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The local cortical network connectivity significantly deviates from a random network, giving rise to fine structure at the neuron-to-neuron level. In this study, we have investigated the effects of these fine structures on network dynamics and function. We have investigated two types of fine structure, namely, excess bidirectionality and feature specific connectivity. The study of the effects of excess bidirectionality was conducted in a conductance-based model of layer 2/3 in rodent V1. Through large scale numerical simulations, we showed that excess bidirectional connections in the inhibitory population leads to slower dynamics. Remarkably, we found that bidirectional connections between inhibitory cells are more efficacious in slowing down the dynamics than those between the excitatory cells. Additionally, bidirectional connections between inhibitory cells increases the trial-to-trial variability, while between the excitatory and inhibitory populations it reduces the variability leading to improved coding efficiency. Our results suggest that the strong reciprocal connections between excitatory and PV + cells that have been experimentally reported can improve coding efficiency by reducing the signal-to-noise ratio. The second part of this work involved an analytical study of a model of layer 2/3 rodent V1 with binary neurons. In our study, we assumed that neurons in layer 4 were selective to stimuli orientation. Our results account for the changes in tuning properties observed during the critical period in mouse V1. Prior to the critical period, the connectivity between pyramidal neurons in the mouse V1 is non-specific. Following previous studies of spiking networks, we analytically demonstrated that with such connectivity, layer 2/3 neurons in our model develop orientation selectivity. A small fraction of strong feature specific connections between pyramidal cells have been reported in the mouse V1 after the critical period. We showed that, in spite of their small number, such connections can substantially impact the tuning of layer 2/3 cells to orientation: excitatory neurons become more selective and through non-specific global changes in their synaptic strengths, the inhibitory cells become more broadly tuned.

Summary and discussion

4.1 Excess bidirectional connections . . . . . . . . . .

Chapter 1 Introduction

Theoretical studies of cortical networks often assume that the network connectivity is random. At first glance, this seems to be a reasonable first approximation and greatly simplifies analytic calculations. Some previous studies have suggested that local synaptic connectivity in the cortex is indeed random or quasi-random [START_REF] Cowan | Aspects of neural development[END_REF][START_REF] Szentagothai | Specificity versus (quasi-) randomness revisited[END_REF][START_REF] Braitenberg | Anatomy of the cortex: statistics and geometry[END_REF]. However, state of the art experimental techniques have been successfully used to unravel features of cortical wiring that show significant deviations from random connectivity. Cortical connectivity is now known to obey various kinds of rules ranging from global organizing principles at the inter-regional, inter-laminar or inter-columnar scale to fine structures at the neuron-to-neuron scale within a column. [START_REF] Sur | Cross-modal plasticity in cortical development: differentiation and specification of sensory neocortex[END_REF][START_REF] Douglas | A functional microcircuit for cat visual cortex[END_REF][START_REF] Peters | Organization of pyramidal neurons in area 17 of monkey visual cortex[END_REF][START_REF] Dantzker | Laminar sources of synaptic input to cortical inhibitory interneurons and pyramidal neurons[END_REF][START_REF] Thomson | Interlaminar connections in the neocortex[END_REF]] Do these small deviations from random connectivity significantly alter the neuronal dynamics and cortical function?

The major focus of my thesis is to characterize and evaluate the consequences of fine structure in cortical connectivity at the neuron-to-neuron level, on how it shapes neuronal dynamics and changes functional properties of the cortex. In particular, I have scrutinized two kinds of fine structure -reciprocal connections and functionally specific connections.

Cortical activity is regulated by processes that fluctuate over a broad range of time scales. This leads state changes from slow global modulations to fast fluctuations both in spontaneous and evoked neuronal responses and membrane voltages [START_REF] Tan | Sensory stimulation shifts visual cortex from synchronous to asynchronous states[END_REF]. Long time scales can be explained as a by-product of neuro-modulatory processes. Fluctuations in the intermediate time scales (hundreds of milliseconds to tens of seconds), however, are difficult to incorporate into the standard models of cortical activity which in fact predict an active suppression of fluctuations in the intermediate time scales (see Section. 1.3.1).

In the first part, I will describe the effects of excess reciprocal or bidirectional connections. Such connections occur above chance level between the pyramidal neurons.

Through numerical simulations, we will show that it slows down neuronal network dynamics without significantly altering the functional properties of cortical networks. We were partially inspired by previous studies in spin glass physics to examine the effects of bidirectional connections, where under suitable conditions, it leads to slow dynamics [Crisanti andSompolinsky, 1988b, Megard et al., 1987]. Moreover, generating slow dynamics in strongly coupled recurrent spiking networks operating in the asynchronous regime is a long standing theoretical challenge in neuroscience (also see [START_REF] Martí | Correlations between synapses in pairs of neurons slow down dynamics in randomly connected neural networks[END_REF]).

In the second part, I will study the functional and dynamical consequences of a few feature specific connections in an analytically solvable model of rodent V1. The rodent V1 develops a very small number of strong feature specific connections after the critical period [START_REF] Cossell | Functional organization of excitatory synaptic strength in primary visual cortex[END_REF][START_REF] Ko | Functional specificity of local synaptic connections in neocortical networks[END_REF] and the functional properties of neurons in the rodent V1 undergo several changes [Kuhlman et al., 2011, Hoy and[START_REF] Hoy | Layer-specific refinement of visual cortex function after eye opening in the awake mouse[END_REF]]. We will investigate whether such connectivity is sufficient to explain those changes. I will also demonstrate how introducing a very small number of feature specific connections can provide a mechanism through which feature selectivity can emerge in the early developmental stages of the cortex in the absence of external stimuli.

In the next section, I will review relevant experimental results on structured cortical connectivity. Section 1.2.2 is dedicated to a short summary of well known characteristics of cortical activity. Since this work was carried out in the framework of balanced networks, section 1.3 provides a brief review of the standard balanced model and justification as to why we consider this to be an apt formalism to describe cortical activity.

Figure 1.1: Examples of fine structure in cortical networks: (a) Statistical reconstruction of connectivity patterns in the mouse primary visual cortex -a few strong connections in a sea of relatively weak synapses [START_REF] Song | Highly nonrandom features of synaptic connectivity in local cortical circuits[END_REF] (b) Above chance level fractions of reciprocal connections between the pyramidal neurons (c) Neurons receiving similar feedforward inputs have a higher probability of being connected to each other [START_REF] Yoshimura | Excitatory cortical neurons form fine-scale functional networks[END_REF].

Recurrent cortical connectivity

The recurrent connectivity between neurons in the cortex is thought to be of fundamental importance in processing sensory inputs, in working memory, long term memory and, information processing for higher cognitive functions. Major experimental efforts in the recent decades have been devoted in discovering and establishing the wiring diagram of cortical neurons. If one lists the possible network architectures, the network connectivity graph can range from a random network without any structure to a highly structured network. However, constraints due to availability of finite physical volume already reduces the space of possible topologies of the network graph.

One cubic millimeter of mouse cortex consists of approximately 10 5 neurons, 10 9 synapses, and 4 km of axons [Schüz andPalm, 1989, Braitenberg and[START_REF] Braitenberg | Anatomy of the cortex: statistics and geometry[END_REF]. Many optimal wiring algorithms have been proposed based on minimizing various quantities such as wiring length and conduction delays. Anatomical distant dependent [START_REF] Hellwig | A quantitative analysis of the local connectivity between pyramidal neurons in layers 2/3 of the rat visual cortex[END_REF][START_REF] Holmgren | Pyramidal cell communication within local networks in layer 2/3 of rat neocortex[END_REF], Perin et al., 2011] connection probability is a simple rule that would result in avoiding a large number of long axons, but at the same time allow for a few long range connections. Long range projections between cortical columns could be biased to preferentially target cortical regions that respond similarly to features in sensory stimulus. The probability of connection between pairs of neurons as determined by electrophysiological recordings has been reported to be quite small [START_REF] Markram | Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex[END_REF], Thomson et al., 2002[START_REF] Holmgren | Pyramidal cell communication within local networks in layer 2/3 of rat neocortex[END_REF][START_REF] Thomson | Interlaminar connections in the neocortex[END_REF], implying that the network is sparsely connected.

In addition to distance dependent connectivity and optimal wiring arguments proposed, the accumulated experimental data suggest other constraints that further narrow the space of possible network architectures. Many more features of the wiring diagram have been experimentally observed. These include specific feedforward or recurrent projections to individual neuron types [START_REF] Callaway | Cell type specificity of local cortical connections[END_REF], Yoshimura et al., 2005[START_REF] Watts | Excitatory and inhibitory connections show selectivity in the neocortex[END_REF][START_REF] Wozny | Specificity of synaptic connectivity between layer 1 inhibitory interneurons and layer 2/3 pyramidal neurons in the rat neocortex[END_REF], structured inter-laminar connectivity [START_REF] Bannister | Inter-and intra-laminar connections of pyramidal cells in the neocortex[END_REF][START_REF] Shepherd | Laminar and columnar organization of ascending excitatory projections to layer 2/3 pyramidal neurons in rat barrel cortex[END_REF][START_REF] Helmstaedter | Neuronal correlates of local, lateral, and translaminar inhibition with reference to cortical columns[END_REF], above chance probability of shared input to neurons that are connected to each other and, clustered connectivity with groups of two or more neurons forming network motifs [START_REF] Song | Highly nonrandom features of synaptic connectivity in local cortical circuits[END_REF], Perin et al., 2011]. Figure 1.2: Orientation Selectivity in the primary visual cortex (V1). On the right we see such a map obtained from in-vivo imaging in cats, where the cells are colored according to their preferred orientation. They are neatly arranged in what is called a pinwheel arrangement. In rats, however, there is no noticeable orientation map. [START_REF] Hubel | Receptive fields and functional architecture of monkey striate cortex[END_REF][START_REF] Ohki | Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex[END_REF][START_REF] Horton | Ocular integration in the human visual cortex[END_REF] 

Function specific connectivity

The neurons in the primate primary visual cortices (V1) of cats and primates respond preferentially to the orientation of visual stimulus (Fig. 1.2, also see Section. 1.4).

Neurons in the V1 are therefore orientation selective (OS) and have a preferred orientation (PO) where their activity is the highest [START_REF] Hubel | Receptive fields, binocular interaction and functional architecture in the cat's visual cortex[END_REF]. Furthermore, the neurons in the V1 of cats and primates form cortical columns and have a remarkable order in the arrangement of neurons forming orientation maps. Orientation maps are a result of structured anatomical arrangement of neurons in a pin-wheel like fashion based on their PO. Inspired by these patterns of organization, theoretical studies of orientation selectivity usually assume, as a rule, that neurons with similar PO have a higher probability of connections (see Section. 1.4.4). Figure 1.3: Some three neuron motifs occur more frequently than expected by chance and form stronger connections within a motif. [START_REF] Song | Highly nonrandom features of synaptic connectivity in local cortical circuits[END_REF] 

Connectivity motifs

The local cortical circuit has small but significant deviations from a directed Erdös-Rényi (ER) graph 1 . Random graphs modeled by ER give rise to in-degree distributions that are Poisson. The in-degree distributions of the number of synaptic inputs in the cortex, however, is non-Poissonian. There are a large number of motifs consisting of two or more neurons occurring above chance level (Fig. 1.3). These overrepresented motifs consist of neurons of the same population or different populations forming clusters of connected neurons. Although the neurons within these motifs are connected to and receive projections from other neurons, they tend to have stronger synapses with the neurons within a motif.

Statistical properties of cortical activity 1.2.1 Long tailed firing rate distributions

A large proportion of cortical neurons have a low firing rate and a smaller fraction of neurons have higher firing rates. This is true in rodents, primates and mammals.

Recordings from different cortical regions across all species show that the firing rate Figure 1.4: Log-normal like firing rate distributions of cortical neurons across different species [START_REF] Buzsáki | The log-dynamic brain: how skewed distributions affect network operations[END_REF].

distributions are long tailed (Fig. 1.4) and can be very well approximated by a lognormal distribution [START_REF] Buzsáki | The log-dynamic brain: how skewed distributions affect network operations[END_REF][START_REF] Compte | Temporally irregular mnemonic persistent activity in prefrontal neurons of monkeys during a delayed response task[END_REF][START_REF] Shafi | Variability in neuronal activity in primate cortex during working memory tasks[END_REF][START_REF] Hromádka | Sparse representation of sounds in the unanesthetized auditory cortex[END_REF][START_REF] O'connor | Neural activity in barrel cortex underlying vibrissa-based object localization in mice[END_REF][START_REF] Mizuseki | Preconfigured, skewed distribution of firing rates in the hippocampus and entorhinal cortex[END_REF].

Temporal spiking statistics of cortical activity is highly irregular

Cortical neurons in vivo display Poisson-like spiking statistics(Fig. 1.5). Temporal irregularity of the spike trains recorded in vivo is an ubiquitous feature of cortical activity. The interspike interval (ISI) is exponential (Fig. 1.5b) [START_REF] Tomko | Neuronal variability: non-stationary responses to identical visual stimuli[END_REF], Softky and Koch, 1993b[START_REF] Bair | Power spectrum analysis of bursting cells in area mt in the behaving monkey[END_REF]. As a consequence, in the primary visual cortex (V1) for example, the number of action potentials elicited by an identical presentation of visual stimulus is highly variable [START_REF] Schiller | Short-term response variability of monkey striate neurons[END_REF][START_REF] Dean | The variability of discharge of simple cells in the cat striate cortex[END_REF][START_REF] Tolhurst | The statistical reliability of signals in single neurons in cat and monkey visual cortex[END_REF][START_REF] Vogels | The response variability of striate cortical neurons in the behaving monkey[END_REF][START_REF] Snowden | The response of neurons in areas v1 and mt of the alert rhesus monkey to moving random dot patterns[END_REF][START_REF] Britten | Responses of neurons in macaque mt to stochastic motion signals[END_REF][START_REF] Compte | Temporally irregular mnemonic persistent activity in prefrontal neurons of monkeys during a delayed response task[END_REF][START_REF] O'connor | Neural activity in barrel cortex underlying vibrissa-based object localization in mice[END_REF]. Such trial-to-trial variability is usually quantified by the Fano factor, which is the ratio of the variance of the spike count over the mean across trials. The variability of neuronal discharge varies across different cortical areas [START_REF] Shinomoto | Relating neuronal firing patterns to functional differentiation of cerebral cortex[END_REF]. Neurons in the motor cortex are found to be the least variable while the spiking activity of neurons in the prefrontal cortex is super-Poissonian.

Figure 1.5: (a) Responses of a pyramidal neuron to constant current injection in vivo and in vitro [START_REF] Holt | Comparison of discharge variability in vitro and in vivo in cat visual cortex neurons[END_REF] (b) Exponential ISI distribution [START_REF] Shadlen | The variable discharge of cortical neurons: implications for connectivity, computation, and information coding[END_REF]](c) Scatter plot mean spike count vs variance of the spike counts. [Softky and Koch, 1993a] 1.3 Balance hypothesis: a theory of cortical activity

What is the origin of the high level of temporal irregularity in the firing statistics of cortical neurons in in vivo? Is it due to single neuron properties? We can start by observing the activity patterns of isolated cortical neurons which when injected with a constant current in vitro emit highly regular spikes. Thus, the origin of irregularity is not due to any intrinsic properties of cortical neurons but must be due to strongly fluctuating synaptic inputs in the network. Then one can ask a slightly different question -What is the origin of temporal fluctuations in the synaptic inputs? Each neuron receives several hundreds to thousands of excitatory synaptic inputs [START_REF] Peters | Number of neurons and synapses in primary visual cortex[END_REF][START_REF] Schüz | Density of neurons and synapses in the cerebral cortex of the mouse[END_REF][START_REF] Larkman | Dendritic morphology of pyramidal neurones of the visual cortex of the rat: Iii. spine distributions[END_REF][START_REF] Murre | The connectivity of the brain: multi-level quantitative analysis[END_REF][START_REF] Braitenberg | Anatomy of the cortex: statistics and geometry[END_REF][START_REF] Markram | Reconstruction and simulation of neocortical microcircuitry[END_REF], assuming linear summation of these, say K inputs each of strength O 1 K , the central limit theorem (CLT) then dictates that the mean input is now of O (1) and the fluctuations around it are O 1 √ K . Now fluctuations have to be comparable to the mean in order to generate irregular spiking (Fig. 1.6a). Unless these inputs are synchronized (in which case CLT is invalid), CLT rules out large fluctuations in the total excitatory current. However, in addition to excitation, the neurons also receive inhibitory synaptic inputs. What if the mean excitatory and inhibitory currents are of the same order and cancel each other? (The Balance hypothesis) Now, both the mean input and fluctuations are comparable to the threshold i.e. O (1), provided we scale the synaptic strengths as O 1 √ K (Fig. 1.6b). This will then generate irregular spiking. In [ Van Vreeswijk andSompolinsky, 1996, Vreeswijk andSompolinsky, 1998] the authors showed that such balance emerges in a random network of binary neurons with strong synapses without fine tuning of network parameter and that it is the only stable fixed point of the system.

The standard balanced model

The standard balanced model consists of two populations, one excitatory and one inhibitory (Fig. 1.7). The network connectivity is a directed ER graph. The synapses are strong [START_REF] Barral | Synaptic scaling rule preserves excitatoryinhibitory balance and salient neuronal network dynamics[END_REF]. The neurons receive strong feedforward input [ Van Vreeswijk andSompolinsky, 1996, Vreeswijk andSompolinsky, 1998] (also see [START_REF] Chung | Strength and orientation tuning of the thalamic input to simple cells revealed by electrically evoked cortical suppression[END_REF][START_REF] Lien | Tuned thalamic excitation is amplified by visual cortical circuits[END_REF], Li et al., 2013b,a]. As we will soon see, here "strong" has a specific meaning.

Let σ i A (t) ∈ {0, 1} represent the state of a binary neuron (i, A), i.e. a neuron i in population A ∈ {E, I} at time t. The threshold T A of all the neurons is assumed to be one. Let us consider a network with N A neurons in population A. Let J ij AB denote the connection from neuron (j, B) to neuron (i, A). It is set to J AB √ K with probability K N A and zero otherwise. This results in a recurrent connectivity between neurons within and between populations such that the in-degree distribution of the inputs from population A to population B is a Poisson distribution with a mean of K. It is assumed that the network is sparse, i.e. K << logN A . Here the O 1 √ K scaling plays a crucial role in ensuring that the network converges to the balanced state. The

typical scaling of O 1 K is not used. It is clear that, |J AB | √ K ≥ |J AB |
K , and this is precisely the sense in which a scaling as √ K as opposed to K results in "stronger" synapses. In addition to recurrent connections, the network receives a feedforward input from an excitatory population with mean rate m 0 . The feedforward synapses are also scaled as 1 √ K resulting in an O √ K external excitatory input. To ensure positive firing rates and to avoid solutions of kind, m E = 0, 1 or m I = 0, 1, the synaptic efficacies are constrained by the balance conditions, i.e. J EI > J EE and J EI J EE < J II J IE . Under these general conditions, the network dynamically settles to a state where the distri-bution of the net input is a Gaussian with both the mean and variance of O (1) (or O (T hreshold)). The mean activities m A of the excitatory and inhibitory populations in the limit N → ∞ and K → ∞ are now given by the equations that are linear in the rate of the external input,

m E = J EI J I0 -J II J E0 J EE J II -J EI J IE m 0 (1.1) m I = J E0 J IE -J EE J I0 J EE J II -J EI J IE m 0 (1.2)
The average population activities now determine u A , the mean of the net input. They are related as,

m A = H -u A √ α A Where, H(z) = 1 √ 2π ∞ z dx e -x 2 2 (1.3)
where, α A is the variance of in the net input,

α A := u i A (t) 2 t i -u 2 A = B∈{E,I} J 2 AB m B (1.4) 
The mean population activities remain finite, and it can be further shown that the net input into individual neurons exhibits spatial and temporal fluctuations. Decomposing these components in the input into a neuron (i, A) we get,

u i A (t) = u A + α A -β A y i A (t) + β A x i A (1.5)
where, x i A and y i A (t) are Gaussian random variables with mean zero and variance x i A x i B = y i A (t)y i B (t ′ ) = δ i,j δ A,B . The quenched fluctuations β A is,

β A = B∈{E,I} J 2 AB q B (1.6) q A = ∞ -∞ Dx H 2 -u A - √ β A x √ α A -β A , Dx = 1 √ 2π e -x 2 2 
(1.7)

Given the input statistics, the firing rate of a neuron (i,

A) can is m(x) = H -u A - √ β A x √ α A -β A
leading to a firing rate distribution ρ(m A ),

ρ(m A ) = ∞ -∞ Dx δ(m A -m A (x)) = α -β β exp -1 2β 1 -u -α -βH -1 (m A ) 2 + 1 2 H -1 (m A ) 2 (1.8)
The time-averaged firing rates of the neurons in a balanced network is heterogeneous and the distribution of their firing rates is highly skewed. Cortical neurons in vivo receive fluctuating synaptic inputs that lead to an expansive non-linearity in their f-I curve [START_REF] Anderson | The contribution of noise to contrast invariance of orientation tuning in cat visual cortex[END_REF][START_REF] Miller | Neural noise can explain expansive, power-law nonlinearities in neural response functions[END_REF][START_REF] Hansel | How noise contributes to contrast invariance of orientation tuning in cat visual cortex[END_REF][START_REF] Priebe | The contribution of spike threshold to the dichotomy of cortical simple and complex cells[END_REF]. Which then gives rise to long tailed lognormal-like firing rate distributions since individual neurons receive approximately Gaussian inputs [START_REF] Roxin | On the distribution of firing rates in networks of cortical neurons[END_REF].

Going beyond the standard balanced model

Balanced networks have proven to be extremely successful in accounting for cortical spiking statistics. From equations 1.1 and 1.2 we see that the population responses are linear and all neuronal non-linearities are "erased" by the recurrent network dynamics. The network is very stable to small changes in the firing rates. As such, the network can only perform a simple tracking task or could reveal any O (T hreshold) component present in the feedforward input. In contrast, cortical responses can be highly nonlinear(e.g. [Song andLi, 2007, Carandini and[START_REF] Carandini | Normalization as a canonical neural computation[END_REF]). Furthermore, the standard model does not consider the diversity of inhibitory interneuron sub-types (PV, SOM, VIP, etc.) [START_REF] Markram | Interneurons of the neocortical inhibitory system[END_REF][START_REF] Rudy | Three groups of interneurons account for nearly 100% of neocortical gabaergic neurons[END_REF][START_REF] Pfeffer | Inhibition of inhibition in visual cortex: the logic of connections between molecularly distinct interneurons[END_REF] Several previous studies have overcome some of these limitations of balanced networks by modifying the standard formulation [START_REF] Vreeswijk | Chaotic balanced state in a model of cortical circuits[END_REF]] and can account for some cortical functions [START_REF] Hansel | The mechanism of orientation selectivity in primary visual cortex without a functional map[END_REF][START_REF] Mongillo | Bistability and spatiotemporal irregularity in neuronal networks with nonlinear synaptic transmission[END_REF][START_REF] Hansel | Short-term plasticity explains irregular persistent activity in working memory tasks[END_REF][START_REF] Rosenbaum | The spatial structure of correlated neuronal variability[END_REF]. In order to change the network's dynamical repertoire, the net input (Eq. 1.5) could be appropriately modified to lead a change that is of O (T hreshold). One way of achieving this is to change the connectivity. All modifications to the network connectivity that lead to an O (T hreshold) change in the net input has the potential to change the dynamics of the network and might even give rise to new functional properties. Section 1.4.6 introduces a conductance based layer 2/3 model of rodent primary visual cortex (V1) operating in the balanced regime. We will show that it can explain various experimentally observed properties of V1. In Chapter 2 we will introduce excess bidirectional connections in this model and study its effects. We will show that this leads to an O (T hreshold) change in the net input to the neurons and consequently a slowing down of the fluctuations in the network.

Chapter 3 is devoted to the study of functionally specific connections in a ring model of binary neurons. Here we will analytically show that adding a very small number (i.e. O √ K ) of orientation specific connections in a ring model gives rise to O (T hreshold) change in the net input. This in turn leads to a phase transition and the network will settle down to a new stable dynamical state. Finally, Chapter 4 is dedicated to the discussion of our results.

Feature selectivity in the primary sensory areas

The primary sensory areas are the cortical regions associated with the five senses.

Sensory information is conveyed via thalamic projections onto these areas with olfaction being the exception. In this work, the functional aspect that we are mostly interested in is the representation of orientation information by V1 neurons in the presence of fine structure. We will also briefly touch upon frequency selectivity in the primary auditory cortex in Section 1.4.2.

Orientation selectivity in the primary visual cortex

When presented with elongated oriented bar stimuli, the response of a V1 neuron varies with the orientation of the bar and is highest (Fig. 1.2) when the bar is optimally oriented. Orientation selectivity (OS) has been studied extensively in cat and monkey since its discovery by Hubel and Wiesel in the primary visual cortex. They also showed that, in these animals anatomically proximate neurons in the V1 have very similar preferred orientation, which gives rise to orientation maps. The preferred orientation of neurons within the map varies smoothly across the cortical surface. With the advent of new imaging techniques, experiments are capable of monitoring the activity of thousands of neurons. Fig. S1 shows the time averaged activity of a small patch of the V1 elicited by a slowly moving gratings. Numerous experiments conducted on cats in the last century with the goal of characterizing the orientation map in the V1 have discovered some interesting facts. These studies have demonstrated that neurons near the pinwheel centres have very similar response properties (firing rates and tuning) as the neurons in the iso-orientation domains [START_REF] Hubel | Receptive fields, binocular interaction and functional architecture in the cat's visual cortex[END_REF], 1963[START_REF] Levay | Columnar organization of the visual cortex. The neural basis of visual function[END_REF]. Neurons within a radial distance of 100 -200µm from each other have highly correlated preferred orientations while at longer radial distances these correlations decay rapidly to zero. Interestingly within the iso-orientation domains the constituent neurons might have highly varying preferred orientations [START_REF] Maldonado | Heterogeneity in local distributions of orientation-selective neurons in the cat primary visual cortex[END_REF]. Therefore, the experimental results suggest that orientation map has global order with local heterogeneity.

Figure 1.8: The primary auditory cortex (A1) is located in the temporal lobe. The preferred frequency of neurons gradually increases from one end A1 to the other, which gives rise to a tonotopic representation of auditory information.

Auditory cortex

The primary auditory cortex is located in the temporal lobe on both hemispheres.

(Fig. 1.8) The neurons in A1 are responsive to auditory stimuli. Their tuning curves are visualized along the intensity and frequency dimensions. They typically have a V-shaped receptive field. As in the V1, nearby neurons in A1 have similar preferred frequencies at the sound intensity where their activity is the largest.

Cortical maps:

To what extent are the maps ordered?

The cortex of vertebrates displays a remarkable amount of structure in its organisation. In addition to V1, several other regions of the cortex such as primary auditory cortex (A1) in multitude of mammals exhibit an organisation of neurons that results Figure 1.9: Large scale order with local disorder: Orientation maps, tonotopy in the auditory cortex Some studies have found strong OS throughout the map while others report local heterogeneities [START_REF] Blasdel | Orientation selectivity, preference, and continuity in monkey striate cortex[END_REF][START_REF] Maldonado | Heterogeneity in local distributions of orientation-selective neurons in the cat primary visual cortex[END_REF][START_REF] Hetherington | Receptive field and orientation scatter studied by tetrode recordings in cat area 17[END_REF][START_REF] Swindale | The spatial pattern of response magnitude and selectivity for orientation and direction in cat visual cortex[END_REF][START_REF] Ohki | Highly ordered arrangement of single neurons in orientation pinwheels[END_REF][START_REF] Nauhaus | Neuronal selectivity and local map structure in visual cortex[END_REF][START_REF] Ikezoe | Relationship between the local structure of orientation map and the strength of orientation tuning of neurons in monkey v1: a 2-photon calcium imaging study[END_REF]. The auditory cortex also exhibits similar local heterogeneities [START_REF] Moshitch | Responses of neurons in primary auditory cortex (a1) to pure tones in the halothaneanesthetized cat[END_REF][START_REF] Rothschild | Functional organization and population dynamics in the mouse primary auditory cortex[END_REF] in proximal neurons having similar responses to the external world. The chief factors that contribute to the neuronal responses within the classical receptive fields have been experimentally observed to have a well defined spatial organisation along the cortical surface. For instance, neurons that are adjacent to each other on the cortical surface have been found to have very similar receptive fields which change in their properties every so slightly as one traverses parallel to the cortical surface. Such an arrangement of neurons based on their functional selectivity gives rise to cortical maps. A very well known cortical 'map' of this kind is the somatosensory mapa complete representation of the surface of the human body in the somatosensory cortex where neighbouring neurons in the somatosensory cortex respond to nearby body parts. This map is a distorted image of the human body with extra surface area allocated to the more sensitive parts of the body.

A similar topographic organisation of the feedforward inputs is found in the visual cortex. Feedforward input arriving from the retina is organised in a fashion that maps nearby by regions of the visual field to neighbouring neurons in V1. [START_REF] Holmes | Disturbances of vision by cerebral lesions[END_REF][START_REF] Cowey | Human cortical magnification factor and its relation to visual acuity[END_REF][START_REF] Drasdo | The neural representation of visual space[END_REF][START_REF] Horton | Ocular integration in the human visual cortex[END_REF] Thus the receptive fields of adjacent neurons are mostly alike whenever their visual fields are overlapping. And small differences in their receptive field occur due to the non-overlapping parts of LGN cells [START_REF] Priebe | Mechanisms of orientation selectivity in the primary visual cortex[END_REF].

their respective visual fields. This arrangement is often referred to as the retinotopic map. Although orientation maps and ocular dominance columns were first recognized as the basis for modular organization of the visual cortex, further experimental works have shown patterns of organization based on other spatial frequency, direction of motion and, color. Orientation columns and ocular dominance columns intersect at right angles. Therefore, the pertinent features of the visual space are mapped onto the cortical surface and some of these maps have a very well defined structure. The mechanism by which OS in the V1 emerges has been a matter of debate over several decades. The debate centers around the contributions of feedforward and re-current inputs. Observing the OS in the cat V1, Hubel and Wiesel [START_REF] Hubel | Receptive fields, binocular interaction and functional architecture in the cat's visual cortex[END_REF]] suggested a feedforward model, the simple cells are selective as a result of a unique arrangement of the feedforward afferent arriving to L4 from lateral geniculate nuclei. Receptive fields of the simple cells are composed of elongated ON and OFF sub-regions that are adjacent to each other. Hubel and Wiesel suggested that this was a direct consequence of an anatomic arrangement of projections from circular ON-OFF LGN receptive fields. Various mechanisms were proposed where the recurrent circuit merely sharpens the strong OS that is already present and makes the response contrast invariant(see [START_REF] Ferster | Neural mechanisms of orientation selectivity in the visual cortex[END_REF] for review and references therein).

On the other hand, in feedback models the recurrent cortical network is chiefly responsible for the emergence of OS. The feedforward input is assumed to be weak and the recurrent circuit plays a crucial role in amplifying the weak orientation information. These models have strong excitatory specific connections between excitatory neurons with similar POs [START_REF] Ben-Yishai | Theory of orientation tuning in visual cortex[END_REF]. Other models also add Mexican hat-like inhibitory connections with neurons of different POs [START_REF] Somers | An emergent model of orientation selectivity in cat visual cortical simple cells[END_REF][START_REF] Douglas | Recurrent excitation in neocortical circuits[END_REF][START_REF] Sompolinsky | New perspectives on the mechanisms for orientation selectivity[END_REF][START_REF] Hansel | Modeling feature selectivity in local cortical circuits[END_REF]]. We investigated how tuning properties vary with distance from pinwheel center in a balanced conductance based model of OS with map (see Appendix. B).

A Balanced model of rodent auditory cortex: Preliminary results

The auditory system is organized very differently compared to V1. The selectivity to sound frequencies is already present in the cochlea. The auditory information arrives at A1 passing through stages, all of which have a very structured organisation. Here I will present one of the first spiking models of the auditory cortex and show that it captures the essential characteristics of experimentally reported A1 response including the local heterogeneity of responses within a globally ordered map. [START_REF] Rothschild | Functional organization and population dynamics in the mouse primary auditory cortex[END_REF][START_REF] Kanold | Local versus global scales of organization in auditory cortex[END_REF].

The auditory cortex is modeled as a network of conductance based neurons with strong synapses. Dynamics of the neurons are given by Hodgkin-Huxley equations.

Neurons are arranged on a square patch of size L with a reflecting boundary in the x-direction(abscissa) and periodic boundary in the y-direction(ordinate). Probability of recurrent connections are distant dependent [Eq. 1.9]. Probability of feedforward connections are specific and distant dependent. Distance dependence is modeled as a product of periodic Gaussians. The feedforward thalamic neurons are modeled as Poisson units. The units are arranged on a square patch of size L with a reflecting boundary in the x-direction and periodic boundary in the y-direction. The characteristic frequency(in Octaves) of a thalamic unit is a function of its x-coordinate. The family of lines perpendicular to the x-axis along the y-direction are the iso-frequency lines. Firing rate of each thalamic unit is assumed to be given by a Gaussian centered at the characteristic frequency of that unit [Eq. 1.10].

Recurrent and feedforward connections

The probability of a neuron i of population A ∈ (E, I) at location (x A i , y A i ) receiving a connection from neuron j of population B ∈ (E, I, F F ) at location (x B j , y B j ), is given by,

P (C AB ij = 1|x A i , x B j , y A i , y B j ) = ZP x (x A i , x B j )P y (y A i , y B j ) (1.9)
where,

P x (x A i , x B j ) = Z x k exp(- 1 2σ 2 x ((-1) k x A i + kL -x B j ) 2 ) , k ∈ Z = Z x k exp[- 1 2σ 2 x (x A i + 2kL -x B j ) 2 ] + k exp[- 1 2σ 2 x (-x A i + 2kL + L -x B j ) 2 ] P y (y A i , y B j ) = Z y k exp(- 1 2σ 2 y (y A i + kL -y B j ) 2 )

Thalamic input

The feedforward thalamic input was modeled based on the work by De La Rocha et al. [2008] and was given by,

r F F (∆f ) = A in (I)e -∆f 2σ 2 in (I) (1.10)
where, 

A in (I) = 2I Hz I < 30dB 40 Hz I ≥ 30dB σ in (I) =

Rodent V1: Orientation selectivity in the absence of a map

Neurons in the V1 of rodents also exhibit strong OS [START_REF] Niell | Highly selective receptive fields in mouse visual cortex[END_REF]]. In contrast to cats and primates, however, there is no noticeable arrangement of neurons based on their POs. Instead, the distribution of PO of neurons that are anatomically proximal have a very broad distribution leading to a salt-and-pepper like arrangement (also see [START_REF] Ringach | Spatial clustering of tuning in mouse primary visual cortex[END_REF]). With the advent of new optogenetic techniques, invivo recordings in combination with in-vitro experiments there is some evidence that in adult rodents -neurons within where there is a significant amount of overlap between axons and dendrites, where probability of connections is higher for neurons responding to similar stimuli. Nevertheless, only a very few PO specific connections are found in rodent V1 [Ohki andReid, 2007, Ko et al., 2011] Figure 1.12: Inhibitory neurons are broadly tuned in the rodent V1 [Niell andStryker, 2008, Kerlin et al., 2010] Broadly tuned inhibitory neurons

GABAergic interneurons form approximately 10-15% of cortical neuronal population according to some reports [START_REF] Meyer | Inhibitory interneurons in a cortical column form hot zones of inhibition in layers 2 and 5a[END_REF][START_REF] Tremblay | Gabaergic interneurons in the neocortex: from cellular properties to circuits[END_REF]. The development of new techniques of targeting well defined cell types has allowed the identification and precise cell specific simulation. In the recent years substantial efforts have been devoted to classifying and characterizing the responses of various subtypes of inhibitory interneurons. There is a growing consensus that PV + cells in rodents are more broadly tuned Fig. 1.12 than the V1 pyramidal neurons. [START_REF] Niell | Highly selective receptive fields in mouse visual cortex[END_REF][START_REF] Kerlin | Broadly tuned response properties of diverse inhibitory neuron subtypes in mouse visual cortex[END_REF][START_REF] Liu | Visual receptive field structure of cortical inhibitory neurons revealed by two-photon imaging guided recording[END_REF][START_REF] Sohya | Gabaergic neurons are less selective to stimulus orientation than excitatory neurons in layer ii/iii of visual cortex, as revealed by in vivo functional ca2+ imaging in transgenic mice[END_REF][START_REF] Kameyama | Difference in binocularity and ocular dominance plasticity between gabaergic and excitatory cortical neurons[END_REF] (also see [START_REF] Runyan | Response features of parvalbumin-expressing interneurons suggest precise roles for subtypes of inhibition in visual cortex[END_REF][START_REF] Ma | Visual Representations by Cortical Somatostatin Inhibitory Neurons-Selective But with Weak and Delayed Responses[END_REF]) In fact, regardless of the V1 interneuron subtype, their responses are observed to be less selective than the excitatory neurons. [START_REF] Kerlin | Broadly tuned response properties of diverse inhibitory neuron subtypes in mouse visual cortex[END_REF] 1.4.6 Mechanism of orientation selectivity without a map

Popular theories that suggest mechanisms for emergence of feature selectivity in cortical networks often assume that neurons with similar preferred orientations have a high probability of connection. One refers to such a connectivity as functional connectivity. This type of feature specific network architecture substantially contributes to the emergence of selectivity in models of cortical networks with feature selective responses. In fact, in most previous theoretical studies, functional connectivity is necessary for achieving OS. However, strong OS has been observed in rat, mouse, squirrel and other rodents which have no orientation maps in their V1. The preferred orientations (POs) of nearby neurons in the V1 of these animals are uniformly distributed resulting in a salt and pepper arrangement, where there is no discernible arrangement of neurons according to their POs (Fig. 1.2 (rightmost panel)). Additionally, the evidence for functional connectivity in V1 of rodents is mixed. Previous theories would predict very weak or no OS. This raises the question -'How can strong orientation selectivity be achieved without a functional architecture ?' Recently, Hansel and van Vreeswijk showed that functional connectivity is not necessary for the emergence of strong orientation selectivity. They showed that in a purely random network, strong OS can arise provided that cortex is operating in the Balanced State. In the next section I will briefly describe their model.

1.4.6.1 A L2/3 model of rodent V1
Neurons in the L2/3 of rodents show strong orientation selectivity already at eye opening. They are arranged in a salt and pepper fashion so that each integrated inputs from neurons of all POs. In chapter 2, we investigate the effects of excess bidirectionality on network dynamics and functional properties of the cortex in a modified version of a conductance based spiking model of rodent L2/3 developed in Hansel andVreeswijk 2012 [Hansel andvan Vreeswijk, 2012] (I will refer to this model as the HV model). Here I will present this model with its modifications and describe its properties.

Network connectivity

In the HV model, cortical layers 4 and 2/3 were modeled as square patches. Layer 4 neurons were assumed to be selective to stimulus orientation. Layer 2/3 neurons were arranged on a square patch with periodic boundaries. The probability of connection was defined as a function that falls off with distance on the square patch. This probability was independent of the preferred orientation of the neurons.

For reasons of simplicity, the results presented here forgoes the space dimension of the model and we defined the following probability of connections. Unless stated otherwise, a neuron i in population A receives input from another neuron j in population B with the following probability,

P (C AB ij = 1) = K N B (1.11)
Figure 1.13: OS can arise in a random network if the network is operating in the balanced regime [START_REF] Hansel | The mechanism of orientation selectivity in primary visual cortex without a functional map[END_REF] The number of connections a neuron receives on average is, C AB ij B,j = K. Therefore the connectivity of the network is random with a neuron in population α = E, I receiving K recurrent inputs from other neurons in the same population and K inputs from neurons in the other population and we assume that the network is sparse, namely, K << N .

The following section elaborates on the mechanism thorough which the neurons in this model develop selectivity to stimulus orientation.

Mechanism

The emergence of orientation tuning in the absence of functional connectivity in this model can be understood if we consider the modulations present in the total input that the neurons receive. Let us consider the feedforward input: layer 4 neurons have a salt-and-pepper organization and the feedforward projections are assumed to be random, hence the layer 2/3 neurons receive a random combination of inputs. Therefore the POs of the layer 4 neurons projecting to a neuron in layer 2/3 is uniformly distributed. As the number of synaptic projections increase, through simple averaging, this leads to a very large untuned component in the input and a very weak tuned component. Since the network is operating in the balanced regime [START_REF] Vreeswijk | Chaotic balanced state in a model of cortical circuits[END_REF]], the large untuned excitatory and inhibitory currents approximately cancel each other. This dynamical suppression of the large untuned components now makes the remaining tuned components the dominant input driving the neurons and they begin to respond preferentially to oriented stimuli. ( 1.13) Remarkably, in the HV model, layer 2/3 neurons develop strong OS regardless of the strength of OS of the layer 4 neurons. The authors also showed that a broad tuning of the inhibitory neurons is not necessary for the emergence of strong OS in layer 2/3. Furthermore, they showed that the model possesses contrast invariant tuning properties.

Therefore, random connectivity is sufficient for the emergence of strong OS. It is now known that a small number of feature specific connectivity is present in the mouse visual cortex. [START_REF] Ko | Functional specificity of local synaptic connections in neocortical networks[END_REF]. What are the effects of these connections?

Chapter 4 provides a detailed analytical study of this question. Firstly, a description of how strong OS emerges in random networks with binary units is presented. Then a small number of feature specific connections are introduced and its effects are studied. It is shown that such connections lead to a sharpening of the tuning curves.

Simulations of a balanced V1 network without an orientation map

The simulations of the conductance based model network described in the previous section were carried out on NVIDIA's Tesla K40 GPU. The network was implemented using custom C/C++ code (see appendix C). In the following sections I will present the results obtained through those simulations. We first investigated the possible mechanisms of obtaining broad tuning in the inhibitory population.

The parameters of the model used in the simulations are given in Chapter 2. In all our simulations, we assumed that the inhibitory population in L2/3 receives weaker and more numerous inputs than the excitatory population. Excitatory neurons have strong OS and inhibitory neurons are broadly tuned. The firing rates of the neurons in the network have a log-normal distribution.

Broadly tuned inhibitory neurons

The inhibitory population in the HV model had tuning properties very similar to the excitatory population. How can broad tuning of PV + interneurons can be achieved in our model? We discovered that it is possible to explain broadly tuned inhibitory cells by incorporating more numerous and weaker feed-forward input to the inhibitory population. This scenario is possible if the inhibitory neurons in L2/3 receive more numerous and weaker synapses from L4 than the excitatory population. In the simulations, it was necessary to scale the synaptic strengths appropriately as the number of feedforward inputs increases to ensure that the mean population activities remain the same. Below is a brief description of how we obtained broad inhibitory tuning.

Balanced network with different average number of inputs into excitatory and inhibitory populations: Let the average number of recurrent inputs to E and I populations be K and K ′ respectively. Such that, K ′ = κ I K, κ I > 0. And, let the number of feed forward inputs to E and I be K f f and K ′ f f .Where,

K f f = c E f f K, K ′ f f = c I f f K f f for all 0 < c A f f < 1.
The balance equation for the inhibitory population is:

J I0 K ′ f f m I0 + J IE √ K K ′ m E - J II √ K K ′ m I = 0 (1.12) √ K ′ J I0 √ K K ′ f f √ K ′ m I0 + J IE √ K √ K ′ m E - J II √ K √ K ′ m I = 0 (1.13)
To keep the average rates m E and m I the same for all c f f I and κ I , we require that, C 1 , C 2 and C 3 as define below, have to be held constant.

J I0 K ′ f f √ K ′ =: C 1 ⇒ J ′ I0 = J I0 √ κ I c f f I J IE √ K ′ =: C 2 ⇒ J ′ IE = J IE √ κ I J II √ K ′ =: C 3 ⇒ J ′ II = J II √ κ I When c f f I = 2, κ I = 1
, the tuning of inhibitory neurons broadens.The same amount of broadening must occur when c f f I = 1, κ I = 1 2 .

Figure 1.15: Stimulus onset quenches neural variability. The decrease in variability was independent of either the stimuli used or the state of the animal (awake, behaving or anesthetized).

Since the mean activities were fixed, broadening of the tuning Fig. 1.14 of inhibitory population was not due to a change in firing rates. The broadening occurs because the combination of more numerous feed forward input and weaker synapses onto the inhibitory population which increases the variance in the net input. A recent experimental study in the auditory and visual cortices by Ji et. al. [START_REF] Ji | Thalamocortical Innervation Pattern in Mouse Auditory and Visual Cortex: Laminar and Cell-Type Specificity[END_REF] supports such a bias in the number of feedforward inputs to excitatory and inhibitory populations. This is a prediction that has to be further corroborated in future experiments.

Stimulus onset and response variability

Experimental protocols often involve repeated presentation of the same stimulus during several trials. Due to the highly irregular (Sec. 1.2.2) nature of cortical spiking activity, the number of spikes emitted is variable across trials even though the stimulus remains exactly the same. This trial-to-trial variability or response variability in the spike count across trials is often characterized by the reporting the Fano factor, which is the variance of the spike count across the trials normalized by the average spike count over trials.

In an exhaustive study by [START_REF] Churchland | Stimulus onset quenches neural variability: a widespread cortical phenomenon[END_REF] the effect of stimulus onset on response variability was studied in multiple data sets from various cortical areas. It was reported that stimulus onset invariably reduced (Fig. 1.15) response variability.

Surprisingly, this was found to be true regardless of experimental data set, cortical area, the stimuli presented, in behaving, awake or anesthetized animals.

We characterized the response variability in our simulations by 100 repeated presentation of exactly the same stimulus. Each simulation was started with different initial conditions. In the scatter plots Fig. 1.16a-d, the average spike count over the 100 trials is plotted against the variance of the spike count across those trials. Fig 1.16a shows the scatter plot for spike count average and variance measured in a 500ms time window just before stimulus onset. Most of the points lie around the x = y line implying that the spiking is roughly Poissonian and the Fano factor is approximately one. After the stimulus is turned on, the variability is reduced as is clearly seen by the fact that now most of the points lie bellow the x = y line. Instantaneous Fano factor can be measured using moving temporal kernels and is shown in Fig. 1.16e which clearly shows a decrease in Fano factor in both excitatory and inhibitory populations. The effect is more pronounced in the excitatory population.

But this is parameter dependent. Fig. 1.16b, d and f show that Fano factor depends on the amount of excess bidirectionality in the network.

Tuning of response variability

As is well known and mentioned before, cortical activity is highly variable both during spontaneous activity [START_REF] Arieli | Coherent spatiotemporal patterns of ongoing activity revealed by real-time optical imaging coupled with single-unit recording in the cat visual cortex[END_REF][START_REF] Kenet | Spontaneously emerging cortical representations of visual attributes[END_REF][START_REF] Fiser | Small modulation of ongoing cortical dynamics by sensory input during natural vision[END_REF] and in the presence of external stimulus. [START_REF] Werner | The variability of central neural activity in a sensory system, and its implications for the central reflection of sensory events[END_REF][START_REF] Tolhurst | The statistical reliability of signals in single neurons in cat and monkey visual cortex[END_REF][START_REF] Vogels | The response variability of striate cortical neurons in the behaving monkey[END_REF][START_REF] Arieli | Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses[END_REF][START_REF] Shadlen | The variable discharge of cortical neurons: implications for connectivity, computation, and information coding[END_REF]] Recording from direction tuned area-MT neurons in awake macaques while they were fixating on moving drifting gratings show that the Fano factor is also direction tuned. [START_REF] Ponce-Alvarez | Stimulus-dependent variability and noise correlations in cortical mt neurons[END_REF] It reduced at stimulus onset as before, but in addition was also selective to the direction of the moving grating. The tuning persisted even after taking into account the confounding effects of variable firing rates. [START_REF] De La Rocha | Correlation between neural spike trains increases with firing rate[END_REF] This observation lead the authors to conclude that the tuning of the Fano factor is a network effect. An older study reported similar dependence of noise correlations on stimulus features in the primary visual cortex. [START_REF] Kohn | Stimulus dependence of neuronal correlation in primary visual cortex of the macaque[END_REF] Figure 1.17: Response variability: Fano factor tuning: rate variability and noise correlations vary systematically with stimulus direction in direction selective MT neurons. [START_REF] Ponce-Alvarez | Stimulus-dependent variability and noise correlations in cortical mt neurons[END_REF] In order to access if we could account for the tuning of the Fano factor in our model, we performed numerical experiments where we repeatedly presented our network with similar orientation stimulus over several hundred trials with different initial conditions. Then we were able to estimate the tuning of Fano factor by repeating the experiment with different orientations. Remarkably, our model shows similar behaviour but changing the average interaction strengths lead to a completely opposite behaviour, where the Fano factor was the highest at the preferred orientation and lowest at the orthogonal orientation. Thus, we have shown that, in addition to OS, the HV model can account for i) broadly tuned inhibitory neurons, and ii) the stimulus onset driven drop in response variability and, iii) the tuning of response variability. The last two of which depend on the parameters of the model.

Chapter 2

Cortical model of rodent V1 with excess bidrectionality

We investigated three cases of excess bidrectionality in the HV model [START_REF] Hansel | The mechanism of orientation selectivity in primary visual cortex without a functional map[END_REF], bidirectionality within the excitatory (EE), inhibitory (II) and between the populations. A more detailed description of the results are presented in the form of a publication manuscript in the following pages.

To control the degree of bidirectionality in the connectivity we introduce a symmetry parameter p, that lies in the interval [0,1]. A post-synaptic neuron i from population A received projections and a pre-synaptic neuron j from population B were reciprocally connected with a probability,

P AB ij = p K N B + (1 -p) K 2 N 2 B (2.1)
And unidirectional connections were made with a probability,

p AB ij = (1 -p) K N B (1 - K N B ) (2.2)
Uing this rule, a value of p = 0 rules results in a purely random graph, the connectivity matrix gradually becomes more and more symmetric as p increases and when 

p = 1,

Introduction

Cortical neurons with similar functional properties have a high probability of being connected. 1-7 Experimental techniques that allow labeling and identifying different cell types has led to the discovery of patterns in cortical wiring at a scale finer than cortical columns.

For instance, discrete subsets of neurons are more strongly interconnected than dictated by similarities in their functional properties: cortical networks embed motifs formed by strongly connected groups of neurons and groups of neurons receiving common feedforward input. As a result there are significantly more reciprocal connections between excitatory neurons than expected by chance. Likewise there is also an excess of other motifs involving groups of three or more highly interconnected excitatory neurons 8-11 . As for excitatory and fast spiking inhibitory neurons, the probability that their connections are reciprocal is close to one 1 . This raises the question: what are the contributions of such fine structures to cortical dynamics and fonction ?

Previous theoretical studies investigating the dynamics of model cortical networks have assumed that the probabilities of connection are independent. In these networks, the probability of connection of a neuron A to a neuron B does not depend on the rest of the network graph, including whether there is a connection from neuron B to neuron A.

For instance, a great deal of theoretical studies assume a directed Erdös-Rényi graph as the network architecture, in which the probability of connection depends solely on the neuronal type, excitatory or inhibitory, of the pre and postsynaptic neuron. It should be noted, however, that if the probability of connections are independent, the network has no fine structure. Thus these studies cannot shed light on the dependence of cortical dynamics and function on the fine structures in the connectivity.

Here we study the effect of excess bidirectionality in a model of layer 2/3 in rodent primary visual cortex (V1). The network is highly recurrent with strong synapses 12-14 . In the absence of excess bidirectionality 15, 16 the dynamics exhibits irregular spiking closely resembling experimental observations 17-19 and the firing rates of the neurons depend on stimulus orientation. Using numerical simulations, we investigate the effects of introducing extra reciprocal connections on both the dynamics of the network and the selectivity properties of the neurons.

Results

The network consists of two populations of neurons, one excitatory (E) and the other inhibitory (I). Each neuron is described by a single compartment conductance-based model.

The connectivity of the network is random with the neurons in both populations receiving on average K excitatory and K inhibitory recurrent inputs. Excitatory and inhibitory neurons also receive feedforward inputs from, on average, K f f α (α = E, I) randomly chosen excitatory L4 neurons. The responses of L4 neurons to elongated stimuli are orientation selective (OS) with uniformly distributed preferred orientations (POs) (see Methods).

Without excess bidirectionality, the probability, P(i → j), that neuron i connects to neuron j is K/N A , where N A (A = E, I) is the number of neurons in the population to which neuron i belongs. The probability of a bidirectional connection, P(i → j ∧ j → i), satisfies:

P(i → j ∧ j → i) = P(i → j)P( j → i).
As previously shown, if the interactions are strong the network automatically finds an operating point where total excitatory and inhibitory inputs to the neurons approximately cancel, i.e balance each other. Thus, in the balanced state the net input to neurons consists of mean and fluctuations that are of the same magnitude as that of rheobase current (O(T hreshold)). The temporal pattern firing of neurons in balanced networks is dominated by the fluctuations and is thus irregular (Fig. 1a).

The preferred orientations of the Layer 4 inputs arriving at a Layer 2/3 neuron are randomly distributed. Thus the total feed-forward input consists of a large component which is untuned to stimulus orientation and a tuned component whose amplitude is comparable to the neuronal threshold. Since the network is in the balanced state, the untuned component of the feed-forward is canceled by the average recurrent input. As a result, the net input in Layer 2/3 neurons as an untuned, component, modulation with orientation and temporal fluctuations, both are comparable to the rheobase. Hence, neurons in the network exhibit orientation selectivity (Fig. 1b) and irregular firing.

To change the amount of bidirectionality we rearrange the recurrent connectivity such that the probability, network connectivity which may effect both the spatial and temporal components of input fluctuations.

P(A → B ∧ B → A), is equal to pP(B → A) without
We study the effect of increasing the amount of bidirectionality for excitatory to excitatory (EE), inhibitory to inhibitory (II) and between excitatory and inhibitory (EI) connections.

We first show that the network is still in the balanced state. Then we consider for each case the effect on the spike statistics and the tuning properties.

Excess bidirectionality leads to non negligible effective self coupling

The average number of small loops in this network remains finite in the large N A limit.

For instance, a given neuron participates in pK loops of length two. These loops will give rise to an effective self-coupling of O (Threshold). While this does not effect the population average firing rates (see Supplementary Fig. S1) it can effect the rate distribution and temporal statistics. To see how loops in the network connectivity can contribute effects of O(T hreshold), let us consider one excitatory neuron in the excitatory population. When p is not too large, loops of length two will dominate the effective self-coupling. If neuron i emits a spike at time t, this will increase the input to all the excitatory neurons it projects to by an amount J EE / √ K , which will on average elicit ξ E J EE / √ K extra spikes. Here ξ E is the average gain of the excitatory neurons. Since on average pK of these neurons project back to neuron i, the spike of neuron i at time t will result in an extra feedback input with some delay whose integral is given by pKJ Similarly, with excess bidirectionality between inhibitory neurons, the effective self coupling has an integral pKξ I J 2 II , while for excess bidirectionality between excitatory and inhibitory neurons the integral of the effective self coupling is pKξ I J EI J IE for the excitatory neurons and pKξ E J EI J IE for the inhibitory population. Here we have assumed the network to be sparse. When the network is dense i.e. when K is comparable to N E and N I , excess bidirectionality has the same effect. Analysis of the dense network, however, is more involved.

EE / √ Kξ E J EE / √ K = pKξ E J 2 EE .
Although the effective self-coupling in the input which is induced by excess bidirectionality is non negligible, it does not destroy the balanced state because it is of the same order as the other components of the net input, namely O(T hreshold). It is, however, sufficiently strong to potentially affect the spike statistics and tuning properties.

E-to-E bidirectionality has negligible effect on spike statistics

Excess E-to-E bidirectionality should lead to delayed positive self-coupling which may give rise to temporal correlations in the fluctuations. Surprisingly, we found that in our numerical simulations, introducing excess bidirectionality in E-to-E connections does not lead to any observable changes in the statistics of the fluctuations in the network. For each population, the spike time autocorrelation (AC) function was computed for the neurons and averaged.

Figure 2 a display for different values of p the averaged autocorrelation for the excitatory and inhibitory population. There is no perceptible change as p is increased. The Fano factor distributions (Fig. 2 b) of the neurons in the two populations remain unchanged and so do the distributions of the coefficients of variation, CV (Fig. 2 c) and CV 2 (Fig. 2 d).

I-to-I bidirectionality induces positive serial correlations in inter-spike intervals

As for EE excess bidirectionality, I-to-I bidirectionality gives rise to a positive effective self-coupling. This self coupling is due an effective self-disinhibition. Consider neuron (i, I).

After it has fired a spike, it hyperpolarizes its postsynaptic inhibitory neurons by a small amount, slightly decreasing their probability of spiking. Since a fraction p of those neurons project back to neuron (i, I), this decreases the amount of inhibition the latter receives, thereby increasing the probability that it will spike again.

Our numerical simulations show that this significantly affects the dynamics. The interspike intervals (ISIs) of inhibitory neurons become positively correlated and they now have a tendency to fire in bursts (Fig. 3a). This is reflected by an increase in their average CV with hardly any change in their CV 2 (Fig. 3d). Such serial correlations in the spike trains also lead to increasing trial-to-trial variability (Fig. 3b). Furthermore, the serial correlations affect the spike AC. It now decays to its asymptotic value with a time constant that increases with p (Fig. 3c and Supplementary Fig. S3). The positive correlations in the inhibitory ISIs also produce slow fluctuations in the inhibitory feedback to the excitatory neurons. This leads to positive correlations between excitatory ISIs yielding in similar but smaller changes in the dynamics of the excitatory population (Fig. 3b,c,d,e).

E-I bidirectionality introduces negative auto-correlations

There is strong experimental evidence that the probability of excess bidirectionality in the connectivity of PV + interneurons and pyramidal cells is close to one. Using similar arguments as before, it is clear that such E-I bidirectionality produces an effective negative self-coupling for neurons in both populations. This leads to negative serial correlations in the ISIs. In our numerical simulations, the population averaged AC functions now show a distinct negative undershoot before they converge to their asymptotic values (Fig. 4a). The magnitude of the undershoot increases with p while its duration is unchanged. The distribution of CV hardly changes with p indicating that on the time scale of the neuronal input integration the input statistics has a very weak dependence on p (Fig. 4c). The changes in CV 2 are also small because correlations between consecutive ISIs are weak (Fig. 4d). There are also negative correlations between more distant ISIs. Because these accumulate in the Fano factor (Eq. 16), its reduction is more significant (Fig. 4b).

Tuning properties are qualitatively preserved in the presence of bidirectional connectivity

The positive self-coupling for bidirectionality within a population α (E or I) increases the modulation with stimulus orientation of the time averaged net input into neurons. This suggests an increase in the orientation selectivity index (OSI, see Methods) of neurons in population α.

The amount of sharpening depends on the magnitude of the effective positive selfcoupling, which can be fairly large when I-to-I connections are bidirectional. In our simulations, excess reciprocity in I-to-I connections has a noticeable but nevertheless small effect on the degree of tuning of excitatory as well as inhibitory neurons. When excess I-to-I reciprocal probability is increased from 0 to 0.8, the mean OSI increases by 24% for the inhibitory neurons. In contrast, for the excitatory population it decreases by 11% (Fig. 5b).

The activity becomes more butsty with increasing p, which results in an increase in the temporal fluctuations in the input. This leads to a reduction in the neuronal gain. In the excitatory population this broadens the tuning curves. In the inhibitory neurons the situation is more subtle. The reduction in their gain is comparable to the one of the excitatory neurons but their self-coupling tends to also increase the selectivity of the time averaged input. In our simulations, the latter dominates and the tuning of the inhibitory neurons sharpens. (see Supplementary, Fig. S4)

As was the case for network dynamics, our simulations show that E-to-E bidirectionality has negligible effects on the neuronal tuning properties even when p is close to one. At bidirectional probability as high as p = 0.8, there is no noticeable change in the OSI distributions in both populations (Fig. 5a,5c).

Excess bidirectionality between excitatory and inhibitory neurons leads to negative self-coupling, suggesting a decrease in the mean OSI of both populations. Since this excess has a moderate effect on the dynamics, one would expect a moderate change in orientation selectivity. However, simulations show no noticeable change in the OSI distributions when p is increased. The reason for this is that negative serial correlations in the spike statistics reduce the fluctuations in the inputs leading to a larger gain. This increase in gain counterbalances the decrease in the modulation of the time averaged inputs due to the effective negative self-coupling.

Discussion

Previous theoretical studies of cortical networks have mostly considered connectivities described by a directed Erdös-Rényi like graph where reciprocal connections occur by chance. To our knowledge this is the first study which investigates the impact on cortical dynamics and functional properties of fine structure in the connectivity. We considered a conductance-based model of layer 2/3 of rodent V1 in which neuronal interactions are strong. We studied the effect of excess bidirectionality in this model. Excess bidirectionality results in an effective self-coupling of O (T hreshold). Thus, although the network with excess reciprocal connections operates in the balanced state similar to when reciprocity occurs by chance, the neuronal self-coupling can affect the network activity.

In our simulations, we found that excess bidirectional connections in the excitatory population have negligible effect on the dynamics and function. Extra reciprocal connections between inhibitory neurons increase the selectivity of inhibitory cells but decrease that of excitatory ones. They slow down the temporal fluctuations in the activity of the inhibitory and, to a lesser extent, the excitatory population. This results in spike autocorrelations that decay slowly. In contrast, excess bidirectionality between excitatory and inhibitory neurons gives rise to an undershoot in the spike autocorrelations but negligibly affects orientation selectivity.

In our model, excitatory interactions are weaker that in inhibitory ones. Moreover, since the firing rate of the excitatory neurons is smaller than for the inhibitory neurons, the gain of the former is smaller than that of the latter. As a result, excess bidirectionality between the excitatory neurons has a much weaker effect that between inhibitory neurons. In principle, the effect of excess reciprocity in the excitatory population can be enhanced. For example, decreasing the number of recurrent EE connections and increasing their synaptic efficacy by the same factor could make the effect of E-to-E bidirectionality stronger. Alternatively, the gain of the excitatory neurons can be enhanced by changing the parameters so that their firing rate is increased. Both scenarios are biologically plausible. Whether there is a reasonable mechanism that leads to an appreciable effect of excess bidirectionality between excitatory neurons is an open question.

The effects of symmetric connectivity on the network dynamics and emergence of multistability has been studied in diluted Spin Glass (SG) models. 20-22 Although, a direct analogy between our model and SG models is unwarranted (for instance, Dale's law is violated in the latter model), the analytical results from those models may provide insights for interpreting our results. A connectivity matrix with bidirectional probability of one is a symmetric matrix. With symmetric connectivity matrices, it has been shown that SG phase is stable in the low temperature regime. The SG phase is characterized by non-decaying temporal correlations and dependence on initial conditions. In presence of asymmetry the SG phase is stable only at zero temperature. For finite temperature, the temporal correlations decay to zero. Correlation time increases with the level of symmetry p, in this dependence is well approximated by a power law in 1p. In our model, the decorrelation time shows approximately similar power law behavior (see Supplementary Material; Fig. S2a).

In balanced networks, the inhibitory population is the main source of fluctuations. The variance of input fluctuations could be seen as a temperature-like quantity. With fast synapses the variance of the input fluctuations is large, i.e the "temperature" is high. Slow synapses have a filtering effect. Input fluctuations now decorrelate over the time scale of synaptic time constant, which has the consequence of reducing the variance. But, since the network is operating in the balanced regime, the variance remains O(T hreshold). Hence, although slower synapses play the role of lowering the "temperature", the temperature stays finite. In general, our result is consistent with the theoretical prediction that the SG phase is unstable at finite temperature and asymmetry, i.e. there is no multistability (see supplementary material). Slow synapses and excess bidrectionality in the inhibitory population leads to increase in Fano factor (Fig. S2b). As a consequence, the measurement time window now required to achieve the same error bounds in estimating firing rates with slow synapses is increased compared to that with fast synapses. On the scale of a few hundreds of seconds, this can be effectively regarded as multistability.

How could excess bidirectionality affect biological functions? Since only excitatory neurons project to other cortical areas, we only need to consider the effect of excess bidrectionality on the excitatory population. For example, let us consider the ability of an "optimal observer" to estimate the orientation of a stimulus in rodent V1. Excess I-to-I bidirectionality increases the Fano factor of both populations, which leads to a reduction in the decoding accuracy. In addition, it tends to decrease the average OSI of the excitatory neurons. For a one dimensional stimulus feature such as orientation, the Fisher information is inversely proportional to the tuning width. 23 These two factors together imply a reduction of decoding accuracy. On the other hand, bidirectionality between excitatory and inhibitory neurons decreases the Fano factor while it hardly affects the tuning properties. This suggests that EI bidirectionality increases the decoding accuracy. A quantitative answer to the question of how connection reciprocity affects coding necessitates a systematic study, which is not the focus here.

Methods

Model of rodent L2/3 with excess bidirectionality: Neurons in the L2/3 of rodents show strong orientation selectivity (OS) already at eye opening. They are arranged in a salt and pepper fashion so that each integrated inputs from neurons of all preferred orientations(PO) (i.e the rodent V1 lacks an orientation map or functional architecture). To investigate the effect of bidirectionality on the spiking irregularity and functional properties of the cortex, we used a modified version of a conductance based spiking model of rodent L2/3 developed in Hansel and Vreeswijk 2012 15 . They showed that strong OS does not require a functional architecture, provided that the cortex is operating in the balanced regime. Connection probability between neurons was fixed such that each neuron neuron recieved on average K synaptic inputs. L4 neurons were assumed to be OS and L2/3 neurons received feedforward inputs from randomly selected L4 neurons with different POs. Hence the total input that each L2/3 neurons receives has a large untuned component and a comparably weak tuned part. In the model, the recurrent dynamics of the network is such that the total inhibitory and excitatory currents cancel each other. Hence, the large untuned component is dynamically suppressed. The tuned component which is O (T hreshold) is now revealed rendering the neurons in the network selective to orientation of the external stimulus.

Single neuron dynamics: The single neuron dynamics are described by an one compartment conductance based model with sodium and potassium currents responsible for spike generation 24 . The membrane potential V A i of a neuron i in population A is described by,

C m dV A i dt = -I A L,i -I A Na,i -I A K,i -I A adapt,i + I A rec,i + I A f f ,i + I A b,i (1) 
where C m is the membrane capacitance, I L is the leak current given by g A L (V A i -V L ).The voltage dependent sodium and potassium currents are given by

I A Na,i = g A Na m 3 ∞ h(V A i -V Na ) and I A K,i = g A K n 4 (V A i -V K ).
We assume that the activation of the sodium current is instantaneous,

m ∞ = α m (V )/(α m (V ) + β m (V )).
The gating variable h and n have the following kinetics 25

dx dt = α x (V )(1 -x) -β x (V ) x (2)
The excitatory neurons have an additional adaptation current

I E adapt,i = g E adapt z(V E i -V K ). The dynamics of the gating variable z is dz dt = z ∞ (V ) -z τ adapt where z ∞ (V ) = 1 1 + exp(-0.7(V + 30)) (3) 
The external input to a neuron has three components: the recurrent synaptic input from within layer 2/3 , I A rec,i , the feedforward input from layer 4 into layer 2/3

I A f f ,i = g A f f ,i (θ ,t)(V A i -V E )
and, a background term I A b,i , which accounts for the input from other cortical regions. Given the connectivity matrix C AB i j = 0, 1, the recurrent current into neuron (i, A) due k spikes emitted by a neuron ( j, B) at times t B j,k is

I A rec,i = -∑ B g AB i (t) ρ(V A i -V B ) + (1 -ρ)(V L -V B ) (4) 
g AB i (t) = ḡAB τ syn ∑ j C AB i j ∑ k exp[-(t -t B j,k )/τ syn ] (5) 
The background input is

I A b,i = -∑ B g A b,i (t) ρ(V A i -V E ) + (1 -ρ)(V L -V E ) (6) g A b,i (t) = ḡA b K   R A b + R A b K η A b,i (t)   (7) 
where

η A b,i (t) is a zero mean Gaussian noise with temporal correlation, η A b,i (t)η A b,i (t ′ ) = exp(-|t -t ′ |)/2τ syn .
The feedforward input into neuron (i, A) for an external stimulus orientation θ of contrast C is given by

I A f f ,i (θ ,t) = -∑ B g A f f ,i (t) ρ(V A i -V E ) +(1 -ρ)(V L -V E )] where g A f f ,i (θ ,t) = ḡA f f τ syn t -∞ R A i,tot (θ ,t ′ ) + R A i,tot (θ ,t ′ )η A i (t) e -(t ′ -t)/τ syn dt ′ (8) 
with

R A i,tot (θ ,t) =c A f f K R f f 0 + R f f 1 (C) + c A f f K x A i + R f f 1 (C) x A i + ξ A z A 1,i cos 2(θ -∆ A i ) (9) 
where, ξ A depends on the tuning strength of layer 4. The random variables x A i , z A i , ∆ A i are independently drawn from, a standard normal distribution, ze -z 2 2 and, an uniform distribution on the interval [0, π] respectively. R f f 0 is baseline activity of layer 4 neurons in the absence of a stimulus and R f f

1 = R f f 1 log 10 (C + 1)
is the amplitude of th layer 4 response to stimulus. The strength of recurrent synaptic interactions were scaled as g AB = G AB √ K , and the feedforward input as

g A f f = G A f f c A f f √ K where c A f f = K A f f K .
Parameters used: The average conductances and leak currents are compatible with experimental reports. 26 We set,

g Na = 100mS/cm 2 , V Na = 55mV , g K = 40mS/cm 2 , V K = -80mV , V L = -65mV , C m = 1µF/cm 2 , g L = 0.1mS/cm 2 .
Only excitatory neurons had adaptation current with g adapt = 0.5mS/cm 2 and τ adapt = 60ms.. The synaptic time constant τ syn was set to 3ms.

G EE = 0.15, G IE = 0.45, G EI = 2.0, G II = 3 ms mS/cm 2 . ξ A = 0.8, C = 100, R f f 0 = 2Hz, R f f 1 = 20Hz. K = 500 27 , K E f f = 100, K I f f = 800.
Generating excess bidirectionality in the connectivity matrix: To generate the connectivity matrix with an excess bidirectionality of p, a neuron i from population A and neuron j from population B were connected reciprocally with a probability of

p AB i j = p K N B + (1 -p) K 2 N 2 B .
Unidirectional connections were made with a probability

p AB i j = (1 -p) K N B (1 -K N B
). This gives a connectivity matrix with each neuron receiving K inputs on average with pK number of bidirectional connections. Whereas, a random network has K 2 N bidirectional connections on average.

Orientation selectivity index (OSI):

The selectivity of a neuron that has a firing rate r(θ k ) has an OSI given by |z| ∑ k r(θ k ) where z = ∑ k r(θ k ) exp(2iθ k ) . A broadly tuned neuron has an OSI close to zero and neurons which are more selective have an OSI closer to one.

Fano factor: Given the spike count N k of a neuron in trial k, Fano factor (FF) of that neuron is defined as,

FF = (N k -N) 2 k N , N = N k k (10)
where • k is the average over all trials. We repeated the simulation with different initial conditions while keeping the input stimulus fixed. The Fano factor was then determined for all neurons by computing the mean spike count and spike count variance upon repeated stimulus presentation over hundred simulated trials.

Autocorrelation (AC): Given a spike train S(t) = ∑ k δ (t -t k ), the autocorrelation function is defined as, C(τ) = S(t)S(t + τ) t , (11) 
where • t is the average over time. We binned the spike train in ∆t = 1ms bins. Let the spike count in the n th bin be N i (n). The population averaged autocorrelation function is defined as,

AC(τ) = N i (t)N i (t + τ) t ∆t T i ( 12 
)
where τ = n∆t, t = m ∆t, T is the duration of simulation in seconds, and [•] i is the average over the population. The peak at zero was removed and the AC normalization is such that at long time lags the AC function of individual neurons converge to their respective mean activity squared. (ACr 2 ) was plotted vs time on a loglog plot and the slope of the linear region was estimated by linear regression. This slope is considered to be the decay time of AC(τ dec ). Where, r i is the mean firing rate of the i th neuron. In the figures, AC was normalized such that it converges to the mean activity.

Coefficient of variation (CV and CV 2 ): CV is the ratio of the standard deviation and mean of the spike ISIs. Given a spike train with N spikes occurring at times t i , the ISIs are given by,

∆t i = t i -t i-1 (13)
and the CV of the ISIs is defined as:

CV = (∆t i -∆t) 2 i ∆t , ∆t = ∆t i i 00 (14) 
For a renewal process, FF is given by,

FF = CV 2 (15)
and for a stationary non-renewal process,

FF = CV 2 (1 + 2 ∑ i SRC i ) (16) 
where SRC I is the Spearman rank order correlation coefficient of order i. It is computed by replacing each ISI with its rank. It is a measure of serial correlations in the spike trains.

Positive serial correlations increase FF and negative serial correlations reduce FF. If a regular spike train has a slowly modulated firing rate, the CV obtained will be high even though the spike train is regular. To overcome this problem another measure, CV 2 , is usually adopted to quantify the intrinsic variability 18 . CV 2 for the spike train is defined as:

CV 2 = 2 |∆t i+1 -∆t i | ∆t i+1 + ∆t i i ( 17 
)
where • i stands for averaging over all the N spikes.

Supplementary Material

Effects of slow synapses on stationary dynamics and transient responses in networks with excess I-to-I bidirectionality

The results in the paper are derived from simulations of networks in which all synaptic time constants are short (3ms). However, cortical networks have a significant number of slow synapses (e.g. GABA B and NMDA). How does the presence of slow synapses in addition to excess bidirectionality effect the input fluctuations? To answer this question, we performed simulations where we increase the time constants of both feedforward and recurrent synapses together. They show that the decorrelation time increases with synaptic time constant (Fig. S2). For small p, the decorrelation times scale linearly with synaptic time constants (Fig. S2a). For larger p, strong supra-linear deviations are apparent. When p approaches one, the decorrelation time increases dramatically.

Slower synaptic time constants lead to a decrease in temporal fluctuations and hence an increase in the gain of the neurons resulting in an amplification of the self-coupling. If the effective self-coupling is sufficiently positive, the network could become multistable. To check whether this is the case in our model, we performed simulations with a large number of randomly chosen initial conditions. We observed that after a transient, the network always converged to a state in which the firing rates of the individual neurons are the same. Thus, the network dynamics is not multistable. To investigate the dependence of this convergence on the synaptic time constant, we computed spike counts of individual neurons in time windows of different length. We then calculated the Spearman coefficient, ρ, of the spike count for pairs of different initial conditions as a function of the window size, T . As is the case for the decorrelation time, for p not close go 1, the time it takes for the network to reach the steady state scales increases linearly with the synaptic time constant, τ syn ., When p approaches one, this time increases supralinearly with τ syn and becomes extremely large (Fig. S2c). 

Effective multistability?

The storage of memories as one of the primary functions of the cortex is a long-held conviction [START_REF] Goldman-Rakic | Circuitry of primate prefrontal cortex and regulation of behavior by representational memory[END_REF][START_REF] Fuster | Memory in the cerebral cortex: An empirical approach to neural networks in the human and nonhuman primate[END_REF] and major efforts have been dedicated towards unraveling the mechanisms by which this function is realized. It is a commonly held view that the memories are stored in the patterns of synaptic connectivity [START_REF] Hebb | The organization of behavior[END_REF][START_REF] Hopfield | Neural networks and physical systems with emergent collective computational abilities[END_REF] with neurons forming cell assemblies with strong connections between themselves. Provided that these memories are stable, the retrieval of a memory is then only a matter of activating a few neurons in the relevant cell assembly. Due to the existence of strong synapses between neurons belonging to a cell assembly, the activated neurons now lead to the activation of the whole cell assembly, thus 'retrieving' the stored memory pattern. In formal models, a natural candidate to achieve such an auto associative memory in neural networks is construct to the network such that the stable solutions or 'attractors' are the desired memory patterns. [START_REF] Amari | Dynamics of pattern formation in lateral-inhibition type neural fields[END_REF][START_REF] Amit | Modeling brain function: The world of attractor neural networks[END_REF][START_REF] Hopfield | Neural networks and physical systems with emergent collective computational abilities[END_REF] The effect of asymmetry on the dynamics and emergence of multistability has been analytically studied in in diluted Spin Glass(SG) models [START_REF] Megard | Spin glass theory and beyond[END_REF], Crisanti andSompolinsky [1987, 1988a]. Although, a direct analogy between balanced networks and SG models is unwarranted (for instance, Dales law is violated), the analytical results from the SG models provide useful insights for interpreting our results. A connectivity matrix with bidirectional probability of one is a symmetric matrix. In SG models with symmetric connectivity matrix, it has been shown that SG phase is stable in the low temperature regime. At finite temperature, SG phase is destabilized in the presence of asymmetry(p = 1). SG phase is characterized by non-decaying temporal correlations and dependence on initial conditions. As the level of symmetry is increased, one can expect glassy behaviour to appear. Consequently, close to the transition to the SG phase, there is a slowing down of the fluctuations.

(Fig. 2.2) Typically, the time scale of these fluctuations is well approximated by a power law. The decorrelations times estimated from the simulations also show similar power law behaviour. Remarkably, the exponents seem to depend on the model.

Conclusions

We have shown that reciprocal connections within a population lead to slowing down of fluctuations in the input to the neurons and consequently an increase in correlation length of both excitatory and inhibitory through effective self coupling. Although, strong reciprocity between inhibitory cells are more efficacious in slowing down the fluctuations than those between excitatory cells. Increasing the proportion of reciprocal connection increases the response variability upon repeated stimulation. Quasimultistability is observed in networks with longer synaptic integration time constants and stronger reciprocal connections within a population.

On the other hand, excess bidirectional connections between populations speeds up the fluctuations in the input and reduces the trial-to-trial variability. This in turn is leads to a more efficient feature encoding. Experiments have found that pyramidal neurons and PV + interneurons are reciprocally connected with a probability very close to one. Our results suggest that such high levels of excess bidirectional connections play the role of reducing the signal-to-noise ratio and improve feature encoding in a cortical network that has to accomplish this task with Poisson spike trains.

Chapter 3

Functionally specific connections

Critical Period

Starting from behavioral observations [START_REF] Andersen | Trajectories of brain development: point of vulnerability or window of opportunity?[END_REF][START_REF] Knudsen | Sensitive periods in the development of the brain and behavior[END_REF][START_REF] Quartz | The neural basis of cognitive development: A constructivist manifesto[END_REF][START_REF] Clark | First language acquisition[END_REF], over the past century, biologists have uncovered time windows during the developmental stages of the nervous system which are often referred to as the critical periods. [START_REF] Goodman | Developmental mechanisms that generate precise patterns of neuronal connectivity[END_REF][START_REF] Buonomano | Cortical plasticity: from synapses to maps[END_REF][START_REF] Mahendra | Developmental neurobiology[END_REF] Changes that occur during the critical periods are almost permanent or at least long lasting. These periods provide 'windows of opportunities' when the neuronal responses and connectivity are sculpted by the stimulus arriving from the external world together with other internal processes.

Thus the postnatal nervous system is prepared and calibrated throughout these often short epochs to respond to natural sensory inputs.

Critical periods have been shown to exist and are well documented for sensory systems. For example, the responses of neurons in the primary visual cortex are dependent on which eye the stimuli is presented. It was first discovered by Hubel and Wiesel in their experiments conducted on cats and then later in monkeys. [START_REF] Hubel | The period of susceptibility to the physiological effects of unilateral eye closure in kittens[END_REF][START_REF] Blakemore | Development of the brain depends on the visual environment[END_REF][START_REF] Vay | The development of ocular dominance columns in normal and visually deprived monkeys[END_REF][START_REF] Katz | Synaptic activity and the construction of cortical circuits[END_REF] It is also present in mice and other members of the rodent family. [START_REF] Gordon | Experience-dependent plasticity of binocular responses in the primary visual cortex of the mouse[END_REF] They called this property of the visual cortex -ocular dominance.

It was discovered that monocular deprivation of visual stimulus during the first few postnatal months of young kittens leads to drastic changes in the responses of the neurons in V1. Strikingly, it was found that there is an irreversible and permanent loss of cortical response to visual stimuli through the deprived eye. And there is a dramatic increase in the number of neurons that respond to the eye that was open during the first few months after birth.

The mechanisms that regulate critical periods are not completely understood. In cats and primates norepinephrine [START_REF] Kasamatsu | Depletion of brain catecholamines: failure of ocular dominance shift after monocular occlusion in kittens[END_REF], NMDA mediated long-term potentiation (LTP) or depression (LTD) [START_REF] Kirkwood | Co-regulation of long-term potentiation and experience-dependent synaptic plasticity in visual cortex by age and experience[END_REF] and levels of neurotrophin have been found to be closely related to the duration of the critical periods. [START_REF] Bear | Modulation of visual cortical plasticity by acetylcholine and noradrenaline[END_REF][START_REF] Carmignoto | Effects of nerve growth factor on neuronal plasticity of the kitten visual cortex[END_REF][START_REF] Allendoerfer | Regulation of neurotrophin receptors during the maturation of the mammalian visual system[END_REF][START_REF] Cabelli | Blockade of endogenous ligands of trkb inhibits formation of ocular dominance columns[END_REF] Although the visual cortex of mice is small and less developed than cat and monkeys, the neurons in the mouse V1 exhibit strong OS and qualitatively similar ocular dominance as the latter two. In addition, mice is an obvious choice for genetic manipulations. In order to determine whether LTP/LTD are necessary and/or sufficient for critical period plasticity, knockout mice lacking LTP/LTD were tested for ocular dominance. Surprising, it was found that ocular dominance persists even in the absence of LTP/LTD like plasticity. [START_REF] Hensch | Critical period regulation[END_REF] The levels of inhibition and the inhibitory connectivity has been found to play a key role in the plasticity during critical periods. [START_REF] Huang | Bdnf regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex[END_REF][START_REF] Hensch | Local gaba circuit control of experience-dependent plasticity in developing visual cortex[END_REF] There is little doubt that the maturation of the circuits involving the inhibitory population is essential to trigger the onset of the critical period. The global GABA levels and the GABA released at the synaptic processes after stimulation are significantly lower in juvenile than in adult mice. Factors that result in the termination of the critical period still remain unknown. Pharmacologically reducing the levels of inhibition in adults promotes LTP. [START_REF] Kirkwood | Hebbian synapses in visual cortex[END_REF] But, loss of LTP/LTD does not necessarily lead to loss of cortical plasticity during critical period. The ongoing debate on the mechanisms regulating critical period is summarized in [START_REF] Katz | What's critical for the critical period in visual cortex?[END_REF] and references therein.

In the second part of the thesis I studied effects of functionally specific connections that have shown to be present soon after the critical period. It involved an analytical study of a model of layer 2/3 rodent V1 with binary neurons under the assumption that neurons in layer 4 are orientation selective. Following the conductance based HV model, here we demonstrated analytically that layer 2/3 neurons in our model develop orientation selectivity even though the network is random. The details of which can be found in the publication manuscript attached at the end of this chapter. Subsequently, I addressed the following questions -What is the mechanism by which the selectivity of pyramidal neurons increase during the critical period? How can this increase be achieved by modifying only a few synapses? Can the same mechanism also explain the broadening of inhibitory tuning during the critical period? Firstly, in order to answer these questions, I analytically studied the consequences of introducing a small number of functionally specific connections in a network of binary neurons on a ring (see Appendix. A.2). Later through numerical simulations of finite sized networks, I compared it to the theory in the thermodynamic limit. Subsequently, I introduced PO specific connections in a conductance based model of rodent V1. Our preliminary simulations show that the theory for the binary network qualitatively holds for biologically realistic networks. In the next section I will summarize the relevant experimental observations followed by the theory in the ring model and finally present the results from the simulations. ing the critical period, the tuning of the inhibitory neurons broadens and that of the excitatory population increases. [START_REF] Kuhlman | Fast-spiking interneurons have an initial orientation bias that is lost with vision[END_REF] The mean orientation selectivity index (OSI) of the PV + neurons dramatically decreases (∼ 72% reduction in the OSI). On the other hand, the excitatory tuning responses sharpen. In contrast, PV + interneurons in mice that were dark reared from P9 on-wards up until and during the critical period showed no significant change in their mean OSI. But the orientation selectivity of the excitatory population increases in dark reared mice.

These observations led the authors to conclude that visual stimulation is necessary for the broadening of the PV + tuning responses.

Both the evoked and spontaneous firing rates of the PV + interneurons increase by about 50% -75% while the firing rates of the excitatory population remain almost at the same level throughout the critical period. Orientation selectivity (OS) is an exhaustively studied property of the visual cortex. Here we analytically study the emergence of OS in a strongly connected random network of binary neurons. The mechanism we propose for the generation of OS emphasizes the role of strong recurrent connections in cortical dynamics. We then extend this model to include a small number of specific connections which depend on the preferred orientation such that the ratio of specific to non-specific connections approaches zero in the limit of infinite network size. Depending on the amount of specific connections, we show that strong OS can emerge through a spontaneous symmetric breaking. Using simulations, we show that several experimental observations can be explained. Previously, using numerical simulations of a conductance based network, it was demonstrated that random networks operating in the balanced regime can inherit OS from a feedforward network [2]. Here we present the theory underlying the previous work in a network of binary neurons in the balanced state. Subsequently, we will study the effects of introducing a small number of functionally specific connections. Experimental results indicate significant changes occurring in the selectivity of rodent V1 neurons during the critical period(P23 -30) [3][4][5][6][7][8]. After maturation, cortical synaptic weights exhibit long-tailed distributions with only a small number of strong synapses. In section III, we will study the effects of introducing a very small number of functionally specific connections in a ring model operating in the balanced regime. Under certain conditions as shall be described, this leads to spontaneous symmetry breaking.

Finally, in section IV, we will present the results of finite N simulations and compare it to the theory.

II. BINARY MODEL

We model a network of neurons that are selective for a 1-dimensional stimulus feature θ. To avoid the difficulty of having to deal with what happens at the boundary we assume that θ is a periodic variable with period π. The network consists of N E excitatory and N I inhibitory neurons organized on a π periodic ring. We denote neuron i of population a (with a = E, I and i = 1, 2, . . . , N a ) as neuron (i, a). The position on the ring of neuron (i, a) is

φ a i = πi/N a .
The neurons are modeled as sequentially updated binary units. The state, σ a i , of neuron (i, a) is updated, on average, once per time constant τ a . It is set to zero if, at the time of the update, its input, u a i , is below the threshold, T a , and set to one otherwise. The input, u a i , has three components: the feedforward input, u a0 i , from excitatory units in the input layer, the recurrent excitatory input, u aE i , and the recurrent inhibitory feedback, u aI i . The recurrent excitation and inhibition are given by They receive random projections from the feedforward layer and the probability of recurrent connections within this layer is random and fall off with distance between pre and post-synaptic neurons. In Section. III this will be modified to include a small number of PO specific connections where J ab / √ K, with J aE > 0 and J aI < 0, is the contribution of an active presynaptic cell to the recurrent input. The connection matrix C ab ij is randomly chosen:

u ab i (t) = J ab √ K N b j=1 C ab ij σ b j (t) (b = E, I), (1) 
C ab ij = 1 with probability P ab ij = K N b [1+2p ab cos 2(φ a i -φ b j )
] and C ab ij = 0 otherwise. Thus, on average a neuron receives recurrent input from K excitatory and K inhibitory units. The modulation, p ab , 0 ≤ p ab ≤ 1/2, determines how much the connection probability from population b to population a depends on the distance between neurons on the ring. Note that, for convenience in the analysis we have assumed that the distance dependence of the connection probability is given by 1 + 2p cos 2(∆φ). However, other unimodal probability profiles that are symmetric and have their peak at ∆φ = 0 show qualitatively similar behavior.

The neurons in the network receive feedforward input, u a0 i , from excitatory neurons in the input layer. We assume that there is a pool of N 0 of such excitatory neurons whose average activity, m 0 i , is given by

m 0 i = m 0 [1 + µ cos 2(θ -φ 0 i )] ≡ m 0 (θ -φ 0 i ). ( 2 
)
Here θ is the feature value of the stimulus and φ 0 i = πi/N 0 is the preferred feature value of neuron (i, 0). The average activity, m 0 , is an increasing function of the stimulus intensity and µ determines how much the response of the input cells is modulated with the stimulus feature.

We consider two models for the pool of input units. In the first the activity, σ 0 u is a continuous variable that does not change over time, σ a i (t) = m a i . In the second model the input units are binary variables that are sequentially updated, with each cell updated on average once per time constant τ 0 , at the up[date σ 0 i is set to 1 with probability m 0 i and set to zero otherwise. The feedforward input, u a0 i , is given by

u a0 i (t) = J a0 c √ K N0 j=1 C a0 ij σ 0 j (t), (3) 
where the feedforward connection matrix is a random matrix with C a0 ij = 1, with probability P a0 ij and 0 otherwise. On average, neurons receive input from K 0 = cK input neurons and the connection probability, P a0 ij varies with the difference in position between the pre-and post synaptic cell as a periodic Gaussian with period π and variance σ a0 and P a0 ij = Z a0 G(φ a iφ 0 j , σ a0 ), where

G(θ, σ) ≡ 1 √ 2πσ ∞ k=-∞ exp - (θ + kπ) 2 2σ 2 . ( 4 
)
with the prefactor Z a0 is such that, N0 j=1 P a0 ij = K 0 . The width σ a0 determines the spread of preferred feature values of the input neuron that project to a particular cell.

Since, 0 ≤ P a0 ij ≤ 1, σ a0 is bounded by a minimal value σ a,min . However, we will consider the network in the sparse limit where K/N 0 → 0 (see below). In this limit σ a,min → 0. Thus we have two extreme cases: The case where σ a0 → ∞, in which neuron (i, a) receives input from, on average, K 0 excitatory input cells whose orientations are chosen randomly, and the case where σ a0 = 0, in which neuron (i, a) receives feedforward input from, on average, K 0 cells, all of which have preferred feature value φ a i . In the latter case the total feedforward input into neuron (i, a) is as strongly modulated with the feature value as the output of cells in the input layer and for neighboring cells in the network the preferred feature of the total feedforward input is similar. In the first case, σ a0 → ∞, the modulation of the total feedforward input will be of order 1/ √ K 0 smaller relative to the mean as is the case for the response of the cells in the input layer.

Furthermore the preferred feature of the total feedforward input into neighboring cells is totally uncorrelated.

Thus here the probability of recurrent connections between cells in the network is not correlated with the preferred feature of the feedforward input. The network has no functional feature map.

We study this model in the limit where the connectivity is sparse and K is large: We first take the limit N a → ∞ for a = 0, E, I and then the limit K → ∞.

The analysis is similar to that of van Vreeswijk and Sompolinsky [9], to which we refer for further details.

A. Coarse grained analysis

Because the strength of the synapses scales as 1/ √ K, temporal fluctuations in the input do not vanish in the large K limit. Furthermore, because of the randomness of the connectivity and feedforward input, the time-average input for neurons of the same population is not the same, even for neurons which are very close.

To analyze the network response we calculate the statistics of the different variables for neurons (i, A) with φ a i between φ and φ + δφ for a sufficiently small δφ. Since we consider the network in the limit N a → ∞, we can make δφ arbitrarily small. Averages over this subpopulation of variables X a i are denoted by X a i φ,δφ . Because of the rotational and mirror symmetry of the system we have that, for a stimulus with orientation θ, u A is symmetric. In fact for all variables X of interest the average will satisfy X A i φ,δφ = f A (θφ) for some symmetric function f A . For example, when the network has reached its equilibrium, we have that

this average satisfies u A i (t) φ,δφ = u A (θ -φ, t), where (a) 
σ a i (t) φ,δφ = m a i φ,δφ = m a (θ -φ).
Here m a i is the time averaged value of σ a i . Because of this rotational symmetry, it is sufficient to calculate the average quantities only for φ = 0 at different values θ of the stimulus. For notational convenience we will denote • 0,δφ by • δφ .

In the steady state, when the activities are constant, we can write the input into neuron (i, a), for a stimulus with orientation θ + φ a i as

u a i (t) = u a (θ) + ∆u a i (θ) + δu a i (t), (5) 
where u a is the population averaged input and the quenched disorder in u a i , ∆u a i , is the difference between the averaged input into the neuron and the population average, ∆u a i ≡ u a iu a t , where • • • t denotes the average over time. Finally, δu a i (t) represents the temporal fluctuation in the input.

Because ∆u a

i and δu a i (t) are composed of many small contributions, they have Gaussian statistics. Thus we alternatively can write

u a i (t) = u a (θ) + γ a (θ)x a i (θ) + α a (θ) -γ a (θ)y a i (t), (6) 
where γ a and α aγ a are the variance of the quenched disorder and the temporal fluctuations respectively, and

x a i and y a i are Gaussian random variables with mean 0 and variance [x a i ] 2 δφ = [y a i (t)] 2 δφ = 1 and y a i (t)y a i (t ′ ) δφ = δ tt ′ . In the steady state, the average activity of neuron (i, a), m a i = σ a i t , is equal to the probability that the fluctuations bring the input above threshold,

m a i = Dy Θ u a + √ γ a x a i + √ α a -γ a y -T a , ( 7 
)
where Θ is the Heaviside function, Θ(x) = 1 for x > 0 and Θ(x) = 0 for x < 0and Dy is the Gaussian measure, Dy = exp(-y 2 /2)dy/ √ 2π. This can be written as

m a i = H T a -u a - √ γ a x a i √ α a -γ a . (8) 
Here H denotes the cumulative Gaussian distribution,

H(x) = 1 √ 2π ∞
x dy e -y 2 /2 . Because we know the distribution of x a i , Eqn. (A9) determines, for a stimulus with given intensity, m 0 , and feature value, θ, the distribution of the activities for neurons (i, a) with φ < φ a i < φ + δφ, if we know u a , α a and γ a .

However, we also need to take into account that the random variable x a i changes when the stimulus parameters are changed. For example, if θ is changed to θ ′ , x a i changes to x ′a i and one would expect x ′a i to be close to x a i if θθ ′ is small. Thus the input statistics of population a is fully known if we have a description of u a and α a for any m 0 and θ and if we know the correlation in the quenched disorder for any pair of stimuli, (m 0 , θ) and (m ′ 0 , θ ′ ). Below we will sketch the analysis to derive these parameters.

A convenient feature of the binary neuron model is that the average activity, m a ≡ m a i δφ , given by

m a (θ) = DxH T a -u a (θ) -γ a (θ)x α a (θ) -γ a (θ) = H T a -u a (θ) α a (θ) , (9) 
is independent of γ a . Thus if we can express u a and α a in the mean activities, m b , this together with Eqn. (A10) determines these quantities.

B. Population averaged inputs

The term u a (θ) in Eqn. (A6) is the average of the input u a i , for neurons in population a with 0 < φ a i < δφ, when the stimulus feature value is θ. It satisfies u a (θ) = a=0,E,I u ab (θ). The feedforward input, u a0 is given by 10)

u a0 (θ) = u a0 i δφ = J a0 c √ K N0 j=1 C a0 ij δφ m 0 (θ -φ 0 j ) = √ KJ a0 π 0 dφ ′ G(φ ′ , σ a0 )m 0 (θ -φ ′ ). (
Using 2π 0 dφ ′ G(φ ′ , σ) exp(niφ ′ ) = exp(-n 2 σ 2 /
2) this can be written as

u a0 (θ) = √ KJ a0 m 0 [1 + µζ a cos θ], (11) 
where ζ a ≡ e -σ 2 a0 /2 .

Similarly the feedback input u ab , with b = E, I, satisfies

u ab (θ) = u ab i δφ = J ab √ K N b j=1 C ab ij δφ m b (θ -φ b j ) = √ KJ ab m (0) b + p ab m (1) b cos θ . ( 12 
)
Here m

(k) a is the kth Fourier moment of m a , m a (θ) = ∞ k=0 m (k)
a cos kθ.

C. Equal Time Fluctuations of the Inputs

Because the random connection matrices and feedforward inputs are independent, the fluctuations in the different components of the input are independent so that we can write for α a , α b (θ) = b=0,E,I α ab (θ), where α ab (θ) = [u ab i (t)u ab (θ)] 2 δφ . For the variance of the feedback, α ab , with b = E, I, we have (see [9])

α ab (θ) = J 2 ab K j C ab ij δφ m b (θ -φ B j ) = J 2 ab [m (0) b + p AB m (1) b cos θ]. (13) 
The equal time variance of the feedforward input depends on the model of the of the external input. If the input is from unit with continuous output, σ 0 i = m 0 i , α a0 is given by

α a0 (θ) = J 2 a0 c 2 K j C a0 ij δφ m 2 0 (θ -φ 0 i ) = [J a0 m 0 ] 2 c 1 + 2µζ a cos θ + + µ 2 2 (1 + ζ 4 a cos 2θ) . (14) 
Alternatively when the input neurons are modeled as binary units which are randomly updated and set to 1 with a probability m 0 i and to 0 otherwise, α a0 is given by

α a0 (θ) = J 2 a0 c 2 K j C a0 ij δφ m 0 (θ -φ 0 i ) = J 2 a0 m 0 c 1 + µζ a cos θ . (15) 

D. The Balanced Solution

In the steady state the averaged activities m a are given by Eqn. (A10), where by combining Eqns. (A11) and

(A12), we can write u a as u a (θ) = u

(0) a + u (1) 
a cos 2θ, while with Eqns. (A14) and ( 15) we can write α a as

α a (θ) = α (0) a + α (1) a cos θ + α (2)
a cos 2θ. The equal time fluctuations α a are of order 1, while u a is of order √ K, unless the leading terms in u (0) a and u

(1) a cancel. In the large K limit this means that, when this cancellation does not take place, m a goes to either m a = 0 or m a = 1, depending on the sign of u a . Therefore the only way in which the system can have low, but non-zero, activities is if in the leading order of both u (0) a and u

(1) a , the recurrent inhibitory input cancels the total feedforward and recurrent excitatory input.

Imposing this requirement for both populations leads to the balanced solution where, up to a correction term of order 1/ √ K, m a satisfies m (0)

a = A (0)
a m 0 , and m

(1)

a = A (1)
a m 0 , where

A (1) E = J EI J I0 -J II J E0 J EE J II -J EI J IE , A (1) 
I = J IE J E0 -J EE J I0 J EE J II -J EI J IE , A (1) 
E = µ p EI ζ I J EI J I0 -p II ζ E J II J E0 p EE p II J EE J II -p EI p IE J EI J IE , A (1) 
I = µ p IE ζ E J IE J E0 -p EE ζ I J EE J I0 p EE p II J EE J II -p EI p IE J EI J IE . (16) 
Since m a (θ) need to be positive, The connection strengths J ab need to be chosen such that A (0) a is positive and the tuning of the feedback connections, p ab , need to be chosen such that |A

(1)

a | < A (0) 
a /µζ a . If we further impose that |J EE J II | < |J EI J IE | it can be shown that the network will always evolve to the balanced state, provided that the average update time of the inhibitory cells, τ I , is sufficiently small compared to τ E , the update time of the excitatory population [1].

The balance equations determines α a in the large K limit (Eqn. (A14)). But u a now depends on the 1/ √ K corrections of the activity and remains to be determined.

The average, u

a , and modulation, u

a , are determined by

m (0) a = 1 π π 0 dθ H T A -u (0) a -u (1) 
a cos θ α a (θ) [START_REF] William | The highly irregular firing of cortical cells is inconsistent with temporal integration of random epsps[END_REF] and

m (1) a = 2 π π 0 dθ H T A -u (0) a -u (1) 
a cos θ α a (θ) cos θ. [START_REF] Gary R Holt | Comparison of discharge variability in vitro and in vivo in cat visual cortex neurons[END_REF] E. Statistics of the Quenched Disorder:

The activity m a i (θ) satisfies

m a i (θ) = H T A -u a (θ) -γ a (θ)x a i (θ) α a (θ) -γ a (θ) . ( 19 
)
Since x a i (θ) is drawn from a Gaussian with mean 0 and variance 1, this completely determines the distribution of activities, Pr[m a i (θ)], if γ a is known. However, to calculate the joint distribution, Pr[m a i (θ 1 ), m a i (θ 2 ), . . . , m A i (θ n )] of the activities of a neuron, for stimulus feature values θ 1 , θ 2 , . . . , θ n , we need to know the joint statistics of disorder variables,

x a i (θ 1 ), x a i (θ 2 ), . . . , x a i (θ n ).
Luckily these are Gaussian random variables, so that their joint statistics are fully determined by the cross-correlations, (x a i (θ k )x a i (θ l ) δφ . We will now determine these correlations.

It is convenient to write the correlations between x a i at angle θ + ∆ and x a i at angle θ -∆ as

x a i (θ + ∆)x a i (θ - ∆) δφ = βa(θ,∆) √ γa(θ+∆)γa(θ-∆) . Since [x a i (θ)] 2 δφ = 1, we have that β a (θ, 0) = γ a (θ).
We introduce a new order parameter, q a defined by q a (θ, ∆) ≡ m a i (θ + ∆)m a i (θ -∆) δφ . This is the joint probability of a neuron being in the active state both for a stimulus at θ +∆ and at θ -∆. It can be calculated using Eqn. (A17), by averaging over the correlated Gaussian variables x a i (θ + ∆) and x a i (θ -∆). After some algebra one obtains

q a (θ, ∆) = Dx H T a -u + a - √ β a x α + a -β a × × H T a -u - a - √ β a x α - a -β a , (20) 
where we used the abbreviations, u ± a = u a (θ ± ∆), α ± a = α a (θ ± ∆) and β a = β a (θ, ∆).

Following the same logic as for the fluctuations α a , we can write for the correlations β a , β a (θ, ∆) = b=0,E,I β ab (θ, ∆), where

β ab (θ, ∆) = u ab i (t)u ab i (t ′ ) δφ - u ab i (t) δφ u ab i (t ′
) δφ is the contribution to the input correlation due to input from population b.

The contribution to this correlation from the external input is given by

β a0 (θ, ∆) = J 2 a0 m 2 0 c 2 K j C a0 ij δφ × × m 0 (θ + ∆ -φ 0 j )m 0 (θ -∆ -φ 0 j ) = J 2 a0 m 2 0 c 1 + 2µζ a cos θ cos ∆ + + µ 2 2 (cos 4∆ + ζ 4 A cos 2θ) . (21) 
The input correlations due to the two feedback components, β ab , with b = E, I, depend on q a and are given by (see [9])

β ab (θ, ∆) = J 2 ab K j C a0 ij δφ q b (θ -φ b j , ∆) = J 2 ab [q (0) b (∆) + p ab q (1) b (∆) cos θ], (22) 
where q

(k) b

is the kth Fourier component in the variable

θ of q b , q b (θ, ∆) = k q (k)
b (∆) cos kθ. This expresses β a (θ, ∆) in q (0) a (∆) and q

(1) a (∆). Self-consistent solutions for these are obtained by imposing q (0) a (∆) = 1 π π 0 dφ q a (θ, ∆) and q

(1) a (∆) = 1 π π 0 dφ q a (θ, ∆) cos θ where q a (θ, ∆) is given by Eqn. (A18).

Extending these results to the case where the feedforward activity, m 0 , is also changed is straightforward:

The population averaged input u a and input variance α a are now functions of m 0 and θ, and are calculated as before. For the correlations we have to consider 2 stimuli specified by variables (m + 0 ,θ + ∆) and (m - 0 ,θ -∆) respectively. The correlations in the total input are denoted by β a (m + 0 , m - 0 , θ, ∆), while for the correlations in the activity we write q a (m + 0 , m - 0 , θ, ∆). The correlation β a can be written as

β a (m + 0 , m - 0 , θ, ∆) = 2 k=0 β (k) a (m + 0 , m - 0 , ∆) cos kθ with β (0) a (m + 0 , m - 0 , ∆) = J 2 a0 c m + 0 m - 0 1 + µ 2 2 cos 4∆ + + b=E,I J 2 ab q (0) b (m + 0 , m - 0 , ∆) β (1) a (m + 0 , m - 0 , ∆) = 2J 2 a0 c m + 0 m - 0 µζ A cos ∆ + + b=E,I p ab J 2 ab q (0) b (m + 0 , m - 0 , ∆) β (0) a (m + 0 , m - 0 , ∆) = J 2 a0 2c m + 0 m - 0 µ 2 ζ 2 A , (23) 
where q

(k) a (m + 0 , m - 0 , ∆) is the kth Fourier moment in θ of q a (m + 0 , m - 0 , θ, ∆). q a is still given by Eqn. (A18), except that now u ± a = u a (m ± 0 , θ ± ∆), α ± a = α a (m ± 0 , θ ± ∆) and β a = β a (m + 0 , m - 0 , θ, ∆). A self-consistency requirement equivalent to that given above for m ± 0 = m 0 determines β a .

F. Symmetries of the Solution

The connection probabilities are even functions of the difference in positions, φ a iφ a j and the external input is symmetric in θφ a i . This implies that

β a (m 0 , m ′ 0 , θ, ∆) = β a (m 0 , m ′ 0 , -θ, -∆). As shown above, β a (m 0 , m ′ 0 , θ, ∆) = β a (m 0 , m ′ 0 , -θ, ∆)
. Together these two symmetries also imply that β a (m 0 , m ′ 0 , θ, ∆) = β a (m 0 , m ′ 0 , θ, -∆). Furthermore, under the transformation (θ, ∆) → (θ + π, ∆π) the two input orientations, θ 1 = θ + ∆ and θ 2 = θ -∆, transform to

θ 1 → θ 1 and θ 2 → θ 2 + π = θ 2 .
Thus we also have that

β a (m 0 , m ′ 0 , θ, ∆) = β a (m 0 , m ′ 0 , θ + π, ∆ -π).
Finally, if we make the change, (m 0 , θ) → (m ′ 0 , θ ′ ) and (m ′ 0 , θ ′ ) → (m 0 , θ), the correlations are not changed either. Thus β a (m 0 , m ′ 0 , θ, ∆) = β a (m ′ 0 , m 0 , θ, -∆).

Taking these symmetries into account we

can write β a (m 0 , m ′ 0 , θ, ∆) = β (0) a (m 0 , m ′ 0 , ∆) + β (1) a (m 0 , m ′ 0 , ∆) cos θ as β a (m 0 , m ′ 0 , θ, ∆) = ∞ n=0 β (0,2n) a (m 0 , m ′ 0 ) cos 4n∆ + + ∞ n=0 β (1,2n+1) a (m 0 , m ′ 0 ) cos θ cos(2n + 1)∆ + + β (2,0) a (m 0 , m ′ 0 ) cos 2θ, (24) 
where β respectively. Note that due to the symmetry we also have that

β (n,m) (m 0 , m ′ 0 ) = β (n,m) (m ′ 0 , m 0 ).

G. The solution in the cases without map

So far we have considered the solution in the general case. What does this imply for the network without a map (ζ A = 0) and the case with a map?

When there is no map, m

A = 0 and therefore, from Eqn. (A14) and either Eqn. (A13) or Eqn. ( 15 A18) and (A20) we see that the fact that u A and α A do not depend on θ implies that q (1)

A (∆) = β (1)
A (∆) = 0. Therefore, q A and β A do not depend on θ, but only on ∆.

Notice furthermore that the factors p ab , which determine how strongly the probability of the feedback connections is modulated with distance, only enters into the expressions for the modulation with θ of u A , m A , q A and β A .

Since these are all 0 when ζ A = 0, in a network without functional map the solution is independent of p ab .

When there is a map, none of these simplifications apply. It is however worth noting that in this case, since m (0)

A and m (1)

A both grow proportionally with m 0 , their ratio is independent of m 0 . This means that the Circular Variance (CircVar, see Appendix) of the population averaged response, which satisfies CircVar = 1-m

(1)

A /m (0)
a , is independent of contrast.

III. ADDING SPECIFIC CONNECTIONS

In the previous sections, we have shown how OS can emerge in a strongly connected recurrent random network receiving random projections from a layer of tuned neurons. We will now study the effects of introducing a small number i.e. O( √ K) of PO specific recurrent E-to-E connections. This is motivated by two key experimental observations. Firstly, after the critical period, the OSI of excitatory neurons increase approximately two-fold.

Secondly, the distribution of synaptic weights is approximately log-normal, consisting of a few strong synapses connecting neurons with higher correlated firing and a large number of weak synapses. We will analytically show that introducing a small number of PO specific connections is sufficient to explain the increase in the OSI. Since the network is operating in the balance regime, a O( √ K)

modification of the connectivity results in a O( 1) change input to the neurons.

Let us consider a two population recurrent network of binary neurons where a neuron i in population A has PO φ i A . The recurrent network receives external input from FF population which is assumed to consist of neurons with symmetric tuning curves given by,

m i 0 (θ) = m (0) 0 + ∞ n=1 m (n) 0 cos 2n(θ -θ i 0 ), which pro- duces an effective FF input, u i A (θ) = J A0 [ √ Km (0) 0 + ∞ n=1 m (n) 0 z i n cos 2n(θ -φ i A (n))].
Making a further assumption that the higher moments are negligible (i.e m (1) 0 >> m (n) , ∀n > 1), the effective FF input can be written as

u i A (θ) = J A0 [ √ Km (0) 0 + m (1) 0 z i cos 2(θ -φ i A )]. Where, z i ∼ ze -z 2
2 and φ i A ∼ U(0, π). To describe the wiring rule for a network with O( √ K)

specific connections, we introduce the parameter κ which controls the proportion of PO specific connections. Then we derive the input statistics as a function of this parameter. Our goal here is to understand the effect of κ on the population averaged activities and subsequently the OSI distribution.

A. Network Architecture

Starting with a random network Ĉ, we will introduce a small number of PO specific connections E-to-E connections. The resulting network C has O( √ K) PO specific E-to-E connections out of K. For large K, the ratio of specific to non-specific connections approaches zero as

1 √ K .
The network Ĉ has probability of connections given by,

P ( Ĉij EE = 1) = K -2κ √ K N E ( 25 
)
P ( Ĉij EI = 1) = K N I (26) P ( Ĉij IA = 1) = K N A ; A ∈ E, I (27) 
We assume that the weights J ij AB are drawn from some arbitrary distribution P J with finite variance. The n th moment is defined as

J n AB = J ij AB n PJ
. We shall require only the first two moments, the mean and variance of the distribution denoted by J AB and J 2 AB respectively. Introducing a small number( i.e O √ K ) of specific connections of strength in the recurrent E-to-E connections such that, the probability of connection in the new matrix C is, 28)

P (C ij EE = 1| Ĉij EE = 0) = 2κ √ K N E -K -2κ √ K × 1 + cos 2(φ i E -φ j E ) (
P (C ij EE = 1| Ĉij EE = 1) =1 (29) ⇒ P (C ij EE = 1) = P (C ij EE =1| Ĉij EE = 0)P ( Ĉij EE = 0) +P (C ij EE =1| Ĉij EE = 1)P ( Ĉij EE = 1) = K N E [1+ 2κ √ K cos 2(φ i E -φ j E ) (30)
Since the connection probability must be in the interval [0, 1], the parameter κ should satisfies the condition

0 ≤ κ ≤ √ K 2 .
Thus, constructing a matrix with this rule results in an Erdős-Rénji network with an average in degree of K. Furthermore, the E-to-E connections have on average κ √ K PO specific connections out of the K inbound connections.

B. Time averaged input statistics

The time averaged input u i A (θ) to neuron (i, A) at stimulus angle θ is given by,

u i E (θ) =u (0) E + β E -β (1) E0 x i + β (1) E0 z i cos 2(θ -φ i E ) +κJ EE m (1) E cos 2(θ -φ i E ) (31) =u E (θ, x i , φ i E , κ) + β (1) E0 z i cos 2(θ -φ i E ) ( 32 
)
u i I (θ) =u (0) I + β I -β (1) 
I0 x i + β (1)
I0 z i cos 2(θ -φ i I )(33) FIG. 3. Dependence of m (1) 
E on κ and m

(1)

0 . When m (1) 0 = 0, m (1) E
is non-zero only for κ > κc. κc is given by Eq.59. Whereas, when m

(1) 0 is finite, there is a bump for all κ. Parameters, m

(0) 0 = 0.08, JEE = 1, JEI = -1.5, JIE = 1, JII = -1, JE0 = 2, JI0 = 1. =u I (θ, x i , φ i I ) + β (1)
I0 z i cos 2(θ -φ i I ) (34)
Where, x i ∼ N (0, 1). As in the random network before, the input consists of un-tuned and tuned components. With specific connections, now there is an additional tuned component of amplitude κJ EE m

E . Here, m

E is the first Fourier moment of the mean activity in θ. Given the time averaged input, after averaging over z, the activity of a neuron at angle theta can be written as,

m i A (θ) = m A (x i , θ) = ∞ 0 dz ze -z 2 2 H -u i A (θ) √ αA (35) =H -u A √ αA + β (1) A0 αA + β (1) A0 cos 2 2(θ -φ i A ) ×exp -2 (u A ) 2 4α A + β (1) A cos 2 (θ -φ i A ) cos 2(θ -φ i A ) ×   1 -H   -u A β (1) A cos 2(θ -φ i A ) 2α 2 A + β (1) A0 αA cos 2 2(θ -φ i A )     (36) αA =α A -β A (∆ = 0) (37) α A = B∈{0,E,I} J 2 AB m (0) B (38) β A (∆) =β A0 (∆) + B∈{E,I} (J AB ) 2 q (0) B (∆) (39) β A0 (∆) =β (0) A0 + β (1) A0 =J 2 A0 (m (0) 0 ) 2 + 1 2 (m (1) 0 ) 2 cos(4∆) (40) q A (θ, ∆) = ∞ -∞ Dx m A (x, θ + ∆)m A (x, θ -∆) (41) m A (x, θ
) is given by Eq. 36. The second term in the Eq. 36 is zero when m

(1) 0 = 0, since β

(1)

A = 1 2 (J A0 m (1) 
A ) 2 . Therefore, m i A (θ) becomes independent of θ, i.e. the local coarse grained activity is homogeneous for all θ. In section III D, we will consider the case when m

(1) 0 = 0 and show that for sufficiently large value of κ, the network settles into a bump state. In this state, the network activity is no longer homogeneous, but is peaked at some phase. The phase of the peak depends on the initial conditions.

C. Average population activities

The population averaged inputs u A (θ) = u i A (θ) i is given by,

u E (θ) =u (0) E + 1 √ 2 J E0 m (1) 0 cos 2θ +κJ EE m (1) 
E cos 2θ ( 42)

=u (0) E + u (1) 
E cos 2θ (43)

u I (θ) =u (0) I + 1 √ 2 J I0 m (1) 0 cos 2θ (44) =u (0) E + u (1) 
I cos 2θ (45) (46)
The mean activity of the system is completely described by the following equations for the first two moments of the mean activities. All the higher moments of the mean activities are zero.

m (0) A = π 0 dθ π H -u (0) A -u (1) A cos 2θ √ α A (47) m (1) A =2 π 0 dθ π H -u (0) A -u (1) 
A cos 2θ √ α A cos 2θ (48) When m

(1) 0 = 0, m (1) 
A = 0 are solutions of this system. But as κ is increased, m

(1) E = 0 solution loses its stabilty and new stable symmetric solutions appear. In the next section, we will consider the case when m 

u E (θ) =u (0) E + κJ EE m (1) E cos 2θ (49) u I (θ) =u (0) I (50) u (0) A = √ K B∈{0,E,I} J AB m (0) B -T A (51)
Variance of the input,

α A = B∈{0,E,I} J 2 AB m (0) B (52)
Evolution of mean rates is given by,

τ A d dt m A (θ, t) = -m A (θ, t) + H -u A (θ, t) √ α A (53)
At the fixed point the mean activities are completely described by,

m (0) E = 1 π π 0 dθ H -u E (θ) √ α A (54) m (1) E = 2 π π 0 dθ H -u E (θ) √ α A cos(2θ) (55) m (0) I =H -u (0) I √ α I (56) m (1) 
I =0 ( 57)

m (0)
E and m 

E and u

(1) E can be determined by simultaneously solving Eq. 54 and 55.

Behavior of m

E and m

E as κ is varied

In the limit K → ∞, m (0) 
E will remain unchanged as κ is varied, which is consistent with the solution m 

E F (κ) + m (1) E 3 G(κ) + O m (1) E 5 = 0 (58) If, ∃κ c : F (κ c ) = 0, then ∀κ > κ c , m (1) 
E = 0 solutions are stable if sign(G(κ c )) = -1 . The expression for κ c is obtained in terms of model parameters and is given by,

κ c = -α ⋆(0) E JEE H ′ (h ⋆ ) ; h ⋆ = -u ⋆(0) E α ⋆(0) E (59)
For κ > κ c , the moments of the input components u 

Stability of the bump solution

When K → ∞, the bump solution is always stable for any balanced network parameters. This can be demonstrated as follows,

G(κ c ) =- κ 3 c J 3 EE α ( E 0) 3 2 1 8 H ′′′ (A 0 ) - 1 4 (H ′′ (A 0 )) 2 H ′ (A 0 ) (60) =- e -A 2 0 2 √ 2π κ 3 c J 3 EE (α E ) 3 2 1 + A 2 0 (61) ⇒sign(G(κ c )) = -1, ∀J EE , A 0 , α E (62)
where,

A 0 = H -1 (m (0) E )) 4. When m (1) 0 = 0
In this case, even when κ = 0, there is a bump and there is no abrupt transition from a homogeneous to a bump solution Fig 3 . Eqs.47 and 48 describe the dynamics of the population averaged activities.

E. OSI distribution

OSI (= 1 -CircVar) is commonly used to quantify the degree of response selectivity of neurons to external stimuli. The OSI for the i th neuron given its tuning curve m i A (θ) is defined as:

OSI i = |z (1) i | z (0) i , |z| = (Re(z)) 2 + (Im(z)) 2 (63)
where,

z (n) i = 1 π π 0 dθ m i A (θ) exp(2 n j θ)) ; j = √ -1 (64)
Having determined all the order parameters, we can now study the effect of κ on the degree of OS of the population. We generate tuning as described in Appendix A curves and subsequently the OSI distribution. As would be expected, in figure 4, we see that the population averaged OSI increases drastically after the transition to the bump state.

IV. SIMULATIONS

In this section, we present the results of numerical simulations of finite networks of binary neurons with specific connectivity as described in section III A. We have used sequential dynamics with random update. At each time step we randomly pick a neuron σ i A and update its state to either 0 or 1 with probability P σ 1

A (t, θ) = 1 | u i A (t, θ) = Θ(u i A -T A ). Where total input to the neuron σ i A at time t is u i A (t, θ) = B∈{0,E,I} JAB √ K j C ij AB σ j B (t, θ).
And T A is the threshold of the population A. For simplicity, we set all the weights for connected neurons to be equal to JAB √ K . J AB is chosen such that it satisfies the balance conditions.

The theory in the limit of infinite network size predicts a bump solution for some κ > κ c . Finite size networks exhibit qualitatively similar behaviour (Figure 5). When m (1) 0 = 0, for some κ > κ c , the system settles to a bump state i.e m As κ is increased, the population averaged OSI also increases for both the populations (Figure 7). The increase in the OSI of the inhibitory population is a finite size effect, in the thermodynamic limit the OSI of the inhibitory population will remain constant as κ is varied. Experimental data reports that after maturation the average OSI of excitatory population increases two-fold and that of inhibitory population decreases by approximately the same factor. Experiments also report that the firing rate of inhibitory neurons after maturation increases by a factor of 2.5 ± 0.5. One of the ways this can be achieved in the model is by reducing the average synaptic weights J EI and J II by a factor of roughly 2.5, thus increasing the firing rate by approximately the same amount. This increase in the firing rates will result in larger variance in the net input to the inhibitory population and hence broaden the tuning curves of the inhibitory neurons effectively reducing the mean OSI of the inhibitory population. We model a network of layer 2/3 neurons in the primary visual cortex with salt-and-pepper organization, that receives input from excitatory cells in layer 4.

We consider a binary network which can be studied fully analytically, enabling us to understand the mechanism of orientation selectivity in the limit where the connectivity is sparse and the average number of inputs, K, goes to infinity. In this model we compare the mechanism for orientation selectivity in the case where connectivity is solely dependent on distance, with the one where the connectivity also depends on the difference in preferred orientation of the neurons. The results presented here in the binary network without functional map also hold for more realistic conductance-based models. We refer to our previous study [2] for further details. Conductance based model has the advantage that the relation between the firing and voltage statistics can be investigated here, an issue that cannot be addressed in the binary network.

The network consists of N E excitatory and N I inhibitory neurons organized on a ring with period π. We denote neuron i of population A (with A = E, I and i = 1, 2, . . . , N A ) as neuron (i, A). The position on the ring of neuron (i, A) is φ A i = πi/N A .

The model

In the binary network the neurons are modeled as binary units. They are updated sequentially. The state, σ A i , of neuron (i, A) is updated, on average, once per time constant τ A . It is set to zero if, at the time of the update, its input, u A i , is below the threshold, T A , and set to one otherwise.

Architecture: The input, u A i , has three components: the feedforward input, u A0 i , the recurrent excitatory input, u AE i , and the recurrent inhibitory feedback, u AI i . The recurrent excitation and inhibition are given by

u AB i (t) = J AB √ K NB j=1 C AB ij σ B j (t) (B = E, I), (A1) 
where J AB / √ K, with J AE > 0 and J AI < 0, is the contribution of an active presynaptic cell to the recurrent input. The connection matrix C AB ij is randomly chosen:

C AB ij = 1 with probability K NB [1 + 2p cos 2(φ A i -φ B j )] and C AB ij = 0 otherwise. The modulation, p, 0 ≤ p ≤ 1/2,
determines how much the connection probability depends on the distance between neurons on the ring. With this connection matrix a neuron receives, on average, input from K excitatory and K inhibitory neurons.

The component, u A0

i , represents the input from layer 4 neurons. We assume that the neuron receives cK feedforward inputs, which have a strength J A0 /c √ K. We consider two cases: a cortex with a functional orientation map and a cortex without such a map.

When there is a functional orientation map, the inputs from layer 4 are ordered. Cells receive inputs from layer 4 neurons that tend to respond maximally at roughly the same stimulus orientation. This results in a total feedforward input that has an orientation tuning comparable to that of individual layer 4 neurons. Furthermore, neighboring layer 2/3 cells receive input from layer 4 neurons with similar preferred orientations (POs). We model the resulting feedforward input as

u A0 i = √ KJ A0 m 0 1 + µ cos 2(θ -φ A i ) , ( A2 
)
where θ is the stimulus orientation and m 0 is the average activity of the projecting layer 4 neurons, which increases with the contrast. The variable µ, 0 < µ < 1, determines how strongly the feedforward input is tuned with orientation. Note that the external input is maximal for θ = φ A i and minimal for θ = φ A i + π/2.

In the case without a functional orientation map, layer 2/3 neurons receive inputs from layer 4 neurons with POs that are randomly distributed. As a result, the total feedforward input is almost untuned, even if the response of layer 4 neurons is strongly tuned. In fact the tuning of the input is reduced by a factor 1/ √ cK compared to tuning of the projecting neurons. In this scenario the orientation for which the feedforward input is maximal is uncorrelated with the neuron's position. We model this by assuming that the external input into the neurons satisfies

u A0 i = √ KJ A0 m 0 1 + ξ A √ K (v A i cos 2θ + w A i sin 2θ) , (A3) 
Here v A i and w A i are random variables, independently drawn from a Gaussian distribution with mean 0 and variance 1. The average strength of the residual tuning in the external input is parametrized by ξ A , which depends on the sharpness of the tuning of the layer 4 neurons.

It is worth noting that the feedforward input can alternatively be written as

u A0 i = J A0 m 0 √ K + ξ A z A i cos 2(θ -∆ A i ) (A4)
where z A i is a positive random variable drawn from the distribution p(z) = ze -z 2 /2 and ∆ A i is an angle randomly chosen between 0 and π.

Analysis

The analysis of the networks with and without orientation maps are very similar. To avoid repeating almost the same arguments twice, it is convenient to analyze a network in which the feedforward input is given by

u A0 i = √ KJ A0 m 0 1 + µ cos 2(θ -φ 0 iA ) (A5) + ξ A √ K z A i cos 2(θ -∆ A i )
Results for the network with orientation map are obtained by setting ξ A = 0, while we obtain the results for the network without a map by taking µ = 0.

The analysis is similar to that of van Vreeswijk and Sompolinsky [9], to which we refer for further details.

Coarse grained analysis: Because the strength of the synapses scales as 1/ √ K, temporal fluctuations in the input do not vanish in the large K limit. Furthermore, because of the randomness of the connectivity and feedforward input, the time-average input for neurons of the same population is not the same, even for neurons which are very close.

To analyze the network response we calculate the statistics of the different variables for neurons (i, A) with φ A i between φ and φ+δφ for a sufficiently small δφ. Averages over this subpopulation of variables X A i are denoted by X A i φ,δφ . For example u A i φ,δφ is the average input of neurons (i, A) with φ < φ A i < φ + δφ. Because of the rotational and mirror symmetry of the system we have that, for a stimulus with orientation θ, this average satisfies u A i (t) φ,δφ = u A (θφ, t), where u A is symmetric. In fact for all variables X of interest the average will satisfy X A i φ,δφ = f A (θφ) for some symmetric function f A . Thus it is sufficient to calculate the averages only for φ = 0 at different stimulus angles θ. For notational convenience we will denote • 0,δφ by • δφ .

In the steady state, when the activities are constant, we can write the input into neuron (i, A), for a stimulus with orientation θ + φ A i as

u A i (t) = u A (θ) + ∆u A i (θ) + δu A i (t), ( A6 
)
where u A is the population averaged input and the quenched disorder in u A i , ∆u A i , is the difference between the averaged input into the neuron and the population average, ∆u A i ≡ u A iu A t , where • • • t denotes the average over time (the difference between the time averaged value of X and its population average is called the quenched disorder in X). Finally, δu A i (t) represents the temporal fluctuation in the input.

Because ∆u A

i and δu A i (t) are composed of many small contributions, they have Gaussian statistics. Thus we alternatively can write

u A i (t) = u A (θ) + γ A (θ)x A i (θ) + α A (θ) -γ A (θ)y A i (t), (A7) 
where γ A and α Aγ A are the variance of the quenched disorder and the temporal fluctuations respectively, and x A i and y A i are Gaussian random variables with mean 0 and variance

[x A i ] 2 δφ = [y A i (t)] 2 δφ = 1 and y a i (t)y a i (t ′ ) δφ = δ tt ′ .
In the steady state, the activity of neuron (i, A), m A i = σ A i t , is equal to the probability that the fluctuations bring the input above threshold,

m A i = dy √ 2π e -y 2 /2 Θ u A + √ γ A x A i + √ α A -γ A y -T A , (A8) 
where Θ is the Heaviside function, Θ(x) = 1 for x > 0 and Θ(x) = 0 for x < 0. This can be written as

m A i = H T A -u A - √ γ A x A i √ α A -γ A . ( A9 
)
Here H denotes the cumulative Gaussian distribution,

H(x) = 1 √ 2π ∞
x dy e -y 2 /2 . Because we know the distribution of x A i , Eqn. (A9) determines, for a stimulus with given contrast and orientation, the distribution of the activities for neurons (i, A) with φ < φ A i < φ + δφ, if we know u A , α A and γ A . However, we also need to take into account that the random variable x A i changes when the stimulus parameters are changed. For example, if θ is changed to θ ′ , x A i changes to x ′A i and x ′A i should be close to x A i if θθ ′ is small. Thus the input statistics of population A is fully known if we have a description of u A and α A for any m 0 and θ and if we know the correlation in the quenched disorder for any pair of stimuli, (m 0 , θ) and (m ′ 0 , θ ′ ). Below we will sketch the analysis to derive these parameters.

A convenient feature of the binary neuron model is that the average activity, m A ≡ m A i δφ , given by

m A (θ) = dx √ 2π e -x 2 /2 H T A -u A (θ) -γ A (θ)x α A (θ) -γ A (θ) =H T A -u A (θ) α A (θ) , (A10) 
is independent of γ A . Thus if we can express u A and α A in the mean activities, m B , this together with Eqn. (A10) determines these quantities.

Population averaged inputs: The term u A (θ) in Eqn. (A6) is the average of the input u A i , for neurons in population A with 0 < φ A i < δφ, when the stimulus orientation is θ. It is given by u

A (θ) = B=0,E,I u AB (θ) where u A0 (θ) = u A0 i δφ = √ KJ A0 m 0 [1 + µ cos 2θ], (A11) while for A = E, I u AB (θ) = u AB i δφ = J AB √ K NB j=1 C AB ij δφ m B (θ -φ B j ) = √ KJ AB m (0) B + p m (1) 
B cos 2θ . (A12)
Here m

(k) A is the kth Fourier moment of m A , m A (θ) = ∞ k=0 m (k) A cos 2kθ.
Equal time Fluctuations of the Inputs: Because the random connection matrices and feedforward inputs are independent, the fluctuations in the different components of the input are independent so that we

can write for α A , α A (θ) = B=0,E,I α AB (θ), where α AB (θ) = [u AB i (t) -u AB (θ)] 2 δφ . For the feedforward input we have α A0 (θ) = [J A0 ξ A m 0 ] 2 [z A i cos 2(θ-∆ A i )] 2 = [J A0 ξ A m 0 ] 2 . (A13)
Here we have used that z A i and ∆

A i are independent, [z A i ] 2 = 2 and cos 2 2(θ -∆ A i ) = 1/2.
For the variance of the feedback, α AB , with B = E, I, we have (see [9])

α AB (θ) = J 2 AB K j j C AB ij δφ m B (θ -φ B j ) = J 2 AB [m (0) 
B + p m 

u A (θ) = u (0) A + u (1) 
A cos 2θ, while with Eqns. ( A13) and (A14) we can write

α A as α A (θ) = α (0) A +α (1)
A cos 2θ. The equal time fluctuations α A are of order 1, while u A is of order √ K, unless the leading terms in u

A and u

A cancel. In the large K limit this means that, when this cancellation does not take place, m A goes to either m A = 0 or m A = 1, depending on the sign of u A . Therefore the only way in which the system can have low, but non-zero, activities is if in the leading order of both u (0)

A and u

A , the recurrent inhibitory input cancels the total excitatory input.

Imposing this requirement for both populations leads to the balanced solution where, up to a correction term of order 1/ √ K, m A satisfies m (0)

A = A A m 0 ,

and m

(1)

A = µ p A A m 0 , where A E = JI0JEI -JE0JII JEE JII -JEI JIE and A I = JE0JIE -JI0JEE JEE JII -JEI JIE .
This determines α A in the large K limit (Eqn. (A14)).

But u A now depends on the 1/ √ K corrections of the activity and remains to be determined. The average, u

A , and modulation, u

A , are determined by

m (0) A = 1 π π 0 dθ H T A -u (0) A -u (1) 
A cos 2θ α A (θ) (A15) and m

(1)

A = 2 π π 0 dθ H T A -u (0) A -u (1) 
A cos 2θ α A (θ) cos 2θ.

(A16)

Statistics of the quenched disorder: The activity

m A i (θ) satisfies m A i (θ) = H T A -u A (θ) -γ A (θ)x A i (θ) α A (θ) -γ A (θ)
. (A17) Since x A i (θ) is drawn from a Gaussian with mean 0 and variance 1, this completely determines the distribution of activitie, Pr[m A i (θ)], if γ A is known. However, to calculate the joint distribution,

Pr[m A i (θ 1 ), m A i (θ 2 ), . . . , m A i (θ n )]
of the activities of a neuron, for stimulus angles θ 1 , θ 2 , . . . , θ n , we need to know the joint statistics of disorder variables,

x A i (θ 1 ), x A i (θ 2 ), . . . , x A i (θ n ).
Luckily these are Gaussian random variables, so that their joint statistics are fully determined by the cross-correlations, (x A i (θ k )x A i (θ l ) . We will now determine these correlations.

It is convenient to write the correlations between x A i at angle θ + ∆ and x A i at angle θ -∆ as

x A i (θ + ∆)x A i (θ - ∆) = βA(θ,∆) √ γA(θ+∆)γA(θ-∆) . Since [x A i (θ)] 2 = 1, we have that β A (θ, 0) = γ A (θ).
We introduce a new variable, q A defined by q A (θ, ∆) ≡

m A i (θ + ∆)m A i (θ -∆) δφ
. This is the joint probability of a neuron being in the active state both for a stimulus at θ + ∆ and at θ -∆. It can be calculated using Eqn. (A17), by averaging over the correlated Gaussian variables x A i (θ + ∆) and x A i (θ -∆). After some algebra one obtains

q A (θ, ∆) = Dx H   T A -u + A - √ β A x α + A -β A   ×H   T A -u - A - √ β A x α - A -β A   (A18)
where we used the abbreviations,

u ± A = u A (θ ± ∆), α ± A = α A (θ ± ∆) and β A = β A (θ, ∆).
Following the same logic as for the fluctuations α A , we can write for the correlations β A ,

β A (θ, ∆) = B=0,E,I β AB (θ, ∆)
, where β AB (θ, ∆) = fact that u A and α A do not depend on θ implies that q (1)

A (∆) = β (1) 
A (∆) = 0. Therefore, q A and β A do not depend on θ, but only on ∆. Notice furthermore that the factor p, which determines how strongly the probability of connections is modulated with distance, only enters into the expressions for u

(1) A , m (1) 
A , q

A and β

A . Since these are all 0 when µ = 0, in a network a without functional map the solution is independent of p.

When there is a map, none of these simplifications apply. It is however worth noting that in this case, since m (0)

A and m

(1)

A both grow proportionally with m 0 , their ratio in independent of m 0 . This means that the Circular Variance (CircVar, see below) of the population averaged response satisfies CircVar = 1µ/p,and is independent of contrast.

Generating tuning curves

Setting

γ A (θ)x A i (θ) to ∆u A i , we can write Eqn. (A17) as

m A i (m 0 , θ) = H T A -u A (m 0 , θ) -∆u A i (m 0 , θ) α A (m 0 , θ) -β A (m 0 , m 0 , θ, 0) , (A22) 
for a feedforward input with mean activity m 0 and stimulus angle θ. We have explained how to calculate u A , α A and β A and that ∆u A i (m 0 , θ) is a Gaussian random field with mean 0 and correlations ∆u

A i (m 0 , θ + ∆)∆u A i (m ′ 0 , θ -∆) = β A (m 0 , m ′ 0 , θ, ∆).
Thus the statistics of the input, and hence of the activity, is fully specified.

Unfortunately, due to the non-linear relation between input and activity, Eqn. (A22), it is not straightforward to translate this knowledge into meaningful statements about the properties of the activity of single cells in population A, such as the distribution of circular variances of the tuning curves at a given contrast, or how the tuning curves are modified as the contrast is changed.

We use the following approach: we generate the activity of sample neurons at different m 0 and θ that are consistent with the calculated statistics, and use averaging over these samples to determine the desired properties. The method to generate these sample outputs is as follows.

Since ∆u A i is π-periodic in θ, it can be written as

∆u A i (m 0 , θ) = ∞ n=0 V (n) (m 0 ) cos 2nθ +W (n) (m 0 ) sin 2nθ (A23)
where V (n) and W (n) are Gaussian random variables with a mean of 0, whose correlations should be cho-

sen such that ∆u A i (m 0 , θ + ∆)∆u A i (m ′ 0 , θ -∆) = β A (m 0 , m ′ 0 , θ, ∆
). After some straightforward, but tedious algebra one finds that the correlations have to satisfy

V (n) (m 0 )W (m) (m ′ 0 ) = 0 and V (n) (m 0 )V (m) (m ′ 0 ) = W (n) (m 0 )W (m) (m ′ 0 ) = 1 2 (1 + δ n,m )β (|n-m|,n+m) A (m 0 , m ′ 0 ).
Here δ n,m is the Kronecker delta, δ n,m = 1 for n = m and δ n,m = 0 for n = m.

In principle one would need infinitely many random variables V (n) and W (n) , but in practice one can get a very good approximation by using a rather small number,

since [V (n) (m 0 )] 2 = [W (n) (m 0 )] 2 = β (0,2n) A (m 0 , m 0 ),
which rapidly decreases as n is increased. Thus the amplitude of the higher frequency components in the quenched disorder is increasingly small. As a result, setting terms with n larger than some cut off n 0 has no noticeable effect on the output statistics. For the parameters we use in this paper we can take n 0 as low as n 0 = 5.

To generate tuning curves for a neuron of population A, for k 0 contrasts, corresponding to input ac-

tivities m 0 = m 0k , for k = 1, 2, . . . , k 0 we deter- mine u (n) A (m 0k ) and α (n)
A (m 0k ) for each k and n = 0, 1 and calculate β (0,2n) A (m 0k , m 0l ) and β

(1,2n+1) A (m 0k , m 0l ) B∈{E,I} J AB × π 0 dθ ′ π 1 + 2κ AB √ K cos(2θ ′ ) ×m B (θ -θ ′ ) cos(2nθ) (B3) Using m B (θ) = ∞ n=0 m (n) B cos 2nθ , κ EE = κ and, κ IE = κ EI = κ II = 0, we get u (0) A = √ K J A0 m (0) 0 + B J AB m (0) B (B4) u (1) 
E = 1 √ 2 J E0 m (1) 
0 cos 2θ + κJ EE m (1) 
E cos 2θ (B5) u

I = 1 √ 2 J E0 m (1) 
0 cos 2θ (B6)

Variance of the input

The population averaged variance of the total input is given by,

α A := lim K→∞ lim N →∞ (u i A (θ, t)) 2 t δφ -(u i A (θ, t)) t 2 δφ (B7) =J 2 A0 m (0) 0 + B∈{E,I} J 2 AB × π 0 dθ ′ π 1 + 2κ AB √ K cos(2θ ′ ) m B (θ -θ ′ ) (B8) =J 2 A0 m (0) 0 + B∈{E,I} J 2 AB m (0) B (B9) 3. Quenched disorder
The population averaged variance of the time averaged inputs is given by,

β A (θ,∆) := lim K→∞ lim N0→∞ u i A (φ + ∆, t) -u i A (φ + ∆, t) δφ t u i A (φ -∆, t) -u i A (φ -∆, t) δφ t δφ (B10) =J 2 A0 (m (0) 0 ) 2 + 1 2 (m (1) 0 ) 2 cos(4∆) + B∈{E,I} J 2 AB × π 0 dθ ′ π 1 + 2κ AB √ K cos(2θ ′ ) q B (θ, ∆) (B11) =J 2 A0 (m (0) 0 ) 2 + 1 2 (m (1) 0 ) 2 cos(4∆) + B∈{E,I} (J AB ) 2 q (0) B (∆) (B12) =β A0 (∆) + B∈{E,I} (J AB ) 2 q (0) B (∆) (B13) 
.

Computing κ critical

In the large K limit, m

E will remain unchanged as κ is varied.

H(z) := 1 2 erf c z √ 2 (B14) Expanding H(•) for small m (1) 
E in Eq. 55, m

E = 2 π π 0 dθ cos(2θ) H 1 -u (0) E √ α E -C 0 m (1) 
E cos(2θ) + C 1 m (1) 
E cos(2θ) 2 -C 2 m (1) 
E cos(2θ)

3 + O (m (1) 
E ) 4 (B15) C 0 =H ′ 1 -u (0) E √ α E κJ EE √ α E = - exp -1 2 1-u (0) E √ αE 2 √ 2π κJ EE √ α E (B16) C 1 =H ′′ 1 -u (0) E √ α E κJ EE √ α E 2 = 1 2 1 -u (0) E √ α E exp -1 2 1-u (0) E √ αE 2 √ 2π κJ EE √ α E 2 (B17) C 2 =H ′′′ 1 -u (0) E √ α E κJ EE √ α E 3 = - 1 6 exp -1 2 1-u (0) E √ αE 2 √ 2π   1 - 1 -u (0) E √ α E 2   κJ EE √ α E 3 (B18) Integrating Eq.[B15], m (1) 
E =- κJ EE √ α E m (1) 
E H ′ 1 -u (0) E √ α E +O (m (1) 
E ) 3 (B19) m (1) E 1 + κJ EE √ α E H ′ 1 -u (0) E √ α E = 0 (B20) κ c = - √ α E J EE H ′ 1-u (0) E √ αE (B21)
5. Stability of the bump solution

1 √ α E 1 -u (0) E -κJ EE m (1) 
E cos 2θ =A 0 + m (1) E (A 1 - κJ EE √ α E cos 2θ) + m (1) E 2 A 2 + m (1) E 3 A 3 + O (m (1) 
E ) 4 (B22) m (0) E = H(A 0 ) + m (1) 
E H ′ (A 0 )A 1 + m (1) E 2 A 2 H ′ (A 0 ) + H ′′ (A 0 ) A 2 1 6 + 1 4 κJ EE √ α E 2 79 + m (1) E 3 [A 3 H ′ (A 0 ) + A 2 A 1 H ′′ (A 0 ) + H ′′′ (A 0 ) A 3 1 6 + A 1 4 κJ EE √ α E 3 + O (m (1) 
E ) 4 (B23) m (1) E = -m (1) 
E H ′ (A 0 ) κJ EE √ α E -m (1) E 2 A 1 κJ EE √ α E H ′′ (A 0 ) -m (1) E 3 A 2 κJ EE √ α E H ′′ (A 0 ) + H ′′′ (A 0 ) A 2 1 2 + 1 8 κJ EE √ α E 3 κJ EE √ α E 3 + O m (1) E 4 (B24) When K → ∞, balance requires that m (0) 
E and m (0) I must remain fixed even when m

E = 0. This is true only when all the coefficients of m

(1) E in Eq. B22 are zero, therefore,

A 0 =H -1 m (0) E (B25) A 1 =0 (B26) A 2 = -1 4 κJ EE √ α E 2 H ′′ (A 0 ) H ′ (A 0 ) (B27) A 3 =0 (B28)
Eq. B24 reduces to, m

E =-m (1) 
E H ′ (A 0 ) κJ EE √ α E (B29) + m (1) E 3 -A 2 κJ EE √ α E H ′ (A 0 ) - κJ EE √ α E 3 H ′′′ (A 0 ) 8 (B30) = m (1) E F (κ, m (1) 
E )+ m (1) E 3 G(κ, m (0) E ) (B31) G(κ c ) = - κ 3 c J 3 EE α ( E 0) 3 2 1 8 H ′′′ (A 0 ) - 1 4 (H ′′ (A 0 )) 2 H ′ (A 0 ) (B32) =- e -A 2 0 2 √ 2π κ 3 c J 3 EE α ( E 0) 3 2 1 + A 2 0 (B33) ⇒sign(G(κ c )) = -1 (B34) 6. Simulations (0) 
The critical value κ c when K is finite is given by,

κ c = -α E H ′ (H -1 (m (0) E )) J EE + J 2 EE 2 √ αE K (B35)
The numeric curve is obtained by solving the following equations simultaneously, without taking the limit K → ∞ m (0)

E (κ) = 1 π π 0 dθ H   1 - √ K B J AB m (0) B -(2 -1 2 J E0 m (1) 0 + κJ EE m (1) 
E (κ)) cos(2θ) B J 2 EB m (0) B + κ √ K J 2 EE m (1) 
E (κ) cos 2θ   (B36) m (1) 
E (κ) = 2 π π 0 dθ cos 2θH   1 - √ K B J AB m (0) B -(2 -1 2 J E0 m (1) 0 + κJ EE m (1) 
E (κ)) cos(2θ) B J 2 EB m (0) B + κ √ K J 2 EE m (1) 
E (κ) cos 2θ   (B37) m (0) I = 1 π π 0 dθ H   1 - √ K B J AB m (0) B -2 -1 2 J I0 m (1) 0 cos 2θ B J 2 IB m (0) B   (B38) m (1) 
I = 2 π π 0 dθ cos 2θH   1 - √ K B J AB m (0) B -2 -1 2 J I0 m (1) 0 cos 2θ B J 2 IB m (0) B   (B39) (B40)
. The dynamics of the bump phase with constant feed forward input. Different traces are simulations with different initial conditions. Although the symmetry that is broken is continuous, the final phases of simulations with proximal initial conditions converge to discrete number of phases.

Additional Results

Bump phase dynamics

We have shown previously that when the recurrent specificity p is above the critical value p c the network settles into a state where the homogeneous solution becomes unstable and a bump of activity appears. Since we have shown that this is a stable solution, we expect the position of the bump phase (or the peak of the bump) to be stable and fixed. In our simulation, is the final location of the peak of the bump fixed? To understand the behaviour of the bump phase I simulated the same network with several different initial conditions. Surprisingly, even though the symmetry that is broken is continuous, the number of final positions of the bump phase are finite.

(Fig. 3.3) This is due to the finite size of the network.

There is no bistability with finite K

Motor tasks and cognitive functions usually require the ability to maintain information for short durations. This requirement is thought to be fulfilled by the cortical networks in the preforntal cortex (PFC) involved in working memory. [START_REF] Bauer | Delayed-matching and delayed-response deficit from cooling dorsolateral prefrontal cortex in monkeys[END_REF][START_REF] Fuster | Neuron activity related to short-term memory[END_REF][START_REF] Funahashi | Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex[END_REF] Working memory is the ability to retain information pertinent to an immanent task, a scratch pad like utility for storing and operating on task relevant variables. [START_REF] Baddeley | Working memory[END_REF] Persistent activity in the PFC is thought to be the signature of working memory. [START_REF] Goldman-Rakic | Cellular basis of working memory[END_REF][START_REF] Fuster | Memory in the cerebral cortex: An empirical approach to neural networks in the human and nonhuman primate[END_REF] Various mechanisms have been proposed to account for persistent activity in the PFC, starting from models based on single neuron properties to models based on network mechanisms. [START_REF] Durstewitz | Neurocomputational models of working memory[END_REF][START_REF] Mongillo | Synaptic theory of working memory[END_REF][START_REF] Barak | Working models of working memory[END_REF] Can persistent activity be achieved in a network operating in the balanced regime? In the standard formulation of balanced networks [START_REF] Vreeswijk | Chaotic balanced state in a model of cortical circuits[END_REF], bistability between two different balanced activity states is ruled out. Some studies have proposed mechanisms for multistability in balanced network that depend on the finite size effects or fine tuning of the parameters (see for eg. [START_REF] Brunel | Network models of memory[END_REF][START_REF] Renart | Mean-driven and fluctuation-driven persistent activity in recurrent networks[END_REF], Litwin-Kumar and Doiron, 2012]). A more robust mechanism ( [START_REF] Mongillo | Bistability and spatiotemporal irregularity in neuronal networks with nonlinear synaptic transmission[END_REF]) for bistability without fine tuning was proposed in a recent model [START_REF] Hansel | Short-term plasticity explains irregular persistent activity in working memory tasks[END_REF] based on short term plasticity (STP) between the pyramidal neurons. Here we were interested in investigating whether a finite network can exhibit bistability in the presence of PO specific connections.

In the manuscript we showed that in the large K limit, the bump solution is stable since the sign of G(p c ), the coefficient of the O m

(1) E term always remains negative for all valid parameter ranges. But when K is finite, we asked the question -is there a value K c such that when K < K c , the sign of the G(p c ) changes? In that case the network will now have two stable solutions (i.e. it will be bistable). Therefore for a fixed p the network can now be coerced to settle into the bump state ('persistent') from the homogeneous solution ('baseline') with an input pulse and then be made to drop back into the baseline activity. After straightforward but tedious calculations we found that the the sign of G(p c ) remains negative almost everywhere. (See Ap- 

E .

Virtual rotation

There is an interesting difference between the homogeneous and the symmetry broken solutions when the orientation of the external stimulus is time dependent. Let us consider a time varying stimulus orientation θ(t) which changes its orientation by a fixed amount θ 0 at fixed time intervals τ , i.e θ(t) = n Θ(tnp τ ) θ 0 . Now, the bump moves toward the new angle undergoing only very small changes during the process. As shown in figure 3.4 below the peak of the bump rapidly tracks the change in stimulus orientation without significant changes in the magnitude of the first Fourier moment m

E of the activity profile.

Stimulus decoding

We also introduced a parameter γ that controls the level of feedforward O √ K specificity. When γ = 0, the recurrent network receives random inputs from neurons in the L4 ring. Thus, the distribution of the PO's of all the pre-synaptic neurons of any neuron in the L2/3 ring is uniformly distributed. Interestingly, when p > p c and γ = 0, the peak of the bump is not aligned with the orientation of the stimulus.

(Fig. 3.5a) Nonetheless, the stimulus orientation can be inferred from the population vector. As expected, when γ is non zero, the peak of the bump coincides with the orientation of the external stimulus on average. (Fig. 3 

Rewiring with strenghtened synapses

In order to approach a more biologically plausible model, we next rewired the network graph based on the PO's of the network with additional rule for strengthening of the synapses. As before, after a simulation run cycle we estimated the POs of neurons in the network. Then we removed κ √ K connections on average. Subsequently we replaced them by new κ ω √ K connections of strength ω J EE that depended on the differences in the POs of the pre and post synaptic neurons.

In the simulations of our model, we chose κ such that κ > κ c and we replaced

κ √ K synapses of strength J EE √ K with 1 10 κ √ K synapses of strength 10 J EE √ K .
As expected, the simulations show that adding a very small number of strengthened specific connections can increase in OSI of the E population. (Fig. 3.6, S7) In terms of numbers, rewiring 25 synapses out of 1000 in a random network with mean OSI of 0.22 gives a mean OSI of 0.42 in the rewired network.

Stability of the preferred orientation after rewiring

How does rewiring effect the PO's of the neurons in the network? Is the PO of a neuron stable to the rewiring procedure? To answer these questions, we recorded the different components of the input (recurrent and feed forward) into the neurons in the network. We then quantified the tuning curves for each of those components, the total input and for the output firing rate. Given the tuning curve, we estimated the PO for each component and computed Circular Correlation Coefficient1 (CCC in Fig. 3.6) between the PO of the output and the PO of the components. We found that in our model, when κ = 0 the PO of a neuron closely follows the PO of the FF input. Interestingly, the PO of a neuron has almost no correlation with the PO of the recurrent input. Clearly, the PO of the output is correlated with the PO of the by [START_REF] Fisher | A correlation coefficient for circular data[END_REF] is given by,

r = n-1 i=1 n j=i+1 sin(a i -a j ) sin(b i -b j ) n-1 i=1 n j=i+1 sin 2 (a i -a j ) n-1 i=1 n j=i+1 sin 2 (b i -b j )
Where a and b are angular variables and n is the number of data points. The absolute value of r lies between zero and one. A value of r = 0 indicates that the variables a and b are independent. And a value of r = 1 indicates the strongest possible correlation between a and b. When r is positive the angular variables are related as a = b + γ whereas when r is negative, the angular variables have a relationship of the kind: a = -b + γ. Where γ is a fixed random phase. There is approximately 2.2 fold increase in the mean OSI of the excitatory population with only a small change in its mean activity and the OSI of the inhibitory population decreases by about 50%.

Conclusions

In this part of the thesis, we were primarily interested in discovering the mechanisms that might explain changes in OS that occur during the early developmental stages of mouse V1. We started out by asking the following questions: What is the mechanism by which the selectivity of pyramidal neurons increase during the critical period?

How can this increase be achieved by modifying only a few synapses? Can the same mechanism also explain the broadening of inhibitory tuning during the critical period?

Introducing a very small number of PO specific connections within the excitatory population was identified as a suitable candidate. We did so by first analytically studying how specific connections might influence the dynamics and the tuning properties in a ring model consisting of binary neurons operating in the balanced regime. We have shown that a combination of processes during the critical period that involve the establishment of specific connections with strong synapses and a non-PO specific changes in the synaptic strengths of the inhibitory population can explain how the tuning properties of both the excitatory and inhibitory populations change during the developmental stages of mouse V1, i.e. starting with approximately similar OSI distributions for both populations before the critical period, we can account for the increase in the selectivity of the excitatory population and a concurrent decrease in inhibitory population at the termination of the critical window. We would like to stress the fact that a drastic change in the tuning properties can be explained as a result of modifying only a very small number (O √ K ) of synapses out of a very large number of synapses (i.e. K synapses on average). This is a direct consequence of the fact that our model is operating in the balanced state. Preliminary numerical simulations of the HV model with a small number of PO specific connections show qualitatively similar behaviour. Furthermore, We showed that an O √ K specific connections in the ring model can lead to a symmetry broken solution when the probability of specific connections is above a certain threshold which can be analytically computed. This phenomenon occurs because an O √ K specific connections with probability p in a balanced network leads to an O (1) additional modulated net input when p > p c . This provides a mechanism by which OS can emerge in the rodent V1 at eye opening in the absence of visual stimuli. Whether the degree of specific connectivity between neurons in rodent V1 is sufficient to support a bump solution at eye opening, however, still need to be clarified. observed. It is well known that EI reciprocity occurs at probabilities close to one in the mice V1. Our results suggest that this might lead to an improvement of coding efficiency.

Therefore, presence of a fine structure such as bidirectionality in the network connectivity can lead to significant temporal correlations in the inputs. Whereas, in a balanced network with random connectivity, the neuronal activities are weakly correlated resulting in all the neurons receiving weakly correlated inputs. In summary, the fluctuations in the neuronal input and trial-to-trial variability is either increased or decreased depending on the type and quantity of excess bidirectionality. Importantly, these effects occur only as a result of the network operating in the balanced regime. Excess bidirectionality does not significantly alter the functional properties of the network.

In light of recent experimental studies, which have uncovered various types of fine structure in the the local cortical wiring diagram, our study is an essential step towards understanding the relationship between cortical connectivity and dynamics.

Future efforts must involve the analytic description of the network dynamics in the presence of excess bidirectionality and the extension of the formalism to study arbitrarily complex fine structures.

Small numbers of feature specific connections

We first analytically showed how strong OS emerges in random binary networks receiving weak feedforward tuning. Following previous work in conductance based networks, our theory provides an analytical account of the mechanism that gives rise to the emergence of OS in rodent V1. The mechanism involves the cancellation of a strong untuned component in the inputs to reveal the O (T hreshold) tuned component, thus rendering the neurons selective to orientated stimuli. Subsequently, our theory was also able to account for the changes that occur during the early developmental stages of rodent V1. We showed that the changes in tuning properties of the pyramidal neurons in V1 occurring before and after the critical period can be explained by introducing a very small number of PO specific connections between the excitatory units. Such connections lead to a drastic increase in their OSI. Remarkably, the ratio of the number of specific to non-specific connections for large K goes to zero as 1 √ K . We can also account for the decrease of average OSI of the PV + interneurons by postulating a change in their firing rates brought about by a global change in their recurrent synaptic interactions (J II and J EI ) during the critical period. In our analytical model of L2/3 rodent V1, the feedforward input was assumed to carry information only about the stimulus orientation. Neurons in V1 are also selective to the direction of motion [START_REF] Deangelis | Receptive-field dynamics in the central visual pathways[END_REF][START_REF] Carandini | Linearity and gain control in v1 simple cells[END_REF], spatial frequency and temporal frequency [START_REF] Devalois | Spatial vision[END_REF]DeValois, 1990, Movshon et al., 1978]. The mechanism by which OS emerges in our model is clearly applicable to these stimulus features.

Emergence of selectivity in layer 4

A basic assumption of the model for OS presented in this work is that the feedforward input is weakly tuned, but nonetheless tuned. This feedforward input is construed as the input that layer 2/3 receives from layer 4, which receives predominant thalamic inputs from LGN. In primates, the layer 4 receives Gabor-like inputs with ON and OFF regions that are well separated [Reid andAlonso, 1995, Alonso et al., 2001].

As a consequence of this architecture, the orientation preference of the neurons are invariant to changes in spatial frequency.

A recent study that combined theory and experiment in order to investigate the emergence of OS in layer 4 of rodent V1 has made a startling new discovery that PO is dependent on the spatial frequency of the visual stimulus [START_REF] Pattadkal | Emergent orientation selectivity from random networks in mouse visual cortex[END_REF]. The authors firstly demonstrated that OS can emerge in a balanced model of layer 4 receiving ON and OFF thalamic inputs whose spatial preferences were randomly chosen and heterogeneous. The authors predicted that due to the random nature of projections from LGN to layer 4, PO is no longer invariant to changes in spatial frequency. Subsequently, they confirmed this prediction is the rodent V1 using optical imaging and electrophysiological recordings. This finding forces one to redefine PO in rodents and consider PO and spatial frequency together in the future.

Learning O √ K synapses

Interestingly, Our results predict that, in the V1, any arbitrary learning mechanism has to change only a very small number of synapses to achieve a drastic change in selectivity of the neurons in the network. One could postulate, that in general (perhaps with a few caveats), learning mechanisms involved in training a balanced network to perform a specific function, need only change the weights of O √ K synapses on average in a network with average in degree of K. Interestingly, in the limit as K → ∞, the number of synapses to be modified by the learning mechanism of one's choosing is negligible. Future work must investigate the possible learning rules that lead to rewiring of only √ K synapses. A few recent works have proposed similar ideas where a chaotic networks are trained to generate non-trivial patterns using low-rank perturbations to the connectivity matrix (e.g. [START_REF] Sussillo | Generating coherent patterns of activity from chaotic neural networks[END_REF]). Such perturbations robustly create outliers in the eigenspectrum of iid random matrices [START_REF] Tao | Outliers in the spectrum of iid matrices with bounded rank perturbations[END_REF] and could lead to quasi-attractors in the phase space of the network activities [Sussillo andBarak, 2013, Rivkind and[START_REF] Rivkind | Local dynamics in trained recurrent neural networks[END_REF].

Feature specific connections in a realistic conductance based model

Preliminary simulations of the conductance based HV model showed that, a very small number of PO specific connections in the model has qualitatively similar effects as in our binary model. A systematic investigation in this direction will be conducted in the near future.

Role of inhibitory interneuron diversity

In the idealized conception of the balanced network as a theory of cortical activity, inhibition plays a pivotal role in establishing balance and generating irregular activity.

In the standard formulation of balanced networks, inhibition was assumed to arise from a single inhibitory population. Nonetheless, the cortex exhibits a copious diversity of inhibitory interneurons differing in their morphological, electrophysiological, and, molecular features [START_REF] Tremblay | Gabaergic interneurons in the neocortex: from cellular properties to circuits[END_REF][START_REF] Pfeffer | Inhibition of inhibition in visual cortex: the logic of connections between molecularly distinct interneurons[END_REF][START_REF] Markram | Interneurons of the neocortical inhibitory system[END_REF]. These interneurons make up approximately 10-15% of the neurons in the cortex. They are broadly classified into three major subgroups, namely, PV, SOM and, 5HT3aR (of which VIP subgroup has been mostly investigated). The involvement of these interneuron subtypes in sculpting cortical dynamics and their functional role remains largely unknown.

Several studies dedicated to establish their roles, have proposed that VIP inhibitory neurons in local circuits are activated by external inputs (from the brainstem, from motor cortex, attentional signals from cingulate cortex, etc.). The SOM interneurons inhibit the PV and principal cells and receive inputs from the VIP interneurons. Thus the VIP could dis-inhibit PV interneurons via SOM [START_REF] Lee | Activation of specific interneurons improves v1 feature selectivity and visual perception[END_REF][START_REF] Pi | Cortical interneurons that specialize in disinhibitory control[END_REF][START_REF] Polack | Cellular mechanisms of brain state-dependent gain modulation in visual cortex[END_REF][START_REF] Fu | A cortical circuit for gain control by behavioral state[END_REF], 2015]. The PV neurons, in contrast, are known to strongly inhibit each other and the principal cells, but do not inhibit the other inhibitory subtypes. In V1, the distinct role of each of these subtypes in regulating the tuning properties is a matter of considerable debate [START_REF] Lee | Activation of specific interneurons improves v1 feature selectivity and visual perception[END_REF][START_REF] Atallah | Parvalbuminexpressing interneurons linearly transform cortical responses to visual stimuli[END_REF]. Future theories will have to incorporate the interneuron diversity and investigate their individual contributions to global balance as well as their roles in the spontaneous and stimulus-evoked scenarios. 

Ring model

i A = i π N A .
The network is set up to operate in the balanced state. Therefore, the synapses are strong, the synaptic strengths obey the balance conditions and the network receives strong feed forward input. The probability of a connection of stregth J AB √ K between neuron (j, B) to neuron (i, A) is,

P ij AB J ij AB = J AB √ K φ i A , φ j B = K N B 1 + 2 p A √ K cos(2 (φ i A -φ j B )) (A.1) φ i A = i π N A , 0 ≤ p E < √ K, p I = 0
and is zero otherwise with probability 1 -P ij AB . Therefore, the recurrent connections are random with each population receiving K inputs from every population with the exception that in the excitatory population has a small (i.e √ K) modulatory component in the E-to-E connections that depends on the distance between the excitatory neurons on the ring. (Henceforth p = p E ).

Mean input u

A (φ) to each population, 1 u A (φ) := lim N →∞ u i A (φ, t) t δφ = u (0) A + u (1) 
A cos(2φ) (A.2)

1 We use the following definitions for coarse grained averages,

f (φ i A , t) t δφ := 1 N δφ φ<φ i A <φ+δφ f (φ i A ) σ i A (t) t δφ = m i A (Φ 0 -φ i A ) δφ =: m A (Φ 0 -φ i A ) lim N →∞ 1 π π N N i=1 • i = 1 π π 0 dφ • φ (Riemann integral) m (n) A in φ as, m A (φ) = ∞ n=0 m (n) A cos 2φ (A.8)
Therefore, at the fixed point the first two Fourier components of the mean activities of both populations are completely described by, m

A = 1 π π 0 dφ H 1 -u (0) A -u (0) 
A cos(2φ) √ α A (A.9)

m (1) E = 2 π π 0 dφ H 1 -u (0) E -u (1) E cos(2φ) √ α A cos(2φ) (A.10) m (1) 
I = 0 (A.11)
We have assumed that m A (φ) is symmetric in φ, which is indeed the case. In addition, the first moment of the mean activity in the inhibitory population m

I is zero because of Eq. [A.5]. m I are given by requiring balance in eq. [A.3], which boils down to computing the following linear equation,

m (0) = -(J AB ) -1 E 0 (A.12)
where,

m (0) = m (0) E m (0) I and E 0 = J E0 m 0 J I0 m 0 .
When p = 0 or is lower than some critical value p C (p ≤ p c ), m

A = 0 are solutions of this system. Therefore, m A (φ) = m A , A ∈ E, I is always a homogeneous solution where m A = m (0) is given by Eq. A.12. Thus, by construction we have implicitly assumed rotational symmetry (SO( 2)) of the visual cortex, i.e.

m A (φ) = m A (φ + δ) = m A , ∀δ ∈ [0, π].
As p is increased and reaches a critical value p c , rotational symmetry is spontaneous broken. Then, for some p such that p > p c , new in-homogeneous solutions appear. This happens through a pitchfork bifurcation (Fig. In the next section, we will consider the case with constant and homogeneous feed forward input (i.e. m

(1) 0 = 0) and study the system of equations above for finite specific connectivity i.e. p = 0. For sufficiently large value of p, the rotational symmetry is "spontaneous broken".

Spontaneous symmetry breaking

Spontaneous symmetry breaking is often observed in many-body systems. It is a concept in modern physics that is ubiquitous and especially pertinent to condensed matter and particle physics. There are several examples of systems that exhibit this phenomenon -superfluids, superconductors, ferromagnets, crystals and in particle physics, according to the Standard Model -our universe. The relevant symmetry in these examples refers to the symmetry of the Hamiltonian of the system. A Hamiltonian system is said to have spontaneous symmetry breaking when the Hamiltonian is invariant under some unitary transformation but the ground state isn't. In the simple case of Heisenberg's model of ferrormagnets, the Hamiltonian is invariant under global rotations of all spins. The total spin of the system is a conserved quantity. It can be shown that a state, say with all spins up is an eigenstate of the Hamiltonian -this is spontaneous symmetry breaking i.e. even though the Hamiltonian is invariant under rotations, the ground state 'spontaneously' picks an orientation and the system not rotationally symmetric anymore. The initial conditions decide the 'spontaneously' chosen orientation. Another example is everyday crystals which posses transnational symmetry which is broken resulting in a discrete subgroup. Formally, in the above mentioned instances of broken symmetry and many other cases, the governing dynamical equations of the system has stable solutions that exhibit less symmetry than the equation themselves.

When the spontaneously broken symmetry is continuous as in the cases of rotational symmetry of the model of ferromagnets, the translation of the crystal lattice, the number of ground states is infinite. If the relevant symmetry is discrete, the number of ground states is finite as in the case of spin inversion symmetry in the Ising model.

In our case of the ring model, rotational symmetry is spontaneously broken and the coarse grained population activity m E (φ) which is originally homogeneous at all φ now becomes dependent on φ, i.e one of the orientations along the ring is spontaneously chosen and the network settles to a bump state. 

Bump state

The bump state refers to stable solutions with m (1)

E (p, t) = m (1) E F (p) + m (1) E 3 G(p) + O m (1) E 5 (A.13)
All the terms in even powers of m

E vanish because π 0 dφ(cos 2φ) 2n+1 = 0. f We will determine G(p) in the next section. F (p) is given by, 2 The Taylor expansion for the function H(x + ǫ) for small ǫ is given by,

H(x + ǫ) = 1 2 erfc x √ 2 -ǫ e -x 2 2 √ 2π + ǫ 2 e -x 2 2 x 2 √ 2π -ǫ 3 e -x 2 2 (x 2 -1) 6 √ 2π + O ǫ 4 F (p) = -1 -H ′ (h) J EE √ α E p = -1 + 1 √ 2πα E e -h 2 2 J EE p (A.14) (A.15) Where, h = u (0) E √ α E = 1 B J 2 AB m (0) B -H -1 m (0) E
. The zeroth moments of the mean activity m (0)

A are given the network parameters, are determined by solving the set of two linear equations. (Eq. A.12) At the fixed point of of Eq. A.13, keep all terms in m (1)

E upto O m (1) E 3 , we have, m (1) 
E F (p) + m (1) E 2 G(p) = 0 (A.16) If, ∃p c : F (p c ) = 0, then ∀p > p c , m (1) 
E = 0 solutions (the bump state) are stable if sign(G(p c )) = -1.
The critical value p for which rotational symmetry is spontaneously broken can be computed by solving the equation F (p) = 0 for p, which gives,3 

p critical = -α ⋆ E J EE H ′ (h ⋆ ) ; h ⋆ = -u ⋆(0) E α ⋆ E (A.17)
where,

H ′ (z) = -1 √ 2π exp - z 2 2 (A.18)
To clarify how the dynamics of the system changes with parameter p and how the bump state is realized, let us consider the normal form of Eq. A.13 given by,

d dt x = p x + bx 3 (A.19)
For the time being, without loss of generality, let us assume that the b = -1, i.e the sign of b is always negative. The normal form in this case is ẋ = p xx 3 .

Notice that if we change the the sign of x (i.e. substitute -x for x throughout the equation A. [START_REF] Shinomoto | Relating neuronal firing patterns to functional differentiation of cerebral cortex[END_REF], through cancellation of signs we get the same equation back again.

When p < 0, the origin is the only fixed point and it is stable. Any perturbation away from the origin exponentially decays back to the origin. When p = 0, the origin remains stable. Finally, when p > 0, the origin becomes unstable and two new stable fixed points appear at x ⋆ = ± √ p. In our case these two solutions represent two bump solution with a phase difference of π 2 . This is usually referred as a supercritical pitchfork bifurcation, where the origin loses its stability and two stable symmetric and any small perturbation away from x = 0 is amplified and does not decay back to zero. The stability of the system, is now decided by the higher order terms in the Taylor expansion.

Stability of the bump solution

As described above, the stability of the bump solution depends on the sign of the coefficient of the cubic term (i.e. sign of G(p) in Eq. A.13) in the Taylor expansion at the fixed point of the dynamics. Below, using self consistency arguments, we will show that the sign of G(p) always remains negative for all parameters in the balanced 

E = 0 and m

E = ± mE are stable (shaded region).

regime.

Let us begin by writing the argument of the function H(•) in equation Eq. A.10 as, where have to determine the coefficients A n such that,

1 √ α E 1 -u (0) E -pJ EE m (1) 
E cos 2θ = A 0 + m (1) E (A 1 - pJ EE √ α E cos 2θ) + m (1) E 2 A 2 + m (1) E 3 A 3 + O (m (1) 
E ) 4 (A.20)
Using this in the Taylor expansion of H(•) and integrating equations A.9 and A.10, the first two Fourier moments in φ of the mean activity in the excitatory population after collecting terms in powers of m

(1) E , can be written as,

m (0) E = H(A 0 ) + m (1) E H ′ (A 0 )A 1 + m (1) E 2 A 2 H ′ (A 0 ) + H ′′ (A 0 ) A 2 1 6 + 1 4 pJ EE √ α E 2 + m (1) E 3 [A 3 H ′ (A 0 ) + A 2 A 1 H ′′ (A 0 ) + H ′′′ (A 0 ) A 3 1 6 + A 1 4 pJ EE √ α E 3 +O (m (1) 
E ) 4 (A.21) m (1) E = -m (1) E H ′ (A 0 ) pJ EE √ α E -m (1) E 2 A 1 pJ EE √ α E H ′′ (A 0 ) -m (1) E 3 A 2 pJ EE √ α E H ′′ (A 0 ) + H ′′′ (A 0 ) A 2 1 2 + 1 8 pJ EE √ α E 3 pJ EE √ α E 3 +O m (1) E 4 (A.22)
Now to determine the coefficients A n , we utilize the fact that when K → ∞, the mean activities must remain fixed m E in Eq. A.20 are must be zero, therefore we have,

A 0 = H -1 m (0) E (A.23) A 1 = 0 (A.24) A 2 = -1 4 pJ EE √ α E 2 H ′′ (A 0 ) H ′ (A 0 ) (A.25) A 3 = 0 (A.26)
After substitution of A n , Eq. A.22 reduces to, m

E = -m (1) 
E H ′ (A 0 ) pJ EE √ α E + m (1) E 3 -A 2 pJ EE √ α E H ′ (A 0 ) - pJ EE √ α E 3 H ′′′ (A 0 ) 8 (A.27) =m (1) E F (p) + m (1) E 3 G(p) (A.28) (1) 
Where G(p) is given by,

G(p c ) = - p 3 c J 3 EE (α E ) 3 2 1 8 H ′′′ (A 0 ) - 1 4 (H ′′ (A 0 )) 2 H ′ (A 0 ) (A.29) = - e -A 2 0 2 √ 2π p 3 c J 3 EE (α E ) 3 2 1 + A 2 0 (A.30) ⇒sign(G(p c )) = -1 (A.31)
It is clear from Eq. A.30, that the sign of G(p c ) is always negative for all values of J EE that satisfy balanced conditions. (also, α E is that variance in the net input which is always positive and the sign of A 0 is does not matter since A 0 ∈ R)

A.3 A finite sized network with specific connections has no bistablilty

Here I will outline the calculations that show that there is no bistability almost everywhere for finite K in an one population network of inhibitory neurons. The task is to self consistently determine the sign of the coeffiecient of the the cubic term in the expansion of m (1) close to the critical point. In fact this calculation does not provide new insights as the expressions contain a large number of terms that cannot be further simplified. For the case with two populations, I used the Mathematica to obtain the self consistent equations. (The code can be found here:

https://github.com/shrisharaob/mathematica)

δm (n) = m (n) -m (n) f p (A.32) d dt δm (n) = -δm (n) (A.33) + 1 + δ(n -1) π π 0 dφ        H     u f p - √ K J II δm (0) -p √ K m (1) cos(2φ) α f p + J 2 II δm (0) -p √ K m (1) cos(2φ)     (A.34) -H u f p √ α f p cos(2nφ) = -δm (n) + 1 + δ(n -1) π π 0 dφ H u f p - √ K J II z α f p + J 2 II z -H u f p √ α f p cos(2nφ) (A.35)
At the fixed point,

δm (n) = 1 + δ(n -1) π π 0 dφ H u f p - √ K J II z α f p + J 2 II z -H u f p √ α f p cos(2nφ) (A.36) (A.37) When p = p c , m (0) = m (0)
f p and m

(1)

f p = 0, expanding in z at p c , H u f p - √ K J II z α f p + J 2 II z = H(f (z)) = C 0 + C 1 z + C 2 z 2 + C 3 z 3 + O(z 4 ) (A.38) Z 0 = 1 √ 2π exp - h 2 f p 2 (A.39)
Where, 

C 0 = H(f (z))| z=0 = H u f p √ α f p = H(h f p ) = m (0) f p (A.40) C 1 = H ′ (A 0 )(f (z))f ′ (z)| z=0 = -H ′ (A 0 )(h f p ) J II √ α f p √ K + J II u f p 2α f p (A.41) = Z 0 2m (0) f p h f p -2 √ K m (0) f p 1/2 C 2 = 1 2 H ′′ (A 0 )(f (z)) (f ′ (z)) 2 z=0 + f ′′ (z)H ′ (A 0 )(f (z))| z=0 (A.42) = 1 2 
J II α f p H ′′ (A 0 )(h f p ) J II u f p α f p √ K + K + J 2 II u 2 f p 4α 2 f p (A.43) +H ′ (A 0 )(h f p ) J 3 II α 3/2 f p √ K + 3 4 J II u f p α f p = Z 0 8 J II (m (0) ) 3 3h f p -h 3 f p m (0) + 4 √ K m (0) 
J II u f p K α f p + 1 8 J 3 II u 3 f p α 3 f p + 3 4 J 2 II u 2 f p α 2 f p √ K (A.46) -3H ′′ (A 0 )(h f p ) J 4 II α 2 f p K + 5 4 
J II u f p α f p √ K + 3 8 J 2 II u 2 f p α 2 f p - 3 4 H ′ (A 0 )(h f p ) J 5
f p = 0, therefore δm (1) = m (1) δm (1) = m 

f num 3 = - 1 √ K 8h f p m ( 
f p 30 -20 h 2 f p + 2h 4 = 1 √ K g 0 (•) + 1 K g 1 (•) + 1 K 3/2 g 2 (•) + 1 K 2 g 3 (•) (A.61)
Numerically evaluating the expression for coefficient of the cubic term for a range of small K and m we see that it stays negative for almost everywhere except at singularities (i.e the product set K × m (0) f p containing {(0, 0), (0, m (0) f p ), (K, 0)}). model of clearly needs to be improved upon. To this end, we firstly arranged the neurons in a circular patch and then on a unit sphere with two pinwheels in each hemisphere. The projection of the POs on the equatorial plane is show in Fig. S3. These simulations show local heterogeneous responses and global order. Systematic quantification of the smoothness of maps at fine scales in models of V1 and their comparison with experimental data is is left for future work. The march of technology has brought us to a place where we have multicore processors and powerful graphic processing units (GPU) in our desktop and servers. Moreover these highly sophisticated creations of silicon engineering have become inexpensive.

Significant acceleration of diverse applications using GPUs has emerged as a new phenomenon since they are designed to overcome the shortcomings of conventional processors with their rather low hardware level parallel execution capability and low memory bandwidth. Specially designed GPUs can now provide access to powerful and cheap computational platform offering an affordable mini-supercomputer to everyone. Some of the recently GPUs architectures [START_REF] Fatahalian | A closer look at gpus[END_REF] engineered for computational purposes are: NVIDIA CUDA, IBM CELL, and ATI Stream Processor.

Simulations of large scale SNN and the relevant calculations can be partitioned into large number of independent parts and carried out on many cores or computers. Parallel implementations based on MapReduce programming model have been This relatively novel area of research of GPU enable parallel computing is becoming extremely popular over the last few yeas and is being used for diverse computational purposes. Last few years have seen an increasing interest developing a platform for GPU based parallel computing for general purpose scientific computing. These endeavours have led to the development of Open Computing Language (OpenCL) and Compute Unified Device Architecture (CUDA). The primary objective of CUDA is to provide programmers an easy an abstracted higher level programming access the parallel processing capabilities of NVIDIA GPUs. It is an extension of standard C. It provides an accessible high level programming environment and enables easy implementation of real world applications which run significantly faster than on multi-processor or multi-core systems [START_REF] Ryoo | Optimization principles and application performance evaluation of a multithreaded gpu using cuda[END_REF], Nickolls et al., 2008[START_REF] Che | A performance study of general-purpose applications on graphics processors using cuda[END_REF][START_REF] Jang | Neural network implementation using cuda and openmp[END_REF][START_REF] He | Accelerating multi-layer perceptron based short term demand forecasting using graphics processing units[END_REF][START_REF] Sierra-Canto | Parallel training of a back-propagation neural network using cuda[END_REF]. One of the most promising parallel computing is exploring branches is the field of developing new algorithms for GPU clusters. for creating parallel programs using the NVIDIA's proprietary CUDA programming application programming interface (API). A review of Tesla K40c's general technical issues can be found in [START_REF] Lindholm | Nvidia tesla: A unified graphics and computing architecture[END_REF][START_REF] Ryoo | Optimization principles and application performance evaluation of a multithreaded gpu using cuda[END_REF]. CUDA API Fig. S1 is described by its developers [START_REF] Lindholm | Nvidia tesla: A unified graphics and computing architecture[END_REF] as: "a minimal extension of the C/C++ programming language, where programmers write serial programs that call kernels, which are executed in parallel across a set of threads". GPU programs for general purpose computations other than graphical applications can be developed on any of the myriad available software development kits (SDK) and APIs such as OpenCL, NVIDIA CUDA, ATI Stream SDK, Brook, Rapidmind, HMPP, and PGI Accelerator. NVIDIA's CUDA is currently the predominant API for GPGPU acceleration even though it is supported only by NVIDIA's GPUs. The OpenCL endeavor has the goal of making the GPGPU acceleration manufacture independent.

List of Figures however, there is no noticeable orientation map. [START_REF] Hubel | Receptive fields and functional architecture of monkey striate cortex[END_REF][START_REF] Ohki | Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex[END_REF][START_REF] Horton | Ocular integration in the human visual cortex[END_REF] . . . . . . . . . . . . . . . . . . . . . . 1.3 Some three neuron motifs occur more frequently than expected by chance and form stronger connections within a motif. [START_REF] Song | Highly nonrandom features of synaptic connectivity in local cortical circuits[END_REF] 1.4 Log-normal like firing rate distributions of cortical neurons across different species [START_REF] Buzsáki | The log-dynamic brain: how skewed distributions affect network operations[END_REF]. . . . . . . . . . . . . . . 1.5 (a) Responses of a pyramidal neuron to constant current injection in vivo and in vitro [START_REF] Holt | Comparison of discharge variability in vitro and in vivo in cat visual cortex neurons[END_REF] (b) Exponential ISI distribution [START_REF] Shadlen | The variable discharge of cortical neurons: implications for connectivity, computation, and information coding[END_REF]](c) Scatter plot mean spike count vs variance of the spike counts. [Softky and Koch, 1993a] Van Vreeswijk andSompolinsky, 1996, Vreeswijk andSompolinsky, 1998] . . . . . . 1.8 The primary auditory cortex (A1) is located in the temporal lobe. The preferred frequency of neurons gradually increases from one end A1 to the other, which gives rise to a tonotopic representation of auditory information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.9 Large scale order with local disorder: Orientation maps, tonotopy in the auditory cortex Some studies have found strong OS throughout the map while others report local heterogeneities [START_REF] Blasdel | Orientation selectivity, preference, and continuity in monkey striate cortex[END_REF][START_REF] Maldonado | Heterogeneity in local distributions of orientation-selective neurons in the cat primary visual cortex[END_REF][START_REF] Hetherington | Receptive field and orientation scatter studied by tetrode recordings in cat area 17[END_REF][START_REF] Swindale | The spatial pattern of response magnitude and selectivity for orientation and direction in cat visual cortex[END_REF][START_REF] Ohki | Highly ordered arrangement of single neurons in orientation pinwheels[END_REF][START_REF] Nauhaus | Neuronal selectivity and local map structure in visual cortex[END_REF][START_REF] Ikezoe | Relationship between the local structure of orientation map and the strength of orientation tuning of neurons in monkey v1: a 2-photon calcium imaging study[END_REF]. The auditory cortex also exhibits similar local heterogeneities [START_REF] Moshitch | Responses of neurons in primary auditory cortex (a1) to pure tones in the halothaneanesthetized cat[END_REF][START_REF] Rothschild | Functional organization and population dynamics in the mouse primary auditory cortex[END_REF] 

3.7

Excitatory neurons receive broadly tuned recurrent excitation and even more broadly tuned inhibition. [START_REF] Liu | Broad inhibition sharpens orientation selectivity by expanding input dynamic range in mouse simple cells[END_REF], Li et al., 2012, 2015] 3.8 Effects of rewiring with ∼ 3 fold increase in the mean activity of the inhibitory population. There is approximately 2. The orientation map consists of the typical organisation of the map into iso-orientation domains with neighbouring neurons sharing similar POs and pinwheel centres where local PO is heterogeneous. (Taken from [START_REF] Maldonado | Orientation selectivity in pinwheel centers in cat striate cortex[END_REF]) . . . . . . . . . . . . . . . . . . . . . . . .

Figure 1 . 6 :

 16 Figure 1.6: The total current into an arbitrary neuron receiving a large number of excitatory inputs. Generating irregular spiking requires (a) O (mean) fluctuations, which is ruled out by Central Limit Theorem or, (b) only O (T hreshold) fluctuations if the mean excitatory input is approximately canceled by the total inhibitory input up to the leading order and the synapses are scaled as 1 √ K . With this scaling, both the mean and fluctuations are of O (T hreshold) and the neuron emits temporally irregular spikes.

Figure 1 . 7 :

 17 Figure 1.7: Schematic representation of a balanced network -a highly recurrent network with strong synapses receiving strong external input.[Van Vreeswijk and Sompolinsky, 1996, Vreeswijk and Sompolinsky, 1998] 

Figure 1 . 10 :

 110 Figure 1.10: Feedforward model of Hubel and Wiesel for the OS of simple cells. Elongated simple cell receptive fields (RF) are a result of aligning the circular RF ofLGN cells[START_REF] Priebe | Mechanisms of orientation selectivity in the primary visual cortex[END_REF].

  25 + 0.0125I octvs I ≥ 30dB Our preliminary simulations show that the model can account for the frequency selectivity of neurons in A1. (Fig 1.11) Neighbouring neurons have very similar responses while local disorder is clearly present. A complete and detailed study is

Figure 1 . 11 :

 111 Figure 1.11: Receptive fields (RFs) of the neurons in the A1 model. The RFs are displayed according to the coordinates of the neurons in the model. Although nearby neurons show similar preferred frequencies, there are noticeable discrepancies in their local responses.

Figure 1 . 14 :

 114 Figure 1.14: Increasing the number of feedforward inputs on the inhibitory population reduces its orientation. Circular variance is the same as (1 -OSI).

Figure 1 . 16 :

 116 Figure 1.16: Fano factor dynamics is qualitatively different in network with bidirectional connections (here the excess bidirectionality is in the I-to-I recurrent connections).

Figure 1 . 18 :

 118 Figure 1.18: Fano factor dynamics depends on synaptic conductances. Population averaged tuning curves for both the population in (a) and when the average interaction strengths (G AB ) are increased by four fold while keeping the same firing rates in (c). The tuning of the Fano factor is shown in (b), which however, is inverted when (G AB ) is increased four fold in (d).

Figure 1 .

 1 Figure 1. Activity in the network without excess bidirectionality. Other parameters are given in Methods section. a: Sample voltage trace of cells (top, E: 5.36Hz, bottom, I: 8.7Hz). b: Population averaged tuning curves for both populations (E: black; I: Red). c: Distribution of orientation selectivity index (OSI) for excitatory (black) and inhibitory (red) neurons. Unlike in van Vreeswijk and Hansel, 2012 15 the average number of feedforward inputs from layer 4 in excitatory and inhibitory neurons are different: K E f f = 100, K I f f = 800. Inhibitory neurons receive more but weaker feedforward inputs leading to less selectivity in their response.

Figure 2 .

 2 Figure 2. Bidirectionality in E-to-E has negligible effect on spiking irregularity. a: Population averaged autocorrelation functions for excitatory and inhibitory populations for different values of p. b: Fano factor distributions different values of p. c: Distribution of CV . d: Distribution of CV 2 (see Methods). In all subfigures the top panel is for the excitatory population and the bottom one is for the inhibitory population.

Figure 3 .

 3 Figure 3. Bidirectionality in I-to-I slows down fluctuations and increases response variability. a: Example voltage trace of an inhibitory cell for p = 0.8 (firing rate: 8.8Hz). Dependence on p of the Fano factor (b), population averaged autocorrelation functions (c), CV and CV 2 in (d). Top panels: Excitatory population. Bottom panesl: Inhibitory population. e. Decorrelation time (see Methods) of the network activity as a function of p.

Figure 4 .

 4 Figure 4. Bidirectionality in E-to-I connections leads to rapid decorelation and reduced response variability. a: Population averaged autocorrelation functions for different values of p. b: Average Fano factor decreases with p. The distributions of CV (c) and CV 2 (d) have negiligible dependance on p. Top panels: Excitatory neurons. Bottom panels: Inhibitory neurons.

Figure 5 .

 5 Figure 5. Bidirectionality has a weak effect on feature selectivity. a and c: Excess bidirectionality within the excitatory population (a) and between excitatory and inhibitory populations (c) have no effect on the selectivity of excitatory (top) and inhibitory (bottom) neurons. Excess bidirectionality between the inhibitory neurons slightly decreases the selectivity of excitatory neurons (b,top) while it slightly increases the selectivity in inhibitory population (b, bottom).

Figure S2 .

 S2 Figure S2. Effect of the synaptic time constant on the slowing of the dynamics with I-to-I bidirectionality. a: In the range p = 0 -0.8, the estimated decorrelation time is proportional to τ syn and to (1p) α with α = 2. Substantial deviations from this are observed for p > 0.8 possibly due to the difficulty of estimating the time constant when the dynamics is extremely slow. b: The population averaged Fano factor increases with p and with τ syn . The rate of convergence to the steady state firing rates of excitatory neurons for two different initial conditions quantified by computing the Spearman coefficient (ρ) as a function of observation window (T ) for p = 0 (top) and p = 0.90 (bottom).

Figure S3 .Figure S4 .

 S3S4 Figure S3. The slowing down of dynamics is independent of K. Population averaged autocorrelation functions with excess bidirectionality in the inhibitory population with p = 0.8 for (a) excitatory population (b) inhibitory population. Inset shows the small changes in population averaged firing rates with different values of K

Figure 2 . 1 :Figure 2 . 2 :

 2122 Figure 2.1: Excess I-to-I bidirectionality in a two population (excitatory and inhibitory neurons) conductance based network with τ syn = 3 and N = 40000. Exponent: ∼ 2 are different for one(-1.5) and two(-2) population networks

Figure 2 . 3 :

 23 Figure 2.3: Power law: Exponents depends on the model. The difference in exponents is neither due to finite number of neurons nor fast synapses but depends on the neuron model used in the network. (courtesy of David Hansel)

Figure 3 . 1 :

 31 Figure 3.1: Excitatory selectivity increases and inhibitory tuning broadens during critical period[START_REF] Kuhlman | Fast-spiking interneurons have an initial orientation bias that is lost with vision[END_REF] 

Figure 3 . 2 :

 32 Figure 3.2: Changes in the connectivity after the critical period[START_REF] Ko | Functional specificity of local synaptic connections in neocortical networks[END_REF], Cossell et al., 2015] 
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 13 A footnote to the article title † Shared last authorshipEThe primary visual cortex(V1) has been the focus of extensive experimental studies in cats and monkeys since the discovery of orientation selectivity(OS) byHubel and Wisel. OS has been experimentally observed in the neurons of the primary visual cortex (V1) of various other species. In some of these species such as the primates, the V1 neurons are arranged according to their preferred orientations(PO). Anatomically nearby neurons tend to have similar preferred orientations. Such an organization results in the formation of orientation maps. In the prevalent theories of OS, such an arrangement of neurons is often associated with functional connectivity, i.e. neurons with similar preferred orientation have a higher probability of connections. Such a connectivity rule leads to neurons receiving stronger inputs from other neurons with similar PO. The necessity of such a connectivity scheme has seldom been questioned.Strong OS is also observed in other species such as the rodents. However, there is no recognizable arrangement of neurons based on their PO in the rodent V1. The POs of anatomically proximate neurons is uniformly distributed. This arrangement is often referred to as a salt and pepper organization. If the probability of connections is exclusively a function of anatomical distance, one would expect very weak OS with a salt and pepper organization of neurons. Consequently to explain sharp tuning in a salt and pepper organization, one would argue for a connectivity scheme with specific connections between neurons with similar PO, resulting in a functional map. Nonetheless, the consensus on the existence of such a functional map is varied. A few experiments have reported prominent PO dependent connectivity.However, the distribution of POs of pre-synaptic neurons projecting to both pyramidal and PV + is broad. Therefore, in this study we have set out to analytically investigate possible mechanisms that could give rise to strongly tuned neurons in a random network whose connectivity depends solely on anatomical distance. We will show that strong OS can emerge in a two population network whose connectivity is a directed Erdös-Rényi graph.In section II, we analytically demonstrate that OS can emerge in a random network of binary neurons without any functional connectivity, provided the network is operating in the balanced regime.Carl van Vreeswijk and Haim Somplolinsky[1] showed that under very general conditions, a random network of binary neurons with excitatory and inhibitory synapses converges to a fixed point where the total excitatory and inhibitory currents cancel each other on average. This fixed point is the balanced state and does not require fine tuning. The connectivity is sparse with each neurons receiving K inputs on average of relatively strong synapses with scaling O 1 √ K . The network is setup such that the neurons receive strong external feed forward input that scales as O √ K , consequently, the same is true for the recurrent inputs to both the populations. Due to the presence of strong recurrent synapses, the O √ K inputs exactly cancel each other in the thermodynamic limit. The resulting mean and fluctuations of the total input are O (1). In finite networks, the corrections to net inputs are of O 1 √ K . Hence, in sufficiently large finite networks, the mean and fluctuations of the total input are approximately O (1). The activity of the neurons is therefore highly irregular as observed in in vivo cortical recordings. The dynamics and spiking statistics of cortical neurons can be satisfactorily described in the framework of balanced networks.

FIG. 1 .

 1 FIG.1. The ring model. The feedforward ring models L4 of V1 and consists of weakly tuned N0 excitatory neurons with homogeneous and symmetric tuning curves. Layer 2/3 comprises two populations, NE excitatory and NI inhibitory neurons. They receive random projections from the feedforward layer and the probability of recurrent connections within this layer is random and fall off with distance between pre and post-synaptic neurons. In Section. III this will be modified to include a small number of PO specific connections

FIG. 2 .

 2 FIG. 2. Neurons in layer 2/3 are strongly selective to stimulus orientation. (a) Population averaged tuning curves. (b) OSI distributions for both populations (c) Tuning curves of four excitatory neurons on the left in black and four inhibitory neurons on the right in red. Parameters: m (0) 0 = 0.075, m (1) 0 = 0.075, c = 0.2, K = 1000

  If we now consider Eqns. (

FIG. 4 .

 4 FIG.4. Population averaged OSI of the excitatory population as determined by numerically generating tuning curves. Dashed line is the value of κc. The shaded region represent the 25 to 75% quantiles of the OSI distributions, which for the excitatory population becomes progressively narrower with κ.

  requiring balance in eq. [51]. The first moment of the mean activity of inhibitory population, m (1) I is zero because of Eq.[50]. Therefore, we can determine u (0) I from Eq. 56. The moments of the mean input to the excitatory population, u

  As κ is increased, at a critical value of κ = κ c , the system undergoes a super critical pitchfork bifurcation with m (1) E = 0 being the unstable solution and two stable symmetric solutions, ±m (1) E = 0 as shown in Fig 3. The critical value of κ for which there is a non zero first moment can be obtained by expanding H(•) at the fixed point(Eq.

E

  vary in such a manner as to keep m (0) E fixed.

  FIG. 5. Finite size simulations. Estimate of m (1) 0 for different values of κ. Average computed over multiple realizations of the network. Parameters: m (0) 0 = 0.075, m (1) 0 = 0, K = 1000.

FIG. 6 .

 6 FIG. 6. The dependence of tuning properties on κ. In (a) the population averaged tuning curves for the excitatory population on top and inhibitory population below and in (b) the OSI distributions of the respective populations for different values of κ E on top and I below. (c) Example tuning curves of the four excitatory neurons on top and four inhibitory neurons on the lower panel as κ is varied. Parameters: m (0) 0 = 0.075, m (1) 0 = 0.0375, K = 1000

FIG. 7 .

 7 FIG. 7. The dependence of population averaged OSI on κ for excitatory neurons i (a) and inhibitory neurons in (b). Parameters: m (0) 0 = 0.075, K = 1000

  In the steady state the averaged activities m A are given by Eqn. (A10), where by combining Eqns. (A11) and (A12), we can write u A as

  Figure 3.3: The dynamics of the bump phase with constant feed forward input. Different traces are simulations with different initial conditions. Although the symmetry that is broken is continuous, the final phases of simulations with proximal initial conditions converge to discrete number of phases.

Figure 3 . 4 :

 34 Figure 3.4: Virtual rotation: For values of p > p c , the network tracks time varying stimuli orientations without significant change in the magnitude of the first Fourier component m

Figure 3 . 5 :

 35 Figure 3.5: Population vector based stimulus decoding. (a) p = 0.7, γ = 0, (b) p = 0.7, γ = 0.10, (c) p = 0.7, γ = 0.50

Figure 3 . 6 :

 36 Figure 3.6: Rewiring with strengthened synapses. The PO specific connection parameter κ was set to a value such that κ = 8 > κ c . The strength of the new PO specific synapses that replaced the deleted connections were increased 10 times. Since the specific connections is introduced only in the excitatory population, we can see a clear change in the OSI of all the excitatory neurons and no significant change in the OSI of the inhibitory neurons.

Figure 3 . 8 :

 38 Figure 3.8: Effects of rewiring with ∼ 3 fold increase in the mean activity of the inhibitory population. There is approximately 2.2 fold increase in the mean OSI of the excitatory population with only a small change in its mean activity and the OSI of the inhibitory population decreases by about 50%.

1

 1 Selectivity to other visual features in layer 2/3

For

  instructive purposes, I will present a simple ring model with location-specific operating in the balanced state. Later this was modified to model rodent V1 proper. This model consists of a two population (E and I) network of binary neurons σ i A ∈ {0, 1} arranged on a ring of period π. (Fig. A.1) Neuron i in population A, (i, A) is positioned on the ring at location φ

Figure A. 2 :

 2 Figure A.2: The rotational symmetry in the ring model is spontaneously broken. The bifurcation diagram

  provided they exist. This implies that as one traverses along the ring, one encounters a peak or a 'bump' in local the average activity. Expressing the error function (H(•)) in Eq. A.10 its Taylor expansion for small m (1) E , we get the following representation,

Figure A. 3 :

 3 Figure A.3: Bump state is realized through a pitchfork bifurcation. The arrows indicate the direction of the flow ṁ(1) E = f (m(1)E ). The curve intersects the x-axis where there is no flow (i.e ṁ(1) E = 0). These are the fixed point of the dynamics.

Figure A. 4 :

 4 Figure A.4: Bistability can occur if sign(G(p c )) = +1. In which case, there is a range of p where both m

E

  = 0. Since the network is operating in the balanced regime, this is indeed the case. In order that m

3 = 3 z=0+

 33 H ′′′ (A 0 )(f (z) (f ′ (z)) 3H ′′ (A 0 )(f (z))f ′′ (z)f ′ (z)| z=0 + H ′ (A 0 )(f (z))f ′′′ (z)| z=0 (A.45) = -H ′′′ (A 0 )(h f p )

  + C 1 z + C 2 z 2 + C 3 z 3 -H(h f p ) + O(z 4 ) (A.48) ≈ C 1 δm (0) + C 2 δm (0) 2 + C 3 δm (0) 3 + m (1) 2 p 2 2K C 2 + 3 C 3 δm (0) p = p c , m

  2φ) C 0 + C 1 z + C 2 z 2 + C 3 z 3 -H(h f p ) + O(z 4 )

Figure S1 :

 S1 Figure S1: Orientation map in cat V1. Preferred orientations are colour coded. The orientation map consists of the typical organisation of the map into iso-orientation domains with neighbouring neurons sharing similar POs and pinwheel centres where local PO is heterogeneous. (Taken from[START_REF] Maldonado | Orientation selectivity in pinwheel centers in cat striate cortex[END_REF] 

Figure S2 :

 S2 Figure S2: Orientation Selectivity with an orientation map: layer 4 neurons are modeled as Poissionian elements which are arranged on a square patch. These elements are assigned their POs based on their position on the patch and are assumed to have a cosine tuning curve. The feed forward connectivity is such that the footprint of feed forward connections are greater than the recurrent connections to ensure balance.

Figure S3 :

 S3 Figure S3: Neurons in layer 2/3 and L4 are uniformly distributed on a unit sphere. L4 is assumed to comprise of OS Poisson units. Both Feed forward and recurrent connectivity is distant dependent.

Figure S4 :

 S4 Figure S4: Excess bidirectionality in the inhibitory population an one population (inhibitory neurons) conductance based network τ syn = 3ms, N = 40000

Figure S1 :

 S1 Figure S1: Generic processing flow of a CUDA program(1) The relevant data from host memory is copied to GPU memory (2) The GPU "Kernel" is invoked from the CPU (2) The Kernel is executed in parallel on the GPU's CUDA cores(2) The results of the computation are copied to the host memory from the GPU memory

Figure

  Figure S2: CUDA architecture

Figure S3 :

 S3 Figure S3: CUDA memory model

1. 1

 1 Examples of fine structure in cortical networks: (a) Statistical reconstruction of connectivity patterns in the mouse primary visual cortex -a few strong connections in a sea of relatively weak synapses [Song et al., 2005] (b) Above chance level fractions of reciprocal connections between the pyramidal neurons (c) Neurons receiving similar feedforward inputs have a higher probability of being connected to each other [Yoshimura et al., 2005]. . . . . . . . . . . . . . . . . . . . . . 1.2 Orientation Selectivity in the primary visual cortex (V1). On the right we see such a map obtained from in-vivo imaging in cats, where the cells are colored according to their preferred orientation. They are neatly arranged in what is called a pinwheel arrangement. In rats,

  . . . . . . . . . . . 1.6 The total current into an arbitrary neuron receiving a large number of excitatory inputs. Generating irregular spiking requires (a) O (mean) fluctuations, which is ruled out by Central Limit Theorem or, (b) only O (T hreshold) fluctuations if the mean excitatory input is approximately canceled by the total inhibitory input up to the leading order and the synapses are scaled as 1 √ K . With this scaling, both the mean and fluctuations are of O (T hreshold) and the neuron emits temporally irregular spikes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.7 Schematic representation of a balanced network -a highly recurrent network with strong synapses receiving strong external input. [
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	the connectivity is a fully symmetric matrix. This produces a network where
	each neuron in population A receives K inputs on average from population B. A
	fraction p of those are reciprocally connected to neurons in population B. Whereas,
	a random network has only K 2 N bidirectional connections on average.

and Carl van Vreeswijk 1, +

  1, *, + ,

Random graphs can be constructed by starting with, say, N isolated vertices and then randomly connecting them. If each edge has a direction associated with it, the graph is referred to as being directed. Of the existing models of random graphs, ER model is commonly employed in formally describing and constructing random graphs. In this model, each edge is added with the same probability independent of other edges.

CCC is a measure for characterizing the association between two angular variables. Any angular variable α of period Π has the property α = α + nΠ, ∀n ∈ Z. The CCC r, as proposed

Here we represent the values of variables (e.g x) at the fixed point with a superscript star (i.e x ⋆ )
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Simulation and analysis code: https://github.com/shrisharaob/excess bidirectionality.git Supplementary figures orientation. (Fig. 3.2c) After maturation, cortical synaptic weights exhibit longtailed distributions with only a small number of strong synapses.

Next, we append a self contained manuscript consisting of two parts: Firstly, a balanced network model for OS with binary units. In the second part we introduce PO specific connections in this model and investigate its effects.

u AB i (t)u AB i (t ′ ) δφu AB i (t) δφ u AB i (t ′ ) δφ is the contribution to the input correlation due to input from population B.

The contribution to this correlation from the external input is given by

The input correlations due to the two feedback components, β AB , with B = E, I, depend on q A and is given by (see [9])

where q

A (∆). Selfconsistent solutions for these are obtained by imposing q (0)

A (∆) = 2 π π 0 dφ q A (θ, ∆) cos 2θ where q A (θ, ∆) is given by Eqn. (A18).

Extending these results to the case where the feedforward activity, m 0 , is also changed is straightforward:

The population averaged input u A and input variance α A are now functions of m 0 and θ, and are calculated as before. For the correlations we have to consider 2 stimuli specified by variables (m + 0 ,θ +∆) and (m - 0 ,θ -∆) respectively. The correlations in the total input are denoted by β A (m + 0 , m - 0 , θ, ∆), while for the correlations in the activity we write q A (m + 0 , m - 0 , θ, ∆). The correlation β A depends on q A as β

where q (k)

A (m + 0 , m - 0 , ∆) is the kth Fourier moment in θ of q A (m + 0 , m - 0 , θ, ∆). q A is still given by Eqn. (A18), except that now

A self-consistency requirement equivalent to that given above for m ± 0 = m 0 determines β A .

Symmetries:

The connection probabilities are even functions of the difference in positions,

). Together these two symmetries also imply that

Furthermore, under the transformation (θ, ∆) → (θ +π/2, ∆-π/2) the two input orientations, θ 1 = θ + ∆ and θ 2 = θ -∆, transform to θ 1 → θ 1 and θ 2 → θ 2 + π. With the π periodicity of the system this implies that

Finally, if we make the change, (m 0 , θ) → (m ′ 0 , θ ′ ) and (m ′ 0 , θ ′ ) → (m 0 , θ), the correlations are not changed either. This implies that

Taking these symmetries into account we can write

A (m 0 , m ′ 0 , ∆) cos 2θ as

where

A and β

A respectively and

The solution in the cases with and without map:

So far we have considered the solution in the general case. What does this imply for the network without a map (µ = 0) and the case with a map (ξ A = 0)? When there is no map, m 

|n -m| ≤ 1 and C k0n+k,k0m+l = 0 otherwise. We use

Cholesky decomposition [10] to find the lower triangular matrix L which satisfies LL T = C. We construct two N dimensional vectors, x and y whose elements are independently drawn from a Gaussian distribution with mean 0 and variance 1. From these we calculate the vectors v = L x and w = L y. Using this procedure we have that, on average v v T = w w T = C and v w T = 0.

Therefore, if we set

the time averaged quenched disorder, ∆u A i (m 0 , θ), will have the desired statistics.

Using Eqn. (A22) we can now calculate the neuronal output for different angles θ and different input levels m 0 , to generate the orientation tuning curves for a sample neuron at different contrasts. More samples can be produced by applying this algorithms to many sets of vectors, x and y, drawn independently.

Appendix B: Model with specific connections

We follow similar steps as in Appendix A to compute the order parameters of the network with specific connections.

Mean input

The population averaged mean input is defined as,

The recurrent components of the mean input is given by,

net input more than any other input component.

When κ > κ c , the PO of the recurrent input now approaches the PO of the FF input. Thus the rewiring procedure we employ reduces the mismatch between the PO of the output and that of the recurrent input, albeit the PO of the output is mostly dictated by the PO of the FF input. V1. [START_REF] Liu | Broad inhibition sharpens orientation selectivity by expanding input dynamic range in mouse simple cells[END_REF], Li et al., 2012, 2015]. Those experiments recorded the excitatory and inhibitory components of the synaptic inputs evoked by the presentation of oriented stimuli. It was discovered that excitatory input is broadly tuned. The excitatory input is weakly biased to a preferred orientation and the inhibitory input shares the same PO. The inhibitory input is significantly more broadly tuned that the recurrent excitatory input. (Fig. 3.7a)

In our simulations, we found that rewiring with strengthened synapses can explain the differences in input tuning properties. We searched for parameters (kappa and ω) such that the simulations approximately reproduced the experimental data. When kappa = ω = 0, both the excitatory and inhibitory tuning of the input into the pyramidal neurons are broad. (Fig. 3.7b) When we set kappa = 8 and ω = 10, we see very similar tuning properties of the input components as in the experiments.

(Fig. 3.7c)

Chapter 4

Summary and discussion

The work presented here comprises the study of the effects of fine structure in local cortical microcircuits on cortical dynamics and function. In particular, we studied two kinds of fine structure: excess bidirectionality and weak functional connectivity in the balanced regime. Balanced networks provide an excellent description of the statistics of cortical activity, some of its functions and an analytic framework to study these phenomena. In this framework, modulations or changes in the inputs that are O (T hreshold) might significantly alter the network dynamics and imbue the network with novel functional properties. As we have shown, both types of fine structure we have investigated, lead to an additional O (T hreshold) input to the neurons in the network.

Excess bidirectional connections

We studied three cases of excess bidirectionality, namely, within the excitatory (EE) population, within the inhibitory (II) population and between the two populations (EI). We showed that the network is stable in the presence of excess reciprocal connections. We then quantified the changes relative to control (random network) in decorrelation times, Fano factor and tuning properties. Remarkably, EE bidirectionality at experimentally documented levels has negligible effects in our model. II bidirectionality leads to longer decorrelation times, increases Fano factor and only slightly modifies the orientation selectivity. The origin of slow fluctuations and the resulting longer decorrelation times is due to delayed self-coupling, but mediated through an effective dis-inhibition. However, there is very little experimental data reporting significant I-to-I bidirectionality. In the case of EI, the decorrelation times were sped up and the Fano factor reduces while negligible changes in the tuning properties were

Appendix A

A.1 

A.2 Simulating binary networks

The flowchart below shows the algorithm used to simulate binary networks where,

.1: Ring model with specific connection is a network of binary neurons (σ(φ) = {0, 1}) with a small number of specific recurrent connections

The variance of the input is given by,

From Eq. A.4 we see that there is a O (1) modulatory input, This is due to the combination of balanced scaling of synaptic weights (i.e. J AB √ K ) and O √ K position dependent specific connections. Evolution of mean rates is given by,

Where, H(z

is the Q function. The mean activity of population A at the fixed point, can be expressed in its Fourier components Appendix B

Supplementary information and figures

Orientation selectivity with an orientation map: numerical simulations of a conductance based model Firstly, we assumed that the neurons in layer 4 are arranged in a pinwheel like structure with smoothly varying POs on a square patch with reflecting boundaries. They were modeled as Poissionian elements with cosine tuning curves. Neurons in layer 2/3 were also arranged on a square patch with reflecting boundaries and the recurrent connections within layer 2/3 was distance dependent with a Gaussian profile of variance σ rec . Layer 2/3 received structured projections from layer 4. A neuron (i, A) in layer 2/3 with coordinates (x A i , y A i ) received a connection from a neuron (j, 0) in layer 4 at position (x 0 j , y 0 j ) with probability given by a wrapped Gaussian with mean that was given by the Euclidean distance (x A ix 0 j ) 2 + (y A iy 0 j ) 2 and a variance of σ F F . Now, there is an additional condition that has to be satisfied to ensure that the layer 2/3 network is balanced. This constraint is imposed on the ratio of the footprint of the feedforward and recurrent connections. The footprint of feed forward connections must be greater than that of recurrent connections (i.e. σ rec < σ F F ).

In our simulations the model with the connectivity structure as mentioned above, we find that the tuning properties noticeably change with distance from the pinwheel center. We find that neurons close to the center of the pinwheel are less selective to the stimulus orientation than neurons in the iso-orientation domains. Which is contrary to the experimentally reported findings. Surprisingly, the tuning of response variability with stimulus shows qualitatively similar trend at all distances from pin wheel center, i.e. the tuning of the Fano-factor however has negligible change. This

Appendix C C.1 A Parallel implementation of conduction based spiking network

The results in the first part my thesis was highly dependent on numerical simulations of large scale spiking neural networks (SNN). Hence a computationally efficient implementation was imperative. The first part of my project was primarily involved with the investigation through numerical simulations the effect of excess bidirectional connections on dynamics and function of a model of rodent primary visual cortex (V1). Secondarily, as reported in the results this model was used also to investigate several other questions concerning to response properties and relate them to experimental data. This model was later modified to simulate the V1 of primates and mammals where the neurons have very specific anatomic arrangement and study the smoothness of orientation maps and response properties of neurons as a function of their position in the orientation map. The code I developed for this work is available at https://github.com/shrisharaob/cudanw Simulation of SNNs with biologically inspired neuronal models is generally a complex problem that involves solving a very large number of coupled differential equations, which demand considerable resources especially when processing of large scale networks. These simulations can are often time consuming due to restrictions that are caused by demands on computer resources, i.e. processor and memory. Although modern processors have evolved to a great extent since their beginning, they are not suitable for large scale parallel simulations of SNN unless they are configured in modern parallel architectures such as clusters, super-computers, or high-performance processors. But deployment of these systems demand exorbitant economic, physical resources and require regular maintenance. They further require meticulous calibration of the applications to achieve acceptable performance levels. As the SNN become