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P.1 Rappel sur la mécanique classique

Le point de départ de notre discussion est l'étude des systèmes dynamiques. Pour simplifier nous limitons notre traitement dans la page suivante au mouvement d'une particule dans l'espace des positions R d muni de coordonnées x = (x 1 , . . . , x d ). On note la position de la particule dans le temps t par x (t). Nous supposons en outre que la force F (x (t)) agissant sur la particule est conservative, c'està-dire F (x (t)) = -∇V (x (t)) avec V ∈ C ∞ R d signifiant l'énergie potentielle de la particule. L'étude des systèmes dynamiques a commencé à partir de la théorie des équations différentielles.Afin de décrire la dynamique, on prend le formalisme hamiltonien, dans lequel on considère un système de 2 équations différentielles ordinaires du premier ordre des équations appelées équations du mouvement de Hamilton données par,

dx j dt = ∂H ∂ξ j (x (t) , ξ (t)) dξ j dt = -∂H ∂x j (x (t) , ξ (t))
.

(P.1)

La fonction H résolvant ce système modélise l'énergie totale conservée de la particule et est appelée hamiltonien du système. Ici l'espace de tous les états ("configurations") du système est donné par

T * R d = {(x 1 , . . . , x d , ξ 1 , . . . , ξ d ) :
x j , ξ j ∈ R} avec x = (x 1 , . . . , x d ) étant les coordonnées de position tandis que ξ = (ξ 1 , . . . , ξ d ) représente la quantité de mouvement de la particule.

Exemple P.1.1. Soit une particule non relativiste de masse m sur laquelle agit une force conservatrice F , son énergie totale est donnée par l'hamiltonien,

H (x, ξ) = ξ 2 2 2m + V (x) .
Le premier terme est l'énergie cinétique de la particule et le second est l'énergie potentielle.

Supposons que pour chaque (x (0) , ξ (0)) ∈ T * R d le système (P.1) admette une solution pour chaque t ∈ R . Alors pour toute valeur de (x (0) , ξ (0)) ∈ T * R d on obtient une trajectoire de la dynamique, soit ((x (t) , ξ (t))) t∈R .

Nous nous intéresserons à l'étude des propriétés des trajectoires correspondant aux temps grands (ie, "l'évolution en temps long du système"). Pour cela on représente les trajectoires par un flux,{Φ t } t∈R , une famille à un paramètre de difféomorphismes Φ t : R 2d → R 2d , prenant pour valeur (x (0) , ξ (0)) à son état initial et (x (t) , ξ (t)) au temps t. Nous pouvons vérifier que pour chaque

t 1 , t 2 ∈ R le flux satisfait Φ 0 = Id R 2d Φ t 1 +t 2 = Φ t 1 • Φ t 2 . (P.2)
Relions géométriquement le flux et le système. Munir R 2d de la forme bilinéaire ω appelée la forme symplectique, donnée par

ω (u, v) = u t 0 d Id d -Id d 0 d v, u, v ∈ R 2d ou considéré comme une forme différentielle, ω = d j=1 dx j ∧ dξ j .
Le système ci-dessus correspond à X H , le champ vectoriel unique sur On se réfère au quadruplet (M, B, µ, Φ) une transformation préservant la mesure. Étant donné une telle transformation, nous aimerions comprendre le comportement à long terme de Φ-orbits.

R 2d satisfaisant pour chaque v ∈ R 2d ∇H, v R 2d = ω (X H , v) et générant le flux Φ t .
Le premier résultat est dû à Poincaré qui a prouvé que si µ est une mesure de probabilité, pour chaque 

. Si α = j k pour un certain j ∈ Z, k ∈ N * l'ensemble A = k-1 m=0 m k , m+ 1 2 k est dx-invariant de mesure 1 2 et donc pour ces valeurs de α l'application Φ α n'est pas ergodique. Au contraire, Φ α est er- godique si α ∈ R \ Q .
Notre prochain objectif est de formuler des conditions pour "l'équidistribution asymptotique" : en commençant par A ∈ B, nous aimerions que Φ t (A) soit "équidistribué" par rapport à µ comme t → ∞. À cette fin, nous introduisons une autre propriété théorique de la mesure (chaotique) appelée mélange, Définition P.1.5. On dit que R 2d , B, µ, Φ est un mélange (fort) si pour chaque mesurable définit

A, B ⊂ B lim n→∞ µ (B ∩ Φ n (A)) = µ (A) µ (B) , où Φ n = Φ • • • • • Φ n fois
. Nous testons combien de Φ n (A) intersectent avec n'importe quel sous-ensemble B ∈ B. Remarque P.1.6. Un mélange fort implique une ergodicité : si

A ∈ B est un ensemble Φ-invariant, alors pour tout n ∈ Z, µ (A ∩ Φ n (A)) = µ (A). Si (M, B, µ, Φ) est un mélange fort, lim n→∞ µ (A ∩ Φ n (A)) = µ 2 (A), donc µ (A) ∈ {0, 1}.
Ci-dessous nous utiliserons un critère équivalent de mélange fort et d'ergodicité dû à Von Neumann : Un critère équivalent d'ergodicité a été donné par Birkhoff, Théorème P.1.2 (Théorème ergodique ponctuel de Birkhoff, section 4.1 dans [KH97]). Soit (M, B, µ, Φ) une transformation préservant les probabilités. Si f ∈ L 1 (M, µ) la limite

Théorème P.1.1 (Von Neumann, Theorem 2.21 in [EW10]). Considérons la transformation préservant la mesure R 2d , B, µ, Φ .

Le système est ergodique si et seulement si pour tout

f ∈ L 2 (M, ν) lim N →∞ 1 N N -1 k=0 f • Φ k - ˆR2d f dµ L 2 (M,µ) = 0.

Il mélange fortement si et seulement si pour tout

f, g ∈ L 2 (M, µ) lim N →∞ ˆM f • Φ N • gdµ = ˆM f dµ • ˆM gdµ.
f (y) := lim N →∞ 1 N N -1 k=0 f Φ k (y) existe µ-presque partout et 1 N N -1 k=0 f Φ k (y) L 1 -→ f (y). La fonction f est Φ-invariante, absolu- ment intégrable et ´f dµ = ´f dµ.
Si Φ est ergodique, alors f (y) = ´f dµ pour µ-presque chaque y ∈ M . En d'autres termes, presque chaque fois que la moyenne le long d'une trajectoire converge vers la moyenne µ-. Nous remarquons que même si les théorèmes de Birkhoff et de Von Neumann ont été formulés pour des systèmes à temps discret, nous pourrions remplacer la sommation par l'intégration pour obtenir des caractérisations des propriétés ergodiques et de mélange pour des systèmes à temps continu.

P.1.2 Hyperbolicité, propriété d'Anosov et flux géodésique

Soit N une variété riemannienne lisse et compacte sans bord (c'est-à-dire "une variété fermée"). Dorénavant la dynamique que nous considérons sera hyperbolique, notion rappelée ci-dessous, et C 1 (continuellement différentiable). Pour simplifier la présentation on se réfère aux coordonnées locales de la co-sphère 1 figent M = S * N comme y et aux coordonnées locales sur N comme x.

Considérons d'abord la notion d'hyperbolicité uniforme ("Anosov") pour les cartes, et de même sa variété instable est l'ensemble

V u (y) := y ′ ∈ M : lim t→-∞ d Φ t (y) , Φ t (y ′ ) = 0 .
Pour les cartes chat classiques définies ci-dessous (cf. section P.2) E u/s (y) = T y V u/s (y).

La notion d'hyperbolicité et de propriété d'Anosov peut également être traitée lors de l'étude des systèmes à temps continu. 

y M = E s (y) ⊕ E u (y) ⊕ E 0 (y) où dénotant X := dΦ t dt t=0 , E 0 (x) = Span (X (y)) = RX et il existe λ > 1 et C > 0 tels que pour tout t ≥ 0 si v ∈ E u (y) alors (dΦ t (y)) v ≤ Cλ t v et si v ∈ E s (y) alors (dΦ t (y)) v ≤ Cλ -t v .
Faisons maintenant une digression et rappelons la définition d'un flot géodésique : Écrivez les coordonnées locales sur N sous la forme (x 1 , . . . , x d ). Dénotons la métrique riemannienne sur N par 1 Rappelons que étant donnée une variété riemannienne (N, g), g se relève en une métrique ĝ sur T N appelée la métrique Sasaki. Dans ces notations,

S * N := {(x, ξ) : x ∈ N, ξ ∈ S * x N } avec S *
x N étant le double espace de les vecteurs tangents de longueur unitaire en x. Nous nous intéressons à une classe de variétés généralisant les surfaces de selle 2 dans R d . Grosso modo, lorsque (N, g) est une surface, en tout point x on peut définir une matrice appelée la seconde forme fondamentale (cf. [Lee06]) dont les valeurs propres κ 1 (x) , κ 2 (x) décrivent l'écart minimal et maximal au point x par rapport au plan. Le produit κ 1 κ 2 (x) est appelé la courbure gaussienne à laquelle nous nous référons désormais simplement comme "la" courbure d'une surface. Cette définition peut être généralisée aux variétés. Comme cette thèse ne traite pas d'exemples de grande dimension, nous ne mentionnons que la généralisation en quelques mots. Lorsque nous prenons v ∈ R 2d et le "transportons en parallèle" autour d'une boucle (courbe (C 1 avec des extrémités identiques), il pointera à nouveau dans la direction d'origine en revenant à sa position initiale . Riemann a suggéré de capturer l'étendue de l'échec de cette propriété sur M en considérant Tensor de courbure de Riemann,

R (u, v) w = ∇ u ∇ v w -∇ v ∇ u w -∇ [u,v] w,
où u, v ∈ T y M, w sont des vecteurs tangents et [u, v] est le crochet de Lie de u et v. Alors on définit la courbure en coupe de M par

K (u, v) := R (u, v) v, u u, u v, v -u, v 2 .
Revenant à notre discussion principale en dimensions inférieures, un exemple bien étudié de dynamique hyperbolique se produit sur des variétés de courbure négative constante -1 : On rappelle que gz ∈ H puisque d'un calcul direct Im (gz) = Im z |cz+d| 2 . Cela nous permet par un abus de notation d'associer à chaque g une fonction g : H → H donnée par g (z) = gz. On note sa dérivée par rapport à z par g ′ (z) = 1 (cz+d) 2 . On peut alors étendre l'action à SH en g. (z, v) := Dg (z, v) = (g (z) , g ′ (z)

• v) = az + b cz + d , v (cz + d) 2 .
Pour un z ∈ H, fixe l'application (Dg) z := Dg (z, •) est une application linéaire (Dg) z : T z H → P.1. RAPPEL SUR LA MÉCANIQUE CLASSIQUE
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 17 Nous utiliserons ci-dessous le fait que la dynamique sur M = T 2d défini par un automorphisme γ ∈ SL d (Z) avec Spec (γ) ∩ S 1 C = ∅ se mélange fortement (pour preuve cf. [KH97, Proposition 4.2.12] et Figure P.1).

Figure P. 1 :

 1 Figure P.1: Les itérations d'un cluster de points Ω se répartissent le long des branches instables, « remplissant » T 2 pendant un temps assez long. Conséquence : γ DE (voir Example P.2.1 ci-dessous) est mélangeante et donc ergodique par rapport à la mesure de Liouville.

  Définition P.1.10 (Flux hyperbolique et Anosov). Supposons que M = S * N est une variété riemannienne et notons la distance induite de la métrique par d. Le flux {Φ t } est appelé un flux Anosov s'il existe des {Φ t }-sous-paquets invariants E s , E u ⊂ T M tel que pour chaque y ∈ M T

  Théorème P.1.3 (par exemple [KH97, Théorème 17.6.2]). Supposons que (N, g) est une variété riemannienne fermée de courbure sectionnelle négative, le flot géodésique sur 3 M = S * N est un flux Anosov et fortement mélangeant par rapport à la mesure invariante naturelle sur M dite Liouville mesure µ Liouville et définie par µ Liouville := det (g ij ) dy. Comme µ Liouville | M est fini, on peut supposer en normalisant que µ Liouville (M ) = 1, c'est-à-dire qu'il s'agit d'une probabilité invariante mesure.Nous consacrons la sous-section suivante à rappeler brièvement quelques détails élémentaires concernant les surfaces hyperboliques de courbure négative constante.P.1.3 Surfaces de courbure négative constanteLes dynamiques que nous présentons ci-dessous dans chapitre 1 sont un jouet modèle de dynamique bien étudié que nous rappelons brièvement dans cette sous-section (pour un traitement plus rigoureux cf. par exemple [Lan12] ou [EW10]) : On commence par rappeler des détails sur le demi-plan supérieur de Poincaré, H := {z = x + iy : y > 0} .

Figure P. 3 :

 3 Figure P.3:Les deux "types" possibles de géodésiques dans H : soit sur l'axe y-soit sur des demi-cercles. Ici z indique un point complexe sur la géodésique tandis que v est la direction de la vitesse le long de celuici. La variété stable de (z, v) est obtenue à partir des géodésiques verticales voisines et sa variété instable à partir des géodésiques semi-circulaires.
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P

  Preliminaries: dynamique hyperbolique classique et quantique Le présent travail étudie les propriétés spectrales des vecteurs propres du "application du chat quantique", un célèbre exemple de jouet d'un système qunatique présentant une dynamique chaotique. Ces propriétés incluent mais sont non limitées à la (dé-)localisation et à l'équidistribution de séquences d'états propres du propagateur quantique. Commençons par rappeler les bases de la mécanique hamiltonienne et son pendant quantique. Nous présentons ensuite deux modèles centraux de systèmes chaotiques admettant des versions quantiques : Le flux géodésique, étant hyperbolique sur une surface de courbure négative et les automorphismes toraux hyperboliques également appelés "cat maps" d'après [AA67]. Nous énonçons ensuite nos résultats.

  En fait,

	X H (x, ξ) =	∂H ∂ξ 1	, . . . ,	∂H ∂ξ d	, -	∂H ∂x 1	, . . . , -	∂H ∂x d	(x, ξ)
	On sait que les couches d'énergie sont préservées par le flux, donc on peut restreindre la dynamique à un certain fixe S (E). La théorie des systèmes dynamiques s'intéresse au comportement en temps long des trajectoires

et est appelé un Champ vectoriel hamiltonien et Φ t est appelé un flot hamiltonien. Les ensembles de niveaux de H, sur lesquels la particule a une énergie fixe E > 0, sont appelés coquilles d'énergie,

S (E) := {(x, ξ) ∈ R 2d : H (x, ξ) =

E}. Exemple P.1.2. Considérons la variété symplectique R 2d , ω et munissons-la de la mesure de Liouville µ Liouville = ω d! . Tout difféomorphisme symplectique Φ préserve µ Liouville (ce qui signifie que µ Liouville est Φ-invariant).

  Définition P.1.8(difféomorphisme d'Anosov). Supposons que M = SN est une variété riemannienne de norme• . L'application Φ est appelée un difféomorphisme d'Anosov s'il existe Φ-sous-fibrés invariants E s , E u ⊂ T M tel que pour chaque y ∈ M T y M = E s (y) ⊕ E u (y) tel qu'il existe λ > 1 et C > 0 tel que pour tout t ≥ 0 si v ∈ E u (y) alors (dΦ t (y)) v ≤ Cλ t v et si v ∈ E s (y) alors (dΦ t (y)) v ≤ Cλ -t v. En d'autres termes, il a une direction d'expansion exponentielle décrite par le sous-paquet instable E u et se contractant de manière exponentielle direction donnée par le sous-fibré stable E s . On peut souvent réaliser E u et E s en utilisant variétés instables et stables, La variété de y ∈ M est l'ensemble V s (y) := y ′ ∈ M : lim

	Définition P.1.9.

t→∞ d Φ t (y) , Φ t (y ′ ) = 0 .

  ) et les orbites proches de Φ t . Plus de détails sur le flux géodésique peuvent être trouvés dans des manuels comme [Kli11] ou [Pat99].
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T g(z) H soulevant l'action de H à T H. Une propriété utile de cette action est qu'il s'agit d'une isométrie à la fois sur H, c'est-à-dire, d (gz 0 , gz 1 ) = d (z 0 , z 1 ), et sur SH (pour une levée appropriée de d). Cela signifie qu'on peut associer à chaque géodésique de SH une géodésique de H, image d'une courbe fixe "confortable" sous un élément g ∈ PSL 2 (Z). Les géodésiques dans H sont des demi-cercles perpendiculaires à l'axe réel. Nous permettons à l'une des extrémités du demi-cercle d'être i∞, auquel cas la géodésique est une droite verticale parallèle à l'axe imaginaire. La "géodésique de référence" est la géodésique verticale passante par i et paramétrée par γ : R + → iR donnée par

. Combiné avec la transitivité de l'action, cela donne SH = PSL 2 (R). On obtient une correspondance entre les éléments de SH et les géodésiques à vitesse unitaire données par

Le flot géodésique Φ t : SH → SH est alors défini comme le mappage prenant (z t 0 , v t 0 ) = g (ie it 0 ) vers (z t+t 0 , v t+t 0 ) := g ie i(t+t 0 ) . au temps t.

Les variétés instables et stables sont données en termes de flux horocycliques correspondants

A partir d'un calcul direct, H a une courbure négative constante -1 et il sert comme modèle d'hyperbolicité : une surface est dite hyperbolique si chaque voisinage ouvert de celui-ci est isométrique à H.

Exemple P.1.11. En compactant H en considérant son quotient sous un sous-groupe co-compact Γ ≤ PSL 2 (R) on obtient une surface hyperbolique X = H / Γ . Chaque géodésique de H est enroulée autour de Γ, donnant lieu à des variétés instables/stables et des sous-paquets de SX ainsi le flux géodésique est Anosov également lorsque l'on considère le quotient.