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Évaluation de la dynamique des incendies de forêt dans le sud de la France : une approche 

basée sur l'analyse géospatiale et l'apprentissage automatique 

 

Résumé 

Les incendies de forêt représentent une menace importante pour les écosystèmes et le bien-être 

humain à l'échelle mondiale, en particulier dans la région méditerranéenne, où les étés chauds 

et secs favorisent l'allumage et la propagation des feux. La saison des incendies de 2022 a été 

la deuxième plus grave en termes de superficie brûlée et de nombre de feux en Europe depuis 

2006. Les sécheresses récurrentes et l'augmentation des températures dans le contexte du 

changement climatique devraient entraîner une augmentation de 200% de la superficie brûlée 

dans la région méditerranéenne d'ici 2090. 

L'analyse géospatiale est une approche puissante qui permet une compréhension approfondie 

des interactions, relations, tendances et modèles complexes entre les phénomènes spatiaux, en 

fin de compte, en informant une meilleure prise de décision et résolution de problèmes. De 

plus, l'apprentissage automatique (ML) s'est révélé être un outil précieux dans la science des 

incendies de forêt, mais son efficacité dépend de la disponibilité de vastes ensembles de 

données de haute qualité. 

Les relations spatiales entre l'activité des incendies et les facteurs environnementaux changent 

avec le temps en raison du changement climatique, des modifications des biomes et des 

pratiques de gestion des incendies. La cartographie des schémas spatiaux et des forces motrices 

principales influençant la distribution des incendies fournit des informations précieuses pour 

les agences de protection civile, leur permettant de mieux allouer les ressources et de mettre en 

œuvre des mesures de prévention efficaces. Bien que la suppression des incendies soit souvent 

priorisée, la prévention, l'atténuation et la préparation communautaire sont des composantes 

essentielles de la gestion des incendies de forêt. De plus, la prévention ciblée des incendies de 
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forêt nécessite la compréhension et la documentation des causes des incendies de forêt, 

cependant, il existe un pourcentage important d'incendies de cause inconnue en Europe et en 

France. 

Cette thèse de doctorat examine l'évolution spatiotemporelle des zones brûlées dans le sud de 

la France sur une période de 50 ans (1970-2019) ; elle se concentre sur les interactions avec la 

topographie et les types de végétation en utilisant des bases de données d'incendies. Les 

résultats sont divisés en deux périodes de 25 ans en raison de la mise en œuvre d'une nouvelle 

politique de suppression des incendies en 1994. Au cours des 25 dernières années, la superficie 

brûlée a considérablement diminué et la répartition géographique des incendies a changé, en 

particulier dans les régions où se produisent de grands incendies. Les versants orientés au sud 

sont devenus plus sensibles aux incendies au cours de la deuxième période, tandis que les 

faibles inclinaisons de pente étaient de plus en plus évitées après 1994. La majorité des zones 

brûlées étaient fortement associées à l'emplacement des groupements de végétation 

sclérophylle (maquis), qui sont très sensibles aux incendies et s'étendent avec le temps. 

En outre, cette thèse présente un modèle basé sur le ML qui utilise un cadre explicatif pour 

prédire la cause des départs de feu dans le sud de la France en fonction des caractéristiques 

environnementales et anthropiques. Les résultats indiquent que la source des incendies peut 

être prédite avec différents niveaux de précision : les incendies naturels ont la précision la plus 

élevée (score F1 de 0,87) par rapport aux incendies causés par l'homme, tels que les incendies 

accidentels (score F1 de 0,74) et les incendies criminels (score F1 de 0,64). Les propriétés 

spatiotemporelles et les caractéristiques topographiques sont considérées comme les 

caractéristiques les plus importantes pour déterminer la classification des incendies de cause 

inconnue dans la zone d'étude. 

En exploitant de grandes bases de données d'incendies, une analyse avancée des données 

géospatiales et des techniques de ML, cette recherche démontre comment les approches 
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géospatiales peuvent quantifier les tendances spatiotemporelles de la dynamique des incendies 

dans un paysage et comment les techniques de ML peuvent être efficacement utilisées pour 

combler les lacunes dans les causes d'allumage des incendies. Il souligne également la nécessité 

d'une meilleure collecte harmonisée des données, car cela constitue un élément clé qui 

renforcera la puissance des techniques de ML pour fournir des informations utiles pour les 

stratégies de gestion des terres. 

 

Mots clés : Feux de forêt, Géomatique, Analyse geospatiale, Apprentissage automatique, 

Modèles spatiotemporels 

 

Assessing spatiotemporal forest fire dynamics in southern France: a geospatial and 

machine learning approach 

 

Abstract 

Forest fires pose a significant threat to ecosystems and human welfare globally, especially in 

the Mediterranean region, where hot dry summers facilitate fire ignition and propagation. The 

fire season of 2022 was the second most severe in terms of burned area and number of fires in 

Europe since 2006. Recurrent droughts and higher temperatures in a context of climate change 

are expected to increase burned area by 200% in the Mediterranean region by 2090.  

Geospatial analysis is a powerful approach that enables a deeper understanding of the complex 

interactions, relationships, patterns, and trends between spatial phenomena, ultimately 

informing better decision-making and problem-solving. In addition, Machine Learning (ML) 

has emerged as a valuable tool in wildfire science, but its effectiveness depends on the 

availability of extensive, high-quality datasets.  

Spatial relationships between fire activity and environmental factors change over time due to 
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climate change, biome alterations, and fire management practices. Mapping spatial patterns 

and the primary driving forces impacting fire distribution provides valuable insights for civil 

protection agencies, enabling them to better allocate resources and implement effective 

prevention measures. Although fire suppression is often prioritized, prevention, mitigation, and 

community preparedness are crucial components of wildfire management. In addition, targeted 

wildfire prevention necessitates understanding and documenting forest fire causes, however, 

there is a substantial percentage of unknown-caused fires both in Europe and in France.  

This Ph.D. thesis examines the spatiotemporal evolution of burned areas in southern France 

over a 50-year period (1970-2019); it focuses on the interactions with topography and 

vegetation types using fire geodatabases. Results are divided into two 25-year periods due to 

the implementation of a new fire suppression policy in 1994. In the last 25 years, the burned 

area significantly decreased, and the geographic distribution of fires changed, particularly in 

regions with large fires. South-facing slopes became more fire-prone in the second period, 

whereas low slope inclinations were increasingly avoided after 1994. The majority of burned 

areas were strongly associated with the location of sclerophyllous vegetation clusters 

(shrublands), which are highly fire-prone and expand over time. 

Furthermore, this thesis presents an ML-based model that uses an explainable framework to 

predict the cause of fire ignitions in southern France based on environmental and anthropogenic 

features. Results indicate that the source of fires can be predicted with varying accuracy levels: 

natural fires have the highest accuracy (F1-score 0.87) compared to human-caused fires such 

as accidental (F1-score 0.74) and arson (F1-score 0.64). Spatiotemporal properties and 

topographic characteristics are deemed the most important features for determining the 

classification of unknown-caused fires in the study area.  

By leveraging large fire geodatabases, advanced geospatial data analysis, and ML techniques, 

this research demonstrates how geospatial approaches can quantify spatio-temporal trends in 
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fire dynamics in a landscape and how ML techniques can be effectively used to fill gaps in fire 

ignition causes. It also underscores the need for better and more harmonized collection of data 

as this is a key component that will enhance the power of ML techniques in providing useful 

information for land management strategies. 

 

Keywords: Forest Fires, Geomatics, Geospatial analysis, Machine learning, Spatiotemporal 

patterns 
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General Introduction  

Forest fire is a common and important element of the Earth system (Bond & Keeley, 2005) that 

disturbs natural ecosystems and threatens human welfare and wellbeing throughout much of 

the globe. The Mediterranean climate is characterized by hot dry summers which favor fire 

ignition and propagation. Consequently, wildfires are particularly active around the 

Mediterranean basin, and fires in the Mediterranean climate zones are considered to have a 

wide range of environmental and socioeconomic impacts (Ganteaume, Camia, et al., 2013; 

Miller et al., 2009; San-Miguel-Ayanz, Moreno, et al., 2013). 

In Europe, the fire season of 2022 was the second most severe in terms of burned area (BA) 

and number of fires, preceded only by the record set in 2017, since records began in 2006 (San-

Miguel-Ayanz et al., 2023). In southern European countries, which maintain longer fire 

records, 2021 was the second highest fire season in terms of average fire size since 1986 despite 

having the lowest total number of fires recorded, indicating a reduction in the number of fires 

but an increase in their size (San-Miguel-Ayanz et al., 2022). The current situation is likely to 

deteriorate with climate change since dry conditions and high temperatures are increasing. 

Several studies (Bowman et al., 2011; Dupuy et al., 2020; Halofsky et al., 2018; Keeley & 

Syphard, 2016) point out that climate change is already affecting fire seasons worldwide and 

that fire weather is expected to be more severe in the future. If there is no adaptation in the 

challenges that climate change is presenting, the annual average burnt area in the 

Mediterranean region is predicted to increase by about 200% by 2090 in comparison to the 

period between 2000 to 2008 (Khabarov et al., 2016). 

Forest fires burn an average of 440 000 ha each year in the Euro–Mediterranean region, and 

this corresponds to about 85 % of the total BA in Europe (San-Miguel-Ayanz et al., 2020).Of 

the five principal Euro–Mediterranean countries concerned by forest fires (Portugal, Spain, 
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France, Italy, Greece), France has the lowest amount of BA (San-Miguel-Ayanz et al., 2020). 

It also has the smallest potential burnable area, bond since only the southern Mediterranean 

fringe is affected by forest fires. France, Spain, Italy, and Greece all show similar trends in 

decreasing decadal BA in 1980–2010, and only Portugal experienced a progressive increase 

during this interval (San-Miguel-Ayanz et al., 2020). It should be noted that BA is generally 

decreasing despite increases in summer temperatures throughout the Euro–Mediterranean zone 

(Pokorná et al., 2018; Rodrigues et al., 2020) and this can be attributed to more efficient 

firefighting strategies (Fox et al., 2015; Ganteaume & Barbero, 2019; Turco et al., 2016). 

Rapid response and effective resource allocation in the initial stages of a fire are key to the 

success of firefighting efforts which ensure fires do not escalate into large-scale disasters (Pyne 

et al., 1996). Indeed, the sharp decrease in terms of BA in France is observed after the 

implementation of a new fire suppression strategy that focuses on timely and aggressive 

suppression of all fire ignitions, regardless of the weather conditions (Direction de la Sécurité 

Civile, 1994). In addition, the change in fire policy had a notable influence on fire activity in 

southern France, leading to a weakened correlation between fire and weather (Ruffault & 

Mouillot, 2015). Despite its effectiveness, there are concerns about the sustainability of the 

rapid suppression strategy during extreme weather conditions when firefighting resources are 

thinly spread across a larger number of fire ignitions, as was the case in 2003 and 2016 (Curt 

& Frejaville, 2018). Considering the recent European State of the Climate (ESOTC) report by 

the Copernicus Climate Change Service (C3S), the concerns about the sustainability of 

firefighting strategies are particularly relevant, given that Europe saw its second warmest year 

on record in 2022, with annual temperatures 0.9°C above average. Summer temperatures beat 

historical records, with temperatures reaching 1.4°C above average, in addition to widespread 

and extensive drought conditions. 
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As alterations in climate, biomes, and fire management practices change spatial relationships 

between fire activity and environmental factors over time, it is essential to map and 

comprehend these trends to assess the efficacy of firefighting strategies and create appropriate 

policies (Bowman et al., 2017). Identifying spatial patterns and the primary driving forces that 

impact fire distribution offers valuable insights to fire and civil protection agencies, thereby 

enabling them to allocate firefighting resources appropriately and formulate effective 

prevention measures (Moreira et al., 2011). 

Although fire suppression can be an essential aspect of firefighting, it often receives significant 

attention and support from politicians and the media due to its visually impressive nature and 

the perception of immediate action. However, there should be less emphasis on fire suppression 

(Tedim et al., 2022) as relying solely on it could lead to neglecting other crucial components 

of wildfire management, such as prevention, mitigation, and community preparedness. 

Prevention and mitigation strategies, including prescribed burning, vegetation management, 

and the development of fire-resistant infrastructure, can play a significant role in reducing 

wildfire risks and minimizing their impact. These proactive measures may not be as attention-

grabbing as fire suppression, but they can be more cost-effective and sustainable in the long 

run (Fernandes & Botelho, 2003). 

Another approach of ensuring targeted prevention is through understanding, documenting, and 

mapping the spatiotemporal patterns of forest fire causes (Rodrigues et al., 2014). Greater 

attention and resources must be allocated towards these, as prioritizing this aspect is crucial to 

ensure that attempts to modify the habits, customs, and behaviors of the human environment 

are accurate and effective (Oliveira et al., 2012a; Tedim et al., 2022). The importance of 

understanding the complex causes of forest fires as a social phenomenon is further emphasized 

in the context of France and the Euro-Mediterranean region, where 95% of wildfires are caused 

by human activity (Ganteaume, Camia, et al., 2013; Ganteaume & Jappiot, 2013). By 
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identifying and addressing the complex human and environmental factors contributing to these 

fires, targeted prevention efforts can be implemented to reduce the occurrence and impact of 

wildfires in these regions. 

Machine Learning (ML) has emerged as a valuable tool to identify complex relationships 

between various factors contributing to forest fires, gaining traction in the fire community (Jain 

et al., 2020). The effectiveness of these algorithms, however, depends largely on the 

availability of extensive, high-quality datasets. Furthermore, ML models have often faced 

criticism for their "black box" nature, as it can be challenging to decipher the reasoning behind 

their predictions or the identification of specific patterns (Loyola-Gonzalez, 2019), though new 

approaches such as eXpainable Artificial Intelligence (XAI) are emerging to tackle this issue. 

This lack of transparency makes it difficult for practitioners and decision-makers to fully trust 

and understand the models' outputs, limiting the practical application of ML in various fields, 

including wildfire management. Despite these challenges, the continuous growth in size and 

quality of geospatial datasets and improvements in the interpretability of results will inevitably 

make ML algorithms even more potent tools for analyzing ignition occurrences and causes and 

improve management decision support (Bot & Borges, 2022). 

By leveraging large fire geodatabases, advanced geospatial data analysis and ML techniques, 

this study aims to enhance the understanding of fire dynamics and inform effective resource 

allocation and wildfire management prevention strategies to mitigate the impacts on human 

welfare and ecosystems in southeastern France. 

More specifically, this study aims to achieve the following objectives:  

i) Analyze the spatiotemporal dynamics and patterns of forest fires over a 50-year 

period (1970-2019), in the context of a rapid shift in fire suppression strategies in 

the early 1990’s. 
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ii) Examine fire selectivity and the spatiotemporal relationship of BA and 

environmental factors such as topography and vegetation type.  

iii) Develop ML-based models to predict the source of ignition for unknown causes 

through a combination of environmental and anthropogenic drivers of fire ignition 

applied on various spatial scales and fire databases. 

iv) Exploit XAI frameworks to evaluate the significance and the impact of 

environmental and anthropogenic factors on fire ignition causes.  

 

Thesis Outline 

Chapter 1 – Provides the theoretical background to the thesis and is divided into two parts. 

Part 1 gives an overview of the major environmental and anthropogenic factors that are 

affecting wildfires while Part 2 introduces the main aspects of artificial intelligence and 

describes its applications, limitations and future prospects in wildfire science.  

Chapter 2 – Identifies potential changes in spatial occurrence of fires by analyzing the 

spatiotemporal dynamics and patterns of forest fires in southeastern France over a 50-year 

period (1970-2019) and investigates the interactions between burned area and environmental 

variables such as topography and vegetation type. This chapter (Bountzouklis et al., 2022b) 

investigates these associations through the lens of fire selectivity and spatiotemporal 

correlations between burned area and environmental factors. The findings are analyzed and 

presented for two 25-year periods one prior to and one following the implementation of 

France's new fire suppression policy that was put into place in 1994. 

Chapter 3 – Investigates whether ML techniques can predict ignition cause for wildfires with 

unknown origins and more particularly distinguish between arson and non-arson. Furthermore, 

this chapter aims to assess the significance of various environmental and anthropogenic factors 

in determining the ignition source between arson and non-arson. This examination is based on 
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a point fire ignition dataset of high geographic accuracy but limited in terms of quantity, to 

conduct the analysis within a small-scale study area situated in the southeastern region of 

France. Finally, this chapter (published in proceedings of the IX International Conference on 

Forest Fire Research, Bountzouklis et al., 2022a) presents the shortcomings and prospects of 

the conducted analysis and utilizes these findings as feedback for the subsequent chapter. 

Chapter 4 – Presents the development of an ML–based model that can predict the ignition 

source of wildfires such as accidental, arson, lightning, private and professional negligence. 

The model described in this chapter (published in ERL, Bountzouklis et al., 2023) builds upon 

the outcomes presented in the previous chapter and provides enhanced functionality, accuracy, 

and a more comprehensive understanding of the effect that explanatory factors hold in 

determining the classification of each ignition cause. The analysis is based on a significantly 

larger database and spans over the entire Mediterranean France. 
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Chapter 1 : Literature review  

Part 1 : Factors affecting forest fires with a 

focus on Mediterranean environments 

1.1 Introduction 

Forest fire spatial distribution, size, and frequency are associated with several interacting 

factors that can be categorized into two main groups, namely (i) environmental and (ii) 

anthropogenic factors. Environmental factors generally include fuel characteristics (e.g., type 

and water content), topography (e.g., slope inclination, altitude, and aspect), and weather 

conditions (e.g., temperature, relative humidity, and wind speed); anthropogenic factors 

include the characteristics of the transitional zone between wildland vegetation and artificial 

areas (wildland-urban interface, WUI) like population and housing density as well as proximity 

to artificial features such as roads and buildings.  

A wide range of methods and variables have been tested to predict the probability of fire 

occurrence (Mhawej et al., 2015), but there is no universal rule stating which factors are most 

important since the relative level of importance can vary from one region to another and 

according to the scale of the study (Ganteaume & Long-Fournel, 2015; Lafortezza et al., 2013; 

Moritz et al., 2005). Identifying spatial patterns and the main driving forces that determine fire 

distribution in a region can provide valuable information to fire and civil protection agencies 

to assist in allocating appropriate firefighting resources and in designing proper prevention 

actions, especially in the Mediterranean area (Moreira et al., 2011). Subsequent sections below 

summarize the major factors and their relationship with wildfires. 
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1.2 Environmental factors 

The following subsections discuss the environmental factors that drive forest fires. These 

factors are organized into three primary categories: i) topography, ii) fuel, and iii) weather 

conditions. 

1.2.1 Topography 

Among the environmental characteristics, several studies have demonstrated the existence of 

spatial correlations of forest fire probability and burned area (BA) to topography (Dickson et 

al., 2006; A. N. Nunes et al., 2016; Padilla & Vega-García, 2011). Incoming solar radiation is 

influenced by slope aspect, which can consequently dictate fuel type, fuel moisture, and fuel 

density, all of which affect flammability, as noted by Holden et al. (2009). In addition, aspect 

influences the degree of ecological change related to fire severity (Birch et al., 2015; Estes et 

al., 2017; Parks et al., 2018). In the northern hemisphere, south-facing slopes receive more 

solar radiation during the day than north-facing slopes, and this can enhance burn severity  

(Alexander et al., 2006; Oliveira et al., 2014a; M. G. Pereira et al., 2014) but the trend is not 

systematic (Broncano & Retana, 2004). In addition to higher fire severity, other studies 

Mouillot et al. (2003) have demonstrated that south-facing slopes in Corsica (France) can burn 

more frequently than other exposures. A recent study by Eskandari et al. (2020) utilized data-

mining techniques to model fire risk based on a set of influencing factors including topography. 

The authors found that most fires occur in south and southwest facing slopes and ranked slope 

exposure as the highest in terms of fire danger importance in comparison to the rest of the 

topographic factors (elevation, slope angle). On the north shore of the Mediterranean, south-

facing slopes frequently have more housing than north-facing slopes, and this may also 

contribute to a greater number of ignitions (Fox et al., 2018).  

Steep slopes tend to have higher rates of spread as well as increased fatality rates over flat areas 

(Molina-Terrén et al., 2019). Csontos & Cseresnyés (2015) observed an exponential increase 
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in upslope fire spread with the increase in slope inclination whereas downslope fire spread 

velocity was unaffected by slope angle and was similar to rates detected on flat terrain. Slope 

and altitude tend to be correlated but their association with fires is often conflicting. For 

instance, Nunes et al. (2016) studied BA and ignition density on a municipal scale in Portugal 

and found both were positively correlated with elevation and slope. Similarly, Elia et al. (2019) 

showed that the probability of fire ignition increased with elevation and slope inclination in 

southeastern Italy. In contrast, Eskandari et al. (2020) noted that most fires occur on steep but 

low elevation slopes. 

Work by Calviño-Cancela et al., (2016) focused on the interactive effects of topographical 

features, land use / land cover (LULC) types, and WUI characteristics. The investigation was 

conducted in the region of Galicia, situated in the north-western area of the Iberian Peninsula, 

and relied upon a fire database comprised of 26,838 fires spanning from 2006 to 2011. The 

results revealed a proclivity towards greater risk of fire ignition at lower elevations, although 

this pattern was not uniform across all LULC types situated either inside or outside of the WUI 

areas. It is worth noting that most fires within the WUI zone displayed a similar slope steepness 

compared to those outside the WUI. However, due to the flatter topography of the WUI zone, 

areas outside the WUI appeared relatively steeper than average. 

No clear pattern associated with aspect and ignition points within the WUI areas was observed, 

while outside the WUI the percentage of fires occurring on north-facing slopes was lower than 

on other slopes. 

1.2.2 Fuel 

Fuel, along with heat and oxygen, is one of the three elements that must be combined in the 

right proportions to facilitate the occurrence of a fire (Finney et al., 2021). In the context of 

forest fires, fuel refers to dead or live organic matter and can be classified into three categories: 

crown (tree canopies), surface (litter, short shrubs) and ground (peat) (Keeley et al., 2011). 
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Several features of organic matter can influence fire behavior, including fuel flammability, 

type, and continuity (Keeley et al., 2011). Unlike topography, fuel is a factor that can be 

regulated through human intervention. Furthermore, fuel characteristics tend to vary over time: 

for example, as a result of seasonal fluctuations in temperature that can affect water content 

and plant flammability (Fares et al., 2017).  

Flammability is complex and difficult to define scientifically (Gill & Moore, 1996), and 

according to (Anderson, 1970) it consists of four components: i) ignitibility, which indicates 

how quick fuel will ignite when exposed to a heat source; ii) combustibility, which refers to 

the capacity of biomass to burn effectively once it has been ignited; iii) sustainability, which 

refers to the duration of time that the combustion process can be sustained; iv) consumability, 

which is defined as the amount of consumed biomass by fire. The components of flammability 

can vary significantly depending on plant species (Dimitrakopoulos, 2001; Etlinger & Beall, 

2004; Simpson et al., 2016). Flammability of the most common native Mediterranean species 

has been assessed in several studies through laboratory experiments (Dimitrakopoulos & 

Papaioannou, 2001; Ganteaume et al., 2011; White & Zipperer, 2010). Studies like (Molina et 

al., 2017) focused on identifying which specific species should be used for landscaping in the 

WUI by homeowners in southern Spain based on their flammability. Similarly, Ganteaume et 

al. (2013)  assessed the flammability of dead plant biomass (litter) of ornamental vegetation in 

the WUI of south-eastern France. Despite the extensive research conducted on flammability, it 

is worth mentioning that experiments in laboratory conditions are unable to fully predict the 

flammability of fuels in real conditions since plant exposure to heat in such experiments is 

often not comparable to actual field conditions (Fernandes & Cruz, 2012). 

Overall, there is widespread agreement in the literature that shrublands are regarded as fire 

prone areas at multiple scales: regional (Carmo et al., 2011; Moreno et al., 2011), national 

(Nunes et al., 2016; Nunes et al., 2005) and continental (Mermoz et al., 2005; Moreira et al., 
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2011; Nunes et al., 2016; Oliveira et al., 2014a). The probability of large fires is greater in 

dense shrublands than in forested ecosystems in the Mediterranean basin (Moreira et al., 2011; 

Ruffault & Mouillot, 2017). According to (Mermoz et al., 2005), fire proneness of shrublands 

could be related to their recovery rate since shrublands can regenerate faster and favor fuel 

accumulation in a short time unlike forests which take longer to recover and expand. In 

addition, Oehler et al., (2012) point out that shrubs are considered as a low suppressing priority 

by fire fighters due to the low cost of restoration.  

In Europe, other vegetation types, such as grasslands, are also considered to be fire prone 

(Oliveira et al., 2014a). Cultivated areas are the least fire prone vegetation types mainly because 

of their low combustibility and their geographic proximity to built-up land covers which 

facilitates rapid fire detection and suppression (Moreira et al., 2011). Forested areas are found 

to be more fire prone than cultivated areas but less than shrublands (Moreira et al., 2011). More 

specifically, broad-leaved forests are usually less prone to burning than coniferous species 

which present a greater fire hazard (Moreira et al., 2009; Oliveira et al., 2014a). 

Leaf size also influences flammability: large, well-ventilated leaves have been found to be 

more combustible and extinguish fire faster while smaller leaves sustain combustion for longer 

duration (Cornwell et al., 2015; Michelaki et al., 2020). Particularly in broadleaf forests, larger 

leaves form open, low-density fuel beds that facilitate increased airflow and burn quickly (Page 

et al., 2012). Leaves with a higher surface area-to-volume ratio ignite faster because they 

provide a larger contact area where pyrolysis can occur (Gill & Moore, 1996). 

Fuel moisture content (FMC), defined as the mass of water per unit mass of dry material, is a 

temporally dynamic fuel characteristic which influences many fire processes like ignition and 

combustion (Keane, 2015). Ganteaume et al. (2009) observed that ground fuel flammability is 

reduced with higher moisture contents since the time required for a fuel particle to burn is 

increased. FMC is mainly controlled by weather conditions such as precipitation and 
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evapotranspiration, but topographic conditions can similarly impact fuel moisture by forming 

natural firebreaks through drainage systems such as rivers, streams and other waterways (Fang 

et al., 2018). 

1.2.3 Weather 

Weather, like topography, is a naturally occurring factor that cannot be influenced by human 

actions. It is also more dynamic than fuel characteristics since weather conditions can undergo 

significant changes within a matter of hours as for example temperature varies throughout the 

day with the highest fire risk arising during the hottest hours. 

Temperature, precipitation, wind and relative humidity are major weather variables affecting 

forest fires (Moriondo et al., 2006) and are crucial for estimating fire weather danger and 

applying risk indices (Ruffault & Mouillot, 2017). Temperature and precipitation in particular 

can directly influence the combustion process (Verdú et al., 2012) and are associated with the 

number of fires in the Mediterranean region (Turco et al., 2014). These variables control the 

water balance and fuel moisture of a region, affecting the ignition, propagation, and spread of 

wildfire severity (Mueller et al., 2020). Higher temperatures can evaporate water stored in fuels 

faster while heating them and thus leave fuels more susceptible to a natural or anthropogenic 

source of ignition. On longer temporal scales, temperature also influences the abundance of 

available fuel in addition to moisture content (Mueller et al., 2020). Based on predictions, 

climate change is likely to cause temperature increases in various regions, including the 

Mediterranean, where a rise of 2-4 °C is expected during the next century(Resco de Dios et al., 

2007). An increase in temperature in future climates is expected to increase fire activity, 

severity, and intensity (Fares et al., 2017). 

Precipitation is a crucial variable that influences wildfire behavior in various ways (Mueller et 

al., 2020). As the primary source of water input to a region, it plays a significant role in 

controlling the moisture content of fuels such as plants, leaves, and other organic materials on 
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the ground. Precipitation patterns and variability, such as the frequency and intensity of rainfall 

events, can impact wildfire risk (Keeley & Syphard, 2016). Understanding precipitation 

patterns and variability is essential for predicting wildfire risks and developing effective fire 

management strategies (Palheiro et al., 2006). When precipitation levels are high, it contributes 

to increasing the moisture content in fuels, making them less susceptible to ignition and 

reducing the likelihood of wildfires. However, when a region experiences low precipitation or 

prolonged periods of drought, the moisture content in fuels decreases, making them more prone 

to ignition and increasing the probability of wildfires (Varela et al., 2019). Absence of adequate 

precipitation can lead to drier conditions and create environments more favorable to fire spread 

as dry fuels burn more readily and at a faster rate than moist fuels. 

Wind is an important force of fire propagation that influences the rate of spread and the 

direction of the flame front (Beer, 1991). Furthermore, wind can transport embers or firebrands 

from a burning area to unburned areas, potentially igniting new fires downwind from the 

original fire, a phenomenon known as spotting (Martin & Hillen, 2016). This process can make 

it more challenging for firefighters to contain and control wildfires, especially during periods 

of strong or gusty winds. Indirectly, high wind speeds, lower values of relative humidity, and 

increasing days without precipitation can result in the increased extent and severity of wildfires  

(Wu et al., 2018). This is particularly relevant in Mediterranean France where recurrent dry 

strong winds (“Mistral”) originating in the Rhone valley affect the regional fire regime 

(Ruffault et al., 2017). 

Relative humidity refers to the amount of water content in the air (absolute humidity) relative 

to the maximum amount of water vapor the air can hold at a given temperature. Relative 

humidity has an inverse relationship with temperature, as the latter increases the air's capacity 

to hold moisture also increases, thereby causing relative humidity to decrease for constant 

moisture content. Low relative humidity values indicate drier air which contributes to reduced 
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fuel moisture levels, making vegetation more prone to ignition and fires more likely to spread 

(Wu et al., 2018). 

When surface moisture is scarce, energy from the incoming solar radiation is converted to heat 

while in high surface moisture the energy from incoming solar radiation is used mainly for 

evaporation. Overall, the ideal conditions for a fire to spread faster are dry, hot and windy 

weather conditions (Holsinger et al., 2016), all of which are found in the Mediterranean region.  

Numerous attempts have been undertaken to relate weather factors to forest fire occurrence. 

(Vasilakos et al., 2009) linked fire occurrence with precipitation, temperature and wind speed. 

Padilla and Vega-García, (2011), in an effort to evaluate the relative performance of several 

meteorological variables (such as min/max temperature, cloudiness, relative humidity, solar 

radiation etc.) in Spain, showed that relative humidity and maximum daily temperature were 

the most important variables. At a European scale, maximum temperature and relative humidity 

have also been associated with fire occurrence (Oliveira et al., 2012b). Ruffault and Mouillot 

(2017), in a study that focused on the French Mediterranean area, provided proof that spatial 

patterns of fires are linked to fire weather, and they highlighted that climate change in the near 

future may affect the spatial patterns of fire hazard. Weather factors are particularly important 

for large fires since they are the main drivers (Ganteaume & Barbero, 2019; San-Miguel-Ayanz 

et al., 2013) and they play a critical role in fire suppression, either by improving and facilitating 

firefighting or overwhelming any undertaken effort (Fernandes et al., 2016). For instance, 

Koutsias et al. (2012) indicated that the very large and catastrophic fires that occurred in Greece 

in 2007 were influenced by the synergistic effect of weather factors and fuel accumulation.  

Weather variables are used for operational fire risk assessment through Fire Danger Ratings 

(FDR) systems. These provide a quantitative measure of fire danger by considering the 

interplay of weather factors such as temperature, humidity, wind speed, and precipitation with 

fuel moisture conditions (Dimitrakopoulos et al., 2011). Fire weather indices aim to provide a 
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more accurate representation of the weather conditions that are favorable for wildfires to 

propagate, as for example the Canadian FWI (Van Wagner, 1987). The Canadian FWI is 

widely regarded as the most prevalent and commonly used system globally, and it provides a 

quantitative measure of fire danger by considering the interplay of weather factors such as 

temperature, humidity, wind speed, and precipitation with fuel moisture conditions. The 

Canadian FWI system consists of six components: 1- the Fine Fuel Moisture Code (FFMC) 

which measures the moisture content of surface litter and other small fuels, 2- the Duff 

Moisture Code (DMC) which measures the moisture content of deeper organic layers beneath 

the litter, 3- the Drought Code (DC) measures the moisture content of the large woody fuels, 

4- the Initial Spread Index (ISI) which measures the rate of fire spread, 5- the Buildup Index 

(BUI) which measures the total amount of fuel available for combustion, and 6- the Fire 

Weather Index (FWI) which represents the cumulative effect of the previous five components 

and is used as an overall indicator of fire danger (Van Wagner, 1987). While the Canadian FWI 

system is designed to evaluate fire danger in Canadian vegetation, Viegas et al., (1999)  found 

that the components of the FWI system exhibited strong correlations with fire activity in 

southern Mediterranean countries despite the significant differences in vegetation and 

Mediterranean climate compared to Canada. There are numerous attempts to provide 

adaptations of the Canadian FWI to specific regions in the Mediterranean zone (see 

Dimitrakopoulos et al., 2011), as for example the I85 and I85/90 indices (Carrega, 1991) 

developed for Southeastern France. Due to the popularity of the FWI, the European Forest Fire 

Information System (EFFIS) currently uses the FWI as the official index for medium-range 

operational fire danger forecasts, reflecting the widespread adoption of this index (San-Miguel-

Ayanz, et al., 2013). 
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1.3 Anthropogenic factors 

In Europe most forest fires are caused by humans (Ganteaume, Camia, et al., 2013) and in the 

European Mediterranean zone, the majority of the fires are intentional and located where 

artificial areas intersect or intermingle with wildlands (WUI). There is a distinct concern in 

terms of wildfire management in those interfaces since fires tend to be more frequent but also 

pose a greater threat to human lives and infrastructures (see for example Lekkas et al., 2018). 

WUI area is expanding due to urban development and thus increases human pressure; for 

example, urban areas in France increase by about 25,000 ha each year each year at the cost of 

agricultural and natural areas (Bouillon et al., 2020). 

In recent years, numerous human-related variables have been integrated in research studies as 

factors that influence the spatial patterns of fire occurrence, either directly or indirectly. These 

variables include population density (Elia et al., 2019; Nunes et al., 2016), housing density 

(Ruffault & Mouillot, 2017), road density (Padilla & Vega-García, 2011; Ruffault & Mouillot, 

2017), proximity to roads (Ricotta et al., 2018; Vilar et al., 2016) proximity to built-up areas 

(Mancini et al., 2018; Padilla & Vega-García, 2011) and proximity to railways (Vilar et al., 

2016). Other studies (Calviño-Cancela et al., 2016; Ricotta et al., 2018) implicate interactions 

of fire occurrence with LULC types and their position relative to the WUI (within or outside 

the interface).  

Overall, there is higher fire incidence at shorter distances from roads and houses (Mancini et 

al., 2018; Ricotta et al., 2018) but that is not always the case (e.g., Marques et al., 2011), 

particularly in the case of bush-clearing fires by shepherds. Fire ignitions are more likely to 

happen near roads because of negligence like cigarettes or other accidents. Likewise, higher 

population or housing densities in the WUI increase human pressure in forested and semi-

natural areas and therefore potentially increase the number of fires due to accidents or 

negligence. In some studies (e.g., Nunes et al., 2016) higher population densities are associated 
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with higher fire occurrence while others (e.g., Elia et al., 2019) exhibit an inverse relationship. 

In low density areas with high vegetation continuity, conditions are favorable to fire 

propagation but not ignition. In high density areas with low vegetation continuity, conditions 

are favorable to fire ignition but not propagation. There is therefore an intermediate zone that 

corresponds to characteristics frequently found in the WUI where both ignition and propagation 

are high. 

Similarly to environmental factors, human variables can vary in importance depending on the 

scale or the region; for example, road proximity was a robust factor in predicting human-

induced fire ignition in Southern California (Santa Monica Mountains) (Syphard et al., 2008) 

while not being significant at the scale of the entire county (Syphard et al., 2007). The 

dependence of local or regional studies to accurately examine the robustness of the variables 

involved is therefore evident here as well. 

 

Part 2 : Artificial intelligence in wildfire 

science 

1.4 Introduction  

Wildfires continue to be a major threat to communities, ecosystems, and economies worldwide. 

Climate change, coupled with land use changes has led to an increase in the frequency, 

intensity, and severity of wildfires in many regions. This has put significant pressure on the 

management and suppression resources of fire agencies, and it has led to an increased interest 

in the application of new technologies and approaches to wildfire science and management. 

Artificial Intelligence (AI) is a subfield of computer science that aims to create intelligent 

machines/algorithms that can perform tasks that typically require human intelligence (Mitchell, 
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1997). Machine Learning (ML) algorithms are a subset of AI that can learn from data and 

improve their predictive performance over time without being explicitly programmed (Bishop 

& Nasrabadi, 2006). In other words, ML algorithms can automatically learn and improve from 

experience, which makes them well-suited for tasks such as classification, prediction, and 

decision-making based on data. In wildfire science, ML algorithms can be used to classify and 

map fuel properties, predict fire occurrence and spread rates, and model fire risk and 

susceptibility, etc. 

Deep Learning (DL) is a type of ML that uses artificial neural networks (an algorithm inspired 

by the structure and function of the human brain) to recognize patterns in data (LeCun et al., 

2015). In contrast to traditional ML algorithms, which are typically designed to work with 

structured data and require explicit feature engineering, deep learning algorithms are capable 

of automatically learning complex patterns and features from unstructured data, such as 

images, audio, and text. DL algorithms are particularly well-suited for applications in image 

and speech recognition, natural language processing, and computer vision (LeCun et al., 2015). 

In wildfire science, DL techniques can be applied to a wide range of tasks, including the use 

of remote sensing data to map active or final burned areas and severity, detect fires and smoke, 

and forecast fire weather variables. 

In recent years, there has been growing interest in the use of AI, ML, DL and other advanced 

technologies to improve the accuracy and effectiveness of wildfire detection, prediction, and 

management (Bot & Borges, 2022; Jain et al., 2020). However, despite advances in technology 

and management practices, wildfires remain a complex and challenging problem to address. 

Successful wildfire management requires a multidisciplinary approach that involves a wide 

range of stakeholders, including fire agencies, policymakers, landowners, and local 

communities. In addition, effective wildfire management requires ongoing research and 

monitoring to better understand the complex interactions between climate, vegetation, and fire 
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behavior, as well as to identify new strategies and approaches to reduce the risk and impact of 

wildfires. By leveraging the power of AI, researchers and practitioners can more effectively 

predict, prevent, and respond to wildfires. 

1.5 Applications of AI in wildfire science 

In recent years, there has been a surge of interest in the application of AI in wildfire science, 

with researchers exploring a wide range of potential applications. AI techniques, including ML 

and DL can be used to classify and map fuel properties and quantities as input variables in fire 

behavior models in order to improve the accuracy of fire spread and growth rate predictions 

(López-Serrano et al., 2016; K. L. Riley et al., 2014). ML algorithms can also be employed for 

the rapid detection of fire and smoke, enabling a more effective and timely firefighting response 

(Ba et al., 2019; Langford et al., 2018; Zhao et al., 2018). Moreover, remote sensing data can 

be utilized to develop models for active or final burned area and severity mapping in order to 

inform suppression planning and damage assessment (Ban et al., 2020; Collins et al., 2018; A. 

Pereira et al., 2017). ML algorithms can also be applied to forecast fire weather variables, such 

as wind speed and direction, which can aid in the prediction of fire occurrence and growth 

(Bates et al., 2017; Lagerquist et al., 2017). In addition, ML models can be developed to predict 

fire occurrence, spread and growth rates, as well as burned area to facilitate more effective 

dissemination of suppression assets (Chetehouna et al., 2015; Dutta et al., 2016; Hodges & 

Lattimer, 2019; Mayr et al., 2018; Vecín-Arias et al., 2016). Finally, ML techniques can be 

used to model and map fire risk and susceptibility by utilizing fire databases in conjunction 

with various environmental and anthropogenic variables to identify potential drivers of fire 

ignition and/or burned area (Curt et al., 2016; Ghorbanzadeh et al., 2019; Molina et al., 2019). 

These applications highlight the potential of ML in wildfire science for improving the accuracy 

and effectiveness of wildfire management and mitigation efforts. Despite the fact that ML has 

been utilized in various aspects of wildfire research, it has not yet been employed to predict the 
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ignition cause of fires. In later sections, it will be discussed how ML can be leveraged to predict 

fire ignition causes, potentially filling a significant gap in our understanding and enabling more 

targeted wildfire prevention and management strategies. 

1.6 Challenges and limitations of AI 

While the application of AI in wildfire science has shown great potential, there are several 

challenges and limitations that must be considered. The following parts describe shortcomings 

related to data volume and accuracy but also the need for AI systems to be transparent and 

understandable to humans. 

1.6.1 Limitations of data quality and quantity  

AI techniques, particularly ML and DL, depend heavily on the quantity and quality of 

multimodal data which are utilized to train and validate models and provide inputs for 

prediction and decision-making. Ensuring data quality and availability is therefore crucial for 

the successful implementation of AI in wildfire management and prevention. 

A significant challenge in data quality pertains to remote sensing data, which includes satellite 

imagery, aerial photography, and drone images, but also weather data and other similar sources. 

These data are frequently used to develop models for active or final burned area and severity 

mapping, classification and mapping of fuel properties and quantities as input variables in fire 

behavior models (Jain et al., 2020).  However, the presence of noise, errors, and biases in these 

data sources can compromise the accuracy of resulting models (Olofsson et al., 2014). For 

instance, existing global BA products do not provide adequate accuracy to satisfy the standards 

of modelling experts (Mouillot et al., 2014). Large remotely sensed fire databases, including 

FireAtlas (Andela et al., 2018) and GlobFire (Artés et al., 2019), underestimate both burned 

area and number of fires (Galizia et al., 2020). As reported by Franquesa et al., (2022), this 

results in consistently under-representing cropland fires while boreal forest fires are detected 
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with higher accuracy due to their large spatial area and long-duration. These constraints need 

to be considered when employing such datasets in the context of fire management, policy 

formulation, and scientific research. 

Datasets often contain missing values, and these can either hinder their usability or negatively 

impact the performance of models. For instance, the documentation of forest fire causes can 

vary significantly depending on the country, available resources, and the efforts of local 

authorities (Tedim et al., 2022). As a result, the quality and comprehensiveness of forest fire 

cause documentation can be inconsistent across different national fire databases. For example, 

in France the official forest fire database for the Mediterranean area (Prométhée.com) is lacking 

information on the ignition cause of nearly 70% of all fires in the database. 

The lack or complete absence of data is being addressed through protocols for data 

standardization (e.g., Camia et al., 2013) as this facilitates the fusion of national fire databases 

with historical records and enables the creation of more extensive databases with enhanced 

modeling potential, especially in the context of ML. Several other georeferenced data 

standardization initiatives in Europe, including the European INSPIRE Directive and the 

European Geodata Infrastructure, aim to establish a common framework for the management 

and dissemination of geospatial data throughout Europe and are aligned in this direction.  

Another challenge is the potential for bias in data used to train and validate AI models when 

using historical data; this is known as concept drift. This refers to the phenomenon where the 

underlying relationships between input variables and the target variable in a dataset change 

over time (Gama et al., 2014; Krawczyk et al., 2017). This can pose a challenge for predictive 

models, as the assumptions made during the training phase may no longer hold true when 

making predictions on new, unseen data. In the context of wildfires, fire risk and susceptibility 

models are commonly developed using historical wildfire data, such as records of past ignition 

locations, ignition causes and burned area (Bot & Borges, 2022). Concept drift could manifest 
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as changes in factors influencing fire risk and behavior, such as shifts in land cover patterns, 

climate change, or changes in fire management practices. As a result, AI models trained on 

historical wildfire data may not accurately capture these evolving relationships, and lead to 

decreased predictive performance or biased results, such as by over-predicting fire occurrences 

in areas with a known history of wildfires, potentially overlooking other areas that may have a 

greater risk.  

1.6.2 Interpretability & explainability in AI 

Interpretability and explainability are two significant challenges in the AI field, not only in 

wildfire science but also in various other domains. Despite lacking a consensus within the AI 

community regarding the precise definition of these terms (Marcinkevičs & Vogt, 2023), 

interpretability often refers to the ability to understand and explain the decision-making process 

of a model, while explainability involves providing a reason or justification for the model's 

output (Doshi-Velez & Kim, 2017; Lipton, 2018). While AI models can be very effective at 

identifying patterns in complex datasets, they are often considered "black boxes" because it 

can be difficult to understand how the model arrives at its predictions or how certain patterns 

were identified (Al-Bashiti & Naser, 2022). This lack of interpretability can be a barrier to 

adoption as it may be difficult for stakeholders to trust AI models without understanding how 

they arrive at their conclusions. In recent years, various methods have been proposed to 

improve the interpretability and explainability of AI models, as for instance LIME (Local 

Interpretable Model-Agnostic Explanations) and SHAP (Shapley Additive Explanations) 

(Lundberg & Lee, 2017; Ribeiro et al., 2016). These methods are aimed at providing clear and 

understandable explanations thereby making it easier for users to understand how the model 

arrives at its predictions or classifications. Interpretability and explainability are essential for 

building trust in AI systems and constant efforts for improvement in that regard are needed 

(Bot & Borges, 2022). This will ensure that decisions made by these systems are 
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understandable, fair and ethical. However, it is important to note that interpretability and 

explainability are not always achievable, particularly for complex AI models, and there may 

be trade-offs between model performance and interpretability (Doshi-Velez & Kim, 2017). 

Overall, while AI has been influential in wildfire science, it is important to address these 

challenges and limitations to ensure the development of accurate and reliable AI models for 

wildfire prediction and mitigation.  

1.7 Conclusion 

Wildfires are a complex and dynamic phenomenon influenced by both environmental and 

anthropogenic factors operating at a range of spatio-temporal scales. A thorough understanding 

of these factors and their interplay is crucial for effective wildfire management and prevention. 

As we continue to collect and analyze geographic data and fire databases, we can extract further 

scientific knowledge and exploit opportunities to combat wildfires. As demonstrated in the 

literature, advanced technologies such as AI and ML are becoming more accessible and have 

the potential to substantially improve our ability to predict and mitigate the effects of wildfires. 

While AI applications in wildfire management are still in their early stages, the potential 

benefits are clear: AI can help to analyze and interpret large datasets, identify complex patterns 

and trends, and provide early warning systems for wildfire outbreaks. However, the limitations 

of AI, such as lack of transparency and explainability, but also data related concerns must also 

be acknowledged and addressed. Consequently, in order to mitigate the devastating impacts of 

wildfires it is essential to continue research and development of AI applications using 

explainable approaches in conjunction with effective wildfire management policies. 
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Chapter 2 : Environmental Factors 

Affecting Wildfire Burned Area In South-

Eastern France, 1970-2019  

Reference to published article:  

Bountzouklis, C., Fox, D. M., & di Bernardino, E. (2022). Environmental factors affecting 

wildfire-burned areas in southeastern France, 1970–2019. Natural Hazards and Earth 

System Sciences, 22(4), 1181–1200. https://doi.org/10.5194/nhess-22-1181-2022 

2.1 Introduction  

Spatial relationships between fire occurrence and environmental factors evolve over time due 

to changes in biomes and climate, but also as the result of fire management practices. Mapping 

and understanding these trends are crucial for evaluating the effectiveness of fire-fighting 

strategies and developing suitable policies (Bowman et al., 2017). There are numerous recent 

efforts that aim to analyze spatial and temporal trends of fire activity at a global, national and 

regional level. Otón et al., (2021) analyzed global trends of BA based on the FireCCILT11 

database which is the longest available global BA dataset to date (1982-2018). At a national 

level Catarino et al., (2020) investigated the trends of annual BA in Angola between 2001 and 

2019 using MODIS products (MCD64A1) and associated the significant trends to land cover, 

ecological regions and protected areas. In regional scale, Ganteaume & Barbero (2019) utilized 

a long-term (1957-2017) fire geodatabase to analyze spatio-temporal variations of large fires 

in terms of frequency and BA, in the French Mediterranean. Silva et al., (2019) used a satellite 

derived BA dataset covering a 39-year period over the Iberian Peninsula to study BA trends 

and explore the relationship between areas with significant BA trends and fire danger. Urbieta 

et al., (2019) studied the spatio-temporal trends in Spain between 1980 to 2013 with regard to 

https://doi.org/10.5194/nhess-22-1181-2022
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fire frequency, BA and fire size, and their relationship with changes in climate, land-use and 

land-cover, and fire suppression. Viedma et al., (2018) assessed the changing role of 

environmental and human-related factors in reference to fire activity, in west-central Spain 

from 1979 to 2008.  

Fire suppression is an important factor that can influence fire spread. In France, as a response 

to the large fires that occurred between 1986 to 1990 a major change in fire suppression strategy 

was established in the 1990s; it focused on rapid suppression of fire ignitions regardless of the 

weather conditions in order to avoid fire propagation (Direction de la Sécurité Civile, 1994). 

The fire policy had a significant impact in fire activity in Southern France and weakened the 

fire-weather relationship (Ruffault & Mouillot, 2015). Despite the sharp decrease in BA after 

the full implementation of the fire management policy, its effectiveness on very large fires was 

not as successful as for smaller fires since changes in BA that correspond to large return periods 

are not significant (Evin et al., 2018). Although many studies have focused on determining 

relationships between fire behavior and driving factors (Mhawej et al., 2015), few studies have 

examined how fire suppression strategies impact the spatial distribution of BA. Identifying 

spatial patterns and the main driving forces that determine fire distribution provides useful 

information for fire and civil protection agencies, and it assists in allocating appropriate 

firefighting resources and in designing proper prevention actions (Moreira et al., 2011).  

The objective of this section is to provide an overview of the quantitative changes in spatio-

temporal BA patterns induced by a major shift in fire suppression strategy initiated in the early 

1990s in South-eastern France. The time interval under study spans 5 decades (1970-2019) and 

includes the relation of BA with respect to environmental factors such as a) topography (Slope 

aspect and inclination) and b) Vegetation type. Although several studies have investigated the 

relationships between BA and environmental factors, very few have covered such a long-time 
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interval based on burn scar polygons, nor have they been explicitly related to changes in fire 

suppression methods. 

2.1.1 Study area 

The study area is comprised of a subset of the 3 administrative departments with the greatest 

BA in continental France (only Corsica has greater burned area) according to the French 

official forest fire database (promethee.com): Bouches-du-Rhône, Var, and Alpes-Maritimes 

(Table 1, Fig. 1). Areas within the departmental limits that were excluded represent surfaces 

that cannot burn such as marshlands in the westernmost part of Bouches-du-Rhône and high 

alpine mineral surfaces located in the northern part of Alpes-Maritimes. 

 

Figure 1: Map of south-eastern France showing the study area and the departmental limits 

overlaid on a 5 m Digital Elevation. 

Table 1: Environmental characteristics of the study area per departmental unit 

 Bouches-du-Rhône Var Alpes-Maritimes 

Total area (km²) 3456 6019 3495 

Forested area (km²) 1530 4044 2727 

Ratio forest/total 

(km²) 

0.44 0.67 0.78 

Mean slope (°) 8.8 11.9 24.3 

Median slope (°) 5.7 9.6 25.2 
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Topography varies from west to east (Fig. 1). The gentlest slopes are found in the west 

(Bouches-du-Rhône) and both altitude and slope inclination increase eastwards. The steepest 

slope inclinations are found in the northeastern part of the study area where the French Alps 

are located. Topography influences population distribution since much of the built area is 

concentrated along the coast or on shallow to intermediate slopes in the WUI. In the Bouches-

du-Rhône, the western portion of the department has particularly low population densities due 

to the presence of the national park and wetlands mentioned above. Similarly, much of the 

population in the Alpes-Maritimes is concentrated in the southern portion of the department. 

The 2010 population densities of 388.8, 167.5, and 252.0 persons/km² for the Bouches-du-

Rhône, Var, and Alpes-Maritimes, respectively, are approximative as they simply divide 

population by total area without accounting for geographic distributions. The order, however, 

is accurate and shows the greatest population density for Bouche-du-Rhône, and the lowest for 

the Var. Based on the demographic and environmental characteristics described above, the 

westernmost section (Bouche-du-Rhône) of the study area has low potential for fire ignition 

and propagation but increases when moving towards the eastern half of department. The central 

part of the study area (Var department) has a high potential for fire ignition and the greatest 

potential for fire propagation since it has a high forested area and a large continuous WUI area. 

Finally, the eastern section (Alpes-Maritimes department) has high ignition and propagation 

potentials in the southern portion of the department and low ignition / high propagation at 

higher altitudes. 

2.2 Fire database 

Forest fire research in France is frequently based on the national database for forest fires in 

France (www.promethee.com) where fire location is defined as the municipality where fire 

ignition occurred. For this study, we used a fire Geographic Information Systems (GIS) 
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database provided by the National Forestry Office (Office National des Forêts, ONF) and the 

Delegation for the Protection of the Mediterranean Forest (Délégation à la Protection de la 

Forêt Méditerranéenne, DPFM). Even though the number of recorded fires is significantly 

lower than the Promethee database, the total area burned is almost identical; very small fires 

recorded in Promethee are not all digitized in the ONF database. To the best of our knowledge, 

this is only the second use of this geodatabase after Ganteaume & Barbero (2019). The dataset 

includes more than 3,000 digitized burn scar polygons for fires that occurred between 1970 

and 2019. Due to the long temporal extent of the database, the accuracy and the methods used 

to define burn scars varied over time. In the 1970s, burn scars were mapped using field 

measurements with GPS devices, and the technique progressively evolved to integrate remote 

sensing data (satellite imagery, orthophotos). Although the description of how BA was defined 

is not recorded in the database, earlier polygons are clearly less accurate (coarse shapes with 

little detail) than burn scars after the advent of satellite imagery (Fig. 2). 

 

Figure 2: Evolution of digitized burn scar accuracy over the past decades. 

2.3 Environmental variables 

2.3.1 Topography 

Burn scar polygons were rasterized to a 5 m spatial resolution and overlain on a 5 m Digital 

Elevation Model (DEM) extracted from RGE-ALTI©, the official National Geographic 
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Institute (Institut Géographique National, IGN) database. The DEM was used to calculate 

Slope aspect and inclination. In the conversion of vector polygons to raster cells, BA polygons 

smaller than half the cell size (25 m²) were not defined as burned during rasterization, so BA 

for the Slope aspect and inclination analyses represent approximately 96 % of actual BA in the 

study area. Aspect was divided into 5 categories: Flat, North, East, South and West. Inclination 

was divided into 5 categories: 0°-10°, 10°-20°, 20°-30°, 30°-40° and>40°.  

2.3.2 Vegetation type 

For the computation of the forested BA and the identification of fire-prone vegetation 

categories, GIS forest layers were extracted from the European CORINE land cover (CLC) 

database. The database includes five reference years 1990, 2000, 2006, 2012 and 2018. In 

addition to the CLC reference layers, it was considered best to backcast two additional forest 

cover layers for 1972 and 1980 to account for any transitions between forested and non-forested 

surfaces for the two decades preceding the CLC database. The methodology followed for the 

projection process is addressed in Subsection 2.5.1. The fire geodatabase was then matched 

with the CLC layer that was chronologically closest to the equivalent fire period (see Table 2). 

Table 2: Corine land cover layers and their respective fire periods. 

Corine Land Cover Fire period 

1972 (Predicted) 1970 – 1974 

1980 (Predicted) 1975 – 1984 

1990 1985 – 1994 

2000 1995 – 2002 

2006 2003 – 2009 

2012 2010 – 2014 

2018 2015 – 2019 

 

The vegetation types that were used in the current study follow the CLC nomenclature: Broad-

leaved forest, Coniferous forest, Mixed forest, Natural grasslands and Sclerophyllous 

vegetation (Fig. 3). Although Natural grasslands and Sclerophyllous vegetation are not forests, 
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the categories will be referred to collectively as wildland or forested areas indiscriminately for 

the sake of brevity. 

 

Figure 3: Distribution of vegetation types based on CLC 2018. 

2.3.2.1 Forest layer projection 

Although most urban growth occurred on agricultural land (Roy et al., 2015) and forest cover 

changed little, the Land Change Modeler (LCM) module of Terrset (Eastman 2020) was used 

to predict vegetation cover in 1972 and 1980. LCM is programmed to forecast change from an 

earlier to a later date, so going back in time (backcast) required the temporal inversion of 

filenames for the 1990 (renamed to 2000) and 2000 (renamed to 1990) CLC layers; in this way, 

land cover was simulated for 1980 and 1972. Land cover categories were simplified from the 

original CLC categories to the following: Built, Broad-leaved forest (Broad), Coniferous forest 

(Conifer), Mixed forest, Natural grasslands (Grass), Sclerophyllous vegetation (Bush), other, 

and water. Only transitions greater than 0.05 % of the landscape (14.3 km²) were modeled, and 

these included the following (From-To): Bush-Grass, Bush-Other, Built-Other, Grass-Other, 

Broad-Bush, Other-Grass, Bush-Conifer, Other-Bush, Bush-Broad, Bush-Mixed, Mixed-Bush, 

Other-Conifer, Mixed-Broad, Mixed-Other, Other-Broad, Other-Mixed, Broad-Other, Grass-

Bush, Mixed-Conifer, Built-Mixed, Built-Bush, Conifer-Mixed. Note that these are the inverse 
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of historical trends, so the Built-Mixed transition actually backcasts the historical transition of 

Mixed forest to Built area. Explanatory variables used to predict land cover change were the 

following: Altitude, Slope inclination, Distance from Built area, Distance from Broad, Distance 

from Conifer, Distance from Mixed, Distance from Grass, Distance from Bush, Distance from 

Other and Distance from water. According to Eastman (2020), Cramer’s V values of ≥0.15 for 

explanatory variables are useful and should be kept in the model, and all explanatory variables 

used here met this criterion. Accuracy rates to model transitions ranged from 65 % to 90 % 

with mean and median values of 78 % and 80 %, respectively. 

2.4 Fire history 1970-2019 

A 500x500 m grid (25 ha) was created and overlaid on the study area in order to measure the 

percentage of each cell that was burned each year between 1970 and 2019 (50 years) (Fig. 4). 

These percentage values were then summed to produce the cumulative percentage of BA for 

each cell. This approach facilitated the effort to identify clusters of cells/areas that have been 

burned multiple times and to give an overview of the spatial distribution of BA in the region. 

To better illustrate the impact of suppression strategies on fire occurrence, the method was 

applied to two 25-year subsets of the fire dataset i) 1970-1994, and ii) 1995-2019 as the mid-

point break corresponds to the major shift in firefighting strategy and allocated resources in 

France. 
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Figure 4: Flow chart depicting the processing steps to generate the cumulative percentage 

of forested burned area per cell. 

2.5 Methods 

2.5.1 Spatio-temporal analysis – Contextual Mann-Kendall 

In order to identify spatio-temporal trends within the entire time period (1970-2019), a 

modified version of the Mann-Kendall test was applied (Mann, 1945). The Mann-Kendal test 

is a non-parametric test which is used to statistically assess monotonic upward or downward 

trends for a variable through time. In this study we used the contextual Mann-Kendall (CMK) 

test which was introduced by (Neeti and Eastman, 2011), and it differs from the original test 

by evaluating trends at a 3x3 cell neighbourhood for each cell in a grid. The specific method 

has been used to assess trends in BA with satisfactory outcomes (Catarino et al., 2020; Otón et 

al., 2021; Silva et al., 2019). The CMK method was devised from Tobler’s First Law of 

Geography (Tobler, 1889) which states that “everything is related to everything else, but near 

things are more related than distant things.” By assuming that trends show signs of spatial 

autocorrelation between adjacent cells, the CMK test allows for greater confidence in 

identifying the presence of a trend (Neeti & Eastman, 2011). However, it requires observations 
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to be a set of independent random variables and thus applying the test on data that are 

temporally autocorrelated may lead to false rejection of the null hypothesis of no trend 

(Douglas et al., 2000). To assess the temporal autocorrelation in our dataset we applied the 

Durbin-Watson test (Durbin & Watson, 1950), and to remove it, the prewhitening procedure 

by Wang and Swail (Wang & Swail, 2001) which preserves the same temporal trend but 

without the autocorrelation (Fig. 5).  

 

Figure 5: Flow chart depicting the processing steps to estimate trend significance using the 

2.5.2 Fire Selectivity (Jacob’s Index) 

In order to examine the fire proneness of the environmental variables considered in this study 

(Slope aspect and inclination, Vegetation type) a resource selection index was calculated for 

each 25-year interval. Resource selection is based primarily on wildlife ecology (Manly et al., 

2002), but its use has been extended to include fire selectivity (Bajocco & Ricotta, 2008; Barros 

& Pereira, 2014; Moreira et al., 2001, 2009; Moreno et al., 2011; M. C. S. Nunes et al., 2005; 

Oliveira et al., 2014a). The rationale behind fire selectivity is that fires burn selectively when 

the proportion of a class (e.g., type of vegetation) within a burned area is higher than the 

proportion of the available area to burn. The opposite applies when a specific class of variable 

is burned proportionally less than the available area (fire avoidance). In our work, we used 

Jacob’s selectivity index (Jacobs, 1974) which is defined as: 

𝐷𝑖 =
𝑟 − 𝑝

𝑟 + 𝑝 − 2𝑟𝑝
   (1) 

r stands for the proportion of a resource class i used by fire, and p is the proportion of a resource 

class i available to fire. Jacobs’ index values range between -1 and 1. Positive values indicate 

CMK 

Trend 

Burned Area 
1970-2019 
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fire preference; negative values indicate fire avoidance. The index was calculated for each class 

of the environmental factors (described in the subsequent sections) for each year. Similar to 

other studies (Barros & Pereira, 2014; M. C. S. Nunes et al., 2005), the available area for each 

fire to burn is defined as twice the amount of area burned by each fire. (Fig. 6).  

 

Figure 6: Illustration of burned area (r) and available area (p) to be used by a fire. The 

available area (the sum of the burned area + buffer zone) around each fire corresponds to 

twice the burned area. 

2.5.3 Geographically weighted regression 

a Geographically weighted regression (GWR) was used to quantify the impact of the change 

in firefighting strategy on the relative importance of the environmental factors. GWR is applied 

in wide range of interdisciplinary fields including forest fires (Kolanek and Szymanowski, 

2021; Koutsias et al., 2010; Martínez-Fernández et al., 2013; Nunes et al., 2016; Rodrigues et 

al., 2016). GWR is a local non-parametric regression method (Fotheringham et al., 2003) that 

allows the relationships between dependent and explanatory variables to vary over space. The 

basic form of a GWR model, provided by (Fotheringham et al., 1998, 2003) is defined as: 

𝑦𝑖=𝛽𝑖0
+ ∑ 𝛽𝑖𝑧 𝑥𝑖𝑧 + 𝜀𝑖

𝑗

𝑧=1

   (2) 
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Where yi is the dependent variable at location i, βi0 is the intercept parameter at location i, j is 

the number of explanatory variables, biz is the local regression coefficient for the zth 

explanatory variable at location i, xiz represents the zth explanatory variable at location i and εi 

denotes the random error at location i. Since GWR allows coefficients to be spatially 

heterogeneous, a sub-model for the location of each observation is created that considers only 

a subsample of the total observations, where observations in closer proximity have a greater 

effect in determining the local set of coefficients than observations located at further distances 

(Fotheringham et al. 1998). This neighbourhood is called a “kernel,” and the maximum 

distance from a regression point at a location i is defined as “bandwidth”. The bandwidth is an 

important parameter than can be defined in two different ways: i) fixed bandwidth, (fixed 

distance for each regression point) and ii) adaptive bandwidth (fixed number of nearest 

neighbours for each regression point). The first type of neighbourhood is more appropriate 

when data are regularly distributed across apace whereas the second type is more appropriate 

for data that form spatial clusters. In the current work the adaptive bandwidth approach was 

utilized to fit the GWR model which was optimized based on the value of Akaike Information 

Criterion (Akaike, 1998). For each of the 3 environmental variables described above, a 

univariate GWR model was used to explore the relationship with the dependant variable (% of 

BA) for the two 25-year periods i)1970-1994 and ii)1995-2019. 
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Figure 7: Flow chart depicting the processing steps and data used to relate BA to 

Vegetation type, Slope inclination and orientation. 

2.6 Results 

Results presented below will first describe fire history for the entire time interval (1970-2019) 

and then analyse the spatio-temporal evolution of BA split according to the two 25-year 

periods. Finally, it will explore the relationship of BA to topography (Slope aspect and 

inclination) and Vegetation type. Factor-specific results will be discussed as they are presented 

in the following results sections while broader considerations will be explained in the 

Discussion section. 

2.6.1 Fire history 

In total, 3,382 fires burned 296,820 ha in 1970-2019. The mean and median areas of BA are 

87.7 ha and 4.2 ha, respectively; these values reflect the typical positively skewed distribution 

of fire size where the vast majority of fires are small and a few fires, accounting for most of 

the burned area, are very large. The number of fires equal to or greater than 100 ha, 500 ha, 

and 1,000 ha is 378 (11.2%), 123 (3.6 %) and 65 (1.9 %), respectively. Of the total number of 
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fires, 2,424 (88.2 %) occurred in forested landscapes, and these burned an area of 263,645 ha 

(88.8 % of total BA).   

Mean and median values for forested landscape fires are slightly greater than for all fires at 

111.7 ha and 6.5 ha, respectively. The number of fires equal to or greater than 100 ha, 500 ha, 

and 1,000 ha is 314 (13.0 %), 106 (4.4 %), and 60 (2.5 %), respectively. As stated above, results 

presented below will deal exclusively with the forested BA that was occupied by one of the 

vegetation types mentioned in section 2.3.2 since the trends with respect to vegetation and 

topography for all fires and forested landscapes are nearly identical.  

Annual forested BA varies significantly from year to year (Fig. 8) although there are clear 

differences between the first two decades (1970-1990) and the last three (1991-2019). The 

mean and median annual BA are 5156.4 ha and 2746.1 ha, respectively. Several big fires 

occurred in the 1980s followed by a sharp decrease in the early 1990s. Similar to the rest of 

southern Mediterranean Europe, most of the forested BA is related to a small number of large 

fires (Turco et al., 2016). Only 5 years (1979, 1986, 1989, 1990 and 2003) of the 50-year record 

account for almost half of the total forested BA (126,700 ha). The forested BA for each of these 

years surpasses 20,000 ha, attaining nearly 36,000 ha in 1989. Of the 5 years cited above, only 

2003 is found in the second 25-year interval. As described by (Fox et al., 2015) for the Alpes-

Maritimes, the decrease in BA corresponds to an improvement in fire-fighting strategy since 

the latter period had some of the hottest summers on record; the same explanation appears to 

hold for the neighboring departments studied here. 
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Figure 8: History of annual forested burned area from 1970 to 2019. 

Figure 9 maps cumulative percentage area burned inside each 25 ha cell for 1970-1994 and 

1995-2019, respectively. Generally, most fires occur in the WUI north of the large coastal cities 

since densely developed areas have too little vegetation to burn and relatively remote areas 

have too few ignition sources. Although we did not treat wind direction or speed, BA shapes 

in both periods tend to align themselves with known wind patterns in the region: they have a 

NW-SE orientation throughout most of the western and central sections (Bouches-du-Rhône 

and Var departments) but show little preferential orientation in the eastern department of 

Alpes-Maritimes where wind speeds are lower than the “Mistral” winds in the Rhône valley. 

There is a clear difference between the two periods with the second one having significantly 

fewer burned cells, which are also slightly more spatially dispersed. In addition, cumulative 

percentage values are noticeably lower with a small number of cells (302) exceeding 100 % 

and very few (9) reaching 200 %. All major hotspots disappear in the second interval apart 

from some located mainly in the western area of the study zone near Aix-Marseille.  

The largest patches in both intervals are found in the central part of the study zone in the Var 

department which combines continuous forest cover and a lower population density that is 

distributed more evenly throughout the department. The two largest continuous BA clusters 

are found here, one north of Saint-Tropez and one east of Toulon. In the 1995–2019 time 
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interval, the first cluster shrunk whereas the second one completely disappeared. In the western 

section of the study area (Bouches-du-Rhône), burned patches are located in constrained areas 

between densely built zones (Aix-en-Provence and Marseille) with several cells displaying 

high fire recurrence. In the eastern section of the study area (Alpes-Maritimes), where 

population is particularly dense along the coast (Cannes-Nice), BA cells are concentrated 

inland along the periphery of the coastal built-up area. A major hotspot with the highest 

cumulative percentage burned area is found just west of Cannes, and this patch almost 

disappears in the second period. In comparison to the rest of the study area, patches in the 

eastern department of the Alpes-Maritimes are smaller and more numerous with high to very 

high recurrence, even at higher altitudes. 

 

(a) 

(b) 
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Figure 9: Cumulative percentage of forested burned areas in the 1970-1994 interval (a) 

and in the 1995-2019 interval (b) over a 500 x 500 m grid. 

2.6.2 Spatio-temporal analysis 

Results of the CMK method depict areas of increasing and decreasing trends in terms of mean 

annual BA over the study area (Fig. 10). Positive Z-scores (colored in red) correspond to areas 

with increasing trends and negative Z-scores (colored in blue) correspond to areas with 

decreasing trends. Overall, a general decreasing trend of BA throughout most of the study area 

can be observed, with approximately 60% of the cells corresponding to a negative value. The 

largest clusters of negative Z-scores are located predominately in the central areas of the region, 

north of Toulon, north of Saint-Tropez, and west of Cannes, with small negative patches north-

east of Marseille and north of Nice. Positive Z-score clusters are more constrained in terms of 

size and are generally dispersed. Significant decreasing trends are relatively limited and can be 

spotted in areas such as east of Marseille, west of Cannes and north of Nice. Significant positive 

trends are detected in several locations (although limited in area) such as between Aix-en-

Provence and Marseille and in the northeastern part (Alpes-Maritimes department) of the study 

area.  Although contrasting negative-positive trends co-exist in close proximity near Marseille 

and Aix-en-Provence, the greatest speckled pattern is found in the Alpes-Maritimes department 

where fires are smaller and more randomly distributed. 
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Figure 10: Trends of mean annual burned area between 1970 to 2019 based on the 

Contextual Mann-Kendall method. Areas with positive Z-scores depict increasing trends of 

burned area, while negative Z-scores show decreasing trends. 

2.6.3 Fire selectivity and Topography 

Topographic effects studied here include Slope aspect and inclination. Since some areas may 

have greater BA values simply because in a given topographic class is more frequent in the 

landscape, Jacob’s selectivity index was calculated in order to identify potential classes of 

aspect and inclination that are preferred by fire between two periods: i) 1970-1994 and ii) 1995-

2019. 

Figure 11 shows fire preference (Jacobs’ index >0) and fire avoidance (Jacobs’ index <0) for 

the two 25-year periods under study. Between 1970-1994, S-facing slopes have a weak positive 

median value (0.02) while the others are all negative. Values become increasingly negative in 

the following order: W (-0.08), E (-0.12), N (-0.18) and flat (-0.38). In the second period (1995-

2019), the median fire selectivity of S-facing slopes (0.1) increases and presents a clear 

difference with other trends which either remain the same (flat) or decrease. N-facing (-0.33) 
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slopes appear to be even less prone to fire in the 1995-2019 interval, and flat surfaces continue 

to show the greatest aversion to fire.  

 

Figure 11: Boxplot representing the distribution of Jacobs’ index (ranging from -1 to +1) 

for 1970-1994 (left) and 1995-2019 (right) according to Slope aspect. i) Median value (50th 

percentile): bar within the box, ii) first quartile (25th percentile): bottom part of the box, iii) 

third quartile (75th percentile): top part of the box. Whiskers represent observations outside 

the middle 50% and points represent outliers. 

As for aspect, figure 12 shows fire selectivity for each of the two periods based on Jacobs’ 

selectivity index according to Slope inclination. Overall, fire is not selective with regards to 

inclination; in the first period, the gentlest (≤10°) and steepest (>40°) inclination categories 

tend to be avoided by fire (values of -0.20 and -0.19, respectively). In the second period, median 

fire selectivity for gentlest slopes (≤10°) show slightly stronger avoidance, shifting from -0.2 

to -0.29 while steepest (>40°) slopes, located mainly in the eastern segment of the study area, 

exhibit a similar change, shifting from -0.19 to -0.27.Intermediate slope categories (10°-40°), 

which account for a high percentage of BA in the western (Bouches-du-Rhône) and central 

(Var) study area, do not exhibit any clear fire selectivity pattern.  
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Figure 12: Boxplot representing the distribution of Jacobs’ index (ranging from -1 to +1) 

for 1970-1994 (left) and 1995-2019 (right) according to slope inclination. i) Median value 

(50th percentile): bar within the box, ii) first quartile (25th percentile): bottom part of the 

box, iii) third quartile (75th percentile): top part of the box. Whiskers represent 

observations outside the middle 50% and points represent outliers. 

2.6.4 Fire selectivity and Vegetation type 

Forested and semi natural vegetation is distributed between 5 categories, of which Natural 

grasslands and Sclerophyllous vegetation have the lowest and the highest 50-year average 

covers, respectively, as the following values show: Broad-leaved forest (20.6 %), Coniferous 

forest (24.1 %), Mixed forest (19.2 %), Natural grasslands (11.2 %), and Sclerophyllous 

vegetation (24.9 %). Over the 50-year study period, Mixed and Broad-leaved forest maintain 

roughly the same area whereas Conifers present a slight but decreasing trend. Sclerophyllous 

vegetation expanded in the study area (≈6 % increase), becoming the most common type in the 

last 3 decades. Finally, Natural grasslands is by far the least common type and shrunk slightly 

(≈3,5 % decrease) over time. 

Table 3: Average and relative forested areas according to vegetation type between 1970 to 2019. 

Type Area (ha) % 

Broad-leaved forest  172,547 20.6 

Coniferous forest 201,262 24.1 

Mixed forest 160,973 19.2 

Natural grassland 93,322 11.2 
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Sclerophyllous 

vegetation 
208,057 24.9 

Total 836,161  

Fire selectivity with regards to Vegetation type is presented in figure 13. In the first period, 3 

types of vegetation show signs of fire avoidance: Mixed (-0.28), Broad-leaved (-0.24) and 

Coniferous (-0.21). Natural grasslands and Sclerophyllous vegetation display weak preference 

by fire with median values of 0.09 and 0.05, respectively. 

Even though the order changes slightly in the second period, the effects of the fire suppression 

strategy on vegetation types are more evident than for the topographic factors. On the one hand, 

all three forest types are more clearly avoided by fire while on the other hand, Natural 

grasslands and Sclerophyllous vegetation show even stronger fire preference in the second 

period shifting from 0.08 to 0.28 and from 0.05 to 0.15, respectively. 

 

Figure 13: Boxplot representing the distribution of Jacobs’ index (ranging from -1 to +1) 

for 1970-1994 (left) and 1995-2019 (right) according to vegetation type. i) Median value 

(50th percentile): bar within the box, ii) first quartile (25th percentile): bottom part of the 

box, iii) third quartile (75th percentile): top part of the box. Whiskers represent 

observations outside the middle 50% and points represent outliers. 

2.6.5 Geographically weighted regression 

There is considerable spatio-temporal variability in the strength of the correlation between the 

BA and environmental variables throughout the study area. Coefficient of determination R2 
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values range spatially from 0.00 to 0.68 (Slope inclination) depending on the variable and time 

interval (Table 4). Explanatory power for all values tends to be weak, and topographic factors 

and Sclerophyllous vegetation shows the strongest correlations with BA. The remaining 

Vegetation types display a weak fit that is similar in both periods. 

Table 4: Descriptive statistics of local R2 per environmental factor for 1970-1994 (P1) and for 1995-2019 

(P2). 

 
Slope 

aspect 

Slope 

inclinati

on 

Sclerophyll

ous 

vegetation 

Natural 

grasslan

ds 

Conifero

us forest 

Broad 

leaved 

forest 

Mixed 

forest 

Perio

d 
P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 

Min 
0.0

0 

0.0

0 

0.0

0 

0.0

0 
0.00 0.00 

0.0

0 

0.0

2 

0.0

1 

0.0

0 

0.0

0 

0.0

0 

0.0

0 

0.0

0 

Max 
0.2

4 

0.3

6 

0.6

8 

0.2

5 
0.48 0.47 

0.1

9 

0.2

1 

0.2

0 

0.2

1 

0.1

1 

0.2

3 

0.2

6 

0.2

5 

Mean 
0.0

8 

0.1

1 

0.1

3 

0.0

6 
0.19 0.17 

0.0

7 

0.0

8 

0.0

8 

0.0

9 

0.0

4 

0.0

6 

0.0

7 

0.0

5 

Medi

an 

0.0

7 
0.1 0.1 

0.0

5 
0.16 0.15 

0.0

8 

0.0

6 

0.0

5 

0.0

3 

0.0

3 

0.0

5 

0.0

4 

0.0

5 

Std. 

Dev. 

0.0

8 

0.1

2 

0.0

8 

0.0

4 
0.12 0.11 

0.0

3 

0.0

5 

0.0

3 

0.0

3 

0.0

2 

0.0

5 

0.0

5 

0.0

4 

Figures 14 and 15 depict local R2 results of the application of GWR between percentage of BA 

and topographic factors. Overall, highest values are concentrated mainly in western and central 

parts (closer to the coastline) of the study area for both Slope aspect and inclination. The 

proportion of variance explained by aspect is slightly greater in the second period with several 

cells being in the highest class (0.25-0.35). Despite having a strong local fit in the first period, 

both distribution and variability changed drastically for Slope inclination in the second period. 
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Figure 14: Spatial distribution of local R2 between burned area and Slope aspect, for 1970-

1994 (left) and 1995-2019 (right). 

 

 

Figure 15: Spatial distribution of local R2 between burned area and Slope inclination for 

1970-1994 (left) and 1995-2019 (right). 

Figures 16 to 20 display local R2 results of the application of GWR between percentage of BA 

and percentage of each vegetation type. Similar to topographic variables, Sclerophyllous 

vegetation exhibits the same spatial pattern of high R2 values. A clear increase in local R2 can 

be observed when moving towards the western part of the region, which is more evident in the 

first period. Low fits are found for both periods in the higher altitude areas, located mainly in 

north-eastern segments of the area. R2 values for Natural grasslands are generally low and 

display slight differences both in terms of space and variance. Explanatory variables related to 

forest categories show very weak fit in the relationship with BA. In addition, the general 

clustering patterns are quite different between the two periods. 

 

Figure 16: Spatial distribution of local R2 between burned area and % cover of 

Sclerophyllous vegetation for 1970-1994 (left) and 1995-2019 (right). 
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Figure 17: Spatial distribution of local R2 between burned area and % cover of Natural 

grasslands for 1970-1994 (left) and 1995-2019 (right). 

 

Figure 18: Spatial distribution of local R2 between burned area and % cover of Coniferous 

forest for 1970-1994 (left) and 1995-2019 (right). 

 

Figure 19: Spatial distribution of local R2 between burned area and % cover of Broad 

leaved forest for 1970-1994 (left) and 1995-2019 (right). 
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Figure 20: Spatial distribution of local R2 between burned area and % cover of Mixed 

forest for 1970-1994 (left) and 1995-2019 (right). 

2.7 Discussion 

2.7.1 Fire history 

BA in south-eastern France has undergone substantial changes over the last 50 years. Annually, 

BA varies considerably but clear declining trends are observed in the second part of the 

temporal interval under study. Around half of the total BA (126,700 ha) was recorded in 5 

years: 1979, 1986, 1989, 1990 and 2003. Due to particularly catastrophic fires in the 1980s, a 

new fire suppression policy (“Vulcain”) was initiated that came fully into effect in 1994 

(Direction de la Sécurité Civile, 1994). This new strategy focused on aggressively suppressing 

fire ignitions under any weather conditions in order to avoid fire propagation to the extent 

where suppression would become both more difficult and more expensive. Although Fire 

Weather Index values were not calculated here for the 3 administrative departments, Fox et al. 

(2015) noted a general increase in summer temperatures between about 1980 and 2010, so the 

fire-fighting policy had a major impact on the decrease in total BA after 1994. Only 2003 stands 

out as a big fire year in the 1995-2019 interval, and although it was the hottest/driest year on 

record in the Alpes-Maritimes, it remained within the range of BA values of the big 1980s fires 

(Fox et al., 2015). Nonetheless, it raises doubts about the sustainability of rapid suppression in 

extreme conditions resources are spread thinly over a greater number of ignitions (Curt & 

Frejaville, 2018).  

2.7.2 Spatio-temporal analysis 

The effect of the new firefighting strategy can also be viewed spatially: in general, fire patches 

are less large and are distributed over smaller geographic proximities with one another, and 

fire recurrence is lower. Spatio-temporal trends, however, vary from west to east according to 
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the specific population and environmental contexts of each department. In the western part of 

the study zone, around Aix-en-Provence and Marseille, hotspots, in the form of positive Z-

scores, remain, and the new fire-fighting strategy had less effect since fires were already limited 

in size by vegetation continuity. Although limited in area, multiple clusters of positive trends 

are found in closer proximity to the built-up areas near Marseille and Aix-en-Provence in 

comparison to overall decreasing trends. Increased human activity, is known to affect fire 

ignition (Badia et al., 2011; Chas-Amil et al., 2013; Jiménez-Ruano et al., 2017; Lampin-

Maillet et al., 2011) and in our context that can be potentially linked to the high arson activity 

found in the area (Curt et al., 2016). On the contrary, the central part of the study area, where 

most of the big fires occur, the new fire policy effectively limited fire propagation over the 

continuous vegetated cover that defines the region. This zone displays the largest clusters of 

negative Z-scores, decreasing BA with very few positive values and low fire recurrence. 

Ganteaume & Barbero (2019) provided evidence that large fires (>100 ha) declined sharply in 

the central segment of the study area after the introduction of the fire management policy and 

our results, using different methods, are coherent with their findings. Finally, in the eastern 

segment of the study area, frequent small, dispersed fire patches are found. Fire shapes are not 

elongated by wind direction compared to polygons in the western and central departments, and 

although negative fire occurrence trends dominate, particularly in the WUI band, there is a 

greater number of small positive patches compared to other zones.  

2.7.3 Burned area and Topography 

S-facing slopes have the greatest BA, burn more frequently (Mouillot et al., 2003) and are more 

exposed to forest fires than other slopes due to both environmental factors (greater insolation 

and evapotranspiration) and WUI characteristics since S-facing slopes in southern France have 

more houses and therefore more potential ignition sources (Fox et al., 2018). S-facing (sum of 

SW, S, SE) slopes play an increasingly important role over time, and this could be linked to a 
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combination of hotter summers and an increasing number of human dwellings on these slopes 

as growth rates on S-facing slopes in the Alpes-Maritimes were 4-5 times greater than on N-

facing slopes in 1990-2012.  

Slope inclination favors fire propagation directly through more efficient radiative heat transfer 

(Rothermel, 1983) and increases the rate of spread and fire intensity (Capra et al., 2018; 

Csontos and Cseresnyés, 2015). In addition, slope inclination influences fire ignition and 

suppression indirectly through accessibility, solar radiation variations, fuel moisture, and fuel 

density which in turn influence flammability (Holden et al., 2009). In this study, Flat areas are 

most avoided by fire for several independent reasons: radiative heat transfer is less efficient on 

these slopes, more densely inhabited and more easily accessible with denser road networks, so 

lower fire preference probably depends as much or more on early suppression as on physical 

processes. The fire-avoidance of low slope inclinations strengthens over time, and this is 

coherent with more rapid suppression in this interval. BA in intermediate slope inclinations is 

not affected significantly by the change in firefighting strategy potentially due to factors that 

counter rapid suppression like more efficient radiative heat transfer, more difficult accessibility 

and presence of isolated or diffuse housing.  

2.7.4 Burned area and Vegetation type 

The role of vegetation in fire frequency and BA patches located in the Bouches-du-Rhône and 

Var departments was studied by Curt et al. (2013). Their case study reflects patterns observed 

here at a larger scale, namely that vegetation flammability is secondary to landscape 

organization. Large open patches of continuous fuel, as are found in the Var department, favor 

larger fires with longer return intervals than the small patchy wildland distribution in the 

Bouches-du-Rhône (Ganteaume & Barbero, 2019). Burned vegetation patterns observed here 

highlight the frequently cited role of Sclerophyllous vegetation (shrubland) (Ganteaume & 

Jappiot, 2013; Moreira et al., 2011; Oliveira et al., 2014; Tessler et al., 2016). Shrublands both 



 

64 

 

favor fire propagation in dry conditions (Baeza et al., 2002) and result from recurrent fires 

(Tessler et al., 2016). As Mermoz et al. (2005) suggested, the fire proneness of Sclerophyllous 

vegetation is connected to its ability to regenerate faster and generate quicker fuel 

accumulation; this also applies in our case since sclerophyllous vegetation covers the greatest 

area, greatest BA, greatest explained variance in the GWR analysis, and is one of two 

vegetation categories (with Natural grasslands) that have positive resource index values. These 

results are coherent with the findings of others working in Mediterranean environments where 

large fires tend to occur in landscapes with dense shrublands (Moreira et al., 2011; Ruffault & 

Mouillot, 2017). In a context where initial suppression is crucial to fire extinction, 

Sclerophyllous vegetation may resist early suppression better than other covers where initial 

propagation is perhaps slower. Moreover, firefighting assets appear to prioritize other types of 

vegetation during fire suppression since fire selectivity remains unchanged for bushlands, 

possibly due to the low cost of restoration (Oehler et al., 2012). 

As other studies have concluded (Oliveira et al., 2014), Natural grasslands display a high fire 

susceptibility. Despite the change in the firefighting policy, grasslands are over-represented in 

BA in both time intervals, and this may be due to faster initial propagation or accessibility 

issues, as for example in certain mid to high-altitude areas over the eastern section of the study 

area, where burned clusters of this vegetation type are found. Sheep grazing is a common 

practice in high alpine pastures of the Alpes-Maritimes department, and Natural grassland fires 

may be due to bush clearing operations by shepherds which resulted in uncontrolled wildfires 

that affected much larger areas than originally intended.  All three forest types (Broad leaved, 

Coniferous and Mixed) display a similar pattern characterized by fire avoidance, that is even 

more evident after the fire management policy change. This does not necessarily reflect a 

higher priority for suppression by firefighting assets over other vegetation types but may 
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indicated that fires in these vegetation types take more initial time to spread than in bushland, 

so they are suppressed before becoming large fires.  

2.8 Conclusion 

In this study, results provide a coherent picture of the impact of a shift in firefighting strategy 

on fire occurrence and environmental characteristics. Burned area decreased sharply in SE of 

France after 1994 with the introduction of the new fire-fighting strategy. Rapid fire extinction 

was particularly effective in limiting big fires in the region. Large fire hotspots found mainly 

in the central parts disappear after the policy change, while new clusters of high fire recurrence 

appear in closer proximity to areas with increased human activity.  

S-facing aspects have an increasingly bigger impact over time, and this may be linked to both 

environmental conditions and increased human presence on those slopes. Fire avoids low slope 

inclinations and even more so after the shift in fire suppression as flat areas are easier to access 

and more densely inhabited so lower fire preference is probably determined as much or more 

by early suppression as by physical processes (reduced radiative heat transfer). 

Over half of the total BA in the last 50 years concerned sclerophyllous vegetation, thus 

confirming its strong association with high fire susceptibility and recurrence. Considering that 

sclerophyllous vegetation regenerates and expands faster than other vegetation types in the 

region, this may lead to an increase in fire risk in the future. Natural grasslands, even though 

they cover limited area and decline with time, are also preferred by fire which may be due to 

pastoral fires. On the contrary Broad leaved, Coniferous and Mixed forest are avoided by fire 

especially after the change in fire management policy. 

Further ongoing exploitation of the fire GIS database in conjunction with WUI characteristics 

will likely further improve our understanding on the driving forces of BA and the impacts of 

fire-fighting strategies in the region. 
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Chapter 3 : Arson fire cause prediction 

in Southeastern France  

Reference to published article:  

Bountzouklis, C., Fox, D. M., & di Bernardino, E. (2022). Fire cause classification of 

undetermined fires in southeastern France. In D. X. Viegas & L. M. Ribeiro (Eds.), Advances 

in Forest Fire Research 2022 (pp. 1106– 1112). Imprensa da Universidade de Coimbra. 

https://doi.org/10.14195/978-989-26-2298-9_167. 

3.1 Introduction 

Fire ignition patterns can vary significantly both temporally and spatially depending on the 

cause of ignition (Curt et al., 2016) and can be impacted by a plethora of environmental and 

anthropogenic drivers (Catry et al., 2009; Syphard et al., 2008; Syphard & Keeley, 2015). Some 

studies have demonstrated that arson fires can potentially be predicted both spatially and 

temporally (Gonzalez-Olabarria et al., 2012; Penman et al., 2013). In SE France, arson 

(particularly pyromania and conflict/interest) is the most frequent ignition cause for large fires 

(100>ha) (Ganteaume & Jappiot, 2013). Recording fire causes and studying their 

spatiotemporal patterns is important for establishing useful fire policies (Rodrigues et al., 2014) 

since a better understanding can enhance the efficacy of fire prevention measures (Oliveira et 

al., 2012). In France according to the national fire database (Prométhée) that contains records 

of fire ignition causes, approximately 70% of all fires between 1973 and 2020 were ignited by 

an unknown cause. The percentage of non-identified causes is high, and it is an additional 

constraint to the already limited research conducted on fire ignition causes. Thus, this section 

aims to examine whether a fire ignition point dataset coupled with machine learning methods 

can be used to identify the source (arson or non-arson) of unknown-caused fires and evaluate 

https://doi.org/10.14195/978-989-26-2298-9_167
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the importance of several environmental and anthropogenic factors in determining the ignition 

source. 

3.1.1 Study area 

The study area covers the administrative department of “Bouches-du-Rhône”, which according 

to the official forest fire database in France (Prométhée), ranks second in terms of burned area 

and fire frequency in mainland France (Figure 21, Table 5). The department is characterized 

by gentle slopes and low to intermediate altitudes that increase when moving eastwards. 

Population density (388.8 people/km2) is higher in the eastern half of the department since that 

is where the second most populated city in France (Marseille) is found and because the 

westernmost parts are covered by wetlands and a national park. Therefore, the westernmost 

section has a low potential for fire ignition and propagation but increases when moving towards 

the eastern half of the department.  

 
Figure 21 Departmental limits of Bouches-du-Rhônes overlaid on a 25 m Digital Elevation 

Model. 
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Table 5 Environmental characteristics of Bouches-du-Rhône. 

Total area (km²) 3456 

Forested area (km²) 1530 

Mean slope (°) 8.8 

Median slope (°) 5.7 

Mean elevation (m) 142 

Median elevation (m) 89 

When considering only fires with a known cause, 63 % of the total burned area and 

approximately half (51 %) of all fire ignitions in the department are due to arson fires, 

according to Prométhée (Table 6). In addition, most of the large fires (>100 ha) in the study 

area are caused by arsonists (Figure 22). Even though negligence (professional & personal) is 

the second most frequent cause of fire ignition, it does not cause a proportionate volume of 

burned area. 

Table 6 Number of fires and volume of burned area per ignition cause from 1973 to 2020 in Bouches-du-

Rhônes. 

Fire Ignitions 

(#) 

Percentage 

(%) 

Burned Area 

(ha) 

Percentage 

(%) 

Cause 

349 3.3 3,020 3.3 Accidental 

161 1.5 335 0.4 Natural 

1,034 9.7  5,223 5.7 Negligence 

1,556 14.7 14,493 15.7 Arson 

7,524 70.8 69,105 75 Unknown 

10,624 - 92,176 - Total 

 

 
Figure 22 Number of fires per volume category of burned area (> 1ha) and ignition cause 

from 1973 to 2020. 
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3.2 Fire database 

In France, the majority of forest fire research is based on Prométhée, the national database for 

forest fires. The specific fire database holds records of fires starting from 1973 and it includes 

information such as burned area, cause of ignition, date, and approximate location (within a 

2x2 km grid) for each fire. In the current study, we used a geographic database that contains 

exact coordinates of fire ignitions that is provided by the National Forestry Office (Office 

National des Forêts, ONF), which to the best of our knowledge is the second time being utilized 

after (Ganteaume and Long-Fournel, 2015). The dataset consists of 3,234 fire ignition points 

ranging from 1960 to 2012, which however does not contain information on the cause of 

ignition. To enrich the ONF point database with the cause of ignition, two additional databases 

were used (Figure 23). Information from the Prométhée database was firstly merged with a 

polygon fire geodatabase that is described in (Bountzouklis et al., 2022b) and subsequently 

spatially joined with the point geodatabase resulting in a combined dataset that contains 

ignition coordinates, burn scars, and cause of ignition.  

 
Figure 23 Flow chart depicting the processing steps to generate the final dataset. 

As earlier records on fire causes are considered less reliable (Ganteaume & Jappiot, 2013) only 

fires from 1996 to 2012 were considered, resulting in 323 fires (Figure 24). it was deemed best 

to classify causes into two major categories, arson and non-arson, due to the limited recorded 
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number of fires caused by accident, negligence and lightning strikes but also due to the 

significance of arson fires in the specific area. 

 
Figure 24 Number of fires per cause and burned area size. 

3.3 Features 

Multiple environmental and socioeconomic factors (Table 7 & Figure 25) that are known to be 

associated with forest fires, were acquired by a combination of European and national 

databases, in order to train a model that can identify the ignition cause of a fire. To account for 

any potential geometric errors of the ignition points and more importantly to include contextual 

geographic information, a circular buffer zone (500 m) was created around each fire ignition 

point to extract relative information. 

Table 7 List of environmental, anthropogenic, and spatiotemporal variables considered. 

Type Name Description Source 

Land Cover 

Artificial surfaces 

Percentage of cover 

within each zone 

Corine Land Cover - 

2006 

Agriculture 

Vegetation 

Water/ Wetlands 

Topographic 

Slope inclination Mean inclination (o) 

National 

Geographic Institute 

- 5 m spatial 

resolution 

Slope aspect 

Percentage of cover 

within each zone 

(Flat, N, E, S, W) 

Elevation 
Mean elevation (m) 

above sea level 
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Topographic wetness 

index 

Topographic-driven 

control on soil 

moisture 

Vegetation type 

Coniferous 

Percentage of cover 

within each zone 

National 

Geographic Institute 

- 2006 

Coppice 

Hardwood 

Open Forest 

Shrublands 

Anthropogenic 

Population density 
Individuals per sq. 

m. National Institute of 

Statistics and 

Economic Studies - 

Sub-municipal level 

- 2006 

Gini index Inequality index 

Income 
Mean taxable income 

(€) 

Unemployment 
Unemployment rate 

(%) 

Primary road 

distance 

Euclidean distance 

from fire location 

(m) 

National 

Geographic Institute 

- 2008 

Secondary road 

distance 

Power pylons 

distance 

Railway distance 

Wildland Urban 

Interface distance 

House density Buildings per sq. m. 

Spatiotemporal 

characteristics 

Season 
Winter, spring, 

summer, autumn 

Fire database Burned area size 

<1 ha, 1-2 ha, 1-2 ha, 

2-5 ha, 5-25 ha, >25 

ha 

Coordinates 
XY coordinates of 

each fire 
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Figure 25 Kendall's Tau rank correlation coefficient heatmap of explanatory variables. 

3.4 Methods 

The analysis of the data is based on Random Forests (Breiman, 2001), a well-established 

machine learning algorithm in many disciplines but also in wildfire science (Jain et al., 2020). 

In order to train the model, 70% of the original dataset was utilized, while the remaining 30% 

was used for testing the accuracy in predicting the cause of a fire. Due to the limited number 

of observations, the process of splitting the data (using the same ratio) and executing the model 

was iterated (n=300) to have a more consistent perception of the accuracy of the model. 

Additionally, the processing chain included tuning the algorithm’s hyperparameters as well as 

calculating the feature importance score for all variables.  

To better comprehend and evaluate the list of the factors that can drive the classification output, 

the Gini impurity (importance) method was used. In scikit-learn, the importance of a node j in 

a single decision tree is computed using the following formula: 

𝑛𝑖𝑗 = 𝑤𝑗𝐶𝐽 −  𝑤𝑙𝑒𝑓𝑡(ℎ)𝐶𝑙𝑒𝑓𝑡(𝑗) − 𝑤𝑟𝑖𝑔ℎ𝑡(ℎ)𝐶𝑟𝑖𝑔ℎ𝑡(𝑗)  (3) 
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Where 𝑤𝑗 is the weighted number of samples in node j as fraction of total weighted number of 

samples, 𝐶𝐽is the impurity in node j and left(j) and right(j) are its respective sub nodes. 

Successively, feature importance of feature i is calculated as: 

    𝑓𝑖𝑖 =
∑ 𝑛𝑖𝑗𝑗:𝑛𝑜𝑑𝑒 𝑗 𝑠𝑝𝑙𝑖𝑡𝑠 𝑜𝑛 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑖

∑ 𝑛𝑖𝑗𝑗∈𝑎𝑙𝑙 𝑛𝑜𝑑𝑒𝑠
   (4) 

Where 𝑓𝑖𝑖 is the importance of a feature i and 𝑛𝑖𝑗 the importance of a node j, which can be 

normalized to values ranging from 0 to 1 by dividing by the sum of all feature importance 

values: 

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑓𝑖𝑖 =
𝑓𝑖𝑖

∑ 𝑓𝑖𝑗𝑗∈𝑎𝑙𝑙 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠
   (5) 

However, for RF the final feature importance values are computed based on the total number 

of trees in the model. The higher the value the higher the importance of a feature: 

𝑅𝐹𝑓𝑖𝑖 =
∑ 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑖𝑧𝑒𝑑𝑓𝑖𝑗∈𝑎𝑙𝑙 𝑡𝑟𝑒𝑒𝑠 𝑖𝑗

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑒𝑒𝑠
   (6) 

3.5 Results 

The accuracy of the model is illustrated in the form of a boxplot (Figure 26) that represents 

accuracy scores from all iterations of the model. The accuracy of the model to classify unknown 

caused fires can vary substantially ranging from 56% to 76% (median value 67%), due to the 

small size of the dataset. 
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Figure 26 Boxplot representing Random Forest’s classification accuracy for all iterations 

(n=300). (i) Bar within the box is the median value, (ii) bottom part of the box is the first 

quartile, and (iii) top part of the box is the third quartile. Whiskers represent observations 

outside the middle 50 % and points represent outliers. 

Figure 27 shows the importance values of each explanatory variable used in the model. Overall, 

anthropogenic features (in blue) appear to surpass in importance the rest. Moreover, 

topographic factors (in brown) seem to be more important than land cover and vegetation type 

while spatiotemporal variables except for XY coordinates hold the lowest importance. More 

specifically, Secondary road distance, Shrublands and Unemployment rate are the three 

variables displaying the highest importance. Finally, several variables mainly related to 

spatiotemporal characteristics and others such as certain vegetation types (Hardwood & 

Coppice) as well as Water can be excluded to decrease model complexity and execution time. 
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Figure 27 Distribution of the variable importance values for all iterations (n=300). 

3.6 Conclusion 

The results of the study suggest that the source of unknown caused fires can be identified at an 

acceptable level of accuracy even with a limited number of fires. Anthropogenic drivers such 

as distance to secondary roads and unemployment rate, along with higher volumes of 

shrublands around ignition points are the most important features in determining the 

classification of unknown caused fires for the specific area.  

Overall performance of such models would most likely greatly benefit from the exploitation of 

larger datasets as well as from the inclusion of weather-related variables. Finally, as location 

holds particular importance over certain fire causes, spatial extensions of machine learning 
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algorithms such as Geographic random forests (Georganos et al., 2021) and Geographically 

weighted neural networks (Hagenauer & Helbich, 2022) could provide significant 

enhancements over the original algorithms.  
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Chapter 4 : Unknown wildfire ignition 

cause prediction using machine learning 

Reference to published article: 

Bountzouklis, C., Fox, D. M., & di Bernardino, E. (2023).  Predicting wildfire ignition causes 

in Southern France using eXplainable Artificial Intelligence (XAI) methods. Environmental 

Research Letters, 18 (4), 044038. https://doi.org/10.1088/1748-9326/acc8ee  

 

4.1 Introduction 

In Europe, approximately 50% of all fires were caused by an unknown origin based on data 

reported from 19 European countries in the European Forest Fire Database (EFFIS) from 1999 

to 2016 (De Rigo et al., 2017). In Mediterranean France, almost 70% of all fires between 1973 

and 2020 were recorded without a cause of ignition according to the forest fire database for the 

Mediterranean area (Prométhée.com). Many experts in the field of fire management in Europe 

have acknowledged the importance of fires classified as having an undetermined origin (Tedim 

et al., 2022), since the lack of information regarding fire causes makes it difficult for fire 

managers to determine the most suitable course of action to prevent similar incidents from 

happening in the future. French fire experts, in particular, have identified fires of unknown 

origin as being of paramount importance (Tedim et al., 2022) among the various categories of 

fires: Natural, Accident, Negligence, Deliberate, and Rekindle of the harmonized classification 

scheme of fire causes in Europe (Camia et al., 2013). In southeastern France, Ganteaume & 

Guerra (2018) highlighted the fact that large areas are burned by fires of undetermined sources, 

and they argue for enhanced quality and quantity of investigations into fire ignition causes in 

order to improve the accuracy of fire databases. Fire ignition patterns can vary significantly 

both temporally and spatially depending on the cause of ignition (Curt et al., 2016) and can be 

https://doi.org/10.1088/1748-9326/acc8ee
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impacted by a plethora of environmental and anthropogenic drivers (Catry et al., 2009; Syphard 

et al., 2008; Syphard and Keeley, 2015). As such, documentation and research of fire causes 

and their spatiotemporal patterns are essential for establishing meaningful fire policies 

(Rodrigues et al., 2014) since a better understanding of these patterns can improve the efficacy 

of fire prevention strategies (Oliveira et al., 2012a). However, the absence of comprehensive 

fire-cause data hampers the utility of these databases. 

Similar to other areas of study, the utilization of machine learning (ML) methodologies in 

wildfire science has seen a marked increase in popularity in recent years (Bot & Borges, 2022; 

Jain et al., 2020) Applications of ML in wildfire science include classifying and mapping fuel 

properties (Riley et al., 2014) and quantities (López-Serrano et al., 2016) as input variables in 

fire behavior models; fire and smoke detection (Zhao et al., 2018; Ba et al., 2019) for rapid 

firefighting response; active or final burned area and severity mapping based on remote sensing 

data for suppression planning and damage assessment (Pereira et al., 2017; Collins et al., 2018; 

Ban et al., 2020); forecasting of fire weather variables (Lagerquist et al., 2017; Bates et al., 

2017); prediction of fire occurrence (Dutta et al., 2016; Vecín-Arias et al., 2016), fire 

spread/growth rates (Chetehouna et al., 2015) and burned area (Mayr et al., 2018; Hodges and 

Lattimer, 2019) for more effective dissemination of suppression assets; modeling and mapping 

of fire risk based on various environmental and anthropogenic variables, to identify potential 

drivers of fire ignition and/or burned area (Curt et al., 2016; Molina et al., 2019; Ghorbanzadeh 

et al., 2019). 

While ML models have demonstrated great effectiveness at identifying complex patterns in 

large datasets, some are considered "black boxes" because it can be difficult to understand how 

the model arrives at its predictions or how certain patterns were identified (Loyola-Gonzalez, 

2019).  This lack of interpretability can be a barrier to adoption, as it may be difficult for 

stakeholders to trust such models without understanding the complete algorithm inference 
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pattern. In recent years, eXplainable Artificial Intelligence (XAI) / Interpretable Machine 

Learning (IML) has emerged as an approach that employs various techniques and strategies to 

enhance the interpretability, transparency, and explainability of ML models and their decision-

making processes with the ultimate goal of fostering trust and accountability in the model's 

output. In the context of wildfire science, the application of XAI has been explored by only 

two recent studies to address wildfire occurrence and size (Al-Bashiti & Naser, 2022; Cilli et 

al., 2022).  

Research conducted on fire ignition causes is fairly limited and poorly understood, but some 

studies have demonstrated that arson fires can potentially be predicted both spatially and 

temporally (Gonzalez-Olabarria et al., 2012; Penman et al., 2013). The objective of this study 

is to develop a ML-based model that can classify the ignition source of fires that have been 

recorded without a known cause in France. Furthermore, this study aims to evaluate the 

significance and the effect of various environmental and anthropogenic factors in determining 

the classification of different fire sources utilizing XAI methods. 

4.1.1 Study Area 

The study area comprises 15 administrative divisions (departments) in the south of France, 

with a total area of just over 80,000 km2 (Table 8, Figure 27). The specific region is considered 

the most fire-prone in France and where most of the burned area is recorded, despite exhibiting 

decreasing trends in the last decades (Bountzouklis et al., 2022b). Environmental 

characteristics and landscapes vary significantly with both mountainous and coastal zones 

contained in the study area; the highest altitudes and steepest slopes are found in the 

northeastern parts where the French Alps are located (e.g., Hautes-Alpes, Alpes-de-Haute-

Provence) whereas in the southern portions topography is low-lying and relatively flat (e.g., 

Bouches-du-Rhône, Hérault). Population density is influenced by topography: the highest 

concentrations are located in areas with low altitudes and gentle slopes, especially in the 
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southeastern Mediterranean coastal and near coastal zones (e.g., Bouches-du-Rhône, Alpes-

Maritimes). The French Alps and the island of Corsica are largely covered by forests & semi-

natural areas whereas the largest agricultural areas are concentrated mainly in the center of the 

study area. 

Table 8 Physical and human characteristics of the administrative divisions within the study area based on 

data from aFrench National Institute of Geographic (IGN), bCorine Land Cover (2018) & cNational 

Institute of Statistics and Economic Studies (INSEE). 

Administrative 

division 
Areaa 

(km2) 

Mean 

elevation
a (m) 

Mean 

slopea 

(o) 

Populat

ion 

densityc 

(people/

km2) 

Artificial 

surfacesb 

(%) 

Agricult

ural 

areasb 

(%) 

Forests 

& semi-

natural 

areasb 

(%) 

Alpes-de-

Haute-

Provence 

6,995 1,150 15.5 23.7 1.1 19.2 79.7 

Hautes-Alpes 5,691 1,665 20.6 24.8 1.3 15.2 83.5 

Alpes-

Maritimes 

4,294 1,110 20.3 257.0 8.9 4.5 86.6 

Corse-du-Sud 4,019 536 15.3 40.4 2.2 11.1 86.7 

Haute-Corse 4,707 592 16.2 39.8 1.9 12.4 85.6 

Ardèche 5,566 596 11.1 59.4 2.7 28.1 69.3 

Aude 6,344 359 7.4 59.9 2.8 48.4 48.7 

Bouches-du-

Rhône 

5,091 142 3.7 405.1 15.7 42.2 42.1 

Drôme 6,559 581 11.1 80.0 3.4 41.1 55.5 

Gard 5,875 248 6.2 128.2 6.5 40.3 53.2 

Hérault 6,230 264 6.5 195.5 7.2 41.5 51.3 

Lozère 5,176 1,025 9.3 14.8 0.7 25.5 73.8 

Pyrénées-

Orientales 

4,139 855 12.6 117.3 5.2 27.5 67.3 

Var 6,032 364 7.8 181.6 9.2 20.9 69.9 

Vaucluse 3,578 339 5.6 157.3 6.8 53.8 39.4 
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Figure 28 Location map illustrating the administrative division limits of the study area. 

4.2 Fire database 

The current study was based on “Prométhée”, the official forest fire database for Mediterranean 

area in France. This database documents fires from 1973 onwards and contains information for 

each fire such as burned area, ignition source (known / unknown), time, date, and location 

within a 2x2 km grid. Similar to the harmonized European classification scheme on ignition 

causes (Camia et al., 2013), “Prométhée” includes 5 major fire ignition sources: i) accidental 

(e.g., power lines, vehicles), ii) arson (e.g., pyromania, conflict), iii) private negligence (e.g., 

cigarette butts, leisure), iv) professional negligence (e.g., industry, agriculture) and v) 

lightning. The total number of fires considered in our study is 48,038; these were recorded 

from 1997 to 2020. Fire records prior to 1997 were excluded from this study since classification 

on the origin of fires is considered less reliable (Ganteaume & Jappiot, 2013). The dataset 

comprised of records starting in 1997 is fairly balanced with regards to the number of fires of 



 

84 

 

known/unknown sources as approximately 60 % have a known cause of ignition. Within the 

known causes (n=27,620) frequency varies considerably; arson is the most frequent (38.4 %), 

followed by private negligence (26.7 %), professional negligence (17.2 %), accidental (10.1 

%) and finally lightning (7.6 %) (Figure 29).  

  

Figure 29 Number of fires per cause in the study area (1997-2020). 

After unknown causes, arson fires are both the most numerous and account for the greatest 

annual burned area most years (Figure 30a & 30b). This is followed by private negligence, 

which, even though is the second most frequent fire source, it does not cause a proportionate 

extent of burned area. Despite similar numbers of accidental and lightning fires, the annual 

percentage of area burned by accidental fires is often significantly greater than that burned by 

lightning fires and occasionally greater than the other causes. Lastly, although the percentage 

of burned areas by unknown origin fires is substantial most years, frequently second after 

Arson, it fluctuates widely from 5 % to 49% depending on the year.  
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Figure 30 Percentage of a) burned area and b) fire ignitions according to cause and year. 

4.3 Considered features 

Table 9 describes the land cover, topographic, anthropogenic, and spatiotemporal variables that 

were used as features to predict the fire ignition source. The contextual geographic information 

of the selected factors was processed for each 2x2 km grid initially in ArcGIS Pro v2.9 and 

subsequently using python packages pandas (McKinney, 2010) and NumPy (Harris et al., 

2020) to preprocess the data for the classification scheme (e.g., replace missing values, one-

hot encoding, etc.) and finally for visualization purposes seaborn (Waskom, 2021). 

Table 9 List of features used to model the occurrence of forest fires. 

Type Name Description Source 

Land Cover 

Artificial surfaces 

Percentage of cover 

within each grid 

Corine Land Cover 

– 2006 (Raster - 100 

m spatial resolution) 

Agriculture 

Forest 

Low vegetation (e.g., 

shrublands) 

Water 
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Wetlands 

Topographic 

Elevation 
Mean elevation (m) 

above sea level 

National Geographic 

Institute (Raster - 

100 m spatial 

resolution) 

Slope aspect 

Percentage of cover 

within each zone 

(North, East, South, 

West) 

Topographic wetness 

index (TWI) 

Topographic-driven 

control on soil 

moisture 

Topographic 

ruggedness index 

(TRI) 

 

Amount of elevation 

difference between 

adjacent cells of a 

DEM (S. J. Riley et 

al., 1999) 

Anthropogenic 

Population density 
Number of 

individuals/area 

National Institute of 

Statistics and 

Economic Studies - 

Sub-municipal level 

- 2006 - (Tabular) 

Gini index Inequality index 

Income 
Mean taxable 

income (€) 

Unemployment 
Unemployment rate 

(%) 

Primary road density 

Total line length/area 
National Geographic 

Institute - 2008 

(Vector) 

Secondary road 

density 

Powerline density 

Railway density 

Spatiotemporal 

Season 

Winter (Dec -Feb), 

spring (Mar - May), 

summer (Jun - Aug), 

autumn (Sep -Nov) 

Fire database 

“Prométhée” 

Burned area size 

<0.1 ha, 0.1-0.5 ha, 

0.6-1 ha, 2-5 ha, 1-

25 ha, >25 ha 

Coordinates 
XY centroid 

coordinates 

Time of the day 

Morning (5:00 – 

12:00), afternoon 

(12:00 – 17:00), 

evening (17:00 – 
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21:00), night (21:00 

– 5:00) 

4.4 Methods 

ML methodologies learn and adapt through the process of experience, where the size and 

quality of the input data play a critical role in determining the overall effectiveness of the 

model. Random forests (RF) (see e.g., Breiman, 2001) is a supervised ML algorithm used both 

for classification and regression that is well-established in many disciplines and has grown 

substantially in popularity in the field of wildfire science over the last decade (Jain et al., 2020). 

RF is based on decision trees (Breiman et al., 2017), where each decision tree is a series of If-

Then-Else sequences with several branches connected by decision nodes and finally by leaf 

nodes that eventually determine a value or category such as the label of a classification task 

(Figure 31). Furthermore, a fundamental characteristic of RF is that a random subset of features 

is used at each node of each decision tree, resulting in several individually trained and 

uncorrelated decision trees, and these are finally merged into a larger ensemble model to limit 

overfitting and produce more accurate predictions. 
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Figure 31 Random forests diagram. 

The processing chain of RF (classification, accuracy score, confusion matrix, hyperparameter 

tuning, etc.) was carried out using the implementation of the algorithm in Python module 

Scikit-Learn (Pedregosa et al., 2011) (Figure 32). To address the unbalanced number of 

samples between classes, the Synthetic Minority Oversampling Technique (SMOTE) (Chawla 

et al., 2002) was used, which is implemented under Python package scikit-learn imbalanced-

learn (Lemaitre et al., 2016). SMOTE is a common method to produce synthetic data from a 

minority class (e.g., lightning ignitions) by randomly selecting one of the k-nearest-neighbors 

and using it to generate new, but randomly tweaked, similar samples. To train the classifier, 

70% of the dataset was utilized, while the remaining 30% was used for testing the accuracy in 

predicting the cause of a fire. The synthetic samples created using SMOTE were utilized only 

during the training phase and not for the validation of the model. To finetune the algorithm 

hyperparameters such as number of trees, max number of features considered for splitting a 

node, max levels in each decision tree etc., scikit-learn Random Search Cross Validation 
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method was used; this allowed us to evaluate and narrow down a wide range of values for each 

hyperparameter. Subsequently, the Grid Search with Cross Validation method was used to 

examine different combinations of specific values for the selected hyperparameters.  

 

Figure 32 Flow chart depicting the processing chain used to classify fire causes. 

To evaluate the model, accuracy, precision, recall and F1-score were used; these are commonly 

used as evaluation metrics for classifiers in the field of ML, which are calculated using the 

number of instances classified as true positives (TP), true negatives (TN), false positives (FP) 

or false negatives (FN). Accuracy is determined by dividing the number of correct predictions 

by the total number of instances. Precision specifies how many of the instances the classifier 

predicted as positive are actually positive while recall shows what fraction of the positive 

instances in the dataset were correctly identified by the classifier. F1-score serves as a 

comprehensive measure of both precision and recall. A F1-score of 1 denotes optimal 

performance, with both precision and recall being maximized. Conversely, a score of 0 

represents the worst possible outcome, with both precision and recall being minimal. A score 

of 0.5, which is equivalent to random guessing, is suboptimal performance, whereas scores 

above 0.5 are generally considered to indicate good performance.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
  (7) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑛 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃)  (8) 
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𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)  (9) 

𝐹1𝑠𝑐𝑜𝑟𝑒 = 2 ∗ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)/(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)  (10) 

To identify which features are driving the classification but also to comprehend the 

contribution of each one, the SHapley Additive exPlanations (SHAP) (Lundberg & Lee, 2017) 

method was utilized. SHAP is an approach based on game theory that is used to explain the 

ML model outputs by breaking down the prediction into contributions from each feature value. 

These contributions are combined and help us understand the overall importance of each 

feature value in the final prediction. SHAP values can be visualized using various plots, such 

as a summary plot, that allow us to display not only the strength of the impact a certain feature 

has but also the direction of the impact. 

4.5 Results 

As elaborated below, the results derived from the RF model are presented through classification 

metrics and a confusion matrix, subsequently followed by the description of which features 

drive the classification and how they influence it. 

4.5.1 Fire ignition cause classification 

The overall accuracy of the multiclass RF classification scheme reaches about 70% (69.8%). 

Detailed results per ignition cause are presented in Table 10 and evaluated using i) F1-score, 

ii) precision and iii) recall. Concerning the accidental class, the model displays the second 

highest F1-score (0.77) and a moderate discrepancy between and precision (0.81) and recall 

(0.74). This indicates that the model is able to correctly identify most of the instances as 

accidental when it predicts that class, but it misses more instances that actually belong to that 

cause. Regarding the arson class, the model shows a lower F1-score of 0.64 and is not very 

accurate in terms of precision (0.60), meaning that it may predict some instances as arson that 

actually belong to a different class. However, the model performs better when it comes to 
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identifying most of the instances that belong to the arson class (recall score 0.69). The lightning 

class displays overall the best classification metrics (F1-score of 0.88). The precision score 

(0.85) is fairly lower than the recall score (0.91), suggesting that lightning fires are easier for 

the model to identify and are not confused with another class. On the contrary, the model 

performs the worst for the private negligence class, with an F1-score of 0.55. In this class, the 

precision score (0.59) is higher than the recall score (0.52), which suggests that the classifier 

has a higher rate of correctly identifying positive samples but is missing a higher proportion of 

the total number of positive samples. Finally, the professional negligence class exhibits 

relatively low but balanced scores between precision (0.67) and recall (0.63). 

Table 10 Classification metrics per ignition cause. 

Ignition cause Precision Recall F1-score Accuracy 

Accidental 0.81 0.74 0.77 

69.8% 

Arson 0.60 0.69 0.64 

Lightning  0.85 0.91 0.88 

Private negligence 0.59 0.52 0.55 

Professional negligence 0.64 0.68 0.65 

The confusion matrix (Figure 33) provides additional information with regards to the 

performance of the classification of ignition causes. More specifically, accidental fires are most 

frequently misclassified as arson ones. There is a high number (n=159) of arson fires that are 

wrongly classified as private negligence, and similarly, there are 266 private negligence fires 

that are misclassified as arson. This could mean that there are similarities between the causes 

of these fires, or that the model may not have enough information to accurately distinguish 

between these classes. As the most accurately predicted cause, lightning displays low 

misclassification numbers, which are distributed evenly among the other classes. In contrast, 

private negligence, that is a major negative contributor to the overall classification accuracy, 
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shares its errors primarily between professional negligence and arson classes. Finally, 

professional negligence fires are also often confused for either arson or private negligence fires. 

 
Figure 33 Confusion matrix. 

4.5.2 Feature importance and effect 

Figure 34 illustrates the computed feature importance of the RF model for all classes, which is 

expressed through mean SHAP values that represent the average impact of a feature on the 

model output across all the instances in the dataset. Overall, feature importance values vary 

significantly both per feature type and ignition cause. The features summer, elevation and 

afternoon form a group that stands out significantly from the rest, followed by a second cluster 

with slightly less impactful features such as spring, geographic coordinates, BA <0.1 ha and 

secondary road density.  

In the context of accidental fires, several features demonstrate comparable significance, with 

afternoon, elevation, summer, and primary road density being slightly more salient than other 
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variables. Similarly, the relevance of features for arson fires is widely distributed, with 

spatiotemporal characteristics such as summer, night, and location being the most prominent 

factors. Regarding fires caused by lightning, summer and elevation are by far the most 

impactful variables followed by secondary road density. In the case of private negligence, 

summer exhibits the highest level of importance, although this distinction is not substantially 

greater than that of other variables, such as afternoon, spring, and secondary road density. 

Finally, with respect to professional negligence, summer represents the most influential factor 

by a significant margin, with only BA size (<0.1 ha) showing discernible differences from other 

variables. 
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Figure 34 Feature importance (mean SHAP values) for all classes. 

Figure 35 depicts the most influential (n=10) features for each class of the model in descending 

order. Furthermore, the impact of each feature on the ignition cause is also illustrated through 

the positive or negative SHAP values. These values indicate whether an instance is more or 
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less likely to belong to a particular class depending on the magnitude of the feature values. For 

example, instances with lower elevation values are more likely to be classified as an accidental 

or arson ignition, and less likely to be categorized as a lighting fire. Similarly, a fire that 

occurred during the summer is more likely to belong to the arson or lightning class, but less 

probable to be classified into the other categories. 
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Figure 35 Importance and effect of the most influential variables (n=10) for each ignition cause. The color 

of each dot represents the feature value and its position along the row represents the SHAP value for a 

given feature and instance. Positive values (right of the center line) indicate a higher probability of 

belonging to a specific class, while negative values (left of the center line) indicate lower probability of 

belonging to a specific class.  

 

4.6 Discussion  

The performance of the RF classifier varies considerably between natural and human-induced 

fires. Lightning fires were classified with the highest accuracy since ignition dynamics for these 

fires are significantly different from human-caused fires. As reported by Curt et al., (2016), 

lightning fires tend to have small, burned areas, occur on steep, densely vegetated, mountainous 

slopes with low anthropogenic presence; seasonality also plays a significant role in the 

incidence of those fires (summer). This particular profile, which aligns with the interpretation 

of features effects through the SHAP values, enables the classifier to distinguish it from other 

causes more clearly.  

In contrast to natural fires, human-caused ignitions are multi-faceted and more complex to 

model. Accidental fires are the least difficult human induced events to classify in our model, 

potentially attributed to the greater association of such fires with infrastructure elements such 

as powerlines and railways in contrast to other forms of anthropogenic causes. The most 

challenging cause to classify is private negligence, which is most often misclassified as arson 

and vice versa. Both arson and private negligence fires often occur in similar contexts, 
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specifically the wildland urban interface. The similarity in environmental contexts and 

conditions between these types of fires may make it difficult to distinguish between the two 

causes. However, this may also reflect a problem of reliability in the fire databases (Ganteaume 

and Guerra, 2018): in order to reduce the number of unknown caused fires the cause is either 

speculated or attributed without much physical evidence to support it (Camia et al., 2013). 

Professional negligence fires are also confused, but to a lesser extent, with private negligence. 

Both causes share common characteristics, as they tend to burn small/medium areas and occur 

mainly outside of the summer season (Curt et al., 2016) which is reflected in the significance 

and impact those features hold in the SHAP framework.  

Socioeconomic data used in our model only pertains to a single year. While this approach may 

have its advantages, such as simplifying data collection and analysis, it can also potentially 

undervalue the importance of socioeconomic features by not capturing their temporal 

fluctuations, especially considering that most fires in France but also in the Euro-

Mediterranean (95 %) region are caused by humans (Ganteaume et al., 2013; Ganteaume & 

Jappiot, 2013). Factors such as population density, unemployment rate, etc. represent dynamic 

phenomena that can change considerably over time in contrast to static variables such as 

topography or even to other dynamic variables as, for instance, land cover. The addition of 

geographic coordinates in our workflow not only partly tackles spatial non-stationarity, as the 

decision trees of the model in a way incorporate geographic space during their creation, but 

also enhances the results which is in accordance with other works that utilize ML algorithms 

for applications of spatial nature (Hengl et al., 2018). Spatial approaches of ML algorithms 

such as Geographic Random Forests (Georganos et al., 2021) and Geographically Weighted 

Neural Networks (Hagenauer and Helbich, 2022) would be advantageous for such applications 

considering the significance of spatial location and its strong links with different fire ignition 

causes.  
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As a first attempt, the current study utilized only the first-level causes (5 categories) available 

from the hierarchical structure of the “Promethee” fire database, which also includes second-

level (15 categories) and third-level (31 categories) causes. Applying a similar procedure on 

selected sub level data could possibly improve functionality and understanding of ignition 

sources and their performance within the classification scheme. However, this would increase 

the complexity of the model and may negatively impact overall accuracy. Finally, the inclusion 

of fuel type characteristics and fire-weather variables can potentially strengthen and facilitate 

the distinction between different fire causes; for instance, arson fires burn larger areas 

(Ganteaume and Jappiot, 2013; Syphard and Keeley, 2015) and this may indicate these fires 

are set under more favorable weather conditions. 

The practicality of this model is not intended for operational use or as a substitute method to 

conventional field investigation methods as it cannot provide physical evidence for the proper 

deduction of the cause of a forest fire. Instead, it is targeted as a method to analyze large-scale 

fire databases that contain a moderate percentage of unknown caused fires. The ideal balance 

would be neither too low, as insufficient data would result in a restricted training dataset, nor 

too high, as that would render the model less useful.  Despite the limitations in identifying 

causes of unknown ignitions, the results can help to facilitate targeted prevention efforts 

(Oliveira et al., 2012b). Moreover, the benefits of harmonized classification systems, such as 

the one proposed by the European Commission (Camia et al., 2013) are emphasized. By 

utilizing such schemes, ML models can significantly benefit from increased harmonized data 

availability, provided that the data's reliability stays at an adequate level. This allows for the 

combination of historical national fire databases, leading to the development of larger 

databases with enhanced modeling potential. Other standardized georeferenced data initiatives 

in Europe (e.g., the European INSPIRE Directive, the European Geodata Infrastructure, etc.) 
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which aim to establish a common framework for the management and sharing of geospatial 

data across Europe are going in this direction. 

ML algorithms have become increasingly popular in fire science (Jain et al., 2020). These 

algorithms can help identify complex relationships between various factors that contribute to 

fire occurrences. However, the success of these algorithms relies heavily on the availability of 

large, high-quality datasets. As fire science continues to advance, access to larger and more 

comprehensive datasets is becoming increasingly common. This includes georeferenced 

explanatory feature data which provides important contextual information that can be used to 

better understand the underlying causes of fires. As these datasets continue to grow in size and 

quality, ML algorithms will become even more powerful tools for analyzing fire occurrences 

and fire causes. 

4.7 Conclusion 

In this study we train and apply a model to classify fire ignition causes based on several 

environmental and anthropogenic features using an explainable artificial intelligence 

framework. The results suggest that the source of unknown caused fires can be identified at 

various levels of accuracy depending on the nature of the forest fire (e.g., F1-score lightning 

0.87, accidental 0.74, arson 0.64). Spatiotemporal characteristics including geographic 

location, season, time of the day but also topographic factors like elevation are the most 

important features in determining the classification of unknown caused fires for the specific 

area and fire regime studied here. The role of spatial non-stationarity is highlighted through the 

importance it holds in our processing framework and should be treated by implementing 

models that utilize spatial approaches of machine learning algorithms, which are expected to 

have increased accuracy over the original ones. The increasing availability of large, high-

quality datasets is an important factor driving the growth of ML algorithms in wildfire science 
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and will likely play a critical role in advancing our understanding of fire causes in the coming 

years. 
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General Discussion 

This thesis aimed to provide a deeper understanding of forest fire spatiotemporal patterns, 

ignition causes, and their associated factors in southern France using geospatial data analysis 

and ML techniques. This discussion chapter is divided into three sections:1) Spatiotemporal 

changes of burned area in SE France in the context of climate change, 2) The role of ML in 

determining fire ignition causes: data challenges and Explainable AI and 3) Leveraging 

geospatial data and ML to advance wildfire research. 

Part 1 : Spatiotemporal changes of burned 

area in SE France in the context of climate 

change 

The analysis of forest fire dynamics over a 50-year period (1970-2019) revealed substantial 

changes in the spatial distribution and patterns of BA after the implementation of the new fire 

suppression strategy in the early 1990s. Apart from the sharp decrease in total BA, the impact 

of the new firefighting strategy can be observed spatially as fire patches have generally become 

smaller, are distributed more closely to one another, and display lower fire recurrence. 

Spatiotemporal trends of BA differ regionally as in the western part of the study zone fire 

hotspots persist although limited in size. The new firefighting strategy has had a limited impact 

since fires were already restricted in size by vegetation continuity which can determine BA 

(Duane et al., 2015; Fernandes et al., 2016). Housing density is greatest in the Bouches du 

Rhône department, so shrublands and forest are fragmented by continuous and discontinuous 

urban areas and some agriculture. Despite being limited in size, multiple clusters of positive 

trends are found in closer proximity to the built-up areas. This observation supports the well-
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established idea that human activity in urban areas can increase the risk of wildfire ignition 

(Badia et al., 2011; Chas-Amil et al., 2013; Jiménez-Ruano et al., 2017; Lampin-Maillet et al., 

2011). In contrast, the central part of the study area, where most large fires occurred, saw the 

new fire policy effectively limit fire spread across the continuous vegetated cover 

characterizing the region. The findings of Ganteaume & Barbero (2019) align with these 

observations as the authors provide evidence that large fires (>100 ha) significantly declined 

after 1991. In the eastern segment of the study area, although negative fire trends are prevalent, 

particularly in the WUI zone, there is a higher number of small positive trend patches compared 

to other areas in the eastern portion of the study zone. Numerous small and dispersed fire 

patches are observed that appear less shaped/elongated by wind direction than in the western 

and central regions (Ruffault et al., 2018). Although wind speed or direction is not analyzed 

here, during the course of this thesis, an investigation into weather variables, including rainfall, 

wind, temperature, and relative humidity, was conducted. However, due to time constraints, it 

was not possible to integrate this part into the thesis. As a result, a separate paper is currently 

being prepared that will incorporate weather variables alongside the environmental and 

anthropogenic variables discussed in the preceding chapters. 

The results revealed that the contribution of south-facing slopes to forest fires has increased 

over time, likely exacerbated by ongoing climate change, as south-facing aspects display 

greater insolation and evapotranspiration than other orientations. Other studies (e.g., Mouillot 

et al., 2003) have presented evidence that south-facing slopes S-facing slopes have the greatest 

BA and burn more frequently however, the findings of this thesis indicate that this trend is 

strengthening over time, a phenomenon that has not been previously documented by others. 

Finally, S-facing slopes in the study zone tend to have shallower soils than N-facing slopes 

(Fox, 2011) so soil water reserves are lowest, and they are therefore probably the first slopes 

to dry out and remain drier for longer than other aspects. 
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The burnt vegetation patterns observed in this study confirm the well-established importance 

of shrublands in forest fires, as reported in previous research (Ganteaume & Jappiot, 2013; 

Moreira et al., 2011; Oliveira et al., 2014; Tessler et al., 2016). Shrublands tend to facilitate 

fire propagation in dry conditions (Baeza et al., 2002) and both induce and result from recurrent 

fires (Tessler et al., 2016). As a result, the susceptibility of shrublands to fires may increase in 

the future due to hotter and drier conditions driven by climate change. That is especially 

relevant in the region since sclerophyllous vegetation covers the greatest area, represents 

around half of the total BA, regenerates and expands faster than other vegetation types.  

Climate change is expected to alter fire patterns substantially, making the analysis of spatio-

temporal changes increasingly crucial for predicting how these patterns will evolve in the 

context of changing climate. As global temperatures rise and extreme weather events, including 

droughts, become more frequent, we can expect fire frequency, intensity and duration to 

increase (Bowman et al., 2011; Keeley & Syphard, 2016). In addition, areas with historical fire 

susceptibility are expected to become more fire prone. This was evident during the summer of 

2022, when large areas outside of the French Mediterranean zone were burned by wildfires. It 

is important to keep this in mind as AI models trained on historical wildfire data may lead to 

biased results, such as by over-predicting fire occurrences in areas with a known history of 

wildfires, potentially overlooking other areas that may have a greater risk. This underscores 

the importance of properly understanding and anticipating the spatial and temporal dynamics 

of wildfires to facilitate better management and mitigation strategies.   

In order to effectively analyze and predict the spatiotemporal changes in fire patterns 

influenced by climate change, it is essential to have access to high-quality fire geodatabases 

that can facilitate the needs of such applications. Advancements in satellite technology and 

data processing techniques have also contributed to significant improvements in geospatial data 

quality. This includes improvements in spatial resolution, spectral resolution, and radiometric 
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resolution, allowing for more precise and accurate detection and mapping of burned areas, 

ignition points, and fire behavior (Chuvieco, 2020). For instance, moderate- to high-resolution 

satellite imagery, such as Landsat or Sentinel, is widely used to map burned areas and estimate 

the extent of wildfire events. These data are typically available at a spatial resolution of 10-30 

m, which allows researchers to identify individual burn scars and estimate their size, shape, 

and location with high precision.  

The fire geodatabase utilized in this thesis, provided by the National Forestry Office (ONF) 

covered a 50-year time span. Due to the long temporal extent of the database, the accuracy and 

the methods used to define burn scars significantly improved over time; with the advent of 

satellite imagery, burn scars became more detailed and accurate in shape compared to earlier 

polygons which had coarse shapes and lacked detail. Despite having high geometric accuracy, 

the specific database used in this thesis has not been used by any other researchers with a single 

exception (Ganteaume & Barbero 2019). The vast majority of forest fire research in France is 

based on the “Prométhée” database that contains information for each fire such as total burned 

area and ignition location within a much coarser 2x2 km grid. The particularly limited use of 

the ONF database can be attributed to the fact that the total number of recorded fires is 

significantly lower than in Prométhée and that, unlike Prométhée, it is not publicly accessible 

via a web portal. Although the total number of fires is substantially lower, the total area burned 

is almost identical. The difference in the number of fires recorded in the ONF database and the 

“Prométhée” database is possibly due to the fact that the ONF database provides the exact fire 

perimeter, which relies on the available technology of each period, while the “Prométhée” 

database requires only an approximate area of a fire. As a result, very small fires recorded in 

“Prométhée” may not be digitized in the ONF database. As earth observation satellites and 

drones continue to acquire data at higher temporal and spatial resolutions (Lippitt & Zhang, 

2018), the difference between the two is expected to become less significant in the future, 
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eventually making the ONF database the preferred option. Nonetheless, in the context of 

mapping regional spatiotemporal changes in BA, the need for geometric accuracy outweighs 

the need to include every fire recorded in the region, and thus the ONF database is better suited 

for such applications.  

As we continue to confront the challenges posed by climate change, the need for robust 

geodatabases that can support the analysis and forecasting of spatiotemporal wildfire dynamics 

becomes increasingly vital for effective wildfire management and mitigation efforts. By 

analyzing the spatiotemporal relationships between fire activity and environmental factors, 

researchers and policymakers will be better equipped to develop adaptive strategies that can 

effectively respond to the evolving risks posed by wildfires in a world increasingly affected by 

climate change. However, increasing complexity geospatial data analysis and advanced 

techniques such as ML, can widen the gap between fundamental science and practical land 

management. As such practices become more widespread, it is essential to develop effective 

communication strategies that bridge the gap between complex methodologies and practical 

applications in firefighting and land management. This may involve creating user-friendly tools 

and visualizations that clearly demonstrate the insights gained from ML models. Over time, as 

the firefighting and land management communities become more familiar with geospatial and 

ML techniques, the lessons learned from these advanced models will likely become more 

accessible and readily applicable. This will ultimately facilitate better decision-making, 

improved wildfire risk prediction, and more effective land management practices, benefiting 

both the scientific community and practitioners on the ground. 
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Part 2 : The role of ML in determining fire 

ignition causes: data challenges and 

Explainable AI 

The application of ML and geospatial data in predicting fire ignition causes was investigated 

using various spatial scales, fire databases, and feature evaluation techniques. In the first effort 

to model fire ignition source dynamics (Chapter 3), a dataset containing precise coordinates of 

fire ignitions was employed. The developed model was capable of distinguishing between 

arson and non-arson fires with limited accuracy. In addition, while the model provided 

information on the environmental and anthropogenic features influencing its predictions, it did 

not offer a clear explanation of how each feature impacted the classification of ignition sources.  

The primary drawback of this first attempt was that although the ignition points in the dataset 

had high spatial resolution, their limited quantity led to an unstable model performance. This 

was due to the short duration of the records and also to the fact that data were either not publicly 

accessible or the ignition coordinates were not recorded. Efforts made to obtain additional 

ignition points from the firefighting authorities were unsuccessful, possibly due to the lack of 

transparency in data sharing or changes in data collection practices over time. Regardless, it is 

crucial to address these limitations to enhance the predictive capabilities of ML and geospatial 

analysis in determining fire ignition causes.  

Despite these significant limitations, this initial work on fire ignition causes laid the 

groundwork for creating a larger, more complex, and interpretable model. The second ML-

based model, described in Chapter 4, utilized a vastly larger number of ignitions points but 

with poor spatial resolution, derived from the “Promethee” fire database. Having large and 

diverse datasets, but also the means to analyze them, is inherently essential in data centric 

approaches such as ML since they learn by finding patterns and relationships in the data 
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(Bishop & Nasrabadi, 2006) and help improve the accuracy and generalization ability of the 

models. The more data a ML model has access to, the better it can learn and make accurate 

predictions, and the better it can generalize new instances and reduce the risk of overfitting 

where the model memorizes the training data instead of learning to generalize to new data. 

The performance of the classifier varied depending on the cause where lighting fires had the 

highest accuracy due to their distinct ignition dynamics and environmental contexts. In contrast 

to natural fires, human-caused ignitions are more complex and challenging to model, especially 

for private negligence fires which were often misclassified as arson and vice versa. The 

common environmental contexts and WUI characteristics between private negligence and 

arson fires made it difficult for the model to differentiate when using the chosen set of features. 

This issue might also point to a problem of reliability in fire databases (Ganteaume and Guerra, 

2018), as causes are occasionally assumed without enough supporting physical evidence in an 

effort to decrease the number of fires with undetermined sources. (Camia et al., 2013). 

Challenges related to both data quantity and quality can be addressed through data 

harmonization. Implementing harmonized classification systems, such as the one proposed by 

the European Commission (Camia et al., 2013), facilitates the merging of historical national 

fire databases, leading to the development of larger databases with enhanced modeling 

potential. Additionally, these systems provide clearer guidelines and definitions for each cause 

and contribute to more accurate and consistent data across different sources. 

The research presented in this thesis tackled a significant challenge associated with the "black 

box" nature of ML-based models. By incorporating the XAI framework, the study not only 

enhanced the findings through the interpretation of feature effects using SHAP values, it also 

enabled comparisons with other studies, such as the study conducted by Curt et al. (2016). XAI 

is an emerging field in AI that seeks to enhance the transparency and accountability of complex 

ML models, and this is particularly relevant in the context of wildfire science. In fact, the 
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integration of such frameworks has only recently been adopted by researchers in their 

processing pipeline (Abdollahi & Pradhan, 2023; Al-Bashiti & Naser, 2022; Bountzouklis et 

al., 2023; Cilli et al., 2022; Khanmohammadi et al., 2023; Shmuel & Heifetz, 2023). Future 

research of ML applications in wildfire science should include such frameworks as by 

providing insights into the underlying factors that influence model predictions, these 

techniques can identify potential biases or errors in their outputs and improve the accuracy and 

reliability of wildfire risk assessments. 

Part 3 : Leveraging geospatial data 

and ML to advance wildfire research 

The use of ML algorithms is becoming increasingly common in wildfire science (Bot & 

Borges, 2022; Jain et al., 2020). It is noteworthy that wildfire science relies on and benefits 

from a diverse set of relevant information sourced from numerous domains related to 

topography, vegetation, climate, land cover, soil, socio-economic characteristics, policies and 

firefighting resources as well as WUI characteristics. Given the significance of processing and 

analyzing large amounts of data from multiple sources in this context, it is evident that ML 

algorithms hold substantial value and potency for wildfire research. However, the increasing 

volume and complexity of geospatial data can pose challenges for researchers in terms of 

accessing, processing, and sharing this data effectively. This can be addressed through the use 

of cloud computing which, combined with ML, enables researchers to address critical issues 

in various fields, including natural hazards risk management (Yang et al., 2022).  Recently, 

there has been a notable surge in the availability of cloud computing platforms specifically 

designed for geospatial analysis. For instance, Google Earth Engine (Gorelick et al., 2017), 

Microsoft-Planetary Computer (McFarland et al., 2022), and Amazon-Earth Amazon Web 
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Services have each launched cloud-based platforms that provide access to powerful geospatial 

data processing and analysis tools.  

Moreover, the intersection between ML and geographic information science presents unique 

challenges and characteristics that must be addressed appropriately. Geospatial data are 

inherently distinct from non-spatial data due to their unique properties and can influence the 

performance of ML algorithms. These include spatial dependence, spatial heterogeneity and 

spatial scale which are often overlooked or insufficiently managed (Nikparvar & Thill, 2021). 

As described below, these are important to take into account when analyzing geospatial data 

or developing models of spatial processes. Spatial dependence refers to the fact that events or 

phenomena that occur in one geographic location can influence or be influenced by events or 

phenomena that occur in nearby locations. This fundamental concept is described through 

Tobler's first law of geography (Tobler, 1889), which states that "everything is related to 

everything else, but near things are more related than distant things". This is important to take 

it into account when analyzing geospatial data or developing models of spatial processes. 

Spatial heterogeneity refers to the variation in human or physical characteristics or attributes 

within a given geographic area (Dutilleul & Legendre, 1993), such as climate, topography, land 

cover, and population density. Different areas within a geographic region may have different 

conditions, which can have implications for various processes that occur within those areas, 

such as wildfire BA. In other words, the assumption that distance between two points or units 

can infer a stationary spatial process may not always hold true due to the presence of non-

stationary processes that arise from different geographic processes. 

The scale of analysis refers to the geographic extent, and resolution of the data and 

consequently the geographic areas of the training and test datasets used in an analysis 

(Goodchild, 2011). When using different scales there are key issues that are associated with 

the use of areal units: i) the sensitivity of analytical results to the definition of geographic units 
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for which data are collected and ii) the sensitivity of contextual variables and analytical results 

to different delineations of contextual units (Openshaw, 1984).  For instance, if the geographic 

units used for analysis are too large, the spatial heterogeneity within the units may not be 

accounted for, leading to inaccurate results. Conversely, if the units used are too small, they 

may not capture the full extent of spatial patterns, leading to overfitting and reduced 

generalizability. Additionally, contextual units, such as administrative boundaries, are used to 

aggregate data, and different aggregations can lead to different analytical results. Such 

observations have been made in the context of forest fire research as a given factor may vary 

in importance according to the scale of the study (Ganteaume & Long-Fournel, 2015; 

Lafortezza et al., 2013; Moritz et al., 2005). 

Considering the exponential increase of geospatial data, the rapid upsurge in popularity of AI 

and its subdomains, it is legitimate to acknowledge that there is an emerging scientific 

discipline, that of Geospatial Artificial Intelligence which combines knowledge and 

innovations in geography, spatial analysis, earth observation, AI methods (e.g., ML and DL), 

data mining, and high-performance computing to extract knowledge from geospatial big data 

and utilize them in  natural hazards and risk management. Together, these topics represent 

some of the most promising future developments and are directly linked to wildfire science and 

management, and they hold great potential for further improving our ability to monitor, predict, 

and manage wildfire events in the future. 
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General Conclusion 

This Ph.D. thesis has contributed to a deeper understanding of forest fire spatiotemporal 

patterns, ignition causes, and their associated factors in southern France using geospatial data 

analysis and ML techniques.  

The spatiotemporal dynamics and patterns of forest fires over a 50-year period (1970-2019) 

were analyzed, taking into consideration the rapid shift in fire suppression policy in the early 

1990s. This analysis provided insights into the effectiveness of these strategies in reducing BA 

and changing the geographical distribution of fires. Many large fire hotspots have disappeared 

following the policy change, proving the effectiveness of fast fire suppression in limiting large 

fires in the region. However, new smaller hotspots emerged in closer proximity to areas with 

increased human activity. The examination of fire selectivity and the spatiotemporal 

relationship of BA with respect to environmental factors such as topography and vegetation 

type has changed over time. The findings emphasized the strong association of sclerophyllous 

vegetation and natural grasslands, with increased fire susceptibility and recurrence, and the 

growing impact of south-facing slopes over time. 

Despite the scarcity of research on the direct influence of fire suppression strategies on BA's 

spatial distribution, geospatial data and analysis have been invaluable in quantifying 

spatiotemporal patterns and driving forces impacting BA distribution. This information is 

crucial for fire and civil protection agencies to allocate firefighting resources effectively and 

develop suitable prevention measures. Additional analysis of fire geodatabases, combined with 

WUI characteristics, will likely improve our comprehension of the factors affecting BA and 

the implications of firefighting tactics in the region. 

Fire suppression, while crucial, is complemented by proactive measures like understanding and 

documenting forest fire ignition causes, which can be more cost-effective and sustainable in 
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the long term. This thesis illustrates the potential of predicting unknown ignition sources using 

anthropogenic and environmental features and highlights the benefits of integrating ML and 

XAI frameworks for comprehending and explaining the impact of different factors on each 

ignition cause. Predicting ignition sources yields varying accuracy levels, with natural fires 

showing the highest accuracy compared to human-caused fires like accidental and arson. As 

the first attempt to utilize an XAI framework for predicting fire ignition causes, this research 

establishes a new benchmark for similar studies in wildfire science and offers valuable insights 

for future research. In addition to the increasing availability of large, high-quality datasets, 

harmonized data collection is an essential factor in driving the growth of ML algorithms in 

wildfire science and will likely play a critical role in advancing our understanding of fire 

ignition causes in the coming years. 

While the results of this research are promising, there is still room for improvement in the 

accuracy of the predictive models. Future studies may explore the use of spatial extensions of 

ML algorithms to enhance the performance of these models. Additionally, this research has 

focused on specific geographical areas and fire regimes, which may not be directly applicable 

to other regions or ecosystems. Future research could investigate the applicability of the 

developed methodologies and models to different spatial scales and fire regimes, broadening 

the understanding of wildfire dynamics in various contexts.  

As our understanding of spatiotemporal forest fire dynamics grows and the availability of high-

quality geospatial data increases, it is anticipated that the application of advanced geospatial 

analysis and ML techniques will continue to contribute significantly to the development of 

more effective wildfire management and prevention strategies. Despite the limitations, the 

findings of this work provide valuable insights for future research and contribute to the 

development of more effective wildfire management strategies that will ultimately benefit 

ecosystems and human welfare. 
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