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you are a great friend despite your questionable taste in board games. Lucas, I’m
still looking for a counter-example to your banana-carrot theory. Simon, you’re one
of the funniest people I’ve ever met. Xavier, how’s the CR going? It’s over 7 years
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Résumé détaillé

Dans cette thèse, nous étudions différents modèles d’agents en interaction sur des
réseaux, avec un intérêt particulier donné aux phénomènes biologiques. Nous nous
intéressons surtout à un modèle de neurosciences computationnelles, le modèle
de Galves-Löcherbach, ainsi qu’à un modèle d’épidémiologie, les processus de
migration-contagion, même si nous nous attachons à présenter les résultats obtenus
dans un plus grand degré de généralité.

Nous nous intéressons à l’évolution temporelle de phénomènes qui peuvent être
modélisés par un réseau dans lequel chaque noeud correspond à un individu car-
actéristique du phénomène (un individu, une particule, un neurone, par exemple)
et chaque arête correspond à une possibilité d’interaction entre deux noeuds. Un
coefficient associé à chaque arête indique l’information transmise lors d’une in-
teraction. A chaque noeud est associé un processus ponctuel, c’est-à-dire dans
le cadre unidimensionnel une suite de temps aléatoires, représentant les instants
d’interaction avec les noeuds voisins. On se place dans le cadre où ce processus
ponctuel admet une intensité stochastique : autrement dit, si Ft est une filtration
sur R et N est un processus ponctuel, il existe un processus Ft-prévisible tel que
pour tous s < t ∈ R,

E [N(s, t]|Fs] = E

[∫ t

s

λ(u) du
∣∣Fs

]
.

Pour décrire une dynamique sur un réseau, on peut alors considérer que l’état
du système est régi par les intensités stochastiques des processus ponctuels as-
sociés aux noeuds du réseau. Dans les dynamiques considérées, cela revient à
établir un système d’équations différentielles stochastiques avec un aléa d’origine
poissonnienne vérifiées par ces intensités. Chaque équation décrit à un niveau
qu’on peut qualifier de ”microscopique” l’état du noeud auquel elle est associée.
Concrètement, dans les phénomènes que l’on va étudier dans cette thèse, l’état
d’un noeud à un instant t est égal à son état initial auquel on agrège les interac-
tions reçues des noeuds voisins jusqu’au temps t et auquel on retire les effets des
départs depuis le noeud.

En général, la description ”microscopique” d’un tel système n’est pas tractable,
dans le sens où il n’existe en général pas de solution analytique au système d’équations
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différentielles stochastiques. Une idée naturelle est donc de le simplifier d’une cer-
taine manière pour pouvoir obtenir des formes closes pour des quantités d’intérêt.

Comme la complexité du problème provient avant tout des dépendances entre
les noeuds, il est naturel de choisir une simplification qui les rend indépendants.
Une approche classique pour ce faire est de considérer le régime de champ moyen,
qui consiste à regarder la limite d’échelle du système dynamique lorsque le nombre
de noeuds dans le réseau tend vers l’infini et que les arrivées à un noeud sont
considérées comme étant une moyenne empirique de toutes les interactions du
réseau. Un argument de type loi des grands nombres permet dans de nombreux
modèles de justifier rigoureusement cette convergence et de montrer que les noeuds
deviennent asymptotiquement indépendants, raison pour laquelle on appelle cette
convergence propagation du chaos.

Dans les modèles classiques de champ moyen, le réseau considéré doit être
supposé pleinement connecté et l’effet des interactions doit être faible, typique-
ment inversement proportionnel au nombre de noeuds dans le réseau. Ces pré-
requis représentent des contraintes significatives sur les architectures des réseaux
considérés et donc sur les types de phénomènes pour lesquels l’approximation de
champ moyen présente un intérêt.

Diverses approches ont été développées ces dernières années pour dépasser
ces limitations, dont certaines sont présentées dans la section 1.4. Celle sur
laquelle nous nous sommes concentrés est l’hypothèse poissonnienne. Initiale-
ment popularisée par Kleinrock et Dobrushin dans le domaine des réseaux de
télécommunications, elle consiste à considérer que les noeuds dans un réseau sont
indépendants et que les arrivées à chaque noeud sont données par un processus de
Poisson.

Cette hypothèse est souvent conjecturée sans être prouvée ou alors seulement
vérifiée numériquement. Une question naturelle est alors la construction d’un
système physique à partir du modèle initial qui, une fois correctement échelonné,
converge vers le système initial sous hypothèse poissonnienne. Autrement dit, on
cherche à prouver un résultat de type propagation du chaos pour le ”bon” système
physique.

Un tel système a été introduit par Baccelli et Taillefumier pour étudier le
modèle de Galves-Löcherbach, utilisé en neurosciences computationnelles pour
décrire le comportement d’une population de neurones dans le cerveau en décrivant
chaque neurone via l’évolution du potentiel électrique de sa membrane.

Cela conduit au système d’équations suivant, pour une population de K neu-
rones, pour 1 ≤ i ≤ K et t ≥ 0 :

λi(t) = λi(0)+
∑
j ̸=i

µj→i

∫ t

0

Nj(ds)+

∫ t

0

(ri−λi(s))Ni(ds)+
1

τi

∫ t

0

(bi−λi(s)) ds, (1)
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où λi est l’intensité stochastique du processus ponctuel Ni, bi, ri et τi sont des
constantes strictement positives, et µj→i sont des réels positifs.

Baccelli et Taillefumier ont introduit un modèle de champ moyen à répliques,
construit à partir du modèle de Galves-Löcherbach. Ils ont considéré M répliques
du modèle initial deK neurones avec les mêmes conditions initiales et interagissant
comme suit : lorsqu’une interaction devait se produire entre deux noeuds i et j
dans une des répliques en raison d’un départ depuis le noeud i, à la place une
réplique est choisie aléatoirement et uniformément et l’interaction se produit entre
le noeud i de la réplique initiale et le noeud j de la réplique ainsi choisie. Ils ont
ensuite étudié ce modèle dans le régime stationnaire à la limite du nombre infini
de répliques, en conjecturant que cette limite existait et correspondait précisément
au modèle initial sous l’hypothèse poissonnienne, et en particulier que les répliques
étaient asymptotiquement indépendantes.

Un des objectifs de ce travail a été de prouver cette conjecture. Plus généralement,
nous nous sommes intéressés à ces dynamiques de champ moyen à répliques dans
différents cadres et à divers degrés de généralité, avec le modèle de Galves-Löcherbach
comme exemple motivant. Nous avons donc introduit une classe de processus, les
processus d’interaction-agrégation-fragmentation (abrégé en PIAF par la suite),
initialement en temps discret, puis en temps continu, à partir desquels nous avons
construit des dynamiques avec des champs moyens à répliques.

Rappelons ici la définition d’un PIAF en temps discret.

Définition 0.0.1. Un élément de la classe C des processus d’interaction-agrégation-
fragmentation en temps discret est déterminé par :

• Un entier K représentant le nombre de noeuds;

• La donnée de conditions initiales pour les variables d’état discrètes à l’instant
0, notées {Xi}, où i ∈ {1, . . . , K};

• La donnée de variables aléatoires de fragmentation {Ui}, qui sont i.i.d., uni-
formes sur [0, 1] et indépendantes de {Xi}, pour i ∈ {1, . . . , K};

• La donnée de fonctions de fragmentation {g1,i : N → N}i∈{1,...,K} et {g2,i :
N → N}i∈{1,...,K};

• La donnée de fonctions d’interaction bornées {hj→i : N → N}i,j∈{1,...,K};

• La donnée de probabilités d’activation {σi(0), σi(1), . . .}i∈{1,...,K} vérifiant les
conditions σi(0) = 0 et 0 < σi(1) ≤ σi(2) ≤ · · · ≤ 1 pour tout i.

Les dynamiques associées prennent en entrée les variables d’état initiales {Xi} et
définissent les variables d’état après un pas de temps comme

Yi = g1,i(Xi) 1I{Ui<σi(Xi)}+g2,i(Xi) 1I{Ui>σi(Xi)}+Ai, ∀i = 1, . . . , K, (2)
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avec les processus d’arrivées

Ai =
∑
j ̸=i

hj→i(Xj) 1I{Uj<σj(Xj)}, ∀i = 1, . . . , K. (3)

L’interprétation est la suivante : le noeud i s’active avec probabilité σi(k) si son
étatXi est égal à k. L’état de ce noeud se fragmente en g1,i(k) en cas d’activation et
en g2,i(k) sinon. Cette activation entraine une arrivée de hi→j(k) unités au noeud
j. Ainsi, les fonctions d’interaction encodent la structure du réseau. La variable
Ai donne le nombre total d’arrivées au noeud i. Cette variable est agrégée à l’état
du noeud comme vu dans (2). Notons que la condition σi(0) = 0 pour tout i assure
que les variables d’état dans l’état 0 ne peuvent pas être fragmentées.

La classe C des PIAFs inclut diverses dynamiques de réseau d’intérêt en théorie
des files d’attente ou en biologie mathématique. Par exemple, en prenant g1,i(k) =
k − 1, g2,i(k) = k et hj→i(k) = 1I{i=j+1 mod K}, on récupère une description de
réseaux de files d’attente dits de Gordon-Newell [50]. En prenant g1,i(k) = 0,
g2,i(k) = k et hj→i(k) = µj→i ∈ N, on définit une version discrète de dynamiques
de Galves-Löcherbach pour des réseaux de neurones. En prenant g1,i(k) = ⌊k

2
⌋ et

g2,i(k) = k + 1, on retrouve des processus d’agrégation-fragmentation modélisant,
par exemple, des réseaux de communication TCP [7].

On peut ensuite, comme dit précédemment, introduire le champ moyen à
répliques d’un PIAF. L’état d’un modèle à M répliques est alors donné par les
variables d’état XM

m,i, où m est l’indice de la réplique et i correspond à l’indice du
noeud dans le réseau d’origine. Plus rigoureusement:

Définition 0.0.2. Pour tout processus dans C, la dynamique à M répliques as-
sociée est entièrement déterminée par

• La donnée de conditions intiales pour les variables d’état au temps 0, notées
{XM

m,i}, où m ∈ {1, . . . ,M} et i ∈ {1, . . . , K}, tels que pour tous M,m et i,
XM

m,i = Xi;

• La donnée de variables aléatoires de fragmentation {Um,i}, qui sont i.i.d.,
uniformes sur [0, 1] et indépendantes de {XM

m,i}, où m ∈ {1, . . . ,M} et i ∈
{1, . . . , K};

• La donnée de variables de routage i.i.d. {RM
(n,j)→i} independantes de {XM

m,i}
et {Um,i}, uniformément distribuées sur {1, . . . ,M} \ {n} pour tous i, j ∈
{1, . . . , K} et n ∈ {1, . . . ,M}. En d’autres termes, si RM

(n,j)→i = m, alors
une activation éventuelle du noeud j dans la réplique n au temps 0 induit
une arrivée de taille hj→i(X

M
n,j) au noeud i de la réplique m, et m est choisi

uniformément parmi les répliques et indépendamment des variables d’état.
On notera que ces variables sont définies que l’activation se produise ou



CONTENTS 11

non, et que pour i′ ̸= i, l’activation en question entrainera une arrivée au
noeud i′ dans la réplique m′, avec m′ déterminé de la même manière mais
indépendamment de n.

Alors les variables d’état après un pas de temps, notées {Y M
m,i}, sont données par

les équations

Y M
m,i = g1,i(X

M
m,i) 1I{Um,i<σi(XM

m,i)}+g2,i(X
M
m,i) 1I{Um,i>σi(XM

m,i)}+AM
m,i, (4)

où g1,i, g2,i sont les fonctions de fragmentation, σi sont les probabilités d’activation,
et où

AM
m,i =

∑
n̸=m

∑
j ̸=i

hj→i(X
M
n,j) 1I{Un,j<σj(XM

n,j)} 1I{RM
(n,j)→i

=m} (5)

est le nombre d’arrivées au noeud i de la réplique m.

Nous avons prouvé une propriété de propagation du chaos pour ces dynamiques
au sens suivant: si les variables d’état au temps 0 vérifient une propriété que nous
appelons indépendance asymptotique par paires, alors cette propriété est toujours
vérifiée au temps 1. Cela permet de propager la propriété en question, définie
ci-après, à tout temps fini.

Définition 0.0.3. Etant donné M ∈ N, et un tableau de variables aléatoires
discrètes Z = {ZM

m,i}1≤m≤M,1≤i≤K tel que pour tout M , les variables aléatoires
ZM

m,i sont échangeables en m, on dit que les variables aléatoires ZM
n,i sont asympto-

tiquement indépendantes par paires, ce qu’on note PAI(Z), s’il existe des variables
aléatoires (Z̃i)i∈{1,...,K} telles que ∀(n, i) ̸= (m, j),∀u, v ∈ [0, 1],

lim
M→∞

E[uZM
n,ivZ

M
m,j ] = E[uZ̃i ]E[vZ̃j ]. (6)

Nous pouvons alors énoncer rigoureusement le théorème suivant, qui est le
résultat principal du chapitre 2:

Théorème 0.0.4. Avec les notations précédentes, PAI(X) implique PAI(Y ). De
plus, les arrivées à un noeud donné sont asymptotiquement distribuées selon une
loi de Poisson composée et sont indépendantes des états des noeuds.

La preuve repose sur une analyse de la fonction génératrice de Ym,i et sur
la loi des grands nombres triangulaire suivante, qui est induite par la propriété
d’indépendance asymptotique par paires :

Définition 0.0.5. Etant donné M ∈ N et un tableau de variables aléatoires
discrètes Z = {ZM

m }m∈{1,...,M} tel que pour tout M , les variables aléatoires ZM
m
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sont échangeables en m, on dit que Z vérifie la loi triangulaire des grands nom-
bres TLLN(Z) s’il existe une variable aléatoire discrète Z̃ telle que pour toutes les
fonctions f : N → R à support compact, on a la limite suivante dans L2:

lim
M→∞

1

M

M∑
m=1

f(ZM
m ) = E[f(Z̃)]. (7)

Dans le cas particulier du modèle de Galves-Löcherbach en temps discret, on
dispose de la forme explicite suivante pour les arrivées dans la limite du nombre
infini de répliques: pour i ∈ {1, . . . , K} et z ∈ [0, 1],

E
[
zÃi

]
= eθi

∑
j ̸=i(z

µj→i−1) =
∏
j ̸=i

eθi(z
µj→i−1), (8)

où θi = E
[
σi(X̃i)

]
.

Nous avons ensuite cherché à généraliser ce résultat de propagation du chaos
au modèle de Galves-Löcherbach en temps continu, étant donné qu’il s’agissait de
la motivation initiale du travail. A partir du modèle de Galves-Löcherbach (1), on
introduit une version à M répliques, similairement à la situation en temps discret.

Formellement, pour 1 ≤ m ≤ M, 1 ≤ i, j ≤ K, soient {V M
(m,i)→j(t)}t∈R des

processus stochastiques tels que pour tout point de NM
m,i, les variables aléatoires

{V M
(m,i)→j(T )}j sont mutuellement indépendantes, indépendantes du passé et uni-

formément distribuées sur {1, ...,M} \ {m}. Ici, V M
(m,i)→j(T ) donne l’indice de la

réplique dans laquelle un départ du neurone i dans la réplique m à l’instant T
provoque une arrivée au neurone j.

Les intensités stochastiques associées aux processus ponctuels vont alors être
solutions du système d’équations différentielles stochastiques suivant :

λM
m,i(t) = λM

m,i(0) +
1

τi

∫ t

0

(
bi − λM

m,i(s)
)
ds

+
∑
j ̸=i

µj→i

∑
n̸=m

∫ t

0

1I{V M
(n,j)→i

(s)=m}N
M
n,j(ds) +

∫ t

0

(
ri − λM

m,i(s)
)
NM

m,i(ds).

(9)

L’intuition motivant l’introduction de ce système physique reste identique à celle
en temps discret : le routage induit un mélange uniforme entre les interactions qui
devrait donner une limite poissonnienne lorsque le nombre de répliques augmente.
Par ailleurs, le caractère uniforme du routage suggère une indépendance asympto-
tique entre les répliques, puisque la probabilité que deux noeuds donnés dans deux
répliques données interagissent est d’ordre 1

M
.
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Pour obtenir un résultat de convergence, nous faisons l’hypothèse suivante sur
les conditions initiales:

Hypothèse 0.0.6. Il existe ξ0 > 0 tel que pour tous p ≥ 1, 1 ≤ m ≤ M, 1 ≤ i ≤
K, et tout 0 < ξ ≤ ξ0, E[e

ξλp
m,i(0)] < ∞.

Nous introduisons le système d’équations différentielles stochastiques suivant
qui est le candidat naturel pour la dynamique limite lorsque le nombre de répliques
tend vers l’infini : les instants d’interaction sont remplacées par des processus de
Poisson, ce qui correspond précisément à l’hypothèse poissonnienne. Nous notons
avec des tildes tout ce qui correspond à ce régime.

Nous considérons des processus ponctuels Ñ1, . . . , ÑK sur R+ avec (Ft) inten-
sités stochastiques respectives λ̃1, . . . , λ̃K , où Ft est l’histoire du réseau, vérifiant
les équations différentielles stochastiques suivantes pour t > 0, et pour 1 ≤ i ≤ K,

λ̃i(t) = λ̃i(0) +
∑
j ̸=i

µj→iÃj→i(t) +

∫ t

0

(
ri − λ̃i(s)

)
Ñi(ds), (10)

où Ãj→i sont des processus de Poisson inhomogènes avec intensités respectives

aj(t) =
∫ t

0
E[λ̃j(s)] ds = E[Ñj([0, t])] et (λ̃1(0), . . . , λ̃K(0)) satisfont l’Hypothèse

0.0.6.
Nous avons alors le résultat de convergence suivant :

Théorème 0.0.7. Soit t ∈ [0, T ]. Soit

AM
m,i(t) =

∑
j ̸=i

µj→i

∑
n̸=m

∫ t

0

1I{V M
(n,j)→i

(s)=m}N
M
n,j(ds),

où NM
m,i est défini par (9), et soit

Ãi(t) =
∑
j ̸=i

µj→iÃj→i(t),

avec Ãj→i(t) défini par (10).
Alors,

1. les processus (Ã1, . . . , ÃK) sont indépendants, tout comme les processus
(λ̃1, . . . , λ̃K);

2. pour tout (m, i) ∈ {1, . . . ,M} × {1, . . . , K}, la variable aléatoire AM
m,i(t)

converge en variation totale vers Ãi(t) quand M → ∞;
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3. pour tout (m, i) ∈ {1, . . . ,M} × {1, . . . , K}, la variable aléatoire λM
m,i(t)

définie par (3.4) converge en variation totale vers λ̃i(t) défini par (3.5) quand
M → ∞;

4. soit N un sous-ensemble fini de N∗. Pour tout i ∈ {1, . . . , K}, les proces-
sus (AM

m,i(·))m∈N et (λM
m,i(·))m∈N convergent faiblement dans l’espace de Sko-

rokhod D([0, T ])cardN muni de la topologie de Skorokhod produit vers card(N )
copies indépendantes des processus limites correspondants (Ãi(·)) et (λ̃i(·))
quand M → ∞.

La preuve repose sur l’observation suivante : à la différence des modèles de
champ moyen classiques, la simplification de type champ moyen dans les modèles à
répliques vient des routages aléatoires entre répliques. Les arrivées à un noeud dans
le modèle à M répliques consistent en une superposition de M processus ponctuels
rares, ce qui explique informellement les limites poissonniennes. Cette observation
nous conduit à fixer un instant t ∈ R+ et à considérer la variable aléatoire des ar-
rivées jusqu’à l’instant t comme une somme d’un nombre aléatoire de variables de
Bernoulli de paramètre 1

M−1
. La méthode de Chen-Stein est un candidat naturel

pour obtenir une borne explicite en variation totale entre cette somme aléatoire
et une variable aléatoire suivant une loi de Poisson. Nous généralisons la méthode
classique pour obtenir cette borne en utilisant une propriété d’indépendance des
routages conditionnellement au nombre de départs dans les autres noeuds. Il
n’est pas évident de conclure que la borne obtenue par la méthode de Chen-Stein
converge vers 0 lorsque M tend vers l’infini en raison de la présence d’un terme
similaire à une norme L1 d’une moyenne empirique de variables aléatoires centrées
qui sont échangeables mais non indépendantes. Pour contourner l’analyse directe
d’un tel terme, nous découplons les arrivées et les départs d’un noeud fixé en con-
sidérant la dynamique (3.4) comme le point fixe d’une certaine fonction sur l’espace
des lois de probabilité sur l’espace des fonctions càdlàg muni d’une métrique le ren-
dant complet. Cette procédure est inspirée d’une méthode courante pour prouver
l’existence et l’unicité de solutions à des equations différentielles stochastiques,
voir par exemple [75] ou [18]. Ici, nous l’utilisons pour prouver qu’une certaine
propriété, en l’occurrence la convergence d’une moyenne empirique, est vraie au
point fixe en prouvant que la propriété est préservée par la fonction et que la suite
des itérées de la fonction converge vers son unique point fixe.

Étant donné le degré de généralité obtenu en temps discret, une question na-
turelle qui s’est posée a été de chercher à construire une classe de processus en
temps continu analogue aux PIAFs pour laquelle le résultat de convergence du
modèle de champ moyen à répliques vers une dynamique sous hypothèse poisson-
nienne reste valable.

Nous les introduisons en les définissant à travers leurs intensités stochastiques :
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Définition 0.0.8. Soit K ≥ 2. Un processus d’interaction-agrégation-fragmentation
à temps continu, noté PIAFc par la suite, est défini comme une collection de pro-
cessus ponctuels (Ni)1≤i≤K admettant des intensités stochastiques (λi) par rapport
à l’histoire du réseau telles que pour tout t ∈ R+, il existe

• des processus ponctuels (N̂j→i)1≤i≤K,j ̸=i admettant des intensités stochas-

tiques (λ̂j→i) dits processus d’interaction;

• des fonctions (hj→i)1≤i≤K,j ̸=i : R 7→ R dites fonctions d’interaction telles
qu’il existe H > 0 satisfaisant pour tous i, j et tout t ∈ R, |hj→i(t)| ≤ H;

• des fonctions (gi)1≤i≤K : R 7→ R+ et (σi)1≤i≤K : R 7→ R+ dites fonctions
d’évolution autonome;

• une fonction lipschitzienne f : R 7→ R+ telle que f(0) = 0;

tels que pour tout 1 ≤ i ≤ K et tout t ∈ R+,

λi(t) = λi(0) + f

(∑
j ̸=i

∫ t

0

hj→i(s)N̂j→i(ds)

)
+

∫ t

0

(gi(s, λi(s))− λi(s))Ni(ds)

+

∫ t

0

(σi(s, λi(s))− λi(s)) ds.

(11)

Nous pouvons alors formaliser ce que nous entendons dans ce cadre par hy-
pothèse poissonnienne:

Définition 0.0.9. Nous disons qu’un PIAFc vérifie l’hypothèse poissonnienne si
tous les temps d’interaction sont donnés par des processus de Poisson indépendants.
Nous notons avec des tildes tous les processus dans ce régime. Plus précisément,
pour i, j ∈ 1 ≤ i ≤ K avec i ̸= j, N̂j→i sont des processus de Poisson indépendants
avec intensités s → E[λ̃j(s)] et pour tout t ∈ R+,

λ̃i(t) = λ̃i(0) + f

(∑
j ̸=i

∫ t

0

hj→i(s)N̂j→i(ds)

)
+

∫ t

0

(gi(s, λ̃i(s))− λ̃i(s))Ñi(ds)

+

∫ t

0

(σi(s, λ̃i(s))− λ̃i(s)) ds.

(12)

Étant donné un PIAFc, nous pouvons alors construire une dynamique à répliques
correspondante.
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Définition 0.0.10. Soient K,M ≥ 2. Un PIAFc en champ moyen à M répliques
est défini par la donnée de processus ponctuels (NM

m,i)1≤i≤K,1≤m≤M admettant les
intensités stochastiques (λM

m,i) telles que pour tout t ∈ R+, il existe

• des processus ponctuels (N̂n,j→i)1≤i≤K,j ̸=i,1≤n≤M admettant des intensités

stochastiques (λ̂n,j,i) appelés processus d’agrégation;

• des fonctions (hj→i)1≤i≤K,j ̸=i : R 7→ R appelées fonctions d’interaction telles
qu’il existe H > 0 vérifiant pour tous i, j et tout t ∈ R, |hj→i(t)| ≤ H;

• des fonctions (gi)1≤i≤K : R 7→ R+ et (σi)1≤i≤K : R 7→ R+ appelées fonctions
d’évolution autonome;

• une fonction lipschitzienne f : R 7→ R+ telle que f(0) = 0;

• des processus de routage {V M
(m,i)→j(t)}t∈R prévisibles vis-à-vis de la filtration

engendrée par les processus NM
m,i pour 1 ≤ m ≤ M, 1 ≤ i, j ≤ K, tels que

pour tout instant d’interaction T , i.e., chaque point de NM
m,i, les variables

aléatoires {V M
(m,i)→j(T )}j sont mutuellement indépendantes, indépendantes

du passé, et uniformément distribuées sur {1, ...,M} \ {m}, à valeurs dans

VM
m,i = {v ∈ [1, . . . ,M ]K |vi = m and vj ̸= m, j ̸= i};

tels que pour tous 1 ≤ m ≤ M, 1 ≤ i ≤ K et tout t ∈ R+,

λm,i(t) = λm,i(0) + f(
∑
j ̸=i

∑
n̸=m

∫ t

0

hj→i(s) 1I{V M
(n,j)→i

(s)=m} N̂n,j→i(ds))

+

∫ t

0

(gi(s, λm,i(s))− λm,i(s))Nm,i(ds) +

∫ t

0

(σi(s, λm,i(s))− λm,i(s)) ds.

(13)

Nous supposons toujours que N̂n,j→i = Nn,j pour tous 1 ≤ n ≤ M, 1 ≤ j ≤ K
par la suite.

Par ailleurs, nous avons besoin des conditions suivantes sur gi et σi:

Hypothèse 0.0.11. Pour tous s, t ∈ R, pour tout i ∈ {1, . . . , K},

gi(s, t) ≤ t et σi(s, t) ≤ t.

En particulier,

gi(s, λi(s)) ≤ λi(s) et σi(s, λi(s)) ≤ λi(s).
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Cela implique que les processus d’état λi sont toujours décroissants entre deux
agrégations.

Nous avons enfin besoin de la même contrainte sur les conditions initiales 0.0.6
que précédemment pour établir le théorème suivant :

Théorème 0.0.12. Soit T ∈ R+. Soit t ∈ [0, T ]. Soit

AM
m,i(t) =

∑
j ̸=i

∑
n̸=m

∫ t

0

hj→i(s) 1I{V M
(n,j)→i

(s)=m} N̂
M
n,j→i(ds),

avec N̂M défini par (3.32), et soit

Ãi(t) =
∑
j ̸=i

∫ t

0

hj→i(s)N̂j→i(ds),

avec (N̂j→i)j des processus de Poisson indépendants avec intensités s 7→ E[λ̂(s)].
Alors,

1. les processus (Ã1, . . . , ÃK) sont indépendants, tout comme les processus
(λ̃1, . . . , λ̃K);

2. pour tout (m, i) ∈ {1, . . . ,M} × {1, . . . , K}, la variable aléatoire AM
m,i(t)

converge en variation totale vers Ãi(t) quand M → ∞;

3. pour tout (m, i) ∈ {1, . . . ,M} × {1, . . . , K}, la variable aléatoire λM
m,i(t)

définie par (3.32) converge en variation totale vers λ̃i(t) défini par (3.31)
quand M → ∞;

4. soit N un sous-ensemble fini de N∗, pour tout i ∈ {1, . . . , K}, les pro-
cessus (AM

m,i(·))m∈N et (λM
m,i(·))m∈N convergent faiblement dans l’espace de

Skorokhod D([0, T ])card(N ) muni de la topologie de Skorokhod produit vers
card(N ) copies indépendantes des processus limites respectifs (Ãi(·)) et (λ̃i(·))
when M → ∞.

La structure de la preuve est similaire à celle du cas particulier du modèle de
Galves-Löcherbach en temps continu.

Quelques exemples de processus qui sont dans la classe des PIAFc sont les
suivants :

• en prenant pour tous 1 ≤ i, j ≤ K et tout t ∈ R,
hj→i(t) = µj→i ≥ 0, f(t) = |t|, gi(t, λi(t)) = ri > 0, σi(t, λi(t)) = bi > 0, nous
retrouvons le modèle de Galves-Löcherbach en temps continu introduit plus
haut [35] [8].
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• en prenant pour tous 1 ≤ i, j ≤ K et tout t ≥ 0,
hj→i(t) = µj→i ∈ R, f(t) = max(0, |t|), gi(t, λi(t)) = ri > 0, σi(t, λi(t)) =
bi > 0, on obtient un modèle de Galves-Löcherbach généralisé incorporant
de l’inhibition.

• en prenant pour tous 1 ≤ i, j ≤ K et tout t ≥ 0,
hj→i(t) = 1I{j=i+1 mod K}, f(t) = |t|, gi(t, λi(t)) = λi(t) − 1, σi(t) = λi(t), on
obtient un modèle de réseau de files d’attentes de concaténation en temps
continu. Notons qu’un tel réseau sous hypothèse poissonnienne est un réseau
de Gordon-Newell [50].

Il est possible d’élargir un peu ce cadre afin de considérer des processus ad-
mettant plusieurs types d’arrivées, tant qu’elles sont indépendantes entre elles.
Cela permet de considérer des versions de processus de migration-contagion sur
des réseaux et d’en étudier la limite de champ moyen à répliques. Les processus de
migration-contagion ont été introduits par Baccelli, Foss et Shneer dans [6] pour
modéliser la propagation d’épidémies en combinant des modèles de file d’attente
et un modèle classique d’épidémiologie, le modèle SIS. Plus précisément, dans un
processus de migration-contagion, les individus se déplacent entre des stations ap-
pelées réacteurs quand on les considère isolées. Chaque individu est marqué de son
état, soit I (infecté), soit S (susceptible). A l’intérieur de chaque réacteur, chaque
individu change d’état suivant des mécanismes qui différent en fonction du pro-
cessus de migration-contagion considéré. Par exemple, dans le réacteur SIS, nous
considérons une file d’attente M/M/∞ avec taux d’arrivée λ et taux de service µ.
En notant X(t) (resp. Y (t)) le nombre d’individus susceptibles (resp. infectés) à
l’instant t. A l’intérieur de la file d’attente, un individu susceptible devient infecté
à taux αY (t) et un individu infecté devient susceptible à taux β.

Nous considérons une variante du réacteur SIS : le réacteur SIS-DOCS, pour
”Departure On Change of State”. Dans celui-ci, lorsqu’un individu change d’état
au sein d’un réacteur, il quitte immédiatement celui-ci. Dans l’objectif d’appliquer
la méthodologie des champs moyens à répliques à ce type de dynamiques, nous
considérons un réseau de tels réacteurs : chaque noeud du réseau représente un
réacteur SIS-DOCS, et lorsqu’il y a un départ d’un noeud, l’individu choisit un
noeud voisin et se rend à celui-ci. En première approximation, on peut modéliser
chaque réacteur comme une ville et le réseau entier comme un pays. Pour étudier
l’impact de la géométrie du réseau sur la propagation de l’épidémie dans celui-ci,
nous introduisons un modèle à M répliques de la dynamique et nous considérons
la limite de celui-ci lorsque M tend vers l’infini.

Les processus de contagion-migration ne rentrent pas dans la classe des PI-
AFc en raison du fait que les individus choisissent aléatoirement le réacteur où
ils se rendent au moment du départ, et la technique de preuve du champ moyen
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à répliques ne s’applique pas directement à ce modèle. Aussi, la convergence du
modèle à répliques vers une dynamique sous hypothèse poissonnienne demeure
à l’état de conjecture. Dans le chapitre 4, nous étudions l’état stationnaire du
modèle SIS-DOCS en réseau sous hypothèse poissonnienne, en admettant la con-
jecture sus-mentionnée. Plus précisément, dans l’objectif d’une étude numérique
pour mettre en évidence des transitions de phase, nous montrons que les nombres
moyens d’individus susceptibles et infectés dans chaque ville vérifient le système
d’équations non-linéaires suivant:



E[X̃i] =
(
∑

j ̸=i µjpj→i E[X̃j] +
∑

j ̸=i βjpj→i E[Ỹj])

µi + βi + αi∫ 1

0

e
− (µi+βi)E[Ỹi]α

2
i (1−t)

(µi+βi)(µi+βi+αi)
2 t

(
µi

µi+βi+αi
+

(µi+βi)E[Ỹi]αi
(µi+βi+αi)

2 −1
)
dt

E[Ỹi] =
∑

j ̸=i µjpj→i E[Ỹj ]+
∑

j ̸=i pj→i(
∑

l ̸=j µlpl→j E[X̃l]+
∑

l ̸=j βlpl→j E[Ỹl]−µj E[X̃j ])

µi+βi∑K
i=1 E[X̃i] + E[Ỹi] = N.

(14)





Chapter 1

Introduction

The goal of this chapter is twofold. First, we present the general motivation
behind this work and attempt to convince the reader (if need be) of the interest
of this study and the questions behind it, before discussing the organisation of the
manuscript. The second part of the chapter is devoted to brief presentations of
the theoretical concepts that either are used to answer these questions or help to
re-contextualize the answers that we bring. Most of the latter can be skipped by
a reader already familiar with the general subject. We bring however attention to
Section 1.6, which gives some general ideas behind the replica-mean-field approach,
a subject at the heart of this work that is less widely known than the other topics
presented in this section.

1.1 Motivation

There is very often a gap between trying to provide a description in the mathemat-
ical language of physical phenomena and being able to prove meaningful theorems
for these mathematical models. This is due to the complexity of most phenom-
ena, making it so that mathematical descriptions aiming to capture their features
quickly become too complex for mathematical analysis. This work falls into a long
tradition in applied mathematics of trying to fill that gap, by trying to propose
and study models that capture key features of the phenomena while also being
computationally tractable to some extent.

We are interested here in studying phenomena that can be described equiv-
alently as interacting particle systems with fixed positions, agent-based models
or network dynamics, with inherent variability in between observations. The key
characteristic here is to have a microscopic description of the phenomenon with
an underlying geometry (the particles or agents interact only with their neighbors,
nodes in the network communicate only if there is an edge between them) and

21
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punctuate interactions. This restriction enables us to describe these phenomena
through the times at which interactions in between particles/agents/nodes happen
and to see these times as realizations of random times, which are an instance of
point processes, a class of stochastic processes for which a rich and powerful theory
has been developed.

Given this description, it is then possible to describe the behavior of the system
through stochastic differential equations, with the unknowns being stochastic pro-
cesses associated with the point processes attached to each node/particle/agent
giving the interaction times. This system of equations, as might be expected of a
model trying to provide a microscopic description of what ”really” happens at each
time in the system, usually isn’t tractable. As previously mentioned, a rich area
of research is concerned with ways to derive simpler models from these ”exact”
descriptions while preserving certain characteristics. Among the characteristics
that are almost always put on the chopping block to obtain tractability are cor-
relations between particles/agents/nodes (that is, they have to be assumed to be
independent) and heterogeneity in the underlying network (that is, it has to be
assumed to be fully connected with identical weights on the edges). Moreover, it
is usually necessary to consider some scaling of the system (letting the number of
nodes go to infinity, for example) in order to reduce dimensions.

In this work, we focus mostly on phenomena from life sciences, which is an
arbitrary limitation due to the interests of the author. In particular, the original
motivation stems from so-called intensity-based models from computational neu-
roscience. The goal is to describe the evolution in time of the electrical potentials
of a population of neurons seen as nodes in a network. In [8], Baccelli and Taille-
fumier have devised a new physical system that, when properly scaled, allowed
to obtain closed forms for physical quantities such as the mean spiking rates of
the neurons at stationarity. This physical system, called the replica-mean-field,
consists of randomly interacting copies of the original network, and is at the core
of the focus of this work.

Baccelli and Taillefumier studied the scaling limit of an infinite number of repli-
cas, and have shown that equations associated with it become tractable. However,
this study was done at a cost, namely the Poisson Hypothesis. A popular simpli-
fication coming from the field of telecommunications, a physical system satisfying
the Poisson Hypothesis means that arrivals to a given node inside the network of
interest are Poisson-distributed and that nodes are independent. This often allows
for tractability while, notably, keeping intact the geometry of the network. As was
the case in their work, this hypothesis is often only conjectured or numerically val-
idated. As such, one motivation was to prove that the hypothesized convergence
does indeed take place.

This was first done in a simpler, discrete-time setting where all interactions
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are synchronous, and is presented in Chapter 2. The proof relies on the analysis
of the one-step transition of Markov dynamics for the replica-mean-field version
of the network of interest. Namely, we show that certain asymptotic properties
are preserved by the dynamics, allowing for the Poisson Hypothesis to hold at any
finite time under certain assumptions on the initial conditions. Moreover, while
the proof is first done for a discrete-time model from computation neuroscience,
we introduce a class of processes we call fragmentation-interaction-aggregation
processes, for which the proof can be generalized in the goal of widening the scope
of phenomena for which it is possible to rigorously prove the Poisson Hypothesis
at the infinite replica replica-mean-field limit.

We then proceed in Chapter 3 to perform an analogous study in continuous
time. The asynchronous nature of interactions in this setting makes the generaliza-
tion of the discrete time results nontrivial. We prove in the first half of the chapter
the original conjecture of Baccelli and Taillefumier for the replica-mean-field limit
of intensity-based neural dynamics, both in transient and stationary regimes (their
original study focused on the stationary case). The proof relies on the generaliza-
tion of a powerful Poisson approximation method, called the Chen-Stein method,
to the case of a random amount of Bernoulli random variables to obtain explicit
bounds between the conjectured limit dynamics and the finite-replica-mean-field
dynamics, when coupling them on their source of randomness. The bounds are
then shown to be asymptotically arbitrarily small using fixed-point techniques.
The second half of Chapter 3 is aimed at generalizing as much as possible the class
of dynamics to which the proof of the replica-mean-field limit applies. By analogy
with discrete time, we introduce a class of so-called continuous fragmentation-
interaction-aggregation processes for which the same result applies. We justify the
name by showing the existence of links between discrete-time and continuous-time
versions of fragmentation-interaction-aggregation processes.

Finally, in Chapter 4, we apply the convergence result to study the scaling
limit of a replica-mean-field version of migration-contagion processes incorporat-
ing a spatial component. These processes have recently been introduced by Bac-
celli, Foss and Shneer in [6] to study the propagation of epidemics, combining
compartmental epidemiological models and queueing theory. Here, we show that
the above-mentioned scaling limit does indeed exist, leveraging the results from
Chapter 3. Under the Poisson Hypothesis, we derive a system of equations for the
mean numbers of infected and susceptible individuals at the nodes of an underlying
network, and study this system numerically.
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1.2 Primer on point process dynamics

In this section, we will give an extremely brief and incomplete overview of some
elements of point process theory. As previously mentioned, our motivation comes
from phenomena with punctuate events (spikings of neurons in the brain, first and
foremost, but also individual-based epidemiology models). Due to the variability
in between observations of the phenomena, a natural approach is to model these
phenomena as realizations of point processes, that is, of random sets of points. In
all our applications, these points represent the times at which the events of interest
happen and can be seen as random times.

General point process theory

We will quickly give a few general notions about point processes.

Definition 1.2.1. Given a probability space (Ω,F ,P), a Polish space (E, d) and K
a so-called configuration space, let K = σ(πA, A ∈ B(E)), where if x ∈ K, πA(x) =
card(A ∩ x). A simple point process is a measurable map (Ω,F ,P) 7→ (K,K).

It can be shown that an equivalent definition would be to consider a point
process to be a counting measure Φ such that

Φ =
∑
x∈X

δx,

where X ∈ K. When represented in this fashion, {Φ(A), A ∈ B(E)} is a random
process on B(E). Denote m(A) = E[Φ(A)]. Then it can be shown that A → m(A)
is a measure, called the intensity measure of the point process Φ. Another object
associated to a point process is its void probability : namely for A ∈ B(E), the
void probability of A is P(N(A) = 0). If N is simple, Renyi’s theorem states
that the distribution of N is characterized by the family of its void probabilities
{P(N(A) = 0)} for all closed A ∈ B(E).

We will use the following notation throughout the text:

Notation 1.2.2. If N is a point process on E and f a function, we write for any
A ∈ B(E) ∑

x∈N∩A

f(x) =

∫
A

f(t)N(dt).

The fundamental simple point process is called the Poisson point process, and
it is characterized by its intensity measure. We define it here in Rd, d ≥ 1 but the
construction can be extended to any Polish space.
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Definition 1.2.3. Let d ≥ 1. A point process N is said to be a Poisson point
process with intensity measure m on Rd if

1. For all A ∈ B(Rd) such that m(A) < ∞, N(A) follows a Poisson distribution
with parameter m(A);

2. If A1, . . . , Ap are disjoint elements of B(Rd), then N(A1) . . . N(Ap) are in-
dependent.

It is not obvious that such a process exists, but it is possible to prove that
if m is a locally finite measure (i.e. non-atomic), then a Poisson point process
with intensity measure m exists. If m is proportional to the Lebesgue measure
on Rd, the Poisson point process is said to be homogeneous. The more general
case we have presented above is often referred to as the inhomogeneous Poisson
point process. We now further restrain ourselves to the one-dimensional case. This
allows us to state the following embedding theorem:

Proposition 1.2.1. Let N be a unit-intensity homogeneous Poisson point pro-
cess on R2. For a given non-negative function λ on R such that

∫
R λ(x) dx < ∞,

consider the point process Nλ on R consisting of the projections of the atoms of
N which are below the curve of λ on the x−axis. Then Nλ is a inhomogeneous
Poisson point process on R with intensity measure Λ(dx) = λ(x) dx.

This stems from the fact that being a Poisson point process is preserved by
random transformations (i.e. random independent displacements) of points.

One last theoretical result presented in this section concerns convergence of
point processes. We abusively say point processes weakly converge when their
distributions do. We recall the following result from Kallenberg [45]:

Proposition 1.2.2. Let N,N1, N2, . . . be point processes on Rd, where N is sim-
ple. Then Nn weakly converges to N when n → ∞ iff for all bounded A ∈
B(Rd),P(Nn(A) = 0) → P(N(A) = 0) when n → ∞.
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In other words, weak convergence of point processes is equivalent to convergence
of their void probabilities.

Stochastic intensities

The seemingly innocuous Proposition 1.2.1 gives insight into a natural extension
of Poisson point processes: what happens if the function λ in the theorem above
is allowed to be a predictable process? The answer consists in the class of point
processes admitting a stochastic intensity, that we will now define before linking
the definition to the above theorem.

Definition 1.2.4. Let Ft be a filtration on R. Let N be a point process on R. We
say that N admits the Ft-stochastic intensity λ if λ is a Ft-predictable random
process satisfying for all s < t ∈ R :

E [N(s, t]|Fs] = E

[∫ t

s

λ(u) du
∣∣Fs

]
. (1.1)

Typically, Ft is taken to be the history of the process N up to time t. We will
hereafter refer to (1.1) as the stochastic intensity property.

Point processes with stochastic intensities can be thought of as generalized
Poisson point processes, as the following embedding result makes clear:

Proposition 1.2.3. Let N be a point process on R. Let (Ft) be an internal history
of N . Suppose N admits a (Ft)-stochastic intensity {λ(t)}t∈R. Then there exists a
Poisson point process N with intensity 1 on R2 such that, for all C ∈ B(R),

N(C) =

∫
C×R

1I[0,λ(s)](u)N(ds× du).

Note that the reverse is also true: given a process constructed by projection
from a Poisson point process N with intensity 1 on R2 in the manner described
above, the resulting point process on the real line will admit a stochastic intensity.
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Hawkes processes

An important example of point processes admitting stochastic intensities are Hawkes
processes. Also referred to as self-exciting processes, they model the situation
where the presence of a point in the point process depends on its points in the
past. Formally, we have the following definition:

Definition 1.2.5. We say that a point process N admitting a stochastic intensity
is a Hawkes process if there exists a function Φ : R → R+, λ > 0 and a signed
measurable function g : R+∗ → R such that its intensity Λg verifies for all t ∈ R

Λg(t) = Φ(λ+

∫
(−∞,t)

g(t− u)N(du)).

Originally introduced to study earthquakes, Hawkes processes have been exten-
sively used in many applications, including but not limited to neural computations,
finance and insurance.

It is also possible to construct Hawkes point processes in the multidimensional
setting, to describe a system of particles for example.

Definition 1.2.6. We say that a finite family of point processes N1, . . . , NK ad-
mitting stochastic intensities form a multivariate Hawkes process if there exist
functions Φ1, . . . ,ΦK : R → R+ and signed measurable functions (gj→i)1≤i≤K :
R+∗ → R such that their respective intensities Λi verify for all t ∈ R and all
1 ≤ i ≤ K,

Λi(t) = Φi(
K∑
j=1

∫
(−∞,t)

gj→i(t− u)Ni(du)).

The asymptotics of Hawkes processes have been extensively studied, see [47]
or [20] for laws of large numbers and large deviation bounds for extended Hawkes
processes.

1.3 Primer on neural intensity-based models

Modeling neural computations

As a considerable part of our work concerned applications to neural dynamics, the
goal of this section is to provide a partial introduction to a few relevant models
and concepts from computational neuroscience.

It is generally understood that computations in the brain are the result of elec-
trical signals being transmitted by neurons to one another. A common modeling
choice is to focus on the electrical activity of a neuron, neglecting the mechanical
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aspects. The focus is then put on the membrane potential of the neuron and on
the differences in concentration of different ions present inside and outside the cell.
Various deterministic models to describe the behavior of the neuron through the
change in concentration of these ions have been proposed, such as the Morris-Lecar
model [62] or the Hodgkin and Huxley model [41]. The basic idea behind these
models is to consider an electrical circuit ”equivalent” to the neuron and study
the current balance equation. The basic behavior of a neuron is usually described
as follows: its membrane potential starts at some resting potential, it sharply in-
creases when aggregating signals from other neurons and spikes, that is, resets to
a value close to its resting potential, when it gets high enough. After a spike,
there is usually a short refraction period during which the potential stays below
the resting potential and the neuron does not spike.

These models suffer however from several problems. First, they depend on sev-
eral unknowns resulting in complex systems of ODEs that are hard to study. The
Hodgkin-Huxley model, for instance, is a four-dimensional one. The excitability
phenomenon that gives rise to the spiking mechanism can be reduced to two di-
mensions: this is the FitzHugh-Nagumo model [33] [63]. However, this mechanism
cannot be reduced to one dimension [42].

Second, experimental date shows variability in the sequences of spiking times
of a given neuron, something that these models, being deterministic, cannot in-
corporate.

To solve these two issues, a popular class of models is the Leaky Integrate
and Fire (LIF) models. The basic idea behind these goes as follows: there exists
some fixed threshold and the neuron aggregates arrivals from other neurons until
reaching the threshold, at which point it spikes and resets back to its resting value.
The aggregations from other neurons are approximated by a diffusion, such as a
Brownian motion or a Ornstein-Uhlenbeck process, for which the law of the hitting
time of the threshold is known. We refer to [37] for more details on LIF models.

However, as it is a one-dimensional model, the previous observation means that
considering the threshold to be fixed is unrealistic. Other models have thus been
developed with a stochastic threshold, with the Galves-Löcherbach model central
among them. This, however, is done at the expense of the ”real” state of the
system. We will devote the rest of this section to the presentation of this class of
models.

The Galves-Löcherbach model

Consider the case of a population of neurons. The spiking times of the neurons
composing it can be represented on a so-called raster plot, seen below, with each
line corresponding to a neuron’s spiking times. Now, consider theses spiking times
as realizations of a point process. If we consider these point processes as admitting
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stochastic intensities, these can represent the membrane potentials of the neurons.
The behavior of the system is then described by a system of stochastic differential
equations verified by the stochastic intensities of the neurons.

In the Galves-Löcherbach model, the point processes of spiking times are taken
to be generalizations of Hawkes processes, in the sense that instead of keeping
track of all the history of the process, only the dynamics after the last spiking
time are integrated.

Historically, GL models have been first introduced in discrete time as Markov
chains with variable memory length, based on ideas of Rissanen [69]. We give here
a formal definition in discrete time:

Definition 1.3.1. Consider a finite or countable set of neurons I. Consider time
to be discrete, with a given time length step. For any time t, let Xt = (Xt(i), i ∈ I),
where Xt(i) = 1 if neuron i spikes at time t, and 0 otherwise. Let (µj→i)i ̸=j∈I be
real numbers representing the synaptic weights of the system, i.e. the amount the
potential of neuron i is incremented by when neuron j spikes. Let Lt(i) be the last
spiking time of neuron i before time t. Then the membrane potential of neuron i
at time t is given by

Vt(i) =
∑

j∈I,j ̸=i

µj→i

t−1∑
s=Lt(i)

gj(t− s)Xs(j).

In this setting, the probability of having a spike at neuron i at time t is given
by

P(Xt(i) = 1|Ft−1) = Φi(
∑
j

µj→i

t−1∑
s=Lt(i)

gj(t− s)Xs(j), t− Lt(i)),
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where Φi : R × N → [0, 1] and gj : N → R+ are measurable functions and Φ is
assumed to be uniformly Lipschitz continuous.

From this representation, it is clear that this model is reminiscent of a discrete
version of a Hawkes process, and it is naturally generalized in the continuous time
setting in the following fashion, which is heavily linked to the multivariate Hawkes
process, except that we do not integrate on the entire past:

Definition 1.3.2. Let K ≥ 2. The point processes N1, . . . , NK be point pro-
cesses are said to follow the continuous-time Galves-Löcherbach model if they ad-
mit stochastic intensities λ1, . . . , λK such that for all t ∈ R, there exist functions
Φi and gi such that

λi(t) = Φi(
∑
j

µj→i

∫ t

Lt(i)

gi(t− s)Nj(ds), t− Lt(i)),

where Lt(i) is once again the last spiking time of neuron i before t.

One common choice for the functions Φi and gi are given by Φi(x, s) = x +

bi + (ri − bi)e
− s

τi and gi(t− s) = e
− t−s

τi . This is sometimes referred to as the linear
Galves-Löcherbach model [8] due to the linearity of Φi in x. Note also that the
coefficients µj→i are also often denoted µi,j, unlike many other similar fields where
the destination index is almost always located after the origin index, which, as the
author has witnessed, has led to frustration among researchers both inside and
outside the field. In an effort to be part of the solution, rather than part of the
problem, we will exclusively use the notation µj→i hereafter.

The Galves-Löcherbach model have been primarily studied in the infinite pop-
ulation limit [35], notably to construct perfect simulation algorithms [67]. In the
next section, we describe common techniques to derive these scaling limits.

1.4 Primer on mean-field theory

The mean-field framework

As we have previously seen, intensity-based models such as Galves-Löcherbach
models aim to describe the spiking activity of a population of neurons. As such,
they are a particular instance of what are often called agent-based models, in
which a given phenomenon is described through a particle system, with differential
equations governing the behavior of each particle. We will interchangeably see
agents as particles in a system with fixed positions or nodes on an underlying graph
of interactions, with edges signifying the possibility of interactions and weights on
the edges denoting the physical quantities transmitted in the event of interaction.
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As in the case in the Galves-Löcherbach model, neither the system of equations
nor associated functionals such as moment generating functions allow for closed
forms except in some very particular cases. As such, one very general approach is
to simplify the model, usually by scaling it in a certain way, to obtain tractability.
Both replica-mean-fields, which we will extensively present later on, and fluid limits
[53] [64], in which both time and particle quantity are scaled together, fall into
this category of approaches. In this section, we present the most common and
simple approach of this type, namely the mean-field regime, also referred to as the
thermodynamic mean-field in certain applications.

The basic idea behind the mean-field approach goes as follows: to simplify the
dynamics, consider the limit behavior of the particle system of interest when the
number of particles goes to infinity. Of course, to prevent explosion in finite time
of the system, the updates to the state of a given particle due to the interactions
with its neighbors must be scaled accordingly. The most common scaling involves
approximating these interactions as the empirical mean of all the interactions
between particles in the network. Heuristically, as the network size grows, the
particles become independent and a law of large numbers-type result shows that the
interactions received by a single particle converges to some deterministic quantity,
the theoretical mean. This asymptotic independence between particles is referred
to as propagation of chaos, a terminology originating from Kac [44]. It is closely
linked to the convergence of the empirical measure of the particles, see [75].

In this framework, all the particles satisfy the same nonlinear PDE at the limit,
where the nonlinearity comes from the fact that for a given particle, the aggregation
of interactions is replaced by a deterministic term that depends on the law of the
particle. These nonlinear PDEs are known as McKean-Vlasov equations [60].

One of the main questions in mean-field theory concerns proving propagation
of chaos in various models. This involves proving some kind of convergence of the
particle system to infinite copies of the limit dynamics. There are two main meth-
ods for proving such results. The first involves working in the weak convergence
framework: to prove weak convergence, first prove tightness for the sequence of
empirical measures. Then, identify a limit equation and prove uniqueness of so-
lutions to it. The second method, popularized by Sznitman [75], is based on a
coupling technique. The idea is to couple together i.i.d. copies of the supposed
limit equation (established heuristically) and the state equations of the particle
system in a clever way that allows to compare the trajectories in some suitable
metric, such as the Wasserstein distance. Of course, this requires rigorously estab-
lishing first that the limit equation is well-defined. The second approach often has
the benefit of providing explicit convergence rates. We will use elements of both
techniques in our work.
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A toy model with diffusions

In what follows, we will present an example of application of Sznitman’s coupling
method to a toy model with diffusions, inspired by both his original work [75] and
notes by Chevallier [25]. Our goal here is not to go into much detail, but rather
highlight a few key points in the approach that we will later adapt to a novel
setting.

Consider the following toy particle system:
Let K ≥ 1. We consider the processes (XK

i )1≤i≤K satisfying the mean field
equations

XK
i (t) = Xi(0) + ωi(t) +

∫ t

0

1

K

K∑
j=1

b(XK
i (s), XK

i (s)) ds

for all 1 ≤ i ≤ K, where (ωi) are i.i.d. Brownian motions and b is a globally
Lipschitz function.

Here, the interactions are clearly of mean-field type but, unlike previously
encountered models, the stochasticity in the system is given by Brownian motions.

Heuristically, the limit equation that should be verified for all i ∈ N is as
follows:

X i(t) = Xi(0) + ωi(t) +

∫ t

0

∫
Rd

b(X i(s), y)µ
i
s(dy) ds,

where ωi are i.i.d. Brownian motions and for s ≥ 0, µi
s is the law of X

i
(s).

To compare the two trajectories, a natural idea, which is the basis of Sznitman’s
approach, is to couple the two dynamics through their sources of randomness, in
this case, the initial conditions and their Brownian motions. After thus construct-
ing the two sets of processes on the same probability space, this allows the use of
Grönwall-lemma-type arguments to obtain the following bound :
for i ≥ 1 and T > 0,

sup
K≥1

√
K E[ sup

s∈[0,T ]

|XK
i (s)−X i(s)|] < ∞.

However, up to now, nothing has been said about the existence and uniqueness
of a solution to the limit equation, due to the presence of the nonlinear term. To
account for it, Sznitman’s approach involves looking at the hypothetical solution
as the unique fixed point of a map on the space of probability distributions on
the space of trajectories, which is in this case the space C of continuous functions
from [0, T ] to Rd. Namely, given the following map:

Φ: P(C) → P(C)

m 7→ Φ(m),



1.4. PRIMER ON MEAN-FIELD THEORY 33

where Φ(m) is the law of the solution of

Z(t) = X1(0) + ω1(t) +

∫ t

0

∫
Rd

b(Z(s), y)m(dy) ds,

it is clear that the solution of the limit equation is a fixed point of Φ. Thus, to
prove that it admits a unique solution, it is sufficient to show that Φ admits a
unique fixed point.

To do so, it is sufficient to show that the sequence of iterates of Φ is a Cauchy
sequence for a metric that makes P(C) complete and separable and apply a Banach
theorem. The Kantorovitch-1 metric, more commonly known due to an application
of Stigler’s law of eponymy [74] as the Wasserstein-1 metric [46], is a well-adapted
metric to answer this question positively. We recall here its definition:

Definition 1.4.1. For µ, ν ∈ P(C), where C is the space of continuous functions
from [0, T ] to Rd, let

KT (µ, ν) = inf
Π∈C×C

E[dC(x, y)],

where Π is a coupling s.t. x
L
= µ and y

L
= ν and dC is the uniform distance on C.

We will hereafter omit the ”1” and simply refer to it as the Kantorovitch metric
as we do not consider power distances in this work.

In this metric, one can show the following contraction-type result, from which
it easily follows that the sequence of iterates is a Cauchy sequence:

Proposition 1.4.1. Let µ, ν ∈ P(C). For all t ∈ [0, T ], there exists a positive
constant CT such that

KT (Φ(µ),Φ(ν)) ≤ CT

∫ t

0

Ks(µ, ν) ds.

Thus, the fixed-point approach allows to establish the existence and uniqueness
of the solution to the limit equation. We will later adapt these techniques to càdlàg
trajectories.

Generalizations, refinements and beyond

In the rest of this section, we discuss some limitations of the mean-field approach
and present a small selection of works from the literature that attempt to provide
answers to these limitations.

In classical mean-field models such as [34] or [56], the network considered must
be assumed fully connected, the effect of interactions on the state of a given agent
must be small, typically inversely proportional to the number of agents, in order
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to prevent explosion in finite time in the system. These assumptions represent
significant constraints on the architectures and sizes of the networks and thus on
the types of phenomena for which a mean-field approximation is relevant. The
term replacing interactions at the limit is also deterministic, which isn’t realistic
in certain applications, e.g. neuroscience.

To circumvent these limitations, different approaches have been explored in
recent years. To apply mean-field approximation to small-sized networks (with
less than 100 agents, for example), the refined-mean-field approach [36][3] adds
a correction term to the macroscopic ODE. Mean-field models have also been
studied in other scalings, for example diffusive, where the effect of interactions on
a particle is inversely proportional to the square root of the number of agents in
the system. Conditional propagation of chaos properties have been proven in that
setting [32]. This allows to retain stochasticity at the limit, as the noise from the
particle system is coalesced into a common Brownian motion.

To incorporate heterogeneity, the properties of graphons (large dense graphs)
have been used to derive new limit equations [1]. In this setting, the limit object
is an infinite system of ODEs. However, this approach is only valid for dense
networks; when the average degree of a node is of order lesser than the amount
of nodes in the network, as is the case for example in the human brain, graphon
theory does not apply. To account for that, some authors have introduced ex-
tended graphons [43] and graphops [52] and proven propagation of chaos in these
extended settings. Another approach that retains heterogeneity involves dividing
the nodes into multiple classes, considering all the nodes withing one class to be
fully connected with one another and taking the mean-field limit inside each class
[30]. Finally, it is possible to consider the weights of interactions between nodes as
realizations of certain i.i.d. random variables, such as Bernoulli random variables
[38], and prove propagation of chaos in this setting.

Another approach to incorporate heterogeneity circumvents mean-field models
altogether, relying instead on conditional independence properties and local weak
limits to obtain local convergence, thus preserving the local topology of the network
[55].

1.5 Primer on Poisson approximation

Although the content of this section might seem at first glance unrelated to the
topic presented in the previous section, that is, incorporating heterogeneity in
mean-field-type models, we shall see that one approach to tackle the question
involves replacing interaction times by Poisson point processes. As such, the ques-
tion of propagation of chaos in that setting becomes related to matters of Poisson
approximation, thus justifying the presence of this section. We will mostly focus
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on the case of Poisson random variables, but we will mention a result for Poisson
point processes as well.

Base results and coupling approaches

Even heuristically, the Poisson distribution is best understood as the limit of the
sum of independent rare events. Thus, the question of Poisson approximation is
a very natural one, and one that has been extensively studied in the twentieth
century. We refer to the very comprehensive book by Barbour [10], and aim here
to only present a few fundamental results. Our goal is not to provide optimal
rates of convergence, but rather present a few different approaches to Poisson
approximation.

First, we cannot present Poisson approximation without stating the following
fundamental undergraduate-level result, which makes rigorous the heuristic men-
tioned above:

Proposition 1.5.1. For n > 0, let (An,j){1≤j≤Mn} be a finite family of independent

events. Let pn,j = P(An,j) and Sn =
∑Mn

j=1 1IAn,j
. Suppose max1≤j≤Mn pn,j → 0

when n → ∞ and
∑Mn

j=1 pn,j → λ when n → ∞. Then (Sn)n>0 converges in
distribution to the law of the Poisson distribution with parameter λ when n → ∞.

The proof of this result relies on Levy’s theorem. In fact, a more powerful
result can be obtained using coupling techniques in a different convergence metric,
namely total variation convergence, which we briefly recall here.

Definition 1.5.1. For P,Q two probability measures on a σ−algebra F of subsets
of the sample space Ω, we define the total variation distance by

dTV (P,Q) =
∑
A∈F

|P (A)−Q(A)|.

This is a natural metric to measure proximity between probability distributions.
When Ω is countable, an equivalent definition is

dTV (P,Q) =
1

2

∑
ω∈Ω

|P (ω)−Q(ω)|.

Note that some authors define this distance with a multplicative constant 2. We
will also abusively say that random variables converge in total variation when
their distributions do. Finally, note that convergence in total variation implies
weak convergence.

In this setting, we have the following result by Le Cam [57]:
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Theorem 1.5.2 (Le Cam). Let (Bk)k∈N be a sequence of independent Bernoulli
r.v.s with parameters pk. For N ∈ N, let λN =

∑N
k=1 pk. Let SN =

∑N
k=1Bk. Let

LN be a Poisson-distributed random variable with mean λN . Then

dTV (SN , LN) ≤
N∑
k=1

p2k.

In particular, if λN → λ > 0 when N → ∞ and
∑N

k=1 p
2
k → 0 when N → ∞,

SN converges to L in total variation when N → ∞, where L is a Poisson random
variable with parameter λ.

The proof relies on the following fundamental result, called the coupling lemma:

Lemma 1.5.3. If X, Y are two random variables such that X admits the proba-
bility distribution P and Y admits the probability distribution Q,

dTV (P,Q) ≤ P(X ̸= Y ).

Note that one can show that in fact, dTV (P,Q) = inf(X,Y ),X∼P,Y∼QP(X ̸= Y ).
The idea of the proof of Le Cam’s theorem is to find a coupling of SN and LN

such that

P(SN ̸= LN) ≤
N∑
k=1

p2k.

Heuristically, this is done by considering the sum ofN independent Poisson random
variables with parameters pk. We refer to [58] for extensive coverage of coupling
techniques.

A functional approach: the Chen-Stein method

The previous method had the advantage of being very constructive, with the bound
being given by an explicit coupling. In this section, we present a more modern point
of view which uses tools derived from functional analysis. Even though it doesn’t
provide the satisfaction of an explicit construction, it has several benefits over the
latter. First, it gives tighter bounds. Second, and perhaps most importantly, it
allows us to relax the independence assumption for the Bernoulli random variables.
In fact, it can be applied to a much more general class of distributions. Here, our
focus will however remain on the Bernoulli case.

The fundamental idea behind the Chen-Stein method, developed by Chen [23]
following the works of Stein in the Gaussian setting, is to characterize the target
distribution, in this case the Poisson distribution, as the solution to some functional
equation. Then, if a distribution is close to the solution to this functional equation,
it should be close to the target distribution.
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In the Poisson case, the functional equation in question is based on the following
observation: if Z is a random variable taking values in N with E[Z] < ∞, Z is a
Poisson random variable iff the distribution of Z+1 is equal to the distribution of
the size-biased version of Z, in other words, iff for all bounded functions f on N,

E[Z]E[f(Z + 1)] = E[f(Z)Z]. (1.2)

Morally, a distribution is close to Poisson if “adding a point” doesn’t heavily affect
the distribution. One can see a link with the Slivnyak-Mecke theorem from Palm
calculus, which we will not present here. See for example [13] for more details.

In the case of a sum of Bernoulli random variables that are not necessarily
independent, we have the following result:

Lemma 1.5.4. Let l ∈ N. Consider W =
∑l

i=1 Yi, where Yi are Bernoulli random
variables with respective means pi, without any independence assumptions. Let Z
be a Poisson distributed random variable with mean E[W ] =

∑
i pi. For 1 ≤ k ≤ l,

let Uk and Vk be random variables on the same probability space such that Uk has
the same distribution as W and 1+Vk has the same distribution as W conditioned
on the event Yk = 1 (with the convention Vk = 0 if P(Yk = 1) = 0). Then

dTV (W,Z) ≤
(
1 ∧ 1

E[W ]

) l∑
i=1

pi E[|Ui − Vi|].

Then, it suffices to exhibit a coupling of Ui and Vi such that E[|Ui − Vi|] is
small. We refer to [13], [58] or [10] for a comprehensive overview of the Chen-Stein
method.

A few references for Poisson process approximation

The base heuristic mentioned at the beginning of the section, namely that a sum
of rare events is asymptotically Poisson, can be generalized to point processes in
the following fashion: Grigelionis [39] has shown that on R+, the superposition of
independent sparse point processes weakly converges to a Poisson point process.
Chen [24] has given error bounds for this approximation combining the Chen-Stein
method and Palm theory.

1.6 Primer on replica-mean-field models

The goal of this section is to introduce the replica-mean-field models that are
extensively used in the following chapters to prove the main results of this work,
they are presented therein as well. As such, we focus here on the base principle of
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the replica-mean-field approach, as well as the heuristics of certain properties of
the replica-mean-field structure.

To contextualize the core of the replica-mean-field approach, it is helpful to
contrast it with other existing mean-field-type models. By ”mean-field-type”, we
refer here to models designed to converge to a regime of interest when scaled along
a certain parameter.

In Section 1.4, we introduced the classical mean-field scaling, also referred to
as the thermodynamical mean-field, in which the particle system consists of K
particles with interactions averaged over all the system and the mean-field regime
is obtained by letting K go to infinity. The key characteristic of this type of model
is having the scaling of interactions be inversely proportional toKα, with α usually
equal to 1, sometimes 2.

Another mean-field-type model is the routing-mean-field, which is the most di-
rect inspiration for the replica-mean-field approach. Developed mostly in queueing
theory by (among others) Dobrushin, Rybko and Borovkov [48] [16], it consists of
a closed system of K queues in which a customer leaving a queue joins another
queue selected uniformly at random upon departure. When K goes to infinity,
the random routing heuristically leads to asymptotic Poisson-distributed arrivals.
Note that the authors cited above also sometimes refer to their models as the
thermodynamic mean-field. Unlike the models we refer to in that way, however,
interactions are not averaged accross the system; the averaging only appears in
expectation due to the random routing. This can be related to ”power of two”-
type routing models developed by Vvedenskaya [79], in which arriving customers
are redirected to the shortest queue among a randomly selected amount of queues.

The main motivation behind the introduction of routing-mean-fields was replac-
ing arrivals to nodes by Poisson processes, which is known as setting the Poisson
Hypothesis [49]. The replica-mean-field approach aims to extend the setting of the
routing-mean-field to the more general case of network dynamics. It consists in
considering a physical system where interactions are uniformly randomly routed in
between objects of interest. Where originally, this consisted in considering closed
systems of queues where a customer would be randomly routed to another queue
upon departing from one, and letting the number of queues go to infinity, in a
recent work by Baccelli and Taillefumier [8], a replica-mean-field version of the
Galves-Löcherbach network dynamics was introduced by considering a physical
system consisting of randomly interacting replicas of the network of interest, and
studying the limit when the number of replicas goes to infinity. This approach was
later used by Coletti and Papageorgiou to study the asymptotic behavior of the
Elephant Random Walk [26], assuming that the Poisson Hypothesis holds at the
limit.

From the point of view of a single node of the network in one of the replicas,
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the influence of the replica structure on its state is as follows: the aggregations to
its state consist of the departures from all the other nodes in all the other replicas
that have been routed to the given replica.

The M-replica dynamics

The main difference between the routing-mean-field and the replica-mean-field
approaches lies in the fact that unlike the routing-mean-field, the scaling parameter
in the replica-mean-field is the number of replicas, which is distinct from the
number of objects in the network of interest that is fixed throughout.

Heuristically, the following observations explains why it is natural to conjecture
that the Poisson Hypothesis holds at the limit of the infinite number of replicas.
First, note that because of the uniform random routing, the probability that two
nodes in two given replicas interact is inversely proportional to the number of
replicas. This gives a strong indication that the replicas should be asymptotically
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independent, which as we have seen previously is more often than not required to
obtain tractability. Second, note that the arrivals to a given node can be seen as a
random sum of Bernoulli random variables, which should under proper conditions
converge, at least in a weak sense, to a Poisson distribution.

We shall see in Chapter 3 that for a general class of continuous-time dynamics,
this convergence does indeed take place. A key property that allows this is the
independence of the routings targeting a given node represented as Bernoulli ran-
dom variables when conditioned on the number of departures from the other nodes
in the other replicas. This is primarily due to the fact that arrivals to any node
are always aggregated across replicas, which erases the eventual dependencies due
to the routing choosing one replica rather than another.

1.7 Primer on epidemiological models and

migration-contagion processes

Up to now, the main application for agent-based models that we have focused
on concerned intensity-based models from computational neuroscience. Now, we
present a different class of models of interest in life sciences, namely compartmental
epidemiological models.

Compartmental epidemiological models

In compartmental epidemiological models, the idea is to study the spread of an
epidemic in a population where individuals are split into different classes based on
their current condition with regards to the epidemic. Popular classes are Suscepti-
ble (S), comprised of individuals that are not sick but that can get sick at a certain
given rate, Infected (I), comprised of sick individuals which can heal from the sick-
ness at another given rate and Recovered (R), comprised of individuals who had
the sickness but no longer have it. Depending on the model, recovered individuals
can sometimes become susceptible again at another given rate. More elaborate
versions of these models incorporate other classes, such as Vaccinated (V), com-
prised of individuals immune to the infection but which become susceptible with a
given rate, or Exposed (E), in which susceptible individuals must become exposed
before being able to become infected.

In the infinite population limit, by assuming individuals as independent, the
behavior of the system can often be reduced to a system of ODEs. Consider,
for example, the base SIR model. Denoting by xS, xI and xR the proportions
of susceptible, infected and recovered individuals respectively, their evolution is
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described by the following system of equations:
dxS

dt
(t) = −βxS(t)xI(t)

dxI

dt
(t) = βxS(t)xI(t)− γxI(t)

dxR

dt
(t) = γxI(t),

(1.3)

where β is the infection rate and γ is the recovery rate.

We refer to this an infinite population limit due to the following observation:
in a fully connected finite population, consider a given agent is chosen to update,
if the agent is susceptible for example, which occurs with probability xS(t). Then,
they interact with another agent chosen uniformly at random, and if the agent is
infected, which occurs with probability xI(t), the agent changes its state from S to
I with probability β, and stays in the same state otherwise. Thus, the probability
that a given agent changes its state from S to I is given by βxS(t)xI(t). A similar
interpretation hold for the I→ R transition. Then, when the number of agents
goes to infinity, heuristically, the changes become infinitesimal with respect to the
population, thus giving rise to the system of equations (1.3). This heuristic can
be made rigorous [54] when the initial conditions of the finite system converge.

One question of interest for compartmental epidemiological models is the ad-
dition of a spatial component for the positions of the individuals, in which case
an agent becomes infected with a rate dependent on the proportion of infected
individuals among their neighbors instead of across the full network. Various
works and approaches have been developed, we will mention a few here and refer
to [65] for a comprehensive review of epidemic processes on networks. Peman-
tle and Stacey [66] have studied SIS dynamics (under the name contact process)
on Galton-Watson trees and nonhomogeneous trees. They have shown conditions
and bounds for phase transitions for the contact process. Degree-based mean-field
models have been studied by Boguña and Pastor-Satorras [15] in which the SIS
model is described in terms of the probability that a node of certain degree is
infected at a given time, assuming the statistical equivalence of all nodes of same
degree. Individual-based mean-field models were studied by many authors, see [61]
or [22], in which the states of neighboring individuals are considered independent
to obtain expressions for epidemic thresholds.

We shall see in the remainder of this section how queueing theory can be used
to obtain another framework for epidemics propagation.

A quick reminder from queueing theory

Migration processes arise from another field of mathematics, namely queueing
theory. We will recall a few basic notions and notation before presenting a class of
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models combining these migration processes with epidemiological dynamics seen
previously.

A queueing model consists of a service node treating customers arriving to a
waiting area according to some arrivals process, and exiting the node after being
serviced. The main questions of interest in queueing theory are stability of the
system of queues, that is, whether the number of waiting customers stays finite
when time becomes large, and the existence of a stationary state for the system.

A useful notation to describe different standard configurations of queues is
Kendall’s notation.

Definition 1.7.1. A queueing model may be represented using Kendall’s notation
in the following fashion:

A/S/c(/K/N/D),

where

• A represents the distribution of the time between arrivals;

• S represents the service time distribution;

• c represents the number of service channels;

• K represents the capacity of the queue (the default value is ∞);

• N represents the number of jobs to be served (the default value is ∞);

• D represents the queueing discipline (the default is First In, First Out, or
FIFO for short).

The last three parameters are omitted by default and assumed to be set to
their default values. Some common options for A and S are M (Markovian, corre-
sponding to exponential inter-arrival times or service times) and G or GI (General
Independent, corresponding to i.i.d. service times). c is most often 1 or infinity,
although finite tandems of queues are also extensively studied.

Migration-contagion processes

Migration-contagion processes, introduced by Baccelli, Foss and Shneer in [6], pro-
pose to model epidemics by considering a simple migration model, a closed network
of ·/M/∞ queues, on which simple contagion dynamics, namely SIS dynamics, take
place.

In a migration-contagion process, individuals, or customers, travel in between
stations, called reactors when considering them as single open stations. Each
customer is marked with their state, infected (I) or susceptible (S). Inside each
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reactor, the customer states change according to mechanisms depending on the
migration-contagion process chosen. In [6], several reactors were introduced in
order to study the steady state of the queues. We will introduce here the main
M/M/∞ SIS reactor and present the main results pertaining to the proportion of
infected (I) individuals in the stationary output point process of the reactor in the
steady state. Afterwards, we will present two variant reactors, for which, unlike
the SIS reactor, the stationary regimes admit closed-form expressions.

In the SIS reactor, consider a M/M/∞ queue with input rate λ and service
rate µ. Let X(t) be the number of susceptible customers at time t, and Y (t) be the
number of infected customers at time t. Let X(0) = x, Y (0) = y. Input customers
are infected with probability p, and susceptible with probability q = 1− p. Inside
the queue, any susceptible customer becomes infected with rate αY (t), and any
infected customer becomes susceptible with rate β.

In this setting, neither of the processes X(t) or Y (t) is Poisson. There is no
product form, the means are unknown and there is no known closed form solution
for the wave-type PDE verified by Φ(x, y) = E[xXyY ]:

λq(1− x) + λp(1− y)Φ(x, y) = µ(1− x)Φx(x, y) + (µ(1− y) + β(x− y))Φy(x, y)

+ αy(y − x)Φx,y(x, y).

One can, however, consider a closed network of SIS reactors. In this setting,
queues have no input or output. Instead, when a customer leaves a queue, they
choose the next station they go to uniformly at random. This network model can
be simplified by taking the mean-field limit, namely, by letting the number N of
stations go to infinity and, denoting K the total number of customers, K

N
→ η ∈

(0,∞).
Under the thermodynamic limit ansatz, the stations become asymptotically

independent and the Poisson Hypothesis holds: the arrivals to a given station
become asymptotically Poisson. The proof of the ansatz is a current open research
problem. We give the following definitions:

Definition 1.7.2. • We say that there is survival if there exists a steady state
distribution with a fraction 0 < p < 1 of susceptibles;

• We say there is weak extinction if there is no such p.

• We say there is strong extinction if for all initial conditions, there is conver-
gence to a regime with no infected customers.

Then, the following result has been shown:

Theorem 1.7.3. Provided that the thermodynamic limit ansatz holds, in the ther-
modynamic limit, there exists a constant ηsC such that:
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• there is survival if η > ηsC;

• there is strong extinction if η ≤ ηsC .

Note that there is no known closed form for ηsC .
We now introduce two variants of the SIS reactor that have the benefit of

admitting closed forms for the stationary state. The first will be of particular
relevance for the study in Chapter 4. The first variant is called SIS-DOCS, as in
Departure On Change of State: if a customer changes states, they immediately
leave the reactor. In this setting, the PDE verified by the stationary generating
function can be solved explicitly. Moreover, the stationary distribution of Y is
Poisson with parameter λp

µ+β
. Similarly to the SIS case, it is possible to consider the

thermodynamic limit of N SIS-DOCS stations. Once again, the rigorous derivation
of this limit is left as a conjecture. In the steady state, it can be shown that there
exists a ηdc playing a similar role to ηsC .

The second variant is called SIS-AIR, as in Averaged Infection Rate. The reac-
tor consists of an open network of two M/M/∞ stations with input rate λ, service
rate of any customer µ and state transition rates β from Infected to Susceptible
and αy from Susceptible to Infected, where y is a parameter. A SIS-AIR reactor
can thus be seen as an open Jackson network admitting a product-form stationary
distribution. As before, it is possible to consider the thermodynamic limit of a
closed SIS-AIR network with N stations, and to show the existence of ηac = β

α

separating survival from (this time) weak extinction.



Chapter 2

Replica-mean-field limits for
discrete-time processes

2.1 Introduction

This chapter consists in the article [5], published in Advances in Applied Probability
in 2022 and written in collaboration with François Baccelli and Thibaud Taille-
fumier. Note that some notation has been changed for harmonization purposes
between chapters and to follow the recommendation given at the end of Section
1.3.

Abstract

Network dynamics with point-process-based interactions are of paramount
modeling interest. Unfortunately, most relevant dynamics involve complex
graphs of interactions for which an exact computational treatment is impos-
sible. To circumvent this difficulty, the replica-mean-field approach focuses
on randomly interacting replicas of the networks of interest. In the limit of
an infinite number of replicas, these networks become analytically tractable
under the so-called “Poisson Hypothesis”. However, in most applications,
this hypothesis is only conjectured. Here, we establish the Poisson Hypothe-
sis for a general class of discrete-time, point-process-based dynamics, that we
propose to call fragmentation-interaction-aggregation processes, and which
are introduced in the present paper. These processes feature a network of
nodes, each endowed with a state governing their random activation. Each
activation triggers the fragmentation of the activated node state and the
transmission of interaction signals to downstream nodes. In turn, the sig-
nals received by nodes are aggregated to their state. Our main contribution
is a proof of the Poisson Hypothesis for the replica-mean-field version of any
network in this class. The proof is obtained by establishing the propagation

45
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of asymptotic independence for state variables in the limit of an infinite
number of replicas. Discrete time Galves-Löcherbach neural networks are
used as a basic instance and illustration of our analysis.

2.2 Discrete-time replica-mean-field limit for

FIAPs

2.2.1 Introduction

Epidemics propagation, chemical reactions, opinion dynamics, flow control in the
Internet, and even neural computations can all be modelled via punctuate interac-
tions between interconnected agents [65][40][4][7][73]. The phenomena of interest
in this context are idealized as network dynamics on a graph of agents which in-
teract via point processes: edges between agents are the support of interactions,
with edge-specific point processes registering the times at which these interac-
tions are exerted. Such point-process-based network dynamics constitute a very
versatile class of models able to capture phenomena in natural sciences, engineer-
ing, social sciences and economics. However, this versatility comes at the cost of
tractability as the mathematical analysis of these dynamics is impossible except
for the simplest network architectures. As a result, one has to resort to simplifying
assumptions to go beyond numerical simulations.

Generic point-process-based networks are computationally untractable because
their stochastic dynamics does not appear to belong to any known parametric
class of point processes. Replica mean-field (RMF) limits are precisely meant to
circumvent this obstacle [8]. The RMF limit of a given network is an extension of
this network built in such a way that interaction point processes are parametric,
e.g., Poisson. This extended network is made of infinitely many replicas of the
initial network, all with the same basic structure, but with randomized interactions
across replicas. The interest in RMF limits stems from the fact that they offer
tractable version of the original dynamics that retain some of its most important
features. The fact that Poisson point processes arise in the RMF version of a
network is called the Poisson Hypothesis. Thus formulated, the Poisson Hypothesis
originates from communication network theory [51] and is distinct from replica
approaches developed in statistical physics [19].

Although intuitively clear and despite its usefulness, the Poisson Hypothesis
is often only conjectured and/or numerically validated. The purpose of this work
is to rigorously establish the Poisson Hypothesis for the RMF limits of a broad
class of point-process-based network dynamics in discrete time introduced in the
present paper. This class, which will be referred to as fragmentation-interaction-
aggregation processes (FIAPs) below, includes important classes of queuing net-
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works as special cases, as well as discrete time Galves-Löcherbach (GL) neural
networks.

Galves-Löcherbach networks can be viewed as coupled Hawkes processes with
spike-triggered memory resets. Because of these memory resets, it can be shown
that the dynamics of finite-size Galves-Löcherbach networks is Markovian [70].
The RMF limit of the GL case was studied from a computational standpoint in [8]
but in continuous time. In the next paragraph, we use results established in [8] to
illustrate how the Poisson Hypothesis yields tractable mean-field equations for the
stationary dynamics of these RMF limits. This is done for the simplest example
of GL networks, called the “counting-neuron” model.

Illustration from the study of spiking neural networks

The counting-neuron model consists of a fully-connected network of K exchange-
able neurons with homogeneous synaptic weights µ. For each neuron i, 1 ≤ i ≤ K,
the continuously time-indexed stochastic intensity λi increases by µ > 0 upon re-
ception of a spike and resets upon spiking to its base rate b > 0. Thus, its stochastic
intensity is λi(t) = b+µCi(t), where Ci(t) is the number of spikes received at time
t since the last reset. It can be shown that the network state {C1(t), . . . , CK(t)}
has a well-defined stationary distribution. Despite of the simplicity of the model,
analytic characterizations of the stationary state, including the stationary spiking
rate, are hindered by the fact that the law of the point process of spike receptions
is not known.

To circumvent this hindrance, the RMF setting proposes to compute stationary
spiking rates in infinite networks that are closely related to the original finite-size
networks. Informally, the counting-model RMF is constructed as follows: for a
K-neuron counting model and for an integer M > 0, the M -replica model consists
of M replicas, each comprising K counting neurons. Upon spiking, a neuron i in
replica m, indexed by (m, i), delivers spikes with synaptic weight µ to the K − 1
neurons (vj, j), j ̸= i, where the replica destination vj is chosen uniformly at
random for all j. RMF networks are defined in the limit of an infinite number
of replicas, namely infinite M but fixed and finite K. The Poisson Hypothesis
then states that the dynamics of replicas become asymptotically independent in
the limit M → ∞, and that each neuron receives spikes from independent Poisson
point processes. It is shown in [8] that as a consequence of this Poisson property,
the stationary state is characterized by a single ODE bearing on G, the probability-
generating function (PGF) of a neuron count C:

β−µzG′(z)+
(
β(K−1)(z−1)−b

)
G(z)=0 . (2.1)

The simplifications warranted by the Poisson Hypothesis in the above ODE char-
acterization comes at the cost of introducing the spiking rate β as an unknown
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parameter in (2.1). As the ODE (2.1) is otherwise analytically tractable, charac-
terizing the RMF stationary state amounts to specifying the unknown firing rate β.
Then, the challenge of the RMF approach consists in specifying the unknown firing
rate via purely analytical considerations about a parametric system of ODEs. It
turns out that requiring that the solution of (2.1) be analytic, as any PGF shall be,
is generally enough to exhibit self-consistent relations about the stationary rates.
For instance, the RMF stationary spiking rate β of the RMF counting model is
shown to be determined as the unique solution of

β =
µcae−c

γ(a, c)
with a =

(K − 1)β + b

µ
and c =

(K − 1)β

µ
, (2.2)

where γ denotes the lower incomplete Euler Gamma function.
We have shown that the above approach generalizes to networks with con-

tinuous state space, heterogeneous network structures [8], and including pairwise
correlations [9]. In all cases, the Poisson Hypothesis is the cornerstone of a compu-
tational treatment. As a key step toward establishing the Poisson Hypothesis for
continuous-time network dynamics, the goal of this work is to prove it for a broad
class of discrete-time dynamics, which we refer to as fragmentation-interaction-
aggregation processes.

Fragmentation-interaction-aggregation processes

In FIAPs, agents are graph nodes endowed with a state that evolves over time.
The nodes are coupled via point processes which model punctuate interactions.
Specifically, each node’s state evolves in response to its input point process, and
generates an output point process in a state-dependent manner. In all generality,
the transformation of input into output point process can be viewed as a random
map. In FIAPs, this map is defined through the following dynamics: (i) The
fragmentation process is triggered by local activation events taking place on each
node and which occur with a probability that depends on the state of the node.
(ii) Each fragmentation event in turn triggers interactions between the nodes
by creating input events in the neighboring nodes. (iii) Finally, the aggregation
process consists in the integration of the input point processes to the states of each
node.

Thus broadly defined, FIAPs offer a simple albeit general framework to analyze
the phenomena alluded to above. The precise definition of FIAPs is given as
follows:

Definition 2.2.1. An instance of the class C of discrete fragmentation-interaction-
aggregation processes is determined by:

• An integer K representing the number of nodes;
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• A collection of initial conditions for the integer-valued state variables at step
zero, which we denote by {Xi}, where i ∈ {1, . . . , K};

• A collection of fragmentation random variables {Ui}, which are i.i.d. uniform
in [0, 1] and independent from {Xi}, where i ∈ {1, . . . , K};

• A collection of fragmentation functions {g1,i : N → N}i∈{1,...,K} and {g2,i :
N → N}i∈{1,...,K};

• A collection of bounded interaction functions {hj→i : N → N}i,j∈{1,...,K};

• A collection of activation probabilities {σi(0), σi(1), . . .}i∈{1,...,K} verifying the
conditions σi(0) = 0, and 0 < σi(1) ≤ σi(2) ≤ · · · ≤ 1 for all i.

The associated dynamics take as input the initial integer-valued state variables
{Xi} and define the state variables at the next step as

Yi = g1,i(Xi) 1I{Ui<σi(Xi)}+g2,i(Xi) 1I{Ui>σi(Xi)}+Ai, ∀i = 1, . . . , K, (2.3)

with arrival processes

Ai =
∑
j ̸=i

hj→i(Xj) 1I{Uj<σj(Xj)}, ∀i = 1, . . . , K. (2.4)

The interpretation is as follows: node i activates with probability σi(k) if its
state Xi is equal to k. The state of this node is fragmented to g1,i(Xi) upon ac-
tivation and to g2,i(Xi) otherwise. The activation of node i triggers an input of
hi→j(Xi) units to node j. Hence, the interaction functions encode the structure of
the graph. The variable Ai gives the total number of arrivals to node i. This vari-
able is aggregated to the state of the node as seen in (2.3). Note that considering
σi(0) = 0 for all i ensures that state variables in state 0 cannot be fragmented.

The FIAP class C encompasses many network dynamics relevant to queuing
theory and mathematical biology. For example, taking g1,i(k) = k − 1, g2,i(k) = k
and hj→i(k) = 1I{i=j+1 mod K}, we recover an instance of Gordon-Newell queuing
networks [50]. Taking g1,i(k) = 0, g2,i(k) = k and hj→i(k) = µj→i ∈ N defines a
discrete instance of Galves-Löcherbach dynamics for neural networks introduced
above. Taking g1,i(k) = ⌊k

2
⌋ and g2,i(k) = k + 1, corresponds to aggregation-

fragmentation processes modelling, e.g., TCP communication networks [7]. The
class C also includes certain discrete time Hawkes processes. Namely, if for each
coordinate of a Hawkes vector process, we define its state as the sum over time of
all its variations, then all discrete Hawkes processes that are Markov with respect
to their so-defined state are in C. Thus, the results of the present paper have
potential computational implications in a wide set of application domains beyond
the neural network setting used above to illustrate them.

The present paper is focused on discrete time versions of this type of dynamics
as in, e.g., [72] [21]; note that continuous instances were also considered in the
literature such as in [29], [59].
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Replica models for fragmentation-interaction-aggregation networks

Finite RMF models are defined as a coupling of replicas of the network of interest
by randomized routing decisions. For a FIAP, the state of its M -replica model is
thus specified by a collection of state variables XM

m,i, where m is the index of the
replica and i corresponds to the index of the node in the original network. Instead
of interacting with nodes within the same replica, an activated node i in replica m
interacts with a downstream node j from a replica n chosen uniformly at random
and independently. This randomization preserves essential features of the original
dynamics such as the magnitude of interactions between nodes but degrades the
dependence structure between nodes. Indeed, over a finite period of time, the
probability for a particular node to receive an activation from another given node
scales as 1/M . Thus, as the number of replicas increases, interactions between
distinct replicas become ever scarcer, intuitively leading to replica independence
when M → ∞. This asymptotic independence is the root of RMF computational
tractability.

Here is the precise definition of the finite-replica version of a FIAP:

Definition 2.2.2. For any process in C, the associated M-replica dynamics is
entirely specified by

• A collection of initial conditions for the integer-valued state variables at step
zero, which we denote by {XM

m,i}, where m ∈ {1, . . . ,M} and i ∈ {1, . . . , K},
such that for all M,m and i, XM

m,i = Xi;

• A collection of fragmentation random variables {Um,i}, which are i.i.d. uni-
form in [0, 1] and independent from {XM

m,i}, where m ∈ {1, . . . ,M} and
i ∈ {1, . . . , K};

• A collection of i.i.d. routing random variables {RM
(n,j)→i} independent from

{XM
m,i} and {Um,i}, uniformly distributed on {1, . . . ,M} \ {n} for all i, j ∈

{1, . . . , K} and n ∈ {1, . . . ,M}. In other words, if RM
(n,j)→i = m, then an

eventual activation of node j in replica n at step 0 induces an arrival of size
hj→i(X

M
n,j) in node i of replica m, and m is chosen uniformly among replicas

and independently from the state variables. Note that these variables are
defined regardless of the fact that an activation actually occurs. Also note
that for i′ ̸= i, the activation in question will induce an arrival in node i′ of
replica m′, with m′ sampled in the same way but independently of m.

Then, the integer-valued state variables at step one, denoted by {Y M
m,i}, are given

by the M-RMF equations

Y M
m,i = g1,i(X

M
m,i) 1I{Um,i<σi(XM

m,i)}+g2,i(X
M
m,i) 1I{Um,i>σi(XM

m,i)}+AM
m,i, (2.5)
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where g1,i, g2,i denotes fragmentation functions, σi denotes activation probabilities,
and where

AM
m,i =

∑
n̸=m

∑
j ̸=i

hj→i(X
M
n,j) 1I{Un,j<σj(XM

n,j)} 1I{RM
(n,j)→i

=m} (2.6)

is the number of arrivals to node i of replica m via the interaction functions hj→i.

RMF models are only expected to become tractable when individual replicas
become independent. This happens in the limit of an infinite number of replicas,
i.e., in the so-called RMF limit [8]. In this RMF limit, asymptotic independence
between replicas follows from the more specific Poisson Hypothesis. The Poisson
Hypothesis states that spiking deliveries to distinct replicas shall be asymptoti-
cally distributed as independent Poisson (or compound) point processes. Such a
hypothesis, which has been numerically validated for certain RMF networks, has
been conjectured for linear Galves-Löcherbach dynamics in [8]. Proving the valid-
ity of the Poisson Hypothesis for the RMF limits of the much more general FIAPs
is the purpose of the present work.

Methodology for proving the Poisson Hypothesis

Classical mean-field approximations of a given network are obtained by consider-
ing the limit of the original network when a certain characteristic of the network –
typically the number of nodes – goes to infinity. When the dynamics of the nodes
are synchronous, one gets a discrete time dynamical system. The term mean-field
comes from the fact that in such network limits, the effect that individual nodes
have on one another are approximated by a single averaged effect, typically an em-
pirical mean. In the limit, this empirical mean usually converges to an expectation
term through a propagation of chaos result [75] which leads to analytical tractabil-
ity. In replica mean-fields, there is no such empirical mean over the nodes of the
network; the mean-field simplification comes from the random routing operations
between replicas. The input point process in the M -replica model consists in a su-
perposition of M rare point processes, which informally explains why Poisson (or
compound Poisson) processes arise at the limit. For classical mean-fields, different
techniques have been developed to prove the existence and the convergence to the
mean-field limit. Standard techniques include the use of the theory of nonlinear
Markov processes [78] and stochastic approximation algorithms[11] for continuous
time dynamics, and induction techniques which assume the existence of limits at
time zero and extend the result by induction [56] for dynamics in discrete time.
Refinements to the latter approach can be made in order to obtain explicit rates
of convergence [36]. The approach developed for the RMF case belongs in spirit
to the third class of techniques. We suppose that the property of asymptotic inde-
pendence (see Definition 2.2.3) holds for the state variables at time zero. We then
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prove that this property is preserved by the dynamics of the M -replica model and
thus holds by induction for any finite time. Thus, we focus hereafter on the one-
step transition of the model from time 0 to time 1. We show that this asymptotic
independence hypothesis implies both convergence in distribution and an ergodic
type property that we call the triangular law of large numbers. We apply this law
of large numbers to the input process to a single node to show that Poisson (or
compound Poisson) processes appear in the replica mean-field limit indeed. Let
us stress that this proof is by induction. The fact that the main difficulty consists
in proving the induction step should not hide the fact that the result relies in
crucial way on the assumption that at step 0, the initial state variables satisfy the
asymptotic independence property. Whether the result can be extended to more
general initial conditions is an open question at this stage.

Structure of the Paper

For the sake of clarity in exposition, we start with the proof of the Poisson Hy-
pothesis for the special case of neural networks first before extending it to general
FIAPs. More precisely, we first consider the symmetric neural network case, which
is a fully symmetric Galves-Löcherbach model [35] in discrete time. We introduce
the model in Section 2.2.2 and prove the Poisson Hypothesis in Section 2.2.3. We
then extend the proof to the class of FIAPs defined above. We first consider the
symmetric case in Section 2.2.4 and then the general case in Section 2.2.5. Finally,
some extensions are discussed in Section 2.2.6.

2.2.2 The symmetric Galves-Löcherbach model

The symmetric RMF network model

We consider a network ofK spiking neurons. We suppose that the behavior of each
neuron is determined by a random variable representing the membrane potential
of the neuron. Each neuron spikes at a rate depending on its state variable. Let
X = {Xi} be the integer-valued state variables at step 0, where i ∈ {1, . . . , K}.
Let Y = {Yi} be the integer-valued state variables at time one. The system
continues to evolve in discrete time with all corresponding state variables defined
by induction.

Let σ : N → [0, 1] be the spiking probabilities of the neurons. Namely, σ(k)
is the probability that a neuron in state k spikes. We consider that σ(0) = 0,
accounting for the fact that a neuron in state 0 never spikes. We also consider
that σ(1) > 0 and that σ is non-decreasing. Let {Ui} be uniformly distributed i.i.d.
random variables independent from {Xi}. We then write the following evolution
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equation for the state of the system:

Yi = 1I{Ui>σ(Xi)}Xi + Ai, (2.7)

where

Ai =
∑
j ̸=i

1I{Uj<σ(Xj)} (2.8)

is the number of arrivals to neuron i.
Here, the fragmentation is complete if Ui < σ(Xi), namely if there is a spike,

in which case the state variable is reset (jumps to 0). Otherwise there is no
fragmentation at all and the state variable is left unchanged. In both cases, the
arrivals Ai are aggregated to the state.

The RMF model described below is a discrete time version of the model in-
troduced in [8]. Namely, we consider a collection of M identically distributed
replicas of the initial set of K neurons. Let X = {XM

m,i} be the integer-valued
state variables at step 0, where m ∈ {1, . . . ,M}, i ∈ {1, . . . , K}. Let Y = {Y M

m,i}
be the integer-valued state variables at time one. Let U = {Um,i} be uniformly
i.i.d. random variables in [0, 1] independent from {XM

m,i}. Let R = {RM
(n,j)→i} be

i.i.d. routing random variables independent from {XM
m,i} and {Um,i}, uniformly

distributed on {1, . . . ,M} \ {n} for all i, j ∈ {1, . . . , K} and n ∈ {1, . . . ,M}. The
replica model has the following evolution equation:

Y M
m,i = 1I{Um,i>σ(XM

m,i)}X
M
m,i + AM

m,i, (2.9)

where

AM
m,i =

∑
n̸=m

∑
j ̸=i

1I{Un,j<σ(XM
n,j)} 1I{RM

(n,j)→i
=m} (2.10)

is the number of arrivals to neuron i of replica m.

Pairwise asymptotic independence and consequences

Our goal is to show the propagation of chaos and the Poisson Hypothesis in this
system. In other words, we want to show that the arrivals to two distinct repli-
cas are asymptotically independent and the number of arrivals to one replica is
asymptotically Poisson distributed. We begin by considering the fully exchange-
able case with equal weights, but we will consider the general case later. In order
to do so, we choose to characterize the propagation of chaos through the following
properties:

Definition 2.2.3. Given M ∈ N, given an array of integer-valued random vari-
ables Z = {ZM

m,i}1≤m≤M,1≤i≤K such that for all fixed M , the random variables ZM
m,i
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are exchangeable in m and i, we say that the variables ZM
m,i are pairwise asymptot-

ically independent, which we will denote PAI(Z), if there exists an integer-valued
random variable Z̃ such that for all (m, i) ̸= (n, j), for all u, v ∈ [0, 1],

lim
N→∞

E[uZN
m,ivZ

N
n,j ] = E[uZ̃ ]E[vZ̃ ]. (2.11)

Definition 2.2.4. Given M ∈ N, given an array of integer-valued random vari-
ables Z = {ZM

m }m∈{1,...,M} such that for all fixed M , the random variables ZM
m are

exchangeable in m, we say that Z verifies the triangular law of large numbers, de-
noted by TLLN(Z), if there exists an integer-valued random variable Z̃ such that
for all functions f : N → R with compact support, we have the following limit in
L2:

lim
N→∞

1

N

N∑
n=1

f(ZN
n ) = E[f(Z̃)]. (2.12)

Here are a few remarks about these definitions. First, note that if an array
of random variables Z satisfies PAI(Z), then for all m and i, ZM

m,i converges in

distribution to Z̃ as M → ∞. This can be seen by taking v = 1 in the defini-
tion. By considering the case where ZM

n = Z1
1 for all n and M , we see that the

convergence in distribution of ZM
n does not imply TLLN(Z). However, we show

below that for all arrays of random variables Z = {ZM
m,i}m∈{1,...,M},i∈{1,...,K} satis-

fying PAI(Z), for all i, Zi = {ZM
m,i}m∈{1,...,M} satisfies TLLN(Zi). In other words,

pairwise asymptotic independence of an array of random variables implies that
these random variables verify the triangular law of large numbers. Finally, note
that an array of integer-valued random variables Z satisfies PAI(Z) iff the random
variables are asymptotically independent in the sense that for all (m, i) ̸= (n, j)

P(ZM
m,i ∈ B1, Z

M
n,j ∈ B2) → P(Z̃ ∈ B1)P(Z̃ ∈ B1) (2.13)

when M → ∞ for B1, B2 ∈ B(R).
The following characterization of L2 convergence will be used throughout this

paper:

Lemma 2.2.5. Let (Xn) be random variables with finite second moments. Then
there exists a constant c such that Xn → c in L2 when n → ∞ iff

1. E[Xn] → c when n → ∞

2. Var(Xn) → 0 when n → ∞.

This follows directly from the definition of L2 convergence.
The following lemma describes the relation between pairwise asymptotic inde-

pendence and the triangular law of large numbers.
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Lemma 2.2.6. Let M ∈ N, let Z = {ZM
m,i}m∈{1,...,M},i∈{1,...,K} be an array of integer

valued random variables verifying PAI(Z). Then, for all i, Zi = {ZM
m,i}m∈{1,...,M}

satisfies TLLN(Zi).

Proof. Let f : N → R be a function with compact support. We use Lemma 2.2.5.
We fix i ∈ {1, . . . , K} that we omit in the rest of the proof. We have

Var

(
1

M

M∑
n=1

f(ZM
n )

)
=

1

M2

(
M∑
n=1

Var
(
f(ZM

n )
)
+
∑
p ̸=q

cov[f(ZM
p ), f(ZM

q )]

)

=
1

M
Var

(
f(ZM

1 )
)
+

M(M − 1)

M2
cov[f(ZM

1 ), f(ZM
2 )],

the last equality holding by exchangeability between replicas. Both terms on the
right hand side go to 0 when M → ∞. For the first term, this follows from the
boundedness of f . For the second, we first show the result for indicator functions.
Let B ∈ B(R) and let f be defined by f(n) = 1I{n∈B}. Then we have

cov[f(ZM
1 ), f(ZM

2 )] = P(ZM
1 ∈ B,ZM

2 ∈ B)−P(ZM
1 ∈ B)P(ZM

2 ∈ B), (2.14)

which goes to 0 when M → ∞ by PAI(Z). This immediately extends to functions
with compact support since they only take a finite number of values. Moreover,
for all such functions, E[ 1

M

∑M
n=1 f(Z

M
n )] → E[f(Z̃)] when M → ∞ as a direct

consequence of the fact that for integer-valued random variables, convergence in
distribution of ZM to Z̃ is equivalent to the convergence P(ZM = k) → P(Z̃ = k)
for all k ∈ N. This concludes the proof.

For our subsequent needs, we also establish the following result: we show that
pairwise asymptotic independence implies a property that is slightly more general
than the triangular law of large numbers, where we allow the function f to depend
on an array of i.i.d. random variables U = {Um,i}n∈{1,...,M},i∈{1,...,K}, independent
from the rest of the dynamics.

Lemma 2.2.7. Let M ∈ N, let Z = {ZM
m,i}m∈{1,...,M},i∈{1,...,K} be an array of

integer valued random variables verifying PAI(Z). Then for all bounded functions
f : N×[0, 1] → R with compact support, for all i.i.d. sequences of random variables
U = {Um,i}m∈{1,...,M},i∈{1,...,K} independent from Z, there exists Ũ independent from

Z̃ and Z such that, for all i ∈ {1, . . . , K}, we have the following limit in L2:

lim
M→∞

1

M

M∑
m=1

f(ZM
m,i, Um,i) = E[f(Z̃, Ũ)]. (2.15)

Note that compared to Definition 2.2.4, we consider that the functions are
bounded, a condition that was automatically fulfilled for functions with compact
support on N.
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Proof. We proceed as in the last lemma, conditioning on the Um,i when necessary.
Let M ∈ N, let i ∈ {1, . . . , K}. We will omit this index in the rest of the proof.
By exchangeability between replicas, defining Ũ = U1, we have

E

[
1

M

M∑
m=1

f(ZM
m , Um)

]
= E[f(ZM

1 , U1)] = E[f(ZM
1 , Ũ)]

Since ZM
1 converges in distribution to Z̃ when M → ∞, and since ZM

1 is integer-
valued and f is bounded, for all u ∈ [0, 1],E[f(ZM

1 , u)] → E[f(Z̃, u)] when M →
∞.Therefore, since Ũ is independent from Z and Z̃, E[f(ZM

1 , Ũ)] → E[f(Z̃, Ũ)]
when M → ∞ a.s.. Finally,

E

[
1

M

M∑
m=1

f(ZM
m , Um)

]
→ E

[
f(Z̃, Ũ)

]
(2.16)

when M → ∞. Moreover,

Var

(
1

M

M∑
m=1

f(ZM
m , Um)

)

=
1

M2

M∑
m=1

Var
(
f(ZM

m , Um)
)
+

1

M2

∑
m ̸=m′

cov
[
f(ZM

m , Um), f(Z
M
m′ , Um′)

]
=

1

M
Var

(
f(ZM

1 , U1)
)
+

M(M − 1)

M2
cov

[
f(ZM

1 , U1), f(Z
M
2 , U2)

]
,

the last equality stemming from exchangeability between replicas. When M → ∞,
the first term goes to 0 because f is bounded. For the second term, since the {ZM

m }
and the {Um} are independent and the {Um} are i.i.d., we can proceed as above.
Namely, let B,C ∈ B(R). Let f be defined by f(m, t) = 1I{m∈B} 1I{t∈C} . Then we
have

cov[f(ZM
1 , U1), f(Z

M
2 , U2)]

= P(ZM
1 ∈ B,ZM

2 ∈ B,U1 ∈ C,U2 ∈ C)

−P(ZM
1 ∈ B,U1 ∈ C)P(ZM

2 ∈ B,U2 ∈ C)

=
(
P(ZM

1 ∈ B,ZM
2 ∈ B)−P(ZM

1 ∈ B)P(ZM
2 ∈ B)

)
P(U1 ∈ C)P(U2 ∈ C),

the last equality holding by independence between Z and {Um,i}m∈{1,...,M},i∈{1,...,K}.
The right hand term goes to 0 when M → ∞ by PAI(Z). This generalizes to
bounded functions with compact support, which concludes the proof.
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Main result

Our goal is to show that if X = {XM
m,i} are asymptotically independent, then

Y = {Y M
m,i} are as well. In other words, if we choose initial conditions that verify

a certain property, this property will hold by induction at any finite discrete time.

Theorem 2.2.8. Let M ∈ N, let X = {XM
m,i}m∈{1,...,M},i∈{1,...,K} be an array of in-

teger valued random variables (the “state variables”). Suppose that PAI(X) holds.
Then PAI(Y ) holds as well, where Y is defined by (2.9). Moreover, the arrivals
to a given node AM

m,i converge in distribution to a Poisson random variable when
M → ∞.

Note that the result depends on a choice of initial conditions verifying PAI(X),
a typical example of which is i.i.d. initial conditions stable in law, in the sense
that their law does not depend on M . The question of whether given an arbitrary
initial condition, the dynamics become pairwise asymptotically independent after
some (finite or infinite) amount of time, is still open. Note also that this shows
that we have convergence in distribution of the exchangeable variables {Y M

m } when
M → ∞.

2.2.3 The proof

In the following proof, since K is always finite and all considered random vari-
ables are exchangeable, as above, we will sometimes omit the neuron index i ∈
{1, . . . , K} in order to simplify notation. Tilde superscripts will refer to objects in
the infinite replica limit. Hat superscripts will refer to fragmentation processes.

Step one: fragmentation

Lemma 2.2.9. Let X̂ = {X̂M
m,i = XM

m,i 1I{Um,i>σ(XM
m,i)}}. Then PAI(X) implies

PAI(X̂).

Proof. We have for u, v ∈ [0, 1],

E[uX̂M
1 vX̂

M
2 ] =

∑
k,l∈N

P(X̂M
1 = k, X̂M

2 = l)ukvl. (2.17)

For k, l > 0, we have

P(X̂M
1 = k, X̂M

2 = l) = P(XM
1 = k,XM

2 = l)(1− σ(k))(1− σ(l)). (2.18)
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Similarly,

P(X̂M
1 = k, X̂M

2 = 0) =
∑
l∈N

P(XM
1 = k,XM

2 = l)(1− σ(k))σ(l),∀k > 0

P(X̂M
1 = 0, X̂M

2 = 0) =
∑
k,l∈N

P(XM
1 = k,XM

2 = l)σ(k)σ(l).

Since PAI(X) holds, for all k, l ∈ N, P(XM
1 = k,XM

2 = l) → P(X̃ = k)P(X̃ = l)
when M → ∞. Since all considered functions are bounded by 1, we have that for
all k, l ∈ N,

P(X̂M
1 = k, X̂M

2 = l) → P(
˜̂
X = k)P(

˜̂
X = l)

when M → ∞, where
˜̂
X = X̃ 1I{U>σ(X̃)} . This shows that

E[uX̂M
1 vX̂

M
2 ] → E[u

˜̂
X ]E[v

˜̂
X ] (2.19)

when M → ∞, which concludes the proof.

Step two: asymptotic behavior of the arrivals processes

We now show that the number of arrivals AM
m,i defined in (2.10) is asymptotically

Poisson as the number of replicas goes to infinity. This is precisely the Poisson
Hypothesis introduced in [51].

Lemma 2.2.10. Supposing that PAI(X) holds, when M → ∞, we have the con-
vergence in distribution AM

m,i → Poi((K − 1)θ) where θ = E[σ(X̃)].

Proof. Let z ∈ [0, 1]. Then

E[zA
M
m,i ] = E

[
z

∑
n ̸=m

∑
j ̸=i 1I{Un,j<σ(XM

n,j
)} 1I{RM

(n,j)→i
=m}

]
= E

[∏
n̸=m

∏
j ̸=i

E

[
z
1I{Un,j<σ(XM

n,j
)} 1I{RM

(n,j)→i
=m}

∣∣∣∣XM
n,j, U

]]

= E

[∏
n̸=m

∏
j ̸=i

((
1− 1

M − 1

)
+

1

M − 1
z
1I{Un,j<σ(XM

n,j
)}

)]

= E

e∑n ̸=m

∑
j ̸=i log

(
1− 1

M−1

(
1−z

1I
{Un,j<σ(XM

n,j
)}
)) .
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We now give an upper and lower bound for this expression. Since log(1−x) ≤ −x
for x ≤ 1, we have

E
[
zA

M
m,i

]
≤ E

e− 1
M−1

∑
n ̸=m

∑
j ̸=i

(
1−z

1I
{Un,j<σ(XM

n,j
)}
) .

Using the generalized TLLN given in Lemma 2.2.7,

1

M − 1

∑
n ̸=m

∑
j ̸=i

(1− z
1I{Un,j<σ(XM

n,j
)}) → (K − 1)(1− Φ(z))

in L2 when M → ∞ with Φ(z) = E[z1IU<σ(X̃) ], where U is any Un,j.

We have Φ(z) = z
∫ 1

0
P(σ(X̃) > t) dt+ (1−

∫ 1

0
P(σ(X̃) > t) dt) = (z − 1)θ + 1.

Therefore, since L2 convergence implies convergence in distribution and thus
convergence of the Laplace transforms,

E

e− 1
M−1

∑
n̸=m

∑
j ̸=i

(
1−z

1I
{Un,j<σ(XM

n,j
)}
)→ e−θ(1−z)(K−1)

when M → ∞. Thus,

lim sup
M→∞

E[zA
M
m,i ] ≤ e−θ(1−z)(K−1). (2.20)

Similarly, since log(1− x) ≥ −x− x2

2
for x ≤ 1, we have

E
[
zA

M
m,i

]
≥E

[
e
− 1

M−1

∑
n ̸=m

∑
j ̸=i

(
1−z

1I
{Un,j<σ(XM

n,j
)}
)

e
− 1

2(M−1)2

∑
n̸=m

∑
j ̸=i

(
1−z

1I
{Un,j<σ(XM

n,j
)}
)2]

.

Using once again Lemma 2.2.7, as the second term goes to 0 when M → ∞, by
the same reasoning as previously, we get

lim inf
M→∞

E[zA
M
m,i ] ≥ e−θ(1−z)(K−1). (2.21)

Combining (2.20) and (2.21), the result follows.

Now, we show that the arrivals to different replicas become pairwise asymp-
totically independent:
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Lemma 2.2.11. For all (m, i) ̸= (n, j), AM
m,i and AM

n,j are pairwise asymptotically
independent.

Proof. We first show the result in the case m ̸= n and i ̸= j. Let u, v ∈ [0, 1].
Then

E
[
uAM

m,ivA
M
n,j

]
=E

[
u

∑
m′ ̸=m,i′ ̸=i 1I{Um′,i′<σ(XM

m′,i′
)} 1I{RM

(m′,i′)→i
=m}

v

∑
n′ ̸=n,j′ ̸=j 1I{Un′,j′<σ(XM

n′,j′
)} 1I{RM

(n′,j′)→j
=n}
]

=E

[ ∏
m′ ̸=m,i′ ̸=i

u
1I{Um′,i′<σ(XM

m′,i′
)} 1I{RM

(m′,i′)→i
=m}

∏
n′ ̸=n,j′ ̸=j

v
1I{Un′,j′<σ(XM

n′,j′
)} 1I{RM

(n′,j′)→j
=n}
]

=E

[
E

[ ∏
m′ ̸=m,i′ ̸=i

u
1I{Um′,i′<σ(XM

m′,i′
)} 1I{RM

(m′,i′)→i
=m}

∏
n′ ̸=n,j′ ̸=j

v
1I{Un′,j′<σ(XM

n′,j′
)} 1I{RM

(n′,j′)→j
=n}

∣∣∣∣XM , U

]]

=E

[ ∏
m′ ̸=m,i′ ̸=i

[(
1− 1

M − 1

)
+

1

M − 1
u
1I{Um′,i′<σ(XM

m′,i′
)}

]
∏

n′ ̸=n,j′ ̸=j

[(
1− 1

M − 1

)
+

1

M − 1
v
1I{Un′,j′<σ(XM

n′,j′
)}

] ]

= E

[
e

∑
m′ ̸=m,i′ ̸=i log

(
1− 1

M−1

(
1−u

1I
{Um′,i′<σ(XM

m′,i′
)}
))

e

∑
n′ ̸=n,j′ ̸=j log

(
1− 1

M−1

(
1−v

1I
{Un′,j′<σ(XM

n′,j′
)}
))]

.

The fourth equality above comes from the independence between the routing vari-
ables RM .

Just as in the proof of Lemma 2.2.10, we can give upper and lower bounds of
the last right-hand side expression:

E
[
uAM

m,ivA
M
n,j

]
≤ E

e− 1
M−1

∑
m′ ̸=m,i′ ̸=i

(
2−u

1I
{Um′,i′<σ(XM

m′,i′
)}
−v

1I
{Um′,i′<σ(XM

m′,i′
)}
)
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and

E
[
uAM

m,ivA
M
n,j

]
≥ E

[
e
− 1

M−1

∑
m′ ̸=m,i′ ̸=i

(
2−u

1I
{Um′,i′<σ(XM

m′,i′
)}
−v

1I
{Um′,i′<σ(XM

m′,i′
)}
)

· e
− 1

2(M−1)2

∑
m′ ̸=m,i′ ̸=i

(
2−u

1I
{Um′,i′<σ(XM

m′,i′
)}
−v

1I
{Um′,i′<σ(XM

m′,i′
)}
)2]

.

The last right-hand side expression goes to e(1−u+1−v)(K−1)θ when M → ∞ in both
cases, as previously. The result follows from these two bounds as in the proof of
Lemma 2.2.10.

The case where m = n, i.e., when we consider the arrivals to two different
neurons in the same replica, is done in the same way since the routing variables
are independent from the neurons chosen. The case where i = j, i.e. when we
consider the arrivals to the same neuron in two different replicas, is treated in the
same way, with the extra step of isolating the terms that are not independent from
each other.

Step three: propagation of pairwise asymptotic independence

Our goal is now to combine the previous results to show that PAI(Y ) holds, as-
suming PAI(X). We have that for all i ∈ {1, . . . , K} and all m ∈ {1, . . . ,M},
Y M
m,i = X̂M

m,i + AM
m,i. We call Ã the limit in distribution of AM

m,i (it is Poisson
distributed by the previous lemma). It is clear that by exchangeability between
replicas, we only require the following lemma:

Lemma 2.2.12. For i, j ∈ {1, . . . , K},

E[uY M
1,i , vY

M
2,j ] → E[uỸ ]E[vỸ ] (2.22)

when M → ∞, where Ỹ =
˜̂
X + Ã.
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Proof. Let u, v ∈ [0, 1]. Then, given i, j ∈ [1, K], with i ̸= j,

E
[
uY M

1,i vY
M
2,j

]
=E

[
uX̂M

1,ivX̂
M
2,ju

∑
m′ ̸=1,i′ ̸=i 1I{Um′,i′<σ(XM

m′,i′
)} 1I{RM

(m′,i′)→i
=1}

v

∑
n′ ̸=2,j′ ̸=j 1I{Un′,j′<σ(XM

n′,j′
)} 1I{RM

(n′,j′)→j
=2}
]

=E

[
uX̂M

1,ivX̂
M
2,j

∏
m′ ̸=1,i′ ̸=i

u
1I{Um′,i′<σ(XM

m′,i′
)} 1I{RM

(m′,i′)→i
=1}

∏
n′ ̸=2,j′ ̸=j

v
1I{Un′,j′<σ(XM

n′,j′
)} 1I{RM

(n′,j′)→j
=2}
]

=E

[
E

[
uX̂M

1,ivX̂
M
2,j

∏
m′ ̸=1,i′ ̸=i

u
1I{Um′,i′<σ(XM

m′,i′
)} 1I{RM

(m′,i′)→i
=1}

∏
n′ ̸=2,j′ ̸=j

v
1I{Un′,j′<σ(XM

n′,j′
)} 1I{RM

(n′,j′)→j
=2}

∣∣∣∣XM , U

]]

=E

[
uX̂M

1,ivX̂
M
2,j

∏
m′ ̸=1,i′ ̸=i

(
1

M − 1
u
1I{Um′,i′<σ(XM

m′,i′
)}
+

(
1− 1

M − 1

))
∏

n′ ̸=2,j′ ̸=j

(
1

M − 1
v
1I{Un′,j′<σ(XM

n′,j′
)}
+

(
1− 1

M − 1

))]
=E

[
φM
1 (u, v)φM

2 (u, v)
]
,

where

φM
1 (u, v) =uX̂M

1,i

(
1− 1

M − 1
+

1

M − 1
v
1I{U1,i<σ(XM

1,i
)}

)
vX̂

M
2,j

(
1− 1

M − 1
+

1

M − 1
u
1I{U2,j<σ(XM

2,j
)}

)
and

φM
2 (u, v) =e

∑
m′ ̸=1;i′ ̸=i;(m′,i′ )̸=(2,j) log

(
1− 1

M−1

(
1−u

1I
{Um′,i′<σ(XM

m′,i′
)}
))

e

∑
n′ ̸=2;j′ ̸=j;(n′,j′ )̸=(1,i) log

(
1− 1

M−1

(
1−v

1I
{Un′,j′<σ(XM

n′,j′
)}
))

.

When M → ∞, by Lemmas 2.2.9 and 2.2.11, φM
1 (u, v) and φM

2 (u, v) are pair-
wise asymptotically independent. Since in φM

2 (u, v), the contribution of the miss-
ing terms in the sum is negligible, when M → ∞, we have

E
[
φM
1 (u, v)φM

2 (u, v)
]
→ E

[
u

˜̂
X
]
E
[
v

˜̂
X
]
E
[
uÃ
]
E
[
vÃ
]
. (2.23)
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This shows that (2.22) holds.

Thus, PAI(X) implies PAI(Y ), which concludes the proof of the theorem. Note

that Lemma 2.2.12 also shows that
˜̂
X and Ã are independent.

2.2.4 The symmetric
fragmentation-interaction-aggregation process

Our goal is to show that propagation of chaos and the Poisson Hypothesis hold
in the more general setting of symmetric FIAPs under mild hypotheses on the
dynamics of the system. The symmetrical evolution equations read

Yi = g1(Xi) 1I{Ui<σ(Xi)}+g2(Xi) 1I{Ui>σ(Xi)}+Ai (2.24)

where
Ai =

∑
j ̸=i

h(Xj) 1I{Uj<σ(Xj)} (2.25)

and g1, g2, h : N → N are functions such that h is bounded.
We now introduce the corresponding replica dynamics. Let {XM

m,i} be the
integer-valued state variables at step 0, where m ∈ {1, . . . ,M} and i ∈ {1, . . . , K}.
Let {Y M

m,i} be the integer-valued state variables at time one. Let {Um,i} be i.i.d.
random variables independent from {XM

m,i} uniformly distributed in [0, 1]. We
introduce again the i.i.d. routing variables RM

(n,j)→i, independent from {Um,i} and

{XM
m,i} and uniformly distributed in {1, . . . ,M} \ {n}. The M -replica equations

read:

Y M
m,i = g1(X

M
m,i) 1I{Um,i<σ(XM

m,i)}+g2(X
M
m,i) 1I{Um,i>σ(XM

m,i)}+AM
m,i, (2.26)

where
AM

m,i =
∑
n̸=m

∑
j ̸=i

h(XM
n,j) 1I{Un,j<σ(XM

n,j)} 1I{RM
(n,j)→i

=m} (2.27)

is the number of arrivals in node i of replica m.
We also recall the definition of a compound Poisson distribution:

Definition 2.2.13. The random variable X is said to follow a compound Pois-
son distribution if there exist a Poisson(λ) random variable N and i.i.d. random
variables (Xi)i∈N⋆ independent from N such that X =

∑N
i=1 Xi. The generating

function of X, denoted φX , is given by

φX(t) = eλ(φ(t)−1), (2.28)

where φ(t) is the generating function of X1.
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We have the following theorem:

Theorem 2.2.14. For all symmetric RMF FIAP dynamics, PAI(X) implies
PAI(Y ). Moreover, the arrivals to a given node are asymptotically compound Pois-
son distributed.

We will require the following lemmas. The following result replaces Lemma
2.2.9:

Lemma 2.2.15. Let X̂1 = {X̂1,M
m,i = g1(X

M
m,i) 1I{Um,i<σ(XM

m,i)}}.
Let X̂2 = {X̂2,M

m,i = g2(X
M
m,i) 1I{Um,i>σ(XM

m,i)}}. Then PAI(X) implies PAI(X̂1),

PAI(X̂2) and PAI(X̂), where X̂ = X̂1 + X̂2.

Proof. We proceed exactly as in Lemma 2.2.9. We write here only the proof for
X̂2, the others being identical except for the numerical expressions involved. We
have for u, v ∈ [0, 1],

E[uX̂2,M
1 vX̂

2,M
2 ] =

∑
k,l∈N

P(X̂2,M
1 = k, X̂2,M

2 = l)ukvl. (2.29)

For k, l > 0, we have

P(X̂2,M
1 = k, X̂2,M

2 = l) =
∑
p,q∈N

P(g2(X
M
1 ) = k, g2(X

M
2 ) = l, XM

1 = p,XM
2 = q)

(1− σ(p))(1− σ(q)).

(2.30)

Since PAI(X) holds,

P(g2(p) = k, g2(q) = l, XM
1 = p,XM

2 = q) → P(X̃ = p, g2(p) = k)P(X̃ = q, g2(q) = l)

when M → ∞. Hence, E[uX̂2,M
1 vX̂

2,M
2 ] → E

[
ug2(X̃) 1I{U<σ(X̃)}

]
E
[
vg2(X̃) 1I{U<σ(X̃)}

]
when M → ∞. The cases where k and/or l are equal to 0 are handled in the same
way. This proves the result.

We now prove the following result, which replaces Lemma 2.2.10:

Lemma 2.2.16. Supposing that PAI(X) holds, when M → ∞, we have the conver-
gence in distribution AM

m,i → Ã, where Ã follows a compound Poisson distribution.

Proof. We still have, just like in the proof of Lemma 2.2.10, that for z ∈ [0, 1], i ∈
{1, . . . , K},m ∈ {1, . . . ,M},

E
[
zA

M
m,i

]
= E

e∑n ̸=m

∑
j ̸=i log

1− 1
M−1

1−z
h(XM

n,j) 1I{Un,j<σ(XM
n,j

)}

 . (2.31)
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Using the same arguments as before, we have when M → ∞

E
[
zA

M
m,i

]
→ e(K−1)(Φ(z)−1), (2.32)

where Φ(z) = E
[
zh(X̃) 1I{U<σ(X̃)}

]
, which is precisely of the form (2.28), that is, a

generating function of a random variable with a compound Poisson distribution.

We now combine these results to prove Theorem 2.2.14.

Proof. We follow the outline of the previous section. Lemmas 2.2.5, 2.2.6 and
2.2.7 still apply as previously. Lemma 2.2.15 replaces Lemma 2.2.9. Lemma 2.2.16
replaces Lemma 2.2.10. Lemmas 2.2.11 and 2.2.12 still hold, with only differences
in the limiting expressions.

2.2.5 The general fragmentation-interaction-aggregation
process

The previously introduced exchangeable dynamics allow for simpler computations
at the expense of realistic modeling. For example, neuron populations are not
homogeneous and are not fully connected. In order to account for such a geometry,
we now generalize the previous result to the case where the functions governing
the information received by a node when another node activates depend on the
nodes involved. Specifically, recall the class C of discrete FIAP defined in Section
1.

For any process in C, we can define a replica mean field model as in the previous
sections: we consider a collection of M identically distributed replicas of a set of
K nodes, which could be neurons, particles, queues or other objects, depending
on context. As previously, let {XM

m,i} be the integer-valued state variables at
step 0, where m ∈ {1, . . . ,M} and i ∈ {1, . . . , K}. Let {Y M

m,i} be the integer-
valued state variables at time one. Let {Um,i} be uniformly distributed on [0, 1]
i.i.d. random variables independent from {XM

m,i}. Let {RM
(n,j)→i} be i.i.d. routing

random variables independent from {XM
m,i} and {Um,i}, uniformly distributed on

{1, . . . ,M} \ {n} for all i, j ∈ {1, . . . , K} and n ∈ {1, . . . ,M}. Recall that the
M -RMF equations read

Y M
m,i = g1,i(X

M
m,i) 1I{Um,i<σi(XM

m,i)}+g2,i(X
M
m,i) 1I{Um,i>σi(XM

m,i)}+AM
m,i, (2.33)

where
AM

m,i =
∑
n̸=m

∑
j ̸=i

hj→i(X
M
n,j) 1I{Un,j<σj(XM

n,j)} 1I{RM
(n,j)→i

=m} (2.34)
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is the number of arrivals in node i of replica m. We now show that the result
from the previous section carries over to this more general setting with only minor
modifications.

First, we must slightly modify the definition of pairwise asymptotic indepen-
dence in order to take into account the dependence on the node of the limiting
distribution. As a simplification, we keep the same notations for this modified
definition.

Definition 2.2.17. Given M ∈ N, given an array of integer-valued random vari-
ables Z = {ZM

m,i}1≤m≤M,1≤i≤K such that for all fixed M , the random variables ZM
m,i

are exchangeable in m, we say that the variables ZM
m,i are pairwise asymptotically

independent, which we will denote PAI(Z), if there exist integer-valued random
variables (Z̃i)i∈{1,...,K} such that ∀(m, i) ̸= (n, j),∀u, v ∈ [0, 1],

lim
M→∞

E[uZM
m,ivZ

M
n,j ] = E[uZ̃i ]E[vZ̃j ]. (2.35)

For clarity of exposition, we also recall here the definition of the triangular law
of large numbers, even though it is left unchanged:

Definition 2.2.18. Given M ∈ N, given an array of integer-valued random vari-
ables Z = {ZM

m }m∈{1,...,M} such that for all fixed M , the random variables ZM
m

are exchangeable in m, we say that Z verifies the triangular law of large num-
bers TLLN(Z) if there exist an integer-valued random variable Z̃ such that for all
functions f : N → R with compact support, we have the following limit in L2:

lim
M→∞

1

M

M∑
m=1

f(ZM
m ) = E[f(Z̃)]. (2.36)

Then, we obtain the same result:

Theorem 2.2.19. Using previously defined notations, PAI(X) implies PAI(Y ).
Moreover, the arrivals to a given node are asymptotically compound Poisson dis-
tributed and are independent of the states of the nodes.

We once again require the following lemmas for the proof.
We replace Lemma 2.2.7 with the following similar result, taking into account

the fact that the limiting distribution now depends on the node:

Lemma 2.2.20. Let M ∈ N, let Z = {ZM
m,i}m∈{1,...,M},i∈{1,...,K} be an array of

integer valued random variables verifying PAI(Z). Then for all bounded functions
f : N×[0, 1] → R with compact support, for all i.i.d. sequences of random variables
U = {Um,i}m∈{1,...,M},i∈{1,...,K} independent from Z, there exists U independent from
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(Z̃i)i∈{1,...,K} and Z such that for all i ∈ {1, . . . , K}, we have the following limit in
L2:

lim
M→∞

1

M

M∑
m=1

f(ZM
m,i, Um,i) = E[f(Z̃i, U)]. (2.37)

The proof is exactly the same as for Lemma 2.2.6.
We must replace Lemma 2.2.10 with the following result:

Lemma 2.2.21. Supposing that PAI(X) holds, when M → ∞: AM
m,i → Ãi in

distribution, where Ãi follows a compound Poisson distribution.

Proof. We have for z ∈ [0, 1], i ∈ {1, . . . , K},m ∈ {1, . . . ,M}, that

E
[
zA

M
m,i

]
= E

e∑n ̸=m

∑
j ̸=i log

1− 1
M−1

1−z
hj→i(X

M
n,j) 1I{Un,j<σj(X

M
n,j

)}

 . (2.38)

Using the same arguments as before, we have when M → ∞

E
[
zA

M
m,i

]
→ eΦi(z), (2.39)

where Φi(z) = −
∑

j ̸=i E
[
1− z

hj→i(X̃i) 1I{U<σj(X̃i)}
]
. Therefore,

E
[
zA

M
m,i

]
→ e

−
∑

j ̸=i

(
1−E

[
z
hj→i(X̃i) 1I{U<σj(X̃i)}

])
. (2.40)

The expression is of the form (2.28), which proves Lemma 2.2.21.

We now prove Theorem 2.2.19.

Proof. We use the same reasoning as previously.
Lemma 2.2.6 still holds (the replicas are still exchangeable, only the nodes are

not). Lemma 2.2.20 replaces Lemma 2.2.7. Since the functions g1,i and g2,i only
depend on the node and not on the replica index, an equivalent result to Lemma
2.2.15 still holds. Lemma 2.2.10 is replaced by Lemma 2.2.21. For asymptotic
independence, we have, using the same arguments as in the proof of Lemma 2.2.11,
that for u, v ∈ [0, 1], for m ̸= n and i ̸= j,

E
[
uAM

m,ivA
M
n,j

]
→ e

−
∑

i′ ̸=i

(
1−E

[
u
hi,i′ (X̃i) 1I{U<σj(X̃i)}

])
−
∑

j′ ̸=j

(
1−E

[
v
hj,j′ (X̃j) 1I{U<σi(X̃j)}

])
,

(2.41)
when M → ∞. The other cases (m = n and i = j) are also valid. Lemma 2.2.12
also still holds, with only minor differences in the limit expressions.
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Note that once again, this proves that the limit processes
˜̂
Xi and Ãj are inde-

pendent for all i, j ∈ {1, . . . , K}.
As an application, let us apply this result to the model from Section 2 with

the addition of nonexchangeable interactions. Namely, we consider hj→i(X
M
m,j) =

µj→i with µj→i ∈ N (potentially zero). In this case, Theorem 2.2.19 proves the
propagation of chaos in this system, and the limit distributions of arrivals at the
different nodes are characterized by, for i ∈ {1, . . . , K} and z ∈ [0, 1],

E
[
zÃi

]
= eθi

∑
j ̸=i(z

µj→i−1) =
∏
j ̸=i

eθi(z
µj→i−1), (2.42)

where θi = E
[
σi(X̃i)

]
. Note that as expected, when all µj→i are equal to one, we

obtain the result from Section 2.

2.2.6 Extensions

There are several ways of extending the FIAP framework while preserving the
basic properties proved in the present paper (propagation of chaos and Poisson
Hypothesis). We decided not to include them in the general framework in order
to keep notation and exposition light. A few natural extensions of this type are
nevertheless discussed below.

Random Interactions The functions hj→i(k) can be replaced by randomized
functions of the type hj→i(k, Vi,j) where the random variables {Vi,j}1≤i,j≤K are
uniform in [0, 1] and i.i.d.. This allows one to represent, e.g., the queuing theory
scenario where a customer leaving a queue is randomly routed to an other queue
of the network according to some stochastic routing matrix {pj,i}1≤i,j≤K , namely a
customer leaving queue i is routed to queue j with probability pj,i. If the random
variables {Vi,j} are independent of {Xi}i, then the main results still hold.

Time in-homogeneous dynamics The general setting of the paper implicitly
suggests to use the same (activation, fragmentation, and interaction) functions at
all time steps for a given node. There is no difficulty extending the results to the
time in-homogeneous case where these functions depend on the time step. In the
neural network case, this for instance happens in certain learning dynamics where
the synaptic weights evolve over time.

Exogenous input and output To the endogenous arrivals Ai to node i given
in Equation (2.3), we add arbitrary exogenous arrivals Bi ∈ N. In the special care
where the random variables {Bi} are independent, Poisson, and independent of
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the state variables {Xi}i then the same results still hold. Note that one can also
define an exogenous output for node i through the relation

Di = ho,i(Xi) 1I{Ui<σi(Xi)} ,

where ho,i is a given output function N → N.
Exogenous input point processes are needed for modeling reasons in a variety

of contexts (e.g., to represent requests from end-users in a computer network, or
input signals from sensors in a neural network). Exogenous output processes are
useful in, e.g., a two-layer network where the first layer feeds the second one, but
not conversely. Exogenous input and output point processes are instrumental in
the partition scheme of the vector state example discussed below. In that example,
the exogenous input variables are neither necessarily Poisson nor independent.

Vector State - Example This extension is first described through a simple
neural network example. We partition the set of neurons of a discrete Galves-
Löcherbach network in pairs (this assumes that K is even). Each pair of the
partition is a node of the network. If (i, j) is one of these nodes, it has a two-
dimensional vector state (Xi, Xj) (rather than a one dimensional state in the initial
model). We let this pair (as well as each other pair in the partition) evolve as
a two-node Galves-Löcherbach network with some vector exogenous input and
output. More precisely, conditionally on (Xi, Xj) = (k, l), neurons i and j spike
independently with probability σi(k) and σj(l) respectively. If none of them spikes,
the state (Zi, Zj) after its endogenous evolution is still (Xi, Xj). If only i (resp.
j) spikes and the other neuron of the pair does not spike, then (Zi, Zj) is equal
(0, Xj + rj,i) (resp. (Xi + ri,j, 0)). If both spike, then (Zi, Zj) = (ri,j, rj,i), with
rk,l equal to 1 of there is a directed edge from l to k and 0 otherwise. Therefore,
if (Bi, Bj) denotes the vector exogenous input, the state of this pair at time one
is (Zi + Bi, Zj + Bj), by combining the endogenous evolution and the exogenous
arrivals.

Define now the exogenous output of type k /∈ {i, j} of node (i, j) by

Dk(i, j) = 1I{Ui<σi(Xi)} rk,i + 1I{Uj<σj(Xj)} rk,j, (2.43)

The extension of interest here is that where we take the following exogenous input
to node (i, j):

Bi =
∑

k/∈{i,j}

Di(k, l(k)) 1I{k<l(k)}, Bj =
∑

k/∈{i,j}

Dj(k, l(k)) 1I{k<l(k)}, (2.44)

with l(k) the neuron paired with k.
Note that with this definition, when neuron i spikes, the effect on pair (k, l)

with l = l(k) is as follows: no effect if rk,i = rl,i = 0; one arrival in k and none in
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l (resp. one in l and none in k) if rk,i = 1 and rl,i = 0 (resp. rl,i = 1 and rk,i = 0);
a simultaneous arrival in both l and k otherwise. This defines a network which
does not belong to the FIAP class, were it only because the state is now a vector.
The M -RMF model features M replicas of this network with K/2 (vector state)
nodes each. In this M -RMF model, the exogenous output of node/pair (i, j) in
replica m is randomly sent to a replica chosen at random. More precisely, for all
exogenous output type k paired with l,

Dm
k (i, j) = 1I{Um

i <σi(Xm
i )} rk,i + 1I{Um

j <σj(Xm
j )} rk,i,

(resp. Dm
l (i, j) = 1I{Um

i <σi(Xm
i )} rl,i + 1I{Um

j <σj(Xm
j )} rl,i)

units are sent to k (resp. l) of another replica selected uniformly at random where
they are aggregated to the coordinates of the state variable of this pair. It can be
shown that when M tends to infinity, (1) the random state vectors (Xm

i , Xm
j ) and

(Xm
i′ , X

m
j′ ), where (i, j) and (i′, j′) are two different pairs, are asymptotically inde-

pendent (although the two coordinates of each vector are in general dependent);
(2) the exogenous arrivals to any coordinate of a pair in a typical replica tends to
an independent compound Poisson variable.

Vector State - General Case Consider a FIAP F with K nodes. Let
S1, S2, . . . , Sl be a partition of [1, . . . , K]. Let Kp, 1 ≤ p ≤ l denote the cardinality
of set Sp, and let Fp be the restriction of F to the coordinates of Sp. Let Fp be the
FIAP combining the endogenous dynamics of Fp and exogenous input (Bp,i, i ∈
Sp). Let Xp,i denote the state variables in Fp. For all k /∈ Sp, define the exogenous
output of type k of Fp as

Dp(k) =
∑
i∈Sp

1I{Up,i<σi(Xp,i)} hk,i(Xp,i). (2.45)

Note that Dp(k) is also what coordinate k receives as exogenous input from Sp.
That is, if we take

Bp,i =
∑
q ̸=p

Dq(i), i ∈ Sp, (2.46)

we get another (more complex) representation of the dynamics of F based on the
point processes describing the interactions between the sets of the partition. The
M -RMF model associated with this partition features M replicas of this network
with q (vector state) nodes each. In this M -RMF model, the exogenous output
of node i ∈ Sp of replica m is randomly sent to replicas chosen at random. More
precisely, for all q ̸= p, the vector (Dm

p (k), k ∈ Sq), with Dm
p (k) defined as in

(2.45), is sent to one replica chosen at random, and this is done independently for
all q ̸= p. This in turn defines new exogenous input point processes Bm

p,i as in
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(2.46). Let (Xm
p,i, i ∈ Sp, p = 1, . . . , l, m = 1, . . . ,M) denote the state variables

in this M -RMF model. It can be shown that, when M tends to infinity,

1. for all p ̸= q, the random state vectors (Xm
p,i, i ∈ Sp) and (Xm

q,j, j ∈ Sq), are
asymptotically independent (although the coordinates of each vector are in
general dependent);

2. for all p, and for all m, the exogenous arrivals (Bm
p,i, i ∈ Sp) to set Sp tend to

an independent multivariate compound Poisson variable with multivariate
generating function

exp

∑
q ̸=p

∑
ni∈N,i∈Sq

∑
s⊂Sq

πq,s,(ni)

1−
∏
i∈s

∏
k∈Sq

z
hk,i(ni)

k

 .

In this last equation,

πq,s,(ni) = P[X̃q,i = ni, i ∈ Sq]
∏
j∈s

σj(nj)
∏

j′∈Sq\s

(1− σj′(nj′)),

where (X̃q,i) denotes random variables with the limiting joint distribution
assumed in the vector generalization of PAI.

Conclusion

A new class of discrete time dynamics involving point process based interactions
between interconnected nodes was introduced. The Poisson Hypothesis was proved
for the RMF version of such dynamics. The proof is based on the property of pair-
wise asymptotic independence between replicas and is by induction over time.
The key point is that randomized routing decisions on exchangeable events which
are asymptotically independent lead to Poisson point processes. As for future re-
search, a natural question is whether these results extend to continuous-time and
continuous-space versions of FIAP dynamics. The extension to continuous-time
FIAPs will follow from similar arguments as presented here under the condition
that the replica-limit/time-limit diagram commutes for FIAPs. The extension to
continuous-space FIAPs appears to require distinct analytical tools than those pre-
sented here. Finally, another question of interest is whether the Poisson Hypothesis
can be shown for the RMF limits of other classes of systems besides FIAPs.





Chapter 3

Replica-mean-field limits for
continuous-time processes

3.1 Introduction

This chapter consists of two articles, [27] and [28]. The first has been accepted in
Annals of Applied Probability and both are available on ArXiv. They can be seen
as companion papers, as the second aims to generalize the results proven in the
first in a wider framework. Once again, notation has been slightly modified for
harmonization purposes.

3.1.1 Replica-mean-field limits for intensity-based neural
networks: abstract

Abstract

Neural computations arising from myriads of interactions between spik-
ing neurons can be modeled as network dynamics with punctuate interac-
tions. However, most relevant dynamics do not allow for computational
tractability. To circumvent this difficulty, the Poisson Hypothesis regime
replaces interaction times between neurons by Poisson processes. We prove
that the Poisson Hypothesis holds at the limit of an infinite number of repli-
cas in the replica-mean-field model, which consists of randomly interacting
copies of the network of interest. The proof is obtained through a novel ap-
plication of the Chen-Stein method to the case of a random sum of Bernoulli
random variables and a fixed point approach to prove a law of large numbers
for exchangeable random variables.

73



74
CHAPTER 3. REPLICA-MEAN-FIELD LIMITS FOR CONTINUOUS-TIME

PROCESSES

3.1.2 Replica-mean-field limit of continuous-time
fragmentation-interaction-aggregation processes:
abstract

Abstract

Many phenomena can be modeled as network dynamics with punctuate
interactions. However, most relevant dynamics do not allow for compu-
tational tractability. To circumvent this difficulty, the Poisson Hypothesis
regime replaces interaction times between nodes by independent Poisson
processes, allowing for tractability in several cases, such as intensity-based
models from computational neuroscience. This hypothesis is usually only
conjectured, or numerically validated. In this work, we introduce a class of
processes in continuous time called continuous fragmentation-interaction-
aggregation processes, by analogy with previously introduced processes in
discrete time. The state of each node, described by the stochastic intensity
of an associated point process, aggregates arrivals from its neighbors and is
fragmented upon departure. We consider the replica-mean-field version of
such a process, which is a physical system consisting of randomly interact-
ing copies of the network of interest. Generalizing results proved in discrete
time and in the particular case of excitatory intensity-based neural dynam-
ics, we prove that the Poisson Hypothesis holds at the limit of an infinite
number of replicas.

3.2 Replica-mean-field limits for

intensity-based neural networks

3.2.1 Introduction

Many phenomena in a variety of fields can be modeled as punctuate interactions
between agents. Whether it be opinion dynamics [4], epidemics propagation [65],
flow control on the internet [7] or neural computations [73], an agent-based ap-
proach is a versatile way to describe the phenomenon of interest through the
behavior of each agent.

In such an approach, each agent is seen as a node in a network in which edges
represent the possibility of interactions, and point processes associated to each
node register the times at which these interactions happen. These point processes
idealize the stochasticity inherent in the phenomena of interest. The state of the
system can then be given by a set of stochastic differential equations, each describ-
ing the state of an agent. In intensity-based models, used extensively for example
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in computational neuroscience [77], [68], this state is given by the stochastic inten-
sity of the point process associated with the agent. Neuronal stochastic intensities
model the instantaneous firing rate of a neuron as a function of the spiking inputs
received from other neurons.

However, the versatility of this ”microscopic” approach comes at a cost, namely,
that of computational tractability. Indeed, except for the simplest network archi-
tectures, such as systems of 1 or 2 agents, an analytical expression characterizing
the law of the GL model in the stationary regime is not in general available. To
go beyond numerical simulations, it then becomes imperative to resort to some
simplifying assumption.

As the complexity of the dynamics resides in the dependencies between agents
due to interactions, it is natural to choose a simplified model in which the agents
are considered independent. One such classical approach is called the mean-field
regime. Introduced originally by McKean [60] and developed, among others, by
Dobrushin[31] and Sznitman[75], it consists in approximating the interactions re-
ceived by any one particle by an empirical mean of the interactions over the whole
network. The mean-field regime arises at the limit with infinitely many agents,
as the empirical mean typically converges to an expectation and gives rise to a
nonlinear ordinary differential equation describing the behavior of an agent at a
macroscopic level and allowing for tractability. This convergence, when it takes
place, is linked to the concept of propagation of chaos, mainly in reference to the
asymptotic independence between agents that arises at the limit.

In classical mean-field models such as [34] or [56], the network considered must
be assumed fully connected, the effect of interactions on the state of a given agent
must be small, typically inversely proportional to the number of agents, in order
to prevent explosion in finite time in the system. These assumptions represent
significant constraints on the architectures and sizes of the networks and thus on
the types of phenomena for which a mean-field approximation is relevant.

To circumvent these limitations, different approaches have been explored in
recent years. To apply mean-field approximation to small-sized networks (with
less than 100 agents, for example), the refined-mean-field approach [36], [3] adds a
corrective term to the macroscopic ODE. Mean-field models have also been studied
in other scalings, for example diffusive, where the effect of interactions on a particle
is inversely proportional to the square root of the number of agents in the system.
So-called conditional propagation of chaos properties have been proven in that
setting [32]. To incorporate heterogeneity, the properties of graphons (large dense
graphs) have been used to derive new limit equations [1]. In this setting, the limit
object is an infinite system of ODEs. However, this approach is only valid for dense
networks; when the average degree of a node is of order lesser than the amount of
nodes in the network, as is the case for example in the human brain, graphon theory
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does not apply. Another approach to incorporate heterogeneity circumvents mean-
field models altogether, relying instead on conditional independence properties and
local weak limits to obtain local convergence [55].

In this work, we are interested in another tractable regime for agent-based
models: the Poisson Hypothesis. First formulated by Kleinrock for large queueing
systems [49], it states that the flow of arrivals to a given node can be approximated
by a Poisson flow with rate equal to the average rate of the original flow of arrivals.
In agent-based models, the flow of arrivals corresponds to the effect of interactions
on a given node. Under the Poisson Hypothesis, the behavior of each agent is
still described by a stochastic differential equation, but the agents are considered
independent and interaction times are replaced by Poisson clocks, which allows
for tractability. This regime has been studied for queueing models by Rybko,
Shlosman and others [78] and by Baccelli and Taillefumier for intensity-based
models from computational neuroscience [8].

Hereafter, we focus on the continuous-time Galves-Löcherbach model intro-
duced in [35] and studied under the Poisson Hypothesis in [8]. We introduce a
physical system, called the replica-mean-field, derived from the initial model that
converges under a certain scaling to the dynamics under the Poisson Hypothe-
sis. The replica-mean-field was first introduced by Dobrushin to study queueing
models[79], and adapted to a network setting in [8]. However, in their work, the
convergence of the replica-mean-field dynamics to dynamics under the Poisson Hy-
pothesis is only assumed, and not proven. The crux of this article is proving that
a propagation of chaos-type convergence does take place for the replica-mean-field
model derived from the Galves-Löcherbach model.

In the recent work [27], we have introduced a class of discrete-time processes on
a discrete space, called fragmentation-interaction-aggregation processes (FIAPs),
that include among others discrete versions of the Galves-Löcherbach model, and
we have proven the propagation of chaos property for a replica-mean-field model
associated with a FIAP for any finite time. Our aim is to generalize these results
to a model in continuous time and with a continuous state space.

Structure of the paper

After this general introduction, we formally define all the models that we will be
considering, namely, the Galves-Löcherbach model, its replica-mean-field version
and its dynamics under the Poisson Hypothesis. We then state the main result
of the paper, namely propagation of chaos in the replica-mean-field model on
compacts of time, which we then prove in Section 3.2.2. Finally, in Section 3.2.3, we
generalize the main result to weak convergence on the half-line through a tightness
argument.
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The continuous-time Galves-Löcherbach (GL) model

Let us formally present the Galves-Löcherbach model mentioned above: we con-
sider a finite collection of K neurons whose spiking activities are given by the
realization of a system of simple point processes without any common points
N = {Ni}1≤i≤K on R defined on some measurable space (Ω,F). For each neuron
1 ≤ i ≤ K, we denote by (Ti,n)n∈Z the sequence of successive spiking times with
the convention that, almost surely, Ti,0 ≤ 0 < Ti,1 and Ti,n < Ti,n+1 for all n.

To model the interactions due to spikes within the system, we consider that
the spiking rate of neuron i depends on the times at which neuron i and the other
neurons j ̸= i have spiked in the past. Formally, we introduce the network spiking
history (Ft)t∈R as an increasing collection of σ-fields such that

FN
t = {σ(N1(B1), ..., NK(BK))|Bi ∈ B(R), Bi ⊂ (−∞, t]} ⊂ Ft,

where FN
t is the internal history of the spiking process N.

Recall that the Ft-stochastic intensity {λi(t)}t∈R of the associated point process
Ni is the Ft-predictable random process satisfying for all s < t ∈ R :

E [Ni(s, t]|Fs] = E

[∫ t

s

λi(u) du
∣∣Fs

]
, (3.1)

where Ft is the network history. We will hereafter refer to (3.1) as the stochastic
intensity property.

We consider the Ft-stochastic intensities λ1, ..., λK associated with the point
processes N1, ..., NK .

In the Galves-Löcherbach model, the evolution in time of these intensities is
given by the following system of stochastic differential equations:

λi(t) = λi(0) +
1

τi

∫ t

0

(bi − λi(s)) ds+
∑
j ̸=i

µj→i

∫ t

0

Nj(ds) +

∫ t

0

(ri − λi(s))Ni(ds),

(3.2)
where τi, bi, ri > 0 and µj→i ≥ 0 are given constants and λi(0) is assumed to be
greater than ri and bi.

Let us make each term more explicit. The first integral term shows that without
any spikes, the intensity exponentially decays to its base rate bi with a relaxation
time τi. The second integral term represents the aggregation of all the spikes
received from the other neurons in the system: a spike received from neuron j
causes a jump of µj→i units in the intensity of neuron i. Finally, the third integral
term is the reset that occurs when neuron i spikes: λi is then reset to ri, which
is a value such that 0 < ri ≤ bi. Taking ri ≤ bi models a refractory period that
occurs after a spike during which the neuron enters a transient phase.
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It has been shown in [8] that (3.2) defines a piecewise deterministic Markov
process. When there is no exponential decay, that is, when τi = ∞ for all i, the
process becomes a pure jump Markov process that is Harris-ergodic and thus has
a unique invariant measure.

It has also been shown that the moment generating function (MGF) at sta-
tionarity
u → L(u) = E[exp(

∑K
i=1 uiλi)] satisfies the following differential equation:(∑

i

uibi
τi

)
L−

∑
i

(
1 +

ui

τi

)
∂ui

L+
∑
i

e(uiri+
∑

j ̸=i ujµj→i)∂ui
L|ui=0 = 0. (3.3)

This equation is not solvable except for some very special cases (K ≤ 2, for
example). It is thus necessary to use approximating schemes or truncating mo-
ments, both of which neglect correlations due to the finite size of the network.
Here, we introduce a different physical system that allows to obtain closed forms
for equations similar to (3.3).

Replica-mean-fields of GL models

In replica-mean-field models, we considerM replicas of the initial set ofK neurons.
When neuron i in replica m spikes, for each neuron j that would receive something
from the spike, a replica n is uniformly and independently chosen among the other
M − 1 replicas, and neuron i sends µi→j to it.

Formally, for 1 ≤ m ≤ M, 1 ≤ i, j ≤ K, let {V M
(m,i)→j(t)}t∈R be FN -predicatble

stochastic processes such that, for each spiking time T , i.e., each point of NM
m,i, the

random variables {V M
(m,i)→j(T )}j are mutually independent, independent from the

past, and uniformly distributed on {1, ...,M} \ {m}. Here, V M
(m,i)→j(T ) gives the

index of the replica to which the spike of neuron i in replica m at time T is sent
to neuron j.

The stochastic intensities associated with the point processes will then solve
the following system of stochastic differential equations:

λM
m,i(t) = λM

m,i(0) +
1

τi

∫ t

0

(
bi − λM

m,i(s)
)
ds

+
∑
j ̸=i

µj→i

∑
n̸=m

∫ t

0

1I{V M
(n,j)→i

(s)=m}N
M
n,j(ds) +

∫ t

0

(
ri − λM

m,i(s)
)
NM

m,i(ds).

(3.4)

These equations, which we will hereafter refer to as the RMF dynamics, charac-
terize the dynamics of the M -replica system. As before, for all M , these dynamics
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form a pure jump Harris-ergodic Markov process with a unique invariant measure
since we are under Assumption 3.2.1.

The infinitesimal generator of the M -replica dynamics is given by

A[f ](λ) =
K∑
i=1

M∑
m=1

(
bi − λm,i

τi
∂λm,i

f(λ)

)

+
K∑
i=1

M∑
m=1

1

|Vm,i|
∑

v∈VM
m,i

(f (λ+ µm,i,v(λ))− f(λ))λm,i,

where the update due to the spiking of neuron (m, i) is defined by

[µm,i,v(λ)]n,j =


µj→i if j ̸= i, n = vj

ri − λm,i if j = i, n = m

0 otherwise .

As before, we can establish an equation for the MGF
u → L(u) = E[e(

∑M
m=1

∑K
i=1 um,iλm,i)] in the stationary regime:(∑

m

∑
i

um,ibi
τi

)
L−

∑
m

∑
i

(
1 +

um,i

τi

)
∂um,i

L

+
∑
m

∑
i

1

(M − 1)K

∑
v∈VM

m,i

e(um,iri+
∑

j ̸=i uvj,j
µj→i)∂um,i

L|ui=0 = 0,

where
VM
m,i = {v ∈ {1, ...,M}K |vi = m and vj ̸= m, j ̸= i}.

Once again, this equation is not easily solvable. However, a closed form has
been obtained in [8] by setting the Poisson Hypothesis, that is, by considering that
at the limit when M → ∞, the replicas become asymptotically independent and
the arrivals process to a given replica becomes asymptotically Poisson.

This hypothesis is often conjectured or numerically validated and not proven,
as was the case in [8]. The aim of this work is to give a proof of the Poisson
Hypothesis in the RMF limit in continuous time, by analogy of the work done in
discrete time in [27].

In the rest of the paper, we make the following assumptions:

Assumption 3.2.1. For all i ∈ {1, . . . , K}, τi = ∞ (no exponential decay).

Assumption 3.2.2. There exists ξ0 > 0 such that for all 1 ≤ m ≤ M, 1 ≤ i ≤ K
and all 0 < ξ ≤ ξ0, E[e

ξλm,i(0)] < ∞.
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Assumption 3.2.1 is introduced mainly to simplify notation and reasonings.
While we do not rigorously prove it, we strongly believe that all results remain
valid without it. Assumption 3.2.2 restricts the initial conditions of the system to
allow for propagation of chaos to take place. We shall see that this assumption
allows us to have bounds for the moments of the state process and later to apply
Chernoff’s inequality at a crucial juncture.

The limit dynamics

In this section, we aim to define the limit dynamics of the RMF GL model when
the number of replicas goes to infinity. As previously mentioned, intuitively, the
arrivals from each neuron should become a Poisson process, whereas the reset term
should remain unchanged.

As such, we introduce the following system of SDEs which is the natural can-
didate for the limit dynamics and to which we will hereafter refer to as the limit
process. We will denote with tildes everything pertaining to it. We consider point
processes Ñ1, . . . , ÑK on R+ with respective (Ft)-stochastic intensities λ̃1, . . . , λ̃K ,
where Ft is the internal spiking history of the network defined as previously, veri-
fying the following stochastic differential equations: for t > 0, for 1 ≤ i ≤ K,

λ̃i(t) = λ̃i(0) +
∑
j ̸=i

µj→iÃj→i(t) +

∫ t

0

(
ri − λ̃i(s)

)
Ñi(ds), (3.5)

where Ãj→i are independent inhomogeneous Poisson point processes with intensi-

ties aj(t) =
∫ t

0
E[λ̃j(s)] ds = E[Ñj([0, t])] and (λ̃1(0), . . . , λ̃K(0)) verify Assumption

3.2.2.

The existence and uniqueness of the solution to this equation comes from the
general theory of [70], and is derived analogously to the existence and uniqueness of
the solution to (3.4), which is done in [8]. Note that (3.5) is a nonlinear equation in
the sense of McKean-Vlasov [60], as the process λ̃i depends on its own law through
the presence of the terms E[λ̃j(t)] in the intensities of the Poisson processes.

The main result

Recall the following definition of convergence in total variation:

Definition 3.2.3. Let P and Q be two probability measures on a probability space
(Ω,F). We define the total variation distance by

dTV (P,Q) = sup
A∈F

|P (A)−Q(A)|.
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When Ω is countable, an equivalent definition is

dTV (P,Q) =
1

2

∑
ω∈Ω

|P (ω)−Q(ω)|.

Note that certain authors use a multiplicative constant 2 when defining the
total variation distance. We will also abusively say that random variables converge
in total variation when their distributions do.

The following theorem is the main result of this work:

Theorem 3.2.4. There exists T > 0 such that, if t ∈ [0, T ] and if

AM
m,i(t) =

∑
j ̸=i

µj→i

∑
n̸=m

∫ t

0

1I{V M
(n,j)→i

(s)=m}N
M
n,j(ds),

with NM
m,i defined in (3.4), and

Ãi(t) =
∑
j ̸=i

µj→iÃj→i(t),

with Ãj→i(t) defined in (3.5), then,

1. the processes (Ã1, . . . , ÃK) are independent, as are the processes (λ̃1, . . . , λ̃K);

2. for all (m, i) ∈ {1, . . . ,M} × {1, . . . , K}, the random variable AM
m,i(t) con-

verges in total variation to Ãi(t) when M → ∞;

3. for all (m, i) ∈ {1, . . . ,M}×{1, . . . , K}, the random variable λM
m,i(t) defined

by (3.4) converges in total variation to λ̃i(t) defined in (3.5) when M → ∞;

4. let N be a finite subset of N∗, for all i ∈ {1, . . . , K}, the processes (AM
m,i(·))m∈N

and (λM
m,i(·))m∈N weakly converge in the Skorokhod space D([0, T ])cardN en-

dowed with the product Skorokhod metric to card(N ) independent copies of
the corresponding limit processes (Ãi(·)) and (λ̃i(·)) when M → ∞.

Here are a few remarks on this result.
First, note that for each i, j ∈ {1, . . . , K}, the variable µj→iÃj→i(t) is a scaled

Poisson random variable and is thus a special case of a compound Poisson random
variable. As such, unless all µj→i are equal, Ãi(t) does not follow any standard
Poisson or compound Poisson distribution.

Note also that we do not aim to prove L1 convergence, which we believe does
not hold in this model. This marks a significant difference with classical mean
field models for Hawkes processes, see [34]. From a computational point of view,
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this is due to the fact that the averaging factor 1
M−1

only appears in expectation

in the interaction term AM
m,i(t).

Finally, note that statement 4 of the theorem is a consequence of statements 2
and 3, as weak convergence of point processes is implied by weak convergence of
their void probabilities (see [45], Theorem 2.2), which comes directly from state-
ments 2 and 3. More precisely, the convergence in total variation of λm,i and
Am,i implies the weak convergence of the void probabilities of Nm,i and of the
point process of arrival times, which in turn implies weak convergence of the point
processes.

Methodology for the proof

In contrast with classical mean-field models presented in the beginning of the
paper, in replica mean-fields, the mean-field simplification comes from the random
routing operations between replicas. The input point process in the M -replica
model consists in a superposition of M rare point processes, which informally
explains why Poisson (or compound Poisson) processes arise at the limit. This
point of view leads us to fix an instant t ∈ R+ and to consider the random variable
of inputs up to time t as a random sum of Bernoulli random variables with means

1
M−1

. The Chen-Stein method is a natural candidate to obtain explicit bounds in
the total variation metric between this random sum and a Poisson random variable.
We generalize it to account for the fact that the amount of Bernoulli random
variables in the sum is random. As far as the author is aware, this application
is novel. The bound obtained through the Chen-Stein method does not easily
converge to 0 when M goes to infinity. Namely, we obtain a term similar to the L1

norm of an empirical mean of centered random variables that are not independent.
In order to circumvent the difficult direct analysis of such a term, we uncouple the
inputs and outputs of the dynamics by considering the replica-mean-field dynamics
(3.4) as the fixed point of some function on the space of probability distributions
on the space of càdlàg functions endowed with a metric rendering it complete. This
procedure is often used in the study of stochastic differential equations to prove the
existence and uniqueness of solutions to these equations, see, for example, [75] or
[18]. Here, we use it to prove that a certain property, namely the convergence of an
empirical mean, holds at the fixed point by proving that the property is preserved
by the function and that the iterates of the function converge to its fixed point.

3.2.2 Proof of the Poisson Hypothesis for the RMF GL
model

The aim of this section is to prove Theorem 3.2.4. We organize the proof as follows.
First, we recall some well-known facts about Poisson embedding representations
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for real-valued point processes and derive asymptotic independence from them.
Then, we state and prove some properties of the RMF and limit dynamics that
will be useful in the following steps of the proof. Afterwards, we present the Chen-
Stein method, which we use to derive conditions for the validity of the Poisson
approximation that we aim to prove. Finally, we interpret the RMF dynamics
as the fixed point of some function on the space of probability measures on the
space of càdlàg functions and we show that this function has properties that allow
the aforementioned conditions to hold at the fixed point, thus proving the Poisson
approximation result.

Poisson embedding representation and independence of the limit
processes

First, recall the following result from [17] about Poisson embeddings:

Lemma 3.2.5. Let N be a point process on R. Let (Ft) be an internal history of
N . Suppose N admits a (Ft)-stochastic intensity {µ(t)}t∈R. Then there exists a
Poisson point process N̂ with intensity 1 on R2 such that, for all C ∈ B(R),

N(C) =

∫
C×R

1I[0,µ(s)](u)N̂(ds× du).

This result states that any point process admitting a stochastic intensity can
be embedded in a Poisson point process with intensity 1 on the positive half-plane
by considering the points of the Poisson process which lie below the curve given by
the stochastic intensity of the process. We now proceed to apply this in our model,
constructing all the state processes coupled through their Poisson embeddings.

For m ≥ 1,M ≥ 1, 1 ≤ i ≤ K, let N̂m,i be i.i.d. Poisson point processes on
R+ × R+ with intensity 1.

Let Ω = (R+×((R+)2)N
∗
)N

∗
be a probability space endowed with the probability

measure (µ0⊗P )⊗N∗
, where µ0 is the law of the initial conditions and P is the law

of a Poisson process with intensity 1 on (R+)2. We construct on Ω the following
processes:

• The processes (NM
m,i(t)),m ≥ 1,M ≥ 1, 1 ≤ i ≤ K, with stochastic intensities

(λM
m,i(t)) verifying

λM
m,i(t) =

∑
n̸=m

∑
j ̸=i

∫ t

0

∫ +∞

0

µj→i 1I{V M
(n,j)→i

(s)=m} 1I[0,λM
n,j(s)]

(u)N̂n,j(ds× du)

+

∫ t

0

∫ +∞

0

(
ri − λM

m,i(s)
)
1I[0,λM

m,i(s)]
(u)N̂m,i(ds× du) + λM

m,i(0),

(3.6)
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with λM
m,i(0) = Zi for all m ∈ N∗ and where, for all M , (V M

(n,j)→i(t))j are

càdlàg stochastic processes such that for each point T of N̂n,j, the random
variables (V M

(n,j)→i(T ))j are independent of the past, mutually independent

and uniformly distributed on {1, ...,M} \ {n}, considered as marks of the
Poisson point process N̂n,j. Namely, to each point of the Poisson embedding,
we attach a mark that is an element of (NK)N

∗
, where the Mth term of the

sequence corresponds to (V M
(n,j)→i(T ))j.

• The processes (Ñi(t)), 1 ≤ i ≤ K, with stochastic intensities (λ̃i(t)) verifying

λ̃i(t) = λ̃i(0) +
∑
j ̸=i

∫ t

0

∫ +∞

0

µj→i 1I[0,E[λ̃j(s)]]
(u)N̂j,i(ds× du)

+

∫ t

0

∫ +∞

0

(
ri − λ̃i(s)

)
1I[0,λ̃i(s)]

(u)N̂i,i(ds× du),

(3.7)

with λ̃i(0) = Zi.

In other words, we construct the M -replica dynamics (3.4) and the limit pro-
cesses (3.5) with the same initial conditions and Poisson embeddings (N̂m,i).
We require that the law of the initial conditions (Zi) verifies Assumption 3.2.2, in
other words, we require it to have uniform polynomial bounds of its moments.

This representation allows us to derive the following, which is statement 1 of
Theorem 3.2.4.

Lemma 3.2.6. The processes (Ãj→i)1≤i,j≤K are independent, as are the processes
(λ̃1, . . . , λ̃K).

Proof. For all t ∈ [0, T ], we can write using the construction above

Ãj→i(t) =

∫ t

0

∫ +∞

0

1I[0,E[λ̃j(s)]]
(u)N̂j,i(ds× du).

Therefore, all the randomness in Ãi is contained in the Poisson embeddings
(N̂k,i)1≤k≤K . Thus, for i ̸= j, Ãi and Ãj are independent. The independence of
the processes (λ̃1, . . . , λ̃K) follows in the same manner.

Properties of the RMF and limit processes

In this section, we prove several properties of the RMF and limit dynamics that
will be used throughout the proof.

In what follows, we will often omit the M superscript in the notations NM
m,i,

AM
m,i and λM

m,i to increase readability.
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Note that the arrival process Am,i(t) can be represented as a random sum of
Bernoulli random variables with parameters 1

M−1
. Indeed, for n ̸= m and j ̸= i,

if S ∈ Supp(Nn,j|[0,T )), we define BM
S,(n,j)→(m,i) the random variable equal to 1 if

the routing between replicas at time S caused by a spike in neuron j in replica n
chose the replica m for the recipient i of the spike, and 0 otherwise. As such, it is
clear that we can write for all t ∈ [0, T ],m ∈ {1, . . . ,M} and i ∈ {1, . . . , K},

Am,i(t) =
∑
n̸=m

∑
j ̸=i

µj→i

∑
k≤Nn,j([0,t])

BM
k,(n,j)→(m,i). (3.8)

Note that whenm,n, i and j are fixed, the random variables (BM
k,(n,j)→(m,i))k≤Nn,j([0,T ])

are i.i.d. Also note that when n, j, i and k are fixed, the joint distribution of
(BM

k,(n,j)→(m,i))m with m ∈ {1, . . . ,M} is that of Bernoulli random variables with

parameter 1
M−1

such that exactly one of them is equal to 1, all the others being
equal to 0. Combining these two observations allows us to prove a lemma that
highlights the core of the replica-mean-field approach:

Lemma 3.2.7. Fix (m, i) ∈ {1, . . . ,M} × {1, . . . , K}. Keeping notation from
(3.8), let
N = (Nn,j([0, t]))n̸=m,j ̸=i ∈ N(K−1)(M−1).

Conditionally on the event {N = q}, for q = (qn,j)n̸=m,j ̸=i ∈ N(K−1)(M−1), the
random variables (BM

k,(n,j)→(m,i))n̸=m,j ̸=i,k∈{1,...,qn,j} are independent Bernoulli ran-

dom variables with parameter 1
M−1

.

Proof. The structure of the proof goes as follows: since N is entirely determined by
the Poisson embeddings (N̂n,j)j ̸=i and the arrivals to the nodes (n, j) from all the
nodes h ̸= j across replicas, it is sufficient to show that these arrivals and the rout-
ing variables (BM

k,(n,j)→(m,i))k≤N̂n,j([0,t]×R+) are independent. Intuitively, this holds
because arrivals are aggregated across all replicas, which will erase the eventual
dependencies due to the routing variables to nodes i choosing one replica rather
than another.
In order to transcribe this intuition rigorously, we first show that the total num-
ber of departures from nodes i up to time t, that is,

∑M
l=1Nl,i([0, t]), and the

routing variables (BM
k,(n,j)→(m,i))k≤N̂n,j([0,t]×R+) are independent. Indeed, using the

representation given by Lemma 3.2.5, due to the structure of the Poisson embed-
dings (N̂l,i)l∈{1,...,M}, there is a point of

∑M
l=1Nl,i in some interval I iff there is

a point of the superposition of the corresponding Poisson embeddings such that
the x-coordinate is in I and the y-coordinate is under the curve of the function t →∑M

l=1 λl,i(t). In turn, the last event does not depend on (BM
k,(n,j)→(m,i))k≤N̂n,j([0,t]×R+),

as the symmetry inherent to the replica structure ensures that all arrivals incre-
ment t →

∑M
l=1 λl,i(t) by the same amount, which concludes the proof of this

preliminary remark.
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For all (n, j) such that n ̸= m and j ̸= i, let

Ai→(n,j)(t) =
∑
l ̸=n

∑
k≤Nl,i([0,t])

BM
k,(l,i)→(n,j).

Note that Ai→(n,j)(t) represents the arrivals to node j in replica n from all nodes
i across replicas. As such, it is clear that we can write

Ai→(n,j)(t) =
∑

k≤
∑

l ̸=n Nl,i([0,t])

BM
k,(i)→(n,j),

where (BM
k,(i)→(n,j)) are independent Bernoulli random variables with parameter

1
M−1

such that they and (BM
k,(n,j)→(m,i)) are independent. Then by the previ-

ous observation, Ai→(n,j)(t) and (BM
k,(n,j)→(m,i)) are independent. Therefore, N ,

which is entirely determined by the Poisson embeddings (N̂n,j) and the arrivals
(Ah→(n,j)(t))h̸=j, and (BM

k,(n,j)→(m,i))k≤N̂n,j([0,T ]×R+), are independent. Thus, condi-

tioning on N does not break independence between the variables (BM
k,(n,j)→(m,i)).

We will now give bounds on the moments of both the M-replica and limit
processes, using the bounds on the moments of the initial conditions.

Lemma 3.2.8. Suppose the initial conditions verify Assumption 3.2.2. Then, for
all p ≥ 1, for all (m, i) ∈ {1, . . . ,M} × {1, . . . , K}, for all t ∈ [0, T ], there exists
Qp(T ) ∈ Rp[X] a polynomial of degree exactly p such that

E[λp
m,i(t)] ≤ Qp(E[λm,i(0)]). (3.9)

Proof. We first prove the result for p = 1 in the special case where exchangeability
also holds between neurons and where there are no resets. Namely, we temporarily
consider here that for all i, j ∈ {1, . . . , K}, µj→i = 1. Let t ∈ [0, T ]. Thus, we have

E[λm,i(t)] = E[λm,i(0)] +
∑
n̸=m

∑
j ̸=i

E

[∫ t

0

1I{V(n,j)→i(s)=m}Nn,j(ds)

]
.

Denoting by ((Tn,j)r)r∈Z the points of Nn,j, we have

E[λm,i(t)] = E[λm,i(0)]

+
∑
n̸=m

∑
j ̸=i

E

[∑
r∈Z

E[1I{V(n,j)→i((Tn,j)r)=m} 1I{(Tn,j)r∈[0,t)} |F
Nn,j

(−∞,(Tn,j)r
]

]
.
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Using the predictability w.r.t. the network history of the processes V M
(n,j)→i, we

have

E[λm,i(t)] = E[λm,i(0)] +
∑
n̸=m

∑
j ̸=i

E

[∑
r∈Z

1I{V(n,j)→i((Tn,j)r)=m} 1I{(Tn,j)r∈[0,t)}

]
.

Using the property of stochastic intensity, we can rewrite this as

E[λm,i(t)] = E[λm,i(0)] + (K − 1)E

[∫ t

0

λm,i(s) ds

]
.

Therefore,

E[λm,i(t)] = E[λm,i(0)] + (K − 1)

∫ t

0

E[λm,i(s)] ds.

This gives

E[λm,i(t)] ≤ E[λm,i(0)]e
(K+ri−1)T := Q1(E[λm,i(0)]). (3.10)

Now, let us write the differential equation for λ2
m,i, still considering the dynamics

without resets and with equal weights:

λ2
m,i(t) = λ2

m,i(0) +
∑
n ̸=m

∑
j ̸=i

∫ t

0

1I{V(n,j)→i(s)=m} (2λn,j(s) + 1)Nn,j(ds).

Therefore, we have

E[λ2
m,i(t)] = E[λ2

m,i(0)] + (K − 1)

∫ t

0

(
2E[λ2

m,i(s)] + E[λm,i(s)]
)
ds

which gives using (3.10) the bound

E[λ2
m,i(t)] ≤ E[λ2

m,i(0)]+(K−1)Q1((E[λm,i(0)])T+2(K−1)

∫ t

0

E[ sup
u∈[0,s]

λ2
m,i(u)] ds.

By applying Gronwall’s lemma and using the assumption on the initial condi-
tions, we get

E[λ2
m,i(t)] ≤

(
(E[λm,i(0)]

2 + (K − 1)Q1((E[λm,i(0)])T
)
e2(K−1)T := Q2((E[λm,i(0)]).

This reasoning can be extended by induction to all p ≥ 3, which proves the result
for the case of exchangeable interactions.

Now, to get the result in the general case where all µj→i are not necessar-
ily all equal to 1, note that by monotonicity the dynamics that we consider (in
both the exchangeable and nonexchangeable cases) are stochastically dominated
by the same dynamics without the reset terms. Finally, note that nonexchangeable
dynamics without the reset terms are stochastically dominated by exchangeable
dynamics without the reset terms. This shows that the moment bounds still hold
in the general case.
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Finally, note that the exact same reasoning can be applied to obtain an equiv-
alent result for the limit process, which we will only state:

Lemma 3.2.9. For all p ≥ 1, for all i ∈ {1, . . . , K}, for all t ∈ [0, T ], there exists
a polynomial Q̃p ∈ Rp[X] a polynomial of degree exactly p such that

E[λ̃p
i (t)] ≤ Q̃p[E[λ̃i(0)]]. (3.11)

Lemma 3.2.8 allows us to prove the following result, which states that Assump-
tion 3.2.2 can be propagated to any time t less than some fixed T.

Lemma 3.2.10. There exists T > 0 and ξ0 > 0 (which is the same as in Assump-
tion 3.2.2) such that for t ∈ [0, T ] and ξ ≤ ξ0,

E[eξλm,i(t)] < ∞ and E[eξλ̃i(t)] < ∞. (3.12)

Proof. To prove this result, we once again consider exchangeable dynamics with-
out resets, using the same observation as previously, namely that nonexchangeable
dynamics with resets are stochastically dominated by exchangeable dynamics with-
out resets, to generalize the result. Let us thus assume µj→i = µ for all i, j. Let ξ0
as in Assumption 3.2.2. Let t ∈ [0, T ]. Let us write out the equation verified by
eξλm,i(t):

eξλm,i(t) = eξλm,i(0) +
∑
j ̸=i

∑
n ̸=m

∫ t

0

1I{V M
(n,j)→i

(s)=m} e
ξλm,i(s)(eξµ − 1)Nn,j(ds).

Taking the expectation and using the stochastic intensity property, we get

E[eξλm,i(t)] = E[eξλm,i(0)] +
1

M − 1

∑
j ̸=i

∑
n̸=m

∫ t

0

E[eξλm,i(s)(eξµ − 1)λn,j(s)] ds.

Using exchangeability between replicas, this boils down to

E[eξλm,i(t)] = E[eξλm,i(0)] +
∑
j ̸=i

∫ t

0

E[eξλm,i(s)(eξµ − 1)λm,j(s)] ds.

Since we are looking at dynamics without resets, λm,i(s) and λm,j(s) are positively
correlated. Therefore, we have

E[eξλm,i(t)] ≤ E[eξλm,i(0)] + (eξµ − 1)
∑
j ̸=i

∫ t

0

E[eξλm,i(s)]E[λm,j(s)] ds.

By Lemma 3.2.8 and Assumption 3.2.2, we have the existence of a constant B > 0
such that

E[eξλm,i(t)] ≤ E[eξλm,i(0)] + (eξµ − 1)(K − 1)B

∫ t

0

E[eξλm,i(s)] ds.

The desired result follows from Grönwall’s lemma.



3.2. REPLICA-MEAN-FIELD LIMITS FOR INTENSITY-BASED NEURAL
NETWORKS 89

The final lemma we will state and prove in this section concerns the means
of the RMF and limit processes. Namely, we show that the replica mean-field
construction preserves the mean asM varies and that the mean of the limit process
coincides with the mean of the RMF process.

Lemma 3.2.11. For all M ≥ 2, for all (m, i) ∈ {1, . . . ,M} × {1, . . . , K}, if the
initial conditions are such that for all (m, i) ∈ {1, . . . ,M} × {1, . . . , K},

λm,i(0) = λ̃i(0),

then there exists T ∈ R, such that for all t ∈ [0, T ], we have

E[Am,i(t)] = E[Ãi(t)]

and

E[λm,i(t)] = E[λ̃i(t)].

Proof. Using both the property of stochastic intensity and exchangeability between
replicas, we have as previously,

E[Am,i(t)] =
∑
j ̸=i

µj→i E[Nm,j([0, t))] =
∑
j ̸=i

µj→i

∫ t

0

E[λm,j(s)] ds.

Similarly, we have

E[Ãi(t)] =
∑
j ̸=i

µj→i

∫ t

0

E[λ̃j(s)] ds.

Therefore, we see that

∣∣∣E[Am,i(t)− Ãi(t)]
∣∣∣ = ∣∣∣∣∣∑

j ̸=i

µj→i

∫ t

0

E[λm,j(s)− λ̃j(s)] ds

∣∣∣∣∣ . (3.13)

Thus, it is sufficient to show that E[λm,j(s)− λ̃j(s)] = 0.

Now, let t ∈ [0, T ]. Let i(t) = argmaxj∈{1,...,K}

∣∣∣E[λm,j(t)− λ̃j(t)]
∣∣∣ for t ∈ [0, T ].
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Now, using (3.4) and (3.5), we have∣∣∣E[λm,i(t)(t)− λ̃i(t)(t)]
∣∣∣ ≤ ∣∣∣∣E[λm,i(t)(0)− λ̃i(t)(0)] + E[Am,i(t)(t)− Ãi(t)(t)]

+ E[

∫ t

0

(
ri − λm,i(t)(s)

)
λm,i(t)(s)−

(
ri − λ̃i(t)(s)

)
λ̃i(t)(s) ds]

∣∣∣∣
≤ 0 +

∑
j ̸=i(t)

µi(t),j

∫ t

0

∣∣∣E[λm,j(s)− λ̃j(s)]
∣∣∣ ds

+ ri

∫ t

0

∣∣∣E[λm,i(t)(s)− λ̃i(t)(s)]
∣∣∣ ds

+

∣∣∣∣∫ t

0

E[λ2
m,i(t)(s)− λ̃2

i(t)(s)] ds

∣∣∣∣ ,
using the coupling on the initial conditions and (3.13).

Let C > 0. LetAC(t, [0, T ]) := {(ω, t) ∈ Ω×[0, T ]|max(λm,i(t)(t, ω), λ̃i(t)(t, ω)) <
C}.
Then, we write∣∣∣∣∫ t

0

E[λ2
m,i(t)(s)− λ̃2

i(t)(s)] ds

∣∣∣∣ = ∣∣∣∣ ∫ t

0

∫
AC(s,[0,T ])

(λ2
m,i(t)(s)− λ̃2

i(t)(s)) dsP (dω)

+

∫ t

0

∫
Ac

C(s,[0,T ])

(λ2
m,i(t)(s)− λ̃2

i(t)(s)) dsP (dω)

∣∣∣∣.
Since we have E[λ2

m,i(t)(s)− λ̃2
i(t)(s)] = E[(λm,i(t)(s)− λ̃i(t)(s))(λm,i(t)(s)+ λ̃i(t)(s))],

by definition of AC([0, T ]) the first term can be bounded by∣∣∣∣∫ t

0

∫
AC(s,[0,T ])

(λ2
m,i(t)(s)− λ̃2

i(t)(s)) dsP (dω)

∣∣∣∣ ≤ 2C

∣∣∣∣∫ t

0

E[λm,i(t)(s)− λ̃i(t)(s)] ds

∣∣∣∣ .
(3.14)

For the second term, we write∣∣∣∣∣
∫ t

0

∫
Ac

C(s,[0,T ])

(λ2
m,i(t)(s)− λ̃2

i(t)(s)) dsP (dω)

∣∣∣∣∣ =∣∣∣∣∫ t

0

E[(λ2
m,i(t)(s)− λ̃2

i(t)(s)) 1IAc
C(s,[0,T ])] ds

∣∣∣∣ .
Now, using the Cauchy-Schwarz inequality,∣∣∣E[(λ2

m,i(t)(s)− λ̃2
i(t)(s)) 1IAc

C(s,[0,T ])]
∣∣∣ ≤√E[(λ2

m,i(t)(s)− λ̃2
i(t)(s))

2]E[1IAc
C(s,[0,T ])].
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Using Lemmas 3.2.8 and 3.2.9 that give bounds on the moments of the considered
processes, we have the existence of a positive constant D1(T ) such that√

E[(λ2
m,i(t)(s)− λ̃2

i(t)(s))
2] ≤ D1(T ).

For the last term, we have by definition of Ac
C(s, [0, T ]),

E[1IAc
C(s,[0,T ])] = P(max(λm,i(t)(s), λ̃i(t)(s)) > C).

By Lemma 3.2.10, there exists T > 0 such that E[e6T max(λm,i(t)(s),λ̃i(t)(s))] is finite.
Applying the Chernoff inequality, we have

P(e6T max(λm,i(t)(s),λ̃i(t)(s)) > e6CT ) ≤ E[e6T max(λm,i(t)(s),λ̃i(t)(s))]e−6CT .

Using Lemma 3.2.8, this shows that there exists a constant D2(T ) > 0 such that√
E[1IAc

C(s,[0,T ])] ≤ D2(T )e
−3CT .

Combining the previous bounds, we finally obtain∣∣∣∣∣
∫ t

0

∫
Ac

C(s,[0,T ])

(
λ2
m,i(t)(s)− λ̃2

i(t)(s)
)
dsP (dω)

∣∣∣∣∣ ≤ D1(T )D2(T )Te
−3CT . (3.15)

Combining (3.14) and (3.15), we have∣∣∣∣∫ t

0

E[(λ2
m,i(t)(s)− λ̃2

i(t)(s))] ds

∣∣∣∣ ≤ 2C

∣∣∣∣∫ t

0

E[λm,i(t)(s)− λ̃i(t)(s)] ds

∣∣∣∣
+D1(T )D2(T )Te

−3CT .

Therefore, we have∣∣∣E[λm,i(t)(t)− λ̃i(t)(t)]
∣∣∣ ≤ D1(T )D2(T )Te

−3CT

+ (ri + 2C)

∫ t

0

∣∣∣E[λm,i(t)(s)− λ̃i(t)(s)]
∣∣∣ ds

+
∑
j ̸=i(t)

µi(t),j

∫ t

0

∣∣∣E[λm,j(s)− λ̃j(s)]
∣∣∣ ds.

By definition of i(t), we then have
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∣∣∣E[λm,i(t)(t)− λ̃i(t)(t)]
∣∣∣ ≤ D1(T )D2(T )e

−3CTT

+ (ri + 2C)

∫ t

0

∣∣∣E[λm,i(s)(s)− λ̃i(s)(s)]
∣∣∣ ds

+
∑
j ̸=i(t)

µi(t),j

∫ t

0

∣∣∣E[λm,i(s)(s)− λ̃i(s)(s)]
∣∣∣ ds.

≤ D1(T )D2(T )e
−3CTT

+

ri + 2C +
∑
j ̸=i(t)

µi(t),j

∫ t

0

∣∣∣E[λm,i(s)(s)− λ̃i(s)(s)]
∣∣∣ ds.

By Gronwall’s lemma, we therefore get∣∣∣E[λm,i(t)(t)− λ̃i(t)(t)]
∣∣∣ ≤ D1(T )D2(T )e

−3CTTe(ri+2C+
∑

j ̸=i(t) µi(t),j)T .

Finally, note that for any ε > 0, we can now choose C > 0 such that

D1(T )D2(T )Te
−3CT e(ri+2C+

∑
j ̸=i(t) µi(t),j)T ≤ ε.

By the choice of i(t), the result follows for any 1 ≤ i ≤ K.

Poisson approximation bound using the Chen-Stein method

The goal of this section is to use the Chen-Stein method, which we will briefly
recall, to obtain a bound in total variation distance between the arrivals term
(3.8) and the limit sum of Poisson random variables. Recall that (3.8) states that
for all t ∈ [0, T ],m ∈ {1, . . . ,M}, i ∈ {1, . . . , K},

Am,i(t) =
∑
n̸=m

∑
j ̸=i

µj→i

∑
k≤Nn,j([0,t])

BM
k,(n,j)→(m,i).

Recall that if Z is a random variable taking values in N with E[Z] < ∞, Z is
a Poisson random variable iff the distribution of Z + 1 is equal to the distribution
of the size-biased version of Z, in other words, iff for all bounded functions f on
N,

E[Z]E[f(Z + 1)] = E[f(Z)Z]. (3.16)

The key principle of the Chen-Stein method is to say that if (3.16) holds approx-
imately for some r.v. Z for any bounded function f on N, then Z approximately
has a Poisson distribution. In the case of a sum of Bernoulli random variables that
are not necessarily independent, we have the following result:
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Lemma 3.2.12. Let l ∈ N. Consider W =
∑l

i=1 Yi, where Yi are Bernoulli random
variables with respective means pi, without any independence assumptions. Let Z
be a Poisson distributed random variable with mean E[W ] =

∑
i pi. For 1 ≤ k ≤ l,

let Uk and Vk be random variables on the same probability space such that Uk has
the same distribution as W and 1+Vk has the same distribution as W conditioned
on the event Yk = 1 (with the convention Vk = 0 if P(Yk = 1) = 0). Then

dTV (W,Z) ≤
(
1 ∧ 1

E[W ]

) l∑
i=1

pi E[|Ui − Vi|].

Then, it suffices to exhibit a coupling of Ui and Vi such that E[|Ui − Vi|] is
small. We refer to [13], [58] or [10] for a comprehensive overview of the Chen-Stein
method.

We now adapt the Chen-Stein method to the replica-mean-field framework,
generalizing the method to the case of a random sum of Bernoulli random variables.

We first give a result that will be an immediate corollary of the lemma we prove
afterwards to compare it with Lemma 3.2.12:

Lemma 3.2.13. Let L be a N-valued random variable such that E[L] < ∞. Let
(Yi)i∈N be random variables such that for any l ∈ N, conditionally on the event
{L = l}, Yi are Bernoulli random variables with respective means pi. Consider
W =

∑L
i=1 Yi.Let Z be a Poisson distributed random variable with mean E[W ] =

E[
∑L

i pi]. For k ∈ N, let Uk and Vk be random variables on the same probability
space such that for l ∈ N, conditionally on the event {L = l}, Uk has the same
distribution as W and 1 + Vk has the same distribution as W conditioned on the
event Yk = 1 (with the convention Vk = 0 if P(Yk = 1|L = l) = 0). Then

dTV (W,Z) ≤
(
1 ∧ 0.74

E[W ]

)
E [|L− E[L]|]+

(
1 ∧ 1

E[W ]

)
E

[
L∑
i=1

pi E
[
|Ui − Vi|

∣∣L]] .
For our purposes, we will prove a slightly different result with pi =

1
M−1

in a
vector setting, but it is easy to see that Lemma 3.2.13 can be proven in the same
way as what follows.

We will now use notation consistent with (3.8). Since what follows is done
with t ∈ [0, T ] fixed, we will additionally write Nn,j([0, t]) as Nn,j in this section,
continuing to omit the M superscript to simplify notation.

Lemma 3.2.14. Let M > 1. Let (m, i) ∈ {1, . . . ,M} × {1, . . . , K}. For j ∈
{1, . . . , K}\{i}, let Aj→(m,i) =

∑
n̸=m

∑Nn,j

k=1 Bk,(n,j)→(m,i) and let Ãj→i be indepen-
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dent Poisson random variables with means E[N1,j] as in (3.5). Then,

dTV (Aj→(m,i), Ãj→i) ≤

(
1 ∧ 0.74√

E[N1,j]

)
1

M − 1
E

[∣∣∣∣∣∑
n̸=m

(E[Nn,j]−Nn,j)

∣∣∣∣∣
]

+
1

M − 1

(
1 ∧ 1

E[N1,j]

)
E[N1,j].

(3.17)

A few remarks on this result are in order. First, note that the two terms in
the right hand side of (3.17) are very different in nature. The second term goes
to 0 when M → ∞ due to the moment bound obtained in Lemma 3.2.8, whereas
the first term is the L1 norm of an empirical mean of centered random variables
which are not independent. As such, obtaining the convergence to 0 of that term
when M → ∞ requires proving an L1 law of large numbers result for non i.i.d.
summands, which is not trivial and will be the subject of the next section. Next,
note that the two terms can be heuristically interpreted in the following way: the
second term represents a Le Cam-type bound [57] between a sum of Bernoulli
random variables and a sum of Poisson random variables with equal means, in
the case where the amount of summands is random. The first term represents the
distance between such a random sum of Poisson random variables and a Poisson
random variable whose mean is the mean number of summands, similar to [76].

Finally, note that this lemma only provides a bound for fixed i and j ∈
{1, . . . , K} \ {i} : Aj→(m,i) represents the arrivals from nodes j across replicas
to node i in replica m. Thus Lemma 3.2.14 does not directly give a bound for
the approximation of Am,i by Ãi =

∑
j ̸=i µj→iÃj→i. However, since by Lemma

3.2.6, we have asymptotic independence, it is natural to expect that the eventual
convergence in total variation will also take place for the sum, and we shall see
later that it does indeed hold.

We now proceed to the proof of Lemma 3.2.14.

Proof. For B ⊂ N and j ∈ {1, . . . , K}, let gB be the solution to the following
equation, sometimes referred to as the Stein equation, see [23]:

E[N1,j]gB(k + 1)− kgB(k) = 1IB(k)−P(Ãj→i ∈ B),

for k ∈ N, with initial condition gB(0) = 0.

As in the proof of Lemma 3.2.7, let N = (Nn,j)(n,j)∈({1,...,M}\{m})×({1,...,K}\{i}).
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Let B ⊂ N. We have

P(Aj→(m,i) ∈ B)−P(Ãj→i ∈ B) = E[1IAm,i,j∈B
−P(Ãj→i ∈ B)]

= E
[
E[N1,j]gB(Aj→(m,i) + 1)− Aj→(m,i)gB(Aj→(m,i))

]
by the Stein equation

= E

E
E[N1,j]gB(Aj→(m,i) + 1)−

∑
n ̸=m

Nn,j∑
k=1

Bk,(n,j)→(m,i)gB(Aj→(m,i))

∣∣∣∣N


= E

[
E

[
1

M − 1

∑
n̸=m

(E[Nn,j]−Nn,j)gB(Aj→(m,i) + 1)

+
∑
n̸=m

Nn,j∑
k=1

(
gB(Aj→(m,i) + 1)

M − 1
−Bk,(n,j)→(m,i)gB(Aj→(m,i))

) ∣∣∣∣N]].
For all n ̸= m and all 1 ≤ k ≤ Nn,j, let Uk,(n,j)→(m,i) and Vk,(n,j)→(m,i) be

random variables on the same probability space such that Uk,(n,j)→(m,i)
L
= Aj→(m,i)

and P(Vk,(n,j)→(m,i) + 1 ∈ ·) L
= P(Aj→(m,i) ∈ ·|Bk,(n,j)→(m,i) = 1) conditionally on

N .

Using Lemma 3.2.7, we have for all k

E[Bk,(n,j)→(m,i)|N ] =
1

M − 1
.

Therefore,

P(Aj→(m,i) ∈ B)−P(Ãj→i ∈ B) =

E

[
E

[
1

M − 1

∑
n ̸=m

(E[Nn,j]−Nn,j)gB(Aj→(m,i) + 1)

∣∣∣∣N
]]

+
1

M − 1
E

E
∑

n ̸=m

Nn,j∑
k=1

(
gB(Uk,(n,j)→(m,i) + 1)− gB(Vk,(n,j)→(m,i) + 1)

) ∣∣∣∣N
 .

Thus, we have:

∣∣∣P(Aj→(m,i) ∈ B)−P(Ãj→i ∈ B)
∣∣∣ ≤ ∥gB∥

M − 1
E

[∣∣∣∣∣∑
n̸=m

(E[Nn,j]−Nn,j)

∣∣∣∣∣
]

+
∥∆gB∥
M − 1

∑
n̸=m

E

Nn,j∑
k=1

E

[∣∣Uk,(n,j)→(m,i) − Vk,(n,j)→(m,i)

∣∣ ∣∣∣∣N]
 ,



96
CHAPTER 3. REPLICA-MEAN-FIELD LIMITS FOR CONTINUOUS-TIME

PROCESSES

where for a function f, we denote ∥f∥ = supt∈[0,T ] |f(t)|. Now, take

Uk,(n,j)→(m,i) = Aj→(m,i) and Vk,(n,j)→(m,i) =
∑
l ̸=k

Bl,(n,j)→(m,i).

Then,
|Uk,(n,j)→(m,i) − Vk,(n,j)→(m,i)| = Bk,(n,j)→(m,i).

Therefore, using once again Lemma 3.2.7,

E
[∣∣Uk,(n,j)→(m,i) − Vk,(n,j)→(m,i)

∣∣ ∣∣N] = 1

M − 1
.

Moreover, it can be shown (see [10]) that ∥gB∥ ≤ 1∧ 0.74
E[N1,j ]

and ∥∆gB∥ ≤ 1∧ 1
E[N1,j ]

,

where for k ∈ N,∆gB(k) = gB(k + 1)− gB(k). Combining this yields (3.17).

Decoupling arrivals and outputs: a fixed point scheme approach

As we have seen in the previous lemma, for the Poisson approximation to hold,
it is sufficient to prove a law of large numbers-type result on the random vari-
ables (Nn,j)n̸=m. However, since these random variables themselves depend on the
random variables (Aj→(m,i))m∈{1,...,M}, a direct proof seems difficult to obtain.

As such, we propose to see Equation (3.4) as the fixed point equation of some
function on the space of probability laws on the space of càdlàg trajectories. This
fixed point exists and is necessarily unique due to the fact that Equation (3.4)
admits a unique solution. The main idea goes as follows: if we endow this space
with a metric that makes it complete, in order to prove that the law of large
numbers holds at the fixed point, it is sufficient to show that, on one hand, if this
law of large numbers holds for a given probability law, it also holds for its image
by the function; and that on the other hand, the function’s iterates form a Cauchy
sequence. This approach is similar to the one developed in [27], where propagation
of chaos is proven in discrete time by showing that the one-step transition of the
discrete dynamics preserves a triangular law of large numbers.

Our goal in this section is to prove the two aforementioned points. We start
by introducing the metric space we will be considering and defining the function
on it.

Fix T ∈ R, and let DT be the space of càdlàg functions on [0, T ] endowed with
the Billingsley metric [12]: for x, y ∈ DT , let

dDT
(x, y) = inf

θ∈Θ
max(|||θ|||, ∥x− y ◦ θ∥),

where

Θ = {θ : [0, T ] → [0, T ], s.t. θ(0) = 0, θ(T ) = T, and |||θ||| < ∞},
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where

|||θ||| = sup
s ̸=t∈[0,T ]

∣∣∣∣log(θ(t)− θ(s)

t− s

)∣∣∣∣ .
Intuitively, Θ represents all possible ”reasonable” time shifts allowing one to mini-
mize the effect of the jumps between the two functions x and y, where ”reasonable”
means that all slopes of θ are close to 1.

We denote by dDT ,U the uniform metric on DT : for x, y ∈ DT ,

dDT ,U(x, y) = ∥x− y∥.

Note that we have for all x, y ∈ DT , dDT
(x, y) ≤ dDT ,U(x, y), since the uniform

metric corresponds precisely to the case where θ is the identity function.
Let P(DT ) be the space of probability measures on DT . We endow it with the

Kantorovitch metric [46] (sometimes also known as the Wasserstein distance or
the earth mover’s distance): for µ, ν ∈ P(DT ), let

KT (µ, ν) = inf
Π∈DT×DT

E[dDT
(x, y)],

where Π is a coupling s.t. x
L
= µ and y

L
= ν.

Finally, we fix K,M ∈ N and consider the space (P(DT ))
MK endowed with the

1-norm metric: for µ, ν ∈ (P(DT ))
MK , let

KMK
T (µ, ν) =

M∑
m=1

K∑
i=1

KT (µm,i, νm,i).

It is known that (DT , dDT
) is a complete separable metric space, see [12], and

thus that (P(DT ), KT ) and (P(DT ))
MK , KMK

T ) are as well, see [14].
We will also need to consider P(DT ) endowed with a Kantorovitch metric based

on the uniform metric: we introduce for µ, ν ∈ P(DT ),

KT,U(µ, ν) = inf
Π∈DT×DT

E[dDT ,U(x, y)],

where Π is a coupling s.t. x
L
= µ and y

L
= ν. We also introduce its product

version KMK
T,U defined analogously to above. Note that even though (DT , dDT ,U)

is a complete metric space, it is not separable, therefore (P(DT ), KT,U) is not a
priori a complete metric space.

We now define the following mapping:

Φ: (P(DT ))
MK → (P(DT ))

MK

(L(M)) 7→ Φ(L(M)),
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where for all (m, i) ∈ {1, . . . ,M} × {1, . . . , K},Φ(L(M))m,i is the law of the
stochastic intensity λΦ

m,i of a point process NΦ
m,i such that λΦ is the solution of

the stochastic differential equation

λΦ
m,i(t) = λΦ

m,i(0) +
∑
j ̸=i

µj→i

∑
n̸=m

∫ t

0

1I{V M
(n,j)→i

(s)=m}Mn,j(ds)

+

∫ t

0

(
ri − λΦ

m,i(s)
)
NΦ

m,i(ds),

(3.18)

where (λΦ
m,i(0)) are random variables verifying Assumption 3.2.2. Note that we will

exclusively apply the mapping Φ to laws of stochastic intensities of point processes,
the image of which by Φ are also by definition of Φ laws of stochastic intensities
of point processes.

We formalize the law of large numbers we aim to prove as follows:

Definition 3.2.15. Let M ∈ N. Let (XM
n )1≤n≤M be exchangeable random variables

with finite expectation. We say they satisfy an L1 triangular law of large numbers,
which we denote TLLN(XM

n ), if when M → ∞,

E

[∣∣∣∣∣ 1

M − 1

M∑
n=1

(XM
n − E[XM

n ])

∣∣∣∣∣
]
→ 0 (3.19)

and
XM

n ⇒ X̃, (3.20)

where the convergence takes place in distribution.

From (3.17), we know that if the triangular law of large numbers holds for
the fixed point of Φ, it allows for convergence in total variation of arrivals across
replicas from a given neuron j to a given neuron i to a Poisson random variable.
As such, our aim here is twofold:

1. Show that for all (m, i) ∈ {1, . . . ,M}×{1, . . . , K},TLLN(Nm,i([0, t])) implies
TLLN(Φ(Nm,i([0, t])));

2. Show that (Φl)l∈N∗ is a Cauchy sequence that converges to the fixed point,
where Φl is the l-th iterate of Φ : Φl = Φ ◦ Φ ◦ . . . ◦ Φ l times.

Since we can choose Nm,i([0, t]) to be i.i.d. to ensure that there exist inputs for
which TLLN holds, this will allow us to propagate the property and show that
TLLN holds at the fixed point as well.

We will start by proving a lemma that will be key for the second point:
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Lemma 3.2.16. There exists T > 0 such that for ρ, ν ∈ (P(DT ))
MK that are laws

of stochastic intensities of point processes, there exists a constant CT > 0 such that

KMK
T,U (Φ(ρ),Φ(ν)) ≤ CT

∫ T

0

KMK
t,U (ρ, ν) dt. (3.21)

Proof. Let T > 0. Let t ∈ [0, T ]. Fix (m, i) ∈ {1, . . . ,M} × {1, . . . , K}. Let Nρ

(resp. N ν , NΦ(ρ), NΦ(ν)) be a point process admitting ρ (resp. ν,Φ(ρ),Φ(ν)) as a
stochastic intensity. We have

Φ(ρ)m,i(t)− Φ(ν)m,i(t) =
∑
j ̸=i

µj→i

∑
n̸=m

(∫ t

0

1I{V M
(n,j)→i

(s)=m}(N
ρ
n,j(ds)−N ν

n,j(ds))

)
+

∫ t

0

(ri − Φ(ρ)m,i(s))N
Φ(ρ)
m,i (ds)

−
∫ t

0

(ri − Φ(ν)m,i(s))N
Φ(ν)
m,i (ds).

Let (N̂m,i)(m,i)∈{1,...,M}×{1,...,K} be independent Poisson point processes with inten-
sity 1 on [0, T ]× R+ Using the Poisson embedding construction, we can write

Φ(ρ)m,i(t)− Φ(ν)m,i(t) =∑
j ̸=i

µj→i

∑
n ̸=m

∫ t

0

∫ +∞

0

1I{V M
(n,j)→i

(s)=m}(1I{u≤ρn,j(s)}− 1I{u≤νn,j(s)})N̂n,j(ds du)

+ ri

∫ t

0

∫ +∞

0

(1I{u≤Φ(ρ)m,i(s)}− 1I{u≤Φ(ν)m,i(s)})N̂m,i(ds du)

+

∫ t

0

∫ +∞

0

(Φ(ν)m,i(s) 1I{u≤(Φ(ν)m,i(s))}−Φ(ρ)m,i(s)) 1I{u≤(Φ(ρ)m,i(s))} N̂m,i(ds du).

Therefore, we have

|Φ(ρ)m,i(t)− Φ(ν)m,i(t)| ≤∑
j ̸=i

µj→i

∑
n̸=m

∫ t

0

∫ +∞

0

1I{V M
(n,j)→i

(s)=m} 1I{u≤supz∈[0,s] |ρn,j(z)−νn,j(z)|} N̂n,j(ds du)

+ ri

∫ t

0

∫ +∞

0

1I{u≤supz∈[0,s] |Φ(ρ)m,i(z)−Φ(ν)m,i(z)|} N̂m,i(ds du)

+

∫ t

0

∫ +∞

0

sup
z∈[0,s]

|Φ(ρ)m,i(z)− Φ(ν)m,i(z)| 1I{u≤Φ(ρ)m,i(s)∧Φ(ν)m,i(s)} N̂m,i(ds du)

+

∫ t

0

∫ +∞

0

|Φ(ρ)m,i(s) ∨ Φ(ν)m,i(s)| 1I{u≤supz∈[0,s] |Φ(ρ)m,i(z)−Φ(ν)m,i(z)|} N̂m,i(ds du).
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Taking the expectation, using the property of stochastic intensity and proceeding
as before to obtain the 1

M−1
from the routing indicators, we get

E

[
sup

t∈[0,T ]

|Φ(ρ)m,i(t)− Φ(ν)m,i(t)|

]
≤

1

M − 1

∑
j ̸=i

µj→i

∑
n̸=m

∫ T

0

E

[
sup
z∈[0,s]

|ρn,j(z)− νn,j(z)|

]
ds

+ ri

∫ T

0

E

[
sup
z∈[0,s]

|Φ(ρ)m,i(z)− Φ(ν)m,i(z)|

]
ds

+

∫ T

0

E

[
sup
z∈[0,s]

|Φ(ρ)m,i(z)− Φ(ν)m,i(z)| (Φ(ρ)m,i(s) ∧ Φ(ν)m,i(s))

]
ds

+

∫ T

0

E

[
sup
z∈[0,s]

|Φ(ρ)m,i(z)− Φ(ν)m,i(z)| (Φ(ρ)m,i(s) ∨ Φ(ν)m,i(s))

]
ds.

Denote ||µ|| = maxi,j µj→i. We then have

1

M − 1

∑
j ̸=i

µj→i

∑
n̸=m

∫ T

0

E

[
sup
z∈[0,s]

|ρn,j(z)− νn,j(z)|

]
ds ≤

||µ||
K∑
j=1

M∑
n=1

∫ T

0

dDs,U(ρn,j, νn,j) ds,

from which we immediately get by definition of KMK
T,U

1

M − 1

∑
j ̸=i

µj→i

∑
n̸=m

∫ T

0

E[ sup
z∈[0,s]

|ρn,j(z)− νn,j(z)|] ds ≤ ||µ||
∫ T

0

KMK
s,U (ρ, ν) ds.

(3.22)

Let C > 0. As before, let AC([0, T ]) = {(ω, t) ∈ Ω × [0, T ],Φ(ρ)m,i(t) ∨
Φ(ν)m,i(t) > C}. Using the exact same reasoning as in Lemma 3.2.11, we have for
small enough T the existence of a constant KT > 0 such that∫ t

0

E[ sup
z∈[0,s]

|Φ(ρ)m,i(z)− Φ(ν)m,i(z)|(Φ(ρ)m,i(s) ∧ Φ(ν)m,i(s))] ds

≤ C

∫ t

0

E

[
sup
z∈[0,s]

|Φ(ρ)m,i(z)− Φ(ν)m,i(z)|

]
ds+KT e

−3CT .
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Plugging in (3.22) and applying the same reasoning as above to the last integral
term, we get the existence of a constant K ′

T > 0 such that

E

[
sup

t∈[0,T ]

|Φ(ρ)m,i(t)− Φ(ν)m,i(t)|

]
≤ ||µ||

∫ T

0

KMK
s,U (ρ, ν) ds

+ (ri + 2C)

∫ T

0

E

[
sup
z∈[0,s]

|Φ(ρ)m,i(z)− Φ(ν)m,i(z)|

]
ds

+ (KT +K ′
T ) e

−3CT .

Applying Grönwall’s lemma, we get

E

[
sup

t∈[0,T ]

|Φ(ρ)m,i(t)− Φ(ν)m,i(t)|

]
≤(

||µ||
∫ T

0

KMK
s,U (ρ, ν) ds+ (KT +K ′

T ) e
−3CT

)
e(ri+2C)T .

For any ε > 0, we can choose C > 0 such that

E

[
sup

t∈[0,T ]

|Φ(ρ)m,i(t)− Φ(ν)m,i(t)|

]
≤
(
||µ||

∫ T

0

KMK
s,U (ρ, ν) ds

)
e(ri+2C)T + ε.

Letting ε go to 0 and taking the sum over all coordinates and the infimum across
all couplings, we get the result.

As previously mentioned, we need to prove convergence of the sequence of
iterates of Φ to the fixed point of Φ to prove the triangular law of large numbers.
We will now derive this from Lemma 3.2.16.

Lemma 3.2.17. Let ρ ∈ (P(DT ))
MK be the law of the stochastic intensity of a

point process. The sequence (Φl(ρ))l∈N∗ of iterates of the function Φ is a Cauchy
sequence. Moreover, it converges to the unique fixed point of Φ.

Proof. Let ρ ∈ (P(DT ))
MK be the law of the stochastic intensity of a point process.

By immediate induction, from (3.21), we have, for all l ∈ N∗,

KMK
T,U (Φl+1(ρ),Φl(ρ)) ≤ C l

T

T l

l!
KMK

T,U (Φ(ρ), ρ).

This in turn implies that for any p < q ∈ N∗,

KMK
T,U (Φp(ρ),Φq(ρ)) ≤

q−1∑
l=p

CTT
l

l!
KMK

T,U (Φ(ρ), ρ). (3.23)
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Since the series on the right hand side is converging, it proves that the sequence
(Φl)l∈N∗ is a Cauchy sequence for the KMK

T,U metric. The space (P(DT ))
MK , KMK

T,U )
is not complete. However, since for any µ, ν ∈ DT , dDT

(µ, ν) ≤ dDT ,U(µ, ν), it
follows that (Φl)l∈N∗ is a Cauchy sequence for the KMK

T metric as well. By com-
pleteness of (P(DT ))

MK , KMK
T ), (Φl)l∈N∗ converges to the unique fixed point of

Φ.

All that remains is proving that the triangular law of large numbers is car-
ried over by the function Φ, namely, that if we have some input X that verifies
TLLN(X), then we have TLLN(Φ(X)).

To do so, the key lemma will be the following law of large numbers:

Lemma 3.2.18. Let M ∈ N∗. Let (XM
1 , . . . , XM

M ) be M-exchangeable centered
random variables with finite exponential moments. Suppose that for any N ∈ N∗,

(XM
1 , . . . , XM

N )
L→ (X̃1, . . . , X̃N) when M → ∞, where (X̃i)i∈N∗ are i.i.d. random

variables and the convergence takes place in distribution. Then

E

[∣∣∣∣∣ 1M
M∑
n=1

XM
n

∣∣∣∣∣
]
→ 0 (3.24)

when M → ∞.

Proof. Let

UM =
1

M

M∑
n=1

XM
n .

Note that E[UM ] = 0. We have

E[U2
M ] =

1

M2
E

[
M∑
n=1

(XM
n )2 +

∑
m ̸=n

XM
m XM

n

]
.

Since the exponential moments of (XM
n ) are bounded and they all converge in

distribution, we have by asymptotic independence that for any m,n,

E[XM
m XM

n ] → E[X̃mX̃n] = E[X̃m]E[X̃n] = 0

when M → ∞.
Therefore, for ε > 0, for large enoughM , each of the terms of the corresponding

sums in the equation above is smaller than ε. Combining this with exchangeability,
we get the existence of a positive constant C s.t. for large enough M ,

E[U2
M ] ≤ 1

M2
(CM +M(M − 1)ε).
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Now, applying Chebychev’s inequality, for any δ > 0,

P(|UM − E[UM ]| > δ) ≤ E[U2
M ]

δ2
≤ C

Mδ2
+

M(M − 1)ε

M2δ2
.

This gives convergence in probability of UM to 0 when M → ∞.

Since in addition the second moments are uniformly bounded, L1 convergence
follows.

Now, we can finally prove the following lemma which is the last step needed to
prove the main theorem:

Lemma 3.2.19. Let (Nm,i) be point processes on [0, T ] with finite exponential
moments. Let t ∈ [0, T ]. Suppose TLLN((Nm,i([0, t])) holds. Then,
TLLN(Φ((Nm,i([0, t]))) holds as well.

Proof. Suppose TLLN((Nm,i([0, t])) holds. For (m, i) ∈ {1, . . . ,M} × {1, . . . , K},
let λm,i be the stochastic intensity of the process Nm,i. We write for all t ∈ [0, T ],

λm,i(t) = λm,i(0) +
∑
j ̸=i

µj→iAj→(m,i)(t) +

∫ t

0

(ri − λm,i(s))Nm,i(ds),

where (λm,i(0)) verifies Assumption 3.2.2 and

Aj→(m,i)(t) =
∑
n̸=m

∫ t

0

1I{V M
(n,j)→i

(s)=m}Nn,j(ds).

Analogously to (3.17), we have

dTV (Aj→(m,i)(t), Ãj→i(t)) ≤1 ∧ 0.74√
E[N1,j ([0, T ])]

 1

M − 1
E[|
∑
n̸=m

(
E[Nn,j ([0, T ])]−Nn,j ([0, T ])

)
|]

+
1

M − 1

(
1 ∧ 1

E[N1,j ([0, T ])]

)
E[N1,j ([0, T ])].

where Ãj→i are independent Poisson random variables with mean E[N1,j([0, T ])].

As such, TLLN((Nm,i([0, t])) implies convergence in total variation of (Aj→(m,i))

to independent random variables (Ãj→i). We will now show that this implies
convergence in total variation of

∑
j ̸=i µj→iAj→(m,i).
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Denote as before N = (Nn,j)n ̸=m,j ̸=i. Let q ∈ N(M−1)(K−1). Let B1, B2 ∈ B(R+).
Let l1 ̸= l2 ∈ {1, . . . , K} \ {i}. Then, using the total probability formula, we have

P(Al1→(m,i) ∈ B1, Al2→(m,i) ∈ B2) =∑
q

P(Al1→(m,i) ∈ B1, Al2→(m,i) ∈ B2|N = q)P(N = q).

Using Lemma 3.2.7, by conditional independence, we have

P(Al1→(m,i) ∈ B1, Al2→(m,i) ∈ B2) =∑
q

P(Al1→(m,i) ∈ B1|N = q)P(Al2→(m,i) ∈ B2|N = q)P(N = q).

Using the same reasoning as in Lemma 3.2.14, we have that:

P(Al1→(m,i) ∈ B1|N = q) → P(Ãl1→i ∈ B1|N = q) = P(Ãl1→i ∈ B1),

P(Al2→(m,i) ∈ B2|N = q) → P(Ãl2→i ∈ B2|N = q) = P(Ãl2→i ∈ B2)

and

P(N = q) → P(Ñ = q).

By dominated convergence,

P(Al1→(m,i) ∈ B1, Al2→(m,i) ∈ B2) →
∑
q

P(Ãl1→i ∈ B1)P(Ãl2→i ∈ B2)P(N = q)

= P(Ãl1→(m,i) ∈ B1, Ãl2→(m,i) ∈ B2).

This implies convergence of
∑

j µj→iAj→(m,i). Finally, the mapping theorem im-
plies convergence in total variation of λm,i(t) when M → ∞. All conditions of
Lemma 3.2.18 are thus satisfied. Applying it completes the proof.

Thus, we can now state the result that we were aiming to prove:

Lemma 3.2.20. Denote by (Nm,i) the point processes of the M-replica RMF dy-
namics (3.4) that are the fixed point of Φ. Then TLLN((Nm,i([0, T ]))) holds.
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Proof. Let (Nn,j) be random variables satisfying TLLN(Nn,j). Let us first write
out equalities and justify them afterwards. We have

lim
M→∞

1

M − 1
E

[∣∣∣∣∣∑
n̸=m

(E[Nn,j([0, T ])]−Nn,j([0, T ]))

∣∣∣∣∣
]

= lim
M→∞

1

M − 1
E

[∣∣∣∣∣∑
n̸=m

(
E[ lim

l→∞
Φl(Nn,j([0, T ]))]− lim

l→∞
Φl(Nn,j([0, T ]))

)∣∣∣∣∣
]

= lim
M→∞

lim
l→∞

1

M − 1
E

[∣∣∣∣∣∑
n̸=m

(
E[Φl(Nn,j([0, T ]))]− Φl(Nn,j([0, T ]))

)∣∣∣∣∣
]

= lim
l→∞

lim
M→∞

1

M − 1
E

[∣∣∣∣∣∑
n̸=m

(
E[Φl(Nn,j([0, T ]))]− Φl(Nn,j([0, T ]))

)∣∣∣∣∣
]

= 0.

The first equality is given by Lemma 3.2.17. To obtain the second equality, we use
the dominated convergence theorem and the fact that all moments all uniformly
bounded through Lemma 3.2.8 (note that initial conditions are fixed in the defini-
tion of Φ and are chosen to verify Assumption 3.2.2). To justify the third equality,
note that from (3.23), using Lemma 3.2.8 to obtain again a uniform bound of the
moments, we get that the Cauchy sequence of iterates of Φ verifies the uniform
Cauchy criterion and thus converges uniformly to the fixed point, which in turn
allows for the exchange of limits in M and l. The last equality stems directly from
Lemma 3.2.19.

3.2.3 Tightness and convergence on R
The goal of this section is to generalize the main result of the paper. In Theorem
3.2.4, we proved weak convergence of the replica-mean-field processes on compacts
of R+. We now prove weak convergence on R+. One motivation for doing so is that
the results on the Galves-Löcherbach replica-mean-field model in the paper [8] by
Baccelli and Taillefumier assumes that the Poisson Hypothesis holds at the limit in
the stationary regime. As such, the following result provides the missing rigorous
justification, albeit for a slightly simplified model due to Assumption 3.2.1.

Theorem 3.2.21. Let K,M ≥ 2. For all m ∈ {1, ...,M} and i ∈ {1, ..., K}, the
process λm,i weakly converges in the Skorokhod space of càdlàg functions on R+.

Recall the following tightness criterion due to Aldous [2]:
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Proposition 3.2.1. Let (Ω,F , (F (n)
t , t ∈ R+),P) be a probability space, let X(n)

be adapted càdlàg processes. If for all T > 0, (L(||X(n)||)) is tight on [0, T ], and if
for all ε > 0, for all ε′ > 0, there exists δ ∈ (0, T ] such that

lim sup
n→+∞

sup

(S1,S2∈F(n)
t ) such that

S1≤S2≤(S1+δ)∧T

P(|X(n)
S1

−X
(n)
S2

| > ε′) ≤ ε,

then (L(X(n))) is tight on the space of càdlàg functions on R+.

We will also require the following inequality on martingales:

Lemma 3.2.22. Let (Xt)t∈[0,T ] be a nonnegative (Ft)-martingale, let S1, S2 be two
stopping times such that S1 ≤ S2 ≤ S1 + δ. Then

E

[∫ S2

S1

Xs ds

]
≤ 2δ

√
E[X2

T ]. (3.25)

Proof. We have

E

[∫ S2

S1

Xs ds

]
≤ δE[ sup

s∈[0,T ]

Xs]

≤ δ
√

E[ sup
s∈[0,T ]

X2
s ]

≤ 2δ
√

E[X2
T ] (by the Doob inequality)

We are now ready to prove Theorem 3.2.21.

Proof. We use the Aldous criterion mentioned above to prove tightness. Let T > 0.
Let ε′ > 0, δ > 0, S1, S2 two stopping times such that S1 ≤ S2 ≤ (S1 + δ) ∧ T .
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Using the Markov inequality, the fact that ri−λm,i is negative, and the property
of stochastic intensity, we have:

P (|λm,i(S2)− λm,i(S1)| > ε′) =

P

(
|
∑
j ̸=i

µj→i

∑
n̸=m

∫ S2

S1

1I{V(n,j)→i(s)=m}Nn,j(ds) +

∫ S2

S1

(ri − λm,i(s))Nm,i(ds)| > ε′

)

≤ 1

ε′
E

[∑
j ̸=i

µj→i

∑
n̸=m

∫ S2

S1

1I{V(n,j)→i(s)=m}Nn,j(ds) +

∫ S2

S1

(λm,i(s)− ri)Nm,i(ds)

]

≤ 1

ε′
E

[∫ S2

S1

∑
n̸=m

∑
j ̸=i

µj→i 1I{V(n,j)→i(s)=m} λn,j(s) +
(
λ2
m,i(s)− riλm,i(s)

)
ds

]

≤ 1

ε′
E

[∫ S2

S1

∑
j ̸=i

µj→iλ1,j(s) + λ2
m,i(s)− riλm,i(s) ds

]
,

Since λm,i(s) is non-negative for all s ∈ [0, T ], we can write

P (|λm,i(S2)− λm,i(S1)| > ε′) ≤ 1

ε′
E

[∫ S2

S1

∑
j ̸=i

µj→iλ1,j(s) + λ2
m,i(s) ds

]
.

For all (m, i) ∈ {1, ...,M} × {1, ..., K}, let

cm,i(t) =
∑
n̸=m

∑
j ̸=i

∫ t

0

1I{V(n,j)→i(s)=m} λn,j(s) ds+

∫ t

0

(ri − λm,i(s))λm,i(s) ds,

and

dm,i(t) =
∑
n̸=m

∑
j ̸=i

∫ t

0

1I{V(n,j)→i(s)=m} (2λn,j(s) + 1)λn,j(s) ds

+

∫ t

0

(
r2i − λ2

m,i(s)
)
λm,i(s) ds.

By the property of stochastic intensity, ρm,i(t) = λm,i(t) − cm,i(t) and νm,i(t) =
λ2
m,i(t)− dm,i(t) are (Ft)-martingales.
Therefore, we can write

P (|λm,i(S2)− λm,i(S1)| > ε′) ≤

1

ε′
E

[∫ S2

S1

∑
j ̸=i

µj→iρ1,j(s) + νm,i(s) +
∑
j ̸=i

µj→ic1,j(s) + dm,i(s) ds

]
.

(3.26)
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We now bound separately the martingale part and the rest of the right-hand-
side expression in (3.26).

Using Lemma 3.2.22, we have that

E

[∫ S2

S1

(∑
j ̸=i

µj→iρ1,j(s) + νm,i(s)

)
ds

]
≤ 2δ

√
E[(
∑
j ̸=i

µj→iρ1,j(T ) + νm,i(T ))2].

Therefore, using the Cauchy-Schwarz inequality and Lemma 3.2.8, there exists
a nonnegative constant Q1(T ) such that

E

[∫ S2

S1

(∑
j ̸=i

µj→iρ1,j(s) + νm,i(s)

)
ds

]
≤ δQ1(T ). (3.27)

Now, let us bound the rest of the right-hand side term in (3.26).
We have, using Fubini’s theorem for the first equality and the fact that the

term under the integral is nonnegative for the upper bound,

E

[∫ S2

S1

(∫ t

0

∑
n̸=m

∑
j ̸=i

µj→i 1I{V(n,j)→i(s)=m} λn,j(s) ds+ (ri − λm,i(s))λm,i(s) ds

)
dt

]

= E

[ ∫ S2

0

(S2 − (S1 ∨ s))

(∑
n̸=m

∑
j ̸=i

µj→i 1I{V(n,j)→i(s)=m} λn,j(s) ds

+ (ri − λm,i(s))λm,i(s)

)
ds

]
≤ δ

∫ T

0

E

[∑
j ̸=i

µj→iλ1,j(s) + λ2
m,i(s)− riλm,i(s)

]
ds.

Therefore, using Lemma 3.2.8, we have the existence of a constant Q2(T ) > 0
such that for all (n, j) ∈ {1, ...,M} × {1, ..., K},

E

[∫ S2

S1

cn,j(s) ds

]
≤ δQ2(T ).

Similarly, we obtain the existence of a constant Q3(T ) > 0 such that for all (n, j) ∈
{1, ...,M} × {1, ..., K},

E

[∫ S2

S1

dn,j(s) ds

]
≤ δQ3(T ).

Combining the two previous bounds, we have the existence of a nonnegative con-
stant Q4(T ) such that

E

[∫ S2

S1

(∑
j ̸=i

µj→ic1,j(s) + dm,i(s)

)
ds

]
≤ δQ4(T ). (3.28)
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Finally, combining (3.27) and (3.28) in (3.26), we obtain

P (|λm,i(S2)− λm,i(S1)| > ε′) ≤ δ(Q1(T ) +Q4(T ))

ε′
.

Therefore, we can choose δ so that

lim sup
N→+∞

sup
S1,S2(F(n)

t ) s.t.
S1≤S2≤(S1+δ)∧T

P(|λN
m,i(S1)− λN

m,i(S2)| > ε′) ≤ ε.

This proves the second condition of the Aldous criterion.
For the first condition, for t ∈ [0, T ], let

G(t) =
∑
n̸=m

∑
j ̸=i

µj→i

∫ t

0

1I{V(n,j)→i(s)=m}(Nn,j(ds)− λn,j(s) ds)

+

∫ t

0

(λm,i(s)− ri)(Nm,i(ds)− λm,i(s) ds)

and

H(t) =
∑
n̸=m

∑
j ̸=i

µj→i

∫ t

0

1I{V(n,j)→i(s)=m} λn,j(s) ds+

∫ t

0

(λm,i(s)− ri)λm,i(s) ds.

As G is a martingale, by Doob’s inequality and by Lemma 3.2.8, there exists a
constant K1(T ) such that

E

[
sup

t∈[0,T ]

|G(t)|

]
≤ 4E

[
|G(T )|2

]
≤ K1(T ).

Moreover,since all terms under the integrals in H(t) are non-negative, H(t) is
non-decreasing in t, so by Lemma 3.2.8, there exists a constant K2(T ) such that

E

[
sup

t∈[0,T ]

|H(t)|

]
≤ E[H(T )] ≤ K2(T ).

By the triangular inequality,

E

[
sup
[0,T ]

|λm,i(t)|

]
≤ E

[
sup
[0,T ]

|G(t)|

]
+ E

[
sup
[0,T ]

|H(t)|

]
≤ K1(T ) +K2(T ).
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Thus, for all M ≥ 2, if κ > 0, by the Markov inequality,

P
(
||λM

m,i||∞ > κ
)
≤ 1

κ
E
[
∥λM

m,i∥∞
]

≤ K1(T ) +K2(T )

κ
,

so for all ε > 0, there exists κ > 0 such that for all M ≥ 2,

P(∥λM
m,i∥∞ > κ) < ε,

which proves the first condition of the Aldous criterion.
Thus, both conditions of the Aldous criterion are verified, and the set of pro-

cesses (λM
m,i)(m,i)∈{1,...,M}×{1,...,K} is tight in the space of càdlàg functions on R+.

Combining it with statement 4 of Theorem 3.2.4 yields the result.

3.3 Replica-mean-field limit of continuous-time

fragmentation-interaction-aggregation

processes

3.3.1 Introduction

Motivation

Many phenomena of interest, in the natural sciences or elsewhere, can be modeled
as punctuate interactions between agents on an underlying network. Whether it
be neural computations [35] [8], opinion dynamics [4], epidemics propagation [65]
or wireless communications [71], a natural way to model the evolution in time of a
population of agents or nodes is to consider the times at which interactions happen
at each node as the realization of a point process on the real line. The resulting
models describe the phenomena through a system of differential equations verified
by the stochastic intensities of the point processes. From the point of view of a
single node, its state evolves in the following fashion: it aggregates arrivals from
its neighbors (these arrivals can be signed, for example, to model excitatory or
inhibitory inputs in neural models), and in the event of a departure, its state is
updated accordingly (it can for example decrease by one if we are interested in
queueing models, be reset to a resting state to mimic spiking in neural networks,
be divided by two for cellular division-type phenomena). In addition, we allow for
the presence of a continuous drift, for example to model a refractory period after
spiking in neuroscience models.
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This flexibility allows for an accurate description of the phenomenon, but this
accuracy comes at a price, namely, tractability, as neither the equations themselves,
nor their associated functionals such as moment generating functions, admit closed
forms except for some very particular cases.

As such, a common approach is to simplify the model by neglecting certain
characteristics of the phenomenon, such as considering agents to be independent,
and/or considering a particular scaling of the system, typically removing finite-size
effects. One classical simplification is the mean-field regime, obtained by letting
the number of agents go to infinity and scaling the interactions accordingly, usually
inversely proportionally to the number of agents, thus averaging interactions across
the system [34] [56]. The resulting equation, common to all agents and usually of
McKean-Vlasov type, often allows for closed forms to be obtained, at the cost of
losing correlations between particles and the geometry of the underlying network.

In recent years, different approaches have been developed to circumvent these
limitations. To incorporate heterogeneity, the properties of graphons (large dense
graphs) have been used to derive new limit equations [1] [43]. In this setting, the
limit object is an infinite system of ODEs. Another approach circumvents mean-
field models altogether, relying instead on conditional independence properties and
local weak limits to obtain local convergence [55].

Another approach to obtain closed forms is called the Poisson Hypothesis. First
formulated by Kleinrock for large queueing systems [49], it states that the flow of
arrivals to a given node can be approximated by a Poisson flow with rate equal to
the average rate of the original flow of arrivals. In agent-based models, the flow
of arrivals corresponds to the effect of interactions on a given node. Under the
Poisson Hypothesis, the behavior of each agent is still described by a stochastic
differential equation, but the agents are considered independent and interaction
times are replaced by Poisson process clocks, which in certain models allows for
tractability. This regime has been studied for queueing models by Rybko, Shlos-
man and others [78] and by Baccelli and Taillefumier for intensity-based models
from computational neuroscience [8].

A point of interest is the construction of physical models that, when properly
scaled, converge to the Poisson Hypothesis regime, analogously to the classical
mean-field construction. The replica-mean-field construction has been shown to
be a successful answer to this question in various settings. This approach consists
in building a new physical system comprising randomly interacting copies of the
original network, and then letting the number of copies, or replicas, to go to infinity.
From the point of view of a single node inside one of the replicas, its state evolves
in a similar fashion to that of the original model, except that arrivals are now
aggregated across neighbors in all the replicas. When there is a departure from
the node, for each of its neighbors, an independent routing gives the index of the
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replica in which the neighbor will aggregate the arrival to its state.
As the probability of two nodes interacting scales inversely proportionally to

the number of replicas, the replicas become asymptotically independent when their
number goes to infinity. Additionally, the aggregated arrivals to a given node
can be seen as a (random) sum of rare events, which heuristically gives rise to a
Poisson process at the limit in the number of replicas. These observations give an
informal idea of how it has been shown in the particular case of intensity-based
neural dynamics that when the number of replicas goes to infinity, the dynamics
of a typical replica converge to those of under the Poisson Hypothesis. This has
been proved in both continuous and discrete time for excitatory neural dynamics
[5][27]. In the discrete time framework, a class of discrete-time processes, called
fragmentation-aggregation-interaction processes, or FIAPs for short, for which the
same limit theorem holds, has been introduced [5]. A natural question, and the
aim of this work, is to introduce an analogous class of processes in continuous
time and to extend the convergence result for replica-mean-field versions of such
processes obtained in the specific case of excitatory neural dynamics.

The rest of the work is organized as follows: hereafter, we introduce the class
of continuous-time fragmentation-interaction-aggregation processes and state the
main result. Section 2 pertains to the proof of the result. Section 3 establishes
a link between continuous-time and discrete-time FIAPs in the particular case of
excitatory neural dynamics. Finally, Section 4 discusses some natural extensions
of the result.

Continuous-time fragmentation-interaction-aggregation processes

First, recall the definition of the stochastic intensity of a point process: we in-
troduce the network history (Ft)t∈R as an increasing collection of σ-fields such
that

FN
t = {σ(N1(B1), ..., NK(BK))|Bi ∈ B(R), Bi ⊂ (−∞, t]} ⊂ Ft,

where FN
t is the internal history of the process N.

Then, the Ft-stochastic intensity {λi(t)}t∈R of the associated point process Ni

is the Ft-predictable random process satisfying for all s < t ∈ R :

E [Ni(s, t]|Fs] = E

[∫ t

s

λi(u) du
∣∣Fs

]
, (3.29)

where Ft is the network history. We will hereafter refer to (3.29) as the stochastic
intensity property. See [17] for more details on point processes admitting stochastic
intensities.

This in turn allows us to define fragmentation-aggregation-interaction pro-
cesses, or FIAPs for short, as processes with specific stochastic intensities:
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Definition 3.3.1. Let K ≥ 2. We define a continuous-time fragmentation-interaction-
aggregation process, hereafter referred to as a cFIAP, as a collection of point pro-
cesses (Ni)1≤i≤K admitting stochastic intensities (λi) with regards to the network
history such that for any t ∈ R+, there exist

• point processes (N̂j→i)1≤i≤K,j ̸=i admitting stochastic intensities (λ̂j→i) here-
after referred to as interaction processes;

• functions (hj→i)1≤i≤K,j ̸=i : R 7→ R hereafter referred to as interaction func-
tions such that there exists H > 0 verifying for all i, j and all t ∈ R, |hj→i(t)| ≤
H;

• functions (gi)1≤i≤K : R 7→ R+ and (σi)1≤i≤K : R 7→ R+hereafter referred to
as autonomous evolution functions;

• a Lipschitz function f : R 7→ R+ such that f(0) = 0;

such that for all 1 ≤ i ≤ K and all t ∈ R+,

λi(t) = λi(0) + f

(∑
j ̸=i

∫ t

0

hj→i(s)N̂j→i(ds)

)
+

∫ t

0

(gi(s, λi(s))− λi(s))Ni(ds)

+

∫ t

0

(σi(s, λi(s))− λi(s)) ds.

(3.30)

We now formalize the Poisson Hypothesis.

Definition 3.3.2. We say that a cFIAP satisfies the Poisson Hypothesis if all
interaction times are given by independent Poisson processes. We denote with
tildes all state processes in this regime. Namely, for all i, j ∈ 1 ≤ i ≤ K with
i ̸= j, N̂j→i are independent Poisson processes with intensities s → E[λ̃j(s)] and
for all t ∈ R+,

λ̃i(t) = λ̃i(0) + f

(∑
j ̸=i

∫ t

0

hj→i(s)N̂j→i(ds)

)
+

∫ t

0

(gi(s, λ̃i(s))− λ̃i(s))Ñi(ds)

+

∫ t

0

(σi(s, λ̃i(s))− λ̃i(s)) ds.

(3.31)

Given a cFIAP, we now aim to define its replica-mean-field version.

Definition 3.3.3. Let K,M ≥ 2. The M−replica-mean-field cFIAP is given by
the collection of point processes (NM

m,i)1≤i≤K,1≤m≤M admitting stochastic intensities
(λM

m,i) such that for any t ∈ R+, there exist
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• point processes (N̂n,j→i)1≤i≤K,j ̸=i,1≤n≤M admitting stochastic intensities (λ̂n,j,i)
hereafter referred to as aggregation processes;

• functions (hj→i)1≤i≤K,j ̸=i : R 7→ R hereafter referred to as interaction func-
tions such that there exists H > 0 verifying for all i, j and all t ∈ R, |hj→i(t)| ≤
H;

• functions (gi)1≤i≤K : R 7→ R+ and (σi)1≤i≤K : R 7→ R+hereafter referred to
as autonomous evolution functions;

• a Lipschitz function f : R 7→ R+ such that f(0) = 0;

• (Ft)-predictable routing processes {V M
(m,i)→j(t)}t∈R for 1 ≤ m ≤ M, 1 ≤ i, j ≤

K, such that, for each interaction time T , i.e., each point of NM
m,i, the ran-

dom variables {V M
(m,i)→j(T )}j are mutually independent, independent from

the past, and uniformly distributed on {1, ...,M} \ {m}

such that for all 1 ≤ m ≤ M, 1 ≤ i ≤ K and all t ∈ R+,

λm,i(t) = λm,i(0) + f(
∑
j ̸=i

∑
n ̸=m

∫ t

0

hj→i(s) 1I{V M
(n,j)→i

(s)=m} N̂n,j→i(ds))

+

∫ t

0

(gi(s, λm,i(s))− λm,i(s))Nm,i(ds) +

∫ t

0

(σi(s, λm,i(s))− λm,i(s)) ds.

(3.32)

Hereafter, we will always assume that N̂n,j→i = Nn,j for all 1 ≤ n ≤ M, 1 ≤
j ≤ K.

We will moreover always consider the following assumptions on the functions
gi and σi:

Assumption 3.3.4. For all s, t ∈ R, for all i ∈ {1, . . . , K},

gi(s, t) ≤ t and σi(s, t) ≤ t.

In particular,
gi(s, λi(s)) ≤ λi(s) and σi(s, λi(s)) ≤ λi(s).

Note that this implies that the state processes λi are always decreasing in
between aggregations.

In a similar fashion to [27], we also require the following assumption on the
initial conditions:

Assumption 3.3.5. There exists ξ0 > 0 such that for all 1 ≤ m ≤ M, 1 ≤ i ≤ K
and all 0 < ξ ≤ ξ0, E[e

ξλm,i(0)] < ∞.
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Examples of continuous-time FIAPs

We now give a few instances of specific FIAPs.

Example 3.3.6. Taking for 1 ≤ i, j ≤ K and all t ∈ R,
hj→i(t) = µj→i ≥ 0, f(t) = |t|, gi(t, λi(t)) = ri > 0, σi(t, λi(t)) = bi > 0, we retrieve
the excitatory Galves-Löcherbach model [35] [8].

Example 3.3.7. Taking for 1 ≤ i, j ≤ K and all t ≥ 0,
hj→i(t) = µj→i ∈ R, f(t) = max(0, |t|), gi(t, λi(t)) = ri > 0, σi(t, λi(t)) = bi > 0,
we obtain a more general Galves-Löcherbach model incorporating inhibition.

Example 3.3.8. Taking for 1 ≤ i, j ≤ K and all t ≥ 0,
hj→i(t) = 1I{j=i+1 mod K}, f(t) = |t|, gi(t, λi(t)) = λi(t)− 1, σi(t) = λi(t), we obtain
a continuous-time concatenation queueing network. Note that such a network
under the Poisson Hypothesis is an instance of a Gordon-Newell queueing network
[50].

The main result

Recall the following definition of convergence in total variation:

Definition 3.3.9. Let P and Q be two probability measures on a probability space
(Ω,F). We define the total variation distance by

dTV (P,Q) = sup
A∈F

|P (A)−Q(A)|.

When Ω is countable, an equivalent definition is

dTV (P,Q) =
1

2

∑
ω∈Ω

|P (ω)−Q(ω)|.

We will abusively say that a sequence of random variables converges in total
variation when the sequence of their distributions does.

The following theorem is the main result of this work:

Theorem 3.3.10. There exists T ∈ R+ such that for t ∈ [0, T ], if

AM
m,i(t) =

∑
j ̸=i

∑
n̸=m

∫ t

0

hj→i(s) 1I{V M
(n,j)→i

(s)=m}N
M
n,j(ds),

with NM defined in (3.32), and

Ãi(t) =
∑
j ̸=i

∫ t

0

hj→i(s)N̂j→i(ds),

with (N̂j→i)j independent Poisson point processes with respective intensities s 7→
E[λ̃j(s)], then,
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1. the processes (Ã1, . . . , ÃK) are independent, as are the processes (λ̃1, . . . , λ̃K);

2. for all (m, i) ∈ {1, . . . ,M} × {1, . . . , K}, the random variable AM
m,i(t) con-

verges in total variation to Ãi(t) when M → ∞;

3. for all (m, i) ∈ {1, . . . ,M}×{1, . . . , K}, the random variable λM
m,i(t) defined

by (3.32) converges in total variation to λ̃i(t) defined in (3.31) when M → ∞;

4. let N be a finite subset of N∗, for all i ∈ {1, . . . , K}, the processes (AM
m,i(·))m∈N

and (λM
m,i(·))m∈N weakly converge in the Skorokhod space D([0, T ])card(N ) en-

dowed with the product Skorokhod topology to card(N ) independent copies of
the corresponding limit processes (Ãi(·)) and (λ̃i(·)) when M → ∞.

3.3.2 Proof of the theorem

We will follow the general proof framework developed by the author in the previous
work [27]. We will emphasize the technical points that were adapted to this more
general case.

First, we remind the following Poisson embedding representation for point pro-
cesses with a stochastic intensity [18], allowing us to construct all the state pro-
cesses coupled through their Poisson embeddings and initial conditions.

Lemma 3.3.11. Let N be a point process on R. Let (Ft) be an internal history
of N . Suppose N admits a (Ft)-stochastic intensity {µ(t)}t∈R. Then there exists a
Poisson point process N with intensity 1 on R2 such that, for all C ∈ B(R),

N(C) =

∫
C×R

1I[0,µ(s)](u)N(ds× du).

For m ≥ 1,M ≥ 1, 1 ≤ i ≤ K, let Nm,i be i.i.d. Poisson point processes on
R+ × R+ with intensity 1.

Let Ω = (R+×((R+)2)N
∗
)N

∗
be a probability space endowed with the probability

measure (µ0⊗P )⊗N∗
, where µ0 is the law of the initial conditions and P is the law

of a Poisson process with intensity 1 on (R+)2. We construct on Ω the following
processes:

• The processes (NM
m,i(t)),m ≥ 1,M ≥ 1, 1 ≤ i ≤ K, with stochastic intensities
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(λM
m,i(t)) verifying

λM
m,i(t) =

∫ t

0

∫ +∞

0

(
gi(s, λm,i(s))− λM

m,i(s)
)
1I[0,λM

m,i(s)]
(u)Nm,i(ds× du)

+ f

(∑
n̸=m

∑
j ̸=i

∫ t

0

∫ +∞

0

hj→i(s) 1I{V M
(n,j)→i

(s)=m} 1I[0,λM
n,j→i(s)]

(u)Nn,j→i(ds× du)

)

+

∫ t

0

(σi(s, λm,i(s))− λm,i(s)) ds+ λM
m,i(0),

(3.33)

with λM
m,i(0) = Zi for all m ∈ N∗ and where, for all M , (V M

(n,j)→i(t))j are

càdlàg stochastic processes such that for each point T of N̂n,j, the random
variables (V M

(n,j)→i(T ))j are independent of the past, mutually independent

and uniformly distributed on {1, ...,M} \ {n}, considered as marks of the
Poisson point process Nn,j. Namely, to each point of the Poisson embedding,
we attach a mark that is an element of (NK)N

∗
, where the Mth term of the

sequence corresponds to (V M
(n,j)→i(T ))j.

• The processes (Ñi(t)), 1 ≤ i ≤ K, with stochastic intensities (λ̃i(t)) verifying

λ̃i(t) = λ̃i(0) + f

(∑
j ̸=i

∫ t

0

∫ +∞

0

hj→i(s) 1I[0,E[λ̃j(s)]]
(u)N j,i(ds× du)

)

+

∫ t

0

∫ +∞

0

(
gi(s, λ̃i(s))− λ̃i(s)

)
1I[0,λ̃i(s)]

(u)N i,i(ds× du),

(3.34)

with λ̃i(0) = Zi.

Just as in the particular case of neural dynamics, this representation is sufficient
to derive the following, which is statement 1 of Theorem 3.3.10.

Lemma 3.3.12. The processes (Ãi)1≤i≤K are independent, as are the processes
(λ̃1, . . . , λ̃K).

Proof. For all t ∈ [0, T ], we can write using the construction above

Ãi(t) =
∑
j ̸=i

∫ t

0

∫ +∞

0

hj→i(s) 1I[0,E[λ̃j(s)]]
(u)N j,i(ds× du).

Therefore, all the randomness in Ãi is contained in the Poisson embeddings
(N̂k,i)1≤k≤K . Thus, for i ̸= j, Ãi and Ãj are independent. The independence
of the processes (λ̃1, . . . , λ̃K) follows in the same manner by a mapping theorem
argument.
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Properties of the RMF and limit processes

In this section, we prove several properties of the RMF and limit dynamics that
will be used throughout the proof.

In what follows, we will often omit the M superscript in the notations NM
m,i,

AM
m,i and λM

m,i to increase readability.
We generalize from [27] the following representation of the arrival process

Am,i(t). For n ̸= m and j ̸= i, if S ∈ Supp(Nn,j|[0,T )), we define BM
S,(n,j)→(m,i)

the random variable equal to 1 if the routing between replicas at time S caused
by a departure in node j in replica n chose the replica m for the recipient i of the
interaction thus produced, and 0 otherwise. As such, it is clear that we can write
for all t ∈ [0, T ],m ∈ {1, . . . ,M} and i ∈ {1, . . . , K},

Am,i(t) =
∑
n̸=m

∑
j ̸=i

∑
k∈Nn,j∩[0,t]

hj→i(k)B
M
k,(n,j)→(m,i). (3.35)

Note that whenm,n, i and j are fixed, the random variables (BM
k,(n,j)→(m,i))k≤Nn,j([0,T ])

are i.i.d. Also note that when n, j, i and k are fixed, the joint distribution of
(BM

k,(n,j)→(m,i))m with m ∈ {1, . . . ,M} is that of Bernoulli random variables with

parameter 1
M−1

such that exactly one of them is equal to 1, all the others being
equal to 0. Combining these two observations allows us to show that the following
lemma, highlighting a key property of the replica-mean-field approach, holds:

Lemma 3.3.13. Fix (m, i) ∈ {1, . . . ,M} × {1, . . . , K}. Keeping notation from
(3.35), let
N = (Nn,j([0, t]))n̸=m,j ̸=i ∈ N(K−1)(M−1).

Conditionally on the event {N = q}, for q = (qn,j)n̸=m,j ̸=i ∈ N(K−1)(M−1), the
random variables (BM

k,(n,j)→(m,i))n̸=m,j ̸=i,k∈{1,...,qn,j} are independent Bernoulli ran-

dom variables with parameter 1
M−1

.

Proof. The structure of the proof is unchanged from [27]: since N is entirely de-
termined by the Poisson embeddings (N̂n,j)j ̸=i and the arrivals to the nodes (n, j)
from all the nodes h ̸= j across replicas, it is sufficient to show that these arrivals
and the routing variables (BM

k,(n,j)→(m,i))k≤N̂n,j([0,t]×R+) are independent. Intuitively,
this holds because arrivals are aggregated across all replicas, which will erase the
eventual dependencies due to the routing variables to nodes i choosing one replica
rather than another.
In order to transcribe this intuition rigorously, we first show that the total number
of departures from nodes i up to time t, that is,

∑M
l=1 Nl,i([0, t]), and the routing

variables
(BM

k,(n,j)→(m,i))k≤N̂n,j([0,t]×R+) are independent. Indeed, using the representation

given by Lemma 3.3.11, due to the structure of the Poisson embeddings (N̂l,i)l∈{1,...,M},
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there is a point of
∑M

l=1 Nl,i in some interval I iff there is a point of the superpo-
sition of the corresponding Poisson embeddings such that the x-coordinate is in I
and the y-coordinate is under the curve of the function t →

∑M
l=1 λl,i(t). In turn,

the last event does not depend on (BM
k,(n,j)→(m,i))k≤N̂n,j([0,t]×R+), as the symmetry

inherent to the replica structure ensures that all arrivals increment t →
∑M

l=1 λl,i(t)
by the same amount, which concludes the proof of this preliminary remark.

For all (n, j) such that n ̸= m and j ̸= i, let

Ai→(n,j)(t) =
∑
l ̸=n

∑
k∈Nl,i∩[0,t]

hj,i(k)B
M
k,(l,i)→(n,j).

Note that Ai→(n,j)(t) represents the arrivals to node j in replica n from all nodes
i across replicas. As such, it is clear that we can write

Ai→(n,j)(t) =
∑

k∈
∑

l ̸=n Nl,i∩[0,t]

hj,i(k)B
M
k,(i)→(n,j),

where (BM
k,(i)→(n,j)) are independent Bernoulli random variables with parameter

1
M−1

such that they and (BM
k,(n,j)→(m,i)) are independent. Then by the previ-

ous observation, Ai→(n,j)(t) and (BM
k,(n,j)→(m,i)) are independent. Therefore, N ,

which is entirely determined by the Poisson embeddings (N̂n,j) and the arrivals
(Ah→(n,j)(t))h̸=j, and (BM

k,(n,j)→(m,i))k≤N̂n,j([0,T ]×R+), are independent. Thus, condi-

tioning on N does not break independence between the variables (BM
k,(n,j)→(m,i)).

We will now give bounds on the moments of both the M-replica and limit
processes, using the bounds on the moments of the initial conditions. The validity
of this bound is the main reason for the introduction of Assumption 3.3.4, which
allows to stochastically dominate the dynamics by the same dynamics without the
autonomous evolution integral terms, which enables Grönwall’s lemma.

Lemma 3.3.14. Suppose the initial conditions verify Assumption 3.3.5. Then,
for all p ≥ 1, for all (m, i) ∈ {1, . . . ,M} × {1, . . . , K}, for all t ∈ [0, T ], there
exists Qp ∈ Rp[X] a polynomial of degree exactly p such that

E[λp
m,i(t)] ≤ Qp(E[λm,i(0)]). (3.36)

Proof. Note that, by Assumption 3.3.4 and monotonicity, the dynamics that we
consider are stochastically dominated by the same dynamics without the au-
tonomous evolution terms, by which we mean the two last integral terms in (3.32).
Thus, we can restrict ourselves to this special case. We first prove the result for
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p = 1. Let t ∈ [0, T ]. Let i(t) = argmaxj∈{1,...,K}

∣∣∣E[λ̂n,j→i(t)]
∣∣∣. Using the property

of stochastic intensity, we have

E[λm,i(t)(t)] = E[λm,i(t)(0)] + E

f(∑
n̸=m

∑
j ̸=i(t)

∫ t

0

1I{V(n,j)→i(t)(s)=m} λ̂n,j→i(t)(s) ds)

 .

Using the assumptions on f and hj→i, we have

E[λm,i(t)(t)] ≤ E[λm,i(t)(0)] +
H

M − 1

∑
n̸=m

∑
j ̸=i(t)

E

[∫ t

0

λn,j(s) ds

]
.

By the definition of i(t) and exchangeability of the replicas, we have

E[λm,i(t)(t)] ≤ E[λm,i(t)(0)] +H
∑
j ̸=i(t)

∫ t

0

E
[
λm,i(s)(s)

]
ds.

This gives by Grönwall’s lemma the desired result:

E[λm,i(t)(t)] ≤ E[λm,i(t)(0)]e
(K−1)HT =:= Q1(E[λm,i(t)(0)]). (3.37)

This reasoning can be extended by induction to all p ≥ 2.

Finally, note that the exact same reasoning can be applied to obtain an equiv-
alent result for the limit process, which we will only state:

Lemma 3.3.15. For all p ≥ 1, for all i ∈ {1, . . . , K}, for all t ∈ [0, T ], there
exists Q̃p ∈ Rp[X] a polynomial of degree exactly p such that

E[λ̃p
i (t)] ≤ Q̃p[E[λ̃i(0)]]. (3.38)

Lemma 3.3.14 allows us to prove the following result, which states that As-
sumption 3.3.5 can be propagated to any time t less than some fixed T.

Lemma 3.3.16. There exists ξ0 > 0 and T > 0 such that for ξ ≤ ξ0 and all t ≤ T,

E[eξλm,i(t)] < ∞ and E[eξλ̃m,i(t)] < ∞. (3.39)

Proof. To prove this result, we once again consider exchangeable dynamics with-
out resets, using the same observation as previously, namely that nonexchangeable
dynamics with resets are stochastically dominated by exchangeable dynamics with-
out resets, to generalize the result. Note in addition that exchangeable dynamics
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with interaction functions hj→i are dominated by exchangeable dynamics with in-
teraction functions |hj→i|. Let ξ0 as in Assumption 3.3.5. Let t ∈ [0, T ]. Let us
write out the equation verified by eξλm,i(t):

eξλm,i(t) = eξλm,i(0) + f

(∑
j ̸=i

∑
n̸=m

∫ t

0

1I{V M
(n,j)→i

(s)=m} e
ξλm,i(s)(eξhj→i(s) − 1)Nn,j(ds)

)
.

Taking the expectation, using the stochastic intensity property and the condi-
tions on f and (hj→i), we get

E[eξλm,i(t)] ≤ E[eξλm,i(0)] +
1

M − 1

∑
j ̸=i

∑
n̸=m

∫ t

0

E[eξλm,i(s)(eξH − 1)λn,j(s)] ds.

Using exchangeability between replicas, this boils down to

E[eξλm,i(t)] = E[eξλm,i(0)] +
∑
j ̸=i

∫ t

0

E[eξλm,i(s)(eξH − 1)λm,j(s)] ds.

Since we are looking at dynamics without resets and with only nonnegative inter-
actions, λm,i(s) and λm,j(s) are positively correlated. Therefore, we have

E[eξλm,i(t)] ≤ E[eξλm,i(0)] + (eξµ − 1)
∑
j ̸=i

∫ t

0

E[eξλm,i(s)]E[λm,j(s)] ds.

By Lemma 3.3.14 and Assumption 3.3.5, we have the existence of a constant B > 0
such that

E[eξλm,i(t)] ≤ E[eξλm,i(0)] + (eξµ − 1)(K − 1)B

∫ t

0

E[eξλm,i(s)] ds.

The desired result follows from Grönwall’s lemma. The equivalent result for λ̃m,i(t)
is obtained in the same way.

Poisson approximation bound

The goal of this section is to extend the bound obtained using the Chen-Stein
method [23] in [27] to obtain a bound in total variation distance between the
arrivals term (3.35) and the limit sum of Poisson random variables. Recall that
(3.35) states that for all t ∈ [0, T ],m ∈ {1, . . . ,M}, i ∈ {1, . . . , K},

Am,i(t) =
∑
n̸=m

∑
j ̸=i

∑
k∈N̂n,j∩[0,t]

hj→i(k)B
M
k,(n,j)→(m,i).
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We will write
Am,i(t) =

∑
j ̸=i

Aj→(m,i)(t),

where for all j ̸= i,

Aj→(m,i)(t) =
∑
n̸=m

∑
k∈N̂n,j∩[0,t]

hj→i(k)B
M
k,(n,j)→(m,i).

We will hereafter consider that the functions hj→i are simple, that is, that they
are finite linear combinations of indicator functions. This is only a temporary
assumption to obtain a bound in total variation distance using the Chen-Stein
method, and we will relax it later by using a density argument.

Since hj→i is simple, there exist p ≥ 0, a1, . . . , ap ∈ R and A1, . . . , Ap measur-
able subsets of R such that for all t ∈ R,

hj→i(t) =

p∑
l=0

al 1IAl
(t)

. Therefore, we can write

Aj→(m,i)(t) =

p∑
l=0

al
∑
n̸=m

∑
k∈N̂n,j∩([0,t]∩Al)

BM
k,(n,j)→(m,i). (3.40)

By the independence property of the Poisson point process, we see that without
loss of generality, we can assume that hj→i is a constant.

This allows us to now simple reuse the Lemma proved by the author in [27],
which we recall below, using notation consistent with (3.35), with the addition of
a multiplicative constant C in the bound to account for the function hj→i. Since
what follows is done with t ∈ [0, T ] fixed, we will additionally denote Nn,j([0, t])
by Nn,j, continuing to omit the M superscript to simplify notation.

Lemma 3.3.17. Let M > 1. Let (m, i) ∈ {1, . . . ,M} × {1, . . . , K}. For j ∈
{1, . . . , K} \ {i}, let Aj→(m,i) =

∑
n̸=m

∑
k≤Nn,j

hj→i(k)Bk,(n,j)→(m,i) with hj→i sim-

ple, and let Ãj→i be independent Poisson random variables with means E[N1,j].
Then, there exists C > 0 such that

dTV (Aj→(m,i), Ãj→i) ≤ C

((
1 ∧ 0.74√

E[N1,j]

)
1

M − 1
E

[∣∣∣∣∣∑
n ̸=m

(E[Nn,j]−Nn,j)

∣∣∣∣∣
]

+
1

M − 1

(
1 ∧ 1

E[N1,j]

)
E[N1,j]

)
.

(3.41)
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We refer to [27] for the proof and comments on this result, which relies on
the Chen-Stein method for Poisson approximation, using the conditional indepen-
dence property proved in Lemma 3.3.13 to condition on the random amount of
aggregations.

Note that if the bound on the right-hand side goes to 0 when M → ∞, as we
will endeavor to prove in the next section, then we will obtain convergence in total
variation for all measurable functions hj→i, as any such function can be represented
as a uniform limit of simple functions, and the uniform limit commutes with total
variation convergence.

Decoupling arrivals and outputs: a fixed point scheme approach

As we have seen in the previous lemma, for the Poisson approximation to hold,
it is sufficient to prove a law of large numbers-type result on the random vari-
ables (Nn,j)n̸=m. However, since these random variables themselves depend on the
random variables (Aj→(m,i))m∈{1,...,M}, a direct proof seems difficult to obtain.

As such, we follow the approach of [27] and consider Equation (3.32) as the
fixed point equation of some function on the space of probability laws on the space
of càdlàg trajectories. This fixed point exists and is necessarily unique due to the
fact that Equation (3.32) admits a unique solution. The main idea goes as follows:
if we endow this space with a metric that makes it complete, in order to prove
that the law of large numbers holds at the fixed point, it is sufficient to show that,
on one hand, if this law of large numbers holds for a given probability law, it also
holds for its image by the function; and that on the other hand, the function’s
iterates form a Cauchy sequence. This approach is similar to the one developed
in [5], where propagation of chaos is proven in discrete time by showing that the
one-step transition of the discrete dynamics preserves a triangular law of large
numbers.

Our goal in this section is to prove the two aforementioned points. We start
by introducing the metric space we will be considering and defining the function
on it.

Fix T ∈ R, and let DT be the space of càdlàg functions on [0, T ] endowed with
the Billingsley metric [12]: for x, y ∈ DT , let

dDT
(x, y) = inf

θ∈Θ
max(|||θ|||, ∥x− y ◦ θ∥),

where

Θ = {θ : [0, T ] → [0, T ], s.t. θ(0) = 0, θ(T ) = T, and |||θ||| < ∞},

where

|||θ||| = sup
s ̸=t∈[0,T ]

∣∣∣∣log(θ(t)− θ(s)

t− s

)∣∣∣∣ .
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Intuitively, Θ represents all possible ”reasonable” time shifts allowing one to mini-
mize the effect of the jumps between the two functions x and y, where ”reasonable”
means that all slopes of θ are close to 1.

We denote by dDT ,U the uniform metric on DT : for x, y ∈ DT ,

dDT ,U(x, y) = ∥x− y∥.

Note that we have for all x, y ∈ DT , dDT
(x, y) ≤ dDT ,U(x, y), since the uniform

metric corresponds precisely to the case where θ is the identity function.
Let P(DT ) be the space of probability measures on DT . We endow it with

the Kantorovitch metric [46] (also known as the Wasserstein distance or the earth
mover’s distance): for µ, ν ∈ P(DT ), let

KT (µ, ν) = inf
Π∈DT×DT

E[dDT
(x, y)],

where Π is a coupling s.t. x
L
= µ and y

L
= ν.

Finally, we fix K,M ∈ N and consider the space (P(DT ))
MK endowed with the

1-norm metric: for µ, ν ∈ P(DT ), let

KMK
T (µ, ν) =

M∑
m=1

K∑
i=1

KT (µm,i, νm,i).

It is known that (DT , dDT
) is a complete separable metric space, see [12], and

thus that (P(DT ), KT ) and (P(DT ))
MK , KMK

T ) are as well, see [14].
We will also need to consider P(DT ) endowed with a Kantorovitch metric based

on the uniform metric: we introduce for µ, ν ∈ P(DT ),

KT,U(µ, ν) = inf
Π∈DT×DT

E[dDT ,U(x, y)],

where Π is a coupling s.t. x
L
= µ and y

L
= ν. We also introduce its product

version KMK
T,U defined analogously to above. Note that even though (DT , dDT ,U)

is a complete metric space, it is not separable, therefore (P(DT ), KT,U) is not a
priori a complete metric space.

We now define the following mapping:

Φ: (P(DT ))
MK → (P(DT ))

MK

L(M) 7→ Φ(L(M)),

where for all (m, i) ∈ {1, . . . ,M}×{1, . . . , K}, Φ(L(M)) is the law of the stochastic
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intensity λΦ
m,i of a point process NΦ

m,i such that λΦ
m,i is the solution of the stochastic

differential equation

λΦ
m,i(t) = λΦ

m,i(0) + f(
∑
j ̸=i

∑
n̸=m

∫ t

0

hj→i(s) 1I{V M
(n,j)→i

(s)=m}Mn,j→i(ds))

+

∫ t

0

(gi(s, λ
Φ
m,i(s))− λΦ

m,i(s))N
Φ
m,i(ds) +

∫ t

0

(σi(s, λ
Φ
m,i(s))− λΦ

m,i(s)) ds,

(3.42)

where (λΦ
m,i(0)) are random variables verifying Assumption 3.3.5. This is well-

defined for the same reason (3.32) is.
We formalize the law of large numbers we aim to prove as follows:

Definition 3.3.18. Let M ∈ N. Let (XM
n )1≤n≤M be M-exchangeable random

variables with finite expectation. We say they satisfy an L1 triangular law of large
numbers, which we denote TLLN(XM

n ), if when M → ∞,

E

[∣∣∣∣∣ 1

M − 1

M∑
n=1

(XM
n − E[XM

n ])

∣∣∣∣∣
]
→ 0 (3.43)

and
XM

n ⇒ X̃, (3.44)

where the convergence takes place in distribution.

From (3.41), we know that if the triangular law of large numbers holds for
the fixed point of Φ, it allows for convergence in total variation of arrivals across
replicas from a given neuron j to a given neuron i to a Poisson random variable.
As such, our aim here is twofold:

1. Show that for all (m, i) ∈ {1, . . . ,M}×{1, . . . , K},TLLN(Nm,i([0, t])) implies
TLLN(Φ(Nm,i([0, t])));

2. Show that (Φl)l∈N∗ is a Cauchy sequence that converges to the fixed point.

Since we can choose Nm,i([0, t]) to be i.i.d. to ensure that there exist inputs for
which TLLN holds, this will allow us to propagate the property and show that
TLLN holds at the fixed point as well.

We will start by proving a lemma that will be key for the second point. The
adaptation of this lemma from [27] to the more general framework is the main
challenge in this part, but assumptions made on f and Assumption 3.3.4 allow
this extension.
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Lemma 3.3.19. There exists T > 0 such that for ρ, ν ∈ (P(DT ))
MK , there exists

a constant CT > 0 such that

KMK
T,U (Φ(ρ),Φ(ν)) ≤ CT

∫ T

0

KMK
t,U (ρ, ν) dt. (3.45)

Proof. Let T > 0. Let t ∈ [0, T ]. Fix (m, i) ∈ {1, . . . ,M} × {1, . . . , K}. Let Nρ

(resp. N ν , NΦ(ρ), NΦ(ν)) be a point process admitting ρ (resp. ν,Φ(ρ),Φ(ν)) as a
stochastic intensity. We have

Φ(ρ)m,i(t)− Φ(ν)m,i(t) =

f

(∑
j ̸=i

∑
n ̸=m

(∫ t

0

hj→i(s) 1I{V M
(n,j)→i

(s)=m}(N
ρ
n,j(ds)−N ν

n,j(ds))

))

+

∫ t

0

(gi(s,Φ(ρ)m,i(s))− Φ(ρ)m,i(s))N
Φ(ρ)
m,i (ds) +

∫ t

0

(σi(s,Φ(ρ)(s))− Φ(ρ)m,i(s)) ds

−
∫ t

0

(gi(s,Φ(ν)m,i(s))− Φ(ν)m,i(s))N
Φ(ν)
m,i (ds)−

∫ t

0

(σi(s,Φ(ν)(s))− Φ(ν)m,i(s)) ds.

Let (N̂m,i)(m,i)∈{1,...,M}×{1,...,K} be independent Poisson point processes with inten-
sity 1 on [0, T ]× R+. Using the Poisson embedding construction, we can write

Φ(ρ)m,i(t)− Φ(ν)m,i(t) =

f

(∑
j ̸=i

∑
n̸=m

∫ t

0

∫ +∞

0

hj→i(s) 1I{V M
(n,j)→i

(s)=m}(1I{u≤ρn,j(s)}− 1I{u≤νn,j(s)})N̂n,j(ds du)

)

+

∫ t

0

∫ +∞

0

gi(s,Φ(ρ)m,i(s)) 1I{u≤Φ(ρ)m,i(s)}−gi(s,Φ(ν)m,i(s)) 1I{u≤Φ(ν)m,i(s)} N̂m,i(ds du)

+

∫ t

0

∫ +∞

0

Φ(ν)m,i(s) 1I{u≤Φ(ν)m,i(s)}−Φ(ρ)m,i(s) 1I{u≤Φ(ρ)m,i(s)} N̂m,i(ds du)

+

∫ t

0

(Φ(ν)m,i(s)− Φ(ρ)m,i(s)) ds+

∫ t

0

(σi(s,Φ(ρ)m,i(s))− σi(s,Φ(ν)m,i(s))) ds.

Therefore, using the fact that f is Lipschitz and Assumption 3.3.4, we have
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the existence of a constant D > 0 such that

|Φ(ρ)m,i(t)− Φ(ν)m,i(t)| ≤

D
∑
j ̸=i

∑
n̸=m

∫ t

0

∫ +∞

0

hj→i(s) 1I{V M
(n,j)→i

(s)=m} 1I{u≤supz∈[0,s] |ρn,j(z)−νn,j(z)|} N̂n,j(ds du)

+ 2

∫ t

0

∫ +∞

0

sup
z∈[0,s]

|Φ(ρ)m,i(z)− Φ(ν)m,i(z)| 1I{u≤Φ(ρ)m,i(s)∧Φ(ν)m,i(s)} N̂m,i(ds du)

+ 2

∫ t

0

∫ +∞

0

|Φ(ρ)m,i(s) ∨ Φ(ν)m,i(s)| 1I{u≤supz∈[0,s] |Φ(ρ)m,i(z)−Φ(ν)m,i(z)|} N̂m,i(ds du)

+ 2

∫ t

0

|Φ(ν)m,i(s)− Φ(ρ)m,i(s)| ds.

Taking the expectation, using the property of stochastic intensity and proceeding
as before to obtain the 1

M−1
from the routing indicators, we get

E

[
sup

t∈[0,T ]

|Φ(ρ)m,i(t)− Φ(ν)m,i(t)|

]
≤

DH

M − 1

∑
j ̸=i

∑
n̸=m

∫ T

0

E

[
sup
z∈[0,s]

|ρn,j(z)− νn,j(z)|

]
ds

+ 2

∫ T

0

E

[
sup
z∈[0,s]

|Φ(ρ)m,i(z)− Φ(ν)m,i(z)| (Φ(ρ)m,i(s) ∧ Φ(ν)m,i(s))

]
ds

+ 2

∫ T

0

E

[
sup
z∈[0,s]

|Φ(ρ)m,i(z)− Φ(ν)m,i(z)| (Φ(ρ)m,i(s) ∨ Φ(ν)m,i(s))

]
ds

+ 2

∫ T

0

E

[
sup
z∈[0,s]

|Φ(ρ)m,i(z)− Φ(ν)m,i(z)|

]
ds.

We then have

DH

M − 1

∑
j ̸=i

µj→i

∑
n̸=m

∫ T

0

E

[
sup
z∈[0,s]

|ρn,j(z)− νn,j(z)|

]
ds ≤

DH
K∑
j=1

M∑
n=1

∫ T

0

dDs,U(ρn,j, νn,j) ds,

from which we immediately get by definition of KMK
T,U

DH

M − 1

∑
j ̸=i

∑
n̸=m

∫ T

0

E[ sup
z∈[0,s]

|ρn,j(z)− νn,j(z)|] ds ≤ DH

∫ T

0

KMK
s,U (ρ, ν) ds. (3.46)
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Let C > 0. As before, let AC([0, T ]) = {(ω, t) ∈ Ω × [0, T ],Φ(ρ)m,i(t) ∨
Φ(ν)m,i(t) > C}. Using the exact same reasoning as in [27], we have the existence
of a constant KT > 0 such that∫ t

0

E[ sup
z∈[0,s]

|Φ(ρ)m,i(z)− Φ(ν)m,i(z)|(Φ(ρ)m,i(s) ∧ Φ(ν)m,i(s))] ds

≤ C

∫ t

0

E

[
sup
z∈[0,s]

|Φ(ρ)m,i(z)− Φ(ν)m,i(z)|

]
ds+KT e

−3CT .

Plugging in (3.46) and applying the same reasoning as above to the last integral
term, we get the existence of a constant K ′

T > 0 such that

E

[
sup

t∈[0,T ]

|Φ(ρ)m,i(t)− Φ(ν)m,i(t)|

]
≤ DH

∫ T

0

KMK
s,U (ρ, ν) ds

+ (2(1 + C))

∫ T

0

E

[
sup
z∈[0,s]

|Φ(ρ)m,i(z)− Φ(ν)m,i(z)|

]
ds

+ (KT +K ′
T ) e

−3CT .

Applying Grönwall’s lemma, we get

E

[
sup

t∈[0,T ]

|Φ(ρ)m,i(t)− Φ(ν)m,i(t)|

]
≤(

DH

∫ T

0

KMK
s,U (ρ, ν) ds+ (KT +K ′

T ) e
−3CT

)
e2(1+C)T .

For any ε > 0, we can choose C > 0 such that

E

[
sup

t∈[0,T ]

|Φ(ρ)m,i(t)− Φ(ν)m,i(t)|

]
≤
(
DH

∫ T

0

KMK
s,U (ρ, ν) ds

)
e2(1+C)T + ε.

Letting ε go to 0 and taking the sum over all coordinates and the infimum across
all couplings, we get the result.

As previously mentioned, we need to prove convergence of the sequence of
iterates of Φ to the fixed point of Φ to prove the triangular law of large numbers.
We will now derive this from Lemma 3.3.19.

Lemma 3.3.20. The sequence (Φl)l∈N∗ of iterates of the function Φ is a Cauchy
sequence. Moreover, it converges to the unique fixed point of Φ.
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Proof. Let ρ ∈ (P(DT ))
MK . By immediate induction, from (3.45), we have, for all

l ∈ N∗,

KMK
T,U (Φl+1(ρ),Φl(ρ)) ≤ C l

T

T l

l!
KMK

T,U (Φ(ρ), ρ).

This in turn implies that for any p < q ∈ N∗,

KMK
T,U (Φp(ρ),Φq(ρ)) ≤

q−1∑
l=p

CTT
l

l!
KMK

T,U (Φ(ρ), ρ). (3.47)

Since the series on the right hand side is converging, it proves that the sequence
(Φl)l∈N∗ is a Cauchy sequence for the KMK

T,U metric. The space (P(DT ))
MK , KMK

T,U )
is not complete. However, since for any µ, ν ∈ DT , dDT

(µ, ν) ≤ dDT ,U(µ, ν), it
follows that (Φl)l∈N∗ is a Cauchy sequence for the KMK

T metric as well. By com-
pleteness of (P(DT ))

MK , KMK
T ), (Φl)l∈N∗ converges to the unique fixed point of

Φ.

All that remains is proving that the triangular law of large numbers is car-
ried over by the function Φ, namely, that if we have some input X that verifies
TLLN(X), then we have TLLN(Φ(X)).

To do so, the key lemma will be the following law of large numbers.

Lemma 3.3.21. Let M ∈ N∗. Let (XM
1 , . . . , XM

M ) be M-exchangeable centered
random variables with finite exponential moments. Suppose that for any N ∈ N∗,

(XM
1 , . . . , XM

N )
L→ (X̃1, . . . , X̃N) when M → ∞, where (X̃i)i∈N∗ are i.i.d. random

variables and the convergence takes place in distribution. Then

E

[∣∣∣∣∣ 1M
M∑
n=1

XM
n

∣∣∣∣∣
]
→ 0 (3.48)

when M → ∞.

We refer to [27] for the proof of this result.
The following lemma is the last step needed to prove the main theorem:

Lemma 3.3.22. Let (Nm,i) be point processes on [0, T ] with finite exponential
moments. Let t ∈ [0, T ]. Suppose TLLN((Nm,i([0, t])) holds. Then,
TLLN(Φ((Nm,i([0, t]))) holds as well.

We once again refer to [27] for the proof of this result, as it is done in an
analoguous matter.

Thus, we can now state the result that we were aiming to prove:
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Lemma 3.3.23. Denote by (Nm,i) the point processes of the M-replica RMF dy-
namics (3.32) that are the fixed point of Φ. Then TLLN((Nm,i([0, T ]))) holds.

Proof. The proof is identical to [27], but we reproduce it here for completeness’
sake. Let (Nn,j) be random variables satisfying TLLN(Nn,j). Let us first write out
equalities and justify them afterwards. We have

lim
M→∞

1

M − 1
E

[∣∣∣∣∣∑
n̸=m

(E[Nn,j([0, T ])]−Nn,j([0, T ]))

∣∣∣∣∣
]

= lim
M→∞

1

M − 1
E

[∣∣∣∣∣∑
n̸=m

(
E[ lim

l→∞
Φl(Nn,j([0, T ]))]− lim

l→∞
Φl(Nn,j([0, T ]))

)∣∣∣∣∣
]

= lim
M→∞

lim
l→∞

1

M − 1
E

[∣∣∣∣∣∑
n̸=m

(
E[Φl(Nn,j([0, T ]))]− Φl(Nn,j([0, T ]))

)∣∣∣∣∣
]

= lim
l→∞

lim
M→∞

1

M − 1
E

[∣∣∣∣∣∑
n̸=m

(
E[Φl(Nn,j([0, T ]))]− Φl(Nn,j([0, T ]))

)∣∣∣∣∣
]

= 0.

The first equality is given by Lemma 3.3.20. To obtain the second equality, we use
the dominated convergence theorem and the fact that all moments are uniformly
bounded through Lemma 3.3.14 (note that initial conditions are fixed in the defini-
tion of Φ and are chosen to verify Assumption 3.3.5). To justify the third equality,
note that from (3.47), using Lemma 3.3.14 to obtain again a uniform bound of the
moments, we get that the Cauchy sequence of iterates of Φ verifies the uniform
Cauchy criterion and thus converges uniformly to the fixed point, which in turn
allows for the exchange of limits in M and l. The last equality stems directly from
Lemma 3.3.22.

3.3.3 Link between RMF FIAPs in discrete and
continuous times : the example of the excitatory
Galves-Löcherbach model

FIAPs, and replica-mean-field versions of FIAPs, were originally introduced in
discrete time in [5]. One natural question is to explore the links between these
original FIAPs and the cFIAPS introduced in this work. The goal of this section is
to show a link between replica-mean-field versions of continuous-time and discrete-
time FIAPs for a specific instance of FIAP : the excitatory Galves-Löcherbach
model. In this particular case, the goal is to prove the existence of the horizontal
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equivalences in the following diagram:

(infinite-replica FIAP with -time step)δ>0
// infinite-replica GL cFIAPoo

(M -replica FIAP with δ-time step)δ>0

M→∞

OO

//M -replica excitatory GL cFIAP

M→∞

OO

oo

The left up arrow corresponds to the proof of the Poisson Hypothesis for a collec-
tion of discrete-time FIAPs as introduced in [5] with time-step δ, for all δ > 0. The
right up arrow corresponds to the proof of the Poisson Hypothesis for the cFIAP
excitatory GL model, which was presented in [27]. In this section we complete the
diagram by showing that it is possible to construct the discrete-time RMF FIAPs
given the continuous-time dynamics, and vice-versa.

We recall the definition of discrete-time FIAPs originally introduced in [5]:

Definition 3.3.24. An instance of the class C of discrete fragmentation-interaction-
aggregation processes is determined by:

• An integer K representing the number of nodes;

• A collection of initial conditions for the integer-valued state variables at step
zero, which we denote by {Xi}, where i ∈ {1, . . . , K};

• A collection of fragmentation random variables {Ui}, which are i.i.d. uniform
in [0, 1] and independent from {Xi}, where i ∈ {1, . . . , K};

• A collection of fragmentation functions {g1,i : N → N}i∈{1,...,K}
and {g2,i : N → N}i∈{1,...,K};

• A collection of bounded interaction functions {hj→i : N → N}i,j∈{1,...,K};

• A collection of activation probabilities {σi(0), σi(1), . . .}i∈{1,...,K} verifying the
conditions σi(0) = 0, and 0 < σi(1) ≤ σi(2) ≤ · · · ≤ 1 for all i.

The associated dynamics take as input the initial integer-valued state variables
{Xi} and define the state variables at the next step as

Yi = g1,i(Xi) 1I{Ui<σi(Xi)}+g2,i(Xi) 1I{Ui>σi(Xi)}+Ai, ∀i = 1, . . . , K, (3.49)

with arrival processes

Ai =
∑
j ̸=i

hj→i(Xj) 1I{Uj<σj(Xj)}, ∀i = 1, . . . , K. (3.50)

Given a FIAP, we now consider its replica-mean-field model. We once again
recall the precise definition from [5]:
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Definition 3.3.25. For any process in C, the associated M-replica dynamics is
entirely specified by

• A collection of initial conditions for the integer-valued state variables at step
zero, which we denote by {XM

n,i}, where n ∈ {1, . . . ,M} and i ∈ {1, . . . , K},
such that for all M,n and i, XM

n,i = Xi;

• A collection of fragmentation random variables {Un,i}, which are i.i.d. uni-
form in [0, 1] and independent from {XM

n,i}, where n ∈ {1, . . . ,M} and
i ∈ {1, . . . , K};

• A collection of i.i.d. routing random variables {RM
(n,j)→i} independent from

{XM
n,i} and {Un,i}, uniformly distributed on {1, . . . ,M} \ {m} for all i, j ∈

{1, . . . , K} and m ∈ {1, . . . ,M}. In other words, if RM
(n,j)→i = n, then an

eventual activation of node j in replica m at step 0 induces an arrival of size
hj→i(X

M
m,j) in node i of replica n, and n is chosen uniformly among replicas

and independently from the state variables. Note that these variables are
defined regardless of the fact that an activation actually occurs. Also note
that for i′ ̸= i, the activation in question will induce an arrival in node i′ of
replica n′, with n′ sampled in the same way but independently of n.

Then, the integer-valued state variables at step one, denoted by {Y M
n,i}, are given

by the M-RMF equations

Y M
n,i = g1,i(X

M
n,i) 1I{Un,i<σi(XM

n,i)}+g2,i(X
M
n,i) 1I{Un,i>σi(XM

n,i)}+AM
n,i, (3.51)

where g1,i, g2,i denotes fragmentation functions, σi denotes activation probabilities,
and where

AM
n,i =

∑
m̸=n

∑
j ̸=i

hj→i(X
M
m,j) 1I{Um,j<σi(XM

m,j)} 1I{RM
(n,j)→i

=n} (3.52)

is the number of arrivals to node i of replica n via the interaction functions hj→i.

We will focus here on the case of the excitatory Galves-Löcherbach model (we
will omit excitatory hereafter), in both discrete and continuous time settings, which
we will now recall.

In the continuous time setting, theM -replica-mean-field of the Galves-Löcherbach
model is defined as follows:

λM
m,i(t) = λM

m,i(0) +
1

τi

∫ t

0

(
bi − λM

m,i(s)
)
ds

+
∑
j ̸=i

µj→i

∑
n̸=m

∫ t

0

1I{V M
(n,j)→i

(s)=m}N
M
n,j(ds) +

∫ t

0

(
ri − λM

m,i(s)
)
NM

m,i(ds).

(3.53)
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In the discrete time setting with time step length δ, the one-step transition of
the RMF GL FIAP is given by

Y M
m,i = 1I{Um,i>σδ(X

M
m,i)}X

M
m,i + 1I{Um,i>σδ(X

M
m,i)} ri + AM

m,i, (3.54)

where

AM
m,i =

∑
n ̸=m

∑
j ̸=i

µj→i 1I{Un,j<σδ(X
M
n,j)} 1I{RM

n,j,i=m} (3.55)

is the number of arrivals to neuron i of replica m, XM
m,i is the state of neuron i in

replica m at time 0 and Y M
m,i is its state at time 1.

In FIAP models, the arrivals to a given neuron at a given time are conditionally
independent from the spiking activity of that neuron given the states at that time.
Since in a continuous-time model all events are asynchronous, such a property is
no longer verified. Thus, in order to map the continuous-time model to a FIAP,
we must “separate” the arrivals and the spikes. In order to do that, we introduce
a δ > 0 unit of time. We then show that one can construct a discrete-time Markov
chain that is similar to the embedded Markov chain of the continuous time model
but which belongs to the RMF FIAP class.

Since in FIAPs, all the states taken by the state variables are discrete, we must
make the following simplifying assumption:

Assumption 3.3.26.

• For all i ∈ {1, . . . , K}, τi = ∞ (no exponential decay) and ri ∈ N∗;

• For all i, j ∈ {1, . . . , K}, µj→i ∈ N.

Under Assumption 3.3.26, it is known (see [8]) that the generator of the M -
replica dynamics is given by

A[f ](λ) =
K∑
i=1

M∑
n=1

1

|Vm,i|
∑

v∈Vm,i

(f(λ+ µm,i,v(λ))− f(λ))λm,i,

where the update due to the spiking of neuron (m, i) is defined by

[µm,i,v(λ)]n,j =


µj→i if j ̸= i, n = vj

ri − λm,i if j = i, n = m

0 otherwise .

We now consider the embedded discrete-time Markov chain of the RMF GL
dynamics, where all updates happen at the spiking times of the dynamics. Since
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the spiking times are all distinct, all the transitions of the embedded Markov chain
are given by

(λ1,1, ..., λ1,K , λ2,1, . . . , λM,K)

��
(λ1,1, . . . , λm1,1 + µi,1, . . . , λm,i−1, ri, λm,i+1, . . . , λM,K)

with associated transition probabilities pMm,i

(
1

M−1

)K−1
, where pMm,i is the probability

that neuron (m, i) spikes conditioned on the event that a spike happens. The main
complexity with this Markov chain is that the transition times correspond to the
spiking times of the RMF GL network, which are not tractable.

Therefore, we now define a new discrete time Markov chain on NMK with steps
in time of fixed length δ. The informal idea is to reset all neurons that spike in the
RMF GL dynamics during such a step in time and update all the states with the
potential due to these spikes. Since a single neuron could very well spike multiple
times in a δ unit of time, we only consider the updates due to the first spike of a
given neuron.

Note that the informal idea given above is the motivation behind the definition
of the following discrete time dynamics, which is defined ad hoc. We characterize
the dynamics of this chain through its transitions, and we will show that the chain
we define belongs to the class of discrete time RMF FIAPs.

In order to simplify notation and facilitate understanding, let us define the
following “half-step” fragmentation and aggregation transitions PA(δ) and PF (δ).
We define PF (δ) as the transitions

PF (δ) : (λ1,1, . . . , λ1,K , λ2,1, . . . , . . . , λM,K)

��
(λ1,1, . . . , ri1 , . . . , ri2 , . . . , riL , . . . , λM,K)

where the transition probability is given by∏
(m,i)∈L

pMm,i(δ)
∏

(m,i)/∈L

(
1− pMmk,ik

(δ)
)
,

where pMm,i(δ) is the probability that neuron (m, i) spikes, i.e., is set to the value
ri, in a δ-unit of time and L = {(m1, i1), . . . , (mL, iL)}.

Informally, this transition corresponds to a fragmentation of the state: we reset
to their base rate all the neurons that spike during the δ step of time. Note that
pMm,i(δ) = 1 − e−σ(λm,i)δ, where for all k, σ(k) is the probability that a neuron of
the RMF GL network in state k spikes in a unit of time in length 1.
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We then define the aggregation transitions PA(δ) in the following fashion : for
all 1 ≤ k ≤ L, each neuron (mk, ik) which has spiked and been reset to its base rate
rik in the previous step, for each j ̸= ik, we randomly, uniformly and independently
from each other and from the rest of the dynamics, choose an index nk ̸= mk and
increment neuron (nk, j) by µik,j. Thus, all transitions are of the form

PA(δ) :
(
PF (δ) (λ1,1, . . . , λM,K)

)
��(

λ1,1, . . . , λni1
,1 + µi1,1, . . . , λnik,j

+ µik,j, . . . , λM,K

)
with transition probability

(
1

M−1

)(K−1)L
(conditioned on the transition probability

of PF (δ)). Note that (nik) are not necessarily distinct for k′ ̸= k. Note that all the
routings are done independently from one another and that updates to a single
neuron are independent of whether that particular neuron has spiked or not.

We can then define the full transitions of our new discrete time Markov chain
as

(λ1,1, . . . , λM,K) 7−→ PA(δ) ◦ PF (δ) (λ1,1, . . . , λM,K) . (3.56)

By the total probability formula, the transition probability is given by

MK∑
l=1

∑
J⊂{1,...,M}×{1,...,K}

|J |=l

∏
(n,j)∈J

pMn,j(δ)
∏

(n,j)/∈J

(
1− pMn,j(δ)

)( 1

M − 1

)l

. (3.57)

Our goal is now to show that the Markov chain defined this way belongs to the
class of RMF FIAPs. In order to do that, we will require the following lemma,
which gives the transition probability of a single coordinate of the above Markov
chain.

Lemma 3.3.27. Let k, l ∈ N. Let PM,m,i
k→l (δ) be the probability that neuron (m, i)

following the RMF dynamics given above in (3.56) transitions from state k to state
l in a single step of time of length δ. Then

PM,m,i
k→l = pMm,i(δ)P(AM

m,i = l − ri) +
(
1− pMm,i(δ)

)
P(AM

m,i = l − k), (3.58)

where for all l ∈ N,

P(AM
m,i = l) =

(K−1)(M−1)∑
p=l

∑
J⊂{1,...,M}\{m}×{1,...,K}\{i}∑

(n,j)∈J µj→i=p

∏
(n,j)∈J

pMn,j(δ)

∏
(n,j)/∈J

(
1− pMn,j(δ)

)( 1

M − 1

)l(
1− 1

M − 1

)p−l

.

(3.59)
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Here AM
m,i are the updates due to arrivals to neuron (m, i) in a δ-unit of time.

Proof. Equation (3.58) is due to the independence between the spiking of (m, i)
and the arrivals to (m, i). Let SM

m,i be the arrivals caused by spikes in the system
in a δ-unit of time, discounting the spikes in replica m and the spikes in neuron i
across replicas. Informally, SM

m,i is the quantity from spikes that could potentially
reach neuron i in replica m if the routing variables allow it. Then

P(SM
m,i = p) =

∑
J⊂{1,...,M}\{m}×{1,...,K}\{i}∑

(n,j)∈J µj→i=p

∏
(n,j)∈J

pMn,j(δ)
∏

(n,j)/∈J

(
1− pMn,j(δ)

)
. (3.60)

By the total probabilities formula,

P(AM
m,i = l) =

(M−1)(K−1)∑
p=l

P(SM
m,i = p)P(AM

m,i = l|SM
m,i = p). (3.61)

Since the routings are independent of the rest of the process, we have

P(AM
m,i = l|SM

m,i = p) =

(
1

M − 1

)l(
1− 1

M − 1

)p−l

. (3.62)

Putting together (3.60),(3.61) and (3.62), we get (3.59).

Now we prove the following lemma:

Lemma 3.3.28. The discrete-time Markov chain with transitions defined by (3.56)
is a RMF FIAP.

Proof. In order to achieve that, we compute the transition probabilities of RMF
FIAPs and we show that the transition probabilities of the Markov chain defined
above are of that type.

Consider the RMF GL FIAP model following dynamics given by (3.54) and
(3.55). Let X = {XM

m,i} be the state variables at step 0, let σδ : N → [0, 1] be
the spiking probabilities of the neuron satisfying the conditions given in Definition
3.3.24.

We now give the transition probabilities of the Markov RMF FIAP dynamics.
Let k, l ∈ N. Let QM,m,i

k→l be the probability that neuron (m, i) in the RMF FIAP
dynamics is in state l at time δ given that it is in state k at time 0. In other words,
QM,m,i

k→l = P(Y M
m,i = l|XM

m,i = k). Then

QM,m,i
k→l = σδ(X

M
m,i)P(AM

m,i = l − ri) +
(
1− σδ(X

M
m,i)
)
P(AM

m,i = l − k), (3.63)
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where

P(AM
m,i = l) =

(K−1)(M−1)∑
p=l

∑
J⊂{1,...,M}\{m}×{1,...,K}\{i}∑

(n,j)∈J µj→i=p

∏
(n,j)∈J

σδ(X
M
n,j)

∏
(n,j)/∈J

(
1− σδ(X

M
n,j)
)( 1

M − 1

)l(
1− 1

M − 1

)p−l

.

(3.64)

Here AM
m,i are the updates due to arrivals to neuron (m, i) in a δ-unit of time.

Note that in the case where µj→i = 1 for all i, j, AM
m,i represents the number of

arrivals to neuron (m, i) in a δ-unit of time.
Equation (3.63) is simply due to the independence of arrivals and spikes in the

RMF FIAP model. We now proceed identically to the proof of the particular case
above. Let SM

m,i be the arrivals caused by spikes in the system in a δ-unit of time,
discounting the spikes in replica m and the spikes in neuron i across replicas. Then

P(SM
m,i = p) =

∑
J⊂{1,...,M}\{m}×{1,...,K}\{i}∑

(n,j)∈J µj→i=p

∏
(n,j)∈J

σ(XM
n,j)

∏
(n,j)/∈J

(
1− σ(XM

n,j)
)
. (3.65)

By the total probabilities formula,

P(AM
m,i = l) =

(M−1)(K−1)∑
p=l

P(SM
m,i = p)P(AM

m,i = l|SM
m,i = p). (3.66)

Since the routing variables are independent of the rest of the process, we have

P(AM
m,i = l|SM

m,i = p) =

(
1

M − 1

)l(
1− 1

M − 1

)p−l

. (3.67)

Putting together (3.65),(3.66) and (3.67), we get (3.64).
As such, we see that the transition probabilities in our Markov chain model

given by (3.58) and (3.59) are a particular case of these general FIAP transition
probabilities(3.63) and (3.64). This concludes the proof.

In this way, we have shown that given a RMF GL continuous-time model,
given the initial conditions, we can uniquely define a collection of RMF FIAP
discrete-time models with varying time step lengths associated with it.

Note that a reverse construction is also possible in the following sense: given
RMF FIAP dynamics of the type defined above for all δ > 0, since for all k, σδ(k) =
δσ(k) + o(δ), we can reconstruct the infinitesimal generator of the continuous-
time dynamics by considering the transition operator 1

δ
(Pδ − Id), where Id is the

identity operator and Pδ is the transition operator of the RMF FIAP dynamics
with time steps of length δ, and letting δ go to 0.





Chapter 4

Replica-mean-field limit of a
migration-contagion process on a
network

4.1 Introduction

This chapter presents elements of a work in progress on an epidemiological model.
We introduce a replica-mean-field model of epidemics propagation on a network.
Unlike previous chapters, we are interested here not in the proof of the convergence
of the replica-mean-field model to limit dynamics under the Poisson Hypothesis,
but rather in the numerical study of the conjectured limit. More specifically, the
main goal of this chapter is to study the relationship between the geometry of
the underlying network and the propagation of the epidemics under the Poisson
Hypothesis.

4.2 Replica-mean-field limit of a

migration-contagion process on a network

4.2.1 Introduction

In a migration-contagion process, individuals, or customers, travel in between
stations, called reactors when considering them as single open stations. Each
customer is marked with their state, infected (I) or susceptible (S). Inside each
reactor, the customer states change according to mechanisms depending on the
migration-contagion process chosen. In [6], several reactors were introduced in
order to study the steady state of the queues. The main M/M/∞ SIS reactor is

139
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defined as follows: consider a M/M/∞ queue with input rate λ and service rate
µ. Let X(t) be the number of susceptible customers at time t, and Y (t) be the
number of infected customers at time t. Let X(0) = x, Y (0) = y. Input customers
are infected with probability p, and susceptible with probability q = 1− p. Inside
the queue, any susceptible customer becomes infected with rate αY (t), and any
infected customer becomes susceptible with rate β.

The SIS-DOCS (Departure On Change of State) migration-contagion reactor is
defined as follows: if a customer changes states, they immediately leave the reactor.
In this setting, the PDE verified by the stationary generating function can be solved
explicitly. Moreover, the stationary distribution of Y is Poisson with parameter
λp
µ+β

. Similarly to the SIS case, it is possible to consider the thermodynamic limit of
N SIS-DOCS stations. The rigorous derivation of this limit is left as a conjecture.

Here, we study a network version of the SIS-DOCS dynamics. Namely, we
consider a network where each node is a SIS-DOCS reactor. Upon exiting a reactor,
each customer chooses a neighboring node and travels to it.

For 1 ≤ i ≤ K, denote µi the service rate of reactor i and λi its arrival rate.
Similarly, denote αi and βi its parameters for the rates of change of state, from
susceptible to infected and from infected to susceptible respectively.

Formally, we consider N individuals traveling on a network with K nodes. The
geometry of the network is encoded in the routing matrix P = (pj→i)1≤i,j≤K . To
transcribe the routings in between nodes, we introduce routing processes
{W x,1

j (t)}t∈R, {W y,1
j (t)}t∈R,{W x,2

j (t)}t∈R and {W y,2
j (t)}t∈R for 1 ≤ j ≤ K, such

that, for each interaction time T , the random variables {Wj(T )}j are mutually
independent, independent from the past, and distributed on V(j) = {i ̸= j, pj→i >
0} with weights (pj→i).

Then, for t ≥ 0, the state equations of node i ∈ {1, . . . , K} are given by

Xi(t) = Xi(0) +
∑
j ̸=i

∫ t

0

∫ +∞

0

1I{Wx,1
j (s)=i} 1I{u≤µjXj(s)} N̂

x,1
j (ds du)

+

∫ t

0

∫ +∞

0

1I{Wx,2
j (s)=i} 1I{u≤βjYj(s)} N̂

y,2
j (ds du)

−
∫ t

0

∫ +∞

0

(1I{u≤αiXi(s)Yi(s)} N̂
x,2
i (ds du) + 1I{u≤µiXi(s)} N̂

x,1
i (ds du))

(4.1)
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and

Yi(t) = Yi(0) +
∑
j ̸=i

∫ t

0

∫ +∞

0

1I{W y,1
j (s)=i} 1I{u≤µjYj(s)} N̂

y,1
j (ds du)

+

∫ t

0

∫ +∞

0

1I{W y,2
j (s)=i} 1I{u≤αjXj(s)Yj(s)} N̂

x,2
j (ds du)

−
∫ t

0

∫ +∞

0

(1I{u≤βiYi(s)} N̂
y,2
i (ds du) + 1I{u≤µiYi(s)} N̂

y,1
i (ds du)),

(4.2)

where for 1 ≤ i ≤ K and 1 ≤ m ≤ M ,N̂x,1
i , N̂x,2

i , N̂y,1
i and N̂y,2

i are independent
Poisson point processes with intensity 1 on (R+)2 and Xi(t) (resp. Yi(t)) is the
number of susceptible (resp. infected) individuals in reactor i at time t.

As the dynamics above are not tractable, we are interested in studying them
under the Poisson Hypothesis, which consists in assuming that the reactors are
independent and that arrival processes are Poisson processes. We pursue two topics
in this work: show that there exists a physical system constructed from the network
SIS-DOCS model that, when properly scaled, converges to the Poisson Hypothesis
regime; and study the relationship between the structure of the network and the
epidemics propagation under the Poisson Hypothesis.

For the first topic, we introduce the replica-mean-field version of the network
SIS-DOCS model. This physical system consists of randomly interacting copies,
or replicas, of the network dynamics of interest. It has been shown in previous
work that for a large class of dynamics in both discrete and continuous time, at
the infinite-replica limit, the Poisson Hypothesis arises. We conjecture that the
result still holds for this model and discuss why the previously known results do
not directly apply to it.

For the second topic, we derive under the Poisson Hypothesis a system of
nonlinear equations verified by the mean numbers of infected and susceptible in-
dividuals at each reactor.

4.2.2 The replica-mean-field limit of the SIS-DOCS
network

The replica-mean-field dynamics is defined as follows: given an instance of network
SIS-DOCS dynamics, take M copies, or replicas, of it, coupling them on the initial
conditions. When a departure occurs from a reactor in one of the replicas, a
replica index is sampled uniformly and independently and a neighboring reactor
is uniformly chosen in that replica.
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The dynamics can be formally be described by the following equations:
for t ≥ 0, 1 ≤ i ≤ K and 1 ≤ m ≤ M,

Xm,i(t) =
∑
j ̸=i

∑
n̸=m

∫ t

0

∫ +∞

0

1I{Wx,1
j (s)=i} 1IV x,1

(n,j)
(s)=m 1I{u≤µjXn,j(s)} N̂

x,1
n,j (ds du)

+Xm,i(0) +

∫ t

0

∫ +∞

0

1I{Wx,2
j (s)=i} 1IV x,2

(n,j)
(s)=m 1I{u≤βjYn,j(s)} N̂

y,2
n,j (ds du)

−
∫ t

0

∫ +∞

0

(1I{u≤αiXm,i(s)Ym,i(s)} N̂
x,2
m,i(ds du) + 1I{u≤µiXm,i(s)} N̂

x,1
m,i(ds du))

(4.3)

and

Ym,i(t) =
∑
j ̸=i

∑
n̸=m

∫ t

0

∫ +∞

0

1I{W y,1
j (s)=i} 1IV y,1

(n,j)
(s)=m 1I{u≤µjYn,j(s)} N̂

y,1
n,j (ds du)

+ Ym,i(0) +

∫ t

0

∫ +∞

0

1I{W y,2
j (s)=i} 1IV y,2

(n,j)
(s)=m 1I{u≤αjXn,j(s)Yn,j(s)} N̂

x,2
n,j (ds du)

−
∫ t

0

∫ +∞

0

(1I{u≤βiYm,i(s)} N̂
y,1
m,i(ds du) + 1I{u≤µiYm,i(s)} N̂

y,2
m,i(ds du)),

(4.4)

where for 1 ≤ i ≤ K and 1 ≤ m ≤ M, N̂m,i, N̂
1
m,i and N̂2

m,i are independent Poisson
point processes with intensity 1 on (R+)2.

We now define the dynamics under the Poisson Hypothesis. We denote all state
processes with tildes for clarity.

For t ≥ 0 and 1 ≤ i ≤ K,

X̃i(t) = X̃i(0) +
∑
j ̸=i

∫ t

0

∫ +∞

0

1I{Wx,1
j (s)=i} 1I{u≤µj E[X̃j(s)]} N̂

x,1
j (ds du)

+

∫ t

0

∫ +∞

0

1I{Wx,2
j (s)=i} 1I{u≤βj E[Ỹj(s)]} N̂

x,2
i,j (ds du)

−
∫ t

0

∫ +∞

0

(1I{u≤αiX̃i(s)Ỹi(s)} N̂
x,1
i (ds du) + 1I{u≤µiX̃i(s)} N̂

x,2
i (ds du))

(4.5)

and

Ỹi(t) = Ỹi(0) +
∑
j ̸=i

∫ t

0

∫ +∞

0

1I{W y,1
j (s)=i} 1I{u≤µj E[Ỹj(s)]} N̂

1
i,j(ds du)

+

∫ t

0

∫ +∞

0

1I{W y,2
j (s)=i} 1I{u≤αj E[X̃j(s)Ỹj(s)]} N̂

2
i,j(ds du)

−
∫ t

0

∫ +∞

0

(1I{u≤βiỸi(s)} N̂
y,1
i (ds du) + 1I{u≤µiỸi(s)} N̂

y,2
i (ds du)),

(4.6)
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where for 1 ≤ i ≤ K and 1 ≤ m ≤ M , N̂i, N̂
1
i and N̂2

i are independent Poisson
point processes with intensity 1 on (R+)2.

We require the following condition on the initial conditions, in a similar fashion
to [27]:

Assumption 4.2.1. There exists ξ0 > 0 such that for all ξ ≤ ξ0, for all 1 ≤ m ≤
M, 1 ≤ i ≤ K, E[eξXm,i(0)] < ∞ and E[eξYm,i(0)] > ∞..

Under this assumption, we make the following conjecture:

Conjecture 4.2.1. 1. for all (m, i) ∈ {1, . . . ,M} × {1, . . . , K}, the random
variables Xm,i(t) and Ym,i(t) defined by (4.3) and (4.4) respectively converge

in total variation to X̃i(t) and Ỹi(t) defined in (4.5) and (4.6) when M → ∞;

2. let N be a finite subset of N∗, for all i ∈ {1, . . . , K}, the processes (Xm,i(·))m∈N
and (Ym,i(·))m∈N weakly converge in the Skorokhod space of càdlàg functions
on [0, T ] to card(N ) independent copies of the corresponding limit processes
(X̃i(·)) and (Ỹi(·)) when M → ∞;

3. the previous convergence remains true in the Skorokhod space of càdlàg func-
tions on R+.

First, note that although the SIS-DOCS network dynamics do not directly
belong to the class of continuous-time fragmentation-interaction-aggregation pro-
cesses introduced in [28] for which the conjecture holds, the differences seem minor
enough for the result to be true in some capacity. The three main differences are as
follows: first, note that there are two types of arrivals to each node in the network,
but as the arrivals of susceptible and infected individuals are independent, this is
not a significant issue. Second, note that there are nonlinear terms in the state
equations (4.3) and (4.4) of the form αiXi(t)Yi(t). However, by considering a fixed
threshold and separating the integrals in which the term appears in parts above
and below the threshold, it is possible to control this term in fashion similar to
[28]. The third, and most significant issue, is that the random routings Wi break
the conditional independence property which is Lemma 3.3.13 from [28], on which
the proof of propagation of chaos crucially relies. This explains the fact that the
convergence result is currently an open question.

4.2.3 The relationship between network geometry and
epidemics propagation under the Poisson
Hypothesis

In the open SIS-DOCS reactor presented in [6], it was possible to obtain a closed
form for the mean numbers of susceptible and infected customers at stationarity.
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This relied on the interpretation of the infected process as an M/M/∞ queue and
on rate conservation principles. Our goal here is to extend this result to the case of
a heterogenenous network by deriving a system of equations for the mean numbers
of susceptible and infected customers under the Poisson Hypothesis at stationarity.

For 1 ≤ i ≤ K let Φi be the stationary generating function of the ith SIS-DOCS
reactor: for all 0 ≤ x, y ≤ 1,Φi(x, y) = E[xX̃iyỸi ].

Then for 0 ≤ x, y ≤ 1, by classical arguments, Φi satisfies the PDE(
(
∑
j ̸=i

µjpj→i E[X̃j] +
∑
j ̸=i

βjpj→i E[Ỹj])(1− x)

+ (
∑
j ̸=i

µjpj→i E[Ỹj] +
∑
j ̸=i

αjpj→i E[X̃jỸj])(1− y)
)
Φi(x, y)

= µi(1− x)Φi,x(x, y) + αiy(1− x)Φi,xy(x, y) + (µi + βi)(1− y)Φi,y(x, y),

(4.7)

where for all 1 ≤ i ≤ K, V (j) = card(V(j)), where V(j) = {l ̸= j, pl,j ̸= 0}.
Differentiating (4.7) w.r.t. x and then setting x = 1, we obtain

− (
∑
j ̸=i

µjpj→iE[X̃j] +
∑
j ̸=i

βjpj→i E[Ỹj])Φi(1, y)

+ (
∑
j ̸=i

µjpj→iE[Ỹj] +
∑
j ̸=i

αjpj→i E[X̃jỸj])(1− y)Φi,x(1, y)

= −µiΦi,x(1, y)− αiyΦi,xy(1, y) + (µi + βi)(1− y)Φi,xy(1, y).

Let Ψi(y) = Φi,x(1, y). Then we can rewrite the previous equation as an ODE
verified by Ψi :

(
(µi + βi + αi)(1− y)− αi

)
Ψ

′

i(y) = −(
∑
j ̸=i

µjpj→iE[X̃j] +
∑
j ̸=i

βjpj→i E[Ỹj])Φi(1, y)

+
(
µi + (

∑
j ̸=i

µjpj→i E[Ỹj] +
∑
j ̸=i

αjpj→i E[X̃jỸj])(1− y)
)
Ψi(y).

(4.8)

Since the Ỹi process can be seen an autonomous M/M/∞ queue with input rate∑
j ̸=i µjpj→i E[Ỹj] +

∑
j ̸=i αjpj→iE[X̃jỸj] and service rate µi + βi, we have that

Φi(1, y) = e−θi(1−y),

where

θi =

∑
j ̸=i µjpj→i E[Ỹj] +

∑
j ̸=i αjpj→i E[X̃jỸj]

µi + βi

.
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Therefore, we can rewrite (4.8) as

Ψ
′

i(y) = hi(y)Ψi(y)− gi(y), (4.9)

where

hi(y) =

(
µi + (

∑
j ̸=i µjpj→i E[Ỹj] +

∑
j ̸=i αjpj→i E[X̃jỸj])(1− y)

)
(µi + βi + αi)(1− y)− αi

and

gi(y) =
(
∑

j ̸=i µjpj→i E[X̃j] +
∑

j ̸=i βjpj→i E[Ỹj])e
−θi(1−y)

(µi + βi + αi)(1− y)− αi

.

Note that this ODE admits a singularity at

y∗i =
µi + βi

µi + βi + αi

.

However, for y in a neighborhood of 1 not including y∗i , it can be checked that

Ψi(y) = e
∫ y
1 hi(z) dz(Ψi(1)−

∫ y

1

gi(u)e
−
∫ u
1 hi(z) dz du). (4.10)

Using the same arguments as in [6], it can be shown that since for u in a right
neighborhood of y∗i , e

∫ y
1 hi(z) dz ∼ K(u − y∗i )

b with K a constant and an explicit
value of b, the integral ∫ y∗i

1

gi(u)e
−
∫ u
1 hi(z) dz du

is well-defined and finite, and must therefore be equal to Ψi(1) = E[X̃i].
Using classical arguments and a change of variables, in a fashion similar to [6],

we obtain

E[X̃i] =
(
∑

j ̸=i µjpj→iE[X̃j] +
∑

j ̸=i βjpj→i E[Ỹj])

µi + βi + αi

∫ 1

0

e−ξ1i (t)tξ
2
i (t)−1 dt, (4.11)

where

ξ1i (t) =
(
∑

j ̸=i µjpj→i E[Ỹj] +
∑

j ̸=i αjpj→i E[X̃jỸj])α
2
i (1− t)

(µi + βi)(µi + βi + αi)2

and

ξ2i (t) =
µi

µi + βi + αi

+
(
∑

j ̸=i µjpj→i E[Ỹj] +
∑

j ̸=i αjpj→i E[X̃jỸj])αi

(µi + βi + αi)2
.

Now, note the following result, which is a first-order rate conservation principle:
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Lemma 4.2.2. For all 1 ≤ i ≤ K,∑
j ̸=i

µjpj→iE[X̃j] +
∑
j ̸=i

βjpj→i E[Ỹj] = µi E[X̃i] + αi E[X̃iỸi] (4.12)

and ∑
j ̸=i

µjpj→iE[Ỹj] +
∑
j ̸=i

αjpj→i E[X̃jỸj] = (µi + βi)E[Ỹi]. (4.13)

Proof. Derived from the PDE (4.7), by differentiating it w.r.t. y and taking x =
y = 1.

Using the rate conservation principle, we can rewrite (4.11) as

E[X̃i] =
(
∑

j ̸=i µjpj→i E[X̃j] +
∑

j ̸=i βjpj→i E[Ỹj])

µi + βi + αi∫ 1

0

e
− (µi+βi)E[Ỹi]α

2
i (1−t)

(µi+βi)(µi+βi+αi)
2 t

(
µi

µi+βi+αi
+

(µi+βi)E[Ỹi]αi
(µi+βi+αi)

2 −1
)
dt.

(4.14)

Finally, combining (4.12) and (4.13), we get

E[Ỹi] =

∑
j ̸=i pj→i(

∑
l ̸=j µlpl→j E[X̃l] +

∑
l ̸=j βlpl→j E[Ỹl]− µj E[X̃j])

µi + βi

+

∑
j ̸=i µjpj→i E[Ỹj]

µi + βi

.

(4.15)

Moreover, let N =
∑K

i=1 X1,i + Y1,i be the total population in a given replica
in the M−replica model. Then, by exchangeability,

1

M

M∑
m=1

∑
i=1

Xm,i + Ym,i = N.

This gives, letting M go to infinity and assuming the conjecture 4.2.1 holds,

K∑
i=1

E[X̃i] + E[Ỹi] = N. (4.16)

The equations (4.14) (4.15) and (4.16) can be regrouped as a system of non-

linear equations verified by E[X̃i] and E[Ỹi]:
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

E[X̃i] =
(
∑

j ̸=i µjpj→i E[X̃j] +
∑

j ̸=i βjpj→iE[Ỹj])

µi + βi + αi∫ 1

0

e
− (µi+βi)E[Ỹi]α

2
i (1−t)

(µi+βi)(µi+βi+αi)
2 t

(
µi

µi+βi+αi
+

(µi+βi)E[Ỹi]αi
(µi+βi+αi)

2 −1
)
dt

E[Ỹi] =
∑

j ̸=i µjpj→i E[Ỹj ]+
∑

j ̸=i pj→i(
∑

l̸=j µlpl→j E[X̃l]+
∑

l̸=j βlpl→j E[Ỹl]−µj E[X̃j ])

µi+βi∑K
i=1E[X̃i] + E[Ỹi] = N.

(4.17)
Current work in progress involves studying this system numerically.
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[32] X. Erny, E. Löcherbach, and D. Loukianova. Conditional propagation of
chaos for mean field systems of interacting neurons. Electronic Journal of
Probability, 26:1 – 25, 2021.

[33] R. Fitzhugh. Impulses and Physiological States in Theoretical Models of Nerve
Membrane. Biophysical Journal, 1(6):445–466, July 1961.
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MOTS CLÉS

Propagation du chaos, champ moyen à répliques, approximation poissonnienne, processus ponctuel,
modèles d’intensité, méthode de Chen-Stein, processus de migration-contagion, modèles compartimentaux,
champ moyen

RÉSUMÉ

Dans cette thèse, nous nous intéressons à des modèles mathématiques de phénomènes pouvant être interprétés comme
des dynamiques sur des réseaux. Cela inclut par exemple des modèles de populations de neurones interagissant à des
instants aléatoires avec leurs voisins ou de propagation d’épidémies où les individus infectés ou susceptibles de l’être
se déplacent de ville en ville. La description mathématique de tels phénomènes repose en général sur un compromis
entre niveau de détail recherché et tractabilité mathématique. La majeure partie des travaux de cette thèse concerne
l’élaboration de preuves mathématiques pour justifier l’introduction de modèles permettant de prendre en compte de la
géométrie du réseau sous-jacent dans ces phénomènes tout en restant tractables. L’outil mathématique central pour
cela est le champ moyen à répliques, qui consiste en des copies du réseau étudié entre lesquelles les interactions
sont mélangées aléatoirement. Les résultats principaux de cette thèse concernent le comportement d’un tel système
dynamique lorsque le nombre de répliques tend vers l’infini. Dans de multiples cadres, nous montrons qu’il converge
vers une dynamique sous hypothèse poissonnienne, c’est-à-dire dans laquelle les temps d’interactions sont remplacées
par des processus de Poisson indépendants, ce qui permet d’effectuer des calculs explicites pour certains modèles. Le
chapitre 2 de cette thèse est consacré à l’établissement de ce résultat pour une classe de processus en temps discret, les
processus d’interaction-agrégation-fragmentation. A l’échelle d’un noeud du réseau, ces processus modélisent l’état du
noeud en agrégeant à son évolution autonome les effets des interactions de ses voisins. Le chapitre 3 étend ces résultats
au cas du temps continu, où les instants des interactions sont vus comme des réalisations de processus ponctuels,
en mettant en exergue le cas du modèle de Galves-Löcherbach utilisé en neurosciences computationnelles. Enfin, le
chapitre 4 s’intéresse à l’étude d’un modèle de propagation d’épidémie sous hypothèse poissonnienne: le processus de
migration-contagion, qui consiste en un réseau fermé de files d’attente entre lesquelles migrent des individus infectés ou
susceptibles de l’être. Plus précisément, nous établissons un système d’équations non-linéaires vérifié par les nombres
moyens d’individus infectés et susceptibles dans le but de l’étudier ensuite numériquement.

ABSTRACT

In this thesis, we are interested in mathematical models of phenomena that can be interpreted as network dynamics. This
includes for example neuron population models in which neurons interact at random times with their neighbors or epi-
demics propagation where infected or susceptible individuals move from town to town. The mathematical description of
such phenomena generally requires a compromise between physical or biological relevance and mathematical tractability.
The main focus of this work is the elaboration of mathematical proofs to justify the introduction of models taking into ac-
count the geometry of the underlying networks whilst preserving tractability. The main mathematical tool for that purpose
is the replica-mean-field, which consists in copies of the studied network between which interactions are routed randomly.
The main results of this thesis concern the behavior of such a dynamical system when the number of replicas goes to
infinity. In various settings, we show that it concerges to dynamics under the Poisson Hypothesis, that is, interaction times
are replaced by independent Poisson processes, which allows to obtain closed forms in certain models. In chapter 2 of
the thesis, we prove this result for a class of discrete-time dynamics: fragmentation-interaction-aggregation processes.
At the scale of a given node, theses processes model its state by an autonomous evolution to which are aggregated the
effets of the interactions with its neighbors. Chapter 3 extends these results to the continuous-time framework, where
interaction times are seen as realizations of point processes, highlighting the case of Galves-Löcherbach model used
in computational neuroscience. Finally, chapter 4 focuses on the study of a model of epidemics propagation under the
Poisson Hypothesis: the migration-contagion process, consisting in a closed network of queues in between which infected
and susceptible customers migrate. More precisely, we establish a system of nonlinear equations verified by the mean
numbers of infected and susceptible individuals in the objective of studying it numerically.

KEYWORDS

Propagation of chaos, replica-mean-field, Poisson approximation, point process, intensity-based models,
Chen-Stein method, migration-contagion process, compartimental models, mean-field
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