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Résumé: Le Dark Energy Spectroscopic Instrument (DESI)
vise à sonder la structuration à grande échelle de l’Univers
en mesurant le décalage vers le rouge de ∼ 40 millions de
galaxies dont 17M de galaxies à raies d’émission (ELGs).
Aux petites échelles, les mesures de distribution spatiale des
galaxies sont essentielles pour étudier la connexion galaxie-
halo, i.e. la façon dont les galaxies peuplent les halos de
matière noire. Cette thèse est consacrée à l’analyse de la
connexion galaxie-halo des ELGs de DESI et vise, d’une part,
à donner une image complète de la façon dont les ELGs sont
connectées au champ de matière noire, et d’autre part, à
générer des catalogues simulés de galaxies de haute fidélité
pour tester les analyses cosmologiques et corriger les ef-
fets systématiques observationnels et théoriques. Pour con-
traindre la connexion galaxie-halo des ELGs, nous utilisons
les données des deux premiers mois de DESI, soit ∼270k
ELGs à 0.8 < z < 1.6. La grande complétude de cet
échantillon permet de mesurer la distribution spatiale des
galaxies jusqu’à de très petites échelles, jamais sondées au-
paravant. La caractéristique la plus frappante est un fort
signal aux très petites échelles. Nous analysons ces don-
nées dans le cadre de la distribution d’occupation des halos
(HOD), une approche empirique reliant les galaxies et les

halos de matière noire dans les simulations à N-corps. Pour
ce faire, nous avons développé et testé une méthode pour
ajuster les modèles HOD basée sur des processus gaussiens,
puis l’avons appliquée aux données. Nous considérons dif-
férentes distributions pour les galaxies centrales et des hy-
pothèses standard pour les satellites en termes d’assignation,
positionnement et dispersion de vitesse. Pour tous les mod-
èles considérés, nous trouvons une masse moyenne de halo
pour les ELGs de l’ordre de 1011.9M⊙ et une dispersion des
vitesses des satellites environ 50% plus grande que celle des
particules de matière noire. Nous étudions diverses exten-
sions de nos modèles de base, tels que le biais d’assemblage,
la conformité centrale-satellite, un profil de positionnement
des satellites modifié et varions la cosmologie de référence.
La conformité permet de retrouver une compréhension plus
physique de la HOD. Les autres extensions n’apportent pas
de changement significatif à nos résultats, excepté quand
nous permettons aux ELGs satellites de se situer en dehors
du rayon viriel des halos. C’est avec cette hypothèse que
nous obtenons la meilleure modélisation des mesures de dis-
tribution spatiale, correspondant à ∼ 0.5% d’ELGs résidant
à la périphérie des halos de matière noire.

Title: Towards a comprehensive interpretation of the galaxy-halo connection for emission-line galaxies in the DESI
spectroscopic survey
Keywords: emission line galaxies, cosmology, galaxy-halo connection, cosmological simulations, galaxy clustering, spec-
troscopic galaxy surveys

Abstract: The Dark Energy Spectroscopic Instrument DESI
aims to probe the large scale structure of the Universe by
measuring ∼ 40 million of galaxy/quasar redshifts including
17M redshifts of emission line galaxies (ELGs). At small
scales, clustering measurements are invaluable to study the
so-called galaxy-halo connection, i.e. the way galaxies pop-
ulate dark matter halos. This thesis is dedicated to the
analysis of the galaxy-halo connection of DESI ELGs and
aims, on one hand, to give a complete picture of how ELGs
are connected to the dark matter field, and, on the other
hand, to generate high-fidelity simulated galaxy catalogues
to test cosmological analysis pipelines and mitigate obser-
vational and theoretical systematic effects. To constrain the
ELG galaxy-halo connection we focus on the first 2 months
of DESI, which collected ∼270k ELGs at 0.8 < z < 1.6.
The high completeness of this sample made it possible to
measure galaxy clustering down to very small scales, never
probed before. The most striking feature of the measure-
ments is a strong signal at the smallest scales. We analyse
these data using the halo occupation distribution (HOD)

framework, an empirical approach to link galaxies and dark
matter halos in N-body simulations. To this end, we de-
velop and test a method based on Gaussian processes to fit
HOD models, which we then apply to data. We consider
different distributions for the central galaxies and standard
assumptions for satellite assignment, positioning and veloc-
ities, which we then vary. For all models considered, we re-
port a mean halo mass of the ELG sample around 1011.9M⊙
and satellite velocity dispersions about 50% higher than that
of dark matter particles. We study various extensions of our
baseline HOD models such as assembly bias, central-satellite
conformity, modified satellite positioning and vary the fidu-
cial cosmology. Conformity allows us to recover a more
physical understanding of the HOD. The other extensions
bring no significant change to our results, except when we
allow satellite ELGs to lie outside of the halo virial radius. It
is with this assumption that we obtain the best modelling of
the measured clustering, corresponding to ∼ 0.5% of ELGs
residing in the halo outskirts.
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C osmology is an extraordinary science. This is the sentence that Vanina, my advisor, told me
when I asked her which sentence she would like to have in my manuscript. I agree with her

and I will try to explain why. Cosmology (from the Greek: kosmos, Universe and logos, theory)
is a fundamental science that aims to answer simple questions whose answers are difficult.

The Universe is constantly evolving, like knowledge. It is not immutable, but evolves with
time, observation and progress. For a century, with Einstein’s theory of general relativity, the
discovery of the Universe expansion by Edwin Hubble and Georges Lemaître our understanding
of the Universe has changed. From Einstein’s hypothesis of a static Universe, to the observation
of an accelerating expansion, our knowledge has continued to grow until today and will continue
with new observational facilities and scientific discoveries. Throughout this chapter, I wish to
express a global and comprehensive view of the Universe as we know it today. It might not be
the real story, but it is a story built on a century of scientific research and observations.

The Universe is homogeneous and isotropic on large scales. This is the first cosmological
principle. It means that its general appearance does not depend on the position of the observer.
It might be difficult to admit, as we see billions of stars in our galaxy and billions of galaxies
outside. We can even see super-structures, such as galaxy clusters or giant cosmic voids that
can reach few tens of Megaparsec (Mpc) and form, altogether a web of knots and filaments,
which is called the cosmic web. The parsec (pc) or even mega-pc (Mpc) is the standard unit
of distances in cosmology. The parsec is defined by the distance of astronomical objects (i.e.
stars), which have an angular displacement on the sky of 1 arc second(") when the Earth moves
half an orbit of the Sun (also known as parallax). A parsec is approximately 3.26 light-years, or
about 31 trillion (1012) kilometres. To give an idea, if 1 km was the size of an atom, 1 parsec
would be the Earth-Moon distance ! But these giant objects are small compared to the size
of the observable Universe (∼ 14,300 Mpc for the comoving distance between the Earth and
the edge of the observable Universe). At this scale, the Universe looks the same everywhere
(homogeneous) in every direction (isotropic). The main observable evidence of this principle is
the cosmic microwave background, a homogeneous and isotropic radiation representing the first
light of the Universe.

Today, the standard cosmological model, ΛCDM, describes the content and the dynamics
of the Universe. This model is based on only six parameters, the gravity is ruled by general
relativity (GR) and different contributions make up the energy content of the Universe today,
as shown in Figure 1.1:

• Baryonic matter: it represents the ordinary matter, the one we can see, i.e. planets,
stars, galaxies... and only represents ∼ 5% of the energy content of the Universe. The
other part ∼ 95% is the dark side of the Universe, the one we can only guess by its effect
on baryonic matter.

• Cold dark matter (CDM): it is the major component of the mass in the Universe –
∼ 85% of the mass – and ∼ 25% of the energy content of the Universe. Detected only by
its impact through gravitational effects, its nature is still unknown. It could be particles
beyond the standard model of particle physics or astrophysical objects that have to be
formed before the primordial nucleosynthesis (e.g. primordial black holes).

• Dark energy: it is the main component of the energy content of the Universe ∼ 70%. It
is a form of energy that is responsible for the late acceleration of the Universe expansion.
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• Radiation: it encompasses all relativistic species (i.e. photons, neutrinos) from the hot
and dense early Universe. Today its contribution is negligible.

Figure 1.1: Energy content of the Universe today. It is mainly dominated by a unknown form of energy
called dark energy ∼ 70%. The other ∼ 30% are matter components: ∼ 25% of cold dark matter (CDM)
and ∼ 5% of baryonic (or ordinary) matter. A negligible part (< 10−4) of the energy budget comes
from radiation, i.e. photons and relativistic neutrinos, but at the early stage of the Universe it was the
dominant part. This figure is adapted from this website: https://www.spacecentre.co.uk/news/space-now-
blog/what-s-in-the-dark/

The ΛCDM model can describe the Universe from the earliest moments, when baryons and
dark matter were condensed into a very hot plasma, to the formation of galaxies and the large-
scale structures we see today. It is based on 3 strong observational constraints, called the 3
cosmological pillars:

• the Universe expansion: a recession of galaxies at a speed proportional to their distance
from us,

• the primordial nucleosynthesis: this explains the abundance of the chemical elements
in the Universe,

• the cosmic microwave background (CMB): it is the first light from the Universe,
∼ 380, 000 years after the Big Bang.

Let’s get back in time and explore how through years of scientific research and discoveries, we
ended up with this current understanding of our Universe.

Units and convention
Throughout the thesis, as often in cosmology, we use the natural such that c = ℏ = kB = 1,
where c is the speed of light, ℏ the reduced Planck constant and kB is the Boltzmann’s constant,
and we adopt the metric signature (+,-,-,-) for gµν .

https://www.spacecentre.co.uk/news/space-now-blog/what-s-in-the-dark/
https://www.spacecentre.co.uk/news/space-now-blog/what-s-in-the-dark/
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1.1 General relativity
The theoretical framework for gravitation and distance in cosmology is based on general relativity
(GR).

1905 - Albert Einstein developed special relativity (Einstein, 1905). He introduced the notion
of space-time and linked the mass of a particle to its rest-frame energy though E = mc2. Special
relativity introduced several assumptions. The first is the invariance of physics laws when
changing from one Galilean frame to another. The second is the universality of the speed of
light, i.e. the speed of light in vacuum is invariant and independent of the observer’s motion.
This notion is opposed to the old concept that space and time were fundamental, and that
velocities were derived from them. The invariance of the speed of light in vacuum introduces
a new way of thinking. Space and time become relative to the observer’s frame and are no
longer independent. They form a unified entity: space-time. This hypothesis was confirmed by
Michelson & Morley in 18871. According to special relativity, an object with a velocity v and a
mass m has an energy given by E = γmc2, where γ is the Lorentz factor (γ = 1 when v = 0). γ

goes to infinity when the velocity of the object is close to c. Which means that a massive object
needs infinite energy to reach c. Therefore, special relativity imposes that the speed of light in
the vacuum is an universal speed limit. Massive particles would need infinite energy to reach
that limit, and only massless particles like photons travel at that speed. The notion of speed
limit is incompatible with Newton’s theory of gravitation. In Newtonian mechanics, two bodies
are attracted by gravity according to their mass, and this force is instantaneously distributed.

1915 - Einstein extended his theory of special relativity into the theory of general relativity,
taking into account the notion of speed limit for gravity. GR is based on the Equivalence
Principle. It means that the inertial mass mi, associated to the second law of Newton F = mia
is equivalent to the gravitational mass mg associated to the gravitational interaction Fg = mgg,
i.e. mi = mg. This principle has been tested and has been confirmed down to the 10−15 precision
level (MICROSCOPE Collaboration et al., 2022).

In the framework of GR, the space-time geometry is described as a 4-dimensional space (also
called manifold M), with a coordinate system xµ = (x0, x1, x2, x3) where x1, x2, x3 represent
the 3 dimensional space coordinates, x0 the 1-dimensional time coordinate and with a metric
denoted g. The distance ds between two events in space-time separated by dxµ is given by the
metric tensor gµν :

ds2 = gµνdxµdxν (1.1)

The metric gµν is a 4×4 symmetric matrix. In special relativity the metric is described with
the 4-dimensional Minkowski space-time metric:

1They tried to assess the existence of the aether by measuring the difference in the speed of light in perpen-
dicular directions at two periods of 6 months apart. It was not conclusive and has the opposite effect, proving
that the speed of light is invariant, constant with a velocity close to 300 000 km·s−1.
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gµν = ηµν ≡


+1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (1.2)

In GR, gravity is no longer considered as an external force, but is directly included in the metric.
Near massive objects, space-time will be curved and particles in free-motion (e.g. photons) will
follow this curved path called geodesics, a generalisation of a straight line over non-plane surfaces.
The geodesics of the free-moving particle (i.e. only submitted to gravitation) in a curved 4-
dimensional space-time describes the minimal path between two space points and obeys the
following equation known as the geodesic equation:

d2xα

dt2 + Γα
µν

dxµ

dt

dxν

dt
= 0 (1.3)

with Γα
µν the Christoffel symbol:

Γα
µν = 1

2gλα (∂µgλν + ∂νgµλ − ∂λgµν) (1.4)

We note the partial derivative ∂µ = ∂/∂µ.
The evolution of the metric gµν can be derived following the principle of least action. The

action used by Einstein (and first introduced by Hilbert) is the minimal action one can build
from the metric and functions of the metric and is as follows:

SEH = c4

16πG

∫
R
√

−det(gµν) d4x(1.5)

where R is the Ricci scalar, R ≡ gµνRµν and Rµν is the Ricci tensor, a function of Christoffel
symbols. R describes a scalar curvature. Other actions verifying the equivalence principle can
be used to describe a coherent theory of gravity. Among them, a simple case replaces the Ricci
scalar R by a function of this scalar f(R), leading to f(R) theories.

Varying the Einstein-Hilbert action, dSEH = 0, one can derive the Einstein equations
that govern the evolution of the metric and relate the geometry of the space-time (l.h.s) to its
matter and energy content (r.h.s):

Gµν ≡ Rµν − 1
2gµνR = 8πGTµν (1.6)

Gµν is called the Einstein tensor, G the gravitational constant and Tµν is the momentum-energy
tensor.

1917 - Einstein first applied GR under the assumption of a static universe that follows
the cosmological principle, i.e. a homogeneous and isotropic universe (no preferred direction or
orientation on the sky) on large scales ≫ 100 Mpc.

Gµν ≡ Rµν − 1
2gµνR = 8πGTµν + Λgµν (1.7)

This constant acts as an opposite effect to gravitation and counterbalances the attractive effect
of the gravity of matter. However, the hypothesis of a static Universe poses some problems: it
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requires a positive curvature, the cosmological constant must take a very specific value for the
Universe to remain static, and finally it is an unstable solution.

Note: Einstein removed the cosmological constant Λ after the discovery of the Universe expan-
sion, saying it was his biggest mistake. However, at the end of the 90s, the cosmological constant
was reintroduced after the discovery of dark energy (see Section 1.6.3)

In the meantime, the concept of an expanding universe emerged and was confirmed by
observation. In the next section we will discuss, the concepts and evidence for the Universe
expansion.

1.2 The story of the Universe expansion
1912 - A very important result from Henrietta Leavitt to build the evidence of the Universe

expansion was the relation between the intrinsic brightness of variable stars, the Cepheids, and
their pulsation period. Cepheids are giant bright stars with a periodic variation in luminosity.
H. Leavitt studied the relationship between the period and brightness of 25 variable stars of the
Small and Large Magellanic Clouds (Leavitt & Pickering, 1912). She found that the brightest
Cepheids have the longest period of variation. Figure 1.2 shows the original diagram of the
luminosity-period relation from Leavitt’s paper in 1912. From these results, she could connect
the apparent brightness of these stars to their intrinsic brightness. Knowing the intrinsic bright-
ness allows the distance of these stars to be measured. Couple of decades later, Edwin Hubble
will use Leavitt’s results to measure the distance of galaxies to demonstrate the expansion of

Figure 1.2: Original plot from Leavitt’s paper in 1912. It shows the period of 25 Cepheids as a function
of their magnitude. Solid lines connect points corresponding to the Cepheid’s minimum and maximum
brightness, respectively.
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the Universe. Cepheids are nowadays used as standard candles (i.e. light sources with a known
intrinsic luminosity) to derive distances accurately.

Note: Henrietta Leavitt died of cancer in 1921. Unaware of her death, a Swedish mathemati-
cian, Gösta Mittag-Leffler, attempted to nominate her for the Nobel Prize in 1924. Unfortu-
nately, she was not awarded the Nobel Prize posthumously. Edwin Hubble often said that she
deserved the Nobel Prize. She would then have been the second woman to win the prize in physics
after Marie Curie in 1920.

1917 - Vesto Slipher (Slipher, 1917) measured the spectra of 25 nebulae – old name for
galaxies, for at this time it was not excluded that nebulae were part of the Milky Way – and
derived their recession velocities. He measured the spectral shift of emission lines (here Hα)
due to velocities, and interpreted it as a Doppler effect. In practical terms, for a source moving
away from the observer, the spectral lines will appear at a wavelength greater than that of the
spectrum at rest. The spectral lines are red-shifted. Conversely, for a source moving closer to
the observer, spectral lines will have a lower wavelength, i.e. will be blue-shifted. Slipher showed
that out of 25 nebulae, only 4 are approaching us, the others are moving away. He measured
redshifts with recession velocites up to 1100 km·s−1, indicating that such objects could be outside
our galaxy. This result was heavily discussed in the scientific community. It suggested that the
nebulae were outside our galaxy and that the Universe was therefore much larger than scientists
thought at the time. Doubts remained until the results obtained by Edwin Hubble in 1929.
Slipher’s result was one of the first hints for the expansion of the Universe.

1922 - Based on Einstein’s GR, Alexander Friedmann published his theoretical work con-
sidering a homogeneous, isotropic Universe, with spherical or flat geometry (Friedman, 1922).
Contrary to the results obtained by Einstein in 1917, he did not assume a static Universe but
a dynamic one, taking into account any value of the cosmological constant Λ. Expanding or
contracting universes are possible solutions. In this framework he derived a set of equations,
so-called Friedmann equations that describe the dynamics of the Universe as a whole. His results
show three possible geometries for the Universe: an open universe with a negative curvature,
a closed universe with a positive curvature and a flat universe with a null curvature. He also
mentioned that a non-static Universe can imply an original singularity. Friedmann’s work is
nowadays the theoretical basis of modern cosmology to describe the dynamics of an expanding,
homogeneous and isotropic Universe. In Section 1.3 we review the mathematical framework
introduced by Friedmann. Unfortunately he died in 1925, before the evidence of the Universe
expansion.

1927 - Georges Lemaître measured the distance of nebulae (galaxies) and their veloci-
ties (Lemaître, 1927). He discovered that galaxies are moving away from us and that their
velocity increases in proportion to their distance.

1929 - Edwin Hubble (Hubble, 1929) confirmed these results and introduced the Hubble
constant H0, coefficient of proportionality between the distance D and the velocity v of galaxies:
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Figure 1.3: Left: Original Hubble diagram (Hubble, 1929) showing the distance-velocity relation of nearby
galaxies. Right: Same diagram made by Georges Lemaître (Lemaître, 1927).

v = H0D (1.8)

Figure 1.3 shows the original measurements from E. Hubble (left panel) and G. Lemaître (right
panel). They found a value for H0 of 530 and 570 km·s−1·Mpc−1, respectively. This was the
first measurement/evidence for the Universe expansion, meaning that two galaxies separated by
1 Mpc today, are moving away from each other at velocity H0 km·s−1·Mpc−1. The subscript
0 refers to the value of the Universe expansion at the present time. In cosmology the Hubble
constant is usually expressed in the following way :

H0 = h · 100 km·s−1·Mpc−1 (1.9)

where h is a dimensionless parameter. Using this parametrisation allows us to express the
Universe expansion in unit of h without assuming a value for H0. Today, H0 value is mea-
sured ∼ 70km·s−1·Mpc−1, but there is strong disagreement – more than 5σ – between two
independent methods to measure H0. The first one is derived from a cosmological fit to
early-Universe measurements from the Comic Microwave Background (CMB), and gives: H0 =
67.36 ± 0.54km·s−1·Mpc−1 (Planck Collaboration et al., 2020). The second method is a direct
distance-ladder measurement from late-Universe Cepheid and Supernova measurements, which
gives: H0 = 73.04 ± 1.04km·s−1·Mpc−1 (Riess et al., 2022).

The Hubble constant has the dimension of [t−1]. The inversion of H0 gives the so-called
Hubble time tH , which gives the characteristic time scale of an expanding Universe:

tH = t0 = H−1
0 = h−1 · 1

100 s · Mpc · km−1 = h−1 · 9.78 · 109 years. (1.10)

It is the time required for the Universe to expand to its present size, assuming that the Hubble
parameter has remained unchanged since the Big Bang. Using h = 0.7 we find tH = 13.97
billion years. In practice, the age of the Universe can be expressed in units of the Hubble time.
In a universe without dark energy, the age of the observable universe today would be equal to
2/3 of the Hubble time. Within the current cosmological model of our Universe, the age of the
Universe today is close to one Hubble time.
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The distance travelled by light during one Hubble time tH is called the Hubble distance:

DH = tH · c = c

H0
≈ 3 Gpc/h (1.11)

In the next section, we mathematically describe the dynamics of a homogeneous, isotropic and
expanding universe.

1.3 Friedmann-Lemaître–Robertson–Walker metric
The metric to mathematically describe a homogeneous, isotropic and expanding Universe is the
Friedmann-Lemaître–Robertson–Walker (FLRW):

ds2 = dt2 − a2(t)
[

dr2

1 − kr2 + r2
(
dθ2 + sin2 θdϕ2

)]
(1.12)

This metric is defined by three spherical spatial coordinates [r, θ, ϕ] and one temporal coordinate
t, the cosmic time. The radial part of the metric can be affected by the curvature of space-time
k. The Universe can be open, flat or closed (respectively k < 0, k = 0, k > 0). Figure 1.4 gives
a representation of a 2D surface in the different cases.

Figure 1.4: Schematic representation of the curvature of the Universe. From left to right, in a closed
Universe k > 0 it can be seen as a sphere, a saddle for an open Universe k < 0, and a plane for a flat
Universe k = 0.

In an expanding Universe, we consider object positions as fixed in an expanding space and
we define a scaling factor a(t) that describes the expansion of the space itself at a given time.
In practice, objects keep the same coordinates (called comoving coordinates) at any time, so
that their comoving distance will remain the same, whereas their proper distance (or physical
distance), i.e. their distance that would be measured at a given time with a rigid ruler, will
increase following the Universe expansion. Figure 1.5 shows a representation of the comoving
distance. Points x1 and x2 at time t1 < t2 keep the same coordinates and their comoving distance
dc is the same at different scale factors, but their proper distance d increases as dc = a · d. The
scale factor at present time t0 is set to unity and denoted a0 ≡ a(t0) ≡ 1. We also introduce the
conformal time:

η ≡
∫

a−1dt (1.13)
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Figure 1.5: Schematic representation of the comoving and proper distances taken from (Dodelson &
Schmidt, 2020). The proper size of the square increases with time following the Universe expansion a(t)
but the comoving coordinates do not change.

Assuming the FLRW metric, the energy-momentum tensor Tµν of the background matter can
be described by that of a perfect-fluid. We can decompose this tensor into different components
(or species) (s), each characterized by a pressure term P (s) and a density term ρ(s):

Tµν =
∑

s

T (s)
µν =

∑
s

(
ρ(s) + P (s)

)
uµuν + P (s)gµν (1.14)

with uµ the four-velocity of the fluid in comoving coordinates. The homogeneity implies that P

and ρ are only functions of the cosmic time t. Isotropy (and non-internal rotation of the fluid)
implies that non-diagonal terms of the energy-momentum tensor are null.

From Einstein equation Equation (1.7), imposing local energy conservation, using Equa-
tion (1.14) and some math, one can derive the Friedmann equations (this derivation can be
found in many textbooks, it will not be described in details here):

(
ȧ

a

)2
= H2 = 8πG

3 ρ − k

a2 + Λ
3

ä

a
= −4πG

3 (ρ + 3P ) + Λ
3

(1.15)

The dot (·) represents the cosmic time derivative. P and ρ are the total pressure P = ∑
s P (s)

and total density ρ = ∑
s ρ(s), respectively. The first equation above relates the cosmological ex-

pansion Hubble parameter, H = ȧ/a, to the total energy density. The second equation describes
the deceleration of the expansion of the Universe. From Equation (1.15), using the covariant
conservation of the total energy-momentum tensor ∇νT νµ = 0, we can derive the continuity or
conservation equation:

ρ̇ + 3H(ρ + P ) = 0 (1.16)

This equation describes how energy density of particles are diluted by the Hubble flow. To solve
the system of equations in Equation (1.15), where we have 2 equations for 3 unknowns a, ρ, P ,
we need to introduce a third ingredient. We can write the equation of state of a given fluid as:

P = wρ (1.17)
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For a single fluid with w = constant, the evolution of ρ and P for a flat Universe (k = 0) can be
derived by solving the Friedmann equation:

ρ ∝ a−3(1+w) (1.18)

Solutions differ according to the type of fluid, corresponding to different values of the equation-
of-state parameter, w. They are summarised in Table 1.1.

The set of equations Equation (1.15) and Equation (1.17) fully describe the dynamics of
the cosmological expansion. From equations Equation (1.15), we introduce the critical energy
density of the Universe at a given time:

ρc(a) ≡ 3H2(a)
8πG

(1.19)

The first equation in Equation (1.15), is equivalent to say that, at any time, the total energy den-
sity in the Universe verifies: ∑s ρ(s)(a) = ρc(a). Today, the critical density of the Universe, ρc,0
is ∼ 5 proton/m3. In cosmology, we define a density parameter for every component normalised
by the critical density as follows:

Ωs(a) ≡ Ω(s)(a) = ρ(s)(a)
ρc(a) (1.20)

At any time, we have: ∑s Ωs(a) = 1. Parameter values today will be labelled as: Ωs,0. As
ρc,0 depends on H2

0 which is not perfectly known, cosmologists often report the density terms
as a combination of the density Ωs,0 and reduced Hubble constant h, defined as ωs,0 ≡ Ωs,0h2.

From the solutions of the Friedmann equations in Table 1.1, we can get the relative contri-
bution of each component of the Universe, ρ(s)(a) ∝ an and rewrite the first Friedmann equation
as:

H2(a) = H2
0
∑

s

Ωs,0a−3(1+ws)

≡ H2
0 E(a)2

(1.21)

In the current Universe, the different components that contribute to the total energy density of
the Universe are: dark energy (ΩΛ), cold dark matter and baryonic matter (Ωm = Ωcdm + Ωb),
radiation (photons and relativistic neutrinos, Ωrad = Ωγ + Ων) and curvature (Ωk) (see Fig-
ure 1.1). We will describe in more details the energy content of the Universe in Section 1.6. In
the next section we describe the cosmological distances.

Table 1.1: Solutions of Friedmann equations considering different components in the Universe.

Component Equation of state Energy density Scale factor
Cosmological constant w = −1 ρΛ ∝ constant a ∝ eHt

Curvature w = −1/3 ρk ∝ a−2 a ∝ t

Non-relativistic matter w = 0 ρm ∝ a−3 a ∝ t2/3

Radiations w = 1/3 ρr ∝ a−4 a ∝ t1/2
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1.4 Distances in cosmology
This thesis aims at use the spatial distribution of galaxies to constrain cosmological models.
Therefore, we need to properly define distances. Based on the FLRW metric, i.e. an homoge-
neous and isotropic universe, we can determine distances in different ways.

➢ Redshift

To measure the distance of an object, one can measure its redshift. As the Universe expands,
galaxies move away from us, and their spectra are red-shifted. This redshift z is related to the
scale factor a(t) by:

1 + z = λobs

λRF
= a0

a
(1.22)

where λobs and λRF are the observed and rest frame wavelenghts. Since galaxies move in a flow,
driven by the expansion of the Universe, called the Hubble flow, by measuring the redshift, we
can accurately determine the distance of an object in the Hubble flow. This is commonly used
to get the galaxy distances. Using the above relation, we can rewrite E(a) in Equation (1.21)
as a function of the Universe components and the redshift (for ΛCDM cosmology):

E(z) =
√

Ωrad(1 + z)4 + Ωm(1 + z)3 + Ωk(1 + z)2 + ΩΛ (1.23)

However, other contributions affect the redshift measurement. In space-time, objects have also
a peculiar velocity, vpec, that has a small but non-negligible contribution to the redshift by the
Doppler effect :

1 + zpec =
√

1 + vpec/c

1 − vpec/c
≈ 1 + vpec

c
(1.24)

Peculiar velocities are of the order of a few hundred km·s−1, corresponding to zpec ≈ 0.001.
So, when the measured redshift z ≪ 1, the contribution from peculiar velocities is dominant,
otherwise what prevails is the contribution of the Hubble flow, called cosmological redshift. The
effect from peculiar velocities may be small, but as described later in the manuscript, it is very
useful for measuring and constraining cosmological models through redshift space distortions
(RSD).

Another contribution to the redshift is the gravitational redshift also called Einstein redshift.
It is caused by the difference in magnitude of the gravitational potential between the observer
and the photon source. A photon going through a strong gravitational field looses energy when
leaving this gravitational well, which translates in an additional redshift, zg. This effect arises
only in very strong gravitational fields, e.g. near black holes, neutron stars, white dwarf stars...
and is therefore negligible in other cases. We ignore this effect throughout the manuscript.

At large distances, the redshift is dominated by the effect of the scale factor and can therefore
also be used as a time indicator. The further away an object is, the higher its redshift and the
more it is observed in a young Universe because of the finite speed of light. Whereas an object
observed in the local Universe close to us, is observed almost as it is today.
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Note: As light travels at a finite speed, the distance light could have travelled since the beginning
of time (t = 0) is also finite. We define the comoving cosmological horizon, χH ≡

∫ t
0 dt′/a(t′).

This is the maximum distance at which information is accessible (assuming no interactions
between photons).

Comoving distance

We have already mentioned the difference between the proper distance and the comoving dis-
tance, which takes into account the expansion of the Universe. We introduce the radial comoving
distance, the distance travelled by light emitted by a distant object, following the geodesic (the
fastest path) until the observer. The radial comoving distance DC is computed by integrating
along the geodesic from today at z = 0 to the object position at the time light was emitted ze:

DC =
∫ ze

z=0

dz

H(z) (1.25)

At the same redshift, the comoving distance between two objects separated in the sky by an
angle dθ is defined to be DM dθ with the comoving transverse distance DM given by:

DM =


DH

1√
Ωk

sinh
[√

ΩkDC/DH
]
, for Ωk > 0,

DC, for Ωk = 0,

DH
1√
|Ωk|

sin
[√

|Ωk|DC/DH
]

, for Ωk < 0.

(1.26)

where DH = c/H0 is the Hubble distance defined in Equation (1.11) and Ωk the energy density
of the Universe curvature. This distance can be known only if we have access to the emitter
spectrum which is not always the case.

Angular diameter distance

We can also use the angular diameter distance, DA, defined as the ratio of an object proper
transverse size to its angular size, which is related to DM via:

DA = DM

1 + z
(1.27)

It is used to obtain the proper separation between two sources from the angular separation
measured from imaging. The interesting property of the angular distance is that it does not
increase indefinitely when z → ∞, but reaches its maximum at z ∼ 1 and then decreases, which
means that objects at z > 1 appear larger in angular size (see Figure 1.6).

Luminosity distance

Another distance used in cosmology, especially to measure distances of standard candles (Cepheids,
supernovae...), is the luminosity distance. It is defined by the relationship between the bolometric
(i.e. integrated over all frequencies) flux, ϕ and the bolometric luminosity, L:
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DL =
√

L

4πϕ
(1.28)

The luminosity distance is related to the transverse comoving distance (and angular diameter
distance) by:

DL = (1 + z)DM = (1 + z)2DA (1.29)

Specifying Ωs,0 and H0 we can compute the distance using Equation (1.21) and Equation (1.23).
Figure 1.6 shows the evolution of the cosmological distances previously defined as a function of
the redshift for a flat Universe with a cosmological constant.

Lookback time

Finally, we introduce the lookback time tL, the difference between t0, the age of the Universe
today and the age of the Universe at the time photons were emitted from the source, ze:
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Figure 1.6: Evolution of the cosmological distances as a function of redshift. The comoving transverse
distance, angular and luminosity distances are represented by the solid dark blue, purple and orange lines,
respectively.
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tL = 1
H0

∫ ze

0

dz

(1 + z)E(z) (1.30)

Comoving volume
Using the distances previously described, we can derive the comoving volume at a given redshift
z for a given solid angle dΩ on the sky:

dVC = DH
(1 + z)2D2

A

E(z) dΩdz (1.31)

Integrating the above equation from z = 0 to a redshift z gives the all sky comoving volume.
Considering the case of an open (Ωk < 0), flat (Ωk = 0) and closed (Ωk > 0) Universe, we have:

VC =



(
4πD3

H
2Ωk

)[
DM
DH

√
1 + Ωk

D2
M

D2
H

− 1√
|Ωk|

arcsinh
(√

|Ωk|DM
DH

)]
for Ωk > 0

4π
3 D3

M for Ωk = 0(
4πD3

H
2|Ωk|

)[
DM
DH

√
1 + Ωk

D2
M

DH
− 1√

|Ωk|
arcsin

(√
|Ωk|DM

DH

)]
for Ωk < 0

(1.32)

We can also determine the Hubble volume, which is the volume of a sphere of radius DH :

VH = 4
3πD3

H ≈ 113 [Gpc/h]3 (1.33)

1.5 The early Universe

1.5.1 The story of elements: Big Bang nucleosynthesis
1948 - Ralph Alpher, Hans Bethe and George Gamow published a paper entitled The Origin
of Chemical Elements (Alpher et al., 1948a), commonly called the αβγ paper. This paper is the
first that described the formation of elements in the Universe, and states that a process, the Big
Bang nucleosynthesis or primordial nucleosynthesis, should create light elements, i.e. hydrogen,
helium, lithium and beryllium in the correct proportions to explain their abundance in the early
Universe.

The Big Bang Nucleosynthesis (BBN) is one of the three pillars of the cosmological model. It
is the process that produces the light elements we can see in the Universe today. BBN happens
in the early Universe starting when the temperature of the Universe cools down to T < 1 MeV
and lasts for a few minutes. Before that time, the Universe is too hot and too dense to allow the
formation of bound nuclei. Protons, neutrons and neutrinos are in thermal equilibrium through:

n + νe ↔ p + e−

p + ν̄e ↔ e+ + n

n ↔ p + e− + ν̄e

(1.34)

This equilibrium lasts until freeze-out, which happens when the reaction time becomes longer
than the Hubble time tH = H−1, the characteristic time for temperature and density changes
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due to the expansion. At T ≃ 0.8 MeV the equilibrium is lost, neutrinos stop interacting with
the rest of the matter and start to freely propagate through the Universe. At this time, the
proton over neutron ratio has a value around 1/6 (Particle Data Group et al., 2022).

After freeze-out, the neutrons are free to decay into protons and the neutron fraction de-
creases at a rate governed by the neutron lifetime, τn = 879.4±0.6 s (Particle Data Group et al.,
2022). Simultaneously, the first phase of deuterium formation starts but is counter-balanced by
photo-dissociation due to the high number density of photons, n + p ↔ D + γ. This delays the
production of deuterium until T ∼ 60 keV. At that time, the neutron fraction has decreased to
∼ 0.1. The primordial nucleosynthesis chain then starts: deuterium (D), tritium (T ), helium-4
(4He), lithium-7 (7Li) are formed. Below we list the main processes that arise during this period:

n + p → D + γ

D + p → 3He + γ

D + D → 3He + n

D + D → T + p

T + D → 4He + n
3He + n → T + p

3He + D → 4He + p
3He + 4He → 7Be

4He + T → 7Li
7Li + p → 4He + 4He

7Be + n → 7Li + p

(1.35)

The primordial nucleosynthesis lasts until T ∼ 30 keV (so for a few minutes in total) when the
Universe is no longer hot and dense enough to continue the reaction processes. The formation of
light elements stops at 7Li because of the absence of stable elements at A = 5,8 and because the
temperature and density conditions are no longer satisfied to get heavier nuclei. The synthesis
of heavier elements will start again once stars are formed and initiate the stellar nucleosynthesis,
creating elements up to iron 56Fe. Then, high energy events, such as supernovae or neutron star
collapses will create elements heavier than 56Fe. Their abundances are very low compared to
those of the light elements formed during BBN. In astrophysics, elements heavier than lithium
(and even helium) are commonly called metals.

The abundance of elements created during the primordial nucleosynthesis can be calculated
using dedicated codes that require input from nuclear physics. Predicted abundances depend
primarily on the ratio between the baryon and photon number densities, η ≡ nb/nγ . In the
standard cosmological model, the present value of η was set a few seconds after Big Bang and
has not changed till the present epoch. Figure 1.7 shows the evolution of these abundances as
a function of temperature (or time). The result of the BBN is that the Universe is composed of
hydrogen H at ∼ 75%, helium-4 4He at ∼ 25% and very few other light nuclei up to lithium-
7 7Li. Theoretical predictions of light element abundances in the early Universe agree well
with the measurements (Cooke et al., 2018), except for 7Li, for which observations find a lower
abundance (Particle Data Group et al., 2022). It could be due to astrophysical effects related to
stellar nucleosynthesis that can affect the measurements of primordial abundances, and is still
an important question to solve.



18 CHAPTER 1 Modern Cosmology

Figure 1.7: Evolution of the mass fraction of light elements during BBN as a function of temperature
(lower x-axis) and time (upper x-axis). From (Pospelov & Pradler, 2010).

1.5.2 Birth of light: the cosmic microwave background
1948 - Continuing the reasoning behind the BBN, George Gamow published a paper entitled
The Evolution of the Universe (Gamow, 1948). Ralph Alpher and Robert Herman published
an erratum of this paper and predicted the temperature of the present Universe to be ∼ 5
K (Alpher et al., 1948b). One year later, they published a paper entitled: Remarks on The
Evolution of an Expending Universe where they introduce a model of expanding universe "in
which there is a homogeneous and isotropic mixture of radiation and matter, assumed to be
non-interconverting". They confirm their calculation of a present temperature of 5K for the
Universe, due to a black body radiation coming from early times (Alpher & Herman, 1949).

1964 - A light coming from the very early Universe was discovered by chance by Arno Penzias
and Robert Wilson who were initially looking for neutral hydrogen and were disturbed by a faint,
noisy and isotropic signal while calibrating their microwave antenna in New Jersey. Meanwhile,
Robert H. Dicke, Jim Peebles and David Wilkinson were preparing to search for microwave
radiation from the Big Bang. Luckily, they were at Princeton University, just 60 km from the
Penzias and Wilson radio telescope. The two teams interacted and published their results jointly,
indicating that they had measured a residual background that could be a possible observation of
the cosmic background radiation predicted by R.Alpher, R.Herman and G.Gamow (Dicke et al.,
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1965, Penzias & Wilson, 1965). Penzias and Wilson were awarded the Nobel Prize in Physics
for their joint detection in 1978, and J. Peebles recently (in 2019) received the Nobel Prize in
Physics “for theoretical discoveries in physical cosmology”.

Note: In 1941, Andrew McKellar studied the absorption lines in the spectra of B-type stars
produced by cyano radicals (CN) in the interstellar medium. He determined that they must
be bathed in a ∼ 2.3 K radiation, and associated this temperature with that of the interstellar
medium but this was potentially the first observation of the CMB.

1970s - After the discovery of the CMB, a question remained: if the Universe was perfectly
isotropic in its early stage (at the time of CMB emission), how does it come from that the matter
distribution in the Universe has large anisotropies, namely the large scale structures that we see
today ? This questioning led theorists (J. Peebles, Y. Zel’dovich and R. Sunyaev) to predict that
the CMB should have anisotropies to serve as seeds for the cosmic structure we observe today.
The first anisotropy found in the CMB was the observation of a dipole, due to the displacement
of the Earth w.r.t. the CMB rest frame (Conklin, 1969, Henry, 1971).

1989 - After the launch of the COBE satellite, the first anisotropies in the temperature power
spectrum of the CMB were detected. This measure was a striking evidence and a confirmation
of the validity of the Big Bang model. It also confirmed the first principle of cosmology: the
Universe is homogeneous and isotropic on large scales. These temperature fluctuations have
been measured very precisely by the Planck satellite (see Figure 1.9) and are of the order of
δT/T ∼ 10−5.

Since its discovery, the CMB has been widely studied and measured with very high precision
by space missions: COBE (Cosmic Background Explorer) from 1989 to 1993 (Smoot et al., 1992),
WMAP (Wilkinson Microwave Anisotropies Probe) from 2001 to 2007 (Bennett et al., 2013),
and the Planck satellite from 2008 to 2013 (Planck Collaboration et al., 2020). Figure 1.8 shows
the measurement of the CMB spectrum by COBE, compared to a black body spectrum with
T = 2.728 K. The data point are invisible on the figure because their error bars are smaller than
the width of the line! Indeed, the CMB provides the best black body spectrum ever measured.

The cosmological interpretation of the CMB is as follows. During the period following the
BBN, the Universe is dominated by radiation and the temperature of the Universe is still high
enough to ionise the recently-formed atoms. Light elements (also called baryons) and photons
are strongly coupled and form an ionised plasma called the baryon-photon plasma. The Universe
is totally opaque, protons and electrons interact permanently by the photo-ionisation process,
creating hydrogen which re-ionises instantaneously, generating photons:

p+ + e− ↔ H + γ (1.36)

The Universe is in thermal equilibrium and its energy distribution follows a black body spectrum.
During this period, the Universe continues to expand and cool, so that at some point, the
Universe is no longer dense and hot enough to maintain the above equilibrium, which therefore
breaks down: it is the start of the recombination epoch. When the Universe reaches a temperature
T ∼ 0.26 eV, the density of hydrogen (or protons) np is low enough for the mean free time of
photons, τγ , to exceed the Hubble time tH = H−1. The photons then decouple from the plasma
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Figure 1.8: Intensity of the cosmic microwave radiations measured by COBE as a function of frequency.
The solid line shows a theoretical black body spectrum with T = 2.728 K (Fixsen et al., 1996). The data
point are invisible, and their errors are smaller than the width of the line.

and travel freely through the Universe, while the electrons and protons recombine to form
atoms. Since then, these photons at equilibrium before recombination have been redshifted
and form the cosmic microwave background (CMB). The thermal character (black body) of
the CMB spectrum is conserved by the Universe expansion. This is what we observe today,
i.e. a redshifted black body spectrum of photons produced at the last-scattering surface. This
radiation offers a snapshot of the first "free" light of the early Universe, which is very valuable
to study cosmology. The recombination occurs at redshift zrec ∼ 1100 when the Universe was
∼ 380, 000 years old.

Note: Similarly to the CMB (Section 1.5.2), the Big Bang model predicts the existence of relic
neutrinos, a radiation from these neutrinos that freely travel since the neutrino decoupling in the
early Universe. Unfortunately, a direct detection of relic neutrinos is very difficult, and there is
no observation evidence of this signal yet. However, the success of BBN predictions gives a real
theoretical evidence for the existence of relic neutrinos.

Today the CMB is a major source of information in cosmology. It is one of the most impor-
tant probes that confirm the hot Big Bang theory. The anisotropies in the CMB map can be
compressed into an angular power spectrum, which, through fits by cosmological models, pro-
vides the most significant constraints on cosmological parameters today. The CMB temperature
power spectrum measured by (Planck Collaboration et al., 2020) is shown in Figure 1.10. Best
fitting cosmological parameter values from the CMB measurement (TT, TE, EE, lowE, lensing,
see note below), assuming a flat ΛCDM model with two massless and one massive neutrino
(mν = 0.06 eV), are summarized in Table 1.2.
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Figure 1.9: CMB temperature fluctuation map from (Planck Collaboration et al., 2020) after foreground
subtraction.

reduced Hubble constant h 0.6736 ± 0.0054
baryon density ωb,0 0.02237 ± 0.00015

cold dark matter density ωc,0 0.1200 ± 0.0012
dark energy density ΩΛ,0 0.6847 ± 0.0073

optical depth at reionisation τrei 0.0544 ± 0.0073
redshift of reionisation zrei 7.67 ± 0.73

index of the primordial power spectrum ns 0.9649 ± 0.0042
amplitude of the primordial power spectrum ln

(
1010As

)
3.044 ± 0.014

normalisation of the matter power spectrum σ8,0 0.8111 ± 0.0060
redshift of matter-radiation equality zeq 3402 ± 26

last scattering redshift z⋆ 1089.92 ± 0.25
drag redshift zdrag 1059.94 ± 0.30

sound horizon at the drag epoch rdrag [Mpc] 147.09 ± 0.26

Table 1.2: Cosmological parameter 68% intervals as measured from Planck TT, TE, EE, lowE and lensing
data, within the flat ΛCDM model (Planck Collaboration et al., 2020)

Note: In addition to the temperature (T) fluctuations, the polarisation of the CMB light can
be measured in two projected modes: E and B. B modes are only caused by tensor modes, i.e.
gravitational waves. The detection of primordial B modes would give major insights for inflation.
E modes are produced by scalar and tensor modes and have been measured. Constraints from the
CMB on cosmological parameters come from the combined fit to the three measured power spectra:
TT, TE and EE. lowE adds low-ℓ data (large scales, 2 < low-ℓ < 29) to the EE constraint. In
addition, results are also derived adding the measured CMB lensing power spectrum: the large
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Figure 1.10: CMB temperature anisotropy power spectrum from Planck. x-axis bins are logarithmic for
l < 30. : Top: Red dots with error bars are data and the blue line shows the best-fit model from (Planck
Collaboration et al., 2020). Bottom Best fit residuals.

scale structures lens the CMB light, leaving a signal on the CMB (detected at 40σ by the Planck
collaboration).

The Baryonic Acoustic Oscillation

Before recombination, baryons are submitted to radiative pressure forces due to their coupling
with photons. As there are anisotropies in the CMB spectrum, regions with higher temperature
are denser whereas under dense regions are cooler. Baryons are also submitted to gravity and
fall into over-dense regions. Therefore, a competition between radiative pressure and gravity
occurs and leads to the propagation of acoustic waves in the baryon-photon plasma. These
acoustic waves propagate until the time of photon-baryon decoupling when acoustic waves (or
oscillations) of baryons are frozen. This time is called the drag epoch, zd. Acoustic waves travel
at the sound speed in the baryon-photon plasma:

cs(z) = c√
3

[
1 + 3ρb(z)

4ργ(z)

]
(1.37)

At zd, ρb ≪ ργ , so the sound speed in the baryon-photon plasma is ∼ c/
√

3. At the time of the
drag epoch td, the sound waves have travelled a distance rd(zd) ≈ cs ·td called the sound horizon.
Once the acoustic waves are frozen, they leave an imprint at this characteristic distance rd(zd)
in the baryon-photon plasma, corresponding to a small over-density in the spatial distribution
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of matter. This feature is called the Baryonic Acoustic Oscillation or BAO. We can compute
the size of the sound horizon today rd(zd ∼ 1060) using the cosmological parameter values from
Planck:

rd (zd) =
∫ ∞

zd

cs(z)
H(z)dz = 99.08 ± 0.33 Mpc/h (1.38)

The BAO scale rd(zd) is fixed at the drag epoch zd, and since then evolves only through the Uni-
verse expansion. It is today used as a standard ruler to constrain the cosmological parameters.
This imprint can be measure at different epochs of the evolution of the Universe in the clustering
(spatial distribution) of galaxies. The BAO scale was first measured in the spatial distribution
of galaxies by e.g. the Sloan Digital Sky Survey (SDSS) collaboration (Eisenstein et al., 2005).
Then, measurements of BAO scales were performed at different redshifts. The latest measure-
ments are from the extended Baryon Oscillation Spectroscopic Survey (eBOSS) collaboration
that performed a precise measurement of the BAO at different redshifts using different galaxy
populations (called tracers) (Alam et al., 2021a). Figure 1.11 shows the measurement of the
BAO peak in the clustering of galaxies and quasars at 6 different epochs. The peak corresponds
to a statistical overdensity between pairs of galaxies separated by the characteristic scale rd(zd).

One of the main goals of the Dark Energy Spectroscopic Instument (DESI) is to improve
the precision of the BAO measurement, by covering a wider redshift range and increasing by a
factor ∼ 13 the number of observed galaxies and quasars.

Figure 1.11: Representation of the spatial galaxy distribution measured by the eBOSS survey (Alam et al.,
2021a). For each type of galaxies, the BAO peak is represented on the right in the 2 two point correlation
function.
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1.5.3 Inflation
The CMB measurement shows that the Universe looks similar in every direction. However this
finding leads to several problems. The speed of light imposes a limit on the causality between
two events. In a radiation dominated Universe, the physical scale for two events to be causally
related from t = 0 to recombination corresponds to a solid angle ∼ 1deg2. Therefore, a first
question arises: how can we explain that regions separated by scales which seem uncorrelated
today, have almost the same temperature in the early Universe? This is known as the horizon
problem. Another problem arises during the radiation era of the Universe and is known as
the flateness problem. From Friedmann equations, in a universe dominated by radiation, the
curvature increases exponentially with time (see Table 1.1). However, measurements from many
probes tend towards a flat Universe, Ωk = 0 today.

1981 - Alan H. Guth proposed a mechanism that could reconcile the CMB measurements and
the dynamics of the primordial Universe (Guth, 1981). By assuming a very brief but incredibly
rapid expansion of the Universe that occurred in the first fraction of a second after Big Bang,
it is possible to address both problems. This period is called inflation. During this period, the
Universe, which was initially small (∼ Planck length), exponentially expands and its volume
becomes order of magnitudes larger than the observable Universe today in less than a second.
This can explain the flatness, homogeneity and isotropy of the Universe we see today. It is also
thought that the inflationary period seeded the Universe with tiny quantum fluctuations that
evolved into the large-scale structures we observe today.

As of today, many models describing the inflation phase exist. The simplest one introduces a
single scalar inflation field in the slow-roll regime. Slow-roll regime means that the inflation field
ϕ evolves very slowly compared to its potential V (ϕ), leading to an inflationary phase during
which the scale factor evolves exponentially a ∝ eHt. This period is very difficult to probe
experimentally. However, inflationary models predict the existence of primordial gravitational
waves. These waves would affect the temperature anisotropy and polarization of the CMB but
have not yet been detected. The discovery of primordial gravitational waves would confirm
the existence of an inflationary period and allow the expansion rate of inflation Hinflation to be
determined. The future space telescope LiteBird (scheduled for launch ∼ 2030) and the ground-
based experiment CMB-S4 aim to measure the signature produced by primordial gravitational
waves on the CMB (Abazajian et al., 2016, Collaboration LiteB I R D et al., 2023).

1.6 Energy content of the Universe
In this section we describe the composition of our Universe as we know it today from Planck
Collaboration et al. (2020) results. We make an inventory of the different species and their
evolution over time. We refer to Figure 1.1 for a pie chart of the Universe components today.
The evolution of the energy density of each species Ωs is shown in Figure 1.12. The early
Universe is dominated by radiation, then it transitions to a matter dominated era. We define
zeq, the time of radiation-matter equality (Ωrad = Ωm). After the matter dominated era, the
Universe enters a phase of accelerated expansion where dark energy ΩΛ dominates. In this
section, we assume as fiducial cosmology the final Planck ΛCDM results described in Table 1.2.
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grey dashed line is zrec the time of recombination, when photons from the CMB were emitted.

1.6.1 Radiation
The term radiation includes all relativistic species present at a given redshift z. At present,
radiation comes mostly from CMB photons, relativistic neutrinos and any other possible thermal
relic. All other sources of photons, i.e. from stars or galaxies, are negligible.

Photons
Given the black body nature of the CMB spectrum, the energy density of photons follows a
Bose-Einstein distribution without chemical potential:

ργ = gs

∫
p

ep/T − 1
d3p

(2π)3 (1.39)

where gs is the number of degrees of freedom (here gs = 2 for the two spin states of photons),
pγ is the photon momentum and T = 2.7255 ± 0.0006 is the temperature of the CMB (Fixsen,
2009). Solving the integral in Equation (1.39) (see Dodelson & Schmidt (2020) for computation
details) we get:

ργ = π2

15T 4 (1.40)

Therefore, we can calculate the photon density parameter Ωγ today:

Ωγ,0 = ργ

ρc
∼ 5.45 · 10−5 (1.41)

which is negligible.
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Neutrinos
Neutrinos, similarly to photons, decouple from electrons and the Hot Big Bang model predicts
the existence of a cosmic relic background of neutrinos. Unlike the CMB, it has not been directly
observed. However, strong theoretical arguments based on very well-understood physics suggest
that this radiation exists and predict its contribution to the energy density of the Universe.

From what we know about neutrinos from particle physics, there are three flavors of neutrinos
in the standard model of particle physics: νe, νµ and ντ , associated to electrons, muons and taus,
respectively. Neutrinos are fermions, i.e. follow the Fermi-Dirac distribution at equilibrium.
The precise mass of each neutrino is still unknown, but constraints exist on the value of the
sum of the neutrino masses, ∑ν mν . As neutrino decoupling arises before photon decoupling,
neutrinos do not get reheated by the electron-positron annihilation reaction from the BBN.
However, photons get reheated because of entropy conservation. Thus, the photon temperature
Tγ increases proportionally to the temperature of neutrinos Tν as (see Dodelson & Schmidt
(2020) for derivation details):

Tν =
( 4

11

)1/3
Tγ (1.42)

Considering relativistic neutrinos (i.e. massless neutrinos mν = 0), their energy density is given
by:

ρν = 7
8

( 4
11

)4/3
ργ · Nν (1.43)

with Nν the number of neutrino types (3 in the standard model). Actually, neutrino decoupling
is not instantaneous and a small fraction of neutrinos get reheated in the primordial plasma.
To take this into account, we introduce an effective number of neutrinos Neff that replaces the
number of massless neutrinos. This number is predicted to be Neff = 3.044 from (Particle Data
Group et al., 2022) if we consider only 3 neutrino types as thermal relics. Planck Collaboration
et al. (2020) measure the effective number of thermal relic to be Neff = 2.99 ± 0.17, consistent
with Neff = 3.044. In this manuscript we consider that thermal relics are only composed of
3 massless neutrinos (and the transition from relativistic to non-relativistic neutrinos will be
ignored). Considering Equation (1.43) with Neff = 3.044 the energy density of massless neutrinos
is:

Ων = 2.514 · 10−5 (1.44)
Therefore, the total contribution from radiation today is:

Ωrad = Ωγ + Ων = 7.964 · 10−5 (1.45)

Transition from radiation to matter domination
The energy contribution from radiation dominates in the early Universe until the latter moves
into the matter dominated era. At this transition, the energy density contributions from radi-
ation and matter are equal, ρrad(zeq) = ρm(zeq), and the redshift is zeq. Using Equation (1.43)
and the time evolution of radiation (∝ a−4) and matter (∝ a−3) energy densities from the
solutions of Friedmann equations (Table 1.1), we can determine zeq:

1 + zeq = Ωm

1.68 · Ωγ
≈ 3405 (1.46)
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which corresponds to the cosmic time teq ≈ 50, 897 years.

1.6.2 Non-relativistic matter
After the radiation domination epoch (∼ after CMB emission), the non-relativistic matter dom-
inates the total energy density of the Universe until redshift ∼ 2. The two known components
of the non-relativistic matter are baryons, i.e the ordinary matter and dark matter, a form of
matter only detectable by gravitational interaction.

Baryons
Baryonic matter constitutes the ordinary matter: gas, dust, planets, stars... The relative abun-
dance of baryons in the Universe is defined by the Big Bang Nucleosynthesis process described
in Section 1.5.1. To estimate the energy density of baryons we can measure the abundances of
the different light nuclei produced by the BBN. Several ways can be used to infer the baryon
density, the most precise being the measure of the imprint of baryonic acoustic oscillations in
the CMB anisotropies:

Ωb = 0.04936 ± 0.00033 (1.47)
as measured by Planck Planck Collaboration et al. (2020). Other methods to determine the
energy contribution of baryons agree with this measurement (Particle Data Group et al., 2022).
In particular, this result is in remarkable agreement with the value deduced from a comparison
between light element abundance measurements and BBN predictions.

Cold dark matter
1933 - Fritz Zwicky measured the radial velocity dispersion of galaxies in the Coma galaxy
cluster and inferred the total mass of this cluster applying simple Newtonian dynamics relating
the Keplerian velocity v to the mass M inside the circular orbit r by:

v(r) =

√
GM(< r)

r
(1.48)

He found that the total mass calculated from radial velocities was ∼ 400 times higher than
what was visually observable. Given the high velocity dispersion he observed, most galaxies
would have escaped the cluster. From these observations, he concluded that there could be
some unseen matter that provided the mass required to hold the whole cluster together by
gravitation. Zwicky was one of the first to mention the missing matter in the Universe, called
nowadays dark matter. Previous measurements from Jan Oort measuring stellar motion in the
Milky Way also suggested that the mass in the galactic plane must be greater than observed.

1962 - Vera Rubin measured the rotation curve from ∼ 1100 stars in the Milky Way, and
was the first to show a flat rotation curve (Rubin et al., 1962). Few years later in 1970, with
W. Kent Ford, they made a precise measurement of the Andromeda’s rotation curve (Rubin
& Ford, 1970) showing that the curve was flat at high radii, up to ∼ 24 kpc (see left panel
of Figure 1.13). These results advocated for the presence of unseen matter around galaxies,
otherwise stars would escape and the galaxies would not be stable. However, Vera Rubin never
mentioned the term dark matter in her papers.
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1980s - The existence of dark matter wasn’t completely accepted until the 80’s. At this time,
numerous measurements of galaxy rotation curves confirmed the existence/need of dark matter.
The right panel of Figure 1.13 taken from Begeman et al. (1991) shows the velocity measurements
of galaxy NGC 3198. The contribution from the disk (visible matter) is clearly not sufficient to
explain the observation. In order to explain the constant velocities at high radii, the presence
of a non-visible massive halo around the galaxy, called a dark matter halo was introduced. This
finding was confirmed on the theoretical side, with the emergence of numerical simulations.
Using N-body simulations with ∼ 300 mass points, Ostriker & Peebles (1973) found that adding
a spherical halo component to galaxies was required to reproduce the measured velocities at
high radii and get stable galaxies.

Figure 1.13: Left: Rotation curve of Andromeda measured by Rubin & Ford (1970). Points with error
bars correspond to the radial velocity measurement. Right: Rotation curve of NGC 3198 from Begeman
et al. (1991). Points with error bars correspond to the radial velocity measurement. The lower curve,
labelled disk, represents the expected radial velocity of the galaxy from its observed mass. The middle curve
represents the expected radial velocity of the (non-visible) halo around the galaxy. The upper curve, that
fits the data, represents the sum of the two other curves, suggesting that adding a (non-visible) massive
halo around the galaxy could explain the velocity measurement.

2006 - One of the recent observational evidences for the existence of dark matter is the dis-
covery of the bullet cluster shown in Figure 1.14. This figure shows two merging clusters (or-
ange circles). Lensing measurements indicate that most of the mass is located in the blue
regions, whereas X-ray measurements in pink show the gas (baryonic matter). The gas inter-
acted strongly during the merger, whereas the mass does not seem to have interacted. This
suggests that dark matter interacts weakly with baryons and does not seem to interact through
electromagnetic interaction.

Today, the existence of dark matter has been demonstrated on many cosmological scales
and for very different probes. The formation of large scale structures, the lensing effect and the
measurement from CMB represent a striking evidence for dark matter. Figure 1.15 illustrates
how the amount of dark matter in the Universe modifies the shape of the CMB temperature
power spectrum. In Chapter 3, I will present how structures were formed in the Universe and
we will see that without dark matter the Universe would not appear as it is today.
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Figure 1.14: Composite image of the Bullet cluster. Left: lensing measurement representing the mass
(dark matter) of the bullet cluster in blue. Right: X-ray measurements representing the gas (baryonic
matter) are added in pink. The gas is delayed compared to the mass, meaning that the gas strongly
interacted during the merger, whereas the mass (dark matter) does not seem to have interacted. It
suggests that dark matter does not interact or very weakly. This figure is originally from Markevitch
et al. (2004) and taken from viewspace.org.

Since the "discovery" of dark matter by its gravitational impact, many efforts have been
made to detect it, either as astrophysical objects or in particle physics experiments. However,
despite all the effort put from the particle physics side, dark matter has never been directly
observed and its nature is still unknown. In the standard model of cosmology, dark matter is
considered to be cold, i.e. is a non-relativistic fluid, collisionless, i.e. dark matter does not
interact (or interactions are small enough to remain undetected), stable, i.e. dark matter does
not decay or its lifetime is longer than the age of the Universe today and its field has adiabatic
inhomogeneities, i.e. dark matter follows the same primordial density field as other components
of the Universe. Due to its unknown nature, extensions to the standard model of particle
physics can predict the existence of potential dark matter candidates. Along them, popular
candidates are the WIMP (weakly interacting massive particle) motivated by supersymmetry,
or the axion, a scalar particle introduced originally to solve the strong CP problem in quantum
chromodynamics (QCD) (Peccei & Quinn, 1977).

Transition from matter domination to dark energy domination

After z ∼ 2, a new and unknown form of energy rises and begin to dominate the energy budget
of the Universe. As for the transition between radiation and matter, we can derive the red-
shift zde at which the matter-dark energy transition occurs. At redshift z < 2 we can neglect
the contribution from radiation to the energy content of the Universe. Using Equation (1.15)
and Equation (1.21) in a flat Universe (Ωk = 0) we find zde to be:

zde =
(

2ΩΛ,0
ΩM,0

)1/3

− 1 ≈ 0.63 (1.49)

which corresponds to the cosmic time teq ≈ 7.8 billion years.

https://viewspace.org/interactives/unveiling_invisible_Universe/dark_matte/bullet_cluster##slider-content
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Figure 1.15: Impact of changing the dark matter energy density on the shape of the CMB temperature
anisotropy power spectrum. The dashed line shows the best-fit from Planck Collaboration et al. (2020).
This figure is taken from Schumann (2019).

1.6.3 Dark energy
Dark energy is the last missing piece of the ΛCDM model. Initially, the cosmological constant
was introduced by Einstein to solve the equation of GR for a static Universe. Then, with the
discovery of the Universe expansion, there was no more need for a cosmological constant. In a
Universe of matter, GR predicts that the cosmic expansion will slow down over time due to the
gravitational forces.

1998 - The Supernova Cosmology Project (SCP) (Perlmutter et al., 1999), and the High-
redshift Supernova Search Team (HSST) (Riess et al., 1998) measured the luminosity distance
of supernova Ia samples and reported independently a late-time acceleration of the Universe
expansion. Therefore, a new type of energy is needed to drive this acceleration: dark energy.
Previous works (in late 80s and 90s) on large scale structures also concluded that in a flat
Universe (as required by inflation) with cold dark matter, a positive cosmological constant is
needed, and should contribute "as much as 80% of the critical density " (Efstathiou et al., 1990),
but not evidence had yet been found.

Type Ia supernovae (SNe Ia) are likely to come from the disruption of white dwarf stars. In
a binary system of a white dwarf and a massive companion, the white dwarf accretes matter
from its companion. When its mass approaches the Chandrasekhar mass mc = 1.44M⊙, the
electronic pressure cannot withstand the gravity forces. The density of the white dwarf core
increases and its temperature reaches the ignition temperature for carbon fusion. Then, the
white dwarf undergoes a suite of runaway nuclear reactions leading to its disruption. SN Ia
spectra are characterised by the lack of hydrogen and the presence of a singly ionised silicon SiII
absorption line at 615 nm (near peak). The explosion being driven by the Chandrasekhar mass,
the amount of energy released by the supernova is relatively similar for different SNe Ia and so is
the supernova intrinsic luminosity. However, there is some diversity between SNe Ia, which does
not make them perfect standard candles. But, it has been established there is a relationship
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Figure 1.16: Pedagogical plot of the apparent brightness of SNe Ia as a function of redshift. SNe Ia appear
fainter in an accelerating Universe and brighter in a decelerating Universe.

between their optical peak luminosity and decay time (bluer-slower relation) (Phillips, 1993) as
well as with their colour (bluer-brighter relation) (Astier et al., 2006), making them excellent
standardizable candles.

As the amount of energy released by a SN Ia is tremendous - its luminosity is ∼ 5 · 109 times
higher than that of the Sun - SNe Ia are ideal for cosmology up to high redshifts.

Neglecting SN Ia diversity, we can assume the SN Ia intrinsic luminosity to be the same
for all events. Then, measuring the apparent magnitude m of a SN Ia allows us to measure its
luminosity distance:

m − M = 5 log10(DL) + 25 (1.50)

where M is the SN Ia absolute magnitude, i.e. its magnitude at a distance of 10 pc, which
is measured to be M ∼ −19 at brightness peak. The luminosity distance being related to the
underlying cosmology, see Equation (1.29), SNe Ia can be used as cosmological probes. If the
only component of the Universe that opposes its expansion is gravity, the more time passes, the
less expansion there is. Consequently, in the case of deceleration, SNe Ia should appear brighter
because their light travels a shorter distance than in the case of constant expansion. Conversely,
SNe Ia appear fainter in a Universe that is expanding at an accelerating rate. Figure 1.16
illustrates this effect.

Observations from both SCP and HSST teams showed that distant SNe Ia appear fainter,
meaning that the Universe expansion is accelerating. This acceleration is driven by an unknown
form of energy called dark energy. Figure 1.17 from Perlmutter et al. (1999) shows the mea-
surements from a sample of 42 distant SNe Ia at redshifts 0.18 < z < 0.83 combined with a set
of nearby SNe Ia. Frome these data, they measure the dark energy contribution to be ΩΛ ∼ 0.7
(in the ΛCDM model).

Theoretically, dark energy can be associated to a cosmological constant Λ in the Friedmann
equations shown in Section 1.3. It is considered as a fluid with a negative pressure (repulsive
gravitational effect). Its equation of state is P = wρ with w = −1 (see Equation (1.17)). By
allowing the dark energy equation of the state to vary over time, one can explore deviations
to the cosmological constant case. The parametrisation from (Chevallier & Polarski, 2001)
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Figure 1.17: Hubble diagram (apparent magnitude vs redshift) of 42 high redshift SNe Ia from the Super-
nova Cosmology Project (red dots with error bars), and 18 low redshift supernovae from the Cálan/Tololo
Supernova Survey (yellow dots with error bars). Solid and dashed lines represent different ΛCDM pre-
dictions with different (Ωm, ΩΛ) values (Perlmutter et al., 1999). The residuals favour a cosmological
model with Ωm = 0.28 and ΩΛ = 0.72.
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and (Linder, 2003) (CPL) is generally used to test such deviations:

w(a) = w0 + (1 − a)wa (1.51)

This parametrisation is valid in many scalar field models of dark energy (quintessence models).
In the case of ΛCDM cosmology w0 = −1 and wa = 0. The amount of dark energy today as
measured by Planck Collaboration et al. (2020) is :

ΩΛ = 0.6847 ± 0.0073 (1.52)

As of today, the nature of the dark energy is still unknown. Many models beyond ΛCDM
try to explain this accelerated expansion by the introduction of a new cosmological fluid (e.g.
quintessence, Tsujikawa (2013)) or by considering deviations from general relativity over cos-
mological distances (e.g. f(R) theories (De Felice & Tsujikawa, 2010) or the galileon model
(Nicolis et al., 2009)). More details on this can be found in Sami & Myrzakulov (2015) and Tsu-
jikawa (2010). Another unresolved question about dark energy is to understand why it starts
to dominate the energy content of the Universe at late time, as shown in Figure 1.12.

Dark energy has been one of the major fundamental questions in cosmology over the last
two decades. Many past and future experiments aim to understand the nature of dark energy.
With DESI, we aim to constrain the equation of state of dark energy at the percentage level.

1.7 Current status of ΛCDM
In this chapter I have given a general overview of the standard (or concordance) model of
cosmology, ΛCDM. We described how, thanks to almost a century of theoretical predictions
and observational confirmations, we moved from a vision of our Universe in which we wondered
whether there were nebulae inside the Milky Way to a global vision of our Universe, from the
Big Bang and the first seconds to today, almost 14 billion years later.

Figure 1.18: A schematic view of the evolution of the Universe since the Big Bang. Credit: NASA/ESA

This concordance model is based on the theory of general relativity and on three observational
pillars. The first one is the observation of the expansion of the Universe in the 1930s by G.
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Lemaître and E. Hubble (Section 1.2). The second is the understanding of the origin of light
elements in the framework of the primordial nucleosynthesis, developed in the late 1940s by
Alpher, Bethe and Gamow (Section 1.5.1). Finally, the third pillar is the fortuitous observation of
the cosmic microwave background in 1964 by Penzias & Wilson (Section 1.5.2), which confirmed
the prediction of a relic radiation by Alpher, Herman and Gamow in the late 1940s. The CMB
is still today an invaluable source of information on the physical properties of the Universe.
Two pieces are still missing from the standard model of cosmology: cold dark matter and
dark energy. The need for cold dark matter was first demonstrated by the observation of galaxy
rotation curves in the 1970s/1980s and confirmed by the observation of the CMB (Section 1.6.2).
Dark energy is responsible for the late acceleration of the expansion of the Universe, and was
revealed through the observation of distant SNe Ia (Section 1.6.3). These two elements today
make up ∼ 95% of the energy density of the Universe, while the remaining ∼ 5% is baryonic
matter, which composes the visible structures of the Universe, i.e. galaxies, stars, planets...

The description of the evolution of the Universe is given by the hot Big Bang model. The
Universe was born from a hot and dense initial state and began to expand around 13.8 billion
years ago. It first underwent a rapid and gigantic expansion phase, called inflation, where ini-
tial quantum fluctuations generated small density fluctuations thought to be the seeds of the
structures we observe today. These tiny perturbations then evolved and grew under gravity in
different regimes depending on the energy content of the Universe (Section 1.6) until the per-
turbations were dense enough to collapse and create the structure of the Universe. A schematic
representation of the evolution of the Universe is shown in Figure 1.18. I will describe how these
tiny fluctuations generated during the inflation phase evolved to create the large-scale structure
of the Universe in Chapter 3. In order to describe the evolution and properties of the Universe,
the ΛCDM model depends on just six free parameters (in the framework of CMB analyses):

• As: the amplitude of the primordial power spectrum,

• ns: the spectral index of the primordial power spectrum,

• θ∗: the angular scale on the sky corresponding to the comoving sound horizon at recom-
bination,

• Ωbh
2: the baryon density in the Universe today,

• Ωcdmh2: the dark matter density in the Universe today,

• τ : the optical depth at reionisation.

These parameters are constrained by cosmological fits to CMB data from the Planck satellite
in Table 1.2. Today, the values of the cosmological parameters of the ΛCDM model are precisely
inferred from cosmological fits using three main cosmological probes: CMB anisotropy spectra,
luminosity distances from SNe Ia and measurement of the BAO scale from the galaxy clustering
(i.e. the spatial distribution of galaxies, Section 1.5.2). Beside the measure of the BAO scale,
the galaxy clustering can probe the growth rate of structure f through redshift space distortions
(RSD) which provide constraints on dark energy models and tests of potential deviations from
GR. The latest results from galaxy clustering measurements come from the eBOSS collaboration
(Alam et al., 2021a) and are given in Figure 1.19. This figure compares the eBOSS measure-
ments of the BAO scale and growth rate of structure to the corresponding the best-fit ΛCDM
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predictions from the Planck collaboration in Table 1.2, showing good agreement between the
two. The combination of different cosmological probes allows us to give tighter constraints on
cosmological parameters, as illustrated in Figure 1.20. However, despite the good agreement be-
tween cosmological measurements at high redshift from the three main probes, the value of H0
directly measured from low redshift SNe Ia calibrated with Cepheids is in strong disagreement
(more than 5σ) with the cosmological constraints derived from the CMB (Riess et al., 2022). The
nature of this discrepancy remains unresolved today, and may be due to unknown systematic
effects which may bias the measurement in either analysis, or may require new physics beyond
the standard cosmological model.

Figure 1.19: Measurements of the (isotropic) BAO scale (left) and growth rate of structure (right) for
different galaxy tracers and redshifts from eBOSS (Alam et al., 2021a) compared to ΛCDM predictions
from the best-fit to Planck data (Planck Collaboration et al., 2020).

Beyond galaxy clustering, it is important to note that LSS have been also used to constrain
cosmological parameters using the weak lensing effect and its cross-correlation with galaxy clus-
tering in photometric surveys. Numerous results from this type of study have been published
in recent years (Collaboration et al., 2022, Dalal et al., 2023, Heymans et al., 2021) and weak
lensing will be the main cosmological probe of new experiments such as the Vera Rubin obser-
vatory LSST (LSST Dark Energy Science Collaboration (2012), first light expected in 2024) or
Euclid (Laureijs et al., 2011), which was successfully launched two days ago, as I write these
lines. The wide variety of probes allows the same quantities to be measured with different phys-
ical processes and observation techniques, so that the systematic effects are different from one
analysis to the other, which helps to confirm (or not) the cosmological parameter constraints.
This is a promising avenue for future cosmological studies.

1.8 Outline of the thesis
During the last two decades, the emergence of galaxy surveys and especially spectroscopic galaxy
surveys has provided an important probe of cosmology. We previously mentioned results from
the eBOSS survey of the SDSS collaboration but many other spectroscopic surveys have also
contributed to the precise determination of cosmological parameters (e.g. Blake et al. (2011),
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Figure 1.20: Two dimensional contours on w0, wa, and Ωk under the assumption of an open w0wa-CDM
cosmological model. The one-dimensional constraints on each independent parameter are presented in
the top panels. The red contours represent the 68% and 95% constraints when using the full Planck data
(Temperature, Polarisation and lensing) and the Pantheon SNe Ia measurements. The blue contours
represent the constraints from Planck and SDSS BAO+RSD, while the grey contours represent the com-
bination of all measurements. Figure taken from Alam et al. (2021a)
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Guzzo et al. (2014), Aihara et al. (2018)). Stage-III spectroscopic surveys1 ended in 2020 with
the results from the eBOSS collaboration. Over 20 years, the various cosmological surveys from
the SDSS collaboration measured more than 2 million of galaxy/quasar redshifts.

The Dark Energy Spectroscopic Instrument (DESI) (Collaboration et al., 2016) is the first
Stage-IV spectroscopic survey on sky. Commissioning started in 2020 and the main survey of
5 years started in June 2021. DESI aims to measure over 40 million of redshifts using four
different tracers: bright galaxies (BGS), luminous red galaxies (LRGs), emission line galaxies
(ELGs) and quasars (QSOs). DESI will constrain cosmological parameters through the precise
determination of the BAO scale and the estimation of the linear growth rate of structure through
RSD measurements with a sub percent precision level. To reach that precision, clustering anal-
yses have to be tested on simulated catalogues of galaxies in large interval of scales spanning
the linear (> 50 Mpc/h) and quasi-linear regimes (20 < s < 50 Mpc/h). These tests rely heav-
ily on N -body simulations coupled to prescriptions to describe the connection between dark
matter halos and galaxies, the so called galaxy-halo connection. As was shown in Alam et al.
(2021b) for a Stage-III spectroscopic survey, systematic uncertainties related to the galaxy-halo
connection were found at that time to be negligible with respect to other sources of systematic
errors. As those are expected to be reduced in DESI, galaxy-halo connection studies are becom-
ing increasingly important to derive robust systematic error budgets for cosmological analyses.
Galaxy-halo connection studies also provide invaluable information about the physics of galaxy
formation, and their distribution within the cosmic web. To probe the galaxy-halo connection
it is mandatory to have clustering measurements down to very small scales (< 1Mpc/h).

This is the framework of this thesis, whose aim is to study the galaxy-halo connection of
ELGs by modelling the small scale clustering of DESI ELGs. We use the data from the last
two months of observations of the survey validation phase before the start of the main survey.
During this time, DESI observed 267k ELGs, which makes it the largest ELG spectroscopic
sample to date (∼ 173k in eBOSS). We present an overview of the DESI instrument and the
survey strategy in Chapter 2. We describe the statistics we use to analyse the data, namely
the two-point correlation function (2PCF). We also address the different (known) systematic
effects that can affect the measurement and mention the different techniques to mitigate them.
Finally, we describe the observational effects used to constrain cosmological parameters. The
first part of Chapter 3 provides the theoretical framework of structure formation and evolution
in the cold dark matter scenario and presents the different techniques to model it with numerical
simulations. Then, we focus on galaxies and detail the theoretical and empirical prescriptions to
study the galaxy-halo connection. In the second part, we focus on the particular case of ELGs
and review previous theoretical and observational results about the ELG galaxy-connection.
Among the prescriptions to describe the galaxy-halo connection, we use the halo occupation
distribution (HOD), an empirical approach whose parameters are derived from clustering mea-
surements at small scales. In Chapter 4, we present a novel and promising technique based on
Gaussian processes (GP) to perform accurate and precise fits of HOD models, and test it using
N -body simulations. This techniques is then applied to DESI ELG data in Chapter 5. As these

1The classification in stages was introduced in the Dark Energy Task Force report (Albrecht et al., 2006). Stage
I refers to cosmological experiments that started before 2005, Stage II in the late 2000s (2005-2010), Stage-III in
the 2010s (2010-2020) and Stage-IV refers to those that start in the 2020s. Today, the discussions and projects
are starting to design Stage-V experiments that will be carried out in a couple of decades. At each stage, the
precision on cosmological parameters increases by several orders of magnitude.
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data allow clustering to be measured at very small scales, never probed before, we provide new
insights on the galaxy-halo connection for ELGs. In particular, we demonstrate the need for
galactic conformity to reproduce the observations and the first observational hint that a fraction
of ELGs reside in the outskirts of the dark matter halos, as mentioned in theoretical studies
but never observed so far. Finally, we conclude and discuss the implication of this thesis in
Chapter 7 and give several prospects for future work.
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I n the previous chapter, we set out the cosmological context for this work. The whole theoret-
ical framework constructed to give a mathematical and physical description of our Universe

would be mere speculation if there were no observational confirmations of the theory. In astron-
omy, observations play a major role in our understanding of physical processes, and sometimes
lead to unexpected discoveries. From Galileo Galilei’s first astronomical observation in the 17th
century to today’s large ground-based and space-based telescopes, observation systems have
been considerably improved.

Large-scale galaxy surveys have been used to study the structure and dynamics of the Uni-
verse by measuring large numbers of extragalactic objects. There are two types of galaxy survey:
photometric and spectroscopic. The former observe objects on the sky with a given magnitude
limit that depends on the depth of the survey. They use different filters to measure galaxy
colours and morphologies, and are the basis of the next generation of large scale structure (LSS)
surveys, mainly for weak lensing analysis (Laureijs et al., 2011, LSST Dark Energy Science Col-
laboration, 2012). On the other hand, in addition to object positions on the sky, spectroscopic
surveys of galaxies aim to measure object distances from their redshift, deduced from their spec-
tra. As already mentioned in the first chapter, spectroscopic galaxy surveys are important for
cosmology, as they provide measurements of the BAO scale and the growth rate of structure.
Over the past forty years, they have become an essential tool in cosmology.

This thesis work was carried out as part of the Dark Energy Spectroscopic Instrument (DESI)
collaboration. I had the chance to work and used the first data of this complex instrument which
results from many years of research and development conducted by women and men. This
chapter is devoted to describe the DESI instrument (Section 2.3) and the science objectives
(Section 2.2) of the DESI survey. We describe the data sample –the DESI One-Percent survey–
(Section 2.6) and the different galaxy tracers (Section 2.4.2) that are used for the galaxy-halo
connection analysis of this work. Then we present how the two-point correlation function in
estimated from the data and describe the different (known) systematic effects affecting this
measure and how to mitigated them (Section 2.7). Finally we present the clustering of the ELG
sample from the One-Percent survey (Section 2.9). But first, we briefly review the previous
galaxy spectroscopic surveys and their current status.

2.1 Brief history of galaxy spectroscopic surveys
The first major spectroscopic surveys of galaxies began in the 1980s with the Centre for As-
trophysics (CfA) redshift survey, which measured 2,401 galaxy redshifts in the nearby Universe
(Huchra et al., 1983), followed by the CfA 2 (CfA2) survey, which recorded 18,000 spectra of
bright galaxies between 1985 and 1995 (Falco et al., 1999). The results of the CfA survey led to
the discovery of the Great Wall shown in Figure 2.1, which was the largest single structure ever
detected. It was one of the first evidence of the existence of a cosmic web due to the clustered
nature of the galaxy distribution. It also provided strong indications that cold dark matter alone
could not explain the observed distribution of galaxies (Vogeley et al., 1992).

In the 2000s, the Sloan Digital Spectroscopic Survey (SDSS) and the 2dFGRS (dFGRS
standing for degree field galaxy redshift survey) were the first to detect the BAO signal in
the galaxy distribution, with galaxy magnitude-limited samples at z ∼ 0.5 (Cole et al., 2005,
Eisenstein et al., 2005, Percival et al., 2007). Since then, several spectroscopic studies (e.g.
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Figure 2.1: Left panel: galaxy position map from the Centre for Astrophysics (CfA) redshift survey. Right
panel: position map of 18,000 galaxies from the CfA2 survey, revealing the presence of a Great Wall in
the structure of the local Universe. Credit: CfA redshift surveys, (Huchra et al., 1983, Vogeley et al.,
1992).

BOSS/eBOSS, 6dFGRS, WiggleZ, VIPERS...) have increased the number of observed galaxies,
the target redshifts and the size of the footprint on the sky (Alam et al., 2021, Guzzo et al.,
2014, Jones et al., 2009, Parkinson et al., 2012) as illustrated in Figure 2.2.

Figure 2.2: Number of galaxies observed by the spectroscopic surveys over time. Credit: E. Chaussidon.

Thanks to galaxy spectroscopic surveys and galaxy clustering studies, numerous discoveries
have been made: detection of the BAO signal over cosmic time in the range 0 < z < 3.5 using
∼ 2M galaxy redshifts (see Figure 1.11), highlight of the structure of the cosmic web with
filaments, superclusters and voids, and increase in precision and accuracy of the cosmological
parameter measurements. The results of 20 years of observations by the SDSS collaboration
were published in 2020 (Alam et al., 2021), reviewing two decades of cosmological results for
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Stage I (experiment before 2005), Stage II (2005-2010) and Stage III (2010-2020) surveys, using
numerous probes. These results are summarised in Figure 2.3. Started in 2000, the SDSS (York
et al., 2000) represents, so far, the largest survey of its kind. The latest public release of SDSS
data, DR17, includes 5,580,057 optical and near-infrared spectra after quality cuts (Abdurro’uf
et al., 2022). Data from SDSS have been used in more than 11,802 peer-reviewed publications.
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Figure 2.3: Central values and 68% quantiles for each of the parameters describing the history of Universe
expansion and growth of structure in an open, massive neutrino wCDM model. Results are shown for
each data set combination, where Stage-II corresponds to a combination of the CMB (WMAP) (Bennett
et al., 2013), Supernovae (JLA) (Betoule et al., 2014), and SDSS DR7 data (Abazajian et al., 2009)
and Stage-III corresponds to a combination of the SDSS BAO+RSD results (Alam et al., 2021), Planck
(Planck Collaboration et al., 2020), Pantheon SN Ia (Scolnic et al., 2018), and Dark Energy Survey
(DES) data (Abbott et al., 2018).

We are entering in the Stage IV era of cosmological experiments, which aim to provide high-
precision measurements, up to sub-percent accuracy on cosmological parametres. DESI is the
first Stage IV experiment on sky.

2.2 Overview of the DESI programme
The Dark Energy Spectroscopic Instrument (DESI) is a robotic, fibre-fed, highly multiplexed
spectroscopic instrument that operates on the Mayall 4-meter telescope (equatorial mount) at
Kitt Peak National Observatory (KPNO) on the Iolkam Du’ag mountain (Kitt peak) in Arizona,
US (see Figure 2.4). This mountain is of particular importance to the Tohono O’odham Nation
and DESI collaborators are honoured to be allowed to conduct scientific research there.

DESI is designed to measure simultaneously spectra of 5000 objects over a ∼ 3 degree field
and is currently conducting a five-year survey of 14 000 deg2 (about a third of the sky), to obtain
the spectra of about 40 million galaxies and quasars in a redshift range 0 < z < 3.5. DESI aims to
create a three-dimensional map of the distribution of matter covering an unprecedented volume,
targeting different galaxy types.

At low redshift, z < 0.5, DESI carries out a Bright Galaxy Survey (BGS), creating a
magnitude-limited sample of ultimately ∼ 13M galaxies to study cosmic structure in the dark
energy-dominated epoch with high density sampling. At higher redshift, DESI will target in
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Figure 2.4: Left: Picture of the dome of the Mayall telescope, the largest one at the Kitt Peak National
Observatory (KPNO). Right: Picture of the Mayall telescope with the DESI instrument. Credit: DESI
collaboration.

total ∼8M luminous red galaxies (LRGs) between 0.4 < z < 1.1, ∼17M emission line galax-
ies (ELGs) between 0.6 < z < 1.6, and ∼3M quasars or quasi stellar objects (QSOs) between
0.8 < z < 3.5, producing tight constraints on the large-scale clustering of the Universe to try
and decipher the nature of cosmic acceleration.

The main science goal of DESI is to measure the baryon acoustic oscillation scale at different
redshifts in order to precisely constrain the expansion history of the Universe. DESI will dras-
tically reduce the errors on individual BAO measurements compared to previous experiments,
with the aim of making sub-percent measurements on the BAO scales across a wide range of
redshifts, as shown in Figure 2.5.

Figure 2.5: Relative error on the (isotropic) BAO scale measurements from different past and future
surveys. DESI points are initial forecasts from Collaboration et al. (2016).

Clustering measurements will also make it possible to detect anisotropies in the galaxy
distribution, known as redshift space distortions (RSD). This allows us to directly measure the
properties of gravity through its effect on galaxy motions, by measuring the growth rate of
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structure f (see Section 2.8.2). Figure 2.6 shows DESI forecasts on the expansion history of
the Universe and the growth rate of structure, and presents a slice of the DESI target sample
observed up to a redshift z ∼ 3.5. These forecasts were built after the validation phase of the
DESI survey (SV), a phase prior to the main survey that aimed to confirm that the survey
design, instrument performance, and data quality would be sufficient to meet the scientific
requirements. During SV, the DESI data and operation teams proved their ability to optimize
operations (Collaboration et al., 2023a) and to efficiently process the spectra through the DESI
spectroscopic pipeline (Guy et al., 2023).

Figure 2.6: Left: illustration of the different DESI targets and their redshift coverage. Right: 5-year DESI
forecasts for BAO scale (top) and growth rate of structure (bottom) measurements, assuming central values
to agree with the Planck ΛCDM best-fit model. The comparison with current results from SDSS highlights
the gains expected from DESI in terms of the number of measurements (every 0.1 in z) and their accuracy.

At high redshift, DESI quasar spectra are used to measure Lyman-α forests, which are
absorption features in the spectrum of high redshift quasars due to neutral hydrogen clouds
present between the quasar and the observer. This measurement probes the intergalactic medium
and the power spectrum of matter at small scales, which contain information that can be used
to constrain the sum of neutrino masses ∑ν mν . This was done in eBOSS, leading to one of the
best upper limits on the sum of neutrino masses to date, ∑ν mν < 0.115 eV at 95% confidence
(Alam et al., 2021).

In addition to constraints on dark energy, DESI will also constrain models of primordial
inflation by measuring potential primordial non-gaussianities fNL caused by inflation in the
large-scale distribution of galaxies. Describing this measurement is beyond the scope of this
thesis, and more detail on primordial non-gaussianities can be found in Desjacques & Seljak
(2010) and Chen (2010).

Finally, DESI is also undertaking a Milky Way Survey (MWS), which will observe ∼ 7M
stellar spectra over 5 years, in order to provide new constraints on the assembly history of the
Milky Way and its dark matter distribution through measurements of chemical composition and
radial velocity dispersions (Cooper et al., 2023).
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2.3 Instrument design
The DESI instrument is complex, and its construction required a great deal of technology and
effort. The technical details of the instrument are described in various articles: the focal plane
system (Silber et al., 2023), the optical corrector (Miller et al., 2023), the spectrographs (Perru-
chot et al., 2020), the fibre systems (Poppett et al., 2020), and the instrument overview (Abareshi
et al., 2022). In the following we give a brief overview of the instrument.

Ten thermally-controlled,
3-channel spectrographs

(3600-9800 Å)

Top ring, vanes,
and cage

Focal Plane Assembly with
5000 fibre Positioners

Calibration Lamp
System

Six-lens, 8 sq. deg,
Wide-field corrector

on a Hexapod

Ten, 50m long
fibre cables

fibre View
Camera

4-meter
primary mirror

Figure 2.7: 3D model of DESI installed on the Mayall Telescope. The most relevant parts of the instrument
are annotated. Credit: Image from DESI collaboration and labels from E. Chaussidon.

DESI is mounted on the Mayall telescope, which has a 4-meter primary mirror. The instru-
ment has been designed and built over a period of around ten years (2010-2020). Figure 2.7
shows a schematic picture of the instrument. The focal plane is the most important innovation
of DESI. It has a diameter of 0.8 m and is composed of 5000 fibres, which are automatically
positioned by robot positioners (see Figure 2.8).

By way of comparison, in SDSS the ∼ 1000 optical fibres were placed by hand on a plate and
changing exposure in SDSS took ∼ dozens of minutes whereas in DESI it takes < 2 min. The
focal plane is subdivided into 10 petals, each containing 500 robotic fibre positioners and a Guide
Focus Alignment camera (GFA). Six of the GFAs are configured as guide cameras and four are
used to maintain optical alignment between the optical corrector and the primary mirror.

The robotic positioners, which carry the fibers have a diameter of 4 mm while the fibre
diameter is 107 µm. The positioners have two axes of rotation, the first axis θ is centered on
the positioner and the second eccentric axis ϕ is centered along an arm located nominally 3
mm from the axis θ. Each positioner can place the fibre in a patrol region with a diameter of
12 mm, to an accuracy of ∼ 10 µm. The fibre positions on the focal plane are optimized to
maximize focal plane coverage, and can be placed up to 10.4 mm from neighboring units. This
optimization allows patrol regions between fibres to overlap, so a software has been developed
to avoid collisions between neighboring positioners (Kent et al., 2023).

Each petal is linked to a single three-arm spectrograph, covering a wavelength range from
3600 to 9800 Å. A schematic representation of a spectrograph is given in Figure 2.9. Each
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Figure 2.8: Left: zoom on the fibre positioners in a small part of the focal plane (middle). Right: image of
the focal plane on the sky, with the image of the galaxy Andromeda superimposed. The focal plane covers
∼ 8 deg2 on the sky. Credit: DESI collaboration.

spectrograph is equipped with two high-transmission dichroics (efficiency > 95%) which divide
the light into three wavelength channels: Blue (B), Red (R) and Near Infrared (Z) (see Table 2.1).
This split optimises throughput, increases spectral coverage and gives each channel its own
spectral resolution. The spectral resolution of the instrument is high enough to resolve the [Oii]
doublet of ELGs. Finally, the light is collected by CCD (Charge-coupled Device) sensors of
4096 × 4096 pixels. Each CCD is mounted in a vacuum cryostat (< 3 × 10−7 mBar) maintained
at low temperature by a closed-cycle pulse tube cryocooler. The blue CCDs are at ∼163 K
and the others at ∼140 K. The cryogenic machines ensure precise (±1 K) and stable (±0.1
K) temperature control, and were designed by our team at CEA Saclay. The team was also
responsible of the cryostat mechanical mounting, CCD integration in the cryostats and CCD
alignment w.r.t. the last optical lens of the spectrographs to achieve a parallelism within ±15µ

with respect to the focal plane.

Channel Spectral range (Å) Spectral resolution
Blue (B) 3600 − 5930 2000 − 3000
Red (R) 5600 − 7720 3500 − 4500

Near Infrared (Z) 7470 − 9800 4000 − 5500

Table 2.1: spectral range and resolution for each channel of the ten spectrographs of DESI (Abareshi
et al., 2022).

Another very important part of DESI is the prime-focus corrector (PFC). The corrector
converts the light from the primary mirror and transfer it onto the focal surface of 0.8 m in
diameter. The light collected from astronomical objects has to be focused into 107 µ diameter
fibres on the focal plane. This requires high image quality with very little blurring (width of
the optical point spread function (PSF)) to reduce the loss of light due to rays missing the core
of the fibres. The wide-field corrector assembly comprises six lenses, the largest of which has a
diameter of 1.1 m and the heaviest weighs 237 kg. The total mass of the lenses is 864 kg. The
lenses are coated with a broadband anti-reflective coating that gives an average transmission
≥ 99.0% over the wide passband (360-980 nm). Optical aberrations are corrected by a lens
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assembly that delivers excellent images over the 3.2◦ field of view and wide passband (360-980
nm). Two lenses are dedicated to correcting atmospheric dispersion over a range of zenith angles
from 0 to 60 degrees. These two lenses can be rotated independently to counter the effect of
wavelength-dependent atmospheric dispersion, depending on the direction of observation of the
telescope.

DESI is a complex instrument designed to record 5000 spectra per exposure, with high
throughput and high-quality imaging to maintain excellent operational efficiency. To date, DESI
is the largest multi-object spectrograph constructed and will measure ∼40 million spectra of
galaxies and quasars over five years to probe dark energy and cosmological parametres sufficiently
well to become the first completed Stage IV cosmological survey.

Figure 2.9: Schematic representation of one spectrograph of the DESI instrument. This figure is taken
from (Collaboration et al., 2016).
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2.4 Target selection

2.4.1 Photometric surveys
The first step of any spectroscopic surveys is to perform a target selection (TS). The selection
of targets must be carried out before the start of spectroscopic operations and is based on a
photometric survey.

Figure 2.10: Sky maps of the imaging g-band depth corrected from Galactic extinction (E(B-V)) which
have been used to select the DESI ELG targets. The blue region corresponds to the BASS/MzlS photo-
metric survey, the green region to DECaLS and the red region to DES. The thick black line represents
the 14,000 deg2 footprint covered by DESI. The Galactic plane is displayed as a solid black line and the
Sagittarius plane is displayed as a dashed black line. This figure is taken from Raichoor et al. (2023).

DESI targets have been selected using the Data Release 9 (DR9) of the Legacy Imaging
Surveys programme. This survey covers ∼ 19, 700 deg2 of the sky visible from the Northern
hemisphere (see Figure 2.10), in three optical bands, g (centered at 470 nm), r (centered at
623 nm), and z (centered at 913 nm), covering the 14,000 deg2 of the DESI footprint. A full
description of the Legacy Imaging Surveys is available in Dey et al. (2019) and a sky viewer of
the survey in available here. The optical bands were collected by different independent surveys:

➢ BASS/MzLS: using g and r band optical filters, the Beijing-Arizona Sky Survey (BASS)
observed ∼5100 deg2 of the North Galactic Cap (NGC) for a declination dec > 32.375◦. The
BASS survey was conducted on the Bok 2.3-m telescope and lasted four years, from 2015 to
2018 (Zou et al., 2017). The Mayall z-band Legacy Survey (MzLS) observed the same footprint
as BASS in the z-band, using the Mayall telescope. This survey was conducted over 230 nights
between 2016 and 2017. The region covered by these surveys is shown in blue in Figure 2.10.

https://www.legacysurvey.org/viewer#NGC%203243
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➢ DES/DECaLS: The Dark Energy Survey (DES) observed 5000 deg2 in the south galactic
cap (SGC) with 8 optical bands and was originally designed for weak lensing studies using the
Dark Energy Camera (DECam) on the 4-m Blanco telescope located at the Cerro Tololo Inter-
American Observatory in Chile (Abbott et al., 2018, Flaugher et al., 2015). The Dark Energy
Camera Legacy Survey (DECaLS) expanded the DES footprint in the three optical bands g,
r, z, by observing ∼ 4000 deg2 in the SGC and ∼ 5000 deg2 in the lower region of the NGC
(dec < 32.375◦), without overlapping the DES footprint (Dey et al., 2019). The DES imaging
is significantly deeper because it is covered by a greater number of exposures than the standard
DECaLS observations. The DeCALS and DES regions in the sky are represented in green and
red in Figure 2.10.

The DESI footprint is shown in black on Figure 2.10 and the TS used the photometry in
the three optical bands g, r, z from BASS/MzLS, DECaLS and the DES region included in
DECaLS (dec > −20◦). In addition to the DESI Legacy Imaging Surveys other external sample
were used for the TS of DESI objects:

➢ WISE: : The Wide-field Infrared Survey Explorer (WISE) satellite has provided all-sky
infrared observations in four bands W1, W2, W3 and W4 centered at 3.4, 4.6, 12, and 22 µm
(spanning wavelenghts between ∼ 1 to 30 µm) (Cutri & et al., 2012, Wright et al., 2010). DESI
target selection uses the two shortest-wavelength bands W1 and W2 in the TS of LRGs and
QSOs (Chaussidon et al., 2023, Zhou et al., 2023).

➢ Gaia : The Gaia satellite observed positions and proper motions of stars in the Milky Way
(Gaia Collaboration et al., 2016). DESI uses the observations in the G band (330 − 1050µm)
and the star catalogues provided by the Gaia DR2 release, which provides observations for 1.7
billion stars over the whole sky during 22 months of observation (Carrasco et al., 2016, Gaia
Collaboration et al., 2018). It was used for the TS of the BGS sample (Hahn et al., 2023).

Using the photometric data described above, the TS can be performed by looking at the
colours of the objects, which are magnitude differences between two photometric bands. Basi-
cally, each type of galaxy is different and exhibit different properties (colours). It is therefore
possible to separate them from other objects in the sky by using different colour selections, the
main contaminant of high redshift targets being the stars. The efficiency of the TS of DESI
galaxies and QSOs was tested during the phase of survey validation (SV). The target selection
of DESI was performed using a common pipeline described in Myers et al. (2023).

2.4.2 DESI targets
In this section we describe the selection of high redshift DESI targets. A summary of the
expected target densities is given in Table 2.2.

➢ BGS In DESI, the bright galaxy sample (BGS) is a flux-limited and r-band selected sample
of galaxies. Full details of the BGS selection procedure are described in Hahn et al. (2023). BGS
targets two different samples: BGS Bright, a magnitude-limited sample r < 19.5 and BGS Faint,
a fainter sample 19.5 < r < 20.175 using colour selections to have high redshift efficiency. To



2.4 Target selection 55

discriminate between stars and galaxies in the main BGS programme the TS procedure compares
the G-band magnitude from Gaia with that in the r-band from the legacy survey (G − r > 0.6)
as illustrated in Figure 2.11. It also examines the overlap of potential targets in the GAIA DR2
star catalogue. In total, BGS Bright has 864 targets/deg2, BGS Faint has 533 targets/deg2.
Using the spectra from the SV, the BGS TS achieves a redshift success rate of > 95% (i.e.
> 95% of BGS targets are spectroscopically confirmed to be a galaxy) for both the BGS Bright
and Faint samples.

➢ LRGs Luminous Red Galaxies (LRGs) are massive, ’old’ galaxies that have stopped forming
stars and have a typical red spectral energy distribution. They have prominent characteristic
"bump" in their spectra at 1.6 µm (rest frame) (John, 1988, Sawicki, 2002) which can be used
to efficiently remove stars from the sample by looking at the optical/near-infrared (NIR) colour
(see Figure 2.11). The DESI LRG sample is selected using a combination of the Legacy Survey
g, r, z and WISE W1 bands. In addition, the LRG TS is optimised to select the most massive
galaxies (in terms of stellar mass) with a high completeness defined as the ratio of selected
LRGs to the expected total number of objects brighter than the LRG magnitude limit z < 21.6.
The high stellar-mass completeness of the LRG sample allows a wide range of studies, including
galaxy-galaxy lensing (e.g. Jullo et al. (2019)), galaxy-halo connection (e.g. Rodríguez-Torres
et al. (2017)) and evolution of the most massive galaxies (e.g. Bundy et al. (2017)). In the
end, the DESI LRG sample has a target density of 605/deg2 with a redshift efficiency of 89.4%
between 0.4 < z < 1.1 and a high completeness for the most massive galaxies (M⋆ > 11.5 [M⊙])
in the range 0.4 < z < 1. Full details of the TS for the DESI LRG sample are described in Zhou
et al. (2023).

➢ QSOs Quasi-stellar objects or quasars are a type of active galactic nuclei (AGN). An AGN
is the central nucleus of an active galaxy capable of producing long jets of gas (up to ∼ 100
kpc). The luminosity emitted by the nucleus of a quasar exceeds the luminosity of the host
galaxy. They are the brightest visible objects in the universe and apear as point sources in
the sky (like stars). The spectrum of most quasars exhibits strong continuum emission in the
visible, X-ray, and γ-ray regions with broad emission lines. Their high luminosity means that
they can be detected at high redshifts. The photometric characteristics of QSOs mimic those
of faint blue stars in optical wavelengths, making them difficult to select. As QSOs have a
point-like morphology, the selection of objects was restricted to those with stellar morphology
in the legacy survey and with a magnitude in the r-band such as 16.5 < r < 23.0. Then, to
discriminate QSOs from stars, the selection uses a random forest classifier based on a colour
selection that combines optical-only and optical+IR colours, as shown in Figure 2.11. Details
of the DESI QSO selection are described in Chaussidon et al. (2023). In the end, the density
of selected QSO targets is ∼ 310/deg2. Using the spectra collected during SV, the main quasar
selection has over 200 quasars/deg2 confirmed spectroscopically, including 60 quasars/deg2 with
z > 2.1 that can be used for the Ly-α forest analysis.

➢ ELGs Emission Line Galaxies (ELGs) are the main tracer of the DESI survey and are the
subject of this PhD work. Emission lines in galaxy spectra are correlated with star formation
(Favole et al., 2023, Moustakas et al., 2006). ELGs are therefore typically star-forming, ’young’
galaxies. Any galaxy actively forming stars at a sufficiently high rate will be considered as an
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ELG. In DESI, the TS of ELGs is optimised to measure the [Oii] doublet (λλ 3726,3729 Å) which
provides an unambiguous signature and accurate redshift determination. ELGs are described in
more detail in the next chapter.

Due to their vigorous star formation, they have a relatively blue continuum that allows ELG
targets to be selected from optical photometry in the g, r, z bands. The selection of ELGs is
described in details in Raichoor et al. (2023) and we present the main ideas in what follows. The
main ELG selection consists of a magnitude cut in the g-band and a colour cut in (g −r) relative
to (r − z), as illustrated in Figure 2.11. The main ELG sample is composed of two disjoint sub-
samples, the ELG_LOP and the ELG_VLOP. They have target densities of ∼ 1940 targets/deg2

and ∼ 460 targets/deg2, respectively. The TS of the ELG_LOP sample favours ELG targets in
the redshift interval 1.1 < z < 1.6, while the TS of the ELG_VLOP sample favours ELG targets
between 0.6 < z < 1.1. LOP and VLOP stands for low priority and very low priority in the fibre
assignment process (see Section 2.7.1.1). After spectroscopy, the ELG_LOP and ELG_VLOP samples
have ∼ 860 targets/deg2 and ∼ 180 targets/deg2 respectively, between redshift 0.6 < z < 1.6 (see
Table 2.2). Overall, ∼18.7M ELG_LOP (∼2.7M ELG_VLOP) targets should be spectroscopically
observed by DESI, and 12.M (2.4M) should provide a reliable redshift in the range 0.6 < z < 1.6.

Object class Targets /deg2 Expected reliable redshifts /deg2

BGS Bright 864 ∼ 820
BGS Faint 533 ∼ 506

LRG 615 ∼ 540
ELG_LOP 1940 ∼400 (0.6 < z < 1.1) & ∼460 (1.1 < z < 1.6)

ELG_VLOP 460 130 (0.6 < z < 1.1) & 50 (1.1 < z < 1.6)
QSO 310 ∼ 200

Table 2.2: Number density of targets and expected number of reliable spectroscopic redshifts per square
degree for each DESI target class (except for Milky Way stars).

2.5 Observation strategy
The DESI observational strategy is described in (Schlafly et al., 2023). We will only describe
the main ideas in the following. DESI has three observational programmes:

• The dark programme is the primary programme of DESI and will observed LRGs,
ELGs, QSOs from 0.4 < z < 3.5. This programme is observed whenever conditions are
good (seeing, sky background, transparency, airmass).

• The bright programme aims to observed bright galaxies and Milky Way stars. This
programme is observed when observing conditions are not good enough to conduct the
dark programme, due to bright sky or poor seeing or transparency.

• The backup programme consists of observing brighter Milky Way stars. This pro-
gramme is observed only when observational conditions are too poor to observe the bright
programme.

The combination of the dark programme and the bright programme are called the main survey.
The dark programme represents ∼ 90% of the effective observing time. This approach allows the
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Figure 2.11: Colour-colour diagram with the selection cuts uses to select DESI targets for BGS (top left),
LRGs (top right), QSOs(bottom left) and ELG (bottom right). These figures are from the target selection
papers Chaussidon et al. (2023), Hahn et al. (2023), Raichoor et al. (2023), Zhou et al. (2023).

brightest targets to be observed in the worst conditions to limit systematic uncertainties. These
programmes consist of observing a certain number of tiles across the footprint. A tile is a given
telescope pointing combined with assignments of each fibre to a specific target for that telescope
pointing. Each tile is associated with a single programme and each of these programmes have
independent target lists. The main survey requires 7 passes for the dark programme, i.e. 7 tiles
at the same sky location, with a slight offset (see Figure 2.17) to enable greater fibre assignment
completeness for dense targets such as ELGs (so 9,929 tiles in total). The bright programme
only requires 4 passes (2,657 tiles in total). The time for each exposure varies according to the
observational conditions (seeing, sky background, transparency, airmass...), and is calculated
using the Exposure Time Calculator (ETC), which is compared with an effective time. In DESI
the observation must achieve a given pre accuracy or goal uncertainty when measuring the
fluxes of distant galaxies. The effective time is the time required to reach the goal uncertainty
for nominal observing conditions, defined as a seeing of 1.1", a sky background of 21.07 mag
per square arcsecond in the r-band, photometric conditions, observations at zenith, through
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zero Galactic dust reddening. The effective time per exposure for the dark programme is 1000
seconds, while with the bright programme it is 180 seconds (Schlafly et al., 2023). Each night,
DESI observes around twenty tiles containing a total of ∼100,000 sources. The DESI survey
strategy operates in a depth-first manner, meaning that it completes the observation tiles in a
particular region first, rather than observing tiles in other parts of the sky. This allows many
scientific programmes to proceed after the first year even if the sky coverage is lower. The other
advantage is to minimise the negative impact of falling behind schedule, DESI "would prefer
to end the survey with a complete 13,000 sq. deg. survey than an inhomogeneous 14,000 sq.
deg. survey." (Schlafly et al., 2023). It also favours the observing of Lyman-α tracer (quasar
at z > 2.1), which need to be identified in the sky from their initial observations, so that these
quasars can be targeted for repeated observations (at least four times).

Before each night, the observation plans are defined to select the fields to be observed during
the night. Then, during the night, the targets are assigned to each positioner on the fly immedi-
ately before the start of the exposure and the ETC determines the time needed to complete the
observation. At the end of the night, the spectroscopic pipeline reduces, classifies, and measures
redshifts for all targets (Guy et al., 2023), and visual (human) quality assurance is performed to
see if any problems occurs overnight for each tile. For those tiles that have passed the quality
assurance the Merged Target Ledger (MTL) is updated, updating the observation state and
redshift of the observed targets.

2.5.1 Target priorities

Figure 2.12: Representation of the patrol radius of the fibres over a small region of the sky with the
targets observed by DESI. The patrol region overlaps between the fibres. In this example, the telescope
must observe this region at least 3 times to obtain the redshift of 3 galaxies in the middle of the image.
This image comes from the Legacy Survey Sky Viewer.
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One of the main observational effects in DESI is the fibre assignment. The fibres have patrol
regions 12 mm in diameter on the focal plane that correspond to a physical region on the sky of
∼ 180 arcsec. If several targets are located within the same patrol region on the sky, only one is
accessible by each fibre and other observations are required to reach all the targets, as illustrated
in Figure 2.12. Consequently, priorities for fibre assignment are given to targets depending on
the tracer. For dark time tracers, the highest priority is given to QSOs, then LRGs and finally to
ELGs. As previously mentioned in Section 2.4.2, ELGs have two disjoint sub-samples, ELG_LOP
and ELG_VLOP with the ELG_LOP sample having a higher priority than VLOP. In any case, ELGs
will always be observed after all other tracers. The fibre assignment leads to incompleteness
between the number of targets and the observed targets depending on the number of passes,
as illustrated in Figure 2.13. The completeness is computed as the ratio between the observed
targets Nobs, and the initial targets, Ntargets in a given region of the sky:

Completeness = Nobs
Ntargets

(2.1)

ELGs are the most impacted by fibre assignment as they have the lowest priority, e.g. for
Ntile = 3, the completeness of QSO is > 99% compared to ∼ 0.53 for ELGs. Missing objects
due to fibre assignment can bias the galaxy clustering measurement and must be carefully
corrected. We discuss on the effects that can bias this measurement, and how to mitigate them
in Section 2.7.1.
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Figure 2.13: Completeness of different tracers as a function of the number of tiles in the same region.

2.5.2 Spectral classification and redshift determination
Once the observation has been made, the spectroscopic pipeline reduces, classifies, and measures
redshifts for all targets the following morning. All the details of the spectroscopic pipeline are in
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Figure 2.14: Example of ELG spectra, ordered by their VI quality values from top with VI quality 4 to
bottom with VI quality 0. The quality 4 spectrum shows a resolved [Oii] doublet. The right two panels
show the DESI Legacy Survey images (Dey et al., 2019) and the Hyper Supreme-Cam images (Aihara
et al., 2019) of the ELG targets. The spectra in grey, black and orange colours are the original observed
galaxy spectrum, the smooth spectrum with a median filter, and the error spectrum, respectively. Figure
taken from Lan et al. (2022).
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this paper (Guy et al., 2023). Each spectrum is classified by a software called Redrock1 (Bailey
& DESI Collaboration, 2023). It is based on a template fitting method, i.e. χ2 minimisation
computed from a linear combination of spectral templates over the set of training templates.
For each class of target, (stars, galaxy or quasar), templates are constructed from previous
observations of each class of objects. The key parameters describing the best fit are the redshift,
the redshift uncertainty, the spectral class (star, galaxy, or quasar), the coefficients to the spectral
templates, the χ2, and the value ∆χ2, which is the difference in χ2 between the best fitted
redshift and the second best fit (the secondary minima in the χ2 value). This value reflects the
probability that the best-fit redshift is correct. Each spectrum is therefore associated with a
redshift and a spectral type which is not necessarily the target type of the object (for example, a
QSO target may be a star). In order to evaluate the performance of Redrock, visual inspections
(VI) of galaxy and quasar spectra have been done during the SV (Alexander et al., 2023, Lan
et al., 2022). I participated in the VI campaign for ELGs using the prospect software1 to read
the spectra together with the files generated by Redrock and facilitates the evaluation of the
quality of the best fit. The key step in the VI procedure is to assess the quality of the VI redshift,
according to different quality criteria:

➢ Quality 0: no signal, useless spectrum.

➢ Quality 1: unidentified feature in the spectrum, unlikely classification.

➢ Quality 2: possible classification, one strong spectral feature but unsure what it is.

➢ Quality 3: probable classification with at least one secure spectral feature, the redshift is
likely to be correct.

➢ Quality 4: confident classification with two or more secure features in the spectra.

Each spectrum is checked by at least two inspectors whose quality assignments are averaged.
The final VI redshift is robust if the overall VI quality ≥ 2.5, whereas an overall VI quality < 2.5
typically indicate a bad spectrum. Examples of ELG spectra of different quality are shown in
Figure 2.14. In DESI, the target feature in the ELG spectra is the [Oii] doublet λλ3726, 3729 as
shown in the top spectra of Figure 2.14. Among all the visually inspected ELG spectra (10315),
∼ 75% have VI quality ≥ 2.5. In this sample of robust VI redshifts, the redshift recovery rates
(in percent) by Redrock are 93.8 ± 0.2 and 97.5 ± 0.3 for ELG_LOP and ELG_VLOP respectively.

Most of the spectra obtained during the main survey will not have a VI counterpart, so we
need to ensure that Redrock finds the right spectral type and redshift. Therefore, to increase the
success rate from Redrock, an additional selection criterion is added to include most objects with
redshifts successfully identified by Redrock and exclude most objects with incorrect redshifts.
This criterion is a combination of the Redrock ∆χ2 values and other parameters from DESI
spectra, which is different for each tracer. To quantify the reliability of the best-fit redshift, the
Redrock parameter ∆χ2 is a good indicator, a large ∆χ2 implying generally a reliable redshift
measurement. However, ELGs spectra have in general a low SNR, so that the correct redshift
could have a low ∆χ2 because another solution due to a single emission line at a different redshift
would still provide a comparable χ2. To avoid ruling out a large proportion of good redshifts,

1https://github.com/desihub/redrock/releases/tag/0.15.4
1https://github.com/desihub

https://github.com/desihub/redrock/releases/tag/0.15.4
https://github.com/desihub


62 CHAPTER 2 DESI: The Dark Energy Spectroscopic Instrument

Raichoor et al. (2023) used a selection criterion that includes both ∆χ2 and the signal-to-noise
ratio (SNR) of the [Oii] emission flux SNR([Oii]), defined as follows:

log10(SNR([Oii])) > 0.9 − 0.2 × log10(∆χ2) (2.2)

This criterion selects more than 95% of reliable redshifts (VI validated and recovered by Redrock
Raichoor et al. (2023)), and corresponds to a redshift purity of 99.6% for ELGs at all redshifts
Lan et al. (2022). Figure 2.15 shows the fraction of validated redshifts in the plane log10(∆χ2)-
log10(SNR([Oii])) with the ELG criterion over all visually inspected spectra. Similarly to ELGs,
other criteria are applied to other tracers, leading to a redshift purity > 99%. During SV, the
precision of the redshift measurements was tested using repeat observations. With independent
exposures, spectra of the same targets were compared to determine the redshift errors from the
Redrock pipeline. For BGS and ELGs, the redshift precision is ∼ 10 km/s and that of LRGs
is ∼ 40 km/s and the redshift accuracy (compared to DEEP2 redshift measurements (Newman
et al., 2013)) is around ∼ 6, −3, −1 km/s for BGS, LRGs and ELGs, respectively (see Table 3 of
Lan et al. (2022)). In the following, we consider the ELG sample which includes both ELG_LOP
and ELG_VLOP samples.

Figure 2.15: Fraction of ELG redshifts validated by VI (VI quality > 2.5) in the log10(∆χ2)-
log10(SNR([Oii])) plane. The slanted solid line is our criterion for selecting reliable redshift measure-
ments, while the dashed and dotted–dashed vertical lines illustrate two threshold values for a lower cut in
log10(∆χ2). Figure taken from Raichoor et al. (2023).

2.6 The DESI One-Percent survey
The DESI One-Percent survey is the third and final phase of the survey validation (SV3). It
was conducted over 2 months (April and May 2021) prior to the start of the main survey in
June 2021. As the name suggests, the One-Percent survey aims to mimic 1% of the main survey,
covering ∼140 deg2 with final target selection algorithms and depths similar to those of the
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main survey. The footprint consists in twenty non-overlapping regions about the size of a focal
plane, called rosettes, represented in red on Figure 2.16. Each region undergoes ∼ 13 visits to
obtain high fibre assignment completeness (which is much higher than the main survey). For
each visit, the centres are shifted slightly to increase completeness in regions of the focal plane
that have no fibres (centre, petal edges).
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Figure 2.16: Top: Sky distribution of the DESI-observed dark tiles during the One-Percent in red and
previous phase of SV in black. Early coverage of the main survey is represented in green (2021 May–July)
and orange (2021 September-December). This figure is taken from (Raichoor et al., 2023). Bottom:
Redshift distrution of the BGS (grey), LRGs (red), ELGs (blue) and QSOs (orange) samples of the One-
Percent survey.

On the other hand, the edges of the rosette are less complete due to the reduced number
of visits. The completeness of one rosette for ELGs is presented in Figure 2.17. Overall the
completeness of ELGs is ∼ 86%, and ∼ 95% between 0.2 and 1.5 degrees from the centre of each
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rosette. Thanks to its high completeness, the One-Percent survey provides precise measurements
of the galaxy clustering down to very small scales. This sample is very appropriate to perform
small-scale clustering studies, and therefore the study of the galaxy-halo connection. During
the SV, DESI observed ∼ 1.4M extragalactic redshifts including ∼ 730k during the One-Percent
survey (2 months of observation) with 253, 915 BGS, 312, 790 ELGs, 137, 317 LRGs and 34, 173
QSOs (Collaboration et al., 2023b), and the number density of targets as function redshift is
shown in Figure 2.16.
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Figure 2.17: Left: Focal plane on sky with the overlapping tiles used to observed one rosette in orange.
Image from the legacy survey skyviewer. Right: The observational completeness of ELG targets on one
rosette from the DESI One-Percent Survey. The centre and edge of the rosette has lower completeness
due to the lower number of overlapping tiles. The two circle represent the rosette radius r = 0.2◦ and
r = 1.5◦, which are the cut we used for our analysis.

2.7 Estimator of the correlation function
The correlation function, and in particular the two-point correlation function (2PCF), ξ(r), is
the main statistic used in LSS analysis. The 2PCF measures the excess of pairs of galaxies
separated by a distance r with respect to a random distribution. The estimator that makes
the variance of the two-point correlation function nearly Poisson is the Landy-Szalay estimator
(Landy & Szalay, 1993):

ξ̂(r) = DD(r) − 2DR(r) + RR(r)
RR(r) (2.3)

where DD(r), DR(r), RR(r) are the number of galaxy-galaxy, galaxy-random, random-random
pairs separated by a distant r. Random refers to a random distribution of galaxies on the same
geometry as the data. The advantage of this estimator is that the random distribution takes
into account the survey geometry and potential masks, which minimise edge effects. Instead of
calculating the 2PCF in separation r, we can decompose the distance r into two components,
s and µ, where s is the observed distance between the pairs of galaxies and µ = cos(θ) with
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θ being the angle between s and the line of sight (los). We can then expand the correlation
function into Legendre polynomials Lℓ(µ) to obtain estimates of the multipoles moments:

ξℓ(s) = 2ℓ + 1
2

∫ 1

−1
ξ(s, µ)Lℓ(µ)dµ (2.4)

The multipole moments provide a mechanism for compressing the anisotropy in the correlation
function. The monopole ξℓ=0 is the isotropic component of the 2PCF, while the quadrupole
ξℓ=2 (and higher even orders) contains information about the anisotropies in the correlation
function. According to the cosmological principle, the galaxy distribution should be almost
isotropic. However, peculiar velocities of galaxies induce anisotropies in the observed distribution
of galaxies, known as the redshift space distortion (RSD) effect (see Section 2.8.2) that leads
to non-zero even multipoles. As we will see in the following, in linear theory (and hence on
large scales) Kaiser (1987) showed that the anisotropies in the 2PCF are proportional to the
isotropic component of the 2PCF (in real space) by a factor ∝ µ4 (see Equation (2.16)) which
means that there is no contribution higher that µ4. Thus, the cosmological signal is carried in
the quadruopole and the hexadecapole (ℓ = 2, 4).

To avoid the impact of galaxy peculiar velocities on small scales, the we can use the projected
correlation function wp(rp). Instead of decomposing the distance r between galaxies into (s, µ)
we can decompose its components along and perpendicular to the line-of-sight π and rp. The
projected correlation function is obtained by integrating ξ(rp, π) along the line-of-sight:

wp(rp) =
∫ πmax

πmin

ξ(rp, π)dπ (2.5)

The projected correlation function is widely used in galaxy-halo connection studies because it
has the advantage of being almost insensitive to the peculiar velocity of galaxies on small scales
(Bosch et al., 2013). We show the measurement of the projected correlation function of ELG
data from the One-Percent survey in Section 2.9.

2.7.1 Systematics effects
The measurement of galaxy clustering can be bias due to systematic effects. One of the most
important keys to obtaining reliable cosmological results is to study and correct these effects.
We describe below some of the main effects that affect the clustering of galaxies in spectroscopic
surveys. As always in the search for systematic studies, there are known systematic effects that
can be corrected, and unknown systematic effects, for which null tests must be performed to try
to avoid them.

2.7.1.1 Fibre assignment

As mentioned in Section 2.5.1, due to fibre assignment, some targets are missed inside the patrol
region of the fiber, and we need other pointings of the telescope in the same region to observe
all targets. In practice, we do not have enough passes to observe all the targets, so we need
to correct for this effect in the measurements. The simplest way to correct for this effect is
to up-weight galaxies in a given region of the sky according to the number of targets in that
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region, i.e. 2 galaxies observed in a region that initially has 4 targets are up-weighted by 2.
This correction provides a good recovery of the 2PCF on large scales but can not correct for
scales smaller than the size of the patrol region. In DESI these weights are called completeness
weights.

To recover the missing pair of objects at small scales, we rely on the pairwise-inverse-
probability weighting scheme combined with angular correction (PIP+ANG) (Bianchi & Perci-
val, 2017, Mohammad et al., 2020). The PIP weight accounts for incompleteness in the fibre
assignment process. They are defined for each galaxy pairs by running a set of multiple real-
isations of the fibre assignment (FA) algorithm. Indeed, the FA process is only one random
realisation of multiple FA, e.g. if a fibre has 2 targets with the same priority the observed
target is chosen randomly. For each realisation, the output for a galaxy is 0 (unobserved) or 1
(observed), and it is stored as bitwise weight w

(b)
i for each target (list of 0 or 1). Then, the PIP

weight is estimated as the number of realisations Nruns in which a given pair could have been
targeted divided by the number of times it was actually targeted:

wmn = Nruns

popcnt[w(b)
m &w

(b)
n ]

(2.6)

where popcnt is the population count operator which returns the number of elements other than 0
and & is the logical operation AND. We can also compute the individual-inverse-probability (IIP)
weights for individual targets, simply by replacing m = n the equation above. The IIP weights
are equivalent to the completeness weights described above. The PIP weighting scheme is only
unbiased if there are no pairs with zero selection probability. However, for galaxy pairs within
the same patrol region, regardless of the number of realisation, these pairs are never observed.
To recover these missing pairs, we can use the angular up-weighting scheme proposed in Percival
& Bianchi (2017) (originally used in the 2dFGRS analysis from Hawkins et al. (2003)). This
up-weighting scheme is a (good) approximation compared to PIPs that are exact. The pairs DD
and DR at a given separation angle θ are up-weighted according to:

wDD
ang (θ) = DDpar(θ)

DDfib
PIP(θ)

,

wDR
ang(θ) = DRpar(θ)

DRfib
IIP(θ)

.

(2.7)

The superscripts par refers to the pair of targets in the reference parent sample (initial target
sample) and fib to pair of targets that receive fibres. From this weighting scheme the corrected
DD and DR pair counts are calculated by summing the weights of the galaxy pairs in the
separation bin s:

DD(s) =
∑

s=sm−sn

wmn × w′
m,totw

′
n,tot × wDD

ang (θ),

DR(s) =
∑

s=sm−sn

wm × w′
m,totwn,tot × wDR

ang(θ),
(2.8)

where wmn, wm are the PIP and IPP weights, wi,tot are the other weights for each individual
objects and the superscript ′ refers to the weights for the randoms. PIP+ANG can successfully
recover the 2PCF measurement at small scales as demonstrated using DESI BGS simulations
(Smith et al., 2019). We rely on this weighting scheme in our analysis.
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2.7.1.2 Imaging systematics

Figure 2.18: ELG_LOP sample density sky map. The density is divided by the overall average value (1940
/deg2) to display the fractional difference to the average. The thick black line represents the 14,000 deg2

footprint covered by DESI. The Galactic plane is displayed as a solid line, while the Sagittarius plane is
displayed as a dashed line. Figure taken from Raichoor et al. (2023).

The target density field is expected to be uniform over the sky. However, the selection can
be biased due to the quality, the depth of the photometry and more generally all photometric
features (e.g. galactic extinction E(B-V)) used to performed the selection. In addtion, contam-
inants (e.g. stars) can introduce spurious fluctuations in the target density field and bias the
galaxy clustering. In DESI, we can see from Figure 2.18 that the density of ELG targets is not
uniform across the DESI footprint, certainly due to stellar contamination. We therefore need to
correct for fluctuations in the target density field due to the target selection. In order to mitigate
these effects the goal is to obtain a relative density that is independent of observational features
such as galactic extinction (E(B-V)), stellar density, depth of the PSF... In DESI, we rely on a
method that uses random forest (RF) regression (regressis1) based on observational feature
templates to mitigate imaging systematics and derived the photometric weights wp (Chaussidon
et al., 2021). An example of the contaminations and mitigations for ELGs is illustrated in Fig-
ure 2.19. This Figure show that the density of ELGs is strongly dependent on the photometric
features and the correction seems to mitigate all these effects.

1https://github.com/echaussidon/regressis/tree/main

https://github.com/echaussidon/regressis/tree/main
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Figure 2.19: Relative density of ELG targets as a function of different observational features (see Chaus-
sidon et al. (2021)) for the definition of the features). The blue line is the relative density of ELG targets
without any correction and the red line is after applying RF correction and the errors correspond to bi-
nomial errors. The grey histograms represent the number of object per bins. Credit: E. Chaussidon.

2.7.1.3 Spectroscopic systematics

Similarly to imaging systematics, spurious contamination can arise from redshift or spectroscopic
failures. To investigate potential spectroscopic systematics we use the spectroscopic success rate
(SSR), defined as the ratio of the number of valid redshifts over the total number of ELG spectra.
From the VI, we can define the average SSR for each target class. For the ELG_LOP sample the
SRR is ∼ 72%. In principle we want SSR to be flat with respect to observational or instrumental
features (e.g. across the focal plane, see Figure 2.20). Any variation of the SSR is quantified
and if it is found to be significant compared to what one would expect randomly, it needs to be
mitigated and corrected by applying a spectroscopic weight wspec.

During my thesis, I performed some tests to investigate the potential variations of SSR as
a function of different observational and instrumental features using the data from the One-
Percent survey. We did not find any significant trends, and the weights derived from this study
do not have a significant impact on the clustering. So we decided not to include them. However,
this effort is still under study for the Year 1 data sample. To give an example, the SSR should
be independent of the position on the focal plane and, therefore, any trend on the focal plane
should be mitigated. The variation in SSR over the focal plane for the ELG_LOP sample from
the One-Percent survey is presented in Figure 2.20. For the present work we assume that the
variations over the focal plane have a negligible impact. But this will be studied further for Y1
clustering analyses of DESI.
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Figure 2.20: Spectroscopic success rate (SSR) (in colour) on the 2D representation of the DESI focal
plane. The SSR in the x and y axis is shown in the side panels and errors are binomial.

2.7.1.4 FKP weights

The FKP weights (Feldman et al., 1994) are not a correction for systematic effects but are
commonly used to improve the variance of measured two-point statistics in order to optimise
the signal-to-noise of the galaxy field at a given scale k0 (usually used for BAO scale around
k0 = 0.14 h/Mpc). Assuming that the galaxy field follows a Poisson distribution with a mean
power spectrum P̄ (k) the optimal FKP weights are:

wFKP(z) = 1
1 + n̄(z)P̄ (k0)

(2.9)

where n̄(z) is the average number density of galaxies at a given redshift, and P̄ (k0) is the power-
spectrum at a wavelength of interest k0. These weights are used by default in our DESI analyses
but do not affect our scales of interest (< 30Mpc).
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In summary, once all the individual weights have been calculated, the final individual weight
wtot for each galaxy is the multiplication of all the different weights.

2.8 Observational effects
In the following we describe the main observational effects that affect the galaxy clustering and
show how they can be used to infer cosmological information.

2.8.1 Alcock-Paczynski effect
The two-point statistic is usually computed using Cartesian coordinate, whereas in galaxy sur-
veys, catalogues are provided with angular positions and redshifts. Angular positions and red-
shifts can be converted to comoving distances in Cartesian space assuming a fiducial cosmology,
which is likely to be different from the unknown cosmology in the data. The use of a wrong
cosmological model to convert redshift to distance in the data, create detectable distortions in
the galaxy clustering, known as the Alcock-Paczynski (AP) effect. The distortions occur in the
radial and angular comoving distances, DH and DA (see Equation (1.25), Equation (1.26)) (at
an effectively redshift zeff). We can define two scaling parameters, perpendicular and parallel to
the line-of-sight:

q∥ = DH (zeff )
Dfid

H (zeff )

q⊥ = DA (zeff )
Dfid

M (zeff )
.

(2.10)

The superscript fid refers to the fiducial cosmology used for cosmological distances. These
distortions are used when measuring the BAO scale, rd (see Equation (1.38)), in galaxy survey
and are parameterized as follows:

α∥ = DH(zeff )rfid
d

Dfid
H (zeff )rd

α⊥ = DA(zeff)rfid
d

Dfid
A (zeff )rd

(2.11)

These α-parameters can be varied in during cosmological inference, which allow the Hubble pa-
rameter, H(z) and the comoving angular distance, DA(z), both divided by rd, to be constrained.

2.8.2 Redshift-space distortions
As mentioned in the first chapter Section 1.4 the redshift have different contributions, the main
one being the expansion of the Universe. The proper motions of galaxies, known as peculiar
velocities also make a small contribution to the redshift. When measuring the redshift only the
component along the line of sight (los) of peculiar velocities, v∥ = v(r) · ˆlos (where ˆlos is a unit
vector along the los), affects the measurement. Since velocities are driven by gravity, the RSD
effect can be used to constrain gravity models on large-scale and dark energy. The position in
real space r is mapped to redshift space (observed) s following:
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s = r + v(r) · ˆlos

aH(a) (2.12)

In observations, we cannot disentangle the two contributions and we only have access to the
position in redshift space. Here, we adopt the plane-parallel approximation, i.e. all lines of
sight are considered to be parallel between the galaxies since they are far away from us. This
approximation breaks down when considering a large separation between objects, and additional
effects (such as wide-angle effects) have to be taken into account, which is not the case in this
work. As the effect of velocities is only visible along the los, these distortions create anisotropies
in the distribution of observed galaxies, and have two main signatures in the clustering of galaxies
illustrated in Figure 2.21. As we will see in the next chapter (Section 3.1.3), structures grow
continuously under the effect of gravity. On large scales, this growth is the main source of RSD.
If we consider galaxies at the near or far end of an overdense region, as they are falling towards
the overdensity. The one at the near end move away from us, increasing its redshift, and the one
at the far end move towards us, decreasing its redshift. In this way, the observed clustering is
squashed along the line of sight in large-scale redshift space, which is known as the Kaiser effect.
On the other hand, at small scales, galaxies fall into collapsed objects with deep potential wells,
and the velocity of the objects is dominated by random motions that introduce an apparent
elongation along the line of sight. This effect is known as Fingers of God (see Figure 2.21).

The squashing effect on large scales causes an increase in the measured power of the 2PCF
that can be easily modelled. Kaiser (1987) has derived how the change in power due to peculiar
velocities of galaxies is related to the growth rate of structure on large/linear scale:

ξs(s, µ) = (1 + fµ2)2ξr(r, µ) (2.13)

where µ is the cosine of the angle between the direction of the galaxy pair and the line of sight.
f is the linear growth rate, which describes how fast the cosmic structure grow. We give more
details on the linear growth rate f in the next chapter (see section Section 3.1.3). Finally, the
superscripts r and s refer to the groupings in real space and in redshift space. From this simple
model, we can model the 2PCF and compare it to the data to infer the value of f1, which is
directly related to the theory of gravity and dark energy (see Equation (3.37)).

Figure 2.22 shows the distortions induces by RSD and AP effetcs in the 3D distribution of
galaxies.

2.8.3 Galaxy bias
In the discussion above, we do not differentiate between the distribution of galaxies and the
distribution of matter. However, as we saw in the first chapter, baryons represent only a small
fraction, ∼ 25% of the total mass of the universe, the other part being invisible dark matter. As
we will see in the next chapter, galaxies follow the distribution of dark matter, residing mainly
at the centre of dark matter halos, which are overdense regions of the cosmic web. Consequently,
galaxies are tracers of the matter distribution, which means that where there is a galaxy, there

1Actually, the constrained value is fσ8, where σ8 is the root-mean-square of the density fluctuations in a sphere
of radius R = 8 Mpc/h, see Equation (3.13)
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Figure 2.21: Schematic illustration of the Redshift-space distortions effect. The observer is assumed to
be far away below the figure, so the los in vertical. The central overdensity is represented by the filled
orange circle. The wide blue arrows indicate the direction of the velocity flow and arrows with dashed
lines indicate the velocity contribution along the line-of-sight of the object. Left panel: Linear/large-scale
effect of RSD, a constant density contour circular in real space (dashed line) is squashed in redshift space
(solid line), due to slow motion of object towards the overdensity. Right panel: Small-scale (non-linear)
effect of RSD. The redshift space contour is elongate along the los. The velocity of galaxies are dominated
by random motions and an object on the "far side” (top) of the overdensity in real space is displaced on
the opposite side. Figure taken from (Dodelson & Schmidt, 2020).

Figure 2.22: The spatial distribution of galaxies in real space (left panel), redshift space (middle panel)
and the distortion from AP effect in real space (different cosmology model to convert distances) computed
using a cosmological simulation (right panel). In the observation we have the combination of the 2 effects.
Credit: Slide from Carlos Mauricio Correa Fayn

https://www.ictp-saifr.org/wp-content/uploads/2022/09/ICTP-SAIFR_Workshop_Correa.pdf
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must also be dark matter. However, the fact that there are no galaxies does not mean that there
is no dark matter. Thus, the field of galaxies δg is biased relative to the total matter field δm.
The standard prescription to model that effect is:

δg = bδm (2.14)

where b is called the galaxy linear bias. We can also write the relation between the two-point
correlation functions of the matter field ξmm and the galaxy fields ξgg as follows:

ξgg(r) = b2ξmm(r) (2.15)

We can rewrite the Kaiser formula in Equation (2.16) adding the galaxy bias:

ξs
gg(s, µ) = b2(1 + f

b
µ2)2ξr

mm(r, µ) (2.16)

The bias between these the galaxy fields and the matter fields depends on the type of galaxy, the
physics of galaxy formation, and may therefore be a general function, (e.g. depending on the
redshift, scale considered...). The galaxy bias is typically measured directly from the data and
is, on large scales, a only a function of redshift for a given galaxy population (e.g. see Laurent
et al. (2017) for quasars).

2.9 Small scale clustering of ELGs from the One-
Percent survey

For the purposes of this thesis, and the study of the galaxy-dark matter halo connection, we need
to measure the galaxy clustering on small scales. We dedicate, in the next chapter, an entire
section on galaxy halo connection and particularly on ELGs (see Section 3.4). Thanks to the
high completeness of the One-Percent survey, the clustering can be measured down to very small
scales, 0.04 Mpc/h in rp for the projected two-point correlation function wp and 0.17 Mpc/h in
galaxy pair separation s for the monopole and quadrupole of the 2PCF. Figure 2.23 shows the
projected clustering (integrated between −40 and 40 Mpc/h), the monopole and the quadrupole
of the 2PCF for the ELG sample of the One-Percent survey, and the impact of the completeness
and the PIP+ANG weights, where we compute the clustering for the whole ELG sample (∼ 86%
completeness) with and without the weights and when we restrict the sample only to the radius
of each rosette between 0.2◦ and 1.50◦ (see Figure 2.17) without weights (∼ 95% completeness).
The clustering measurement is restricted to the redshift range 0.8 < z < 1.6. As shown by
Figure 2.23, increasing the completeness of the sample reduced the observed systematic effect
in the 2PCF measurements.

We can observe two features on small scales in the projected clustering. Firstly, there is
a drop in clustering power on the smallest scales. This is expected due to blending effects.
Blending occurs when two objects are closer than the size of the point spread function (PSF)
of the image, so that the objects cannot be resolved, i.e. we see only one object in the sky (see
Figure 2.25). The scale of the PSF corresponds roughly to the size of the seeing, so objects
separated by an angle of less than twice the seeing cannot be resolved. On Figure 2.24, we can
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Figure 2.23: ELG clustering measurement from the One-Percent survey in the redshift range 0.8 < z < 1.6.
Left panel: Projected correlation function wp(rp) as a function of rp (integrated between πmin = −40 and
πmax = 40 Mpc/h). Middle: 2PCF monopole ξ0(s) times s. Right: Quadrupole of the 2PCF ξ2(s) times
s. The red and blue dots correspond to the full ELG sample without and with the PIP+ANG weights
respectively. The green dots correspond to the ELG sample restricted to the radius of each rosette between
0.2◦ and 1.50◦. On each panel, the error bars are calculated using the delete-one Jackknife method for
the One-Percent survey footprint divided into 128 independent regions.

see that this scale (2*seeing, dotted line) corresponds to the drop in the projected clustering
measurement. At Kitt Peak, on clear skies the seeing is ∼ 1.3 arcsec (Dey et al., 2019).

The second feature is the increase in power at rp < 0.1 Mpc/h, which means that a non-
negligible part of the ELGs are very closely separated. This feature was not anticipated from
previous studies of ELGs because, in previous experiments, scales < 0.1 Mpc/h were not well
measured, and most studies of ELG clustering at small scales stopped at rp = 0.1 Mpc/h

(Avila et al., 2020, Lin et al., 2023, Okumura et al., 2021). We are therefore looking for possible
systematic effects likely to generate this signal on these small scales. In particular, we are testing
potential foreground effects in the images. To test this, we measure the projected clustering, wp,
in different π bins (along the line of sight), see Figure 2.24. We see that the strong clustering
power at small scales is mainly due to separations along the line of sight below π = 4Mpc /h,
which means that this feature is driven by objects that are closely separated in the transverse
direction but also in the radial direction, and is therefore not due to foreground effects.

Finally, we examined the image and spectra of observed ELG targets closely separated on
the sky with small redshift difference ∆z < 0.001. Examples of these images are shown in
Figure 2.25. Most of the pairs look real, where we can see 2 different targets on the sky. There
are 267,345 ELGs in the sample from the One-Percent survey. Among them, there are 830 galaxy
pairs that have a separation angle θ < 2.6 arcsec on the sky corresponding to 828 unique targets.
As these scales are subject to blending effect and fragmentation effect (several targets found for
a single object), there are potentially ∼ 414 spurious targets, which represent ∼ 0.1% of the
total sample. Removing these targets from the sample does not change the increase in clustering
power on scales < 0.2Mpc/h. Looking at higher separation angle 2.6 < θ < 25 arcsecond, there
are 67434 pairs of objects, corresponding to 62895 unique objects, representing ∼ 23% of the
ELG sample. After many checks, we did not find any significant systematic effects that could
generate this increase in small-scale clustering power. Therefore, we tried to model this feature
in our analysis in Chapter 5.
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Figure 2.24: DESI clustering measurements for the One-Percent survey ELG data sample restricted to the
redshift range 0.8 < z < 1.6. The 2D correlation function in successive bins of 2Mpc/h in the galaxy-pair
separation along the line-of-sight is shown as a function of the separation perpendicular to the line-of-
sight, rp. No correction weight has been applied. Measurements using the whole survey footprint (solid
lines) are compared with measurements excluding the inner and outer regions of the rosettes where the
survey was less incomplete (dashed lines). Also indicated are the separation corresponding to the fibre
patrol region (dot-dashed grey line) and the limit corresponding to twice the mean survey seeing (dotted
grey line). Below this limit, target blending cannot be resolved, leading to a loss of power. This plot
demonstrates that the strong increase in power at small scales (below 0.2Mpc/h) is not due to the (slight)
incompleteness of the One-Percent survey.
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Figure 2.25: Examples of pair of spectra for close galaxy pairs on sky and redshift from the ELG sample
of the One-Percent survey. The two upper spectra are cleary 2 different objects on sky (the image have
low quality but on the sky viwer we can clearly see the 2 objects), while the two targets on the bottom panel
can potentially be the same object (fragmentation). The size of each image is ∼ 21 × 21 arcsec. Images
url (from top to bottom): https: // www. legacysurvey. org/ viewer/ desi-edr-spectra/ ?ra= 148.
93& dec= 1. 75& zoom= 20 , https: // www. legacysurvey. org/ viewer/ desi-edr-spectra/ ?ra= 150.
78& dec= 3. 23& zoom= 20 , https: // www. legacysurvey. org/ viewer/ desi-edr-spectra/ ?ra= 195.
02& dec= 28. 08& zoom= 20

https://www.legacysurvey.org/viewer/desi-edr-spectra/?ra=148.93&dec=1.75&zoom=20
https://www.legacysurvey.org/viewer/desi-edr-spectra/?ra=148.93&dec=1.75&zoom=20
https://www.legacysurvey.org/viewer/desi-edr-spectra/?ra=150.78&dec=3.23&zoom=20
https://www.legacysurvey.org/viewer/desi-edr-spectra/?ra=150.78&dec=3.23&zoom=20
https://www.legacysurvey.org/viewer/desi-edr-spectra/?ra=195.02&dec=28.08&zoom=20
https://www.legacysurvey.org/viewer/desi-edr-spectra/?ra=195.02&dec=28.08&zoom=20
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I n the first chapter we described the dynamics and the evolution of a homogeneous and
isotropic universe on large scale. However, on smaller scales, where inhomogeneities appear,

the Universe cannot be treated as homogeneous and isotropic anymore. This chapter aims to
describe how the fluctuations laid out by inflation, which are imprinted in the temperature
anisotropy power spectrum of the CMB (∆T/T ∼ 10−5), have been amplified by the influence
of gravity and have led to the formation of large-scale structures. This chapter is inspired from
a series of online lectures given by Franck van den Bosch on the theory of galaxy formation
(https://campuspress.yale.edu/astro610/).

3.1 From overdensities to DM halos

3.1.1 Statistical properties of cosmic fields
Due to their quantum nature, fluctuations resulting from inflation cannot be predicted or di-
rectly measured. These fluctuations represent a single occurrence within an infinite ensemble
of possible realisations that could have arisen from a random process during inflation. Conse-
quently, to study these fluctuations it becomes necessary to employ a statistical perspective and
utilise a probabilistic description. In this section, we provide some important tools and relevant
properties to statistically describe cosmic fields.

The matter density field ρ(x) can be translated into the density perturbation field δx defined
as:

δ(x) ≡ ρ(x) − ⟨ρ⟩
⟨ρ⟩

(3.1)

where ρ(x) is the density at the position x and ⟨ρ⟩ is the mean density. In the following, we
will apply the ergodic principle, which states that volume-averaged quantities are equal to their
expectation values, i.e. ρ̄ = ⟨ρ⟩. One property of the density contrast is that its mean has to be
zero ⟨δ⟩ = 0, to respect the cosmological principle (homogeneity on large scales). Because simple
inflation models (e.g. single-field slow-roll) predict that initial density perturbations originate
from numerous independent quantum fluctuations, the central limit theorem implies that the
density perturbation field δ(x) at an early time, or on large scales, is very close to be Gaussian-
distributed. In this case, all the statistical information about the density perturbation field can
be completely characterised by its mean and variance. Since the mean of the distribution is
zero according to the cosmology principle ⟨δ⟩ = 0, the variance, i.e. the two-point correlation
function (2PCF), fully describes the statistical distribution of the field:

⟨δ(x)⟩ = 0 (3.2)

ξ(x, x′) =
〈
δ(x)δ(x′)

〉
(3.3)

Assuming statistical isotropy and homogeneity of the field, the 2PCF depends only on the
distance r = ||r|| between the two positions x and x′:

ξ(r) = ⟨δ(x)δ(x + r)⟩ (3.4)

https://campuspress.yale.edu/astro610/
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The 2PCF measures the excess over the random probability that two fluctuations are separated
by a distance r. If the correlation ξ(r) is positive, there are more fluctuations separated by
a distance r than if they were uniformly distributed. In cosmology, density perturbations are
often described by modes in Fourier space. Throughout this manuscript, we adopt the following
convention for the Fourier transform and inverse transform:

δ(k) =
∫

δ(x)e−ik·xd3x,

δ(x) =
∫

δ(k)eik·r d3k
(2π)3 .

(3.5)

The power spectrum P (k) characterises the correlation of Fourier modes and is defined as the
correlation between two Fourier modes:

〈
δ(k)δ(k′)

〉
= (2π)3δ

(3)
D (k + k′)P (k) (3.6)

where δ
(3)
D is the Dirac delta function. Similarly to the 2PCF, the power spectrum depends

only on k = ||k||. The power spectrum is the Fourier transform of the correlation function
(Wiener–Khinchin theorem):

P (k) =
∫

ξ(r)e−ik′·xd3x = 4π

∫ ∞

0
r2ξ(r)sin(kr)

kr
dr, (3.7)

and conversely,

ξ(r) =
∫

P (k)eik·x d3k
(2π)3 =

∫ ∞

0
k2P (k)sin(kr)

kr

dk

2π2 . (3.8)

The last part of both equations consider homogeneous isotropic fields (so one can apply spherical
symmetry).

The power spectrum (in Fourier space) decomposes the probability of the correlation function
(in real space) to find two fluctuations at a distance r, into characteristic lengths, k = 2π/r.
As the correlation function and the power spectrum form a Fourier pair, they provide the same
information.

3.1.2 The initial power spectrum
Inflation models predict the initial shape of the power spectrum of primordial fluctuations. If
we consider scalar-field inflation models (e.g. slow-roll), the perturbations generated during
inflation are adiabatic, and (almost) Gaussian-distributed. These perturbations of the inflation-
ary field (δϕ) lead to spatial curvature perturbations (R). The dimensionless power spectrum
of spatial curvature perturbations ∆2

R(k) is predicted by scalar inflation models to be nearly
scale-invariant, with the following parametrisation:

∆2
R(k) ≡ k3

2π2 PR(k) = As

(
k

kp

)ns−1

(3.9)

where As is the amplitude of the power spectrum at the pivot scale kp (generally set at kp = 0.05
Mpc−1) and ns is the spectral index. In the special case where ns = 1, the dimensionless power
spectrum becomes scale-independent (called the Harrison-Zel’dovich spectrum). The value of
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the spectral index predicted in scalar-field inflation models is ns ∼ 0.96. The value ns is
well-constrained by the CMB observations and the results from (Planck Collaboration et al.,
2020) reported a value of ns = 0.9649 ± 0.00842. Due to the exponential expansion during
the inflationary period, perturbations at the end of inflation become super-horizon (or super-
Hubble), meaning that their characteristic scales k ≪ aH. In this case, curvature and density
perturbations are related by the Poisson equation k2ΦB/a2 = −4πGδk (where the Bardeen
potential ΦB can be related to the comoving curvature perturbation R). Thus, the initial power
spectrum of the density perturbations can be written as:

P i
δ(k) = As

(
k

kp

)ns

(3.10)

In the linear regime δ ≪ 1, different Fourier modes evolve independently of each other. Conse-
quently, the linear power spectrum at any redshift z is related to the initial power spectrum by
a linear transfer function:

T (k, z) = δ(k, z)δi(k = 0)
δi(k)δ(k = 0, z) (3.11)

where δi are given by the initial conditions of the inflation field. The transfer function depends
on the cosmological parameters and is defined for each species (s) that composes the Universe.
It can be calculated using numerical codes such as CLASS (Lesgourgues, 2011). The linear
matter power spectrum can thus be expressed as a function of the initial power spectrum:

Pδ(k, z) = T 2(k, z)P i
δ(k) (3.12)

For simplicity, we will adopt P instead of Pδ throughout the thesis from now on. As we saw
above, the shape of the linear power spectrum can be predicted from the initial conditions of the
inflationary field. However, to obtain a complete description of the power spectrum, we need
to define its amplitude As which is not predicted a priori by initial conditions but must instead
be fixed by observations. Instead of As, the historical prescription for normalising the power
spectrum in large scale structure analyses uses σ8:

σ2
8 =

∫ ∞

0
P (k)W̃ 2

R(k)k2 dk

2π2 (3.13)

where σ8 encodes the amount of matter fluctuations averaged over a sphere of radius R =
8Mpc/h. W̃R(k) is a window function that takes into account geometric effects in the way
galaxies are selected. In this case, this function is the Fourier transform of a spherical top-hat
function, where galaxies are selected only within a spherical volume V of radius R = 8Mpc/h:

WR(r) =

 3/
[
4πR3] if r ≤ R

0 otherwise
(3.14)

W̃R(k) = 3
(kR)2 (sin(kR) − kR cos(kR)) (3.15)

Consequently, we can relate the power spectrum for any redshift to the power spectrum at z0 = 0
by normalising it by the ratio of their amplitudes:

P (k, z) = σ2
8(z)

σ2
8(z0)P (k, z0) (3.16)
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Today, many observations have measured the σ8 parameter. The value from (Planck Collabo-
ration et al., 2020) measurement is σ8(z = 0) = 0.8111 ± 0.0060.

Note: Recently, the measurements of σ8 from different probes have been in tension. Large scale
structure measurements at redshift z ∼ 1 (mainly through weak lensing effects) are in ∼ 2 − 3σ

disagreement with CMB measurements (Abdalla et al., 2022). Baryonic effects, which occur
at small scales (high k) and are non-linear, are a possible explanation for this mild tension.
Future experiments such as Euclid or LSST will collect large data sets and attempt to resolve
this tension.

3.1.3 Linear growth of perturbations
The aim of the upcoming section is to describe the temporal evolution of adiabatic perturbations
generated during the inflation period. The analysis of perturbation evolution will depend on the
different regimes in which perturbations grow. There exist two distinct regimes within which
perturbations can evolve:

• The sub-Hubble regime where comoving Fourier modes k ≫ aH and the Hubble expansion
can be neglected.

• The supper-Hubble regime, where comoving Fourier modes k ≪ aH and the Hubble friction
terms (relativistic effets) dominate the field dynamics.

The evolution of large scale perturbations (⇒ small k, supper-Hubble) is governed by general
relativity and requires perturbation of the FLRW metric (Equation (7.1)).

In the following, we will concentrate solely on the linear theory (sub-Hubble), considering
small perturbations δ ≪ 1. This implies that gravitational fields are weak so we can adopt a
Newtonian approach. As long as density fluctuations remain sufficiently small, non-linearities
can be treated using perturbation theory. This approach breaks down at small scales, where
the field is highly non-linear and perturbation theory is no longer valid. The validity of linear
regime corresponds to scales above 40 − 50Mpc/h. Shortly after recombination, the baryons
are completely decoupled from photons and evolve with dark matter through gravitation as a
single fluid of matter. We consider an ideal, single-flow fluid composed of dark matter and
baryons with density ρm = ρcdm + ρb, velocity v, and pressure p evolving under the influence
of a gravitational field ϕ in an expanding universe. To discuss the temporal evolution of the
perturbations in an expanding universe, it is best to replace physical positions r and velocities
v by comoving ones u and x:

r = a(t) · x
v = ȧ(t) · x + u

∇r = ∇x/a

(3.17)

We note that u is a peculiar velocity which comes on top of the Hubble flow ȧ(t) · x. The
density, velocity and gravitational fields can be split into their homogeneous mean values and
small perturbations, δρm, δu = δv/a and δϕ. An equation of state links density and pressure
fluctuations, δp = c2

sδρm in the case of a barotropic fluid (i.e. pressure p only depends on the
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density ρ). Density perturbations can be expressed in terms of the density contrast δ(x) using
Equation (7.3). We define the following notation, which we will use in this section: δx = δ(x).
In this framework, equations governing the perturbation motion in comoving coordinates are (in
terms of δx): 

δ̇x + 1
a

∇x · δu = 0 (Continuity)

u̇ + ȧ

a
δu + c2

s

a
∇xδx + 1

a
∇xδϕ = 0 (Euler)

∇2
xδϕ = 4πGa2ρ̄mδx (Poisson)

(3.18)

We recall that ḟ denotes the time derivative of f . By combining the above system of equations
(3.18), we can derive a single second-order differential equation:

δ̈x + 2 ȧ

a
δ̇x︸ ︷︷ ︸

Hubble drag

− c2
s

a2 ∇2
xδx − 4πGρ̄mδx︸ ︷︷ ︸

gravitation

= 0 (3.19)

The second term in the above equation is the Hubble drag, which tends to attenuate the growth
of perturbations due to the expansion of the Universe. It competes with the gravitational term
of the Poisson equation (last term in the equation above) which cause perturbations to grow
through gravitational instability. We can translate the evolution equation Equation (3.19) in
Fourier space using ∇2

x → −k2 in the Fourier transformation:

δ̈k + 2 ȧ

a
δ̇k +

[
k2c2

s

a2 − 4πGρ̄m

]
δk = 0 (3.20)

The above equation allows us to define the Jeans length λJ (or its corresponding wavenumber
kJ) which is the scale at which pressure and gravitational forces are equal (cancelling the last
term):

kJ =
√

4πa2Gρ̄m
cs

, (3.21)

λJ = 2πa

kJ
= cs

√
π

Gρ̄m
(3.22)

The Jeans length defines two domains of solutions:

• k < kJ : pressure cannot withstand gravity, perturbations can grow under gravitation.

• k > kJ : perturbations will not grow but oscillate as sound waves propagating at the sound
speed.

For baryons, the Jeans length defines the scale at which pressure balances gravity. After recom-
bination, only perturbations with k < kJ can increase and we can approximate the sound speed
of baryons to that of a non-relativistic mono-atomic gas:

cs =
√

5kBT

3mp
(3.23)
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where mp is the mass of the proton and kB the Boltzmann’s constant. We can derive the
corresponding Jeans length from Equation (3.23):

λJ ≈ 0.01(Ωb,0h2)−1/2 ∼ 0.67 Mpc (3.24)

and the corresponding Jeans mass, considering the mass in a sphere of radius λJ/2:

MJ = 4
3πρ̄(m,0)

(
λJ

2

)3
= 1.5 · 105(Ωb,0h2)−1/2 M⊙ (3.25)

After recombination the Jeans mass is comparable to the mass of a globular cluster. For com-
parison, prior to recombination, photons are coupled with baryons and the corresponding sound
speed is given in Equation (1.37). In this case the corresponding Jeans mass is:

MJ = 1.5 · 1016(Ωb,0h2)−2 M⊙ (3.26)

Altogether, before recombination the Jeans mass (or λJ) is so high that perturbations cannot
grow, which prevents any structure formation. At recombination, the photons decouple from
baryons, which dramatically reduces the pressure, leading to a huge drop in the Jeans mass.
Perturbation can grow and structure formation starts.

We consider only those perturbations that can grow with time in the linear regime (k ≪ kJ)
to eventually lead to gravitational collapse and hence large scale structure formation. The
pressure component becomes negligible in Equation (3.19) and we end up with:

δ̈x + 2 ȧ

a
δ̇x − 4πGρ̄mδx = 0 (3.27)

The linear growth equation (3.27) can be solved by considering the different cosmological epochs
– radiation, matter or dark energy dominance – seen in the first chapter in Section 1.6.

Radiation-dominated
During this period, the Hubble parameter is dominated by radiation, and ρ̄m is negligible com-
pared to H (4πGρ̄mδx ≪ ȧ/a). Thus, Equation (3.27) can be simplified into:

δ̈x + 2 ȧ

a
δ̇x = 0 (3.28)

As the scale factor at this epoch evolves as a ∝ t1/2 (see Table 1.1) we find the following solution:

δx(t) = A1 + A2 ln(t) (3.29)

where A1 and A2 are integration constants. Perturbations increase only slowly (logarithmically)
during the radiation-dominated period.

Matter-dominated

In a matter-dominated era, the scale factor evolves as a(t) ∝ t2/3 (see Table 1.1). In this case,
the solution of Equation (3.27) is a linear combination of growing modes D+(t) and decaying
modes D−(t) :
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δx(t) = D+(t)δ+
x (0) + D−(t)δ−

x (0) (3.30)

with the time dependence of D+ and D− as:

D+(a) ∝ a ∝ t2/3, D−(a) ∝ a−3/2 ∝ t−1. (3.31)

The growing mode D+ evolves proportionally to the scale factor a, and the decaying mode is
inversely proportional to time. Thus, from now on we consider only the growing mode D+
which may lead to gravitational instability eventually. This growing mode is also known as the
linear growth factor D. Since matter dominance lasts for 10 billion years (while the radiation-
dominated period lasts only for ∼ 50, 000 years), thanks to the scaling of the growing mode
∝ t2/3, the structures of the Universe grow significantly during this period. The growth of
structures is described generically by the linear growth rate of structure f defined by:

f ≡ d ln(D)
d ln(a) (3.32)

From this definition, we can show that the growing solution δx(t) = D(t)δx(0) satisfies:

δ̇x(t) = fHδx(t) (3.33)

Using the continuity equation in Equation (3.18), we see that the linear regime is characterised
by a linear coupling between the density and velocity fields proportional to the linear growth
rate:

∇x · δu = −aHfδx (3.34)

Note that in the simple case of matter-domination D+(a) ∝ a and hence f = 1.

Dark energy domination
To describe dark energy, we consider the case of of a cosmological constant. Similarly to the case
of radiation domination, ρ̄m is negligible compared to H, the latter being dominated by dark
energy (4πGρ̄mδx ≪ ȧ/a). The evolution of perturbation is therefore given by Equation (3.27).
With the scale factor increasing exponentially with time a ∝ eHt (see Table 1.1) we find the
following solution:

δx(t) = C1 + C2e−2Ht −→
t→∞

constant (3.35)

where C1 and C2 are integration constants. The second term decreases exponentially and quickly
becomes negligible and density perturbations stop growing.

In summary, we have seen different evolution of linear density perturbations at different
epochs of the Universe:

δx(t) ∝


log(t) ∝ ln(a) (radiation dominated)

t2/3 ∝ a (matter dominated)
constant (Λ dominated)

(3.36)

Large-scale structures were formed mainly during the era of matter domination, when the linear
growth rate of structure f describes the effectiveness of gravitational attraction in comparison
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to the expansion of the Universe. Linder (2003) shows that f can be parametrised as a function
of Ωm. For a flat Universe with matter and a cosmological constant (Ωm + ΩΛ = 1), a good
parametrisation is f(Ωm) = Ωγ

m where γ is the growth index related to the equation of state of
dark energy by:

γ = 3(1 − wDE)
5 − 6wDE

(3.37)

For the ΛCDM model, wDE = −1 and we obtain γ = 5/9 ≈ 0.56. Therefore, probing the linear
growth rate of structures can directly constrain the nature of dark energy and deviations from
general relativity.

3.1.4 Non-linear evolution of perturbations: the gravita-
tional collapse

In the previous section, we saw the evolution of perturbations in the linear regime δ ≪ 1,
where typical scales are larger than ∼ 4050Mpc/h. At smaller scales, we enter the non-linear
regime δ ≫ 1 and perturbation theory is no longer valid. However, in the quasi-linear regime,
where δ ∼ 1, perturbation theory remains valid to describe the evolution of perturbations. This
corresponds to the intermediate scales ∼ 20 − 50Mpc/h. At these scales, the density field looses
its Gaussian properties due to the mode-coupling in equations Equation (3.20). Consequently,
higher-order moments can be used to fully describe the density field. In this manuscript, we will
not go into the details of higher-order perturbation theory for the quasi-linear regime. Many
textbooks and papers describe the subject in detail, such as Bernardeau et al. (2002), Peter
et al. (2013), Scoccimarro (2004), Taruya et al. (2012). To complete our description of structure
formation, we need to go beyond the linear and quasi-linear regimes and address the evolution
of overdensities at small-scales < 20Mpc/h where perturbations are highly non-linear δ ≫ 1 and
eventually collapse under the effect of gravity. In general, in the non-linear regime, there are no
analytical solutions to the equation of motion, and we need to use computer simulations to track
the evolution of gravitational dynamics. However, using simple assumptions, such as spherical
symmetry of the system, it is possible to build analytical models. In the next section, we will
review the spherical collapse model.

3.1.4.1 Spherical collapse

The spherical collapse model, first introduced by (Gunn & Gott, 1972), describes the evolution
of an initial spherical perturbation under the effect of gravitation. This model makes several
assumptions:

• the Universe is homogeneous, with the exception of a single, top-hat, spherical perturba-
tion.

• the Universe is matter-dominated, following an Einstein de Sitter (EdS) cosmology, Ωm =
1, ΩΛ = 0.

• we consider only a collisionless fluid of dark matter.
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In this model, an overdensity is seen as a large number of individual, thin mass shells, like onion
shells. We can apply the Birkhoff’s theorem to describe the evolution of a single mass shell of
radius r:

d2r

dt2 = −GM

r2 . (3.38)

M is the mass enclosed in the shell and can be expressed as follows:

M = 4π

3 r3ρm = 4π

3 r3Ωmρc (3.39)

where ρc critical density is defined in Equation (1.19), and Ωm = 1 for an EdS universe. If we
consider that the enclosed mass is independent of time before shell crossing, we can integrate
Equation (3.38) and obtain:

1
2

(
dr

dt

)2
− GM

r
= E (3.40)

where E is the total energy of the system. The system is gravitationally bound, which implies
the collapse of the spherical perturbation, when E < 0. In this case, the motion of a mass shell
can be parametrised as follows:

r = Rm(1 − cos(τ))
t = tm(τ − sin(τ))

(3.41)

with Rm = GM/2|E|, tm = GM/(2|E|)3/2 and τ ∈ (0, 2π). Rm and tm are linked by the
simple relation R3

m = GMt2
m. We can expand the above solution to track the evolution of the

perturbation. In the linear regime, we use the Maclaurin expansions for cos(τ) and sin(τ):

lim
τ→0

(r(τ)) = Rm

(
τ2

2 − τ4

24

)

lim
τ→0

(t(τ)) = tm

(
τ3

6 − τ5

120

) (3.42)

To first order r = Rmτ2/2 and t = tmτ3/6. We can express r as a function of t at next order by
combining the two equations above (Equation (3.42)):

Rlin(t) = 1
2(6t)2/3(GM)1/3

[
1 − 1

20

( 6t

tm

)2/3
]

. (3.43)

Solving the evolution equation for the background gives the following solution for the background
scale factor:

Rbg(t) = 1
2(6t)2/3(GM)1/3 (3.44)

Using the above equations and the conservation of mass (ρmR3
lin = ρ̄mR3

bg), the density contrast
δsc of the spherical overdensity can be derived as a function of t:

1 + δsc(t) ≡ ρm
ρ̄m

=
R3

bg

R3
lin

=
[
1 − 1

20

( 6t

tm

)2/3
]−3

(3.45)

Initially, when t ≪ tm (i.e. δsc is in the linear regime), we can expand the right-hand side to
linear order ((1 + x)n −→

x≪1
1 + nx) leading to:
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δlin ≃ 3
20

( 6t

tm

)2/3
(3.46)

We simply find the evolution of perturbations in the linear regime, δsc ∝ t2/3, as we have already
seen in the case of a matter-dominated Universe (D ∝ t2/3 see Equation (3.31)). The spherical
overdensity extends until t = πtm, where the radius reaches its maximum rta = 2Rm (for τ = π).
It then turns around and collapses, reaching r = 0 at t = 2πtm for τ = 2π. From Equation (3.46)
we can compute the value of the linear at turnaround (t = πtm):

δta
lin = 3π

20 (6π)2/3 ≃ 1.06 (3.47)

and at collapse time (at linear order), t = 2πtm (τ = 2π):

δc ≡ δcol
lin = 3

20(12π)2/3 ≃ 1.686. (3.48)

Here we introduce the critical density contrast, δc which is time independent. It corresponds to
the linear density threshold above which a spherical overdensity in an EdS universe collapses
into a single point becoming infinitely dense, as can be see, from Equation (3.41).

Beyond the linear regime, we can also compute the value of the non-linear density contrast
at turnaround (t = πtm) using Equation (3.41) and Equation (3.44):

δta
sc =

R3
bg(πtm)

r3
ta

− 1 = 9π2

16 − 1 ≃ 4.55 (3.49)

In practice the collapse is never perfectly spherical and the overdensity does not reach infinite
density. Instead, during collapse, shell crossings occur, leading to exchanges of angular mo-
mentum. The system relaxes toward an equilibrium when the gravitational energy equals twice
the kinetic energy E = 2K + U = 0, the so-called virial equilibrium. This implies that the
radius at virialisation is half the maximum radius reached by the overdensity rvir = rta/2. At
this moment t = 2πtm, the density inside the sphere has increased by a factor 23. Since in a
matter-dominated universe a ∝ t2/3 and ρ̄m ∝ a−3, the background density of the Universe has
decreased by a factor of 22. Therefore, the virialised overdensity corresponding to t = 2πtm is:

δvir = δta
sc · 23 · 22 ≃ 177 (3.50)

After virialisation of the system, we finally obtain a virialised object of radius Rvir called a halo.
Figure 3.1 shows a sketch of the evolution of the spherical collapse model.

This simple phenomenological model provides us with useful keys to understanding the non-
linear evolution of spherical perturbations. When perturbations reach a density δvir ≃ 177 times
higher than the mean density of the Universe, they form gravitationally-bounds halos composed
of dark matter (as in this model we assume a collisionless dark matter fluid). For EdS cosmology
the value of δvir is exactly known. In the case of the standard ΛCDM cosmological model, due to
the increase in the expansion rate, the background density is lower at the time of virialisation,
implying a larger value of δvir. Other models including dark energy can be constructed, but
there is no analytical solution to spherical collapse. Weinberg & Kamionkowski (2003) used
numerical integration and find the following evolution of δvir for flat cosmological models with
a cosmological constant that has an equation of state of the form wDE = constant:
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Figure 3.1: Schematic representation of the spherical collapse model. Figure taken from Frank van den
Bosch lectures.

δvir ≃ 177
(
1 + b1θb2(z)

)
θ ≡ 1 − Ωm(z)

Ωm(z)
b1 = 0.399 − 1.309(|wDE |0.426 − 1)
b2 = 0.941 − 0.205(|wDE |0.938 − 1)

(3.51)

The evolution of the critical density δvir with different values of wDE is shown in Figure 3.2
considering a fixed cosmological background from Table 1.2 to obtain the evolution of Ωm(z).
We see that the evolution of δvir in cosmological models with a cosmological constant converges
to the EdS model at high redshift z ≥ 1, and differs from δvir = 177 at lower redshift where most
large scale structures are already formed. Consequently, the spherical collapse model in an EdS
universe is a good approximation for the ΛCDM cosmology at z > 1.5. This is to be expected,
since Λ is subdominant during the early stages of collapse when the Universe was dominated
by matter. By the time dark energy has become non-negligible, the collapse regions are already
much denser than the density background and have largely decoupled from the Hubble flow.

3.1.4.2 The mass function of collapsed objects

The spherical collapse model predicts that a region with volume V = 4/3πR3 with a density
contrast δ exceeding the spherical collapse threshold δc will collapse into a halo of mass M =
ρ̄m(1+δvir)V . Press & Schechter (1974) derive the abundance of collapsed objects by considering
that, for a Gaussian random field of mean density ρ̄, we can statistically count the number of
regions with an overdensity δ > δc. Suppose that, at a given redshift z, we smooth the random
Gaussian field of density fluctuations over cells of radius R containing on average a mass of
M = 4/3πR3(1 + δ)ρ̄ and that all cells with δ > δc collapse into halos. Given the linear
smoothing, the density field in the cells is also Gaussian with a variance σ2

M which can be given
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Figure 3.2: Evolution of the non-linear critical density δvir as a function of redshift for cosmological models
including dark energy as a cosmological constant. Different values of wDE are shown in solid lines for
a fixed cosmological background from Table 1.2. The value for δvir in an EdS universe is shown by the
dashed-line. The line wDE = −1 represents the ΛCDM model. This figure is inspired from Weinberg &
Kamionkowski (2003).

by Equation (3.13). Therefore, the probability for a cell to exceed the overdensity threshold δc

is given by:

P (M |δ > δc) = 1√
2πσM

∫ ∞

δc

exp
(

− δ2
M

2σ2
M

)
dδM = 1

2erfc
(

δc√
2σM

)
(3.52)

where erfc(x) is the complementary error function. P (M |δ > δc) represents the fraction of
collapsed regions, i.e. halos with a mass M greater than that corresponding to δc. We use the
above formula to obtain the fraction of objects whose mass lies between [M, M + dM ]:

dP (M) =
∣∣∣∣∂P (M |δ > δc)

∂M

∣∣∣∣ dM (3.53)

which leads formally to the halo mass function, i.e. the number density of halos per mass interval
dM :

nh(M)dM = ρ̄

M

∣∣∣∣∂P (M |δ > δc)
∂M

∣∣∣∣ dM (3.54)

This mass function does not appear to be properly normalised, since integration over all the
mass included in the halos only recovers half of the total mass (Press & Schechter, 1974). In
their paper, Press & Schechter argued, without a proper demonstration, that matter in initially
under-dense regions will eventually be accreted by the collapsed objects, doubling their masses
without changing the shape of the mass function. Thus, they introduced a "fudge factor" 2
to ensure mass conservation. A rederivation based on excursion set theory revealed the true
origin of this factor Bond et al. (1991). The Press-Schechter (PS) mass function is usually given
in terms of logarithmic mass bins, hence nh(M) = nh(M,z)

M
dM

d ln(M) and Equation (3.54) become
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(with the fudge factor 2):

nh(M)dM =
√

2
π

ρ̄δc

M2σM
exp

(
− δ2

c

2σ2
M

) ∣∣∣∣d ln(σM )
d ln(M)

∣∣∣∣ dM (3.55)

We introduce the variable ν = δc/σM and the multiplicity function:

fP S(ν) =
√

2
π

ν exp
(

−ν2

2

)
(3.56)

which gives the fraction of mass associated with halos in a unit range of ln(ν). Thus, we can
rewrite the PS mass function in a more compact form:

nh(M)dM = ρ̄

M2 fP S(ν)
∣∣∣∣ d ln(ν)
d ln(M)

∣∣∣∣ dM (3.57)

If we define a characteristic mass M∗ such that σM∗ = δc ⇒ ν(M∗) = 1 we can guess the
behaviour of the mass function:

nh(M)dM ∝
{

Mα−2 for M ≪ M∗

exp
(
−ν2/2

)
for M ≫ M∗ (3.58)

where α = d ln(σM )/d ln(M) is a function of cosmology. For ΛCDM, α → 0, therefore at
small mass the halo mass function decreases ∝ M−2, while at large mass the abundance of
halo decreases exponentially. We have not mentioned the time dependence of the above mass
function. The evolution of the mass function with time is related that of δc(t). As we mentioned
in the previous section, in ΛCDM, δc ∝ D(t−1) and thus decreases with time (as D(t) increases,
see Equation (3.31)) which means that the characteristic mass M∗ grows as a function of time.
As a result, more and more massive halos form over time.

The simplicity of the PS approach relies on rough approximations and hazardous extrapola-
tion of the linear theory. Surprisingly, the PS approach remains fairly accurate over a range of
masses and redshifts to reproduce the abundances of objects obtained with numerical simulations
(see Figure 3.3). In a more general context, the multiplicity function fP S(ν) for the PS theory
that characterises the mass function in Equation (3.57) can be replaced with more general f(ν)
functions. As an example, a popular and more accurate model for predicting the shape of the
halo mass function is the Sheth-Tormen (ST) mass function, based on the ellipsoidal collapse
model (EC) (Sheth et al., 2001, Sheth & Tormen, 1999). The derived form of the multiplicity
function in the ST model is given by:

fEC(ν) = A

(
1 + 1

ν̃2q

)
fP S(ν̃) (3.59)

where ν̃ = 0.84ν, A ≈ 0.322, q = 0.3 are derived from numerical resolution. Figure 3.3 com-
pares the halo mass function from numerical N-body simulations of dark matter particles in the
Millenium simlulation (Springel et al., 2005) with those predicted by the PS and ST theories.
The ST model provides a very good representation of the simulation results. Although the PS
prediction is not very accurate, it provides a valuable first approximation of the mass function
(the prediction being worse with increasing redshift).
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Figure 3.3: Number of dark matter halos as function of mass at three different redshifts. The red line is
the simulation output. The dashed-line is the prediction of the Press & Schechter theory. The blue line
is the prediction of Sheth & Tormen’s analytical fitting function. This figure is taken from Frank van der
Bosch’s lecture, originally from V. Springel.

Note: N-body simulations are particle based. Therefore, the identification of halos in the sim-
ulation box depends of the halo finder algorithm, which can have an impact on the shape of the
halo mass function. The above results rely on a "Friends-Of-Friends" (FOF) algorithm (Davis
et al., 1985, Huchra & Geller, 1982) .

3.1.5 Internal structure of dark matter halos
So far, we discussed how primordial density fluctuations in the dark matter field evolve into
virialised structures. We will now focus on the internal structure of dark matter halos.

Density profile

A dark matter (DM) halo can be modelled to a first approximation as a spherical object of radius
Rh enclosing a mass Mh. We first focus on the density profile of DM halos. We have seen that
viralized structures form as a function of their density environment around the initial overdensity.
We might expect the density profile of DM halos to depend on their specific formation history.

https://wwwmpa.mpa-garching.mpg.de/mpa/research/current_research/hl2004-8/hl2004-8-en-print.html
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However, contrary to this expectation, DM halos exhibit approximately universal spherically-
averaged density profiles, as first demonstrated by Navarro Frenk and White (Navarro et al.,
1997). Based on that work, a generalised density profile of dark matter halos can be given by a
double power (Zhao, 1996):

ρ(r) = ρs

(r/rs)γ [1 + (r/rs)α](β−γ)/α
(3.60)

where (α, β, γ) are power law indexes, rs is the scale radius of the density profile and ρs is the
density at rs. This density profile has two different behaviours in the outer or inner regions of
the halo:

ρ(r) ∝
{

r−γ if r ≪ rs

r−β if r ≫ rs
(3.61)

The α parameter controls the sharpness of the break (see Figure 3.4). Several parametrisations
have been studied in the literature. Among them, the Navarro-Frenk-White (NFW) profile (α,
β, γ) = (1, 3, 1)) which provides a good description of the density around virialised halos in
numerical simulations:

ρ(r) = ρs

(r/rs) [1 + (r/rs)]2
(3.62)

The NFW profile is represented by the black line in Figure 3.4.
The above profile can be used to determine the density of any halo, ρh, at any moment of its

evolution. At a given time, ρh is related to the halo matter overdensity, ∆h and to cosmological
parameters by ρh = ∆hρ̄m = ∆hρcΩm with ρ̄m the mean density of matter in the Universe and
ρc the critical density defined in Equation (1.19) at that time. Halo mass and radius are linked
to halo density by:

ρh = 3M(< R∆h
)

4πR3
∆h

(3.63)

where M(< R∆h
) ≡ Mh is the mass of the halo enclosed within the halo radius R∆h

≡ Rh. We
further introduce the concentration parameter:

c ≡ Rh

rs
(3.64)

which essentially describes how the mass is distributed in the halo profile. The value of the
overdensity is ∆h = 177 in the case of the spherical collapse model at the time of halo formation.
However, as the virialisation criterion is not strict, other definitions are also in use in the
literature, one of them being ∆h = 200. The halo properties will depend on the redshift and
on the background cosmology. The universal nature of the DM halo density profile is explained
by the highly non-linear nature of DM halos, which have gone through a phase of gravitational
collapse that has erased information pertaining to their individual formation history. Once a
halo is formed, accretion material increases its mass and size, without adding much material
to its inner region. The halo radius Rh increases while rs remains unchanged. Consequently,
the concentration parameter c = Rh/rs should decrease with increasing halo mass. This result
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is confirmed by numerous studies using N-body simulations (Ludlow et al., 2014, Prada et al.,
2012).

The halo properties can be reformulated in terms of concentration c. Integrating the NFW
density profile to obtain the mass enclosed up to a given radius r gives:

M(< r) =
∫ r

0
4πr2ρ(r′)dr′ = 4πρsr3

sg(r/rs) = 4πρsr3
sg(cs) (3.65)

where s = r/Rh and:
g(x) = ln(1 + x) − x

1 + x
. (3.66)

The mass enclosed within a given radius r can be expressed as function of the halo mass Mh

and the concentration:

M(r)
Mh

= g(cs)
g(c) . (3.67)

with Mh = 4πρsR3
hg(c). A useful quantity derived from the NFW profile is the circular (i.e.

Keplerian) velocity:

Vc(r) =

√
GM(r)

r
(3.68)

Similarly to Equation (3.67) we can express the circular velocity for any radius in terms of
velocity at the halo radius:

Vc(r)
Vc(Rh) =

√
g(cs)
sg(c) (3.69)

The circular velocity reaches a maximum at Vc,max ≃ 0.465Vh

√
c/g(c) corresponding to a radius

rv,max ≃ 2.163rs (Navarro et al., 1997). This quantity is useful for deriving the concentration
parameter in simulations. The NFW profile has been widely used to describe the density profile
of DM halos in cosmology. Other density profile models also showed good agreement with
simulation. Among them, the Einasto profile, which follows a decreasing exponential form:

ρ(r) = ρ−2 exp
(

−2n

[(
r

r−2

)1/n

− 1
])

(3.70)

where r−2 corresponds to the radius for which ρ = ρ−2 and is the equivalent of rs for an NFW
profile. n is the Einasto index defining the steepness of the power law and typical values from
simulations span the range 4.54 < n < 8.33 (Navarro et al., 2004). Figure 3.4 shows the Einasto
profile in blue for n = 5. Its shape is quite comparable to that of the NFW profile.

Substructure of dark matter halos
In the course of their history, dark matter halos, once formed, evolve under the influence of
gravity, accumulate mass and merge with each other. A small halo that merges with a much
larger one will most likely become a sub-halo orbiting in the potential well of its host. Over time,
the sub-halo is subjected to strong tidal forces, resulting in a loss of mass. It is also subject
to dynamic friction, which causes it to lose energy and angular momentum. In other words,
the longer the sub-halo remains in orbit, the greater the loss of mass. As a result, halos that
assemble earlier will be more likely to destroy their sub-halos, while halos that assemble later will
have more substructures. The survival of a sub-halo also depends on its mass and concentration
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Figure 3.4: The density profile of dark matter halos from the double power law prescription in Equa-
tion (3.60). The black line represents the NFW profile (α, β, γ) = (1, 3, 1). The shaded regions represent
the following variations of (α, β, γ) values: 1 → 4, 3 → 5 and 0 → 2 in green, purple and yellow, respec-
tively. The grey dashed vertical line is the scale radius rs where the density is ρs. The grey dotted line
is an arbitrary halo radius where we cut the halo profile, otherwise the enclosed mass (red dashed-line)
would diverge. For comparison, the blue shaded region represents the Einasto profile for n 4 → 8 and the
blue line corresponds to n = 5.

relative to those of the host halo. Sub-halos with a mass greater than a few percent of that of
the main halo should merge rapidly, while objects with significantly less mass will survive for
long periods (Diemand et al., 2007). In the ΛCDM framework, massive halos assemble later
and should therefore host a larger fraction of sub-halos than less massive halos (Giocoli et al.,
2008). These results are mainly based on high-resolution numerical simulations, which allow us
to trace the history of DM matter halos over time and identify substructures. These numerical
simulations are the subject of the next section.

3.2 The Universe in boxes

Numerical simulations in cosmology and astrophysics are essential and widespread for under-
standing the formation and evolution of structures on all scales, and in particular for exploring
dynamics in the non-linear regime where perturbation theory breaks down. They are based on
two main ingredients: the initial conditions given by the shape of the initial power spectrum,
and the physics governing the evolution of the initial conditions over time. In general, two
types of simulations are used in cosmology: N -body simulations, which consider cold, collision-
less dark matter particles evolving under gravity in boxes with periodic boundary conditions to
mimic large-scale homogeneity and isotropy, and hydrodynamic simulations (full-physics) that
take complex baryonic physics into account.
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3.2.1 N-body simulations
In N -body cosmological simulations, the dark matter field is represented by a set of non-
relativistic particles (points) of mass m interacting only by gravitational forces, and collisions
between particles are not taken into account. Their advantage is that they can be carried out
on large volumes, ∼ a few Gpc3, as they only resolve Newtonian gravity and ignore baryonic
interactions on small scales (a few Mpc/h). Indeed, the impact of baryonic effects is weak on
large scales and baryons simply follow the dynamics of dark matter, so these effects can be ne-
glected when studying large volumes as in the analysis of large-scale structures. The evolution of
these particles can be described by considering their phase-space distribution function f(x, p, t),
which operates in a 6+1 dimensional space (3 comoving coordinates x, 3 comoving momentum
components p, physical time t). The evolution of this distribution function is governed by the
Vlasov-Poisson equations:

df

dt
= ∂f

∂t
+ p

ma2 · ∂f

∂x − m

a
∇xΦ(x) · ∂f

∂p = 0

△Φ(x) = 4πGm

a

(∫
d3pf(x, p, t) − 1

V

∫ ∫
d3x d3pf(x, p, t)

) (3.71)

where △ = ∇2 is the Laplacian, V is the comoving volume and comoving coordinates x are
defined in Equation (3.17). Note that p = mav is the comoving momentum related to the
peculiar velocity v = adx

dt . The number of particles defines the resolution of the simulation:
the more particles there are, the better the resolution of the simulation. The first N -body
simulations in astrophysics appeared in the 1960s. In the 1970s, (Peebles, 1970, White, 1976)
carried out simulations of galaxy clusters with a few dozen of particles. Shortly afterwards,
cosmological-scale simulations with a few thousand particles emerged to theoretically model
the cosmic web (Aarseth et al., 1979, Centrella & Melott, 1983, Doroshkevich et al., 1980,
Efstathiou & Eastwood, 1981, Frenk et al., 1983, Press & Schechter, 1974). Nowadays, state-
of-the-art numerical simulations can handle dynamics of ∼ 1010 − 1012 particles, with a particle
mass of ∼ 108 − 1010M⊙/h. Simulations are essential for large-scale structure analyses, as they
can be used to estimate measurement errors, generate covariance matrices, test cosmological
pipelines, mitigate systematic errors, study the galaxy-halo connection or training cosmological
inference emulators. Next-generation surveys require high-volume, high-resolution simulations
so that the survey volume can be simulated several times with great accuracy. In DESI, we use
the large simulation suite called AbacusSummit that has been specifically designed to meet the
scientific requirements of the survey. Obviously, increasing the number of particles also increases
computing time. A compromise must therefore be made between resolution and volume in order
to generate a simulation that meets the scientific requirements of the next generation survey.
At first-order the computation time scales with the number of particles Np as O(N2

p ). There
are many techniques for numerically evolving particles through gravitational interaction and we
describe some of them below.

➢ Initial conditions Before solving the equations of gravity, the initial conditions must be
defined. Once the cosmological model has been defined, the basic idea is to generate a smooth
background, sample it with particles, then add fluctuations given by the initial power spectrum
in Equation (3.10). The first challenge is to generate the initial particle distribution. Uniform
random sampling generates undesirable structure formation due to sampling noise, even if no
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perturbation is imposed. Another solution is to place the particles on a regular grid, but this
leads to preferential directions and scales. To solve these issues, Baugh et al. (1995), White
(1994) suggested to use a glass-like distribution. Starting from a random uniform distribution,
particles are displaced by the gravity solver according to the inverse of the gravitational force,
so that particles tend to repel each other until they freeze in comoving coordinates. The final
particle distribution shows no preferred direction or scale. Then a Gaussian perturbation field
is generated based on the initial linear power spectrum (provided by Boltzmann codes such
as CLASS and CAMB (Lesgourgues, 2011, Lewis et al., 2000)). The particles are displaced
(slightly) and are assigned initial peculiar velocities according to the input power spectrum.
This step is usually performed using Lagrangian perturbation theory at first order (Zel’dovich
approximation, (Zel’dovich, 1970)) or higher orders (Hahn et al., 2021). Typically, N -body
simulations start around z ∼ 100, when the perturbations are still linear. The initial power
spectrum is shifted to this redshift with the appropriate transfer function T (k) (Equation (3.11)),
which depends on the cosmological background.

➢ The particle-particle (PP) method is the simplest, but most time-consuming, way to
solving the N -body problem. In this case, at each time step, the exact Newtonian gravitational
forces between two particles of mass mi and mj separated by rij are given by:

Fij = Gmimj

r2
ij

(3.72)

and the peculiar velocity of each particle i is calculated using:

v̇i + Hvi = 1
mi

∑
j ̸=i

Fij (3.73)

This is the familiar momentum equation for gravitating systems of particles, written in comoving
coordinates, with an additional drag term due to the Hubble expansion. Gravitational forces
diverge if two particles are at null separation. In practice, a softening parameter ϵ is introduced
to avoid this divergence by changing the denominator r2

ij by (r2
ij + ϵ2)3/2 (Plummer, 1911). This

softening corresponds to a smoothing on small scales, i.e. it reduces shot noise. However, ϵ

introduces a bias with respect to pure Newtonian dynamics and affects the growth of structure
on scales many times larger than ϵ (Garrison et al., 2019). An optimum must therefore be
found between shot noise and bias. The PP method is (apart from the softening parameter)
highly accurate, with the accuracy depending on the time step. The main disadvantage of this
approach is that it scales as O(N2

p ), making it very difficult to use with a very large numbers
of particles. Typically, it can be used with a maximum of 106 particles, whereas the largest
N -body simulations have up to 1012 particles.

➢ The particle-mesh (PM) method evaluates the density of particles on a grid (a mesh)
using an interpolation kernel (e.g. cell counting, triangular-shaped-cell (TSC) or nearest-grid-
point). The gravitational potential is then calculated for each cell using the Poisson equation
in Fourier space with Fast Fourier Transforms (FFT). The motion of particles is computed
from this gravitational potential with the same interpolation kernel. FFT algorithms scales as
O(Nc log(Nc)), where Nc is the number of cells in the grid, and the interpolation scales as the
number of particles O(Np) (see Feng et al. (2016) for an optimised use of the PM method,
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and Chuang et al. (2019) for its application to the UNIT cosmological simulation). Although
this method is very fast, its accuracy deteriorates at scales several times larger than the size
of the mesh. Methods have been developed to increase the precision on small scales, such as
the adaptive mesh refinement (AMR) which dynamically increases the mesh resolution in high
density regions (e.g. RAMSES code (Teyssier, 2002)).

➢ Tree codes (Appel, 1985, Barnes & Hut, 1986) are nowadays the most widely used methods
for solving N -body problems in cosmology (e.g. GADGET code (Springel et al., 2005) used (in
its thrid version) for the MultiDark simulation suite (Klypin et al., 2016)). The tree algorithm
organizes the matter distribution along a tree. Particles are gathered in a large cubic cell, which
is then subdivided into smaller and smaller cells, until each cell contains one particle. The
tree is fixed, and does not need to be recalculated at each time step. Once the tree has been
defined, the gravitational potential is calculated by descending the tree cells and performing a
hierarchical multipole expansion for sufficiently distant cells. This means that a single force is
computed for the centre of mass of the cells, instead of for each particle. The descent stops when
the opening angle (cell size over distance) is less than a fixed acceptation angle θ. The force
for nearby particles is then computed individually. In this way, the force resolution can be as
high as the PP method in very dense regions. This method can be as efficient as O(Np log(Np))
depending on the acceptation angle.

➢ Hybrid methods mix a PM method on large scales with a PP method on small-scales (also
called particle-particle/particle-mesh (P3M) (Hockney, 1988)). The idea is to use the efficiency
and speed of FFT methods on a mesh without losing accuracy on small scales. The field is
decomposed into 2 components, a far-field for the long-range force which is calculated with a
PM method and a near-field for short-range contribution obtained by direct computation of
individual interactions between nearby particles (PP method). The TreePM code is an example
of these hybrid methods which mixes a tree-code method for dense regions and a PM for under-
dense regions. These codes are highly efficient, enabling large simulations to be carried out with
very good resolution.

By combining these new algorithms with the exponential growth in computing power during
the last decades, it has been possible to increase both volume and mass resolution in simulations.
For instance, Euclid Flagship (Potter et al., 2016) simulations evolve ∼ 2 trillion particles in
a cubic box of 4 Gpc/h length size, with a mass resolution ∼ 109M⊙. In DESI we use the
AbacusSummit simulations based on the Abacus code described hereafter. As an alternative,
DESI analyses also use the UCHUU simulation Ishiyama et al. (2021), which is a 2 Gpc/h

length size and very well-resolved, 2.1 trillion particles (128003) with a particle mass of Mpart =
3.27·108M⊙/h. This simulation was run produced with the GreeM code (TreePM code Ishiyama
et al. (2009, 2012)) and use the ROCKSTAR halo finder (Behroozi et al., 2013b).

AbacusSummit simulations

The AbacusSummit simulations1 (Maksimova et al., 2021) have been designed to reach the sci-
entific requirements of the DESI survey. It is a large suite of high-accuracy cosmological N -body
simulations produced with the Abacus N -body run on the Summit supercomputer at the Oak

1https://abacussummit.readthedocs.io/en/latest/index.html

https://abacussummit.readthedocs.io/en/latest/index.html
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Ridge Leadership Computing Facility. This suite is composed of 150 simulation boxes, covering
97 cosmological models. The base simulations have 69123 particles with mass 2 · 109M⊙/h in a
2 Gpc/h cubic box. The fiducial cosmology c000 corresponds to the Planck 2018 results (Planck
Collaboration et al., 2020) based on the mean estimates of the TT,TE,EE+lowE+lensing like-
lihood chains (see Table 1.2). There are 25 base mass-resolution boxes with different initial
conditions for the fiducial cosmology, a visualisation of which is shown in Figure 3.5. A series of
1883 small cubic boxes of 500 Mpc/h length size with the same mass resolution, and additional
boxes at both lower and higher resolutions, are also available (see Table 3.1). Table 3.2 shows
the cosmological parameters for the fiducial cosmology and four secondary cosmologies. For each
of the secondary cosmologies 6 base boxes and one fixedbase box with fixed initial conditions
are available. Other cosmologies can be found on the AbacusSummit website or in (Maksimova
et al., 2021). Finally, a set of 52 base boxes at different cosmologies covering a wide range of the
8-dimensional parameter space has been created as a basis for training cosmlogical emulators.

Name PPD Size (Mpc/h) Particle mass (M⊙/h)
base 69123 2000 2 × 109

highbase 34563 1000 2 × 109

high 63003 1000 3 × 108

hudge 86403 7500 5 × 1010

fixedbase 40963 1185 2 × 109

small 17283 500 2 × 109

Table 3.1: AbacusSummit simulation characteristics. PPD stands for particles per dimension. Particle
mass may vary slightly with different cosmologies. The size is the length of the cubic box.

Description Ωb ωc h 109As ns αs Nur Nncdm 104ωncdm w0,f ld wa,fld σ8,m σ8,cb

c000 Baseline ΛCDM 0.02237 0.1200 0.6736 2.0830 0.9649 0.0 2.0328 1 6.4420 -1.0 0.0 0.807952 0.811355
c001 ow ωc ΛCDM 0.02242 0.1134 0.7030 2.0376 0.9638 0.0 2.0328 1 6.4420 -1.0 0.0 0.776779 0.780222

c002 Thawing dark energy 0.02237 0.1200 0.6278 2.3140 0.9649 0.0 2.0328 1 6.4420 -0.7 -0.5 0.808189 0.811577
c003 Neff = 3.70 0.02260 0.1291 0.7160 2.2438 0.9876 0.0 2.6868 1 6.4420 -1.0 0.0 0.855190 0.858583

c004 low σ8,m ΛCDM 0.02237 0.1200 0.6736 1.7949 0.9649 0.0 2.0328 1 6.4420 -1.0 0.0 0.749999 0.753159

Table 3.2: Cosmological parameters for the fiducial c000 and 4 secondary cosmologies of the Abacus-
Summit suite of simulations.

The Abacus code

The Abacus code is a high-performance code designed to perform large-scale cosmological N -
body simulations with high precision in the calculation of gravitational forces (Garrison et al.,
2021). It is based on an hybrid method whose near field and far field decomposition has a few
specific features compared to standard hybrid P3M methods. First, the decomposition between
the far and near fields is strict, meaning that every pairwise interaction is given by either the
near field or the far field, but never by both. The far-field calculation relies on the concept
of multipole expansion rather than calculating the gravitational force on a particle mesh. The
gravitational potential is expanded in Taylor series around a location (up to a given polynomial
order p). The coefficients of this expansion are related to the multipole moments of the density
field in another distant region.
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Figure 3.5: Visualisation of the AbacusSummit base resolution boxes with progressive zoom-ins from
the full box down to the cluster scale. The AbacusSummit_base_c000_ph000 simulation at z = 0.1 is
displayed in the zooms. Projections are 10 Mpc/h deep.
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This method works in the same way as the tree method, except that the simulation is
decomposed into a 3D Cartesian grid of cells and the multipole moments are calculated for each
cell. The three-dimensional Cartesian grid allows the Taylor series of the gravitational potential
to be computed as a convolution over the cells, rather than performing numerous individual
interactions between paired cells, which is very efficient in terms of computation time. The
near field force is computed with Newtonian gravity for particles in all near-field cells, using a
softening force from a spline method (Hernquist & Katz, 1989) instead of the standard softening
method discussed above. Typically, the number of neighbouring cells in the near field, 53,
the softening range of 7 kpc/h and an order p = 8 for the Taylor expansion give excellent
accuracy of gravitational force computations for cosmological simulations. Figure 3.6 shows the
decomposition of the far and near fields.

Separation
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e Total 1/r2

P3M
Near Field

P3M Far Field

Abacus Near Field

Abacus
Far Field

Figure 3.6: Left: Schematic illustration of the near-field/far-field decomposition in the Abacus simu-
lation. The grey lines represent another scheme for the near-field (dashed line)/far-field (dotted line)
decomposition. Right: Schematic view of the decomposition on a slab. We consider here the particle in
the black cell (in the centre). The near-field is represented in white and the far-field in grey. These two
figures are taken from Garrison et al. (2021).

Another notable feature of the Abacus code is the organisation of the data which is designed
to minimise memory consumption. Cells are organised into slices of one cell wide in a chosen
direction called slabs. The positions and velocities of each particle (for the near field) and the
cell-based Taylor series coefficients (for the far field) are stored in grid order indexed by slabs
and cells. At each time step, slabs are introduced into the pipeline until the entire volume has
been processed. For each slab, particle data and cell-based multipole moments are updated
and stored on disk. The near-field calculation requires to have at least 5 slabs in memory.
After scanning the entire volume, the far-field operation converts the multipole moments in all
cells into Taylor series coefficients via a convolution, preparing for the next scan. Memory is
only required to process ∼ 7 slabs in the pipeline (5 loaded slabs + a little more space for
calculations), so the simulation can be run even if the particle data is larger than the available
memory – a so-called out-of-core algorithm. Decomposition into slabs is also an advantage for
parallel implementation, where each node can manage a range of slabs. The AbacusSummit
simulations typically take 1100 time steps.
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3.2.2 Hydrodynamical simulations

Dark matter accounts for ∼ 95% of the mass in the Universe. Consequently, N -body simulations
enable us to understand the formation and evolution of structures down to small scales in the
non-linear regime. However, at cluster scales and below ∼ 1 − 2 Mpc baryonic physics has an
impact on the dynamics of non-linear evolution of density perturbations and must be taken into
account. The use of hydrodynamical simulations is therefore necessary to model these complex
baryonic phenomena. By simultaneously resolving the evolution of dark matter and baryons
for gravity and hydrodynamics in a cosmological context, hydrodynamical simulations are able
to model galaxy formation and evolution. Many baryonic processes can be incorporated, such
as radiative gas cooling, stellar feedback, star formation, active galactic nuclei (AGN) and SN
feedback, radiative transfer... I will not go into the details of all baryonic processes, but give
the reference to a very nice review on this topic (Somerville & Davé, 2015).

Typically two main approaches are used to solve hydrodynamical equations: the smoothed
particle hydrodynamics method (SPH) or adaptive grid codes (e.g. adaptive mesh refinement
(AMR)). The SPH method (also called Lagrangian method) discretizes the gas into fluid par-
ticles that carry physical information. Local gas properties (i.e. temperature, density...) are
obtained by a convolution with a smoothing kernel over neighbouring particles within a given
smoothing length. The other approach, called Eulerian method, discretizes the fluid into grid
cells, and the physical properties of the fluid are computed at the level of the cell. To increase
grid resolution, hydrodynamic codes are generally based on adaptive mesh refinement (AMR).
To precisely simulate the scale of galaxy formation the grid must have fine resolution. How-
ever, cosmological simulations have to be carried out on large volumes, which makes it difficult
to achieve a sufficiently fine resolution to fully model the range of scales required for galaxy
formation. Some parametrisations must be introduced to accurately simulate scales below the
resolution scale, generally referred to as subgrid physics. These parametrisations need to be
adjusted, either by direct tests with observations or by comparison to other empirical models
that connect galaxies to dark matter halos.

Although there are some approximations below the resolution scale, hydrodynamical simula-
tions provide our best understanding of the physical processes of galaxy formation. Running such
a simulation on cosmological scales with fine resolution requires a lot of computing resources,
which is one of the main limitations. Considerable efforts have been made to produce realistic
galaxy populations in cosmological-scale hydrodynamical simulations, thanks to increased com-
puting power and technical improvements. One example is the IllustrisTNG project, a suite
of hydrodynamical simulations in cubic boxes of up to 300 Mpc/h length size (Nelson et al.,
2021). Figure 3.7 shows a composite image of IllustrisTNG simulations for box sizes of 100 and
300 Mpc/h (TNG100, TNG300). One can appreciate on this image the matter distribution on
large scales and the fine resolution on galaxy scales. The volume of the TNG300 simulation
is considered a huge volume for hydrodynamical simulations, but it is smaller by a factor of
103 than that of the largest N -body simulations. One of the latest hydrodynamical simulation,
MilleniumTNG, operates on a box size of 740 Mpc/h (Hernández-Aguayo et al., 2023).
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Figure 3.7: Composite image of the TNG300 and TNG100 simulations: in the background, the full dark
matter map of the TNG300 volume. In the upper right image, the distribution of stellar mass across the
TNG100 volume. Panels on the left show galaxy-galaxy interactions and the fine resolution of structure
on galactic scales. Panels on the right show stellar light projections from two massive central galaxies at
z = 0. Credit: IllustrisTNG collaboration.
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3.2.3 Halo-finders
Once N -body simulations have been run, one major challenge is to define halos and subhalos
from DM particles using halo-finder codes. The following section aims to explain how halo
finders work and to demonstrate the complexity of this procedure. A halo-finder analyses the
particles generated by a simulation and identifies dense regions where dark matter halos are
likely to be located. Once a halo is identified, the halo-finder provides information about its
properties, such as its mass, radius, shape, concentration... A wide variety of methods and codes
have been developed to identify DM halos in simulation. Knebe et al. (2011) gives a nice review
on this topic and provides a quantitative comparison of different halo-finder methods and codes.
Most of these are based on two very popular methods:

➢ The Spherical Overdensity (SO) first mentioned by Press & Schechter (1974) and
further developed by Lacey & Cole (1994), Warren et al. (1992). The SO method uses integrated
densities over a spherical volume to identify dark matter halos as volumes which enclose a mean
overdensity that corresponds to the value for virialised halos. A local density is first computed
for each particle from their N nearest neighbours and the particle with the largest local density
is selected as the candidate centre of a halo. A sphere is grown around this particle until
the specified overdensity is reached (shifts in the halo centre are also accounted for in this
process, see Lacey & Cole (1994)). All particles enclosed inside the final radius are members
of the halo. Codes based on the SO method are numerous and encompass Bound Density
Maxima (BDM Klypin et al. (1999)), Amiga’s Halo Finder (AHF, Knollmann & Knebe (2009)),
Adaptive Spherical Overdensity Halo Finder (ASOHF, Planelles & Quilis (2010)), parallel SO
(pSO, Sutter & Ricker (2010)).

➢ The Friend-of-Friends (FoF) algorithm introduced in astrophysics by (Davis et al., 1985,
Huchra & Geller, 1982). In the FoF algorithm, particles are linked to each other if their distances
are lower than a characteristic linking length lF oF . The resulting group is consider as a halo. The
main differences compared to the SO method is that FoF halos are unstructured, coordinate-free
and are defined by only one parameter, lF oF . The typical linking length is lF oF = 0.2 · lmean

(where lmean is the mean interparticle separation) which roughly translates into an overdensity
of ∼ 180 times the background density (More et al., 2011). Examples of the many codes based
on the FoF method are SUBFIND (Springel et al., 2001), LANL (Habib et al., 2009), parallel
FOF (pFOF, (Rasera et al., 2010)).

After the initial definition of halos, most methods apply a pruning phase during which
particles not bound by gravity are removed from the halo. Further studies extended these
two approaches by including information in phase-space (positions + velocities) such as the
Six-Dimensional Friends-of-Friends (6DFOF, Diemand et al. (2006)) or ROCKSTAR (Behroozi
et al., 2013b) halo-finders. Halo-finder algorithms are challenging to develop. A lot of computing
resources are needed to process the large number of dark matter particles in the simulations. The
algorithms also face several issues. The traditional problem in halo finding is the identification
of halo mergers and sub-halos especially when these are close to the centres of their host halos.
In these cases the use of 6D space helps. Each of the 2 methods described above have their
own problems. For example, in the FoF algorithm, particles are uniquely assigned to a halo,
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avoiding the intersection between FoF groups. However if two structures are close enough, they
can be connected by a bridge, resulting in a weirdly shaped structure. Another limitation is
the resolution of the simulations. In simulations, small halos may not be well-resolved (because
of their low number of particles) and can be missed by the halo-finder. In addition, numerical
noise (Poisson) can be problematic when dealing with low-mass (sub)halos and can introduce
spurious halos or affect the halo properties. These examples show the difficulty to construct a
reliable DM halo catalogue in N -body simulations and explain why using different halo-finder
codes on the same simulation can lead to different results, especially at low halo masses (see
Knebe et al. (2011), for a halo-finder code comparison).

3.2.3.1 CompaSO halo-finder

In this thesis work, we rely on AbacusSummit simulations. The COMPetitive Assigment to
Spherical Overdensities (CompaSO) algorithm (Hadzhiyska et al., 2022a) was developed as a
group-finding tool for the Abacus N -body code. It runs "on-the-fly", and was written to meet
the requirements of massive N -body simulations and high speed calculations. The algorithm
achieved a rate of ∼ 30 million particles/second/node on the Summit supercomputer. A brief
summary of this algorithm is described in the following and the reader is referred to Hadzhiyska
et al. (2022a) for more details.

CompaSO is a hybrid algorithm, composed of three levels of group finding, based on both
FoF and SO methods. It first estimates the local density for each particle, ∆, using a weighting
kernel W (r, bk) = 1−r2/b2

k where r denotes the interparticle separation and bk = 0.4 is the kernel
radius. Since the squared distances are already computed for the near-field forces, obtaining the
local density on-the-fly is (almost) "free". The local density helps to identify substructures and
the core of a halo, as depicted in Figure 3.8.

Level 0 (L0) groups particles into halos using a modified FoF procedure, with a linking length
lF oF = 0.25 · lmean but only for particles with a local density value ∆ > 60. From the L0 halos,
Level 1 (L1) and Level 2 (L2) halos are then constructed.

In each L0 group, the particle with the highest kernel density ∆ is selected and becomes the
first halo nucleus. Then, the L1 halo radius RL1 is defined as the innermost radius that encloses
a density below the L1 density threshold ∆L1. All particles within this radius are preliminary
assigned to this L1 halo. Once this process is done, the 20% of particles furthest from the centre
of the halo are considered "eligible" to potentially be the nucleus of a halo that could be orbiting
at the periphery. Among these "eligible" particles, the algorithm searches that with the highest
kernel density that meets the minimum local density criterion, i.e. the particle must have the
highest density within the kernel radius (bk), including particles ‘eligible’ or not. The search for
new halo nuclei ends when the density of particles becomes too low to create a new halo (see
fig:compaso).

Finally, particles that fall within the radius of two halos are assigned to one of them by
competitive assignment. This means that a particle is attributed to the new halo only if it is
estimated to have an enclosed density with respect to this new halo that is at least twice larger
than that of the enclosed density with respect to its currently assigned halo.

Then, for each L1 halo, the competitive SO algorithm steps is run to find L2 subhalos with
density threshold ∆L2 enclosed in RL2. The largest L2 subhalo is used as the centre-of-mass and
defines a centre for the output of the L1 statistics. The L1 and L2 density thresholds are defined
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for an Einstein-de Sitter cosmology to be ∆L1 = 200, ∆L2 = 800 and vary with redshift as
∆L1 = (200/18π2)∆base(z) and ∆L2 = (800/18π2)∆base(z) where ∆base(z) is the fitting function
provided by Bryan & Norman (1998), which defines the density with respect to the critical
density:

∆base(z) = 18π2 + 82(Ωm(z) − 1) + 39(Ωm(z) − 1)2. (3.74)

Figure 3.8 illustrates a schematic picture of the CompaSO algorithm.

Figure 3.8: Visualization from Hadzhiyska et al. (2022a) of the CompaSO algorithm.

The initial version of the CompaSO algorithm suffered from fragmented or re-collapsed struc-
tures at different epochs. A post-processing cleaning procedure was developed in Bose et al.
(2022), based on merger-tree information. It checks the fraction of particles in a halo at a time
ti that comes from a main progenitor at a previous time ti−1. If this fraction is too large, the
newer halo is marked a “potential split” and merged into the larger halo. In addition, halos for
which the peak mass (maximal mass during halo history) exceeds twice the present day mass are
declared unphysical and merged into a more massive neighbour, from whom it had presumably
split off (see Bose et al. (2022) for details).

3.3 From darkness to light: illuminating dark mat-
ter halos

Until now, we have mainly focused on the dynamics of dark matter collapsing into halos, and
on how to simulate part of the Universe in boxes. Hydrodynamical simulations can model the
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evolution of dark matter and baryons to study galaxy formation and evolution. Although these
simulations give many insights into the processes of galaxy formation, they are highly dependent
on the choice of physical effects to take into account and how these should be implemented. They
are also very computationally expensive, so that not all the physical prescriptions can be tested.
Therefore, other alternatives are used to implement (paint) galaxies in N -body simulations. The
basic assumption of our current view of galaxy formation is that galaxies form in dark matter
halos. Consequently, the growth, internal properties and spatial distribution of dark matter halos
can be related to those of galaxies. N -body codes provide the backbone of galaxy formation
models, and various techniques are then applied to connect galaxies and dark matter halos in
simulations, the so-called galaxy-halo connection. These techniques are then used to constrain
the galaxy-halo connection from data, providing invaluable information about the physics of
galaxy formation. But these constraints are also essential for guaranteeing the robustness of
the cosmological results from galaxy surveys, as they allow us to produce reliable mocks (i.e.
catalogues of simulated galaxies) used to test clustering analyses and to derive their systematic
uncertainty budget (Alam et al., 2021).

Figure 3.9: Different approaches to model the galaxy-halo connection, from the most physical (on the left)
to the most empirical model (on the right). This figure is taken from Wechsler & Tinker (2018).

In this section, we first give a quick overview of galaxy evolution in a cosmological context.
We then review the various techniques for connecting galaxies and dark matter halos in simula-
tions, used in this thesis or in other DESI analyses which I compare my results to. These tech-
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niques encompass empirical approaches as the halo occupancy distribution (HOD) or sub-halo
abundance matching (SHAM) as well as more physical models such as semi-analytical models
(SAM) of galaxy formation. A schematic picture of the galaxy-halo connection is presented in
Figure 3.9. This section is inspired by the very nice review of the galaxy-halo connection from
(Wechsler & Tinker, 2018).

3.3.1 A foreword about galaxies
We first start with a quick reminder about galaxy evolution to introduce the vocabulary that
will be necessary in the following. A galaxy is a system of stars, stellar remnants, interstellar
gas, dust, and dark matter, bound together by gravity. Historically, galaxies have been classified
by many properties, i.e. morphology (spiral, elliptical, irregular...), colour (blue or red), star
formation rate... In cosmology, we use galaxies as tracers of the dark matter field to study the
structure of the Universe. Tracer selections are based on magnitudes and colours, but these
selections cover various types of galaxies that are important to know since they trace different
regions of the cosmic web.

Figure 3.10: Cartoon plot of the main sequence of star-forming galaxies. The y-axis, “number of stars
forming” refers to the star formation rate and the x-axis, “number of existing stars” refers to the stellar
mass. This figure comes from the CANDELS collaboration.

We can roughly classify galaxies into two populations: blue, star-forming galaxies and red,
quiescent or "dead" galaxies which no longer create stars, also known as quenched galaxies
(Strateva et al., 2001). Figure 3.10 presents a pedagogical view of galaxy evolution, with a main
sequence of star-forming blue galaxies shown in blue and quiescent galaxies in red. The main
sequence of star-forming galaxies is a linear relation between the galaxy star formation rate
(SFR) and stellar mass (M⋆) that has been measured in redshift bins over the range 0 < z < 6
in both data and hydrodynamical simulations (Popesso et al., 2022). The main sequence slope
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does not vary with redshift while the normalisation is a decreasing power law of the Universe
age.

The standard picture about star formation in a galaxy is that stars form out of molecular
gas at T < 102 K that cooled from warm and hot gas (T = 103 − 106 K) previously accreted
in the galaxy halo from cosmological filaments. The cooled gas then collapsed locally, turning
into stars. In the history of galaxy evolution, blue galaxies are considered to be "young" and
less massive than red galaxies. Once blue galaxies have "completed" their star formation period,
they leave the main sequence and become red galaxies. There are two pathways for galaxies
to go out of the main sequence. At some point of their evolution, galaxies may form stars
at a much higher rate than on the main sequence, becoming starburst galaxies, which rapidly
consume their baryonic reservoir, resulting in a rapid transition through the so-called green
valley towards the red sequence (see Figure 3.10). Starburst galaxies are usually interpreted as
being driven by a merging event that boosts their galaxy star formation. They account only for
a minor fraction of the cosmic star formation rate density e.g. 10% at z ∼ 2 (Rodighiero et al.,
2011) but represent one pathway to leave the main sequence. In contrast, galaxies on the second
pathway show a slow decline in star formation and depart gradually from the main sequence.
Those two pathways are illustrated in Figure 3.11.

Figure 3.11: Schematic presentation of the evolutionary pathways of blue galaxies towards the red sequence.
This figure is taken from de Sá-Freitas et al. (2021).

The cessation of star formation is called quenching. There are many mechanisms for this,
the effects of which fall into five broad classes: preventing gas from accreting, cooling or form-
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ing stars, or leading to the gas consumption or removal (Man & Belli, 2018). Examples of
mechanisms are the so-called stellar or AGN feedback, which will be described later, shocks
that heat up the interstellar medium, galaxy mergers... The details of these processes are not
yet fully understood, nor is their interplay, since several of these mechanisms may be involved
simultaneously but on different timescales.

Figure 3.12: The galaxy stellar mass-to-halo mass ratio of central galaxies at z = 0. This figures compiles
a wide range of models from different galaxy-halo connection methods compared to various data sets. The
band of galaxy images shows example galaxies that are hosted by DM halos in the specified mass range.
Indicated on the top of the figure are key physical processes that may eject gas, heat gas or suppress star
formation at those mass scales. This figure is taken from Wechsler & Tinker (2018).

An interesting relation between halo and stellar mass, called the stellar-to-halo mass ratio
(SHMR) has been measured in data and studied in simulations (Behroozi et al., 2013a, Leau-
thaud et al., 2012). This relation, illustrated in Figure 3.12, measures the efficiency of star
formation as a function of the mass of the host halo. The ratio peaks at halo masses around
∼ 1012M⊙. At higher and lower halo masses, star formation is less efficient due to different
processes, mainly stellar and AGN feedbacks, as indicated at the top of the figure. In particular,
the SHMR decrease above ∼ 1012M⊙ is consistent with quenching effects, as in this region of
halo masses, central galaxies are observed to be predominantly quiescent. Moreover, numeri-
cal simulations show that shocks are formed only when halos are more massive than this same
threshold, which suggests that virial shock heating may play a role in the onset of star formation
quenching (Man & Belli, 2018).
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Note: The efficiency of galaxies to convert baryons into stars is low, barely reaching a few
percent. Assuming that all halos contain the universal baryon fraction Ωb/Ωm ≃ 0.17, with a
star formation efficiency of 100% (all baryons turn into stars) we would expect to have the same
fraction of stellar-to-halo mass. As the peak observed in the SHMR is at the level of ∼ 4% we
can infer that only ∼20-30% of baryons have turned into stars.

The Emission Line Galaxies (ELGs) and Luminous Red Galaxies (LRGs) targeted in DESI
(see Section 2.4.2) can be roughly associated with the two galaxy populations previously dis-
cussed, red galaxies for LRGs and blue galaxies for ELGs. According to what was explained
above, LRGs are expected to reside in hot and massive halos, while ELGs should reside in halos
where star formation is high, around ∼ 1012M⊙. In DESI, the LRG target selection is opti-
mised to select the most massive galaxies with a high degree of completeness. Note that the
completeness mentioned here is different from the completeness in the observations, discussed
in Section 2.5.1. Here, completeness refers to the number of target LRGs relative to the "true"
number (i.e. the expected number in the Universe) of massive galaxies (Zhou et al., 2023). Such
an optimisation was also implemented in SDSS for the CMASS (Complete-MASS) galaxy sam-
ple (Dawson et al., 2013). This type of sample is called (stellar) mass-complete sample, which
means that all objects above a given luminosity threshold (and therefore a given stellar mass)
are selected. In contrast, the ELG target selection in DESI (or eBOSS) has been optimised to
select [Oii] emitters, so mostly star-forming galaxies (Raichoor et al., 2023). Such ELG samples
are not meant to be complete in terms of luminosity or stellar mass, but their selection is instead
equivalent to a selection by their star formation rate, or even their specific star formation rate
(i.e. the SFR per stellar mass) as shown in Hadzhiyska et al. (2021). Therefore, ELGs and
LRGs are expected to reside in halos of different masses and in different environments of the
cosmic web.

In the following, we present the various techniques used to connect galaxies and dark matter
halos in simulations.

3.3.2 Semi-analytical models
Semi-analytic models of galaxy formation (SAMs) (Cole et al., 2000, Guo et al., 2013, Kauffmann
et al., 1993, Lacey & Cole, 1993, Somerville & Primack, 1999, White & Frenk, 1991) aim to
predict the properties of galaxies, such as luminosity, morphology, metallicity, star formation
history... It combines analytical calculations with N -body simulations to model galaxy formation
processes in a computationally efficient way. These models are based on the hierarchical growth
of dark matter halos that drives galaxy formation. Various physical processes associated with
galaxy formation are treated using approximate analytical prescriptions that are traced through
merger trees extracted from N-body simulations. A merger tree gives the "family tree" of DM
halos in N -body simulations. By identifying the evolution of dark matter halos, it traces the
evolution of DM halo masses with redshift and the times when progenitor halos merge together to
form a larger halo. The complete merger history of any dark matter halo is a complex structure
containing a wealth of information. An example of a merger tree is shown in Figure 3.13. From a
high redshift, the mass that ends up in the halo at z = 0 originates from many smaller branches
that merge into larger halos over time. It is worth noting that extracting merger trees from
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N -body simulations is not straightforward, and that the results can be sensitive to the method
used to identify the halos.

Figure 3.13: Example of merger tree for a dark matter halo of mass M ≃ 3 × 1012M⊙/h at z = 0. The
time increases from right to left. Figure adapted from Stewart et al. (2008).

A wide range of physical effects can be treated within the SAMs, we list below some of the
main processes that impact the galaxy formation and evolution:

Gas cooling: gas cooling is a necessary and fundamental ingredient of the galaxy formation
and evolution processes. When a newly halo is formed (at the top level of the merger
tree) or after a galaxy merger, the gas is heated due to shocks during the virialisation or
merger process. Then, the gas cools down through radiative processes, and the cold gas
then collapses and forms stars.

Stellar feedback: stars influence the surrounding gas in their host galaxy by injecting energy
and momentum. This creates a feedback loop that regulates the star formation process.
Different feedback channels are at play, such as supernova events that lead to both gas
ejection and gas heating in the interstellar medium (Ciotti et al., 1991, Hou et al., 2016).
Other channels are energy and momentum injection from stellar winds (e.g. from evolved
massive galaxies), photoionisation, and radiation pressure resulting from radiation emitted
by young, massive stars (Cattaneo, 2019, Hopkins et al., 2012). Stellar feedback is mostly
efficient in low mass galaxies.

AGN feedback: AGN feedback from supermassive black holes provides an effective star for-
mation regulation mechanism for high-mass galaxies. A large quantity of gas flows towards
the black holes, generating a release of energy capable of driving powerful outflow jets that
heat up the interstellar medium, and regulate star formation and the baryonic content of
galaxies. This mechanism may even lead to quenching by removing the galaxy supply of
gas (Bower et al., 2006, Pontzen et al., 2017).
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Galaxy mergers: galaxy (or halo/sub-halo) mergers can be traced by the merger tree. During
a merger, the gas from a galaxy in the smaller (sub-)halos is added to that of the main
galaxy. The former can either become a satellite galaxy or completely merge with the
main galaxy.

Dust extinction: dust in galaxies (mainly at high-mass) is heated by high-energy photons
from stellar radiation. Dust attenuates stellar light and modifies galaxy fluxes and colours,
resulting in a reddening of the observed galaxy colours.

Chemical enrichment of the interstellar medium: as stars evolve inside galaxies, they
feed the interstellar medium with heavier elements and cold gas, notably through SN
events.

Similar to hydrodynamical simulations, SAMs have several degrees of approximations, de-
pending on the complexity of the underlying physics being addressed. Consequently, SAM
assumptions need to be tested against hydrodynamical simulations and data. Although these
models are considerably less CPU/GPU expensive than hydrodynamical simulations, their large
number of parameters (up to 30) makes it difficult to explore the parameter space completely.
However, recent studies have used Monte Carlo Markov chain techniques to directly constrain
the parameter space of SAMs against data (Bower et al., 2010, Henriques et al., 2009, 2015, Lu
et al., 2011, 2014). In the literature, several SAMs of galaxy formation have been developed
by different groups (I list only some examples): the Munich model (Kauffmann et al., 1999),
the Santa Cruz model (Somerville & Primack, 1999), MORGANA (Monaco et al., 2007), MITAKA
(Nagashima & Yoshii, 2004), GALICS (Hatton et al., 2003), and the Durham model GALFORM
(Cole et al., 2000).

The latter, initially developed by Cole et al. (2000) and improved over the years by adding
more and more specificities and complexity to the description of galaxy formation processes has
been used to study the evolution and clustering of emission-line galaxies and in particular of
[Oii] (Gonzalez-Perez et al., 2014, 2018, 2020) emitters. These specific results on the galaxy-halo
connection of ELGs are covered in a dedicated section (see Section 3.4).

3.3.3 Sub-halo abundance matching
The Sub-halo abundance matching (SHAM) is an intuitive empirical method to model the
non-linear relation between galaxies and halos including the substructure of DM halos (shortly
introduced in Section 3.1.5). The idea behind abundance matching (AM) is that the most
massive galaxies live in the most massive DM halos. In this framework, each halo and subhalo
hosts a galaxy, whose properties (such as stellar mass and luminosity) are matched by abundance
according to the mass or the velocity of the host DM (sub-)halo (Kravtsov et al., 2004, Tasitsiomi
et al., 2004, Vale & Ostriker, 2006). This approach is non-parametric as it assumes a monotonic
relation between galaxies and DM structures. The key question in a SHAM analysis is to find
which halo property best matches which galaxy property, and what is the scatter, σ, between
the galaxy property and the halo property. Different halo/sub-halo properties can be taken into
account in a SHAM analysis:

• Mh: halo mass at the time considered,
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• Macc: mass at the time of accretion (for sub-halos),

• Mpeak: highest mass achieved in the entire history of a halo,

• Vmax: maximum circular velocity of the halo at the time considered,

• Vpeak: highest circular velocity achieved in the entire history of a halo,

• Vacc: Vmax at the time of accretion (for sub-halos).

In the literature, these properties are often associated with stellar mass or galaxy luminosity.
A first success of this technique was to match a luminosity-selected galaxy sample using the
property Vmax/Vacc of dark matter halos/subhalos (Conroy et al., 2006). SHAM predictions
have been shown to be in remarkable agreement with observations, as illustrated in Figure 3.14,
which compares the projected clustering of galaxies, wp, as predicted by SHAM models using
different halo properties compared to that of a local galaxy sample (z < 0.3) from the New-York
University value added catalogue based on SDSS DR7 (Blanton et al., 2005).

Abundance matching can also be parametrised to determine the galaxy stellar-to-halo mass
relation (SHMR), which was presented in Figure 3.12 (Moster et al., 2010). As previously
explained, unlike luminosity-selected samples, star-forming galaxy samples are expected to be
incomplete. Therefore, extended implementations of SHAM models have been developed to take
incompleteness effects into account (Favole et al., 2016, Rodríguez-Torres et al., 2017, Yu et al.,
2022).)

3.3.4 Halo occupation distribution
The Halo Occupation Distribution (HOD) is an empirical formalism that describes the relation
between a typical class of galaxies and dark matter halos, as the probability that a halo with mass
Mh contains N such galaxies. HOD models have contributions from two galaxy populations,
namely centrals and satellites, with ⟨Ncent(Mh)⟩ and ⟨Nsat(Mh)⟩ their respective mean numbers
hosted per halo of a given halo mass. The most common mean HOD functional uses a step
function for centrals, a power law for satellites and assumes generally that satellites can only be
found in halos which already host a central galaxy (Zheng et al., 2007):

⟨Ncent(Mh)⟩ = 1
2

[
1 + erf

(
Mh − Mmin

σM

)]
(3.75)

⟨Nsat(Mh)⟩ =

 ⟨Ncent(Mh)⟩
(

Mh−M0
M1

)α
if Mh > M0

0 otherwise
(3.76)

(3.77)

Once the mean number of galaxies per halo is computed, a probability distribution function
is used to assign central and satellite galaxies to a halo. Standard choices are a Bernoulli
distribution for centrals and a Poisson distribution for satellites. Central galaxies are typically
placed at the halo centre with a velocity given by the halo peculiar velocity, while satellites
are placed assuming a halo profile (mainly NFW) or assigned to a random particle of the halo.
This model, represented in Figure 3.15, has been proven to describe well the clustering of
different galaxy populations, e.g luminosity selected (Zehavi et al., 2011) or stellar mass limited
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Figure 3.14: Top panel: Projected galaxy clustering wp as a function of transverse direction. Dots with
error bars correspond to the measurements from a luminosity-selected sample from SDSS galaxies at mean
redshift z ∼ 0.05. Lines correspond to SHAM models with different halo properties considered to match
the data, with no scatter applied. Lower panel: Ratio between models and data. This Figure is from
Reddick et al. (2013).

(Contreras et al., 2013) samples, like LRGs (Zheng et al., 2009) or QSOs (Smith et al., 2020).
This standard HOD model considers that above a certain mass, all halos are populated by a
central galaxy. However, as we mentioned above, ELGs are not complete at high mass, thus
the standard HOD is not appropriate and other HOD shapes have been considered, such as a
Gaussian or asymmetric Gaussian distribution (Avila et al., 2020). Again, we will discuss this
further in Section 3.4.

Conditional luminosity function

Similar to the HOD model, the conditional luminosity function (CLF) Φ(L|M) links the galaxy
luminosity function Φ(L) and the halo mass function n(M) to parametrise the halo occupation
(Yang et al., 2003). The CLF gives the average number of galaxies with luminosities between
[L, L+dL] hosted by a halo of mass M . Each halo is defined by a central galaxy whose luminosity
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Figure 3.15: Mean number of galaxies as a function of halo mass for the standard HOD model. The
central contribution is represented by the solid blue line for Mc = 1.5, Ac = 1, σM = 0.2. Variations for
Mc = [12.2, 12.8] are shown in solid thin blue lines, those for Ac by the shaded cyan region and those
for σM by the shaded purple region. The satellite contribution is represented by the red dashed line for
M0 = 13, M1 = 14 and α = 1. Variations for M1 = [13.8, 14.2] are shown in dotted thin red lines, those
for α by the shaded orange region and those for M0 by the shaded reddish region. The black dash-dot line is
the contribution from both satellite and central distributions. All masses are expressed in log10([M⊙/h]).

Lc is assumed to be the brightest in the halo, and by satellite galaxies (if any) with luminosity
Ls. The luminosity function for central galaxies is assumed to follow a lognormal distribution:

Φc(L|M)dL = Lc√
2πσc

exp
[
−
( ln(L/Lc)√

2σc

)2] dL

L
(3.78)

and that for satellite galaxies is the Schechter luminosity function (Schechter, 1976):

Φs(L|M)dL = Φs

Ls

(
L

Ls

)α

exp
[
−
(

L

Ls

)]
dL (3.79)

with the parameters Lc, Ls, σc, Φs, α depending on the halo mass M . This model has also
shown excellent agreement with data from a luminosity-selected galaxy sample at z < 0.25 from
SDSS (Yang et al., 2009).

3.3.5 Beyond the standard HOD
Although HOD models are based only on halo mass, they have provided good modelling of
data down to small scales. However, analytical models and hydrodynamic simulations show
that features other than halo mass have an impact on galaxy formation. HOD models can be
modified to take these properties into account.



3.3 From darkness to light: illuminating dark matter halos 123

Assembly bias

Each halo and galaxy is unique and has its own history. In the course of their evolution, galaxies
and halos experience a wide variety of histories in their assembly pathway that can influence
properties other than halo mass. Semi-analytical models and hydrodynamic simulations predict
correlations between the spatial distribution of galaxies in halos of the same mass and halo
secondary properties. This phenomenon is known as assembly bias (Croton et al., 2007, Gao &
White, 2007, Wechsler et al., 2002, 2006). Recent studies (e.g. Hadzhiyska et al. (2022b), Hearin
et al. (2016), Yuan et al. (2018)) have developed extended HOD models that take into account
secondary properties of halos as seen in simulation to modify the average number of halos at a
given mass as a function of these properties. In the literature, several secondary properties have
been studied, such as halo concentration, density environment, tidal environment (shear), spin
parameter, maximum accretion rate... Mao et al. (2018) present a summary of the correlations
between several proxies of assembly history and secondary halo biases.

Velocity bias

In HOD models, the velocities of galaxies are defined by that of their host halos. Centrals take
the velocities of the halos and satellites can take velocities derived from, for example, the NFW
halo profile or from the halo dark matter particle velocities. However, due to baryonic effects,
galaxy velocities can differ from the velocities of dark matter particles. Therefore, to accurately
model small-scale clustering in redshift space, parameters can be used to shift galaxy velocities
relative to their original assignment. This is known in the literature as velocity bias (Berlind
& Weinberg, 2002, Skibba et al., 2011, Van Den Bosch et al., 2005, Yuan et al., 2018). The
importance and nature of velocity biases differ from tracer to tracer.

Satellite occupation properties

Satellite distribution: Standard HOD models assume that the probability distribution
function for satellite galaxies follows a Poisson distribution. This is quite true for luminosity-
selected or complete mass samples such as LRGs, although slight deviations from the Poisson
distribution have been seen in simulations for those galaxies (Hadzhiyska et al., 2022b). How-
ever, for ELGs, deviations from the Poisson distribution have been observed in hydrodynamical
simulations and sub/super-Poissonian distributions have been considered in HOD models but no
observational evidence has been reported (Avila et al., 2020, Hadzhiyska et al., 2022b, Jiménez
et al., 2019).

Satellite profile: To recover small-scale clustering on scales below ∼ 1Mpc/h (the one-
halo term), the spatial distribution of satellites within their host halos needs to be determine.
Typically, satellite positions assume a dark matter profile for the host halo (mainly NFW) or
are assigned to randomly-selected dark matter particles. As with velocities, galaxies are affected
by baryonic effects occurring at small scales, and their positions can differ from the dark matter
profile. Although the density profile of dark matter halos has been extensively tested for high-
mass halos, it may be slightly different from an NFW profile for low-mass halos. As a result,
other density profiles can be studied in addition to the standard ones in HOD models. For
example, Yuan et al. (2018) investigated a radial profile for satellite positions.
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3.4 Galaxy-halo connection of ELGs
We have seen the different techniques for modelling galaxies in simulations, from the most
empirical to the most physical models (Figure 3.9). In this section, we look specifically at the
connection between dark matter halos and ELGs (in particular [Oii] emitters as targeted in
DESI), and describe what are the characteristics of DM halos that host ELGs and how they
cluster, particularly on small-scales.

3.4.1 The halo occupation of ELGs
Strong emission lines in galaxy spectra are strongly correlated with the galaxy star formation
rate. For galaxy samples selected by luminosity or stellar mass, such as luminous red galaxies
(LRGs), the average number of central galaxies ⟨Ncent⟩ is well described by a a smooth step
function eventually reaching 1 for large-mass halos (Figure 3.15). For ELGs that are selected
by their star formation rates, the halo occupation for central ELGs is different from a step
function. It is closer to an asymmetric Gaussian distribution that does not reach unity, as
shown in Figure 3.16 (Cowley et al., 2016, Geach et al., 2012, Gonzalez-Perez et al., 2018). The
latter point implies that not all dark matter halos are expected to host an ELG as a central
galaxy, contrary to what happens for LRGs which are assumed to be complete above a given mass
(i.e. above this mass, all halos contain one central galaxy). These results for ELGs are based on
the semi-analytic model of galaxy formation GALFORM. Hydrodynamic simulations (Hadzhiyska
et al., 2021, Osato & Okumura, 2022, Yuan et al., 2022b) give a similar shape for the ELG
central occupation distribution. The halo occupation for satellite ELGs is well represented by a
power law, similar to that in standard HOD models.

Thus, different HOD models have been developed to reproduce the Gaussian shape of the
central distribution. In eBOSS, Avila et al. (2020) and Alam et al. (2020) used different HOD
models for central ELGs to reproduce the HOD shape obtained in SAMs:

➢ Gaussian HOD (GHOD):

⟨Ncent(M)⟩ = Ac√
2πσm

· e
− (log10 M−log10 Mc)2

2σ2
m ≡

〈
NGHOD

cent (M)
〉

(3.80)

In this model, ⟨Ncent⟩ is simply a Gaussian function with mean Mc, width σM and Ac defines
the amplitude of the distribution. This model is compared with SAM predictions in the left
panel of Figure 3.17 (labelled as HOD-2).

➢ Star-Forming HOD (SFHOD):

⟨Ncent(M)⟩ =


〈
NGHOD

cent (M)
〉

M ≤ Mc

Ac√
2πσm

·
(

M
Mc

)γ
M > Mc

(3.81)

This model is a combination of a Gaussian distribution for low-mass halos < Mc and a decreasing
power law for high-mass halos > Mc. The result is an asymmetric shape (see left panel of
Figure 3.17, labelled HOD-3) where the asymmetry is controlled by the γ parameter. This
function describes the SAM predictions well, but has the disadvantage of being discontinuous
at M = Mc.
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Figure 3.16: The mean halo occupation distribution of model [Oii] emitters (solid lines) for different
photometric cuts (target selection) corresponding to different surveys including DESI prospects in green
at z = 0.76. The contribution of centrals ⟨Ncent⟩ is represented in dashed lines and that of satellites in
dotted lines (for DEEP2 cuts only). Figure taken from Gonzalez-Perez et al. (2018).

➢ High mass quenched (HMQ):

⟨Ncent (Mh)⟩ = 2Aϕ (Mh) Φ (γMh) + 1
2Q

[
1 + erf

( log10 Mh − log10 Mc

0.01

)]
,

ϕ(x) = N (log10 Mc, σM ) ,

Φ(x) =
∫ x

−∞
ϕ(t)dt = 1

2

[
1 + erf

(
x√
2

)]
,

A = pmax − 1/Q

max(2ϕ(x)Φ(γx)) .

(3.82)

This model is a combination of a Gaussian function and an error function. pmax controls the
amplitude of the low-mass Gaussian part relative to the high-mass plateau, whose level is set by
Q that represents the quenching efficiency at high halo masses. The asymmetry of the Gaussian
distribution is controlled by the parameter γ. The effect of the various parameters on the HMQ
occupation function is illustrated in Figure 3.17 where the black line shows the fiducial model
and each coloured line illustrates the impact of parameter variation.

Both SAM predictions and hydrodynamical simulations (Gonzalez-Perez et al., 2018, Hadzhiyska
et al., 2021, Orsi & Angulo, 2018, Osato & Okumura, 2022, Yuan et al., 2022b) reveal that ELG
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Figure 3.17: Left: Mean number of ELG galaxies as a function of halo mass. The dots are the SAM results
presented in Figure 3.16 from Gonzalez-Perez et al. (2018) with the central and satellite contributions
as labelled. The red lines correspond to the Gaussian HOD model (labelled HOD-2) from Equation (7.9)
and the blue lines are the star-forming HOD model (labelled HOD-3) from Equation (7.10). For both
HOD models, the contribution of centrals (resp. satellites) is represented in dashed (resp. dotted) lines.
Right: HOD of the high mass quenched model from (Alam et al., 2020). The effect of varying individual
parameters is illustrated by coloured lines, while the solid black line represents the fiducial model. Solid
red, dotted magenta, dotted cyan and dotted blue lines show the impact of parameters Q, γ, σM and pmax

respectively, when varied from the fiducial values given in the legend.

halo occupation peaks at around ∼ 1012M⊙. This peak is robust to redshift, i.e. star forma-
tion occurs at roughly the same halo mass whatever the redshift, as shown in the left-hand
panel of Figure 3.18 (Behroozi et al., 2013a). In terms of star formation history (right panel
of Figure 3.18), the bulk of star formation occurs at redshift z ∼ 1.5 − 2, when the Universe
is predominantly matter-dominated. According to these results, a high density of ELGs is ex-
pected around this redshift, and they should mainly be hosted by halos of mass ∼ 1012M⊙.
SAM predictions (Gonzalez-Perez et al., 2018) and IllustrisTNG hydrodynamical simulations
(Hadzhiyska et al., 2021) also provide the redshift evolution of HODs (see Figure 3.19). The
shape of the distribution remains the same for all redshifts, but the peak slightly shifts towards
higher halo masses with increasing redshift. HOD results on data (Alam et al., 2020, Avila et al.,
2020, Favole et al., 2016, Guo et al., 2019, Lin et al., 2023, Okumura et al., 2021, Yuan et al.,
2022a) report similar findings with a mean halo mass for ELG hosts around ∼ 1012M⊙ with
little redshift evolution.

Note: In Figure 3.19 we note that the number of ELGs decreases with redshifts while we expect
an increasing number of ELGs at z ∼ 1.5/2. This is due to the photometric selection cuts (which
do not evolve with redshift), as high redshift objects are fainter and therefore do not fulfill the
selection criteria.
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Figure 3.18: Left: Star formation efficiency (the star formation rate divided by the halo mass accretion
rate) as a function of redshift and halo mass. Figure taken from Wechsler & Tinker (2018) and originally
from Behroozi et al. (2013a). Right: The history of cosmic star formation (star formation Ψ as a function
of redshift). Data points with symbols are given in Table 1 from Madau & Dickinson (2014) where this
figure is originally from. The peak of star formation in the history of the Universe is around redshift 2.
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Figure 3.19: Left: Model ELGs halo occupation distribution at different redshifts using two different sets
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(dashed-lines) from Gonzalez-Perez et al. (2018). Right: Total number of model galaxies per halo mass
bin for 3 different redshift samples: z = 0.8 (solid line), z = 1.1 (dashed-line) and z = 1.4 (dotted-line)
for 2 different selections, based on colour and sSFR (specific star-formation rate), from Hadzhiyska et al.
(2021).
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3.4.2 Where are ELGs to be found ?

➢ The distribution within the cosmic web

The cosmic web is made up of knots, filaments, sheets and voids. These different environments
exhibit different properties and are not clustered in the same way. In this section we review how
ELGs and [Oii] emitters trace the distribution of dark matter. A large number of observational
studies such as GAMA (Kraljic et al., 2018), VIPERS (Malavasi et al., 2017) or COSMOS
(Laigle et al., 2018) have found that star-forming and less massive galaxies are more likely to
reside in filaments compared to quiescent and more massive galaxies that are found in denser
regions (knots). Hydrodynamical simulations and SAM predictions for ELGs are in agreement
with these findings (Gonzalez-Perez et al., 2018, Hadzhiyska et al., 2021, Osato & Okumura,
2022). Figure 3.20 shows a slice of the simulation box used in the SAM analysis where [Oii]
emitters are highlighted in blue circles and are found mostly in the filamentary structures of the
cosmic web.
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Figure 3.20: Slice of a simulation box of volume 50 × 50 × 10[Mpc/h]3 at redshift z = 1. The cosmic web
of the dark matter is represented in grey. The locations of [Oii] emitters are indicated by the filled circles
and the dark matter halos above 1011.8M⊙/h by the open circles. This figure is taken from Gonzalez-Perez
et al. (2018).

➢ Influence from assembly history of DM halos?

The aim is to see whether the assembly history of DM halos has an impact on the presence of
ELGs, i.e. whether the assembly history triggered star formation. One way of looking at the
impact of assembly history is to compare the clustering of ELGs from SAMs or hydrodynamical
simulations with that of the same sample where ELGs are shuffled between halos of the same mass
to erase any assembly history. Results from the literature have shown that the ELG clustering
is influenced by the assembly history and secondary properties of DM halos (Contreras et al.,
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2019, Jiménez et al., 2021, Xu et al., 2021, Zehavi et al., 2019). Figure 3.21 of Jiménez et al.
(2021) shows the impact of assembly history for sample ELGs with different selections (including
[Oii]) using the Semi Analytical Galaxy (SAG) model of galaxy formation (Cora et al., 2018).
Clustering of the [Oii]-selected sample is ∼ 10 to 20% lower on large scales compared to the
shuffled clustering, depending on the galaxy number density. Note that with increasing density,
the difference is reduced, which is expected as there is a limited number of DM halos, given by
the initial halo mass function. Therefore, if more halos are populated by galaxies, the impact
of the assembly history is reduced. We note however that the impact reduction is weak in the
case of samples selected by their [Oii] emission.
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Figure 3.21: Ratio of the predicted clustering for ELG samples selected by different properties to that of
their corresponding shuffled sample. Each panel shows a different number density, as labelled.

Furthermore, the assembly history tends to reduce the clustering power on large scales in a
scale-dependent manner, meaning that the ELG bias depends on the scales considered (Jiménez
et al., 2021). This is problematic for cosmological studies because the full shape modelling of the
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2PCF assumes a linear bias on linear scales, so that a scale-dependent bias of the ELG samples
could bias cosmological results.

Recent results using hydrodynamical simulations have led to a better understanding of the
small-scale clustering of ELGs and the impact of secondary properties of DM halos hosting
ELGs (Hadzhiyska et al., 2021, 2022b, Yuan et al., 2022b). Hadzhiyska et al. (2022b) use
MilleniumTNG, a large-volume hydrodynamical simulation (box size of 500 Mpc/h), to extract
a "true" sample of ELG-like galaxies and compare it to HOD predictions taking into account the
mass only HOD and improved HOD models that take into account secondary properties of DM
halos as follows:〈

N ′
cent(M)

〉
= [1 + (acentfa + bcentfb)(1 − ⟨Ncent(M)⟩)] ⟨Ncent(M)⟩〈

N ′
sat(M)

〉
= [1 + (asatfa + bsatfb)] ⟨Nsat(M)⟩

(3.83)

The mean numbers of the HOD are modified according to the secondary halo parameters a and
b. fa and fb are the normalised rank-ordered halo properties, acen (asat) and bcen (bsat) are
free parameters for the entire central (satellite) sample, ⟨Ncent(M)⟩ (⟨Nsat(M)⟩) are the mean
number of centrals (satellites) in the mass bin of the halo under consideration. To compute fa or
fb, halos in the mass bin are first ranked by decreasing values of the halo property and each halo
is attributed a different value of f, which is a user-defined function of the considered property
(e.g. a linear function decreasing between 0.5 and −0.5 when going from the top ranked halo
to the last one). Figure Figure 3.22 shows the comparison between the clustering of "true" ELG
samples and HOD models considering the mass-only HOD model and the improved HOD model
with different secondary properties of DM halos:

• conc: halo concentration (see Section 3.1.5),

• Mass peak: highest mass achieved in the entire halo history,

• VelAni: velocity anisotropy, measured by the ratio of the tangential and radial velocity
dispersions of the halo particles,

• R Splash: splashback radius1, the radius where particles reach the apocentre of their first
orbit which is a physically motivated definition of the halo boundary (Diemer & Kravtsov,
2014),

• EnvAdapt : local environment, i.e. local density around the halo,

• ShearAdapt : local shear, i.e. tidal environment (amount of anisotropic pulling due to
gravity) around the halo.

Figure 3.22 displays results for ELG and LRG samples at redshift 0 and 1. The quantity
indicated in Figure 3.22 is the difference between the 2PCF quadrupole of the true ELG sample
and the HOD models divided by the monopole of the true sample (ξ2,pred − ξ2,true)/ξ0,true. Solid
lines with error bars are the results from the improved HOD model which takes into account
a given secondary parameter. Dotted lines with shaded areas are the results of the mass only
HOD. Focusing on ELGs only, we see that the clustering is slightly influenced by secondary
parameters, the parameter with the greatest impact being concentration, which provides better

1A quick introduction with lots of reference on the splashback radius can be found here

http://www.benediktdiemer.com/research/splashback/
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agreement on average compared to the "true" clustering on all scales (r > 10Mpc/h). The
splashback radius also improves the agreement at small scales. However, none of the tested
secondary parameters solves completely the disagreement at small scales (r < 1Mpc/h). In
their studies Hadzhiyska et al. (2022b) also reported similar results in real space, combining
the secondary properties of DM halos in pairs and reporting that shear and environment show
slightly better agreement with the truth than each property separately. On the data side, only
a few studies have examined the impact of assembly bias on the ELG sample. Among them, Lin
et al. (2023) used a secondary halo property related to halo assembly history and found that
the projected clustering of eBOSS ELGs matched better with assembly bias included.
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Figure 3.22: Difference in clustering quadrupole between predicted and "true" ELG and LRG samples at
z = 1 and z = 0. Predicted samples are obtained with HOD models either mass-dependent only (dotted
lines) or considering secondary bias as in Equation (3.83) (solid line with error bars). Each panel adopts
a different halo property as a secondary assembly bias proxy.

➢ Positions and velocities within their host halos
After focusing on the environment of halos hosting ELGs, we turn our attention to their positions
and velocities relative to their host. Based on LGALAXIES, a SAM of galaxy formation (Munich
group), run on the MXXL (Angulo et al., 2012) N-body simulation, Orsi & Angulo (2018) studied
the satellite kinematics of ELGs and argue that the quenching of star formation rate induced
by gas stripping processes decreases the fraction of satellite ELGs in the inner part of DM
halos. They show that satellite ELGs are made up of two populations with different properties:
the first one corresponds to objects affected by gas-stripping processes but still forming stars,
which occupy a wide range of radial positions within their parent halo, with infall velocities well
described by a zero-centred Gaussian. The second one corresponds to recently accreted satellites
that populate the outskirts of their parent halo, with a dominant infall velocity component.
This can be seen in Figure 3.23, which displays the intra-halo radial distribution (left panel)
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and tangential and radial velocities (right panel) of LRGs and ELGs, specifically highlighting
the contribution of recently accreted galaxies (tinfall < 680Myr). The infall contribution of these
recently accreted galaxies is much higher in the case of ELGs. For LRGs, the contribution of
recently accreted galaxies is very low. LRGs are more uniformly distributed in the halos, with
a much less pronounced infall velocity.

Recent results from hydrodynamical simulations with IllustrisTNG (Yuan et al., 2022b) and
MilleniumTNG (Hadzhiyska et al., 2022b) also indicate that satellites are more likely to be
found at the periphery of DM halos, with a small proportion of satellites at a distance up to
3 times greater than the halo virial radius. But Yuan et al. (2022b) associate this finding to a
possible side-effect of the halo finding algorithm. This publication also reports a slight velocity
bias for satellite model ELGs and a modest one for central model ELGs, which exhibit velocity
dispersions lower by a few percent than their host halos.

The above results are based on hydrodynamical simulations or SAMs, which rely on prescrip-
tions to describe galaxy formation processes. Confirmation with data is still missing but would
be essential to confirm the validity of these prescriptions. The clustering of ELGs at sub-halo
scales is difficult to probe with data because we need to resolve very small separation scales that
are strongly affected by fibre collisions in spectroscopic samples (see Section 2.7.1.1). Avila et al.
(2020) carried out an HOD study on the ELG eBOSS sample and tested the dependence of the
ELG clustering on the DM halo density profile (using either particles or the NFW profile), with
measurements of the projected clustering wp at small scales 0.2 < rp < 4Mpc/h. More dispersed
satellite profiles w.r.t NFW were found to be preferred by data. Moreover, they report a positive
velocity bias for satellites, i.e. greater velocity dispersions w.r.t. the halo velocity, possibly due
to large infall velocities.
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Figure 3.23: The intra-halo radial distribution (left panel) and the intra-halo velocity distribution (right
panel) of satellites from model LRG samples (top) and ELG samples (bottom) in host halos of mass
log10(Mh [M⊙/h]) = 13.5 ± 0.5. The green dotted region indicates the contribution of satellites accreted
into the host halo within the last ∼ 680 Myr. Figures taken from Orsi & Angulo (2018).
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➢ Satellite fraction and distribution

The satellite fraction of ELGs can be determined in SAMs or hydrodynamical simulations, but
also measured in data. First, let’s define what we mean by a satellite galaxy. A satellite galaxy
is considered to be enclosed within the radius of the halo and to orbit a central galaxy. This
idea was introduced for mass-limited samples such as LRGs, meaning that LRG satellites are
found associated with a central LRG. For ELGs, the story is a little different, as ELG satellites
are not necessarily associated with a central ELG (they may be associated with a central LRG
for example). The fraction of satellites is the number of galaxies of a given galaxy type that are
considered to be satellite over the total number of galaxies of this type in the sample:

fsat = Nsat

Ncen + Nsat
(3.84)

where Ncen and Nsat are the number of centrals and satellites of the given type. For ELGs, we
cannot infer the number of ELG central-satellite pairs from the ELG satellite fraction because
satellite ELGs are not necessarily associated to a central ELG, contrary to LRGs.

In theoretical models, we can determine whether an ELG is central or satellite. HOD models
determine the satellite fraction by counting the number of objects drawn from the satellite HOD,
and SHAM methods count the number of populated sub-halos. In the literature, a large number
of studies using SAMs or hydrodynamical simulations have reported a wide range of satellite
fractions for ELGs from ∼ 2% to ∼ 40%. All models agree that ELGs are most likely central in
low mass halos < 1012.5M⊙/h and satellites in higher-mass halos (Gonzalez-Perez et al., 2018,
Jiménez et al., 2019, Orsi & Angulo, 2018, Osato & Okumura, 2022, Yuan et al., 2022b). Osato &
Okumura (2022) fitted their truth sample (based on IllustrisTNG hydrodynamical simulations)
with a satellite fraction of 28% with different HOD models and found the resulting satellite
fraction to range from 25 to 50% depending on the models. Thus, the satellite fraction of ELGs
is poorly constrained by the physical models. The data results also show a wide range of satellite
fractions depending on the method used (HOD or SHAM-SHMR) to fit the data. For example,
for the eBOSS ELG sample, Guo et al. (2019) use the SHAM plus SHMR method and report a
satellite fraction of ∼ 13% − 17% depending on the redshift in 0.7 < z < 1.2. Lin et al. (2023)
report ∼ 19% with a SHAM analysis. Two HOD multi-tracer analyses on eBOSS data used the
HMQ model (Equation (3.82)) and report ELG satellite fractions of ∼ 7 and ∼ 17%, respectively
(Alam et al., 2020, Yuan et al., 2022a). The former also report ∼ 12% with the standard HOD
model (Equation (3.75)). Once again, these results highlight the difficulty of constraining the
satellite fraction of ELGs. Most results report satellite fractions in the range ∼ 10 − 30%.

The last point we address on satellite ELGs is the Poissonian shape of the satellite distri-
bution. Recent results from SAMs and hydrodynamical simulations have shown that the ELG
satellite population more likely exhibits a super-Poissonian behaviour rather than a Poissonian
one in high-mass halos ≥ 1013M⊙/h (Hadzhiyska et al., 2022b, Jiménez et al., 2019), i.e. the
mean number of satellites for a given halo mass remains the same but the variance increases.

3.4.2.1 ELG central-satellite conformity

Galactic conformity was introduced in Weinmann et al. (2006), which reports that the properties
of satellite galaxies in SDSS data are strongly correlated with those of the central galaxy in their
halo. They found that this correlation is even more important for early-type galaxies (such as
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ELGs): "In particular, the early type fraction of satellites is significantly higher in a halo with
an early type central galaxy than in a halo of the same mass but with a late type central
galaxy". Since then, other studies have found a significant trend in favour of galactic conformity
(Kauffmann et al., 2013, Knobel et al., 2015, Phillips et al., 2014, Robotham et al., 2013, Wang
& White, 2012).

The results from Hadzhiyska et al. (2022b) based on hydrodynamical simulations show that
the probability of a halo having a central ELG if it has at least one ELG satellite is about twice as
large as the probability of a halo having a central galaxy whatever the number of satellites, in the
mass interval 1012 −1013M⊙/h, as illustrated in Figure 3.24. This may suggest that the presence
of ELG satellites is more likely if the halo already hosts a central ELG. Several implementations
of conformity in HOD models have been tested in the literature, conditioning the presence of
satellite galaxies on prior information if the halo hosts a central galaxy or not (Alam et al.,
2020, Hadzhiyska et al., 2022b, Jiménez et al., 2019). The latter studied the HOD of the eBOSS
ELG and LRG samples (auto and cross correlations) and reported a signature of 1-halo galactic
conformity (central-satellite conformity) at more that 3σ of statistical significance.
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Figure 3.24: Probability distribution of the ELG centrals at z = 1 (blue) and z = 0 (green) as a function
of halo mass. The dashed lines indicate the probability that a halo of a given mass contains a central, and
the solid lines correspond to the conditional probability that a halo contains a central given that it hosts
one or more satellites. The lower panel shows the ratio of the solid to the dashed lines for each sample.
Figure taken from Hadzhiyska et al. (2022b).
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In the literature, the presence of 2-halo conformity is also observed, i.e. conformity extends to
scales beyond the virial radius of the halos (up to 4Mpc/h for projected separations (Kauffmann
et al., 2013)). One possible explanation for this effect is that halo pairs at these distances reside
in the same large-scale tidal environment and that the mass accretion rates of dark matter halos
are strongly correlated at large scales, leading to conformity between galaxies pairs at larger
scales (up to thirty times the virial radius of either halo (Hearin et al., 2016)). However, this
result is still debated as possibly due to selection bias (Lacerna et al., 2018, Sin et al., 2017,
Tinker et al., 2018).

3.4.3 Global picture of ELG-dark matter connection
The previous sections describe what was known (or expected from models and simulations)
about ELGs before DESI started. In DESI we select only a sub-sample of ELGs, those that are
[Oii] emitters, because we rely on the [Oii] doublet (3726 − 3729 Å) to assess the redshift. To
summarise, ELG is a generic term that refers to a population of (predominantly) star-forming
galaxies and, at most ∼ 10% of those are [Oii] emitters in the redshift range 0.6 < z < 1.5. This
is consistent with the overall picture of comic history of star formation that peaks around redshift
∼ 1.5 − 2 with the highest fraction of SFR in halos of mass ∼ 1012M⊙/h. ELGs mainly reside
in the filamentary structure of the cosmic web i.e. in less dense environments than LRGs. The
mean mass of the halos hosting ELGs is around ∼ 1012M⊙/h. In low mass halos < 1012.5M⊙/h,
ELGs are mainly centrals, while they are mostly satellites in higher mass halos. ELGs are
sensitive to assembly history at all scales, with larger dependence regarding shear, environment
and concentration as halo secondary parameters. The satellite fraction of ELGs is found to
be around ∼ 10 − 30% depending on the model considered, but remains poorly constrained.
ELG satellites are located mainly in the outskirts of the halos with a large component of infall
velocity.

The physical picture: Most ELGs are active star-forming galaxies. Star formation generates
strong emission lines in the intergalactic medium. One of the characteristic indicators of star
formation is the [Oii] doublet (3726−3729 Å), which is the strongest feature after the Hα Balmer
line (6562.8 Å) (Moustakas et al., 2006). The [Oii] doublet has the advantage of being easily
identifiable and can be seen in optical spectra with moderate resolution up to high redshifts
(z ∼ 1.6), whereas the Hα line becomes inaccessible from ground observation at lower redshift.
ELGs are mainly found in halos of mass ∼ 1012M⊙/h. Star formation of a galaxy is modulated by
feedback and environmental effects. It is expected that massive galaxies located in large halos
are more often subject to strong star formation regulation mechanisms (e.g. AGN feedback)
and therefore exhibit low star formation rates. In addition, low star formation rates are also
expected in low-mass halos < 1011M⊙ due to a combination of other extinction mechanisms (e.g.
supernova feedback) and the small amount of baryonic gas available. To be detected, satellite
ELGs in high-mass halos need to be recently accreted by the halos to keep a significant SFR.
Indeed, if an ELG enters a high-mass halo, its star formation rate drops rapidly, turning it into
a red galaxy in ∼ 1 Gyr. For this reason, ELGs exhibit high infall velocities towards the halo
centres and are most often located in the outskirts of massive halos.
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T his chapter is devoted to the HOD fitting method for DESI ELGs that I developed during
my thesis and which was published in (Rocher et al., 2023)

4.1 Introduction on HOD fitting methods
Building clustering predictions from HOD models using simulations is cheaper than running
SAMs but requires a non-negligible amount of computational resources. First, one needs to
load N -body simulation boxes, which can be memory expensive depending on the box size.
Typically, for AbacusSummit simulations, the phase space, mass and properties have to be
loaded for each of the ∼ 40 (resp. 300) million halos present in simulation boxes of size 1 Gpc/h

(resp. 2 Gpc/h). Next, the expected mean numbers of central and satellite galaxies from the
HOD model are computed for each halo and used to randomly draw the actual numbers of such
galaxies to be assigned to the halo, using a Bernoulli (resp. Poisson) distribution for central
(resp. satellite) galaxies. Satellite positions and velocities are then assigned using a halo density
profile or a randomly selected dark matter particle of the halo. The latter solution is more
costly, as particle positions and velocities have to be loaded for each halo. The obtained galaxy
catalogue is then compared with data using clustering statistics, which is again costly in terms
of CPU resources. Consequently, full inference of HOD parameters can be CPU expensive. In
addition, HOD models suffer from stochasticity induced by random draws, making minimisation
difficult.

In the literature several approaches have been proposed to perform HOD fits more efficiently,
in particular to limit the stochasticity of the procedure. One popular technique is the tabulated
HOD method that pre-compute halo and particle clustering and convolve it with halo occupation
distribution (Zheng & Guo, 2016). Other techniques used optimized and parallelized code to
code HOD models and clustering statistics. For instance, the recent AbacusHOD (Yuan et al.,
2022) pipeline first initialises random numbers for every halo and particle, down-samples halos
and particles from N-body simulations, and then run inference on HOD parameters from a
sampler to derive best-fit parameters.

In the following, I describe the new method I developed to fit HOD parameters on small
scale clustering measurements using Gaussian Processes (Rasmussen & Williams, 2005). The
methodology presented hereafter aims at performing accurate fitting of HOD model parame-
ters while minimising CPU time consumption. To this purpose, inspired by Efficient Global
Optimization algorithms (Jones et al., 1998), I developed a two-step procedure using Gaussian
Processes (GP) to create a surrogate model of the likelihood posterior L. In a first step, we
sample the likelihood posterior to provide initial training to the GP. This initial GP model is
further improved by successive iterations, each iteration adding one point until the predicted
map becomes stable enough so that marginalised parameter values and posterior contours can
be reliably derived. After a brief introduction to Gaussian processes, we describe the different
steps of the fitting procedure and give its performance.

4.2 Gaussian Processes
Gaussian Processes (GP) (Rasmussen & Williams, 2005) offer an alternative route to build a
model function that fits a set of observational data. In cosmology, GP have been recently used
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to build emulators to perform cosmological inference, whether iterative (El Gammal et al., 2022,
Neveux et al., 2022, Pellejero-Ibañez et al., 2020) or not (Angulo et al., 2021, Nishimichi et al.,
2019, Sáez-Casares et al., 2023). In particular, El Gammal et al. (2022) is very instructive on the
challenges to be faced to set up such a methodology. GP are also very efficient to perform global
optimisation of expensive and stochastic functions (Garnett et al., 2008), as often encountered
in HOD modelling.

Gaussian processes provide a way to predict the value of a function f(x) for any set of
parameter values x = (p0, p1, . . . , pN ), from an initial, restricted set of parameter values X =
(x0, . . . , xn) and their corresponding function values y = f(X) called training sample (or data)
in the following, where n + 1 is the number of evaluations in the initial training sample and
N +1 the number of parameters. X is a matrix of dimension (N +1)× (n+1). GP assume that
the function f(x) is drawn from a collection of random functions that are Gaussian-distributed
(hence the name) around a mean function m(x) with a covariance function, called kernel, k(x, x)
which completely define the GP. The random functions are conditioned by the values from the
training sample, i.e. they have prior information on the function f given by the initial training
sample, y = f(X):

f(x0)
f (x1)

...
f (xn)

 ∼ N




m(x0)
m(x1)

...
m(xn)

 ,


k(x0, x0) k (x0, x1) . . . k (x0, xn)
k (x1, x0) k (x1, x1) . . . k (x1, xn)

...
... . . . ...

k (xn, x) k (xn, x1) . . . k (xn, xn)


 (4.1)

In this notation ∼ stands for "distributed according to...". As an illustration, Figure 4.1 shows
random functions generated by GP with and without training sample.

Importantly, while the correlation of the function value at two points is assumed to be
Gaussian, this neither means that the function is itself assumed to be Gaussian, nor that the
mean of the family of functions is presumed to be Gaussian. The training set (X, y) can be
used to make predictions of f(X∗) for any set of unobserved parameters X∗. The unobserved
values of f(X∗) and the observed values y are jointly distributed Gaussian variables:

p(f(X∗), y) =
[

f(X)
f (X∗)

]
∼ N

([
m(X)
m(X∗)

]
,

[
k(X, X) k (X, X∗)
k(X∗, X) k (X∗, X∗)

])
(4.2)

The joint distribution p(f(X∗), y) can be used to compute the conditional distribution (also
called the GP posterior) p(f(X∗)|y, X, X∗)1, which also follows a Gaussian distribution:

p(f(X∗)|y, X, X∗) ∼ N (µ(X∗), Σ(X∗)) (4.3)

where µ(X∗) is the mean vector, and Σ(X∗) the covariance matrix:

µ(X∗) = m(X∗) + k (X∗, X) (k(X, X))−1 [y − m(X)]
Σ(X∗) = k (X∗, X∗) − k (X∗, X) (k(X, X))−1 k (X, X∗)

(4.4)

Note that diag(Σ(X∗)) provides the variances around the mean predictions of the GP, µ(X∗)
(the corresponding uncertainties are shown as shaded regions in Figure 4.1).

1It takes ∼ 4 pages of matrix algebra to derive the conditional distribution p(f(X∗)|y, X, X∗) from the joint
distribution p(y, f(X∗)), so we skip the computation details in the manuscript. See (Rasmussen & Williams,
2005) for the derivation details.
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GP can also describe noisy observations f(X) = y + ϵ where the elements of the noise
vector, ϵ = {ϵ0, ϵ1, ..., ϵn} are parametrised by zero-mean Gaussians with variances given by
σ2

ϵ = {σ2
ϵ0 , σ2

ϵ1 , ..., σ2
ϵn

}, ϵi ∼ N (0, σ2
ϵi

). The prior kernel for one noisy observation xi becomes:

k(xi, xi) → k(xi, xi) + σ2
ϵi

(4.5)

If the noise is uncorrelated between observations y, a diagonal matrix D whose elements are σ2
ϵ

is added to the kernel. Similarly, the posterior distribution of predicted noisy observations will
have additive noise f(X∗) = y∗ + ϵ∗ and one should add to the posterior kernel k(X∗, X∗) a
diagonal matrix D∗ with elements σ2

ϵ∗ . Therefore, in presence of noise, we rewrite Equation (4.4)
as:

µ(X∗) = m(X∗) + k (X∗, X) (k(X, X) + D)−1 [y − m(X)]
Σ(X∗) = k (X∗, X∗) + D∗ − k (X∗, X) (k(X, X) + D)−1 k (X, X∗)

(4.6)

In the literature, a zero-mean function m(x) = 0 is often assumed since the flexibility provided
by the kernel is enough to model f(x∗) arbitrarily well. There is a wide range of possible kernel
functions. In our procedure we performed tests with a squared exponential kernel (also known
as Radial Basis Function, RBF) and a Matérn kernel of index ν = 5/2 which is equivalent to
the product of an exponential and a polynomial of order 5. We adopt the latter as our baseline
for this method. The Matérn kernel function in one dimension has the following form:

k(xp, xq) = σ2
k

21−ν

Γ(ν)

(√
2ν

d(xp, xq)
ℓ

)ν

Kν

(√
2ν

d(xp, xq)
ℓ

)(
+σ2

ϵp
δpq

)
(4.7)

where Γ is the gamma function, Kν is the modified Bessel function, ℓ is the length scale, d(xp, xq)
is the Euclidean distance between the two points and σ2

k is the variance of the kernel. δpq is
the Kronecker delta function. The kernel is parametrised by the length scale and the kernel
variance. The length scale can be viewed as a characteristic correlation length between points
along the parameter axis and high (resp. low) values of ℓ generate smooth (resp. wiggly)
random functions, as can be seen in Figure 4.1. In N -dimensions, there is one length scale for
each dimension of the parameter space. The length scale and kernel variance values are found
by marginalising the following likelihood over ℓ and σ2

k:

− log p(y|X, (ℓ, σ2
k)) = 1

2yT (k(X, X) + D)−1 y + 1
2 log |k(X, X) + D| − n + 1

2 log 2π (4.8)

➢ Gaussian Process procedure
Altogether, a procedure based on Gaussian Processes can be summarised as follows:

• generate a training sample (X, y) for a given function f ,

• choose a kernel k (here Matern ν = 5/2) and a mean µ (we consider µ = 0),

• choose a set of parameters X∗ where we want to estimate the function i.e. f(X∗),

• maximize Equation (4.8) to obtain the kernel length scales,

• compute the expected mean value µ(X∗) and its variance Σ(X∗) of f(X∗) using Equa-
tion (4.6).
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Many documents on GP can be found in the literature. A nice introduction and visual ex-
ploration of Gaussian processes can be found at visual-exploration-gaussian-processes. In our
inference method, we iteratively add a new set of parameter values to the training sample of the
GP (see Section 4.3.6). So the GP prediction is updated by adding new prior on the parameter
space.

X

2

0

2

Samples from the GP prior

X

Training sample
Mean value

Figure 4.1: Schematic view of Gaussian processes. Left: Sample of random functions drawn from a
Gaussian process using the Matern(ν = 5/2) kernel. The shaded region represents the 2σ region from the
mean µ = 0. Right: Training points (black) are added to the procedure. The sample of random functions
are now conditioned by the data points. The mean function µ is in black dashed-lines and the shaded grey
band is the 2σ region from the mean given by Equation (4.6).

4.3 HOD modelling framework
To develop the fitting procedure we rely on HOD-based fiducial mock catalogues that aim to
reproduce the population of ELGs that we expect to find in DESI. HOD fitting for ELGs is chal-
lenging since these galaxies are expected to reside in low mass halos ∼ 1012M⊙, which requires
handling high resolution N-body simulations where dark matter halos are well-resolved down to
(at least) ∼ 1011M⊙, making the evaluation of the HOD model, and the estimation of clustering
statistics, CPU and memory expensive (due to the fast increase of the halo mass function at low
mass). We hereafter briefly recall the HOD framework introduced in Section 3.4.1.

4.3.1 HOD model
The HOD formalism describes the relation between a specific class of galaxies and dark matter
halos, as the probability that a halo with mass M contains N such galaxies. It also specifies how
galaxy positions and velocities are distributed within halos. HOD models have contributions
from two galaxy populations, namely centrals and satellites, with ⟨Ncent(M)⟩ and ⟨Nsat(M)⟩
their respective mean numbers hosted per halo of a given halo mass.

As discussed in Section 3.4.1, the mean HOD predicted by ELG semi-analytical models can
be fit reasonably well by a simple Gaussian or slightly asymmetric Gaussian for centrals, together
with a power law for satellites. Accordingly, the baseline model followed in this chapter is the

https://distill.pub/2019/visual-exploration-gaussian-processes/#GaussianProcesses
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Gaussian HOD model (GHOD) defined in Equation (7.9), which we recall here:

⟨Ncent(M)⟩ = Ac√
2πσm

· e
− (log10(M)−µ)2

2σ2
m

⟨Nsat(M)⟩ = As

(
M − M0

M1

)α
(4.9)

Ac defines the amplitude of the central galaxy HOD, µ = log10 Mc where Mc is the charac-
teristic halo mass with maximal probability to host a central galaxy and σm is the width of the
distribution. As defines the amplitude of the satellite galaxy HOD, M0 is a cut-off halo mass
below which no satellite can be present, α is a slope-parameter that controls the variation in
satellite richness with increasing halo mass, and M1 is the mass at which 1 satellite is expected
per halo if As = 1 and M0 is much lower than M1. The total number density of the galaxy
sample can be calculated as follows:

n̄gal =
∫ dn(M)

dM
[⟨Ncent(M)⟩ + ⟨Nsat(M)⟩] dM (4.10)

The total galaxy sample size is governed by both Ac and As and the fraction of satellites
is controlled by their ratio. Moreover, all other conditions being equal, the same clustering is
obtained whatever Ac and As values, provided their ratio is fixed and ⟨Ncent(M)⟩ remains lower
than 1 (which is the case for all the fits performed in the following). We rely on this property
to impose a fixed density in our fitting procedure.

The constraints adopted in our fits are the following. First, as log10(M1) cannot be con-
strained due to degeneracies with As and α, this parameter is kept fixed for the tests. To choose
a sensible value for log10(M1), we follow Avila et al. (2020) and set:

log10(M1) = log10(Mc)ref + 0.3 = 11.93 (4.11)

taking for log10(Mc)ref the value used to generate our pseudo-data catalogues (see Table 4.2).
Second, in order to apply a density constraint to our fits to match that in DESI data, we treat
the Ac and As parameters in the following way. At each point in the HOD parameter space,
Ac is set to an initial value of 0.05, while As is sampled from a flat prior range (reported in
Table 4.2). The total number density for these initial values of Ac and As is computed according
to Equation (4.10) and the values of Ac and As are rescaled by the same factor (to preserve the
clustering) in order to provide a fixed galaxy density of 10−3Mpc/h3 close to that expected for
the DESI ELG sample. In the following, all our results are expressed as a function of the initial
(i.e. unrescaled) value of As, corresponding to Ac = 0.05.

In the following, we complement the above functions for the mean numbers of central and
satellite galaxies by the following assumptions. The actual number of central (resp. satellite)
galaxies per halo of mass M follows a Bernoulli (resp. Poisson) distribution with mean equal
to ⟨Ncent(M)⟩ (resp. ⟨Nsat(M)⟩). Central galaxies are positioned at the center of their halos
while satellite galaxy positions sample a Navarro-Frenk-White profile described in Section 3.1.5.
We assume that satellite velocities are normally distributed around their mean halo velocity vh,
with a dispersion equal to that of the halo dark matter particles σvh

, rescaled by an extra free
parameter denoted fσv as follows:

v⃗sat ∼ N (v⃗h, fσv · σvh
) (4.12)
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4.3.2 Simulation tests

name cosmology box size resolution realisations
baseline Planck 2018 ΛCDM 1 Gpc/h 34563 1
cosmic variance Planck 2018 ΛCDM 2 Gpc/h 69123 25

Table 4.1: Cosmology, box size and mass resolution of the AbacusSummit simulations used in this
chapter. The mass resolution is given as the number of particles in the box.

parameter log10(Mc) α As log10(M0) log10(M1) σm fσv

input 11.63 0.6 0.11 11.63 11.93 0.12 1.
priors 11.4-11.8 0.5-0.7 0.05-0.2 11.4-11.8 11.93 0.01-0.3 0.75-1.25

Table 4.2: Top row: GHOD parameter input values used for pseudo-data catalogues. Bottom row: GHOD
parameter flat prior ranges used in all fits performed in this chapter. In both rows, the indicated values
of As are initial values and the initial value for Ac is 0.05. We recall that, at each point in the parameter
space, these individual values are rescaled by the same factor to provide clustering modelling with a fixed
density of 10−3(Mpc/h)3 (see text).

Our HOD fitting method uses the above GHOD model to populate simulated dark matter
halos and produce mock galaxy catalogues for which clustering statistics are calculated and
compared to data. The method is tested with simulated data (dubbed as pseudo-data in the
following) that are themselves galaxy mock catalogues produced in the same way. For both
purposes, we rely on the AbacusSummit suite and the corresponding cleaned halo catalogues
obtained with the CompaSO algorithm, as described in Section 3.2.1.

We report in Table 5.1 the subset of simulations used in this chapter. They all use the base
resolution, 69123 particles in a box of 2 Gpc/h length, which corresponds to a particle mass of
about 2×109M⊙/h. With this particle mass, halos are well resolved down to 1011M⊙/h which
provides ∼50 particles/halo (Maksimova et al., 2021). Moreover, the halos selected in this work
have a mass larger than 3 × 1011M⊙/h which corresponds to 150 particles/halo. Simulations in
Table 5.1 are used to create mock catalogues for both pseudo-data and model predictions, as
will be detailed in the next sections. For pseudo-data mocks, the GHOD parameters are fixed
at values listed in Table 4.2 (top row). These values provide a clustering close to that expected
for the ELG sample collected during the survey validation phase of DESI.

4.3.3 Clustering statistics
As clustering statistics, we adopt the projected correlation function, wp(rp), which is robust
against redshift-space distortions at small scales, and the two-point correlation function monopole,
ξ0(s) and quadrupole ξ2(s). We first compute the galaxy two-point correlation function, ξ(rp, π),
as a function of the galaxy pair separation components along (π) and perpendicular to the line-
of-sight (rp). Integration over the line-of-sight provides the projected correlation function:

wp(rp) = 2
∫ πmax

0
ξ(rp, π)dπ. (4.13)

Computing the two-point correlation function ξ(s, µ), as a function of the galaxy pair separation,
s, and the cosine of the angle between the line-of-sight and separation vector, µ, provides the
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two multipoles we use:

ξℓ(s) = 2ℓ + 1
2

∫ 1

−1
ξ(s, µ)Lℓ(µ)dµ (4.14)

with ℓ ∈ {0, 2} and where Lℓ(µ) denotes the Legendre polynomial of order ℓ. We rely on the DESI
wrapper (see Section 4.5) around the Corrfunc package (Sinha & Garrison, 2020) to compute
the above two-point correlation functions ξ(rp, π) and ξ(s, µ) with the natural estimator, which
compares galaxy pair counts to the expected pair count for a uniform distribution. For wp(rp),
we use 25 logarithmic bins in rp between 0.03 and 30 Mpc/h, setting πmax = 40 Mpc/h. For
the multipoles, we use 25 logarithmic bins between 0.8 and 30 Mpc/h in s and 100 linear bins
in µ. In the galaxy pair count computation, the galaxy redshift to distance conversion uses the
simulation cosmology as the fiducial cosmology and the z axis is chosen as a line-of-sight for the
application of redshift space distortions.

4.3.4 χ2 definition
At each point of the HOD parameter space, 20 model realisations are drawn. For each realisation,
the model clustering is compared to that of the pseudo-data with the following χ2 definition:

χ2 = (ξdata − ξmodel)⊤[Cdata/(1 − Ddata) + Cmodel/(1 − Dmodel)
]−1(ξdata − ξmodel) (4.15)

where ξ denotes a vector of clustering measurements, C a component of the covariance matrix
and D the Hartlap correction factor (Hartlap et al., 2007) applied to the inverse of the covariance
matrix component:

D = nb + 1
nm − 1 (4.16)

with nb the number of bins of the data vector and nm the number of mocks used to build
the covariance matrix component. These 20 measured χ2 values are then averaged and the
dispersion of the χ2 values divided by

√
20 is used as an estimate of the uncertainty on the

mean χ2. For HOD input values in Table 4.2 (top row), this uncertainty is of order 2.3 for
a mean χ2 around 63 (for 75 − 6 = 69 degrees of freedom). As the dynamical range of
χ2 variations is large over the HOD parameter space, which can make it hard to model the
likelihood posterior, we use the natural logarithm of the mean χ2 values and the correspond-
ing errors as inputs to the GP. With the notations of Section 4.2, we provide the GP with
x = {log10(Mc), α, As, log10(M0), log10(M1), σm, fσv }, y = ln

(
χ2), ϵ = δ(ln

(
χ2)).

The computation of the covariance matrix for the pseudo-data depends on the test to be
performed and is described in the next section. To build the model covariance we assume
that correlations have small variations over the HOD parameter space and compute a fixed
correlation matrix from 1000 realisations of the HOD model in table 4.2 (top row), drawn
from the simulation box used for the model. At each point of the parameter space, the model
covariance matrix is then obtained by normalising the previous correlation matrix using the
variances of the clustering measurements over the 20 realisations drawn to compute the χ2 at
that point. This is the baseline for the computation of the model covariance matrix, which we
changed slightly for specific tests, as detailed in Section 4.4.
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4.3.5 GP training sample
To define the GP training sample, the HOD parameter space must be sampled efficiently. Two
sampling methods were tested. The first one, commonly used in GP applications is the Latin
Hypercube Sampling (LHS McKay et al. (1979)). The second method, which we adopt as our
default, is the Hammersley sampling (Wong et al., 1997) which generates a more uniformly
distributed sampling pattern.

➢ Latin hypercube sampling

The Latin hypercube sampling is an efficient technique to sample high-dimensional parameter
spaces into bins of equal probability so as to provide a more even distribution of sample points
than would be possible with pure random sampling. LHS is based on the latin square, a square
equally divided in N samples along each axis. Each row and column contains a single point of
the sample (see Figure 4.2). The latin hypercube is the extension of the latin square to higher
dimensions. For a n-dimensional parameter space, each axis is divided equally in N samples
and each sample point has to be the only one in each axis-aligned hyperplane containing it.

Figure 4.2: Schematic view of a latin square sampling in 2D.

➢ Hammersley sampling

Hammersley sampling (Wong et al., 1997) is part of the low-discrepancy sampling methods
(or quasi-Monte Carlo methods) based on the Hammersley sequence. The discrepancy of a
sequence refers to a quantitative measure of how much the distribution of samples deviates from
an ideal uniform distribution (hence a low-discrepancy makes the distribution quasi-uniform).
The Hammersley sequence is an approach that employs a deterministic algorithm to generate
samples in an n-dimensional space as close as possible to a uniform sampling. This algorithm
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generates N points using the radix-R (or prime base) notation of an integer1. An non-negative
integer, k, can be represented in radix-R notation as an expansion over a prime base:

k = k0 + k1p + k2p2 + · · · + krpr (4.17)

where each ki is an integer in [0, p − 1]. The inverse radix number function of k is then defined
as:

Φp(k) = k0
p

+ k1
p2 + k2

p3 + · · · + kr

pr+1 (4.18)

The n-dimensional Hammersley set of N points is defined by:

x(k) =
(

k

N
, Φp1(k), Φp2(k), . . . , Φpn−1(k)

)
(4.19)

for k = 0, 1, 2, . . . , N − 1 and the values of p1 < p2 < · · · < pn−1 are the first (n − 1) prime
numbers (2, 3, 5, 7, 11, . . . ). This algorithm generates a set of N points in the n-dimensional
parameter space [0, 1]n. In an Hammersley sequence, points in the first dimension (k/N) are lo-
cated equidistant from each other. The Hammersley sequence (or set) is a particular case of the
Halton sequence: (Φp1(k), Φp2(k), . . . , Φpn−1(k), Φpn(k)). A 2D representation of the Hammers-
ley sampling is compared to the LHS in Figure 4.3. By construction the Hammersley sampling
exhibits a better uniformity than that of the LHS. This algorithm is reliable and efficient for
low-dimensional problems only (less than 10 parameters) which is the case of this work.

Hammersley LHS

Figure 4.3: Comparison between a Hammersley sampling (left) and a LHS (right) in 2D for a sample of
10 points per dimension (100 points in total).

We performed tests using both sampling methods and noticed that LHS can be too sparse
for HOD fitting, resulting in biased contours or even missed best fits. Thus, we adopt the
Hammersley sampling as our default sampling. To define the training sample we draw N = 600
points in the HOD parameter space defined by Hammersley sampling and, in each point, compute
the previously defined χ2 and its error. The GP is then provided with the natural logarithm of

1In a positional numeral system, the radix or base is the number of unique digits, including the digit zero,
used to represent numbers. For example, for the decimal system which has ten digits (from 0 to 9), the radix is
ten
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the N computed χ2 values, together with the corresponding errors. The parameter values are
drawn uniformly in ranges summarised in Table 4.2 (bottom row). Unless otherwise stated, we
choose As as the parameter space dimension with equidistant points. Since the prior ranges do
not change in the following tests, the Hammersley sampling for a given number of points and a
given choice for the dimension with equidistant points is uniquely defined. We study the impact
of changing these conditions in section 4.4.

4.3.6 Iterations and fit stability criterion
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Simulation box
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error
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Figure 4.4: Sketch of the fitting procedure. Left: mock catalogue creation, clustering measurements
and likelihood computation. Right: fitting iterative procedure based on likelihood predictions driven by
Gaussian processes.

The surrogate model of the likelihood posterior provided by the GP from the initial training
sample is iteratively improved by adding one point to the training sample at each iteration (see
Figure 4.4 for a schematic view). Choosing the next point to add, xnext, that is choosing the
GP acquisition function, can be done in several ways. The most popular one uses the Expected
Improvement (EI) information acquisition function (Jones et al., 1998, Mockus et al., 1978).
The latter defines how much the likelihood value at a given point is expected to improve over
the current maximum and the point that gives the greatest expected improvement is taken as
xnext. Applied to our case, this method proved to be efficient at finding the maximum of the
likelihood function but did not provide accurate error contours. This illustrates the difficulties
in defining an acquisition function that reaches a good compromise between exploring the full
parameter space and focusing on high probability areas, as discussed in El Gammal et al. (2022).

In order to have both an accurate determination of the likelihood maximum and reliable error
contours, we use the following method to determine xnext, based on previous works in cosmology
(Neveux et al., 2022, Pellejero-Ibañez et al., 2020). At each iteration, the GP prediction is
sampled by a Monte Carlo Markov chain (MCMC) algorithm and xnext is randomly selected in
the MCMC chains. Its χ2 value and error are computed, and the point is added to the training
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sample to reiterate the procedure. This method has the advantage that the points inside the 3
σ contour around the maximum likelihood are more likely to be selected as points to be added
to the training sample.
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Figure 4.5: Evolution of several fit result indicators with iteration number, for one fit from the accuracy
test with cosmic variance included (see section 4.4). From left to right and top to bottom, indicators are
the Kullback-Leibler divergence between MCMC chains sampling the GP prediction, the value of χ2

min

(blue) and that of χ2
med (orange) from the chains, their errors, the values of the six HOD parameters

at χ2
min (blue) and their marginalised median values (orange), the [16 − 84] percentile range of the six

HOD parameters. Red dots in the middle (resp. right) top panel are χ2 values (resp. errors) computed
at the selected point added to the GP training sample at the next iteration. Red solid (resp. dashed) lines
are fiducial (resp. prior boundary) values. The band indicates the dispersion from all fits with cosmic
variance included. The vertical dashed line indicates the iteration at which the KL criterion is met.

To stop the iterative procedure, we require stability of both the MCMC chains and fit results,
as explained in the following. To characterise the chain stability, we rely on the Kullback-Leibler
(KL) divergence (Kullback & Leibler, 1951) between the MCMC chains, computed at each
iteration. The KL divergence (also called the relative entropy) quantifies the difference between
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two distributions p and q for a set of points X and is defined as follows:

DKL(p|q) =
∑
x∈X

p(x) log
(

p(x)
q(x)

)
(4.20)

For two similar distributions DKL → 0. We consider our KL criterion as fulfilled when the
KL divergence is below 0.1 in a set of 20 consecutive iterations before the current one. This
threshold was determined empirically from our fits, but is rather common in iterative GP em-
ulators (Neveux et al., 2022, Pellejero-Ibañez et al., 2020). To illustrate the stability of the
chains and fit results, Figure 4.5 shows an example of the evolution of several indicators of the
fit results as a function of the iteration number.

The fit results on HOD parameters at each iteration are characterized both by values corre-
sponding to the minimum χ2 value of the MCMC chains run on the GP prediction (hereafter
called χ2

min), and by marginalised values defined as the median values of the posterior distribu-
tions run from the same MCMC chains. Errors on these marginalised values are defined by the
16% and 84% percentiles of the parameter posterior distributions. Besides the KL divergence,
the fit results reported in Figure 4.5 are thus the values of the six HOD parameters at χ2

min and
their marginalised values, as well as the value of χ2

min and the χ2 value for the GP prediction at
the marginalised HOD parameter values (hereafter dubbed as χ2

med), together with their corre-
sponding errors. We also show the evolution of the size of the [16 − 84] percentile range of the
posterior distribution for the six HOD parameters. Finally, in the sub-plots related to χ2 values
and errors, we added the computed χ2 value and its error for the point added at each iteration.

As can be seen from the figure, the KL divergence drops and remains below the threshold
of 0.1 after iteration 300. The values of χ2

min and χ2
med reach a plateau after that iteration but

the learning phase of the GP continues, as shown by the excursions in the χ2
min error. The

explored range in the parameter values, indicated by the excursions of their values at χ2
min

are limited and induce small variations of the marginalised HOD parameter values and their
percentile ranges, which are all well stabilized at iteration 800, although the percentile range
of σM may still be evolving slightly. For completeness, Figure 4.6 presents the contour plot
of the fit at iteration 800 (see also Section 4.4.3) and compares the pseudo-data clustering to
that from the HOD model defined by the marginalised parameter values at that iteration. The
modelling of the pseudo-data clustering is good, well within errors due to model stochasticity
and cosmic variance, the latter being the dominant effect at large scales. The χ2

med value at the
final iteration is 56.8 ± 2.2 for a number of degrees of freedom of 75 − 6 = 69 (p-value of 85%).

Although the fit in the above example reaches stable and reliable results after 200 iterations
are added once the KL criterion is met, nothing guarantees that this is generally the case (El
Gammal et al., 2022). The stability of the results from the iterative method will thus be
investigated in a systematic way in section 4.4, by running the procedure on a large set of
simulated mocks, taking into account cosmic variance. All fits will be run up to a maximal
number of iterations Nmax = 800 and the fit precision and accuracy of the method will be
explored with that stopping criterion, which we discuss further in section 4.4. The fit results
will be defined by the marginalised HOD parameter values at iteration Nmax, with statistical
uncertainties on these given by the 16% and 84% percentiles of the parameter posteriors at that
same iteration.
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Figure 4.6: Top: Contours and marginalised 1D-posteriors at iteration 800 for the fit in figure 4.5.
Grey points are the Hammersley training sample. The red star corresponds to the minimal χ2 of the
GP prediction. The contours are obtained from MCMC chains run on the GP predictions, after burning
phase. Solid lines indicate the parameter input values. Bottom: Clustering measurements predicted by
the HOD model from the fit in the top plot. The shaded band corresponds to ±2σ residuals, with errors
on pseudo-data (red bars) and model (blue bars) added in quadrature.



162 CHAPTER 4 ELG HOD fitting with Gaussian processes

4.4 Tests of the method
We first test to what extent the procedure can be considered as reproducible and then include
cosmic variance to test the method accuracy. We then study how the results evolve when the
ingredients of the method are changed.

4.4.1 Reproducibility
To test the reproducibility of the method, we use the 1 Gpc/h length cubic box in the base
cosmology (see Table 5.1) to create one pseudo-data mock with the HOD parameter input
values in Table 4.2 (top row). The data covariance matrix is computed from 1,000 realisations
of the same HOD model on the same box. This covariance matrix includes stochastic noise in
the process of populating halos with galaxies and the statistical noise induced by the density of
the resulting mock catalogues, the two irreducible sources of noise of the procedure. Data and
model variances were compared (for the input HOD model) and found to be comparable in all
separation bins of the clustering measurements.

We perform 24 independent fits to the pseudo-data mock, all with the same initial sampling
of the parameter space (see section 4.3.5). Results are presented in Figure 4.7. The results of the
24 fits agree with each other within ±0.002 for As, ±0.005 for α, ±0.004 for fσv , ±0.013 for σm
and within ±0.016 and ±0.010 for M0 and log10(Mc) respectively. These numbers quantify the
reproducibility limits at the 68% confidence level of our procedure, due to its stochastic nature.
Also included in the plot are the expected dispersions when cosmic variance is also taken into
account (see next section), showing that, except for M0 and σm, the intrinsic dispersion due to
stochasticity is a sub-dominant component.

Spurious instabilities in the GP predicted likelihood posterior were observed for these fits.
Indeed, in reproducibility fits, due to uncertainties on pseudo-data being very small, the sur-
rogate model of the likelihood surface can present spikes, likely due to the stochasticity of the
HOD modelling. Spikes occur in about 50% of the iterations and their locations in the HOD
parameter space vary in the course of the iterative procedure. Besides, iterations showing spikes
are generally associated with large χ2 errors in the MCMC chains, showing that these spikes are
most probably spurious and mostly due to regions with not enough points, so the GP can predict
huge variations in the χ2 value. In order to obtain reliable contours and errors, we remove points
with large GP predicted χ2 errors in the MCMC chains. This is illustrated in Figure 4.8 which
shows that spurious spikes do indeed disappear, leaving the main component of the contours
unchanged. This procedure is applied to reproducibility fits only, other fits presented below have
smooth predicted likelihood surface at the final iteration.

4.4.2 Accuracy with cosmic variance
To test the method accuracy in more realistic conditions, cosmic variance must be included. We
thus cut each of the 25 large boxes of 2 Gpc/h length in the base cosmology (see Table 5.1)
into 1 Gpc/h length cubes, which allows us to create 200 independent mocks corresponding to
different realisations of the same cosmology.

We take 25 out of these 200 mocks as pseudo-data (one per large box) and perform four
series of fits, each series using a different 1 Gpc/h sub-cube for the model. These sub-cubes
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Figure 4.7: Reproducibility test from 25 fits to the same pseudo-data under the same initial conditions.
Blue dots are marginalised HOD parameter values with errors defined by the 16% and 84% percentiles
of the fit posteriors. The dark grey band spans the ±1σ interval around the average of the marginalised
values given by the vertical red dashed line. The light grey band includes also cosmic variance (from the
accuracy test of section 4.4.2).

differ from those used to create the 25 pseudo-data mocks and three of them belong to the same
large box. The training sample is recomputed for each of the 4 sub-cubes.

The data covariance matrix is built from the entire set of 200 mocks. This matrix includes
stochastic noise in the process of populating halos with galaxies, statistical noise induced by mock
density, and cosmic variance. The model covariance matrix is built as described in Section 4.3.4,
but the variances used to compute the normalisation factor applied at each HOD point to the
fixed correlation matrix are modified to account also for cosmic variance in the choice of a given
sub-cube for the model. To the variances used in Section 4.3.4 to define the normalisation
factor, we thus add the clustering measurement variances over the 8 sub-cubes of the box used
for the model, computed for the input HOD, with one realisation per sub-cube. Data and model
variances were compared and their difference was found to be within ±0.6 times the pseudo-data
variances, with no marked scale dependence.

The distribution of the first iteration meeting the KL criterion as defined in section 4.3.6, is
presented in Figure 4.9 (left-hand plot, blue histogram). 86% of the fits pass the KL criterion
before iteration 600 and only 4% did not reach stability at the last iteration, Nmax = 800.
Marginalised fit results are compared to the input HOD parameter values in Figure 4.10. The
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Figure 4.8: Top: Contours and marginalised 1D-posteriors at iteration 800 for one fit from the repro-
ducibility tests. Solid lines are the input parameter values. Grey points are the Hammersley training
sample. The contours are obtained from MCMC chains after the burn-in phase, with no further selection
in blue and excluding points with a large predicted χ2 error in red. Bottom: Clustering measurements
predicted by the HOD model given by the marginalised values from the red 1D-posteriors in the top plot.
The shaded band encompasses ±2σ residuals, with errors on pseudo-data (red) and model (blue) added in
quadrature.
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Figure 4.9: Left: Distribution of first (in light-blue) and last (in red) iteration fulfilling the Kullback-
Leibler stability criterion for a set of 100 fits with cosmic variance included. Right: Difference between
the fiducial values and the mean results of the 100 fits, for each of the 6 HOD parameters. Results from
fits stopped at the first (resp. last) iteration fulfilling the Kullback-Leibler criterion are reported in light-
blue (resp. red). The error bars correspond to the ± one standard deviation of the 100 marginalised fit
results. All fits had initial training of the Gaussian Processes based on Hammersley sampling of the HOD
parameter space with 600 points.

four fits which did not pass the KL criterion do not stand as clear outliers in any of the parame-
ters, showing that the lack of stability does not necessarily imply a large offset in the measured
parameters, nor larger error bars. Figure 4.9 also shows the distribution of the last iteration
meeting the KL criterion (left-hand plot, red histogram), which is strongly peaked towards Nmax.
The right-hand plot in this figure compares the bias observed on each parameter when the fits
are stopped at the first or last iteration meeting the KL criterion, instead of allowing all fits to
go up to Nmax. Stopping the fits at the first iteration reaching the KL stability criterion clearly
leads to larger biases than stopping at the last one or going up to Nmax (biases in these two
cases are very similar), which justifies our choice of the latter option as a stopping criterion.

With this criterion, all HOD parameters are reconstructed with a mean bias either well
within, or for fσv at the level of, one standard deviation of the parameter distribution. More
precisely, we find a mean bias of 0.29σ for As, 0.52σ for M0, 0.69σ for α, 0.97σ for fσv , 0.52σ

for log(Mc) and 0.26σ for σM . In the above, σ is the standard deviation of the marginalised
fit result distribution. This is also the expected statistical error for one fit, with the errors
accounted for in the covariance matrix used in the fits, namely stochasticity, cosmic variance
and galaxy sample size for a density close to that expected for DESI data but for a volume three
times larger than that of the early DESI ELG data. We thus expect the HOD parameter values
to be derived from these data with our procedure to have an accuracy much better than 1 σ of
the data statistical uncertainty for most parameters, the worst case being the fσv parameter for
which the accuracy is expected to be about 0.6 σ.

The above reasoning assumes statistical errors from the fits to be normally distributed. As
a cross-check, we compared the mean of the parameter errors from the fits to the standard
deviation of the marginalised fit result distribution used in the above bias estimates. We found
the mean error to be higher than the standard deviation by 60% for σM and 20-30% for all other
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Figure 4.10: Accuracy test from 100 fits with cosmic variance included. Dots are marginalised HOD
parameter values with errors defined by the 16% and 84% percentiles of the fit posteriors. Orange dots
stand for the four fits which did not converge. The grey band spans the ±1σ interval around the average of
the marginalised values given by the vertical black line. The red dashed line is the input HOD parameter
values. Four series of fits to the same 25 pseudo-data mocks were run with a model drawn from a different
sub-cube of the same large box for the first three series and from a sub-cube of a different large box in the
fourth one. All fits were run up to 800 iterations after initial training of the Gaussian Processes based
on Hammersley sampling of the HOD parameter space with 600 points. Red dotted lines indicate the fit
priors.

parameters. These departures are likely to be due to non Gaussian posteriors, as observed in
most parameters (see Figure 4.6), and make our expected bias estimates conservative.

However, despite the slight biases observed in the HOD parameters, the procedure provides a
very good modelling of the clustering statistics, as already shown in Figure 4.6 on one example.
Altogether, in the four series of fits to the 25 pseudo-data mocks used in this section, the mean
value of the computed reduced χ2 for the best fit model (defined by the marginalised HOD
parameter values) is ∼0.8 with a dispersion of ∼0.15.

4.4.3 More on stability
Figure 4.11 shows the superimposition of contours and marginalised 1D-posteriors from 50 iter-
ations of the fit shown in Figures 4.5 and 4.6. We took every one iteration out of four between
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iteration 600 and the stopping iteration, 800. This plot is complementary to Figure 4.5. It
illustrates that, in the last quarter of iterations, the evolution of the GP surrogate model does
not alter the marginalised median value of the posteriors but only changes slightly their [16−84]
percentile range.
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Figure 4.11: Contours and marginalised 1D-posteriors superimposed taking one iteration out of four
between iterations 600 and 800 (so 50 iterations in total), for the fit shown in Figure 4.5. The red cross
is the parameter input values.

4.4.4 Dependence on initial conditions and kernel
In this section, we test how the results of our procedure are affected by different initial condi-
tions. We present results from different numbers of points in the initial training sample, from
different GP kernels and different initial sampling algorithms. The priors being unchanged,
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testing different numbers of points in the training phase amounts to testing different densities
when sampling the HOD parameter space.

4.4.5 Initial training sample
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Figure 4.12: Tests from fits with different training samples and different kernels for the Gaussian Pro-
cesses. Five series of fits to the same 5 pseudo-data mocks with the same box for the model were run with
different sizes of the Hammersley training sample (from 300 to 1200), or replacing Hammerlsey sampling
by LHS for the baseline sample size (600) or using a Radial Basis Function kernel instead of the baseline
Matérn kernel of index 5/2 for the baseline sample size (600). All fits were run up to 800 iterations.
Dots are marginalised HOD parameter values with errors defined by the 16% and 84% percentiles of the
fit posteriors. The black dashed line is the input HOD parameter values and the dotted ones indicate the
fit priors.

Our baseline option for the initial training sample is 600 points distributed according to
Hammersley sampling, with As as the parameter with equidistant points. Using the first 5
pseudo-data mocks submitted to fits with cosmic variance (see section 4.4.2), we run fits with
Hammersley training samples of 300 and 1200 points, and with LHS training samples of 600
points. All other fits conditions remain unchanged, notably running all fits up to 800 iterations,
with the same box for the model.

Results are reported in figure 4.12. The dispersion of the results between different conditions
of fits for a given pseudo-data mock is generally lower than the dispersion between mocks for the



4.5 Practical implementation 169

same fitting conditions, which is dominated by cosmic variance. We note however that sampling
with only 300 points appears to gives results less consistent with fits in other conditions for M0,
α and log(Mc). LHS sampling gives slightly larger errors than Hammersley sampling with the
same number of points and there is no obvious gain in accuracy with 1200 points compared to
600 points in Hammerlsey sampling.

This means that there is no need to increase the density of the initial sampling infinitely, at
some point what matters most is to increase the density in the region of interest, close to the
likelihood maximum, which is the aim of the iterative procedure that follows initial sampling.

4.4.6 Choice of GP kernel
In a second test, the 5 pseudo-data mocks were submitted to fits with Hammersley sampling
of 600 points and As as the parameter with equidistant points but with an RBF kernel instead
of the baseline one, a Matérn kernel of index 5/2. Again, all other fits conditions remained
unchanged. Results are reported in figure 4.12. Changing the kernel does not change the
results significantly. We note that the RBF kernel leads to slightly larger uncertainties on the
parameters, the average increase ranging from 4% for As to 23% for log(Mc).

4.4.7 Choice of parameter with equidistant points
In a third test, the same 5 pseudo-data mocks were submitted to fits with Hammersley sam-
pling of 600 points, varying the parameter with equidistant points, all other fitting conditions
remaining unchanged. Results are reported in figure 4.13. Except for pseudo-data mock 5, the
dispersion of the results between the different choices for a given pseudo-data mock is small, but
we note that choosing fσv as the parameter with equidistant points can give results differing by
1σ from those with other choices, notably for M0.

Finally, as already observed in section 4.4.2, there is a slight systematic offset in the fit values
of fσv in both figures 4.12 and 4.13, but it remains at the same level as in section 4.4.2, that is
below the statistical uncertainty expected from the early DESI ELG sample.

4.5 Practical implementation
The HOD fitting procedure described in this chapter relies on an HOD pipeline and a fitting
pipeline that I developed during this thesis work. Implementation details for both steps are
given in the following.

4.5.1 HOD pipeline
The HOD pipeline1 built for this work produces mock catalogues and clustering measurements
from an N-body simulation box, given parameters of an HOD model. Besides the GHOD model
defined in Section 4.3.1, the code supports other HOD models for central galaxies described in
Section 3.4.1, all supplemented by a power law model for satellite galaxies. By default, satellites
are drawn within randomly pre-computed r/rs points from an NFW profile (Navarro et al.,

1https://github.com/antoine-rocher/GP_HODpy

 https://github.com/antoine-rocher/GP_HODpy
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Figure 4.13: Tests from fits with different training samples. Four series of fits to the same 5 pseudo-data
mocks with the same box for the model were run with 600 points from Hammersley sampling, varying the
parameter with equidistant sampling. Dots are marginalised HOD parameter values with errors defined
by the 16% and 84% percentiles of the fit posteriors. Different colors indicate different choices for the
parameter with equidistant sampling, As being the default. The black dashed line is the input HOD
parameter values and the dotted ones indicate the fit priors.

1996). Satellites populated on simulation DM particles are also supported as an alternative.
For each mock computation, central and satellite galaxies are generated independently and
concatenated in a Python dictionary. To optimize the mock generation we use numba2, an open
source Just In Time (JIT) compiler, that translates a subset of Python and numpy code into fast
machine code, multi-threaded with automatic parallelization of JIT. We are also developing an
MPI implementation of the mock generation that was not used for this study.

Since HOD fitting results depend on the observed density of objects, the density in mocks
can be set to a given value, as used in this work. The code generates the exact chosen density
by pre-computing the total number of galaxies, ngal, using Equation (4.10) for the current set
of HOD parameters. The amplitudes for centrals and satellites, Ac and As, are then rescaled
by ngal,exp/ngal, where ngal,exp is the galaxy number expected for the chosen density. As the
resulting mock clustering only depends on the ratio As/Ac, we can re-scale both amplitudes by
the same factor to change the density while keeping the same clustering.

2https://numba.pydata.org/

https://numba.pydata.org/
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Once a mock catalogue is computed, the HOD pipeline provides an easy way to compute
clustering measurements for the projected 2 point correlation function, wp and for the 2 point
correlation function monopole and quadrupole, with user-defined separation ranges and binnings.
We use the DESI wrapper pycorr3 around the Corrfunc package (Sinha & Garrison, 2020) to
compute these measurements.

The fitting procedure requires N = 20 mocks to be created at each point of the HOD
parameter space to compute the χ2 value and its uncertainty. To speed up the fitting procedure,
this step runs the N mocks in parallel using the joblib package4. Then, the N correlation
functions are computed one after the other. Reproducibility of the results when using multi-
threading can be quite complicated. As each thread will generate a different seed (even if a seed
is fixed at initialisation), it becomes difficult to have reproducible results. We choose to adopt
a solution easy to implement. We fix a single seed at initialisation and use it to determine a list
of random integer numbers that will be used to initialise one seed per thread. This is easy to
implement but the reproducibility of the results will depend on the number of threads.

4.5.2 Fitting pipeline
The Hammersley sampling of the HOD parameter space is performed with the PySMO sampling
method5 of the idaes-pse package. The Gaussian process part relies on the Gaussian Process
Regressor6 function from the scikit-learn package. The GP hyperparameters are the length
scales and the kernel variance. All are initially set to one. The kernel variance σ2

k is allowed
to vary between 10−5 and 105. The same range of variation is imposed for all length scales by
the GP package and we set the it to be between 10−3 and 10. Note that the length scale values
depend on the parameter values and prior ranges. Given our parameters, the chosen prior on
length scales is large enough to describe reasonable variations, knowing that all our parameter
values and ranges of variation are of order 10−2 to 1.

The MCMC component is ensured by the emcee package and runs 12 chains of 10,000 points
each in parallel, the first 800 points being discarded in each chain.

4.5.3 Performance
The performance of the inference procedure are as follows. Our computer system uses two AMD
EPYC 7513 32-core processors, which are multi-threaded by 2 (128 threads/node in total),
clocked at 2.6 GHz and equipped with 256 GB DDR4 RAM. The tests described in this section
were run with 24 threads on a single node. The CPU time consumption per point of the HOD
parameter space breaks down as follows: ∼ 25 sec to create 20 realisations of the HOD model
from a cubic simulation box of 1 Gpc/h length, ∼ 12 sec to compute the correlations and the χ2

value based on these 20 realisations, ∼ 20 sec to run the MCMC chains on the GP prediction.
The CPU time consumption to derive the prediction of the GP depends on the number of points
in the training sample. Altogether, for a 6-parameter fit based on 600 training points and 800

3https://github.com/cosmodesi/pycorr
4https://joblib.readthedocs.io/en/latest/generated/joblib.Parallel.html
5https://idaes-pse.readthedocs.io/en/1.5.1/surrogate/pysmo/pysmo_sampling_properties.html
6https://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.

GaussianProcessRegressor.html

https://github.com/cosmodesi/pycorr
https://joblib.readthedocs.io/en/latest/generated/joblib.Parallel.html
https://idaes-pse.readthedocs.io/en/1.5.1/surrogate/pysmo/pysmo_sampling_properties.html
https://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.GaussianProcessRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.GaussianProcessRegressor.html
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added points, the total CPU time consumption per iteration increases from ∼ 50 seconds with
the initial training to ∼ 3 minutes at the final iteration.

4.6 Summary and prospects
In this chapter, we introduced a method to fit HOD parameters using Gaussian Processes (GP)
to provide a model of the multidimensional likelihood function, in the framework of a stochastic
HOD modelling technique based on mock galaxy catalogues built from N-body simulations.

Our two-step procedure starts with initial training of the GP with 600 points distributed in
the HOD parameter space according to Hammersley sampling. The likelihood model provided by
the GP from this initial training is further improved by an iterative procedure adding one point
to the training sample at each iteration, the next point to be added being randomly selected in
Monte Carlo Markov chains (MCMC) run on the likelihood posterior predicted by the GP at
the current iteration. This ensures that the sampling is made denser close the maximum of the
likelihood function so as to provide a good determination of both the likelihood maximum and
the error contours, despite the stochastic nature of our HOD modelling. The iterative procedure
is pushed until a total of 800 iterations is achieved.

The reproducibility and accuracy of the method were studied on simulated mocks built
from the AbacusSummit suite of high-accuracy N-body simulations on cubic boxes of 1 Gpc/h

length. These mocks are representative of the expected density of the DESI ELG sample, but
cover a volume three times larger than that covered by the early DESI ELG data. The procedure
was repeated on sets of simulated mocks corresponding to different realisations of the same 6-
parameter HOD model suitable for ELGs. Results on the 6 HOD parameters, defined by the
marginalised values from the posterior distributions extracted from the MCMC chains run at
the final iteration, were found to be reproducible within ranges smaller than those expected
when cosmic variance is also included. In the presence of cosmic variance, we reach accuracies
on the HOD parameters which are below the statistical uncertainty expected for early DESI
ELG data, reaching at most 60% of the statistical uncertainty in the worst case (one parameter
out of six, the maximum bias for the other parameters being 40%).

We also explore the stability of the method when varying different ingredients. We find that
the results do not depend on the sampling algorithm applied to define the training sample nor
on the GP kernel. This is also true for the choice of the parameter with equidistant points in
the initial training sample with our baseline Hammersley sampling. More dependence is found
with respect to the choice of the number of points in the training sample and in the number
of iterations after initial training. Different numbers of training points as well as numbers of
iterations lower than 800 were tested. We find that there is no need to increase the density of
the initial sampling infinitely. What matters most is to increase the density in the region of
interest close to the likelihood maximum, once that region is roughly defined. In our framework
this is achieved with our baseline of 600 points in initial training and 800 further iterations.

Finally, the fit progress towards stability during the iterative loop was monitored with the
help of the Kullback-Leibler (KL) divergence between the MCMC chains. Requiring the KL
divergence to be below 0.1 in a set of 20 consecutive iterations as a chain stability criterion, we
observe that 96% of the fits pass this criterion well before iteration 800 and the few fits which fail
are not outliers in any of the HOD parameters. On the other hand, if fits were stopped as soon
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as the KL criterion was met, we would obtain larger biases in the HOD parameters, showing
that this does not ensure unbiased results. Hence our choice to push fits up to a total of 800
iterations, for which our tests on simulation show that the expected bias in the HOD parameter
values is reasonably below the statistical uncertainty we expect from data. More generally, this
illustrates the difficulty to define a robust convergence criterion when inference is performed on
a surrogate model of a likelihood posterior while the model is still under evolution and subject
to noise in the likelihood estimates.

In the next chapter I apply this procedure to the ELG sample from the DESI 1% survey.
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T his chapter presents the small-scale clustering analysis of the ELG sample of the DESI
One-Percent survey that I did during my thesis. It was one of the science papers issued

together with the Early Data Release of DESI on June 13, 2023 and has been submitted to
publication in JCAP (Rocher et al., 2023).

5.1 Introduction
The ELG galaxy-halo connection has been previously studied using different approaches (e.g
Avila et al., 2020, Gao et al., 2022, Gonzalez-Perez et al., 2018, Lin et al., 2023, Okumura
et al., 2021). From these studies, ELGs are expected to reside in dark matter (DM) halos of
mass ∼ 1012M⊙, and the occupation of DM halos decreases when the halo mass increases. In
the literature, a sizeable fraction of ELGs are considered to be satellites. Depending on the
galaxy-halo connection model, the satellite fraction varies from ∼ 10% to ∼ 30%. The purpose
of this chapter is to study the HOD of the DESI ELG sample from the One-Percent survey.
Based on previous work (Alam et al., 2021, Avila et al., 2020, Gonzalez-Perez et al., 2018), we
study 4 different distributions for central galaxy occupation and allow for different modelling
of galaxy satellite velocities. The impact of secondary parameters, such as assembly bias (Gao
& White, 2007), based on the halo concentration, local halo density and density anisotropies is
also investigated. We also test for departures from a pure NFW profile for satellite positioning.
Finally, we study variation of the HOD parameters considering 3 different cosmologies. We use
the HOD fitting pipeline based on Gaussian processes described in the previous chapter to derive
the best-fitting parameters to DESI ELG data and the corresponding posterior contours.

5.2 ELG data sample
The ELG data sample studied in this chapter was collected during the One-Percent survey of
DESI that was conducted at the end of the Survey Validation (SV) campaign in April and May
of 2021 (DESI collaboration et al., 2023a) before the start of the main survey operations (see
Section 2.6). Before SV, DESI had proven its ability to simultaneously measure spectra at 5000
specific sky locations, with fibres placed accurately using robotic positioners populating the
DESI focal plane (Silber et al., 2023). During SV, the DESI data and operation teams proved
their ability to optimise operations (E. Schlafly et al., 2023) and to efficiently process the spectra
through the DESI spectroscopic pipeline (Guy et al., 2023). To obtain a high completeness, the
footprint of the One-Percent survey was defined as a set of 20 non-overlapping regions of the sky,
called rosettes in the following, which were observed at least 11 times each. Starting from an
initial target list (Myers et al., 2023), the DESI fibre assignment algorithm (DESI Collaboration
et al., 2022) places each fibre onto a reachable target within a 6 mm patrol radius around the
nominal fibre position, so that only a subset of the targets can be observed in every visit. This
leads to incompleteness, which decreases rapidly with the number of visits.

The One-Percent survey covered 140 deg2 with final target selection algorithms and depths
similar to those of the main survey. The ELG target selection (Raichoor et al., 2023) focuses on
the redshift range 0.6 < z < 1.6 and is designed to select galaxies with strong spectral emission
lines. The [O II] doublet emission line allows precise redshifts to be measured by DESI. Higher priority
in the spectroscopic measurements is given to objects expected in the interval 1.1 < z < 1.6 where ELGs
are the main tracer of DESI. Between 0.2 and 1.5 degrees from the centre of each rosette, spectra were
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successfully obtained for 94.5% of ELG targets, while targets outside these regions were observed with
fewer visits and thus lower completeness in fibre assignment. This sample is very appropriate to study
ELGs inside halos as it provides precise measurements of the galaxy clustering down to very small scales.
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Figure 5.1: Number density of the DESI One-Percent survey ELG data sample, as a function of redshift
(corrected for completeness). The shaded region is not used in this work. The dotted line indicates the
mean completeness-weighted redshift of the sample, z̄ = 1.13.

In the following, we make use of the ELG sample collected during the One-Percent survey and
spectroscopically confirmed in the redshift range from 0.8 to 1.6, over which the radial density distribution
varies slowly, as shown in Figure 5.1. The region z < 0.8 is not considered in our final sample as it exhibits
dependence of the redshift density with respect to imaging depth. This sample contains 244k spectra and
has a mean density of 7 × 10−4(h/Mpc)3. Section 4 of DESI collaboration et al. (2023b) describes the
construction of all EDR large scale structure catalogues, including the random catalogues. We highlight
a few details on the random construction here. Random catalogues are first produced by the DESI
targeting team (Myers et al., 2023) at a fixed density. These randoms are input to the DESI fibre
assignment software, which processes them through each observed tile matching the state used during
observations. Only the randoms that were identified as observable by this process are kept. Additional
vetoes are applied for bright stars and other foregrounds (see DESI collaboration et al. (2023b) for the
precise details). Therefore, the density and radial distribution of each rosette are the same (within only
Poisson fluctuations). Finally, redshifts are assigned randomly in the random catalogue using the redshifts
from the galaxy sample to keep the same n(z) distribution.

5.2.1 Clustering statistics
The clustering of the selected sample was studied in configuration space with the 2-point statistics defined
in the previous chapter, which we recall hereafter. We first define the galaxy two-point correlation
function in two dimensions, ξ(rp, π), where π and rp are the galaxy pair separation components along
and perpendicular to the line-of-sight, respectively. We then introduce the projected correlation function,
wp(rp), obtained by integrating ξ(rp, π) over the line-of-sight, as well as the monopole and quadrupole of
the two point correlation function ξ(s, µ), where s is the galaxy pair separation and µ the cosine of the
angle between the line-of-sight and galaxy separation vector:

wp(rp) =
∫ πmax

πmin

ξ(rp, π)dπ

ξl(s) = 2l + 1
2

∫ 1

−1
ξ(s, µ)Ll(µ)dµ

(5.1)
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where l = [0, 2] and Ll(µ) is the Legendre polynomial of order l.
We rely on pycorr1, the DESI implementation of the Corrfunc package (Sinha & Garrison, 2020),

to compute ξ(rp, π) and ξ(s, µ). For mocks, which are obtained from cubic boxes, they are computed
with the natural estimator which compares galaxy pair counts to the expected pair count for a uniform
distribution in the box volume. For data, the Landy-Szalay estimator is used (Landy & Szalay, 1993).
For mocks, the z axis is chosen as line-of-sight for the application of redshift space distortions.

For ξ(rp, π), we use 17 logarithmic bins in rp between 0.04 and 32 Mpc/h and 80 linear bins in π

between -40 and 40 Mpc/h. The same binning and range are used for wp(rp) so that πmax = −πmin =
40 Mpc/h in Equation (5.1). For the multipoles, we use 27 logarithmic bins in s between 0.17 and
32 Mpc/h and 200 linear bins in µ between -1 and 1. Finally, in the galaxy pair count computation,
whether in data or simulation, the fiducial cosmology used to convert galaxy redshift into distances is
the Planck 2018 baseline ΛCDM best-fit result (Planck Collaboration et al., 2020) with h = 0.6736, As =
2.0830 × 10−9, ns = 0.9649, ωcdm = 0.12, ωb = 0.02237 and σ8 = 0.8079.

5.2.2 Clustering measurements
The clustering of the One-Percent survey ELG sample is first illustrated in Figure 5.2 which shows the 2D
correlation function in successive bins in π, as a function of rp. This figure highlights several key points
about the ELG clustering measurement from the One-Percent survey. A strong signal at small scales
is visible at separations larger than rp = 0.03Mpc/h, the threshold below which target blending makes
clustering measurements unreliable (see Section 2.9). The strong up-turn in the small-scale clustering
appears for transverse separations below rp ∼ 0.2Mpc/h and is mostly due to separations along the
line-of-sight below π = 3Mpc/h. In this region, the incompleteness of the survey may bias the clustering
measurements due to fibre collisions if the number of visits is limited. To illustrate this, measurements
corresponding to the complete survey footprint (solid lines) are compared with those excluding regions of
lower completeness, outside the interval between 0.2 and 1.5 degrees from the field centre of each rosette
(dashed lines). The strong up-turn in the clustering signal appears also in the latter measurements,
showing that incompleteness due to fibre collisions is not responsible for the strong ELG clustering at
small scales that we observe.

Incompleteness can however bias the clustering measurements, especially at small scales. To limit
that effect, we restrict the ELG sample to those targets observed in regions of high completeness, that
is between 0.2 and 1.5 degrees from the field centre of each rosette. This reduces the sample size by 12%
leaving 215k galaxies. Residual density inhomogeneities in that sample due to residual fibre assignment
inefficiencies are corrected with a weighting procedure. This is illustrated in Figure 5.3 which shows
how the clustering changes when fibre-assignment corrections are applied. These corrections are twofold.
Incompleteness weights for individual galaxies and for galaxy pairs are computed as inverse probabilities
of being targeted in a set of multiple realisations of the actual fibre assignment algorithm, as described
in Bianchi & Percival (2017). These weights are complemented by angular up-weighting to treat the
case of galaxy pairs with zero selection probability in the previous computation, as described in Percival
& Bianchi (2017). Mohammad et al. (2020) showed that this weighting scheme provides an unbiased
clustering down to ∼ 0.1Mpc/h. As anticipated from the removal of the regions of lower completeness
in the rosettes, the fibre-assignment weights have a small impact on the measured clustering, visible
essentially at scales lower than ∼ 1Mpc/h, as a result of fibre collisions.

The clustering measurements can be biased by other systematic effects, such as density inhomo-
geneities due to imaging conditions or redshift failure rate variations with spectroscopic observing condi-
tions. We checked that the correcting weights associated with these effects have a negligible impact on the
small-scale clustering measurements. Besides the completeness weights, we also apply Feldman-Kaiser-
Peacock (FKP) weights (Feldman et al., 1994) that minimise variance in the clustering measurements
(evaluated with k0 ∼ 0.15 and P0 = 4000). We also checked with simulations that the small footprint of

1https://github.com/cosmodesi/pycorr

https://github.com/cosmodesi/pycorr
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Figure 5.2: DESI clustering measurements for the One-Percent survey ELG data sample restricted to the
redshift range 0.8 < z < 1.6. The 2D correlation function in successive bins of 2Mpc/h in the galaxy-pair
separation along the line-of-sight is shown as a function of the separation perpendicular to the line-of-
sight, rp. No correction weight has been applied. Measurements using the whole survey footprint (solid
lines) are compared with measurements excluding the inner and outer regions of the rosettes where the
survey was less incomplete (dashed lines). Also indicated are the separation corresponding to the fibre
patrol radius (dot-dashed grey line) and the limit corresponding to twice the mean survey seeing (dotted
grey line). Below this limit, target blending cannot be resolved, leading to a loss of power. This plot
demonstrates that the strong increase in power at small scales (below 0.2Mpc/h) is not due to the (slight)
incompleteness of the One-Percent survey.
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Figure 5.3: Top: DESI clustering measurements for the One-Percent survey ELG data sample restricted
to the redshift range 0.8 < z < 1.6 and to regions of high completeness. Data are shown without (orange)
and with (purple) tiling incompleteness weights. Errors are jackknife statistical uncertainties. Bottom:
difference between clustering measurements without and with fibre assignment weights applied.
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the One-Percent Survey has a negligible integral constraint effect (de Mattia & Ruhlmann-Kleider, 2019)
on these measurements in the range of separations used in this study.

Several observational studies of ELG clustering at redshifts z ∼ 1 have already been published, using
data from various surveys, such as COSMOS (Tinker et al., 2013), VIPERS (e.g Favole et al., 2016, Gao
et al., 2022), eBOSS (Alam et al., 2021, Avila et al., 2020, Guo et al., 2019, Lin et al., 2023) or the HSC
SSP survey (Okumura et al., 2021). But the clustering measurements provided by the DESI One-Percent
survey are the first redshift space measurements that go down to transverse separation scales as low as
0.03Mpc/h, offering a direct and robust measurement of the one-halo term contribution to the clustering.

In the following, we first use the clustering measurements in the redshift range 0.8 < z < 1.6 to
test different prescriptions for the ELG HOD modelling and then fit the most promising one to the
measurements, splitting the sample in two redshift intervals in Section 5.8 to test for a possible HOD
parameter evolution with redshift.

5.3 Standard ELG HOD models
The standard HOD formalism describes the relation between galaxies and their dark matter halos as the
probability that a halo with mass M hosts N such galaxies. Central and satellite galaxies are considered
separately, with ⟨Ncent(M)⟩ and ⟨Nsat(M)⟩ their respective mean numbers per halo of a given halo mass.

5.3.1 Models for central galaxies
Based on previous studies of ELG clustering (Alam et al., 2021, Avila et al., 2020), we retain four possible
HOD prescriptions for central galaxies, one with a Gaussian shape and three different functions producing
an asymmetric shape (see also Section 3.4.1):

• a Gaussian HOD model (GHOD):

⟨Ncent(M)⟩ = Ac√
2πσm

· e
− (log10 M−log10 Mc)2

2σ2
m ≡

〈
NGHOD

cent (M)
〉

(5.2)

• a LogNormal HOD model (LNHOD): defining x = log10 M − (log10 Mc − 1), the prescription for
central galaxies is:

⟨Ncent(M)⟩ = Ac√
2πσm · x

· e
− (ln x)2

2σ2
m for x > 0, and 0 otherwise (5.3)

• a Star Forming HOD model (SFHOD):

⟨Ncent(M)⟩ =


〈
NGHOD

cent (M)
〉

M ≤ Mc

Ac√
2πσm

·
(

M
Mc

)γ

M > Mc

(5.4)

• a modified High Mass Quenched model (mHMQ):

⟨Ncent(M)⟩ =
〈
NGHOD

cent (M)
〉

·
[
1 + erf

(
γ(log10 M − log10 Mc)√

2σm

)]
(5.5)

Note that this model is derived from the High Mass Quenched model of Alam et al. (2021) setting
the quenching factor to infinity to only retain the asymmetric shape of the central distribution.

In the above formulas, Ac sets the size of the central galaxy sample, Mc is the characteristic mass
for a halo to host a central galaxy, σm is the width of the distribution and γ, if present, controls its
asymmetry. A Bernoulli distribution with mean equal to ⟨Ncent(M)⟩ is used to generate either 0 or 1
central galaxy per halo.
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5.3.2 Baseline model for satellite galaxies
For satellite galaxies, we adopt the same HOD as in Section 3.4.1 (Alam et al., 2021, Avila et al., 2020):

⟨Nsat(M)⟩ = As

(
M − M0

M1

)α

(5.6)

where As sets the size of the satellite galaxy sample, M0 is the cut-off halo mass from which satellites can
be present and α controls the increase in satellite richness with increasing halo mass. M1 is introduced
for normalisation purpose and corresponds to the halo mass at which 1 satellite is expected if As = 1 and
M0 is negligible w.r.t. M1. The above form (without the normalisation factor As) was first introduced
in Kravtsov et al. (2004) based on N-body simulations and in Zheng et al. (2005) based on semi-analytical
models and hydrodynamical simulations of galaxy formation, for it was found to provide a very good
description of the occupation distribution of satellites predicted in these frameworks. Note that when
α ∼ 1, this form gives a mean number of satellites which simply traces the halo mass. The normalisation
factor As was introduced in later works as a way to model the incompleteness of the satellite sample. In
this analysis, we use both Ac and As to impose a density constraint to our HOD models, as explained in
the next section.

Throughout the chapter, unless stated otherwise, the actual number of satellite galaxies as a function
of halo mass is drawn from a Poisson distribution with mean equal to ⟨Nsat(M)⟩. By default, several
satellites can thus be present in the same halo, and satellites can be present even if there is no central
galaxy in the halo. We note that in such a case, classifying them as satellites may appear inappropriate,
but is no more than a convenience to refer to the parametrisation used. Beyond the above functional
forms for the mean numbers of central and satellite galaxies as a function of halo mass, a prescription must
be chosen to define how satellite positions and velocities are distributed. This is described in Section 5.5.

From the above equations, derived parameters can be calculated analytically, such as the expected
total number density of the galaxy sample:

n̄gal =
∫ dn(M)

dM
[⟨Ncent(M)⟩ + ⟨Nsat(M)⟩] dM (5.7)

the fraction of satellites:
fsat = 1

n̄gal

∫ dn(M)
dM

⟨Nsat(M)⟩ dM (5.8)

or the average halo mass of the sample:

⟨Mh⟩ = 1
n̄gal

∫ dn(M)
dM

[⟨Ncent(M)⟩ + ⟨Nsat(M)⟩] MdM (5.9)

where dn(M)
dM is the halo mass function, taken from the N-body simulation. We also define an effective

M ′
1 mass parameter that is equivalent to the M1 mass scale in the original parametrisation for satellite

occupation without the As parameter:
M ′

1 ≡ M1

A
1/α
s

(5.10)

M ′
1 is the halo mass scale to have one satellite on average if M0 is negligible w.r.t. M ′

1.

5.3.3 HOD free parameters and density constraint
The HOD parameters are Ac, Mc, σM (and possibly γ) for central galaxies and As, M0, α, M1 for satellite
galaxies. M1 being degenerate with As and α cannot be constrained in the fits. Unless otherwise stated,
it is fixed to a value of 1013M⊙/h in the fits described in this chapter. The normalisation parameters Ac

and As are used to impose a density constraint in the fitting procedure to match the density in DESI
data, as explained below. All other parameters are left free to vary.
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The galaxy sample number density in Equation (5.7) is governed by both Ac and As and the fraction
of satellites in Equation (5.8) is controlled by their ratio. All other conditions being equal, the same
clustering is obtained whatever Ac and As values, provided their ratio is fixed. The density constraint is
introduced in the following way. At each point in the HOD parameter space, we set Ac to an initial value,
while As is sampled from a flat prior range. We compute the total number density in Equation (5.7) for
these initial values of Ac and As and rescale them by the same factor (to preserve the clustering) in order
to normalize the galaxy density to 10−3(h/Mpc)3, close to that of the DESI ELG sample. In our tables,
we report Ac initial values, best-fit values of As which are unrescaled and we provide the corresponding
rescaling factor used to set the density of the mocks to that of data. This factor is applied for the derived
parameters and for mock creation.

5.4 Simulation
As in Chapter 4, mock catalogues generated from simulations according to the above HOD models are
based on the AbacusSummit suite of high-accuracy cosmological N-body simulations (Maksimova et al.,
2021) designed for the clustering analyses of DESI. We use the cleaned halo catalogues obtained with
the CompaSO algorithm (Hadzhiyska et al., 2022a) applied to these simulations. The suite is defined
primarily in the base Planck 2018 ΛCDM best-fit cosmology (Planck Collaboration et al., 2020) but
contains also several variants, and proposes different resolutions and cubic box sizes.

usage cosmology box size resolution realisations
baseline modelling Planck 2018 ΛCDM 1.185 Gpc/h 40963 1
correlation matrix Planck 2018 ΛCDM 0.5 Gpc/h 17283 1800
cosmic variance Planck 2018 ΛCDM 2 Gpc/h 69123 25
high Neff Neff = 3.7 1.185 Gpc/h 40963 1
high Neff cosmic variance Neff = 3.7 2 Gpc/h 69123 6
low σ8 Planck 2018 with σ8 = 0.75 1.185 Gpc/h 40963 1
low σ8 cosmic variance Planck 2018 with σ8 = 0.75 2 Gpc/h 69123 6

Table 5.1: Cosmology, box size and mass resolution of the AbacusSummit simulations used in this
work. The mass resolution is given as the number of particles in the box. The first column indicates the
use of each set of simulations: baseline HOD modelling, correlation matrix for data, cosmic variance for
the model covariance matrix. The last four sets are used to explore different cosmologies but with identical
simulation initial conditions as in the baseline model.

Table 5.1 presents the subset of simulations used in this analysis. They all have the same reso-
lution, that is 69123 particles in a box of 2 Gpc/h length, which corresponds to a particle mass of
about 2×109M⊙/h. This ensures that halos are well resolved down to 1011M⊙/h giving ∼50 parti-
cles/halo (Maksimova et al., 2021). Besides, the halos corresponding to best fitting results obtained in
this work have a mass larger than 3 × 1011M⊙/h which corresponds to 150 particles/halo. Note that
throughout the chapter, we define the halo mass as the number of particles in the halo multiplied by the
particle mass.

5.5 Fitting Methodology
The HOD fitting pipeline used in this work is that described in Chapter 4. It proceeds in two steps,
HOD mock generation and HOD parameter fitting, based on Gaussian processes. The main features
of the pipeline are summarised hereafter, with more details than in Chapter 4 about the prescription
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used for satellite positioning, and the construction of the covariance matrix used in the fits is described
afterwards.

5.5.1 Pipeline based on Gaussian processes
The fitting pipeline uses Gaussian processes (GP) to obtain a surrogate model of the likelihood surface
describing the comparison of clustering measurements between data and HOD mocks. At each point of the
HOD parameter space of a given model, DM halos from the baseline AbacusSummit 1.18 Gpc/h cubic
box (see Table 5.1) are populated with galaxies according to the HOD parameters, in order to generate
mock catalogues. Mocks are created with a fixed galaxy density of 10−3(h/Mpc)3, close to that of the
actual ELG sample. In this process, the HOD prescriptions for the mean numbers of central and satellite
galaxies described in Section 5.3 are complemented by the following assumptions. Central galaxies are
positioned at the centre of their halos. Satellite positions obey a Navarro-Frenk-White profile (Navarro
et al., 1996) using r25, the radius of a sphere that contains 25% of the halo particles, as a proxy for rs, the
scale radius of the profile. Since the mass enclosed in a sphere of radius r is divergent for the NFW profile,
we further apply a cut-off at the halo virial radius r = rvir, taking r98, the radius of a sphere containing
98% of the halo particles, as a proxy for rvir. The above proxies were chosen because we observed that
they provide a predicted clustering which is very close to that obtained with satellite positioning using
DM particles, as illustrated in Appendix A. Satellite velocities are normally distributed around their
mean halo velocity, with a dispersion equal to that of the halo dark matter particle velocities, rescaled
by an extra free parameter denoted fσv

, following Alam et al. (2021).
At each point of the parameter space, we generate 20 mock catalogues and compare their clustering to

that of data to produce one χ2 value per mock. The 20 χ2 values are then averaged and both the mean χ2

value and the standard deviation of the mean are fed into the GP. The covariance matrix entering the χ2

definition contains a data component and a model component that accounts for the stochastic noise of the
mock creation and the cosmic variance to be expected for 1.18 Gpc/h cubic boxes. These two covariance
matrices are discussed further in Section 5.5.2. In the χ2 computation, each of the covariance matrix
components is corrected for the Hartlap effect (Hartlap et al., 2007). The inverse covariance matrix is
biased because of the number of mocks used to estimate it is finite. The amount of bias depends on the
ratio between the number of measurements and the number of mocks, the more mocks the less bias for
a given set of measurements.

Initial training of the GP is obtained from the χ2 values and errors computed on a given set of points.
Based on the conclusions of Chapter 4, the training sample is obtained from Hammersley sampling of the
HOD parameter space using flat priors. After initial training, the GP model of the likelihood surface is
further improved by an iterative procedure adding one point to the training sample at each iteration. The
added point is randomly chosen in Monte Carlo Markov chains (MCMC) sampling the GP prediction.
This allows us to obtain both an accurate minimisation of the χ2 and reliable error contours in the HOD
parameter space.

In the following, we use an initial training sample of 800 points from Hammersley sampling, followed
by 800 iterations and check the fit convergence during the iterative step by means of the Kullback-
Leibler (KL) divergence (Kullback & Leibler, 1951) between the MCMC chains. As shown in Chapter 4,
instabilities in the GP likelihood surface estimate can be generated in the course of the iterative procedure,
due to learning phases triggered in small regions of the parameter space by the addition of the extra point.
These instabilities do not strongly impact the iterative evolution of the marginalized parameter values
but affect the KL divergence. To check the fit convergence, we thus compute the KL divergence from
cleaned MCMC chains, where points with uncertainties above 10 in the χ2 value predicted by the GP
have been removed. We consider a fit to be converged when the KL divergence is below 0.1 in a set
of 20 consecutive iterations and we define the final iteration as the last iteration of the last such set of
iterations. When no such set of consecutive iterations is found, the final iteration is the last iteration
with a KL divergence below 0.1. The fit results are defined by the marginalized HOD parameter values
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at that final iteration, with statistical uncertainties given by the [0.16 − 0.84] quantiles of the parameter
posteriors at that same iteration.

As 2-point statistics, the GP pipeline uses the projected correlation function, wp(rp), as well as the
monopole ξ0(s) and quadrupole ξ2(s) of the two point correlation function, as introduced in Section 5.2.1.

5.5.2 Covariance matrix for data and model
A data covariance matrix appropriate for the ELG clustering measurements used by the GP pipeline was
derived applying the delete-one Jackknife method to the One-Percent survey footprint divided into 128
independent regions, the maximum number of large enough regions given the small extent of the footprint.
The jackknife regions were defined using a K-means sampler that cuts the footprint into regions of similar
size in RA/DEC, as implemented in the DESI package pycorr. To recover an unbiased estimate of the
covariance matrix, correction terms were applied as described in Mohammad & Percival (2022). As the
off-diagonal terms of that matrix are affected by noise, a smooth correlation matrix was derived from
simulations to replace that from data. For that purpose, we resorted to the 1800 small boxes from the
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Figure 5.4: DESI ELG clustering measurements from the One-Percent survey data sample. From left
to right, we show the projected correlation function, the monopole and quadrupole of the correlation
function. Data (dots with error bars) are compared to expectations (solid lines) from 1800 realisations
of a HOD model obtained from a preliminary fit to these data using a pure Jackknife covariance matrix.
Uncertainties are Jackknife errors.
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AbacusSummit simulations in Table 5.1 that allow cosmic variance to be included with good statistical
precision.

The result of a preliminary HOD fit to the data using the Jackknife covariance matrix was first used
to populate the small box halos, with a density identical to that in the data sample. Figure 5.4 compares
the clustering from the data with the calculated clustering for the mocks used to determine the correlation
matrix. The binning of the three statistics is that defined in Section 5.2.1. The off-diagonal terms of
the mock-based correlation matrix are much smoother than the ones calculated from the data as shown
in Figure 5.5. In the following, we define the data covariance matrix of the HOD fits, Cdata from the
mock-based correlation matrix, using the Jackknife diagonal errors to appropriately normalise variances
and covariances.

The GP pipeline also considers a covariance matrix for the model, Cmodel, as described in Chapter 4.
To build it, correlations are assumed to have small variations over the HOD parameter space and we
first compute a fixed correlation matrix from 1000 realisations of the HOD model under test, at a given
reference point in the parameter space. When scanning the HOD parameter space, the model covariance
matrix at each point is then obtained by normalising all terms of the previous correlation matrix by
the quadratic sum of two sets of diagonal errors. The first set contains the variances of the clustering
measurements over the 20 realisations drawn to compute the χ2 at the current point to take into account
the stochasticity of the model, and thus accounts for stochastic noise. The second set contains the
variances of the clustering measurements obtained from 48 realisations of the HOD model at the reference
point, each drawn from a different sub-cube of 1 Gpc/h length cut out of 25 realisations of the same
simulation box (see Table 5.1, third line) and corrected for volume effects to take into account the cosmic
variance in our errors.

In the GP pipeline, the χ2 computed at each point of the HOD parameter space is thus defined as
follows:

χ2 = (ξdata − ξmodel)⊤[Cdata/(1 − Ddata) + Cmodel/(1 − Dmodel)
]−1(ξdata − ξmodel) (5.11)

where ξ is a vector of clustering measurements, C the corresponding covariance matrix and D the Hartlap
correction factor (Hartlap et al., 2007) based on the number of mocks used to derive the corresponding
correlation matrix. This is averaged over 20 HOD realisations.

5.6 Standard HOD results
Best fitting clustering from the GP pipeline are presented in Figure 5.6 and the corresponding best-fit
values of the HOD parameters are summarised in Table 5.2. We test the four prescriptions for central
galaxies of Section 5.3, keeping the standard prescription for satellites (see Equation (5.6) and Section 5.5).
Except for M1 which is kept fixed in the fits, we used flat priors for all other HOD parameters. The
exact prior ranges depend on the HOD models tested but we took care to choose them wide enough to
get reasonably enclosed contours. Examples of prior ranges are shown in Appendix B.

The four best fitting models provide similar expectations for the ELG clustering, which agree rea-
sonably well with data. Features difficult to model correctly are the slope of the projected correlation
function between 0.2 and 10 Mpc/h and the bump at s ∼ 1 − 2 Mpc/h in the monopole and quadrupole.
This partially explains the high χ2 values which average at ∼157 for 65 degrees of freedom, depending on
the model. Since all models behave similarly, it implies that there are ingredients missing in the standard
HODs for ELGs. This will be studied in the following sections.

Also shown in Figure 5.6 is the expected clustering computed from halos only, regardless of the
galaxies they contain (dashed line). This highlights the fact that pairs of galaxies inside the same halo
contribute, as expected, only at low scales in the three statistics. This contribution constitutes the so-
called one-halo term of the galaxy-halo connection and is essential to reproduce the strong clustering
measured at small scales in our data, notably the strong up-turn of the projected correlation function at
rp < 0.3 Mpc/h. Note however that between 0.3 and ∼1 Mpc/h in rp, the measured clustering is above
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Figure 5.6: Top: DESI ELG clustering measurements from the One-Percent survey data sample, com-
pared to best fitting standard HOD models obtained with the GP pipeline. The models in solid line
correspond to different prescriptions for the central galaxies, keeping the standard power-law prescription
for satellites. The model in dashed line is the pure halo clustering, showing that pairs of galaxies from
the one-halo term have a strong impact on the clustering at the lowest scales. Errors are Jackknife un-
certainties only. Bottom: Fit residuals normalised by the diagonal errors of the full covariance matrix,
that comprise Jackknife uncertainties for the data as well as stochastic noise and cosmic variance for the
model, but no Hartlap factor corrections.

parameter & χ2 LNHOD GHOD SFHOD mHMQ
Ac (resc.) 1 (0.08) 1 (0.08) 1 (0.08) 1 (0.08)
log10 M0 11.78+0.04

−0.05 11.72+0.03
−0.04 11.73+0.03

−0.03 11.70+0.03
−0.03

As 0.09+0.01
−0.01 0.08+0.04

−0.01 0.09+0.04
−0.02 0.10+0.04

−0.03
log10 Mc 11.87+0.01

−0.01 11.89+0.02
−0.02 11.87+0.03

−0.03 11.72+0.06
−0.04

α −0.28+0.03
−0.03 −0.31+0.08

−0.05 −0.28+0.06
−0.04 −0.26+0.08

−0.08
fσv 1.29+0.07

−0.06 1.23+0.06
−0.06 1.27+0.07

−0.07 1.27+0.07
−0.06

σM 0.08+0.02
−0.01 0.11+0.02

−0.02 0.07+0.04
−0.02 0.22+0.08

−0.11
γ - - −4.42+0.99

−0.76 7.06+1.33
−1.97

log10 M ′
1 5.37 6.12 5.57 4.77

fsat 0.10+0.02
−0.02 0.12+0.03

−0.02 0.11+0.02
−0.02 0.12+0.02

−0.02
f1h 0.041+0.007

−0.005 0.040+0.005
−0.006 0.039+0.005

−0.006 0.039+0.009
−0.008

log10 ⟨Mh⟩ 11.87+0.01
−0.01 11.87+0.01

−0.01 11.88+0.01
−0.01 11.87+0.02

−0.01
χ2 (ndf) 156.0 ± 1.0 (65) 157.6 ± 1.3 (65) 155.5 ± 1.2 (64) 158.2 ± 1.0 (64)

Table 5.2: Results of standard HOD fits to the DESI ELG clustering measurements from the One-Percent
survey. The first line provides the initial fixed value of Ac and the rescaling factor applied to impose the
density constraint in the fits. The following six or seven parameters are the free HOD parameters, the next
four are derived parameters. log10 M ′

1 is given for best-fit values of α and As (the latter after rescaling).
fsat is the fraction of galaxies which are satellites and f1h is the fraction of galaxies which are not alone
in their halos. All masses are in units of (M⊙/h).
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the predicted halo clustering, meaning that the one-halo contribution arising from the NFW profile is
not sufficient to describe the data in this region.

These results are further illustrated in Table 5.2, which provides the best-fit values of the model
parameters, and in Figure 5.7, which shows the four best fitting HOD models and the distributions of
the number of galaxies per halo mass bin for halos populated according to these HOD models. The four
models exhibit similar features. The HOD for centrals peak at a mass slightly below 1012M⊙/h and
span a short interval of halo masses as shown by the low values of σM . The minimal mass to populate
halos with satellites is slightly below Mc and the satellite HOD has a negative power-law index. Both
features reflect the need to have close pairs of galaxies in low mass halos in order to reproduce the ELG
clustering at small scales, and translate into a one-halo component of the distribution of the number of
galaxies per populated halo mass bin that peaks at low halo mass, as shown in the right-hand plot in
Figure 5.7. The mean halo mass of the galaxy sample and the satellite fraction are analytically calculated
using Equation (5.8) and Equation (5.9) from the [16-84] quantiles of the best-fit Markov chains. The
fraction of galaxies which are not alone in their halos, f1h, is found to be about 4% in the four models
tested. This fraction is computed numerically from 50 mocks generated from random HOD parameters
drawn from the 1σ errors of the best fitting HOD models. Note that the value of f1h depends on the
number density of the mocks, which is constrained to be that of our data sample ∼ 10−3(h/Mpc)3.

Previous small-scale clustering studies of ELG samples at redshifts ∼ 1 were performed in different
frameworks, either HOD (e.g Avila et al., 2020, Okumura et al., 2021, Tinker et al., 2013), Abundance
Matching (e.g Favole et al., 2016, Gao et al., 2022, Lin et al., 2023) or conditional stellar mass function
method (Guo et al., 2019). They find consistent results about the mean mass of halos hosting such
galaxies, log10 ⟨Mh⟩ ∼ 12. They reported satellite fractions ranging from 13 to 22% for standard HOD
prescriptions but extended ones can increase significantly these numbers (Avila et al., 2020) showing
that the satellite fraction does not provide a robust way to make precise comparisons between different
analyses. For these two parameters, our findings are similar, namely log10 ⟨Mh⟩ ∼ 11.9 and fsat ∼ 12%.

All previous HOD studies also reported a satellite HOD that increases at high halo mass (Avila et al.,
2020, Gao et al., 2022, Lin et al., 2023, Okumura et al., 2021), or possibly becomes uniform (Guo et al.,
2019), while we find a significant decrease (see Figure 5.7). This decrease is also responsible for the
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Figure 5.7: Left: Best fitting HOD models to the DESI One-Percent ELG sample obtained with standard
prescriptions for central (solid lines) and satellite (dashed lines) galaxies. We recall that satellites can
populate halos even if no central galaxy is present. Four models for central galaxies were used and give
similar results. Most noticeably, the satellite average number decreases with increasing halo mass. Right:
Number of galaxies per halo mass bin for halos populated according to the four HOD models on the
left. The simulation box volume is 1.66 (Gpc/h)3. The full distributions are in solid lines. The dashed
lines show the contribution of halos hosting more than one galaxy, that is the one-halo component of
the full distributions. The four prescriptions for central galaxies lead to similar results, both for the full
distribution or for its one-halo component.
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meaningless values of the effective log10 M ′
1 parameter reported in Table 5.2, as the mass scale for having

one satellite on average cannot be found at high halo mass. As pairs of galaxies from the one-halo term
dominates the clustering at small-scales (see Figure 5.6), we attribute this decrease to the strong signal
observed by DESI in a range of scales which were not previously probed and that we can model only
with pairs of galaxies preferentially in low mass halos.

However, physically motivated models of ELGs, either based on semi-analytical modelling (e.g Contr-
eras et al., 2019, Favole et al., 2020, Gonzalez-Perez et al., 2018, 2020) or hydrodynamical simulations (e.g
Hadzhiyska et al., 2021) do predict an increasing satellite HOD at high halo mass for ELGs at redshifts
∼ 1. We thus interpret our negative index result as a sign of an inadequate HOD model to describe
DESI ELGs. In the next section we modify the model to include central-satellite conformity, that is
the fact that satellite occupation may be conditioned by the presence of central galaxies of the same
type, an hypothesis corroborated by hydrodynamical simulations (Hadzhiyska et al., 2022b). Note that
indications of conformity between central and satellite galaxies related to their types have already been
reported in the literature (Weinmann et al., 2006).

5.7 Results in extended HOD models

In this section, we modify the standard prescription for satellite occupation. We first test conformity bias,
as suggested by the results previously described and by studies from hydrodynamical simulations. We
then test other possible changes in an attempt to better fit the clustering measurements in the problematic
regions spotted in the above section.Throughout this section, the baseline model for central galaxies is
the mHMQ prescription. We also describe a cross-check of our results using the AbacusHOD pipeline
as an alternative fitting tool.
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Figure 5.8: Top: DESI ELG clustering measurements from the One-Percent survey data sample, com-
pared to best fitting mHMQ models obtained with the GP pipeline, without (green line) and with (red
line) strict conformity bias. The dashed line is the pure halo clustering. The agreement between data and
expectations is slightly improved by requiring strict conformity, that is by conditioning satellite occupa-
tion to the presence of a central galaxy. Errors are Jackknife uncertainties only. Bottom: Fit residuals
normalised by the diagonal errors of the full covariance matrix, that comprise Jackknife uncertainties for
the data as well as stochastic noise and cosmic variance for the model, but no Hartlap factor corrections.



192 CHAPTER 5 Results from the DESI One-Percent survey

11 12 13 14
log10(M [M /h])

10 6

10 5

10 4

10 3

10 2

10 1

100

<
N

ga
l(M

)>
mHMQ
mHMQ+conf

11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5
log10(M [M /h])

100

101

102

103

104

105

dN
ga

l/d
M

mHMQ
mHMQ+conf

Figure 5.9: Left: Best fitting HOD models to the DESI One-Percent ELG sample obtained without (green
line) and with (red line) strict conformity bias between central (solid lines) and satellite (dashed lines)
galaxies. The mHMQ prescription for centrals is used. In the case of conformity, the satellite HOD (red
dashed line) corresponds to the mean number of satellites in halos already populated by a central. To better
reflect the mean number of satellites with strict conformity, the product of the mean numbers of centrals
and satellites is shown as the red dotted line. Right: Number of galaxies per halo mass bin for halos
populated according to the two HOD models on the left. The simulation box volume is 1.66 (Gpc/h)3. The
full distributions are in solid lines. The dashed lines show the contribution of halos hosting more than one
galaxy, that is the one-halo component of the full distributions. Requiring strict conformity drastically
changes the HOD models and the distributions of the number of galaxies per populated halo mass bin:
satellites are forced to populate only halos with central galaxies and thus are spread over a wider range of
halo masses.

5.7.1 Strict conformity bias
Best fitting clustering with strict central-satellite conformity from the GP pipeline are presented in
Figure 5.8 and compared to previous results without conformity. In this extended model, satellites can
populate a halo only if a central galaxy is already present. Best-fit values of the model parameters are
reported in Table 5.3. Strict conformity only slightly improves the agreement with data and the best-fit
χ2 value. On the other hand, the shape of the HOD model and that of the distribution of galaxies per
populated halo mass bin are significantly modified, as shown in Figure 5.9. With strict conformity, pairs
of satellites in halos with no central galaxy are forbidden. To obtain the strong one-halo term needed
to reproduce the small scale clustering, when conformity is required, pairs of galaxies are distributed
over a wider range of halo masses at both low and high halo mass, as can be seen in the right-hand
panel of Figure 5.9 (see distributions in dashed lines). This translates into a satellite HOD that increases
linearly (α = 0.91+0.14

−0.11) with halo mass, as expected in physically motivated HOD models. Note also
that the mass scale for having one satellite on average is now obtained at large halo mass, as can be
seen directly on the left panel in Figure 5.9 and from the value of the effective log10 M ′

1 parameter in
Table 5.2. We recall that even though the HOD of satellites increases with halo mass, strict conformity
can only populate halos that already have a central. The product of the mean numbers of centrals and
satellites, which better represents the expected number of satellites with strict conformity, is shown as
the red dotted line in the left panel of Figure 5.9. In the following figures of the same kind, we only show
the standard satellite HOD curves (dashed-lines), which hold only for halos populated by a central for
models with strict conformity.

As a consequence, with strict conformity, the HOD parameters are all changed, except for the velocity
dispersion parameter, fσv

which we discuss further in section 5.7.2. The fraction of satellites fsat is five
times smaller than without conformity, as a result of trading satellites alone in their halos for central-
satellite pairs. On the other hand the one-halo term fraction f1h and the mean halo mass remain very close
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to their values without conformity. This shows that these are model-independent characteristics that can
be constrained by clustering measurements. As such they provide suitable quantities to compare results
from analyses done in different frameworks. Note that, by definition, in the case of strict conformity,
f1h = 2fsat for halos hosting one central and one satellite, which is typical of our ELG sample, cases with
more than 1 satellite being rare.

parameter & χ2 mHMQ mHMQ+conformity
Ac (resc.) 1 (0.08) 0.1 (0.63)
log10 M0 11.70+0.03

−0.03 11.19+0.12
−0.10

As 0.10+0.04
−0.03 0.31+0.15

−0.08
log10 Mc 11.72+0.06

−0.04 11.64+0.04
−0.04

α −0.26+0.08
−0.08 0.91+0.14

−0.11
fσv 1.27+0.07

−0.06 1.34+0.08
−0.08

σM 0.22+0.04
−0.02 0.39+0.08

−0.10
γ 7.06+1.33

−1.97 4.50+1.49
−1.29

log10 M ′
1 4.77 13.78

fsat 0.12+0.02
−0.02 0.024+0.030

−0.017
f1h 0.039+0.009

−0.008 0.048+0.010
−0.012

log10 ⟨Mh⟩ 11.87+0.02
−0.01 11.86+0.02

−0.02
χ2 (ndf=64) 156.0 ± 1.0 152.5 ± 1.1

Table 5.3: Results of mHMQ fits without and with strict conformity bias between central and satellite
galaxies. The first line provides the initial fixed value of Ac and the rescaling factor applied to impose
the density constraint in the fits. The following seven parameters are the free HOD parameters, the next
four are derived parameters. log10 M ′

1 is given for best-fit values of α and As (the latter after rescaling).
fsat is the fraction of galaxies which are satellite galaxies. f1h is the fraction of galaxies which are not
alone in their halos. All masses are in units of (M⊙/h).

Finally, Figure 5.10 presents the best fitting HOD models and distributions of the number of galaxies
per populated halo mass bin for the four prescriptions we can use for central galaxies. The four models
show an increase of the satellite HOD with increasing halo mass. The LNHOD model converges toward a
triangular shaped HOD for centrals showing a sharp cut-off in mass for halos to host centrals, log10 Mh >

log10 Mc − 1 which originates from the large best-fit value of σM . This deviates substantially from
physically inspired ELG models although the shape of the best fitting clustering statistics is almost
indiscernable from the three other HOD models. This is reflected in the best-fit χ2 values that are
similar in the four models, ∼ 152 for mHMQ and LNHOD, ∼ 156 for GHOD and ∼ 161 for SFHOD.
With strict conformity, the minimal halo mass to host satellites, log10 M0 is around ∼ 11.2 for the four
models, compared to 11.7 without conformity. This decrease is to be expected since with conformity the
value of M0 is driven by the minimum mass of halos hosting a central galaxy and reflects the need for
having galaxy pairs in low-mass halos. We emphasize that all conformity models strongly favour putting
satellites as soon as the halo is populated by central galaxies. The values of the characteristic halo mass
for centrals, log10 Mc, which were similar in the four models without conformity, are around 11.8 except
for the LNHOD model which gives 12.6 due to the skewness of the HOD shape.

5.7.2 Velocity bias
In the GP pipeline, satellite velocities are normally distributed around their halo velocity, computed as
the mean halo dark matter particle velocities. The satellite velocity dispersion is that of the particle
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Figure 5.10: Left: Best fitting HOD models to the DESI One-Percent ELG sample obtained with strict
conformity bias between central and satellite galaxies. Four prescriptions for central galaxies are used.
They reproduce clustering data equally well but give different HOD shapes. Right: Number of galaxies
per halo mass bin for halos populated according to the four HOD models on the left. The simulation box
volume is 1.66 (Gpc/h)3. The full distributions are in solid lines. The dashed lines show the one-halo
component of the full distributions. The four models show an increase of the satellite HOD with increasing
halo mass. The LNHOD model converges towards a triangular shaped HOD for centrals showing a sharp
cut-off in mass for halos to host centrals, log10 Mh > log10 Mc − 1 which originates from the large best-fit
value of σM .

velocities rescaled by the fσv
parameter which is left free to vary in the fits, namely:

v⃗sat ∼ N (v⃗h, fσv
· σvh

) (5.12)

This parameter represents a simple way to make ELG satellites hotter or cooler than dark matter particles,
an hypothesis which was tested in studies of the eBOSS ELG sample (Alam et al., 2021, Avila et al.,
2020). The GP pipeline results previously presented show that, without or with conformity bias, and
whatever the HOD prescription for central galaxies, the best-fit value for fσv

is significantly higher than
1, which is in line with what was reported in Avila et al. (2020). The best-fit values range from 1.2 to
1.5 depending on the model, with an error around ±0.1.

We check the impact of satellite velocities on this result using two other prescriptions. Instead of
drawing satellite velocities according to Equation (5.12), we set them to the halo velocity and add a
circular velocity drawn from a NFW profile as defined in Navarro et al. (1996):

v⃗sat(r) = v⃗h +
√

GMh

rvir

√
g(ch · r)
r · g(ch) u⃗circ with g(x) = ln (1 + x) − x

(1 + x) (5.13)

u⃗circ is a unitary vector perpendicular to the vector joining the halo centre to the satellite position and
whose orientation in this plane is randomly chosen. In the above equation, r is the satellite radial position
(in unit of rvir), rvir is the virial halo radius and ch its concentration. As mentioned in Section 5.5.1, we
take r98 as a proxy for rvir and r25 as a proxy for rs, so that ch ≡ rvir/rs = r98/r25. As a second choice,
we first draw a satellite velocity u⃗sat according to Equation (5.12) and add to it a common infall velocity
v⃗infall defined along the line between the satellite position to the halo centre:

u⃗sat ∼ N (v⃗h, σvh
) then v⃗sat = u⃗sat + v⃗infall with v⃗infall = vinfall · r⃗h − r⃗sat

|r⃗h − r⃗sat|
(5.14)

This model is a good approximation of the prediction presented in Orsi & Angulo (2018) based on semi-
analytical models of star-forming galaxies. The latter predict that among star-forming galaxies those
which were accreted the latest could have a net infall velocity towards the halo centres.
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In order to illustrate the impact of satellite velocities on the clustering statistics, Figure 5.11 compares
the DESI data clustering to the best fitting mHMQ model with strict conformity bias found in the
previous section (purple curve) and to predictions from that model where we modify the satellite velocity
prescription, keeping the other HOD parameters fixed, without refitting the data. The satellite velocity
is modified according to Equation (5.13) and Equation (5.14), using a value of 170 km/s for vinfall in the
latter case. Also shown is the predicted clustering with fσv

set to 1 to remove any velocity bias (green
curve). The four models predict the same projected clustering, as expected since velocities have no effects
on this statistic. Taking a NFW profile for velocities (red curve) does not provide a good model of the
2-point correlation functions multipoles. Not rescaling the velocity dispersion (green curve) provides a
good model of the monopole only, while up-scaling the dispersion (purple curve) allowing to model both
multipoles correctly. Last, there is practically no difference in the predicted clustering between an up-
scaling of the particle velocity dispersion with a factor of 1.34 and a net infall velocity of ∼ 170 km/s

added to velocities normally distributed around the halo velocity with a dispersion equal to that of the
particle velocities (orange curve). These two models, although different, have quite similar impact on the
clustering and cannot be disentangled with the statistics we are using. Note that random errors in the
ELG redshift determination (J. Yu et al., 2023) are equivalent to a 60 km/s velocity dispersion along the
line of sight and only accounts for 0.03 on the observed shift in fσv w.r.t. 1. We conclude that a velocity
dispersion larger than that of DM particles is needed to reproduce the clustering of the DESI One-Percent
survey ELG sample. Interestingly, a velocity bias was also reported by SDSS for main galaxies at low
redshifts (z < 0.2) and LRGs at intermediate (z ∼ 0.5) redshifts (Guo et al., 2015a,b) but the effect goes
in the opposite direction, with satellites moving more slowly than particles by a factor that depends on
the galaxy luminosity, the bias being stronger for more luminous galaxies.

In the following, we continue with the baseline prescription for satellite velocities, expressed as a
rescaling of dark matter particle velocities by a factor fσv .
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Figure 5.11: DESI ELG clustering measurements from the One-Percent survey data sample compared to
HOD models differing only by their satellite velocity prescriptions. We show the best fitting mHMQ model
with conformity bias found in Section 5.7.1 (purple) which corresponds to rescaling the dispersion of dark
matter particles by a factor fσv =1.34 to describe the satellite velocities. Other models correspond to the
following changes: fσv =1 (green), drawing satellite velocities from a NFW profile (red) and assuming
a common infall velocity (yellow) of vinfall = 170 km/s. Errors are Jackknife uncertainties. The four
models give exactly the same projected clustering but produce differences in the 2-point correlation function
multipoles at small-scales. We note that the same clustering can be obtained by rescaling the particle
velocity dispersion or assuming a common infall velocity.
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5.7.3 Comparison to AbacusHOD pipeline
At this point, we cross-check our results with the AbacusHOD pipeline (Yuan et al., 2022), which is
particle-based and highly efficient. Designed specifically for multi-tracer analyses and HOD-cosmology
combined analyses, it takes advantage of the large volume and precision of the AbacusSummit simula-
tions by optimising computational efficiency.

The baseline HOD prescription for ELG central galaxies in AbacusHOD is the HMQ model of Alam
et al. (2021). In the present work, we restrict to the simpler mHMQ model of section 5.3 (with Ac

renamed to pmax). For the satellite galaxies, we adopt the baseline power law model of Equation (5.6)
except we reparametrise M0 = κMc. Central galaxies are assigned the position and velocity vector of
the centre of mass of the largest sub-halo while satellite galaxies are assigned to DM particles of the halo
with equal probabilities. Each halo can only host at most one central galaxy and each particle can also
host at most one satellite.

The AbacusHOD implementation of ELG central-satellite conformity introduces one extension pa-
rameter to the standard satellite HOD to modulate the strength of the conformity effect. Specifically,
we modulate the M1 parameter, which controls the overall amplitude of satellite occupation, by whether
the halo hosts a central ELG or not:

⟨Nsat(M)⟩ =


(

M−κMc
M1,EE

)α

if ELG central(
M−κMc

M1

)α

if not.
(5.15)

where M1,EE is the new parameter that modulates the ELG-ELG conformity strength. If there is no
conformity, then M1,EE = M1, and if there is maximal conformity, i.e. ELG satellites only occupy halos
with ELG centrals, then M1,EE ≪ M1. In principle, another conformity term between ELG satellites
and LRG centrals is also possible but it was not included in the present work.

Velocity bias prescriptions are different between the two pipelines. For the GP pipeline, bias on veloc-
ities are changed only for satellites, through the scaling parameter fσv , as described in Equation (5.12).
The AbacusHOD pipeline allows both for central and satellite velocity biases, through parameters αc

and αs, respectively. Those impact velocities as vcent = vh + αcδv(σvh) for centrals, where δv(σvh) is
the Gaussian scatter of the velocity dispersion of the halo, and vsat = vparticles + αs(vparticles − vh), as
described in equations 8 & 9 in Yuan et al. (2022).
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Figure 5.12: Top: DESI ELG clustering measurements from the One-Percent survey data sample compared
to best fitting mHMQ models with parametrised central-satellite conformity in the AbacusHOD pipeline
(red) and with strict conformity bias in the GP pipeline (green). Bottom: Fit residuals normalised by the
diagonal errors of the full covariance matrix, that comprise Jackknife uncertainties for the data as well
as stochastic noise and cosmic variance for the model, but no Hartlap factor corrections.
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Although the baseline statistics of the AbacusHOD pipeline is the galaxy two-point correlation fonc-
tion in two dimensions, for this cross-check it is run using the same 2-point statistics (see Section 5.2.1)
and the same data covariance matrix as the GP pipeline matrix (see Section 5.5.2). The model covari-
ance matrix of the GP pipeline is ignored in the fits but is used to compute best-fit χ2 values provided
below. We compare the mHMQ best fitting results from the two pipelines in Figure 5.12 for the predicted
clustering and in Table 5.4 for the HOD and derived parameters. Best-fit parameters from the Aba-
cusHOD pipeline are derived using global optimisation chains using Gaussian priors so no error bars are
provided. The two pipelines produce quite similar best fitting clustering predictions and goodness of fit
results, despite the completely different nature of the pipelines and their different prescriptions for some
parameters of the mHMQ model.

Most parameters treated in the same way in both pipelines have similar best fitting values, except
for the γ parameter that controls the asymmetry of the central HOD. This difference is reflected in the
shape of the distribution of the number of galaxies per populated halo mass bin, whose asymmetry is
more pronounced for the GP pipeline result, as can be seen in Figure 5.13. On the other hand, the γ

parameter is hardly constrained in the fits (see error bars in Table 5.4 and γ posteriors in Appendix B),
which means that our clustering statistics are not very sensitive to the asymmetric character of the HOD
distributions, so that distributions of the number of galaxies per populated halo mass bin as different as
those in Figure 5.13 can produce very similar clustering signals (see Figure 5.12).

Although the velocity bias prescriptions are different, both pipelines end up with the same conclusion,
namely that the satellite velocity dispersion is higher than that of halo particles. As for central velocities,
the AbacusHOD pipeline result shows that allowing for a velocity dispersion of centrals is not really
mandatory. As for central-satellite conformity, the AbacusHOD parametrised bias indicates clearly a
preference for conformity since M1,EE is lower than M1 by more than 5 units, making the strict conformity
of the GP pipeline implementation a good approximation. Remarkably, both pipelines agree well on the
derived parameters, the satellite fraction, one-halo term fraction and the mean halo mass value of the
sample. Finally, we note that the χ2 of the AbacusHOD result is slightly better than that of the GP
pipeline but does not significantly improve the goodness of fit.

This means that the reason for the poor goodness of fit of our results so far is not to be found in the
fitting methodology but rather in the HOD model itself. In the following, we test other extensions of the
model in the GP pipeline to check whether an improvement can be found.
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Figure 5.13: Number of galaxies per halo mass bin for halos populated according to the best fitting mHMQ
models to the DESI One-Percent ELG sample, from AbacusHOD with parametrised conformity bias (red)
and from the GP pipeline with strict conformity bias (green). The simulation box volume is 1.66 (Gpc/h)3.
The full distributions are in solid lines and the dashed lines show the one-halo component of the full
distributions.
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parameter & χ2 AbacusHOD pipeline GP pipeline
pmax = Ac (resc.) 0.08 0.10 (0.63)
log10 M0 11.03 (κ = 0.19) 11.19+0.12

−0.10
As 1 (fixed) 0.31+0.15

−0.08
log10 Mc 11.75 11.64+0.04

−0.04
α 0.72 0.91+0.14

−0.11
αc, αs or fσv 0.19, 1.49 1.34+0.08

−0.08
log10 M1 19.83 13 (fixed)
σM 0.31 0.39+0.08

−0.10
γ 1.39 4.50+1.49

−1.29
log10 M1,EE 14.25 -
fsat 0.020 0.024+0.030

−0.017
f1h 0.040 0.048+0.010

−0.012
log10 ⟨Mh⟩ 11.89 11.86+0.02

−0.02
χ2 (ndf) 143.53 (62) 152.5 ± 1.1 (64)

Table 5.4: Results of mHMQ fits with parametrised central-satellite conformity from the AbacusHOD
pipeline (left) and with strict conformity bias from the GP pipeline (right). The upper ten rows list HOD
parameters, the next three give derived parameters. fsat is the fraction of galaxies which are satellite
galaxies. f1h is the fraction of galaxies which are not alone in their halos. All masses are in units of
(M⊙/h).

5.7.4 Assembly bias
HOD modelling is primarily a function of halo mass only but semi-analytical models and hydrodynamical
simulations predict dependencies in other properties that are referred to as secondary biases in the
literature. In this section, we explore assembly bias which introduces a dependence related to the halo
assembly history. We test dependencies either in halo concentration, local halo density or local halo
density anisotropies, using the parametrisation suggested in Hadzhiyska et al. (2022c):

⟨N ′
cent(M)⟩ = [1 + acenfa(1 − ⟨Ncent(M)⟩)] ⟨Ncent(M)⟩ (5.16)

⟨N ′
sat(M)⟩ = [1 + asatfa] ⟨Nsat(M)⟩ (5.17)

where ⟨Ncent(M)⟩ and ⟨Nsat(M)⟩ are given in Section 5.3. In the above equations, fa is introduced to
materialize the property of each halo in a normalized way. In a given halo mass bin, halos are first ranked
by decreasing values of the halo property and each halo is attributed a different value of fa, assuming
that the latter decreases linearly between 0.5 and −0.5 when going from the top ranked halo to the last
one.

The halo properties we consider are the halo concentration, ch = r98/r25 and the halo environment
that we first characterize by the local halo density. To compute the latter, we project all halos in the
simulation box onto a grid of 5 Mpc/h mesh using a count-in-cell resampling algorithm and calculate the
density in each grid cell. Each halo is then attributed the local density of the grid cell it belongs to. As a
third halo property, we consider local halo density anisotropies deduced from the so-called adaptive halo
shear, computed from the smoothed local density field as described in Hadzhiyska et al. (2022c), using a
smoothing scale of 1.5 Mpc/h.

Figure 5.14 presents the clustering predicted by the best fitting mHMQ models with strict conformity
bias obtained without and with the three assembly bias prescriptions (see Table 5.5 for HOD and derived
parameters). The mHMQ goodness of fit does not improve significantly when adding assembly bias
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Figure 5.14: Top: DESI ELG clustering measurements from the One-Percent survey data sample com-
pared to different best fitting mHMQ models with strict conformity bias: baseline result found in Sec-
tion 5.7.1 (green), model with assembly bias for both centrals and satellites as a function of concentration
(red), local halo density (purple) and local halo density anisotropies (orange). Errors are Jacknnife un-
certainties only. Bottom: Fit residuals normalised by the diagonal errors of the full covariance matrix,
that comprise Jackknife uncertainties for the data as well as stochastic noise and cosmic variance for the
model, but no Hartlap factor corrections.

parameter & χ2 no assembly ch assembly ρ assembly ’shear’ assembly
Ac (resc.) 0.1 (0.63) 0.1 (0.60) 0.1 (0.64) 0.1 (0.69)
log10 M0 11.19+0.12

−0.10 11.17+0.13
−0.10 11.19+0.12

−0.11 11.19+0.13
−0.11

As 0.31+0.15
−0.08 0.35+0.10

−0.07 0.28+0.07
−0.05 0.27+0.07

−0.05
log10 Mc 11.64+0.04

−0.04 11.63+0.04
−0.03 11.61+0.04

−0.03 11.66+0.03
−0.03

α 0.91+0.14
−0.11 0.93+0.10

−0.07 0.86+0.06
−0.06 0.92+0.08

−0.10
fσv 1.34+0.08

−0.08 1.35+0.08
−0.09 1.34+0.10

−0.09 1.31+0.08
−0.08

σM 0.39+0.08
−0.10 0.39+0.08

−0.09 0.44+0.13
−0.11 0.41+0.10

−0.08
γ 4.50+1.49

−1.29 4.54+1.20
−0.87 5.76+1.13

−1.19 6.05+1.04
−1.13

acen - 0.75+0.12
−0.25 −0.02+0.22

−0.24 0.10+0.05
−0.05

asat - −0.32+0.59
−0.42 0.02+0.63

−0.65 0.00+0.61
−0.57

log10 M ′
1 13.78 13.72 13.87 13.79

fsat 0.024+0.030
−0.017 0.022+0.024

−0.015 0.021+0.024
−0.015 0.021+0.022

−0.017
f1h 0.048+0.010

−0.012 0.044+0.009
−0.013 0.042+0.013

−0.008 0.042+0.015
−0.01

log10 ⟨Mh⟩ 11.86+0.02
−0.02 11.84+0.02

−0.02 11.83+0.02
−0.02 11.82+0.02

−0.02
χ2 (ndf) 152.5 ± 1.1 (64) 144.8 ± 1.0 (62) 150.4 ± 1.4 (62) 147.98 ± 1.14 (62)

Table 5.5: Results of mHMQ fits with strict conformity bias between central and satellite galaxies without
(left) and with assembly bias as a function of halo concentration (ch), local density (ρ) and local density
anisotropies (’shear’). The first line provides the initial fixed value of Ac and the rescaling factor applied
to impose the density constraint in the fits. The following seven or nine parameters are the free HOD
parameters, the next four are derived parameters. log10 M ′

1 is given for best-fit values of α and As (the
latter after rescaling). fsat is the fraction of galaxies which are satellite galaxies. f1h is the fraction of
galaxies which are not alone in their halos. All masses are in units of (M⊙/h).

based on halo concentration, local density or local density anisotropies. HOD parameters and derived
parameters are within 1σ of their values in the model without assembly bias. As a result all models
exhibit similar clustering (almost indistinguishable). We note that the model with assembly bias using
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halo concentration slightly improves the χ2 value with a preference for highly concentrated halos, acen

being close to 1. This constitutes a mild preference for assembly bias, but as the effect on clustering
statistics is small, this preference cannot be established unambiguously. The best fit for assembly bias
using halo local density points towards no dependence with the density as acen is found to be compatible
with 0. In the case of local density anisotropies, best-fit results indicate a preference for halos with a
slightly positive shear, acen being positive, but this preference is weaker than that for halo concentration.
Lastly, the asat parameter is consistent with 0 and poorly constrained in the three models as a consequence
of the fact that the satellite fraction with strict conformity bias is small (∼ 2% ).

5.7.5 Satellite positioning with a modified NFW profile
None of the extensions of the HOD model studied in the previous sections succeeds in producing extra
pairs of galaxies at scales rp = [0.1, 1]Mpc/h as required by data.
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Figure 5.15: Top: DESI ELG clustering measurements from the One-Percent survey data sample com-
pared to best fitting mHMQ models with strict conformity bias: baseline result found in Section 5.7.1
(green) and model with satellite positioning according to a modified NFW profile (red). Errors are Jackn-
nife uncertainties only. Bottom: Fit residuals normalised by the diagonal errors of the full covariance
matrix, that comprise Jackknife uncertainties for the data as well as stochastic noise and cosmic variance
for the model, but no Hartlap factor corrections.

Nevertheless, it is possible to overcome this by changing the radial profile of satellites. Orsi & Angulo
(2018) suggest that, whatever the halo mass, ELGs populate preferentially the outskirts of their host
halos, galaxies accreted more recently being found further away from the halo centre. This is explained
by the fact that satellite galaxies can present high star formation rates only for a short period once
the galaxy gas has been depleted by tidal and ram pressure stripping. As a consequence, star-forming
satellite ELGs are expected to be preferentially located in the outskirts of their halo where recently
accreted subhalos free of the above processes can be found. On the observational side, results showing
that the quenched fraction of the specific star formation rate distribution of galaxies is radially dependent
within a halo were already reported for SDSS galaxies (Blanton & Berlind, 2007, Wetzel et al., 2012).

Inspired by the above publications, we test a modified NFW profile to position ELG satellites. The
number of satellites for a given halo is first drawn according to the standard prescription in Equation (5.6).
A fraction of them, fexp have radial positions drawn from an exponential law:

dN(r)
dr

= e−r/(τ ·rs) (5.18)

where r is the distance between the satellite and the halo centre, and τ governs the length scale of the
exponential and acts on the extension of the profile. Radial positions of the remaining satellites obey
a NFW profile with the same proxy for rvir as in Section 5.5.1 but squeezing the proxy for rs by a
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parameter & χ2 NFW profile modified profile
Ac (resc.) 0.1 (0.63) 0.1 (0.51)
log10 M0 11.19+0.12

−0.10 11.20+0.11
−0.09

As 0.31+0.15
−0.08 0.41+0.10

−0.15
log10 Mc 11.64+0.04

−0.04 11.64+0.04
−0.04

α 0.91+0.14
−0.11 0.81+0.08

−0.14
fσv 1.34+0.08

−0.08 1.63+0.11
−0.10

σM 0.39+0.08
−0.10 0.30+0.09

−0.07
γ 4.50+1.49

−1.29 5.47+1.37
−1.58

fexp - 0.58+0.06
−0.05

τ - 6.14+1.11
−1.20

λNF W - 0.67+0.06
−0.06

log10 M ′
1 13.78 13.84

fsat 0.024+0.030
−0.017 0.034+0.010

−0.012
f1h 0.048+0.010

−0.012 0.069+0.020
−0.024

log10 ⟨Mh⟩ 11.86+0.02
−0.02 11.86+0.03

−0.03
χ2 (ndf) 152.5 ± 1.1 (64) 87.91 ± 1.84 (61)

Table 5.6: Results of mHMQ fits with strict conformity bias using a standard NFW profile for satellite
positioning (left) and our modified profile (right). The first line provides the initial fixed value of Ac

and the rescaling factor applied to impose the density constraint in the fits. The following seven or ten
parameters are the free HOD parameters, the next four are derived parameters. log10 M ′

1 is given for
best-fit values of α and As (the latter after rescaling). fsat is the fraction of galaxies which are satellite
galaxies. f1h is the fraction of galaxies which are not alone in their halos. All masses are in units of
(M⊙/h).

factor λNF W , namely rs → rs/λNF W . This is almost equivalent to extending the profile cut-off with
respect to rvir into rcutoff = λNF W · rvir and allows for modifications of the profile extension. The three
parameters fexp, τ and λNF W are left free to vary in the fits. Note that galaxies positioned beyond the
halo virial radius are improperly called satellites but we keep that denomination here to reflect the HOD
parametrisation component they come from.

The best fitting mHMQ results with strict conformity and the above prescription are compared with
the baseline results using a pure NFW profile in Figure 5.15 for the clustering predictions and in Table 5.6
for the HOD and derived parameters. The modified positioning of satellites translates into a significant
improvement of the agreement between data and predictions, with a χ2 value dropping from ∼152 to
∼88 (p-value of 1.4%). The improvement is most notable in the region of the up-turn of the projected
correlation function (see residuals in Figure 5.15) showing that additional pairs of galaxies have been
generated at these scales with the extended profile, with no degradation of the agreement elsewhere.

An example of satellite density profile corresponding to the best fitting parameters is represented in
Figure 5.16 as a function of the radial position of the satellites with respect to the halo centre projected
perpendicular to the line of sight. The profile clearly shows that the exponential component acts at
projected scales between 0.03 and 1 Mpc/h, the region of the up-turn in wp. Note that the scales covered
by our clustering measurements are more sensitive to the region close to the halo virial radius (hence to
the cut-off applied to the NFW profile) than to the shape of the profile deep in the halo core.

Table 5.6 shows that the HOD parameters as well as the derived parameters are similar between
the two models, except for a 20% increase of the value of fσv

, meaning that the extended profile of
satellites leads to a higher satellite velocity dispersion. This provides a coherent picture as recently-
accreted subhalos in the outskirts of halos are expected to have higher velocities than the virial velocity
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Figure 5.16: Normalized satellite density profile for best-fit parameters in the mHMQ model with strict
conformity and our modified NFW profile prescription for satellites, as a function of the projected galaxy-
halo centre distance perpendicular to the line of sight. Once this profile is embedded into a HOD model,
this distance is also the projected separation of central-satellite pairs. In this example, we consider a halo
of concentration 5 and rs = 0.06Mpc/h (corresponding to halo masses around 1012M⊙/h, close to the
mean halo mass value of our sample). Curves (all normalized at a maximal value of 1) are for the NFW
profile (blue), the added exponential law (dotted), the combination of the two with no scaling of the NFW
cut-off (green) and the complete modified model (red).
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Figure 5.17: Left: Best fitting HOD models to the DESI One-Percent ELG sample with strict conformity
bias, obtained with a standard NFW profile for satellites (green) and with our modified NFW profile (red).
Solid (resp. dashed) lines represent central (resp. satellite) galaxies. The mHMQ prescription is used
for centrals. Right: Number of galaxies per halo mass bin for halos populated according to the mHMQ
models on the left. The simulation box volume is 1.66 (Gpc/h)3. The full distributions are in solid lines.
The dashed lines show the one-halo component of the full distributions. The two satellite profiles produce
similar results, with a larger scatter in populated halo masses for the modified profile.
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of the halo. The comparison between the two models is further illustrated in Figure 5.17, which presents
the HOD and the distribution of the number of galaxies per populated halo mass bin of the two models.
The only difference is a larger scatter in populated halo masses for with the modified NFW profile.

The profile parameters, fexp, τ and λNF W , are all well constrained by data and their best fitting
values are in favour of a departure from a standard NFW profile. We find that the exponential profile
contains around 60% of the satellites and a fraction of these (approximately 12% of the total number of
satellites, as measured in the mocks at best fitting HOD parameters) are placed beyond our proxy for the
halo virial radius (see Figure 5.16). The above modified profile is empirical and can most probably be
replaced by a more physics driven modelling. Nevertheless, our main finding is that the ELG clustering
measured by the DESI One-Percent survey clearly favours a fraction of ELGs residing in the outskirts of
halos, as suggested by Blanton & Berlind (2007), Wetzel et al. (2012) and Orsi & Angulo (2018).

5.8 Testing for redshift evolution
The ELG clustering measurements are produced in two separate redshift bins, from 0.8 to 1.1 and 1.1 to
1.6, with completeness-weighted redshifts of 0.95 and 1.32, respectively. The clustering measurements for
the two redshift bins including completeness and FKP weights are shown in Figure 5.18. Measurements
in the two redshift bins agree for most separations but exhibit significant differences in the monopole up
to 10 Mpc/h and in the projected correlation function around the up-turn scale of 0.3 Mpc/h. It is thus
interesting to fit the two bins in redshift separately to see how the agreement between HOD modelling and
data evolves. The HOD model in each bin is calculated from the N-body simulation snapshot closest to
the mean completeness-weighted redshift of the bin (i.e. snapshots at z=0.95 and z=1.325, respectively).

Best fitting results in the two redshift bins from the mHMQ model with strict conformity and our
modified NFW profile for satellite positioning are presented in Figure 5.18 and summarised in Table 5.7.
With respect to results obtained in the full redshift bin (see right column in Table 5.7, p-value of 1.4%),
the goodness of fit is similar in the low redshift bin (p-value of 0.6%) and much better in the high redshift
bin (p-value of 35%). Variations of the HOD parameters and the derived parameters with redshift appear
to be moderate, parameter values in the two redshift bins being all within 1σ. The same is true for the
distribution of the number of galaxies per populated halo mass bin as shown in Figure 5.19. In the
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Figure 5.18: Top: DESI ELG clustering measurements from the One-Percent survey data sample in two
different redshift bins from 0.8 to 1.1 (black) and 1.1 to 1.6 (orange), compared to best fitting mHMQ
models with strict conformity bias and our modified NFW profile for satellite positioning, for the redshift
0.8 to 1.1 (green) and 1.1 to 1.6 (red). The dashed line is the pure halo clustering for the low redshift bin.
Errors are Jackknife uncertainties. Bottom: Fit residuals normalised by the diagonal errors of the full
covariance matrix (calculated for each redhsift bin), that comprise Jackknife uncertainties for the data as
well as stochastic noise and cosmic variance for the model, but no Hartlap factor corrections.
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parameter & χ2 0.8 < z < 1.1 z̄ = 0.95 1.1 < z < 1.6 z̄ = 1.325 0.8 < z < 1.6 z̄ = 1.1
Ac (resc.) 0.1 (0.43) 0.1 (0.51) 0.1 (0.51)
log10 M0 11.10+0.05

−0.04 11.23+0.16
−0.14 11.20+0.11

−0.09
As 0.38+0.04

−0.04 0.47+0.13
−0.13 0.41+0.10

−0.15
log10 Mc 11.62+0.02

−0.04 11.67+0.04
−0.04 11.64+0.04

−0.04
α 0.74+0.07

−0.05 0.85+0.08
−0.10 0.81+0.08

−0.14
fσv 1.71+0.11

−0.14 1.71+0.20
−0.15 1.63+0.11

−0.10
σM 0.21+0.10

−0.05 0.29+0.11
−0.08 0.30+0.09

−0.07
γ 6.49+0.69

−1.39 5.10+1.51
−1.20 5.47+1.37

−1.58
fexp 0.70+0.10

−0.09 0.55+0.10
−0.09 0.58+0.06

−0.05
τ 5.69+1.72

−2.00 7.22+1.77
−3.14 6.14+1.11

−1.20
λNF W 0.60+0.09

−0.09 0.67+0.07
−0.07 0.67+0.06

−0.06
log10 M ′

1 14.05 13.73 13.84
fsat 0.026+0.005

−0.005 0.035+0.010
−0.011 0.034+0.010

−0.012
f1h 0.053+0.009

−0.009 0.069+0.019
−0.021 0.069+0.020

−0.024
log10 ⟨Mh⟩ 11.78+0.03

−0.04 11.86+0.05
−0.05 11.86+0.03

−0.03
χ2 (ndf) 89.78 ± 0.66 (59) 58.35 ± 0.41 (55) 87.91 ± 0.84 (61)

Table 5.7: Results of mHMQ fits with strict conformity bias and our modified NFW profile for satellite
positioning, presented separately in two redshift bins and compared to the results with the whole redshift
bin (right). The first line provides the initial fixed value of Ac and the rescaling factor applied to impose
the density constraint in the fits. The following ten parameters are the free HOD parameters, the next
four are derived parameters. log10 M ′

1 is given for best-fit values of α and As (the latter after rescaling).
fsat is the fraction of galaxies which are satellite galaxies. f1h is the fraction of galaxies which are not
alone in their halos. The number of degrees of freedom is different in the three bins and indicated in
brackets in the χ2 row. All masses are in units of (M⊙/h).
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Figure 5.19: Left: Best fitting HOD models to the DESI One-Percent ELG sample split in two separate
redshift bins, 0.8-1.1 (green) and 1.1 to 1.6 (red), with strict conformity bias and our modified NFW
profile for satellite positioning. Solid (resp. dashed) lines represent central (resp. satellite) galaxies.
The mHMQ prescription is used for centrals. Right: Number of galaxies per halo mass bin for halos
populated according to the mHMQ model on the left. The simulation box volume is 1.66 (Gpc/h)3. The
full distributions are in solid lines. The dashed lines show the one-halo component of the full distributions.
The two redshift bins exhibit similar distributions, the higher redshift bin (1.1 to 1.6) showing a larger
scatter towards higher populated halo masses.
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high redshift bin, there is a small increase of the scatter in the latter towards higher populated halo
masses, which is reflected in the higher halo mass scale of the ELG sample, 11.86+0.05

−0.05 vs 11.78+0.03
−0.04 but

the difference is at the level of 1σ. For completeness, we show in Appendix B the contour plots of the
mHMQ fits with strict conformity and our modified NFW profile for satellite positioning obtained at
final iteration in the two redshift bins.

To conclude, changes of the ELG sample with redshift in terms of the mean halo mass or in the one-
halo term fraction are at the level of 1σ and thus cannot be considered as significant.In the companion
paper H. Gao et al. (2023), the ELG sample of the DESI One-Percent survey was split in narrower redshift
bins but did not show a significant variation with redshift of the characteristic halo mass hosting ELGs
either. In a second companion analysis J. Yu et al. (2023), the luminosity of that sample (from [O II]
emission) was also found to evolve very mildly with redshift (see their Figure 9).We discuss further the
results from the companion analyses in Section 5.10. Using a sample of [O II] emitters at z > 1 in the
Subaru HSC survey, Okumura et al. (2021) also found a constant mass across redshifts bins, in agreement
with our findings.

5.9 Testing for cosmology dependence
In this section, we study how the previous results evolve when changing the reference cosmology both in
the simulation box (used for the modelling) and in the fiducial cosmology (used to convert redshifts to
distances). We test one cosmology with a high Neff value and one with a low σ8 value (see Table 5.8 for
the complete list of cosmological parameter values). In this section, we continue with the mHMQ model
with strict conformity bias and the extended NFW profile for satellite positioning but perform fits in the
full redshift bin.

Cosmologies Ωcdmh2 Ωbh
2 σ8 ns h w0 wa

baseline 0.1200 0.02237 0.811355 0.9649 0.6736 -1 0
high Neff(c003) 0.1291 0.02260 0.855190 0.9876 0.7160 -1 0
low σ8 (c004) 0.1200 0.02237 0.753159 0.9649 0.6736 -1 0

Table 5.8: Parameter values of the three cosmologies used in Section 5.9. Indicated are the present-
day densitites of cold dark matter and baryons, the normalisation today of the linear power spectrum in
spheres of radius 8Mpc/h, the spectral index of the primordial matter power spectrum, the reduced value
of the Hubble constant and the dark energy equation of state parameters.

Best fitting results are presented in Figure 5.20 and summarised in Table 5.9. Despite the change of
cosmology, the data clustering can be modeled with similar goodness of fit as in the baseline cosmology,
showing that the tested changes have a negligible impact on clustering. Changing the cosmology does not
lead to significant changes for most HOD and derived parameters. The largest changes are for log10 Mc

and fσv
, with shifts between 1 and 2σ. For the derived parameters, both the satellite and one-halo

fractions have consistent values. As a consequence of the variation of log10 Mc, the mean halo mass,
log10 ⟨Mh⟩, varies by at most 2.7σ (0.08 dex) with the cosmological changes tested. Figure 5.21 shows
the distribution of the number of galaxies per populated halo mass bin at best fit for the three cosmologies.
The spread of the distribution is different in the three cases, the largest spread being observed for the low
σ8 cosmology. The baseline and low σ8 cosmologies differ only by their values of the σ8 parameter which
has a direct impact on structure formation. A higher σ8 value is expected to generate fewer small-mass
halos and more large-mass halos at the same redshift and thus may explain the reduced spread at smaller
halo masses for the baseline cosmology. At large mass, the spread evolves in the opposite direction to that
expected from σ8 values and may be governed more by the clustering to be modelled. The same argument
holds for the Neff cosmology, although in that case, several other parameters have different values than
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in the baseline cosmology (lower Ωm and higher ns, h) which have a different effect on structure formation
that can partly compensate for the effect of σ8.

parameter & χ2 high Neff low σ8 Planck 2018
Ac (resc.) 0.1 (0.63) 0.1 (0.49) 0.1 (0.51)
log10 M0 11.20+0.17

−0.13 11.22+0.12
−0.12 11.20+0.11

−0.09
As 0.42+0.14

−0.11 0.46+0.11
−0.12 0.41+0.10

−0.15
log10 Mc 11.67+0.03

−0.02 11.51+0.02
−0.02 11.64+0.04

−0.04
α 0.97+0.12

−0.14 0.80+0.09
−0.11 0.81+0.08

−0.14
fσv 1.40+0.09

−0.10 1.65+0.13
−0.17 1.63+0.11

−0.10
σM 0.42+0.10

−0.08 0.59+0.09
−0.08 0.30+0.09

−0.07
γ 4.36+0.9

−0.88 5.02+1.18
−1.38 5.47+1.37

−1.58
fexp 0.57+0.07

−0.07 0.55+0.05
−0.05 0.58+0.06

−0.05
τ 6.01+1.07

−1.04 8.05+1.18
−1.62 6.14+1.11

−1.20
λNF W 0.64+0.06

−0.06 0.63+0.07
−0.06 0.67+0.06

−0.06
log10 M ′

1 13.60 13.81 13.84
fsat 0.034+0.009

−0.009 0.034+0.008
−0.010 0.034+0.010

−0.012
f1h 0.067+0.018

−0.017 0.067+0.019
−0.016 0.069+0.020

−0.024
log10 ⟨Mh⟩ 11.94+0.03

−0.03 11.84+0.02
−0.02 11.86+0.03

−0.03
χ2 (ndf=61) 78.23 ± 0.90 93.80 ± 0.83 87.91 ± 0.84

Table 5.9: Results of mHMQ fits with strict conformity bias between central and satellite galaxies in
our baseline cosmology (right), in the high Neff cosmology (left) and in the low σ8 cosmology (middle).
The first line provides the initial fixed value of Ac and the rescaling factor applied to impose the density
constraint in the fits. The following ten parameters are the free HOD parameters, the next four are
derived parameters. log10 M ′

1 is given for best-fit values of α and As (the latter after rescaling). fsat is
the fraction of galaxies which are satellite galaxies. f1h is the fraction of galaxies which are not alone in
their halos. All masses are in units of (M⊙/h).

5.10 Comparing to companion DESI analyses
Two companion analyses studied the clustering of the One-Percent DESI ELG sample in the same redshift
range as in the present analysis, but with different methodologies, SHAM in J. Yu et al. (2023) and a
novel abundance matching method based on the stellar-halo mass relation (SHMR-AM) in H. Gao et al.
(2023). Despite differences in methodology, N-body simulation, reference cosmology, clustering statistics
and separation ranges included in the analysis, their findings on the mean halo mass scale of the DESI
ELG sample, 11.90 ± 0.06 in the SHAM analysis and ∼ 12.07 in the SHMR-AM one, agree with ours,
11.86+0.02

−0.01.
The satellite fraction we find without central-satellite conformity - that is allowing for satellite ELG

galaxies with no central ELG galaxy in their halo - is 12% ± 2%. This result becomes 3.4% ± 1.0% with
central-satellite conformity. Note that both companion SHAM analyses include satellite galaxies (living
in subhalos) with no ELG central galaxy in the main halo, which is comparable to no central-satellite
conformity. The SHMR-AM analysis uses measurements of wp above 0.1 Mpc/h in rp and multipole
measurements on scales above 0.3 Mpc/h and measures a satellite fraction ∼ 15%, which is consistent
with our result. The SHAM analysis uses multipole measurements on scales above 5 Mpc/h and thus
can only derive a predicted fraction of satellites. Their result is 3.4% ± 2.0%, which does not agree with
the above results, most probably as a result of too high a threshold on scales included in their fits. This
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Figure 5.20: Top: DESI ELG clustering measurements from the One-Percent survey data sample in
different cosmologies, high Neff (orange dots) and low σ8 (dark blue dots). The distance-redshift relation
in the low σ8 cosmology is the same as in the baseline cosmology. Data are compared to best fitting HOD
models obtained in the baseline (green), low σ8 (purple) and high Neff cosmologies. The HOD model
is the mHMQ model with strict conformity bias and our modified NFW profile for satellite positioning.
The dashed line is the pure halo clustering. Errors are jackknife uncertainties. Top: high Neff cosmology
Bottom: Fit residuals normalised by the diagonal errors of the full covariance matrix (calculated for each
cosmology), that comprise Jackknife uncertainties for the data as well as stochastic noise and cosmic
variance for the model, but no Hartlap factor corrections.
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Figure 5.21: Left: Best fitting HOD models to the DESI One-Percent ELG sample with strict conformity
bias and our modified NFW profile for satellite positioning, obtained with different cosmologies: baseline
(green), high Neff (red) and low σ8 (purple). Solid (resp. dashed) lines represent central (resp. satellite)
galaxies. The mHMQ prescription is used for centrals. Right: Number of galaxies per halo mass bin
for halos populated according to the best fitting HOD models on the left. The simulation box volume
is 1.66 (Gpc/h)3. The full distributions are in solid lines. The dashed lines show the contribution the
one-halo component of the full distributions.
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high threshold also makes it impossible to achieve a good modelling of the wp up-turn at small-scales (see
Figure C4 in J. Yu et al. (2023)). Despite their using small-scale measurements in their fits, the SHMR-
AM analysis also struggles to correctly reproduce the wp clustering at the smallest scales (see Figure
11 in H. Gao et al. (2023)). Work is underway to include central-satellite conformity in the SHMR-AM
analysis, which should improve the results.

Using our best fitting mHMQ model with strict conformity bias and our modified NFW profile, we
also compute the predicted linear bias factor of the DESI One-Percent ELG galaxy sample. To do so,
we produce 100 mocks with HOD parameters randomly selected in the MCMC chains at the fit final
iteration, convert them to real-space and compare the 2PCF from these mocks to the predicted real space
2PCF from linear theory (at the same cosmology), which are related by the squared value of the linear
bias factor of the galaxy sample:

ξr
mocks(s) = b2ξr

linear(s) (5.19)
Using this equation for s between 40 and 80 Mpc/h, we fit the value of b for each mock and average
them over all mocks. In order to propagate the uncertainties from the measured clustering and the fitting
methodology (which are reflected in the pool of HOD parameter values used to produce the mocks), the
dispersion over the mocks is taken as the error on the reported value of b. Our results are presented in
Figure 5.22 as a function of the redshift of the simulation snapshot used for the modelling. We find the
following values: b0.95 = 1.20+0.04

−0.04 for the low redshift bin, b1.1 = 1.33+0.03
−0.03 for the complete redshift bin

and b1.325 = 1.45+0.03
−0.03 for the high redshift bin.We also indicate the evolution with redshift of the inverse

of the linear growth factor, with arbitrary normalisation. The bias deduced from our HOD study has an
evolution consistent at the 1σ level with that of the growth factor.

Figure 5.22 also presents the results derived in two companion analyses, both SHAM analyses, the
first one already mentioned J. Yu et al. (2023) based on the UNIT simulation, and the second one F.
Prada et al. (2023) using the UCHUU simulation and the ELG data sample restricted to the redshift
range between 0.8 and 1.34. Note that in the latter case, the reported errors are errors on the mean bias
measured from a set of best-fit SHAM lightcones and thus do not include clustering measurements errors
from data. Despite the differences between the analyses already outlined at the beginning of this section,
the predictions with error bars are in reasonable agreement. The set of results with incomplete error bars
provides a qualitative cross-check.

5.11 Conclusions
The sample of ∼ 270k ELGs collected by the DESI One-Percent survey in the redshift range between 0.8
and 1.6 (averager redshift of 1.13) is used to study the ELG small-scale clustering in the HOD framework.
Thanks to the high completeness of the sample, the clustering measurements can be pushed down to scales
never probed before in redshift space, 0.04 Mpc/h in rp for the projected correlation function wp and
0.17 Mpc/h in separation s for the two even multipoles of the 2PCF. A strong one-halo signal is observed
at the smallest scales, below 0.2 Mpc/h in rp and below 1 Mpc/h in s. To correctly model the strong
one-halo term signal requires putting close pairs of galaxies in small-mass halos.

For central galaxies, we consider different prescriptions, a pure Gaussian distribution and three asym-
metric ones, the strongest skewness being achieved with a log normal distribution. For satellites, we use
a standard power law and do not require the presence of a central galaxy to put a satellite in the halo.
Satellite positioning follow a NFW profile with a cut-off set at the halo virial radius, and we allow for
velocity dispersion biased w.r.t that of the halo dark matter particles. Several extensions of these models
are also explored.

In our baseline settings, whatever the different prescriptions for the central HOD, we achieve a good
modelling of the measured clustering down to the smallest scales but obtain satellite HODs that decrease
at large halo mass, contrary to expectations from semi-analytical ELG models. We recover satellite
occupation distributions that agree with expectations if we introduce central-satellite conformity, that is
if we require that satellite occupation is conditioned by the presence of central galaxies of the same type.
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Figure 5.22: Linear bias factor of the DESI One-Percent survey ELG sample as a function of redshift,
as found in this work (green dots with errors) and in two companion DESI analyses which explored the
galaxy-halo connection with a different methodology (red diamonds from J. Yu et al. (2023) and blue dots
from F. Prada et al. (2023)). Errors for the green dots and red diamonds (resp. blue points) include
(resp. do not include) statistical errors from the measured clustering. The dashed line is the predicted
evolution of the inverse of the linear growth factor D(z) (in the baseline cosmology of the present analysis)
arbitrarily normalized.

With or without conformity, whatever the prescriptions for central HOD, satellite velocity dispersion
and secondary biases, when the standard NFW profile is used for satellites, our modelling of the measured
clustering, although good, exhibit residuals with a reproducible pattern between 0.1 and 1 Mpc/h, showing
that extra pairs of galaxies are lacking in our predictions for this region. A much better modelling is
obtained with a modified NFW profile, allowing for ELG positioning outside of the halo virial radius,
following a decreasing exponential law. With this prescription, we find that the measured ELG clustering
clearly indicates that around 0.5% of ELGs reside in the outskirts of halos. The significant improvement
in the goodness of fit with the modified satellite profile leaves the other parameters of the HOD modelling
unchanged.

Moreover, with or without conformity, and whatever the model for central galaxies, we find that the
satellite velocity dispersion must be enhanced w.r.t. that of dark matter particles to correctly reproduce
the measured clustering. We show that this model cannot be disentangled from a coherent satellite
infall velocity inside halos. The velocity bias reaches ∼ 1.6 when our modified NFW profile for satellite
positioning is used, and ∼ 1.3 otherwise. Note that an increased velocity dispersion is coherent with
the picture of ELGs residing in the outskirts of halos as recently-accreted sub-halos in these regions are
expected to have higher velocities than the virial velocity of the halo.

The above findings are the main results of our work. With our best fitting HOD modelling, that is
with central-satellite conformity, an extended NFW profile for satellite positioning and satellite velocity
bias, the average halo mass of the ELG sample is log10 ⟨Mh⟩ ∼ 11.9, the linear bias factor at a redshift
of 1.1 is ∼ 1.3 and the fraction of galaxies which are not alone in their halos (the so-called one-halo
component) is ∼ 7%. The fraction of satellites is ∼ 3% but is highly dependent on the details of the
HOD modelling, and would be ∼ 12% without central-satellite conformity.
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We also investigate secondary biases and do not observe significant differences in our results when
allowing for assembly bias as a function of halo concentration, local density or local density anisotropies.
Although we report a slight improvement in the χ2 value for assembly bias as a function of halo concen-
tration, this effect has a small impact on clustering statistics (almost indistinguishable).

Spliting the ELG sample in two redshift bins, from 0.8 to 1.1 and 1.1 to 1.6 moderately changes the
HOD and derived parameters. We do see a slight change across redshift in terms of halo mass populated
with ELGs (0.08 dex), which we do not consider as significant.

The above results are obtained using simulation boxes from the AbacusSummit suite generated at
the baseline Planck 2018 cosmology but we investigate two other cosmologies, with higher Neff and lower
σ8 values respectively. These moderate change in the simulation cosmology have no significant impact
on the one-halo term fraction and most HOD parameters, except for log10 Mc and fσv

, and thus for the
predicted average halo mass of the sample which varies at most by 0.08 dex, which again cannot be
considered as significant. This effect may be related to the different σ8 values in the three cosmologies
tested. However, despite the change of cosmology, the data clustering can be modeled with similar
goodness of fit.

Finally, in the DESI framework, this study will be used to generate a large suite of accurate DESI-
like mocks, varying the HOD models. These mocks will be useful to study the impact of observational
systematics, test the corresponding mitigation algorithms and to study the impact of the complexity of
galaxy formation and evolution on cosmological inference.
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A Proxies for rs and rvir in the NFW profile
We further discuss our proxy choice for rs and rvir in the NFW profile used in our analysis. Figure 23
shows the predicted projected 2-point correlation function wp on scales rp < 0.4 Mpc/h for the same
HOD model, changing the proxy for rvir and rs. For rvir, we test two different choices, either r98, the
radius of a sphere enclosing 98% of the halo particles and rso, the radius of a sphere containing the total
halo mass Mvir, computed as the sum of the halo particle masses and expressed as an overdensity ∆:

rso ≡
(

3
4π

Mvir

∆ρc(z)

)1/3
(20)

where ρc is the critical density. The overdensity is provided for each AbacusSummit snapshot, e.g. for
the snapshot corresponding to the effective redshift z = 1.1 of the ELG sample, ∆ = 223. For the rs

proxy, we use the radius rx of a sphere encompassing different percentages of the halo particles, with
x = 50, 33, 25 and 10%. We compare the above predictions to that from a particle based mock (where
the satellite assignment is based on particles inside the halo) for the same HOD model. The shaded
grey region represents the ±1σ measurement error for the actual DESI ELG sample in the redshift range
between 0.8 and 1.6. From this comparison, the proxy that best reproduces the particle based mock
corresponds to rvir = r98 and rs = r25.
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Figure 23: Top: Predicted wp clustering on scales rp < 0.4 Mpc/h for the same HOD model, using as
a proxy for rvir either r98 (left) or rso (right). Predictions for different proxies for rs, corresponding
to the radius of a sphere that contains 50, 33, 25 and 10% of the halo particles (in blue, red, purple and
green, respectively) are compared to the clustering of one mock where the satellite assignment is based on
DM particles (dashed black line). Bottom: wp difference between mocks with different rs proxies and the
particle based mock, multiplied by rp. The shaded grey area corresponds to the ±1σ error of DESI data
as shown in Figure 5.3.

B Contour plots of the mHMQ fits
Figures 24 and 25 show the contours obtained at final iteration in the Gaussian Process (GP) pipeline for
mHMQ with and without strict conformity bias fits to the DESI One-Percent Survey ELG sample. Most
contours are well enclosed our prior ranges. The notable exceptions are γ and log10 M0 for the conformity
case. For log10 M0, the prior range is limited by the minimum halo mass available in the simulations,
10.86 and the fact that log10 M0 is not constrained if its value is below the minimum mass of halos that
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can be populated with central galaxies. γ is degenerated with σM and has a weak impact on the shape
of the HOD compared to σM .

The parameters we constrain the most are α and its degeneracy with As, log10 Mc and its degeneracy
with σM , fσ,v and log10 M0 (only for the case without conformity for the latter two parameters).
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Figure 24: Contours (at 1,2 and 3σ level) and marginalised 1D posteriors at final iteration obtained in
the GP pipeline for the mHMQ fit to the One-Percent DESI survey ELG data for the whole redshift bin
0.8 < z < 1.6, without conformity bias between central and satellite galaxies.

Figure 26 shows the contours obtained at final iteration in the Gaussian Process (GP) pipeline for
mHMQ fits to the DESI One-Percent Survey ELG sample in the two redshift bins considered in this
paper, 0.8 < z < 1.1 and 1.1 < z < 1.6. Strict conformity is applied as well as our modified NFW profile
for satellite positioning. The HOD parameters are well constrained in the lower redshift bin, while the
constraints are less stringent in the higher bin, where we constrain only log10 Mc and its degeneracy with
σM , α and its degeneracy with As, fσv

and two of the satellite profile parameters, fexp and λNF W .
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O ver the past decade, the large scale structures of the Universe have become one of the most promising
cosmological probes of dark energy and gravity models, through the precise determination of the

baryon acoustic oscillation scale and the measure of the non-linear growth rate of structure from redshift
space distortions (Alam et al., 2021).

Chapter 1 presents the standard cosmological model ΛCDM and the different surveys that can probe
the nature of the cosmic acceleration and constrain cosmological parameters. Among the different ap-
proach, large structure of the Universe is a key cosmological probe, clustering measurements from spec-
troscopic galaxy surveys allow cosmological parameters to be constrained through measurements of the
baryon acoustic oscillation (BAO) scale and from the full shape analyses of 2-point statistics which trans-
late into constraints on both BAO scales and the linear growth rate of structure fσ8 through redshift
space distortions. The growth rate can be used as a direct test of the underlying theory of gravitation,
general relativity (GR) in the standard cosmological model. At small scales, clustering measurements
are invaluable to study the galaxy-halo connection and to provide precise measurements of fσ8. They
also allow realistic mock catalogues to be produced that are used to prepare large scale analyses and to
assess their systematic errors related to the complexity of galaxy formation and evolution.

The core of my PhD work was to provide accurate model of the small-scale clustering of the ELG
sample collected by the Dark Energy Spectroscopic Instrument (DESI) survey. Chapter 2 gives an
overview of the DESI, which will over 5 years, observe ∼ 40M galaxies and quasars over 0.1 < z < 3.5,
including ∼ 17M ELGs in 0.6 < z < 1.6, to strongly constrain dark energy models. In only two months
of early observations, DESI observed 267k ELGs which is the largest ELG spectroscopic sample to date.
Thanks to its high fibre arrangement completeness, this early data sample –The DESI One-Percent
survey– allows precise clustering measurements down to very small scales, 0.03 Mpc/h. During my PhD,
I actively took part of the DESI collaboration. In particular, I have made a major contribution to the
generation of mocks (simulated galaxy catalogues) for the DESI collaboration, studying the galaxy-halo
connection of the ELGs sample. I worked closely with the data, participating in the creation of the ELGs
data clustering catalogues, and carry out numerous tests to check systematic effects.

The Chapter 3 of this thesis gives an overview of theoretical formalism of structure formation in
the linear and non-linear regime, describes the different simulation techniques to simulate the non-linear
evolution of the dark matter field (and baryons). In a second part, I introduce the galaxy-halo connection
and the various modelling techniques, either based on semi-analytical models or on empirical relations used
to populate dark matter halos from N-body simulations. In this PhD work I used the Halo Occupation
Distribution (HOD) formalism, to study the galaxy-halo connection of the ELG sample from the DESI
One-Percent survey.

Then, in Chapter 4 I developed a novel and promising HOD Gaussian process based fitting pipeline
to reproduce the small scale clustering in an accurate and efficient way and use it to study the DESI ELG
sample. I first developed an efficient multi-threaded code to generate galaxy mocks using HOD models
suitable for different matter tracers (LRGs, ELGs, QSOs). These models differ in the functions describing
the probability to populate halos with central or satellite galaxies, but by default all probabilities are
only functions of the halo mass. This pipeline was further complemented by an iterative fitting procedure
based on Gaussian processes to create a surrogate model of the expected likelihood multidimensional
function. The whole procedure was tested on simulations, showing that HOD parameters for clustering
2-point statistics of a DESI ELG-like sample are recovered with better precision than expected from
fitting DESI data, while evaluating ≈ 100 times less points in the HOD parameters space than standard
techniques based on Monte Carlo Markov Chains.

In Chapter 5, we apply this method to the DESI ELG sample from the One-Percent survey. DESI
ELGs shows an unexpected strong clustering signal at small scales rp < 0.3 Mpc/h. I investigated
potential sources of systematics (foreground effects, blending) which could have impacted the clustering
at these scales, but found the signal robust to such contaminations. I demonstrated that physically
motivated ELG HOD models for central and satellite galaxies cannot reproduce this behaviour. To
reproduce the small scale clustering of ELGs, I then demonstrated that we must introduce close pairs of
galaxies in low mass halos (< 1012M⊙), which was unexpected based on previous ELGs studies Avila et al.
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(2020), Gonzalez-Perez et al. (2018). To propose a physical model to the clustering excess apparent at
small scales, I investigated the effect of a potential conformity bias. Conformity adds prior information to
the satellite probability function depending on whether the DM halo already hosts a central galaxy. This
property slightly improves the modelling of the small-scale clustering data while keeping the satellite halo
mass dependence in agreement with physical expectations. Our results are in agreement with what very
recent hydrodynamical studies find on conformity between ELGs central and satellite galaxies Hadzhiyska
et al. (2021). We also report a satellite velocity dispersions about ∼ 50% higher than that of dark matter
particles. Other extensions to standard HOD models (eg. secondary biases, changing fiducial cosmology)
bring no significant change to our results, except when we allow satellite ELGs to lie outside of the
halo virial radius. It is with this assumption that we obtain the best model of the measured clustering,
corresponding to ∼ 0.5% of the sample ELG sample (and ∼ 12% of the satellites) residing in the halo
outskirts. This work was submitted as part of the Early Data Release of the DESI collaboration.

As part of my work on HOD ELG fitting, I provided the DESI collaboration with a set of official
mocks representative of the ELG clustering as measured in the One-Percent survey. These mocks are
currently used within DESI to test standard BAO and RSD clustering analyses for DESI Year 1 data
release and I participate in the discussion and the analysis. Besides the above work, I contributed to
many efforts within the DESI collaboration that should allow me to be a continuing participant of the
DESI collaboration. I participated in the study of possible systematic effects in the ELG spectroscopic
redshift success rate measurement as a function of spectroscopic observing conditions which will also lead
to a supporting paper for DESI Year 1 analysis. During the survey validation process (prior to run the
main survey), I also contributed to the visual inspection of galaxy spectra to validate the pipeline of
redshift determination Lan et al. (2022).

Future perspectives in cosmology
I hereafter present what could be my future activities in cosmology. The guidelines of my future work will
focus on how to improve cosmological measurement using information from the smallest scales.

➢ Joint inference of HOD and cosmological parameters

Small scale clustering studies will bring numerous promising applications for cosmological analysis. Var-
ious recent studies have investigated the combined inference of the galaxy-halo connection
and cosmological parameters using emulator techniques (mostly based on Gaussian pro-
cesses) DeRose et al. (2019), Lange et al. (2022), Yuan et al. (2022a). Yuan et al. (2022a)
showed an improvement in the measure of the growth rate by 30–40% compared to previous studies, by
adding non-linear scales using an emulator and expect these constraints should tighten by at least 50%
thanks to the statistical power of DESI Year 1.

In our work Rocher et al. (2023), we show that even at fixed cosmology, cosmic variance, stochasticity
and degeneracies between HOD parameters complicate the measurement of HOD parameters. Adding
secondary biases in the HOD model can introduce some degeneracy and bias the results when performing
the combined inference of HOD and cosmological parameters Cuesta-Lazaro et al. (2022). One of the ma-
jor challenges will be to correctly understand and model the degeneracies between HOD and cosmological
parameters to avoid biases in the results. I intend to expand this work and perform combined inference of
HOD and cosmological parameters. Based on my expertise of DESI data and HOD modelling, I plan to
use the 85 available N-body simulations at different cosmologies to construct an emulator of the clustering
statistics (2PCF) in order to perform combined inference of HOD and cosmological parameters for DESI
Year 1 ELG data. I want to investigate several aspects of the ELG HOD modelling, including secondary
biases, performing a scale-dependent study and testing the emulator robustness and accuracy.
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This study is intend to be perform using Year 1 DESI data and expected to be done for the Y1 data
release. It can be done during the time available for independent projects and will be also useful for other
studies related with weak lensing analysis.

➢ Refine the galaxy-halo connection using hydrodynamical simulations
HOD models are an efficient way to describe the connection between tracers and dark-matter halos. How-
ever it neglects baryonic processes that arise from galaxy formation and evolution. In that sense, hydro-
dynamical simulations which resolve simultaneously dark matter and baryonic physics, are a natural path
to improve our understanding of the galaxy-halo connection. Studies from the Illustris-TNG simulations
show very promising results for the galaxy halo connection of ELGs Hadzhiyska et al. (2021), Yuan et al.
(2022b). Recently, using the State-of-the-art hydrodynamical simulation, Millenium-TNG Hernández-
Aguayo et al. (2022), the conformity between ELGs central and satellites was evidenced in Hadzhiyska
et al. (2022), which support our findings in DESI data. The results of hydrosimulations provide
us with new lines of investigation, i.e. super-Poisson distribution of satellites, better modelling of radial
profile, radial velocity profile or velocity dispersion profile of ELG satellites. Implementing these depen-
dencies in our model and applying it to fit the DESI data will greatly improve our understanding of the
physical processes at play in the galaxy-halo connection.

➢ Extracting information beyond 2-point statistics
Non standard statistics can bring relevant additional information to constrain cosmological parameters
and the galaxy-halo connection. One example is the use of higher order statistics in the correlation
function. With the results from early ELG DESI data, i.e. the need for satellite pairs at small separations,
the use of the 3PCF should improve contraints on the galaxy-halo connection, and I plan to take a
significant role in these studies. Another very interesting result when combining HOD+cosmological
parameters is that of Storey-Fisher et al. (2022), which finds that adding non standard statistics, i.e.
density-dependent correlation function, improves the precision of the measurement by a factor of 2.
Complementary to my involvement in the 3PCF, I intend to use and develop these techniques to improve
the amount of information that we can get from data.

A different approach to improve cosmological constraints is to take advantage of cross-correlations
between galaxy tracers. In DESI, first results from multi-tracer analyses for RSD or BAO studies show
improvement of 20% on the growth rate estimation for low redshift galaxies and we can expect more from
optimising the analysis. To go in that direction, I plan to extend my studies of the ELG halo connection
by adding the cross-correlation with other DESI tracers and participate to the creation of high fidelity
mocks to prepare the cosmological analyses with the DESI Year 3 sample expected at the end of 2024.
My expertise will be highly valuable and I would like to study in more details the issues related to the
conformity effects for the different tracers. This study will be also a critical step for performing joint
modelling of galaxy clustering and galaxy-galaxy lensing as I describe in the following.

➢ Joint galaxy clustering and weak lensing analysis
In the near future, upcoming experiments like the Vera Rubin Observatory LSST or EUCLID space
telescope will bring a massive amount of photometric data and will give constraints on the dark energy
equation of state 10 times tighter than those from the latest results from weak lensing (WL) with the
Dark Energy Survey (DES) Collaboration (2005), that is sub % precision. Cosmological information
with large photometric surveys is extracted using the 3x2 point correlation function (cosmic shear x
galaxy clustering x cross-correlation galaxy-galaxy lensing). Latest results from DES Collaboration et al.
(2022) suggest a mild tension with Planck and spectroscopic results that has been highly discussed in
the community. One of the potential investigations for this tension that I wish to undertake concerns
the lensing-is-low effect Lange et al. (2021), Leauthaud et al. (2017), Yuan et al. (2021): accurate small
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scale measurements of galaxy clustering provide incorrect galaxy-galaxy lensing predictions compared to
observations. An explanation for this effect may reside in secondary biases known as assembly bias, i.e the
fact that in addition to halo mass, the clustering of halos may also depend on environment, concentration
or merger history Gao & White (2007), Jespersen et al. (2022), Lacerna & Padilla (2011).

Furthermore, WL analyses usually assume a linear relation between galaxy tracers and the total
matter field (linear galaxy bias). Therefore, they cannot exploit small scales, which contain a lot of
cosmological information, so better understanding and modelling of small scales (including baryonic
effects) is needed to improve the results.

Building on my expertise on HOD modelling and spectroscopic surveys, I intend to explore how
implementations of assembly bias in HOD models can improve the galaxy-galaxy lensing prediction.
Having information from both clustering (spectroscopic) and future weak lensing data will shrink the
constraints and break degeneracies between HOD and cosmological parameters Delgado et al. (2022).
Trying to understand the discrepancy in clustering amplitude by simultaneously fitting galaxy-halo con-
nection models to both the galaxy-galaxy lensing and galaxy clustering will be challenging. We will need
to develop highly realistic simulations that reproduce both galaxy clustering and galaxy-galaxy lensing.
These simulations will be also very useful to check systematic effects. The first science results of such
analysis will be pioneering work for cross experiment analyses, and I would be very delighted to take
part.

Last words
During my Ph.D., I developed an expertise in large scale structure cosmology, using spectroscopic surveys
to constrain cosmological parameters from the halo scale to the largest scales. Within the DESI collab-
oration I communicated with many collaborators around the world (USA, France, Spain, Korea...). I
acquired a broad understanding of the many different LSS probes and an expertise with the DESI instru-
ment, which is highly valuable as tensions on dark energy measurements between LSS, cosmic microwave
background and supernova measurements have arisen during the last decade. With the new generation
of galaxy surveys for stage IV cosmology, and the increase of computational resources, we are entering
the era of statistical precision cosmology. It will be a very exciting time for cosmological research !

Finally, I would particularly like to thank my thesis supervisors, Vanina and Etienne, for their patience
and unfailing support, without which this thesis would not have been the same.
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7.1 Introduction à la cosmologie des grandes struc-
tures

La cosmologie est une science extraordinaire. C’est la phrase que Vanina, ma directrice, m’a dite lorsque
je lui ai demandé quelle phrase elle souhaitait voir figurer dans mon manuscrit. Je suis d’accord avec elle
et je vais essayer d’expliquer pourquoi. La cosmologie (du grec : kosmos, Univers et logos, théorie) est
une science fondamentale qui vise à répondre à des questions simples dont les réponses sont difficiles.

L’Univers est en constante évolution, comme la connaissance. Il n’est pas immuable, mais évolue avec
le temps, les observations et le progrès. Depuis un siècle, avec la théorie de la relativité générale d’Einstein,
la découverte de l’expansion de l’Univers par Edwin Hubble et Georges Lemaître, notre compréhension
de l’Univers a changé. De l’hypothèse d’Einstein d’un Univers statique à l’observation d’une expansion
accélérée, nos connaissances ont continué à se développer jusqu’à aujourd’hui et continueront à le faire
grâce à de nouveaux moyens d’observation et à de nouvelles découvertes scientifiques.

L’Univers est homogène et isotrope à grande échelle. C’est le premier principe cosmologique. Il signifie
que son apparence générale ne dépend pas de la position de l’observateur ni de la direction d’observation.
Cela peut être difficile à admettre, car nous voyons des milliards d’étoiles dans notre galaxie et des
milliards de galaxies à l’extérieur. Nous pouvons même observer des super-structures, telles que des amas
de galaxies ou des vides cosmiques géants qui peuvent atteindre quelques dizaines de mégaparsec (Mpc)
et former, au total, une toile de nœuds et de filaments, que l’on appelle la toile cosmique. Le parsec (pc)
ou même le méga-pc (Mpc) est l’unité standard de distance en cosmologie. Le parsec est défini par la
distance des objets astronomiques (c’est-à-dire les étoiles), qui ont un déplacement angulaire sur le ciel de
1 seconde d’arc (") lorsque la Terre se déplace sur la moitié d’une orbite du Soleil (également connu sous
le nom de parallaxe). Un parsec représente environ 3,26 années-lumière, soit environ 31 billions (1012) de
kilomètres. Pour donner un ordre d’idée, si 1 km correspondait à la taille d’un atome, 1 parsec serait
la distance Terre-Lune ! Mais ces objets géants sont petits par rapport à la taille de l’Univers observable
(∼ 14,300 Mpc pour la distance comobile entre la Terre et le bord de l’Univers observable). À cette
échelle l’Univers est le même partout (homogène) dans toutes les directions (isotrope). La principale
preuve observable de ce principe est le fond diffus cosmologique, un rayonnement homogène et isotrope
représentant la première lumière de l’Univers.

Aujourd’hui, le modèle cosmologique standard, ΛCDM, décrit le contenu et la dynamique de l’Univers.
Ce modèle est basé sur seulement six paramètres, la gravité est régie par la relativité générale (RG) et
différentes contributions constituent le contenu énergétique de l’Univers aujourd’hui, comme le montre
Figure 7.1:

• La matière baryonique : Elle représente la matière ordinaire, celle que nous pouvons voir, c’est-
à-dire les planètes, les étoiles, les galaxies... et ne représente que ∼ 5% du contenu énergétique
de l’Univers aujourd’hui. L’autre partie ∼ 95% est la face cachée de l’Univers, celle que nous ne
pouvons que deviner par son effet sur la matière baryonique.

• Matière noire froide : c’est la composante majeure de la masse de l’Univers – ∼ 85% de la masse
– et ∼ 25% du contenu énergétique de l’Univers aujourd’hui. Détectée uniquement par son impact
à travers les effets gravitationnels, sa nature est encore inconnue. Il pourrait s’agir de particules
au-delà du modèle standard de la physique des particules ou d’objets astrophysiques qui doivent
être formés avant la nucléosynthèse primordiale (par exemple les trous noirs primordiaux).

• L’énergie noire : C’est la composante principale du contenu énergétique de l’Univers aujourd’hui,
∼ 70%. C’est une forme d’énergie qui est responsable de l’accélération tardive de l’expansion de
l’Univers, dont l’origine précise est inconnue.

• La radiation : Elle englobe toutes les espèces relativistes (c.-à-d. les photons, les neutrinos)
provenant de l’Univers primitif chaud et dense. Aujourd’hui, sa contribution est négligeable.
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Figure 7.1: Contenu énergétique de l’Univers aujourd’hui. Il est principalement dominé par une forme
d’énergie inconnue appelée énergie noire ∼ 70%. Les autres ∼ 30% sont des composants de la matière
: ∼ 25% de matière noire froide (CDM) et ∼ 5% de matière baryonique (ou ordinaire). Une partie
négligeable (< 10−4) du budget énergétique provient du rayonnement, c’est-à-dire des photons et des
neutrinos relativistes, mais au début de l’Univers, c’était la partie dominante. Cette figure est adaptée
du site web: https://www.spacecentre.co.uk/news/space-now-blog/what-s-in-the-dark/

Le modèle ΛCDM peut décrire l’Univers depuis les premiers instants, lorsque les baryons et la matière
noire ont été condensés dans un plasma très chaud, jusqu’à la formation des galaxies et des structures
à grande échelle que nous observons aujourd’hui. Il repose sur trois contraintes observationnelles fortes,
appelées les trois piliers cosmologiques :

• l’expansion de l’Univers : une récession des galaxies à une vitesse proportionnelle à leur distance
par rapport à nous,

• la nucleosynthèse primordiale : ceci explique l’abondance des éléments chimiques dans l’Univers,

• le fond diffus cosmologique : c’est la première lumière de l’Univers, émise ∼ 380, 000 ans après
le Big Bang.

Pour décrire l’évolution et les propriétés de l’Univers, le modèle ΛCDM dépend de seulement six
paramètres libres :

• As : l’amplitude du spectre de puissance primordial,

• ns : l’indice spectral du spectre de puissance primordial,

• θ∗ : l’échelle angulaire sur le ciel correspondant à l’horizon sonore en mouvement lors de la recom-
binaison,

• Ωbh2 : la densité de baryons dans l’Univers aujourd’hui,

• Ωcdmh2 : la densité de matière noire dans l’Univers aujourd’hui,

• τ : la profondeur optique lors de la réionisation.

La métrique de Friedmann-Lemaître–Robertson–Walker (FLRW) permet de décrire mathéma-
tiquement un Univers homogène, isotrope et en expansion. Elle est définie par:

ds2 = dt2 − a2(t)
[

dr2

1 − kr2 + r2 (dθ2 + sin2 θdϕ2)] (7.1)

https://www.spacecentre.co.uk/news/space-now-blog/what-s-in-the-dark/
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Cette métrique définit la géométrie de l’Univers dans un espace à trois dimensions spatiales (en coor-
donnéed sphériques [r, θ, ϕ]) et une dimension temporelle t, le temps cosmique. La partie radiale de la
métrique peut être affectée par la courbure de l’espace-temps k. L’Univers peut être ouvert, plat ou fermé
(respectivement k < 0, k = 0, k > 0).

Dans un Univers en expansion, nous considérons les positions des objets comme fixes dans un espace
en expansion et nous définissons un facteur d’échelle a(t) qui décrit l’expansion de l’espace lui-même
à un moment donné. En pratique, les objets conservent les mêmes coordonnées (appelées coordonnées
comobiles) à tout moment, de sorte que leur distance comobile restera la même, tandis que leur distance
propre (ou distance physique), c’est-à-dire la distance qui serait mesurée à un moment donné à l’aide d’une
règle rigide, augmentera en raison de l’expansion de l’Univers. La distance d’un objet est caractérisée
grâce au redshift (ou décalage vers le rouge) z1, qui correspond au rapport entre la longueur d’onde
observée λobs et la longueur d’onde d’émission λe d’un objet:

1 + z = λobs

λe
= 1

a(t) (7.2)

La mesure du redshift est utilisée pour déterminer la distance des galaxies et donc permet de car-
tographier les galaxies dans l’Univers. Étudier la distribution spatiale des galaxies permet de connaître
la composition de l’Univers et de contraindre les modèles cosmologique comme on peut le voir sur la
Figure 7.2. En cosmologie, on décrit la distribution des galaxies (ou de la matière) en définissant un
champ de contraste de densité δ(x) défini par :

δ(x) ≡ ρ(x) − ⟨ρ⟩
⟨ρ⟩

(7.3)

où ⟨ρ⟩ correspond à la densité moyenne de l’Univers.
Comme les baryons ne représentent que ∼ 25% de la masse totale de l’Univers (l’autre partie étant

de la matière noire invisible), les galaxies suivent la distribution de la matière dans l’Univers et donc
la distribution de matière noire. Elles résident principalement au centre de halos de matière noire, qui
sont des régions surdenses de la toile cosmique. Les galaxies sont donc des traceurs de la distribution de
matière dans l’Univers, ce qui signifie que là où il y a une galaxie, il doit y avoir aussi de la matière noire.
Cependant, le fait qu’il n’y ait pas de galaxies ne signifie pas qu’il n’y a pas de matière noire. Ainsi,
le champ de galaxies est biaisé par rapport au champ de matière totale. La prescription standard pour
modéliser cet effet est la suivante :

δg = bgδm (7.4)

ou bg est le biais linéaire des galaxies et δg, δm sont les contrastes de densité des galaxies et de la matière.
La distribution spatiale des galaxies peut être décrite en statistique par la fonction de corrélation à deux
points (2PCF) ξ(r):

ξ(r) = ⟨δ(x)δ(x + r)⟩ (7.5)

ξ(r) mesure l’excès de probabilité, par rapport à une probabilité aléatoire, que deux galaxies soient sé-
parées par une distance r. La distribution spatiale des galaxies dépend de la composition de l’Univers. Son
étude permet donc de connaître la composition de l’Univers et de contraindre les modèles cosmologique
comme on peut le voir sur la Figure 7.2.

Au lieu de calculer la 2PCF en fonction de la séparation entre 2 galaxies r, nous pouvons décomposer
la distance r en deux composantes, s et µ, où s est la distance observée entre les paires de galaxies et

1Les longueur d’ondes émisse par un object lointain sont étendues et donc décalées vers le rouge à cause de
l’expansion de l’Univers
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Figure 7.2: Gauche: Distribution spatiale des galaxies vue par DESI, l’observateur est au centre et
chaque point représente une galaxie. Droite: Exemple de fonction de corrélation à 2 points; la courbe
noire correspond au modèle cosmologique ajusté sur les données du fond diffus cosmologique mesurées par
Planck (Planck Collaboration et al., 2020). Les courbes rouge et noire montrent comment la 2PCF (donc
la distribution spatiale des galaxies) changent en ajoutant (en rouge) ou retirant (vert) de l’énergie noire
dans la composition de l’Univers.

µ = cos(θ) où θ est l’angle de séparation entre les 2 galaxies sur le ciel. Nous pouvons ensuite développer
la fonction de corrélation en polynômes de Legendre Lℓ(µ) pour obtenir l’estimations des multipoles de
la 2PCF :

ξℓ(s) = 2ℓ + 1
2

∫ 1

−1
ξ(s, µ)Lℓ(µ)dµ (7.6)

Les moments multipolaires fournissent un mécanisme de compression de l’anisotropie dans la fonction de
corrélation. Le monopôle ξℓ=0 est la composante isotrope de la 2PCF, tandis que le quadrupôle ξℓ=2 (et
les ordres pairs supérieurs) contient des informations sur les anisotropies de la fonction de corrélation.
Selon le principe cosmologique, la distribution des galaxies devrait être presque isotrope. Cependant, les
vitesses particulières des galaxies induisent des anisotropies dans la distribution observée des galaxies,
connues sous le nom d’effet de distorsion dans l’espace des redshifts (RSD) qui conduit à des multipoles
pairs non nuls. En théorie linéaire (donc à grande échelle) Kaiser (1987) a montré que les anisotropies
dans la 2PCF sont proportionnelles à la composante isotrope de la 2PCF (dans l’espace réel) par un
facteur ∝ µ4 (voir Equation (2.16)), ce qui signifie qu’il n’y a pas de contribution plus élevée que µ4.
Ainsi, le signal cosmologique est porté par le monopôle, le quadruopôle et l’hexadécapôle (ℓ = 0, 2, 4).

Dans cette thèse j’étudie la distribution spatiale des galaxies, et plus particulièrement les galaxies
à raies d’émissions (ELGs). Les ELGs sont majoritairement des galaxies qui forment des étoiles car les
raies d’émission fortes dans les spectres de galaxies sont corrélées avec le taux de formation stellaire des
galaxies (Moustakas et al., 2006). Je me concentre sur l’étude des corrélations spatiales à petite échelle
(de l’ordre de ∼ 1Mpc) pour voir comment ces galaxies sont connectées à la distribution de matière totale
de l’Univers et aux halos de matière noire. Les études de la connexion galaxie-halo sont importante pour
comprendre les processus physiques de la connexion entre les galaxies et la matières sous-jacente, pour
générer des catalogues de galaxies simulées qui permettent de tester les analyses cosmologiques ainsi que
pour étudier l’impact des modèle de connexion galaxie-halo sur les paramètres cosmologiques.
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Pour éviter l’impact des vitesses particulières des galaxies sur les petites échelles, nous pouvons utiliser
la fonction de corrélation projetée wp(rp). Au lieu de décomposer la distance r entre les galaxies en (s, µ),
nous pouvons décomposer ses composantes le long de, et perpendiculairement à, la ligne de visée, π et
rp. La fonction de corrélation projetée est obtenue en intégrant ξ(rp, π) le long de la ligne de visée :

wp(rp) =
∫ πmax

πmin

ξ(rp, π)dπ (7.7)

La fonction de corrélation projetée est largement utilisée dans les études de la connexion galaxie-halo car
elle a l’avantage d’être presque insensible à la vitesse particulière des galaxies aux petites échelles (Bosch
et al., 2013).

7.2 L’échantillon des ELGs du relevé 1% DESI

7.2.1 DESI
L’instrument spectroscopique de l’énergie noire (en anglais: le Dark Energy Spectroscopic Instrument,
DESI) est un instrument spectroscopique robotisé, alimenté par des fibres optiques, qui fonctionne sur
le télescope Mayall de 4 mètres (monture équatoriale) au Kitt Peak National Observatory (KPNO)
sur la montagne Iolkam Du’ag (Kitt peak) en Arizona (États-Unis). DESI est conçu pour mesurer
simultanément les spectres de 5000 objets sur un champ de ∼ 3 degrés et mène actuellement une étude
de cinq ans sur 14 000 deg2 (environ un tiers du ciel), pour obtenir les spectres d’environ 40 millions
de galaxies et de quasars dans une gamme de redshift 0 < z < 3.5. DESI vise à créer une carte
tridimensionnelle de la distribution de la matière couvrant un volume sans précédent, en ciblant différents
types de galaxies.

A faible redshift, z < 0, 5, DESI réalise un relevé de galaxies brillante, créant un échantillon limité en
magnitude de ∼ 13M galaxies pour étudier la structure cosmique à l’époque dominée par l’énergie noire
avec un échantillonnage à haute densité. A un décalage vers le rouge plus élevé, DESI ciblera au total
∼ 8M de galaxies rouges lumineuses (LRGs) entre 0.4 < z < 1.1, ∼17M galaxies à raies d’émission (ELGs)
entre 0.6 < z < 1.6, et ∼3M quasars ou objets quasi stellaires (QSOs) entre 0.8 < z < 3.5, produisant des
contraintes strictes sur la distribution des galaxies à grande échelle pour essayer de déchiffrer la nature
de l’énergie noire.

7.2.2 Le relevé 1% de DESI
Le relevé 1% de DESI a couvert ∼ 140 deg2 avec des algorithmes de sélection de cibles et des profondeurs
d’image similaires à celles du relevé principal. Elle a été menée pendant deux mois (avril et mai 2021)
avant le début du relevé principal en juin 2021. Comme son nom l’indique, le relevé 1% vise à reproduire
1% du relevé principal. La sélection des cibles ELG (Raichoor et al., 2023) se concentre sur l’intervalle
de redshift 0.6 < z < 1.6 et est conçue pour sélectionner des galaxies avec des lignes d’émission spectrale
fortes. La ligne d’émission du doublet [O II] permet de mesurer les redshifts précisément avec DESI.
La géométrie de ce relevé est constituée de vingt régions non superposées, de la taille d’un plan focal,
appelées rosettes, représentées en rouge sur Figure 7.3. Chaque région fait l’objet d’au moins ∼ 11 visites
afin d’obtenir un degré élevé de complétude de l’attribution des fibres (qui est bien supérieur à celui du
relevé principal). En effet, chaque fibre ne peut accéder que à une cible dans le ciel, donc si 2 cibles sont
côte à côte, il faut repasser une deuxième fois sur la même région pour pourvoir observer les deux. Pour
chaque visite, les centres sont légèrement déplacés afin d’augmenter la complétude dans les régions du
plan focal qui ont peu de fibres (au centre et au bord). Au final, le relevé 1% a collecté ∼ 270k ELGs
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à des redshifts 0.8 < z < 1.6, ce qui en fait l’échantillon spectroscopique d’ELG le plus grand observé
aujourd’hui.

Figure 7.3: En haut : Distribution dans le ciel des tuiles observées par DESI pendant le relevé 1% en
rouge et pendnat la phase de validation du relevé en noir. La couvertue du relevé principal au tout début
de la campagne est représentée en vert (2021 mai-juillet) et en orange (2021 septembre-décembre). Cette
figure est tirée de (Raichoor et al., 2023).

Pour les besoins de cette thèse, et l’étude de la connexion galaxie-halo, nous avons besoin de mesurer
les corrélations spatiales des galaxies à petite échelle. Grâce à la grande complétude du relevé 1% de DESI,
nous pouvons mesurer les corrélations spatiales des galaxies jusqu’à de très petites échelles, 0.04 Mpc/h

en distance perpendiculaire rp pour la fonction de corrélation projetée wp et 0.17 Mpc/h en séparation
de paires de galaxies s pour le monopôle et le quadrupôle de la 2PCF. La Figure 7.4 montre le clustering
projeté (intégré entre −40 et 40 Mpc/h), le monopôle et le quadrupôle de la 2PCF pour l’échantillon ELG
du relevé 1% de DESI, restreint à des redshifts 0.8 < z < 1.6. Cet échantillon est donc très approprié
pour étudier les ELGs à l’intérieur des halos de matière noire car il fournit des mesures précises des
corrélations spatiales des galaxies jusqu’à de très petites échelles.

7.3 Connexion galaxie-halo des ELGs
L’hypothèse de base de notre vision actuelle de la formation des galaxies est que les galaxies se forment
dans des halos de matière noire. Par conséquent, la croissance, les propriétés internes et la distribution
spatiale des halos de matière noire peuvent être liées à celles des galaxies. La connexion galaxie-halo est
un concept fondamental en cosmologie qui explore la relation entre les galaxies et les halos de matière
noire dans lesquels elles résident. Les codes de simulation à N -corps constituent la base des modèles de
formation des galaxies, et diverses techniques sont ensuite appliquées pour relier les galaxies et les halos
de matière noire dans les simulations.

Une représentation schématique de la connexion galaxie-halo est montrée dans la Figure 7.5 et montre
différents modèles pour connecter les galaxies au halos de matière noire. Ces techniques sont ensuite
utilisées pour contraindre la connexion galaxie-halo à partir des données, fournissant des informations
inestimables sur la physique de la formation des galaxies. Ces contraintes sont également essentielles
pour garantir la robustesse des résultats cosmologiques des études de galaxies, car elles nous permettent
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Figure 7.4: Mesure de la 2PCF des ELGs à partir du relevé 1% de DESI dans l’intervalle de redshift
0, 8 < z < 1, 6. A Gauche : Fonction de corrélation projetée wp(rp) en fonction de rp (intégrée entre
πmin = −40 et πmax = 40 Mpc/h). Au milieu : monopôle de la 2PCF ξ0(s) × s. A droite : Quadrupôle
de la 2PCF ξ2(s) × s. Sur chaque panneau, les barres d’erreur sont calculées à l’aide de la méthode du
Jackknife en divisant le relevé en 128 régions indépendantes de même volume.

de produire des mocks fiables (c’est-à-dire des catalogues de galaxies simulées) utilisés pour tester les
analyses de clustering et pour dériver leur budget d’incertitudes systématiques (Alam et al., 2021).

Dans notre analyse, nous utilisons les simulations à N -corps AbacusSummit1 (Maksimova et al.,
2021) qui ont été construites pour répondre aux exigences scientifiques de DESI. Il s’agit d’une vaste
suite de simulations cosmologiques à N -corps de haute précision produites avec le code Abacus N -
corps, sur le supercalculateur Summit de l’Oak Ridge Leadership Computing Facility. Cette suite est
composée de 150 boîtes de simulation, couvrant 97 modèles cosmologiques. Nous utilisons le modèle de
distribution d’occupation des halos (en anglais: Halo Occupation distribution, HOD) pour peupler les
halos de matières noires dans les simulations par des galaxies.

7.3.1 Modèle de distribution d’occupation des halos
La distribution d’occupation des halos (HOD) est un formalisme empirique qui décrit la relation entre une
classe de galaxies et les halos de matière noire, comme la probabilité qu’un halo de masse Mh contienne N

galaxies. Les modèles HOD ont des contributions de deux populations de galaxies, à savoir les centrales
et les satellites, avec ⟨Ncent(Mh)⟩ et ⟨Nsat(Mh)⟩ leurs nombres moyens respectifs hébergés par halo d’une
masse donnée. Une fois que le nombre moyen de galaxies par halo est calculé, une fonction de distribution
de probabilité est utilisée pour affecter les galaxies centrales et les galaxies satellites à un halo. Les choix
standard sont une distribution de Bernoulli pour les galaxies centrales et une distribution de Poisson pour
les galaxies satellites. Les galaxies centrales sont typiquement placées au centre du halo avec une vitesse
donnée par la vitesse particulière du halo, tandis que les satellites sont placés en supposant un profil de
halo (principalement NFW (Navarro et al., 1997)) ou assignés à une particule aléatoire du halo.

L’occupation des halos pour les ELG centrales est proche d’une distribution gaussienne asymétrique (Cow-
ley et al., 2016, Geach et al., 2012, Gonzalez-Perez et al., 2018a, Hadzhiyska et al., 2021a, Osato & Oku-
mura, 2022, Yuan et al., 2022) et celle des satellite est bien représentée par une loi de puissance (Zheng
et al., 2007):

⟨Nsat(Mh)⟩ =

 ⟨Ncent(Mh)⟩
(

Mh−M0
M1

)α

if Mh > M0

0 sinon
(7.8)

1https://abacussummit.readthedocs.io/en/latest/index.html

https://abacussummit.readthedocs.io/en/latest/index.html
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Figure 7.5: Differentes approches pour modéliser la connextion entre galaxies et halos de matière noire,
des plus physiques (à gauche) aux modèles les plus empiriques (à droite). Cette figure est tirée de Wechsler
& Tinker (2018).

Différents modèles HOD ont été développés pour reproduire la forme gaussienne de la distribution
centrale des ELG. Dans une expérience précédente, eBOSS, Avila et al. (2020) et Alam et al. (2020) ont
utilisé différents modèles HOD pour les ELGs centrales afin de reproduire la forme HOD obtenue dans
les modèles semi-analytique (SAM) (Gonzalez-Perez et al., 2018a) :

➢ HOD Gaussien (GHOD):

⟨Ncent(M)⟩ = Ac√
2πσm

· e
− (log10 M−log10 Mc)2

2σ2
m ≡

〈
NGHOD

cent (M)
〉

(7.9)

Dans ce modèle, ⟨Ncent⟩ est simplement une fonction gaussienne avec une moyenne de Mc, une largeur
de σM et Ac définit l’amplitude de la distribution. Ce modèle est comparé aux prédictions SAM dans le
panneau gauche de Figure 7.6 (étiqueté comme HOD-2).

➢ Star-Forming HOD (SFHOD):

⟨Ncent(M)⟩ =


〈
NGHOD

cent (M)
〉

M ≤ Mc

Ac√
2πσm

·
(

M
Mc

)γ

M > Mc

(7.10)

Ce modèle est une combinaison d’une distribution gaussienne pour les halos de faible masse < Mc et d’une
loi de puissance décroissante pour les halos de masse élevée > Mc. Le résultat est une forme asymétrique
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(voir le panneau gauche de la Figure 7.6, étiqueté HOD-3) où l’asymétrie est contrôlée par le paramètre γ.
Cette fonction décrit bien les prédictions SAM, mais présente l’inconvénient d’être discontinue à M = Mc.

➢ High mass quenched modifié (mHMQ):

⟨Ncent(M)⟩ =
〈
NGHOD

cent (M)
〉

·
[
1 + erf

(
γ(log10 M − log10 Mc)√

2σm

)]
(7.11)

Ce modèle est dérivé du modèle "High Mass Quenched" de Alam et al. (2021), qui a une forme de
gaussienne asymétrique.

➢ HOD LogNormal (LNHOD): En plus des 3 modèles décrit ci-dessus, j’utilise un modèle basé
sur une distribution lognormal (LNHOD):

⟨Ncent(M)⟩ = Ac√
2πσm · x

· e
− (ln x)2

2σ2
m pour x > 0, et 0 sinon (7.12)

où x = log10 M − (log10 Mc − 1).

Figure 7.6: À gauche: nombre moyen de galaxies ELG en fonction de la masse du halo. Les points sont
les résultats de modèle semi-analytique (Gonzalez-Perez et al., 2018a) avec les contributions centrales
et satellites indiquées séparément. Les lignes rouges correspondent au modèle HOD gaussien (étiqueté
HOD-2) de Equation (7.9) et les lignes bleues au modèle HOD de formation d’étoiles (étiqueté HOD-3)
de Equation (7.10). Pour les deux modèles HOD, la contribution des centrales (resp. des satellites) est
représentée en tiret (resp. en pointillés). A droite: HOD du modèle "high mass quench" de (Alam et al.,
2020). L’effet de la variation des paramètres individuels est illustré par des lignes colorées, tandis que
la ligne noire continue représente le modèle de départ. Les lignes rouges pleines, magenta pointillées,
cyan pointillées et bleues pointillées montrent l’impact des paramètres Q, γ, σM et pmax respectivement,
lorsqu’ils sont modifiés par rapport aux valeurs d’entrées indiquées dans la légende.

Dans cette thèse j’utilise ces 4 modèles HOD pour peupler les simulations à N -corps AbacusSummit
et reproduire les corrélations spatiales des ELGs aux petites échelles. Pour reproduire la distributions
des ELGs des données de DESI, j’ai développé une techniques d’ajustement qui utilise des processus
gaussiens.
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7.4 Methode d’ajustement des modelès HOD avec
des processus gaussiens

Dans la littérature, plusieurs approches ont été proposées pour effectuer des ajustements de modèles HOD
plus efficacement, en particulier pour limiter la stochasticité de la procédure. Une technique populaire
est la méthode tabulée qui pré-calcule les corrélations des halos et des particules de la simulation et la
convolue ensuite avec la distribution d’occupation des halos (Zheng & Guo, 2016). D’autres techniques
utilisent des codes optimisés et parallélisés pour calculer les modèles HOD et les corrélations, comme par
exemple AbacusHOD (Yuan et al., 2022)).

Dans cette thèse, j’ai développé une nouvelle méthode pour ajuster les paramètres HOD sur des
mesures de corrélations à petite échelle en utilisant des processus gaussiens (GP) (Rasmussen & Williams,
2005). Cette méthode permet de faire des ajustements précis des paramètres du modèle HOD tout en
minimisant le temps de calcul. Elle est inspiré d’un algorithme appelée "Efficient Global Optimization"
(Jones et al., 1998). C’est une procédure en deux étapes qui utilise les processus gaussiens (GP) pour
prédire le résultat d’une fonction, dans notre cas le χ2 de notre ajustement défini par:

χ2 = (ξdata − ξmodel)⊤[Cdata/(1 − Ddata) + Cmodel/(1 − Dmodel)
]−1(ξdata − ξmodel) (7.13)

où ξ représente le vecteur de données utilisé pour l’ajustement (ξ = wp, ξ0, ξ2), Cmodel et Cdata sont les
matrices de covariance du modèle et des données, respectivement et D est le facteur de correction de
Hartlap (Hartlap et al., 2007) appliqué à l’inverse de la matrice de covariance.

Dans un premier temps, nous échantillonnons l’espace des paramètres HOD suivant une séquence
de Hammersley et calculons les χ2 correspondants, pour fournir un échantillon d’entraînement initial au
GP. Le modèle prédit par le GP est échantillonné par des chaînes de Markov (MCMC) pour obtenir une
prédiction des distribution postérieurs des paramètres HOD. Ces distributions sont ensuite améliorées
par itérations successives. A chaque itération, un point aléatoire est tiré depuis les chaînes MCMC, son
χ2 est calculé et ce nouveau point est rajouté à l’échantillon d’entraînement pour améliorer la prédiction
du GP jusqu’à ce que les valeurs de chi2 prédites deviennent suffisamment stables pour que les valeurs
marginales des paramètres HOD et les contours postérieurs puissent être dérivés de manière fiable.

Comme les modèles HOD sont aléatoire, pour chaque jeu de paramètres HOD le χ2 est mesuré 20
fois. On calcule ensuite la moyenne de ces valeurs de χ2 et leur dispersion divisée par

√
20 pour estimer le

χ2 moyen et son incertitude. La plage dynamique des variations de χ2 étant importante dans l’espace des
paramètres HOD, cela peut rendre difficile la modélisation de la vraisemblance a posteriori. Nous utilisons
donc le logarithme naturel des valeurs moyennes de χ2 et les erreurs correspondantes comme données
d’entrée du GP. Nous fournissons au GP x = {log10(Mc), α, As, log10(M0), log10(M1), σtextscm, fσv }, y =
ln
(
χ2), ϵ = δ(ln

(
χ2)).

7.4.1 Test de la méthode
Pour tester la précision de la méthode dans des conditions réalistes, nous avons utilisé 100 jeu de données
simulées où nous connaissons les paramètres HOD d’entrée qui proviennent de 100 boîtes de simulation
à N -corps différentes, à la même cosmologie. Les sources d’erreur de ces tests sont la variance cosmique
due aux différente boîtes utilisées et la stochasticité des tirages HODs. Nous prenons un échantillon
d’entraînement de 600 points dans une séquence de Hammersley et nous laissons tourner l’ajustement
jusqu’à 800 itérations. Les résultats des 100 ajustements sont présentés sur la Figure 7.7.

Tous les paramètres HOD sont reconstruits avec un biais moyen qui se situe à l’intérieur ou, pour
fsigmav

, au niveau d’un écart-type de la distribution des paramètres. Plus précisément, nous trouvons
un biais moyen de 0,29 pour As, 0,52 pour M0, 0,69 pour α, 0,97 pour fσv

, 0,52 pour log(Mc) et 0,26
pour σM .
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Figure 7.7: Test de précision à partir de 100 ajustements. Les points représentent les valeurs
marginales des paramètres HOD, les erreurs étant définies par les quantiles 16% et 84% des postérieurs
de l’ajustement. La bande grise couvre l’intervalle ±1σ autour de la moyenne des valeurs marginalisées,
donnée par la ligne verticale noire. La ligne rouge en pointillés représente les valeurs des paramètres
HOD d’entrée. Tous les ajustements ont été exécutés jusqu’à 800 itérations après l’entraînement initial
des processus gaussiens basé sur l’échantillonnage de Hammersley de l’espace des paramètres HOD avec
600 points. Les lignes pointillées rouges indiquent les "priors" d’ajustement.

Dans ce qui précède, σ est l’écart-type de la distribution marginalisée des résultats de l’ajustement.
Il s’agit également de l’erreur statistique attendue pour un ajustement, les erreurs étant prises en compte
dans la matrice de covariance utilisée dans les ajustements, à savoir la stochasticité, la variance cosmique
et la densité de galaxies proche de celle attendue pour les données DESI (∼ 10−3 gal/Mpc) mais pour
un volume trois fois plus grand que celui du relevé 1% des ELGs de DESI. Nous nous attendons donc à
ce que les valeurs des paramètres HOD dérivées de ces données avec notre procédure aient une précision
bien meilleure que ∼ 1σ de l’incertitude statistique des données pour la plupart des paramètres, le pire
cas étant le paramètre fσv

pour lequel la précision devrait être d’environ ∼ 0.6σ.
Nous avons aussi testé la méthode en changant le nombre de point (300, 600 et 800) dans l’échantillonnage

initial et la techniques d’échantillonnage (hypercube latin). De ces tests, nous avons conclu qu’il faut
une densité de points initiale dans l’espace des paramètres assez haute, 300 n’étant pas suffisant pour
retrouver des résultats non biasés, mais qu’il n’est pas nécessaire d’ajouter trop de points au départ, avec
1200 points initiaux les performances de l’ajustement sont presque similaires qu’avec 600 points.

Cette méthode étant fiable sur nos simulations, nous l’utilisons ensuite sur les données du relevé 1%
de DESI.
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7.5 Résultats sur le relevé 1% des ELG de DESI
Pour cette étude nous utilisons les 4 modèles HOD pour les centrales ainsi que la loi de puissance pour
le HOD satellite décrit dans la Section 7.3.1. Nous ajustons ces modèles avec la technique utilisant des
processus gaussiens décrite et testée précédement.

7.5.1 Résultats pour des HODs standards
Les résultats de l’ajustements sur les données de DESI sont présentés dans la Figure 7.8. A l’exception
du paramètre M1 qui est maintenu fixe dans les ajustements, nous avons utilisé des priors plats pour tous
les autres paramètres HOD et pour tous les ajustements présentés ci-dessous.

Les quatre modèles les mieux ajustés fournissent des résultats similaires, qui s’accordent raisonnable-
ment bien avec les données. La Figure 5.6 montre les corrélations calculées à partir des halos uniquement,
indépendamment des galaxies qu’ils contiennent (ligne pointillée grise). Ceci met en évidence le fait que
les paires de galaxies à l’intérieur d’un même halo ne contribuent, comme attendu, qu’aux petites échelles
dans les trois statistiques. Cette contribution constitue ce que l’on appelle le terme 1-halo de la connexion
galaxie-halo et est essentielle pour reproduire le fort signal mesuré aux petites échelles dans nos données,
notamment celui dans la fonction de corrélation projetée à rp < 0.3 Mpc/h. Pour reproduire ce signal,
tous les modèles favorisent des paires de galaxies dans des halos de faible masse < 1012 M⊙/h, ce qui est
inattendu comparé aux études précédente de la connection galaxie-halo des ELGs.

On note aussi qu’entre 0.3 et ∼1 Mpc/h en rp, le clustering mesuré est supérieur au clustering prédit
à partir des halos, ce qui signifie que la contribution d’un seul halo provenant du profil NFW n’est pas
suffisante pour décrire les données dans cette région. Les autres caractéristiques difficiles à modéliser
correctement sont la pente de la fonction de corrélation projetée entre 0.2 et 10 Mpc/h et la bosse à
s ∼ 1 − 2 Mpc/h dans le monopôle et le quadrupôle. Cela explique en partie les valeurs élevées de χ2 qui
sont en moyenne de ∼157 pour 65 degrés de liberté. Comme tous les modèles se comportent de manière
similaire, cela implique qu’il manque des ingrédients dans les HODs standard pour les ELGs.
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Figure 7.8: En haut: Mesure des corrélations du relevé 1% des ELGs de DESI, comparées aux modèles
HOD standard les mieux ajustés obtenus avec la méthode d’ajustement par GP. Les modèles en trait
plein correspondent à différentes prescriptions pour les galaxies centrales, en conservant la prescription
standard de la loi de puissance pour les satellites. Le modèle en ligne pointillée correspond aux corrélations
des halos uniquement, montrant que les paires de galaxies issues d’un halo unique ont un fort impact sur
la distribution des galaxies aux très petites échelles. Les erreurs sont uniquement des incertitudes de la
méthode Jackknife. En bas: Résidus d’ajustement normalisés par les erreurs diagonales de la matrice de
covariance complète, qui comprennent les incertitudes du Jackknife pour les données ainsi que le bruit
stochastique et la variance cosmique pour le modèle, mais pas les corrections du facteur de Hartlap.



7.5 Résultats sur le relevé 1% des ELG de DESI 241

Un autre résultat intéressant de ces ajustements est que, quelle que soit la prescription HOD pour
les galaxies centrales, la valeur la mieux ajustée pour fσv

est significativement supérieure à 1. Ceci qui
est en accord avec ce qui a été rapporté dans Avila et al. (2020). Les valeurs les mieux ajustées se situent
entre 1,2 et 1,5 selon le modèle, avec une erreur d’environ ±0, 1, et montre donc que les ELGs ont des
dispersions de vitesse supérieurs à celle des particules de leurs halos.

Dans les sections suivantes nous utilisons uniquement le HOD mHMQ pour les galaxies centrales et
nous changeons les prescriptions pour peupler les galaxies satellites.

7.5.2 Ajout d’un modèle de conformité
Dans cette section nous utilisons le principe de conformité. La conformité change la valeur moyenne du
nombre de galaxies satellite en utilisant la connaissance a priori du fait que le halo contient une centrale
ou non. Ici, nous utilisons un modèle très simple de stricte conformité : les satellites ne peuvent peupler
un halo que si une galaxie centrale est déjà présente. Cela permet de forcer les galaxies satellites à être en
paire avec des centrales et donc de générer naturellement du signal 1-halo. Les résultats de l’ajustements
du modèle mHMQ avec stricte conformité sur les données de DESI sont présentés dans la figure 7.9.
Une conformité stricte n’améliore que légèrement l’accord avec les données, comparé au modèle sans
conformité. Par contre, lorsque la conformité est requise, les paires de galaxies intra-halo sont réparties
sur une gamme plus large de masse de halo, à la fois à faible et à forte masse de halo.
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Figure 7.9: En haut: Mesure des corrélations du relevé 1% des ELGs de DESI, comparée aux modèles
mHMQ les mieux ajustés sans (ligne verte) et avec (ligne rouge) conformité stricte. La ligne pointillée
correspond aux corrélations des halos uniquement. L’accord entre les données et les modèles est légèrement
amélioré en ajoutant la conformité stricte, c’est-à-dire en conditionnant l’occupation des satellites à la
présence d’une galaxie centrale. Les erreurs sont uniquement des incertitudes de Jackknife. En bas:
Résidus d’ajustement normalisés par les erreurs diagonales de la matrice de covariance complète, qui
comprennent les incertitudes du Jackknife pour les données ainsi que le bruit stochastique et la variance
cosmique pour le modèle, mais aucune correction du facteur de Hartlap.

7.5.3 Ajout du bias d’assemblage des halos
Bien que les modèles HODs ne soient basés que sur la masse des halos, ils permettent une bonne mod-
élisation des données jusqu’à de très petites échelles. Cependant, les modèles semi-analytiques et les
simulations hydrodynamiques montrent que des caractéristiques autres que la masse du halo ont un im-
pact sur la formation des galaxies. Chaque halo et chaque galaxie sont uniques et ont leur propre histoire.
Au cours de leur évolution, les galaxies et les halos connaissent une grande variété d’histoires dans leur
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parcours d’assemblage qui peuvent influencer des propriétés autres que la masse du halo. Les modèles
semi-analytiques et des simulations hydrodynamiques prédisent des corrélations entre la distribution spa-
tiale des galaxies dans des halos de même masse et des propriétés secondaires du halo. Ce phénomène
est connu sous le nom de biais d’assemblage (Croton et al., 2007, Gao & White, 2007, Wechsler et al.,
2002, 2006). Des études récentes (par exemple Hadzhiyska et al. (2022), Hearin et al. (2016), Yuan et al.
(2018)) ont développé des modèles HOD étendus qui prennent en compte les propriétés secondaires des
halos telles qu’elles sont observées dans la simulation afin de modifier le nombre moyen de halos à une
masse donnée en fonction de ces propriétés. Dans la littérature, plusieurs propriétés secondaires ont été
étudiées, telles que la concentration du halo, l’environnement de densité, le cisaillement (les anisotropies
dans la distribution de matière locale), le paramètre de spin du halo, le taux d’accrétion maximal... Mao
et al. (2018) présente un résumé des corrélations entre plusieurs proxies de l’histoire de l’assemblage et
les biais secondaires du halo.

Pour notre étude, nous testons 3 propriétés secondairess des halos : la concentration, de la densité
locale et les anisotropies locales de densité, en utilisant la paramétrisation suggérée dans Hadzhiyska
et al. (2022) :

⟨N ′
cent(M)⟩ = [1 + acenfa(1 − ⟨Ncent(M)⟩)] ⟨Ncent(M)⟩ (7.14)

⟨N ′
sat(M)⟩ = [1 + asatfa] ⟨Nsat(M)⟩ (7.15)

où ⟨Ncent(M)⟩ et ⟨Nsat(M)⟩ sont donnés dans la Section 7.3.1. Dans les équations ci-dessus, fa est intro-
duit pour matérialiser la propriété secondaire normalisée pour chaque halo. Dans une tranche de masse
de halo donnée, les halos sont d’abord classés par valeur décroissante de la propriété secondaire considérée
et chaque halo se voit attribuer une valeur différente de fa, cette dernière diminuant linéairement entre
0,5 et −0, 5 en allant du halo le mieux classé au dernier.

La figure 7.10 présente les corrélations prédites par les modèles mHMQ les mieux ajustés avec un
biais de conformité strict, obtenus sans et avec les trois prescriptions de biais d’assemblage. La qualité de
l’ajustement des modèles mHMQ ne s’améliore pas de manière significative lorsqu’on ajoute l’un des trois
biais d’assemblage. Les paramètres HOD et les paramètres dérivés se situent à 1σ près des valeurs dans
le modèle sans biais d’assemblage. Par conséquent, tous les modèles présentent des résultats de clustering
similaires (presque impossibles à distinguer). Nous notons que le modèle avec biais d’assemblage utilisant
la concentration des halos améliore légèrement la valeur du χ2 avec une préférence pour les halos très
concentrés, acen ∼ 0.75. Cela constitue une légère préférence pour le biais d’assemblage, mais comme
l’effet sur les statistiques de clustering est faible, cette préférence ne peut pas être établie de manière
robuste. Le meilleur ajustement pour le biais d’assemblage en utilisant la densité locale du halo montre
que les ELGs préfèrent un environnement neutre puisque acen est compatible avec 0. Dans le cas des
anisotropies de densité locale, les résultats du meilleur ajustement indiquent une préférence pour les halos
avec un cisaillement légèrement positif, acen ∼ 0.1, mais cette préférence est plus faible que celle pour
la concentration du halo. Enfin, le paramètre asat est compatible avec 0 et peu contraint dans les trois
modèles en raison du fait que la fraction de satellites avec un biais de conformité strict est faible (∼ 2%).

7.5.4 Changement de profil des halos
Aucune des extensions au modèle HOD étudiées dans les sections précédentes ne parvient à produire des
paires supplémentaires de galaxies à des échelles rp = [0.1, 1]Mpc/h comme l’exigent les données.

Néanmoins, il est possible d’y remédier en modifiant le profil radial de position des satellites dans
les halos. Orsi & Angulo (2018) suggèrent que, quelle que soit la masse du halo, les ELGs peuplent
préférentiellement la périphérie de leurs halos hôtes, les galaxies accrétées plus récemment se trouvant
plus éloignées du centre du halo. Cela s’explique par le fait que les galaxies satellites ne peuvent présenter
des taux élevés de formation d’étoiles que pendant une courte période, achevée une fois que le gaz de la
galaxie a été épuisé par les effets de marée et de forte pression ("ram pressure"). En conséquence, les
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Figure 7.10: En haut: Mesure des corrélations du relevé 1% des ELGs de DESI, comparées à différents
modèles mHMQ les mieux ajustés avec un biais de conformité strict (ligne verte) et avec biais d’assemblage
pour les centrales et les satellites en fonction de la concentration (rouge), de la densité locale du halo
(violet) et des anisotropies de la densité locale du halo (orange). Les erreurs sont uniquement des incer-
titudes de Jacknnife. En bas: Résidus d’ajustement normalisés par les erreurs diagonales de la matrice
de covariance complète, qui comprennent les incertitudes Jackknife pour les données ainsi que le bruit
stochastique et la variance cosmique pour le modèle, mais aucune correction du facteur de Hartlap.

galaxies satellites qui forment des étoiles devraient être préférentiellement situées à la périphérie de leur
halo. Du point de vue observationnel, des résultats montrent que la distribution de la fraction éteinte
du taux spécifique de formation d’étoiles des galaxies varie en fonction de la distance radiale à l’intérieur
d’un halo (Blanton & Berlind, 2007, Wetzel et al., 2012).

Inspirés par les publications ci-dessus, nous testons un profil de halo NFW modifié pour positionner
les satellites ELG. Le nombre de satellites pour un halo donné est d’abord déterminé selon la prescription
standard dans Equation (5.6). Une fraction d’entre eux, fexp ont des positions radiales tirées d’une loi
exponentielle :

dN(r)
dr

= e−r/(τ ·rs) (7.16)

où r est la distance entre le satellite et le centre du halo, et τ contrôle l’échelle de longueur de l’exponentielle
et agit sur l’extension du profil. Les positions radiales des satellites restants obéissent à un profil NFW
mais en modifiant l’approximation pour rs d’un facteur λNF W , à savoir rs → rs/λNF W . Ceci est presque
équivalent à l’extension de la coupure du profil par rapport à rvir en rhalo = λNF W · rvir et permet de
modifier l’extension du profil. Ce profil modifié est montré sur la Figure 7.11. Les trois paramètres fexp, τ

et λNF W sont laissés libres de varier dans les ajustements. Notons que les galaxies positionnées au-delà
du rayon viriel du halo sont improprement appelées satellites, mais nous conservons cette dénomination
ici pour refléter la composante de paramétrisation HOD dont elles sont issues.

Les modèles mHMQ les mieux ajustés avec une conformité stricte en modifiant la prescription du profil
des satellites comme décrit ci-dessus sont comparés dans la Figure 7.12 aux résultats de base utilisant
un profil NFW. Le positionnement modifié des satellites se traduit par une amélioration significative de
l’accord entre les données et les modèles, avec une valeur de χ2 passant de ∼152 à ∼88. L’amélioration
est la plus notable dans la région de la courbe ascendante de la fonction de corrélation projetée (voir les
résidus dans la Figure 7.12) montrant que des paires supplémentaires de galaxies ont été générées à ces
échelles avec le profil étendu, sans dégradation par ailleurs.

Nous constatons que le profil exponentiel contient environ 60% des satellites et qu’une fraction de ceux-
ci (environ 12% du nombre total de satellites, tel que mesuré dans les simulations au meilleur ajustement
des paramètres HOD) sont placés au-delà du rayon du halo donné par la simulation.Le profil modifié ci-
dessus est empirique et peut très probablement être remplacé par un modèle plus physique. Néanmoins,
notre principale conclusion est que le regroupement des ELGs mesuré par le relevé 1% de DESI favorise
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Figure 7.11: Profil de densité de satellites normalisé pour les paramètres les mieux ajustés dans le modèle
mHMQ avec une conformité stricte et notre prescription modifiée de profil NFW pour les satellites, en
fonction de la distance projetée entre la galaxie et le centre du halo, perpendiculairement à la ligne
de visée. Une fois ce profil intégré dans un modèle HOD, cette distance est également la séparation
projetée des paires centrale-satellite. Dans cet exemple, nous considérons un halo de concentration 5 et
rs = 0.06Mpc/h (correspondant à des masses de halo autour de 1012M⊙/h, proche de la valeur moyenne
de la masse des halos de notre échantillon). Les courbes (toutes normalisées à une valeur maximale de 1)
correspondent au profil NFW (vert), à la loi exponentielle ajoutée (en pointillés), à la combinaison des
deux sans mise à l’échelle de la coupure NFW (rouge) et au modèle modifié complet (violet).
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Figure 7.12: En haut: Mesure des corrélations du relevé 1% des ELGs de DESI, comparées à différents
modèles mHMQ les mieux ajustés avec un biais de conformité strict sans (vert) et avec (rouge) le profil
de halo modifé pour le positionnement des satellites. Les erreurs sont uniquement des incertitudes de
Jacknnife. En bas: Résidus d’ajustement normalisés par les erreurs diagonales de la matrice de covariance
complète, qui comprennent les incertitudes du Jackknife pour les données ainsi que le bruit stochastique
et la variance cosmique pour le modèle, mais aucune correction du facteur de Hartlap.
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clairement une fraction des ELGs résidant à la périphérie des halos, comme le suggèrent Blanton &
Berlind (2007), Wetzel et al. (2012) et Orsi & Angulo (2018).

En complément, nous avons étudié les modèles HODs en coupant l’échantillon des ELGs en deux
tranches de redshifts, 0.8 < z < 1.1 et 1.1 < z < 1.6, et utilisé 2 autres modèles de cosmologie pour les
simulations à N -corps. La division de l’échantillon ELG en deux tranches de redshift modifie modérément
les paramètres HOD. Nous observons un léger changement en fontion du redshift en termes de masse
moyennes des halos peuplés par les ELGs (0.08 dex), que nous ne considérons pas comme significatif. Des
changements modérés dans la cosmologie des simulations utilisées n’ont pas d’impact significatif sur les
résultats, les corrélations des données sont modélisées avec une qualité d’ajustement similaire.

7.6 Conclusions
Au cours des dernières décennies, les structures à grande échelle de l’Univers sont devenues l’une des sondes
cosmologiques les plus prometteuses pour contraindre les modèles d’énergie noire et de gravité (Alam
et al., 2021).

Le cœur de mon travail de doctorat consiste à fournir un modèle précis du clustering à petite échelle
de l’échantillon des galaxie à raies d’émissions (ELG) collecté par l’expérience DESI (Dark Energy Spec-
troscopic Instrument) pendant le reléve 1% de l’instrument. Cette expérience vise à observer pendant
5 ans ∼ 40M galaxies et quasars à des redshifts entre 0.1 < z < 3.5, y compris ∼ 17M d’ELGs en-
tre 0.6 < z < 1.6, pour contraindre fortement les modèles d’énergie noire. En seulement deux mois
d’observations, DESI a observé 267k ELGs, ce qui constitue le plus grand échantillon spectroscofipique
d’ELGs à ce jour. Grâce à la complétude de ce relevé, ce premier échantillon de données ELGs permet
d’avoir des mesures précises des corrélations entre les distance des galaxies jusqu’à de très petites échelles,
0, 03Mpc/h. Pendant mon doctorat, j’ai participé activement à la collaboration DESI. En particulier,
j’ai apporté une contribution majeure à la génération de mocks (catalogues de galaxies simulées) pour la
collaboration DESI, en étudiant la connexion galaxie-halo de l’échantillon ELG. J’ai travaillé directement
sur les premières données de DESI, en participant à la création des catalogues de galaxies, et j’ai effectué
de nombreux tests pour vérifier les potentiels effets d’erreurs systématiques.

Dans un premier temps, j’ai développé une nouvelle méthode d’ajustement prometteur basé sur les
processus gaussiens pour ajuster les modèles d’occupation des halos (HOD) (cadre grandement utilisé
pour étudier la connection galaxie-halo) de manière précise et efficace. J’ai d’abord développé un code
parallélisé, efficace pour générer des catalogues de galaxies simulées à l’aide de modèles HOD. J’ai ensuite
développé une procédure d’ajustement itérative basée sur des processus gaussiens afin de créer un modèle
de substitution de la fonction multidimensionnelle de vraisemblance attendue. L’ensemble de la procédure
a été testé sur des simulations, montrant que les paramètres HOD pour les corrélations des statistiques
à 2 points d’un échantillon similaire à celui des ELGs de DESI sont retrouvés sans biais significatif par
rapport à l’incertitude statistique attendue pour l’ajustement sur les données du relevé 1%, tout en
évaluant environ 100 fois moins de points dans l’espace des paramètres HOD que les techniques standard
basées sur les chaînes de Markov (MCMC).

Dans un deuxième temps, j’ai appliqué cette méthode à l’échantillon des ELGs du relévé 1% de DESI.
Cet échantillon montre un signal de clustering fort et inattendu aux petites échelles rp < 0.3 Mpc/h.
Pour reproduire ce signal à petite échelle des ELGs, j’ai montré que nous devons introduire des paires
de galaxies intra-halo dans des halos de faible masse (< 1012M⊙). Ce résultat était inattendu au vu
des études précédentes sur les ELGs (Avila et al., 2020, Gonzalez-Perez et al., 2018b). Pour proposer un
modèle plus physique, j’ai étudié l’effet de la conformité entre les galaxies proches. La conformité ajoute
une information préalable à la fonction de probabilité des galaxies satellites selon que le halo héberge
déjà une galaxie centrale ou non. Cette propriété améliore légèrement la modélisation des données à
petite échelle tout en maintenant la dépendance de la masse du halo satellite en accord avec les attentes
physiques. Nos résultats sont en accord avec ce que des études hydrodynamiques très récentes ont trouvé
sur la conformité entre les galaxies centrales et satellites des ELGs (Hadzhiyska et al., 2021b). Nous
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montrons également que la dispersion des vitesses des satellites est environ ∼ 30% plus élevée que celle
des particules de matière noire dans leurs halos. D’autres extensions aux modèles HOD standards, par
exemple en prenant en compte les biais d’assemblage ou changement de cosmologie des simulations à
N -corps n’apportent pas de changement significatif à nos résultats. La seule extension qui montre une
amélioration significative des résultats est quand nous permettons aux satellites ELG de se situer en
dehors du rayon du halo. En mettant ∼ 0.5% des galaxies de l’échantillon ELG (et ∼ 12% des galaxies
satellites) à la périphérie des halos, nous obtenons le meilleur accord entre le modèle et les données. Ce
travail a été publié dans JCAP lors de la publication des données du relevé 1% de la collaboration DESI.

Dans le cadre de mon travail sur l’ajustement des modèles HOD pour les ELGs, j’ai fourni à la col-
laboration DESI un ensemble de simulations officielles représentatives de la distribution des ELGs telle
que mesurée dans le relevé 1%. Ces modèles sont actuellement utilisés au sein de DESI pour tester les
analyses cosmologiques (mesure de l’oscillation acoustique des baryons (BAO) et du taux de croissance
des structures (RSD)) pour la publication des données de la première année de DESI, et je participe
activement aux discussions et à l’analyse en cours. Outre les travaux susmentionnés, j’ai contribué à
de nombreux efforts au sein de la collaboration DESI. J’ai participé à l’étude des effets systématiques
possibles dans la mesure du taux de réussite du redshift spectroscopique des ELGs en fonction des con-
ditions d’observation spectroscopique, ce qui conduira également à un article pour l’analyse des données
de la première année d’observation de DESI. Au cours du processus de validation de l’expérience (avant
de commencer le relevé principal), j’ai également contribué à l’inspection visuelle des spectres des ELGs
pour valider le code de détermination des redshifts Lan et al. (2022).

Au cours de mon doctorat, j’ai développé une expertise en cosmologie des structures à grande échelle
(LSS), en utilisant des études spectroscopiques pour contraindre les paramètres cosmologiques depuis
l’échelle du halo jusqu’aux plus grandes échelles (avec les effets de distorsions dans l’espace des redshifts
et les échelles d’oscillation acoustique des baryons). Au sein de la collaboration DESI, j’ai interagi
avec de nombreux collaborateurs dans le monde entier (États-Unis, France, Espagne, Corée...). J’ai
acquis une large compréhension des différentes sondes LSS et une expertise de l’instrument DESI. Avec la
nouvelle génération de relevés de galaxies pour la cosmologie de stade IV et l’augmentation des ressources
informatiques, nous entrons dans l’ère de la cosmologie de précision. Ce sera une période très excitante
pour la recherche cosmologique !

Enfin, je tiens à remercier tout particulièrement mes directeurs de thèse, Vanina et Etienne, pour
leur patience et leur soutien sans faille, sans lesquels cette thèse n’aurait pas été la même.
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