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Résumé

La détection d’objets en 3D est un élément clé du module de perception du véhicule

autonome. Après la détection, la position spatiale de l’objet est indiquée dans une boîte

de délimitation cubique. Les tâches ultérieures du pipeline, telles que la reconnaissance,

la segmentation et la prédiction, reposent sur une détection précise. Au cours des cinq

dernières années, la détection d’objets en 3D a suscité de plus en plus d’attention. De nom-

breux algorithmes excellents basés sur l’apprentissage profond ont été proposés et ont per-

mis de réaliser des progrès significatifs en matière de précision de détection.

Diverses modalités de données sont disponibles pour la détection d’objets en 3D,

l’image et le LiDAR étant les deux modalités les plus couramment adoptées. La modalité

LiDAR est préférée par la plupart des détecteurs en raison de la précision de ses informa-

tions de profondeur qui délimitent spatialement l’objet. En revanche, la modalité image est

limitée par l’ambiguïté des informations de profondeur, d’où une précision insuffisante de

la détection d’objets en 3D. Certains travaux pionniers tentent d’exploiter à la fois les infor-

mations de profondeur précises et les riches informations sémantiques en fusionnant les

deux modalités. Cependant, il n’existe pas encore de paradigme de fusion dont l’efficacité

a été largement prouvée. En outre, toutes les méthodes existantes de détection d’objets 3D

par fusion reposent sur l’hypothèse de données synchronisées. Plus le nombre de modal-

ités augmente, plus la fréquence de synchronisation diminue, ce qui entraîne un goulot

d’étranglement dans l’efficacité de la détection. Cela réduira évidemment la sécurité des

véhicules autonomes.

Pour répondre aux questions ci-dessus, cette thèse propose les contributions suiv-

antes, résumées en quatre points : 1) La distorsion lors de l’évaluation de la note de pré-

cision moyenne en utilisant la méthode d’interpolation à N points est révélée. La dis-

torsion de la précision moyenne qui peut conduire à l’échec de l’évaluation du serveur

est complètement analysée. Afin de résoudre le problème de distorsion, nous proposons

une méthode d’interpolation à N points améliorée. En modifiant la méthode de calcul

de la zone de l’intervalle d’interpolation et l’emplacement du point d’interpolation, la

distorsion de la précision moyenne est correctement éliminée. 2) Nous introduisons un

modèle d’optimisation d’image unifié pour supprimer les zones redondantes qui parta-

gent les mêmes images de paramètres échantillonnés. Au lieu d’optimiser chaque image,

l’algorithme NPAE proposé estime et récolte la zone non piétonne commune pour toutes les

images. Par conséquent, l’algorithme NPAE peut réduire la consommation de temps de dé-

tection tout en maintenant la précision de détection. 3) Ensuite, nous explorons la méthode

de fusion tardive des données multimodales synchrones. Un grand nombre de faux positifs

sont observés dans les propositions de détection d’objets 3D basées sur la seule modalité

LiDAR. Ces propositions de faux positifs peuvent être classées dans la modalité image. Par
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conséquent, toutes les propositions sont projetées sur le plan de l’image pour vérification

par le classificateur d’image. Ce modèle de fusion multi-modale tardive est appelé vérifica-

tion cross-modale (CMV). Après le traitement du modèle CMV, les faux positifs sont réduits

de 50 %. 4) Enfin, nous découvrons un nouveau scénario de fusion multimodale asynchrone

et proposons une solution. Le flux de données asynchrone est largement présent dans les

procédures d’échantillonnage de capteurs pour des modalités multiples. L’utilisation com-

plète des données asynchrones permet d’augmenter de manière significative la fréquence

des données fournies pour la détection par un véhicule autonome. Dans ce but, nous pro-

posons le détecteur d’objets 3D à fusion multimodale asynchrone (AF3D). Il peut fonction-

ner à la fois en état synchrone et asynchrone. De plus, AF3D a la capacité de fusionner des

données asynchrones avec des données synchrones. Dans ce cas, la précision de détection

de l’image asynchrone avec seulement la modalité image est considérablement améliorée.

Mots-clés: Détection d’objets en 3D, fusion multimodale, fusion asynchrone, précision

moyenne, apprentissage profond, véhicule autonome.
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Abstract

3D object detection is a key component of the autonomous vehicle perception module.

The spatial position of the object is indicated in a cubic bounding box after detection. The

subsequent pipeline tasks, such as recognition, segmentation and prediction, rely on an

accurate detection. Over the past five years, 3D object detection has been gaining more and

more attention. Many excellent deep learning-based algorithms have been proposed and

have led to significant progress in detection accuracy.

Various data modalities are available for 3D object detection, where image and LiDAR

are the two commonly adopted modalities. LiDAR modality is preferred by most detectors

since its accurate depth information that spatially contours the object. In contrast, image

modality is limited by the ambiguous depth information, resulting in unsatisfactory 3D ob-

ject detection accuracy. Some pioneering work attempts to exploit both accurate depth in-

formation and rich semantic information by fusing the two modalities. However, there is

not yet a fusion paradigm that has been widely proven to be effective. In addition, all exist-

ing fusion 3D object detection methods are based on the assumption of synchronized data.

As the number of modalities increases, the synchronization frequency decreases leading to

a bottleneck in the detection efficiency. It will obviously reduce the safety of autonomous

vehicles.

To address the above issues, this thesis proposes the following contributions, summa-

rized in four points : 1) The distortion during the evaluation of average precision score us-

ing the N-point interpolation method is revealed. The average precision distortion that may

lead to server evaluation failure is completely analyzed. In order to address the distortion

problem, we propose an enhanced N-point interpolation method. By changing the interpo-

lation interval area calculation method and interpolation point location, the average preci-

sion distortion is properly eliminated. 2) We introduce a unified image optimization model

for removing redundant areas that share the same sampled parameter images. Instead of

optimizing each image, the proposed NPAE algorithm estimates and crops the common

Non-Pedestrian Area for all images. Therefore, the NPAE algorithm can reduce the detection

time consumption while maintaining detection accuracy. 3) Afterwards, We explore the late

fusion method of synchronous multi-modal data. A large number of false positives are ob-

served in the 3D object detection proposals based on the single LiDAR modality. These false

positive proposals can be classified in image modality. Therefore, all proposals are projected

onto image plane for verification by the image classifier. This late multi-modal fusion model

is called Cross-Modal Verification (CMV). After the processing of CMV model, the false posi-

tives are decreased by 50%. 4) Finally, we discover a novel asynchronous multi-modal fusion

scenario and provide a solution. Asynchronous data flow is widely present in sensor sam-

pling procedures for multiple modalities. Making full utilization of asynchronous data en-
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ables a significant increase in the frequency of data supplied for detection by autonomous

vehicle. For this purpose, we propose the Asynchronous Multi-modal Fusion 3D object de-

tector (AF3D). It can work in both synchronous and asynchronous states. Furthermore,

AF3D has the ability to fuse asynchronous data with synchronous data. In this case, the de-

tection accuracy of asynchronous frame with only image modality is significantly improved.

Keywords: 3D object detection, Multi-modal fusion, Asynchronous fusion, Average preci-

sion, Deep learning, Autonomous vehicle
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CHAPTER 1. INTRODUCTION

1.1 Background

Autonomous vehicles (AVs) present a technological revolution opportunity for

countries to achieve social progress. For regions, AVs have the ability to accelerate

the circular flow of production factors. For individuals, AVs will reduce the potential

for accidents caused by driver failure. Despite there are concerns about AVs replac-

ing human drivers, such as job losses and privacy protection, we should be aware

that the risks and opportunities co-exist. If we look at history, the increase in pro-

duction usually brings prosperity to all mankind. Therefore, we should embrace the

changes and guide AV technology to a path that benefits everyone.

The Society of Automotive Engineers (SAE) establishes a taxonomy level model1

for autonomous vehicles. There are six levels of driving automation system from

L0 to L5, aiming to progressively reduce driver involvement. The tasks of different

automation levels are defined as shown in Table 1.1. It is worth noting that this is a

blueprint from the technical perspective. In practical scenarios, drivers will not per-

form as expected. As in the Waymo 2021 Safety Report2, when they tested a L3 AV,

the human drivers over-trusted the technology and were not monitoring the road-

way carefully. Therefore, in our opinion, AV should be classified into 3 levels. Level

A0: No Driving automation. Level A1: Advanced Driver Assistance Systems. Level

A2: Fully autonomous driving system. Most autonomous driving companies, such

as Waymo, Apollo and lyft, are currently trying to tackle L4 level AV.

Table 1.1: Different levels of driving automation system

SAE Description Ours
L0 No Driving Automation A0
L1 Driver Assistance

A1
L2 Partial Driving Automation
L3 Conditional Driving Automation

A2L4 High Driving Automation
L5 Full Driving Automation

In order to achieve vehicle autonomy, the priority is to acquire environmental

information through multiple sensors. As shown in Figure 1.1, the sensor equip-

ment typically includes IMU, GPS, ultrasound, Radar, camera and LiDAR. On this

basis, several key modules of AV are constructed which are localization, perception,

1https://www.sae.org/standards/content/j3016_202104/
2https://waymo.com/safety/
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CHAPTER 1. INTRODUCTION

prediction and reaction. Localization module finds out where the vehicle is in the

map. Perception module obtains the position and movement information of the ob-

jects around the vehicle. Prediction module estimates the behavior of other objects

in order to find a possible path. Reaction module determine the trajectory, speed

and steering maneuvers required to proceed along the route.

Figure 1.1: Multi-modal sensor equipment of nuScenes [Caesar et al., 2020].

The perception module is fundamental to the prediction and reaction modules.

There are several subtasks in perception module such as detection, classification

and segmentation. The topic of this thesis focuses on object detection. The purpose

of object detection is to locate object’s position in the given data modalities. The

detection result is normally a rectangular box or cubic box enclosing the object.

Over the last decade, object detection accuracy has been progressed signifi-

cantly. Benefiting from deep learning, the detector learns to recognize patterns di-

rectly from data. A deep learning object detection network can be considered as two

components. The first is feature extraction and the second is task regression. Effi-

cient feature extraction and increasing annotated data are two essential backbones

for designing deep learning networks.

Deep learning is one of the machine learning methods that stacks multiple non-

linear layers in depth to simulate the shape of features in high dimensions. Since the

introduction of AlexNet [Krizhevsky et al., 2017] in 2012, convolutional neural net-

works (CNN) have become one of the representative deep learning networks. The

2D convolution layer of CNN achieves outstanding performance in image-based 2D

object detection task. However, for AVs, the location information of the object in

spatial is required. The absence of depth information in the image modality makes

it difficult to retrieve precisely in discrete pixels. As a result, 3D object detection
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based on image modality suffers from low accuracy.

For this reason, most AVs are equipped with LiDAR to provide accurate depth

information in points form. The point cloud referred to as LiDAR modality is com-

pletely different compared to the image modality. These points are discrete, dis-

ordered and sparse. The networks designed for image modality are inappropriate

and inefficient for LiDAR modality data. Over the last five years, extensive research

has been conducted on performing efficient and accurate 3D detection in LiDAR

modality. In the process of improving 3D detection accuracy, studies on fusing mul-

tiple modalities are becoming increasingly relevant.

Image modality is enriched with semantic information like color. LiDAR modal-

ity provides accurate contours of object in spatial. The fusion method is intended

to aggregate the specialties of both modalities to achieve robust and accurate de-

tection. Contrary to intuition, the effective fusion of these two modalities is still an

open challenge.

This thesis intends to explore in detail multi-modal fusion for 3D object detec-

tion. For this purpose, the deep learning based object detection algorithms are first

summarized in Chapter 2. In the following, 3D object detection is investigated in

four aspects.

Chapter 3 Improvement of evaluation metric average precision. Inspired by

the paper [Simonelli et al., 2019], the evaluation metric average precision (AP) for

object detection is investigated. The AP calculation method is usually an N-point in-

terpolation method, such as the 11-point interpolation method employed in KITTI

[Geiger et al., 2012]. Yet, Existing N-point interpolation methods could produce se-

vere errors. These errors lead to average precision distortion, which makes it im-

possible to accurately evaluate the performance of the model. For this reason, the

enhanced N-point interpolation method is proposed. First, the interpolation point

position is changed to the middle interpolation. Second, Dynamic selection of pa-

rameters for calculating the area of the interpolation interval. After the improve-

ment, the AP distortion during evaluation is reduced by 90%. The main contribu-

tions of this chapter are:

(1) The risk and reason of AP distortion is exposed and explored.

(2) The enhanced N-point interpolation method is introduced for fast and accu-

rate evaluation of object detection model.

Chapter 4 Unified visual model for dataset optimization. Increasing the reso-

lution of the image does help in detecting small or distant objects, as more informa-
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tion can be captured. In exchange, the background region is also expanded which

strains the operation of the system. To reduce dataset redundancy, we build a vi-

sual model based on pedestrian targets. This visual model, called Non-Pedestrian

Area Estimation (NPAE), is used to compute the non-pedestrian area that are uni-

formly present in all images of the dataset. The performance of NPAE is evaluated

by a 2D object detector. The experimental results show that the NPAE algorithm has

a significant improvement in detection speed, while the detection accuracy is well

preserved. The main contributions of this chapter are:

(1) A unified optimization path for the large number of images in a dataset is

proposed.

(2) Accordingly, a visual model called NPAE is proposed to reduce data redun-

dancy and retain useful information.

Chapter 5 Late multi-modal fusion 3D object detection. We find that a large

number of false positives (FP) exist in the 3D object detection results based on Li-

DAR modality only. However, the projection of these FP proposals onto the image

plane is easily eliminated by a classifier. Therefore, we propose a cross-modal veri-

fication (CMV) model for reducing 3D object detection false positives. In this fusion

approach, color and texture information in image modality and the precisely depth

information in LiDAR modality are combined. Result shows that more than 50% of

false positives in 3D object detection proposals are eliminated. The main contribu-

tions of this chapter are:

(1) The classification task is introduced in multi-modal fusion for 3D object de-

tection.

(2) The individual classification module can be integrated with any 3D object

detector.

Chapter 6 Asynchronous multi-modal fusion for 3D object detection. Au-

tonomous vehicles are often equipped with multiple modal sensors in order to have

a robust 3D detection of the environment. All existing fusion methods require that

the data is already well synchronised. However, as asynchronous frames have been

discarded, the sampling frequency of synchronous data will inevitably decrease.

The slow detection frequency may lead to collisions in autonomous vehicles due

to insufficient reaction time. The AF3D is proposed for the unified detection on

both synchronous and asynchronous frames. For the synchronous frames, the Li-

DAR modality is selected for 3D object detection. For asynchronous frames with

only image modality, we transform the image modality to LiDAR modality. The
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asynchronous fusion based on scene flow employs images of asynchronous and

synchronous frames to estimate the 3D motion of each pixel. The point cloud of

the synchronous frame is then relocated to generate the point cloud of the asyn-

chronous frame, according to the 3D motion. As a result, the same 3D object detec-

tor for synchronous frames could apply for asynchronous frames. The main contri-

butions of this chapter are:

(1) The scene flow is introduced into multi-modal fusion for 3D object detection.

(2) An asynchronous fusion paradigm is proposed to aggregate synchronous and

asynchronous frames.

(3) The 3D object detection accuracy in image modality is improved 9.4% by

asynchronous multi-modal fusion.

Finally, Chapter 7 concludes the thesis and provides perspectives on future

work.
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CHAPTER 2. BACKGROUND

This chapter presents the background of 2D and 3D object detection. The state-

of-the-art object detection methods are based on deep learning which is firstly in-

troduced. We also bring a brief summary of the metric for object detection.

2.1 Deep Learning

2.1.1 The Develop of Deep Learning

Deep learning is one of the most rapidly expanding technical branches of machine

learning. The explosive growth of data quantity and the continuous improvement

of computing power allow for enrichment of deep learning applications. In recent

years, deep learning has demonstrated excellent performance in autonomous driv-

ing, natural language processing and medical image processing.

Traditional machine learning algorithms require experts to construct features

from raw data [Dalal and Triggs, 2005, Lowe, 2004]. The quality of the features di-

rectly determine the effectiveness of subsequent tasks. Besides, the features ex-

tracted by the experts are domain specific and difficult to integrate in other do-

mains. Conversely, the most successful design of deep learning is the automatic

feature extraction. It makes deep learning an easily interdisciplinary tool that can

be quickly applied in different domains.

The neural network of deep learning simulate the operation of the brain. The

front layers in the neural network extract low-level features, and the back-end layers

construct high-level features based on multiple low-level features. Eventually, the

output layer forms concepts based on the automatically extracted features.

g f

x1
x2
x3

xn

...
yg f

x1
x2
x3

xn

...
y

Figure 2.1: McCulloch-Pitts model.

The beginning of deep learning is the McCulloch-Pitts (MCP) model

[McCulloch and Pitts, 1943] proposed for simulating neurons as shown in Figure

2.1. g takes an input and performs an aggregation. f is the threshold logic which
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makes a decision based on the previous aggregated value. MCP demonstrates the

reasoning procedure, yet unable to learn.

Based on MCP model, Frank Rosenblatt proposes the Perceptron architecture

[Rosenblatt, 1958]. The Perceptron is a linear classification model. A loss function is

introduced and minimized using the gradient descent method to build the percep-

tron model. The architecture of Perceptron is shown in Figure 2.2.

Sum

x1

x2

x3

xn

...

w1

w2

w2

w2

Step

...

y

Figure 2.2: Perceptron model.

With the invention of back propagation, the training of a deep learning model

has become possible. Subsequently, the prototype of Convolutional Neural Net-

work, Neocognitron [Fukushima and Miyake, 1982] is introduced. In this context,

LeNet [LeCun et al., 1998] is produced and achieves reasonably good accuracy on

the handwritten number recognition task. LeNet is a convolutional neural networks

and uses back propagation to train the network as shown in Figure 2.3.

9
Input C1 S2 C3 S4 C5 F6 Output

120
84

10

32×32

Figure 2.3: LeNet-5 model.

Thereafter deep learning has witnessed an explosive period of progress. Among

the various deep learning networks, convolutional neural network is the most

brightly growing. Many fundamental neural network architectures and concepts

have been created successively.
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In 2012, AlexNet [Krizhevsky et al., 2017] is introduced to ImageNet competition.

AlexNet has 600 million parameters with a total of 650,000 neurons located in 5 con-

volutional layers. Dropout is adopted to randomly ignore a portion of neurons dur-

ing training to avoid overfitting the model. By using ReLU as the activation function

of CNN, the gradient dispersion problem of Sigmoid when the network goes deeper

is overcome. Moreover, AlexNet uses graphics processing unit (GPU) to accelerate

the training of CNN and increases the number of training samples through data

augmentation.

In 2014, VGG-19 [Simonyan and Zisserman, 2014] demonstrates that increasing

the depth of the network has influence on the final performance of the network.

Each layer of the neural network uses the output of the previous layer to further ex-

tract more complex features. VGG-19 uses the 3×3 convolutional kernel instead of

the larger convolutional kernel in AlexNet. In this way, the depth of the convolu-

tional layer is increased to ensure that the neural network learning more complex

patterns.

When the depth of a neural network increases to a certain level its performance

decreases instead. Too many parameters make the neural network have a ten-

dency to overfit and make training difficult due to gradient dispersion. GoogLeNet

[Szegedy et al., 2015] provides a sparse network structure using 1×1 convolutional

kernels to downscale the input channels and reduce the number of model parame-

ters. It combines the feature maps extracted from the multi-scale convolutional and

pooling layers into the next layer which improves the model generalization.

In 2015, ResNet [He et al., 2016] provided an architecture to construct a neural

network with more than 1000 layers. To address the performance degradation of

deep neural networks, ResNet uses a residual module that allows convolutional lay-

ers to be connected across layers. Also, Batch Normalization (BN) layer is used to

solve the gradient vanishing problem.

In 2017, the Transformer [Vaswani et al., 2017] based entirely on the attention

module is proposed. Transformer is composed of self-Attention and Feed Forward

Neural Network only. A trainable neural network can be built by stacking the Trans-

former without any CNN. It was first used in Natural Language Processing (NLP)

and then extended to traditional CNN applications such as object detection.

As the study of 2D image-based deep learning becomes fruitful, the research of

more complex 3D environments has gradually attracted attention. In autonomous

driving, the data modalities for 3D task are usually LiDAR, image and Radar. Based

12
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on different modalities, many new deep learning methods have been developed,

and we will describe them in detail below.

2.2 2D Object detection

2.2.1 Convolutional Neural Network

Convolutional neural network (CNN) is composed of neurons with learnable

weights and biases in each layer. Every neuron performs dot product on the in-

put data. It could learn the weights directly from data without manually designing

rules. CNN is a powerful tool to reveal patterns in images for 2D object detection

task. In this section we present the components of a basic CNN. Figure 2.4 shows

the difference between MLP and CNN.

Multiple Layer Perceptron Convolutional Neural Network

Figure 2.4: Compare of MLP and CNN.

Generally, a CNN network is composed of an input layer, one or multiple hidden

layers and an output layer from the perspective of data flow. These three functional

layers are constructed from convolutional layers, activation layers, pooling layers

and fully connected layers.

• Convolution layer

The convolution layer uses a convolution kernel to extract the feature maps and

applies an activation function to add non-linearity. This allows the neural network

13
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Figure 2.5: Convolution layer.

to approximate any nonlinear function. The two modules of convolution layer are

shown in Figure 2.5

Convolution kernel. Convolution kernel is a linear operation used for feature

extraction. A kernel is an array of 3×3 typically in size. The process of convolution

is the element-wise product of the convolution kernel with the input tensor at all

positions. The tensor obtained after convolution is called a feature map and repre-

sents a feature pattern. In this case, the convolution layer usually contains multiple

convolution kernels and outputs a feature map with multiple channels.

Activation function. The most commonly used nonlinear activation function

is rectified linear unit (ReLU). The mathematical expression for ReLU is f (x) =
max(0, x). ReLU is a nonlinear function that allows the neural network to fit a non-

linear model. Compared with sigmoid and tanh, the derivative of ReLU is better to

solve, which makes the network training faster.

• Pooling layer

The pooling layer is a downsampling of the feature map. There are two com-

monly adopted pooling layers which are max pooling and average pooling as shown

in Figure 2.6. Taking the 2× 2 max pooling as an example, the pooling formula is

p(x) = max(x). The pooling operation could provide several benefits. 1) Enables

feature extraction with a certain degree of resistance to distortions and shifts. 2) It
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allows the same size convolution kernels to have different receptive fields. 3) Reduce

the size of feature map and thus reduce the computational amount.

1 3 0 3

2 2 4 1

4 2 0 0

3 3 3 1

3 4

4 3

2 2

3 1

Max pooling

Average pooling

Figure 2.6: Pooling layer.

• Fully connected layer

The feature maps need to be transformed into the final output format such as a

vector. Here, the fully connected layer is connected to each position in all feature

maps as shown in Figure 2.7. The flattened 1D array feature is computed by f (x) =
Wx+b. Then, similar to the convolution layer, a nonlinear function is followed. The

number of neurons in the last fully connected layer should be designed according

to the application, such as the number of classes in the classification task.
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Figure 2.7: Fully connected layer.
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• Backward Propagation

Training a CNN network is to find the proper parameters for convolution ker-

nels and fully connected weights. The aim of the training is to make the inference

result the same as the given ground truth. The optimization algorithm to adjust

those parameters is back propagation. The amplitude of the parameter adjustment

is determined by the loss obtained through forward propagation.

A commonly used back propagation algorithm is gradient descent. The gradient

of the loss function provides the fastest direction to reduce the loss. Each learn-

able parameter is updated with an arbitrary step size determined based on a hyper-

parameter called learning rate. The gradient is a partial derivative of the loss with

respect to each learnable parameter.

2.2.2 Method

Object detection is an important task for computers to perceive the environment.

The detection task includes distinguishing object classes and locating object in-

stances. After years of development, the detection methods have gradually devel-

oped from traditional methods to deep learning-based methods. Traditional de-

tectors, such as SIFT [Ng and Henikoff, 2003] and HOG [Wang et al., 2009], rely on

hand-crafted features. In contrast, CNN-based deep learning object detectors learn

feature extraction directly from the data. As a result, a new level of accuracy in object

detection has been achieved.

2014 2015 2016 2017 2018

20122005

2019

HOG AlexNet

2008

DPM

RCNN
SPPNet

Fast RCNN
Faster RCNN

Pyramid Network

SSD
YOLO RetinaNet

One Stage

Two Stage

Figure 2.8: Summary of 2D object detection

In the era of deep learning, object detectors can be divided into two categories:

1) Region proposal based two-stage detector. This type of detector first generates

region proposals and then classifies each proposal. 2) Regression based one-stage
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detector. This kind of detector considers the object detection as a regression prob-

lem on the bbox coordinates. The develop of object detection is shown in Figure

2.8.

Region Proposal based Two-stage Detectors

• RCNN

In 2014 Ross Girshick proposed the Regions with CNN features (RCNN)

[Girshick et al., 2014] with an impressive mean average precision (mAP) improve-

ment from 33.7% (DPM [Girshick et al., 2015]) to 58.5%.

There are three modules that cooperate to implement object detection in RCNN.

1) Region proposal generation. RCNN runs selective search [Uijlings et al., 2013] to

generate around 2000 region proposals on a single image. All region proposals are

adjusted to the fixed resolution 227× 227 for the next module. 2) Feature extrac-

tion by CNN. RCNN employs CNN to extract features instead of hand-crafting them

as in traditional methods. Each region proposal is finally represented by a 4096-

dimensional feature vector. 3) Classification. After previous processing, the features

are sent to the classifier. In this way, the object detection problem is transformed

into a classification problem. The classifier could be a support vector machine

(SVM) [Hearst et al., 1998] or any other algorithm. The scored features are filtered

by non-maximum suppression (NMS) to select the best bounding box proposals.

Despite the significant improvement in detection accuracy, RCNN still has de-

fects. The feature extraction of 2000 region proposals with a resolution of 227×227

in an image obviously consumes a considerable amount of time. The large amount

of overlap in these region proposals results in redundant feature extraction.

• SPPNet

He Kaiming proposed the spatial pyramid pooling neural network (SPPNet)

[He et al., 2015] based on spatial pyramid matching (SPM) [Lazebnik et al., 2006].

SPPNet removes the region proposal generation and extracts features directly from

the image. At the last convolution layer, the pooling layer is replaced by the spatial

pyramid pooling (SPP) layer. The feature maps acquired from the last convolution

layer are divided by 1×1, 2×2 and 4×4 grids. In this way, a total of 21 feature bins

are obtained representing the fine and coarse scale partitioning of the image. In or-

der to feed the following fully connected layer which requires fixed-length features,

these bins are sent to the max pooling, which yields 21 feature representations.
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SPPNet saves a lot of reasoning time by avoiding repeated computation of fea-

tures. Besides, the input image is not restricted to a fixed size. This means that the

object will not be deformed by wrapping. As a result, SPPNet achieves more than 20

times faster than R-CNN without sacrificing any detection accuracy.

• Fast RCNN

Although SPPNet has been improved compared with RCNN, it still has some

defects. The training is multistage including feature extraction, classifier training

and bounding box regression training. In addition, only the fully connected layer

is fine-tuned and the weights of the convolution layer are preserved. Fast RCNN

[Girshick, 2015] is proposed in 2015 to confront the above problems.

There are several influential developments in Fast RCNN. 1) RoI pooling layer.

The input to Fast RCNN is an image and its region proposals are generated by selec-

tive search. To avoid repeated feature extraction in RCNN, Fast RCNN uses CNN to

retrieve features in one step. Similar to SPPNet, the feature maps from the last con-

volution layer are sent to a regions of interest (RoI) pooling layer. The RoI pooling

layer is a special case of the SPP layer, which has only one pyramid level. The parti-

tion grid is 7×7. As a result, a fixed-length feature vector is able to be processed by

following fully connected layers.

2) Multitask loss. Before Fast RCNN, the detection task was built on top of clas-

sification task by adding a bounding box regression module after the classifier. In

Fast RCNN, classification and detection are designed as two parallel tasks which

share the same convolutional backbone network. For this reason, Fast RCNN is a

multitask network which requires a multitask loss to indicate the training direction.

For the classification task, Fast RCNN outputs a discrete probability distribution

p = (p0, . . . , pK) for every RoI over K +1 categories including K object classes and a

background class. The classifier has been replaced by softmax instead of SVM. Each

RoI is labeled with a ground truth class u and the loss for classification is defined in

Equation 2.1.

Lcl s(p,u) =−logpu (2.1)

For the detection task, Fast RCNN regresses the offsets of the RoI to locate the

bounding box. The offsets t k = (t k
x , t k

y , t k
w , t k

h ) and k ≤ K where K is the number of

object classes. Therefore, the loss for detection task is defined in Equation 2.
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Lloc (t u , v) = ∑
i∈x,y,w,h

smoothL1 (t u
i − vi ) (2.2)

where the prediction for class u is tu = (t u
x , t u

y , t u
w , t u

h ) and the bounding box regres-

sion target v = (vx , vy , vw , vh). The L1 loss is defined as below.

smoothL1 (x) =
{

0.5x2 if|x| < 1

|x|−0.5 otherwise,
(2.3)

Fast RCNN combines the two losses with a balance hyperparameter λ to get the

multitask loss in Equation 2.4.

L(p,u, t u , v) = Lcl s(p,u)+λ⌊u ≥ 1⌋Ll oc (t u , v) (2.4)

3) End-to-End training. Since Fast RCNN integrates classification and detection

into one model, the multitask loss L is derived from one forward propagation. Then

the critical node that needs to be addressed is the RoI pooling layer for back propa-

gation as shown in Equation 2.5.

∂L

∂xi
=∑

r

∑
j

[i = i ∗ (r, j )]
∂L

∂yr j
(2.5)

where xi ∈ R is the i th activation input to the RoI pooling layer. yr j is the j th out-

put from the r th RoI. i ∗ (r, j ) = argmaxi ′∈R(r, j )xi ′ and R(r, j ) is the index set of par-

titioned and pooled yr j . Calculating the back propagation gradient of RoI Pooling

can be treated as calculating the gradient of max pooling for each segmented block

separately, and then summing up all the gradients. In this way the weights of the

convolution layers and fully connected layers can be adjusted according to CNN

back propagation.

Through extensive improvements, Fast RCNN achieves significant increase in

detection accuracy. The mean average precision (mAP) on VOC07 dataset is 70.0%,

which outperforms the previous detectors. Moreover, the bounding box regression

and CNN feature extraction for object detection task become an end-to-end inte-

grated network. The inference speed of Fast RCNN is more than 200 times faster

than that of RCNN, which makes real-time detection possible.

• Faster RCNN

Fast RCNN is inadequate in that the region proposals were still generated
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separately rather than integrated into the network. The following Faster RCNN

[Ren et al., 2015] made up for this deficit by introducing the region proposal network

(RPN). After the final feature extraction from convolution layer, the RPN is inserted.

This small fully convolution network slides over the feature map. At each location,

the RPN determines whether there are objects within 9 predefined anchors. There

is another sibling channel in RPN to acquire bounding box regression. The classi-

fication features and bounding box regression features are used to crop proposals

from the feature maps of CNN. Then these region proposals are sent to RoI pooling

layer and further classified and regressed.

Faster RCNN achieves a 73.2% mAP on VOC07 dataset. Furthermore, the pro-

cessing speed is 17 fps with ZFNet [Zeiler and Fergus, 2014] which had been the

fastest deep neural network based detector yet.

• Feature Pyramid Network

Scale variation is one of the most difficult issues in object detection. Small ob-

jects in the image are easily ignored by the detector. The reason is that after the con-

volution and pooling layers, the semantic information of small objects almost dis-

appears in the high-level feature maps. In order to confront such problems, based

on Faster RCNN [Ren et al., 2015], SSD [Liu et al., 2016], ResNet [He et al., 2016] and

Feature Image Pyramid [Lin et al., 2017a], the Feature Pyramid Networks (FPN)

[Lin et al., 2017a] is proposed.

The feature maps from different layers of the CNN have different scales. More

pixels are occupied by an object in the low-level feature map than in the high-level

one. This implies that small objects are more easily detected in the low-level feature

maps. Therefore, it is possible to perform object detection on all feature maps of

different layers. However, it requires that the lower convolution layer must have

very powerful feature extraction capabilities. Therefore FPN upsamples the high-

level features and then fuses them with the low-level features. By fusing the layers

in this way, the low-level feature maps are also rich in semantic information.

Using FPN in a basic Faster RCNN network, it achieves state-of-the-art object

detection result on the COCO dataset [Lin et al., 2014].

Regression based One-stage Detectors

• You Only Look Once (YOLO)
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YOLO [Redmon et al., 2016] is a revolutionary object detection framework which

abolishes the region proposal procedure. The bounding box regression is conducted

directly by the convolution layers shared with the classification. In other words,

detection and classification can be regressed by CNN in one shot.

YOLO network divides the input image of VOC dataset with a resolution of 448×
448 into a 7×7 grid. Each grid cell is responsible for the detection and classification

of the objects within it. To achieve this goal, YOLO scales down the image size by

64 times after 24 layers of convolution. As a result, the size of final feature maps

after convolution layers is 7×7 with 1024 channels. Then through 2 fully connected

layers, the result tensor with a shape of 7×7×30 is acquired. There are 49 tensors

with the shape of 1×1×30, mapped to the input image. For each grid cell, there are

20 classes and 2 bounding boxes with confidence scores need to be regressed.

YOLO is the first one-stage CNN-based detector. Since there is no region pro-

posal and classification stage, the detection speed reaches an amazing 155 fps with

a mAP score 52.7% on VOC07 dataset.

• Single Shot MultiBox Detector (SSD)

YOLO divides the image into a 7×7 grid, which presumes the presence of only

one object in each grid cell. The small objects in the same grid cell will inevitably

be ignored, resulting in a decrease in detection accuracy. SSD [Liu et al., 2016] is

proposed to address this issue. There are several important novel designs in SSD.

1) Pyramid feature map for detection. There are six channels of feature map

which are sent to perform detection. Small objects are more likely to be detected

on low-level feature maps. Large objects are more likely to be detected in high-level

feature maps. 2) Preset anchor boxes. SSD presets several anchor box shapes and

performs bounding box regression at each location on the feature map. Among all

convolution layers, for the conv4_3, conv10_2 and conv11_2, there are 4 default an-

chor boxes associated. And for conv7, conv8_2 and conv9_2, there are 6 default

anchor boxes associated. Therefore, there are 8732 bounding box proposals for re-

gression. 3) Detection with fully convolution layer. Unlike Yolo which finally uses

fully connected layers, SSD directly uses convolution on different feature maps to

extract detection results. For a feature map with a shape of m ×n × p, SSD uses a

convolution kernel of 3×3∗p to get the detection proposals.

SSD significantly improves the detection accuracy of a one-stage detector. The

mAP on the VOC07 dataset is 76.8%, while the detection speed could reach at 59 fps
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in the fast version.

• RetinaNet

RetinaNet [Lin et al., 2017b] is a one-stage detector that integrates several out-

standing structures. The feature pyramid network (FPN) is adopted as backbone

to extract feature maps. The preset anchors are designed with reference to region

proposal network (RPN). There are also a classification subnet and a box regression

subnet as promised by the one-stage detector.

The most important progress in RetinaNet is the introduction of focal loss. The

focal loss is proposed to solve the positive and negative sample imbalance problem.

These designs allow the RetinaNet to have the accuracy of the two-stage detector

while maintaining the speed of the one-stage detector.

• CornerNet

Anchor is a key component of object detection whether one-stage or two-stage.

However, the size and number of anchor box are both hyperparameters which need

to be adjusted repeatedly for different situations. In addition, many anchors are

preset on the feature map to prevent missing objects. However, the positive samples

are much less than the negative samples. The problem of imbalanced samples may

lead to difficult training of the network.

For this reason, the CornerNet [Law and Deng, 2018] is proposed, which is the

first anchor free object detector. Anchor free means that there is no preset anchor

in the network. CornerNet is inspired by instance segmentation which labels pix-

els into different classes and groups these pixels into an individual object. Similar

to this concept, CornerNet considers object detection as finding the upper left and

lower right corners of the bounding box. The experiment results show that Corner-

Net outperforms state-of-the-art one-stage detector of the time.

• CenterNet

CenterNet [Duan et al., 2019] is an improved anchor free detector. Unlike Cor-

nerNet, CenterNet model an object as the center point of its bounding box. And the

bounding box width and height are inferred from the center keypoint.

For CenterNet, an image is processed by a fully convolutional network and a

heatmap is obtained. Based on the heatmap, the keypoint estimation to find center

points and regresses to all other properties.
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2.3 3D Object detection

3D object detection is a key component for autonomous vehicle environment per-

ception. Compared to 2D environment, 3D environment increases the depth infor-

mation and makes object detection more complex. In order to locate an object in 3D

space, the cubic bounding box has the format [xc , yc , zc , l , w,h,θ,c]. The (xc , yc , zc ) is

the center point coordinate of the object. The l , w,h is the length, width and height

of the object, separately. θ is the heading angle. c is the class of the object.

Camera and LiDAR are two common sampling data sensors used for 3D object

detection. The image modality acquired by the camera can be directly used directly

for 3D object detection, regardless of the lack of depth information. The data sam-

pled by LiDAR is in point cloud format which is unordered and sparse. As a result,

2D feature extraction methods designed for dense image modality cannot be di-

rectly applied to 3D detection. There are three types of 3D object detection meth-

ods, depending on the modality involved.

2.3.1 LiDAR-based architecture

• Point-based

A point cloud is a series of points that can be stored in a matrix with the shape of

N×3 where N is the number of points. The points stored adjacent to each other are

unrelated in space. In other word, the point cloud is invariant under transforma-

tions and is unordered. Points in regions in 3D space jointly depict object contours.

To address the problem in point cloud feature extraction, PointNet

[Qi et al., 2017a] is proposed. First, the input is aligned by multiplying it with

the transformation matrix in T-Net. This operation ensures the invariance of

the model to the spatial transformation such as affine transformation and rigid

transformation. Then after several multi-layer perceptron (MLP), there is another

T-Net for feature alignment. Finally, the most important operation is to apply the

symmetry function to deal with the unordered features. The symmetry function

takes n vectors as input and outputs a new vector that is invariant to the input

order. In PointNet, the symmetry function is max pooling. The architecture of

PointNet is shown in Figure 2.9.

The ideas presented in PointNet are instructive and have a lot of potential. In

response to the shortcomings of the PointNet design, specific improvements are
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Figure 2.9: Architecture of PointNet [Qi et al., 2017a]

made in PointNet++ [Qi et al., 2017b] as shown in Figure 2.10.

Figure 2.10: Architecture of PointNet++ [Qi et al., 2017b]

1) Hierarchical feature learning. In PointNet, the global features are derived from

the max pooling, where a lot information is discarded. Instead, PointNet++ adopts

several set abstraction to downsample the feature maps. Thus local-global features

of different sizes are obtained in different levels.

2) Farthest point sampling (FPS). Since there are enormous number of points

and the points are not uniformly distributed, it is very difficult to extract features.

FPS is used for selecting a subset of points to represent the whole input points. To

achieve this goal, FPS first adds an initial point randomly to the selected point set.

Then, using the initial point as the target point, find the point farthest from it and

add that point to the selected point set. Update the target point to the newly found

point and iteratively search for the rest. The search will end until the number of

sampling points meets the requirement.

The PointNet series of methods provides a pioneering solution for deep learn-
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ing to extract features directly from point clouds. Modules such as FPS and SA

have been applied in many 3D object detection methods such as PointRCNN

[Shi et al., 2019]. The Figure 2.11 shows a common architecture of point-based 3D

object detector.

Sampling
(FPS)

Feature Learning
(SA)

Region
Proposal

Generation

Class
Bbox

Predict

Repeat N Times

Figure 2.11: Common architecture of Point-based 3D object detector

The PointNet++ is adopted by PointRCNN as the backbone network. For the

generation of bounding box proposals, PointRCNN introduces the bin-based 3D

bounding box generation module. After the foreground point segmentation mod-

ule, the separated foreground points are used for regression to generate bounding

box proposals. Bin-based 3d box generation is a coarse-to-fine method that could

accelerate training.

Sampling is a critical challenge for point-based methods. Too many sampling

points will affect the calculation efficiency, while too few of them will reduce the

accuracy. In addition, since the furthest point sampling is intrinsically a sequential

algorithm, it is a bottleneck in reference time.

• Voxel-based

The voxel-based methods attempt to convert the sparse point cloud into a dense

format. A voxel is considered as a pixel in a 3D space. Each voxel has the same size

and is allocated with a discrete coordinate. The general architecture of a voxel-based

3D detector is shown in Figure 2.12.
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Encoding
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Network

2D
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Sparse Voxel GridSparse Voxel Grid

Grid-wise 
Feature

Grid-wise 
Feature

BEV Feature Map

Figure 2.12: Architecture of a voxel-based 3D detector.
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VoxelNet [Zhou and Tuzel, 2018] is a pioneering work to apply voxel to the field

of 3D object detection. There are three modules in the VoxelNet which are 1) Feature

learning network. 2) Convolutional middle layers. 3) Region proposal network. The

whole architecture is similar to a traditional 2D two-stage object detector. Among

them, the feature learning network is designed for point cloud feature extraction

based on voxel.

Figure 2.13: Feature learning network of VoxelNet [Zhou and Tuzel, 2018].

1) Feature learning network. There are five steps in the feature learning net-

work as shown in Figure 2.13. First, the 3D space is separated by the voxel partition.

Followed by the grouping operation, which places the points into the voxels they

belong to. Then, the number of points is reduced using random sampling. Since the

3D space is voxel-partitioned, downsampling can be accelerated in a random way.

The next is the most important design, named voxel feature encoding (VFE) layer.

Figure 2.14: Voxel feature encoding of VoxelNet [Zhou and Tuzel, 2018]

As shown in Figure 2.14, there are three points in the voxel, and point-wise fea-

ture are extracted by the fully connected network. After that, locally aggregated
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feature is obtained by using maxpool. Then this local feature is concatenated to

each point-wise feature. The point-wise concatenated feature is then ready for the

next VFE layer. Finally, through an element-wise maxpool, a representative fea-

ture named voxel-wise feature is acquired. The voxel features are represented by

a 4-dimensional sparse tensor, which is used to reduce memory and computational

consumption during back propagation.

2) Convolutional middle layers. VoxelNet adopts 3D convolution layer which

could severely limit system performance. SECOND [Yan et al., 2018] proposes a

sparse convolutional middle layer to improve the computationally intensive prob-

lem. This layer has become a common component of voxel-based detectors.

3) Region proposal network. After the convolutional middle layers, the features

have been extracted. Then comes the regression of the bounding box. The 2D con-

volution layer could be applied directly since the feature maps are well transformed.

The region proposal network regresses the 7-dimensional vector representation of

the bounding box.

There is a special type of voxel partitioning named pillar. Pillar can be consid-

ered as a stacking of voxels along the depth direction. The architecture of the pillar-

based 3D object detector is shown in Figure 2.15.

2D
Convolution
Backbone

Detection
Head

PointNet
Encoding

Pillar-wise 
Feature

Pillars Feature BEV Feature Map

Figure 2.15: Architecture of the pillar-based 3D object detector.

PointPillars [Lang et al., 2019] is a representative pillar-based 3d object detec-

tor. Unlike the Voxel-based method, PointPillars converts point clouds into pseudo-

images by partitioning pillars and extracting features. In this way, the feature extrac-

tion is accelerated and the advanced 2D object detection module can be applied.

The most critical impact of voxel-based methods on detection performance is

the partitioning of voxels. Discrete voxels inevitably lose some structural informa-

tion. But at the same time, it also brings an increase in detection efficiency. For

example, PointPillars is capable of performing 3D object detection at a frequency

of up to 105Hz. Balancing voxel size and detection performance remains an open

challenge.
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• Point-voxel based methods

Since the point-based and voxel-based methods have their own advantages, a

point-voxel based fusion method is proposed. PVRCNN [Shi et al., 2020a] provides

an effective point-voxel based architecture for 3D object detection.

There are three steps in PVRCNN. 1) Voxel to 3D proposals. PVRCNN utilizes a

series of 3D sparse convolution to gradually convert the point cloud into 3D fea-

tures. Then the 3D features are converted into 2D bird-view feature maps and 3D

proposals are generated. 2) Voxel to keypoint. In parallel with the voxel-based

method the furthest point sampling algorithm is adopted to sample a group of key-

point. Then, PVRCNN introduces a voxel set abstraction (VSA) module to encode

the multi-scale features from voxel-based method into keypoints. 3) Keypoint to

grid. The RoI-grid pooling module is proposed to aggregate the keypoint features

to the RoI-grid points. In this way, it is capable to learn features for fine-grained

proposal refinement.

In conclusion, the point-voxel based algorithm sacrifices inference time to ob-

tain detection performance improvement compared to the voxel-based algorithm.

2.3.2 Image-based

Compared to LiDAR, the camera is an ideal sensor that is cheap and easy to acquire.

Many studies attempt to use images for direct 3D object detection. However, various

benchmark results show that the image-based method still exists a great gap with

the LiDAR-based method. The reason for this gap is the error in recovering the depth

information from the image. Two subdivisions of image-based methods have been

developed to compensate for defects in images : 1) Result-lifting based. 2) Feature-

lifting based.

• Result-lifting based

The method in the result-lifting subdivision decomposes the 3D object detec-

tion task into two tasks: 2D object detection and depth estimation.

GS3D [Li et al., 2019a] is a representative 3D detector based on monocular im-

ages. The 2D object detector is first applied to predict 2D bounding boxes. Then, a

coarse cuboid is derived from each 2D bounding box. Finally, the coarse cuboid is

refined by using a classification formulation with quality aware loss.
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Figure 2.16: Architecture of GS3D [Li et al., 2019a].

With disparity, better depth estimates can be obtained from stereo images.

Based on this property, stereo R-CNN [Li et al., 2019b] performs region proposal

network on a pair of images. In order to migrate 2D proposals to 3D space, more

features need to be extracted from the stereo images. One branch applies RoI align

and fully-connected layers to extract semantic information. The other branch pre-

dicts four 3D semantic keypoints which indicate four corners at the bottom of the

3D bounding box. Finally, all above information is sent to the 3D box estimation

module for final results.

• Feature-lifting based

The methods in this subdivision expect to lift features from 2D to 3D by gener-

ating point clouds or learning depth distribution. Pseudo-LiDAR [Wang et al., 2019]

is one of the representative methods.

Figure 2.17: Architecture of Pseudo LiDAR [Wang et al., 2019].

The architecture of Pseudo-LiDAR is shown in Figure 2.17. A depth estima-

tor first generates a depth map based on the input image. According to the back-

projection function, depth and pixel position can yield points in 3D space, which is

called pseudo-LiDAR. The modality of the data is transferred from the image to the

point cloud. As a result, any available LiDAR-based 3D detector could be applied.

2.3.3 Fusion-based

Both image and point cloud modalities have their own unique characteristics. Im-

age modality could provide color semantic information. While point cloud could
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accurately describe the contours of objects in 3D space. Ideally, the fusion of both

modalities should improve the accuracy of object detection. Yet, the fusion-based

approach do not outperform the LiDAR-based approach. Therefore, effectively

combining multiple modalities for 3D object detection remains an open challenge.

Due to the superior performance achieved by LiDAR-based detectors, existing

fusion-based approaches attempt to integrate image features in different parts of

LiDAR-based detectors. According to this principle, fusion-based methods can be

divided into three categories: 1) Early fusion. 2) Middle fusion. 3) Late fusion.
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Figure 2.18: Different types of multi-modal fusion.

• Early fusion

In early fusion way, the raw data or preprocessed data are fused. Algorithms

explore multi-modal data in the early stages to learn common features. The advan-

tage of this early fusion paradigm is that the network does not need to be designed

separately for the different modalities. Meanwhile, data alignment and sensor re-

placement can have a serious impact on the fusion system.

• Middle fusion

In addition to early fusion of data, middle fusion of features is also an option.

Through feature concatenation, middle fusion could take place in the backbone

network or the region proposal generation. For middle fusion, the effective aggre-

gation of features is the critical point.

• Late fusion

The late fusion scheme combines decision outputs of each domain specific net-

work of a sensing modality. It focus on the aggregation of different modality outputs.
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Late fusion avoids the complex design of middle fusion. As a price, the features of

the different modalities are not associated and may drop the enriched information.

It is worth noting that different stages of fusion can co-exist to help the network

make better use of multi-modal features. For example, both middle and late fu-

sion are performed in the MV3D [Chen et al., 2017] network. MV3D first projects

the point cloud into the bird eye view and front view. Then, with the original image,

these three images are treated like an image-based 3D detection procedure. After

RoI pooling, features are repeatedly fused until the final result is obtained.

A representative network for early fusion is MVXNet [Sindagi et al., 2019]. In or-

der to learn the interaction between different modalities, point cloud is projected

to image plane for feature extraction. Then the features of the projected points are

fused with the image features. Meanwhile, the other path adopts a LiDAR-based

method to extract point cloud features. After the point cloud features and image

features are concatenated, the VFE structure of VoxelNet is applied.

2.4 Metric

Average precision (AP) is a commonly adopted metric to evaluate model detection

performance in most benchmarks and competitions. The AP score reflects the com-

posite of precision and recall of the detector on one class of object. For multiple

classes, the mean average precision (mAP) could represent the comprehensive de-

tection performance of the detector. The process of calculating AP for both 2D and

3D object detectors is to first calculate the intersection over union (IoU), then plot

the precision-recall (PR) curve, and finally calculate the AP score.

From the detector, the bounding box (BBox) proposals are obtained. Compared

tools ground truth BBox, these proposals could be judged as correct or incorrect. A

common way to measure the similarity between the proposals and ground truth is

the intersection over union (IoU). The method collects the overlapping area and the

union area of a proposal BBox and its corresponding ground truth BBox and the IoU

score is the division of these two areas.

It is not necessary for the proposal BBox perfectly matches the ground truth

BBox. There is a threshold t which is used to classify the correctness. If the proposal

BBox IoU score is greater than t , then it is considered to be correct. The opposite is

considered to be incorrect.

The set of proposal BBox and ground truth BBox can be divided into three cat-
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egories: 1) True positive (TP), which indicates the correct proposal BBox. 2) False

positive (FP), which indicates the incorrect proposal BBox. 3) False negative (FN),

which indicates the unmatched ground truth BBox.

All proposal BBox are sorted according to the confidence score for drawing PR

curve. Since the proposal BBox have been given correctness and sorted, it is easy

to know the value of TP, FP and FN in each position of the sorted array. A pre-

cision score p at each recall r position is obtained, where p = TP/(TP + FP) and

r = TP/(TP+FN). By aggregating the precision values at every position of proposal

BBox, the PR curve can be plotted. The average precision score is the area under PR

curve.

The area under the curve is approximated by using several interpolated rectan-

gles. The number of interpolation points N is flexible, and more points brings higher

accuracy. The method of calculating the area under the PR curve by interpolating at

each recall is the all-point interpolation method. Taking the 11-point interpolation

method as an example, the AP is calculated as follows:

AP11 = 1

11

∑
R∈0,0.1,...,0.9,1.0

Pi t (R) (2.6)

where

Pi t (R) = maxR′:R′≥RP(R′) (2.7)

The mAP which is used to measure the detection accuracy over all classes C is

acquired by:

mAP = 1

C

C∑
i=1

APi (2.8)

2.5 Conclusion

In this chapter, we presented the background of the object detection. Deep learn-

ing is one of the fundamental techniques for many computer vision tasks. It learns

to extract features directly from the raw data. This provides an important basis for

the development of object detection. Two types of detection architecture have been

developed for 2D object detection using deep learning. After the features extracted

by CNN, one architecture directly regresses the object location, the other one gener-

ates region proposals which are then classified. 3D object detection is an extension

of 2D object detection. With a feature extractor designed for 3D data, it converts the
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3D object detection to 2D object detection. At the end, we presented the metric to

evaluate the object detection, the average precision.
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3.1 Motivation

Existing N-point interpolation methods generate large errors in the average preci-

sion calculation for object detection. These errors lead to average precision dis-

tortion, which makes it impossible to accurately evaluate the performance of the

model. We investigate the reason for the average precision distortion and propose

an enhanced N-point interpolation method. These improvements are based on the

N-point interpolation method and can be summarized in two parts: 1) The interpo-

lation point position is changed to the middle interpolation. 2) Dynamic selection

of parameters for calculating the area of the interpolation interval. Experiments ver-

ify the existence of severe average precision distortion in the N-point interpolation

method. Furthermore, the proposed enhanced N-point interpolation method re-

duces the average precision distortion by more than 90% to only 0.04%. In this way,

the enhanced N-point interpolation method is able to replace the all-point interpo-

lation method for fast and accurate evaluation of object detection model.

3.2 Problem

3.2.1 Introduction

Object detection is an essential backbone component of many computer vision

applications, such as autonomous driving [Zhang et al., 2021b, Zhang et al., 2021a],

medical diagnosis [Lung et al., 2021], and video understanding [Han et al., 2020]. In

order to determine the performance of various detection models, an accurate eval-

uation metric is fundamental. For object detection task, the average precision is a

widely adopted metric that considers both precision and recall for the final score.

According to the definition [Zhu, 2004], the average precision is the area un-

der the precision-recall curve, which can be calculated using the all-point interpo-

lation method. The all-point interpolation method is a definite integral method,

where it is accurate, but computationally intensive. [Everingham et al., 2010,

Geiger et al., 2012, Lin et al., 2014] have adopted another kind of fast algorithm for

average precision calculation called the N-point interpolation method. It requires

only N calculations to obtain an approximate average precision value, usually N can

be chosen as 11 or 101.

Inevitably, the increase in speed brings a decrease in accuracy. There is an er-
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ror in the average precision calculated by the N-point interpolation method, which

we call the average precision distortion. The amount of average precision distor-

tion can be determined by calculating the average precision difference between

the N-point interpolation method and the all-point interpolation method. Average

precision distortion is common in the N-point interpolation method, and it causes

chaotic evaluation results on the model performance. In [Simonelli et al., 2019], the

authors describe the average precision distortion that exists at the first interpolation

point and leads to an overestimation of the model. In addition, average precision

distortion may cause several anomalies as follows. A1) A better performing detec-

tor may have a lower average precision score instead. A2) Two different performing

detectors may have the same average precision value. A3) The average precision of

two similar performing detectors may be too far apart.

Notably, the average precision distortion is a systematic error, which can be re-

duced by improving the existing methods. Therefore, we propose an enhanced N-

point interpolation method based on the N-point interpolation method by chang-

ing the interpolation point position and the area calculation parameters of the in-

terpolation interval. The experimental results show that the average precision dis-

tortion of the enhanced N-point interpolation method is reduced by more than

90%. In particular, the enhanced 40-point interpolation method has an aver-

age precision distortion of only 0.04% on the KITTI 3D object detection dataset

[Geiger et al., 2012].

3.2.2 Related works

The precision and recall of the detection are the foundation for calculating the aver-

age precision. Along with true positives (TP), false positives (FP) and false negatives

(FN), precision and recall can be defined by Equation 3.1.

Pr eci si on = Nt p

Nt p +N f p
= Nt p

Nd t

Recal l = Nt p

Nt p +N f n
= Nt p

Ng t

(3.1)

Where Nt p means the number of true positives. N f p means the number of false

positives. N f n means the number of false negatives. Nd t means the number of de-

tection results and Ng t means the number of ground truths.

The Precision-Recall (PR) curve can be drawn based on the recall rate and the
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corresponding precision value. The average precision score is the area under the PR

curve. There are two type of methods to calculate the Area Under the Curve (AUC):

the all-point interpolation method and the N-point interpolation method.

3.2.3 All-point interpolation method

The recall is discrete in the range [0,1] with an interval of 1/Ng t . According to the

principle of definite integration, the area under the PR curve can be obtained by

summing the area of the rectangle at each recall. Therefore, the all-point interpola-

tion method is defined in Equation 3.2.

APall =
1

Ng t

∑
R∈Ral l

Pmax(R)

Pmax(R) = max
R′:R′≥R

P(R′)
(3.2)

Where the set of interpolation points for the all-point interpolation method is

Ral l = {1/Ng t ,2/Ng t , ...,Nt p /Ng t }. The Nt p is the number of true positives. P(R′)
is the precision at the interpolation point R′. The condition R′ : R′ ≥ R indicates that

the Pmax(R) is the maximum precision among the interpolation point R and subse-

quent interpolation points.

The all-point interpolation method has an accurate calculation of the area un-

der the PR curve. However, its computational effort increases significantly with the

amount of data. The variety of task modes and parameter choices available in object

detection further complicates the situation. Moreover, considering that the bench-

mark and competition platform have to deal with a large number of detection mod-

els, a lower evaluation speed is unacceptable. Therefore, it is essential to find a fast

and accurate average precision calculation method that could replace the all-point

interpolation method.

3.2.4 N-point interpolation method

To simplify the all-point interpolation method, the N-point interpolation method

divides the entire recall interval [0,1] into N regions. The area under the PR curve

for each interpolation interval is approximated by the area of the rectangle at the in-

terpolation point. The definition of the N-point interpolation method is presented

in Equation 3.3.
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APN = 1

N

∑
R∈RN

Pmax(R)

Pmax(R) = max
R′:R′≥R

P(R′)
(3.3)

Where RN is the set of N interpolation points. Specifically, R11 =
{0,1/10,2/10, ...,10/10} for 11-point interpolation method [Geiger et al., 2012]. R40 =
{1/40,2/40, ...,40/40} for 40-point interpolation method [Simonelli et al., 2019].

R101 = {0,1/100,2/100, ...,100/100} for 101-point interpolation method

[Lin et al., 2014].

Paper [Simonelli et al., 2019] identifies an anomaly in the average precision

score of the 11-point interpolation method at the first interpolation point. After

a thorough study, we realize that this anomaly phenomenon exists in all kinds of

N-point interpolation method and seriously affects the accuracy for model perfor-

mance evaluation. The most essential presentation of the problem is the error in

the average precision calculated by the N-point interpolation method compared to

the all-point interpolation method. We refer to this error as average precision dis-

tortion, which has been fully analyzed in the next chapter.

3.3 Average Precision Distortion

The N-point interpolation method calculates only the rectangular area of N interpo-

lation intervals under the PR curve. There exists a certain error between the rectan-

gular area and the area under the curve. Besides, the N-point interpolation method

ignores the differences between the interpolation intervals, resulting in average pre-

cision values that contain significant errors. These are the vital causes of average

precision distortion.

To observe the average precision distortion, we propose a novel average preci-

sion increase (API) curve, as shown in Figure 3.1(a) and 3.1(b). The API curve is

obtained by calculating the area under the PR curve segment using the N-point in-

terpolation method continuously as the recall increases. By comparing with the

exact area under the PR curve segment referred to as the standard API curve, the

average precision distortion of N-point interpolation method can be determined.

The procedure to formulate the API curve is as follows. For a certain PR curve,

we intercept a segment [0,Rn] of this curve, where the recall Rn = n/Ng t ×100%, n =
0,1,2, ...,Ng t . The area under the PR curve segment is then calculated by using the
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N-point interpolation method. Eventually a series of average precision scores can

be obtained, forming the API curve. By replacing the N-point interpolation method

with the all-point interpolation method, the standard API curve can be acquired.

(a) (b)

Figure 3.1: (a) The average precision increase (API) curve of 11-point interpolation method
(11-P API Curve). (b) The average precision increase curve (API) of 40-point interpolation
method (40-P API Curve). Both the 11-P and 40-P API curves have various anomalies com-
pared to the standard (Std.) API curve. IP is interpolation point. IT is interpolation interval.

PRex =
{

e
5.4 n

Nt p
−5.7 +1 ,n = 0,1, . . . ,Nt p

0 ,n = Nt p +1, . . . ,Ng t

(3.4)

To simplify the quantitative analysis, PRex in Equation 3.4 is chosen as a repre-

sentative PR curve. PRex = e5.4n/Nt p−5.7+1 on the recall [0,Nt p /Ng t ]. PRex = 0 on the

recall [Nt p /Ng t ,100%]. The recall is acquired as n/Ng t . The number of ground truth

Ng t = 100 and the number of true positives Nt p = 86. The PRex curve is shown as

the blue line in Figure 3.1(a) and (b). It is important to note that the above parame-

ters are chosen to facilitate the presence of average precision distortion. The same

conclusion can be obtained by replacing the parameters for the investigation.

For the 11-point interpolation method, the process to obtain the API curve of

PRex is as follows. First, the average precision value ap1 of the PRex curve segment

[0,1%] for n = 1 is computed by the 11-point interpolation method. Then, for the

PRex curve segment [0,2%] where n = 2, the ap2 can be acquired. Repeat to increase

n until ap86 is obtained, where n = Nt p . We obtained a series of average precision

values [ap1, ap2, . . . , ap86] which is the API curve obtained by increasing n.

In Figure 3.1(a), the red line is the API curve of the 11-point interpolation method

and the green line is the standard API curve. The difference between the two curves

at the same recall rate indicates the presence of average precision distortion. The
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further the distance between the two curves is, the more severe the average pre-

cision distortion is. It can be clearly seen that the average precision distortion is

numerically variable and always exists.

Four points of the 11-P API curve in Figure 3.1(a) are chosen for comparative

analysis which are R45, R49, R53 and R54. Among them, R45 is the first point of the in-

terpolation interval IT6. R49 is the interpolation point position of the IT6. R53 is the

last point of the IT6. R54 is the first point of the IT7. The average precision values of

these four points can be regarded as obtained by calculating four similar PR curves

using the 11-point interpolation method. Assuming the four PR curves correspond-

ing to four detectors, Det1, Det2, Det3 and Det4. Then the performance ranking

of the four detectors can be determined based on the difference in area under the

curve as Det1 < Det2 < Det3 < Det4. However, multiple anomalies exist on the API

curve that differ from the above conclusion.

A1) Compare the point R45 and R49, the APN|R45 = 53.27% > APN|R49 = 53.12%,

which means the performance of Det1 is better than Det2. It is contrary to the

real situation, indicating that better performing detectors may instead obtain lower

average precision scores.

A2) Compare the point R49 and R53, the APN|R49 = 53.12% = APN|R53 , which im-

plies that Det2 has the same performance as Det3. This indicates that more correct

detection results may not lead to a change in average precision.

A3) For the point R53 and R54, despite the increase of only one true positive,

the average precision increased by APN|R54 − APN|R53 = 8.15%. However, for average

precision values within the same interpolation interval, the difference between R45

and R53 is only 0.15%. This indicates that average precision distortion can cause two

detectors with similar performance to obtain average precision scores that differ

significantly.

Figure 3.1(b) shows the API curve of the 40-point interpolation method based on

the same PR curve in Figure 3.1(a). Similar to the 11-point interpolation method, the

40-point interpolation method also suffers from average precision distortion prob-

lem, which is a common defect of the N-point interpolation method and needs to

be improved.

The main reason for the average precision distortion is that the N-point inter-

polation method does not calculate the area of the last valid interpolation interval

correctly. The recall range of the PR curve is ν = [0,Re ]. The valid interpolation in-

terval refers to the interpolation interval [Rl ,Rr ]∩ν is not null. As shown in Figure
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3.1(a), from IT1 to IT10 are the valid interpolation intervals and the IT10 is the last

valid interpolation interval.

(a) (b) (c) (d)

Figure 3.2: (a) The area under the PR2 curve is larger yet the average precision score (The
orange area) is lower. (b) The area under the PR1 and PR2 curves are different while the
average precision scores are the same. (c) The difference in area under the PR1 and PR2

curves is small but the difference in average precision scores is large. (d) Dynamically selects
the area calculation parameters for the last valid interpolation interval. Re1 and Re2 are
the last point of the PR1 and PR2, respectively. Re

i p and Re−1
i p are the interpolation points.

The valid interval width T is the actual mapping length of the PR curve segment on the
Recall axis. The dynamic interpolation point for the last interpolation interval Rd

i p is the
interpolation point located in the middle of T. Better viewed in color.

Calculating the area Si of each valid interpolation interval requires the use of the

precision value at the interpolation point Pmax(Ri
i p ), as shown in Equation 3.5.

Si = 1

N
×Pmax(Ri

i p ) (3.5)

Where the Ri
i p is the ith interpolation point. The Pmax(Ri

i p ) the maximum preci-

sion of the interpolation point Ri
i p and subsequent interpolation points. N is the

total number of interpolation points. The Equation 3.5 is calculating the area of a

rectangle with width 1/N and height Pmax(Ri
i p ).

Unlike other valid interpolation intervals, there are two possibilities for deter-

mining the value of the interpolation point in the last valid interpolation interval.

The determination of which case it belongs to is based on the relationship between

the last point in PR curve Re = Nt p /Ng t and the interpolation point Re
i p of the last

valid interpolation interval.

• (1) Re < Re
i p . In this case, the N-point interpolation method makes Re

i p = Re .

As shown in Figure 3.2(a), the Re
i p = Re1 for the PR1 and Re

i p = Re2 for the PR2.

• (2) Re ≥ Re
i p . In this case, there is a valid value of Re

i p as shown in Figure 3.2(b).
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Both of these two cases of determining Re
i p could cause severe average precision

distortion. Suppose there are two PR curves, PR1 and PR2, as shown in Figure 3.2(a).

Re1 and Re2 are the last points on the PR1 and PR2 curves, respectively. The segment

[0,Re1] of PR2 curve is exactly the same as PR1 curve. Therefore, it should be S(PR2) >
S(PR1) when comparing the area S under the curve. However, since Re1,Re2 < Re

i p ,

then for the PR1 curve, Re
i p = Re1 and for the PR2 curve, Re

i p = Re2. As a result, APPR2 <
APPR1 . This is the opposite of the actual situation. This proves the case described

above, that a better detector yet has a lower average precision score.

For the Re ≥ Re
i p shown in Figure 3.2(b), P(Re

i p ) has a valid value. It implies that

for the PR1 and PR2 curves, the average precision scores will be the same. This is

the reason why more correct detection results do not lead to a change in average

precision.

Figure 3.2(c) shows a special case where PR2 has one more true positive com-

pared to PR1, that leads to one more interpolation interval. For this reason, even

though the actual difference between the area under the PR1 and PR2 curves is

slight, there will be a significant difference between APPR1 and APPR2 . This is the

trigger for the sudden leap in the API curve near the interpolation interval in Figure

3.1(a) and (b).

3.4 Enhanced N-point interpolation method

To address the average precision distortion, we propose an enhanced N-point in-

terpolation method to achieve better accuracy and stability in the average precision

calculation. The enhanced N-point interpolation method includes the following

two improvements based on the N-point interpolation method.

3.4.1 Middle interpolation point position

The selection of the interpolation point position is very important because its pre-

cision value is the height of the interpolation interval rectangle. Since every inter-

polation interval is different, the ideal interpolation point position inevitably differs

as well. Therefore, we need to find the representative interpolation point position

so that the error of area calculation for all interpolation intervals is minimized.

The positions of the interpolation points that minimize the average precision

distortion µ for each interpolation interval of the PRex curve are shown in Table
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3.1. The average precision calculation method is the 11-point interpolation method.

The average precision distortion µ= APA−AP11. APA is the average precision calcu-

lated by the all-point interpolation method. AP11 is the average precision calculated

by the 11-point interpolation method. PRex = e5.4n/Nt p−5.7 +1, n = 0,1, . . . ,Nt p . The

number of true positive is Nt p = 840. The number of ground truth is Ng t = 1000.

The recall can be obtained by n/Ng t ×100%.

Table 3.1: The positions of the interpolation points that minimize the average precision
distortion for each interpolation interval of the PRex curve. PRex = e5.4n/Nt p−5.7 + 1, n =
0,1, . . . ,Nt p . The number of true positive is Nt p = 840. The number of ground truth is
Ng t = 1000.IT means the interpolation interval. IP means interpolation point position. The
preferred interpolation point positions are near the middle.

IT IT1 IT2 IT3 IT4 IT5 IT6 IT7 IT8 IT9

IPbest 90 27 37 42 45 46 47 48 48

The PRex curve is divided into 11 interpolation intervals by the 11-point inter-

polation method. The interpolation intervals 1 to 10 are the valid interpolation in-

tervals. The interpolation interval 10 is the last valid interpolation interval. Here, we

focus on the interpolation point position for the interpolation interval 1 to 9.

Each interpolation interval has 90 points. Every point is used as an interpolation

point to calculate the average precision distortions. The interpolation point posi-

tion with the lowest average precision distortion among the 90 values is selected to

form the Table 3.1.

We also inspect the interpolation point position for the 40-point interpolation

method. There are 34 valid interpolation intervals. Each interpolation interval has

25 points and the middle of the interpolation interval is 13. For the interpolation

intervals 1 to 33, the average preferred interpolation point position is 13 which is

the middle of the interpolation interval.

Table 3.2: The average precision distortion µ caused by different interpolation point posi-
tion. Middle interpolation (Middle Interp) has the best performance.

Slide Interp End Interp Middle Interp
11-P µ 1.0107% 3.1941% -0.1620%
40-P µ 0.2900% 0.8925% -0.0111%

The average precision distortion caused by different interpolation point posi-

tions is shown in Table 3.2. The average precision distortion generated by cal-

culating the last valid interpolation interval is not included in the table. The
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results demonstrate that the middle interpolation has the least average preci-

sion distortion. Three different interpolation point positions are shown in Fig-

ure 3.3. The slide interpolation is used for the 11-point interpolation method

[Everingham et al., 2010, Geiger et al., 2012] and 101-point interpolation method

[Lin et al., 2014]. The end interpolation is used for the 40-point interpolation

method [Simonelli et al., 2019]. We propose to use the middle interpolation in the

enhanced N-point interpolation method.

Figure 3.3: Three interpolation point positions.

3.4.2 Dynamically select area calculation parameters

The incorrect area calculation of the last valid interpolation interval is the major

contributor to the average precision distortion. As shown in Figure 3.2(d), the cor-

rect calculation of the area under the PR curve segment for the last valid interpo-

lation interval requires changing the parameters according to the actual situation.

Suppose there are M valid interpolation intervals and the Mth is the last valid in-

terpolation interval. For the interpolation intervals from 1 to M− 1, the N-point

interpolation method is employed for the calculation.. For the last valid interpola-

tion interval, the parameters of the area calculation are dynamically selected. The

enhanced N-point interpolation method is derived as Equation 3.6.

APeN = 1

N

M−1∑
i=1

Pmax(Ri
i p )+T×P(Rd

i p )

Pmax(Ri
i p ) = max

R′:R′≥Ri
i p

P(R′)
(3.6)

The number of valid interpolation intervals M and the middle interpolation

points Ri
i p are calculated as follows. ⌈∗⌉ means rounding up.
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M = ⌈Nt p ×N

Ng t
⌉

Ri
i p = 2i +1

2N
, i ∈ [0,1, . . . ,N−1]

(3.7)

The valid interval width T = Nl t p /Ng t . The number of true positives for the last

valid interpolation interval Nl t p and the dynamic interpolation point for the last

interpolation interval Rd
i p can be acquired as follows. ⌊∗⌋ means rounding down.

Nl t p = Nt p −⌊Ng t

N
× (M−1)⌋

Rd
i p = ⌈Nl t p

2 ⌉+⌊Ng t

N × (M−1)⌋
Ng t

(3.8)

For the last valid interpolation interval M, the interpolation point position Rd
i p

is dynamically selected. And the interpolation interval width is changed from 1/N

to T. By the above two changes to the N-point interpolation method, the enhanced

N-point interpolation method can effectively reduce average precision distortion.

Table 3.3: The average precision distortion µ caused by different interpolation point posi-
tion for the last valid interpolation interval. Dynamically selects the area calculation param-
eters (Dyn Interp) has the best performance.

Slide Interp End Interp Dyn Interp
11-P µ -1.7141% -1.7141% 0.0036%
40-P µ -0.2157% -0.2157% -0.0004%

PRex is used to verify the effect of dynamically selects the area calculation

parameters for the last valid interpolation interval. PRex = e5.4n/Nt p−5.7 + 1, n =
0,1, . . . ,Nt p . The number of true positive is Nt p = 840. The number of ground truth

is Ng t = 1000. As shown in Table 3.3, the average precision distortion caused by the

dynamically selected parameters is much less than other methods.

In comparing with Table 3.1, the slide interpolation used in the 11-point interpo-

lation method and the end interpolation used in the 40-point interpolation method,

the average precision distortion produced on the last valid interpolation interval is

almost the same value as the average precision distortion produced cumulatively in

all other interpolation intervals. It suggests that the last valid interpolation interval

is a critical source of average precision distortion for the classical method.
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3.4.3 Average precision calculation speed

In addition to the accuracy of average precision calculations, we are also concerned

about the speed of the calculation. One of the most important advantages of the

N-point interpolation method over the all-point interpolation method is that the

average precision can be calculated faster. In the enhanced N-point interpolation

method, the change in the interpolation point position does not lead to an increase

in computational effort. The increased calculation time for dynamic selection of

area calculation parameters is negligible. Therefore, the enhanced N-point interpo-

lation method is a fast average precision calculation method as well as the classical

N-point interpolation method.

3.5 Experiments and results

3.5.1 Methodology

The experiments for verifying the performance of the enhanced N-point in-

terpolation method are conducted on the KITTI 3D object detection dataset

[Geiger et al., 2012]. There are three advantages of choosing the KITTI dataset. 1)

A total of 7481 labeled frames available for training and testing. It is sufficient for a

comparative experiment of different average precision calculation methods. 2) The

KITTI dataset contains a variety of testable tasks, including 3 detection modes, 3

classes, 3 difficulties and 2 overlap thresholds, with a total of 54 different precision-

recall curves for average precision calculation. 3) KITTI is one of the most well-

known autonomous driving datasets with a large number of outstanding models

available for testing.

In order to compare the average precision calculation methods, three baseline

detectors are adopted to generate detection proposals for average precision calcula-

tion, which are SECOND [Yan et al., 2018], PointPillars [Lang et al., 2019] and PartA2

[Shi et al., 2020a].

There are two average precision calculation methods adopted by the KITTI

dataset, the 11-point interpolation method [Geiger et al., 2012] and 40-point in-

terpolation method [Simonelli et al., 2019]. After improvement, the enhanced 11-

point interpolation method and the enhanced 40-point interpolation method are

obtained. In conclusion, a total of four average precision calculation methods are

examined.
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The target of the N-point interpolation method is to replace the all-point inter-

polation method with a minor cost. The more consistent the average precision cal-

culated by the N-point interpolation method APN is with the all-point interpolation

method APA, the more accurate this N-point interpolation method is. Therefore,

the average precision distortion µ can be quantified by µ= APA −APN.

As the range of average precision distortion varies widely, in some cases it is dif-

ficult to compare the improvement effect since the average precision distortion is

almost zero. To facilitate the observation, relying on the diversity of evaluation task

modes provided by the KITTI dataset, we propose to use the mean of absolute aver-

age precision distortion ¯|µ| metric, as shown in Equation 3.9.

¯|µ| = 1

3×3×3×2

3∑
m=1

3∑
c=1

3∑
d=1

2∑
o=1

|µ|

= 1

54

3∑
m=1

3∑
c=1

3∑
d=1

2∑
o=1

|APN|m,c,d ,o −APA|m,c,d ,o |
(3.9)

Where m ∈ [1 : 2D,2 : BEV,3 : 3D] is the task mode. c ∈ [1 : Car,2 : Pedestrian,3 :

Cyclist] is the detection classes. d ∈ [1 : Easy,2 : Moderate,3 : Hard] is the difficulty

of object. o is the overlap threshold for true positive. A smaller value of ¯|µ| indicates

that this average precision calculation method is more accurate.

The standard deviation of average precision distortion σ in Equation 3.10 re-

flects the instability of the model performance evaluation caused by the average

precision distortion.

σ=
√∑

(µ− µ̄)2

54
(3.10)

Where µ̄ is the mean of all average precision distortion values for the detection pro-

posals of a baseline detector. The σ reflects the average precision distortion varia-

tion of the average precision calculation method. The smaller σ indicates that the

method is more stable in evaluating the performance of the detection model.

3.5.2 Analysis of Experiment Results

The mean of absolute average precision distortion is shown in Table 3.4. It is clear

that the enhanced 40-point interpolation method e40-P produces the least average

precision distortion, which is usually around 0.04%. In contrast, the 11-point inter-

polation method 11-P and the 40-point interpolation method 40-P cause too much
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average precision distortion. We consider that these two evaluation metrics may

not be suitable for the KITTI dataset.

Table 3.4: Mean of absolute average precision distortion ¯|µ|. The enhanced 40-point in-
terpolation method e40-P has the smallest ¯|µ| and therefore the best accuracy of average
precision calculation.

¯|µ| 11-P 40-P e11-P e40-P
SECOND 1.7393% 0.8166% 0.1733% 0.0430%
PointPillars 1.2262% 0.8289% 0.1177% 0.0419%
PartA2 1.6654% 0.5262% 0.1004% 0.0470%

In addition, the average precision distortion of the enhanced 11-point interpola-

tion method e11-P is much smaller than that of the 40-point interpolation method.

It indicates that the two improvements for the N-point interpolation method are

successful in reducing the average precision distortion.

Compared to the 11-point interpolation method, the enhanced 11-point inter-

polation method reduces the average precision distortion by 90.03%, 90.40% and

93.97%, respectively. Compared to the 40-point interpolation method, the en-

hanced 40-point interpolation method reduces the average precision distortion by

94.73%, 94.94%, and 91.06%, respectively.

Table 3.5: Standard deviation of average precision distortion σ. The enhanced 40-point
interpolation method e40-P has the smallest σ and therefore the best stability of average
precision calculation.

σ 11-P 40-P e11-P e40-P
SECOND 2.2143% 0.7848% 0.1979% 0.0578%
PointPillars 1.5293% 0.8525% 0.1140% 0.0541%
PartA2 1.7240% 0.5693% 0.0945% 0.0582%

Table 3.5 shows the standard deviation of average precision distortionσ. Among

the four methods, the most stable average precision evaluation metric is the en-

hanced 40-point interpolation method, and the worst is the 11-point interpolation

method.

Compared to the 11-point interpolation method, the enhanced 11-point inter-

polation method reduces the σ by 91.06%, 92.54% and 94.51%, respectively. Com-

pared to the 40-point interpolation method, the enhanced 40-point interpolation

method reduces the σ by 92.63%, 93.65%, and 89.77%, respectively.
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In conclusion, among the four N-point interpolation methods, the enhanced

40-point interpolation method is able to calculate average precision accurately and

stably. For the KITTI dataset, the enhanced 40-point interpolation method can be

used to reduce the average precision distortion and evaluate the performance of the

detection model more reliably.

3.6 Conclusion

Average precision distortion problem seriously affects the application of the N-

point interpolation method in object detection model evaluation. In order to solve

the average precision distortion, we proposed an enhanced N-point interpolation

method for accurate and stable average precision calculation. For this purpose, two

improvements were carried out on the N-point interpolation method. 1) The in-

terpolation point position was chosen to be the middle interpolation instead of the

slide interpolation or end interpolation. 2) The area of the last valid interpolation

interval was dynamically calculated, making the selected parameters more compat-

ible with the real situation and reducing average precision distortion.

Future work will focus on the study of the relationship between the amount of

data and the selection of parameter N. In combination with the enhanced N-point

interpolation method, a fast and accurate average precision calculation method that

could automatically adapt to different data amounts would be available.
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4.1 Motivation

Detecting pedestrians at high speed in high resolution (HR) images is important for

preventing collisions in autonomous vehicle. The HR images provide more detail in-

formation while creating a heavy computational load, resulting in slower detection

speed. The existing image optimization methods could cause more computational

consumption or information loss. We try to find an image optimization model that

works for the entire dataset, even for continuously collected data.

We find that the pedestrians are usually not present in the upper part of the HR

image, due to the camera vertical field of view and the distance between pedestrian

and camera. We named this area a non-pedestrian area (NPA). Therefore, we are

able to reduce the calculation time while maintaining the detection accuracy by re-

moving NPA from the HR image. According to this concept, we propose a novel

pedestrian detection acceleration algorithm called Non-Pedestrian Area Estimation

(NPAE). The NPAE algorithm estimates and removes non-pedestrian areas of the

image, followed by pedestrian detection of the NPAE output image.

4.2 Introduction

The pedestrians are one of the vulnerable roles of public transportation since they

tend to suffer more injuries when a collision occurs between vehicles and pedestri-

ans [Batouli et al., 2020]. According to the World Health Organization (WHO) 2020

Road Traffic Injury Report, more than 67,500 pedestrians, cyclists and motorcyclists

die in road traffic accidents every year [Calvi et al., 2020]. Injury risk factors are

mainly caused by human error, such as speeding, driving under the influence of

alcohol. Based on fast and accurate pedestrian detection, autonomous vehicle (AV)

can avoid these kinds of human errors and significantly reduce traffic accidents and

casualties.

Pedestrian detection technology has made great progress in the past decade

[Brunetti et al., 2018] due to deep neural networks. As more and more layers are

adopted, deep neural networks usually have higher detection accuracy. The in-

creased complexity requires more computing resources and usually consumes ad-

ditional computing time.

In an emergency, even if the braking system responds immediately, AV still

needs a long braking distance. For example, the speed limit on French city roads
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is 50 km/h [Goverment, 2020] and the braking distance is 14.5 m according to

[Sabri and Fauza, 2018]. To ensure pedestrian safety, pedestrian detectors are re-

quired to locate targets at the farthest possible distance. Not only that, but the de-

tector also needs to be fast enough to gain reaction time for the AV.

High-resolution (HR) image is required to detect pedestrian targets at long

distances. HR image has many advantages, such as improved detection re-

sults [Bosquet et al., 2020]. It is also a basic need for autonomous driving

[Huang et al., 2018]. The rich detail information provided by HR images improves

the accuracy of long-distance detection. However, it increases the amount of com-

putational consumption and time. Therefore, Pedestrian detection needs to be ac-

celerated and kept accurate.

Most of the advanced acceleration methods are summarized in

[Cheng et al., 2018], such as pruning, low-rank approximation, quantization,

knowledge distillation and compact network design. All mentioned methods are

based on optimizing deep neural networks for acceleration. These methods are

incredible in thought and design, and have significant effects in practical.

However, we noticed that the input image is an under-optimized part of the

detection process. There are two processing methods for the image input to the

detector. One method is to compress the input image to a fixed size as in the

[Liu et al., 2016, Redmon and Farhadi, 2017]. Another method crops part of the im-

age area, such as [Geiger et al., 2013]. Both of these image processing methods are

very convenient. Nevertheless, the compress-image method results in a loss of de-

tection accuracy. The crop-image method can only be used with an existing dataset

and acquisition environment. Changes in camera model, spatial position, and scal-

ing require researchers to redesign the system.

We observe that the HR images obtained by autonomous vehicles contain some

areas without pedestrians. We named this area a Non-Pedestrian Area (NPA). We

find that there is a relationship between the region size of NPA in the image and the

environmental parameters. The environmental parameters contain camera height,

camera pitch angle, camera vertical field of view (FOV), the distance between the

pedestrian and the camera, pedestrian height and vertical resolution of the image.

Therefore, we propose the Non-Pedestrian Area Estimation (NPAE) algorithm to de-

scribe the relationship between the two factors. Afterwards, the NPAE algorithm

can estimate the NPA based on the environmental parameters. Once the NPA is ac-

quired, we remove the non-pedestrian area from the HR image and then send the
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processed image to the subsequent pedestrian detector.

We first design an experiment to verify the correctness of the NPAE algorithm.

Then, the algorithm acceleration performance is tested on the JAAD dataset both on

the GPU platform and the CPU platform. Finally, the performance of the algorithm

in extreme cases is tested on the Caltech dataset which has a plentiful variety of

scenarios. Among them, the JAAD dataset contains two types of high-resolution

images, 1920× 1080 pixels and 1280× 720 pixels. The Caltech data set contains a

low-resolution 640×480 pixels image.

The NPAE algorithm is proposed for acceleration pedestrian detection. It works

by estimating and cropping the Non-Pedestrian Area of the image. Due to the re-

duction of image size, the pedestrian detector can process faster. Moreover, the ac-

curacy of the pedestrian detector can be maintained because the pedestrian area of

the image is not modified. The NPAE algorithm has several highlights: 1) The NPAE

algorithm can calculate and crop the Non-Pedestrian Area uniformly for the images

acquired under the same capture conditions. 2) The NPAE algorithm does not re-

quire training and is capable of accelerating a variety of state-of-the-art pedestrian

detectors. 3) The proposed algorithm is an image data optimization method that

can also be used in a variety of applications such as image segmentation, object

tracking.

4.3 Related Work

4.3.1 Pedestrian Detectors

Integrate Channel Features (ICF) is a classic pedestrian detection method. The ICF

detector involves channel feature pyramids and boosted classifiers. Subsequent

work such as Aggregated Channel Features (ACF), Locally Decorrelated Channel

Features (LDCF), and SquaresChnFtrs (SCF) are based on ICF for further improve-

ment [Zhang et al., 2016].

In recent years, machine learning methods such as SVM, ELM, ANN, CNN have

gradually replaced manual design rules. In the field of pedestrian detection, deep

learning has been adopted by most algorithms with excellent performances. These

algorithms based on deep neural networks have higher detection accuracy, but they

still need huge calculation during training and testing. The following are several

classic neural network detectors:
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RCNN [Girshick et al., 2014] uses the selective search to extract a large number

of region proposals. These regions are converted into fixed-size images and sent

to convolutional neural networks to detect and classify. Fast RCNN [Girshick, 2015]

extracts features only once to generate region proposals. This task solves the prob-

lem of RCNN by repeatedly extracting features and increases the network detection

speed. Faster R-CNN [Ren et al., 2015] further proposes a candidate region network

(RPN), which can generate region proposals more efficiently.

YOLO [Redmon et al., 2016] uses the entire image as the input of the network

and directly returns the position of the bounding box and the class it belongs to

in the output layer, which greatly speeds up the detection. After that, YOLOv2

[Redmon and Farhadi, 2017] combined the advantages of RCNN-like algorithms to

further improve the detection accuracy and speed.

RetinaNet [Lin et al., 2017b] is a one-stage object detector. Usually, the one-

stage detector has a faster detection speed, but the detection accuracy is not as

good as the two-stage detector. RetinaNet adopts the Feature Pyramid Network

(FPN) from [Lin et al., 2017a] as the backbone network. The FPN fuses different lev-

els of features through lateral connections. Due to this architecture, the network

can effectively construct a rich multi-scale feature pyramid from the input image.

RetinaNet also introduces a novel loss function called the focal loss to solve the

foreground-background imbalance problem. These designs ensure that RetinaNet

is an efficient and accurate detector. Therefore, we chose RetinaNet as the reference

of the pedestrian detector to test the performance of the proposed NPAE algorithm.

4.3.2 Pedestrian Detection Acceleration

Neural Network Optimization

The current mainstream idea for neural network acceleration is to optimize the neu-

ral network structure to reduce network complexity and calculation. According to

different perspectives of network optimization strategies, it can be divided into the

following five categories:

Pruning [Guo et al., 2016]: The pruning method assumes that many neural net-

work parameters are not necessary and deletes them. The pruning method pre-

serves the structure of the neural network and reduces the computation. However,

the pruning process usually is not lossless to accuracy.

Low-rank approximation [Zhang et al., 2015]: Low-rank approximation re-
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duces the dimension of the convolutional kernel which will facilitate computation.

Quantization [Wu et al., 2016]: This method can be divided into two categories:

(1) Scalar and vector quantization: Quantize each weight of the network into a cer-

tain element in a finite set. (2) Fixed-point quantization: Convert floating-point

numbers in neural networks to fixed-point numbers.

Teacher-student network [Yim et al., 2017]: Generally, the teacher network is a

large neural network or a collection of neural networks, while the student network

is a compact and efficient neural network. By using the student network to fit the

teacher network, the knowledge learned by the teacher network is transferred to the

student network.

Compact network design [He et al., 2016]: By using methods such as 1×1 con-

volution and branching strategies, a more compact network structure can be de-

signed to improve network performance.

The methods described above are excellent optimization methods. Neverthe-

less, these methods still have some disadvantages. A large amount of repeated train-

ing is required when applying pruning methods to neural networks. The low-rank

method requires adequate design. Quantization is not suitable for all tasks and

needs to convert the network, which may cause a loss of accuracy. The teacher-

student method requires a lot of training and requires a good teacher network. The

compact network design method requires a lot of optimization.

Image Data Optimization

There are two methods for accelerating detection by optimizing the input image:

one is to compress the image, and the other is to crop the image.

Image Compression. In order to detect faster and reduce resource consump-

tion, most methods usually compress the image size. For example, there are two

similar network architectures in SSD, SSD512 and SSD300. The SSD512 network

uses images with a resolution of 512×512 pixels and it has high detection accuracy.

However, the detection speed is slow due to the high resolution of the images used.

In order to accelerate the detection speed, [Liu et al., 2016] proposes the SSD300

structure. SSD300 uses an image with a resolution of 300×300 pixels. From the re-

sults, the SSD512 has a detection accuracy of 76.8% mean average precision (mAP)

and a speed of 22 frames per second (fps). To increase detection speed, the detec-

tion accuracy of SSD300 has been reduced by 2.5%.

The image compression methods increase the speed of detection, but it also
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reduces the accuracy of detection. This is because compressing the image causes

some of the target information to be lost, which interferes with detection.

Image cropping. Image cropping is also a very widely used method. The usual

method is to crop the region of interest (RoI) in the image. For example, the im-

age area affected by pincushion distortion effect is cropped in the KITTI dataset

[Geiger et al., 2013]. The image resolution is cropped from 1392 × 512 pixels to

1242×375 pixels, a reduction of 34.65% pixels. Reducing the number of pixels will

reduce the amount of computation and therefore accelerate the detection process.

The advantage of the image cropping method is that it is quick and easy to un-

derstand. The disadvantage is that when there is less cropping, the acceleration is

less effective. When there is too much cropping, the target will be cropped. There-

fore, it is necessary to get all the data first, count the target distribution and then

manually adjust the cropping area. But it is difficult to meet this condition in prac-

tice

With different design concept, neural network optimization and image data op-

timization are both designed to accelerate pedestrian detection. The neural net-

work optimization methods are concerned with improving accuracy and speed

by finding a better detector structure. The image data optimization methods al-

low neural network to process less data by reducing the image size. The image

data optimization methods are used in combination with optimized neural net-

works to take advantage of both acceleration methods for pedestrian detection.

In [Redmon et al., 2016], a neural network named YOLO is proposed. The YOLO

neural network first compresses the size of the input images to 224 × 224 pixels.

Then, high-speed detection is achieved through a novel one-stage detector design.

[Liu et al., 2016] introduces two architectures called SSD300 and SSD512, which

compress the input images to 300×300 pixels and 512×512 pixels respectively. This

design attempts to make a trade-off between accuracy and speed of detection.

However, the existing image data optimization methods lack accurate image

processing. Thus, we propose the Non-Pedestrian Area Estimation (NPAE) algo-

rithm. The NPAE algorithm is a method for image data optimization to accelerate

pedestrian detection. Different from the classical image data optimization meth-

ods, the NPAE algorithm estimates the Non-Pedestrian Area (NPA) in the image

based on the parameters of the image capture environment. The advantage of this

processing is that the image size is reduced, while the areas containing pedestrian

are preserved. Therefore, the NPAE algorithm could accelerate pedestrian detec-
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tion and maintain detection accuracy. Compared to neural network optimization

methods, the NPAE algorithm has several advantages: 1) The proposed algorithm

does not require any training process. 2) The optimization process does not affect

the detection accuracy. 3) The NPAE algorithm could be used in the neural network

optimization methods together to accelerate pedestrian detection.

4.4 Algorithm Design

4.4.1 Pedestrian Location Analysis

To present the basic idea of this paper, we selected two datasets for observation and

experimentation.

JAAD dataset: The dataset includes high-resolution (HR) images in two formats,

1920×1080 pixels and 1280×720 pixels. It is a representative dataset of HR images

for pedestrian detection. The two resolutions allow us to observe the distribution of

pedestrians in different situations.

Caltech dataset: The dataset has the images with low resolution (LR) of 640×480

pixels. The Caltech dataset does not contain HR images. However, it contains a rich

set of scenes and is widely adopted by existing methods. Thus this LR image dataset

is used for comparison experiments. Both the JAAD dataset and the Caltech dataset

have a frame rate of 30 fps.

For the selected dataset, we will count the distribution of pedestrians. Therefore,

it is necessary to select one of the pedestrian’s attribute parameters as the statistical

object. We define that the pedestrian bounding box is located by two points, P1

and P2, as shown in Figure 4.1. Where P1 = (P1x ,P1y ) indicates the top-left vertex,

P2 = (P2x ,P2y ) indicates the right bottom vertex.

Since pedestrians will appear at random locations, P1x ∈ [0,Xmax], P2x ∈
[0,Xmax]. The range of P1y and P2y cannot be determined. We categorized the im-

ages into three groups by resolution: 1920×1080, 1280×720 and 640×480. All P1

and P2 points are plotted in the image space of the corresponding resolution, re-

spectively, as shown in Figure 4.2.

The purpose of analyzing the three sets of points P1 and P2 is to determine

whether the Non-Pedestrian Area (NPA) is widely present in the image.

P1 represents the top boundary of the pedestrian bounding box, so we need to

find NPAtop in the upper half of the image. NPAtop can be found in the three sets of
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Figure 4.1: Definition of pedestrian bounding box (bbox). Bbox is jointly determined by
point P1 and point P2.

images with different resolutions in Figure 4.2(a), 4.2(c) and 4.2(e). In the HR image,

the NPAtop region is larger. In LR images, the region of NPAtop is smaller. There

are some exceptions to the NPAtop region in LR images, which we will discuss in

subsection 4.4.3.

P2 represents the bottom boundary of the pedestrian bounding box, so we need

to find NPAbot tom in the lower half of the image. NPAbot tom does not exist in the

three sets of images with different resolutions in Figure 4.2(b), 4.2(d) and 4.2(f).

This situation is not a coincidence. For a better view, the camera is usually set

up on top of the autonomous vehicle. Hence hc = hv , where hc is the camera height

and hv is the vehicle height. In general, vehicle height hv and pedestrian height

hp have hv > hp /2. Then hc > hp /2, which means that the area where pedestrian

appears in the image is more towards the bottom. This is the reason why NPA only

exists at the top of the image. In this paper, we use NPA to refer to NPAtop . From the

analysis of the dataset, we can see that NPA is present. The next step is to analyze

the environmental parameters related to the NPA and find an algorithm to estimate

NPA.
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(a) JAAD 1920×1080 P1. (b) JAAD 1920×1080 P2.

(c) JAAD 1280×720 P1. (d) JAAD 1280×720 P2.

(e) Caltech 640×480 P1*. (f) Caltech 640×480 P2.

Figure 4.2: P1 is the upper left corner of the pedestrian bounding box. P2 is the lower right
corner of the pedestrian bounding box. Non-pedestrian areas are present in the statistics at
point P1 in all three datasets. NPA is not present in the statistics at point P2. Thus for the
dataset, the non-pedestrian areas are predominantly present at the top of the image. There
are special scenarios in the Caltech dataset that need to be analyzed, so non-pedestrian
areas are marked as NPA*.
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(a) (b)

Figure 4.3: Analyze and build NPAE algorithms for single images. (a) Analysis of non-
pedestrian area at the top of the image containing multiple pedestrians. (b) Analysis of the
environmental parameters involved in NPAE algorithm.

4.4.2 Non-Pedestrian Area Estimation for Single Image

Our goal is to find suitable non-pedestrian areas for all images in the dataset. The

situation in the dataset is more complicated. It contains a large number of pedestri-

ans, with different camera postures and different collection equipment. Therefore,

we first try to find the optimal NPA for a single image. Then we will discuss how to

find a common applicable NPA on the dataset.

To accurately estimate the non-pedestrian area in a single image, it is necessary

to analyze the highest position of the pedestrian bounding box P1 point in the im-

age. As shown in Figure 4.3(a), there are three pedestrians, Ped1, Ped2 and Ped3.

The distance between camera and pedestrian is d1, d2 and d3, respectively. Ped1 is

on the vertical centre line of the image, d1 is perpendicular to the plane of the im-

age. Therefore d1 > d2,d3. According to the imaging rule of the camera, the closer

the pedestrian is, the larger the image is. Suppose that the two pedestrians of Ped1

and Ped2 are the same height. Since Ped1 is closer to the camera, the P1 point of its

bounding box is higher than Ped2’s.

Figure 4.3(b) establishes a model of pedestrian and camera. Assume that the

pedestrian is located in the center of the image. At this position, the pedestrian’s

imaging area is the largest and has the highest P1 point. Several environmental pa-

rameters are used: hc is the camera height, γ is the camera pitch angle, α is the

camera vertical field of view (FOV), dpc is the distance between the pedestrian and

the camera, hp is the pedestrian height, pxv is the vertical resolution of the image,

NPA is the Y-axis coordinate of the pedestrian bounding box P1 point according to

63



CHAPTER 4. NON-PEDESTRIAN AREA ESTIMATION

the environmental parameters.

We first consider the scenario where the pitch angle γ of a camera is 0. The

goal of the NPAE algorithm is to calculate the vertical coordinate of a point P on the

image. The height of the camera is hc , the height of point P is hp , and the distance

of point P from the camera is d . According to the camera vertical FOV α and d ,

the observable length ld = 2d tan(α/2) can be calculated. Assume that the vertical

coordinate of point P in the image is Y, and the vertical resolution of the image is

pxv . According to the proportional relationship we can get: Y : pxv = (ld /2− (hp −
hc )) : (ld /2). Thus Y = pxv /2(1− (hp −hc )/(d tan(α/2))). Here the Y represents the

Y-axis coordinate of the non-pedestrian area. According to the above analysis, the

NPAE algorithm equation with γ is shown in Equation (4.1):

NPA = pxv

2
{1− (hp −hc )cosγ−dpc sinγ

[dpc cosγ+ (hp −hc )sinγ] tan α
2

} (4.1)

In order to verify NPAE algorithm in Equation 4.1, six environmental parameters

are needed. After recording and inputting the required parameters of Equation 4.1,

the NPAE algorithm can be verified by comparing the calculated value of NPA with

the actual value. Since the dataset does not contain the required environmental

parameter, a validation experimental platform is built.

The parameters in the validation experimental platform are: The height of the

pedestrian hp is 1.90 m. The camera height hc is 1.17 m. The vertical resolution of

the image pxv is 1080 pixels. The camera vertical FOV α is 52 degrees. The camera

pitch angle γ is set at 0.5 degrees, 3.5 degrees, and 10 degrees in sequence. The

distance between the pedestrian and the camera dpc is set at 2.0 m, 2.5 m, 3.0 m, 3.5

m, and 4.0 m in sequence. The vertical coordinate of the P1 point of the pedestrian

bounding box P1y is manually measured. The experimental results are shown in

Table 4.1.

It can be seen from Table 4.1 that the NPA value estimated by the NPAE algo-

rithm is consistent with the P1y . The Dissimilarity index are adopted to measure the

similarity between NPA and P1y . There are a lot of similarity calculation methods,

such as Euclidean metric, Manhattan distance and Chebyshev distance. The out-

puts of these methods are the distance between the two sets of data, which does not

visually show the degree of similarity. While the output of cosine similarity shows

the similarity in the form of percentage. This makes it easier to determine the de-

gree of similarity between NPA and P1y . Thus, we choose to use cosine similarity
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CHAPTER 4. NON-PEDESTRIAN AREA ESTIMATION

to measure the degree of similarity between the two vectors. The formula of cosine

similarity is:

si m(x , y) = x · y

||x ||||y || (4.2)

where x and y are:

x = (P1y1,P1y2, ...,P1y5)

y = (NPA1,NPA2, ...,NPA5)
(4.3)

and || · || is the Euclidean norm of vector:

||x || =
√

P12
y1 +P12

y2 +·· ·+P12
y5

||y || =
√

NPA2
1 +NPA2

2 +·· ·+NPA2
5

(4.4)

The measure computes the cosine of the angle between vectors x and y . The closer

the cosine value to 1, the smaller the angle and the greater the match between vec-

tors [Han et al., 2011]. We can then get the dissimilarity by:

di ssi m = 1− si m(x , y) (4.5)

Since the results of dissimilarity are very close to 0, that means the pro-

posed Non-Pedestrian Area Estimation algorithm accurately calculates the non-

pedestrian area.

4.4.3 Non-Pedestrian Area Estimation for Multiple Images

NPAE algorithm is designed to find the non-pedestrian area for the dataset. There

is a difference between applying the NPAE algorithm to a dataset and applying the

algorithm to a single image. When using the NPAE algorithm on a dataset, all six en-

vironment parameters need to be set to constants. In this way, the NPAE algorithm

can uniformly remove non-pedestrian areas for the images in the dataset based on

the set environmental parameters. However, the situation is further complicated by

the large number of images contained in the dataset. The six environmental param-

eters used by NPAE need to be revisited.
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CHAPTER 4. NON-PEDESTRIAN AREA ESTIMATION

Camera vertical FOV α: The camera vertical FOV does not change for a dataset

or an automated vehicle once the camera has been placed. Camera vertical FOV is

constant.

Vertical resolution pxv : Similar to the camera vertical FOV, the vertical resolu-

tion does not change after the camera is setup. Vertical resolution is constant.

Camera height hc : As the vehicle runs, the camera height changes slightly under

varying slope and vibration conditions. Since this change is instantaneous. Eventu-

ally it will return to its initial state. Therefore, camera height can be considered as a

constant.

Camera pitch angle γ: The camera pitch angle will slightly change in the car

movement. Similar to the camera height, camera pitch angle can be also considered

as a constant.

Pedestrian height hp : The pedestrian height in the dataset varies and is not

available. According to subsection 4.4.1, the highest pedestrian height determines

the value of NPA when the pedestrians are at the same location. Therefore we refer

to [Visscher, 2008] and set hp using the largest value of the average country citizen

height in the world, thus hp = 1.8 m.

Pedestrian-camera distance dpc : According to subsection 4.4.1, the smaller

pedestrian-camera distance for pedestrians with the same height determines the

value of NPA. Although pedestrians may appear at any location, the dpc will usu-

ally not be 0 due to the vehicle width. We refer to the average size of cars and set

pedestrian-camera distance dpc = 1.2 m.

The camera vertical FOV, vertical resolution, camera height, and camera pitch

angle obtained from the dataset along with the predefined pedestrian height and

pedestrian-camera distance are the environmental parameters required for the

NPAE algorithm. The NPA value for the dataset can be obtained by entering these

parameters into Equation 4.1.

Taking into account the following special conditions that may encounter: 1) The

pedestrian height is higher than the assumed value. 2) The pedestrian distance from

the camera is less than the assumed value. 3) The pedestrian is not in the same plane

as the camera. These special pedestrian targets need to be carefully investigated. A

discussion of special conditions follows.

The NPA is used to remove the horizontal pixels lines from 0 to the value of NPA.

NPAE not only optimizes the image, but also changes the coordinates of the bound-

ing boxes P1 and P2. The modified P1new and P2new can be calculated from Equa-
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CHAPTER 4. NON-PEDESTRIAN AREA ESTIMATION

(a) (b)

Figure 4.4: Two special pedestrian targets in red bounding boxes. (a) The pedestrian is not
on the ground. (b) The camera angle of view is small and the distance between the pedes-
trian and the camera is short.

tion 4.6.

P1new

P1x_new = P1x

P1y_new = P1y −NPA

P2new

P2x_new = P2x

P2y_new = P2y −NPA

(4.6)

The X-axis coordinates of P1 and P2 have not changed, only the Y-axis coordi-

nates have changed. There are three cases of P1y_new and P2y_new :

I : P1y_new > 0 and P2y_new > 0.

In this case, the pedestrians in the processed image are complete. The process-

ing does not have any effect on the pedestrian detection results. This is the most

common state.

II : P1y_new < 0 and P2y_new < 0.

In this case, some pedestrians in the original images will be removed. This type

of pedestrian is usually located above certain objects. There is no way that the au-

tonomous vehicle can hurt this type of pedestrian. We found this type of pedestrian

in the Caltech dataset, as shown in Figure 4.4(a). Pedestrians on the overpass are

not the targets we are interested in. Dealing with such pedestrian target is a waste

of processing resources. Therefore, eliminating such pedestrian targets will not af-

fect the pedestrian detection accuracy.

III : P1y_new < 0 and P2y_new > 0.
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In this case, some part of the pedestrian will be removed. To cause this, pedes-

trians have to be close enough to the camera and the camera’s angle of view should

be small enough. We only found some samples in the Caltech dataset, as shown in

Figure 4.4(b). The area above the pedestrian’s head in the red box will be partially re-

moved, but the remaining pedestrian image still occupies a large area in the image.

Due to problems such as object occlusion and pedestrian overlap, the pedestrian

detector should have the ability to detect part of the pedestrian. Missing some part

of the pedestrian image will not cause the detection result to fail.

Based on the above analysis, we conclude that the NPAE algorithm does not have

a negative impact on the pedestrian detection results.

4.5 Experiments and Results

4.5.1 Experiment preparation

Datasets

Two pedestrian datasets are adopted, JAAD dataset [Rasouli et al., 2017] and Caltech

dataset [Dollár et al., 2009].

JAAD: The JAAD dataset is developed by York University. It has various weather

conditions such as sunny, cloud, rain and snow. It is collected from three cities with

complex traffic scenarios and a large number of pedestrians. 2786 pedestrians are

labelled in a total of 389545 bounding boxes. JAAD dataset has 336 videos with a

resolution of 1920×1080 pixels and 10 videos with a resolution of 1280×720 pixels.

The frame rate is 30 fps, which leads to a total of 82032 frames. There are 79812

frames with the resolution of 1920×1080 pixels. 63850 frames are used for training

and 15962 frames are used for testing. There are 2220 frames with the resolution

of 1280×720 pixels. 1776 frames are used for training and 444 frames are used for

testing.

Caltech: Caltech dataset is developed by the California Institute of Technology.

The dataset contains a large number of image frames, challenging low resolution

(LR) images and images of occluded targets. The dataset consists of 10 hours of

video with 2300 pedestrians marked. There are over 350000 bounding boxes. The

resolution of the image is 640×480 pixels and the frame rate is 30 fps. 146622 frames

in total are adopted in the experiment. 122185 frames are used for training and

24437 frames are used for testing.
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Although our goal is to accelerate high resolution image pedestrian detection,

experiments on low resolution images are still valuable. The Caltech dataset has

an equal number of pedestrian bounding boxes as the JAAD dataset. However, the

situation in the Caltech dataset is more complex due to the different environmental

parameters set. These complex environmental conditions could test the robustness

of the proposed algorithm.

Parameters for NPAE

There are six environmental parameters: camera height hc , camera pitch angle γ,

camera vertical FOV α, pedes- trian-camera distance dpc , pedestrian height hp , ver-

tical resolution pxv .

According to [Rasouli et al., 2017], for JAAD with a resolution of 1920×1080: Ver-

tical resolution pxv = 1080 pixels. Camera vertical FOV α= 73◦. Camera pitch angle

γ= 0◦. Camera height hc = 1.6 m. For JAAD with a resolution of 1280×720: Vertical

resolution pxv = 720 pixels. Camera vertical FOVα= 73◦. Camera pitch angleγ= 0◦.

Camera height hc = 1.6 m. For Caltech with a resolution of 640×480: Vertical res-

olution pxv = 480 pixels. Camera vertical FOV α = 27◦. Camera pitch angle γ = 0◦.

Camera height hc = 1.6 m. Based on the conclusions of the analysis in subsection

4.4.3, we set pedestrian height hp = 1.8 m, pedestrian-camera distance dpc = 1.2 m.

Considering the car shudder, the Camera pitch angle γ is varied between

[−1◦,1◦]. The adjusted environmental parameters can be used to derive the cor-

responding NPA for each dataset according to Equation 4.1. The NPA interval for

JAAD 1920×1080 is between NPAγ=−1 and NPAγ=1. We take the minimum value, so

NPA = 405 pixels. To facilitate the experiment, the value of NPA is modified using

Equation 4.7.

NPAmod = NPA− (NPA mod 10) (4.7)

Equation 4.7 is not obligatory. The purpose of using this operation is simply to

make the experimental comparison clearer. The effect of this operation on detec-

tion performance is very slight. Using the same processing method, the NPA value

of JAAD 1280× 720 is 270 pixels. For the Caltech low resolution dataset, we want

to verify the proposed NPAE algorithm under extreme situations. The γ is not pro-

cessed. We still applied Equation 4.7. The NPA value of Caltech 640×480 is 70 pixels.
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Parameters for Pedestrian Detector

The RetinaNet is adopted to detect pedestrians. There are several versions of Reti-

naNet, depending on the backbone used. We chose the resnet50 [He et al., 2016]

as the backbone network. This network offers a better balance between detection

performance and speed.

4.5.2 Experiments

Experiments are performed separately on high resolution (HR) images and low reso-

lution (LR) images. The purpose of the experiments on HR images is to measure the

performance of the NPAE algorithm acceleration. The experiments on LR images

focus on the robustness of the NPAE algorithm in complex situations.

To compare the effects of detection acceleration, we designed comparison ex-

periments for each resolution image. In general, the experiments are compared

with two other image data optimization acceleration methods. The image compres-

sion method compresses the image to the same resolution as the NPAE-processed

image. Since the NPAE algorithm is essentially an image cropping method, we com-

pare the results of acceleration with different degrees of cropping. We also count the

number of pedestrian targets affected by the image cropping method. There are two

categories, targets that are partially cropped (PR) and targets that are completely re-

moved (CR).

The evaluation metric used in this paper is the Average Precision (AP)

[Zhu, 2004]. It is a typical object detection task evaluation metric. We record the

runtime of pedestrian detection accelerated by different image data optimization

methods. The CPU experimental platform is Intel Xeon W-2104 with 16GB RAM.

The GPU experimental platform is Nvidia Quadro P5000. Most of the current pedes-

trian detection algorithms are based on deep learning. The common platforms for

deep learning frameworks are CPU and GPU, therefore our experiments focus on

these two platforms. The experimental results on the high resolution images are

shown in Table 4.2 and Table 4.3.

We train RetinaNet using three resolution images obtained from two datasets.

All images used for training are not cropped by the NPAE algorithm. We use the

random rotation and random cropping to augment the input images. RetinaNet is

trained for a total of 50 epochs with a learning rate of 1e-5.

After training, we combine the NPAE algorithm with RetinaNet for testing. Dur-
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CHAPTER 4. NON-PEDESTRIAN AREA ESTIMATION

ing the test, the proposed algorithm accelerates pedestrian detection. The algo-

rithm flow of using the NPAE algorithm to accelerate pedestrian detection is shown

in Algorithm 4.1.

Algorithm 4.1 The procedure of NPAE algorithm accelerates pedestrian detection.
Input: Environmental parameters: Obtained from the input image collection

environment.
Output: Pedestrian bounding boxes.

1: Calculate NPA value: Input environmental parameters to the NPAE algorithm.
2: Crop images: Crop all images according to the NPA value. The original image

size is (H,W), and the cropped image size is (H-NPA, W).
3: Calculate pedestrian bounding box: The cropped images are sent to the pedes-

trian detector to get the pedestrian bounding boxes.

In Table 4.2, RetinaNet is the baseline. The detection result has 84.80% average

precision (AP). It takes RTG = 175.7 milliseconds to process an image on the GPU,

which means 5.69 frames per second (FPSG). On the CPU, the time to detect an

image RTC is 4307.8 milliseconds, which means 0.23 frames per second (FPSC). The

proposed NPAE algorithm reduces the detection time of RetinaNet to 119.5 ms and

2813.2 ms on two platforms. The detection speed is 8.36 fps on GPU and 0.35 fps

on CPU. The detection speed is increased by 46.92% and 52.17% respectively. After

NPAE acceleration, the AP of the detector RetinaNet remains at 84.85%.

Image compression method, as Compr ess mentioned in Table 4.2, can also ac-

celerate detection. However, there is a significant loss of accuracy. The experimen-

tal detection accuracy AP is only 61.75%. The results can be further improved to a

certain extent by extensive multi-scale training. Nevertheless, this improvement is

limited and leads to a more complex process.

NPAE is an accurate image cropping method. We have also labeled it Crop-NPA.

In order to compare the performance of NPAE, seven experiments with different

cropping values are designed in Table 4.2. These experiments are named Crop-Value

and Value is the number of rows of cropped pixels. In addition to analyzing the

detection accuracy AP and detection speed FPS/RT, the pedestrian targets affected

by the cropping should also be considered. The partially cropped pedestrian target

number is recorded as PedPC, and the completely removed pedestrian is labeled as

PedCR.

In terms of acceleration, the speed increases as the degree of shearing increases.

In terms of detection accuracy, it first remains constant and then decreases. The in-
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CHAPTER 4. NON-PEDESTRIAN AREA ESTIMATION

flection point occurs around the NPA value estimated by the NPAE algorithm. The

PedPC and PedCR values also show an inflection point around the NPA value. This

pattern means that more and more pedestrian area information is lost as the crop-

ping range exceeds the NPA value. This results in a decrease in detection accuracy.

The same conclusion can be drawn from the experimental results on the JAAD

1280 × 720 dataset in Table 4.3. On the GPU platform, the proposed NPAE algo-

rithm increases the detection speed by 39.19% from 10.23 fps to 14.24 fps relative to

baseline. On the CPU platform, detection is 60.78% faster, from 0.51 fps to 0.82 fps.

The NPAE algorithm increases the speed significantly while the detection accuracy

remains unaffected.

The experimental results on the low resolution images are shown in Table 4.4.

There is little room for image data optimization on low resolution images. Never-

theless, the similar pattern as in Table 4.2 and Table 4.3 can also be seen. Despite the

decrease in accuracy, the speed has increased. What is enlightening is the quantity

of pedestrian partially cropped PedPC and pedestrian completely removed PedCR.

The detection accuracy of the accelerated detectors remains consistent from

the Crop-40 method to the NPAE algorithm. Although some pedestrians are par-

tially cropped, it does not significantly affect the detection results. This means that

the detector can still get the information it needs from PedPC. With further crop-

ping, such as Crop-80, the detection accuracy decreases dramatically. At this point,

the detector no longer has enough information to ensure the correctness of the de-

tection results. There are 27 pedestrians that are completely removed indicated by

PedCR. These targets are consistent with the situation discussed in subsection 4.4.3.

From the experimental results, the proposed NPAE algorithm is suitable for opti-

mizing high resolution images. The acceleration obtained for pedestrian detection

is significant and the algorithm does not affect the detection accuracy. The NPAE

algorithm can also be applied on low resolution images, but with ordinary results.

4.6 Conclusion

In this chapter, we presented an algorithm for accelerating pedestrian detection

with high resolution images, named Non-Pedestrian Area Estimation (NPAE). Based

on six environmental parameters, the NPAE algorithm can accurately estimate the

non-pedestrian areas in the dataset. Therefore, the proposed algorithm cropped

the image more accurately compared to other image data optimization methods.
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Because the image area was reduced and the object information was preserved, the

pedestrian detector gained acceleration while maintaining accuracy.

Two high resolution images, 1920×1080 and 1280×720, and two different com-

puting platforms, GPU and CPU, were used for the experiments. In the GPU plat-

form, the detection speed was increased by 46.92% and 39.19%, respectively. In the

CPU platform, the detection speed was increased by 52.17% and 60.78%, respec-

tively. All experiments have shown that the proposed algorithm does not affect the

detection accuracy. A low resolution dataset was used to confirm the robustness of

the NPAE algorithm.

The NPAE algorithm performed better compared to traditional image data op-

timization methods. Image compression usually results in a loss of detection ac-

curacy. Compared to NPAE algorithm, image compression lost 23.10% of average

precision on 1920×1080 resolution, 37.94% on 1280×720, and 8.97% on 640×480.

Image cropping cannot be calculated to obtain the optimal size of the cropping area,

so it is difficult to accurately balance detection accuracy and detection speed.

The NPAE algorithm has four advantages: 1). It accelerates detection without

loss of accuracy, 2). It can be used on a variety of computing platforms, 3). It is

easily integrated with other acceleration and detection methods. 4). it does not

require any training.

In future work, we will explore the use of NPAE algorithm for pedestrian image

position estimation by introducing depth information. At the same time, the NPAE

algorithm can also be used to accelerate pedestrian detection of multi-modal fu-

sions.

76



Chapter 5

Cross-modal verification for 3D object

detection

Contents

5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.3.1 LiDAR-based 3D Object Detection . . . . . . . . . . . . . . . . 79

5.3.2 Image-based Object Classification . . . . . . . . . . . . . . . . 80

5.3.3 Multi-modal Fusion 3D Object Detection . . . . . . . . . . . . 80

5.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.4.1 Cross-Modal Verification for 3D object detection . . . . . . . 80

5.4.2 Autonomous Vehicle Object Recognition Dataset . . . . . . . 82

5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.5.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.5.2 Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

77



CHAPTER 5. CROSS-MODAL VERIFICATION FOR 3D OBJECT DETECTION

5.1 Motivation

To overcome the deficiency in the single modality of LiDAR point cloud, we propose

a cross-modal verification (CMV) model for reducing 3D object detection false posi-

tives. The abundant color and texture information in image modality allow the clas-

sification of the projection region of 3D bounding box proposal in the image plane.

Three 3D object detectors are adopted as backbone and eight evaluation metrics

are used to fully investigate the proposed model. The experiment results show that

the proposed CMV model removes more than 50% of false positives in 3D object

detection proposals and improves the performance of 3D object detection.

5.2 Introduction

3D object detection is a key component of the autonomous vehicle perception sys-

tem. Based on this component, the object shape and spatial position information

are obtained. Furthermore, image scale variation and perspective transformation

problems can be easily avoided in 3D object detection. Therefore, 3D object detec-

tion has become a key research area.

Recently, many excellent 3D detectors have been proposed. Depending

on the data modality employed, these detectors can be categorized into three

types. 1) LiDAR-based 3D object detection. A large number of network

structures [Yan et al., 2018, Lang et al., 2019, Shi et al., 2020a] have been developed

based on point feature extraction [Qi et al., 2017a] or voxel feature extraction

[Zhou and Tuzel, 2018] methods. LiDAR is not affected by lighting conditions and

has accurate depth information. 2) Image-based 3D object detection. There are

some papers [Feng et al., 2020] that attempt to locate 3D objects on images. Depth

information can be inferred from monocular, stereo or continuous frames, allow-

ing for 3D object detection on the image. 3) Multi-modal 3D object detection.

[Cui et al., 2021] shows several multi-modal fusion methods for 3D object detec-

tion. The multi-modal method extracts features from different modalities and fuses

them. In this way, the robustness of the detection can be enhanced.

However, due to the difference in data modalities, the detection algorithms

based on the image modality need to be modified to adapt to the point cloud

modality. To overcome the shortage of feature extraction from point cloud modal-

ity, [Qi et al., 2017a] and [Zhou and Tuzel, 2018] propose the point-wise and the
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voxel-wise feature extraction modules, respectively. Based on these two feature

extraction modules, many LiDAR-based 3D object detectors have been proposed

[Yan et al., 2018, Lang et al., 2019, Shi et al., 2020a].

For the image modality, there are two approaches to implement 3D object detec-

tion. 1) [Feng et al., 2020] attempt to locate 3D objects only using image modality.

Since the depth information in the image modality is non-explicit, the detection

precision of the image-based method is significantly lower than that of the LiDAR-

based method. 2) The other approach is to fuse images and LiDAR. With two data

modalities, it is able to detect 3D object robustly and accurately [Cui et al., 2021].

Among the mentioned three types of 3D detection, the LiDAR-based methods

usually achieve the best results. This is due to the robustness of LiDAR to scale in-

variant and light changing. However, LiDAR point clouds are sparse and unstruc-

tured, without color or texture information of the objects. As a result, there are a

large number of false positives in the LiDAR-based 3D detectors. The abundance of

false positives (FPs) is a heavy burden both for autonomous driving systems and for

human drivers.

Therefore, we propose a cross-model verification (CMV) model that uses im-

age modality to filter the detection results of LiDAR-based 3D detectors. The pro-

posed CMV model is a novel method to address result-level fusion. All 3D detection

proposals are projected onto image plane. The proposed CMV model removes FPs

based on image classification results. The experimental results show that the CMV

model can significantly reduce the number of FPs by up to 50%.

5.3 Related Work

5.3.1 LiDAR-based 3D Object Detection

The data structure of LiDAR point cloud is irregular and orderless. A traditional CNN

designed for dense image modality could not operate properly. To accommodate

the data format required for CNN, some detection methods project the LiDAR point

cloud into a bird’s-eye view (BEV) image. In order to extract features from orderless

point clouds, PointNet [Qi et al., 2017a] propose to use symmetry function. This

sophisticated design has been referenced and used in many 3D object detectors.

Due to the large number of LiDAR point clouds, VoxelNet [Zhou and Tuzel, 2018]

proposes to use Voxel Feature Encoder (VFE) for feature extraction of the voxelized
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point cloud. This kind of method usually yields better results.

5.3.2 Image-based Object Classification

Image classification is a fundamental research in computer vision where deep

neural networks have achieved great success. Some milestones like the LeNet-

5 [LeCun et al., 1998], AlexNet [Krizhevsky et al., 2017] and ResNet [He et al., 2016]

continue to improve the deep learning-based classifier capabilities. A typical image

object classifier consists of two modules: CNN-based feature extraction and class

regression based on the fully connected layer.

5.3.3 Multi-modal Fusion 3D Object Detection

Multi-modal fusion is used to compensate for the instability of a single modality.

LIDAR provides accurate depth information and is not affected by lighting condi-

tions. Images can provide object color and texture detail information. The multi-

modal 3D object detection methods can be categorized into early fusion, middle

fusion and late fusion depending on the stage at which fusion is performed. The

late fusion methods focus on fusing images with LiDAR detection results based on

projection and geometric constraints.

We find that various 3D object detectors have plenty of false positives in their

detection results. By adding image modality, the proposed cross-modal verification

(CMV) model can easily identify and remove these false positives. The proposed

CMV model is plug-and-play and is able to be integrated into various 3D object de-

tectors to help improve detection performance.

5.4 Methods

5.4.1 Cross-Modal Verification for 3D object detection

Our proposed Cross-Modal Verification (CMV) model is developed upon the LiDAR-

based 3D object detector. We attempt to design the CMV capable of adapting differ-

ent detectors and reducing the presence of a large number of false positives. There-

fore, CMV is a late fusion method for optimizing the detection proposals of 3D ob-

ject detectors. As shown in Figure 5.1, the 3D bounding box generation module is in-

herited from the classic LiDAR-based 3D detector. The multi-modal fusion module
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for proposal verification is built on spatial to 2D projection and image classification.

CMV Model

LiDAR-based
3D Object
Detector

LiDAR
Point Cloud

Image-based
Classifier

Image

3D
Detection
Proposal

Keep
Proposal

3D Object Detection
Result Verified by

CMV Model

Yes/No

Figure 5.1: Cross-modal verification for 3D object detection.

The essential aspect of the CMV fusion model is the projection of the LiDAR

point cloud onto the image plane. For a spatial point ptpc = (x, y, z), there is the

projected point pti mg = (u, v) in the image plane. The projection point calculation

process includes affine transformation and coordinate system transformation. Here

we introduce the projection method using the KITTI 3D object detection dataset

[Geiger et al., 2013] as an example. The conversion can be obtained from Equation

5.1.

pti mg = P(i )
r ect R(0)

r ect ptpc (5.1)

Where P(i )
r ect ∈ R3×4 is the projection matrix after rectification. R(0)

r ect ∈ R4×4 is the

expanded rectifying rotation matrix. i is the camera index.

Figure 5.2: Image-based classifier for verification in CMV model.

In this way, we obtain the 3D bounding box and its projection on the image

plane. All that remains is to prepare an image-based classifier for verification. As
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shown in Figure 5.2 we design a six layer convolutional neural network with refer-

ence to LeNet. The classifier of CMV model is begin with four convolution layers,

followed by two fully connected layers. The convolution kernel size is 3×3 with a

2× 2 maxpooling. The input image is resized to 64× 64 pixels. After four convo-

lution layers, the output feature map size is 4×4 pixels with the batch size of 256.

The first fully connected layer reduces the number of features from 4× 4× 256 to

128. Then the last fully connected layer output the scores of two classes. Finally, the

classifier outputs confidence score of classes and verifies them with 3D bounding

box proposals.

The output of the class regression for the cascaded two fully connected layers are

’Foreground’ and ’Background’. The class ’Foreground’ includes Cars, Pedestrians

and Cyclists. The class ’Background’ consists of streets, skies, trees and road signs.

In order to train an effective classifier, we collect an Autonomous Vehicle Object

Recognition (AVOR) dataset.

5.4.2 Autonomous Vehicle Object Recognition Dataset

The AVOR dataset is built based on the KITTI 3D Object Detection dataset. Accord-

ing to the 3D bounding box from the ground truth, we crop and keep the object

areas in the images as the Foreground class elements. To augment the data, the im-

age area is acquired four times after random offset according to ground truth. We

control the random range to the overlap area between the generated image area and

the ground truth bounding box is no less than 0.7. Some special objects are filtered

out according to one criterion : max(h, w) > 15 pixels while mi n(h, w) > 10 pixels

where h and w are the height and width of the object images.

There are six classes in KITTI 3D object detection dataset. The most mentioned

classes are Car, Pedestrian and Cyclist. These three classes are considered as the

Foreground class in our AVOR dataset. For the Background class, We avoid ob-

ject areas to obtain background images from KITTI dataset by random cropping.

There are 114342 Foreground class images and 94052 Background class images for

training. As for testing, there are 122198 Foreground class images and 99676 Back-

ground class images. In particular, we add roadblocks to the Background category.

The Figure 5.3 gives an example of AVOR dataset.
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BackgroundForeground

Figure 5.3: Samples of AVOR dataset.

5.5 Experiments

5.5.1 Methodology

LiDAR modality based 3D object detection

Three representative detectors are selected as the baseline models for eval-

uation, which are SECOND [Yan et al., 2018], PointPillars [Lang et al., 2019], and

PartA2 [Shi et al., 2020a]. SECOND network is a voxel-based 3D object detector that

improves the sparse 3D convolution operation. PointPillars network is a pillar-

based 3D object detector that introduces pillars to represent point cloud features.

PartA2 network is an advanced voxel-based 3D detector which is adopted to exam-

ine whether a large number of false positives are also present.

There are 7481 training frames and 7518 test frames with both modalities in

KITTI 3D object detection dataset. The ground truth of training data are available

for public access. Therefore, we only used the training data and split it into two

dataset for training and testing according to [Yan et al., 2018]. Since the proposed

CMV model is plug-and-play, these detectors can be added directly to obtain perfor-

mance improvements with minimal modifications. PointPillars network and PartA2

network are trained for 160 epochs, and SECOND network is trained for 80 epochs.

Image modality based Classifier

In training the classifier, we randomly initialized the convolution kernel param-

eters. Since the fully connected layer requires a fixed-length input tensor, we in-

vestigate various sizes of input images. The best performance is achieved when the

input object proposal image is resized to 64×64 pixels. The activation function is

replaced from sigmoid to relu. The classifier is trained for a total of 40 epochs. After
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training, the classifier is integrated into the 3D object detector to compose the CMV

model.

Evaluation Metrics

We present the change in the number of false positives (FP) present in the 3D

object detection results after CMV model optimization. To be classified as a TP, the

detection proposal bounding box should have at least an intersection over union

(IoU) with the ground truth bounding box more than 0.7.

In addition, changes in true positives (TP) and false negatives (FN) are also used

as performance metrics. On this base, we calculate the precision P and recall R by

using Equation 5.2.

P = TP

TP+FP

R = TP

TP+FN

(5.2)

We also present the F1 score and F2 score for evaluating our CMV model. The F1

score is a balance of precision and recall, which is better than relying on only a single

metric. The F2 score puts more emphasis on recall than precision to demonstrate

the changes brought about by our model. The formula for the F1 score and F2 score

are given in Equation 5.3.

F1 = 2PR

P+R

F2 = 5PR

4P+R

(5.3)

In addition to focusing on FP changes, we also calculate the average precision

(AP) score. The official AP calculation method of KITTI dataset is the 40-point

interpolation. Furthermore, we also applied the enhanced 40-point interpolation

method introduced in Chapter 3 to calculate AP.

5.5.2 Experiment Results

Table 5.1, 5.2 and 5.3 show the scores of various metrics for 3D object detection

of the CMV model with SECOND, PointPillars and PartA2 backbone, respectively.

In all three backbone networks, a large number of false positives exists. After the

processing of the CMV model, there is a significant reduction in the number of FPs.

For example, the CMV model reduces FP by 45.87%, 42.40% and 23.99% in the class

car, respectively.
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Table 5.1: Results of CMV model with SECOND backbone.

Class Model TP FP FN PRE REC F1 F2 AP eAP

CAR
SECOND 6611 6999 1175 48.57 84.90 61.79 73.85 78.21 77.63

SECOND-CMV 6546 3788 1241 63.34 84.06 72.24 78.90 76.91 77.04

PED
SECOND 1220 3363 519 26.62 50.93 34.96 43.06 57.33 57.93

SECOND-CMV 1146 1549 593 42.52 48.01 45.10 46.80 55.24 55.50

CYC
SECOND 456 2158 88 17.44 27.95 21.48 24.95 64.86 66.04

SECOND-CMV 422 795 122 34.67 25.37 29.30 26.81 61.53 62.51

Table 5.2: Results of CMV model with PointPillars backbone.

Class Model TP FP FN PRE REC F1 F2 AP eAP

CAR
PointPillars 6423 7367 1366 46.57 82.46 59.53 71.45 74.61 74.23

PointPillars-CMV 6348 4243 1441 59.93 81.49 69.07 76.02 72.85 72.36

PED
PointPillars 1126 6555 613 14.65 45.18 22.13 31.89 45.06 45.89

PointPillars-CMV 1071 2252 668 32.22 42.63 36.70 40.04 46.39 46.70

CYC
PointPillars 405 2144 137 15.88 22.86 18.75 21.02 60.29 61.19

PointPillars-CMV 383 721 160 34.69 20.99 26.16 22.79 58.29 58.81

Table 5.3: Results of CMV model with PartA2 backbone.

Class Model TP FP FN PRE REC F1 F2 AP eAP

CAR
PartA2 6770 5142 1027 56.83 86.82 68.69 78.53 82.65 81.91

PartA2-CMV 6749 3908 1048 63.32 86.55 73.14 80.64 82.74 81.75

PED
PartA2 1256 4109 483 23.41 55.01 32.84 43.31 53.46 54.11

PartA2-CMV 1216 2146 523 36.16 53.71 43.22 48.96 53.50 53.72

CYC
PartA2 468 1060 75 30.62 31.30 30.96 31.16 71.27 71.44

PartA2-CMV 454 587 89 43.61 30.22 35.70 32.20 70.22 70.24

In principle, the CMV model is designed to remove FPs from detection propos-

als, which means that the number of TPs cannot be increased. Thus a general con-

clusion can be drawn by examining the precision scores and recall scores. Benefits

from the significant reduction of FP, the detection accuracy has been greatly im-

proved. Yet, the recall scores without FP in the calculations are slightly reduced.

For a more comprehensive evaluation of the CMV model, we need to refer to the

F1 score metric. The three baseline networks achieve significant improvements in

F1 score in all classes of object. It implies that the reduction of FPs brings a change

in precision and recall that is beneficial to detectors. Even for the F2-score, where

recall is more emphasized, all results indicate an improvement of detection.

We notice that even false positives have been removed more than half, the aver-
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age precision do not improve significantly. The reason for this evaluation result is

that the average precision does not consider FP to be as important as TP. In the pro-

cess of calculating the average precision, all detection results are sorted by the given

class confidence scores. Then N interpolation intervals are applied to integrate the

area under curve (AUC) of the precision-recall (PR) curve. Due to the low confidence

scores of most FPs, they only have an impact in the last interpolation interval, which

accounts for just 1/N of the overall average precision. At the same time, the reduc-

tion of TP may lead to a decrease in the number of interpolation intervals. This

eventually leads to a significant degradation of average precision. Therefore, since

the average precision calculation takes TP more importantly, it leads to the results

in tables.

5.6 Conclusion

In this chapter, a cross-modal verification (CMV) model was proposed for reduc-

ing 3D object detection false positives. The extensive color and texture information

in the image modal was used to complement the deficiencies of the LiDAR point

cloud modal. The proposals obtained from the 3D object detector were verified by

the CMV model and the false positives were discarded. To train the CMV model,

an Autonomous Vehicle Object Recognition dataset was built. Three 3D object de-

tectors and nine metrics were adopted to fully investigate the proposed model. All

experimental results showed the enhancement of the proposed CMV model for 3D

object detection.

Our future work will focus on embedding CMV model into 3D object detectors

to obtain an end-to-end architecture. In this way, the embedded model can verify

directly at the 3D region proposal module.
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6.1 Motivation

Increasing the number of fusion modalities is a common procedure for obtaining

robust 3D object detection. The synchronization of all modalities becomes a fun-

damental assumption, but its limitations are neglected. It has been observed from

many multi-modal datasets that the data frame rate decreases significantly due to

synchronization. To address this problem, we propose an Asynchronous multi-

modal Fusion 3D object detection (AF3D) model. The proposed AF3D is able to

perform object detection for both synchronous and asynchronous frames. Since

the multi-modal data in asynchronous frames are incomplete, they are transformed

into point cloud modality for uniform detection. In particular, AF3D performs asyn-

chronous multi-modal fusion on two consecutive frames, which could counteract

the degradation of detection precision due to modal incompleteness. Experimen-

tal results show that AF3D can detect 3D objects using a single detector for both

synchronous and asynchronous frames. Notably, the average precision score for

monocular image modality is improved by 9.4% with asynchronous multi-modal

fusion method.

6.2 Introduction

3D object detection is a fundamental task for autonomous vehicles to accu-

rately perceive the environment. Recently, LiDAR-based 3D object detection have

achieved remarkable progress. How to make the detector more robust becomes an

interesting topic. Intuitively, increasing the data modalities for multi-modal fusion

is a promising approach. LiDAR modality can accurately describe spatial depth.

Image modality is rich in semantic information. The two modalities are comple-

mentary and can be used jointly to improve the detection performance. Many ex-

isting multi-modal fusion methods are attempting to develop an effective fusion

paradigm [Feng et al., 2020].

An underlying assumption of most fusion architectures [Sindagi et al., 2019,

Pang et al., 2020, Zhang et al., 2021c] is that all modalities have been well synchro-

nized. Since data in asynchronous frames are discarded, the frequency of synchro-

nized data is usually lower than the sampling frequency of sensors. This is a factor

which limits the detection efficiency. It cannot be ignored in addition to the detec-

tor design itself. This degradation of data rate due to synchronization is common in
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most multi-modal datasets as shown in Table 6.1.

Table 6.1: The synchronous sampling frequency of multiple modal sensors reduces the flow
rate of data. Syn indicates the synchronous frame rate.

Camera LiDAR Radar Syn. Frame
KITTI 15 fps 10 fps - 10 fps
A2D2 30 fps 20 fps - 10 fps
nuScenes 12 fps 20 fps 13 fps 2 fps

In KITTI [Geiger et al., 2013], A2D2 [Geyer et al., 2020] and Waymo

[Sun et al., 2020], two modalities are provided. Even though some sensors could

sample at 30 Hz, the synchronized frame rate drops to 10 Hz. If there are more

modalities to enroll, the situation becomes even more critical. As reported in

nuScenes [Caesar et al., 2020], radar modality is introduced in addition to image

and LiDAR. Along with this, the synchronization frame rate is reduced to 2 Hz.

Under such circumstances, it is necessary to restrict the speed of AVs to maintain

safety.

One possible solution to address the low synchronization frequency is to up-

grade all sensors to the same sampling frequency. Apparently, it will take a lot of

effort and a long time to make progress. Therefore, we intend to improve the fusion

algorithm based on the existing sensors to get rid of the limitation of low sampling

frequency. According to Table 6.1, the sampling frequency of the LiDAR is normally

slower than that of the camera. As a result, there are multiple asynchronous im-

age frames captured between the two synchronous frames. Exploiting these asyn-

chronous image frames is a possible solution to the problem.

An intuitive approach is to perform 3D object detection on both synchronous

and asynchronous frames directly. By doing that, it brings several consequences.

Existing fusion models are unable to work properly in a single modality situation.

Different modalities demand unique feature extractors, which means that multiple

networks are required to cope with the transitions between synchronous and asyn-

chronous frames.The complex architecture put a heavy burden on the AVs. Fur-

thermore, there is a huge gap between image-based and LiDAR-based detectors. It

needs efforts to balance the difference between these two modalities. Otherwise,

periodic fluctuations in detection accuracy could undermine the safety of AVs.

A novel architecture, Asynchronous multi-modal Fusion 3D object detector

(AF3D), is proposed to unify the detection of synchronous and asynchronous

frames. By introducing the 3D motion, the asynchronous frames could be fused
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with the synchronous frames. This asynchronous fusion allows embedding infor-

mation from synchronous frames into asynchronous fusion. It improves the 3D

object detection accuracy in asynchronous image modality frames. In addition, the

image modality could be transformed into LiDAR modality by asynchronous fusion.

In this case, only one unified LiDAR-based 3D object detector is required for both

synchronous and asynchronous frames. To the best of our knowledge, this is the

first research on the fusion of synchronous and asynchronous frames for 3D ob-

ject detection. The experiment results show that our AF3D outperforms the current

state-of-the-art monocular image 3D object detector. At the same time, the high

detection accuracy of the LiDAR modality is preserved.

6.3 Related Work

3D object detection based on two modalities can be summarized into three cate-

gories. 1) Image-based 3D detection. 2) LiDAR-based 3D detection. 3) Fusion-based

3D detection. Each method has its capabilities. However, LiDAR-based 3D detec-

tion has been leading in benchmarks [Geiger et al., 2013, Sun et al., 2020]. A brief

introduction of these methods is presented below.

1) Image-based 3D detection. Some image-based methods [Li et al., 2019b,

Li et al., 2020] build the 3D object detection based on 2D features. By model-

ing perspective constraints, these methods estimate the 3D spatial position of

an object from its 2D position in the image. Other methods [Wang et al., 2019,

Peng et al., 2021] extract 3D features directly from the image and predict the spatial

location of the object. None of these methods could avoid errors since vital depth

information is lost in the image.

2) LiDAR-based 3D object detection

The point cloud sampled by LiDAR is sparse and disordered. It is a com-

pletely different data structure compared to images. The grid-based methods

[Yan et al., 2018, Lang et al., 2019] first slice the 3D space into dense cubes. The CNN

network is then adopted to extract features and regress the object locations. The

point-based methods [Qi et al., 2017a, Qi et al., 2018] first output feature maps us-

ing a rotation-insensitive feature extractor, followed by an object location regres-

sion. Since LiDAR has accurate depth information and insensitive to light, the

LiDAR-based 3D object detectors achieve state-of-the-art performance.

3) Fusion-based 3D detection
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Despite the great performance achieved by LiDAR-based detectors, it still lacks

semantic information from image modality. As a result, certain fusion-based detec-

tors [Sindagi et al., 2019, Pang et al., 2020] are proposed to improve the robustness.

The feature-level fusion approach combines the feature maps of both modalities.

The result-level fusion approach cross-validates the 3D detection results between

the two modalities. As we can note that all fusion-based 3D detectors require the

synchronized data frame. Moreover, a complex architecture including different fea-

ture extraction and feature fusion is always necessary.

There is a lack of experience in integrating asynchronous frames into a syn-

chronous frame-based detection model. We would like to contribute a unified de-

tection model AF3D for both asynchronous and synchronous frames with multiple

modalities. In our model, synchronous frames should be used to improve the de-

tection of asynchronous image modality frames.

Pseudo-LiDAR [Wang et al., 2019] provides a possible path to build a unified de-

tection model. The image-based depth map is converted to the point cloud named

pseudo-LiDAR. In this case, all existing LiDAR-based detectors can be applied for

3D object detection, regardless of the modality. We design an asynchronous multi-

modal fusion method based on 3D motion estimation with reference to pseudo-

LiDAR. The image modality is transformed into LiDAR modality for unified 3D ob-

ject detection. By estimating the 3D motion, the connection between two consecu-

tive frames is established. The accurate depth information of LiDAR modality in

synchronous frames contributes to the 3D detection of image modality in asyn-

chronous frames. The design details of the AF3D model are presented in the next

chapter.

6.4 Asynchronous Multi-Modal Fusion based Modal

Transformation

The data in the 3D object detection discussed in this thesis alternates between syn-

chronous and asynchronous. There are two modalities in the synchronous frame,

which are image and LiDAR point cloud (referred by LiDAR). In the asynchronous

frame, there is only the image modality. This is a common observation, as the cam-

era sampling frequency is usually higher than that of LiDAR.

In our AF3D model, LiDAR is set as the default modality for performing the 3D
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object detection. By using asynchronous multi-modal fusion, the LiDAR modal-

ity of asynchronous frame can be created jointly with synchronous frame. In this

way, the image modality of the asynchronous frame also has a corresponding Li-

DAR modality. Any existing 3D object detector backbone can be applied. There are

three modules in the asynchronous multi-modal fusion architecture as shown in

Figure 6.1.

Figure 6.1: AF3D asynchronous fusion framework. The LiDAR modality of point cloud for
the asynchronous frame is generated by fusing the image and LiDAR of the synchronous
frame with the image of the asynchronous frame.

Module I: 3D points projection to image plane

In this module, the 3D point P0
w = (X0

w ,Y0
w ,Z0

w ) in the world coordinate system

acquired by LiDAR is projected onto the image plane with the depth attached to get

the point p0
d = (u0, v0,d 0).

First, the world coordinate system of the 3D point Pw needs to be converted to

the point P0
c = (X0

c ,Y0
c ,Z0

c ) with the camera coordinate system. These two coordinate

frames are related via a rotation and a translation. Equation 6.1 shows the transfor-

mation. R is a rotation matrix of size 3×3. t is a translation 3-vector which move the

origin coordinate to the center of image coordinate.
X0

c

Y0
c

Z0
c

1

=
[

R −Rt

0T 1

]
X0

w

Y0
w

Z0
w

1

 (6.1)

Then, the 3D point P0
c is projected onto the image plane to obtain the point

p0
c = (x0

c , y0
c ). The center of the image plane is the origin coordinate of the cam-

era coordinate system. The projection could be derived from Equation 6.2. f is the
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focal length of the camera.

x0
c = f

X0
c

Z0
c

y0
c = f

Y0
c

Z0
c

(6.2)

Equation 6.2 could be rewritten with homogeneous coordinate as shown in

Equation 6.3.


x0

c

y0
c

1

=


f 0 0 0

0 f 0 0

0 0 1 0




X0
c

Y0
c

Z0
c

1

 (6.3)

Then, the point p0
c = (x0

c , y0
c ) in camera coordinate is converted to the pixel point

p0
i = (u0

i , v0
i ) in image coordinate. This process involves converting distances to pix-

els and moving the origin coordinate to a corner of the image. The transformation

from the 3D point P0
c to the image coordinate point p0

i is shown in Equation 6.4. kx

and ky are the number of pixels per unit distance in the x and y directions in image

coordinate. C = (cx ,cy ) is the center point in the image coordinate.


u0

i

v0
i

1

=


kx f 0 cx 0

0 ky f cy 0

0 0 1 0




X0
c

Y0
c

Z0
c

1

 (6.4)

Finally, the depth d 0
c of the 3D point P0

c in camera coordinate is attached to pi to

obtain p0
i d = (u0

i , v0
i ,d 0

c ).

Module II: Build pixel-level 3D motion field

The 3D motion field represents the movement of points in two consecutive

frames. Jointly the Joining the image modalities of synchronous and asynchronous

frames, the 3D motion field can be inferred. The estimation of 3D motion field in-

cludes optical flow estimation and depth estimation.

Optical flow estimation is a method that detects the intensity of image pixels

over time to infer the speed and direction of object movement. With the optical

flow, the displacement m = (ξu ,ξv ) at each pixel of the previous frame is obtained.

Depth estimation computes the depth information from the disparity map. A
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disparity map calculation algorithm takes a pair of left-right images Il and Ir as in-

put. These images are captured from a pair of cameras with a horizontal offset b.

The output disparity map ∆(u, v) of each pixel locations is the same size as the in-

put image. Equation 6.5 is the formula that converts the disparity map∆(u, v) to the

depth map D.

D = f ×b

∆(u, v)
(6.5)

Usually stereo images are required for scene flow to calculate disparity map.

While, it is possible for deep neural network infers disparity map directly from

monocular images. The [Hur and Roth, 2020] is a representing network to build 3D

motion field from monocular consecutive images. They design a CNN network to

estimate depth and 3D motion simultaneously from a optical flow cost volume. Self-

supervised learning is used to leverage unlabeled data, which includes a 3D loss

functions and occlusion reasoning. We integrate this well-trained network directly

into our AF3D model for 3D motion field estimation.

Module III: Update point cloud with relative movement

First, together with the point p0
i of the previous frame and the optical flow m,

the point of the current frame p1
i = (u0

i +ξu , v0
i +ξv ) = (u1

i , v1
i ).

Next, the depth information needs to be recovered. In pseudo-LiDAR

[Wang et al., 2019], the depth map is used directly to generate point cloud. Yet,

the depth error is discontinuous and thus results in a very significant dispersion

of pseudo-LiDAR. For instance, for a 5-meter-away object, a unit disparity error(in

pixels) implies a depth error of 10 cm. However, for an object 50 meters away, the

same disparity error brings a depth error of 5.8 m [Ma et al., 2020].

For the above reason, we use the relative depth to build depth map instead of

using estimation depth directly, as shown in Equation 6.6.

d 1
c = d 0

c + (D1 −D0) (6.6)

Where D1 is the depth estimated from asynchronous frame image. D0 is the depth

estimated from synchronous frame image. d 0
c is the accurate depth information

from synchronous frame LiDAR. d 1
c is the restored point cloud of asynchronous

frame.

By using Equation 6.7 with camera intrinsic, the point P1
c = (X1

c ,Y1
c ,Z1

c ) in image

coordinate for asynchronous frame is calculated.
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Z1
c = d 1

c

X1
c =

(u1
i − cu)×Z1

c

fu

Y1
c =

(v1
i − cv )×Z1

c

fv

(6.7)

Where(cu ,cv )is the image center point. fu and fv are the horizontal and vertical

focal lengths. It should be reversed from image coordinate to world coordinate for

LiDAR-based 3D object detector.

6.5 Experiments and Results

6.5.1 Dataset and backbone network

KITTI benchmark provides variety annotations for different tasks, such as disparity,

optical flow, scene flow and 3D object detection. Many advanced algorithms are

submitted for comparison and can be integrated into our AF3D model. We choose

to validate the effectiveness of our algorithm on the KITTI dataset.

Since asynchronous multi-modal fusion is a novel fusion paradigm, it is nec-

essary to build a suitable dataset for training and testing. Three sub-datasets are

involved in the construction of the Asynchronous KITTI dataset. We retrieve the

previous frame of each KITTI 3D object detection dataset frame from the KITTI raw

dataset. As a result, each frame of Asynchronous KITTI dataset contains two images

and two LiDAR point clouds. This allows us to directly use the labels and calibra-

tions of the KITTI 3D object detection dataset. In addition to frame number 5524,

there are 7480 frames in the Asynchronous KITTI dataset. KITTI scene flow dataset

is also applied to train scene flow estimator for deriving 3D motion. The splitting

approach for the training and testing datasets is referred to [Yan et al., 2018].

1) Asynchronous multi-modal fusion model. In this model, we equip the scene

flow network [Hur and Roth, 2020] to estimate 3D motion. It is a monocular scene

flow network based on self-supervised learning. It can be deployed on the KITTI

dataset and provides satisfactory performance. The well-trained weight is directly

integrated into our AF3D. The scene flow network can be replaced arbitrarily ac-

cording to the requirements.

2) Unified LiDAR-based 3D object detector. The PointPillars [Lang et al., 2019]
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network is employed for detection. It is an improved voxel-based network which

achieves convincing accuracy and efficiency. Since we transform the image modal-

ity to LiDAR modality, the 3D object detector can also be selected arbitrarily. We

train the PointPillars with our asynchronous multi-modal dataset. First, the scene

flow network is used to generate LiDAR point cloud for asynchronous frames. Sec-

ond, the 3D object detector is trained on the generated LiDAR for 160 epochs. This

weight is used for asynchronous frame 3D object detection. We also use the orig-

inal LiDAR point cloud to train a weight. It is used for 3D object detection in syn-

chronous frames.

6.5.2 Metric

The metric used to evaluate the accuracy of 3D object detection is the average preci-

sion. For the KITTI 3D object detection dataset, the average precision is calculated

by the 40-point interpolation method [Simonelli et al., 2019]. The evaluation proce-

dure is shown in Equation 6.8.

APN = 1

N

∑
R∈RN

Pmax(R)

Pmax(R) = max
R′:R′≥R

P(R′)
(6.8)

Where RN is the set of N interpolation points. Specifically, R40 =
{1/40,2/40, ...,40/40} for 40-point interpolation method.

In our previous study [Zhang et al., 2022], 40-point interpolation method may

lead to confusion due to average precision distortion. Therefore, we also use the

enhanced 40-point interpolation method to evaluate the average precision APh of

the detector. The evaluation procedure of APeN is shown in Equation 6.9.

APeN = 1

N

M−1∑
i=1

Pmax(Ri
i p )+T×P(Rd

i p )

Pmax(Ri
i p ) = max

R′:R′≥Ri
i p

P(R′)
(6.9)

The number of valid interpolation intervals M and the middle interpolation

points Ri
i p are calculated as follows. ⌈∗⌉ means rounding up.
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M = ⌈Nt p ×N

Ng t
⌉

Ri
i p = 2i +1

2N
, i ∈ [0,1, . . . ,N−1]

(6.10)

The valid interval width T = Nl t p /Ng t . The number of true positives for the last

valid interpolation interval Nl t p and the dynamic interpolation point for the last

interpolation interval Rd
i p can be acquired as follows. ⌊∗⌋ means rounding down.

Nl t p = Nt p −⌊Ng t

N
× (M−1)⌋

Rd
i p = ⌈Nl t p

2 ⌉+⌊Ng t

N × (M−1)⌋
Ng t

(6.11)

6.5.3 Experimental result

Table 6.2 shows the 3D object detection results for monocular images. The pseudo-

LiDAR [Wang et al., 2019] (PL-AVOD, PL-FPN) represents the modality transform

without asynchronous multi-modal fusion. The LPCG [Peng et al., 2021] (LPCG-

RTM3D, LPCG-MonoFlex) represents the existing state-of-the-art in monocular

image-based 3D detector. Our AF3D with the PointPillars backbone achieves the

best detection accuracy.

Table 6.2: Comparison of AF3D with other state-of-the-art detectors for monocular 3D ob-
ject detection results. E: Easy, M: Moderate, H: Hard. 3D@0.5: 3D object detection with IoU
threshold 0.5. 3D@0.7: 3D object detection with IoU threshold 0.7.

Model 3D@0.5 3D@0.7
E M H E M H

PL-AVOD 57.0% 42.8% 36.3% 19.5% 17.2% 16.2%
PL-FPN 66.3% 42.3% 38.5% 28.2% 18.5% 16.4%

LPCG+RTM3D 65.44% 49.40% 43.55% 25.23% 19.43% 16.77%
LPCG-MonoFlex 69.16% 54.27% 48.37% 31.15% 23.42% 20.60%

AF3D 76.55% 57.19% 52.99% 35.36% 25.63% 22.61%

This result indicates that asynchronous multi-modal fusion is an effective

method for image modality transformation. It helps our AF3D network to improve

the average precision of 3D object detection for monocular image by 9.4% (2.21% in

AP score) compared to the state-of-the-art method (Moderate, IoU threshold is 0.7).

Table 6.3 illustrates the full capabilities of AF3D for 3D object detection on both

synchronous and asynchronous frames. For the class ’car’ with an IoU threshold of
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Table 6.3: 3D object detection results of AF3D in the image modality and the LiDAR modal-
ity.

Mono Image Modality (AP/APeN)
Easy Moderate Hard

Car@0.5 78.85%/77.98% 57.19%/57.11% 52.98%/50.99%
Car@0.7 35.58%/32.50% 25.63%/21.38% 22.61%/18.36%
Pedestrian@0.25 21.47%/16.91% 19.14%/15.24% 17.42%/12.95%
Pedestrian@0.5 6.52%/4.45% 5.95%/3.40% 5.71%/2.77%
Cyclist@0.25 4.20%/2.42% 3.81%/1.84% 3.75%/1.67%
Cyclist@0.5 3.03%/0.39% 3.03%/0.24% 3.03%/0.26%

LiDAR Modality
Easy Moderate Hard

Car@0.5 96.62%/97.13% 94.77%/94.01% 92.29%/91.34%
Car@0.7 86.61%/86.06% 74.61%/74.23% 70.23%/69.89%
Pedestrian@0.25 70.01%/71.06% 66.40%/67.29% 62.21%/63.37%
Pedestrian@0.5 50.54%/51.31% 45.06%/45.89% 40.01%/41.17%
Cyclist@0.25 85.81%/86.98% 71.19%/72.02% 67.26%/68.21%
Cyclist@0.5 80.80%/81.35% 60.29%/61.19% 56.27%/57.45%

0.5, the detection accuracy gap between the two modalities has been significantly

narrowed. However, for a higher IoU threshold as 0.7, it still requires a further im-

provement.

Detection results for classes ’pedestrian’ and ’cyclist’ are also provided. The dif-

ference in average precision scores between the two modalities is enormous. These

objects have a smaller volume and contour compared to the ’car’. When generating

depth map from the image of asynchronous frame, estimation errors could easily

corrupt the integrity of the object geometry.

Figure 6.2 shows two samples of point cloud generated by AF3D based on

monocular images. Compared to ground truth, the basic contour of the object re-

mains after moving the synchronous frame point cloud according to the 3D motion.

It contributes to improve the detection accuracy.
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Image Modality

Corresponding
LiDAR Modality

LiDAR Modality
Generated by AF3D

Figure 6.2: Point clouds generated by the asynchronous fusion of AF3D compared with
ground truth. The first line is the image of the asynchronous frame. The second line is
the point cloud ground truth. The third line is the generated point cloud.

6.6 Conclusion

In this chapter, an asynchronous multi-modal fusion 3D object detector (AF3D) was

proposed. AF3D adopted scene flow network to estimate 3D motion and built the

point cloud by fusing synchronous frame for the asynchronous frame. As a result,

the image modality was transformed to the LiDAR modality, enabling a unified 3D

object detection. Our AF3D achieved a state-of-the-art average precision score for

monocular image 3D object detection. At the same time, it remained capable of

detecting objects in LiDAR modality with high accuracy.

AF3D network still has some defects. In our future work, we will try to incorpo-

rate constraints between spatial points to reduce the errors of asynchronous multi-

modal fusion. We also plan to merge the weights of asynchronous and synchronous

detectors to achieve efficient detection.
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CHAPTER 7. CONCLUSIONS AND FUTURE WORK

In this thesis, we explored the 3D object detection from four aspects. The re-

search covers evaluation metric, dataset optimization, synchronous multi-modal

fusion and asynchronous multi-modal fusion for 3D object detection.

In Chapter 3, we disclosed the average precision distortion problem during the

evaluation of 3D object detection performance. This distortion problem may incor-

rectly evaluate the performance of the detector. The enhanced N-point interpola-

tion method was proposed in order to address the distortion problem.

In Chapter 4, we attempt to build a visual model to optimize the image modal-

ity for the dataset. Unlike frame-by-frame image optimization, the proposed NPAE

algorithm establishes uniform optimization parameters for image modality based

on data acquisition parameters. And it achieves acceleration on both CPU and GPU

platforms.

In Chapter 5, we investigated the multi-modal fusion 3D object detection in the

presence of synchronized data. In examining the advanced LiDAR-based 3D object

detectors, a significant quantity of false positives were commonly presented. The

cross-modal verification (CMV) model was proposed to remove the FPs by using

image-modality classifier for 3D detection. The experimental results showed that

more than 50% of the false positives were eliminated and the 3D detection results

were improved.

In Chapter 6, an asynchronous multi-modal fusion for 3D object detection

(AF3D) was exposed for the first time. We transformed the image modality into a

LiDAR modality in order to use the LiDAR-based 3D object detector for both asyn-

chronous and synchronous frames. To address the huge gap in the 3D detection

performance of the two modalities, an asynchronous fusion module was designed.

The spatial motion information obtained from the two image frames was used to

generate asynchronous frame point clouds by shifting the synchronous frame point

clouds. After asynchronous fusion, the 3D detection accuracy of image modali-

ties was improved by 9.43%. It outperformed the state-of-the-art monocular image

modal 3D detectors.

In this paper, the multi-modal fusion 3D object detection algorithms based on

deep learning is investigated. Despite the results of the study, there is still a lot of

room for improvement. In that case, my future research will focus on three areas: 1)

The Advanced fusion architecture. Recently it has been noticed that new fusion al-

gorithms are being proposed, such as BEVFusion [Liu et al., 2022] and Transformer

fusion [Yan et al., 2023]. The accuracy of 3D object detection based on the novel fu-
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sion paradigm outperforms that of the single modality. The effectiveness of fusion is

demonstrated. This proves that it is essential to continue exploring a more effective

fusion architecture. 2) Fusion with radar modality. Radar modality is rarely fused

with other modalities for autonomous vehicles. Due to its modal characteristics,

only the information of the moving target is preserved. This requires some changes

in the neural network that processes the radar signal. A type of neural network called

Spiking Neural Network (SNN) [Tavanaei et al., 2019] could be used to process radar

modality [Viale et al., 2021]. How to effectively fuse the radar modality and how to

fuse it with novel neural network structures is an interesting challenge. 3) Lite AI and

Edge AI. Autonomous vehicles cannot pursue the same data processing capabilities

as data centers. Yet, most of the existing deep learning algorithms rely on powerful

central processing chips. In addition to supplying energy to the high-performance

chip, a large number of cables are required to transmit signals. To go green and

low-carbon, we need to improve deep learning algorithms. Light-weight network

structures need to be developed so that they can run in low-power chips. At the

same time, this low-power chip can be as close to the sensor as possible, reducing

the transmission signal latency. This distributed artificial intelligence at the sensor

edge is called edge AI [Shi et al., 2020b], and will be a focus of the future research.
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