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Abstract

In the past decade, there has been an unprecedented rise in the incorporation of
cyber-physical systems being used in performing complex tasks. Verification of these
systems is necessary to ensure the safety and reliability of them, especially in
safety-critical scenarios. Formal verification has been proven to be a time-tested method
to systematically verify these systems. In particular, it provides techniques for
monitoring system executions against a formal specification. Temporal logic has gained
popularity as a formal specification due to its mathematical rigour, human
interpretability, and compatibility with various formal verification techniques. But,
often, these specifications are hard to design manually, necessitating a need to
automatically generate them from system executions. The objective of this thesis is
twofold: (i) Develop algorithms to automatically learn temporal specifications from
system executions; (ii) Apply formal verification techniques to assess the correctness of
the system against the acquired specifications.

To achieve these objectives, in the learning part, we present two algorithms to learn
specifications in temporal logics such as LTL, MTL and STL. Our algorithms are in the
passive learning setting where one learns specifications that separate a finite set of
positive system behaviours from a finite set of negative ones. For LTL specifications, we
present a dynamic programming based algorithm that leverages a normal form for a
fragment of LTL and uses efficient enumeration techniques to learn concise formulas
from system executions. For MTL and STL, we develop SMT-solver based techniques to
learn formulas that are not only concise but also efficient to be applied for formal
verification of the system. Our algorithms are implemented in tools called SCARLET and
TEAL, and their efficiency is demonstrated through experimental results. In the
verification part, we focus on the LTL parameter-synthesis problems of one-counter
automata, which is one of the fundamental formal models to represent complex
systems, namely systems with discrete yet infinite state space. One-counter automata
are obtained by extending classical finite-state automata with a counter whose value
can range over non-negative integers and be tested for zero. The updates and tests
applicable to the counter can further be made parametric by introducing a set of
integer-valued variables called parameters. The LTL parameter synthesis problem for
such automata asks whether a valuation of the parameters exists such that all infinite
runs of the automaton satisfy an LTL specification. Building upon the existing works in
the literature, (i) we show a careful re-encoding of the problem into a decidable
restriction of Presburger Arithmetic with Divisibility (PAD), the largest known
decidable fragment of PAD till now; (ii) We prove that the parameter synthesis problem
is decidable and in 3NEXP; (iii) We give EXPSPACE algorithms for the special cases of
the problem where parameters can only be used in counter tests. Finally, (iv) we also
establish decidability of this problem on an extension of the model with Parikh
constraints.
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Résumé

Au cours de la dernière décennie, on a assisté à une augmentation sans précédent de
l’incorporation de systèmes cyber-physiques complexes utilisés pour effectuer des
tâches complexes. La vérification de ces systèmes est nécessaire pour garantir leur
sécurité et leur fiabilité, en particulier dans les scénarios de sécurité critiques. La
vérification formelle s’est avérée être une méthode éprouvée pour vérifier
systématiquement ces systèmes. Elle fournit notamment des techniques permettant de
contrôler l’exécution des systèmes par rapport à une spécification formelle. Souvent, ces
spécifications sont difficiles à concevoir manuellement, d’où la nécessité de les générer
automatiquement à partir des exécutions du système pour les utiliser à des fins de
vérification. La logique temporelle a gagné en popularité en tant que spécification
formelle en raison de sa rigueur mathématique, de son interprétabilité par l’homme et
de sa compatibilité avec diverses techniques de vérification formelle. L’objectif de cette
thèse est double : (i) Développer des algorithmes pour apprendre automatiquement des
spécifications temporelles à partir d’exécutions de systèmes ; (ii) Appliquer des
techniques de vérification formelle pour évaluer l’exactitude du système par rapport
aux spécifications acquises.

Pour atteindre ces objectifs, dans la partie apprentissage, nous présentons deux
algorithmes pour apprendre des spécifications dans des logiques temporelles telles que
LTL, MTL et STL. Nos algorithmes sont dans le cadre de l’apprentissage passif et
apprennent des spécifications qui séparent un ensemble fini de comportements positifs
du système d’un ensemble fini de comportements négatifs. Pour les spécifications LTL,
nous présentons un algorithme basé sur la programmation dynamique qui s’appuie sur
une forme normale pour un fragment de LTL et utilise des techniques d’énumération
efficaces pour apprendre des formules concises à partir des exécutions du système.
Pour MTL et STL, nous développons des techniques basées sur un résolveur SMT pour
apprendre des formules qui sont non seulement concises mais aussi efficaces pour être
appliquées à la vérification formelle du système. Nos algorithmes sont mis en œuvre
dans des outils appelés SCARLET et TEAL, et leur efficacité est démontrée par des
résultats expérimentaux. Pour la partie vérification, nous nous concentrons sur les
problèmes de synthèse de paramètres LTL des One-counter automata, qui est l’un des
modèles formels fondamentaux pour représenter les systèmes complexes, à savoir les
systèmes avec un espace d’état discret mais infini. One-counter automata sont obtenus
en étendant les automates classiques à états finis avec un compteur dont la valeur peut
s’étendre sur des entiers non négatifs et être testée pour zéro. Les mises à jour et les
tests applicables au compteur peuvent être paramétrés en introduisant un ensemble de
variables à valeur entière appelées paramètres. Le problème de la synthèse des
paramètres LTL pour de tels automates est de savoir s’il existe une évaluation des
paramètres telle que toutes les exécutions infinies de l’automate satisfont une
spécification LTL. En s’appuyant sur les travaux existants dans la littérature, (i) nous
montrons un réencodage prudent du problème en une restriction décidable de
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l’arithmétique de Presburger avec divisibilité (PAD), le plus grand fragment décidable
connu de PAD jusqu’à présent ; (ii) Nous prouvons que le problème de la synthèse des
paramètres est décidable en général et en 3NEXP ; (iii) Nous donnons des algorithmes
EXPSPACE pour les cas particuliers du problème où les paramètres ne peuvent être
utilisés que dans des contre-tests. Enfin, (iv) nous présentons brièvement le résultat de
décidabilité de ce problème sur une extension de ce modèle avec des contraintes de
Parikh.



Samenvatting

In het afgelopen decennium is er een ongekende groei geweest bij het bouwen van
zogenaamde cyber-fysische systemen die worden gebruikt bij het uitvoeren van
complexe taken. Verificatie van dergelijke systemen is noodzakelijk om de veiligheid en
betrouwbaarheid van deze systemen te garanderen, vooral in veiligheidskritische
scenario’s. Formele verificatie is een beproefde methode gebleken om dergelijke
systemen systematisch te verifiëren. Het biedt met name technieken om de uitvoering
van een systeem te toetsen aan een formele specificatie. Het handmatig opstellen van
dergelijke specificaties is vaak moeilijk. Het automatisch leren (via AI technieken) van
op basis van systeemuitvoeringen een uitweg kunnen bieden. Temporele logica heeft
aan populariteit gewonnen als formele specificatie vanwege haar wiskundige
nauwkeurigheid, menselijke interpreteerbaarheid en compatibiliteit met verschillende
formele verificatietechnieken. Het doel van dit proefschrift is tweeledig: (i) algoritmen
ontwikkelen om automatisch temporele specificaties te leren van systeemuitvoeringen;
(ii) formele verificatietechnieken toepassen om de juistheid van het systeem te
beoordelen aan de hand van de verkregen specificaties.

Om deze doelen te bereiken, presenteren we in het leergedeelte twee algoritmen om
specificaties te leren in temporele logica’s zoals LTL, MTL en STL. Onze algoritmen
situeren zich in een zogenaamde passieve leeromgeving die specificaties leren op basis
van een eindige verzameling positieve systeemgedragingen gescheiden van een eindige
verzameling negatieve. Voor LTL specificaties presenteren we een algoritme gebaseerd
op dynamische programmering dat gebruikmaakt van een normale vorm voor een
fragment van LTL en efficiënte opsommingstechnieken gebruikt om beknopte formules
te leren van systeemuitvoeringen. Voor MTL en STL ontwikkelen we
SMT-solvergebaseerde technieken om formules te leren die niet alleen beknopt zijn,
maar ook efficiënt om toe te passen voor formele verificatie van het systeem. Onze
algoritmen zijn geïmplementeerd in tools genaamd SCARLET en TEAL, en hun efficiëntie
wordt aangetoond door middel van experimentele resultaten. Voor het
verificatiegedeelte richten we ons op de LTL parameter synthese problemen van
one-counter automaten, een van de fundamentele formele modellen om complexe
systemen te representeren, namelijk systemen met een discrete maar oneindige state
space. One-counter automaten worden verkregen door klassieke
eindige-statenautomaten uit te breiden met een teller waarvan de waarde kan variëren
over niet-negatieve gehele getallen en getest kan worden op nul. De updates en tests die
van toepassing zijn op de teller kunnen verder parametrisch gemaakt worden door een
verzameling integer-gewaardeerde variabelen te introduceren die parameters genoemd
worden. Het LTL parametersyntheseprobleem voor zulke automaten vraagt of er een
waardering van de parameters bestaat zodat alle oneindige runs van de automaat
voldoen aan een LTL specificatie. Voortbouwend op bestaand werk in de literatuur, (i)
tonen we een zorgvuldige hercodering van het probleem in een beslisbare beperking
van Presburger Arithmetic with Divisibility (PAD), het grootste tot nu toe bekende
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beslisbare fragment van PAD; (ii) bewijzen we dat het parametersyntheseprobleem in
het algemeen en in 3NEXP ontcijferbaar is; (iii) geven we EXPSPACE-algoritmen voor
de speciale gevallen van het probleem waarbij parameters alleen kunnen worden
gebruikt in tellertests. Tot slot (iv) presenteren we kort het beslisbaarheidsresultaat van
dit probleem op een uitbreiding van dit model met Parikh beperkingen.
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Introduction

Formal verification has proven to be a time-tested method to verify complex systems
systematically. In the context of hardware and software systems, formal verification
ensures the correctness of system executions against a property or a formal
specification. Manually designing the specifications is often challenging and
resource-expensive. The aim of this dissertation is two-fold: (i) Develop algorithms to
automatically synthesise (learn) specifications from system behaviours, and (ii) Use
formal verification techniques to check the correctness of the system against these learnt
specifications. In this chapter, we first familiarize the reader with the concept of
“specifications” and “formal verification” and, in particular, what kind of systems we
want to verify. We will then focus on automatically learning these specifications from
system behaviours. Then, we elaborate on the specific formal models and verification
techniques we use to verify them. Finally, we will list the contributions towards these
aspects developed in this dissertation.

1.1 Cyber-Physical Systems

Cyber-Physical Systems (CPS) refer to systems that consist of physical entities wherein
computer-based algorithms are employed to exercise control or monitor the operation
of these physical mechanisms. These systems are integrated with computing and
communication technologies, creating a complex, interconnected network of physical
and digital components. They are ubiquitous in the modern world as they are being
used everywhere, including the industries of manufacturing, transportation, energy,
healthcare, and infrastructure. Examples of CPS include autonomous vehicles, medical
implantation, robotics systems, automatic aviation, and smart grids. They are
extensively being used in safety-critical scenarios, where the failure of the systems may
lead to hazardous economic and life-threatening situations. For example, a bug in the
code that managed the Therac-25 radiation therapy machine caused at least five patient
fatalities during the 1980s by delivering too much beta radiation [97]. Multiple reports
of accidents and deaths have been reported for software bugs in Tesla’s autonomous
vehicle models [54]. Hence, systematic analysis and verification of the safety and
correctness of CPS have emerged as a necessary and growing research area.

1



2 CHAPTER 1. INTRODUCTION

1.2 Verification

Verification aims to establish whether a system meets a set of requirements. It is crucial
to develop cyber-physical systems that are safe and have a high level of assurance.
Despite its necessity, this process is difficult and often error-prone. Towards this, formal
methods, including techniques like model checking, abstract interpretation, parameter
synthesis and theorem proving, have shown promise in addressing the challenges
associated with the verification of CPS. Other methods used in the verification of CPS
include simulation and testing. However, formal methods are increasingly being
adopted in industry and academia due to their ability to offer mathematical rigour and
systematically ascertain the correctness of system properties. More detailed
explanations follow in the next subsections.

1.2.1 Formal Methods

Formal Methods are mathematically precise approaches utilized for outlining,
developing, and validating cyber-physical systems based on mathematical reasoning.
Formal methods employ mathematical models and techniques like automata,
counter-machines, set theory and logical formalisms [86, 110, 108]. Formal methods
have gained popularity in recent years due to the increasing complexity of software and
hardware systems [28]. The use of formal methods helps to detect and correct errors
early in the design process, reducing the cost and time required for testing and
debugging. Formal methods have been used successfully in a wide range of CPS,
including avionics, automotive, medical devices, and telecommunications [109, 5, 26].

One way of categorizing formal methods is as follows:

• Formal Specifications. Formal specifications refer to system properties that are
formalized mathematically. They can be employed at an early stage to develop the
system or at a later stage to check if the developed system satisfies the desired
properties

• Formal Verification. Formal verification aims to establish mathematically whether
the underlying system meets a formal specification or produces a bad trace of the
system that does not satisfy. This technique can be applied during the
development process to verify some components of the system or at the end of the
development process.

• Theorem Provers. Theorem proving is concerned with mechanically proving the
correctness of mathematical statements or theorems to verify system properties.
Although theorem provers can help improve tools, their associated cost can be
substantial due to the complexity of the work they aim to accomplish. Thus,
theorem provers are only justifiable if the cost of errors or inaccuracies is
significantly high.

This work focuses on formal specifications and formal verification of CPS. We elaborate
on this below.
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Figure 1.1: Safety-critical specifications for autonomous vehicles1

1.2.1.1 Formal Specifications and its Automated Learning

Formal specifications are models to formally describe a system, analyze its behaviour,
and assist in its design by verifying essential properties of interest using effective
verification tools. Such specifications are ‘formal’ in the sense that they possess a
well-defined syntax, their semantics fall within a specific domain, and they can be used
to infer useful information. By utilizing formal specifications, it is possible to precisely
and unambiguously define the system’s requirements, behaviour, and interface. Formal
specifications can be implemented using different formalisms, such as mathematical
logic, automata theory, or process algebras, depending on the system’s characteristics
and the properties of interest. In this thesis, we focus on temporal specifications, which
consists of a set of temporal logic formalisms such as Linear Temporal Logic (LTL),
Metric Temporal Logic (MTL) etc., that describe the evolution of a system’s behaviour
over time in terms of logical propositions and temporal operators. The development of
temporal logic as a tool for formal methods can be traced back to the mid-20th century,
with the pioneering work of Arthur Prior [74] and later followed by the introduction of
LTL by Pnueli [118] in the 1980s. In the context of cyber-physical systems, temporal
specifications are particularly important, as these systems often involve complex
interactions between physical and computational components.

Example 1 Let us consider an example from modelling autonomous vehicles. One of the
safety-critical requirements for such a vehicle is as follows:

At any time point, if the sensor detects a preceding vehicle at an unsafe distance (less than
twenty meters), the brake of the vehicle needs to be triggered. The requirement is shown in
Figure 1.1, where the unsafe distance is 20 meters. This can be expressed as an LTL specification
that says Always(unsafe distance→ trigger brake), where unsafe distance denotes the event
that there is a preceding vehicle at a distance of less than twenty meters and trigger brake
denotes the action of triggering the brake.

Learning Specifications. The process of manually writing specifications is widely
recognized as tedious and error-prone [3]. A significant challenge in formal verification

1Image taken from [131]
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lies in synthesising specifications that are functional, correct, and easily interpretable,
accurately capturing the design requirements [21, 130].

To address the lack of formal specifications, researchers have made efforts to
automatically synthesise specifications from system executions. Many of these
approaches aim to produce concise specifications, as they are deemed preferable over
larger ones due to their ease of human understanding, following the principle of
Occam’s razor [129]. These methods have gained considerable popularity in two
growing research fields:

• Specification Mining: Specification mining [3] is closely associated with formal
verification and focuses on automatically extracting formal specifications from
system data to assist programmers and verification tools. It plays a crucial role in
formal verification by enabling analysis of system behaviour, properties, and
vulnerabilities based on observed data. By analyzing logs, traces, or other
execution data, specification mining techniques uncover implicit or latent rules,
patterns, and dependencies that govern the system. These extracted specifications
enhance system understanding, testing, debugging, verification, and validation
processes and enhance the overall reliability and security of cyber-physical
systems.

• Explainable AI. The integration of automation in software systems has been driven
by the adoption of data-driven techniques, commonly known as Artificial
Intelligence (AI), in system design. However, the complexity of intelligent systems
often leads to a limited understanding of their inner mechanisms. To establish
human ‘trust’ in these systems, there is a need for techniques that explain their
behaviour in a human-interpretable manner and facilitate system verification.
Explainable AI (XAI) [112] addresses this challenge by focusing on explaining the
behaviour of these black-box systems, particularly in relation to the interpretable
explanations of temporal behaviour in cyber-physical systems.

One of the main focus points of this thesis is to automatically learn temporal
specifications from system executions. Previously there have been works on learning
automaton models as concise specifications from systems [4, 65, 66]. In this thesis, we
focus on learning specifications in temporal logics as (i) they are very close to natural
language [113, 25, 34], (ii) they can formalize temporal specifications of a system, and
(iii) they are widely used in formal verification [8, 118]. Note that our learning
techniques are in the passive learning setting [20], a common classification (active vs
passive) in the literature of automata learning, where a learning algorithm is confronted
with a finite set of traces or executions that have some kind of classification (positive
and negative, for binary classification) attached. The goal is to find the most concise
formal specification (automata, temporal logic formula etc.) that is consistent with the
set of classified traces.

1.2.2 Formal Verification

Formal verification involves the construction of a mathematically rigorous “formal
model” that abstracts the mechanics of the system. Mathematical proofs are then
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employed to establish the validity of a property, represented as a formal specification,
within the formal model. Formal verification has evolved as a prominent field since its
inception in the mid-20th century, drawing inspiration from automata theory, logic, and
pioneering works by researchers such as Kleene, Büchi, and Rabin [86, 121]. Various
formal models have been developed and utilized in the field of formal verification, such
as finite state machines, logic, and automata.

Finite state machines (FSMs) and automata serve as fundamental models in formal
verification, enabling the analysis of system behaviour based on state transitions and
inputs. A finite state machine consists of a finite set of states, transitions between states
based on inputs, and outputs associated with each transition. By capturing the system’s
behaviour in terms of states and transitions, FSMs allow for systematic analysis and
verification of system properties. However, FSMs have inherent limitations in capturing
complex and dynamic (potentially infinite) system evolution over time, highlighting the
need for more expressive models that are able to argue about various quantitative
properties in verification processes.

1.2.2.1 Counter Machines and One-Counter Automata

Counter machines are computational models equipped with one or more counters that
can be incremented, decremented, and tested. They extend the expressive power of
finite state machines by incorporating counters to track and enforce quantitative
properties, making them essential in formal verification for reasoning about
quantitative aspects of system behaviour. We demonstrate this in the example of the
autonomous vehicle we mentioned to introduce formal specifications.

Example 2 Let us consider the scenario of modelling and verifying an autonomous vehicle in
the context of potential unsafe behaviours, as illustrated in Example 1. We need to track the
distance to the preceding vehicle to check if the vehicle is in a ‘normal’ or an ‘unsafe’ state. Now
the number of such configurations (state, distance) can be potentially infinite as the distance can
be any number, making it impossible to be modelled as a finite state machine. On the other hand,
reasoning about all possible configurations of a system (normal/unsafe with the actual distance to
the preceding vehicle, in this particular example) is very costly and not even clearly possible.
Here the counter machine comes to the rescue; we can model this with a counter machine, where a
counter keeps track of the distance to the preceding vehicle. We illustrate this in detail below.

Let there be a sensor in the vehicle that controls the driving mode, which we call a driver. We
abstract its behaviour as discrete actions, accelerate and decelerate. For simplicity, we assume
that when it accelerates, the distance to the preceding vehicle decreases by one meter, and when it
decelerates, the distance increases by one meter (this actually depends on the vehicle). The
acceleration and deceleration of the driver are controlled by two mutually exclusive signals it
gets: Brake and noBrake. We can model this safety feature as a counter machine, as illustrated
in Figure 1.2, that can trigger these signals to the driver. We denote the counter measuring the
distance to the preceding vehicle as 3. Let safeDistance be the threshold of the safe distance to the
preceding vehicle, which we set here as 20 meters.

The counter machine in the figure represents a formal model for verifying the safety of the
autonomous vehicle. The alphabet or the labels of the transitions are a combination of actions of
the driver and the signals that it receives: accelerate, decelerate, Brake and noBrake. It consists of
two states, ”Normal” and ”Unsafe,” representing the vehicle’s normal and potentially dangerous
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Normal Unsafe

d ≥ safeDistance
accelerate: d = d - 1
decelerate: d = d + 1

d < safeDistance
decelerate: d = d + 1

d ≥ safeDistance
noBrake

d < safeDistance
Brake

Figure 1.2: Countermachinemodel for verifying the behaviour of an autonomous vehicle
in relation to unsafe distances and triggering brake actions.

conditions, respectively. Transitions between states depend on the value of the counter variable 3,
which represents the distance to the preceding vehicle. In the “Normal” state, the counter is
updated based on the vehicle’s normal behaviour as controlled by the driver, and if it goes below
the threshold safeDistance (20 meters in the example), the counter machine forces the output
action Brake and goes to “Unsafe” state. The driver receives the signal from the counter machine
and then continues the decelerate action until it stays in the “Unsafe” state. In the “Unsafe”
state, the value of the counter, i.e., the distance, increases gradually due to the decelerate action
and eventually when it surpasses the safe threshold, the driver recovers to the “Normal” state, as
it receives the ’noBrake’ signal from the counter machine. This counter machine facilitates the
formal verification of the properties concerning maintaining a safe distance and triggering
appropriate actions in the autonomous vehicle.

Counter machines were introduced by Minsky [110] as a formal model, and they are
also commonly known as counter automata, counter nets or Minsky machines. He
showed that counter automata with two counters possess the same computational
power as Turing machines. Consequently, nearly all verification problems related to
counter machines are undecidable. To maintain decidability, various restrictions have
been proposed in the literature, e.g. reversal-bounded counter automata [81] and
automata with a single counter. In this thesis, we focus on the latter, called one-counter
automata as a formal model where we allow one counter and the counter can be updated
and tested along the transitions. This model has found applications in various fields of
formal verification [27, 36], and we motivate and formally introduce the model in the
corresponding chapter in this thesis later.

1.2.2.2 Model Checking and Parameter Synthesis

Given a formal model of the systems and a formal specification, a formal verification
technique typically comprises mathematical techniques to check if the model satisfies
the specification. One of the most widespread and popular techniques used is model
checking, which systematically explores all possible states of a state machine to verify
desired properties. For the counter-machine in Figure 1.2, we can verify simple
properties like ‘safety’ that asks if we start from a particular distance, say 30 meters
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from the preceding vehicle, i.e., with counter value 30 at the ‘Normal’ state, do all runs
avoid the ‘Unsafe’ state? In this thesis, we focus on different properties like ‘safety,
‘reachability’, ‘Büchi’ (repeated reachability), and general ones expressed in LTL.

When designing complex cyber-physical systems, it is often necessary to consider
various factors and requirements. These systems often communicate with and evolve
based on their surrounding environment. To formalize the varying conditions provided
by the environment, the researchers introduce parameters in the formal computation
models. Parameters are (usually integer-valued) variables [2] that allow for
customization and flexibility in system design, enabling different configurations to be
explored. However, manually exploring all possible parameter combinations is
time-consuming and impractical.

To tackle this, parameter synthesis problems are the automated exploration of
parameterized design spaces to generate system designs that satisfy specified
properties. It involves identifying optimal values or ranges for the parameters that
satisfy given specifications. The goal is to efficiently search the parameter space and
find designs that meet the desired properties. Given a state machine with parameters
and a formal specification, we can ask two kinds of parameter synthesis problems:

• Existential Parameter Synthesis. Does there exist a valuation of the parameters such
that there exists an execution of the machine that satisfies the specification?

• Universal Parameter Synthesis. Does there exist a valuation of the parameters such
that all executions of the machine satisfy the specification?

In this thesis, we particularly focus on the latter. In the same example illustrated in
Figure 1.2, we can make the ‘safeDistance’ a parameter (instead of fixing it to a
particular value) and ask questions like does there exist a valuation of ‘safeDistance’
such that all runs from ‘Normal’ state avoid the ‘Unsafe’ state? Note that this is an
example of a universal parameter synthesis problem for the safety specification.

1.3 Contributions

The present dissertation summarizes our contributions to the theory of learning and
verifying formal specifications for cyber-physical systems. The main focus of this thesis
is twofold: (i) develop algorithms to automatically learn temporal specifications from
complex system behaviours, and (ii) use verification techniques to check the correctness
of the system against the learnt specifications. We elaborate on this below.

1.3.1 Learning Temporal Specifications

Towards learning system properties from its executions, the works in this thesis focus
on logical specifications. In particular, we aim to learn formulas in temporal logic (e.g.
Linear Temporal Logic, Metric Temporal Logic and Signal Temporal Logic ). These
logics can specify system evolution over time and have been a de facto standard in the
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field of formal verification. Over the past few years, learning temporal logic has been
identified as an important goal in the field of robotics, specification mining, and
artificial intelligence. Explanation in temporal logic is especially desirable as they are
not only mathematically sound and precise but also resemble natural language, as
argued in the literature. The fundamental problem is to build a specification in the form
of a temporal logic formula from a set of execution traces of a system that are classified
as positive and negative such that,

• The formula is consistent with the sample, i.e. it agrees with the positive
executions and does not with the negative ones;

• The formula is the smallest consistent one, and

• The formula can be efficiently used to apply in formal verification of the system.

Our work first aims to develop algorithms for automatically learning specifications in
Linear Temporal Logic (LTL) from labelled execution traces of the system, which is
given as a sample. More formally, given a set D1 , . . . , D= of positive traces and a set
E1 , . . . , E= of negative traces, the goal is to construct an LTL formula ! that is consistent
with the sample, i.e., all D8 ’s satisfy the formula !, and none of the E8 ’s does. Several
approaches towards this problem already exist in the literature leveraging SAT solvers,
automata, and Bayesian inference. These existing approaches often suffer from the
limitations of scaling. Indeed, theoretical studies have shown that constructing the
minimal LTL formula is NP-hard already for very small fragments of LTL, explaining
the difficulties found in practice. To address these, we turn to approximation and
anytime algorithms. While approximation means that the algorithm may not return the
smallest size formula, it does ensure that the output formula is consistent with the
sample; the anytime property denotes that the algorithm finds better solutions
recursively by refining them the longer it keeps running. On a high-level overview, our
algorithm searches for LTL formulas in a particular shape; we call it directed formulas
and then try to find the separating formulas using boolean combinations of the same.
To analyze and assess our algorithms against the previous algorithms, we have
implemented a prototype of our algorithm in Python 3 in a tool named SCARLET and ran
it on several benchmarks. We present the comparative results in a graphical
interpretable manner in our paper. We also establish how to adapt our algorithm for
noisy data, a common aspect for applications in AI domains.

Next, we shift our focus to automatically learn specifications in Metric Temporal Logic
(MTL), a logical formalism that extends LTL to reason about the continuous evolution
of a CPS over time. MTL is popularly employed in the verification of these complex
systems. Despite being extensively used in formal and runtime verification, to the best
of our knowledge, there are a limited number of works that focus on learning MTL
specifications automatically from system executions. The few existing works also are
not tailored towards learning MTL formulas to aid verification. Towards this, we
present a novel algorithm to automatically learn MTL specifications using two
regularizers– size and lookahead. We also implemented our algorithm in a Python 3
based tool named TEAL and ran it over several benchmarks to establish the efficiency of
our algorithm. In the end, we also show how to lift our techniques to learn specification
in Signal Temporal Logic (STL) that extends MTL to handle real-valued predicate and is
particularly useful in the verification of hybrid and continuous evolution of CPS.
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1.3.2 Verifying Linear Temporal Properties of Parametric One-Counter
Automata

In the verification part, this thesis primarily focuses on the computational complexity of
verifying one-counter automata, which are counter automata with the restriction of
having only one counter. These are particularly useful for modelling programs with a
single variable, protocols with unbounded integer storage space, or systems where
transitions consume resources like time or money. Note that the counter machine
illustrated in Figure 1.2 is a one-counter automaton. The counter can be updated or
tested along the transitions. Moreover, we consider a generalization called parametric
one-counter automata, where a finite set of parameters can be used at transitions to
update or test the counter. We say that an OCA satisfies an LTL formula if there exists a
run in the OCA that agrees with the formula. We particularly establish complexity
results of the universal parameter synthesis for OCA against LTL specifications that asks,
given an OCA with parametersA and a LTL specification !, does there exist a valuation
of the parameters, such that all runs ofA satisfy the formula !? As a stepping stone to
establish this, we also explore simpler properties like reachability, safety, Büchi and
coBüchi. For readability, we refer to the universal parameter synthesis problem for
OCA against property property as the ‘property parameter-synthesis problem’.

First, we show that the LTL parameter-synthesis problem for general OCA with
parameters is decidable in 3NEXP. Our algorithm works by reducing the problem to a
decidable fragment of Presburger arithmetic with divisibility (PAD), which is heavily
inspired by existing works by Christoph Haase and Antonia Lechner [73, 93]. In this
work, first, we define BIL, the largest decidable fragment of PAD known till now. Then we
leverage Haase’s existing techniques and formalisms in literature to reduce the LTL
parameter-synthesis problem for OCA with parameters to the satisfaction of a BIL
sentence. In this chapter, we also briefly touch upon the same problems for an extension
of OCA, named Parikh One-counter Automata, the study of which was originally
motivated by the logical fragment BIL.

Next, we show that the LTL parameter-synthesis problem is in EXPSPACE for a
restricted model, where the parameters can only appear in tests and not updates. For
this, we take inspiration from the work of [23] and encode parameter valuations of this
model into words accepted by an alternating two-way automaton.

1.4 Structure and Style of this Thesis

The organisation of this thesis is as follows. Chapter 2 introduces basic notation and
concepts that this thesis builds upon. The aim of this chapter is to introduce all the very
general concepts relevant to this thesis and covers definitions from areas such as logic,
arithmetic theories, temporal logics, computational complexity, automata theory and
one-counter automata. Definitions relevant to a specific chapter are introduced and
recalled in the respective chapter. After Chapter 1, the thesis is split into two
independent parts.

The first part deals with automatically learning temporal specifications. Chapter 3
presents a novel LTL learning algorithm and empirically establishes its efficiency



10 CHAPTER 1. INTRODUCTION

against the state-of-the-art tools already available. Chapter 4 presents an algorithm for
automatically learning MTL specifications to aid formal verification and show its
efficiency using implementation and experimental results. This chapter also presents
methods to lift these techniques to automatically learn STL specifications from system
executions.

The second part focuses on the formal verification of temporal specifications on a formal
model called One-Counter Automata. Specifically, Chapter 5 establishes complexity
results of the LTL parameter-synthesis problem for One-counter automata with
parameters. It also briefly discusses the same problem for an extension of this model
with Parikh constraints. Then, Chapter 6 establishes better complexity results for the
same problem in a fragment of the model where parameters can only appear in tests.

Each chapter motivates the specific problem discussed in more detail and also
introduces all the required concepts. If a general concept required in the chapter has
already been introduced in Chapter 1, we recall it there briefly. We also discuss how
these works fit into the literature and all the relevant related works in each chapter. We
omit a chapter or section on related works in the literature as it would just consist of a
repetition of the related works section in each chapter. In the end, each chapter closes
with a discussion about the results obtained and possible future work.

1.5 Joint Work and Copyright Notice

The results presented in this thesis are based on peer-reviewed publications that have
been co-authored with several collaborators. These publications reflect the outcome of
extensive discussions between the author and the collaborators conducted through
in-person meetings or email correspondence. The following paragraph contains the list
of publications on which the thesis is based.

In the first part of the thesis, the LTL learning algorithm presented in Chapter 3 has
been published in the proceedings of TACAS’22 [122] and was originally published as
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Raha. In this paper, we also studied this model extensively from language theoretic
perspectives, but those results are out of the scope of this thesis and hence are not
included in the chapter.
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Preliminaries

In this chapter, we will define the general mathematical notations we will use
throughout this thesis.

2.1 Notations and Conventions

We denote by R the set of real numbers; Z the set of integers; N the set of natural
numbers—including 0; and N>0 the set of positive integers.

For a set (, we denote the power set (the set of subsets of () of ( by P(() or by 2(
interchangeably. We use the symbol | to separate elements of a set and the properties
these must satisfy, variable quantification and formulas, etc. Both of them should be
read as “such that”. For example, {G | G > 2} ⊂ N denotes all natural numbers which
are greater than 2.

Let 5 : (1 → (2 be a function mapping elements from the set (1 to elements from the set
(2. We call 5 a bijection if for all B ∈ (1, 5 (B) ∈ (2 is unique and for all B′ ∈ (2, B ∈ (1 such
that 5 (B) = B′ is unique. The set (1 is the domain of 5 , and the set (2 is the range of 5 .

2.2 Formal Logic

In this section, we will introduce the notion of Formal logic and recall results on
decidable and undecidable theories of the same. In the subsequent sections, we will
focus especially on its various branches called propositional logic, first-order logic and
temporal logic.

2.2.1 Propositional Logic

Propositional logic (also known as Boolean logic) is the simplest form of formal logic that
includes a set of propositions P = {?0 , ?1 , . . .} and Boolean connectives like ¬ (not) and

13
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∨ (or). The other Boolean connectives ∧ (and),→ (imply) are derived in a standard way:

?8 ∧ ? 9 := ¬(?8 ∨ ? 9), ?8→ ? 9 := ¬?8 ∨ ? 9

The set Φ of formulas in propositional logic is the smallest set inductively defined as
follows:

• ? ∈ Φ for all ? ∈ P,

• ! ∈ Φ implies that, ¬! ∈ Φ,

• !1 , !2 ∈ ! imply that, !1 ∨ !2 ∈ Φ.

The semantics (or meaning) of a propositional formula is determined by assigning
semantics to the atomic propositions in the formula. Towards this, we define a
valuation function E : P → {true, false}. Intuitively, a propositional variable in P
represents a sentence or proposition to be true or false. This valuation E can be easily
extended to determine the truth value of a propositional formula using standard
semantics of the Boolean connectives.

A valuation E satisfies a formula if the formula evaluates to true with respect to the
valuation. A formula is satisfiable if there exists a valuation that satisfies the formula. As
an example, the formula ! = ?1 ∧ (?2 ∨ ?3) is satisfiable as the valuation
E(?1) = true, E(?2) = true satisfies !. On the other hand, the formula # = ¬?1 ∧ ?1 is not
satisfiable as there exists no valuation that will satisfy the formula, as every valuation
that assigns ?1 to be true, assigns ¬?1 to be false and vice-versa.

2.2.2 First-Order Logic

Propositional logic only deals with simple propositions or declarative statements that
can either be true or false. First-order logic goes beyond—it takes an underlying
structure and allows quantifying over elements of that structure. For example,
Propositional logic cannot capture statements such as ’There exists an infinite number
of prime numbers’, which requires the use of first-order logic.

Formally, first-order logic extends propositional logic with a domain of discourse D,
constants C, a set of predicates P, a set of functions ℱ and two quantifiers: ∃ (existential
quantifier) and ∀ (universal quantifier). We denote the structure of any first-order
theory as 〈D;P;ℱ ;C〉. As an example, the first-order theory of arithmetic
〈Z;<; B,+,×; 0〉 consists of a single predicate < of arity 2, a single constant 0, a unary
function B denoting the successor function and two binary functions + and × denoting
addition and multiplication. The domain of discourse is the set of integers Z.

In a formula in first-order logic, we refer to variables being free if they have not been
bounded by a quantifier. The values of free variables are not specified within the
formula itself and can take on any value from the domain of discourse when the
formula is evaluated. A formula that does not have any free variables is called a
sentence. For example, the above-mentioned statement ’There exists an infinite number
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of prime numbers’ can be written as a first-order sentence
∃GPrime(x) ∧ ∀H∃I(Prime(I) ∧ I > H). Note that none of the G, H and I variables are free
variables, as all of them are bounded by a quantifier.

In the following section, we are going to introduce Presburger arithmetic and some of
its decidability results. Note that the general first-order theory of integers
〈Z;<;+,×; 0, 1〉 is undecidable [38].

2.2.2.1 Presburger Arithmetic

Presburger arithmetic is a formal system developed by Mojżesz Presburger in 1929,
which deals with the arithmetic of integers without multiplication. Unlike the general
first-order theory of integers with multiplication, Presburger arithmetic is
decidable [119].

Formally, Presburger arithmetic (PA) is the first-order theory of integers in the structure
〈Z, <,+, 0, 1〉. Let - be a set of infinite first-order variables. A linear polynomial over
®G = (G1 , . . . , G=) ∈ -= is given by the syntax rule

?(®G) ::=
∑

1≤8≤=
08G8 + 1,

where 08 , 1 and G8 ’s range over Z. Then formulas in Presburger arithmetic can be
defined by the following grammar:

! ::= !1 ∧ !2 | ¬! | ?1(®G) ≤ ?2(®G),

where, ?1 and ?2 are linear polynomials. We define the standard Boolean abbreviation
!1 ∨ !2 ↔ ¬(¬!1 ∧ ¬!2). Moreover we introduce the abbreviations
?1(®G) < ?2(G) ↔ ?1(®G) ≤ ?2(®G) + 1 and ?1(®G) = ?2(®G) ↔ ?1(®G) ≤ ?2(®G)∧ ?2(®G) ≤ ?1(®G).
Given a finite set - = {G1 , . . . , G=} of first-order variables, we sometimes use a
generalised existential quantifier and write ∃G∈-!(®G) to abbreviate the formula
∃G1 . . . G=!(®G).

The size |! | of a PA formula ! is defined by structural induction over |! |: For a linear
polynomial ?(®G)we define |?(®G)| as the number of symbols required to write it if the
coefficients are given in binary. Then, we define |!1 ∧ !2 |

def
= |!1 | + |!2 | + 1,

|¬! | def= |∃G.! | def= |! | + 1, |?1(®G) < ?2(®G)|
def
= |?1(®G)| + |?2(®G)| + 1.

2.2.3 Temporal Logic

First-order logic helps quantify underlying structures and represent relations between
different components of a system. But it does not directly capture the evolution of a CPS
over time. Temporal logic introduces additional operators that allow us to reason about
time explicitly1 . For example, we can use temporal logic to express statements like “A

1LTL can be expressed in First-order logic, but it is popular as it has nicer complexity results
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happens before B” or “C always eventually leads to D.” In the following subsections, we
will introduce different temporal logic formalisms, e.g. Linear Temporal Logic (LTL),
Metric Temporal Logic (MTL) etc.

2.2.3.1 Linear Temporal Logic

Linear Temporal Logic (LTL) extends propositional logic by adding temporal operators
that allow us to reason about events that occur over time. LTL is widely used in
computer science, particularly in the verification and synthesis of software and
hardware systems. It imposes a linear ordering on the temporal structure of a system.
In other words, it assumes that time can be modelled as a sequence of discrete steps that
follow a linear order. Before defining its syntax and semantics, we first define traces,
which represents the discrete temporal structure itself.

Traces. Let P be a finite set of atomic propositions. An alphabet is a finite non-empty
set Σ = 2P , whose elements are called symbols. A trace over Σ is a sequence C = 0102 . . .
such that for every 8 ≥ 1, 08 ∈ Σ. In general, a trace is an infinite sequence. We call a
trace a finite trace if it is a finite sequence.

For example, let P = {?, @}. In the trace C = {?, @} · {?} · {@} · {@} . . . , both ? and @ hold
at the first position, only ? holds in the second position, and then from the third
position onward, @ holds at every position.

Given a trace C = 0102 . . . and 1 ≤ 8 ≤ 9, let C[8 , 9] = 08 . . . 0 9 be the infix of C from position
8 up to and including position 9. Moreover, C[8] = 08 is the symbol at the 8Cℎ position.

Syntax of LTL. The syntax of LTL is defined by the following grammar:

! := ? ∈ P | ¬! | ! ∧ # | X ! | ! U#,

where X is the neXt operator and U is the Until operator. We use the standard formulas:
true = ? ∨ ¬?, false = ? ∧ ¬?, ! ∨ # = ¬(¬! ∧ ¬#) and ¬X ! = X¬!. We call the
formula (or a fragment) to be in negation normal form if ¬ is only allowed in front of a
proposition. We also define two new operators F (the Finally operator) and G (the
Globally operator) as follows:

F !
def
= true U ! ,and G !

def
= ¬F !

The subformulas subf (!) of an LTL formula ! are defined recursively as follows:

subf (?) = {?}
subf (¬!) = subf (!) ∪ {¬!}

subf (X !) = subf (!) ∪ {X !}
subf (!1 ∧ !2) = {!1 ∧ !2} ∪ subf (!1) ∪ subf (!2)
subf (!1 U !2) = subf (!1) ∪ subf (!2) ∪ (!1 U !2)
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As a syntactic representation of an LTL formula !, we use syntax-DAGs. Syntax-DAGs
are essentially similar to the parse-tree of a formula, but the common subformulas and
hence the nodes containing them in the tree are shared.∧

U

@?

Figure 2.1: Syntax-DAG for the formula (?U @) ∧ @

We define the size |! | of an LTL formula ! to be the number of its unique subformulas.
For instance, the size of formula ! = (?U @) ∧ @ is 4, since the distinct subformulas of !
are ?, @, (?U @) and ! itself. The syntax-DAG of (?U @) ∧ @ also contains 4 nodes, where
each Node 8 denotes the subformula (?U @) ∧ @, starting from that node. It is shown in
Figure 2.1.

Semantics of LTL. Formulas in LTL are usually evaluated over infinite traces. To
define the semantics of LTL, we introduce the notation (C , 8) |= !, which denotes that the
LTL formula ! holds over trace C from position 8. We say that C satisfies ! and we write
C |= ! when (C , 1) |= !. The definition of |= is inductive on the formula !:

(C , 8) |= ? ∈ P ⇐⇒ ? ∈ C[8]
(C , 8) |= ¬! ⇐⇒ (C , 8) 6|= !

(C , 8) |= ! ∧ # ⇐⇒ (C , 8) |= ! and (C , 8) |= #

(C , 8) |= X ! ⇐⇒ (C , 8 + 1) |= !

(C , 8) |= ! U# ⇐⇒ (C , 9) |= # for some 9 ≥ 1 and (C , 8′) |= ! for all 8 ≤ 8′ < 9

We can derive the semantics for the F and the G operator using their syntactic definition
and semantics of the above existing operators:

(C , 8) |= F ! ⇐⇒ (C , 8′) |= ! for some 8′ ≥ 8
(C , 8) |= G ! ⇐⇒ (C , 8′) |= ! for all 8′ ≥ 8

In this thesis, we also consider LTLf, a fragment of LTL that is interpreted over finite
traces. This has been introduced by Vardi et al. in [63]. We will define LTLf and
highlight the changes in its semantics from the standard semantics of LTL in Chapter 3.

2.2.3.2 Metric Temporal Logic

Linear Temporal Logic is used extensively in monitoring and runtime verification of
CPS. But most applications that use LTL as a tool opts for a discrete model of time due
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to its formalism. But such a model is inadequate for real-time systems as the model of
time is dense, i.e., the system is modelled as a sequence of events that are time-stamped
with real values, and the system state changes continuously over time.

For example, in a printing machine, we can represent that ”every request is eventually
followed by a print action” with an LTL formula of the form G(request→Fprint). But,
one may need to specify that this print action is executed within 10-time units of the
corresponding request. This is not possible to be represented as an LTL formula.

Towards this, Metric Temporal Logic (MTL) [91] is a widely used formalism that extends
LTL to describe dense-time (real-time) properties of reactive systems. Note that MTL
has two commonly adopted semantics in literature [116]: pointwise and continuous. We
describe the continuous semantics below that is relevant to this thesis. For pointwise
semantics (defined over discrete timed words), we refer the interested readers to [116].
To model the continuous system executions, we define signals analogous to traces.

Signals. A signal is an infinite time series that describes system behaviours over time.
Formally, given a set of atomic propositions P, a signal ®G B R≥0 → 2P is a function
defined over a continuous time domain. A finite signal ®G) with upper-bound ) is
similarly denoted by a function with bounded domain ®G) : [0, )) → 2P .

Syntax of MTL. The syntax of MTL is similar to the syntax of LTL but it allows
timed-operators. Formally the syntax can be defined by the following grammar:

! := ? ∈ P | ¬! | !1 ∧ !2 | !1 U� !2

where U� is the timed-Until operator. Here, � ⊆ (0,∞) is a time interval of non-negative
real numbers. All the standard formalisms of true, false, the ∨-operator and the→
operator are defined analogously to the syntax of LTL. We can also define two more
timed operators as follows:

F� !
def
= true U� ! ,and G� !

def
= ¬F� !

,

where F� is the timed-Finally operator and G� is the timed-Globally operator. We
rewrite any timed-operator with interval � = [0,∞) as the untimed operator without
interval, e.g., F[0.∞) is written as just F.

The subformulas subf (!) of an MTL formula ! are defined recursively as follows:

subf (?) = {?},
subf (¬!) = subf (!) ∪ {¬!},

subf (!1 ∧ !2) = {!1 ∧ !2} ∪ subf (!1) ∪ subf (!2),
subf (!1 U� !2) = subf (!1) ∪ subf (!2) ∪ {!1 U� !2}.
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Similar to LTL, we use syntax-DAGs as a syntactic representation of an MTL formula.
We define the size |! | of an MTL formula ! to be the number of its unique subformulas.
This again similarly corresponds to the number of nodes in its syntax-DAG. For
instance, the size of formula ! = (?U� @) ∧ @ is 4.

Semantics of MTL. Typically, MTL formulas are interpreted over infinite signals.
Given a signal ®G and a time-point C, the semantics of MTL over infinite signal is defined
recursively as follows:

(®G, C) |= ? ⇐⇒ ? ∈ ®G(C)
(®G, C) |= ¬! ⇐⇒ (®G, C) 6|= !

(®G, C) |= !1 ∧ !2 ⇐⇒ (®G, C) |= !1 and (®G, C) |= !2

(®G, C) |= !1 U� !2 ⇐⇒ ∃C′ ∈ C + � such that (®G, C′) |= !2

and ∀C′′ ∈ [C , C′], (®G, C′′) |= !1

The semantics of F� and G� can be derived as follows:

(®G, C) |= F� ! ⇐⇒ ∃C′ ∈ C + � such that (®G, C′) |= !

(®G, C) |= G� ! ⇐⇒ ∀C′ ∈ C + � , (®G, C′) |= !

Continuing from the previous example, now the specification ”every request is
eventually followed by a print action within 10-time units” can be written as the
following MTL formula:

G(request→F[0,10] print)

Note that we replaced G[0,∞) by only G in the formula, as mentioned above.

2.2.3.3 Signal Temporal Logic

Signal Temporal Logic (STL) is a temporal logic formalism for specifying properties of
continuous real-valued signals. It extends MTL with real-valued predicates instead of
propositions. The syntax of STL is similar to MTL:

! := true | � | ¬! | !1 ∧ !2 | !1 U� !2

Here � is a predicate of the form 5�(®G) > 0 where, 5� : R= → R is a real-valued function.
We define the standard-derived operators similar to MTL. The subformulas and the size
of an STL formula are also defined analogously to MTL.

Typically, STL formulas are interpreted over real-valued signals. Formally, an
=-dimensional real-valued signal ®G B R≥0 → R= is a function defined over a
continuous time domain. Intuitively, MTL is interpreted over Boolean signals. The
semantics of STL are also analogous to MTL, with the only key difference being the
interpretations over a predicate (instead of propositions):

(®G, C) |= � ⇐⇒ 5�(G1(C), . . . , G=(C)) > 0
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2.3 Graph, Automata, and Languages

In this section, we introduce the fundamental concepts of graphs, automata, and
languages, exploring their intricate connections and applications in various fields.

2.3.1 Graphs and Flows

A graph is a mathematical structure that consists of a set of nodes, along with a set of
edges that connect pairs of nodes. It is typically represented as � = (+, �), where +
represents the set of nodes and � ⊆ + ×+ represents the set of edges. A directed graph is
a graph where every edge has a direction associated to them, i.e. each edge (D, E) ∈ � is
an ordered pair, where the predecessor or the parent is D, and the successor or the child is
E. A node D ∈ + has a self-loop if (D, D) ∈ �. A graph is weighted if there is a weight
function weight : �→ Z that assigns a weight to each edge. A skew-transpose of a
weighted directed graph � can be obtained by multiplying each weight by −1 and
reversing the direction of each edge.

A path is a sequence of nodes E0E1 . . . where E8+1 is a successor of E8 , for all 8 ≥ 0; A
path is finite if the sequence is finite. A path is said to be simple if E8 ≠ E 9 for all 0 ≤ 8 < 9.
If a path contains a node E, we say that the path ‘visits’ or ‘reaches’ v; Given two nodes
D and E, we say that E ∈ + is reachable from D ∈ + , if there is a finite path starting from
D that visits E. A finite path E0E1 . . . E= is a cycle if E0 = E= . It is a simple cycle if
∀0 ≤ 8 < 9 ≤ =, E8 ≠ E 9 , when 8 ≠ 0 or 9 ≠ =.

Let us denote the set of children of E ∈ + by E� B {F ∈ + | (E, F) ∈ �} and the parents
of E by �E. Then, an B–C flow is a mapping 5 : �→ N that satisfies flow conservation,
i.e., ∀E ∈ + \ {B, C} :

∑
D∈�E 5 (D, E) =

∑
D∈E� 5 (E, D). That is, the total incoming flow

equals the total outgoing flow for all but the source (B) and the target (C) vertices. We
then define the value of a flow 5 as: | 5 | def= ∑

E∈B� 5 (B, E) −
∑
D∈�B 5 (D, B)., where B is the

source. We denote by support( 5 ) the set {4 ∈ � | 5 (4) > 0} of edges with a non-zero flow.
A cycle in a flow 5 is a cycle in the sub-graph induced by support( 5 ). For weighted
graphs, we define weight( 5 ) def= ∑

4∈� 5 (4) · weight(4). The following is known as Euler’s
theorem for directed graphs.

Given a directed graph � = (+, �), consider a path � = E0E1 . . . in �. We denote
path-flow of the path � ( 5�) by its Parikh image, i.e., 5� maps each edge 4 to the number of
times 4 occurs in �. A flow 5 is called a path-flow if there exists a path � such that
5 = 5�. Finally, we observe that an B–C path-flow 5 in � induces a C–B path-flow 5 ′ with
5 ′(D, E) = 5 (E, D), for all (D, E) ∈ �, in the skew transpose of �.

Theorem 1 (Euler’s theorem) Let 5 be an B–C flow. Then, there exists an B–C path � such that
5 = 5� if and only if | 5 | = 1 and the sub-graph induced by the set of edges support( 5 ) ∪ {(C , B)}
is strongly connected.
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2.3.2 Automata and Languages

An automaton is a directed graph with every edge containing a label from a particular
finite set, which we call an alphabet. Formally, an automatonA = {&, �,Σ, @in , �} is a
tuple where & is a finite set of states, Σ is a finite alphabet, @in ∈ & is an initial state,
� ⊆ & is a set of final states, and � ⊆ & × Σ ×& is the transition relation. Intuitively,
(&, �) is a directed graph with each edge labelled by a letter 0 ∈ Σ. An automaton is
deterministic (DFA) if for every @ ∈ & and 0 ∈ Σ, we have a unique @′ ∈ & such that,
(@, 0, @′) ∈ Δ. Otherwise, the automaton is non-deterministic (NFA).

An automaton can be viewed as an abstract model of a CPS, where each state represents
a particular system state, and each transition denotes an event that evolves from one
system state to another. In literature, automata are also viewed as a ‘language acceptor’
by defining a language that describes the desired or expected system inputs and
outputs and using an automaton to accept or reject sequences of events or states based
on whether they conform to the specified language. We first define the concept of a
language below.

Let an alphabet Σ be a finite set of letters. A word F ∈ Σ is defined as a sequence
F = 0001 . . . such that, 08 ∈ Σ. A word is finite or infinite based on the sequence being
finite or infinite. The special empty word is denoted by �. We denote by Σ∗ the set of all
finite words in Σ, i.e. the set {00 . . . 0= | 08 ∈ Σ for all 0 ≤ 8 ≤ =}. A language ! ⊆ Σ∗ over
Σ is a set of finite words. A language is regular if it is defined recursively as follows:

• The empty language ∅ and the the language only containing empty word {�} are
regular;

• The singleton language {0} for every 0 ∈ Σ is regular;

• Union and concatenation of two regular languages are regular;

• !∗ is regular for every language !;

• No other language over Σ is regular.

Now, we can define automata as language acceptors using their initial and final states.
A run � of the automatonA (defined as above) over a word F = 0001 . . . 0=−1 is a
sequence @000@101@2 . . . 0=−1@= where @0 = @in . We say that � is accepting if @= ∈ �. A
accepts a word F if there is an accepting run ofA over F. A accepts a language ! if for
every word F ∈ !, w is accepted byA and for every word F′ ∉ !,A does not accept F′.
The language accepted by finite automata is exactly the set of regular languages
(Kleene’s theorem [87]).

2.3.3 Büchi Automata and Connection to LTL

Büchi Automata extends finite-state automata (described above) to accept languages of
infinite words. A non-deterministic Büchi automata are syntactically equivalent to NFA.
Formally, a Büchi automaton is a tupleA = {&, �,Σ, @in , �} where every component is
similarly defined as in NFA.
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A run � of a Büchi automatonA over a infinite word F ∈ Σ$ = 0001 . . . is an infinite
sequence @000@101 . . . where @0 = @in . Let inf (�) = {@ | ∀= ∈ N, ∃< ≥ =, @< = @}
denotes the set of states that appear infinitely often along the run �. We say � is
accepting if inf (�) ∩ � ≠ ∅. The acceptance conditions for a word F, and a language ! by
a Büchi automatonA are defined similarly as in NFA. The concept of determinism also
extends naturally.

A generalised Büchi automaton is exactly similar to a Büchi automaton. The only
difference is that, instead of having a set of final states �, a generalised Büchi automaton
has a set of sets of final states ℱ ⊆ 2& . The acceptance condition becomes:
inf (�) ∩ � ≠ ∅ for all � ∈ ℱ . They are expressively equivalent to Büchi automata as
described in the lemma below.

Lemma 1 For any generalised Büchi automatonA, one can construct in polynomial time a
Büchi automatonA′ such that !(A) = !(A′).

Now the following theorem along with Lemma 1 establishes the fundamental
connection between LTL and Büchi automata that we exploit later.

Theorem 2 [From [138]] Let ! be an LTL formula over a set of propositions P. One can
construct a generalised Büchi automatonA such that for any word F ∈ (2P)$ , F ∈ !(A) if and
only if F, 0 |= !. The size ofA is at most singly exponential in the size of !.
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Learning Formulas in LTL

Complex black-box systems are ubiquitous in the field of Artificial Intelligence.
Extensive use of these systems in safety-critical scenarios has created a need for learning
human-interpretable explanations of these systems. Towards this, Linear Temporal
Logic (LTL) is a popular formalism due to its resemblance with natural language. This
chapter focuses on learning LTL specifications from observed system behaviours. The
content presented in this chapter is based on the work in [122].

3.1 Background

Linear Temporal Logic (LTL) is a prominent logic for specifying temporal
properties [118]. It is commonly used in many fields, such as model checking, program
analysis, and motion planning for robotics. Learning temporal logic has emerged as a
crucial research area in artificial intelligence in the past decade. It addresses the
challenging task of constructing interpretable models from data. As argued in the
literature, e.g., by [34] and [129], LTL formulas are mathematically rigorous and
typically easy to interpret by human users and, therefore, useful as explanations.
Learning LTL specifications is being extensively applied at the field of program
specification [96], anomaly and fault detection [25], robotics [37], and many more: we
refer to Section 7 of [34], for a list of practical applications. An equivalent point of view
on LTL learning is a specification mining question. The ARSENAL [62] and FRET [64]
projects construct LTL specifications from natural language, we refer to [98] for an
overview.

LTL has also been studied over finite traces, and the fragment is called LTLf introduced
by Vardi et al. [63]. This fragment is beneficial for synthesizing specifications from
finite simulations of black-box systems and then using it for formal run-time verification
of infinite simulations of the system. Hence, LTLf has been a de facto standard in
specification learning and analyzing complex systems. Due to its variable-free syntax
and inherent inductive semantics, LTLf is a suitable candidate for constructing
classifiers that distinguish positive traces from negative ones. We will formally present
the syntax and the semantics of LTLf later in this chapter.

The fundamental problem we study here is to learn a specification in the form of an
LTLf formula from a set of positive and negative system behaviours. More formally (we

25
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refer to the next section for formal definitions), given a set D1 , . . . , D= of positive
behaviours and a set E1 , . . . , E= of negative behaviours, the goal is to construct a
formula ! of LTLf which satisfies all D8s and none of the E8s. We say that ! is a
separating formula or—using machine learning terminology—a classifier.

To make things concrete, let us introduce our running example for this chapter, a classic
motion planning problem in robotics inspired by [69]. A robot collects waste bin
contents in an office-like environment and empties them into a trash container. Let us
assume that there is an office o, a hallway h, a container c, and a wet area w. The
following are possible traces obtained in experimentation with the robot (for instance,
through simulation):

D1 = h · h · h · h · o · h · c · h
E1 = h · h · h · h · h · c · h · o · h · h

In LTLf learning, we start from these labelled data: given D1 as positive and E1 as
negative, what is a possible classifier including D1 but not E1? Informally, E1 being
negative implies that the order is fixed: o must be visited before c. We look for
classifiers in the form of separating formulas, for instance

F(o ∧ F X c),

Note that this formula requires the robot to visit the office first and only then visit the
container.

Assume now that two more negative traces were added:

E2 = h · h · h · h · h · o ·w · c · h · h · h
E3 = h · h · h · h · h ·w · o ·w · c ·w ·w

Then the previous separating formula is no longer correct, and a possible separating
formula is

F(o ∧ F X c) ∧G(¬w),
which additionally requires the robot never to visit the wet area.

3.1.1 Related Works

The task of inferring temporal logic formulas consistent with a given data has been
studied extensively [25, 88, 140, 141]. Most of these works place limitations on the
inferred formula’s syntax. These methods typically generate formulas using predefined
templates, which has some disadvantages. Crafting these templates can be challenging
for users as it requires substantial knowledge of the underlying system. Secondly,
limiting the formula’s structure could potentially result in larger inferred formulas.

Several approaches to learning LTL formulas also exist without predefined templates in
the literature. To learn separating LTL formulas, Neider and Gavran [113] leverage SAT
solvers by reducing the learning problem to the Boolean satisfiability problem.
Similarly, Camacho et al. [34] use the SAT solver to infer Alternating Finite Automaton
as a classifier and then extract the separating LTLf formulas from it. Arif et al. [6] learn
Past LTLf formulas from data using the bit-vector function synthesis problem in a



3.1. BACKGROUND 27

SyGuS (Syntax-Guided Synthesis) solver, while Kim et al. [84], uses Bayesian inference
techniques to tackle the same problem. These techniques have been extended to learn
more expressive logic also, such as Property Specification Language (PSL) [129] and
Computational Tree Logic (CTL) [52]. Deploying the above existing methods for
industrial cases is challenging as they can only handle formulas up to a small size.
These methods can consume significant computational resources and time without
producing any output. Even for small fragments of LTLf, constructing the minimal
formula has been proven to be NP-hard based on theoretical studies [58], which sheds
light on the practical difficulties encountered while scaling up these methods.

3.1.2 Our Approach

In this chapter, we discuss a novel algorithm for learning LTLf specification from system
behaviours. To address the above-mentioned challenges, we propose approximation and
anytime algorithms. Note that the approximation factor is on the size of the inferred
LTLf formula, not on the separation of positive and negative system simulations, i.e., our
output formula still satisfies all the positive behaviours and rejects all the negative ones,
but it may not be the smallest such formula. On the other hand, an algorithm solving an
optimisation problem is called anytime if it finds better and better solutions the longer it
keeps running. This algorithm can be interrupted ‘anytime’ during its computation and
yield some good albeit non-optimal solutions. In other words, anytime algorithms work
by refining solutions. As we will also show in the experiments later, this implies that
even if our algorithm timeouts, it may yield some concise separating formula. Note that
our algorithm targets a strict fragment of LTLf, which does not contain the Until
operator (nor its dual Release operator). It combines two ingredients:

• Searching for directed formulas: We define a space-efficient dynamic programming
algorithm for enumerating formulas from a fragment of LTLf that we call Directed
LTL.

• Combining directed formulas: We construct two algorithms for combining formulas
using Boolean operators. The first is an off-the-shelf decision tree algorithm, and the
second is a new greedy algorithm called Boolean subset cover.

The two ingredients yield two subprocedures: the first one finds directed formulas of
increasing size, which are then fed to the second procedure in charge of combining
them into a separating formula. This method yields an anytime algorithm as both
subprocedures can output separating formulas even with a low computational budget
and refine them over time.

Let us illustrate the two subprocedures in our running example. The first procedure
enumerates so-called directed formulas in increasing size; we refer to the corresponding
section for a formal definition. The directed formulas F(o ∧ F X c) and G(¬w) have
small size hence will be generated early on. The second procedure constructs formulas
as Boolean combinations of directed formulas. Without getting into the details of the
algorithms, let us note that both F(o ∧ F X c) and G(¬w) satisfy D1. The first does not
satisfy E1, and the second does not satisfy E2 and E3. Hence their conjunction
F(o ∧ F X c) ∧G(¬w) is separating, meaning it satisfies D1 but none of E1 , E2 , E3.
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3.2 Outline of the Chapter

We introduce the fragment LTLf in Section 3.3. Then we formally describe the learning
problems in Section 3.4. We elaborate on our algorithm in Section 3.5. In Section 3.6, we
show how we can adapt our algorithm for noisy learning. We prove all the theoretical
results related to the algorithms in Section 3.7. Finally, Section 3.8 contain all the
experimental results and evolution of our algorithms.

3.3 LTL on Finite Traces

This section will formally define the fragment of LTL of finite traces (LTLf). Recall the
definition of trace from Section 2.2.3.1, which characterises discrete system behaviours.
Let us fix the set of propositions to be P and the alphabet to be Σ = 2P . A finite trace
over Σ is a finite sequence C = 0102 . . . 0= such that for every 1 ≤ 8 ≤ =, 08 ∈ Σ. We say
that C has length = and write |C | = =. For convenience, we refer to finite traces as traces
only in the rest of the chapter unless mentioned otherwise.

In this chapter, we are interested in the fragment of LTLf. The syntax of LTLf is exactly
similar to the syntax of LTL (see Section 2.2.3.1). It contains the standard LTL operators:
neXt, Until, Finally and Globally operators, the boolean connectives: ∧ and ∨, the
¬-operator and the standard formulas: true and false defined analogously. In addition,
we have an additional operator last = ¬X true, which denotes the last position of the
trace. As a shorthand, we use X= ! for X . . .X︸  ︷︷  ︸

= times

!. The size of a formula is the size of its

underlying syntax-DAG.

Formulas in LTLf are evaluated over finite traces. The semantics of LTLf is similar to the
semantics of standard LTL semantics:

(C , 8) |= ? ∈ P ⇐⇒ ? ∈ C[8]
(C , 8) |= ¬! ⇐⇒ (C , 8) 6|= !

(C , 8) |= ! ∧ # ⇐⇒ (C , 8) |= ! and (C , 8) |= #

(C , 8) |= X ! ⇐⇒ 8 < |C | and (C , 8 + 1) |= !

(C , 8) |= ! U# ⇐⇒ (C , 9) |= # for some 8 ≤ 9 ≤ |C | and (C , 8′) |= ! for all 8 ≤ 8′ < 9

(C , 8) |= F ! ⇐⇒ (C , 8′) |= ! for some 8 ≤ 8′ ≤ |C |
(C , 8) |= G ! ⇐⇒ (C , 8′) |= ! for all 8 ≤ 8′ ≤ |C |

We say that C satisfies ! and we write C |= ! when (C , 1) |= !. Note that our algorithm
does not include the Until operator. We discuss this in more detail at the end of this
chapter. For reading convenience, we refer to the fragment of LTLf without the Until
operator as LTLf only throughout the rest of this chapter.
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3.4 LTLf Learning Problem: Exact and Noisy

The LTLf exact learning problem we study here is in the passive learning setting: models
are learnt based on a given data set. First, we define the input of our problem
formulation, which we call a Sample.

Definition 1 (Sample) A sample consists of a set of labelled (finite) signal prefixes. Formally,
we rely on a sample S = (%, #) consisting of %, a set of positive signal prefixes, and # , a set of
negative signal prefixes. We say a sample is informative if % ∩ # = ∅. We say an LTLf formula
! is separating for S if it satisfies all the positive traces in % and does not satisfy any negative
traces in # .

There are two relevant parameters for a sample: its size |S| = |% | + |# |, which is the
number of traces, and its length len(S) = max{len(C) | C ∈ % ∪ #}, which is the
maximum length of all traces. Now, we define our exact learning problem as follows:

Problem 1 (LTLf exact learning) Given a sample S = % ∪ # , construct a minimal LTLf
formula ! that is separating for S i.e., C |= ! for all C ∈ % and C 6 |= ! for all C ∈ # .

In practical scenarios, noise in data is omnipresent, i.e., they are misclassified as
positive or negative behaviours of the underlying system. Exact learning algorithms on
these noisy samples would often result in overfitting on the particular input data, and
the extracted LTLf specifications might not be suitable to interpret the system properly.
Hence, the problem is naturally extended to the LTLf noisy learning problem where the
goal is to infer a separating LTLf formula with low loss, where loss indicates the fraction
of the sample misclassified by the formula. Given a sample S = (%, #) and a formula !,
let us define the loss function loss(S , !) = mc(S ,!)

|S| where,
mc(S , !) = |{C 6 |= ! | C ∈ %}| + |{C |= ! | C ∈ #}| denotes the number of traces that !
misclassifies. Given a threshold �, an LTLf formula ! is a �-separating formula if
loss(S , !) ≤ &. Based on this definition of the loss function, we define our LTLf noisy
learning problem as follows:

Problem 2 (LTLf noisy learning) Given a sample S and a threshold & ≤ 1, construct a
minimal LTLf separating formula ! for S such that, loss(S , !) ≤ &.

Next, we present an algorithm for solving the LTLf exact learning problem; we later
sketch how to adapt it to the noisy setting.

3.5 The Exact Learning Algorithm for LTLf

Let us first sketch a naive algorithm for the LTLf exact learning problem. Given a
sample, we search through all LTLf formulas in the order of their size and check
whether they are separating for S or not. Checking whether an LTLf formula is
separating can be done using standard methods (e.g. using bit vector operations [11]).
The major disadvantage of this naive method is scalability, as the number of LTLf
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formulas multiplies. In face, the number of LTLf formulas of size : is asymptotically
equivalent to

√
14·7:

2
√
�:3 [59].

To reduce the search space, instead of the entire LTLf fragment, our algorithm (as
outlined in Algorithm 1) performs an iterative search through a fragment of LTLf,
which we call Directed LTL (Line 4). Our algorithm runs through two stages. We first
iteratively generate these Directed LTL formulas in a particular “size order” (not the
usual size of an LTLf formula) and evaluate these formulas over the traces in the sample
efficiently using dynamic programming techniques. Then, we store the “most
promising” Directed LTL formulas based on a score function and generate and search
through Boolean combinations of them (Line 11).

Algorithm 1 Overview of our algorithm
1: �← ∅
2: #← ∅: best formula found
3: for all B in “size order” do
4: � ← all Directed LTL formulas of parameter B
5: for all ! ∈ � do
6: if ! is separating and smaller than # then
7: #← !
8: end if
9: end for

10: �← � ∪ �
11: �← Boolean combinations of the promising formulas in �
12: for all ! ∈ � do
13: if ! is separating and smaller than # then
14: #← !
15: end if
16: end for
17: end for
18: Return #

When searching formulas, if we find a separating LTLf formula #, we set |# | as an
upper bound and continue our search for separating formulas with size #. Intuitively,
this gives rise to the anytime property of our algorithm, meaning that it searches for
better (smaller size) LTLf formulas at each iteration than the previously found ones, if
any. This heuristic, along with aiding the search for minimal formulas, also reduces the
search space significantly. In the following sections, we will elaborate on these two
stages of our algorithm.

3.5.1 Searching for Directed LTL

We first define the fragment of LTLf that we introduce to reduce our search space. We
call this fragment of LTLf as Directed LTL.

Definition 2 (Directed LTL) Let us define a partial symbol as a conjunction of positive or
negative atomic propositions. Given a set of propositions P, a partial symbol can be defined by
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the following grammar:
B := ? ∈ P | ¬? | B ∧ B

Then, Directed LTL is defined by the following grammar:

! := X= B | F X= B | X=(B ∧ !) | F X=(B ∧ !),

where B is a partial symbol and = ∈ N.

For example, let B = ? ∧ @ ∧ ¬A for the partial symbol specifying that ? and @ hold and A
does not. A partial symbol’s width is the number of atomic propositions it uses, e.g.
width(B) = 3. Now an example of a Directed LTL formula will be

! = F((? ∧ @ ∧ ¬A) ∧ F X2 ¬?)
where ? ∧ @ ∧ ¬A and ¬? will be two partial symbols. The formula reads that a position
exists satisfying ? ∧ @ and does not satisfy A, and at least two positions later, a position is
satisfying ¬?. The length of a Directed LTL formula is the number of partial symbols it
contains, and its width is the maximum of the widths of those partial symbols. For
example, the length and the width of ! as defined above will be 2 and 3, respectively.

The intuition behind the naming of Directed LTL is that any formula in this fragment
imposes an order (‘direction’) in which the partial symbols may occur in a trace that
satisfies it. For example, consider a Directed LTL formula ! = F(? ∧ F @) and a
non-Directed LTL formula # = F ? ∧ F @. Note that, in any trace C such that C |= !, the
partial symbol @ can only occur at the same position or a later position where ? occurs.
Now, let C1 = {?}{@} and C2 = {@}{?} be two traces such that, ? and @ appear in
different orders in them. It is easy to see that # |= C1 and # |= C2, meaning that it does
not impose any order on the occurrences of its partial symbols.

Note that Directed LTL only uses the X and F operators as well as conjunctions and
atomic propositions. We describe the dynamic programming algorithm to generate
these Directed LTL formulas from the given sample S.

3.5.1.1 Generating Directed LTL Formulas

We consider the following problem: given the sample S, we want to generate all
Directed LTL formulas and a list of traces in S that satisfy them. Our first technical
contribution and key to the scalability of our approach is an efficient solution to this
problem based on dynamic programming.

Search Ordering. First, we define the iteration order in which we generate Directed
LTL formulas. The iteration order is 〈(ℓ , F)〉, where ℓ denotes the length of the Directed
LTL formulas and F denotes their width. Our choice of this iteration order allows us to
efficiently construct a dynamic programming algorithm to generate Directed LTL
formulas of length ℓ and width F from already constructed formulas at previous
iterations.
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As our search order has two parameters, we can define various total orders on them. In
this work, we fix the order to be the standard bijection from N2 ↦→ N as follows:

(1, 1), (2, 1), (1, 2), (3, 1), (2, 2), (1, 3), . . .

In practice, slightly more complicated orders on pairs are helpful since we want to
increase the length more often than the width. Nevertheless, we use this as a heuristic
in our implementation and fix the above order for presentation purposes for the rest of
this chapter.

Preprocessing. Before proceeding toward the dynamic programming algorithm, a
useful idea is to change the representation of the set of traces in the sample by
precomputing the lookup table Index defined as follows: where C is a trace in (, B a
partial symbol, and 8 in [1, |C |]:

Index(C , B , 8) = { 9 ∈ [8 + 1, |C |] : C[9] |= B} .

Intuitively, for position 8, partial symbol B, and a trace C, the table Index stores the next
set of positions in the C, at which B holds. For example, let C = {?}{∅}{?, @}{?} and the
partial symbol be the proposition ?. Then, Index(C , ?, 1) = {3, 4}.

The table Index can be precomputed in linear time from ( and aids the formulation of
the dynamic programming algorithm.

Dynamic Programming Algorithms. Once we fix the order and complete the
preprocessing step, we recursively implement two enumeration procedures:

• Length Increase Procedure: we generate Directed LTL formulas of length ℓ + 1 and
width F from previously generated set of Directed formulas at iteration (ℓ , F).

• Width Increase Procedure: we generate Directed LTL formulas of length ℓ and width
F + 1 from previously generated set of Directed formulas at iteration (ℓ , F) and at
iteration (ℓ , 1).

While generating the Directed LTL formulas, we aim to keep track of the set of traces in
the sample they satisfy. Evaluating every generated formula on each trace in a naive
way is expensive. Toward this, we exploit a dynamic programming table called
LastPos. We define it as follows, where ! is a directed formula and C a trace in (:

LastPos(!, C) = {8 ∈ [1, |C |] : C[1, 8] |= !} .

The table intuitively stores all the prefixes of C that satisfy !. Note that, C |= ! if and
only if |C | ∈ LastPos(!, C). The main benefit of LastPos is that it meshes well with the
generation of Directed LTL formulas: it is algorithmically easy to compute them
recursively on the structure of the formulas.

We present our algorithm for generating Directed LTL formulas in Algorithm 2. This
contains both the procedures for increasing a formula’s length and width.
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Algorithm 2 Generation of Directed LTL formulas
1: procedure Search Directed LTL formulas – length increase(ℓ , F)
2: for all Directed LTL formulas ! of length ℓ and width F do
3: for all partial symbols B of width at most F do
4: for all C ∈ ( do
5: � = LastPos(!, C)
6: for all 8 ∈ � do
7: � = Index(C , B , 8)
8: for all 9 ∈ � do
9: !=9 ← B ∧=(9−8) !

10: add 9 to LastPos(!=9 , C)
11: end for
12: for all 9′ ≤ max(�) do
13: !≥ 9′ ← B ∧≥(9−8) !
14: add � ∩ [9′, |C |] to LastPos(!≥ 9′ , C)
15: end for
16: end for
17: end for
18: end for
19: end for
20: end procedure
21:
22: procedure Search Directed LTL formulas – width increase(ℓ , F)
23: for all Directed LTL formulas ! of length ℓ and width F do
24: for all Directed LTL formulas !′ of length ℓ and width 1 do
25: if ! and !′ are compatible then
26: !′′← ! ∧· !′
27: for all C ∈ ( do
28: LastPos(!′′, C) ← LastPos(!, C) ∩ LastPos(!′, C)
29: end for
30: end if
31: end for
32: end for
33: end procedure

For the length increase algorithm, we define two extension operators ∧=: and ∧≥: that
“extend” the length of a Directed LTL formula ! by including a partial symbol B in the
formula. Precisely, the operator B ∧=: ! replaces the rightmost partial symbol B′ in !
with (B′ ∧X: B), while B ∧≥: ! replaces B′ with (B′ ∧ F X: B). Note that the resulting
formulas will still be in the Directed LTL fragment and will have their lengths increased
by one. For instance, 2 ∧=2 X(0 ∧X 1) = X(0 ∧X(1 ∧X2 2)); the formula X(0 ∧X 1) has
length 2 and the resulting formula X(0 ∧X(1 ∧X2 2)) has length 3.

For the width increase algorithm, we say that two directed formulas are compatible if
they are equal except for partial symbols. For two compatible formulas, we define a
pointwise-and (∧· ) operator that takes the conjunction of the corresponding partial
symbols at the same positions. Similar to the length increase procedure, note that the
resulting formula is a Directed LTL formula with its width increased by 1. For instance,
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X(0 ∧X 1) ∧· X(1 ∧X 2) = X((0 ∧ 1) ∧X(1 ∧ 2)). Both the formulas X(0 ∧X 1) and
X(1 ∧X 2) have width 1, and the resulting formula X((0 ∧ 1) ∧X(1 ∧ 2)) has width 2.

Line 14 and Line 28 demonstrate the process of updating the table LastPos for each
procedure. Thus we generate Directed LTL formulas along with tracking the set of
traces they satisfy efficiently.

Practical Optimisations. The actual implementation of the algorithm refines the
algorithms in certain places. For instance:

• Line 3: instead of considering all partial symbols, we restrict to those appearing in
at least one positive trace.

• Line 13: some computations for !≥ 9 can be made redundant; a finer data structure
factorises the computations.

• Line 25: using a refined data structure, we only enumerate compatible directed
formulas.

3.5.1.2 The Dual Point of View: Capturing the G operator

The Directed LTL fragment only consists of F,X and the ∧-operator. In particular, it
does not contain the G operator. To capture the same, we aim to capture formulas in a
dual fragment to Directed LTL, which uses the X and G-operators, the last-predicate, as
well as disjunctions and atomic propositions. Toward this, we make use of the
following semantic relations:

¬X ! = last∨X¬! ; ¬F ! = G¬! ; ¬(!1 ∧ !2) = ¬!1 ∨ ¬!2.

In particular, we use the fact that if C |= ¬! if and only if C 6 |= !. Using this, it is easy to
see that if ! is separating for a sample S = (%, #), then ¬! is separating for the dual
sample S′ = (#, %). We leverage this idea by using the same algorithm (Algorithm 2) to
produce formulas in the dual fragment. This is done in two steps: we swap the positive
and the negative traces in the sample S and produce separating Directed LTL formulas
for the dual sample S′. Then, we negate the formula and store ¬! as a separating
formula for S.

3.5.2 Boolean Combinations of Formulas

As explained in the previous section, at each iteration (ℓ , F)we can efficiently generate
the set {!, (!% , !# )} where, ! is a formula in the fragment of Directed LTL or its dual
with length ℓ and width 3, and !% ⊆ % and !# ⊆ # are the sets of traces in S that
satisfy !. We aim to form a boolean combination of these formulas to construct
separating formulas, as illustrated in the introduction of this chapter (see Section 3.1).
To solve this, we propose two algorithms: i. Boolean set cover and ii. Learning decision
trees.
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3.5.2.1 Boolean Set Cover Problem

Given a sample S and a set of formulas, the Boolean set cover problem asks, does there
exist a Boolean combination of some of the formulas that is separating for S? We first
go through an example illustrated in Figure 3.1.

Figure 3.1: The Boolean set cover problem: the formulas !1 , !2, and !3 satisfy the words
encircled in the corresponding area; in this instance (!1∧!2)∨!3 is a separating formula.

In this example, we have S = (% = {D1 , D2 , D3}, # = {E1 , E2 , E3}). We have three
formulas !1 , !2, and !3. Let the satisfaction set of a formula SAT (!) denotes the subset
of S that satisfy the formula !. The different coloured areas in the figure illustrate the
satisfaction sets for each of the three formulas:

SAT (!1) = {D2 , D3 , E3}; SAT (!2) = {D1 , D2 , D3 , E1 , E2}; SAT (!3) = {D1 , D2};

Inspecting the three subsets reveals that (!1 ∧ !2) ∨ !3 is a separating formula. Note
that, for any two formulas ! and #, SAT (! ∧ #) = SAT (!) ∩ SAT (#) and
SAT (! ∨ #) = SAT (!) ∪ SAT (#). A careful inspection will show that,
SAT ((!1 ∧ !2) ∨ !3) = {D1 , D2 , D3} meaning that, it is separating for S.

The Boolean set cover problem is a generalization of the well-known set cover problem,
one of Karp’s 21 NP-complete problems. Given (1 , . . . , (< such that (8 ⊆ [1, =] for all
1 ≤ 8 ≤ < and

⋃
8 (8 = [1, =], the set cover problem is to identify the smallest subset

� ⊆ [1, <] such that,
⋃
8∈� (8 covers all of [1, =] – such a set � is called a cover.The Boolean

set cover problem reduces to the standard set cover problem if all formulas satisfy none
of the negative traces: in that case, conjunctions are not useful, and we can ignore the
negative traces.

The set cover problem is known to be NP-complete. However, there exists a
polynomial-time log(=)-approximation algorithm called the greedy algorithm: it is
guaranteed to construct a cover that is at most log(=) times larger than the minimum
cover. This approximation ratio is optimal in the following sense [48]: there is no
polynomial time (1 − >(1)) log(=)-approximation algorithm for subset cover unless P =
NP. We describe a similar greedy approach to solve the Boolean set cover problem.
Informally, the greedy algorithm for the subset cover problem does the following: it
iteratively constructs a cover � by sequentially adding the most ‘promising subset’ to �,
which is the subset (8 maximising how many more elements of [1, =] are covered by
adding 8 to �.
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Algorithm 3 Greedy algorithm for the Boolean set cover problem
1: input: Sample S, and � a set of formulas
2: Fix a constant  ≤ |� |
3: procedure Greedy(�)
4: choose the  formulas !1 , . . . , ! in � with highest score
5: for all # ∈ � do
6: for all 8 ∈ [1,  ] do
7: construct # ∧ !8 and # ∨ !8
8: compute their scores
9: if one of the two formulas is separating then

10: return the separating formula
11: end if
12: let � be the formula with highest score computed using #
13: if � has higher score than # then
14: add � to �
15: end if
16: end for
17: end for
18: end procedure

Solving Boolean set cover. We introduce an extension of the greedy algorithm to the
Boolean set cover problem. We first fix a score function to determine the ‘promising
formulas’. Intuitively a formula gets a higher score if it is close to being separating
(accepts many positive traces and rejects many negative traces) and of a smaller size.
Taking both these into account, we define the score function as follows:

Score(!) = | {C ∈ % | C |= !} | + | {C ∈ # | C 6 |= !} |√
|! | + 1

The use of
√· is empirical; it is used to mitigate the importance of size over being

separating.

The algorithm is illustrated in Algorithm 3. The algorithm maintains a set of formulas �
and adds new formulas to the set until finding a separating formula. At each iteration
(ℓ , F) initially � contains the generated Directed LTL formulas of length ℓ and width F.
Let us fix a constant  , and at each point in time, the algorithm chooses the  formulas
!1 , . . . , ! with the highest score in � and constructs all disjunctions and conjunctions
of !8 with formulas in �. For each 8, we keep the disjunction or conjunction with a
maximal score and add this formula to � if it has a higher score than !8 . We repeat this
procedure until we find a separating formula or no formula is added to �.

Practical Optimisations. For practical purposes, we impose the following heuristics in
our implementation:

• Set the value of  to 5.

• Keep an upper bound on the size of a separating formula, which we use to cut off
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computations that cannot lead to smaller formulas in the greedy algorithm for the
Boolean subset cover problem.

3.5.2.2 Decision Tree

Another natural approach to solve the Boolean set cover problem is to use decision trees.
Although decision trees produce LTLf formulas of bigger size, they can be helpful for
practical purposes as they are easy to interpret (If-then-else formulas).

A decision tree for LTLf formulas is a structure that resembles a tree in which all nodes
are tagged with LTLf formulas. The terminal nodes of the decision tree are labelled
either true or false, while the internal nodes are tagged with general LTLf formulas.
Each node and its corresponding formula impose decisions made to classify a trace.
Each node has two sub-trees as its children, with the left child connected by a solid edge
and the right child connected by a dashed edge. An example of a decision tree
representing an LTLf formula is depicted in Figure 3.2.

!

#

true false

true

Figure 3.2: A decision tree for LTLf formula

A decision tree 3 tagged with LTLf formulas can be interpreted as an LTLf formula in
the following way:

!3 =
∨
�∈Π

∧
!∈�

!

where Π is the set of paths from the root node to a leaf node labelled true and ! ∈ �
represents that it appears on path � (negated if it appeared on a dashed edge).

Learning decision trees. Intuitively, at each iteration, we take the generated Directed
LTL formulas as input and try to learn a decision tree that represents their Boolean
combinations encoding a separating formula for S. Our decision tree learning
algorithm follows the standard Top-Down Induction of Decision Trees (TDIDT)
techniques [120]. These techniques construct the tree in a top-down fashion by finding
appropriate features to partition the data and recursively proceed on the partitions.

We follow a similar technique with the set of generated Directed LTL formulas �. We
assign a suitable Directed LTL formula ! from the set � for each node. After assigning
the formula !, next we split the sample S into two sub-samples S1 and S2 with respect
to ! as follows: S1 = {C ∈ S | C |= !}, and S2 = {C ∈ S2 | C 6 |= !}. Then, we recursively
apply the same technique to each resulting sub-samples. We terminate the algorithm
when the sample S is perfectly classified and return the decision tree representing the
separating formula. Otherwise, we reach a split which is not separable by any formulas
from the set �, indicating that there is no separating Boolean combination. We proceed
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to generate Directed LTL formulas at the next iteration. At each node, the aim is to
choose suitable Directed LTL formulas for each node that will be of small size and also
split the sample (sub-samples, respectively) efficiently. Towards this, we use the same
score function similar to the one used in the Boolean set cover algorithm. Given a
sample or sub-sample S = (%, #) and a formula !, recall that the score function is
defined as:

Score(!,S) = | {C ∈ % | C |= !} | + | {C ∈ # | C 6 |= !} |√
|! | + 1

,

Practical Optimisations. In practice, we do not intend for large LTLf formulas keeping
interpretability at mind. Hence, we can fix an upper bound on the size of the decision
tree learned at each iteration. This will make our search process reasonably faster.

We experimented with both approaches and found that the greedy algorithm is faster
and yields smaller formulas, as DT-based methods produce formulas of a particular
shape. This is why we do not report on the experimental results with this method.

3.5.3 Anytime Property

The anytime property of our algorithm is a consequence of storing the smallest formula
seen so far (Line 7 and 14 of Algorithm 1). Once we find a separating formula, we can
output it and continue the search for smaller separating formulas.

3.6 Extension to the Noisy Setting

Recall the LTLf noisy learning problem from Section 3.4. Given a threshold �, we want
to find an �-separating LTLf formula.

Algorithm 1 can seamlessly be extended to the noisy setting by rewriting lines 6 and 13:
instead of outputting only separating formulas, we output �-separating formulas. Note
that checking if a generated formula is �-separating or not can be checked easily as we
keep track of the set of traces from the sample that satisfy the formula.

3.7 Theoretical Guarantees

This section establishes the theoretical guarantees of our LTLf learning algorithm.
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3.7.1 Correctness

The correctness of Algorithm 1 follows from lines 6 and 13. If the algorithm outputs a
formula, it will be separating (�-separating, respectively).

3.7.2 Termination

To show termination, we prove the following lemma:

Lemma 2 For every informative sample S, there exists an LTLf formula that is separating for S.

Proof of Lemma 2. Let S = (%, #). For every pair of traces C1 ∈ % and C2 ∈ # , we create a
Directed LTLf formula !C1 ,C2 such that C1 |= !C1 ,C2 and C2 6 |= !C1 ,C2 that indicates the first
symbol where C1 and C2 differ using a sequence of X-operators and an appropriate
partial symbol. Let ! be defined as:

! =
∨
C1∈%

∧
C2∈#

!C1 ,C2

Note that, as S is informative, ! is a valid formula, and it is separating for S. �

Lemma 2 already gives an upper bound (the size of ! as described above) on the size of
a separating formula that the algorithm searches for that guarantees the termination. It
is easy to check that the size of the formula ! is O(C; · |S|2)where C; is the maximum
length of a trace appearing in the sample S and |S| denotes the total number of traces in
S. This also gives the intuition behind the NP upper bound for the LTL learning
problem, as one can guess a formula of size ≤ |! | (polynomial size) and check if it is
separating or not in polynomial time. However, note that, for practical purposes, we fix
a reasonable upper bound in search of a separating formula.

3.7.3 Completeness

To show the completeness of our algorithm, we show the expressiveness power of the
Boolean combination of Directed LTL formulas. In particular, we prove the following
theorem:

Theorem 3 Every formula of LTLf (F,X,∧,∨) is equivalent to a Boolean combination of
Directed LTL formulas. Equivalently, every formula of LTLf (G,X,∧,∨) is equivalent to a
Boolean combination of formulas in the dual fragment of Directed LTL.

To get an intuition, let us consider the formula F ? ∧ F @, which is not a Directed LTL
formula. However, it can be written as a Boolean combination of two Directed LTL
formulas as follows:

F ? ∧ F @ = F(? ∧ F @) ∨ F(@ ∧ F ?)
The second formulation has a disjunction over the possible orderings of ? and @. It is
worth noting that rewriting an LTLf formula as a Boolean combination of Directed LTL
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formulas can result in an exponential size increase. This can be easily seen by
generalising the previous example,∧

1≤8≤=
F ?8 =

∨
�∈Π(=)

F(?�(1) ∧ F(?�(2) ∧ F(· · · ∧ F ?�(=)))

where Π(=) is the set of all permutations of the set {1, . . . , =}.

The formal proof generalises this rewriting idea. For readability, in the following
proofs, we refer to Directed LTL as dLTL and the Boolean combination of Directed LTL
as dLTL(∧,∨).

We first prove a lemma necessary for the proof of the Theorem 3.

Lemma 3 Let Δ1, Δ2 be two dLTL formulas. Then, (Δ1 ∧Δ2) can be written as a disjunction of
formulas in dLTL.

Proof of Lemma 3. To prove the lemma, we use induction over the structure of Δ1 ∧ Δ2 to
show that it can be written as a disjunction of dLTL formulas. As induction hypothesis,
we consider all formulas Δ′1 ∧ Δ′2, where at least one of Δ′1 and Δ′2 is structurally smaller
than Δ1 and Δ2 respectively, can be written as a disjunction of dLTL formulas.

The base case of the induction is when either Δ1 or Δ2 is a partial symbol. In this case,
Δ1 ∧ Δ2 is itself a dLTL formula by definition of dLTL formulas.

The induction step proceeds via case analysis on the possible root operators of the
formulas Δ1 and Δ2

• (Case 1: either �1 or �2 is of the form s ∧ � for some partial symbol s.) Without
loss of generality, let us say Δ1 = B ∧ Δ. In this case,
Δ1 ∧Δ2 = (B ∧Δ) ∧Δ2 = B ∧ (Δ∧Δ2). By hypothesis, Δ∧Δ2 =

∨
8 Γ8 for some Γ8 in

dLTL. Thus, Δ1 ∧ Δ2 = B ∧∨
8 Γ8 =

∨
8(B ∧ Γ8), which is a disjunction of dLTL

formulas.

• (Case 2: �1 is of the form X %1 and �2 is of the form X %2. ) In this case,
Δ1 ∧ Δ2 = X(�1 ∧ �2). By hypothesis, �1 ∧ �2 =

∨
8 �8 for some �8 ’s in dLTL. Thus,

Δ1 ∧ Δ2 = X(∨8 �8) =
∨
8 X �8 , which is a disjunction of dLTL formulas.

• (Case 3: �1 is of the form X %1 and �2 is of the form F %2.) In this case,
Δ1 ∧ Δ2 = X �1 ∧ F �2 = (X �1 ∧ �2) ∨ (X �1 ∧ F X �2) = (X �1 ∧ �2) ∨X(�1 ∧ F �2).
By hypothesis, both formulas (X �1 ∧ �2) and (�1 ∧ F �2) can be written as a
disjunction of dLTL formulas. Thus, Δ1 ∧Δ2 can also be written as a disjunction of
dLTL formulas

• (Case 4: �1 is of the form F %1 and �2 is of the form F %2.) In this case,
Δ1 ∧ Δ2 = F �1 ∧ F �2 = F(�1 ∧ F �2) ∨ F(�2 ∧ F �1). By hypothesis, both formulas
�1 ∧ F �2 and �2 ∧ F �1 can be written as a disjunction of dLTL formulas. Thus,
Δ1 ∧ Δ2 can also be written as a disjunction of dLTL formulas.

�
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Now using Lemma 3, we will sketch the proof of Theorem 3.

Proof of Theorem 3. The proof proceeds via induction on the structure of formulas ! in
LTLf (F,X,∧,∨). As induction hypothesis, we consider all formulas !′ structurally
smaller than ! can be expressed in dLTL(∧,∨).

As the base case of the induction, we observe that formulas ? for all ? ∈ P are dLTL
formulas and thus, in dLTL(∧,∨).

For the induction step, we perform a case analysis based on the root operator of !.

• (Case 1: > = >1 ∨ >2 or > = >1 ∧ >2): By hypothesis, !1 is in dLTL(∧,∨) and
!2 is in dLTL(∧,∨). Now, ! is in dLTL(∧,∨) since dLTL(∧,∨) is closed under
positive boolean combinations.

• (Case 2: > = X >1): By hypothesis, !1 ∈ dLTL(∧,∨) and thus !1 =
∨
9(
∧
8 Δ8).

Now, ! = X(∨9(
∧
8 Δ8)) =

∨
9(X(

∧
8 Δ8)) =

∨
9(
∧
8 XΔ8) =

∨
8

∧
8 Δ
′
8
(XΔ8 is a dLTL

formula). Thus, ! is in dLTL(∧,∨).

• (Case 3: > = F >1): By hypothesis, !1 ∈ dLTL(∧,∨) and thus !1 =
∨
9(
∧
8 Δ8).

Now ! = F !1 =
∨
9(F(

∧
8 Δ8)). Using lemma 3, we can re-write

∧
8 Δ8 as

∨
8 Γ8 for

some Γ8 ’s in dLTL. As a result, ! =
∨
9

∨
8 F(Γ8). Thus, ! is in dLTL(∧,∨).

�

3.8 Experimental Evaluation

In this section, we answer the following research questions to assess the performance
of our LTLf learning algorithm.

RQ1: How effective are we in learning concise LTLf formulas from samples?

RQ2: How much scalability do we achieve through our algorithm?

RQ3: What do we gain from the anytime property of our algorithm?

RQ4: How effective are we in the noisy learning setting?

3.8.1 Experimental Setup

To answer the questions above, we have implemented a prototype of our algorithm in
Python 3 in a tool named SCARLET1 (SCalable Anytime algoRithm for LEarning lTl). We
run SCARLET on several benchmarks generated synthetically from LTLf formulas used in
practice. To answer each research question precisely, we choose different sets of LTLf
formulas. We discuss them in detail in the corresponding sections. Note that, however,

1https://github.com/rajarshi008/Scarlet

https://github.com/rajarshi008/Scarlet
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we did not consider any formulas with U-operator since SCARLET is not designed to find
such formulas.

To assess the performance of SCARLET, we compare it against two state-of-the-art tools
for learning logic formulas from examples:

1. FLIE2, developed by [113], infers minimal LTLf formulas using a learning
algorithm that is based on constraint solving (SAT solving).

2. SYSLITE3, developed by [6], originally infers minimal past-time LTLf formulas
using an enumerative algorithm implemented in a tool called CVC4SY [125]. For
our comparisons, we use a version of SYSLITE that we modified (which we refer to
as SYSLITEL) to infer LTLf formulas rather than past-time LTLf formulas. Our
modifications include changes to the syntactic constraints generated by SYSLITEL
as well as changing the semantics from past-time LTLf to ordinary LTL.

To obtain a fair comparison against SCARLET, in both the tools, we disabled the U
operator. This is because allowing U-operator will only make the tools slower since they
will have to search through all formulas containing U.

All the experiments are conducted on a single core of a Debian machine with an Intel
Xeon E7-8857 CPU (at 3 GHz) using up to 6 GB of RAM. We set the timeout to 900 s for
all experiments. We include scripts to reproduce all experimental results in a publicly
available artifact [124].

Table 3.1: Common LTLf formulas used in practice

Absence: G(¬?), G(@→G(¬?))
Existence: F(?), G(¬?) ∨ F(? ∧ F(@))

Universality: G(?), G(@→G(?))

Disjunction of
patterns:

G(¬?) ∨ F(? ∧ F(@)
∨G(¬B) ∨ F(A ∧ F(B)),

F(A) ∨ F(?) ∨ F(@)

3.8.1.1 Sample Generation

To provide a comparison among the learning tools, we follow the literature [113, 129]
and use synthetic benchmarks generated from real-world LTLf formulas. For
benchmark generation, earlier works rely on a fairly naive generation method. In this
method, starting from a formula !, a sample is generated by randomly drawing traces
and categorising them into positive and negative examples depending on the
satisfaction with respect to !. This method, however, often results in samples that can
be separated by formulas much smaller than !. Moreover, it often requires a
prohibitively large amount of time to generate samples (for instance, for G ?, where
almost all traces satisfy a formula) and often does not terminate in a reasonable time.

2https://github.com/ivan-gavran/samples2LTL
3https://github.com/CLC-UIowa/SySLite

https://github.com/ivan-gavran/samples2LTL
https://github.com/CLC-UIowa/SySLite
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To alleviate the issues in the existing method, we have designed a novel generation
method for the quick generation of large samples. The outline of the generation
algorithm is presented in Algorithm 4. The crux of the algorithm is to convert the LTLf
formula ! into its equivalent DFAA! and then extract random traces from the DFA to
obtain a sample of desired length and size.

To convert ! into its equivalent DFAA! (Line 3), we rely on a python tool LTLf2DFA4.
Essentially, this tool converts ! into its equivalent formula in FOL (first-order logic over
finite linear order sequences) [63] and then obtains a minimal DFA from the formula
using a tool named MONA [76].

For extracting random traces from the DFA (Line 5 and 9), we use a procedure suggested
by [19]. The procedure involves generating words by choosing letters that are more
likely to lead to an accepting state. This requires assigning appropriate probabilities to
the transitions of the DFA. In this step, we add our modifications to the procedure. The
main idea is that once a path has been explored to generate a trace, we reduce the
probability of each transition appearing in the path by a small fraction 0 ≤ � ≤ 1 and
distribute � proportionately to other transitions. This increases the likelihood of
obtaining distinct traces at each iteration following different paths of the DFA.

Algorithm 4 Sample generation algorithm
Input: Formula !, length ;, number of positive traces =% , number of negative traces =# .
1:
2: % ← {}, # ← {}
3: A!← convert2DFA(!)
4: Loop =% times
5: F← random accepted word of length ; fromA!.
6: % ← % ∪ {F}
7: end
8: Loop =# times
9: F← random accepted word of length ; fromAc

!.
10: # ← # ∪ {F}
11: end
12: return ( = (%, #)

Unlike existing sample generation methods, our method does not create random traces
and tries to classify them as positive or negative. This results in faster generation of
large samples of better-quality (towards ’characteristic’) samples in that the likelihood
of getting ! as the smallest separating formula from the sample becomes higher.

3.8.2 RQ1: Performance Comparison

To address our first research question, we have compared all three tools on a synthetic
benchmark suite generated from eight LTLf formulas. These formulas originate from a
study by Dwyer et al. [51], who have collected a comprehensive set of LTLf formulas
arising in real-world applications (see Table 3.1 for an excerpt). The selected LTLf

4https://github.com/whitemech/ltlf2DFA
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Figure 3.3: Comparison of SCARLET, FLIE and SYSLITEL on synthetic benchmarks. In
Figure 3.3a, all times are in seconds and ‘TO’ indicates timeouts. The size of the bubbles
in the Figure 3.3c indicates the number of samples resulting into formulas of a particular
size represented by each data point.

formulas have, in fact, also been used by FLIE for generating its benchmarks. While
FLIE also considered formulas with U-operator, we did not consider them for
generating our benchmarks due to reasons mentioned in the experimental setup.

Our benchmark suite consists of a total of 256 samples (32 for each of the eight LTLf
formulas) generated using our generation method. The number of traces in the samples
ranges from 50 to 2 000, while the length of traces ranges from 8 to 15.

Figure 3.3a presents the runtime comparison of FLIE, SYSLITEL and SCARLET on all 256
samples. The scatter plots show that SCARLET ran faster than FLIE on all samples.
Likewise, SCARLET was faster than SYSLITEL on all but eight (out of 256) samples.
SCARLET timed out on only 13 samples, while FLIE and SYSLITEL timed out on 85 and
36, respectively (see Figure 3.3b).

The good performance of SCARLET can be attributed to its efficient formula search
technique. In particular, SCARLET only considers formulas that have a high potential of
being a separating formula since it extracts Directed LTL formulas from the sample
itself. FLIE and SYSLITEL, on the other hand, search through arbitrary formulas (in
order of increasing size), each time checking if the current one separates the sample.

Figure 3.3c presents the comparison of the size of the formulas inferred by each tool. On
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170 out of the 256 samples, all tools terminated and returned an LTLf formula with size
at most 7. In 150 out of these 170 samples, SCARLET, FLIE, and SYSLITEL inferred
formulas of equal size, while in the remaining 20 samples, SCARLET inferred larger
formulas. The latter observation indicates that SCARLET misses certain small, separating
formulas, particularly those that are not a Boolean combination of directed formulas.

However, it is important to highlight that the formulas learned by SCARLET are, in most
cases, not significantly larger than those learned by FLIE and SYSLITEL. This can be
seen from the fact that the average size of formulas inferred by SCARLET (on benchmarks
in which none of the tools timed out) is 3.21, while the average size of formulas inferred
by FLIE and SYSLITEL is 3.07.

To ensure that SCARLET performs well, not only in our generated benchmarks, we
compared the performance of the tools on an existing benchmark suite5 [60]. The
benchmark suite has been generated using a somewhat naive generation method from
the same set of LTLf formulas listed in Table 3.1.

Figure 3.4a represents the runtime comparison of FLIE, SYSLITEL and SCARLET on 98
samples. From the scatter plots, we observe that SCARLET runs much faster than FLIE on
all samples and than SYSLITEL on all but two samples. Also, SCARLET timed out only on
3 samples while SYSLITEL timed out on 6 samples and FLIE timed out on 15 samples.

Figure 3.4b presents the comparison of formula size inferred by each tool. On 84 out of
98 samples, where none of the tools timed out, we observe that on 65 samples, SCARLET
inferred formula size equal to the one inferred by SYSLITEL and FLIE. Further, the size
gap is insignificant in the samples where SCARLET learns larger formulas than other
tools. This is evident from the fact that the average formula size learned by SCARLET is
4.13, which is slightly higher than that by FLIE and SYSLITEL, 3.84.

Overall, SCARLET displayed significant speed-up over both FLIE and SYSLITEL while
learning a formula similar in size, answering question RQ1 in the positive.

5https://github.com/cryhot/samples2LTL
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Figure 3.4: Comparison of SCARLET, FLIE and SYSLITEL on existing benchmarks. In Fig-
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Figure 3.5: Comparison of SCARLET, FLIE and SYSLITEL on synthetic benchmarks. In
Figures 3.5a and 3.5b, all times are in seconds and ‘TO’ indicates timeouts.
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3.8.3 RQ2: Scalability

To address the second research question, we investigate the scalability of SCARLET in
two dimensions: the size of the sample and the size of the formula from which the
samples are generated.

Scalability with respect to the size of the samples. For demonstrating the scalability
with respect to the size of the samples, we consider two formulas
!cov = F(01) ∧ F(02) ∧ F(03) and !seq = F(01 ∧ F(02 ∧ F 03)), both of which appear
commonly in robotic motion planning [56]. While the formula !cov describes the
property that a robot eventually visits (or covers) three regions 01, 02, and 03 in
arbitrary order, the formula !seq describes that the robot has to visit the regions in the
specific order 010203.

We have generated two sets of benchmarks for both formulas, for which we varied the
number of traces and their length, respectively. More precisely, the first benchmark set
contains 90 samples of an increasing number of traces (5 samples for each number),
ranging from 200 to 100 000, each consisting of traces of fixed length 10. On the other
hand, the second benchmark set contains 90 samples of 200 traces, containing traces
from length 10 to length 50.

Figure 3.5a shows the average runtime results of SCARLET, FLIE, and SYSLITEL on the
first benchmark set. We observe that SCARLET substantially outperformed the other two
tools on all samples. This is because both !cov and !seq are of size eight, and inferring
formulas of such size is computationally challenging for FLIE and SYSLITEL. In
particular, FLIE and SYSLITEL need to search through all formulas of size up to eight to
infer the formulas, while SCARLET, due to its efficient search order (using the length and
width of a formula), infers them faster.

From Figure 3.5a, we further observe a significant difference between the run times of
SCARLET on samples generated from formula !cov and from formula !seq . This is
evident from the fact that SCARLET failed to infer formulas for samples of !seq starting at
a size of 6 000, while it could infer formulas for samples of !cov up to a size of 50 000.
Such a result is again due to the search order used by SCARLET: while !cov is a Boolean
combination of directed formulas of length 1 and width 1, !seq is a directed formula of
length 3 and width 1.

Figure 3.5b depicts the results we obtained by running all the second benchmark set
with varying trace lengths. Some trends we observe here are similar to the ones we
observe in the first benchmark set. For instance, SCARLET performs better on the
samples from !cov than it does on samples from !seq . The reason for this remains
similar: it is easier to find a formula which is a boolean combination of length 1, width 1
dLTL, than a simple LTLf of length 3 and width 1.

Contrary to the results on the first benchmark set, we observe that the increase of
runtime with the length of the sample is quadratic. This explains why on samples from
!seq on large lengths such as 50, SCARLET faces time-out. However, for samples from
!cov , SCARLET displays the ability to scale way beyond length 50.
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Scalability with respect to the size of the formula. To demonstrate the scalability
with respect to the size of the formula used to generate samples, we have extended !cov
and !seq to families of formulas (!=cov)=∈N\{0} with !=cov = F(01) ∧ F(02) ∧ . . . ∧ F(0=)
and (!=seq)=∈N\{0} with !=seq = F(01 ∧ F(02 ∧ F(. . . ∧ F 0=))), respectively. This family of
formulas describe properties similar to that of !cov and !seq , but the number of regions
is parameterized by = ∈ N \ {0}. We consider formulas from the two families by varying
= from 2 to 5 to generate a benchmark suite consisting of samples (5 samples for each
formula) having 200 traces of length 10.

Figure 3.5c shows the average run time comparison of the tools for samples from
increasing formula sizes. We observe a trend similar to Figure 3.5a: SCARLET performs
better than the other two tools and infers formulas of the family !=cov faster than that of
!=seq . However, contrary to the nearly linear increase of the runtime with the number of
traces, we notice an almost exponential increase of the runtime with the formula size.

Overall, our experiments show better scalability with respect to sample and formula
size compared to the other tools, answering RQ2 in the positive.

3.8.4 RQ3: Anytime Property

To answer RQ3, we list two advantages of the anytime property of our algorithm. We
demonstrate these advantages by showing evidence from the runs of SCARLET on
benchmarks used in RQ1 and RQ2.

First, in the instance of a time out, our algorithm may find a “concise” separating
formula while the other tools will not. In our experiments, we observed that for all
benchmarks used in RQ1 and RQ2, SCARLET obtained a formula even when it timed out.
In fact, in the samples from !5

cov used in RQ2, SCARLET (see Figure 3.5c) obtained the
exact original formula, that too within one second (0.7 seconds in average), although
timed out later. The time out was because SCARLET continued to search for smaller
formulas even after finding the original formula.

Second, our algorithm can actually output the final formula earlier than its termination.
This is evident from the fact that, for the 243 samples in RQ1 where SCARLET does not
time out, the average time required to find the final formula is 10.8 seconds, while the
average termination time is 25.17 seconds. Thus, there is a chance that even if one stops
the algorithm earlier than its termination, one can still obtain the final formula.

Our observations from the experiments indicate the advantages of anytime property to
obtain a concise separating formula and, thus, answering RQ3 in the positive.

3.8.5 RQ4: Noisy Setting

To answer RQ4, we compared the noisy learning setting of SCARLET against a
state-of-the-art tool [60] that uses MaxSAT based approach to infer LTL from noisy data.
For this comparison, we ran both tools on the same synthetic benchmark suite
introduced to answer RQ1 consisting of 256 samples. We tested for three noise
thresholds (1%, 5%, and 10%) and presented the runtime comparison in Figure 3.6a.
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This comparison clearly indicates the efficiency and better performance of our
algorithm against the MaxSAT-based approach. Figure 3.6b represents a cactus plot that
shows the cumulative number of samples from which both tools inferred LTL formulas
over time for the same three noise levels. This clearly validates the scalability of our
algorithm in the noisy setting.
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Figure 3.6: Comparison of SCARLET and MaxSAT on synthetic noisy benchmarks for dif-
ferent noise thresholds. All times are in seconds, and ‘TO’ indicates timeouts. The scatter
plots in Figure 3.6a represent the comparison of time taken to solve each sample by both
tools for three different noise levels. The cactus plot in Figure 3.6b represents the total
number of samples solved within a given time-point by both the tools, and steeper lines
represent better performance.

3.9 Conclusion

This chapter introduces a novel algorithm for learning LTLf formulas from observed
system behaviours. We tackled the scalability problem of the existing algorithms in the
literature by opting for an approximation algorithm. In addition to that, our algorithm
is also, anytime, a useful property for practical purposes. We have also developed the
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tool SCARLET to implement our algorithm and validate our claims by running suitable
experiments.

Our algorithm targets a strict fragment of LTL, restricting its expressivity in two aspects:
it does not include the Until operator, and we cannot nest the Finally and the Globally
operators. Incorporating the U-operator directly in our algorithm will not aid the
scalability of the same as to keep track of ‘promising formulas’ having the U-operator,
one may have to keep track of subsets of positions (at least exponentially larger) in a
trace that satisfies each generated formula and our efficient dynamic programming
tables in its current form cannot bypass that.

For nesting of F and G operators, first note that F G ! and G F ! can be rewritten as:

F G ! = G F ! = F(¬ last∨!)

However, arbitrary nesting of F and G can still be helpful, e.g. in F(0 ∧X G 1) and it is
not known if we can bound the number of nesting of F and G in LTLf. Esparza et al.
in [55] shows that the nesting of F and G can be bounded by 2 for the general form of
LTL, although it needs to be clarified to work. Therefore, we leave extending our
algorithm to full LTL as an interesting future work.

Another interesting direction to explore will be to explore the characterization of DFAs
that are equivalent to Directed LTL. In [63], the authors showed that full LTLf is
equivalent to star-free regular languages and hence to counter-free automata. It will be
interesting to see if the Directed LTL fragment results in any restricted class of these
automata with nice algorithmic properties. In particular, these characterizations are
helpful while considering the reactive synthesis problems.

One more important open question concerns the theoretical guarantees offered by the
greedy algorithm for the Boolean set cover problem. It extends a well-known algorithm
for the classic set cover problem, and this restriction has been proved to yield an optimal
log(=)-approximation. Do we have similar guarantees in our more general setting?
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Learning formulas in MTL

The previous chapter discusses learning concise specifications in LTL from observed
system behaviour. In this chapter, we focus on learning specifications in Metric
Temporal Logic (MTL) that extend LTL to describe the real-time properties of a system.
We present an algorithm for learning MTL designed specifically to aid runtime
verification. The content presented in this chapter is based on the work in [123].

4.1 Background

Runtime verification is a well-established method for ensuring the correctness of
cyber-physical systems during runtime. Techniques in runtime verification are known
to be more rigorous than conventional testing while not being as resource intensive as
exhaustive formal verification [42]. In the field of runtime verification, among other
techniques, monitoring system executions against formal specifications during runtime
is a widely used one. Over the years, numerous monitoring techniques have been
proposed for a variety of specification languages [75, 50, 47, 13].

In this work, we focus on Metric Temporal Logic (MTL) as the specification language. It
is popularly employed for monitoring cyber-physical systems [77, 105]. Similar to LTL,
MTL specifications are often easy to interpret due to their resemblance to natural
language and, thus, also find applications in Artificial Intelligence [142]. Recall that,
while there are many possible semantics of MTL (e.g., discrete, dense-time, pointwise,
etc. [116]), we employ the dense-time continuous semantics as it is more natural and
general than the counterparts [15, 9].

Virtually all verification techniques for MTL rely on the availability of a formal
specification. However, as manually writing specifications is a tedious and error-prone
task, different techniques to automatically learn concise specifications that precisely
express the design requirements have been deployed. As we mentioned before, most of
the existing works have targeted specification languages such as Linear Temporal Logic
(LTL) [34, 113, 122] and Signal Temporal Logic (STL) [7, 102, 111, 133], with few works
for MTL [78, 142]. In the context of explainability, these techniques mostly focus on the
conciseness of the specification.

53
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However, conciseness is not the only measure of interest for specifications, especially in
the context of online monitoring. In online monitoring, specifically in stream-based
runtime monitoring, a monitor reads an execution as a stream of data and verifies if a
given specification is invariant (i.e., holds at all time points) in the execution. Many
stream-based monitors [68, 82, 100] support MTL formulas. Typically, such monitors
produce a stream of (Boolean) verdicts with some “latency”, which depends on the
lookahead of the formula. The lookahead required for an MTL formula is often
formalized as its future-reach [77, 79], which is the amount of time required to determine
its satisfaction at any time point.

With the aim of reducing the latency for efficient online monitoring, we focus on
automatically learning MTL specifications based on two regularizers, size and
future-reach. To this end, similar to the LTL learning setting in the previous chapter, we
rely on a sample S of system executions observed for a finite duration, which is
partitioned into a set % of positive executions and a set # of negative executions. We
now formulate the central problem of the work as follows: given a sample S = (%, #)
and a future-reach bound :, synthesize a minimal size MTL formula ! that (i) is globally
separating for S, in that, ! holds at all time points in the positive executions and does
not hold at some time point in the negative executions1, and (ii) the future-reach of ! is
smaller than :.

Interestingly, without a future-reach bound, the most concise MTL formula that can be
synthesized can have a large future-reach value, increasing the latency required for
online monitoring. To illustrate this, we follow the running example Example 1 from
Chapter 1 and observe some simulations of an autonomous vehicle in the following
example.

Example 3 During the simulations of an autonomous vehicle, we sample executions (shown
below) of the vehicle every second for six seconds. We classify them as positive (denoted using
D8 ’s) or negative (denoted using E8 ’s) based on whether the vehicle encountered a collision or not.

0 1 2 3 4 5
D1: {?, @} {?} {@} {?, @} {?} {?}
D2: {@} {} {@} {?} {?} {?, @}
E1: {?} {@} {} {} {} {}
E2: {?} {?, @} {?} {} {?} {}

In the executions, we use ? to denote that there is no preceding vehicle within a particular unsafe
distance ahead of the vehicle and @ to denote that the vehicle’s brake is triggered. Also, if ? occurs
at time point C, we interpret it as ? holding during the entire interval [C , C + 1) to maintain the
continuity of the executions.

In the sample, a minimal globally separating formula is !1 = F[0,3] @. This indicates that in all
positive executions, the brake is triggered every three seconds (i.e., within the interval [C , C + 3]
for every time point C), irrespective of whether there is an obstacle within the unsafe distance. The
formula !1 has size two and a future-reach of three seconds, meaning that any online monitor
requires a three second lookahead window to check the satisfaction of !1. There is another
formula !2 = ? ∨ F[0,1] @ that is globally separating for the sample. This indicates that in all
positive executions, for every time point C, if a preceding vehicle is within the unsafe distance,

1note that, this notion is different from the notion of ”separating formula” in the previous chapter
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then the brake is triggered within one second (i.e., within the interval [C , C + 1]). Although of size
four, !2 has future-reach of one second and will be typically preferred over !1 for monitoring in
a safety-critical scenario.

To synthesize MTL formulas, we rely on a reduction to constraint satisfaction problems.
In particular, following other works in formula inference [113, 129], our algorithm
encodes the problem in a series of satisfiability problems in Linear Real Arithmetic
(LRA). Further, we analyze the complexity of the decision version of the problem.
While the exact complexity lower bounds are open, we show that the corresponding
decision problem is in NP. We also show that the problem is already NP-hard for a
fragment of MTL where we restrict the set of operators appearing in the formulas.

We implement our algorithm using a popular SMT solver in a tool called TEAL. We
evaluate TEAL to synthesize MTL formulas in the application of a cyber-physical system.
We also empirically study the interplay between the size and future-reach of a formula.

4.1.1 Related Works

To our knowledge, there are only a limited number of works for synthesizing MTL
formulas. One of them [142] infers MTL formulas as decision trees for representing task
knowledge in Reinforcement Learning. Some other works [78, 143] consider the
parameter search problem for MTL where, given a parametric MTL formula (i.e., an
MTL formula with missing temporal bounds), they infer the ranges of parameters
where the formula holds/does not hold on a given system. Unlike our work, none of
these works aims at synthesizing concise MTL specifications for monitoring tasks.

There are, nevertheless, numerous runtime monitoring procedures for
MTL [136, 9, 49, 77, 16, 35, 83, 100], clearly indicating the need for efficiently
monitorable MTL specifications. Many of them also rely on future-reach of a
specification [77, 16] or other similar measures (e.g., horizon [49], worst-case
propagation delay [83], etc.) to quantify the efficiency of their monitoring procedure.

Interestingly, several works focus on synthesizing formulas in STL, an extension of MTL
to reason about real-valued signals. Bartocci et al. [14] provide a comprehensive survey
of the existing works on inferring STL. Many of them [7, 89, 88] solve the parameter
search for STL, while others [25, 24] learn decision trees over STL formulas, which
typically do not result in concise formulas. There are few works [111, 114] that do
prioritize the conciseness of formulas during inference. These works cannot be directly
applied to solve our problem for two main reasons. First, these works assume inputs to
be piecewise-affine continuous signals. While the above assumption is natural for
synthesizing STL formulas inference from real-valued signals, in our setting, we must
rely on the assumption that our inputs are piecewise-constant signals, which is natural for
Boolean-valued signals. Second, these works do not employ any measure, apart from
conciseness, that directly influences the efficiency of runtime monitoring. To the best of
our knowledge, there is no work that uses an SMT-solver based approach for MTL. Our
approach contains encoding interval operations in Linear Real Arithmetic which is
partly similar to the approach in [22] where the authors use similar encoding of interval
operations to solve a different problem.
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Finally, there are works on synthesizing formulas in other temporal logic such as Linear
Temporal Logic (LTL) [113, 126, 34, 122], Property Specification Language (PSL) [129],
etc. which are not easily extensible to our setting.

4.2 Outline of the Chapter

We introduce the fragment of MTL we consider along with the learning problem we are
interested in Section 4.3. We elaborate on our algorithm in Section 4.4. We prove all the
theoretical results related to the algorithms in Section 4.5. Section 4.6 contains all the
experimental results and evolution of our algorithms. We discuss possible adaptations
and subtleties regarding our algorithm in Section 4.7. Finally, we present an extension
of our algorithm that can capture STL specifications in Section 4.8.

4.3 The Problem Formulation

In this work, we aim to infer MTL specifications from finite system observations.
In [116], the authors describe the two commonly adapted dense-time semantics of MTL
on infinite executions: continuous and pointwise. In this study, we follow the
continuous framework and extend it to finite observations inspired by [77]. Before
introducing the syntax and semantics of MTL, we first define the concepts of signal and
observed prefixes representing continuous behaviour of the system executions. In this
section, we introduce the basic notations used throughout the paper.

4.3.1 Signals and Prefixes.

Recall that we represent continuous system executions as signals. A signal ®G : R≥0 → 2P
over a set of propositions P is an infinite time series that describes relevant system
events over time. A prefix of a signal ®G up to a time point ) is a function ®G) : [0, )) → 2P
such that ®G)(C) = ®G(C) for all C ∈ [0, )).

To synthesize MTL formulas, we rely on finite observations that are sequences of the
form Ω = 〈(C8 , �8)〉8≤=®G , =®G ∈ N such that,

• C0 = 0,

• C=®G < ), and

• for all 8 ≤ =®G , �8 ⊆ P is the set of propositions that hold at time-point C8 .

To construct well-defined signal prefixes, we approximate each observation Ω as a
piecewise-constant signal prefix ®GΩ

)
using interpolation as:

– for all 8 < =®G , for all C ∈ [C8 , C8+1), ®G)(C) = �8 ;
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– for all C ∈ [C=®G , )), ®G)(C) = �=®G .

For readability, we refer to signal prefixes simply as ‘prefixes’ when clear from the
context. Now, we introduce the semantics and syntax of MTL that we opt for in this
chapter.

4.3.2 Metric Temporal Logic

MTL is a logic formalism for specifying the real-time properties of a system. Recall the
syntax of MTL from Section 2.2.3.2. For this work, we do not consider the timed-Until
(U�) operator, as in the context of inferring temporal logic specifications, the operator is
often hard to interpret [88, 122, 142]. While our algorithm is tailored to include the U�

operator, there are some technical subtleties that also affect the efficiency of the
algorithm. For convenience, we mention the syntax of MTL we opt for in this chapter:

! := ? ∈ P | ¬? | !1 ∧ !2 | !1 ∨ !2 | F� ! | G� !

where ? ∈ P is a proposition, ¬ is the negation operator, ∧ and ∨ are the conjunction
and disjunction operators respectively, and F� and G� are the timed-Finally and
timed-Globally operators respectively. Here, � is a closed interval of non-negative real
numbers of the form [0, 1]where 0 ≤ 0 ≤ 12. Note that the syntax is presented in
negation normal form, which means that the ¬ operator can only appear in front of a
proposition.

Recall that, as a syntactic representation of an MTL formula, we rely on syntax-DAGs
and define the size |! | of an MTL formula ! as the number of nodes in its syntax-DAG,
e.g., the size of (? ∧G� @) ∨ (F� ?) is six as its syntax-DAG has six nodes.

As mentioned above, we follow the continuous semantics of MTL formulas. For the
standard continuous semantics (|=) of MTL over infinite signals, we refer to
Section 2.2.3.2. In our context, we require the semantics of MTL to be defined over finite
prefixes of signals such that the resulting formulas are “useful” for monitoring the
signals over infinite sequences. We seek an optimistic semantics denoted by |=f for an
MTL formula ! over a prefix ®G) , such that ®G) |=f ! holds if there exists an infinite signal
extending ®G) that satisfies !. In other words, ®G) carries no evidence against !. To
formalize this, we require the definition of |=f to satisfy the following lemma.

Lemma 4 Given a prefix ®G) , let 4GC(®G)) = { ®G | ®G) is a prefix of ®G} be the set of all infinite
extensions of ®G) . Then given an MTL formula !, ®G) |=f ! if there exists ®G ∈ 4GC(®G)) such that
®G |= !.

Towards this, we follow the idea of ‘weak semantics’ of MTL defined in [77]. In this
work, following Eisner et al. [53], the authors have defined the weak semantics of MTL
for the pointwise setting, which we adapt here for the continuous setting. Given a
prefix ®G) , we inductively define when an MTL formula ! holds at time point C < ), i.e.,
(®G) , C) |=f !, as follows:

2Since we infer MTL formulas with bounded lookahead, we restrict � to be bounded.
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(®G) , C) |=f ? ⇐⇒ ? ∈ ®G)(C);
(®G) , C) |=f ¬? ⇐⇒ ? ∉ ®G)(C);
(®G) , C) |=f !1 ∧ !2 ⇐⇒ (®G) , C) |=f !1 and (®G) , C) |=f !2;
(®G) , C) |=f !1 ∨ !2 ⇐⇒ (®G) , C) |=f !1 or (®G) , C) |=f !2;
(®G) , C) |=f F[0,1] ! ⇐⇒ C + 1 ≥ ) or ∃C′ ∈ [C + 0, C + 1] s.t. (®G) , C′) |=f !;
(®G) , C) |=f G[0,1] ! ⇐⇒ C + 0 ≥ ) or{

∀C′ ∈ [C + 0, C + 1], (®G) , C′) |=f !, if C + 1 < )

∀C′ ∈ [C + 0, )), (®G) , C′) |=f !, otherwise.

We say that ®G) satisfies ! if (®G) , 0) |=f !. Now we prove Lemma 4 that justifies the
choice of our semantics.

Proof of Lemma 4. We need to prove that, given a prefix ®G) and an MTL formula !,
®G) |= 5 ! if there exists an extension ®G ∈ 4GC(®G)) such that, ®G |= !. We prove this by
induction on the structure of the MTL formula !. Fix a prefix ®G) and an MTL formula
!. In fact, we prove a stronger statement by induction:

For all C ∈ [0, )), (®G) , C) |= 5 ! if there exists a signal ®G ∈ 4GC(®G)) such that (®G, C) |= !.

For the base case, let ! = ? ∈ P. Then, for all C ∈ [0, )), if there exists ®G ∈ 4GC(®G)) such
that, (®G, C) |= ?, then (®G) , C) |= 5 ?. It is easy to check that this extends easily for the ¬
operator and the boolean connectives ∧ and ∨. Now let, ! = F[0,1] # and fix a time point
C ∈ [0, )). We have to prove if there exists a signal ®G ∈ 4GC(®G)) such that, (®G, C) |= F[0,1] #,
then (®G) , C) |= 5 F[0,1] #. Now by definition of |=, ∃C′ ∈ [C + 0, C + 1] such that, (®G, C′) |= #.
Now there are two cases: (i) C + 1 ≥ ): in this case, (®G) , C) |= 5 F[0,1] #, and (ii) C + 1 < ):
then, C′ < ) and by induction hypothesis, (®G) , C′) |= 5 # as (®G, C) |= #. Hence,
(®G) , C) |= 5 !. The case for ! = G[0,1] # can be proved similarly. �

4.3.3 The Problem Formulation

Next, we formally introduce the various aspects of the central problem of the paper.

Sample. The input data consists of a set of labelled (piecewise-constant) prefixes.
Formally, we rely on a sample S = (%, #) consisting of a set % of positive prefixes and a
set # of negative prefixes. We assume that the sample is informative, i.e., % ∩ # = ∅,
indicating that a prefix cannot be both positive and negative. We say an MTL formula !
is globally separating (G-sep, for short) for S if it satisfies all the positive prefixes at each
time-point and does not satisfy negative prefixes at some time point. We choose this
notion as most stream-based monitors check if the specification holds at every
time-point, and hence the outermost G in the desired specification is implicit [17].
Formally, given a sample S, we define an MTL formula ! to be G-sep for S if (i) for all
®G) ∈ % and for all C ∈ [0, )), (®G) , C) |=f !; and (ii) for all ®H) ∈ # , there exists C ∈ [0, ))
such that ( ®H) , C) 6 |=f !.
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Future-Reach. Previously, we have explained how the ‘lookahead’ of an MTL formula
has an impact on the efficiency of an online monitor monitoring the formula. To
formalize the lookahead of an MTL formula !, we rely on its future-reach fr(!),
following [79, 77], which indicates how much of the future is required to determine the
satisfaction of !. It is defined inductively as follows:

fr(?) = fr(¬?) = 0;
fr(!1 ∧ !2) = fr(!1 ∨ !2) = max(fr(!1), fr(!2));

fr(F� !) = fr(G� !) = sup(�) + fr(!).

To highlight that fr(!) quantifies the lookahead of !, we observe the following lemma:

Lemma 5 Let ! be an MTL formula such that fr(!) = :. Then, ®G |= ! if and only if
∀®H ∈ 4GC(®G:), ®H |= !.

Intuitively, the above lemma states that a formula with future-reach : cannot
distinguish between two signals that are identical up to time :.

Problem Setting. We now formally introduce the problem of synthesizing an MTL
formula to aid online monitoring. In the problem, we ensure that the MTL formula is
efficient for monitoring by allowing the system designer to specify a future-reach
bound.

Problem 3 (SynTL) Given a sample S = (%, #) and a future-reach bound :, find an MTL
formula ! such that

– ! is G-sep for S;

– fr(!) ≤ :;

– for every MTL formula !′ such that !′ is G-sep for S and fr(!′) ≤ :, |! | ≤ |!′ |

Intuitively, the above optimization problem asks to synthesize a minimal size MTL
formula that is G-sep for S and has future-reach within the input bound. Note that this
problem might not have a solution. For example, let ) > 1 and the sample S consists of
one positive prefix: ®G := (0, {?}), (1, {@}) and one negative prefix: ®H := (0, {@}). One can
check that there does not exist any MTL formula, which is G-sep for S. This is because if
any formula ! is G-sep, then (®G, 1) |= ! and ∀C , ( ®H, C) 6|= !. But, any suffix of ®H and ®G[1 :]
(suffix of ®G starting from time point 1) is the same, and that leads to a contradiction.

Hence, to ensure that our algorithm terminates, we impose a reasonable size bound �.
We search for a solution up to size �. Note that this is natural for our setting as we look
for concise specifications and do not want to search for formulas beyond a certain size.
Also, note that, in this problem, our goal is to find only one MTL formula, although
there might be multiple solutions.
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4.4 An SMT-based Algorithm

Our algorithm is based on a Satisfiability Modulo Theories (SMT)-based approach,
which draws inspiration from the constraint satisfaction-based approaches that have
been developed for synthesizing temporal logic formulas in the past [113, 34, 129, 6]. In
essence, our algorithm generates a sequence of formulas in Linear Real Arithmetic
(LRA) and then uses a highly optimized SMT solver to search for the desired solution.
To provide a detailed description of our algorithm, we first introduce LRA to our
readers in order to provide them with the necessary background knowledge.

4.4.1 Linear Real Arithmetic (LRA)

In LRA [12], given a set of real variablesY, a term(C) is defined recursively by the
following grammar:

C := 2 | H ∈ Y | 2 · C | C1 ◦ C2
where 2 ∈ R is a constant, H ∈ Y is a real variable, · is the multiplication function that is
only allowed with a constant, and C1 ◦ C2 is a function application such that, ◦ ∈ {+,−}
and C1 , C2 are two terms. An atomic formula is of the form C1 � C2 where
� ∈ {<, ≤,=, ≥, >}. Then, an LRA formula, defined recursively, is either an atomic
formula, the negation ¬Φ of an LRA formula Φ, or the disjunction Φ1 ∨Φ2 of two
formulas Φ1 ,Φ2. We additionally include standard Boolean constants true, and false
and Boolean operators ∧,→ and↔.

To assign meaning to an LRA formula, we rely on a so-called interpretation function
� : Y → R that maps real variables to constants in R. An interpretation � can easily be
lifted to a term C in the usual way and is denoted as �(C). Now, we define when � satisfies
a formula !, denoted by � |= !, recursively as follows:

� |= C1 � C2 for � ∈ {<, ≤,=, ≥, >} ⇐⇒ �(C1) � �(C2) is true
� |= ¬Φ ⇐⇒ � 6 |= Φ

� |= Φ1 ∨Φ2 ⇐⇒ � |= Φ1 or � |= Φ2

We say that an LRA formula Φ is satisfiable if there exists an interpretation � with � |= Φ.

Despite being NP-complete, with the rise of the SAT/SMT revolution [107], checking
the satisfiability of LRA formulas can be handled effectively by several
highly-optimized SMT solvers [45, 39, 10].

4.4.2 Algorithm Overview

Our algorithm generates a sequence of Linear Real Arithmetic (LRA) formulas, denoted
as 〈Φ=

S ,:〉==1,2,..., in order to facilitate the search for a suitable MTL formula. The
formula Φ=

S ,: has the following properties:

1. Φ=
S ,: is satisfiable if and only if there exists an MTL formula ! of size = such that

! is G-sep for S and fr(!) ≤ :.
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Algorithm 5 Overview of our algorithm
Input: Sample S, fr-bound :, Size bound �

1: for = ∈ {1, . . . , �} do
2: Construct Φ=

S ,: B ΦBCA
=,S ,: ∧Φ

fr
=,S ,: ∧ΦB4<

=,S ,:
3: if Φ=

S ,: is SAT with a satisfying interpretation � then,
4: Construct !� from �
5: break
6: end if
7: end for

2. from any satisfying interpretation � of Φ=
S ,: , one can construct an appropriate MTL

formula !� that is G-sep for S.

We provide an outline of our algorithm in Algorithm 5. We check the satisfiability of
the constructed LRA formula Φ=

S ,: for increasing values of the parameter =, starting
from 1 and proceeding up to the size bound �. If the formula Φ=

S ,: is found to be
satisfiable for some = ∈ 1, . . . , �, our algorithm constructs a G-sep MTL formula !� from
a satisfying interpretation � returned by the SMT solver. On the other hand, if the
formula Φ=

S ,: is not satisfiable for any = ≤ �, our algorithm reports that no suitable
G-sep MTL formula can be found within the given size bound of �.

The crux of our algorithm is the construction of the formula Φ=
S ,: . Internally,

Φ=
S ,: B Φstr

=,S ,: ∧Φ
fr
=,S ,: ∧Φsem

=,S ,: is a conjunction of three subformulas, each with a
distinct role. The subformula Φstr

=,S ,: encodes the structure of the prospective MTL
formula. The subformula Φ

fr
=,S ,: ensures that the future-reach of the prospective

formula is less than or equal to :. Finally, the subformula Φsem
=,S ,: ensures that the

prospective formula is G-sep for S. In what follows, we expand on the construction of
each of the introduced subformula. We drop the subscripts =, S, and : from the
subformulas when they are clear from the context.

Structural Constraints. Following Neider and Gavran [113], we symbolically encode
the syntax-DAG of the prospective MTL formula using the formula Φstr . For this, we
first fix a naming convention for the nodes of the syntax-DAG of an MTL formula. For a
formula of size =, we assign to each of its nodes an identifier from {1, . . . , =} such that
the identifier of each node is larger than that of its children if it has any. Note that such
a naming convention may not be unique. Based on these identifiers, we denote the
subformula of ! rooted at Node 8 as ![8]. In that case, ![=] is precisely the formula !.

Next, to encode a syntax-DAG symbolically, we introduce the following variables3:

(i) Boolean variables G8 ,� for 8 ∈ {1, . . . , =} and � ∈ P ∪ {¬,∨,∧,F,G};

(ii) Boolean variables ;8 , 9 and A8 , 9 for 8 ∈ {1, . . . , =} and 9 ∈ {1, . . . , 8};

3We include Boolean variables in our LRA formulas since Boolean variables can always be simulated using
real variables that are constrained to be either 0 or 1.
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(iii) real variables 08 and 18 for 8 ∈ {1, . . . , =}.

The variable G8,� tracks the operator labelled in Node 8, meaning, G8 ,� is set to true if and
only if Node 8 is labelled with �. The variable ;8 , 9 (resp., A8 , 9) tracks the left (resp., right)
child of Node 8, meaning, ;8 , 9 (resp., A8 , 9) is set to true if and only if the left (resp., right)
child of Node 8 is Node 9. Finally, the variable 08 (resp., 18) tracks the lower (resp.,
upper) bound of the interval � of a temporal operator (i.e., operators F� and G�),
meaning that, if 08 (resp. 18) is set to 0 ∈ R (resp., 1 ∈ R), then the lower (resp., upper)
bound of the interval of the operator in Node 8 is 0 (resp., 1). While we introduce
variables 08 and 18 for each node, they become relevant only for the nodes that are
labelled with a temporal operator.

We now impose structural constraints on the introduced variables to ensure they
encode valid MTL formulas. First, we define the following two formulas:

one − left(8) =
[ ∧

1≤8≤=

∨
1≤ 9≤8

;8 , 9

]
∧

[ ∧
1≤8≤=

∧
1≤ 9≤ 9′≤=

¬;8, 9 ∨ ¬;8 , 9′
]
, and

one − right(8) =
[ ∧

1≤8≤=

∨
1≤ 9≤8

A8 , 9

]
∧

[ ∧
1≤8≤=

∧
1≤ 9≤ 9′≤=

¬A8 , 9 ∨ ¬A8 , 9′
]

that encodes that Node 8 contains exactly one left child (exactly one right child,
respectively).

Now let Λ = P ∪*Λ ∪ �Λ, where*Λ denotes the set of unary operators and �Λ denotes
the set of binary operators. Then the encoding of the structural constraints contains the
following:

Φstr :=
[ ∧

1≤8≤=

∨
�∈Λ

G8,�

]
∧

[ ∧
1≤8≤=

∧
�≠�′∈Λ

¬G8 ,� ∨ ¬G8,�′
]
∧ (4.1)

∧
1≤8≤=

©«
∨
?∈P

G8 ,? →
[ ∧

1≤ 9≤=
¬;8 , 9 ∧

∧
1≤ 9≤=

¬A8 , 9′
]ª®¬∧ (4.2)

∧
1≤8≤=

©«
∨
�∈*Λ

G8 ,� →
[
one − left(8) ∧

∧
1≤ 9≤=

¬A8 , 9′
]ª®¬∧ (4.3)

∧
1≤8≤=

( ∨
�∈�Λ

G8 ,� →
[
one − left(8) ∧ one − right(8)

] )
(4.4)

∧
1≤8≤=
1≤ 9<8

©«
[
G8 ,¬ ∧ ;8 , 9

]
→

∨
?∈P

G 9 ,?
ª®¬ (4.5)

Constraint 4.1 encodes the fact that each node only contains one operator or one
proposition. Constraint 4.2 imposes that the nodes containing a proposition do not have
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any child. Constraint 4.3 says that the nodes containing a unary operator contain
exactly one child, while constraint 4.4 enforces that the nodes containing a binary
operator contain exactly one left and exactly one right child. Finally, Constraint 4.5
imposes that the ¬ operator can occur only in front of propositions.

Let us consider a satisfying interpretation � of Φstr . From this interpretation, we can
construct a syntax-DAG in a straightforward manner. Each node 8 in the DAG is labelled
with a unique label �, such that �(G8,�) = 1. The node = is designated as the root of the
DAG. The arrangement of nodes in the DAG is determined uniquely by the values of
�(;8 , 9) and �(A8 , 9). Additionally, we can derive an MTL formula from this syntax DAG,
denoted as Φstr

� . It is important to note that at this stage, Φstr
� is not yet associated with

the sample S or the future-reach bound :. To make Φstr
� follow the future-reach bound

and be globally separating for the sample, we impose the next constraints as follows.

Future-reach Constraints. To symbolically compute the future-reach of the
prospective formula !, we encode the inductive definition of the future-reach, as
described in Section 4.3.3 in an LRA formula. To this end, we introduce real variables 58
for 8 ∈ {1, . . . , =} to encode the future-reach of the subformula ![8]. Precisely, 58 is set to
5 ∈ R if and only if fr(![8]) = 5 .

To ensure the desired meaning of the 58 variables, we impose constraints as follows:∧
1≤8≤=

G8 ,? →
[
58 = 0

]
∧∧

1≤8≤=
1≤ 9<8

(
G8,¬ ∧ ;8 , 9

)
→

[
58 = 59

]
∧

∧
1≤8≤=

1≤ 9 , 9′<8

(
(G8 ,∨ ∨ G8,∧) ∧ ;8 , 9 ∧ A8 , 9′

)
→

[
58 = max( 59 , 5 ′9 )

]
∧

∧
1≤8≤=
1≤ 9<8

(
G8,F ∧ ;8 , 9

)
→

[
58 = 59 + 18

]
∧

∧
1≤8≤=
1≤ 9<8

(
G8,G ∧ ;8 , 9

)
→

[
58 = 59 + 18

]
∧

These constraints express that the future-reach value at every node 8, i.e., the
future-reach of ![8], is calculated properly from the future-reach value of its children.

Finally, to enforce that the future-reach of the prospective MTL formula is within :,
along with the constraints mentioned above, we have 5= ≤ : in Φfr .

Note that any satisfying interpretation � of Φstr ∧Φfr results in a unique MTL formula
whose future-reach is within the specified bound. Next, we have to introduce some
constraints that make this formula globally separating.
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Semantic Constraints. In order to assess whether the prospective formula is G-sep,
we need to encode the procedure of checking the satisfaction of an MTL formula into an
LRA formula. For this purpose, we rely on a popular (offline) monitoring procedure
introduced by Maler and Nickovic [105]. However, since our specific setting differs
slightly, we will briefly outline our adaptation of the monitoring algorithm.

Given an MTL formula ! and a signal prefix ®G) , our monitoring algorithm computes a
lexicographically ordered set ℐ!(®G)) = {�1 , . . . , ��} of maximal disjoint time intervals
�1 , . . . , ��, where ! holds true on ®G) . In mathematical terms, the set ℐ!(®G))we construct
satisfies the following property:

Lemma 6 Given an MTL formula ! and a prefix ®G) , for all C ∈ [0, )), (®G) , C) |=f ! if and only
if C ∈ � for some � ∈ ℐ!(®G)).

In our monitoring algorithm, we recursively compute the set ℐ!(®G)) based on the
structure of the formula !. To describe this recursive process, we utilize the notation
ℐ∪! (®G)) =

⋃
�∈ℐ!(®G) ) � to represent the union of intervals in ℐ!(®G)).

For the base case, we calculate ℐ?(®G)) for each ? ∈ P by aggregating the time points
C ∈ [0, ))where (®G) , C) |=f ? into a collection of maximal disjoint time intervals. Recall
that these intervals are of the form [C1 , C2) as the input prefixes are piecewise-constant.

In the inductive step, we make use of the relationships presented in Equation 4.5 for the
various MTL operators. In the table, the notation 	[0, 1] is the Minkowski minus
defined as, [C1 , C2) 	 [0, 1] = [C1 − 1, C2 − 0), and ℐ2 = [0, )) − ℐ denotes the complement
of the interval set ℐ.

ℐ∪¬?(®G)) =
(
ℐ∪? (®G))

) 2
ℐ∪!1∨!2(®G)) = ℐ

∪
!1(®G)) ∪ ℐ

∪
!2(®G))

ℐ∪!1∧!2(®G)) = ℐ
∪
!1(®G)) ∩ ℐ

∪
!2(®G))

ℐ∪F[0,1] !(®G)) =
( ⋃
�∈ℐ!(®G) )

� 	 [0, 1]
)
∪ [) − 1, ))

ℐ∪G[0,1] !(®G)) =
( ⋃
�∈(ℐ!(®G) ))2

� 	 [0, 1]
) 2 ∪ [) − 0, ))

Equation 4.5: The relations for inductive computation of ℐ∪! (®G))

While Equation 4.5 presents the computation of ℐ∪! (®G)), we can obtain ℐ!(®G)) by simply
partitioning ℐ∪! (®G)) into maximal disjoint intervals. Also note that these operations
maintain the intervals to be of the form [C1 , C2) and thus are consistent with our
formulation. Now we prove the correctness of Lemma 6 to establish the correctness of
the computations of ℐ∪! (®G)).

Proof of Lemma 6. We prove that, for all C ∈ [0, )), (®G) , C) |=f ! if and only if C ∈ � for some
� ∈ ℐ!(®G)). We prove both directions together by induction on the structure of the
formula !.
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For the base case, one can check that for all C ∈ [0, )), C ∈ ℐ?(®G)) if and only if C ∈ � for
some � ∈ ℐ!(®G)) by construction. The proof for the =46 operator and the boolean
connectives ∧ and ∨ follow from the correctness of the construction in the work of [105].
Here, we provide the proofs for two timed-temporal operators as their semantics differ
from the work in [105].

Let ! = F[0,1] #. To show the forward direction, let C ∈ � for some � ∈ ℐ!(®G)). We have to
prove that, (®G) , C) |=f F[0,1] #. In particular, C ∈ ℐ∪! (®G)) by definition, i.e.,
C ∈

( ⋃
�∈ℐ#(®G) ) � 	 [0, 1]

)
∪ [) − 1, )). There are two cases: (i) C ∈ [) − 1, )): in this case,

C + 1 ≥ ) and by definition of |=f , (®G) , C) |=f !, or (ii) C ∈
( ⋃

�∈ℐ#(®G) ) � 	 [0, 1]
)
: Fix the

interval �′ = [C1 , C2) ∈ ℐ#(®G)) such that, C ∈ (�′ 	 [0, 1]). By induction hypothesis, for all
C′ ∈ �′, (®G) , C′) |=f #. Now, C < C2 − 0 =⇒ C + 0 < C2 and C ≥ C1 − 1 =⇒ C + 1 ≥ C1.
Hence, �′ = [C1 , C2) ⊃ [C + 0, C + 1]. Hence, ∃C′ ∈ [C + 0, C + 1] such that, (®G) , C′) |=f # and
henceforth, (®G) , C) |=f !.

For the backward direction, we assume that, (®G) , C) |=f F[0,1] # and prove that, C ∈ � for
some � ∈ ℐ!(®G)). In particular, we show that
C ∈ ℐ∪! (®G)) =

( ⋃
�∈ℐ#(®G) ) � 	 [0, 1]

)
∪ [) − 1, )) and the rest of the argument follows from

the fact that, ℐ!(®G)) is obtained by taking the maximal disjoint intervals of ℐ∪! (®G)). Now,
by definition of |=f , there are two possibilities: (i) C + 1 ≥ ): then, C ∈ [) − 1, )) and
hence, C ∈ ℐ∪! (®G)), or (ii) ∃C′ ∈ [C + 0, C + 1] such that, (®G) , C′) |=f #. Now, by induction
hypothesis, C′ ∈ � for some � ∈ ℐ#(®G)). Let � = [C1 , C2). Now, C2 − 0 > C′ − 0 ≥ C and
C1 − 1 ≤ C′ − 1 ≤ C. This implies that, C ∈ [C1 − 1, C2 − 0) = (� 	 [0, 1])which proves that,
C ∈ ℐ∪! (®G)).

The proof for the operator G� can be derived similarly. �

We demonstrate the above computation with the running example.

Example 4 For an illustration, we compute ℐ!2(D1) from Example 3, where
D1 = (0, {?, @}), (1, {?}), (2, {@}), (3, {?, @}), (4, {?}), (5, {?}) is the first positive prefix,
!2 = ? ∨ F[0,1] @, and ) = 6. First, we have ℐ?(D1) = {[0, 2), [3, 6)} and
ℐ@(D1) = {[0, 1), [2, 4)}. Now, we can compute ℐF[0,1] @(D1) = {[0, 4), [5, 6)} and then
ℐ
?∨F[0,1] @

(D1) = {[0, 6)}. We illustrate this in Figure 4.1.

In the above computation, the number of maximal intervals required in ℐ!(®G)) is
upper-bounded byℳ = = · <, where = = |! | and < = max({|ℐ?(®G))| | ? ∈ P}), as also
observed by Maler and Nickovic [105]. The computation of this bound can also be done
inductively on the structure of the formula.

Now, in the subformula Φsem , we symbolically encode the set ℐ!(®G)) of our prospective
MTL formula !. In order to accomplish this, we introduce variables C ;

8 ,<,B
and CA

8,<,B
,

where 8 ∈ 1, . . . , =, < ∈ 1, . . . ,ℳ, and B ∈ 1, . . . , |S|, with B denoting the identifier for
the BCℎ prefix ®GB

)
in S. The variables C ;

8 ,<,B
and CA

8,<,B
encode the <Cℎ interval of ℐ

![8](®G
B
)
)

for the subformula ![8]. In other words, C ;
8 ,<,B

= C1 and CA
8,<,B

= C2 if and only if [C1 , C2)
corresponds to the <Cℎ interval of ℐ

![8](®G
B
)
).
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0 1 2 4 ) = 6
@ :

0 4 5 ) = 6
F[0,1] @ :

0 2 3 ) = 6
? :

0 ) = 6
? ∨ F[0,1] @ :

Figure 4.1: Computation of ℐ!(D1) on D1 for every subformula ! of !2 = ? ∨ F[0,1] @

To ensure that the variables C ;
8 ,<,B

and CA
8,<,B

retain their intended meaning, we establish
constraints for each operator based on the relations specified in Equation 4.5. Presented
below are the constraints for the specific MTL operators.

Constraints for the ¬ operator. For the ¬ operator, we have the following constraints:

∧
1≤8≤=
1≤ 9<8

G8 ,¬ ∧ ;8 , 9 →
[ ∧

1≤B≤|S|
compB(8 , 9)

]
,

where, for every ®GB
)
in S, compB(8 , 9) encodes that the set ℐ∪

![8](®G
B
)
) is the complement of

the set ℐ∪
![9](®G

B
)
) . We construct compB(8 , 9) as follows:

ite(C ;9,1,B = 0, (4.6)∧
1≤<≤ℳ−1

C ;8 ,<,B = C
A
9,<,B ∧ C

A
8,<,B = C

;
9 ,<+1,B , (4.7)

C ;8 ,1,B = 0 ∧ CA8,1,B = C
;
9 ,1,B∧ (4.8)∧

1≤<≤ℳ−1

C ;8 ,<+1,B = C
A
9,<,B ∧ C

A
8,<+1,B = C

;
9 ,<+1,B),

where ite is a syntactic sugar for the “if-then-else” construct over LRA formulas, which
is standard in many SMT solvers. Here, Condition 4.6 checks whether the left bound of
the first interval of ℐ

![9](®G
B
)
), encoded by C ;

9 ,1,B , is 0. If that holds, as specified by
Constraint 4.7, the left bound of the first interval of ℐ

![8](®G
B
)
), encoded by C ;1,8 ,B , will be
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the right bound of the first interval of ℐ
![9](®G

B
)
), encoded CA1, 9 ,B and so on. If Condition 4.6

does not hold, as specified by Constraint 4.8, the left bound of the first interval of
ℐ
![8](®G

B
)
)will start with 0, and so on.

As an example, for a prefix ®GB
)
and ) = 7, let ℐ

![9](®G
B
)
) = {[0, 4), [6, 7)}. Then,

Constraint 4.7 ensures that ℐ
![8](®G

B
)
) = {[4, 6)}4. Conversely, if ℐ

![9](®G
B
)
) = {[1, 4), [6, 7)},

then Constraints 4.8 ensures that ℐ
![8](®G

B
)
) = {[0, 1), [4, 6)}.

For any interpretation �, let ℐ �
8
= {[�(C ;

8 ,1,B), �(C
A
8,1,B)), . . . , [�(C

;
8 ,<,B
), �(CA

8,<,B
))} denote the set

of intervals constructed by the interpretation of the C ;
8 ,<,B

and CA
8,<,B

variables. We define
ℐ �
9
similarly. Then, we can prove the following lemma

Lemma 7 Let � be a satisfying interpretation of compB(8 , 9). Then, the set ℐ �
8

consists of the
maximal disjoint intervals of the complement of ℐ �

9
.

Proof of Lemma 7. For simplicity of the proof, we name �(C��,<) as ���,< for � ∈ {; , A} and
� ∈ {8 , 9 , 9′}, and [�;�,< , �A�,<) as Γ�,< for � ∈ {8 , 9 , 9′}. Note that we drop the identifier B
representing the prefix since the prefix is fixed throughout the proof.

For the forward direction, we show that if C ∈ Γ8,< for some Γ8 ,< ∈ ℐ �
8
then C ∉ Γ9 ,<′ for

any Γ9 ,<′ ∈ ℐ �
9
. First, let < = 1. Then, if �;

9 ,1 = 0, then Condition 4.6 gets triggered and
�;
8 ,1 = �A

9,1 and �A
8,1 = �A

9,2. Hence, �A
9,1 = �;

8 ,1 ≤ C < �A
8,1 = �;

9 ,2. Also, if �;
9 ,1 ≠ 0, then

Condition 4.6 does not get triggered and �;
8 ,1 = 0 and �A

8,1 = �;
9 ,1. Hence,

0 = �;
8 ,1 ≤ C < �A

8,1 = �;
9 ,1. For < ≠ 1, the reasoning works similarly.

For the other direction, we show that if C ∈ Γ9 ,< for some Γ9 ,< ∈ ℐ9 then C ∉ Γ8 ,<′ for any
Γ8 ,<′ ∈ ℐ9 . The proof for this direction is almost identical to the proof for the forward
direction and is a simple exercise. �

Constraints for the ∨ operator. For the ∨ operator, we have the following constraint:∧
1≤8≤=

1≤ 9, 9′<8

G8 ,∨ ∧ ;8 , 9 ∧ A8 , 9′ →
[ ∧

1≤B≤|S|
unionB(8 , 9 , 9′)

]
,

where, for every ®GB
)
in S, unionB(8 , 9 , 9′) encodes that ℐ

![8](®G
B
)
) consists of the maximal

disjoint intervals obtained from the union of the intervals in ℐ
![9](®G

B
)
) and ℐ

![9′](®G
B
)
). We

4The number of intervals in ℐ
![8](®G

B
)
)may differ for different subformulas ![8], which we address at a later

point.
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construct unionB(8 , 9 , 9′) as follows:∧
1≤<≤ℳ

(
C ;8 ,<,B =

∨
<

(C ;9 ,<,B ∨ C
;
9′ ,<,B) ∧ C

A
8,<,B =

∨
<

(CA9,<,B ∨ C
A
9′ ,<,B)

)
∧ (4.9)

∧
�∈[; ,A]

∧
1≤<≤ℳ

(
(C�9 ,<,B =

∨
<

C�8 ,<,B) ⇐⇒ (C�9 ,<,B ∉
∧
<

� 9′ ,<,B)
)
∧ (4.10)

∧
�∈[; ,A]

∧
1≤<≤ℳ

(
(C�9′ ,<,B =

∨
<

C�8 ,<,B) ⇐⇒ (C�9′ ,<,B ∉
∧
<

� 9 ,<,B)
)
, (4.11)

where �:,<,B denotes the interval encoded by bounds C ;
:,<,B

and CA
:,<,B

5. Here,
Constraint 4.9 states that the left (resp., right) bound of each interval of ℐ

![8](®G
B
)
),

encoded by C ;
8 ,<,B

(resp., CA
8,<,B

) corresponds to one of the left (resp., right) bounds of the
intervals in ℐ

![9](®G
B
)
) or in ℐ

![9′](®G
B
)
). Then, Constraint 4.10 states that for each interval �

in ℐ
![9](®G

B
)
), the left (resp., right) bound of � should appear as the left (resp., right)

bound of some interval in ℐ
![8](®G

B
)
) if and only if the left (resp., right) bound of � is not

included in any of the intervals in ℐ
![9′](®G

B
)
). Constraint 4.11 mimics the statement made

by Constraint 4.10 but for the bounds of the intervals in ℐ
![9′](®G

B
)
).

For an illustration, assume that ℐ
![9](®G

B
)
) = {[1, 4), [6, 7)} and ℐ

![9′](®G
B
)
) = {[3, 5), [6, 7)}

for a prefix ®GB
)
and ) = 7. Now, if ![8] = ![9] ∨ ![9′], then ℐ

![8](®G
B
)
) = {[1, 5), [6, 7)}

based on the relation for ∨-operator in Equation 4.5. Observe that all the bounds of the
intervals in ℐ

![8](®G
B
)
), i.e., 1, 5, 6, and 7, are present as the bounds of the intervals in

either ℐ
![9](®G

B
)
) or ℐ

![9′](®G
B
)
). This fact is in accordance with Constraint 4.9. Also, the

right bound of [1, 4) in ℐ
![9](®G

B
)
) does not appear as a bound of any intervals in ℐ

![8](®G
B
)
),

as it is included in an interval in ℐ
![9′](®G

B
)
), i.e., 4 ∈ [3, 5). This is in accordance with

Constraint 4.10.

For an interpretation �, we reuse all the naming conventions used in the proof of
Lemma 7. Now, to prove the correctness of our encoding of unionB(8 , 9 , 9′), we can prove
the following lemma

Lemma 8 Let � be a satisfying interpretation of unionB(8 , 9 , 9′). Then, the set ℐ �
8

consists of the
maximal disjoint intervals of the union of ℐ �

9
and ℐ �

9′ .

Proof of Lemma 8. We retain the naming convention of ���,< and Γ�,< as before.

For the forward direction, we show that any time point C ∈ Γ8 ,< belongs to some
Γ9 ,<′ ∈ ℐ �

9
or some Γ9′ ,<′′ ∈ ℐ �

9′ . Towards contradiction, we assume that C ∉ Γ9 ,<′ for any
Γ9 ,<′ ∈ ℐ �

9
and C ∉ Γ9′ ,<′′ for any Γ9′ ,<′′ ∈ ℐ �

9′ . Now, based on Constraint 4.9, both �;
8 ,<

and
�A
8,<

appear in some intervals in ℐ9 and ℐ �
9′ as left and right bound, respectively. We

consider two cases based on where �;
8 ,<

and �A
8,<

appear. First, �;
8 ,<

and �A
8,<

both

5In LRA, C ∉ [C1 , C2) can be encoded as C < C1 ∨ C ≥ C2.
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appears, w.l.o.g, in ℐ9 . Now, let Γ9,<1 and Γ9 ,<1+1 be such that �A
9,<1
≤ C < �;

9 ,<1+1.
Intuitively, this means that C lies in between (and is adjacent to) the intervals Γ9 ,<1 and
Γ9 ,<1+1. Note that both �A

9,<1
and �;

9 ,<1+1 is not included in ℐ �
8
since ℐ �

8
consists of

maximal disjoint intervals and [�A
9,<1

, �;
9,<1+1] ⊂ Γ8 ,< . Now, based on Constraint 4.10,

�A
9,<1

and �;
9,<1+1 are included in some intervals in ℐ �

9′ . Note that if they are included in
the same interval, then that interval also contains C raising the contradiction to our
assumption that C ∉ Γ9′ ,<′′ for any Γ9′ ,<′′ ∈ ℐ �

9′ . Then �A
9,<1

and �;
9 ,<1+1 are not included in

the same interval in ℐ �
9′ . Then, there exists Γ9′ ,<2 ∈ ℐ �

9′ and Γ9′ ,<2+1 ∈ ℐ �
9′ such that,

�A9,<1
< �A9′ ,<2

≤ C < �;9′ ,<2+1 < �;9,<1+1

Now note that, �A
9′ ,<2

and �;
9′ ,<2+1 both are not included in any of the intervals in ℐ9 .

Now, based on Constraint 4.11, both appear in ℐ �
8
. But that raises the contradiction to

our assumption that C ∈ Γ8 ,< .

For the other direction, we show that any time point, w.l.o.g, C ∈ Γ9 ,< belongs to some
Γ8 ,<′ ∈ ℐ �

9
. For this, there can be three cases based on whether the bounds of Γ9 ,< appear

as bounds in some interval Γ8 ,<′ ∈ ℐ �
8
or not.

First, assume that both �;
9 ,<

and �A
9,<

appear as bounds �;
8 ,<1

and �A
8,<2

in ℐ: as stated by
Constraint 4.9. We now claim that <1 = <2 meaning that �;

8 ,<1
and �A

8,<2
are bounds of

the same intervals. Towards contradiction, let <1 + 1 ≤ <2. Then, �A8,<1
belongs to the

interval Γ9 ,< , and based on Constraint 4.10, and cannot be one of the bounds of Γ8 ,<1 .
Then, we have �;

9 ,<
= �;

8,<1
≤ C < �A

8,<1
= �A

9,<

Second, assume that �;
9 ,<

does not appear, while �A
9,<

appears as bounds in ℐ: . Now,
based on Constraint 4.10, �;

9 ,<
appears in one of the intervals Γ9′ ,<′ in ℐ �

9′ . Also, in that
case, �;

9′ ,<′ appears as a left bound in ℐ: , say ℐ8 ,<1 . We now claim that �A
8,<1

> �A
9,<

.
Towards contradiction, we assume two cases. In the first case,

�;9′ ,<′ = �;8 ,<1
< �A8,<1

< �;9 ,< < �A9′ ,<

contradicting Constraint 4.10. In the second case,

�;9′ ,<′ = �;8 ,<1
< �;9 ,< < �A8,<1

< �A9,<

contradicting Constraint 4.11. From the two cases, we conclude �A
8,<1

> �A
9,<

and hence,
�;
8 ,<1

< �;
9,<
≤ C < �A

9,<
< �A

8,<1
. The argument in the third case is similar to the

arguments in the other two cases and can be seen easily. �

Constraints for the ∧ operator. For the ∧-operator, we have the following constraint:∧
1≤8≤=

1≤ 9 , 9′<8

G8 ,∧ ∧ ;8, 9 ∧ A8 , 9′ →
[ ∧

1≤B≤|S|
compB(8 , :) ∧ unionB(:, 91 , 9′1) ∧ compB(91 , 9) ∧ compB(9′1 , 9′)

]
This encodes the relation for the ∧ operator as described in Equation 4.5. We introduce
some intermediate set of intervals ℐ̃: , ℐ̃91 and ℐ̃9′1 such that ℐ̃91 and ℐ̃9′1 are the
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complement of ℐ∪
9
(®GB
)
) and ℐ∪

9′ (®G
B
)
) respectively. Then, ℐ̃: contains the maximal disjoint

intervals of union of ℐ̃91 and ℐ̃9′1 . Finally, ℐ
∪
8
(®GB
)
) is the complement of the set of intervals

in ℐ̃: , making it the set containing maximal disjoint intervals of intersection of ℐ∪
![9](®G

B
)
)

and ℐ∪
![9′](®G

B
)
). The main idea is that we encode intersection in the semantics constraints

for the ∧ operator using union and complement following De Morgan’s laws
(� ∩ � = (�2 ∪ �2)2).

For an illustration, assume that ℐ
![9](®G

B
)
) = {[1, 4), [6, 7)} and ℐ

![9′](®G
B
)
) = {[3, 5), [6, 7)}

for a prefix ®GB
)
and ) = 7. Now, if ![8] = ![9] ∧ ![9′], then based on the relation for

∨-operator in Equation 4.5 ℐ
![8](®G

B
)
) = {[3, 4), [6, 7)} based on the relation for ∧ operator

in Equation 4.5. One can check that a satisfying interpretation of the above encoding
will encode ℐ̃91 = {[4, 6)} and ℐ̃9′1 = {[1, 3), [5, 6)}. Then, correspondingly the set ℐ̃: will
be encoded as their union, i.e., {[1, 3), [4, 6)}. Finally, ℐ

![8](®G
B
)
)will be encoded as the

complement of ℐ̃: , which is {[3, 4), [6, 7)}.

Constraints for the F� operator. Next, for the F�-operator where � is encoded using 08 and
18 , we have the following constraint:∧

1≤8≤=
1≤ 9<8

G8,F� ∧ ;8, 9 →
[ ∧

1≤B≤|S|
union′B(8 , :, :) ∧ 	

[08 ,18 ]
B (:, 9)

]
.

based on the relation for the F[0,1] operator in Equation 4.5. We here rely on an
intermediate set of intervals ℐ̃: encoded using some auxiliary variables C̃ ;

:,<,B
and C̃A

:,<,B

where < ∈ {1, . . . ,ℳ} and B ∈ {1, . . . , |S|}. Also, we use the formula 	[08 ,18 ]B (:, 9) to
encode that the intervals in ℐ̃: can be obtained by performing � 	 [0, 1] to each interval �
in ℐ

![9](®G
B
)
), where 08 = 0 and 18 = 1. Finally, the formula union′(8 , :, :) encodes that

ℐ
![8](®G

B
)
) consists of the maximal disjoint intervals obtained from the union of the

intervals in ℐ̃: and {[) − 1, ))}.

The construction of union′(8 , :, :) is similar to that of union(8 , 9 , 9′) in that the
constraints involved are similar to Constraints 4.9 to 4.11. For 	[08 ,18 ]B (:, 9), we have the
following constraint:∧

1≤<≤ℳ−1

[
C̃ ;
:,<,B

= max{0,
(
C ;9 ,<,B − 18

)
} ∧ C̃A

:,<,B
= max{0,

(
CA9,<,B − 08

)
}
]

(4.12)

As an example, consider ℐ
![9](®G

B
)
) = {[1, 4), [6, 7)} for a prefix ®GB

)
and ) = 7. Now, if

![8] = F[1,4] ![9], then first we have ℐ̃: = {[0, 3), [2, 6)} based on Constraint 4.12. Note
that, while the intervals in ℐ̃: may not be disjoint, union′(8 , :, :) ensures that ℐ

![8](®G
B
)
)

consists of only maximal disjoint intervals. Next, we have ℐ
![8](®G

B
)
) = {[0, 7)} which

consists of the maximal disjoint intervals from the union of ℐ̃
:
= {[0, 3), [2, 6)} and

{[) − 1, )) = [3, 7)} using union′(8 , :, :).

The proof of correctness of the encoding for 	[08 ,18 ]B (:, 9) is straightforward and easy to
check from the construction. In particular, we can prove the following lemma:
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Lemma 9 Let � be a satisfying interpretation of 	[08 ,18 ]B (:, 9) such that �(08) = 0 and �(18) = 1.
Then, the set ℐ �

8
consists of the maximal disjoint intervals by applying � 	 [0, 1] to the intervals

� of ℐ �
9
.

Constraints for the G� operator. For the G� operator where � is encoded using 08 , 18 we
have the following constraint:

∧
1≤8≤=
1≤ 9<8

G8 ,G�
∧ ;8 , 9 →

[ ∧
1≤B≤|S|

union′′B (8 , :′, :′) ∧ compB(:′, :) ∧ 	
[08 ,18 ]
B (:, 91) ∧ compB(91 , 9)

]
.

based on the relation for the G[0,1] operator in Equation 4.5. Similar to the encoding of
F[0,1] operator, we rely on intermediate set of intervals ℐ̃91 , ℐ̃: and ℐ̃:′ encoded using
some auxiliary variables. First we use the formula compB(91 , 9) to encode that ℐ̃91 is the
complement of the set ℐ

![9](®G
B
)
). Then we use the formula 	[08 ,18 ]B (:, 91) to encode that the

intervals in ℐ̃: can be obtained by performing � 	 [0, 1] to each interval � in ℐ̃91 , where
08 = 0 and 18 = 1. Then compB(:′, :) encodes that ℐ̃:′ is the complement of ℐ̃: . Finally,
the formula union′′(8 , :′, :′) encodes that ℐ

![8](®G
B
)
) consists of the maximal disjoint

intervals obtained by taking the union of the complement of ℐ∪
![9](®G

B
)
) and {[) − 0, ))}.

Similar to union′ in the semantic constraints for F� operator, the construction of
union′′(8 , :, :) is similar to that of union(8 , 9 , 9′) in that the constraints involved are
similar to Constraints 4.9 to 4.11.

As an example, consider ℐ
![9](®G

B
)
) = {[1, 4), [6, 7)} for a prefix ®GB

)
and ) = 7. Now, if

![8] = G[1,4] ![9], first we have ℐ̃91 = {[0, 1), [4, 6)} using compB(91 , 9). Then we have
ℐ̃: = {[0, 5)} based on Constraint 4.12 applied on ℐ̃91 . Now using the formula
compB(:′, :), we have ℐ̃:′ = {[5, 7)}. Next, we have ℐ

![8](®G
B
)
) = {[5, 7)} which consists of

the maximal disjoint intervals from the union of ℐ̃
:′ = {[5, 7)} and {[) − 0, )) = [6, 7)}

using union′′(8 , :′, :′).

It is worth noting that although the number of intervals in ℐ
![8](®G

B
)
) for each subformula

![8] is bounded byℳ, it may not contain the same number of intervals. For instance,
ℐ?(®GB)) = {[0, 1), [6, 7)} has two intervals, while, assuming ) = 7, ℐ¬?(®GB)) = {[1, 6)} has
only one interval.

To circumvent this, we introduce some variables =D<8 ,B for 8 ∈ {1, . . . , =} and
B ∈ {1, . . . , |S|} to track of the number of intervals in ℐ

![8](®G
B
)
) for each subformula ![8]

for each prefix ®GB
)
. We now impose the constraint∧

1≤8≤=,1≤<≤ℳ
[< > num 8 ,B] → [C ;8 ,<,B = ) ∧ C

A
8,<,B = )]

This ensures that all the unused variables C�
8 ,<,B

for each node 8 and prefix ®GB
)
in S are all

set to ). We also use the =D<8 ,B variables in the constraints for easier computation of
ℐ
![8](®G

B
)
) for each operator. We include this in our implementation but omit it here for a

simpler presentation.
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Constraints for ensuring G-sep. Finally, to ensure that the prospective formula ! is
G-sep for S, we add:∧

®GB
)
∈%

[
(C ;=,1,B = 0) ∧ (CA=,1,B = ))

]
∧

∧
®GB
)
∈#

[
(C ;=,1,B ≠ 0) ∨ (CA=,1,B ≠ ))

]
. (4.13)

This constraint says that ℐ
![=](®G

B
)
) = {[0, ))} for all the positive prefixes ®GB

)
, while

ℐ
![=](®G

B
)
) ≠ {[0, ))} for any negative prefixes ®GB

)
.

4.5 Theoretical Guarantees

This section establishes the theoretical guarantees of our MTL learning algorithm.

4.5.1 Correctness

The correctness of our algorithm follows from the correctness of the inductive
computation of ℐ!(®G)) in Lemma 6 and its encoding using the formulas described in
Lemma 7, Lemma 8 and Lemma 9. We state the correctness result formally as follows:

Theorem 4 (Correctness) Given a sample S and a future-reach bound :, if Algorithm 5
outputs an MTL formula !, then ! is a minimal MTL formula such that ! is globally
separating for S and fr(!) ≤ :.

4.5.2 Termination

The termination of our algorithm is guaranteed by the choice of imposing a size bound
� in Algorithm 5 on the search space of the MTL formulas as described in Section 4.3.3.

4.5.3 Complexity Results

Our synthesis algorithm solves the optimization problem SynTL by constructing
formulas in LRA. We now analyze the computational hardness of SynTL and, thus,
consider its corresponding decision problem SynTL3: given a sample S, a future-reach
bound : and size bound � (in unary), does there exist an MTL formula ! such that ! is
G-sep for S, fr(!) ≤ :, and |! | ≤ �?

Following our algorithm, we can encode the SynTL3 problem in an LRA formula
Φ =

∨
=≤� Φ

=
S ,: , where Φ=

S ,: is as described in Algorithm 5. One can check that the size
of Φ is O(|S||: |�3ℳ3). Now, the fact that the satisfiability of an LRA formula is
NP-complete [40] proves the following:

Theorem 5 SynTL3 is in NP.
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While the exact complexity lower bound for SynTL3 is unknown, we conjecture that
SynTL3 is NP-hard. Our hypothesis stems from the fact that one can show SynTL3 is
NP-hard for a simple fragment MTL(G� ,∨,¬), which consists of only G� ,∨ and ¬
operators6, following the techniques of Fijalkow and Lagarde [58].

Lemma 10 SynTL3 is NP-hard for MTL(G� ,∨,¬).

Proof of Lemma 10. To prove the NP-hardness of SynTL3 for MTL(G� ,∨,¬), we establish
the NP-hardness of an easier problem where the future-reach bound is relaxed, which is
the following: given a sample S and a size bound �, does there exist a formula ! in
MTL(G� ,∨,¬) such that ! is G-sep for S, and |! | ≤ �? Towards this, we show a
polynomial time reduction from the hitting set problem, a classical NP-complete
problem in the literature. To this end, let us first define the hitting set decision problem:
given �1 , . . . , �= subsets of [1, ℓ ] and : ∈ N, does there exist � subset of [1, ℓ ] of size at
least : such that for every 9 ∈ [1, =]we have � ∩ � 9 ≠ ∅. In that case, we say that � is a
hitting set.

We construct a reduction from the hitting set problem. Let �1 , . . . , �= subsets of [1, ℓ ]
and : ∈ N. Let us consider the set of propositions to be P = {?0 , ?1 , . . . , ?ℓ }. We
construct the sample S = (%, #)with ) = ; + 1 as follows: for each 9 ∈ [1, =]we let
[1, ℓ ] \ � 9 =

{
0 9 ,1 < · · · < 0 9 ,<9

}
, and define a positive signal prefix of the form

D9 = 0 : {?0}; 0 9 ,1 : {?0 9 ,1}; . . . ; 0 9,< 9
: {?0 9 ,<9 }.

Let % = {D1 , . . . , D=} be the set of all the positive signal prefixes. There is a single
negative signal prefix, which is of the form

E = 0 : {?0} ; 1 : {?1} ; 2 : {?2} ; . . . ; ℓ : {?ℓ }.

that means in E, only proposition ?8 is true. We let # denote the singleton set
containing E at time interval [8 , 8 + 1).

We claim that there exists a hitting set of size at most : if and only if there exists a
formula in MTL(G� ,∨,¬) of size at most 3: − 1 that is globally separating for S, i.e.,
satisfies D8 ’s at all time-points and does not satisfy E at some time-point.

Let � = {21 , . . . , 2:} be a hitting set of size : with 21 < 22 < · · · < 2: , we construct the
formula

! = (¬?21 ∨G[0,ℓ ](· · · ∨G[0,ℓ ] ¬?2: ))
We argue that ! globally separates D1 . . . D= from E and has size 3: − 1. Indeed, the fact
that � is a hitting set means that for every 9 ∈ [1, =], there exists 8 such that 28 ∈ �. This
implies that D9 satisfies G[0,ℓ ] ¬?28 globally, hence ! as well. Also, E does not satisfy ! at
position 21.

Conversely, let ! be a G-sep formula in MTL(G� ,∨,¬) of size 3: − 1. Following [58], we
can assume that ! is of the form above. Because it does not satisfy E, we have
21 < 22 < · · · < 2: . We let � = {21 , . . . , 2:}, and argue that � is a hitting set. To prove
that � is a hitting set, we need to prove that, for every 9 ∈ [1, =], we have � ∩ � 9 ≠ ∅.

6we consider the fragment in negation normal form



74 CHAPTER 4. LEARNING FORMULAS IN MTL

Now as ! is G-sep, for every 9 ∈ [1, =], we have (D9 , C) |= ! for all C ∈ [0, ℓ ]. Then there
exists a 28 that does not appear in D9 , implying the fact that 28 ∈ � ∩ � 9 by the
construction of D9 .

We illustrate the above idea via an example. Let ; be four and �1 , �2 , �3 ⊆ [1, 4] such
that, �1 = {1, 2, 3}, �2 = {2, 3, 4} and �3 = {1, 4}. Then, we construct the sample S with
) = 5 as follows:

0 4 5

?0 ?4
D1

0 1 5

?0 ?1
D2

0 2 3 5

?0 ?2 ?3
D3

0 1 2 3 4 5

?0 ?1 ?2 ?3 ?4
E

where D1 , D2 , D3 are positive prefixes and E is the negative prefix. The prefixes
illustrated in the above figure are meant to be interpreted as a proposition written
between two numbers =1 , =2 ∈ N holds in the interval [=1 , =2). For example the prefix
D1 is such that, {?0} is true in [0, 4) and {?4} is true in [4, 5). Now note that a hitting set
for �1 , �2 , �3 is � = {2, 4} such that, |� | = 2. Then the corresponding G-sep formula
for S is ! = ¬?2 ∨G[0,4] ¬?4. �

Note that this does not imply the NP-hardness of the SynTL3 problem for the full
fragment, as formulas with more operators could be smaller. However, it does show
that the problem is already combinatorially challenging in a very restricted setting. This
complexity lower bound justifies our approach of using constraint programming. We
leave it as an open problem to extend our complexity lower bound results to full MTL.

4.6 Experimental Evaluation

In this section, we answer the following research questions to assess the performance of
our ")! learning algorithm.

RQ1: Can our algorithm synthesize concise formulas with small future-reach?

RQ2: How does lowering the future-reach bound affect the size of the formulas?

RQ3: How does our algorithm scale for different sample sizes?
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4.6.1 Experimental Setup

To answer the research questions above, we have implemented a prototype of our
algorithm in Python 3 using Z3 [44] as the SMT solver in a tool named TEAL
(synThesizing Efficiently monitorAble mtL). To our knowledge, TEAL is the only tool for
synthesizing minimal MTL formulas for monitoring purposes (see related works). In
TEAL, we implement a heuristic on top of Algorithm 5. We initially set the maximum
number of intervalsℳ in sets ℐ

![8](®G)) to be � + 2 where � = max({|ℐ?(®G))| | ? ∈ P}).
We iteratively increase the value ofℳ until we find a solution. To ensure that the
synthesized MTL formulas are correct, we implement a verifier based on the inductive
computation of ℐ!(®G))mentioned in Equation 4.5. The heuristic improves the runtime
of TEAL significantly since most G-sep formulas ! never require the worst-case upper
bound7 ofℳ = �|! |.

We run TEAL on several benchmarks generated synthetically from MTL formulas. To
obtain useful MTL formulas, we rely on specifications that describe the time-sensitive
requirements of an electronically controlled steering (ECS) system, listed in Figure 5
of [90]. From the specifications listed, we identify three MTL patterns shown in
Table 4.1. Note that we choose formulas of the form �(!) as we search for formulas that
are globally separating. In our experiments, we generate MTL formulas from these
patterns by replacing time interval [C1 , C2]with different values.

Table 4.1: Time-sensitive MTL requirements of ECS system

Bounded Recurrence: G(F[C1 ,C2] ?)
Bounded Response: G(? → F[C1 ,C2] @)
Bounded Invariance: G(? → G[C1 ,C2] @)

To generate samples, starting with an MTL formula G(!) from Table 4.1, we generated a
set of random prefixes and then classified them into positive or negative depending on
whether ! holds at all time-points of the prefix or not. All the experiments are
conducted on a single core of a Debian machine with an Intel Xeon E7-8857 CPU (at
3GHz) using up to 6GB of RAM.

4.6.2 RQ1: Performance Evaluation

To address RQ1, we ran TEAL on a benchmark suite generated from nine MTL formulas
obtained from the three MTL patterns in Table 4.1 by replacing C1 with 0 and C2 with 1,2,
and 3. The suite consists of 36 samples for each pattern (12 samples for each formula),
with the number of prefixes ranging from 10 to 40 and the length of prefixes (i.e., the
number of sampled time points) ranging from 4 to 6. For each sample S, we set the
future-reach bound : to be fr(!) and size bound � to be |! |, where |! | is the formula
from which S was generated. The timeout chosen was 5400 secs.

7The operatorsF� , G� ,∧, and¬ increase the number of required intervals by atmost one. Only the∨ operator
can double it in the worst-case.
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Table 4.2: Summary of synthesized formulas.

Formula pattern Num of Samples Matched Not Matched Timed out
Bounded Recurrence 36 36 0 0
Bounded Response 36 24 2 10
Bounded Invariance 36 24 1 11

In this experiment, we noted the formulas synthesized by TEAL. We observed that TEAL
synthesized formulas that matched the original MTL pattern in 96.4% of the cases in
which it did not time out. We summarize these results in Table 4.2. Thus, to answer
RQ1, TEAL demonstrates a good ability to synthesize a concise MTL formula with a
small future-reach if one exists.

4.6.3 RQ2: Future-reach vs Size

To address RQ2, we investigate how the size of the synthesized formula changed over
varying future-reach bounds. For this, we ran TEAL on the same benchmark suite from
RQ1 but, this time, by varying the future-reach bound : from 1 to 4. We investigate the
average size of the minimal formula we get over the generated 108 samples for each
future-reach bound.

We observed that for future-reach bounds : of 1, 2, 3, and 4, the average size of the
synthesized minimal formulas were 3.904, 3.734, 3.370, and 3.361, respectively. Thus,
the trend is that with an increase in :, the average size of the minimal formula
decreased. This is because an increase in : allows a bigger search space of formulas.
One can, however, also notice that the decrease in the average size of the formulas with
increasing future-reach bound is not vast. This highlights the advantage of using a
future-reach bound for synthesizing formulas for online monitoring and confirms the
efficacy of our algorithm.
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Figure 4.2: Runtime change with respect to the number of prefixes and prefix lengths
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4.6.4 RQ3: Scalability

To address RQ3, we ran TEAL on a benchmark suite generated from three MTL formulas
G(F[0,2] ?), G(¬? → F[0,2] @), and G(¬? → G[0,2] @)which originate from the three MTL
patterns in Table 4.1. The suite consists of 90 samples for each formula, with the
number of prefixes varying from 8 to 40 and the length of prefixes varying from 4 to 40.
We set the future-reach bound : to be two and size bound � to be |! | where ! is the
original formula.

Figure 4.2 illustrates the runtime variation of TEAL in two cases: increasing the number
of prefixes fixing the length of them and increasing the length of prefixes fixing the
number of them. We observe that the increase in runtime is steeper relative to the prefix
lengths than to the number of prefixes. This is natural because an increase in prefix
length increases �, which significantly affects the size of the encoding. We notice an
anomalous drop in runtime for the third formula for prefix length 12. A plausible
explanation is that the randomly generated samples with prefixes of length beyond 12
could not capture the property of the formula properly and allowed simpler formulas.

4.7 Discussion

We have presented a novel SMT-based algorithm for automatically learning concise and
monitorable MTL specifications from finite system executions. Here we highlight two
key points applicable to our approach:

• While our algorithm is tailored to synthesize globally separating formulas
particularly useful for monitoring, we can adapt our algorithm easily to learn only
separating formulas as in the standard temporal logic inference setting [113, 111].
In particular, to ensure that the learnt formula is G-sep, we encode that, for every
positive prefix, the set of intervals at the root node has to be {[0, ))} and this
should not be the case for any of the negative ones, as encoded in Constraint 4.13.
To learn only separating formulas, we can modify the constraint as follows to
check if only zero is included in the set of intervals at the root node for the
positive prefixes and it is not the case for the negative ones:

∧
®GB
)
∈%
(C ;=,1,B = 0) ∧

∧
®GB
)
∈#
(C ;=,1,B ≠ 0).

This constraint says that 0 ∈ ℐ∪
![=](®G

B
)
) for all the positive prefixes ®GB

)
, while

0 ∉ ℐ∪
![=](®G

B
)
) for any negative prefixes ®GB

)
.

• Moreover, while we excluded the U� operator for interpretability purposes, we
can still incorporate it using similar methods as the other operators. However,
efficiently encoding the computation for U� symbolically is challenging and could
potentially have a notable impact on the algorithm’s runtime.

• From a practical point of view, an interesting future direction will be to lift our
techniques to automatically learn Signal Temporal Logic (STL) formulas for
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verification. Our algorithm can be extended for STL learning in a seemingly naive
way, as we discuss in the following section. However, this extension needs to be
optimized or we need to search for better optimization and heuristics to make that
algorithm efficient. In the following section, we give a sketch of how we can lift
our techniques naively to accommodate STL.

4.8 Extension to STL Learning

In this section, we sketch an extension of our algorithm to learn efficiently monitorable
STL specifications from system executions. Recall that STL is a temporal logic
formalism that extends MTL by incorporating real-valued predicates, as introduced in
Section 2.2.3.3. We consider the syntax of STL to be similar to that of MTL, as discussed
in Section 4.3. The main difference is that instead of a set of propositions P, we have a
set of real-value predicates in the form G: ≥ 2, where G: ∈ - is a real-value variable
from a finite set of variables - = G0 , . . . , G= , and 2 ∈ R. The extension is as follows:

• The signals and prefixes are continuous and defined in an analogous manner, but
now they are real-valued. Specifically, they are of the form R≥0 → R|- |
([0, )) → R|- | , respectively);

• Each observation is represented as Ω = 〈(C8 , �8)〉8≤=®G , where =®G ∈ N. The
observations satisfy the following conditions: (i) C0 = 0 and C=®G < ), (ii) for all
8 ≤ =®G , �8 ∈ R|- | is an =-dimensional vector where the 8-th coordinate indicates the
value of the variable G8 at time point C8 . The observations are approximated using
piecewise affine continuous prefixes ®G) (instead of piecewise constant).
Specifically, for all 8 < =®G , ®G) is continuous at C8 and affine on the interval [C8 , C8+1).

• The sample S and the inputs are defined similarly, where each of the prefixes is
real-valued.

• The future-reach value of an STL formula is analogous to that of an MTL formula.

• The problem definition is similar to SynTL, where given a set of positive and
negative prefixes, the goal is to find the minimal STL formula within the given
future-reach bound that is G-sep for the sample S.

Example 5 First, we go through the running example presented in Example 3 in the context of
MTL learning and motivate the need for STL learning. n this particular example, we assume
that the system designer knows the specific measure of the unsafe distance, which is 20 meters.
Consequently, the event ”there is no preceding car within 20 meters” can be represented as a
proposition ?. The truth value of ? can be evaluated at each observation in the simulations.

However, in practical scenarios, the precise measure of the unsafe distance may not be known in
advance. During simulations, the system designer can only observe the actual distance at each
time point. In such cases, the objective is to synthesize similar specifications in the form of ”for
every time point C, if the preceding vehicle is within a distance of less than 20 meters from the
vehicle, the brake should be triggered within one second.” This requirement can be expressed as a
globally separating STL formula: (G ≥ 20) ∨ F[0,1] @, where the variable G denotes the distance
between the test vehicle and the preceding vehicle, and @ indicates that the brake is triggered,
similar to Example 3.
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An immediate observation can be made based on the example mentioned above: if we
have prior knowledge of the predicates (e.g., G ≥ 20 in the example), we can convert the
real-valued piecewise continuous affine signals into a piecewise-constant signal with
respect to a set of propositions P, which corresponds to the set of predicates. By doing
so, we can directly apply our MTL learning algorithm presented in Algorithm 5 and
extract the desired STL formulas using that set of predicates.

However, the most intriguing direction for extending our algorithm to STL learning lies
in scenarios where the set of predicates is unknown and not provided as input. In the
syntax-DAG of STL, the leaf nodes contain predicates of the form G: ≥ 2: for G: ∈ - and
2: ∈ R, instead of propositions as in MTL. Therefore, the key idea for extending our
algorithm in this context is to utilize the LRA solver to guess these predicates at the leaf
nodes and encode the interval computations properly according to that guess. This will
ensure that the resulting STL formula is globally separating.

In the encoding of the semantics of MTL formulas, the base step in Algorithm 5 is as
follows: given a proposition ? ∈ P and a piecewise constant ®G) , we can easily calculate
ℐ?(®GB)) that consists of the maximal disjoint set of intervals in ®G) where ? holds. Then
we encode the interval computations on top of it as explained in Equations 4.5.

However, in the STL framework, the maximal disjoint intervals for leaf nodes are no
longer fixed. Specifically, for a real-valued prefix ®G) , the set of intervals ℐG:≥2: (®G

B
)
) for

the predicate of the form G: ≥ 2: depends on the valuation of 28 . Consequently, similar
to semantics encodings for other operators in the MTL setting, we must encode the
computation of ℐG:≥2: (®G

B
)
). This can be achieved similarly by using variables C ;

8 ,<,B
and

CA
8,<,B

such that a satisfying interpretation that maps 2: to 2 will satisfy the fact that
ℐG:≥2(®G

B
)
) contains the maximal disjoint intervals �1 . . . �ℳ such that, for all 1 ≤ 8 ≤ ℳ,

the value of ®G)(C)(:), i.e., the value of the variable G: in ®G) at time point C is greater than
or equal to 2.

Let � represent an interpretation. We denote �(C�
8 ,<,B
) as ��< , indicating the value of the

variable according to the interpretation. The subscripts 8 and B have been omitted for
clarity as the context is clear. Regarding the predicate G: ≥ 2, we define the parity of
®G)(��<1)(:) as 1 if the value is greater than or equal to 2, and 0 otherwise. We enforce the
following constraints:

• For each < ≤ ℳ − 1, the parity of ®G)(��<)(:)must differ from the parity of
®G)(��<+1)(:).

• For each < ≤ ℳ − 1, there should be no sampled time point ��< < C < ��< in ®G)
where the parity of ®G)(��<)(:) is different from the parity of ®G)(C)(:).

These constraints ensure the desired conditions for the specified variable and predicate.
It is easy to check that the above two constraints encode the fact that ℐG:≥2(®G

B
)
) contains

the maximum disjoint intervals where G: ≥ 2 in ®G) . It should also be noted that, given a
time point C′ and a variable G: , the value of ®G)(C′)(:) can be easily computed through
interpolation, based on the values at the sampled points. This is possible as ®G) is
assumed to be piecewise-affine continuous.

These constraints can be encoded in LRA and added, along with other semantic
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constraints in Φsem (excluding the ones for propositions), to Algorithm 5. The Φfr

remains unchanged, while the Φstr is slightly modified to accommodate predicates
instead of propositions in the leaf nodes. These modifications allow us to extend our
techniques in a straightforward manner to learn monitorable and concise specifications
in STL.

4.9 Conclusion

This chapter presents a novel SMT-based algorithm for automatic learning of MTL
formulas from observed finite system behaviours. The algorithm aims to synthesize
concise formulas with low future-reach, making them suitable for efficient monitoring.
Benchmark experiments demonstrate that our algorithm successfully synthesizes
concise formulas based on commonly used MTL patterns.

Furthermore, we extend our algorithm to support the synthesis of separating formulas,
which are commonly used in standard temporal logic inference. We provide complexity
results for the corresponding decision problems. As a future direction, it would be
interesting to establish lower bounds for these inference problems in the full fragments.

Another avenue for future research is to enhance the algorithm to efficiently and
optimally handle STL. While we have presented a straightforward extension to
accommodate STL in our framework, we believe that a comprehensive analysis, along
with the introduction of efficient optimizations and heuristics, can lead to a significantly
more efficient STL learning algorithm than the one proposed.
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Parameter Synthesis for One-Counter

Automata with Parametric Updates and
Tests

In this chapter, we discuss the parameter synthesis problems for one-counter automata,
a classical model of computation in formal methods and verification. We will show a
relationship between these problems to first-order logic and establish several complexity
results. We will also briefly introduce a study on an extension of these models with
Parikh constraints that were inspired by the above-mentioned connection to logic.
However, from the point of view of formal verification, we first discuss the background
and motivation behind the problems and the model chosen based on the related works
in the literature. The content presented in this chapter is based on the works in [117, 31].

5.1 Background

Our motivation for studying one-counter automata (OCA) with parameters stems from
their usefulness in modelling programs whose control flow is determined by
counter-variables. One such simple program is depicted in Figure 5.1.

1 def funprint(x):
2 i = 0
3 i += x
4 while i >= 0:
5 if i == 0:
6 print("Hello")
7 if i == 1:
8 print("world")
9 if i >= 2:

10 assert(False)
11 i -= 1
12 # end program

Figure 5.1: A program whose control flow is determined by the counter variable 8

83
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Indeed, the executions of such a program can be over-approximated by its control-flow
graph (CFG) [1], where we encode every line of the program as a node, and the edges
encode the reachability of one line of the program to the other. The CFG can be
leveraged to get a conservative response to interesting questions about the program, such
as: “Is there a value of G such that the false assertion is avoided?” Note that the CFG in
Figure 5.2a abstracts away all variables and their values, and this introduces
non-determinism. Hence, the question becomes: “Is it the case that all paths from the
initial node avoid the one labelled with 10?” In this particular example, the abstraction
is too coarse, and thus we obtain a false negative.

In such cases, the abstraction of the program should be refined [41]. A natural
refinement of the CFG in this context is obtained by tracking the value of 8 (cf. program
graphs in [8]) as illustrated in Figure 5.2b. This results in an OCA with parameters
where there is a counter that can be updated or tested with parameters or integers
along the edges. In these models, we can observe that: For G ∈ {0, 1}, it has no run that
reaches the state labelled with 10. This is an instance of a safety parameter synthesis
problem for which the answer is positive.

1–2

3 4 5

6

7

8

9 11

10

assertion

12

end

(a) CFG for program in Figure 5.1

1–2

3 4 5

6

7

8

9 11

10

assertion

12

end

+G
≥ 0

= 0 = 1 ≥ 2

−1

(b) Extended CFG tracking variable 8

Figure 5.2: At the top, the CFG with node labels corresponding to the source code line
numbers; Below, the CFG extended by tracking the value of the variable 8

In this chapter, we focus on the parameter synthesis problems for given OCA with
parameters and do not consider the problem of obtaining such an OCA from a program
(cf. [57]).

Counter automata [110] are classical models that extend finite-state automata with
integer-valued counters. These have been shown to be useful in modelling complex
systems, such as programs with lists and XML query evaluation algorithms [27, 36]. As
previously mentioned, it is known that two counters suffice for counter automata to
become Turing powerful, making all the interesting questions about them
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undecidable [110]. In this chapter, we focus on a restriction of this model to one counter:
OCA with integer-valued updates and tests. In particular, we study the universal
parameter synthesis problems for this model, where we allow parameters to appear in
the updates and the tests. Further note that the model we study has an asymmetric set
of tests that can be applied to the counter: lower-bound tests and equality tests (both
parametric and non-parametric). The primary reason for this is that adding
upper-bound tests results in a model for which even the decidability of the (arguably
simpler) existential reachability parameter synthesis problem is a long-standing open
problem [30]. Namely, the resulting model corresponds to Ibarra’s simple programs [80].

5.1.1 Related Works

The existential version of the parameter synthesis problems for OCA was considered by
Göller et al. [67]. They ask whether there exist a valuation of the parameters and a run
of the automaton which satisfies a given specification. In contrast, we consider the
universal version of the problem where we quantify runs universally. This is required
for the conservative-approximation use case described in the example above.

In both [67] and [23], the universal parameter synthesis problems for OCA with
parameters were stated as open. Later, Lechner [93] gave an encoding for the
complement of these problems into a one-alternation fragment of Presburger arithmetic
with divisibility (PAD). Her encoding relies on the work by Haase et al. [73], which
shows how to compute a linear-arithmetic representation of the reachability relation of
OCA (see [99] for an implementation). In the same work, Haase et al. show that the
same can be achieved for OCA with parameters using the divisibility predicate. In [93],
Lechner goes on to consider the complexity of (validity of sentences in) the language
corresponding to the one-alternation fragment her encoding targets. An earlier
paper [29] by Bozga and Iosif argues that the fragment is decidable, and Lechner
carefully repeats their argument while leveraging bounds on the bit-size of solutions of
existential PAD formulas [95] to argue the complexity of the fragment is co2NEXP. For
$-regular properties given as a linear temporal logic (LTL) formula, her encoding is
exponential in the formula, and thus it follows that the LTL synthesis problem is
decidable and in 3NEXP.

5.1.2 Problems in the Literature

Recall that, Presburger arithmetic is the first-order theory of 〈Z, 0, 1,+, <〉, as introduced
in Section 2.2.2.1. Presburger arithmetic with divisibility (PAD) is the extension of PA
obtained when we add a binary divisibility predicate. The resulting language in its full
generality is undecidable [128]. In fact, a single quantifier alternation already allows
encoding general multiplication, thus becoming undecidable [104]. However, the
purely existential (Σ0) and purely universal (Π0) fragments have been shown to be
decidable [18, 103].

The target of Lechner’s encoding is ∀∃'PAD+, a subset of all sentences in the
Π1-fragment of PAD. Such sentences look as follows:
∀®G∃®H∨

8∈�
∧
9∈�8 59(®G) | 69(®G, ®H) ∧ !8(®G, ®H)where ! is a quantifier-free PAD formula
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without divisibility. Note that all divisibility constraints appear in positive form (hence
the +) and that, within divisibility constraints, the existentially-quantified variables H8
appear only on the right-hand side (hence the ∃R). In [29], the authors give a
quantifier-elimination procedure for sentences in a further restricted fragment we call
the Bozga-Iosif-Lechner fragment (BIL) that is based on “symbolically applying” the
generalized Chinese remainder theorem (CRT) [92]. Their procedure does not eliminate
all quantifiers but rather yields a sentence in the Π0-fragment of PAD. (Decidability of
the BIL language would then follow from the result of Lipshitz [103].) Then, they briefly
argue how the algorithm generalizes to ∀∃'PAD+. There are two crucial problems in the
argument from [29] that we have summarized here (and which were reproduced in
Lechner’s work):

• First, the quantifier-elimination procedure of Bozga and Iosif does not directly
work for BIL. Indeed, not all BIL sentences satisfy the conditions required for the
CRT to be applicable as used in their algorithm.

• Second, there is no way to generalize their algorithm to ∀∃'PAD+ since the
language is undecidable. Interestingly, undecidability follows directly from other
results in [29, 93].

In Lechner’s thesis [94], the result from [29] was stated as being under review.
Correspondingly, the decidability of the universal parameter synthesis problems for
OCA with parameters was only stated conditionally on ∀∃'PAD+ being decidable.

5.1.3 Our Contribution

We fix the above-mentioned problems in the literature. Using developments
from [29, 93], we first will argue that ∀∃'PAD+ is undecidable. Then, we “fix” the
definition of the BIL fragment by adding to it a necessary constraint so that the
quantifier-elimination procedure from [29] works correctly. Using similar methods, we
establish that the complexity of BIL is in co2NEXP. To the best of our knowledge, BIL is the
largest known decidable fragment of PAD in general. Figure 5.3 illustrated the fragments of
PAD and their decidability results.

BIL ∀∃'PAD+ ∀∃'PAD Π1-PAD

Known undecidable [29, 128]UndecidableDecidable

⊂ ⊂ ⊂

Figure 5.3: Syntactical fragments of PAD ordered w.r.t. their language (of sentences)

Then by careful analysis and reduction to BIL, we re-establish the decidability of
universal parameter synthesis problems for various $-regular specifications. To do so,
we follow Lechner’s original idea from [93] to encode them into ∀∃'PAD+ sentences.
However, to ensure we obtain a BIL sentence, several parts of her encoding have to be
adapted. Finally, using the standard reduction from !)! to Büchi in literature, we
establish that the problem is in 3NEXP for LTL specifications. Table 5.1 contains a
summary of these complexity results.
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Lower bound Upper bound

LTL PSPACE-hard [134] in 3NEXP (Thm. 10)

Reachability coNP-hard (Thm 14, Chap 6) in 2NEXP (Thm. 10)
Safety, Büchi, coBüchi NPNP-hard [93, 94]

Table 5.1: Known and new complexity bounds for parameter synthesis problems

5.2 Outline of the Chapter

We introduce Presburger Arithmetic with Divisibility along with its various decidable
and undecidable fragments in Section 5.3. Then, Section 5.4 introduces the one-counter
automata model and the parameter synthesis problems we focus on in this chapter. We
establish the complexity results of these problems in Section 5.5. Finally, we briefly
introduce an extension of the model called Parikh One-counter Automata in Section 5.6.

5.3 Presburger Arithmetic with Divisibility

Presburger arithmetic (PA) is the first-order theory over 〈Z, 0, 1,+, <〉 where + and < are
the standard addition and ordering of integers. Presburger arithmetic with divisibility
(PAD) is the extension of PA obtained when we add the binary divisibility predicate |,
where for all 0, 1 ∈ Zwe have 0 | 1 ⇐⇒ ∃2 ∈ Z : 1 = 02. In general, quantifier-free
PAD formulas have the grammar:

! ::= !1 ∧ !2 | ¬! | 5 (®G) % 6(®G),

where % can be the order predicate < or the divisibility predicate |, and 5 , 6 are linear
polynomials. The size |! | of a PAD formula ! is defined by structural induction
analogous to the size of a PA formula: For a linear polynomial ?(®G)we define |?(®G)| as
the number of symbols required to write it if the coefficients are given in binary. Then,
we define |!1 ∧ !2 |

def
= |!1 | + |!2 | + 1, |¬! | def= |∃G.! | def= |! | + 1, | 5 (®G) % 6(®G)| def= | 5 (®G)|+

|6(®G)| + 1.

5.3.1 Allowing One Restricted Alternation

We define the language ∀∃'PAD of all PAD sentences allowing a universal
quantification over some variables, followed by an existential quantification over
variables that may not appear on the left-hand side of divisibility constraints. Formally,
∀∃'PAD is the set of all PAD sentences of the form: ∀G1 . . .∀G=∃H1 . . .∃H<!(®G, ®H)where
! is a quantifier-free PAD formula and all its divisibility constraints are of the form
5 (®G) | 6(®G, ®H).

Positive-divisibility fragment. We denote by ∀∃'PAD+ the subset of ∀∃'PAD
sentences ! where the negation operator can only be applied to the order predicate <
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and the only other Boolean operators allowed are conjunction and disjunction. In other
words, ∀∃'PAD+ is a restricted negation normal form in which divisibility predicates
cannot be negated. Lechner showed in [93] that all ∀∃'PAD sentences can be translated
into ∀∃'PAD+ sentences.

Lemma 11 (Lechner’s trick [93]) For all !1 in ∀∃'PAD one can compute !2 in ∀∃'PAD+
such that !1 is true if and only if !2 is true.

Proof of Lemma 11. Consider a sentence Φ in ∀∃'PAD:

∀G1 . . .∀G=∃H1 . . .∃H<!(®G, ®H).

We observe Φ can always be brought into negation normal form so that negations are
applied only to predicates [127]. Hence, it suffices to argue that we can remove negated
divisibility predicates while staying within ∀∃'PAD.

The claim follows from the identity below since the newly introduced variables G′, G′′
are both existentially quantified and only appear on the right-hand side of divisibility
constraints. For all 0, 1 ∈ Zwe have the following.

¬(0 | 1) ⇐⇒ (0 = 0 ∧ 1 ≠ 0) ∨ ∃G′∃G′′
( (
(1 = G′ + G′′) ∧ (0 | G′) ∧ (0 < G′′ < 0)

)
∨(

(1 = −G′ − G′′) ∧ (0 | G′) ∧ (0 < G′′ < −0)
) )

In other words, if 0 = 0 and 1 ≠ 0, then ¬(0 | 1). Further, if 0 ≠ 0, there are integers
@, A ∈ Z such that 1 = @0 + A and 0 < A < |0 | if and only if ¬(0 | 1). �

5.3.2 Undecidability of Both One-alternation Fragments

We will now prove that the language ∀∃'PAD+ is undecidable; that is, to determine
whether a given sentence from ∀∃'PAD+ is true is an undecidable problem.

Theorem 6 The language ∀∃'PAD+ is undecidable.

From Lemma 11, it follows that arguing ∀∃'PAD is undecidable suffices to prove the
theorem. The latter was proven in [29]. More precisely, they show the complementary
language is undecidable. Their argument consists in defining the
least-common-multiple predicate, the squaring predicate, and, subsequently, integer
multiplication. Undecidability thus follows from the MRDP theorem [106] which states
that satisfiability for such equations (i.e. Hilbert’s 10th problem) is undecidable. Hence,
Theorem 6 is a direct consequence of the following result. We formalize and prove the
undecidability result below:

Lemma 12 (From [29]) The language ∀∃'PAD is undecidable.

Proof of Lemma 12. We will show the language ∃∀'PAD of all sentences of the form ¬!
such that ! ∈ ∀∃'PAD is undecidable.

We begin by recalling the definition of the lcm(·, ·, ·) predicate. A common multiple of
0, 1 ∈ Z is an integer < ∈ Z such that 0 | < and 1 | <. Their least common multiple < is
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minimal, that is, < | <′ for all common multiples <′. This leads to the following
definition of lcm(0, 1, <) for all 0, 1, < ∈ Z.

lcm(0, 1, <) ⇐⇒ ∀<′ ((0 | <′) ∧ (1 | <′)) ←→ (< | <′))

Observe that the universally-quantified <′ appears only on the right-hand side of the
divisibility constraints. We thus have that ∃∀'PAD can be assumed to include a
least-common-multiple predicate.1 For convenience, we will write lcm(0, 1) = < instead
of lcm(0, 1, <).

Now, once we have defined the lcm(·, ·, ·) predicate, we can define the perfect square
relation using the identity:

G > 0 ∧ G2 = H ⇐⇒ lcm(G, G + 1) = H + G

and multiplication via:
4GH = (G + H)2 − (G − H)2.

Observe that we are now able to state Diophantine equations. Undecidability thus
follows from the MRDP theorem [106], which states that satisfiability for such equations
(i.e. Hilbert’s 10th problem) is undecidable. �

5.3.3 The Bozga-Iosif-Lechner Fragment

In [29], Bozga and Iosif actually proved that determining the truth value of a given
sentence from a fragment of ∀∃'PAD+ is decidable. Lechner provided a simplified
argument and gave an improved complexity upper bound in [93]. While their
generalization to the full ∀∃'PAD+ was based on a flawed argument, the decidable
fragment, which we refer to as the Bozga-Iosif-Lechner fragment (or BIL for short), will
be very useful in the rest of the chapter.

5.3.3.1 The Formulation

The Bozga-Iosif-Lechner (BIL) fragment is the set of all ∀∃'PAD+ sentences of the form:

∀G1 . . .∀G=∃H1 . . .∃H<(
∨
8

G8 < 0) ∨
∨
8∈�

∧
9∈�8

(
59(®G) | 69(®G, ®H) ∧ 59(®G) > 0

)
∧ !8(®G) ∧ ®H ≥ ®0

where � , �8 ⊆ N are all finite index sets, the 59 and 69 are linear polynomials and the
!8(®G) are quantifier-free PA formulas over the variables ®G. Note that, compared to
∀∃'PAD+, BIL sentences only constraint non-negative values of ®G. (This technicality is
necessary due to our second constraint below.) For readability, henceforth, we omit the
disjunction that captures the case of G8 ’s being negative and only focus on the case
where all G8 ’s take non-negative integer values. Additionally, it introduces the following
three important constraints:

1. The ®H variables may only appear on the right-hand side of divisibility constraints.

1We remark that this definition of the least common multiple is oblivious to the sign of <, e.g. lcm(2, 3,−6)
is true and lcm(0, 1, <) ⇐⇒ lcm(0, 1,−<) in general. This is not a problem since we can add < ≥ 0 if desired.
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2. All divisibility constraints 59(®G) | 69(®G, ®H) are conjoined with 59(®G) > 0.

3. The ®H variables are only allowed to take non-negative values.

It should be clear that the first constraint is necessary to avoid undecidability. Indeed, if
the ®H variables were allowed in the PA formulas !8(®G), then we could circumvent the
restrictions of where they appear in divisibilities by using equality constraints. The
second constraint is similar in spirit. Note that if 0 = 0, then 0 | 1 holds if and only if
1 = 0, so if the left-hand side of divisibility constraints is allowed to be 0, then we can
encode PA formulas on ®G and ®H as before. Also, the latter (which was missing
in [29, 93]) will streamline the application of the generalized Chinese remainder
theorem in the algorithm described in the sequel.

5.3.3.2 The Flaw in the Previous Attempt

Now we identify a flow in the result of [29] that contains the flawed attempt of proving
that ∀∃'PAD+ is decidable. First note that every ∀∃'PAD+ sentence ! can be assumed
to be of the form Φ = ∀®G!(®G)with

!(®G) = ∃H1 . . .∃H<
∨
8∈�

∧
9∈�8

(
59(®G) | 69(®G, ®H)

)
∧ #8(®G, ®H)

where #8 are Presburger formulas with free variables ®G and ®H. In their proposed
algorithm, the first step claims that by substituting and renaming the existentially
quantified variables, we can reduce ! to the following form:

∃H1 . . .∃H<
∨
8∈�

∧
9∈�8

(
5 ′9 (®G) | 6

′
9(®G, ®H)

)
∧ #′8(®G)

where the ®H variables can only appear on the right side of divisibility; intuitively, their
algorithm proposes that we can remove all the existentially quantified variables from
the Presburger constraints outside divisibility in the formula. Note that, intuitively,
their process tries to reduce ∀∃'PAD+ to BIL. In the example below, we try to show that
this is not the case, i.e., we start with a ∀∃'PAD+ formula and follow their proposed
steps and show that it is not possible to remove all the existentially quantified variables2.

2In the example, every step in intuitively simple and that is the reason we omit the full details of the al-
gorithm in [29] and keep it at a high level in this chapter
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∃G1∃G2(H | 5G1 + 4G2)
∧ (5G1 + 6G2 − H ≤ 0)
∧ (5G1 + 4G2 − H ≤ 0)
∧ (3H − 2G2 ≤ 0)

∃®G∃®I(H | 5G1 + 4G2)
∧ (5G1 + 6G2 − H + I1 = 0)
∧ (5G1 + 4G2 − H + I2 = 0)
∧ (3H − 2G2 + I3 = 0)
∧ (®I ≥ 0)

∃G2∃®I(H | 2H − I1 − 2G2)
∧ (H − 2G2 − I1 + I2 = 0)
∧ (3H − 2G2 + I3 = 0)
∧ (®I ≥ 0)

∃®I(H | H − I2)
∧ (2H + I1 − I2 + I3 = 0)
∧ (®I ≥ 0)

turning inequalities to equalities

removing G1

removing G2

Now the equation (2H + I1 − I2 + I3 = 0) cannot be reduced anymore as we cannot
remove any of the ®I variables, and hence, in the end, we get existentially quantified
variables outside divisibility. �

5.3.3.3 Decidability of BIL

In the rest of this section, we recall the decidability proof by Bozga and Iosif [29] and
refine Lechner’s analysis [93] to obtain the following complexity bound.

Theorem 7 The BIL-fragment language is decidable in co2NEXP.

The idea of the proof is as follows: We start from a BIL sentence. First, we use the
generalized Chinese remainder theorem (CRT, for short) to replace all of the existentially
quantified variables in it with a single universally quantified variable. We thus obtain a
sentence in ∀PAD (i.e. the Π0-fragment of PAD) and argue that the desired result
follows from the bounds on the bit-size of satisfying assignments for existential PAD
formulas [95].

Theorem 8 (Generalized Chinese remainder theorem [92]) Let <8 ∈ N>0, 08 , A8 ∈ Z for
1 ≤ 8 ≤ =. Then, there exists G ∈ Z such that

∧=
8=1 <8 | (08G − A8) if and only if:∧

1≤8 , 9≤=
gcd(08< 9 , 0 9<8) | (08A 9 − 0 9A8) ∧

=∧
8=1

gcd(08 , <8) | A8 .

The solution for G is unique modulo lcm(<′1 , . . . , <′=), where <′
8
=

<8

gcd(08 ,<8 ) .

From a BIL sentence, we apply the CRT to the rightmost existentially quantified variable
and get a sentence with one less existentially quantified variable and with
gcd-expressions. Observe that the second restriction we highlighted for the BIL
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fragment (the conjunction with 59(®G) > 0) is necessary for the correct application of the
CRT. We will later argue that we can remove the gcd expressions to obtain a sentence in
∀PAD.

Example 6 Consider the sentence:

∀G∃H1∃H2
∨
8∈�

∧
9∈�8

(
59(G) | 69(G, ®H) ∧ 59(G) > 0

)
∧ !8(G) ∧ ®H ≥ ®0.

Let  9 denote the coefficient of H2 in 69(G, ®H) and A 9(G, H1)
def
= −(69(G, ®H) −  9H2). We can

rewrite the above sentence as ∀G∃H1
∨
8∈� #8(G, H1) ∧ !′

8
(G) ∧ H1 ≥ 0 where:

#8(G, H1) = ∃H2
∧
9∈�8
( 59(G) | ( 9H2 − A 9(G, H1))) ∧ H2 ≥ 0, and

!′8(G) = !8(G) ∧
∧
9∈�8

59(G) > 0.

Applying the CRT, #8(G, H1) can equivalently be written as follows:∧
9 ,:∈�8

gcd(: 59(G),  9 5:(G)) | ( 9A:(G, H1) − :A 9(G, H1)) ∧
∧
9∈�8

gcd( 9 , 59(G)) | A 9(G, H1).

Note that we have dropped the H2 ≥ 0 constraint without loss of generality since the CRT states
that the set of solutions forms an arithmetic progression containing infinitely many positive (and
negative) integers. This means the constraint will be trivially satisfied for any valuation of G and
H1 which satisfies #8(G, H1) ∧ !8(G) ∧ H1 ≥ 0 for some 8 ∈ �. Observe that H1 only appears in
polynomials on the right-hand side of divisibilities.

The process sketched in the example can be applied in general to BIL sentences
sequentially starting from the rightmost quantified H8 . At each step, the size of the
formula is at most squared. In what follows, it will be convenient to deal with a single
polyadic gcd instead of nested binary ones. Thus, using associativity of gcd and
pushing coefficients inwards — i.e. using the equivalence 0 · gcd(G, H) ≡ gcd(0G, 0H) for
0 ∈ N— we finally obtain a sentence:

∀G1 . . .∀G=
∨
8∈�

∧
9∈!8
(gcd({ 5 ′9 ,:(®G)}

 9

:=1) | 6
′
9(®G)) ∧ !′8(®G) (5.1)

where |!8 |, | 9 |, and the coefficients may all be doubly-exponential in the number < of
removed variables due to iterated squaring.

Eliminating the gcd operator. In this next step, our goal is to obtain an ∀PAD sentence
from Equation (5.1). Recall that ∀PAD “natively” allows for negated divisibility
constraints. (That is, without having to encode them using Lechner’s trick.) Hence, to
remove expressions in terms of gcd from Equation (5.1), we can use the following
identity:

gcd( 51(®G), . . . , 5=(®G)) | 6(®G) ⇐⇒ ∀3
(
=∧
8=1

3 | 58(®G)
)
→ 3 | 6(®G).
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This substitution results in a constant blowup of the size of the sentence. The above
method gives us a sentence ∀®G∀3#(®G, 3), where #(®G, 3) is a quantifier-free PAD formula.
To summarize:

Lemma 13 For any BIL sentence ! = ∀G1 . . .∀G=∃H1 . . .∃H<
∨
8∈� !8(®G, ®H) we can construct

an ∀PAD sentence # = ∀G1 . . .∀G=∀3
∨
8∈� #8(®G, 3) such that: ! is true if and only if # is true

and for all 8 ∈ �, |#8 | ≤ |!8 |2
< . The construction is realizable in time O(|! |2< ).

To prove Theorem 7, the following small-model results for purely existential PAD
formulas and BIL will be useful.

Theorem 9 ([95], Theorem 14) Let !(G1 , . . . , G=) be a ∃PAD formula. If ! has a solution
then it has a solution (01 , . . . , 0=) ∈ Z= with the bitsize of each 08 bounded by |! |poly(=).

Corollary 1 Let ∀G1 . . .∀G=!(G1 , . . . , G=) be a BIL sentence. If ¬! has a solution then it has a
solution (01 , . . . , 0=) ∈ Z= with the bitsize of each 08 bounded by |! |2<poly(=+1).

Proof of Corollary 1. Using Lemma 13, we translate the BIL sentence to
∀G1 . . .∀G=∀3#(®G, 3), where the latter is an ∀PAD sentence. Then, using Theorem 9, we
get that the ∃PAD formula ¬#(®G, 3) admits a solution if and only if it has one with
bit-size bounded by |# |poly(=+1). Now, from Lemma 13 we have that |# | is bounded by
|! |2< . Hence, we get that the bit-size of a the solution is bounded by: |! |2<poly(=+1). �

We are now ready to prove the theorem.

Proof of Theorem 7. As in the proof of Corollary 1, we translate the BIL sentence to
∀G1 . . .∀G=∀3#(®G, 3). Note that our algorithm thus far runs in time: O

(
|! |2<

)
. By

Corollary 1, if ¬#(®G, 3) has a solution, then it has one encodable in binary using a
doubly exponential amount of bits with respect to the size of the input BIL sentence.
The naive guess-and-check decision procedure applied to ¬#(®G, 3) gives us a 2>2#�-%
algorithm for BIL sentences. Indeed, after computing #(®G, 3) and guessing a valuation,
checking it satisfies ¬# takes polynomial time in the bit-size of the valuation and |# |,
hence doubly exponential time in |! |. �

5.4 Succinct One-Counter Automata with Parameters

In this section, we formally define OCA with parameters that extend finite-state
automata with a single counter and a set of parameters against which the counter can
be updated and tested. The concept and observations we introduce here are largely
taken from [73] and the exposition in [94].

A succinct parametric one-counter automaton (SOCAP) is a tupleA = (&,),Δ, -), where
& is a finite set of states, - is a finite set of parameters, ) ⊆ & ×& is a finite set of
transitions and Δ : ) → Op is a function that associates an operation to every transition.
The set Op = CU ] PU ] ZT ] PT is the union of:

• Constant Updates CU def
= {+0 : 0 ∈ Z},
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• Parametric Updates PU def
= {+G,−G : G ∈ -},

• Zero Tests ZT def
= {= 0}, and

• Parametric Tests PT def
= {= G, ≥ G : G ∈ -}.

We denote by “= 0” or “= G” an equality test between the current value of the counter
and zero or the value of G respectively and by “≥ G”, a lower-bound test between the
value of the counter and the value of G.

A valuation+ : - → N assigns to every parameter a natural number. We assume CU are
succinctly encoded in binary, hence the S in SOCAP. We omit “parametric” if - = ∅
(and call the non-parametric model as ‘SOCA’) and often write @

op−−→ @′ to denote
Δ(@, @′) = op.

@1 @2 @3 @4
+1 +G1 = G2

Figure 5.4: A one-counter automaton with parameters

Example 7 Figure 5.4 demonstrates a one-counter automaton with parameters - = {G1 , G2}
comprising a constant update +1 (from @1 to @2), a parametric update +G1 (from State @2 to
State @3) and a parametric test = G2 (from @3 to @4).

A configuration is a pair (@, 2)where @ ∈ & and 2 ∈ N is the counter value. Given a
valuation + : - → N and a configuration (@0 , 20), a +-run from (@0 , 20) is a sequence
� = (@0 , 20)(@1 , 21) . . . such that for all 8 ≥ 0 the following hold: @8

>?8+1−−−−→ @8+1; 28 = 0,
28 = +(G), and 28 ≥ +(G), if Δ(@8 , @8+1) is “= 0”, “= G”, and “≥ G”, respectively; and 28+1
is obtained from 28 based on the counter operations. That is,

28+1 =


28 if Δ(@8 , @8+1) ∈ (ZT ∪ PT )
28 + 0 if Δ(@8 , @8+1) = +0
28 + (+(G) if Δ(@8 , @8+1) = (G.

We say � reaches a state @ 5 ∈ & if there exists 9 ∈ N, such that @ 9 = @ 5 . Also, � reaches or
visits a set of states � ⊆ & iff � reaches a state @ 5 ∈ �. If + is clear from the context, we
just write run instead of +-run. Note that, by definition, the counter-value is not
allowed to go below zero in a valid run.

Convenient Syntactic Transformations. It is interesting to note that one can simulate
any parametric test (equality or lower-bound) with only parametric updates and zero
tests in a SOCAP. In particular, a transition labelled ≥ G can be simulated using two
consecutive transitions labelled by −G and +G. Here, we use the fact that the counter
value can never go below zero in a one-counter automaton. Similarly, we can simulate
equality tests of the form = G by three consecutive transitions labelled with −G, = 0 and
+G, respectively (similar to equality tests with constant). For example, in Figure 5.4, we
can introduce two new states @5 and @6 and simulate the test @3

=G2−−→ @4 as
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@3
−G2−−→ @5

=0−−→ @6
+G2−−→ @4. One can also include constant lower-bound tests in the model

as they can be simulated using constant updates and zero tests similarly. Note that
upper-bound tests cannot be simulated in the above-mentioned ways. This is also
natural as parameter synthesis problems for SOCAP with upper-bound tests
correspond to a long-standing open problem, namely Ibarra’s simple programs [80, 30].

The underlying (directed) graph ofA is �A = (&,)). A +-run � = (@0 , 20)(@1 , 21) . . . inA
induces a path � = @0@1 . . . in �A . We assign weights to �A as follows: For C ∈ ),
weight(C) is 0 if Δ(C) ∈ ZT ∪ PT ; 0 if Δ(C) = +0; and ( ·+(G) if Δ(C) = (G. We extend the
weight function to finite paths in a natural way. Namely, we set
weight(@0 . . . @=)

def
=

∑=−1
8=0 weight(@8 , @8+1).

5.4.1 Universal Parameter Synthesis problems for SOCAP

In this section, we introduce the universal parameter synthesis problems formally.
Given a SOCAPA, a specification ? and a starting configuration (@0 , 2), the problem
asks whether there exists a valuation + such that all infinite +-runs from (@0 , 2) satisfy
?. Without loss of generality, we assume that the starting counter value 2 = 0, as we can
always add an initial state with a +2 labelled transition to the original starting state @0.

As specifications, we focus on LTL and some $-regular properties that we describe
below. Given a set of target states � ⊆ & and an infinite run � = (@0 , 20)(@1 , 21) . . . , we
say � satisfies:

• the reachability condition if @8 ∈ � for some 8 ∈ N;

• the Büchi condition if @8 ∈ � for infinitely many 8 ∈ N;

• the coBüchi condition if @8 ∈ � for finitely many 8 ∈ N only;

• the safety condition if @8 ∉ � for all 8 ∈ N;

• the linear temporal logic (LTL) formula ! over a set of atomic propositions P — and
with respect to a labelling function 5 : & → 2P — if 5 (@0) 5 (@1) . . . |= !.

Note that the existential version of these parameter synthesis problems have been
discussed in [73], where instead of quantifying over all infinite runs, they ask for the
existence of one possible run as a witness. As in this chapter, we focus on universal
versions of these problems; we refer to them as ? parameter synthesis problems (for
specification of class ?) unless otherwise mentioned. For example, if the specification is
an LTL formula, we call it the LTL parameter synthesis problem. We decompose the
above parameter synthesis problems into reachability sub-problems. Recall the concept
of path-flow from Section 2.3.1 that establishes a connection between the reachability
(witnesses) of graphs and their flows. We extensively use path-flow as a tool for our
encoding in the following section.
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5.5 Complexity of the Parameter Synthesis Problems

In this section, we prove that all the above-mentioned parameter synthesis problems are
decidable. More precisely, we establish the following complexity upper bounds.

Theorem 10 The reachability, Büchi, coBüchi, and safety synthesis problems for succinct
one-counter automata with parameters are all decidable in 2NEXP. The LTL parameter synthesis
problem is decidable in 3NEXP.

The idea is as follows: we first focus on the coBüchi synthesis problem and reduce its
complement to the truth value of a BIL sentence. To do so, we follow Lechner’s
encoding of the complement of the Büchi synthesis problem into ∀∃'PAD+ [93]. The
encoding heavily relies on an encoding for (existential) reachability from [73]. We take
extra care to obtain a BIL sentence instead of an ∀∃'PAD+ one as Lechner originally did.

The upper bound for the other synthesis problems stems from a reduction we show in
the following subsection, where we reduce to the coBüchi one in polynomial time. The
corresponding bounds thus follow from the one for coBüchi synthesis.

5.5.1 Reduction to coBüchi Synthesis Problem

In this section, we reduce the parameter synthesis problems for all the specifications to
the coBüchi parameter synthesis problem for SOCAP. We formalize this as follows:

Lemma 14 The reachability, safety and the Büchi synthesis problems can be reduced to the
coBüchi synthesis problem in polynomial time. The LTL synthesis problem can be reduced to the
coBüchi synthesis problem in exponential time.

Proof. First, we show that the safety parameter synthesis problem can be reduced to the
Büchi one by construction. Then, we reduce the Büchi synthesis problem to the coBüchi
one. Next, we explain how the reachability synthesis problem can be reduced to the
coBüchi one using similar ideas. Finally, we show an exponential reduction from the
LTL synthesis problem to the coBüchi one using the connection between LTL and Büchi
automata. The overview of the reductions is as follows:

Safety to Büchi. Consider a SOCAPA = (&,),Δ, -), an initial configuration (@0 , 20)
and the set of target states �. Recall that the safety parameter synthesis problem forA
asks if there exists a valuation of - such that all runs avoid �. We construct an
automaton ℬ = (&′, )′,Δ′, -)which is disjoint union of two copies ofA:
ℬ def

= A1 ]A2. We denote the states ofA1 as &1 and states ofA2 as &2, and the set of
target states in ℬ as �′. We will reduce the safety synthesis ofA to Büchi synthesis of ℬ.
Recall that the Büchi parameter synthesis problem for ℬ asks if there exists a valuation
of - such that all runs visit �′ infinitely many times.

We take the initial configuration as (@in
1 , 20) in ℬ where @in

1 ∈ &1 is the copy of @0 inA1.
We “force” a move from the first copy to the second one via the target states (only), and
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there is no way to come back to the first copy once we move to the second one. Formally,
for every transition (D, E) ∈ ) such that D ∉ �, we have (D1 , E1), (D2 , E2) ∈ )′ where
D8 , E8 ∈ &8 . For the transitions (B, C) ∈ ) such that B ∈ �, we have (B1 , C2), (B2 , C2) ∈ )′
where B8 , C8 ∈ &8 . For all states @ ∈ &1 and @′ ∈ &2, @ ∈ �′ and @′ ∉ �′.

Note that, for all valuations, there is an infinite run inA that visits � if and only if in ℬ
the corresponding run moves toA2 (and never comes back to the first copy) if and only
if it visits �′ only finitely many times. Hence, the answer to the safety synthesis problem
inA is false if and only if the answer to the Büchi synthesis problem is false in ℬ.

Büchi to coBüchi. Consider the SOCAPA as defined above. Recall that the Büchi
parameter synthesis forA asks if there exists a valuation of - such that all runs ofA
visits � infinitely many times. We will again construct another SOCAP
ℬ = (&′, )′,Δ′, -)with a target set of states �′ as above. Here, the construction of the
automaton ℬ is a bit different. Here we still construct ℬ as a disjoint union of two copies
ofA, but we remove the states in � from the copyA2. Also, for every (D, E) ∈ ), we have
(D1 , E1), (D1 , E2), (D2 , E2) ∈ )′. (Note that if E ∈ � then (D1 , E2), (D2 , E2) ∉ )′ as E2 does
not exist.) We set �′ def= &2. Recall that the coBüchi parameter synthesis problem for ℬ
asks if there exists a valuation of - such that all runs visit �′ only finitely many times.

Now, for all valuations, there is an infinite run � inA that visits � only finitely many
times if and only if there is an infinite run in ℬ that follows � withinA1 until it last
visits a state from � and then moves toA2 so that it visits states from �′ infinitely often.
Hence, the answer to the Büchi synthesis problem inA is negative if and only if it is
negative for the coBüchi synthesis problem in ℬ.

Reach to coBüchi. The reduction from the reachability parameter synthesis to the
coBüchi one can be obtained following a similar construction as the one showed in the
reduction from safety to Büchi. Intuitively, the idea is to reverse the target and
non-target states in the construction, and the explanation is then straightforward
following the similar explanation from the reduction from safety to Büchi.

LTL to coBüchi. Recall Theorem 2 from Section 2.3.2, which states that every LTL
formula ! over a set of propositions P can be translated to a generalised Büchi
automatonA of at most exponential size such that ! andA accept the same language.
Recall also Lemma 1 from the same section, which states that every generalised Büchi
automaton is equivalent to a Büchi automaton of polynomial size. Given an instance of
LTL parameter synthesis problem for SOCAPA and formula !, we can first create the
exponential size Büchi automaton ℬ! which accepts the same language as !. Then it is
easy to show that the LTL parameter synthesis problem for SOCAPA is positive if and
only if the answer to the coBüchi parameter synthesis problem for SOCAPA × ℬ! is
positive, whereA ×ℬ! is the product automaton. The details of the proof can be found
in [94]. �
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5.5.2 Encoding coBüchi Parameter Synthesis to BIL

Now the cornerstone of proving Theorem 10 is to show the decidability of coBüchi
parameter synthesis problems. We will focus on a SOCAPA = (&,),Δ, -)with
- = {G1 , . . . , G=} and often write ®G for (G1 , . . . , G=). First, we illustrate with an example
how reachability relation in a SOCAP can be seen as a combination of linear equalities,
inequalities and divisibilities.

Example 8 Consider a SOCAPA as illustrated in Figure 5.5. We want to determine if (C , 0) is
reachable from (B, 0) inA.

B @1 @2 C
+G1 −G2 = 0

−2

+0

Figure 5.5: An example of SOCAP

Recall that the counter value always remains non-negative in a valid run. Hence, it is easy to see
that the above reachability query can be encoded as the satisfiability query of the following
formula:

∃: G1 ≥ 0 ∧ G1 ≥ G2 ∧ G1 − G2 − 2: = 0

The first two inequalities encode that the counter value remains non-negative after traversing the
edges (B, @1) and (@1 , @2), respectively. The value of : determines how many times the run
traverses the self-loop over @3 such that G1 − G2 − 2: = 0 denotes the fact that the zero-test of
(@3 , C) can be taken successfully. Then, the above formula can be written using divisibility as
follows:

G1 ≥ 0 ∧ G1 ≥ G2 ∧ 2|(G1 − G2)

Precisely, we will show a reduction from the complement of the coBüchi synthesis
problem to the truth value of a BIL sentence that will give us the desired decidability
result. To do this, we will use the following lemma that shows that the existence of a
+-run from (@, 2) to (@′, 2′) can be encoded in a formula with a particular shape which is
almost “BIL”.

Lemma 15 Given states @, @′, one can construct in deterministic exponential time in |A| a
PAD formula: !(@,@

′)
reach(®G, 0, 1) = ∃®H

∨
8∈� !8(®G, ®H) ∧ #8( ®H, 0, 1) ∧ ®H ≥ ®0 such that

∀®G∃®H∨
8∈� !8(®G, ®H) ∧ ®H ≥ 0 is a BIL sentence, the #8( ®H, 0, 1) are quantifier-free PA formulas,

and additionally:

• a valuation + of - ∪ {0, 1} satisfies !(@,@
′)

reach iff there is a +-run from (@, +(0)) to
(@′, +(1));

• the bit-size of constants in !
(@,@′)
reach is of polynomial size in |A|;

• |!(@,@
′)

reach | is at most exponential with respect to |A|; and
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• the number of ®H variables is polynomial with respect to |A|.

Before we prove Lemma 15, we first show how we can prove Theorem 10 using this
lemma.

First, we will argue that ∀®G∃0∃1!(@,@
′)

reach(®G, 0, 1) can be transformed into an equivalent
BIL sentence. Note that for this to be the case, it suffices to remove the #8( ®H, 0, 1)
subformulas. Intuitively, since these are quantifier-free PA formulas, their set of
satisfying valuations is semi-linear (see, for instance, [72]). Our intention is to remove the
#8( ®H, 0, 1) and replace the occurrences of ®H, 0, 1 in the rest of !(@,@

′)
reach(®G, 0, 1)with linear

polynomials “generating” their set of solutions. We will use an affine change of
(existentially quantified) variables to remove the #8 subformulas. This is formalized below.

Affine change of variables. Let ®� ∈ Z<×= be an integer matrix of size < × = of rank A,
and ®1 ∈ Z< . Let ®� ∈ Z?×= be an integer matrix of size ? × = such that

(
®�
®�

)
has rank B,

and ®3 ∈ Z? . We write � for the maximum absolute value of an (B − 1) × (B − 1) or B × B
sub-determinant of the matrix

(
®� ®1
®� ®3

)
that incorporates at least A rows from

(
®� ®1

)
.

Theorem 11 (From [139]) Given integer matrices ®� ∈ Z<×= and ®� ∈ Z?×= , integer vectors
®1 ∈ Z< and ®3 ∈ Z? , and � defined as above, there exists a finite set �, a collection of = × (= − A)
matrices ®�(8), and = × 1 vectors ®D(8), indexed by 8 ∈ �, all with integer entries bounded by
(= + 1)� such that: { ®G ∈ Z= : ®�®G = ®1 ∧ ®� ®G ≥ ®3} = ⋃

8∈�{ ®�(8) ®H + ®D(8) : ®H ∈ Z=−A , ®H ≥ ®0}.

We are now ready to prove Theorem 10. In particular, using Lemma 15, we show that
the complement of the coBüchi parameter synthesis problem can be encoded into BIL.

Proof of Theorem 10. Recall that the complement of the coBüchi synthesis problem asks:
given a SOCAPA with parameters -, for all valuations, does there exist an infinite run
from a given configuration (@, 0), that visits the target set � infinitely many times.
Without loss of generality, we assume that the automaton has no parametric tests as
they can be simulated using parametric updates and zero tests, as argued before.

The idea is to check if there exists a reachable “pumpable cycle” containing one of the
target states. A pumpable cycle intuitively refers to a cycle that can be taken many times
to reach any arbitrary counter value. Formally, given the starting configuration (@, 0),
we want to check if we can reach a configuration (@ 5 , :), where @ 5 ∈ � and : ≥ 0 and
then we want to reach @ 5 again via a pumpable cycle. This means that starting from
(@ 5 , :), we reach the configuration (@ 5 , :) again, or we reach a configuration (@ 5 , :′)with
:′ ≥ : without using zero-test transitions (this ensures that the cycle is pumpable). Note
that reachability while avoiding zero tests is the same as reachability in the
sub-automaton obtained after deleting all the zero-test transitions. We write !reach−nt
for the !reach formula constructed for that sub-automaton as per Lemma 15. The above
constraints about the existence of a pumpable cycle can be encoded as a formula

!Büchi(®G) = ∃:∃:′
∨
@ 5 ∈�

�(®G, :, :′)
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where the subformula � is of the form:

(: ≤ :′) ∧ !
(@,@ 5 )
reach(®G, 0, :) ∧

(
!
(@ 5 ,@ 5 )
reach−nt(®G, :, :

′) ∨ !
(@ 5 ,@ 5 )
reach (®G, :, :)

)
.

Finally, the formula !Büchi(®G)will look as follows:

∃®H∃:∃:′
∨
8∈�

∧
9∈�8

(
59(®G) | 69(®G, ®H)

)
∧ !8(®G) ∧ #8( ®H, :, :′) ∧ ®H ≥ ®0

where, by Lemma 15, the !8(®G) are quantifier-free PA formulas over ®G constructed by
grouping all the quantifier-free PA formulas over ®G. Similarly, we can construct
#8( ®H, :, :′) by grouping all the quantifier free formulas over ®H, : and :′. Now, we use
the affine change of variables (see Theorem 11) to remove the formulas #8( ®H, :, :′).
Technically, the free variables from the subformulas #8 will be replaced in all other
subformulas by linear polynomials on newly introduced variables ®I. Hence, the final
formula !Büchi(®G) becomes:

∃®I
∨
8∈�′

∧
9∈�8

(
59(®G) | 69(®G, ®I)

)
∧ !8(®G) ∧ ®I ≥ ®0.

Note that, after using the affine change of variables, the number of ®I variables are
bounded by the number of old existentially quantified variables (®H, :, :′). However, we
have introduced exponentially many new disjuncts.3

By construction, for a valuation + there is an infinite +-run inA from (@, 0) that visits
the target states infinitely often iff !Büchi(+(®G)) is true. Hence, ∀®G(®G < 0 ∨ !Büchi(®G))
precisely encodes the complement of the coBüchi parameter synthesis problem. Also,
note that it is a BIL sentence since the subformulas (and, in particular, the divisibility
constraints) come from our usage of Lemma 15. Now, the number of ®I variables, say <,
is bounded by the number of ®H variables before the affine change of variables which is
polynomial with respect to |A| from Lemma 15. Also, the bit-size of the constants in
!Büchi is polynomial in |A| though the size of the formula is exponential in |A|. Now,
using Lemma 13, we construct an ∀PAD sentence ∀®G∀3#(®G, 3) from
∀®G(®G < 0 ∨ !Büchi(®G)). By Corollary 1, ¬# admits a solution of bit-size bounded by:
exp(ln(|!Büchi |)2<poly(= + 1)) = exp(|A| · 2poly(|A|)poly(= + 1)), which is doubly
exponential in the size of |A|. As in the proof of Theorem 7, a guess-and-check
algorithm for ¬# gives us the desired 2NEXP complexity result for the coBüchi
parameter synthesis problem. By Lemma 14, the other $-regular parameter synthesis
problems have the same complexity, and LTL parameter synthesis problem has one
exponential top of it, i.e., in 3NEXP. �

Now the main goal of the chapter boils down to the proof of Lemma 15. Our proof
relies on a symbolic representation of computations without zero tests in terms of
reachability certificates developed in [73].

3Indeed, because of the bounds on the entries of the matrices and vectors, the cardinality of the set � is
exponentially bounded.
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5.5.2.1 Reachability Certificates

We presently recall the notion of reachability certificates from [73]. Fix a SOCAPA and
a valuation + . A flow 5 in �A is a reachability certificate for two configurations
(@, 2), (@′, 2′) inA if there is a +-run from (@, 2) to (@′, 2′) that induces a path � such that
5 = 5� and one of the following holds:

• (type 1) 5 has no positive-weight cycles,

• (type 2) 5 has no negative-weight cycles, or

• (type 3) 5 has a positive-weight cycle that can be taken from (@, 2) and a
negative-weight cycle that can be taken to (@′, 2′).

In the sequel, we will encode the conditions from the following lemma into a PAD
formula so as to accommodate parameters. Intuitively, the proposition states that there
is a run from (@, 2) to (@′, 2′) if and only if there is one of a special form: a decreasing
prefix (type 1), a positive cycle leading to a plateau followed by a negative cycle (type 3),
and an increasing suffix (type 2). Each one of the three sub-runs could, in fact, be an
empty run.

Proposition 1 ([70], Lemma 4.1.14) If (@′, 2′) is reachable from (@, 2) in a SOCAP with
- = ∅ and without zero tests, then there is a run � = �1�2�3 from (@, 2) to (@′, 2′), where �1,
�2, �3, each has a polynomial-size reachability certificate of type 1, 3 and 2, respectively.

Next, we show the idea of encoding these certificates in our desired logical fragment.

5.5.2.2 Encoding the Reachability Certificates

Now, we recall the encoding for the reachability certificates proposed by
Lechner [93, 94]. Then, we highlight the changes necessary to obtain the required type
of formula.

Consider a @0–@ 5 path-flow 5 . To make sure that there is a path � such that 5 = 5� lifts
to a +-run from (@0 , 20) to (@ 5 , 2 5 ), we need to complement Proposition 1 with some
way of ensuring the run does not reach negative counter values (by definition of
SOCAP). Note that the existence of a path-flow is not enough to ensure that there exists
a corresponding valid run in SOCAP. We demonstrate this with the following example.

Example 9 Consider the SOCA presented in Figure 5.6. The figure also contains a path-flow 5
for the underlying weighted graph. The value of flow function 5 for each edge is described within
braces. The operation associated with each edge is then mentioned, separated by a comma. For
example, 5 (B, @1) = 1 and Δ(B, @1) = +5. Note that the 5 is a valid path-flow by definition.
Essentially the path that corresponds to the path-flow 5 is as follows:

B → (@1 → @3 → @4)2 → C ,

i.e., the path travels from B to @1 and then traverse the loop @1@3@4 twice then reaches C. Note
that although this ensures that C is reachable from B in the underlying weighted graph, it does not
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B @1 @3

@2

@4

C

(1),+5

(0)
,−

5

(2),−2

(0),= 0

(2),−2

(1
),
−1

(2),−1

Figure 5.6: Existence of a path-flow is not enough as a witness of a run in SOCAP

ensure that C is reachable from (B, 0) in the SOCA. This is because after taking the loop @1@3@4

once, the counter value reaches zero, and the transition @1
−2−−→ @3 cannot be taken. This shows

that the existence of a valid path-flow is not enough as a witness for the existence of a valid run in
SOCA.

Hence, the encoding of the certificates into PAD formulas from [73] relies on the
following notion of path-flow decomposition.

Path-flow decomposition. Recall the definition of path-flow from Section 5.4.1. A
decomposition of a @0–@ 5 path-flow 5 consists of two parts. First, it includes an
enumeration @1 , . . . , @= of the set {@ ∈ & | 5 (?, @) > 0 for some ? ∈ &} of vertices in the
subgraph induced by the support of 5 . Second, it includes a sequence 50 , 51 , . . . , 5=−1 of
flows such that:

• 58 is a path-flow from @8 to @8+1,

• 5 (C) = ∑=−1
8=0 58(C) for all C ∈ ), and

• 59(?, @8) = 0 for all 8 ≤ 9 and all (?, @8) ∈ ).

Each path-flow corresponds to an infix of the +-run, which ends at @8 and such that the
suffix of the +-run henceforth never again reaches @8 . Furthermore, the original path is
obtained as the concatenation of the individual paths.

Decomposing the path-flow into @0 , . . . , @= and 50 , . . . , 5=−1 allows Haase et al. [73] to
state a linear number (with respect to |A|) of constraints which suffice for this to hold in
a specific situation: If 5 contains no positive-weight cycles, then every time the run
reaches a state @ from @ itself, the value of the counter cannot have increased. Hence, for
every state @, amongst all prefixes of � which end at @, the longest one must have
minimal weight. This means the sufficient constraints are:

=−1∧
<=0

<∑
8=0

weight( 58) ≥ −20. (5.2)
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That is, we verify the counter value is non-negative the last time each state is reached.
This same idea also applies when a path-flow 5 contains no negative-weight cycles.
However, in this case, it suffices to verify the non-negativity of the counter value the
first time each state is visited. Instead of adapting our notion of decomposition, we
follow [73] and use path-flows in the skew transpose of the induced graph ofA as
certificates for such scenarios.

In the sequel, we will focus on how to encode the existence of a path-flow 5 of every
type into a PAD formula with ®G as free variables and with the properties required to
prove Lemma 15.

For the detailed encoding of the three types of reachability certificates, we refer the
readers to [94]. Before stating the precise technical lemma from the work, we first give
an intuitive idea of how to encode type 1 certificates. The idea behind the encoding of
the other two certificates is similar with some technical changes.

Let ®5 be variables ( 51 , 52 , . . . ) and @, @′ states. The formula Φ
(@,@′)
1 (®G, 0, 1)we construct

has the following form:∨
(

∨
�

∃ ®5
(
!flow( ®5 ) ∧ !weight( ®5 , ®G, 0, 1) ∧ !nopos(®G)

)
, (5.3)

where the subformulas are as follows:

• !flow is a quantifier-free Presburger arithmetic (PA) formula over ®5 encoding the
flow constraints. For any fixed flow decomposition, !flow has polynomial size and
it encodes the constraints of flow conservation and Euler’s theorem (Theorem 1);

• !weight is a quantifier-free PA formula over ®5 , ®G, 0 and 1 encoding the relation
between the first and last configurations (@, +(0)), (@′, +(1)) of the run, i.e.
1 = weight( 5 ) + 0, as well as the constraint from Equation (5.2);

• !nopos is an (exponential size) quantifier-free PA formula over ®G encoding the fact
that 5 has no positive cycles. This can be achieved by enumerating all
(exponentially many) simple cycles and the constraints required for them not to be
positive.

In the formula, the first disjunction ranges over all supports ( of path-flows; the second,
over all decompositions � of flows with the chosen support. Note that these are both
finite yet exponential in the size ofA. Similar to the formula Φ

(@,@′)
1 , we can encode

formulas of the form Φ
(@,@′)
2 (similar to Φ

(@,@′)
1 , in skew-transpose of �A) and Φ

(@,@′)
3

corresponding to the other two types of reachability certificates. Notice that this does
not suffice as the formula !weight contains quadratic polynomials of the form
F8 58(®I) + 68(®I)where 58(®I) and 6(®I) are linear polynomials. Intuitively, the variables F8 ’s
correspond to the weights and the variables 58 ’s correspond to the decomposed flows.
To get rid of these quadratic polynomials, we use the following helpful result from [73]
that concerns a transformation from linear constraints over quadratic equations of a
particular form to a quantifier-free formula in PAD.
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From quadratic equations to divisibilities. Recall Theorem 11 that depicts the idea of
the affine change of variables. Consider ®�, ®�, ®1, ®3 similarly defined and write % for the
set of integer vectors ®G satisfying ®�G = ®1 and ®�G ≤ ®3. Now, let ®F = (F1 , . . . , F=) and
®I = (I1 , . . . , I:) be disjoint sets of integer variables. For 1 ≤ 8 ≤ = let &8(F8 , ®I) denote the
quadratic polynomial F8 58(®I) + 68(®I)where 58(®I) and 6(®I) are linear polynomials.

Lemma 16 (From [73]) Given ®�, ®�, ®1, ®3 and &8(F8 , ®I) as above, we can construct a formula
!(®I) in ∃%�� with:

{®I ∈ Z: : !(®I)} = {®I ∈ Z: : ∃ ®F ∈ N= (&1(F1 , ®I), . . . , &=(F= , ®I)) ∈ %}

and such that !(®I) is an exponential disjunction of subformulas #ℓ (®I) whose size is polynomial
in the size of the &8 and (= + 1)�.

Indeed, we seek integer valuations of ®F and ®I such that ®F ≥ ®0 and (&1 , . . . , &=) ∈ %.
After applying an affine change of variables ®G = ®�(ℓ ) ®H + ®Dℓ on the definition of %, this
reduces to finding solutions of the following system, with ®F ≥ ®0 and ®H ≥ ®0.

F1 51(®I) + 61(®I) = �(ℓ )1,1H1 + · · · + �(ℓ )1,=−AH=−A + D
(ℓ )
8

F2 52(®I) + 62(®I) = �(ℓ )2,1H1 + · · · + �(ℓ )2,=−AH=−A + D
(ℓ )
2

...

F= 5=(®I) + 6=(®I) = �(ℓ )=,1H1 + · · · + �(ℓ )=,=−AH=−A + D(ℓ )=

(5.4)

In turn, this is equivalent to finding a solution to the following system of divisibilities,
again with ®H ≥ ®0, if we ensure that both sides of each divisibility are either negative or
non-negative (since the ®F could not take negative values).

51(®I) | �(ℓ )1,1H1 + · · · + �(ℓ )1,=−AH=−A + D
(ℓ )
8
− 61(®I)

52(®I) | �(ℓ )2,1H1 + · · · + �(ℓ )2,=−AH=−A + D
(ℓ )
2 − 62(®I)

...

5=(®I) | �(ℓ )=,1H1 + · · · + �(ℓ )=,=−AH=−A + D(ℓ )= − 6=(®I)

The final existential PAD formula !(®I) from Lemma 16 is as shown below.

∃H1 . . .∃H=−A
∨
ℓ∈!

∨
9∈�

=∧
8=1

58(®I) | ℎℓ ,8( ®H) − 68(®I) ∧ ! 9(®I) ∧ # 9( ®H, ®I) ∧ ®H ≥ ®0

Above, the set � indexes all possible choices of sign for both the left and right-hand sides
of the divisibilities (either negative or non-negative). Then, the ! 9 and # 9 subformulas
are quantifier-free PAD formulas without divisibilities to enforce said order.

5.5.2.3 Putting Everything Together

In this section, we combine the results from the previous subsection to construct !reach
for Lemma 15.
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Proof of Lemma 15. We first define the formula !
(@,@′)
reach−nt(®G, 0, 1) that is satisfied by a

valuation + of - ∪ {0, 1} if and only if there is a +-run from (@, +(0)) to (@′, +(1))
without any zero-test transitions. By Proposition 1, there is such a +-run if and only if
there is a +-run � from (@, +(0)) to (@′, +(1))without zero-test transitions and such that:

• there exists a configuration (D, :) such that, there is a run �1 from (@, +(0)) to
(D, :) that has a type-1 reachability certificate;

• there exists a configuration (E, :′) such that, there is a run �2 from (D, :) to (E, :′)
that has a type-3 reachability certificate;

• there is a run �3 from (E, :′) to (@′, +(1)) that has a type-2 reachability certificate;
and

• � = �1 · �2 · �3.

We will construct formulas for the sub-automaton obtained by removing fromA all
zero-test transitions. Now using Lemma 16, each certificate can be encoded as a formula
in the following form:

∃H1 . . .∃H<
∨
9∈�

=∧
8=1

58(®G) | ℎ8( ®H) − 68(®G) ∧ ! 9(®G) ∧ # 9( ®H) ∧ ®H ≥ ®0 (5.5)

Note that we have to take extra care to make sure that 0 does not appear on the
left-hand side of the divisibilities while applying Lemma 16. This can be achieved by a
finer analysis of the transformation of formulas using slack variables. Now all that
remains is to obtain the formula !

(@,@′)
reach−nt(®G, 0, 1) in our desired form (Equation 5.5) is

to use the fourth itemization from the previous properties of the witnessing reaching
run and compose the encoding of the certificates to encode the run. The formula
!
(@,@′)
reach(®G, 0, 1) expressing general reachability can then be defined by choosing an

ordering on the zero tests. Formally, let /) denote the set of all zero-test transitions. We
write 1, . . . , < ∈ /) to denote an enumeration (?1 , @1), . . . , (?< , @<) of a subset of
zero-test transitions. We define !

(@,@′)
reach(®G, 0, 1) as:∨

1,...,<∈/)
∃:0 . . .∃:<+1∃:′0 . . .∃:′<+1Φ(®G, ®:, ®:′)

where Φ is given by:

Ψ
(@,?1)
reach−nt(®G, :0 , :

′
0 , 0, 0) ∧Ψ

(@< ,@′)
reach−nt(®G, :<+1 , :

′
<+1 , 0, 1) ∧

<−1∧
8=1

Ψ
(@8 ,?8+1)
reach−nt(®G, :8 , :

′
8 , 0, 0)

In words: for each enumeration of zero-test transitions, we take the conjunction of the
intermediate !reach−nt formulas as well as !reach−nt formulas from the initial
configuration to the final one.

Note that !reach has the required form as Equation 5.5. Indeed, the existentially
quantified variables only appear in (the right-hand side of) divisibility constraints.
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Also, we introduced an exponential number of disjunctions (over the enumeration of
subsets of zero-test transitions), 2|) | + 4 new variables (since < ≤ |) |) and have not
changed the bit-size length of constants after the construction of the Ψ subformulas.
Thus, the bit-size of constants and the number of variables in !reach remain polynomial
and |!reach | is at most exponential in |A|. �

5.6 Parikh One-counter Automata

In [73], the authors showed that the validity of ∃PAD is inter-reducible to the existential
parameter synthesis problems for SOCAP. Our idea for studying an extension of OCA
with parameters raised from the intuition of reproducing such an elegant connection to
the fragment BIL. Note that although the universal parameter synthesis problem for
SOCAP is reducible to BIL, it is still not clear if the validity of BIL sentences can be
reduced to parameter synthesis problems for such models. In essence, following [73],
one can easily establish a reduction to this effect for sentences of the form:
∀®G∃®H∨

8∈� 58(®G) | 6(®G, ®H) ∧ 58(®G) > 0 ∧ !8(®G) ∧ ®H ≥ ®0 but for the full fragment of BIL, it is
still not clear. Towards this, we extend One-counter automata with Parikh constraints, a
natural extension that allows any number of Z-valued counters that are checked at the
end of the run using a Presburger formula (on top of the existing counter that can be
updated and tested for zero).4 This can also be seen as a combination of OCA and Parikh
Automata [85, 32, 33], another popular computational model in formal methods. We call
it Parikh One-counter Automata (POCA). The model POCA is interesting in itself and has
interesting properties from language-theoretic perspectives but this is out of the scope
of this thesis, and we do not mention it here [31]. We are rather interested in extending
POCA with parameters and studying the universal parameter synthesis problems.

Definition 3 A parametric POCA is a tupleA = (&,),Δ, -, !) where:

• &, ), Δ, and - are as in OCA with parameters,

• ! is an existential Presburger formula with (|Δ|) free variables.

Given a run �, the Parikh Image Φ(�) is a vector in N) , whose 8-th component is the number of
times transition C8 ∈ T , appears in �. A run � in POCA is valid if it is valid as in OCA
(maintain all the counter value constraints) and also it is constraint-correct, i.e., Φ(�) satisfies
!. Given a valuation � : - → N,A induces a POCA denoted byA�.

In this section, we focus on the (universal) safety parameter synthesis problem for
POCA with parameters. Given a parametric POCAA with parameter set -, a starting
configuration (@, 0) and a target state @ 5 , the parametric universal nonemptiness problem,
Pune for short, asks whether it holds that, for all � : - → N, no run reaches @ 5 . Note
that PUNE is the complement of the universal safety parameter synthesis problem.

Theorem 12 The Pune problem for POCA with parametric updates is undecidable.
4We rely on a slightly different but equivalent definition, in which the Presburger formula actually specifies

a relation on the number of times each transition is taken in the run. This explains the use of Rohit Parikh’s
name: a run is accepting if its Parikh image is accepted by the Presburger formula.
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Proof. We present a reduction from Hilbert’s Tenth Problem to the Pune problem.
Recall that Hilbert’s Tenth Problem asks, given a polynomial with integer coefficients if
it has a positive integer solution.

Let %(G1 , . . . , G=) be such a polynomial and write % = 21"1 + · · · + 2:": with each 28 in
Z and each "8 a monomial with coefficient 1 (e.g., G1G

2
2). We construct a POCAA with

parametric updates over the parameter set {G1 , . . . , G=} that evaluates %. This is in the
following sense: there are transitions C1 , . . . , C: ofA such that for any valuation � of the
parameters, there is a unique run � inA� that reaches @ 5 , and, writing |�|C8 for the
number of times C8 occurs in �:

21 |�|C1 + · · · + 2: |�|C: = % (�(G1), . . . , �(G=)) .

We start with the simplest case: % = G8 . Consider the following POCA:

@0 @ 5
+G8

−1

= 0

Here, our transition C that evaluates to %(�(G8)) is simply the self-loop: if the run is
counter-correct, this loop must have been taken �(G8) times. Note that accepting runs
end with a counter value of zero—these are properties we will keep throughout this
construction.

Next, assume % = "G8 with " a monomial with coefficient 1. We assume that we have
built a POCAA" with a transition C" that is taken "(G1 , . . . , G=) times on accepting
runs. We then build the following POCA for %:

A"@0 @ 5

C"

+G8 −1

= 0

As constraint, we combine the Parikh constraint ofA" with the statement that the +G8
loop should be taken the same number of times as C" ; consequently, for any accepting
run � of this POCA with valuation �, the −1 loop is taken |�|C"�(G8) times, which is
"(�(G1), . . . , �(G=))�(G8) by hypothesis. This −1 loop is thus the transition that
evaluates to %(�(G1), . . . , �(G=)).

For the general case, we can chain together our POCA for each monomial one after the
other and obtain our claimed POCA for any polynomial. The constraint formula can
then compute the exact value of %(�(G1), . . . , �(G=)) and accept if it is nonzero. Thus,
there is no positive integer solution to % iff for all valuation �, there is a run inA� that
reaches @ 5 . �
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The undecidability result proved above is rather unfortunate. Indeed, we had originally
expected that the Pune problem for POCA with parametric updates would be a natural
automata counterpart of the validity of sentences in BIL. Given the fairly simple shape
of the automata built in the previous proof, we do not expect that natural restrictions of
POCA will be able to play that role.

5.7 Conclusion

We have clarified the decidability status of universal parameter synthesis problems for
OCA with parameters and show that, for several fixed $-regular properties, they are in
2NEXP. For LTL, it is in 3NEXP, however for a fixed LTL specification, one can construct
the corresponding Büchi automata and then solve it in 2NEXP. In the next chapter, we
present a restriction of our model that will allow us to make these algorithms tractable
and implementable.

Whether our new upper bounds are tight remains an open problem: the NPNP hardness
result known [134, 93, 94] for other synthesis problems (see Table 5.1) does not match
them.

We strongly believe that the BIL fragment will find uses beyond the synthesis problems
for OCA with parameters: e.g. it might imply decidability of the software-verification
problems that motivated the study of ∀∃'PAD+ in [29], or larger classes of quadratic
string equations than the ones solvable by reduction to ∃PAD [101]. While we have
shown BIL is decidable in co2NEXP, the best-known lower bound is the trivial
coNP-hardness that follows from encoding the complement of the SubsetSum problem.
(Note that BIL does not syntactically include the Π1-fragment of PA so it does not
inherit hardness from the results in [71].) Additionally, as mentioned in the previous
section, it would be interesting to reduce the validity of BIL sentences to a synthesis
problem. We also showed our attempt with a natural extension of One-counter
automata with Parikh constraints, but unfortunately, that did not satisfy this goal.
Hence a similar computation model for full BIL still evades us.
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Parameter Synthesis for One-Counter
Automata with Parametric Tests Only

In the previous chapter, we established several complexity results for the parameter
synthesis problems for One-counter automata against LTL specifications. We showed
that for LTL specifications, it is decidable in 3NEXP, and for fixed LTL specifications, we
can do it in 2NEXP by converting it to Büchi. In this chapter, we show that this problem
is more tractable when we impose a restriction on the model. The content presented in
this chapter is based on the work in [117].

6.1 Outline of the Chapter

Section 6.2 introduces the restricted model of one-counter automata we focus on in this
chapter. Then, we introduce alternating two-way automata in Section 6.3, which is the
backbone of the complexity results we provide here. Then, Section 6.4 introduces the
reduction of parameter synthesis problems to the language emptiness problem of
alternating two-way automata. We also show how we can improve upon the established
complexity results for a particular class of parameter synthesis problems in Section 6.5.

6.2 One-Counter Automata with Parametric Tests

In this section, we introduce a subclass of general One-counter automata with
parameters (SOCAP) where the restrictions are as follows:

• Parameters can only appear in tests;

• The updates are non-parametric and given in unary encoding.

Formally, OCA with parametric tests (OCAPT) allow for constant updates of the form
{+0 : 0 ∈ {−1, 0, 1}} and zero and parametric tests. However, the set of parametric
updates is empty, i.e., PU = ∅.

109
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We consider the parameter synthesis problems for OCAPT. Our main result in this
section is better complexity upper bounds for these synthesis problems compared to the
ones for general SOCAP, as described in the previous chapter. Note that both the
restrictions to the model considered above are essential to achieve this better complexity
bound. In particular, we will prove the following theorem:

Theorem 13 The coBüchi, Büchi and safety parameter-synthesis problems for OCAPT are in
PSPACE; the reachability synthesis problem, in NP coNP = NPNP. The LTL synthesis problem is
in EXPSPACE.

In the previous chapter, we opted for a first-order logic-based reduction in order to
establish the decidability of the parameter-synthesis problems for the general model
SOCAP. Here, we follow an automata-theoretic approach inspired by [23] to encode
parameter valuations of OCAPT into words accepted by an alternating two-way
automaton. First, we introduce the concept of alternating two-way automata.

6.3 Alternating Two-way Automata

Given a finite set ., we denote by B+(.) the set of positive Boolean formulas over .,
including true and false. A subset .′ ⊆ . satisfies � ∈ B+(.), written .′ |= �, if � is
evaluated to true when substituting true for every element in .′, and false for every
element in . \.′. In particular, we have ∅ |= true. We define the size of �, |� |, inductively
by setting |�1 ∨ �2 | B |�1 ∧ �2 | B |�1 | + |�2 | + 1 and |� | B 1 for atomic formulas �.

Recall the definition of finite-state automata from Section 2.3.2. We can now define an
alternating two-way automaton (A2A, for short) as an extension of finite-state automata as
follows: Formally, an A2A is a tuple T = (&,Σ, @in ,Δ, �), where

• & is a finite set of states,

• Σ is a finite alphabet,

• @in ∈ & is the initial state,

• � ⊆ & is the set of final states, and

• Δ ⊆ & × (Σ ∪ {first?}) × B+(& × {+1, 0,−1}) is the finite transition relation.

Intuitively, an A2A has a head over an input tape, and the A2A reads every letter based
on the current position of the head on the tape. The +1 in Δ intuitively means that the
head moves to the right; −1, that the head moves to the left; 0, that it stays at the current
position. In particular, when Δ ⊆ & × Σ × (& × {+1}), then we deal with a classical
one-way finite automaton. Furthermore, transitions are labelled by Boolean formulas
over successors, which determine whether the current run branches off in a
non-deterministic or a universal fashion or a combination thereof. The size of T is
defined as |T | B |& | + |Σ| +∑

(@,0,�)∈Δ |� |.

Here we interpret alternating two-way automata on infinite words. A run (tree) � of T
on an infinite word F = 0001 · · · ∈ ΣF is a (possibly infinite, but finitely branching)
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rooted tree whose nodes are labelled with elements in & ×N and such that it satisfies
the following properties. The root of � is labelled by (@in , 0). Moreover, for every node
labelled by (B, <)with : ∈ N children labelled by (@1 , =1), . . . , (@: , =:), there is a
transition (@, �, �) ∈ Δ such that, {(@1 , =1 − <), . . . , (@: , =: − <)} ⊆ & × {+1, 0,−1}
satisfies �. Further � = first? implies < = 0, and � ∈ Σ implies 0< = �. In particular, all
nodes (B, <)must have children unless there is a transition (B, ·, true) ∈ Δ.

A run is accepting if all of its infinite branches contain infinitely many nodes with labels
of the form {(@ 5 ×N) | @ 5 ∈ �}.

The language of T is set of all words accepted by T , i.e.,
!(T ) def= {F ∈ Σ$ | ∃ an accepting run of T on F from 0}. The non-emptiness problem for
A2As asks, given an A2A T and = ∈ N, whether !(T ) ≠ ∅.

Lemma 17 (From [132]) Language emptiness for A2As is in PSPACE.

In what follows, from a given OCAPTA we will build an A2A T such that T accepts
precisely those words which correspond to a valuation + of - under which all infinite
runs satisfy the coBüchi condition. Hence, the corresponding synthesis problem forA
reduces to checking non-emptiness of T .

6.4 Transformation to Alternating Two-way Automata

In this section, we describe the construction of the A2A T in detail and elaborate on
how we can encode the parameter synthesis problem of OCAPT to the language
non-emptiness problem of an A2A.

6.4.1 Parameter Word: Encoding Valuation to Words

Following [23], we encode a valuation + : - → N as an infinite parameter word
F = 000102 . . . over the alphabet Σ = - ∪ {�} such that 00 = � and, for every G ∈ -,
there is exactly one position 8 ∈ N such that 08 = G. We write F(8) to denote its prefix
0001 . . . 08 up to the letter 08 . By |F(8)|�, we denote the number of occurrences of � in
01 . . . 08 . (Note that we ignore 00.) Then, a parameter word F determines a valuation
+F : G ↦→ |F(8)|� where 08 = G. We illustrate this with an example below.

Example 10 Let - = {G1 , G2} be a set of parameters. Then, note that F = ���G1G2�$ is a
parameter word that determines the valuation +F = {G1 ↦→ 2, G2 ↦→ 2}. But G1G2�$ and
�G1G2G1�$ are not parameter words.

Observe that for every valuation + , there is at least one parameter word F such that
+F = + . We denote the set of all parameter words as,- .
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6.4.2 Overview of the Construction

From a given OCAPTA = (&,),Δ, -), a starting configuration (@in , 0) and a set of
target states �, we will now construct an A2A T = ((,Σ, Bin , �, ( 5 ) that accepts words
F ∈,- such that, under the valuation + = +F , all infinite runs from (@in , 0) visit � only
finitely many times. Now we give the construction to prove the following statement.

Lemma 18 For all OCAPTA there is an A2A T with |T | = |A|O(1) and F ∈ !(T ) if and
only if all infinite +F-runs ofA starting from (@in , 0) visit � only finitely many times.

The construction is based on the A2A framework presented in [23]. However, we
employ the alternating semantics of the automaton more extensively. In order to
capture the coBüchi condition, we simulate a ”safety copy” ofA within T , where the
final states in � are designated as ”non-accepting sinks” (states with a self-loop and no
other outgoing transitions) in T . The accepting runs ofA are simulated in T in a way
that they have the option to enter this safety copy once they are certain that they will
not visit � again and hence visiting them only finitely many times. Thus, for each state
of @ ∈ & inA, we maintain two copies of the state in T : @′ ∈ ( simulating the normal
version of @, and @′′ ∈ ( simulating @ from the safety copy.

Now, the key concept is to encode runs ofA as branches of run trees of T on parameter
words F. We achieve this by associating sub-trees C with root nodes labelled by (@′, 8) or
(@′′, 8), both representing the configuration (@, |F(8)|�) ofA. If a particular sub-tree C is
accepting, it serves as evidence that all infinite runs ofA starting from (@, |F(8)|�)
satisfy the coBüchi condition, i.e., visit � only finitely many times.

@′
8 ∨ ∧ ∨

@′
9

@′′
9

(normal copy)

(safety copy)

B8<D;0C8>=
E8>;0C8>=

E0;830C8>=

(a) Sub-A2A structure in the normal copy

@′′
8 ∨ ∧ @′′

9E8>;0C8>=

E0;830C8>=

B8<D;0C8>=

(b) Sub-A2A structure in the
safety copy

Figure 6.1: General Sub-A2A structure simulating (@8 , >?, @ 9)

Next, we provide the constructions of the sub-A2As for each kind of transition inA.
The overview of the construction is illustrated in Figure 6.1. The idea is that

• The constructed A2A T checks that the word it is reading is a valid parameter
word that ensures it corresponds to a valuation of the parameters inA.
Otherwise, it rejects the word.

• T simulates every transition ofA correctly. To do this, for all transitions tr ∈ Δ in
A, we create a sub-A2A T tr

sub using copies of sub-A2As. For each such transition,
one of two cases should hold:

i. The transition cannot be simulated with the current counter value (because
of a zero test or a decrement from value zero). Then we add a violation branch
to check that it is indeed the case;
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ii. The transition can indeed be simulated. Then, a validation branch checks the
transition can be simulated, and a simulation branch reaches the next node in
T with the updated counter value inA.

• From a run sub-tree whose root is labelled with (@′, 8) or (@′′, 8), T verifies that all
runs ofA from (@, |F(8)|�) visit � only finitely many times. If the root node is of
the form (@′, 8), then the simulation branch could reach a vertex labelled with A′ or
with A′′— with the idea being that T can choose to move to the safety copy or to
stay in the “normal” copy ofA. If the root vertex is of the form (@′′, 8), the
simulation branch can only reach the vertex labelled with A′′ with the updated
counter value that indicates that, once it enters the safety copy, it never comes out.

• We obtain the global A2A T by connecting all the sub-A2As. To ensure that all
runs ofA are simulated, we have the global transition relation � in T be a
conjunction of that of the sub-A2As which start at the same state @ ∈ {?′, ?′′} for
some ? ∈ &. For instance, let tr1 = (@, >?1 , @1) and tr2 = (@, >?2 , @2) be transitions
ofA. The constructed sub-A2As T tr1

sub ,T
tr2

sub will contain transitions (@,�, �1) ∈ �1,
and (@,�, �2) ∈ �2 respectively. In T , we make use of the conjunction to have
(@,�, �1 ∧ �2) ∈ �.

• Finally, the accepting states are chosen as follows: For every @ ∈ & \ �, we set
@′′ ∈ ( 5 as accepting in T . The idea is that if a run inA satisfies the coBüchi
condition, then, after some point, it stops visiting target states. In T , the
simulated run can choose to move to the safety copy at that point and loop inside
it forever, thus becoming an accepting branch. On the other hand, if a run does
not satisfy the condition, its simulated version cannot stay within the safety copy.
(Rather, it will reach the non-accepting sink states.) Also, the violation and the
validation branches ensure that the operations along the runs have been
simulated properly inside T . It follows that T accepts precisely those words
whose run-tree contains a simulation branch where states from � have been
visited only finitely many times.

6.4.3 Construction of Sub-A2As

In the subsequent text, we will explain the construction of each sub-A2As in detail. For
readability, for transitions of the form (@8 , >?, @ 9) ∈ Δ, we will represent the B8<D;0C8>=
branches as B8  B 9 in �, where B8 (similarly, B 9) represents @′8 or @

′′
8
corresponding to the

normal or the safety copy as described earlier.

Now we move forward to the detailed constructions for each operation.

6.4.3.1 Verifying the Input Word

The sub-A2A T inp
sub depicted in Figure 6.2a checks whether the given input is a valid

parameter word. The states of the form XG8 represent that G8 has been found along the
path. We let ( 5 consist of states XG8 , one per G8 ∈ -.

Lemma 19 It holds that !(T inp
sub ) =,- .
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∧Bin

@′0

B40A2ℎ(G1)

...

XG1

B40A2ℎ(G=)

XG=

+1

�

0

+1

+1

G1 ,+1

G= ,+1

{- ∪ �} \ {G1},+1

{- ∪ �} \ {G=},+1

{- ∪ �} \ {G1},+1

{- ∪ �} \ {G=},+1

(a) inp checking if the input is a valid parameter word

B8

right(B 9)

B 9

�,+1

�, 0

-,+1

(b) inc encoding an incre-
ment

Figure 6.2: Sub-A2As for the word-validity check and to simulate increments of the form
(@8 ,+1, @ 9); we use B40A2ℎ(G), XG , and right(@) as state names to make their function ex-
plicit

Proof. The A2A T inp
sub consists of one deterministic one-way automata, per G ∈ -, whose

language clearly corresponds to the set of words where G occurs exactly once. In T inp
sub ,

from the initial state and on the first letter �, a transition with a conjunction formula
leads to all sub-automata for each G. The result follows. �

6.4.3.2 Encoding the Increment Operations

For every transition (@8 ,+1, @ 9) inA, we construct T inc
sub (see Figure 6.2b). A run of this

sub-A2A starts from B8 and some position 2 on the input word. Recall that 2 uniquely
determines the current counter value in the simulated run ofA (although, it should be
noted 2 itself is not the counter value). Then, the run of T inc

sub moves to the next
occurrence of � to the right of the current position and then goes to B 9 accordingly. The
correctness of this procedure follows from the construction and is straightforward.
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6.4.3.3 Encoding the Decrement Operations

For transitions of the form (@8 ,−1, @ 9) inA, we construct T dec
sub (see Figure 6.3a). In

contrast to the increment sub-A2A, it also includes a E8>;0C8>= branch in case the
decrement would result in a negative counter value: On this branch, T dec

sub attempts to
read first? to determine if the position of the head corresponds to the the first letter of
the word.

∨B8

left(B 9)
B 9

final true

� −1

�, 0
-,−1

0 first?

(a) T dec
sub encoding an decrement

∨B8

B=0
8

B 9

B≠0
8

true
�

0

first?

−1 Σ

(b) T zero
sub encoding a zero test

Figure 6.3: Sub-A2As to simulate decrements and zero tests

Lemma 20 Let :, ; ∈ N and F ∈,- with � the (8 + 1)-th letter of F. A run tree � of T dec
sub on

F from : is accepting if and only if either (B8 , :) (B 9 , ;) is a part of � and
|F(:)|� − 1 = |F(;)|�, or (B8 , 0) (final, 0) is a part of � and : = 0.

Proof. Note that any accepting run � of the sub-A2A must include at least one of the
two finite branches from the claim. We further argue that each branch enforces the
corresponding constraints if they appear in �. Since these are mutually exclusive, it
follows that � includes exactly one of the branches.

If � includes (B8 , :) (B 9 , ;) then |F(:)|� − 1 = |F(;)|�. The latter implies : > ; >= 0
since, otherwise, the position of the head cannot be moved to the left. On the other
hand, if � includes (B8 , =) (final, =) then � can only be accepting if = = 0. Hence, �
includes (B8 , 0) (final, 0). �

6.4.3.4 Encoding the Zero Tests

For every transition of the form (@8 ,= 0, @ 9) inA, we construct T zero
sub (see Figure 6.3b)

similarly to how we did for decrements. For the E0;830C8>= branch, it reads the letter
first? to confirm the position of the head is at the beginning of the word. For the
E8>;0C8>= branch, it moves the head to the left to confirm that the head is not at the
beginning.
Lemma 21 Let : ∈ N and F ∈,- with � the (: + 1)-th letter of F. A run tree � of T zero

sub on
F from : is accepting if and only if either (B8 , 0) (B 9 , 0) is a part of � and : = 0, or
(B8 , :) (B≠0

8
, : − 1) is a part of � and |F(:)|� > 0.

Proof. We proceed as in the proof of Lemma 20.

If � includes a branch with the state B=0
8

then � is accepting if and only if it reaches B 9 . It
can only reach B 9 with the first? transition, i.e. when : = 0. Otherwise, it has to include
a branch with B≠0

8
and reading any letter, it reaches true. This is only possible if : > 0.

Since the (: + 1)-th letter of F is �, the latter means |F(:)|� > 0. �
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6.4.3.5 Encoding the Parametric Equality Tests

For every transition of the form (@8 ,= G, @ 9) inA, we construct T eq
sub (see Figure 6.4a).

For the E0;830C8>= branch, it moves the head right, skipping over other variable
symbols - \ {G}, while looking for :. For the E8>;0C8>= branch, it skips over other
variable symbols while looking for the next �.

B8

∨ ∧

B 9

?A4B4=C(G)

true01B4=C(G)

� 0 +1

+1 G

�

- \ {G},+1

- \ {G},+1

(a) T eq
sub for parametric equality tests

B8

∨ ∧

5 A>=C(G)

∨
∧-state
in T eq

sub

B40A2ℎ(G)
in T inp

sub

B 9
102:(G)

B40A2ℎ−(G)

true

� 0
−1

0

�,−1

G

Σ \ {G},−1

+1
�,+1

- \ {G},+1

- \ {G},−1

(b) T lb
sub for parametric lower-bound tests

Figure 6.4: Sub-A2As to simulate parametric tests

Lemma 22 Let : ∈ N and F ∈,- with � the (: + 1)-th letter of F. A run tree � of T eq
sub on F

from : is accepting if and only if either (B8 , :) (B 9 , :) is part of � and +F(G) = |F(:)|�, or
(B8 , :) (01B4=C(G), : + 1) is a part of � and +F(G) ≠ |F(:)|�.

Proof. Fix a word F ∈,- with � as (: + 1)-th letter. Consider any run tree � of T eq
sub on

F. After reading the first �, suppose � has a branch leading to the state B 9 . It must,
therefore, also have a branch containing ?A4B4=C(G). Since, from there, it can only move
to the state true if it reads G before reading another � symbol to the right, we have
+(G) = |F(:)|�.

If � has a branch containing 01B4=C(G8), then it is accepting if and only if it reaches true
after reading another � before ever reading G. Hence, +(G8) ≠ |F(:)|�. �

6.4.3.6 Encoding the Parametric Lower-bound Tests

For every transition of the form (@8 , ≥ G, @ 9) inA, we construct T lb
sub (see Figure 6.4b).

For the E0;830C8>= branch, we check for equality to G or we check whether > G. We also
create the corresponding E8>;0C8>= branches.

Lemma 23 Let : ∈ N and F ∈,- with � the (: + 1)-th letter of F. A run tree � of T lb
sub on F

from : is accepting if and only if either (B8 , :) (B 9 , :) is part of � and |F(:)|� ≥ +F(G), or
(B8 , :) ( 5 A>=C(G), : + 1) is a part of � and |F(:)|� < +F(G).

Proof. Fix a word F ∈,- with � as (: + 1)-th letter and consider any run tree � of T lb
sub

on F. After reading the first �, let us suppose it adds a branch checking = G in T eq
sub.

Then, � is accepting if and only if it additionally contains a branch to (B 9 , :) and
|F(:)|� = +F(G). If it has the other sub-tree, i.e. it contains 102:(G), � is accepting if and
only if it reaches the state true, which is possible only if there is a � to the left of the
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current position and it reads an G to the left of that. It follows that it is accepting if and
only if |F(:)|� > +F(G) and (B8 , :) (B 9 , :) is part of �.

If � instead contains the branch with 5 A>=C(G8), it is accepting only if it can read G from
B40A2ℎ(G) after having read a � from 5 A>=C(G) to the right of the current position of the
input. Hence, |F(:)|� < +F(G8). �

6.4.4 Correctness of the Encoding

In the previous subsection, we elaborated on the construction of every sub-A2As and
proved the correctness of each construction in corresponding lemmas. Using those
lemmas, it is straightforward to prove the correctness of our encoding, i.e., the
correctness of Lemma 18. We present the proof formally below.

Proof of Lemma 18. We first start with the correctness of our encoding for the coBüchi
parameter synthesis problem. In particular, we show that, !(T ) = {F ∈,- | all infinite
+F-runs ofA visit � finitely many times from (@in , 0)}. We prove this in two parts:

⊇: Consider a word F = 000102 · · · ∈,- , such that with valuation +F all infinite
+F-runs ofA visit � only finitely many times starting from (@in , 0). We have to show
that F is accepted by T , i.e., there exists an accepting run tree � of F on T . We will now
grow an accepting run tree �valid. Since F is a valid parameter word we can add to �valid
a sub-tree with root labelled by (Bin , 0) and a branch extending to (@′0 , 0) (see Lemma 19).

Consider now a valid infinite run � ofA that visits � only finitely many times. Hence, �
can be divided into � = � 5 · �8= 5 such that � 5 is a finite prefix and �8= 5 is the infinite
suffix that never visits �. Let � be the path of the form (@in , >?1 , @1)(@1 , >?2 , @2) . . .
induced by �. We extend the division of � into � = �1 · (@ 9−1 , >? 9 , @ 9) · �2 such that,
�1 · (@ 9−1 , >? 9 , @ 9) is induced by � 5 and �2 is induced by �8= 5 . The idea is that the run �
jumps to a “safety component” from the state @ 9 , after which it does not visit � at all as �
satisfies the coBüchi condition.

Now, we further extend �valid by appending to it, from the (@′0 , 0)-labelled vertex, a
sub-tree ��1 simulating the prefix �1 as follows: for every transition of the form
(@8 , >?8+1 , @8+1)where >?8 is an increment or decrement, the corresponding T inc

sub and
T dec

sub simulate the path from @′
8
to @′

8+1 correctly. Also, as every transition in � is valid in
�1 (i.e. does not result in negative counter values), using the first part of Lemmas 21, 22,
and 23, we can take the E0;830C8>= sub-trees of T zero

sub , T eq
sub, and T lb

sub, and append them
to our run tree. For every B8<D;0C8>= branch, we stay at the normal copy, and we move
from @′

8
to @′

8+1. Now, for the transition (@ 9−1 , >? 9 , @ 9), we do the same for the E8>;0C8>=
and E0;830C8>= branches but in the B8<D;0C8>= branch, we move to the safety copy and
move to @′′

9
. Intuitively, this safety copy simulates the safety component of � as

mentioned above. Now, with this, we append another sub-tree ��2 , which we create
exactly in a similar way as ��1 but the B8<D;0C8>= branch stays in the safety copy, i.e., it
moves from states of the form @′′

8
to @′′

8+1. It is easy to see that, ��2 simulates the suffix
�8= 5 correctly. Note that since �2 does not visit � at all, the B8<D;0C8>= branch never
reaches the non-accepting sink states in the safety copy, and it infinitely loops within
the accepting states in the safety copy, making it accepting.
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As � was chosen arbitrarily, we have that ��, for all infinite runs �, are accepting. To
conclude, we need to deal with run trees arising from maximal finite runs–the runs that
cannot be continued with any valid operation and hence, finite: We construct a sub-tree
�maxf appending B8<D;0C8>= and E0;830C8>= sub-trees for as long as possible. By
definition of maximal finite runs, every such run reaches a point where all possible
transitions are disabled. There, we append a E8>;0C8>= sub-tree which, using the second
part of the mentioned lemmas, is accepting. Hence, �valid is accepting.

⊆: Consider a word F ∈ !(T ). We have to show that with valuation +F , every infinite
run ofA visits � only finitely often from (@in , 0). We will prove the contrapositive of
this statement: Let there exists a valuation + such that there is an infinite run ofA that
visits � infinitely often from (@in , 0), then for all words F with +F = + , F ∉ !(T ).

Let � be such an infinite run with valuation +F . Now, � induces the path � which has
the following form (@in , >?1 , @1) . . . , where for every 8 there exists a 9 such that @ 9 ∈ �.
Recall that for every >?8 , a run of T opi

sub has one B8<D;0C8>= branch, one or more
E0;830C8>= branches or a E8>;0C8>= branch. Now, as � is a valid infinite run ofA, every
>?8 can be taken, i.e., the counter value never becomes negative along the run. Hence,
any E8>;0C8>= branch in any T opi

sub will be non-accepting already using the
corresponding lemmas of the different operations. Hence, for every >?8 appearing in �,
let us consider the B8<D;0C8>= and E0;830C8>= branches. Consider the global
B8<D;0C8>= branch 1 in T : (Bin , 0) B0 B1 . . . , where each B8 in T represents @8 inA
and is in the form @′

8
or @′′

8
depending on whether it has jumped to the safety copy or

not. If every B8 is of the form @′
8
, then the infinite branch 1 has never moved to the safety

copy and has not visited the accepting states at all. Hence, it is already non-accepting.

Now, for some ;, let B; be of the form @′′
;
representing @; inA, i.e., it has moved to the

safety copy in T . Note that if a branch in T moves to a safety copy, it can never escape;
that is, for all < ≥ ;, B< is of the form @′′< . Notice that from our assumption, there exists
= ≥ ;, such that @= ∈ �. Hence, B= , representing @= in the safety copy of T , is a
non-accepting sink establishing the fact that the branch 1 reaches a non-accepting sink
making it non-accepting.

Note that 1 is a valid infinite branch in a run in A2A with no final states visited. Branch
1 will be present in every run of F in T , resulting in no accepting run for F. �

6.5 Improving Upper Bound for Reachability Parameter
Synthesis

Note that, Lemma 18 already gives an PSPACE upper-bound on the coBüchi parameter
synthesis problem for OCAPT. Using the reductions from the previous chapter, we can
establish that the reachability and safety parameter synthesis problems are also in
PSPACE. In this section, we want to improve this upper bound for the reachability
parameter synthesis specifically. Again following developments from [23], we now
sketch a guess-and-check procedure using the fact that Lemma 18 implies a sufficient
bound on valuations satisfying the reachability parameter synthesis problem. Recall
that the reachability parameter synthesis problem asks whether all infinite runs of
OCAPT reach a target state. Before improving the upper bound of the reachability
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synthesis problem, we first establish the complexity of the universal reachability
problem for non-parametric OCA. Note that this result is already interesting in itself
and also crucially works as a building block for the reachability parameter synthesis
problem.

6.5.1 Universal Reachability for Non-parametric OCA

Given a non-parametric OCA, the universal reachability problem asks, do all infinite runs
from (@in , 0) reach the target state � or not? Note that the existential version of this
problem has been proven to be NP-complete [73]. We first show that we can reduce an
instance of the negation of the universal reachability problem to two instances of the
existential reachability problem. Note that, in this section, we prove the result for
general (succinct) OCA (SOCA) and it also works for OCA, where the updates are given
in unary encoding.

Recall that, a path � = @0@1 . . . @= in �A is a cycle if @0 = @= . We say the cycle is simple if
no state (besides @0) is repeated. A cycle starts from a zero test if Δ(@0 , @1) is “= 0”. A
zero-test-free cycle is a cycle where no Δ(@8 , @8+1) is a zero test. We define a pumpable cycle
as being a zero-test-free cycle such that for all runs � = (@0 , 20) . . . (@= , 2=) lifted from �
we have 2= ≥ 20, i.e., the effect of the cycle is non-negative. The following result is
inspired from [93]
Lemma 24 LetA be a SOCA with an infinite run that does not reach �. Then, there is an
infinite run ofA which does not reach � such that it induces a path �0 · �$

1 , where �1 either
starts from a zero test or it is a simple pumpable cycle.

Proof of Lemma 24. Let us call an infinite run ofA a safe run if it does not reach �. Fix a
safe run �. We denote @in by @0. Let � = (@0 , >?1 , @1)(@1 , >?2 , @2) . . . be the path it
induces. We denote by �[8 , 9] the infix (@8 , >?8+1 , @8+1) . . . (@ 9−1 , >? 9 , @ 9) of � and by �[8 , ·]
its infinite suffix (@8 , >?8+1 , @8+1) . . . Suppose there are 0 ≤ < < = ∈ N such that �[<, =]
is a cycle that starts from a zero test. Note that if a cycle that starts from a zero test can
be traversed once, it can be traversed infinitely many times. Then, the run lifted from
the path �[0, <] · �[<, =]$ is our desired safe run. Now, let us assume that � has no
cycles which start at a zero test. This means every zero test occurs at most once in �.
Since the number of zero tests inA is finite, we have a finite : ∈ N such that there are
no zero tests at all in �[:, ·].

Now, consider �[:, ·]. Suppose it does not witness any non-negative effect cycle, i.e.,
every cycle in �[:, ·] is negative. But we know � lifts to a valid infinite run which means
the counter value cannot go below zero. This contradicts our assumption; Hence, there
are : ≤ ? < @ such that �[?, @] is a cycle with non-negative effect. It is easy to see that
there must be A, B such that ? ≤ A < B ≤ @ and �[A, B] is a simple non-negative effect
cycle. Also note that, A ≥ : which means that �[A, B] does not have any zero tests.
Hence, �[A, B] is a simple pumpable cycle. Note that if a pumpable cycle can be
traversed once, then it can be traversed infinitely many times. Using this fact, the run
lifted from �[0, A] · �[A, B]$ is our desired safe run. �

Now we establish the complexity result of the universal reachability problem for SOCA
using Lemma 24.
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Theorem 14 Checking whether all infinite runs from (@in , 0) reach a target state in a
non-parametric one-counter automaton is coNP-complete.

Proof of Theorem 14. We want to check whether all infinite runs starting from (@in , 0)
reach �. Lemma 24 shows two conditions, one of which must hold if there is an infinite
run that does not reach �. Note that both conditions are instances of existential
reachability problems: a path to a cycle that starts from a zero test or to a simple
pumpable cycle.

For the first condition, making the reachability-query instances concrete requires a
configuration (@, 0) and a state @′ such that Δ(@, @′) is a zero test. Both can be guessed
and stored in polynomial time and space. For the other condition, we can assume that
�0 does not have any simple pumpable cycle. It follows that every cycle in �0 has a zero
test or has a negative effect. Let,max be the sum of all the positive updates inA. Note
that the counter value cannot exceed,max along any run lifted from �0 starting from
(@in , 0). Further, since �1 is a simple cycle the same holds for 2,max for runs lifted from
�0�1. Hence, we can guess and store in polynomial time and space the two
configurations (@, 2) and (@, 2′) required to make the reachability-query instances
concrete.

Since the existential reachability problem for non-parametric SOCAP is in NP [73], we
can guess which condition will hold and guess the polynomial-time verifiable
certificates. This implies the problem is in coNP.

@in @1

@′1

@=−1

@′=

@= @C

@B

@ 5
+0

+0 1 +0
+0

+0 =
+0

−C
=

0
+1

+1

+1

Figure 6.5: Reduction from non-SubsetSum to (universal) reachability for SOCA

For the lower bound, we give a reduction from the complement of the SubsetSum
problem, which is NP-complete [61].

Given a set ( = {01 , 02 , . . . 0=} ⊆ N and a target sum C ∈ N, the Subset Sum problem asks
whether there exists (′ ⊆ ( such that

∑
08∈(′ 08 = C. Given an instance of the Subset Sum

problem with ( and C, we create a SOCAA with initial configuration (@in , 0) and a
single target state @ 5 as depicted in Figure 6.5. Note that, for every 1 ≤ 8 ≤ = there are
two ways of reaching @8 from @8−1: directly, with constant update +0; or via @′

8
with total

effect +08 . Hence, for every subset (′ ⊆ (, there exists a path from @in to @= with counter
value

∑
08∈(′ 08 . Clearly, if there exists (′ such that

∑
08∈(′ 08 = C Subset Sum, then there

exists an infinite run leading to @B—not reaching the target state. On the other hand, if
there is no such (′, then all infinite runs reach @ 5 . Hence, the universal reachability in
A is positive if and only if the answer to the SubsetSum problem is negative. �

6.5.2 Back to Parameter Synthesis for OCAPT: Proof of Theorem 13

In this section, we will establish the improved complexity upper bound for the
reachability parameter synthesis problem of OCAPT. That will allow us to infer the
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formal proof of Theorem 13, which is the main goal of this chapter. Towards this, we
first state the following lemma.

Lemma 25 (Adapted from [23, Lemma 3.5]) If there is a valuation + such that all infinite
+-runs ofA reach �, there is a valuation +′ such that +′(G) = exp(|A|O(1)) for all G ∈ - and
all infinite +′-runs ofA reach �.

Proof. Using Lemma 18 for OCAPTA, there is an A2A T of polynomial size (w.r.t. A)
such that, !(T ) is precisely the subset of,- such that all infinite +F-runs ofA reach �.
We then use the fact that there is a non-deterministic Büchi automaton such that
!(ℬ) = !(T ) and |ℬ| ∈ 2O(|T |2) [137, 43].

Suppose forA the answer to the reachability parameter synthesis problem is positive,
i.e. !(ℬ) ≠ ∅. We know that the language of a Büchi automata is non-empty only if
there is a “lasso” word which witnesses this. For all parameter words F accepted by a
lasso there is a word D ∈ Σ∗ s.t. |D | ≤ |ℬ| and F = D�$ ∈ !(ℬ). The result follows from
our encoding of valuations. �

Now we can guess a valuation of the parameters of OCAPT with size bound in
polynomial size (counter value in binary representation) (thus, of polynomial size).
Now after guessing the valuation, we can check the universal reachability problem in
the resulting non-parametric OCA in coNP (from Theorem 14). Hence, the improved
upper bound for the reachability parameter synthesis problem is NPcoNP = NPNP. This
allows us to establish the proof of Theorem 13.

Proof of Theorem 13. In Lemma 18, we reduce the coBüchi synthesis problem to the
non-emptiness problem for alternating two-way automata. Hence, we get the PSPACE
upper bound. Note that, in the previous chapter, we reduced the Büchi and the safety
parameter synthesis problems reduce to the coBüchi one (using Lemma 14) in
polynomial time, and the reductions did not use any parametric updates in the
automaton. Hence, they are valid for OCAPT, also resulting in the fact that these
problems are also in PSPACE. Similarly, the reduction to LTL parameter synthesis to
Büchi establishes the EXPSPACE upper bound for the problem. We have also improved
the upper bound for the reachability parameter-synthesis problem to NPNP. �

6.6 Conclusion

In this chapter, we have shown that the parameter synthesis problems are more
tractable if we consider a restriction on the general model of One-counter automata
with parameters. The restrictions are that the parameters are only allowed in tests, and
the updates are given in unary encoding. It will be interesting to see if a more
complicated parameter valuation encoding allows us to extend the automata-theoretic
technique to reason about the full fragment, i.e., encoding the parametric updates. Note
that, as argued in the previous chapter, there is still a gap between the upper-bound and
lower-bound of these problems.
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Chapter 7777777777777777777777777777777777777777777777777777777777777777777777777
Conclusion and Future Work

In this dissertation, we have presented our work on developing algorithms to learn
temporal specifications from observed behaviours of a cyber-physical system and then
using formal verification techniques to verify them to ensure safety and reliability.
Every chapter contains open technical problems relevant to that chapter in the
conclusion section. Here, we close our thesis with a brief summary of our results and a
few possible general future directions in these fields.

For automatically learning specifications, we have focused on the framework of passive
learning, where we have labelled system behaviours as input and learn concise
specifications consistent with those inputs. As specifications, we have considered LTL,
where the system behaviours are assumed to be collected as a discrete set of events and
have proposed an approximation algorithm for learning that advances the existing
learning algorithms for LTL in terms of scalability. Then, we have focused on more
complex temporal specifications like MTL and STL that are able to capture the
continuous evolution of a system over time. We have presented an SMT-based approach
to learn concise and efficiently monitorable specifications in MTL and STL.

Regarding possible future directions towards this, it will be fascinating to investigate
the learning problem of temporal specifications in an active learning setting. This
setting assumes the presence of a teacher, where the learner tries to learn the desired
temporal specification incrementally by asking the teacher two kinds of queries:
membership and equivalence. This setting is interesting as an efficient active learning
algorithm allows an engineer to incorporate newly observed system behaviours to
update the already learned specification. Although there are substantial works on
active learning settings for automata [4, 115], to the best of our knowledge, there are not
many works on a similar setting for temporal logic. In [34], the authors explained how
we can straightforwardly use a passive learning setting to devise an algorithm for active
learning, but that is far from being efficient. The crux of the hardness towards this is
that the equivalence query for LTL is computationally hard and more expensive than
that of automata. Hence, it will be interesting to investigate fragments for which active
learning can be efficient. We believe that Directed LTL, which we have introduced for
our LTL learning algorithm, might be a good candidate towards this, but this requires
more work and thorough analysis.

For the formal verification part, we focused on the classical model of one-counter
automata that abstractly model systems with a possibly infinite state space, e.g.
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programs controlled by one variable. We focused on the LTL parameter synthesis
problem for these models, which asks whether a valuation of the parameters appearing
in the model allows all infinite computations of the model to satisfy a desired LTL
specification. We clarified the existing decidability and complexity results for this
problem in the literature by exploiting a connection of this problem to the satisfiability
of a fragment of Presburger arithmetic with divisibility (PAD). In this process, we have
also introduced the largest known decidable fragment of one alternation PAD, named
BIL.

Regarding future research direction in this field, the exact complexity of the decidability
of the existential fragment of PAD (∃PAD) is still open. The current known complexity
gap for the problem is that it is known to be in NEXP and NP-hard. There have been
several related works around this problem containing the interreducibility of existential
parameter synthesis of OCA [67] and the introduction of GCD operator [135], but the
exact complexity of ∃PAD is still unknown. Note that the technique to determine the
complexity of decidability of the fragment BIL in this dissertation also depends on the
complexity of ∃PAD. It will also be interesting to generalise the automata-theoretic
approach to solve the problems that can capture parametric updates. This can result in
new insights into the complexity results for the parameter synthesis of OCA and, hence
on, the exact complexity bounds on various fragments of PAD.

Another exciting direction will be to check these universal parameter synthesis
problems for OCAs with specifications beyond LTL. Unlike the first part of the
dissertation, we cannot consider MTL or STL to go beyond LTL, as OCAs are inherently
discrete models. For Computation Tree Logic (CTL), the parameter synthesis problems
are already undecidable in the existential framework. One possible direction will be for
flat freeze LTL, which has been introduced to specify properties of data words [46]. The
model-checking problem for flat Freeze LTL on classical one-counter automata is
decidable [46, 94]. It will be interesting to investigate the parameter synthesis problems
for these new specifications.
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