Water distribution systems must be carefully monitored to ensure water supply, prevent losses, and protect system assets. In addition, optimizing pump scheduling in such systems can lead to electricity savings without incurring additional costs. However, these systems are usually controlled by Supervisory Control and Data Acquisition (SCADA) systems, which can be expensive and complex. The Internet of Things (IoT) opens a new path in interoperability for data-driven approaches to controlling these systems, where sensors could collect near-real-time data to improve decision-making. Furthermore, approaches such as Deep Q-Networks provide a scalable data-driven decision-making architecture to handle real-world control problems.

Despite the scalability of approaches based on Deep Q-Networks, collecting experiences through real-world interactions can be costly or even infeasible. This difficulty stems from the fact that real-world applications can be risk-sensitive, and building simulators of these systems can be a complex task. Even if there is no such limitation, exploring an environment with high dimensional state space can be costly. To overcome exploration, we present an Imitation Learning approach where the reward function is augmented to encourage policy convergence to known states, given a demonstration distribution from an expert policy. Later, we present a Curriculum Learning approach combined with Transfer Learning/Policy Distillation. We decompose a target task into more straightforward ones along a curriculum, transferring the knowledge in earlier steps to later ones to leverage the learning process.

Resumé

Les systèmes de distribution d'eau doivent être surveillés de près pour garantir l'approvisionnement en eau, prévenir les pertes et protéger les actifs du système. En outre, l'optimisation de la programmation des pompes dans ces systèmes peut permettre de réaliser des économies d'électricité sans engendrer de coûts supplémentaires. Cependant, ces systèmes sont généralement contrôlés par des systèmes de contrôle de surveillance et d'acquisition de données (SCADA), qui peuvent être coûteux et complexes. L'internet des objets (IoT) ouvre une nouvelle voie en matière d'interopérabilité pour les approches basées sur les données afin de contrôler ces systèmes, où les capteurs pourraient collecter des données en temps quasi réel afin d'améliorer la prise de décision. En outre, des approches telles que les Deep Qnetworks offrent une architecture évolutive de prise de décision fondée sur les données pour traiter les problèmes de contrôle du monde réel.

Malgré l'évolutivité des approches basées sur Deep Q-networks, la collecte d'expériences par le biais d'interactions dans le monde réel peut s'avérer coûteuse, voire irréalisable. Cette difficulté provient du fait que les applications du monde réel peuvent être sensibles aux risques et que la construction de simulateurs de ces systèmes peut être une tâche complexe. Même en l'absence d'une telle limitation, l'exploration d'un environnement avec un espace d'état à haute dimension peut s'avérer coûteuse. Pour surmonter l'exploration, nous présentons une approche d'apprentissage par imitation dans laquelle la fonction de récompense est augmentée pour encourager la convergence de la politique vers des états connus, étant donné une distribution de démonstration d'une politique d'expert. Ensuite, nous présentons une approche d'apprentissage par cursus combinée à l'apprentissage par transfert et à la distillation de politiques. Nous décomposons une tâche cible en tâches plus simples le long d'un programme, en transférant les connaissances des étapes précédentes aux étapes suivantes afin de tirer parti du processus d'apprentissage.
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Introduction

Context and Objectives

In recent years, improving systems' efficiency and shifting to renewable energy and lowcarbon emission technologies such as solar, hydro, and wind to replace fossil fuel sources has become an important goal in mitigating climate change. One of these systems which can achieve better energy efficiency is the water supply facilities. In [START_REF] Menke | Exploring optimal pump scheduling in water distribution networks with branch and bound methods[END_REF], show that water distribution systems correspond to up to 4% of the global electricity consumption in the United States. Moreover, the electricity consumption represents approximately 40-70% of the pump life cycle cost according to [START_REF] Menke | Exploring optimal pump scheduling in water distribution networks with branch and bound methods[END_REF]BDL21]. In locations with dynamic electricity tariffs, pumping water in off-peak time slots and using tanks to supply water during the peaks is one of the strategies to reduce these costs. Thus, optimizing water distribution is essential for mitigating the impact of these systems, leading to electricity savings and consequently reducing costs. This work is in the context of the IoT.H2O project 1 , where the goal is to develop lowcost solutions for monitoring and controlling water distribution systems. We must carefully monitor water distribution systems to prevent losses, protect the assets and ensure the water supply. Currently, most monitoring and controlling approaches for water facilities are Supervisory Control and Data Acquisition (SCADA), which can be complex and expensive. Internet of Things (IoT)-related technologies open a new path to extend the standardization and interoperability compared to SCADA systems. As such, the IoT.H2O project aims to explore development tools for deploying IoT environments for control and monitoring water facilities. In particular, this work contributes to the project by investigating the decisionmaking process regarding the pump operation. An optimized pump scheduling can increase the energy efficiency of these systems without incurring additional costs [START_REF] Henrique | A branch-and-bound algorithm for optimal pump scheduling in water distribution networks[END_REF].

The first goal of this work is to investigate data-driven control approaches suitable to interact with several devices gathering data in near-real time from the water distribution system. One of the branches of the IoT.H2O project is developing sensors and optimizing Chapter 1 their placement to provide accurate observations regarding the water distribution network condition. Once we install these sensors through the network, we can obtain, for instance, observations regarding tank levels and pump operation. We also can use this data to automate or assist the system control, enhancing accuracy and safety and reducing costs. Thus, this work raises the question of whether we could use a decision-making approach to optimize pump control using the system's observations gathered from sensors? To answer this question, we discuss in this work why Reinforcement Learning is a suitable method for data-driven decision-making.

In Reinforcement Learning (RL), the agent interacts with the environment guided by a policy and uses the experiences collected through these interactions to improve its decisionmaking. Usually, we collect these experiences by trading off between exploring the environment or exploiting the policy being learned. For this, we need a Markov Decision Process (MDP) representation to define the space of observations the agent uses to take actions and how they are rewarded according to the state in which they are performed. RL algorithms such as Q-learning [START_REF] Christopher | Q-learning[END_REF] and SARSA [START_REF] Sutton | Reinforcement Learning: An Introduction[END_REF] solve the problem represented by an MDP, aiming to learn a policy that maximizes returns. However, as the number of states/observations grows, it becomes impractical to represent a policy using a lookup table, a problem known as the curse of dimensionality. Deep Reinforcement Learning overcomes the curse of dimensionality by combining RL with Artificial Neural Networks (ANN) as a function approximator. However, the exploration/exploitation dilemma remains, and exploring a high dimensional state space can be sample inefficient. Thus, this work concentrates on making the learning process more sample efficient, overcoming exploration by using logged data, or structuring the learning process through a curriculum.

We start this work by discussing decision-making approaches in chapter 2. The objective is to show why Deep Reinforcement Learning-based methods are suitable for providing a data-driven solution to control the pump operation. Moreover, we review the state-of-theart and address some related research topics. In chapter 3, we design a Partially Observable Markov Decision Process (POMDP) for the pump scheduling problem. The POMDP representation allows us to define the features representing the state/observation corresponding to the current agent's knowledge about the environment. Once this work is in an IoT context, sensors could gather these features along the water network providing information for decision-making. Also, we present reward functions to lead the agent to achieve the desired goals. In chapter 4, we introduce an Imitation Learning approach to overcome exploration by mimicking the behavior found in logged data from real-world operations. Chapter 5 proposes a Curriculum Learning approach where the representation of the POMDP increases along the steps toward the full representation, consequently augmenting the search space and making each curriculum step harder. Introduction and reward function.

• An intrinsically motivated imitation learning: chapter 4 presents an imitation learning strategy based on k-nearest neighbors where the reward function is augmented according to the state's likelihood under the demonstration distribution.

• Knowledge transfer for compositional representations: we introduce a curriculum learning where the search space increases over time in section 5.

How to read this thesis

This manuscript is composed of four chapters organized as follows:

• Chapter 1: This chapter visits decision-making methods found in the literature, highlighting the advantages that lead DQN to be employed in this work. Thus, we invite the reader unfamiliar with the DQN to visit this chapter, where we introduce fundamental concepts that are part of this approach, such as the Markov Decision Process. Besides, we present some related research topics that aim to make the method more sample-efficient.

• Chapter 2: We introduce the application domain of this work, the pump scheduling problem, in this chapter. For this, we present a real-world water distribution scenario that supplies water for about 120000 people. Besides a high-precision system simulator, human operation data is available, allowing us to understand the policy employed to control the system. Thus, this chapter is essential for the reader to understand the operation of the water distribution system, its goals, and its constraints. Finally, we present the representation of the problem as a Partially Observed MDP (POMDP) used in the following chapters.

• Chapter 3: In chapter 3, we present our contribution Safety through Intrinsically Motivated Imitation Learning (SIMIL). To better understand the proposed strategy, the reader must understand concepts presented in chapter 1 related to the exploration/exploitation dilemma and imitation learning. Furthermore, we evaluate this approach using the scenario presented in chapter 2.

• Chapter 4: This chapter presents our knowledge transfer approach for compositional representation through a curriculum. To better understand this chapter, the reader must be comfortable with the concepts of curriculum learning and policy distillation/transfer learning introduced in chapter 1. In addition, we evaluate this approach using the pump scheduling problem presented in chapter 2.

We end this thesis with a conclusion and perspectives for future works. Monitoring and controlling systems involve gathering data from the environment, usually through sensors, and a decision-making process that decides what to do based on the information given by the sensor's data. In the last years, with significant growth of Machine Learning (ML) based methods and the promise of strongly interconnected devices like the Internet of Things (IoT), thanks to low latency networks like 5G, the research and implementation of data-driven solutions have intensified. As such, this chapter investigates data-driven methods capable of monitoring and controlling systems. Our target application is the pump scheduling problem for water distribution systems. In this scenario, sensors collect data that can provide information to make decisions about the pump operation, aiming to supply water for the end consumers while minimizing electricity consumption and meeting safety constraints.

As such, the first concern of this work is to investigate methods capable of providing a strategy to control the system given the information gathered by sensors. To that end, this chapter covers the background and related works to decision-making, focusing on Reinforcement Learning (RL) approaches. We start discussing some related works found in the literature. The first related approach discussed is the Finite State Machine (FSM) in section 2.1, which models every possible output for a given input (data) in a system. However, the information provided by sensors, for instance, can be noisy or imprecise, and to handle and model this, Fuzzy Systems presented in the section 2.2 seems a suitable solution. Although Fuzzy Systems could overcome the representation of the uncertainty, it still requires a specialist to write down the mappings of every input to an output, which from now on, we call state and action, respectively. Also, we need to encapsulate this system in an agent, discussed in section 2.3, to observe the environment actively. Thus, we could have a system where the agent decides when to observe (gather data) and act upon the environment. The remaining question is could we use experiences from interactions with the environment to improve the agent's decision? For that, we introduce the Reinforcement Learning problem in section 2.4 and 2.5.

In RL, the agent interacts with the environment guided by a policy, aiming to maximize the rewards in the long term. Later, we can use these experiences collected through interactions to improve the policy itself. Thus, instead of handcraft mappings for each state to action, the agent receives a reward that tells how good the action applied in the state is. However, unlike humans, RL-based methods require many interactions to learn and improve their decision-making process. This chapter ends by visiting some strategies to make these interactions more efficient for learning policies in section 2.6. We start discussing the exploration-exploitation dilemma, one of the most complex RL challenges, by reviewing some strategies for exploring the environment. After that, we discuss methods that use demonstrations to mitigate exhaustive exploration and present related approaches. Later, we discuss related work on Curriculum Learning (CL), which aims to organize and structure the learning process to make it more effective. In section 2.6.4, we present the idea of policy distillation, which can compress multiple policies in a single model. Finally, we discuss some related works where RL was used to learn how to control systems.

Below is the definition of some terms used along with this chapter:

• A policy maps states of the environment to some action;
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• A policy is deterministic if for a given state s, it always leads to the same action a.

For another hand, this does not hold for stochastic policies which generally have a probability distribution over actions.

• Uncertainty refers to the capacity to handle noise observation or lack of information about the current state of the environment.

• Scalability in the context of this work means the capacity to handle high dimensional state or/and action spaces.

• Robustness means the capacity to handle unexpected events, such as ending up in an unpredicted state s after applying some action a.

Chapter 2

Finite-State Machine

One of the most common forms of decision-making in many everyday devices can be modeled using a Finite-State Machine (FSM). An FSM is composed of states (circles), each representing a condition of a given system. Different states are connected by transitions (arrows), denoting the possibilities of change in the system. Thus, given a state q n , a transition to another state q m is triggered through input in the alphabet . Formally, an FSM M is defined by the quintuple M = ( , Q, s 0 , δ, F), where:

• is the alphabet that represents the set of possible inputs Figure 2.1 shows an FSM with 5 states, being q 0 the initial state and the alphabet = {0, 1}. An example of an application using FSM is a lift in a building. In this case, the states are the floors reachable utilizing the lift, and the alphabet is the corresponding identification of each floor. Consequently, we have an FSM fully connected, where all states are reachable through any other state using a single transition.

• Q is the set of states of M • q0 ∈ Q is the initial state • δ is the state transition function, mapping ×Q → Q • F is a set of final
In an FSM, all states must be known in advance and take on strictly true or false values. However, many real-world systems are governed by imprecise inputs, such as those obtained by sensors. To handle this, we introduce the fuzzy systems capable of handling this scenario in the next session.
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Fuzzy Systems

A control and monitoring system must be able to handle noisy or imprecise inputs, as in the case of those provided by sensors. In Zadeh's theory of fuzzy sets [START_REF] Zadeh | Fuzzy sets[END_REF], the elements have degrees of pertinence to a particular set. Thus, it is possible to model non-exclusive binary relations of membership associated with linguistic variables that express vague and imprecise relations, such as "almost" or "approximately". For example, considering a fuzzy set A, a membership degree of an element x is given through a value µ A (x) ∈ [0, 1], where 0 is a lack of membership, and 1 is full membership [START_REF] Prokopowicz | Theory and applications of ordered fuzzy numbers: a tribute to Professor Witold Kosiński[END_REF]. The fuzzy set A, in its turn, can be represented using a membership function such as Gaussian and trapezoidal. To illustrate it, let's consider the example of the linguistic variable young provided by [START_REF] Carvalho De Barros | Tópicos de lógica fuzzy e biomatemática[END_REF]. In this scenario, each person in a town is associated with a real number representing their age. Thus, the universal set is A = [0, 120], being x ∈ A, an individual's age. Therefore, a membership function µ A (x) that characterizes a young person is:

µ A (x) =    1, if x ≤ 10 80-x 70 , if 10 < x ≤ 80 0, if x > 80 (2.1)
Similarly, we can define the set of older people, which is complementary to the set of young people, such that: A Fuzzy Rule-based System (FRBS) uses fuzzy inputs (statements) to produce outputs via a rule base [START_REF] Carvalho De Barros | Tópicos de lógica fuzzy e biomatemática[END_REF]. The statement can be, for instance, a combination of linguistic variables obtained through AND/OR operators. A rule base has the following form:

µ B (x) = 1 -µ A (x) =    0, if x ≤ 10 x-10 70 , if 10 < x ≤ 80 1, if x > 80 (2.2)
(Rule 1) IF statement THEN output (Rule 2) IF statement THEN output (Rule n) IF statement THEN output
Later, these outputs are combined to produce fuzzy values that, in turn, can be represented through a membership function. One of the most known methods to perform inferences using the outputs from FRBS is the Mamdani method [START_REF] Mamdani | An experiment in linguistic synthesis with a fuzzy logic controller[END_REF]. In the Mamdani method, rules are aggregated through the operator OR (max) or the operator AND (min) and produce a fuzzy value. Finally, the process of defuzzification extracts a real value representing this fuzzy value.

Experts in the domain generally specify a fuzzy system, choosing which linguistic variables and membership functions will be employed to describe the system. Also, fuzzy systems are passive, needing a trigger to decide when inputs are collected to generate an output. In the next section, we introduce the notion of agents, where their cycle chooses when to observe and act upon the environment.

BDI Agents

An agent can be defined as an entity situated in an environment, either physical or virtual, and capable of observing it fully or partially through sensors. Moreover, agents have actions that, when applied in this environment, can modify it. Thus, an agent is constantly observing its environment and having to decide what to do (see Fig. A particular class of agents is the Beliefs, Desires, and Intentions (BDI) model. Beliefs represent the agent's knowledge about the environment, while Desires are the possible states of affairs that the agent wants to achieve that can contradict each other. Finally, Intentions are the desires the agent has committed to achieving. The process where the agent decides what to do, i.e., adopt an intention, is called deliberation. One of a BDI agent's most powerful features is the capacity to manipulate these intentions. To this end, the agent must be able to persist in an intention whenever it is admissible but also drop it as it shows unachievable over time [START_REF] Rafael | BDI Agent Programming in AgentSpeak Using Jason[END_REF].

Although the BDI agent model has certain robustness in its deliberation process and can be incorporated with other tools/methods, such as fuzzy systems, it still requires explicit specification. The remaining question is whether there exists an agent that can learn through experiences leading to an emerging behavior robust to the dynamics of the environment? In the next section, we present a Reinforcement Learning agent-based that can answer these questions.

Reinforcement Learning: Value-based Algorithms

In the Reinforcement Learning (RL) problem, the agent interacts with the environment aiming to maximize returns [START_REF] Sutton | Reinforcement Learning: An Introduction[END_REF]. These interactions can be over a given amount of time steps with length T , called an episode, or continuous, where T becomes the agent's lifetime. At each timestep t, the agent has to choose an action a among the set of actions available A that better tradeoff the immediate reward over potential rewards in the future. These actions may change the agent's environment, represented by a set of variables called state. In general, everything outside of the agent and valuable to make a decision can be considered part of the environment.

Partially Observable Markov Decision Process

In many scenarios, the agent has noisy or incomplete access to the current state of the environment. Thus, the partial access that agents can perceive is through observations that are derived from states, although both definitions have been used interchangeably in the RL literature [START_REF] Morales | Grokking Deep Reinforcement Learning[END_REF]. The RL problem statement can be formalized as a Partially Observable Markov Decision Process (POMDP), which is an extension of the Markov Decision Process (MDP) that considers uncertainty, defined by the tuple (S, A, P, R, Ω, O, γ), where:

• S is the state space;

• A is the action space;

• P : S × A × S → [0, 1] is the transition probability for being in some state s ∈ S, perform an action a ∈ A and reach a state s ′ ∈ S

• R : S × A → R is the reward function;
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• O : S × A × Ω → [0, 1] is the probability to receive an observation o ∈ Ω about the next state s ′ ;

• Ω denotes the observation space;

• γ ∈ [0, 1] is the discount factor that balances the relevance of immediate reward over rewards in the future;

The objective in the PO(MDP) setting is to learn a policy π : S → A aiming maximizes the expected discount rewards, such that:

E π [ T t=1 γ t r(s t , a t )], (2.3) 
where, for a discount factor γ = 0 the agent only consider the immediate reward r t ∈ R ⊂ R observed applying an action a t ∈ A in the the state s t ∈ S. Contrary, for γ = 1, all state-action pairs observed in a given timestep t or in the future t + k being k ∈ [1, T ] have the same importance. A measure of how good the policy π is given by a state-value function V π (s) and the action-value function Q π (s, a). An optimal policy π * is such that the cumulative reward is the highest for any state and state-action pair than following any other policy π ′ :

∀s ∈ S V * (s) = V π * (s) > V (s) = V π ′ (s), ∀s ∈ S, ∀a ∈ A Q * (s, a) = Q π * (s, a) > Q(s, a) = Q π ′ (s, a).
(2.4)

The state-value function and the action-value function can be combined regarding the optimal policy π * , such that:

V π * (s) = argmax a∈A Q * (s, a).
(2.5) Thus, the Eq. 2.5 establishes that given a state s ∈ S, the state-value following the optimal policy π * must be equal to the action a ∈ A which maximizes the state-action value Q * (s, a). In the finite Markov Decision Process, where the elements of the sets A, S, R are countable, the optimal policy can be obtained recursively through the Bellman's equation:

V * (s) = E[R(s) + γ max V (s ′ )|R(s) = r t ], or (2.6) Q * (s, a) = E[R(s, a) + γ argmax a ′ Q(s ′ , a ′ )|R(s, a) = r t ], (2.7) 
which divides the problem into multiple sub-problems and recursively solves them. One way to iteratively calculate these values is through Temporal-Difference (TD) Learning:

V (s) ← V (s) + α[ TD error R t+1 + γV (s ′ ) Target value -V (s)],
(2.8)

where α ∈ [0, 1] is the parameter learning rate which establishes how fast the learning progress is. The Eq. 2.8 is called one-step TD once is based on a single transition. Thus, at each timestep, the difference between the target value represented by the reward received plus the following timestep estimation discounted and the current timestep estimation V (s) is considered. This difference is called TD error, and the idea of updating estimations based on estimations known by bootstrapping. The Q-learning [START_REF] Christopher | Q-learning[END_REF] follows the same principle for the action-value function:

Q(s, a) = Q(s, a) + α[ TD error R(s, a) + γmax a ′ Q(s ′ , a ′ ) Target value -Q(s, a)].
(2.9)

However, updating each Q-estimations can be computationally expensive or unfeasible depending on the number of countable states S and actions A available. It can be even more complex when states or actions have continuous values that must be discretized in some way. This problem is called curse of dimensionality [START_REF] Sutton | Reinforcement Learning: An Introduction[END_REF] as the number of states S and actions A grows. Deep Q-Networks uses an Artificial Neural Network (ANN) as a function approximator to overcome this.

Deep Q-Networks

Deep Q-Networks (DQN) [START_REF] Mnih | Playing Atari with Deep Reinforcement Learning[END_REF][START_REF] Mnih | Human-level control through deep reinforcement learning[END_REF] is a combination of Q-learning (Eq. 2.9) with ANN that initially achieved remarkable success in learning policies that could outperform human players in a set of arcade games. After that, a number of other scenarios, including variants of DQN, were applied in autonomous driving [START_REF] Liu | Improved Deep Reinforcement Learning with Expert Demonstrations for Urban Autonomous Driving[END_REF], robotics [START_REF] Gu | Deep Reinforcement Learning for Robotic Manipulation with Asynchronous Off-Policy Updates[END_REF][START_REF] Nair | Overcoming Exploration in Reinforcement Learning with Demonstrations[END_REF], video games [LC17; Wur+22; Vin+19], dialogue assistance [START_REF] Jaques | Way Off-Policy Batch Deep Reinforcement Learning of Implicit Human Preferences in Dialog[END_REF], among others [START_REF] Levine | Offline Reinforcement Learning: Tutorial, Review, and Perspectives on Open Problems[END_REF]. This success is because DQN leverages the scalability of Q-learning using ANN instead of storing every state-action pair as done in the tabular Q-learning. For that, DQN takes a state/observation as input represented as a set of features ϕ and outputs Q(s, a) obtained through a set of weights θ. Hence, as |θ| ≪ |S × A|, the ANN provides an abstraction over the state-action space [START_REF] Hausknecht | Deep Recurrent Q-Learning for Partially Observable MDPs[END_REF]. Thus, at each timestep i, the objective is to minimize the loss δ updating the weights θ through Eq. 2.10.

δ i (θ i ) = E[R(s, a) + γmax a ′ Q(s ′ , a ′ , θ i-1 ) -Q(s, a, θ i )] 2 ,
(2.10) Algorithm 1 summarizes how DQN interleaves interactions and policy improvement. The agent interacts with the environment by collecting new experiences in the form of (s, a, r, s ′ ) and storing them in replay memory D with capacity N . The replay memory is an implementation of Experience Replay [START_REF] Ji | Self-Improving Reactive Agents Based On Reinforcement Learning, Planning and Teaching[END_REF] used to break the correlation of data once it is generated in sequential steps. After collecting some n ≤ N samples, the stored observations are shuffled and split into minibatches to update the Q-estimations.

Another improvement to increase the stability of the learning process is the target network [START_REF] Mnih | Playing Atari with Deep Reinforcement Learning[END_REF]. In DQN, we consistently update the set of weights θ and use it to improve itself. That makes the weights non-stationary, as depicted in Fig. 2 neural networks to overcome this: the target network with weights θ ′ and the network with weights θ. Thus, the set of weights θ ′ in the target network is fixed for timestep intervals of length λ and then updated by copying the current θ values from the network. Although the optimality of Q(s, a) does not hold for DQNs, the target net strategy increases the chance of convergence by increasing the stability of the learning progress [START_REF] Morales | Grokking Deep Reinforcement Learning[END_REF]. The frequency λ that the target network updates can be seen as a hyperparameter, being with the replay memory properties an object of study in the performance of DQN and variants [START_REF] Fedus | Revisiting Fundamentals of Experience Replay[END_REF].

Prioritized Experience Replay (PER)

In RL Online settings, the agent takes action a in a given state s, reaching a new state s ′ and receiving a reward r, thus constituting a transition T = < s, a, r, s ′ > used to update a policy π. Thus, the observed transitions are strongly correlated since they are collected in sequential steps. Experience Replay overcame this by storing these transitions in replay memory, where we could shuffle these samples to break their correlation and use them more than once.

However, with random sampling, some rare experiences are poorly exploited. To enhance sample efficiency, in [START_REF] Schaul | Prioritized experience replay[END_REF], the authors propose Prioritized Experience Replay (PER), a sample strategy that considers transitions according to their TD error. The idea is that transitions with a higher error from Eq. 2.10 are those from which we can learn more [START_REF] Hessel | Rainbow: Combining Improvements in Deep Reinforcement Learning[END_REF]. For that, PER associates at each transition the TD error |δ| such that T = < s, a, r, s ′ , |δ| >. Thus, transitions with a higher TD error are those revisited more often. On the other hand, those with minor TD errors have been mastered and should be overwritten when the replay memory reaches its maximum capacity. to make it more stationary and mitigate divergence compared to using a single network. Adapted from [START_REF] Morales | Grokking Deep Reinforcement Learning[END_REF] Chapter 2

Although the prioritization of samples improves the sample efficiency, it creates a bias towards those with higher errors. To alleviate the bias introduced by the prioritization, the authors proposed a stochastic sampling selection through Equation 2.11.

P (i) = p α i k p α k , (2.11) 
where p i is the probability of the sample being selected, and α is how much prioritization is given. Thus, α = 1 is the case where the prioritization fully depends on δ magnitude, and α = 0 is the uniform case. To calculate the probability p i , the authors proposed two variants:

• A proportional prioritization p i = |δ i | + ϵ, that take into account the magnitude of |δ i |, plus a small positive value ϵ to prevent a transition be not revisited and;

• A rank based prioritization calculate through p i = 1 rank(i) , where rank(i) is based on the magnitude of |δ| for the transition i;

where new transitions get the currently highest prioritization value once their TD-error is unknown. Finally, to balance the bias introduced by the prioritization of samples, PER applies Importance Sampling (IS) weights through Equation 2.12.

w i = 1 n . 1 P (i) β ,
(2.12)

where n is the number of samples stored in the replay memory, P (i) is the probability associated with each of them, and β is how much prioritization is used, being the initial β o incremented over time. Thus, each sample is now associated with a weight w i .

Partially Observable Environments

In the plain DQN approach, the n last previous frames are concatenated as input. The idea behind this strategy is to provide a richer observation of the current state, such as its dynamics. For example, just looking at the timestep t in Fig. 2.5, it would not be possible to describe the trajectory of the circle. However, this information can be inferred by augmenting the state/observation with the n past frames. The problem is that certain states depend more on observations than suggested for the frame stacking strategy, which is between 3 and 5 frames. To handle this, Long Short-Term Memory (LSTM) [START_REF] Hochreiter | Long Short-Term Memory[END_REF] was combined with DQN in Deep Recurrent Q-Networks [START_REF] Hausknecht | Deep Recurrent Q-Learning for Partially Observable MDPs[END_REF]. Thus, relevant information from the past can persist and enrich the agent's observation of the current state.
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.5: In the DQN approach, n frames can be concatenated to provide a richer observation of the environment's current state, such as its dynamics. Adapted from [START_REF] Mnih | Human-level control through deep reinforcement learning[END_REF] 2.5 Reinforcement Learning: Policy-based Algorithms

In the previous sections, we saw that an RL policy π maps S → A. In action-value methods, this policy is obtained by updating Q(s, a), which estimates how good it is to be in the state s and applying an action a regarding the future. Thus, the Q-estimations lead the agents to take actions that maximize the rewards. Note that, however, there is no explicit representation of the policy π. On the other hand, in policy gradient methods, we can learn this policy directly without having an explicit action-value function representation. Let's consider a stochastic policy, with parameters θ such that π θ (a|s) = P r(a|s; θ). A way to represent preferences over actions is using a linear or non-linear (e.g., ANN) representation.

If the action space A is discrete, the action selection over the preferences h(s, a, θ), can be done through softmax [START_REF] Sutton | Reinforcement Learning: An Introduction[END_REF]:

π θ (a|s) = exp(h(s, a, θ)) a ′ exp(h(s, a ′ , θ)) , (2.13)
where the output is a probability distribution over actions. On the other hand, if the actions are continuous, this probability can be calculated, for instance, using a Gaussian function N (a|µ(s; θ), (s; θ)). Considering an episodic setting with an initial state s 0 , our goal is to improve the policy π θ aiming to maximize the rewards using an objective function J(θ) . = v πθ (s 0 ):

∇J(θ) ∝ s µ(s) a q π (s, a)∇π(a|s, θ), (2.14)
where µ is the probability of being in the state s when following the policy π and ∇π(a|s, θ) is the policy gradient. One popular method based on policy gradient is the Actor-Critic [START_REF] Mnih | Asynchronous Methods for Deep Reinforcement Learning[END_REF] approach, such as Deep Deterministic Policy Gradient (DDPG) [START_REF] Lillicrap | Continuous control with deep reinforcement learning[END_REF] and Trust Region Policy Optimization (TRPO) [START_REF] Schulman | Trust Region Policy Optimization[END_REF]. These methods combine the action value function with policy gradient methods so that the critic (action-value or state-value) assists the actor (π θ (a|s)) updates. The advantage of these methods is the ability to deal with environments with a large or continuous space. Conversely, it requires dealing with more instability in the learning process.
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Challenges, Methods and Applications using Deep Reinforcement Learning

This section covers related works to Deep Reinforcement Learning (DRL) that has some point of contact with this work. Thus, we started discussing the exploration-exploitation dilemma by reviewing some strategies for exploring the environment. After that, we discuss methods that use demonstrations to mitigate exhaustive exploration and present related approaches. Finally, we discuss related work on Curriculum Learning, which aims to organize and structure the learning process to make it more effective.

Exploration

One of the major challenges related to RL is the exploration and exploitation dilemma. The agent may exploit the acquired knowledge or explore unknown areas of the state-action space where the reward is unknown, which might provide better returns than the current knowledge [START_REF] Pislar | When should agents explore?[END_REF]. However, deciding when the agent should exploit the knowledge acquired or explore the environment and collect new experiences is not trivial. A widely applied exploration strategy is the ϵ -greedy policy [START_REF] Sutton | Reinforcement Learning: An Introduction[END_REF], in which a given probability trade-off between exploring the environment or exploiting the policy learned:

ϵ -greedy(a t ) = argmax a∈A Q(s, a), with probability 1 -ϵ random action A(s), with probability ϵ

In general, the ϵ-greedy policy starts with a high probability ϵ of performing a random action, reducing it gradually over time in favor of relying more on Q-estimations. The underlying idea is that the agent knows little about the environment at the beginning of interactions, so it needs to experience a variety of possible decisions to learn about them. As the experiences are collected, the policy improves and can make better decisions.

The exploration can also be encouraged by augmenting the reward with intrinsic motivation such as curiosity or disagreement in the state's estimation [START_REF] Oudeyer | What is intrinsic motivation? A typology of computational approaches[END_REF]. Then, the augmented immediate reward at some time step t has the following form:

rt = r e t + βr i t
where r e t is the extrinsic reward, and r i t is the intrinsic motivation weighted by β. Generally, intrinsically motivated methods greedily search to uncover areas of the stateaction space and might fit well in environments with sparse rewards. In [START_REF] Pathak | Self-Supervised Exploration via Disagreement[END_REF], the reward is augmented based on the disagreement of an ensemble of dynamic model estimators. For that, at each timestep, it is estimated the next state s t+1 using forward models {f 1 , f 2 , f 3 , ..., f n }, given the current state s t and an action π(s t ). The underlying idea is that unfamiliar states tend to yield a higher disagreement among the dynamic estimators. Count-based methods [Tan+17; Abe+16; Bel+16] generally apply intrinsic motivation Decision Making and Deep Reinforcement Learning based on the occurrences of states/actions to encourage exploration of uncovered areas. In [START_REF] Groth | Is Curiosity All You Need? On the Utility of Emergent Behaviours from Curious Exploration[END_REF], the authors highlight the problem of catastrophic forgetting due to a distributional shift in novelty intrinsically motivated exploration strategies. To evaluate this, they propose an exploration that augments the reward based on the forward model's error prediction. Then, an experiment was performed, retaining policy snapshots of emerging behaviors randomly sampled later, showing a significant improvement in the learning process.

Exploration from Demonstrations (EfD) [START_REF] Subramanian | Exploration from Demonstration for Interactive Reinforcement Learning[END_REF] uses statistical methods to explore the environment based on the agent's uncertainty. For that, two measures are used: Leverage, which aims to guide towards poorly explored areas of the state-action space, and Discrepancy, which considers the model's error based on TD error and the leverage. Central to this approach is identifying outliers among a set X of observations ϕ(s, a) calculating the hat matrix H. Thus, the unfamiliar observations hold the highest values in the main diagonal

h ii ∈ [0, 1]: X =      ϕ 1 (s 1 , a 1 ) ϕ 2 (s 1 , a 1 ) . . . ϕ n (s 1 , a 1 ) ϕ 1 (s 2 , a 2 ) ϕ 2 (s 2 , a 2 ) . . . ϕ n (s 2 , a 2 ) . . . . . . . . . . . . ϕ 1 (s n , a n ) ϕ 2 (s n , a n ) . . . ϕ n (s n , a n )      ; H=X(X T X) -1 X T =      h 11 h 12 . . . h 1n h 21 h 22 . . . h 1n . . . . . . . . . . . . h m1 h m2 . . . h mn     
In [START_REF] Mathieu Seurin | Don't Do What Doesn't Matter: Intrinsic Motivation with Action Usefulness[END_REF], instead of directing exploration through the novelty of the states, encourage the visitation of those whose rare actions are effective, that is, actions that have rarely been seen but, when applied, change the environment. Another branch of exploration concentrates on avoiding undesirable states. In particular, incorporating demonstrations and restricting the exploration to meaningful states can produce safe policies [START_REF] García | A Comprehensive Survey on Safe Reinforcement Learning[END_REF]. Finally, learning methods variants [START_REF] Haarnoja | Reinforcement Learning with Deep Energy-Based Policies[END_REF] can increase the policy entropy and enhance exploration.

Learning from Demonstrations

This section outlines approaches to overcome exhaustive exploration by learning through previously collected data.

Imitation Learning

Imitation Learning approaches [START_REF] Hussein | Imitation Learning: A Survey of Learning Methods[END_REF] aim to mimic the behavior observed in demonstrations. We can map states to actions through supervised learning methods (Behavior Cloning) or learn an underlying reward function (Inverse RL) from the logged data.

In [START_REF] Osa | An Algorithmic Perspective on Imitation Learning[END_REF], the authors formulated the Imitation Learning problem as follows:

π(D) = argmin d((q(ϕ), p(ϕ)), (2.15) 
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where given expert demonstrations D, the objective is to learn a policy π which minimizes the similarity distance d(q(ϕ), p(ϕ)) between the distribution of features q(ϕ) induced by the experts, to the distribution p(ϕ) induced by the learner. While Imitation Learning methods often significantly boost the learning process or overcome reward engineering, limitations also exist. Since imitation learning relies on a static dataset, interacting with states out of the demonstration's distribution can produce undesirable behaviors. Thus, expert demonstrations need to cover various possibilities in the environment. Also, we might observe a mismatch in the long term between expert demonstration and the behavior learned. Moreover, the method choice [START_REF] Osa | An Algorithmic Perspective on Imitation Learning[END_REF] and its respective hyperparameter tuning [START_REF] Hussenot | Hyperparameter Selection for Imitation Learning[END_REF] exert significant influence. Below are discussed approaches to Imitation Learning, focusing on Behavior Cloning (BC).

In [START_REF] Bentivegna | Learning tasks from observation and practice[END_REF] is proposed a hierarchical method for action selection with self-improvement over time. The first step is to select a primitive that corresponds to some behavior. For that, is used k-NN queries to retrieve a primitive from demonstrations given a current state. The second step is selecting a sub-goal achieved by performing the chosen primitive. Finally, an action generator picks a policy to execute the primitive. The underlying idea is to improve the action generator by practicing. In [START_REF] Cardamone | Learning Drivers for TORCS through Imitation Using Supervised Methods[END_REF], the k-NN queries are used to output action values, averaging those found in the most k-similar states to the current state in the demonstrations. Pomerleau [Pom88] uses a neural network to map states to actions and point out the problem of distribution mismatch. Teacher-student [START_REF] Ostrovski | The Difficulty of Passive Learning in Deep Reinforcement Learning[END_REF] approaches can mitigate the mismatch problem by interplaying imitation learning and self-play rollouts to learn policies robust to recover from unseen experiences in the demonstrations.

Offline (Batch) Reinforcement Learning

In Offline or Batch RL, the learning process is constrained to previously collected, such as demonstrations gathered from human interaction with the system. This constraint is due to the difficulty of creating accurate simulators or even safety constraints when exploring the environment. For example, for safety and cost reasons, an autonomous vehicle cannot learn by interacting with the environment through trial and error. Offline RL methods rely on the capacity to exploit and generalize from static datasets to efficient policies. Although, leveraging the learning process using prior experiences can be challenging due to the distributional shift issue and overly optimism in the face of uncertainty [START_REF] Fujimoto | Off-Policy Deep Reinforcement Learning without Exploration[END_REF][START_REF] Levine | Offline Reinforcement Learning: Tutorial, Review, and Perspectives on Open Problems[END_REF]. This section discusses some of the approaches in the literature for dealing with the overestimation phenomena [START_REF] Ostrovski | The Difficulty of Passive Learning in Deep Reinforcement Learning[END_REF].

• Averaged-DQN [ABS17] consider K previously learned Q-estimations, averaging them to mitigate the target approximation error. Its loss function δ is showed below:

δ i = E[R(s, a) + γmax a ′ 1 K K k=1 Q(s ′ , a ′ , θ i-k ) -Q(s, a, θ i )] 2 .
(2.16)

• Random Ensemble Mixture (REM) [START_REF] Agarwal | An Optimistic Perspective on Offline Reinforcement Learning[END_REF] addresses the overestimation problem by using a convex combination of Q-estimators under the assumption of a diverse and Decision Making and Deep Reinforcement Learning large dataset. Thus, at each minibatch forward pass, a set of weights α are randomly generated such that K k=1 α k = 1 and ∀k α k > 0:

δ i = E[R(s, a) + γmax a ′ K k=1 α k Q k (s ′ , a ′ , θ k i-1 ) - K k=1 α k Q k (s, a, θ k i )] 2 .
(2.17)

• Although not specifically designed targeting offline settings, Maxmin Q-learning [START_REF] Lan | Maxmin Q-learning: Controlling the Estimation Bias of Q-learning[END_REF] mitigate the overestimation bias taking the lower predicted Q-estimation for each action given by an ensemble of Q-networks, such as Q min (s, a) = min j∈{1,...,N } Q j (s, a), ∀a ∈ A. Thus, a set of K ≤ N Q-networks is randomly selected for update:

δ i = E[R(s, a) + γmax a ′ Q min (s ′ , a ′ , θ i-1 ) -Q k∈{1,...,K} (s, a, θ i )] 2 .
(2.18)

• Batch Constrained Deep Q-Learning (BCQ) [FMP19; Fuj+19] constrains the policy regarding actions found in the dataset using as a baseline a generative model G w .

In its discrete version, this generative model is a BC trained using the demonstrations. Thus, BCQ trade-off using the parameter τ at each timestep between relying on Q-estimations or in the generative model G w :

δ i = E[R(s, a) + γmax a ′ s.t. Gω (a ′ |s ′ ) max â Gω (â|s ′ ) >τ Q(s ′ , a ′ , θ i-1 ) -Q(s, a, θ i )] 2 (2.19) 
• Jaques and colleagues [START_REF] Jaques | Way Off-Policy Batch Deep Reinforcement Learning of Implicit Human Preferences in Dialog[END_REF] handle the overestimation issue by applying a dropoutinspired Q-learning and penalizing divergence from prior data distribution through KL-control.

Model-based

Model-based RL refers to a vast class of approaches and can be used to learn the system's dynamics to guide future interactions [START_REF] Levine | Offline Reinforcement Learning: Tutorial, Review, and Perspectives on Open Problems[END_REF][START_REF] Wang | Benchmarking Model-Based Reinforcement Learning[END_REF]. For instance, Model-based Offline Policy Optimization (MOPO) [START_REF] Yu | MOPO: Model-based Offline Policy Optimization[END_REF] builds a model using supervised learning and then penalizes the uncertainty in further interactions based on the model's error estimation. Therefore, MOPO balances the return and risk in collecting experiences of out-ofdistribution of the support data. Similarly, the Model-Based Offline Reinforcement Learning (MOReL) [START_REF] Kidambi | MOReL: Model-Based Offline Reinforcement Learning[END_REF] proposes to learn a policy for a pessimist MDP (P-MDP) using offline data. This P-MDP partitions the state space according to the uncertainty, applying a reward penalty to unknown areas. In [START_REF] Schrittwieser | Online and Offline Reinforcement Learning by Planning with a Learned Model[END_REF], the authors propose a model-based approach that can mix online data collection with prior offline data. For that, a model is built and incrementally improved through Monte Carlo Tree Search rollouts. Finally, MOdel-based Offline policy Search with Ensembles (MOOSE) [START_REF] Swazinna | Overcoming model bias for robust offline deep reinforcement learning[END_REF] combines model-based in an offline RL fashion, penalizing unlikely state-action pairs.

Curriculum Learning

Curriculum Learning (CL) [START_REF] Bengio | Curriculum Learning[END_REF] systematizes the learning process in such a manner that it is first introducing "easy" tasks, and gradually the difficulty increases along the way.
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This approach is analogous to how humans manage curricula in schooling systems. The underlying idea is that the learning process is more effective when organizing tasks in a meaningful order rather than randomly sampled [START_REF] Soviany | Curriculum Learning: A Survey[END_REF]. Thus, the problem is to define the set of tasks (task generation) and how these tasks should be organized and sampled (task sequencing) [START_REF] Foglino | An optimization framework for task sequencing in curriculum learning[END_REF]. Formally, this relationship among tasks is defined as an acyclic graph C = {V, E, g, T } in [START_REF] Narvekar | Curriculum Learning for Reinforcement Learning Domains: A Framework and Survey[END_REF], where:

• V is the set of vertices;

• E ⊆ {(x, y)|x, y ∈ V 2 and x ̸ = y} is the set of directed edges;

• T is a set of tasks;

• g : V → P(D T ) is a function associating vertices to a subset of all possible transitions D T = (s, a, r, s ′ ) given the set of tasks T , being P(D T ) its power set;

thus, an edge < v j , v k >, where v j , v k ∈ V establishes an order which samples should be trained. Some works have addressed how curricula should be organized and structured in machine learning-related fields, ranging from hand-designed curricula to automatically generated ones. Recently, CL has been applied in RL, showing that structuring agent learning results in more sample efficiency. For instance, Prioritized Experience Replay (PER) [START_REF] Schaul | Prioritized experience replay[END_REF] can be seen as a form of curriculum, giving more importance to samples with a higher bootstrapping error |δ i | through the Eq. 2.9 [START_REF] Narvekar | Curriculum Learning for Reinforcement Learning Domains: A Framework and Survey[END_REF]. Similarly, Value Disagreement Sampling (VDS) [START_REF] Zhang | Automatic Curriculum Learning through Value Disagreement[END_REF] uses epistemic uncertainty based on the disagreement of a set of Q-estimators to select goals. Hindsight Experience Replay (HER) [And+17] is a form of implicit curriculum aiming at environments with sparse and binary rewards. In these environments, even if the goal is close to being reached, no reward signal is observed before its achievement. To circumvent this, HER augments the representation of states and the reward function by weighing the states achieved by the current policy against some desired goal. Some other approaches have focused on the autonomous generation of curricula regarding skills. Automatic Curricula via Expert Demonstrations (ACED) [START_REF] Dai | Automatic Curricula via Expert Demonstrations[END_REF] uses collected data to sample goals. Then, gradually states between the goal distribution are sampled toward the initial state distribution, interleaving the policy and behavior cloning rollouts. In [START_REF] Florensa | Automatic Goal Generation for Reinforcement Learning Agents[END_REF], a variation of Generative Adversarial Networks (GANs) automatically sample goals according to the policy's current ability. Similarly, AMIGo [START_REF] Campero | Learning with AMIGo: Adversarially Motivated Intrinsic Goals[END_REF] aims to handle the lack of a reward signal through a teacher-student approach inspired by GANs. The idea is to reward the teacher for proposing goals conditional on student ability while the student is rewarded for achieving them. Song and colleagues [START_REF] Song | Autonomous Overtaking in Gran Turismo Sport Using Curriculum Reinforcement Learning[END_REF] organize the curricula in terms of skills, gradually increasing their composition. In [START_REF] Justesen | Illuminating generalization in deep reinforcement learning through procedural level generation[END_REF], the authors highlight the problem that many works report results in environments used both for learning and evaluation, leading to similar distributions. Thus, they propose Procedural Content Generation (PCG), which progressively increases the difficulty of the environment to enhance the agent's generalization capacity.
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Policy Distillation, Multi-task RL and Continual Learning

Policy distillation is the term used to describe the idea of transferring the knowledge from a set of ANN weights θ to another set θ ′ , being expected that θ ′ ≪ θ in terms of size. The original approach is proposed by [BCNM06] and adapted to RL settings in [START_REF] Rusu | Policy Distillation[END_REF]. Hinton et al. [START_REF] Hinton | Distilling the Knowledge in a Neural Network[END_REF] is the first to coin the term distillation for this approach and point out its necessity since the training and deployment phases have different requirements in terms of models, although usually treated without distinction. In the context of RL, the authors show that the ANN size can be up to 15 times smaller, and we can combine multiple expert policies into a single one that, in turn, outperforms the previous ones. For that, the authors propose transfer learning methods to perform policy distillation from a cumbersome model (teacher) T to a new model (student) S. For that, samples

D T = {(s i , Q i (s, a)} N
i=0 are generated from the model T . Below we review these methods:

• The first method considers training the student model with a negative log likelihood loss (NLL) only considering the best action from the Teacher network such that a = argmax(Q θ T (s, a)) and:

δ N LL (D T , θ S ) = - |D| i=1 log P (a|x i , θ S )
• The second method is a mean-squared error loss (MSE) that uses the Q-estimations from the Teacher network Q θ T and the Student network Q θ S :

δ M SE (D T , θ S ) = |D| i=1 |Q θ T i (s, a) -Q θ S i (s, a)| 2
• The third method is Kullback-Leibler-based combined with softmax using the temperature parameter τ :

δ KL (D T , θ S ) = |D| i=1 sof tmax( Q θ T i (s,a) τ ) log sof tmax( Q θ T i (s,a) τ ) sof tmax(Q θ S i (s,a))
Finally, the authors present an experiment where multiple expert policies (teachers) for distinct tasks leverage the learning process to a new multi-task model (student). The curriculum is relatively simple: at each episode, the student learns a different task using the buffer data D. Each task sample is kept separate in the buffer, and the output layers are independent since tasks can have a distinct set of actions. Other works propose different mechanisms to combine these expert policies, such as using distribution regularization [START_REF] Teh | Distral: Robust multitask reinforcement learning[END_REF], sampling control [START_REF] Czarnecki | Mix & Match Agent Curricula for Reinforcement Learning[END_REF], or interleave teacher and student samples over progressive tasks through a curriculum [START_REF] Berseth | Progressive Reinforcement Learning with Distillation for Multi-Skilled Motion Control[END_REF].

One of the problems when learning sequentially multiple tasks is that the knowledge of previous tasks tends to vanish due to weight updates while learning new tasks, a phenomenon called catastrophic forgetting [START_REF] Mccloskey | Catastrophic Interference in Connectionist Networks: The Sequential Learning Problem[END_REF]. In mammalian brains, continuous learning Chapter 2 is possible due to mechanisms aiming to reduce the plasticity of synapses of previous tasks, as some research suggests. Inspired by that, the authors in [START_REF] Kirkpatrick | Overcoming catastrophic forgetting in neural networks[END_REF] propose elastic weight consolidation, an analogous approach to overcome catastrophic forgetting in ANNs by selectively decreasing the plasticity of weights.

In Continual (Lifelong) Learning [Khe+22], we consider an endless stream of tasks the agent must adapt to perform while learning them. Similarly to Multi-task RL and in contrast to Curriculum Learning, the tasks are not sampled in a structured way. As such, previously mastered tasks may not leverage the learning for new ones, leading to catastrophic forgetting. Thus, one of the lifelong learning challenges is retaining relevant knowledge to leverage learning for related tasks while forgetting irrelevant information. Close to our work and conceptually related to Continual and Curriculum Learning, Self-Imitation via Reduction (SIR) [START_REF] Li | Solving Compositional Reinforcement Learning Problems via Task Reduction[END_REF] proposes solving RL problems compositionally. The main idea is to reduce the state space of a task and later use self-imitation learning from previously generated samples to leverage the next task.

Control using Reinforcement Learning

Reinforcement Learning has achieved remarkable success in game applications like Al-phaGo [START_REF] Silver | Mastering the game of Go with deep neural networks and tree search[END_REF] and Starcraft [START_REF] Vinyals | Grandmaster level in StarCraft II using multi-agent reinforcement learning[END_REF] and is currently emerging as a viable solution for control. In [START_REF] Yang | Recurrent Deep Multiagent Q-Learning for Autonomous Brokers in Smart Grid[END_REF], the authors use Deep Recurrent Q-Networks [START_REF] Hausknecht | Deep Recurrent Q-Learning for Partially Observable MDPs[END_REF] in a smart grid scenario. The objective is to develop a pricing strategy to maximize the broker's (agent) profits. A reward-shaping strategy is proposed once customers are clustered according to their consumption patterns and managed by their respective sub-brokers. Then, a mechanism for credit assignment was necessary to indicate the contribution of each sub-broker to the global return. Wei and colleagues [START_REF] Wei | Deep Reinforcement Learning for Building HVAC Control[END_REF] propose a data-driven solution to control an HVAC (heating, ventilation, and air conditioning) system. The objective is to control the environment temperature by handling numerous disturbances with real-time data. The possible actions are a discrete set of airflow rates divided by building zone. Then, the approach split each zone controlling it by distinct artificial neural networks. Sivakumar et al. [START_REF] Sivakumar | MVFST-RL: An Asynchronous RL Framework for Congestion Control with Delayed Actions[END_REF] propose a network control strategy that acts asynchronously with the environment. The delay, which authors call by δ, corresponds to the policy lookup time when selecting an action. Meanwhile, the network keeps transmitting data in the interval [t, t + δ]. Thus, the transitions depend on the state and action at some timestep t and the previous action at t-1. In [START_REF] Jay | A Deep Reinforcement Learning Perspective on Internet Congestion Control[END_REF], the problem of congestion control in networks is also addressed, and a testbed was released. In [START_REF] Marc G Bellemare | Autonomous navigation of stratospheric balloons using reinforcement learning[END_REF], the authors applied RL to a flight controller of a stratospheric balloon which must handle a partially observable environment and continuous interaction. Finally, Degrave et al. [START_REF] Degrave | Magnetic control of tokamak plasmas through deep reinforcement learning[END_REF] use RL for nuclear fusion control, which achieved a variety of plasma configurations.

Chapter Conclusions

This chapter discusses some approaches to decision-making for controlling and monitoring systems. Table 2.1 summarizes the decision-making methods discussed in this chapter, list-Decision Making and Deep Reinforcement Learning ing their main characteristics. One of the limitations of methods like FSM, Fuzzy Systems, and BDI agents is the need to handcraft design the whole decision process. Alternatively, using ANN as a function approximator, the RL approach enables scalability and can overcome over-specification through a reward function. In the case of action-value methods, this reward function provides a scalar value that determines how good it is to apply a given action to some state regarding the future for all possible state-action pairs. In this way, the ANN can create an abstraction for these state-action pairs, capable of being scalable and robust.

Although RL-based approaches can offer scalability and robustness, which is limited in other methods, it still requires considerable interactions with the environment to learn a policy. In section 2.6, we introduce some of the challenges inherent to this process. We presented the exploration-exploitation dilemma and discussed some exploration strategies. However, exploring the environment is not trivial, especially in environments with highdimensional state space. To circumvent it, we show that demonstrations can leverage the learning process. For example, a policy can be learned in offline RL using only previously collected data. However, these samples can be suboptimal or not cover a large enough set of possibilities. Thus, when interacting/exploring the environment is possible, the demonstrations are used to create models of the world to guide actions in future interactions. Several works have shown that interleaving past experiences with self-play rollouts can output better policies. Finally, we introduce some approaches related to Curriculum Learning. These approaches aim to organize and structure the learning process to make it more sample efficient. Finally, the learning phase and deployment have different requirements regarding the ANN architecture. Thus, it is possible to have a compressed model capable of executing multiple tasks using policy distillation.

In the next chapter, we present the pump scheduling problem. In this problem, the objective is to decide which pumps should operate to supply water to consumers while minimizing electricity consumption and respecting safety constraints. The chapter shows that this problem can be modeled as a POMDP. For that end, we provide a representation of states, actions, and reward functions. We choose a real-world water distribution system as a scenario where demonstrations of the human operation policy are available. These data are of fundamental importance to understanding how humans handled the pump operation and are valuable to give insights into the design of a state representation and reward function. Chapter 3

Approach

A control system collects data from its environment via sensors and changes its state via actuators. However, many control approaches, whether concerned with decision-making or control optimization, have limitations as the system's complexity increases. Some methods, for example, require an expert to map every possible input (sensor data) to an output (action) which is unfeasible in high dimensional state spaces, leading to a lack of accuracy. In the case of control optimization, real-world problems are complex, involving nonlinear equations that are hard to model. The previous chapter discusses works where RL could tackle these challenges to control and monitoring systems, providing a data-driven solution. The Deep RL overcomes the limitations of other approaches by breaking down the learning process and dealing with high-dimensional state spaces using a function approximator, although some issues arise from it. The applications range from HVAC systems to computer networks.

In this chapter, we approach the control problem of pump scheduling in a water distribution system. The pump scheduling optimization is necessary once pump operation corresponds to the highest electricity consumption in water distribution systems operation. Moreover, increasing the pump operation efficiency does not incur additional costs [START_REF] Henrique | A branch-and-bound algorithm for optimal pump scheduling in water distribution networks[END_REF]. For that end, an RL approach is suitable since it can balance multiple subgoals regarding the water supply, such as protecting the assets and saving electricity. Currently, some water utilities use Supervisory Control and Data Acquisition (SCADA) to manage the water supply, which is technically complex and expensive, especially for small water systems. Although the definition of SCADA systems may be subjective, it generally comprises hardware and a human interface for control and monitoring systems. Our approach intends to address water facilities where an RL could obtain data from the system through low-cost sensors and, based on that, assist decision-making. As such, we could extend interoperability and standardization compared to SCADA, allowing a range of smart devices to be connected.

Aiming that, we start the chapter by presenting the project IoT.H2O in section 3.1, an international research effort to investigate low-cost technologies to control and monitor water distribution systems. Later, we introduce our scenario in section 3.2, a water distribution system located in Germany. For this system, we have three years of data in 1-minute timesteps collected from the real-world operation by sensors installed in the facility. As such, through this data, we can show the current strategy applied to the system and discuss its constraints. After, we describe some other approaches proposed to deal with pump scheduling in section 3.3, highlighting their main characteristics and discussing how RL overcomes some of the found drawbacks. Later, we model the problem as POMDP, defining the state's representation and reward function in section 3.4. We discuss the insights taken for the state's feature selection and reward function engineering, given the information that data gathered through sensors could provide. Finally, we end the chapter with some conclusions in section 3.5
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The IoT.H2O Project: IoT for Supervision and Control of Water Systems

This section presents the work packages developed in the IoT.H2O project: IoT for Supervision and Control of Water Systems1 , of which this manuscript is part. The IoT.H2O project is an international collaboration aiming to develop low-cost solutions for control and monitoring water distribution systems. Researchers and engineers from the following institutions/companies are involved in this project:

• Technical University of Kaiserslautern -Institute for Fluid Mechanics and Fluid Machinery, Germany The project has its objectives defined in five work packages in addition to the testing phase of the physical devices. This organization allows the partners to coordinate and collaborate among themselves to achieve the project's goals:

• Work package 1. Water Network Modeling: the work package 1 is related to modeling water distribution systems using software such as Epanet2 . Thus, it is possible to analyze different possible scenarios that may occur in the real world. Throughout this chapter, we will introduce a simulator of a water distribution system that we use to learn and evaluate RL-based policies.

• Work package 2. Placing and Virtual Sensors: this work package is related to placing sensors in the water distribution network. These sensors are based on boards like Arduino3 and Raspberry PI Zero4 , which are affordable and easy to maintain. Later, the objective is to decide how many and where to place these sensors in the network to get enough information about the current system's state.

• Work package 3. Pump Operation: this work package is related to pump monitoring. Using logged data, our partners can train a neural network to identify the Chapter 3 operating point, i.e., the pump efficiency, using the information collected by a vibration sensor. This alternative has advantages over previous approaches based on costly sensors to collect flow rate, torque, and pressure data.

• Work package 4. Pump Scheduling Optimization: this work package is presented along with this work. Our goal is to use sensor data to make decisions regarding the operation of the pumps in the water distribution system. For this purpose, we must appropriately place the sensors built (work packages 2 and 3) to provide information about the system with less noise as possible. To evaluate the quality of a policy learned, we use simulators developed in work package 1. Finally, sensors and decision-making are connected through an IoT platform designed in work package 5.

• Work package 5. IoT Technology: the IoT technology work package analyzes different technologies to provide a communication layer between system elements. That includes investigating communication protocols for information exchange, evaluating sensors' autonomy and communication antennas' coverage, and developing an IoT platform to integrate all system elements.

The next section introduces our water distribution system scenario, where a simulator and real-world data collected through sensors are available. We analyze the policy applied to the system through the data, aiming to understand its constraints and the strategy used to satisfy them. Next, we present some related work in the literature to deal with the pump scheduling problem.

Water Distribution System and the Pump Scheduling Problem

Water distribution systems aim to treat and supply water to end consumers. Usually, the water is collected and treated before being pumped into the network using either fixed or variable pumps. In addition, tanks can be placed in the system to store water and avoid using pumps at peak electricity consumption timeslots. In this work, our case study is a water distribution system located in Germany that supplies water for about 120000 people. Moreover, a simulator of the system and logged data5 gathered from the human operation along with three years in 1-min timesteps are available. Figure 3.1 shows an overview of the water distribution system considered in this work.

The system collects and treats the raw water from wells before storing it in a reservoir. In this water utility, four distribution pumps (NP1 to NP4) of different sizes are available for pumping the water through the system network into two storage tanks. These pumps operate at a fixed speed, controlled by the start/stop control (ON/OFF). At most, only one pump can be running since the parallel operation is usually not applied, although it would be possible in case of exceptionally high water demand. A decision process has to decide on the operation of the most suitable pump regarding the water demand forecast, energy consumption, water quality, security of supply, and operational reliability. The human operation in the water distribution system follows a strategy to handle the pump scheduling based on the water consumption pattern observed in Figure 3.2. As the system supplies water for a residential network, we can see a peak in water consumption between 7 am to 9 am and, later on, another between 6 pm to 8 pm. As shown in Figure 3.3, the operation fills the tank to a high level before the peak in water consumption, and then they let it decrease along the day to provide water exchange and keep water quality. A safety operation must guarantee the tank level with at least 3m filled once it allows the system operators to handle unexpected situations. Figures 3. [START_REF]2 Average electricity consumption (%) ± standard deviation compared to realworld operation[END_REF] show the monthly average daily pump switch. Each pump switch is considered either ON to OFF or OFF to ON, counting +1. Thus, we could say that the current pump operation generally uses each pump at most once a day. Although measuring the impact of a strategy in preserving the system's assets is complex, the idea is to minimize the amount of switching once it decreases the lifetime of pumps while distributing the pump usage. Figure 3.5 allows an analysis of the electricity consumption. For the system considered, the higher the pump size, the higher the electricity consumption, such that NP1 > NP2 > NP3 > NP4. As such, given the pump's settings, we can see the prioritization of the use of pump NP2. A POMDP for Control: The Case of Pumping Scheduling in Water Distribution Systems Finally, Figure 3.6 shows the electricity consumption of the measured (real world) data and the simulator. This evaluation is important once it allows us to evaluate the accuracy of the water distribution simulator. For comparison, we set an initial tank condition and chose actions using the human operation logged data to generate simulated data. A pump is ON if its values of Q, kW ̸ = 0. Thus, given an initial tank condition at some timestep t in the dataset, we apply the action found for the respective timestep and keep following these actions once the simulator can calculate the tank level at t + 1. Note that the range of values between the measured and simulated data differ. The reason is not considering the pump efficiency in Equation 3.1. Thus, we obtain the values for measured data by taking the hydraulic power (P h ) and dividing it by the efficiency η: P h (kW ) = Qρgh/(3.6 10 6 ), where (3.1)

• Q is the flow (m 3 /h)
• ρ is the density of fluid (kg/m 3 )

• g is the acceleration of gravity (9.81m/s 2 )

• h is the differential head (m) This section shows that human operation follows a strategy based on water consumption patterns that ensures water supply and meets the safety constraints. As such, the question is: could exist a better strategy that leads to electricity saving while meeting the constraints of the system? In the next section, we review some computational approaches for optimizing pump scheduling in the literature. Chapter 3

Related Works

In this section, we outline related approaches in the literature regarding pump scheduling optimization.

Genetic Algorithms

Genetic Algorithms [START_REF] Goldberg | Genetic Algorithms in Search, Optimization and Machine Learning[END_REF] are biologically inspired approaches based on natural selection. Initially, a population of candidate solutions is generated, usually represented by binary arrays representing the presence or absence of genes. The underlying idea is that through a selection mechanism, suitable solutions are those able to breed a new generation. Thus, the selected solutions are recombined (crossover) and mutated during each generation. In [START_REF] Costa | Hybrid genetic algorithm in the optimization of energy costs in water supply networks[END_REF], the authors use the above ideas with a correction algorithm that checks the feasibility of generated solutions to breed new ones. The approach aims to create pump schedules to minimize electricity consumption by making decisions at 1-hour intervals. Similarly, in [START_REF] Luna | Improving energy efficiency in water supply systems with pump scheduling optimization[END_REF], the authors applied a Genetic Algorithm with a knowledge-based mechanism to introduce feasible solutions besides a selective mutation mechanism.

Although Genetic Algorithms could be an effective way to find suitable solutions through its search space, it has as drawback its static nature. As such, this solution would not be reactive to the data gathered from sensors, consequently unable to handle unexpected situations. Moreover, finding a solution might be computationally expensive or even unfeasible due to the curse of dimensionality as the water supply system becomes more complex.

Branch-and-Bound Algorithms

Branch-and-bound algorithms are usually applied to solve discrete combinatorial optimization problems. This approach enumerates all possible outcomes at the root node and selects them step by step for the next branching procedure. In [START_REF] Henrique | A branch-and-bound algorithm for optimal pump scheduling in water distribution networks[END_REF], the authors adopted a branch-and-bound algorithm that interacts with the hydraulic simulator EPANET6 to evaluate decisions at every 1-hour timesteps in a horizon length of 24 hours. That strategy, similar to the approaches of Genetic Algorithms presented early, excludes infeasible partial solutions at an early step. Thus, undesirable solutions are discarded for the following branching procedure. The proposed algorithm aims to find a solution that minimizes the electricity consumption/cost and switching in pump operation and meets the system's constraints. Menke and colleagues in [START_REF] Menke | Exploring optimal pump scheduling in water distribution networks with branch and bound methods[END_REF] also used a branch-and-bound approach through an algorithm with several steps for the branching procedure. The objective function adopted has contact with the presented in this work. The authors consider pumps with fixed speed (ON/OFF), and the goal is to minimize the electricity consumption meanwhile penalizing switches in the pump operation. However, branch-and-bound approaches do not overcome the limitations found in Genetic Algorithms, being unable to handle unexpected situations and computationally expensive.
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Fuzzy Logic Control

Fuzzy Logic Systems differ from boolean logic by using degrees of truth associated with linguistic variables such as good and hot, allowing model vague and imprecise relations.

The advantage is that it provides a data-driven approach to control systems while embodying human-like thinking. In [START_REF] Thommas | Fuzzy pressure control system in water supply networks with series-parallel pumps[END_REF], a fuzzy controller is proposed, and the system evaluation is carried out using different pump configurations such as single, parallel, and series. In [Mor+20], the authors present a neuro-fuzzy controller that combines NN and Fuzzy Logic to control variable speed pumps. Thus, the fuzzy system is abstracted using an NN architecture representing it. Although fuzzy controllers overcome the drawback of not being reactive as Genetic and Branch-and-Bound algorithms, it still requires a human expert to handcraft the system. As such, designing a high-dimensional input-output fuzzy controller can be unfeasible or lack accuracy.

Deep Reinforcement Learning

The authors in [START_REF] Hajgató | Deep Reinforcement Learning for Real-Time Optimization of Pumps in Water Distribution Systems[END_REF] adopt a DRL approach to deal with the pump scheduling problem, although using RL to control water systems is introduced earlier with works such as [START_REF] Mahootchi | Reservoir operation optimization by reinforcement learning[END_REF]. As such, the proposed approach corresponds to a data-driven solution with the benefit of obtaining real-time decisions, which is limited in previous approaches due to the computational complexity of the method employed. The goal is to find the most suitable operation point in variable speed pumps corresponding to a continuous action space. However, the authors adopted Dueling DQN to handle this problem, discretizing the action space. During the learning phase, the method employs an auxiliary method to guide the action selection toward the best solution. The authors evaluate the approach in two EPANET benchmarks.

In [Seo+21], the authors also applied DRL to control a real-world scenario of a wastewater treatment plant. In their study case, the electricity price has different tariffs throughout the day, which add one more constraint to the proposed strategy. Thus, the reward function considers the electricity consumption/cost, water levels, and pump switches. The action space is six pumps with fixed speed (discrete action space), and parallel operation is possible. Also, about 320 days in 5-min timesteps of expert demonstrations from realworld operations are available. This data is used as a comparison baseline, while policies are learned from scratch with auxiliary methods. The results showed that the two DRLbased agents (DQN and DPPO) could provide savings regarding electricity consumption compared to experts, and it was competitive with Model Predictive Control (MPC) results. Also, the DRL-based agent satisfied the operation rules.

This section shows that some approaches, such as Branch-and-Bound and Genetic algorithms, are computationally expensive and, therefore, unsuitable for providing real-time control. DRL can overcome this limitation, requiring considerable data to learn a policy. In [Seo+21], the authors show that DRL can be competitive with approaches such as Model Predictive Control (MPC) and human operation. Despite the overlaps regarding the POMDP representation presented next, our work distinguishes from the previous ones for having as a primary contribution investigate methods to enhance sample efficiency using demon-Chapter 3 strations or structuring the learning process. In the remainder of this chapter, we propose a specification for the pump scheduling problem as a POMDP, defining the state-action space and the reward function, considering the water facility located in Germany as a study case.

A POMDP for the Pump Scheduling Problem

In this work, we cast the pump scheduling problem for our water system study case as an episodic POMDP. To define the episode length, we consider the daily pattern observed in the water consumption shown in Figure 3.2. Thus, each episode has a length of 1440 timesteps or one day of operation. The state/observation space and reward were partially based on data that sensors could gather, such as the tank level, water consumption, flow rate Q, and hydraulic head H. The flow rate Q represents the volume that goes through the pump in a specific time metric, while the hydraulic head H refers to the height to which a pump can raise water straight up, being both measured by gathering data from the pump operation. The action space A represents the discrete set of pumps (NP1 to NP4) and the option to turn all of them OFF (NOP). These pumps have different flow rates Q, which leads to distinct electricity consumption kW . Thus, the decision process consists of defining a policy that meets the water demand while limiting electricity consumption and satisfying safety constraints. Among the constraints and requirements established in the operation settings for this system are the following:

• It is desirable to avoid frequent switches and distribute pump operations to protect the assets;

• It is imposed a boundary condition of the tank level, and once achieved, the minimum pressure is guaranteed;

• It is desirable to provide water exchange in the tank during one day of operation to keep the water quality;

In a POMDP, the states have the purpose of providing enough information for the agent to take action, aiming to maximize the rewards in the long term. In turn, the reward function should lead to behavior that meets the established constraints and requirements. Since we are dealing with a real-world problem, there is no prior specification of states and reward functions, usually handcraft design. In our representation, we count on the assistance of experts in the hydraulics system to understand the constraints and objectives and then propose the POMDP. Below, we present the POMDP proposed, with the state-action space and reward functions, explaining the insights taken into account to define them.

State/Observation:

The state/observation is represented by the tank level (t) ∈ [47, 57] and a given water consumption (t) for a time of day (t), the respective month, the action ∈ A at t -1, the cumulative time running ∈ [0, 1440] of pumps along with an episode, and a binary value called water quality that indicates if during the episode the tank level achieved a level lower than 53m. These features were selected aiming to:
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• Provide information regarding the system's current state, such as tank level and water consumption;

• Understand the cyclical behavior of water consumption along the hours of the day in different seasons of the year;

• Leads the agent to avoid switching the pump operation as well as make a balance of their use;

• Provide information regarding the constraints of water quality;

Action: The action space corresponds to the pumps available and the option to turn them OFF, such that A = {NP1, NP2, NP3, NP4, NOP}. These pumps have different sizes, which corresponds to distinct Q and kW , being NP1 > NP2 > NP3 > NP4. The action NOP in its turn, has Q, kW = 0.

Reward: We define two dense reward functions through Eq. 3.2 and Eq. 3.3, where P correspond to the cumulative time along an episode that the current pump (or action) is running. The idea of proposing two distinct reward functions is to evaluate the behavior that emerges from them. The difference lies in the fact that while the Eq. 3.2 gives a positive value for the pump efficiency through Q/kW , the Eq. 3.3 penalizes the electricity consumption through 1/kW . We show how these rewards are calculated in the Algorithms 2 and 3. These reward functions intend to trade off the following sub-goals:

• Enhance the efficiency of the pump operation through Q/kW or penalize the electricity consumption through 1/kW ;

• Maintain safe levels of tank operation through the term B * ψ where ψ is a constant. The variable B can assume the values [-1] ∪ [0, 1] and reaches 1 in an overflow situation (tank level = 57m) or (near) shortage (tank level < 49m). The tank interval [49, 50) progressively increases the penalty towards the lowest level. Finally, B = -1 for the timestep that the minimum tank level to preserve the water quality is achieved along with the episode;

• The term log(1/(P + ω)) penalizes switches and provides distribution of the use of the pumps. For that, P is the cumulative time that some action is applied and ω is a constant that penalizes the action switch for the respective timestep;

r t = e 1/(-Qt/kWt) -B * ψ + log(1/(P + ω)) (3.2) r t = -e (-1/kWt) -B * ψ + log(1/(P + ω)) (3.3)
Although we do not assume that these dense reward functions lead to optimal strategies to control the pump operation, handcrafting them requires a considerable engineering burden [START_REF] Conor | A Practical Guide to Multi-Objective Reinforcement Learning and Planning[END_REF]. The reason is that, as seen, the function must balance multiple goals to Chapter 3 drive the policy to learn a desirable behavior. To evaluate it, we must find an ANN architecture capable of learning it. When not, does the problem comes from the reward function or the architecture? In the next chapter, we use the POMDP presented in this chapter to learn RL-based policies, evaluating if the emerged behaviors meet the system's constraints while saving electricity. 

Chapter Conclusions

This chapter starts by presenting the motivation and context of this work, describing the work packages of the IoT.H2O project. This project aims to investigate technologies to provide low-cost solutions to control and monitor water distribution systems. For that end, several aspects are addressed, from optimizing the use of resources to system monitoring and decision-making. In particular, this work addresses the pump scheduling problem since it greatly impacts energy consumption, and its optimization does not entail additional costs. Next, we review the literature highlighting why a DRL-based solution overcomes limitations regarding the methods proposed previously. Finally, we present a POMDP representation for the pump scheduling problem. The features are partially chosen based on data that sensors could gather from the water system, such as tank levels and water consumption. Moreover, we propose two reward functions to evaluate the emerging behavior when using them as a reward mechanism in the following chapters of this work.

Part II

Contributions

Chapter 4 Intrinsically Motivated Imitation Learning

Simplicity is a great virtue but it requires hard work to achieve it and education to appreciate it. And to make matters worse: complexity sells better The previous chapter proposes a Partially Observable Markov Decision Process (POMDP) for the pump scheduling problem. This representation allows defining a set of features (states/observations) that the agent observes at each timestep to decide which action to perform and then receiving a reward expressing how good this decision is regarding the present. These features are continuous values that create a high-dimensional state space when combined. As seen previously, exploration, in this case, can be a difficult task, even more so if the interaction with the environment is continuous, i.e., without a reset mechanism. The reason is that the policy can prematurely converge, preventing the agent from exploring higher reward areas.

A way to overcome exploration is by using an expert policy to transfer knowledge. This knowledge transfer can occur in several ways: interleaving the policy being learned (student) with an expert policy (teacher) or using samples drawn from the expert policy. In the water distribution system scenario, the data collected from the real-world through human decisions can leverage learning for a new policy, either without interacting with the environment using methods for Offline RL [START_REF] Levine | Offline Reinforcement Learning: Tutorial, Review, and Perspectives on Open Problems[END_REF] or as a guideline to select action as some Imitation Learning (IL) [START_REF] Hussein | Imitation Learning: A Survey of Learning Methods[END_REF] approaches. Thus, using either Offline RL or IL, we can learn a new policy π different from the policy µ (expert policy) without knowing the reward mechanism that µ is following.

In particular, IL attempts to solve some tasks by mimicking the behavior of an expert. That is especially useful, for instance, in safety risk domains such as autonomous vehicles, where random actions may incur costs. Behavior Cloning (BC) is a form of IL where approaches such as [START_REF] Pomerleau | ALVINN: An Autonomous Land Vehicle in a Neural Network[END_REF][START_REF] Bojarski | End to End Learning for Self-Driving Cars[END_REF][START_REF] Wang | Imitation Learning Based Decision-Making for Autonomous Vehicle Control at Traffic Roundabouts[END_REF] aims to map states to actions through supervised learning. If the action space is discrete, BC corresponds to a classification problem [START_REF] Le | Making Efficient Use of Demonstrations to Solve Hard Exploration Problems[END_REF]. Although useful to overcome exploration and leverage the learning process, BC struggles when facing states out of the demonstration distribution [START_REF] Nair | Overcoming Exploration in Reinforcement Learning with Demonstrations[END_REF].

Based on the above ideas, we propose in this chapter Safety through Intrinsically Motivated Imitation Learning (SIMIL), an IL strategy using density-based action selection and intrinsic motivation to constrain policies to expert demonstrations. Our contribution lies in the idea that SIMIL, while retrieving expert demonstration behavior, also allows extrapolating it in favor of states that lie in high-density regions. Before, density-based approaches were used to explore the environment [Tan+17; Bel+16; SIT16; Taï+20] and prioritize samples during learning [START_REF] Zhao | Curiosity-Driven Experience Prioritization via Density Estimation[END_REF]. While exploration strategies seek to discover uncovered areas of the state space, which may lead to a constant distribution shift, the prioritization mechanism aims to balance and diversify samples in the learning phase. Our work distinguishes itself by constraining the state space using BC and encouraging high-density regions under the demonstration distribution through intrinsic motivation [START_REF] Singh | Intrinsically Motivated Reinforcement Learning[END_REF].

We apply SIMIL to the pump scheduling for a water distribution system presented in the previous chapter to evaluate our approach. The empirical results show that our approach can produce policies that outperform Offline RL methods, and the proposed reward functions lead to competitive performance compared to the real-world operation.

Methods

We begin this chapter by introducing the methods chosen to implement SIMIL. We use the k-Nearest Neighbors (k-NN) to mimic the behavior found in the demonstrations dataset when selecting actions (i.e., BC) and Kernel Density Estimation (KDE) for probability density estimation to calculate the reward bonus. Both methods can be found in the Scikit-learn library [START_REF] Pedregosa | Scikit-learn: Machine Learning in Python[END_REF], facilitating the reproducibility of this work.

k-Nearest Neighbors (k-NN) Algorithm

The k-Nearest Neighbors is a supervised learning method generally used for classifying discrete labels or regression problems for continuous labels. The idea is to project the data points D in a n-dimensional space and then use some metrics, such as Euclidean or Manhattan distance, to find the nearest neighbors when given a new data point. Figure 4.1 illustrates it where the euclidean distance e = (x 2 -x 1 ) + (y 2 -y 1 ) and the Manhattan distance (sum of a+b) are respective distances to the red and purple data point. Thus, given a new data point (purple), k-NN returns the k-neighbors (dashed line circle) of it, being k a parameter (in the example, k=3). However, the k-NN can be computationally expensive for large datasets once it keeps all the data D stored in memory for queries. A more efficient way to calculate k-NN for high dimensional data is using the algorithm Balltree [START_REF] Pedregosa | Scikit-learn: Machine Learning in Python[END_REF]. As such, instead of calculating the distance between all pairs of data points, a tree hierarchically structures the search space, where each node is a set of k-neighbors (a ball). The building process Balltree(D, k) is listed bellow [Kdt]: 

1. If |D| < k end

Kernel Density Estimation (KDE)

The Kernel Density Estimation (KDE) is a non-parametric method to estimate an unknown density function f using a set of data points. Let's consider the distribution of samples (x 1 , x 2 , ..., x n ). To estimate the shape of the density function f , its kernel is such that:

fh (x) = 1 nh n i=1 K x -x i h , (4.1) 
where n is the number of samples, h > 0 is a smoothing parameter called the bandwidth, and K(x) > 0 is the kernel, which is usually a symmetric function such as a Gaussian. A critical component of the performance of KDE is bandwidth selection. As shown in Figure 4.2, the bandwidth affects the smoothness of the density estimation, where higher values can lead to underfitting, and lower values can lead to overfitting.

Intrinsically Motivated Reinforcement Learning

The reward mechanism shapes the agent's behavior once it seeks to maximize its returns. However, these rewards can be sparse and binary for some scenarios, making learning difficult [START_REF] Zhao | Curiosity-Driven Experience Prioritization via Density Estimation[END_REF]. To overcome it, some exploration strategies incorporate a bonus to the reward function, aiming to motivate the agent to explore new areas of the state space. This mechanism is inherently associated with how humans acquire new skills by spontaneously exploring their environment due to the pleasure of curiosity and novelty [START_REF] Oudeyer | What is intrinsic motivation? A typology of computational approaches[END_REF][START_REF] Ali | On Bonus-Based Exploration Methods in the Arcade Learning Environment[END_REF]. As such, we can interpret intrinsic motivation from extrinsic motivation according to [START_REF] Ryan | Intrinsic and Extrinsic Motivations: Classic Definitions and New Directions[END_REF] as:

Intrinsic motivation is defined as the doing of an activity for its inherent satisfaction rather than for some separable consequence. When intrinsically motivated, a person is moved to act for the fun or challenge entailed rather than because of external products, pressures, or rewards. Extrinsic motivation is a construct that pertains whenever an activity is done in order to attain some separable outcome. Extrinsic motivation thus contrasts with intrinsic motivation, which refers to doing an activity simply for the enjoyment of the activity itself, rather than its instrumental value.

While [START_REF] Ryan | Intrinsic and Extrinsic Motivations: Classic Definitions and New Directions[END_REF] see intrinsic motivation from the human-centered point of view, [START_REF] Oudeyer | What is intrinsic motivation? A typology of computational approaches[END_REF] expand this discussion from the computational point of view and more general reasons considering other living organisms. For example, the authors mentioned a motivation system that pushes organisms to eat or keep some temperature. Moreover, they show examples where intrinsic and extrinsic motivation can be superposed or interleaved. A child, for instance, could do homework to acquire new knowledge (intrinsic) while aiming to achieve good grades (extrinsic). Moreover, some investigations suggest that students engage more in studies when this is enjoyable rather than considering their importance. Thus we could define intrinsic motivation as pursuing an activity as its own end [START_REF] Fishbach | The structure of intrinsic motivation[END_REF].

In the RL context, the reward has the characteristic of trading-off sub-goals, numerically quantified by a scalar value, and usually external to the agent. In the following section, we propose an intrinsically motivated imitation learning strategy that augments the reward in the function based on the state's likelihood under the demonstration distribution. The underlying idea is two manifold: (i) mitigate overestimation while calculating expected returns from underrepresented data and; (ii) encourage policy convergence to familiar states found in demonstrations. As such, our intrinsically motivated agents lead the policy convergence to known states on the expert's demonstration distribution. Chapter 4

Safety through Intrinsically Motivated Imitation Learning (SIMIL)

The imitation learning strategy Safety through Intrinsically Motivated Imitation Learning (SIMIL) present in this work assumes that logged data is available and online data collection is feasible. The underlying idea is to use the demonstration distribution as a model to constrain the action selection and enhance the sample efficiency while encouraging the policy's convergence to states that lie in high-density regions under the same prior distribution. As such, BC can leverage the learning process and overcome exploration by mimicking the expert's behavior while interacting with the environment to generate new data. Finally, we augment the reward function with a bonus regarding the state likelihood under the prior distribution to tackle overly optimistic estimates in underrepresented data and encourage policy convergence for known states.

The imitation learning strategy works as follows: given a current state s t and demonstrations D, select the action a mostly applied in the k-most similar states to s t in D. For that, we make use of k-NN, where the parameter k can be chosen such that it minimizes the distance min D d(τ, τ D ), regarding trajectories τ D = (s 0 , a 0 , s 1 , a 1 , ..., s n , a n ) ∈ D. As such, the k-NN query works as a voting mechanism, which solves ambiguity among actions by taking the most popular one according to the decision boundary given by the parameter k. Consequently, we overcome exploration and avoid taking actions that may incur costs. For that, we assume demonstrations sampled from an expert policy.

Later, a reward bonus ρη(s t ) is added to the immediate reward according to a density estimation for s t . In this work, we adopt KDE as a measure of density using Equation 4.2, being ρ the importance factor for the bonus. The objective is to mitigate overly-optimistic Q-estimations on unfamiliar state-action pairs. By adding a bonus, states with a higher likelihood are encouraged, while those unfamiliar are discouraged. As such, our agent is intrinsically motivated to rely on expert demonstrations, leading policy convergence to high-density states under prior data distribution.

η(s t ) = 1 nh n i=1 K s t -s D i h . (4.2) 
In Equation 4.1, K(s t ) ≥ 0 is the kernel that estimates the density for the current state s t over the states s D found in the demonstrations. The parameter h is the bandwidth that trade-off the results between balance and variance. In this work, we adopt the k-NN based on Manhattan distance once it can provide a suitable metric for real-values without parameter tuning and KDE with a gaussian kernel from Scikit-learn [START_REF] Pedregosa | Scikit-learn: Machine Learning in Python[END_REF].

The Algorithm 4 shows the strategy proposed. Once a state s t is sampled (line 2), we select an action a t using k-NN(s t ) over the expert demonstration dataset D to find the set of k-most similar states to s t (line 3). The most frequent action in the set of k-neighbors (k-NNs t ) states is then applied to s t , receiving a reward r t (s t , a t ) and achieving a new state s ′ t (line 4). Later, this reward is augmented with a bonus according to the likelihood of s t over the distribution D, multiplied by an importance factor ρ (line 5). Then, we store the transition < s t , a t , r ′ t , s ′ t > in a batch D ′ . Once a defined number of experiences is collected, we can obtain a policy π using an RL learning method through lines 8-14.

The following section presents the experimental setup and results for this approach using as a baseline Offline RL algorithms. We start casting the simulator of the water distribution system in an RL setting, showing how transitions can be obtained while interacting with it. Later, we perform a sensitivity analysis regarding the reward bonus. Finally, we discuss the behaviors of obtained policies using the reward functions proposed in Equations 3.2 and 3.3.

Experiments Casting the Water Distribution System Simulator into RL Settings

After applying an action a in the state s, an RL agent receives a reward r and reaches a new state s ′ , called transition τ =< s, a, r, s ′ >. Figure 4.3 presents how we model this dynamic for the pump scheduling problem using our water distribution system simulator. First, real-world water consumption data at a given time t is necessary as input to the simulator since it can not be generated through new interactions (step 1). After that, we need to define an initial condition for the tank level at timestep t, among other features Chapter 4 that compose the state s representation (step 2). Given a state s, we can apply an action to that state. Any policy can be used, including ϵ -greedy or BC (step 3). Also, once we have demonstrations, we can reproduce the dynamics found in the dataset by setting a know initial tank level and applying the actions by following the real-world data. A pump p is ON if its value Q p (t), kW p (t) ̸ = 0 in the logged data. If for all pumps p the values Q(t), kW (t) = 0, no pump is in operation, and the resulting action is NOP. Once an action a is applied to the state s, the simulator outputs the values of Q p , kW p , and H p for the respective timestep t (step 4). These values can then be used to calculate a reward r(t) as proposed in Eq. 3.2 and Eq. 3.3. If the flow rate Q p is larger than the water demand, there is an increase in the tank level. On the contrary, the tank level decreases if Q p is smaller than the water demand. Consequently, after applying an action a, a new tank level is observed at t+1, corresponding to the state s ′ . Thus, we have a loop where transitions are generated and stored in the Experience Replay [START_REF] Ji | Self-Improving Reactive Agents Based On Reinforcement Learning, Planning and Teaching[END_REF], which can be implemented using the prioritization mechanism [Sch+16] (step 5). Finally, we can use these experiences to learn a new policy π, different from the behavior policy µ that generated the dataset.

In this work, when selecting action using BC (step 3), we reduce the dimensionality of the state's representation for the meaningful features regarding the current status of the water distribution system by contracting its representation. Moreover, we reduce the computational overhead due to the k-NN queries by skipping some samples once they are strongly correlated. Thus, the state representation used to calculate the reward bonus and perform k-NN queries has the reduced form of: ϕ(s t ) = < tank level, water consumption, current time, month >

Experimental Setup

We aim to evaluate if (1) the proposed Imitation Learning strategy can generate policies that outperform offline methods baselines; (2) the proposed POMDP can obtain policies that offer a competitive performance relative to that observed in the real world. To this end, we conducted the experiments using the real-world dataset divided into one year for the learning process and one year for the evaluation. Accordingly, both Offline RL methods and SIMIL use the same amount of samples during the learning process. Offline RL approaches learn using human-logged data through interactions with the simulator, while SIMIL interacts continuously with the environment, starting both under the same initial condition found in demonstrations. We compare the policies obtained from Batch Constrained Deep Q-Learning (BCQ), Random Ensemble Mixture (REM), and SIMIL + REM using 5 models for each reward function due to the stochasticity in the learning process [START_REF] Henderson | Deep Reinforcement Learning That Matters[END_REF]. Moreover, we use linear regression to learn the generative model G w1 used on BCQ, selecting the parameters through grid search. 

Results

To analyze the performance, we call the set of policies obtained using the Equations 3.2 and 3.3 by Π 1 and Π 2 , respectively. We show in Figure 4.4 the min, max, and average cumulative reward along with the episodes using the 5 policies obtained. The results show that SIMIL has lower variance and competitive performance relative to cumulative rewards compared to fully-offline policies. The lower peaks in performance are mainly due to not meeting the tank-level safety constraints. The three sub-goals: electricity consumption, distribution of pump usage, and tank level, are the counterparts of the policy. Thus, a suitable policy performs with lower electricity consumption/higher efficiency, reduces switches, and distributes the pump operation while respecting the tank level constraints. Tables 4.2 and 4.3 compare the policies using real-world statistics as the baseline. Table 4.2 compares the electricity consumption for Π regarding real-world operation while Table 4.3 shows the action distribution for the best policy π * ∈ Π. The results show that SIMIL policies achieve competitive results with real-world operations considering electricity consumption. Moreover, the pump usage distribution and the tank levels safety levels are satisfied, leading to the conclusion that our POMDP could lead to policies that satisfy the controlling requirements for the system.

Policy

Electricity Consumption (kW) 

Sensitivity Analysis

We hypothesize that in the demonstration dataset, undesirable states tend to be visited less frequently, leading to a smaller η(s t ) bonus to their relative density. Since the augmented reward by intrinsic motivation changes the behavior of the policy in favor of known states, it might work as a safety constraint. However, this bonus can be contradictory to other policy sub-goals. For instance, policies obtained using Equation 3.3 (Π 2 ) tend to avoid operating (NOP) or use less powerful pumps, consequently leading to lower tank levels where the electricity consumption is lower. On the other hand, mid-tank level states tend to be those that lie in the highest-density regions. To evaluate this, we compared the importance factor ρ as 0 (no bonus), 1 (used in the previous experiments), and 5, and the results are presented in Figure 4.5. The empirical results indicate a decrease in the cumulative average reward for the policy set Π 2 using ρ = 5, while the Π 1 policies perform slightly better. Finally, ρ = 1 performs better than ρ = 0 for both scenarios.

Policy's Behavior Analysis

We show in Figures 4.6, and 4.7 the behavior of policies π * with a better average cumulative reward for Offline RL and SIMIL. The objective is to analyze the policies behavior obtained through the reward functions presented in Eq. 3.2 and 3.3. While this analysis may be subjective since policies may converge on many distinct strategies due to stochasticity in the learning process, verifying the emerged behavior is crucial once cumulative reward analysis alone is insufficient. Therefore, a suitable policy reduces electricity consumption and pump switching while balancing its use and meeting the safety constraints of tank levels. As shown in Figure 4.6, most policies use a pump at most once a day (+1 for switching to ON or OFF), leading to a distribution of pump usage as shown in Table 4.3. Finally, generally, the policies presented an operation in the safety range of tank levels, as shown in Figure 4.7.

Conclusions

In this chapter, we cast the water distribution system simulator on the POMDP representation presented in the previous chapter. Given an initial tank condition and a water consumption input at timestep t, we could generate state transitions over episodes corresponding to 24 hours of water supply. Next, we introduce the approach Safety through Intrinsically Motivated Imitation Learning (SIMIL). SIMIL is a BC method based on k-NN, where we augment the reward function according to the state likelihood under the demonstration distribution. The underlying idea is to mitigate the overestimation of Q-values for underrepresented data. Moreover, we encourage convergence for known areas of the state space. Since all the actions are selected through k-NN, we overcome exploration by mimicking the behavior policy which generated the prior distribution.

We compare our approach with Offline RL algorithms. For a fair comparison, SIMIL interacts with the environment continuously, i.e., without a reset mechanism using the same initial condition found in the demonstrations and generating the same amount of data used to learn through Offline RL methods. The results show that we could outperform our baseline learning method REM while remaining competitive with BCQ, both state-ofthe-art Offline RL algorithms. Our contributions extend to the domain of water supply control since the proposed reward functions could lead to policies that satisfy the safety constraints, protect the assets and lead to electricity savings. Chapter 5

Intrinsically Motivated Imitation Learning

Deep Reinforcement Learning (DRL) can be sample inefficient when learning in complex environments with high dimensional state and action spaces. The difficulty comes from the fact that a policy generally has to balance multiple objectives while exploring an unknown environment. During the exploration, agents observe experiences that, in turn, can be used to improve the policy. As a result, while the policy improves over time, some of these experiences are rarely observed. Thus, the policy representation ends up covering a vast search space. Policy distillation [START_REF] Hinton | Distilling the Knowledge in a Neural Network[END_REF] can mitigate this, transferring the knowledge from an expert policy to a more compact model that has proven even more efficient.

On the other hand, we could make the learning process sample efficient by organizing and structuring it to avoid an exhaustive exploration while trying to fulfill multiple subgoals. In Curriculum Learning (CL) [START_REF] Bengio | Curriculum Learning[END_REF] settings, tasks are introduced progressively according to their complexity, mainly targeting improving the policy's final performance. A policy π Ma that has mastered a task M a can leverage the learning for a policy π Mb for a more complex task M b . In turn, the target task M b can have its complexity reduced by modifying its degree of freedom in a source task M a . Among the degrees of freedom that can be modified include shaping the reward function, the contraction or expansion of the representation of states, and the distribution of initial states [START_REF] Narvekar | Source Task Creation for Curriculum Learning[END_REF]. Then, we need a transfer knowledge method to leverage the learning for the target policy.

This chapter proposes a method to transfer knowledge between tasks progressively through a curriculum. The underlying idea is to decompose a target task into simpler subtasks by modifying its degree of freedom. Then, we gradually increase the complexity of the source task towards a target task, augmenting the artificial neural network (ANN) nodes to accommodate the increase in the search space if needed. As the curriculum tasks evolve, a transfer learning method based on the softmax function transfers the acquired knowledge on source tasks to intermediate target tasks toward the final task.

To evaluate this strategy, we initially apply it to the grid world and taxi cab domains, where the degree of freedom of the target task is modified in the state space and the reward function, respectively. Although the ANN architecture has the same capacity during the curriculum steps, the objective is to show the transfer knowledge capability of the proposed method. Next, we present our strategy for the pump scheduling problem, where we modified the state-action space, increasing the ANN architecture size along the curriculum steps. The results show that some domains can benefit from this strategy by having policies with better asymptotic performance than standard exploration approaches.

Although extensively explored in supervised learning, transfer learning in RL settings is an emerging topic [START_REF] Zhu | Transfer Learning in Deep Reinforcement Learning: A Survey[END_REF]. It can take many forms, such as using demonstrations [Lev+20; Hus+17], using a teacher policy to interleave interactions with student policy, or through value functions. Moreover, policy distillation-based approaches [Ber+18; Cza+18; Teh+17] can be seen as a form of implicit curriculum, leading to a compressed model able to perform multi-tasks [START_REF] Guillet | On Neural Consolidation for Transfer in Reinforcement Learning[END_REF]. This work differs from others as it presents a curriculum that evolves by expanding the policy search space, using a method to transfer knowledge at each step. To this end, we are inspired by ideas from CL [START_REF] Narvekar | Source Task Creation for Curriculum Learning[END_REF], Progressive Neural Networks [START_REF] Rusu | Progressive Neural Networks[END_REF], and Policy Distillation [START_REF] Rusu | Policy Distillation[END_REF].

Chapter 5 thus altering the probability distribution of reaching a state s ′ by applying a given action a on the state s;

• The initial state distribution: Source and target tasks can have different initial state distributions. For the pump scheduling problem, inducing initial states near penalty-sensitive tank levels can be helpful when learning through episodes with a reset mechanism. In this way, the agent could have more chances to experience these penalties early in the learning process and learn to avoid them;

• The trajectories length: The task length may differ between source and target tasks;

In [START_REF] Narvekar | Source Task Creation for Curriculum Learning[END_REF], the authors present a set of functions to create a source task modifying the degrees of freedom of the target task shown above. Next, we review some metrics for measuring performance when transferring knowledge.

Transfer Learning Metrics

When transferring knowledge from a source task M s to a target task M t , one may want to leverage the performance while minimizing the total time spent learning the new task. On the other hand, how long it takes to learn the new task may not be relevant but, instead, the final performance. In [START_REF] Taylor | Transfer Learning for Reinforcement Learning Domains: A Survey[END_REF] and [START_REF] Zhu | Transfer Learning in Deep Reinforcement Learning: A Survey[END_REF], the authors define some metrics to evaluate the performance when transferring knowledge between tasks. Below, these metrics are listed:

• Jumpstart performance: the initial performance in terms of return when transferring;

• Asymptotic performance: the final performance of the agent after the defined amount of samples for training;

• Accumulated rewards: the total reward of the agent at some step of the transfer;

• Transfer ratio: the difference in performance comparing the learner through transfer and without transfer;

• Time to threshold: The necessary amount of time to achieve determined performance;

Figure 5.1 illustrates some behaviors when transferring [START_REF] Foglino | An optimization framework for task sequencing in curriculum learning[END_REF]. The yellow line has the best jumpstart performance but the worst for asymptotic results. The red and green lines achieve the threshold represented by the black dashed line, although the green accumulates higher rewards along the learning process. Finally, the blue line is the policy with the best final performance.

Different methods may have various performances evaluated by the above metrics when transferring in distinct domains. Usually, the main objective when transfer learning is to achieve a better asymptotic performance in the target task, as done in this work. 

Dynamic ANN architectures

Dynamic ANN modifies the ANN architecture to accommodate the incremental complexity of a given task. For example, contracting or expanding the search space can increase or decrease a given task's complexity in RL settings. As such, we must adapt the architecture by adding neurons, layers, or connections to accommodate the knowledge when expanding the policy's search space. Progressive Neural Networks [START_REF] Rusu | Progressive Neural Networks[END_REF] has the core idea of partially reusing a sub-network learned for a previous task M i-1 while retaining it partially and expanding when necessary to learn a new task M i . Dynamically Expandable Network (DEN) [START_REF] Yoon | Lifelong Learning with Dynamically Expandable Networks[END_REF] follows the same principle extending it with a dynamic expansion mechanism that allows measuring the performance when learning a new task, outperforming Progressive Neural Networks. In this work, we develop these ideas by combining them with transfer learning through value function. Thus, instead of transferring knowledge through the ANN architecture that might carry knowledge about a vast search space, we use the policy learned in the task M i-1 to perform actions while learning a new task M i .

In that way, we keep sampling using the previous model that has mastered a previous task while learning in a more compact representation than expanding the previous ANN architectures.

Knowledge Transfer for Compositional Representations

The idea behind CL is to create tasks so that the degree of difficulty increases progressively. However, defining a curriculum is not trivial and requires knowledge and control Chapter 5 over the environment [START_REF] Czarnecki | Mix & Match Agent Curricula for Reinforcement Learning[END_REF]. As presented previously, one way to obtain more straightforward tasks is to modify the degree of freedom of a target task. Thus, given a target task M t , it is possible, for instance, to obtain an easier task M s by modifying the composition of the state space, shaping its reward function or constraining the action space. The objective when following this strategy is to obtain a policy with better asymptotic performance.

In this work, we are particularly interested in transferring the knowledge acquired from a source task to a target one using the value function Q(s, a). For that, we assume a method responsible for creating a curriculum, defining the tasks and the order in which they are sampled. Once the tasks are defined and placed in order, we use a transfer learning method to transfer the knowledge acquired from source task M s to target task M t . Our approach is based on inducing source subtasks simpler than the target task, gradually increasing the information relative to the source subtasks. To do so, we modify the information provided regarding observations O (states S)1 , actions A, and reward function R. Later, a policy π Ms for a source task M s is mixed and softened with a policy π Mt while learning a target task M t by a softmax function using a temperature parameter τ . The underlying idea of combining both outputs is to make the estimations of the policy learning M t exert some influence in the action selection all along the process, mitigating the overestimation which may occur when learning passively [START_REF] Ostrovski | The Difficulty of Passive Learning in Deep Reinforcement Learning[END_REF].

We propose transfer learning methods that vary according to the degrees of freedom between models obtained from M s and M t regarding the action space. Our first case considers unnormalized Q-estimations Q s from M s and Q t from M t that share the same action space. For that, during action selection, when performing a new task M t , a softmax is applied using the max output value from Q s and Q t . The probability distribution obtained is then used to select the highest valued action of the respective Q-estimation selected. softmax({max(Q s ), max(Q t )}) = e {max(Qs),max(Q t )}\τ e max(Qs)\τ +e max(Q t )\τ action a = argmax(Q s ), with probability softmax Qs argmax(Q t ), with probability softmax Qt Figure 5.2 illustrates the process of knowledge transferring using our approach. First, a target task M t is decomposed into K subtasks M s . Then, we sample these tasks according to their complexity. For simplicity, we will consider that for each step, only one pair of < M s , M t > is available, although, as will be presented next, we can use a set of {π Ms i } K i=1 to transfer knowledge to a π Mt . Thus, for the first step of the curriculum, we can use an exploration strategy such as ϵ-greedy to learn a policy π Ms 1 . Next, the policy learned transfer knowledge to the next policy π Ms 2 2 , which performs a new task harder than the previous one. Since this new task has a higher search space, the ANN size may need to be increased to accommodate the knowledge. Thus, to transfer knowledge between models, a softmax function combines the max(Q Ms 1 ) and max(Q Ms 2 ). These softened Qestimations are then used to choose actions and generate samples to improve the policy π Ms 2 . When transferring knowledge, we admit a function o Ms (ϕ) = h(o Mt (ϕ)), which Learning contract or expands the current observation o Mt (ϕ) to match the state space learned previously to provide Q s estimations while performing M t . Later, the policy π Ms 2 becomes a source task for the subsequent task and so on towards the final target task M t . However, we may have a set of tasks learned simultaneously for a single curriculum step. For that, our second case considers a set of policies {π Ms i } K i=1 transferring knowledge to a target policy π Mt being the action space A(M s i ) ̸ = A(M s t̸ =i ) and A(M s 1 )∪A(M s 2 )∪ ... ∪ A(M s K ) = A(M t ). In other words, the action spaces of two sources tasks can be different, but the set of sources tasks has the same action spaces as the target task, such that A({π Ms i } K i=1 ) = A(M t ). Thus, Q-estimations for similar actions are averaged, while those for distinct actions are combined to create Q s . Finally, we chose the action using the probability distribution outputted by the softmax({max(Q s ), max(Q t )}).

Combining expected return estimates Q s and Q t allows the target task policy to explore its estimations, an important mechanism for self-correcting it. Moreover, the temperature parameter τ can lead to distinct entropy between the policies π Ms and π Mt during the transfer learning process. The following experiments show how this method can be applied by modifying the degrees of freedom of the target task, such as the state space and the reward function.

Experiments

To evaluate the proposed approach, we use three domains to transfer knowledge among subtasks through a curriculum: grid world, taxi cab, and the pump scheduling problem. Each scenario has different degrees of freedom, which can be modified to leverage the learning process. As such, the idea is to test different degrees of freedom in these tasks modifying state and/or action space and the reward function. All the following results used Double DQN (DDQN) [START_REF] Hado Van Hasselt | Deep Reinforcement Learning with Double Q-Learning[END_REF] as a learning method. The main idea of DDQN is to mitigate the overestimation problem using the update rule in Equation 5.1.
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Q(s, a) = Q(s, a) + α[R(s, a) + γQ ′ (s ′ , argmax a ′ Q(s ′ , a ′ )) -Q(s, a)],
(5.1) Thus, DDQN selects the action using the current Q-estimations but updates it using the target net Q ′ value-estimations.

Grid World Scenario

In the grid world scenario (see Figure 5.3), the goal is to reach the maximum reward +1 limited to a certain number of steps. On the other hand, a negative reward is given (-1) if the agent ends up in the grid at position (3, 1). The grid world has dimensions 4x3, and the agent always starts the episode at position (0, 2) of the grid. However, one grid space has a randomly placed wall that limits the agent's path. In this work, the wall can occupy any grid space except those which prevent the agent from getting one of the rewards, the third column, and the agent's initial position. That inhibits the agent from getting sticky with some path toward the maximum reward. Thus, the objective is to make the agent try to reach the maximum reward in at most seven steps. However, we allow the agent to perform ten actions during the learning phase.

The CL approach to enhancing the learning process for the grid world problem is simple. We learn a policy π 0 using a scenario that excludes the possibility of having the wall from the state space S. Thus, we allow the agent to find a path to the maximum reward more easily since variations between one episode and another depend only on the agent's actions. Next, we use this policy to leverage the learning process for a new policy π 1 that interacts with the scenario with the wall. For each policy π 1 , we use the knowledge acquired from a different previous policy π 0 . As a baseline, we use a policy π ϵ learned through ϵ-greedy strategy with a decay factor for the probability of a random action associated with the number of interactions already performed. Thus, the more the agent interacts with the environment, the lower the likelihood of performing a random action. All the policies are evaluated in intervals of 25 trials, obtaining an average of 20 episodes since the wall can be in a different grid position. Knowledge Transfer for Compositional Representations through Curriculum Learning

Implementation details

We use an ANN with dense layers (32, 16) and a ReLU activation function in all evaluated scenarios. Also, an Adam optimizer with learning rate α = 0.001, a minibatch size = 32, updating the target net every 100 samples, the ϵ-greedy policy interpolating between 1 → 0.2 and discount factor γ = 0.99.

Taxi Cab

The second scenario is the Taxi Cab domain [START_REF] Thomas | Hierarchical Reinforcement Learning with the MAXQ Value Function Decomposition[END_REF]. The goal in this scenario is to pick up the passenger and drop him off at any of the positions R, Y, G, or B, indicated in Figure 5.4.

For each episode, the taxi can start in any grid position and has the actions (north, south, west, east, pickup, dropoff) to move around it. In addition, we have internal walls (purple lines) that limit the agent's movement. For each illegal pickup or dropoff action, the agent receives a negative reward of -10; otherwise, a positive reward of +20 if the passenger is delivered to the correct location. The agent also gets a -1 penalty for any state-action pair that does not overlap previous rewards. During the exploration, we allow the agent to perform up to 100 actions, while the evaluation allows up to 25. We perform evaluations every 200 episodes. One of the difficulties of this scenario is that the agent only observes a positive reward after dropping off the passenger at the right destination. In other words, the agent does not observe rewards even if picking up a passenger is part of the task. To overcome this, we propose a curriculum where first, the agent learns how to perform the task with a modified reward function. We do that by providing a positive reward of +10 for picking up the passenger and then +10 for dropping him off at the right location. Moreover, the agent receives a bonus at each timestep according to the distance d to the current goal (pickup or dropoff). Thus, for the actions north, south, west, and east, the reward is r = -1+1/(d+1). As such, the agent can easily observe that picking up the passenger is also part of the task, and the reward bonus based on distance guides the taxi agent toward each subtask. Later, Chapter 5 we transfer the source policy π 0 learned with modified rewards to a policy π 1 performing the task with the standard reward function.

Implementation details

We use an ANN with an embedding layer followed by dense layers (50, 50, 50) with the ReLU activation function in all evaluated scenarios. Also, an Adam optimizer with learning rate α = 0.001, a minibatch size = 32, updating the target net every 500 samples, and the ϵ-greedy policy interpolating between 1 → 0.2 and discount factor γ = 0.99.

A Curriculum for the Pump Scheduling Problem

The pump scheduling problem is the decision-making process to decide which pump should operate, aiming to supply water while limiting electricity consumption and meeting the system's constraints. Previously, we cast this problem as a Partially Observable MDP (POMDP), defining the state/observation space and the reward function. Later, we adopt an Imitation Learning strategy based on k-Nearest Neighbors (k-NN) with a contraction in the state's representation to select actions and overcome exploration. Finally, we augment the reward function according to the state's likelihood under the demonstration distribution to mitigate overestimation and lead policy convergence to known states.

Using Imitation Learning, we could overcome the problem of continuous interaction with the environment without a reset mechanism. In other words, when interacting with the environment, the last state reached for some episode e i is the initial state for the following episode e i+1 . In these settings, exploration strategies such as ϵ-greedy could reach tank levels that do not meet safety constraints and never learn how to recover. That happens because the policy would learn that pumping water consumes electricity, which is penalized while turning OFF the pumps has a better immediate reward when the system's constraints are satisfied. However, turning OFF pumps leads the system to a shortage, and recovering from that situation requires turning them ON for a long sequence of timesteps, an skill which the policy may not have learned.

A different learning setting is proposed to evaluate our method of transferring knowledge through a curriculum with a compositional representation. First, we organize the learning process in episodes with a reset mechanism. To that end, we split and shuffled the demonstrations in episodes, using the water consumption along it, and set the initial tank level as the same as the first timestep found in the logged data for the respective episode. Thus, when learning from scratch, we could use a ϵ-greedy policy to explore the environment. That leverages the learning process since even if the policy prematurely converges for a sequence of actions that leads to a shortage, it still can experience safety states in the future. To assign credit when performing actions, we use the reward function that penalizes electricity consumption, as presented in the previous chapter:

r t = -e (-1/kWt) -B * ψ + log(1/(P + ω)),
(5.2) Learning where the term -e (-1/kWt) penalizes the electricity consumption kW for some of the pumps {(NP#)} 4 #=1 running at timestep t. The term B * ψ instead penalizes when tanklevel constraints are unsatisfied. The tank has a 10m length where a safety operation keeps at least 3m filled with water. Thus, the variable B assumes values according to the water shortage risk and is maximum in case of overflow. The value ψ is a constant penalty. The term log(1/(P + ω)) aims to lead to an action distribution and avoid pump switches once it decreases the asset's lifetime. For that, P represents the cumulative time the current action has been applied to the system along with the episode. Finally, ω penalizes action switches.

To trade off these sub-goals, the agent needs to obtain information about the environment through states/observations o defined by the following set of features ϕ:

• T is the tank level at some timestep t;

• O is the sensor's data regarding water consumption for some timestep t;

• Γ is time of day;

• X is the last action performed;

• P is the cumulative time that the current action has been performed along the episode; Once an observation is triggered, the agent has to decide between choosing (or keeping) one of the pumps running or turning (or keeping) it off. At each timestep, only one of the pumps can be running, or none of them (NOP).

The CL approach to the pump scheduling problem is to introduce each of the sub-goals incrementally, such that the POMDP of a source task M i is a subspace of the POMDP of the target task M i+1 towards a final target task M f that comprehends the full stateaction space. For that, we manually define a curriculum where each pump should first try to learn how to meet the tank level constraints. For the task M 1 , the observation space is O = ϕ(T, O) and the action space is A = {NOP, NP#}. Later, the knowledge from the source task M 1 is transferred to the new target task M 2 where the observations are o t = ϕ(T, O, Γ, X, P ). Thus, each pump at the end of task M 2 could learn a policy using the full observation features and reward function.

At this point, a set of policies have learned how to turn ON and OFF, avoid these switches and meet the tank constraints for a single pump. The next step is to combine this set of source task M 2 to a final target task M f =3 . We average the Q-estimations for each action NOP once each policy predicts its value and combine the estimation for each action using a different pump to obtain Q s , such that:

Q s = {avg(Q(s, NOP)), Q(s, NP1), Q(s, NP2), Q(s, NP3), Q(s, NP4)},
Finally, the softmax between Q s and Q t is used to output actions while learning M 3 . Also, it is important to highlight that the network architecture is adapted along the curriculum to accommodate the increase in task complexity, as shown in the implementation details below. for a single target one. Thus, each batch contains four distinct episodes to update CL and π ϵ policies.

The results show the average, max, and min returns of policies performance after updating it using each batch. We note that when transferring knowledge from π M 1 to π M 2 , those policies with actions based on bigger pumps achieved lower jumpstart performance compared to those based on actions with smaller ones. That can be explained by policies based on smaller pumps learning to switch less while performing task M 1 , even though no observations are provided. As such, to meet the tank constraints, these policies inherently maintain the pumping action for a longer sequence of timesteps. As the task M 2 provides observation features about the pump switch, this prior knowledge seems to leverage learning, unlike policies with bigger pumps, where switching actions occur more often to save electricity when learning M 1 . Despite the similarity among the set of source and target tasks, the behavior that emerged from different actions seems to play a key role regarding "transfer compatibility" to mitigate negative transfer [START_REF] Taylor | Transfer Learning for Reinforcement Learning Domains: A Survey[END_REF]. To our knowledge, no work has addressed these questions specifically. Finally, on average, the final set of policies learned using our curriculum approach achieved a slightly higher average considering the set policies learned using ϵ-greedy, however, with a lower max reward.

Chapter Conclusions

This chapter presents a CL approach for transferring knowledge between tasks with a compositional representation. The underlying idea is to create more straightforward tasks (source tasks) from a target task by modifying its degree of freedom. The degrees of free- dom that can be modified are mainly the contraction or expansion of the state/observation representation and action space and shaping the reward function. Thus, the next step is to transfer the knowledge acquired in a source task to a target task using a softmax-based method. As the representation grows, we may increase the ANN architecture used to accommodate the search space of the new task.

We present three scenarios to evaluate our approach: grid world, taxi cab, and pump scheduling. We add a wall placed in a random grid space for each episode for the grid world scenario. That would prevent the agent from learning a single path toward the maximum reward. In the taxi cab scenario, we propose reward shaping to facilitate the observation that picking up the passenger is also part of the task. In the pump scheduling problem, we contract the state space and learn a set of policies splitting the action space to achieve a given goal along the curriculum steps. Then, we train a policy with full state representation for each pump (action) available in the system. Finally, we grouped all these policies learned individually to transfer knowledge to a new policy that mixes all the previous subtasks learned. The results show that the performance of our approach is quite related to how the curriculum is designed, the task compatibility among the source and target tasks, and the performance of the source policy. Ultimately, we could obtain, on average better performance using our CL approach than learning from scratch for the grid world and pump scheduling scenarios. These results show that structuring the learning process by breaking down complex tasks into easier ones and learning them progressively can likely lead to policies with competitive or better asymptotic performance than learning from scratch.

Chapter 6

Conclusions and Perspectives

Conclusions

This thesis investigates data-driven approaches in an IoT context to provide a solution for controlling pump operations in a water distribution system. Aiming that, we start Chapter 1, discussing some decision-making methods, emphasizing the chosen approach, Deep Q-Networks, and its related literature. We compare this approach with others to highlight its advantages, such as scalability while exploring some of its technical features. We also provide a literature review showing challenges in achieving higher sample efficiency through efficient methods to explore the environment, using logged data, or structuring the learning process. Chapter 2 presents a proposed representation of a POMDP for the pump scheduling problem, with state/observation definition and reward function. We based this representation on the data obtained from sensors to compose the representation of states/observations so that the agent can get information about the system to make decisions. Later, we propose two reward functions to evaluate the emergent behavior when applying them. Finally, we present a real-world water distribution system simulator, with logged data from human operation over three years in 1-minute timesteps. Through this data, we could analyze some patterns and constraints of the water system. We introduce in chapter 3 an Imitation Learning approach that uses k-Nearest Neighbors to classify a discrete action space. When applying an action to a state, we augment the reward received with a bonus according to the likelihood of that state under the demonstration distribution multiplied by a factor relative to its importance, aiming to encourage policy convergence to known states and mitigate the overestimation problem in underrepresented data. We compare this approach with Offline RL methods allowing our method to collect the same amount of samples starting from a common initial state. We use the representation proposed in chapter 2 to learn policies. The results show that we could outperform Offline methods in certain cases, and the set policies obtained had a lower variance in performance. For that, we must carefully choose the importance factor of the augmented reward, mainly targeting mitigating the overestimation issue. Otherwise, as shown in your sensitivity analyses, it can lead to worse performance. Moreover, we demonstrate Chapter 6 that our POMDP representation could lead to policies that meet the safety constraint while providing a comparable action distribution and promoting electricity savings compared to real-world human operation.

Chapter 4 proposes a curriculum learning approach to transfer knowledge among tasks. The underlying idea is to decompose a target task into simple ones by modifying its degrees of freedom, such as the action/state space and reward function. However, our contribution does not address how these tasks are decomposed and organized, and we assume that the curriculum is given. Then, we use the value function to transfer knowledge according to the action space of the source task(s) and target task. The first method uses a softmax function to output a probability of selecting actions from the policy learned in the source (π s ) or the policy being learned in the target task (π t ). A parameter τ controls entropy between these two policies, where higher temperature values make the probability distribution more uniform. The second method proposed combines several policies learned under different action spaces into a target one containing the full action space. We evaluate this approach in three scenarios, modifying different degrees of freedom. The results show that this approach can potentially leverage learning, but its performance is affected by various factors. First, designing a curriculum that makes the task easier and "compatible" with the target task is not trivial but essential to effectively leverage the learning once we rely on the value function to transfer knowledge. Secondly, the source policy selection seems to play a critical role in achieving a good performance in the target task.

Perspectives

To effectively transfer learning from a source task to a target task, it is necessary to address some questions discussed in [TS09]:

• Metrics: what are we aiming for when performing transfer learning? In 5.1.1, we list some performance metrics when transferring knowledge. As such, it is important to define whether we want to achieve faster learning or have policies with better asymptotic performance.

• Task similarity: some works have proposed task similarity metrics d to measure how source and target tasks are related [START_REF] Visús | A Taxonomy for Similarity Metrics between Markov Decision Processes[END_REF]. In this way, a positive transfer is more prone to occur when smaller is the distance d(M s , M t ).

• What information should be transferred: we need to decide what type of information will be transferred. We can transfer low-level knowledge such as transitions, Q-values, policies π, and high-level knowledge such as options [START_REF] Sutton | Reinforcement Learning: An Introduction[END_REF] or rules.

In this work, we have defined asymptotic performance as a metric to measure the effectiveness of transfer learning. Our goal is to decompose a task, such as the learning process is leverage, and ultimately have policies that, on average, perform better in terms of cumulative rewards than one learned from scratch. For that, we used the value function to transfer learning. However, any assumption was made about task similarity when modifying the degree of freedom of a target task and how it affects transfer learning.

Inaccurate Q-value estimations [START_REF] Ostrovski | The Difficulty of Passive Learning in Deep Reinforcement Learning[END_REF] has been a major cornerstone in Deep RL, with several approaches aiming to mitigate it [HGS16; ABS17; Jaq+19; FMP19; Lan+20; ASN20]. Many of these approaches require tuning a (hyper)parameter, such as the number size of the ensemble set and how often to update a secondary Q-network or a bias/penalty value. Similarly, our contribution to the chapter 4 requires a factor η, which need to be set and has its own hyperparameters, leading to different performance according to the reward function employed. As such, more investigation should be conducted to learn how it behaves and its pitfalls, giving different distributions and reward functions.

The pump scheduling as a scenario for future works This section lists some challenges presented in [START_REF] Donâncio | The Pump Scheduling Problem: A Real-World Scenario for Reinforcement Learning[END_REF] that can be addressed using the simulator/dataset used in this work.

Modeling the problem. The pump scheduling problem has no prior state representation or a single specified reward function. For this reason, state representation learning [Les+18; Yu+; Mer+20] can explore more informative and low dimensional state representations for efficient policy learning. The same applies to reward engineering. Specifying a reward function is difficult once it must encapsulate and balance multiple goals that might be contradictory. A way to overcome this is through inverse RL [START_REF] Abbeel | Apprenticeship Learning via Inverse Reinforcement Learning[END_REF] approaches to extract a reward function from the demonstrations. Moreover, we suggest modeling the problem as a goal/task-oriented with sparse rewards, for instance, aiming to mimic the human policy, allowing the evaluation of approaches such HER [And+17] that deal with the lack of reward signals.

An exploration challenge. One constraint for controlling the system is to avoid switching the pump operation too frequently to protect the assets. Thus, exploration strategies such as epsilon-greedy [START_REF] Sutton | Reinforcement Learning: An Introduction[END_REF] contradict the idea of performing the same action selection over many timesteps and may prematurely converge to suboptimal policies without a reset mechanism. Furthermore, approaches that attempt to cover unknown areas of state space can lead to meaningless states that do not meet the safety constraints. Thus, the pump scheduling problem can be a setting for evaluating exploration strategies that enhance sample efficiency or limit state visitation to those that meet system safety constraints [START_REF] García | A Comprehensive Survey on Safe Reinforcement Learning[END_REF].

Learning from demonstrations. Some real-world settings may restrict the learning process to logged data. This constraint is due to the difficulty of creating accurate simulators or safety constraints. For example, for safety and cost reasons, an autonomous vehicle cannot learn by interacting with the environment through trial and error. For this, offline RL [START_REF] Levine | Offline Reinforcement Learning: Tutorial, Review, and Perspectives on Open Problems[END_REF] approaches such as BCQ [Fuj+19; FMP19], REM [START_REF] Agarwal | An Optimistic Perspective on Offline Reinforcement Learning[END_REF], Conservative Q-learning [START_REF] Kumar | Conservative Q-Learning for Offline Reinforcement Learning[END_REF], and Averaged-DQN [START_REF] Anschel | Averaged-DQN: Variance Reduction and Stabilization for Deep Reinforcement Learning[END_REF] were designed to increase the efficiency of exploiting previously collected data, mainly tackling the overestimation phenomena [START_REF] Ostrovski | The Difficulty of Passive Learning in Deep Reinforcement Learning[END_REF]. This data can be, for instance, obtained by human operation in the realworld system, as in the present case. Thus, the present dataset can be a benchmark for Offline RL approaches. Finally, these expert demonstrations can guide the agent's actions through imitation learning [START_REF] Hussein | Imitation Learning: A Survey of Learning Methods[END_REF], used to build models [Yu+20; Kid+20], or boost the learning process [START_REF] Nair | Overcoming Exploration in Reinforcement Learning with Demonstrations[END_REF].

Chapter 6

Continuous action-space. The set of actions of the water distribution system presented in this work is discrete. A finite set of pumps operate with a fixed speed beside the option to turn all of them OFF. Although not explored in this work, the simulator can adapt to variable speed pump(s). Then, approaches suitable for continuous action space, such as actor-critic [START_REF] Sutton | Reinforcement Learning: An Introduction[END_REF], can be evaluated while exploring the environment.
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	3.1 The IoT.H2O Project:			
		Deterministic/Stochastic Uncertainty Scalability Robustness
	FSM	Deterministic	No	No	No
	Fuzzy System	Deterministic	Yes	No	No
	BDI Agents 4 Intrinsically Motivated Imitation Learning Deterministic -	No	Yes*	45
	Value-based Alg.	Deterministic	Yes	Yes	Yes*
	Policy-based Alg.	Stochastic	Yes	Yes	Yes*
	Table 2.1: A decision-making comparison of methods discussed in this chapter. The '*'
	symbol indicates limitation while '-' is subjective.			

O saber se aprende com os mestres. A sabedoria, só com o corriqueiro da vida.

  50|| 8 else if tank level (t) ≤ 49 or tank level (t) = 57 then 10 else if tank level (t) ≥ 50 and tank level (t) < 53 and not water quality then 50|| 8 else if tank level (t) ≤ 49 or tank level (t) = 57 then 9 B ← 1 10 else if tank level (t) ≥ 50 and tank level (t) < 53 and not water quality then
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				Systems
		Algorithm 3: Reward Function Eq. 3.3
		1 ψ ← 10 ;
		2 if action (t-1) = action (t) or time running(action (t) ) = 0 then
		3	ω ← 1
		4 else
	Algorithm 2: Reward Function Eq. 3.2 5 ω ← 30	▷ Penalize action switch
	1 ψ ← 10 ;
	2 if action (t-1) = action (t) or time running (action (t) ) = 0 or action (t) = NOP
		then
	3		ω ← 1
	4 else 5 ω ← 30 11 B ← -1 12 else	▷ Penalize pump switch
		13	B ← 0
		14 if action (t) ̸ = N OP then
		15	r t ← -e (-1/kWt) -B × ψ + log(1/(time running(action (t) ) + ω))
		16 else
	11	17	B ← -1 -B × ψ + log(1/(time running(action (t) ) + ω))
	12 else
	13		B ← 0
	16 else
	17		r t ← -B × ψ + log(1/(time running(action (t) ) + ω))
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  Algorithm 4: Safety through Intrinsically Motivated Imitation Learning (SIMIL) Input: set of Q-Networks with weights θ, set of Target Q-Networks with weights θ ′ , replay memory D ′ , demonstrations D, frequency which update target net λ, importance factor ρ; Output: Policy π Select action a t using k-NN (s t ) in D Play (s t , a t ), observe the reward r t and the next state s ′ Calculate η(s t ), sum it to a final reward r ′ t = r t + ρη(s t )

	1 for t ∈ {1, 2, ...} do
	2	Sample state s t
	3	
	4	t
	5	
	6	Store transition (s t , a t , r ′ t , s ′ t ) into D ′
	7 end
	8 for t ∈ {1, 2, ...} do
	9	Sample a mini-batch of n transitions from D ′
	10	Calculate loss δ(θ)
	11	Perform a gradient descent step to update θ
	12	if t mod λ = 0 then
	13	Update the set of weights θ ′ ← θ
	14	end
	15 end

Table 4 .

 4 1 shows the experimental setup used.

	Hyperparameter	Value
	State stacking	4
	Mini-batch size	36
	(LSTM, Dense, Dense) nodes	(100, 100, 100)
	Update target λ	12000
	Loss function (REM)	Huber loss
	Loss function (BCQ)	Mean Squared Error
	Optimizer	Adam
	Learning rate	0.00003
	Discount factor	0.99
	α (PER)	0.6
	β (PER)	0.4 → 1
	#Q-Networks (REM)	5
	BCQ threshold	0.3
	L 2 regularization (dense layers)	0.000001
	Table 4.1: Experimental setup

Table 4 .

 4 

	REM Π 1		-1.11 ± 9.78
	SIMIL + REM Π 1	-4.05 ± 1.97
	BCQ Π 1		-3.54 ± 2.71
	REM Π 2		4.08 ± 7.93
	SIMIL + REM Π 2	-3.33 ± 5.77
	BCQ Π 2		-1.40 ± 3.33
	Table 4.2: Average electricity consumption (%) ± standard deviation compared to real-world
	operation.	
	Policy	NOP NP1 NP2 NP3 NP4
	Real-world	30.47 8.30 43.42 8.31 9.50
	REM π * 1	11.38 4.93 0.87 82.82 0.0
	SIMIL + REM π * 1	17.05 0.17 28.54 5.29 48.95
	BCQ π * 1	22.87 17.79 8.13 51.09 0.12
	REM π * 2	32.64 25.85 0.04 41.47 0.0
	SIMIL + REM π * 2	28.08 3.12 36.04 4.89 27.87
	BCQ π * 2	37.11 37.48 0.06 25.35 0.0

3: Action distribution (%)

http://www.waterjpi.eu/joint-calls/joint-call-2017-ic4water/booklet/iot-1.h2o

https://www.mv.uni-kl.de/IoTDotH2O/en/home-2/

https://www.epa.gov/water-research/epanet

https://www.arduino.cc/

https://www.raspberrypi.org/

The dataset is available at https://gitlab.com/hdonancio/pumpscheduling

https://www.epa.gov/water-research/epanet

The generative model for a discrete action space corresponds to a classification problem.

In this work, observation and state are used interchangeably.

Note that π Mt1 and π Ms2 can be used interchangeably
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Chapter 2 Chapter 3 Knowledge Transfer for Compositional Representations through Curriculum Learning

Knowledge Transfer in Reinforcement Learning

Transfer Learning is an approach related to deep learning where the goal is to use models learned in one task M s to start new models in another similar task M t . The benefit of this approach is to save resources since learning is driven by previously acquired knowledge.

For example, that can be particularly useful regarding concept drift [START_REF] Žliobaitė | An Overview of Concept Drift Applications[END_REF]. The concept drift is a generic term to refer to the distribution mismatch between input and output.

To illustrate it, consider, for instance, a model for predicting user preferences. Over time, the preferences of these users will evolve, so it is necessary to update the model as its prediction accuracy degrades. However, the previously learned model can be of great value as a starting point for learning a new model once some patterns remain.

In RL, transfer knowledge can take many forms. As shown in the previous chapter, Imitation Learning can be seen as a transfer between the expert demonstration distribution and the target task. On the other hand, we can use the demonstrations directly to learn a new policy, as Offline RL does. In that way, we have a policy µ, which generates the samples that the agent will use to learn a new policy π. Another form of transfer is using the knowledge of an expert policy auxiliary to the policy being learned. For example, this expert policy can be a policy that performs well in a subtask M i towards M f , where M f is the final target task. Thus, when learning a new task M i+1 , the expert policy can leverage the learning process by transferring the knowledge acquired in the task M i . Note that i refers to an order relationship among tasks defined by a curriculum.

Transfer Learning in Curriculum Learning aims to transfer knowledge between tasks with a sort of hierarchy in terms of complexity. These tasks, in turn, may have distinct stateaction spaces and/or reward functions. The objective, in this case, is to decompose the tasks into easier sub-tasks up to the target task to enhance the learning process. In [START_REF] Zhu | Transfer Learning in Deep Reinforcement Learning: A Survey[END_REF], the authors list some forms of domain difference in transfer learning regarding source M s and target M t tasks for RL:

• The state-space S: the state-space can be modified by constraining or extending it when performing a sub-task. In the pump scheduling problem, for instance, we could contract the state space for features associated with only one of the policy subgoals;

• The action-space A: the action-space can be constrained or have features modified. Some agents can have their actions modified by changing the resulting impacts when applying them, such as speed or power. In the pump scheduling problem, for instance, the action space could be restricted for a subset of pumps, i.e., not all pumps would be available while learning some subtask;

• The reward function R: the reward signals can be manipulated to enhance the learning process for some task M. That is particularly useful in scenarios with sparse and binary rewards. An example is HER [And+17], which transforms unsuccessfully states into successful ones by augmenting the states and rewards;

• Transition dynamics: The dynamics of the interactions can be affected by, for example, the distinct physical properties between the source task and the target task, Chapter 5

Implementation details

Different ANN architectures sizes are used along the curriculum steps, as shown in Table 5.1. The ANN has layers (LSTM, Dense, Dense), and all dense layers have the ReLU activation function. The policy learned using ϵ-greedy has the same architecture as the one used for the task M f =3 . Also, is used an Adam optimizer with learning rate α = 0.00025, a minibatch size = 32, updating the target net every 300 samples, L 2 regularization (dense layers) = 0.000001, the ϵ-greedy policy interpolating between 1 → 0.1 and discount factor γ = 0.99. 

Results

In Figure 5.5, we present the results for the grid world scenario regarding the set of policies π 0 , π 1 , π ϵ averaging 20 models for each one. The results show the average, max, and min returns for the policies learning the source task (π 0 ), target task learning from scratch (π ϵ ), and target task through transfer learning (π 1 ) using different temperature parameter τ . To sum up, we have:

• π 0 : learns the task without a wall placed in the grid (source task)

• π ϵ : learns the task with a wall random placed (target task) from scratch using ϵ-greedy

• π 1 : use transfer learning from any policy π 0 to perform the target task

The policies π 0 are trained over 400 episodes, and then, we transfer the knowledge from π 0 to π 1 while training the latest 800 episodes. For the policies π ϵ and π 0 , the probability of taking a random action ϵ decreases after each episode. We show the results for different temperature parameters τ , transferring from any previous policy π 0 . The similar asymptotic performance for distinct temperature parameters makes it hard to make assumptions about its influence. However, the policies learned from scratch using ϵ-greedy decreased their performance drastically after some episodes. It might be related to the catastrophic forgetting phenomena due to the distributional shift. To investigate this, we conduct an additional experiment shown in Figure 5.6, decreasing the probability ϵ after each action. That would trade off less exploration for more exploitation. In the experiment shown in Figure 5.6, we manually select a policy π * 0 from those that achieve an average return of 1 (an optimal policy) to transfer knowledge for the target task. Thus, we use this single policy to transfer knowledge for a new set of policies π * 1 . That would represent a more realistic approach once we could evaluate any policy towards the target task at any step. As a result, the set of policies π * 1 achieved the highest averaged reward compared to policies acquiring knowledge from a random policy π 0 . Moreover, we see that decreasing the probability ϵ of random actions faster impacts policy performance π ϵ . As such, our method seems to mitigate the catastrophic forgetting issue as it keeps a consolidated policy (π i-1 ) outputting actions while learning the target task.

Figure 5.7 shows the results for the Taxi Cab domain. The results presented are an average of 10 models evaluated through 100 runs on intervals of 200 episodes. In all evaluation steps, the reward function is the same, although, during training, they differ. The policies learned with shaped rewards (π 0 ) perform better than policies π ϵ for the first 3000 episodes. Later, policies π 0 transfer knowledge to π 1 using different temperature τ values for the latest 2000 episodes. Low-temperature values have a low entropy between Q s and Q t in the earlier transfer learning once one policy yields higher Q-estimations. On the other hand, higher-temperature values tend to have return variations peaks spread along the process. More once, a good previous policy π 0 seems to leverage the learning process, having the set of π * 1 achieving the highest average among the policies π 1 . Finally, the proposed method could not outperform policies learning from scratch using ϵ-greedy, with slightly lower average and max returns.

In both scenarios, Grid World and Taxi Cab, we note a "dip" in performance after transferring knowledge. Once we transfer from a model π M i-1 to another initialized with ran- dom weights to learn M i , it is expected to have this "dip" in performance at the beginning of the knowledge transfer once the π Mi still doesn't know to perform the task well. However, for the Taxi Cab domain, the jumpstart performance is worst compared to early training when learning using ϵ-greedy. Since we normalize the reward R between [-1, 1], allowing the agent to easily distinguish good from bad outputs, the Q-estimations also predict negative returns once most observed rewards are negative. As such, when using softmax, a brand-new target task model with random weights yields higher Q-estimations than a source model. Thus, most actions are sampled from the target model instead of the source at early transfer, leading to this poor performance. Also, although out of the scope of this work, designing a good curriculum is essential for leveraging the learning process. Thus, we may have a source task M i-1 , different from the reward shaping proposed, that could boost the learning process and consequently leverage the learning for M i . Yet, selecting source policy π Mi-1 is crucial in achieving an efficient transfer learning performance.

Figure 5.8 compares the results of CL for the pump scheduling problem with policies learned using ϵ-greedy policy with a network architecture identical to the curriculum's final step. The learning process uses random data from two years of water consumption, while one year is used during evaluation. We use 45 batches along the training to update policies organized in the following way:

• Task 1 (M 1 ) and Task 2 (M 2 ): we have four policies learning simultaneously for each pumping action in the action space A = (NOP, NP1, NP2, NP3, NP4), having each batch a single episode. As such, to address fairness in the comparison, each batch used to update π ϵ contains four episodes.

• Task 3 (M 3 ): In this task, we combine four source policies transferring knowledge