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Introduction et résumé (en Français)

En 1898, Pavel Nekrasov, alors vice-président de la Société Mathématique de Moscou, écrivit un article intitulé "Propriétés générales de nombreux événements indépendants en relation avec le calcul approximatif des fonctions de très grands nombres". Il y prétendait que l'indépendance est une condition nécessaire pour la loi des grands nombres. Cette a rmation provoqua la colère d'Andrey Markov, qui était convaincu que ce n'était pas le cas.

Pour prouver que Nekrasov a tort, Markov commence d'étudier certains types de variables aléatoires dépendantes a n de relâcher l'hypothèse d'indépendance.

Plus précisément, il étudie des variables X 0 , X 1 , . . . , X n dont la dépendance les unes avec les autres diminue rapidement à mesure que leur distance mutuelle dans le temps augmente. Cette construction le conduit à développer un nouveau modèle mathématique, qu'il appele une "chaîne" -la désormais célèbre chaîne de Markov.

Selon les propres mots de Markov, les chaînes de Markov 1 est une séquence in nie X 0 , X 1 , . . . , X n , X n`1 , . . . de variables liées de telle manière que X n`1 pour n'importe quel n est indépendant de X 0 , . . . , X n´1 , dans le cas où X n est connu [START_REF]Extension of the limit theorems of probability theory to a sum of variables connected in a chain, the notes of the imperial academy of sciences of st[END_REF] Il dé nit une chaîne homogène lorsque les distributions conditionnelles de X n`1 1 Le terme chaîne de Markov a été inventé par Bernstein dans son article de 1927 "Sur l'extension du théorème limite du calcul des probabilités aux sommes de quantités dépendantes" [START_REF]Sur l'extension du théorème limite du calcul des probabilités aux sommes de quantités dépendantes[END_REF]. Pour une histoire détaillée des premiers développements des chaînes de Markov, voir [START_REF]The life and work of a.a. markov[END_REF]. ix étant donné X n sont indépendantes de n. Il considére également des chaînes plus complexes dans lesquelles "chaque nombre est directement lié non pas à un seul mais à plusieurs nombres précédents" [START_REF]The life and work of a.a. markov[END_REF].

Le première application d'une chaîne de Markov a été faite par Markov luimême lorsqu'il l'utilise pour analyser la séquence des voyelles et des consonnes dans le poème "Eugene Onegin" d'Alexandre Pouchkine. Depuis, les chaînes de Markov ont rencontré de nombreuses applications en sciences et en ingénénie, telles que la modélisation des phénomènes naturels ou génétiques, la simulation des systèmes complexes, la génération de données aléatoires, l'optimisation des algorithmes et l'analyse des réseaux.

Une chaîne de Markov homogène X " tX j u jě0 , dé nie dans un espace probabilisé pE, E, Pq est déterminée de manière unique par une mesure initiale λ et un noyau P , au sens où P pX n P Aq " λP n pAq @A P E, n ě 1.

Une chaîne de Markov homogène est irréductible s'il existe une mesure σnie φ sur pE, Eq telle que pour tout x P E et tout A P E avec φpAq ą 0 nous avons P n px, Aq ą 0 pour un certain n ě 1. Dans ce cas, il existe une mesure d'irréductibilité maximale ψ (toutes les autres mesures d'irréductibilité sont absolument continues par rapport à ψ). Dans la suite, toutes les chaînes de Markov sont supposées être irréductibles avec une mesure d'irréductibilité maximale ψ.

Lorsqu'une mesure π véri e πP " π, on dit qu'elle est invariante pour la chaîne de Markov. Lorsque la mesure invariante est nie (et peut donc être normalisée en une probabilité), la chaîne est dite récurrente positive, lorsqu'elle est seulement σnie, elle est dite récurrente nulle. Si la mesure initiale d'une chaîne de Markov récurrente positive coïncide avec la probabilité invariante, la chaîne est dite stationnaire puisque les marginales de chaîne changent pas.

Les chaînes de Markov irréductibles ont de nombreuses propriétés et peuvent être subdivisées en plusieurs groupes (que nous décrirons en détail au chapitre 2), parmi ceux-ci, on trouve les chaînes de Markov récurrentes 2 et les chaînes de Markov récurrentes de Harris 3 . En termes simples, une chaîne de Markov est récurrente si le nombre attendu de visites à tout état accessible, quel que soit le point de départ, est in ni. La récurrence de Harris est une forme renforcée de récurrence où le nombre de fois où la chaîne visite tout état accessible est in ni avec probabilité 1.

Une chaîne de Markov est atomique s'il existe un ensemble accessible 4 α tel que P px, Aq " P py, Aq pour tous x, y P α, A P E. En termes plus simples, un atome est un ensemble sur lequel toutes les probabilités de transition sont identiques.

Ainsi, chaque fois que la chaîne de Markov atteint α, elle ignore son historique précédent et recommence (elle se régénère). Les chaînes atomiques récurrentes ont de nombreuses propriétés remarquables (voir section 2.2.7), les deux plus importantes étant l'existence d'une mesure invariante (unique à une constante multiplicative près) et la décomposition en blocs 5 , qui permet de diviser la chaîne en une série de blocs i.i.d. Le théorème de Kac 6 indique qu'une chaîne atomique est récurrente positive si et seulement si E α τ α ă `8, où τ α désigne le temps de retour à l'atome. Le manque de moments pour les chaînes récurrentes nulles est la plus grande source de problèmes lors de leur manipulation (voir le théorème 4.8 et l'explication qui suit).

Une chaîne de Markov véri e la condition de minorisation M pm 0 , s, νq si il existe un entier m 0 ě 1, une fonction 0 ď s pxq ď 1 et une mesure ν telle que P m 0 px, Aq ě s pxq ν pAq pour tout x P E et A P E. Lorsqu'une chaîne de Markov véri e cette condition de minorisation, la fonction s et la mesure ν sont appelées petite fonction et petite mesure respectivement.

Dans un article fondateur, Nummelin [START_REF]A splitting technique for harris recurrent markov chains[END_REF] a développé une technique d'extension (dite de "spliting") qui permet, pour toute chaîne de Markov qui véri e la condition de minorisation M pm 0 , s, νq, d'étendre l'espace des probabilités de telle manière que l'extension de X dans le nouvel espace soit atomique. En utilisant cette extension, il a pu démontrer que chaque chaîne de Markov récurrente de Harris admet une mesure invariante unique (à une constante multiplicative près). Cela implique que chaque chaîne récurrente de Harris est soit récurrente positive, soit récurrente nulle.

La grande majorité des résultats dans la littérature se concentrent sur les chaînes récurrentes positives et traitent de l'estimation du noyau de transition ou de la distribution stationnaire, du test de stationnarité ou de l'ordre de la chaîne de Markov. Cependant, seuls quelques articles (essentiellement de Tjøstheim et ses coauteurs) traitent des problèmes d'estimation et de tests d'hypothèses dans les cas où la chaîne est récurrente nulle [START_REF]Estimation in threshold autoregressive models with a stationary and a unit root regime[END_REF][START_REF]Nonparametric estimation in a nonlinear cointegration type model[END_REF][START_REF]Nonparametric estimation in null recurrent time series[END_REF][START_REF]Null recurrent unit root process[END_REF][START_REF]Some notes on nonlinear cointegration: A partial review with some novel perspectives[END_REF].

Dans cette thèse, nous nous concentrons sur les chaînes récurrentes nulles, en particulier sur celles qui sont β-nulles récurrentes 7 , c'est-à-dire les chaînes de Markov récurrentes de Harris telles qu'il existe une petite fonction h, une mesure initiale λ, une constante β P p0, 1q et une fonction à variation lente L h telle que

E λ « n ÿ t"0 h pX t q ff " 1 Γ p1 `βq n β L h pnq lorsque n tend vers `8.
Lorsque X est atomique, alors X est β-nulle récurrente si et seulement s'il existe une constante β P p0, 1q et une fonction à variation lente L telle que le temps de retour dans l'atome ait une queue de type Pareto P pτ α ą nq "

1 n β L pnq .
Cette caractérisation implique que β " sup tp ě 0 : E α rτ p α s ă 8u.

Parmi les exemples les plus connus de chaînes de Markov β-nulles récurrentes, on trouve les marches aléatoires dans R, qui sont 1{2-nulles récurrentes [START_REF]The sequence of sums of independent random variables[END_REF], les marches aléatoires de Bessel [START_REF]Excursions and local limit theorems for bessel-like random walks[END_REF], [START_REF]Random walk versus random line[END_REF] et certains types de processus autorégressifs à seuil (TAR) [START_REF]Estimation in threshold autoregressive models with a stationary and a unit root regime[END_REF] et de processus autorégressifs vectoriels (VAR) [START_REF]Null recurrent unit root process[END_REF].

Résultats principaux

Dans la section suivante, nous décrivons les motivations de nos travaux et les principaux résultats obtenus dans chaque chapitre. Sauf indication contraire, nous supposons que X est une chaîne de Markov récurrente de Harris de mesure invariante π.

Théorie générale des chaînes de Markov

Dans le Chapitre 2, nous donnons un aperçu de la théorie des chaînes de Markov qui sera utilisée tout au long de la thèse. Nous mettons un accent particulier sur les propriétés des chaînes de Markov récurrentes β-nulles.

Bien que le chapitre soit principalement une récapitulation de la théorie actuelle, nous y considérons également trois nouvelles extensions : ce sont les Théorèmes Theorem 0.1.1 (page 73). Supposons que X soit une chaîne de Markov récurrente β-nulle qui satisfait la condition de minorisation M p1, s, νq et soit λ une mesure initiale, si f P L 1 pE, πq et π pf q ‰ 0, alors si on pose S n,f ptq " ř tntu j"0 f pX j q πpf qn β Lspnq , on a

S n,f D r0,`8q ÝÝÝÝÑ M β ,
où M β est un processus de Mittag-Le er de paramètre β. 

Estimation de l'indice de queue

où L : R `Ñ R est une fonction à variation lente. L'inférence statistique pour les distributions discrètes à queue lourde n'a pas reçu beaucoup d'attention dans la littérature. La plupart des quelques méthodes dédiées dans la litérature traitent soit de cas très spéci ques comme dans e.g. [START_REF]Problems with tting to the power-law distribution[END_REF], [START_REF]Estimation of the tail index for lattice-valued sequences[END_REF] ou [31], soit consistent à appliquer des techniques initialement conçues pour les distributions à queue lourde continues aux données discrètes après une addition préliminaire d'un bruit uniforme indépendant, voir e.g. [START_REF]Scale-free networks well done[END_REF]. La grande majorité des estimateurs d'indice de variation régulière proposés dans la littérature, en particulier les estimateurs de Hill ou Pickand (cf [START_REF]A simple general approach to inference about the tail of a distribution[END_REF], [START_REF]Statistical Inference Using Extreme Order Statistics[END_REF]), sont basés sur les statistiques d'ordre, ce qui pose des di cultés évidentes dans le cas discret en raison de la possible occurrence de nombreuses répétitions dans l'échantillon.

En revanche, l'estimateur que nous étudions dans le Chapitre 3 est basé sur l'analyse de la probabilité des événements de queue séparés exponentiellement. Il repose sur le fait que lnpp k q ´lnpp k`1 q " β `lnpLpe k q{Lpe k`1 qq, où p l " PpS ą e l q pour tout l P N, et que Lpe k`1 q{Lpe k q est censé être très proche de 1 pour k su samment grand. Une technique d'inférence naturelle (plug-in) peut alors être conçue en remplaçant les probabilités de queue p l par leurs versions empiriques p p pnq l " p1{nq ř n i"1 ItS i ą e l u pour l P N. 

Nous démontrons que pour un choix approprié de l'hyperparamètre k " k n (typiquement choisi de l'ordre de ln n) l'estimateur [START_REF]A tail inequality for suprema of unbounded empirical processes with applications to Markov chains[END_REF] 

I tS i ą eT pnqu ‹ ‹ ‹ ' . (3) 

Bootstrap régénératif

Depuis son introduction par Efron dans [START_REF]Bootstrap Methods: Another Look at the Jackknife[END_REF] pour des données i.i.d., les méthodes de bootstrap ont connu d'importants développements, donnant naissance à divers schémas de bootstrap adaptés aux contextes i.i.d. et dépendants [START_REF]1 -bootstrap methods for time series[END_REF][START_REF]Resampling methods for dependent data[END_REF]. Cela a conduit à leur utilisation extensive dans une multitude d'applications statistiques.

Dans de nombreux cas, les techniques de bootstrap fournissent des approximations plus précises des distributions statistiques, des probabilités de couverture des intervalles de con ance et des probabilités de rejet des tests d'hypothèses par rapport à la théorie des distributions asymptotiques de premier ordre (pour une discussion détaillée, voir [START_REF]Bootstrap methods for markov processes[END_REF]).

Dans le cas markovien, de nombreuses approches ont été proposées et développées.

Une idée originale est d'estimer la distribution marginale et la fonction de probabilité de transition en utilisant des techniques d'estimation de fonctions non paramétriques, puis de rééchantillonner à partir de ces estimations. Cette idée a été développée et étendue, entre autres, dans [START_REF]Bootstrapping markov chains: countable case[END_REF][START_REF]Bootstrap methods for markov processes[END_REF][START_REF]Bootstrapping a nite state markov chain[END_REF][START_REF]A markovian local resampling scheme for nonparametric estimators in time series analysis[END_REF][START_REF]The local bootstrap for markov processes[END_REF][START_REF]Bootstrap in markov-sequences based on estimates of transition density[END_REF]. Pour une explication détaillée de cette idée, voir la section 4 de [START_REF]1 -bootstrap methods for time series[END_REF].

Dans [START_REF]Bootstrapping markov chains: countable case[END_REF], une approche distincte de ce problème a été proposée. Au lieu d'utiliser des probabilités de transition estimées, les auteurs ont exploité les propriétés de régénération d'une chaîne de Markov lorsqu'un atome accessible est visité in niment souvent. L'idée fondamentale de cette méthode est de diviser la chaîne en un nombre aléatoire de blocs de régénération i.i.d. puis de rééchantillonner un nombre équivalent de blocs de régénération. Cette technique, connue sous le nom de Bootstrap basé sur la régénération, a été démontrée comme étant valide pour les chaînes atomiques à états nis dans [START_REF]Bootstrapping markov chains: countable case[END_REF] et a été étendue aux chaînes de Markov atomiques récurrentes positives générales dans [34].

En s'appuyant sur le concept d'exploitation des propriétés régénératives des chaînes de Markov, le Bootstrap par Blocs Régénératifs (RBB) a été introduit dans [START_REF]Regenerative block bootstrap for markov chains[END_REF]. Cette méthode simule la structure de renouvellement de la chaîne en échantillonnant des blocs de données de régénération jusqu'à ce que la longueur de la série de bootstrap réassemblée dépasse la longueur de la série de données originale n (notez le contraste avec le Bootstrap basé sur la régénération, où le nombre de blocs échantillonnés est égal au nombre de blocs de régénération dans la chaîne d'origine).

Il a été démontré dans [START_REF]Regenerative block bootstrap for markov chains[END_REF] que pour les chaînes de Markov atomiques récurrentes positives, le RBB pour l'estimation de l'intégrale d'une fonction par rapport à la probabilité invariante présente une vitesse de convergence uniforme de la distribution de l'ordre O P pn ´1q, qui est la même que celle dans le cas i.i.d. 

Dans le

Modèles cointégrés non linéaires monotones

Dans le Chapitre 5, nous étudions les modèles cointégrés non linéaires tels que

Z t " f 0 pX t q `Wt , (4) 
où f 0 est une fonction non linéaire, X t est une chaîne de Markov récurrente de

Harris et W t est un processus inobservé avec EpW t |X t q " 0.

Le problème d'estimation de f 0 sous l'hypothèse markovienne sur X t a été étudié en utilisant l'estimateur de Nadaraya-Watson dans [START_REF]Nonparametric regression estimation for multivariate null recurrent processes[END_REF][START_REF]Nonparametric estimation in a nonlinear cointegration type model[END_REF], des estimateurs linéaires de type M dans [START_REF] O S | Local m-estimator for nonparametric time series[END_REF][START_REF]Local linear m-estimators in null recurrent times series[END_REF] et en utilisant des concepts avancés tels que le temps local et les transformations non linéaires de processus de type mouvement brownien dans [START_REF]Limit Theorems for Nonlinear Cointegrating Regression[END_REF][START_REF]Asymptotic theory for local time density estimation and nonparametric cointegrating regression[END_REF][START_REF]Structural nonparametric cointegrating regression[END_REF]. Un résumé complet sur les dernières avancées sur ce problème se trouve dans [START_REF]Some notes on nonlinear cointegration: A partial review with some novel perspectives[END_REF].

À notre connaissance, l'estimation de f 0 , lorsqu'elle est soumise à des contraintes de forme, n'a pas été étudiée dans un cadre markovien. Dans un cadre i.i.d. ces estimateurs sont fortement non linéaires et présentent des dé s théoriques considérables. Ils s'adaptent mal au cadre dépendant car ils font intervenir une notion d'ordre. Dans le contexte d'observations indépendantes, des contraintes telles que la convexité, la concavité et la log-concavité sont connues pour être encore plus complexes que les contraintes de monotonie (voir [START_REF]Some Developments in the Theory of Shape Constrained Inference[END_REF][START_REF]Editorial: Special Issue on "Nonparametric Inference Under Shape Constraints[END_REF] et les références correspondantes). Dans le Chapitre 5, nous nous concentrons sur le cas monotone mais il seraient intéressant de considérer ultérieurement des extensions.

La construction de notre estimateur est la suivante:

Soit C un ensemble dont l'intérieur contient notre point d'intérêt x 0 . Ayant observé tpX t , Z t qu n t"0 nous notons par T n pCq le nombre de fois que X a visité C jusqu'au temps n et par σ C piq le temps de la i-ième visite. Notre estimateur p f n est alors l'estimateur non paramétrique dé ni comme le minimiseur de

f Þ Ñ TnpCq ÿ i"1 `Zσ C piq ´f `Xσ C piq ˘˘2 (5) 
sur l'ensemble des fonctions décroissantes. Cet estimateur peut être calculé à l'aide de simples algorithmes comme discuté dans [START_REF]Statistical inference under order restrictions: The theory and application of isotonic regression[END_REF]. De plus, contrairement aux estimateurs à noyau avec paramètre de lissage, C ne dépend pas de n et la vitesse de convergence de l'estimateur ne dépend pas de C.

Dans le Théorème 5.3.1, nous montrons que sous des hypothèses très générales, p f n px 0 q est un estimateur fortement consistant de f px 0 q, et avec des hypothèses légèrement plus restrictives, nous montrons dans le Théorème 5.4.1 que la vitesse de convergence de p f n est u pnq ´1{3 , où u pnq " n si X est récurrente positive et u pnq " n β L pnq si elle est récurrente nulle. Remarquons que dans le cas récurrent positif, nous obtenons le même taux, n ´1{3 , que dans le cas i.i.d. [START_REF]Nonparametric Estimation under Shape Constraints: Estimators, Algorithms and Asymptotics[END_REF]Chapitre 2].

L'utilisation d'un estimateur localisé est due au fait que nous devons contrôler le comportement de la chaîne autour de x 0 , et, pour ce faire, nous devons estimer la "distribution" asymptotique de X dans un voisinage de x 0 . Pour les chaînes de Markov récurrentes de Harris, le comportement à long terme de la chaîne est donné par sa mesure invariante. Dans le cas récurrent positif, la mesure invariante est nie et peut être estimée en considérant simplement la fonction de répartition empirique des X t , cependant, dans le cas récurrent nul, la mesure invariante est seulement σnie, d'où la nécessité de localiser notre analyse dans un ensemble su samment grand pour que la chaîne le visite in niment souvent, mais su sam-ment petit pour que la restriction de la mesure invariante à cet ensemble soit nie.

À cet égard, deux résultats de type Glivenko-Cantelli (Lemmes 5.5.1 et 5.5.3) ont été obtenus pour les chaînes de Markov récurrentes de Harris localisées. Nous obtenons également un résultat (Lemme 5.5.2) qui permet de contrôler le nombre de recouvrements d'une classe de fonctions dé nies sur des blocs localisés à partir du nombre de recouvrements de la classe de départ, ce qui constitue en soit un résultat nouveau et intéressant. .

Organisation de la thèse

La thèse est organisé comme suit :

• Chapitre 2 : Nous donnons une vue d'emsemble de la théorie des chaînes de Markov, en mettant un accent particulier sur les propriétés et les particularités des chaînes de Markov β-récurrentes nulles.

• Chapitre 3 : Il est basé sur l'article [START_REF]Tail index estimation for discrete heavy-tailed distributions with application to statistical inference for regular markov chains[END_REF]. Il se concentre sur l'estimation de l'indice de queue d'une distribution de Pareto discrète généralisée. Nous montrons que l"estimateur proposé est fortement consistant et asymptotiquement normal dans le cas i.i.d. Dans le cas des chaînes atomiques βrécurrentes nulles, notre estimateur de β sur lequel il est basé est démontré être fortement consistant.

• Chapitre 4 : Il est basé sur l'article [START_REF]Regenerative bootstrap for β-null recurrent markov chains[END_REF]. Il traite du bootstrap régénératif sur les chaînes de Markov β-récurrentes nulles. Le bootstrap basé sur la régénération et le bootstrap de blocs régénératifs sont démontrés être valides pour estimer l'intégrale par rapport à la mesure invariante dans le cas atomique.

• Chapitre 5 : Il est basé sur [START_REF]Harris recurrent markov chains and nonlinear monotone cointegrated models[END_REF]. Il aborde le problème de l'estimation d'une fonction monotone dans un modèle cointégré non linéaire, où X t est une chaîne de Markov récurrente de Harris. L'estimateur est démontré être fortement consistant et nous obtenons sa vitesse de convergence dans les cas récurrent positif et nul.

Après lecture du Chapitre 2, les chapitres suivants peuvent être lus dans n'importe quel ordre, car sans dépendances de notation entre eux. Nous nous excusons par avance pour les légères redondances entre les chapitres.

List of Tables B pXq σ-algebra generated by the borelian sets of the metric space X.

M pEq `Collection of all nonnegative measures on pE, Eq

A c Complement of the set A δ x
Dirac's measure with mass at x L 1 pE, πq Space of all measurable functions f , de ned on E, such that

Introduction

In 1898, Pavel Nekrasov, then vice president of the Moscow Mathematical Society, wrote a paper named "General properties of numerous independent events in connection with approximate calculation of functions of very large numbers".

There, he claimed that independence is a necessary condition for the law of large numbers. This claim infuriated Andrey Markov, who was convinced that it was not the case.

To prove Nekrasov wrong, Markov started studying certain types of dependent random variables in order to relax the independence assumption. Speci cally, he studied variables X 0 , X 1 , . . . , X n whose dependence on one another quickly lessens as their mutual distance increases. This observation led him to develop a novel mathematical model, which he called a "chain" -the now well-known Markov chain.

In Markov's own words, a Markov chain 1an in nite sequence X 0 , X 1 , . . . , X n , X n`1 , . . . of variables connected in such a way that X n`1 for any n is independent of X 0 , . . . , X n´1 , in case X n is known [START_REF]Extension of the limit theorems of probability theory to a sum of variables connected in a chain, the notes of the imperial academy of sciences of st[END_REF] He called a chain homogeneous if the conditional distributions of X n`1 given X n were independent of n. He also considered complex chains in which "every number is directly connected not with a single but with several preceding numbers" [START_REF]The life and work of a.a. markov[END_REF].

The initial application of a Markov chain was done by Markov himself when he used it to analyze the sequence of vowels and consonants in the poem "Eugene

Onegin" by Alexander Pushkin. After that, Markov chains have been encountered many applications in science and engineering, such as modeling natural phenomena, simulating complex systems, generating random data, optimizing algorithms and analyzing networks.

Every homogeneous Markov chain X " tX j u jě0 , de ned in a probability space pE, E, Pq is uniquely determined by an initial measure λ and a kernel P , in the sense that P pX n P Aq " λP n pAq @A P E, n ě 1.

An homogeneous Markov chain is irreducible if there exists a σnite measure φ on pE, Eq such that for all x P E and all A P E with φpAq ą 0 we have P n px, Aq ą 0 for some n ě 1. In this case, there exists a maximal irreducibility measure ψ (all other irreducibility measures are absolutely continuous with respect to ψ). In the following, all Markov chains are supposed to be irreducible with maximal irreducibility measure ψ.

When a measure π satis es πP " π, we say that it is invariant for the Markov chain. When the invariant measure is nite (and hence can be normalized into a probability), the chain is called positive recurrent, when is only σnite is called null-recurrent. If the initial measure of a positive recurrent Markov chain coincides with the invariant probability, the chain is called stationary.

Irreducible Markov chains have many properties and can be subdivided into many groups (which we will describe in detail in Chapter 2), among those, we nd the recurrent 2 Markov chains and Harris recurrent Markov chains 3 A Markov chain is atomic if there exists an accessible set 4 α such that P px, Aq " P py, Aq for all x, y P α, A P E. In simpler terms, an atom is a set where all the transition probabilities are identical. Hence, whenever the Markov chain reaches α, it disregards its previous history and starts anew (regenerates). Recurrent atomic chains have many remarkable properties (see Section 2.2.7), the two most important being, the existence of an invariant measure (unique up to some multiplicative constant) and the block decomposition 5 , which allows splitting the chain into a series of i.i.d. blocks. Kac's theorem 6 indicates that an atomic chain is positive recurrent if and only E α τ α ă `8, where τ α denotes the time of rst return to the atom. This lack of moments for null recurrent chains is the biggest source of problems when working with these chains (see Theorem 4.8 and the explanation afterward).

A Markov chain satis es the minorization condition M pm 0 , s, νq if there exists an integer m 0 ě 1, a function 0 ď s pxq ď 1 and a measure ν such that P m 0 px, Aq ě s pxq ν pAq for all x P E and A P E. When a Markov chain satis-2 Section 2.2.5 3 Section 2.2.9 4 A set A is accessible if ψ pAq ą 0.

5 See Theorem 2.2.17 6 Theorem 2.2.16.
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es this minorization condition, the function s and the measure ν are called small function and small measure respectively.

In a seminal paper, Nummelin [START_REF]A splitting technique for harris recurrent markov chains[END_REF] developed a splitting technique that allows, for any Markov chain that satis es the minorization condition M pm 0 , s, νq, to extend the probability space in such a way that the extension of X into the new space is atomic. Using this extension, he was able to show that every Harris recurrent Markov chain admits a unique (up to some multiplicative constant) invariant measure. This implies that every Harris recurrent chain is either positive recurrent or null recurrent.

The vast majority of results in the literature focus on positive recurrent chains, and deal with the estimation of the transition kernel or the stationary distribution or testing stationarity or the order of the Markov chain. However, only a few articles (essentially by Tjøsheim and his coauthors) deal with estimation and hypothesis testing issues in cases where the chain is null recurrent [START_REF]Estimation in threshold autoregressive models with a stationary and a unit root regime[END_REF][START_REF]Nonparametric estimation in a nonlinear cointegration type model[END_REF][START_REF]Nonparametric estimation in null recurrent time series[END_REF][START_REF]Null recurrent unit root process[END_REF][START_REF]Some notes on nonlinear cointegration: A partial review with some novel perspectives[END_REF].

In this thesis, we put our focus on null recurrent chains, speci cally in β-null recurrent ones 7 , that is, Harris recurrent Markov chains such that there exists a small function h, an initial measure λ, a constant β P p0, 1q and a slowly varying

function L h such that E λ « n ÿ t"0 h pX t q ff " 1 Γ p1 `βq n β L h pnq as n goes to `8.
When X is atomic, then X is β-null recurrent if and only if there is a constant CHAPTER 1. INTRODUCTION β P p0, 1q and a slowly varying function L such that P pτ α ą nq "

1 n β L pnq .
This characterization implies that β " sup tp ě 0 : E α rτ p α s ă 8u.

Some of the most well-known examples of β-null recurrent Markov chain are the random walks in R, which are 1{2-null recurrent [START_REF]The sequence of sums of independent random variables[END_REF], the Bessel random walks [START_REF]Excursions and local limit theorems for bessel-like random walks[END_REF], [START_REF]Random walk versus random line[END_REF] and some types of threshold autoregressive (TAR) [START_REF]Estimation in threshold autoregressive models with a stationary and a unit root regime[END_REF] and vector autoregressive processes (VAR) [START_REF]Null recurrent unit root process[END_REF].

Main results

In this section, we describe the motivation and main results of each chapter.

Unless stated otherwise, we assume that X is a Harris recurrent Markov chain with invariant measure π.

General Markov chain theory

In Chapter 2 we provide an overview of the Markov chain theory that will be used throughout the thesis. We make special emphasis on the properties of β-null recurrent Markov chains.

Although the chapter is mostly a recapitulation of the current theory, we have L 1 pE, πq and π pf q ‰ 0, then

S n,f D r0,`8q ÝÝÝÝÑ M β ,
where S n,f ptq " ř tntu j"0 f pX j q πpf qn β Lspnq , and M β is a Mittag-Le er process with parameter β.

Tail index estimation

Motivated by the need to estimate the parameter β for a β-null recurrent Markov chain, in Chapter 3, we address the problem of estimating the tail index for a generalized discrete Pareto distribution. Speci cally, we consider the distribution of a random variable S taking values in N ˚, and whose survival function is as follows:

P pS ą nq " n ´β L pnq for all n ě 1, (1.1) 
where L : R `Ñ R is a slowly varying function.

Statistical inference for discrete heavy-tailed distributions has not received much attention in the literature. Most of the very few dedicated methods documented either deal with very speci c cases as in e.g. [START_REF]Problems with tting to the power-law distribution[END_REF], [START_REF]Estimation of the tail index for lattice-valued sequences[END_REF] or [31] or else consists in applying techniques originally designed for continuous heavy-tailed distributions to the discrete data after a preliminary addition of an independent uniform noise, see e.g. [START_REF]Scale-free networks well done[END_REF]. The vast majority of the regular variation index estimators proposed in the literature, Hill's or Pickand's estimators in particular (cf [START_REF]A simple general approach to inference about the tail of a distribution[END_REF], [START_REF]Statistical Inference Using Extreme Order Statistics[END_REF]), are based on order statistics, which causes obvious di culties in the discrete case because of the possible occurrence of many ties.

In contrast, the estimator that we study in Chapter 3 is based on the analysis of the probability of exponentially separated tail events. It relies on the fact that CHAPTER 1. INTRODUCTION lnpp k q ´lnpp k`1 q " β `lnpLpe k q{Lpe k`1 qq, where p l " PpS ą e l q for all l P N, and that Lpe k`1 q{Lpe k q is expected to be very close to 1 for k su ciently large.

A natural (plug-in) inference technique can be then devised by replacing the tail probabilities p l with their empirical versions p p pnq l " p1{nq ř n i"1 ItS i ą e l u for l P N. This yields the estimator

p β n pkq " ln ´p p pnq k ¯´ln ´p p pnq k`1 ¯. (1.2)
We prove that for an appropriate choice of the hyperparameter k " k n (typically chosen of order lnpnq), the estimator (1.2) is strongly consistent (Theorem For an atomic β-null recurrent Markov chain, let T pnq `1 be the number of times the chain visits the atom and denote by τ 1 , . . . , τ T pnq`1 the times of those visits. In Theorem 3.3.2, we show that the estimator p β remains strongly consistent when we consider S i " τ i`1 ´τi and take n as T pnq. For k n " ln n, this estimator takes the form

p β T pnq pln T pnqq " ln ¨Tpnq ř i"1 I tS i ą T pnqu T pnq ř i"1 I tS i ą eT pnqu ‹ ‹ ‹ ' . (1.3)

Regenerative bootstrap

Since its inception by Efron in [START_REF]Bootstrap Methods: Another Look at the Jackknife[END_REF] for i.i.d. data, bootstrap methods have advanced, giving rise to various bootstrap schemes tailored for both i.i.d. and dependent contexts [START_REF]1 -bootstrap methods for time series[END_REF][START_REF]Resampling methods for dependent data[END_REF]. This has led to their extensive use in a multitude of statistical applications. In many cases, bootstrap techniques deliver more accurate approximations of statistical distributions, con dence interval coverage probabilities, and hypothesis test rejection probabilities when compared to rst-order asymptotic distribution theory (for a detailed discussion, see [START_REF]Bootstrap methods for markov processes[END_REF]).

In the Markovian case, numerous approaches have been developed and examined. The original idea was to estimate the marginal distribution and the transition probability function using nonparametric function estimation techniques and then resample from those estimates. This idea was developed and expanded, among others, in [START_REF]Bootstrapping markov chains: countable case[END_REF][START_REF]Bootstrap methods for markov processes[END_REF][START_REF]Bootstrapping a nite state markov chain[END_REF][START_REF]A markovian local resampling scheme for nonparametric estimators in time series analysis[END_REF][START_REF]The local bootstrap for markov processes[END_REF][START_REF]Bootstrap in markov-sequences based on estimates of transition density[END_REF]. For a detailed explanation of this idea, refer to Section 4 in [START_REF]1 -bootstrap methods for time series[END_REF].

In [START_REF]Bootstrapping markov chains: countable case[END_REF], a distinct approach to this problem was proposed. Instead of employing estimated transition probabilities, the authors made use of the regeneration properties of a Markov chain when an accessible atom is visited in nitely often.

The fundamental idea of this method is to split the chain into a random number of i.i.d. regeneration blocks and then resample an equivalent number of regeneration blocks. This technique, known as the Regeneration based bootstrap, was demonstrated to be valid for nite state atomic chains in [START_REF]Bootstrapping markov chains: countable case[END_REF] and was further extended to general atomic positive recurrent Markov chains in [34].

Building on the concept of exploiting the regenerative properties of Markov chains, the Regenerative Block bootstrap (RBB) was introduced in [START_REF]Regenerative block bootstrap for markov chains[END_REF]. This method simulates the renewal structure of the chain by sampling regeneration data blocks until the length of the reassembled bootstrap series surpasses the original data series length n (note the contrast with the Regeneration based bootstrap, where the number of sampled blocks is equal to the number of regeneration blocks in the original chain). It was demonstrated in [START_REF]Regenerative block bootstrap for markov chains[END_REF] that for atomic positive recurrent Markov chains, the RBB for estimating the integral of a function with respect to 

Nonlinear monotone cointegrated models

In Chapter 5, we study nonlinear cointegrated models such that

Z t " f 0 pX t q `Wt , (1.4) 
where f 0 is a nonlinear function, X t is a Harris recurrent Markov chain and W t is an unobserved process with EpW t |X t q " 0.

The problem of estimating f 0 under the Markovian assumption on X t has been studied using Nadaraya-Watson estimator in [START_REF]Nonparametric regression estimation for multivariate null recurrent processes[END_REF][START_REF]Nonparametric estimation in a nonlinear cointegration type model[END_REF], linear M-type estimators in [START_REF] O S | Local m-estimator for nonparametric time series[END_REF][START_REF]Local linear m-estimators in null recurrent times series[END_REF] and using advanced concepts like local time and nonlinear transformations of Brownian motion-like processes in [START_REF]Limit Theorems for Nonlinear Cointegrating Regression[END_REF][START_REF]Asymptotic theory for local time density estimation and nonparametric cointegrating regression[END_REF][START_REF]Structural nonparametric cointegrating regression[END_REF]. A comprehensive survey of the latest advances in this problem can be found in [START_REF]Some notes on nonlinear cointegration: A partial review with some novel perspectives[END_REF].

To our knowledge, the estimation of f 0 , when it is subject to shape constraints has not been explored under Markovian assumptions. These estimators are non- linear and present considerable theoretical challenges. In the context of independent observations, constraints such as convexity, concavity, and log-concavity are known to be even more intricate than monotonicity constraints (refer to [START_REF]Some Developments in the Theory of Shape Constrained Inference[END_REF][START_REF]Editorial: Special Issue on "Nonparametric Inference Under Shape Constraints[END_REF] and the citations therein). Consequently, in Chapter 5 we focus on the monotone case.

The construction of our estimator is as follows:

Let C be a set whose interior contains our point of interest x 0 . Having observed tpX t , Z t qu n t"0 , we denote by T n pCq the number of times that X visited C up to time n and by σ C piq the time of the i-th visit. Our estimator p f n is then the nonparametric LSE de ned as the minimizer of

f Þ Ñ TnpCq ÿ i"1 `Zσ C piq ´f `Xσ C piq ˘˘2 (1.5)
over the set of non-increasing functions. This estimator can be computed using simple algorithms as discussed in [START_REF]Statistical inference under order restrictions: The theory and application of isotonic regression[END_REF]. Moreover, contrary to the bandwidth in kernel type estimators, C does not depend on n, and the rate of convergence of the estimator does not depend on C.

In Theorem 5.3.1 we show that under very general assumptions, p f n px 0 q is a strongly consistent estimator f px 0 q, and with slightly more restrictive hypotheses, we show in Theorem 5.4.1 that the rate of convergence of p f n is u pnq ´1{3 , where u pnq " n if X is positive recurrent and u pnq " n β L pnq if is null-recurrent. Notice that in the positive recurrent, we obtain the same rate, n ´1{3 , as in the i.i.d. case [START_REF]Nonparametric Estimation under Shape Constraints: Estimators, Algorithms and Asymptotics[END_REF]Chapter 2].

The use of a localized estimator is due to the fact that we need to control the behavior of the chain around x 0 , and, to do this, we need to estimate the asymptotic "distribution" of X in a vicinity of x 0 . For Harris recurrent Markov chains, CHAPTER 1. INTRODUCTION the long-term behavior of the chain is given by its invariant measure. In the positive recurrent case, the invariant measure is nite and it can be estimated by simply considering the empirical distribution function of the X t , however, in the null recurrent case, the invariant measure is only σnite, hence, we need to localize our analysis in a set big enough that the chain visits it in nitely often, but small enough that the restriction of the invariant measure to it is nite. In this regard, two Glivenko-Cantelli type results (Lemmas 5.5.1 and 5.5.3) were obtained for localized Harris recurrent Markov chains, as well as a result (Lemma 5.5.2) that allows controlling the covering number of a class of functions de ned over the localized blocks.

Outline

The rest of the thesis is organized as follows:

• Chapter 2: We provide a recapitulation of Markov chain theory, making special emphasis on the properties and peculiarities of β-null recurrent Markov chains.

• Chapter 3: Is based on [START_REF]Tail index estimation for discrete heavy-tailed distributions with application to statistical inference for regular markov chains[END_REF]. It focuses on the estimation of the tail index of a generalized discrete Pareto distribution. The proposed estimator is shown to be strongly consistent and asymptotically normal in the i.i.d. case. In the case of atomic β-null recurrent chains, it is shown to be strongly consistent.

• Chapter 4: Is based on [START_REF]Regenerative bootstrap for β-null recurrent markov chains[END_REF]. Deals with the regenerative bootstrap on β-null recurrent Markov chains. The Regeneration-based bootstrap and the Regenerative Block bootstrap are shown to be valid for estimating the integral with respect to the invariant measure in the atomic case. Chapter 2

Markov chains

In this chapter, we introduce the basic concepts that will be used throughout the thesis. We will make special emphasis on the properties of Markov chains, especially in null-recurrent ones.

Most of the de nitions and results of this chapter are classic and can be found in [START_REF]Applied Probability and Queues[END_REF][START_REF]Markov chains[END_REF][START_REF]Markov chains and stochastic stability[END_REF][START_REF]General Irreducible Markov Chains and Non-Negative Operators[END_REF][START_REF]Markov Chains[END_REF]. However, in subsection 2. 

Kernels

Through this chapter pE, Eq denotes a measurable space where the σ-algebra E is countably generated 12 . The points of E are called states and pE, Eq is called the state space. With a slight abuse of notation, by E we will also denote the set of measurable functions from pE, Eq to `R, B

`R˘˘, and we will use E `for the 1 A σ-algebra E is countably generated if there exists a countable collection of subsets

tA n u `8 n"1 Ď E such that E " σ ´tA n u `8 n"1 ¯.
2.1. KERNELS collection of measurable functions from pE, Eq to `R`, B `R`˘˘.

De nition 2.1.1 (Kernel on pE, Eq). Function K : pE, Eq Ñ r0, `8s such that i) For every x, the mapping A Ñ Kpx, Aq is a measure on E.

ii) For every A P E, the mapping x Ñ Kpx, Aq is a measurable function from pE, Eq to `R`, B `R`˘˘.

A kernel is said to be σ- This shows that every kernel K on pE, P pEqq can be identi ed with the matrix k px, yq " K px, tyuq @x, y P E.

Operations with Kernels

Given a kernel K on pE, Eq and a function f P E `we can de ne the function

Kf : E Ñ R `as follows:

Kf pxq " ż E f pyq K px, dyq. (2.1) Notice that if K is stochastic, then }Kf } 8 ď }f } 8 .
The following result shows that a Kf is an additive operator on the space of non-negative integrable functions over E.

Theorem 2.1.1. 3 Let K be a kernel on pE, Eq and de ne K :

E `Ñ E `as K pf q "
Kf where Kf is as in (2.1). Then

KERNELS

i) The function K is an additive and positive homogeneous operator over E `.

ii) If tf n u nPN Ă E `is an increasing sequence of functions, then

lim n Ò K pf n q " K ´lim n Ò f n ¯.
The following result establishes a converse Theorem 2.1.2. 4 Let N : E `Ñ E `be an additive and positively homogeneous operator such that lim n Ò N pf n q " N ´lim n Ò f n ¯for every increasing sequence

tf n u nPN Ă E `. Then,
i) The function N px, Aq " N pI A q pxq , x P E, A P E `is a kernel on pE, Eq.

ii) N f " N pf q for all f P E `.

A kernel can also de ne an operator over the set of non-negative measures

MpX q `as it is shown in the following result.

Theorem 2.1.3. 5 For every non-negative measure λ P M pEq `and every kernel K on pE, Eq, the function λK : E Ñ R `de ned as λK pAq "

ż E K px, Aq dλ pxq,
is a measure on pE, Eq.

If K 1 and K 2 are kernels on pE, Eq we de ne their sum and the multiplications by positive scalars in the typical way. We de ne their product (or convolution)

K 1 K 2 as follows K 1 K 2 px, Aq " ż E K 2 py, Aq K 1 px, dyq @x P E, A P E. (2.2) CHAPTER 2. MARKOV CHAINS
The following result shows that K 1 K 2 is indeed a kernel on pE, Eq Theorem 2.1.4. 6 [Product of kernels] If K 1 and K 2 are kernels on pE, Eq, then, the

function K 1 K 2 de ned in (2.
2) is a kernel on pE, Eq. Furthermore, this product is associative and for every function f P E `we have K 1 K 2 pf q " K 1 pK 2 f q .

Example 2.1.5 (Identity kernel). The kernel I, de ned as

I px, Aq " I A pxq " $ ' & ' % 0, x R A 1, x P A
satis es that, for every kernel K on pE, Eq, f P E `and λ P M pEq

IK px, Aq " ż E K py, Aq dδ x pyq " K px, Aq @x P E, A P E, KI px, Aq " ż E I py, Aq K px, dyq " K px, Aq @x P E, A P E, If pxq " ż E f pyq dδ x pyq " f pxq @x P E, λI pAq " ż E I A pxq dλ pxq " λ pAq @A P E.
Therefore, IK " KI " K, If " f and λI " λ. This explains why I is called the identity kernel.

The iterates K n of a kernel K are de ned by setting K 0 " I, and iteratively, K n " KK n´1 . Henceforth, we'll assume that all iterates of K are σnite. Notice that if K is substochastic, all the iterates are substochastic.

An immediate consequence of the associativity of the product of kernels is the celebrated Chapman-Kolmogorov equation. 

G pnq " ř n j"0 K j .
It can happen that G is not σnite, since is possible that G only admits the values 0 and `8. For example, this happens if we take K " I.

The following result resumes the main properties of the potential kernel.

Theorem 2.1.6. Let K be a kernel, then, for any n ě 1

G " n´1 ÿ j"0 K j `Kn G " n´1 ÿ j"0 K j `GK n ,
and for any f P E lim n Ó K n Gf pxq " 0, @x P ty P E : Gf pyq ă 8u .

Proof. This is Proposition 2.1 in [START_REF]General Irreducible Markov Chains and Non-Negative Operators[END_REF].

Closely related to the potential kernel, in the markovian scenario, are the P εresolvent kernels.

De nition 2.1.3. [P ε -resolvent of K] Given a markovian kernel P , for every ε P p0, 1q, the P ε -resolvent kernel is de ned as

P ε px, Aq " p1 ´εq 8 ÿ i"0 ε i P i px, Aq, x P E, A P E. CHAPTER 2. MARKOV CHAINS
The existence of a kernel K on pE, Eq allows us to establish a communication relation in E ˆE as follows:

x Ñ A ô Dn ě 1 : K n px, Aq ą 0.

(2.4) When x Ñ A, we say that A is accessible from the point x. If B is a set and

x Ñ A for every x P B, then we say that A is accessible from B. When B " E, we say that is accessible. In the following two sections, we study the structure induced by this relation.

Closed sets for a Kernel

A closed set will be de ned as a set whose complement is not accessible from any point in A.

De nition 2.1.4 (Closed set). Non-empty set A P E such that K px, A c q " 0 for all

x P A.
We say that a set A is absorbing if K px, Aq " K px, Eq " 1 for all x P E.

Lemma 2.1.1. If K is a kernel de ned in pE, Eq, then i) A set A is closed for K if and only if x Ñ A c for all x P E.

ii) An absorbing set is always closed.

De nition 2.1.5 (Indecomposable set). Set A P E such that are not two disjoint

closed sets B 1 , B 2 Ď A.
When B P E is closed, we denote by K| B the restriction of K to pB X E, E X Bq.

Not surprisingly, K| B is itself a kernel which is called the restriction of K to the Lemma 2.1.2. Let K be a kernel in pE, Eq and B P E a closed set for K, then i) K| B is a kernel in pB X E, E X Bq.

ii) pK| B q n " pK n | B q for all n.

iii) If B is absorbing, the kernel K| B is markovian. iv) K| B c is a kernel in pB c X E, E X B c q and pK| B c q n " pK n | B c q for all n.

Irreducibility

Irreducibility is the idea that all big enough parts of the space can be reached, no matter the starting point. In this section, we formalize this concept.

Let ϕ be a σnite measure on pE, Eq. We say that a set A P E is ϕ-positive if ϕ pAq ą 0. Lastly, for any set B, de ne B `" B Ytx P E : x Ñ Bu " tGI B ą 0u.

De nition 2.1.6 (ϕ-communicating set for K). Set B such that every ϕ-positive

subset A Ď B is accessible from B.
A kernel is ϕ-irreducible if the whole space is ϕ-communicating. In this case, the measure ϕ is called an irreducible measure for K. Notice that, if K is ϕ-irreducible, then A `" E for all A P E such that ϕ pAq ą 0.

Lemma 2.1.3. 7 Let K be a kernel and B a measurable set i) The set B `is either closed of empty.

ii) Every ϕ-communicating set is indecomposable.

CHAPTER 2. MARKOV CHAINS iii) If B is ϕ-communicating then K| B `is ϕI B -irreducible.
iv) Any measure ψ which is absolutely continuous with respect to an irreducibility measure is itself an irreducibility measure.

The ϕ-irreducibility assumption eliminates several forms of reducible behavior.

The de nition ensures that the chain will reach "big" sets (as de ned by ϕ) with positive probability from any starting point, preventing the chain from dividing into separate parts. However, to achieve certain objectives, it's necessary to know that "negligible" sets (B, where ϕpBq " 0) are avoided with certainty from most starting points.

De nition 2.1.7 (Maximal irreducibility measure for K). Irreducibility measure ψ such that all other irreducibility measures of K are absolutely continuous with respect to ψ.

Notice that, by de nition, if a maximal irreducibility measure exists for a kernel K, it is unique up to the equivalence of measures. The following result shows that, for every ϕ-irreducible kernel, there exists a maximal irreducible measure ψ and that accessible sets are precisely the ψ-positive sets.

Theorem 2.1.7.8 Suppose that K is ϕ irreducible i) There exists a maximal irreducibility measure for K.

ii) If ψ is a maximal irreducibility measure and ψ pBq " 0, then ψ pB `q " 0.

When K is irreducible with maximal irreducibility measure ψ, we will denote by E `the subset of all non-negative measurable functions in E `that are ψ-positives, i.e. E `" tf P E `: ψ pf q ą 0u where ψ pf q " ş E f pxq dψ pxq.

2.1. KERNELS

Small functions and small sets

Let K be a kernel with maximal irreducibility measure ψ. We say that K satises the minorization condition M pm 0 , β, s, νq if there exists m 0 P N, β ą 0, s P E ànd a positive non-trivial measure ν such that K m 0 px, Aq ě βs pxq ν pAq for all

x P E and A P E, or, using the tensor product de ned in Example 2.1.3, Hence, the kernel P satis es the minorization condition M p1, 1, I C , µq where µ is the measure de ned by µ pAq " ş A ρ pyq dy.

K m 0 ě βs b ν. ( 2 
A function s P E `is called a small (for the kernel K), if there exist m 0 , β and ν such that the kernel K satis es M pm 0 , β, s, νq. We will denote by S `be the class of all small functions for K. A closely related concept is the following:

De nition 2.1.8 (Small set). Positive set C P E such that its indicator function, I C , is small.

A small function remains small if multiplied by a constant, hence, there is no loss of generality in assuming β " 1. Moreover, if K is a markovian kernel that satis es M pm 0 , β, s, νq, then ν is a nite measure and 1 βνpEq ě s pxq ě 0, therefore, K satis es the condition M ´m0 , 1, βν pEq s, ν νpEq ¯. This means that, in the markovian case, the minorization condition (2.5) is equivalent to the existence of

m 0 P N such that K m 0 ě s b ν, (2.6) 
where 0 ď s pxq ď 1 and ν is a probability measure. In these cases, we will say that the markovian kernel P satis es the minorization condition M pm 0 , s, νq and if m 0 " 1, we will call the pair ps, νq an atom for the kernel K. This condition will be crucial in section 2.2.8.

Remark 2.1.1. In Example 2.1.6, we have that ps, νq is an atom for the kernel P , where spxq " KI C and ν " µ K with K " ş E ρ pyq dy.

Notice that if a markovian kernel P satis es the minorization condition M pm 0 , s, νq, then, for all ε P p0, 1q , x P E and A P E we have P ε px, Aq ě p1 ´εq ε m 0 P m 0 px, Aq ě p1 ´εq ε m 0 s pxq ν pAq , from where the next result follows immediately.

Theorem 2.1.8. Suppose a markovian kernel P satis es the minorization condition M pm 0 , s, νq, then for any ε P p0, 1q, the pair `p1 ´εq ε m 0 s, ν ˘is an atom for the P ε -resolvent.

KERNELS

From its de nition, it is not evident that small functions exist. However, the following theorem shows not only that they exist for any irreducible kernel, but also that there are plenty of them.

Theorem 2.1.9.10 [Existence of small functions and sets] If K is an irreducible kernel with maximal irreducibility measure ψ, then i) S `‰ H.

ii) For every A P E such that ψ pAq ą 0, there exists C Ď A, such that C is small.

Corollary 2.1.1. If P is an irreducible markovian kernel, then, every P ε -resolvent satis es the minorization condition M p1, s ε , νq, where ν does not depend on ε.

Invariant measures

By Theorem 2.1.3, a kernel K de nes an operator in M pEq `. The xed points for this operator, if they exist, are called invariant measures.

De nition 2.1.9 (Invariant measure for kernel K). σnite measure π P M pEq such that πK " π.

The following result shows that the sets of invariant measures for a markovian kernel coincide with the set of invariant measures of any of its ε-resolvents. 

Stochastic process

Let pΩ, F, Pq be a probability space, pE, Eq a measurable space and T a set.

A collection of E-valued random variables indexed by a totally ordered set T is called a E-valued stochastic process.

If X is an E-valued random variable, we'll denote by L pXq its probability distribution (or its law), de ned as the probability measure induced by X in pE, Eq i.e. L pXq pAq " P pX P Aq for all A P E.

A collection of σ-algebras indicates that the stochastic process tX t u tPT is adapted to the ltration tF t u tPT .

F t of F such that F s Ď F t for

MARKOV CHAINS

The σeld F t can be interpreted as the information available at time t. When a process is adapted, it means that the probability of events related to X t can be computed using solely the information available at time t.

Every stochastic process tX t u tPT is trivially adapted to the ltration

F X t ( tPT ,
where F X t " σ pX s , s ď tq. This ltration is named the internal history.

Remark 2.2.1. When T is countable, an adapted stochastic process tX t , F t u tPT can be viewed as an element of Ψ E " ś tPT E, measurable with respect to G " σ p Ť tPT F t q.

Homogeneous Markov chains

Loosely speaking, a Markov Chain is a stochastic process that it is forgetful of all but its most immediate past. The formal de nition is as follows:

De nition 2.2.2 (Markov Chain). Let pΩ, F, tF n u nPN , Pq be a ltered probability space. An adapted Stochastic process tX n , F n u nPN is a Markov Chain if for all n P N and all A P E P pX n`1 P A|F n q " P pX n`1 P A|X n q P ´a.s.

(2.7)

The distribution L pX 0 q of X 0 is called the initial distribution of the chain. 

A
(
nPN to ease the notation.

If the kernel of a homogeneous Markov chain is ϕ-irreducible we will say that the chain X is ϕ-irreducible and that ϕ is an irreducibility measure for X. When we do not need to specify the irreducibility measure, we will just say that X is irreducible. Similarly, we will say that a set 

A P E is accessible from B if A is
P pX 0 P A 0 , X 1 P A 1 , . . . , X n P A n q " ż A 0 µ pdx 0 q ż A 1
P px 0 , dx 1 q . . .

ż An P px n´1 , dx n q. (2.10)
for all n ě 0, A 0 , . . . , A n P E. Moreover, for every µ and P there exists a probability space containing a homogeneous Markov Chain with kernel P and initial measure µ.

If we take A i " E, i " 1, . . . , n ´1 in (2.10), we obtain,

P pX n P Aq " ż E µ pdx 0 q ż E P px 0 , dx 1 q . . . ż E P px n´2 , dx n´1 q ż A P px n´1 , dx n q " ż E µ pdx 0 qP n px 0 , Aq " µP n pAq, (2.11) 
for any A P E, therefore, L pX n q " µP n . Similarly, taking µ " δ x in (2.10) for a xed x P E, we get that P pX n P A|X 0 " xq " P n px, Aq @n ě 1, A P E, x P E.

(2.12)

Conditioning on X 0 " x, we will write P x pX n P Aq instead of P pX n P A|X 0 " xq, and for a measurable function f , we will write E x f pX n q instead of E rf pX n q |X 0 " xs.

The equality (2.10), known as the Markov property 12 , has the following equivalent in terms of expectations. 

ś ně0 E, measurable with respect to G " σ `Ťně0 F n ˘.
The shift operator θ : Ψ E Ñ Ψ E is de ned as θ ptx 0 , x 1 , . . . , x n , . . .uq " tx 1 , x 2 , . . . , x n , . . .u and its iterations are de ned inductively by

θ 1 " θ, θ k`1 " θ ˝θk , k ě 1.
When 

Examples

In this section, we give some examples of time-homogeneous Markov Chains.

Example 2.2.2 (Countable space Markov Chain). 14 Suppose that the space E is discrete and E is the σ-algebra of all the subsets of E. Let X be a homogeneous Markov Chain with initial distribution µ and kernel P .

The initial probability µ satis es µ pAq " ř xPA µ ptxuq and the kernel P can be identi ed with the transition matrix M M px, yq def " P pX n`1 " y|X n " xq " P px, tyuq x, y P E, n ě 0, and satisfying M n px, yq " P n px, tyuq, where M n is the usual power of matrices.

From (2.11) and (2.12) we obtain, for all x, y P E, n ě 0

P pX n " y|X 0 " xq " M n px, yq , P pX n " yq " ÿ xPE µ pxq M n px, yq.
For our next example, consider a scenario where a person plays a series of rounds of a game in a gambling house. On each round, a game is played and an amount is won or lost, with the successive totals of the amounts representing the uctuations in the gambler's fortune. It is reasonable to assume, that if the same game is played each time, then the winnings Z n at each time n are i.i.d. In this context, the total winnings or losings at time n can be represented by X n where

X n`1 " X n `Zn`1 n ě 1.
This stochastic process is called a random walk and is, perhaps, the most wellknown instance of a Markov chain. In the following example, we give its formal de nition and the form of its kernel.

Example 2.2.3. [Random walk in R] 15 Let tZ n u nPN be a sequence of i.i.d. random variables with common distribution Z and X 0 is a random variable, independent of tZ n u nPN such that L pX 0 q " µ. The process X " tX n u ně0 de ned by

X n`1 " X n `Zn`1 n ě 1,
is a Markov chain in pR, B pRqq with initial measure λ " L pX 0 q and kernel P given by, P px, Aq " P pZ `x P Aq @x P R, A P B pRq .

Example 2.2.4 (Simple symmetric random walk). Random walks can also be dened over Z. A well-known example in this scenario is the simple symmetric random walk. De ned as in Example 2.2.3, but with

P pZ 1 " 1q " 1 2 , P pZ 1 " ´1q " 1 2 .
This random walk and its variation has been widely studied. See [START_REF]Random Walk in Random and Non-Random Environments[END_REF] for an excellent CHAPTER 2. MARKOV CHAINS compendium of the theory.

In a queuing system, let s n be the time of service of the n-th customer and take t n as the arrival epoch of the n-th customer. The waiting time, X n of the n-th customer before service is then,

X 1 " 0 X n`1 " max pX n `sn ´pt n`1 ´tn q , 0q n ą 1.
If we assume that s 1 , . . . are i.i.d. and t 1 , t 2 ´t1 , . . . are also i.i.d. and independent of ts n u ně0 , then, the sequence of random variables ts n´1 ´pt n ´tn´1 qu ně1 is i.i.d. and the process X n is a Markov chain as the following example shows.

Example 2.2.5 (Random walk on a half line). 16 Let X 0 and tZ n u nPN be as in Example 2.2.3, de ne X n iteratively as follows

X n`1 " max pX n `Zn`1 , 0q n ě 1.
In section 3.5.1 of [START_REF]Markov chains and stochastic stability[END_REF], it is shown that this process is a Markov chain in pR `, B pR `qq.

Its kernel P is de ned as follows: For any A P B pR `q such that A Ď p0, `8q P px, Aq " P pZ `x P Aq @x ě 0, whilst, P px, t0uq " P pZ ď ´xq .

The chain X follows the path of a random walk but is restricted to stay at zero when- 16 Example RWHL1 in [START_REF]Markov chains and stochastic stability[END_REF]. Also, example 1.2 d) in [START_REF]General Irreducible Markov Chains and Non-Negative Operators[END_REF]. For our last example, suppose we are interested in modeling the exchange rate X n between two currencies. This can be represented as a function of its past several values X n´1 , ..., X n´p , modi ed by the volatility of the market which is incorporated as a disturbance term Z n (see pp.4 in [START_REF]Markov chains and stochastic stability[END_REF]). The auto-regressive model shown below describes the essential behavior of such a system.

Example 2.2.6 (Auto-regressive process: ARppq).17 Let α " α 1 , . . . , α p be real numbers, tZ n u nPN a sequence of i.i.d. real-valued random variables with nite variance and X 0 , X ´1, . . . , X ´p`1 random variables independent of tZ n u nPN . For n ą 0, de ne X n as

X n " α 1 X n´1 `α2 X n´2 `¨¨¨`α p X n´p `Zn .
Assume that the roots of the polynomial 1 ´α1 x ´α2 x 2 ´¨¨¨´α p x p are all outside the unit circle. Then, the vector process X " pX n , X n´1 , . . . , X n´p`1 q t ( ně0 , known as a causal ARppq process, is a Markov chain in pR p , B pR p qq. This process can be written in matrix form as

X n " αX n´1 `BZ n , where α " ¨α1 α 2 . . . α p 1 0 . . . 0 . . . . . . . . . 0 . . . 1 0 ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ' , B " ¨1 0 . . . 0 ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ '
.

The kernel of this process is P px, Aq " P pαx `BZ 0 P Aq x P R p , A P B pR p q . (2.17)

We will write T n pAq for number of visits to A up to time n. This sequence is called the occupation time sequence.

De nition 2.2.6 (Hitting times and return times). For A P E, the time of rst visit σ A and the time of rst return τ A by the Markov Chain X to the set A are de ned by σ A " inf tn ě 0 : X n P Au .

(2.18)

τ A " inf tn ě 1 : X n P Au . (2.19)
where we use the convention that inf H " `8. The subsequent return times τ A pkq, k ě 1 are de ned inductively as follows

τ A p1q " τ A τ A pkq " min tn ą τ A pk ´1q : X n P Au (2.20)
For any set A P E, T pAq, τ A and σ A are measurable functions from Ω to Z `.
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Let U px, Aq " E x T pAq and denote by G P the potential kernel of P , by Theorem 2.1.6, we obtain,

U px, Aq " E x T pAq " `8 ÿ n"1 P n px, Aq " G P P px, Aq .
An analysis of the number of visits to a given set often requires consideration of the behavior after the rst visit to the set, rather than the behavior after xed times. Markov chain theory is noteworthy for its "forgetfulness" properties holding for stopping times, which are random interruptions, as well as for xed times n.

De nition 2.2.7 (Stopping time).

A function ζ : Ω Ñ Z `is a stopping time for the Markov Chain X, if for any initial distribution µ, the event tζ " nu P F X n for all n ě 0.

Notice that

tσ A " nu " n´1 č i"0 tX y R Au ď tX n P Au ,
and tτ " nu " Ş n´1 i"1 tX y R Au Ť tX n P Au, therefore, for any A P E, both σ A and τ A are stopping times for X.

The following result expresses the distribution of τ A and σ A conditioned to the starting point in terms of the kernel P .

Theorem 2.2.3. For all x P E, A P E,

P x pτ A " kq " pP I A c q k´1 P px, Aq , (2.21) 
P x pσ A " 0q " I A pxq . Moreover, if x P A c P x pσ A " nq " P x pτ A " nq .
From (2.21) we obtain that the probability that the chain ever returns to a A starting from the state x is P x pX ever visits Aq "

8 ÿ k"1 pP I A c q k´1 P px, Aq.
The Markov Property holds for any bounded, measurable function and any xed time n, the strong Markov Property allows us to extend it to random stopping times. Before stating this fundamental property, we need some de nitions.

Let ζ be a stopping time. Then X ´1 ζ pAq "

Ť 8 n"0 ! tX ´1 n pAqu X tζ " nu ) for any A P E, hence, X ζ is a random variable. De ne F X ζ " A P F : tζ " nu X A P F X n @n ě 0 ( , which represents the his- tory of the chain until the stopping time ζ. Finally, if H " h pX 0 , X 1 , . . .q is a ran- dom variable, de ne the shift θ ζ as θ ζ H " h pX ζ , X ζ`1 , . . .q on the set tζ ă 8u.
Then, Theorem 2.2.4 (Strong Markov property). 18 Let X be a Markov chain. For any initial distribution µ, any real-valued bounded measurable function h on Ψ E and any stopping time ζ, it holds that

E µ " θ ζ H|F X ζ ‰ " E X ζ rHs P µ a.s. (2.22)
on the set tζ ă 8u.

The strong Markov property tells us that the process tX ζ`k u, restricted to tζ ă 8u, is a Markov chain with the same kernel as the original chain and independent of the chain's history up to τ .
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Recurrence and transience

In this section, we will delve into the fundamental concepts of recurrence and transience in the context of Markov chains, which are very important in order to understand the long-term behavior of a Markov chain. 

De

Aperiodicity

A key concept in Markov chains is aperiodicity, which refers to the property of a state having a nite number of steps before returning to the same state. In other words, aperiodicity describes the pattern of repeating states in a Markov chain.

This section is formalize this concept.

Let X be a ψ-irreducible Markov chain, by Theorem 2.1.9, there exists a small set C P E, i.e. there exists m 0 P N and a measure ν P M pEq `such that ν pCq ą 0 and P m 0 px, Aq ě ν pAq @x P C, A P E.

Then, if the chain starts in C, there is a non-zero probability that the chain will return to C at time m 0 . De ne E C as the set of natural numbers m such that P satis es the minorization condition M pm, I C , γ m νq for some γ m P R `, i.e.

E C " tm P N : Dγ m P R `such that P m px, Aq ě γ m ν pAq @x P C A P Eu .
The set E C is closed under addition and the greatest common divisor of the elements of E C belongs to E C . The following Theorem shows that this greatest common divisor is a property of the whole chain X, and is independent of the particular small set chosen.

Theorem 2.2.6. Suppose X is an irreducible Markov chain with maximal irreducibil-ity measure ψ. Let C P E be a small set and denote by d the greatest common divisor of the set E C . Then, there exists disjoint sets D 1 , . . . ,

D d´1 P E (called a d-cycle) such that i) for x P D i , P px, D i`1 q " 1, i " 0, . . . , d ´1 p mod dq. ii) the set N " ´Ťd´1 i"0 D i ¯c is ψ-null.
Moreover, the d-cycle is maximal in the sense that for any other collection D 1 0 , . . . , D Most of the results that we obtain in this thesis assume that the chain is aperiodic. In practice this is not greatly restrictive, since Theorem 2.2.7. Let X be a ψ-irreducible Markov chain with period d and d-cycle

tD 1 , . . . , D d u.
Then, each of the sets D i is an absorbing ψ-irreducible set for the chain

X d corresponding to the transition kernel P d . X d on each D i is aperiodic.
Notice that if for a small set C there exist β ą 0 and a measure ν P M pEq such that the minorization condition M p1, βI C , νq is satis ed, then the chain is automatically aperiodic. These types of chains are called strongly aperiodic.

Theorem 2.2.8. 19 If X is an irreducible Markov chain, then every P ε -chain is strongly aperiodic for all 0 ă ε ă 1.
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The nal result of this section, which is a direct consequence of Theorem 2.1.9,

shows that if a chain is aperiodic we can nd a m-skeleton that is strongly aperiodic.

Theorem 2.2.9. Suppose that X is ψ-irreducible, aperiodic chain, then, every skeleton of X is ψ-irreducible and aperiodic and there exists m such that the m-skeleton is strongly aperiodic.

Atoms

De nition 2.2.15 (Atom for X). Set α P E such that

P px, Aq " ν pAq , x P α,
for some measure ν on E. If X is ϕ-irreducible, and ϕ pαq ą 0 then α is called an accessible atom. A Markov chain with an accessible atom is named an atomic chain.

If α is an atom for X, with a slight abuse of notation we will write P pα, 'q to represent the measure ν.

A simple consequence of the existence of atoms is the irreducibility of the chain under mild conditions. In e ect, by (2.3), for any x P E, A P E and n ě 1, we have

P n`1 px, Aq ě ż α P n px, dyq P py, Aq " ż α P n px, dyq P pα, Aq ě P n px, αq P pα, Aq ,
then, U px, Aq ě ν pAq U px, αq. Hence, if U px, αq ą 0 for all x P X, any set A such that ν pAq ą 0 will be accessible, which shows that X is ν-irreducible.

Theorem 2.2.10. Suppose there is an atom α in X such that U px, αq ą 0 for all

x P E. Then X is ν-irreducible, with ν " P pα, 'q and α is an accessible atom.

Remark 2.2.3. In section 2.1.8 we de ned an atom for a kernel P as a pair ps, νq,where s P E `and ν is a probability measure, that satis es P ě sbν. Notice that if X has an accessible atom α, then, P satis es the minorization condition M p1, I α , P pα, 'qq, therefore, the pair pI α , P pα, 'qq is an atom for the kernel P and α is a small set.

Moreover, pP ´Iα b P pα, 'qq px, Aq " I α c pxq P px, Aq @x P E, A P E.

Theorem 2.2.11. 20 [Atomic maximum principle] If the Markov chain X has an accessible atom α, then, U px, αq " P x pσ α ă 8q U pα, αq @x P E.

An important property of an accessible atom is that it can be used to characterize accessible sets. Essentially, a measurable set is accessible if and only if it can be accessed from the atom, in a nite time, with non-zero probability.

Theorem 2.2.12. 21 Let X be an atomic Markov chain with accessible atom α and

A P E, then i) A is accessible if and only if P α pτ A ă 8q ą 0. ii) If A is not accessible, then A c is accessible.
The following result indicates that atoms are either recurrent or transient. Furthermore, it shows that, in any atomic chain, accessible atoms are either all recurrent or all transient.

CHAPTER 2. MARKOV CHAINS Theorem 2.2.13. 22 Let X be a Markov chain with an atom α.

i) α is recurrent if any of the following equivalent properties is satis ed (a) P α pτ α ă 8q " 1,

(b) P α pT pαq " 8q " 1, (c) U pα, αq " 8
ii) α is transient if any of the following equivalent properties is satis ed

(a) P α pτ α ă 8q ă 1, (b) P α pT pαq ă 8q " 1, (c) U pα, αq ă 8
iii) If α is accessible and recurrent, any atom β satisfying P α pτ β ă 8q ą 0 is accessible and recurrent and P α pT pβq " 8q " P β pT pαq " 8q " 1.

iv) If α is recurrent and there exists an accessible atom β, then α is accessible.

From parts iii and iv of Theorem 2.2.13, we have that accessible atoms are either all recurrent or all transient. The next result shows that, in the atomic chain scenario, the recurrence or transience of an accessible atom characterizes the recurrence or transience of the chain.

Theorem 2.2.14. 23 Suppose X is an atomic Markov chain with accessible atom α.

Then it holds: i) X is recurrent if and only α is recurrent.

ii) X is transient if and only α is transient.
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For an atom α in X, de ne a measure π α as follows:

π α pAq " E α ˜τα ÿ k"1 I A tX k u ¸. (2.23)
The following theorem shows that α is recurrent if and only if π α is invariant for the kernel.

Theorem 2.2.15. 24 [Existence of an invariant measure] Let X be an atomic Markov chain with kernel P possessing and accessible atom α.

Then, i) If α is recurrent, then π α is invariant for P . ii) If π α is invariant for P , then α is recurrent.
iii) If α is recurrent, then every other invariant measure π is proportional to π α , satis es π pαq ă 8 and π pBq " π pαq π α pBq @B P E.

Part iii) of the previous result tells us that an atomic Markov chain has a unique, up to a multiplicative constant, invariant measure. The celebrated Kac's theorem uses this to characterize the positivity of irreducible atomic chains.

Theorem 2.2.16. [Kac's Theorem]25 Suppose that α is a recurrent atom for the atomic Markov chain X with kernel P . Then, X is positive recurrent if and only if E α τ α ă 8;

and if π is the invariant probability measure for X, then π " πα Eατα .

The following construction, presented in [START_REF]Null recurrent unit root process[END_REF], allows us to construct, given a random variable Z, an atomic Markov chain where L pτ α q " L ptZuq.

Example 2.2.7. Let Z n be a sequence of i.i.d. random variables. De ne

X n as CHAPTER 2. MARKOV CHAINS X n " $ ' & ' % X n´1 ´1, if X n´1 ą 1, Z n , if X n´1 P r0, 1s .
Then, X n is an irreducible Markov Chain and the interval r0, 1s is an atom for the chain. Moreover, P x `τr0,1s ą n ˘" P ptZ 1 u ą nq.

We have saved for last what is perhaps the most important property of atomic chains: the Block decomposition. This property enables us to partition an atomic chain into independent blocks, which facilitates the study of this type of Markov chain, making it comparable to the i.i.d. case.

Theorem 2.2.17 (Block decomposition). 26 Let X be an atomic Markov chain with an accessible atom α. Then, for any initial measure λ P M pEq `such that P λ pτ α ă 8q "

1 the following random blocks B 0 " `X0 , X 1 , . . . , X ταp1q B1

" `Xταp1q`1 , . . . , X ταp2q .

. .

B n " `Xταpnq`1 , . . . , X ταpn`1q .

. . are independent, and among them, tB n u ně1 are i.i.d. with common law L Pα `X0 , X 1 , . . . , X ταp1q ˘.

As an application of Theorem 2.2.17 we will show how it can be used to study the sums of the values of a function over X.

Let f be a function de ned over E and de ne the random variables f pB 0 q " 2.2. MARKOV CHAINS ř τα j"0 f pX j q and for n ě 1,

f pB n q " ταpn`1q ÿ j"ταpnq`1 f pX j q.
The next result is an immediate consequence of Theorem 2.2.17.

Theorem 2.2.18 (Independence of the excursions). If X is an atomic Markov chain with a recurrent atom α, then, under P α , the sequence tf pB n qu nPZ `is i.i.d. Moreover, for every initial measure λ P M pEq `such that P λ pτ α ă 8q " 1, the random variables f pB n q , n P Z `are independent and for n ě 1 they are i.i.d.

For any measurable function f de ned on E we will denote by S n pf q the partial sums of f over the chain, that is

S n pf q " n ÿ k"0 f pX k q. (2.24) 
For a xed atom, Theorem 2.2.18 allow us to express S n pf q as a sum of independent random variables as follows:

S n pf q " f pB 0 q `Tpnq ÿ j"1 f pB j q `n ÿ i"ταpT pnq`1q`1 f pX i q, (2.25) 
where T pnq " T n pαq ´1 counts the number of i.i.d. blocks up to time n. This term is called number of regenerations up to time n.

The following random Law of Large Numbers follows from (2.25), Theorem 6.8.1 in [START_REF]Probability : a graduate course[END_REF] and the fact that E rf pB i qs " π α pf q for i ě 1.

Theorem 2.2.19.27 Let X be an atomic Markov chain with an accessible atom α and let f be a π α -integrable function. Then, for every initial distribution µ such that

P µ pτ α ă 8q " 1, S n pf q T pnq Ñ π α pf q P µ ´a.s.
This random Law of Large Numbers suggests that if we standardize by the number of complete blocks, we can derive a version of the Central Limit Theorem.

In the positive recurrent scenario, the following result con rms the validity of this approach. In the null recurrent case, it is also true provided that the time of return to the atom does not have an excessively heavy tail. Before stating the theorem, we need a de nition.

De nition 2.2.16 (Slowly varying functions). Measurable and positive function L,

de ned in ra, `8q for some a ě 0, that satis es

lim xÑ`8 L pxtq L pxq " 1 @t ě a.
Two slowly varying functions are said to be equivalent if lim xÑ`8

Lpxq L 1 pxq " 1. A fundamental result in the theory of slowly varying functions28 indicates that if L is a slowly varying function then, for every α ą 0, there exists an equivalent version L α of L such that x α L α pxq is strictly increasing and continuous in rx α , `8s for some x α ě 0. These L α are called normalizations of L.

Remark 2.2.4. Throughout this thesis, all slowly varying functions are unique up-to equivalence and, without loss of generality, we always use normalized versions.

Theorem 2.2.20. [CLT with random number of terms] Suppose X is an atomic, positive recurrent Markov chain with an accessible atom α.

Let f P L 1 pE, π α q such that 2.2. MARKOV CHAINS Var α rf pB 1 qs is nite, then, a T pnq ˜řTpnq i"1 f pB i q T pnq ´πα pf q ¸d Ý Ñ N p0, Var rf pB 1 qsq . (2.26) and a T pnq ˆSn pf q T pnq ´πα pf q ˙d Ý Ñ N p0, Var rf pB 1 qsq . (2.27)
Moreover, if X is null recurrent and satis es

P pτ α ą nq " 1 n β L pnq (2.28)
where 0 ă β ă 1 and L is slowly varying, then (2.26) holds, and, if in addition

E " p|f | pB 1 qq 2 ‰ ă `8 then (2.
27) also holds.

The proof of Theorem 2.2.20 relies on being able to control the behavior of

T pnq in such a way that the convergence in distribution of ? n ´řn i"1 f pB i q n ´πα pf q does not change when we replace n by T pnq.

For positive recurrent chains, this is achieved thanks to Anscombe's Theorem,29 using the fact that n T pnq a.s.

Ý Ý Ñ E α τ α . The details of the proof can be found in section 6.7 of [START_REF]Markov chains[END_REF]. 30In the null recurrent case, Anscombe's Theorem approach does not work because, even with the tail condition (2.28), T pnq can only be controlled in distribution. Hence, in this scenario, the proof is based on the functional convergence of the stochastic processes

? n ˆřtntu i"1 f pB i q n ´πα pf q ˙and T ptntuq n β Lpnq (see Theorem 2.2.39),
and a deep result by [START_REF]Limit theorems for lévy processes and poisson point processes and their applications to brownian excursions[END_REF] that implies the functional convergence of the joint pro-CHAPTER 2. MARKOV CHAINS cess. The full proof can be found in [START_REF]General glivenko-cantelli theorems[END_REF]. 31 In the positive recurrent case, Theorem 2.2.20 can be improved to have a formulation very similar to the CLT for i.i.d. data. In e ect, assume that X is positive recurrent with invariant probability measure π and f satis es the conditions of Theorem 2.2.20. De ne the function r f " f ´π pf q, then π α ´r f ¯" π α pf ´π pf qq " π α pf q ´πα pEq π pf q which equals 0 by Kac's theorem. Applying (2.27) to r f and using Slutsky's Theorem 32 to replace T pnq by n, we get the following result:

Theorem 2.2.21. 33 [CLT for atomic positive recurrent Markov chains] If X is an atomic, positive recurrent Markov chain with an accessible atom α and invariant probability measure π and f P L 1 pE, π α q is such that Var α rf pB 1 qs is nite, then,

n ´1 2 n ÿ k"1 ´f pX k q ´π pf q ¯d Ý Ñ N ¨0, Var " r f pB 1 q ı E α τ α ', (2.29) 
where

Var " r f pB 1 q ı " E α » - ˜τα ÿ k"1
´f pX k q ´π pf q ¯¸2 fi fl .

Observe that the only dissimilarity between (2.29) and the CLT for i.i.d. data lies in the form of the variance.

Remark 2.2.5. In the null-recurrent case, due to the fact that π is σnite but not nite, if f is such that π pf q ‰ 0, then there is no deterministic recentering.

Atomic chains are not rare, for example, when E is countable (Example 2.2.2)

31 See page 1140 for (2.26) and their equation ( 6) for (2.27). 32 Theorem 5.11.4, pp 248 in [START_REF]Probability : a graduate course[END_REF]. 33 Theorem 6.7.1 in [START_REF]Markov chains[END_REF].

every singleton (set with only one element) is an atom, and if the chain is irreducible, then every singleton is an accessible atom. In the case of the Random Walk on a half line, as described in Example 2.2.3, the set t0u is an accessible atom if PpZ ă 0q ą 034 . However, the reason for studying atoms is not just because of the existence of accessible singletons in some models, but rather the ability to arti cially construct sets with an atomic structure by extending the probabilistic structure of the chain in the irreducible case. This permits the application of decomposition of the chain into separate, identical parts (via Theorem 2.2.17) which serve as building blocks in subsequent analysis.

Splitting

In this section, we will show how to "construct" atomic chains from irreducible chains. The idea is to construct a split chain X in a split space Ě " E 0 Y E 1 where E i are "copies", in a speci c sense, of the original space E, in such a way that:

i) The original chain X is a marginal chain of X, in the sense that for all initial distribution λ, A P E and n ě 0 we have λP n pAq " λ P n `Ǎ ˘, where P , λ and Ǎ are respectively a kernel, an initial probability and a measurable set de ned in the split space.

ii) E 1 is an accessible atom for X.

Let us assume, for the moment, that X is a ϕ-irreducible Markov chain and its kernel P satis es the minorization condition M p1, s, νq, that is, there exist a small function s, taking values in the interval r0, 1s, and a non-trivial probability measure ν such that

P ě s b ν. (2.30) CHAPTER 2. MARKOV CHAINS
The minorization condition (2.30) allows us to de ne the following sub-stochastic kernel in pE, Eq,

Q px, Aq " $ ' ' & ' ' %
p1 ´s pxqq ´1 rP px, Aq ´s pxq ν pAqs , s pxq ă 1

I A pxq , s pxq " 1.
(2.31)

By using Q, we can break down P into two parts:

P px, Aq " s pxq ν pAq `r1 ´s pxqs Q px, Aq .

(2.32) Remark 2.2.6. Consider the set C " tx P E : s pxq " 1u. If ϕ pCq ą 0, then C is a small set 35 , therefore, P px, Aq ě ν pAq for all x P C and A P E, which implies that C is an accessible atom for X and P px, Aq " ν pAq @x P C, A P E36 .

The decomposition (2.32) indicates that a transition starting from any state x in E can be thought of as happening in two steps. First, a coin is ipped with the probability of landing on "head" equal to s pxq. If "head" comes up, the Markov chain moves based on the probability law of ν, otherwise, it moves based on Q px, 'q.

The most important aspect here is that getting "head" results in a transition law that is independent of the state x.

To properly formalize this heuristic, we will work on the space `Ě, ̢d e ned as the product of the measurable spaces pE, Eq and pt0, 1u , P pt0, 1uqq. We will use the term split space to refer to both the set Ě and the measurable space `Ě, ̢.

For all x P E, A P E we denote

x 0 " px, 0q , x 1 " px, 1q ; Ǎ0 " A ˆt0u , Ǎ1 " A ˆt1u , Ǎ " A ˆt0, 1u .
In the following, we identify each set A P E with its corresponding set Ǎ P Ě, as de ned in the previous paragraph. Thus, the σ-algebra E can be viewed as a subset of Ě. For any measure λ P M pEq `, we can de ne its extension λ to M `Ě ˘`by setting its values on the sets Ǎi (where A P E and i " 0, 1) as follows:

λ `Ǎ 0 ˘" ż A `1 ´s pxq ˘dλ pxq , λ `Ǎ 1 ˘" ż A s pxq dλ pxq.
A E-measurable function f , is extended to a Ě-measurable function by setting f px 0 q " f px 1 q " f pxq. With these de nitions, for every E-measurable function f and every measure λ P M pEq `we have ş

E f pxq dλ pxq " ş Ě f pzq d λ pzq.
Now the nal and most subtle step in the construction of the split chain is to build a kernel P in `Ě, ̢t hat expresses the heuristic we described before. For

x P E and Ǎ P Ě de ne the following kernel 37 on the split space

P `x0 , Ǎ˘" $ ' ' & ' ' % ν `Ǎ ˘, x P ts pxq " 1u , Q `x, Ǎ˘, x P ts pxq ă 1u ; P `x1 , Ǎ˘" ν `Ǎ ˘,
where Q px, 'q is de ned as the extension to `Ě, ̢o f the measure Q px, 'q.

Let X " `X n , Yn ˘(ně0 be a Markov chain (de ned in the split space) with initial measure λ and kernel P . It was shown in pp.61 of [START_REF]General Irreducible Markov Chains and Non-Negative Operators[END_REF] that, for any x P E, A P E the random variables Xn and Yn satisfy P `X n`1 P A| Xn " x ˘" P px, Aq ,

P `Y n " 1| Xn " x ˘" s pxq , P `X n`1 P A| Yn " 1 ˘" ν pAq , P `X n`1 P A| Yn " 0, Xn " x ˘" Q px, Aq .
The following theorem shows that the bivariate process X is an atomic Markov chain and the distribution of its rst component is identical to the distribution of our original chain.

Theorem 2.2.22. 38 The split chain X is an atomic Markov chain and the set Ě1 " E ˆt1u is an accessible atom. Moreover, for any probability measure λ on pE, Eq, the marginal distribution of the rst component Xn ( of the split chain X and the distribution of the original chain X are identical. In particular, λ P n `Ǎ ˘" λP n pAq @A P E.

In the following, we will identify the original chain with Xn and we will write X n instead of Xn . We will denote by α the atom Ě1 and we will write P α for the probability measure de ned on σ ´YnPN F X n ¯and corresponding to the initial state Y 0 " 1, i.e. P α " L `Xn , Yn , n ě 1|Y 0 " 1 ˘. Similarly, for any x P E, we will denote by P x the probability measure corresponding to the initial state X 0 " x.

Theorem 2.2.23. 39 The split kernel P satis es i) P n p α, Aq " P α pX n P Aq " νP n´1 pAq @A P E, n ě 1.
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ii) P px, αq " P x `Y n " 1 ˘" E x rs pX n qs " P n s pxq @x P E, n ě 0.

Theorem 2.2.24. 40 Let σ α and τ α be the hitting and return times of the atom α in the split chain, then i) P α pτ α " nq " ν pP ´s b νq n´1 s for n ě 1.

ii) P x pσ α " nq " pP ´s b νq n s pxq for x P E and n ě 0.

iii) P α pX n`1 P A X τ α ě n `1q " ν pP ´s b νq n pAq for all A P E.

Remark 2.2.7. If X has an atom α, remark 2.2.3 shows that it satis es the minorization condition M p1, I α , P pα, 'qq and P ´Iα b P pα, 'q " I α c P . In this case, the auxiliary process Y is de ned as Y n " I α pX n q and all the results in this subsection hold.

At the beginning of this section, we assumed that the kernel P satis ed the minorization condition M p1, s, νq. This assumption is not too strict, because, by Corollary 2.1.1 and Theorem 2.1.9, we have that if X is ϕ-irreducible with kernel P , then the P ε -chains are strongly aperiodic and there exists m such that the minorization condition M p1, s, νq is satis ed for P m . Therefore, we can apply Theorem 2.2.22 to the P ε -chains (and to some m-skeleton chain) and construct a split chain. A typical proof of a property P for X using this technique is as follows:

Step 1 Prove P for atomic chains.

Step 2 Apply Theorem 2.2.22 to construct the split chain X. Show that if P holds for X it also holds for X. Then, by step 1, P holds for chains that satisfy the minorization condition with m 0 " 1.

40 Equations (4.20), (4.21) and (4.22) in [START_REF]General Irreducible Markov Chains and Non-Negative Operators[END_REF].

Step 3 Show that if P holds for the P ε -chains (or for some m-skeleton) then it holds for the original chain. Hence, the result follows by applying step 2 to the P εchains (or to the m-skeleton that satisfy the minorization condition with m 0 " 1).

As a demonstration, we use this technique to prove the following result, which, as a direct corollary shows that every irreducible Markov chain admits a unique (up to a multiplicative constant) invariant measure.

Theorem 2.2.25. 41 If X is irreducible, aperiodic and satis es the minorization condition M pm 0 , s, νq, then, the measure π de ned as

π pAq " ν `8 ÿ n"0 pP m 0 ´s b νq n pAq A P E, (2.33) 
is an invariant measure for the chain X.

Proof. As promised, the proof will be divided in three steps:

Step 1 If X is atomic, the existence of the invariant measure π α and its representation is given by (2.23). By Fubini's Theorem,

π α pAq " `8 ÿ n"1 P α pX n P A X τ α ě nq By part iii of Proposition 4.4 in [90], P α pX n P A X τ α ě nq " ν pI α c P q n´1
where I α c P is the kernel de ned by pI α c P q px, Aq " I α c pxq P px, Aq and ν " P pα, 'q. Because X is atomic, remark 2.2.3 shows that it satis es the minorization condition M p1, I α , P pα, 'qq and P ´Iα b P pα, 'q " I α c P .

Hence, the theorem holds for atomic chains. 41 Step 2 Now assume that X satis es the minorization condition M p1, s, νq. By Theorem 2.2.22, we can construct the split chain X with an accessible atom α.

By

Step 1, this chain admits an invariant measure π α and the form of this measure is given by (2.23).

When restricted to X, this measure is invariant for X, as was shown in (5.7)

of [START_REF]General Irreducible Markov Chains and Non-Negative Operators[END_REF]. A simple application of Fubini's Theorem and part iii of Theorem 2.2.24 shows that, for

A P E π pAq " E α ˜τα ÿ k"1 I A tX k u ¸" ν `8 ÿ n"0
pP ´s b νq n pAq " νG s,ν pAq , where G s,ν " ř `8 n"0 pP ´s b νq n . Therefore, the result holds for chains that satisfy the minorization condition M p1, s, νq.

Step 3 Given that X satis es the minorization condition M pm 0 , s, νq, the m 0 -skeleton chain, satis es the same condition but with m " 1, therefore, by step 2 π is an invariant measure for the m 0 -skeleton. By Theorem 10.4.5 in [START_REF]Markov chains and stochastic stability[END_REF], π is also invariant for X, which completes the proof.

The following result is an extension of Theorem 2.2.25. Its proof is an example of the technique we described. It can be found as Theorem 10.4.9 in [START_REF]Markov chains and stochastic stability[END_REF].

Theorem 2.2.26. Let X be a ψ-irreducible recurrent chain with transition kernel P .

Then, X admits a non-zero invariant measure π that satis es i) π is unique up to a multiplicative constant.

ii) π pCq ă 8 for every small set C.

iii) For any accesible set A and B P E,

π pBq " ż A E y ˜τA ÿ k"1 I tX k P Bu ¸dπ pyq . iv) π is equivalent to ψ.
The splitting technique shown in this section is one of the pillars of the modern Markov chain Theory. It was discovered almost simultaneously, but by slightly different methods, by Nummelin [START_REF]A splitting technique for harris recurrent markov chains[END_REF][START_REF]General Irreducible Markov Chains and Non-Negative Operators[END_REF] and Athreya and Ney [START_REF]A new approach to the limit theory of recurrent markov chains[END_REF]. The construction presented in this thesis follows the approach introduced by Nummelin, which is the most widely used in the literature.

Harris recurrent Markov chain

For atomic chains, we have seen in part b of Theorem 2.2.13, that recurrence of an atom is equivalent to the property that the number of visits to the atom is almost surely in nite when starting from the atom. In the general case, this no longer holds, as the following example shows.

Example 2.2.8. 42 De ne a Markov chain X in N, such that if X n " k, then, the chain moves to k `1 with probability e ´1 n 2 or jumps back to zero where it is absorbed.

The kernel is as follows:

P p0, 0q " 1 , P pk, k `1q " e ´1 k 2 , P pk, 0q " 1 ´e´1 k 2 , k ě 1.
The Markov chain in question is irreducible and contains an absorbing set comprising only the state 0. As a consequence, δ 0 is a maximal irreducibility measure and every 

P k pτ 0 " `8q " exp ˜´`8 ÿ j"k 1 j 2 ¸ă 1,
therefore, 0 ă P k pτ 0 " `8q ă 1. Consider an accessible set A, such that k ě 1 is in A. Then, P k pT pAq " `8q ě P k pτ 0 " `8q, which implies that E k T pAq " `8,

and hence the recurrence of the chain. On the other hand, if A is nite, P k pT pAq " `8q equals P k pτ 0 " `8q ă 1 hence, the probability of returning to A in nitely often is not 1.

In order to handle situations like the one described in the previous example, we need to de ne a stronger type of recurrence.

De nition 2.2.17 (Harris recurrence). An irreducible Markov Chain X with maximal irreducibility measure ψ is said to be Harris recurrent if for all x P E and all

A P E such that ψ pAq ą 0 we have P x pX visits A in nitely oftenq " 1.

In other words, X is Harris recurrent if P x pT pAq " 8q " 1 for all x P E and all ψ-positive sets A. The following result shows that Harris recurrence can be analyzed by looking at the P ε -chains.

Theorem 2.2.27. 43 X is Harris recurrent if and only if for some ε (and then for all) the P ε -chain is Harris recurrent.

Recall from (2.24) that if f is a function de ned on E, then S n pf q " ř n k"0 f pX k q.

The next theorem shows that, under Harris recurrence, the order of S n pf q is the same for every measurable function f such that ş f dπ ‰ 0, where π is an invariant measure for X. Moreover, it shows that this property characterizes Harris recurrence.

Theorem 2.2.28. 44 The following propositions are equivalent when a σnite invariant measure π exists for X 1. For every f, g P L 1 pπq with ş gdπ ‰ 0 lim nÑ8 S n pf q S n pgq " π pf q π pgq .

(2.34)

2. The invariant σeld Σ is P x trivial for all x P E.

X is Harris recurrent.

The following result provides a similar ratio limit result as (2.34) but for expectations. It is important to notice that in the null recurrent case, it only applies to small functions.

Theorem 2.2.29. 45 i) If X is positive recurrent and π is the unique invariant probability measure, then S n pf q n Ñ π pf q P µ a.s.

(2.36)

ii) If X is null recurrent, then

S n pf q n Ñ 0 P µ a.s. (2.37)
From the previous theorem, we see that when X is positive recurrent the behavior of S n pf q is similar to the i.i.d. case, however, (2.37) indicates that the null recurrent scenario is a whole di erent story. In order to properly study this case, we need a few new tools.

Let D be a small set and λ an initial measure. De ne a ptq a ptq " π pDq where H pxq " log log pmax tx, e e uq.

´1 ttu ÿ k"1 λP k pDq " π pDq ´1 λG ttu pI D q (2.
In [30], a version of Theorem 2.2.32 is given for the case que when π pf q " 0 Theorem 2.2.33. 50 Let X be a Harris recurrent Markov chain with invariant measure π and kernel P and f be a measurable function satisfying: i) ş f pxq dπ pxq " 0 , ş f 2 pxq dπ pxq ă 8;

ii) sup 0ăaă1 ş ˇˇř `8 k"1 a k f pxq P k f pxq ˇˇdπ pxq ă `8, then, there exists a constant Λ f ě 0 such that

lim sup nÑ8 S n pf q c a ´n Hpapnqq ¯H pa pnqq " Λ f a.s.
Further, if in addition to i and ii the following two conditions also hold ii')

ř `8 k"1 f pxq `P k f ˘pxq P L 1 pE, πq, iii) σ f " ş f 2 pxq dπ pxq `2 ř 8 k"1 f pxq P k f pxq dπ pxq ą 0.
Then Λ f ą 0.

β-null recurrent Markov chains

With the objective of nding the exact limit distribution of Snpf q apnq in the null recurrent case, the concept of regularly varying Markov chain was introduced in

[28]. Before stating this concept, we need a few de nitions.

A positive and measurable function g, de ned in ra, `8q, where a ě 0, is regularly varying at in nity if lim xÑ`8 gpxtq gpxq exists for all t ą a. Theorem 1.4.1.

in [START_REF] Regular Variation | Encyclopedia of mathematics and its applications 27[END_REF] shows that g is regularly varying at in nity if and only if there exists a real constant β and a slowly varying function L such that g ptq " t β L ptq. The number β is called index of regular variation and it is unique for the function, i.e.

if there exists β, β 1 and L, L 1 such that g ptq " t β L ptq " t β 1 L 1 ptq then β " β 1 and L " L 1 .

We will say that a Markov chain X is regularly varying if its truncated Green function is regularly varying. Thanks to the uniqueness of the index of regular The notation used in the literature regarding β-regular chains di ers a little between papers. In order to use the same notation in all of our results, de ne

u ptq " $ ' ' & ' ' % a ptq , β P t0, 1u Γ p1 `βq a ptq , 0 ă β ă 1 ,
where Γ is the Gamma function.

In Theorem 2.2.31, we saw that under Harris recurrence, Snpf q apnq is bounded in probability. The following result describes the asymptotic limits assuming βregularity.

Theorem 2.2.34. 51 Let X be a β-regular Markov chain with kernel P and invariant measure π. Then, for every non-negative function f P L 1 pE, πq, and every initial distribution λ,the sequence of random variables Snpf q upnq converges weakly (for β ă 1). Moreover, the limit distributions are as follows: i) When β " 0, the limit distribution is the exponential distribution with parameter ş f pxq dπ pxq. ii) If 0 ă β ă 1, the limit distribution is

M β p1q ż f pxq dπ pxq,
where M β p1q is a Mittag-Le er distribution with parameter β.

iii) When β " 1,

S n pf q u pnq Ñ ż f pxq dπ pxq in probability.
Remark 2.2.10. The Mittag-Le er distribution with parameter β is a non-negative continuous distribution, whose moments are given by

E `M m β p1q ˘" m! Γ p1 `mβq m ě 0.
By (3.39) in [START_REF]Nonparametric estimation in null recurrent time series[END_REF], its Laplace transform is 

E rexp p´sM β p1qqs " `8 ÿ k"0 p´sq k Γ p1 `kβq s ě 0. ( 2 
E p´tG β q " exp ˆ´t β Γ pβ `1q ˙. Notice that G β " Y Γp1`βq 1 β
where Y has Laplace transform exp `´s β ˘. Let F be the cumulative distribution function of Y . Then, P ´G´β β ď x ¯" 1 ´F ˆΓp1`βq

1 β x 1 β ˙.
By Example b, pp 453 of [START_REF]An Introduction to Probability Theory and Its Applications[END_REF], this implies that the Laplace transform of G ´β β is

`8 ÿ k"0 `´Γ p1 `βq s ˘k Γ p1 `kβq s ě 0,
which coincides with the Laplace transform of Γ p1 `βq M β p1q by (2.39).

The equivalent theorem, but for the case when π pf q " 0 was presented in [30] and is as follows:

Theorem 2.2.35. Let X be a β-regular Harris recurrent Markov chain. Under conditions i and ii' of Theorem 2.2.33 we have

S n pf q a u pnq d Ý Ñ σ f a D β U (2.40)
where U and D β are independent random variables, U " N p0, 1q, and the distribution of D β depends on β as follows:

i) When β " 0, D 0 is an exponential distribution with parameter 1.

ii 

) When β " 1, D 1 " 1. iii) When 0 ă β ă 1, D β " M β p1q
E λ « n ÿ t"0 h pX t q ff " 1 Γ p1 `βq n β L h pnq . (2.42)
as n goes to `8.

Remark 2.2.12. A condition similar to (2.42) was introduced as Hypothesis (C) in page 147 of [START_REF]Loi Fonctionnelle du Logarithme Itere Pour les Processus de Markov Recurrents[END_REF], with the objective of nding a law of the iterated logarithm for additive functionals over X which are close to square integrable martingales with respect to the invariant measure of the chain. The main di erence between both conditions is that in [START_REF]Loi Fonctionnelle du Logarithme Itere Pour les Processus de Markov Recurrents[END_REF], the function h is not required to be a small function.

The most widely known example of β-null recurrent processes are the random walks de ned in Example 2.2.3. In e ect, if the distribution Z is continuous, centered, and has a nite variance, then the random walk is 1 2 -null recurrent (see [START_REF]The sequence of sums of independent random variables[END_REF] and pp.8 of [START_REF]Null recurrent unit root process[END_REF] for the form the slowly varying function).

Lemma 3.1 in [START_REF]Nonparametric estimation in null recurrent time series[END_REF] shows that, if X satis es the minorization condition M p1, s, νq, and for some β, h, λ condition (2.42) is ful lled, then it is ful lled for every small function, which implies that β does not depend on the small function nor on the initial measure, and therefore is a global parameter of the chain X. In Theorem 2.2.36 we remove the M p1, s, νq assumption.

Theorem 2.2.36. Assume X is β-null recurrent, and let π be a xed invariant measure. Then we can nd a slowly varying function L such that condition (2.42) holds with L h " π phq L for every small function h.

Before proving the theorem, we need a few preliminary results that will be useful in the sequel.

For a measure λ P M pEq `and a measurable function h de ne, 

g ph, λ, xq " λG ptxuq phq " E λ « txu ÿ t"0 h pX t q ff . ( 2 
σ ´tα k u γpnq k"1 , tγ pjqu n j"0 ¯Notice that, n ÿ k"1 h `Xγpkq ˘" γpnq ÿ k"1 α k h pX k q. (2.46)
The expectation of the left hand side of (2.46) is g ε ph, λ, nq. For the right-hand 2.2. MARKOV CHAINS side, we have

E λ « γpnq ÿ k"1 α k h pX k q ff " E λ « E λ ˜γpnq ÿ k"1 α k h pX k q ˇˇˇˇF ε n ¸ff " E λ « γpnq ÿ k"1 α k E λ h pX k q ff ,
Using the fact that γ pnq is a stopping time for the sequence tα k u and Wald's equality 52 , we get

E λ « γpnq ÿ k"1 α k E λ h pX k q ff " p1 ´εq E λ « E λ ˜γpnq ÿ k"1 h pX k q ¸ff " p1 ´εq E λ g ph, λ, γ pnqq.
By the Law of Large Numbers, γpnq n converges to p1 ´εq ´1 almost surely and in every L-norm, then, E λ g ph, λ, γ pnqq " E λ g `h, λ, n 1´ε ˘, which completes the proof of (2.44).

When X is β-null recurrent, we have

g ˆh, λ, n 1 ´ε ˙" n β p1 ´εq β L `n 1´ε Γ p1 `βq " g ph, λ, nq p1 ´εq β .
where the last equivalence holds due to the slow Example 2.2.10 (Bessel random walks). A Bessel random walk is a stochastic process de ned on Z `" t0, 1, 2, . . .u, re ecting at 0, with steps ˘1 and transition probabilities of the form

P pX n`1 " x `1 |X n " xq " p x " 1 2 
ˆ1 ´δ 2x `h pxq ˙x ě 1, P pX n`1 " x ´1 |X n " xq " 1 ´px x ě 1, P pX n`1 " 1 |X n " 0q " 1,
where h pxq " o `1 x ˘as x Ñ `8.

The parameter δ is named the drift parameter. A Bessel random walk is recurrent if δ ą ´1, positive recurrent if δ ą 1 and transient if δ " ´1; for δ " 1 recurrence of transience depends on the function hpxq. In the null recurrent case, the chain is βregular with β " 1`δ 2 and P pτ 0 ě nq " n ´1`δ 2 L ˚pnq where L ˚is a slowly varying function (see Theorem 2.1 in [START_REF]Excursions and local limit theorems for bessel-like random walks[END_REF]). For δ " 0 and h " 0 this process corresponds with a re ected random walk with p " 1 2 . Bessel random walks are widely used in statistical physics, see for example [START_REF]Excursions and local limit theorems for bessel-like random walks[END_REF], [START_REF]Random walk versus random line[END_REF] and the references therein.

Example 2.2.11 (TAR model). Let X n " α 1 X n´1 I tX n´1 P Su `Xn´1 I X n´1 P S C ( `xn , X 0 " 0
where α 1 is a real constant, S is a compact set in R, S C is its complement and x n is an i.i.d sequence of random variables such that Ex n " 0, Ex 4 n ă 8, its distribution function is absolutely continuous with respect to the Lebesgue measure with density function f 0 such that inf xPC 0 f 0 pxq ą 0 for all compact sets C 0 .

In Section 4.5 of [START_REF]Estimation in threshold autoregressive models with a stationary and a unit root regime[END_REF], this model is used to study the relationship between the logarithm of the British pound/American dollar real exchange rate and the Consumer Price Index. In that same paper, it was proven that the index of this model is 1 2 . This shows that having index 1 2 does not characterize random walks.

Assume for the moment that X satis es the minorization condition M p1, s, νq and take α as an atom in split chain X. De ne T pnq " T n p αq ´1 as in (2.25) and let u pnq " n β L s pnq where L s is as in (2.48) and let v pnq be its inverse.

De ne the following stochastic processes:

T n ptq " T ptntuq u pnq , C n ptq " 1 v pnq tntu ÿ k"1
´τα pkq ´τα pk ´1q ¯.

(2.49)

Consider the space of càdlàg functions de ned on the interval r0, `8q, denoted by D r0,`8q . This space consists of the real functions that are right-continuous with left limits and de ned over r0, `8q. More precisely, a function g P D r0,`8q if and only if g is right-continuous, has left limits at all points t ą 0, and lim tÓ0 gptq " gp0q. The space D r0,`8q is equipped with the Skorokhod54 topology, making it a completely separable metric space. We will use

D r0,`8q
ÝÝÝÝÑ to denote weak convergence in this space, and fd Ý Ñ for convergence of nite-dimensional laws.

It is proven in [START_REF]Limit theorems for lévy processes and poisson point processes and their applications to brownian excursions[END_REF] that

C n D r0,`8q
ÝÝÝÝÑ S β where S β is the one-sided stable Levy process 55 de ned by the marginal characteristics E rexp pisC β ptqqs " exp `is β t ˘s P R, t P r0, `8s.

The Mittag-Le er process with parameter β is de ned as the inverse of S β . It is an increasing continuous stochastic process de ned as

M β ptq " t β M β p1q , E `M m β p1q ˘" m! Γ p1 `mβq m ě 0.
Theorem 2.2.39. 56 Assume X is a β-null recurrent Markov chain that satis es the minorization condition M p1, s, νq and let λ be any initial measure. Then

T n D r0,`8q ÝÝÝÝÑ M β
Moreover, if C is a small set, then, the process T C,n ptq "

T tntu pCq πspCqupnq also converges weakly to M β in D r0,`8q .

Using Theorem 2.2.39 we are able to show the following functional generalization of Theorem 2.2.34 Theorem 2.2.40. Under the same assumptions of Theorem 2.2.39, if f P L 1 pE, πq and π pf q ‰ 0, then

S n,f D r0,`8q ÝÝÝÝÑ M β , (2.50) 
where S n,f ptq "

S tntu pf q πpf qupnq .
Proof. 57 Let C be a xed small set. Without loss of generality, let us assume π pCq " 1. By Theorem 2.2.39, T C,n converges weakly to the process M β , therefore, if we show that D n " S f,n ´TC,n converges to the 0 process, then (2.50) will follow by Lemma 3.31 in [START_REF]Limit Theorems for Stochastic Processes[END_REF] and the identity S f,n " pS f,n ´TC,n q `TC,n .

By Lemma 3.30 in [START_REF]Limit Theorems for Stochastic Processes[END_REF], we just need to show that

sup tďM |D n ptq | " o p p1q @M ą 0. (2.51)
Take 0 ă δ ă 1 and de ne n δ " n ´p1´δq , then For n δ ď t ď M we have

sup tďn δ |D n ptq| ď 1 u pnq sup tďn δ ˇˇˇS tntu pf q π pf q ´TC tntu ˇˇď 1 u pnq ´ˇˇˇS n δ pf q π pf q ˇˇˇ`T C `
sup n δ ďtďM |D n ptq| ď sup n δ ďtďM T C ptntuq u pnq ˇˇˇS tntu pf q π pf q T C ptntuq ´1ˇˇˇď T C,n pM q sup n δ ďtďM ˇˇˇS tntu pf q π pf q T C ptntuq ´1ˇˇˇď T C,n pM q sup měn δ ˇˇˇS m pf q π pf q T C pmq ´1ˇˇˇw
hich is o p p1q thanks to the boundness in probability of T C,n pM q (by Theorem 2.2.39) and the almost sure convergence of Smpf q T C pmq to π pf q (consequence of (2.34)).

The following result is a functional generalization of Theorem 2.2.35. It appears as Lemma A.2 in [START_REF]Estimation in threshold autoregressive models with a stationary and a unit root regime[END_REF] Theorem 2.2.41. Suppose X is a β-null recurrent Markov chain that satis es the minorization condition M p1, s, νq and f is such such that E|f pB 1 q ´π pf q| 2m is nite for some m ą 1, then ˜Stntu pf q ´π pf q T ptntuq

a u pnqσ f , T n ¸Dr0,`8q ÝÝÝÝÑ pB ˝Mβ , M β q ,
where B is a standard Brownian motion independent of M β and σ f " Var pf pB 1 qq.

Remark 2.2.14. When π pf q " 0 and t " ˆSn pf q T n pCq ´π pf q π pCq ˙d Ý Ñ N p0, 1q .

58 See Theorem A.1 in [START_REF]Nonparametric estimation in null recurrent time series[END_REF] Chapter 3

Tail Index Estimation for Discrete

Heavy-Tailed Distributions

The content of this chapter is based in [START_REF]Tail index estimation for discrete heavy-tailed distributions with application to statistical inference for regular markov chains[END_REF]. nonasymptotic bound for the deviation between p β and β is established, as well as limit results (consistency and asymptotic normality). Beyond the i.i.d. case, the inference method proposed is extended to the estimation of the regularity index of an atomic β-null recurrent Markov chain. Since the parameter β can be then viewed as the tail index of the (regularly varying) distribution of the return time of the chain X to any atom, the estimator is constructed from the successive regeneration times. We prove that in this case, the consistency of the estimator promoted is preserved. In addition to the theoretical analysis carried out, simulation results provide empirical evidence of the relevance of the inference technique proposed.

Introduction

This article is devoted to the study of the problem of estimating the regularity index β ą 0 of a generalized discrete Pareto distribution, namely the probability distribution of a random variable S de ned on a probability space pΩ, F, Pq, taking its values in N ˚and such that:

P pS ą nq " n ´β L pnq for all n ě 1, (3.1) 
where L : R `Ñ R is a slowly varying function, i.e. such that Lpλzq{Lpzq Ñ `1

as z Ñ `8 for any λ ą 0, see [START_REF] Regular Variation | Encyclopedia of mathematics and its applications 27[END_REF]. Such discrete power law probability distributions also referred to as generalized Zipf's laws are often used to model the distribution of discrete data exhibiting a speci c rank-frequency relationship, namely when the logarithm of the frequency and that of the rank order are nearly pro-portional. Such a phenomenon has been empirically observed in many ranking systems: in quantitative linguistics (i.e. when analyzing word frequency law in natural language, refer to e.g. [START_REF]Foundations of Statistical Natural Language Processing[END_REF]) in the rst place, as well as in a very wide variety of situations, too numerous to be exhaustively listed here (see [START_REF] Kreiss | Zipf's law and city size distribution: A survey of the literature and future research agenda[END_REF], [START_REF]Emergent statistical laws in single-cell transcriptomic data[END_REF] or [START_REF]Zipf's law and the creation of musical context[END_REF] among many others). In this paper, we rst consider the issue of estimating with very speci c cases as in e.g. [START_REF]Problems with tting to the power-law distribution[END_REF], [START_REF]Estimation of the tail index for lattice-valued sequences[END_REF] or [31] or else consists in applying techniques originally designed for continuous heavy-tailed distributions to the discrete data after a preliminary addition of an independent uniform noise, see e.g. [START_REF]Scale-free networks well done[END_REF].

The vast majority of the regular variation index estimators proposed in the literature, Hill's or Pickand's estimators in particular (cf [START_REF]A simple general approach to inference about the tail of a distribution[END_REF], [START_REF]Statistical Inference Using Extreme Order Statistics[END_REF]), are based on order statistics, which causes obvious di culties in the discrete case because of the possible occurrence of many ties. In contrast, the estimator under study here is based on the analysis of the probability of exponentially separated tail events. It simply rests on the fact that, as can be immediately deduced from (3.1), we have lnpp k q ´lnpp k`1 q " β `lnpLpe k q{Lpe k`1 qq, where lnpxq denotes the natural logarithm of any real number x ą 0 and p l " PpS ą e l q for all l P N, and that Lpe k`1 q{Lpe k q is expected to be very close to 1 for k P N chosen su ciently large.

A natural (plug-in) inference technique can be then devised by replacing the tail probabilities p l with their empirical versions p p pnq l " p1{nq ř n i"1 ItS i ą e l u for l P N, where ItEu denotes the indicator function of the event E. This yields the 

Main Results -Con dence Bounds and Limit Theorems

As explained in the Introduction section, the estimator (3.2) can be viewed as an empirical counterpart of the quantity βpkq :" lnpp k q ´lnpp k`1 q " β `ln The proposition below provides an upper con dence bound for the absolute deviations between (3.2) and β (respectively, between (3.2) and βpkq ).

ˆLpe k q Lpe k`1 q ˙, (3.3 
Proposition 3.2.1. Let δ P p0, 1{2q and set u n pδq " lnp2{δq{n for all n ě 1. If k ě 1 is such that p k`1 ě 16u n pδq, then, with probability at least 1 ´2δ, we have:

ˇˇp β n pkq ´βˇˇˇď 6 d u n pδq p k`1 `ˇˇˇl n ˆLpe k q Lpe k`1 q ˙ˇˇˇ. (3.4) 
The bound (3.4) reveals some sort of 'bias-variance' trade-o , ruled by the hyperparameter k ą 0. The second term on the right-hand side can be viewed as the bias of the inference method, insofar as the estimator (3.2) can be seen as an empirical version of the approximant (3.3). It decays to 0 as k increases towards in nity, while the rst term, whose presence is due to the random nature of the estimator, tends to `8. We point out that second-order slow variation conditions (see [START_REF]Slow variation with remainder: theory and applications[END_REF]) are required to bound the (vanishing) bias term in (3.4), as shall be explained (i) Then, as n Ñ `8, we have the convergence in distribution:

? np kn ´p β n pk n q ´βpk n q ¯ñ N `0, e β ´1˘.

(ii) In addition, asymptotic normality holds true for the 'standardized' deviation: b np p pnq kn ´p β n pk n q ´β pk n q āe p βnpknq ´1

ñ N p0, 1q , as n Ñ `8.

The asymptotic normality results above can be extended to the deviation between (3.2) and β, provided that the bias term βpk n q´β vanishes at an appropriate rate, as stated below.

Corollary 3.2.2. Suppose that the conditions of Theorem 3.2.3 are ful lled. In addition, assume that k n is such that

? np kn ˜1 ´L `ekn L pe kn`1 q ¸Ñ 0, as n Ñ `8. (3.5) 
(i) Then, we have the convergence in distribution ? np kn ´p β n pk n q ´β¯ñ N p0, e β ´1q as n Ñ `8. One may easily check that

β pk, mq " β `1 2m `1 ln ˜L `ek´m L pe k`m`1 q ¸.
The nonasymptotic result in Proposition 3. Then, as soon as p k`m`1 ě 16u n pδq, we have with probability larger than 1 ´2δp1 `85 

where κpλq " c ş λ 1 θ ρ´1 dθ, c ą 0 and g is regularly varying with index ρ ď 0, i.e. gpxq " x ρ U pxq where U is a slowly varying function. Under the additional assumption that g has positive decrease, Corollary 3.12.3 in [START_REF] Regular Variation | Encyclopedia of mathematics and its applications 27[END_REF] gives the following representation:

Lpxq " C `1 ´c|ρ| ´1gpxq `o pg pxqq ˘, as x Ñ `8, (3.10) 
where C is a nite constant. The result below provides a precise control of the bias of the estimation method in this case.

Lemma 3.2.1. Suppose that conditions (3.9) and (3.10) are ful lled. Then, as n Ñ `8, we have:

ln ˜L `nA L pen A q ¸" ´c|ρ| ´1n ´A|ρ| `U `nA ˘´e ´|ρ| U `en A ˘˘`o `n´A|ρ| U `nA ˘˘.
In this situation, the bias of the method is thus of order Opn ´A|ρ| q, while 1{ ? np k`1 is of order Opn ´p1´Aβq{2 q. Hence, if 1{pβ`2|ρ|q ď A ă 1{β, satis es the conditions of Corollary 3.2.2 are satis ed with k n " A ln n.
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Regular Null-Recurrent Chains -Regularity Index Estimation

We start by setting out the notations used throughout this section and listing rst the properties satis ed by the class of Markov chains under study. One may refer to [START_REF]Markov chains and stochastic stability[END_REF] for an excellent account of the Markov chain theory. The concept of β-regularity for describing how fast a Harris chain returns to Harris sets is then recalled, together with related asymptotic results, invoked in the subsequent statistical analysis, for clarity's sake.

Harris recurrent Markov chains

Here and throughout, X " pX n q nPN denotes a time-homogeneous Markov chain, with state space E, equipped with a countably generated σeld E, and transition probability P px, dyq. For any probability distribution λ on E, we denote by P λ the probability distribution on the underlying space such that X 0 " pdxq and by E λ r.s the corresponding expectation. For notational convenience, we shall write P x and E x r.s when λ is the Dirac mass at x P E.

We suppose that the chain X is ψ-irreducible, meaning that there exists some σnite measure ψ on pE, Eq such that any measurable set B Ă E, weighted by ψ, can be reached by the chain with positive probability in a nite number of steps, i.e. ř ně1 P n px, Bq ą 0, no matter the starting point x P E, denoting by P n px, dyq the n-th iterate of the transition probability P px, dyq. An irreducibility measure is said to be maximal if it dominates any other irreducibility measure. A measurable set A P E is called accessible if ψ pAq ą 0. An irreducible chain possesses an accessible atom, and hence is called atomic, if there is an accessible set α P E such that for all x, y in α: P px, 'q " P py, 'q.

If X is ψ-irreducible, there is d 1 P N ˚and disjoints sets D 1 , . . . , D d 1 D d 1 `1 " D 1
weighted by ψ such that ψpEz Y 1ďiďd 1 D i q " 0 and @x P D i , P px, D i`1 q " 1. The g.c.d. d of such integers is called the period of the chain. X is said to be aperiodic if

d " 1.
For any set A P E denote by T pAq the total number of visits of X to A. Similarly, denote by T n pAq the number of visits X to A up to time n, i.e.

T n pAq "

n ÿ i"1 ItX i P Au, (3.11) 
this sequence is called the occupation time sequence.

An irreducible Markov chain is Harris recurrent if it visits any accessible set in nitely often with probability one, no matter the starting point, i.e. P x pT pAq " 8q " 1 @x P E.

Every Harris recurrent chain admits a nonzero invariant measure, that is, a measure π such that ş xPE πpdxqP px, Aq " π pAq for all A P E. This measure is unique up to a multiplicative constant and it is also a maximal irreducibility measure for X. Measurable sets weighted by π are said to be Harris. When the measure πpdxq is nite, the chain is said to be positive recurrent otherwise, is called null recurrent.

For Harris recurrent chains, the following strong ratio limit theorem holds: as

n Ñ 8, ř n i"1 ItX i P Au ř n i"1 ItX i P Bu Ñ πpAq πpBq P λ -almost-surely, (3.12) 
for any initial distribution λ and any measurable sets A and B such that πpBq ą 0. Dealing with null recurrent chains is considerably more challenging, given that a comprehensive theory of non-parametric estimation for this type of chain does not exist. To tackle this problem, Karlsen and Tjøstheim developed in [START_REF]Nonparametric estimation in null recurrent time series[END_REF] the concept of a β-null recurrent Markov chain (called β-regular Markov chains in [28]), which establishes a regularity condition that makes the issue more manageable.
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β-null recurrent Markov Chains

Before formulating it, we need a few de nitions.

Denote by E `the class of nonnegative measurable functions with positive ψ support. A function s P E `is called small if there exists an integer m 0 ě 1 and a measure ν P M pEq `such that P m 0 px, Aq ě s pxq ν pAq @x P E, A P E.

(3.13)

When a chain possesses a small function s, we say that it satis es the minorization inequality M pm 0 , s, νq. As pointed out in [START_REF]General Irreducible Markov Chains and Non-Negative Operators[END_REF], there is no loss of generality in assuming that 0 ď s pxq ď 1 and ş E spxqdνpxq ą 0.

A set A P E is said to be small if the function I A is small. Similarly, a measure ν is small if there exist m 0 , and s that satisfy (3.13). By Theorem 2.1 in [START_REF]General Irreducible Markov Chains and Non-Negative Operators[END_REF], every irreducible Markov chain possesses a small function and Proposition 2.6 of the same book shows that every accessible set contains a small set. Moreover, if π is an invariant measure and A is a small set, then 0 ă π pAq ă `8 [90, Proposition 5.6, pp. 72].

We will say that an irreducible and Harris recurrent Markov chain X is β-null recurrent (or β-regular) if there exists a small function h, an initial measure λ, a constant β P p0, 1q and a slowly varying function L h such that

E λ « n ÿ t"0 h pX t q ff " 1 Γ p1 `βq n β L h pnq . (3.14)
as n goes to `8. Here Γpzq " ş tě0 t z´1 e ´tdt denotes the Gamma function.

Lemma 3.1 in [START_REF]Nonparametric estimation in null recurrent time series[END_REF] shows that the parameter β is a global parameter of the chain, following [28], we will call this parameter the regularity index of the chain.

Furthermore, the lemma shows that the function L h in (3.14) is essentially unique up to a multiplicative constant. This means that if a small function h satis es (3.14), then for any small function f , there exists a constant K f,h such that f satis es

(3.14) with L f " K f,h L h .
When particularized to functions of the form I A where A is a small set, (3.14) shows that under β-null recurrence, the expectation of the growth of the occupation time of small sets is sublinear

E λ T n pCq " 1 Γ p1 `βq n β L C pnq .
The following theorem, which is the particularization of Theorem 3.2 and Lemma 3.6 of [START_REF]Nonparametric estimation in null recurrent time series[END_REF] to the atomic case, shows that when X is atomic, β-null recurrence is characterized by the fact that the time of the rst return to the atom has 91
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a generalized Pareto distribution. The theorem also provides the limit distribution for the occupation time of small sets.

Theorem 3.3.1. Assume X is a β-null recurrent atomic Markov chain with accessible atom α. Let τ α " mintn ě 1 : X n P αu. Then, i) There exists a slowly varying function L α such that

P α pτ α ą nq " 1 Γp1 ´βqn β L α pnq . (3.15)
ii) For any small set C, there is a constant K α,C ą 0 such that

T n pCq n β L α pnq K α,C d Ý Ñ M β p1q (3.16) 
where M β p1q is a Mittag-Le er 4 distribution of index β.

The class of β-null recurrent Markov chains contains many stochastic processes widely used in probabilistic modeling.

Bessel random walks

A Bessel random walk is a stochastic process de ned on Z `" t0, 1, 2, . . .u, re ecting at 0, with steps ˘1 and transition probabilities of the form

P pX n`1 " x `1 |X n " xq " p x " 1 2 ˆ1 ´δ 2x `h pxq ˙x ě 1, P pX n`1 " x ´1 |X n " xq " 1 ´px x ě 1, 4 
The Mittag-Le er distribution with index β is a non-negative continuous distribution, whose moments are given by

E `M m β p1q ˘" m! Γ p1 `mβq m ě 0.
See (3.39) in [START_REF]Nonparametric estimation in null recurrent time series[END_REF] for more details.

P pX n`1 " 1 |X n " 0q " 1,
where h pxq " o `1 x ˘as x Ñ `8.

The parameter δ is named the drift parameter. A Bessel random walk is recur-

rent if δ ą ´1, positive recurrent if δ ą 1 and transient if δ ă ´1; for δ " ´1
recurrence of transience depends on the function hpxq. In the null recurrent case, the chain is β-regular with β " 1`δ 2 and P pτ 0 ě nq " n ´1`δ 2 L ˚pnq where L ˚is a slowly varying function (see Theorem 2.1 in [START_REF]Excursions and local limit theorems for bessel-like random walks[END_REF]). For δ " 0 and h " 0 this process corresponds with a re ected random walk with p " 1 2 .

TAR model

Let

X n " α 1 X n´1 I tX n´1 P Su `Xn´1 I X n´1 P S C ( `xn , X 0 " 0 where α 1 , is a real constant, S is a compact set in R, S C is its complement and x n is an i.i.d sequence of random variables such that Ex n " 0, Ex 4 n ă 8, its distribution function is absolutely continuous with respect to the Lebesgue measure with density function f 0 such that inf xPC 0 f 0 pxq ą 0 for all compact sets C 0 .

In Section 4.5 of [START_REF]Estimation in threshold autoregressive models with a stationary and a unit root regime[END_REF], this model is used to study the relationship between the logarithm of the British pound/American dollar real exchange rate and the Consumer Price Index. In that same paper, it was proven that the index of this model is 1 2 . This shows that having index 1 2 does not characterize random walks. 

Null recurrent, but not β-regular

The following construction, presented in [START_REF]Null recurrent unit root process[END_REF], allows us to construct β-null recurrent chains for a given value of β and also null recurrent chains that are not β-regular.

Let η n be a sequence of i.i.d. random variables. Let's de ne X n as

X n " $ ' & ' % X n´1 ´1, if X n´1 ą 1, η n , if X n´1 P r0, 1s .
Then, X n is an irreducible Markov Chain and the interval r0, 1s is an atom for the chain. Moreover, P x `τr0,1s ą n ˘" P ptη 1 u ą nq, therefore, X n is null recurrent if and only if Etη 1 u " 8 and is β-null recurrent if and only if

P ptη 1 u ą nq " n ´β L pnq
for some slowly varying function Lpnq.

Regularity Index of a Regular Chain -Statistical Inference

The estimation of the regularity index β has not received much attention in the literature. To our knowledge, the only consistent estimator of this parameter

is ln TnpCq ln n
where C is a small set. This estimator was proposed in Remark 3.7 of [START_REF]Nonparametric estimation in null recurrent time series[END_REF],

where it was shown to be strongly consistent for β-null recurrent chains where the minorization condition M p1, s, νq is satis ed. It was pointed out by the authors that this estimator is of limited practical use due to its slow convergence. which shows that the rate of convergence, in this case, is of order 1{ln n.

In this section, we will show that in the atomic case, we can use the estimator proposed in Section 3.2 to consistently estimate β.

Assume that we observe the rst n points of an atomic β-null recurrent homogeneous Markov Chain. Let T n pαq be the number of times the chain visits the atom up to time n, and denote by τ 1 , . . . , τ Tnpαq the times of those visits. By the Strong Markov property, the random variables S i " τ i`1 ´τi are i.i.d. and by (3.15) their survival function has the form of (3.1) (with L "

).

The recurrence of the chain implies that T pnq " T n pαq ´1 converges almost surely to `8, then, by Theorem 8.1 in page 302 of [START_REF]Probability : a graduate course[END_REF], we can replace n by T pnq on the strong consistency results we presented on section 3.2, to obtain equivalent results for the sequence S 1 . . . , S T pnq .

Theorem 3.3.2. If k n is a sequence that satisfy the hypothesis of Theorem 3.2.2, then p β T pnq `kTpnq ˘converges almost surely to β.

From this result, we get that if we chose k n " ln n, then the estimator is strongly consistent and takes the form

p β T pnq pln T pnqq " ln ¨Tpnq ř i"1 I tS i ą T pnqu T pnq ř i"1 I tS i ą eT pnqu ‹ ‹ ‹ ' . ( 3 
.17)

Theorem 3.3.3. p β T pnq pln T pnqq is a strongly consistent estimator of β.
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The following result is the application of Theorem 3.5.1 to the Markovian case. Lastly, if we take k n " ln n, m n " X ln n l \ and replace n by ln T pnq we get that

p β T pnq ˆln T pnq , Z ln T pnq l ^˙" 1 2 Y ln T pnq l ] `1 ln ¨Tpnq ř j"1 I ! S i ą e ´t ln T pnq l u T pnq ) T pnq ř j"1 I ! S i ą e t ln T pnq l u`1 T pnq ) ‹ ‹ ‹ ' (3.18)
is a strongly consistent estimator of β. . This suggest a convergence rate of order n ´βp1´βq{2 when L α is asymptotically constant. However, we have not been able to prove this result.

Illustrative Numerical Experiments

In order to test the accuracy of the estimators proposed in this paper, we rst consider the following simulation framework: for di erent values of β we generate 64 samples of 10 5 points from a Zeta distribution 5 with parameter α " β ´1. For each sample, we estimate β. Table 3.1 contains the mean squared error for each value of β.

For comparison, we have also estimated β using the implementation of the Hill estimator provided in [START_REF]Scale-free networks well done[END_REF], where they add a small uniform noise to each sample in order to improve the stability of the estimator for discrete data and use a double bootstrap method [33,[START_REF]Bootstrap and empirical likelihood methods in extremes[END_REF] to nd the order statistic that provides the best estimator. These changes make the Hill estimator more precise, but considerably slower, especially for small values of β. 

P pS ě kq " k α`1 ζ pαq pα `1q .
This distribution is also known as Zipf's distribution due to its relationship with Zipf's law. βpkq " β.

Proof. Because L is an slowly varying function, lim xÑ8

Lpλxq

Lpxq " 1 (see 1.2.1 of [START_REF] Regular Variation | Encyclopedia of mathematics and its applications 27[END_REF]) for all λ ą 0, therefore Lpe k q Lpe k`1 q " Lpe k q Lpee k q Ñ 1 and the result follows by taking limits in (3.3).

Let ε ą 0. Because k n Ñ 8, Lemma 3.5.3 implies that βpk n q Ñ β, therefore we can nd N 1 P N such that

|βpk n q ´β| ď ε 2 @n ě N 1 , (3.23) 
Let's take δ " 2 n 2 , then u n pδq " The assumption that e knβ ln n n " o `L `ekn`1 ˘˘implies the above equality converges to 0 therefore we can nd

N 3 P N such that ˇˇ6 b 2 ln n np kn`1 ˇˇď ε 2 for all n ě N 3 .
Then, for all n ě max pN 1 , N 2 , N 3 q ˇˇp β n pk n q ´βˇˇˇď ε with probability bigger than 1´4 n 2 . Because this is valid for all ε ą 0, it implies that p β n pk n q converges in probability to β. Moreover, because ř Borell-Cantelli lemma implies that p β n pk n q Ñ β almost surely.

Proof of Corollary 3.2.1

If we take k n " A ln n, we have e βkn " n Aβ then

lim n e knβ ln n nLpe kn q " lim n n Aβ ln n nLpn A q " lim n ln n n 1´Aβ Lpn A q " lim n ln n n p1´Aβq{2 1 n p1´Aβq{2 Lpn A q " 0.
For the last limit we have used that if L is slowly varying, then Lpn A q is also slowly varying and that lim n n γ Lpnq Ñ `8 for γ ą 0 and L slowly varying [ 

p kn ´1ˇˇˇˇď ε ˙ě 1 ´2 n 2 @n ě max pN 1 , N 2 q ,
and the Lemma follows by Borel-Cantelli's Lemma.

The following lemma can be obtained using the same arguments of Example 11 on [START_REF]Limit theorems for empirical processes of cluster functionals[END_REF].

Lemma 3.5.6. Let X n be a sequence of i.i.d. random variables with survival function (3.1), φ 1 and φ 2 bounded functions and u n an increasing sequence of real numbers such that u n Ñ `8. De ne

X n,i " X i u n I " X i u n ą 1 * , v n " P pX n,i ‰ 0q and r Z n pφ k q " 1 ? nv n n ÿ i"1 pφ k pX n,i q ´Eφ k pX n,i qq.
If there exists a sequence r n such that (A1) r n " opnq.

(A2) r n v n Ñ 0. (A3) nv n Ñ `8. (A4) E ˆrn ř i"1 φ k pX n,i q ˙4 " O pr n v n q k " 1, 2. (A5) lim n 1 rnvn rn ř i"1 rn ř j"1 E pφ k pX n,i q φ l pX n,j qq " σ kl . then ´r Z n pφ k q ¯1ďkď2
converges weakly to a centered normal distribution with covariance matrix pσ kl q 1ďk,lď2 .

Let k n satisfy the conditions of Theorem 3.2.2, take u n " e kn , φ 1 pxq " I tx ą 1u and φ 2 pxq " I tx ą eu. With this notation

φ 1 pX n,i q " I "ˆX i u n I " X i u n ą 1 *˙ą 1 * " I " X i u n ą 1 * , φ 2 pX n,i q " I "ˆX i u n I " X i u n ą 1 *˙ą e * " I " X i u n ą e * , Eφ 1 pX n,i q " P ˆXi u n ą 1 ˙" F pu n q , Eφ 2 pX n,i q " P ˆXi u n ą e ˙" F peu n q , v n " P pX n,i ‰ 0q " P ˆXi u n ą 1 ˙" F pu n q .
Let w n " F peu n q, λ n " F punq F peunq " vn wn (notice that λ n Ñ e β ) and y n "

a vn nwn 2 , then, p λ n " n ř i"1 I tX i ą u n u n ř i"1 I tX i ą eu n u " n ř i"1 φ 1 pX n,i q n ř i"1 φ 2 pX n,i q " nEφ 1 pX n,i q `n ř i"1 tφ 1 pX n,i q ´Eφ 1 pX n,i qu nEφ 2 pX n,i q `n ř i"1 tφ 2 pX n,i q ´Eφ 2 pX n,i qu " Eφ 1 pX n,i q Eφ 2 pX n,i q `n ř i"1 tφ 1 pX n,i q´Eφ 1 pX n,i qu nEφ 2 pX n,i q 1 `n ř i"1 tφ 2 pX n,i q´Eφ 2 pX n,i qu nEφ 2 pX n,i q " Eφ 1 pX n,i q Eφ 2 pX n,i q `r Z n pφ 1 q a vn nwn 2 1 `r Z n pφ 2 q a vn nwn 2 105 3.5. TECHNICAL PROOFS " λ n `r Z n pφ 1 q y n 1 `r Z n pφ 2 q y n . (3.27)
To apply Lemma 3.5.6, let's take r n " k n and assume that r n " opnq. For condition (A2) we have:

lim n r n v n " lim n k n F `ekn ˘" lim n k n L `ekn ȇknβ " lim n k n e knβ 2 L `ekn ȇ knβ 2 " 0.
Because e knβ ln n n " o `L `ekn`1 ˘˘and L is slowly varying, we can write e knβ ln n n " L `ekn ˘ε pnq where ε pnq Ñ 0 and this implies (A3).

For (A4), note that rn ř i"1 φ 1 pX n,i q follows a binomial distribution with parameters r n and v n , then, E ˆrn ř i"1 φ 1 pX n,i q ˙4 " r n v n p1 ´h pr n , v n qq , where h is a two variables polynomial of degree 3 such that the degree of r n on each monomial is always greater or equal than the degree of v n . Condition (A2), and the fact that

v n Ñ 0 implies E ˆrn ř i"1 φ 1 pX n,i q ˙4 " O pr n v n q.
With a similar argument and using the fact that wn vn Ñ e ´β , it can be shown that E

ˆrn ř i"1 φ 2 pX n,i q ˙4 " O pr n v n q
and therefore condition (A4) is ful lled.

For (A5), rst, notice that

E pφ 1 pX n,i q φ 1 pX n,j qq " $ ' & ' % v n , i " j v n 2 , i ‰ j E pφ 1 pX n,i q φ 2 pX n,j qq " $ ' & ' % w n , i " j v n w n , i ‰ j E pφ 2 pX n,i q φ 2 pX n,j qq " $ ' & ' % w n , i " j w n 2 , i ‰ j therefore, σ 11 " lim n 1 r n v n rn ÿ i"1 rn ÿ j"1 E pφ 1 pX n,i q φ 1 pX n,j qq " lim n r n v n `rn pr n ´1q v n 2 r n v n " 1 σ 12 " lim n 1 r n v n rn ÿ i"1 rn ÿ j"1 E pφ 1 pX n,i q φ 2 pX n,j qq " lim n r n w n `rn pr n ´1q v n w n r n v n " e ´β σ 22 " lim n 1 r n v n rn ÿ i"1 rn ÿ j"1 E pφ 2 pX n,i q φ 2 pX n,j qq " lim n r n w n `rn pr n ´1q w n 2 r n v n " e ´β .
By Lemma 3.5.6, ´r Z n pφ k q ¯1ďkď2 converges to a centered normal distribution with covariance matrix pσ kl q 1ďk,lď2 . Taking into account that y n " e β ? nvn , it follows that

p λ n " ´λn `r Z n pφ 1 q y n ¯ˆ1 ´r Z n pφ 2 q y n `oP ˆ1 ? nv n ˙" λ n `yn ´r Z n pφ 1 q ´λn r Z n pφ 2 q ¯`o P ˆ1 ? nv n ˙.
Then, ? nv n ´p λ n ´λn ¯converges weakly to a centered normal distribution

with variance e 2β `σ11 `e2β σ 22 ´2e β σ 12 ˘" e 2β `eβ ´1˘. This can be resumed in the following lemma. (pp. 248 in [START_REF]Probability : a graduate course[END_REF]). Corollary 3.2.2 follows immediately.

Averaged Estimators

Here we collect some remarks and results related to the averaged estimator (3.7). First, we detail how to get the expression (3.2.1) from (3.3). Let k ą 0 be xed, we have:

β pk `jq " β `ln ˜L `ek`j L pe k`j`1 q ¸, @j, so that 1 2m `1 m ÿ j"´m β pk `jq " 1 2m `1 m ÿ j"´m β `1 2m `1 m ÿ j"´m ln ˜L `ek`j L pe k`j`1 q " β `1 2m `1 ln ˜m ź j"´m L `ek`j L pe k`j`1 q " β `1 2m `1 ln ˜L `ek´m L pe k`m`1 q ¸.
The result below establishes the strong consistency of the estimator (3.7).

The following results show that, for well-chosen k n and m n , the estimator p β n pk n , m n q is strongly consistent. ii `8 ř

n"1 4 n 2 p1 ´2m n q is convergent.

iii e pkn`mnqβ ln n n " o `L `ekn`mn ˘˘.

then, p β n pk n , m n q converges almost surely to β.

Corollary 3.5.1. Let A, l be a positive numbers such that l ą 1 and 1 β ą Aβpl`1q l then p β n ˆA ln n, A ln n l ˙Ñ β a.s.

Proof of Theorem 3.2.4

The following lemma provides us a bound for the di erence between p βpk, mqβ pk, mq. Because p k`m`1 ě 16u n pδq, we have that p k´m`j`1 ě 16u n pδq for all j be-j P N. This implies that for all n ě N 2

|λ n ´α| ď 1 2b n `1 2bn ÿ j"0 |α kn´bn`j ´α| ď 1 2b n `1 2bn ÿ j"0 ε " ε.
Lemma 3.5.9 shows that if k n ´mn Ñ `8, then 

β pk n , m n q Ñ β. ( 3 
L ´np1`1 l qA ¯ln n n " lim n ln n n 1´p1`1 l qAβ L ´np1`1 l qA " lim n 1 n 1´p1`1 l q Aβ 2 L ´np1`1 l qA ¯ln n n 1´p1`1 l q Aβ 2 .
The condition 1 β ą Apl`1q l implies that 1 ´`1 `1 l ˘Aβ ą 0, therefore,

lim n 1 n 1´p1`1 l q Aβ 2 L ´np1`1 l q ¯" 0 and lim n ln n n 1´p1`1 l q Aβ 2 " 0,
which shows that k n and m n satisfy condition iii in Theorem 3.5.1.

TECHNICAL PROOFS

Proof of Lemma 3.2.1

The representation is a direct application of Lemma 3.5.10 and the fact that g is a regularly varying function of index ρ. 

Chapter 4

Regenerative bootstrap for β-null recurrent Markov chains

The content of this chapter is based on [START_REF]Regenerative bootstrap for β-null recurrent markov chains[END_REF].

Abstract: Two regeneration-based bootstrap methods, namely, the Regeneration based-bootstrap [START_REF]Bootstrapping markov chains: countable case[END_REF]34] and the Regenerative Block bootstrap [START_REF]Regenerative block bootstrap for markov chains[END_REF] are shown to be valid for the problem of estimating the integral of a function with respect to the invariant measure in a β-null recurrent Markov chain with an accessible atom. An extension of the Central Limit Theorem for randomly indexed sequences is also presented.

Introduction

In [START_REF]Bootstrap Methods: Another Look at the Jackknife[END_REF], Bradley Efron introduced the Bootstrap as a way to overcome some limitations of classical methods that often relied on strong assumptions about the data's underlying distribution or the model's form. Since then, these techniques, rst studied in the i.i.d. case, have been developed and extended to time-series (see [START_REF]Resampling methods for dependent data[END_REF] for an extensive survey of methods) and applied to a wide range of problems in various elds such as signal processing [START_REF]The bootstrap and its application in signal processing[END_REF][START_REF]Bootstrap Techniques for Signal Processing[END_REF], soil science [START_REF]E cient bayesian method for characterizing multiple soil parameters using parametric bootstrap[END_REF] and econometrics [START_REF]Bootstrap methods in econometrics[END_REF][START_REF]Bootstrap methods in econometrics*[END_REF]. They can handle any level of complexity in data or models from fully parametric to completely nonparametric cases. These methods are easy to implement with modern computing power and can provide more accurate and reliable inferences than traditional methods in many situations.

Although originally designed for i.i.d. sampling, there has been signi cant interest in adapting the bootstrap to situations where the data is dependent. Several resampling methods have been proposed for time series data: these include the autoregressive-sieve bootstrap [START_REF]On the range of validity of the autoregressive sieve bootstrap[END_REF], block bootstrap [START_REF]The Jackknife and the Bootstrap for General Stationary Observations[END_REF] , circular bootstrap [START_REF]A circular block-resampling procedure for stationary data[END_REF],

the stationary bootstrap [START_REF]The stationary bootstrap[END_REF], continuous-path block bootstrap [START_REF]The Continuous-Path Block-Bootstrap[END_REF], tapered block bootstrap [START_REF]Tapered block bootstrap[END_REF], frequency-domain bootstrap [START_REF]Autoregressive-aided periodogram bootstrap for time series[END_REF][START_REF]Frequency Domain Bootstrap for Time Series[END_REF], and local bootstrap [START_REF]Local block bootstrap[END_REF]. For detailed reviews and comparisons of these methods see [27,[START_REF]Bootstrap of kernel smoothing in nonlinear time series[END_REF][START_REF]1 -bootstrap methods for time series[END_REF][START_REF]Bootstrap methods for dependent data: A review[END_REF] and the references therein.

In the Markovian case, numerous approaches have been developed and examined. In [START_REF]Bootstrapping a nite state markov chain[END_REF], the authors proposed a block resampling scheme that consists in resampling from a nonparametric estimate of the one-step transition matrix of a nite state Markov chain. This method was extended to the countable case in [START_REF]Bootstrapping markov chains: countable case[END_REF].

Extensions of this method have been proposed for the case where the state space is Euclidean, as seen in [START_REF]Bootstrap in markov-sequences based on estimates of transition density[END_REF], [START_REF]A markovian local resampling scheme for nonparametric estimators in time series analysis[END_REF][START_REF]The local bootstrap for markov processes[END_REF] and [START_REF]Bootstrap methods for markov processes[END_REF]. The general concept is to estimate the marginal distribution and the transition probability function using a nonparametric function estimation technique and then resample from those estimates. For a detailed explanation of this approach, refer to Section 4 in [START_REF]1 -bootstrap methods for time series[END_REF].

A completely new approach to this problem was introduced in [START_REF]Bootstrapping markov chains: countable case[END_REF]. Instead of using estimated transition probabilities, they exploit the regeneration properties of a Markov chain when an accessible atom is visited in nitely often. The main CHAPTER 4. REGENERATIVE BOOTSTRAP FOR β-NULL RECURRENT MARKOV CHAINS idea underlying this method consists in dividing the chain into a random number of i.i.d. regeneration blocks and then resampling the same number of regeneration blocks. This method, named Regeneration based bootstrap, was proved to be valid for nite state atomic chains in [START_REF]Bootstrapping markov chains: countable case[END_REF], and it was extended to general atomic positive recurrent Markov chains in [34].

It was pointed out in [START_REF]Second-order properties of regenerationbased bootstrap for atomic markov chains[END_REF] that the Regeneration based bootstrap is not secondorder correct (its rate is O P pn ´1{2 q only). To overcome this limitation, a variation of this method, called Regenerative Block bootstrap (RBB), was introduced in [START_REF]Regenerative block bootstrap for markov chains[END_REF].

This method consists in imitating the renewal structure of the chain by sampling regeneration data blocks, until the length of the reconstructed bootstrap series is larger than the length n of the original data series (notice the di erence with the Regeneration based bootstrap, where the number of sampled blocks is equal to the number of regeneration blocks in the original chain). It was shown in [START_REF]Regenerative block bootstrap for markov chains[END_REF] that, for atomic positive recurrent Markov chains, the RBB for estimating the integral of a function with respect to the invariant probability, has a uniform rate of convergence of order O P pn ´1q (the same as in the i.i.d. case).

Despite all these e orts in the positive recurrent case, up to our knowledge, no bootstrap method has been studied in the null-recurrent scenario. Hence, our objective in this paper is to start this study and show that both Regeneration basedbootstrap and Regenerative Block bootstrap are valid schemes for estimating integrals with respect to the invariant measure when the Markov chain is β-null recurrent and possesses an accessible atom.

The paper is organized as follows: in section 4.2 we provide a brief introduction to null recurrent Markov chains, making a special emphasis on atomic ones and presenting the main results that we use throughout the paper. In subsection 4.2.3

we present an extension of the Central Limit Theorem for randomly indexed se- 

A short introduction to null-recurrent Markov chains

In this section, we introduce some notation and review some important concepts from Markov chain theory that will be used throughout the paper. For more details, please refer to [START_REF]Markov chains[END_REF][START_REF]Markov chains and stochastic stability[END_REF].

Notation and de nitions

Consider an homogeneous Markov chain X " X 0 , X 1 , . . . , on a countably generated state space pE, Eq, with transition kernel P and initial probability distribution λ. This means that for any B P E and n P N, we have L pX 0 q " λ and PpX n`1 P B | X 0 , . . . , X n q " P pX n , Bq almost surely.

Note that the assumption of a countably generated state space is commonly used in Markov chain theory to avoid pathological examples known as 'anormal' chains [START_REF]Éléments d'une théorie générale des chaînes simples constantes de marko[END_REF]. For more information on this topic, see [START_REF]Éléments d'une théorie générale des chaînes simples constantes de marko[END_REF], [START_REF]Contributions to doeblin's theory of markov processes[END_REF], and [START_REF]Random Walk in Random and Non-Random Environments[END_REF]. An example of an 'anormal' chain can be found in [START_REF]The existence of anormal chains[END_REF]. This assumption does not signi cantly limit the generality of our results since most of the time E " B `Rd ˘, which is countably generated.

In the following, we use P λ (or P x for x in E) to denote the probability measure on the underlying space such that X 0 " λ (or X 0 " x). We use E λ p.q to represent the P λ -expectation (or E x p.q to represent the P x -expectation), and I tAu to represent the indicator function of event A.

A homogeneous Markov chain is said to be irreducible if there exists a σnite measure φ on pE, Eq such that for all x P E and all A P E with φpAq ą 0, there exists some n ě 1 such that P n px, Aq ą 0. In this case, there exists a maximal irreducibility measure ψ with respect to which all other irreducibility measures are absolutely continuous. If X is ψ-irreducible, there is

d 1 P N ˚and disjoints sets D 1 , . . . , D d 1 D d 1 `1 " D 1
weighted by ψ such that ψpEz Y 1ďiďd 1 D i q " 0 and @x P D i , P px, D i`1 q " 1. The the g.c.d. d of such integers is called the period of the chain. X is said to be aperiodic if d " 1.

In the following, we assume that the Markov chains under consideration are homogeneous, aperiodic, and irreducible with maximal irreducibility measure ψ.

An irreducible chain possesses an accessible atom, if there is a set α P E such that for all x, y in α: P px, 'q " P py, 'q and ψpαq ą 0. For instance, when a chain can take a countable number of values, any single point visited by the chain is an atom. Denote by σ α and τ α , respectively, the times of rst visit and rst return of the chain to α, i.e. τ α " inf tn ě 1 : X n P αu and σ α " inf tn ě 0 : X n P αu.

The subsequent visit and return times σ α , τ α pkq, k ě 1 are de ned inductively as follows:

τ α p1q " τ α , τ α pkq " min tn ą τ α pk ´1q :

X n P αu , (4.1) 
σ α p1q " σ α , σ α pkq " min tn ą σ α pk ´1q : X n P αu .

We use T n pαq to represent the random variable that counts the number of times the chain visits the set α up to time n, i.e., T n pαq " ř n t"0 ItX t P αu. Similarly, we use T pαq to represent the total number of visits of chain X to α. An atom α is called recurrent if E x T pαq " `8 for all x P α; otherwise, it is called transient. A notable property of atomic chains is that all accessible atoms are either all recurrent or all transient. Therefore, we say that an atomic chain is recurrent if one (and thus all) of its accessible atoms is recurrent.

Denote by P α and E α p.q the probability and the expectation conditionally to X 0 P α. If X possesses an accessible atom and is aperiodic, the probability of returning in nitely often to the atom α is equal to one, no matter the starting point, i.e. P x `T pαq " 8 ˘" 1 @x P E.

A fundamental tool for understanding the long-term behavior of Markov chains is the existence of invariant measures, that is, a measure π such that π pAq " ż P px, Aq dπ pxq @A P E.

Every irreducible and recurrent Markov chain admits a unique (up to a multiplicative constant) invariant measure [87, Theorem 10.4.9]. In the atomic case, the invariant measure is just the occupation measure over B 1 " `Xταp1q`1 , . . . , X ταp2q

[38, Theorem 6.4.2], i.e.

π α pAq " E α ˜τα ÿ j"1 I tX j P Au ¸, @A P E. (4.3) 
An irreducible Markov chain is positive recurrent if its invariant measure is nite. When the invariant measure is just σnite, then the chain is called null recurrent. From (4.3), it is clear that an atomic Markov chain is positive recurrent if and only if E α τ α ă `8, and in this case, the measure de ned by πα Eατα is an invariant probability for the chain. The existence of this invariant probability makes the theory of positive recurrent Markov chains, very similar to the i.i.d. case [START_REF]Markov chains and stochastic stability[END_REF]Chapter 17].

Conversely, dealing with null recurrent chains is considerably more challenging, and a comprehensive theory of non-parametric estimation for this type of chain does not exist. To address this issue, Karlsen and Tjøstheim introduced in

[67] a regularity condition for the tail behavior of the distribution of τ α that renders the problem more tractable. Speci cally, a chain is referred to as β-null recurrent (refer to [67, De nition 3.2 and Theorem 3.1]) if there is a constant β P p0, 1q

and a slowly varying function 1 L such that

P α pτ α ą nq " 1 Γp1 ´βqn β Lpnq . (4.4) 
The number β, also known as the regularity index (see [28,30]) satis es β " sup tp ą 0 : E α pτ p α q ă `8u .

Some of the most well-known examples of β-null recurrent Markov chain are the random walks in R, which are 1{2-null recurrent [START_REF]The sequence of sums of independent random variables[END_REF], the Bessel random walks [START_REF]Excursions and local limit theorems for bessel-like random walks[END_REF], [START_REF]Random walk versus random line[END_REF] and some types of threshold autoregressive (TAR) [START_REF]Estimation in threshold autoregressive models with a stationary and a unit root regime[END_REF] and vector autoregressive processes (VAR) [START_REF]Null recurrent unit root process[END_REF]. 1 A measurable and positive function L is said to be slowly varying at `8 if it is de ned in ra, `8q for some a ě 0, and satis es lim xÑ`8

Lpxtq

Lpxq " 1 for all t ě a. For a detailed discussion on these types of functions, refer to [START_REF] Regular Variation | Encyclopedia of mathematics and its applications 27[END_REF].

Renewal properties and Block decomposition

The strong Markov property implies that the sample paths of an atomic Markov chain can be partitioned into independent blocks of random length corresponding to consecutive visits to α, given by: B 0 " `X0 , X 1 , . . . , X ταp1q B1

" `Xταp1q`1 , . . . , X ταp2q .

. .

B n " `Xταpnq`1 , . . . , X ταpn`1q .

. .

Note that the distribution of B 0 depends on the initial measure, and thus it does not have the same distribution as B j for j ě 1. The sequence tτ α pjqu jě1 de nes successive times at which the chain forgets its past, which are called regeneration times. Similarly, the sequence of i.i.d. blocks tB j u jě1 is called regeneration blocks.

As customary in the β-null recurrent Markov chain literature, we will use T pnq to denote the number of complete regeneration blocks up to time n, i.e. T pnq " max pT n pαq ´1, 0q. We will denote by pB i q the length of the i-th block, therefore,

pB j q " $ ' ' & ' ' % τ α , j " 0 τ α pj `1q ´τα pjq , j ě 1 (4.5) 
The random variable T pnq, and its relationship with ř k j"0 pB j q, is crucial in the theory we will develop in this paper, therefore, we will state in this section its main properties in the β-null recurrent scenario.

Assume X is a β-null recurrent Markov chain with an accessible atom α. By (3.27) in [START_REF]Nonparametric estimation in null recurrent time series[END_REF], the function L in (4.4) can be normalized in such a way that

u pzq " z β L pzq (4.6)
is a continuous function that is strictly increasing in the interval rz 0 , `8q for some

z 0 P R `. De ne v pzq as v pzq " u p´1q pzq " inf ts : u psq ą zu , (4.7) 
then, u pv pzqq " v pu pzqq " z for z ě z 0 .

Consider the space of càdlàg functions de ned on the interval r0, `8q, denoted by D r0,`8q . This space consists of the real functions that are right-continuous with left limits and de ned over r0, `8q. More precisely, a function g P D r0,`8q if and only if g is right-continuous, has left limits at all points t ą 0, and lim tÓ0 gptq " gp0q. The space D r0,`8q is equipped with the Skorokhod 2 topology, making it a completely separable metric space. We will use ÝÝÝÝÑ Y and Y n and Z n are equivalent, then

Z n D r0,`8q
ÝÝÝÝÑ Y (see Lemma 3.31 in [START_REF]Limit Theorems for Stochastic Processes[END_REF]).

De ne the following processes

T n ptq " T ptntuq u pnq , C n ptq " 1 v pnq tntu ÿ k"0 pB k q, (4.8) 
and C

p´1q n ptq " inf tx : C n pxq ą tu. The following Theorem, proved in [START_REF]Nonparametric estimation in null recurrent time series[END_REF], shows that these three processes converge in D r0,`8q and that T n and C

p´1q n are equiva-2 See Chapter 6 of [START_REF]Limit Theorems for Stochastic Processes[END_REF] or Chapter 3 in [START_REF]Convergence of probability measures[END_REF] for more details about this space. ÝÝÝÝÑ S β where S β is the one-sided stable Levy process de ned by the marginal characteristics E rexp pisS β ptqqs " exp `is β t ˘s P R, t P r0, `8s.

ii) C

p´1q n and T n are equivalent processes and both converge in D r0,`8q to the Mittag-Le er process of parameter β.

Remark 4.2.1. The Mittag-Le er process with parameter β is de ned as the inverse of S β . It is a strictly increasing continuous stochastic process de ned as

M β ptq " t β M β p1q , E `M m β p1q ˘" m! Γ p1 `mβq m ě 0.
Theorem 4.2.1 shows a striking di erence between positive and null recurrent Markov chains. While in the former the existence of moments for pB j q implies that C n and T n (taking u pnq " n) converge almost surely respectively to tE α τ α and t Eατα , and therefore, T pnq can be approximated almost surely by the deterministic quantity n, in the latter, we only have weak convergence, hence T pnq can only be controlled by the deterministic quantity upnq in distribution.

Properties of linear functionals de ned on β-null recurrent chains

For a measurable function f : E Ñ R, and an atomic Markov chain X with an accessible atom α, consider the problem of estimating π α pf q " ş f dπ α , where π α is as in (4.3) and π α pf q ă `8. Denote by S n pf q the partial sums of f over the chain, that is

S n pf q " n ÿ k"0 f pX k q. ( 4.9) 
The Ratio Limit Theorem for atomic chains [START_REF]Markov chains[END_REF]Theorem 6.6.2] shows that if g is a measurable function, then, for every invariant measure π we have

S n pf q S n pgq a.s. Ý Ñ π pf q π pgq , (4.10) 
as long as π pgq ‰ 0.

Remark 4.2.2. From (4.10) is clear that Snpf q T pnq is a strongly consistent estimator of π α pf q, and, in the positive recurrent case, Snpf q n a.s.

Ý Ñ παpf q

Eατα . In the null recurrent case, however, Snpf q n a.s.

Ý Ñ 0 (see Corollary 6.6.3 in [START_REF]Markov chains[END_REF]) and there is no deterministic sequence a pnq such that Snpf q apnq converges almost surely to a non-zero limit [28].

Given that our interest in this paper is to apply the bootstrap method to the estimation of π α pf q we need to nd a series of i.i.d. random variables whose mean strongly converges to π α pf q. To do this, de ne the following random variables

f pB j q " $ ' ' ' & ' ' ' % τα ř i"0 f pX i q , j " 0 ταpj`1q ř i"ταpjq`1 f pX i q , j ě 1 .
The strong Markov property implies that under P α , the sequence tf pB j qu jě0 is i.i.d. Moreover, for every initial measure λ P M pEq `such that P λ pτ α ă 8q " 1, the random variables f pB j q , j ě 0 are independent and for j ě 1 they are i.i.d.

Therefore, S n pf q can now be written as a sum of independent random variables as follows: S n pf q " f pB 0 q `Tpnq ÿ j"1 f pB j q `n ÿ i"ταpT pnq`1q`1

f pX i q, (4.11) 
with the convention that the sum of an empty set is 0. As customary in the β-null recurrent literature, we will denote the last term in (4.11) by f `Bpnq ˘.

Equation (4.3) indicates that

E α f pB j q " π α pf q , j " 1, . . . . (4.12) 
hence, if the assume that π α p|f |q ă `8, the Law of Large Numbers for randomly indexed sequences [55, Theorem 8.2, pp 302] shows that

1 T pnq T pnq ÿ j"1 f pB j q a.s. Ý Ñ π α pf q . ( 4.13) 
Remark 4.2.3. The almost sure convergence of both Snpf q T pnq and 1

T pnq ř T pnq j"1 f pB j q to π α pf q and the decomposition (4.11) shows that f pB 0 q T pnq and f pBpnqq T pnq both converge almost surely to 0. This allow us to only consider in our estimations the i.i.d. blocks f pB j q , j ě 1.

If we suppose further that f pB 1 q has nite second moment and we denote by

σ 2 the variance of f pB 1 q, then 1 T pnq T pnq ÿ j"1 ˜f pB j q ´1 T pnq T pnq ÿ i"1 f pB i q ¸2 a.s. Ý Ñ σ 2 . (4.14)
Much of the work carried out in this investigation deals with sequences indexed by the sequence of random variables T pnq. As explained at the end of Section 4.2.2, this sequence, although it converges almost surely to `8, can not be deterministically approximated in probability, it only admits an approximation in distribution. This creates huge problems, even for simple tasks, as to obtaining a CLT, because, CLTs for randomly indexed sequences (see [START_REF]Large-sample theory of sequential estimation[END_REF] for the original formulation and Th. 17.2 in [START_REF]Convergence of probability measures[END_REF] for its more general form) require being able to control deterministically, at least in probability, the sequence of the number of terms. The result we present below, extends this CLT, replacing the requirement of the control in probability by the existence of the limit of a stochastic process de ned in terms of the sequence of the number of terms.

Lemma 4.2.1 (CLT for randomly indexed sequences). Let X 1 , X 2 . . . be i.i.d. random variables such that EpX 1 q " µ and Var X 1 " σ 2 ą 0. Let N pnq be a sequence of integer-valued random variables. If there exists an unbounded increasing sequence of real numbers u n such that the process N n ptq " N ptntuq un satisfy the following conditions:

• Exists a process S n in D r0,`8q that is non-negative and non-decreasing for each n.

• S n D r0,`8q
ÝÝÝÝÑ S where S is a strictly increasing non-negative process with independent increments, no xed jumps, and Sp0q " 0.

• N n is equivalent to S p´1q n . Then, N n converges to S p´1q , a N pnq ¨Npnq ř j"1 pX j ´µq N pnqσ ‹ ‹ ‹ ' , (4.15) 
converges weakly to a standard Normal distribution and this distribution is independent of S p´1q p1q. [Theorem 17.2 in [START_REF]Convergence of probability measures[END_REF]] Suppose X 1 , . . . , X n are i.i.d. with EX 1 " µ and Var X 1 " σ 2 . If N pnq is a sequence of integer-valued random variables such that

N pnq u n p Ý Ñ θ, (4.16) 
where θ is a positive random variable and the u n is sequence of positive numbers going to in nity, then

a N pnq ¨Npnq ř j"1 pX j ´µq N pnqσ ‹ ‹ ‹ '
converges in distribution to a standard normal random variable.

Using Lemma 4.2.1 and Theorem 4.2.1 we can provide a di erent proof of the following Central Limit Theorem for β-null recurrent atomic Markov chains, which was originally proved in [START_REF]Estimation of integrals with respect to in nite measures using regenerative sequences[END_REF].

Proposition 4.2.2. Let X be a β-null recurrent Markov chain, with an accessible atom α. For every π α -measurable function

f such that E " pf pB 1 qq 2 ‰ ă `8, a T pnq ¨Tpnq ř j"1 f pB j q T pnq ´ż f dπ α ‹ ‹ ‹ ' (4.17) 
converges in distribution to a Normal random variable with mean 0 and variance σ 2 .

Moreover, T pnq n β Lpnq converges to a Mittag-Le er distribution with parameter β that is independent of the limiting distribution of (4.17). 

The following corollary follows directly by

f pB j q T pnq ´ż f dπ α ‹ ‹ ‹ ' (4.18)
converges weakly to a Normal distribution with mean 0 and variance 1. Here s 2 n "

1 T pnq T pnq ř j"1 ˜f pB j q ´1 T pnq T pnq ř j"1 f pB j q ¸2.

The regenerative block-bootstrap algorithm

Let X pnq " pX 0 , ..., X n q be observations drawn from a β-null recurrent Markov chain X with an a priori known accessible atom α. As in the previous section, let f be a π α -integrable function such that f pB 1 q has a nite second moment. Denote by σ 2 the variance of f pB 1 q.

The bootstrap method we study in this section was introduced in [START_REF]Regenerative block bootstrap for markov chains[END_REF] for positive recurrent Markov chains. In the atomic case, it was shown to have a uniform rate of convergence of O p pn ´1q under mild conditions.

In this section, we show that the method is also applicable in the β-null recurrent case, although, we have not been able to obtain a rate. Proposition 3.1 in [START_REF]Edgeworth expansions of suitably normalized sample mean statistics for atomic markov chains[END_REF] shows that for positive recurrent chains, in the nonstationary case (when the initial law λ is not the invariant probability measure), the rst data block B 0 induces a bias of order Opn ´1q, which cannot be estimated from a single realization X pnq of the chain starting from λ. The last block B pnq (which is incomplete) induces a rst-order term in the bias too. This led the authors in [START_REF]Regenerative block bootstrap for markov chains[END_REF] to only consider statistics based on the regenerative data blocks B 1 , ...., B T pnq .

In the β-null recurrent case, the lack of nite rst moment for the block sizes 4.3. THE REGENERATIVE BLOCK-BOOTSTRAP ALGORITHM suggests that considering the non-regenerative blocks will incur in an even worst bias, hence, as in [START_REF]Regenerative block bootstrap for markov chains[END_REF], we will only consider statistics based on the regenerative data blocks B 1 , ...., B T pnq .

While our asymptotic results are speci cally stated for integrals with respect to the invariant measure, the algorithm can be applied to a broader range of statistics G n that have an appropriate standardization S n . This includes non-degenerate Ustatistics and di erentiable functionals.

The RBB procedure is performed in four steps as follows:

1. Count the number of visits T n pαq to the atom α up to time n. And divide the observed sample path X pnq " pX 0 , ...., X n q into T n pαq `1 blocks, B 0 ,

B 1 , ...., B Tnpαq´1 , B pnq Tnpαq valued in the torus T " Y 8 n"1 E n , corresponding to
the pieces of the sample path between consecutive visits to the atom α. Drop the rst and last (non-regenerative) blocks. Denote by T pnq the number of remaining blocks.

2. Draw sequentially bootstrap data blocks B 1,T pnq , ..., B k,T pnq independently from the empirical distribution F n " T pnq ´1 ř T pnq j"1 δ B j of the blocks tB j u 1ďjďT pnq conditioned on X pnq , until the length ˚pkq " ř k j"1 pB j,T pnq q of the bootstrap data series is larger than n. Let T n pαq " inftk ě 1, ˚pkq ą nu and T ˚pn, T pnqq " T n pαq ´1.

3. From the data blocks generated in step 2, reconstruct a pseudo-trajectory of size l ˚pT ˚pn, T pnqqq by binding the blocks together X ˚pnq " pB 1,T pnq , ..., B T ˚pn,T pnqq,T pnq q.

Compute the RBB statistic G n " G n pX ˚pnq q.

CHAPTER 4. REGENERATIVE BOOTSTRAP FOR β-NULL RECURRENT MARKOV CHAINS 4. If S n " SpB 1 , ..., B T pnq q is an appropriate standardization of the original statistic G n , compute S n " SpB 1,T pnq , ..., B T ˚pn,T pnqq,T pnq q.

The RBB distribution is then given by H RBB pxq " P ˚´S ˚´1 n pG n ´Gn q ď x where P ˚p'q " P `' | X pnq ˘denotes the conditional probability given X pnq .

Our main asymptotic result, in the case of integrals concerning the invariant measure, is the following. ˜f pB j,T pnq q ´1 T pnq

T pnq ř i"1 f pB i q Ţ ˚pn, T pnqq σ T pnq ‹ ‹ ‹ ‹ ' d Ý Ñ N p0, 1q ,
in probability along the data, where d ˚denotes the convergence in distribution conditionally to the data and

σ 2 T pnq " 1 T pnq T pnq ÿ j"1 ˜f pB j q ´1 T pnq T pnq ÿ i"1 f pB i q ¸2.
This theorem yields that the bootstrap distribution of the standardized sum has asymptotically the same distribution as the statistics

T pnq ř j"1 f pB j q T pnq estimating ş f dπ α .
The regenerative block bootstrap is thus rst-order correct. In particular, this justi es the use of the quantiles of the bootstrap distribution (with or without stan- 

The regeneration-based bootstrap algorithm

In this section, we adapt the Regeneration-base bootstrap to the β-null recurrent Markov chain scenario.

Similarly to Section 4.3, consider observations X pnq " pX 0 , . . . , X n q drawn from a β-null recurrent Markov chain X that has an accessible atom α known beforehand. Suppose that f is a function such π α pf q is nite and the second moment of f pB 1 q is also nite. Let σ 2 represent the variance of f pB 1 q.

The algorithm we present in this section was introduced in [START_REF]Bootstrapping markov chains: countable case[END_REF]34] for positive recurrent Markov chains with an accessible known atom. Similarly to the RBB, it consists on dividing the chain into B 1 , . . . , B T pnq regenerative blocks and then resampling blocks to form the empirical distribution of B 1 , . . . , B T pnq . The main di erence between the Regeneration-based bootstrap and the RBB is that in the former, the number of bootstrapped blocks is T pnq, hence, non-random conditionally to X pnq , while in the latter is random.

The full algorithm is as follows:

1. Count the number of visits T n pαq to the atom α up to time n. And divide the observed sample path X pnq " pX 0 , ...., X n q into T n pαq `1 blocks, B 0 ,

B 1 , ...., B Tnpαq´1 , B pnq Tnpαq valued in the torus T " Y 8 n"1 E n , corresponding to
the pieces of the sample path between consecutive visits to the atom α. Drop the rst and last (non-regenerative) blocks. Denote by T pnq the number of remaining blocks.

2. Draw T pnq bootstrap data blocks B 1,T pnq , ..., B T pnq,T pnq independently from the empirical distribution F n " T pnq ´1 ř T pnq j"1 δ B j of the blocks tB j u 1ďjďT pnq conditioned on X pnq .

3. From the bootstrap data blocks generated at step 2, reconstruct a trajectory by binding the blocks together, getting the reconstructed sample path X ˚pnq " pB 1,T pnq , ..., B T pnq,T pnq q.

Compute the statistic G n " G n `X˚pnq ˘.

4. If S n " SpB 1 , . . . , B T pnq q is an appropriate standardization of the original statistic G n , compute S n " SpB 1,T pnq , . . . , B T pnq,T pnq q.

As in the RBB case, the asymptotic result stated below shows the validity of this bootstrap scheme when used in estimations of integrals with respect to the invariant measure. ˜f pB j,T pnq q ´1 T pnq

T pnq ř i"1 f pB i q Ţ pnq σ T pnq ‹ ‹ ‹ ‹ ' d Ý Ñ N p0, 1q ,
almost surely along the data, where d ˚denotes the convergence in distribution conditionally to the data and In its original formulation for the positive recurrent case, the estimator used was Snpf q n , however, by Remark 4.2.2, this can not be done in the null recurrent case, hence, we need to use 1 T pnq ř T pnq j"1 f pB i q.

σ 2 T pnq " 1 T pnq T pnq ÿ j"1 ˜f pB j q ´1 T pnq T pnq ÿ i"1 f pB i q ¸2.

Simulations

To illustrate the convergence of the regenerative bootstraps method described in the previous two sections we will do the following simulation experiment.

Take X as the simple symmetric random walk in Z, that is

X t " $ ' ' & ' ' % 0 , t " 0 t ř k"1 Y i , t ě 1 (4.19) 
with P pY i " 1q " P pY i " ´1q " 1 2 . In this random walk, the state 0 is an atom and the invariant measure is π 0 piq " 1 (see pp.1143 in [START_REF]Estimation of integrals with respect to in nite measures using regenerative sequences[END_REF]). Consider the function

f pkq " 1 k 2 if k ‰ 0 and f p0q " 0, then ż f pxq dπ pxq " 2 `8 ÿ k"1 1 k 2 " π 2 0 3 .
In order to show the validity of the proposed methods, we have simulated the ˜f pB j,T pnq q ´1 T pnq

T pnq ř i"1 f pB i q Ţ ˚pn, T pnqq σ T pnq ‹ ‹ ‹ ‹ ' , Z RegBB " a T pnq ¨Tpnq ř j"1
˜f pB j,T pnq q ´1 T pnq For each m, de ne

T pnq ř i"1 f pB i q Ţ pnq σ T pnq ‹ ‹ ‹ ‹ ' .
T ˚pm, T pnqq " max # k : k ÿ j"1 `f pB j,T pnq q ˘ď m + , (4.23) 
U ˚pm, T pnqq " ? m ¨m ř j"1 ˜f pB j,T pnq q ´1 T pnq

T pnq ř i"1 f pB i q mσ T pnq ‹ ‹ ‹ ‹ ' . ( 4.24) 
Theorem 4.3.1 will be proved if we show that

P ˚˜U ˚´T ˚pn, T pnqq , T pnq ¯ď x ¸p Ý Ñ P pN ď xq @x P R, (4.25) 
where P is a standard normal random variable and P ˚p'q " P `' | X pnq ˘denotes the conditional probability given X pnq .

Given that we will bootstrap T ˚pn, T pnqq terms, which is a random quantity conditionally to the data, we will use Lemma 4.6.1 to prove (4.25). In order to do this we need, conditionally to the data:

1. Find a process S n,T pnq ptq that is non-negative, non-decreasing that converges in D r0,`8q to a process S ˚that is non-negative, strictly increasing, has independent increments, no xed jumps and S ˚p0q " 0. 3. Find a process Q n,T pnq ptq that converges in D r0,`8q to a Brownian motion 

f pB i q Ţ pnq σ T pnq ‹ ‹ ‹ ‹ ' . (4.27)
Take S n,T pnq ptq as

S n ptq " 1 v ˚pT pnqq tT pnqtu ÿ i"1 `Bi ,T pnq ˘, (4.28) 
where v ˚pT pnqq "

T pnq ř i"0 pB i q.

Following the notation of [START_REF]On the Bootstrap of the Sample Mean in the In nite Variance Case[END_REF], let Y i " l pB i q and let Y 1,n ě Y 2,n ě . . . ě Y n,n be the order statistics of the sizes of the rst n blocks, and take Z k,n "

Y k,n
vpnq where v pnq is as in (4.7). By Theorem 1 in [START_REF]On the Bootstrap of the Sample Mean in the In nite Variance Case[END_REF],

Z pnq " pZ 1,n , Z 2,n , . . . , Z n,n , 0, . . . , 0q d Ý Ñ pZ 1 , Z 2 , . . . ,q " Z, (4.29) 
where Z k " pE 1 `¨¨¨`E k q ´1 β and E i is a sequence of i.i.d. of exponential random variables with mean 1. By Skorokhod-Dudley-Wichura Theorem (see pp. 1171 in [START_REF]On the Bootstrap of the Sample Mean in the In nite Variance Case[END_REF] and pp. 476 in [START_REF]Non-central limit theorems for random selections[END_REF]) we can choose a probability space such that, without changing the distribution of the left hand side of (4.29),

Z pnq a.s. Ý Ý Ñ Z. (4.30)
The following Lemma shows that in that space, conditionally to the data, the process S n,T pnq converges in D r0,`8q . Here, S ˚ptq " KR ˚ptq `t, R ˚ptq " `8 ř j"1 Z j `λj ptq ´t˘, λ j ptq are independent

Poisson processes with parameter 1 and K is a positive constant. Moreover, the process S ˚is non-negative, strictly increasing, continuous, with independent increments and S ˚p0q " 0.

Proof. When (4.30) holds, by Theorem 1 and Remark 1.3 in [START_REF]Convergence to a Stable Distribution Via Order Statistics[END_REF],

1 vpnq n ÿ j"1 pB j q a.s. Ý Ý Ñ `8 ÿ j"1 Z j .
The length of the rst block, pB 0 q, is nite with probability 1 and does not depend on n, hence pB 0 q vpnq converges almost surely to 0. This implies that

1 vpnq n ÿ j"0 pB j q a.s. Ý Ý Ñ `8 ÿ j"1 Z j .
(4.32)

In (4.7), we de ned v pzq as the inverse of u pzq " z β L pzq, then, by Proposition 1.5.15 in [START_REF] Regular Variation | Encyclopedia of mathematics and its applications 27[END_REF], vpzq " z 1{β L 1 pzq where L 1 is a slowly varying function, hence, Similar to what is described on page 1141 in [START_REF]Estimation of integrals with respect to in nite measures using regenerative sequences[END_REF], suppose that y is such that y ă S p´1q n p1q. Then, since S n pyq ă 1, it follows that ř tnyu j"0 pB j q ă vpnq. Consequently, we have T ptvpnquq ě tnyu ą ny ´1. This in turn implies that The rst part of the lemma now follows from (4.34), the convergence of S p´1q upnq p1q

1 vpnq tntu ÿ j"0 pB j q a.s. Ý Ý Ñ t 1 β `8 ÿ j"1 Z j @t ą 0. ( 4 
to S ´1 p1q and the fact that u pv pnqq " n for n big enough.

To show (4.31), consider the following process, which was studied in [START_REF]Non-central limit theorems for random selections[END_REF],

Z m,n ptq " 1 v pnq tmtu ÿ j"1 ˆ `Bj ,n
˘´ř n i"1 pB i q n ˙.

By Corollary 1.2 in [START_REF]Non-central limit theorems for random selections[END_REF] (and its proof 3 ), we see that when (4.30) holds, for any m n such that mn n Ñ c, conditionally to the data, the process Z mn,n converges weakly in D pr0, 1sq to R ˚pctq. Let C ą 1, on r0, Cs de ne the process

W n ptq " 1 v pnq tntu ÿ j"1 ˆ `Bj ,n ˘´ř n i"1 pB i q n ˙. Notice that W n ptq " Z nC,n `t C ˘, hence, W n D r0,Cs
ÝÝÝÑ R ˚as n Ñ `8. Because 3 In [START_REF]Non-central limit theorems for random selections[END_REF], they standardize by T n " max 1ďkďn l pB k q but from the proof is clear that the result remains valid if we standardize by v pnq (b n in their notation).

this convergence holds for arbitrary C ą 0, by Lemma 1.3.ii in [START_REF]Limit theorems for lévy processes and poisson point processes and their applications to brownian excursions[END_REF] we have that

W n D r0,`8q
ÝÝÝÝÑ R ˚, and therefore, W T pnq

D r0,`8q ÝÝÝÝÑ R ˚.
The process S n,T pnq can be written as The continuity of S ˚was shown in pp. 466 of [START_REF]Non-central limit theorems for random selections[END_REF], and the rest of the properties are evident from the form of R ˚.

S
The next Lemma handles the equivalence of T n,T pnq and S Proof. The proof of this result follows the proof of Theorem 3.2 on [START_REF]Nonparametric estimation in null recurrent time series[END_REF] with slight modi cations.

We need to show that, for any ε ą 0 given,

P ˆsup 0ătďK
ˇˇT n,T pnq ptq ´S˚p´1q n,T pnq ptq ˇˇą ε ˙Ñ 0 @K ą 0.

To prove this, we will show that n,T pnq ptq ă s 0 implies that ˇˇξ n,T pnq ptq ˇˇď η 2 ´η1 `ε1 η 1 `1 T pnq @t P r0, Ks , @ε 1 P p0, 1q .

P
Choose η 0 , . . . , η L , N 1 , ε 1 with η 0 " 0 ă η 1 ă . . . ă η L´1 ă η L " s 0 such that η i ´ηi`1 ă ε 3 for all i. Let ε 1 ă ε s 0 and choose N 1 such that 1 T pN 1 q ă ε 3 .

Notice that for all t P r0, Ks there is only one i n,t such that S ˚p´1q n,T pnq ptq belongs Now we turn to the proof of (4.38).

According to the de nition of v ˚, v ˚pT pnqq "

T pnq ř i"0 l pB i q ď n, therefore, T v˚p T pnqq,T pnq ptq " T ˚ptv ˚pT pnqq tu, T pnqq T pnq ď T ˚ptntu, T pnqq T pnq " T n,T pnq ptq @n, t.

Notice that v ˚pT pnq `1q "

T pnq`1 ř i"0 l pB i q ą n, therefore,

T n,T pnq ptq ď T v˚p T pnq`1q,T pnq ptq T pnq `1 T pnq @n, t.

Hence,

T v˚p T pnqq,T pnq ptq ď T n ptq ď T v˚p T pnq`1q ptq T pnq `1 T pnq @n, t.

Equation (4.38) now follows from the convergence of both T v˚p T pnqq,T pnq and T v˚p T pnq`1q,T pnq to S ˚p´1q and the fact that Let F be the distribution of f pB 1 q and denote by F n the empirical distribution function of f pB 1 q, . . . , f pB n q. By (2.1) in [START_REF]Some asymptotic theory for the bootstrap[END_REF] and the fact that T pnq Ñ `8 a.s., linear combination of X t and Z t . This concept was rst introduced in [START_REF]Some properties of time series data and their use in econometric model speci cation[END_REF] and has since been extensively studied, particularly in the eld of econometrics [START_REF]Co-integration and error correction: Representation, estimation, and testing[END_REF][START_REF]Statistical analysis of cointegrating vectors[END_REF][START_REF]Estimation and hypothesis testing of cointegration vectors in gaussian vector autoregressive models[END_REF][START_REF]Optimal inference in cointegrated systems[END_REF][START_REF]Asymptotics for linear processes[END_REF].

F T pnq ñ F along
However, the long-term relationship between the two series, Z t and X t , might not necessarily be linear, nor X t be linearly generated. This has led to the study of nonlinear cointegrated models such as,

Z t " f 0 pX t q `Wt , (5.1) 
where a nonlinear function f 0 and a nonlinearly generated input process X t are incorporated to model the relationship between the series.

In [START_REF]Nonparametric regression estimation for multivariate null recurrent processes[END_REF][START_REF]Nonparametric estimation in a nonlinear cointegration type model[END_REF] a relationship like (5.1) has been studied under the assumptions that f 0 is nonlinear, X t and W t are independent processes, and X t is a positive or βnull recurrent Markov chain. They have applied the Nadaraya-Watson method to estimate f 0 and established the asymptotic theory of the proposed estimator.

The problem of estimating f 0 under the Markovian assumption has also been tackled using local linear M-type estimators in [START_REF] O S | Local m-estimator for nonparametric time series[END_REF][START_REF]Local linear m-estimators in null recurrent times series[END_REF] and using advanced concepts like local time and nonlinear transformations of Brownian motion-like processes in [START_REF]Limit Theorems for Nonlinear Cointegrating Regression[END_REF][START_REF]Asymptotic theory for local time density estimation and nonparametric cointegrating regression[END_REF][START_REF]Structural nonparametric cointegrating regression[END_REF]. A comprehensive survey of the latest advances in this problem can be found in [START_REF]Some notes on nonlinear cointegration: A partial review with some novel perspectives[END_REF].

To the best of our knowledge, the case where f 0 is subject to shape constraints has not been addressed under Markovian assumptions. Such estimators are nonlinear and therefore pose signi cant theoretical challenges. In the context of independent observations, constraints such as convexity, concavity, and log-concavity are known to be even more complex than monotonicity constraints (see [START_REF]Some Developments in the Theory of Shape Constrained Inference[END_REF][START_REF]Editorial: Special Issue on "Nonparametric Inference Under Shape Constraints[END_REF] and the references therein). As a result, we have chosen to initiate our study of shape-constrained estimators in the Markovian setting by focusing on the monotone case.

In this paper, we wish to establish a nonparametric estimation theory of the nonparametric least squares estimator (LSE) for the function f 0 in the model (5.1) under the constraints that f 0 is monotone non-increasing. Here, tW t u is an unobserved process such that EpW t |X t q " 0 to ensure identi ability of f 0 . Since a minimal condition for undertaking asymptotic analysis on f 0 px 0 q at a given point

x 0 is that, as the number of observations on tX t u increases, there must be in nitely many observations in the neighborhood of x 0 , the process tX t u will be assumed to be a Harris recurrent Markov chain (cf section 5.2).

This model is clearly very attractive in situations where monotonicity is a reasonable assumption but commonly assumed structures such as linearity or additivity are not. Indeed, this formulation, in the i.i.d. case, has found useful applications in econometrics [START_REF]Nonparametric estimation and inference under shape restrictions[END_REF], biology [START_REF]E cient regularized isotonic regression with application to gene-gene interaction search[END_REF][START_REF]Consistent probabilistic outputs for protein function prediction[END_REF], medicine [START_REF]The reduced monotonic regression method[END_REF], engineering [START_REF]Wind turbine power curve modeling for reliable power prediction using monotonic regression[END_REF] among others. However, up to our knowledge, it has not been treated under the markovian assumption on X t .

The estimator

Let C be a set that its interior contains our point of interest x 0 . Having observed tpX t , Z t qu n t"0 , we denote by T n pCq the number of times that X visited C up to time n and by σ C piq the time of the i-th visit. Then, we consider the nonparametric LSE de ned as the minimizer of

f Þ Ñ TnpCq ÿ i"1 `Zσ C piq ´f `Xσ C piq

˘˘2

(5.2) 

I X σ C piq ď Y k ( , TnpCq ÿ i"1 Z σ C piq I X σ C piq ď Y k ( ¸, k " 1, . . . , m + , (5.3) 
and it can be computed using simple algorithms as discussed in [START_REF]Statistical inference under order restrictions: The theory and application of isotonic regression[END_REF]. Thus, the constrained LSE is uniquely de ned at the observation points, however, it is not uniquely de ned between these points: any monotone interpolation of these values is a constrained LSE. As is customary, we consider in the sequel the piecewiseconstant and left-continuous LSE that is constant on every interval pY k´1 , Y k s, k " 2, . . . , m and also on p´8, Y 1 s and on rY m , 8q.

The use of a localized estimator is due to the fact that we need to control the behavior of the chain around x 0 , and, to do this, we need to estimate the asymptotic "distribution" of X in a vecinity of x 0 . For Harris recurrent Markov chains, the longterm behavior of the chain is given by its invariant measure (see Section 5.2). In the positive recurrent case, the invariant measure is nite and it can be estimated by simply considering the empirical cumulative distribution function of the X t .

However, in the null recurrent case, the invariant measure is only σnite, hence, we need to localize our analysis in a set big enough that the chain visits it in nitely often, but small enough that the restriction of the invariant measure to it is nite.

Moreover, contrary to the bandwidth in kernel type estimators, C does not depend on n, and the rate of convergence of the estimator does not depend on C.

If λ is a probability measure in pE, Eq such that L pX 0 q " λ, then λ is called the initial measure of the chain X. A homogeneous Markov chain is uniquely identi ed by its kernel and initial measure.

When the initial measure of the chain is given, we will write P λ (and E λ ) for the probability (and the expectation) conditioned on L pX 0 q " λ. When λ " δ x for some x P E we will simply write P x and E x .

An homogeneous Markov chain is irreducible if there exists a σnite measure φ on pE, Eq such that for all x P E and all A P E with φpAq ą 0 we have P n px, Aq ą 0 for some n ě 1. In this case, there exists a maximal irreducibility measure ψ (all other irreducibility measures are absolutely continuous with respect to ψ). In the following, all Markov chains are supposed to be irreducible with maximal irreducibility measure ψ.

For any set C P E, we will denote by σ C and τ C , respectively, the times of rst visit and rst return of the chain to the set C, i.e. τ C " inf tn ě 1 : X n P Cu and σ C " inf tn ě 0 : X n P Cu. The subsequent visit and return times σ C , τ C pkq, k ě 1 are de ned inductively as follows:

τ C p1q " τ C , τ C pkq " min tn ą τ C pk ´1q : X n P Cu , (5.4) 
σ C p1q " σ C , σ C pkq " min tn ą σ C pk ´1q : X n P Cu .

(5.5)

Given that our methods will only deal with the values of X in a xed set C, if

A is a measurable set, we will write I C tX t P Au instead of ItX t P A X Cu and if

A " E, then we will simply write I C pX t q.

We will use T n pCq to denote the random variable that counts the number of times the chain has visited the set C up to time n, that is T n pCq " ř n t"0 I C pX t q.

Similarly, we will write T pCq for the total of numbers of visits the chain X to C.

The set C is called recurrent if E x T pCq " `8 for all x P C and the chain X is recurrent if every set A P E such that ψ pAq ą 0 is recurrent.

Although recurrent chains possess many interesting properties, a stronger type of recurrence is required in our analysis. An irreducible Markov chain is Harris recurrent if for all x P E and all A P E with ψpAq ą 0 we have P pX n P A in nitely often |X 0 " x q " 1.

An irreducible chain possesses an accessible atom, if there is a set α P E such that for all x, y in α: P px, .q " P py, .q and ψpαq ą 0. Denote by P α and E α p.q the probability and the expectation conditionally to X 0 P α. If X possesses an accessible atom and is Harris recurrent, the probability of returning in nitely often to the atom α is equal to one, no matter the starting point, i.e. @x P E, P x pτ α ă 8q " 1.

Moreover, it follows from the strong Markov property that the sample paths may be divided into independent blocks of random length corresponding to consecutive visits to α:

B 0 " `X0 , X 1 , . . . , X ταp1q B1 
" `Xταp1q`1 , . . . , X ταp2q .

. .

B n " `Xταpnq`1 , . . . , X ταpn`1q .

. .

taking their values in the torus T " Y 8 n"1 E n . Notice that the distribution of B 0 depends on the initial measure, therefore it does not have the same distribution as B j for j ě 1. The sequence tτ α pjqu jě1 de nes successive times at which the chain forgets its past, called regeneration times. Similarly, the sequence of i.i.d. blocks tB j u jě1 are named regeneration blocks. The random variable T pnq " T n pαq 1 counts the number of i.i.d. blocks up to time n. This term is called number of regenerations up to time n.

Notice that for any function de ned on E, we can write ř n t"0 f pX t q as a sum of independent random variables as follows:

n ÿ t"0 f pX t q " f pB 0 q `Tpnq ÿ j"1 f pB j q `f `Bpnq ˘, (5.6) 
where, f pB 0 q " ř τα t"0 f pX t q, f pB j q " ř ταpj`1q t"ταpjq`1 f pX t q for j " 1, . . . , T pnq and f `Bpnq ˘" ř n t"ταpT pnq`1q`1 f pX t q.

When an accessible atom exists, the stochastic stability properties of X amount to properties concerning the speed of return time to the atom only. For instance, the measure π α given by:

π α pBq " E α ˜τα ÿ n"1
ItX i P Bu ¸, @B P E (5.7) is invariant, i.e. π α pBq " ż P px, Bq dπ α pxq.

Denote by E `the class of nonnegative measurable functions with positive ψ support. A function s P E `is called small if there exists an integer m 0 ě 1 and a measure ν P M pEq `such that P m 0 px, Aq ě s pxq ν pAq @x P E, A P E.

(5.8)

When a chain possesses a small function s, we say that it satis es the minorization inequality M pm 0 , s, νq. As pointed out in [START_REF]General Irreducible Markov Chains and Non-Negative Operators[END_REF], there is no loss of generality in assuming that 0 ď s pxq ď 1 and ş E spxqdνpxq ą 0.

A set A P E is said to be small if the function I A is small. Similarly, a measure ν is small if there exist m 0 , and s that satisfy (5.8). By Theorem 2.1 in [START_REF]General Irreducible Markov Chains and Non-Negative Operators[END_REF], every irreducible Markov chain possesses a small function and Proposition 2.6 of the same book shows that every measurable set A with ψ pAq ą 0 contains a small set. In practice, nding such a set consists in most cases in exhibiting an accessible set, for which the probability that the chain returns to it in m steps is uniformly bounded below. Moreover, under quite wide conditions a compact set will be small, see [START_REF]Random coe cient autoregressive processes:a markov chain analysis of stationarity and niteness of moments[END_REF].

If X does not possess an atom but is Harris recurrent (and therefore satis es a minorization inequality M pm 0 , s, νq), a splitting technique, introduced in [START_REF]A splitting technique for harris recurrent markov chains[END_REF][START_REF]General Irreducible Markov Chains and Non-Negative Operators[END_REF], allows us to extend in some sense the probabilistic structure of X in order to arti cially construct an atom. The general idea behind this construction is to expand the sample space so as to de ne a sequence pY n q nPN of Bernoulli r.v. 's and a bivariate chain X " tpX n , Y n qu `8 n"0 , named split chain, such that the set α " pE, 1q

is an atom of this chain. A detailed description of this construction can be found in [START_REF]General Irreducible Markov Chains and Non-Negative Operators[END_REF].

The whole point of this construction consists in the fact that X inherits all the communication and stochastic stability properties from X (irreducibility, Harris recurrence,...). In particular, the marginal distribution of the rst coordinate process of X and the distribution of the original X are identical. Hence, the splitting method enables us to establish all the results known for atomic chains to general Harris chains, for example, the existence of an invariant measure which is unique 

h pX t q ¸" 1 Γ p1 `βq n β L h pnq as n Ñ 8.
As argued in [START_REF]Nonparametric estimation in null recurrent time series[END_REF], is not a too severe restriction to assume m 0 " 1. Therefore, throughout this paper we assume that X satis es the minorization inequality M p1, s, νq, i.e, there exist a measurable function s and a probability measure ν such that 0 ď s pxq ď 1, ş E spxqdνpxq ą 0 and P px, Aq ě s pxq ν pAq .

(5.9) Remark 5.2.1. The extensions to the case where m 0 ą 1 of the results that will be presented in this paper can be carried out (although they involve some complicated notations/proofs) using the m-skelethon or the resolvent chains, as described in [28,30] and Chapter 17 of [START_REF]Markov chains and stochastic stability[END_REF]. However, they are not treated in this paper.

A measurable and positive function L, de ned in ra, `8q for some a ě 0, is called slowly varying at `8 if it satis es lim xÑ`8

Lpxtq

Lpxq " 1 for all t ě a. See [START_REF] Regular Variation | Encyclopedia of mathematics and its applications 27[END_REF] for a detailed compendium of these types of functions.

It was shown in Theorem 3.1 of [START_REF]Nonparametric estimation in null recurrent time series[END_REF] that if the chain satis es the minorization condition (5.9), then it's β-null recurrent if and only if

P pτ α ą nq " 1 Γ p1 ´βq n β L pnq , (5.10) 
where L is a slowly varying function.

The following theorem is a compendium of the main properties of Harris's recurrent Markov chains that will be used throughout the paper. Among other things, it shows that the asymptotic behaviour of T pnq is similar to the function u pnq de ned as

u pnq " $ ' ' & ' ' % n, if X is positive recurrent n β L pnq , if X is β-null recurrent .
(5.11)

Theorem 5.2.1. 2 Suppose X is a Harris recurrent, irreducible Markov chain, with initial measure λ, that satis es the minorization condition (5.9). Let T pnq be the number of complete regenerations until time n of the split chain X , let C P E be a small set and π be an invariant measure for X. Then, 1. 0 ă π pCq ă `8.

2.

For any function f , de ned on E, the decomposition (5.6) holds. Moreover, there is a constant K π , that only depends on π, such that if f P L 1 pE, πq, then

E λ f pB 1 q " K π ş E f dπ.

T pnq

TnpCq converges almost surely to a positive constant.

4.

T pnq upnq converges almost surely to a positive constant if X is positive recurrent and converges in distribution to a Mittag-Le er 3 random variable with index β if X is β-null recurrent.

2 Part 1 is Proposition 5.6.ii of [START_REF]General Irreducible Markov Chains and Non-Negative Operators[END_REF], part 2 is equation (3.23) of [START_REF]Nonparametric estimation in null recurrent time series[END_REF], part 3 is an application of the Ratio Limit Theorem (Theorem 17.2.1 of [START_REF]Markov chains and stochastic stability[END_REF]). For the positive recurrent case, part 4 also follows by the aforementioned Ratio Limit Theorem while the claim for the null recurrent case appears as Theorem 3.2 in [START_REF]Nonparametric estimation in null recurrent time series[END_REF]. 3 The Mittag-Le er distribution with index β is a non-negative continuous distribution, whose moments are given by

E `M m β p1q ˘" m! Γ p1 `mβq m ě 0.
See (3.39) in [START_REF]Nonparametric estimation in null recurrent time series[END_REF] for more details.

RATES OF CONVERGENCE

Theorem 5.3.1. Suppose that assumptions (A1)-(A7) are satis ed. Then, as n Ñ 8, one has p f n px 0 q " f 0 px 0 q `oP p1q,

and p f ´1 n pf 0 px 0 qq " x 0 `oP p1q.

(5.15)

Rates of convergence

To compute rates of convergence, we need stronger assumptions than for consistency. We replace assumption (A1) for the following stronger version (B1) tX t u is a positive or β-null recurrent, aperiodic and irreducible Markov Chain whose kernel P px, Aq satis es the minorization condition (5.9).

We replace, (A5), (A6) and (A7), for the following slightly more restrictive assumption (B2) The function f 0 is non-increasing, the functions f 0 and F C are di erentiable in C, and the derivatives F 1 C and f 1 0 are bounded, in absolute value, above and away from zero in C.

Let λ be the initial measure of X. Our next hypothesis imposes some control on the behaviour of the chain in the rst regenerative block.

(B3) There exists a constant K and a neighborhood V of 0, such that E λ ˜τα ÿ t"0 pI C tX t ď x 0 `γu ´IC tX t ď x 0 ´γuq ¸ď Kγ @γ P V.

LOCALIZED MARKOV CHAINS

The rst result can be viewed as an extension of the Glivenko-Cantelli theorem to the localized scenario. (5.17)

as n Ñ 8. If (A5) is also satis ed, then, for all su ciently small ε ą 0, as n Ñ 8

we have sup |p´F px 0 q|ďε ˇˇF ´1 n ppq ´F ´1 ppq ˇˇÑ 0 a.s.

(5.18)

Our next result (Lemma 5.5.2), which is an extension of Lemma 2 in [START_REF]Rademacher complexity for Markov chains: Applications to kernel smoothing and Metropolis-Hastings[END_REF] to the localized β-null recurrent case, deals with the properties of classes of functions de ned over the regeneration blocks. Before presenting the result, we need some machinery.

Recall that E Ď R denotes the state space of X. De ne p E " Y 

and for any class G of real-valued functions de ned on E, denote the localized version of the sums on the blocks by p G C " tp g C : g P Gu.

Notice that, for any function g, 

E Q C pgq " E p Q ` C pBq ˆş g pyq M C pB, dyq Ȇ p Q p 2 C q " E p Q p C pBq p g C pBqq E p Q p 2 C q . ( 5 
N ´ε} C } L 2p p Qq , p G C , L 2 ´p Q ¯¯ď N `ε, G, L 2 pQq ˘,
where Q is given in (5.19). Moreover, if G belongs to the Vapnik-Chervonenkis (VC) class of functions with constant envelope U and characteristic pC, vq, then p G is VC Lemma 5.6.2. Let C " rx ´δ, x `δs for some xed δ ą 0. Let p λ n be the left-hand slope of the least concave majorant of Λ n . Then, p f n pY k q " p λ n ˝Fn pY k q, @k P t1, . . . , mu.

(5.31)

with probability 1 for n big enough.

We consider below the generalized inverse function of p f n since it has a more tractable characterization than p f n itself. To this end, let us de ne precisely the generalized inverses of all processes of interest. Since p λ n is a non-increasing leftcontinuous step function on pF n pY 0 q, F n pY m qs that can have jumps only at the points F n pY k q, k P t1, . . . , mu, we de ne its generalized inverse p U n paq, for a P R, as the greatest y P pF n pY 0 q, F n pY m qs that satis es p λ n pyq ě a, with the convention that the supremum of an empty set is F n pY 0 q. Then for every a P R and y P pF n pY 0 q, F n pY m qs, one has Now, we turn to the proof of (5.18). To do this, we adapt some of the ideas presented in the proof of Lemma 21.2 in [START_REF] V V | Asymptotic statistics[END_REF].

Let V a normal random variable independent of the X i 's, and Φ its distribution function. it follows from (5.17) that conditionally on the X t 's, F n pV q converges almost surely to F pV q. Thus, denoting by P X the conditional probability given the X t 's, it follows from (5.34) that ΦpF ´1 n puqq " P X pF n pV q ă uq converges almost surely to P X pF pV q ă uq " ΦpF ´1puqq at every u at which the limit function is continuous . Since F is strictly increasing in C, one can nd ε ą 0 such that F ´1 is continuous on rF px 0 q ´ε, F px 0 q `εs, so the above limit function is continuous at every u P rF px 0 q´ε, F px 0 q`εs. By continuity of Φ ´1 on p0, 1q, F ´1 n puq converges almost surely to F ´1puq for every such u. By monotonicity, the convergence is uniform, hence

sup |p´F px 0 q|ďε |F ´1 n ppq ´F ´1ppq| " op1q a.s.
as n Ñ 8.

Proof of Lemma 5.5.2. This proof is an adaptation to the localized case of the proof of Lemma 2 in [START_REF]Rademacher complexity for Markov chains: Applications to kernel smoothing and Metropolis-Hastings[END_REF]. Let f 1 C P F 1 C , i.e., there exists f P F such that

f 1 C pBq " ş f pyq M C pB, dyq. By Cauchy-Schwarz inequality, ˆż f pyqM C pB, dyq ˙2 ď C pBq ˆż f 2 M C pB, dyq ˙, then E Q 1 pf 12 C q ď E Q 1 ˆ C pBq ˆż f pyq 2 M C pB, dyq ˙˙" E Q C pf 2 qE Q 1 p 2 C q,
where the last equality follows from (5.21). Applying this to the function

f 1 C pBq ´f 1 k pBq " ż pf pyq ´fk pyqq M C pB, dyq,
when each f k is the center of an ε-cover of the space F and }f ´fk } L 2 pQ C q ď ε gives the rst assertion of the lemma. To obtain the second assertion, note that

U 1 C " U C is an envelope for F 1 C .
In addition, we have that

}U 1 C } L 2 pQ 1 q " U } C } L 2 pQ 1 q .
From this, we derive that, for every 0 ă ε ă 1,

N pε}U 1 C } L 2 pQ 1 q , U 1 C , L 2 pQ 1 qq " N pεU } C } L 2 pQ 1 q , U 1 , L 2 pQ 1 qq.
Then using the rst assertion of the lemma, we obtain for every 0 ă ε ă 1,

N pε}U 1 C } L 2 pQ 1 q , F 1 C , L 2 pQ 1 qq ď N pεU, F, L 2 pQ C qq,
which implies the second assertion of the Lemmaz whenever the class F is VC with envelope U .

Proof of Lemma 5.5.3. Let B P p E and g : E ˆR Ñ R `. For each y P R we de ne g y pxq " g px, yq, then, using the notation of section 5.6. From now on, we'll remove the superindex from r g F y to ease the notation.

By the de nition of F n and F ((5.12) and (5.13)), we have that

F n pyq ´F pyq " 1 T n pCq TnpCq ÿ i"1 `ItX σ C piq ď yu ´F pyq " 1 T n pCq n ÿ i"0 pI C tX t ď yu ´IC tX i uF pyqq " 1 T n pCq
˜r g y pB 0 q `Tpnq ÿ i"1 r g y pB i q `r g y `Bpnq ˘¸, therefore, a T n pCq ´Fn pyq ´F pyq ¯" r g y pB 0 q a T n pCq `řTpnq i"1 r g y pB i q a

T n pCq `r g y `Bpnq ȃT n pCq .

Notice that |r g y pB 0 q| ď 2 C pB 0 q ă `8 and T n pCq Ñ `8 almost surely, therefore, the rst term in the last equation converges almost surely to 0 uniformly in y. For the last term, we have that ˇˇr g y `Bpnq ˘ǎ

T n pCq ď 2 C pB T pnq q a T n pCq " 2 d T pnq T n pCq C pB T pnq q a T pnq , by ( 
B4), the expectation of 2 C pB 1 q is nite, then, Lemma 1 in [START_REF]General glivenko-cantelli theorems[END_REF] shows that Then, for all n ě N η

P ˜1 a T pnq W T pnq ą M η ¸ă P ˜# 1 a T pnq W T pnq ą M η + X E n ¸`1 ´P pE n q ă P ˜# 1 a T pnq W T pnq ą M η + X E n ¸`η 2 .
(5.45)

On E n , a η u pnq ď T pnq ď a η u pnq, therefore for all n ě N η

P ˜# 1 a T pnq W T pnq ą M η + X E n ¸ă P ¨$ & % 1 b a η u pnq max 1ďkďaηupnq W k ą M η , .
-

X E n ', ă P ¨1 b a η u pnq max 1ďkďaηupnq W k ą M η '.
(5.46)

The random variables r g p¨q pB k q ( aηupnq k"1 are i.i.d., therefore, by Montgomery-Smith's inequality (Lemma 4 in [START_REF]A tail inequality for suprema of unbounded empirical processes with applications to Markov chains[END_REF]), there exists a universal constant K such that for all n ě N η ,

P ¨1 b a η u pnq max 1ďkďaηupnq W k ą M η 'ă KP ¨1 b a η u pnq W aηupnq ą M η K ', ă KP ¨1 b a η u pnq sup |y´x 0 |ďε ˇˇˇˇa η upnq ÿ i"1 r g y pB i q ˇˇˇˇą M η K '.
(5.47)

For an arbitrary set T , let `8pT q be the space of all uniformly bounded, real functions on T , equipped with the uniform norm. Weak convergence to a tight process in this space is characterized by asymptotic tightness plus convergence of marginals (see Chapter 1.5 in [START_REF]Weak Convergence and Empirical Processes[END_REF]).

The class of functions G ´F " tg y p¨q ´F pyqu yPR is VC with constant envelope 2, hence, by Lemma 5.5. # Dp P rF px 0 q ´ε, F px 0 q `εs :

F ´1 n ppq ´F ´1ppq ą M η a T n pCq + , U 2 
n " # Dp P rF px 0 q ´ε, F px 0 q `εs : F ´1ppq ´F ´1 n ppq ą

M η a T n pCq + .
where ε and M η are constants that will be speci ed later.

On U Let N 2,η be such that Mη ? aηupnq ă ε 1 2 for n ě N 2,η . By the continuity of F ´1 in F px 0 q there exists ε ą 0 such that |F ´1 ppq ´x0 | ď ε 1 2 for all p in rF px 0 q ´ε, F px 0 q `εs, therefore, the triangular inequality implies that Mη ? aηupnq `F ´1 ppq lies in the in-terval rx 0 ´ε1 , x 0 `ε1 s for all n ě N η " max pN 1 , N 2,η q. This, alongside (5.52),

shows that for all n ě N η U 

W ta i T n pCq ˇˇˇˇą ε ḑ σ 2 ε 2 T n pCq .
which by the same argument as before, implies the second part of the Lemma.

Proof of Lemma 5.6.5. In the sequel we set a " f 0 px 0 q. We begin with the proof of (5.37).

Fix ε ą 0 arbitrarily, and let ν ą 0 and γ ą 0 be such that |F ´1puq ´x0 | ą ν for all u such that |u ´F px 0 q| ě ε{2, and |f 0 px 0 q ´f0 pyq| ą γ for all y such that |y ´x0 | ě ν{2. Note that existence of ν and γ is ensured by assumptions (A5) and (A6).

By Lemma 5.6.3, we can assume without loss of generality that F px 0 q belongs to the domain rF n pY 1 q, F n pY m qs of Λ n , since this occurs with probability that tends to one. Therefore, we can nd jpx 0 q such that Y jpx 0 q " F n ´1 pF px 0 qq. It follows from the characterization in (5.36) that the event E 1 n :" t p U n paq ą F px 0 q `εu is contained in the event that there exists p P K such that p ą F px 0 q `ε and Λ n ppq ´ap ě Λ n pF px 0 qq ´aF px 0 q , where we recall that a " f 0 px 0 q.

By Lemma 5.6.1, E 1 n is contained in the event that there exists p P K such that p ą F px 0 q `ε and L n ppq `Mn ppq ´ap ě L n pF px 0 qq `Mn pF px 0 qq ´aF px 0 q (5.54)

Using (5.27) in (5.54) we obtain that E 1 n is contained in the event that there exists p P K such that p ą F px 0 q `ε and ż p t 0 {TnpCq f 0 ˝F ´1 n puqdu `Sn ´ap ě ż F px 0 q t 0 {TnpCq f 0 ˝F ´1 n puqdu ´aF px 0 q, where S n " sup pąF px 0 q`ε, pPK tM n ppq ´Mn pF px 0 qqu .

Let j and k such that Y j`1 " F ´1 n pF px 0 qq and p " F n pY k q. By equation (5.28) we the monotonicity of f 0 and F n that on E 2 n , ż p F px 0 q f 0 ˝F ´1 n puqdu ď ż F px 0 q`ε{2 F px 0 q f 0 pF ´1puq ´ηqdu `ż p F px 0 q`ε{2 f 0 pF ´1 n pF px 0 q `ε{2qqdu.

Hence, it follows from the de nitions of η, ν and γ that on E 2 n , ż p F px 0 q f 0 ˝F ´1 n puqdu ď ε 2 f 0 px 0 q `γε 4 `pp ´F px 0 q ´ε{2qf 0 pF ´1pF px 0 q `ε{2q ´ηq ď ε 2 f 0 px 0 q `γε 4 `pp ´F px 0 q ´ε{2qf 0 px 0 `ν{2q ď ε 2 f 0 px 0 q `γε 4 `pp ´F px 0 q ´ε{2qpf 0 px 0 q ´γq. This implies that on E 2 n , ż p F px 0 q f 0 ˝F ´1 n puqdu ď app ´F px 0 qq ´pp ´F px 0 q ´3ε{4qγ ď app ´F px 0 qq ´εγ{4 for all p ą F px 0 q `ε. Hence, the event E 1 n X E 2 n is contained in the event tS n ě εγ{4u. Now, on E 2 n , for all p ą F px 0 q `ε we have F ´1 n ppq ě F ´1 n pF px 0 q `εq ě F ´1pF px 0 q `εq ´η ě x `ν ´η ě F ´1 n pF px 0 qq `ν ´2η ě F ´1 n pF px 0 qq `ν{2, since ν ą 4η. Therefore, Hence, it follows from Lemma 5.6.4 that S n converges in probability to zero as n Ñ 8, so that the probability of the event tS n ě εγ{4u tends to zero as n Ñ 8.

T
It follows from Lemma 5.5.1 that for ε su ciently small, the probability of the event E 2 n tends to one as n Ñ 8, so we conclude that the probability of E 1 n tends to zero as n Ñ 8. Similarly, the probability of the event t p U n paq ă F px 0 q ´εu tends to zero as n Ñ 8, so that lim nÑ8

Pp| p U n paq ´F px 0 q| ą εq " 0 for all ε ą 0. This completes the proof of (5.37). With ν :" F px 0 `εq ´F px 0 q, we obtain P ´p f ´1 n paq ą x 0 `ε¯ď P ´p U n paq ě F px 0 q `ν ´Kn ¯, and ν is strictly positive since F is strictly increasing in the neighborhood of x 0 .

Hence, it follows from (5.17) that for su ciently small ε ą 0 one has P ´p f ´1 n paq ą x 0 `ε¯ď P ´p U n paq ě F px 0 q `ν{2 ¯`op1q, so it follows from (5.37) that the probability that p f ´1 n paq ą x 0 `ε tends to zero as n Ñ 8. Similarly, the probability that p f ´1 n paq ă x 0 ´ε tends to zero as n Ñ 8 so we conclude that the probability that | p f ´1 n paq ´x0 | ą ε tends to zero as n Ñ 8.

This completes the proof of (5.15). l

To prove (5.14), x ε ą 0 su ciently small so that F and f 0 are continuous and strictly increasing in the neighborhood of x 1 :" f ´1 0 pf 0 px 0 q `εq. Equation (5.15) shows that p f ´1 n pf 0 px 0 q `εq " f ´1 0 pf 0 px 0 q `εq `oP p1q, (5.55)

as n Ñ 8. Now, it follows from the switch relation (5.32) that P ´p f n px 0 q ą f 0 px 0 q `ε¯ď P ´p f ´1 n pf 0 px 0 q `εq ě x ď P ´p f ´1 n pf 0 px 0 q `εq ě f ´1 0 pf 0 px 0 q `εq `ν¯, (5.56) where ν :" x ´f ´1 0 pf 0 px 0 q `εq ą 0. It follows from (5.55) that the probability on the right-hand side tends to zero as n Ñ 8. Hence, the probability on the left-hand side tends to zero as well as n Ñ 8.

Similarly, the probability that p f n px 0 q ă f 0 px 0 q ´ε tends to zero as n Ñ 8 so we conclude that the probability that | p f n px 0 q ´f0 px 0 q| ą ε tends to zero as n Ñ 8. This completes the proof of Theorem 5.3.1.

5.7.4

Technical proofs for Section 5.6.2

Proof of Lemma 5.6.6. Let F n " σ ptX 0 , . . . , X n uq be sigma algebra generated by the chain X up to time n. Denote by E Fn the expected value conditioned to F n . Take 0 ă γ ď δ and de ne I 0 " rx 0 ´γ, x 0 s, I 1 " rx 0 , x 0 `γs and W σ rx 0 ,ys piq ˇˇˇˇ2 .

S
λ). For n xed, the random variable r T pnq is a stopping time for the sequence tph pB j , γq , pB j qqu `8 j"0 , in e ect ! r T pnq " 0 ) " t pB 0 q ě nu P G 0 , ! r T pnq " k

) " k´1 č j"0 # j ÿ i"0 pB i q ă n + č # k ÿ i"0 pB j q ě n + P G k @k ě 1.
For each n and γ we have that where the last inequality is justi ed by the fact that, T pnq ď r T pnq and h py, γq is a nonnegative function. Because pB j q ě 1 for all j, we have that, gence Theorem we obtain that E λ T pnq " upnq K 2 . If X is β-null recurrent, by Lemma 3.3 in [START_REF]Nonparametric estimation in null recurrent time series[END_REF], E λ T pnq " upnq Γp1`βq , hence, for both positive and β-null recurrent chains, we can nd K 2 and N , both independent of γ, such that E λ T pnq ď K 2 u pnq for all n ě N . Using this with (5.62) and (5.63) we get, E λ Z n pγq u pnq γ ď E λ h pB 0 , γq u pnq γ `K1 K 2 @n ě N, @γ P p0, δs .

Z
(5.64)

Combining (5.64) with assumption (B3) and the fact that Z n p0q " 0 we obtain that there exist positive constants K 3 and γ 0 such that E λ Z n pγq ď u pnq γ @n ě N, @γ P p0, γ 0 s .

Equation (5.38) now follows after taking expectation in (5.59). The proof of (5.39) follows the same reasoning, but using S j pγq " sup yPI j ˇˇˇˇn ÿ t"0 W t pI C tX t " yuq ˇˇˇˇ2 .

Proof of Lemma 5.6.7. a) If X is positive recurrent, Theorem 5.2.1 implies that there exists a positive constant K such that TnpCq upnq converges almost surely to KπpCq, which is not zero by (A3).

On the other hand, if X is β-null recurrent, Theorem 5.2.1 and Slutsky's Theorem implies that there exists a constant K ą 0 such that (5.67)

Proof of Lemma 5.6.8. Fix ε P p0, 1q small enough so that F 1 and |f 1 0 | are bounded from above and away from zero on rF ´1pF px 0 q ´2εq, F ´1pF px 0 q `2εqs, see the assumption (B2). Then, the proper inverse functions of F and f 0 are well de ned on rF px 0 q ´2ε, F px 0 q `2εs and rf 0 ˝F ´1pF px 0 q ´2εq, f 0 ˝F ´1pF px 0 q `2εqs respectively. We denote the inverses on that intervals by F ´1 and f ´1 0 respectively. for all p P rF px 0 q ´ε, F px 0 q `εs and therefore, (5.76) implies that ∆ n ppq ´∆n pF px 0 qq ´cpp ´F px 0 qq 2 ě 0 for all such p's, where we set ∆ n :" Λ n ´Λ. Hence, for all n ě N η , P p|U n paq ´F px 0 q| ě γ n q ď η `P ˜sup |p´F px 0 q|Prγn,εs t∆ n ppq ´∆n pF px 0 qq ´cpp ´F px 0 qq 2 u ě 0 and E n ḑ η `ÿ j P ˜sup |u|Prγn2 j ,γn2 j`1 s t∆ n pF px 0 q `uq ´∆n pF px 0 qqu ě cpγ n 2 j q 2 and E n ḑ η `ÿ j P ˜sup

|u|ďγn2 j`1
|∆ n pF px 0 q `uq ´∆n pF px 0 qq| ě cpγ n 2 j q 2 and E n ¸(5.77)

where the sums are taken over all integers j ě 0 such that γ n 2 j ď ε. Recall that we have (5.53) for all k P t0, . . . , mu. Since Λ n is piecewise-linear with knots at F n pY 0 q, . . . , F n pY m q, by (5.27) and (5.28) we get that for every j in the above sum,

sup |u|ďγn2 j`1
|∆ n pF px 0 q `uq ´∆n pF px 0 qq| ď sup

|u|ďγn2 j`1
ˇˇˇˇˇˇF px 0 q`u ż F px 0 q `f0 ˝F ´1 n pyq ´f0 ˝F ´1 pyq ˘dy ˇˇˇˇˇš up |u|ďγn2 j`1

|M n pF px 0 q `uq ´Mn pF px 0 qq| .

(5.78) 195 5.7. TECHNICAL PROOFS Moreover, |f 1 0 | is bounded above on rF ´1pF px 0 q ´2εq, F ´1pF px 0 q `2εqs, so we obtain that for every j with γ n 2 j ď ε, the rst term on the right-hand side of (5.78) satis es sup |u|ďγn2 j`1 ˇˇˇˇż F px 0 q`u F px 0 q `f0 ˝F ´1 n ppq ´f0 ˝F ´1ppq ˘dp ˇˇˇď ż F px 0 q`γn2 j`1

F px 0 q´γn2 Hence, taking K 4 " K 2 3 K 2 we get that for all j with γ n 2 j ď ε ď 1.

E ¨sup

|u|ďγn2 j`1 ˇˇˇˇż F px 0 q`u F px 0 q pf 0 ˝F ´1 n ppq ´f0 ˝F ´1ppqdp

ˇˇˇˇ2

IpE n q 'ď K 4 γ n 2 j u pnq ´1 .

(5.79)

By equations (5.28) and (5.29) in Lemma 5.6.1, the second term on the right-hand side of (5.78) satis es,

sup |u|ďγn2 j`1
|M n pF px 0 q `uq ´Mn pF px 0 qq| ď I n,j 1 `In,j 2 , (5.80)

where I n,j 1 and I n,j 2 are given by W t ´IC X t " F ´1 n pF px 0 q `uq ( ¯ˇˇˇˇ.

I n,
For I n,j 1 , it follows from the triangle inequality that

I n,j 1 ď 2 T n pCq sup |u|ďγn2 j`1
ˇˇˇˇn ÿ t"0 W t `IC tX t ď F ´1 n pF px 0 q `uqu ´IC tX t ď x 0 u ˘ˇˇˇˇ.

Combining (5.75) and the fact that F ´1 is Lipschitz in rF px 0 q ´2ε, F px 0 q `2εs we can nd K 5 " max `?K E ´`I n,j 1 `In,j 2 ˘2 IpE n q ¯ď K 6 γ n 2 j u pnq ´1 (5.81)

Combining (5.78), (5.79), (5.80) and (5.81), we conclude that there exists K 7 ą 0, independent of n and K 0 , such that for all n ě N 1 η and j ě 0 where γ n 2 j ď ε, one has

E ˜sup |u|ďγn2 j`1
|∆ n pF px 0 q `uq ´∆n pF px 0 qq| 2 IpE n q ¸ď K 7 γ n 2 j u pnq ´1.

Combining this with (5.77) and the Markov inequality, we conclude that there exist K 8 ą 0 and N 2 η , that do not depend on n nor K 0 , such that, for all n ě N 2 η , P p|U n paq ´F px 0 q| ě γ n q ď η `K8 The sum on the last line is nite, so there exists K ą 0, independent of n and K 0 , such that for n bigger than N 2 η P p|U n paq ´F px 0 q| ě γ n q ď η `Kγ ´3 n u pnq ´1 " η `K K 3 0 .

(5.82)

The above probability can be made smaller than 2η by setting (5.70) for some sufciently large K 0 independent of n. This proves (5.69) and completes the proof of (5.40). Now, we turn to the proof of (5.41). It follows from (5.35) combined to (5.37) and Lemma 5.5.3 that p f ´1 n pf 0 px 0 qq " F ´1 ˝p U n pf 0 px 0 qq `Tn pCq ´1{2 O P p1q .

Hence, by Lemma 5.6.7 we have p f ´1 n pf 0 px 0 qq " F ´1 ˝p U n pf 0 px 0 qq `OP ´u pnq ´1{2

¯.

Now, it follows from the assumption (B2) that F ´1 has a bounded derivative in the neighborhood of F px 0 q, to which p U n pf 0 px 0 qq belongs with probability that tends to one. Hence, it follows from Taylor's expansion that p f ´1 n pf 0 px 0 qq " F ´1 ˝F px 0 q `O ´| p U n pf 0 px 0 qq ´F px 0 q| ¯`O P ´u pnq ´1{2 "

x `OP pu pnq ´1{3 q `OP ´u pnq ´1{2

¯, where we used (5.40) for the last equality. This proves (5.41) and completes the proof of Lemma 5.6.8. where K 1 ą 0 does not depend on n, and recall (5.56) where ν " x ´f ´1 0 pf 0 px 0 q `εq ą 0. It follows from the assumption (B2) that f ´1 0 has a derivative that is bounded in sup-norm away from zero in a neighborhood of f 0 px 0 q. Hence, it follows from the Taylor expansion that there exists K 2 ą 0 that depends only on f 0 such that ν ě K 2 ε, provided that n is su ciently large to ensure that f 0 px 0 q `ε belongs to this neighborhood of f 0 px 0 q. Hence, P ´p f n px 0 q ą f 0 px 0 q `ε¯ď P ´p f ´1 n pf 0 px 0 q `εq ě f ´1 0 pf 0 px 0 q `εq `K2 ε ¯.

ď sup

|a´f 0 px 0 q|ďγ P ´ˇˇp f ´1 n paq ´f ´1 0 paq ˇˇą K 2 K 1 u pnq ´1{3 ¯,
provided that n is su ciently large to ensure that f 0 px 0 q `ε belongs to the above neighborhood of f 0 px 0 q, and that γ ě Cu pnq ´1{3 . For xed η ą 0 one can choose K 2 ą 0 such that the probability on the right-hand side of the previous display is smaller than or equal to η and therefore, lim nÑ8 P ´p f n px 0 q ą f 0 px 0 q `K2 u pnq ´1{3 ¯ď η.

Similarly, for all xed η ą 0, one can nd K 3 that does not depend on n such that lim nÑ8 P ´p f n px 0 q ă f 0 px 0 q ´K3 u pnq ´1{3 ¯ď η.

Hence, for all xed η ą 0, there exists K ą 0 that independent of n such that lim nÑ8 P ´| p f n px 0 q ´f0 px 0 q| ą Ku pnq ´1{3 ¯ď η.

This completes the proof of Theorem 5.4.1.

  Motivé par le besoin d'estimer le paramètre β pour une chaîne de Markov β-récurrente nulle, dans le Chapitre 3, nous abordons le problème d'estimation de l'indice de queue pour une distribution de Pareto discrète généralisée. Plus précisément, nous considérons la distribution d'une variable aléatoire S prenant des valeurs dans N ˚, et dont la fonction de survie est la suivante : P pS ą nq " n ´β L pnq pour tout n ě 1,

p β n pkq " ln ´p p pnq k ¯´ln ´p p pnq k` 1

 1 ¯.

1 et 4 . 4 . 1 )

 1441 Chapitre 4, nous adaptons à la fois le Bootstrap basé sur la régénération et le Bootstrap par Blocs Régénératifs pour les chaînes de Markov β-récurrentes nulles et montrons que les deux sont asymptotiquement valides (Théorèmes 4.3.pour l'estimation des intégrales par rapport à la mesure invariante lorsque la chaîne β-récurrente nulle possède un atome accessible. Sous-produit important de nos recherches, dans le Lemme 4.2.1, nous présentons une généralisation du Théorème Central Limite pour des séquences indexées aléatoirement où nous remplaçons l'exigence usuelle du contrôle en probabilité de la séquence d'indexation par l'existence d'une limite de la séquence vers un processus stochas-tique. Ce résultat a été essentiel dans la preuve du Théorème 4.3.1 qui valide l'utilisation des techniques de regénération après standadisation aléatoire adéquate.
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CHAPTER 1 .

 1 INTRODUCTIONthe invariant probability exhibits a uniform rate of convergence of order O P pn ´1q, which is the same as in the i.i.d. case.In Chapter 4, we adapt both Regeneration based-bootstrap and Regenerative Block bootstrap for β-null recurrent Markov chains and show that both are valid (Theorems 4.3.1 and 4.4.1) for the estimation of integrals with respect to the invariant measure when the β-null recurrent chain possesses an accessible atom.As a byproduct of our research, in Lemma 4.2.1 we present a generalization of the Central Limit Theorem for randomly indexed sequences where we replace the requirement of the control in probability of the indexing sequence by the existence of the limit of a stochastic process de ned in terms of the said sequence. This result was instrumental in the proof of Theorem 4.3.1.

2. 1 .

 1 KERNELSclosed set B. The following Lemma contains the main results concerning the restriction of kernels.

33 2 .

 2 2. MARKOV CHAINSever the underlying random walk drops below zero. It leaves 0 only when the next positive value in the sequence tZ n u is encountered.

2. 2 . 4 I

 24 Hitting, stopping times and the strong Markov property De nition 2.2.5 (Occupation time). Number of visits by X to the set A. tX n P Au.

  It is the result of a collaboration with Patrice Bertail 1 and Stephan Clemençon 2 .Abstract: It is the purpose of this paper to investigate the issue of estimating the regularity index β ą 0 of a discrete heavy-tailed r.v. Z, namely a random value. Z valued in N ˚such that PtZ ą nu " Lpnq ¨n´β for all n ě 1, where L : R ˚Ñ R `is a slowly varying function. Such discrete probability laws, referred to as generalized Zipf's laws sometimes, are commonly used to model rank-size distributions after a preliminary range segmentation in a wide variety of areas, ranging from quantitative linguistics to social sciences through information theory. As a rst go, we consider the situation where inference is based on independent copies Z 1 , . . . , Z n of the generic r.v. Z. Just like the popular Hill estimator in the continuous heavy-tail situation, the estimator p β we propose can be derived 3.1. INTRODUCTION by means of a suitable reformulation of the regularly varying condition, replacing Z's survivor function with its empirical counterpart. Under mild assumptions, a

the parameter β involved in ( 3 . 1 )

 31 (supposedly unknown, like the function L) in the classic (asymptotic) i.i.d. statistical setting, i.e. based on an increasing number n ě 1 of independent copies S 1 , . . . , S n of the generic r.v. S. Statistical inference for discrete heavy-tailed distributions has not received much attention in the literature. Most of the very few dedicated methods documented either deal

ą 0 .

 0 We point out that it has exactly the same form as that proposed and analyzed in[25] in a di erent context, that of (continuous) approximately Pareto distributions 3 namely. In the discrete generalized Pareto framework, we prove that for an appropriate choice of the hyperparameter k " k n (typically chosen of order lnpnq), the estimator (3.2) is strongly consistent and asymptotically normal as n Ñ `8. Nonasymptotic upper con dence bounds for the absolute deviations between p β n pkq and β are also established here.As explained in[28, 30,[START_REF]Nonparametric estimation in null recurrent time series[END_REF], for β-null recurrent Markov chains, the regularity index β P p0, 1q controls the (sublinear) rate at which the number of visits to any given Harris set increases with observation time n, no matter the initial distribution. In the regenerative case (i.e. when the chain X possesses an accessible atom, a Harris set on which the transition probability is constant), the distribution of the regenerative time, the return time to the atom, is a discrete generalized Pareto (3.1) and the parameter β is its tail index. Due to the non-standard behavior of traditional estimators in this context, statistical inference for null-recurrent Markov chains is very poorly documented in the literature (see for instance[START_REF]Estimation in threshold autoregressive models with a stationary and a unit root regime[END_REF][START_REF]Nonparametric regression estimation in a null recurrent time series[END_REF][START_REF]Nonparametric estimation in null recurrent time series[END_REF][START_REF]Null recurrent unit root process[END_REF])and, to the best of our knowledge, estimation of the key quantity β has not been considered besides the estimator described in [67, Remark 3.7], which is of limited practical use due to its slow convergence (see Section 3.3.3 for a more precise formulation of this statement). Hence, it is also the goal of this article to extend the use of the estimator (3.2) to the case where the S i 's are the successive durations between the consecutive regeneration times up to time n. The main di culty naturally arises from the fact that the number T pnq of regeneration times (and thus the number of durations) is now random and the variables S 1 , . . . , S T pnq are not independent anymore (in particular, their sum is less than n by construction). Weshow that the strong consistency of the estimator is preserved. For illustration purposes, numerical experiments have been carried out, providing empirical evidence of the relevance of the estimation method promoted.The paper is organized as follows. A thorough analysis of the behavior of the estimator (3.2) in the i.i.d. case is rst carried out in section 3.2. The asymptotic results thus established are next extended in section 3.3.3 to the regenerative βnull recurrent Markovian setup, when the estimator is computed based on a single nite-length trajectory of the atomic chain. Illustrative numerical results are presented in section 3.4, while technical proofs are deferred to Section 3.5.3.2 Tail Index Estimation -The Discrete Heavy-Tailed i.i.d. Case Throughout this section, S 1 , . . . , S n are independent copies of a generic discrete generalized Pareto r.v. S, i.e. a random variable S with survivor function of type 3.1, where the parameter β ą 0 and the slowly varying function L are supposedly unknown. As a rst go, we start to investigate the behavior of the estimator (3.2) in this basic general framework and next develop the analysis in speci c situations, i.e. for particular choices of the function L.

3. 2 .

 2 TAIL INDEX ESTIMATION -THE DISCRETE HEAVY-TAILED I.I.D. CASE

) see ( 3 . 1 )

 31 , which tends to β as k Ñ 8 by virtue of the slow variation property of L. As previously emphasized, unless the function L is supposed to be asymptotically constant (i.e. there exists C ą 0 s.t. Lpxq Ñ C as x Ñ `8), the discrete generalized Pareto model (3.1) is not a discrete version of the (continuous) approximately β-Pareto model considered in [25] and, consequently, the validity framework established therein does not apply here.

(np p pnq kn ´p β n pk n q ´βā e p βnpknq ´1 ñ N p0, 1q as n Ñ ` 8 .Figure 3 . 1 :

 831 Figure 3.1: Behaviour of p β n pkq for di erent values of k, to estimate the parameter β " 0.15 based on a dataset of 10 6 independent realizations of a Zeta distribution with parameter α " β ´1 (see section 3.4 for its de nition).

2 . 1 Proposition 3 . 2 . 4 .

 21324 can be extended to(3.7), as revealed by the bound stated below, which suggests that a more favorable balance between bias and variance could be attained by means of an adequate choice of the range de ned by k and m. Let k and m such that k ą m and let δ P p0, 1{p2p1 `2mqq.

For a wide class

  of Harris Markov chains, the regularity index describes how fast the occupation time related to a Harris set C (i.e. the number of visits to C) increases with time n. When X is positive recurrent, it follows from the Strong Law of Large Numbers for Markov chains that occupation times of Harris sets (3.11) grow in a linear fashion with the observation time: as n Ñ 8, T n pCq " πpCqn P ν -almost surely.

93 3. 3 .

 933 REGULAR NULL-RECURRENT CHAINS -REGULARITY INDEX ESTIMATION

Theorem 3 . 3 . 4 .

 334 Let k n and m n be sequences that satisfy the hypothesis of Theorem 3.5.1, then p β T pnq `kTpnq , m T pnq ˘Ñ β almost surely.

97 3. 5 .

 975 TECHNICAL PROOFSUsing the same methodology, we have generated di erent β-null recurrent Markov Chains (each one with 10 5 points) and we have estimated the value of β.

Lemma 3 . 5 . 7 .F pe kn q ¨n ř i" 1 I X i ą e kn ( n ř i" 1 I tX i ą e kn` 1

 357111 Let X n and u n be as in Lemma 3.5.6, if k n satis es the conditions of Theorem 3.2.2 and k n " opnq, then b n a centered normal distribution with variance e 2β `eβ ´1˘. Lemmas 3.5.3, 3.5.4 and 3.5.7 combined with equation (3.3) imply the rst part of Theorem 3.2.3, the second part follows from Lemma 3.5.5 and Slutsky's Theorem

Theorem 3 . 5 . 1 (

 351 Strong consistency). Let k n and m n such that i k n ´mn Ñ `8.

  .31) Theorem 3.5.1 follows by the same argument used to prove Theorem 3.2.2, using (3.31) instead of Lemma 3.5.3 and Lemma 3.5.8 instead of Lemma 3.5.1.

3. 5 . 8

 58 Proof of Corollary 3.5.1 We just need to show that sequences k n " A ln n and m n " A ln n l satisfy conditions i, ii and iii in Theorem 3.5.1. The rst two are trivially satis ed, for the third one, notice that lim n e pA ln n`A ln n l qβ L ´eA ln n`A ln n l

4. 2 .

 2 A SHORT INTRODUCTION TO NULL-RECURRENT MARKOV CHAINS quences (Lemma 4.2.1). Section 4.3 is dedicated to the Regenerative Block bootstrap in β-null recurrent Markov chains, while Section 4.4 is devoted to the Regeneration based-bootstrap. In section 4.5 we have added a few simulations to show the behavior of both algorithms in practice. The technical proofs are postponed to Section 4.6.

D

  r0,`8q ÝÝÝÝÑ to denote weak convergence in this space, and fd Ý Ñ for convergence of nite-dimensional laws. Two stochastic processes Y n , Z n in D r0,`8q are said to be equivalent if Y n ´Zn converges weakly to the zero process. If Y n D r0,`8q
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 1212421 A SHORT INTRODUCTION TO NULL-RECURRENT MARKOV CHAINS lent. Assume X is a β-null recurrent atomic Markov chain. Then, i) C n D r0,`8q
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 42 A SHORT INTRODUCTION TO NULL-RECURRENT MARKOV CHAINS Corollary 4.2.1.

Theorem 4 . 3 . 1 .

 431 Let X be a β-null recurrent Markov chain with an accessible atom α, and let f be a π α -integrable function such that E " pf pB 1 qq 2 ‰ ă `8. Then we have, a T ˚pn, T pnqq ¨T˚p n,T pnqq ř j"1

4. 4 .

 4 THE REGENERATION-BASED BOOTSTRAP ALGORITHM dardizing) to obtain con dence intervals for ş f dπ α .

Theorem 4 . 4 . 1 .

 441 Let X be a β-null recurrent Markov chain with an accessible atom α, and let f be a π α -integrable function such that E " pf pB 1 qq 2 ‰ ă `8,

rst 10 8

 8 points of a simple symmetric random walk (see gure 4.1). Using this data, we have applied both the RBB and the Regeneration Based-bootstrap 1000 times each and computed the values of Z RBB " a T ˚pn, T pnqq ¨T˚p n,T pnqq ř j"1

Figure 4 .

 4 Figure 4.2 shows the validity of both methods, despite the fact that we observed

Figure 4 . 1 :

 41 Figure 4.1: First 10 8 points of a realization of a simple symmetric random walk starting at 0. There are 9406 complete blocks in this realization. The red dashed lines delimit the largest block, while the green dotted line marks the end of the last complete block.

Figure 4 . 2 :

 42 Figure 4.2: Density estimation of the bootstrap distributions Z RBB and Z RegBB after 10 3 simulations.

2 .

 2 Show that T n,T pnq ptq " T ˚ptntuq T pnq " T ˚ptntu,T pnqq T pnq is equivalent in D r0,`8q to S ˚p´1q n,T pnq .

Lemma 4 . 6 . 2 .

 462 Suppose that (4.30) holds, then T pnq upnq converges almost surely to a positive random variable and S n,T pnq D r0,`8q ÝÝÝÝÑ S ˚and S ˚p´1q n,T pnq D r0,`8q ÝÝÝÝÑ S ˚p´1q (4.31) almost surely along the data.

Lemma 4 . 6 . 3 .

 463 ˚p´1q n,T pnq in D r0,`8q . Under the same hypothesis of Lemma 4.6.2, the processes T n,T pnq and S ˚p´1q n,T pnq are equivalent in D r0,`8q .

Lemma 5 . 5 . 1 .

 551 Assume that (A1) and (A3) hold. Then, there exists a stationary σnite measure π, and F de ned by(5.13), such that, sup yPR |F n pyq ´F pyq| Ñ 0 a.s.

aη upnq 1 a η K 1 ă 1 ` 1 1 F

 1111 ppq ¸ě K 1 M η a a η u pnq ´1 a η u pnq .Because u pnq Ñ `8, we can nd N 1 such that b for all n ě N 1 , taking M η bigger than and using that T n pCq ď a η u pnq on D n , we obtain, for all n ě N

5. 7 . 3

 73 Proof of Theorem 5.3.1We rst prove(5.15). Fix ε ą 0 arbitrarily small. It follows from(5.35) and (5.34) that P ´p f ´1 n paq ą x 0 `ε¯ď P ´F ´1 n ˝p U n paq ą x 0 `εď P ´p U n paq ě F n px 0 `εq ď P ´p U n paq ě F px 0 `εq ´Kn ¯, where K n " sup |y´x 0 |ďε |F n pyq ´F pyq|.

1 E 1 h 1 E

 111 ´h pB j , γq I ´I ! r T pnq ď j ´1) P G j´1 and h pB j , γq is inde-pendent of G j´1 , therefore, E λ ´h pB j , γq I pB j , γq '" ph pB j , γqq P λ ´r T pnq ě j ¯ď E ph pB 1 , γqq E λ r T pnq .Then, by taking expectation in (5.60) we obtainE λ Z n pγq ď E λ h pB 0 , γq `E ph pB 1 , γqq E λ r T pnq ď E λ h pB 0 ,γq `E ph pB 1 , γqq E λ pT pnq `1q . (5.62) By Theorem 5.2.1 and the fact that F is Lipschitz we can nd K 1 independent of γ such that, E ph pB 1 , γqq " ż h pt, γq dπ ptq " K π π pCq pF px 0 `γq ´F px 0 ´γqq ď K 1 γ. (5.63) If X is positive recurrent, by Theorem 5.2.1, T pnq upnq converges almost surely to a positive constant K 2 ą 0. Moreover, T pnq upnq ď 1 therefore, by the Dominated Conver-
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 511 HARRIS RECURRENT MARKOV CHAINS AND NONLINEAR MONOTONE COINTEGRATED MODELS2εqs. Since Λ 1 pF px 0 qq " a and Λ 2 " f ˝F ´1, it then follows from Taylor's expansion that Λppq ´ΛpF px 0 qq ď pp ´F px 0 qqa ´cpp ´F px 0 qq 2

ÿ kě0 γ n 2 j u pnq ´1 pγ n 2 j q 4 ď η `K8 γ ´3 n u pnq ´1 ÿ jě0 2

 42 ´3j .

5. 7 . 5 1 .

 751 Proof of Theorem 5.4.Inspecting the proof of Lemma 5.6.8, one can see that the convergences in(5.40) and(5.41) hold in a uniform sense in the neighborhood of x 0 . More precisely, there exists γ ą 0, independent on n, such that for all η ą 0 we can nd K 1 ą 0 such that sup |a´f 0 px 0 q|ďγ P ´ˇˇp U n paq ´F ˝f ´1 0 paq ˇˇą K 1 u pnq ´1{3 ¯ď η and sup |a´f 0 px 0 q|ďγ P ´ˇˇp f ´1 n paq ´f ´1 0 paq ˇˇą K 1 u pnq ´1{3 ¯ď η.

199 5 .

 5 7. TECHNICAL PROOFS Let ε " K 1 u pnq ´1{3

  

  2.2.36, 2.2.38 et 2.2.40. Le plus intéressant est le Théorème 2.2.40, qui est une généralisation fonctionnelle du Théorème 2.3 de [28]. Nous le reproduisons ci-dessous.

  . Loosely speaking a Markov chain is recurrent if the expected number of visits to any accessible state, no matter the starting point, is in nite. Harris recurrence if a strengthened form of recurrence where the number of times the chain visits any accessible state is in nite with probability 1.

  Let f : R Ñ R be an integrable function with respect to the Lebesgue measure in R, such that f is bounded on every compact set. Let g : R Ñ R be a density function such that 0 ă inf xPC g pxq on every compact set C. Consider

		.5)
	Example 2.1.6. 9 the markovian kernel P de ned as,
	ż	
	P px, Aq "	g `y ´f pxq ˘dy x P R, A P B pRq
	A	
	Fix a compact set C, de ne the function ρ pyq " inf xPC g `y ´f pxq ˘, then
		ż
	P px, Aq ě I C pxq

A

ρ pyq dy, @x P C, A P B pRq .

  s ď t is called a ltration. A ltered probability space, denoted by pΩ, F, tF t u tPT , Pq, is a probability space equipped with a ltration. tPT such that X t is F t -measurable for each t P T . The notation tX t , F t u tPT

	De nition 2.2.1 (Stochastic process adapted to the ltration F). Stochastic process
	tX t u

  Let pΩ, F, tF n u nPN , Pq be a ltered probability space. A Markov Chain tX n , F n u nPN is called homogeneous with kernel P and initial measure µ if there exists a Markovian kernel P and a probability measure µ, both de ned on pE, Eq such that for all n P N and all A P E If tX n , F n u nPN is a homogeneous Markov Chain, then, X n , F X

	Markov Chain is said to be homogeneous if the transition probabilities in (2.7) can be expressed with a Markovian kernel. (2.8) L pX 0 q " µ. (2.9) Remark 2.2.2. n ( nPN is a homogeneous Markov Chain as well. From now on, we will always consider ho-mogeneous Markov Chains adapted to its internal history, and we will write X instead De nition 2.2.3 (Homogeneous Markov Chain). P pX n`1 P A|F n q " P pX n , Aq P ´a.s. of X n , F X n

  P x pX m P dyq P y pX n´m P Aq.This can be understood as follows: as X transitions from x to A in n steps, at any intermediate step m it must take a value y P E. As a Markov chain, it forgets its past at that time m and continues the remaining n ´m steps based on the appropriate law starting at y. " tX nm u with transition laws P x pX nm P Aq " P nm px, Aq.

	Theorem 2.2.2. 13 [Markov property for expectations] If X is a homogeneous Markov Chain with initial measure µ and f : Ψ E Ñ R is a bounded and measurable function, E rf pX n`1 , X n`2 , . . .q |X 0 , X 1 , . . . , X n ; X n " xs " E x rf pX 1 , X 2 , . . .qs (2.13) then Applying Chapman Kolmogorov equation to (2.12) we get, for any m with 0 ď m ď n, P x pX n P Aq " ż E P m px, dyq P n´m py, Aq " ż E The m-step kernel is a transition kernel by itself, therefore it describes the Markov Chain X m This chain X m has a special name. De nition 2.2.4 (m-skeleton of the chain X). Given a Markov Chain X with ini-tial distribution µ and kernel P , its m-skeleton is the Markov Chain X m with initial distribution µ and kernel P m . Recall from De nition 2.1.3 that, for every ε P p0, 1q, the P ε -resolvent of P is the kernel P ε px, Aq " p1 ´εq 8 ÿ i"0 ε i P i px, Aq, x P E, A P E. (2.14) A Markov chain with the same initial distribution as X and with kernel P ε is of X with kernel P ε . Example 2.2.1. [P ε -chain] Let X be a Markov chain with kernel P and ε P p0, 1q arbitrary but xed. De ne an i.i.d. sequence tα k u kě1 of Bernoulli random variables, independent of X, such that P pα 1 " 1q " 1´ε. Lastly, consider the renewal sequence tγpkqu kě0 de ned as: γ p0q " 0 , γ pkq " inf tm ą γ pk ´1q : α m " 1u for k ě 1. (2.15) The sequence tγ pkq ´γ pk ´1qu kě1 is i.i.d. with geometric distribution given by P pγ p1q " kq " p1 ´εq ε k . By equation (5.9) in [35] (and pp.19 in [28]) the random sequence X γpnq ( ně0 is a Markov chain with kernel P ε . As stated in Remark 2.2.1, an adapted Markov Chain can be viewed as an ele-12 See pp 62 in [87]. CHAPTER 2. MARKOV CHAINS ment in the space Ψ E "
	called the P ε -chain of X. The following example shows how to extract a subchain

  H is a random variable in pΨ E , G, Pq, θ k acts over H as

	`θk H ˘pwq " H ˝θk pwq , ˝θk pwq " X n`k . Then, if H " h pX 0 , X 1 , . . .q, where h is a measur-able function on E, it follows that E Xn H is a random variable on pΨ E , G, Pq for therefore, X n any initial distribution. Then, the Markov property (2.13) can be written succinctly as E µ " θ n H|F X n ‰ " E Xn rHs P µ a.s. (2.16) able function on Ψ CHAPTER 2. MARKOV CHAINS for any bounded and measurable function h and xed n.

E , we have θ k H " h pX k , X k`1 , . . .q. Because E x H is a measur-

  nition 2.2.8 (Recurrence). A set A P E is said to be recurrent if U px, Aq " 8 for all x P A. A Markov chain is recurrent if its kernel is irreducible and every accessible set is recurrent.

Closely related to this is the concept of transience. De nition 2.2.9 (Uniformly transient set). Set A P E such that sup xPA U px, Aq ă 8 De nition 2.2.10 (Transient set). Set A P E such that A " Ť 8 n"1 A n where A n is uniformly transient for all n. De nition 2.2.11 (Transient Markov chain). Irreducible Markov chain X such that E is transient. The next result shows that irreducible chains are either recurrent or transient and this property is inherited by its P ε chains. Theorem 2.2.5. If X is an irreducible Markov chain, then X is recurrent or transient. Moreover, X is recurrent (transient) if and only if each P ε -chain is recurrent (transient). In Theorem 2.2.26 we will see that if a chain is irreducible and recurrent it admits an invariant measure. Then, we will subdivide the class of recurrent irreducible Markov chains into two classes: the ones that admit an invariant probability and the ones that do not. CHAPTER 2. MARKOV CHAINS De nition 2.2.12 (Positive Markov chain). Recurrent and irreducible Markov chain that admits and invariant probability measure π. De nition 2.2.13 (Null recurrent Markov chains). Recurrent and irreducible Markov chain that does not admit an invariant probability measure.

  The following two results, presented in[28], show that the behavior of S n pf q when n goes to `8 is closely related with a pnq.

									CHAPTER 2. MARKOV CHAINS
	was shown in [28] that the truncated Green function of this chain satis es
				d				
			a ptq "	2t πE pZ 2 1 q	.	
	as t goes to `8.							
	Theorem 2.2.31. "	S n pf q	*	and	#	ˆSn pf q	˙´1	+
		a pnq	ně1			a pnq	
	Example 2.2.9. 47 [Truncated Green function for random walks in R] Consider a
	random walk as the ones de ned in example 2.2.3, with EZ 1 " 0 and EZ 2 1 ă `8. It

38)

Remark 2.2.8. This non-negative and increasing function is called the truncated Green function. By (2.35) the asymptotic order of a ptq (when t Ñ `8) depends only on the transition kernel of the Markov chain.

48 

Let X be a Harris recurrent Markov chain with invariant measure π. Then, for every nonnegative function f P L 1 pE, πq with π pf q ą 0 and every initial distribution λ both the sequences ně1 are bounded in probability, where the random variables in the second term are allowed to take the value 8.

Theorem 2.2.32.

49 

Under the same hypothesis of Theorem 2.2.31, there exists a positive constant K such that lim sup nÑ8 S n pf q a ´n Hpapnqq ¯H pa pnqq " K ż f pxq dπ pxq a.s.

  variation β we now introduce the concept of β-regular Markov chain.De nition 2.2.18 (β-regular Markov chain). ψ-irreducible, Harris recurrent Markov chain X such that its truncated Green function is regularly varying with index β. Remark 2.2.9. As was pointed out in [28], every irreducible, positive recurrent Markov chain is 1-regular, and if X is null recurrent and β-regular, then 0 ď β ă 1. Therefore, for any β-regular chain, β P r0, 1s.

  De nition 2.2.19 (β-null recurrent Markov Chain). Markov chain X such that is ψ-irreducible and there exists a small function h, an initial measure λ, a constant β P p0, 1q and a slowly varying function L h such that

	With the objective of developing a non-parametric estimation theory in null-
	recurrent scenario, the concept of β-null recurrent Markov chain was introduced
	in [67].				
				β	is a
	stable distribution with Laplace transform			
	E	" exp ˆ´tD ´1 β β ˙ " exp	ˆ´t β Γ p1 `βq	˙.	(2.41)
	By the same argument used in remark 2.2.11 (considering G β " D ´1 β β ), we have
	that the distribution of D ´1 β			

with M β p1q de ned as in Remark 2.2.10. Similarly to remark 2.2.11, when 0 ă β ă 1, the original formulation of Theorem 2.2.35 (Theorem 2.4 in [30]) uses a pnq instead of u pnq and has that D ´1 β β equals the distribution of Γ p1 `βq M β p1q.

  By Theorem 2.1.8 the function h is small for all the P ε -resolvents, and by(2.45) it satis es condition(2.42) for the P ε -chains.For the converse, suppose that for some ε the P ε -chain is β-null recurrent. Let h be a small function for the original chain X, by Theorem 2.1.8, h is also small52 Theorem 14.14.3 in [55]. CHAPTER 2. MARKOV CHAINS for the P ε -chain, hence, g ε `λ, h, n 1´ε ˘" p1´εq β n β L h pnqFor the proof of Theorem 2.2.36 we will follow a similar approach as the one used to prove 2.2.25, with the detail that we only need to take care of Step 3, because Steps 1 and 2 were handled by Lemma 3.1 in[START_REF]Nonparametric estimation in null recurrent time series[END_REF].Proof of Theorem 2.2.36. Take ε P p0, 1q xed. Let h and λ satisfy condition (2.42) for X. By Lemma 2.2.1, h and λ satisfy the condition (2.42) for the P ε -chain, therefore, the P ε -chain is β-null recurrent. Theorem 3.1 in[START_REF]Nonparametric estimation in null recurrent time series[END_REF] characterizes β-null recurrent chains that satisfy the minorization condition M p1, s, νq in terms of the tail of the time of return to the pseudo atom. Here, we present a small extension of that result, where we characterize β-null recurrent chains in terms of the time of return to the pseudo-atom of the P ε -chains. This result is a direct consequence of Corollary 2.2.1 and the aforementioned Theorem 3.1 in[START_REF]Nonparametric estimation in null recurrent time series[END_REF].Theorem 2.2.38. Assume X is Harris recurrent and α is an atom for the split chain of the P ε -chain. Then, X is β-null recurrent if and only ifP α pτ α ą nq "Using this characterization of β-null recurrence and the construction outlined in Example 2.2.7, it is possible to create β-null recurrent processes for any value of β in the range of p0, 1q as well as null recurrent processes that are not β-null recurrent. Aside from these constructions, there are many examples of β-null recurrent Markov chains in the literature. Bellow we show a couple of examples.

			Γp1`βq	and the result follows from
	(2.44).						
			1 Γ p1 ´βq n β L pnq	p1 `o p1qq .	(2.48)
	rent coincide.					
	Proof. In e ect, notice that				
	a ptq "	λG pttuq pI D q π pDq	and g ph, λ, tq " E λ	«	n k"0 ÿ	ff h pX k q	" λG pttuq phq (2.47)

variation of L at in nity. Equation (2.45) now follows immediately. Corollary 2.2.1. A Harris recurrent Markov chain is β-null recurrent if and only if all of its P ε -chains are β-null recurrent.

Proof. If X is β-null recurrent, there is a small function h that satis es (2.42) for some β. By Theorem 2.2.8, the P ε -chain satis es the minorization condition M p1, s, νq for some ps, νq. Let π s be the measure de ned by

(2.33

). This measure is invariant for both X and the P ε -chain by Theorem 2.1.10. These conditions allow us to apply Lemma 3.1 in

[START_REF]Nonparametric estimation in null recurrent time series[END_REF]

, obtaining that there exists a slowly varying function L s such that, for any small function f , condition (2.42) is satis ed with L f " π s pf q L s , therefore, g ph, λ, nq " n β πsphqLspnq Γp1`βq

. By the uniqueness of the invariant measure, there exists a constant K s such that π s " K s π, hence g ph, λ, nq " n β πphqLpnq Γp1`βq where L pnq " K s L s pnq.

The next result shows under null recurrence, there is no distinction between β-regular and β-null recurrent Theorem 2.2.37. If X is null recurrent, the concepts of β-regular and β-null recur-Then, by

(2.35)

, both functions are of the same order.

where L is as in Theorem 2.2.36.

Moreover, if X is β-null recurrent, then β " sup tp ě 0 : E α rτ p αs ă 8u.

When the chain is atomic,

(2.48) 

implies that is equivalent to the condition (2.28) that we had to impose to null recurrent chains in order to get a Central Limit Theorem. Incidentally, Theorem 2.2.38 also implies that the atomic X is βnull recurrent if and only if τ α belongs to the domain of attraction of a stable law with index β 53 . Remark 2.2.13. A strengthened version of (2.48) was used in [32] to obtain a strong invariance result in the null-recurrent case. 53 See pp.3 of [28]

  Lpnqn βp1´δq Ñ 0 by Proposition 1.3.6-v in[START_REF] Regular Variation | Encyclopedia of mathematics and its applications 27[END_REF].

							nδ	˘ď
			S tn δ u p|f |q u pnq |π pf q|	`TC	`nδ pnq	ȗ .
	Notice that,					
	S tn δ u p|f |q u pnq	"	S tn δ u p|f |q u pn δ q	u `nδ pnq ȗ "	S tn δ u p|f |q u pn δ q	L pnq n βp1´δq . L `nδ
	By Theorem 2.2.34,						Lpn δ q Lpnq is
	a slowly varying function, therefore	Lpn δ q	
	Hence,					

S tn δ u p|f |q upn δ q is bounded in probability. On the other hand, S tn δ u p|f |q upnq " o p p1q. The same argument proves that T C pn δ q upnq " o p p1q. Then, sup tďn δ |D n ptq| " o p p1q.

  1 the limit of the rst component in Theorem 2.2.41 is B pM β p1qq. Because for each s, Bpsq ?s has a standard normal distribution and B and M β are independent, then U " bution and is independent of M β p1q58 . Hence, we can write B pM β p1qq as a M

	BpM β p1qq ? M β p1q	also has standard normal distri-

β p1qU which coincides with the form of the limit in Theorem 2.2.35. Under random normalization, a Central Limit Theorem was proved in Lemma A.3 of [49]. Theorem 2.2.42 (Central Limit Theorem). Under the same hypothesis of Theorem 2.2.41. For any small set C, a T n pCq π pCq σ f

  3. TAIL INDEX ESTIMATION FOR DISCRETE HEAVY-TAILED DISTRIBUTIONSreal-valued functions k and g de ned on R `such that, for all λ ą 0,

	3.2. TAIL INDEX ESTIMATION -THE DISCRETE HEAVY-TAILED I.I.D. CASE
	2mq:
	ˇˇp β n pk, mq 3.2.2 Re ned Bias Analysis -Examples ´βˇˇˇď 6 d u n pδq p k`m`1 `1 2m `1 ˇˇˇˇl n We now consider several speci c cases of distributions of type (3.1) (i.e. several ˜L `ek´m L ¸ˇˇˇˇ. (3.8) pe k`m`1 q instances of the slowly varying functions L) to explicit the asymptotic order of magnitude of the terms 1{ ? np Lpλxq Lpxq ´1 " κpλqgpxq, as x Ñ `8,

k`1 and | lnpLpe k q{Lpe k`1 qq| involved in the bound

(3.4)

, when k n is picked as in Corollary 3.2.1: k n " A ln n with 0 ă A ă 1{β.

' The logarithmic case. Suppose that Lpnq " C ln n, where C ą 0. In this situation, we have | lnpLpe kn q{Lpe kn`1 qq| " 1{pA ln nq as n Ñ `8, whereas

1{ ? np k`1 " Op1{ ? n 1´Aβ ln nq.

' The inversely logarithmic case. Consider now the situation where Lpnq "

C{ ln n with C ą 0. Then, we still have we have | lnpLpe kn q{Lpe kn`1 qq| " 1{pA ln nq, while 1{ ? np k`1 " Op a pln nq{n 1´Aβ q as n Ñ `8.

We point out that, in the two examples above, the conditions of Corollary 3.2.2 are not met, the bias being too big to get asymptotic normality (centered at β).

' The asymptotically constant case. Suppose that Lpnq " e C 0 p1 `εpnqq where C 0 ą 0 and εpnq Ñ 0 as n Ñ `8. In this case, | lnpLpe kn q{Lpe kn`1 qq| " Opεpn A qq and 1{ ? np k`1 " Op1{ ? n 1´Aβ q. Hence, if |εpn A q| " Opn ´λq for some λ ą 0, then the conditions of Corollary 3.2.2 are satis ed with k n " A ln n such that maxtp1 ´2λq{β, 0u ă A ă 1{β.

' Slow variation with a remainder (SR2). Consider the case where the slowly varying function satis es the condition SR2 introduced in

[START_REF] Regular Variation | Encyclopedia of mathematics and its applications 27[END_REF]

: there exist two CHAPTER

  By part ii of Theorem 3.3.1, we can nd a constant K 1 α,C such that

	TnpCq n β converges in distribution to K 1 α,C M β p1q. Then, by the Continuous Mapping
	Theorem,		
	ln n	ˆln T n pCq ln n	´β˙d Ý Ñ ln `K1 α,C M β p1q ˘,

To make this statement more clear, consider the simplest case, where X is atomic and L α is constant.

Table 3 .

 3 

		1: Mean squared error
	β	Hill	β pln nq	4 β `ln n, ln n	0.1
		1.7ˆ10 7	3.47ˆ10 ´3	3.04ˆ10 ´3
	0.2	103860	1.09ˆ10 ´3	8.71ˆ10 ´4
	0.35	398	3.5ˆ10 ´4	1.63ˆ10 ´4
	0.4	2.81ˆ10 ´5	5.81ˆ10 ´4	1.25ˆ10 ´4
	0.5	4.09ˆ10 ´5	2.18ˆ10 ´3	4.59ˆ10 ´4
	0.75	3.05ˆ10 ´5	8.48ˆ10 ´2	1.84ˆ10 ´2
	5 A discrete random variable S follows a Zeta distribution with parameter β if
		P pS " kq "	´α ζ pαq k	
	where ζ is the Riemann zeta function. The cumulative distribution function of a Zeta distribution
	satis es (see Lemma 9.1 in [120])			

Table 3 .

 3 Lemma 3.5.2. Bernstein's inequality for Bernoulli random variables Let X 1 , . . . , X n be i.i.d. samples from a distribution F , and we de ne p k " 1´F pe k q, p 3. TAIL INDEX ESTIMATION FOR DISCRETE HEAVY-TAILED DISTRIBUTIONS Because p k ě 16u n pδq we can apply the previous lemma, then with probability

	2: Mean squared error	
	Markov chain	T pnq	Hill		β pln nq	4 β `ln n, ln n	Ȓandom
	walk (β " 0.5)	2187	5.2ˆ10 ´3	3.57ˆ10 ´2	1.92ˆ10 ´2
	Bessel random walk with β " 0.35	148	1.4ˆ10 ´2	3.78ˆ10 ´2	1.73ˆ10 ´2
	Bessel random walk with β " 0.4	833	4.19ˆ10 ´3	1.83ˆ10 ´2	1.39ˆ10 ´2
	Bessel random walk with β " 0.7	7722	8.64ˆ10 ´4	4.95ˆ10 ´2	3.26ˆ10 ´2
	3.5 Technical Proofs					
			d			
				u n pδq p k`1	,		(3.19)
	with probability larger than 1 ´2δ.					
	Proof. In order to prove this result, we need the following lemma, proved in the
	supplementary material of [25].					
						p n k " 1 n	i"1 n ř	I X i ą e k (
	and u n pδq " lnp2{δq n . Let δ ą 0 and also let n large enough so that p k ě 4u n pδq, then
	with probability 1 ´δ,					
	|p p n k ´pk | ď 2 a	p			

3.5.1 Proof of Proposition 3.2.1 Lemma 3.5.1. Let δ ą 0 and k such that p k`1 ě 16u n pδq, then ˇˇp β n pkq ´βpkq ˇˇď 6 k u n pδq. CHAPTER Finally, Theorem 3.2.1 follows after noticing that ˇˇp β n pkq ´βˇˇˇď ˇˇp β n pkq ´βpkq ˇˇ| βpkq ´β| and applying equation (3.3) and lemma 3.5.1. 3.5.2 Proof of Theorem 3.2.2

  Using that a n `bn x " a n ´1 `bn an x ¯and taking logs we get Lpe kn q " lnpnqe knβ nLpe kn q and this goes to 0 as n goes to `8, therefore, we can nd N 2 such that 2

	e knβ ln n n " o	`L `ekn`1 ˘˘" o	`L `ekn ˘˘implies that we can nd N 1 P N such that
	p kn ě 8 ln n n for all n ě N 1 , therefore, by equation (3.26),
	P ˆln X n ď ln a n `ln ˆ1 an x Ñ 0, therefore, for n big enough, `bn a n x ˙˙Ñ F pxq . an Ñ 0 implies that bn bn P ˜ˇˇˇp p n kn p kn ´1ˇˇˇˇď 2 d 2 ln n np kn ¸ě 1 ´2 n 2 @n ě N 1 .
	ln ˆ1 Let ε ą 0. Notice that ln n `bn a n x ˙" b n a n np kn " ne ´knβ b x `o ˆbn a n ˙. ln n	2 ln n np kn ď ε for all n ě N 2 , then
	Then,	P	ˆˇˇˇp p n kn	
	P ˆln X n ´ln a n ď	b n a n	x	`o ˆbn a n	˙˙Ñ F pxq
		P ˆan	ln X p p n kn	a.s.
				F pe kn q
						X n ´an b n	Ñ d	Y,
	then,			|p p n k ´pk | ď 2 a	p k u n pδq,
				a n	ˆln X n ´ln a n b n	˙Ñ d	Y.
	then,				
	Proof. Let x P R be xed. Because Xn´an bn P ˜ˇˇˇp p n k p k ´1ˇˇˇˇď 2 d u n pδq p k ¸ě 1 ´δ. Ñ	(3.26)

21, Proposition 1.3.6.v]. Theorem 3.2.1 now follows by Theorem 3.2.2.

3.5.4 Proof of Theorem 3.2.3 and Corollary 3.2.2 Lemma 3.5.4. Let X n be a sequence of positive random variables and a n and b n two positive sequences such that a n ą 0, bn an Ñ 0. If there exists a random variable Y with continuous distribution function F such that d Y , we have P pX n ď a n `bn xq Ñ F pxq . n ´ln a n b n ď x `o p1q ˙Ñ F pxq and the result follows from the continuity of F . Lemma 3.5.5. If k n satis es the hypothesis of Theorem 3.2.2, then, Ý Ý Ñ 1.

Proof. By Lemma 3.5.2, for any δ ą 0 such that p k ě 4u n pδq we have that, with probability bigger than 1 ´δ, As in the proof of Theorem 3.2.2, let δ " 2 n 2 , so u n pδq " 2 ln n n . The condition

  Lemma 3.5.10. Assume that L satis es SR2, has positive decrease and x is big

	enough such that representation the (3.10) holds, then
		ln	ˆLpxq Lpλxq	˙" ´c|ρ| ´1 pgpxq ´gpλxqq `o pgpxqq .	(3.32)
	Proof. Let's denote Apxq " cρ ´1gpxq `o pg pxqq. By (3.10) we have
	ln	ˆLpxq Lpλxq	˙" ln	ˆCp1 `Apxqq Cp1 `Apλxqq	˙" ln	1 `Apλxq ˆ1 `Apxq	"
					ln p1 `A pxqq ´lnp1 `Apλxqq.	(3.33)
	Applying the rst order expansion for lnp1 `Apxqq we have that
	ln p1 `A pxqq " cρ ´1gpxq `o pg pxqq	`o `cρ ´1gpxq `o pg pxqq looooooooooooomooooooooooooon
								opgpxqq
				" cρ ´1gpxq `o pg pxqq .	(3.34)
	Applying (3.34) to λx we get	
			ln p1 `A pλxqq " cρ ´1gpλxq `o pg pxqq ,	(3.35)
	where we have used that if g is regularly varying then o pg pλxqq " o pg pxqq.

The result now follows by plugging (3.34) and (3.35) into (3.33).

  4. REGENERATIVE BOOTSTRAP FOR β-NULL RECURRENT MARKOV CHAINS Corollary 4.2.2. Under the same hypothesis of Proposition 4.2.2,

		¨Tpnq
		ř
	a T pnq	j"1
	s n	
		Proposition 4.2.2, equation (4.14)
	and Slutsky's theorem.	

CHAPTER

  Lemma 4.6.1. Let A n and B n be a pair of stochastic processes which are càdlàg, where A n is non-negative and non-decreasing. Let B denote a Brownian motion dened for t P R and let A denote a strictly increasing non-negative process with independent increments, Ap0q " 0 and with no xed jumps. Assume that B n

	the bootstrap data series is larger than n.
	4.6 Proofs		
	4.6.1 Proof of Lemma 4.2.1
	For the proof of Lemma 4.2.1 we need the following result, which appears as
	part A.3 of Theorem A.1 in [67].
					D r0,`8q ÝÝÝÝÑ B
	and A n	D r0,`8q ÝÝÝÝÑ A. Then, A	p´1q n	D r0,`8q ÝÝÝÝÑ A p´1q and
		¨Ap´1q n	ptq ,	A n p´1q ˝Ap´1q ptq n ptq b B n	' d Ý Ñ `Ap´1q ptq , Z ˘@t P p0, 1s ,

  This proof follows the line of the proof of Theorem 2.1 in[START_REF]Some asymptotic theory for the bootstrap[END_REF]. As in that paper, let Γ 2 be the set of distribution functions G satisfying By pp. 1198 in[START_REF]Some asymptotic theory for the bootstrap[END_REF], if G, H P Γ 2 then G pmq and H pmq are also in Γ 2 and d 2 `Gpmq , H pmq ˘ď d 2 pG, Hq .

	4.6. PROOFS				
	By (4.27), Lemmas 4.6.1, 4.6.2 and 4.6.3 we have that, in a space where (4.30)
	holds, the convergence in (4.25) holds almost surely. Therefore, in the original
	space we have the weakly-weakly (see pp.2550 in [26]) convergence
	P ˚˜U ˚´T ˚pn, T pnqq , T pnq ¯ď x ¸d Ý Ñ P pN ď xq @x P R.	(4.44)
	However, given that the right hand side of (4.44) is a constant for each x, the con-
	vergence in (4.44) can be improved to convergence in probability, which completes
	the proof.				
	4.6.5 Proof of Theorem 4.4.1		
					ş	x 2 dG pxq ă 8 and de ne
	the following notion of convergence in Γ 2
					ż	ż
	G n ñ G i	G n Ñ G weakly and	x 2 dG n pxq Ñ	x 2 dG pxq.	(4.45)
	Denote by d 2 a Mallows metric that metricizes the ñ convergence in Γ 2 (see details
	in Section 8 of [19])				
	If Y 1 , . . . , Y n are i.i.d. random variables with common distribution G, denote
	by G pmq the distribution of			
			m		
		m ´1 2	ÿ	pY j ´EY j q
			j"1		
		T pnq`1 T pnq	a.s. Ý Ý Ñ 1.	(4.46)

  almost almost all sample paths, hence, conditionally to the data

	5.1. INTRODUCTION					
				d 2 `FTpnq , F ˘Ñ 0.	(4.47)
	Denote by N σ a standard distribution with mean 0 and variance σ 2 . By Propo-
	sition 4.2.2,				
				d 2	`F pT pnqq , N σ ˘Ñ 0.	(4.48)
	Conditionally to the data, the distribution of
			a T pnq	¨řTpnq j"1	˜f ´Bj ,T pnq	¯´1 T pnq pnq	T pnq ř i"1	f pB i q Ţ ‹ ‹ ‹ ‹
							'
	is F	pT pnqq T pnq , then, conditionally to the data,
		d 2	´F pT pnqq T pnq , N σ ¯ď d 2	´F pT pnqq T pnq , F pT pnqq ¯`d 2	`F pT pnqq , N σ	which
		goes to 0 by (4.47) and (4.48). The theorem now follows by (4.45), (4.14) and
	Slutsky's theorem.			

  5.1. INTRODUCTION over the set of non-increasing functions f on R. The nonparametric LSE p f n has a well know characterization, as follows. Let m be the number of unique values of X σ C p1q , . . . , X σ C pTnpCqq , and Y 1 ă ¨¨¨ă Y m be the corresponding order statistics.

	Then, p f n pY k q is the left-hand slope at	ř TnpCq i"1	I X σ C piq ď Y k	(	of the least concave
	majorant of the set of points			
	#	˜TnpCq			
		ÿ			
	p0, 0q,				
		i"1			

  up to multiplicative constant (see Proposition 10.4.2 in[START_REF]Markov chains and stochastic stability[END_REF]).The invariant measure is nite if and only if E ατ α ă `8, in this case we say the chain is positive recurrent, otherwise, we say the chain is null recurrent. A null

	recurrent chain is called β-null recurrent (c.f. De nition 3.2 in [67]) if there exists
	a small nonnegative function h, a probability measure λ, a constant β P p0, 1q and
	a slowly varying function L h such that
	˜n ÿ
	E λ
	t"0

  Eq. If Bpωq is a random variable with distribution Q 1 , then M C pBpωq, dyq is a random measure, i.e., M C pBpωq, dyq is a (counting) measure on pE, Eq, almost surely, and for every A P E, M C pBpωq, Aq " ş A M C pBpωq, dyq is a measurable random variable (valued in N). Henceforth pBpωqqˆş f pyq M C pBpωq, dyq is a random variable and, provided that p Qp 2 q ă 8, the map Q C , de ned byQ C pAq " E

	p Q	ˆ	C pBq	ˆżA	M C pB, dyq ˙{E Q p 2 p C q,	for every A P E, (5.19)
						ÿ
						δ x pyq,	for every B P p E.
						xPBXC
	The function that gives the size of the localized blocks is C : p E Ñ N
					ż	
				C pBq "	M C pB, dyq,	for every B P p E.
	Let p E denote the smallest σ-algebra formed by the elements of the σ-algebras
	E k , k ě 1, where E k stands for the classical product σ-algebra. Let p Q denote a prob-
	ability measure on p p E, p	

8 

k"1 E k (i.e. the set of nite subsets of E) and let the localized occupation measure M C be given by

M C pB, dyq "

is a probability measure on pE, Eq. The notation E Q C stands for the expectation with respect to the underlying measure Q C . Introduce the following notations: for any function g : E Ñ R, let p g C : p E Ñ R be given by p g C pBq " ż g pyq M C pB, dyq " ÿ xPBXC g pxq " ÿ xPB g C pxq,

  .21) Eq such that 0 ă } C } L 2 p p Qq ă 8 and G be a class of measurable real-valued functions de ned on pE, Eq. Then we have, for every 0 ă ε ă 8,

	Lemma 5.5.2. Let p Q be a probability measure on p p E, p

  ´1 n paq, for a P R, as the greatest y P rY 0 , Y m s that satis es p f n pyq ě a, with the convention that the supremum of an empty set is Y 0 . We then have P R and y P pY 0 , Y m s. On the other hand, since F n is a right-continuous non-decreasing step function on R with range rF n pY 0 q, F n pY m qs, we de ne the generalized inverse F ´1 n paq, for a ď F n pY m q, as the smallest y P rY 0 , Y m s which 5.6. PROOFSThe rst intermediate result is the following stronger version of Lemma 5.6.4. γ 0 ą 0 that do not depend on n and N γ 0 P N, such that for all γ P r0, γ 0 s and n ě N γ 0 one hasW t pI C tX t ď yu ´IC tX t ď x 0 uqThen, we need to quantify how well we can approximate T n pCq by u pnq.

	p λ n pyq ě a if and only if p U n paq ě y. f p Likewise, since p f n pyq ě a if and only if p f ´1 n paq ě y for all a Lemma 5.6.6. Assume that (A2), (A3), (A4), (B1), (B2) and (B3) hold. Then, there (5.32) (5.33) exists K ą 0, E λ ¨sup |y´x 0 |ďγ ˇˇˇˇn ÿ t"0 ˇˇˇˇ2 'ď Ku pnq γ (5.38) E λ ¨sup |y´x 0 |ďγ ˇˇˇˇn ÿ t"0 W t I C tX t " yu ˇˇˇˇ2 'ď Ku pnq γ (5.39) Lemma 5.6.7. Assume that (B1) and (A3) hold. Then we have a) As n Ñ 8 we have u pnq T n pCq " O P p1q. that P ˆˆT n pCq a pnq ˙α P " c η , c η ‰ ˙ě 1 ´η, @n ě N η . With the above lemmas (including Lemma 5.5.3 and the ones used in Section 5.6.1), we can obtain the rate of convergence of p U n given by (5.36), and then the rate of convergence of p f ´1 n given by (5.35), at the xed point f 0 px 0 q. Lemma 5.6.8. Assume that (A2), (A3), (A4), (B1), (B2), (B3) and(B4) hold. Then, as n Ñ 8, one has p p f ´1 n pf 0 px 0 qq " x `OP ´u pnq ´1{3 ¯. (5.41) 5.7 Technical proofs 5.7.1 Technical proofs for Section 5.5 Proof of Lemma 5.5.1. Equation (5.17) follows from Corollary 2 in [9] and U and part 2 of Theorem 5.2.1.

n is a left-continuous non-increasing step function on R that can have jumps only at the observation times Y 1 ă ¨¨¨ă Y m , we de ne the generalized inverse p f b) Let α and η be positive constants, then there exists constants N η , c η and c η , such n pf 0 px 0 qq " F px 0 q `OP ´u pnq ´1{3 ¯,

(5.40) 

  Let g px, yq " I tx ď yu, and h " F as de ned in (5.13). Then, p g y pBq "

				2 we will have
	p g y pBq "	ř xPBXC g px, yq. Finally, for any function h : R Ñ R, we de ne
	r g h y pBq " p { g y ´hpyqqpBq "	ÿ	pg px, yq ´h pyqq " p g y pBq ´ C pBq h pyq .
				xPBXC
	ř xPB I C tx ď yu and	
		r y pBq " g F	ÿ

xPBXC pI tx ď yu ´F pyqq " p g y pBq ´ C pBq F pyq .

  1 n X D n , F ´1 n ppq ą Mη ? ´1 ppq ą Mη ? ´1 ppq, hence, Assumption (B2) indicates that F has bounded derivative in C, take K 1 as the maximum value of this derivative in C, then, the Mean Value Theorem implies that p " F `F ´1 ppq ˘" F

		F n	˜Mη a a η u pnq	`F ´1 ppq ¸ď F n	`F ´1 n ppq ˘ď p	`1 T n pCq
						ď p	`1 a η u pnq	.	(5.51)
						˜Mη a a η u pnq	¸´F 1 pθ p q M η `F ´1 ppq a a η u pnq
		ď F	˜Mη a a η u pnq	`F ´1 ppq	¸´K 1 M η a a η u pnq	.
		After plugging this into (5.51) we get
	F	˜Mη a a η u pnq	`F ´1 ppq ¸´F n

TnpCq

`F aηupnq `F

  Using(5.49) and U n " U 1 n YU 2 n we obtain that P pU n X D n q ď η 2 for all n ě N η .Equation (5.23) now follows by (5.50).5.7.2Technical proofs for Section 5.6.1Proof of Lemma 5.6.1. Combining (5.26) and (5.1) yieldsΛ n pF n pY k qq " 1 T n pCq 0 pX t qI C tX t ď Y k u `1 T n pCqThe rst term on the right hand side of the previous display can be rewritten 0 pX t qI C tX t ď Y k u " 1 T n pCq 0 pY l qpl j ´lj´1 qI C tY j ď Y k u ´1 n puq " Y j for all u P pl j´1 {T n pCq, l j {T n pCqs. Hence, for all k in strict monotonicity of F in C.Proof of Lemma 5.6.4. Let F n " σ ptX 0 , . . . , X n uq be sigma algebra generated by the chain tX t u up to time n. Denote by P Fn the probability conditioned to F n . Take ε ą 0.W t I C tX t " A n u I C tX t " A n u ε 2 T n 2 pCq ď σ 2 ε 2 T n pCq ,which implies the rst part of the Lemma because T n pCq Ñ 8 with probability 1.For the second part, let γ n puq be the number of times the chain visits pA n , usXC up to time n and A n puq " tt ď n : X t P pA n , us X Cu " a 1 , . . . , a γnpuq

	1 n X D n Ď	# Dy P rx 0	´ε1 , x 0	`ε1 s : F pyq ´Fn pyq ą	a T n pCq η M 1	+
		#		+		
	Ď By a similar argument, it can be shown that a T n pCq sup |y´x 0 |ďε 1 |F n pyq ´F pyq| ą M 1 η U 2 n X D n Ď # Dy P rx 0 ´ε1 , x 0 `ε1 s : F n pyq ´F pyq ą M 1 η a T n pCq . n ÿ t"0 as follows: 1 T n pCq n ÿ t"0 m ÿ j"1 " k ÿ j"1 ż l j {TnpCq l j´1 {TnpCq f 0 ˝F ´1 n puqdu, + P Fn ¨ˇˇˇˇˇˇˇn ř t"0 T n pCq ˇˇˇˇˇˇˇą ε ‹ ‹ ' ď σ 2 n ř t"0 uąAn ˇˇˇˇˇˇˇn ř t"0 W t I C tX t P pA n , usu T n pCq ˇˇˇˇˇˇˇą ε ‹ ‹ ' " P Fn ˜sup uąAn ˇˇˇˇγ npuq ÿ i"1 W ta i T n pCq ˇˇˇˇą ε P Fn ˜sup ˇˇˇˇk ÿ using that F By Chebyshev's inequality, 1ďkďγn i"1	@n ě N η . ḑ

f n ÿ t"0 W t I C tX t ď Y k u.

f f ( the times of those visits. Using that γ n " sup uąAn γ n puq ď T n pCq and Kolmogorov's inequality (Th 3.1.6, pp 122 in [55]) we obtain, P Fn ¨sup

  n pCqS n ď sup W t I C tX t P pF ´1 n pF px 0 qq, usu W t I C tX t " F ´1 n pF px 0 qqu ˇˇˇˇ.

		ˇˇˇˇn ÿ	ˇˇˇˇǹ
	uąF ´1 n pF px 0 qq`ν{2	t"0
	ÿ	
	t"0	

  0 pγq " sup W t pI tX t ď yu ´I tX t ď x 0 uq W t pI tX t ď yu ´I tX t ď x 0 uq ˇˇˇˇ2 " max ´S0 pγq , S 1 pγq ¯,

				ˇˇˇˇn ÿ
		yPI 0	t"0
				ˇˇˇˇn ÿ	ˇˇˇˇ2
		yPI 1	t"0
	then,		
		ˇˇˇˇn ÿ	
	S pγq " sup		
	|y´x 0 |ďγ	t"0	
	ď S 0 pγq `S1 pγq		(5.57)
	Following the notation of section 5.2, let
	α p0q n pγq " sup yPI 0	T n pry, x 0 sq , α p1q n pγq " sup yPI 1	T n prx 0 , ysq ,
			ˇˇˇˇT npry,x0sq	ˇˇˇˇT nprx0,ysq
	with this notation, S 0 " sup	ř	ř
		yPI 0	yPI 1	i"1

W t pI tX t ď yu ´I tX t ď x 0 uq ˇˇˇˇ2 S 1 pγq " sup i"1 W σ ry,x 0 q piq ˇˇˇˇ2

and S 1 " sup

  TnpCq upnq converges in distribution to KM β p1q where M β p1q denotes a Mittag-Le er distribution with parameter β. This distribution is continuous and strictly positive with probability 1, then, by the Continuous Mapping Theorem, upnq TnpCq converges in distribution to a multiple of 1 M β , therefore, upnq TnpCq is bounded in probability by Theorem 2.4 in [114]. b) Let X be positive recurrent, then, we can nd N η such that Now let X be β-null recurrent. Let Z " pKM β p1qq α , This random variable is continuous and positive, therefore, we can nd positive constants c η and c η such By the Continuous Mapping Theorem, ´TnpCq upnq ¯α converges in distribution to Z, therefore, we can nd N η P N such that

	5.7. TECHNICAL PROOFS									
	hence,									
	P	ˆˆT n pCq u pnq	˙α P	"	K α πpCq α 2	,	3K α πpCq α 2	˙ě	1 ´η, @n ě N η .
	that									
								P `Z P	"	c η , c η	‰˘ě	1	´η 2	.	(5.65)
	ˇˇˇP ˆˆT n pCq u pnq	˙α P	"	c η , c η	‰	˙´P `Z P	" c η , c η	‰˘ˇˇˇď η 2	, @n ě N η ,	(5.66)
	Combining (5.65) and (5.66) we obtain that
		P	ˆˆT n pCq u pnq	˙α P	" c η , c
											191

P

ˆˇˇˇˆT n pCq u pnq ˙α ´Kα πpCq α ˇˇˇď ˆKπ pCq 2 ˙α˙ě 1 ´η, @n ě N η . η ‰ ˙ě 1 ´η, @n ě N η .

  for some K 3 ą 0 that does not depend on n. Hence, it follows from the previous display and (5.75) that

		j`1	ˇˇf 0	˝F ´1 n ppq ´f0	˝F ´1ppq ˇˇdp
	ď K 3 γ n 2 j	sup	ˇˇF ´1 n ppq ´F ´1ppq ˇˇ,
		|p´F px 0 q|ď2ε		
	|u|ďγn2 j`1 E ¨sup	F px 0 q ˇˇˇˇż F px 0 q`u	pf 0	˝F ´1 n ppq ´f0	˝F ´1ppqdp	ˇˇˇˇ2	IpE n q '
	ď K 2 3 γ 2 n 2 2j E ˜sup	|F ´1 n ppq ´F ´1ppq| 2 IpE n q ḑ
		|p´F px 0 q|ď2ε		
	K 2 3 γ 2 n 2					

2j K 2 u pnq ´1.

  W t ´IC tX t ď F ´1 n pF px 0 q `uqu ´IC tX t ď F ´1 n pF px 0 qqu

	j 1 "	T n pCq 1	|u|ďγn2 j`1 sup	t"0 ˇˇˇˇn ÿ	¯ˇˇˇˇ,
	I n,j 2 "	2 T n pCq	sup |u|ďγn2 j`1	ˇˇˇˇn ÿ t"0	

  [START_REF]A tail inequality for suprema of unbounded empirical processes with applications to Markov chains[END_REF] , sup pF ´1q ˘independent of n such that, on E n , |F ´1pF px 0 q `uq ´x| " |F ´1pF px 0 q `uq ´F ´1pF px 0 qq| ď K 5 |u|{2 for all u with |u| ď 2ε. Hence, on E n W t pI C tX t ď yu ´IC tX t ď x 0 uq It follows from (5.71) that γ n 2 j ě γ n ě 1{ a u pnq for all j ě 0, then, on E n W t pI C tX t ď yu ´IC tX t ď x 0 uq By Lemma 5.6.6, we conclude that there exists K 6 ą 0 and N 1 η such that, for n ě N 1
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				sup |p´F px 0 q|ď2ε	|F ´1 n ppq ´F ´1ppq| ď	K 5 a u pnq
	and I n,j 1 ď	T n pCq 2	|y´x 0 |ďK 5 γn2 j `K5 { ? upnq sup	t"0 ˇˇˇˇn ÿ	ˇˇˇˇ,
	I n,j 2 ď W I n,j ˇˇˇˇn ÿ 2 T n pCq sup |y´x 0 |ďK 5 γn2 j `K5 { ? upnq t"0 1 ď |y´x 0 |ď2K 5 γn2 j t"0 T n pCq sup 2 ˇˇˇˇn ÿ	ˇˇˇˇ,
	I n,j 2 ď	2 T n pCq	|y´x 0 |ď2K 5 γn2 j sup	t"0 ˇˇˇˇn ÿ	W t ´IC tX t " yu ¯ˇˇˇˇ.
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t ´IC tX t " yu ¯ˇˇˇˇ.

Voir la section 2.2.10

The term Markov chain was coined by Bernstein in his 1927 paper "Sur l'extension du théorème limite du calcul des probabilités aux sommes de quantités dépendantes"[START_REF]Sur l'extension du théorème limite du calcul des probabilités aux sommes de quantités dépendantes[END_REF]. For a detailed history of the early developments of Markov chains see[START_REF]The life and work of a.a. markov[END_REF].

See section 2.2.10

This assumption is used in almost all literature about Markov chain theory because it removes the possibility of extremely pathological examples known as "anormal" chains[START_REF]Éléments d'une théorie générale des chaînes simples constantes de marko[END_REF]. For a detailed overview of the matter, see[START_REF]Éléments d'une théorie générale des chaînes simples constantes de marko[END_REF][START_REF]Contributions to doeblin's theory of markov processes[END_REF] and pp. 91 in[START_REF]Random Walk in Random and Non-Random Environments[END_REF]. An example of an "anormal" chain is provided in[START_REF]The existence of anormal chains[END_REF]. Furthermore, this assumption does not result in a signi cant loss of generality, given that most of the time, E " B `Rd ˘, which is countably generated.

Proposition 1.2.5 in[START_REF]Markov chains[END_REF].

Proposition 1.2.6 in[START_REF]Markov chains[END_REF] 

Proposition 1.2.7 in[START_REF]Markov chains[END_REF].

Proposition 1.2.8 in[START_REF]Markov chains[END_REF] 

Proposition 2.3 and pp. 12-13 in[START_REF]General Irreducible Markov Chains and Non-Negative Operators[END_REF].

Proposition 2.4 in[START_REF]General Irreducible Markov Chains and Non-Negative Operators[END_REF].

Example 3.1 in[START_REF]Nonparametric estimation in null recurrent time series[END_REF] 

Part i is Theorem 2.1 in[START_REF]General Irreducible Markov Chains and Non-Negative Operators[END_REF], part ii is Proposition 2.6 of the same book.

Theorem 10.4.3 in [87] 

This is Proposition 3.4.3 in[START_REF]Markov chains and stochastic stability[END_REF].

Example 1.2 in[START_REF]General Irreducible Markov Chains and Non-Negative Operators[END_REF] 

2.2. MARKOV CHAINS

Example 2.1.1, pp. 28 in[START_REF]Markov chains[END_REF] 

Example 2.1.2 in[START_REF]Markov chains[END_REF] 

Proposition 3.4.6 in [87].

This is part ii) of Proposition 5.4.5 in[START_REF]Markov chains and stochastic stability[END_REF] 

Lemma 6.1.3 in [38] 

Lemma 6.1.4 in[START_REF]Markov chains[END_REF] 

Theorem 6.2.2 and Proposition 6.2.4 in[START_REF]Markov chains[END_REF].

Theorem 6.2.7 in[START_REF]Markov chains[END_REF] 

Theorem 6.4.2 in[START_REF]Markov chains[END_REF].

Theorem 10.2.2 in[START_REF]Markov chains and stochastic stability[END_REF] 

Corollary 2.3 in [29].

Lemma 6.6.1 in[START_REF]Markov chains[END_REF] 

Proposition 1.3.4 and Theorem 1.5.5 in[START_REF] Regular Variation | Encyclopedia of mathematics and its applications 27[END_REF] 

The original theorem appeared in[START_REF]Large-sample theory of sequential estimation[END_REF]. See Theorem E.4.5 in[START_REF]Markov chains[END_REF] for a more modern formulation.

30 Equation (2.26) appears as an intermediate result in the proof of their Theorem 6.7.1 and (2.27) is a direct consequence of their equation (6.7.6).

See Example 6.1.2 in[START_REF]Markov chains[END_REF] for a proof of this result

Remark 2.1-iv, pp. 16 of[START_REF]General Irreducible Markov Chains and Non-Negative Operators[END_REF] 

See pp. 191 of[START_REF]Markov chains[END_REF].

See pp.311 in[START_REF]A splitting technique for harris recurrent markov chains[END_REF].

This result appears as Theorems 1 and 2 in[START_REF]A splitting technique for harris recurrent markov chains[END_REF] and as Theorem 4.2 in[START_REF]General Irreducible Markov Chains and Non-Negative Operators[END_REF].

Equation (4.19) in[START_REF]General Irreducible Markov Chains and Non-Negative Operators[END_REF] 

Proposition 8.2.13 in[START_REF]Random Iterative Models[END_REF] 

See Section 6 in [28].

See Chapter 6 of[START_REF]Limit Theorems for Stochastic Processes[END_REF] or Chapter 3 in[START_REF]Convergence of probability measures[END_REF] for more details about this space.

A Levy process is a stochastic process with stationary, independent increments and sample paths in D r0,`8q .

Theorem 3.2 and Lemma 3.6 in[START_REF]Nonparametric estimation in null recurrent time series[END_REF] 

This proof follows the line of the proof of Lemma 3.6 in[START_REF]Nonparametric estimation in null recurrent time series[END_REF].
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tween 0 and 2m, therefore, we can apply Lemma 3.5.1 obtaining that, for each j ˇˇp β n pk ´m `jq ´β pk ´m `jq ˇˇď 6

with probability bigger than 1 ´2δ. The probability that inequality (3.30) is true for all j between 0 and 2m is bigger than p2m `1q p1 ´2δq ´2m " 1 2δ p1 ´2mq, therefore, with at least that probability, equation ( pα kn´bn`j ´αq.

Take ε ą 0 xed, by the convergence of α n there exists N 1 such that, for all n ě N 1 , |α n ´α| ă ε. Because k n ´bn Ñ `8, we can nd N 2 such that k n ´bn ě N 1 , for all n ě N 2 , then, |α kn´bn`j ´α| ď ε for all n ě N 2 and all where Z is standard normal variable independent of A p´1q ptq.

To prove Lemma 4.2.1, let W k " σ ´1`X k ´µ˘, then tW k u 8 k"1 is an i.i.d. sequence with EpW k q " 0 and Var W k " 1 for all k.

Let's de ne the following continuous time process for t ě 0 

Proof of Corollary 4.2.1

We assume, at rst, that θ is bounded, that is, there exists a constant K such that 0 ă θ ă K with probability 1. Without loss of generality, assume the u n are 135 4.6. PROOFS integers. De ne the process

As stated in pp. 147 of [START_REF]Convergence of probability measures[END_REF], this process converges to the process tθ and trivially satis es the conditions of Lemma 4.2.1 (using S n ptq " t θ , S ´1 n ptq " tθ).

The case when K is unbounded can be treated by following the same argument as in pp. 148 of [START_REF]Convergence of probability measures[END_REF]. 

By Theorem 4.2.1, we can apply Lemma 4.2.1 with X i " f pB i q, µ "

N pnq " T pnq and u n " n β Lpnq, which completes the proof.

Proof of Theorem 4.3.1

Assume we have observed the chain until time n, i.e., X pnq " X 0 , X 1 , . . . , X n , and we have extracted the T pnq regeneration blocks: B 1 , . . . , B T pnq . Now we start to sequentially bootstrap data blocks B 1,T pnq , . . . , B k,T pnq independently from the empirical distribution F T pnq " T pnq ´1 ř T pnq j"1 δ B j of the blocks tB j u 1ďjďT pnq , conditioned on X pnq , until the length ˚pkq " ř k j"1

´B1

,T pnq ¯of Chapter 5

Harris recurrent Markov chains and nonlinear monotone cointegrated models

The content of this chapter is based on [START_REF]Harris recurrent markov chains and nonlinear monotone cointegrated models[END_REF]. It is the result of a collaboration with my advisors Cécile Durot 1 and Patrice Bertail 1 .

Abstract:

In this paper, we study a nonlinear cointegration-type model of the form Z t " f 0 pX t q `Wt where f 0 is a monotone function and X t is a Harris recurrent Markov chain. We use a nonparametric Least Square Estimator to locally estimate f 0 , and under mild conditions, we show its strong consistency and obtain its rate of convergence. New results (of the Glivenko-Cantelli type) for localized null recurrent Markov chains are also proved.

Introduction

The concept of linear cointegration refers to two time series, Z t and X t , that are both nonstationary and of unit root type, and where there exists a stationary

Outline

Since our paper draws quite heavily on the theory of Harris recurrent Markov chains, we have added a small introduction to the subject as well as the main results that we use throughout the paper in Section 5.2. In Section 5.3, we show that under very general assumptions, our estimator p f n is strongly consistent, while its rate of convergence is presented in Section 5.4. In Section 5.5, we present three new results concerning Harris recurrent Markov chains that have emerged during our investigation and we believe are interesting in their own right. Section 5.6 contains an overview of the proofs of our main results, while the technical proofs are presented in Section 5.7.

Markov chain theory and notation

In this section, we present the notation and main results related to Markov chains that are needed throughout the paper. For further details, we refer the reader to [START_REF]Markov chains[END_REF][START_REF]Markov chains and stochastic stability[END_REF][START_REF]General Irreducible Markov Chains and Non-Negative Operators[END_REF].

Let X " X 0 , X 1 , X 2 , . . . be a time-homogeneous Markov Chain de ned on a probability space pE, E, Pq where E is countably generated. Let P px, Aq denote its transition kernel, i.e. for x P E , A P E we have P px, Aq " P pX i`1 P A |X i " x q , i " 0, 1, . . . Let P n px, Aq denote the n-step transition probability, i.e.

P n px, Aq " P pX i`n P A |X i " x q @i.

Consistency

The aim of the section is to show that for an arbitrary x 0 in the support of f 0 , the LSE p f n px 0 q is consistent. We make the following assumptions on the processes X " tX t u and W " tW t u.

(A1) X is a Harris recurrent Markov chain whose kernel P px, Aq satis es the minorization condition (5.9).

Let F n " σ ptX 0 , . . . , X n uq be sigma algebra generated by the chain X up to time n.

(A2) For each n, the random variables W 1 , . . . , W n are conditionally independent given F n , EpW t |F n q " 0 and Var pW t |F n q ď σ 2 for some σ ą 0.

It follows from Assumption (A1) that the Markov Chain X admits a unique (up to a multiplicative constant) σnite invariant measure π. Let C be a set such that 0 ă π pCq ă 8 and x 0 P C. We denote by F n the process de ned by

for all y P R, which is a localized version of the empirical distribution function of the X t 's. It is proved in Lemma 5.5.1 that F n converges almost surely to the distribution function F supported on C and de ned by F pyq " π pC X p´8, ysq π pCq .

(5.13)

Our next two assumptions guarantee that there is a compact C, that is a small set and contains x 0 as an interior point. Sets like this can be found under very wide conditions (cf [START_REF]Random coe cient autoregressive processes:a markov chain analysis of stationarity and niteness of moments[END_REF]).
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(A3) There is δ " δpx 0 q such that the set C " rx 0 ´δ, x 0 `δs is small.

(A4) x 0 belongs to the interior of the support of X t .

Notice that by part 1 of Theorem 5.2.1, (A3) guarantees that πpCq is nite and positive, and hence, F is properly de ned.

In addition to the assumptions on the processes tX t u and tW t u, we need smoothness assumptions on F and on f 0 . In particular, we will assume that F and f 0 are continuous and strictly monotone in C. This implies that f 0 and F are invertible in C, so we can nd neighborhoods of f 0 px 0 q and F px 0 q respectively, over which the inverse functions are uniquely de ned. We denote by f ´1 0 and F ´1 respectively the inverses of f 0 and F over such a neighborhood of f 0 px 0 q and F px 0 q respectively. The function f 0 is assumed to be monotone on its whole support.

(A5) F is locally continuous and strictly increasing in the sense that for all x 1 in C, for all ε ą 0, there exists γ ą 0 such that |F ´1puq ´x1 | ą γ for all u such that |u ´F px 1 q| ě ε.

(A6) f 0 is non-increasing, and f 0 is locally strictly decreasing in the sense that for all x 1 in C, for all ε ą 0, there exists γ ą 0 such that |f 0 px 1 q ´f0 pyq| ą γ for all y such that |y ´x1 | ě ε.

Assumptions (A1), (A3) and (A5) ensure that X t visits in nite times any small enough neighborhood of x 0 with probability 1, and guarantee that x 0 is not at the boundary of the recurrent states. Assumptions (A1) and (A3) and Lemma 3.2 in [START_REF]Nonparametric estimation in null recurrent time series[END_REF] imply that T n pCq Ñ 8 almost surely.

Assumption (B3)is satis ed if we assume that the initial measure of the chain is the small measure used for the construction of the split chain (see equation 4.16c in [START_REF]General Irreducible Markov Chains and Non-Negative Operators[END_REF]). In the positive recurrent case, taking λ equal to the unique invariant probability measure of the chain also satis es (B3).

And nally, we need to control the number of times the chain visits C in a regeneration block.

(B4) C pB 1 q " ř tPB 1 I C tX t u has nite second moment.

Theorem 5.4.1. Assume that (A2), (A3), (A4), (B1), (B2), (B3) and (B4) hold. Then, as n Ñ 8, one has p f n px 0 q " f 0 px 0 q `OP pu pnq ´1{3 q, (

with u pnq as de ned in (5.11).

The rate u pnq comes from Lemmas 5.5.3 and 5.6.7, and as it can be seen from Theorem 5.2.1, it is a deterministic approximation of T pnq. Note that in the positive recurrent case, u pnq " n, hence we obtain the same rate n ´1{3 as in the i.i.d. case [START_REF]Nonparametric Estimation under Shape Constraints: Estimators, Algorithms and Asymptotics[END_REF]Chapter 2]. In the β-null recurrent case, however, the rate of convergence is n β{3 L 1{3 pnq which is slower than the usual rate. This is due to null recurrence of the chain because it takes longer for the process to return to a neighborhood of the point x 0 and it is these points in the neighborhood of x 0 which are used in nonparametric estimation.

Localized Markov chains

Given the localized nature of our approach, in this section, we present some results that are particularly useful in this scenario. These results are well known for positive recurrent chains but are new in the null recurrent case.

PROOFS

with envelope U C and characteristic pC, vq.

Remark 5.5.1. For a probability measure µ, and a class of functions H, the covering number N pε, H, L r pµqq is the minimum number of L r pµq ε-balls needed to cover H. For more details about this concept and the VC class of functions, see [START_REF]Introduction to empirical processes and semiparametric inference[END_REF].

To put into perspective Lemma 5.5.2, consider a class of bounded functions G that is VC with nite envelope. Lemma 5.5.2 tells us that the class of unbounded functions p G C is also VC. If we also have that (B4) holds, then Theorem 2.5 in [START_REF]Introduction to empirical processes and semiparametric inference[END_REF] tells us that p G C is a Donsker class. A reasoning like this is used in the proof of the following result, which is a stronger version of Lemma 5.5.1 under assumptions (B1) and (B2) and has some interest on its own. Lemma 5.5.3. Assume that (B1), (B2), (A3), (A4) and (B4) hold. Then, for all suciently small ε ą 0 we have,

when n goes to `8. If (B2) is also satis ed, as n Ñ 8 we have

(5.23)

Proofs

In this section we give a general outline of the proofs of Theorems 5.3.1 and 5.4.1. The technical proofs can be found in sections 5.7.2 to 5.7.5.

Outline of the proof of Theorem 5.3.1

Recall that we consider the piecewise-constant and left-continuous LSE p f n , that is constant on every interval pY k´1 , Y k s, k " 2, . . . , m and also on p´8, Y 1 s and on rY m , 8q. With δ ą 0 xed, we denote by T n pCq the number of times the Markov Chain X visits the set C :" rx 0 ´δ, x 0 `δs until time n:

ItX t P Cu.

(5.24)

Let l k " ř n t"1 I C tX t ď Y k u for all k P t1, . . . , mu and l 0 " 0.

Our aim is to provide a characterization of p f n px 0 q . Recall from (5.12) that the localized empirical distribution function F n is de ned as

for y P R. F n is 0 on p´8, Y 1 q, so, with an arbitrary random variable Y 0 ă Y 1 we have F n pyq " F n pY 0 q " 0 for all y ă Y 1 . Let K be the set K :" tF n pY k q, k " 0, . . . , mu (5.25) and let Λ n be the continuous piecewise-linear process on rF n pY 0 q, F n pY m qs with knots at the points in K and values

at the knots. The characterization of p f n in Lemma 5.6.2 involves the least concave majorant of Λ n . Note that we use T n pCq as a normalization in the de nitions of the processes F n and Λ n since this choice ensures that F n and Λ n converge to xed 5.6. PROOFS functions, see Lemma 5.5.1.

Lemma 5.6.1. For all y P rF n pY 0 q , F n pY m qs, Λ n pyq " L n pyq `Mn pyq , where,

and M n is a piece-wise linear processes with knots at F n pY k q for k P t0, . . . , mu such that

Moreover, M n can be written as

where,

l j`1 ´lj py ´Fn pY j qq , (5.30)

and j is such that Y j`1 " F ´1 n pyq.

In the next lemma, we give an alternative characterization of the monotone nonparametric LSE p f n at the observation points Y 1 , . . . , Y m .

5.6. PROOFS satis es F n pyq ě a. Note that the in mum is achieved for all a ď F n pY m q. We then have where argmax denotes the greatest location of maximum (which is achieved on the set K in (5.25)). Thus, the inverse process p U n is a location process that is more tractable than p f n and p λ n themselves. A key idea in the following proofs is to derive properties of p U n from its argmax characterization (5.36), then, to translate these properties to p f ´1 n thanks to (5.35), and nally to translate them to p f n thanks to (5.33). The last step will be the aim of Section 5.7.3. We consider below the rst two steps.

To go from p U n to p f ´1 n using (5.35) requires to approximate F ´1 n by a xed function. Hence, in the sequel, we are concerned by the convergence of the process F n given in (5.12), where δ ą 0 is chosen su ciently small, and by the convergence of the corresponding inverse function F ´1 n .

It is stated in Lemma 5.5.1 that under (A1) and (A3), F n converges to a xed distribution function F that depends on C, hence on δ. If, moreover, F is strictly increasing in C, then we can nd a neighborhood of F px 0 q over which the (usual)

inverse function F ´1 is uniquely de ned, and F ´1 n converges to F ´1.
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In the following lemma, we show that F px 0 q belongs to the domain of Λ n with probability that tends to one as n Ñ 8.

Lemma 5.6.3. Assume that (A1), (A3), (A4) and (A5) hold. Then, we can nd ε ą 0 such that the probability that Y 1 `ε ď x 0 ď Y m ´ε tends to one as n Ñ 8. Moreover, the probability that F n pY 1 q ď F px 0 q ď F n pY m q tends to one as n Ñ 8.

We will also need to control the noise tW t u. The following lemma shows that the noise is negligible under our assumptions. for any sequence of random variables A n , independent of the process tW t u, that is adapted to the ltration tF n u.

With the above lemmas, we can prove convergence of p U n given by (5.36), and then convergence of p f ´1 n given by (5.35), at the xed point f 0 px 0 q.

Lemma 5.6.5. Suppose that assumptions (A1)-(A7) are satis ed. Then, as n Ñ 8, one has p U n pf 0 px 0 qq " F px 0 q `oP p1q.

(5.37) 5.6.2 Outline of the proof of Theorem 5.4.1

The proof of Theorem 5.4.1, uses similar ideas as the ones used in the proof of Theorem 5.3.1 but under stronger assumptions (and therefore using stronger lemmas). t0, . . . , mu

Combining (5.53) with the piece-wise linearity of Λ n yields

where L n and M n are piece-wise linear processes with knots at F n pY k q for k in t0, . . . , mu and such that

and

In order to ease the notation, we will write F i n " F n pY i q, L i n " L n pF n pY i qq and M i n " M n pF n pY i qq. Let y P pF n pY 0 q , F n pY m qs, take j such that Y j`1 " F ´1 n pyq, then F n pY j q ă y ď F n pY j`1 q. With this notation,

Notice that

which proves (5.27).

For M n we have,

and this completes the proof.

Proof of Lemma 5.6.2. By de nition, with l 0 " 0, and l k " ř n t"0 I C tX t ď Y k u for all k P t1, . . . , mu, we have F n pY k q " al k for all k P t0, . . . , mu, where a "

1{T n pCq and does not depend on k. Moreover,

Since p f n pY k q is the left-hand slope at l k of the least concave majorant of the set of points in (5.3), the equality in (5.31) follows from Lemma 2.1 in [START_REF]On the distance between the empirical process and its concave majorant in a monotone regression framework[END_REF].

Proof of Lemma 5.6.3. The rst assertion follows from Assumption (A4) and the second immediately follows from the rst one by (5.17) combined with the Therefore, the event E 1 n is contained in the event that there exists p ą F px 0 q `ε such that ż p F px 0 q f 0 ˝F ´1 n puqdu `Sn ě app ´F px 0 qq. Now, let E 2 n be the event that

where η P p0, ν{4q is such that |f 0 pyq´f 0 px 0 q| ď γ{2 for all y such that |x 0 ´y| ď η.

Note that the existence of η is ensured by assumption (A7). Then, it follows from By Doob's maximal inequality (Th 10.9.4 in [START_REF]Probability : a graduate course[END_REF]), we have, for j " 0, 1, h pX t , γq , j ě 1

• G k " σ ´tph pB j , γq , pB j qqu k j"0 ¯for k ě 0.

By the Strong Markov property, tph pB j , γq , pB j qqu `8 j"1 is an i.i.d. sequence which is independent of ph pB 0 , γq , pB 0 qq (and, therefore, of the initial measure where a " f 0 px 0 q and where the supremum is restricted to p P rF n pY 0 q, F n pY m qs.

We will show below that U n paq " F px 0 q `OP pu pnq ´1{3 q, (5.69)

as n Ñ 8. Combining (5.36) to Lemma 5.6.5 ensures that p U n paq coincides with U n paq with probability that tends to one as n Ñ 8, so (5.40) follows from (5.69).

We turn to the proof of (5.69). Fix η ą 0 arbitrarily and let

for some K 0 ě 1 su ciently large so that

Then, by part ii) of Lemma 5.6.7, we can nd positive constants c η , cη and N η such that

Let c " K 0 c η and c " K 0 c η . It follows from (5.23) that for su ciently small ε ą 0, 

where

is independent of n and K 0 .

By Lemma 5.6.3, we can assume without loss of generality that F px 0 q belongs to rF n pY 0 q, F n pY m qs, since this occurs with probability that tends to one. Hence, by (5.68), the event t|U n paq ´F px 0 q| ě γ n u is contained in the event that there exists p P rF n pY 0 q, F n pY m qs with |p ´F px 0 q| ď ε, |p ´F px 0 q| ě γ n and Λ n ppq ´ap ě Λ n pF px 0 qq ´aF px 0 q.

(5.76)

Obviously, the probability is equal to zero if γ n ą ε so we assume in the sequel that γ n ď ε. For all p P rF px 0 q ´ε, F px 0 q `εs de ne Λ ppq "

Let c ą 0 such that |f 1 0 |{F 1 ą 2c on the interval rF ´1pF px 0 q´2εq, F ´1pF px 0 q1 [28] C , X. How often does a harris recurrent markov chain recur? The Annals of Probability 27 (07 1999).

[29] C , X. Limit Theorems for Functionals of Ergodic Markov Chains With General State Space. Memoirs AMS 664. Amer Mathematical Society, 1999.

[30] C , X. On the limit laws of the second order for additive functionals of harris recurrent markov chains. Probability Theory and Related Fields 116