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in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

Author:

Sagar Arora

Scheduled for defense on the 16th of October 2023, before a committee composed of:

Reviewers
Prof. Thierry Turletti INRIA, Sophia Antipolis, France
Prof. Lyes Khoukhi ENSICAEN, France

Jury President
Prof. Raymond Knopp EURECOM, France

Examiners
Dr. Amina Boubendir Airbus, France
Dr. Pantelis Frangoudis TU WIEN, Austria

Thesis Advisors
Prof. Adlen Ksentini EURECOM, France
Prof. Christian Bonnet EURECOM, France
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ABSTRACT
Network Function Virtualization (NFV) is the founding pillar of 5G Service Based

Architecture. It has the potential to revolutionize the future mobile communication genera-
tions. NFV started long back in 2012 with Virtual-Machine (VM) based Virtual Network
Functions (VNFs). The use of VMs raised multiple questions because of the compatibility
issues between VM hypervisors and their high resource consumption. This made containers
to be an alternative network function packaging technology. The lightweight design of
containers improves their instantiation time and resource footprints. Apart from network
functions, containerization can be a promising enabler for Multi-access Edge Computing
(MEC) applications that provides a home to low-latency demanding services. Edge com-
puting is one of the key technology of the last decade, enabling several emerging services
beyond 5G (e.g., autonomous driving, robotic networks, Augmented Reality (AR)) requiring
high availability and low latency communications. The resource scarcity at the edge of the
network requires technologies that efficiently utilize computational, storage, and networking
resources. Containers’ low-resource footprints make them suitable for designing MEC
applications.

Containerization is meant to be used in the framework of cloud-native application de-
sign fundamentals, loosely coupled microservices-based architecture, on-demand scalability,
and high resilience. The flexibility and agility of containers can certainly benefit 5G Network
Slicing that highly relies on NFV and MEC. The concept of Network slicing allows the
creation of isolated logical networks on top of the same physical network. A network slice
can have dedicated network functions or its network functions can be shared among multiple
slices. Indeed, network slice orchestration requires interaction with multiple technological
domain orchestrators, access, transport, core network, and edge computing. The paradigm
shift of using cloud-native application design principles has created challenges for legacy
orchestration systems and the ETSI NFV and MEC standards. They were designed for
handling virtual machine-based network functions, restricting them in their approach to
managing a cloud-native network function.

The thesis examines the existing standards of ETSI NFV, ETSI MEC, and network
service/slice orchestrators. Aiming to overcome the challenges around multi-domain cloud-
native network slice orchestration. To reach the goal, the thesis first proposes MEC Radio
Network Information Service (RNIS) that can provide radio information at the subscriber
level in an NFV environment. Second, it provides a Dynamic Resource Allocation and
Placement (DRAP) algorithm to place cloud-native network services considering their cost
and availability matrix. Third, by combining NFV, MEC, and Network Slicing, the thesis
proposes a novel Lightweight edge Slice Orchestration (LeSO) framework to overcome the
challenges around edge slice orchestration. Fourth, the proposed framework offers an edge
slice deployment template that allows multiple possibilities for designing MEC applications.
These possibilities were further studied to understand the impact of the microservice design
architecture on application availability and latency.

Finally, all this work is combined to propose a novel Cloud-native Lightweight Slice
Orchestration (CLiSO) framework extending the previously proposed LeSO framework. In
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addition, the framework offers a technology-agnostic and deployment-oriented network slice
template. The framework has been thoroughly evaluated via orchestrating OpenAirInterface
container network functions on public and private cloud platforms. The experimental results
show that the framework has lower resource footprints than existing orchestrators and takes
less time to orchestrate network slices.
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ABRÉGÉ
La virtualisation des fonctions réseau (NFV) est le pilier fondateur de l’architecture

5G basée sur les services. Elle a le potentiel de révolutionner les futures générations de
communications mobiles. La NFV a débuté il y a longtemps, en 2012, avec les fonctions de
réseau virtuelles (VNF) basées sur les machines virtuelles (VM). L’utilisation des machines
virtuelles a soulevé de nombreuses questions en raison des problèmes de compatibilité entre
les hyperviseurs de machines virtuelles et de leur consommation élevée de ressources. Les
conteneurs sont donc devenus une technologie alternative de conditionnement intéressante
pour la virtualisation des fonctions réseau. La technologie des conteneurs est légère en
termes de consommation de ressources ce qui améliore leur temps d’instanciation. Outre les
fonctions de réseau, la conteneurisation peut être un outil prometteur pour les applications
multi-access edge computing (MEC) qui abritent des services exigeants à faible latence.
MEC permet l’émergence de calcul à la périphérie du réseau c’est une des technologies
clés de la dernière décennie,au-delà de la 5G (par exemple, la conduite autonome, les
réseaux robotiques, la réalité augmentée (AR)), nécessitant une haute disponibilité et des
communications à faible latence. La rareté des ressources à la périphérie du réseau exige des
technologies qui utilisent efficacement les ressources de calcul, de stockage et de mise en
réseau. La faible empreinte des conteneurs sur les ressources les rend adaptés à la conception
d’applications MEC.

La conteneurisation est censée être utilisée dans le cadre des principes fondamentaux
de la conception d’applications cloud-native, une architecture basée sur des microservices
à couplage lâche, d’une évolutivité à la demande et d’une résilience élevée. La flexibilité
et l’agilité des conteneurs peuvent certainement profiter au découpage du réseau 5G en
tranches,ces derniers reposent fortement sur NFV et MEC. Le concept de découpage du
réseau permet de créer des réseaux logiques isolés au-dessus du même réseau physique. Une
tranche de réseau peut avoir des fonctions de réseau dédiées pouvant être partagées entre
plusieurs tranches. En effet, l’orchestration des tranches de réseau nécessite une interaction
avec de multiples orchestrateurs de domaines technologiques: l’accès radio, le transport,
le réseau central et l’informatique périphérique. Le changement de paradigme consistant à
utiliser des principes de conception d’applications cloud-natives a créé des défis pour les
systèmes d’orchestration existants et les normes NFV et MEC de l’ETSI. Ces derniers ont
été conçus pour gérer des fonctions de réseau basées sur des machines virtuelles. Ils sont
donc limités dans leur approche de la gestion d’une fonction de réseau cloud-native.

Par le présent manuscrit, nous examinons les normes existantes de l’ETSI NFV,
de l’ETSI MEC et des orchestrateurs de services/tranches de réseau,et nous proposons
de résoudre les défis liés à l’orchestration de tranches de réseau multi-domaines cloud-
native. Pour atteindre cet objectif, nous proposons tout d’abord un service d’information
sur le réseau radio (RNIS) MEC qui a la capacité de fournir des informations radio au
niveau de l’abonné dans un environnement NFV. Deuxièmement, nous fournissons un
algorithme d’allocation et de placement dynamique des ressources (DRAP) pour placer
les services réseau cloud-native en tenant compte de leur matrice de coût et de disponi-
bilité. Troisièmement, en combinant NFV, MEC et Network Slicing, nous proposons un
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nouveau mécanisme d’orchestration de tranches MEC (LeSO) pour surmonter les défis liés
à l’orchestration de tranches MEC. Quatrièmement, le mecanisme proposé offre un modèle
de déploiement de tranches de réseau qui permet de multiples possibilités de conception
d’applications MEC. Ces possibilités ont été étudiées plus en détails pour comprendre
l’impact de l’architecture de conception microservice sur la disponibilité et la latence de
l’application.

Enfin, tous ces travaux sont combinés pour proposer une nouvelle approche d’orches-
tration de tranches légères Cloud-native (CLiSO) étendant le précédant mécanisme d’orches-
tration de tranches légères de bord (LeSO). En outre, cette nouvelle approche offre un
modèle de tranche de réseau agnostique sur le plan technologique et orienté déploiement.
La solution a été évaluée de manière approfondie en orchestrant les fonctions réseau du
conteneur OpenAirInterface sur des plates-formes de cloud public et privé. Les résultats
expérimentaux montrent que la solution proposée a des empreintes de ressources plus faibles
que les orchestrateurs existants et prend moins de temps pour orchestrer les tranches de
réseau.
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Chapter 1

Introduction

1.1 The 5G Journey

The 2nd generation of the mobile network is the catalyst behind making mobile
phones a necessity in our daily lives. It was the 1st generation of mobile networks that was
present across the globe. It allowed sending text and multimedia messages which were
unimaginable at that time. The 3rd generation provided the possibility of using mobile
phones for using websites and watching videos. The 4th generation truly revolutionized
our society by allowing an always-on data connection at more affordable prices, which was
impossible with other generations. It is the reason why the number of mobile phone users
has increased tremendously in the past 10 years. Every generation is trying to efficiently use
the limited spectrum to serve the ever-growing demands of mobile communication users.

4G created an opportunity for many new businesses, that relied on mobile phone
internet connectivity for reaching their customers. The heavy usage of media streaming and
broadcasting, online gaming, and smart connected devices challenged the 4G one-size-fits-
all design. 4G was not designed to provide every application with tailored Quality of Service
(QoS), especially for applications requiring ultra-reliable low latency. This shortcoming was
well addressed by the 5th generation of mobile networks. That is designed to provide tailored
QoS as per application requirements via the concept of Network Slicing [1]. Between every
generation, there is a transition period due to high capital investment in the successor. In
the case of 5G, some telecommunication operators preferred to deploy 5G non-standalone,
using 5G New Radio with a 4G core network to provide certain features of 5G to mobile
phone users.

1.2 Network Slicing, MEC and NFV

3rd Generation Partnership Project (3GPP) introduced Network Slicing to logically
slice the network to handle different traffic patterns. All the logical slices are hosted on the
same physical infrastructure, increasing the efficiency of the underlying infrastructure. 3GPP
release 17 [2] identifies five different types of slices based on application traffic patterns,

• enhanced Mobile Broadband (eMBB): This slice is suitable for the handling of high
downlink throughput demanding applications. For example, Ultra High Definition
(UHD) media streaming.

• ultra-Reliable Low Latency (uRLLC) Demanding Applications: This slice is suitable
for applications that require ultra-reliable and low-latency communication. For exam-
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ple, controlling drones, remote medical surgeries, and playing musical instruments
for a remote concert.

• Massive Internet of Things (MIoT): This slice is suitable for the handling of massive
machine-to-machine type communication for Industry 4.0 [3].

• Vehicular to Everything (V2X): This slice is suitable for handling autonomous driving
and truck platooning scenarios.

• High-Performance Machine Type Communication (HMTC): This slice is suitable for
handling IoT devices that require high bandwidth communication.

3GPP provides the possibility to define custom slices because all the above slices can
not handle every traffic pattern. Emerging 5G applications such as mission-critical services,
Augmented Reality (AR), and Virtual Reality (VR) require the capabilities of both eMBB
and URLLC. Such services can be enabled by including Multi-access Edge Computing
(MEC) in 5G infrastructure. Edge cloud or MEC [4] [5] provides a home to low latency
demanding applications. The close placement of MEC to its end users makes it suitable to
deploy emerging 5G services.

European Telecommunications Standards Institute (ETSI) MEC Industry Standard
Group (ISG) was formed to create standards for orchestrating applications at the edge
of the network. The group proposed an Application Descriptor (AppD) to describe the
requirements of the MEC applications. One such requirement for the applications hosted
at the MEC is traffic redirection or DNS-based redirection rules to steer traffic to MEC
Applications instead of the Internet. As the traffic redirection needs to be done dynamically
at the instantiation of the MEC application, the traffic redirection is defined as a rule in the
AppD. Besides, the traffic redirection is enforced by the MEC Platform (MEP) element
that acts as an interface between the MEC and 5G Radio Access Network(RAN) and Core
Network domains. MEP hosts a Radio Network Information Service (RNIS) that can be
used by applications to get radio information for their subscribers. RNIS allows tailoring
the Quality of Experience (QoE) at the subscriber level. Making MEC an essential entity in
5G and beyond networks.

The architectural complexity of mobile networks has been increasing from one
generation to another. Each generation requires different deployment and monitoring
methodologies. Network Functions Virtualization (NFV), introduced in 2012, proposed an
alternative way of deploying network functions rather than Physical Network Functions
(PNF). NFV proposed to decouple the software stack from the hardware of PNF and deploy
the software in a virtualized environment in the cloud. The aim of NFV is to bring a
paradigm shift from using purpose-built hardware to Commercial off-The-Shelf (COTS)
hardware for deploying network functions. This allows faster upgrades of the network. ETSI
NFV ISG, formed in 2012, is responsible for publishing standards for managing the life
cycle of VNFs.

Virtual Machines (VMs) have a proven track record in the field of software virtu-
alization. The first NFV architecture, the VNF instantiation descriptors, and orchestration
methodology depended a lot on VM-based VNFs. Though VMs have always been hard to
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manage, the interoperability issues between hypervisors, long instantiation time, and high re-
source demands are some of the main problems behind using VMs. Whereas containers have
a quicker instantiation time, smaller resource footprint, and enable microservices architec-
ture for software design. Microservices architecture allows breaking a monolithic software
application into an easily manageable software stack to facilitate software management and
upgrade.

Containerization existed for a long time, but IT industries started using containers
when docker [6] was introduced in 2013. NFV group started considering containers as an
alternative to VMs after ETSI NFV’s, “Report on the Enhancements of the NFV architecture
towards Cloud-native and PaaS” which was published [7] in 2019. The term cloud-native
as coined by Cloud Native Computing Foundation (CNCF) 1 is a software approach for
developing and managing applications that are native to all kinds of clouds, Public, Private,
and Hybrid clouds. Well-known network services orchestrators such as ETSI Open-Source
MANO (OSM), Open Network Automation Platform (ONAP) [8] and orchestrators pre-
sented by authors in [9], [10] are capable of orchestrating container-based VNFs or Container
or Cloud-native Network Functions (CNF). A network service is a functionality provided
by the VNF, PNF, or a connected combination of both. Cloud-native and NFV have played
a big role in influencing the 5G Core Network’s Service Based Architecture (SBA) and
Network Slicing. The whole 5G core network can be considered a network service, making
Cloud-native NFV the backbone for 5G and beyond networks.

Containerization is one of the basic requirements for a cloud-native application.
There are other requirements as stated by CNCF 2:

• Loosely coupled and API-based design: Applications should follow the microservices-
based architecture and should communicate using remote Application Programming
Interface (API) calls. 5G Core Network SBA fulfills this criterion.

• Manageable: The application configuration should be outside of the application.
Allowing easy changes in application functionality.

• Observability: The application should expose metrics to observe its health and func-
tioning.

• Scalability: CNCF does not explicitly mention scalability but in the cloud environ-
ments applications are designed to be sized and re-sized dynamically to balance the
cost and availability ratio. The applications should support either vertical, horizontal,
or both types of scalability.

1.3 Multi-domain Network Slicing

A Network Slice can spread across multiple technological domains, i.e., Radio
Access Network (RAN), Transport Network, Core Network (CN), and Edge computing.
The Core Network domain acts as the centralized cloud to host the components of the 5G

1https://www.cncf.io/
2https://github.com/cncf/toc/blob/main/DEFINITION.md
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core network. RAN domain is designed for hosting either monolithic or disaggregated RAN
components such as Distributed Units (DU), and Centralize Units (control or user plane)
(CU-C/U). In some cases, the control plane unit of CU can be hosted in the central cloud
and the user plane unit of CU and 5G core network in the edge cloud. The edge computing
domain consists of MEC, which was proposed by the authors of [11]. The transport domain
is spread across all three domains and it is responsible for interconnecting the domains.
Figure 1.1 depicts a Network Slice consisting of all the technological domains. In the figure
edge computing domain is placed in between the Core and RAN domain to consider the
scenario where RAN and 5G core user plane components will be placed in the edge cloud.
Otherwise, if the edge computing domain only consists of MEC applications then it can be
placed after the core network domain.

Figure 1.1: A Multi-domain Network Slice

In 5G the network functions require Network Slice Selection Assistance Information
(NSSAI) that they can support. This allows performing network slicing at the network
function level i.e., using a single network function to support multiple slices. Whereas, a
network slice can also have dedicated network functions supporting only a single slice. It is
also possible to have a combination of both scenarios.

1.4 Challenges in Orchestrating a Multi-domain Network Slice

Orchestrating all these different scenarios of network slicing can be challenging,
especially when the slice is spread across multiple domains. Indeed, the current state-of-
the-art does not focus on realizing multi-domain cloud-native network slice orchestration.
Below are some of the challenges of the existing orchestrators:

• No native support for network slice orchestration: They were designed to orchestrate
only network services, limiting their ability to support end-to-end network slice
orchestration.

• Legacy VM-based Design: Their architectural design is heavily based on VM-based
VNFs and they were recently upgraded to support container-based VNFs.
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• No support for Orchestrating MEC Applications: The orchestrators can manage
network functions at the edge but none of the orchestrators provide MEP capabilities
such as traffic redirection that are needed by MEC applications.

• Infrastructure and platform depends: Most of the orchestrators use Kubernetes3, a
container orchestration engine to orchestrate container-based VNFs. Their architec-
ture and network slice or network service descriptors are highly dependent on the
community distribution of Kubernetes. Whereas there are multiple distributions of
Kubernetes and in the future, there can be other orchestration engines. This adds an
obligation to be infrastructure aware.

• Complex architecture and high resource footprints: The support for containers on top
of legacy VM-based infrastructure increased the architectural complexity. Orches-
trators such as ONAP require high amounts of computational and storage resources,
making it unsuitable to operate in resource-constrained environments.

1.4.1 Challenges related to Availability

Apart from these challenges, the existing literature on cloud-native network function
orchestration does not discuss their availability aspect. Cloud-native network functions have
to abide by the telco grade 99.999% availability.

• Challenge I: The cloud-native way to achieve this availability is to have multiple
replicas of the network function. This might lead to over-provisioning of infrastruc-
tural resources, increasing the deployment and management costs. Hence, a decision
problem arises; How many replicas of each network function should be deployed?
Without over-provisioning computational resources to avoid the high cost and provide
service availability as promised in the Service Level Agreement (SLA)?

• Challenge II: Network functions deployed at the edge are latency-sensitive. The mi-
croservices architecture of cloud-native applications can affect their latency. Tightly
coupled deployment of such applications will have a better latency but lower avail-
ability. Whereas, loosely coupled deployment will have better availability but higher
latency. What should be the trade-off?

1.5 Thesis Motivation

Following these challenges, this thesis is motivated by the absence of a:

1. lean easy to use lightweight multi-domain slicing orchestration framework. A frame-
work that can simultaneously orchestrate ran, edge, and core domain slices.

2. framework that follows cloud-native principles to orchestrate and manage CNFs on
public, private, and hybrid clouds.

3https://kubernetes.io/
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3. framework that abstracts the platform and infrastructure-related information from the
network slice owner.

4. placement algorithm that provides cost and availability-aware deployment of cloud-
native network functions.

5. methodology around the deployment of cloud-native network function at the edge of
the network that requires low-latency and telco-grade 99.999% availability.

The end goal of this thesis is to realize a multi-domain slice orchestration framework
to fill gaps among the standards and existing orchestrators.

1.6 Thesis Outline

The thesis starts by providing a background of the relevant terminologies. Chapter 2
provides a brief background on NFV, MEC, Network Slicing, 5G Core Network Service
Based Architecture, and state-of-the-art network slice and service orchestrators. Figure 1.2
represents the visual outline of the thesis.

Figure 1.2: Visual Representation of Thesis Outline
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• Chapter 3: The Radio Network Information Service (RNIS) is one of the key services
provided by a MEP. It is responsible for interacting with the RAN, collecting RAN-
level information about User Equipment (UE), and exposing it to MEC applications.
In turn, this can be used by the latter to adjust their behavior to optimally match the
RAN conditions. This chapter presents a standard-compliant RNIS implementation
based on OpenAirInterface and studies critical performance aspects for its provision
as a VNF for MEC-in-NFV environment. Since the RNIS design and operation follow
the publish-subscribe model, the chapter investigates alternative implementations
using different message brokering technologies (RabbitMQ and Apache Kafka) and
compares their use and performance in an effort to evaluate their suitability for
providing RNIS in an as-a-service manner.

• Chapter 4: This chapter proposes a cloud-native approach to provide resilience
to simple cloud-native network services. A simple cloud-native network service
comprises a single CNF. Considering that a CNF alone is capable of providing service
to other CNFs, CNF as a service. The chapter presents a dynamic resource allocation
and placement algorithm for modeling and placing a simple cloud-native network
service. The algorithm aims to minimize infrastructural resource utilization under the
constraint of abiding by service availability mentioned in the SLA.

• Chapter 5: This chapter proposes a Lightweight edge Slice Orchestration (LeSO)
framework, a cloud-native orchestrator that orchestrates and manages the deployment
of microservices as sub-slices at the edge. Whilst the existing orchestration frame-
works are greedy for computing resource consumption and fail to integrate with the
Multi-access Edge Computing (MEC) domain, LeSO by design is very lightweight
and integrates a MEC platform-like component to guarantee traffic steering to auto-
mate edge slice deployment. Experiment results show that LeSO necessitates a small
amount of CPU and memory, even when a high number of edge slices are deployed.

• Chapter 6: In the cloud-native paradigm, highly embraced by cloud providers,
network functions and applications are decomposed into microservices that run in
a container. Defacto container orchestration engine, namely Kubernetes, deploys
multiple containers inside a Pod. The mapping between microservices and Pod highly
affects the availability and latency of deployed microservices and hence the running
application. This chapter proposes novel availability and latency-aware deployment
models for an edge service composed of multiple applications designed as multiple
microservices. The two considered deployments are analyzed and evaluated using
experimentation and an analytical model, considering critical performance criteria for
edge-oriented services, like availability and latency requirements.

• Chapter 7: To overcome the challenges of orchestrating a multi-domain network slice,
this chapter proposes a novel Cloud-native Lightweight Slice Orchestration (CLiSO)
framework extending the Lightweight edge Slice Orchestration (LeSO) framework
proposed in chapter 5. In addition, the chapter presents a technology-agnostic and
deployment-oriented network slice template. To allow zero-touch management of
network slices, the framework provides a concept of Domain Specific Handlers. The
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framework has been thoroughly evaluated via orchestrating OpenAirInterface[12]
container network functions on public and private cloud platforms.

The last Chapter 8 concludes the work presented in this thesis and discusses future
works. Table 1.1 contains a list of the publications made during the thesis work.
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Chapter 2

Background

2.1 Network Function Virtualization

Network functions are the functional building blocks of any network infrastructure.
In 2nd Generation of mobile networks, all the network functions use purpose-built hardware
known as Physical Network Function (PNF). The concept of Network function virtualization
(NFV) proposed in 2012 has transformed the Telecom industry today. NFV’s purpose is
to decouple the software stack from the PNF hardware and use commodity-off-the-shelf
(COTS) hardware for the software stack. These software-only network functions are known
as Virtual Network Functions (VNF), and they are packaged in VMs or Containers to be
hosted on general-purpose or slightly customized hardware.

Figure 2.1: Timeline of ETSI-NFV Standards Evolution

NFV standards are driven by ETSI NFV ISG. It was created in 2012 to facilitate
the adoption of NFV in the telecommunication industry. The first release of ETSI GS-NFV
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laid the foundation by providing NFV use cases and an architectural framework for VNF
orchestration and management, ETSI NFV-MANO. According to ETSI NFV, VNFs are
designed to be deployed individually or with other VNFs and PNF to provide a network
service. In other terms, a network service comprises one or more PNF or VNFs. The life
cycle of this network service is managed by ETSI NFV Orchestrator (NFVO).

Figure 2.1 summarizes different releases of ETSI-NFV and their relevant mile-
stones which are important for this thesis. The subsequent sections will explain different
terminologies and technologies which form the functional building block of ETSI NFV
standards.

2.1.1 Virtualization and Containerization

Virtualization allows sharing of the physical hardware of a computer among multiple
virtual computers, known as Virtual Machines (VM). Virtualization creates an abstraction
layer on top of the computer hardware to allow sharing of CPU, RAM, Storage, and
Networking with VMs. The virtualization software is known as Hypervisor. There are
multiple types of Hypervisors,

• Type I, Bare-Metal Hypervisors: These types of hypervisors replace the physical
computers OS. They interact directly with the hardware to create VMs. They are
mostly present in commercial servers.

• Type II, Operating System Hypervisors: These types of hypervisors are present on top
of the physical computer’s OS. They are mostly used on personal computers.

Virtual machines are like physical computers. They virtualize the underlying hard-
ware and run a complete OS known as guest OS. Their performance depends on the
underlying hardware. They provide good computational and security-based isolation to run
different applications on the same hardware. The ability to run VMs of different guest OS
than the host OS allows running multiple different applications which require different OS.
This optimizes hardware utilization. Whereas if all the applications require the same OS,
then packaging applications in VMs will add overhead.

To overcome this containerization took another approach of OS-level virtualization,
packaging applications with their required libraries and some OS packages. This allows
container-based applications to have a quicker instantiation time than VMs, as VMs have
to mimic the actual hardware. Containers do not require a complete OS which reduces
their resource footprints, enabling microservices architecture for designing applications in
granular components. The foundation and basics of containerization technology have been
around for a long time, but their usage started with the release of dockers1.

There are multiple container orchestration tools, but all of them use a similar format
for container images, similar to a VM image. This allows container images built with
different tools to be managed using different orchestrators. Whereas VMs built for different
hypervisors are not interoperable. The authors of [13] provide a performance comparison
between a KVM2 based VM and a docker container. The performance of a docker container

1https://www.docker.com/
2https://www.linux-kvm.org/page/Main Page

11



is similar to or better than the KVM VM. Containers today do not provide the same level of
isolation as VMs and they are not suitable if the application running inside the container
requires a different Linux Kernel than the host machine. For I/O intensive applications both
VM and container host machines require necessary customization.

The term cloud-native, as coined by CNCF is a software approach for developing
and managing applications that are native to the cloud. Containers play an important role in
designing and packaging such applications that are hosted in the modern container-based
cloud. The industrial switch of using containers rather than VMs for running multiple
applications on the same physical hardware pushed the NFV community to re-design the
standards.

The foundation of NFV standards is based on VMs and for a long time till release
3, the standards were entirely focused on VM-based VNFs. The ETSI group report NFV-
IFA 029 [7] provided the starting point for instantiating container-based VNFs. To keep
in harmony with previous NFV standards, ETSI uses the term VNF for both VM-based
and container-based VNFs. Though container-based VNFs are sometimes referred to as
Cloud-native or Container Network Functions (CNF).

2.1.2 Cloud Native Network Functions

Cloud-native applications are designed on microservices-based architecture with
statelessness in consideration. A stateless application stores its consumer’s data or state in a
database from which it can be retrieved when needed or it requests the consumer to store
the data. This allows for securing the application data in case of any failure. In contrast,
the traditional VM-based network functions are monolithic and stateful. Containerizing
these monolithic applications will not receive the complete benefits of an agile cloud-native
application. One of the possible solutions is to re-engineer these traditional VM-based VNFs
to adapt to cloud-native principles.

Figure 2.2: Cloud native Network Function (CNF) ETSI-NFV-IFA 029 sec.6.2.4

Figure 2.2 depicts a Kubernetes-based cloud-native VNF. Every VNF can have
multiple Virtualized Network Function Components (VNFC) and each component is mapped
to a Kubernetes pod. These Kubernetes pods can have multiple containers depending on
the design of VNFC. A VNF is a logical entity, while VNFCs are functional blocks. That
should follow cloud-native design principles. In a traditional VM-based VNF, the VNFC is
mapped to a VM. This is one of the design possibilities of the CNF. There can be multiple
others that are discussed in [7].
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2.1.3 ETSI NFV Management and Orchestration

ETSI NFV Management and Orchestration (MANO) is a framework to orchestrate
and manage the life cycle of network services comprised of VNFs and PNFs. The legacy
NFVO architecture was not designed to manage modern container-based VNFs. It was only
designed to orchestrate VM-based VNFs. ETSI GS NFV 006 release v4.4.1 proposes new
functional blocks for managing the life cycle of container-based VNFs. Figure 2.3 shows
the new ETSI NFV MANO framework supporting VM and Container-based VNFs.

Figure 2.3: NFV-MANO Architectural Framework with Support for Containers

For simplicity, the newly added blocks for container management are in yellow and
dotted lines to highlight the connections. The interface names are not present to avoid
confusion. The role of different components is defined below:

• Network Function Virtualization Orchestrator (NFVO): Responsible for managing the
life cycle of network services.

• Virtual Network Function Manager (VNFM): Responsible for managing the life cycle
of VNFs, their configuration, performance, and fault management.

• Virtualized Infrastructure Manager (VIM): Responsible for controlling and managing
the virtual resources of NFVI to provide them to VNFs. In short, it is responsible for
the life cycle management of VMs.

• Element Manager (EM): These are designed to monitor and configure the VNFs. They
can be used in some aspects of VNF’s life cycle management. For example, fault
management.
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• Container Infrastructure Service (CIS): Container Infrastructure Service (CIS) pro-
vides run-time infrastructural dependencies, computational, storage, and networking
resources for one or more containerization technologies. It can be considered the
cloud-native equivalent of a virtual-machine hypervisor. Hypervisors provide infras-
tructure to host virtual machines.

• Container Infrastructure Service Management (CISM): manages containers executed
by CIS. It is responsible for container deployment, monitoring, and life cycle manage-
ment.

• CIS Cluster Management (CCM): is responsible for managing the life cycle of CISM.

• Wide Area Network (WAN): is the transport network used to connect multiple NFVI
sites.

• WAN Infrastructure Manager (WIM): provides management of Multi-Site Connectiv-
ity Services.

• Container Image Registry (CIR): stores all the container images of the container-based
VNFs.

• NFV Infrastructure (NFVI): The hardware infrastructure on which virtual machines
or containers will be hosted.

In the figure 2.3 os-Ma-nfvo interface can be used to connect an Operational Support
System (OSS) for example, Openslice [14].

Network services are described using a Network Service Descriptor (NSD). A NSD
contains multiple Virtual Network Function Descriptors (VNFDs) and Physical Network
Function Descriptors (PNFDs). VNFDs are VM centric and were designed for VM-based
VNFs. The new specification contains special fields such as osContainerDesc to include
container description. Each VNFD inside a NSD can have multiple containers described via
the osContainerDesc field, one for each container. The number of containers depends on
the VNFD provider. However, the VNFD template still lacks some fields that are needed to
configure the security, networking, and configuration of network functions in a cloud-native
environment. It should be noted that the current specification has a tight coupling with
Kubernetes, a CISM. Apart from NSD, ETSI NFVO requires other packages that are needed
for orchestrating network functions. These packages rely on helm-charts3, which are tightly
coupled with Kubernetes.

2.1.4 Kubernetes: CISM

Kubernetes is an industrial de-facto standard for container orchestration, inspired
by Google’s Borg platform[15]. ETSI NFV-MANO standard mentions Kubernetes as one
of the possible container orchestration platforms, but, other service orchestrators may use
Kubernetes. Today Kubernetes has an important role in realizing a network slice built on
top of CNFs. Kubernetes is capable of managing multiple pods spread across a cluster

3https://helm.sh/docs/topics/charts/
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of nodes. A Kubernetes Pod is a group of co-located containers. It is the smallest entity
that can be scheduled by the Kubernetes scheduler. The containers inside a Pod share
the same network namespace, separate computational resources, and can have common
storage. Pods are designed to run multiple co-located processes with a degree of isolation.
Whereas, containers are designed to host a single process. The containers inside a pod
communicate with each other using the local network (loopback interface), shared memory
IPC (inter-process calls), and shared volumes if the volumes are common. Figure 2.4 shows
the design of a Kubernetes Pod.

Figure 2.4: Kubernetes Pod

It should be noted Kubernetes is an example of CISM, but there can be alternatives
such as Apache Mesos4, Docker Swarm 5 and HashiCorp Nomad 6. Functioning and
comparison of these alternatives are out of the scope of this thesis.

2.2 3GPP 5G Core Network SBA and Network Slicing

In ETSI TS 123.501, 3GPP proposed two architectures for a 5G Core Network,
Reference Point and Service Based Architecture (SBA). The SBA was highly influenced by
NFV and was designed to be deployed in a modern container-based cloud. Figure 2.5 shows
5G Core Network SBA. Network functions like Network Registry Function (NRF) and
Unstructured Data Storage Function (UDSF) facilitate service discovery and registry and
storage of the state of the network functions to make them stateless, respectively. These two
features are much needed for an application to be cloud-native. Today big telecommunication
companies7 offer containerized 5G control plane and user plane functions.

Network slicing [1] is one of the key features of 3GPP release 15. It allows the
creation of logically isolated networks on top of common physical network infrastructure to
support service customization, isolation, and multi-tenancy. Network slicing challenges the
4G one-size-fits policy by tailoring the network according to network service needs. NFV
provides the right infrastructure for realizing network slicing.

4https://mesos.apache.org/
5https://docs.docker.com/engine/swarm/swarm-tutorial/
6https://www.nomadproject.io/
7https://www.ericsson.com/en/news/2023/3/swisscom-ericsson-and-aws-collaborate-on-5g-core-for-

hybrid-cloud
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Figure 2.5: 5G Core Network Service Based Architecture

2.2.1 3GPP Approach Towards Managing Network Slices

Network slicing depends on resource virtualization while the orchestration mecha-
nism depends on whether the network functions are realized as physical machines, virtual
machines, containers, or a combination of both. 3GPP SA5 group in Technical Specification
28.53X (X in 0,1,2,3) defines the network slice management and automation mechanism.
The 3GPP approach has two key concepts Network Slice Instance (NSI) and Network Slice
Subnet Instance (NSSI). A NSSI is analogous to a network sub-slice. The 3GPP defines
the following management functions related to NSI management, listed below in the order
corresponding to their hierarchy:

• Communication Service Management Function (CSMF): Responsible for translating
the communication service-related requirement(s) to network slice-related require-
ment(s). It forwards the request to the Network Slice Management Function (NSMF)
to manage the life cycle of a NSI.

• Network Slice Management Function (NSMF): Manages the life cycle and monitors
the KPIs of NSIs. It derives network slice subnet-related requirements from the
network slice-related requirements. NSMF communicates with several NSSMFs,
one for each domain, to manage the life cycle of the Network Slice Subnet Instance
(NSSI).

• Network Slice Subnet Management Function (NSSMF): Manages the life cycle and
monitors the KPIs of NSSIs. There can be a dedicated NSSMF for each functional
domain, access network, transport network, edge network, and core network.

A NSI has four phases preparation, commissioning, operation, and decommission-
ing. In the preparation phase, NSI does not exist. The phase includes calculating instance
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requirements, onboarding needed entities, reserving resources, and preparing the environ-
ment. NSI’s life cycle stage includes the commissioning, operation, and decommissioning
phase. In these phases, NSI goes through different stages creation, activation, modification,
de-activation, and termination. A NSI is described using a Network Slice Template (NST).
GSMA defines a Generic network Slice Template (GST) [16] to describe slice behavior,
required quality of service, network functions required by the slice, etc. It does not focus
on the deployment aspect of a NSI, the hardware requirement of network functions, their
configuration, and links between them, etc. In [17] authors have proposed to use ETSI NFV
Orchestrator and ETSI MEO as NSSMF for core and edge domains, respectively.

2.2.2 ETSI NFV-MANO and 3GPP Network Slicing

ETSI group report NFV-EVE 012 V3.1.1, explains the relationship between 3GPP
proposed NSI and a network service. A network service is a resource-centric view of a
network slice if a NSI contains at least one VNF. A NSI can contain one or more VNF,
PNF, or NSSI. Similarly, NSSI can contain VNFs or PNF. Figure 2.6 explains the mapping
between a communication service, NSI, NSSI and network service.

Figure 2.6: Mapping between NSI and Network Service

The group report highlights that the 3GPP slice management functions can be
integrated with ETSI NFVO using os-Ma-nfvo interface as shown in figure 2.3. The NSMF
and/or NSSMF is responsible for determining the type of network service or set of network
services, VNF, and PNF that can support the resource requirements for a NSI or NSSI. It
determines if there is a need to create new network services, VNFs, and the connectivity to
the PNFs or existing instances can be re-used.

2.3 ETSI Multi-access Edge Computing

Multi-access Edge Computing provides a home to low-latency demanding appli-
cations. The early standards of MEC were introduced during 4G mobile communication
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systems and the white paper [11] describes how MEC can play a vital role in enabling
URLLC applications.

The first released document of ETSI MEC covers the reference architecture [18],
specifying the different necessary components and their interfaces. It introduces four entities:
(i) MEC platform (MEP) that acts as an interface between the mobile network and the MEC
applications, (ii) MEC host that may host both the MEC framework and MEC applications,
or only MEC applications, by providing a virtualization environment, (iii) MEC application,
that is executed on top of the Network Functions Virtualization Infrastructure (NFVI) of the
MEC host, with a MEP Manager (MEP-M) component in charge of MEP configuration and
MEC application lifecycle management (LCM), and (iv) Mobile Edge Orchestrator (MEO)
which is in charge of the lifecycle management of MEC applications, acting as the interface
between the MEC host and the operator’s OSS/BSS. ETSI MEC also introduced the concept
of MEC services, which are either provided natively by the MEC platform, such as the
RNIS [19], or are provided by MEC applications, e.g., video transcoding. MEC applications
can discover MEC services available at the MEC host and register their own via the Mp1
reference point.

The MEC architecture is defined to run independently of the NFV environment.
However, specific ETSI MEC activities have focused on the integration of MEC in NFV
[20]. This involves running the MEP/MEP-M as a VNF and delegating MEC application
instantiation to a regular ETSI MANO NFVO, and LCM to a VNFM, via standard ETSI NFV
interfaces. Figure 2.7 depicts MEC in NFV architecture. ETSI MEC in NFV architecture
has not been revised yet for container-based environment.

Figure 2.7: Multi-access edge system reference architecture variant for MEC in NFV

A MEC application is designed using the MEC Application descriptor (AppD) as
defined in ETSI MEC 010-2 standard. The foundation of AppD is highly influenced by VMs
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same for VNFDs. But the recent updates of the standards briefly mention the possibility
of describing a container-based MEC application. At the time of writing this thesis, the
standards lack a lot of clarity around the containerization of MEC applications.

2.4 Network Service Orchestrators

The existing service orchestrators and their network service descriptors were de-
signed to orchestrate VM-based VNFs. Later they adapted their architecture and service
descriptors to orchestrate container-based VNFs or CNFs. The service descriptors of the
orchestrators are either based on standard ETSI NSD or a tailored NSD. The orchestrators
are capable of placing the applications at the edge, but they do not provide the capabilities
of MEP to edge applications. Below are some of the known service orchestrators,

• Open Source MANO (OSM): A network service orchestrator proposed by ETSI as a
reference design based on the ETSI NFV standard. Designed to orchestrate VM-based
network services, it supports container-based network functions. OSM can deploy
network functions at the edge cloud but not MEC Applications, which require MEP
support. For supporting MEC applications the ETSI MEC framework proposes an
interface with NFVO. Starting OSM version 5, network slices can be orchestrated
using the OSM network slice template. The network slice template contains several
ETSI NSDs. The template does not clearly allow resource isolation. Apart from
NSD, the orchestrator requires helm-charts or juju-charms8 to describe the CNF
configuration, required software images, and computation resources.

• Open Network Automation Platform (ONAP): Designed to manage VM-based VNFs,
and with the recent release, it follows cloud-native principles to orchestrate CNFs.
ONAP’s complicated architecture with a large number of components results in high
resource consumption. The Frankfurt release of ONAP introduced the functionality
of network slice orchestration using the Topology and Orchestration Specification for
Cloud Applications (TOSCA) template. The network slice template is convoluted
and it is difficult to define resource isolation. The complex realization of ONAP
demands the involvement of a big team in taking care of service orchestration. The
high resource consumption makes it unsuitable to deploy in a resource constraint
environment.

• 5G Transformer Service Orchestrator (5GT-SO)[9]: 5G transformer framework pro-
posed a vertical slicer as the gateway for different verticals to instantiate their network
services. The 5GT-SO is built on top of OSM and Cloudify but only supports VNFs.

• 5G SONATA[10]: A service orchestrator capable of orchestrating VNFs and CNFs.
However, it does not orchestrate MEC applications. Making it unsuitable to orchestrate
an end-to-end network slice.

ONAP and OSM both have their own tailored NSDs and NSTs; apart from that, they
need VIM-specific packages like helm-charts and juju-charms. This forces the network

8https://charmhub.io/
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function provider to be infrastructure and platform aware. OSM has a tight coupling
with Juju-charms and Ubuntu-based Linux. Besides these orchestrators, Google proposed
Nephio9. It is integrated with Kubernetes and it requires the users to be aware of Kubernetes.
The project is at a very early stage and there is nothing mentioned about network slicing.
The authors of [21] proposed a MEC application slicing concept via a proof of concept
framework. They proposed a MEC Application Slice Subnet Descriptor (MAPSSD) to
describe container-based MEC applications of a MEC slice. Their proposed descriptor and
framework highly rely on helm-charts to describe application deployment/configuration-
related information. Such an approach requires application providers to be infrastructure
aware.

The core and edge domains both will have container-based network functions or
applications. In fact, according to Open RAN Alliance (O-RAN)10 architecture, it is possible
that some of the access network functions for example, Central Unit-Control Plane (CU-CP)
and Central Unit-User Plane (CU-UP) can be deployed as CNFs. ONAP addresses the
challenges of orchestrating RAN network functions. However, its high resource consumption
restricts its usage to a limited group of users.

9https://nephio.org/
10https://www.o-ran.org/
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Chapter 3

Radio network information in a MEC-in-NFV environment

3.1 Introduction

RAN awareness can be proven beneficial for a wide range of applications in 5G and
beyond context. A wealth of useful information is constantly generated at the RAN level,
such as events pertaining to the network control and data planes, UE status and capabilities,
mobility events, location updates, and information on the radio conditions at the user end.
These data were traditionally available only to the network operator via the mobile network
equipment’s vendor-specific monitoring and management interfaces. However, with the
advent of Multi-access Edge Computing (MEC), this situation is expected to change.

As per the ETSI MEC standard, a MEC platform (MEP) provides a set of services
to application instances running at the mobile edge, among which is the Radio Network
Information Service (RNIS) [19]. This service allows authorized MEC applications to
consume RAN-level information, such as UE channel quality indications and location
updates, which they can utilize to offer enhanced services and optimize performance. This
creates space for innovative, RAN-aware third-party applications deployed at the mobile
edge, in areas ranging from network troubleshooting and network resource management
[22] to QoE optimized service delivery [23; 24].

From the perspective of the network operator, harnessing the potential of these data
requires dealing with significant challenges. At the MEP level, handling such amounts
of data and efficiently delivering them to MEC applications is already non-trivial. RAN-
level data are generated at high volumes and have to be treated at the edge, where storage,
processing, and memory resources are typically scarce. Scalability challenges thus emerge as
the number of mobile terminals generating data and the number of MEC-hosted applications
consuming the RNIS grow.

This gets more pronounced in a MEC-in-NFV environment [20] and as Network
Slicing finds its way toward edge computing. In this environment, the MEP and its services,
including the RNIS, are instantiated on demand over an edge cloud as virtual instances and as
parts of a network slice instance. MEC orchestration components thus need to appropriately
allocate compute resources to multiple RNIS instances corresponding to multiple MEC
tenants.

This chapter contributes towards a better understanding of the performance require-
ments of offering RNIS-as-a-Service (RNISaaS) in a MEC-in-NFV environment. This
chapter presents:
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1. Design and implementation of an RNIS featuring a standards-compliant publish-
subscribe API.

2. Experimental comparison between two candidate solutions for implementing publish-
subscribe model, (RabbitMQ1 vs. Apache Kafka2) for the provisioning of RNISaaS.

To the best of my knowledge, although existing works focuses on potential appli-
cations of the RNIS, this is the first work that addresses the design and implementation
of the RNIS component itself, its internal workings, and their performance implications,
particularly towards MEC-in-NFV. The experimental testbed and implementation of RNIS
presented in this chapter are based on a 4G/5G non-standalone environment. Early RNIS
ETSI MEC data models were designed for 4G and recently [25] the standards are adapted to
support 5G new radio-related information. This chapter is the first step towards discovering
MEC, VM-based NFV during the early 5G period. The chapter is structured as follows:

• Section 3.2 briefly presents the design principles, architecture, and implementation
of the MEC platform built on top of OAI [12], with more details on how the RNIS
delivers information to applications following the publish-subscribe model.

• Section 3.3 delves into the details of how message broker is implemented internally
using two different candidate technologies.

• Section 3.4 shows experimental evaluation.

• Section 3.5 summarises the chapter.

3.2 RNIS as a Service (RNISaaS)

The RNIS is a key MEC service, allowing third-party applications to access contex-
tual information on the UE end. Once the MEP is envisioned to be executed as a VNF, it is
important to assess its performance, particularly the performance of the RNIS service in a
virtualized environment. Given the volume of data handled by the RNIS and the potentially
stringent delay requirements for their delivery to interested applications, the results of such
a study can be important for the MEC operator to appropriately dimension the resources
to allocate to each RNIS virtual instance and to set up the management mechanisms for
their automatic scaling to meet the performance requirements of the MEC tenants. At the
same time, such results can provide insight into the choice of suitable technologies for the
implementation of specific internal RNIS mechanisms.

This section starts with a brief introduction to the MEP implementation based on
OAI. A detailed description of the implementation of RNIS-as-a-Service (RNISaaS) follows.

3.2.1 Implementing a MEP on top of OpenAirInterface

OpenAirInterface (OAI) [12] is an open-source implementation of a complete, 3GPP-
compliant 4G and 5G mobile systems. At the time of the MEP implementation, 5G was still

1https://www.rabbitmq.com/
2https://kafka.apache.org/
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Figure 3.1: Architecture of the MEC Platform.

under development. Hence, this work uses OAI 4G RAN and 4G/5G non-standalone core
network. The MEP is the MEC element that interfaces directly with radio and core network
components via the Mp2 interface. MEP uses these interfaces to manage traffic steering
towards MEC applications and to gather RAN-level information on the UE’s environment
and context, to expose it via the RNIS API (and/or other standardized interfaces such as the
location API [26]).

To implement the traffic steering for 4G/5G non-standalone core network 3GPP
proposed Control and User Plane Separation (CUPS)[27] provides a possibility to interact
with the user plane. CUPS proposes to split the Service and Packet Gateway (SPGW) into
two entities: SPGW-C and SPGW-U (C for the control plane; U for the user plane). The
former is in charge of managing the signaling control to create the user-data plane, whereas
the latter is in charge of forwarding the user-plane data. The SPGW-U is connected to
the Internet and the edge virtualization platform. In response to a request from a MEC
application (or when requested by the MEO via the MEPM), the MEP installs traffic rules on
the SPGW-U to offload traffic to the MEC application. MEP performs this traffic redirection
using OpenFlow protocol via Mp2 reference point. In the proposed OAI-oriented MEC
platform, the SPGW-U is based on a patched version of the OpenVSwitch (OVS) software,
which adds support for matching GTP packets.

On the other hand, the FlexRAN [28] protocol is used to implement the Mp2 interface
towards the RAN to obtain radio statistics and expose them via the RNIS API. FlexRAN is
a flexible and programmable software-defined RAN platform designed for controlling the
4G RAN. In 5G FlexRIC [29] supersedes FlexRAN to provide an Open-RAN (O-RAN3)
standard compliant RAN Intelligent Controller (RIC) to manage the 5G RAN components
and gather statistics.

3https://www.o-ran.org/
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There are other functions that the MEP can provide (service registration and discov-
ery, DNS, etc.) Figure 3.1 provides a global overview of the MEC platform’s architecture
and its interfaces with MEC applications and network elements.

3.2.2 OAI-based RNIS Implementation

The RNIS is exposed by the MEC platform via the Mp1 reference point. This service
provides up-to-date radio network-related information to authorized mobile edge applica-
tions. This information can be provided with different granularity, using the IMSI, IPv4, or
IPv6 address as UE identifiers. For example, the RNIS can provide RAN information per
UE, for all the UEs under a specific cell coverage, by QCI value, and using various other
combinations. The proposed RNIS implementation offers two methods for fetching this
information:

• First, it provides a simple request-response mechanism where applications can access
the RNIS using a REST HTTP interface.

• Second, it exposes a publish-subscribe interface, where an application can subscribe
to a set of notifications to get updates on a range of parameters.

The latter provides more up-to-date, near-real-time information on radio conditions
and gives the opportunity to applications to receive notifications across a rich set of criteria
and their combinations. In the ETSI MEC 012 specification [19], these notifications have
been divided into eight categories: cell change, UE measurement report, Radio Access
Bearer (RAB) establishment, RAB modification, RAB release, UE timing advance, UE
carrier aggregation reconfiguration, and S1-U bearer information. The operation of the
OAI-MEP publish-subscribe mechanism is illustrated in Figure 3.2.

Figure 3.2: Operation of the RNIS provided by our OAI-based MEC platform.

At the southbound interface (between the eNodeB and the MEP), the FlexRAN agent
of the eNodeB sends messages in a raw format including several pieces of information on
the UE radio context, e.g. CQI, RSRP, and RSRQ. These messages need to be treated and
formatted in a JSON format as specified in [19]. OAI-MEP provides a RNIS service to
subscribe to all eight different types of notifications, as described above.

The proposed RNIS implementation includes two components, as shown in Fig-
ure 3.2. The first component is the collector, which receives, parses, and stores the messages
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coming from the eNodeBs it manages, and formats them appropriately in JSON as specified
in [19]. Every notification has a different message structure. The formatted messages are
forwarded to the second component, i.e., the broker/publisher, which classifies the messages
according to the different filtering criteria and notifies the subscribed MEC applications.
The messages can be filtered on a per eNodeB (cell) or on a per UE basis. That is, a MEC
application can subscribe to notifications related to an entire cell or a set of UEs. Section
3.3 covers the implementation of the broker/publisher in more detail.

3.3 RNIS message broker implementation

As described in Section 3.2, the RNIS comprises a collector and a broker/publisher
component. RNIS broker implementation is done using two different message brokers
Apache Kafka and RabbitMQ. The reason for choosing two candidate technologies is their
fundamental design difference and implementation, which is reflected in their performance,
as it shall be explained in Section 3.4.

3.3.1 RabbitMQ

This is a traditional message queuing system that implements the Advanced Message
Queuing Protocol(AMQP)4 and is built in Erlang. It follows the standards for AMQP 0.9.1
and can also support AMQP 1.0 via a plugin. In RabbitMQ, all the messages first arrive at
an exchange, which distributes them to different queues based on a routing key or message
header value. Once a message arrives in a queue, the RabbitMQ server pushes it to the
consumer(s) listening to the queue.

3.3.2 Apache Kafka

This is a distributed streaming platform designed around a distributed commit log.
It supports consumer clusters, i.e., running multiple consumer instances in a consumer
group. In Kafka, the messages are published according to topics and each topic has multiple
partitions. A copy of the message is stored in each partition. (Depending on the replication
factor there can be more copies in other Kafka clusters.) Once the messages have arrived in
the partition, they can be pulled by the consumer groups, if the latter have subscribed to the
particular topic.

3.3.3 Distinctive characteristics

The two candidate technologies have some distinctive differences:

• Routing Capability: RabbitMQ provides various exchanges (direct, fan-out, headers,
topic) and extensive capabilities for routing the messages (pattern matching, header
matching), whereas in Kafka the messages can only be routed according to topics.

4https://www.amqp.org/
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• Message Storage: In Kafka, messages are available even after consumption (depend-
ing on the message retention period), which is not the case with RabbitMQ, where
messages can only be consumed once.

• Multiple Consumers: Kafka supports multiple consumer groups subscribing to the
same topic. On the contrary, in RabbitMQ if there are multiple consumers listening
to the same queue, then the messages they have subscribed for will be pushed in a
round-robin manner.

RabbitMQ is implemented using the header exchange: a message is routed according
to its header, which acts like a routing argument. Every subscriber has its own dedicated
queue and these queues have new header values for every new subscription. The higher
the number of subscriptions, the higher will be the number of routing arguments. Every
subscriber has one RabbitMQ consumer instance running locally, on the same machine
where the RNIS application is running. As per the ETSI RNIS specification, the messages
have to be delivered to the subscribers via the HTTP protocol. A consumer instance sends
an HTTP post request to the callback URL of the subscriber, which is provided by the latter
at subscription time, together with the rest of the subscription information.

In Kafka, this implementation is slightly different, Messages are routed according to
topics. For each subscription, there is one topic and one consumer instance (running locally,
as with RabbitMQ) that listens to these topic partitions. This consumer instance belongs
to a consumer group (one consumer group for one subscriber). Kafka provides the facility
for consumer groups to subscribe to the same topic. Every consumer group maintains an
offset value which helps to fetch the messages sequentially or in a random manner. This
feature provides the ability to merge similar topics, having similar filtering criteria chosen
by subscribers. This reduces the number of topics.

In conclusion, in RabbitMQ there is a single dedicated consumer instance posting
the notifications to the subscriber, while in Kafka there are a lot of consumer instances
(belonging to the same consumer group) posting the notifications to the subscriber. Here are
the final remarks regarding the implementation:

1. Message batching is not considered for any implementation. Messages are posted as
soon as they are produced. This provides a near real-time view of the network to the
notification subscriber.

2. Both message brokers are used in unacknowledged mode. The producer is not waiting
for an acknowledgment from the broker. This is done to improve end-to-end (E2E)
latency. It should be noted, that both brokers were found to be reliable in the tests,
with no message loss.

3.4 Performance evaluation

The experiments were performed on a host with a 4-core Intel (i5-3470 @3.2 GHZ)
CPU, 500 GB hard disk, and 16 GB RAM, running Ubuntu 16.04 LTS. The application
was written for Python 2.7.12; pika 0.11.2 and confluent-kafka 0.11.4 are the respective
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Python libraries of RabbitMQ (v3.77 with Erlang 21.0.6; standard settings) and Apache
Kafka (v2.0.0, Java 1.8.0 181; Java VM settings provided by confluent [30]).

There is one cluster of Apache Kafka and, similarly, only one RabbitMQ broker.
The replication and clustering capabilities of Kafka or RabbitMQ were not explored. All
applications (RNIS application, broker, subscribers, and message producer) were executed
on the same host to avoid the effects of network delays on the results of the measurements.
Also, the brokers were given the highest priority on the CPU(s) they were running using the
nice Linux utility.

To get insight into which broker is more suitable to implement the RNIS, a set of
experiments was performed. Experiment results are presented in subsequent sub-sections.

3.4.1 Increasing numbers of subscribers

Figure 3.3: Effects on E2E latency with increasing numbers of subscribers. The message rate is
set to 10/s; each subscriber has subscribed to 8 notifications. Total messages produced: 10,000.
Messages consumed: 10,000 * Number of subscribers.

Considering that every subscriber has subscribed to eight different notifications, this
experiment measured the effects of increasing the number of subscribers on E2E latency
for both message brokers. E2E latency is defined as the interval from the time instance
when specific data to which an application has subscribed are received by the RNIS from
the eNodeB over the FlexRAN-based southbound interface (thus generating a publication),
until the moment they have been successfully delivered to the consuming application.

Figure 3.3 illustrates the effects on E2E latency with increasing number of sub-
scribers. The average E2E latency for both brokers is less than 50 ms, which indicates
that both are suitable for near real-time applications. When the number of subscribers
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increases, in RabbitMQ the number of queues starts increasing, which results in increasing
workload (replicating messages for every subscriber) for the exchange. The number of
routing headers is the same for every subscriber. The number of RabbitMQ consumers
posting messages to MEC applications is the same as the number of subscribers. All the
subscribers are subscribing to similar eight notifications. In Kafka, this results in eight topics
for all the subscribers, and when the number of subscribers increases the consumer groups
linearly increase. This results in a growing number of consumer groups on topic partitions.
There are eight consumer instances in each consumer group posting the notifications to the
subscribers. Therefore, the increased number of consumer instances in Kafka in comparison
with RabbitMQ results in lower E2E latency for the latter.

3.4.2 Resource utilization

This sub-section showcases the result of the set of experiments performed to measure
resource utilization for the same message production rate, number of subscribers, and number
of subscriptions per subscriber5 and for increasing CPU resources allocated to the broker.

In particular, the number of CPU cores assigned to the broker application was
gradually increased from 1 to 3, using the taskset Linux utility to pin the broker process to
a specific set of CPU cores. As shown in Figure 3.4, Kafka utilizes more resources than
RabbitMQ, in part due to the use of Java versus Erlang (for example, how Java handles
garbage collection). Second, the message production rate in our experiments is in general
kept low; for higher message production rates, it is possible that the curves can deviate. For
the experimental settings studied in this work, which are considered realistic, RabbitMQ
shows better performance in terms of resource utilization.

It should be further noted that, as expected, E2E latency consistently reduces with an
increase in the CPU resources allocated. This result is important for the operator of the RNIS
in an NFV environment: Given a specific workload in terms of the number of UEs (which
translates to a specific rate/volume of generated RAN level information) and subscribing
MEC applications, and under specific E2E latency requirements, the MEC application
orchestrator may appropriately (re-)dimension the resources assigned to a virtualized RNIS
instance. This way, it can dynamically scale the number of virtual CPUs allocated to an
RNIS instance to match the service workload and ensure that it is adequately provisioned
to deliver notifications to the subscribed MEC applications in a timely manner, without
“overspending” CPU resources.

3.4.3 Analysis

For the given message generation rate (1 message/100 ms), the latency of both
brokers was below 50 ms, which makes them appropriate for some real-time applications.
However, the number of Kafka consumer instances per subscriber is increased compared
with RabbitMQ, where there is one consumer instance per subscriber. This is due to the
fact that, for Kafka, if a single consumer instance listens to multiple topics at the same
time, then the consumption of messages will be very slow. To compensate for that, for

5Message rate: 10/s. Number of subscribers: 50; each of them has subscribed to 8 notifications. Total
messages produced: 10,000. Messages consumed: 500,000.

28



(a) Apache Kafka CPU utilization vs. E2E latency

(b) RabbitMQ CPU utilization vs. E2E latency

Figure 3.4: Apache Kafka and RabbitMQ CPU utilization vs. E2E latency
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every subscription there is a single instance that improves on latency at the expense of CPU
and memory utilization. Furthermore, a Kafka consumer follows the pull model, while in
RabbitMQ it is based on the push model. Therefore, if many consumer instances are polling
simultaneously, the broker has to maintain offsets for all consumers. This increases the
processing load on the broker. In summary, RabbitMQ appears to be a better option in our
settings.

3.5 Summary

This chapter presented the implementation of a standards-compliant RNIS service
on top of an OAI-based MEC platform and experimental results on its latency and resource
consumption performance. The chapter targetted a MEC-in-NFV environment, where virtu-
alized MEC platform components, including the RNIS, are to be executed on top of an edge
NFVI, without excluding the case for multiple coexisting virtual RNIS instances, belonging
to different tenants and authorized to expose different subsets of RAN-level information.
The presented results can be used to gain insight into the performance characteristics of the
RNIS as a function of the underlying technologies used to implement information delivery,
and, importantly, towards dynamically allocating resources to RNIS virtual instances for
efficiently providing the RNIS in an on-demand, “as-a-service” manner, satisfying the
requirements for timely RAN-level information delivery. Furthermore, the chapter presented
a comparison between the performance of two well-known message brokers (i.e., RabbitMQ
and Kafka) for publish-subscribe RNIS message delivery. The results advocate for the use of
RabbitMQ, being more lightweight and thus appropriate for a MEC context, where compute
resources are typically more scarce.

In the next chapter, the ETSI NFV framework will be discussed in detail to under-
stand how container-based VNFs/CNF or MEC applications can be placed on the virtualized
infrastructure. Taking into account their cost and availability matrix.

30





Chapter 4

Placement of Cloud Native Network Services

4.1 Introduction

Container-based applications do not require a full operating system like virtual
machines. Making them lightweight and reducing their deployment time. They can be
assigned vCPU at a granularity of 1milli CPU, where 1000m CPU is equivalent to 1vCPU.
Whereas in VMs, the minimum vCPU that can be assigned is 1vCPU. CNFs can use this
finer vCPU assignment to have improved infrastructural resource utilization in comparison
to traditional VM-based VNFs.

Network functions can be used alone or along with other network functions to
provide network services. The latter are offered by service providers who either owe
the infrastructure or lease it from infrastructure providers. While providing a service,
they have to abide by service availability which is an important attribute of the Service
Level Agreement (SLA). The ETSI NFV group has published specifications and guidelines
on the resilience and availability of network functions and network services [31]. They
acknowledge higher availability is subjected to higher deployment and management costs.
Making it important to find cost-availability trade-offs. This trade-off has always been a
challenge for service providers, in maximizing their profits.

A cloud-native network service comprises single or multiple CNFs. To achieve
the telco grade 99.999% availability with only single instances of each CNF, as it was for
VNF or PNF can be challenging. The cloud-native way to achieve this availability is to
have multiple replicas of the CNFs composing a network service. This might lead to over-
provisioning of infrastructural resources, which increases the deployment and management
costs. Hence, a decision problem arises; How many replicas of each CNF a cloud-native
network service needs? Without over-provisioning computational resources to avoid the
high cost and provide service availability as promised in the SLA.

This chapter proposes a solution for this decision problem from the perspective of
service providers. The existing work focuses on VM-based VNF placement. It does not
consider CNFs or address the above problem or consider cost and availability together as an
attribute while placing CNFs on cloud infrastructure. To fill this gap, this chapter provides
an algorithm to model a simple cloud-native network service.

A simple cloud-native network service requires a single CNF to provide the network
service functionality. The proposed algorithm considers two assumptions: first, the service
provider knows in advance the computational resources, and importantly vCPU required
by the service to serve the user demand; second, the nodes on which CNF replicas will be
placed have enough storage and memory resources. To summarize, the chapter will present:
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1. Cost and availability model for simple cloud-native network service

2. Dynamic Resource Allocation and Placement (DRAP) algorithm for design and
placement of a simple cloud-native network service. DRAP provides a dictionary that
contains the number of CNF replicas, placement on the infrastructure node, and vCPU
allocation for each replica. It abides by service availability as a constraint.

4.2 Placement of Virtual Network Functions

Most of the existing related work focuses on the resource allocation and placement
of traditional VM-based virtual network functions. Authors of [32] have proposed a model
for joint vCPU to VM allocation and VM placement considering a simple CDN network
service. They have used this model to highlight and address the cost and availability trade-
off. The service availability model presented in our thesis is inspired by this work. Authors
of [33] provided a queuing theory-based approach to solve traditional VM-based VNF
placement and resource assignment problems for a 5G network service. Their presented
model considers a service function chain that can be useful for simple as well as complex
network services.

Both of these works consider hypervisor-based VNFs, whereas the primary aim of
the work presented in this chapter is to use a cloud-native approach for placing network
services. Other works related to CNF have focused on different problems. Authors of [34]
presented CNF design principles and use cases, and in [35], the authors have presented
network service function chaining based on service mesh.

4.3 Simple Cloud Native Network Service

NFVO manages the lifecycle of a network service using a Network Service De-
scriptor (NSD), which is received from northbound entities such as OSS/BSS or a slice
orchestrator in case of Network slicing[1]. The NSD contains details about virtualized and
physical network functions, virtual and physical links between them, etc. The NSD is used
for modeling, placing, and scaling the instances of VNFs. Based on this, it is considered
along with NSD, NFVO receives the maximum vCPU required by the service and the
required service availability. The calculation for the maximum vCPU required by a service
is out of the scope of the proposed algorithm.

This section presents the model of the proposed simple cloud-native network service
and the position of the proposed Dynamic Resource Allocation and Placement (DRAP)
algorithm in NFV-MANO architecture.

4.3.1 Modeling a Simple Cloud Native Network Service

In a traditional VM-based network service, the network functions are connected
via the Service Function Chain (SFC) concept [36]. Chapter 2 highlights that a network
service can have multiple different types of VNFs and PNFs. These VNFs may have replica
instances depending on the design of the network service. The ETSI specification for
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cloud-native VNF implementation [37] acknowledges redundancy as a possible solution to
provide resiliency.

Based on this theory, a cloud-native network service can be modeled as multiple
replicas of the same CNF, and the maximum vCPU that the service requires is divided among
these replicas. The maximum vCPU consumed by the replicas will not exceed the maximum
vCPU required by the service. The service load is distributed between replicas, which
provides resilience to the service without over-provisioning the computational resources.
This will be discussed in detail in section 4.4.3.

This service is named Simple Cloud Native Network Service because there are
multiple replicas of the “same kind of CNF”. This CNF has one VNFC in a Kubernetes pod.
This pod can have single or multiple containers.

Figure 4.1: Simple cloud-native network service S with K replicas of CNF A

Figure 4.1 depicts a simple cloud-native network service S comprising K replica
instances of CNF A with different vCPU allocation. The allocation is performed by the
proposed algorithm based on the placement of these replicas on NFVI. It should be noted
that a CISM schedules pods based on the resource requirements, whereas the proposed
algorithm performs simultaneous scheduling and vCPU allocation.

4.3.2 Deploying a Simple Cloud Native Network Service

In Figure 4.2, the NFVO receives a deployment request for a simple cloud-native
network service. The request contains NSD, maximum vCPU required by the service
(RvCPU ), and required service availability (RA). NFVO starts with onboarding CNF images
and then the Dynamic Resource Allocation and Placement (DRAP) algorithm will generate
the Placement And vCPU Allocation (PACA) dictionary. It sends the dictionary and RA to
CISM.

Figure 4.2: Cloud native network service deployment flow diagram

CISM places CNF pod(s) on NFVI and allocates the vCPU as mentioned in the
dictionary. Pod placement on NFVI is based on the dictionary. It should be noted, that
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generally, CISM performs the initial placement of pods. Here, NFVO is performing the
initial placement. To maintain required service availability, CISM can reassign pods to
different nodes, and scale horizontally or vertically depending on the information received
from the monitoring system of CISM.

4.4 Dynamic Resource Allocation and Placement Model

4.4.1 Preliminary

Now onward the notations highlighted in Table 4.1 will be used. The notations are
specific for a simple cloud-native network service S. A pod refers to a CNF instance as
depicted in Figure 4.1. Besides the table, X = (xi j) is the pod placement matrix, xi j is 1 if
pod i is placed on node j otherwise 0. W = (wi j) is the vCPU allocation matrix and wi j
denotes the vCPU allocated to pod i placed on node j. ∀i ∈ [1,K] and ∀ j ∈ [1,N].

Table 4.1: Summary of Notations

N Number of nodes available in NFVI (CIS) for pod placement
RvCPU Maximum vCPU in milli units required by the service
Pmax,Pmin Maximum and minimum number of pods which can host the service
K Actual number of pods hosting the service S
minvCPU Minimum vCPU in milli units which can be assigned to a pod
maxvCPU Maximum vCPU in milli units which can be assigned to a pod
C( j) vCPU capacity of node j in milli units, ∀ j ∈ [1,N]
RA Service availability required by the service
h j Failure probability of node j, ∀ j ∈ [1,N]
gi Failure probability of pod i, ∀i ∈ [1,K]

4.4.2 Cost Model

Consider an array Y = (y j) and ∀ j ∈ [1,N], where y j denotes the status of a NFVI
node j on which pods can be placed. y j is 1 when node j is hosting at least one pod.
Otherwise, the node is not hosting any pod then 0.

NFVI is a cluster of physical machines providing infrastructural resources (computa-
tional, storage, and networking resources). The container infrastructure service instance can
be present on VMs or bare-metal. This work considers:

• Bare-metal deployment of CIS

• Each node of the cluster has a fixed cost L when it is hosting pod(s), otherwise, the
cost is zero. In a Kubernetes node, this fixed cost can be calculated by computing the
computational resources consumed by operating system processes, container runtime
engine, and Kubernetes fix components. The cost model can be formulated as shown
in Eq. 4.1.
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D = L∗
N

∑
j=1

y j +RvCPU (4.1)

D denotes the deployment cost for a simple cloud-native network service. Generally,
in Kubernetes, the CPU is always requested as an absolute quantity[38]. The unit of D is in
milli vCPU.

4.4.3 Availability Model

Two types of service availability models are considered depending on the QoS
perceived by each user of the service. First, relax availability or minimal service model, i.e.,
at any time, at least one pod is accessible. In this model, the QoS perceived by each user can
be degraded and might not be the same as requested in the SLA. This might happen due to
the unavailability of some instances and their load being shared among available instances.

Second, the strict availability model, which maintains the QoS perceived by each
user as requested in the SLA. To achieve this, all the pod(s) and the node(s) hosting the
respective pod(s) should be accessible. The following assumptions are applicable for both
the models,

• A pod i can fail with probability gi, independent of the other pod(s) and node(s),
irrespective of the load imposed on the pod, and resources allocated to the pod.

• A node j can fail with probability h j, independent of the other node(s) and pod(s)
running on it.

The above probabilities are already known to the service provider as a result of measurement
studies or prior experience. A pod may be inaccessible due to its failure or node failure,
which is hosting the pod. Pod failures can be correlated due to their dependence on
the underlying node(s). This results in defining a correlated group of pods as the pods
instantiated on the same node. The availability of a correlated group is subjected to the
below models,

4.4.3.1 Relaxed availability model

The availability of a correlated group is subjected to the availability of,

• The node on which the group is hosted,

• At least one pod of the correlated group should be available

The probability that a correlated group j hosted on node j will be available is,

a j = (1−h j)∗ (1− ∏
i∈[1,K]|xi j=1

gi) (4.2)
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For the service to be available, at least one correlated group should be available. Considering
that correlated groups fail independently, the service availability is defined as,

A(X) = 1−Pr{All correlated group fail}
= (1− ∏

j∈[1,N]|∑K
i=1 xi j=1

(1−a j)) (4.3)

4.4.3.2 Strict availability model

The availability of a correlated group is subjected to the availability of,

• The node on which the group is hosted,

• All the pods of the correlated group should be available

The probability that a correlated group j hosted on node j will be available is,

a j = (1−h j)∗ [ ∏
i∈[1,K]|xi j=1

(1−gi)] (4.4)

To deliver per-user-perceived QoS as mentioned in the SLA, all the correlated groups
should be available. Considering that correlated groups fail independently the service
availability is defined as,

A(X) = Pr{All correlated group are available}
= ∏

j∈[1,N]|∑K
i=1 xi j=1

a j (4.5)

4.4.4 Constraints

Resource allocation and placement are subjected to constraints. These constraints
can be categorized as infrastructural level or service level.

4.4.4.1 Infrastructural level constraints

Eq. 4.6 defines the capacity constraint, where the pod(s) hosted on node j can not
exceed the available vCPU resources,

K

∑
i=1

wi j ⩽C( j)∗ y j (4.6)

Eq. 4.7 defines the pod hosting constraint, where a pod i can only be hosted on one node,

N

∑
j=1

xi j = 1 (4.7)
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Eq. 4.8 defines vCPU limiting constraints,

wi j ⩽ maxvCPU ∗ xi j

wi j ⩾ minvCPU ∗ xi j

∀i ∈ [1,K], j ∈ [1,N]

(4.8)

4.4.4.2 Service level constraints

Eq. 4.9 defines the provisioning constraint to avoid over-provisioning. Here pod
overheads [39] are not considered.

N

∑
j=1

K

∑
i=1

wi j = RvCPU (4.9)

Eq. 4.10 defines the service availability constraint, where the service availabil-
ity achieved by the placement algorithm should be equal to or higher than the required
availability.

A(X)⩾ RA (4.10)

4.4.5 Problem Formulation

Service providers aim to minimize the service deployment cost as defined in eq. 4.1
and maintain service availability as per SLA. The variable component of that cost is the
number of nodes hosting the service pods. Based on this, the problem can be formulated
as Integer Linear Programming (ILP) with an objective to minimize the number of nodes
hosting the service pods while considering service availability constraint eq. 4.10.

Min
N

∑
j=1

Yj (4.11)

The objective function expressed in eq. 4.11 also considers other constraints men-
tioned in eq. 4.6, 4.7, 4.8, 4.9. The value of the minimum vCPU that can be allocated to a
pod is fixed due to design reasons of the VNFC application running inside a pod. Maximum
vCPU is fixed to prevent a pod from consuming vCPU resources allocated to other pods. By
fixing these values, the number of the maximum and minimum number of pods hosting the
service is fixed.

Pmax = RvCPU/minvCPU

Pmin = RvCPU/maxvCPU

Pmin ⩽ K ⩽ Pmax

(4.12)
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4.5 Heuristic Approach

The proposed problem formulation is similar to the well-known bin packing problem.
In a classical bin packing problem [40], the aim is to minimize the number of bins used to
fit items of variable volume. These bins have a fixed volume. Whereas in the mentioned
problem nodes with variable vCPU resemble bins, and pods with variable sizes resemble
items. The classical bin packing problem is NP-hard [40] and there are heuristic algorithms
to solve it. In the mentioned problem bin capacity is variable, the number of items is
variable with variable capacity and there are additional constraints like service availability.
Which results in an NP-hard problem as well. This section presents Dynamic Resource
Allocation and Placement (DRAP) a heuristic algorithm, that solves the mentioned problem
in polynomial time.

The DRAP algorithm aims to minimize the number of nodes required to place the
pods by adjusting the vCPU allocated to each pod. Adjustable vCPU allocation allows
the algorithm to increase or decrease the number of pods based on the required service
availability.
Input: r > 0,C( j),N,RvCPU ,maxvCPU ,minvCPU
Output: K,W,X

1: i = 1
2: Sort C(j) in decreasing order
3: while t ≥ minvCPU/maxvCPU do
4: for j in [1,N] do
5: while C( j)≥ 0 do
6: wi j = min(C( j), t ∗maxvCPU)
7: if wi j ≤ minvCPU then
8: break
9: end if

10: C( j) =C( j)−wi j
11: xi j = 1
12: if sum(W )≥ RvCPU then
13: break
14: end if
15: if i ⩽ Pmax then
16: i = i+1
17: else
18: break
19: end if
20: end while
21: if A(X)≥ RA then
22: K = i
23: return W,X ,K
24: else
25: break
26: end if
27: end for
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28: t = t − r
29: reinitialize,K,W,X
30: end while

DRAP starts with sorting the nodes in decreasing order of available vCPU capacity.
The tuning factor t is used to adjust the size of the pods. PACA dictionary W stores i pod
number (pod name), vCPU allocation wi j, and node number j. The tuning rate r iterates by
reducing the vCPU allocation from the maximum to the minimum possible. The algorithm
iterates over several possible combinations of K, W , and X until it finds the pod placement
matrix X that satisfies the availability constraint, or it assigns the minimum possible vCPU
minvCPU to the maximum number of pods Pmax that a service can have. If there is not enough
capacity available in the cluster, the algorithm will return no solution.

4.6 Performance Evaluation

All the simulations were performed on Intel Core i5-9400F with 6 CPU@2.90GHz
and 32GiB of RAM. The academic license of the Gurobi Optimizer was used to solve the
ILP stated in Equation 4.11. The node and pod failure probabilities were constant throughout
the evaluation process, h j = 0.001, gi = 0.001 ∀i ∈ [1,K], j ∈ [1,N]. The minimum and
maximum vCPU which can be allocated to pods are, 2000m and 4000m vCPU units,
respectively.

Figure 4.3 depicts the number of nodes and pods required to host CNF instances
of different cloud native network services. Each service requires different vCPUs, 50,
100 up to 700vCPUs respectively, and 99.999% service availability. The services were
placed on a cluster of 100 nodes, and each node has a capacity between 2 and 16vCPUs
selected uniformly at random. The placement of each service was independent of the other
services. The cluster nodes had the same vCPU distribution for all the services at the time of
placement. The performance of DRAP is close to Gurobi in terms of reducing the number
of nodes. Both of them provide similar availability for each service.

Figure 4.4 considers a network service requiring 600vCPUs and 99.999% availability.
The minimum and maximum vCPU allocation for pods is fixed to 1000m and 3000m vCPU
units, respectively. The service was placed on clusters having 200, 400, to 2000 nodes.
Every node of a cluster has 8vCPUs. The sharp increase in Gurobi’s execution time justifies
that the problem is NP-hard. The heuristic algorithm DRAP provides the solution in a very
short amount of time. The time taken by DRAP to provide the PACA dictionary varies
between 13ms and 108ms.

Figure 4.5 compares the strict and relaxed availability models defined previously.
Five services were placed on a cluster of 50 nodes where each service requires 20, 40 up to
100vCPUs. Each cluster node has a capacity between 2 and 16vCPUs selected uniformly
at random. The aim is to achieve maximum service availability, which can be promised
by both models. For example, for a service requesting 60 vCPU with DRAP 97.823% of
the time there will be no QoS degradation for any user and 99.999% time, service will be
available, but some users might be affected. Whereas for Gurobi, these values are 98.019%
under strict and 99.999% under the relaxed model. Gurobi and DRAP have nearly similar
performances.
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(a) Number of nodes required

(b) Number of pods required

Figure 4.3: Number of nodes and pods required by a cloud-native network service
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Figure 4.4: Execution time as a function of cluster size

41



(a) Gurobi

(b) DRAP

Figure 4.5: Comparing two availability models
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4.7 Summary

The chapter proposed the use of a cloud-native approach of having multiple replicas
without over-provisioning resources to provide resilience. The proposed algorithm benefits
from allocating vCPU dynamically and at a finer granularity. It can be considered that by
allocating vCPU at a finer granularity node capacity can be efficiently utilized. If a node
has a low computational capacity, then the pod requirements can be adjusted. The proposed
approach can be beneficial for service providers in reducing their infrastructural costs. The
considered service is simple because it has replicas of the same type of CNF. If there is
a service that has different types of CNFs and each CNF has replicas, then there can be
complications related to affinity, which are not considered in the proposed algorithm.

The next chapter proposes a Lightweight edge Slice Orchestration Framework. This
framework is based on the knowledge gathered in this chapter. The placement algorithm
presented in this chapter can be used in the framework to place MEC applications on the
edge of the network.
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Chapter 5

Lightweight edge Slice Orchestration Framework

5.1 Introduction

Chapter 2 discusses how applications hosted at the MEC use traffic redirection or
DNS-based redirection rules to steer traffic to MEC Applications instead of the Internet.
As the traffic redirection needs to be done dynamically at the instantiation of the MEC
application, ETSI MEC defined the traffic redirection as a rule in the AppD describing the
MEC application. Besides, the traffic redirection is enforced by the MEC Platform element
that acts as an interface between the MEC and 5G domains.

According to 3GPP, when a network slice is deployed, it is known as a Network
Slice Instance (NSI). It is composed of one or more Network Slice Subnet Instances (NSSI),
which may be dedicated to a NSI or shared among other NSI’s. NSSI’s contain either
VNFs or PNFs or radio resources or transport resources. NSSIs are deployed on top
of different technological domains (i.e., radio, edge, transport network, cloud) and are
stitched together to build the end-to-end network slice corresponding to a NSI. Usually, a
Slice Orchestrator (SO) manages the lifecycle of a NSI, which is composed of four steps:
preparation, instantiation and configuration, activation, and decommissioning. Several LCM
steps are delegated to the sub-slice orchestrators that manage the technological domain
where a NSSI is deployed. In this context, a MEC Application can be considered to be a
part of an edge sub-slice (i.e., NSSI), and the MEC orchestrator (MEO) discussed in chapter
2 can be regarded as the edge sub-slice orchestrator.

The well-known existing orchestration frameworks, such as ONAP and OSM, were
designed to manage the lifecycle of VNFs or network services, a connected graph of
multiple VNFs and PNFs. Currently, none of them perform the lifecycle management of
MEC applications. Though they can instantiate a MEC application at the edge, they do not
communicate to MEP or provide MEP capabilities to interface with the 5G network and
steer traffic to the freshly deployed MEC application instance. Moreover, these frameworks
have a complex design and high resource consumption, making their positioning unsuitable
for the edge cloud.

This chapter proposes a novel framework for orchestrating and managing the life-
cycle of Edge Sub Slices (ESS) that are crucial for low latency demanding services. The
framework’s architecture is designed following microservices and cloud-native principles
discussed in chapter 1. It allows for orchestrating and managing multiple slices at the same
time. To summarize, the chapter will present:
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1. A cloud-native Lightweight edge Slice Orchestration (LeSO) framework that is specif-
ically designed to orchestrate cloud-native MEC Applications and deploy them as
fully isolated edge-sub-slices

2. An Edge Sub-Slice Template (ESST) describing an ESS to manage cloud-native
container-based applications following microservices design. The template contains a
modified version of ETSI MEC AppD.

The chapter also showcases the placement of the framework in the global network
slicing orchestration architecture. Finally, the chapter provides performance evaluation
results of the LeSO framework to prove its low computing resource consumption as it is
assumed to be deployed at the edge. The performance evaluation results were obtained
via experiments as LeSO was deployed in EURECOM 5G trial facility [41] deployed in
EURECOM, Sophia Antipolis.

The chapter is organized into 3 major sections: framework and implementation,
performance evaluation, and conclusion.

5.2 Lightweight edge Slice Orchestration Framework

This section introduces the LeSO framework and highlights its placement in the
global end-to-end network slicing architecture and its design and implementation. It also
describes the skeleton of the proposed ESST.

5.2.1 Global Architecture

Network Slice Orchestrator or simply a Slice Orchestrator (SO) communicates with
several sub-slice or domain-specific orchestrators, which manage the sub-slice of their
own domain. In terms of basic functionality, SO and other sub-slice orchestrators can be
considered equivalent to 3GPP Network Slice Management Function (NSMF) and Network
Sub Slice Management Function (NSSMF), respectively. Later chapters will discuss in
detail the placement of these orchestrators. At the moment it can be considered that these
orchestrators are placed in their domain or near to their domain and close to their managed
resources.

Each of these domains is responsible for managing different types of network
functions (VNFs or PNF) or resources. For example, the edge domain for latency-sensitive
network functions or vertical applications, the core domain for core network functions, the
transport domain for physical or virtualized transport resources, and the RAN domain for
physical or virtualized RAN resources.

Figure 5.1 proposes the placement of the LeSO framework in the global NS LCM
architecture. This figure only shows edge and cloud sub-slice orchestrators, but for end-to-
end life cycle management, there are also transport and radio sub-slice orchestrators.
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Figure 5.1: Placement of the LeSO Framework in Global NS LCM

5.2.2 Edge Sub-Slice

The framework considers an ESS to contain multiple MEC Applications or CNF
or both, not connected or connected to each other. MEC Applications and CNFs consume
the services of one another via their own service discovery mechanism if needed. Figure
5.2 shows an example of an edge slice that contains, MEC App1 which follows microser-
vice architecture divided in MEC App1:1 and MEC App1:2. MEC App2 and CNF are
independent.

Figure 5.2: Edge Sub Slice Skeleton

The slice of figure 5.2 can be described using the proposed Edge Sub Slice Template
(ESST) that contains multiple modified AppDs. Chapter 2, defines the limits of AppD and
why it can not be used to describe a microservices-based container application. Figure 5.3
defines a skeleton of ESST.

Multiple AppDs allow defining multiple MEC applications or CNFs connected or
not connected to each other. Below are the major modifications proposed in the original
AppD to adapt it for the cloud-native world. The definition of the AppD fields remains the
same as described in the original AppD,
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Figure 5.3: Skeleton of Edge Sub-Slice Template

• Array of swImageDescriptor instead of single cardinality and use it to define multiple
container images and application configuration.

• Included a parameter configuration in swImageDescriptor, to configure application
container specific configuration.

• Included a parameter port in swImageDescriptor, to define networking ports exposed
by the container. This parameter is used to provide the orientation of the exposed
ports. It can be either towards:

– Mobile Network (MN) if the application running inside the container needs to
be exposed to MN. This is for edge use cases where user equipment will use the
application deployed at the edge via traffic redirection rather than going to the
internet.

– Container Network (CN) for internal communication between AppDs of the
same ESST

– The Internet (IN), for container application to expose its GUI towards the Inter-
net.

• Array of virtualComputeDescriptor instead of single cardinality to define resource
consumption of each container of a pod.

MEC applications can connect to each other in a cloud-native way by communicating
with the other application using its CN-exposed port. The service attached to the exposed
port can be accessed using the Pod Fully Qualified Domain Name (FQDN) and the port
number. Other important fields of ESST are; (i) appDInstantiationOrder which is a list of
appDId that describes in which order the AppDs will be treated. This parameter is important
for connected AppDs, which have dependencies on other AppDs present in the same ESST.
(ii) regionId is a list of edge sites where ESST will be created.

The LeSO framework only requires an ESST to handle the lifecycle management of
the MEC applications. It does not require any other package or descriptor which are used
by other VNF or service orchestrators. ESST is designed to be described by the owners of
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the MEC applications, who should be unaware of the underlying platform or infrastructure.
ESST is agnostic to the type of platform or infrastructure the MEC Application will run.

5.2.3 LeSO Design

The edge clouds are designed to support latency-sensitive applications, which do not
consume high computational resources. The LeSO framework is specifically designed for
edge clouds, where computational resources are scarce.

Figure 5.4: Lightweight edge Slice Orchestration Framework

All the components expose a restful northbound Application Programming Interface
(API) for communication. The design and deployment follow cloud-native principles. The
current version of the framework can deploy MEC Applications or simple CNFs on top
of container-based clouds, such as Openshift1 and Kubernetes. Below is the component
description,

• Edge Sub-Slice Orchestrator (ESSO): Manages the lifecycle of ESST and commu-
nicates with MEP and SO.

• Container Infrastructure Service Management (CISM) and Container Infras-
tructure Service (CIS): Corresponds to the container orchestration platform and CIS
to the infrastructure, respectively. Their functioning is defined in chapter 2.

• Application/VNF Orchestrator: Manages the lifecycle of MEC applications or
CNFs. It is agnostic to the type of CISM, and it communicates to CISM via the CISM
plugin.

1https://www.redhat.com/en/technologies/cloud-computing/openshift
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• Template and Descriptor Repository (TDR): Database to store ESSTs and applica-
tion descriptors.

• MEC Platform: Performs traffic redirection or DNS redirection by communicating
with the 5G core and DNS, respectively.

• External DNS: All the CISM have a DNS running in their cluster. The cluster DNS
relies on this external DNS to resolve FQDN that is not present in the cluster DNS.
This DNS is managed by the MEC platform to perform DNS redirection.

• CISM Plugin: This is an abstraction layer that takes the information provided by the
application orchestrator and converts it into CISM-specific Yet Another Markup Lan-
guage (YAML) templates. That is needed by CISM to create objects and workloads.

• Container Image Manager (CIM) manages container images. It can pull container
images from all the public repositories and make them from the source code present
in a git repository. Lastly, it provides the possibility to download container images in
tar format from a secure link.

ESSO can handle multiple edge sites, where each site has a specific regionId. ESST
uses the regionId field of ESST to define its placement. ETSI MEC in NFV framework or
ETSI NFV-MANO framework proposes to have a dedicated VNF manager (VNFM) for each
VNF or MEC application. This results in an extra entity that consumes more computational
resources. Instead, the framework proposes an App/VNF Orchestrator that manages the
lifecycle of each MEC Application or CNF.

The abstraction layer provides the flexibility to include different CISMs. Northbound
of all the CISM plugins is uniform, and their southbound adapts to the CISM API.

5.2.4 Isolation between slices

LeSO framework is slice-aware by creating fully isolated edge slices. All the
applications and CNFs of a slice run in an isolated environment, known as a namespace
(corresponding to Kubernetes namespace). It provides basic isolation in terms of CISM
workloads and object segregation. The computational resource isolation is provided by
fixing the amount of vCPU, RAM, and Storage that an application or CNF can use. Network
isolation is provided using Openshift and Kubernetes networking policies and their Container
Network Interface (CNI). Figure 5.5 depicts isolation between two edge sub-slices.

Figure 5.5: Isolation between slices
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5.2.5 Working

Northbound API exposed by ESSO can be used by SO or any other entity to perform
LCM (Life Cycle Management) on ESST. An ESST goes through three different lifecycle
phases, creation phase, modification phase, or deletion phase. These phases have four
different stages,

• On-boarding: Gathering and reserving resources. In this stage, the application or-
chestrator gathers all the container images via CIM and reserves the computational
and network resources required by each container image of each AppD. The orches-
trator defines required CISM objects needed for instantiation and stores them in the
repository.

• Instantiation: Create the CISM objects defined earlier and instantiate the application
described by each AppD in the order described by appDInstantiationOrder. Once
the ESST is instantiated and if required, it requests the MEP for traffic redirection or
DNS redirection.

• Termination: Gracefully deleting each application of the AppD in order as described
by appDInstantiationOrder.

• Off-boarding: Removing the stored container images and un-reserve the computa-
tional and network resources for each application.

Figure 5.6 shows the phases and stages through which ESST goes during its LCM.

Figure 5.6: LCM of ESST
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ESSO via the Application Orchestrator provides the possibility to modify the com-
putational resources required by an application or CNF. However, it results in terminating
the application and re-instantiating the new application. This behavior is because it is not
possible to change the computational resources allocated to a container at run time. It is
considered that the application is able to preserve its state in a persistent volume or store it
in a database before a graceful termination. The modification phase includes the termination
and instantiation stages.

5.3 Performance Evaluation

At the time of doing performance evaluation, the 5G trial facility deployed in
EURECOM had a production-grade Openshift cluster with 7 worker nodes and 3 supervisor
nodes to run container-based VNFs. In total, there were 320 CPU Cores and 624 GiB of
RAM present in the cluster.

To analyze the resource consumption of the LeSO framework, a real trial scenario
was replicated by creating four different edge slices using four ESSTs. Each ESST contains
a different number of container images and AppDs. The container images of ESST ES1,
ES2, and ES3 were already present in the cluster image repository. Hence their on-boarding
time was shorter. One of the images of ESST ES4 was present in the public image repository,
and the remaining were present locally in the cluster. Table 5.1 describes the time taken to
create and delete each ESST. Table 5.2 describes the time spent on each stage of the LCM
of the slice, the runtime of each edge slice was 30 mins.

ESST Creation Time (s) Deletion Time (s) AppD SwImage
ES1 20.42 10.32 1 6
ES2 15.26 10.32 1 1
ES3 30.52 15.29 2 6,1
ES4 50.43 20.4 3 1,1,1

Table 5.1: Time spent (in seconds) in LCM of 4 slices

ESST On-boarding
Time (s)

Instantiation
Time (s)

Termination Time
(s)

Off-boarding
Time (s)

ES1 15.26 5.16 5.17 5.15
ES2 5.16 10.1 5.16 5.16
ES3 20.17 10.35 10.1 5.19
ES4 25.31 25.12 15.24 5.16

Table 5.2: Time spent (in seconds) in each stage of ESST LCM

Figure 5.7 shows the computational resources consumed by the LeSO framework
in a time span of 1 hour when the trial was conducted. CPU core consumption is in milli
(m) CPU, 1000m CPU is one CPU core. Black triangles indicate the time at which the slice
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Figure 5.7: Computational Resource Consumption for 4 Edge Slices

creation request was received, and the orange triangle indicates the ending of the slice. The
time span between CX and EX indicates the lifespan of a slice, ∀X ∈ [1,4]. The peak in
CPU and RAM consumption is due to the use of CIM for pulling an image for ES4 for other
slices the image was locally present. CIM is using Podman2 for image management; hence
its resource consumption behavior is not controlled by this framework. From the tables and
the figure below analysis can be drawn,

• The composition of ESST affects the time spent in each LCM stage.

• Slice creation is a computationally expensive task than slice deletion.

• Resource consumption before C1 and after 22:20 is the same. Hence, the framework
does not consume resources until a new slice creation request or modification request
is received.

Multiple slices were created and deleted at the same time to analyze the multi-
tenancy of the proposed framework. This allowed understand how the framework handles
parallel requests. The slice creation started with 10 slices, and after 30 seconds of runtime,
they were deleted. This pattern was continued for handling 10, 20 to 50 edge sub-slices. All
the slices used the same ESST A, and the container image was already present in the cluster
image repository. The experiments were performed 100 times for each data point, using
Monte Carlo simulation. These data points were collected over a period of 4 days.

Figure 5.8 only shows the creation time of these slices. The figure proves that the
framework can handle parallel requests and it immediately starts processing the request

2https://podman.io/
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Figure 5.8: Parallel Slice Creation Time

once received. Slice creation is the most time-consuming process where the CISM has to
pull or build software images, schedule the CNF, attach a network interface, and assign
an IP address. The mean and median time needed to create a slice varies between 25
and 28 seconds on the EURECOM Openshift cluster. The absolute value of creation time
depends on the cluster design, its hardware configuration, and ESST design. To create
50 slices, the framework consumed 226m CPU Core and 1.19 GiB memory.

Orchestrator vCPU Memory (GiB)
OSM-11 2 6
ONAP (Honolulu) 112 224
LeSO 1 2

Table 5.3: Resource Requirement Comparison

To summarize, the performance analysis LeSO framework requires 1 vCPU and
2 GiB of RAM for deployment and management of Edge Sub-Slices. Table 5.3 compares the
resource requirement of LeSO, OSM, and ONAP, referred from [8], [42]. It should be noted
that other frameworks require much higher computational resources, and they do not provide
the capability to instantiate MEC applications. Hence, the low resource consumption of the
LeSO framework makes it suitable to be deployed at the edge cloud and handle the LCM of
MEC applications.
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5.4 Summary

The chapter introduced LeSO a cloud-native orchestrator that handles LCM of edge
slices. LeSO encloses a MEP element that allows dynamic deployment of edge slices. LeSO
framework has a nominal resource consumption and requires 1 CPU and 2 GiB of RAM
for installation. The multi-tenancy feature allows performing LCM on multiple slices at the
same time. The ESST abstracts the platform and infrastructure-related information from the
MEC Application providers and allows describing a cloud-native MEC Application which
was not possible using the original AppD.

The next chapter will show how the design of an edge application can affect its
latency and availability. It will use the AppD proposed in this chapter and will provide a
comparative analysis between different deployment models of MEC applications.
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Chapter 6

Availability and Latency Aware Deployment of Cloud
Native edge Slices

6.1 Introduction

Edge computing is a critical enabler for uRLLC services [43]. The strict latency and
availability demands of the application and network functions can be achieved by placing
them at the edge of the network. Besides low latency capability, edge computing reduces
the amount of traffic to be transported all the way to the central cloud. Indeed, with edge
computing, traffic can be treated locally, keeping data privacy in the case of machine learning
model training using data collected from sensors and actuators or other elements.

Meanwhile, with the advent of containerization, which led to the emergence of cloud-
native principles, applications are no longer deployed as a monolithic block but rather as
loosely coupled microservices. In the cloud-native world, each microservice is deployed as a
container and managed using container orchestration engines and platforms like Kubernetes.
However, edge deployment has still not embraced this trend. Indeed, the key standard of
edge computing is ETSI MEC [44]. The ETSI MEC group has issued several specifications
covering: application packaging, orchestration, and traffic redirection; but still considering
monolithic blocks when deploying applications at the edge. ETSI MEC considers that
applications are deployed in VM or containers but one container or VM per application. All
the process of orchestration and management relies on this assumption, which is no longer
a reality with the emergence of cloud-native orchestration platforms, highly favoring the
usage of microservices.

To overcome this situation chapter 5 proposed a new edge slice orchestration frame-
work that allows describing multiple applications using multiple microservices interacting
with each other. Chapter 5 also devised a novel template, namely ESST, aiming at defin-
ing an edge slice containing multiple applications designed using multiple microservices.
This template eases the orchestration of containers and microservices on industry defacto
cloud-native orchestration platform Kubernetes.

Basically, to deploy containers Kubernetes uses Pod. The latter is the smallest
schedulable entity. It provides an ecosystem for multiple containers to interact. All the
Kubernetes-based platforms run containerized microservices in pods. The latency between
microservices and their availability depends on whether they are running inside the same
pod or different pods and pods are deployed on the same machine or different. The most
preferred way to deploy microservices is one pod per microservice i.e., a 1 to 1 mapping
between microservice and pod. But, it is also possible to deploy multiple microservices
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inside one pod, i.e., 1 pod and N microservice inside it. This can be considered as the default
solution adopted in chapter 5. In this context, it is important to understand what is the
appropriate solution when considering edge application constraints (i.e., latency, availability,
etc.), but also the cost induced by the orchestration and management. The choice of the two
possible mappings could be critical if it is not well investigated.

This chapter fills this gap by studying the performance of both solutions in terms of
availability, latency, and management cost. The chapter combines analytical models and
experimentation to quantify the latency and availability metrics. The edge slice is described
using the previously proposed ESST. To summarize the chapter will present:

1. A detailed deployment model for mapping microservices of an edge slice inside one
pod and re-modeling the one-to-one deployment model by classifying microservices
as critical and non-critical,

2. Markov Chain based availability model for each deployment,

3. Latency analysis between microservices for each deployment model.

The chapter is organized into 4 major sections: deployment models for edge slices,
availability modeling, performance evaluation, and summary.

6.2 Deployment Models for edge Slice

In the formation of an ESST, the number of MEC Applications and microservices
depends on the edge slice template provider or MEC Application provider. The enablers
of edge slice functionality are microservices; together, they deliver MEC Application’s
desired features. Hence, it can be considered an ESST composed of microservices mapped
to containers, and these containers can be placed inside the same pod or different pods.
These pods can run on the same machine or different machines.

Figure 6.1: 1 to 1 Mapping of MEC Applications and Microservices

Based on this, two different deployment models for an ESST with N microservices
can be considered. Figure 6.1 shows a 1 to 1 mapping between MEC Application and
microservices, one container per pod. The edge slice will have N MEC applications or
pods and N microservices or containers. Figure 6.2 shows 1 to N mapping between MEC
Application and microservices, i.e., N containers in one pod. The slice will have 1 MEC
application or pod and N microservices or containers.
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Figure 6.2: 1 to N Mapping of MEC Application and Micro-services

The following subsections will analyze and discuss each deployment model, its
benefits, and drawbacks considering critical performance criteria: (i) Orchestration and
management, (ii) Availability, and (iii) Low-Latency.

6.2.1 Orchestration and Management

The process of orchestration and management is one of the key functions in the
context of containerization. It concerns the Life Cycle Management (LCM) of a network
slice and hence all the applications that constitute the network slice. The most time-
consuming task in the LCM of a slice is slice creation. It involves fetching container images
of the microservices, scheduling, computational and storage resource allocation, IP address
allocation, instantiation, etc.

The number of container images remains the same for both deployment models.
Containers mostly consume the computational and storage resources, and in both deployment
models, the number of containers remains the same, so the computational and storage
resource consumption will be the same. However, if there is a significant pod overhead1

then the 1 to N deployment model will use fewer resources than 1 to 1. Each pod is allocated
an IP address; hence 1 to 1 deployment model will have N IP addresses, whereas 1 to N will
have only one IP address.

Pod scheduling and instantiation are the two most critical stages. They result in
variable creation times for both deployment models. In pod scheduling, the scheduler has to
look for host machines that have enough computational resources for these pods. In the 1 to
N model, all the containers stay in the same pod. Hence, if there is no such machine with
the requested computational resources, it will result in scheduling failure. In contrast, the 1
to 1 model can schedule pods on different nodes; hence the computational resources can be
utilized efficiently. Once the pods are scheduled, their Cgroups, network interfaces, etc., are
created. This step’s time depends on whether the pods are instantiated in parallel or serial
(if pods require a particular order of instantiation). The containers inside a pod only start
parallel. Thus, if the pods are started serially, the 1 to N deployment takes less time, and if
pods are started in parallel, the 1 to 1 deployment takes less time.

1https://kubernetes.io/docs/concepts/scheduling-eviction/pod-overhead/
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6.2.2 Availability

Availability is a critical component for any type of telecom and vertical service,
especially when the service belongs to the uRLLC category. It measures the length of time a
system or network is functioning. In carrier-grade systems, the availability should ensure
the 5 nine uptime, i.e., 99.999% available. To ensure availability in cloud-native systems, it
is important to reduce downtime and guarantee that all microservices, and hence pods, are
active. The different reasons that lead to reduced availability are

• The container running the microservice died due to an internal error (software bug,
high resource consumption, etc.) in the microservice.

• The pod died, and hence all the containers inside the pod also died.

• The node hosting the pod died due to hardware or software errors.

The reasons for the above failure can be voluntary or involuntary. In case of a node
failure, pods with their containers are immediately scheduled on another node. Therefore, a
slice will be disrupted for the time the pods are getting instantiated.

If we consider the first deployment model, i.e., 1 to 1, we expect better availability.
Indeed, if the container or the pod dies, only one microservice dies, and the time to reboot 1
pod with 1 container is very short. However, the pod needs to be re-scheduled on another
node if the node dies. If another node is available, then the time to reboot the pod is short.
Otherwise, the downtime can be higher. In the second deployment model (1 to N), when
a pod dies, all the microservices running inside the pod die with it. This means that the
time needed to reboot the pod with all its containers depends on the number of containers to
reboot. In the 1 to 1 deployment model, the pods can be scheduled across different nodes;
even if some pods are not available, the edge slice will be partially available. Whereas, in
the other model, if there is any disruption, the edge slice will not be available completely;
all the containers are running in the same pod.

6.2.3 Latency

As stated earlier, latency is the critical KPI that motivates the deployment of cloud-
native microservices at the edge. In cloud-native and virtualized systems, it is important to
distinguish the communication latency among the microservices and the service latency (i.e.,
the collective functionality of all the microservices). The service latency is composed of
inter-microservice latency and microservices processing time. Service latency may increase
due to downtime if a container, a pod, or a node dies. Regarding the communication
latency, it can be assumed that the 1 to N model will achieve the best performance as all
the microservices are inside the pod and use the pod’s loopback interface or IPC via Unix
sockets that ensure merely instantaneous communications among microservices.

In contrast, the 1 to 1 deployment model may have a communication overhead,
particularly if pods are deployed on different nodes, which requires packets to traverse
through tunnels, which negatively impacts communication latency. One solution that can
improve the performance of the 1 to 1 model is to use a placement algorithm that ensures
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that all pods are grouped in the same node, which avoids using tunnels and hence reduces
communication latency. If the node hosting all these pods dies, the whole slice will not be
functional, impacting the availability strongly. Another solution would be to use special
Container Network Interfaces (CNIs) that use Data Plane Development Kit (DPDK)2 in
combination with Single-root input/output virtualization (SR-IOV) to improve latency and
throughput metrics. Most edge providers may choose this option to enable low-latency
demanding services.

Concerning the service latency, and as discussed in the section 6.2.2, the 1 to 1
deployment model should achieve better results in comparison to 1 to N as it minimizes the
downtime.

6.3 Modeling Availability

To evaluate the availability of both deployment models, the proposal is to model
them using Markov Chains. Let us assume that:

• An ESST is composed of N microservices

• Each microservice in a slice is categorized into critical and non-critical. The non-
critical ones provide extra functionality/features to the slice. The critical ones are
responsible for the primary/principal functionality of the slice.

• If a non-critical microservice dies, the edge slice will be partially disrupted. Indeed, it
can still work with limited functionality. But, if a critical microservice dies, the edge
slice will be completely disrupted.

• The microservices have no software-related bugs, and the computational resources
needed by the microservices are properly allocated to their container. This avoids the
failure of the microservice container due to internal errors. Only pod failure enclosing
the microservice container will be considered.

• It is assumed that the failure rate of pods and the recreation rate of pods follow an
exponential distribution with rates of f and r, respectively.

Let us denote M and K by the number of non-critical and critical microservices,
respectively. Here, N = M+K.

Figure 6.3: Markov chain for 1 to N deployment model

Figure 6.3 represents the slice deployed using the 1 to N deployment model, where
N microservices or containers are inside one pod. Here, due to the compact nature of the

2https://www.dpdk.org/
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deployment, if the pod fails, all the containers will fail. Besides, there is no differentiation
between critical and non-critical microservices. It is assumed that the recreation period of a
pod is composed of the time needed to recreate all the containers, which can be modeled
using an exponential distribution with a rate rmax. Similarly, the failure rate can be modeled
using an exponential distribution fmax. Therefore, the system is modeled with a two-state
Markov chain X = X(t), t ⩾ 0 on the two states 0 and 1; where 0 indicates that the system is
in failure, while 1 means that the system is fully available. A transition between state 0 to 1
with the rate rmax indicates that the pod is recreated, and a transition between state 1 to 0
with the rate fmax indicates that the system has failed. Figure 6.3 illustrates the transition
graph.

In this scenario, the time a slice with N microservices will be available corresponds
to the probability to be in state S = 1 denoted by,

A = rmax/(rmax + fmax) (6.1)

Regarding the other deployment model 1 to 1, the Markov chain X = X(t), t ⩾ 0 is
defined on the state space S defined by S = {(m,k)|m = 0, ...,M and k = 0, . . . ,K}, for every
K ⩾ 1. In this model, X(t) = (m,k) indicates that at time t, there are m active non-critical
microservices and k active critical microservices. While s = (0,0) indicates that all the
pods are down, s = (M,K) indicates that all pods are healthy and work properly. Figure 6.4
illustrates the transitions graph of the envisioned system.

Figure 6.4: Markov Chain for 1 to 1 deployment model

• If a non-critical pod gets recreated while already m (0 ⩽ m ⩽ M−1) are active and
k critical containers are active then there is a transition from state (m,k) to state
(m+1,k) with rate (M−m)r.
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• If a critical pod gets recreated while already k (0 ⩽ k ⩽ K − 1) are active and m
non-critical containers are active then there is a transition from state (m,k) to state
(m,k+1) with rate (K − k)r.

• If a non-critical pod fails when m (0 ⩽ m ⩽ M−1) are active and k critical containers
are active then there is a transition from state (m,k) to (m−1,k) with rate (m) f .

• If a critical pod fails when k (0 ⩽ k ⩽ K −1) are active and m non-critical containers
are active then there is a transition from state (m,k) to (m,k−1) with rate (k) f .

Let Q be the infinitesimal generator matrix for the chain. Each entry qmk such as
sm,sk ∈ S and m ̸= k of the matrix corresponds to the instantaneous transition rate from state
m to state k. Diagonal entries are chosen to ensure null rows of Q, i.e.:

qmm =−∑qmk,sk ∈ S,m ̸= k (6.2)

The objective is to analyze the system in the long run; i.e., inter-events time is
neglected over the running time of the system. It matches the steady-state behavior of
the analyzed system. ∀sm ∈ S, we note πm = πmk = limt→∞ P{s(m,k)},m ∈ (0,M),k ∈
(0,K),M+K = N, the stationary probability distribution of the chain. The Markov chain of
1 to 1 is a homogeneous, finite, and irreducible process. In the steady state of the system,
we assume that the total probability flux out of a state is equal to the total probability flux
into the state. For a state sm ∈ S:

πm ∗ ∑
sk∈S,m ̸=k

qmk = ∑
sk∈S,m ̸=k

πk ∗qmk (6.3)

Let π be the vector containing all model states. By combining 6.2 and 6.3, the below
equation can be formulated:

π ∗Q = 0 (6.4)

The normalization condition of the chain is:

∑
sk∈S

πm = 1 (6.5)

Solving global balance and normalization condition equations 6.4 and 6.5 leads
to determining vector π . Getting the steady-state probabilities will allow determining the
probability of having m non-critical pods and k critical pods active. This, in turn, will help
to derive the availability of the 1 to 1 deployment model.

The slice applications are fully available when it is in the state s = (M,K) i.e., all
pods are running, it is denoted by A f ull

A f ull = P(s(M,K)) (6.6)

The slice applications are available with limited capabilities/functionalities when it
is in the state s = (m,K),∀m ∈ (0,M)
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Alimited =
M

∑
m=0

P(s(m,K)) (6.7)

In special scenarios where it is not possible to distinguish between critical and
non-critical, i.e., all microservices are critical, we can use the Markov chain corresponding
to the 1 to N model. The slice will be available when all the pods are running.

6.4 Performance Evaluation

Latency and availability KPIs are highly dependent on the design of the infrastructure,
computational resources of the node hosting pods, and connectivity between the nodes. To
evaluate the performance of the deployment model irrespective of the infrastructure, two
managed Kubernetes cloud environments were chosen to analyze and evaluate the proposed
deployment models. The testbed1 is a 5G trial facility [41] deployed in EURECOM. The
testbed is using Openshift SDN-based CNI. The testbed2 is a managed Kubernetes service
rented from public cloud OVH. It has 5 VM-based worker nodes with 2 vCPU and 7 GiB of
RAM connected via Canal CNI3.

Figure 6.5: Inter Microservice RTT (µS) for different models and testbeds

Figure 6.5 shows the Round Trip Time (RTT) to understand the latency between mi-
croservices when they are deployed with two different models. Several protocols were used,
Google Remote Procedure Call (GRPC), one of the most used protocols in microservices
architecture, IPC over Unix socket, and GRPC over Unix socket. The unix socket-based
communication can only happen in a 1 to N type of deployment model as the microservices

3https://github.com/projectcalico/canal
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share the same network namespace. The * in the 1 to 1 deployment model depicts commu-
nication between microservices deployed on the same machine and without * on different
machines. ICMP ping results are only added for the readers who specifically use ping as a
latency metric. The below conclusion can be drawn from Figure 6.5:

• Different RTT values in two testbeds are due to different CNIs, computational, and
network resources associated with the cluster.

• In both the testbeds 1 to N deployment model has the lowest RTT as it uses a loopback
interface or UNIX sockets. Accordingly, it is better to use IPC based for latency-
sensitive applications.

Figure 6.6: Slice Creation Time (S) for different models and Testbeds

Slice with 10, 20 to 50 microservices were created on both testbeds to evaluate the
slice creation time. The same container image was used for all the microservices and the
resource requirement was 10 milli CPU and 100MB RAM. The slice with 1 to 1 deployment
model can be created with or without dependency between the microservices, i.e., serial or
parallel pod creation. Figure 6.6 shows the slice creation time. It can be concluded that:

• 1 to 1 model takes less time when the microservices do not have any dependency
among them, i.e., pods are created parallelly.

• 1 to N deployment model in testbed1 takes less time than 1 to 1 in testbed2. This
behavior is due to the different computational capacities of the two clusters.
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Figure 6.7: Pod Recreation Time for different models and Testbeds

The pods were deployed using the Kubernetes deployment controller, which watches
for pod availability. If the pod is not running, it immediately creates a new pod. The pods
were forcibly deleted to simulate the pod recreation in the 1 to 1 and 1 to N deployment
models. Figure 6.7 shows the average pod recreation time with the increasing number
of microservices. It is assumed that microservices are again available once the pods are
recreated.

These values of pod recreation time are used to estimate the availability for a slice
with 10 and 50 microservices deployed with 1 to 1 and 1 to N deployment models. It is
assumed that the pod failure rate is 100 times in a year, and it can happen at any point
in time. Table 6.1, shows the full availability of 1 to 1 and 1 to N deployment models
using the formula derived via solving the Markov Chains, equation 6.6 and 6.1 respectively.
To correlate the availability with a combination of critical and non-critical microservices,
scenario II and III depicts two different combinations for a slice with 50 microservices.

Table 6.1: Availability of a Slice with 10 and 50 Microservices

Scenario Testbed Critical Non-Critical 1 to 1 (Full) 1 to N
I Testbed1 5 5 99.9998% 99.9999%
I Testbed2 5 5 99.997% 99.9992%
II Testbed1 25 25 99.999% 99.9999 %
II Testbed2 25 25 99.9856% 99.9989%
III Testbed1 40 10 99.9986% 99.9999%
III Testbed2 40 10 99.9765% 99.9989%
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Following conclusions can be drawn from Figure 6.7 and Table 6.1,

• Computational resources of the testbed affect the pod recreation time, which indeed
affects the slice availability

• Scenarios II and III, depict the effect of critical microservices on the slice availability.
If the majority of the slice microservices are critical, then there are more chances of a
critical microservice failing. Hence, the availability will be reduced.

The 1 to N deployment model has higher availability than the 1 to 1 model, but this is
highly subjective to the availability of a node with required computational requirements. 1 to
1 deployment has an advantage over 1 to N, which is the limited availability. If a non-critical
microservice fails, the slice will still be available with limited functionality. In contrast, in 1
to N deployment, the slice will be completely non-functional until a suitable node is found.

6.5 Summary

This chapter presented a novel methodology to model a cloud-native network slice
defined with microservices. The two deployment models and the presented approach of
classifying microservices into critical and non-critical are suitable for different types of
applications. Both deployment models are useful in serving different purposes. The 1 to
N deployment model promises low latency communication and high availability with the
condition that the computational resources required by the microservices are available all
the time in one of the cluster nodes. It might not be the case all the time. In the 1 to
1 deployment model, availability is subjected to the application’s design in terms of the
number of critical and non-critical microservices. This model efficiently utilizes the cluster’s
computational resources by allowing microservices to spread across different cluster nodes.
It is suitable to use this model for applications prioritizing availability over low latency and
can be categorized into critical and non-critical microservices.

The next chapter will showcase a multi-domain network slice orchestrator. The edge
sub-slice designed in this chapter can be instantiated using the multi-domain network slice
orchestrator.
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Chapter 7

Cloud Native Lightweight Slice Orchestration Framework

7.1 Introduction

The previous chapters have iterated that NFV is the key enabler of Network slicing
in 5G and beyond networks. It enables hosting multiple communication services on top of
the same physical infrastructure without compromising their QoS. Chapter 1 section 1.3
explains multi-domain slice orchestration. Handling a network slice that spreads across
different technological domains is a difficult task. Indeed, a network slice is divided into
sub-slices, which are managed by domain-specific service orchestrators. These orchestrators
translate domain-specific Service Level Objectives (SLOs) to resource-level objectives and
forward them to resource orchestrators. The resource orchestrators manage the infrastructure
for network functions. The job of a network slice orchestrator is to manage interactions with
sub-slice/service orchestrators and deliver a network slice.

Sub-slice or service orchestrators are responsible for handling the network function’s
lifecycle. The transition from VM-based VNFs to CNFs has created new challenges for
service orchestrators. One such challenge is following cloud-native application design
principles, as discussed in chapter 1, containerization, microservice, and on-demand scaling.
Containerization is the process of packaging software in containers. It simplifies the software
packaging, orchestration mechanism, and reduces software deployment time with lower
computational cost as compared to VMs. All these benefits of using containers amplify
when fused with cloud-native principles. Hence, the transition from VNF to CNF requires
re-designing VNFs and service orchestrators. Whereas, as discussed in chapter 2 the
recent release of ETSI NFV-MANO [45] adds another layer of components to orchestrate
containers alongside VMs. Rather than re-designing the service orchestration framework
to fully support containers. This approach complicates the VNF descriptors and hides the
simplicity of using containers. However, ETSI MEC [46] specifications for orchestrating
applications at the edge of the network, still do not clearly mention container-based MEC
applications.

The well-known service orchestration frameworks, ONAP and OSM [8] followed
the same path as ETSI-NFV MANO and added the support for CNF orchestration to their
legacy orchestration mechanism. Leading to a complicated workflow and multiple redundant
components in the service orchestration framework to support both containers and VMs. In
addition, these orchestrators can not orchestrate MEC applications or provide MEP services.
These frameworks do not provide a clear mechanism for orchestrating isolated network
slices and ONAP demands high computational and networking resources. Hence, this
inability to orchestrate MEC applications, high resource consumption, complicated service
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orchestration workflow, and missing isolation between network slices is the inspiration
behind proposing an end-to-end network slice orchestration framework based on cloud-
native design principles.

Cloud-native Lightweight Slice Orchestration (CLiSO) framework is designed to
handle RAN, Core Network, and MEC domains. The framework can be deployed in
resource constraint environments due to its lean design and low resource consumption.
The framework allows hosting CNFs on public, private, or hybrid clouds. This proposed
framework is an extension of the work presented in chapter 5, the Lightweight edge Slice
Orchestration (LeSO) framework. The previous framework only focused on the MEC
domain, whereas the new framework adds additional support for RAN and Core Network
domains.

On the other hand, Zero-touch Service Management (ZSM) [47] plays an important
role in enabling self-managed services. ZSM allows each service orchestrator to perform
a closed-loop automation and heal their services in case of errors. Existing orchestrators
or ETSI ZSM specification provides a notion of ZSM via state-of-the-art machine learning
and artificial intelligence algorithms. Whereas, such a solution would entirely rely on the
intelligence of the service orchestrator and could result in a single point of failure.

To address this challenge the chapter proposes Domain Specific Handlers (DSHs),
which is a management network function designed to manage the lifecycle of one or many
network functions via communicating with service orchestrator’s APIs. Service orchestrators
deploy DSH as a CNF and are responsible for managing DSH’s health. However, DSH
communicates with service orchestrators using a dedicated interface to manage the health
and resource consumption of its network functions. This will allow offloading sub-slice
operational management from service orchestrators to DSH. DSH may contain vendor-
specific logic to handle its network functions. This provides the freedom to customize
network function life cycle management rather than relying on the service orchestrator’s
generic mechanism to handle all the network functions.

Finally, management of network slices enabling mission-critical services requires
dynamic management of infrastructure resources. For example, a fleet of drones acting
as edge servers and hosting a mission-critical service. The proposed slicing framework
provides an interface to dynamically manage infrastructure resources. It allows a container-
based VIM to offer its resources to the hardware resource pool managed by the resource
orchestrator. Facilitating on-demand life cycle handling of mission-critical services. To
summarize, the chapter will present:

1. An end-to-end Cloud-native Lightweight Network Slice Orchestration (CLiSO) frame-
work. Capable of orchestrating CNFs and MEC applications on public, private, and
hybrid cloud and PNF. It allows dynamic management of infrastructure.

2. Concept of Domain Specific Handlers (DSHs) to allow Zero-touch Service Manage-
ment of sub-slices.

3. NST based on a modified version of ETSI PNFD, VNFD and ETSI MEC AppD.

The CLiSO framework is an extension of the LeSO framework introduced in chapter
5. The key differences between these two frameworks are:
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• LeSO framework is designed to orchestrate only edge or MEC sub-slices. It does not
allow orchestrating CNFs that require multiple interfaces such as 5G UPF or PNFs.

• The ESST was not aware of slices of different domains. Whereas, CLiSO modifies
the LeSOs ESST to be multi-domain slice-aware and allows the possibility to share
an edge slice with multiple core or ran slices.

• CLiSO allows sharing the sub-slices with other slices. Which was not the case with
LeSO.

• CLiSO provides the functionality to dynamically register and de-register CISM and
MEPs. The registered CISM can have any number of physical or virtual interfaces.
This ability was missing from LeSO.

• The CISM plugin of CLiSO provides basic monitoring information which was not
present in the LeSO CISM plugin.

7.2 Cloud-native Lightweight Slice Orchestration (CLiSO) Framework

This section will introduce the architecture of the CLiSO framework. The roles and
functioning of its different components. The concept of Domain Slice Handler(s) and how
they can communicate with sub-slice orchestrators to manage their sub-slice(s). The section
also presents the skeleton of the proposed cloud native NST and its different fields and their
parameters.

7.2.1 CLiSO Framework Architecture

The proposed framework has a hierarchical architecture starting from the top, Net-
work Slice Orchestrator (NSO), Network Sub-Slice Orchestrator (NSSO) (ran, edge, and
core domain), CISM, and Container Image Registry (CIR). To compare the framework with
3GPP’s proposed network slice management framework, NSO is analogous to NSMF and
NSSO is analogous to NSSMF. Apart from these components, there is a template registry
and a global Domain Name Server (DNS); these components are not shown in Figure 7.1.
The transport domain is out of the scope of the proposed slice orchestration framework.
The different layers are highlighted to distinguish the role of the components. The Service
Orchestration Layer (SOL) is responsible for translating SLOs to Resource Level Objectives
(RLOs) and coordinating with resource controllers. Whereas the Resource Orchestration
Layer (ROL) manages the resources via communicating with the underlying resource pool.
The purpose of each component of the framework is described below,

• Network Slice Orchestrator (NSO): It is responsible for creating Network Sub Slice
Templates (NSST) for different domains and coordinating the life cycle management
of sub-slices. It receives the monitoring data from different sub-slice orchestrators to
extract slice-level monitoring information.

• Network Sub-Slice Orchestrators (NSSO) or Service Orchestrators: They are respon-
sible for handling sub-slices of their respective domains and collecting monitoring
data to share with NSO. They expose APIs for DSH to consume slice-specific KPIs,
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Figure 7.1: Proposed Cloud-native Lightweight Slice Orchestration Framework
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– RAN Sub-Slice Orchestrator (RSSO): Handles the lifecycle of ran sub-slices
composed of PNFs or CNFs. It communicates with CISM to manage the CNFs
and PNFs. To manage each PNF, RSSO creates ephemeral containers with short
lifespans when needed. CISMs managed by RSSO are capable of handling radio
access network functions, Radio Unit (RU), Distributed Unit (DU), Central Unit
(CU) or Central Unit-Control Plane (CU-CP), Central Unit-User Plane (CU-UP).

– Edge Sub-Slice Orchestrator (ESSO): Handles the lifecycle of edge sub-slices
composed of MEC Applications. It coordinates with the MEC Platform to
provide the necessary services like traffic redirection, DNS-based redirection,
or Radio Network Information Service (RNIS) to the MEC Apps. ESSO only
handles container-based MEC Apps. MEC Platform discussed in chapter 3
is also part of the proposed framework. The detailed functioning of ESSO is
described in 5.

– Core Sub-Slice Orchestrator (CSSO): CSSO handles the lifecycle of core net-
work sub-slices composed of PNFs or CNFs. It communicates with CISM to
manage PNFs and CNFs.

• CISM: As described in section 2.1.3 of chapter 2, it is responsible for orchestrating
containers. It creates the necessary communication links between network functions to
deliver the required slice behavior. NSSOs communicate with CISM via a CISM agent
hosted on the CISM platform. The framework is capable of orchestrating containers
on different distributions of Kubernetes, Openshift, Vanilla Kubernetes (also known
as K8s), and K3s1. A new distribution can be supported by creating a plugin. The
Vanilla Kubernetes plugin can be used for orchestrating network functions on the
public cloud Kubernetes distribution. It has most of the required functionalities.

• CIR: Manages and stores Open Container Initiative (OCI) format container images. It
is capable of pulling images from public or private repositories and building images
from source code.

• Template Registry (TR): It has a similar role as LeSOs TDR. It stores all the NSTs
and NSSTs. RSST, ESST, and CSST are RAN, Edge, and Core sub-slice templates
respectively.

• Global Domain Name Server (DNS): Similar to LeSOs external DNS, it allows
the network functions hosted on different CISM infrastructures to resolve the fully
qualified domain name of other network functions belonging to the same slice.

The proposed framework follows cloud-native design principles, service-based and
microservices architecture, and supports on-demand scaling of the components. Each
component exposes a REST API. It is possible to downsize the framework if required and
deploy only selected components. For example, to manage only core sub-slices, it is required
to deploy only CSSO. RSSO and ESSO are optional.

1https://k3s.io/
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The framework proposes dynamic resource management based on the CISM regis-
tration mechanism. This mechanism was not present in chapter 5 LeSO. In LeSO CISM
and MEP were registered at the startup time. Unlike ETSI NFV, CLiSO does not follow the
concept of fixed infrastructure. CISM is added to the individual NSSO CISM repository
via NSO. A CISM agent should be running on the CISM platform. It is registered using
the CISM registration template shown in Figure 7.2. The fields in underline are required
fields and others are optional. listOfSubnet allows CISM to describe its subnets and this
information is used to allocate IP addresses to network functions. dpdk boolean value is to
specify if the interface supports data plane acceleration technology, Data Plane Development
Kit (DPDK). annotations field allows mentioning resources apart from CPU and RAM that
CISM exposes, for example, hugepages.

Figure 7.2: Proposed CISM Descriptor

Registered CISM shares regular heartbeats with their respective handlers in NSSOs.
This allows NSSOs to be infrastructure aware and make decisions when there is a problem
at the infrastructure level. The field drone allows registering UAV-based CISM. This field
instructs the CISM agent not to remove the network slice when a heartbeat is not being
shared with NSSO. CISM can manage PNFs by using ephemeral containers, short-lived
containers that can communicate with PNFs and perform any required action based on the
instructions provided in NSST.

MEC platforms are registered dynamically only to ESSO via NSO. ESSO directly
communicates with MEC platforms and gets the list of services hosted at the MEP. Figure
7.3 shows the MEP descriptor. The fields in underline are required fields and others are
optional. ESSO has the capability to query the MEP regularly for heartbeats and the list of
hosted services.

7.2.2 Domain Specific Handler (DSH)

Domain Specific Handlers are management network functions responsible for han-
dling the lifecycle of one or many network functions belonging to the same slice. They
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Figure 7.3: Proposed MEP Descriptor

are analogous to an Element Management System (EMS) but designed with an ability
to communicate with the CLiSO framework to negotiate the SLOs of the slice. A slice
may have multiple DSHs depending on the NST provider. Their administrative domain is
restrictive to their slice. Few key points about DSH:

• They get lifecycle notifications of all the network functions from NSSO. They have a
direct communication link with all the network functions of their administrative do-
main. They fetch network function level KPIs and push them to the CLiSO monitoring
engine.

• They can subscribe to infrastructure-level KPIs, computation, and networking re-
sources consumed by the network functions. Based on this information, they can
request the NSSO to increase or decrease the resources consumed by the CNF or
MEC application.

• They can request the NSSO to upgrade the container software image of a CNF
instance.

DSH can provide ZSM if they collect KPIs from network functions and the CLiSO
framework to handle the lifecycle of their managed network slice. DSH may use Artificial
Intelligence and Machine Learning algorithms to perform ZSM. CLiSO Framework does not
have an inbuilt DSH as they are external to the proposed framework. There are no standards
around designing an EMS similarly nor for DSH. But to communicate with the NSSO they
should have a dedicated interface. DSH provides the freedom to network function providers
or vendors to manage their network functions rather than using NSO’s generic management
algorithm.

Figure 7.1 shows some examples of network functions that can be used as DSH
if appropriate APIs are implemented to communicate with CLiSO. 1) RAN Intelligent
Controller (RIC) that manages RAN network functions via analyzing their and infrastructure
level KPIs from CLiSO. 2) Operations And Maintenance (OAM) that manages the lifecy-
cle of core network functions via subscribing to notifications from Access and Mobility
Management Function (AMF), Session Management Function (SMF), and Network Data
Analytics Function (NWDAF) and consuming infrastructure level KPIs from CLiSO frame-
work. However, DSHs are not mandatory components of a sub-slice. If network functions
have a self-management mechanism, they can communicate with NSSOs to manage their
own resource consumption.

72



7.2.3 Network Slice Template

The Network Slice Template proposed in Figure 7.4 is deployment oriented and
contains network function deployment-specific information. The framework considers that
slice or sub-slice level SLOs can be translated to the network function’s configuration. The
proposed NST contains dedicated sections to define Core, Edge, and RAN sub-slices. NSO
accepts a NST package in tarball format. This allows providing dedicated YAML files for
each sub-slice template and any additional files like scripts or configuration files required by
the PNF, CNF, or MEC applications. Apart from the network slice template the proposed
framework does not require any additional deployment-related packages like helm-charts or
juju-charms2 as required by OSM and ONAP. To stay aligned with ETSI’s proposed VNFD
instead of using the term CNF Descriptor (CNFD) the framework retains VNF Descriptor
(VNFD) in the proposed NST. Below is the description for some of the fields of NST:

Figure 7.4: Proposed Network Slice Template

• templateId: A unique identifier for an onboarded slice. If the field is present for a slice
then instead of creating a new slice the orchestrator will update the onboarded slice.

• metadata: This field contains only slice name as a mandatory parameter and other
parameters are optional, annotations and order in which sub-slices should be instanti-
ated.

• commonData: This field contains data that is common to all the sub-slices and it will
be provided to all the sub-slices of a slice. It can contain any user-defined information
and it will be forwarded to network functions of the sub-slice. For example, this
field can contain SLO information and DSH can use this information to tune the
configuration of other network functions to achieve the required SLO.

2https://juju.is/
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• s-nssai: single network slice selection assistance information is a unique network slice
identifier defined by 3GPP. It contains Slice Service Type (SST), a mandatory parame-
ter to identify slice characteristics, and an optional parameter Service Differentiator
(SD).

• listOfRegions: This field allows defining the regions where the network slice will be
created. The regions are defined in the CISM descriptor. A region can be the name of
a city, state, or custom value defined when a new CISM is added to the repository.

• When providing a new NST to the orchestrator it is mandatory to define one of the
sub-slices. If the sub-slice unique identifier, coreSliceId, ranSliceId or edgeSliceId
is provided in the respective section then the orchestrator will automatically fetch
the sub-slice template from the template registry. It is possible to define the subSlice
template in a separate YAML file and provide its relative location to the package.

All the sub-slice templates have a similar design,

• They all contain a list of NST templateId, as a sub-slice can be shared among multiple
slices.

• The unique sub-slice identifiers coreSliceId, ranSliceId or edgeSliceId are only present
when the sub-slice is successfully on-boarded. If the field is present in the sub-slice
template the sub-slice orchestrator will update the on-boarded sub-slice instead of
on-boarding a new template.

• The placement field allows specifying the placement of the sub-slice network functions
in a region. This can be the unique identifier of a CISM or the position tag, for
example, FAR EDGE, ASSOCIATED EDGE, or CENTRAL CLOUD. These tags
are customized and can be defined in the CISM descriptor. This placement will be
common for all the CNFs of a sub-slice. Unless the CNF or MEC App descriptors
also have the placement field and specifics the cismId. The placement field can be
manually added in the NST, if not then NSO will automatically instruct the domain
orchestrators about the placement.

• coreSlice contains a list of ranSliceIds using the coreSlice. Similarly, ranSlice contains
a list of coreSliceIds it is using. edgeSlice contains a list of coreSliceId and ranSliceId
through which the edgeSlice is reachable. This mapping is used to provide security
isolation among sub-slices. For example, only allowed ranSliceIds can use the
coreSlice.

• Edge sub-slice template is restricted to defining only MEC applications.

• nssai is a list of s-nssai. It allows enabling the sharing of sub-slices with sub-slices
of different network slices. This parameter is also used to provide isolation among
different slices.
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The vnfD, pnfD, and appD used by coreSlice, ranSlice, and edgeSlice templates are
modified versions of ETSI NFV VNFD, PNF, and ETSI MEC AppD. However, the recent
version of VNFD allows describing containers using osContainerDesc field but there is no
simple possibility to define the container’s exposed ports, subnets it should be connected to,
initial startup configuration, and placement-related information of VNF. To overcome such
shortcomings the framework proposes a modified VNFD and PNFD in Figure 7.5. It should
be noted that the figure contains only the fields added or modified for the proposal.

Figure 7.5: Proposed VNF and PNF Descriptor

• vnfDId and pnfDId: Are unique identifiers allocated by CISM when the network
functions are already on-boarded. If already present, CISM will update the on-boarded
descriptor rather than on-boarding a new descriptor.

• osContainerDesc: Describes the container images required to deploy the CNF. It
contains several sub-fields to allow describing computational resources required and
their limit, container image location, storage-related information, and monitoring
parameters to be tracked for this osContainer. The model was extended to add infor-
mation related to ports exposed by the container, the possibility to pass configuration
to containers, startup command in case the container wants some initial command,
liveliness to understand network function is always running, and readiness probe to
know when the network function is ready to use, etc.

• replicas: Number of replicas of the CNF. The CNF should support load balancing
between different replicas.

• events: Each CNF can subscribe to events published by CSSO or RSSO. This field is
mostly relevant for DSH. The events give information about all network functions of
the slice.

• placement: If mentioned it will supersede the placement defined in the sub-slice
template.
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• cismId: Mandatory field for PNF to define its location, and in case PNF is only
accessible via one of the nodes of the CISM then it is mandatory to define nodeId.

• pnfInterfaceDefinition: It allows describing the interfaces that are connected to the
PNF and their IP addresses.

• linkedCnfIds: This field defines the list of CNFs that will use the PNF. This will
allow deciding the placement of CNFs to enable communication with their PNF. For
example, if 5G New Radio DU will be placed on the node through which it can
connect to the Radio Unit (RU).

• lifecycleScript: A relative location or URL of a script to execute in the PNF at the
time of on-boarding. It is executed via a short-lived container instantiated in the same
network or host from where PNF is reachable.

• annotations: This field is to consume the resources exposed by CISM.

The application descriptor used here is slightly updated from the one described in
chapter 5. The field swImageDescriptor is replaced with osContainerDesc as it is more
relevant according to the ETSI NFV standards. ETSI MEC appD standards are still not
adapted for container-based VNFs or CNFs.

7.2.4 Isolation between slices

Isolation between network slices is important for security concerns while providing
the required QoS to the network slice. The isolation is divided into two categories, first
resource isolation, and second communication isolation.

1. Resource Isolation: Isolation at the level of infrastructure resources used by a CNF.
In the osContainerDesc field, it is mandatory to define the required CPU and RAM
needed by the container and their limits. The CISM will always guarantee that these
resources are allocated to the container.

2. Communication Isolation: For each container of CNF in osContainerDesc there is a
subfield ports to mention the exposed ports of the container and the network in which
they are exposed. Outside this network, the ports will not be reachable. nssai field
controls the communication between sub-slices of different slices. A sub-slice will
only be able to communicate with slices defined in nssai else all the outgoing traffic
to other slices will be rejected. Each instantiated CNF has an infrastructure-level
container. This container guards the ingress and egress traffic of the CNF. An example
of the tools that can manage resource isolation is Linux iptable rules.

7.2.5 Monitoring and Logging

To keep the framework lightweight, it only exposes a limited set of KPIs using
the inbuilt capability of the CISM. The framework provides CPU and RAM consumed by
each network function of a slice. The PNF or their linked management CNFs can push
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their resource consumption to the monitoring engine. The framework provides the standard
output logs of each CNF of the slice. The PNF or their linked VNF have to push their logs to
the logging engine. The proposed framework can be plugged into the monitoring framework
proposed by the authors in [48] to get elaborated KPIs related to each network function.

7.2.6 Working of the Framework

A NST template defines a network slice instance. Each network slice instance has
four crucial phases,

1. Preparation phase: It includes calculating the requirement of the network slice instance,
onboarding the required container image, reserving the required resources at the CISM
level, and creating CISM deployment-specific definitions.

2. Commissioning phase: After the successful onboarding of the slice network functions,
the network functions are instantiated and in the case of MEC applications if required,
ESSO communicates with MEP to provide requested services. At this phase, the slice
is ready and operational. The KPI collection can be started.

3. Operational phase: The slice instance can serve its consumers and KPI can be moni-
tored. At this phase, it is possible to use the output of the monitoring engine to update
the slice resource consumption.

4. De-commissioning phase: The slice instance will be terminated, all the reserved
resources will be released and the container images will be off-boarded.

NSO exposes a northbound REST API to allow CSMF to request the creation of a
network slice instance described using NST. NSO using the NST parser disintegrates the
NST in different NSSTs based on the domains defined in NST. If the listOfRegions is defined
in the NST and there is no placement field in NSST, it will calculate the placement of the
sub-slice and add the placement field in the NSST. The sub-slice coordination manager
forwards these NSSTs to their respective domain orchestrators. The domain orchestrators
can simultaneously communicate with multiple CISM agents spread across different regions
or in the same region to create the sub-slice. If the VNFD defines the placement of the CNF
then it will supersede the placement value defined in NSST. Domain orchestrators add the
infrastructure level container based on the nssai field of the NSST to enable communication
isolation and translate the PNFD, VNFD, and appD to CISM level definition.

A CNF or MEC application corresponds to a Kubernetes Pod. All the containers are
mapped to one Pod. CISM level objects define the resource requirements of the pod, virtual
interface definition, and software configuration, etc. Domain orchestrator communicates
with CISM via CISM agent to instantiate Pods. CISM communicates with PNFs via short-
lived containers. The containers use the ICMP ping mechanism or Linux NETCAT command
to check the connectivity with the PNF. They execute lifeCycleScript if provided in PNFD.
CISM agent responds back to domain orchestrators with network information of the CNFs,
PNF, and MEC application. If MEC applications request MEP services, DNS redirection, or
traffic redirection as described in appD. ESSO communicates with the desired or default
MEP and provides the requested services.
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After the successful creation of all the network functions of a sub-slice, the slice
instances are ready to serve their customers. The termination of a slice instance follows a
similar mechanism and results in terminating all the network functions, disabling services
used by the MEC application, and off-boarding all the container images.

7.3 Performance Evaluation

CLiSO framework was evaluated on public and private clouds. Public cloud as
Amazon Elastic Kubernetes Service (EKS), Google Kubernetes Engine (GKE), Azure
Kubernetes Service (AKS), and OVH provide Kubernetes as Platform as a Service (PaaS).
The Kubernetes lifecycle and underlying infrastructure are managed by the cloud provider.
Private cloud was created using Minikube3 and Red Hat OpenShift Local4, two command
line tools to install Vanilla Kubernetes and Openshift, respectively. The proposed framework
was evaluated using three different experiments with different motives:

1. Compatibility Testing: The motive of this test was to evaluate the compatibility of the
framework with different Kubernetes distributions.

2. Configuration Testing: There were two motives for this test, First to evaluate the
capability of the CLiSO framework to manage multi-domain slicing. Second, if the
framework can be disintegrated and deployed on different platforms.

3. Scalability Testing: The motive was to evaluate multi-tenancy and resource consump-
tion when multiple slice creation requests arrive.

All the experiments have used OpenAirInterface (OAI)[12] 5G Core and RAN
Network Functions. Every experiment has a different slice configuration, different number
of CNFs, or different deployment complexity to understand how many CNFs in a slice the
framework can support.

7.3.1 Compatibility Testing

To evaluate the compatibility of the CLiSO framework with various public clouds, the
lifecycle of a 5G Core Network Slice was managed on different production-level Kubernetes
platforms. In the experiment, the core network slice went through all four phases on each
public cloud. The core network slice contained AMF, SMF, NRF, UPF, AUSF, UDM, UDR,
and two replicas of MYSQL. Each of the network functions and MYSQL instances was
deployed as CNFs, slice contained 9 CNFs or Kubernetes Pods or 9 containers.

All the CISMs were single-node clusters. Their hardware details are mentioned in
Table 7.1. To manage the lifecycle of the core network slice, only necessary components of
CLiSO were used, image registry, database, CSSO, and NSO. The CLiSO framework was
deployed on an OVH cloud instance with 4vCPU, 15 GB RAM, and Kubernetes version
1.25.4-1.

3https://minikube.sigs.k8s.io
4https://developers.redhat.com/products/openshift-local
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Table 7.1: CISM Details for Compatibility Testing

Platform Location Kubernetes Version Resources (vCPU, RAM)
Azure (AKS) Paris 1.24.9 4, 16GB
Google (GKE) Paris 1.24.8-gke.2000 4, 16GB
OVH(I) Strasbourg 1.25.4-1 4, 15GB
Amazon (EKS) Ireland 1.24 4, 7.5GB
OVH(II) Strasbourg 1.23.14 4, 15GB
Kubeadm Local 1.23.17 4, 16GB

To compare the results of the CLiSO framework with ETSI OSM. ETSI OSM
was deployed in an Ubuntu 20.04 VM with 4vCPU and 16GB RAM. The deployment
instructions were used from the website [49]. Inside the VM OSM deployer script deployed
OSM on a Kubeadm-based Vanilla Kubernetes cluster, a tool to create a Kubernetes cluster.
OVH (II) and Kubeadm were used as CISM, their hardware details are mentioned in Table
7.1. The reason for using different OVH configure was because of OSM, as it only supports
an older version of Kubernetes. In OSM terminology CISM is referred as a dummy VIM.
The helm charts used by the 5G core network slice descriptor were taken from the OAI git
repository [50].

Table 7.2: Core Network Slice Life cycle On Various Cloud Platforms via CLiSO and OSM

Orchestrator Platform CISM Registration(s) Creation (s) Deletion (s)
Azure 0.502 30.048 1.436
Google 0.396 43.926 2.317

CLiSO OVH(I) 0.513 44.1 2.394
Amazon 0.718 65.46 1.538

OSM Kubeadm 1.846 97.68 29.97
OVH(II) 2.930 138.98 34.78

Table 7.2 highlights the time taken (in seconds) to register different CISMs, create a
core network slice and delete a core network slice using CLiSO and OSM. The values are
averaged over 10 iterations. From the table below conclusions can be drawn:

1. CLiSO takes less time to deploy core network slice than OSM.

2. CISM agent is compatible with different public cloud platforms and can deploy a core
network slice on various public cloud platforms.

3. CLiSO framework can be deployed partially, if only the core network slice has to be
handled then only CSSO is required.

Apart from this, the CLiSO framework can deploy replicas of a CNF. For example,
MYSQL in this scenario. This is done by mentioning the replicas in VNFD. In OSM the
replicas were only possible via manipulating the helm-charts manually.
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7.3.2 Configuration Testing

The motive of this test is to understand the capability of the CLiSO framework
to manage a multi-domain slice hosted on different CISM instances. Figure 7.6 shows
the slice and required placement of the CNFs. This configuration of 5G network slice is
meant for applications requesting low latency, as the user plane is hosted at the edge. The
CLiSO framework was disintegrated, image registry and its database were deployed in
public cloud OVH with 2vCPU and 4GB RAM. The rest of the components, CSSO, RSSO,
NSO, and their database were deployed in a local Kubernetes instance with 4vCPU and
4GB RAM. The image registry has to be located in the public cloud where all the CISM
can communicate. Hence, the image registry requires a public IP address in this scenario.
Hardware information related to CISMs is below:

1. Public Cloud (OVH): 4vCPU and 16GB RAM, location Strasbourg

2. Local Openshift: 4vCPU and 16GB RAM, Openshift Local version 4.12

3. Local Minikube Kubernetes: Baremetal Kubernetes with 4CPU (No Hyper-threading)
and 16GB RAM, connected with USRP B210.

Figure 7.6: Ran and Core Slice Deployment

The public cloud slice had AMF, SMF, NRF, AUSF, UDM, UDR, and two replicas
of MYSQL. At the edge, there was one UPF managed by Openshift CISM, and on the other
edge instance, gNB CNF managed by Minikube CISM. In total, there were 10 CNFs or 10
Kubernetes Pods and USRP as PNF managed by gNB CNF. Table 7.3 shows the time taken
(in seconds) to on-board, instantiate, terminate, and off-board the network slice. The values
are averaged over 10 iterations. Though the above values are subjected to the hardware
capabilities, the table concludes that the framework can manage a multi-domain slice
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Table 7.3: Ran and Core Network Slice Life cycle Time (seconds)

Creation Deletion
43.042 3.545

Onboard Instantiate Terminate Offboard
3.259 39.783 2.431 1.114

hosted on multiple CISM instances. Like other orchestrators, OSM and ONAP connectivity
between public and private clouds is a prerequisite and the CLiSO framework assumes that
CISM instances can communicate with each other. ETSI OSM at the time of evaluating the
framework did not support RedHat Openshift.

7.3.3 Scalability Testing

To inspect the multi-tenancy capability of the complete CLiSO framework, it was
required to select a slice configuration spread across all three technological domains and
hosted on multiple CISM platforms. In this experiment the RAN slice used 3GPP proposed
three split RAN architecture, Distributed Unit (DU), Central Unit-Control Plane (CU-CP),
and Central Unit-User Plane (CU-UP) deployed on three different CISM respectively. Rather
than using physical radio units, the experiment used OAI DU in RF-simulated mode. The
control plane of the core network slice was deployed on one CISM and User Plane Function
on another CISM. The MEC Application connected to UPF was a content caching server. In
total 12 CNFs or 12 Kubernetes Pod were included in the end-to-end network slice.

The experiment used four instances of OVH Kubernetes, two instances with 8 vCPU
and 30GB RAM to imitate central and associated edge cloud. The other two instances
with 4 vCPU and 16GB RAM for far edge cloud and hosting CLiSO components. For
this experiment all the components of the CLiSO framework were necessary. Due to
computational resource constraints, the CNFs and MEC applications were deployed in
sleep mode rather than functional mode. The slice network functions went through the four
lifecycle stages on-boarding, instantiation, termination, and off-boarding.

Figure 7.8 shows the slice creation time and CPU core consumption by the CLiSO
framework while handling multiple slices, 2, 4 up to 14 at the same time. Due to Kubernetes
default constrained of 110 Pods per host machine, it was not possible to scale the experiment
beyond 14 slices on the selected infrastructure. In the OVH-managed Kubernetes service,
this value is not configurable. Though the slice creation time depends on the hardware
and the CNF, the graph reflects that the framework is capable of managing the lifecycle of
multiple slices at the same time. To create two slices the complete framework consumed
0.275 CPU and 340MB RAM. Whereas, for 14 slices the framework consumed 1.33 CPU
and 365MB RAM. In addition, the framework consumes most of the resources at the time
of slice creation. Once the slice is created the slice orchestrator and sub-slice orchestrators
just share heartbeats among themselves and with CNFs. After the slice is created user
can interact with the slice CNFs via CNFs management API or DSHs API/graphical user
interface.
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Figure 7.7: Slice in Three Technological Domains

Figure 7.8: Slice Creation time vs CPU Consumed
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Table 7.4: Resource Requirement OSM and ONAP

Orchestrator vCPU Memory (GB)
ONAP (Jakarta) 112 224
OSM-13 2 8

Table 7.4 shows the resource requirement of OSM and ONAP taken from their
official website. CLiSO resource consumption is based on the scaling test presented above
but there are no similar results for other orchestrators. It should be noted CLiSO framework
supports the orchestration of MEC applications and interactions with MEP. Whereas other
orchestrators do not have this ability. All the components of the CLiSO framework can be
deployed on any publicly managed Kubernetes distribution or private Kubernetes instance.

7.4 Summary

The chapter presents a novel end-to-end orchestration framework CLiSO. The frame-
work is lightweight when compared with other orchestrators. It takes less time to deploy
slices when compared with OSM. It allows orchestrating container-based VNFs or CNFs on
multiple Kubernetes distribution, Amazon Elastic Kubernetes Service, Azure Kubernetes
Service, Google Kubernetes Engine, OVH, RedHat Openshift, Vanilla Kubernetes and K3S
a lightweight Kubernetes distribution supporting AArch64 (ARM64) architecture. It is possi-
ble to deploy the components of the CLiSO framework on all these Kubernetes distributions.
Hence, making the framework cloud-native, and easy to port to multiple cloud platforms.
The framework is designed with a plugin approach and network sub-slice orchestrators
abstract the type of CISM. This allows supporting any other container orchestration frame-
work. CLiSO framework is highly customizable and can be deployed partially, as shown in
the evaluation section. The deployment-centric and CISM agnostic network slice template
allows describing sub-slices and their required network functions or MEC applications
by abstracting infrastructure-related information. The proposed concept of Domain Slice
Handlers (DSH) distributes the responsibility of managing a sub-slice among themselves
and network sub-slice orchestrators. DSH allows zero-touch service management of the
sub-slice network functions. DSHs are network function provider-centric, allowing the
providers to personalize the life cycle management of their network functions.
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Chapter 8

Concluding Remarks and Perspectives
The rise of containerization technology has a big role to play in the adoption of

NFV. The main benefits of containerization are faster upgrades, easy scalability, easy
monitoring, and reduced operational costs. These benefits can not be achieved without
applying cloud-native fundamentals. The cloud-native fundamentals are relatively new for
telecommunication and the standards are still evolving. This thesis examines the gaps in
the current standards and the orchestration frameworks to understand the state-of-the-art
orchestration of cloud-native network functions and MEC applications. It takes a setup
further and provides a path towards joining NFV, MEC, and Network Slicing with cloud-
native fundamentals.

The journey of this thesis starts by creating a MEC platform and RNIS, then creating
an algorithm to place cloud-native MEC applications cost-effectively with high availability.
The knowledge acquired while investigating ETSI MEC and Network Slicing was later used
to propose a Lightweight edge Slice Orchestration (LeSO) Framework. A novel framework
allowing orchestration of edge Slices. The edge slice deployment template proposed by the
framework provided different possibilities to model an edge application. These different
modeling possibilities were further studied to understand the correlation between availability
and latency.

Finally, the last chapter of the thesis uses all the work presented in the previous
chapters to develop a novel multi-domain network slice orchestration framework, Cloud-
native Lightweight Slice Orchestration (CLiSO) framework. The service-based architecture,
low resource footprint, rich feature set, rigorous performance evaluation of the CLiSO
framework, and its comparison with the well-known service orchestrators provide it an edge
over the existing orchestrators. CLiSO framework is designed to fulfill the orchestration
requirements of 5G and beyond networks.

The existing containerization tools were not designed for packaging network func-
tions. There is a lot of work ongoing in improving their functionality, especially for their
usage in Telecommunications. It is possible that containers may not be the methodology
for designing every network function or MEC application. Containers were fundamentally
designed to share the Kernel with the host machine. Network functions or applications that
require a dedicated Kernel or use tools such as extended Berkley Packet Filter (e-BPF) may
not be able to benefit from containers. Such network functions or applications can benefit
from Unikernels [51]. Today developing Unikernel applications is complicated but maybe
in the future, it will be improved. The CLiSO framework modular design and infrastructure
abstraction layer allows extending its functionality beyond orchestrating container-based
network functions or MEC applications.
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8.1 Perspectives

The increasing adoption of NFV will certainly create new challenges, and successful
NFV adoption will result in higher dependency on NFV in 6G. One such challenge in front
of NFV is to reduce carbon emissions. To tackle these new challenges and to keep up with
new advancements in the field of NFV standards, the work presented in each chapter can be
potentially extended. Below are some perspectives for future work,

1. Complex placement problems: The placement algorithm presented in chapter 4 is
only applicable to simple cloud-native network services. Whereas, in the future, a
similar algorithm is required to place a multi-domain network slice. That comprises
network service from each domain. In this scenario, again, cost and availability will
be two important parameters that have to be optimized. To reduce the carbon footprint,
the operational cost will include carbon emissions. In such a case, the CNF or PNF
should be placed, in a location, where electrical energy is produced from sustainable
resources.

2. CLiSO framework extensions: There are several areas where the CLiSO framework
can be extended:

• Exposing energy metrics: There is a need to evaluate the energy consumption
of 5G and beyond network functions to dynamically downscale or upscale their
instances or resource consumption to optimize their energy consumption. In the
future, the CLiSO framework can have the in-built capability to expose energy
consumption at the network function level. This metric can be exposed as a
service or MEC application to be consumed by Domain Specific Handlers (DSH)
or other MEC applications to reduce the energy consumption of their slice or
their own application.

• Zero-touch Service Management: The framework requires the slice providers
to use the proposed concept of DSH, a slice management function to perform
life cycle management for their slice. To enable general slice management in
the absence of DSH, the CLiSO framework can use Artificial Intelligence (AI)
and Machine Learning (ML) models. These models will observe the behavior
of each network function of a slice based on the triggers provided by the slice
provider or pre-configured triggers to perform life-cycle management. The most
challenging task here would be to identify when the network functions have
abnormal behavior and predict their failure well in advance to avoid service
disruption.

• Multi-domain network slice placement: CLiSO provides the ability to deploy
a network slice in multiple regions at the same time. Each of these regions
can have multiple CISM. Currently, if the slice provider does not specify the
CISM in NSST then in a region with multiple CISM, CLiSO will randomly
select a suitable CISM. This approach may have issues when there is a large
number of CISM in a region as the computational and networking resources
are not effectively utilized. Hence, there is a need to implement algorithms for
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placing a multi-domain network slice that is spread across different regions and
on multiple CISM.

• Transport Sub-Slice Orchestrator: The framework does not manage the trans-
port network between different NFVI sites or PNF. Currently, CLiSO assumes
that different CISM can communicate and they manage their own transport
network. In the future, the CLiSO framework can use such an orchestrator to
dynamically manage the connectivity between different NFVI sites and logical
networks between different CISM.

• Ability to allocate isolated computing resources at CNF level: Certain net-
work functions that require near real-time performance such as CU-UP, UPF, or
containerized DU need isolated/dedicated CPUs and a real-time Linux kernel.
The underlying CISM such as Kubernetes does not have the ability to provide
dedicated CPUs to a CNF. Further, Vanilla Kubernetes does not allow deploying
its management plane components on a specific CPU, to avoid using the same
CPUs for management components and CNFs. This task challenges the archi-
tecture of Kubernetes and requires an investigation to overcome this challenge.
After solving the challenge, the CLiSO NST can have a special field for CNFs if
they require dedicated CPUs.

3. Intent-oriented slicing templates: The proposed NST or NSSTs are deployment ori-
ented. They require the slice owners to provide the network function’s computational
resource consumption, required networking interfaces, and placement preferences
in case the network function prefers a specific Operating system or Linux kernel
version. The intent-oriented slicing template should only require the SLOs for the
slice, and based on this, the slice orchestrator should create the NSSTs by choosing
the appropriate network functions from the repository.

4. Investigating Alternatives of Containerization: Containerization is not suitable for
every application, as described earlier. In the coming future, there will be a need to
investigate or develop alternatives to containerization technology. WebAssembly1

(WASM) can be one such alternative. Initially, WASM was designed to package
non-java-script applications to run in web browsers. However, it is capable of pack-
aging any application and deploying it on multiple hardware platforms as containers
using WebAssembly System Interface (WASI). WASM, unlike containers, is a binary
instruction format for stack-based virtual machines such as Java Virtual Machine.
Another alternative is Unikernel which has existed for a long time. Exploring such
alternatives and integrating them into the global orchestration framework will require
adapting the proposed framework.

1https://webassembly.org/
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Chapter 9

Résumé

9.1 The 5G Journey

La 2ème génération du réseau mobile est le catalyseur qui a fait des téléphones
mobiles une nécessité dans notre vie quotidienne. C’est la première génération de réseaux
mobiles qui était présente dans le monde entier. Elle permettait d’envoyer des messages
textuels et multimédias, ce qui était inimaginable à l’époque. La 3 ème génération a permis
d’utiliser les téléphones mobiles pour consulter des sites web et regarder des vidéos. La 4
ème génération a véritablement révolutionné notre société en permettant une connexion de
données permanente à des prix plus abordables, ce qui n’était pas possible avec les autres
générations. C’est la raison pour laquelle le nombre d’utilisateurs de téléphones portables a
considérablement augmenté au cours des dix dernières années. Chaque génération s’efforce
d’utiliser efficacement le spectre limité pour répondre aux demandes sans cesse croissantes
des utilisateurs de communications mobiles.

La 4G a créé une opportunité pour de nombreuses nouvelles entreprises qui s’appuyai-
ent sur la connectivité internet par téléphone mobile pour atteindre leurs clients. L’utilisation
intensive du streaming et de la diffusion de médias, des jeux en ligne et des appareils
connectés intelligents a remis en question la conception unique de la 4G. En effet, la 4G n’a
pas été conçue pour fournir à chaque application une qualité de service adaptée (QoS), en
particulier pour les applications qui nécessitent une faible latence ultra fiable. Cette lacune a
été bien comblée par la 5ème génération de réseaux mobiles. Elle est conçue pour fournir une
qualité de service adaptée aux exigences des applications grâce au concept de découpage du
réseau en tranches (Network Slicing) [1].

9.2 Network Slicing, MEC and NFV

Le projet de partenariat de troisième génération (3GPP) a introduit le découpage en
tranches pour partager (logiquement) le réseau physique (partagé) afin de gérer différents
modèles de trafic. Toutes les tranches logiques sont hébergées sur la même infrastructure
physique, ce qui accroı̂t l’efficacité de l’infrastructure sous-jacente. La version 17 du 3GPP
identifie cinq types différents de tranches en fonction des modèles de trafic des applications,

• enhanced Mobile Broadband (eMBB) : Cette tranche est adaptée à la gestion d’applica-
tions exigeantes en termes de débit descendant élevé. Par exemple, la diffusion de
médias en ultra-haute définition (UHD).
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• Ultra Reliable Low Latency Demanding Applications (URLLC) : Cette tranche est
adaptée aux applications qui nécessitent une communication ultra-fiable et à faible
latence. Par exemple, le contrôle de drones, les opérations médicales à distance et la
manipulation d’instruments de musique lors d’un concert à distance.

• Massive Internet of Things (MIoT) : Cette tranche est adaptée au traitement des
communications massives de type machine à machine pour l’industrie 4.0 [3].

• Vehicular to Everything (V2X) : Cette tranche est adaptée à la gestion de la conduite
de voitures autonomes et des scénarios de pelotons de camions.

• High-Performance Machine Type Communication (HMTC) : Cette tranche est adaptée
à la gestion des dispositifs IoT qui nécessitent une communication à large bande
passante.

Le 3GPP offre la possibilité de définir des tranches réseau personnalisées, vu que les
tranches susmentionnées ne peuvent pas supporter tous les types de trafic. Les applications
émergentes de la 5G, telles que les services critiques, la réalité augmentée (AR) et la réalité
virtuelle, nécessitent les capacités de l’eMBB et de l’URLLC. Ces services peuvent être
rendus possibles par l’intégration de l’informatique de périphérie multi-accès (MEC) dans
l’infrastructure 5G. Edge cloud ou MEC [4] [5] fournit un foyer aux applications exigeantes
à faible latence. La proximité du MEC avec les utilisateurs finaux le rend apte à déployer
les services émergents de la 5G.

L’ETSI MEC Industry Standard Group (ISG) a été formé pour créer des normes
d’orchestration des applications à la périphérie du réseau. Les applications hébergées à la
MEC nécessitent une redirection du trafic ou des règles de redirection basées sur le DNS
pour rediriger le trafic vers les applications de la MEC plutôt que vers l’Internet. Sachant que
la redirection du trafic devant être effectuée de manière dynamique lors de l’instanciation de
l’application MEC, l’ETSI MEC a défini la redirection du trafic comme une règle dans le
descripteur d’application (AppD) décrivant l’application MEC. En outre, la réorientation du
trafic est appliquée par l’élément de la plateforme MEC (MEP) qui sert d’interface entre les
domaines MEC et 5G. MEC offre un service d’information sur le réseau radio (RNIS) qui
peut être utilisé par les applications pour obtenir des informations radio pour leurs abonnés.
Le RNIS permet d’adapter la qualité de l’expérience (QoE) au niveau de l’abonné. Ce qui
fait de MEC une entité importante dans les réseaux 5G et au-delà.

La complexité architecturale des réseaux mobiles augmente d’une génération à
l’autre. Chaque génération nécessite des méthodologies de déploiement et de surveillance
différentes. La virtualisation des fonctions de réseau (NFV), introduite en 2012, a proposé
une autre façon de déployer les fonctions de réseau plutôt que les fonctions de réseau
physique (PNF). La NFV propose de découpler la pile logiciel du matériel des fonctions de
réseau physique et de déployer le logiciel dans un environnement virtualisé dans le nuage.
L’objectif de la NFV est d’apporter un changement de paradigme en passant de l’utilisation
d’un matériel spécialement conçu à celle d’un matériel commercial prêt à l’emploi (COTS)
pour le déploiement des fonctions de réseau. Cela permet des mises à niveau plus rapides
du réseau. L’ETSI NFV ISG, formé en 2012, est responsable de la publication de normes
pour la gestion du cycle de vie des VNF.
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Les machines virtuelles (VM) ont fait leurs preuves dans le domaine de la virtual-
isation des logiciels. La première architecture NFV, les descripteurs d’instanciation des
VNF et la méthodologie d’orchestration reposaient en grande partie sur des VNF basés
sur des machines virtuelles. Bien que les VM aient toujours été difficiles à gérer, les
problèmes d’interopérabilité entre les hyperviseurs, les longs délais d’instanciation et les
exigences élevées en matière de ressources sont quelques-uns des principaux problèmes liés
à l’utilisation des VM. En revanche, les conteneurs ont un temps d’instanciation plus rapide,
une empreinte de ressources plus faible et permettent une architecture microservices pour la
conception de logiciels. L’architecture microservices permet de décomposer une application
logiciel monolithique en une pile logiciel facilement gérable afin de faciliter la gestion et la
mise à jour du logiciel.

En effet, la conteneurisation existe depuis longtemps, mais les industries informa-
tiques ont commencé à utiliser les conteneurs lorsque docker [6] a été introduit en 2013.
Le groupe NFV a commencé à considérer les conteneurs comme une alternative aux VM
après la publication du “Report on the Enhancements of the NFV architecture towards
Cloud-native and PaaS” de l’ETSI NFV [7] en 2019. Le terme cloud-native, tel inventé par
la Cloud Native Computing Foundation1 est une approche logiciel pour le développement et
la gestion d’applications natives pour tous les types de clouds, publics, privés et hybrides.
Les orchestrateurs de services réseau bien connus tels que ETSI Open-Source MANO
(OSM), Open Network Automation Platform (ONAP) [8] et les orchestrateurs présentés par
les auteurs dans [9], [10] sont capables d’orchestrer des VNF basés sur des conteneurs ou
des fonctions réseau cloud-natives (CNF). Un service réseau est une fonctionnalité fournie
par le VNF, le PNF ou une combinaison connectée des deux. Cloud-native et NFV ont joué
un grand rôle en influençant l’architecture basée sur les services (SBA) et le découpage du
réseau du cœur de la 5G. L’ensemble du réseau central 5G peut être considéré comme un
service de réseau; Faisant du NFV cloud-native l’épine dorsale des réseaux 5G et au-delà.

La conteneurisation est l’une des exigences de base pour une application cloud-native.
D’autres exigences ont été définies par la CNCF 2 :

• Conception à couplage lâche et basée sur les API : Les applications doivent suivre
l’architecture basée sur les microservices et communiquer à l’aide d’appels d’interface
de programmation d’application (API) à distance. Le réseau central 5G SBA répond à
ce critère.

• Gérable : La configuration de l’application doit se faire en dehors de l’application.
Cela permet de modifier facilement les fonctionnalités de celle-ci.

• Observabilité : L’application doit présenter des mesures permettant d’observer son
état et son fonctionnement.

• Scalabilité : La CNCF ne mentionne pas explicitement l’évolutivité, mais dans les
environnements cloud, les applications sont conçues pour être dimensionnées et
redimensionnées de manière dynamique afin d’équilibrer le rapport coût/disponibilité.

1https://www.cncf.io/
2https://github.com/cncf/toc/blob/main/DEFINITION.md
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Les applications doivent prendre en charge l’évolutivité verticale, horizontale ou les
deux.

9.3 Multi-domain Network Slicing

Une tranche de réseau peut s’étendre sur plusieurs domaines technologiques, à
savoir le réseau d’accès radio (RAN), le réseau de transport, le réseau de coeur 5G (CN)
et l’informatique en périphérie (Edge). Le domaine de l’informatique en périphérie suit
le standard MEC, comme proposé par les auteurs dans [11]. La figure 9.1 représente une
tranche de réseau composée de tous les domaines technologiques.

Figure 9.1: A Multi-domain Network Slice

Chaque domaine contient des fonctions de réseau spécifiques à un domaine ou le
domaine de l’informatique périphérique contient des applications MEC. Dans la 5G, les
fonctions de réseau sont comprises dans une instance de sous-réseau de tranche de réseau
(NSSAI) suivant leurs caractéristiques. Cela permet d’effectuer un découpage du réseau en
tranche à la granularité des fonctions de réseau, c’est-à-dire d’utiliser une seule fonction de
réseau partagé par plusieurs tranches. Par ailleurs, une tranche de réseau peut également
avoir des fonctions de réseau dédiées qui ne prennent en charge qu’une seule tranche. Il est
également possible de combiner les deux scénarios.

9.4 Challenges in Orchestrating a Multi-domain Network Slice

L’orchestration de tous ces différents scénarios de découpage du réseau peut s’avérer
difficile, en particulier lorsque le découpage est réparti entre plusieurs domaines. L’état de
l’art actuel ne se concentre pas sur la réalisation d’une orchestration de tranches de réseau
multi-domaines cloud-native. Voici quelques-uns des défis posés par les orchestrateurs
existants :

• Pas de prise en charge native de l’orchestration des tranches de réseau : ils ont été
conçus pour orchestrer uniquement des services réseau, ce qui limite leur capacité à
prendre en charge l’orchestration de tranches de réseau de bout en bout.

• Conception héritée basée sur les VM : Leur conception architecturale est fortement
basée sur des VNF utilisant des VM. Ce n’est que récemment que les VNF utilisant
des conteneurs a été pris en compte.
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• Pas de support pour l’orchestration des applications MEC : Les orchestrateurs peuvent
gérer les fonctions réseau à la périphérie, mais aucun d’entre eux ne fournit les
fonctionnalités MEP, telles que la redirection du trafic, qui sont nécessaires aux
applications MEC.

• Infrastructure et plateforme dépendantes : La plupart des orchestrateurs utilisent
Kubernetes3, un moteur d’orchestration de conteneurs pour orchestrer des VNF basés
sur des conteneurs. Leur architecture et leurs descripteurs de tranches de réseau
ou de services de réseau dépendent fortement de la distribution communautaire de
Kubernetes. Or, il existe plusieurs distributions de Kubernetes et, à l’avenir, il pourrait
y avoir d’autres moteurs d’orchestration. Cela ajoute une obligation d’être conscient
de l’infrastructure.

• Architecture complexe et empreintes de ressources élevées : La prise en charge
des conteneurs au-dessus de l’infrastructure traditionnelle basée sur les machines
virtuelles a augmenté la complexité de l’architecture. Les orchestrateurs tels que
l’ONAP nécessitent de grandes quantités de ressources de calcul et de stockage, ce qui
les rend inadaptés pour fonctionner dans des environnements à ressources limitées.

9.4.1 Challenges related to Availability

Outre ces défis, la littérature existante sur l’orchestration des fonctions réseau cloud-
natives n’aborde pas l’aspect de leur disponibilité. Les fonctions réseau cloud-natives
doivent respecter la disponibilité de 99,999

• Défi I : La façon cloud-native d’atteindre cette disponibilité est d’avoir plusieurs
répliques de la fonction réseau. Cela peut conduire à un surapprovisionnement en
ressources infrastructurelles, ce qui augmente les coûts de déploiement et de gestion.
Un problème de décision se pose donc : combien de répliques de chaque fonction
de réseau faut-il déployer ? Sans surapprovisionner les ressources informatiques afin
d’éviter les coûts élevés et de fournir la disponibilité du service comme promis dans
l’accord de niveau de service (SLA) ?

• Défi II : Les fonctions de réseau déployées à la périphérie sont sensibles à la latence.
L’architecture microservices des applications cloud-natives peut avoir une incidence
sur leur latence. Un déploiement étroitement couplé de ces applications aura une
meilleure latence mais une disponibilité plus faible. En revanche, un déploiement
faiblement couplé offrira une meilleure disponibilité mais une latence plus élevée.
Quel est le compromis à faire ?

9.5 Motivation de la thèse

Suite à ces défis, cette thèse est motivée par l’absence d’un :

3https://kubernetes.io/
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1. Cadre d’orchestration de découpage multi-domaine léger et facile à utiliser. Un cadre
qui peut orchestrer simultanément des tranches de domaine courant, périphérique et
central.

2. Un cadre qui suit les principes cloud-native pour orchestrer et gérer les CNF sur les
clouds publics, privés et hybrides.

3. un cadre qui extrait les informations relatives à la plate-forme et à l’infrastructure
du propriétaire de la tranche de réseau (cadre de travail qui fait abstraction des
informations relatives à la plateforme et à l’infrastructure du propriétaire de la tranche
de réseau).

4. un algorithme de placement qui fournit un déploiement conscient des coûts et de la
disponibilité des fonctions réseau cloud-natives.

5. Une méthodologie autour du déploiement de la fonction réseau cloud-native à la
périphérie du réseau qui nécessite une faible latence et une disponibilité de niveau
telco de 99,999

L’objectif final de cette thèse est de réaliser un cadre d’orchestration de tranches
multi-domaines pour combler les lacunes entre les normes et les orchestrateurs existants.

9.6 Résumé des chapitres

La thèse commence par un historique des terminologies pertinentes. Le chapitre 2
donne un bref aperçu de NFV, MEC, Network Slicing, Netowrk Service/Slice Orchestrators
et 5G Core Network Service Based Architecture. La figure 9.2 représente le plan visuel de
la thèse.

• Chapitre 3: Le service d’information sur le réseau radio (RNIS) est l’un des prin-
cipaux services fournis par une plateforme MEC (MEP). Il est chargé d’interagir
avec le réseau d’accès radio (RAN), de collecter des informations au niveau du RAN
sur l’équipement de l’utilisateur (UE) et de les exposer aux applications mobiles de
périphérie. Ces dernières peuvent à leur tour les utiliser pour ajuster dynamiquement
leur comportement afin de s’adapter de manière optimale aux conditions du réseau
d’accès radio. Ce chapitre présente une implémentation RNIS conforme aux normes,
basée sur OpenAirInterface, et étudie les aspects de performance critiques pour sa
fourniture en tant que VNF. Étant donné que la conception et le fonctionnement du
RNIS suivent le modèle de publication et d’abonnement, le chapitre étudie d’autres
mises en œuvre utilisant différentes technologies Publish/Subscribe (RabbitMQ et
Apache Kafka) et compare leur utilisation et leurs performances afin d’évaluer leur
aptitude à fournir le RNIS en tant que service.

• Chapitre 4: Ce chapitre propose une approche cloud-native pour fournir de la
résilience à des services de réseau cloud-native simples. Un service de réseau cloud-
native simple comprend un seul CNF. Étant donné qu’un CNF est capable de fournir
des services à d’autres CNF, le CNF est considéré comme un service. Le chapitre

92



Figure 9.2: Représentation visuelle du plan de la thèse
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présente un algorithme d’allocation de ressources et de placement dynamique pour
modéliser et placer un service de réseau cloud-native simple. L’algorithme vise à
minimiser l’utilisation des ressources infrastructurelles sous la contrainte de respecter
la disponibilité du service mentionnée dans l’accord de niveau de service.

• Chapitre 5: Ce chapitre propose un cadre d’orchestration Lightweight edge Slice Or-
chestration (LeSO). Cet orchestrateur dit cloud-native orchestre et gère le déploiement
de microservices en tant que sous-tranches à la périphérie. Alors que les cadres
d’orchestration existants sont avides de consommation de ressources informatiques
et ne parviennent pas à s’intégrer dans le domaine du Multi-access Edge Computing
(MEC), LeSO est, de par sa conception, très léger et intègre un composant similaire à
la plateforme MEC pour garantir le pilotage du trafic afin d’automatiser le déploiement
des tranches de bordure. Les résultats de l’expérience montrent que LeSO nécessite
une petite quantité de CPU et de mémoire, même lorsqu’un grand nombre de tranches
de bordure sont déployées.

• Chapitre 6: Dans le paradigme cloud-native, fortement adopté par les fournisseurs
de cloud, les fonctions réseau et les applications sont décomposées en microservices
qui s’exécutent dans un conteneur. Le moteur d’orchestration de conteneurs par
défaut, à savoir Kubernetes, déploie plusieurs conteneurs à l’intérieur d’un pod.
La correspondance entre les microservices et les conteneurs affecte fortement la
disponibilité et la latence des microservices déployés et, par conséquent, l’application
en cours d’exécution. Ce chapitre propose de nouveaux modèles de déploiement tenant
compte de la disponibilité et de la latence pour un service périphérique composé
de plusieurs applications conçues comme de multiples microservices. Les deux
déploiements envisagés sont analysés et évalués à l’aide de l’expérimentation et d’un
modèle analytique, en tenant compte des critères de performance critiques pour les
services orientés vers la périphérie, tels que les exigences en matière de disponibilité
et de latence.

• Chapitre 7: Pour surmonter les défis de l’orchestration d’une tranche de réseau multi-
domaine, ce chapitre propose un nouveau cadre d’orchestration de tranche légère
cloud-native (CLiSO) étendant le cadre d’orchestration de tranche légère de bord
(LeSO) proposé dans le chapitre 5. En outre, ce chapitre présente un modèle de tranche
de réseau agnostique sur le plan technologique et orienté vers le déploiement. Pour
permettre une gestion autonome des tranches de réseau, le cadre fournit un concept de
gestionnaire spécifique au domaine. Le cadre a fait l’objet d’une évaluation appro-
fondie via l’orchestration de fonctions réseau de conteneurs OpenAirInterface[12] sur
des plates-formes de nuage publiques et privées.

Le dernier chapitre 8 de cette thèse conclut le travail présenté dans cette thèse et
discute des travaux futurs. Le tableau 9.1 contient une liste des publications réalisées au
cours de la thèse.
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