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Résumé

Cette thèse est composée de deux parties indépendantes dans lesquelles nous étudions d'une part la stabilisation d'un système hyperbolique de type onde-onde avec des conditions aux limites acoustiques. D'autre part, nous nous intéressons à l'étude de spectre d'opérateur Schrödinger.

Dans un premier temps, nous étudions la stabilisation d'un système hyperbolique de type onde-onde avec des conditions aux limites acoustiques généralisées, les équations étant couplées à travers une connexion frontière. Plus précisément, étant donné un domaine ouvert borné Ω dans R d , de frontière Γ = ∂Ω de classe C 2 . Introduisons les sous ensembles ouverts Ω 1 , Ω 2 de Ω, tels que Ω 2 = Ω\Ω 1 , avec interface I = ∂Ω 1 ∩ ∂Ω 2 , et frontière Γ 1 , Γ 2 respectivement, satisfaisant Γ j = ∂Ω j \I (j = 1, 2) telles que Γ 1 ∩ Γ 2 = ∅. Nous fixons, pour m ∈ N * , un vecteur

C ∈ C 0,1 (Γ 1 ; C m ), une matrice B ∈ C 0,1 (Γ 1 ; M m (C)), et pour tout x ∈ Γ 1 , le produit scalaire (•, •) x in C m tel que ℜ(B(x)V, V ) x ≤ 0, ∀ V ∈ C m .
Pour tout x ∈ Γ 1 , soit M (x) ∈ M m (C) la matrice hermitienne définie positive associée au produit scalaire (•, •) x , i.e.

(V 1 , V 2 ) x = V 2 T M (x)V 1 , ∀ V 1 , V 2 ∈ C m .
Le système qui décrit le modèle est le suivant :

                                     u tt (x, t) -a∆u(x, t) = 0, dans Ω 1 × (0, ∞),
y tt (x, t) -b∆y(x, t) = 0, dans Ω 2 × (0, ∞), u(x, t) -y(x, t) = 0, sur I × (0, ∞), a∂ ν 1 u(x, t) + b∂ ν 2 y(x, t) = 0, sur I × (0, ∞), a∂ ν 1 u(x, t) -(η(x, t), C) = 0, sur Γ 1 × (0, ∞), η t (x, t) + Cu t (x, t) -Bη(x, t) = 0, sur Γ 1 × (0, ∞), y(x, t) = 0, sur Γ 2 × (0, ∞), (0.0.1) v où u et y sont deux fonctions complexes, a et b sont deux constantes positives, ν i (x), i = 1, 2 est le vecteur normal unitaire extérieure à ∂Ω i , et ∂ ν i est la dérivée normale correspondante, η désigne le contrle acoustique. Let system (1.0.1) est considéré avec le conditions initiales suivantes :

                      
u(x, 0) = u 0 (x), u t (x, 0) = u 1 (x), x ∈ Ω 1 , y(x, 0) = y 0 (x), y t (x, 0) = y 1 (x), x ∈ Ω 2 , η(x, 0) = η 0 (x), x ∈ Γ 1 .

(0.0.2) Soit (u, y, η) une solution régulière du système (1.0.1), on définit son énergie associée par :

E(t) = 1 2
Par un calcul direct on obtient

d dt E(t) = Γ 1 ℜ(B(x)η, η)dΓ ≤ 0.
Alors, le système (1.0.1) est dissipatif au sens où l'énergie E(t) est décroissante rapport à la variable t.

Récemment, Abbas et Nicaise [START_REF] Abbas | The multidimensional wave equation with generalized acoustic boundary conditions ii: Polynomial stability[END_REF], ont établi sous certaines hypothèses un taux de décroissance polynomiale de l'énergie d'une équation d'onde définie sur un domain ouvert borné Ω de R d (d ≥ 2) avec une condition aux limites acoustique généralisée appliquée sur une partie de la frontière. En outre, ils ont présenté quelques exemples appropriés et montré que leurs hypothèses ont été correctement formulées. Notons que leur taux de décroissance obtenu n'est pas optimal, voir par exemple [START_REF] Toufayli | Stabilisation polynomiale et contrôlabilité exacte des équations des ondes par des contrôles indirects et dynamiques[END_REF][START_REF] Wehbe | Rational energy decay rate for a wave equation with dynamical control[END_REF].

A notre connaissance, il n'a pas des travaux concernant une éventuelle amélioration du taux de décroissance obtenu par Abbas et Nicaise [START_REF] Abbas | The multidimensional wave equation with generalized acoustic boundary conditions ii: Polynomial stability[END_REF], ni concernant la stabilisation d'un système hyperbolique obtenu en couplant deux ondes via une connexion frontière avec une seule vi condition aux limites acoustique appliquée. Notre objectif est :

1. Étudier la stabilité du système d'équations d'ondes couplées (1.0.1)-(1.0.2) avec une seule conditions aux limites acoustique généralisée.

2. Etablir un taux de décroissance polynomiale de l'énergie susceptible d'tre optimale.

3. Confirmer l'optimalité du taux de décroissance polynomiale de l'énergie obtenu dans certain cas.

Dans cette partie, de la thèse, nous apportons des réponses aux trois questions. En effet, après avoir prouvé le caractère bien posé du système (1.0.1)-(1.0.2), en utilisant une analyse spectrale, nous avons trouvé des conditions (nécessaires) sur B et C garantissant la stabilité forte de de notre système (l'énergie E(t) converge vers 0 quand t tend vers l'infini). De plus, nous avons prouvé que la résolvante de l'opérateur associé avec le système (1.0.1)-(1.0.2) n'est pas uniformément bornée sur l'axe imaginaire. Alors, en utilisant une approche fréquentielle (voir [START_REF] Huang | Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces[END_REF][START_REF] Prüss | On the spectrum of C 0 -semigroups[END_REF], nous avons conclu que notre système n'est pas uniformément (exponentiellement) stable (l'énergie E(t) ne converge pas exponentiellement vers 0). Nous souhaitons donc établir un taux de décroissance polynomial de l'énergie.Plus précisément, alors que b ≥ a, sous des conditions sur B et C et des conditions géométriques sur le domain Ω, nous avons montré que l'énergie E(t) décroit polynomialement vers 0 quad t tend vers l'infini. Enfin, nous avons montré que le taux de décroissance polynomial obtenu est optimal dans cas particulier.

Dans la seconde partie de cette thèse nous étudions le spectre d'opérateurs du type suivant

H(ϵ) = d j=1 D 2 x j + (D y j + µ j x j ) 2 + V (ϵx, ϵy), (x, y) ∈ Ω d , D ν = 1 i ∂ ν , (⋆)
où V est un potentiel de classe C ∞ borné ainsi que toutes ces dérivées et µ, ϵ sont des constantes positives.

Ici

Ω d = {(x 1 , • • • , x d , y 1 , • • • , y d ) ∈ R 2d ; -a j < x j < a j } =: Λ d × R d , a j > 0.
vii L'hamiltonien (⋆) modélise un système d'électrons en interaction confinés le long de la direction x et libres de se déplacer le long de la direction y en présence de potentiels magnétiques et électriques extérieurs. Considérons l'opérateur non perturbé :

H = d j=1 D 2
x j + (D y j + µ j x j ) 2 .

La transformation de Fourier par rapport à y réduit l'étude spectrale de l'opérateur H à l'étude

des valeurs propres {e l (k)}, k = (k 1 , k 2 , • • • , k d ) de l'opérateur H 0 (k) = d j=1 D 2 x j + (k j + µ j x j ) 2 ,
sur Λ d avec conditions aux limites de Dirichlet.

Lorsque l'électron se déplace librement dans les deux sens (i.e., a j = ∞, Ω d = R 2d ), le spectre de H est purement ponctuel, et est consitué par les niveaux de Landau Γ N :

σ(H) = ∪ N =(n 1 ,••• ,n d )∈N d {Γ N := (2n 1 + 1) + • • • + (2n d + 1)}.
Dans ce cas, le spectre de H(ϵ) a été étudié par M. Dimassi et G. Raikov (voir [6], [START_REF] Dimassi | Spectral asymptotics for quantum hamiltonians in strong magnetic fields[END_REF] et [START_REF] Raikov | Eigenvalue asymptotics for the schrodinger operator in strong constant magnetic fields[END_REF]).

Lorsque a j < ∞, le spectre de l'opérateur H est purement absolument continu, et on a Pour étudier l'effet de V sur le spectre continu, [e 0 (0), +∞[, nous étudions la fonction de décalage spectrale, ξ(•, ϵ), associée à (H(ϵ), H), i.e., la distribution ξ définie par

tr f (H(ϵ)) -f (H) = -⟨ξ ′ (•, ϵ), f (•)⟩, ∀f ∈ C ∞ 0 (R).
On fixe λ > e 0 (0) avec λ ̸ ∈ {e N (0), N = (n 1 , • • • , n d )} . On suppose que l'énergie λ est non-captive (voir l'hypothèse (2.0.21)). Dans le théorème 2.0.11, on donne un développement asymptotique complet en puissances de ϵ de t → ξ ′ (t, ϵ) au voisinage de λ lorsque ϵ ↘ 0.

Afin de démontrer les résultats de cette partie, nous allons utiliser la méthode de l'hamiltonien effectif. Plus précisément, nous montrons que l'étude spectrale de l'opérateur 
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Chapter

Introduction

Many real life applications of mathematical physics and engineering involves equations with acoustic boundary conditions . The notion acoustic damping has been introduced by Morse [START_REF] Morse | Physics, Vibration and sound[END_REF] on the boundary of wave equation, and since then it attracted the attention of many authors (see for instance [START_REF] Beale | Acoustic boundary conditions[END_REF], [START_REF] Rivera | Polynomial decay for the energy with an acoustic boundary condition[END_REF], [START_REF] Graber | Uniform boundary stabilization of a wave equation with nonlinear acoustic boundary conditions and nonlinear boundary damping[END_REF]). On the other hand, the wide range of attention taken nowadays in transmission problems, whether in modeling, control of engineering, physical interactive processes, or others, has motivated the authors to proceed with extensive studies (see for instance [START_REF] Liu | The exponential stability of the problem of transmission of the wave equation[END_REF], [START_REF] Liu | Stabilization and controllability for the transmission wave equation[END_REF], [START_REF] Lapa | A nonlinear transmission problem with time dependent coefficients[END_REF], [START_REF] Nonato | A transmission problem for waves under time-varying delay and nonlinear weight[END_REF]).

In this Chapter, our aim is to study the stabilization of a hyperbolic system of wave-wave that Ω 2 = Ω\Ω 1 , with the interface I = ∂Ω 1 ∩ ∂Ω 2 , and boundaries Γ 1 , Γ 2 respectively, satisfying Γ j = ∂Ω j \I (j = 1, 2) such that Γ 1 ∩ Γ 2 = ∅, as shown in the figure below (see Figure 1).

For m ∈ N * , we further fix a vector valued function C ∈ C 0,1 (Γ 1 ; C m ), a matrix valued function B ∈ C 0,1 (Γ 1 ; M m (C)), and for every x ∈ Γ 1 , an inner product (•, •) x in C m such that

ℜ(B(x)V, V ) x ≤ 0, ∀ V ∈ C m .
For every x ∈ Γ 1 , let M (x) ∈ M m (C) be the Hermitian positive-definite matrix associated with this inner product (•, •) x , i.e.

(V 1 , V 2 ) x = V 2 T M (x)V 1 , ∀ V 1 , V 2 ∈ C m .
From now on we further assume that M is Lipschitz continuous on Γ 1 . For the sake of brevity, if there is no confusion we use the notation (•, •) to denote (•, •) x . The associated norm is denoted by ∥•∥. The system that describes the model is the following:

                                                
u tt (x, t) -a∆u(x, t) = 0, in Ω 1 × (0, ∞), y tt (x, t) -b∆y(x, t) = 0, in Ω 2 × (0, ∞), u(x, t) -y(x, t) = 0, on I × (0, ∞), a∂ ν 1 u(x, t) + b∂ ν 2 y(x, t) = 0, on I × (0, ∞), a∂ ν 1 u(x, t) -(η(x, t), C) = 0, on Γ 1 × (0, ∞), η t (x, t) + Cu t (x, t) -Bη(x, t) = 0, on Γ 1 × (0, ∞), y(x, t) = 0, on Γ 2 × (0, ∞),

(1.0.1) where u and y are complex valued functions (representing the transverse displacement in the case Ω ⊂ R and the potential velocity in the case Ω ⊂ R d , with d ≥ 2), a and b are two positive constants, ν i (x), i = 1, 2 denotes the outer unit normal vector to the point x ∈ ∂Ω i , and ∂ ν i is the corresponding normal derivative and η denotes the acoustic control variable. System (1.0.1) is considered with the following initial conditions:

                       u(x, 0) = u 0 (x), u t (x, 0) = u 1 (x), x ∈ Ω 1 , y(x, 0) = y 0 (x), y t (x, 0) = y 1 (x), x ∈ Ω 2 , η(x, 0) = η 0 (x), x ∈ Γ 1 .
(1.0.2)

Γ 2 I Ω 2 Ω 1 Γ 1 Figure 1: d-dimensional Model
Let u, y, η be smooth solutions of System (1.0.1), we define their associated energy by

E(t) = 1 2 Ω 1 |u t | 2 dx + a Ω 1 |∇u| 2 dx + Ω 2 |y t | 2 dx + b Ω 2 |∇y| 2 dx + Γ 1 ∥η∥ 2 dΓ . A direct calculation gives d dt E(t) = Γ 1 ℜ(B(x)η, η)dΓ ≤ 0,
and thus implies that System (1.0.1) is dissipative in the sense that the energy E(t) is non-increasing with respect to time variable t. The obtained decay rate is not optimal, see for instance [START_REF] Toufayli | Stabilisation polynomiale et contrôlabilité exacte des équations des ondes par des contrôles indirects et dynamiques[END_REF][START_REF] Wehbe | Rational energy decay rate for a wave equation with dynamical control[END_REF].

Recently, Abbas and

To the best of our knowledge, there appears to be no results regarding a possible improvement of the energy decay obtained by Abbas and Nicaise [START_REF] Abbas | The multidimensional wave equation with generalized acoustic boundary conditions ii: Polynomial stability[END_REF], nor regarding the stabilization of a hyperbolic system obtained by coupling two wave equations through a boundary connection with acoustic boundary condition applied to the first wave equation, while the second one is considered with a Dirichlet boundary condition. The aim of the present Chapter is to fill these gaps by :

1. Studying the stability properties of the system of coupled wave equations governed by System (1.0.1)-(1.0.2).

2. Establishing an expected polynomial energy decay of our system.

3. Confirming the optimality of the obtained decay rate in some sense.

Main results

All results from this part will be published in a paper entitled "Stabilization of a

Wave-Wave Transmission Problem with Generalized Acoustic Boundary Conditions", accepted for publication in Mathematical Control and Related Fields Journal. In this part, we state the main results of the first Chapter of this Thesis. After proving the well-posedness property of System (1.0.1)-(1.0.2) using semigroup approach, we try to find some necessary conditions that guarantee the strong stability of our system. Here as the domain of the associated operator is not compactly embedded into the natural energy space, we can expect that its spectrum is not only made up of eigenvalues. Thus, under some assumptions on B and C, named (SSC1)-(SSC4) (see below the Strong Stability Subsection), we show that the associated operator has no eigenvalues on the imaginary axis, hence using Fredholm alternative we obtain the strong stability by using a general criteria of Arendt-Batty (see Theorem A.0.2). Further more, we prove that the resolvent of the associated operator is not uniformly bounded on the imaginary axis, and by the frequency domain approach (see Theorem A.0.3) we conclude that our system is not uniformly (exponentially) stable. Hence we are interested in proving a weaker decay of the energy. More precisely, while b ≥ a, we prove under some sufficient conditions (PSC1)-(PSC4) (see below the Polynomial Stability Section) and some boundary multiplier geometric conditions (BMGC) the polynomial decay of the energy of our system. Here we take into consideration the different cases, so that we will obtain two different rates. Finally, we show that the obtained rate is sharp (optimal) in a particular one-dimensional example.

Literature

In recent years, researchers have shown interest in studying the stability of systems, in particular coupled systems that describe the connection of materials that appears frequently in several fields such as engineering technology. The mathematical problem that deals with the propagation of the wave among different materials are called transmission problem (also known as interface problem, or problem with discontinuous coefficients), which in turn is of major importance for mathematical studies in many physical and living systems.

Among the applications of wave equations is the noise suppression in the structural acoustic systems, which is of great interest in physics and engineering. In fact, Acoustic controls deal with sound and vibration, for example they are used in reduction of unwanted noise. That is why it is referred to as noise control. In this chapter we consider the generalization of the so-called acoustic boundary conditions, that was introduced by Morse and Ingard [START_REF] Morse | Theoretical acoustics[END_REF] (for m = 2), where they used the model for a wave assumed to be at a definite frequency. Then in the 1970's, in a series of papers, Beale [START_REF] Beale | Acoustic boundary conditions[END_REF], [START_REF] Beale | Spectral properties of an acoustic boundary condition[END_REF], [START_REF] Beale | Acoustic scattering from locally reacting surfaces[END_REF] proved the global existence and regularity of solutions in a Hilbert space of data with finite energy by means of semi group methods. In [START_REF] Rivera | Polynomial decay for the energy with an acoustic boundary condition[END_REF], Rivera and Qin established the polynomial energy decay in R 3 . In contrast to other studies of acoustic/structure interaction, Graber [START_REF] Graber | Uniform boundary stabilization of a wave equation with nonlinear acoustic boundary conditions and nonlinear boundary damping[END_REF] considered the non linear coupling, more precisely he considered a wave equation with non linear acoustic boundary conditions. Nicaise and Abbas [START_REF] Abbas | The multidimensional wave equation with generalized acoustic boundary conditions ii: Polynomial stability[END_REF] proved the polynomial stability of a wave system with generalized acoustic boundary control, where they showed their results in R d , under an assumption on the behavior of ℜ((iλI -B) -1 C, C) for all real numbers s with large enough modulus. Some particular cases of the generalized acoustic problem are the wave equation with dynamical control feedback, that has been treated in [START_REF] Wehbe | Rational energy decay rate for a wave equation with dynamical control[END_REF] (with m = 1 and d = 1), and in [START_REF] Toufayli | Stabilisation polynomiale et contrôlabilité exacte des équations des ondes par des contrôles indirects et dynamiques[END_REF], [START_REF] Rao | Stability and controllability of a wave equation with dynamical boundary control[END_REF] (with m = 1 and d ≥ 2).

Transmission problems as well had received the attention, and there have been fruitful results concerning existence, regularity, controllability and decay estimate of the solutions of different types of such problems. For example, Lions [START_REF] Lions | Exact controllability, perturbations and stabilization of distributed systems[END_REF] studied the existence, uniqueness and regularity of solutions for the transmission problem of wave equation with Dirichlet boundary condition, further he proved the exact controllability using Hilbert Uniqueness Method. Whereas, the exact controllability for plate equation were proved by Liu and Williams [START_REF] Liu | Exact controllability for problems of transmission of the plate equation with lower-order terms[END_REF] and Aassila [START_REF] Aassila | Exact boundary controllability of the plate equation[END_REF]. Besides Marzocchi's work [START_REF] Marzocchi | Asymptotic behaviour and exponential stability for a transmission problem in thermoelasticity[END_REF] in which he proved the exponential decay of semi-linear problems in 1-dimensional space between elastic and thermo-elastic materials, and after that he extended his work to higher dimensions with the help of Naso [START_REF] Marzocchi | Transmission problem in thermoelasticity with symmetry[END_REF]. For the transmission problem with frictional damping, Bastos and Raposo proved in [START_REF] Bastos | Transmission problem for waves with frictional damping[END_REF] the well-posedness and exponential stability of the total energy.

The wide range of applications on these models, whether in modeling, control of engineering, physical interactive processes, or others, has motivated the authors to proceed with extensive studies. In 2000, Rivera and Oquendo [START_REF] Rivera | The transmission problem of viscoelastic waves[END_REF] studied the wave propagation over materials consisting of elastic and viscoelastic components, where they confirmed that the corresponding solutions decays exponentially to zero no matter how small the interval of the viscoelastic part is. The following year, they checked out in [START_REF] Rivera | The transmission problem for thermoelastic beams[END_REF] the asymptotic behavior of beams that are made of two different materials, with one of them having a localized thermoelastic effect. Their main objective was to show that the solutions decays exponentially to zero as time goes to infinity, no matter how small the interval where the thermal dissipation is effective.

Later, in 2004 they proved the exponential stability under some geometric control conditions for the thermoelastic plates transmission problem [START_REF] Rivera | A transmission problem for thermoelastic plates[END_REF]. At that time Zuazua and Zhang follow up on their searches that they started in 2003 and completed to get excess results and papers [START_REF] Zhang | Control, observation and polynomial decay for a coupled heat-wave system[END_REF], [START_REF] Zhang | Polynomial decay and control of a 1-d model for fluid-structure interaction[END_REF], [START_REF] Zhang | Polynomial decay and control of a 1-d hyperbolic-parabolic coupled system[END_REF] on fluid-structure interactions with naive transmission condition at the interface.

They showed the complexity of decay and control problems of such interaction, even in one space dimension, and proved a sharp polynomial decay rate of type 1 t 2 for the energy of smooth solutions. Also, they worked on a similar model but with more natural transmission condition than the formal one. Then in 2005, they worked with Rauch in [START_REF] Rauch | Polynomial decay for a hyperbolic-parabolic coupled system[END_REF] on higher dimensions, analyzing the fluid-structure interaction model of the coupled equations at the interface with a suitable transfer condition, and obtained the result of the 1 t type polynomial decay, which was not sharp in general. Carrying on, in 2006 Duyckaerts [START_REF] Duyckaerts | Optimal decay rates of the energy of a hyperbolic-parabolic system coupled by an interface[END_REF] acted on fluid-structure interaction model, formed of heat and wave equations taking place in two distinct domains with an interface that is controlled by a transmission condition. He dealt with natural and naive transmission problems, proved the polynomial decay result obtained by another author under interface geometrically controlling the wave domain, he as well improved the speed of logarithmic decay for the solution of the system with a transmission condition. In [START_REF] Rivera | About asymptotic behavior for a transmission problem in hyperbolic thermoelasticity[END_REF], Rivera and Naso had exponential decay results for the thermoelasticity transmission problem. In the same year (2007), Rivera with Lapa [START_REF] Lapa | A nonlinear transmission problem with time dependent coefficients[END_REF] verified the existence of a global solution that decays exponentially for the nonlinear transmission problem for the wave equation with time-dependent coefficients and linear internal damping. Furthermore, Zhang and Zuazua [START_REF] Zhang | Long-time behavior of a coupled heat-wave system arising in fluid-structure interaction[END_REF] analyzed the long time behavior of coupled (wave-heat) equations evolved in two bounded domains with natural transmission condition at the interface, where they obtained a polynomial decay result for smooth solutions of the system under suitable geometric assumption guaranteeing that the heat domain envelopes the wave one. In absence of geometric conditions they got a logarithmic decay result for the system with more simplified transmission conditions at interface. In 2010, Georgi and Fernando investigated in [START_REF] Cardoso | Boundary stabilization of transmission problems[END_REF] the large time behavior of the solutions of mixed boundary value problem, and found that the energy of the solutions of the transmission problem in bounded domains with dissipative boundary conditions decays exponentially. Recently, in 2016 Lulu and Wang [START_REF] Lu | Transmission problem of schrödinger and wave equation with viscous damping[END_REF] traced the transmission problem of Schrodinger equation with a viscous damped equation (which acts as a controller of the system), finding that this system achieves strong stability. In 2017, Zuazua and Han [START_REF] Han | Decay rates for elastic-thermoelastic star-shaped networks[END_REF] discussed the asymptotic behavior of transmission problem solutions on star-shaped networks of interconnected elastic and thermoelastic rods, and demonstrated their exponential decay rate.

There have been a lot of works that can't be listed all, for that we mention only some of them, and still to end this paragraph we will mention some of the recent works done in the latest five years. Starting with the work of Nordstrom and Linder [START_REF] Nordström | Well-posed and stable transmission problems[END_REF], done in 2018, in which they introduced the notion of transmission problems to describe a general class of problems with different dynamics coupled in time, besides well-posedness and stability that were analyzed for continuous and discrete problems, using both strong and weak formulations, and a general transmission condition were obtained. In 2020, Coelho, Cavalcanti, and Valencia [START_REF] Cavalcanti | Exponential stability for a transmission problem of a viscoelastic wave equation[END_REF] in their proposal address the exponential stability of the solutions of a coupled system posed on an n-dimensional domain consisting of two parts: one made of viscoelastic material endowed with hereditary memory plus a localized elastic material and the other made of elastic material, where the common boundary is responsible for the transmission condition. Whereas, Guo and Chai [START_REF] Guo | The stabilization of the problem of transmission of the wave equation with dynamical control[END_REF] verified the exponential stabilization of transmission problem of wave equation with linear dynamical feedback control using classical energy methods and Multiplier technique in N -dimensional space. In 2021, Nonato, Raposo and Bastos [START_REF] Nonato | A transmission problem for waves under time-varying delay and nonlinear weight[END_REF] proved the exponential stability by energy method with the construction of a suitable Lyapunov functional for the transmission problem for one-dimensional waves with non-linear weights on the frictional damping and time varying delay. Finally, the work of Guo and Chai [START_REF] Guo | Exponential stabilization of the problem of transmission of wave equation with linear dynamical feedback control[END_REF], in which they improved their work concerning the exponential stability of two wave equations with linear dynamical feedback control. They discussed the well-posedness of the problem and proved the exponential decay of the energy of the system under some geometric conditions.

Well-Posedness, Strong Stability and Lack of Exponential Stability of the System

This section is devoted to study the well-posedness, the strong stability, and the lack of exponential stability of System (1.0.1)-(1.0.2).

Well-Posedness

We first introduce the following spaces:

H = {(u, v, y, z, η) ∈ H 1 (Ω 1 ) × L 2 (Ω 1 ) × H 1 Γ 2 (Ω 2 ) × L 2 (Ω 2 ) × L 2 (Γ 1 ) m | u = y on I},
where

H 1 Γ 2 (Ω 2 ) = {y ∈ H 1 (Ω 2 ) | y = 0 on Γ 2 }.
The Hilbert space H is equipped with the following inner product

(U, U 1 ) H = Ω 1 vv 1 dx + a Ω 1 ∇u • ∇ū 1 dx + Ω 2 z z1 dx + b Ω 2 ∇y • ∇ȳ 1 dx + Γ 1 (η, η 1 )dΓ,
where U = (u, v, y, z, η), U 1 = (u 1 , v 1 , y 1 , z 1 , η 1 ) ∈ H. We next define the linear unbounded operator A : D(A) ⊂ H -→ H by:

D(A) ={(u, v, y, z, η) ∈ H : ∆u ∈ L 2 (Ω 1 ), ∆y ∈ L 2 (Ω 2 ), v ∈ H 1 (Ω 1 ), z ∈ H 1 Γ 2 (Ω 2 ), a∂ ν 1 u + b∂ ν 2 y = 0 on I, a∂ ν 1 u -(η, C) = 0 on Γ 1 }, (1.0.3) A(u, v, y, z, η) T = (v, a∆u, z, b∆y, Bη -γ(v)C) T , (1.0.4)
where γ : H 1 (Ω 1 ) -→ L 2 (Γ 1 ) is the trace operator. Now, setting U = (u, u t , y, y t , η) as the state of System (1.0.1)-(1.0.2), we rewrite the problem into a first-order evolution equation

U t = AU, U (0) = U 0 , (1.0.5) 
where U 0 = (u 0 , u 1 , y 0 , y 1 , η 0 ).

Proposition 1.0.1. The unbounded linear operator A is m-dissipative in the energy space H.

Proof. For all U = (u, v, y, z, η) ∈ D(A), we have

ℜ(AU, U ) = ℜ a Ω 1 ∇v • ∇ūdx + a Ω 1 ∆uvdx+ b Ω 2 ∇z • ∇ȳdx + b Ω 2 ∆yzdx + Γ 1 (Bη -γ(v)C, η) dΓ .
(1.0.6)

It follows, from the boundary and the transmission conditions in (1.0.3), that

ℜ(AU, U ) = Γ 1 ℜ(B(x)η, η)dΓ ≤ 0, (1.0.7) 
that implies that A is dissipative. Now, let us prove that A is maximal. For this aim, if λ > 0 and

F = (f 1 , g 1 , f 2 , g 2 , h) ⊤ ∈ H, we look for U = (u, v, y, z, η) ⊤ ∈ D(A) unique solution of (λI -A)U = F. (1.0.8)
Equivalently, we have the following system:

λu -v = f 1 , (1.0.9) λv -a∆u = g 1 , (1.0.10) λy -z = f 2 , (1.0.11)
λz -b∆y = g 2 , (1.0.12)

(λI m -B)η + γ(v)C = h, (1.0.13) 
where

I m : (L 2 (Γ 1 )) m → (L 2 (Γ 1 ))
m is the identity mapping. As λ / ∈ σ(B), equations (1.0.9) and

(1.0.13) imply

η = (λI m -B) -1 (h + γ(f 1 )C) -λγ(u)(λI m -B) -1 C. (1.0.14)
Now, eliminating v in (1.0.10) by (1.0.9) and z in (1.0.12) by (1.0.11), we obtain the following system

λ 2 u -a∆u = λf 1 + g 1 , (1.0.15) λ 2 y -b∆y = λf 2 + g 2 , (1.0.16)
with the following boundary and transmission conditions

a∂ ν 1 u + (λγ(u)(λI m -B) -1 C, C) = ((λI m -B) -1 (h + γ(f 1 )C) , C) , on Γ 1 , y = 0, on Γ 2 ,
a∂ ν 1 u + b∂ ν 2 y = 0, and u -y = 0, on I.

(1.0.17)

Set the Hilbert space H as

H := (f, g) ∈ H 1 (Ω 1 ) × H 1 Γ 2 (Ω 2 ) | f = g on I , (1.0.18)
equipped with the norm

∥(f, g)∥ 2 H = ∥∇f∥ 2 L 2 (Ω 1 ) + ∥∇g∥ 2 L 2 (Ω 2 ) . (1.0.19)
Now, let (φ, ψ) ∈ H. Multiplying (1.0.15) and (1.0.16) by φ and ψ respectively, then taking their integrals over their corresponding domain, and using the boundary and transmission conditions in (1.0.17), we obtain the following variational problem:

S λ ((u, y), (φ, ψ)) = L λ (φ, ψ), ∀ (φ, ψ) ∈ H, (1.0.20)
where S λ and L λ are given by

S λ ((u, y), (φ, ψ)) = Ω 1 λ 2 uφdx + Ω 2 λ 2 yψdx + a Ω 1 ∇u • ∇φdx + b Ω 2 ∇y • ∇ψdx + Γ 1 λ((λI m -B) -1 C, C)γ(u)γ(φ)dΓ, (1.0.21) L λ (φ, ψ) = Ω 1 (λf 1 + g 1 )φdx + Ω 2 (λf 2 + g 2 )ψdx + Γ 1 (λI m -B) -1 (γ(f 1 )C + h), C γ(φ)dΓ. (1.0.22)
It is easy to see that S λ is a sesquilinear and continuous form on the space H × H. Besides, 

S λ is coercive form on H × H as ℜ (λI m -B) -1 C, C = ℜ {(Q, (λI m -B)Q)} = λ||Q|| 2 -ℜ(Q, BQ) ≥ 0, where Q = (λI m -B) -1 C.
Ω 1 λ 2 u -a∆u φdx = Ω 1 (λf 1 + g 1 ) φdx, ∀φ ∈ C ∞ c (Ω 1 ),
which implies that the first equation of (1.0.15) holds in the sense of distributions in Ω 1 , and hence it is satisfied in L 2 (Ω 1 ). As λ 2 u -λf 1 -g 1 belongs to L 2 (Ω 1 ), the same holds for ∆u, i.e., ∆u ∈ L 2 (Ω 1 ). In the same way, choosing φ = 0 and ψ ∈ C ∞ c (Ω 2 ) in (1.0.20), we see that the second equation of (1.0.16) holds as equality in L 2 (Ω 2 ), and therefore ∆y ∈ L 2 (Ω 2 ). Now, let us define the space

H 1 * ,I (Ω 1 ) = f ∈ H 1 (Ω 1 ) | f = 0 on I .
By taking φ ∈ H 1 * ,I (Ω 1 ), ψ = 0, and applying Green's formula in (1.0.20), we obtain

Γ 1 a∂ ν 1 u + λu(λI m -B) -1 C, C φdΓ = Γ 1 (λI m -B) -1 (h + γ(f 1 )C) , C φdΓ, ∀φ ∈ H 1 2 * ,I (Γ 1 ),
where

H 1 2
where H 

□

According to Lumer-Philips Theorem (see [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF]), Proposition 1.0.1 implies that the operator A generates a C 0 -semigroup of contractions e tA t≥0 in H, which gives the well-posedness of System (1.0.5). Then, we have the following result: Theorem 1.0.2. For all U 0 ∈ H, System (1.0.5) admits a unique weak solution

U (t) ∈ C 0 (R + ; H).
Moreover, if U 0 ∈ D(A), then the System (1.0.5) admits a unique strong solution

U (t) ∈ C 0 (R + ; D(A)) ∩ C 1 (R + ; H).

Strong Stability

This part will be specified for the proof of the strong stability of our system, without any geometric conditions. For this, we need to introduce some spaces and definitions:

H ⋆ := (f, g) ∈ H 1 Γ 1 (Ω 1 ) × H 1 Γ 2 (Ω 2 ) | f = g on I , (1.0.23) 
equipped with the norm

∥(f, g)∥ 2 H⋆ = ∥∇f∥ 2 L 2 (Ω 1 ) + ∥∇g∥ 2 L 2 (Ω 2 ) , (1.0.24) 
where

H 1 Γ 1 (Ω 1 ) = {f ∈ H 1 (Ω 1 ) | f = 0 on Γ 1 }.
Through the section, we will use the following set

Σ m := {λ ∈ C : ∃ x ∈ Γ 1 : (λI m -B(x)) is not invertible}.
From the continuity of B, Σ m is a compact subset of C. Define the linear unbounded operator Now we will state the following theorem, but before that we would like to add some assumptions that we will use through the section

O Dir : D(O Dir ) -→ L 2 (Ω 1 ) × L 2 (Ω 2 ) by D(O Dir ) = (f, g) ∈ H ⋆ : ∆f ∈ L 2 (Ω 1 ), ∆g ∈ L 2 (Ω 2 ), a∂ ν 1 f + b∂ ν 2 g = 0 on I , (
∀ iλ / ∈ Σ m , λ ∈ R * , ∃α λ > 0 : ((iλI m -B(x)) -1 C(x), C(x)) ≥ α λ , ∀ x ∈ Γ 1 . (SSC1) ∀ iλ ∈ Σ m , λ ∈ R * : ∀ M ⊂ Γ 1 : mes (M ) > 0, ∃x ∈ M : (η, C(x)) ̸ = 0, for all nonzero η ∈ Ker(iλI m -B(x)). (SSC2) ∀ iλ ∈ Σ m , λ ∈ R * , C / ∈ Ker (iλI m + B ⋆ ) ⊥ on Γ 1 . (SSC3) Σ m ∩ {±iλ O,k , k ∈ N * } = ∅. ( SSC4 
)
Theorem 1.0.4. Assume that (SSC1)-(SSC4) hold, 0 / ∈ Σ m and Σ m ∩ iR * is countable. Then, the C 0 -semigroup of contraction (e tA ) t≥0 is strongly stable on H in the following sense

lim t→+∞ ||e tA U 0 || H = 0, ∀ U 0 ∈ H.
According to Theorem A.0.2, to prove Theorem 2.0.2, we need to prove that the operator A has no pure imaginary eigenvalues and σ(A) ∩ iR is countable. The proof of these results is not reduced to the analysis of the point spectrum of A on the imaginary axis since its resolvent is not compact. Hence the proof of Theorem 2.0.2 has been divided into the following two Lemmas.

Lemma 1.0.5. Assume that (SSC1)-(SSC4) hold and 0 / ∈ Σ m . Then, the operator iλI -A is injective, for all λ ∈ R.

Proof. By contradiction argument, let λ ∈ R, and assume that there exists 

U = (u, v, y, z, η) ⊤ ∈ D(A) \ {0}, such that AU = iλU. ( 1 
λ 2 u + a∆u = 0, in Ω 1 , (1.0.33) λ 2 y + b∆y = 0, on Ω 2 , (1.0.34) (iλI m -B)η + iλuC = 0, on Γ 1 , (1.0.35)
with the following boundary and transmission conditions

a∂ ν 1 u -(η, C) = 0, on Γ 1 , y = 0, on Γ 2 ,
a∂ ν 1 u + b∂ ν 2 y = 0, and u -y = 0, on I.

(1.0.36)

In order to study the solution of (1.0.33)-(1.0.36), we will distinguish several cases.

Case 1. iλ / ∈ Σ m .
In this case we again distinguish between two cases. 

S iλ ((u, y), (φ, ψ)) = 0, ∀ (φ, ψ) ∈ H, (1.0.37)
where S iλ is given by

S iλ ((u, y), (φ, ψ)) = - Ω 1 λ 2 uφdx - Ω 2 λ 2 yψdx + a Ω 1 ∇u • ∇φdx + b Ω 2 ∇y • ∇ψdx + i Γ 1 λ((iλI m -B) -1 C, C)γ(u)γ(φ)dΓ.
(1.0.38)

In particular, for (φ, ψ) = (u, y), we have

- Ω 1 |λu| 2 dx - Ω 2 |λy| 2 dx + a Ω 1 |∇u| 2 dx + b Ω 2 |∇y| 2 dx + i Γ 1 λ((iλI m -B) -1 C, C)|γ(u)| 2 dΓ = 0.
(1.0.39)

Then, taking the imaginary part of (1.0.39), and using the fact that λ ̸ = 0, we get

ℜ Γ 1 (iλI m -B) -1 C, C)|γ(u)| 2 dΓ = 0, (1.0.40)
which together with (SSC1) condition yields

u = 0, on Γ 1 .
On the other hand, using equation (1.0.35) and (1.0.36) 1 , and the fact that iλ / ∈ Σ m , we obtain

η = -iλ(iλI m -B) -1 Cu = 0, and ∂ ν u = 0 on Γ 1 .
Consequently, u satisfies the following system:

     λ 2 u + a∆u = 0 in Ω 1 , u = ∂ ν 1 u = 0 on Γ 1 .
(1.0.41)

Hence, Holmgren uniqueness theorem (see [START_REF] Lions | Exact controllability, stabilization and perturbations for distributed systems[END_REF]) yields (1.0.44)

u = 0 in Ω 1 . ( 1 
Again, by the Holmgren uniqueness theorem we have

y = 0 in Ω 2 .
(1.0.45)

Summing up, we have proved that U = 0. This contradicts the fact that U ̸ = 0.

Case 2. iλ ∈ Σ m . Since 0 / ∈ Σ m then λ ̸ = 0.
Assume that η ̸ = 0 (on the contrary we repeat the same proof in Case 1.2.). Then there exists Γ ⋆,1 ⊂ Γ 1 with mes(Γ ⋆,1 ) > 0, such that

η ̸ = 0 on Γ ⋆,1 . We distinguish two cases. Case 2.1. u = 0 in Ω 1 or y = 0 in Ω 2 .
Assume that u = 0 in Ω 1 , then from the transmission condition (1.0.36) 3 we deduce that y satisfies System (1.0.44), and consequently y = 0 in Ω 2 . On the other hand, from (1.0.35) and

(1.0.36) 1 , we deduce that

(η, C(x)) = 0, and 0 ̸ = η ∈ Ker(iλI m -B(x)), ∀ x ∈ Γ ⋆,1 ,
which is in contradiction with (SSC2). Similarly, if y = 0. Then, η = 0 and consequently U = 0

which contradicts the fact that U ̸ = 0. Case 2.2. u ̸ = 0 in Ω 1 and y ̸ = 0 in Ω 2 . From equation (1.0.35), we deduce that Cu ∈ R (iλI m -B)) = Ker (iλI m + B ⋆ ) ⊥ , on Γ 1 ,
which implies, from condition (SSC3), that

u = 0 on Γ 1 .
Therefore, there exists (u, y) ∈ D(O Dir ) such that

O Dir (u, y) = (-a∆, -b∆)(u, y) = λ 2 (u, y), hence ∃ k ∈ N ⋆ such that λ 2 = λ 2
Dir,k . Now going back to (1.0.35), we get

(±iλ Dir,k -B)η = 0 on Γ 1 .
Then using the assumption (SSC4), it implies that

η = 0 on Γ 1
that contradicts the fact that η ̸ = 0 and the proof is thus complete.

□

Lemma 1.0.6. Assume that (SSC1)-(SSC4) hold and 0 / ∈ Σ m . Then, we have

σ(A) ∩ iR * ⊆ Σ m ∩ iR * .
Proof. Let λ ∈ R * . Assume that iλ ∈ σ(A) and iλ / ∈ Σ m , we aim is to find a contradiction by proving that iλ ∈ ρ(A). Indeed, under assumption (SSC1), using Lemma 1.0.5 Case 1.2., we have iλ -A is injective, then it is left to prove the surjectivity of iλ -A, i.e to prove

R(iλI -A) = H. In fact, let F = (f 1 , g 1 , f 2 , g 2 , h) ⊤ ∈ H, we look for U = (u, v, y, z, η) ⊤ ∈ D(A) solution of (iλI -A)U = F. (1.0.46)
Equivalently, we have the following system

iλu -v = f 1 , (1.0.47) iλv -a∆u = g 1 , (1.0.48) iλy -z = f 2 , (1.0.49) iλz -b∆y = g 2 , (1.0.50) iλη -Bη + γ(v)C = h, (1.0.51)
with the following boundary and transmission conditions

u = y, a∂ ν 1 u = -b∂ ν 2 y on I, a∂ ν 1 u = (η, C) on Γ 1
, and y = 0 on Γ 2 .

(1.0.52)

Eliminating v in (1.0.51) by (1.0.47), and using that fact that iλ / ∈ Σ m , we get 

η = (iλI -B) -1 (h -C(iλγ(u) -γ(f 1 ))) . ( 1 
                               λ 2 u + a∆u = -g 1 -iλf 1 in Ω 1 , λ 2 y + b∆y = -g 2 -iλf 2 in Ω 2 , u = y, ∂ ν 1 u = -∂ ν 2 y on I, a∂ ν 1 u = (η, C) on Γ 1 , y = 0 on Γ 2 .
(1.0.54)

Let (φ, ψ) ∈ H, where H is defined by (1.0.18). Multiplying the first equation of (1.0.54) by φ and the second one by ψ, integrating and using by parts integration, yield

-λ 2 Ω 1 u φdx -λ 2 Ω 2 y ψdx + a Ω 1 ∇u • ∇ φdx + b Ω 2 ∇y • ∇ ψdx + iλ Γ 1 ((iλI -B) -1 C, C)γ(u)γ( φ)dΓ = Ω 1 (g 1 + iλf 1 ) φdx + Ω 2 (g 2 + iλf 2 ) ψdx + Γ 1 ((iλI -B) -1 (h + Cγ(f 1 )), C)γ( φ)dΓ.
(1.0.55)

Here we note that Lax-Milgram Lemma cannot be applied because the coercivity is not available. Therefore, we use a compact perturbation argument. For that purpose, let us introduce the sesquilinear form

a λ ((u, y), (φ, ψ)) = a Ω 1 ∇u • ∇ φdx + b Ω 2 ∇y • ∇ ψdx. (1.0.56)
This sesquilinear form a λ is continuous and coercive on H. Then, by Lax-Milgram Lemma, the operator

A λ : H → H ′ : (u, y) → A λ (u, y), with A λ (u, y)((φ, ψ)) = a λ ((u, y), (φ, ψ)) is an isomorphism. Now, let us set R λ : H → H ′ : (u, y) → R λ (u, y), with R λ (u, y)((φ, ψ)) = -λ 2 Ω 1 u φdx -λ 2 Ω 2 y ψdx + iλ Γ 1 ((iλI -B) -1 C, C)γ(u)γ( φ)dΓ.
Due to the continuity of B and C and Cauchy-Schwarz's inequality, we see that

|R λ (u, y)((φ, ψ))| ≤ λ 2 ||(u, y)|| L 2 ||(φ, ψ)|| L 2 + C λ ||u|| L 2 (Γ 1 ) ||φ|| L 2 (Γ 1 ) ≤ λ 2 ||(u, y)|| L 2 ||(φ, ψ)|| L 2 + C λ ||(u, y)|| L 2 T ||(φ, ψ)|| L 2 T , (1.0.57)
where C λ is a positive constant depending on λ and

L 2 = L 2 (Ω 1 ) × L 2 (Ω 2 ) and L 2 T = L 2 (Γ 1 ) × L 2 (Γ 2 ).
Now, for ε ∈ (0, 1 2 ) we set the following space

H ε = (φ, ψ) ∈ H 1 2 +ε (Ω 1 ) × H 1 2 +ε (Ω 2 ) : φ = ψ on I .
Then, by a trace theorem, equation (1.0.57) gives

|R λ (u, y)((φ, ψ))| ≤ λ 2 ||(u, y)|| L 2 ||(φ, ψ)|| L 2 + C λ,ε ||(u, y)|| H ||(φ, ψ)|| Hε , (1.0.58)
with C λ,ε is a positive constant depending on λ and ε. If we introduce, for ε ∈ (0, 1 2 ),

H ε,Γ 2 = {(φ, ψ) ∈ H ε : ψ = 0 on Γ 2 } ,
that is clearly a Hilbert space equipped with the inner product of H ε , we deduce, from (1.0.58), that

|R λ (u, y)((φ, ψ))| ≤ C λ,ε ||(u, y)|| H ||(φ, ψ)|| Hε , ∀ (u, y), (φ, ψ) ∈ H, (1.0.59) 
where C λ,ε is a new positive constant depending on λ and ε. Then, (1.0.59) means equivalently that sup

(φ,ψ)∈H,(φ,ψ)̸ =0 |R λ (u, y)((φ, ψ))| ||(φ, ψ)|| Hε ≤ C λ,ε ||(u, y)|| H .
Accordingly, as H is subset in H ε,Γ 2 with densely compact embedding, we deduce that R λ (u, y)

belongs to H ′ ϵ,Γ 2 with ||R λ (u, y)|| H ′ ε,Γ 2 = sup (φ,ψ)∈H ε,Γ 2 ,(φ,ψ)̸ =0 |R λ (u, y)((φ, ψ))| ||(φ, ψ)|| Hε ≤ sup (φ,ψ)∈H,(φ,ψ)̸ =0 |R λ (u, y)((φ, ψ))| ||(φ, ψ)|| Hε ≤ C λ,ε ||(u, y)|| H .
As H is compactly and densely embedded in

H ε,Γ 2 , by duality, H ′ ε,Γ 2 is compactly embedded in H ′ , and therefore R λ is a compact operator from H into H ′ . Thus, we deduce that A λ + R λ is a
Fredholm operator of index zero (see Definition A.0.5) from H into H ′ . Now by setting

L λ ((φ, ψ)) = Ω 1 (g 1 +iλf 1 ) φdx+ Ω 2 (g 2 +iλf 2 ) ψdx+ Γ 1 ((iλI -B) -1 (h+Cγ(f 1 )), C)γ( φ)dΓ.
We notice that (1.0.55) is equivalent to

(A λ + R λ )(u, y) = L λ in H ′ . (1.0.60)
Hence problem (1.0.46) admits a unique solution (u, y) if and only if

A λ + R λ is invertible. But A λ + R λ being a Fredholm operator it is enough to prove that A λ + R λ is injective, i.e, ker(A λ + R λ ) = {0}. Let us now fix (u, y) ∈ ker(A λ + R λ ), then it satisfies -λ 2 Ω 1 u φdx -λ 2 Ω 2 y ψdx + a Ω 1 ∇u • ∇ φdx + b Ω 2 ∇y • ∇ ψdx + iλ Γ 1 ((iλI -B) -1 C, C)γ(u)γ( φ)dΓ = 0.
(1.0.61)

Thus, if we set v = iλu, z = iλy and η = -iλγ(u)(iλI -B) -1 C, we conclude that U = (u, v, y, z, η) ∈ D(A) is a solution of (iλI -A)U = 0.
Using Lemma 1.0.5, we deduce that U = 0. This shows that A λ + R λ is invertible and therefore a unique solution (u, y) ∈ H of (1.0.60) exists. At this stage, by setting

v = iλu -f 1 , z = iλy -f 2 and η = (iλI -B) -1 (h -C(iλγ(u) -γ(f 1 ))) , we conclude that U = (u, v, y, z, η) ∈ D(A) is a solution of (1.0.46) and consequently (iλI -A) is surjective. The proof is thus complete. □ Remark. For λ ̸ = 0, if (SSC1)-(SSC4) holds, then iλI -A is bijective. hence to prove that iR ⊂ ρ(A), it is sufficient to prove that iλ / ∈ Σ m and 0 ∈ ρ(A).
Proof of Theorem 2.0.2. From Lemma 1.0.5, the operator A has no pure imaginary eigenvalues (i.e. σ p (A) ∩ iR = ∅). Moreover, from Lemma 1.0.8 and the fact that Σ m ∩ iR ⋆ is countable, we deduce that σ(A) ∩ iR is countable. Then, according to Theorem A.0.2 due to Arendt-Batty, we get that the C 0 -semigroup of contraction (e tA ) t≥0 is strongly stable. The proof is thus complete.

□

Lack of Exponential Stability

In this part, we will prove that System (1.0.1)-(1.0.2) is not exponentially stable. In other words we will prove the following theorem:

Theorem 1.0.7. The C 0 semigroup of contractions (e tA ) t≥0 is not uniformly stable in the energy space H.

According to Theorem A.0.3 due to Huang [START_REF] Huang | Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces[END_REF] and Prüss [START_REF] Prüss | On the spectrum of C 0 -semigroups[END_REF] it is sufficient to prove that the resolvent of the operator A is not uniformly bounded on the imaginary axis. For this aim, let us start with the following technical result.

Lemma 1.0.8. Define the linear unbounded operator O ∆,R :

D(O ∆,R ) -→ L 2 (Ω) × L 2 (Ω) by D(O ∆,R ) = (f, g) ∈ H : (∆f, ∆g) ∈ L 2 (Ω 1 ) × L 2 (Ω 2 ), a∂ ν 1 f + b∂ ν 2 g = 0 on I and a∂ ν 1 f + (C, C)f = 0 on Γ 1 } , (1.0.62)
and

O ∆,R (f, g) = (-a∆f, -b∆g), ∀ (f, g) ∈ D(O ∆,R ). (1.0.63)
Then, O ∆,R is a positive self-adjoint operator with a compact resolvent.

Proof. To prove that O ∆,R is a positive self-adjoint operator, we will show that O ∆,R is a symmetric m-accretive operator. For this aim, we will divide the proof into steps.

Step

1. (O ∆,R is symmetric.) Indeed, for all (f, g), (h, k) ∈ D(O ∆,R ), we have (O ∆,R (f, g), (h, k)) L 2 (Ω 1 )×L 2 (Ω 2 ) = -a Ω 1 (∆f )hdx -b Ω 2 (∆g)kdx = a Ω 1 ∇f • ∇hdx + b Ω 2 ∇g • ∇kdx + a Γ 1 (C, C)f hdΓ = a Ω 1 ∇f • ∇hdx + b Ω 2 ∇g • ∇kdx -a Γ 1 f ∂ ν 1 hdΓ = ((f, g), O ∆,R (h, k)) L 2 (Ω 1 )×L 2 (Ω 2 ) .
(1.0.64)

Thus, O ∆,R is symmetric. Step 2. O ∆,R is m-accretive. Indeed, for all (f, g) ∈ D(O ∆,R ), we have ℜ (O ∆,R (f, g), (f, g)) L 2 (Ω 1 )×L 2 (Ω 2 ) = -a Ω 1 (∆f )f dx -b Ω 2 (∆g)gdx = a Ω 1 |∇f | 2 dx + b Ω 2 |∇g| 2 dx + a Γ 1 (C, C)|f | 2 dΓ ≥ 0.
(1.0.65) a

Thus, O ∆,R is an accretive operator. Now, let (F, G) ∈ L 2 (Ω 1 ) × L 2 (Ω 2 ) and λ > 0, looking for (f, g) ∈ D(O ∆,R ) solution of (λI + O ∆,R )(f, g) = (F, G). ( 1 
Ω 1 ∇f • ∇φdx + b Ω 2 ∇g • ∇ψdx + Γ 1 (C, C)f φdΓ + λ Ω 1 f φdx + λ Ω 2 gψdx = Ω 1 F φdx + Ω 2
Gψdx.

(1.0.69) Letting S((f, g), (φ, ψ)) =a

Ω 1 ∇f • ∇φdx + b Ω 2 ∇g • ∇ψdx + Γ 1 (C, C)f φdΓ + λ Ω 1 f φdx + λ Ω 2 gψdx, (1.0.70) 
and is m-accretive.

L(φ, ψ) = Ω 1 F φdx + Ω 2 Gψdx. ( 1 
Step 3. O ∆,R has a compact resolvent.

R λ (O ∆,R ) = (λI + O ∆,R ) -1 .
Due to Sobolev embeddings, R 0 (O ∆,R ) is compact. Then using the following resolvent identity

R λ -R µ = (µ -λ)R µ R λ ,
we deduce that the resolvent of the operator

(λI + O ∆,R ) -1 of O ∆,R
is compact, and the proof is thus complete.

□

Proof of Theorem 1.0.7 According to Theorem A.0.3 due to Huang [START_REF] Huang | Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces[END_REF] and Prüss [START_REF] Prüss | On the spectrum of C 0 -semigroups[END_REF], it is sufficient to show that the resolvent of A is not uniformly bounded on the imaginary axis. In other words, it is enough to show the existence of a positive real number M and some sequences

λ n ∈ iR, U n = (u n , v n , y n , z n , η n ) ⊤ ∈ D(A), and 
F n = (f 1,n , g 1,n , f 2,n , g 2,n , h n ) ⊤ ∈ H, where n ∈ N, such that (λ n I -A)U n = F n , ∀n ∈ N, (1.0.72) ∥U n ∥ H = M, ∀n ∈ N, (1.0.73) lim n→∞ ∥F n ∥ H = 0. (1.0.74)
From Lemma 1.0.8, we can consider the sequence of eigenfunctions (φ n , ψ n ) n∈N (that form an orthonormal basis of L 2 (Ω 1 ) × L 2 (Ω 2 )) of the operator O ∆,R , corresponding to the eigenvalues (µ 2 n ) n∈N , such that µ 2 n tends to infinity as n goes to infinity. Consequently, for all n ∈ N, they satisfy the following system

                                         -a∆φ n = µ 2 n φ n , in Ω 1 , -b∆ψ n = µ 2 n ψ n , in Ω 2 , φ n -ψ n = 0, on I, a∂ ν 1 φ n + b∂ ν 2 ψ n = 0, on I, ∂ ν 1 φ n + (C, C)φ n = 0, on Γ 1 , ψ n = 0 on Γ 2 , (1.0.75) with ∥(φ n , ψ n )∥ 2 L 2 (Ω 1 )×L 2 (Ω 2 ) = Ω 1 |φ n | 2 dx + Ω 2 |ψ n | 2 dx = 1. (1.0.76)
Now, let us choose

u n = φ n iµ n , v n = φ n , y n = ψ n iµ n , z n = ψ n , η n = - 1 iµ n Cγ(φ n ). (1.0.77)
So, by setting F n = (0, 0, 0, 0, -i µn BCγ(φ n )), we deduce that

U n = (u n , v n , y n , z n , η n ) (1.0.78)
is the solution in D(A) of the following equation 

(iµ n I -A)U n = F n . ( 1 
µ -2 n a Γ 1 (C, C)|φ n | 2 dΓ + µ -2 n a Ω 1 |∇φ n | 2 dx + µ -2 n b Ω 2 |∇ψ n | 2 dx = Ω 1 |φ n | 2 dx + Ω 2 |ψ n | 2 dx = 1.
(1.0.80)

This implies that

∥φ n ∥ 2 H 1 (Ω 1 ) ≲ µ 2 n . (1.0.81)
On the other hand, we have

∥U n ∥ 2 H = Ω 1 |φ n | 2 dx + Ω 2 |ψ n | 2 dx + µ -2 n Ω 1 |∇φ n | 2 dx + µ -2 n Ω 2 |∇ψ n | 2 dx + µ -2 n Γ 1 ∥Cφ n ∥ 2 dΓ ≥ 1.
(1.0.82)

By using the trace theorem of interpolation type (see Theorem 1.4.4 in [START_REF] Liu | Semigroups associated with dissipative systems[END_REF] and Theorem 1.5.1.10 in [START_REF] Grisvard | Elliptic problems in nonsmooth domains[END_REF]), equation (1.0.76) and equation (1.0.81), we obtain

∥F n ∥ 2 H = µ -2 n Γ 1 ∥BCφ n ∥ 2 dΓ ≲ µ -2 n ∥φ n ∥ 2 L 2 (Γ 1 ) ≲ µ -2 n ∥φ n ∥ H 1 (Ω) ∥φ n ∥ L 2 (Ω) ≲ µ -1 n → 0.
(1.0.83)

Then, the resolvent of the operator A is not uniformly bounded on the imaginary axis, and consequently our system is not uniformly ( exponentially) stable. The proof is thus complete. □

Polynomial Stability

Since System (1.0.1)-(1.0.2) is not uniformly stable, we will look for a polynomial energy decay rate for smooth solutions. We assume that there exists a constant δ > 0 and a point x 0 ∈ R d such that, putting r(x) = x -x 0 , we have

(r • ν 1 ) ≥ δ -1 , ∀x ∈ Γ 1 , (r • ν 2 ) ≤ 0, ∀x ∈ Γ 2 , and (r • ν 1 ) ≤ 0, ∀x ∈ I, (BMGC)
where (•, •) designates the scalar product in R d .

Definition 1.0.9. The matrix valued function B ∈ C 0,1 (Γ 1 ; M m (C)) is said to be totally M -coercive if there exist α = (α j ) 1≤j≤m, α j > 0, such that, for every x ∈ Γ 1 ,

ℜ (B(x)V, V ) = ℜ V T M (x)B(x)V ≥ m j=1 α j |v j | 2 , ∀ V = (v 1 , • • • , v m ) ∈ C m . Definition 1.0.10. For j 0 ∈ {1, 2, • • • , m}, the matrix valued function B ∈ C 0,1 (Γ 1 ; M m (C)) is
said to be j 0 -partially M -coercive if there exists an index α = (α j ) 1≤j≤m,j̸ =j 0 , α j > 0, such that,

for every x ∈ Γ 1 , ℜ(B(x)V, V ) x ≥ m j=1,j̸ =j 0 α j |v j | 2 , ∀ V = (v 1 , • • • , v m ) ∈ C m .             
The matrix valued function -B is totally M -coercive, and

∃ j 1 ∈ {1, 2, • • • , m}, c j 1 ,0 > 0 : ℜ c 2 j 1 (x) ≥ c j 1 ,0 , ∀ x ∈ Γ 1 . (PSC1)              ∃ j 0 ∈ {1, 2, • • • , m} : -B is j 0 -partially M -coercive, c j 0 = 0 and ∃ j 2 ∈ {1, 2, • • • , m}, c j 2 ,0 > 0 : ℜ c 2 j 2 (x) ≥ c j 2 ,0 , ∀ x ∈ Γ 1 . (PSC2)              ∃ j 0 ∈ {1, 2, • • • , m} : -B is j 0 -partially M -coercive, c j 0 ̸ = 0, and 
∃ j 3 ∈ {1, 2, • • • , m} \ {j 0 }, c j 3 ,0 > 0 : ℜ c 2 j 3 (x) ≥ c j 3 ,0 , ∀ x ∈ Γ 1 . (PSC3)                            ∃ j 0 ∈ {1, 2, • • • , m}, c j 0 ,0 > 0 : -B is j 0 -partially M -coercive, and ℜ c 2 j 0 (x) ≥ c j 0 ,0 , ∀ x ∈ Γ 1 . ∃ j 4 ∈ {1, 2, • • • , m} \ {j 0 }, b j 4 j 0 ,0 > 0 : ℜ b 2 j 4 j 0 (x) ≥ b j 4 j 0 ,0 , ∀ x ∈ Γ 1 , and 
c k = 0, for k ̸ = j 0 . (PSC4)
Theorem 1.0.11. Let b ≥ a. Assume that iR ⊂ ρ(A) and that the geometric conditions (BMGC) holds. Then, the C 0 -semigroup of contractions e tA t≥0 is polynomially stable in the sense that, there exists a constant C > 0 such that, for all U 0 ∈ D(A), the energy of System (1.0.1)-(1.0.2) satisfies the following estimation

E(t) ≤ C t 2/ℓ ∥U 0 ∥ 2 D(A) , ∀ t > 0 (1.0.84) with ℓ =      2, if (PSC1), or (PSC2), or (PSC3) holds, 4, if (PSC4) holds.
According to Theorem A.0.4, to prove Theorem 1.0.11, we need to prove the following condition

lim sup λ∈R, |λ|→∞ 1 λ ℓ ∥(iλI -A) -1 ∥ L(H) < ∞. (1.0.85)
The condition (1.0.85) is proved by a contradiction argument. For this purpose, suppose that (1.0.85) is false, then there exists

{(λ n , U n := (u n , v n , y n , z n , η n ) ⊤ )} n≥1 ⊂ R * × D(A) with |λ n | → ∞ as n → ∞, and ∥U n ∥ H = (u n , v n , y n , z n , η n ) ⊤ H = 1, ∀n ∈ N, (1.0.86) such that (λ n ) ℓ (iλ n I -A)U n = F n := (f 1,n , g 1,n , f 2,n , g 2,n , h n ) ⊤ → 0 in H as n → ∞. (1.0.87)
We aim to prove that ∥U n ∥ H = o(1) to get the desired contradiction. For this, we drop the index n for simplicity, and detail the equation (1.0.87), so that the following system is obtained

iλu -v = λ -ℓ f 1 in H 1 (Ω 1 ), (1.0.88) iλv -a∆u = λ -ℓ g 1 in L 2 (Ω 1 ), (1.0.89) iλy -z = λ -ℓ f 2 in H 1 (Ω 2 ), (1.0.90) iλz -b∆y = λ -ℓ g 2 in L 2 (Ω 2 ), (1.0.91) iλη -Bη + Cγ(v) = λ -ℓ h in L 2 (Γ 1 ) m . (1.0.92)
For clarity, we divide the proof of Theorem 1.0.11 into several Lemmas.

Lemma 1.0.12. Under the same conditions of Theorem 1.0.11, the solution U = (u, v, y, z, η) ⊤ ∈ D(A) of (1.0.88)-(1.0.92) satisfies the following estimations

Γ 1 ||η|| 2 dΓ = o(λ -2 ), Γ 1 |∂ ν 1 u| 2 dΓ = o(λ -2 ),
and

Γ 1 |u| 2 dΓ = o(λ -2 ).
(1.0.93)

Proof. Taking the inner product of (1.0.87) with U in H, then using the fact that U is uniformly bounded in H, we get

ℜ ((iλI -A)U, U ) H = -ℜ (AU, U ) H = - Γ 1 ℜ (B(x)η, η) dΓ = o λ -ℓ .
(1.0.94) Case 1. If (PSC1) holds. Then, using (1.0.94) and the Definition 1.0.9, we get

Γ 1 |η j | 2 dΓ = o λ -ℓ , ∀ j ∈ {1, 2, • • • , m}. (1.0.95) It follows, from the continuity of M that Γ 1 ||η|| 2 dΓ = Γ 1 (η, η) dΓ = Γ 1 η T M (x)ηdΓ = o λ -ℓ .
(1.0.96)

Besides, using (1.0.88) in (1.0.92) will imply

iλη j 1 - m j=1 b j 1 j (x)η j + iλc j 1 (x)u = λ -ℓ h j 1 + λ -ℓ c j 1 (x)f 1 . (1.0.97)
Then, multiplying equation (1.0.97) by c j 1 (x)λu, integrating over Γ 1 and taking the imaginary part, we get

Γ 1 ℜ c 2 j 1 (x) |λu| 2 dΓ = -ℜ Γ 1 c j 1 (x)λη j 1 λudΓ + ℑ m j=1 Γ 1 c j 1 (x)b j 1 j (x)λη j udΓ + Γ 1 λ -ℓ+1 c j 1 (x)h j 1 udΓ + Γ 1 λ -ℓ+1 c 2 j 1 (x)f 1 udΓ , (1.0.98)
where ε > 0. Firstly, using (1.0.95) and the fact that ∥u∥

L 2 (Γ 1 ) = O(1), ∥h j 1 ∥ L 2 (Γ 1 ) = o(1)
and

∥f 1 ∥ L 2 (Γ 1 ) = o(1), we get ℑ Γ 1 λ -ℓ+1 c j 1 (x)h j 1 udΓ + Γ 1 λ -ℓ+1 c 2 j 1 (x)f 1 udΓ = o(λ -ℓ+1 ).
(1.0.99)

On the other hand, by using Young's inequality, we obtain

-ℜ Γ 1 c j 1 (x)λη j 1 λudΓ + ℑ m j=1 Γ 1 c j 1 (x)b j 1 j (x)λη j udΓ ≤ 2ε Γ 1 |λu| 2 dΓ + ∥c j 1 ∥ 2 ∞ 4ε Γ 1 |λη j 1 | 2 dΓ + M ε,1 m j=1 Γ 1 |η j | 2 dΓ, (1.0.100)
where

M ε,1 = ∥c j 1 ∥ 2 ∞ + max 1≤j≤m ∥b j 1 j ∥ 2 ∞ 4ε
and ε is an arbitrary positive constant fixed below. Then, inserting equations (1.0.99)-(1.0.100) in (1.0.98), using equation (1.0.95) and the fact that ℜ c 2 j 1 (x) ≥ c j 1 ,0 > 0, we get

(c j 1 ,0 -2ε) Γ 1 |λu| 2 dΓ ≤ o(λ -ℓ+2 ). (1.0.101) By letting ε = c j 1 ,0 4 
, we obtain the desired estimate. The second estimation in (1.0.93) directly follows from the fact that a∂

ν 1 u(x, t) -(η(x), C) = 0 on Γ 1 . Indeed, ||(η, C)|| ≲ ||η|| L 2 (Γ 1 ) ||C||.
(1.0.102) Thus, letting ℓ = 2, we get the results in (1.0.93) under the condition (PSC1) .

Case 2. If (PSC2) holds. Then, from (1.0.94) and Definition 1.0.10, we deduce that

Γ 1 |η j | 2 dΓ = o λ -ℓ , ∀ j ∈ {1, 2, • • • , m} \ {j 0 }. (1.0.103)
Since c j 0 = 0, then, from the equation (1.0.92), we have

(iλ -b j 0 j 0 (x) )η j 0 - m j=1,j̸ =j 0 b j 0 j (x)η j = λ -ℓ h j 0 , on Γ 1 . (1.0.104)
Then, multiplying equation (1.0.104) by λη j 0 , integrating over Γ 1 , and taking the imaginary part, we get

Γ 1 |λη j 0 | 2 dΓ = ℑ Γ 1 b j 0 j 0 (x)λ|η j 0 | 2 dΓ + m j=1,j̸ =j 0 Γ 1 b j 0 j (x)λη j η j 0 dΓ + o(λ -ℓ+1 ).
(1.0.105) Now, by using Young's inequality and the boundedness of the entry b j 0 j , we get

ℑ m j=1,j̸ =j 0 Γ 1 b j 0 j (x)λη j η j 0 dΓ ≤ ε Γ 1 |λη j 0 | 2 dΓ + M ε,2 m j=1,j̸ =j 0 Γ 1 |η j | 2 dΓ. (1.0.106)
where

M ε,2 = max 1≤j≤m,j̸ =j 0 ∥b j 1 j ∥ 2 ∞ 4ε
and and ε is an arbitrary positive constant fixed below. Inserting (1.0.106) in (1.0.105) and using

(1.0.103), we get

(1 -ε)λ 2 Γ 1 |η j 0 | 2 dΓ ≤ ∥b j 0 j 0 ∥ ∞ Γ 1 λ|η j 0 | 2 dΓ + o(λ -ℓ+1
).

(1.0.107)

By letting ε = 1 2 and using the fact that ∥b j 0 j 0 ∥ ∞ ≤ λ/4 in (1.0.107), we obtain

Γ 1 |η j 0 | 2 dΓ = o λ -ℓ and consequently Γ 1 ||η|| 2 dΓ = o(λ -ℓ ).
(1.0.108)

On the other hand, from the equation (1.0.92) we have

iλη j 2 - m j=1 b j 2 j (x)η j + iλc j 2 (x)u = λ -ℓ h j 2 + λ -ℓ c j 2 (x)f 1 .
(1.0.109)

Then, using condition (PSC2) and repeating the same procedure used in Case 1, with

j 1 = j 2 , implies Γ 1 |λu| 2 dΓ = o(λ -ℓ+2 ) and Γ 1 |∂ ν u| 2 dΓ = o(λ -ℓ ).
Thus, letting ℓ = 2, we get the results in (1.0.93) under the condition (PSC2) .

Case 3. If (PSC3) holds. Then, using (1.0.88) in (1.0.92) will imply

iλη j 0 - m j=1 b j 0 j (x)η j + iλc j 0 (x)u = λ -ℓ h j 0 + λ -ℓ c j 0 (x)f 1 .
(1.0.110)

iλη j 3 - m j=1 b j 3 j (x)η j + iλc j 3 (x)u = λ -ℓ h j 3 + λ -ℓ c j 3 (x)f 1 .
(1.0.111)

Multiplying equation (1.0.110) by c 2 j 3 (x) and equation (1.0.111) by c j 0 (x)c j 3 (x), we get

iλc 2 j 3 (x)η j 0 -iλc j 0 (x)c j 3 (x)η j 3 - m j=1 b j 0 j (x)c 2 j 3 (x) -b j 3 j (x)c j 0 (x)c j 3 (x) η j = λ -ℓ c 2 j 3 (x)h j 0 -c j 0 (x)c j 3 (x)h j 3 .
(1.0.112) Now, multiplying equation (1.0.112) by λη j 0 , integrating over Γ 1 , and taking the imaginary part, while repeating the same technique used in (1.0.98), we get

Γ 1 |η j 0 | 2 dΓ = o(λ -ℓ ) and consequently Γ 1 ||η|| 2 dΓ = o(λ -ℓ ).
Return to equation (1.0.111), and repeat the same steps as in Case 1 with j 1 = j 3 , we obtain

Γ 1 |λu| 2 dΓ = o(λ -ℓ+2 ) and Γ 1 |∂ ν u| 2 dΓ = o(λ -ℓ ).
Thus, letting ℓ = 2, we get the results in (1.0.93) under the condition (PSC3). 

Γ 1 |η j | 2 dΓ = o λ -ℓ , ∀ j ∈ {1, 2, • • • , m} \ {j 0 }. (1.0.113)
Then using (PSC4), we have

iλη j 4 -b j 4 j 0 η j 0 - m j=1,j̸ =j 0 b j 4 j η j = λ -ℓ h j 4 .
(1.0.114)

Multiplying equation (1.0.114) by b j 4 j 0 (x)η j 0 , integrating over Γ 1 and taking the real part, we get

Γ 1 ℜ b 2 j 4 j 0 (x) |η j 0 | 2 dΓ = ℑ Γ 1 b j 4 j 0 (x)λη j 4 η j 0 dΓ -ℜ m j=1,j̸ =j 0 Γ 1 b j 4 j 0 (x)b j 4 j (x)η j η j 0 dΓ + o(λ -ℓ ).
Repeating the same technique used in (1.0.98), we then obtain

Γ 1 |η j 0 | 2 dΓ = o(λ -ℓ+2 ).
Now, going back to the following equation

iλη j 0 - m j=1 b j 0 j (x)η j + iλc j 0 (x)u = λ -ℓ h j 0 + λ -ℓ c j 0 (x)f 1 . (1.0.115)
Multiplying it by c j 0 (x)λu, integrating over Γ 1 and taking the imaginary part, as done in (1.0.98), we get

Γ 1 |λu| 2 dΓ = o(λ -ℓ+4 ).
Thus,

Γ 1 |∂ ν u| 2 dΓ = o(λ -ℓ+2 ).
Thus, letting ℓ = 4, we get the results in (1.0.93) under the condition (PSC4). The proof of the Lemma is thus completed. □ Now, substituting v from (1.0.88) into (1.0.89) and z from (1.0.90) into (1.0.91) gives the following system

λ 2 u + a∆u = -λ -ℓ g 1 -iλ -ℓ+1 f 1 ,
(1.0.116) -d) 

λ 2 y + b∆y = -λ -ℓ g 2 -iλ -ℓ+1 f 2 . ( 1 
Ω 1 |∇u| 2 dx + d Ω 2 |λy| 2 dx + b(2 -d) Ω 2 |∇y| 2 dx = o(1
ℜ 2λ 2 Ω 1 u(r • ∇ū)dx + 2a Ω 1 ∆u(r • ∇ū)dx = o(λ -ℓ ).
(1.0.119)

Noting that, since ∥λu∥ L 2 (Ω 1 ) , ∥∇u∥ L 2 (Ω 1 ) are uniformly bounded, then using (1.0.93) and the fact that f 1 → 0 in H 1 (Ω 1 ) and g 1 → 0 in L 2 (Ω 1 ), we deduce

-2ℜ Ω 1 (λ -ℓ g 1 + iλ -ℓ+1 f 1 )(r • ∇ū)dx = ℜ -2λ -ℓ Ω 1 g 1 (r • ∇ū)dx + 2idλ -ℓ Ω 1 f 1 (λu)dx +2iλ -ℓ Ω 1 (r • ∇f 1 )(λu)dx -2iλ -ℓ ∂Ω 1 (r • ν 1 )f 1 (λu)dΓ = o(λ -ℓ ).
(1.0.120)

In (1.0.120) we prove the right hand side of (1.0.119). Now for the left hand side, while making use of Green's formula and using the fact r(x) = x -x 0 , we get -d)

ℜ 2λ 2 Ω 1 u(r • ∇ū)dx = -d Ω 1 |λu| 2 dx + Γ 1 (r • ν 1 )|λu| 2 dΓ + I (r • ν 1 )|λu| 2 dΓ, (1.0.121) ℜ 2a Ω 1 ∆u(r • ∇ū)dx = a(d -2) Ω 1 |∇ū| 2 dx -a Γ 1 (r • ν 1 )|∇u| 2 dΓ -a I (r • ν 1 )|∇u| 2 dΓ + ℜ 2a Γ 1 ∂ ν 1 u(r • ∇u)dΓ + 2a I ∂ ν 1 u(r • ∇u)dΓ .
Ω 1 |∇u| 2 dx + a Γ 1 (r • ν 1 )|∇u| 2 dΓ = Γ 1 (r • ν 1 )|λu| 2 dΓ + ℜ 2a Γ 1 ∂ ν 1 u(r • ∇u)dΓ + 2a I ∂ ν 1 u(r • ∇u)dΓ + I (r • ν 1 )|λu| 2 dΓ -a I (r • ν 1 )|∇u| 2 dΓ + o(λ -ℓ ).
(1.0.123)

It follows, by using Young's inequality, the first geometric condition in (BMGC) and equation (1.0.93), that

d Ω 1 |λu| 2 dx + a(2 -d) Ω 1 |∇u| 2 dx + a(δ -1 -εR 2 ) Γ 1 |∇u| 2 dΓ ≤ Γ 1 (r • ν 1 )|λu| 2 dΓ + I (r • ν 1 )|λu| 2 dΓ + ℜ 2a I ∂ ν 1 u(r • ∇u)dΓ -a I (r • ν 1 )|∇u| 2 dΓ + o(λ -ℓ ).
(1.0.124)

where, R = ∥r∥ L ∞ (Ω) , and ε is an arbitrary positive constant to be fixed. Then, by taking ε = δ -1 2R 2 , we get the following estimate -d)

d Ω 1 |λu| 2 dx + a(2
Ω 1 |∇u| 2 dx ≤ Γ 1 (r • ν 1 )|λu| 2 dΓ + I (r • ν 1 )|λu| 2 dΓ + ℜ 2a I ∂ ν 1 u(r • ∇u)dΓ -a I (r • ν 1 )|∇u| 2 dΓ + o(λ -ℓ ).
(1.0.125)

Multiplying (1.0.117) by 2r • ∇ȳ, using Green's formula, and the boundary conditions of

y on Γ 2 we obtain d Ω 2 |λy| 2 dx + b(2 -d) Ω 2 |∇y| 2 dx = I (r • ν 2 )|λy| 2 dΓ -b Γ 2 (r • ν 2 )|∇y| 2 dΓ -b I (r • ν 2 )|∇y| 2 dΓ + ℜ 2b Γ 2 ∂ ν 2 y(r • ∇y)dΓ + 2b I ∂ ν 2 y(r • ∇y)dΓ + o(λ -ℓ ).
(1.0.126)

Adding (1.0.125) and (1.0.126), we get -d)

d Ω 1 |λu| 2 dx + a(2
Ω 1 |∇u| 2 dx + d Ω 2 |λy| 2 dx + b(2 -d) Ω 2 |∇y| 2 dx ≤ Γ 1 (r • ν 1 )|λu| 2 dΓ + I (r • ν 1 )|λu| 2 dΓ -a I (r • ν 1 )|∇u| 2 dΓ + I (r • ν 2 )|λy| 2 dΓ -b Γ 2 (r • ν 2 )|∇y| 2 dΓ -b I (r • ν 2 )|∇y| 2 dΓ + ℜ 2a I ∂ ν 1 u(r • ∇u)dΓ + 2b Γ 2 ∂ ν 2 y(r • ∇y)dΓ + 2b I ∂ ν 2 y(r • ∇y)dΓ + o(λ -ℓ ).
(1.0.127)

Besides, using the conditions at the interface, and denoting by τ to be the tangential variable, we have 

ℜ 2a I ∂ ν 1 u(r • ∇u)dΓ + 2b I ∂ ν 2 y(r • ∇y)dΓ = 2a I (r • ν 1 )|∂ ν 1 u| 2 dΓ + ℜ 2a I (r • τ )∂ τ u∂ ν 1 udΓ + 2b I (r • ν 2 )|∂ ν 2 y| 2 dΓ + ℜ 2b I (r • τ )∂ τ y∂ ν 2 ydΓ = 2a I (r • ν 1 )|∂ ν 1 u| 2 dΓ + 2b I (r • ν 2 )|∂ ν 2 y| 2 dΓ, (1.0.128) and -a I (r • ν 1 )|∇u| 2 dΓ -b I (r • ν 2 )|∇y| 2 dΓ = -a I (r • ν 1 )|∂ τ u| 2 dΓ -a I (r • ν 1 )|∂ ν 1 u| 2 dΓ -b I (r • ν 2 )|∂ τ y| 2 dΓ -b I (r • ν 2 )|∂ ν 2 y| 2 dΓ, (1 
ℜ 2a I ∂ ν 1 u(r • ∇u)dΓ + 2b I ∂ ν 2 y(r • ∇y)dΓ -a I (r • ν 1 )|∇u| 2 dΓ -b I (r • ν 2 )|∇y| 2 dΓ = -a I (r • ν 1 )|∂ τ u| 2 dΓ + a I (r • ν 1 )|∂ ν 1 u| 2 dΓ -b I (r • ν 2 )|∂ τ y| 2 dΓ + b I (r • ν 2 )|∂ ν 2 y| 2 dΓ.
(1.0.130) Moreover, when applying the conditions of y on

Γ 2 2b Γ 2 ∂ ν 2 y(r • ∇y)dΓ -b Γ 2 (r • ν 2 )|∇y| 2 dΓ = 2b Γ 2 (r • ν 2 )|∂ ν 2 y| 2 dΓ + ℜ 2b Γ 2 (r • τ )∂ τ y∂ ν 2 ȳdΓ -b Γ 2 (r • ν 2 )|∂ τ y| 2 dΓ -b Γ 2 (r • ν 2 )|∂ ν 2 y| 2 dΓ = b Γ 2 (r • ν 2 )|∂ ν 2 y| 2 dΓ.
(1.0.131) Thus, using the third estimation of (1.0.93) and (BMGC) we have -d)

d Ω 1 |λu| 2 dx + a(2
Ω 1 |∇u| 2 dx + d Ω 2 |λy| 2 dx + b(2 -d) Ω 2 |∇y| 2 dx ≤ -a I (r • ν 1 )|∂ τ u| 2 dΓ + a I (r • ν 1 )|∂ ν 1 u| 2 dΓ -b I (r • ν 2 )|∂ τ y| 2 dΓ + b I (r • ν 2 )|∂ ν 2 y| 2 dΓ + o(1) ≤ (b -a) I (r • ν 1 )|∂ τ u| 2 dΓ + a b (b -a) I (r • ν 1 )|∂ ν 1 u| 2 dΓ + o(1)
.

(1.0.132)

Finally, using the multiplier geometric condition on I in (BMGC) and from the fact that b ≥ a, we can deduce that -d)

d Ω 1 |λu| 2 dx + a(2
Ω 1 |∇u| 2 dx + d Ω 2 |λy| 2 dx + b(2 -d) Ω 2 |∇y| 2 dx = o(1).
The proof is thus completed. □ Lemma 1.0.14. Under the same assumptions of Theorem 1.0.11. The solution (u, v, y, z, η) ∈ D(A) of (1.0.88)-(1.0.92) satisfies the following

Ω 1 |λu| 2 dx -a Ω 1 |∇u| 2 dx + Ω 2 |λy| 2 dx -b Ω 2 |∇y| 2 dx = o(λ -2 ).
(1.0.133)

Proof. Multiplying (1.0.116) and (1.0.117) by ū and ȳ respectively, integrating, then using integration by parts we get

Ω 1 |λu| 2 dx+a ∂Ω 1 ∂ n 1 u ūdΓ-a Ω 1 |∇u| 2 dx = -λ -ℓ Ω 1 g 1 ūdx-iλ -ℓ+1 Ω 1 f 1 ūdx, (1.0.134)
and

Ω 2 |λy| 2 dx+b ∂Ω 2 ∂ n 2 y ȳdΓ-b Ω 2 |∇y| 2 dx = -λ -ℓ Ω 2 g 2 ȳdx-iλ -ℓ+1 Ω 2 f 2 ȳdx. (1.0.135)
Adding the equations (1.0.134) and (1.0.135), and by (1.0.93) and the fact that F n → 0, we have 

Ω 1 |λu| 2 dx -a Ω 1 |∇u| 2 dx + Ω 2 |λy| 2 dx -b Ω 2 |∇y| 2 dx = o(λ -ℓ ) - Γ 1 ∂ ν 1 u ūdΓ = o(λ -2 ).
Ω 1 |λu| 2 dx + Ω 2 |λy| 2 dx + a Ω 1 |∇u| 2 dx + b Ω 1 |∇y| 2 dx = o(1)
.

(1.0.137)

Proof. Multiplying (1.0.133) by (1 -d), then adding it to (1.0.118), we obtain 

Ω 1 |λu| 2 dx + Ω 2 |λy| 2 dx + a Ω 1 |∇u| 2 dx + b Ω 1 |∇y| 2 dx = o(1). ( 1 
∥U ∥ 2 H = Ω 1 |v| 2 dx + Ω 1 |∇u| 2 dx + Ω 2 |z| 2 dx + Ω 2 |∇y| 2 dx + Γ 1 η 2 dΓ = o(1).
Hence, we obtain ∥U ∥ H = o(1), which contradicts (1.0.86). Therefore the polynomial estimation of our system is proved.

Examples

In this section, we illustrate our general framework, by checking the assumptions for some particular examples.

Example 1.

Let Ω be a domain in R d , organized in the same way as the domain in the introduction, and satisfying the (BMGC) conditions. Consider the following system

                                                 u tt (x, t) -a∆u(x, t) = 0, in Ω 1 × (0, ∞), y tt (x, t) -b∆y(x, t) = 0, in Ω 2 × (0, ∞), u(x, t) -y(x, t) = 0, on I × (0, ∞), a∂ ν 1 u(x, t) + b∂ ν 2 y(x, t) = 0, on I × (0, ∞), a∂ ν 1 u(x, t) + η(x, t) = 0, on Γ 1 × (0, ∞), η t (x, t) -u t (x, t) + η(x, t) = 0, on Γ 1 × (0, ∞), y(x, t) = 0, on Γ 2 × (0, ∞), (1.0.141)
with b ≥ a. The system above is nothing but the System (1.0.1), with

B = -1, M = 1, C = -1.
It is easy to check that (SSC1)-(SSC4) holds ( we note here that strong stability holds for all a and b, not only for b ≥ a). It is clear that (iλ -B) is invertible, then Σ m ∩ iR = ∅. Besides using Lax-Milgram's Lemma we have 0 ∈ ρ(A), thus we have σ(A) ∩ iR = ∅ and consequently iR ⊂ ρ(A). Moreover, the matrix B satisfy

ℜ(-Bv, v) = |v| 2 .
(1.0.142) Thus, -B is Totally M -coercive. As ℜ{c 2 1 } ≥ 1 > 0, then the condition (PSC1) holds. That implies the following energy decay estimation is satisfied

E(t) ≤ C t ∥U 0 ∥ 2 D(A) , ∀ t > 0. (1.0.143) Example 2.
Let Ω in R 3 , be a domain as the one considered in the introduction, satisfying the (BMGC) conditions. Consider the following system

                                                 u tt (x, t) -a∆u(x, t) = 0, in Ω 1 × (0, ∞), y tt (x, t) -b∆y(x, t) = 0, in Ω 2 × (0, ∞), u(x, t) -y(x, t) = 0, on I × (0, ∞), a∂ ν 1 u(x, t) + b∂ ν 2 y(x, t) = 0, on I × (0, ∞), a∂ ν 1 u(x, t) -δ t (x, t) = 0, on Γ 1 × (0, ∞), mδ tt (x, t) + sδ t (x, t) + kδ(x, t) + ρu t (x, t) = 0, on Γ 1 × (0, ∞), y(x, t) = 0, on Γ 2 × (0, ∞), (1.0.144)
where ρ is a positive constant, b ≥ a and m, s, k are positive and sufficiently smooth functions on Γ 1 . We readily check that this system can be rewritten in the form of System (1.0.1) with η = (δ, δ t ) ⊤ and

B(x) =    0 1 -k m -s m    , M (x) =    k ρ 0 0 m ρ    , C(x) =    0 ρ m    , ∀ x ∈ Γ 1 .
As det(iλI -B) ̸ = 0, and ℜ(Bη, η) ̸ = 0 (where (•, •) denotes the usual inner product defined on C 3 ) , then the matrix B(x) is Hurwitz (see Definition A.0.6 ) and thus Σ m ∩ iR = ∅.

Hence the assumptions (SSC2) to (SSC4) hold. Moreover, we can easily check (SSC1). Then we deduce by Theorem 2.0.2 that the C 0semi group of contraction (e tA ) t≥0 is strongly stable (here we note that the strong stability holds for all a and b, not only for b ≥ a). By Lax-Milgram's

Lemma we can prove that 0 ∈ ρ(A), then follows that σ(A) ∩ iR = ∅. Following Theorem 1.0.7, (e tA ) t≥0 is not uniformly stable. In addition, we have

(-Bv, v) = s ρ |v 2 | 2 , (1.0.145) 
which implies that -B is 1-partially M -coercive. In the vector C, we have c 1 = 0, and

ℜ{c 2 2 } ≥ ρ 2 inf x∈Γ 1 |m(x)| 2 > 0.
It follows that the condition (PSC2) holds. Thus the energy of the System (1.0.144) satisfies the following estimation

E(t) ≤ C t ∥U 0 ∥ 2 D(A) , ∀ t > 0. (1.0.146) Example 3.
Consider the following system defined on a domain satisfying the (BMGC) conditions 

                                                         u tt (x, t) -a∆u(x, t) = 0, x ∈ Ω 1 , t > 0, y tt (x, t) -b∆y(x, t) = 0, x ∈ Ω 2 , t > 0, u(x, t) -y(x, t) = 0, x ∈ I, t > 0, a∂ ν 1 u(x, t) + b∂ ν 2 y(x, t) = 0, x ∈ I, t > 0, a∂ ν 1 u(x, t) -b 1 δ(x, t) -δ t (x, t) + κ(t) = 0, x ∈ Γ 1 , t > 0, κ t (t) + b 2 κ(t) -u t (x, t) = 0, x ∈ Γ 1 , t > 0, δ tt (x, t) + b 1 δ t (x, t) + b 0 δ(x, t) + b 0 u t (x, t) = 0, x ∈ Γ 1 , t > 0, y(x, t) = 0, x ∈ Γ 2 , t > 0, (1 
M =         b 0 0 0 0 1 0 0 0 1         , B =         0 1 0 -b 0 -b 1 0 0 0 -b 2         , C =         1 0 1        
. As in the preceding example, it is easy to check that (SSC1)-(SSC4) holds (Note here that strong stability holds for all a and b, not only for b ≥ a). Besides det(iλI -B) ̸ = 0, then Σ m ∩ iR = ∅. As 0 ∈ ρ(A) can be proved using Lax-Milgram's Lemma, then σ(A) ∩ iR = ∅, as well as

(-Bv, v) = b 1 |v 2 | 2 + b 2 |v 3 | 2 , (1.0.148)
that implies that -B is 1-partially M -coercive. Besides, c 1 ̸ = 0 in the vector C, and ℜ{c 2 3 } ≥ 1 > 0. Thus (PSC3) holds. Hence, the energy of the System (1.0.147) decays polynomially satisfying the following estimation

E(t) ≤ C t ∥U 0 ∥ 2 D(A) , ∀ t > 0. (1.0.149) Example 4.
On a domain satisfying the (BMGC) conditions, we consider the following system 

                                                 u tt (x, t) -a∆u(x, t) = 0, x ∈ Ω 1 , t > 0, y tt (x, t) -b∆y(x, t) = 0, x ∈ Ω 2 , t > 0, u(x, t) -y(x, t) = 0, x ∈ I, t > 0, a∂ ν 1 u(x, t) + b∂ ν 2 y(x, t) = 0, x ∈ I, t > 0, a∂ ν 1 u(x, t) -b 1 δ(x, t) -δ t (x, t) = 0, x ∈ Γ 1 , t > 0, δ tt (t) + b 1 δ t (t) + b 0 δ(t) + b 0 u t (x, t) = 0, x ∈ Γ 1 , t > 0, y(x, t) = 0, x ∈ Γ 2 , t > 0, ( 
M =    b 0 0 0 1    , B =    0 1 -b 0 -b 1    , C =    1 0    .
In this example, (SSC1)-(SSC4) hold (Note that the strong stability holds for all a and b,

Besides, ℜ(-Bv, v) = |v| 2 .
Thus -B is Totally M -coercive. As ℜ{c 2 1 } ≥ 1 > 0, then the condition (PSC1) holds. So for the System (1.0.153), with a = b = 1, the polynomial energy decay estimation is the following

E(t) ≤ C t ∥U 0 ∥ 2 D(A) , ∀ t > 0.
Now we will prove the following result:

Theorem 1.0.17. Assume that d = 1. The energy decay rate (1.0.84) is optimal in the sense that for any ε > 0, we cannot expect the decay rate 1 t 1+ε for all initial data U 0 ∈ D(A) and for all t > 0.

For the optimality, we search the asymptotic behavior of the eigenvalues of the operator A. Let λ be an eigenvalue of A and U = (u, v, y, z, η) ∈ D(A) be an associated eigenfunction, then AU = λU . Equivalently, we have the following system:

                                                 λ 2 u -u xx = 0,
x ∈ (-1, 0), λ 2 y -y xx = 0, x ∈ (0, 1), given by: Proof. We only need to show that λ n is simple (i.e, the algebraic multiplicity is equal to one). Let λ be an eigenvalue of A. Then we have

u x (-1) + η = 0, y(1) = 0, λη -λu(-1) + η = 0, u(0) = y(0), u x (0) = y x (0).
u(x) = Ae λx + Be -λx , x ∈ (-1, 0), ( 1 
ker(A -λI) = 1 λ ϕ(x), ϕ(x), 1 λ ψ(x), ψ(x), 1 λ + 1 ϕ(-1) ,
where

ϕ(x) = e λx -e 2λ-λx , -1 ≤ x ≤ 0, and 
ψ(x) = e λx -e 2λ-λx , 0 ≤ x ≤ 1.
Assume that there exist U = (u, v, y, z, η) ∈ ker(A -λI) 2 \ ker(A -λI). In other word, we have

AU -λU = V ∈ ker(A -λI).
That is equivalent to (1.0.174) Now using boundary condition at x = -1 we have

v -λu = ũ, ( 1 
u x (-1) = -η = - λ λ + 1 u(-1) - 1 λ(λ + 1) 2 (e -λ -e 3λ ) = -2 λ + 1 e 3λ + 1 λ(λ + 1) 2 e 3λ - 1 λ(λ + 1) 2 e -λ .
(1.0.175) On the other hand, from (1.0.173) we have

u x (-1) = 2e 3λ + 1 λ e 3λ + 1 λ e -λ .
Thus we get

e -4λ = 2λ 3 + 7λ 2 + 6λ -λ 2 -2λ -2 .
Compared to (1.0.160) implies 

(λ 3 + 5λ 2 + 9λ + 5)λ = 0,
λ k = i - kπ 2 - π 4 - 1 kπ + 1 2k 2 π + 2 k 2 π 2 + O 1 k 3 , (1.0.176)
for k large enough.

Proof. The complex number λ is an eigenvalue of A if and only if f (λ) = 0. Then, we have

e -4λ = (-1) λ 2 + λ . (1.0.177)
It follows that

λ k = - iπ 4 - ikπ 2 - 1 4 ln 1 - 2 2 + λ k . (1.0.178)
As |λ k | → ∞, we obtain the following

λ k = - iπ 4 - ikπ 2 + O 1 k as |k| → ∞. (1.0.179)
On the other hand, we have the following expansion

ln 1 - 2 2 + λ k = - 2 λ k + 2 λ 2 k + O 1 λ 3 k as |k| → ∞. (1.0.180)
Consequently, we get

λ k = - iπ 4 - ikπ 2 + 1 2λ k - 1 2λ 2 k + O 1 λ 3 k as |k| → ∞.
(1.0.181)

From (1.0.179), we get 

1 2λ k = - i kπ + i 2k 2 π + O 1 k 3 as |k| → ∞, (1.0.182) and - 1 2λ 2 k = 2 k 2 π 2 + O 1 k 3 as |k| → ∞. ( 1 
β k = - kπ 2 - π 4 - 1 kπ + 1 2k 2 π , (U k ) ⊂ D(A).
Using (1.0.176) we get

lim k→+∞ β 2-2l k ∥(iβ k -A)U k ∥ = 0.
By applying Theorem A.0.4, due to Borichev and Tomilov, we deduce that the trajectory e tA u 0 decays slower than 1

t 1 2-2l
on the time t → ∞. Then we cannot expect the energy decay rate 1 t 1+ε . This ends the proof of Theorem 1.0.17 .

Chapter 2 Spectral Asymptotics for Magnetic Schrödinger Operator With Slowly Varying

Perturbation Introduction

The Hamiltonian for a system of d interacting electrons confined along the x-direction and free to move along the y-direction in the presence of magnetic and electric potentials is given by

H(ϵ) := d j=1 D 2 x j + (D y j + µ j x j ) 2 + V (ϵx, ϵy), D ν = 1 i ∂ ν , (2.0.1) where x = (x 1 , • • • , x d ) ∈ Λ d := Π d j=1 ] -a j , a j [, y ∈ R d , µ = (µ 1 , • • • , µ d ) with
ϵ, a j , µ j > 0. The potential V is assumed to be smooth and real-valued. The non-perturbed operator

H = D 2 x + (D y + µx) 2 = d j=1 D 2 x j + (D y j + µ j x j ) 2 is defined on H D Ω d := {u ∈ H 2 (Ω d ); u| ∂Ω d = 0}
, where H 2 (Ω d ) stands for the second order Sobolev space on

Ω d := {(x, y) ∈ R d × R d ; -a j < x j < a j } = Λ d × R d . The
Fourier transformation with respect to y reduces the spectral problem of H to an analysis of the

eigenvalues {e l (k)} ∞ l=0 depending on k = (k 1 , • • • , k d ) of the operator H 0 (k) = D 2 x + (k + µx) 2 = d j=1 D 2 x j + (k j + µ j x j ) 2 ,
on Λ d with Dirichlet boundary condition.

When the electron moves freely in both directions (i.e.

a j = ∞, H ∞ = H on R 2d ),
the spectrum of H ∞ exhibits infinitely degenerate eigenvalues, the so called Landau levels.

The two-dimensional version of (2.0.1) is generally considered to serve as a minimal model for the integer quantum Hall, and has therefore been intensively investigated by physicists, see for instance [START_REF] Janssen | Introduction to the theory of the integer quantum hall effect[END_REF][START_REF] Viehweger | Note on the quantum hall hamiltonian in cylinder geometry[END_REF].

When a j is finite, the spectrum of H is absolutely continuous, and coincides with [e 0 (0), +∞[. The points e j (0) are thresholds in σ(H), and tends to the Landau level when µ or a j is large enough (see Proposition 2.0.5). The application of the H(ϵ) spectrum in the theory means that we take into consideration important factors like finite size of the Hall system and the presence of a crystal lattice or impurities, and so on, in it. If the scalar potential V tends to zero as |y| → ∞, the essential spectra of H(ϵ) and H are the same, and discrete eigenvalues with finite multiplicities can arise in ] -∞, e 0 (0)[. Moreover, it is reasonable to expect that the electric field creates embedded eigenvalues and resonances on the second sheet. The principal topic of this Chapter centers around the effect of the slowly varying decaying perturbation V (ϵx, ϵy) on the non-perturbed operator H. Particular attention will be paid to the asymptotic behavior of the spectrum near the thresholds e j (0).

The spectrum of the non-perturbed Hamiltonian H on a bounded domain Ω ⊂ R 2

were considered by many others. The asymptotic behavior of the bottom of the spectrum of H as µ tends to infinity has been treated for different geometry of Ω (see [START_REF] Fournais | Spectral methods in surface superconductivity[END_REF] and the references cited therein). When Ω is the semi-infinite plane or the disk, the WKB approximations of the energies and the eigenfunctions are obtained in [START_REF] Spehner | Semiclassical spectrum of integrable systems in a magnetic field[END_REF]. For the counting function of the number of eigenvalues of the two dimensional Schrödinger operator with magnetic field we refer to [START_REF] Miranda | Discrete spectrum of quantum hall effect hamiltonians ii: Periodic edge potentials[END_REF][START_REF] Shirai | Strong-electric-field eigenvalue asymptotics for the iwatsuka model[END_REF] and the monographs [START_REF] Fournais | Spectral methods in surface superconductivity[END_REF][START_REF] Erard | Multiparticle quantum scattering in constant magnetic fields[END_REF]. The nature of the spectrum of the operator H(1) on the half plane with Dirichlet boundary condition was studied in [START_REF] De Bievre | Propagating edge states for a magnetic hamiltonian[END_REF]. Other exciting spectral properties of the 2D Schrödinger operator with crossed magnetic and electrical fields have been investigated

in [START_REF] Bruning | The spectral asymptotics of the two-dimensional schrodinger operator with a strong magnetic field. ii[END_REF][START_REF] Briet | Mourre estimates for a 2d magnetic quantum hamiltonian on strip-like domains[END_REF][START_REF] Inahama | On the heat trace of the magnetic schrödinger operators on the hyperbolic plane[END_REF][START_REF] Miranda | Eigenvalue asymptotics for a schrödinger operator with non-constant magnetic field along one direction[END_REF][START_REF] Sambou | On eigenvalue accumulation for non-self-adjoint magnetic operators[END_REF].

In [START_REF] Briet | Spectral properties of a magnetic quantum hamiltonian on a strip[END_REF] (see also [START_REF] Briet | Mourre estimates for a 2d magnetic quantum hamiltonian on strip-like domains[END_REF]), Mourre's theory and the spectral shift function near the thresholds e j (0) were considered when ϵ = 1 and Ω 1 =] -a, a[×R. In [START_REF] Dimassi | Semiclassical approximation of the magnetic schrödinger operator on a strip: dynamics and spectrum[END_REF], by the WKB method Dimassi constructed nontrivial asymptotic solutions of the equation

H(ϵ)u = eu, (⋆).
Assuming that V (x, y) = V (y) is independent on x. From the eikonal equation, he derives the classical effective Hamiltonian corresponding to (⋆). In particular he shows that the equations of motion in the y-direction are given by

ẏ = ∂ k e l (k), k = -∂ y V (y).
These WKB approximate solutions fail at the so called turning points (i.e., points on the energy surface Σ e = {(y, k); e l (k) + V (y) = e} where ∂ k e l (k) = 0 and ∇ y V (y) ̸ = 0) . In such neighborhoods, where the semiclassical approximation fails, he uses the semi-classical Airy equation to describe the solution of the equation (⋆) for some fixed energy. Next the connection of the two solutions in the matching regions leeds to the Bohr-Sommerfeld quantization conditions. Dimassi uses these quantization conditions to determine asymptotically the eigenvalues and the resonances of H(ϵ) for ϵ small enough. This method cannot be used to describe all the spectrum of H(ϵ). On the other hand, the multi-dimensional case (i.e., Ω d with d > 1) is more complicated, since the thresholds e j (0) generally degenerates when d > 1. In the first part of this thesis we present an unified approach and derive an explicit formula for the counting and spectral shift functions corresponding to H and H(ϵ). Our goal is to give a rigorous way to recover the spectrum of H(ϵ) on Ω d , (d ≥ 1) near any energy level λ, by studying systems of pseudo-differential operators which have a principal symbol quite close to one of e j (ϵD y ) + V (0, y) -z, where z is the spectral parameter and e j (k) is an eigenvalue of H 0 (k).

The main results of the first part of this thesis are briefly summarized here. First, we collect in Theorem 2.0.1 and Corollary 2.0.2 a few properties of the eigenvalues e j (k) and their corresponding eigenfunctions Ψ j (•, k). We introduce some type of "density of states ρ", related to H (see (2.0.11)), and examine its regularity in Theorem 2.0.3. We show that t → ρ(t) is analytic except at the thresholds e j (0), and we give its asymptotic behavior near every point e j (0), j = 0, 1, • • • . Next, we study the asymptotic behavior of e j (k) when µ tends to infinity. For k = 0, j = 0 and µ large enough, it is well known that e 0 (0) -1 ∼ 4π -1 2 a 2 µ cylinder functions. Now we pass to the results concerning the perturbed operator H(ϵ) when ϵ is small enough. First, we give a complete asymptotic expansion in powers of ϵ of tr(Ψf (H(ϵ))) where

f ∈ C ∞ 0 (R)
and Ψ is a multiplication operator by a real integrable function Ψ(y) ∈ L 1 (R d ). In particular, we obtain a Weyl type asymptotics with optimal remainder estimates of the counting function of eigenvalues of H(ϵ) in any closed interval in ] -∞, e 0 (0)[. To investigate the effect of the perturbation on the continuous spectrum of H, it is natural to study the spectral shift function.

When V vanishes as ∥y∥ → ∞ (see (2.0.13)), the spectral shift function, ξ(µ; ϵ), related to H(ϵ)

and H is well defined in the sense of distribution :

tr f (H(ϵ)) -f (H) = -⟨ξ ′ (•; ϵ), f (•)⟩ = R ξ(µ; ϵ)f ′ (µ)dµ, f ∈ C ∞ 0 (R). (2.0.2)
We refer to [START_REF] Robert | Relative time-delay for perturbations of elliptic operators and semiclassical asymptotics[END_REF] and references cited there for comprehensive information on related subjects.

We give in Theorem 2.0.10 a complete asymptotic expansion in powers of ϵ of the left hand side of (2.0.2), and in Theorem 2.0.11, we establish a complete asymptotic expansions in powers of ϵ for ξ(µ; ϵ). The leading coefficients of these asymptotics are expressed in terms of the density ρ and the potential V (see (2.0.18) and (2.0.23)).

Motivation and Method

Consider a lower bounded self-adjoint operator depending on a small parameter h, and assume for instance that its spectrum is discrete (see appendix B for the definitions). A general method to calculate the spectrum of operator A does not exist. There are few examples of how full spectrum can be computed. Even the Schrödinger operator (i.e. A = -h 2 ∆ + V (x)) can only be solved in exceptional cases : hydrogen atom, harmonic oscillator, etc. Thus, for most quantum Hamiltonians one cannot establish exact trace formulas. The idea is to establish these formulas in the semiclassical framework (h ↘ 0), which we will refer to as semi-classical trace formulas. This involves studying the asymptotic behavior, as h tends tends to zero, of the trace operator f (A) where f is a smooth function with a compact support. Since the 1970s, work by V. P. Maslov, and M. V. Fedoriuk [START_REF] Maslov | Semi-classical approximation in quantum mechanics[END_REF], J.B. Kellay [START_REF] Keller | Corrected bohr-sommerfeld quantum conditions for nonseparable systems[END_REF] and L. Hörmander [START_REF] Hörmander | Fourier integral operators. I[END_REF] on micro-local analysis has provide a solid mathematical basis to address these problems. Notice that when 

f (x) = 1
is not disjoint from σ c (A). Therefore, the operator f (A) is note trace class. Assume that A is a perturbation of a self-adjoint operator A 0 such that (A -A 0 )(A + i) -N and (A -A 0 )(A 0 + i) -N
are trace class for some N ∈ N.Then for all f ∈ C ∞ 0 (R), the operator

f (A) -f (A 0 )
is trace class (see Theorem B.0.12 in appendix). Hence, there exists a distribution ξ ∈ D ′ (R)

such that tr f (A) -f (A 0 ) = -⟨ξ ′ (•), f (•)⟩ = R ξ(µ)f ′ (µ)dµ, f ∈ C ∞ 0 (R).
The distribution, ξ(•), is called spectral shift function (SSF for short). The SSF is an important object in the spectral theory of perturbations, which covers both discrete and continuous spectrum. The SSF was brought into mathematical use in M. G. Krein's famous paper [START_REF] Krein | On the trace formula in perturbation theory[END_REF],

where the precise statement of the problem was given and the explicit representation of the SSF in terms of the perturbation determinant was obtained. The work of M. G. Krein on the SSF has been described in detail in [START_REF] Birman | The spectral shift function. the work of mg krein and its further development[END_REF]. The connection between the SSF and the scattering matrix is given in the paper [START_REF] Krein | On the theory of wave operators and scattering operators[END_REF]. For more details about the interpretation of the spectral shift function we refer to the survey by D. Robert [START_REF] Robert | Semiclassical asymptotics, Differential Operators and Spectral Theory[END_REF] and chapter 8 of the monograph by D. R. Yafaev [START_REF] Yafaev | Mathematical scattering theory. general theory[END_REF]. Since ξ = -N when f (A 0 ) = 0, the SSF may be considered as a generalization of the eigenvalues counting function. For h-pseudodifferential operators, the asymptotic behavior of the SSF, trace formulas and the counting functions has been intensively studied in different aspects (see [START_REF] Robert | Relative time-delay for perturbations of elliptic operators and semiclassical asymptotics[END_REF][START_REF] Robert | Semiclassical asymptotics, Differential Operators and Spectral Theory[END_REF] and the references given there).

As indicated in the introduction, here we deal with all these problems studying semi-classical trace formulas, counting function and the SSF of H(ϵ) and H when ϵ tends to zero. Notice that H(ϵ) is not an ϵ-pseudodifferential operator. In fact, there are two spatial scales in equation (2.0.1). The first one, x, is confined in the box. Hence we can treat V (ϵx, ϵy) as a perturbation of V (0, ϵy) (see Remark 2.0.18). For this variable the analytic perturbation theory works. The second one, y, is free in R d . To study H(ϵ) with respect to this variable when ϵ ↘ 0, we use the effective hamiltonian method (see Appendix D). Hence, we reduce the spectral study of H(ϵ) near some fixed energy z, to the study of a system of ϵ-pseudodifferential operator whose symbol is the matrix ((e j (k) + V (0, y)) δ i,j ) 1≤i,j≤N . The number N depends on z and ∥V ∥ ∞ .

Hence, we can use the results obtained in [START_REF] Dimassi | Spectral asymptotics in the semi-classical limit[END_REF][START_REF] Dimassi | A time-independent approach for the study of the spectral shift function and an application to stark hamiltonians[END_REF] to conclude. In appendices A, B, C and D we recall some well known results on h-pseudodifferential operators, functional analysis, effective

Hamiltonians and spectral theory.

Notations : We shall employ the following standard notations. Given a complex function f h depending on a small positive parameter h, the relation

f h = O(h N ) means that there exist C N , h N > 0 such that |f h | ≤ C N h N for all h ∈]0, h N [. The relation f h = O(h ∞ ) means that, for all N ∈ N := {0, 1, 2, . . .}, we have f h = O(h N ). We write f h ∼ ∞ j=0 a j h j if, for each N ∈ N, we have f h -N j=0 a j h j = O(h N +1
). We adopt the notation N * := N \ {0}. Let H be a Hilbert space. The scalar product in H will be denoted by ⟨•, •⟩. The set of linear bounded operators from H 1 to H 2 is denoted by L(H 1 , H 2 ) and L (H 1 ) in the case where

H 1 = H 2 .

Main Results

All results from this part will be published in a paper entitled "Spectral asymptotics for Magnetic Schrödinger Operator with Slowly Varying Potential", accepted for publication in Osaka Journal of Mathematics.

Results related to the non-perturbed Hamiltonians H 0 (k) and H

In this section we state the main results concerning the non-perturbed operators H 0 (k)

and H. In particular, we introduce an integrated density of states, ρ, corresponding to H.

The operator H is unitarily equivalent to

FHF * = ⊕ R d H 0 (k)dk, (2.0.3) 
where F is the partial Fourier transform with respect to y given by

(Fu)(x, k) = 1 (2π) d/2
R d e -iyk u(x, y)dy, and

H 0 (k) = D 2 x + (k + µx) 2 , (2.0.4) 
is the operator defined on

H Λ d := {u ∈ H 2 (Λ d ); u| ∂Λ d = 0}.
In what follows, we will consider H Λ d as a Hilbert space equipped with the standard scalar product of H 2 (Λ d ).

We first consider the two dimensional case (i.e, d = 1, Ω 1 =] -a, a[×R). From the Sturm-Liouville theory (see [START_REF] Marchenko | Sturm-Liouville operators and applications[END_REF]), it is well-known that H 0 (k) has a simple discrete spectrum:

e 0 (k) < e 1 (k) < • • • .
Notice that these eigenvalues depends on µ. For simplicity of notation we will omit this dependence.

The change of variable x → -x implies that e l (k) = e l (-k). Since the eigenvalues are simple, an ordinary analytic perturbation theory shows that e l (k) (and the corresponding eigenfunction) are analytic functions in k (see [START_REF] Kato | Analytic perturbation theory, Perturbation theory for linear operators[END_REF][START_REF] Reed | Methods of Modern Mathematical Physics. IV Analysis of Operators[END_REF]).

Theorem 2.0.1. The eigenvalue e j (k) satisfies :

ke ′ j (k) > 0 (k ̸ = 0)
, and e ′ j (0) = 0, e ′′ j (0) > 0.

(2.0.5)

Moreover, for every fixed j ∈ N and any a, µ > 0, the following properties hold :

e j (k) = e j (0) + ∞ l=1 α j,l k 2l (k → 0), α j,1 > 0, (2.0.6) 
e j (k) = k 2 -2aµk + ν j (2µk) 2/3 (1 + o(1)), (k → +∞), (2.0.7) 
where

0 < ν 0 < ν 1 < • • • < ν j < • • • are the eigenvalues of the operator D 2 x + x on R + .
The normalized eigenfunctions Ψ n (•, k) corresponding to e n (k) can be chosen real-valued and analytic with respect to k satisfying :

∀p ∈ N, ∃C p , such that a -a ∂ p k Ψ n (x, k) 2 dx ≤ C p , ∥Ψ n (•, k)∥ L 2 (-a,a) = 1. (2.0.8) 
For all p ∈ N, there exists C p > 0 such that

|∂ p k e n (k)| ≤ C p (1 + |k|) 2-p .
(2.0.9)

We return now to the general case d ≥ 1. Let e j l (k j ) l∈N and Ψ j l (x j , k j ) l∈N be the eigenvalues and eigenvectors of the operator D 2 x j + (k j + µ j x j ) 2 given by Theorem 2.0.1. For 

J = (j 1 , • • • , j d ) ∈ N d and k = (k 1 , • • • , k d ) ∈ R d , we denote e J (k) = e 1 j 1 (k 1 ) + • • • + e d j d (k d ), Ψ J (x, k) = Ψ 1 j 1 (x 1 , k 1 ) × • • • × Ψ d j d (x d , k d ). ( 2 
σ(H) = J∈N d k∈R d e J (k) = [e 0 (0), +∞[.
The points e J (0) are thresholds in σ(H). From now on we denote this set by

Σ := J∈N d e J (0) = σ(H 0 (0)).
For t 0 ∈ Σ, we let S t 0 := {J ∈ N d ; e J (0) = t 0 } and m t 0 := #S t 0 be its multiplicity. In order to formulate our results on the trace formula and the asymptotics of the spectral shift function, we need to introduce the function ρ : R → R related to the non-perturbed H by

ρ(t) = J∈N d {e J (k)≤t} dk (2π) d .
(2.0.11)

Obviously, ρ(t) = 0 for t < e 0 (0) = infσ(H). In an appendix, we shall prove that the function ρ(t) is analytic except near Σ. More precisely, we have Theorem 2.0.3. The function ρ is analytic except at Σ. Moreover, near any point t 0 = e J (0) ∈ Σ, there exist analytic functions f and g such that :

ρ(t) = f (t -t 0 ) + Y (t -t 0 )g( √ t -t 0 ), for |t -t 0 | small enough with g(t) ∼ t→0 J∈St 0 vol(S d-1 ) d det( ∇ 2 e J (0) 2 ) t d .
Here Y (t) is the Heaviside function and S d-1 stands for the unit sphere in R d .

Remark 2.0.4. Notice that the singularity and the behavior of ρ near e J (0) is similar to those of the integrated density of states, ρ 0 (t), of -∆ on R d near t = 0. We recall that

ρ 0 (t) = (2π) -d vol(B R d (0, 1))Y (t)t d/2 .
Now, we investigate the asymptotic behavior of the eigenvalues of H 0 (k) when µ tend to infinity. Without any loss of generality we may assume that d = 1, (i.e, Ω 1 = [-a, a] × R). For d > 1 we use (2.0.10). We set e j (k) and Ψ j (k) as the j-th eigenvalue and the j-th eigenfunction of H 0 (k), respectively. In the following main result of this subsection, we give the asymptotic behavior of the eigenvalues e j (k) when µ tends to infinity.

Proposition 2.0.5. Fix j and a, we have :

e j (k) -µ(2j + 1) ∼ µ→∞ 2 a √ 2µ 2j+3 j! √ 2π e -a 2 µ e -k 2 /µ cosh(2ak) × 1 + (2j + 1)k aµ tanh(2ak) + j(2j + 1) k aµ 2 + o k 2 µ 2 , (2.0.12) 
uniformly for |k| ≪ µ.

Remark 2.0.6. For j = 0 and k = 0, (2.0.12) were obtained in [START_REF] Bolley | Modélisation du champ de retard à la condensation d'un supraconducteur par un problème de bifurcation[END_REF].

Results related to the perturbed Hamiltonian H(ϵ)

Now, we investigate the effect of the slowly varying potential on the undisturbed operator spectrum. First, we give a complete asymptotic expansion in powers of ϵ of tr(Ψf (H(ϵ))) where the following asymptotics hold :

tr (Ψf (H(ϵ))) ∼ ∞ j=0 a j ϵ -d+j , (2.0.14) 
with

a 0 = - R d ×Rt Ψ(y)f ′ (t)ρ(t -V (0, y))dydt.
(2.0.15)

Here f (H(ϵ)) is the operator given by the spectral theorem and Ψ :

L 2 (Ω d ) ∋ u → Ψ(y)u(x, y) ∈ L 2 (Ω d ) is the multiplication operator.
Notice that the operator f (H(ϵ)) is not trace class, since the support of the function f is not disjoint from the continuum spectrum of H(ϵ). However, Ψf (H(ϵ)) is trace class, since Ψ decays at infinity. When Ψ is supported in a compact set K, it is likely that Ψ reduces the study of H(ϵ) on Ω d to H(ϵ) on the bounded set Π d j=1 [-a j , a j ] × K. Now we will apply the above result for the case when the support of f is disjoint from the continuum spectrum of H(ϵ). Consequently, we get an estimate about the number of eigenvalues Corollary 2.0.9. Assume that V tends to zero at infinity, and let f ∈ C ∞ 0 (] -∞, e 0 (0)[; R). We have

tr(f (H(ϵ))) ∼ ∞ j=0 b j ϵ -d+j , (2.0.16 
)

with b 0 = - R d ×Rt f ′ (t)ρ(t -V (0, y))dydt.
(2.0.17)

In particular,

lim ϵ↘0 ϵ d N ([a, b]; ϵ) = R d ρ(b -V (0, y)) -ρ(a -V (0, y)) dy. (2.0.18) Theorem 2.0.10. Assume (2.0.13) with δ > d. For f ∈ C ∞ 0 (R) the operator f (H(ϵ)) -f (H) is
trace class. Moreover, the following asymptotics hold

tr(f (H(ϵ)) -f (H)) ∼ ∞ j=0 c j ϵ -d+j (2.0.19) with c 0 = R d ×Rt f ′ (t)(ρ(t) -ρ(t -V (0, y))) dydt.
(2.0.20)

The above theorem, enables us to define the spectral shift function ξ(•, ϵ) ∈ D ′ (R), related to the operators H(ϵ) and H (see (2.0.2)). Theorem 2.0.10 tel us that ϵ d ξ(•, ϵ) converges to ρ(t) -ρ(t -V (0, y))dy in the sense of distribution. Under a non-trapping condition, the following result gives a pointwise asymptotic expansion in powers of ϵ of ξ ′ (•; ϵ).

Theorem 2.0.11. Fix λ > e 0 (0) with λ ̸ ∈ {e 1 (0), e 2 (0), • • • }, and assume that

k • ∇e j (k) -y • ∇ y V (0, y) ≥ c > 0 in {(y, k) ∈ R 2d ; e j (k) + V (0, y) = λ}. (2.0.21) 
There exists η > 0 such that the following complete asymptotic expansion holds uniformly on

t ∈]λ -η, λ + η[: ξ ′ (t, ϵ) ∼ ∞ j=0 κ j (t)ϵ -d+j , (2.0.22) with κ 0 (t) = (ρ ′ (t) -ρ ′ (t -V (0, y)))dy. (2.0.23) 
Comments. Let us briefly examine the above results and their generalizations.

• By (2.0.5), assumption (2.0.21) is satisfied under the following condition :

-y∇ y V (0, y) ≥ 0 and -y∇ y V (0, y) > 0, on {y ∈ R d ; V (0, y) = λ -e j (0)}.

• All results above will remain true if we substitute H by H W := H + W (x), where W is defined for x ∈ Λ d . In this case, the ρ distribution of the above mentioned results is associated with operator H W .

• If W ̸ = 0, the properties of the ρ distribution corresponding to the H W operator will change. Indeed, it depends on the critical point of the eigenvalues e j (k) corresponding to the operator

H W (k) = D 2 x + (k + µx) 2 + W (x) on L 2 (Λ d ).
In particular, the set of ρ singularities is not only the defined threshold Σ, but contains the critical values of the e j (k)

eigenvalues. Note that statement (2.0.5) is generally not true for W ̸ = 0. Critical value can occur for λ = e j (k) with λ > inf k e j (k).

• Let µ ∈ D ′ (R) be the distribution on R defined by

⟨µ, f ⟩ = f (V (0, y)) -f (0) dy, f ∈ C ∞ 0 (R).
As in [START_REF] Dimassi | Lower bounds for the counting function of resonances for a perturbation of a periodic schrödinger operator by decreasing potential[END_REF][START_REF] Dimassi | A local trace formula for resonances of perturbed periodic schrödinger operators[END_REF], using Theorem 2.0.11 and the definition of resonances by the analytic distortion method one prove that near any point t ∈ Σ + singsupp a (µ) there are at least O(ϵ -d ) resonances. Here singsupp a (µ) denotes the analytic singular support of the distribution µ.

Outline of the proofs

Let us provide a broad outline of the proof. Spectral properties of the free operator H follow from the direct integral decomposition (2.0.57). According to Theorem 2.0.1, we may write

H 0 (k) = j≥0 e j (k)π j (k),
where π j (k)u(x) = ⟨u(•), Ψ j (•, k)⟩Ψ j (x, k) is the projection on Ψ j (•, k). By (2.0.8) and (2.0.9), the operators e j (D y ) and π j (D y ) are well defined as pseudo-differential operators. Thus, for instance, if V (x, y) = V (y) is independent on x then

H(ϵ) = H 0 (D y ) + V (ϵy) = j≥0 [e j (D y ) + V (ϵy)] π j (D y ).
Since V is bounded, and lim j→∞ e j (k) = +∞ uniformly with respect to k, it follows by an elliptic argument that (e j (D y ) + V (ϵy) -z) is invertible for z in a bounded set and j > N , with N large enough. This allows one to reduce the spectral study of H(ϵ) on L 2 (Ω d ) near z to the study of a system of ϵ-pseudo-differential operators on L 2 (R d y ), whose diagonal entries are (e j (ϵD y ) + V (y) -z), j = 0, • • • , N (see Propositions 2.0.14-2.0.15). Now, the main results follow from standard Theorems of functional calculus and micro-local analysis. When V depends on x, we use the fact that x is confined in a box, we then treat for ϵ small enough V (ϵx, ϵy) as a perturbation of V (0, ϵy).

Proofs of the Main Results of the non-perturbed Hamiltonian

Proof of Theorem 2.0.1

The assertion (2.0.5) is proved in [START_REF] Geiler | Structure of the spectrum of the schrodinger operator with magnetic field in a strip and infinite-gap potentials[END_REF] (see Theorem 2 in [START_REF] Geiler | Structure of the spectrum of the schrodinger operator with magnetic field in a strip and infinite-gap potentials[END_REF]). Formula (2.0.6) follows from the fact that e j (k) is an even real analytic function with e ′′ j (0) > 0.

To prove (2.0.7), consider the operator 

H(k) = D 2 x + 2µxk + k
u(t) = C + Ai(t) + C -Bi(t).
We recall that Bi(t) = Ai(e 2πi/3 x). Using the fact that v(t) = u(t -ν j ) satisfies the equation Gv = ν j v, we deduce from the boundary conditions v(0) = v(b) = 0, the quantization condition on the eiguenvalues ν j of the operator G Ai(-ν j ) = Bi(-ν j ) Ai(-ν j + b) Bi(-ν j + b) .

Since the right-hand side of the above equality tends to zero as b tends to +∞, -ν j are approximated (when k → +∞) by the zeros of the Airy function Ai(x). Consequently, the Using the above inequality and the fact that x ∈ [-a, a], we obtain

eigenvalues λ 0 (k) < λ 1 (k) < • • • of H(k) satisfies λ j (k) = k 2 -2aµk + ν j (2µk) 2/3 (1 + o(1)) (k → +∞). ( 2 
H 0 (k) -µ 2 a 2 ≤ H(k) = H 0 (k) -µ 2 x 2 ≤ H 0 (k),
which together with Theorem XIII.1 in [START_REF] Reed | Methods of Modern Mathematical Physics. IV Analysis of Operators[END_REF] yields

e j (k) -µ 2 a 2 ≤ λ j (k) ≤ e j (k).
Thus (2.0.7) follows from (2.0.24) and the above inequality.

Next we prove (2.0.8). Let Ψ n (•, k) be the normalized real-valued analytic function corresponding to e n (k). Since Ψ n is real and 

∥Ψ n (•, k)∥ = 1, it follows that ∂ ∂k a -a Ψ n (x, k) 2 dx = 0 = 2 a -a Ψ n (x, k) ∂ ∂k Ψ n (x, k)dx. ( 2 
Ψ n (•, k), that is for u(x) ∈ H Λ 2 Π n (k)u(x) = 1 2πi Γn ( H(k) -z) -1 dz = ⟨ u(•) , Ψ n (•, k)⟩ Ψ n (x, k). ( 2 
∂ k Ψ n (x, k) = ∂ k Π n (k)Ψ n (x, k) = -1 2πi Γn ( H(k) -z) -1 2µx( H(k) -z) -1 dzΨ n (x, k), (2.0.27)
which yields

∥∂ k Ψ n (•, k)∥ = O(1)∥Ψ n (•, k)∥ = O(1)
.

We now proceed by induction using (2.0.27).

To prove (2.0.9), we differentiate the equality

(H 0 (k) -e n (k))Ψ n (•, k) = 0 with respect to k we get 2(x + k) -e n (k) Ψ n (x, k) = H 0 (k) -e n (k) ∂ k Ψ n (x, k).
Taking the product scalar of both sides of the above equality with Ψ n (•, k) and using the self-adjointeness of H 0 (k), as well as well as the fact that Ψ n is real valued and normalized we obtain the formula

∂ k e n (k) = 2 a -a xΨ n (x, k) 2 dx + 2k, (2.0.28) 
which yields (2.0.9) for p = 1. For p ≥ 2, we differentiate (2.0.28) and we use (2.0.8).

Proof of Theorem 2.0.3 The proof of Theorem 2.0.3 is based on the two following lemmas.

Fix J = (j 1 , j 2 , • • • , j d ) ∈ N d ,
Thus making the change of variable k = D -1 (ξ) and using polar coordinates, we obtain

κ(t) = {k∈V ; e J (k)≤t} dk = det ∇ 2 e J (0) 2 -1/2 {ξ∈B(0,ϵ) ; |ξ| 2 ≤t-e J (0)} Jac(D -1 (ξ))dξ = det ∇ 2 e J (0) 2 -1/2 √ max(t-e J (0),0) 0 S d-1
Jac(D -1 (rω)) r d-1 drdω, which yields the lemma since Jac(D -1 (rω)) = 1 + O(r). □

We now turn to the proof of Theorem 2.0.3. For t 0 ∈ Σ, we let S t 0 := {J ∈ N d ; e J (0) = t 0 } and m t 0 := #S t 0 be its multiplicity. Writing

ρ(t) = (j 1 ,••• ,j d )̸ ∈Σt 0 {k∈R d ;e j 1 (k 1 )+•••+e j d (k d )≤t} dk (1) 
+ (j 1 ,••• ,j d )∈Σt 0 {k∈R d ;e j 1 (k 1 )+•••+e j d (k d )≤e} dk (2) 
.

It follows from Theorem 2.0.1 that ∇ k e J (k) = ∇ k (e j 1 (k 1 ) + • • • + e j d (k d )) ̸ = 0 on Σ η (t 0 ) for η small enough and (j 1 , • • • , j d ) ̸ ∈ S t 0 .
Combining this with Lemma, we deduce that ( 1) is analytic for |t -t 0 | small enough. Thus applying Lemma 2.0.13 to each term of (2) we get Theorem 2.0.3.

Proof of Proposition 2.0.5

Change of variable x → y -k/µ transforms H 0 (k) to

H0 (k) = D 2 y + µ 2 y 2 , on H [-a+k/µ,a+k/µ] ,
and again employ the change of variable y → z/( √ 2µ), we have H 0 (k) is unitarily equivalent to

Ȟ0 (k) = 2µ D 2 x + x 2 4 , on Ȟ[-z -,z + ] , (2.0.29) 
where

z ± := 2µ a ± k µ .
(2.0.30)

Hence the eigenvalue problem for H 0 (k) can be reduced to the one for Ȟ0 (k). Here let u ν (x) be the solution of the Weber's equation

D 2 x + x 2 4 -ν + 1 2 u ν (x) = 0, (2.0.31)
with boundary condition u ν (z + ) = u ν (-z -) = 0. Then u ν (x) can be written as a linear combination of the parabolic cylinder functions D ν (z) and D ν (-z),

u ν (x) = A 1 D ν (x) + A 2 D ν (-x).
(2.0.32)

We recall that

D ν (z) = 2 ν/2 e -z 2 /4 √ π Γ ν + 1 2 cos(νπ/2)F 1 - ν 2 ; 1 2 ; z 2 2 + √ 2zΓ 1 + ν 2 sin(νπ/2)F 1 1 -ν 2 ; 3 2 ; z 2 2 ,
where F 1 is the confluent hypergeometric function. For large |z| ≫ 1, we have

D ν (z) = e -z 2 /4 z ν 1 - ν(1 -ν) 2z 2 + • • • , z ≫ 1, (2.0.33) 
and for z ≪ -1,

D ν (z) = e -z 2 /4 z ν 1 - ν(1 -ν) 2z 2 + • • • (2.0.34) - √ 2π Γ(-ν) e νπi e z 2 /4 z -ν-1 1 + (ν + 1)(ν + 2) 2z 2 ± • • • .
By the boundary condition u ν (z + ) = u ν (-z -) = 0, we obtain from (2.0.32) the conditions on the energy spectrum :

D ν (z + )D ν (z -) -D ν (-z + )D ν (-z -) = 0. (2.0.35)
Since z ± tends to infinity as µ → ∞, it follows from (2.0.33) and (2.0.34) that

D ν (z + )D ν (z -) = e -(z 2 + +z 2 -)/4 z ν + z ν -1 + O(z -2 ± ) + • • • and D ν (-z + )D ν (-z -) = e -(z 2 + +z 2 -)/4 z ν + z ν -1 + O(z -2 ± ) + • • • + √ 2π Γ(-ν) e νπi e z 2 + /4-z 2 -/4 (z + ) -ν-1 (z -) ν 1 + O(z -2 ± ) + • • • + √ 2π Γ(-ν) e νπi e z 2 -/4-z 2 + /4 (z + ) ν (z -) -ν-1 1 + O(z -2 ± ) + • • • + √ 2π Γ(-ν) 2 e 2νπi e (z 2 + +z 2 -)/4 (z + z -) -ν-1 1 + O(z -2 ± ) + • • • .
By (2.0.35), we have

e z 2 + /4-z 2 -/4 (z + ) -ν-1 (z -) ν 1 + O(z -2 ± ) + • • • + e z 2 -/4-z 2 + /4 (z + ) ν (z -) -ν-1 1 + O(z -2 ± ) + • • • + √ 2π Γ(-ν)
e νπi e (z 2

+ +z 2 -)/4 (z + z -) -ν-1 1 + O(z -2 ± ) + • • • = 0.
This implies

e -z 2 -/2 z 2ν+1 - + e -z 2 + /2 z 2ν+1 + 1 + O(z -2 ± ) + • • • = - √ 2π Γ(-ν) e νπi 1 + O(z -2 ± ) + • • • (2.0.36)
Recall that,

Γ(1 + z)Γ(-z) = - π sin(πz) , ∀z ∈ C \ Z.
Combining this with (2.0.36) we get

z 2ν+1 + e -z 2 + /2 + z 2ν+1 - e -z 2 -/2 1 + O 1 z 2 ± = 2 π e 2πνi -1 2i Γ(1 + ν) 1 + O 1 z 2 ± .
(2.0.37)

Now we look for ν = j + α j (µ, k) for some fixed j, with α j (µ, k) tends to zero when µ tends to infinity. As a first approximation, it follows from (2.0.37) that

z 2j+1 + e -z 2 + /2 + z 2j+1 - e -z 2 -/2 = √ 2πΓ(1 + j)α j (µ, k), (2.0.38) 
where we use e 2(j+α j )πi -1 √ 2πi ∼ √ 2πα j (µ, k), as α j (µ, k) → 0.

Thus by using (2.0.30) and (2.0.38),

α j (µ, k) √ 2πΓ(1 + j) = ( 2µ) 2j+1 a + k µ 2j+1 e -µ(a+k/µ) 2 + a - k µ 2j+1 e -µ(a-k/µ) 2 = a 2µ 2j+1 e -a 2 µ e -k 2 /µ 1 + k aµ 2j+1 e -2ak + 1 - k aµ 2j+1 e 2ak = a 2µ 2j+1 e -a 2 µ e -k 2 /µ    2j+1 l=0    2j + 1 l    k aµ l e -2ak + (-1) 2j-l e 2ak    = a 2µ 2j+1 e -a 2 µ e -k 2 /µ × 2 cosh(2ak) + 2(2j + 1)k aµ sinh(2ak) + (2j)(2j + 1) k aµ 2 cosh(2ak) + o k 2 µ 2
Consequently,

α j (µ, k) √ 2πΓ(1 + j) = 2 a 2µ 2j+1 e -a 2 µ e -k 2 /µ cosh(2ak) × 1 + (2j + 1)k aµ tanh(2ak) + j(2j + 1) k aµ 2 + o k 2 µ 2 .
Notice that, according to (2.0.4), (2.0.31) and the unitary equivalence of H 0 (k) and Ȟ0 (k), the eigenvalues of H 0 (k) satisfy e j (k) = 2µ j + 1 2 + α j (µ, k) .

Summing up and using that Γ(1 + j) = j! we obtain (2.0.12).

Proofs of the results concerning the perturbed Hamiltonian H(ϵ)

Spectral Reduction to an ϵ-pseudodifferential operator Throughout this section we assume that V is independent on x. The proof of the general case is quite similar with minor modifications (see Remark 2.0.18). Fix an interval I = [α, β],

and set

U = {J ∈ N d ; e J (k) ≤ β + ∥V ∥ ∞ }.
According to Theorem 2.0.1 and Corollary 2.0.2, e J (0) (respectively e J (k)) tends to infinity as |J| → ∞ (respectively |k| → ∞). Therefore U is finite. In what follows,

(Ψ 0 (•, k), • • • , Ψ N -1 (•, k)) denotes the family (Ψ J (•, k)) J∈U , where N = #U.
To shorten notation, we omit the index d in Ω d and

Λ d . For k ∈ R d , let H Λ,k = H Λ be the Hilbert space with k-dependent norm: ∥u∥ 2 Λ,k = ∥u∥ 2 H 2 (Λ) + |k| 4 ∥u∥ 2 L 2 (Λ) . We denote by C N k the space C N equipped with norm (1 + |k| 2 )| • | C N .
By the change of variable y → y/ϵ, the operator H(ϵ) is unitarily equivalent to

H 1 := H 1,0 + V (y), (2.0.39) 
where

H 1,0 := d j=1 D 2 x j + (ϵD y j + µ j x j ) 2 .
Let G(y, k) = H 0 (k) + V (y) be the linear bounded operator from H Λ into L 2 (Λ), where H 0 (k) is given by (2.0.4). Obviously, G ∈ S 0 (R 2d ; L(H Λ,k , L 2 (Λ)). Thus, by quantizing G we have G(y, ϵD y ) = H 1 .

More precisely, H 1 can be viewed as an ϵ-pseudo-differential operator on y with operator valued symbol G(y, k).

For k ∈ R d , and

N ∈ N * , define R + (k) : L 2 (Λ) → C N , R -(k) = R * + (k) : C N → L 2 (Λ) by R + (k)u = (⟨u, Ψ 0 (•, k)⟩, • • • , ⟨u, Ψ N -1 (•, k)⟩), R -(k)(c 1 , • • • , c N ) = N -1 j=0 c j Ψ j (•, k).
According to Corollary 2.0.2 the family (Ψ J (•, k)) J∈N d is an orthonormal basis in L 2 (Λ). Hence, a simple computation yields

R + (k)R -(k) = I C N , R -(k)R + (k)u = N -1 j=0 ⟨u, Ψ j (•, k)⟩Ψ j (•, k) =: Π N u, ∀u ∈ L 2 (Λ).
(2.0.40)

The following proposition reduces the spectral study of the operator G(y, k) :

H Λ,k → L 2 (Λ)
near the energy z, to the study of an N × N -square matrix E eff (y, k, z).

Proposition 2.0.14. Fix a bounded interval I. There exists N ∈ N * such that for all z ∈ I the operator

P(y, k) :=    G(y, k) -z R -(k) R + (k) 0    : H Λ,k × C N → L 2 (Λ) × C N k , (2.0.41)
is bijective with bounded two-sided inverse

E(y, k, z) :=    G N (y, k, z) R -(k) R + (k) E eff (y, k, z)    . (2.0.42) Here G N (y, k, z) = (G(y, k) -z) -1 (1 -Π N ) and E eff (y, k, z) is the square diagonal matrix (z -e j (k) -V (0, y))δ ij ) 0≤i,j≤N -1 . Moreover P ∈ S 0 (R 2d ; L(H Λ,k × C N ; L 2 (Λ) × C N k )). (2.0.43) E ∈ S 0 (R 2d ; L(L 2 (Λ) × C N k ; H Λ,k × C N )).
(2.0.44)

Proof. By construction, we have

e J (k) + V (y) -z ≥ c > 0,
uniformly for (z, k, y) ∈ I × R 2d and J ̸ ∈ U. Thus, the operator 

(G(y, k) -z) -1 (1 -Π N ) : L 2 (Λ) → H Λ,Y , is 
→ R -(k) ∈ S 0 (R 2d ; L(C N ; L 2 (Λ)) and (y, k) → R + (k) ∈ S 0 (R 2d ; L(H Λ,k ; C N )). □
Proposition 2.0.15. The operator

P :=    G(y, ϵD y ) -z R -(ϵD y ) R + (ϵD y ) 0    : H D Ω × H 2 (R d ; C N ) → L 2 (Ω) × L 2 (R d ; C N ), (2.0.45)
is bijective with an inverse

E(z; ϵ) := E w (z; ϵ) =    E w (y, ϵD y , z; ϵ) E w + (y, ϵD y , z; ϵ) E w -(y, ϵD y , z; ϵ) E w eff (y, ϵD y , z; ϵ)    ,
uniformly bounded with respect to z ∈ I and ϵ small enough. Moreover, E(z; ϵ) depend holomorphically on z, and E(y, k, z; ϵ) has an asymptotic expansion in S 0 (R

2d ; L(L 2 (Λ) × C N k ; H Λ,k × C N )), i.e., E(y, k, z; ϵ) =    E(y, k, z; ϵ) E + (y, k, z; ϵ) E -(y, k, z; ϵ) E eff (y, k, z; ϵ)    ∼ ∞ j=0 E j (y, k, z)ϵ j .
(2.0.46)

In particular E eff (y, k, z; ϵ) ∼ ∞ j=0 E eff,j (y, k, z)ϵ j in S 0 (R 2d ; L(C N k ; C N )). The leading terms E 0 (y, k, z) and E eff,0 (y, k, z) are given by Proposition 2.0.14, i.e., E 0 (y, k, z) = E(y, k, z; 0) and E eff,0 (y, k, z) = E eff (y, k, z; 0).

Proof. The fact that P can be viewed as an ϵ-pseudodifferential operator valued symbol P(y, k)

and Theorem B.0.3 show that 

P w (y, ϵD y ) • E w (y, ϵD y , z) = I + ϵR w (y, ϵD y , z; ϵ) (2.0.47) where R(y, k, z; ϵ) ∼ ∞ j=0 R j (y, k, z)ϵ j in S 0 (R 2d ; L(L 2 (Λ) × C N ; L 2 (Λ) × C N )).
P = p w (y, k, ϵ) is an invertible ϵ-pseudo-differential with p(y, k; ϵ) ∼ ∞ j=0 p j (y, k)ϵ j
then its inverse q w is also an ϵ-pseudodifferential operator with q(y, k; ϵ) ∼ ∞ j=0 q j (y, k)ϵ j .

Consequently, E w (y, ϵD y , z; ϵ) := E w (y, ϵD y , z) • (I + ϵR w (y, ϵD y , z; ϵ)) -1 satisfies all the desired properties. □ Remark 2.0.16. Let E 0 (z) be the operator given by Proposition 2.0.15 corresponding to the non-perturbed operator H 0 (i.e., V = 0). Since P(y, k) = P(k) is y-independent, we have

E 0 (z) =    G N (ϵD y , z) E 0 + (ϵD y ) E 0 -(ϵD y ) E 0 eff (ϵD y , z)    , where E 0 + (k) = R -(k), E 0 -(k) = R + (k) and E 0 eff (k, z) = ((z -e j (k))δ ij ) 0≤i,j≤N -1
Proof of Theorem 2.0.8

In the following we fix a bounded interval I containing supp(f ), and we apply Proposition 2.0.14 and Proposition 2.0.15 on I. For the simplicity of the notation we ignore the dependence of E, E + , E -, E eff on (y, k, z, ϵ). We denote by E 0 , E 0 + , E 0 -, E 0 eff the operators given by Proposition 2.0.15 corresponding to the case V = 0 (see Remark 2.0.16). We shall sometimes use the same symbol for an ϵ-pseudodifferential operator and for its Weyl symbol.

Applying formulas (E.0.3) and (E.0.4) to Proposition 2.0.15 we obtain

(H 1 -z) -1 = E -E + E -1 eff E -, (2 
.0.48)

∂ z E eff = E -E + . (2.0.49) Assume that f ∈ C ∞ 0 (R) is real-valued, we can construct an almost analytic extension f ∈ C ∞ 0 ( 
C) of f satisfying the following properties (see [START_REF] Dimassi | Spectral asymptotics in the semi-classical limit[END_REF]) :

f (z) = f (z), ∀z ∈ R, (2.0.50) for all N ∈ N there exists C N such that | ∂ f ∂z (z)| ≤ C N |ℑz| N .
(2.0.51)

Let H be any self-adjoint operator, the Dynkin-Helffer-Sjöstrand formula reads [START_REF] Dimassi | Spectral asymptotics in the semi-classical limit[END_REF]:

f (H) = - 1 π ∂ f ∂z (z)(z -H) -1 L(dz), with z = x + iy, (2.0.52) which yields f (H 1 ) = - 1 π ∂ f ∂z (z)(z -H 1 ) -1 L(dz). (2.0.53)
Here L(dz) is the Lebesgue measure on the complex plane C ∼ R 2 x,y .

Inserting (2.0.48) in the right hand side of (2.0.53) and using the fact that z → E w (y, ϵD y , z; ϵ) is holomorphic, we get

f (H 1 ) = - 1 π ∂ f ∂z (z)E + E -1 eff E -L(dz).
(2.0.54)

Here and in what follows we use the fact that ∂ z f (z)K(z)L(dz) = 0 provided that K(z) is holomorphic in a neighborhood of supp( f ). We recall that the principal symbol of E eff is given by

E eff,0 (y, k, z) = ((z -V (y) -e j (k))δ i,j ) 0≤i,j≤N -1 ,
and that e j (k) ∼ |k| 2 at infinity from (2.0.7) in Theorem 2.0.1. For j = 0, • • • , N -1, let ẽj (k) be a smooth function such that ẽj (k) = e j (k) for |k| large enough and

|z -V (y) -ẽj (k)| ≥ c 0 (1 + |k| 2 ), ∀ (z, y, k) ∈ supp f × R d × R d . (2.0.55) Put Ẽeff (y, k, z; ϵ) = E eff (y, k, z; ϵ) + Ẽeff (y, k, z) -E eff (y, k, z),
where Ẽeff (y, k, z) = ((z -V (y) -ẽj (k))δ i,j ) 0≤i,j≤N -1 . We conclude from (2.0.55) that Ẽeff (y, k, z; ϵ) is elliptic for ϵ small enough, hence that Ẽeff := Ẽw eff (y, ϵD y , z; ϵ) is invertible and holomorphic for z ∈ supp( f ), and finally that

∂ f ∂z (z)E + Ẽ-1 eff E -L(dz) = 0.
Combining the above equality with (2.0.54), we obtain

f (H 1 ) = - 1 π ∂ f ∂z (z)E + (E -1 eff -Ẽ-1 eff )E -L(dz). (2.0.56) Let Ψ be as in Theorem 2.0.8. Writing E -1 eff -Ẽ-1 eff = Ẽ-1 eff ( Ẽeff -E eff )E -1
eff and using the fact that Ẽeff -E eff = ((e j (k) -ẽj (k)) 1≤i,j≤N has a compact support, we deduce that the operator

Ψ E + Ẽ-1 eff ( Ẽeff -E eff )E -1
eff E -is trace class. Thus, by using the cyclicity of the trace we get

tr Ψf (H 1 ) = - 1 π ∂ f ∂z (z)tr E -1 eff -Ẽ-1 eff )E -ΨE + L(dz), = tr - 1 π ∂ f ∂z (z)E -1 eff E -ΨE + L(dz) .
(2.0.57)

In the last equality we have used the fact the operator Ẽ-1 eff E -ΨE + is holomorphic on z ∈ supp( f ).

According to Proposition 2.0.15 and Theorem B.0.3 the operator

A = E -ΨE + is an ϵ-pseudodifferential operator on L 2 (R d ; C N ) with A = A w (y, ϵD y , z; ϵ) where A(y, k, z; ϵ) ∼ ∞ j=0 A j (y, k, z)ϵ j in S 0 (R 2d ; L(C N ; C N )). Moreover, from Proposition 2.0.14 we have A 0 (y, k, z) = Ψ(y). Lemma 2.0.17. Fix δ ∈]0, 1/2[. There exists r ∈ S 0 (R 2d ; L(C N , C N )) such that r(y, k; ϵ) ∼ ∞ j=0 r j (y, k)ϵ j and r w (y, ϵD y ; ϵ) = - 1 π |ℑz|≥ϵ δ ∂ f ∂z (z)E -1 eff E -ΨE + L(dz), with r 0 (y, k) = - 1 π ∂ f ∂z (z) (z -e j (k) -V (y)) -1 δ i,j 0≤i,j≤N -1 L(dz)Ψ(y).
Proof. Fix δ ∈ [0, 1/2[. According to Proposition, the operator E -1 eff is an ϵ-pseudodifferential operator for |ℑz| ≥ ϵ δ . Its symbol is given by

E 0 (y, k, z) + hE 1 (y, k, z) + • • • + ϵ N E N (y, k, z) + O ϵ N (1-2δ) with E 0 (y, k, z) = (E eff,0 (y, k, z)) -1 = (z -e j (k) -V (y)) -1 δ i,j 0≤i,j≤N -1 .
Here E j (y, k, z) is a finite sum of terms of the form

(E eff,0 (y, k, z)) -1 B 1 (y, k, z) (E eff,0 (y, k, z)) -1 • • • B k (y, k, z) (E eff,0 (y, k, z)) -1 , with k ≤ 2j + 1 and B j ∈ S 0 (R 2d ; L(C N , C N )) uniformly in z.
Combining this with the fact that A = E -ΨE + is an ϵ-pseudodifferential with

A = A w (y, ϵD y , z; ϵ) where A(y, k, z; ϵ) ∼ ∞ j=0 A j (y, k, z)ϵ j in S 0 (R 2d ; L(C N ; C N )), A 0 (y, k, z) = Ψ(
y), and using Theorem B.0.3 we deduce that the operator G := E -1 eff E -ΨE + is an ϵ-pseudodifferential operator for |ℑz| ≥ ϵ δ . Its symbol is given by

g 0 (y, k, z) + hg 1 (y, k, z) + • • • + ϵ N g N (y, k, z) + O ϵ N (1-2δ) with g 0 (y, k, z) = (z -e j (k) -V (y)) -1 δ i,j 0≤i,j≤N -1 Ψ(y).
This ends the proof of the lemma since N is arbitrary. ). If we restrict our attention to the domain |ℑz| ≥ ϵ δ then by Lemma 2.0.17 we get a complete asymptotic expansion in powers of ϵ, which yields (2.0.15). To finish the proof let us compute a 0 . We have

a 0 = tr(r 0 (y, k)) dydk (2π) d = N -1 j=0 - 1 π ∂ f ∂z (z)(z -e j (k) -V (y)) -1 L(dz) Ψ(y) dydk (2π) d .
Here tr stands for the trace of square matrices. Since

1 π ∂ z 1 z-z 0 = δ(• -z 0 ), it follows that -1 π ∂ f ∂z (z)(z -e j (k) -V (y)) -1 L(dz) = f (e j (k) + V (y)). Consequently, a 0 = N -1 j=0 f (e j (k) + V (y))Ψ(y) dydk (2π) d = j f (e j (k) + V (y))Ψ(y) dydk (2π) d .
In the above equality we have used the fact that e j (k) +

V (y) ̸ ∈ supp(f ) for (y, k) ∈ R d × R d and j ̸ ∈ {0, • • • , N -1}.
Combining this with the obvious equality

j f (e j (k) + V (y)) dk (2π) d = - j f ′ (t) e j (k)≤t-V (y) dkdt = -f ′ (t)ρ(t -V (y))dt,
we get (2.0.15).

Proof of Corollary 2.0.9

Let f be as in Corollary 2.0.9, and fix η > 0 small enough such that supp

(f ) ⊂ ] -∞, e 0 (0) -η]. Put ω η := {y ∈ R d ; ∃(j, k) ∈ N × R d s.t. e j (k) + V (y) ∈ supp(f )}.
Since V tends to zero at infinity and e j (k) ≥ e j (0) for all j, k, it follows that ω η is a compact set.

Let Ṽ be a smooth function such that Ṽ (y) ∈ [-η/2, η/2] for all y ∈ R d and Ṽ (y) = V (y) for |y| large enough. Put

Ẽeff (y, k, z; ϵ) = E eff (y, k, z; ϵ) + ( Ṽ (y) -V (y))I N .
By construction of Ṽ , we have

|z -e j (k) -Ṽ (y)| ≥ C(1 + |k| 2 ),
uniformly on (j, y, k) ∈ N × R 2d and z in small complex neighborhood of supp( f ).

Hence, the principal symbol Ẽeff (y, k, z) = ((z -Ṽ (y) -e j (k))δ i,j ) 0≤i,j≤N -1 of Ẽeff is elliptic. We can now proceed analogously to the proof of (2.0.56), and obtain As in the proof of (2.0.54), Proposition 2.0.15 and Remark 2.0.16 yield

f (H 1 ) = - 1 π ∂ f ∂z (z)E + (E -1 eff -Ẽ-1 eff )E -L(dz). (2.0.58) Let ψ ∈ C ∞ 0 (R d ) be equal to one in a neighborhood of supp( Ṽ -V = Ẽeff -E eff ). Writing E + (E -1 eff -Ẽ-1 eff )E -= E + Ẽ-1 eff ( Ẽeff -E eff )E -1 eff E -and
f (H 0 ) = - 1 π ∂ f ∂z (z)E 0 + (E 0 eff ) -1 E 0 -L(dz),
which together with (2.0.54) give

tr (f (H 1 ) -f (H 0 )) = tr - 1 π ∂ f ∂z (z) E 1 + E eff -1 E 1 --E 0 + (E 0 eff ) -1 E 0 -L(dz) , (2.0.60)
Next, analysis similar to that in the proof of (2.0.57) shows that

tr (f (H 1 ) -f (H 0 )) = tr - 1 π ∂ f ∂z (z) E eff -1 E 1 -E 1 + -(E 0 eff ) -1 E 0 -E 0 + L(dz) .
(2.0.61)

According to (E.0.5), Proposition 2.0.15 and Remark 2.0.16, we have

∂ z E eff = E 1 -E 1 + , ∂ z E 0 eff = E 0 -E 0 + .
Combining this with (2.0.61), we obtain According to Proposition 2.0.15, E eff is an ϵ-pseudodifferential operator. On the other hand, the assumption (2.0.21) means that the classical symbol corresponding to E eff is non-trapping. The asymptotic expansion with respect to ϵ of an integral similar to the right-hand side of the second equality in (2.0.63) have been studied by many authors (see [START_REF] Robert | Relative time-delay for perturbations of elliptic operators and semiclassical asymptotics[END_REF][START_REF] Dimassi | Spectral asymptotics in the semi-classical limit[END_REF][START_REF] Dimassi | A time-independent approach for the study of the spectral shift function and an application to stark hamiltonians[END_REF][START_REF] Assal | Semiclassical trace formula and spectral shift function for systems via a stationary approach[END_REF][START_REF] Dimassi | Spectral shift function for perturbed periodic schrödinger operators. the large-coupling constant limit case[END_REF] and the references given therein). In particular, under the assumption (2.0.21), it follows from the arguments in the proofs of Theorems 2.5 and 2.6 in [START_REF] Dimassi | A time-independent approach for the study of the spectral shift function and an application to stark hamiltonians[END_REF] (see also [START_REF] Assal | Semiclassical trace formula and spectral shift function for systems via a stationary approach[END_REF]) that the left-hand side of We can now proceed analogously to the proof of the case V = V (y). Finally for the polynomial stability of a C 0 -semigroup of contractions we use the following result due to Borichev and Tomilov [START_REF] Borichev | Optimal polynomial decay of functions and operator semigroups[END_REF] (see also [START_REF] Batty | Non-uniform stability for bounded semi-groups on Banach spaces[END_REF], [START_REF] Liu | Characterization of polynomial decay rate for the solution of linear evolution equation[END_REF], and the recent paper [START_REF] Rozendaal | Optimal rates of decay for operator semigroups on hilbert spaces[END_REF]). are finite dimensional (see for instance [START_REF] Hormander | The Analysis of Linear Partial Differential Operators IV[END_REF][START_REF] Sjoestrand | Elementary linear algebra for advanced spectral problems[END_REF]). For Fredholm operators the index is defined as indP = dim ker Pdim coker P.

tr (f (H 1 ) -f (H 0 )) = tr - 1 π ∂ f ∂z (z) E eff -1 ∂ z E eff -(E 0 eff ) -1 ∂ z E 0 eff L(dz) .
Definition A.0.6. A matrix B is said to be Hurwitz if all its eigenvalues have negative real parts.

Let us end up this appendix with the definition of our multiplier geometric control condition.

Definition A.0.7. We say that the partition (Γ 1 , Γ 2 , I) of the boundary satisfies the multiplier geometric control condition BMGC (see Fig. 2 for an illustration) if there exists a point x 0 ∈ R 2 and a positive constant δ such that

(h • v 1 ) ≥ δ -1 , ∀x ∈ Γ 1 , (h • v 2 ) ≤ 0, ∀x ∈ Γ 2
, and (h • v 1 ) ≤ 0, ∀x ∈ I, (A.0.3)

where h(x) = x -x 0 .

x 0 2) For all N ∈ N and for all linear forms l 1 (x, ξ), • • • , l N (x, ξ) on R 2n , the operator

A B C Γ 1 I Γ 2 Ω 1 Ω 2 v 1 v 2 v 1
ad l w 1 (x,hDx) • • • • • ad l w N (x,hDx) A h belong to L(L 2 (R n ); L 2 (R n ))
, and has norm O(h N ) in this space. Here, ad AB := [A, B] = AB -BA.

Theorem B.0.11. Let P (x, ξ; h) ∼ ∞ j=0 h j P j (x, ξ) ∈ S 0 (R 2n , M d (C)), we assume that P (x, ξ; h) is Hermitian. Then f (P w (x, hD x ; h)) is an h-pseudo-differential operator, its symbol is in S 0 (R 2n , M d (C)), and f (P w (x, hD x ; h)) = C w (x, hD x ; h), where C(x, ξ; h) ∼ ∞ j=0 h j C j (x, ξ), with C 0 (x, ξ) = f (P 0 (x, ξ)).

Theorem B.0.12. Let P (x, ξ; h) be a symbol in S 0 (R 2n , M d (C)). We assume that Here, (λ j (x, ξ)) 1≤j≤d are the eigenvalues of P 0 (x, ξ).

Proof. Using spectral theorem, we have

- 1 π ∂ z f (z)(z -A) -1 L(dz) = - 1 π ∂ z f (z) (z -t) -1 dE A t L(dz),
with E A t = 1 ]-∞,t] (A) is the family of spectral projections associated to A. Now as

|∂ z f (z)(z -t) -1 | ≤ |∂ z f (z)||ℑ(z)| -1
≤ C, then using Fubini's theorem, and the fact that ∂( 1 z-z 0 ) = πδ(• -z 0 )), we have

- 1 π ∂ z f (z) (z -t) -1 dE A t L(dz) = f (z)∂ z ( 1 π (z -t) -1 )L(dz)dE A t = f (t)dE A t = f (A).

  σ(H) = [e 0 (0), +∞[. Dans ce travail notre objectif est d'étudier l'effet des perturbations V sur le spectre de l'opérateur non-perturbé H lorsque a j < ∞, j = 1, • • • , d. Supposons que V (x, y) tend vers zéro lorsque |y| → +∞ uniformément par rapport à x ∈ Λ d . Dans un premier théorème on montre que pour tout f ∈ C ∞ 0 (R), l'opérateur f (H(ϵ)) -f (H) est de classe trace, et on donne un dévéloppement viii asymptotique complet en puissances de ϵ de tr f (H(ϵ)) -f (H) , lorsque ϵ ↘ 0. Comme conséquence, on obtient l'asymptotique du type Weyl de la fonction de comptage du nombre des valeurs propres de H(ϵ) dans l'intervalle [a, b] pour b < e 0 (0).

H

  (ϵ) au voisinage d'un niveau d'énergie z 0 se ramène à celui d'un système d'opérateur ϵ-pseudodifférentiel, E -+ (y, ϵD y , z 0 ; ϵ), dont le symbol principal est donné par la matrice diagonale (e j (k) + V (0, y) -z 0 )δ i,j 1≤i,j≤N , où N dépend de z 0 et ∥V ∥ ∞ . Maintenant il suffit d'appliquer des méthodes standard pour l'étude des formules des traces pour des systèmes d'opérateurs ϵ-pseudodifférentiels (voir appendices B et C).

  type with generalized acoustic boundary conditions in d-dimensional space, with the equations being coupled through a boundary connection. More precisely, given a bounded open domain Ω in R d , with boundary Γ = ∂Ω of class C 2 , we denote by Ω 1 , Ω 2 the open bounded sets of Ω, such

  Nicaise[START_REF] Abbas | The multidimensional wave equation with generalized acoustic boundary conditions ii: Polynomial stability[END_REF], established under some assumptions the polynomial energy decay rate of the wave equation defined on an open connected bounded set Ω of R d (d ≥ 2), with a boundary ∂Ω = Γ assumed to be divided into two disjoint parts Γ 0 and Γ 1 , where Γ 0 is assumed to be closed with a nonempty interior and Γ 1 relatively open in Γ which could be possibly empty for d > 1. A dynamic boundary condition is assumed to be satisfied on a part Γ 0 of the boundary and a clamped boundary condition on the second part Γ 1 . Further, they presented some appropriate examples and showed that their assumptions have been set correctly.

1 2 Γ 2 (

 122 I) is the corresponding trace space of H 1 Γ 2 (Ω 2 ) through the operator ψ -→ ψ| I . Due to the density of H 1 2 * ,I (I) into L 2 (I), we can easily check that u and y satisfy the transmission conditions of (1.0.17) 3 . Finally, by setting v := λu -f 1 , z := λy -f 2 , and η := (λI m -B) -1 (h + γ(f 1 )C) -λu(λI m -B) -1 C, we conclude that there exists a unique U = (u, v, y, z, η) ∈ D(A) solution of equation (1.0.8) and thus the operator A is m-dissipative on H. The proof is thus complete.

  Bη -γ(v)C = iλη. (1.0.32) Eliminating v in (1.0.29) and in (1.0.32) by (1.0.28), and eliminating z in (1.0.31) by (1.0.30), we obtain the following system:

Case 1 . 1 . 1 ∥∇u∥ 2 dx + b Ω 2 ∥∇y∥ 2

 11122 λ = 0. Then from (1.0.35) and (1.0.36) 1 we get ∂ ν u = 0 and η = 0, on Γ 1 . Multiplying equation (1.0.33) by u and equation (1.0.34) by y, integrating by parts, and using (1.0.36), we get a Ω dx = 0. It follows that U = 0, which contradicts the fact that U ̸ = 0. Case 1.2. λ ̸ = 0. Then, by the proof of Proposition 1.0.1, we deduce that problem (1.0.33)-(1.0.36) admits a unique solution (u, y) ∈ H, and it satisfies the following variational equation:

.0. 42 )λ 2 y

 422 It follows, from the transmission conditions, that y = ∂ ν 2 y = 0 on I, (1.0.43) which together with (1.0.34) gives + b∆y = 0 in Ω 2 , y = ∂ ν 2 y = 0 on I.

.0. 53 )

 53 Eliminating v in (1.0.48) by (1.0.47), and z in (1.0.50) by (1.0.49), we get

  .0.66) Equivalently, we have the following system λf -a∆f = F, (1.0.67) λg -b∆g = G. (1.0.68) Taking (φ, ψ) ∈ H, then integrating after multiplying (1.0.67) by φ and (1.0.68) by ψ, yields the two equations added in the following form

Case 4 .

 4 If (PSC4) holds. It follows from (1.0.94) and the Definition 1.0.10 that

1 |λu| 2

 12 .0.117) Lemma 1.0.13. Under the same assumptions of Theorem 1.0.11, the solution (u, v, y, z, η) ∈ D(A) of (1.0.88)-(1.0.92) satisfies the following estimation d Ω dx + a(2

( 1 . 1 |λu| 2

 112 0.122) Inserting (1.0.121) and (1.0.122) in (1.0.119), we obtain d Ω dx + a(2

  .0.129) Adding (1.0.128) and (1.0.129) we get

15 .

 15 Under the same assumptions of Theorem 1.0.11, the solution (u, v, y, z, η) ∈ D(A) of (1.0.88)-(1.0.92) achieves the following estimation

1 |v| 2 2 |z| 2 1 |v| 2 2 |z| 2

 12221222 .0.138) □ Lemma 1.0.16. Under the same assumptions of Theorem 1.0.11, the solution (u, v, y, z, η) ∈ D(A) satisfies the following estimation Ω dx = o(1) and Ω dx = o(1).(1.0.139)Proof. Referring to (1.0.88) and (1.0.90), then using the fact that f 1 , f 3 → 0, and the results obtained in (1.0.137) we haveΩ dx = o(1)andΩ dx = o(1). (1.0.140) □ Now, going back to find out ∥U ∥ H by using (1.0.93),(1.0.137), and (1.0.139) we get

  .0.147) with b 0 , b 1 , and b 2 are positive constants, and b ≥ a. Letting η = ( δ t + b 1 δ b 0 , -δ, -κ) ⊤ , then our system is nothing but (1.0.1) with

  1.0.150) with b ≥ a, and b 0 , b 1 are positive constants. Set η = ( b 1 δ+δt b 0 , -δ) ⊤ , we get a system of the form (1.0.1) with

( 1 .

 1 0.154) It is easy to see that λ = 0 and λ = -1 are not eigenvalues of the operator A. Then, from now on we will assume that λ ̸ = 0 and λ ̸ = -1. It follows, from (1.0.154) of equation (1.0.154) 1 with boundary conditions (1.0.154) 6 -(1.0.154) 7 is

  of equation (1.0.154) 2 with boundary condition (1.0.154) 4 is given by: y(x) = Ce λx -Ce 2λ-λx , x ∈ (0, 1), (1.0.158) where C ∈ C is a constant. So, combining (1.0.156), (1.0.157) and (1.0.158), we get u(x) = Ce λx -Ce 2λ-λx , x ∈ (-1, 0). (1.0.159) Hence, a non trivial solution u exists if and only if C ̸ = 0. Finally, putting together (1.0.154) 3 , (1.0.155) and (1.0.159), we get λ + (λ + 2)e -4λ = 0. (1.0.160) Conversely, suppose that λ satisfies (1.0.160), and let η, y, u be defined by (1.0.155), (1.0.158) and (1.0.159) with C ̸ = 0. A simple calculus shows that (u, y, η) satisfies (1.0.154). Consequently, we have proved λ is an eigenvalue of the operator A ⇐⇒ f (λ) := λ + (λ + 2)e -4λ = 0. (1.0.161) By complex analysis arguments, we easily see that the equation f (z) = 0 has an infinite number of solutions λ n with |λ n | → ∞. In fact, if f has finite numbers of roots, we conclude from Hadamard's factorization theorem that f (z) = P (z)e az , a ∈ C, for some polynomial P . Then, from the equality, P (z)e az = z + (z + 2)e -4z , ∀z ∈ C, we conclude that a = -4, hence that P (z) = z + 2 and finally that z = 0, ∀z ∈ C, which is impossible. We can now state the following result Lemma 1.0.18. The number of eigenvalues, λ n for n ∈ Z, of A is infinite. Moreover, each eigenvalue is simple, and |λ n | goes to infinity as n goes to infinity.

  .0.162) u xx -λv = ṽ, (1.0.163) z -λy = ỹ, (1.0.164) y xx -λz = z, (1.0.165) v(-1) -η -λη = η. (1.0.166) We deduce that u xx -λ 2 u = λũ + ṽ = 2(e λx -e 2λ-λx ), (1.0.167) y xx -λ 2 y = λỹ + z = 2(e λx -e 2λ-λx ), (1.0.168) besides to the following boundary conditions u(0) = y(0), (1.0.169) u x (0) = y x (0), that the general solution of u and y is given by u = 1 λ (e λx -e 2λ-λx ) + x λ (e λx + e 2λ-λx ), -e 2λ-λx ) + x λ (e λx + e 2λ-λx ).

that in turn had the following solutions λ = - 1 , 4 = 1 3 ,

 143 λ = -2 + i, λ = -2 -i, and λ = 0. Then e which is impossible. This completes the proof. □ Lemma 1.0.19. (Asymptotic expansion) There exists k 0 ∈ N * and a sequence (λ k ) k≥k 0 of simple roots of f that are also simple eigenvalues of A satisfying the following asymptotic behavior:

  .0.183) Thus, inserting (1.0.182) and (1.0.183) into (1.0.181), we obtain the desired asymptotic expansion (1.0.176) and the proof is thus complete. □ Proof of Theorem 1.0.17. Let ε > 0, and set l = ε 1 + ε . For k ∈ N * , let λ k be an eigenvalue of the operator A, and U k the associated normalized eigenfunction. Consider the following sequences

  [a,b] (x) (the characteristic function of the interval [a, b]), it follows from the spectral theorem (see Chapter 4 in [68]) that tr (f (A)) = N [a,b] (A), where N [a,b] (A) is the number of eigenvalues (counted with their multiplicities) of the operator A in the interval [a, b]. Hence an asymptotics of the trace formula yields an estimate on the number of eigenvalues. Now assume that A has continuum spectrum (i.e., σ c (A) ̸ = ∅), and the support of f

  of H(ϵ) on a compact interval. Let N ([a, b]; ϵ) be the number of eigenvalues of H(ϵ) in [a, b] ⊂ ] -∞, e 0 (0)[ counted with their multiplicity.

2 .

 2 Replacing x by t = µ(x + a) and rescaling t → λt/µ (with λ = (2µk) 1/3 ) we transformH(k) into λ 2 G -2aµk + k 2 ,whereG = D 2 t + t : L 2 ([0, b]) → L 2 ([0, b]), b = 2λa,is the Airy operator with Dirichlet boundary condition. The general solution of the equation D 2 t u(t) + tu(t) = 0 can be written as a linear combination of the Airy functions :

  .0.24) Let A and B be self-adjoint operators that are bounded from below. We write A ≤ B if and only if D(B) ⊂ D(A) and (Au, u) ≤ (Bu, u) ∀u ∈ D(B).

.0. 25 )

 25 Put H(k) = H 0 (k) -k 2 , and let Γ n be a simple closed contour around e n (k) -k 2 such that dist(Γ n , σ( H(k))) ≥ C > 0 uniformly on k. Let Π n (k) be the orthogonal projection onto the eigenspace spanned by

  .0.26) From (2.0.25) we deduce that Π n (k)∂ k Ψ n (•, k) = 0. Combining this with the fact that Π n (k)Ψ n (•, k) = Ψ n (•, k) and using (2.0.26) as well as the fact that ∂ k H(k) = 2µx, we get

  and let e J (k) = e j 1 (k 1 ) + • • • + e j d (k d ) be one eigenvalue of the operator H 0 (k). Set κ(t) = {k∈R d ;e J (k)≤t} dk.

  well-defined and uniformly bounded on (z, y, k) ∈ I × R 2d . Using (2.0.40), an easy computation shows that P(y, k) • E(y, k, z) = I and E(y, k, z) • P(y, k) = I. On the other hand, it follows from (2.0.8) that (y, k)

□

  We now turn to the proof of Theorem 2.0.8. If we restrict the integral in the right hand side of (2.0.57) to the domain |ℑz| ≤ ϵ δ then we get a term O(ϵ ∞ ) in trace norm. Here we have used the fact that | ∂ f ∂z (z)| = O(|ℑz| M ) for all M ∈ N (see (2.0.51)

8 .

 8 using the fact that supp(1 -ψ) ∩ supp( Ṽ -V ) = ∅, we deduce from (2.0.58) and (B.0.4) that ∥(1 -ψ)f (H 1 )∥ tr = O(ϵ ∞ ). Consequently,tr(f (H 1 )) = tr(ψf (H 1 )) + O(ϵ ∞ ),(2.0.59) which together with Theorem 2.0.8 yields (2.0.16) and (2.0.17). Notice that the right hand side of (2.0.59) is independent modulo O(ϵ ∞ ) of the choice of ψ, since ψ = 1 near the characteristic setΣ η of E eff .It remains to prove (2.0.18). For every small η > 0, choosef η , f η ∈ C ∞ 0 (R; [0, 1]) with 1 [a+η,b-η] ≤ f η ≤ 1 [a,b] ≤ f η ≤ 1 [a-η,b+η] .It then suffices to observe thattr f η (H(ϵ)) ≤ N ([a, b]; ϵ) ≤ tr f η (H(ϵ)) , d tr f η (H(ϵ)) ≤ lim ϵ↘0 (2πϵ) d N ([a, b]; ϵ) ≤ lim η↘0 lim ϵ↘0 (2πϵ) d tr f η (H(ϵ)) ,and to apply Theorem 2.0.Proof of Theorem 2.0.10We only mention the steps in the proof of Theorem 2.0.10 which are the same as in the proof of Theorem 2.0.8. Fix z 0 < inf(σ(H j )) (j = 0, 1), and let m > d/2 + 1. From the assumption (2.0.13) the operator(H 1 -z 0 ) -m -(H 0 -z 0 ) -m is trace class. Therefore, f (H 1 ) -f (H 0 ) is trace class for all f ∈ C ∞ 0 (R).In contrast to the proof of Theorem 2.0.8, we don't need to introduce the function Ψ, since f (H 1 ) -f (H 0 ) is trace class.

  (2.0.62) We now apply the same arguments after Lemma 2.0.17, with (2.0.57) replaced by (2.0.62), to obtain Theorem 2.0.10.Proof of Theorem 2.0.11The starting point is formula (2.0.62). Let θ and g be C ∞ -functions with compact support such that θ = 1 near zero, g = 1 on ]λ -η, λ + η[ and supp(g) ⊂]λ -2η, λ + 2η[. We choose η > 0 small enough so that (2.0.21) holds on ]λ -2η, λ + 2η[. Applying (2.0.2) and (2.0.62) to the function f (x) = g(x)(F -1 ϵ θ)(λ -x), we obtain-⟨ξ ′ (•; ϵ), g(•)(F -1 ϵ θ)(λ -•)⟩ = tr g(H 1 )(F -1 ϵ θ)(λ -H 1 ) -g(H 0 )(F -1 ϵ θ)(λ -H 0 ) (F -1 ϵ θ)(λ -z) E eff -1 ∂ z E eff -(E 0 eff ) -1 ∂ z E 0 eff L(dz) .

( 2 .0. 63 ) 1 ϵ

 2631 Here g is an almost analytic extension of g, and F -is the semi-classical Fourier transform of θ :(F -1 ϵ θ)(τ ) = 1 (2πϵ) R e i ϵ tτ θ(t)dt.A symbol (y, k) → A(y, k, z) ∈ L(C N ; C N ) is non-trapping at the energy z = z 0 if and only if there exists a scalar escape function G ∈ C ∞ (R 2d ; R) such that ∃C > 0, ∀(y, k) with detA(y, k, z 0 ) = 0.

( 2 . 1 E

 21 0.63) has a complete asymptotic expansion in powers of ϵ, andξ ′ (τ, ϵ)g(τ ) = ⟨ξ ′ (•; ϵ), g(•)(F -1 ϵ θ)(τ -•)⟩ + O(ϵ ∞ ),uniformly for τ ∈]λ -2η, λ + 2η[. This implies (2.0.22). The explicit formula of κ 0 (t) follows from (2.0.20).Remark 2.0.18. We will now show how to treat the case when V depends on x. The only modification to be made is the proof of Proposition 2.0.14. Fix m ∈ N * . By Taylor's formula we haveV (ϵx, y) = V (0, y) + m |α|=1 ϵ |α| α! x α ∂ α ∂x α V (0, y) + ϵ m+1 O(1) =: V (0, y) + ϵW (x, y; ϵ), (2.0.64)uniformly for (x, y) ∈ Ω d . Let P(y, k) and E(y, k, z) be the operators given in Proposition 2.0.14 corresponding to the operator V (y) = V (0, y). Now, consider the Grushin problem related to G(y, k, ϵ) = G(y, k) + ϵW (x, y, ϵ) :P(y, k, , ϵ) =    G(y, k, ϵ) -z R -(k) R + (k) 0    = P(y, k) + ϵ Λ,k × C N → L 2 (Λ) × C N k , Since W (•, y, ϵ) : H Λ,k → L 2 (Λ)is uniformly bounded with respect to y ∈ R d and ϵ ∈ [0, 1], it follows from Proposition 2.0.14 that, for ϵ small enough the operator P(y, k, , ϵ) is bijective with bounded two-sided inverse Ẽ(y, k, z; ϵ) :=    G N (y, k, z; ϵ) E + (k, z, ϵ) E -(k, z, ϵ) E eff (y, k, z; ϵ) (y, k, z).

( 2 .

 2 0.65) From (2.0.64) and the above equality it follows that, modulo O(ϵ m+1 ), Ẽ(y, k, z; ϵ) has an asymptotic expansion in powers ofϵ in S 0 (R 2d ; L(L 2 (Λ) × C N k ; H Λ,k × C N )). This gives Proposition 2.0.14 when V depends on (x, y).

Theorem A.0. 3 .

 3 Let A : D(A) ⊂ H -→ H generates a C 0 -semigroup of contractions e tA t≥0 on H. Then, the C 0 -semigroup e tA t≥0 is exponentially stable if and only if iR ⊂ ρ(A) and lim sup λ∈R, |λ|→∞ ∥(iλI -A) -1 ∥ L(H) < ∞.

Theorem A.0. 4 .C t 2 ℓ

 42 Assume that A is the generator of a strongly continuous semigroup of contractions e tA t≥0 on H. If iR ⊂ ρ(A), then for a fixed ℓ > 0 the following conditions are equivalentlim sup λ∈R, |λ|→∞ 1 |λ| ℓ ∥(iλI -A) -1 ∥ L(H) < ∞, (A.0.1) ∥e tA U 0 ∥ 2 H ≤ ∥U 0 ∥ 2 D(A) , ∀t > 0, U 0 ∈ D(A),for some C > 0. (A.0.2) □ Definition A.0.5. A bounded operator P : H 1 -→ H 2 between two Banach spaces, is called a Fredholm operator if the kernel of P , kerP def = {u ∈ H 1 : P u = 0}, and the cokernel of P , cokerP def = H 2 /{P u ∈ H 2 : u ∈ H 1 },

Figure 2 :

 2 Figure 2: An example where the BMGC boundary condition holds.

f

  ξ P (x, ξ; h) ∈ L 1 (R 2n , M d (C)), for all |α| + |β| ≤ 2n + 1. Then, P w (x, hD x ; h) is a trace class operator, and we havetr(P w (x, hD x ; h)) = 1 (2πh) n R 2n tr(P (x, ξ; h))dxdξ,where tr designates the trace in the matrix sense. Moreover, ∃ C n (that depends only on the dimension) such that∥P w (x, hD x ; h)∥ tr ≤ C n h -n |α|+|β|≤2n+1 ∥∂ α x ∂ β ξ P (x, ξ; h)∥ L 1 (R 2n ) .Theorem B.0.13. Let P (x, ξ; h) ∼ n j=0 h j P j (x, ξ) in S 0 (R 2n , M d (C)). We suppose thatK := {(x, ξ) ∈ R 2n ; ∃ τ ∈ [a, b]; det(P 0 (x, ξ) -τ ) = 0}is a compact set. Then for f ∈ C ∞ 0 ((a, b), R), the operator f (P w (x, hD x ; h)) is of trace class, and we have tr(f (P w (x, hD x ; h))) ∼ ∞ j=0 a j (f )h j-n (h ↘ 0), (λ j (x, ξ))dxdξ.

  Hence, we get that ℜS λ ((u, y), (u, y)) ≥ ||(u, y)|| H×H , thus the coercivity of S λ . Moreover, L λ is antilinear and continuous form on H. Then, it follows

	by Lax-Milgram's theorem that (1.0.20) admits a unique solution (u, y) ∈ H. By choosing
	φ ∈ C ∞ c (Ω 1 ), ψ = 0 in (1.0.20), and applying Green's formula, we have

  u| ∂Λ d = 0} is discrete and coincides with {e J (k); J ∈ N d }. The family (Ψ J (•, k)) J∈N d is an orthonormal basis in L 2 (Λ d ).According to Theorem 2.0.1, Corollary 2.0.2, and the theory of decomposable operators (see Theorem XIII. 85 in[START_REF] Reed | Methods of Modern Mathematical Physics. IV Analysis of Operators[END_REF]) the spectrum of the operator H = D 2x + (D y + µx) 2 with domain

	H D Ω d is absolutely continuous, and given by
	.0.10)
	By Theorem 2.0.1, we have

Corollary 2.0.2. Fix d ≥ 1. The spectrum of the operator H 0 (k) on {u ∈ H 2 (Λ d );

Coming back to (1.0.20), and again applying Green's formula, and using the fact that u = y and φ = ψ on I, we getI (a∂ ν 1 u + b∂ ν 2 y) ψdΓ = 0, ∀ ψ ∈ H 1 2 Γ 2 (I),

2 e -a 2 µ (see[START_REF] Bolley | Modélisation du champ de retard à la condensation d'un supraconducteur par un problème de bifurcation[END_REF]). In Proposition 2.0.5, we generalize this result for j ∈ N and |k| << µ. The proof uses the parabolic

Acknowledgments

not only for b ≥ a) , and σ(A) ∩ iR = ∅ (for iλ ∈ Σ m we have that iλ -A is surjective, and by Lax-Milgram's Lemma we can easily prove that 0 ∈ ρ(A) ), besides

(1.0.151) Thus, -B is 1-partially M -coercive. On the other hand, in the vector C, we have ℜ{c 

(1.0.152)

Optimal Polynomial Decay Rate

The aim of this section is to prove that the energy decay rate obtained in Theorem 1.0.11 is optimal in the first dimension, for the case when M = 1, B = -1, and C = -1, with a = b = 1. That is we have the following system

u tt -u xx = 0, (-1, 0) × (0, ∞), y tt -y xx = 0, (0, 1) × (0, ∞), u(0) = y(0), u x (0) = y x (0), u x (-1) + η = 0, y(1) = 0, η t -u t (-1) + η = 0.

(1.0.153)

That is particular case of (1.0.1), with Ω = (-1, 1). As (SSC1)-(SSC4) holds, then the System (1.0.153) is strongly stable. In addition, using Lax-Milgram it is easy to see that iR ⊂ ρ(A).

In particular, we obtain a Weyl type asymptotics with optimal remainder estimates of the counting function of eigenvalues of H(ϵ) below the essential spectra. Finally, we give a complete asymptotic expansion in powers of ϵ of the spectral shift function corresponding to (H(ϵ), H).

We suppose that V is smooth, and there exists δ ≥ 0 such that :

Using the fact that the operator H is self-adjoint on the domain H D Ω d , we deduce that

Combining this with the second resolvent identity

we deduce that the operator on the left hand side of the above equality is compact. Thus, Lemma D.0.1 in appendix C yields Lemma 2.0.7. Assume that V satisfies (2.0.13) with δ > 0. Then

First, we derive a local trace formula.

Theorem 2.0.8. Assume (2.0.13) with δ ≥ 0, and let Ψ be a smooth function such that

) is trace class and Lemma 2.0.12. The function κ is analytic in a neighborhood of R \ {e J (0)}.

Proof. Fix t 0 ̸ = e J (0), and let ε be a small positive constant such that ∇e J (k) ̸ = 0 when k ∈ Σ ϵ (t 0 ) := e -1 J (]t 0 -ε, t 0 + ε[). Without any loss of generality we may assume that ∂ k 1 e J (k) ̸ = 0 for all k ∈ Σ ϵ (t 0 ). By the change of variable U : k → k = (e J (k), k 2 , ..., k d ), we have

Clearly the right-hand side of the above equality is analytic. Combining this with the fact that {k∈R d \Σϵ(t 0 ) ; e J (k)≤t} dk is constant for t near t 0 , we get the lemma. □ Thus, the function ρ is analytic in a neighborhood of Σ = R \ σ(H 0 (0)). The remainder of the proof of Theorem 2.0.3 is a simple consequence of the following lemma.

Lemma 2.0.13. There exists an analytic function g with g(s) ∼ s→0

for |t -e J (0)| small enough. Here Y (t) is the Heaviside function, and S d-1 stands for the unit sphere in R d .

Proof. By Morse Lemma there exist a neighborhood V of k = 0, ε > 0 and a local analytic

On the other hand, for |t -e J (0)| small enough we have

Appendix A

Some Notions and Stability Theorems

In order to make chapters one and two more self-contained, we recall in this short appendix some notions and stability results used in this work.

Definition A.0.1. Assume that A is the generator of C 0 -semigroup of contractions e tA t≥0 on a Hilbert space H. The C 0 -semigroup e tA t≥0 is said to be

(2) Exponentially (or uniformly) stable if there exists two positive constants M and ε such that

(3) Polynomially stable if there exists two positive constants C and α such that

□

To show the strong stability of a C 0 -semigroup we rely on the following result due to Arendt-Batty [START_REF] Arendt | Tauberian theorems and stability of one-parameter semigroups[END_REF].

Theorem A.0.2. Assume that A is the generator of a C 0 -semigroup of contractions e tA t≥0 on a Hilbert space H. If A has no pure imaginary eigenvalues and σ (A) ∩ iR is countable, where σ (A) denotes the spectrum of A, then the C 0 -semigroup e tA t≥0 is strongly stable. □

Concerning the characterisation of exponential stability of a C 0 -semigroup of contractions we rely on the following result due to Huang [START_REF] Huang | Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces[END_REF] and Prüss [START_REF] Prüss | On the spectrum of C 0 -semigroups[END_REF].

Appendix B

h-pseudodifferential Operator General case : (Pseudodifferential operator with operator valued symbol).

We recall here some basic result about pseudodifferential operators with operator-valued symbol (see [START_REF] Dimassi | Spectral asymptotics in the semi-classical limit[END_REF] and the references cited therein). We shall consider a family of Hilbert space A X , X = R 2d satisfying :

there exist N ∈ N and C > 0 such that for all u ∈ A 0 and all X, Y ∈ R 2d we have

Notice that (B.0.1) means that only the norm of A X depends on X, not on the space itself. Let B X be a second family with the same properties. We say that p ∈ C ∞ (R 2d ; L(A 0 , B 0 )) belongs to the symbol class S 0 (R 2d ; L(A X , B X )) if for every α ∈ N 2d there exists C α such that

If p depends on a semi-classical parameter ϵ and possibly on other parameters as well, we require (B.0.3) to hold uniformly with respect to these parameters. For ϵ-dependent symbols, we say that p(y, k; ϵ) has an asymptotic expansion in powers of ϵ , and we write

We can then associate to p a ϵ-pseudo-differential operator

Here we use the Weyl quantization. Similarly to the scalar case, the following results hold.

Theorem B.0.1. Let p ∈ S 0 (R 2d ; L(A X , B X )) where A X , B X satisfy (B.0.1) and (B.0.2) then

Let C X be a third Hilbert space which satisfy (B.0.1), (B.0.2).

where r is given by r(y, k; ϵ) ∼ 

uniformly for h ∈ (0, h 0 ). If the symbol a(x, ξ, z; h) depends on an additional parameter

, and for δ = 0, we simply

Appendix C Functional Calculus

Let Ω be a bounded open subst of R n . We denote by Ω the subset of Ω + iR n . We identify Ω with the subset of Ω defined by y = 0.

We say that f is an almost analytic extension of f if and only if : f ∈ C ∞ ( Ω), f|Ω = f , and

locally uniformly on neighborhood of Ω in C, where

Lemma it is easy to check that, for an appropriate sequence α n , the series

converges uniformly with all its derivatives. From the above definition and the following equality

we see easily that f|R = f , f ∈ C ∞ 0 (C) and satisfy (C.0.1).

Proposition C.0.3. (Helffer-Sjöstrand formula) Assume that A is a self-adjoint operator on a Hilbert space H. Let f ∈ C ∞ 0 (R), and f ∈ C ∞ 0 (C) be the almost analytic extension of f . Then

where L(dz) = dxdy is the Lebesgue measure on C ∼ R 2 x,y .

Appendix D Spectral Theory

Lemma D.0.1. Let V : R n → C be a continuous function such that V tends to zero at infinity.

The operator V (-

Proof. Let φ ∈ C ∞ 0 (R n ) be equal one for |x| ≤ 1 and φ(x) = 0 for |x| ≥ 2. For n ∈ N * , we put φ n (x) = φ(x/n). By the Rellich-theorem the operator φ n (-

. This ends the proof of the lemma since the set of compact operators is closed in 

Appendix E Grushin problem: brief description

In this paragraph we recall the basic results about Grushin problem. Let H 1 , H 2 and H 3 be three Hilbert spaces, and let P ∈ L(H 1 , H 3 ) be self-adjoint. Assume that there exist

) such that the following operator

be its inverse. We refer to the problem P(z) as a Grushin problem and the operator E eff (z) is This identity comes from the fact that R ± are independent of z.