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Abstract

3D data analysis is a fundamental problem in modern science, and recent advances
such as deep learning have opened the door to new algorithms and possibilities in this
field. Nevertheless, 3D shape analysis presents difficult problems due to its particular
structure. Indeed, deep neural networks and more specifically convolutional neural net-
works were originally tailored to tackle grid-like structures like images. Consequently,
the challenge is to adapt deep learning to more complex structures like 3D point cloud
or meshes. In this thesis, we focus on the problem of non-rigid 3D shape matching,
whose objective is to analyze and compute maps between shapes, typically represented
as triangle meshes. Correspondence between a pair of shapes can be used to transfer
information such as texture, or segmentation, from one shape onto the other. To tackle
this hard non-linear problem, we adopt a functional point of view allowing for a simpler
and more efficient representation of maps between shapes. Since deep neural networks
have been designed to produce feature functions on point clouds or meshes, for instance
for segmentation, we propose to use these network features to match functional spaces
using the so-called functional map framework, which we build upon to implement new
algorithms for shape matching. In particular, we tackle several key problems which lie
at the intersection between shape matching and deep learning. Firstly, we propose a
method that helps to address the well-known issue of overfitting, which is a very re-
current problem particularly for 3D data. Secondly, we propose a new way to incorpo-
rate orientation information into the functional map pipeline using tangent vector field
analysis. We use this novel representation to solve some symmetry issues, difficult to
address because of the intrinsic nature of functional maps. Lastly, we propose a global
solution that learns features for efficient and robust shape matching, in an unsupervised
way. Overall our work proposes efficient methods to explore the space of maps between
shapes by exploiting the particular structure of 3D surfaces to build robust regularizers
for deep learning correspondence networks.



CHAPTER 1

Introduction

1.1 Background

Recent years have witnessed a massive surge in 3D data consumption, with applications
ranging from medical imaging, autonomous driving, scene understanding, to special
effects or geometry generation. Consequently the field of 3D data analysis has gained
significant momentum as 3D data become more available, and algorithms achieve more
efficient results.

Deep Learning, Overfitting and Regularization

One of the contributing factors to this significant rise in accuracy is deep learning. In-
deed, deep learning approaches demonstrated their power and versatility on 2D images
with tasks like object detection [53] semantic manipulation and editing [69], automatic
generation with variational auto-encoders (VAE) [74], then generative adversarial net-
works (GAN) [54] and more recently diffusion-based techniques [37, 65, ]. These
recent advances made possible with deep learning in image analysis and other fields
have been used in a wide range of real world problems, such as (a) cancer detection
(e.g. [173] using images to detect tumors) (b) self-driving vehicles (c) language under-
standing through natural language processing (NLP) [105] and recent methods such as
the attention mechanism [162] (d) emotion recognition [ 145, ] (e) fraud detection
[133, ] e.g. with time series analysis and LSTMs [172] (f) image restoration with
denoising [!57] and super-resolution [171], among many others.

It is interesting to note that deep learning also comes with several limitations. As a



data-centered approach, it builds a representation of the world based on a training set and
strives to make this representation generalize to a set of unseen data, denoted as test set.
A typical and most important pitfall of deep learning approaches is the overfitting issue
[137, ], where the model gives good results on the train set, but fails to generalize,
yielding bad results on the test set.

This leads to the second problem of deep learning pipelines: the model weights are
optimized to reduce a loss adapted to the task at hand, but this optimization usually hap-
pens in a highly non-convex landscape, making it easy for the gradient descent to stop
in a local minimum. Moreover, deep learning networks depend on a large number of
parameters (typically ranging from 10° to 10%), often more than the number of training
instances (which can be addressed with strategies such as data augmentation [147]). As
a consequence, the weight optimization process is immensely complex and the network
itself is a black box. It is hard to give predictions or theoretical guarantees for conver-
gence, except in simple cases. As a matter of fact, the success of deep learning is rather
due to its wide range of practical performance.

Thirdly, despite its incontestable efficiency in many tasks, deep learning has been
shown to lack robustness [ 10]. For instance, given a network trained for image clas-
sification, one can “fool” this network by adding a small noise to the input image, es-
sentially invisible to the human eye, yet eventually resulting in the network giving a
wrong prediction with strong confidence for this slightly modified image. This strategy
is called adversarial attacks, and can be performed with or without access to the network
weights [60]. This lack of robustness shows that deep learning methods, despite their
undeniable success, still need strong regularizations to be stable for optimization and
ultimately work efficiently.

Generally, a deep learning network should exploit structure to build a more accurate
and generalizable representation. More precisely, dense neural networks connecting
every input dimension to all output neurons for all layers usually have too many pa-
rameters to efficiently navigate the landscape, ultimately leading to overfitting. For 2D
images, one of the most remarkable instances of such structure being essential to better
performance is convolution filters, combined with pooling strategies [79, , 64]. The
idea is to use the translation-invariant property of convolution filters, which is desirable
for most image-related tasks, in parallel with pooling layers, whose goal is to reduce the
image size, thus letting the network progressively focus on more global information,
building features in a hierarchical manner. Indeed, visualizing the convolution filters
obtained by such a network can shed light on how meaningful and generalizable the
trained representations for images are: typically, some filters in the early layers focus
on edge detection, whereas deeper in the network filters focus on more high-level struc-
ture such as texture or detection of certain objects. Meanwhile, a convolutional neural
network (CNN) has considerably fewer parameters, allowing for easier optimization.



Voxels Point cloud

Figure 1.1: For a smooth surface in 3D (fop row), there are different possible discretiza-
tions (bottom row): (a) The voxel grid representation (b) The point cloud structure (c)
The triangle mesh representation, which corresponds to a piecewise-linear encoding of
a surface.

3D Deep Learning

While deep learning has also been applied on 3D data, its use is still not as widespread.
Firstly 3D data acquisition is generally more difficult and costly than gathering images.
Some popular methods are 3D laser scans [43] which enable precise localization of
points on 3D objects facing the scanner, Microsoft Kinnect [63] which can acquire
precise depth fields, or Lidar [130] which is used mostly for terrain detection and thus
autonomous driving. These techniques usually need post-processing, e.g. point cloud
registration to match the acquisition under different viewpoints [81, 12], or denoising
to clean the acquired data from outliers [118, 142, 119]. Since the process of getting
clean, high-quality 3D data necessitates precise instruments and is generally costly, the
amount of 3D data available for large scale experiments is comparatively low. Indeed,
any smartphone can generate high-quality 2D images or videos, hence the availability
of large-scale image datasets with several billion training samples in some cases.
Secondly, 3D data cannot be treated similarly to 2D images, as there are various
types of 3D data, the most commonly used being voxels, point clouds and triangle
meshes (see Figure 1.1). All these types of data still differ from their 2D counterpart,
owing to either size or non-regular structure: (a) voxels extend the regular grid structure
to 3D (with often just one binary channel to indicate presence or absence of an object
on a given voxel) but usually lack either precision, since even a 2563-grid takes has as
many elements as a 4096® image. Additionally, voxels inside the surface bring little to
no information, which can make this data structure less competitive compared to sparser
structures such as these described below. (b) point clouds usually stem from 3D laser
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Figure 1.2: A map ¢ between two smooth shapes M and N. The map takes a point
reMtoy=p(zx) € N.

scan acquisition, and are much lighter structures as they only store point positions on the
object’s surface. For reasonable precision, a point cloud (for an organic object such as an
animal) only needs to store a few thousand points, but they can be composed of millions
of points for high-precision objects or when a whole 3D scene is encoded. However, the
point cloud structure is not regular, as its local density may vary. Besides, it is difficult
to define differential operators and smooth objects on this structure. (c) meshes are
theoretically more adapted to deal with the issue previously stated, as they are tailored to
approximate smooth surfaces with piecewise linear elements. The theory of manifolds
can be partially adapted, giving access to so-called intrinsic differential operators on
the mesh structure. These operators will not depend on the extrinsic coordinates of
the points, making the intrinsic viewpoint independent on translation or rotation of the
mesh.

Consequently, for a neural network to exploit these different 3D data structures, one
must design specific tools and regularizations, adapted to the problem at hand. This
research field is generally called geometric deep learning [23] or 3D deep learning.

Some of the most common tasks in this field are: (a) Shape classification and seg-
mentation, with networks such as [115, , , ] on point clouds, and [92, ,

] on meshes (b) Point cloud denoising [! 18] and meshing [142, ] (¢) Learning
implicit representations for efficient shape parametrization [ 155, ] (d) Shape match-
ing [85, 62, , 39, 45, ], potentially with partial correspondence [4] (e) Shape
interpolation [ 117, 46].



Shape Matching

In this dissertation, we will mainly focus on one particular shape analysis task, called
shape matching, whose goal is to analyze and compute maps between shapes. A map
between two shapes is represented in Figure 1.2. Given such a map, also called a cor-
respondence between one source and target shape, it is possible to transfer information
(e.g. weights, texture, segmentation) from source to target. Essentially, shape matching
often relies on differential geometry as shapes are represented with manifolds, as de-
scribed in Chapter 3. In the discrete case, we typically approximate smooth surfaces as
meshes with vertices embedded in 3D space. Note that throughout this manuscript, we
focus on the study of surfaces in 3D, but the constructions and considerations developed
in subsequent chapters theoretically apply in larger dimensions.

Exploring the space of maps between shapes is challenging, both in continuous and
discrete settings. Indeed, the challenge is to look for natural correspondences between
shapes, which entails enforcing the resulting mappings to have desirable properties,
such as bijectivity, continuity, or most importantly isometry. While these properties can
be expressed as point-wise energies on discretized shapes, both their computation and
optimization tend to be time-consuming and non-trivial.

To alleviate this issue, we focus on a particular framework to tackle shape match-
ing, called functional maps, introduced in [106]. The key insight proposed by this
pipeline holds in the representation of maps between shapes as small-scale matrices,
on which aforementioned properties like bijectivity and isometry can be expressed as
simple quadratic energies.

One of the main bottlenecks of the functional map pipeline lies in its dependence on
so-called descriptor functions, whose purpose is to act as soft constraints to guide the
functional map estimation. While some works design descriptor functions in a fully au-
tomatic, learning-free way [ 151, 6, ], the rise of feature functions from deep learning
[115, , , ] makes it possible to learn these descriptor functions [85], making
shape matching another task on which deep learning can be applied with significant
efficiency. Indeed, geometric priors are typically key to generating robust descriptor
functions .

However, as mentioned above, deep learning methods are liable to overfit if not
combined with the right regularizers or network structures. Besides, this overfitting can
happen in surprising places and may therefore remain undetected if not confronted with
a precise and thorough experimentation procedure. Consequently, we present in this
thesis several works whose overall purpose is to strengthen the general shape matching
pipeline. More specifically, we make use of the functional maps framework jointly
with 3D deep learning for shape matching. We present new techniques exploiting shape
structure or general network optimizations to prevent overfitting, and eventually give
insight on how to make this pipeline completely unsupervised.

We believe our work helps make some key shape matching methods more stable, by



opening new possibilities combining both geometry processing and 3D deep learning.

1.2 Contributions

This thesis aims at solving several issues inherent to the functional map pipeline, by
incorporating relevant structure into the framework, whether or not it is learning-based.
We first investigate how to learn robust features directly from the raw geometry of the
shapes, rather than using potentially error-prone axiomatically-defined input feature
functions. Secondly, we present an extension to the functional map pipeline to address
the fundamental issue of intrinsic orientation-reversing symmetries. Finally, we present
a way to use unsupervised deep learning to perform non-rigid shape matching using
regularizations derived from the first two parts.

Robust Feature Learning from Raw Geometry

As mentioned above, in shape matching, representing maps can be made considerably
easier with the functional maps framework. However, map computation still hinges on
finding accurate descriptor functions to guide the initialization. Indeed, in the original
paper [106] and in follow-up works [107, 31, 32, , , , ], authors rely on
axiomatic descriptors [151, 6] based on heat diffusion. However, manual annotation is
costly and time consuming, hence the need for algorithms capable of producing their
own descriptor functions without user intervention.

Geometric deep learning algorithms are built to learn their own representation for the
input data, through feature function design. While some works aim at adapting convo-
lutional neural networks on surfaces discretized as meshes [92, 21, ], other methods,
pioneered by PointNet [ 15] and later extended in works such as [116, 5, , 1,
build feature functions directly on 3D point clouds. Meanwhile, deep learning tech-
niques are applied jointly with functional maps in FMNet [85] to learn better descriptor
functions. However, FMNet uses as input not the shape itself, but SHOT descriptor
functions [158]. These descriptors, based on normal distribution histograms for each
vertex, are highly dependent on the shapes discretization. Consequently, FMNet and its
follow-up works [62, ] are liable to overfit to shape discretization rather than exploit
relevant geometric details from the input surfaces.

With this in mind, we propose to use a point cloud feature extractor [156] to extract
information directly from the shape’s geometry, jointly with a differentiable regularizer
in the functional map layer to extract robust feature functions tailored to retrieve accu-
rate correspondence. We show through extensive experiments that our method, although
supervised, can learn with a relatively small training set, and is stable to changes in tri-
angulation from train to test set since the features are built with a point cloud feature
extractor. This work constitutes the first building block of this thesis, where we aim at



designing state-of-the art algorithms for shape matching, while circumventing common
pitfalls such as overfitting to the triangulation structure.

Incorporating Orientation into Functional Maps

A second bottleneck of the functional map pipeline is inherent to the fact it is built
on intrinsic quantities, namely Laplace-Beltrami eigenvalues and eigenbasis (which we
will introduce in Chapter 3). Indeed, these objects are built on a continuous surface
using only the metric information (which on a discrete mesh corresponds to using only
edge length information). Intrinsic pipelines benefit from the fact that they do not use
the extrinsic 3D coordinates of the input shape, making them independent to rotation or
translation of the input.

However, intrinsic pipelines are more affected by the intrinsic self-symmetries of
the input shape. As most organic shapes exhibit at least one intrinsic near-isometric
symmetry (often referred to in the following as left-right symmetry), this becomes a
standard and well-known issue in shape matching. Indeed, for shapes exhibiting these
isometric self-maps, the problem of finding the most isometric map becomes ill-defined
as the set of solutions includes a non-trivial symmetry group [107]. To tackle this issue
one can rely on some extrinsic information, for instance by using partially extrinsic
descriptor functions as input, such as SHOT descriptors [158]. However, as explained
in the previous paragraph, SHOT descriptors are unreliable as they depend more on the
discretization than on the underlying surface.

We show that incorporating orientation information instead in the functional map
pipeline considerably helps in disambiguating symmetries. We build a new spectral
representation for push-forwards, which enables to represent conformal orientation-
preserving maps as small complex matrices, that we call complex functional maps. We
also build and describe the link between functional maps and complex functional maps.

Finally, we show in several experiments that state-of-the-art algorithms of the func-
tional map pipeline all benefit from our modification, and that generally our framework
helps with orientation-reversing symmetry aliasing. This work thus paves the way to
more robust shape matching and new representations for maps between shapes, that we
propose to use for unsupervised efficient shape matching in the last part of this thesis.

Unsupervised Deep Learning for Shape Matching

Chapter 5 and 6 respectively introduce a robust framework for shape matching with deep
learning directly from the geometry, and a new representation for orientation-preserving
maps between shapes to tackle symmetry issues. In the last work of this thesis, we
combine the two previous ideas to build an unsupervised deep neural network for 3D
correspondence. Indeed, supervised deep learning methods for shape matching require
ground-truth maps between all pairs of shapes at training time. While this is typically

8



feasible for e.g. synthetic datasets, it limits the training scenarios and ultimately makes
it harder for the method to generalize.

Consequently, deep unsupervised shape matching has been an active field, initially
developed in FMNet follow-up works [62, ]. In both these papers however, the in-
put signal fed to the network is SHOT descriptors. We show that the use of SHOT
descriptors circumvents the problem of symmetry introduced in the previous section
through triangulation overfitting. Indeed, in non-rigid shape matching the objects of
study are most of the time organic shapes, which exhibit a so-called left-right symme-
try, which reverses shape orientation. Theoretically, an unsupervised shape matching
method must be able to disambiguate between the two near-isometric map solutions
that are the ground-truth map and its composition with an intrinsic left-right symmetry.
Some works [140, 46] choose to rely directly on shape embedding to solve this issue:
the network is fed the 3D coordinate signal of both shapes as input. However, this so-
lution requires all the train and test shapes to be rigidly aligned to the same 3 axes, so
that the left and right part of the shapes get separate input signals. These works fall in
the category of weak supervision, since they require specific alignments both at training
and test times. Finally, for a method to be fully unsupervised in our case, the network
loss must be able to rule out undesirable symmetric maps without relying on weak su-
pervision or triangulation overfitting. While Deep Shells [45] proposes such a loss,
their structure is still very dependent on having SHOT descriptors as input, which once
again proves unstable to triangulation change, or even to some datasets as we describe
in Chapter 6.

Our work describes a robust and efficient pipeline for unsupervised shape match-
ing, still based on a functional map framework, through a loss mixing functional maps
and complex functional maps to tackle the symmetry issue. This network is based on
the triangulation-agnostic 3D feature extractor DiffusionNet [144], making it robust to
changes in discretization. Additionally, our method makes use of fangent vector field
features which are used as relevant signals for correspondence. Consequently, we be-
lieve this work can open new possibilities both for shape matching and shape represen-
tation. Indeed, the feature functions and vector fields computed by our network in an
unsupervised manner could be used for a variety of other shape analysis tasks.
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Maps: a Conformal Link between Tangent Bundles, in Proceedings of the Euro-
graphics Symposium on Geometry Processing, CGF 2022. [40]

* N. DONATI, E. CORMAN AND M. OVSJANIKOV, Deep Orientation-Aware Func-
tional Maps: Tackling Symmetry Issues in Shape Matching, in Proceedings of
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2022. [41]
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CHAPITRE 2

Introduction en Francais

2.1 Contexte

Ces dernicres années ont vu une augmentation massive de la consommation de données
3D, avec des applications allant de la compréhension de scenes 3D et la reconstruction
de scans 3D partiels (utilisés par exemple pour la conduite autonome, ou 1’imagerie
médicale) aux effets spéciaux ou a la génération de géométrie. Par conséquent, le secteur
de I’analyse de données 3D a fortement gagné en importance, les données 3D devenant
plus accessibles et les algorithmes permettant d’obtenir des résultats plus efficaces.

Apprentissage Profond, Sur-Apprentissage et Regularisation

L’un des facteurs principaux de cette augmentation conséquente en précision est le dé-
veloppement des algorithmes d’apprentissage profond. En effet, cette technique a dé-
montré sa puissance et son adaptabilité sur les images 2D, avec des architectures de
modeles performantes et fiables sur des tiches complexes telles que la détection d’ob-
jets [53], la manipulation sémantique [69], la génération automatique d’images avec
d’une part les auto-encodeurs variationnels (VAE) [74], puis les “generative adversarial
networks” (GAN) [54] puis plus récemment, les méthodes basées sur de la diffusion
[37, 65, ]. Ces avancées récentes permises par I’apprentissage profond en matiere
d’analyse d’images ainsi que dans d’autres domaines ont été largement utilisées pour
résoudre des problemes réels tels que (a) la détection automatique de tumeurs cancé-
reuses [173] (b) les voitures autonomes (c¢) I’analyse de langage (NLP) [105] avec des
mécanismes tels que 1’attention [162] (d) la reconnaissance d’émotions [ 145, ] (e)
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la détection de fraudes ou d’incohérences fiscales [133, ] avec I’analyse de séries
temporelles, par exemple avec les LSTMs [172] (f) la restauration d’images avec des
techniques telles que le débruitage [157] ou la sur-résolution [171], parmi bien d’autres
applications.

Il est intéressant de noter que 1’apprentissage profond s’accompagne également de
plusieurs inconvénients. En tant qu’approche centrée sur les données, elle construit une
représentation du monde basée sur un ensemble d’entrainement et tente de généraliser
cette représentation a des données inconnues (sur lesquelles elle n’a pas été entrainée)
appelées ensemble d’évaluation. Un risque typique et important des approches d’ap-
prentissage profond est le phénomene de sur-apprentissage [137, ], ou le modele
donne de bons résultats sur I’ensemble d’entralnement, mais ne parvient pas a générali-
ser, donnant ainsi de mauvais résultats sur 1’ensemble d’évaluation.

Ceci mene a une autre limite de 1’apprentissage profond : les poids du modele sont
optimisés afin réduire une fonction de coiit adaptée aux besoins du probleme, mais cette
optimisation est souvent effectuée dans un cadre fortement non-convexe, ce qui bloque
la descente de gradient dans des minima locaux. De plus, les réseaux de neurones pro-
fonds possédent un trés grand nombre de paramétres (typiquement de 10° a 10%), sou-
vent supérieur au nombre de données d’entrainement (ce qui peut étre contrecarré par
des procédés comme I’augmentation de données [147]). L’optimisation des poids est
ainsi extrémement complexe ; par essence, le réseau lui-méme est une boite noire et il
est difficile de donner des prédictions ou des garanties de convergence, excepté dans les
cas les plus simples. Le succes de I’apprentissage profond est plutdt dii a son succes
dans une tres grande variété d’applications, comme cité plus haut.

Par ailleurs, malgré son efficacité incontestable démontrée dans de nombreuses tiches,
il a été démontré que I’ apprentissage profond manquait de robustesse [ | | 0]. Par exemple,
en utilisant un réseau entrainé pour la classification d’images, il est possible de “trom-
per” le réseau en bruitant artificiellement I’'image d’entrée, de fagon invisible pour I’ ceil
humain, ce qui résulte en une prédiction erronée du réseau avec un fort degré de cer-
titude, pour cette image tres légerement modifiée. Cette stratégie dite des “adversarial
attacks” peut étre utilisée en ayant acces ou non aux poids du réseau [60]. Ce manque
de robustesse montre que les méthodes d’apprentissage profond, malgré leur taux d’ef-
ficacité indéniable, ont encore besoin de fortes régularisations afin d’€tre suffisamment
stables durant 1’ optimisation, et correctes pendant 1’évaluation.

De facon générale, un réseau de neurones profond doit pouvoir s’appuyer sur une
notion de structure afin de créer une représentation plus stable et non sur-apprise des
données. Plus précisément, les réseaux de neurones denses connectant chaque dimen-
sion d’entrée a chaque dimension de sortie contiennent le plus souvent trop de para-
metres, rendant 1I’exploration de 1’espace des parametres trop complexe, ce qui conduit
a du sur-apprentissage. Dans le cas des images 2D, un exemple fondamental d’utilisation
de structure est celui des filtres de convolution, combinés a des stratégies d’échantillon-
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Voxels Point cloud

FIGURE 2.1 : Pour une surface 3D donnée (premiere ligne), il existe plusieurs discreti-
sations possibles (deuxieme ligne) : (a) La grille de voxels (b) Le nuage de points (c) Le
maillage, qui correspond a une représentation linéaire par morceaux de la surface.

nage, ou “pooling” [79, 148, 64]. L’idée principale est d’utiliser la propriété d’inva-
riance par translation des filtres de convolution qui permet de détecter de la méme fagon
un objet sans tenir compte de son emplacement dans 1’image, ce qui est généralement
utile dans la plupart des taches liées aux images. En parallele les couches de “poo-
ling” permettent de réduire 1I’échelle de I’image afin de laisser le réseau se concentrer
progressivement sur des informations de plus en plus globales, construisant ainsi des re-
présentations de maniere hiérarchisée. En effet, en visualisant les filtres de convolution
obtenus par un réseau entrainé, on observe que I’optimisation a permis de construire des
représentations efficaces et généralisables dans le cadres des images : les filtres sur les
premieres couches du réseau se concentrent sur des notions extrémement locales telles
que la détection de bords, tandis que des couches plus profondes détectent des struc-
tures plus globales telles que des textures ou certains objets. Les réseaux de neurones
basés sur ces stratégies de filtres de convolution et d’échantillonnage, appelés réseaux
de neurones convolutifs (CNN), présentent considérablement moins de parametres que
les réseaux denses, permettant une optimisation plus efficace.

Apprentissage Profond en 3D

Méme si I’apprentissage profond a également été utilisé sur des données 3D, ses appli-
cations restent a ce jour moins étendues. Premierement, les méthodes d’acquisition 3D
sont généralement plus difficiles et coliteuses a mettre en place que la capture d’images
2D. Les méthodes d’acquisition 3D les plus populaires sont les scans 3D par laser [43]
qui permettent la localisation précise de points sur des objets 3D directement en face du
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scanner, la Microsoft Kinnect [63] qui permet I’acquisition précise du champ de pro-
fondeur, ou encore le Lidar [130] utilisé principalement pour de la détection de reliefs
de terrain, puis récemment pour les voitures autonomes. Ces techniques nécessitent ha-
bituellement un traitement post-acquisition, tel que I’alignement de nuages de points
partiels pris sous des angles différents [81, 12], ou le débruitage pour traiter les données
acquises et se débarrasser des “outliers” [ 18, , ]. Le processus d’obtention de
données 3D de qualité propres a I’utilisation nécessitant des instruments précis et coli-
teux, il est naturel que la quantité de données 3D disponibles pour des expériences a
grande échelle soit encore relativement petite comparé au cas de la 2D, ou n’importe
quel smartphone peut capturer des images ou des vidéos de treés bonne qualité en une
fraction de seconde.

Deuxieémement, les données 3D peuvent étre de différents types (voire Figure 2.1),
chacun nécessitant un traitement particulier, puisqu’ils different des structures régulieres
de grilles de pixel 2D. Les types de donnée 3D les plus fréquents sont : (a) La structure
de voxels qui étendent la structure de grille réguliere a la troisieme dimension (avec
le plus souvent un seul canal de donnée binaire indiquant la probabilité de présence
d’un objet sur un voxel donné). Le probleme majeur de ce type de donnée est qu’il
manque souvent de précision : en effet, une grille de format 256° pése autant qu’une
image de résolution 40962. Additionnellement, les voxels intérieurs a la surface de I’ ob-
jet d’étude n’apportent qu’une information redondante, ce qui rend parfois les grilles de
voxels moins compétitives comparées a des structures plus 1égeres, ou “sparse”, comme
celles décrites dans les points suivants. (b) Les nuages de points, souvent générés lors
d’une acquisition scanner, représentent des structures plus légeres, puisque sont seule-
ment stockées les positions de points a la surface de 1’objet d’étude. Pour une précision
raisonnable, un nuage de points (dans le cas des objets de type organique) ne demandent
que quelques milliers de points, et ce nombre peut monter a quelques millions de points
pour des scenes 3D massives représentant par exemple des environnements complexes.
Cependant, la structure de nuage de points est non réguliére, et sa densité locale est sou-
vent variable. Il est alors difficile d’y établir un cadre d’étude pour définir des opérateurs
différentiels ou des objets venant de la théorie des surfaces continues. (c¢) Les maillages
sont construits pour répondre au probléme susmentionné, et sont définis en tant qu’ap-
proximation discrete, et linéaire par morceaux, des surfaces continues. La théorie des
variétés différentielle peut alors partiellement €tre adaptée, donnant ainsi acces a I’ infor-
mation appelée intrinseque des surfaces, et a certains opérateurs différentiels associés,
qui se révelent tres utiles a I’étude des maillages. En effet, ces opérateurs ne dépendent
pas des coordonnées 3D, dites extrinseques, des points du maillage, rendant le point de
vue intrinseque indépendant aux translations et aux rotations de la surface considérée.

En conséquence, pour qu’un réseau de neurone puisse utiliser ces types de données
non réguliers, des outils spécifiques et des régularisations adaptées doivent étre congus
pour le probleme d’étude spécifique. Ce domaine de recherche tres actif est générale-
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Y

N
FIGURE 2.2 : Une application ¢ entre deux formes 3D M and V. L’application associe
aun point z € M le point y = p(z) € N.

ment appelé apprentissage profond géométrique [23] ou apprentissage profond 3D.
Les taches et enjeux majeurs de ce domaine sont : (a) La classification et la seg-
mentation de formes, avec des réseaux comme [ 15, , , ] pour les nuages de
points, et [92, , ] pour les maillages (b) Le débruitage de nuages de points [ | 8]
ainsi que leur maillage de fagon automatique [142, ] (¢) L’apprentissage de repré-
sentations implicites pour la paramétrisation efficace des formes 3D [155, 1 (d) La
mise en correspondance de formes 3D [85, 62, , 39, 45, ], avec le cas particulier,
plus difficile, ou la correspondance est partielle [4] (e) L’interpolation entre formes 3D

[117,46].

Mise en correspondance de formes 3D

Dans notre cas, nous nous intéresserons majoritairement dans le cadre de cette disserta-
tion a la mise en correspondance de formes 3D, dont I’objectif principal est I’étude et
I’analyse des applications entre formes 3D. Une telle application est représentée dans
la Figure 2.2. Etant donnée une telle application, aussi appelée correspondance, entre
une forme source et une forme cible, il est ensuite possible de transférer de 1’informa-
tion (comme des poids, de la texture ou des informations de segmentation sémantiques)
depuis la forme source jusqu’a la forme cible. Essentiellement, ce domaine s’appuie
sur la géométrie différentielle et les formes sont représentées par des variétés, comme
décrit dans le chapitre 3 en plus de détails. Dans le cas discret, nous approximons les
surfaces 3D a ’aide de maillages dont les points sont des éléments de I’espace 3D. A
ce stade, nous attirons I’attention du lecteur sur le fait que dans cette dissertation, nous
nous concentrons sur I’étude des surfaces 3D, mais les constructions théoriques et les
considérations établies au cours de cette thése restent a priori valables en dimension
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supérieure.

L’exploration de I’espace des applications entre formes est extrémement complexe,
a la fois dans le cadre continu et discret. En effet, le probleme principal est d’obtenir des
correspondances naturelles entre formes, ce qui implique d’étre capable d’imposer aux
applications d’exhiber des propriétés telles que bijectivité, continuité ou de facon plus
importante, des propriétés d’isométrie. Ces propriétés peuvent €tre exprimées et déri-
vées en énergie sur les maillages 3D, mais a la fois leur estimation et leur optimisation
ont tendance a étre chronophages et non triviales.

Pour alléger ce probleme, nous utilisons le cadre des applications fonctionnelles,
introduit pour la premiere fois dans [ 1 06]. L’ apport principal de cette pipeline tient dans
une représentation compactée des applications entre formes, encodée par des matrices
a petite échelle, sur lesquelles les propriétés susmentionnées (et plus particulierement la
bijectivité et I’isométrie) peuvent s’exprimer comme de simples énergies quadratiques.

En contrepartie, les applications fonctionnelle et leur performance dépendent forte-
ment de certaines données d’entrées, appelées fonctions descriptrices, ou simplement
descripteurs, qui sont des signaux pre-calculés sur les formes source et cible dont I’ob-
jectif est de servir de points de repere pour guider I’estimation d’une application fonc-
tionnelle initiale. Certains travaux proposent des formules pour des descripteurs basées
sur des approches purement axiomatiques [151, 6, ], tandis que des approches plus
récentes démontrent I’ efficacité de I’apprentissage profond pour apprendre ces descrip-
teurs [85] a I"aide de réseaux spécialisés pour les données 3D [115, , , ].
Ainsi, la mise en correspondance de formes 3D devient un nouveau probleme géomé-
trique sur lequel il est possible d’utiliser de 1’apprentissage de fagcon efficace, puisque
les connaissances géométriques obtenues lors de I’entralnement sont pertinentes pour
I’estimation de descripteurs généralisables.

Cependant, comme expliqué plus tot dans cette introduction, les méthodes d’ap-
prentissage profond sont promptes au sur-apprentissage si elles ne sont pas combinées
avec les régularisateurs ou les structures de réseau adéquats. Par ailleurs, cette situa-
tion peut se présenter inopinément et risque ainsi d’échapper a la détection en 1’absence
de confrontation avec une procédure d’expérimentation précise et détaillée. Ainsi, nous
présentons dans cette thése plusieurs travaux dont 1’objectif global est de renforcer la
pipeline générale de correspondance entre formes. Plus précisément, nous utilisons le
cadre des applications fonctionnelles associé a 1’apprentissage profond en géométrie,
avec de nouvelles techniques exploitant la structure des formes 3D ou des optimisa-
tions générales du réseau, afin d’éviter le sur-apprentissage, et avec pour objectif final
de proposer des solutions visant a rendre la pipeline totalement non-supervisée.

Nous sommes persuadés que notre travail permet de rendre les méthodes de corres-
pondance de formes plus stables, en ouvrant de nouvelles perspectives associant a la
fois le calcul en géométrie et I’apprentissage profond de formes 3D.
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2.2 Contributions

Cette these a pour objectif de résoudre certains des problemes liés a la pipeline des ap-
plications fonctionnelles, en y incorporant des informations pertinentes de structure, a
la fois dans la partie de cette pipeline liée a 1I’apprentissage mais aussi dans ses compo-
santes plus axiomatiques. Nous investiguons dans un premier temps comment apprendre
des descripteurs robustes directement depuis la géométrie “brute” des formes, plutot
qu’en raffinant des descripteurs potentiellement imprécis ou biaisés. Dans un deuxieéme
temps, nous présentons une extension au cadre des applications fonctionnelles, afin de
traiter le probleme majeur constitué par les symétries intrinseques internes inversant
I’orientation dans la mise en correspondance. Enfin, nous présentons une méthode per-
mettant d’apprendre de maniere non supervisée des correspondances 3D via de nou-
velles régularisations, dérivées des deux parties précédentes.

Correspondances via Apprentissage Supervisé Robuste
sur la géométrie ‘‘brute”

Dans la correspondance de formes, la représentation d’application est rendue consi-
dérablement plus facile avec le cadre des représentations fonctionnelles. Cependant,
le calcul de fonctions dépend encore de descripteurs précis pour guider I’initialisa-
tion. En effet, dans la publication premiere [106], et dans les travaux qui ont suivi
[107, 31, 32, , , , ]les auteurs s’appuient sur des fonctions reperes ainsi
que des descripteurs entierement automatiques [151, 6] s’appuyant sur le processus de
diffusion de chaleur. Cependant, 1’annotation manuelle est coliteuse et chronophage,
d’ou le besoin d’algorithmes capables de produire leurs propres fonctions descriptives
sans intervention de I’ utilisateur.

Les algorithmes d’apprentissage profond géométrique sont construits pour apprendre
leur propre représentation des données d’entrée, via I’estimation de descripteurs. Alors
que certaines méthodes visent a adapter les réseaux de neurones convolutifs aux sur-
faces discrétisées en maillage [92, 21, ], d’autres, présentées pour la premicre fois
par PointNet [ 1 5] puis étendues plus tard dans des travaux tels que[! 16, 5, , 1,
construisent les descripteurs directement sur des nuages de points 3D. Cependant, les
techniques d’apprentissage profond sont combinées aux applications fonctionnelles dans
FMNet [85] pour apprendre de meilleurs descripteurs. Cependant, FMNet recoit comme
données d’entrées non pas la forme elle-méme, mais des descripteurs SHOT [158].
Ces descripteurs, qui s’appuient sur des histogrammes de distribution de normales pour
chaque point, sont fortement dépendants de la discrétisation des formes. Ainsi, FMNet
et les travaux qui ont suivi [62, ] sont prompts au sur-apprentissage de la discré-
tisation de la forme plutdt qu’a I’exploitation de détails géométriques pertinents des
surfaces d’entrées.
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C’est pourquoi nous proposons d’utiliser un extracteur de fonctions caractéristiques
de nuages de points [|156] pour extraire de 1’information directement depuis la géomé-
trie de la forme, en parallele d’un régularisateur différenciable dans la couche d’appli-
cation fonctionnelle afin d’extraire des descripteurs adaptés pour obtenir une corres-
pondance plus précise. Nous montrons donc via des expériences exhaustives que notre
méthode, bien que supervisée, peut apprendre avec un ensemble d’entrainement rela-
tivement petit, et est résistante au changement de triangulation entre 1’entrainement et
le test, puisque les descripteurs sont construits avec un extracteur opérant sur un nuage
de points. Ce travail est présenté dans le premier axe de cette these, dans laquelle nous
visons a créer des algorithmes performants et novateurs pour la mise en correspondance
de formes, en contournant les écueils classiques tels que le sur-apprentissage de trian-
gulation.

Orientation et Applications Fonctionnelles

Une autre limite de la pipeline de 1’application fonctionnelle réside dans le fait qu’elle
est construite sur des quantités intrinséques, les valeurs propres et bases propres de
Laplace-Beltrami (que nous présenterons dans le chapitre 3). En effet, ces objets sont
construits sur une surface continue utilisant uniquement les informations métriques (ce
qui dans un maillage discret correspond a utiliser uniquement les informations de lon-
gueur des arétes). Les pipelines intrinseques bénéficient du fait qu’elles n’utilisent pas
les coordonnées 3D extrinséques de la forme d’entrée, les rendant indépendantes de la
rotation ou la translation des données d’entrée.

Cependant, les pipelines intrinseques sont nécessairement davantage affectées par
les symétries internes de la forme d’entrée. Comme la plupart des formes organiques
présentent au moins une symétrie quasi-isométrique intrinseque (a laquelle nous ferons
souvent référence dans ce qui suit en tant que symétrie gauche-droite), cela devient un
probleme standard et connu de la reconnaissance de formes. En effet, pour les formes
qui présentent ces symétries internes isométriques, le probleme de trouver la correspon-
dance la plus isométrique devient mal défini, puisque I’ensemble de solutions inclue un
groupe de symétrie non trivial [107]. Pour résoudre ce probleme, il est possible de s’ ap-
puyer sur de I’information extrinseque, par exemple en utilisant des descripteurs par-
tiellement extrinseques en donnée d’entrée, tels que SHOT [158], qui indique une dis-
tribution discrete des normales, et est par conséquence aussi indépendante de la rotation
ou la translation de I’image d’entrée. Cependant, comme expliqué dans le paragraphe
précédent, les descripteurs SHOT ne sont pas fiables puisqu’ils dépendent davantage de
la discrétisation que de la surface sous-jacente.

Nous montrons qu’incorporer plutdt de I’information d’orientation dans la pipeline
d’application fonctionnelle améliore considérablement la désambiguisation des symé-
tries. Nous construisons une nouvelle représentation spectrale de I’application diffé-
rentielle, qui permet de représenter des applications conformes préservant 1’orientation
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comme des matrices complexes de petite taille, que nous appelons les applications fonc-
tionnelles complexes. Nous construisons et décrivons également le lien entre les appli-
cations fonctionnelles et les applications fonctionnelles complexes.

Enfin, nous montrons dans plusieurs expériences que les algorithmes de 1’état de
I’art de la pipeline de I’application fonctionnelle bénéficient tous de notre modification,
et que généralement notre cadre aide a lutter contre I’aliasing de la symétrie inversant
I’orientation. Cette approche ouvre ainsi la voie a des algorithmes de correspondance
de formes robustes et a de nouvelles représentations des applications entre formes, que
nous proposons d’utiliser pour une correspondance non-supervisée efficace dans la der-
nicre partie de cette these.

Correspondances via Apprentissage Non Supervisé
et Vecteurs Tangents

Les deux derniers chapitres présentent chacun un cadre robuste pour les correspon-
dances entre formes avec 1’apprentissage profond, directement a partir de la géométrie,
et une nouvelle représentation des applications entre formes préservant I’ orientation afin
de résoudre les problemes de symétrie. Dans cette derniere partie, nous combinons les
deux idées précédentes pour construire un réseau de neurones profonds non supervisé
pour les correspondances 3D. En effet, ce type de méthodes d’apprentissage supervisé
nécessite des correspondances entre chaque paire de formes a I’étape de 1’entrainement.
Meéme si c’est le cas pour les ensembles de données synthétiques par exemple, cela
limite les scénarios d’entrainement et rend finalement plus difficile la généralisation.
Ainsi, I’étude de la correspondance de formes par apprentissage profond non su-
pervisé est devenue un domaine actif, initialement développé par les travaux qui ont
suivi FMNet [62, ]. Dans ces deux publications cependant, le signal d’entrée donné
au réseau est un ensemble de descripteurs SHOT qui, comme décrit dans les sections
précédentes, est a a fois instable et sujet au sur-apprentissage. En effet, nous prouvons
ici que I'utilisation des descripteurs SHOT contourne le probleme de symétrie présenté
dans la premiere partie via le sur-apprentissage sur la triangulation. En effet, dans la cor-
respondance de formes non rigides les objets d’étude sont la plupart du temps des formes
organiques, qui présentent une symétrie communément appelée symétrie gauche-droite,
qui inverse I’orientation de la forme. Théoriquement, une méthode de correspondance
de formes non supervisée doit pouvoir faire la différence entre les deux solutions les
plus proches de I’isométrie que sont la vérité-terrain et sa composition, et une géomé-
trie gauche-droite intrinseque. Certains travaux [ 140, 46] choisissent d’utiliser I’espace
ambiant de la forme pour résoudre ce probleme : on fournit au réseau le signal des
coordonnées 3D de chaque forme comme donnée d’entrée. Cependant, cette solution
nécessite que toutes les formes d’entrainement et de test soient alignées de facon rigide
a ces trois mémes axes, afin que les parties gauche et droite des formes recoivent des
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signaux de données d’entrées différents. Ces travaux appartiennent a la catégorie de la
supervision faible, puisqu’ils requicrent des alignements spécifiques a la fois lors de
I’entrainement et des tests. Enfin, pour qu’une méthode soit totalement non-supervisée
dans notre cas, la fonction de cofit du réseau doit pouvoir écarter les correspondances sy-
métriques indésirables sans avoir recours a la supervision faible ni au sur-apprentissage
sur la triangulation. Alors que Deep Shells [45] propose une telle fonction de cofit, leur
structure reste néanmoins tres dépendante des descripteurs SHOT en données d’entrée,
et s’avere de nouveau instable en cas de changement de triangulation ou méme pour
certains ensembles de données comme nous le décrivons dans le chapitre 6.

Notre approche décrit un cadre robuste et efficace pour la correspondance de formes
non-supervisée, toujours basé€ sur une pipeline spectrale, via une fonction de coflit mé-
lant les applications fonctionnelles et les applications fonctionnelles complexes pour
résoudre le probleme de symétrie. Ce réseau s’appuie sur I’extracteur de signaux 3D
non sensible a la triangulation DiffusionNet [144], ce qui le rend robuste au change-
ment de discrétisation. De plus, notre méthode utilise les champs de vecteurs tangents
qui servent de signaux pertinents pour la correspondance. Ainsi, nous sommes convain-
cus que notre méthode ouvre de nouvelles perspectives a la fois pour la correspondance
et pour la représentation de formes. En effet, les fonctions caractéristiques et les champs
de vecteurs calculés par notre réseau de facon non supervisée pourraient étre transférées
a plusieurs autres taches d’analyse de formes 3D.

2.3 Liste des Publications

Cette these s’appuie sur les publications suivantes :

* N. DONATI, A. SHARMA AND M. OVSJANIKOV, Deep Geometric Functional
Maps : Robust Feature Learning for Shape Correspondence, in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR
2020. [39]

* N. DONATI, E.CORMAN, S.MELZI AND M. OVSJANIKOV, Complex Functio-
nal Maps : a Conformal Link between Tangent Bundles, in Proceedings of the
Eurographics Symposium on Geometry Processing, CGF 2022. [40]

* N. DONATI, E. CORMAN AND M. OVSJANIKOV, Deep Orientation-Aware Func-
tional Maps : Tackling Symmetry Issues in Shape Matching, in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR
2022. [41]

La publication suivante a également été développée pendant mon doctorat et est
étroitement liée aux sujets mentionnés ci-dessus. Cependant, elle n’est pas incluse dans
cette these :
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e L. LI, N. DONATI AND M. OVSJANIKOV, Learning Multi-resolution Functional
Maps with Spectral Attention for Robust Shape Matching, in NeurlPS 2022. [82]
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CHAPTER 3

Shapes, Shape Matching and Functional Maps

In this thesis, we will focus on a particular shape analysis task: shape matching.

The goal of shape matching is to find a meaningful correspondence, also called
mapping between a given pair of shapes. Typically, these shapes should exhibit some
similarities, e.g. two humans in different poses. This particular example goes in the
category of non-rigid shape matching, where the two shapes to match differ by a non-
rigid transformation (change in species, change in pose, as in Figure 1.2). Non-rigid
shape matching extends the problem of rigid alignment where the goal is to find the
rigid transformation (translation and rotation, forming the Lie group SF(3) in the 3D
case) aligning two displaced copies of the same object. However, the output of rigid
alignment (in the 3D case) is a 6 parameters global transformation, whereas non-rigid
shape matching aims at computing a map in an infinite dimensional space: that of all
continuous maps between two shapes. The challenge is to retrieve the correct map (also
called ground-truth map) or more generally a map with the best properties as possible,
given these two shapes for input, and with ideally no user input (e.g. landmarks or man-
ual rigid alignment). To do so, it is fundamental to derive energies and regularization in
the space of maps to subsequently naviguate this space in an optimized manner.

In this Chapter, we introduce the concepts and notations that will be useful to the
reader in the rest of this manuscript. We first go over differential geometry essentials,
then focus on the functional map operator and its associated shape matching pipeline,
which is core to our subsequent discussion.
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3.1 Differential Geometry Essentials

Given a pair of non-rigid shapes, usually represented as manifolds M, N our main goal
is to estimate a map between these shapes ¢ : M — N. The output map should have
properties such as regularity, near-isometry or bijectivity. Let us first define differential
manifolds, which we will use to encode 3D shapes.

3.1.1 Manifolds

Definition 3.1.1. A manifold M is a topological space in which each point has a neigh-
borhood diffeomorphic to R", where n is then called the dimension of the manifold. To
perform calculus on a manifold, it is important to keep track of these local maps linking
neighborhoods with a coordinate space. For every x € M, we thus define its coordinate
chart ¢, : U, — R", with U, the associated neighborhood of x. One can use charts
to parametrize the entire manifold with a family (x) such that \J, U, = M. this corre-
sponding family of charts (U,,,) (which is required to be countable for a topological
manifold) is then called an atlas.

For two overlapping charts (U,, ;) and (U,,,), one can consider the change in
coordinates through the transition map:

Yye = Py 0 ww_l (U, NUy) = 4 (U, N U)

The charts allow to transfer objects from R" locally onto the manifold. For these objects
to be globally coherent, they need to be glued together where two charts intersect. For
differentiable objects to be glued together by the transition maps,,, we need ¢, € C*.
We show an example of such a transition map in Figure 3.1.

Definition 3.1.2. A manifold with a C*° atlas structure (all transition maps in C*°) is
called a differentiable manifold.

We can then introduce regular functions on a differential manifold:

Definition 3.1.3. Let f : M — R be a real-valued function on a differentiable manifold
M. f is said to be C* if for all chart (U, 1)) of a C* atlas, f o™ : (U) — Ris an
element of C*°(R™, R).

More generally, we define regular maps between differentiable manifolds.

Definition 3.1.4. Let M, N be two differentiable manifolds, and a continuous map

@ : M — N. This map is said to be C* if for all charts (Uys, 1pr) and (Un, ¥ n) of C*°
atlases on M, N, the function 1 o @ o 3/ = Y (Ups N o~ (Uy)) — R is an element
of C>(R™, R™).
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3.1.2 Tangent Bundles

In a general setting, the tangent bundle at p € M, denoted as T, M is defined intrin-
sically (without the concept of an ambient space) as the space of all tangent vectors at
point p.

Definition 3.1.5. Tangent vectors at p are defined as linear forms on the space C*° (M, R),
which are also differentiations at p. Namely, X is a tangent vector to M at p if:

(i) X-(f+Ag) =X -f+ X ¢
(i) X - (fg) = g()(X - )+ f(p)(X -9)
where f,g € C°(M,R),\ € R

By construction, the tangent vectors at point p form a vector space. The fact that
they are also differentiations to functions defined on a space diffeomorphic to R" makes
the tangent bundle at p a n-dimensional vector space. To explicitate its basis, let ¢ =
(x1,...,2,) be a chart around p. One can define the tangent vector basis dual to the

—

I S I

Figure 3.1: A manifold M on which two overlapping charts (U, ) and (U, 1,).
These charts are linked with the transition map 1,,..
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coordinate system (proof in [98], page 32):

(2) 7= (2

Remark 3.1.1. For a coordinate change from (x;) to (y;) around point p, we have:

(35), - 2520 (5,

We can then build fangent vector fields locally on a chart, and thus globally on M:

Definition 3.1.6. Let (U, (x,...,x,)) be a local chart on M, a tangent vector field X
on U is defined as a linear combination of the linear forms -2

a:pi:
a 0

where the coefficients a; € C*°(U,R) (this regularity does not depend on the choice of
coordinate thanks to the previous remark).

The global definition of a tangent vector field is then equivalent to having these C*
coefficients on the whole manifold.

Remark 3.1.2. The space of tangent vector fields on M is a C*(M)-module.
It is denoted as T'M, the tangent bundle on M.

In R™, an orientation can be defined on a basis (ey,...,e,) using their determi-
nant. Namely, if det(ey,...,e,) > 0, the basis is said to be of positive orientation.
If det(ey, ..., e,) < 0, the basis is said to be of negative orientation.

Let (U,,1,) be a chart on a manifold M. Note that since 1, is a diffeomorphism, the
d d

8_311’ ceny %
Moreover, if a consistent orientation can be established on the whole tangent bundle
of a manifold, it is said to be orientable. More precisely:

orientation of the basis ) is consistent on U,,.

Definition 3.1.7. A manifold M is orientable if there exists an atlas (U, 1,) for which
all transition maps 1., have positive Jacobians on all intersections U, N U,, we then
call M an oriented manifold.

Now that the tangent bundle has been defined, we can define map differentials. This
concept will be used extensively in Chapter 5 and 6.
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Definition 3.1.8. Let ¢ : M — N be a C*(M )-map between two manifolds M and N.
For each p € M, we can define the linear map dyp : T,M — T,/ N as follows:

dyp: X =Y =(f— X -(foyp))

This map is called the differential of ¢ at p.
For X € T,M, f € C*(M), we can write:

X-(foy)=dyp(X)-f

which is sometimes taken to be the definition of the differential, also called push-forward.
The global definition for the map differential dp : TM — T N is then given by:

dp: X =Y = (p—=Y, =d,p(X,))

Remark 3.1.3. If M, N two oriented manifolds, and o : M — N a map between them.
If det(dpp) > 0 for all p € M, firstly @ is called an immersion as its differential is
injective at each point, secondly p preserves the orientation of M onto its image (M),

and we can compare the orientation of M and N.
If (M) = N, then ¢ is a diffeomorphism between M and N.

3.2 Surfacesin 3D

We will in this manuscript restrict ourselves to the case of surfaces embedded in 3D
space. All the notions previously established are of course still valid with n = 2.
However, the presence of an embedding space can help define useful objects, e.g. nor-
mal fields, or vizualise abstract concepts such as the tangent plane.

3.2.1 First Fundamental Form and Gradient

Remark 3.2.1. Let M be a differentiable surface of R3. The tangent plane T,M at
p € M can be introduced as the plane tangent to M at p.

Indeed in this case, the basis ((i) , ( 0 ) ) can be written in R?

ox1 » 8_:(:2 »
from the embedded, inverted chart :

v=2y ' Fy(U) c R? - R

The basis can then naturally be defined as (< v ) , ( v ) ), which by construc-
P p

dx1 ) 0\ Oza

tion define a plane tangent to the surface M at p.
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We can still however link the abstract concept and this new practical one. Indeed it

o
81‘7;

form that is also a differentiation). Indeed the tangent plane 7, M can be equipped with
a scalar product inherited from the ambient space.

is possible to see the 3D Vector< ) as a tangent vector in the abstract sense (a linear
p

Definition 3.2.1. Let the scalar product g, on T,,M be defined as:

8p: (TPM)2 — R
(X,Y) = (X, Y )gs
Proposition 3.2.1. For any X,Y two tangent vector fields, the function p — g,(X,,Y,)
is C>*(M), we say that g : p — g, € C*(M,B(T,M)), or that g defines a smoothly
varying scalar product over the tangent bundle.

Definition 3.2.2. To have such an application g is the condition to be what is called
a Riemannian manifold, and g is then called Riemannian metric, or first fundamental
form.

v

In our case we can write g, in our local basis of the tangent plane ((a_) ’ ( v ) )
1 P

to get the 2 x 2 matrix with coefficients:

ov ov
gij = <(a$i)p’ (8_30])p> 3.1

The abstract definition of a tangent vector is through its action on the functional
space. Here with the metric g, we can define this operation more specifically by con-
textualizing this action. To that end, we can introduce the gradient of a function, an
element of 7,,M acting as a differentiation on that function:

Remark 3.2.2. Let f € C™°(M) be a function on the surface. Then we can compute the
coordinates of the gradient ¥V f in the local basis 2%

6mi
Indeed:

X f=(X,V[)ps
= Zgz’sz’(Vf)j
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Since X - f =), Xi% by definition, we get:

g-Vf= (g—ai, g—x’;), hence:

N (e,
Vii= Ej (& )i o,
3.2.2 Integral and Divergence

To compute an integral on a differential surface M, we simply take into account the
deformation of the infinitesimal square dx; X dx, under v, which corresponds to the
infinitesimal elemept of T,M .given by d.xlaa—;’l X dx2§—$”2, of area: \/det(g)dzdz,.

We can then write a local integral using the chart (U, ¢):

/ f = / (/v/(det(g)) o &~ 'dudy
U Y(U)

Now we can use a tool fundamental to differential manifolds, called partition of
unity:

Definition 3.2.3. Let M be a differentiable manifold. A countable family of C* func-
tions (h;) is said to be a partition of unity on M if h; > 0, supp(h;) compact, and:

> hi=1

An important theorem (in [98], page 29) gives the existence of a partition of unity
refining any open covering of M.

We use a partition of unity refining an atlas (U;, ¢;) to define a global integral from
local integrals on U;:

IRET I R WA

This integral automatically defines a scalar product on C*°(M ), and we have the
space of square integrable functions:

£2(M):{feM‘/Mf2<oo}

Note that we can also define a scalar product between two tangent vector fields X, Y':

(X,Y) s :/ < XY >ps
M
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We can now define a differentiation operator on tangent vector fields, the divergence
operator. For manifolds without boundaries we can define it through the integration by
parts identity. More precisely, if X is a tangent vector field, we simply ask that the
divergence be opposite to the adjoint to the gradient on the scalar product (X, V f),,,
for f € C®(M).

/Mdiv(X)f /M<X A /ZX&]an

We can follow this integration on the separate charts (U;, ;) (Where we use dxqdz
to signify that integrals are conducted in R? rather than on the surface, we then skip the
composition with wj_l to lighten the notations), by doing a real integration by parts in
R? to get:

/WU_) ZX%'%V det(g)da1dxs = —/ | fZ aam(\/det(g)Xi)alar:lalgz:2

¥ (U,

det(g)X;)

f—7—=
/ /det(g Z Ox;
We can then conclude with an expression for the divergence:

Definition 3.2.4. The divergence operator is defined on the tangent bundle T'M by:

(v/det(g)X;)

div(X) =

W

It is of course possible to derive this expression locally, in a more general setting.
This definition of divergence is in fact fully intrinsic, which means that it only depends
on the first fundamental form g (also called Riemannian metric). On the other hand,
extrinsic quantities can only be introduced through the embedding space (e.g. the vec-
tor normal to the surface in R?). Note that here we introduced a metric via the ambient
space, but in Riemannian geometry, metrics are introduced without the notion of an em-
bedding space. The gradient and divergent operator are then called intrinsic operators.

3.2.3 Laplacian

Definition 3.2.5. We can now introduce the Laplacian operator, also called Laplace-
Beltrami operator. This object is also intrinsic, it is defined on C*° (M) and can simply
be seen as the composition of divergence and gradient:

Af =div(Vf) = ﬁ@ Z a%(\/det(g) ' (gl)@-jg—i)



The integration by parts discussed in the last section for divergence (which is in fact
a consequence of the well-known Stokes’ Theorem, see [98], Chapter 3.2) can then be
applied in the case of manifolds without boundaries:

Vi, fa € CR(M), /M FAS = — / (V1 V1)

M

We remind the reader that g(V f1, V f2) = (V f1, V fa)gs, we kept the metric g in
the previous equation to insist on its intrinsic character. Indeed this distinction between
intrinsic and extrinsic will become crucial in the rest of this manuscript.

Remark 3.2.3. This last consideration introduces a new bilinear application on C*(M),
namely [ 1 &8(V f1,V f3). Note that for this application to be a scalar product, one needs
to restrict the space C* (M) to non-constant functions (without exluding 0) so that the
application can be definite. We also need to restrict to the space of functions whose gra-
dients is square integrable, which we call H*(M). Calling this scalar product (., .),,
then we have:

Vfi, f2 € Hl(M), <f1,f2>H1 =—(f1,Af2) = —(Afi, fa)
The Laplacian is therefore symmetric negative.

We can then proceed to introduce the Laplace-Beltrami eigenbasis, stemming from
the symmetric negative property of the Laplacian (see [22], Section 4.1 for a more de-
tailed analysis).

Proposition 3.2.2. The eigen-problem AP = \® gives the (countably many) eigenval-
ues (\;); of Laplace-Beltrami Operator:
These eigenvalues are negative and form a decreasing sequence:

The eigenfunctions (®;); form an orthogonal eigenbasis of L*(M), and are ordered
from low-to-high frequency. Indeed |V ®;||* = (®;, AD;) = |\

Any function in £2(M) can be decomposed in the Laplacian eigenbasis as:
F=)_(f, )
i=0
If we truncate this sum at a certain number n > 0, we obtain a smooth approximation
of the function f. This remark will be fundamental in Section 3.4. Indeed, the Laplace-

Beltrami eigenbasis (®;); plays the same role in geometry processing as the Fourier
basis in signal processing.
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3.3 Discretization

In this section we detail how to define all the previous concepts on discrete objects. In-
deed, limited storage forces us to consider finite representations, which are potentially
non-differentiable. We refer the interested reader to [22], Chapter 3, for more informa-
tion about finite elements.

3.3.1 Point Cloud and Meshes

To discretize 3D objects, one of the most common representation is 3D point clouds.
Indeed, 3D scans are often obtained through Laser-based techniques, which essentially
determine point positions in 3D space.

Definition 3.3.1. A point cloud is defined as a set of distinct 3D vertices X € (R?)™),
where we note (R3)™N) the finite sequences over R>. The cardinal n of X corresponds
to the number of points, and we can then store X as a R™3-tensor.

Despite their efficiency and extensiveness, point clouds do not naturally encode the
notion of surface. This is the purpose of the mesh data structure:

Definition 3.3.2. A mesh is defined as a triplet of sets (X ,E, F), where:

X is a 3D point cloud, composing the vertices (x;) of the mesh,

& is the set of undirected edges linking vertices together in a graph structure. We note
(i,7) the edge linking vertex x; and x;,

F is the set of triangle faces, together forming the piece-wise linear surface. Each face
is a set of 3 edges forming a cycle {(i, 7), (j, k), (k,)}, thus linking the 3 vertices x;, x;
and xy,.

For the surface to be well-defined, all undirected edges need to appear in 2 triangles at
most. The mesh is then called manifold.

Remark 3.3.1. Let M = (X, &, F) be a mesh. If all undirected edges e € E appear in
exactly 2 triangles of F, then the manifold is called closed.

Otherwise, the set of edges appearing in only one triangle of F is called the border
of the manifold. Every connected component of this set forms a closed piece-wise linear
curve in R3.

As in the continuous case, a closed manifold is orientable, which means that con-
sistent a normal field can be defined on it, thus separating the volume enclosed by that
shape and its exterior. One simple way to define normals is on each linear surface ele-
ment. Namely, for each triangle (x;, z;, 1), we can consider the two 3D vectors z; — z;
and z; — x;, then the cross product (z; — z;) X (zx — x;) € R? is orthogonal to the
triangle. We can then define the normal field:
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Definition 3.3.3. Let M = (X,&,F) be a closed mesh. Since M is orientable, there
is a way to orient all the triangles (i,j), (j,k), (k,i) such that each unoriented edge
appears with its two possible orientations in the set of oriented triangles.

Then the normal field i defined on each triangle T;;, = (x;,xj, xy) by:

(zj — x) X (21, — 20)
[(zj — x:) x (2 — )|

NTy =

is consistent in the sense that it locally separates interior from exterior of M. If i points
towards the exterior of the shape, the shape is said to be oriented with outer normals.
In the opposite situation, it is said to be oriented with inner normals.

Having equipped the mesh with a normal field, we can also define the discrete equiv-
alent of its tangent bundle. Indeed, for each normal vector 77, one can consider its or-
thogonal plane (which can be oriented with the right-hand rule). This set of planes forms
the discrete tangent bundle.

If (as in the previous definition) the normals are introduced on triangles, a tangent plane
is associated with the corresponding face element, and indeed is the plane generated by
the three points constituting this face element.

Remark 3.3.2. A point cloud X € (R*)" can also be equipped with a normal field
7 € (R3)™. We then talk of oriented point cloud, where each point has its corresponding
normal vector. A tangent plane can then be associated with each vertex of the point
cloud.

3.3.2 Discrete Functional Space

The next thing to introduce on our discrete surfaces are functions. Then, it becomes
possible to study these discrete objects through their associated functional space, on
which we can subsequently define useful operators.

Finite Elements

Definition 3.3.4. Let M = (X, E, F) be a mesh. To represent functions over M we use
the piece-wise linear finite element basis made of hat functions (h;)icp x|, With :
_J L ifi=uq
vy € & hilw;) = { 0 otherwise

And h; is completed on the faces with the condition that it is linear on the faces.

We illustrate an element of the hat basis in Figure 3.2.
Any function f that is continuous and linear on the faces can be written in this basis as:

f= Zaihi
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We can then represent any function over the mesh (X, &, F) as a vector in R™ (with
n := |X|) storing the coefficients of f in the hat basis, which is also the values f; of f
at the vertices x; € X.

Remark 3.3.3. The hat basis can also be defined on point clouds in a very canonical
way, by taking the definition 3.3.4 without imposing additional conditions. Any function
f on a point cloud X can then be represented with a vector in R".

Scalar Product

At this point we can transfer the definition of integrals from continuous manifold to
our discretization. Indeed, using the linearity of the integral, we simply need to compute
integrals of the hat basis elements:

1
/]\4 uiGTT ; T 3 ;

where A(T') is the area of triangle 7', so that a; is the area of the barycentric cell around
vertex z;. This a; can be seen as the area element /det(g) of the continuous case, as
it stems from the metric, which can also be introduced in the discrete setting as we will
see in the following.

As a mean to check the validity of this area element, we can assert if the integral of the
constant 1 function gives the total area of the surface:

/Mlzzai:Z%ZA(T) =Y A)

% €T

hi(zj) =0 ifi#j

Figure 3.2: The hat basis function h; on a discrete mesh. Any discrete function f on the
mesh can be decomposed in the basis (h;)ic),x|-
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since every triangle of the surface appears 3 times in the second sum. The third sum is
by construction the total area of the mesh .4 (), which completes the check.

Definition 3.3.5. On a discrete mesh M, one potential discretization of the area element
for standard integration is given by a; = % Y ier AT).
The integral of a function f can then be written |, vt =2 aifi

We can also introduce the scalar product between discrete function. To this end we
need to compute the integrals:

= [ pp 2§ Au i) e Eori=,
i 1) = /M hihj = { 0  otherwise

Computing the integrals we get:

1
A= Z A(T)
€T
1

(A(Tije) + A(Tiy)) if (2, 5) € €,
where (i, j, k) and (4, [, j) are the two oriented triangles containing the unoriented edge
(4, 7) (if this edge is a border, A;; contains only one term).

The Gram matrix corresponding to this scalar product is then given by the symmet-
ric sparse matrix [A;;]. This mass matrix is often replaced by its lumped approximation,
given by the diagonal matrix with i-th coefficient > _; A;; = 3> ier A(T) = a;, where
the first equality stems from the definition of A;;. Consequently, the lumped mass ma-
trix associated to [A;;] is diag(a;).

Remark 3.3.4. The lumped approximation corresponds to discretizing [ v fifa as a

simple integral:
[ Gt = S atit = Y el

K3 K3

Definition 3.3.6. The standard scalar product on the discrete functional space can be
defined as:

<f17f2>[;2 = ZG'L(fl)z(fZ)z

(2

where we often denote the mass matrix as A = diag(a;).
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3.3.3 Operators as Sparse Matrices

The first operator that is useful to discretize is the intrinsic metric g. Indeed it defines
a local metric on each tangent plane (here defined on triangles), and the continuous
definition of Eq. (3.1) gets the discrete approximation:

T
5 _ {L'j — T; Zlfj — T
st = (020 (02

Simplifying the anti-diagonal terms in the previous expression, we get the following
discrete metric:

1 202, [ a—
g Tvz i ( i ki i ]k) ,
(T =3 2, - -1, 20,

which only depends on the edge lengths l;;, (i, j) € €. A tensor depending only on these
edge length quantities is thus called intrinsic.

Gradient This is the case of the gradient operator, defined naturally on the hat basis,
as detailed in [22], Chapter 3. Computations lead to the following expression for the
gradient of h; on a triangle 7;;;, adjacent to z;:

1
Vhig., = ———(x) — ;)"
( )ngk A(EJ}{;) (xk x])
Putting things together, we get the following definition:

Definition 3.3.7. On a discrete mesh M, the discrete gradient is an intrinsic operator.
Its value on the triangle T} i, which corresponds to the tangent plane, is given by:

st (s —0) (=)

Vir., = ! J !

( f)T”k 2A(T”k) <($j _ mi)L fk _ fj

This operator can be assembled in a sparse matrix G € R2/1*I¥1 taking functions

on M as |X|-dimensional vectors and outputting tangent vectors on the tangent planes
as 2|.F|-dimensional vectors.

Divergence This operator is also intrinsic, and following the continuous definition
where gradient and divergence are adjoint operators, we can introduce it as:

div(X)=A'GT . X

where X is encoded as a 2|F|-dimensional vector, GG is the previously defined sparse
matrix for the gradient operator, and A the lumped mass matrix.
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Remark 3.3.5. Note that there are other discretizations for the divergence operator,
stemming from other continuous properties that we might want to preserve in the dis-
crete world. More generally, there are many potential discretizations for the functional
space, tangent bundles and corresponding operators, as we will see in Chapter 5.

Laplacian Lastly, we can introduce the discretization of Laplace-Beltrami Operator,
which is, as previously stated central to spectral methods that constitute the backbone
of the following manuscript:

Definition 3.3.8. The Laplace-Beltrami operator A € RVIXIV for a piece-wise lin-
ear function f on a discrete mesh M is obtained by the so-called cotangent weights
formula [22]:

1

()= ST

> (cot 0% + cot ) (f; — fi) .
(ij)e€

where the index notation is defined in the inset figure.

We can re-write this operator as A = AW, where W is
the symmetric, sparse matrix:

cot Hfj + cot 9}2- if (i,j) € &
Wij =19 — Xujee (cot 07 + cot 9;1) ifi =
0 otherwise

As in the continuous case, the non-normalized matrix W
(sometimes called stiffness matrix) is a semi-definite negative
matrix and is consequently fully diagonalizable. To get the
eigenbasis (®;);cn that we then use to project functions upon, we solve the generalized
eigen problem W f = AAf. This basis is naturally ordered in a low-to-high-frequency
manner, as displayed in Figure 3.4. Namely, the lowest the module of the eigenvalue \;,
the lowest the frequency of the eigenfunction ;.

3.4 The Functional Map Operator

Given a pair of non-rigid 3D shapes M, N, the functional map approach presents a
linear, compact and effective way to encode any map ¢ : M — N.
The method essentially relies on two key remarks:

(a) The pullback of ¢ is a linear operator between the shapes’ functional spaces
(Section 3.4.1)

38



L2(M) L*(N)

Figure 3.3: A map ¢ between shapes M and N and its corresponding pullback oper-
ator Iy, sending functions g € L?(N) to f = Ty (g) € L%(M). Orange color
corresponds to a maximum of the function, and grey to a minimum.

(b) Using a low-to-high frequency basis on each shape (e.g. the Laplace-Beltrami
eigenbasis defined in Section 3.2.3) allows to express the pullback of ¢ as a small matrix
(Section 3.4.2). Indeed, truncating the basis only cuts out little information, making this
encoding compact and efficient.

3.4.1 Pullback Operator

Definition 3.4.1. Let ¢ : M — N be a mapping between the two manifolds M, N, then
for any target function g € L*(N) we can define its pullback on the source shape M via
the operator:

Hya g f=gope LP(M)

This new functional operator [Ty, : £2(N) — L*(M) is a linear operator. Fig-
ure 3.3 shows a map ¢ and its corresponding pullback defined on functional spaces.
Additionally, the original point-to-point mapping ¢ can be recovered from Ily,,, e.g.
by using Dirac function approximations to represent a particular point. Consequently,
[T s contains all the information about . It should be noted at this point that not all
linear maps between £?(N) and £?(M) are pullbacks. Additional constraints need to
be derived in that particular setting, as we will see in the following.
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Figure 3.4: Eigenfunctions (®)y; 5 of the Laplace-Beltrami operator, with the corre-
sponding eigenvalues )\; (the eigenfunction for Ay = 0 is not plotted as it is constant) on
a mesh M. Red color corresponds to positive value, while blue is negative, and white
is O-value. We see that frequency rises as we take deeper functions in the basis. Any
discrete function f can be written in this basis as f = >, ®M.

3.4.2 Laplace-Beltrami eigenbasis

Since [y, : L2(N) — L2(M) is a linear operator, it can be decomposed in functional
bases on source and target shapes. One good choice of basis in the case of shape analy-
sis, as noted in Section 3.2.3 is given by the Laplace-Beltrami eigenbasis, illustrated in
Figure 3.4.

Definition 3.4.2. Equipping L*(M) and L*(N) with their respective Laplace-Beltrami
operators (denoted as Ay and Ay), and their eigenbasis (respectively (®M);cy and
(®N)ien). In this basis, we can re-write the operator Uy, resulting in a representation

of the map ¢ in a so-called spectral basis, denoted as C;:
Cru = O Ty
where ®f is the Moore-Penrose pseudo-inverse of ®.

In practice, it is shown in the original paper [106] that truncating these bases to
a relatively low number, namely 100 or less, does not cut out much information in
standard study cases (e.g. shapes separated by articulated motion). Therefore one can
represent the map ¢ with a small matrix C of dimension < 100.
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Remark 3.4.1. Note that a pullback operator inverts source and target: Cyy; takes
functions from the second shape N, to the first shape M. It is also possible to study the
symmetric configuration, where a map W : N — M results in the reduced functional
map representation Cyy.

When the direction of the pull-back is obvious or unimportant, we may denote it simply

as C.

3.5 Functional Map Computation Pipeline

The functional map pipeline aims at estimating the truncated functional map Cy ;. To
this end, one can rely on so called descriptor functions. Such functions are tailored to
be stable under non rigid transformation of the underlying shape. They can for instance
be based on intrinsic quantities such as Gaussian curvature or heat diffusion [151, 6].
Alternatively, other descriptors can be based on extrinsic or triangulation-related quanti-
ties, which is the case of the SHOT descriptor [158]. We display in A.4 some descriptor
functions learned by the network described in Chapter 4. Robust descriptors are hard
to compute in general as they need to be stable under non-rigid extrinsic deformation.
However these functions are paramount to functional map initialization. The resulting
map can then be refined to reduce aliasing.

More precisely, given a pair of 3D shapes, M, N represented as discrete meshes, and
containing respectively n,; and ny vertices, this pipeline aims at computing a functional
map between them. The point-wise map can then be retrieved from the functional map.

Pre-Processing The first few eigenfunctions of the discrete Laplace-Beltrami operator
are computed on each shape. Using k), and ky functions respectively, we get the bases
(1 )icfo,hn—1) € R™FM and (O )icpo gy —1) € R™NEN,

The Laplacian operators are respectively denoted as A,; and Ay.

Descriptors Second, a set of d descriptor functions on each shape are computed. The
key property of these descriptors (also called feature functions, or probe functions) re-
sides in that they should be approximately preserved by the unknown map. In our case
this means that descriptors should ideally be stable under (a) extrinsic non-rigid defor-
mations (e.g. articulated movement, change of species in the case of animal shapes) (b)
change in discretization (e.g. re-meshing, coarse triangulation).

The descriptor functions are then projected in the spectral basis, their coefficients in the
respective basis are stored as columns in matrices A y;, Ay € RFv¥d x RFN>d

Map Initialization Third, the optimal functional map C, is then computed by solving
the following optimization problem (as illustrated in Figure 3.5):

Copt = arg min Fyegc (C) + Ao (C), (3.2)
C
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Figure 3.5: The shape matching pipeline is highly dependant on the initial map esti-
mation, where a set of descriptor functions on each shape (fM)icp.q and (f)iep,q
are first projected on the corresponding Laplace-Beltrami eigenbases, and the map C is
then estimated following Eq. (3.2).

where the first term enforces that preservation of the descriptors by the pull-back.
It is common to use Frobenius norm to compute the distance between matrices. The
descriptor energy can be written:

Eiese(C) = [|CAN — Ay’ (3.3)

This first energy is extremely sensitive to the quality of the input descriptors. It is
thus usual to use a second term to regularize the map by promoting correctness of its
overall structural properties.

Some of the most common regularizers are :

* Orthogonality. An orthogonal functional map corresponds to an area-preserving
map . More precisely, ¢ is area-preserving if, and only if for all x measurable
subsets of M, pp(2) = pun(¢(x)). The orthogonality loss can be written:

ortho - ||CCT - I” (34)

* Bijectivity. For this loss to be computed, one needs to estimate functional maps in
both directions, to subsequently enforce their being invert from each other, which
corresponds to the condition ¢ o ¢! = idy;:

Ly =

(3.5)

* Commutativity with Laplacian. It is well-known that a map commuting with the
Laplacian operators is an isometry [98]. An isometry preserves the local metric,
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which entails the preservation of global geodesic distances. This property is also

an interesting approximate invariant for shapes undergoing articulated motion,

which is why it is used as such in some works [62, 46].

Note that isometries are in fact area-preserving and conformal maps. A confor-

mal map is a map ¢ whose differential dy preserves angles, as we will see in

Chapter 5.

Finally, Laplacian operators in their own spectral basis become diagonal matri-

ces with eigenvalues on the diagonal (denoted as Aj; and Ay). The Laplacian

commutativity penalty therefore enforces a diagonal-like structure for the target

functional map:

2
)

Lip = ||CAN — AyC]

(3.6)

Note that descriptor energy (3.3), and the penalties (3.5), (3.6) are quadratic, while
the orthogonality loss (3.4) is not quadratic.
Thus, if the orthogonality loss is not used, the minimization (3.2) leads to a simple
least-squares optimization with kj; X ky unknowns. It is significant that the number of
unknowns does not depend on the number of points of the shapes, which can typically
range from 103 to 10° points.
This spectral factorization is indeed, as noted in the previous section, the key advantage
of the functional map pipeline.

Refinement As a last step, the estimated functional map C, which maps across the
spectral domains, is converted back to a point-to-point map. A post processing step
called refinement, proposes to iteratively take the map from spectral to spatial domain,
until it reaches a local optimum. This original process, similar to ICP iterations, has
been improved in many follow-up works [ 128, 49, , 94, , 89].

More precisely, these two steps are described here :

* Functional map to point-wise map: To convert the functional map Cy,; back

to a point-wise map ¢ : M — N, we consider the spectral eigenbases of the
two shapes: ((IDfV[)Z-e[O,kM_l] and ((I)Z]'V)z‘e[o,kN—l}- These spectral embeddings are
virtually aligned by the functional map, the point-wise map can then be recovered
as follows :

¢(p) = arg min HCNMCDN(q) — @M(p){ , Vpe M, (3.7)
q

where in practice this operation can be performed using a nearest neighbor step.
The search space for this nearest neighbor is k,/-dimensional.
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* Point-wise map to functional map: This simply boils down to following the op-
erations of Section 3.4.1 and 3.4.2. Namely, we write the point-wise map ¢ as a
permutation matrix Iy, with Iy (4, j) = 1if (i) = j and 0 otherwise, where
1 and j are vertex indices on shape M and N, respectively. This corresponds to
a discretization of the pull-back operator introduced in Section 3.4.1. The con-
version then simply boils down to writing the previous operator in the spectral
basis:

Cwur = )Ty Py (3.8)

In this manuscript, we will often use the most efficient refinement method in the
near-isometric case, called Zoomout [94], which only requires a small functional map
(typically £ = 30 or even less) as initialization. At each step of the iteration, Zoomout
takes the map ¢ back to the spectral domain (Eq. (3.8)), then £ is raised, thus getting
a bigger, more precise functional map. This results in a strong regularization of all the
principal submatrices of the refined functional map.

Discussion

Despite its simplicity and efficiency, being a sequential framework, the functional map
estimation pipeline described above is fundamentally error prone, due to the initial
choice of descriptor functions. Building descriptors that are robust through change in
pose, character, or even in species in the case animals, poses a key challenge. To allevi-
ate this dependence and address this bottleneck, several approaches have been proposed
to learn an optimal transformation of initial descriptors from data, whether in a super-
vised or unsupervised manner [3 1, 85, ].

These works principally aim at transforming a given set of descriptors so that the op-
timal computed map satisfies some desired criteria during training. This transformation
can be learned so that output descriptors will be robust across the kind of transforma-
tions between shape pairs of the training set.
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CHAPTER 4

Deep Geometric Functional Maps: Robust
Feature Learning for Shape Correspondence

We present a novel learning-based approach for computing correspondences between
non-rigid 3D shapes. Unlike previous methods that either require extensive training
data or operate on handcrafted input descriptors and thus generalize poorly across di-
verse datasets, our approach is both accurate and robust to changes in shape struc-
ture. Key to our method is a feature-extraction network that learns directly from raw
shape geometry, combined with a novel regularized map extraction layer and loss,
based on the functional map representation. We demonstrate through extensive ex-
periments in challenging shape matching scenarios that our method can learn from
less training data than existing supervised approaches and generalizes significantly bet-
ter than current descriptor-based learning methods. Our source code is available at:
https://github.com/LIX-shape—-analysis/GeomFmaps.

4.1 Introduction

Shape correspondence is a key problem in computer vision, computer graphics and re-
lated fields with a broad range of applications, including texture or deformation transfer
and statistical shape analysis [ 8], among many others. While classical correspondence
methods have been based on handcrafted features or deformation models [159], more
recent approaches have focused on learning an optimal model from the data either in
supervised [3 1, , 85, 55] or even unsupervised settings [61, , 56].

Despite significant progress in recent years, however, learning-based approaches

46


https://github.com/LIX-shape-analysis/GeomFmaps

Point Cloud . Point-to-Point
} Map

Descriptors

Figure 4.1: Given a pair of shapes, our approach builds consistent descriptors directly
from the underlying point clouds (left), and automatically computes an accurate point-
wise correspondence (right).

for shape correspondence typically require large amounts of training data in order to

learn a model that generalizes well to diverse shape classes [168, 55]. Several existing
methods address this challenge by learning a derived representation, through a non-
linear transformation of pre-computed feature descriptors [31, 85, 61, ], rather than

on the geometry of the shapes themselves. Unfortunately, as we demonstrate below, this
reliance on a priori hand-crafted descriptors makes the resulting learned models both
less robust and less accurate leading to a significant drop in generalization power to new
shape classes or instances.

In this work, we propose an approach that combines the power of learning directly
from the 3D shapes with strong regularization based on a novel spectral correspondence
extraction layer. Our method is inspired by recent learning techniques employing the
functional map representation [85, 1; however, we extend them to learn the features
from 3D geometry rather than from some pre-computed descriptors. Furthermore, we
introduce a regularizer into the functional map computation layer that greatly improves
the speed and robustness of training. Finally, we demonstrate how the spectral loss
based on the functional map representation in the reduced basis significantly reduces
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over-fitting, while still leading to accurate correspondences coupled with recent post-
processing techniques. As a result, our overall pipeline is both more robust and has
greater generalization power than existing methods, while still being able to learn from
limited training data.

4.2 Related Work

Computing point-to-point maps between two 3D discrete surfaces is a very well-studied
area of computer vision. Below, we review those closest to our method, or with the best
known results to serve as baselines, and refer to recent surveys [159, 16, ] for an
in-depth discussion.

Our method is built upon the functional map representation, which was originally
introduced in [106] as a tool for non-rigid shape matching, and then extended in follow-
up works [108]. The key property of this representation is being able to express maps
as small matrices, encoded in a reduced basis, which greatly simplifies the associated
optimization problems.

The original work used only a basic set of constraints on functional maps, which
have been extended significantly in, e.g., [77, 2, 67, 47, 24, , , 68, ] among
many other works. These approaches both extend the generality and improve the robust-
ness of the functional map estimation pipeline, by using regularizers, robust penalties
and powerful post-processing of the computed maps.

A key challenge in all of functional map estimation techniques, however, is the
strong reliance on given input descriptors used for computing the maps. Several ap-
proaches have suggested to use robust norms [77, 78], improved pointwise map recov-
ery [128, 49] or more principled regularizers [125] which can help alleviate noise in the
input descriptors to a certain extent but do not resolve strong inconsistencies in chal-
lenging cases.

More recent techniques have advocated learning optimal descriptors for functional
map estimation directly from the data [3 1, 85]. These methods compute a transforma-
tion of given input descriptors so that the estimated functional maps are close to ground
truth maps given during training. This idea was very recently extended to the unsuper-
vised setting [61, ] where the supervised loss was replaced with structural penalties
on the computed maps.

Despite significant progress, however, in all of these cases, the descriptors are op-
timized through a transformation of hand-crafted input features, such as SHOT [158],
Heat [151] or Wave kernel signatures [6]. This has two severe consequences: first, any
information not present in the input features will be absent from the optimized descrip-
tors, and second, such approaches generalize poorly across datasets as the input features
can change significantly. This is particularly true of the commonly-used SHOT descrip-
tors [158], which are sensitive to the triangle mesh structure and, as we show below, can
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vary drastically across different datasets.

A number of other techniques have also been proposed for shape correspondence
learning without using the functional map representation. These include approaches that
exploit novel convolutional layers on triangle meshes [92, 21, 96, ] and more general
methods that use learning from depth-maps [16&] or in some feature space [152, 29]
among many others. Remarkably, relatively few methods aim to learn directly from
the raw 3D shape geometry for shape correspondence, with the notable exceptions of
[55, 36]. In large part this is due to the complexity of the correspondence problem,
where unlike, e.g., shape segmentation, the number of labels can be unbounded. As a
result, existing techniques address this either by learning from precomputed features,
or relying on template-based matching and large training sets [55, 36], that might even
require manual curation. Although PointNet [ 15] and its variants [1 16, 5, ] achieve
impressive results from raw point clouds for classification tasks, they are not yet com-
petitive for shape correspondence task.

Contribution

In this chapter we show that feature learning for shape matching can be done directly
from the raw 3D geometry even in the presence of relatively little training data, and
without relying on a template or an a priori parametric (e.g., human body) model. Our
main contribution is a end-to-end learnable pipeline that computes features from the 3D
shapes and uses them for accurate dense point-to-point correspondence. We achieve this
by introducing a novel map extraction layer using the functional map representation in
a reduced basis, which provides a very strong regularization. Finally, we demonstrate
that recent refinement techniques adapted to small functional maps [94], combined with
our efficient learning pipeline jointly result in accurate dense maps at the fraction of the
cost of existing methods.

4.3 Shape Matching and Functional Maps

One of the building blocks in our pipeline work is based on the functional map frame-
work and representation. For completeness, we briefly review the basic notions for
estimating functional maps, and refer the interested reader to a recent course [108] for
a more in-depth discussion.

Basic Pipeline Given a pair of 3D shapes, M, N represented in a discrete setting as
triangle meshes, and containing respectively n’ and n?¥ vertices, this pipeline aims at
computing a map between them.

It consists in four main steps. First, the first few eigenfunctions of the discrete
Laplace-Beltrami operator are computed on each shape, namely kj; and ky functions
respectively.
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Second, a set of descriptor functions on each shape that are expected to be approx-
imately preserved by the unknown map. For instance, a descriptor function can corre-
spond to a particular dimension of the Heat or Wave Kernel Signatures [151, 6] com-
puted at each point. Their coefficients are stored in the respective basis as columns in
matrices A,;, Ay. In general and for the sake of readability, we will denote in bold
letters quantities or tensors written in the reduced bases.

Third, the optimal functional map C is then computed by solving the following
optimization problem:

Copt = argénin FEyese (C) + AEreg (C), “4.1)
where the first term aims at preserving the descriptors: Fgegc (C) = HCA N— A M| 2,
whereas the second term regularizes the map by promoting the correctness of its overall
structural properties. It is common to use Frobenius norm to compute the distance
between these matrices. This Eq. (4.1) leads to a simple least-squares problem with
knr X kxn unknowns, independent on the number of points on the shapes.

As a last step, the estimated functional map C, which maps across the spectral do-
mains and converted to a point-to-point map. As a post processing step, called refine-
ment, a number of advanced techniques are available [ 128, 49, , 94]. Most of them
iteratively take the map from spectral to spatial domain, until it reaches a local optimum.

4.3.1 Deep Functional Maps

Despite its simplicity and efficiency, being a sequential framework, the functional map
estimation pipeline described above is fundamentally error prone, due to the initial
choice of descriptor functions. To alleviate this dependence, several approaches have
been proposed to learn an optimal transformation of initial descriptors from data [31,
, ]. These works aim at transforming a given set of descriptors so that the optimal
computed map satisfies some desired criteria during training. This transformation can
be learned with a supervised loss, as in [31, 85], as well as with an unsupervised loss as
in the more recent works of [61, ].
More specifically, the FMNet approach proposed in [85] assumes to have as input, a
set of shape pairs for which ground truth point-wise maps are known, and aims to solve
the following problem:

. t
min > 1p(Soft(Cop), Cfy ), Where (4.2)
(M,N)€ETrain
Cope = arg min [|CA 7o () — Aro(ny) [& (4.3)

Here, adopting the notation from [132] Fg is a non-linear transformation, in the form
of a neural network with parameters O, to be applied to some input descriptor func-
tions D. The training set, called Train in Eq. (4.2) is the set of training pairs for which
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ground truth correspondence C‘E’Ztm ) is known. [p is the soft error loss, which penal-
izes the deviation of the computed functional map C,y, after converting it to a soft map
Soft(Cop) from the ground truth correspondence, and A Fo(Dg) denotes the transformed
descriptors Dg written in the spectral basis of shape S € {M, N}. Thus, the FMNet
framework [85] learns a transformation Fg of descriptors Fo(Dys), Fo(Dy) based on
a supervised loss that minimizes the discrepancy between the resulting soft map and the
known ground-truth correspondence.

A related recent approach, SURFMNet [ 1 32] follows a similar strategy but replaces
lp with an unsupervised loss that enforces the desired structural properties on the result-
ing map, such as its bijectivity, orthonormality and commutativity with the Laplacian.

3D-CODED In contrast to the the methods described above that primarily operate in
the spectral domain, there are also some approaches that never leave the spatial domain.
With the recent works on point clouds neural networks, pioneered by PointNet [115],
and significantly extended by [5, ], to name a few, it is now possible to learn 3D
features directly from point clouds. 3D-CODED [55, 36] is based on this approach, as
it is a method built on a variational auto-encoder with a PointNet architecture for the
encoder. Their method relies on a template that is supposed to be deformable in a non-
rigid but isometric way to any of the shape of the datasets. It is a supervised method, and
requires the knowledge of all ground-truth correspondences between any shape of the
dataset and the deformable template. 3D-CODED is trained on 230K shapes, introduced
in SURREAL [161], and generated with SMPL [88].

Motivation The two main classes of existing approaches have their associated benefits
and drawbacks. On the one hand, spectral methods are able to use small matrices instead
of all the points of the shape, and operate on intrinsic properties of the 3D surfaces,
making them resilient to a change in pose, and allowing them to train on really small
datasets. However, due to their use of input descriptors (typically SHOT [158]), they
tend to overfit to the connectivity of the training set, which can lead to catastrophic
results even in apparently simple cases. On the other hand, 3D-CODED shows extreme
efficiency when trained on enough data, regardless of the connectivity, but with a small
dataset, it is prone to overfitting and fails to generalize the training poses to predict the
different poses of the test set.

Our method is a mix of the two approaches, and, as we show below, can obtain accu-
rate results with little training data leading to state-of-the-art accuracy on a challenging
recent benchmark of human shapes in different poses and with different connectivity

[93].

4.4 Method
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4.4.1 Overview

In this work, we introduce a novel approach to learn descriptors on shapes in order to
get correspondences through the functional map framework. Our method is composed
of two main parts, labeled as Feat and FMReg in Figure 4.2. The first aims at optimizing
point cloud convolutional filters [5, 156] to extract features from the raw geometry of the
shapes. These filters are learned using a Siamese network Fgo on the source and a target
shapes by using shared learnable parameters O, in a similar way as in [85]. However,
unlike that approach and follow-up works [61, ] we learn the features directly from
the geometry of the shapes rather than computing a transformation of some pre-defined
existing descriptors. These learned descriptors are projected in the spectral bases of the
shapes and fed to the second block of the method, which uses them in a novel regularized
functional map estimation layer. Finally, we use a spectral loss, based on the difference
between the computed and the ground truth functional maps. This makes our approach
very efficient as it operates purely in the spectral domain, avoiding expensive geodesic
distance matrix computations as in [85, 61] and moreover allows us to handle functional
or soft ground truth input maps without requiring the training shapes to have the same
number of points or fixed mesh connectivity.

We stress again that the two components: learning features directly from the shapes
and using the functional map representation both play a crucial role in our setup. The
former allows us to learn robust and informative features independently from the mesh
structure, while the latter allows us to strongly regularize correspondence learning, re-
sulting in a method that generalizes even in the presence of a relatively small training
set.

4.4.2 Architecture

The novelty of our architecture lies in its hybrid character. The first part, which we will
refer to as the feature extractor in the following, aims at computing point-wise features
on the input shapes. It corresponds to the Feat block in Figure 4.2, and takes as input
only the point clouds making it robust towards changes in connectivity.

The purpose of the second part is to recover robust functional maps using these
learned features. This block is built according to the pipeline of [106], first taking
the features to the spectral domain over the two shapes (which corresponds to the dot
products blocks after the Feat blocks in Figure 4.2), and then computing the map by
minimizing an energy. However, since our method is based on a neural network, this
operation should be differentiable with respect to the features over the shapes for the
back-propagation algorithm to work. We extend the previously proposed functional
map layers [85] to also incorporate a differentiable regularizer, which results in the very
robust map extraction, represented as FMReg in Figure 4.2.
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Figure 4.2: Overview of our approach: given a pair of shapes, we optimize for a point
cloud convolutional model to get point-wise features for each shape, that we convert to
a functional map using our FMReg block. The loss that we put forward penalizes maps
according to their distance to the ground-truth map between the two shapes.

4.4.3 The feature extractor

The goal of this block is to learn functional characterizations of point clouds that will
later be used to compute spectral descriptors and then functional maps. To this end,
this network must be applied with the same weights to the source and target shapes, as
represented in Figure 4.2, and must result in informative descriptors, extracted from the
point clouds of the two shapes.

For this part, we chose the state of the art point cloud learning method KPConv
[156], by extending the segmentation network proposed in that work. Our feature ex-
tractor is thus a Siamese version of the segmentation network described in KPConv,
which we review for completeness in appendix A.1.

4.4.4 The regularized FMap layer

This block provides a novel fully differentiable way to compute a robust functional map
from potentially low dimensional spectral descriptors.

The main goal is, as in Section 4.3, to recover the ground-truth bijection between M
and NV, on which we have the computed raw-data features D), and D .

For this we first express the computed feature functions in the respective spec-
tral basis, which we denote by ®,, and ®5. This leads to the spectral descriptors
Ay = (®y)'Dy and Ay = (®y) Dy, with ®F the Moore pseudo-inverse of ®.
We stress again that this step is where we shift focus from spatial to spectral domain,
and corresponds to the dot product blocks in Figure 4.2.
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In the pipeline first introduced in [ 1 06] and then widely used in the follow-up works
[108], the standard strategy is to compute the functional map C that optimizes the fol-
lowing energy:

min [CAy — Au|* +ACAY — AuC]’, (4.4)

where ) is a scalar regularization parameter.

Remark that the optimization problem in Eq. (4.4) is quadratic in terms of C and
can be solved e.g. via standard convex optimization techniques. However, in the learn-
ing context, we need to differentiate the solution with respect to the spectral features
A, Ay, which is challenging when C is computed via an iterative solver. Alterna-
tively, the problem in Eq. (4.4) can be written directly in terms of a large least squares
system, by vectorizing the matrix C as was suggested in [106]. However, for a k X k
functional map, this leads to a system of size k? x k? which becomes prohibitive even
for moderate values of k. To avoid these issues, previous learning-based approaches
based on functional maps [85, 61, ] have only optimized for C using the first part
of the energy in Eq. (4.4): HCA N—A MH2. This results in a simple linear system for
which the derivatives can be computed in closed form. This has two major limitations,
however: first the linear system is only invertible if there are at least k linearly indepen-
dent feature functions. This condition can easily be violated in practice, especially in
the early stages of learning, potentially resulting in a fatal error. Furthermore, the lack
of regularization makes the solved-for functional map very sensitive to inconsistencies
in the computed descriptors, which leads to an overall loss of robustness.

In our work we address this problem by using the full energy in Eq (4.4) in a fully
differentiable way. In particular, we use the fact that the operators A,; and Ay are
diagonal when expressed in their own eigen-basis.

Indeed we remark that the gradient of the energy in Eq (4.4) vanishes whenever
CANAL + MA o C = Ay AT, where the operation o represents the element-wise
multiplication, and A;; = (" — p'")?, where 4" and 44} respectively correspond to
the [-th eigenvalue of A, and A . It is then easy to see that this amounts to a separate
linear system for every row c¢; of C :

(ANAL + Mdiag((u) — 1")?))e; = Anb; (4.5)

where b; stands for i"" row of A ;.

In total, if k is the number of eigenvectors used for representing the functional map,
this operation amounts to inverting k different k£ x k£ matrices. Since inverting a linear
system is a differentiable operation, which is already implemented e.g. in TensorFlow,
this allows us to estimate the functional map in a robust way, while preserving differen-
tiability.
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4.4.5 The supervised spectral loss

Our method also uses a loss with respect to the ground truth functional map in the spec-
tral domain. This is similar to the energy used in [3 1], but is different from the loss of the
original FMNet work [85], which converted a functional map to a soft correspondence
matrix and imposed a loss with respect to the ground truth point-wise map, relying on
expensive geodesic distance matrix computation.

Specifically, calling C the functional map obtained by the FMap block, and C¢* the
ground truth spectral map, our loss is defined as:

loee = [l - €

As mentioned above, we use a Frobenius norm to compute the distance between matri-
ces.

It is important to note that whenever a pointwise ground truth map is given it is
trivial to convert it to the functional map representation. Conversely, the ground truth
spectral map is more general than the point-wise ground truth correspondence. Indeed,
with just a few precise landmarks one can recover a functional map accurate enough to
make this loss efficient, for instance through the original pipeline of [ 106], but also with
more recent follow-up works, such as [124] or [94], which we will further describe as
baselines to our method in Section 4.5.

This is useful, e.g., in the case of re-meshed datasets. Indeed, complete ground
truth correspondences between two shapes of these datasets are not fully known. One
can only have access to the (often partial and not bijective) ground truth pointwise map
from a template mesh 7 to each re-meshed shape S;. Each such map can be converted
to a functional map C; and a very good approximation of the spectral ground truth Cfi j
between S; and S can be expressed as C}Ci.

4.4.6 Postprocessing

Once our model is trained, we can then test it on a pair of shapes and get a functional
map between these shapes. This map can either directly be converted to a point to
point map, or refined further. We use a very recent and efficient refining algorithm,
called ZoomOut [94] based on navigating between spatial and spectral domains while
progressively inceasing the number of spectral basis functions. This efficient postpro-
cessing technique allows us to get state-of-the-art results, as described in Section 4.5.

4.4.7 Implementation

We implemented our method in TensorFlow [ 1] by adapting the open-source implemen-
tation of SURFMNet [132] and KPConv [156].
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Our feature extraction network is based on a residual convolutional architecture of
[156], consisting of 4 convolutional blocks with leaky linear units, with successive pool-
ings and dimension augmentation from 128 to 2048, followed by a 4 up-sampling blocks
with shortcuts from corresponding pooling layers, and dimension reduction from 2048
back to 128. Please see the supplementary materials, part A, in [156] for more details.
Following the pipeline of KPConv, we start with a sub-sampled version of our point
clouds with a grid subsampling of step 0.03. The pooling layers are therefore obtained
with grid samplings of parameters 0.06, 0.12, 0.24 and 0.48.

Similarly to FMNet [85] and SURFMNet [ 1 32], our network is applied in a Siamese
way on the two shapes, using the same learned weights for the feature extractor.

In the case of fully automatic spectral methods such as BCICP [124] and ZoomOut
[94], or the deep learning based FMNet [85, 61] (supervised or unsupervised) and
SURFMnet [132], all results are invariant by any rigid transformation of the input
shapes. However, in the case of methods using the 3D coordinates of the points to
generate information about the input shape, this does not remain true. Consequently,
both 3D-CODED [55] and our method avoid this dependency through data augmenta-
tion to be as close as possible to the generality of fully spectral methods. To that end,
assuming the shapes are all aligned on one axis (e.g. on human the natural up axis),
both 3D-CODED and our method perform data augmentation by randomly rotating the
input shapes along that axis.

4.4.8 Parameters

In addition to the architecture above, our method has two key hyper-parameters: the
size of the functional basis and the regularizer )\ in Equation 4.5. For the size of the
basis, we discovered if this number is too high, for instance, with 120 eigenvectors as
in FMNet and SURFMNet, it can easily lead to overfitting. However, by reducing this
number to 30, the results of SURFMNet on FAUST re-meshed (here reported in Table
4.1) go from 0.15 to 4.5. As a consequence, we choose the number of eigenvectors
to be 30 in all of our experiments on our method. Regarding the weight A in Equation
(4.5), we observed that setting it to A = 1073 helps getting good results while drastically
reducing the number of training steps, as pointed out in the ablation study. We use this
value throughout all experiments.

We train our network with a batch size of 4 shape pairs for a number of epochs
depending on the number of shapes in the dataset. We use a learning rate of 10~3 and
gradually decreasing it to 10~% with ADAM optimizer [42].
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Method \ Dataset | F | S [FonS |SonF |

BCICP 15. | 16. * *

ZoomOut 6.1 |75 * *

SURFMNet 15. | 12. 32. 32.
SURFMNet+icp 74| 6.1 19. 23.
Unsup FMNet 10. | 16. 29. 22.
Unsup FMNet+pmf | 5.7 | 10. 12. 9.3
FMNet 11. | 17. 30. 33.
FMNet+pmf 59163 11. 14.
3D-CODED 2.5 | 31. 31. 33.
Ours 3.1 44 11. 6.0
Ours+zo 1.9 | 3.0 9.2 4.3

Table 4.1: Comparative results (x100) of the different methods on Experiment 1.

4.5 Results

Datasets

We test our method on a wide spectrum of human datasets: first, the re-meshed versions
of FAUST dataset [!8] containing 100 human shapes in 1-1 correspondence, and of
SCAPE [3], made publicly available by Ren et al. [124]. These re-meshed datasets offer
significantly more variability in terms of shape structures and connectivity, including for
instance point sampling density, making them harder to match for existing algorithms.
We also highlight that the SCAPE dataset is slightly more challenging since the shapes
are less regular, and two shapes never share the same pose. This is not true for FAUST,
wherein all the poses present in the test set also exist in the training set, with the variation
coming from body type only, making the pose recovery easier at test time.

We also use the re-meshed version of the more recent SHREC’19 dataset [93],
which, in theory, is the most challenging of the test sets, because of stronger distor-
tions in the poses, the presence of an incomplete shape, and the number of test pairs
(430 in total, so two times the number of test pairs of FAUST or SCAPE). At last, we
also use the generic training dataset of 3D-CODED [55], originally consisting in 230K
synthetic shapes generated using Surreal [161], with the parametric model SMPL in-
troduced in [88]. We use it only for training purposes in our second experiment, to
show that our method can generalize well to changes in connectivity, being able to train
on a synthetic, very smooth, identical triangulation for the whole training set, and still
produce results of excellent quality on re-meshed datasets.

Ablation study

57



FAUST re-meshed SCAPE re-meshed SHREC re-meshed
30

w
S
w
S

—— 3D coded
Ours

v r r v r r v v 0 v v v v
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
elements in training set elements in training set elements in training set

—— 3D coded
Ours

—— 3D coded
Ours

N
b
@

254

N
1)

204

EooNN
S

154

-
o
=
)

10 1

54

o
average geodesic error (in cm)

average geodesic error (*100)
=
G

average geodesic error (in cm)

o

o

Figure 4.3: Comparison with 3D-CODED while varying training size of SURREAL
dataset and simultaneously testing on other datasets.

Our method is built with a number of building blocks, all of which we consider
essential to achieve optimal performance. To illustrate this, we provide an extensive
ablation study of all the key components of our algorithm in appendix A.2.

Baselines
We compare our method to several state of the art methods: the first category in-
cludes fully automatic methods without any learning component [ 124, 94]. These meth-

ods are simply evaluated on the test sets without any training. The second category
includes FMNet [85] and its unsupervised versions, referred to as Unsup FMNet [61]
and SURFMNet [132], with and without post-processing (PMF [164] for FMNet, and
standard functional map refinement [ | 06], referred to as ICP, for SURFMNet). All these
variants of FMNet give similar results, but SURFMNet is the only one to train within a
few hours, without requiring too much space. This is due to the fact SURFMNet only
operates in the spectral domain, in contrast to other methods. Lastly, we compare to
the supervised 3D-CODED [55], described earlier in more details in Section 4.3. For
conciseness, we refer to our method as Ours in the following text. We show our results
with and without ZoomOut [94] refinement, referred to as ZO, in order to prove that our
method stands out even without post processing. We compare these different methods
in two main settings named Experiment 1 and Experiment 2 below.

Experiment 1 consists of evaluating the different methods in the following setting: we
split FAUST re-meshed and SCAPE re-meshed into training and test sets containing
80 and 20 shapes for FAUST, and 51 and 20 shapes for SCAPE. We obtain results for
training and testing on the same dataset, but also by testing on a different dataset. For
instance, by training on SCAPE re-meshed train set and testing on FAUST re-meshed
test set. This experiment aims at testing the generalization power of all methods to small
re-meshed datasets, as well as its ability to adapt to a different dataset at test time.

Experiment 2 consists of sampling 100, 500, 2000, and 5000 shapes from the SUR-
REAL dataset to be used for training. We then test the trained models on the test sets
of FAUST re-meshed, SCAPE re-meshed, and SHREC19 re-meshed. This experiment
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aims at testing the robustness and generalization power of the different methods in the
presence of varying amounts of training data, as well as adaptability to train on a perfect
synthetic triangulations and still get results on challenging re-meshed shapes.

Quantitative results

To evaluate the results, we use the protocol introduced in [72], where the per-point-
average geodesic distance between the ground truth map and the computed map is re-
ported. All results are multiplied by 100 for the sake of readability.

As we can see in Table 4.1, our method performs the best overall on Experiment 1.
Fully automatic methods do not provide competitive results compared to the learning
methods (except on crossed settings because they did not train on anything and are thus
not influenced by the training shapes). As reported in the Section 4.3, this highlights
that hand-crafted features can easily fail. It is noticeable that spectral methods (FMNet
variations, and Ours as a hybrid method) get reasonable, or even good results in our
case, with these small datasets. In comparison, 3D-CODED seems to fail in almost all
cases. It is remarkable that it can learn on such a small dataset as the training set of
FAUST re-meshed. One explanation for that is that FAUST contains the same set of
poses in the test set as in the train set.

Contrary to other baselines, our method gives good results on all settings, even with-
out refinement, showing good resilience to a really low number of shapes, even with
re-meshed geometry. We would like to stress that no other method is able to achieve
such a generalization with this low number of shapes.

For a fair comparison with 3D-CODED, we complete our study with a second ex-
periment, in which the training set is now made of the same shapes 3D-CODED uses for
training in their paper, namely SURREAL dataset. The aim of this experiment is to fur-
ther showcase the generalization power of our method when compared to 3D-CODED.
First, by training on a very smooth synthetic dataset, on which previous fully spectral
methods tend to easily overfit due to the obvious mismatch in triangulation in training
and test set. Our second goal is to observe the dependence of different methods on size
of the training set.

We report the results (multiplied by 100) of 3D-CODED and Our method in Figure
4.3, as they are the only two competitive algorithms in Experiment 2. These results
once again demonstrate that our method can achieve impressive results even with a low
number of training shapes. On SHREC re-meshed, we achieve state of the art results
with an average error of 0.048 with only 500 training shapes. We provide additional
quantitative comparisons in appendix A.3.

It can be observed in Figure 4.3 that our results are consistent and unaltered even
with the drop in number of training shapes. 3D-CODED, on the other hand, always
suffers from a reduced training set.
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Source Ours+zo Ours 3D-CODED FMnet+PMF FMnet

2000
shapes

100
shapes

ground truth

Figure 4.4: Qualitative results obtained with texture transfers for the different methods
on Experiment 2, training on two different numbers of shapes in the SURREAL dataset,
and testing on SHREC re-meshed shapes.

Qualitative results

In Figure 4.4 we show the results of our method (with and without ZoomOut refinement
[94]), 3D-CODED [55], FMNet [85] (with and without PMF refinement [163]), trained
on respectively 2000 and 100 shapes, as presented in Experiment 2, via texture transfer.

With 2000 training shapes, both our method and 3D-CODED lead to good or even
excellent texture transfers, while fully spectral methods fail due to the change of con-
nectivity from training to test set. However, with only 100 training shapes, 3D-CODED
fails to get a good reconstruction in many cases, leading to bad texture transfer as in Fig-
ure 4.4. This highlights the fact that our method performs better than any other existing
method when only a few training shapes are provided.

4.6 Conclusion, Limitations & Future Work
We presented a method for improving the robustness and reducing overfitting in learning

shape correspondences. Key to our approach is a hybrid network structure, made of a
raw-data feature extractor that learns descriptors on a pair of shapes, and a novel robust
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functional map layer. Our network can thus operate in both the spectral and the spatial
domain, thus taking advantages of both representations.

Our approach has several limitations: first, as a supervised method it requires at least
partial correspondences (as discussed in Section 4.4.5) between the training shapes.
Also, it requires data augmentation to be able to predict non-aligned shapes, which can
be costly and unstable.

In the future, we plan to work towards an unsupervised spectral loss, similar in spirit
to SURFMNet [ 132], while avoiding the symmetry ambiguity problem. We also plan to
try other, invariant feature extractors such as [58], or [114] to avoid data augmentation.
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CHAPTER 5

Complex Functional Maps:
a Conformal Link Between Tangent Bundles

In this chapter, we introduce complex functional maps, which extend the functional
map framework to conformal maps between tangent vector fields on surfaces. A key
property of these maps is their orientation awareness. More specifically, we demon-
strate that unlike regular functional maps that link functional spaces of two manifolds,
our complex functional maps establish a link between oriented tangent bundles, thus
permitting robust and efficient transfer of tangent vector fields. By first endowing and
then exploiting the tangent bundle of each shape with a complex structure, the result-
ing operations become naturally orientation-aware, thus favoring orientation and an-
gle preserving correspondence across shapes, without relying on descriptors or extra
regularization. Finally, and perhaps more importantly, we demonstrate how these ob-
jects enable several practical applications within the functional map framework. We
show that functional maps and their complex counterparts can be estimated jointly to
promote orientation preservation, regularizing pipelines that previously suffered from
orientation-reversing symmetry errors.

5.1 Introduction

Non-rigid shape matching is a well-established challenge in computer graphics, geom-
etry processing and related fields [159, ], with applications ranging from medical
imaging to statistical shape analysis, to name a few.

One prominent direction for addressing this problem is given by the functional map
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Figure 5.1: A comparison to [8] in a vector field transfer application. The transfer is
done with a functional map mixing symmetries (see Section 5.5.1). Unlike the method
of [8], our approach is robust to this type of noise and transfers the vector field correctly,
without breaking its asymmetry.

framework [106]. This framework is based on representing correspondences as linear
transformations between function spaces, and encoding them as matrices using a re-
duced basis. A key advantage of this construction is that it allows to both optimize for
and to manipulate mappings by solving small-scale optimization problems, whose com-
plexity is largely independent of the size of the underlying meshes. Furthermore, the
continuous nature of this representation enables the use of differentiable optimization
techniques, which has recently proven useful in learning pipelines, e.g., [85, 62, 52].

Despite the flexibility and simplicity of the functional map representation, it has
several key limitations: first, while functional maps encode correspondences between
points, they do not immediately provide access to maps between derived quantities such
as the surface metric or tangent vector fields that require the notion of a map differen-
tial. Several attempts have been made to recover differential information in the func-
tional map framework, e.g., [8, 33]. However, these approaches often lead to non-trivial
optimization problems and, as we demonstrate below, can be prone to error especially
when faced with approximate maps in the reduced basis (see Figure 5.1). Perhaps even
more importantly, the functional map representation does not encode information about
the surface orientation, which means that standard functional map optimization ener-
gies can easily lead to orientation-reversing correspondences that may arise, e.g., due to
intrinsic symmetries. Existing methods try to tackle this challenge through a range of
solutions including by using landmarks [103, 90], injecting orientation into descriptor-
based energies [124] or alignment in the ambient space [126] among others. Unfortu-
nately, these solutions often require additional user input and careful parameter tuning
or incur significant computational cost.
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Figure 5.2: A visualization of function transfer (left) and vector field transfer (right) ob-
tained respectively via a functional map and our complex functional map. The values of
the functions on the left are encoded by a colormap, while the vector fields are visualized
using line integral convolution. Both functions and vector fields can be decomposed in
a Laplacian basis and be transferred using small matrices.

In this work, we introduce a novel construction that helps to address these challenges
directly, without relying on user input or post-processing. Our key idea is to build a
representation for correspondences that only allows orientation and angle-preserving
(conformal) maps. Such a representation is, by its nature, more restrictive than the
functional map representation, since only a subset of maps is allowed. However, as
we demonstrate below, using this representation and especially the link with standard
functional maps helps to regularize map computation and to improve accuracy in several
applications without sacrificing expressive power.

To achieve this goal, we first observe that in the case of conformal maps, the push-
forward (also called “map differential”) is a complex linear operator between tangent
bundles. As a result, it can be encoded as a small-sized complex-valued matrix, given
a choice of basis for the tangent vector fields on each shape. Since a single vector field
can be represented as a complex function, and the pushforward allows to transfer vector
fields across shapes, we call these operators complex functional maps. As we high-
light below, complex functional maps have several properties that are complementary
to the standard functional map representation. Specifically, they provide a simple and
robust tool for transferring vector fields; furthermore, they allow to disambiguate in-
trinsic symmetries and help to promote more accurate, smooth, orientation-preserving
point-to-point correspondences.

Contributions To summarize, our main contributions include:
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* We introduce a novel complex-linear operator acting on tangent vector fields, used
as relaxation of the map differential.

* We demonstrate that this operator is naturally orientation-aware, and show how
it can be used to regularize functional map estimation, especially with respect to
symmetry errors.

* We highlight the utility of our construction in a range of applications, from robust
vector field transfer to orientation-aware map refinement, leading to consistent
improvement in accuracy.

5.2 Related Work

Computing maps or correspondences between non-rigid 3D shapes is a key challenge in
geometry processing and computer vision. Below, we review some approaches in this
area and focus especially on methods that we either build upon or use as baselines, and
refer to recent surveys [ 159, 16, ] for a more in-depth discussion.

Functional maps framework Our method heavily relies on the functional map repre-
sentation, which was originally introduced in [106] as a tool for non-rigid shape match-
ing. The key idea of this representation is to represent point-to-point maps as small
matrices, encoded in a reduced basis, which greatly simplifies subsequent optimization
problems. The original work used only a basic set of linear constraints on functional
maps, which have been extended significantly in, e.g., [77, 2, 67, 48, 24, , , 68,

, , 94] among many other works (see [108]). These approaches heavily exploit
the compact and continuous nature of the functional map representation and have been
used to improve the accuracy, speed and robustness of the resulting shape matching
pipeline. However, the functional representation itself has two major limitations that
limit its applicability, as we review below.

Functional representations of differential quantities As mentioned in the introduc-
tion, functional maps do not naturally provide information about derived quantities such
as the map differential. Several attempts have been made to recover differential infor-
mation in the functional map framework. This includes operator representations for
tangent vector fields [¢] and cross fields [1 1] as well as covariant derivatives and paral-
lel transport [9]. These operator representations enable tasks such as computing vector
field flow efficiently, which has been used both for matching functions on surfaces [10]
and even for recovering continuous maps between shapes [32]. Furthermore, functional
representations have been also proposed for extrinsic “deformation fields” [30] and for
capturing the intrinsic shape metric [ 134, 33], among others (see also Chapter 6 in [ 10&]
and [14] for an overview of some recent approaches).
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These constructions significantly extend the power and flexibility of the functional
maps framework. At the same time, the basic concept of the map differential or push-
forward, and thus reliable mapping of tangent vector fields is still cumbersome to de-
fine and use within this formalism. As we demonstrate below, in the special case of
orientation-preserving conformal maps, however, this differential has a particularly con-
venient representation, which provides complementary information to standard func-
tional maps.

Orientation preservation Another common challenge to using the functional map rep-
resentation is that it does not encode surface orientation. This implies that typically-
used optimization energies, e.g., based on preservation of intrinsic descriptors, such as
the HKS or WKS [151, 6] can lead to undesirable orientation-reversing correspondences
(also known as symmetry flips). One can tackle this issue by using extrinsic descrip-
tors such as SHOT [158], but such descriptors can be very sensitive to discretization

[112, 39], which can have dramatic effects on robustness. Existing methods have tried
to address this challenge by using either segment [106, 75] or pointwise landmarks
[103, 90], injecting orientation information with descriptor-based energies [124], fac-

toring the functional space using symmetry information [107], alignment in the ambient
space [44] or, most recently, using map space exploration strategies [126]. However,
since the functional map representation itself does not encode orientation information,
these solutions only address the problem indirectly, and, e.g., in [126] orientation-
preserving maps are selected a posteriori among the set of candidates, using a set of
filtering criteria.

In contrast, we demonstrate that by first endowing the tangent bundle with the com-
plex algebra using the outward normals, and then defining the derived complex func-
tional maps it becomes possible to directly promote orientation-preserving correspon-
dences without any additional descriptor preservation constraints or post-processing.

Vector Field Map Representation Closest to our construction is the work of [167],
where the authors extend the functional map representation to differential forms on
manifolds. Similarly to our approach, that method encodes the pushforward as a lin-
ear operator acting on vector fields, while imposing orthogonality, which is a neces-
sary condition to arise from a conformal map. However, crucially, the authors of [167]
use R-linear operators to encode the pushforward, whereas we use the outward nor-
mals to construct and exploit the complex algebra on the tangent space, leading to C-
linear operators. This difference is fundamental, as it implies that the representation
in [167] cannot distinguish orientation-preserving from orientation-reversing maps. As
we demonstrate in Section 6.5, this severely limits the scope of applications of that rep-
resentation, which are, in contrast, enabled by our approach thanks, in particular, to its
orientation-aware nature.
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5.3 Tangent Bundle Map as Operator

In this section, we describe the theoretical aspects of our complex functional maps. At a
high level, we follow the motivation behind the original functional map framework, by
ultimately providing a linear relaxation of a particular geometric concept. While func-
tional maps aim at representing diffeomorphisms as linear operators acting on functions,
our goal is to represent the pushforward of a conformal map as a C-linear operator acting
on complex fields.

5.3.1 Notation

From now on, we consider a pair of compact Riemannian surfaces M, N embedded in
R®. We use T, M to denote the tangent plane at a point p € M, while the rangent bundle
TM := UpenmI,M, is the disjoint union of all the tangent planes of M. We equip
this space with a proper inner product (i.e. the Riemannian metric) (-, )7, @ T,M X
T,M — R, which depends smoothly on p € M. For every pair of real-valued functions
f,9 : M — R, we use another, L? inner product, which is defined as (f, g}y =
Jos F(0)g(p)dpins(p), where dpuy is the area element on the surface M. With respect
to this inner product, we define L*(M) = {f : M — R s.t. {f, f)ar < +o0}, as
the space of square-integrable real-valued function defined over M. Similarly for every
pair of vector fields X,Y : M — TM we consider their inner product (X, Y )7y =
S (X (), Y (p))1,mdpire(p). Finally we denote by Ly, : TM — T'M the connection
Laplacian acting on vector fields.

5.3.2 Pushforward in the smooth setting

A diffeomorphism ¢ : M — N bijectively maps points on a surface M to points
on a surface N. The pushforward dy : T,M — T, N associated to ¢ maps the
tangent space at point p € M, denoted as 7;,M, to the tangent space 7, /N and can
be understood as the best linear approximation of the map at the given point p (see
Figure 5.3 top). Thus, the pushforward contains two pieces of information: 1) which
tangent plane of N corresponds to a given tangent plane of M and 2) how a tangent
plane is deformed by the diffeomorphism . While the first is already contained in ¢,
the second is of very different nature, and is especially difficult to recover in the discrete
setting as it requires to numerically differentiate the mapping.

For surfaces, tangent planes can be identified to the vector space R?. Given an
arbitrary diffeomorphism, the pushfoward acts linearly on the tangent vectors (see [59],
Chapter 2) so at that each point p € M, (dy), can be represented as a linear map
between two Euclidean spaces. This map can be represented by a 2 x 2 matrix if each
space is endowed with a local 2D basis formed by two linearly independent tangent
vectors. For a more in-depth discussion of map differentials, we refer to [59, 80].
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Figure 5.3: The pushforward dy takes a tangent vector v € 7, M and transports it to
the plane tangent to p(p) € N. In all generality (top) surface tangent planes identify to
R? and the pushforward is locally a R2-linear map. If ¢ is conformal (bottom), tangent
planes identify to the complex plane C and d is locally a multiplication by a complex
number ¢, € C.

5.3.3 Pushforwards of conformal maps

In this chapter, we are especially interested in the pushforward of a conformal map.
Conformal maps have been widely used in computer graphics notably for texture map-
ping [121, ], parametrization [71, , ] and shape matching [84, 73] among
others. Their success is mostly due to their simple structure-preserving property: a con-
formal map preserves angles between tangent vectors. This means that, by definition,
the pushforward of a conformal map is a similarity transformation (i.e., a combination
of rotation and uniform scaling) of the tangent space at every point.

Each tangent plane on an orientable surface can also be naturally identified with the
complex plane C by identifying an arbitrary fixed direction with the real axis, and using
the outward normal to determine the 90° counter-clockwise rotations, associated with
multiplication by 2. Moreover, observe that for any fixed complex number ¢, the trans-
formation S : C — C given by complex multiplication by ¢, and defined as S(v) = gxv,
is a similarity transformation of R?. To see this, observe that in polar coordinates com-
plex multiplication simply adds the arguments (angles) and multiplies the magnitudes.
Conversely, it is easy to see that for any similarity transformation S : R? — R2?, there
exists a unique complex number ¢ such that S(v) = ¢ * v, where we implicitly identify
R? with C on both sides of the equality (see Figure 5.3 bottom). These observations can
be therefore summarized in the following lemma:
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Lemma 5.3.1. Given a smooth map ¢ : M — N between surfaces, if each tangent
plane T,, and T, is identified with the complex plane, then the map ¢ is conformal
if and only if for every point p € M there exists a complex number q, such that the
pushforward dp,(v) = v * q,.

Stated differently, a map is conformal if and only if its pushforward, which can be
thought of as a mapping between (two copies of) the complex plane, can be represented,
at every point, as multiplication by some fixed complex number.

In general the pushfoward is a real-linear map between tangent spaces identified
with R2. However, in the special case of conformal mappings, the pushfoward is a
C-linear map. Crucially, while any C-linear map is also real-linear, the converse, of
course, does not hold. Remark also that up to technical conditions of differentiability,
Lemma 5.3.1 is equivalent to the well-known Cauchy-Riemann equations, which can
be stated compactly as saying that a mapping is conformal if and only if the associated
map differential is C-linear (see [123], p. 51 for a discussion).

5.3.4 Complex functional maps

Following a similar reasoning as in the functional map framework [106], in which a
functional map is any linear transformation between functions spaces, we now consider
the space of all complex linear maps between tangent bundles. As mentioned above,
we implicitly assume that the tangent bundles are endowed with the complex structure
given by some reference direction at every tangent space, and using the outward normal
to define counter-clockwise rotation.

Thus we call a complex functional map any C-linear operator () that maps a complex
field X € TM ~ U, C to a complex field Q(X) € TN ~ U,enC on N, where we
use T'M ~ Uy C to denote the identification between tangent spaces and complex
planes.

Remark that the complex structure allows us to represent any tangent vector field
as a complex function, and, as a result, the operator () enables the transfer of tangent
vector fields defined on M to those defined on N. Crucially, by Lemma 5.3.1 we have
that the pushforward of a conformal map must be a C-linear operator and thus a complex
functional map. The converse, however, does not hold, as not all C-linear operators on
the tangent bundle come from conformal pushforwards, in a similar way that not all
linear functional mappings arise from pullbacks of pointwise correspondences.

In the remainder of the section we list the key properties of complex functional
maps. In Section 5.3.5 we exhibit a necessary and sufficient condition for a complex
functional map to represent the pushforward of a conformal mapping. Section 5.3.6
studies additional useful properties, notably a weaker necessary condition for () to uni-
formly scale tangent planes and a characterization of isometric pushforwards as a subset
of conformal maps.
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5.3.5 Pushforwards vs. Complex-Linear Maps

As introduced above, a complex functional map @) : TM — T'N is any C-linear opera-
tor between tangent bundles. Our goal is to obtain a necessary and sufficient condition
for such an operator to represent the pushforward (differential) of a conformal mapping.
For this, we will use the following two key properties.

Connection to pullbacks First, suppose that ¢ : M — N is any diffeomorphism
between two smooth surfaces. It is well-known that the pushforward dy : T,M —
T, N is the unique linear map between tangent spaces that satisfies:

<X7 V(f © (10)>T;7M = <d90<X)7 vf>T¢(p)N7 (51)

forall X € TM, f € L*(N) (see [80], Chapter 3).

Orientability Second, consider any C-linear mapping () between tangent bundles. By
linearity, for any complex number ¢ € C and any two complex fields X,Y € T'M ~
UpenC, we have:

X=q¢Y = QX)=4qQ(Y).

For instance, if ¢ = 1, the map () preserves 90° rotation. As rotations are defined relative
to the local basis of the tangent plane, they carry the information of the orientation
of the manifold. Therefore the operator () cannot change the orientation of the
tangent bundle. This property of the complex functional maps is key in our shape
matching applications: it forces the maps to remain orientation-preserving. Combining
these observations, we conclude that complex functional maps can only represent the
differential of an orientation preserving conformal map. Put differently, we have:

Theorem 5.3.1. The complex-linear map () is a pushforward if and only if there exists
an orientation-preserving and conformal diffeomorphism ¢ : M — N satisfying:

<X7 V(f © (p)>TpM = <Q(X)7 Vf>T¢(p)N7
forall X € TM, f € L*(N).

Thm. 5.3.1 is a direct consequence of Lemma 5.3.1 and the uniqueness property
of the map differential in Eq. (5.1). For completeness we provide the full argument in
Appendix B.1.

This theorem highlights the importance of Eq. (5.1) to link the complex-linear map
(2 with the underlying pointwise map . Note that importantly, Eq. (5.1) only depends
on the knowledge of the pullback associated with ¢, and thus provides a natural link
between () and the standard functional map representation, which encodes pullbacks.
In Section 5.4.2, we show how this property can be used to relate our complex and
standard functional maps in practice.
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5.3.6 Properties of complex functional maps

In this section we provide two additional structural properties of complex functional
maps.

Orthogonality. First, we show a necessary condition for () to represent the differential
of a conformal map: () must be an orthogonal operator. Interestingly, this is different
from standard functional maps, which are orthonormal if and only if the underlying
correspondence is locally area-preserving [ 106, ].

Theorem 5.3.2. If () represents the pushforward of a conformal map ¢ between sur-
faces, then:

QQ=1,
where QQ* is the adjoint operator uniquely defined by (QX,Y )rn = (X, Q*Y )1

Intuitively, this theorem comes from the fact the change of metric under the confor-
mal map is given by some scaling factor at each tangent plane. When integrating the
inner products on the surface, this scaling factor cancels out with the change of area
measure. A similar result was shown in [134] for gradients of functions. We provide
the complete proof in Appendix B.2.

Importantly, Theorem 5.3.2 only establishes a necessary condition: indeed, even if

@ is an orthonormal C-linear operator it is only guaranteed to represent the pushfoward
of a conformal map, if it satisfies Eq. (5.1).
Isometries. Secondly, a pushforward is isometric if and only if it commutes with the
Levi-Civita connection [25] (p.181). A similar statement can be made about the con-
nection Laplacian recently used in geometry processing [143] to compute transport of
vector fields along geodesic paths.

Theorem 5.3.3. Let L be the connection Laplacian. If a complex functional map () :
TM — TN represents the pushforward do of a conformal map, then it satisfies:

Lyo@Q=QoLy
if and only if  is an isometry.

Theorem 5.3.3, proved in detail in Appendix B.3, is very similar to that of functional
maps [106].
5.3.7 Operators in a reduced basis

In order to improve the efficiency of our algorithms it is often desirable to consider
operators acting on a subspace of smooth vector fields. Since tangent planes can be
identified to complex planes, we will use the complex inner product defined as:

<X7 Y>(CPM = <X, Y>TpM —|—Z<jX, Y>TpM € (C,
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where 7 is the 90° rotation around the normal. Note that for two vectors x,y in the
same complex plane this inner product is equivalent to the standard Ty, where 7 is the
complex conjugate of x.

Suppose that M is equipped with the family of vector fields { U} } orthonormal with
respect to the inner product (., .)cyp. Then [122] (Thm I1.6), any vector field X can be
written as a linear combination:

X =) al},

where a; = <X , UM > e € C. The transferred complex field Q(.X) can be decomposed
in the basis of N:

QX) = 3_{QUX), 1)y 1
=3y QM) )y a

where the second equality follows from the C-linearity of (). Thus the complex func-
tional map can be understood as a matrix with coefficients @);; = <\II§V , QUM )> PN
matching coefficients in basis on M to coefficients of the basis on N. Figure 5.2 pro-
vides a visual comparison between a classical functional map transferring functions
(left) and a complex functional map transporting tangent vector fields (right), both us-
ing a reduced basis of size 30.

5.4 Discrete Setting

In this section, we introduce complex functional maps in the discrete setting. Through-
out, we consider oriented manifold triangle meshes (V, E, F'). Our overall strategy is
based on representing tangent vector fields as complex-valued pointwise functions, so
that X; € C per vertex ¢« € V. This choice of a point-based representation for tangent
vector fields (and not face-based, as in e.g. [8]) is motivated by our main application:
disambiguating symmetries in non-rigid shape correspondence problems. Matching
vertices between surface meshes is convenient as it directly allows to transfer texture
coordinates or deformations.

We thus represent discrete complex functional maps () as complex-valued matrices
mapping complex-valued pointwise functions on M to complex-valued pointwise func-
tions on V. In a similar spirit to functional maps, we improve computational efficiency
by representing the operator () as a small matrix in a reduced basis of vector fields. As a
basis, we use the first eigenvectors of the connection Laplacian, discretized as in [143].

Below we introduce Laplacian operators and the necessary local complex structure,
then we construct our complex functional map and translate each continuous property
in the discrete setting.
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5.4.1 Laplacian operators

Cotan-Laplacian The standard Laplacian operator W € RIVI*IVI for a piecewise linear
function f € RVl is obtained by the well-known cotan-weight formula [22]:

(W)= % Z (cot 3 + cot 85;) (fi = f)
(ij)eE

where the index notation is defined in the inset figure. We also
define the diagonal |V'| x |V| lumped mass matrix A:

Aii 12% Z ik,

(igk)eT

where a;;;, are the areas of triangles adjacent to ¢. This matrix defines
the scalar product in the space of piecewise linear functions. Namely
if £, g € RIVI are two piecewise linear real-valued functions then:

(f,9)12 == fT Ag.

Connection Laplacian Our discretization of tangent vector fields using complex num-
bers follows [76, ]. Namely, we assign to each vertex an arbitrary reference unit
vector orthogonal to the vertex normal. This reference direction represents the tangent
vector, associated with the complex number 1 + 0. The outward normal dictates the
orientation of the tangent planes, providing the additional axis :. Given this reference
frame, any tangent vector can be represented as a complex number, and a tangent vector
field as a complex-valued function.

In this context, the mass matrix A defines a complex scalar product in the space of
tangent fields, represented as complex functions:

<X, Y)C]VI = X*AY,

where * represents the conjugate-transpose operation.

As mentioned above, in our applications we use a family of smooth vector fields
given by the first k first eigenfunctions of the discrete connection Laplacian, as defined
in [143]. The connection Laplacian is the matrix . € C!V*IV! uniquely defined by the
Dirichlet energy:

* 1 2
X'LX = > (cot 0F + cot ) | X; — riy X,
(if)eE

where the unit complex number 7;; are the rotations necessary to compare vectors ex-
pressed in two different bases.
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By definition, L is a complex Hermitian matrix, and similarly to the cotangent Lapla-
cian, on Delaunay meshes has only real non-negative eigenvalues. Therefore, L admits
the generalized eigendecomposition:

LU = AUA,

where U* AV = ], A the diagonal matrix of eigenvalues, and V¥ is a set of complex-
valued eigenfunctions. In particular, any tangent vector field U can be expressed as a
linear combination with complex coefficients of the family {¥;,i = 1,...,|V]|} [60]
(Thm. 4.1.5), i.e.. U = ZZ c;V;, where ¢; € C. In practice we truncate this sum
and typically use a fixed number £ of the complex eigenfunctions, associated with the
eigenvalues of smallest modulus.

5.4.2 Discrete complex functional map

In order to define a discrete equivalent of the pushforward, we simply discretize the
continuous definition in Eq. (5.1). For meshes of same connectivity we are able to
derive a closed-form expression for () and a consistent notion of discrete conformality.
For meshes with different connectivity or when the deformation is not exactly conformal
we enforce this equation in the least-squares sense.

To discretize Eq. (5.1), we will need the pullback operator C, represented by a func-
tional map [106], and the operator Dx often encountered in differential geometry to
define tangent vectors [98] and introduced in geometry processing for vector field de-
sign in [8].

To define the discrete pullback, recall that given a map ¢ : M — N, the associated
functional map C : L*(N) — L*(M) can be discretized in the full, “hat”, basis as a
binary matrix Cyys = I, where iy n (i, j) = 1if and only if (i) = j, while in
the reduced basis we have Oy = (®M) T AMTI ),y @Y where &M | &V are matrices that
store, as columns, the basis functions on the two shapes.

Vector field operator In addition, we will use the linear functional operator Dy :
L*(M) — L*(M) describing the action of a vector field X € TM on a function
f e L*M):

DX(f)p = <X, Vf>TpM- (52)

This operator uniquely characterizes a tangent vector field X on a manifold [98], and
will allow us to write Eq. (5.1) as an equality between matrices. Azencot et al. [8]
proposed a discretization for face-based vector fields, however, as previously stated, we
use a different vertex-based discretization, that we describe in detail below.

We discretize the operator Dy € RIVI*IVI as a vertex-wise scalar product at tangent
planes:

(Dx f)i = (Xi, Vfi)nm, (5.3)
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where V f; evaluates the gradient of a piece-wise linear function at vertex ¢ (rather than
at a face). In practice, we store the operator Dy into a complex sparse matrix.

Locally, the gradient of a function represents the best R?-linear approximation of
this function in the tangent plane. The directional derivative of f along an edge vector
e;j 18 simply (f; — f;)/|eij|. We therefore ask V f to be the best approximation of all
directional derivatives, namely:

Vf,=arg mln Z He —(fi = DI (5.4)

(%J )JEE

This least squares optimization problem amounts to pseudo-inverting a d; X 2 matrix per
vertex, where d; is the degree of vertex 7. This can be done exactly in pre-processing.
As the gradient at vertex ¢ only depends on its neighbors, it can be encoded as a complex
sparse matrix whose non-zero coefficients per-line are equal to the degree of the vertex
plus one.

Discrete definition of a pushforward By combining these tools, we obtain a simple
discretization of the definition of the pushforward in Eq. (5.1), as a composition of
functional operators, represented in the discrete setting as matrix multiplication:

DY Cny = CyuDyx, VX eCMl (5.5)

Note that in this expression, consistently with Eq. (5.1), the pushforward () maps
vector fields in the opposite direction from the pullback C'. In practice, we have found it
simpler to work with an expression that assumes that the two operators map in the same
direction, which leads to:

OMNDé\g = DgXCMN; VX e Clle. (5.6)

This expression can be obtained simply by pre- and post-multiplying Eq. (5.5) by Cn,
and assuming an invertible mapping.

In practice, mappings are usually not conformal, so we cannot hope to satisfy Eq. (5.6)
exactly. However, we can define the energy E., measuring how close Q) : TM — T'N
is to be the differential of the operator Cy;y : L?(M) — L?(N) and evaluating the
constraint in the least squares sense:

E.(C,Q) = ZIIODX DYy.Cl%, (5.7)

where {X;} is a family of vector fields in 7M. Remark that Eq. (5.6) is linear with
respect to X. Consequently, minimizing the energy of Eq. (5.7) will ensure that Eq. (5.6)
is satisfied as well as possible on the subspace of T'M generated by {X;}. As above,
we use the first eigenfunctions of the connection Laplacian operator for this family, and
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thus the energy in Eq. (5.7) ensures that Eq. (5.6) is satisfied as well as possible for
smooth tangent vector fields.
Our overall strategy thus consists in recovering () given an arbitrary functional map
C' by solving the problem:
mcgn E.(C,Q). (5.8)

Eq. (5.8) defines a simple least squares system which can be efficiently optimized
by solving a linear system of equations. We describe how to do in it more details in
Appendix B.6. The solution of this problem is the best approximation of the map dif-
ferential by an orientation-preserving conformal pushforward. The energy F,, is fun-
damental in our experiments as it allows us to extract orientation information from any
given functional map.

5.4.3 A closed-form expression for ()

While Eq. (5.7) plays a fundamental role in our experiments, we remark that in the case
of meshes with the same connectivity, it is possible to obtain an intuitive closed-form
expression for (). Recall that a conformal pushforward is given by 1) an assignment
between points and 2) a similarity transformation between matching tangent planes.
Therefore, it is expected that the discrete dp, the pushfoward between piecewise linear
complex fields, is simply the composition of a matrix II;y, assigning vertices of M
to those on N, and a multiplication by a complex field ¢ : N — C performing the
tangent plane deformation at each vertex. Using our discrete definition of the push-
forward (Eq. (5.6)), we can recover this property when the two meshes have same the
connectivity.

Theorem 5.4.1. Given two meshes with same connectivity and given the permutation
matrix 11 describing the vertex-to-vertex correspondence, the solution of Eq. (5.8) has
the form:

Q = D(q)II,

where D(q) is a diagonal matrix with complex coefficients q;. The complex numbers q;
are the best conformal alignement of the tangent planes.

The proof of Thm. 5.4.1 can be found in Appendix B.4.

5.4.4 Constraints on complex functional maps

Operator orthogonality While the discrete version of Thm. 5.3.2 holds exactly in our
discrete setting, it is not very informative, since the discrete notion of conformality
induced by Thm. 5.4.1 is too rigid, since the only deformations of a mesh that preserve
angles at every triangle exactly are isometries with possible global scaling.
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Figure 5.4: LIC visualization of the first 10 eigenvectors of the connection Laplacian
(from left to right, top to bottom). We see that a higher eigenvalue A gives an eigen
tangent vector field whose frequency is higher, resulting in a less smooth flow. Never-
theless, all these tangent vector fields represent the generators of the smoothest vector
fields over the shape. 1t is in this basis that we will decompose tangent vector fields, as
described in Section 5.4.5.

However, orthonormality of () is still a valuable constraint in the reduced basis and
forces () to be the approximation of a pushforward. Furthermore, the use of a reduced
basis helps to avoid both the reliance on an exact mesh structure and the rigidity of
exactly conformal maps. In our experiments this constraint proved to be very effective.

In practice, we therefore solve the following Procrustes problem:

QI*nQIEI E.,(C.Q). (5.9
This is a standard problem that can be solved exactly using a Singular Value Decompo-
sition. For completeness we provide the details in Appendix B.6.

Commutativity with the connection Laplacian The isometric constraint of Thm. 5.3.3
is still valid in the discrete setting. Interestingly, the isometry condition by enforcing the
commutativity with the Laplacian is identical to the standard functional map framework.
In particular, as remarked in [ 106], it implies the more isometric a mapping is, the more
diagonal our matrix () will be, when expressed in the reduced basis.
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Theorem 5.4.2. The conformal pushforward () commutes with the connection Lapla-
cian:

LNQ = QL]V[a

if and only if it represents an isometric map.

The proof is deferred to Appendix B.5.

5.4.5 Discrete operators in a reduced basis

In order to improve the efficiency of our algorithms we will not consider all piecewise
linear tangent vector fields but only those spanned by a small number k& of smooth vector
fields stored in a complex |V| x k-matrix V.

For a known deformation across compatible meshes, the closed-form expression of
(@ is exhibited in Thm. 5.4.1 and can easily be rewritten in a reduced basis:

Q= (U AM D () n TN, (5.10)

Note that Eq. (5.10) is very similar to the expression of discrete functional map C
introduced in [106]. For the function bases ®* and ®* a functional map reads:

Cyna = ()T AMIL n 0N, (5.11)

All the constraints on () in the “hat” basis can be simply rewritten by replacing each
term by an operator projected in the reduced basis.

In theory any orthonormal basis could be considered. For the purpose of non-rigid
3D shape matching a basis smooth and stable under nearly-isometric deformations leads
to better results. In our experiments, we use the £ first eigenvectors of the connection
Laplacian for complex functional maps, that we visualize via Line Integral Convolution
in Figure 5.4. Indeed, as proved in Thm. 5.3.3 this operator is invariant under isometric
deformations and moreover its discretization is easily implemented.

5.4.6 Point-to-point map conversion

In the functional map pipeline a key step is the conversion from a functional map to a
vertex-to-vertex map. As originally described in [106] and extended in [109], one just
needs to transfer Dirac functions on M using the adjoint of the functional map, and
compute the closest Dirac function on N using a nearest neighbor search algorithm.
Namely, the operation performed is I,y = NNsearch(®", ®¥Cy,,), where ®* and
®N are the eigenfunctions from the standard Laplace-Beltrami operator on M and N.
In our case, extending this algorithm to “Dirac vector fields” is not straightforward
as a single vector is not isotropic. Instead, we propose to use the divergence operator to
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Random noise
Method /level of noise | s=0 | s=02]| s=0.5

Wang et al. [167] 0.40 2.2 5.5
Azencot et al. [8] 6.2 4.6 3.2
Ours 0.40 0.43 0.74

Symmetric noise
Method / level of noise | a = 0.3 | a =05 | a=0.6

Wang et al. [167] 0.75 1.1 1.3
Azencot et al. [8] 4.6 1.8 4.2
Ours 0.40 0.51 0.81

Table 5.1: Average accuracy of the three vector field transfer algorithms on 20 random
pairs of FAUST [17] for two types of noise, three noise levels. We use £ = 50 eigen-
vectors for both real and complex Laplacian operators. For noisy input functional maps,
our method is always the most accurate. For completeness, we report more results for
k = 30,70,150 in Appendix B.7.

convert the vector field basis to functions and then use the standard functional point-to-
point conversion scheme via nearest neighbor search. When () is expressed in a reduced
basis, this simply amounts to computing:

HMN = NNsearch(divN\IfN, leM\IjMQNM) (512)

Where we define the discrete divergence to be the adjoint of the gradient operator
matrix defined in Eq. (5.4).

This solution is not fully satisfying as it relies on the commutativity of the push-
forward with the divergence operator, and thus is geared towards near isometries. This
approach, however, proves to be sufficient for our shape matching applications in Sec-
tion 5.5. Furthermore, in our current pipeline, () is evaluated alongside C' and thus, if
needed, the conversion can be done using the standard functional map. We leave find-
ing a robust and general conversion scheme for complex functional maps as interesting
future work.

5.5 Results

In this section, we present several applications of our complex functional maps. We start
by demonstrating that robust vector field transfer can be achieved with complex func-
tional maps without requiring additional information or computation. Then, we demon-
strate that the orientation-aware nature of complex functional maps can be used to elim-
inate the symmetry ambiguity in non-rigid near-isometric shape matching problems.
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Ground Truth

Source Wang et al. Azencot et al. Ours Error

Figure 5.5: Comparison of three tangent vector field transfer methods. Top row: we dis-
play a LIC visualisation of the transferred vector field on the target shape. Bottom row:
we show the transfer error, computed as the difference with the ground-truth transfer.
For this transfer, we used a 50 x 50 ground-truth functional map blurred with a random
noise of magnitude 0.1. Quantitative results can be found in Table 5.1.

Complex functional maps are easily added to standard functional map pipelines like map
estimation from descriptors [ 106, 103, 124] or refinement methods like ZOOMOUT[94]
and its follow-ups [ 126, 127].

An implementation of our method can be found at: github.com/nicolasdonati/QMaps.

5.5.1 Vector field transfer

The first direct application of complex functional maps is tangent vector field transfer.
We compare three methods for vector field transfer using as only input an approximate
functional map C'. We demonstrate below that using our approach is more accurate,
compared to existing methods [167, 8] especially in the presence of noise.

Vector field transfer with complex functional maps

Our representation allows for efficient and easy-to-use tangent vector field transfer.
Indeed, given a functional map C);, we can easily recover a complex functional map
(@ by solving the Procrustes problem in Eq. (5.9). Then, transferring a vector field
X defined on shape M to shape NV, boils down to : 1) projecting X in the complex
spectral basis X ~ UMy (see Section 5.4.1 ), 2) transferring the spectral coefficients
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Method (-/+ICP) | [103] | [124] |
- 024/0.21] 0.21/0.17
+ Ours 0.15/0.13 | 0.12/0.10

Method (-/+ICP) [167] [167]+[124]
- 0.31/0.23 | 0.23/0.13
+ Ours 0.16/0.13 | 0.11/0.083

Table 5.2: Average geodesic error on 190 FAUST remeshed shape pairs. Our complex
functional map step always improves the correspondence quality for all four algorithms,
even those already incorporating the orientation-aware operators from [124]. Detailed
graph geodesic error vs. percentage of correspondences can be found in Fig. B.1 of the
Appendix.

using: y = (Qx and 3) recovering the output as linear combination of the target basis:
Y = My,

To assess the accuracy of our method, we compare it with two standard baselines:
the transfer using Hodge decomposition from Wang et al. [167] and the transfer using
the vector field operator proposed by Azencot et al. [8].

Hodge decomposition transfer On a shape M with a sphere-topology, any tangent
vector field X € T'M can be decomposed as the sum of a gradient and a rotated gradient.
As remarked in [ 167], transferring vector fields with a conformal map can be done using
only the functional map C by: 1) computing the Hodge decomposition, i.e. finding the
functions f, g € RVl such that X = V f + 1V, 2) transferring the functions f, g using
C' and 3) computing the gradient and rotated gradient on V.

Vector field operator Azencot et al. [$] use the representation of a tangent vector field
X € TM via the associated functional operator f — Dx(f) , defined in Eq. (5.2)
above. The method boils down to transferring X by solving :

This method is similar to ours as their energy is also inspired by Equation (5.1). How-
ever, there are two key differences. Firstly, our method estimates the transfer for all
low-frequency tangent vector fields of the source eigenbasis simultaneously by estimat-
ing (), whereas the approach of Azencot et al. is limited to one vector field transfer at a
time. Secondly, the approach in [&] is not limited to conformal deformations, making it
more flexible but also more sensitive to noisy input functional maps.

Results Table 5.1 reports a quantitative comparison between the three methods de-
scribed above on 20 random pairs taken from the original FAUST dataset [17]. These
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Source [NO17| [RPWO18| [WLTZ18] [WLTZ18| + [RPWO18|

Y??E}

Figure 5.6: We visualize the influence of complex functional map step on some
descriptor-based functional map pipelines. The quality of the computed maps is dis-
played with texture transfer on a pair of FAUST re-meshed shapes (91 as source, 89 as
target). We see that for every of the considered pipeline, our method helped with conti-
nuity and left-right symmetry errors. Quantitative results can be found in Table 5.2.

Ground Truth

meshes are in one-to-one vertex correspondence, allowing us to compute the ground-
truth pushforward. To perform the comparison, we generate a smooth vector fields on
the source, transfer it and then compute the L?-distance with the exact transfer nor-
malized by the norm of the input vector field. We use £ = 50 eigenvectors for both
the functional space and the vector field space. We assess the robustness of the three
functional-based vector field transfer methods by adding two types of noise to the input
ground-truth Cy; functional map:

* Random noise: the input ground-truth C; functional map is corrupted by adding
a random matrix N whose entries are taken uniformly at random between —s
and s, s being a given threshold. We transfer tangent vector fields of the form
X = Vf +11Vg by randomizing the spectral coordinates of f, g such that they
decrease in intensity as frequency goes up. The results are reported in the first
half of Table 5.1.

* Symmetric noise: The input ground-truth map Cj, is mixed with an orientation-
reversing functional map Cj,,,, by linearly interpolating between the two maps
C = aCy + (1 — a)Csy,. This kind of noise often arises when estimating maps
from descriptors with the original pipeline introduced in [106]. We transfer a
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tangent vector field of the form X = V f, with f the extrinsic coordinate of
the left-right axis. This results in an antisymmetric vector field that will only be
transferred correctly if the method is robust to noise. The results are reported in
the second half of Table 5.1.

In presence of noise, our method always outperforms the baselines. This is due to
the fact that we first compute the pushforward closest to C' in the least square sense,
making it robust to random noise. By construction, our pushforward is orientation-
preserving, so it is resistant to symmetric noise and is able to recover a well-oriented
transfer as shown in Fig. 5.1. In comparison, the other two methods directly rely on the
functional map and fail if C' does not exactly represent a pointwise map. Moreover, if C'
is amix of a direct and orientation-reversing map, it is not easy to recover the underlying
orientation-preserving map and thus to be robust to such noise.

In Figure 5.5 we provide qualitative illustrations of vector field transfer obtained
using our method compared to baselines. Note that even a small amount of noise in the
input functional map can compromise the quality of the transfer performed by [167].
Our method only exhibits minor errors, even though it is only designed to handle con-
formal deformation. In fact, the only visible mis-transfer happens at the shoulder joint
where the deformation is far from conformal. The approach of Azencot et al. [8] is
clearly under-performing and always achieves the worst accuracy of our comparisons.
However this method is more general and would give the best results in presence of per-
fect information and in the full basis, even with strongly non-isometric deformations.

In conclusion, complex functional maps can help to alleviate the errors in map ori-
entation and allow to accurately transfer vector fields between near isometric shapes
even if the deformation is not exactly conformal.

5.5.2 Disambiguating symmetry in functional maps computation

In our next application, we show that complex functional maps can be used within
the standard descriptor-based functional map pipeline to significantly improve robust-
ness and accuracy. The key issue that we consider is that, as remarked in prior works
[107, 32] intrinsic descriptors [ 151, 6] are often symmetric, which can lead to poor cor-
respondences, where a point is arbitrarily matched to the correct target point or its sym-
metric counterpart [ | 26]. As we demonstrate below, injecting our orientation-preserving
complex maps into the pipeline can help to resolve this issue efficiently.

To achieve this, we propose to project a given functional map into the space of
orientation-preserving maps by using () as an intermediary. This projection is done
in two steps. First, we approximate the associated map differential () by solving the
Procrustes problem in Eq. (5.9). Secondly, we extract from () the underlying point-to-
point mapping using the algorithm described in Section 5.4.6. Since, by construction,
( is orientation preserving, the projection removes the orientation reversing component
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Method / stats \ Avg. \ Med. \ Min. ‘

Z0 0.520 | 0.523 | 0.226
Z0 + Ours 0.320 | 0.328 | 0.037
Z0 + bij 0.508 | 0.447 | 0.106
Z0 + bij + Ours 0.367 | 0.382 | 0.040
Z0 + bij + conf 0.47 | 045 |0.025
Z0 + bij + conf + Ours | 0.225 | 0.078 | 0.029
ZO + bij + iso 0.450 | 0.433 | 0.025
Z0 + bij +iso + Ours | 0.198 | 0.081 | 0.029

Table 5.3: Adding our complex functional map step in the pipeline of Ren et al. [127]
always improves map accuracy. We report the average, median and minimal geodesic
distance error on 50 shape pairs of the SMAL dataset. Detailed graph geodesic error vs.
percentage of correspondences can be found in Fig. B.2 of the Appendix.

of the input map, and thus the resulting point-to-point mapping should be orientation
preserving.

In a third optional step, one can reconstruct a new functional map from the point-
to-point map using Eq. (5.11). This allows us to improve the mapping using post-
processing technique like the spectral ICP refinement introduced in [106].

We compare this approach to four alternative algorithms for computing functional
maps solely from 50 WKS [6] descriptors:

* The algorithm introduced by Nogneng et al. [ 1 03] where descriptors are converted
into operators that must commute with the functional map.

* We add the orientation-promoting operators of [124] to the pipeline of Nogneng
etal [103].

* The method proposed in [167], in theory closest to ours, which proposes to also
transfer differential 1-forms with functional maps. It differs from our method
mainly because they rely on R? — linearity whereas our maps are C-linear, and
thus orientation-aware. In [167] the authors transform descriptor functions into
tangent vector fields by taking the gradient.

* A combination of [167] with the orientation-aware operators of [124].

To assess the ability of () to recover orientation information, we compare maps obtained
by direct conversion of the functional map computed using each of approaches above,
with maps obtained by conversion from (), that has first been estimated from C'.
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Figure 5.7: Texture transfer on SMAL re-meshed dataset [174] illustrating maps ob-
tained with two methods based on ZOOMOUT: bijective ZOOMOUT[|26] (third col-
umn) and bijective ZOOMOUT with isometric energy [127] (last column). Adding our
(-step (bottom sub-rows) considerably improves the accuracy of the map. For quanti-
tative results see Table 5.3.

The results are computed on 20 shapes (which corresponds to 190 pairs) from the
FAUST dataset [17], which were re-meshed in [124] in order to remove the bias of
identical triangulations. We then compare the mean geodesic distance error obtained
by these different methods — for each source point, we compute the geodesic distance
on the target between the point mapped by the obtained maps and the point mapped by
ground-truth. The results are reported in Table 5.2. Additionally, we display in Figure
5.6 a qualitative result where our additional step was able to disambiguate symmetry
whereas the standard pipelines could not.

This experiment shows that our ()-map projection step significantly improves the
accuracy of the correspondence with all algorithms, even in the presence of orientation-
aware operators.

5.5.3 Orientation-preserving ZOOMOUT

Finally, our complex functional maps can also be used to improve more recent func-
tional map algorithms based on spectral upsampling, inspired by ZOOMOUT[94]. The
Z00MOUT algorithm starts with an initial pointwise map II, and alternates between
two steps: estimating a new functional map C), from II,, and recovering the new point-
wise map I1,,; from C),. In order to increase the map precision, the size of the spectral
basis increases at each iteration.
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Algorithm 1 Complex ZOOMOUT

Intput: Manifold meshes M and N
Initial pointwise maps 1,5
Output: Refined maps IT}7;
Parameters: The number of refinement steps J
An array [k;],j € [1, J] with the (increasing) number of spectral coordinates to use
at each refinement step
6: Preprocessing: Compute the Laplace Beltrami eigenbases ®* and ® (used for
function in spectral basis)
7: Compute the connection Laplacian complex eigenbases W, U/ (used for vector
field spectral bases, see Section 5.4.5)
8: Compute the differential operators Dy, and Dg~ for i € [1, k;] (used for estimat-
ing () from C, see Section 5.4.2) ' L
9: Compute the reduced divergence operators div,, and divy (used for conversion
from () to pointwise map, see Section 5.4.6)
10: for k € [ky, ..., k;] do
11: (I)M:(I)f\l{k}’(I)N:q)f\lf,k]
12: CNM - QLHMN(I)N
13: @NM = argmilge o) S |ICnmDyn = DoounCnu||7
14: HMN = NNsearch(divN\IfN, diVM\I’M/QN]y[)
15: end for

ok wny

Interestingly, we can modify the basic ZOOMOUT approach to incorporate complex
functional maps and thus promote discovery of orientation preserving maps. Our new
algorithm basically boils down to 3 steps instead of 2: 1) estimate the functional map
C, from II,. 2) [Q-step] Estimate the complex functional map @, from C,, using
Eq. (5.9). 3) Estimate the new pointwise map Il from @, (instead of C, like in
classic ZOOMOUT) using Eq. (5.12). The pseudo-code can be found in Algorithm 1
where the lines that describe our modification are highlighted in bold.

We remark that this “Q)-step” can easily be added to other algorithms built on top
of ZooMOUT. MapTree [126], which uses a tree structure to explore the space of
maps, modifies ZOOMOUT to promote bijectivity. This idea was later extended to other
properties like conformality or isometry by Ren et al. [127]. Like ZOOMOUT, these
algorithms are based on spectral upscaling and conversions between spectral mappings
and vertex-to-vertex maps. We describe their modification in Appendix B.9.

We demonstrate the beneficial effect of this (-step by refining random functional
maps with four versions of ZOOMOUT with and without our modification. We upscale
the maps from 4 eigenfunctions up to 50, with a step of 1, and 10 inner loops per step.
We perform this experiment on 50 shape pairs of SMAL [174] re-meshed. We report
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the obtained quantitative results in Table 5.3. For the baselines, we used the standard
Z00MOUT algorithm [94], bijective ZOOMOUT[!26], and the discrete optimization
with first conformal (conf) and isometric energy (iso) [127]. For all of these baselines,
we report both their overall geodesic error (mean, median and minimum error) and
that of their modification with our method. We observe that our modification is always
relevant in this case, resulting in a significant boost in overall accuracy on this dataset.
More specifically, the discrete optimization approach [127] with complex functional
maps performs really well (median error below 0.09) despite the fact it is randomly
initialized, and does not use any descriptors.

In Figure 5.7 we provide qualitative results with two shape pairs with the same
source, and report five maps per pair: the ground-truth, bijective ZOOMOUT[126], and
bijective isometric ZOOMOUT[127], as well as their version with our modification. For
both shape pairs and both methods, the original algorithms are affected by the left-right
symmetry and converge to discontinuous maps.

In summary, in state-of-the-art refinement pipelines involving ZOOMOUT, our Q-
step appears to promote orientation preservation and continuity, resulting in better con-
vergence and more accurate results overall. This confirms that using complex functional
maps in functional map pipelines is beneficial to estimate high quality correspondences
from very low-frequency or extremely unreliable initialization.

5.6 Conclusion, Limitations & Future Work

In this chapter, we have introduced a new functional operator resulting from a C-linear
relaxation of the space of pushforwards: the complex functional map. This operator
allows to robustly transfer tangent vector fields between non-rigid surfaces in 3D. Fur-
thermore, the most prominent property of this new tool is that it reflects the complex
structure of the surfaces and is thus orientation-aware. In our experiments, we exploited
the orientation-aware property of complex functional maps in several shape matching
tasks. This contribution to the functional framework considerably increases the appli-
cability of intrinsic shape matching methods, which are often hindered by the presence
of orientation-reversing intrinsic symmetries. This is particularly relevant for functional
map-based algorithms, since they rely on a linear relaxation of diffeomorphisms, which
can linearly blend direct and orientation-reversing maps, potentially resulting in large
discontinuities.

However our framework is naturally restricted to differentials of conformal orientation-
preserving mappings. This constraint is only enforced in a least squares sense in our ap-
proach and thus helps to promote conformality which can be beneficial for shape pairs
satisfying this assumption. Besides, like most algorithms derived from the functional
framework, our construction is dependent on the choice of reduced basis. This can limit
its applicability in more general non-isometric shape matching. As follow-up work, we
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would like to study other representations for orientation-preserving pushforwards and
alleviate the dependency on the reduced basis.

In the future it would also be interesting to investigate the utility of complex func-
tional maps in other applications that involve vector field transfer, including deformation
or pose transfer, or synchronized convolution in the context of geometric deep learning.
Indeed, restricting the search to well-oriented maps without additional supervision could
lead to new efficient methods in unsupervised 3D deep learning.
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CHAPTER O

Deep Orientation-Aware Functional Maps:
Tackling Symmetry Issues in Shape Matching

State-of-the-art fully intrinsic networks for non-rigid shape matching often struggle to
disambiguate the symmetries of the shapes leading to unstable correspondence predic-
tions. Meanwhile, recent advances in the functional map framework allow to enforce
orientation preservation using a functional representation for tangent vector field trans-
fer, through so-called complex functional maps. Using this representation, we propose a
new deep learning approach to learn orientation-aware features in a fully unsupervised
setting. Our architecture is built on top of DiffusionNet, making it robust to discretiza-
tion changes. Additionally, we introduce a vector field-based loss, which promotes
orientation preservation without using (often unstable) extrinsic descriptors. Our code
is available at: https://github.com/nicolasdonati/DUO-FM.

6.1 Introduction

Learning for non-rigid shape correspondence is a key problem in 3D shape analysis with
applications ranging from statistical shape analysis [19, ] to deformation or texture
transfer [13]. Early approaches have focused either on learning informative features so
that corresponding points have similar feature descriptors, e.g., [87], or modeling shape
correspondence as a semantic segmentation problem. Approaches in the latter category,
e.g., [92, 97, , ] aim to predict, for every point on the surface, the corresponding
vertex id on some ground truth template shape. Unfortunately both approaches impose
very little consistency between individual point correspondence predictions, and can be
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sensitive to the underlying shape discretization [144].

More recently, techniques have focused on both predicting and imposing a training
loss on the entire map between each pair of shapes. This has been greatly facilitated
by spectral approaches and especially the functional map representation [!06], which
encodes a map as a small matrix using the spectral (Laplacian) eigen-basis. A wide
range of approaches based on both supervised [31, 85, 39] and unsupervised losses
[132, 62] have been proposed using the functional map representation. Key to all of
these methods is learning feature functions that are then used to predict the functional
map as a whole. As was shown across multiple recent works, this reduces the amount of
necessary training data (see chapter 4), provides strong regularization promoting smooth
maps, makes the learned features robust to changes in discretization [ | 44], and alleviates
the requirement of the existence of a fixed template shape.

While using the compact functional map representation introduces a strong bias to-
wards smooth approximately isometric correspondences, it nevertheless leaves room for
both orientation-preserving and orientation-reversing correspondences. This orientation-
agnostic property of functional maps can be useful, e.g., in symmetry detection tasks.
However, in most practical scenarios, the underlying sought correspondence is expected
to preserve orientation. Unfortunately, restricting to only orientation-preserving maps
is not straightforward while using the functional map representation, and the maps ob-
tained using this framework can easily introduce local and global symmetry flipping
(i.e., left/right ambiguity present in many organic shapes). As a result, existing state-
of-the-art learning networks require either a supervised loss [85, 39, ], rigid pre-
alignment [140], or rely on hand-crafted extrinsic descriptors to disambiguate symme-
tries.

In this chapter, we demonstrate that these limitations can be overcome by using
the complex functional map representation introduced in chapter 5, that is based on
alignment of tangent vector fields (represented as complex functions) rather than real-
valued functions.

To achieve this, we propose the first architecture that uses complex functional maps
and learns specific features that align tangent bundles on surfaces. The use of the com-
plex structure makes our approach fully orientation-aware, and helps to restrict the space
of allowed correspondences to only globally orientation-preserving maps, while regu-
larizing the learning process. We introduce losses adapted to complex functional maps
and demonstrate that our network can be trained in a fully unsupervised manner with-
out relying on rigid pre-alignments or ground truth correspondences. More broadly, the
vector-valued features learned by our approach provide a novel and informative signal
for non-rigid shape analysis tasks.
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Orientation-aware correspondence

Figure 6.1: Our method aims at producing orientation preserving maps for non-rigid
3D shape matching in a fully unsupervised setting through the estimation of descriptors
whose gradients also align on source and target shape.

6.2 Related Works

Non-rigid shape matching is a very rich and well-established research area. Below we
review works that are most closely related to ours, focusing on learning-based, and espe-
cially unsupervised techniques. We also refer the interested readers to surveys including
[16, 135] for a more in-depth overview.

Functional Maps Our method builds upon the functional map representation, which
was originally introduced in [106] and then extended in a very wide range of follow-up
works, e.g., [47, 103, 24, 167, 124, 166, 51, 146] among others. The key advantage
of this framework is that it allows to represent and optimize for maps as small-sized
matrices, enables strong linear-algebraic regularization, and can even be adapted to the
partial setting [ 129, 86].

An essential step in works using this representation, are the “descriptor’” (also known
as “probe” [108]) functions that are used to estimate the underlying functional maps and
that must be provided a priori. Early methods have exploited axiomatic descriptors such
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as heat or wave kernel signatures [151, 6], with several attempts aiming to optimize the
weights of such descriptors through optimization techniques [31].

Learning-based Methods Learning shape correspondence has also been done by treat-
ing it as a dense semantic segmentation problem, e.g., [92, 20, 97, 50, , ], among
many others, or via template alignment [55]. However, such works tend to require sig-
nificant amount of training data, establish a map to a template, and can fail to generalize
under connectivity changes [ 144].

More closely related to our approach are methods that use learning together with
the functional map representation, thus evaluating the map as a whole and allowing to
directly train and test on arbitrary shape pairs. This was first introduced in FMNet [85]
, which proposed a method to refine given descriptor functions such as SHOT [158]
with a deep neural network, by minimizing a supervised loss, given some ground truth
correspondences. We extended this approach in chapter 4, where descriptor functions
for functional map estimation are extracted directly from the shapes’ geometry using
point-based feature extractors, and a new regularized functional map estimation layer.

Unsupervised Spectral Learning Even closer to ours are spectral approaches that use
unsupervised learning while exploiting the functional map representation. This was first
done by replacing the supervised loss in FMNet with either geodesic distance preserva-
tion [62] or desirable structural properties in the spectral domain [ 132]. Other properties
such as cycle consistency [52] or unsupervised alignment of heat kernels [7] have also
been used to improve efficiency and accuracy.

These methods are attractive since they do not rely on manual supervision, are fully
intrinsic and thus tend to generalize well across pose changes. At the same time, their
fully intrinsic nature can cause ambiguities in the presence of intrinsic symmetries such
as those present in human shapes. To alleviate this problem, previous functional maps
methods, typically only refine given descriptors such as SHOT, which carry some ex-

trinsic information [62, , 52, 7] but can unfortunately be highly unstable under con-
nectivity changes. More recently, “weak supervision” was advocated in the form of
rigid pre-alignment [ 140, 46] to resolve symmetry ambiguity. Finally, Deep Shells [45]

performs SHOT feature refinement jointly with using the 3D embedding to guide unsu-
pervised correspondence learning.

Unfortunately, despite significant effort, symmetry ambiguity remains a central prob-
lem in unsupervised learning for non-rigid shape matching. This is especially problem-
atic since spectral methods tend to generalize much better to unseen poses compared
to extrinsic methods such as [55]. As we argue in this chapter, the symmetry ambigu-
ity problem is inherent to the functional maps approaches, as the losses used are fully
intrinsic and thus cannot disambiguate orientation-preserving vs. orientation-reversing
maps.

Complex Functional Maps This tool for geometry processing, introduced in chap-
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ter 5 aims at aligning tangent vector fields rather than functions. Crucially, complex
functional maps allow to remove orientation reversing maps from the space of allowed
correspondences. As a result, as shown in 5.5.2, this can help to gain better control
on both orientation, and ultimately symmetry in the computed maps. However, this
approach still uses either axiomatic descriptors or an iterative procedure in its pipeline.
Therefore, it is unclear how to incorporate this representation into a learning framework,
while maintaining accuracy and efficiency.

Contributions Our main contributions are as follows:

1. We introduce a new orientation-aware unsupervised loss, using the complex func-
tional maps representation of chapter 5, that exploits the properties of tangent
vector fields.

2. We show that computing complex functional maps directly from gradients of
learned features and then imposing an additional loss on these maps helps to reg-
ularize currently unstable pipelines with respect to symmetry aliasing.

3. By building upon a recent, robust feature extraction backbone [ 144], we introduce
a fully unsupervised correspondence learning approach, without using extrinsic
descriptors or coordinate information, while being robust to significant changes
in triangulation.

6.3 Background and Motivation

6.3.1 Notation, Background & Motivation

Given a pair of non-rigid shapes, M, N, represented as triangle meshes, our main goal
is to estimate a map ¢ : M — N in an unsupervised manner.

Functional Maps In this work, we use the functional map framework, which has re-
cently given rise to state-of-the-art supervised [85, 39, ] and unsupervised [ 132, 62,
, 52] learning-based non-rigid shape correspondence methods.

The key idea behind the functional maps approaches is that any correspondence can
be represented compactly as a small-sized matrix. Specifically, as described in Section
3.4.1,any map ¢ : M — N can be encoded as a binary matrix [Ty s.t. TIyas(7,7) = 1
if and only if p(i) = j, where 7 and j are vertices on M and N respectively. The
associated functional map Cy,y is given as Cyyy = @EWHNM(I)N where ®,,, O are
matrices storing as columns the first k£ eigenfunctions of the Laplace-Beltrami operators
of shapes M, N, while t is the Moore-Penrose pseudo-inverse. Note that Cy,; is of
size k X k with k typically between 20 and 100, and is thus orders of magnitude smaller
than Il ,/, since shapes usually contain thousands of points.
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In addition to allowing to represent any map in a reduced basis, the functional map
representation also allows to recover the underlying map I,y by exploiting Cjy/n.
Here and throughout this chapter we adopt the notation from [108] where objects in the
reduced basis are denoted in bold.

The basic pipeline for map recovery, introduced in [106], assumes the presence of
some descriptor functions that are expected to be preserved under the unknown map-
ping. If A, A, are the coefficients of descriptors in the basis ®,, and ®, the optimal
functional map C,;y is computed as:

min ||CNMAN_AM||2+)\Ereg(CNM)- (61)
Cynum

Here the first term promotes preservation of descriptor functions, whereas the second
is a regularizer that promotes structural properties; e.g., E..;(Cny) = ||[CnmAn —
A Chr|?, where Ay, Ay are diagonal k x k matrices of Laplacian eigenvalues.

The final point-to-point map ¢ : M — N can be extracted via nearest neighbor
search between the rows of ®,,Cy,, and those of ® 5 [109]. We refer to [108] for an
overview of the functional map representation and its extensions.

Unsupervised Learning with Functional Maps The compactness of the functional
map representation C,, implies that the optimization problem in Eq. (6.1) reduces to
a small scale least squares problem. On the other hand, the quality of the correspon-
dence is intimately tied to the choice of the input descriptor functions. Early approaches
have relied on hand-crafted features such as the Wave Kernel Signature [6]. However,
more recent methods have focused on learning optimal features from data, first in the
supervised setting [3 1, 85] and recently using unsupervised or weakly supervised deep
learning, [132, 62, 45, 52, ].

Our approach is directly inspired by methods in the latter category. The general
approach, shared by all existing unsupervised or weakly supervised methods, is to train
a neural network Fg that, given a shape M can produce a set of d real-valued functions
on M, Fo(M) = {fM, 1, ..., fM}, where f: M — R.

At training time, the network Fg is presented with a set of pairs of shapes M, N,
and the extracted features Fo (M), Fo (V) are used to estimate the functional map C
by first projecting the features onto the reduced basis and then solving the optimization
in Eq. (6.1) (typically ignoring the regularization term F,.,). The network parameters
© are then optimized by minimizing a training loss which penalizes some structural
properties of the estimated functional map C ;.

The difference between existing methods [132, 62, 45, 52, ] lies primarily in: a)
The choice of feature extractor Fg and b) The training losses used for learning.

Our first observation is that the vast majority of existing unsupervised learning
methods have a fundamental limitation in the presence of shapes with intrinsic self-
symmetries. We summarize our observation in the following theorem:
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Theorem 6.3.1. Given a set of shapes {S;} that all contain an orientation reversing
isometric self-symmetry {T; : S; — S;}, s.t. ds,(xj,x) = dg,(T;(x;), T;(xy)), then a
generic neural network Fg that is trained by any of the losses introduced in [132, 62,

, , /] has at least two possible solutions that both lead to the global optimum of
the loss.

Proof. See appendix C.1. ]

In this theorem we call a neural network Fg generic if it is capable of producing an
arbitrary function on the shape. An orientation-reversing self symmetry is a map that
is an intrinsic reflection such as the left-right symmetry of human shapes, and dg, is the
geodesic distance on .S;.

A direct consequence of this theorem is that regardless of the neural network used,
there must be at least two possible global optima, when training the networks using the
unsupervised losses in the majority of existing works, in common settings involving
symmetric shapes.

Existing methods have primarily tried to overcome this inherent limitation by re-
stricting the power of the neural network, and training it, not from the shape geometry,
but from some initial axiomatic features like the SHOT descriptors [ | 58]. Unfortunately,
as it has been observed in the past, e.g., [1 12, ], and as we confirm in our extensive
experiments, these descriptors are highly sensitive to the triangle mesh structure. Alter-
natively, some approaches [ | 40] have relied on pre-aligning the shapes in 3D space (and
enforcing a consistent forward direction) or used correspondences in 3D space to guide
learning [45]. Such an approach, while useful for some categories, can be difficult to
enforce for arbitrary non-rigid 3D shapes.

Finally, several solutions to intrinsic orientation problem have been proposed within
the functional map framework. However, most of them are descriptor-based [ 124, ]
which are unreliable, and form very weak constraints: the map does not have to be
orientation preserving but instead encouraged to follow (possibly noisy) descriptors.

6.3.2 Complex Functional Maps

In this work, we propose to address the limitations mentioned above by exploiting the
complex functional map representation of chapter 5. The fundamental observation lead-
ing to this new tool lies in that it is challenging to recover orientation, a global signal,
from a point-to-point mapping containing only local information. Therefore, the con-
struction in chapter 5 relies on global analysis of the pushforward dp : TM — TN
associated to ¢ whose local properties are related to normal orientation. By definition, a
pushforward maps tangent vectors at p € M to tangent vectors at p(p) € N. dy is also
called the differential of ¢ and is the best linear approximation of the map at point p.

A complex functional map ) : TM — T'N is a relaxed representation of the push-
forward in the sense that it maps any tangent vector field on M to a tangent vector
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field on N with only one constraint: it must be complex linear: Q(zX) = zQ(X),z €
C, X € T'M. The adjective complex comes from the fact that tangent vector fields are
represented by complex valued functions as in [143].

By definition, the pushforward contains the information of pointwise mapping (which
tangent planes on N correspond to tangent planes on M) already carried by ¢ thus C'
and () cannot be independent. Moreover, () also contains local orientation informa-
tion related to the orientation of the outward normals. Since () is complex linear it can
only represent orientation preserving maps. These fundamental properties have been
summarized in Thm. 6.3.2 and proved in chapter 5.3.5.

Theorem 6.3.2. The complex-linear map () is a pushforward if and only if there exists
an orientation-preserving and conformal diffeomorphism ¢ : M — N satisfying:

(X, V(fo@)nu = (QX), Vf)r,,~, (6.2)
forall X € TM, f € L*(N),p € M.

Apart from this complex-linearity, the construction of complex functional maps
(which we also call (-maps) is analogous to standard functional maps described above.
They can be written in the spectral basis {\Ili}l-e(m) of the connection Laplacian L
introduced in [143]. In these reduced spaces, ()-maps are small matrices transfer-
ring coefficients in the basis W), to coefficients in ¥ . A point-to-point map is ex-
tracted from a nearly isometric (Q using a nearest-neighbor search on Dirac functions:
Iy;n = NNsearch(divy, ¥y, divy ¥y Q) (see chapter 5.4.6).

Moreover, a pushforwad Q is isometric if and only if it commutes with the connec-
tion Laplacian: QL,; = Ly Q. Finally, as shown in chapter 5.3.6 a necessary condition
for Q to represent a pushforward is that Q must be orthogonal i.e. Q*Q = I where *
denotes the complex transposition. Here, unlike functional maps, orthogonality is not
equivalent to area-preservation.

A complex functional map can be estimated by minimizing a simple optimization
problem, similar to Eq. (6.1):

Qun :argéninHQBM—BNHQF—i—Ereg(Q), (6.3)
where Eres(Q) = Worhol|Q*Q — I||3 + wqiso|QLa — LnQ||%, and B are the coef-

ficients of complex (tangent vector)-valued features expressed in spectral basis of the
corresponding shape.

6.4 Method

In this section, we describe our proposed network in detail. As mentioned in Section 6.3,
a deep functional map pipeline can be decomposed into three different building blocks:
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Figure 6.2: Overview of our unsupervised network. We extract source and target de-
scriptors Dj; and Dy using DiffusionNet [144] and then project descriptors onto the
Laplace-Beltrami eigenbasis and descriptor gradients onto the connection Laplacian
eigenbasis. This leads respectively to the Functional Map block (Section 6.4.2) and
the Complex Functional Map block (Section 6.4.2). Losses are imposed on both of
these maps (Section 6.4.3).

the feature extractor (Sec. 6.4.1), the non-learnable functional map layer (Sec. 6.4.2)
and the loss (Sec. 6.4.3). We describe our design choices for each of these components,
and how they permit orientation-aware unsupervised learning in the subsections below.
We also provide a graphic representation of our whole approach in Figure 6.2.

6.4.1 Feature Extractor

The first major component of our network is the deep feature extractor. Its structure is
that of a Siamese network extracting features for both source and target shapes. We use a
recent surface feature extractor backbone DiffusionNet [ 144], and use the Wave Kernel
Signature [6] (WKS) as input for the network, for its rotational invariance property.
DiffusionNet then outputs feature vectors of dimension d on the source and target shapes
(respectively composed of n; and ny vertices). We denote by Dy, Dy € R™*4 x
R~ *4 the learned source and target features.

The use of DiffusionNet [!44] makes our approach highly robust to changes in
shape triangulation unlike previous unsupervised approaches relying on SHOT descrip-
tors [158]. These methods usually fail if trained and tested triangulations are different,
as demonstrated in Section 6.5. On the contrary, DiffusionNet is based on robust dif-
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fusion, and is consequently largely independent on the choice of shape triangulation.
Although learned diffusion is fully intrinsic, the network is aware of the shape orienta-
tion because of oriented gradient blocks, as described in [144] (Section 3.4). Therefore,
our feature extractor can produce orientation-aware features that we use later to estimate
orientation-preserving complex functional maps.

To sum up, we use DiffusionNet jointly with WKS inputs to build discretization-
agnostic features. In the results Section 6.5, we exhibit shapes with anisotropic triangu-
lations to illustrate that methods relying on SHOT descriptor refinement tend to overfit
to the triangulation rather than learn relevant shape information.

6.4.2 The Functional Map Blocks

This block, first introduced in [85] estimates the functional map in a differentiable way
from the source and target features estimated by the feature extractor.

Regularized Functional Map Block

The input features D are projected on spectral Laplace-Beltrami eigenbasis ®g to get
spectral features Ag = ®LDg with S € {M, N}. The functional map C ), is then
estimated as the solution to the following least-squares problem:

CNM = argmin HCAN — AMH%W
C

leading to:
Cryu = AyAl. (6.4)

In this work, we use the regularized approach, introduced in chapter 4.4.4, which in-
corporates the Laplacian commutativity energy ||CyyAx — Ay Cras||% in a differen-
tiable manner, directly in the functional map estimation step.

Complex Functional Map Block

The complex functional map estimation is analogous to that of the standard functional
map. We first convert the feature functions D to vector fields using the discrete gradient
operator (G. We visualize these vector field descriptors in Figure 6.1 (where they are
rotated by 7/2 to better see singularities). These vector valued descriptors are then pro-
jected in the eigenbasis W of the connection Laplacian. This leads to complex spectral
feature vectors By = \IITSGSDS with S € {M, N}, and Gg the gradient operator on
shape S.

The complex functional map Q,, is then estimated as the solution to the following
least-squares problem:

Qun = arg(;r)nin QB — By||%,
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whose closed-form solution is given simply as:
Quny = ByBl,. (6.5)

In our work, we extend the in-network Laplacian regularization of chapter 4.4.4, and
apply it to complex functional map estimation by modifying the least squares system in
the same way as was done originally for real-valued functional maps.

Remark that as mentioned in Section 6.3.2, the complex functional map estimated
from feature gradients is a pushforward if and only if the features themselves give rise to
an orientation-preserving map. We elaborate on the relation between the two blocks in
Section 6.4.3 below. Specifically, we demonstrate that although C and Q are estimated
independently, they still satisfy the equation of Thm. 6.3.2.

6.4.3 Losses

From estimated C, Q we build a loss inspired by SURFMNet [132].

Loss on C. SURFMNet [132] imposes the estimated functional map C to be orthogo-
nal, resulting in the first 10ss Loho:

Lomo(C) = |CTC —1I||% (6.6)

Moreover, they also propose to promote isometry through commutativity between C
and the Laplace-Beltrami operators A j;, Ay, resulting in the second loss Ljg,:

Lio(C) = |CAN — AN C| 6.7)

As stated previously, we remark that this isometric loss is not necessary if we estimate
C with the Laplacian regularizer of chapter 4.4.4. Indeed, the regularizer only produces
maps that have a low isometric loss. We therefore only use L, in our implementation.

The association of these two losses is generally enough to estimate intrinsically an
isometric map. The fundamental problem that we propose to remedy here is the fact that
these two losses are not in themselves sufficient to rule out intrinsic symmetries. We
stress again that many previous works rule out these symmetries based on triangulation
only, using the SHOT feature extractor. However these methods are then biased towards
the training triangulations.

Loss on Q. As demonstrated in chapter 5.3.6, a complex functional map will only
encode a pointwise map (which will then be orientation preserving) if it is an orthogonal
matrix. Hence the complex orthogonal 10SS Lq.ortho:

Lo.omno(Q) = |1Q*Q — I||% (6.8)
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Moreover, since we aim for maps which are as isometric as possible, we can also
use a complex isometric loss Lq.is,, €valuating the lack of commutativity with the con-
nection Laplacians:

Lgio(Q) = [|QLy — Ly Q|7 (6.9)

We observe that this isometric loss can also be avoided by computing () using a
Laplacian regularizer (4.4.4). We therefore only use L orho 10 OUr implementation.

Loss Function In summary, we use two losses that we combine to compute the final
loss L finar:

Lﬁnal(07 Q) = worthoLortho(C> + wQ—orthoLQ—ortho(Q)

These losses, jointly with the Laplacian regularizers ensure that the learned descrip-
tors result in an isometric map and that this map is orientation-preserving. The whole
pipeline remains both light and unsupervised.

Correlation of the Two Functional Map Blocks

Note that we never explicitly use Eq.(6.2) relating C and Q required by Theorem 6.3.2.
However, we prove that when both functional maps are nearly isometric and estimated
from the same features this relation is always verified.

Theorem 6.4.1. Let M, N be two manifolds, and Fy;, Fy surface features such that the
functional map C estimated from these features is an isometry. Let () be the complex
functional map computed with the feature gradients as described in Section 6.4.2. Then
the maps (C, Q) must satisfy Eq. (6.2), and C'is an orientation-preserving isometry.

Proof. See appendix C.1. ]

The isometric assumption is not restrictive in the sense that deep spectral methods
already implicitly make this assumption. Moreover, as we demonstrate below, our ap-
proach is robust even for non-isometric shape categories.

6.4.4 Implementation

We implemented our method with Pytorch 1.8 (this version is required to include com-
plex Tensors in the differentiable pipeline) by adapting the open-source implementation
of DiffusionNet [ 144] for the feature extractor and chapter 4.4.4 for the functional map
block with Laplacian regularizer.

We use WKS descriptors [6] as input signal for the network. We use this descriptor
because it is: a) Robust to changes in the shape triangulation, and captures the intrinsic
geometry of the surface. As shown in the next section that guarantees that the network
learns relevant surface information, rather than overfit to the mesh triangulation. b)
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Independent of the embedding of the shape. This makes our approach fully rotationally
invariant, and capable of predicting correspondences between arbitrarily rotated shapes.
Indeed methods such as [ 140, 46] depend on pre-aligned datasets to work, which makes
them only weakly supervised instead of fully unsupervised.

Our feature extraction network consists of 4 DiffusionNet blocks (a standard Diffu-
sionNet setup [144]), where the 128-dimensional input WKS features are transformed
by each block to learned features of same dimension 128, to finally produce 128-
dimensional descriptors on source and target shape. As described in Section 6.4.1, our
network is applied in a Siamese way on the two input shapes, using the same weights
for feature extraction on source and target.

Parameters

In addition to the architecture above, our method has some key hyper-parameters:
a) The size of both spectral basis: we use k¢ = 50 for Laplace-Beltrami and kg = 20
for connection Laplacian b) The Laplacian regularizer from chapter 4 in the functional
map blocks: we use A = 1073 as recommended in chapter 4.4.8 ¢) The loss hyper-
parameters: The loss if focused on map orthogonality since Laplacian-commutativity
is enforced previously with the regularizers. We enforce both maps to be “equally”
orthogonal, by setting Wortho = WQ-ortho = 1.

We train our network with a batch size of 1 for a number of epochs between 5 and
30. We use a learning rate of 102 with ADAM optimizer [42].

6.5 Results

In this section, we show that our network can outperform state-of-the-art deep shape
matching architectures on standard datasets like FAUST (F_r) [19] and SCAPE (S_r)
[3] as-well-as non-isometric datasets like SHREC 19 [93] and SMAL [175]. Following
[124], all shapes are remeshed so that they do not share the same connectivity. More-
over, we introduce an anisotropic re-meshing of FAUST (denoted F_a) and SCAPE
(denoted S_a), generated with Mmg [38, 34], to demonstrate how some methods over-
fit to mesh connectivity to disambiguate between intrinsic symmetries. We show our
anisotropic remeshings in Figure C.1.

In all our tables, we denote by F/S a method trained on the dataset F and tested on S.

6.5.1 Quantitative Results

Baselines
We compare our method to:

* Axiomatic methods: BCICP [124] and ZoomOut [94] are very efficient for solv-
ing close to isometric matching. It should also be noted that these axiomatic
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| Meth / Data |Fr/Fxr Fr/Fa|S_x/Sr S_r/S_a]

SHOT+FMNet [£5] 5.8 43, 7.0 41.
WKS+GeoFMap [39] 2.0 2.6 2.2 2.3
BCICP [124] 6.1 8.5 11. 14.
ZoomOut [94] 6.1 8.7 7.5 15.
SHOT+UnFMNet [62] 5.7 42. 9.9 44,
SHOT+DeepShells [45] 1.7 12. 2.5 10.
WKS+DeepShells [45] 8.2 9.5 8.3 20.
WKS+Ours 2.5 3.0 2.6 2.7
Cross Training
Meth / Data | Sxr/Fxr S_t/Fa|Fr/Sr Fi/Sa
SHOT+FMNet [£5] 14. 43, 11. 44,
WKS+GeoFMap [45] 9.9 8.4 3.8 3.9
SHOT+UnFMNet [62] 12. 44, 9.3 43,
SHOT+DeepShells [45] 2.7 15. 5.7 16.
WKS+DeepShells [45] 6.7 12. 9.2 21.
WKS+Ours 2.7 3.1 4.2 4.4

Table 6.1: Comparative results (x 100) of all main baselines on FAUST and SCAPE re-
meshed and anisotropic. Deep Learning methods are displayed with the descriptor input
they were fed during training time. The methods shown in the top group are supervised,
while the ones below (separated by a double line) are axiomatic or unsupervised. Note
that our approach outperforms all unsupervised baselines without post-processing, and
achieves similar or better performance even to supervised ones.

methods are slower than a test pass of our method which does not require post-
processing.

* Supervised methods: FMNet [85], and GeoFMap [39] (which is the network of
Chapter 4) where we replaced KPConv [156] with DiffusionNet [144] as feature
extractor.

* Unsupervised methods: Unsupervised-FMNet [62] (denoted as UnFMNet), and
the state-of-the-art method Deep Shells [45].

For the most relevant baselines, we compare our method, which uses WKS descrip-
tors, to both original networks (trained with SHOT descriptors) and their variant when
trained with WKS as input. Consequently, we denote as “SHOT+Net” a Network trained
with SHOT and “WKS+Net” its variant with WKS as input.

Anisotropic FAUST and SCAPE
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| Meth / Data | F_r/Sh_r S_r/Sh_r | Sh_r/Sh_r |
BCICP [124] 15. 15. 15.
ZoomOut [94] 21. 21. 21.
SHOT+DeepShells [45] | 27. 24. 24.
WKS+DeepShells [45] | 27. 29. 28.
WKS+Ours 6.4 8.4 3.9

Table 6.2: Comparative results (x100) on SHREC’19 re-meshed with different train
sets, including SHREC’ 19 re-meshed itself. We compare unsupervised methods on this
more challenging dataset, and keep the same notations as in Table 6.1. We see that
our approach gives the best correspondences and their quality is relatively stable with
respect to the training set.

For this experiment we train networks on FAUST and SCAPE re-meshed as in [ 124],
and test them on both re-meshed and anisotropic. We report the mean geodesic errors
in Table 6.1.

From the results shown in Table 6.1, we see that: a) Our method is robust to trian-
gulation changes which make SHOT-based methods fail at test time (often because they
mistake anisotropy for meaningful geometric information). Deep Shells [45] is the most
robust SHOT-based approach, since its feature extractor uses spectral filters which helps
filter out high-frequency overfitting. Still, the quality of the correspondence collapses
on anisotropic datasets. b) Deep Shells, if presented with an intrinsically symmetric sig-
nal (here WKS [6]) as input, fails to learn accurate descriptors, resulting in overall poor
correspondence. ¢) Our approach gives the best results among unsupervised networks.
Moreover, the quality of the correspondence is often close to that achieved by the best
supervised baseline WKS+GFM [39] (method presented in chapter 4).

SHREC’19 Re-meshed
For this second experiment, we train the networks respectively on FAUST, SCAPE

| Meth / Data | SMAL _r |
BCICP [124] 19.
ZoomOut [94] 35.
SHOT+DeepShells [45] | 25.

WKS+DeepShells [45] | 33.
WKS+Ours 4.8

Table 6.3: Comparative results (x100) on SMAL re-meshed dataset. This animal
dataset exhibits strong non-isometries, as can be seen on the qualitative result in Figure
6.3, to which only our method proves to be robust.

105



Deep Shells (w/SHOT) Deep Shells (w/WKS) ZoomOut (w/WKS ini) BCICP (w/WKS ini)

Figure 6.3: Qualitative results for baselines on the SMAL dataset. The areas where
baselines gave the most wrong predictions are highlighted in red.

and SHREC’19 (denoted as F_r, S_r and Sh_r) re-meshed so that mesh connectivity are
different and tested only on SHREC’19. We removed shape 40 from SHREC’19 in this
experiment since it is the only partial non-closed shape and therefore outside the scope
of this method.

We show in Table 6.2 that Deep Shells fails to generalize to this test set, even though
all meshes have similar number of vertices and well-shaped meshes. In comparison, our
method gives significantly better results, as it is a purely geometric approach tailored to
exploit surface information rather than triangulation details and to produce well-oriented
maps.

SMAL Re-meshed

We test unsupervised methods on SMAL shapes [175] (again re-meshed so that
connectivity is different on every mesh as in [124]). The dataset, originally composed
of 49 shapes, is split in 32 training shapes and 17 test shapes. This dataset constitutes
the hardest of the three experiments, since its shapes are often strongly non-isometric.
Indeed, they involve animal shapes of different species, which often poses significant
challenges for existing (especially spectral) approaches.

The results of this experiment are reported in Table 6.3. Observe that our method is
the only one that produces even reasonable correspondence, significantly outperforming
the closest competitor. This highlights the significant additional robustness ensured by
our combination of an accurate feature extractor with a range of well-founded geometric
regularizers, which allow our approach to accommodate even for non-isometric shapes
and learn from limited training data.
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6.5.2 Qualitative Results

We additionally provide a qualitative result for our third experiment in Figure 6.3, com-
paring our method with baselines on SMAL. We see that our method yields a map
very close to ground-truth, even on this challenging example with strong non-isometric
distortions. Meanwhile, both axiomatic and learning baselines fail to predict accurate
correspondences. We provide another qualitative comparison in Figure C.2.

6.6 Conclusion, Limitations & Future Work

To conclude, we introduced a new fully unsupervised way to efficiently learn accurate
descriptors for shape matching. These descriptors are guaranteed by our complex func-
tional map loss to be orientation aware in the sense that the resulting map is orientation
preserving, making the pipeline robust to aliasing due to shape intrinsic symmetries.
Besides, the use of DiffusionNet for a feature extractor enables robustness to changes in
shape discretization.

Our approach has several limitations: the loss, which aims at as-isometric-as-possible
functional maps is dependent on the fact that the input shapes are not too non-isometric.
It would therefore be interesting to use spectral bases adapted to non-isometry, as in
[©91], which we leave as future work. Another current limitation of our method is that
it needs manifold meshes as input. However, good Laplacian operators can be built on
point clouds [141], and it would be interesting to check how robust our pipeline is to
potentially noisy point cloud inputs. Finally, we believe it would be interesting to fur-
ther leverage complex functional maps in other learning applications, while promoting
general rotation-invariant and orientation-preserving maps.

Acknowledgements Parts of this work were supported by the ERC Starting Grant No.
758800 (EXPROTEA) and the ANR Al Chair AIGRETTE.
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CHAPTER /

Conclusion

In this thesis we have studied shape matching through the lens of the functional map
representation. First we have reviewed and analyzed deep learning methods and found
ways to make them more robust and generalizable. Secondly, we have introduced a new
representation for maps between shapes that also falls in the spectral category, and deals
with tangent bundles. The field of non-rigid shape matching still presents a variety of
challenges and open problems, which we give an overview of in the next paragraphs.

Deep Learning in Shape Matching

Most of this thesis is focused on deep learning methods for shape matching. These
techniques learn feature functions jointly on the source and target shapes to estimate a
functional map on which a loss is subsequently designed. However, several parts of this
deep shape matching pipeline could be upgraded.

Firstly, the type of input fed to the network. Indeed, we have experimented with
point clouds and meshes, but it could be interesting to analyze the behavior of exist-
ing deep shape matching works with different input data, like 2D images or 3D voxel
grids, implicit signed distance functions, or even other shape representation [100]. In
this thesis we focused on spectral methods for deep shape matching, which require the
possibility to build a Laplacian operator on the input data. In order to explore differ-
ent input types, one would still need to define a Laplacian operator on them (which for
instance has been explored on point clouds [141]).

Secondly, different signals can be designed on shapes as input for the feature extrac-
tor network. We have restricted ourselves to the study of: (a) the extrinsic 3D embed-
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ding signal. This signal is particularly useful to disambiguate between intrinsic sym-
metries, but is not independent to rigid rotations or translations of the input shapes and
therefore requires data augmentation. (b) The intrinsic wave kernel signature [6], which
is independent to rigid displacement of the input shapes but is particularly affected by
intrinsic symmetries. It would be interesting to explore in more details the different
possibilities for input signals, ultimately combining extrinsic and intrinsic information
in a way that brings together the best of both worlds.

Another possibility would be to let the network learn directly from the shapes them-
selves, without requiring any input signal design or data augmentation. This would
require adapting the structure of current feature extractors. One potential network struc-
ture that has recently gained popularity and strives to tackle the aforementioned issue is
that of equivariant networks ([ 1 14, , 35, 28]). These deep learning architectures are
by construction equivariant to translation and rotation of the input shape, making this
feature extractor particularly relevant in the case of deep shape matching. We believe
that network structures can still undergo drastic improvement, especially when 3D data
is concerned. Consequently, the feature extractor is one of the parts in this pipeline
that could be upgraded. Additionally, we never tried to differ from the siamese struc-
ture introduced in FMNet [85]. Although this strategy has proved to be efficient and
generalizable, some avenues remain unexplored.

It can also be noted that the features learned by deep shape matching networks,
whether supervised or unsupervised, are theoretically very informative and invariant to
learned non-rigid deformation. It could therefore be interesting to explore more fully
transfer learning options for other shape analysis tasks, such as shape semantic seg-
mentation or shape interpolation. In our current pipeline, we always use the Laplacian
eigenbasis to project the learned features, which are then used for map computation.
Although the Laplace-Beltrami operator has proven to be a prominent tool in discrete
differential geometry and 3D shape analysis, it is possible that other operators, and func-
tional bases are in fact more adapted to our problem. Alternatively, efficient methods to
learn these bases jointly with the shape features such as [91] might be more adapted to
strong non-isometries.

One of the most fundamental and critical building blocks of our method is the losses
involved in the learning process. Indeed, we have relied on spectral losses, directly
imposed on the small-scale functional maps for fast and stable computations. Yet, some
works like Deep Shells [45] display efficient losses combining both spectral and spatial
information for better shape alignment. Designing relevant losses for map between two
shapes is a very active field in the geometry processing community [99, 46, , 821,
and we have noticed throughout this thesis that efficient meaningful loss functions often
translate to robust learning pipelines for shape matching.

Finally, we have only explored spectral methods for shape matching in our works.
While these approaches are particularly well-suited for small-scale training by taking
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an intrinsic and low-frequency point of view on shapes, they are not easily transferred
to the non-isometric case or different types of 3D data.

Robust Representations for Shape Matching

The other part of this dissertation is dedicated to introducing complex functional maps.
Previously, the functional map pipeline, as a fully intrinsic approach, could not rule
out orientation-reversing maps efficiently. Using the complex structure of Riemannian
surfaces, we proposed a map encoding for pushforwards between tangent bundles with
given orientations. We used this map encoding to show that it is possible to filter out the
orientation-reversing part of an input functional map. In previous works [124], orienta-
tion was taken into account through additional energies. We showed that our approach
is easily plugged in any functional map pipeline, and always helps improve the qual-
ity of resulting correspondence. We also showed in chapter 6 that complex functional
maps can be used to make unsupervised deep learning algorithms for shape matching.
Additionally, complex functional maps open new possibilities for a lot of future work in
shape matching.

Firstly, one major remaining challenge is to convert spectral complex maps back
to pointwise maps in a meaningful way. Indeed, it should be theoretically possible to
access a highly regular (differentiable) mapping by integrating the pushforward encoded
in a complex functional map. Algorithms to retrieve continuous and bijective mappings
[139, ], despite being very precise are often slow and involve heavy optimization.
We believe that spectral methods would help make these algorithms faster and more
efficient.

Secondly, it would be interesting to extend this framework to more exotic tangent
bundles (e.g. some discussed in [143]), containing more information. This would po-
tentially give the possibility to include extrinsic data in a natural way to the spectral
pipeline.

Finally, the use of tangent vector fields seems promising in other shape analysis
tasks. For instance, the use of gradient features is central in the 3D mesh feature ex-
tractor DiffusionNet [144]. More generally, extrinsic vector fields can be integrated
in vector field flows, which seem to be promising in diffusion-based techniques, such
as PointFlow [170]. In essence, vector fields give access to motion of the underlying
object, which can be key to problems such as shape interpolation or 3D scene under-
standing.

Consequently, we believe that the framework we introduced could potentially be
extended to complex 3D tasks like deformation learning, high-precision map estimation,
or feature tracking.

Over the course of this thesis and thanks to all the people who contributed to the
field, shape matching methods have been significantly improved. While many modern
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algorithm rely on deep learning to learn robust shape representations, some works [ 125,

, , 89] are still fully axiomatic. However, it is undeniable that deep learning
has changed the field of shape matching and had contributed to make it more robust
to strong non-isometry [82]. More broadly, the field of geometric deep learning has
also been through considerable development, as 3D data has become more available
as well as met more success, with e.g. differentiable rendering [70] and perhaps more
notably NERF [95, 83]. The field has come from point cloud or mesh analysis with
classification and segmentation networks [92, , , S, , ] to more complex
network structures and shape analysis tasks. Modern methods make it easier to go from
point cloud to meshes [ 118, , ], to interpolate between shapes using latent space
exploration [55, 56, ], even to generate 3D point clouds [170], potentially based on
images [26, 27].

Still, there are many remaining challenges in geometry processing and geometric
deep learning. For instance, the lack of a universally usable, large-scale 3D dataset to
make data-based algorithms even more robust and general. It is still a hard problem to
go from 2D images to high-detailed and accurate geometry. Meshing a point cloud with
precise selection of outliers also remains a major issue. Going even further, unifying
3D data under a more general shape representation is still an important bottleneck. In
shape matching, it is important to have access to robust shape representations, stable
to non-rigid deformation in order to recover high-quality correspondence. The datasets
used in deep shape matching still contain only a small number of shapes and more im-
portantly, low shape variety, making current methods overfitting prone. A key challenge
for modern shape matching algorithms is strong non-isometry, and to tackle this issue
both wider datasets and new robust network regularizations will pave the way to more
efficient and accurate methods.

Ethical Discussion

We made this work with the best of faith that it will not be used for malicious ends.
We are nevertheless aware that 3D shape matching could potentially be used to develop
algorithms for face tracking and more generally, population control. However, we firmly
believe that there are many useful applications of 3D shape matching, one of which is
medical imaging. Al has proved to produce robust diagnosis in this field, and modern
geometric deep learning could make 3D-based predictions which make these methods
more robust and accurate.
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APPENDIX A

Deep Geometric Functional Maps: Supplementary
Material

A.1 Additional details on KPConv

Here, we review briefly KPConv [ 156] method and describe the architecture we used in
our implementation.

The input to this network is a 3D point cloud equipped with a signal, such as the 3D
coordinates of the points. Let P € R™*3 be a point cloud in R3. Let 7 € R¥*P be a
D-dimensional feature signal over P.

The goal of point cloud convolutional networks is to reproduce the architecture of
convolutional neural networks on images. It boils down to transferring two key opera-
tions on the point cloud structure: the convolution and the pooling operators.

First, we define a convolution between F and a kernel g at point z € R3. Since we
only want a signal over the point cloud at each layer, we only need these convolutions
atz € P.

The kernel will be defined as a local function centered on 0 depending on some
learnable parameters, taking a [D-dimensional feature vector as input and yielding a
D’-dimensional feature vector.

More specifically, the kernel is defined in the following way : let r be its radius of
action. Let BB be the corresponding 3D ball. Let K be the number of points, thus the
number of parameter matrices in this kernel. Let {z|k < K} C B} be these points, and
{Wilk < K} C M(p,py(R) be these matrices. Then the kernel g is defined through
the formula :
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’ Method \ No Ref \ Ref ‘

FMNet 17. 13.
PointNet 18. 14.
Old FMap 4.5 1.9
Ours 34 1.9

Table A.1: Comparative results for the different ablations of our method.

= > hly,z2)W,

ly— Z”) so each point of the kernel has a

where we simply set h(y, z) = max(0,1 —
linear influence of range o around it.

Then the convolution simply becomes :

(Fxg)(z Zg

i|x; €8]

Where the learnable parameters are the matrices ;. We set the points z; of the
kernel to be uniformly organized in B}, so as to better encompass the variations of
the convoluted signal at a given point of the point cloud, and a given scale (see [156]
supplementaries, Section B for more details).

For the pooling operator, we use a grid sampling that allows us to get the point cloud
at an adjustable density. The network can then build hierarchical features over the point
clouds by both adjusting the radius of influence of its kernels and the density of the
mesh they are performed upon.

Once these two operations are set up, it is easy to build a convolutional feature
extractor over the point cloud P. In our work, we use the following architecture :

* Four strided convolutional blocks, each down-sampling the point cloud to half its
density, and taking the feature space to another feature space (corresponding to
higher-level features) two times larger.

* Four up-sampling layers, taking the signal back on the whole point cloud, through
skipping connections followed by 1D convolutions.

A.2 Ablation study

This section presents the extensive ablation study of all the vital components of our
algorithm.
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We train all these ablations on 100 random shapes among the 230K proposed by 3D-
CODED, as in experiment 2. We test them on the 20 test shapes of FAUST re-meshed,
so that the connectivity differs from train to test. The different parts to ablate are :

* The point cloud feature extractor : as explained in the previous sections, it learns
descriptors from raw data without relying too much on connectivity. The first
ablation consists of our method, but with FMNet [85] feature extractor instead of
ours. Similar to FMNet, we use SHOT [158] descriptors. However, we use the
same number of eigenvectors as in our method, namely 30. As a general remark,
we noticed that lowering this number can often help prevent overfitting in the case
of FMNet-based architectures.

The choice of KPConv [156]. The second ablation study replaces KPConv sam-
pling and feature extractor block with that of PointNet [115]. For this ablation,
we use random sampling to 1500 points instead of KPConv grid sampling. In-
deed, grid sampling does not provide any guarantee on the number of points after
sampling, so it can only be used in a network built to overcome this issue, with
batches of adaptable size, which is not the case of PointNet.

The regularized functional map layer. This third ablation simply consists in re-
placing our regularized functional map layer by the old functional map layer origi-
nally introduced by FMNet. Our layer is in theory mildly heavier than the original
one, but in practice for less than 50 eigenvectors the computation times remain the
same.

 Lastly, we remove the post-processing refinement step. Here we show the results
of every ablation with and without refinement, thus proving it helps in getting

Training loss with and without FMap Reg Evaluation error with and without FMap Reg

— Reg
17.5 NoReg

— Reg
No Reg
20 ‘\\ ~-- Reg (refined)
~=- No Reg (refined)

_______

avg geodesic error (on FAUST re-meshed)
P
&

0 5000 10000 15000 20000 25000 30000 35000 5000 10000 15000 20000 25000 30000 35000
number of training steps number of training steps

Figure A.1: Comparison of convergence speed with and without Laplacian Regular-
ization in the FMap block. Left: Training loss evolution, Right: Evolution of geodesic
error on test set with the number of epochs. Notice how the regularized fmap layer helps
drastically with the convergence speed. It gives optimal results within only 500 epochs.
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Figure A.2: Quantitative results of the different methods using the protocol introduced
in [72], on all the settings of Experiment 1

better results. As a refinement method, we use the state-of-the-art ZoomOut [94],
as mentioned in Chapter 4.5.

Table A.1 shows the ablation study of our method. It demonstrates the importance
of all individual blocks and ascertains that all these components are needed to achieve
optimal performance with our solution.

However, just looking at the results of the ablation study one does not see the im-
portance of the FMap Reg addition. To prove its efficiency, we compare the learning
and evaluation curves of our method, with and without this addition. As can be seen
in Figure A.1, the models converge much faster with our regularized functional map
layer. The models are trained on 100 shapes of the surreal dataset of 3D-CODED as in
Experiment 2, and tested on FAUST re-meshed.

In addition, our regularized functional map layer is more robust, and does not result
in a Cholesky Decomposition fatal error when computing the spectral map. In compar-
ison, the previous functional map layer gave that fatal error in some experiments, and
the model had to be relaunched.

Graphically, as reported in the original functional map paper [106], a natural func-
tional map should be funnel-shaped. Our regularized functional map layer naturally
computes maps that almost commute with the Laplacians on the shapes. These maps
will naturally be close to diagonal matrices (as are funnel shaped maps) in the eigenba-
sis of the Laplacians, thus reducing the space of matrices attainable by this layer. We
believe it helps the feature extractor block focus on setting the diagonal coefficients of
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Figure A.3: Quantitative results of the different methods using the protocol introduced
in [72], on two of the settings of Experiment 2. Top row: 100 shapes (low number).
Bottom row: 2000 shapes (high number).

the functional map as in the ground truth, rather than on trying to get its funnel shape
in the first thousand iterations, which is what a model with the original functional map
layer does.

A.3 More quantitative results

Figures A.2 and A.3 summarize the accuracy obtained by our method and some base-
lines on the different settings of the two experiments we conducted, using the evaluation
protocol introduced in [72]. Note that in all cases but one (trained on 2000 shapes of
SURREAL, tested on SCAPE re-meshed), our network achieves the best results even
compared to the state-of-the-art methods. As explained more thoroughly in the main
manuscript, this proves our method is able to learn point cloud characterizations with
only a small amount of data, and by projecting these descriptors in a spectral basis can
retrieve accurate correspondences from them. Our method does not need any template
and is thus more general than 3D-CODED, in addition to the fact that it trains faster and
does not need a big training set.

We even believe the superiority of our method with a low number of training shapes
is partially due to this fact that 3D-CODED uses a template and operates in the spatial
domain, unlike our approach which is template-free, and partly operates in the spectral
domain, making it easier to adapt to any new category of 3D shapes.

The relatively low performance of our method on SCAPE in Experiment 2 (see
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Figure A.3) is due to the presence of back-bent shapes in this dataset. These shapes
are seen by the network through their truncated spectral approximation, as discussed in
Section A.4.1, making it unable to exploit refined features such as the face or hands,
that could help getting descriptors able to differentiate left from right. Consequently, as
there are no back-bent shapes in the training sets of this experiment, these shapes are
often mapped with a left-to-right symmetry, resulting in a huge error for these particular
shapes, increasing the mean error for the whole SCAPE test set.

A.4 More qualitative results

In this section we provide more qualitative results for the experiments described in 4.
More specifically, we show a visualization of some point cloud descriptors learned by
our method on SHREC’19 shapes. Then we provide another texture transfer obtained

mesh 2

mesh 25

mesh 21

mesh 30

Figure A.4: Visualization of spectral descriptors learned by our method (with 2000
surreal shapes) on a test pair of SCAPE re-meshed. The source shape is shown in the
first row, and the target shape in the bottom row. Notice how the descriptors are localized
and seem to highlight one specific part of the body (first column for shoulder, second
for scalp, third for right thigh, fourth for right side of the torso, fifth for elbow).

119



Source Ours+zo Ours 3D-CODED FMnet+PMF FMnet

2000

shapes

100
shapes

ground truth

Figure A.5: Qualitative results on Experiment 2 through texture transfer, showing cases
where our method is the only one that can give good correspondence with only 100
training shapes.

on Experiment 2 (also on SHREC’19 test shapes), which demonstrates our approach
has

A.4.1 Visualization of some descriptors learned by our method

Our method aims at building descriptors on both input shapes (that are often labeled
source and target shapes) from their raw point cloud data. These descriptors are then
projected on the eigen basis of the respective Laplace-Beltrami operators of the source
and the target shapes. We output these projections, that we call spectral descriptors, and
we visualize some of them in Figure A 4.

It is remarkable that the descriptors learned on a parametric dataset such as the one
used in 3D-CODED still generalize well to shapes with entirely different mesh connec-
tivity and number of points. This is made possible by two components of our method.
Firstly, it down-samples the input shapes through grid sampling before building these
descriptor functions with convolutional neural networks. This allows for regularity in
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Descriptors

Figure A.6: Pipeline of our method: 1) Down-sample source and target shapes with
grid sampling (providing the pooling at different scales). 2) Learning point cloud char-
acterizations and project them in the Laplace-Beltrami eigen basis. 3) Compute the
functional map from source and target spectral descriptors, with our regularized FMap
layer. 4) Compute the loss by comparing the computed functional map with the ground
truth map.

the input point clouds at all different hierarchies (see Figure A.6 for an example of such
grid sampling). Secondly, the spectral projections take these point cloud descriptions
to the shapes intrinsic space, adding some comprehensive surface-related information
without depending too much on the connectivity, like with SHOT descriptors. Without
this intrinsic translation, the network could have trouble differentiating two geometric
components close in euclidean space, such as for instance the arms in mesh 25 of Figure
A4

Additionally, these descriptors seem to capture some segmentation information,
such as for instance head, arms, body and legs for humans, as can be observed in Figure
A.4. More precise or complex descriptors such as hand or facial descriptors can not
appear with only 30 eigen vectors. It is due to the fact that a spectral reconstruction of a
human shape with only 30 eigenvectors does not show small details such as hands, feet
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or facial features. One would need to push the number of eigenvectors above 100 to
see such descriptors appear, and used correctly by the algorithm to produce even better
correspondences. However, this could also more easily lead to overfitting.

A.4.2 Additional Texture transfer on SHREC’19 re-meshed

In Figure A.5 are shown additional qualitative results of our method (with and without
Zoomout refinement [94]), 3D coded [55], FMNet [85] and Unsupervised FMNet [61]
(with and without PMF refinement [ 163]), trained on respectively 2000 and 100 shapes,
as presented in Experiment 2 of Chapter 4.5.

These results show again the failure of FMNet, due to the change in connectivity. It
can be seen more thoroughly in the quantitative graphs provided in Figure A.3.

This pair of shapes in Figure A.5 represents a challenging case for both 3D-CODED
and our method. Indeed, these networks are not rotation invariant, as discussed in the
implementation section of Chapter 4.4.7. Here, the source shape is bent over and its
head is really low compared with the rest of the body. 3D-CODED and our method are
made robust to rotation around the vertical axis through data augmentation, but here the
source shape is slightly rotated along another axis. As we can see, this resulted in poor
reconstructions in the case of 3D-CODED algorithm, even with 2000 training shapes,
whereas our method was able to yield good results with both a high and a low number
of shapes.

A.4.3 General Pipeline

We also provide a visual illustration of our general pipeline in Figure A.6 to complement
the textual description of our method provided in Chapter 4. In particular, we display:
a) different hierarchical grid-poolings performed by the KPConv feature extractor on
both source and target shapes, ) some learned descriptors on source and target shapes,
c) the estimated functional map and the ground-truth functional map.
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APPENDIX B

Complex Functional Maps: Supplementary Material

B.1 Proof of Theorem 5.3.1

Necessary condition: Let () be the differential of an orientation-preserving conformal
diffeomorphism ¢. Then by Lemma 5.3.1 ) must be C linear and by virtue of being a
differential, () = dy must satisfy Eq. (5.1) (see [80], Chapter 3).

Sufficient condition: Let () be a C linear operator and suppose that there exists a
diffeomorphism ¢ : M — N such that () satisfies Eq. (5.1). Since the pushforward
dp : TM — TN is the unique operator satisfying Eq. (5.1) (see [80], Chapter 3), we
must have () = dy. Now, since () is a C-linear pushforward, it preserves both the
angles between the vectors and the orientation of the tangent bundle. Therefore, the
map ¢ must then be an orientation-preserving conformal map.

B.2 Proof of Theorem 5.3.2

Let ¢ : M — N be a conformal diffeomorphism and ) = dy : TM — TN its
corresponding pushforward. By definition of conformality there exists a log-scale factor
u : M — Rrelating the metric tensors of both surfaces p*g" = e2“gM and their volume
form p*duy = e**duys. Thus, the L? scalar product between vector fields X, Y € T M
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is preserved by the pushforward:

/N & (Q(X), Q(V)) dux(p /N ¢! dp(Y)) dux(p)
::[;g(q X), dp(Y)) e **djun (q)

= [ (78" (X))
M
_ M
= / g, (X,Y)dun(q)
M
This this holds for arbitrary X, Y, we obtain that Q*Q = [

B.3 Proof of Theorem 5.3.3

Let us assume that Ly; = Q' o Ly o Q. As shown in [15, ], the diffusion kernel
of the connection Laplacian is, at first order, the parallel transport along a geodesic and
its magnitude is identical to the decay of the scalar heat kernel. Since the pushforward
preserves the connection Laplacian, it also preserves the scalar heat kernel, therefore it
must be an isometry [151].

As proved in [25] (p.181) the pushforward of the Levi-Civita connection by a con-
formal mapping is itself the Levi-Civita connection if and only if the map is an isometry.
Therefore, if © is an isometry, the pushfoward of the connection Laplacian Qo Lyo(Q
is equal to the connection Laplacian on M.

B.4 Proof of Theorem 5.4.1

Let ¢ : M — N be the permutation associated to the matrix II.

The energy of Eq. (5.8) for vertex-based vector field must be evaluated for X a basis
of complex field and f a basis of functions. We choose the “hat" basis for the fields
X' e CVul where X! = 26;;,z = lorvand f' € RV where f! = §;;. The symbol
0 denotes the Kronecker delta. Explicitly writing the coefficients of the matrices, boils

down o (V) k= (i)
M Y2 J i/ = i
(OP%)s =76 kol
(DX O <Q (X, (VD)) (ke(4)) € Ey or k = ¢(j)
@xt (ke(5)) ¢ En and k # ©(j)

An immediate conclusmn is that () must be zero everywhere except at ;) SO
there exists vector ¢ € C!"™! such that:

Q= D(g)I1
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Algorithm 2 Complex Bijective ZOOMOUT

ok wy

10:
11:

12:
13:

14:
15:
16:

17:

18:

19:
20:
21:

Intput: Manifold meshes M and N
Initial pointwise maps 11,5 and Iy,
Output: Refined maps IT}7 and TI57,
Parameters: The number of refinement steps J
An array [k;],j € [1, J] with the (increasing) number of spectral coordinates to use
at each refinement step
Preprocessing: Compute the Laplace Beltrami eigenbases ® and ®% (used for
function in spectral basis)
Compute the connection Laplacian complex eigenbases U and ¥ (used for vec-
tor fields in spectral basis, see Section 5.4.5)
Compute the differential operators Dy and Dgn for i € [1, k| (used for estimat-
ing () from C, see Section 5.4.2) ' Z
Compute the reduced divergence Operators divy, and divy (used for conversion
from () to pointwise map, see Section 5.4.6)
for k € [ky, ..., k;] do

Oy = Rpyy, Py = Py

Cary = @y Iar®ar, COnar = @) Thayn Py
Qun = argmingeou) iy [Crn Dy — Doum Crun |7
Qny = arg minQeo(k) 2?11 ||CNMD\1/gV - DQq/{VCNM||2F
HMN = NNSCaI'Ch(diVN\DN, leM‘;[jMQNM)
HNM = NNSGElI'Ch(diV]W\];l]\/[7 diVN\IfNQMN)
o Oy \ (Tyu®uy
MY\ yn @y 2
ON (I)]\/[ 1_[MNq?N
1_[NMCI)M
HMN = NNsearch (CI)NCNM (I)NCMN)a ((I)M (I)M>)
HNM = NNsearch(((bMCMN CDMCNM)a ((I)N (I)N>)
end for

Now we can go back the least-squares problem and find each coefficient of ¢ indi-

vidually. Using the fact that z form a basis of C, at a vertex © € M the best conformal
deformation of the tangent plane g, ;) is solution of:

q()—argmanKx Vf‘”) > <1 ij >‘
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1o Geodesic error on FAUST re-meshed
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Figure B.1: Geodesic error of different methods with and without our ()-step, then
refined with ICP, on 190 shape pairs of FAUST re-meshed.

B.5 Proof of Theorem 5.4.2

* Suppose that () is an isometric pushforward then the commutativity with the
Laplacian immediately holds as the connection Laplacian, like the usual cotan-
gent Laplacian, is preserved by isometric changes.

* Assume that () commutes with the Laplacian then thanks to Thm. 5.4.1, the cotan-
weights are preserved under the mapping. Therefore, the deformation is an isom-

etry [57].

B.6 Solving the least-squares problem to estimate ()

Here we propose to complete Section 5.4.2 by giving one potential way to solve Eq. (5.8)
and Eq. (5.9) explicitly. To that end we first proceed to rewrite Eq. (5.6), by switch-
ing from functional to vector field operator. More precisely, for a shape M, and f €
L*(M), X € TM, we define the linear operator Dy € TM — L*(M):

Df<X>p = <X7 vf>TpM

With this operator we adopt the dual point of view from Dx. Indeed Vf € L*(M), X €
TM,Ds(X) = Dx(f). Consequently, the discretization is almost identical, except that
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Algorithm 3 Complex Discrete Optimization

Intput: Manifold meshes M and N
Initial pointwise maps 1,5
Output: Refined maps IT}7;
Parameters: The number of refinement steps J
An array [k;],j € [1, J] with the (increasing) number of spectral coordinates to use
at each refinement step
6: Preprocessing: Compute the Laplace Beltrami eigenbases ®* and ® (used for
function in spectral basis)
7: Compute the connection Laplacian complex eigenbases U and ¥ (used for vec-
tor fields in spectral basis, see Section 5.4.5)
8: Compute the differential operators Dgn and Dy~ for i € [1, k] (used for estimat-
ing () from C, see Section 5.4.2) ' Z
9: Compute the reduced divergence Operators div,; and divy (used for conversion
from () to pointwise map, see Section 5.4.6)
10: for k € [ky, ..., k;] do
11: (I)M:(I)f\l{k}’(I)N:q)f\lf,k]
122 Quu = argmingeppy Yoy [|CvarDyx — Dogy Canl3
13: HMN = NNSCaI'Ch(diVN\I/N,diV]V[\I/MQNM)
14: CNM - QLHMN(I)N
15: HMN = NNSGaI'Ch(diVN\I’N,diVM\I’]\/[QN]V[)
16: end for

ok wny

since this operator takes vector fields as input, we choose to encode it as a complex
operator D; € CIVI*IVI| Namely, D; is a diagonal matrix such that (D;); = Vf,.
One can then retrieve Df(X) by taking the real part Re(D;X). It can also be noted
that Im(D;X) = Re(Dy - 1X) = Dy -1.X, so that the complex matrix D also stores
information for rotated gradients.

Let M and N be two manifolds. Switching from Dy to Dy in Eq. (5.6), we get
Eq. (B.1):

CunD}Y =DJ  Qun, VY feRM™. (B.1)

We then discuss how to minimize, for a fixed input functional map C' and a family
of smooth functions f; the following energy. Similarly to Eq. (5.7), f; is chosen to be
the truncated eigenbasis of the Laplace-Beltrami operator.

E,(Q) =) _ICD} - D, Qll% (B2)
Regular problem In this first paragraph we ignore the constraint QQQ* = I, which
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Figure B.2: Geodesic error of different versions of ZOOMOUT with and without our
(-step, on 50 shapes pairs of SMAL re-meshed.

corresponds to Eq. (5.8).

Consider an input functional map C, and reference functions f;,7 € [1,k]. The
minimum to Eq. (B.2) can be written explicitly: by concatenating CDy,,7 € [1, ky]
in a big matrix A € CUV~Xk)>xWVal “and Dey. i € [1,ky] in another matrix B €
CUVNIXk)XIVNT e can re-write Eq. (B.1) as Q = Bt A, where BT is the Moore pseudo-
inverse of B. In practice, we express these operators in a reduced spectral basis (See
Section 5.4.5) before computing the pseudo-inverse, to improve computation time. In-
deed in the reduced basis, operators A and B are respectively of size kxky x kjps and
knks x ky if we choose to truncate the tangent vector field eigenbasis at kj; on M and
at kny on N. This results in a ky X kj; reduced complex operator for ().

Procrustes problem Considering the same setting and keeping the last notations as in
last paragraph, minimizing Eq. (B.2) with the constraint QQ* = I, which corresponds
to Eq. (5.9), is a Procrustes problem. As such, it boils down to a Singular Value De-
composition: writing {2 = B*A, we use its SVD 2 = UXV to retrieve the orthogonal
matrix () = UV minimizing Eq. (5.9). As stated in the previous paragraph, one benefits
from writing these equations in the reduced basis.
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B.7 Vector Field transfer with more spectral values

In this appendix, we complete the vector field transfer experiment of Section 5.5.1 by
showing the evolution of vector field transfer accuracy with the number of spectral co-
ordinates involved in both the Laplace-Beltrami and the connection Laplacian operator
(the latter is only used in Azencot et al. and our method). Table B.1 reports this compar-
ison in detail. Let us recall that only a number below 1 shows a result with reasonable
accuracy, above this threshold the error is higher that the norm of the input vector field.

We observe that the transfer from Wang ef al. is always very sensitive to noise,
leading to high inaccuracies when noise corrupts the high frequencies. Notice also that
the approach of Azencot ef al. only starts to give reasonable transfer with high spectral
values, namely k£ = 150. In comparison, our method almost doesn’t suffer from noise,
whether it is random or symmetric, and is accurate even for low spectral values.

Our method is the only one to recover from strong symmetric noise (a > 0.5).
Indeed the vector field we transfer for this second type of noise is antisymmetric as
described in Section 5.5.1, but the input (blurred) functional map projects antisymmetric
functions to 0. This results in baselines transferring the input vector field to a vector field
close to 0 on the target shape, and thus errors above or close to 1.

B.8 Geodesic distance curves for Table 5.2 and 5.3

In Figure B.1 and B.2 we respectively display the results of Table 5.2 and 5.3 with
more precision using the Princeton graphs first introduced in [73]. With these curves
it is easier to assert the finer quality of the correspondence computed with the help of
complex functional maps.

B.9 Complex bijective ZOOMOUT algorithms

In this section we describe precisely how to implement the different versions of ZOOMOUT
to which we add our ()-step. These algorithms are used to generate the correspondence
whose quality are reported in Figure 5.7 and Table 5.3.

Complex bijective ZoomOut We first display the bijective ZOOMOUT algorithm used
in [126], modified to include our ()-step. This results in Algorithm 2, where we bold the
line numbers where change occurs. The idea behind bijective ZOOMOUT is to optimize
for maps in both directions (from M to N and from N to M). The energy to minimize is
the so-called bijective energy Fy;; = ||CoyrnCnar — |3+ |CvmCrn — I||7, and [126]
proposes to optimize it with the following steps : Remarking that Cy s = CIDEWH MuMNDN,
we have ||q)]\/[||%‘”CNMCMN — ]H%’ = ||HMN(I)NCMN — (I)]V[H%‘ ThUS, knowing H]\/[N
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Random noise

Method /level of noise | s =0 | s=102]s=05

k=30
Wang et al. [167] 0.42 5.3 14
Azencot et al. [8] 11 12 12
Ours 0.54 0.57 0.80
k=170
Wang et al. [167] 0.41 14 33
Azencot et al. [8] 2.6 24 24
Ours 0.46 0.48 0.77
k =150
Wang et al. [167] 0.37 27 68
Azencot et al. [8] 0.68 0.81 1.0
Ours 0.44 0.47 0.81

Symmetric noise

Method / level of noise \ a=0.3 \ a=0.>5 \ a=0.6

k=30
Wang et al. [167] 0.87 1.13 1.29
Azencot et al. [8] 10.19 6.84 10.59
Ours 0.54 0.62 0.76
k=170
Wang et al. [167] 0.81 1.09 1.26
Azencot et al. [8] 2.93 1.99 2.55
Ours 0.39 0.47 0.81
k =150
Wang et al. [167] 0.77 1.05 1.22
Azencot et al. [8] 0.69 1.04 1.43
Ours 0.37 0.41 0.56

Table B.1: Average accuracy of the three vector field transfer algorithms of Section
5.5.1 on 20 random pairs of FAUST [17] for two types of noise, and three noise levels.
We use k = 30, 70, 150 eigenvectors for both real and complex Laplacian operators.

and Iy, one can optimize for C'y; in a bijective fashion with:

CMN = argcmin H(I)NC — HNM(I)MH%" + HH]\/[N(I)NC — (I)MH%

And the same operation can be performed for C'y ;.
Afterwards, one can perform a symmetric trick to get I, knowing C';y and C'yyy,
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by additionally noting that in a bijective orthogonal setting, C~* = C7":

HMN = argmin ||H(I)NO]1\;M - CDMH% + ||H(I)NOMN - CI)M’H%“
II

And the same operation can be performed for 11y ;.

In the modified version of this algorithm, the pointwise map directly comes from
our complex functional maps, and thus is orientation-aware. Its translation to functional
map will also carry that information, making Algorithm 2 more robust than its original
version to symmetry errors.

Complex Discrete Optimization Secondly, we modify discrete optimization algorithms
[127] (again, the necessary modifications bear bold line numbers). These algorithms
consist in reducing a continuous energy with the same kind of trick used in bijective
Z00MOUT. It is thus adaptable to all kind of energies. Besides, this method proved
more efficient than continuous solvers to reduce natural energies such as conformality
or isometry. One simply defines either F(II,y) (respectively E(I1yn,Ixys) in the
case of a bijective energy), rewrites a continuous energy using the pointwise map trick
Cun = (I)}LVHNM(I)M, and minimizes it for 11,y given Cyj,. Adding in our )-step,
we get Algorithm 3. This algorithm is both orientation-aware and optimizes for desir-
able maps such as isometries, often resulting in the best map as shown in Table 5.3 and
Figure 5.7.
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APPENDIX C

Deep Complex Functional Maps: Supplementary
Material

C.1 Proof of Theorem 6.3.1, 6.3.2, 6.4.1

Theorem 1.  Given a set of shapes {S;} that all contain an orientation reversing
isometric self-symmetry {T; : S; — S;}, s.t. dg,(xj, vy) = ds,(T;(z;), Ti(xy)), then a
generic neural network Fg that is trained by any of the losses introduced in [132, 62,

, , /] has at least two possible solutions that both lead to the global optimum of
the loss.

Proof. The spectral losses L defined in [ 132, 62, 52, , 7] are fully intrinsic, thus they
are invariant under shape isometric changes i.e. L o T; = L. So, if all shapes admit an
isometric self-symmetry, the solution composed with the isometry will have the same
loss value. ]

Theorem 2. The complex-linear map () is a pushforward if and only if there exists an
orientation-preserving and conformal diffeomorphism ¢ : M — N satisfying:

(X, V(fo@))mm = (QX), V), N, (C.1

forall X € TM, f € L*(N),p € M.
Proof. See Theorem 3.1 in chapter 5.3.5. O]
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Theorem 3. Let M, N be two manifolds, and F);, F surface features such that the
functional map C' estimated from these features is an isometry. Let () be the com-
plex functional map computed with the feature gradients as described in the main
manuscript. Then the maps (C, Q) satisfy Eq. (C.1), and C'is an orientation-preserving
isometry.

Proof. By assumption the functional map C' : L?*(N) — L?(M) represents the isomet-
ric map ¢ : M — N and exactly transfers the descriptors i.e. C'(Fy) = F);. Moreover
the complex functional map ) : 7'M — T'N transfers the gradient of the descriptors
Q(V i Fy) = Vi Fy and is complex-linear.

To recover Eq. (C.1), we take the inner product of the gradient transfer with the
gradient of an arbitrary function f : N — R:

g (Q(VuFu), V) =g) (VNFN, V).

This equation easily simplifies using the properties of an isometric map: the metric
is preserved by the pullback (p*g"¥ = g™) and the pushforward commutes with the
gradient (dp~ ! (Vy f) = Vi C(f)), yielding:

g (Q(VaFu), V)
= (") &") 1, (d¢ " (VNEw) dp™ " (V)
=gl (VuC(Fy), VuC(f))
So @ and C satisfy Eq. (C.1) for all complex-linear combination of the gradient

descriptors. Therefore, following Thm. 6.3.2, () is the pushforward associated to ( and
C must be orientation preserving. ]

C.2 Ablation Study

This section presents an ablation study for the most vital components of our approach,
namely: a) The input signal fed to the network, b) The orientation-aware feature ex-
tractor, ¢) The orientation-aware loss. We test these ablations on our third experiment,
on the SMAL dataset [175] (see Chapter 6.5 for more details), and to a maximum of
20 epochs. We compare these three ablations to our approach and report the results in
Table C.1. The ablations are commented in details in the sections below.

C.2.1 The WKS Descriptors as Input Features

As stated in Chapter 6, many unsupervised deep learning for non-rigid 3D shape match-
ing rely on SHOT descriptors [158] as input signal for the neural network to produce
correspondences between shapes [62, , 45]. This descriptor is orientation-aware but
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’ Meth / Data \ SMAL r ‘

Xyz input-3 axis 25.
Xyz input-1 axis 5.9
nonOA-FE 34.
no (J-maps (epoch 3) 5.8
no (J-maps (epoch 15) 8.1
Ours (epoch 3) 4.8
Ours (epoch 15) 5.1

Table C.1: Comparative results (x100) for the different ablations of our method.

very sensitive to the input triangulation, resulting in overfitting to the training triangula-
tion as demonstrated in chapter 4, and also in the first experiment of 6, with anisotropic
remeshings.

Therefore we use an input descriptor that is agnostic to the input triangulation so
as to not overfit to it: the WKS descriptor [6], which is built using the eigenvectors
and eigenvalues of the Laplace-Beltrami operator. These descriptor functions (A )xef1,q
are therefore fully intrinsic, and will display the same intrinsic self-symmetries as the
shapes themselves. Namely, with the notations of Theorem 6.3.1, hy, o T' = hy.

Another commonly used option for an input signal is the 3-dimensional extrinsic
coordinates of the shape points, as done in chapter 4. However, this input signal is
dependent on the shape position in space. With this input signal, the method is no
longer fully intrinsic and therefore potentially unstable to rotations of the input shapes.
Consequently, the input data needs to be centered, and augmented by adding randomly
rotated poses.

For this first ablation experiment, we train our method with this input signal (denoted
as “xyz input” in Table C.1) instead of WKS descriptors. To make the experiment more
complete, we report the results with two different data augmentations: a) The general
case, where there is no prior on the shapes’ alignment, so the data need to be augmented
with all 3D rotations (3 parameters space). We denote this data augmentation as “3 axis”
in Table C.1. b) The special case where the input shapes are all aligned to one axis, but
potentially rotated around this axis, so the data needs to be augmented around this axis
(1 parameter space). We denote this data augmentation as “1 axis” in Table C.1. We
stress the fact that this kind of prior on the shapes rigid alignment already makes the
method weakly supervised.

We see in Table C.1 that even with the prior of shapes aligned to one axis, our
method is better (and more general) when trained with WKS descriptors as an input
signal.
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Up axis back-front axis Left-right axis

Anisotropy anisotropy anisotropy

Figure C.1: SCAPE [3] dataset remeshed in an anisotropic fashion, used in the first
experiment of Chapter 6.5.

C.2.2 The Orientation-aware Feature Extractor

To make our approach unsupervised, it is crucial that the feature extractor should be
orientation-aware. Indeed, since we train on shapes exhibiting an isometric self sym-
metry (the left-right symmetry present in most organic shapes), the only way to disam-
biguate between left and right is through orientation, since the symmetric map reverses
this orientation. DiffusionNet [144] uses gradient features to incorporate this orienta-
tion information into potentially symmetric inputs (e.g. WKS descriptors in our case).
For this second ablation, we propose to show that without this orientation-aware feature
extractor, the method fails to produce informative descriptors, and report the results in
Table C.1, on row “nonOA-FE” (standing for non orientation-aware feature extractor).

To that end, we deactivate the gradient-based blocks of DiffusionNet, which results
in a new orientation-agnostic feature extractor which can still produce excellent results
[144]. We then train our method using this feature extractor and WKS as input signal.
We see in Table C.1 that this ablation greatly impairs the method.

C.2.3 The Complex Functional Maps Block and the Orientation-
aware Loss

We remove the complex functional map block from the loss by setting wq-ortho = 0. As
discussed in Theorem 6.3.1, the resulting network is not guaranteed or encouraged to
produce orientation-preserving correspondence. We report the result of this ablation in
Table C.1, on rows “no (J-maps”.

We observe that this ablation still seems to converge to well oriented maps in this
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Ours Deep Shells (w/SHOT) Deep Shells (w/WKS)  ZoomOut (w/WKS ini) BCICP (w/WKS ini)

Figure C.2: Qualitative comparison to baselines on the SMAL dataset, using texture
transfer from source to target shape. Only our method gives accurate correspondence,
whereas in this challenging case baselines completely fail to predict the map.

case. This may be explained by the fact that DiffusionNet can produce non-symmetric
descriptors from symmetric inputs like WKS, using shape orientation through gradients.
Therefore, if two input shapes are consistently oriented, the symmetric input signal will
be “taken in the same direction” by DiffusionNet gradient-based blocks. Conversely,
if two shapes are non-consistently oriented (e.g. one with inward normals, one with
outwards normals), the symmetric input will be “taken in opposite directions”. In fact,
using this remark one can retrieve symmetrized output descriptor functions (by sym-
metrized, here we mean composited with the intrinsic symmetric map 7; of the shape
S;) generated by DiffusionNet from symmetric descriptors such as WKS, by simulat-
ing a change in shape orientation (which corresponds to a conjugation operation on the
tangent bundle structure, or more practically to setting gradY = -gradY in Diffu-
sionNet gradient operator entries).

In practice, a second beneficial effect of our complex functional map loss is the
reduction of overfitting. Indeed, in the experiment reported in Table 6.3 of the main
manuscript, the train set is made of 32 SMAL re-meshed shapes and the test set is made
of 17 shapes other SMAL re-meshed shapes. Learning methods are thus liable to overfit
to their training set. We see in Table C.1 (where we report the geodesic error at epoch 3
and epoch 15 both with and without the complex functional map layer/loss) that without
the complex functional map loss, the method is more prone to overfitting, as it looses
generality if trained for too many epochs. To summarize, our complex functional map
block and loss theoretically guarantee our approach to be orientation-preserving, and in
practice also improve the pipeline stability with respect to overfitting.
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Mesh2

Mesh3

Descriptor 1 Descriptor 2

Figure C.3: Visualization of two different scalar descriptors learned by our method,
along with their vector valued counterparts, on 3 meshes from the SMAL dataset. Con-
trary to the descriptors produced by the network of chapter 4, these descriptors are fully
intrinsic and generally not localized. However, we see that both our scalar and vector
valued descriptors are robust to strong distortions.

C.3 More Quantitative Results

For completeness, we report in Figure C.4 the accuracy of our method and some base-
lines on the third experiment we conducted in Chapter 6.5 (trained on 32 of SMAL
remeshed shapes, tested on 17 other SMAL remeshed shapes), using the evaluation pro-
tocol introduced in [72]. We see that our method gives the best correspondence quality
by far, as in this case it always predicts well-oriented maps for the test pairs (we see the
tail of the error curve quickly reaches the y = 1 line, which is equivalent to saying most
predicted correspondences are extremely close to ground-truth).
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Figure C.4: Quantitative results of the different methods using the protocol introduced
in [72], on the SMAL remeshed test set (third experiment of Chapter 6.5).

C.4 More Qualitative Results

C.4.1 Anisotropic Remeshing

In Figure C.1, we show the anisotropic remeshing of SCAPE dataset [3], generated with
Mmg [38, 34]. We use this anisotropic remeshing in the first experiment of Chapter 6.5
to show that SHOT [ 58] based learning methods do not generalize to unseen triangula-
tion. Specifically, we see in Figure C.1 that the triangle scale is a function of the element
coordinate. For the first seven shapes of SCAPE test set, we constrain the triangle size to
be dependent on the position on the up axis. For the next seven shapes, we constrain the
triangle size to be dependent on the position on the back-front axis. For the remaining
six shapes, we constrain the triangle size to be dependent on the position on the left-right
axis. With this remeshing, a network overfitting to the triangulation combinatorics will
most likely fail to predict the desired map. Our method, which is triangulation agnostic,
remains almost unaltered, as shown in the first experiment Chapter 6.5.

C.4.2 Another Qualitative Comparison on SMAL

We report in Figure C.2 a second texture transfer performed by baselines and our method
on two of the SMAL test shapes. On this example the distortion between the two shapes
is even stronger than on the example displayed in Chapter 6.5. However, our method
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still manages to predict accurate correspondences, while baselines fail to produce even
a reasonable mapping in this case. Despite the fact that our method is spectral based,
we see it can still produce accurate maps in challenging non-isometric cases.

C.4.3 Visualization of the Scalar & Vector Valued Descriptors
Learned by our Method

Lastly, we propose to visualize some descriptors learned by our network, also on the
SMAL dataset, in Figure C.3. Since our method also exploits the gradients of the scalar
descriptors learned by DiffusionNet, we visualize these gradients (here rotated by /2
to better make singularities stand out) which in fact correspond to the tangent vector
field descriptors used to compute the complex functional map. Our method enforces
learned descriptors and their gradients to correspond between source and target shapes,
which was not done in any previous work to the best of our knowledge. Consequently,
the features obtained with our method are all the more robust, since their gradients are
also well-preserved under shape non-rigid deformation.

Indeed we notice that both the scalar-valued and the vector-valued part of the two
descriptors displayed in Figure C.3 correspond well on the three chosen meshes, despite
the strong distortions involved between these shapes.
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via apprentissage supervisé et non-supervisé

Résumé : Lanalyse de données 3D est un probléme
fondamental de la science moderne, et les avancées
récentes telles que I'apprentissage profond ont ou-
vert la voie a de nouvelles possibilités dans ce do-
maine. Cependant, I'analyse de formes 3D présente
des problémes complexes en raison de la structure
particuliere des données mises en jeu. Dans cette
thése, nous nous concentrons principalement sur la
mise en correspondance de formes 3D dont le but est
d’étudier et de calculer des applications entre formes,
habituellement représentées par des maillages trian-
gulaires. Cette correspondance entre deux formes
peut étre utilisée pour transférer de [Iinformation
(segmentation, texture). Afin d’aborder ce probléme
complexe et non linéaire, nous adoptons un point
de vue fonctionnel qui permet une représentation
plus simple et efficace pour ces applications entre
formes. Certains réseaux de neurones profonds on
été concus pour produire des signaux descriptifs sur
des nuages de points ou des maillages, pour la seg-
mentation par exemple, ainsi nous proposons d’utili-
ser ces signaux pour produire des correspondances

Titre : Représentations robustes pour la mise en correspondence de formes 3D

Mots clés : géometrie, nuage de points, maillage, réseau de neurones, correspondance, champ de vecteur

précises dans le cadre de la méthode des “applica-
tions fonctionnelles”, sur laquelle nous nous basons
pour implémenter de nouveaux algorithmes de cor-
respondance. Nous abordons notamment plusieurs
probléemes-clé a I'intersection entre la mise en corres-
pondance de formes et I'apprentissage profond. Tout
d’abord, I'écueil du surapprentissage, trés récurrent
particulierement dans les jeux de données 3D qui ne
sont pas aussi variés que pour les images. Ensuite,
nous proposons dincorporer l'information d’orienta-
tion de formes dans le cadre des applications fonc-
tionnelles en utilisant 'analyse de champs de vec-
teurs tangents, que nous utilisons pour résoudre des
défauts de symétrie. Enfin, nous proposons une so-
lution globale pour apprendre sur des formes 3D
pour une mise en correspondance robuste et non
supervisée. Notre travail propose des méthodes ef-
ficaces pour explorer 'espace des applications entre
les formes 3D en exploitant la structure particuliere
des surfaces pour construire des régularisateurs pour
les réseaux d'apprentissage profond visant a établir
des correspondances.

Abstract : 3D data analysis is a fundamental pro-
blem in modern science, and recent advances such
as deep learning have opened the door to new al-
gorithms and possibilities in this field. Nevertheless,
3D shape analysis presents difficult problems due to
its particular structure. Indeed, deep neural networks
and more specifically convolutional neural networks
were originally tailored to tackle grid-like structures
like images. Consequently, the challenge is to adapt
deep learning to more complex structures like 3D
point cloud or meshes. In this thesis, we focus the pro-
blem of non-rigid 3D shape matching, whose objec-
tive is to analyze and compute maps between shapes,
typically represented as triangle meshes. Correspon-
dence between a pair of shapes can be used to trans-
fer information such as texture, or segmentation, from
one shape to the other. To tackle this hard non-linear
problem, we adopt a functional point of view allo-
wing for a simpler and more efficient representation of
maps between shapes. Since deep neural networks
have been designed to produce feature functions on
point clouds or meshes, e.g. for segmentation, we pro-

Title : Robust representations for supervised and unsupervised 3D shape matching

Keywords : geometry, point cloud, mesh, neural network, shape matching, vector field, functional maps

pose to use these network features to match functio-
nal spaces using the so-called functional map frame-
work, which we build upon to implement new algo-
rithms for shape matching. In particular, we tackle se-
veral key problems which lie at the intersection bet-
ween shape matching and deep learning. Firstly, we
propose a method that helps to address the well-
known problem of overfitting, which is a very recurrent
problem particularly for 3D data. Secondly, we pro-
pose a new way to incorporate orientation information
into the functional map pipeline using tangent vec-
tor field analysis. We use this novel representation to
solve some symmetry issues, difficult to address be-
cause of the intrinsic nature of functional maps. Lastly,
we propose a global solution that learns features for
efficient and robust shape matching, in an unsupervi-
sed way. Overall our work proposes efficient methods
to explore the space of maps between shapes by ex-
ploiting the particular structure of 3D surfaces to build
robust regularizers for deep learning correspondence
networks.
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