calibration.

4.2 Definition of errors

4.2.1 State calibration method with nonlinear constraints
We start with the polynomial form of the ROM explained in the previous chapter, which we restate as
a =f(y,a") + g(z,a",7) (4.1)

As previously shown, the temporal dynamics obtained by adding the actuation mode, determined by
an L, optimisation procedure is mainly restricted to the un-actuated space, it is suff cient to present
the main ideas for the case of g = 0. The objective of the POD based model (4.1) is to accurately
represent the dynamics of the POD temporal modes a”, and the problem of calibration is to identify
the coeff cients y such that this representation is possible. One then naturally seeks to minimise the
error

e'(y.1) = a”(t) — a"(1) (4.2)

with the constraints

e! € RY is time dependent and we seek to minimise

T y) = (lle' (v, D)lI3), (4.3)

where (.)7, is a time averaging operator over [0, Ty], for IV; equally spaced elements on [0, T;] we
have

I
N, —1

Nt
<f<t>>TO=%;f<ti> with £ —(i—1)At and Al =
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|-|la is a norm on R¥. For any positive def nite matrix A € RY*¥ the norm of any vector e € R" is
given by
lell; = e Ae

The matrix A acts as a weight function giving importance to the specif c POD modes, when A = Iy
it means that all the POD modes have the same importance in terms of the error. Later in this chapter
we shall describe a method to utilise this weight matrix to def ne the relative importance of the error
with respect to the POD mode. Minimisation of Z' under the constraints P leads to a non-linear
constrained optimisation problem of minimising

Ny N

I\(y) = Ni SOS (@ (1) — (1))

k=1 i=1

The optimisation problem can be solved iteratively as in Bergmann & Cordier (2005) to fnd the op-
timal eddy viscosity or using a single shot constrained optimisation problem with a pseudo-spectral
discretisation of the variables as found in Galetti et al. (2004)

4.2.2 State calibration method

Couplet et al. (2005) have argued that the method based on the Z* formulation does not have a unique
solution and also there are problems of convergence when the well known gradient methods are used
to fnd the minimum. As a result the nonlinear constraint is suppressed in the defnition of e!. By
integrating the POD ROM the error e! can be written as

el(y,1) = a’(t) — a”(0) - / f(y, a(r))dr

The nonlinear constraint is suppressed by replacing a’® with a””. We have a new def nition of the error
e? defned as

&(y.t) = a’ (1) — a’(0) - / f(y, a"(r))dr (4.4)

Minimisation of the error defned by Z%(y) = ([le*(y,?)[|3);, has been used more recently by
Bourget et al.(2007) to determine the constant and linear coeff ments for the study of transonic f ows
around airfoils. All the modes have equivalent weights leading to the minimisation of the error def ned

by
Nt
:Nitzz< () — o /fly, ) 4.5)

4.2.3 Flow calibration method

A third criterion of error is obtained by taking the temporal derivative of the e! criterion.

%el(y, t) =a"(t) — f(y.a"(t))
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4.2. Def nition of errors

the error is given by replacing a’®(¢) with a” (¢) in order to suppress the nonlinear constraint, to obtain
the def nition of error given by

e’(y,t) = a"(t) — f(y,a"(t)) (4.6)

The corresponding minimisation can be def ned for the error defned by Z°(y) = (|[e*(y, ?)[|3)4,- In
this method we impose that the temporal POD eigen functions are the solutions of the f ow, given by
f. This method as described in Couplet et al. (2005) has been applied to experimental data obtained
from PIV measurements by Perret et al. (2006). If we assume an identity matrix for A giving equal
weights to all the modes. We have the minimisation problem for the functional def ned by

1 Ny N )
¥) =5 2> (@' (t) = fi(y,a”(r)dr) (4.7)
b =1 i=1

4.2.4 Affine function of error

For i = 2 and 3, we have €’ an aff ne function with respect to y € R™v, i.e. we defne

e'(,t) : R — RN
y — E'(t)y +€'(0,t) with E'(t) ¢ RV

where fori = 2
_T/ﬂ%fwwfam ¢2(0,1) = a” (1) — a”(0)
0

and for: = 3
E(t)y = —f(y,a”(t)) and €*(0,t) =a"(t)

Assuming a symmetric A, we have for i = 2, 3
Iy) = (le'(y. Ol3)y, = y(EVOTAED(0)ny +2(e(0,6)"AED (1)) 1,y

+ (e®(0,)TAe™(0,1))7,

where

AD = (EOBTAED (1)), € RNvNy
b = —(BY))TA(0,1))r, € R™
= (e(0,0)"Ae(0,1))7, € R

If A is symmetric then so is A®) by defnition and minimising the quadratic function Z®) reduces to

solving the linear system:
AWy = p@
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4. Integration and calibration of ROM

4.3 Calibration method of Couplet

As mentioned in Couplet et al.(2005), the general idea is to determine the coeff cients yg), as a

solution to an optimisation problem which minimises the cost functional given by

TJ(y)=(1—-a)E(y)+aD(y) for i=23 (4.8)

a € [0,1] is a regularising parameter. £?(y) measures the normalised error between the actual
temporal data a’’(t) and that predicted by the model a’*(t). D is a measure of the difference between
the coeff cients of the model y and coeff cients obtained from the Galerkin projection y“*. () and
D are defned as

A ©) 2 7@
o UV TOW) \
€ = i = — 9
&) = Oy )2y~ TOGP) (49)
and
_ LGP2
D(Y)Z—Hy xa QHH (4.10)
P

where |||/ is a semi-norm on the polynomial vector space and for any y € R™v is defned as

MEER A 4.11)

where IT € RYv*Mv is a non-negative symmetric matrix. For IT = [ N, it means that all the coeff cients
are given equal importance in the calibration. A partial calibration for different values of Iy, is
possible as reported by Couplet et al.(2005). The functional in (4.8) can be written as

Tiy) = x4 I) x5 lly — yF IR (4.12)
~—— —
f(y) fa(y)
where
11—« a

a: i d a:
Xa= Toyery WC AT yery

As demonstrated in section §4.2.4 when A is symmetric we have fi(y) = y7ADy — 200"y 4 ¢,
Similarly for a symmetric II it can be shown that f,(y) = y” Iy — 2y“F" [Ty + y&F" IIy“F. For the
quadratic functions, f; and f, one obtains the gradient as

Vily) =2 A%y ) and  Vfy(y) =2 (y — y) (4.13)

Minimisation of the functional 7." is obtained at y' where V.7." (ygf)) = 0 and is equivalent to

solving the system of linear equations for ygf ) given by

Ay = b (4.14)
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4.4. Application to cavity f ow

with
AD = xGAD +xqll
b = 5@ + Xy ©”

The parameter « is user dependent and needs to be fxed. The question on its optimality remains
open.

4.4 Application to cavity flow

4.4.1 Introduction

The method described in the preceding section has been applied to the cavity f ow. The normalised
errors £() and the cost of calibration is reported in table 4.1. The constrained optimisation problem is
solved for the minimisation of the error Z!). For the case of minimisation of Z®) different parameters
are experimented for the determination of the linear, constant and eddy viscosity term. Also the
results are compared with the intrinsic calibration method. The most effective method of calibration
is obtained by minimising Z() subjected to the constraint P¢, for any criterion (). The normalised
error decreases as the number of terms in the calibration increases as seen from the minimisation of Z3.
There is a similar trend when one notices that the criterion £(?) is more stringent as the corresponding
error is greater for most of the cases. For the corresponding costs of calibration represented by

D(y), it is found that minimising Z(") under the constraint P, the cost is around 27% as compared
to 22% of minimising Z®® for both the constant and the linear terms. The cost of the calibration
evaluated only based on the values of D(y) is not a real measure of the cost as there are many criteria
for the utility of the POD ROM. The cost of the calibration can be treated as twofold namely:

1. CPU time and memory cost
2. Numerical implementation of the method

Couplet et al. (2005) argues out that for methods based on the identif cation of parameters, the cost
corresponds to the numerical implementation of the calibration and not to the variation of parameters.
As argued out in Cordier et al. (2009) the benef't of an accurate model out-weighs the cost, especially
when used to perform control studies, as one always prefers a correct prediction for the variation of
the controlled dynamics.

The intrinsic stabilisation method as demonstrated in Table 4.1 is less accurate in terms of the
normalised errors. Since the constrained optimisation problem Z(" and the minimisation of Z()
compares well in terms of the error, we have tried to determine all the coeff cients of Z(3) and as seen
in the f gure 4.1, the POD ROM diverges even for a very short period of numerical integration. This
is due to the ill-conditioning of the corresponding matrix A(()?’) as will explained in the next section.
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4. Integration and calibration of ROM

Method Control terms | /EW(y) | VEO(y) | VEO(y)| /Dly) |
Minimisation of Z®) | L 2.87-10723.33-107'| 7.9-107%2 ] 3.15-107"
Minimisation of Z®) | L and C 3.61-107%(335-107'| 2.4-1072]2.24-10°!
Minimisation of Z®) | V 83-1071]822-107*| 9.3-107'| 1.00-107"
Minimisation of Z | Cand L 1.62-107%2| 35-107']186-10"'|268-10°!
under constraint Pgo

Intrinsic Stabilisation | C and L 791-1072 | 1.67-107Y ] 22-107* | 2.6-1071

Table 4.1 - Normalised error(*) and cost of calibratiorD. 1. Comparison between the results by minimising
74 with identifying the Linear term (L), Constant and Linear term (L and C), Eddy viscosity terms (V). 2.
MinimisingZ() with constraintP¢. 3. Intrinsic Stabilisation.

4.4.2 Minimisation of 7 and 7%

The calibration by minimisation of 7, @ and J'¥ as described in 64.3 is performed. The diff culty
of the method is the choice of the regularising parameter «. Flgure 4 2 represents the evolutions
of the normalised error and the calibration for the two functionals 7. as the parameter « is varied
(o € {0.05,0.1,---,1}). From fgure 4.2 we observe that the errors vary rapidly as the parameter
a — 1. To observe the behaviour of the error close to 1, Couplet et al.(2005) introduces a new
scaling by a parameter ¢ which is in a monotonic bijection with e on [0, 1], and def ned by

0

I(i) (yGP>
O=0)+3 00

70(0)

o= with ¢ =
The variation of the new parameter o with respect to « is shown in fgure 4.3. The cost functional
(4.8) with respect to the parameter § becomes

T 9) =161 =0 +8T0(y) (4.15)
: @ o _(3) (o) (2) 3) :
We can see in fgure 4.2 that only ¥ (ya ") , e (ya’), D(ya'), D(ya ) are monotone functions of
«. This has a signif cance when we consider that the optimal solution y, of (4.8) satisfes a sub-
optimality criteria given by:

(1 - ) (ya) + aD(ya) < (1 — @) (y) + aD(y)

For any given polynomial y, we expect a monotone behaviour of the error with respect to the optimal
solution satisfying the above condition. Numerically as a — 0, the trend is to decrease the normalised
error (also interpreted as an increase in the cost of the calibration) and hence the result is a better
calibrated model. However it is diff cult in practice to utilise the results of the curve 4.2 to determine
the value of « so as to have a balance between the reduction of the normalised error and the cost of
calibration. As already mentioned the cost of calibration is not very relevant when seeking an accurate
model. One may then be tempted to minimise the normalised error by setting o = 0. This results
in an ill-conditioning of the matrix A and A as @ — 0 as demonstrated in 4.4. This leaves us

98



4.4. Application to cavity f ow
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Figure 4.1 - Comparison between the temporal evolutions of the projected (black line) POD and the POD
ROM (dashed line).The POD ROM is calibrated usingZ& minimisation for all coefficients. The linear
system is not regulariseck. the value ofx = 0.

with no choice other than to regularise the cost functional, but then the choice of the parameter is
arbitrary. We therefore propose in the next section a method to solve the ill-conditioned system (4.14)
corresponding to a = 0 by another method of regularization, due to Tikhonov, Hansen (1994), which
corresponds directly to the minimisation of Z(%).
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4. Integration and calibration of ROM
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Figure 4.2 - Normalised errorss(Y) and costs of calibratiorD from the minimisation qf]o(?) and jf’), for av
varying in[0.05,0.1, - - - , 1] (top) andé varying in[0.05,0.1, - - - , 1] (bottom) .
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4.5. Calibration by the method of Tikhonov regularization
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Figure 4.4 - Condition numberK(Af)f))(z‘ = 2, 3) obtained during the minimisations ot? and 7% with o
varying in (a)[0.05,0.1, - - - , 1], (b) [0.0,0.0005, - - - ,0.002]

4.5 Calibration by the method of Tikhonov regularization

4.5.1 Filter factors and Picard’s criteria

The minimisation of the functional Z(®) amounts to solving the linear system A®)y = b?. To explain
the ideas we henceforth omit the superscripts and simply write the linear system as Ay = b. In
practice, the right hand side may be contaminated by approximation errors related to the evaluation
of the time derivatives of the POD eigenfunctions (as e® (0, ) = a”(t)). To understand the inf uence
of errors on the solution of the linear system we introduce the concept of a fIter factor. To do so we
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4. Integration and calibration of ROM

note that the singular value decomposition of A given by

Ny
A=USVT =) ujon]
j=1
where U = (uy,--- ,uyn,) and V' = (v,--- ,vy,) are orthogonal matrices containing the left and
right singular vectors, given by w; and v; respectively and ¥ = diag(oy,---,0y,) is a diagonal

matrix of singular values of o; arranged in an increasing order
O‘l Z . e O-N/U

Since U and V are orthonormal matrices (UUT = VVT =1 n,) the solution of the linear system y is

given as
N Y

NU
~ 1 - 1
y = E —u]Tbvj = E hj—ujrbvj with  h; =1
o o
j=1 7 j=1 J

where h; are the flter factors. Numerical diff culties arises if the coeff cients |u]Tb|, corresponding
to the smaller singular values o;, do not decrease suff ciently rapidly as compared to the singular
values. This behaviour is illustrated by the discrete Picard condition shown as illustrated in f gure
4.5. For j ~ 20, the singular value decay faster than the coeff cients |uij| As a result the solution
obtained, oscillates around zero, and appears random. Figure 4.6 depicts the solution without any
regularization. To fx this, the flter factor /; is modif ed so as to behave as a low-pass flter def ned

as:
1 if j5>20
hj_{ 0 if j>20 (4.16)
For the case of cavity f ows the temporal dynamics are simple as can be seen from the abrupt fall of
the singular value for j ~ 20. In case of more complex dynamics as encountered in turbulent f ows,
the singular values increase suff ciently and hence it is necessary to modify the fIter factors in a more
sophisticated way.

4.5.2 Tikhonov regularization

The method of Tikhonov regularization for solving ill-conditioned system has been well known as
in Hansen (1994). The idea is to seek a regularised solution y, as the minimiser of the following
weighted functional:
$p(y) = 1Ay = bllz + ol L(y = yo) |2

The frst term corresponds to the residual norm, and the second to a side constraint imposed on the
solution. p is a regularization parameter and L represents the discrete approximation matrix of a
differential operator. The matrix is typically the identity matrix of order NV, (derivative of order
zero) or a banded matrix dimension (N, — d) x N, of order d. In particular d = {0, 1,2} and the
approximation is termed as zeroth, frst and second order respectively. Hereafter, these operators will
be denoted by L = I (d = 0), L = FOD (d = 1) and L = SOD (d = 2). The regularization above
can be intuitively thought of as a balance satisfying the criterion:
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4.5. Calibration by the method of Tikhonov regularization
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Figure 4.5 - Discrete Picard visualisation, corresponding to the minimisatiof 6f with determination of all
coefficientd.e. constant, linear, quadratic, the Tikhonov regularization is applied 1o 0,y = 0).
1. y, should be determined so as to give a small residue Ay, — b.
2. L(y, — yo) should be small with respect to the 2-norm.

The flter factors h; introduced in the previous section can be reintroduced here. For the case of
yo = 0, the regularised solution y, can be written as follows:

Ny
1 T . g5 .
y, =Y hj—ulbv; with h; =" if L=1Iy
! ; Yot KR :

and
2

Ny—d N,
1 ;
vo= S h—uTbe;+ S wlhyy with b= —— if LAy,
=1 7 j=Ny—d+1 e

v;(j =1,---, N, — d) are the the generalised singular values of (A, L), (see appendix D for details)
and z; the j' column of X € R™v*"v_ The regularization parameter p is computed using the L-curve
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Figure 4.6 - Conparison between solutions obtained with and without regularization, for the minimisation of
Z(3) with determination of all coefficienis. constant, linear, quadratic, the Tikhonov regularization is
applied for L. = 0,yo = 0). N =6, N, = 168.

method implemented in the “regularization tools” package of Hansen (1994). The L-curve method is
based on f nding the inf exion point of the curve representing the semi-norm of the regularised solution
Ly, |l2, versus the corresponding residual norm ||A®y, — b3)||5. The inf exion point represents the
compromise between the minimisation of the norm of the residual (horizontal axis) and the semi-norm
of the solution (vertical axis) and is based on the maximisation of the curvature of the L-curve. The
temporal evolution after calibration is shown in f gure 4.8. This brings a immediate consequence in
the modal energy distribution associated to the calibrated model. The model energy E; is def ned as

Figure 4.9 shows that the calibrated model is in perfect agreement with the POD energy distribu-
tion. As already stated before the temporal dynamics of the cavity is relatively simple, and the
decrease of the eigen value is rapid. The calibration proposed may fail in more complicated case
(although it has not been tried so far in the literature as far as our knowledge). A recent development
of Noack et al.(2008), called ’Finite Time Thermodynamics” (FTT), which unif es the weakly non-
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Figure 4.7 - L curve corresponding to the minimisation®f), with determination of all coefficienis.
constant, linear, quadratic, the Tikhonov regularization is applied o 0,y = 0). The inflexion of
L-curve is atp = 3.88 - 10712,

linear stability theory and the statistical physics limit of turbulence theory, resulting in parameter-free
Galerkin model is worth exploring. In the next section an improvement of the method where the f ow
sensitivity is used as measure while def ning the corresponding errors is described.

4.5.3 A weighted approach to Tikhonov regularization

We have the error def ned for the minimisation of the functional Z(®) as

70(y) = <||ei(y,t)||?\>To

The matrix A is chosen as Identity, for the cases we have discussed so far, which means that we give
equal weights to all the modes in the def nition of calibration. However as already mentioned this
matrix can be chosen in suitable way so as to include the effect of mode selection in the def nition.
Two ways of def ning the weights can be proposed:

1. We consider that the main interest is in modelling the effect of the energetic structures and
hence the eigen spectra themselves serve as a measure of the relative importance of the modes,
which is the most natural choice of the weights for the def nition of error.
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(a) mode 1 (b) mode 3
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Figure 4.8 - Comparison between the temporal evolutions of the projecté@OD) and the predicte@ POD
ROM.The POD ROM is calibrated using t#€®) minimisation for all coefficients. The Tikhonov
regularization is applied for{ = 0,yo = 0).

2. The error can be based on an overall sensitivity of the model with respect to a cost functional.

The weight matrix A for the def nition of error for the case (1) can be simply written as a diagonal
matrix:
op)

Ay =

for i={1,---,N}

max o;
For the case (2) we consider the state equations
af = f(y,a") (4.18)

Variation of any convex cost functional 7 with respect to the state variables a’* = {a?}YY, gives the
adjoint equation of (4.18) as

£f = g(y, aft, £f) (4.19)
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4.5. Calibration by the method of Tikhonov regularization
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Figure 4.9 - Comparison between the modal energetic contents obtained before and after calibration. The
POD eigenvalues are plotted for reference. The POD ROM is calibrated by mininfiSihgith
determination of all coefficientise. constant, linear, quadratic, the Tikhonov regularization is applied for
(L =0,y = 0).

Where £2(t) = {¢/} Y, is the adjoint variable. The overall sensitivity of the cost functional 7 with
respect to a’® is obtained as

d
S, = o = (a5 (1) (4.20)

where (.) is any time averaging operator. We can then def ne the weight matrix A with respect to the
sensitivity as

U

max S;

for i={l,--- N} 4.21)

In this study we have taken the cost functional 7 based on the energy of the temporal modes as

1 T R 2
J=35 /0 ;(ai (t))2dt (4.22)

where « is a positive constant. The above functional is minimised subject to the constraint (4.18), by
the method of Lagrange multipliers. The adjoint state equation (4.19) is given by

N

& = —ai(t) — Z (Lij + (Qjir + Qjri) ak(t)) &(t) (4.23)

i=1
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Figure 4.10 - Comparison of the weight matrices used in definition of errors (a) Weight matrix based on the

eigen spectra of the PODe. m‘;’;k (b) Weight matrix based on the sensitivity analysis for the cost functional
Sk
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In fgure 4.10 a comparison of the two weight matrix is given. We note a similar behaviour
between the two weights introduced as an energy based criteria is used in both cases !. The sensitivity
based weight is different for mode 3, and this allows to speculate that in the case where the ROM
is not built using the POD bases, but on a different criteria, such as the Observability as described
in Jordan et al.(2007), the above analysis may yield a sensitivity weight for the lower modes which
may be acoustically important. The temporal evolution and phase plot for the case of the sensitivity
based calibration is shown in f gure 4.11 and f gure 4.12 respectively and shows a very good visual
agreement with the POD dynamics.

4.5.4 Comparison of different types of Tikhonov regularization

The various type of Tikhonov regularization are compared in table 4.2 for the normalised errors and
the cost of calibration, obtained for the zeroth, frst and second order Tikhonov regularization. The
error in all the cases remains the same. When comparing the cost of calibration the regularization
L = SOD;y, = 0 is more economical. The result is more effective than the errors obtained for
the different type of calibration described in table 4.1 although the cost is an order times more, but
then again to reiterate this cost is not important than the accuracy we desire. The different errors
for the weighted regularization are compared in table 4.3. The errors do not differ much when
compared to the classical case when all the modes are given equal weights, but then the temporal
dynamics which we are treating is rather simple to conclude the advantages of the weighted Tikhonov
regularization over the classical method. More complicated dynamics like turbulent f ows, acoustics,

! Although the sense of energy is different in two cases, it is a energy of projection in the case of POD and the energy
contained of the f ow dynamics, for the sensitivity based analysis.
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Figure 4.11 - Temporal comparison of the fir§tmodes, with the POD coefficients:ROM calibrated (solid
line), reference POD dynamics (0). POD ROM is calibrated usingZtfieminimisation for all coefficients.
The Tikhonov regularization is applied fok (= 0,yo = 0), and the weight matrix\ based on the overall
sensitivity.
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Figure 4.12 - Phase portrait comparison of the firtmodes, with the POD coefficients:ROM calibrated (solid
line), reference POD dynamics (0). POD ROM is calibrated usingZtfieminimisation for all coefficients.
The Tikhonov regularization is applied fok. (= 0,y = 0), and the weight matriXA based on the overall

sensitivity.
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4.6. Comparison with other calibration methods

Type of Tikhonov regularization ‘ VED(y) ‘ VEA(y) ‘ VEB(y) ‘ VD(y) ‘
L=1I1y,=0 40-107%16.13-1073 | 2.11-1072 2.74
L=1Iy,=yC 40-107* | 6.13-107% | 2.11-102 | 2.72
L=FOD;y,=0 4.0-107%16.13-1072 | 2.11-1072 4.9
L= FOD:y, — y& 40-107* | 6.13-1073 | 2.11. 102 47
L=S0D:y,=0 40-107% | 6.13-107% | 2.11-102 | 1.22
L =SOD;y, =y 40-107* | 6.13-107% | 2.11- 102 6.7

Table 4.2 - Normalised error=() and cost of calibratiorD. POD ROM is calibrated using thE®)
minimisation for all coefficients (constant, linear, quadratic) for different type of Tikhonov regularization with
the weight matrixA = 1.

Type of Tikhonov regularization ‘ EW(y) ‘ VED(y) ‘ VEO(y) ‘ VD(y) ‘
L=1,yo=0 5.0-107* [2.96-1072 | 2.16- 1072 2.88
L =TIy, =yCF 50-107% | 2.96-102 | 2.16-1072 |  2.84
L=FOD;y,=0 3.49-107% | 2.96-102 | 2.16-10°2 |  5.32
L = FOD;y, =y 1.53-1073 | 2.96-10°2 | 2.16 - 102 4.9
L=S0D;y,=0 5.38-107% [ 2.96-1072 | 2.16- 1072 7.0
L = SOD:y, — y©F 538104 | 2.96-10-2 | 2.16 - 10~2 6.0

Table 4.3 - Normalised error=() and cost of calibratioD. POD ROM is calibrated using th&®)
minimisation for all coefficients (constant, linear, quadratic) for different type of Tikhonov regularization with
the weight matrix\;; = mSW obtained from the sensitivity analysis.

which have different scales of dynamics need to be studied to establish the advantage of the method.
In any case both the methods of Tikhonov regularization compare much better than the other methods.

4.6 Comparison with other calibration methods

We compare in this section the three most effective methods of calibration for the cavity f ow conf g-
uration. Table 4.4 gives the normalised errors and cost of calibration obtained by minimisation of Z(")
under the constraint Pg, minimisation of I with o = 0.001 and determining all the coeff cients,
and application of the most effective weighted Tikhonov regularization i.e. for L = [ and y, = 0.
The weighted Tikhonov method is most effective when comparing the normalised errors, which is
minimum than the other two methods. A further analysis can be done if we analyse the modal errors
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4. Integration and calibration of ROM

:Z"@(J) defnedzfori — 1’ ’Nandj = {17273} as

The modal errors IZ-(B) are represented in f gure 4.13 for the various calibration techniques presented
in table 4.4. The method of weighted Tikhonov regularization is most effective for all POD modes.
Minimisation of ‘7(53) for @« = 0.001 compares with the weighted Tikhonov for the initial POD modes,
but for higher modes the Tikhonov method clearly out performs. Both the methods of minimisation
of 7\¥ and the method of weighted Tikhonov regularization are far better than the minimisation of
Z(M under the constraint P for the higher modes. The main strength of the weighted Tikhonov
regularization is that the choice of the parameter p is determined by the L-curve without any user
intervention. Also the higher modes are well calibrated which is important from an acoustic point of
view.

Method of calibration ‘control terms‘ VEWD(y) ‘ VEA(y) ‘ VEO(y) ‘ VD(y) ‘

Minimisation of Z(M under Cand L 1.62-1072 | 3.5-107"' | 1.86-10" | 2.68-107!
constraint P¢
Minimisation of J.* with | C,Land@Q | 1.23-1073 | 2.97-1072 | 2.36- 1072 | 4.0- 10"
o =0.001
Minimisation of Z®) withthe | C, Land @ | 5.0-10"* [ 2.96-1072 | 2.16-1072 2.88
weighted Tikhonov regular-
ization (L =1 : yo = 0)

Table 4.4 - Normalised error=( and cost of calibration. Comparison between the results obtained by: (a)

minimisation ofZ(!) under the constrainPc. (b) minimisation of7.> with & = 0.001. (c) minimisation of

(53) with determination of all the coefficients (constant, linear and quadratic) and application of the weighted
Tikhonov regularizationf = I andyg = 0).

4.7 Long time time integration of the POD ROM

Since we are dealing with periodic fow it is natural to expect that the temporal coeff cients once
determined is valid for a time longer than the period of snapshot acquisition. As shown by
Sirisup & Karniadakis (2004) although the system is initialised with correct state the solution may
drift away for a long period of integration. Figure 4.14 shows that the calibrated model predicts the
dynamics for a non-dimensional time 11, which corresponds to around 4 cycle of the fow period,
after which it diverges rapidly. This is different from the results where the calibrated model is shown
to work for a much longer periods. The reason is that the neglected modes which contribute to the

ZRigorously speaking these errors can be introduced only when A = I the identity matrix of size V.
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4.8. Conclusion
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Figure 4.13 - Modal errorin(?’). Comparison between the results obtained by: (a) minimisatidr'ofunder
the constraintPc, denoted byx). (b) minimisation of74?) with o = 0.001 denoted by A). (c) minimisation
of ja(?’) with determination of all the coefficients (constant, linear and quadratic) and application of the
weighted Tikhonov regularizatiorL.(= I andy, = 0) denoted byc). The no calibration case is denoted by
(+). NoteZT®(y) = S, 7% (y).

regularization of the system is not modeled during calibration. The validity of ROM for a longer
time of integration is still open, where the coeff cients need to be given suitable weights to model the
neglected term. While performing control since the time period where the control is determined is
much larger than the period of validity of the model, it is imperative that we calibrate more than one
period of the fow as will be demonstrated in the next chapter.

4.8 Conclusion

In this chapter a unifed framework for the different calibration methods described in the literature
is given, with an application to the cavity fow. It is found that the method based on minimisation
of Z(), under the constraint of the Cauchy problem P is more effective than the methods based on
the minimisation of Z®®), or the intrinsic stabilisation method. We have then applied the method of
Couplet et al. (2005) based on the minimisation of functional based on the convex linear combination
of terms which represent the normalised error and a measure of the variation of the coeff cients of
the model to their values obtained from POD. The benef't of an accurate model outweighs the cost
consideration. It can be shown that adding the regularising term, improves the conditioning number
of the linear system associated to the minimisation of Z) and Z*). The choice of the parameter o in
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4. Integration and calibration of ROM
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Figure 4.14 - Evolution of first4 temporal modes;(t¢) of the POD ROM for period greater than the period of
validity of the model. The model diverges after a tinhe

the regularising term is quite tricky and is problem dependent.

The method of Tikhonov regularization for the error associated to the minimisation of Z(*) is
formed. The weight matrix in the def nition of errors for the minimisation of Z(*), is chosen based
on two criteria. One based on the eigen spectra and the other based on the sensitivity of the POD
temporal coeff cients with respect to a energy based cost functional. We compared the errors for the
two type of Tikhonov regularization and it is found that the zeroth order regularization (L = I) with
yo = 0 is the most effective among all the types of Tikhonov regularization considered.

Numerical experiments demonstrates that the weighted Tikhonov regularization outperforms, in
terms of the normalised errors, the minimisation of Z(!) with constraint P and the minimisation of
I with o = 0.001. The main strength of the weighted Tikhonov regularization is that the choice of
the parameter p is determined by the L-curve without any user intervention. Also the higher modes are
well calibrated which is important from an acoustic point of view. Finally we verify the suitability of
the calibrated model for longer periods of time integration. Although the model predicts the dynamics
for about 4 periods of f ow oscillation, it diverges rapidly when integrated beyond. This is due to the
fact that the neglected modes are not taken into consideration and the problem of closure remains
open, even after correctly determining the coeff cients. We therefore required to calibrate for more
periods if we have to utilise the model for control studies.

Having established all the tools of ROM, i.e. extension to actuated case, stabilisation of ROM, we
are now proceed to utilise the above development for control studies, in the next chapter.
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Chapter 5

Feadback control of cavity flows

Introduction

Dans ce chapitre est mis en oeuvre un colgioptimal en boucle fereée du sysime dynamique fogc
assoce a la cavié. Un contble optimal a @&ja éte appliqe sur des magles €duits, par exemple
pour le cas du sillage d’'un cylindre, comme da@shamet al. (1999a), Grahamet al. (1999b) et
Bergmann & Cordie(2005. Parce que le conéile modifie intringquement le sy&sine dynamique il
faut pouvoir prendre en compte correctement le forcage dans l&él@mocbmme cela est progopar
Welleret al. (200%). Pour le contble en boucle ferrge de lecoulement de ca@f nous nous sommes
inspirés des travaux nueniques deRowley & Juttijudatg2005 et des travaux ex@imentaux de
Samimyet al. (2007) qui ont obtenus desslutats mitiges. Le chapitre estatou@ en deux parties,
'une consaceea la linéarisation du systme dynamique fogg I'autre a I'application d’un contble
linéaire quadratique gaussien &tson utilisation dans I'espace physique.

Construction du syseémea controler

Le syséme est dcrit par la figure5.2 Il repose sur une estimation deta a partir de I'observation
de la pression en certains points dédoulement (6 au total) sur la base d’une estimation stochas-
tique lineaire (LES) qui est obtenuess simplement par pregtion sur I'espace des coefficients POD
temporels et qui s’are extemement @cise comme la reconstruction le montre (fighi®, a cause
del’orthogonalitée de la base POD.

Une analyse de sensibgitdes coefficients du mel@ réduit prenant en compte un forcage (fig-
ure 5.4) met enévidence la acessié de lireariser le systme fortement non le@aire avec soin. La
linéarisation se fait autour d’'utat déquilibre calcué par une rathode de Newton.

Calcul de la loi de controle

La loi de contble en boucle ferge implique une relation lieaire (matrice gain) entre &tat du
syseéme et le conbile lui-méme. Ce gain est obteraupartir de la résolution d’uneéquation de
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5. Feedback control of cavity f ows

Riccati. On peut aussi montrer que I'estimation detdt (I'observateur) est obtenue par I&solution
d’'une autreéquation de Riccati, en se basan sur ladhe du filtre de Kalmann-Bucy. En appliqguant
le principe de gparation, on simule finalement le comportement duesystcomplet comprenant le
vecteur détat et I'erreur d’estimation. On observe que kponse du sysime @pent de la condition
initiale, de la forme du condile et des bruits egtieurs qui viennent perturber le sgshe.

Pour l'applicationa I'écoulement de ca#f rappelons la proedure grérale. Dans un premier
temps, nous effectuons une simulation sans 6@t par projection de Galerkin nous contruisons
et calibrons une magle réduit non foré. Ensuite, le sy8te kel (leséquations de Navier—Stokes)
sont for&es par un signal (eq5.26 contenant de nombreuse€deneés (fig. 5.6). Un moctle
réaduit prenant en compte ce forgcage est ensuite construit et sert de base paetetanthation du
contrdle optimal. Le contile LQG permet de stabiliser le sgste lirearise comme le montre le
spectre des valeurs propres du £k avant et a@s application de la loi de feedback (fi§.7).

Il appardt que I'approche se contente de stabiliser les valeurs progrpartie réelle positive, sans
touchera la partie imaginaire, c’est-dire aux fequenés. On remarque aussi que le gain du corgr
|| K.|| = 950 est exttmemenklewg, si on compara I'amplitude du for¢cage dans le meké complet
(de I'ordre de 0.08). Il n’est donc paaliste. Il s’explique par le fait qu’on cherche un cadilt
sur un temps infini pour le metke réduit alors que pour le made complet on cherche un codle
possible sur un tempséds limi€, de quelquesriodes au maximun. Suivant 'approche propes
dansSamimyet al. (2007), on introduit un nouveau paragtre o qui donne au final 'amplitude du
contrdle (fig. 5.8). a = 0.5 fournit la valeur minimale pour obtenir une stabilisation du régsl
réduit.

La matrice gain de I'observateur est construite auspartir de la solution d’'uneequation de
Riccati et nous trouvons (fih.9) une solution stabilisant I'erreur d’estimation (si on ne ptepas
en compte le bruit gaussien qui existera toujours).

Pour obtenir la forme du conie optimal, on simule le sy®ne augmegtconstit@ du systme
linéarisé et du systme lati a partir de I'erreur d’estimation, avec comme egdy; le forcage multi-
frequentiel utili& plus haut. On obtient&volution de letat et par consquent du corile par la
loi de feedback. Cette fonction est déersur la figures.10 en comparaisont avec le conte mul-
tifréquentiel. On trouve une loigs simple qu’on approxime par un sinus (B8 dont on étermine
la phase, la fequence et 'amplitude. Laéguence est celle de la moins stable des valeurs propres
du syseme. Ce nouveau forgage est alors introduit dans le @nolel complet (la DNS), moyennant
cependant uneaduction de 'amplitude polgviter la divergence nuamique. La figures.11présente
la densié spectrale de puissance de la vitesse verticale dans un point de la couche de cisaillement
et on observe une petit@duction du pic pour le second mode de Rossiter. Par contre d’autres
frequences mal prises en compte dans le &tedont ampliges, ce qui est une forte limitation de
notre approche.

Enfin la eponse compte du modle réduit ainsi que I'erreur d’estimation en boucle feégesont
montrées sur les figureS.12et5.13 Encore une fois on remarque que la&tiie fonctionne mais
gue les amplitudes obtenus ne sont paalistes pour I'application dans les simulations renmques
directes.
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5.1. Introduction

5.1 Introduction

In this chapter we extend the developments of the previous chapter to perform closed loop con-
trol of cavity fows. Regarding the use of ROM for optimal control studies one can refer
Graham et al.(1999a), Graham et al.(1999b) and Bergmann & Cordier (2005) where the opti-
mal control has been applied for the control of wake fows behind a cylinder. Since the ROM
is designed for a particular fow condition Fahl (2000) propose a method where the model is re-
fned during the optimisation process, to take care of the validity of the model to the variation
of control parameters. This method has been applied for the optimal control of wake fows by
Bergmann & Cordier (2008).  Weller et al. (2009b), Weller et al.(2009a) proposes a method to
include the effect of actuation in the ROM to obtain a feedback control. Control of cavity fows,
using experimental data to build the ROM and its application to perform a model based control has
been proposed in Rowley & Juttijudata (2005), Samimy et al.(2007). This chapter can be divided
into two parts, in the frst part we introduce the various tools necessary for the feedback design,
namely the construction of the observer and linearisation of the model. The observer is constructed
by a Linear Stochastic Estimation (LSE) of the state based on the observed pressure measurements.
A sensitivity analysis is performed to identify the terms which are important while linearising the
model. The second part consists of designing a feedback control of the LQG type. The obtained
control is introduced into the DNS to obtain an overall reduction in the spectra corresponding to the
second Rossiter mode of the cavity.

5.2 Tools used for the feedback design

In this section we propose a feedback law based on an observer design, obtained from the pres-
sure measurements inside the cavity. The plant model utilised in this study is shown in the f gure
5.2. Control of cavity fows, using experimental data to build the ROM has been performed by
Samimy et al.(2007), but without any calibration of the temporal dynamics. When we cannot mea-
sure the states a we construct an observer C, usually using wall pressure sensors, and try to predict
the fow feld by measuring the output y. Prediction of fow feld from the observed states has been
studied in the past by performing a Linear Stochastic Estimation(LSE) by Adrian & Moin (1998),
Ukeiley et al.(2001). It consist in correlating the sensor signals with fow data base informa-
tion, to predict the fow feld. A higher order correlations is also possible as demonstrated in
Buffoni et al. (2008), where a Quadratic Stochastic Estimation (QSE) is performed. The main draw-
back of the LSE or the QSE is that they take into account the correlations at a particular time only,
without considering the time history of the previous measurements, hence they are termed as ’static’
estimators. In an experimental setup this poses a problem due to the measurement noise and also on
the limitations of the number of sensors that can be placed. Rowley & Juttijudata (2005) have used
a dynamic estimator i.e. of combining the estimation with a reduced order model to take care of the
time history of sensor measurements. A combination of the isentropic model with the data obtained
from experiments has been studied by Samimy et al.(2007). The technique of LSE which is used in
this work for the observer is brief'y explained in the next section.
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5.2.1 Linear Stochastic Estimation (LSE)

The LSE technique enables us to determine the observer matrix C, as shown in f gure 5.2, given a
limited number of pressure measurements obtained from sensors along the walls of the cavity. For
each sensor i € [1 N|, we can estimate the pressure p;(¢) coeff cients by a series expansion of the
discrete temporal POD coeff cients a;() as

Ny ~ Ns Ng
pi(t) =Y Cija;(t)+ Y > Dijiaj(t)ax(t) + ... (5.1)
j=1

j=1 k=1

The expansion can be truncated above the linear term or the quadratic term which corresponds to the
LSE or QSE problem. The coeff cients C;; and D, are determined so as to minimise the mean square
error between the estimated pressure signal p;(t) and the one obtained from measurement p;(¢).

& = / [3i(t) — pu(O]? dt = ([5ult) — pil6)]) (52)

Since the number of snapshots is much larger than pressure sensors, the above system is overdeter-
mined and the coeff cients are determined using the method of least squares by solving an overdeter-
mined linear system given by

= =0 and —— =0 (5.3)
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5.2. Tools used for the feedback design

On noting the orthogonality of the temporal modes (a;, a;) = A;0,1, the pressure feld can be simply
expanded in terms of the temporal modes as

Ns
]51' (t) = Z C’ijaj (t) where éjj = <p“ alj_> (54)

In this study Ny = 6 sensors along the wall and the shear layer are used to measure the pressure
as shown in fgure 5.2. It is also worthwhile mentioning that solving the system of equation given

>
>
l -
(D/2,0) (3D
Incoming flow & ops (LD/4) [@}
D
)Z'] (0,3D/4) (L3D/4) [§N

L

Figure 5.2 - Location of pressure sensors for observer design

by (5.3) leads to an ill conditioned problem. A luxury afforded by numerical simulations is that we
can modify the condition number by changing the location of the pressure sensors, however for data
obtained from experimental simulations where the sensor positions are f xed we can use the method
of Tikhonov regularization mentioned in section §4.5.2. The observer dynamics for the construction
of the pressure signals, issued from (5.4) is shown in f gure 5.3, and provides a good estimation of
the wall pressure, due to the orthogonality property of the eigen modes.

5.2.2 Sensitivity analysis of the actuated terms

Sensitivity studies help in analysing the variation of a given quantity (generally given by a functional)
with respect to a parameter of the model. In this study a sensitivity analysis is performed to identify
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Figure 5.3 - LSE reconstruction of the pressure signals. The pressure value from the sensor are denoted by
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5.2. Tools used for the feedback design

the terms to be neglected in the linearisation of the model. The state equation can be written as
= G+ Ljkaj + Qijeaia; + hiry + hawaiy + hay? (5.5)

In the present case we seek for sensitivity with respect to the time-independent actuated coeff cients
s, hoij and hg; of the model. The functional 7 is based on the energy of the modes and is given by

/ / ))dQdt
-5 ;mi(t»?dt

A variation of the augmented functional based on an adjoint vector £ and the state equation (5.5)
yields the sensitivities :

SZ i:<§i<t)7(t)>aaah—;:<aj(t)£i(t)”y(t)> g;i (GO (1) (5.7)

(5.6)

and

Z hi&i(t) + Z Z hoii&i(t)a;(t) + 2 Z hsi&i(t)y(t)

where the adjoint equation is given by :

éi( ) (CH LH QU 7 + Z h2]2€] - a,( ) (58)

Here (.) is the time averaging operator. The sensitivities are plotted in f gure 5.4 and shows that the
constant term of the actuated model A y; has a higher sensitivity when compared to the quadratic terms
hs; by an order of magnitude and hence plays an important role in linearisation. It is also important
to note that the frst two mode which drives the actuation dynamics does not contribute signif cantly
to the sensitivity of the terms h,; and hs; as compared to hy;;, this signif es that more care has to be
taken while linearising these terms.

5.2.3 Linearisation of the plant

Once through the observer design, the plant (eq. (5.5)) is built by linearising the ROM around a
suitable equilibrium point ay. Determination of the equilibrium point involves the task of solving a
nonlinear algebraic matrix equation for the un-actuated case v = 0. Equation (5.5) can be re-casted
for the un-actuated part as:

a’Q'a
fla):=C+ La+ : (5.9)
a’QVa
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5.2. Tools used for the feedback design

In this study a Newton’s iterative method is used to calculate the equilibrium point ay as given by the
following algorithm :

aper = ap — J " (ag) f(a) (5.10)

where J(a) is the Jacobian matrix : J = %(:). Also note that the solution of the Newton’s method

(eq. (5.10)) depends on initial conditions and is not unique. The initial value of guess, is chosen as
the initial conditions of the dynamical system at ¢ = 0. To linearise the plant, consider the equation
(5.5) which can be recasted as

a’Q'a (hy;7) 7
fla) :=C+ La+ : + hiy + : (5.11)
a’QVa (héVNj”Y)Ta

In this system the quadratic term 72 is neglected. A linearisation is possible but since the mean value
of v(t) is zero, it gives the same results as neglecting it. As the equilibrium point is unaltered in the
presence of a feedback, we perform a linearisation by introducing the perturbation a = a — ag to
write the above system as:

(a+ap)"Q'(a+ag) (h31;7)" (& + ao)
a = a=C+La+ag)+ : + hyy + :
(3 + 20) Q¥ (a + a0) (h3iey)7 (8 + 20)
al'Qla, a’Q'ay +alQ'a a’Qla
= C+ Lag+ : + La + : + 5
al'QNay a’'QVay + al QVa a’Q'a
(hélj'Y)TaO (héu”Y)Té
+ hiy+ + (5.12)
(héVNj’Y)TaO (héVNj”Y)Ta

Since aq is the equilibrium point of the un-actuated model it satisfes equation (5.9). The terms in
(5.12) can be rearranged perturbed state a as

a’Q'a (héle)Ta
a=La+ : + iy + : (5.13)
QTQNQ (héVNjW)Ta
where
~ Q' Q) (hhy,)"
L = L —+ ,h1 = h1 + aq
ag (@Y +QM)") (haw;)"
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5. Feedback control of cavity f ows

The observer model can be similarly linearised by introducing the transformation p = p — pg as :
p=p—po=Ca—Ca,=Ca (5.14)
On using a linearisation at the origin of equation (5.13), the linearised plant system can be written as

— Aa+ By
= Ca (5.15)

Q-

T

where A = L and B = 711,

5.3 Feedback design.

5.3.1 Controller

After linearising the plant, one can perform a feedback control. The full plant, control and estimator
model are shown on f gure 5.2. The model for the controller is given by the equations for a LQG
design as

a = Aa+ By + wy

1
y = Ca+wy (5.16)

where for the sake of clarity we denote ¢ = a and y = p. The controller noise w; and the measurement
noise w- are assumed to be uncorrelated, zero mean, white Gaussian processes with modelled spectral
densities ()1 and (), as described in 2.4.3. In this work the matrices (); and () matrices are set to
identity. We also introduce the noise perturbation vector w = [w; ws]. The response of the state can
be separated into three components, the natural response ao(A, a(0); t) which depends on the eigen
values of the main plant matrix A and on the initial condition a(0), the response to a given control
~(t) denoted by a, (A, B,~;t) and the response to the noise w; given by ay (A, wy;t). The solution
of the plant model (5.16) can be written as

a(t) = e Ata(O) + /t e At-7) B (1) dr + /t e Alt=7) wy(7) dT
= aO(A,a(O);t§+%(A, B,v;t)+aw(1?~l,w1;t). (5.17)
Assuming a full information state, the feedback law is given by
v=-K.a (5.18)

where the matrix K is chosen so as to stabilise the plant and minimise the quadratic cost functional
given by :

T
J = / (a"Wa+ (°4%) dt (5.19)
0
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5.3. Feedback design.

where IV is a weight matrix (chosen as identity in our case) and ¢ represents the cost of the control.
By a simple variational approach, it can be demonstrated that the gain vector K. is given by
1

K, = E—QéTX (5.20)

where X is the solution of the steady Ricatti equation to get inf nite horizon stabilisation:

- - 1 . -
ATX + XA~ E—QXBBTX +W =0 (5.21)

5.3.2 Observer

In many cases the state a is known only from a limited number of output measurements y, and must
be built from an observation y which is an approximation of the real value of the measurement y.
Denoting a the approximation of the state, the observer equations can be written as :

a = Aa+ By+ Ky -y)

A

s — 0a (5.22)

The observer gain matrix K, is obtained by solving the Ricatti equation for Y and the observer matrix
C and is given by } ) o
YAT + AY —YCTCY +Q, =0 (5.23)

As described in Bewley & Liu (1998) the observer problem is dual of the controller problem described
in equation (5.21). The estimation gain K, is obtained f nally as

K,=YCT (5.24)

5.3.3 Simulation of the full system

The full system for the controller and observer, def ned in terms of the state and the estimator error
ea = a — a, with the state denoted by x = [a, e,], and the observer y = [y, e,| can be written as :

X = AtX + Dt A%%
y = Ox (5.25)

A— BK BK I, 0 cC 0, ~
h A, = e _Phe | D, = - dim C
WheTe ' (O)dimA A— KOC} ' [Id _KJ Ct [(O)dim e} C }

To get the system the feedback is applied on the observer state a as v = — K .a. The eigenvalue of the
full matrix A, are the same as the eigenvalue of the matrices A — BK, and A — K,C. By the principle
of separation as described in chapter 2 the A, is stable, if the corresponding gain matrices K. and
K, obtained by the solution of the Ricatti equations are stable. In the absence of any noise, the state
errors goes to zero in the inf nite horizon, hence the estimation state a goes to the real state a, and in
the same way, the observer errore, =y —y = Clea goes to zero. In presence of Gaussian noise w,
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Figure 5.5 - Chirp excitationy, : forcing the DNS. Figure 5.6 - Spectra of the initial chirp.

errors e, and e, remains under a given threshold, and are functions of the correlation matrices (); and
()2 as stated in Bagheri et al.(2009b). Following the notation of equation (5.17), the solution of the
full plant model can written as :

x(t) = xo(As, x(0); 1) + xw (Ar, Dy Wit).

where ||xo|| — 0 when ¢ — oc.

5.3.4 Application to cavity

To remind of the overall procedure, a simulation without control is performed, and the un-actuated
ROM model is constructed using a Galerkin projection. The model is further calibrated to avoid the
divergence of solution when integrated in time. To introduce the effect of actuation, the high f delity
model is forced with a chirp excitation of the form.

v(t) = Ay sin(2mStit) x sin (2mStat — Agsin(27Stst)) (5.26)

at the upstream corner of the cavity where A; = 0.1, Ay = 27, f; = 1/60, fo = 2/3, f3 = 1/30. The
form of the excitation is as shown in f gure 5.5. The spectra of the chirp is represented in f gure 5.6
depicting a large spectral band in the range 0.2 — 1.5 with a concentration around the value of 1.5. 300
snapshots are sampled, which corresponds to a time 7" = 15, i.e. half the period of excitation of the
full chirp. The actuated mode and the plant model are constructed with the help of these realisations.
The control has been design for different values of the cost £ € [0.01, 5000], and the result was found
to be independent of the value of /. Finally the value of ¢ = 1 was chosen for this study. In f gure 5.7
the eigen values of the open loop matrix A and the closed loop matrix A — BK, are represented. The
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Figure 5.7 - Eigen values of the plant: eigen valuesAf(o) : eigen values oft — BK,, (+).

feedback control clearly mirrors the unstable eigenvalues, with dominant eigen values of the closed
loop A\pnax = —0.038 +42.26. For values of ¢ > 5000, it seems numerically diff cult to use the Matlab
system toolbox for the solution of the Ricatti equation, to fnd an accurate and stable eigenvalue of
A — BK,. The value of the feedback gain || K,|| ~ 950 which seems quite large. When ¢ — oo the
cost of the control goes to zero and the system can not be stabilised, as the the norm of the gain goes
to zero. Similarly when ¢ is small, the eff ciency of the control increases due to the large amplitude
of the control. However in practical cases the value of the control that can be fed into the actuator is
limited by a range of the input signal as a large gain may damage the actuator Samimy et al.(2007).

To scale down the large gain, a new parameter v such that the amplitude of the control could
decrease is introduced such that ~,(t) = aK. with a € [0,1.1]. In fgure 5.8 the real part of the
largest eigenvalue of A — a BK, is represents. The value of v = 1 corresponds to the optimal control,
while o« = 0 corresponds to the uncontrolled case. The value of & = 0.5 corresponds to the stability
limit of the controlled system, and is the result of mirroring of the unstable eigenvalues about the
imaginary axis. It means that to stabilise the plant, the norm of the gain control vector should be
at least equal to 475, which is quite large. The observer response is directly related to the largest
eigenvalue of the matrix A — K,C. For our case we found a real value of —0.45 which is suff cient
to ensure the decrease of the estimation errors e, with time. To determine the optimal control input
7(t)opt> We solve the full system (5.25), and use the feedback law (¢),,: = —K.(a—ea). In this work
the noise w = [w; wy]| is neglected while performing the full state simulation. The estimator eigen
values are represented in f gure 5.9 and shows three eigen values which are marginally stable. The
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Figure 5.10 - Comparison of the initial value and optimal value of the closed loop system.

problem now is to determine the value of control ypys(?) to be introduced in the numerical simulation
to stabilise the f ow or the acoustic f uctuations.

The plant model with the input 7, (¢) is simulated. The feedback law v(¢f) = —K_ a, obtained
corresponds to the solution given by:

v(t) = —K.(e A ta(0) + /Ot e At-") B V() dT) (5.27)

The new updated control is found to be of large magnitude max(y(t)) = Gmax =~ 250. The evolution
of the f nal optimal control in comparison with the initial solution is as shown in f gure 5.10. A f'tting
approach demonstrates that y(¢) is given by

Y(t) = Gmax sin(wt + @) (5.28)

where w = 2.27, corresponding to a frequency f = 0.3617 and a phase ¢ = —0.164. The frequency
is in good approximation to the imaginary part of the largest eigenvalue of the controlled plant (matrix
A— BKC). As is seen from equation (5.27), the gain vector K. acts as a flter and signals out the
frequency which correspond to the shear layer instability of the second Rossiter mode.

To avoid numerical divergence of the numerical solution on the introduction of control, the ampli-
tude (gain) GG of any control is set to a maximum value of Gy = 0.08, so the updated control is of the
same form as ~y(¢) but with an amplitude G,. The power spectral density for the vertical component
of velocity at a point in the shear layer is compared with the simulation from the un-actuated case as
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shown in f' gure 5.11 and shows a decrease in amplitude of the second Rossiter mode. However there
is an increase in amplitude at other frequency due to the effect of actuation. The full system response
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Figure 5.11 - Comparison of Spectra of the DNS solution: Actuated (dashed line), Un-actuated (solid line).

of the closed loop system is shown in fgure 5.12 for the frst two modes showing an asymptotic
stability.

The errors are plotted in f gure 5.13, also the response of the observer model is shown in f gure
5.14. The response of the observer shows that the state for the pressure goes to zero asymptotically,
but we fnd large values of gain for the short period of the DNS simulation, where we implement the
control. This necissates the scaling of the fnal control introduced.

5.4 Conclusion

A feedback control law based on the estimation of the observer dynamics has been presented. The
observer matrix is constructed using a linear stochastic estimation. A sensititivity study of the actuated
dynamics has been performed to determine the relevant terms to be retained in the linearisation of the
model. Finally an LQG based feedback law is obtained to fnd the optimal solution. The optimal
control law is shown to have a single frequency, corresponding to the second Rossiter mode of the
cavity fow. The LQG control provides stabilisation over inf nite time horizon with a huge control
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Figure 5.14 - Output predictiony, the pressure fluctuations for the 6 modes. mode 1 and 2 have been rescaled
by 100.

amplitude, unrealistic to be utilised in the Direct Numerical Simulation which are solved over a short
time interval. To resolve this problem, the control amplitude has been scaled down before introducing
in Direct Numerical Simulation. The control provides a decrease in spectra corresponding to the
second Rossiter mode.
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Conclusions and Perspectives

Nous avons dans ce travail nous avons appéda reduction de magle sur unécoulement de ca@t
puis nous l'avongtendu dans le cas d’uacoulement conblé dans le but ultime deéduire les
émissions acoustiques. Les champs de vitesse et de pressioateomigs, sans ou avec un for¢cage
de type jet syn#tique ou multifequentiel par des simulations nénques directes, au voisinage du
coin amont de la caw#t, zone la plus sensibleune perturbation. Pour notre configuration, c’est le
second mode de Rossiter qui est &xcit

La base éduite est obtenue pa€&domposition orthogonal en modes propres, et uresystdy-
namique d’ordre faible est&termirée par projection de Galerkin désjuations isentropiques avec
un produit scalaire bas sur I'énergie. Les quatre premiers modes &g@ntends.5% de I'énergie
fluctuante totale La prise en compte, dans le elededuit du forgage est fait& partir d’'un probleme
d’optimisationKasnakd@lu et al. (2008, en ceterminant un mode spatial 8pfique orthogonal aux
autres modes non foes cja connus. Dans ce cadre, il est suppagie Iecoulement moyen dans le
cas for@ et non foré sont identiques. Suitel'introduction d’'une erreur mesurant ce poss#ffet,
I'hypothese s’ave justifier pour des amplitudes du coalke inferieura 10% environ.

Les moeles dynamiques obtenus par cette approche POD et projection de Galerkin sont
connus pourétre naturellement fortement instable. Nous avons donc stabilis leglesodn tes-
tant trois methodes de calibration. L'approche deoupletet al. (2005) qui met en oeuvre un
probléme d’optimisation o est minin&@e I'erreur entre le champ des vitesse demar la simulation
nunérique directe et celui obtenu par ggration du systme dynamique. Suite aux travaux de
Cordieret al. (2009), nous avons prop@sd’ajouter une egularisation de la fonctionnelle &b a
minimiser par une approche de Tikhonov dans laquelle nous avons introduit des poasssbasa
sensibilie la fonctionnelle par rapport aux coefficients temporels duesgstdynamique. Quoi qu'il
en soit, on conclut qu’uneegularisation sur un long temps d’igration est Bcessaire pougviter
toute divergence du syshe dynamique.

Le syseme dynamique fog; apes lirtarisation a servi de base pour concevoir un cotdr
linéaire quadratique Gaussien (loi de codlig en boucle ferége). Un modle d’observation liant
la pression en certains points deetoulement et les variableséafat (vitesses) &€ construit sur
la base d’'une estimation stochastiqueglaire. A partir d'une loi de forcage mult®&quentielle in-
troduite dans les simulations n@mques directes, et donc dans le mode de forcage du syst ‘eme
dynamique, nous obtenons une loi de colgmoptimale qui se&wle étre parfaitement harmonique
a une fiequence s proche du second mode de Rossiter. Cette nouvelle loi, introduite dans les sim-
ulations nunériques directes a condu# une Eduction sensible demmissions acoustiques sur le
second mode de Rossiter. Par contre, de faibles excitations sur d’almseinces subharmoniques
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ou harmoniques sont visibles.

Apparemment, les modes POD tels qu’ils soatatmires actuellement (citre énergetiques) ne
sont pas les modes optimaux pour analyseraduire I'acoustique. Comme perspective de ce travail,
il pourrait étre judicieux de &flechir sur I'introduction de I'approche d@ordanet al. (2007) base
sur une cecomposition en des modes les plus observablesvis-de I'acoustique en champ lointain.
Il faudrait aussi certainement regarder I'influence de la taille du 8ygst dynamique (troncature) sur
le contidle éroacoustique, les modeégligés pouvant jouer un grandle dans le€missions.

Une autre perspective serait@udier la eduction de mogle et la construction du mode de
forcage sur la base d’un forage stochastique ptufue éterministe comme cela est fait actuellement.
Lesétudes de sensibidis et I'utilisation d’of@rateurs adjoints devraient aussire accrues pour

tenter d’angriorer soit le moeéle reduit avec foraage, soit la calibration.

Le contdle optimal en boucle ouverte aveegion de confiance @t mem dans
Bergmanret al. (2009) sur le cylindre et une extensi@na cavite pourraitétre exploée.

L'estimation détat, qui est une partie du pradrine de confile en boucle ferége pourraitétre
ameliorée, par exemple en utilisant une estimation stochastique quadratique qui conduiraé
observateur non ligaire. La non ligarite apparait aussi dans le sy&8ime dynamique foec On
pourrait donc envisager d’appliquer un cobte non lireaire dans ce cadre.
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In this thesis we have developed and applied the various tools of a POD based reduced order
modelling to study the self-sustained instabilities in a cavity. The ROM has been applied to perform
control studies with the ultimate aim of reducing the noise level in the cavity.

Direct Numerical Simulation of the cavity f ow has been performed. The cavity f ow results has
been validated with the results from literature. Control is introduced by means of a synthetic jet at the
upstream edge of the cavity where the f ow is more sensitive to perturbations. Analysis of the spectra
shows a decrease in the amplitude corresponding to the second Rossiter mode of the cavity, which
suggest the need of performing an optimal control study.

The basic theory of POD and their various properties which make them useful in the approxima-
tion of fuid f ow has been discussed. The usual innerpoduct gives the natural def nition of the norm of
the energy of the fuid f ow in case of incompressible f ows. The choice of inner-product for the case
of compressible, which gives the def nition of energy has been discussed. The energy based inner-
product as described in Rowley et al. (2003) has been used in this work to obtain the POD modes and
for the Galerkin projection.

The eigen spectra demonstrates that the frst 4 eigenmodes capture around 98.5% of the total f uc-
tuation energy as shown by the Relative Information Content (RIC). A degenerate eigen spectrum
showing eigenvalues which occur in pairs demonstrates the phasing behaviour of the fow. The vor-
ticity modes mainly represent the hydrodynamic component and the dilatation the propagation of the
acoustic waves. We note the energy cascade in the POD representation of the vorticity in terms of the
size of the eddies represented. The vorticity being a hydrodynamic phenomenon represents the low
frequency dynamics of the fow. The dilatation which represents the direction of the sound propaga-
tion, a high frequency phenomenon, is clearly depicted for the higher POD modes, where the angle of
the wave propagation is distinctly visible thus indicating the presence of a multi-scale phenomenon.

ROM based on the isentropic Navier-Stokes equations which are used to model the cavity f ows
has been constructed. Extension of the ROM to include the effect of actuation, is done by con-
structing an actuated mode, obtained by solving an L, optimisation problem as demonstrated in
Kasnakoglu et d. (2008). The main feature of this approach is that the effect of actuation is explicitly
available in our ROM and the un-actuated dynamics reproduced exactly in case the value of actuation
tends to zero. The spatial modes exhibit a local behaviour capturing the effect of actuation. For small
values of actuation (less than 10%) the mean value of the actuated and the un-actuated case can be
assumed to be equal. In that case the difference in the average error can be interpreted as a translation
of the reduced order subspace, which means that it is suff cient to consider the temporal coeff cients
of the un-actuated case. An error to take care of the difference in the average values while performing
the Galerkin projections has been introduced, and shows a small errors for the most energetic modes.

The ROM compares well with the POD coeff cients for the initial time and shows a divergence as
time progresses. To take care of the divergence of the model, various techniques known as calibration
techniques has been studied and a unif ed framework for the different calibration methods described
in the literature is given. An application to the cavity f ow demonstrates that the method of calibration
which involves the solution of a constraint optimisation problem Bergmann & Cordier (2005) is better
than the method of intrinsic stabilisation Kalb & Deanne (2007). The method of Couplet et al. (2005)
based on the minimisation of functional based on the convex linear combination of terms which
represent the normalised error and a measure of the variation of the coeff cients of the model to
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their values obtained from POD is found to be the better of the two above methods in terms of the
normalised errors.

The only disadvantage of this method being the arbitrary parameter to be chosen while regular-
ising the ill-conditioned linear system. The method presented in Cordier et al. (2009), remedies the
problem by using the method of Tikhonov regularization, which chooses the parameter so as to bal-
ance between the solution norm and the residual norm. This is applied to the case of cavity f ow and
shown to perform better than the method of Couplet et al. (2005) for the normalised error. However
the cost of calibration is more. The cost as argued out is shown to outweigh the benef'ts of a good
model especially when we perform control studies.

A new contribution toward the calibration method has been the weighted Tikhonov regularization
which takes care of the sensitivity of the modes with respect to a given cost functional, while def ning
the errors for calibration. The second way of introducing the weight matrix is to consider the spectra
content of the POD decomposition. We compared the errors for the two type of Tikhonov regular-
ization and it is found that the zeroth order regularization is the most effective among all the type of
Tikhonov regularization considered. The proposed method outweighs the other methods in terms of
errors. It is also shown that the model diverges for a long time of integration even after calibration,
and it is necessary to calibrate over a long period of time, especially when performing control studies
as shown in Nagarajan et al. (2009b).

A feedback control law based on the estimation of the observer dynamics has been presented.
The observer matrix is constructed using a linear stochastic estimation. A sensititivity study of the
actuated dynamics has been performed to determine the relevant terms in the linearisation of the
model. Finally an LQG based feedback law is obtained to fnd the optimal solution. The optimal
control law is shown to have a single frequency, corresponding to the second Rossiter mode of the
cavity fow. The LQG control provides stabilisation over inf nite time horizon with a huge control
amplitude, unrealistic to be utilised in the Direct Numerical Simulation which are solved over a short
time interval. To resolve this problem, the control amplitude has been scaled down before introducing
in Direct Numerical Simulation. The control provides a decrease in spectra corresponding to the
second Rossiter mode Nagarajan et al. (2009a).

As a future perspective it is observed that the POD modes which is an optimal representation
of the energy felds is not suitable to resolve the far feld acoustic, one of the extension of POD to
include the effect of far f eld acoustic noise is the Most Observable Decomposition, as demonstrated
in Jordan et al. (2007) which represent a good choice of bases to perform control studies for acoustics.
Also it is interesting to minimise a cost functional which measures the acoustic propagation rather
than the functional based on the energy. It will be interesting to note that the higher modes which
are hydrodynamically in-signif cant will play a signif cant role in the acoustics, hence a comparison
to determine the minimum number of POD modes to tackle the acoustics would be interesting (for a
preliminary derivation for the open loop control see appendix H).

For the development of the reduced order model an interest would be to construct the ROM for a
given random noise rather than the deterministic forcing we have used in this work. Sensitivity studies
to external forcing to determine the position of the actuator is worth exploring. Open loop control by
the method of trust regions is another area which can be explored. Improvement of the reduced order
subspace during the optimisation process when the control parameter changes so that the frst few
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modes represent the dynamics of the new conf guration as demonstrated in Bergmann et al. (2009)
can be applied to the study of the cavity f ow conf guration. It is also interesting to build and calibrate
the ROM from experimental data.

For the application of the closed loop control the problem of estimation can be improved by a
higher order Quadratic Stochastic Estimation (QSE) i.e. the by constructing a non-linear observer. It
would also be interesting to consider the quadratic terms in the actuation and hence perform a non-
linear control. The real challenge of a reduced order model is in using measurements from real time
simulations (experimental or high turbulence simulation), to build up the control.
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Appendix A

Controllability and observabillity of linear
systems

The equation of the plant with a feedback can be written as

t = Ax+ Bu (A.la)
ye = Cux (A.1b)

where A €¢ R, B ¢ R"*™, (C ¢ RP*"

Theorem The following conditions for the controllability are equivalent
1. system (A.1) is controllable

2. An arbitrary state x is attainable from 0

3. The matrix Qr := fOT e BBTeA"dt is non singular for any arbitrary 7" > 0. This condition is
equivalent to determining the norm of the state matrix for an impulse response.

4. Rank of the matrix [A|B] := [B, AB, - -- A" ! B] = n, also reffered to as the Kalman’s condi-
tion

5. Qr satisfy the Lyapnov equation
AQr + QrAT + BBT =0 (A.2)

The above theorem can be reformulated for the Observibility by, considering the controllability of the
dual system given by

3 = ATz+C%u (A.3a)
y = BTz (A.3b)

where z is the dual state vector.
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Appendix B

Galerkin projections for the full NS equations

As described in Rowley et al. (2003) the full Navier-Stokes equation can be written as

D
Fi+dlUu:0

Du op 1 0 |
S 9 d
"Dt 6xi+R68x7( S 5”“’u)

T , Y 2, 9 2p
= (29..9.. — Z(q B.1
P + (v — 1)pT'divu e ( SijSij 3( ivu) ) RePrv (B.D

The equations are non-dimensionalised using the length scale L, the speed of sound c., and the
. . . . 2
ambient density p... Temperature is non-dimensionalised by %’: and pressure by pc? . Here P =

(y—1)pT" and S;; = (6“2 + a“Z) is the symmetric part of the stress tensor, denoting the strain rate.
On introducing the notatlon q= (p, u;, T') the above equations can be re-casted as

dp Ou; oT
o = Rla),  ppm=Ule), pa =0(9)
where,
R(q) = —(u.V)p—divu
8p 1 0 »
U(q) = —p(uV)u; — oz, t oo (251] 5Z-jdwu)
— N 2, A

0(q) = —(v—1)pTdivu+ 7o (QSUSU 3(dwu) ) + —RePrv T (B.2)

The equations can be further written in a concise form as

Alq)q = f(q) (B.3)

where A(q) = diag(1, p, p, p) and f(q) = (R(q),U;(q),0(q)) Since A is a aff ne function of ¢ we can
write
A(q) = B+ L(q) = diag(1,0,0,0) + diag(0, p, p, p)
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also since f is cubic it can be written as a sum of multi-linear forms f; as

f(a) = fi(q) + fo(q,9) + f3(q,q,9)

We now perform a Galerkin projection of the POD bases ¢, and expressing
g=> a(t)én
k

B.3 becomes

B+ L(Z @16251)1 de(bk = f(q)
! k
on taking the inner-product with ¢, we obtain:
> ((cbj, Béi) + > alle;, L(¢z)¢k>> = (95, f(q))
k l

In matrix form equation B.5 can be written as

M(a)a = f(a)

where a = (aq, ..., a,) and

M(a)j = (65, Bér) + Y ar(dj, L(¢n)dw)

fila) = (;, f(q))

(B.4)

(B.5)

(B.6)

= > (b, (@) + Y aram by, f2(61, bm)) + > Wtman (5, f3(S1, bm, b))
I,m

l

l,m,mn

Note that all the coeff cients of the equation B.7 can be determined before solving the ODE’s. In the
case of constant density we have B = I, L = 0 also if we chose the spatial modes orthogonal i.e.
we have (¢;, ¢;) = 0;; and the mass matrix M is identity. Although equation B.7 is in principle not
diff cult to solve the choice of the quadratic approximations with the isentropic equations simplif es
the implementation. Also the choice of the energy based inner-product which preserves the energy is

quite natural to the cold f ows we treat.
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Appendix C

Specific volume formulations of ROM

As noted in the appendix A, the low-order model of the full Navier-Stokes equation has cubical
implicit terms, Vigo (1998) suggests the use of a formulation by using the primitive variables (u, v, p)
and the specif ¢ volume ¢ = %. The fully compressible Navier-Stokes equation in terms of these

variables can be written as:

G = UGy + UzS + VyS — UGy
B 1 [/4 2
Up = Ul — Uy — Pa s || SUs Sy ) + (U + uy),
A 220 s
V= —UVy — VU, — — —Vy, — — Uy Uy +u
t Y gpy Reg 3 Y 3 y Yix
i
P = —ups = 0py = 9P(Us +0y) + o [(P9)an + (9S) )
v -1 4 2 4 2 )
+ e [ux <§ux — gvy) + v, <§vy ~ s + (vy + uy) (C.1)
On introducing ¢ = (s, u, v, p) the above equation can be re-casted as
. 1
G=Qi(q",¢%) + R_QQ(ql,QQ) (C.2)
e
with
u'v —uZdh — vkt + ol
(', q%) =— u'ul + v'ul + <'pl
ulv? + vlvj + glpZulpi + vlpz + ypt(u + vj)
0
4,2 2.9 2 2
¢! (§u:v - EUy)gg + (u:v + uy)y
1 o2y
Q(q.q°) = | (5us - %ui)y + (24l
1(4,2 QPLE[(pQgi)xﬁ +2 ( 22§1gyy]+ 1 1\ (.2 2
(7 - 1) [uw (§uw - §Uy) + v, (§Uy - §ux) + (Ux + uy) (Ux + uy)}
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The above formulation preserves the quadratic dynamics and hence the deriving a ROM is straight
forward as in the case of the isentropic case. If ¢ is expressed in terms of the POD bases as:

N
g(x 1) = q(x) + Y ai(t)pi(x) (C.3)
with the def nition of inner product for the non-dimensional variables given by:
(¢".¢") = / (6162 + ulu? + v'o? + p'p?) dQ (C.4)
Q

inserting C.3 in C.2 we have the ROM as:

N
ap = Zaz (Q1(T, ¢:) + Q1(¢:, Q) ¢k>+zaiaj<gl(¢ia¢j)v¢k>

ij=1
N N
+ 3 a(Qo(@ ) + Qo000 1) + Y s (Q(d, b5). b1 (C.5)
i=1 ij=1
N
= D (L +Li)ai+ Z Qiji + Qjp)aia (C.6)
=1 2,7=1

where

,0i) + Q1(d4,7), dr)
7¢z) + Q2(¢zaa)7¢k>

The system above can be solved with or without the subtraction of the mean in the latter case we have
Lzlk - L?k =0

(Q1(¢i

E o= <Q2(¢u )¢k>
= (Qu(
(Qaf
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Appendix D

Actuated POD by the method of stochastic
estimation

The method as described in Caraballo et al. (2008) relies on a POD expansion, followed by a stochas-
tic estimation to correlate the time coeff cients with the actuation input. The method can be summa-
rized as follows

Algorithm:

1.

To start , let the actuated snapshot sets be denoted as {¢{°, %}24:1, where v, = (t) is the
value of the actuation, ¢ = ¢““(x, t) and M is the number of actuated snapshots

. We subtract the mean g of the un-actuated base f ow from the snapshot set. We def ne a new set

of realisations by an innovation operator given as

n

Gi = qi° — Psqi® = ¢t = > (g5 &) o

i=1

Perform the POD on the innovative snapshots { g } to obtain an expansion for the f ow feld of

the form.
N M

g(x,t) = ai(t)pi(x) + > af(t)¢i(x) (D.1)

i=1 i=1
where ai“(1) = (q, ¢{)

We wish to correlate the coeff cient af“(t) to the input signal v(¢) by means of a linear stochastic
estimation of the form

ai*(t) = Any(t) + By’ (1) (D.2)

2
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where A; and B; are the linear and quadratic terms of the estimator. Substituting D.2 in D.1 we

have

q(x,1) = Z a;(t)¢i(x) + v()¥r1(x) + ()1 (x)
where y o

i) =)0 (x0)A; and ta(x) =) 0i(x)B;

The Galerkin model with the above expansion is of the form

ar = Cy+ Ljxa; + Qijraia; + hagy + haaiy
+ (hsk + g16)7” + g2kaiy” + gary" + gany’ (D.3)

where

Ce = (L(q), o) +(Q(7,7), )
Liw = (L(¢), o) +(Q(T &5), ¢x) + (Q(5,9), dr)
hie = (L), o) + QT ¥1), ¢x) + (Q¥1,7), dr)
Qi = (Q(di,05), Pk)
haae = (Q(¢i, 1), dn) + (Q(r, ¢4), 1)
hae = (Q(¥1,91), ¢)
g = (L(2), dx)
g2 = QP ¥2), Pk) + (Q(Y2, B1), Pi)
gz = Q1 12), o)
gar = (Q2,12), o)
The above method involves an additional procedures of determining the extra POD actuation modes
combined with a stochastic estimation technique and is more complicated than the L, optimisation

method described in chapter 2, but is much simpler than the sub-domain separation method which
involves the identif cation of the control region.
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Appendix E

Theorem concerning actuated mode

Theorem . Let J(v) = E[||gx — mt|?]

1. The minimum value of 7 (¢)) is achieved at

2. X

3.9 Lo fori=1,..., n

Proof: Note

J@W) = Efld—wl’]

= E[llall” = 2v{d: ¥) + ill0]?]
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J is quadratic with positive leading coeff cient E[77] and hence has a unique minimum, given
by fnding the variation of 7 with respect to ¢ € X given by

om0 (6 +08) = clomol (1G]l — 2veldish +6) + i + ¢
= FE[=27(Gk, &) + 72 (0 + 66,€) + 7o (&, + 68)] |s=o
= B [=2%{d &) + 72(¥, &) + (& ¥)]
= E [=27%(G &) + 27 (1, €)]
= E[(=2wd + 270, 6)]
= (E[-2wds + 27¢] , &)
for v to be an extremum its f rst variation must vanish V¢ € X hence we have
E [=2ykdi + 277¢] =0

which by linearity of £ implies

2. ¢* € X follows from the linearity of F and noting that 7;g, € X and E(7?) € R

3. To show that v)* | ¢; fori =1,..., N, we note that g, € Span{¢;} we have for any 7 and k

n

(G b)) = (a8 =D (@i bi)q b1, 64

1=1

N
= Qkai ZQka Qka]>

= <qgc’ ¢z> - <qgc’ ¢z>
= 0
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Using the linearity of the averaging operator £ and the inner product we have
Elvxdi]
<’l/}*7 ¢Z> = < ) ¢Z
Bl

E [eldr, 9)]
Ely]

Hence we have ¢; L ¢* fort =1,..., N
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Appendix F

Generalized Sngular V alue Decomposition
(GSVD)

Let A € R™* " and L € RP*" be given with m > n > p. There exists orthogonal matrices U € R™*"
and V' € RP*P and a nonsingular matrix X € R™*" such that

A—v(® Y )\xt L—vorox
0 In,

Where ¥ = diag(oy,---,0,) and M = diag(u;,--- ,pp) with0 < oy < -+ < g, < 1 and
1> p > - > p, > 0. Also we have 07 + p5 = 1 for j = 1,---,p.The values 7; = Z—;
(j = 1,---,p) are called the generalised singular values of (A, L). The j™ column z; of X is the
right singular vector associated with o;
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Appendix G

Open loop control

G.1 Open loop control of cavity flows

Regarding the use of ROM for optimal control studies using an open loop one can refer to
Bergmann & Cordier (2005) where the optimal control has been applied for the control of wake
fows behind a cylinder. Since the ROM is designed for a particular fow condition Fahl (2000)
propose a method where the model is refned during the optimisation process, to take care of the
validity of the model to the variation of control parameters. This method has been applied for the
optimal control of wake f ows by Bergmann & Cordier (2008).

In this Appendix the basic equations and results are given for the open loop control. The aim is
to reduce the noise level in the cavity, for which as a frst step, a control based on cost functional
which reduces the total energy of the system hence also reduces the noise level. Mathematically this
is equivalent to minimising the functional given by

J@WW=ALLMMMWWMMt

a [T 2 B T 2
=—/Q/MWMMMW+— (1)t
2 0 Q 2 0

Where o« > 0 and 3 > 0 represents the regularising term and serves as a measure of the cost of the
control we would like to utilise in our optimisation process. The minimisation of the cost functional
is subjected to the constraint satisfying the ROM, given here for the sake of convenience as

ar = N(a,y(t))
= Oy + Ljra; + Qijra;a; + hipy + hogayy + haiy” (G.2)

(G.1)

Using the expression for the POD expansion

n

q(x,t) = G(x) + Y _ ai(t)pi(x) + y(£)v(x) (G.3)

i=1
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the above objective functional becomes

T (a,7(t)) = / / ))dQt
_ / dt+ﬁ /

The optimisation problem to be resolved can be written in a concise form as

min., ) J(a,(t))
s.t.
N(a,~(t)) =0

The constrained optimisation problem can be reduced to an unconstrained by the method of Lagrange
multipliers by introducing the adjoint variable £ and def ning a new functional given by

L(a,7,§) = T(a,7()) = (&, N(a,7))
_ T Z/ &0 (G.5)

The above optimisation problem is solved for stationary values of the above functional given as

oL oL oL
0L = —dba; + =96
90, T 7 T o
where da, 6y and d¢ we also suppose that all the arguments of £ is independent and the optimal
system is determined by equating each term of the above to zero. On resolving the equation g—é& =0
we recover the equation of state N'(a,y(t)) = 0. On equating the derivative with respect to the state
variable a we recover the adjoint system of equation given by

(G.4)

5t =0

di@iit) — —Oz(li(t) - Z (LZJ -+ ’Y(t)hgij + Z (jSk + Qj]“) ak(t)> §j(t) (G6)

i=1 j=1
with the terminal condition given by
&(T) =0
Finally on cancelling the derivative with respect to the control we obtain the optimality condition
given as

( ﬁfy + Z (hflz + Z h’22_]a’_] + 2h3@7( )) gl (G7)

J=1

G.2 Resolving the optimal system

An iterative method which uses the method of conjugate gradient coupled with the Armijo method is
used to resolve the above optimal system for which the f nal algorithm can be summarized as follows
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Algorithm ~ We initialise the control ()
1. Solve the direct system (G.2) to resolve the equation of state a()

2. We utilise the state obtained from the step 1, to solve the adjoint equation (G.6) to obtain the
adjoint variables &;(t)

3. We use the state and the adjoint variable obtained in step 1 and step 2 to evaluate the optimality
condition (G.7)

4. The new control law is obtained as Vyew(t) = Voa(t) + wd(t) where d(t) is the direction of
descent which is obtained by solving the optimality system fl—z = 07y where w is the direction
of descent given by the Armijo method

5. We verify a convergence criteria, and return to step 1

The whole procedure can be summarized as follows

’yn = e (t) ’Yopt(t)
! A
: Reduced Order Optimal System :
v i
,yn+1 (1) Minimisation of J

Resolving and stabilising -
the state (G.2)

o

conjugate gradient & Armijo methg

A

an,y" (1) Vo, J"

A

IResolvi he adjoi G.6 Qn, ’Yn(t)agn . .
esolving the adjoint system (G.6) »| Solve the Optimality system (G.7)

Figure G.1 - optimal algorithm.
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Figure G.2 - Chirp excitationy, : forcing the DNS. Figure G.3 - Spectra of the initial chirp.

G.3 Open loop control of cavity

In this study we build the actuation mode explained in section §3.13 by introducing a chirp excitation
of the form.

Ajp sin(2mStyt) x sin (2mStat — Ag sin(27Stst)) (G.8)

where A; = 0.1, Ay = 27, St; = 1/60, Sty = 2/3, St3 = 1/30. Figure G.2, shows the spectra of the
excitation as shown in the f gure G.3 shows a frequency width in the range between 0.2 — 1.5 with
a concentration around the frequency 1.5. The Navier Stokes equation is excited with this frequency
and about 300 snapshots are sampled which corresponds to the period of excitation 7' = 15 which
corresponds to half the period of excitation for the full signal. The actuated mode is constructed
with the help of these realisations The parameters o = 16.0, # = 0.015 is chosen in this study.
The Algorithm is repeated until we satisfy the convergence criteria for the cost functional given by
AT (a,7)] = |Tnew(a,y) — Tuala,v) < 107°|. The Evolution of the cost functional is as shown
in the f gure G.6 and shows a reduction of 1072, over a period of 1800 iteration of the algorithm.
The cpu time of the algorithm is about 900s. The optimal solution and the spectra of the optimal
solution is shown in f gure G.4, and G.5 showing a typical amplitude of 0.08 and a frequency of 0.36,
which corresponds to the natural frequency of f ow oscillation. We take this value of amplitude and
frequency and introduce in the DNS and compare the value of the velocity spectra taken a point in the
shear layer at the downstream edge of the cavity as shown in f gure G.7. At this stage it is worthwhile
to note that the initial actuated mode we have added has a rich dynamics, of various frequencies, and
hence our solution is only optimal for these range of frequencies and nothing can be said about the
global optimality of the NS equation, until we have a fair idea about the sensitivities of the full NS
equations. This represents a drawback in the utility of the reduced order model for control purposes
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when the global optimality of the full system is unknown. However given the time required for the
computation of ROM, we can conclude that a coupling of the High f delity model and ROM is an
essential part for the successful application of control.
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Appendix H

An open loop approach to handle the acoustic
terms in ROM

To minimise the acoustic noise it is natural to defne a functional based on the dilatation operator
defned by

D : H*Q)—R
(wv,¢) — /(um+vy)2dQ (H.1)
Q

The fow feld expansion for the actuated case can be written as
q=T+vOY+ > ai(t); (H.2)
i=1

On applying the operator D we obtain
D(q) = D(@+yH)DW)+ Y a(t)D($)

= PHy(OM+ Y ()N, (H3)

i=1

For the optimisation problem we propose to minimise the functional given by
T
J(a) = / J(a)dt where
0

J) = > )N (H.4)

i=1

The above defnition of the functional gives the time average of the dialation over the period of
optimisation. Also note that the above def nition of our functional is not quadratic unlike the def nition
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we have used before and hence the process does not guarantee a minimiser. This choice of functional
is utilised in Bergmann & Cordier (2008) to minimise the drag around a cylinder. The constraint for
our minimisation as in appendix G written here for the sake of convenience as

= G+ Ljraj + Qijeaia; + hiry + hawaiy + hay? (H.5)

The problem then can be written in a compact form as

min(v,a) j(a’a ’7)
s.t.

N(a,7) =0

The Lagrangian for the above problem can be defned as can be defned by introducing the adjoint
variable £

‘C(a777€> = j(CL, 7) - <§7N<a77)>

n

= Jen -3 [ aOria)

i=1

(H.6)

minimisation of the above functional with respect to the state variable a gives the adjoint equations

%9 =-2. <Lij + (8o + D Qi + Qi) ak(t)> &(t) = N; (H.7)

i=1 j=1

with the terminal condition given by

&(T) =0
Finally the optimality system s obtained by fnding the stationary value with respect to the control
parameter y as

T n
AL = / > PiVAdt (H.8)
0o

where
P = Z (hfli + Z hoija; + 2h3i7(t)> &
i=1 j=1
For the form of the forcing v(t) = Asin(wt) which we have used the optimality condition with
respect to the amplitude A and the frequency w can be written as

oL /T - :
— = P;)sin(wt)dt
o1 = ) (O Posnten)

T
g—i = /wAt(Z P;) cos(wt)dt (H.9)
0

i=1
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Resune

On considére un écoulement compressible bidimensionnel, autour d’une cavité¢ ouverte. Des
d’instabilité, auto-entretenues par I’effet de rétroaction de I’écrasement de la couche de cisaillement
sur le bord aval de la cavité, générent des émissions acoustiques qu’il faut réduire. Des simulations
numériques directes (DNS) permettent d’obtenir, avec ou sans actionnement, un modele précis de
I’écoulement. A partir des champs issus de la simulation, des décompositions orthogonales de modes
propres (POD) sont proposees pour batir, par projection de Galerkin sur les équations isentropiques,
des modeles d’ordre réduit non linéaires en prenant en compte 1’actionnement (le contrdle). Pour
éviter la divergence temporelle, les coeff cients du systéme dynamique non forcé sont calibrés par
diverses approches originales dont une basée sur la sensiblité modale. A partir du systéme dynamique
forcé par un actionnement multifréquentiel (présent aussi dans les DNS), un controle en boucle
fermée linéaire quadratique gaussien est proposé sur un systéme linéarisé. La reconstruction de
I’état est basée sur une estimation stochastique linéaire sur 6 points de pression. Le contrdle optimal
obtenu s’avére étre périodique a la fréquence du second mode de Rossiter, qui est exactement celles
des instabilits auto-entretenues dans la cavité. Par introduction de ce controle dans les simulations
numériques directes, nous avons obtenu une réduction du bruit (faible) sur la fréquence du controle.
Mots clefs: Ecoulements en cavé, Modeélisation d’ordre r &duit, contrdle rétroactif

Abstract

We consider a two dimensional compressible f ow around an open cavity. The Flow around a cav-
ity is characterised by a self-sustained mechanism in which the shear layer impinges on the down-
stream edge of the cavity resulting in an acoustic feedback mechanism which must be reduced. Direct
Numerical Simulations (DNS) of the f ow at a representative Reynolds number has been carried to ob-
tain pressure and velocity f elds, both for the case of unactuated and multi frequency actuation. These
felds are then used to extract energy ranked coherent structures also called as the Proper Orthogonal
Decomposition (POD) modes. A Reduced Order Model is constructed by a Galerkin projections of
the isentropic compressible equations. The model is then extended to include the effect of control. To
avoid the divergence of the model while integrating in time various calibration techniques has been
utillized. A new method of calibration which minimizes a linear functional of error, based on modal
sensitivity is proposed. The calibrated low order model is used to design a feedback control of the
Linear Quadratic Gaussian (LQG) type, coupled with an observer. For the experimental implemen-
tation of the controller, a state estimate based on the observed pressure measurements at 6 different
locations, is obtained through a Linear Stochastic Estimation (LSE). The optimal control obtained is
periodic with a frequency corresponding to the second Rossiter mode of the cavity. Finally the control
obtained is introduced into the DNS to obtain a decrease in spectra of the cavity acoustic mode.
Keywords: Cavity flows, Reduced Order Modelling, feedback control
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