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Professeure, Université de Lyon (LIRIS, UMR CNRS 5205) Présidente

Julien Tierny

Directeur de recherche (DR2), CNRS - Sorbonne Université (LIP6) Rapporteur
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France, across 14 scenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2 Summary of the best PR-AUC value and the associated receptive field (RF ) size,
given different sets of features using our preferred local point operator “Grid”.
Our ReVISOR combination yields the best performance when using a receptive
field of size 2 m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

A.1 Computation time (in sec.) of [57] compared to our approach on 5 shapes (Fig. 3.3)
from the SHREC’19 data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

C.1 Evaluation of various convolution operators (Conv.) and a recent mirror segmenta-
tion method (Meth.), namely PDNet [98]. Since we use the laser intensity to obtain
grayscale images as input for PDNet, we compare to the semantic segmentation ap-
proaches with the intensity as input feature. PPool stands for PosPool [87], Adap.
for Adaptive weights [162], Grid for pseudo-grid kernel-point convolution [151]
and MLP for Multi-Layered Perceptron. All quantities are expressed in percents. 100



Chapter 1

Introduction

3D data has become easier to acquire in recent years via the development of new affordable
acquisition devices, which lead to an increase of the availability and diversity of this type of data,
mostly as 3D point clouds or RGB-D images. This growth of 3D data calls for new techniques to
efficiently process it. A standard example for such data processing is the task of assigning each
acquisition point to a category, a class, that reflects its semantic meaning. The final output of
a well performing method constitute a semantic segmentation of the initial point cloud. Deep
learning has become the main approach to solve this category of problem after the thrive of
methods specifically adapted to point cloud data following the footsteps of PointNet [124].

Parallel to the expansion of real-world 3D data, man-made or synthetic 3D shapes, usually
represented as triangle meshes, also become more and more common by the development of
powerful 3D modeling tools. The study of 3D shapes comprise many topics, such as remeshing
(changing the underlying triangulation of the shape without modifying its surface), mesh repair-
ing (finding missing surface elements in a damaged mesh) or shape correspondence. This last
problem, also called shape matching, consists in finding for each point on the surface of a given
target shape which point on the surface of a source shape is the closest to it via a map. For
instance, given two hands, a good map should put in correspondence the tip of the thumb of one
hand in correspondence with the tip of the thumb of the other hand.

Despite their great diversity, in terms of input data (point cloud versus mesh), methods and po-
tential applications, performing semantic segmentation and shape matching both rely on finding
and exploiting common structures in the underlying data. In our work, we attempt to illustrate
which kind of tools can be leveraged to detect patterns in complex 3D geometry and solve both
types of problems.

1.1 Context

Following the conceptual divide that we highlighted above, we present first contextual infor-
mation on 3D shape analysis before introducing deep learning on 3D point clouds.

1.1.1 3D Shape Analysis

The analysis of 3D shapes constitutes a sub-field of geometry processing [17], an area of research
at the intersection of computer science, algorithmic and mathematics. 3D shape analysis mostly
focuses on smooth surfaces, modeled as triangle meshes. Contrary to image analysis, that studies
signals on a fixed grid, this data modality implies that the signals studied evolve on 2D surfaces
of the 3D space: a 2-manifold of IR3.
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A common distinction 2-manifold processing is that between extrinsic and intrinsic informa-
tion. Extrinsic information consists in geometric quantities that consider values on the surface
as embedded in IR3, such as for instance the 3D coordinates of any point of the surface, given
an arbitrary reference frame. Intrinsic information regroup the geometric quantities that can be
computed without leaving the manifold’s surface. The Gaussian curvature is a typical example
of an intrinsic quantity. In the case of 3D shape matching, the transformations that are used
to compute keypoints between surfaces have to be invariant to extrinsic transforms of this sur-
face. It is for example desirable that two identical surfaces that differ only by their position in
space share identical features. Henceforth, recent shape matching techniques rely on intrinsic
shape information by computing functions defined on the surface of a shape, as for example the
functional map framework [112] and follow-up work [2, 75, 62, 42, 24, 137, 63, 130, 104].

One of the main goal of this field is the development of techniques that are mathematically
well-founded, using tools from differential geometry. A subset of such techniques is the creation
of surface descriptors. Surface descriptors are a set of features that can be computed at any point
on a surface, such as SHOT [153], the heat- [148] or wave-kernel signature [8], or at the scale
of an entire object such as shape-DNA [133]. Local surface descriptors are useful to initialize
shape matching techniques [112, 137, 104], while global descriptors can be leveraged for shape
retrieval problems. Another problem tackled by 3D shape analysis is that of parameterizing
efficiently a surface on a global scale. Solving this problem is useful to transfer textures from
a 3D model to another. From a differential geometry point of view, parameterizing a surface
amounts to mapping a complex surface to a simpler 2D domain, such as a sphere [85], or more
general topological spaces [3, 4].

Two important practical constraints for 3D shape analysis algorithms are (i) independence to
triangulation and (ii) robustness to shape changes. Triangulation independence is of particular
importance since it implies that the discretization from a continuous surface to a 3D mesh only
depends on the actual underlying surface. Methods relying on the spectrum of the Laplace-
Beltrami operator have this property [58]. In the case of shape matching, “shape changes”
usually designate an isometric transform of the surface, such as the deformation that occur when
a character bends its arm. Datasets such as FAUST [15], DFAUST [16] or TOSCA Isometric [21]
are standard examples of datasets with isometrically-transformed shapes.

In this thesis, we tackle the problem of shape matching by considering new sets of functional
bases. The first set, presented in Chapter 3, is adapted to partial shape matching. The second
allows to preserve exactly the localization of landmarks while keeping a functional approach. It
is the subject of Chapter 4.

1.1.2 Deep Learning on 3D Point Clouds

The rapid growth of deep learning-based methods for 3D data correlates with an increasing
interest of industrial actors for precise and reliable semantic segmentation models. Originally
focused on outdoor road scenes in autonomous driving scenarios, research on object detection
is now shifting towards more general goals, such as the analysis of point clouds from complex
indoor scenes.

This thesis fits into this effort, by providing a study of the applicability of learning-based
techniques to outlier detection in point clouds of industrial facilities. We focus more specifi-
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cally on acquisitions originating from reactor buildings of nuclear power-plants, provided by our
industrial partner Électricité de France (EDF).

The challenge is to detect patterns within point clouds taking into account installation con-
straints (angles, standardized sizes, etc.) and to adapt a detection model to the uncertainties
contained in the underlying data (noise, variable density, gaps). Contrary to image data, that
offers a natural grid structure, point clouds lack a canonical representation and are thus partic-
ularly challenging. Several works have addressed point cloud segmentation on raw point cloud
data. Following PointNet [124] and PointNet ++ [125], a line of research directly uses unordered
point sets to produce per-point a labeling [181, 40, 173, 172, 60]. Other approaches leverage
a graph structure computed from the point cloud that allows to take advantage of graph pro-
cessing techniques and graph convolution [157, 159, 43, 10, 170]. Finally, point clouds can be
encoded within a regular structure, such as a voxel grid [161, 187, 32] or a custom layout of
points [167, 180, 74, 151, 18, 170, 169]. In both cases, a 3D convolution operator can be defined
to aggregate local information across points. More recently, encouraged by the development of
Vision Transformers in the image domain [39, 163, 88, 52], attention mechanisms are employed
for 3D point cloud analysis [175, 49, 182]. In the case of semantic segmentation, an attention
module is applied in a local neighborhood as a drop-in replacement for convolution [49, 182].

EDF has at its disposal a key resource: tens of thousands of segmented and labelled point
clouds, that can readily serve as a learning database for learning tasks on a lexicon of shapes
(straight extrusions, cylinder, torus), connections between forms (orthogonality, parallelism) and
similarities between shapes (range of pipe diameters, range of profile sizes). This point cloud
dataset is complemented by a dataset of panoramic 2D pictures corresponding to the acquired
point clouds. Both acquisition modalities are precisely geo-referenced, so that their relative
position and orientation is known.

In order to maintain nuclear power-plant buildings, EDF’s maintenance staff relies on 3D plans
of their interior, modeled “as-built”. The point cloud and panoramic image acquisitions allow
a reconstruction team to perform this modeling task using semi-automated reconstruction tool.
The complete process is costly and slow, and would thus benefit from automation.

While EDF’s database is comprised of a wealth of clean interior scenes, where equipments are
accuratly segmented, the processing of raw 3D acquisitions via learning-based approaches remains
challenging. In our work, we focused on improving the raw processing of interior industrial scenes
by conducting a study on detecting a class of acquisition artifacts that requires a great amount of
human intervention to be removed: reflection-induced outliers. These outliers, arising when the
acquisition laser beam is reflected by metal piping, are especially challenging to segment because
clusters of outlier points closely resemble real geometry while being located in the vicinity of real
objects. The outcome of this study is described in detail in Chapter 5.

1.2 Contributions

The dissertation is structured into three main parts, that correspond to our contributions.

First Part: Partial Shape Matching. Partial shape matching on 3D shapes constitutes
a standard sub-problem in the 3D geometry processing community. A line of work [86, 129]
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has studied this problem using a functional point of view. The approach presented in Chap-
ter 3 follows this trend by constructing a novel functional basis, inspired by the well-established
methodology of diffusion wavelets [35]. Our framework allows to rapidly compute a multiscale
family of “Mexican hat” wavelet functions, by approximating the derivative of the heat kernel.
We demonstrate that this leads to a family of functions that inherit many attractive properties
of the heat kernel (e.g., local support, ability to recover isometries from a single point, efficient
computation). Due to its natural ability to encode high-frequency details on a shape, the pro-
posed method reconstructs and transfers δ-functions more accurately than the Laplace-Beltrami
eigenfunction basis and other related bases. We end Chapter 3 with an application of our method
to the challenging problems of partial and large-scale shape matching. An extensive comparison
to the state-of-the-art shows that it is comparable in performance, while both simpler and much
faster than competing approaches.

Second Part: Shape Matching with Exact Landmark Preservation. Another common
problem in 3D geometry processing is the extension of a very sparse set of landmark corre-
spondences that need a full dense map between two shapes. These sparse correspondences are
commonly tethered to semantic meaning (e.g. the tip of a finger or of a nose). In a texture
transfer scenario, where the landmarks were manually placed by an artist, the exact preservation
of the initial sparse set of correspondences becomes crucial. In Chapter 4, we introduce the tools
required to efficiently discretize a novel functional basis, relying on solving a Dirichlet-Steklov
eigenproblem, that allow to efficiently embed exact landmark preservation in functional shape
matching, while being robust to challenging use cases, such as non-isometric shape matching.
We provide an in-depth analysis of its optimal parameterization and experimental evidence of
its usefulness.

Third Part: Structured Outlier Removal in 3D Point Clouds. 3D acquisition of large-
scale point clouds is prone to many categories of measurement errors. In Chapter 5, we demon-
strate that existing outlier detection methods approach this problem by using local methods,
thus relying on the assumption that local point distribution is sufficient to distinguish “clean”
from “noisy” data. In contrast, in real-world acquisition this is often not the case, since sig-
nificant parts of acquired geometry can resemble “clean” data locally, while being present only
due to global acquisition artefacts. This is especially true for the artifacts caused by reflections.
Contrary to standard acquisition noise or outliers, reflection-induced outliers closely resemble
shapes that are present in the 3D scan. Annotated data linked to this detection problem is
scarce. We therefore first introduce a new dataset tailored for reflection-induced outlier removal.
In the remaining of Chapter 5, we repurpose state-of-the-art deep learning semantic segmenta-
tion architectures to solve the task at hand. By doing so, we bring together the fields of shape
denoising and repair on the one hand, and semantic segmentation on the other. We empirically
show that semantic segmentation architecture, leveraging large-scale geometric information is
key to solve real-world structured outlier removal, while purely local approaches fail. The effec-
tiveness of these architectures is independent of the chosen point-convolution operator. Finally,
this evaluation allows us to demonstrate the utility of visibility as a new signal to detect outlier
points.

1.3 Publication Record

The content of our work relies on the following publications.
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• Wavelet-based Heat Kernel Derivatives: Towards Informative Localized Shape Analysis [72],
by Maxime Kirgo, Simone Melzi, Giuseppe Patane, Emanuele Rodola and Maks Ovs-
janikov, published in Computer Graphics Forum.

• Non-Isometric Shape Matching via Functional Maps on Landmark-Adapted Bases [116],
by Mikhail Panine, Maxime Kirgo and Maks Ovsjanikov, published in Computer Graphics
Forum.

• Reflection-Induced Outlier Removal in Large-scale 3D Point Clouds, by Maxime Kirgo,
Guillaume Terrasse, Guillaume Thibault and Maks Ovsjanikov, submitted to ECCV 2022.





Chapter 2

Introduction en français

Les données 3D sont devenues plus accessible ces dernières années grâce au développement de
nouveaux appareils d’acquisition abordables, ce qui a conduit à l’accroissement de la disponibilité
et de la diversité de ce type de données, le plus souvent sous la forme de nuages de points 3D
ou d’images RGB-D. Cette croissance de données 3D demande de nouvelles techniques pour les
traiter efficacement. Un exemple habituel de traitement de données 3D est la tâche qui consiste
à associer à chaque point acquis une catégorie ou classe, qui reflète sa signification sémantique.
Le produit final d’une méthode performante constitue une segmentation sémantique du nuage
de points initial. L’utilisation de l’apprentissage profond est devenu l’approche principale pour
résoudre ce type de problème depuis l’essor d’architectures adaptées au traitement de nuages de
points 3D initié par PointNet [124].

En parallèle de l’expension des données 3D provenant d’acquisition de terrain, les objets 3D
synthétiques, modélisées par un opérateur humain et habituellement représentés sous forme de
maillage 3D deviennent également de plus en plus communs grâce au développement de puissants
logiciels de modélisation 3D. L’étude de formes 3D comporte de nombreux sujets, tels que le
remaillage (changer la triangulation d’une forme sans modifier sa surface), la réparation de
maillage (trouver les éléments de surface manquants d’un maillage ab̂ımé) ou la correspondance
de formes. Ce dernier problème, également désigné en anglais par le terme shape matching,
consiste à trouver pour chaque point de la surface d’une forme cible quel point à la surface
d’une forme source est le plus proche via une application. Par exemple, étant donné deux mains,
une bonne application doit mettre en correspondance l’extrémité du pouce d’une main avec
l’extrémité du pouce de l’autre main.

En dépit de leur différence importante en terme de données d’entrée (nuages de points et
maillages), de méthodes et d’applications potentielles, résoudre un problème de segmentation
sémantique et de correspondance de formes demande dans les deux cas de trouver et d’exploiter
des structures communes dans les données sous-jacentes. Dans notre travail, nous tâchons
d’illustrer quel type d’outils peuvent être employés pour détecter des motifs au sein de données
3D complexes et ainsi résoudre ces deux types de problèmes.

2.1 Contexte

En nous servant de la distinction que nous venons d’établir, nous présentons d’abord des
éléments de contedxte sur l’analyse de formes 3D avant d’introduire l’apprentissage profond sur
nuages de points 3D.
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2.1.1 Analyse de formes 3D

L’analyse de formes 3D est un sous-domaine du traitement de géométrie [17], un domaine de
recherche à l’intersection de l’informatique, de l’algorithmique et des mathématiques. L’analyse
de formes 3D se concentre principalement sur l’étude de surfaces continues, modélisées à l’aide de
maillages de triangles. Contrairement à l’analyse d’images, qui étudie des signaux sur une grille
fixe, ce type de données d’entrée implique que les signaux étudiés évoluent sur une surface 2D de
l’espace 3D : c’est une 2-variété de IR3. Dans le cas de la correspondance entre formes 3D, cela
implique que les signaux qui sont utilisés pour calculer des points communs entre surfaces doivent
être invariants à des transformations extrinsèques de cette surface. De ce fait, les techniques de
correspondance entre formes 3D récentes utilisent l’information intrinsèque de ces formes en
calculant des fonctions définis sur la surface du maillage, comme par exemple l’approche par
application fonctionnelle [112] et ses extensions [2, 75, 62, 42, 24, 137, 63, 130, 104].

Un des objectifs principaux du domaine est le développement de techniques rigoureuses sur le
plan mathématique, qui utilisent les outils de la géométrie différentielle. Un sous-ensemble de
ces techniques repose sur la création de fonctions décrivant la surface d’un objet, ou “descrip-
teurs”. Ces descripteurs sont un ensemble d’invariants pouvant être calculé à un point arbitraire
d’une surface, comme SHOT [153], la signature du noyau de la chaleur- [148] ou de l’équation
d’onde [8], ou même à l’échelle d’une forme en entier, comme c’est le cas pour shape-DNA [133].
Les descripteurs locaux sont utiles pour initialiser certaines techniques de correspondance de
formes [112, 137, 104], alors que les descripteurs globaux peuvent être employés pour résoudre
les problèmes de récupération de forme à partir d’une base de donnée. Un autre problème soulevé
par l’analyse de formes 3D est celui de la paramétrisation efficace d’une surface à grande échelle.
Résoudre ce problème est utile pour effectuer un transfert de textures d’un modèle 3D vers un
autre. En adoptant le point de vue de la géométrie différentielle, paramétriser une surface revient
à déterminer une application entre une surface complexe et un domaine 2D plus simple, comme
une sphère [85], ou des espaces topologiques plus généraux [3, 4].

Deux contraintes pratiques s’imposent aux algorithmes d’analyse de formes 3D : (i)
l’indépendance à la triangulation du maillage et (ii) l’invariance à des modifications de la forme.
L’indépendance à la triangulation est particulièrement importante puisqu’elle implique que la
discrétisation depuis une surface continue vers un maillage 3D ne dépend que de la véritable
surface sous-jacente. Les méthodes se basant sur le spectre de l’opérateur de Laplace-Beltrami
bénéficient de cette propriété [58]. Dans le cas des problèmes de correspondance de formes, une
“modification de la forme” désigne habituellement une transformation isométrique de la surface,
comme par exemple la déformation apparaissant lorsqu’un personnage plie le bras. Des jeux
de données tels que FAUST [15], DFAUST [16] ou TOSCA Isometric [21] sont des exemples
standards de jeux de données contenant des formes subissant des transformations isométriques.

Dans cette thèse, nous traitons le problème de correspondance entre formes en considérant
de nouvelles bases fonctionnelles. La première base, présentée au Chapitre 3, est adaptée aux
problèmes de correspondances entre formes partielles. La seconde permet de préserver exacte-
ment l’emplacement de correspondances a priori tout en conservant une approche fonctionnelle.
Ce sujet est traité au Chapitre 4.
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2.1.2 Apprentissage profond sur nuages de points 3D

Le développement rapdie de méthodes d’approches reposant sur l’apprentissage profond adapté
aux données 3D coincide avec l’augmentation de l’intérêt du secteur industriel pour des modèles
précis et fiables de détection d’objets. A l’origine focalisé sur des scènes d’extérieurs de route pour
des scénarios de conduite autonome, la recherche sur la détection d’objet se tourne désormais
vers des objectifs plus généraux, comme l’analyse de nuages de points venant de scènes d’intérieur
complexes.

Cette thèse s’inscrit dans cet effort, en proposant une étude de l’applicabilité de techniques
d’apprentissage automatique à la segmentation sémantique de nuages de points d’installations
industrielles. Nous nous concentrons plus spécifiquement sur les acquisitions provenant de
bâtiments réacteurs de centrales nucléaires, fournies par notre partenaire industriel Électricité
de France (EDF).

Le défi consiste à détecter des motifs au sein de nuages de points en tenant compte des con-
traintes d’installation (angles, tailles standardisées, etc.) et d’adapter un modèle de détection
aux incertitudes contenues dans les données sous-jacentes (bruit, densité variable, lacunes). Con-
trairement aux données images, qui offrent une structure naturelle, les nuages de points n’ont
pas de structure régulière locale et sont de ce fait particulièrement difficile à traiter. Plusieurs
travaux antérieurs ont traité le problème de segmentation de nuages de points à l’aide du nu-
age de points seul. Suivant les traces de PointNet [124] et PointNet ++ [125], une ligne de
recherche utilise directement l’ensemble non-ordonnées des points pour établir leur labellisation
[181, 40, 173, 172, 60]. D’autres approches se servent d’une structure de graphe, calculée sur le
nuage de points et qui permet de se servir de techniques de traitement de graphes et de con-
volutions sur graphe [157, 159, 43, 10, 170]. Enfin, les nuages de points peuvent être encodés
par une structure régulière, comme une grille de voxels [161, 187, 32] ou une disposition partic-
ulière de points [167, 180, 74, 151, 18, 170, 169]. Dans les deux cas, un opérateur de convolution
3D peut être défini pour aggréger l’information locale entre points. Plus récemment, encouragé
par le développement des Vision Transformers dans le domaine image [39, 163, 88, 52], des
mécanismes d’attention sont employés pour l’analyse de nuages de points 3D [175, 49, 182].
Dans le cas de la segmentation sémantique, un module d’attention est applqué à un voisinage
local en remplacement direct pour l’opérateur de convolution [49, 182].

EDF dispose d’une ressource clé : des dizaines de milliers de nuages de points segmentés et
labellisés, pouvant servir de base d’apprentissage pour des méthodes d’apprentissages se basant
sur un dictionaire de formes (extrusions, cylindres, tores), de connexions entre formes (orthogo-
nalité, parallélisme) et des similarités entre formes (ensemble de valeurs de diamètre de tuyaux,
de dimensions de profils). Cette base de données de nuages de points est complété d’un jeu
de données de vues panoramiques correspondant aux nuages de points. Les deux modalités
d’acquisition sont géo-référencées avec précision, de telle sorte que leur position relative et leur
orientation sont connues.

Afin d’effectuer la maintenance des bâtiments réacteurs de centrale nucléaire, les équipes de
maintenance d’EDF s’appuient sur des plans 3D de l’intérieur des bâtiments, modélisés “tel
que construit”. Les nuages de points et les images panoramiques qui ont été acquis perme-
ttent aux équipes de reconstruction de remplir cette tâche de modélisation à l’aide d’outils
semi-automatisés. Le processus complet est long et coûteux et bénéficierait de ce fait de son
automatisation.
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Alors que la base de donnée nuages de points d’EDF est constitué d’une très grande quantité
de scènes d’intérieur nettoyées, où des équipements sont segmentés avec précision, le traitement
d’acquisitions 3D brutes par des approches reposant sur l’apprentissage automatique reste un
défi. Dans nos travaux, nous nous sommes concentrés sur l’amélioration du trâıtement de données
brutes de l’intérieur de scènes industrielles en effectuant une étude sur la détection d’une classe
d’artefacts d’acquisition qui demande un travail minutieux de segmentation manuelle pour être
retirés : les points aberrants provoqués par des réflexions. Ces points aberrants, provoqués par
la réflexion du rayon laser d’acquisition par une tuyauterie métallique, sont particulièrement
difficile à segmenter parce que des regroupements de points aberrants peuvent ressembler à une
géométrie réelle, tout en étant situé à proximité de véritables objets. Le résultat de cette étude
est traitée dans le Chapitre 5.

2.2 Contributions

Cette thèse est structurée en trois parties principales, qui correspondent à nos contributions.

Première partie : correspondance de formes partielles. La correspondance entre formes
3D partielles constitue un sous-problème standard dans la communauté du traitement de
géométrie 3D. Certaines approches [86, 129] ont étudié ce problème en utilisant un point de
vue fonctionnel. L’approche présentée au Chapitre 3 s’inscrit dans cette tendance en constru-
isant une nouvelle base de fonctions, inspirée par la méthodologie bien établie des ondelettes
en “chapeau Mexicain”, en approximant les dérivées du noyau de la chaleur. Nous démontrons
que cela définit une famille de fonctions qui héritent de nombreuses propriétés avantageuses du
noyau de la chaleur (par exemple, le caractère local de leur support, leur capacité à récupérer une
isométrie à partir d’un unique point, l’efficacité de calcul). En raison de sa capacité naturelle à
encoder des détails de hautes fréquences présents à la surface d’un maillage, la méthode proposée
reconstruit et transfère des fonctions δ avec davantage de précision que les fonctions propres de
l’opérateur Laplace-Beltrami et d’autres bases du même type. Nous terminons le Chapitre 3 avec
une application de notre méthode au problème difficile de correspondances de formes partielles
et de grande taille. Une comparaison extensive avec l’état de l’art montre que cette approche est
comparable en termes de performances, tout en étant plus simple et bien plus rapide à calculer
que les approches concurrentes.

Seconde partie : correspondances de formes avec une préservation exacte de repères.
Un autre problème commun en traitement de géométrie 3D est l’extension d’un ensemble
clairsemé de repères mis en correspondance, qui doit être étendu à une application complète
entre deux formes. Ces repères clairsemés sont habituellement liés à une signification sémantique
(par exemple, l’extrémité d’un doigt ou d’un nez). Dans un scénario de transfert de texture, où
les repères sont placés manuellement par un artiste, la préservation exacte des quelques repères
initiaux devient particulièrement importante. Dans le Chapitre 4, nous introduisons les outils
permettant de discrétiser efficacement une nouvelle base de fonctions, reposant sur la résolution
d’un problème de valeurs propres de type Dirichlet-Steklov, qui permet d’incorporer efficacement
la préservation exacte de repères dans la correspondance entre formes par approche fonctionnelle,
tout en étant robuste à des cas d’usages complexes, comme la correspondance entre formes non-
isométriques. Nous proposons une analyse détaillée de sa paramétrisation optimale et des preuves
expérimentales de son utilité pratique.
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Troisième partie : détection de points aberrants structurés dans des nuages de
points 3D. L’acquisition de nuages de points 3D de grande échelle est susceptible d’être en-
tachée de nombreuses catégories d’erreurs de mesure. Dans le Chapitre 5, nous démontrons que
les approches de détection de points aberrants existantes traitent ce problème localement, et
reposent de ce fait sur l’hypothèse selon laquelle une distribution de points locale est suffisante
pour distinguer des points “correctes” de points “aberrants”. Inversement, dans le cas d’une
acquisition réelle, ce n’est souvent pas le cas car des portions significatives peuvent ressembler à
des données “correctes” alors que leur présence est entièrement dû à un artefact d’acquisition.
Cela est particulièrement vrai pour les artefacts provoqués par des réflexions. Contrairement à
un bruit d’acquisition habituel, les points aberrants issus de réflexions ressemblent étroitement
à des formes présentes dans le scan 3D. Il existe très peu de données labellisées en rapport
avec ce problème. De ce fait, nous introduisons en premier lieu un nouveau jeu de données
spécifiquement conçu pour la suppression de bruit structuré issu de réflexions. Dans le reste du
Chapitre 5, nous réutilisons des architectures de segmentation sémantique à l’état de l’art pour
résoudre le problème envisagé. En cela, nous rapprochons les domaines de débruitage de formes
d’une part et de segmentation sémantique d’autre part. Nous montrons empiriquement qu’une
architecture de segmentation sémantique utilisant une information géométrique à grande échelle
est essentielle pour retirer les points aberrants structurés provenant d’acquisitions réelles, alors
que des approches purement locales n’y parviennent pas. L’efficacité de ces architectures nous
permet de démontrer l’efficacité de la visibilité comme nouveau signal pour détecter des points
aberrants.

2.3 Liste des publications

Le contenu de nos travaux correspond aux publications suivantes:

• Wavelet-based Heat Kernel Derivatives: Towards Informative Localized Shape Analysis [72],
de Maxime Kirgo, Simone Melzi, Giuseppe Patane, Emanuele Rodola et Maks Ovsjanikov,
publié dans Computer Graphics Forum.

• Non-Isometric Shape Matching via Functional Maps on Landmark-Adapted Bases [116],
de Mikhail Panine, Maxime Kirgo et Maks Ovsjanikov, publié dans Computer Graphics
Forum.

• Reflection-Induced Outlier Removal in Large-scale 3D Point Clouds, de Maxime Kirgo,
Guillaume Terrasse, Guillaume Thibault et Maks Ovsjanikov, soumis à ECCV 2022.





Chapter 3

Wavelet-based heat kernel
derivatives: towards

informative localized shape
analysis

In this chapter, we propose a new construction for the Mexican hat wavelets on shapes with
applications to partial shape matching. Our approach takes its main inspiration from the well-
established methodology of diffusion wavelets. This novel construction allows us to rapidly
compute a multiscale family of Mexican hat wavelet functions, by approximating the derivative
of the heat kernel. We demonstrate that this leads to a family of functions that inherit many
attractive properties of the heat kernel (e.g., local support, ability to recover isometries from a
single point, efficient computation). Due to its natural ability to encode high-frequency details
on a shape, the proposed method reconstructs and transfers δ-functions more accurately than
the Laplace-Beltrami eigenfunction basis and other related bases. Finally, we apply our method
to the challenging problems of partial and large-scale shape matching. An extensive comparison
to the state-of-the-art shows that it is comparable in performance, while both simpler and much
faster than competing approaches.
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Figure 3.1: Example functions from the proposed wavelet family on a pair of shapes, respectively
a full model (left) and a partial near-isometry (center). Each function is represented at three
scales (from left to right) and localized around two different samples (1 for each row). The
rightmost column shows the point-to-point correspondence obtained using our wavelet family
(top) and the standard Laplace-Beltrami (L-B) eigenbasis (bottom). Both maps are estimated
on the same set of 13 landmarks, and visualized by color coding. Our construction is designed
to be the preferred choice in the partial setting.

3.1 Introduction

In the last decade, advances in 3D shape analysis have seen the emergence of a class of meth-
ods falling under the umbrella of diffusion geometry. Based on the seminal work of Coifman
and Lafon [34], such approaches leverage the relation between the geometry of the underlying
space and the diffusion process defined on it, as encoded especially by the spectrum of the
Laplace-Beltrami operator (LBO, for short). This general strategy has been successfully ex-
ploited for the construction of point signatures [148, 47] and shape matching [112] among other
tasks. More recently, progress in this field has shifted towards a more “local” notion of shape
analysis [115, 101], where descriptors are computed only on small and properly selected neighbor-
hoods (Sect. 3.2). This choice is motivated by several relevant settings dealing with real-world
3D data, where the acquired shapes have missing subparts, due to self-occlusions, or a wildly
different mesh connectivity. To date, however, combining informative diffusion-based geometric
techniques with robust localized shape analysis has remained an elusive goal addressed by few
methods [111, 51, 57, 115, 101].

In this chapter, we propose an extension to the classical diffusion-based constructions by con-
sidering functions that are obtained as time derivatives of the heat kernel (Sect. 5.6). Such
functions have local support, thus providing a natural tool for capturing multi-scale shape prop-
erties. Furthermore, they inherit fundamental properties of the heat kernel [111], such as an
efficient computation together with the ability to recover isometries from a single point. Our
construction is also related to Mexican hat wavelets that we build directly on the surface while
avoiding spectral approximations.

From a functional standpoint, the resulting family of functions forms an over-complete basis (a
frame or, as we refer to below, a dictionary) that provides a richer functional representation
power, compared to standard LBO eigenfunctions or heat kernel functions. For example, delta
functions supported at surface points are reconstructed more faithfully through our representa-
tion under a lower memory budget (Sect. 3.5). This aspect has direct consequences in several
applications, such as dense correspondence, function transfer across shapes, and partial shape
matching (Fig. 3.1 and Sect. 3.6).

Our contributions can be summarized (Sect. 3.7) as follows:

• we introduce heat kernel derivatives as a novel tool for localized shape analysis;
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• our proposed representation is compact and efficient to compute, while allowing an accu-
rate representation of Mexican hat wavelets. Furthermore, it is demonstrably competitive
with full-fledged algorithmic pipelines for partial shape correspondence and similarity, at
a fraction of the computational cost;

• we compare our approach to popular Mexican hat wavelet formulations and prove that it
achieves the best trade-off between efficiency and accuracy.

3.2 Related work

The definition of a compact and efficient representation of signals is a fundamental task in geom-
etry processing. By far, the most common approach is to use the eigenfunctions of the Laplace-
Beltrami operator, which are a natural extension of the Fourier basis to surfaces [150, 83, 154]. In
most settings, a truncated approximation consisting of the low frequency eigenfunctions is used
to guarantee numerical robustness and computational efficiency. The LBO eigenfunctions basis
lies at the core of many global and pointwise shape signatures, such as [141, 132, 148, 47, 8, 100]
and has been widely used for shape deformation [138], segmentation [134], and functional trans-
fer [110]. In [1], Aflalo et al. showed that the LBO eigenfunctions are the optimal for representing
continuous functions with bounded variation, thus providing a theoretical justification for its ver-
satility.

The LBO eigenfunctions are also commonly used in the functional map framework [112], which
relies on approximating and transferring functions in reduced bases. Despite its prevalence, the
truncated LBO eigenfunction basis suffers from three main limitations: (i) the support of its
functions is global [101, 115], (ii) the truncated set of eigenfunctions provides a low-pass filter on
the signal and thus it is not able to approximate functions composed of high frequencies [110],
and (iii) the LBO eigenfunctions are defined up to sign and suffer from switches in the sign and
the order, even for near isometric shapes [146].

To address these challenges, several alternatives to the LBO eigenfunction basis have been pro-
posed. In [76], Kovnatsky et al. define a compatible basis on shape collections by performing a
simultaneous diagonalization of the LBO. The compressed manifold modes [109, 115, 77] provide
a set of sparse and localised basis functions. Modifying the LBO, Choukroun et al. [31] define
a Hamiltonian operator, whose eigenfunctions are localized in those regions that correspond to
the modification of the LBO. In [101], a similar solution is applied to define a basis that is also
orthogonal to a given set of functions.

In [110], Nogneng et al. use polynomial combinations of the LBO eigenfunctions basis in con-
junction with standard linear combinations of functions to allow the representation of higher
frequencies. In [105], the LBO eigenfunctions are extended using the coordinates of the 3D em-
bedding. The resulting “Coordinates Manifold Harmonics”, capture both extrinsic and intrinsic
information, encoded in the standard LBO basis. Our use of an over-complete functional dic-
tionary is also related to the recent Binary Sparse Frame [99], where a set of non-orthogonal
indicator functions improve the approximation and the transfer of step functions through sparse
coding. Finally, a set of diffusion and harmonic bases have been proposed recently in [120], based
on properties of the heat kernel.

Local and multi-scale processing More closely related to our work are multi-scale shape
analysis methods[53] with (i) local descriptors [69, 33, 12, 55, 94] and (ii) diffusion geometry [148,
156, 22, 118, 121, 119]. These latter methods typically exploit the multi-scale nature of the heat
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kernel, which captures progressively larger neighborhoods of a given point while being able to
characterize local geometry efficiently. However, the signatures based on heat diffusion can fail
to capture important (e.g., medium frequency) shape details, which has led to other descriptors,
such as the Wave Kernel Signature [8] and optimal spectral descriptors [19, 166].

While these approaches focus on the discriminative power of the computed descriptors, wavelet-
based techniques aim explicitly to construct locality-aware functional families. With respect
to the spectral graph wavelet signature [84] and the spectral graph wavelet transform [51], our
approach does not rely on an eigen-decomposition and solves a small set of sparse linear systems,
which allows to capture local details and to operate on complex geometries. We provide an
extensive comparison with the most closely related wavelet methods in [51] (Sect. 3.3.2) and
show that our approach leads to a rich functional family that can be computed more efficiently
compared to [51], while capturing local high frequency details, crucial for partial shape matching.

Wavelets on surfaces Finally, our work is inspired by the construction of wavelet-based
functional families on triangle meshes [185, Ch. 4] based on subdivision [90], diffusion [35],
and eigendecomposition [51]. While our work does not fit directly in this field, we base our
construction on diffusion wavelets and specifically propose to consider the negative time derivative
of the heat kernel to construct our multiscale functional family. In the Euclidean domain, this
time derivative (or equivalently second derivative in space) corresponds to the Mexican hat
wavelet. Moreover, since it is constructed without relying on the LBO eigendecomposition [57],
it provides a very efficient and powerful tool for local shape analysis.

3.2.1 Background & motivation

Our main goal is to construct a family of functions that is both local and provides a multi-scale
description of the shape geometry, analogously to wavelets in Euclidean domains. The most
classical approach for generating a family of wavelet functions is via shifting and dilation (or
scaling) of a generating function, referred to as the mother wavelet. Extending this approach
to curved surfaces is challenging because shifting and dilation are not canonically defined on
non-Euclidean domains. As a result, a large number of approaches [35, 57] circumvent these
challenges by replacing these operations with those easier to mimic on surfaces.

Our construction is based on the notion of diffusion wavelets, which broadly exploit the link
between diffusion and function dilation. As a way of motivation, consider a standard zero-
mean Gaussian function on the real line: f0(x) = (σ

√
2π)−1 exp(−x2/(2σ2)). If f0 is dilated

and re-scaled by 1/s, then we obtain another Gaussian 1
sf0(x/s), whose standard deviation is

multiplied by s. On the other hand, if we consider a diffusion process ∂tf(x, t) = ∂2xxf(x, t), then
its fundamental solution is given by the classical heat kernel f(x, t) = (4tπ)1/2 exp(−x2/(4t)).
Recalling that the heat kernel satisfies f(x, σ2/2) = f0 and noting that f(x, s2σ2/2) is a Gaussian
with standard deviation sσ, we get that: f(x, s2σ2/2) = 1

sf0(x/s). This computation shows that
in certain cases, dilation and scaling can be equivalently computed by solving the diffusion
equation starting with f0.

While the above computation is done with a Gaussian function f0, a similar result also holds for
the Mexican hat (Ricker) wavelet, which is defined as the negative second order derivative of a
Gaussian function.

According to these observations, the key idea of diffusion wavelets [35, 57] is to replace dilation
by diffusion, which is particularly useful on curved surfaces. In fact, while defining dilation is
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(a) (b)

(c) (d)

tmax ∈ R∗
s ∈ S

nscales ∈ N∗

Figure 3.2: (a-c) Illustration of our diffusion wavelets (orange) on a 1D manifold (in black), and
corresponding “scaling functions” (red), which approximate the heat kernel evaluated at the same
sample. (d) Parameters of our approach: largest diffusion time tmax, number of scales nscales,
and samples s. The end of the support of successive wavelets

{
ψM
s,n

}
n∈[1;nscales]

is represented

by blue lines and the light blue region is covered by the wavelet at tmax.

itself difficult, diffusion is well defined by replacing the Laplacian ∂2xxf(x, t) with the Laplace-
Beltrami operator. Following this line of work, our main goal is to construct a multi-scale family
of functions that both have strong locality properties and exhibit good approximation of other
functions through linear combinations. Previous approaches have exploited these links either by
using a multi-scale family built directly from the heat kernel [35] or by operating in the spectral
domain, through a truncated representation [57]. Instead, we build a multi-scale functional
family using the derivative (in time or, equivalently, in space) of the heat kernel and operate
purely in the spatial domain by explicitly simulating heat diffusion. This choice allows us to
both avoid an expensive eigen-decomposition necessary to approximate very local functions and
to achieve better function reconstruction accuracy, exploiting the multi-resolution properties of
the Mexican hat wavelet.

3.2.2 Continuous setting

In the spirit of [57], we define a wavelet-like family by means of a diffusion process on a mani-
foldM (Fig. 3.2(a-c), red curve). The resulting family provides a dictionary of functions and the
corresponding linear vector space spanned by them is used for the representation of a function
in wavelet coefficients. Let u :M× R→ R be the solution to the heat equation

∂tu(x, t) = −∆u(x, t), u(x, 0) = u0(x), t ∈ R+. (3.1)

If the initial condition is defined at a single point (i.e. u0(x) = δy(x) with y ∈ M), then the
solution of Eq. (3.1) is the heat kernel Kt(x, y). Kt provides a family of Gaussian-like functions
on the surface M, with increasing standard deviation (or increasing “scale“) as t grows. At a
given scale, the negative first-order derivative of such a function constitutes the diffusion Mexican
hat wavelet. Equivalently, the Mexican hat wavelets ψt(x, y) at scale t can be computed from
the heat kernel Kt(x, y) as follows:

ψt(x, y) = −∂tKt(x, y) = ∆xKt(x, y) , (3.2)

where ∆x denotes the Laplace-Beltrami operator with respect to the point x.

Given the Laplacian eigensystem {λk,Φk}+∞
k=0, an exact spectral formulation of the heat kernel
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Algorithm 1 Computation of a dictionary of Mexican hat-like functions for a set of sam-
ples S. ΩM is the area ofM. AM and WM designate the normalized area and cotangent weight
matrices, computed using Neumann boundary conditions. ρ ∈ (0; 1] is an adjustment ratio,
and ||.||1 the L1 norm w.r.t. AM.

Input: set of samples S, number of scales nscales, maximal diffusion time tmax, ratio ρ
Output: ΨS (multi-scale dictionary for all s ∈ S)
t← ρ tmax

nscales

√
ΩM

ΨS ← {}; ψM
S ← A†

MWMδS ; ψM
S,0 ← ψM

S
for n← 1 to nscales do

ψM
S,n ← (AM + tWM)†AMψM

S,n−1; ΨS ← {ΨS , ψ
M
S,n}

end for
Normalize each column c of Ψs with ||c||1
Normalize each column c of Ψs by max(c)−min(c)

in the continuous setting exists and is given by:

Kt(x, y) =

∞∑
k=0

exp(−tλk)Φk(x)Φk(y) . (3.3)

Therefore, the associated family of wavelets is defined as:

ψt(x, y) =

∞∑
k=0

λk exp(−tλk)Φk(x)Φk(y) . (3.4)

In [57], this property is used to define Mexican hat wavelets on M as a truncated version up
to N = 300 LBO eigenpairs:

ψt(x, y) =

N∑
k=0

λk exp(−tλk)Φk(x)Φk(y), (3.5)

In this work, we construct a dictionary of localized functions, based on the same intuition but
avoiding the eigen-decomposition, and instead solving the diffusion equation directly. Our dictio-
nary shares the following properties (Fig. 3.2d) with the spectral Mexican hat diffusion wavelets:

• it is based on the same defining relation (through derivatives in time or space) between the
heat kernel and the Mexican hat wavelets as in the Euclidean setting;

• our functions are located at a set of chosen sample positions S, and the resulting dictionary
provides a multi-scale representation via a maximum diffusion time tmax and a chosen
number of scales nscales.

3.3 Proposed approach

We introduce our construction of diffusion wavelets on discrete surfaces (Sect. 3.3.1). We compare
their accuracy to other diffusion wavelet constructions (Sect. 3.3.2), their conversion to a point-
to-point map (Sect. 3.3.3), and analyze their main properties (Sect. 3.3.4). In Sect. 3.4, we
perform an in-depth empirical study of these properties.
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We assume that shapes are represented as triangle meshes in the discrete setting. We also
assume that each shape M is endowed with the Laplace-Beltrami Operator LM = AM

†WM,
where AM and WM are respectively the area and cotangent weight matrices [107] and A†

M is
the pseudo-inverse of AM.

3.3.1 Discrete setting

For convenience, in the following we consider the case with one sample location at vertex s. To
build a dictionary of functions at various scales, we make three observations.

1. Given the δ-function at s, denoted δs, in the discrete setting, one can compute a Mexican
hat wavelet by applying the LBO to δs.

2. Given a function f , one can compute a scaled version of f by applying the diffusion oper-
ator Dt to f . Additionally, the “scaling factor” is controlled by the diffusion time t.

3. Dt can be approximated precisely and efficiently via a backward-Euler scheme.

Observation 1. follows from the relation between the heat kernel and the Mexican hat wavelet
summarized in Eq. (3.2) and the fact that the Laplace-Beltrami and diffusion operators com-
mute. In other words, computing the heat kernel Kt(s, x) and then applying the LBO to obtain
ψs(x) = ∆Kt(s, x) is equivalent to computing Dt∆δs. This approach leads to an analogue of
the “mother wavelet” and provides the means to save computational effort, since it avoids ap-
plying the Laplacian to each scale of the heat kernel independently. In practice, the mother
wavelet is obtained by computing ψM

s = A†
MWMδs, where AM and WM are computed using

Neumann boundary conditions and the vertex coordinates ofM are divided by ΩM which is the
total area of M. By applying Observation 2, for increasing diffusion times t to ψM

s , we obtain
a set of multi-scale Mexican hat-like functions Ψs =

{
ψM
s,n

}
n∈[1;nscales]

. Finally, Observation 3

provides an efficient way to compute 2. In practice, we found that 10− 50 Euler-steps allow to
approximate Dtψ

M
s better than a truncated spectral formulation (Sect. 3.3.2).

Moreover, we directly use each intermediate function ψM
s,n obtained at the n-th backward Euler

step as a function of our dictionary. In other words, the number of scales nscales represents the
number of backward-Euler steps that we use to produce the Mexican hat wavelet associated to a
diffusion time tmax. Given a function f onM, applying one backward-Euler step to approximate
the effect of the discretized diffusion operator Dt amounts to computing the quantity fdiff =
(AM + tWM)†AMf . Therefore, given the (n− 1)-st wavelet at a sample s, we compute the n-th
wavelet as : ψM

s,n = (AM + tWM)†AMψM
s,n−1.

In our applications, we use a linear time sampling: t = ρ tmax

nscales

√
ΩM

. If two shapes N and M
are involved in the computation, the ratio parameter ρ is set to ρ =

√
ΩN√
ΩM

. ρ adjusts the diffusion

scales on the two shapes so that they relate well in practice. If a single shape is involved, ρ = 1.
This ratio is especially useful in the case of partial shape matching, where N is the partial shape
and M the full shape.

Storing the set of sample locations S =
{
s1, ..., s|S|

}
in the matrix δS (the kth column of this

matrix is δsk) allows us to compute the wavelets at all sample locations in parallel: instead
of computing a single mother wavelet ψM

s , we compute a set of mother wavelets, stored as

the columns of a matrix ψM
S : ψM

s ← A†
MWMδS , which are propagated via backward Euler

steps to tmax. This procedure (Algorithm 1) enables us to compute the full dictionary ΨM
S =

Ψs1 , . . . ,Ψs|S| efficiently.
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Figure 3.3: Comparison of the scalability of eigen-decomposition-based wavelet computation
method [57] and our approach. The wavelets are computed at 10 sample locations, using 25
scales.

3.3.2 Comparison to other wavelet formulations

Our approach has two main competitors: the Mexican hat wavelets [57] and the spectral graph
wavelets [51]. We also compare our construction to an alternative approach using the wFEM
diffusion operator [118], which replaces the backward Euler approximation scheme in the gen-
eration of the Mexican hat wavelets. Note that we do not compare our method with the work
of Coifman et al. [35], which defines orthogonal wavelets, but not Mexican hat wavelets, using a
diffusion operator. Moreover, their construction does not allow to select a set of samples from
which to compute the wavelet functions, whereas we rely on this information. Finally, their
method is performed via a full bottom-up approach, starting from all vertices of the considered
shape, to large-scale orthogonal wavelet functions. This process uses a costly iterative procedure
that is not well suited to our applications that involve dense meshes.

To illustrate the scalability of our approach compared to methods leveraging an eigen-
decomposition of the Laplace-Beltrami operator, we measure in Fig. 3.3 the time required to
compute a dictionary at 10 sample locations and 25 scales for [57] and our method. We use 8
shapes from the SHREC’19 data set (connectivity track)[102], – see the Appendix (Sect. A.2) for
details on the data sets used in our experiments – with an increasing number of vertices, to which
we add an additional shape of around 1.2M. vertices, produced by applying the Catmull-Clark
subdivision method [25] to the largest shape of this data set. A table of the computed values is
provided in the Appendix (Table A.1, Sect. A).

Our comparison to the competing definitions is based on three criteria: (i) L2 error to the ground
truth Mexican hat wavelets (Fig. 3.4 (left), Table 3.1), (ii) L∞ error to the ground truth Mexican
hat wavelets (Fig. A.1 of the Appendix, Table 3.1), (iii) computation time (Fig. 3.4 (right), Ta-
ble 3.1). The first and second criteria provide a way to assess how well the compared approaches
approximate the ground truth Mexican hat wavelet functions, while the third criterion mea-
sures the computational efficiency of the approaches. We compute the ground truth Mexican hat
wavelet family in Eq. (3.5) with the complete Laplacian spectrum, and the intermediate diffusion
times tGT

n = log(nt), where t is introduced in Algorithm 1. The evaluations are performed on
all 100 shapes of the FAUST data set (remeshed to shapes with 5K vertices), using the average
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Figure 3.4: Comparison between various Mexican hat diffusion wavelet definitions and our ap-
proach as L2 error to ground truth wavelets (left) and computation time (right), on the complete
set of 100 shapes of the FAUST data set (remeshed to shapes with 5K vertices). See the averaged
values in Table 3.1.

Ours [118] [57] [51]

Av. L2 1.7× 10−2 9.7× 10−2 2.3× 10−2 9.9× 10−2

Av. L∞ 9.7× 10−2 6.3× 10−1 5.1× 10−1 7.1× 10−1

Av. t.(s) 1.14 2.2× 101 2.46 9.89

Table 3.1: Comparison of four Mexican hat wavelet formulations on the FAUST data set (100
remeshed shapes with 5K vertices). The L2 and L∞ norms are used as accuracy error measures.

error at 10 sample locations, picked using farthest point sampling with random initialization.

As shown in Figures 3.4 (as well as Fig. 3.3 and Table 3.1 and Fig. A.1 of the Appendix),
our approach produces the most accurate approximation with respect to the ground truth and
moreover is more computationally efficient than the competitors. Note that our approximation of
the ground truth diffusion wavelets is the best at small scales in terms of both L1 and L∞ norms.
This is especially important for partial matching where local details must be captured faithfully.
Nevertheless, we note that [57] provides the best representation of Mexican hat wavelets at large
scales (≥ 54 scales).

3.3.3 Reconstruction and point-to-point map recovery

We use two approaches to perform point-wise signal recovery on shapes N and M, equipped
with their dictionaries ΨN

S and ΨM
S . The choice of the approach is conditioned by the task we

deal with.

δ-function reconstruction on a single shape In the case of δ-function reconstruction on a
shape M, the mapping T that associates to each vertex index of M its image provided by ΨM

S
can be computed as

T = arg max
rows

ΨM
S (ΨM

S )
†
. (3.6)
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The left pseudo-inverse of ΨM
S , denoted (ΨM

S )
†
, is used here as the representation in dictionary

space of all δ-functions of M: the k-th column of ΨM
S

†
corresponds to the coordinates in the

dictionary space of the δ-function located at vertex k. To convert back this dictionary represen-

tation in the basis of δ-functions onM, ΨM
S (ΨM

S )
† ∈ RnM×nM is computed. The k-th column of

the resulting nM×nM matrix is the image of the δ-function at vertex k. Taking the argmax over
the rows of this matrix provides the location of the δ-function according to the dictionary ΨM

S .
Since ΨM

S is rank deficient, the computation of its pseudo-inverse via Eq. (3.6) is unstable. To
remedy this, we use a Tikhonov (or ridge) regularization-like approach, that introduces the vari-
able α in T = arg max

rows
ΨM

S α, which is the solution to argmin
α

||ΨM
S α− IM||2 + ||Γα||2, where Γ

is an nM × (|S| × nscales) matrix, whose columns contain the values 1
k2 , with k ∈ [1;nscales]

repeated |S| times each, and IM is the identity matrix on M. Then, the solution satisfies the
linear system

[
ΨM

S ; Γ
]
α =

[
IM; 0nM×(|S|×nscales)

]
, where the semi-colon notation represents the

column-wise concatenation of two matrices.

δ-function transfer and shape matching for multiple shapes For shape matching (or δ-
function transfer) from a source shapeM to a target shape N , we do not rely on the “spectrum”
of the dictionaries. Instead, we use as a representation of a vertex k on a shape M the set of

values taken by each function constituting ΨN
S . In other words, instead of using (ΨM

S )
†

as a

representation in our dictionary, we simply use (ΨM
S )

⊤
. In this last representation, the embedding

of the k-th vertex consists of the value taken by each wavelet of the dictionary at the k-vertex.
Note that we do not assume the dictionary to be an orthogonal family (which it is not in most
cases). To recover the mapping T that associates to each vertex index ofM its image on N , we
perform a nearest neighbor search T = NN-search

rows

(
ΨN

S ,Ψ
M
S
)
, i.e., compute for each row of ΨM

S

its nearest neighbor among the rows of ΨN
S .

3.3.4 Theoretical guarantees

Our construction of the Mexican hat wavelets above inherits many attractive properties of the
heat kernel, including isometry-invariance (due to invariance of the LBO), locality and its multi-
scale nature. Moreover, as we demonstrate below, generically the relation to a single seed point
through the Mexican hat wavelet ψM

t (p, x) is enough both to encode each point on the surface
and to recover an isometry across a pair of shapes. Specifically, we call a point p generic if it does
not belong to any nodal set of the Laplace-Beltrami eigenfunctions, i.e. if ϕi(p) ̸= 0 for all i. As
shown in [111], the set of generic points has full measure. Moreover, a surface is called generic
if its Laplace-Beltrami eigenvalues are non-repeating. It is well-known [9] that an infinitesimal
perturbation to a metric of any surface makes it generic. With these definitions, the following
theorem guarantees that the uniqueness properties of the heat kernel also apply to our wavelet
family construction.

Theorem 1 LetM be a generic connected compact manifold without boundary and p a generic
point on M. For any two points x, y, x = y if and only if ψM

t (p, x) = ψM
t (p, y) for all t.

If M and N are two generic connected compact manifolds and p a generic point on M, then a
map T :M→N where T (p) is generic is an isometry if and only if ψM

t (p, x) = ψN
t (T (p), T (x))

for all t.

The proof of Theorem 1 follows the same reasoning as the proof of the main theorem in [111].
For the sake of completeness, we provide it in the Appendix (Section A).

Theorem 1 implies that generically every point x on a surface can be uniquely characterized by
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its relation to some fixed point p via ψt(p, x). Furthermore, an isometry can be recovered given
a correspondence between a single pair of seed points, analogously to the heat kernel [111]. As
we demonstrate below, however, our wavelet-inspired construction provides a more informative
characterization in practice, while retaining the locality and multi-scale nature of the heat kernel.

3.4 Experimental analysis

We now study different aspects of the proposed approach, such as the sample placement, the
number of scales, the computational robustness, and the choice of tmax. The details of all the
datasets are provided in Section A.2 of the Appendix.

Sample selection First, we assess the effect of the sampling strategy on the outcome of our
method. To this end, we compare farthest point sampling (Euclidean and geodesic), Poisson
disk sampling (computed using the gptoolbox Matlab package [67]) and random sampling on
the SHREC’16 Partial cuts data set, with the geodesic matching error. According to Fig. 3.5,
all sampling strategies behave in a similar fashion, and adding more samples improves the re-
construction error significantly by injecting more local information to the wavelet family. In all
other experiments, we therefore use the Euclidean farthest point sampling strategy for its sim-
plicity and more uniform localization of samples compared to random sampling. In the Appendix
(Fig. A.2, Sect. A), we provide a complementary experiment on the SHREC’19 connectivity track
data set with the δ-function reconstruction error, from which we draw identical conclusions.

Sample robustness Second, we verify the resilience of our approach to noise in the sample
placement. We consider a set of 10 samples, among which we displace 1, 2, 3, 5 or all samples
within a geodesic radius around the original sample location (noise radius). Six different scales
are compared: 1, 2, 3, 5, 25 and 50 with noise radii varying between 1.0× 10−2 and 1.0× 10−1

of the greatest geodesic distance on the shape. Fig. 3.6 summarizes our results collected on the
complete SHREC’16 Partial cuts data set. As a baseline, we display the matching error produced
by using a dictionary of wavelets from [57] and heat kernel functions, both with 25 scales. This
experiment furthermore illustrates the representative power of our approach in the case of partial
shape matching.
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Figure 3.5: Mean geodesic matching error (geo. err.) on the complete set of shapes from the
SHREC’16 Partial cuts data set using various sampling strategies using 25 scales.



24 Wavelet-based heat kernel derivatives

1/10 noisy 2/10 noisy 3/10 noisy 5/10 noisy 10/10 noisy

2 4 6 8 100
2
4
6
8
10
12
14
16
18
20

Noise rad. (×10−2)

G
eo
.
er
r.

(×
10
−
2 )

2 4 6 8 100
2
4
6
8
10
12
14
16
18
20

Noise rad. (×10−2)

G
eo
.
er
r.

(×
10
−
2 )

2 4 6 8 100
2
4
6
8
10
12
14
16
18
20

Noise rad. (×10−2)

G
eo
.
er
r.

(×
10
−
2 )

2 4 6 8 100
2
4
6
8
10
12
14
16
18
20

Noise rad. (×10−2)

G
eo
.
er
r.

(×
10
−
2 )

2 4 6 8 100
2
4
6
8
10
12
14
16
18
20

Noise rad. (×10−2)

G
eo
.
er
r.

(×
10
−
2 )

1 scale 2 scales 3 scales 5 scales 25 scales 50 scales Heat Kernel (25 scales) [57] (25 scales)

Figure 3.6: Geodesic matching error as a function of the noise level applied to the positioning
of the samples on the complete SHREC’16 Partial cuts data set. The level of noise is given as
a noise radius (noise rad.), representing the geodesic disc centered around the original sample,
which the noisy sample is drawn from. The geodesic radius is expressed as a fraction of the
maximum geodesic distance. In each column, an increasing number of samples are noisy (from
left to right: 1, 2, 3, 5 and 10, out of a total of 10 samples).

Data set Mean geodesic error

Faust (original) 9.96× 10−2

Faust (remeshed) 6.15× 10−2

Faust (edges flipped) 9.77× 10−2

TOSCA (original) 4.78× 10−2

TOSCA (remeshed) 4.99× 10−2

TOSCA (edges flipped) 6.02× 10−2

Table 3.2: Mean geodesic error on 200 shape pairs of the FAUST data set and 212 pairs of the
TOSCA Isometric data set (original, with edges flipped and remeshed to 5K vertices in both
cases), using 25 scales and 10 samples.

Number of scales Fig. 3.6 empirically indicates that choosing 25 scales is a good trade-off
between robustness to noise and computational efficiency, especially when the sample position is
inaccurate.

Robustness to topological changes We verify the robustness of our method to topological
changes by comparing three versions of the FAUST and TOSCA Isometric data sets: (i) the
original data sets, with shapes counting respectively 6890 and around 25K vertices, (ii) the data
sets remeshed to shapes with close to 5K vertices and (iii) the original data sets with random
edge flips applied to 12.5% of the original edges. Table 3.2 demonstrates that our computation
is robust to these changes leading to similar low error in all these scenarios.

Choice of tmax The maximum diffusion time tmax remains a free parameter of our method.
Throughout the experiments that we present, we choose to fix its value to 1, since it provides good
results on the data sets that we are using. However, selecting its value depending on the shape
could allow to improve the quality of the matching, in particular in situations where the samples
cannot be placed regularly on the shape’s surface. To illustrate this aspect, we conducted an
experiment on the humerus bones data set. All shapes have been remeshed to count 1K vertices.
Fig. 3.7 shows that the geodesic error varies substantially depending on tmax. Its value is the
smallest for tmax = 14. Furthermore, to highlight the representative power of our construction,
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Figure 3.7: Left: mean geodesic error on 30 shape pairs of the humerus bones data set, remeshed
to 1k shapes.The minimum matching error of 7.35 × 10−2 is attained for tmax = 14 (red dot).
Right: illustration of a matching estimated between two bones using the best tmax value. Cor-
responding points are depicted with the same color. The target shape was rescaled by a factor
of ×0.8 to match the size of the source shape.

we use the heat kernel and the diffusion wavelets of [57] as a baseline. For all diffusion time
selected in this experiment, we outperform both approaches.

3.5 Experimental Comparisons

To illustrate the benefits of the proposed approach, we discuss self- (Sect. 3.5.1) and regular
(Sect. 3.5.2) shape matching, and compare our performance to the heat kernel (Sect. 3.5.3).

3.5.1 Self-matching

One feature of our approach is that it provides a better representation for δ-functions. With only
a small number of sample points, we provide an approximation of δ-functions that is significantly
more accurate than traditional functional bases, such as the LBO eigenfunctions. To illustrate
this aspect, we consider self-matching, in which we evaluate the expressive power of our family
in reconstructing δ functions, thereby matching the vertices of a shape to itself. Fig. 3.8 presents
the results obtained on all shapes of the SHREC’16 Partial cuts data set and all shapes of the
TOSCA non Isometric data set (remeshed version). The evaluation indicates the error in terms
of geodesic radius, identically to the procedure in [71] but using the same shape as source and
target.

To build our family of functions, we use 2, 4, or 6 samples, placed using Euclidean farthest
point sampling, 25 scales, tmax = 1 for the maximum diffusion scale, and the point-to-point map
conversion for δ-function reconstruction described in Sect. 3.3.3. We compare the performance of
our dictionary to the LBO eigenfunctions basis (LBOB), the Localized Manifold Harmonic basis
(LMH) [101] and the Compressed Manifold Modes (CMM) [109], using |S|+1 basis functions, to
take into account the constant function of the LBOB. For each of these methods, the δ-function
location is determined by taking the position at which its approximation in the basis considered is
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Figure 3.8: Geodesic error (self-matching) on all shapes of the SHREC’16 Partial cuts data set
(top row) and on all shapes of the TOSCA non-isometric data set (category 8) (bottom row).
Averaged values are reported respectively in Tables 3.3 and 3.4). Each column is with a different
number of sample points/non constant basis functions. Our functional dictionary recovers points
on the surfaces much more accurately for the same basis budget.

# Gt Corres. 2 4 6

LBOB 3.84× 10−1 2.27× 10−1 1.69× 10−1

LMH 4.09× 10−1 2.32× 10−1 1.80× 10−1

CMM 7.03× 10−1 6.22× 10−1 5.08× 10−1

Ours 2.28× 10−1 1.00× 10−1 3.75× 10−2

Table 3.3: Average geodesic error for the SHREC’16 Partial cuts data set (self-matching),
corresponding to the top row of Fig. 3.8.

maximal. According to the mean geodesic error for all approaches (Tables 3.3, 3.4), the proposed
method outperforms significantly the other methods.

3.5.2 Pairwise shape matching

In a more practical application, we study how well our family of functions recovers δ-functions
basis after being transferred from a source M to a target shape N via shape matching. This
corresponds to the scenario of extending a set of known seed point correspondences to the entire
shapes.

For our family of functions, we employ the same setup as for the δ-function reconstruction with a
few adjustments: we use 3, 10 or 20 samples and the transfer point-to-point conversion introduced
in Sect. 3.3.3. The remaining parameters stay identical (25 scales and tmax = 1).

In all cases we assume that the ground truth correspondences between the bases. For landmark-
aware bases such as ours, this means that we assume the knowledge of ground truth correspon-
dences between |S| sample points on source and target shapes. For global bases such as the
LBO, we assume the ground truth correspondence between |S| first non-constant basis functions.
In the latter setting, we follow the procedure used in [101] and leverage this known correspon-
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Figure 3.9: Matching geodesic error on all pairs of the SHREC’16 Partial cuts data set
(“SHREC’16”, top row, see averaged values in Table 3.5) and 190 shape pairs of the TOSCA
non-isometric data set (“TOSCA n.I.”, bottom row, see averaged values in Table 3.6) using an
increasing number of ground truth sample points/non constant basis functions correspondences.
On all plots, the x-axis represents the normalized geodesic distance and the y-axis is the fraction
of correspondences in percent.

# Gt Corres. 2 4 6

LBOB 5.55× 10−1 3.17× 10−1 2.03× 10−1

LMH 4.73× 10−1 2.98× 10−1 1.81× 10−1

CMM 7.66× 10−1 7.34× 10−1 5.80× 10−1

Ours 3.94× 10−1 6.9× 10−2 3.1× 10−2

Table 3.4: Average geodesic error (self-matching) for all 24 shapes from the TOSCA non iso-
metric data set (category 8), corresponding to the bottom row of Fig. 3.8.

dence to build a ground truth functional map [112], given as Cgt = ϕN
⊤ANΠgtϕM, where Πgt

is the ground truth point-to-point map. We then use this ground truth functional map Cgt to
compute the dense point-to-point map following the the standard nearest-neighbor procedure
[113] (Chapter 2).

Fig. 3.9 presents the results on pair of shapes from the same data sets as for the δ-function
reconstruction experiment and comparing again against the LBOB, LMH and CMM bases. The
evaluation, performed according to the standard protocol proposed in [71], indicates the error
in terms of geodesic radius. According to the average values in Tables 3.5, 3.6, our dictionary
outperforms the competing bases by a substantial margin.

3.5.3 Comparison with the heat kernel

The construction of our functions is closely related to those provided by the heat kernel. While
both function types share the ability to characterize uniquely every point on a surface, our
heat kernel derivatives are more informative in practice. To assess this practical advantage, we
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# Gt Corres. 3 10 20

LBOB 4.94× 10−1 1.93× 10−1 9.68× 10−2

LMH 5.22× 10−1 2.75× 10−1 1.59× 10−1

CMM 7.06× 10−1 6.01× 10−1 3.02× 10−1

Ours 8.88× 10−2 2.82× 10−2 1.94× 10−2

Table 3.5: Average geodesic error (partial shape matching) for all shape pairs of the SHREC’16
Partial cuts data set, corresponding to the bottom row of Fig. 3.9.

# Gt Corres. 3 10 20

LBOB 6.70× 10−1 4.04× 10−1 3.44× 10−1

LMH 6.94× 10−1 4.51× 10−1 3.82× 10−1

CMM 7.36× 10−1 6.87× 10−1 5.98× 10−1

Ours 2.14× 10−1 1.08× 10−1 7.97× 10−2

Table 3.6: Average geodesic error (full shape matching) for 190 shape pairs from the TOSCA
non-isometric data set, corresponding to the bottom row of Fig. 3.9.

conduct the following experiment on a set of 10 pairs of the dog class from the TOSCA data
set. Given an increasing number of samples, we compute for each pair of shapes the AUC (Area
Under the Curve: the probability that a point is matched with an error less or equal to 0.25 in
normalized geodesic distance) and the mean geodesic error using the proposed family and the
heat kernel, associated with the conversion of a point-to-point map.

We setup our dictionary using the same parameters as for the δ-function transfer experiment,
using ground-truth correspondences between the sample points on the source and target shapes.
The quantitative and qualitative evaluation of this experiment is depicted in Fig. 3.10. Relying
on a diffusion process to define both families of functions, we emphasize that this experiment
can be seen as an additional comparison to standard diffusion wavelets. This result highlights
that heat kernel derivatives are more informative than heat kernel functions.
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Figure 3.10: (1st, 2nd Rows) Comparison with heat kernels in point-to-point map conversion
with the same number of scales and a small number of point samples. Four scales of the heat
diffusion from a sample on a pair of shapes; the colormap ranges from blue (negative) to red
(positive) with values close to zero in white. (3rd Row) Qualitative comparison of the resulting
maps for 1, 4, 8 samples (left to right), using color correspondence to show the resulting point-
to-point map between a source and a target shape. (4th Row) Performance of our approach
compared to the heat kernel in terms of Area Under the Curve (AUC) and mean geodesic error.
Results are averaged over 10 pairs of the dog class from the TOSCA data set. The evaluation
highlights the better performance of our representation over the heat kernel.
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3.6 Application to Partial Shape Matching

As the main application of our method, we tackle the problem of partial shape matching, one
of the challenging scenarios in non-rigid shape matching. We experiment on the SHREC’16
Partial Correspondence benchmark [36] (Sect. 3.6.2) and on a new set of partial shapes, namely
FARM partial (Sect. 3.6.1). If not specified, we adopt as sparse set of correspondences for our
approach the fully automatic result obtained with the pipeline proposed in [136], initialized with
the SHOT descriptor[152]. We highlight that our main contribution is an informative, localized
functional family, which leads to a remarkably simple and effective shape matching approach.
In the following experiments we compare our approach to existing full-fledged optimization and
learning-based strategies, specifically designed for partial matching. Thus, the simplicity and
efficiency of our approach should be taken into account when comparing to more advanced and
highly tuned methods.

3.6.1 FARM partial dataset

We first evaluate our method on the FARM partial dataset. This dataset contains partiality
and shapes undergoing non-isometric deformations and extremely different connectivities. This
makes this dataset particularly challenging as many shape matching pipelines are known to overfit
to similar mesh connectivities. On the left of Fig. 3.11, we show a quantitative comparison on
FARM partial to state-of-the-art Partial Functional Maps [137] (PFM) method. For a fair
comparison, we additionally evaluate the performance of PFM when it is initialized with the
same sparse correspondence that we exploit to generate our family of functions (PFM sparse).
We also provide a qualitative illustration of the computed maps in Figure 3.12.

Note that the state-of-the-art PFM does not perform well on these challenging pairs. In contrast,
our method is robust, significantly simpler and more efficient, leading to a dramatic improvement
in accuracy.

3.6.2 SHREC’16 Partial Cuts benchmark

We also evaluate our method In the evaluation on the SHREC’16 Partial Cuts data set, where
each partial shape is matched to the full shape of the same shape category. Remark that this
dataset contains shape pairs undergoing near-isometric deformations, which are well-captured
by the LBO basis.

The quantitative evaluation is shown in Fig. 3.11 (middle and right). On the left, we compare our
approach on the entire cuts set from SHREC’16 [36] with all the methods that were considered
in the challenge. Our performance is comparable with partial functional maps [137] (PFM) the
state-of-the-art for partial matching. The constrained optimization performed by PFM produces
more accurate correspondences because it is able to solve the inaccuracies contained in the initial
sparse correspondence. Note, however, that due to the way the data set was produced, the shape
pairs of this data set have similar connectivity, which is a known factor of overfitting for shape
matching techniques.

In Fig. 3.11 (right), we compare our approach to PFM when both are initialized with 20 and 30
ground-truth correspondences only on the cat class. As can be seen, if the sparse correspondences
are correct, our method is comparable to PFM and even better. We highlight that this is the only
evaluation in which we use a ground-truth initialization. According to the qualitative results in
Fig. 3.13, our performance is comparable to PFM.
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Figure 3.11: Quantitative comparison on the FARM partial data set (shapes with different con-
nectivity) and SHREC’16 partial cut benchmark (composed of shapes with similar connectivity).
In all plots, the x-axis is the mean geodesic distance to the ground truth. Abbreviations used:
PFM (partial functional maps), PFM sparse (PFM initialized with the same sparse correspon-
dence used to compute our frame), RF, IM, EN, GT. For PFM and ours applied to SHREC’16
cuts on the cat shape, an additional number specifies the number of ground-truth correspon-
dences that were used for initialization (20 or 30).

Computational Efficiency When considering the computational efficiency (in seconds), our
method outperforms PFM by a significant margin. On the complete SHREC16 data set, PFM
sparse takes on average 138.2s per shape pair, PFM takes 240.9s, while our method requires
46.2s. Moreover, the sparse set of samples takes on average 38.7s per shape to be computed.
Therefore, most of the computation overhead lies in this preprocessing step for our method. Once
a set of sparse correspondences is available, we require an average computation time of 7.5s per
shape pair, which represents an improvement of 13x compared to PFM sparse (99.5s).
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Figure 3.12: (First row) Different mesh connectivity. (Second-fourth rows) Qualitative compar-
ison on the FARM partial data set between our approach and the PFM in is original version
(PFM) and initialized with the sparse correspondence that we adopt for the definition of our
family of functions (PFM sparse).
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Source Ours PFM sparse PFM

Figure 3.13: Qualitative comparison on the SHREC’16 partial cut benchmark for 5 classes (wolf,
horse, centaur, dog, cat) between our approach, the PFM (original version), and the PFM ini-
tialized with the sparse correspondence that we adopt for the definition of our family of functions
(PFM sparse). The resulting point-to-point mapping is displayed through color correspondence.
Our approach, despite its simplicity, is comparable to PFM.
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3.7 Conclusion

In this work, we have proposed an extension to the basic diffusion (heat kernel) construction by
considering its derivatives in time, or equivalently in space. The resulting family of diffusion-
based Mexican hat wavelets is local and allows to find accurate point-to-point correspondences
between shapes; this includes particularly challenging settings such as partial shape correspon-
dence, and matching between shapes with highly different triangulations. At the same time, the
efficient use of diffusion-based methods allows to solve these difficult problems at a fraction of
the computational cost compared to other approaches. We further proved that our functions
inherit properties of the heat kernel map, such as the ability of only requiring one sample point
to recover an isometry.

Our experiments on δ-function reconstruction and transfer indicate that our family can be
thought of as an over-complete basis that provides a richer functional representation power
compared to LBO eigenfunctions, diffusion functions, and other bases. Moreover, the applica-
tion of wavelet-like functions on partial and large-scale shapes show promising results compared
to state-of-the-art methods, especially when taking into consideration its simplicity.

The main limitation of our approach currently lies in the dependency on an initial sparse corre-
spondence, which is assumed to be roughly accurate. Although further progress in deformable
sparse matching would have a direct and positive impact on our method, we believe that this
problem can be solved jointly within our frame calculation algorithm, and leave this challenge
as an exciting direction of future research.



Chapter 4

Dirichlet-Steklov
Landmark-based Matching

A common scenario in shape matching is that of very sparse user-provided landmark correspon-
dences that need to be extended to a full map between the considered shapes. The landmarks
in question are often of a semantic nature, and thus are very sensitive to exact placement. Con-
sider, for instance the position of the eyes or the nose on a human face (see Fig. 4.22) that are
matched by an artist, e.g., in a texture transfer scenario. In such cases, it is crucial to preserve
the landmark correspondences exactly when extending the map. Furthermore, it is desirable for
the extension process to be time-efficient and applicable to general, possibly non-isometric shape
pairs.

Functional map methods [114] constitute a highly effective shape matching framework, espe-
cially when coupled with powerful recent post-processing tools such as ZoomOut and its variants
[104, 64]. The existing methods, however, suffer from two major limitations: first, they heav-
ily rely upon the assumption of near-isometry, and second, they typically formulate landmark
correspondence via descriptor preservation objectives, combined with other regularizers in the
least squares sense. Unfortunately, this implies that the final map is not guaranteed to preserve
user-provided landmark correspondences.

Mikhail Panine proposed a novel approach [116], on which we collaborated, that maintains
the efficiency and flexibility of the functional maps pipeline, while overcoming these drawbacks.
Specifically, we worked on (i) constructing a discretization of the functional basis it relies on,
(ii) determining an optimal parameterization of the approach and (iii) highlighting its usefulness
in practice by performing a benchmark of its performance on recent shape matching datasets
compared to state-of-the-art methods.
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The remaining of this chapter is organized as follows.

• For the sake of completeness, we first introduce the proposed method.

• Second, we present the discretization of the Steklov eigen-value problem and the discretiza-
tion of the surface boundaries near landmarks. These two steps are paramount to success-
fully compute the Steklov part of the newly defined functional basis.

• Finally, we detail the experimental study of the algorithm’s parameters and the evaluation
of its performance compared to previous work.

As stated above, the last two items correspond to our contributions to this work and constitute
therefore the core of this chapter.

4.1 Outline of the Method

In order to contextualize our contribution, we present a quick summary of the Dirichlet-Steklov
landmark-based shape matching approach proposed in [116].

The method consists in two main stages:

1. Definition of a new functional basis that enables exact landmark preservation.

2. Search for a bijective near-conformal map between source and target shapes by minimizing
an auxiliary energy. The minimization scheme is conducted iteratively and takes advantage
of the newly defined basis.

Fig. 4.1 provides a visual representation of the whole method.

In the remaining of this section, we consider two shapes M and N . Each shape possesses k
landmark vertices: {γM

i }ki=1 ⊂ M and {γN
i }ki=1 ⊂ N . The overall objective of the method is

to find a map φ : N → M, such that φ(γN
i ) = γM

i for all i. The last condition defines exact
landmark preservation.

4.1.1 Dirichlet-Steklov Functional Basis

Since our matching strategy relies on functional spaces defined on M and N , the design of a
proper functional basis is paramount.

Our discussion is conducted in the continuous setting, and aims at providing the minimal
background information required to grasp the method and our derivation in the discrete setting.
We refer to [116] for an in-depth derivation of the Dirichlet-Steklov functional basis.

Dirichlet Laplacian eigenproblem. Let M be as smooth, connected, oriented, compact,
Riemannian manifold with boundary ∂M. Let ∇ be the Laplace-Beltrami (LB) operator. The
Dirichlet-Laplacian eigen problem is:

∆ψi = λiψi

ψi

∣∣
∂M

= 0 ,
(4.1)

where {ψi}∞i=1 is the set of LB eigenfunctions with associated positive eigenvalues {λi}∞i=1. We
emphasize on the fact that we use positive LB eigenvalues, which means that our Laplacian has
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Figure 4.1: Schematic of the main steps involved in our method to map a source shape (orange)
to a target shape (blue).

negative second derivatives, so to speak. This is the opposite of the convention used in vector
calculus, but is standard in the field of functional shape matching, where manipulating positive
eigenvalues for the LB spectrum leads to more clarity.

The truncated set {ψi}LB
i=1 constitutes the first part of our functional basis and will be denoted

as Dirichlet Laplacian eigenfunctions in the remaining of this chapter.

Dirichlet Steklov eigenproblem. Let M be a smooth, connected, oriented compact Rie-
mannian manifold with metric g and a Lipschitz continuous boundary ∂M. Suppose that, up
to sets of measure 0, ∂M consists of two disjoint nonempty open sets, denoted D and S. S
represents the boundary on which the Steklov eigenfunctions spawn. D is the union of the re-
maining boundaries of the shape’s surface. The (mixed) Dirichlet-Steklov eigenproblem is posed
as follows:

∆ui = 0

ui
∣∣
D

= 0

∂nui
∣∣
S

= σiui ,

(4.2)

where ∂n denotes the interior normal derivative. The second and third line of the above are
respectively known as the Dirichlet and Steklov boundary conditions, explaining the name
Dirichlet-Steklov.

The key idea of the method outlined in this chapter consists in replacing landmark positions on
the source and target shapes with small circular boundaries (see Fig. 4.2). A basis of Dirichlet-
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Steklov eigenfunction defined on each such newly created boundary constitutes a mean to keep
track of the landmark correspondence in the functional space.

The eigenvalue problem presented in Eq. 4.2 is not discretizable as such. Inspired by the
cotangent discretization scheme used for the Laplacian, we reformulate Eq. 4.2 as an integral
relation in Eq. 4.3 that is well suited for this purpose. It constitutes the weak form of the
Dirichlet-Steklov eigenvalue problem:∫

M
∇f · ∇ui dM = σi

∫
S
fui d(∂M) . (4.3)

The proof of Eq. 4.3 for a 2D manifold is presented in App. B.1.

In this form, it can be compared to the standard Laplacian eigenproblem:∫
M

∇f · ∇ψi dM = λi

∫
M

fui dM. (4.4)

Intuitively, and as we demonstrate in practice, the Dirichlet-Steklov eigenfunctions “focus” on the
boundary S and provide detailed information in the vicinity of this boundary. In the proposed
method one set of Dirichlet-Steklov eigenfunctions is established for each landmark, and those
functional spaces are aligned across the pair of shapes.

The local “focus” of the Dirichlet-Steklov eigenfunctions prevents to define a functional basis
solely with such functions, as such a basis will not have enough descriptive power on the bulk
of the shape’s surface. We therefore add Dirichlet-Laplacian eigenfunctions, obtained by solving
the eigenvalue problem defined in Eq. ??. This additional set of functions has the property
of representing well signals on the shape’s surface, while having a null value on the shape’s
boundaries.

The space of Dirichlet-Laplacian eigenfunctions on M is designated as G(M), and the set of
Dirichlet-Steklov eigenfunctions at the jth landmark as Hj(M).

4.1.2 Search of Bijective Near-Conformal Maps

The previous section describes our landmark adapted basis construction, and the block-diagonal
structure of landmark-preserving conformal maps when expressed in this basis. In this section
we specify the optimization problem that we will solve in order to obtain landmark-preserving
maps between triangle meshes.

Let W (M) denote the Hilbert space obtained by taking the completion of smooth functions
modulo constant functions defined onM in the topology induced by the Dirichlet form ⟨·, ·⟩

W (M)

⟨f, u⟩
W (M)

=

∫
M
∇f · ∇udM (4.5)

A key aspect of our work is that we relax the standard constraint of searching for isometric
maps and look for conformal maps instead. A conformal map is a map that locally preserves
angles. It can also be characterized in terms of the Dirichlet form on the shape M via the
following theorem:
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Theorem 2 Let φ : N → M be a diffeomorphism between oriented Riemannian surfaces with
pullback FMN : W (M)→W (N ). Then, φ is conformal if and only if

⟨u, v⟩
W (M)

= ⟨FMN u, FMN v⟩
W (N)

, ∀u, v ∈W (M) . (4.6)

See [142] for the proof of this theorem.

In practice we do not expect to obtain an exact equality of the inner products as described in
the previous theorem. Instead, we will search for φ and FMN by relaxing the above equality to
a minimization problem. Let ΦM and ΦN denote reduced (finite dimensional) functional bases
for W (M) and W (N ), respectively. These bases consist of the eigenfunctions of the Dirichlet
Laplacian and Dirichlet-Steklov eigenproblems corresponding to small eigenvalues. The precise
size of the bases is discussed in Sect. 4.6.4.

Letting ⟨ΦM ,ΦM⟩
W (M)

be the matrix of all inner products of the normalized basis vectors of

ΦM , we relax the equality of Theorem 2 to the minimization of the following energy term:

Ec(FMN ) =
∥∥∥ ⟨ΦM ,ΦM⟩

W (M)

− ⟨FMN ΦM , FMN ΦM⟩
W (N)

∥∥∥2
F
.

(4.7)

We call this the conformal term of the energy. Here, as well as everywhere else in this text, ∥ ·∥F
denotes the Frobenius norm.

Having covered the conformality of the map, it remains to rephrase the restriction of FMN to
pullbacks of landmark-preserving diffeomorphisms. This assumption cannot be exactly imposed
in the discrete case. Still, we would like FMN to exhibit the properties of such a map. In order
to do so, we complete our energy by specifying two structural terms. Specifically, the first term
promotes FMN being a proper functional map (i.e., the pullback of a vertex-to-vertex map), as
recently defined in [131], and the second promotes the invertibility of FMN [42].

Let ΠNM denote the vertex-to-vertex map from N to M expressed as a matrix (i.e. a binary
matrix that contains exactly one 1 per row). Then, FMN should satisfy:

FMN = (ΦN )
+

ΠNMΦM , (4.8)

where (ΦN )
+

denotes the pseudoinverse of ΦN , or in other words, the W (N ) projection onto the
reduced basis ΦN . As before, we relax the equality into an energy to be optimized:

Ep(FMN ,ΠNM) =
∥∥∥(ΦN )

+
ΠNMΦM − FMN

∥∥∥2
F
. (4.9)

We call this the properness term of the energy.

In addition to FMN arising from a point-to-point map, we would also like for it to be invertible.
For this, we consider two maps FMN : W (M) → W (N ) and FNM : W (N ) → W (M), the
latter arising from a vertex-to-vertex map ΠMN : M → N . Thus, in what follows, we will be
simultaneously optimizing for maps going in both directions between the shapes. With I being
the identity matrix, the invertibility condition is, of course:

FNMFMN = I ,

FMNFNM = I .
(4.10)
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Once again, we convert the above into minimization form. The invertibility term corresponding
to the first line above is

E
I,MN (FMN , FNM) = ∥FMNFNM − I∥

2
F . (4.11)

The invertibility term E
I,NM is defined analogously.

In sum, our search for the correspondence betweenM andN will involve the joint minimization
of the energy summarized in Eq. 4.12:

EMN = aC Ec(FMN ) +

aP Ep(FMN ,ΠNM) +

aI EI,MN (FMN , FNM),

(4.12)

where FNM and FMN respectively designate the pullback of the point-to-point maps going from
N to M (written with the notation ΠNM) and from N to M (ΠNM); aC , aP and aI are scalar
weights for each energy term.

4.2 Discretization of the Eigenproblems

In this section, we discuss the discretization on triangle meshes of the eigenproblems used in
our approach.

Discretization of the Dirichlet Laplacian eigenproblem We begin with the familiar
Dirichlet Laplacian eigenproblem (Eq. (4.1)). We discretize this problem using the well-known
cotangent scheme (piecewise-linear finite elements). The problem then becomes

WMψi = λiAMψi ,

ψi

∣∣
∂M

= 0 ,
(4.13)

where WM denotes the so-called cotangent Laplacian and AM denotes the lumped mass matrix.
See [23], among many others, for a definition of these objects.

Discretization of the Dirichlet-Steklov eigenproblem. We use piecewise linear finite el-
ements to discretize the weak form of the Dirichlet-Steklov eigenproblem (Eq. (4.3)). The
left-hand side of the expression becomes the familiar cotangent Laplacian, denoted by WM . The
discretization of the integral on the right-hand side requires a mass matrix defined strictly on the
boundary. Similarly to the mass matrix used in the Laplacian eigenproblem, it can be discretized
either according to a piecewise-linear finite element scheme, or as a lumped mass matrix. Re-
gardless of the chosen discretization, we call this mass matrix SM . Note that SM is of the same
size as WM .

We begin by the lumped discretization. The boundary is one-dimensional. Thus, a vertex
p ∈ ∂M, has (at most) two neighbors that are also in ∂M, which we denote p − 1 and p + 1.
The length of the edges (p − 1, p) and (p, p + 1) are denoted rp−1 and rp+1, respectively. The
lumped Steklov mass matrix is given by
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SM
pq =

{
1
2 (rp−1 + rp+1) , p = q and p, q ∈ ∂M
0 , elsewhere.

(4.14)

The non-lumped mass matrix is computed from a piecewise linear finite element discretization
on the boundary. This discretization corresponds to the restriction of the piecewise linear finite
elements of the mesh to the boundary edges. Whenever vertices p and q are distinct endpoints of
the same edge, we write p ∼ q. The length of the edge connecting p and q is denoted rpq. After
a straightforward computation which we omit, the non-lumped Steklov mass matrix is given by

SM
pq =


1
3 (rp−1 + rp+1) , p = q and p, q ∈ ∂M
1
6rpq , p ∼ q and p, q ∈ ∂M
0 , elsewhere.

(4.15)

In sum, no matter the version of SM chosen, the discretization of the Dirichlet-Steklov problem
becomes

WMui = σiSMui ,

ui
∣∣
D

= 0 ,
(4.16)

which is quite similar to the more familiar Laplacian eigenvalue problem with Dirichlet boundary
conditions (Eq. (4.13)).

A Word of Warning As a final note on the discretization of the considered eigenproblems,
we would like to warn the reader of a small issue one may encounter when numerically solving
them. Recall that we want the Dirichlet-Steklov eigenfunctions to be normalized with respect
to the boundary mass matrix SM . Solvers for generalized eigenvalue problems, such as Matlab’s
eigs routine, which we use in our implementation, will typically do so automatically. However,
according to our observations, sometimes this automated process will not happen. This seems to
be related to the fact that SM is a positive semi-definite matrix rather than a positive definite
one. Thus, one needs to explicitly normalize the solutions with respect to SM . In fact, we
suggest explicitly normalizing even the Laplacian eigenfunctions, despite the fact that there the
mass matrix AM is positive definite on (good quality) triangle meshes. Indeed, AM can fail to be
positive-definite on pathological inputs. Consider for instance an otherwise good mesh with an
isolated vertex belonging to no triangle. Functions vanishing everywhere except on said vertex
have norm 0 with respect to AM , despite being nonzero.

4.3 Boundary Circles on Triangle Meshes

In Sec. 4.1, small disks centered at the landmarks are removed in order to create new boundaries
for the shapes under study. Here, we describe in detail how this is achieved on triangle meshes.
Crucially, we do not want to unduly disturb the geometry of the shapes. In order to achieve this
we construct the new boundaries entirely within the triangles adjacent to the landmarks.
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Let’s say that we are constructing the boundary circle for the landmark γi. We begin by
selecting the radius ri of the disk to be removed. This is done by finding the length si of the
shortest edge connected to γi. The minimum is taken over both shapes, which are scaled to be
of identical surface area and thus of comparable size. Then, we set ri = rf · si, where rf ∈ (0, 1)
is a user-set parameter. The (surprisingly low) impact of this parameter is studied in Sec. 4.4.2.

We are now ready to construct the boundary Γi. This process is best understood by looking
at its illustration in Fig. 4.2. First, we split each triangle adjacent to the landmark into ns
wedges of equal angle, which introduces ns − 1 new vertices at the opposite edge of the original
triangle, as well as edges connecting them to the landmark. Then, we introduce ns + 1 new
vertices situated on the new edges at a distance ri away from the landmark γi. We then connect
these vertices in a way that creates an approximation of a sector of a disk of radius ri. Doing so
produces ns quadrilaterals in the part of the original triangle far from the landmark. We split
those quadrilaterals into triangles along their diagonals. This concludes the refinement of the
triangles adjacent to the landmark. It remains to refine the triangles adjacent to them across
the edges opposite to the landmark. There, the common edges between the triangles contains
ns − 1 new vertices. On each triangle, we connect these new vertices to the original vertex not
on the common edge. This concludes the refinement process. Note that all of the new triangles
are contained within the original ones.

The construction of the boundaries associated to different landmarks is done sequentially over
the landmarks. This requires some additional care if the landmarks are placed too close to each
other. Indeed, during the construction of Γi, new faces are created in what was originally the
2−ring neighborhood of the landmark γi. Thus, if a different landmark γj is closer than 4 rings
away from γi, there will be overlap between the newly created mesh faces. The resulting mesh
will then be dependent upon the order in which the boundary circles Γi and Γj are created. In
the present construction, we avoid this issue by disallowing such landmark placement. If such
landmark placement becomes necessary in a given application, we suggest locally refining the
mesh via, say,

√
3−subdivision [73] such that the landmarks are no longer closer than 4 triangle

rings from one another. We do not pursue this here.
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Input Step 1 Output

Figure 4.2: Illustration of the creation of a landmark boundary. The landmark position is
indicated by a green dot. The triangles composing the landmark disk are shown in light red. The
boundary circle is highlighted as a red line. Note that a gap of connectivity appears when creating
the boundary around the landmark. This gap is closed when the process finishes producing the
boundary.

4.4 Evaluation

We evaluate our method on standard shape matching datasets, which we describe in Sec. 4.4.1.
We first analyze the parameters involved in our computations (Sec. 4.4.2). Second, we conduct
an in-depth evaluation to compare our method to state-of-the-art approaches on shape matching
benchmarks (Sec. 4.4.3). For our quantitative evaluation in Fig. 4.6 (right), Fig. 4.8, Fig. 4.10 and
Fig. 4.12, we follow the commonly-used protocol, introduced in [71] by plotting the percentage
of correspondences below a certain geodesic distance threshold from the ground truth.

4.4.1 Datasets

We perform all our experiments on the following datasets.

FAUST [15]. This dataset contains models of ten different humans in ten poses each. Despite
the variability in the body types of said humans, this dataset is typically considered as near-
isometric. We remesh the shapes of the dataset to shapes with approximately 5K vertices and
use 300 shape pairs following the procedure of the authors of [130]. Note that the shapes in
question are remeshed independently and do not share the same connectivity.

TOSCA [21]. This dataset consists of meshes of humans and animals. Following [130], we
split this dataset into isometric and non-isometric shape pairs. We call the resulting datasets
TOSCA isometric (284 shape pairs) and TOSCA non-isometric (95 shape pairs) respectively.
The shapes of these datasets are remeshed independently to count around 5K vertices per shape.
Once again, the remeshed shapes have distinct connectivity.

SHREC’19 [103]. This challenging dataset is composed of human shapes with high variabil-
ity in pose, vertex count (ranging from 5K to 200K vertices) and topology (some shapes are
watertight manifold meshes whereas other have holes and other surface noise sources).
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Figure 4.3: Impact of the rf parameter on the shape matching quality. The mean geodesic
error is averaged on the 95 shape pairs of the TOSCA non-isometric dataset (remeshed to 5K
vertices). Notice how stable our method remains, even for extreme values of rf .

FAUST “Wild” [145]. This dataset is a variant of FAUST in which challenging differences
in connectivity are introduced via remeshing. We use the following types of remeshing of the
dataset: a uniform isotropic remeshing (iso), a remeshing where randomly sampled regions are
refined (dense), and the remeshing proposed in [46] (qes). Finally, we consider correspondences
across the 20 template models of the dataset instead of solely considering the initial template
shape as the source shape.

SHREC’20 [41]. This dataset proposes a collection of 14 animal shapes with a set of land-
marks determined by experts. The animal pairs contain parts in correspondence with highly
non-isometric deformations. We only consider the correspondences between full shapes for our
experiments (test sets 1 to 4).

4.4.2 Parameter Study

We present here the main results concerning the parameters of our method. Other minor
experiments on this topic are presented in Sec. 4.6 (influence of the weights in the energy,
qualitative illustration of the impact of landmark placement, near-orthogonality assessment for
our basis and study of the effect of basis size).

Radius rf

The construction of the landmark boundaries Γi explained in Sec. 4.3 relies on the user-defined
scalar parameter rf ∈ (0, 1). In Fig. 4.3, we study the influence of rf on the geodesic matching
error averaged on the TOSCA non-isometric dataset, with 7 landmark correspondences at their
standard locations (see App. B.2). It demonstrates empirically that this parameter has no
significant impact on the matching performance. We therefore set rf = 0.5 in all our other
experiments.

Landmark placement

In order to study the influence of landmark placement on our method, we conduct the follow-
ing experiment on 10 shapes of the TOSCA Isometric dataset (cat category). We consider an
increasing number of landmark correspondences, ranging from 3 to 100, placed according to four
standard surface sampling strategies: (i) random, (ii) euclidean farthest point (iii) geodesic dis-
tance farthest point (iv) Poisson disk (as implemented in [67]). The outcome of these experiments
is illustrated in Fig. 4.4. The farthest point sampling strategies result in the fastest decrease of
the error, Poisson disk is slightly slower and random placement is predictably the slowest. This
indicates that our method performs best when the extremities of the shapes are prioritized for



4.4 Evaluation 45

3 10 20 30 40 50 60 70 80 90 100
0

2

4

6

·10−2

k
G
eo
d
es
ic

E
rr
o
r Geodesic FPS

Euclidean FPS

Random

Poisson Disk

Figure 4.4: Error summary when increasing the number of landmarks k for different surface
sampling strategies. The mean geodesic error on 10 cat shapes of the TOSCA Isometric dataset
is reported. “FPS” stands for Farthest Point Sampling.
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Figure 4.5: Error summary when increasing the number of landmarks k for two surface sampling
strategies. The mean geodesic error on 95 shape pairs of the TOSCA non-isomatric dataset with
3 different seed initializations for each pair is displayed. “FPS” and “std dev.” respectively stand
for Farthest Point Sampling and standard deviation.

landmark placement. The landmark placement used in the benchmarks of Sec. 4.4.3 makes use
of this observation (see App. B.2 for details).

To complement the above experiment, we show the variance of our method when initializing
two sampling strategies with 3 different seeds in Fig. 4.5 on the full TOSCA non-isomtric dataset.

Remeshing invariance

In order to show that our method remains applicable on shapes with different triangulations,
we remesh independently the target pair of each FAUST shape pair and compute the mean
geodesic error in Fig. 4.6 (left). We additionally experiment with the FAUST “Wild” dataset
created in [145] to assess invariance to the remeshing proposed by the authors. Fig. 4.6 (right)
and Tab. 4.1 present the output of this experiment. We observe marginal difference when consid-
ering the various remeshing approaches tested, which highlights the insensitivity of the proposed
approach to the shape connectivity. Fig. 4.7 illustrates qualitatively the median transfer obtained
on this dataset.

4.4.3 Benchmarks

In this section, we describe the competing state-of-the-art methods that we employ (Sec. 4.4.3)
and present our main results for shape matching (Sec. 4.4.3).

Setup

We compare our method against three competitors that leverage landmark information to
compute correspondences between shapes. The detailed setup for each method, including the
landmark placement is provided in App. B.2. The competing methods are:
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Figure 4.6: Left: remeshing stability when varying the triangle reduction factor r of the target
shape. The geodesic error, averaged over 300 test pairs of the FAUST data set, slightly increases
when the target mesh becomes coarse (low value of r). Right: stability of our method when
performing resmeshings on the FAUST dataset (Remeshed to 5K vertices and FAUST “Wild” (see
Sec. 4.4.1) ). The geodesic error is measured in mean geodesic distance ×100 after normalizing
by the geodesic diameter. The mean values, mean execution times and vertex counts for each
remeshing is presented in Tab. 4.1.

Figure 4.7: Qualitative illustration of the median map quality obtained with our method on three
types of remeshing in the FAUST “Wild” dataset (see Sec. 4.4.1). Despite the great disparity of
the underlying meshes, our method provides smooth transfers.

vtx5k iso dense qes
Geo. Err. 13.7 14.3 14.1 14.2

nv 5001 7117 13399 14002
Exec. t. (s) 7.3 8.35 13.75 14.1

Table 4.1: Stability of our method when performing resmeshings on the FAUST dataset. The
geodesic error (geo. err.) is measured in mean geodesic distance ×100 after normalizing by
the geodesic diameter. The corresponding error curves are displayed in Fig. 4.6 (right). The
execution time (exec. t.) is also reported, along with the mean number of vertices for each
remeshing type (nv).
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Figure 4.8: Error summary on the FAUST (left) and TOSCA Isometric dataset (right). The
geodesic error is measured in mean geodesic distance ×100 after normalizing by the geodesic
diameter.

Hyperbolic Orbifold Tutte Embeddings (hyperOrb) [5] constructs a parameterization
of each surface by embedding the points to the hyperbolic plane. The surfaces are cut along the
input correspondences, which are de facto preserved.

Weighted Averages (WA) [117] also defines a parameterization of the input surfaces that
preserves landmarks exactly: each point at the surface is expressed as a weighted average of its
distance to a set of landmarks.

Functional Maps With ZoomOut Refinement (FMap ZO) [104] computes correspon-
dences between shapes by leveraging a functional basis defined on the source and target shapes.
While the method does not allow to retrieve exact correspondence between user-specified land-
marks, it constitutes the current state-of-the-art method for isometric shape matching.

Results

In this section, we present our main results on shape matching.

Isometric shape matching. The evaluation on FAUST and TOSCA Isometric are illustrated
in Fig. 4.8, with averaged errors and runtimes displayed in Tab. 4.2. On the FAUST data set, our
approach remains competitive with a mean geodesic error of 1.40×10−2 and a mean computation
time of 8.83 s. On the TOSCA isometric data set, we obtain a slightly better average geodesic
error score than competitors. Qualitatively, our method produces smooth texture transfers on
both data sets, as highlighted in Fig. 4.9.

Non-isometric shape matching. We run an evaluation of our method on the TOSCA non-
isometric and the SHREC’20 datasets (Fig. 4.10). The mean error values and timings are showed
in Tab. 4.3. In this challenging setup, our method has the best results in terms of mean geodesic
error, while being the second best in terms of computation time. Fig. 4.11 presents a qualitative
evaluation using a texture transfer on a pair of shapes for each data set.

SHREC’19 benchmark. The quantitative evaluation is reported in Fig. 4.12, with the asso-
ciated averaged geodesic errors on the right of the figure. Our method obtains the best mean
geodesic error score for this difficult benchmark. In addition, a qualitative evaluation via texture
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Method Data Set Av. Geo. Err. Av. Time (in s.)

FMap ZO
FAUST 1.23× 10−2 5.93

TOSCA Iso. 1.95× 10−2 6.27

HyperOrb
FAUST 2.19× 10−2 26.8

TOSCA Iso. 2.10× 10−2 10.5

WA
FAUST 4.08× 10−2 59.3

TOSCA Iso. 5.26× 10−2 81.0

Ours
FAUST 1.40× 10−2 8.83

TOSCA Iso. 1.90× 10−2 11.3

Table 4.2: Quantitative evaluation results on the remeshed FAUST and TOSCA Isometric
(TOSCA Iso.) data sets. The average geodesic error (Av. Geo. Err.) and average execu-
tion time (Av. Time) on both data sets are displayed for our method and competing approaches.

Method Data Set Av. Geo. Err. Av. Time (in s.)

FMap ZO
TOSCA n-i. 1.10× 10−1 7.78
SHREC’20 7.86× 10−2 27.9

HyperOrb
TOSCA n-i. 4.33× 10−2 17.8
SHREC’20 5.78× 10−2 270

WA
TOSCA n-i. 6.50× 10−2 79.7
SHREC’20 7.62× 10−2 140

Ours
TOSCA n-i. 4.11× 10−2 13.5
SHREC’20 5.09× 10−2 63.8

Table 4.3: Quantitative evaluation results on the TOSCA non-isometric (n-i.) and the SHREC’20
lores (without partial shapes) data sets. The average geodesic error (Av. Geo. Err.) and average
execution time (Av. Time) on both data sets are displayed for competing approaches and our
method.

transfer is depicted in Fig. 4.13. Our method’s strong performance on this dataset is indicative of
its stability and applicability across diverse changes in shape topology, such as the introduction
of small holes. This is a general feature of the functional maps methods, which our approach
inherits.
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Figure 4.9: Qualitative evaluation of our method and competing approaches on isometric shapes.
The first row corresponds to shapes from the FAUST data set. The bottom row consists of shapes
from the TOSCA isometric data set. The shape pair is selected such that the geodesic error of
our method is median over the dataset. The best and worst cases are illustrated in Sec. 4.5.4.
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Figure 4.10: Error summary on the TOSCA non-isometric (left) and on the SHREC’20 lores
dataset (right).
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Figure 4.11: Qualitative evaluation of our method and competing approaches on non-isometric
shapes. The first row corresponds to shapes from the TOSCA non-isometric data set. The
bottom row consists of shapes from the SHREC’20 lores data set. Each shape pair is selected
such that the geodesic error of our method is median over the dataset. The best and worst
cases are illustrated in Sec. 4.5.4.
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Method Av. Geo. Err.

FMap ZO 3.84× 10−2

HyperOrb 3.26× 10−2

Ours 2.48× 10−2

Figure 4.12: Error summary on 165 shapes of the SHREC’19 data set. The average geodesic
error (Av. Geo. Err.) is displayed for our method and competing approaches.

Source HyperOrb FMap ZO Ours

Figure 4.13: Qualitative evaluation of our method and competing approaches on a shape pair
from the SHREC’19 data set, selected such that the geodesic error of our method is median
over the dataset. The best and worst cases are illustrated in Sec. 4.5.4.
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4.5 Additional Experiments

4.5.1 Analysis of Alternative Initialization Methods

The iterative optimization procedure detailed in Sec. 4.1 requires as an input an initial guess
of the functional map. In [116], an initialization procedure for this initial guess based on the
landmark correspondence and the normal derivatives of certain landmark-dependent harmonic
functions is thus introduced. In this section we compare this approach, that we name the “normal
derivatives” method, to two alternatives: the “trivial” and the “conformal energy” methods.

The landmark circles can be seen as lists of vertices ordered counter-clockwise as seen from
outside the shape. The choice of the first element of this list carries no particular meaning and
is left to the whims of the indexing of the faces of the mesh. Thus, the first elements of two
corresponding boundary circles need not match. The “trivial” approach consists in assuming
that the first elements of the boundary circles do indeed match. This correspondence is then
proportionally extended to the rest of the landmark circle.

The “conformal energy” approach stems from the observation that mapping the landmark
circles ΓN

i → ΓM
i induces a restricted functional map Hi(M) → Hi(N ). The conformal term

of the energy (Eq. (4.12)) can be easily evaluated on these subspaces. The “conformal energy”
approach consists in choosing the shifts {αi}ki=1 such that they minimize the conformal energy
of the resulting Hi(M)→ Hi(N ) map.

Fig. 4.14 (left) depicts the performance of the three initializations in terms of geodesic error
on the SHREC’20 dataset (lores), using 7 landmarks. Tab. 4.4 provides quantitative evaluations
for the same experiment in terms of averaged geodesic error and Dirichlet energy. The “normal
derivatives” approach slightly outperforms the other two on all metrics, which is why it is the
one used in the main text.

4.5.2 Comparison of the “Principled” and “Fast” Energy Optimization

In [116], an unprincipled way to accelerate the nearest neighbor search used in the solution of
our problem. In this section, we quantitatively compare this “fast” method to the “principled”
one on the SHREC’20 data set (partial shapes excluded). The output of this evaluation is
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Figure 4.14: Left: comparison of initializations for our method, where “Norm. De.” and
“Conf. En.” respectively stand for “Normal Derivative” and “Conformal Energy”. Right:
comparison of the “fast” and “principled” energy formulations of our method. Both experiments
are performed on the SHREC’20 lores dataset (partial shapes excluded).
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Method Av. Geo. Err. Dir. E. Av. Time (in s.)

Trivial 6.36× 10−2 16.8 41.4
Conf. En. 6.36× 10−2 16.7 53.2

Norm. De. 6.26× 10−2 16.2 40.4

Table 4.4: Quantitative evaluation results on the SHREC’20 lores (without partial shapes) data
sets. The average geodesic error (Av. Geo. Err.), the Dirichlet energy (Dir. E.) and average
execution time (Av. Time) on both data sets are displayed for the three initialization methods
that we tried: Trivial, Conformal Energy (“Conf. En.”) and Normal Derivatives (“Norm. De.”).
Normal Derivatives is the method used in the rest of this chapter.

Method Av. Geo. Err. Av. Time (in s.)

Principled 4.96× 10−2 184
Fast 5.13× 10−2 48.7

Table 4.5: Average geodesic error (Av. Geo. Err.) and average execution time (Av. Time)
associated to the comparison of the “principled” and “fast” computation methods.

displayed in Fig. 4.14 (right) and Tab. 4.5. While very similar in terms of matching performance,
the “fast” method is more than three times faster to compute. We therefore employ it instead
of the “principled” approach. Note that the more than threefold speedup is consistent with the
fact that the matrices used in the “fast” method are three times smaller.

4.5.3 Complementary benchmark on SHREC’20 lores

As a complement to our main evaluation on SHREC’20 lores, we conducted an evaluation
using only 8 pairs from the initial benchmark to compare against the method proposed in [143]
(InterSurf). InterSurf, WA, HyperOrb FMap ZO and our approach obtain a geodesic error
(scaled by a factor ×100) of respectively 11.9, 5.41, 5.99, 8.69 and 5.2. The restricted number
of shapes on which we evaluate is due to the fact that InterSurf does not handle shapes with
complex topologies well. In particular, the method assumes that the meshes are watertight and
share the same genus, in strong contrast to our approach that does not make such assumptions.
However, we note that this method was not primarly designed for shape matching.

4.5.4 Additional Qualitative Evaluations

We provide additional qualitative evaluations on isometric and non-isometric shape pairs in
order to show best- and worst-case shape matching scenarios for our method.

For isometric shapes, the best pairs are depicted in Fig. 4.15 and the worst pairs in Fig 4.16.

For non-isometric shapes, the best pairs are illustrated in Fig. 4.17 and the worst pairs in
Fig. 4.18.

Finally, in Fig. 4.19, we show the best and worst pairs for the SHREC’19 benchmark.
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Figure 4.15: Qualitative evaluation of our method and competitors on isometric shapes from
the FAUST dataset (top row) and the TOSCA isometric dataset (bottom row). The shape pair
is selected such that the geodesic error of our method is the best over the dataset.
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Figure 4.16: Qualitative evaluation of our method and competitors on isometric shapes from
the FAUST dataset (top row) and the TOSCA isometric dataset (bottom row). The shape pair
is selected such that the geodesic error of our method is the worst over the dataset.
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Figure 4.17: Qualitative evaluation of our method and competitors on non-isometric shapes.
The first row corresponds to shapes from the TOSCA non-isometric data set. The bottom row
consists of shapes from the SHREC’20 lores data set. The shape pair is selected such that the
geodesic error of our method is the best over the dataset.
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Figure 4.18: Qualitative evaluation of our method and competitors on non-isometric shapes.
The first row corresponds to shapes from the TOSCA non-isometric data set. The bottom row
consists of shapes from the SHREC’20 lores data set. The shape pair is selected such that the
geodesic error of our method is the worst over the dataset.
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Figure 4.19: Qualitative evaluation of our method and competitors on the SHREC’19 data
set. The first row corresponds to the best shape pair, while the bottom row corresponds to the
worst shape pair on this data set.
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4.6 Additional Parameter Study

4.6.1 Study of the Weights in the Energy

We define three weights to compute a point-to-point map between two shapes based on the
energy (Eq. (4.12)): the conformal, the properness and the invertibility weights, denoted respec-
tively aC , aP and aI . Since we normalize the weights, their absolute value is unimportant.

To study how their relative value influences the quality of the output map we conduct a
dedicated experiment on the SHREC’20 dataset, with shapes remeshed to count 1K vertices and
excluding partial shapes. 8 landmarks in ground-truth correspondence are placed on each shape,
in the locations described in App. B.2. For each set of weight values, the geodesic error and the
Dirichlet energy, averaged over all shape pairs (in both directions) in the dataset, are computed.

We first fix the conformality weight to 1 and vary the two remaining weights within a range of
energy values in Fig. 4.20 left (geodesic error) and Fig. 4.21 left (Dirichlet energy). Second, we
let one weight vary and fix the two remaining values either to 0 or to 1, as illustrated in Fig. 4.20
right (geodesic error) and Fig. 4.21 right (Dirichlet energy). Finally, we report in Tab. 4.6 the
average geodesic error and Dirichlet energy on the data set, obtained when fixing one weight to
1 and setting the two others to 0. This experiment allows to measure which term carries the
greatest influence on the final map quality.

These quantitative evaluations highlight the existence of a trade-off between the accuracy of
the map (minimization of the geodesic error) and the smoothness of the map (minimizing the
Dirichlet energy) when choosing the weight configuration. Roughly speaking, the invertibility
and properness terms promote accuracy, while the conformality term promotes smoothness.

Since this trade-off is application-dependent, we leave the fine-tuning of the energy weights
to the end-user and set all weights to 1 in the remaining of our experiments as it provides a
satisfactory balance in practice.

4.6.2 Landmark Sampling Qualitative Illustration

We visualize qualitatively the interest of introducing more landmark correspondences in
Fig. 4.22. In this visualisation, since “HyperOrb” does not support less than 5 landmark corre-
spondences, no map for 3 and 4 landmark correspondences can be computed for this method.

Non-Zero Weight Av. Geo. Err. Dir. E.

Conformality (aC) 5.91× 10−2 6.82
Properness (aP ) 7.06× 10−2 7.82
Invertibility (aI) 5.42× 10−2 11.4

Table 4.6: Quantitative evaluation results on the SHREC’20 data set (full shapes remeshed to
1K vertices) when fixing one weight to 1 (Non-Zero Weight) and setting the remaining weights
to 0. The average geodesic error (Av. Geo. Err.) and Dirichlet Energy (Dir. E.) is given for
each.



4.6 Additional Parameter Study 57

10−210−1 1 101 102

10−2

10−1

1

101

102

aP

a
I

5.5

6

6.5

·10−2

10−2 10−1 1 101 102

(aP ; aI) = (1; 0)

(aP ; aI) = (0; 1)

(aC ; aI) = (1; 0)

(aC ; aI) = (0; 1)

(aC ; aP ) = (1; 0)

(aC ; aP ) = (0; 1)

aC/P/I

5.5

6

6.5

7

·10−2

Figure 4.20: Weight study on the SHREC’20 data set (full shapes remeshed to 1K vertices).
The error measure is the mean geodesic error, averaged on the data set. aC , aP and aI are
the Conformality, Properness and Invertibility weights. On the left, we fix the conformality
weight aC and vary the properness and invertibility weights aP and aI . On the right, we vary
one weight aC/P/I and fix the remaining weights either to 0 or to 1.
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Figure 4.21: Weight study on the SHREC’20 data set (full shapes remeshed to 1K vertices).
The error measure is the Dirichlet energy, averaged on the data set. aC , aP and aI are the
Conformality, Properness and Invertibility weights. On the left, we fix the conformality weight
aC and vary the properness and invertibility weights aP and aI . On the right, we vary one
weight aC/P/I and fix the remaining weights either to 0 or to 1.

Note how the regions around the mouth and the eyes are accurately mapped with our approach
compared to the two other approaches.

4.6.3 Basis Near-Orthogonality

For each shape M of the SHREC’19 data set [102], we compute the matrix with entries
mi,j =

∣∣⟨ΦM
i ,Φ

M
j ⟩W (M)

∣∣, where ΦM
i designates the i-th basis vector. We use 7 landmarks, 10

Dirichlet-Steklov eigenfunctions, leading to a Dirichlet-Steklov block of size 70 × 70, and 120
Dirichlet Laplacian eigenfunctions. Since we are only interested in the computation of the basis
itself in this setup, the landmarks were placed at random locations to maximize the diversity of
situations encountered. The average of all matrices is displayed in Fig. 4.23.

4.6.4 Number of Basis Functions

To select the number of basis functions for G(M) and each Hj(M) (see Sec. 4.1), we study
their respective size N

LB
and N

DS
separately, as illustrated in Fig. 4.24.
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Figure 4.22: Qualitative comparison of our method to competitors when increasing the number
of landmarks on a texture transfer problem between two surfaces with significantly different
mesh structure. The source model and its texture were produced by [97] (LPS Head) and the
target model was extracted from the Faust dataset [14]. The ground truth landmark locations
are denoted by green dots. In the case of FMapZO (no exact landmark preservation), the blue
dots indicate the location of the mapped landmarks.
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Figure 4.23: Average of the absolute values of the inner product matrix of each shape in the
SHREC’19 data set. Except for the first few Dirichlet-Steklov eigenfunctions, the off-diagonal
inner products are negligible. This validates the approximation of orthogonality. We highlight
that this computation also sheds light on the robustness of our basis computation to complex
triangulation and partiality setups.
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Figure 4.24: Effect of varying the size of our basis on the G(M) space (left) and on the Hj(M)
space (right). Both figures are an average over all pairs of the TOSCA non-isometric dataset.

Increasing the size of G(M) slightly increases the matching performance up to N
LB

= 120. In
contrast, varying N

DS
above 10 decreases the quality of the maps. Hence, we fix the following

basis sizes throughout the rest of the article: NLB = 120 and NDS = 10.

4.7 Conclusion

In this chapter, we presented our contributions to the Dirichlet-Steklov Landmark-based shape
matching pipeline, namely the discretization of the Dirichlet-Steklov problem on triangle meshes
to construct the Dirichlet-Steklov part of our landmark-adapted functional basis and the in-depth
study of the parameterization of this approach.

The construction of the landmark-adapted basis required us to upgrade the landmarks to
proper boundaries. We did so by cutting out small disks centered at the landmarks, resulting in
the introduction of landmark circles.

Our parameter study highlighted the following characteristics of the method. First, the com-
putation of the method is largely insensitive to the radius of the disks that are cut out from
the original shape, to the meshing of the source and target shapes, to the matching initializa-
tion method and to the values used to weight the different terms that appear in the energy to
optimize. Second, the landmark placement is important to obtain high-quality correspondences.
When using a vertex sampling technique to obtain landmark positions, traditional methods such
as farthest point sampling or poisson disk sampling behave similarly. As the number of available
landmarks increases, so does the quality of the resulting correspondences.

The proposed method with the selected parameterization achieves state-of-the-art performance
on non-isometric benchmark datasets and near state-of-the-art performance on isometric ones.





Chapter 5

ReVISOR: ResUNets with
Visibility and Intensity for
Structured Outlier Removal

Structured Outliers

Statistical Outliers

Figure 5.1: In this chapter, we present a structured outlier detection problem, arising in real-
world acquisition of industrial environments (left), compared to statistical outliers on a synthetic
shape (right) that are commonly used in our community.

3D acquisition of large-scale point clouds is prone to many categories of measurement errors. Ex-
isting outlier detection methods approach this problem by using local approaches, thus relying on
the assumption that local point distribution is sufficient to distinguish “clean” from “noisy” data.
In contrast, in real-world acquisition this is often not the case, since significant parts of acquired
geometry can resemble “clean” data, while being present only due to acquisition artifacts. The
difference between both setups is illustrated in Fig. 5.1. This is especially true for the artifacts
caused by reflections. Contrary to standard acquisition noise or outliers, reflection-induced out-
liers closely resemble shapes that are present in the 3D scan. Removing these artifacts with a
deep learning model therefore constitutes a challenging problem. Our main contributions are as
follows: first, to overcome the scarcity of annotated data for reflection-induced outlier removal,
we create a new dataset tailored for this task. Moreover, to exploit long-range dependencies,
we repurpose state-of-the-art deep learning semantic segmentation architectures. By doing so,
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we bring together the fields of shape denoising and repair on the one hand, and semantic seg-
mentation on the other. We empirically show that semantic segmentation Residual U-shaped
networks (ResUNets), which can capture long-distance relations between points in a scene, and
leveraging medium-scale geometric information in the form of large receptive fields enhanced
with laser intensity and a computed visibility signal is key to solve real-world structured outlier
removal. In contrast, pure local statistical approaches fail. The effectiveness of the employed
semantic segmentation architecture is independent of the chosen point-convolution operator. We
denote our pipeline as ReNets with Visibility and Intensity for Structured Outlier Removal, or
ReVISOR.

5.1 Introduction

Figure 5.2: Illustration of a measurement error
induced by structured outliers (yellow) between
the center of acquisition (light blue dot) and a
point on a piping (black lines). The correct dis-
tance corresponds to the green line segment and
the erroneous distance to the red line segment.
Correctly acquired points are indicated in pur-
ple.

3D acquisition of large-scale point clouds is
prone to many categories of measurement er-
rors. Detecting real-world outliers, such as the
artifacts caused by reflections, is a particu-
larly challenging task. Unlike unstructured,
e.g., Gaussian noise or uniformly distributed
outliers, reflections can lead to wrong acquisi-
tions that closely resemble large parts of ac-
tual geometry, located far away from the real
surfaces. This non-local behavior severely re-
duces the applicability of local statistical ap-
proaches, and more broadly the vast major-
ity of previous work on this topic. We be-
lieve that non-local outlier detection has rarely
been studied in previous works because real
acquisition data is sparse, and because label-
ing is very difficult. The time required by
expert annotators illustrates this last aspect
well: about 8 hours are necessary to segment
a single laser scan, leading to two months of
work to clean all acquisitions performed on a
single power-plant (≈ 1500 scans) [65].

One of the main reason for removing these
structured outliers from an industrial perspec-
tive is to mitigate measurement errors. In-
deed, if an operator uses the raw 3D point
cloud, containing outliers, to measure a dis-
tance e.g. between a piping and the viewer as
illustrated in Fig. 5.2, picking an outlier point
instead of a point from the actual geometry of
the piping will lead to a vastly wrong measure.

In this chapter, we propose a new dataset with industrial scenes for the task of automated
structured, non-local, outliers removal. Contrary to the majority of previous works on outlier
removal, our downstream task consists in detecting acquisition artifacts caused by real-world
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general reflective surfaces that can be highly irregular and non-planar, within complex industrial
scenes. This involved setup hinders an axiomatic description of the acquisition and reflection
process and advocates for the use of a data-driven strategy.

Specifically, the proposed downstream task represents a challenge for three main reasons. First,
a successful method should adapt to any size of acquired point cloud for outlier detection in large-
scale scenes. Second, local approaches are not applicable since the underlying outliers can be
non-local, highly structured and resemble the underlying geometry (see Fig. 5.6): as such, they
cannot be removed by purely local methods. Third, only a very limited number of scenes with
annotated ground truth is available, making large-scale learning challenging.

We demonstrate empirically that previous outlier detection methods fail on this task, in par-
ticular, because their receptive field size is limited. This constraint makes non-local interactions
difficult to capture and these interactions are crucial for our proposed task.

In this context, we show that reflection-induced outlier detection is best formulated as a
semantic segmentation problem, unlike a pure labeling problem as done in most prior works.
In particular, formulating outlier detection as a semantic segmentation problem enables non-
local interaction between outlier point decisions. This formulation allows us to leverage in our
benchmark state-of-the-art architectures, designed for standard semantic segmentation tasks.

Lastly, we demonstrate that a visibility signal, provided in addition to the standard 3D geome-
try and laser intensity information, helps to regularize the training and significantly improves the
accuracy of reflection-induced outlier detection, by providing additional important acquisition-
level semantic cues.
In summary, our contribution is:

• we propose a new dataset for structured outliers removal in industrial scenes;

• we show that existing local, patch-based learning approaches have limited accuracy for
reflection-induced outlier detection;

• we leverage state-of-the-art semantic segmentation architectures for outlier detection and
highlight the importance of long-range information when dealing with real-world structured
outliers;

• we highlight the importance of visibility as input signal to regularize outlier detection.

The remainder of this chapter is organized as follows. We first present an overview of related
work (Sec. 5.2) and background information on semantic segmentation of large-scale 3D point
clouds (Sec. 5.3). We then present a pilot study on statistical outlier denoising (Sec. 5.4), our
dataset (Sec. 5.5), a presentation of our method (Sec. 5.6) followed by its application with large-
scale receptive fields (Sec. 5.7), before concluding (Sec.5.8).

5.2 Related Work

Reflection Detection. The detection of reflections in 3D scans has mostly been addressed
from an axiomatic point of view. Yun et al. [176] propose an efficient method for detecting
reflections caused by glass surfaces in architectural scenes, that they evaluate qualitatively on a
dedicated dataset containing eleven scans. Initially limited to a single reflective plane per scene,
this work was extended [177] to detect multiple glass planes. The main limitation of this method
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is its reliance on a careful parameter setup. Moreover, only glass planes are considered, which
limits its applicability to more general reflective surfaces. Finally, the proposed dataset does not
contain ground-truth annotations of the outlier points, preventing its use for supervised learning
and for quantitative evaluations. A few recent works tackle the problem of detecting (planar)
mirror surfaces in RGB-D interior scenes [149, 98]. Both approaches introduce new datasets that
contain precise segmentation of planar mirrors in interior RGB-D images. More closely related
to our approach, the detection of ghost targets produced by reflections in scans of road scenes
is addressed in two recent works by leveraging a PointNet-like [28] and a Transformer [160, 45]
architectures. However, these approaches rely on the combination of multi-modal sensor data to
detect ghost targets, whereas our approach focuses solely on the 3D geometry and laser scanner’s
intensity.

Outlier Removal and denoising. Our task is also linked to outlier detection and point cloud
denoising. The topic of outlier detection is commonly treated from a multi-dimensional point
of view [122, 93, 140] by developing methods based on robust statistics with strong theoretical
guaranties. Specific methods for 3D point clouds have been constructed in the past using ax-
iomatic [44, 26, 27] or deep learning approaches, following the footsteps of PointCleanNet [127].
More recently, learning-based methods to denoise point clouds have been formulated using an
unsupervised procedure [54], manifold reconstruction [91], exploiting graph structures [123, 66],
non-local information [61], encoder-decoder models [178] or score-based approaches [92]. Unfor-
tunately, the previously-mentioned approaches are tailored for statistical noise removal, arising
close to the underlying surface. In contrast, our application scenario involves structured noise,
that closely resembles real surfaces.

Semantic Segmentation. We rely on a 3D point cloud semantic segmentation network to
solve the binary classification of inlier versus outlier points. Following the work of Qi et al. on
PointNet [124] and PointNet ++ [125], a wealth of methods have been proposed to produce per-
point labeling using raw point coordinates and features as input. These methods are commonly
designated as point-based methods [181, 40, 173, 172, 60]. Some approaches leverage a graph
structure computed from the point cloud that allows to take advantage of graph processing
techniques and graph convolution [157, 159, 43, 10, 170]. Others make use of 2D projections,
such as a perspective [79], a spherical projection [108] or both [6]. Point clouds can be encoded
within a regular structure, such as a voxel grid [161, 187, 32] or a custom layout of points [167,
180, 74, 151, 18, 170, 169]. Hybrid approaches, entangling 2D and 3D information [68, 135] or
fusing voxel and point-based approaches [179] have also been developed. Finally, Transformer-
like architectures recently highlighted the interest of transposing self-attention mechanisms to
point cloud segmentation [80, 49, 182, 96]. The main contribution in all these work lies in
the local point operator, acting on neighboring points, used in the segmentation architecture.
Concerning the architecture itself, encoder-decoder, such as U-Nets [139] or DeepLab [29, 30], and
HRNet-like [158] are the two main designs for semantic segmentation in the image domain. More
recently, Vision-Transformers [39, 184] have been proposed to leverage the ability of Transformer
networks [155] to capture long-range relationships. In the point cloud processing community, the
encoder-decoder strategy, already leveraged in PointNet ++, represents the go-to architecture
in the vast majority of recent semantic segmentation networks. We therefore chose to focus our
study on this type of architecture and use a U-Net design. Background information on U-Net
designs for point cloud semantic segmentation is provided in Sec. 5.3. A notorious exception
to the trend of using encoder-decoder architectures for semantic segmentation is DGCNN [165],
where an EdgeConv layer recomputes a nearest-neighbor graph on the input point cloud at
each stage to build rich geometric features. DGCNN is not suited for processing points with
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more than around a thousand points due to the expensiveness of the EdgeConv layer. All the
architectures described in this paragraph have so far been used for labeling into semantically
meaningful classes, rather than for outlier detection. A goal of our study is to highlight that
semantic segmentation architectures are well suited for structured outlier removal.

5.3 Background

5.3.1 Semantic Segmentation Architecture

To perform the classification of the input point clouds into inliers and outliers, we use a stan-
dard semantic segmentation architecture, namely a residual U-Net (ResUNet), with different
types of point convolution operators. More specifically, we will use throughout this chapter the
MinkowskiEngine [32], PosPool [87], adaptive weights [162], pseudo-grid kernel point convolu-
tion [151], multi-layered perceptrons and point transformer [182]:

• MinkowskiEngine [32] (ME ): the input point cloud is first voxelized. The output feature at
each voxel is computed via a convolution between the features of nearby voxels and sparse
3D grid kernels.

• Adaptive Weights [162] (Adap.): a stack of fully-connected layers processes the relative
point coordinates of each input point. The output of this operation is multiplied by the
relative point features in a point-wise fashion and summed to obtain the new feature value.

• Pseudo-grid kernel point convolution [151] (Grid.): a kernel of points with fixed positions
is placed at each input point. Close-by neighboring features, weighted by their relative
distance to the closest kernel point, are summed to produce a new feature value at each
kernel point location. The contribution of each kernel location is multiplied by a weight to
produce the output feature at each point location. The fact that the layout of the kernel
points is regular, as if the points were lying on a grid explains the name of this approach.

• Multi-layered perceptrons (MLP): at each point, fully connected layers are applied to the
concatenated relative point positions and neighboring features, followed by a max-pooling
operation. This design is equivalent to Pointnet++ [125].

• Point Transformer [182] (POTR): a local attention mechanism, based on the relative posi-
tion of neighboring points is employed to weight the contribution of nearby points. The key,
query and value embeddings are computed from the relative positions via fully connected
layers.

Note that the approaches Adap. and MLP are not defining a convolution operation explicitly,
but learn a deep function to aggregate neighboring point representations. Except for ME, where
neighboring voxel positions are used, all relative neighborhoods consist in a sphere neighborhood
with fixed radius.

Our network architecture, illustrated in Fig. 5.3, closely follows the implementation provided
by the authors of [87]. It consists in a Residual U-Net network with the following building blocks:

• down-sampling block: we combine a strided residual block with two residual blocks, both
leveraging the chosen convolution operator in their middle layer (see the light-blue box on
the right of Fig.5.3). The down-sampling is achieved by performing a grid sub-sampling.

• up-sampling block: we use a 1-nearest neighbor up-sampling to project the low-resolution
features on the points of the next resolution, followed by a simple multi-layered perceptron.

As pointed out in Sect. 5.2, the encoder-decoder design has become standard in the point
cloud processing community for semantic segmentation since PointNet++ [125]. It has the main
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Figure 5.3: Illustration of our network architecture, following the design adopted in [87]. N and
C indicate respectively the number of points and the feature dimensionality, MLP stands for
multi-layered perceptron, Conv. designates the convolution operator employed and Res. stands
for residual.

benefit of providing multi-scale features at tractable computation cost since the point clouds at
deeper stages have decreasing point counts. To decrease the point count, the standard approach
consists in performing a farthest point sampling on the point cloud obtained at the previous
stage of the network, with a lower point count (typically a decrease by a factor two). We choose
to downsample the point cloud by increasing the spatial sub-sampling distance, which presents
the benefit of allowing a more direct comparison with voxel method. Indeed, the sub-sampling
distance is equivalent to the size of a voxel for a voxel-based method.

In addition to the experiments with U-Net architectures presented in this chapter, we also
experimented with various designs in the point cloud processing community, including graph-
based approaches such as SuperPoint graphs [81] or DGCNN [165]. However, these designs
performed poorly on our proposed task. We hypothesize that graph-based approaches require
more training data than what we used to train them.

Network input. The input of our baseline networks consists in the local coordinates of the
points contained within a spherical neighborhood of the full point cloud (i.e. the coordinates are
centered around the neighborhood’s center). This spherical neighborhood is the receptive field
or input patch of the network.

Layer setup. All layers, are followed by batch-normalization with momentum 0.9, followed by
ReLu non-linearity. At each down sampling stage, the radius and the grid sub-sampling size of
the previous step are multiplied by 2. Conversely, at each up-sampling stage, the radius and grid
subsampling size are divided by 2. The base radius size is set to 1/32th of the input radius.

Number of points. The number of sampled points depend on the characteristics of the dataset
considered. In our study, we focus on a dataset with statistical outliers and a real-world dataset
featuring structured outliers. For statistical outliers, the input number of points is set to
500 for all receptive fields, following the choice of the authors of PointCleanNet [127]. For
structured outliers, the input number of points is set to 15000 for the largest receptive field
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radii (starting at radii ≈ 0.5 m), following the parameter setup of the authors of PosPool [87].
For smaller radii, the number of points is linearly decreased down to a minimum number of
points of 1024. For instance, a patch radius of 0.3 m uses 7500 input points.

Spatial sub-sampling. To reduce the computational footprint of our method, we sub-sample
a first time all our scenes to a 5 mm spatial subsampling. This subsampling is suited to study
small-scale receptive fields, i.e. with a radius < 0.5 m, as we show in Sec. 5.6. For larger
radii, we adjust the spatial subsampling, so that each patch contains approximatively the largest
number of points available (15000). More specifically, for radii >= 1 m, > 1.5 m and > 2 m, we
respectively use a subsampling distance of 0.04 m, 0.06 m and 0.09 m.

Hierarchical down-sampling and up-sampling. The ResUNet architecture design that we
employ leverages a U-Net-like structure [139], that requires to down-sample the input patch of
points progressively in the left branch of the “U” and to up-sample it back in its right branch.
Different choices are possible to downsample an input point cloud. The most common options [60]
are farthest point sampling (FPS), random sampling and grid sub-sampling. For the experiments
presented in this chapter, we select the latter because it allows a more natural comparison with
voxel-based methods.

5.3.2 Evaluation Metrics

To study the effect of changing the receptive field size and the type of convolution operator,
we leverage the area under the precision-recall curve (PR-AUC) metric. This metric allows to
summarize the performance of each tested model under varying decision thresholds. Moreover,
the inlier-outlier distribution is imbalanced (there are roughly 80% inliers for 20% outliers in the
dataset) and this metric is especially suited for imbalanced class distributions [38].

We also evaluate different designs using standard evaluation metrics, namely the accuracy, the
precision, recall and mean intersection over union.

5.4 Pilot Study

Outlier detection for point clouds is usually considered as a sub-problem of point cloud de-
noising. This problem is thus not specifically considered in recent denoising approaches. We
hypothesize that this lack of consideration is due to the fact that noise is generally modeled as a
small local displacement applied to the ground truth position of points [127], and therefore does
not contain a significant number of points far from the ground truth surface. In strong contrast,
we tackle a problem in which outliers are both structured and non-local.

As a first experiment, we use the statistical outlier dataset proposed by the authors of [127]
to train a ResNet with pseudo-grid convolution operator, compared to different baselines:

• PointCleanNet [127] (PCN ). PointCleanNet proposes a two-step denoising pipeline:
first, the outlier points are detected by a network that outputs an outlier score, trained
with the L1 regression loss; second, the remaining “inlier” points are denoised by estimating
an offset vector. Note that both networks take a patch of points as input and output a
score/denoising offset for the center point of the patch only. For this study, we only consider
the denoising framework that we retrained using the same setup as for the other networks.
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• ScoreDenoise [92] (ScDe). This network is a state-of-the-art denoising architecture
that leverages EdgeConv-like [165] convolution operations. The network predicts a gra-
dient score that allows to displace noisy points back to their original position. For our
comparison, we retrain the network to output a per-point probability for the inlier and
outlier class, trained with the cross-entropy loss.

• Statistical outlier removal (Stat.). Points that are further away from their neighbors
than the average distance for the full point cloud are labeled as outliers. We use Open3D’s
implementation [186] and consider a neighbor number of 4, 16, 128 and 256.

• Radius outlier removal (Rad.). Points that have a number of neighbors within a
spherical neighborhood smaller than a given threshold are considered as outliers. We also
use Open3D’s implementation for this method with the same number of neighbors.

The evaluation is performed on 31 test shapes of the famousthingi dataset [128], from which
we sampled 50K points, with a proportion of 40% outliers, randomly sampled within the unit
cube.
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Figure 5.4: Performance of a semantic segmentation ResNet that leverages a pseudo-grid con-
volution operator (ResNet), two non-learning local outlier removal techniques Rad. and Stat.,
PointCleanNet (PCN ) and ScoreDenoise (ScDe), evaluated at increasing input patch radii for the
semantic segmentation network. The evaluation is conducted on the shapes of the famousthingi
test set. The radius is expressed as a percentage of the shape diameter. PR-AUC stands for
precision-recall area under the curve.

Fig. 5.4 depicts the outcome of this experiment. First, we note that the two non-learning
approaches Stat. and Rad. are competitive with the learning-based approaches when selecting
the proper k parameter value. Second, the ResNet consistently outperforms ScoreDenoise in
terms of precision-recall AUC (PR-AUC) and is comparable to PCN for radius values of 20% of
shape diameter. Third, the AUC decays for a radius greater than 20% of the shape’s diameter
for both PCN and the ResNet, which indicates that adding long-range context is unimportant
for statistical denoising. Finally, PCN requires a careful tuning of its receptive field size to
obtain maximal performance, and given such an appropriately-chosen receptive field size, this
architecture does provide the best overall performance. This problem is thus indeed solvable
using PCN, as claimed by the authors of that work. This last conclusion is in strong contrast to
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Figure 5.5: Outlier detection on our statistical outliers test set (top left: “Eiffel Tower mini”
shape, top right: “companion-dodec” shape and bottom: “unicorn” shape), using either a seman-
tic segmentation ResNet (ResUNet) or PointCleanNet (PCN ). TP,TN,FP and TN respectively
designate true positives, true negatives, false positives and false negatives.

the reflection-induced outliers problem as we will see now.

Fig. 5.5 qualitatively illustrates the prediction obtained with PCN and the ResNet on the
evaluation dataset. We note that the ResNet’s predictions are smoother than those of PCN and
that the decay in PR-AUC also translates to worse predictions for both architectures.

5.5 A Real-World Structured Outlier Dataset

Obtaining labeled data for real-world structured non-local outlier detection is difficult. There-
fore, only little effort has been done to assess the quantitative performance of different approaches
for this task. To the best of our knowledge, our dataset is the first to be specifically designed
for benchmarking non-local outlier detection in an industrial context, that contains reflection-
induced artifacts. We first present the content of the dataset before highlighting the novelty of
our proposed downstream task with respect to existing ones.

5.5.1 Overview

Downstream task. The dataset is composed of a collection of rooms from industrial power-
plants acquired via a fixed LiDAR device mounted on a tripod that produces large-scale point
clouds (around 30 Million points per scene). These rooms contain piping that has the property of
being heat-insulated with a highly reflective material. The proposed task is to detect the outliers
produced by the deflection of the LiDAR device’s laser beam in order to remove them. This setup
is especially challenging compared to traditional indoor or outdoor scenes [11, 50, 37, 7, 147]
because industrial facilities are environments in which objects are highly clustered, as illustrated
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(a)

(b)

(c)

Walls
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Figure 5.6: Illustration of a scanned room, shown from different viewpoints. Figure (a) shows
the panoramic view of the acquired scene (i.e. the viewpoint of the acquisition device). Notice
the large quantity of outlier points (yellow). Figure (b), an orthographic view of the room near
the scanning device (cyan point) with the trajectory of the laser beam depicted with arrows.
The green solid arrow corresponds to the trajectory of a correctly acquired point, the red solid
arrow shows the trajectory of a reflected ray and the red dashed arrow represents the erroneous
trajectory inferred by the acquisition device based on the laser signal it received back. Figure
(c) illustrates a global view of the point cloud with color-coded ground truth annotation, a
reconstructed 3D model of walls and floor in gray to provide semantic context, and the real
surface of the reflective piping in solid black line. The location of the acquisition center is shown
by a cyan point, and the viewing direction by a cyan arrow.

in Fig. 5.7. We adopt the following labeling convention: the negative class (0) represents inliers,
while the positive class (1) encodes outliers.

Content. The dataset consists in 21 scans stemming from 14 scenes of 3 different facilities of
Électricité de France. The point clouds were acquired using a Leica Z+F 5010C and a Leica
HDS 7000 laser scanner. Both are high quality laser scanners. They produce point clouds with
a density of at least one point every 5 mm at 8 m of the acquisition center. The local noise on
standard materials is at most of 1 mm in terms of RMS.

The labeling procedure was conducted by a field expert using the 3D point cloud processing
software Realworks by Trimble. Panoramic images of the environments were available to provide
context information during the segmentation procedure. In ambiguous cases, the “inlier” label
was assigned by default. Each scan is equipped with estimated normals, the normalized laser
intensity signal and a ground truth annotation of the inlier and outlier points. For our testing
set, the data was cross-validated by a rigorous internal process, that uses ground truth floor
plans and 2D image views. For our training set, we labeled the 13 scenes ourselves to provide
guidelines for the field experts.



5.5 A Real-World Structured Outlier Dataset 71

Quantity Train Validate Test Total

# points (sum) 15 048 663 6 872 918 2 693 886 38 130 522

# points (mean/scan) 1 504 866 2 290 973 2 026 118 1 815 739

% outliers (mean/scan) 34.6 20.9 20.5 27.2

Table 5.1: Statistics on our dataset. It consists in 21 scans of 3 facilities of Électricité de France,
across 14 scenes

Figure 5.7: Examples of two rooms from our dataset. The top row depicts the ground truth
segmentation between Inliers and Outliers. The bottom row presents the normalized color-coded
intensity signal.

13 scans from two facilities are used for training and validation, while the remaining 8 are
used to evaluate the method. Each scan is first down-sampled to a spatial resolution of 5 mm.
A manual distance thresholding was performed along the vertical axis to roughly trim the points
lying on different floors, as well as a distance thresholding, so that points lie within a 5 m sphere
around the acquisition device. Table 5.1 summarizes statistics on the number of points and the
percentage of outliers present in the dataset.

5.5.2 Novelty of our problem setup

Our setup is novel and challenging because we consider structured non-local outliers caused by
arbitrary and irregular reflective surfaces, which is neither standard (statistical, non-structured)
outlier detection, that involve artifacts lying nearby real geometry, nor reflection detection on
planar glass panes or perfect mirrors. Below, we give an overview of the most closely related
datasets to ours, and highlight the difference of our setup.

Statistical outliers/noise datasets. The authors of PointCleanNet [127] propose a dataset
with point clouds containing statistical outliers that were synthetically generated from the ground
truth surfaces. We highlight the difference of our task to detecting such statistical noise by show-
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ing that a state-of-the-art denoising architecture, namely ScoreDenoise [92], fails at segmenting
outliers (see Fig. 5.4).

Glass pane outliers datasets. The public benchmark proposed by the authors of [176] con-
tains a collection of exterior large-scale point clouds containing outliers caused by the reflection
of objects on planar glass panes. This setup is related to the problem targeted by our dataset,
with three main differences. First, their dataset does not contain ground truth annotation, which
prevents quantitative evaluations. Second, the reflective surfaces considered are in glass, a ma-
terial that is not opaque as in our scenario. This difference is important because a transparent
reflective material implies that (i) correctly acquired points can be found after the reflective in-
terface and (ii) the intensity of the reflection is less pronounced in transparent material because
a large portion of the laser energy actually gets through the glass interface [176]. Finally, the
reflective surfaces are exclusively planar, in strong contrast with our setup, where the reflective
surfaces consist of piping with highly varying shapes.

Perfect mirror datasets. To illustrate the inefficiency of architectures targeting the task of
detecting reflections on perfect mirrors, we compare our approach to a state-of-the-art method,
namely the PDNet architecture [98] in App. C.

5.6 Method

5.6.1 Local Point Operator

The crucial component of the semantic segmentation architecture presented in Sec. 5.3 is the
local point operator applied at the different stages of its multi-resolution structure.

To choose the local point operator that is best suited to our task, we train and evaluate
different state-of-the-art operators, presented in Sec. 5.3.1, on our dataset at increasing input
patch radii, with local 3D coordinates as sole input. Our results are summarized in Fig. 5.8.

We observe that all operators behave similarly and attain their best performance for a patch
diameter of 7% of the scene radius (5 m), that is a patch radius of 0.35 m. Fig. 5.9, 5.10 and 5.11
provide a qualitative illustration of the different operators using this optimal parameter setup.
We observe that the tested operators output results that are very close. The outlier points are
well detected for medium-sized piping, such as in Fig. 5.9 and Fig. 5.10, and cause more difficulty
for extreme reflection cases, such as in Fig. 5.11, where many outliers are missed no the right
hand-side of the image and at the bottom. We note nevertheless that the “POTR”, “Grid” and
“PPool” operators display fewer segmentation errors.

In contrast, the non-learning approach LOF performs poorly, due to its local and solely density-
driven nature. Lastly, the best PR-AUC score obtained in this configuration is 0.78, attained
by the (pseudo-)Grid local point operator, whereas for statistical outliers, 0.90 PR-AUC is
attained by non-learning approaches. This difference stresses the additional challenge of our
setup and suggests that the Grid local point operator is our preferred choice for the ResUNet
part of our ReVISOR framework. This evaluation also clearly highlight the ineffectiveness of
traditional denoising pipelines: neither PCN nor ScoreDenoise provide meaningful predictions in
this context.
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Figure 5.8: Performance in terms of area under the precision-recall curve (PR-AUC), of a se-
mantic segmentation ResUNet using various local point operator at increasing input patch radii
compared to local denoising approaches on our dataset. The radius is expressed as a percentage
of the maximal scene radius (5 m)

5.6.2 Point Visibility as an Additional Input Feature

Our setup differs from standard statistical outlier removal mainly because local information
is insufficient to decide whether a patch of points was taken from actual geometry or on the
surface of a cluster of structured outliers, that resemble the surrounding geometry. In addition
to making architectural changes, as described above, an effective method to incorporate non-
locality into our pipeline consists in adding additional features that are dependent to long-range
interaction between points in the point cloud. Visibility is a non-local property: given a point
of view, a point can be occluded with respect to this point of view by another point, that can
be arbitrarily far away. In the case of reflection-induced outliers, visibility is meaningful because
the vast majority of the outlier points are occluded by points correctly acquired on the reflective
surfaces and are henceforth much more to be tagged as “invisible” than inlier points. See for
example the inset of Fig. 5.1.

Visibility Computation

A widely used approach for determining the visibility of points in the input point cloud has
been introduced by Katz et al. [70]. In our framework, we exploit it as an additional guiding
input signal for non-local outlier detection. Specifically, given a point cloud P = {pi}i∈[1,N ] with

N points and a viewpoint C (the acquisition device location in our case), the algorithm assigns
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Figure 5.9: Qualitative evaluation of different local point operators, without features. The
ground truth (GT ) is provided in the top left cell, while each following cell depicts the true
negative (TN ), true positive (TP), false positive (FP) and false negative (FN ) when using
MinkowskiEngine (ME ), PosPool (PPool), Adaptive weights (Adap.), Pseudo-grid (Grid.) or
multi-layered perceptrons (MLP). The positive class designates the outlier points, and the neg-
ative class the inlier points. Therefore, the outlier segmentation correspond to the {TP,FN }
colors, while the inlier segmentation is associated to the {TN,FP} colors.
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Figure 5.10: Qualitative evaluation of different local point operators, without features. The
ground truth (GT ) is provided in the top left cell, while each following cell depicts the true
negative (TN ), true positive (TP), false positive (FP) and false negative (FN ) when using
MinkowskiEngine (ME ), PosPool (PPool), Adaptive weights (Adap.), Pseudo-grid (Grid.) or
multi-layered perceptrons (MLP). The positive class designates the outlier points, and the neg-
ative class the inlier points. Therefore, the outlier segmentation correspond to the {TP,FN }
colors, while the inlier segmentation is associated to the {TN,FP} colors.
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Figure 5.11: Qualitative evaluation of different local point operators, without features. The
ground truth (GT ) is provided in the top left cell, while each following cell depicts the true
negative (TN ), true positive (TP), false positive (FP) and false negative (FN ) when using
MinkowskiEngine (ME ), PosPool (PPool), Adaptive weights (Adap.), Pseudo-grid (Grid.) or
multi-layered perceptrons (MLP). The positive class designates the outlier points, and the neg-
ative class the inlier points. Therefore, the outlier segmentation correspond to the {TP,FN }
colors, while the inlier segmentation is associated to the {TN,FP} colors.
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Figure 5.12: A schematic depiction of the spherical inversion with increasing inversion radii
{Ri}i∈[0,3]. The inset figure shows the appearance of the point cloud from the inversion center

and the main figure shows the same scene projected on the (x, z) plane. We show four different
inversion radii to illustrate how the visible areas vary when the inversion radius varies: greater
radii increase the number of visible points because more inverted points get “squeezed” on the
convex hull of visible points. At very large radii, the convex hull is a portion of a sphere, with
all points lying on it, i.e. all points are marked as visible. Conversely, at very small radii, the
inverted points are “dragged” towards the acquisition center and only a few number of points lie
on the convex hull.

to each point a label: 0 if the point is visible and 1 if the point is invisible from C. The core
of their approach consists in the hidden point removal (HPR) operator, that processes the point
cloud in two steps (see Fig. 5.12).

1. Spherical inversion. Given P and a sphere that contains all the points of P, the spherical
inversion consists in reflecting all pi ∈ P with respect to the sphere. The reflection of pi is
denoted as p̂i and is computed as follows:

p̂i = pi + 2 (R− ||pi||) ·
pi

||pi||
.

2. Convex hull regression. Given the set of all reflected points P̂ = {p̂i}i∈[1,N ], compute

the convex hull of P̂ ∪ {C}.

The visibility computation is conducted on a complete scene. This means that it leverages
non-local information in the sense that more information than a point cloud patch is available
at the time of its computation.

Parameterization

The computation of the visibility feature relies on a hyper-parameter, namely the radius of
the inversion sphere R. To observe significant changes on the visibility, an exponential change



78 ReVISOR

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

P = 0.30

Intensity Threshold (ϵ)

P
/
R

V
al

u
e

Int. Precision (P) Int. Recall (R)
Vis. P Vis. R
All outliers pred. All inliers pred.

1 1.8 2.6 3.4 4.2 5

Visibility Parameter (γ)

Figure 5.13: Precision/Recall curves using the thresholded intensity or visibility feature solely,
computed on our training dataset. Both features vary in opposition, which reinforces their joint
use.

of R is required. We thus re-parameterize R with γ as such: R := 10γ .

Inspired by the approach of the authors of the visibility computation method [70], we determine
γ as a trade-of between precision and recall when using the raw feature value as the outlier
segmentation on the training and testing sets of our dataset. Fig. 5.13 (purple lines) shows the
output of this computation. Intuitively, since R := 10γ , where R is the radius of the inversion
sphere, R has the same variations as γ. Moreover, as displayed on Fig. 5.12, small values for
R, i.e. small values for γ, yield a larger number of invisible points. Conversely, large values for
R/γ correspond to a small number of invisible points. Now, recall that invisible points are likely
to be reflected outliers, occluded by inlier points and that we are classifying invisible points as
outliers in this experiment. The decay of the recall corresponds to a decay in the number of
visible points. Extreme values for γ are not informative since they correspond to either a “all
points are outliers” or a “all points are inliers” segmentation. The optimal parameter has to be
chosen “in the middle” of these extreme values. Since the intersection of the precision and recall
curves occurs for γ = 3.2, we select this value as our “middle value” and use it to compute the
visibility feature in the remaining of this chapter.

5.6.3 Visibility and Intensity as Input Feature: a Quantitative Study

Input features are paramount to efficiently solve a semantic segmentation task. In our setup,
instead of the traditional per-point RGB color information, the intensity value of the laser ac-
quisition is available at each point. Our study aims at highlighting that a joint use of intensity
and visibility reaches optimal performance. This result is largely independent of the local point
operator used.

The interest of using a combination of visibility and intensity feature appears clearly when
computing the PR-AUC, as can be seen in Fig. 5.14. We provide more experimental results on
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the interest of jointly using intensity and visibility in App. C.

Our main hypothesis to explain the interest of using both intensity and visibility for the
segmentation of structured outliers lies in the joint characteristics of these features. More specif-
ically, both features behave in a “complementary manner” in terms of segmentation performance
when employing a simple thresholding of their value. This is due to the fact that (i) intensity
is low, whereas visibility is high in structured outlier regions and (ii) intensity is sensitive to
physical properties of the acquired surfaces whereas visibility is not. Fig. 5.13 illustrates this
behavior on the training set of our dataset and Fig. 5.7 provides a visualization of a few rooms
with intensity and visibility features displayed.
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Figure 5.14: AUC under the precision-recall curve, expressed in percent, of our network using
different sets of features as a function of the patch radius size, expressed in percent of the
maximal scene radius (5 m). The “Grid” local point operator is used. Note how the combination
of visibility and intensity yields the best results.

Finally, Fig 5.15, Fig 5.16 and Fig 5.17 illustrates the use of different input features on the
same test scans of our dataset as in the previous section. In Fig. 5.15 and Fig 5.16, adding
intensity marginally reduces the number of false positives, at the cost of more false negatives.
The incorporation of visibility provides fewer false negatives in areas far from the acquisition
center and on slanted surfaces (see Fig. 5.15). On Fig. 5.10, we further note that adding intensity
alone does not allow to correctly label as an inlier region the sphere-shaped device located in the
middle of the image, whereas the visibility-enhanced architectures label this equipment correctly.
We note that on Fig. 5.17, the addition of features does not improve the detection performance
of the large reflective area on the right hand-side of the image. Nevertheless, the small piping
located in the middle of the image present significantly less false positives and false negatives
when using our ReVISOR feature setup, rather than raw coordinates, intensity alone or visibility
alone.
Fig 5.17 is on the contrary a “difficult setup: the strong reflection on the right side of the
acquisition is associated with a high intensity value. Moreover, since this region is close to the
acquisition device and since the parts of the piping that were correctly acquired have a small
area, the visibility signal is less effective.
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Figure 5.15: Qualitative illustration of the interest of adding features on a scene from our test
set on a “standard” scene. In the left column, we display from top to bottom the ground truth,
the intensity signal and the computed visibility feature. In the right column, we show the true
negative (TN ), true positive (TP), false positive (FP) and false negative (FN ) when using the
different feature sets and the Grid local point operator. The positive class designates the outlier
points, and the negative class the inlier points. Therefore, the outlier segmentation correspond
to the {TP,FN } colors, while the inlier segmentation is associated to the {TN,FP} colors.
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Figure 5.16: Qualitative illustration of the interest of adding features on a scene from our test
set on a “standard” scene. In the left column, we display from top to bottom the ground truth,
the intensity signal and the computed visibility feature. In the right column, we show the true
negative (TN ), true positive (TP), false positive (FP) and false negative (FN ) when using the
different feature sets and the Grid local point operator. The positive class designates the outlier
points, and the negative class the inlier points. Therefore, the outlier segmentation correspond
to the {TP,FN } colors, while the inlier segmentation is associated to the {TN,FP} colors.
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Figure 5.17: Qualitative illustration of the interest of adding features on a scene from our test
set on a “difficult” scene. In the left column, we display from top to bottom the ground truth,
the intensity signal and the computed visibility feature. In the right column, we show the true
negative (TN ), true positive (TP), false positive (FP) and false negative (FN ) when using the
different feature sets and the Grid local point operator. The positive class designates the outlier
points, and the negative class the inlier points. Therefore, the outlier segmentation correspond
to the {TP,FN } colors, while the inlier segmentation is associated to the {TN,FP} colors.
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5.7 Exploring Large-scale Receptive Fields

In this section, we use the best performing design at small scales, namely the ReVISOR method
with “grid” local point operator, and apply it using larger receptive fields. By doing so, we aim at
showing whether the large-scale information provided by the visibility channel and the additional
physical properties conveyed by the intensity signal can be further improved with an access to
more geometric information. The main challenge of this configuration lies in the scarcity of our
training dataset. Since we only use 13 scans to train the network, the more we enlarge the
receptive field, the less it is likely that the network generalizes well.

To put this last assumption to the test, we conduct the same experiment as in Sec. 5.6.3, but
with much larger receptive field sizes, that are comparable with the radii that we use in Sec. 5.4.
Specifically, we use up to 80 % of the scene diameter, which amounts at using a receptive field
with size 4 m. At such scales, using the full resolution acquisition is intractable, as it would
require to feed hundreds of thousands of points in GPU memory. We therefore reduce the point
cloud resolutions by increasing the spatial sub-sampling factor up to 0.09 m for the largest radius
to keep around 15000 points in our receptive field at all radii. The outcome of this experiment
is shown in Fig. 5.18. Tab. 5.2 summarizes the best PR-AUC value obtained, as well as the
associated radius.

First, we note that all feature combinations but Visibility attain their maximum at a receptive
field size of 40 % of the scene radius. Visibility becomes maximal at 20 % of the scene radius.
In all cases, the PR-AUC value decays after attaining its maximum and reaches values that are
smaller than the ones observed at 7 % of the scene radius.

Second, we note that the visibility and intensity signals have very similar behaviors. They
perform significantly better than raw coordinates for all receptive field sizes, except at 40 % of
scene radius, where they remain better, but comparable. We also observe that ReVISOR roughly
maintains the same PR-AUC across large receptive fields and that it stays the best performing
design compared to the sole use of intensity or visibility. Fig 5.19 provides a qualitative illus-
tration of our ReVISOR pipeline on two test scenes, with increasing receptive field sizes. The
scene on the left column highlights that large reflective areas remain challenging, even with larger
receptive fields. We note however that the receptive field corresponding to 40 % of the scene
diameter has slightly less false negatives in this area. Moreover, the small piping on the left
hand-side is significantly better segmented at this scale, with fewer false positives and negatives.
The scene on the right column provides a better intuition on the improvement of performance
with larger receptive field radii: the inlier points acquired on the surface of the piping lying

Features Max. PR-AUC RF size (in % of scene rad.)
XYZ 85.36 40

Intensity 88.57 40
Visibility 87.29 20

ReVISOR (Both) 90.99 40

Table 5.2: Summary of the best PR-AUC value and the associated receptive field (RF ) size,
given different sets of features using our preferred local point operator “Grid”. Our ReVISOR
combination yields the best performance when using a receptive field of size 2 m.
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Figure 5.18: AUC under the precision-recall curve, expressed in percent, of our network using
different sets of features as a function of the patch radius size, expressed in percent of the maximal
scene radius (5 m). The “Grid” local point operator is used. The combination of visibility and
intensity yields the best results, as in Fig. 5.14.

in the middle of the scene is significantly better segmented as the receptive field size increases
since the number of false positives at its surface decreases. The largest receptive fields decay in
segmentation quality due to the fact that more outlier points are wrongly classified as inliers.

Finally, due to the size of the receptive fields and the limited amount of scenes available,
we strongly suspect that the networks with receptive fields > 40 % of the scene radius do not
benefit from sufficiently diverse training examples. Indeed, if we consider for instance a network
with receptive field 40 %, i.e. a sphere with radius 2 m, it already “sees” almost half of a given
scene, which implies that neighboring patches will roughly look the same. Therefore, the learning
process will only have access to about a hundred of truly different patches in total if we consider
all training scenes. This amount has to be compared to the 1200 different scenes of Scannet [37],
a popular semantic segmentation dataset. We thus advocate for using medium-sized receptive
fields in our application scenario, as described in Sec. 5.6. Adding more training data would allow
to leverage more efficiently networks with larger receptive fields by training over more diverse
scene configurations.
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Figure 5.19: Qualitative illustration of the effect of increasing our network’s receptive field size.
The red,dark blue, orange and light blue respectively encode false negatives (FN ), false positives
(FP), true positives (TP) and true negatives (TN ).
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5.8 Conclusion

In this chapter, we studied two setups for outlier detection: (i) “statistical” outliers generated
on synthetic shapes via random local 3D displacements and (ii) structured, non-local outliers
present in real-world acquisitions of industrial power-plants.

Our study on statistical outliers, that our research community has mostly focused on, high-
lighted that learning-based approaches with small receptive fields are key to produce better
results than non-learning techniques, that remain competitive in this setup. A careful choice
of receptive field size is required to obtain maximal performance and the quality of predictions
decays rapidly for large receptive field sizes.

For the second class of outliers, we presented a new dataset, specifically designed for segment-
ing reflection-induced outliers in large-scale 3D point clouds. The dataset contains industrial
scenes with highly reflective piping, which provides a challenging, real-world use case scenario
for structured outlier detection. The dataset proposes 21 diverse industrial rooms, corrupted
with structured noise. It is annotated by experts with many years of experience in this task, and
cross-validated by a rigorous internal process, that uses ground truth floor plans and 2D image
views for our testing set.

We propose the first effective baseline approach for this problem, based on a semantic seg-
mentation network with adapted features. It strongly outperforms existing methods for our
structured outlier detection problem. We investigate the role of the receptive field size of dif-
ferent architectures, and highlight the importance in our context of medium to large patches,
since locally many outlier patches resemble clean geometry. We demonstrate the utility of visi-
bility features, which help boost the performance, again by providing cues about the non-local
configuration of objects. The best performance is obtained when using the laser intensity and
the point visibility as input signal, regardless of the convolution operator employed. Hence, we
denote the proposed pipeline as ResUNets with Visibility and Intensity for Structured Outlier
Removal (ReVISOR).

The main limitation of our framework is its supervised nature. Labeled data is hard to obtain
for this class of problem and therefore, the size of our dataset is limited compared to other 3D
point cloud datasets. New mobile hand-held laser scanning devices are likely to introduce other
types of structured noise, which constitutes an opportunity to enrich our dataset and apply
our methodology to a more general task, where the acquisition center is not clearly identified
anymore.

Another perspective would be to better exploit long-range dependencies without relying on
large patches, via e.g. a learned visibility module. With an increased amount of data, other
architecture designs than Residual U-Nets could be considered to efficiently encode large-scale
information. Graph-based approaches with super-points [81] or Transformer networks [175] for
example could be trained on a larger dataset. We see these extensions of our approach as an
exciting direction for future work.



Chapter 6

Conclusion

We have presented in this thesis three contributions related to the discovery of structures in
3D data: two contributions on shape matching via functional approaches and a contribution
regarding structured outlier detection in 3D point clouds of industrial scenes. After a brief
summary of the content of our dissertation in Sec. 6.1, we propose a few directions for future
research in Sec. 6.2.

6.1 Summary

In Chapter 3, we presented a method to efficiently solve a partial shape correspondence prob-
lem between triangle meshes. Our method employs a function basis of “Mexican hat” diffusion
wavelets, defined on the full and partial shapes, provided with an initial sparse set of correspon-
dences.

In close relation to the theme of the previous chapter, we introduced in Chapter 4 a method for
discretizing the Dirichlet-Steklov eigen-problen to triangle meshes and presented experimental
evidence of the practical usefulness, as well as an in-depth study of the parameterization chosen
for the shape matching algorithm presented in [116]. The algorithm allows an exact preservation
of landmarks via an adapted functional basis and enables to compute shape correspondences
even in challenging non-isometric scenarios.

Finally, we analyze in Chapter 5 the problem of detecting outliers caused by the reflection
of the 3D point cloud acquisition laser beam on metallic pipings. Our analysis is conducted on
minimally-processed point clouds of industrial scenes, provided with the laser intensity informa-
tion only. After constructing a dataset with ground-truth annotations, we highlight two elements
that are important to efficiently solve this problem. First, introducing the visibility of 3D points
constitutes a strong feature to build an efficient segmentation model. Second, we demonstrate
that large receptive fields are best suited for this type of problems. Both aspects highlight the
importance of non-local information to detect reflection-induced outliers. This characteristic is
in strong contrast with the datasets traditionally used in the community, that require in their
vast majority only local knowledge and are aimed primarily at statistical outlier removal.

6.2 Future Work

We provide in this section an outline of future contributions that could extend the content
presented in this thesis. Following the structure of our dissertation, we dedicate a separate part
for functional shape matching and for deep learning leveraged to facilitate segmentation processes
in industrial environments.
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6.2.1 Functional Shape Matching

We investigated functional shape matching using exclusively surfaces. However, even though
point clouds can be meshed using surface reconstruction algorithms, real acquisitions produce
low-quality meshes, that lead to ill-defined discretized Laplace-Beltrami operators [144], and
partiality due to occlusions. Extending functional shape matching to this challenging scenario
would be of interest.

Moreover, a general limitation of the approaches that we presented, is their requirement for
reliable initial correspondences. In cases where this information is not available, e.g. when
matching a fragment of industrial environment to a data base of 3D object, the development of
correspondence-free methods would be beneficial [129].

6.2.2 Deep Learning for Industrial Environment Segmentation

Our work has mainly focused on the detection of structured noise arising in industrial LiDAR
acquisitions. The development of a robust methodology to solve this task in the special case of
medium-sized pipings, made of highly reflective metal. The major challenges of this setup are
the resemblance of reflections with real surfaces and the long-range information that is required
to resolve ambiguous cases. Moreover, the difficulty of gathering accurately labeled training data
in a supervised learning scenario constitutes an additional limitation.

The need for long-range information gathering to decide the “outlierness” of a given point
naturally leads to considering Transformer-based networks. Their development is starting to get
popularity in the 3D point cloud processing community at the time of this writing. We strongly
believe that applying this type of architecture would lead to improvements, especially for the
challenging cases of large pipings placed in small rooms.

Another potential source of improvement could be achieved by leveraging multi-modal archi-
tectures, e.g. joint point cloud and image segmentation [78, 135]. Adding external source of
information such as color would provide the network with more contextual information.

Finally, the challenge of generating accurately labelled data could be mitigated by applying
either a fully unsupervised approach or by conducting a weakly-supervised learning.

The first approach is conceptually extremely promising and was successfuly applied to point
cloud registration [168]. Recent work employ the same set of techniques to pretrain point cloud
networks for other downstream tasks such as point cloud classification or segmentation [56, 164].
Since the network learns its own representation given raw input data, the entirety of available
point cloud data could be used to refine its inlier/outlier embeddings. However, as stated above,
outlier points structures share some similarity with inlier points regions. Therefore, it is likely
that the outlier points resembling most to real geometry would have embeddings close to inlier
embeddings and non-local rules are necessary to disambiguate between the two.

Developing a weakly supervised approach, e.g. in the form of a “human-in-the-loop” ap-
proach [106], where manual annotation would be limited to selecting a few inlier/outlier points,
or few-shot learning [183], constitutes to our mind the most efficient way to alleviate the scarcity
of training data.



Appendix A

Wavelet-based Heat Kernel
Derivatives

A.1 Proof of Theorem 1

Both statements of the theorem follow directly from the spectral expansion of ψM
t (p, x) =∑

i λi exp(−tλi)Φi(p)Φi(x) and the following lemma, proved in [111] (Lemma 3.2, Remark 3.3).
Lemma 1 Given two strictly increasing sequences λi and µi of non-negative numbers that tend
to infinity, if a(t) =

∑
i ai exp(−tλi) and b(t) =

∑
i bi exp(−tµi) where ai, bi ̸= 0 then a(t) = b(t)

for all t if and only if λi = µi and ai = bi for all i.
Applying this lemma to the spectral expansion of ψ while recalling that only the first eigenvalue
on a connected manifold is zero, we immediately get the first statement of Theorem 1 (using the
same proof as of Theorem 3.1 in [111]). The second statement follows from the same argument as
Theorem 3.5 in [111]). Namely, by first applying this lemma to x = p, and y = q, which implies
preservation of eigenvalues and second to other points on the surface implying preservation of all
but first eigenfunction. Together this implies that T preserves ψ if and only if it preserves the
Laplace-Beltrami operator, which is equivalent to an isometry.

A.2 Data sets

The FAUST training data set [13] consists of 100 human shapes, with 10 different humans in 10
different poses. All shapes have a consistent manifold mesh structure, with 6890 vertices.
The TOSCA data set [20] is composed of 80 shapes of various categories: 11 cats, 9 dogs, 3
wolves, 8 horses, 6 centaurs, 4 gorillas, 12 female figures, and 2 different male figures, in 7 and 20
poses. The mean vertex count is about 50K. If not explicitly mentioned, the shapes of this
data set are remeshed to count around 5K vertices each. In the TOSCA Isometric data set,
we consider shape pairs within the same category (e.g., cats matched to cats), whereas in the
TOSCA non-Isometric data set, we consider matches between the gorilla shapes and the two
human categories (male and female).
The Humerus Bones data set is composed of a collection of 15 humerus bone models of wild
boars acquired using a 3D sensor. Each bone was scanned independently, with 24 consistent
landmarks provided by experts in the field [48] on each shape. The original resolution of the
shapes is around 25K vertices.
The SHREC’16 partial cuts correspondence benchmark [36], is the most adopted data set for non-
rigid shape matching. The shapes belong to 8 different classes (5 animals and 3 humans). Each
class contains pose deformations and partiality transformations, i.e., regular cuts and irregular
holes. We limit our evaluation to the cuts set (120 pairs), which are resampled independently
to ∼10K vertices and share a similar density.
The SHREC’19 connectivity track benchmark [102] is composed of 44 shapes of humans. The
complete benchmark consists in 430 shape pairs composed by meshes that represent deformable
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Figure A.1: Comparison of the L∞ error to the ground-truth diffusion wavelets for various
Mexican hat wavelets. See Table 3.1.

human body shapes. Shapes belonging to these categories undergo changes in pose and identity.
The meshes exhibit variations of two different types: density (from 5K to 50K vertices) and
distribution (uniform, non-uniform). For each shape, the full SMPL model[89] (6890 vertices)
serves as our ground-truth.
The FARM partial data set is a collection of partial shapes that we extract from a subset of 5
meshes of the SHREC’19 connectivity track [102]. These shapes belong to different data set:
TOSCA [20] (around 50K vertices), SPRING [174] (12.5K vertices) and K3DHUB [171] (around
10K vertices). We randomly cut five patches from each of these shapes (Fig. 3.12) and each partial
mesh is matched with the full SMPL model[89] (6890 vertices). The ground-truth correspondence
is extended to these partial shapes from the FARM registration [95], which provides a ground
truth dense correspondence between SMPL and each of the full shapes involved.

A.3 Comparison to other wavelets & sampling

Scalability As a complement to Fig. 3.3, Table A.1 displays the computation time required
by [57] and our approach for various order of magnitude. In all cases, the proposed method
outperforms [57] by at least a factor 2.

# vertices [57] (s.) Ours (s.) Improv.

103 2.03 0.38 ×5.34
104 9.00 3.05 ×2.95
105 73.39 25.00 ×2.94
106 524.63 247.02 ×2.12

Table A.1: Computation time (in sec.) of [57] compared to our approach on 5 shapes (Fig. 3.3)
from the SHREC’19 data set.
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Figure A.2: Mean geodesic error (self-matching) as a function of the number of samples (#
samples) on all δ-functions for 26 shapes of the SHREC’19 connectivity track data set, using 25
scales.

L∞ error In addition to the L2 error displayed in Fig.3.4, we also measured the L∞ of the
error, using the same experimental setup as in Sect.3.3.2. The result, shown in Fig.A.1, is similar
to what we observe for the L2 error.

Sampling strategy To furthermore illustrate the independence of our method to sampling, we
compute the mean geodesic error (self-matching) as a function of the number of samples on all δ-
functions for 26 shapes of the SHREC’19 connectivity track. The outcome of this experiment
(Fig.A.2) is similar to what we observed in Sect.3.4.





Appendix B

Dirichlet-Steklov
Landmark-based Matching

B.1 Proof of the Weak Form of the Dirichlet-Steklov
Eigen-problem

To simplify our derivation, we considerM⊂ IR3, although the result is more general. Deriving
the weak form of the Dirichlet-Steklov eigen-problem in this special case provides intuition on
what happens on an actual 2D surface manifold.

Let f and u be “sufficiently smooth” functions (scalar fields) on M.

B.1.1 Proof of the integral form of the Dirichlet-Steklov Eigen-
problem

We first want to prove that:∫
M
f (∆u) dM =

∫
M
∇f · ∇u dM

−
∫
∂M

f (∂nu) d (∂M) .

(B.1)

Our entry point for establishing this equality is to come up with the expression∫
∂M f (∂nu) d (∂M) using Stokes’ theorem:∫

M
∇×B ·N d(M) =

∫
∂M

B · t d (∂M) , (B.2)

where B is a vector field defined on M, N is the local surface normal and t is the local tangent
of the boundary.

Let F := f (∇u). If we apply Eq. B.2 to F, we would obtain on the right hand-side∫
∂M F t d (∂M), i.e. an integration over F t = f∂tu, the tangential component of F. How-

ever, we would like to integrate over Fn = f∂nu, i.e. the normal component of F, to obtain the
right-most term in Eq.B.1.

Fortunately,
∫
∂M F t d (∂M) is only a 90 degree rotation counter-clockwise around the surface

normal away from the final result.

Motivated by this observation, we define F⊥ as the 90 degree rotation counter-clockwise around
the surface normal N of F at each point of M. Note that this transformation is applied locally,
since we use the surface normal.
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Figure B.1: Representation of the surfaceM⊂ IR3, its boundary ∂M and the two frame systems
used in our proof.

In the local frame (n, t,N), F =

Fn

F t

FN

. By definition of F⊥, F⊥ =

−F t

Fn

FN

.

Applying the right hand-side of Eq. B.2 to F⊥ leads to the desired expression:∫
∂M

F⊥ · t d (∂M) =

∫
∂M

F t
⊥ d (∂M)∫

∂M
F⊥ · t d (∂M) =

∫
∂M

Fn d (∂M)∫
∂M

F⊥ · t d (∂M) =

∫
∂M

f∂nu d (∂M)

To conclude our proof, we only need to assess that:∫
M
∇× F⊥ ·N d(M) =

∫
M
∇f · ∇u dM−

∫
M
f (∆u) dM (B.3)

Let p ∈M. In the local frame at p (x,y,N), F⊥ =

F x
⊥
F y
⊥

FN
⊥

.

We can express the curl of F⊥ as:

∇× F⊥ =
(
∂yF

N
⊥ − ∂NF

y
⊥
)

x +(
∂NF

x
⊥ − ∂xFN

⊥
)

y +

(∂xF
y
⊥ − ∂yF

x
⊥) N

∇× F⊥ =
(
∂yF

N − ∂NF x
)

x +(
−∂NF y − ∂xFN

)
y +

(∂xF
x + ∂yF

y) N

(B.4)
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When projecting Eq. B.4 along N and given that ∂xF
x = ∂xf∂xu+f∂2xu and ∂yF

y = ∂yf∂yu+
f∂2yu, we have:

∇× F⊥ ·N = ∂xf∂xu+ f∂2xu+ ∂yf∂yu+ f∂2yu. (B.5)

By using the fact that F is defined on the surface, ∆u = −∂2xu−∂2yu (the minus sign is due to the
fact that we take positive eigenvalues by convention). More over, ∇f ·∇u = (∂xf∂xu)+(∂yf∂yu).

By reinjecting these expressions into Eq. B.5, the following expression holds:

∇× F⊥ ·N = ∇f · ∇u− f∆u, (B.6)

which concludes the proof since we obtain Eq. B.3 by integrating Eq. B.6 over M.

B.1.2 Derivation of the weak form

We can now derive the weak form of the Dirichlet-Steklov eigenproblem (Eq. (4.3)), in which
it becomes very similar to the weak form of the more familiar Laplacian eigenproblem. For
sufficiently smooth functions f and u, we have proven above that:∫

M
f (∆u) dM =

∫
M
∇f · ∇u dM

−
∫
∂M

f (∂nu) d (∂M) .

(B.7)

Applying this to a ui satisfying the Dirichlet-Steklov eigenproblem (Eq. (4.2)) and a smooth test
function f vanishing on D yields

∫
M
∇f · ∇ui dM =

����������:0∫
M
f (∆ui) dM

+

∫
∂M

f (∂nui) d(∂M)

=
�����������:0∫

D
f (∂nui) d(∂M)

+

∫
S

f (∂nui) d(∂M) ,

(B.8)

where the first cancellation arises from the harmonicity of ui and the second one from f vanishing
on D. Finally, using the third line of Eq. (4.2) results in the weak form of the Dirichlet-Steklov
problem: ∫

M
∇f · ∇ui dM = σi

∫
S

fui d(∂M) . (B.9)

B.2 Evaluation Setup Details

B.2.1 Landmark Position

The benchmark datasets that we use contain either humanoid shapes (humans and gorillas) or
four-legged animals. Depending on the type of creature, we place our landmarks at either 7 or
8 semantically compatible locations:



96 Dirichlet-Steklov Landmark-based Matching

1. Top of the head
2. Bottom of the right (hind) leg
3. Bottom of the left (hind) leg
4. Bottom of the right front leg / extremity of the third finger on the right hand
5. Bottom of the left front leg / extremity of the third finger on the left hand
6. Middle of the belly/umbilicus
7. Middle of the back
8. Tip of the tail (Four-legged animals only)

The last landmark is only used on the TOSCA and SHREC’20 data sets. Notice that our land-
mark placement is reminiscent of farthest point sampling. The landmark placement is common
to all considered methods. The other parameters depend on the method used.

B.2.2 Method Configuration

Hyperbolic Orbifold Tutte Embeddings (hyperOrb) and Weighted Averages (WA).
These methods do not require any additional parameters.
Functional Maps With ZoomOut Refinement (FMap ZO). A 20× 20 functional map is
computed for each source-target pair in setup 1 and 2, following the setup of [104]. In particular,
we use wave kernel signature and wave kernel map functions as descriptors. The descriptor
functions are computed at the same ground truth landmark positions used for the other methods.
At each landmark location, 12 wave kernel map functions are computed using a basis of 120 LB-
eigenfunctions.
The energy employed to compute the functional map leverages the descriptor preservation, de-
scriptor commutativity and LB-commutativity terms. Contrary to [104], we did not employ the
orientation term in the energy. Indeed, with a high number of landmarks as in our setup, the
symmetry ambiguities are easily solved by the functional maps pipeline.
Ours. We use the provided landmark locations together with the settings specified previously.
We summarize them here for convenience.

• Energy weights: aC = aP = aI = 1.
• Number of Dirichlet-Steklov eigenfunctions per landmark: N

DS
= 10.

• Number of Dirichlet Laplacian eigenfunctions: N
LB

= 120.
• Landmark circle size factor: rf = 0.5.



Appendix C

Structured Outlier Detection

In this appendix, we provide additional illustrations, experiments and remarks regarding our
work on structured outlier detection.

C.1 Illustration of our full dataset

To highlight the diversity of the scenes that we use to train and evaluate our architecture,
we illustrate our complete dataset with our training scenes presented in Fig. C.2 and Fig. C.1
and our test scenes in Fig. C.3. Notice the variety of shapes and configurations present in both
scenes and the differences between the training set and the evaluation set.

Figure C.1: Illustration of our training scenes, with color-coded ground truth.
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Figure C.2: Illustration of our training scenes, with color-coded ground truth.



C.1 Illustration of our full dataset 99

Figure C.3: Illustration of our evaluation scenes, with color-coded ground truth.
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C.2 Comparison with Mirror Segmentation Architectures

Tab. C.1 provides the quantitative comparison between PDNet [98] and our approach. It
highlights that state-of-the-art RGBD-based mirror segmentation approaches are not successful
on our dataset. We hypothesize that the networks leveraged by these approaches require more
training examples than what we provide. Moreover, they target planar mirrors, a setting that is
less general than ours: the reflective surfaces are irregular piping in our dataset.

Conv./Meth. Features Acc. mIoU

Mirror Segmentation

PDNet [98] intensity 79.34 0.16

Semantic segmentation ResUNet

PPool intensity 85.67 51.74

Adap. intensity 85.69 50.51

Grid intensity 88.39 57.47

MLP intensity 89.10 59.82

Table C.1: Evaluation of various convolution operators (Conv.) and a recent mirror segmentation
method (Meth.), namely PDNet [98]. Since we use the laser intensity to obtain grayscale images
as input for PDNet, we compare to the semantic segmentation approaches with the intensity as
input feature. PPool stands for PosPool [87], Adap. for Adaptive weights [162], Grid for pseudo-
grid kernel-point convolution [151] and MLP for Multi-Layered Perceptron. All quantities are
expressed in percents.

PDNet is trained on our dataset, with each scan converted via a spherical projection to an
RGB image and a depth map of size 3000×1500 pixels, for 50 epochs. Each input RGB image is a
patch of size 416×416 from the full-resolution image, with the laser intensity signal in grayscale.
Intensity represents indeed the feature closest to color in our setup. To ensure continuous depth
and RGB maps, the points are rendered as spherical splats of radius 0.005×

√
3, 0.005 m being

the spatial sampling rate of the point cloud. The output prediction is projected back to the
original point cloud to compare to the other approaches.

To conclude, we deduce from this experiment that image-based mirror detection architectures
cannot be leveraged on our data, probably mostly because of the unavailability of a reliable
RGB input channel (we only have access to an intensity signal) and the little amount of data
(the mirror segmentation dataset proposed in [98] consists in hundreds of scenes whereas we only
have 13 scenes).
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Figure C.4: Benchmark of different input feature combination in terms of precision and recall, for
all tested local point operators. Each circle marker correspond to a test scene and each diamond
marker to the average over all test scenes.

In order to analyze the different local point operators that behave best at the optimal receptive
field size (40% of the scene diameter), we feed the intensity and/or the visibility signal in addition
to the raw point coordinate to the network. Fig. C.4 presents the resulting evaluation in terms
of precision/recall and Fig. C.5 in terms of mean accuracy and mean intersection over union.

The main insight of our study is the similar performance across the different local point
operators: all roughly perform identically, with a slight advantage for the (pseudo-)Grid local
point. Employing intensity or visibility alone performs better than using raw 3D coordinates.
Leveraging both features simultaneously leads to the best results for all operators but ME and
POTR. For this two last local point operator, using intensity or visibility alone or both leads to
similar results.
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Figure C.5: Benchmark of different input feature combination in terms of mean accuracy (mAcc.)
and mean intersection over union (mIoU ), for all tested local point operators.

C.4 Architecture variations

During this work, we also developped a modification of the ResUNet design presented in
Chap. 5. It relies on the following concepts:

• deeply supervised networks [82];
• a “Squeeze and Excite” attention module [59];
• an CUDA module to approximate visibility;
• conical neighborhoods, which is similar to Frustum PointNet [126] in spirit.

C.4.1 Description of the Design

Deeply supervised networks. At each stage of the U-Net, in the skip connection, a binary
“outlierness” mask is computed. This mask is upsampled to the full resolution and a L1 loss
with the ground truth inlier-outlier prediction is applied to each mask.

“Squeeze and Excite” attention module. This module amounts to a channel-wise self-
attention module, i.e. the the different feature channels are weighted with respect to their
relative values.

Approximate visibility module. The visibility of a point is approximated by simply pro-
jecting the points on a 2D grid that is aligned with a virtual “viewing plane”, similar in spirit to a
standard image rasterizer. A depth buffer is constituted in all the resulting 2D bins to determine
the depth of the points that are the closest to the acquisition device. In each bin, the points
that have a depth larger than the smallest depth are tagged as “invisible”. We concatenate this
visibility channel and the distance between the points and their associated smallest depth point
to the features that are given as input to the module.

Conical neighborhoods. Given a picked point from the point cloud, we sample a conical
neighborhood constructed as follows. The acquisition center is the tip of the cone, with axis
the direction of the picked point and that is truncated at a depth corresponding to the depth of
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Figure C.6: Precision-recall plot for different alternative designs. Cone stands for “conical
neighborhood”, V for “visibility module”, DS for “deeply supervised” and SE for “squeeze and
excitation attention”.

the picked point. The neighborhood is concatenated with a spherical neighborhood around the
picked point, that defines the “radius” of the conical neighborhood. This particular neighborhood
is required by the approximate visibility module: without sampling the points lying “in front”
of a given spherical neighborhood, the approximate visibility will be erroneous.

C.4.2 Experimental result

We train and evaluate the obtained networks on our structured outlier dataset, following the
same procedure as for the ResUNet architectures with XYZ coordinates as sole input features
studied in Chap. 5, for variying “radii” of the conical neighborhood. The output of this computa-
tion is shown in Fig. C.6 and Fig. C.7. All proposed architectures have worse performance than
the ResUNet approach with spherical neighborhood, using only XYZ as input features. Among
the proposed designs, the architecture with conical neighborhoods and squeeze and excitation
attention (Cone+SE ) performs best.

The best design among the proposed modifications is . However, it does not outperform our
preferred ResUNet design. One of the reason that we hypothesize is a sub-optimal parameter-
ization of the embedded visibility module. Indeed, the module relies on a 2D raster grid, and
properly selecting the size of this grid is important to provide a reliable visibility channel. If it
is too coarse, the approximate visibility will lack of precision in the areas detected as “invisible”.
Conversely, if the grid is of a too high resolution, each point will lie in its own bin, and all points
will thus be declared as “visible”. A parameter study, similar to the one that we conducted in
Chap. 5 could help to select the optimal parameterization of the module.
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Figure C.7: Benchmark of different alternative designs in terms of mean accuracy (mAcc.), mean
intersection over union (mIoU ) and precision-recall area under the curve (PR-AUC). Cone stands
for “conical neighborhood”, V for “visibility module”, DS for “deeply supervised” and SE for
“squeeze and excitation attention”.

C.5 Implementation Details and Experimental Setup

In this section, we provide more details on the implementation and the experimental setup of
the different networks that we use.

For the Adap., Grid, MLP, Pool and POTR local point operators, a binary mask indicates to
the network which points are actual points and which are padding points, added to the input to
constitute a batch with a fixed number of input points (see below). The input feature dimension
is fixed to 3. By default, the input features are set to a tensor filled with ones. When an actual
feature channel is used, a column of the input feature tensor is filled with the feature values.
Since we employ at most two features simultaneously, the dimensionality of the architecture does
not change. In the case where no input features are used, we use the local 3D coordinates as
features.

All our ResUNet models are trained on 70 epochs, with 2000 input patches per epoch. The
starting learning rate is set at 0.01, with a decay of 0.92 every 10 epoch. A warm-up of 10
epochs is used with no features to initiate the training procedure. We use the stochastic gradient
descent optimizer, with 0.01 weight decay to optimize the weights of the network.

For the evaluation, we consider a subsampling of
Rpatch

4 , where Rpatch designates the radius
of the patch. During the training, we monitor the mean validation loss at each epoch and select
the weights at the epoch where the validation loss is the lowest. The validation set consists in
320 randomly selected patches, that come from 4 different scenes.
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[110] D. Nogneng, S. Melzi, E. Rodolà, U. Castellani, M. M. Bronstein, and M. Ovsjanikov.
Improved functional mappings via product preservation. Computer Graphics Forum, 37
(2):179–190, 2018. (Cited on page 15).
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[137] E. Rodolà, L. Cosmo, M. M. Bronstein, A. Torsello, and D. Cremers. Partial functional
correspondence. In Computer Graphics Forum, volume 36, pages 222–236. Wiley Online
Library, 2017. (Cited on pages 2, 8, and 30).

[138] G. Rong, Y. Cao, and X. Guo. Spectral mesh deformation. The Visual Computer, 24(7):
787–796, 2008. (Cited on page 15).

[139] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomed-
ical image segmentation. In International Conference on Medical image computing and
computer-assisted intervention, pages 234–241. Springer, 2015. (Cited on pages 64 and 67).

[140] P. J. Rousseeuw and M. Hubert. Robust statistics for outlier detection. Wiley inter-
disciplinary reviews: Data mining and knowledge discovery, 1(1):73–79, 2011. (Cited on
page 64).

[141] R. M. Rustamov. Laplace-Beltrami eigenfunctions for deformation invariant shape repre-
sentation. In Proc. of Symposium on Geometry Processing, pages 225–233, 2007. (Cited
on page 15).

[142] R. M. Rustamov, M. Ovsjanikov, O. Azencot, M. Ben-Chen, F. Chazal, and L. Guibas.
Map-based exploration of intrinsic shape differences and variability. ACM Transactions on
Graphics (TOG), 32(4):1–12, 2013. (Cited on page 39).

[143] P. Schmidt, M. Campen, J. Born, and L. Kobbelt. Inter-surface maps via constant-
curvature metrics. ACM Transactions on Graphics (TOG), 39(4):119–1, 2020. (Cited
on page 52).



BIBLIOGRAPHY 115

[144] N. Sharp and K. Crane. A laplacian for nonmanifold triangle meshes. In Computer Graphics
Forum, volume 39, pages 69–80. Wiley Online Library, 2020. (Cited on page 88).

[145] N. Sharp, S. Attaiki, K. Crane, and M. Ovsjanikov. Diffusion is all you need for learning
on surfaces. arXiv preprint arXiv:2012.00888, 2020. (Cited on pages 44 and 45).

[146] A. Shtern and R. Kimmel. Matching the LBO eigenspace of non-rigid shapes via high order
statistics. Axioms, 3(3):300–319, 2014. (Cited on page 15).

[147] S. Song, S. P. Lichtenberg, and J. Xiao. Sun rgb-d: A rgb-d scene understanding benchmark
suite. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 567–576, 2015. (Cited on page 69).

[148] J. Sun, M. Ovsjanikov, and L. Guibas. A concise and provably informative multi-scale
signature based on heat diffusion. Computer Graphics Forum, 28(5):1383–1392, 2009.
(Cited on pages 2, 8, 14, and 15).

[149] J. Tan, W. Lin, A. X. Chang, and M. Savva. Mirror3d: Depth refinement for mirror
surfaces. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 15990–15999, 2021. (Cited on page 64).

[150] G. Taubin. A signal processing approach to fair surface design. In ACM SIGGRAPH,
pages 351–358, 1995. (Cited on page 15).

[151] H. Thomas, C. R. Qi, J.-E. Deschaud, B. Marcotegui, F. Goulette, and L. J. Guibas.
Kpconv: Flexible and deformable convolution for point clouds. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 6411–6420, 2019. (Cited
on pages XX, 3, 9, 64, 65, and 100).

[152] F. Tombari, S. Salti, and L. Di Stefano. Unique signatures of histograms for local surface
description. In Proc. of the European Conference on Computer Vision, pages 356–369.
Springer, 2010. (Cited on page 30).

[153] F. Tombari, S. Salti, and L. D. Stefano. Unique signatures of histograms for local surface
description. In European conference on computer vision, pages 356–369. Springer, 2010.
(Cited on pages 2 and 8).
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Résumé: Le besoin croissant d’établir des
jumeaux numériques de centrales indus-
trielles a conduit au développement de cam-
pagnes d’acquisition de données à grande
échelle en leur sein, principalement sous
la forme d’images et de nuages de points
acquis par LiDAR. Cette augmentation en
quantité de données disponibles conduit à la
nécessité de pouvoir traı̂ter cette information
efficacement avec une supervision humaine
minimale. Alors que l’analyse d’images 2D
peut désormais s’effectuer facilement par
l’emploi de réseaux de neurones convolutifs
(CNNs), la traduction de ces outils au do-
maine 3D demeure exigeante. Dans cette
thèse, nous explorons l’analyse de données
3D à travers deux types de problèmes :

la correspondance de formes en utilisant
des outils géométriques standards et la
détection de points aberrants provoqués par
des réflexions dans des nuages de points
3D par l’apprentissage supervisé. Pour le
premier type de problème, nous proposons
une base de fonctions locales d’ondelettes
de diffusion en “chapeau mexicain” pour
résoudre efficacement un problème de cor-
respondances de formes partielles. Pour
le second type de problème, nous con-
struisons un jeu de données, spécialement
conçu pour la détection de points aberrants
provoqués par des réflexions, et conduisons
une étude extensive d’architectures de seg-
mentation sémantique pour le résoudre.

Title: Structure detection in complex 3D geometry: from non-rigid matching to outlier
removal in 3D point clouds
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Abstract: The growing need for build-
ing digital twins of industrial powerplants,
lead to the development of large-scale vi-
sual data acquisition in these infrastruc-
tures, mainly in the form of images and
LiDAR-acquired point clouds. With this in-
creased amount of available data, comes
the need to process it efficiently with mini-
mum human supervision. While 2D image
analysis can now be easily conducted via
deep convolutional neural networks (CNNs),
the direct translation of these tools to the 3D
domain remains challenging. In this thesis,

we explore the analysis of 3D data through
two types of problem: shape matching using
traditional geometrical tools and reflection-
induced outlier detection in 3D point clouds
with supervised learning. For the first type
of problems, we propose a local functional
basis of “Mexican hat” diffusion wavelets
to efficiently solve partial 3D shape match-
ing. For the second type of problem, we
construct a dataset, tailored for reflection-
induced outlier detection, and conduct an
extensive study of semantic segmentation
architectures to solve it.
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