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Titre: Gaz d'Ytterbium dissipatifs Mots clés: Gaz corrélés avec pertes, Dynamique hors équilibre, Systèmes quantiques ouverts Résumé: La présente thèse porte sur la caractérisation théorique de la dynamique dissipative dans les systèmes quantiques ouverts à plusieurs corps, en mettant l'accent particulier sur les expériences de pointe en atomes froids. Les principales contributions résultantes sont de deux ordres. Premièrement, en ce qui concerne les gaz bosoniques sans spin, nous étudions l'effet d'un confinement harmonique dans le cas des pertes à deux corps et nous obtenons une description pour le cas générique des pertes à K corps, ce dernier dans le cas homogène. Deuxièmement, en ce qui concerne les gaz fermioniques, nous étudions à la fois la limite faiblement dissipative et la limite fortement dissipative de la dynamique des pertes à deux corps des gaz SU(2). Finalement, nous étendons également nos résultats au cas SU(3), en caractérisant à la fois les états stationnaires et l'approche vers ces derniers.

Introduction

In 1897, the physicist William Thomson (Lord Kelvin), by looking at the tremendous advancements in electricity, astronomy and biology that marked his age, concluded that: "There is nothing new to be discovered in physics now. All that remains is more and more precise measurement". Of course, we all know that this was not the case. There were at least two "minor clouds" on the horizon of physics at the dawn of the twentieth century. Interestingly enough, both of these involved radiation. The first "cloud", which refers to the absence of significant findings in the Michelson-Morley experiment, gave rise to special relativity. The second "cloud", encompassing the nature of black-body radiation and of the photoelectric effect, paved the way for the emergence of quantum mechanics. This Ph.D. thesis deals with the research topic on open quantum systems, and although we will address it from a contemporary research perspective, it is interesting to start by noting that, in a certain sense, it is as old as quantum mechanics itself, and related to the clouds that Lord Kelvin saw at the horizon.

First of all, the axioms of quantum mechanics make a clear distinction between closed quantum systems, whose dynamics is ruled by the Schrödinger equation, and systems coupled to a macroscopic measurement apparatus, a specific class of open quantum systems. The inherent probabilistic nature of the axioms of quantum mechanics gave rise to various debates on the interpretation of the theory itself and on what it means to measure a quantum system. The first advance in this regard was conceived by Born in 1926, when he proposed the idea of probability amplitudes associated to the result of a measurement of a quantum system. Contemporary with the ideas developed by Born, Niels Bohr, mainly together with his colleague Werner Heisenberg, played a key role in the formalisation of measurement theory in quantum mechanics, currently known as "Copenhagen interpretation". Central to this interpretation is the concept of measurement and its role in collapsing the wave function. According to this interpretation, measurement outcomes were inherently probabilistic, and the act of measurement entailed an irreversible disturbance to the system being measured. John von Neumann played a pivotal role in formalizing the theory of measurements in the context of quantum systems, introducing a rigorous mathematical framework that described measurements as projection operators, providing a mathematical representation of the collapse of the wave function upon measurement. In summary, it can be argued that since the earliest beginnings of quantum mechanics, an attempt has always been made to describe a system interacting with an external agent, in this case, a measurement apparatus.
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Secondly, from the very beginning, scientists working on the development of quantum mechanics have addressed the problem of light-matter interaction -in fact, it could be even argued that quantum mechanics arose from the primary need to describe lightmatter interaction. In several early studies, the electromagnetic field is modelled as an environment, and this is particularly interesting for this thesis, as we can see in these works the origin of our recent studies.

Einstein's seminal paper, titled "On the Quantum Theory of Radiation", published in 1917, made significant contributions to our understanding of the interaction between light and matter. Einstein's analysis focused on the interaction between electromagnetic radiation and a gas of atoms or molecules. He derived an expression for the coefficients of absorption, stimulated emission, and spontaneous emission. These coefficients describe the probabilities of different processes occurring when radiation interact with the atoms or molecules in the gas.

Further developments on the phenomena of spontaneous emission, which refers to the transition from an excited state to a lower energy state in the spectrum of an atom or a molecule, were made in 1930 by Weisskopf and Wigner. They applied the newly developed ideas of quantum mechanics to the dynamics of spontaneous emission, predicting the exponential law for excited-state decay. Their treatment can be defined as hybrid. On one hand, the interaction with the electromagnetic field is treated exactly. On the other hand, typical approximations such as considering a Markovian, i.e. memoryless, environment are employed.

In the subsequent decades the field of quantum optics emerged as researchers explored the intricate interplay between light and matter at the quantum level. Quantum optics investigates phenomena such as the emission, absorption, and detection of individual photons, the coherent superposition of radiation states, and the manipulation of quantum states of light for various applications. As a consequence of these previous studies, quantum optics is one of the fields where the most advanced analyses on the concept of open quantum systems have been carried out.

A remarkable connection between quantum optics and many-body quantum physics occurred when methods and technologies developed in the context of quantum optics found applications in cooling hot gases. The researchers, inspired by the remarkable advances in laser-cooling techniques, undertook research to cool atomic gases to very low temperatures, close to absolute zero. The pioneering work of Eric Cornell, Carl Wieman, and Wolfgang Ketterle in creating Bose-Einstein condensates (BECs) in 1995 marked a pivotal moment: a new macroscopic quantum state of matter, consisting of a collection of atoms that condense into the lowest energy quantum state, was finally observed in nature. Since then, the synergy between quantum optics, ultra-cold atomic gases and many-body physics has led to the investigation of open quantum system physics in these experimental arrangements, focusing notably on the effect of losses on the quantum gas.

While the primary focus of this thesis is on cold atomic and molecular gases, it is worth mentioning that various experimental platforms have recently emerged for the exploration of many-body quantum physics in highly controllable settings, which currently go under the general name of quantum simulators. These platforms encompass exciton-polaritons, cavity QED arrays, arrays of trapped ions and Rydberg atoms, among others. These systems exhibit emergent phenomena such as superconductivity, magnetism, and quantum phase transitions, which arise from the collective behavior of the constituent particles. Despite the tremendous experimental progress, a perfect isolation has never been reached, causing energy relaxation and decoherence phenomena to be a common phenomenology in all the platforms. As such, open quantum systems physics provide a more realistic framework for studying many-body quantum systems, especially in experimental setups where perfect isolation is not achievable.

In experimental settings, open quantum systems physics is thus a common occurrence and is often seen as a hindrance to the investigation of interesting quantum effects. Contrary to this common perspective, a research line pursued in the last decade has shown that this is not always the case. In particular, the interplay between the coherent unitary evolution and the coupling to the environment can lead to a non-trivial dynamics and to stationary states featuring strong quantum correlations or interesting properties, such as entanglement. Despite the fact that every system should be considered an open one, the ability to engineer strongly-correlated quantum states driven by open quantum system physics opens up exciting new avenues for research.

The most relevant form of environment to which cold-atom experiments are coupled is represented by the surrounding vacuum into which atoms or molecules can leak. Different loss processes occur in cold atom experiments: one-body losses might be non negligible; two-body losses due to inelastic two-body collisions are sometimes present or engineered; three-body losses, where a deeply bound diatomic molecule is formed, are always present and are usually dominant. On a formal level, the case of one-body losses presents analogies with the spontaneous emission problem.

Although of primary interest to understand the limitations of the simulation of quantum many-body physics, a complete theoretical description of the effect of losses on correlated quantum gases is still lacking. Even if several experiments have studied the dynamics of correlated one-dimensional quantum gases in the presence of losses, both in the bosonic and fermionic cases, the theoretical characterisation of the interplay between the unitary and lossy dynamics has only recently emerged as an important challenge and it is currently starting to attract novel attention.

These setups are inherently out of equilibrium and characterised by classical fluctuations: they can no longer be represented by pure states but rather by density operators which evolve according to a master equation that describes the coupling to a bath. As such, the real-time evolution is generated by operators that are usually not Hermitian. For these reasons the solution of many-body physics for open quantum systems remains a formidable task.

Notwithstanding these technical difficulties, it has been shown that in several situations the interplay of losses with quantum physics is at the basis of a remarkable phenomenology. They can be used to detect quantum coherence and the onset of Bose-Einstein condensation, to stabilize quantum Hall states, to cool the gas, or even to drive it through phases which violate the equilibrium thermodynamic Tan's relation. Moreover, when losses are the leading energy scale of the problem, a counter-intuitive increase INTRODUCTION of the gas lifetime takes place as the loss rate is increased. Here, the phenomenon underlying the formation of correlations is the quantum Zeno (QZ) effect, which prevents bosonic/fermionic double occupancies at each lattice site and thus giving rise to an effective hard-core interactions.

The case of spinless bosonic gases undergoing strong two-body losses has been theoretically addressed, showing, despite a trivial steady state of the problem, i.e. the vacuum, an anomalous algebraic decay at late times, which is the hallmark of the quantum correlations that build up as a consequence of the interplay between unitary and lossy dynamics.

Considering fermions with an internal structure, e.g. with spin 1/2, has deep consequences on both the stationary states and the dynamics; unlikely the spinless case for instance, the stationary state is not necessarily the vacuum. In particular, the stationary states can be non-trivial as a consequence of spin conservation, and an incoherent mixture of entangled Dicke states is stabilised by losses. The situation becomes even more interesting when one considers higher spins, which can be realised by means of a wide class of alkaline earth(-like) metal atoms, such as Sr and Yb. The resulting symmetry of the problem is a generalisation of the SU(2) one associated to spin 1/2 particles, called SU(N)-spin symmetry for a N-component spin.

The first results obtained so far within the framework of two-body losses in bosonic and fermionic gases are already very promising, but further investigations are needed in order to fully tap the potential of lossy atomic gases for creating correlated quantum states.

This thesis aims at the study of lossy correlated gases. Our work puts a particular emphasis on the theoretical characterisation of the interplay between the Hamiltonian unitary dynamics and losses. We consider different bosonic and fermionic models in the presence of mainly two-body losses, we devise effective descriptions for the relevant degrees of freedom of such systems, capable of predicting the real time dynamics of the main observables, which we then benchmark against exact numerical simulation of the full master equation. By showcasing the simplicity and effectiveness of our approaches, we hope to trigger a novel generation of experiments aiming at the discovery and certification of exotic and correlated phases of synthetic quantum matter driven by losses.

Structure of the thesis

The thesis is organized as follows.

1. In Chapter 1 we broadly introduce the topic of open quantum systems. To foster the exploration of such systems, we start from presenting noteworthy experimental platforms where dissipative phenomena occur naturally or can be intentionally designed. The main formal concepts for dealing with open quantum systems are then introduced; we also present a first paradigmatic case of open quantum systems, namely the spontaneous emission of a two-level system. We conclude with the derivation of the main theoretical tool which will be used throughout the manuscript, i.e. the Lindblad master equation.

2. In Chapter 2, we present a more focused discussion on cold atoms trapped in optical lattices, which serve as the primary experimental setups we aim to model from a theoretical viewpoint. We place emphasis on the presence of losses in these platforms and the intriguing physical aspects that emerge from the many-body dynamics induced by losses. Eventually, we conclude the Chapter with a review of all the relevant experimental and theoretical results already documented in the literature on lossy correlated gases. This will set the stage for the presentation of the original results of this manuscript.

3. In Chapter 3 we start the discussion of our work, where we investigate the effect of a harmonic confinemenent for a one-dimensional lossy Bose-gas in a continuum setup. In particular, we focus on the case of strong two-body losses and we unveil the role of an external confinement on the system dynamics.

4. In Chapter 4 we continue the study of lossy (spinless) bosonic gases with the analysis of a trapped one-dimensional gas featuring K-body losses, with K being an integer. Under the assumption of weak dissipation, we derive the expression of the loss functional encoding the loss process for a generic K. In particulr, we address the question whether the gas thermalises under the effect of losses or not. Depending on the value of K, thermalisation can occur or not. [START_REF] Ashida | Non-hermitian physics[END_REF]. In Chapter 5 we start our analysis on fermionic gases. We start by considering a one-dimensional spin-1/2 fermionic gas subject to weak two-body losses. We present a simple theoretical framework for describing the interplay among losses, unitary dynamics and spin conservation, the latter being a peculiar feature of the model under study. We highlight the crucial role played by the spin in causing a non-trivial relaxation dynamics. [START_REF] Bakr | A quantum gas microscope for detecting single atoms in a hubbard-regime optical lattice[END_REF]. In Chapter 6 we extend the results of Chapter 5 to the case of strong two-body losses. We characterise the dynamical phase diagram for the approach to the stationary state identifying a quantum-Zeno regime when the system is stronglydissipative and strongly interacting. We then developed a simple and predictive theory for such regime assuming that spin-charge separation takes place. [START_REF] Bakr | Probing the superfluid–to–mott insulator transition at the single-atom level[END_REF]. In Chapter 7 we generalize the results of Chapters 5 and 6 to the case of SU (3) fermionic gases. We study the dynamics and its associated stationary states of a one-dimensional SU(3)-symmetric gas in the presence of two-body losses. We made use of the representation theory of SU [START_REF] Andrews | Observation of interference between two bose condensates[END_REF], namely the eightfold way, to organize the dark states of the dynamics, which we discover to be generalised Dicke states. Moreover, we show how the latter are approached in each (weakly and strongly-) interacting and dissipative regime.

8. In Chapter 8 we briefly review the main results presented in the manuscript and discuss future perspectives.

Résumé en français

En 1897, le physicien William Thomson (Lord Kelvin), en observant les avancées considérables dans les domaines de l'électricité, de l'astronomie et de la biologie qui marquaient son époque, conclut que : "Il n'y a plus rien de nouveau à découvrir en physique. Tout ce qui reste, ce sont des mesures de plus en plus précises". Bien sûr, nous savons tous que ce n'était pas le cas. Il y avait au moins deux "nuages mineurs" à l'horizon de la physique au début du XXe siècle. De manière intéressante, tous les deux étaient liés à la radiation. Le premier "nuage", qui faisait référence à l'absence de résultats significatifs dans l'expérience de Michelson-Morley, a donné naissance à la relativité restreinte. Le deuxième "nuage", qui englobait la nature du rayonnement du corps noir et de l'effet photoélectrique, a ouvert la voie à l'émergence de la mécanique quantique. Cette thèse de doctorat traite du sujet de recherche sur les systèmes quantiques ouverts, et bien que nous l'aborderons d'un point de vue contemporain, il est intéressant de commencer par noter que, d'une certaine manière, il est aussi vieux que la mécanique quantique elle-même, et lié aux nuages que Lord Kelvin aperçut à l'horizon.

Tout d'abord, les axiomes de la mécanique quantique établissent une distinction claire entre les systèmes quantiques fermés, dont la dynamique est régie par l'équation de Schrödinger, et les systèmes couplés à un appareil de mesure macroscopique, une classe spécifique de systèmes quantiques ouverts. La nature intrinsèquement probabiliste des axiomes de la mécanique quantique a donné lieu à différents débats sur l'interprétation de la théorie elle-même et sur ce que signifie mesurer un système quantique. Le premier progrès à cet égard a été conçu par Born en 1926, lorsqu'il a proposé l'idée d'amplitudes de probabilité associées au résultat d'une mesure d'un système quantique. En parallèle des idées développées par Born, Niels Bohr, principalement avec son collègue Werner Heisenberg, a joué un rôle clé dans la formalisation de la théorie de la mesure en mécanique quantique, connue actuellement sous le nom d'"interprétation de Copenhague". Au coeur de cette interprétation se trouve le concept de mesure et son rôle dans l'effondrement de la fonction d'onde. Selon cette interprétation, les résultats des mesures étaient intrinsèquement probabilistes et l'acte de mesure entraînait une perturbation irréversible du système mesuré. John von Neumann a joué un rôle essentiel dans la formalisation de la théorie des mesures dans le contexte des systèmes quantiques, en introduisant un cadre mathématique rigoureux décrivant les mesures comme des opérateurs de projection, fournissant une représentation mathématique de l'effondrement de la fonction d'onde lors de la mesure. En résumé, on peut soutenir que depuis les débuts même de la mécanique INTRODUCTION quantique, on a toujours cherché à décrire un système interagissant avec un agent externe, dans ce cas précis, un appareil de mesure.

Deuxièmement, dès le tout début, les scientifiques travaillant sur le développement de la mécanique quantique ont abordé le problème de l'interaction entre la lumière et la matière -en fait, on pourrait même affirmer que la mécanique quantique est née du besoin primordial de décrire l'interaction entre la lumière et la matière. Dans plusieurs études précoces, le champ électromagnétique est modélisé comme un environnement, et cela est particulièrement intéressant pour cette thèse, car nous pouvons voir dans ces travaux l'origine de nos études récentes.

L'article fondateur d'Einstein, intitulé « Sur la théorie quantique du rayonnement », publié en 1917, a apporté des contributions significatives à notre compréhension de l'interaction entre la lumière et la matière. L'analyse d'Einstein s'est concentrée sur l'interaction entre le rayonnement électromagnétique et un gaz d'atomes ou de molécules. Il a dérivé une expression pour les coefficients d'absorption, d'émission stimulée et d'émission spontanée. Ces coefficients décrivent les probabilités de différents processus se produisant lorsque le rayonnement interagit avec les atomes ou les molécules dans le gaz.

Des développements supplémentaires sur le phénomène de l'émission spontanée, qui se réfère à la transition d'un état excité vers un état d'énergie inférieure dans le spectre d'un atome ou d'une molécule, ont été réalisés en 1930 par Weisskopf et Wigner. Ils ont appliqué les idées nouvellement développées de la mécanique quantique à la dynamique de l'émission spontanée, prédisant la loi exponentielle pour la décroissance de l'état excité. Leur approche peut être qualifiée d'hybride. D'une part, l'interaction avec le champ électromagnétique est traitée de manière exacte. D'autre part, des approximations typiques telles que la considération d'un environnement markovien, c'est-à-dire sans mémoire, sont utilisées.

Au cours des décennies qui ont suivi, le domaine de l'optique quantique a émergé alors que les chercheurs explorent l'interaction complexe entre la lumière et la matière au niveau quantique. L'optique quantique étudie des phénomènes tels que l'émission, l'absorption et la détection de photons individuels, la superposition cohérente des états de rayonnement et la manipulation des états quantiques de la lumière pour diverses applications. En conséquence de ces études antérieures, l'optique quantique est l'un des domaines où les analyses les plus avancées sur le concept de systèmes quantiques ouverts ont été réalisées.

Une connexion remarquable entre l'optique quantique et la physique quantique à nombreux corps s'est produite lorsque les méthodes et les technologies développées dans le contexte de l'optique quantique ont trouvé des applications dans le refroidissement de gaz chauds. Les chercheurs, inspirés par les avancées remarquables dans les techniques de refroidissement laser, ont entrepris des recherches pour refroidir des gaz atomiques à des températures très basses, proches du zéro absolu. Les travaux pionniers d'Eric Cornell, Carl Wieman et Wolfgang Ketterle dans la création de condensats de Bose-Einstein (CBE) en 1995 ont marqué un moment décisif : un nouvel état quantique macroscopique de la matière, constitué d'une collection d'atomes se condensant dans l'état quantique d'énergie la plus basse, a enfin été observé dans la nature. Depuis lors, la synergie entre l'optique quantique, les gaz atomiques ultra-froids et la physique à nombreux corps a conduit à l'étude de la physique des systèmes quantiques ouverts dans ces configurations expérimentales, en mettant notamment l'accent sur l'effet des pertes sur le gaz quantique.

Bien que cette thèse se concentre principalement sur les gaz atomiques et moléculaires froids, il convient de mentionner que différentes plates-formes expérimentales ont récemment émergé pour l'exploration de la physique quantique à nombreux corps dans des environnements hautement contrôlables, qui sont actuellement regroupés sous le nom général de simulateurs quantiques. Ces plates-formes comprennent les exciton-polaritons, les réseaux de cavités QED, les réseaux d'ions piégés et les atomes de Rydberg, entre autres. Ces systèmes présentent des phénomènes émergents tels que la supraconductivité, le magnétisme et les transitions de phase quantique, qui résultent du comportement collectif des particules constitutives. Malgré les progrès expérimentaux considérables, une isolation parfaite n'a jamais été atteinte, ce qui entraîne la relaxation de l'énergie et des phénomènes de décohérence qui sont une phénoménologie commune à toutes les plates-formes. En tant que tels, la physique des systèmes quantiques ouverts offre un cadre plus réaliste pour l'étude des systèmes quantiques à nombreux corps, en particulier dans les configurations expérimentales où une isolation parfaite n'est pas réalisable.

Dans les configurations expérimentales, la physique des systèmes quantiques ouverts est donc un phénomène courant et est souvent considérée comme un obstacle à l'étude des effets quantiques intéressants. Contrairement à cette perspective courante, une ligne de recherche poursuivie ces dernières années a montré que ce n'est pas toujours le cas. En particulier, l'interaction entre l'évolution unitaire cohérente et le couplage à l'environnement peut conduire à une dynamique non triviale et à des états stationnaires présentant des corrélations quantiques fortes ou des propriétés intéressantes, telles que l'intrication. Malgré le fait que chaque système devrait être considéré comme ouvert, la capacité à générer des états quantiques fortement corrélés grâce à la physique des systèmes quantiques ouverts ouvre de nouvelles voies passionnantes pour la recherche.

La forme d'environnement la plus pertinente à laquelle les expériences sur les atomes froids sont couplées est représentée par le vide environnant dans lequel les atomes ou les molécules peuvent s'échapper. Différents processus de perte se produisent dans les expériences sur les atomes froids : les pertes à un corps peuvent être non négligeables ; les pertes à deux corps dues aux collisions inélastiques à deux corps sont parfois présentes ou créées ; les pertes à trois corps, où une molécule diatomique fortement liée est formée, sont toujours présentes et sont généralement prédominantes. Sur le plan formel, le cas des pertes à un corps présente des analogies avec le problème de l'émission spontanée.

Bien que d'un intérêt primordial pour comprendre les limites de la simulation de la physique quantique à nombreux corps, une description théorique complète de l'effet des pertes sur les gaz quantiques corrélés fait encore défaut. Même si plusieurs expériences ont étudié la dynamique des gaz quantiques corrélés unidimensionnels en présence de pertes, tant dans les cas bosoniques que fermioniques, la caractérisation théorique de l'interaction entre la dynamique unitaire et celle des pertes n'a émergé que récemment en tant que défi important et commence actuellement à attirer une attention nouvelle.

Ces configurations sont intrinsèquement hors de l'équilibre et caractérisées par des
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fluctuations classiques : elles ne peuvent plus être représentées par des états purs, mais plutôt par des opérateurs de densité qui évoluent selon une équation maîtresse décrivant le couplage à un bain. En conséquence, l'évolution en temps réel est générée par des opérateurs qui ne sont généralement pas hermitiens. Pour ces raisons, la résolution de la physique à nombreux corps pour les systèmes quantiques ouverts reste une tâche redoutable.

Malgré ces difficultés techniques, il a été démontré que dans plusieurs situations, l'interaction des pertes avec la physique quantique est à l'origine d'une phénoménologie remarquable. Elles peuvent être utilisées pour détecter la cohérence quantique et l'apparition de la condensation de Bose-Einstein, stabiliser des états de Hall quantiques, refroidir le gaz, voire le faire passer à travers des phases qui violent la relation thermodynamique d'équilibre de Tan. De plus, lorsque les pertes constituent l'échelle d'énergie principale du problème, on observe une augmentation contre-intuitive de la durée de vie du gaz lorsque le taux de perte est augmenté. Ici, le phénomène sous-jacent à la formation de corrélations est l'effet Zénon quantique (EQZ), qui empêche les doublets d'occupation bosoniques/fermioniques sur chaque site de réseau, ce qui donne ainsi naissance à des interactions effectives à coeur dur.

Le cas des gaz bosoniques sans spin subissant de fortes pertes à deux corps a été étudié théoriquement, montrant, malgré un état stationnaire trivial du problème, c'est-à-dire le vide, une décroissance algébrique anormale à des temps tardifs, qui est la marque des corrélations quantiques qui se forment en conséquence de l'interaction entre la dynamique unitaire et celle des pertes.

La prise en compte des fermions avec une structure interne, par exemple avec un spin de 1/2, a de profondes conséquences à la fois sur les états stationnaires et sur la dynamique ; contrairement au cas sans spin par exemple, l'état stationnaire n'est pas nécessairement le vide. En particulier, les états stationnaires peuvent être non triviaux en raison de la conservation du spin, et un mélange incohérent d'états de Dicke intriqués est stabilisé par les pertes. La situation devient encore plus intéressante lorsque l'on considère des spins plus élevés, qui peuvent être réalisés à l'aide d'une large classe d'atomes de type alcalino-terreux, tels que le strontium (Sr) et l'ytterbium (Yb). La symétrie résultante du problème est une généralisation de la symétrie SU(2) associée aux particules de spin 1/2, appelée symétrie SU(N)-spin pour un spin à N composantes.

Les premiers résultats obtenus jusqu'à présent dans le cadre des pertes à deux corps dans les gaz bosoniques et fermioniques sont déjà très prometteurs, mais des investigations supplémentaires sont nécessaires afin de pleinement exploiter le potentiel des gaz atomiques avec pertes pour la création d'états quantiques corrélés.

Cette thèse vise à étudier les gaz corrélés avec pertes. Notre travail met un accent particulier sur la caractérisation théorique de l'interaction entre la dynamique unitaire hamiltonienne et les pertes. Nous considérons différents modèles bosoniques et fermioniques en présence principalement de pertes à deux corps, nous concevons des descriptions efficaces pour les degrés de liberté pertinents de tels systèmes, capables de prédire la dynamique en temps réel des principales observables, que nous comparons ensuite à une simulation numérique exacte de l'équation maîtresse complète. En présentant la sim-plicité et l'efficacité de nos approches, nous espérons susciter une nouvelle génération d'expériences visant à la découverte et à la certification de phases exotiques et corrélées de matière quantique synthétique pilotée par les pertes.

Structure de la thèse

La thèse est organisée comme suit :

1. Dans le Chapitre 1, nous introduisons largement le sujet des systèmes quantiques ouverts. Pour encourager l'exploration de tels systèmes, nous commençons par présenter des plates-formes expérimentales remarquables où des phénomènes dissipatifs se produisent naturellement ou peuvent être intentionnellement conçus. Les principaux concepts formels pour traiter les systèmes quantiques ouverts sont ensuite introduits ; nous présentons également un premier cas paradigmatique de systèmes quantiques ouverts, à savoir l'émission spontanée d'un système à deux niveaux. Nous concluons par la dérivation de l'outil théorique principal qui sera utilisé tout au long du manuscrit, c'est-à-dire l'équation maîtresse de Lindblad.

2. Dans le Chapitre 2, nous présentons une discussion plus ciblée sur les atomes froids piégés dans des réseaux optiques, qui servent de principaux dispositifs expérimentaux que nous cherchons à modéliser d'un point de vue théorique. Nous mettons l'accent sur la présence de pertes dans ces plateformes et les aspects physiques intrigants qui émergent de la dynamique à plusieurs corps induite par les pertes. Enfin, nous concluons le Chapitre par une revue de tous les résultats expérimentaux et théoriques pertinents déjà documentés dans la littérature sur les gaz corrélés avec pertes. Cela préparera le terrain pour la présentation des résultats originaux de ce manuscrit.

INTRODUCTION décrire l'interaction entre les pertes, la dynamique unitaire et la conservation du spin, cette dernière étant une caractéristique particulière du modèle étudié. Nous soulignons le rôle crucial joué par le spin dans la création d'une dynamique de relaxation non triviale.

6. Au Chapitre 6, nous étendons les résultats du chapitre 5 au cas de pertes à deux corps importantes. Nous caractérisons le diagramme de phase dynamique pour l'approche de l'état stationnaire en identifiant un régime de quantum-Zeno lorsque le système est fortement dissipatif et fortement interactif. Nous avons ensuite développé une théorie simple et prédictive pour ce régime en supposant que la séparation spin-charge a lieu.

7. Au Chapitre 7, nous généralisons les résultats des chapitres 5 et 6 au cas des gaz fermioniques SU [START_REF] Andrews | Observation of interference between two bose condensates[END_REF]. Nous étudions la dynamique et ses états stationnaires associés d'un gaz unidimensionnel symétrique SU(3) en présence de pertes à deux corps. Nous utilisons la théorie de représentation de SU(3), appelée la voie à huit, pour organiser les états sombres de la dynamique, que nous découvrons être des états généralisés de Dicke. De plus, nous montrons comment ces derniers sont approchés dans chaque régime (faiblement et fortement) interactif et dissipatif.

8. Au Chapitre 8, nous passons brièvement en revue les principaux résultats présentés dans le manuscrit et discutons des perspectives futures.

Introduction

After many decades of research, closed quantum systems are now well-described by a framework based on thermodynamic considerations and key concepts such as equilibrium, statistical ensemble, and thermodynamic potential, among others. However, when dealing with generic dynamical problems in open quantum systems, one cannot rely on these prescriptions. Strictly speaking, any realistic quantum-mechanical system is always an open system, as it is coupled to an uncontrollable environment that influences it in a non-neglibile way. On one hand, this fact introduces a typical timescale determining for how long a system can be regarded as closed. On the other hand, on a longer timescale, the interplay between the coherent (closed) unitary evolution and the coupling to the environment can lead to a non-trivial phenomenology. Therefore, the theory of open quantum systems plays a major role in many applications of quantum physics, as perfect isolation of quantum systems is almost impossible, and a complete microscopic description or control of environmental degrees of freedom is not feasible. In general, these open-system effects significantly alter the system's dynamics, resulting in quantum dissipation and the loss of genuine quantum mechanical coherence to the environment. Therefore, it is crucial to develop a theoretical framework for these interactions in order to better understand such systems.

The separation of a global system into a relevant subsystem and an irrelevant environment is a crucial aspect that lies at the foundation of both classical and quantum statistical physics. This idea is illustrated in Figure 1.1. The coupling of the relevant subsystem to the environment leads to a fluctuating back-action that reflects the properties of the heat reservoir. The fluctuating force causes decoherence, which refers to the phenomenon where the superposition of macroscopically distinct quantum states decays on a short timescale. This process is due to the loss of quantum coherence between the subsystem and the environment, which results in the degradation of the quantum mechanical behavior of the subsystem. The theory of open quantum systems provides a formalism for describing the dynamics of the relevant subsystem under the influence of the environment, which is necessary for understanding the behavior of many-body systems in realistic experimental conditions.

The rationale behind the investigation of open quantum systems stems from the complexity of establishing a complete mathematical model of the dynamics of the systemenvironment composite in many physically significant scenarios. The environment, usually represented as a particle reservoir or a heat bath, is typically characterized by a multitude of degrees of freedom, and a precise treatment necessitates the solution of an infinite hierarchy of coupled equations of motion. Even if such a solution exists, extracting relevant physical quantities involves averaging over the irrelevant degrees of freedom, thereby increasing the computational burden. These challenges have been tackled in various domains, such as the path integral formulation for quantum Brownian motion, the study of dissipative dynamics of two-state systems, and the analysis of quantum tunnelling in dissipative systems. Additionally, the modes of the environment are often neither known precisely nor manipulable, which further adds to the complexity of the problem.

In order to address the complexity of the combined system and environment dynamics, a simpler, probabilistic description is often sought in the study of open quantum systems. The application of probability theory permits the treatment of complex systems comprising a vast number of interacting degrees of freedom. This is accomplished by restricting the mathematical framework to a suitable subset of a few relevant degrees of freedom. Consequently, a description in terms of pure states is no longer feasible and the introduction of a density matrix operator becomes necessary. Of particular interest in this context is the non-equilibrium dynamics of open quantum systems, and thus, our focus will be directed towards the time evolution of this operator.

Let us remark the analogies with respect to the classical settings. Already in the framework of many-body classical systems, composed by the relevant system plus the environment, it is almost impossible to solve the equations of motion for all the degrees of freedom. Thus, one introduces a probabilistic description to model the coupling between the environement and the system. In particular, the interactions between the two main actors is treated by introducing some noise that affects the relevant degrees of freedom. A paradigmatic example of this prescription is the Browinian motion (see Fig. 1.2), studied firstly by R. Brown in 1827 [START_REF] Brown | A brief account of microscopical observations made in the months of june, july and august 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies[END_REF]. This model was studied by Einstein [START_REF] Einstein | Über die von der molekularkinetischen theorie der wärme geforderte bewegung von in ruhenden flüssigkeiten suspendierten teilchen[END_REF] and Smoluchowski [START_REF] Smoluchowski | Sur le chemin moyen parcouru par les molécules d'un gaz et sur son rapport avec la théorie de la diffusion[END_REF] independently. Both their descriptions of the Brownian motion were based on the idea of random collisions between different pollen grains (particles). Then, by establishing a probabilstic description they were able to describe the motion of the particles by means of the celebrated diffusion equation. This kind of effective approach is what we want to develop for open quantum systems.

Some examples of experimental setups

This section is devoted to the presentation of a non-comprehensive list of experimental setups that have been already realized and that can either implement or be intrinsically open quantum systems. 

Cold atoms

Strongly-correlated cold atomic gases undergoing a dissipative dynamics are an excellent platform for studying the influence of dissipation on quantum systems in controlled conditions.

Cold atomic platforms are never perfectly isolated, and they are always weakly coupled to their environment. The main effect breaking unitary evolution is the atom losses, see Fig. 1.3. Despite being of primary interest to understand the limitations of the simulation of quantum many-body physics, a complete theoretical description of losses is still lacking. Different loss processes can occur in cold atom experiments: one-body losses might be non-negligible; two-body losses due to inelastic two-body collisions are sometimes present or engineered; three-body losses, where a deeply bound diatomic molecule is formed, are always present and are usually dominant [START_REF] Bouchoule | The effect of atom losses on the distribution of rapidities in the one-dimensional Bose gas[END_REF]. We will extensively discuss losses in cold atomic and molecular gases in the next Chapter, here we simply mention them.

Exciton-polaritons

Another example of experimental setup is given by the so called exciton-polaritons in semiconducting microcavities, which are optical cavities containing a material medium interacting with light. The dynamics of light is then modified by the non-linearity introduced by the material. In a semiconducting microcavity, excited electronic states called excitons can be populated due to photon absorption. In the strong coupling regime arising between excitons and photons, the eigenstates are composite bosons, i.e. half-light, half-matter particles [START_REF] Weisbuch | Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity[END_REF][START_REF] Boulier | Microcavity polaritons for quantum simulation[END_REF] called polaritons. A sketch of a typical experimental setup is represented in Fig. 1.4.

The photonic part of these quasiparticles allows their optical creation and detection, while their excitonic part provide non-linear interactions. At the same time, they acquire an effective mass through propagation in the cavity, and the finite cavity finesse implies Figure 1.4: Sketch of a planar semiconductor microcavity delimited by two Bragg mirrors and embedding a quantum well (QW). The wavevector in the z direction perpendicular to the cavity plane is quantized, while the in-plane motion is free. The cavity photon mode is strongly coupled to the excitonic transitions in the QWs. A laser beam with incidence angle θ and frequency ω can excite a microcavity mode with in-plane wavevector k = ω c sin θ, while the near-field (far-field) secondary emission from the cavity provides information on the real-space (k-space) density of excitations. Picture taken from [START_REF] Carusotto | Quantum fluids of light[END_REF]. a finite particle lifetime. In particular, the finite polariton lifetime allows to easily implement situations where non-equilibrium physics becomes important and thus impleting an open quantum system.

Cavity-QED arrays

Following our brief review, we report another prominent setup to study out-of-equilibrium phenomena in open quantum systems, i.e. cavity quantum electrodynamics (QED) arrays [START_REF] Hartmann | Strongly interacting polaritons in coupled arrays of cavities[END_REF]. The latter offer the possibility to realize strongly correlated states of light. Furthermore, they might allow to explore a number of new equilibrium and non-equilibrium quantum phase transitions.

A sketch of a cavity array is illustrated in Fig. 1.5. The latter illustrates the case in which the array is realized using photonic crystals. The main ingredient underlying the rich physics of cavity arrays is the interplay of two competing effects. Light-matter interaction inside the cavity leads to a (possibly strong) nonlinearity between photons. On the other hand, photon hopping between neighboring cavities favors delocalization, thus competing with photon blockade. The strong effective nonlinearity between the photons turns the cavity into a turnstile device, where only a photon can be present at the same time. Intuitively, this can be understood as the fact that one photon in the cavity strongly modifies the effective resonance frequency, inhibiting the injection of a second photon [START_REF] Imamoḡlu | Strongly interacting photons in a nonlinear cavity[END_REF].

One has also to include an external pump to populate the cavities due to the presence of leakage of photons out of the cavities, dissipation and decoherence of the matter. Nonlinearities in the cavities may produce an effective repulsion between the photons leading to an anharmonic spectrum. The nonlinearity may be produced, e.g. by a two-level system (depicted in the inset) coupled to the light resonating in the cavity and subjected to decay. Photons in the cavities have a finite lifetime therefore the cavities are pumped with an external coherent drive. Picture taken from [START_REF] Tomadin | Many-body phenomena in qed-cavity arrays[END_REF].

Trapped ions

Another interesting platform for studying open quantum systems is represented by systems of trapped atomic ions. The latter can be accurately controlled and manipulated, so that a large variety of interactions can be engineered with high precision and measurements of relevant observables can be obtained with nearly 100% efficiency. This enables the possibility of developing methods and tools for quantum simulation and computation [START_REF] Blatt | Quantum simulations with trapped ions[END_REF][START_REF] Cirac | Quantum computations with cold trapped ions[END_REF]. Let us provide a very brief overview of the trapping mechanism: ions, or charged atomic particles, can be contained and suspended in open space by utilizing electromagnetic fields. Each ion's stable electronic states serve as storage for qubits, enabling quantum information transfer through the combined quantized motion of the ions within a shared trap (interacting via the Coulomb force). By means of lasers one can induce the coupling between qubit states (for individual qubit operations) or between internal qubit states and external motional states (for qubit entanglement).

A first pioneering experiment performed in 2011 by the group of Prof. P. Zoller and Prof. R. Blatt in Innsbruck explores the possibility of implementing an open quantum system simulator. The sketch operating principle is shown in Fig. 1.6. By employing at most of five ions, researchers achieved dynamics through sequences that incorporated both single-and multi-qubit entangling gate operations alongside optical pumping. This approach facilitated the realization of coherent many-body dynamics as well as dissipative processes by precisely controlling the system's interaction with a specifically designed artificial environment (ancilla ion).

Now that we have examined a few examples of well-established experimental setups

implementing open quantum systems, let us proceed by presenting the two main formal Figure 1.6: Linear chains of trapped ions, where the spin degree of freedom is encoded in (meta)stable electronic states. Coherent and dissipative time evolution can be simulated by sequences of highly parallel multi-ion gates applied to all (or subsets of) ions, in combination with single-qubit rotations on individual ions and optical pumping of an ancilla ion. Picture taken from [START_REF] Müller | Simulating open quantum systems: from many-body interactions to stabilizer pumping[END_REF].

elements for describing the physics of open quantum systems, namely the density matrix operator and quantum Markov processes, which are needed to derive the basic tool we are going to use throughout this work, i.e. the Lindblad master equation. In doing so, we follow the derivations presented in [START_REF] Breuer | The theory of open quantum systems[END_REF].

Density matrix operator

Self-adjoint operators and the spectral theorem

In quantum mechanics, a closed physical system is described by a state vector |ψ that belongs to a Hilbert space H with countable dimension. This space has an orthonormal basis {|φ α } α of state vectors, which satisfies the scalar product relation given by:

φ α |φ β = δ αβ , (1.1) 
where φ|ψ denotes the scalar product between two state vectors |ψ , |φ ∈ H. Thus, any vector |ψ can be expressed as a linear combination of the basis vectors |φ α , namely:

|ψ = α φ α |ψ |φ α = α c α |φ α . (1.2)
Here, c α denotes the complex coefficient associated with the basis vector |φ α , and the normalization condition requires that α |c α | 2 = 1.

In quantum mechanics, measurable quantities, or observables, of a closed physical system are represented by linear, self-adjoint operators in the Hilbert space. The spectral theorem is a fundamental theorem in connection with self-adjoint operators that states that for any self-adjoint operator O, there exists an orthonormal basis {|φ i } i that diagonalizes the operator, allowing for the following decomposition:

O = i o i |φ i φ i |, (1.3) 
where {o i } i is the set of real-valued eigenvalues associated with the operator O. The statistical interpretation of quantum mechanics, known as the Copenhagen interpretation [START_REF] Bohr | The quantum postulate and the recent development of atomic theory1[END_REF], is closely related to the spectral decomposition of self-adjoint operators introduced in Eq. (1.3). This decomposition allows for the computation of probabilities for the outcomes of measurements of observables, which are given by the eigenvalues of the corresponding self-adjoint operators. The Copenhagen interpretation of quantum mechanics posits that quantum mechanics can only predict the probability distribution of the possible outcomes of a given measurement. When a measurement is made on a quantum system, the act of measuring affects the system, causing the set of probabilities to collapse to only one of the possible outcomes immediately after the measurement. This phenomenon is known as "wave function collapse", and it is a central feature of the Copenhagen interpretation of quantum mechanics [START_REF] Nielsen | Quantum Computation and Quantum Information: 10th Anniversary Edition[END_REF].

Let us now consider the following postulates.

• The statistical interpretation of quantum mechanics is closely connected to the spectral decomposition (1.3) of self-adjoint operators. We consider a statistical ensemble E consisting of a large number of identically prepared quantum systems S (1) , . . . , S (N ) . This ensemble can be expressed as:

E = {S (1) , . . . , S (N ) }. (1.4) 
Similar to classical theory, constructing such an ensemble requires specifying a set of experimental conditions that can be realized, at least in principle, an infinite number of times. Each realization results in the preparation of a single quantum mechanical system S (i) belonging to the ensemble E [START_REF] Breuer | The theory of open quantum systems[END_REF]. The first postulate is that, under certain conditions (more on this point later), a complete characterization of such a statistical ensemble is provided by a normalized state vector |ψ in the Hilbert space H pertaining to the quantum mechanical system.

• The second postulate of quantum mechanics is that measurable quantities of the statistical ensemble E are represented by self-adjoint operators in H. When an observable O is measured on the ensemble described by |ψ , the outcomes represent a real-valued random variable O, where the possible outcomes correspond to one of the eigenvalues o i belonging to the spectrum of O. Specifically, the probability p i that a measurement of the operator O yields the eigenvalue o i is given by p i = |c i | 2 , where c i = φ i |ψ . Being probabilities, the p i s sum to one, i.e. i p i = 1.

Using the spectral decomposition (1.2), we find the well-known expressions for the expectation value O and the uncertainty ∆O:

O = i |c i | 2 o i = ψ|O|ψ , (1.5 
)

∆O ≡ O 2 -O 2 . (1.6)
Therefore, an observable O defines, through its spectral family, to a real random variable O that describes the probabilities of all possible measurement outcomes.

To summarize, we note that the formulas presented above are strictly connected to the standard probability expressions for the mean value and variance of a random variable, denoted E[O] and Var[O], respectively.

Pure states and statistical mixtures

The previous method of introducing a statistical ensemble is not the most general one.

A more general approach can be obtained by considering a number M of ensembles E 1 , . . . , E M , as described before. Each of these ensembles is represented by a normalized state vector |ψ α in the total underlying Hilbert space H. We want now to define a probability distribution over possible quantum states, characterised by the weights {ω α } α . In order to do so, the total ensemble E can be studied by mixing all the E α with respective weights w α , which satisfy the conditions:

w α ≥ 0, M α=1 w α = 1. (1.7)
To achieve mixing, a large number N α of systems from each E α is taken, resulting in a total of N = α N α systems in the new ensemble E. The weights are given by w α = N α /N . In this case, the expectation value becomes:

O = α w α ψ α |O|ψ α . (1.8) 
To write these formulas more compactly, we introduce the density matrix operator:

ρ = α w α |ψ α ψ α |, (1.9) 
which allows us to express the mean value and variance as:

E[O] = Tr ρO , (1.10a 
)

Var[O] = Tr ρO 2 -Tr ρO 2 , (1.10b) 
where Tr denotes the trace of an operator O, which is defined as follows:

Tr O = i φ i |O|φ i , (1.11) 
where {|φ i } i is an orthonormal basis of the Hilbert space H. Provided that the trace exists, it is independent of the basis chosen. We can also write the expectation value of O as:

O = Tr ρO , (1.12) 
following standard quantum-mechanical notation. Exploting equation (1.9), one can easily verify that the following properties hold for the density matrix operator:

• Self-adjoint

ρ † = ρ (1.13) • Semi-positive ψ| ρ |ψ ≥ 0, ∀ |ψ ∈ H (1.14)

• Trace

Tr ρ = 1.

(1.15)

In our definition (Eq. (1.9)) of the density matrix, we did not assume that the |ψ α are orthogonal. However, given ρ, we can diagonalize it. Since ρ is positive, its eigenvalues are greater than or equal to zero. The spectral theory of density operators asserts that ρ has only a countable number of strictly positive eigenvalues p i > 0 [START_REF] Lidar | Lecture notes on the theory of open quantum systems[END_REF]. Moreover, the strictly positive eigenvalues are finitely degenerate, and 0 is the only possible infinitely degenerate eigenvalue. Hence, the spectral decomposition of ρ can be written as:

ρ = i p i |φ i φ i |, (1.16) 
where the sum extends over a complete set of eigenstates {|φ i } i with the eigenvalues p i = δ ij p i . The normalization condition is then given by:

Tr ρ = i p i = 1.
(1.17)

Let us now discuss another important property of the density matrix operator, namely:

Tr ρ 2 ≤ Tr ρ = 1. (1.18) 
It may be shown that the equality sign holds if and only if ρ has the form ρ = |ψ ψ| for some state vector |ψ . This is the case considered when we introduced the ensemble (1.4). An ensemble with this property is said to be in a pure state. It is clear that the state vector is defined up to a phase factor, without changing the density matrix and the statistical formulas. If the left-hand side of equation (1.18) is strictly less than one, the ensemble is called a statistical mixture. An ensemble like the one defined at the beginning of this subsection is said to be in a mixed or statistical state [START_REF] Nielsen | Quantum Computation and Quantum Information: 10th Anniversary Edition[END_REF]. The quantity Tr ρ 2 is usually called purity of a quantum system, and it measures its coherence, or how much it is in a well-defined quantum state.

Open quantum systems

Composite quantum systems

We consider two quantum systems S (1) and S (2) with respective Hilbert spaces H S 1 and H S 2 . The two systems may represent two (distinguishable) particles, two different composite objects (e.g. two atoms or molecules), or two different degrees of freedom of the same object (e.g. rotational and translational degrees of freedom of a molecule). In general, S (1) and S (2) interact with each other. According to the postulates of quantum mechanics the Hilbert space H of the combined system S = S (1) + S (2) is given by the tensor product of the Hilbert spaces pertaining to the subsystems S (1) and S (2) ,

H = H S 1 ⊗ H S 2 , (1.19) 
and the dimension of H is equal to the product of the dimensions of H S 1 and H S 2 . If we take fixed orthonormal bases { φ

(1) i

} and { φ

(2) j

} in H S 1 and H S 2 , respectively, a general state in H may be written as: .20) This means that the elements φ

|ψ = i,j α ij φ (1) i ⊗ φ (2) j . ( 1 
(2) j form a basis in H.

If A (1) is an operator acting on H S 1 and A (2) is an operator acting on H S 2 , then we can define their tensor product A (1) ⊗ A (2) as:

A (1) ⊗ A (2) |φ (1) i ⊗ |φ (2) j ≡ A (1) |φ (1) i ⊗ A (2) |φ (2) j .
(1.21)

In particular, observables of system S (1) take the form A (1) ⊗ I (2) , while observables of system S (2) are given by I (1) ⊗A (2) , where I (i) is the identity operator for the i-th system. The density matrix for a composite system S is an operator in the Hilbert state space H. If the two subsystems are uncorrelated, then the total density matrix takes the form of a tensor product of the respective density matrices of the two subsystems: ρ = ρ (1) ⊗ ρ (2) .

(1. [START_REF] Bloch | Many-body physics with ultracold gases[END_REF] This implies that the expectation value of any tensor product of operators pertaining to the subsystems factorizes:

A (1) ⊗ A (2) = Tr (1) A (1) ρ (1) Tr (2) A (2) ρ (2) = A (1) • A (2) , (1.23) 
where Tr (i) denotes the partial trace over the i-th Hilbert space related to subsystem S i . If one is interested in observables related to the second subsystem, it is convenient to introduce the reduced density matrix pertaining to the subsystem by taking the partial trace over the first subsystem: ρ (2) = Tr (1) ρ .

(1.24)

The reduced density matrix completely describes the statistical properties of all observables belonging to the subsystem under consideration, since the expectation value of any observable of the form B = I (1) ⊗ A (2) can be determined using the formula:

B = Tr (2) A (2) ρ (2) . (1.25)
This formula is particularly useful when the second subsystem is the relevant one as we will see in the next subsection, while the first one serves as the environment, whose description is not necessary for our purposes. Actually, when we theoretically describe open quantum systems, the density operator under study is usually the one that refers to the relevant subsystem since we are not interested in (and often not able to handle) the environment degrees of freedom.

Relevant subsystem and bath

In general, an open system consists of a relevant subsystem S, also called the reduced system, which is coupled to another quantum system B called the environment. In most cases, it is assumed that the combined system is closed and follows Hamiltonian dynamics. A schematic representation of a generic open quantum system is shown in Figure 1.1. However, the state of the subsystem S changes due to its internal dynamics and interaction with the environment. The interaction leads to system-environment correlations, which means that the resulting changes in the state of S cannot generally be represented in terms of unitary, Hamiltonian dynamics. The dynamics of the subsystem S induced by the Hamiltonian evolution of the total system is often referred to as reduced system dynamics.

Let us denote by H S the Hilbert space of the subsystem and by H B the one of the environment. The total Hilbert space of S + B is then given by the tensor product H = H S ⊗ H B . The total Hamiltonian H(t) may be then taken of the form:

H(t) = H S ⊗ I B + I S ⊗ H B + H I (t), (1.26) 
where H S is the self-Hamiltonian of the open system S, H B is the free Hamiltonian of the environment, and H I (t) is the Hamiltonian describing the interaction between the system and the environment.

We regard an open system S to be singled out by the fact that all observations of interest refer to this subsystem. The observables referring to S are all of the form A ⊗ I B , where A is an operator acting on the Hilbert space H S and I B denotes the identity in the Hilbert space H B . If the state of the total system is described by some density matrix ρ, then the expectation values of all observables acting on the open system's Hilbert space are determined through the formula:

A = Tr S [Aρ S ] , (1.27) 
where:

ρ S = Tr B [ρ] (1.28)
is the reduced density matrix of the open quantum system S. Tr S and Tr B denote the partial trace over the open system's degrees of freedom and the environment's ones, respectively. It is clear that ρ S will be the quantity of central interest in the description of open quantum systems.

Schmidt decomposition and entaglement

The Schmidt theorem provides an important characterization of quantum systems of the form S = S (1) + S (2) . For any given state |ψ ∈ H S 1 ⊗ H S 2 , there exist two orthonormal bases, the Schmidt bases {|χ

} i and {|χ

(2) j } j in H S 1 and H S 2 , respectively, such that:

|ψ = i α i |χ (1) i ⊗ |χ (2) i , (1.29) 
where the λ i are non-negative real numbers called Schmidt coefficients, and are uniquely determined by the state |ψ . Moreover, the Schmidt coefficients satisfy the normalization condition:

i |λ i | 2 = 1.
(1.30)

Proof

The Schmidt decomposition theorem can be proven as follows [START_REF] Breuer | The theory of open quantum systems[END_REF]. First, without loss of generality, we can assume that H S 1 and H S 2 have the same dimension. The matrix α = (α) ij of coefficients in the decomposition (1.20) with respect to the fixed basis vectors |φ

(1) i and |φ

(2) j is then a square matrix. By using the singular value decomposition, this matrix can always be written as α = udv † , where u and v are unitary matrices and d is a diagonal matrix with non-negative diagonal elements λ i > 0. Thus, the decomposition (1.20) takes the form:

|ψ = i,j α ij φ (1) i ⊗ φ (2) j = ijk u ij λ i v † ik |φ (1) i ⊗ |φ (2) 
k .

(1.31)

By virtue of the unitarity of u and v, the vectors defined by: The Schmidt number, which is the number of non-zero Schmidt coefficients λ i , is an invariant under unitary transformations U (1) and U (2) that only act in the respective spaces H S 1 and H S 2 . Therefore, the Schmidt number is independent of the chosen Schmidt bases and uniquely defines a state |ψ . A state |ψ ∈ H is entangled if it cannot be written as a tensor product |φ (1) ⊗ |φ (2) of states of the subsystems. If |ψ can be written as a tensor product, it is called a product state. The Schmidt decomposition theorem implies that |ψ is entangled if and only if the Schmidt number is greater than 1. Similarly, |ψ is a product state if and only if its Schmidt number is equal to 1. Additionally, a state |ψ is said to be maximally entangled if the absolute values of all non-vanishing Schmidt coefficients are equal to each other. This notion will be important in later discussions.

|χ (1) i = j u ij |φ (1) j , (1.32a) |χ (2) i = k v ik |φ (2) k , (1.32b 

Von Neumann entropy

We have seen that Schmidt's decomposition is closely related to the notion of entanglement, we briefly present another key concept related to this in quantum statistical mechanics and quantum information theory, i.e. that of quantum entropies. In particular we focus on the von Neumann entropy, which provides an important entropy functional used in quantum statistical mechanics.

For a quantum-mechanical system described by a density matrix ρ, the von Neumann entropy is:

S(ρ) ≡ -Tr [ρ ln ρ] . (1.33) 
Using the spectral decomposition of the density matrix (1.16) we can write:

S(ρ) = - i p i ln p i , (1.34) 
with 0 • ln 0 ≡ 0. The latter equation shows the link with classical information theory, indeed it shows that the von Neumann entropy is equal to the Shannon information entropy of the distribution i → p i that is of the random number I with the distribution given by the spectral decomposition of the density matrix. A statistical mixture which is described by ρ can be obtained by mixing pure states described by states |φ i with corresponding weights given by p i . Then S(ρ) expresses our uncertainty, or lack of knowledge about the realization of a particular state |φ i in the mixture. We now present without proof a non-comprehensive list of properties of the von Neumann entropy which make evident its importance for quantum statistical mechanics and quantum information theory.

1. For all density matrices one has

S(ρ) ≥ 0, (1.35)
with the equality is satisfied if and only if ρ is a pure state.

2. If the dimension of the Hilber space is finite, i.e. dim{H} = D, then the von Neumann entropy is bounded from above S(ρ) ≤ ln D, where the equality sign holds if and only if ρ is the completely mixed or infinite temperature state ρ = I/D.

3.

The von Neumann entropy is invariant under unitary transformations, that is S(U † ρU ) = S(ρ), with U a generic unitary transformation of the Hilber space.

Connection to the Schimdt decomposition

Consider a composite system descrieìbed by ρ, the density matrix of the total system and by ρ (1) = Tr (2) ρ and ρ (2) = Tr (1) ρ the densities of the subsystems.

Then the von Neumann entropy obeys the so-called subadditivity condition, S(ρ) ≤ S(ρ (1) ) + S(ρ (2) ), (1.36) where the equality sign holds if and only if the total density matrix describes an uncorrelated state, i.e. ρ = ρ (1) ⊗ ρ (2) . By tracing over the subsystems, information on correlations between the subsystems is therefore lost and, consequently, the entropy increases.

If ρ = |ψ ψ| is a pure state then S(ρ) = 0. Moreover, it follows from the Schmidt decomposition of a pure state that ρ (1) and ρ (2) have the same eigenvalues:

ρ (1) = Tr (2) [ |ψ ψ| ] = i |λ i | 2 χ (1) i χ (1) i (1.37) 
ρ (2) = Tr (1) 

[ |ψ ψ| ] = i |λ i | 2 χ (2) i χ (2) i (1.38)
and, thus the von Neumann entropies of the subsystems are equal to each other. This yields S(ρ (1) 

) = S(ρ (2) ) = - i |λ i | 2 ln |λ i | 2 ≥ 0. (1.39)
and the left-hand side of the inequality is strictly greater than zero if and only if |ψ is an entangled state. As such, the von Neumann entropy is largely used to witness and quantify the amount of entanglement in closed quantum system, where the two subsystems are usually a bipartition of the system under study.

Unitary evolution

In this section we briefly review the main concepts of the unitary evolution of a closed quantum systems. The purpose is twofold. First, it is useful to introduce the main concepets dealing with time evolution in a simpler setting, and see how generically the density matrix operator evolves with time. Second, we have seen that an open quantum systems is usually composed by a relevant subsystem coupled to an environement, it may be the case that the whole system can be described by a pure state, whose time evolution is unitary.

In general, the dynamics of an open system cannot typically be described by a unitary time evolution. To address this, it is often more useful to formulate the dynamics of an open system through a quantum master equation that governs the evolution of its density matrix.

Closed quantum systems

The time evolution of a generic state vector |ψ(t) in quantum mechanics is governed by the Schrödinger equation:

i d dt |ψ(t) = H(t)|ψ(t) , (1.40) 
where H(t) is the Hamiltonian of the system and is Planck's constant. We can represent the solution to the Schrödinger equation using the unitary time evolution operator U (t, t 0 ), which transforms the state |ψ(t 0 ) at an initial time t 0 to the state |ψ(t) at time t:

|ψ(t) = U (t, t 0 )|ψ(t 0 ) . (1.41)
By substituting this expression into the Schrödinger equation, we obtain an operator equation for the time-evolution operator U (t, t 0 ):

i d dt U (t, t 0 ) = H(t)U (t, t 0 ), (1.42) 
with the initial condition that U (t 0 , t 0 ) = I. It is easy to show, using equations (1.42) and the initial conidtion, that U (t, t 0 ) † U (t, t 0 ) = U (t, t 0 )U (t, t 0 ) † = I, which means that U (t, t 0 ) is a unitary operator. For a closed, isolated quantum system, the Hamiltonian is time independent, and equation (1.42) can be easily integrated to obtain the well-known expression:

U (t, t 0 ) = exp - i H(t -t 0 ) . (1.43) 
In many physical scenarios, a system is often subject to external influences, such as an external electromagnetic field. If the dynamics of the system can still be described using a possibly time-varying Hamiltonian operator H(t), the system is considered "closed". However, the term "isolated" is reserved for systems with time-independent Hamiltonians. When the Hamiltonian is time-dependent, the solution to equation (1.42) with the initial condition U (t 0 , t 0 ) = I can be expressed as a time-ordered exponential:

U (t, t 0 ) = T t exp - i ¢ t t 0 H(s)ds , (1.44) 
where T t denotes the time-ordering operator, which arranges products of time-dependent operators in chronological order such that their time arguments increase from right to left.

When dealing with a system in a mixed state, we can use the statistical operator ρ to describe the corresponding quantum statistical ensemble. We can derive an equation of motion for the density matrix starting from the Schr 'odinger equation. Let's assume that at some initial time t 0 , the state of the system is characterized by the density matrix:

ρ(t 0 ) = α w α |ψ α (t 0 ) ψ α (t 0 )|, (1.45) 
where w α are positive weights and the |ψ α (t 0 ) are normalized state vectors that evolve according to the Schrödinger equation. The density matrix operator at time t is then given by:

ρ(t) = α w α U (t, t 0 )|ψ α (t 0 ) ψ α (t 0 )|U † (t, t 0 ), (1.46) 
which can be concisely rewritten as:

ρ(t) = U (t, t 0 )ρ(t 0 )U † (t, t 0 ). (1.47)
By differentiating this equation with respect to time, we obtain the equation of motion for the density matrix, also known as the Liouville-Von Neumann equation:

d dt ρ(t) = - i [H(t), ρ(t)] . (1.48)
The equation above is closely related to the corresponding equation of motion for the probability density in classical statistical mechanics, which is why it is often written in a form analogous to the classical Liouville equation:

d dt ρ(t) = L(t)[ρ(t)], (1.49) 
where L(t) is a differential operator.

In literature, L is commonly referred to as a super-operator, as it acts on an operator to produce another one in the space of the density matrices. The formal solution to the Liouville Eq. (1.49) can be written similarly to Eq. (1.50) as:

ρ(t) = T t exp ¢ t t 0 L(s)ds ρ(t 0 ), (1.50) 
where T t denotes time ordering. Using this solution, we can find the expectation value of a generic observable A(t) as:

A(t) = Tr [A(t)ρ(t)] . (1.51)
Our next goal is to derive an approximate dynamical equation for the reduced density matrix, which is possible only under particular conditions. The main assumption concerns the Markov hypothesis, stating that for a class of stochastic processes, i.e. Markov processes, predictions can be made regarding future outcomes based solely on the present state and, most importantly, such predictions are just as good as the ones that could be made knowing the process's full history. In the next Sections we will introduce Markov processes in both classical and quantum frameworks.

Markov processes

In this section, we focus on the Markovian dynamics of open classical and quantum systems. We begin by providing a general characterization of stochastic processes and the Markov hypothesis in the classical framework. We then introduce quantum Markov processes, which represent the simplest case of dynamics for open systems. Essentially, they can be thought of as a direct generalization of the classical probabilistic concept of a dynamical semigroup to quantum mechanics. Analogous to the differential Chapman-Kolmogorov equation of classical probability theory, a quantum dynamical semigroup gives rise to a first-order linear differential equation for the reduced density matrix. This equation is known as the quantum Markovian master equation in Lindblad form.

It's worth noting that this discussion presents only a small piece of the whole framework of quantum master equations, which is quite broad. Nevertheless, the main concepts discussed here are sufficient for a complete understanding of the thesis.

Stochastic processes

The first important assumption we make concerns the Markov hypothesis, which refers to the memoryless property of a stochastic process. In essence, a stochastic process is a random variable whose statistical properties change over time [START_REF] Gardiner | Stochastic Methods: A Handbook for the Natural and Social Sciences[END_REF]. The concept of a stochastic process generalizes the idea of deterministic evolution, where a deterministic process is described by a differential equation for the deterministic change of some variable over time, whereas in a stochastic process, this is replaced by a probabilistic law for the time evolution of the variable.

Mathematically, a stochastic process is a family of random variables X(t) on a common probability space that depends on a parameter t ∈ T , where T is often an interval of the real time axis and X(t) is a map from the sample space Ω, which is the set of all possible events, into R.

What characterizes a stochastic process is the degree of statistical dependence between the random variables of the family X(t) for different times t. For the sake of simplicity, let us consider a one-dimensional stochastic process, where the variable x represents a position on the real axis, for instance. The physical theory usually provides a family of finite joint probability densities, which is defined as follows: for a stochastic process X(t), we take a set of discrete times t 1 , t 2 , . . . , t n and values x 1 , x 2 , . . . , x n ∈ R, and consider the joint probability density of order n given by p(x n , t n ; . . . ; x 1 , t 1 ).

(1.52)

Here, p(x n , t n ; . . . ; x 1 , t 1 ) represents the probability density that the process X(t) takes the value x 1 at time t 1 , value x 2 at time t 2 , and so on, up to x n at time t n . The knowledge of p(x n , t n ; . . . ; x 1 , t 1 ) completely characterise the time evolution of the stochastic process.

Classical Markov processes

Markov processes are crucial in the fields of physics and natural sciences. One reason for this is that many important processes, such as those involved in equilibrium statistical mechanics, are assumed to be Markovian when appropriate variables are chosen [START_REF] Gardiner | Stochastic Methods: A Handbook for the Natural and Social Sciences[END_REF]. A Markov process is a stochastic process X(t) with a short memory, meaning that it rapidly forgets its past history. This makes it easy to work with, since the entire hierarchy of joint probability densities introduced earlier can be reconstructed from just two density functions. It is common to define a Markov chain as a Markov process in either discrete or continuous time with a countable state space (thus regardless of the nature of time), but it is also common to define a Markov chain as having discrete time in either countable or continuous state space (thus regardless of the state space) [START_REF] Karlin | A First Course in Stochastic Processes (Second Edition)[END_REF].

The condition for the rapid decrease of memory effects can be expressed in terms of the conditional joint probabilities:

p(x n , t n | x n-1 , t n-1 ; . . . ; x 1 , t 1 ) = p(x n , t n | x n-1 , t n-1 ), (1.53) 
In other words, the probability that the process X(t) will be in state x n at time t n , given only the previous n -1 events, depends solely on the latest event. This equation demonstrates the crucial role played by the quantity p(x, t | x , t ) in the theory of Markov processes. Generally, p(x, t; x , t ) represents the probability density that the process will take on the value x at time t, given that it was in state x at an earlier time t . This conditional probability is also known as the conditional transition probability, or simply as the propagator. We use the notation: T (x, t | x , t ) ≡ p(x, t; x , t ).

(1.54)

As the definition implies, the propagator satisfies the following relations:

¢ dx T (x, t | x , t ) = 1 (1.55a) lim t→t T (x, t | x , t ) = δ(x -x ). (1.55b) 
The first equation indicates that the probability for the process to take any value at any fixed time is equal to 1, while the second equation states that with probability 1, the process does not change over a vanishing time increment. The other key ingredient is p(x, t), which is simply the density for the unconditional probability that the process takes on the value x at time t. The latter is connected to the initial density at some time t 0 by the relation:

p(x, t) = ¢ dx T (x, t | x , t 0 )p(x , t 0 ).
(1.56)

The great simplification achieved by invoking the Markov condition derives from the fact that the total hierarchy of the joint probabilities can be reconstructed from an initial density p(x, t 0 ) and an appropriate propagator which is local in time [START_REF] Gardiner | Stochastic Methods: A Handbook for the Natural and Social Sciences[END_REF]. According to Eq. (1.56) the density p(x, t) for later times t > t 0 is obtained from the initial density and from the propagator. Thus, also the joint probability distribution p 2 (x, t; x , t ) is known, of course. By virtue of the Markov condition all higher-order distribution functions can then be constructed, provided the propagator fulfils a certain integral equation which will now be derived.

We begin by considering three times t 1 < t 2 < t 3 and the third-order distribution p 3 . By invoking the definition of conditional probability and the Markov condition, and then integrating over x 2 , we obtain:

p 2 (x 3 , t 3 ; x 1 , t 1 ) = p(x 1 , t 1 ) ¢ dx 2 p(x 3 , t 3 | x 2 , t 2 )p(x 2 , t 2 | x 1 , t 1 ), (1.57) 
Switching to conditional probabilities, we obtain the Chapman-Kolmogorov equation: 

p(x 3 , t 3 | x 1 , t 1 ) = ¢ dx 2 p(x 3 , t 3 | x 2 , t 2 )p(x 2 , t 2 | x 1 , t 1 ), (1.58a) 
T (x 3 , t 3 | x 1 , t 1 ) = ¢ dx 2 T (x 3 , t 3 | x 2 , t 2 )T (x 2 , t 2 | x 1 , t 1 ), (1.58b 
∂ ∂t T (x, t|x , t ) = A(t)T (x, t|x , t ), (1.59) 
where A(t) is a linear operator that generates infinitesimal time translations. The latter is defined by its action on a density ρ(x, t):

A(t)[ρ(x, t)] = lim ∆t→0 1 ∆t ¢ dx T (x, t + ∆t|x , t)ρ(x , t) -ρ(x, t) = lim ∆t→0 1 ∆t [ρ(x, t + ∆t) -ρ(x, t)] . (1.60) 
For a homogeneous Markov process, the propagator T (x, t+∆t|x , t ) for the time interval from t to t + ∆t does not depend on time, and thus the generator A is time-independent. We can thus write the propagator as T τ (x | x ), where τ = t-t > 0 denotes the difference between its time arguments. The Chapman-Kolmogorov equation can then be rewritten as:

T τ +τ (x | x ) = ¢ dx T τ (x | x )T τ (x | x ), τ, τ ≥ 0.
(1.61) Figure 1.7: Sketch of the Chapman-Kolmogorov equation. Picture taken from [START_REF] Breuer | The theory of open quantum systems[END_REF].

Once the generator is known, the solution for a homogeneous Markov process can be written formally as:

T τ (x | x ) = exp(τ A)δ(x -x ), τ ≥ 0, (1.62) 
where δ(x-x ) is the Dirac delta function. This equation expresses the fact that the oneparameter family T τ | τ ≥ 0 of conditional transition probabilities represents a dynamical semigroup. The term "semigroup" indicates that the family {T τ | τ ≥ 0} is not a full group, since the parameter τ is restricted to non-negative values.

In the next section we will consider a first paradigmatic example of a (composite) open quantum system, whose time evolution can be described through a Markov approximation.

Spontaneous emission: a "simple" open quantum system

Spontaneous emission refers to the phenomenon where a quantum mechanical system, be it a molecule, atom, or subatomic particle, undergoes a transition from an excited energy state to a lower energy state, such as its ground state, see Fig. 1.8. As part of this transition, the system emits energy in discrete packets known as photons. Remarkably, spontaneous emission plays a fundamental role in generating the majority of the light that surrounds us.

Here, we are particularly interested in the phenomenon of spontaneous emission as it is a first paradigmatic example of an open system composed of the atom and a photon field. Given the relative simplicity of the problem, we will see how it is possible to derive a theory that describes both the evolution of the atom and the field.

In 1916 A. Einstein published a groundbreaking paper titled "On the quantum theory of radiation" [START_REF] Einstein | Zur quantentheorie der strahlung[END_REF]. In a first part he gives a derivation of Planck's formula which has become part of many textbooks on quantum theory. This part of the paper is now We consider a two level atom with ground and excited state respectively |g and |e . As part of this transition, the system emits a photon. Right panel: temporal profile of the single photons generated by the single 8 7Rb atom (red circles). The laser pulse as a function of time is given by the green area. Eventually, the solid blue line represents an exponential fit. Picture taken from Ref. [START_REF] Leong | Hongou-mandel interference between triggered and heralded single photons from separate atomic systems[END_REF]. considered as the theoretical foundation of the laser, that was technically realized almost half a century later.

In the second section of his seminal paper, Einstein delves into the intricate dynamics of momentum exchange between atoms and radiation, by making use of the theory of Brownian motion. Employing a captivating and eloquent line of reasoning, he demonstrates that in each individual radiation event, notably spontaneous emission, an exact quantity of hν/c momentum is emitted in a random orientation. Furthermore, he elucidates that the atomic system experiences a proportional recoil in the opposing direction.

Wigner-Weisskopf theory for the spontaneous emission

In 1930 E. P. Wigner and V. Weisskopf published another fundamental paper on the theory of spontaneous emission [START_REF] Weisskopf | Berechnung der nat 'urlichen linienbreite auf grund der diracschen lichttheorie[END_REF]. We will now sketch the main steps of the derivation presented in the paper.

We consider a single two-level atom initially in its upper state |e . The atom, coupled to the set of modes of a large (virtual) quantization box emits a photon when jumping in the ground state (the |e → |g transition is at frequency w 0 = Ee-Eg ). The photonic bath is described by the field operators a

( †)
k (for the mode k). The initial condition for the total system atom + bath is then given by:

|ψ(0) = |e ⊗ |0 , (1.63) 
where |0 is the vacuum state for the radiation field. We know that the atom will eventually decay into the states:

|ψ(∞) = |g ⊗ |1 k , (1.64) 
i.e. the atom is now in its gound state and a photon with mode k has been emitted. The Hamiltonian reads:

H = ω 0 |g g| Hatom + k ω k a † k a k H bath + k g k |e g| a k + |g e| a † k H atom-bath , (1.65) 
where g k described the atom-field coupling and ω k = c|k|, with c being the speed of light. We now write the explicit dynamics of the atom-field system in the Schrödinger picture considering states with one photon and a |g atom. Hence:

|ψ(t) = b(t)e -iω 0 t |e |0 + k c k (t)e -iω k t |g |1 k , (1.66) 
with initial condition b(0) = 1 and c k (0) = 0, ∀k. The Schrödinger equation for the coefficients then becomes:

d dt b(t) = k -ie -i(w k -ω 0 )t g k c k (t) (1.67) d dt c k (t) = -ig * k e -i(w k -ω 0 )t b(t). (1.68) 
One can formally integrate the latter equation obtaining:

c k (t) = -ig * k ¢ t 0 dt e -i(w k -ω 0 )t b(t ). (1.69) 
By plugging the above expression into Eq. (1.67) we obtain:

d dt b(t) = - k |g k | 2 ¢ t 0 dt e -i(w k -ω 0 )(t-t ) b(t ). (1.70) 
At this point Wigner and Weisskopf employed the Markov approximation by assuming that b(t) varies on a timescale which is much larger than 1/ω 0 ; as a result the system has no memory of the past. The integral over time then reads:

¢ t 0 dt e -i(w k -ω 0 )(t-t ) = πδ(ω k -ω 0 ) -iP 1 ω k -ω 0 , (1.71) 
where P stands for the Cauchy principal part. It can be shown that the imaginary part of Eq. (1.71) diverges due in particular to the contribution of the infinite frequency modes. In order to avoid technicalities we will omit this term in the following, as in the original calculations performed by Wigner and Weisskopf. The solution to this particular problem was proposed by Lamb, during the Shelter island congress of 1947. Lamb had experimentally observed the slight shift between the energies of the 2S and 2P levels. This shift results from the coupling to the vacuum modes.

All in all we are left with:

d dt b(t) = - L 2π ¢ ∞ -∞ |g k | 2 πδ(c|k| -ω 0 )dk b(t) = L 2c |g ω 0 /c | 2 + |g -ω 0 /c | 2 b(t) (1.72)
where we have written the sum over k as an integral, i.e.

k = L 2π ¡ ¡ ∞ -∞ dk. Eq. (1.72) can be rewritten as d dt b(t) = -Γ 2 b(t)
, where we have introduced Γ as the Einstein coefficient for the spontaneous emission. We can now predict the probability as a function of time that the atom is in the excited state:

|b(t)| 2 = e -Γt .
(1.73)

One can also predict the probability that the photon has been emitted in the mode k, which is proportional to |c k (t)| 2 . We skip the calculations and we report here the final result:

|c k (t)| 2 = |g k | 2 (ω 0 -ω k ) 2 + Γ 2 4
.

(1.74)

We thus obtained an exponential decay to the ground state with a rate given by the Einstein coefficient and a Lorentzian distribution for the emitted photon. In Fig. 1.8 we report the results of an experiment performed in Singapore in the group of Prof. Kurtsiefer in 2015. [START_REF] Leong | Hongou-mandel interference between triggered and heralded single photons from separate atomic systems[END_REF]. The authors measured the photon emitted by a 87 Rb atom, by performing an exponential fit they were able to extract the corresponding coherence time.

Some final remarks

We have just discussed a first example of relevant physical composite system. We have introduced a theoretical framework, namely the theory by Wigner and Weisskopf, that, although being approximated due to its reliance on the Markov hypothesis, enabled us to make predictions concerning the behavior of both atom and the bath.

When one considers a many-body open quantum system, fully capturing its dynamics presents a non trivial,if not impossible challenge. Therefore, in the realm of studying many-body open quantum systems, the common approach involves seeking an approximate description specifically tailored to the subsystem of interest.

Dynamics of an open system

We are going to investigate several physical examples of open quantum systems in this thesis. Mainly, the motivation for the study of open systems is that in many physically important situations a complete mathematical model of the combined system's dynamics is much too complicated. The environment may consist of infinitely many degrees of freedom, in which case an exact treatment is impossible. Even if a solution is known, one is confronted with the task of isolating and determining the interesting physical quantities through an average over the remaining, irrelevant degrees of freedom. Moreover, one often encounters the situation that the modes of the environment are neither known exactly 1.8. DYNAMICS OF AN OPEN SYSTEM nor controllable. One therefore tries to develop a simpler description in a reduced state space formed by a restricted set of physically relevant variables which is achieved by employing various analytical methods and approximation techniques. As such, we will be always intersted in the time evolution of the relevant subsystem density matrix, see Eqs. (1.27) and (1.28).

The reduced density matrix ρ S (t) at time t is obtained from the density matrix ρ(t) of the total system by taking the partial trace over the degrees of freedom of the environment. Since the total density matrix evolves unitarily we have:

ρ(t) = Tr U (t, t 0 )ρ(t 0 )U † (t, t 0 ) , (1.75) 
where U (t, t 0 ) is the evolution operator of the total system. In an analogous way the equation of motion for the reduced density matrix is obtained by taking the partial trace over the environment on both sides of the Liouville-Von Neumann equation for the total system:

d dt ρ S (t) = - i Tr B [ [H(t), ρ(t)] ] . (1.76)
In the following subsection we will introduce the Markov hypothesis within the quantum framework, the latter being a key approximation for deriving an approximate description for the time evolution of ρ S (t).

Quantum Markov processes

Generally, finding the dynamics of the reduced system defined by the equation (1.76) can be complex. However, when the environmental correlation times are short, memory effects can be neglected and the reduced system dynamics can be formulated in terms of a quantum dynamical semigroup.

To introduce the concept of a dynamical map, consider a total system S + B in an uncorrelated product state ρ(0) = ρ S (0) ⊗ ρ B at time t = 0, where ρ S (0) is the initial state of the reduced system S and ρ B represents a reference state of the environment B. The transformation V (t), describing the time evolution of the reduced system up to some time t, can be written as:

ρ S (0) → ρ S (t) = V (t) [ρ S (0)] ≡ Tr B U (t, 0) [ρ S (0) ⊗ ρ B ] U † (t, 0) . (1.77)
By fixing the reference state ρ B and final time t, this relation defines a map from the space of reduced density matrices of the system [START_REF] Breuer | The theory of open quantum systems[END_REF] S(H S ) into itself:

V (t) : S(H S ) → S(H S ). (1.78)
This map specifies the state change of the open system over time t and is called a dynamical map.

The dynamical map can be characterized in terms of the operators related to H S . To do so, we use the spectral decomposition of ρ B :

ρ B = α λ α |φ α φ α |, (1.79) 
where the |φ α form an orthonormal basis in H B , and the λ α are non-negative real numbers satisfying α λ α = 1. Equation (1.77) can then be represented as:

V (t)[ρ S ] = α,β W α,β (t)ρ S W † α,β (t), (1.80) 
where the W α,β are operators in H S defined by:

W α,β (t) = λ β φ α |U (t, 0)|φ β . (1.81)
By making use of the completeness relation α |φ α φ α | = I, it is possible to demonstrate that the operators W α,β satisfy the condition:

α,β W † α,β (t)W α,β (t) = I. (1.82)
As a consequence, it follows that:

Tr [V (t)ρ S ] = Tr [ρ S ] = 1. (1.83)
Thus, we have shown that the dynamical map V (t) introduced earlier is trace-preserving. It can also be shown to be a convex-linear and completely positive quantum operation. A generic map E is said to be convex-linear on the set of density matrices if it satisfies the following property for probabilities/weights w α and density operators ρ α ∈ S(H S ) [START_REF] Nielsen | Quantum Computation and Quantum Information: 10th Anniversary Edition[END_REF]:

E α w α ρ α = α w α E (ρ α ) . (1.84) 
Additionally, a map E is said to be positive if it maps density operators of S(H S ) to density operators of S(H S ), and completely positive if it maps positive reduced operators to positive reduced operators. Above, we introduced a dynamical map V (t) for a fixed time t > 0. If we allow t to vary, we obtain a one-parameter family {V (t)|t > 0} of dynamical maps, where V (0) is the identity map. Such a family describes the whole future time evolution of the open system, which, in general, can be very complex. However, we now assume that ρ B does not depend on time; in other words, we employ the approximation that the tipical time scale over which the reservoir dynamics takes place decays much faster than the characteristic time scale of the systematic system evolution, we can neglect memory effects in the reduced system dynamics. This is analogous to the classical theory, where we expect Markovian-type behavior. For the homogeneous case, this behavior can be formalized using the semigroup property:

V (t 1 )V (t 2 ) = V (t 1 + t 2 ), t 1 , t 2 ≥ 0.
(1.85)

Given a quantum dynamical semigroup, there exists, under certain conditions (see below), a linear map L, called the generator of the semigroup, which allows us to represent the semigroup in exponential form:

V (t) = exp (Lt) . (1.86)
This representation immediately yields a first-order differential equation for the reduced density matrix of the open system:

d dt ρ S (t) = L [ρ S (t)] , (1.87) 
which is called the Markovian master equation. The generator L of the semigroup represents a superoperator, a generalization of the Liouville operator introduced in Equation (1.49). One can recover L by Taylor-expanding V (t) at first order, namely:

L = dV (t) dt t=0 (1.88)
In the following we will be interested in L rather than V (t). Our next goal is to identify the most general form for L under the Markovian hypothesis.

Lindblad master equation

This section is dedicated to introducing the Lindblad master equation [START_REF] Lindblad | On the generators of quantum dynamical semigroups[END_REF][START_REF] Gorini | Completely positive dynamical semigroups of n-level systems[END_REF], which will be the main tool used throughout this work. The Lindblad equation provides an effective way to describe the weak coupling between a relevant system and a bath under the Markov approximation. This equation is the most general form satisfying the necessary hypotheses while conserving the properties of the density matrix operator. Mathematically, the Lindblad equation is given by:

L[ρ] = - i [H, ρ] + N 2 -1 j=1 γ j L j ρL † j - 1 2 L † j L j , ρ , γ j ≥ 0, (1.89) 
where H is a Hamiltonian describing the isolated dynamics of the system, but may also contain interaction terms. The second part on the right-hand side describes the coupling with the environment, where the Lindblad operators L j pertain to the lossy processes, and the coefficients γ j have dimensions of 1/time, which are related to the typical timescales of the decaying modes of the system. Sometimes it is useful to introduce the dissipator:

D[ρ S ] = N 2 -1 j=1 γ j L j ρ S L † j - 1 2 L † j L j , ρ S , (1.90) 
which describes the effect of the coupling with the environment. Hence, the master equation can be recast into the form:

d dt ρ S = - i [H, ρ S ] + D[ρ S ]. (1.91) 
Eq. (1.89) represents the most general form for the generator of a quantum dynamical semigroup. The first term of the generator represents the unitary part of the dynamics generated by the Hamiltonian H. The operators L j , which are appropriate linear combinations of basis operators F i in Liouville space, are usually referred to as Lindblad operators or quantum jumps operators, and the corresponding density matrix equation (1.87) is called the Lindblad equation. Note that the non-negative quantities γ j have the dimension of an inverse time when the L j are taken to be dimensionless. Later on, we will see that the γ j play the role of relaxation rates for the different decay modes of the open system.

Derivation of the Lindblad master equation

In this section, we provide a possible derivation of the Lindblad master equation in the case of a finite-dimensional Hilbert space H S with dimension N . It is important to note that the corresponding Liouville space is a complex space of dimension N 2 and is isomorphic to H S ⊗H S . We will omit the mathematical details for brevity, but a detailed microscopic derivation can be found in [START_REF] Breuer | The theory of open quantum systems[END_REF].

It is worth mentioning that an important assumption underlying this derivation is the Born approximation. This approximation assumes that the coupling between the system and the environment is weak, such that the influence of the system on the reservoir is small. Consequently, the density matrix of the reservoir ρ B is only negligibly affected by the interaction, and the state of the total system at time t can be approximately written as a tensor product:

ρ(t) ρ S (t) ⊗ ρ B . (1.92) 
Let us now choose a complete basis of orthonormal operators F i , i = 1, . . . , N 2 , in this space such that we have:

(F i , F j ) ≡ Tr F † i F j = δ ij , (1.93) 
where (A, B) is the scalar product between operators, i.e. their matrix representation, defined as follows:

(A, B) = Tr A † B . (1.94) 
For convenience one of the basis operators is chosen to be proportional to the identity, namely 

F N 2 = (1/N )
W α,β (t) = N 2 i=1 F i (F i , W α,β (t)) . (1.95)
With the help of the representation (1.80) we can write the action of the dynamical map V (t) as:

V (t) [ρ S ] = N 2 i,j=1 c ij (t)F i ρ S F † j , (1.96) 
where:

c ij (t) = α,β (F i , W α,β (t))(F j , W α,β (t)) * .
(1.97)

The latter coefficient matrix c = (c ij ) is easily seen to be Hermitian and positive. Following the definition for the generator (1.86) and equation (1.96) one gets:

L[ρ S ] = lim ε→0 1 ε {V (ε) [ρ S ] -ρ S } = (1.98) = lim ε→0 1 ε 1 N c N 2 N 2 (ε) -N ε + 1 √ N N 2 -1 i=1 c iN 2 (ε) ε F i ρ S + c N 2 i (ε) ε ρ S F † i + (1.99) + N 2 -1 i,j=1 c ij ε F i ρ S F † j .
(1.100)

Next, we define coefficients a ij by:

a N 2 N 2 = lim ε→0 c N 2 N 2 (ε) -N ε (1.101a) a iN 2 = lim ε→0 c iN 2 (ε) ε , i = 1, . . . , N 2 -1, (1.101b) 
a ij = lim ε→0 c ij (ε) ε , i, j = 1, . . . , N 2 -1, (1.101c) 
and introduce the quantities:

F = 1 √ N N 2 -1 i=1 a iN 2 F i (1.102)
and:

G = 1 2N a N 2 N 2 I S + 1 2 F + F † , (1.103) 
as well as the Hermitian operator:

H = 1 2i F † -F . (1.104) 
The operator H defined in Eq. (1.104) is traceless since the operators F i are so.

With the help of these definitions we can write the generator as:

L[ρ S ] = - i [H, ρ S ] + {G, ρ S } + N 2 -1 i,j=1 a ij F i ρ S F † j . (1.105)
Notice that, in the case when there is only present the first term of the right-hand side of Eq. (1.105), the time evolution would be unitary which is indeed typical of an isolated system decoupled from the bath; that is why one can consider H as the Hamiltonian of the isolated system. Since the semigroup is trace preserving we have for all density matrices ρ S :

0 = Tr [ L[ρ S ] ] = Tr    2G + N 2 -1 i,j=1 a ij F † j F i ρ S    , (1.106) 
from which we deduced that:

G = - 1 2 N 2 -1 i,j=1 a ij F † j F i (1.107)
All in all, we get the first standard form of the generator:

L[ρ S ] = - i [H, ρ S ] + N 2 -1 i,j=1 a ij F i ρ S F † j - 1 2 F † j F i , ρ S . (1.108) 
Afterwards, the matrix a, given the fact that it is positive, can be diagonalized with the help of a unitary transformation u. Introducing the non-negative eigenvalues γ j and a new set of operators L j :

F i = N 2 -1 j=1 u ji L j , (1.109) 
one gets the following diagonal form of the generator:

L[ρ S ] = - i [H, ρ S ] + N 2 -1 j=1 γ j L j ρ S L † j - 1 2 L † j L j , ρ S . (1.110) 
Let us now conclude the dicussion on the Lindblad master equation by proving at least the trace preservation property. The proof goes as follows. The first step is to compute the time derivative of the trace of the density operator, then exploting the linearity of the trace one can commute the time-derivative and the sum operation, namely:

d dt Tr[ρ] = - i Tr [Hρ -ρH] + N 2 -1 j=1 γ j Tr L j ρL † j - 1 2 Tr L † j L j ρ + ρL † j L j . (1.111)
The proof proceeds by exploting the fact that the trace is invariant with respect to cyclic permutations, hence one concludes: 

d dt Tr[ρ] = 0. (1.112)

Lindblad theory for the spontaneous emission

Likewise Sec. 1.7, we can construct a Lindblad equation for the spontaneous emission.

Let L 1 = √ Γσ -= √ Γ |g e|, and H = |g g| = 1+σz 2 .
In the choice of the jump operator we have picked the only physical process that can couple the atom to the bath, i.e. the decay from the exicted state into the ground state. We use here the convetion: |0 = |↑ = |e for the north pole of the Bloch sphere, while the south pole is |1 = |↓ = |g . Since we are dealing with a two-level system, i.e. a qubit, we can employ the density matrix representation of such a system in terms of the Pauli matrices [START_REF] Nielsen | Quantum Computation and Quantum Information: 10th Anniversary Edition[END_REF], i.e. ρ(t) = 1 2 (I + v(t) • σ), where σ represents a vector whose componenents are the Pauli matrices and v a vector of parameter (v x (t), v y (t), v z (t)). As far as the Hamiltonian dynamics is concerned we get:

- i [H, ρ] = - i 2 (iv x (t)σ y -iv y (t)σ x ) (1.113)
For what concerns the Lindblad dissipator we get:

D[ρ(t)] = γ σ -ρ(t)σ + - 1 2 {σ + σ -, ρ(t)} = γ |g e| ρ(t) |e g| - 1 2 {|e g|g e| , ρ(t)} (1.114)
We find, for the right-hand side of Eq (1.114):

|g e| 1 2 (I + v x (t)σ x + v y (t)σ y + v z (t)σ z ) |e g| = 1 2 (1 + v z (t)) |g g| (1.115a) - 1 4 |e e| (I + v x (t)σ x + v y (t)σ y + v z (t)σ z ) = - 1 4 (|e e| + (v x (t) -iv y (t)) |e g| + v z (t) |e e|) (1.115b) - 1 4 (I + v x (t)σ x + v y (t)σ y + v z (t)σ z ) |e e| = - 1 4 (|e e| + (v x (t) + iv y (t)) |g e| + v z (t) |e e|) .
(1.115c)

Adding up all these terms gives:

1 2 -σ z - 1 2 v x (t)σ x - 1 2 v y (t)σ y -v z (t)σ z , (1.116) 
which we need to equate with

1 2 ˙ (t) v • σ.
Here, we are interested in the initial condition when the atom is in the excited state, i.e. v(0) = (0; 0; 1) and in the time evolution of the fraction of excitations n e (t) given by:

n e (t) ≡ 1 + σ z t 2 = 1 + v z (t) 2 , v z (t) = σ z t . (1.117) 
Since the equation of motion for v α (t), α = x, y, x do not couple x and y with z (not shown) we report only the one for v z (t):

vz (t) = -Γ(v z (t) + 1), (1.118) 
which is solved by writing dv z /(v z + 1) = -Γdt and integrating, to give ln(v z + 1) = -Γt + c, i.e., v z (t) = c e -Γt -1, so that c = v z (0) + 1. Thus:

n e (t) = e -Γt (1.119) 
We have thus recovered the exponential decay predicted by Wigner and Weisskopf, i.e. Eq. (1.73). The ground state fraction, in constrast, evolves according to n g (t) ≡ 1+ σz t 2 = 1e -Γt . See Fig. 1.9 (right panel). This Lindblad treatment of the problem does not give any information about the bath, contrary to the case of theory by Wigner-Weisskopf for the complete system atom + bath.

Chapter 2

Lossy correlated gases: theory and experiments

After presenting the general framework of open quantum systems, we now briefly review the main experimental and theoretical works dealing with lossy correlated gases, which will be the main topic of the original results presented in this manuscript. The chapter is divided into four Sections. Sec. 2.1 presents a brief overview on ultracold atomic gases. The Secs 2.2 and 2.3 focus more specifically on losses and their consequence in strongly-correlated quantum gases. In particular, in Sec. 2.4 we present in more detail the main experimental and theoretical contribution present in literature concerning twobody losses in (spinless) bosonic and fermionic gases. We conclude the chapter in Sec. 2.5 presenting a summary of the results obtained so far.

Ultracold atomic gases

Ultracold quantum gases consist of dilute clouds of charge-neutral atoms that are trapped in vacuum cells and cooled down to quantum degeneracy1 through laser and evaporative cooling [START_REF] Bloch | Many-body physics with ultracold gases[END_REF][START_REF] Bloch | Quantum simulations with ultracold quantum gases[END_REF][START_REF] Ketterle | Making, probing and understanding ultracold fermi gases[END_REF][START_REF] Lewenstein | Ultracold atomic gases in optical lattices: mimicking condensed matter physics and beyond[END_REF]. These gases provide precise control over the microscopic system parameters, such as the type and strength of interactions, the kinetic energy of particles, the realization of nearly perfect lattices with various geometries, and confinement to different dimensionalities. External fields, such as laser beams or magnetic fields, can shape most of their properties, including their spatial and temporal ones.

These features make ultracold quantum gases an ideal setting for probing and simulating models of condensed matter physics, as well as deepening our understanding of fundamental questions in quantum mechanics. Furthermore, these gases allow for the engineering of exotic types of band structures and interactions, providing access to novel phenomena not encountered in solid-state materials. Bosonic atomic gases can condense into a Bose-Einstein condensate (BEC) when cooled to sufficiently low temperatures. Rubidium [START_REF] Anderson | Observation of bose-einstein condensation in a dilute atomic vapor[END_REF] and sodium [START_REF] Davis | Bose-einstein condensation in a gas of sodium atoms[END_REF] atoms were the first to form a BEC in the laboratory in 1995, and quantum degeneracy in fermionic gases was demonstrated in 1999 [START_REF] Demarco | Onset of fermi degeneracy in a trapped atomic gas[END_REF][START_REF] Schreck | Quasipure bose-einstein condensate immersed in a fermi sea[END_REF]. As the interaction strength between fermionic ultracold atoms is varied, they undergo a crossover from Bardeen-Cooper-Schrieffer pairing of fermionic atoms [START_REF] Bardeen | Theory of superconductivity[END_REF] to Bose-Einstein condensation of tightly bound bosonic molecules. Recent reviews of this BEC-BCS crossover can be found in [START_REF] Randeria | Crossover from bardeen-cooper-schrieffer to boseeinstein condensation and the unitary fermi gas[END_REF].

The condensation of bound bosonic molecules of fermionic atoms on the BEC side was first observed experimentally in 2003 [START_REF] Zwierlein | Observation of bose-einstein condensation of molecules[END_REF][START_REF] Greiner | Emergence of a molecular bose-einstein condensate from a fermi gas[END_REF][START_REF] Regal | Observation of resonance condensation of fermionic atom pairs[END_REF], and the full BEC-BCS crossover was soon after experimentally studied [START_REF] Bartenstein | Collective excitations of a degenerate gas at the bec-bcs crossover[END_REF]. Since then, ultracold atomic systems have been used to explore a range of quantum phenomena, including superfluidity,vortices and vortex lattices [START_REF] Matthews | Vortices in a bose-einstein condensate[END_REF][START_REF] Abo-Shaeer | Observation of vortex lattices in bose-einstein condensates[END_REF], matter-wave interference [START_REF] Andrews | Observation of interference between two bose condensates[END_REF], long-range phase coherence [START_REF] Bloch | Measurement of the spatial coherence of a trapped bose gas at the phase transition[END_REF], the superfluid-Mott insulator transition [START_REF] Greiner | Quantum phase transition from a superfluid to a mott insulator in a gas of ultracold atoms[END_REF], the realization of the Tonks-Girardeau Gas in 1D [START_REF] Kinoshita | Observation of a one-dimensional tonksgirardeau gas[END_REF], and the Berezinskii-Kosterlitz-Thouless transition in 2D [START_REF] Hadzibabic | Berezinskiikosterlitz-thouless crossover in a trapped atomic gas[END_REF].

These gases are (usually) highly isolated from their environment and can typically be considered closed and dissipationless quantum systems on time-scales relevant to experiments. Additionally, novel experimental techniques enable the gases to be probed, controlled, and detected at the single-site and single-atom level. Quantum gas microscopes have been realized for both bosonic and fermionic gases [START_REF] Gillen | Two-dimensional quantum gas in a hybrid surface trap[END_REF][START_REF] Bakr | A quantum gas microscope for detecting single atoms in a hubbard-regime optical lattice[END_REF][START_REF] Cheuk | Quantum-gas microscope for fermionic atoms[END_REF][START_REF] Parsons | Site-resolved imaging of fermionic 6 Li in an optical lattice[END_REF], and have been applied to study the superfluid-Mott transition on the single-site level [START_REF] Bakr | Probing the superfluid&#x2013;to&#x2013;mott insulator transition at the single-atom level[END_REF]. They also enable the measurement of site-resolved correlations and entanglement entropies in quantum many-body systems [START_REF] Islam | Measuring entanglement entropy in a quantum many-body system[END_REF][START_REF] Kaufman | Quantum thermalization through entanglement in an isolated manybody system[END_REF].

Trapping potential

In the majority of experiments, the resulting trap potential can be simplified and modeled as a harmonic potential:

V (x, y, z) = M 2 α ω α x 2 α , α = x, y, z, (2.1) 
here M represents the atomic mass, while ω α denotes the trapping frequency along the x α direction. The characteristic trapping energy scale is inherent in the harmonic confinement and given by ω α with associated length scale l α = /(M ω α ). In an equilibrium scenario where other energy scales in the system are comparatively small, specifically when temperatures satisfy k b T ω α , motion along a certain direction becomes restricted due to the trapping energy dominating over other energy scales. Consequently, the effective dimensionality of the system decreases. By modifying the frequencies ω i , it becomes possible to generate systems with effective dimensions of one, two, or three. This adjustability of the effective dimensionality of ultracold atomic systems is one reason for their versatility in quantum simulation, and justifies studying them in all dimensions. It is important to consider this feature when examining strong confinement, such as quasi-one-dimensional systems, as well as weakly confined, higherdimensional settings, and to discuss the resulting disparities in physical behavior. Let For a two dimensional optical lattice, the atoms are confined to an array of tightly confining one-dimensional potential tubes, whereas in the three-dimensional case the optical lattice can be approximated by a three-dimensional simple cubic array of tightly confining harmonic-oscillator potentials at each lattice site. Picture taken from [START_REF] Bloch | Many-body physics with ultracold gases[END_REF] us mention here that, more recently, the experimental possibility of optically trapping atoms in a uniform trap with a "box"-like shape has emerged [START_REF] Navon | Quantum gases in optical boxes[END_REF].

Optical lattices

Optical lattices are a powerful tool for manipulating ultracold atoms [START_REF] Bloch | Many-body physics with ultracold gases[END_REF][START_REF] Bloch | Quantum simulations with ultracold quantum gases[END_REF][START_REF] Ketterle | Making, probing and understanding ultracold fermi gases[END_REF][START_REF] Lewenstein | Ultracold atomic gases in optical lattices: mimicking condensed matter physics and beyond[END_REF]. Due to the light-shift potential that arises from the interaction between atoms and laser light described by the dipole Hamiltonian, a standing light wave creates a nearly perfect defect-free lattice potential. The laser light is far detuned from an atomic transition between stable and electronically excited states of the atoms. Importantly, the ratio of spontaneous emission from the excited state to the induced optical potential for the atoms in the ground state can be systematically suppressed by working at sufficiently large detuning since it scales as 1/∆ e , where ∆ e is the detuning from atomic resonance. The resulting conservative potential can be expressed as V ( x) = α| E| 2 , where α is the scalar polarizability of the atoms, which generally depends on the laser frequency, and E( x) is the electric field at position x.

The resulting potential for two counter-propagating lasers with wave-vectors k L and k L reads:

V L ( r) = V 0 sin 2 ( k L • r), (2.2) 
with r being the position and V 0 a tunable parameter controlling the lattice depth and proportional to the laser intensity. If the wavevector is oriented along, e.g., the xdirection, i.e. k L = |k l |e x the resulting lattice has well defined minima at x j = jd, with j being an integer value and d = π/|k l | the lattice spacing constant. The natural energy scale in optical lattices is determined by the recoil energy, denoted as E r = 2 k 2 L /(2M ). This energy corresponds to the kinetic energy that an atom of mass M would acquire if it absorbed or emitted a photon with wavevector kL, while initially at rest. In other words, E r reflects the amount of energy transferred from a photon to an atom during this process.

Optical lattices represent an exceptionally versatile and highly controllable experimental tool. By combining standing waves in different directions or using complex interference patterns of multiple lasers with varying wavelengths, one can create a wide range of one-, two-, or three-dimensional lattices with diverse geometries, see for instance Fig. 2.1. These lattices include superlattices [START_REF] Sebby-Strabley | Lattice of double wells for manipulating pairs of cold atoms[END_REF], as well as triangular [START_REF] Becker | Ultracold quantum gases in triangular optical lattices[END_REF], honeycomb [START_REF] Tarruell | Creating, moving and merging dirac points with a fermi gas in a tunable honeycomb lattice[END_REF], and Kagomè lattices [START_REF] Jo | Ultracold atoms in a tunable optical kagome lattice[END_REF], among others.

In experiments, one can directly adjust the lattice depth, lattice constant, and geometry by manipulating the intensity, frequency, and phase of the laser beams. This stands in stark contrast to solid-state systems, where the crystal lattice structure is mostly predetermined by the constituent atoms and is fixed after growing the material. The optical lattice potential can be changed in real-time during the experiment by adjusting the laser beams, allowing for a variety of observations such as the free expansion of the gas cloud or the change in amplitude of the lasers over time.

Many-body physics with ultracold atoms

In modern physics, ultracold atomic gases have become a well-established experimental platform for studying quantum many-body phenomena. This remarkable tool enables the observation of non-trivial behaviors in many-body systems, both in and out of equi-librium.

At sufficiently low temperatures and with a deep enough lattice, the Hubbard Hamiltonian represents the most natural many-body problem that can be studied by means of ultracold gases [START_REF] Jaksch | The cold atom hubbard toolbox[END_REF][START_REF] Lewenstein | Ultracold atomic gases in optical lattices: mimicking condensed matter physics and beyond[END_REF][START_REF] Esslinger | Fermi-hubbard physics with atoms in an optical lattice[END_REF]. In the case of bosonic gases the Bose-Hubbard Hamiltonian reads:

H BH = -t i,j a † i a j + H.c. + U 2 j n j (n j -1) =H U , (2.3) 
where a

( †) j are the canonical bosonic operators satisfying the commutation relations a i , a † j = δ i,j and t denotes the tunnelling matrix element between two neighboring sites indicated by i, j . H U takes into account interactions among particles which usually arise from contact interactions leading to on-site density-density interactions, with U begin the on-site interaction strength and n j = a † j a j the density at site j. Let us mentions here one of the earliest experimental successes of ultracold atoms in optical lattices which was the simulation and detailed study of the Bose-Hubbard model with repulsive interactions at integer filling. In this case the system undergoes a phase transition from a superfluid to a Mott insulator as the ratio of interaction to kinetic energy U/t is increased above a critical value (which depends on the dimensionality of the system) [START_REF] Greiner | Quantum phase transition from a superfluid to a mott insulator in a gas of ultracold atoms[END_REF][START_REF] Jaksch | Cold bosonic atoms in optical lattices[END_REF] 

(see Fig. 2.2).
In the case of spin-1/2 particles, the Hubbard Hamiltonian is generalized to the Fermi-Hubbard Hamiltonian, which describes interacting fermions in a lattice:

H FH = -t i,j ,σ c † i,σ c j,σ + H.c. + U j n j,↑ n j,↓ , σ ∈ {↑, ↓} (2.4) 
where a

( †) j are the canonical fermionc operators satisfying the anti-commutation relations c i,σ , c † j,σ = δ i,j and n j,σ = c † j,σ c j,σ the density of spin σ at site j. By utilizing atoms with a larger number of internal spin states, such as alkaline earth(-like) atoms with SU(N)-invariant interactions, it is possible to investigate a wider range of phenomena [START_REF] Manmana | Su(n) magnetism in chains of ultracold alkaline-earth-metal atoms: Mott transitions and quantum correlations[END_REF][START_REF] Gorshkov | Two-orbital s u(n) magnetism with ultracold alkaline-earth atoms[END_REF][START_REF] Zhang | Spectroscopic observation of su(<i>n</i>)-symmetric interactions in sr orbital magnetism[END_REF][START_REF] Cazalilla | Ultracold fermi gases with emergent su(n) symmetry[END_REF][START_REF] Hazzard | High-temperature properties of fermionic alkaline-earth-metal atoms in optical lattices[END_REF][START_REF] Hermele | Mott insulators of ultracold fermionic alkaline earth atoms: Underconstrained magnetism and chiral spin liquid[END_REF]. In particular, the SU(N)-Hubbard model is predicted to exhibit exotic magnetic phases of matter. However, this model is theoretically complex and challenging to study. Experimental investigations of these exotic physics phenomena can offer valuable insights into high-spin magnetism and deepen our understanding of quantum many-body systems.

In the upcoming chapters of this manuscript, we will extensively study both the Bose-Hubbard and the SU(2)/SU(N) Fermi-Hubbard Hamiltonian in the presence of losses, and examine how these losses impact the behavior of the system. By investigating the interplay among interactions, lattice confinement, and losses, we can gain valuable insights into the underlying physics of the problem.

Lossy ultracold atomic and molecular gases

Ultracold gases present a unique experimental platform that enables the study of manybody quantum dynamics in the absence of external sources of decoherence. However, it would be erroneous to assume that these setups are completely immune to any form of decoherence. For example, atoms continuously escape from the trapped cloud, leading to particle losses. Cold atom experiments involve various loss processes, including one-body losses resulting from scattering with background thermal atoms [START_REF] Knoop | Nonexponential one-body loss in a bose-einstein condensate[END_REF], which may be significant. Additionally, inelastic two-body collisions can occur naturally or be intentionally engineered, leading to two-body losses [START_REF] Browaeys | Two body loss rate in a magneto-optical trap of metastable he[END_REF]33,[START_REF] Franchi | State-dependent interactions in ultracold 174yb probed by optical clock spectroscopy[END_REF][START_REF] Tomita | Observation of the mott insulator to superfluid crossover of a driven-dissipative bose-hubbard system[END_REF]. Three-body losses, where a highly bound diatomic molecule is formed, are invariably present and typically dominate the overall loss process [START_REF] Söding | Three-body decay of a rubidium bose-einstein condensate[END_REF][START_REF] Weber | Three-body recombination at large scattering lengths in an ultracold atomic gas[END_REF][START_REF] Tolra | Observation of reduced three-body recombination in a correlated 1d degenerate bose gas[END_REF]. In principle, loss processes involving more than three atoms also exist. In particular, losses involving four atoms have been reported in Refs. [START_REF] Ferlaino | Evidence for universal four-body states tied to an efimov trimer[END_REF][START_REF] Gurian | Observation of a resonant four-body interaction in cold cesium rydberg atoms[END_REF] In general, investigating losses and decoherence in controlled environments is a compelling area of research per se due to its strong ties to key aspects of quantum mechanics and the manifestation of classical behavior in quantum systems [START_REF] Zurek | Decoherence, einselection, and the quantum origins of the classical[END_REF]. Ultracold gases are a particularly intriguing platform for such studies, given the ability to conduct them in precisely controlled conditions.

However, there are other compelling reasons to undertake the challenge of studying decoherence phenomena, particularly the fact that the environment can induce intriguing phenomena where decoherence plays a pivotal role. An exemplary instance is the quantum Zeno effect, which suggests that the lifespan of an unstable quantum system can considerably increase with repeated or continuous observation [START_REF] Misra | The zeno's paradox in quantum theory[END_REF][START_REF] Itano | Quantum zeno effect[END_REF][START_REF] Beige | Driving atoms into decoherence-free states[END_REF][START_REF] Beige | Quantum computing using dissipation to remain in a decoherence-free subspace[END_REF][START_REF] Kempe | Theory of decoherencefree fault-tolerant universal quantum computation[END_REF][START_REF] Facchi | From the quantum zeno to the inverse quantum zeno effect[END_REF][START_REF] Facchi | Quantum zeno subspaces[END_REF][START_REF] Schützhold | Quantum zeno suppression of threebody losses in bose-einstein condensates[END_REF][START_REF] Stannigel | Constrained dynamics via the zeno effect in quantum simulation: Implementing non-abelian lattice gauge theories with cold atoms[END_REF][START_REF] Gong | Zeno hall effect[END_REF][START_REF] Fröml | Ultracold quantum wires with localized losses: Many-body quantum zeno effect[END_REF][START_REF] Snizhko | Quantum zeno effect appears in stages[END_REF][START_REF] Biella | Many-Body Quantum Zeno Effect and Measurement-Induced Subradiance Transition[END_REF]. A similar effect arises when a quantum system is dissipatively linked to an external environment, particularly in cases where the coupling is strong, as this scenario can be seen as a frequent generalized measurement. In fact, these studies have demonstrated that dissipation can be a universal resource for quantum computation [START_REF] Verstraete | Quantum computation and quantum-state engineering driven by dissipation[END_REF]. Consequently, the primary objective is not only to quantitatively comprehend the impact of decoherence, but also to harness dissipative phenomena to achieve a desired effect, such as the enhancement of quantum coherence and correlations [START_REF] Diehl | Quantum states and phases in driven open quantum systems with cold atoms[END_REF][START_REF] Roncaglia | Pfaffian state generation by strong three-body dissipation[END_REF][START_REF] Gong | Zeno hall effect[END_REF][START_REF] Müller | Engineered open systems and quantum simulations with atoms and ions[END_REF][START_REF] Bouchoule | The effect of atom losses on the distribution of rapidities in the one-dimensional Bose gas[END_REF].

Although the study of dissipative quantum systems is well-established in the realms of quantum optics and atom-photon interaction [START_REF] Cohen-Tannoudji | Atom-Photon Interactions: Basic Processes and Applications[END_REF], the aforementioned reasons have generated a surge of interest in the quantum dynamics of many-body systems coupled to environments [START_REF] Ashida | Non-hermitian physics[END_REF]. Despite being a relatively nascent field, numerous adaptable experimental platforms are now available for such studies. While this manuscript concentrates solely on ultracold gases, it is worth mentioning that significant experiments are also conducted with trapped ions [START_REF] Barreiro | An open-system quantum simulator with trapped ions[END_REF], cavity polaritons [START_REF] Carusotto | Quantum fluids of light[END_REF][START_REF] Boulier | Microcavity polaritons for quantum simulation[END_REF] and photons in nonlinear media [START_REF] Carusotto | Photonic materials in circuit quantum electrodynamics[END_REF], among others.

A noteworthy challenge frequently encountered during these studies pertains to the intricate numerical analyses necessitated to simulate even simple setups. The latter are inherently out of equilibrium and can no longer be represented by pure states but rather by a density operator which evolves according to a master equation that describes the coupling to an environment with an associated Hilbert space which scales in an unfavorable way. As such, one has to deal with the time evolution of operators, with generators of the real-time dynamics that are usually not Hermitian. Several methods for addressing this dissipative out-of-equilibrium dynamics have been proposed, based for instance on quantum trajectories [START_REF] Daley | Quantum trajectories and open many-body quantum systems[END_REF], tensor networks [START_REF] White | Density matrix formulation for quantum renormalization groups[END_REF][START_REF] White | Real-time evolution using the density matrix renormalization group[END_REF][START_REF] Verstraete | Matrix product density operators: Simulation of finite-temperature and dissipative systems[END_REF], extensions to (dynamical) mean field theories [START_REF] Jin | Cluster mean-field approach to the steady-state phase diagram of dissipative spin systems[END_REF][START_REF] Landa | Multistability of driven-dissipative quantum spins[END_REF][START_REF] Scarlatella | Dynamical mean-field theory for markovian open quantum many-body systems[END_REF], machine learning [START_REF] Hartmann | Neural-network approach to dissipative quantum many-body dynamics[END_REF][START_REF] Carleo | Solving the quantum many-body problem with artificial neural networks[END_REF][START_REF] Vicentini | Variational neural-network ansatz for steady states in open quantum systems[END_REF][START_REF] Yoshioka | Constructing neural stationary states for open quantum many-body systems[END_REF][START_REF] Nagy | Variational quantum monte carlo method with a neuralnetwork ansatz for open quantum systems[END_REF] and flow equations [START_REF] Rosso | Dissipative flow equations[END_REF][START_REF] Schmiedinghoff | Efficient flow equations for dissipative systems[END_REF][START_REF] Lenke | Series expansions in closed and open quantum many-body systems with multiple quasiparticle types[END_REF]; yet, the solution of many-body physics for open quantum systems remains a formidable task.

In Chapter 1 we have shown that if one assumes the Born and Markov approximations (which are well justified in several experimental platforms) some form of universality arises in the form of the time-evolution operator which takes the Lindblad form (1.89). The Lindblad master equation will be the starting point of all the original results associated to this thesis which will only consider cases where the aforementioned approximations are valid. In Ref. [START_REF] Bouchoule | Losses in interacting quantum gases: Ultraviolet divergence and its regularization[END_REF], for instance, a critical evaluation of the application of a Lindblad master equation to explore losses in cold gases is presented.

Many-body dynamics induced by losses

We will now focus on the many-body dynamics induced by losses, which can lead to a variety of interesting phenomena even when the gas is depleted. In recent years, the scientific community has become increasingly aware that losses are not only a challenge to be overcome or minimized, but also a valuable tool responsible for interesting physical effects. Researchers are now recognizing that losses can be harnessed for fruitful applications, rather than simply being something to fight against or tame. Several studies have pointed out that they can also induce interesting effects: for instance, they can be used as a diagnostic tool for strong correlations [START_REF] Tolra | Observation of reduced three-body recombination in a correlated 1d degenerate bose gas[END_REF][START_REF] Kraemer | Evidence for efimov quantum states in an ultracold gas of caesium atoms[END_REF][START_REF] Pollack | Universality in three-and four-body bound states of ultracold atoms[END_REF][START_REF] Baur | Two-body recombination in a quantum-mechanical lattice gas: Entropy generation and probing of short-range magnetic correlations[END_REF] or induce strong quantum correlations [START_REF] Syassen | Strong dissipation inhibits losses and induces correlations in cold molecular gases[END_REF][START_REF] García-Ripoll | Dissipation-induced hard-core boson gas in an optical lattice[END_REF][START_REF] Kantian | Atomic color superfluid via three-body loss[END_REF][START_REF] Daley | Atomic threebody loss as a dynamical three-body interaction[END_REF].

Moreover, losses have been shown that are a tool able to detect quantum coherence [START_REF] Kagan | Effect of bose condensation on inelastic processes in gases[END_REF], the onset of Bose-Einstein condensation [START_REF] Burt | Coherence, correlations, and collisions: What one learns about boseeinstein condensates from their decay[END_REF], and stabilize quantum Hall states [START_REF] Roncaglia | Pfaffian state generation by strong three-body dissipation[END_REF], as well as cool the gas [START_REF] Bouchoule | Cooling phonon modes of a Bose condensate with uniform few body losses[END_REF][START_REF] Dogra | Can three-body recombination purify a quantum gas?[END_REF][START_REF] Grišins | Degenerate bose gases with uniform loss[END_REF][START_REF] Johnson | Long-lived nonthermal states realized by atom losses in one-dimensional quasicondensates[END_REF][START_REF] Rauer | Cooling of a one-dimensional bose gas[END_REF][START_REF] Schemmer | Monte carlo wave-function description of losses in a one-dimensional bose gas and cooling to the ground state by quantum feedback[END_REF][START_REF] Schemmer | Cooling a bose gas by three-body losses[END_REF][START_REF] Bouchoule | Asymptotic temperature of a lossy condensate[END_REF] or drive it through phases that violate the equilibrium thermodynamic Tan's relation [START_REF] Bouchoule | Breakdown of tan's relation in lossy one-dimensional bose gases[END_REF] or feature critical behaviours [START_REF] Jin | Cluster mean-field approach to the steady-state phase diagram of dissipative spin systems[END_REF][START_REF] Lee | Antiferromagnetic phase transition in a nonequilibrium lattice of rydberg atoms[END_REF][START_REF] Morsch | Dissipative many-body physics of cold rydberg atoms[END_REF], among other examples. A quantum analogue of classical reaction-diffusion models has been derived in the context of two-body losses, emphasizing the distinct quantum effects that arise from the non-equilibrium dynamics induced by such losses [START_REF] Perfetto | Reaction-limited quantum reaction-diffusion dynamics[END_REF][START_REF] Perfetto | Quantum reactionlimited reaction-diffusion dynamics of annihilation processes[END_REF].

These effects are just a simple instance of the fact that in most situations the coupling to an environment, if properly engineered, can be beneficial and can be exploited for quantum technology purposes [START_REF] Beige | Quantum computing using dissipation to remain in a decoherence-free subspace[END_REF][START_REF] Diehl | Quantum states and phases in driven open quantum systems with cold atoms[END_REF][START_REF] Verstraete | Quantum computation and quantum-state engineering driven by dissipation[END_REF][START_REF] Iemini | Dissipative topological superconductors in number-conserving systems[END_REF]. The correct theoretical modelisation of the quantum dynamics induced by losses has thus emerged as an important problem and has recently attracted widespread attention.

As mentioned earlier, one significant motivation for studying loss dynamics in ultracold gases is the potential for dissipative quantum state preparation. By utilizing losses, it is possible to drive the system into non-trivial states, such as entangled states [START_REF] Harrington | Engineered dissipation for quantum information science[END_REF]. Even when the steady-state properties are trivial, losses can induce an interesting dynamics and force the gas to pass through states characterized by remarkable properties, so that the observables display non-trivial features. Eventually, even if current experiments do not suffer from significant loss effects, they still need to be taken into account to develop a quantitative description of the data.

When a gas is subject to losses that involve the simultaneous removal of K particles, the population of the gas evolves according to an equation that links the gas density to the quantum correlations of the gas. We can describe the gas using the local density, denoted as n(t), and the constant quantifying the loss rate, denoted as κ K . The equation also includes the normalized zero-distance K-body correlation function, denoted as g K (0, t), which describes the probability of finding K particles at the same point in space at time t. The equation can be written as follows:

d dt n(t) = -κ K Kn K (t)g K (0, t), (2.5) 
where g K (0, t) is given by:

g K (0, t) = a † K a K t a † a t K (2.6)
for a homogeneous gas of spinless bosons trapped in a one-dimensional lattice described by the field operators a ( †) . Eq. ( 2.5) provides important insights into the dynamics of a gas subject to K-body losses, as it links the gas density to the quantum correlations of the gas because of g K (0, t). Understanding the behavior of the equation can help us better understand how the gas evolves over time and the impact of K-body losses on the system. Strong K-body losses (where K ≥ 2) are a fascinating source of dissipation, as it has been shown they result in a K-body hard-core constraint among the particles. The resulting effective hardcore constrain could be used for creating states with non-trivial interparticle correlations. In a one-dimensional gas of atoms/molecules subject to two-body losses (where K = 2), experimental evidence has shown that strong losses result in an emergent behavior of the atoms/molecules as fermionized (hard-core) bosons/fermions. This counterintuitive phenomenon is reflected in the increased lifetime of the gas when two-body losses become stronger. We will extensively discuss this phenomenology for the K = 2 case in Sec. 2.4.

For the remainder of the manuscript, we will primarily address the case of twobody losses. However, to provide a complete overview, we will present two experimantal examples not related to the two-body case: the former pertains to one-body losses, while the latter addresses three-body losses.

One-body losses

The experiment carried out by Herwig Ott's group in Kaiserslautern, whose results are presented in Ref. [START_REF] Barontini | Controlling the dynamics of an open many-body quantum system with localized dissipation[END_REF], provides an excellent example of engineering one-body losses. The authors investigated the effects of a 6-keV electron beam focused onto a Bose-Einstein condensate (BEC) of 87 Rb atoms. Upon impact, the electrons collide with atoms in the local vicinity, resulting in ionization or excitation. These atoms subsequently escape from the trapping potential, as depicted in Fig. 2.3. This mechanism enables the implementation of localized losses, which can be theoretically characterized by models such as the dissipative scattering model. It is worth noting that in the strongly-dissipative regime, the authors of Ref. [START_REF] Barontini | Controlling the dynamics of an open many-body quantum system with localized dissipation[END_REF] discovered a suppression of losses due to the many-body quantum Zeno effect [START_REF] Misra | The zeno's paradox in quantum theory[END_REF]. We will delve into this concept further in the upcoming Sections and Chapters.

Three-body losses

Regarding three-body losses, we refer to an experiment performed in [START_REF] Kantian | Atomic color superfluid via three-body loss[END_REF], where a metastable attractive Mott-insulator was implemented and studied using bosonic Cs atoms in a three-dimensional optical lattice. The system's dynamics was subject to onsite three-body loss processes, similar to the one depicted in Fig. 2.4. This mechanism can be explained through the Efimov effect [START_REF] Efimov | Energy levels arising from resonant two-body forces in a three-body system[END_REF], where an effective long-range threebody attractive interaction emerges in three-body systems interacting with short-range two-body forces under certain conditions. The authors of Ref. [START_REF] Kantian | Atomic color superfluid via three-body loss[END_REF] demonstrated that by tuning the three-body loss rate, it is possible to observe a metastable Mott-insulator state with attractive interactions and a lifetime of approximately 10s. Furthermore, they observed a reduction in the effective loss rate, which can, once again, be interpreted as a manifestation of the continuous quantum Zeno effect. Figure 2.4: Sketch of a on-site three body loss process characterized by a rate γ 3 , whereas J and U are the tunnelling amplitude and the on-site interaction strength, respectively. Picture taken from [START_REF] Daley | Atomic threebody loss as a dynamical three-body interaction[END_REF].

Two-body losses

From now on, we will focus exclusively on two-body losses for the rest of the chapter, as this physical mechanism is particularly relevant for our discussion of the original results. Two-body losses are particularly interesting because they are the inelastic equivalent of two-body interactions, and several observable phenomena discussed in the dissipative context parallel those seen in the well-known unitary setting.

The study of two-body losses in atomic and molecular gases has been closely tied to research on quantum degenerate gases since its early days. More recently, two-body losses have played a crucial role in the study of Ytterbium gases brought to quantum degeneracy, for which the loss rates have been exactly measured [33,[START_REF] Franchi | State-dependent interactions in ultracold 174yb probed by optical clock spectroscopy[END_REF]. Additionally, it has been observed that bosonic and fermionic molecules in quantum gases also suffer from two-body losses.

The dynamics of a gas undergoing two-body losses can be described by a mean-field equation, where the parameter κ is proportional to the rate of two-body losses. The equation is given by:

d dt n(t) = -κn 2 (t). (2.7)
This equation is obtained by approximating the two-body correlation function in Eq. (2.5) with the value of uncorrelated particles, i.e., g 2 (0, t) 1. The resulting power-law decay of the number density:

n(t) = n(0) 1 + κt , (2.8) 
is a standard expected behavior and is considered one of the most characteristic signatures of two-body losses. However, experimental and theoretical studies have shown that the power-law decay in (2.8) may not always hold. In this chapter, we will explore several situations where this decay is violated. This should not be surprising, as the employed approximation for the two-body correlation function is not always accurate. We will demonstrate that the behavior of the gas can be much richer and more complex.

In the following sections, we will provide a review of both theoretical and experimental works that have investigated (spinless) bosonic and fermionic gases with two-body losses. It is important to note that the set of works presented here is non-exhaustive, but they The particles behave as hard-core bosons, when two of such impenetrable particles are on nearest-neighbor sites, they decay with a much weaker rate of order O(t 2 /( 2 γ). Picture taken from Ref. [START_REF] García-Ripoll | Dissipation-induced hard-core boson gas in an optical lattice[END_REF] .

have been selected in order to set the stage for the presentation of the original results of this manuscript.

Bosons: experiment

We now begin our review by considering a pioneering experiment, carried out by Profs. Rempe and Cirac's groups in Munich in 2008, dealing with a one-dimensional bosonic gas of molecules with strong inelastic collisions, where the latter are responsible for losses, presenting a first situation where the mean-field behaviour (2.7) is violated. The details of the experiment and its theoretical analysis are included in Ref. [START_REF] Syassen | Strong dissipation inhibits losses and induces correlations in cold molecular gases[END_REF].

Hard-core bosons and quantum Zeno effect

One of the primary physical mechanisms that leads to strong correlations in bosonic systems can be understood as follows: at low temperatures and for strong local repulsive interactions, bosonic particles tend to stay far away from each other. This means that the wavefunction describing the particles must vanish when two particles occupy the same position. In one dimension, this is known as the Tonks-Girardeau gas ( [START_REF] Tonks | The complete equation of state of one, two and three-dimensional gases of hard elastic spheres[END_REF], [START_REF] Girardeau | Relationship between systems of impenetrable bosons and fermions in one dimension[END_REF]), and it is even possible to establish a unitary mapping between bosonic and fermionic wavefunctions. As a result, the terminology "fermionized bosons" or hard-core bosons is often used to describe such systems. In this experiment the authors demonstrate that inelastic interactions, namely losses, can induce the fermionization of bosonic gases. The underlying physical mechanism responsible for this outcome are two-body losses. In the experimental setup, a pair of 87 Rb atoms are associated into a molecule through ). The dashed line shows the expectation for an uncorellated system. Right panel: Lossy dynamics in presence of a lattice potential for different lattice strength (black 1.8E r , red 3.9E r and green 6.0E r ) Solid lines show the fits performed with an equation of the form (2.5). Picture taken from [START_REF] Syassen | Strong dissipation inhibits losses and induces correlations in cold molecular gases[END_REF].

a Feshbach resonance. The resulting diatomic molecules are in a highly excited state in both rotational and vibrational degrees of freedom [START_REF] Syassen | Collisional decay of 87 Rb feshbach molecules at 1005.8[END_REF]. During the dynamics, if two molecules come into contact at the same position, an inelastic collision can occur that results in a vibrational de-excitation of the molecules. The difference in binding energy is then converted into kinetic energy, causing the two molecules to be expelled from the system since the amount of energy released is much greater than the trap depth. In the strong dissipative regime, this mechanism occurs almost instantaneously.

This phenomenon can be effectively captured by introducing a large imaginary scattering length, which results in the bosonic particles perfectly reflecting each other. In this experiment, the strong correlations are revealed by a significant reduction in the rate of particle loss due to inelastic collisions. This is the smoking gun of the manifestation of the many-body quantum Zeno effect in the field of quantum simulation.

Experimental setup

The experiment uses molecules confined to one dimension by an optical lattice, with and without a periodic potential along the 1D axis. Initially, a Bose-Einstein Condensate (BEC) of 87 Rb atoms is transferred into a 3D optical lattice. The resulting Mott insulator contains exactly two atoms per lattice site in the central region. Using a Feshbach resonance at 1007.4 Gauss, the atom pairs are associated into molecules while the remaining atoms are removed with blast light. This procedure prepares a quantum state that contains one molecule at each site of a 3D optical lattice. The optical-lattice potential seen by a molecule is:

V ( x) = -V ⊥ cos 2 (kx) + V ⊥ cos 2 (ky) + V cos 2 (kz) , (2.9) 
where ⊥ and denote the perpendicular directions and the reference direction along which the final dynamics take place, respectively. The light wavelength is λ = 2π k = 830.440nm, and k = 2π λ . At the end of the state preparation,

V ⊥ = V = 127E r , where E r = 2 k 2
2m is the molecule recoil energy, and m is the mass of one molecule.

After this preparation, V is linearly ramped down, reaching its final value after 0.5 ms. At this point, time t = 0, and an array of tubes of 1D gases is formed. The system is then allowed to evolve for a variable hold time during which molecules collide inelastically, resulting in losses.

Two distinct experiments were conducted; in both cases, the absence of a lattice potential was used as the reference scenario. In the first experiment, there was no lattice potential in the direction of the one-dimensional tubes, i.e., V was zero. In the second experiment, a lattice potential with V V ⊥ was introduced along the one-dimensional tubes, causing the motion along the tubes to be characterized as hopping between discrete sites, while the motion perpendicular to the tubes remained frozen. This was done to increase the impact of interactions by reducing the kinetic energy of the molecules, thereby entering the strong-correlation regime. In this case, the unitary part of the dynamics was described by the Bose-Hubbard model (2.3). The dissipative dynamics were modeled by the Lindblad dissipator which takes into account two-body losses. The rate at which losses occur, denoted by γ, is related to the imaginary part of the scattering length a as well as U (on-site interaction strength), see Fig. 2.5 (left panel) for a scheme of the situation under study. In both experiments, the strongly-dissipative regime was implemented, characterized by γ t (t being the hopping amplitude) and U ∼ γ, whose results are detailed in the following subsection.

Results

Both experiments investigated the number of molecules as the main physical quantity during the dynamics. Figure 2.6 shows experimental data averaged over a large number of tubes, where the reduction is compared to the uncorrelated case without a lattice potential. A fit of the data revealed that the particle loss rate is reduced by a factor of 10 in both cases, and in the presence of the lattice potential, the reduction is up to a factor of 2000.

In particular, an effective model, which will be detailed in the next section, gives an effective loss rate Γ eff that scales as (t 2 /( 2 γ) (see Fig. 2.5 (right panel) the next Subsection for details). showing that particle losses are inhibited for strong inelastic interactions (γ → +∞). The new effective rate within this regime is inversely proportional to the original one, a typical signature of the Quantum Zeno effect. This phenomenology has been also probed in spinless bosonic gases with [START_REF] Tomita | Observation of the mott insulator to superfluid crossover of a driven-dissipative bose-hubbard system[END_REF] photoassociative and intrinsic [START_REF] Tomita | Dissipative bosehubbard system with intrinsic two-body loss[END_REF] two-body losses, in multi-component fermionic gases [START_REF] Zhu | Suppressing the loss of ultracold molecules via the continuous quantum zeno effect[END_REF][START_REF] Sponselee | Dynamics of ultracold quantum gases in the dissipative fermi-hubbard model[END_REF] and bosonic systems with three-body losses [START_REF] Mark | Interplay between coherent and dissipative dynamics of bosonic doublons in an optical lattice[END_REF].

Bosons: theory

In this section, we present the two main theoretical contributions that characterize the previously described experiment on the bosonic lossy dynamics. Our focus will be on the strong two-body losses limit, which corresponds to the most interesting and relevant experimental condition.

Effective master equation and its mean-field solution

We model the full dynamics of the experiment by a Lindblad master equation for the density matrix ρ(t):

d dt ρ = - i H BH , ρ + D[ρ]. (2.10)
The unitary dynamics is governed by a single-band Bose-Hubbard Hamiltonian H BH (2.3), while the Lindblad dissipator accounting for two-body losses is given by:

D[ρ] = γ i a 2 i ρa †2 i - 1 2 a †2 i a 2 i , ρ (2.11) 
where γ is related to the imaginary part of the interaction strength. In the experimental situations that we want to model, i.e. those where losses are intrinsic, the ratio γ/U is determined by atomic (or molecular) properties, and is of the order of the unity; the ratio γ/t is instead tunable at will by modulating the strength of the optical lattice potential. We note that there are experiments in which the ratio γ/U can be tuned at will by means, for instance, of laser light, as it has been done in Ref. [START_REF] Tomita | Observation of the mott insulator to superfluid crossover of a driven-dissipative bose-hubbard system[END_REF].

The authors of Ref. [START_REF] Syassen | Strong dissipation inhibits losses and induces correlations in cold molecular gases[END_REF] performed as well numerical calculations by solving the master equation (2.10) using matrix product density operators. The numerical calculations show that the system behaves like a fermionized gas, with a short memory time of approximately 1/γ for the initial state. During this time, particle losses occur, but after this short transient period, the dynamics can be well described by the effective loss rate Γ eff (see Fig. 2.5 (right panel)), given by:

Γ eff = 8 1 + 2U γ 2 t 2 2 γ . (2.12) 
This behavior can be interpreted as a manifestation of the continuous quantum Zeno effect (QZE) [START_REF] Misra | The zeno's paradox in quantum theory[END_REF], where the fast dissipation freezes the system in its initial state. We now want to derive an effective theoretical description for the gas in the limit of strong dissipation, where γ t, which is commonly referred to as the quantum-Zeno (QZ) regime.

We begin by considering a system that is initially prepared in an atomic-limit Mott insulator state, where each lattice site is occupied by exactly one atom. At initial time τ = 0, the lattice depth is lowered, allowing atoms to tunnel to neighboring sites and form doubly-occupied sites, which are highly unstable due to strong two-body losses.

Our objective is to study the lossy dynamics of the system, with a focus on measuring experimentally accessible quantities such as the total number of particles, N (t).

In this QZ regime, Fock states with at least one doubly-occupied site rapidly decay on a timescale of ∼ γ -1 before any significant coherent dynamics can occur. Thus, the subspace of Fock states with at most one boson per lattice site is quasi-stationary, and the long-time dynamics take place within this space of fermionized hard-core bosons. It is important to note that this kinematic constraint arises solely from the strong losses and already indicates the emergence of non-trivial correlations induced by the losses.

Using the separation of time-scales γ -1 /t, Ref. [START_REF] García-Ripoll | Dissipation-induced hard-core boson gas in an optical lattice[END_REF] proposes an effective Lindblad master equation that describes the long-time dynamics in the hard-core bosons (HCB) subspace. For the detailed derivation see Ref. [START_REF] García-Ripoll | Dissipation-induced hard-core boson gas in an optical lattice[END_REF], we report here the final result:

ρ = - i [H , ρ] + j L j ρL † j - 1 2 {L † j L j , ρ} (2.13a) 
H = -t j b † j b j+1 + H.c. (2.13b) L j = Γ eff b j (b j+1 + b j-1 ) (2.13c)
where b

( †) j are HCB operators. The effective Hamiltonian H corresponds to a tightbinding model of HBC. The effective jump operators L j take the form of inelastic nearestneighbor interactions with the Zeno effective loss rate Γ eff given by Eq. (2.12).

This master equation implies a complicated decay-law for the mean atom density. At this point, the authors employed a mean-field assumption, assuming no correlation between sites, i.e. L † j L j ≈ 2 n j 2 , obtaining the already proposed mean-field behaviour (2.7), which in this case reads:

n(t) = 1 1 + 4Γ eff t . (2.14)
In Fig. 2.7 we compare Eq. (2.14) with the numerical solution of the effective master equation with state-of-the-art techniques based on quantum trajectories for sizes up to L = 14. These simulations are a benchmark that does not depend on physical approximations. As expected, the mean-field solution aligns with the numerics only in the short term, as the initial state lacks correlations. However, significant deviations arise in the long term, indicating the emergence of correlations that the mean-field model cannot capture.

A t-GGE ansatz for the lossy dynamics

We now present the results of Ref. [START_REF] Rossini | Strong correlations in lossy one-dimensional quantum gases: From the quantum zeno effect to the generalized gibbs ensemble[END_REF], where the authors show how to take into account the spatial quantum correlations that build-up during the lossy dynamics, and how to product the correct scaling with time of the density n(t).

The authors of Ref. [START_REF] Rossini | Strong correlations in lossy one-dimensional quantum gases: From the quantum zeno effect to the generalized gibbs ensemble[END_REF] interpreted the dissipative dynamics as periods of unitary evolution interrupted by quantum jumps corresponding to loss events. The time interval Figure 2.7: Time-evolution of the number of atoms according to the rate equations (2.16) for the initial state ρ 0 (dashed red line). We take U/J = 20 and U/( γ 2B ) = 1.33 as in 174 Yb. The results is benchmarked with simulations based on quantum trajectories for L = 10, 12 and 14 (each point is averaged over 10 4 trajectories). The dot-dashed black line represents the mean-field solution N (t)/L in Eq. (2.14). The inset highlights the different long-time decay as t -1 for the mean-field solution and as t -1/2 for the rate equation. Picture taken from [START_REF] Rossini | Strong correlations in lossy one-dimensional quantum gases: From the quantum zeno effect to the generalized gibbs ensemble[END_REF].

between two consecutive loss events is Γ -1 eff . Because the typical time scale of the unitary dynamics of H is /t Γ -1 eff , the unitary dynamics that takes place in between the loss events is long. We can analyze this dynamics more easily after a Jordan-Wigner transformation, which maps the hardcore bosons to free fermions. Assuming periodic boundary conditions, H can then be expressed as a free fermionic Hamiltonian, given by H = -2t k cos (k)n k , where k is the quasimomentum and c ( †) k canonical fermionic operators in momentum space.

The theory of generalized thermalization in closed quantum systems enables us to describe the state that a system reaches after a long unitary evolution of H as a pseudothermal state σ, which takes into account all possible conservation laws. This state can be thought of as a generalized Gibbs ensemble (GGE) [START_REF] Essler | Quench dynamics and relaxation in isolated integrable quantum spin chains[END_REF][START_REF] Vidmar | Generalized gibbs ensemble in integrable lattice models[END_REF]. In momentum space, the pseudo-thermal state σ is Gaussian and is therefore fully characterized by its correlation matrix g kq = Tr[σc † k c q ], which is diagonal for a non-interacting and translationally invariant Fermi gas:

g kq = δ kq n k .
(2.15)

Assuming that losses are infrequent enough that the system has sufficient time between two loss events to reach a Gaussian generalized thermal state, as described by Eq. (2.15), we can fully characterize the system's dynamics by knowing only the occupation numbers of the different fermionic momenta

n k (t) = Tr[ρ(t)n k ].
The authors' proposal for fully characterizing the loss dynamics of N (t) consists of assuming that at every time t, the state ρ(t) is Gaussian, and that it always satisfies momentum factorization as described in (2.15). By starting from the Lindblad master equation (formulated in terms of fermions) and utilizing the properties (i) and (ii) mentioned above, they obtained the following rate equations after performing some algebra:

d dt n k (t) = - 4Γ L q (sin (k) -sin (q)) 2 n q (t)n k (t). (2.16)
The initial state of the system is characterized by unit occupation for each momentum, given by n k (0) = 1. In the fermionic representation, this state corresponds to a band insulator with the lowest Bloch band completely filled. Fig. (2.16) shows the time dependence of the density N (t)/L for a system with L = 100 particles, which is indistinguishable from the thermodynamic limit (not shown). We observe that the prediction of the rate equations agrees excellently with the numerical simulations for all times considered, except for finite-size effects. These results lead us to conclude that the rate equations (2.16), despite their simplicity, can capture the behavior of a complex, interacting, and dissipative system. Furthermore, these equations provide access to the thermodynamic-limit behavior at a negligible computational cost.

In contrast to the mean-field solution that predicts the scaling N (t) ∝ t -1 at long times, the rate equations (2.16) indicate that N (t) decays to zero as t -1/2 . This result is illustrated in the inset of Fig. 2.7 and can be analytically proven. This algebraic decay is a distinctive feature of the correlations that emerge due to the dissipative dynamics.

The fermionic occupation numbers n k (t), which coincide with the rapidity distribution in the thermodynamic limit, can be obtained directly from the rate equations given in Eq.(2.16). In Ref. [START_REF] Rossini | Strong correlations in lossy one-dimensional quantum gases: From the quantum zeno effect to the generalized gibbs ensemble[END_REF] the authors show that in the long-time limit t > Γ -1 eff , n k (t) is well approximated by:

n k (t) ≈ 1 (8πΓ eff t) 1/4 e -sin 2 (k) 8Γ eff t π 1/2 .
(2.17) Fig. 2.8(left) presents the plot of n k (t) for different times, showing excellent agreement with the simulations. The momentum distribution starts uniformly spread among different momenta, but a double-peaked distribution emerges for long times, with maxima at k = 0, π. The interplay between two-body losses and coherent free-fermion dynamics leads to a non-equilibrium exotic fermionic gas, which can be interpreted again as the hallmark of the quantum Zeno effect.

Connection to the theory of the time-dependent generalised Gibbs ensemble

The theory presented so far can be reformulated using the notion of time-dependent Generalized Gibbs Ensemble (t-GGE), which has been introduced recently [124, 129, 125, 137]. The reformulation is of interest conceptually because a system in the quantum Zeno regime features quasi-stationary subspaces, as originally pointed out in Ref. [START_REF] Facchi | Quantum zeno subspaces[END_REF]. The dynamics confined within these subspaces are generally governed by a master equation with a strong unitary component and weak dissipation, which is precisely the scenario we are considering here. By utilizing a t-GGE, the authors established a more appropriate starting point for modeling other experimental setups [START_REF] Zhu | Suppressing the loss of ultracold molecules via the continuous quantum zeno effect[END_REF][START_REF] Sponselee | Dynamics of ultracold quantum gases in the dissipative fermi-hubbard model[END_REF][START_REF] Mark | Interplay between coherent and dissipative dynamics of bosonic doublons in an optical lattice[END_REF].

The tGGE theory is based on a specific ansatz for the density matrix, which retains only the GGEs for the strong Hamiltonian H , rather than all possible stationary states. The density matrix is given by:

ρ tGGE (t) = 1 Z(t) e -k µ k (t)c † k c k , (2.18) 
where Z(t) is the generalized partition function and µ k (t) are time-dependent Lagrange multipliers. By following the prescriptions presented in Refs. [START_REF] Lange | Pumping approximately integrable systems[END_REF][START_REF] Lenarčič | Perturbative approach to weakly driven many-particle systems in the presence of approximate conservation laws[END_REF][START_REF] Lange | Time-dependent generalized gibbs ensembles in open quantum systems[END_REF][START_REF] Mallayya | Prethermalization and thermalization in isolated quantum systems[END_REF] one can compute the equations of motion for the Lagrange multipliers µ k (t) establishing the equivalence of the two formulations assuming the individual occupation numbers for the state (2.18) obey a Fermi-Dirac distribution n k (t) = (e µ k (t) + 1) -1 .

Fermions: general considerations

When one considers fermions with an internal structure, such as spin-1/2 particles, profound implications for both stationary states and dynamics can emerge. In contrast to the (spinless) bosonic case, the stationary state is not necessarily the vacuum. Instead, stationary states can be highly complex due to the conservation of spin. Losses can stabilize an incoherent mixture of entangled Dicke states, which may prove useful for metrological purposes, such as high-precision phase measurements [START_REF] Foss-Feig | Steady-state manybody entanglement of hot reactive fermions[END_REF].

The situation becomes particularly fascinating when considering higher spins, which can be realized using a broad range of alkaline earth(-like) metal atoms, including Sr and Yb. In this scenario, the symmetry of the problem generalizes the SU(2) symmetry associated with spin-1/2 particles, resulting in an SU(N)-spin symmetry for N-component spins. Interestingly, this symmetry can be decomposed as an SU(2) symmetry when examining any two components from the available N components.

We will now provide an overview of the main experimental studies concerning lossy gases with SU(2) (and generic SU(N)) symmetry, as well as the preliminary works aimed at their theoretical characterization. In presenting this series of works, we will follow a chronological order in order to better appreciate the individual contributions and the progress of the state-of-the-art regarding these setups. It is worth noting that a significant portion of the original results presented in this manuscript will focus on the theoretical characterization of such lossy dynamics.

Fermions: stationary states

In this subsection we present the first theoretical characterization proposed in Ref. [START_REF] Foss-Feig | Steady-state manybody entanglement of hot reactive fermions[END_REF] regarding the stationary states emerging from a dissipative Fermi-Hubbard dynamics in the presence of local two-body losses. The work of Ref. [START_REF] Foss-Feig | Steady-state manybody entanglement of hot reactive fermions[END_REF] focuses on proposing realistic experiments concerning a two-component Fermi gas at T ∼ µK temperature, naturally evolving in the presence of reactive two-body collisions. The latter mechanism belongs intrinsically to a variety of interesting and experimentally relevant systems, such as fermionic alkaline-earth atoms (e.g. Yb) and fermionic dipolar molecules. The authors of Ref. [START_REF] Foss-Feig | Steady-state manybody entanglement of hot reactive fermions[END_REF] showed that two-compomemt fermionic gases can be driven by reactive swave two-body collisons into steady-state spin configurations that, for a given value of the saturated particle number, are pure and highly entagled.

As anticipated before, the entaglement emerges in the form of Dicke states. Such states are characterized by having the maximal value of the spin quantum number S, i.e. |S = n/2, S z , where n is the number of fermions in the systems, and notably exhibiting optimal metrological properties. The main difference with respect to the previously applied techniques relies on the fact that entaglement is a steady-state property that emerges, without any intervention, from uncorrelated initial states without requiring any special engineering of the system-reservoir coupling.

Master equation and Dicke states

The theoretical starting point is the theory presented in Section 2.4.2, generalized for spin-1/2 fermions. Consequently, the Lindblad master equation takes the same form: The particles behave as hard-core fermions, when two of such impenetrable particles are on nearest-neighbor sites, they decay with a much weaker rate Γ eff of order O(t 2 /( 2 γ).

dρ dt = - i [H, ρ] + D[ρ], (2.19) 
Picture taken from Ref. [START_REF] Sponselee | Dynamics of ultracold quantum gases in the dissipative fermi-hubbard model[END_REF] .

and:

D[ρ] = Im(g 1D ) 2 ¢ d 3 x 2L( x)ρL( x) † -L( x) † L( x), ρ (2.20) 
where

H = H 0 + Re(g 1d ) ¡ d 3 xΨ † ↑ ( x)Ψ † ↓ ( x)Ψ ↑ ( x)Ψ ↓ ( x)
is composed by an unspecified single-particle Hamiltonian H 0 , which should contain the kinetic term plus the one due to the trapping potential, and an interaction term with coupling constant Re(g 1d ). Ψ σ ( x) is the fermionic field operator for the spin σ satisfying the following anti-commutation relations:

Ψ σ ( x), Ψ σ ( x ) = Ψ σ ( x) † , Ψ σ ( x ) † = 0 (2.21a) Ψ σ ( x), Ψ σ ( x ) † = δ( x -x ) δ σ,σ . (2.21b)
The strength of the interactions is given by g 3D = 4π a m , where m is the mass of the molecule and a is the scattering length. The elastic collisions are associated to the real part Re(a), whereas the interactions that lead to losses are described by the imaginary part Im(a), with Im(a) ≤0. The dissipator D[ρ], written in the Lindblad form, is described by quantum jump operators given by:

L( x) = Ψ ↑ ( x)Ψ ↓ ( x), (2.22) 
that indeed describe a two-body loss process involving two fermions in the same position and with opposite spin. At this point, it is essential to note that due to the form of the jump operator, the two fermions exist in a singlet state with respect to their spin degrees of freedom. Consequently, a spin singlet is annihilated, and the loss process does not affect the spin of the gas. Therefore, the spin remains conserved throughout the dynamics.

Assuming without loss of generality that the initial number of particles, N , is even, the Hilbert space of the system can be expressed as a direct sum over spaces with welldefined particle numbers, as follows:

H = H N ⊕ H N -2 ⊕ • • • ⊕ H 0 .
(2.23)

Similarly, the density matrix can be expressed using the same notation, and we denote the density matrix related to the sector with n particles by ρ n once normalized. Furthermore, any Hilbert space, and hence sub-density matrix, can be decomposed into a direct product of the motional and spin degrees of freedom. We can, therefore, define a reduced spin density matrix in each sector denoted by ρ n s . It is also useful to define a fidelity in a given Dicke state of the spin degrees of freedom of n particles, |S = n/2, S z , as follows:

F S,Sz = S, S z |ρ n s |S, S z , (2.24) 
where S and S z represent the quantum numbers for the total spin and its projection along the z-axis, respectively.

Two particles

Let's begin by considering the simple case of two fermions in a double well potential. We label the left and right sides of the double well as α ∈ L, R. We choose the initial state to be c † ↑L c † ↓R |vac , where |vac is the vacuum state without any spin correlations and c ( †) L/R,σ are the canonical fermionic operators. Within a tight-binding approximation, the Hamiltonian is given by:

H = -t σ c † σL c σR + c † σR c σL + U α=L,R L † α L α , (2.25) 
where t is the inter-well hopping, L α = c ↑α c ↓α , and U and γ are related to the real and imaginary parts of g 3D , respectively. The master equation for the system is given by:

d dt ρ = - i ρ, H + γ α=L,R L α ρL † α - 1 2 L † α L α , ρ . (2.26) 
A cartoon of the situation under study id shown in Fig. 2.9 (left panel). The triplet state:

|t = c † ↑L c † ↓R + c † ↓L c † ↑R |vac (2.27)
is an entangled state with a spin wavefunction |S = 1, S z = 0 , known as the Dicke state. The spin part of the wavefunction is symmetric under exchange, which implies that the orbital wavefunction must be antisymmetric to satisfy the total antisymmetry imposed by fermionic statistics. As such, L L |t = L R |t = 0. The triplet state is an eigenstate of the Hamiltonian H and is therefore stationary under the dynamics imposed by the master equation. However, the singlet state does not satisfy this property. In summary, Figure 2.10: Calculation of the particle number N (t) (solid red line) and Dicke state fidelity (dashed blue line) for an 8-site Hubbard chain. The black dotted line is the analytical bound given in Eq. (2.30) placing the lower bound on the steady-state expectation value for N (t). γ correspond to Γ. For this calculation they solved O(10 4 ) trajectories without approximations. Picture taken from [START_REF] Foss-Feig | Steady-state manybody entanglement of hot reactive fermions[END_REF] the steady state of the system, when limited to the subspace with two fermions, is the entangled Dicke state.

Let us remark the fact that there is 50% of probability of obtaining the vacuum state, and hence the fidelity F 1,0 (2.24) is equal to 1 only after a post-selection of the non-vacant wells.

Many particles

The master equation (2.19) is notoriously challenging to solve for many-particle systems. However, we can still derive insightful statements about the steady state and its properties.

One crucial observation is that the fermionic quantum jump operators given by Eq. (2.22) only remove spin singlets, which demonstrates conservation of spin along the z-axis (or any other reference axis to which we assign the label z). We can verify that the total spin S is also conserved, where

S = ¢ d 3 xΨ σ ( x) † τ σ σ Ψ σ ( x), (2.28) 
and τ is a vector with components that are the Pauli matrices. Consequently, S 2 is conserved throughout the dynamics. This is expressed mathematically as:

d dt S • S = Tr ρ S • S = 0. (2.29)
When H is SU (2) invariant, it can be verified that the statement S • S, L(x) = 0 is true. An interesting consequence of this is that the population in any sector of the Hilbert space of the total spin, P S , is conserved. For example, if the initial state is a total spin singlet, then the lossy dynamics will yield the vacuum as the final state at long times. However, for our case study, the bound found in Ref. [START_REF] Arecchi | Atomic coherent states in quantum optics[END_REF] is more useful. This bound was computed for an uncorrelated spin state, such as a non-degenerate thermal distribution of N fermions in an unbiased incoherent mixture of ↑ and ↓, and it reads:

N (t) ≡ T r ρ, N ≥ S 2SP s = π 1/2 Γ N 2 + 1 Γ N 2 + 1 2 -1, (2.30) 
with N being the total number operator:

N = σ ¢ d 3 xΨ † σ ( x)Ψ σ ( x), (2.31) 
and Γ[z] is the Euler Gamma function. Equation (2.30) establishes a lower bound for the number of atoms N (t). Therefore, in [START_REF] Sponselee | Dynamics of ultracold quantum gases in the dissipative fermi-hubbard model[END_REF], the number of atoms saturates as t approaches infinity. If the bound is saturated in the steady state, then all of the ρ n s will describe pure Dicke states in the steady state. The crucial point is to guarantee the saturation of (2.30), for any fixed number of atoms n and S z . In other words, the Dicke state should be the unique steady state for an uncorrelated initial spin state.

Ref. [START_REF] Foss-Feig | Steady-state manybody entanglement of hot reactive fermions[END_REF] provides a significant result showing that the bound is saturated in certain experimentally relevant scenarios, such as a 1D Hubbard chain (optical lattice). To verify this statement numerically, Ref. [START_REF] Foss-Feig | Steady-state manybody entanglement of hot reactive fermions[END_REF] carried out quantum trajectory [START_REF] Daley | Quantum trajectories and open many-body quantum systems[END_REF] numerical computations on an 8-site Hubbard chain with open boundary conditions, an initial filling of one particle per site, and zero polarization (N = 8, S z = 0). The simulations produced results for the number of atoms N (t) and the Dicke state fidelity (2.24), as shown in Figure 2.10. Let us mention an alternative and more recent derivation of Dicke state being the dark states of the dynamics, which is presented in Ref. [START_REF] Yoshida | Liouvillian gap and single spin-flip dynamics in the dissipative fermi-hubbard model[END_REF] and that we report in App. 2.4.8.

First experimental and theoretical description of the many-body dynamics

A significant step forward was made with two works, one experimental (Ref. [START_REF] Yan | Observation of dipolar spin-exchange interactions with latticeconfined polar molecules[END_REF]), the other theoretical and experimental (Ref. [START_REF] Zhu | Suppressing the loss of ultracold molecules via the continuous quantum zeno effect[END_REF]), resulting from the collaboration between the research groups of Prof. Rey and Prof. Ye at the University of Colorado-Boulder at the turn of 2013 and 2014.

The experiment

Let us start by presenting the experimental results of Ref. [START_REF] Yan | Observation of dipolar spin-exchange interactions with latticeconfined polar molecules[END_REF]. The paper describes an experimental observation of dipolar interactions between polar KRb molecules in a three-dimensional optical lattice. Free KRb molecules react rapidly. In a lattice, the twobody inelastic collision rates are larger than all other lattice energy scales, including the band separation energy. The interaction arises from the resonant exchange of rotational angular momentum between two molecules. The molecular rotational states of the KRb molecules are denoted by |N, m N , where N is the principal quantum number and m N projection onto the quantization axis, which in their case was determined by an external magnetic field angled 45 • between the x and y lattice directions. The experiment begins by loading ∼10 4 fermionic KRb ro-vibrational ground-state molecules, |N = 0, m N = 0 , into the lowest band of a deep 3D cubic optical lattice. The lattice depth is 40 E r in each direction, where E r = 2 k 2 /2m is the recoil energy. They then applied a π/2 microwave pulse to rotationally excite half of the molecules to |N = 1, m N = -1 . They considered |0, 0 and |1, -1 as |↓ and |↑ components of a pseudo-spin 1/2 system, respectively. The lattice polarizations have been chosen so that the tensor AC polarizabilities of |0, 0 and |1, -1 are similar. However, a residual differential AC Stark shift introduces single-particle dephasing that results in a spin-coherence time for the entire sample of ∼1 ms. This dephasing allowed them to prepare an incoherent 50:50 spin mixture of |↓ and |↑ by holding the molecules in the deep lattice for 50 ms. Losses are then initiated by quickly ramping down the lattice depth in the y direction (within 1 ms) to allow tunneling. They measure the number of remaining molecules |↓ , i.e., N ↓ (t), as a function of the subsequent holding time in the lattice. Figure 2.11b shows example of loss curves for two different lattice depths along y.

In the system under study, the on-site loss rate γ is proportional to the chemical reaction rate between the |0, 0 and |1, -1 molecules:

γ = β ¢ |W (x, y, z)| 4 dx dy dz, (2.32) 
where β = 1.0(1) × 10 -12 cm -3 is the two-body loss coefficient and W (x, y, z) is the ground-band Wannier function. γ can be modified by changing the lattice depth; however, for our measurements, the system always remains in the strongly interacting regime in which γ t/ , where t is the tunneling amplitude. This is the regime of the quantum Zeno effect, where increasing γ actually decreases the effective two-body loss rate between neighboring molecules.

The authors verified the quantum Zeno effect by measuring the dependence of the loss rate κ on γ and t. To study the dependence on γ, they set the lattice depth along y to be 5.4(4) E r , which fixes t, and then increase the lattice depths along the x and z directions. This compresses the wave function W (x, y, z) in each lattice site, and thus increases γ. As expected for the quantum Zeno regime, the measured κ decreases as γ increases, and the data are consistent with κ ∝ 1/γ (Fig. 2.11c).

To study the dependence on t, they varied the lattice depth along y, while simultaneously adjusting the x and z lattice depths to keep γ fixed. As shown in Fig. 2.11d, the measured κ exhibits a quadratic dependence on t as predicted by Eq. (2.12) for the bosonic case.

For these loss rate measurements, all parameters are known except the initial filling fraction n 0 . From measurements of the loss rate at several lattice depths, we find n 0 to be 9(1)% for 2 × 10 4 molecules. Tunneling rate J t (s -1 )

 / Figure 2.11: Quantum Zeno effect for polar molecules in a 3D lattice. a, The lattice depths along x and z are kept at 40 E r , while the lattice depth along y is reduced to allow tunneling along the y direction at a rate t/ . Once two molecules in different spin states tunnel to the same site, they are lost due to chemical reactions at a rate γ. b, Number loss of | ↓ state molecules versus time is shown for lattice depths along y of 8.1 E r and 15.1 E r . c, The number loss rate κ versus γ fits to a 1/γ dependence, which is consistent with the quantum Zeno effect. d, The number loss rate κ versus t fits to a (t) 2 dependence, as predicted from the quantum Zeno effect. Picture taken from Ref. [START_REF] Yan | Observation of dipolar spin-exchange interactions with latticeconfined polar molecules[END_REF] This work presents the first instance of the quantum Zeno effect in the realm of lossy fermionic gases, depicted in Fig. 2.9 (left panel).

The theory

In a second subsequent article [START_REF] Zhu | Suppressing the loss of ultracold molecules via the continuous quantum zeno effect[END_REF], the authors present a theoretical model that describes the dissipative dynamics, including three-dimensional multi-band effects in a non-perturbative manner. However, the authors were only able to include the conservation of the total magnetisation and not of the spin of the gas, which we know to be one of the main features of this lossy dynamics, see Eq. (2.29). The analysis shows that the observed reduction in loss can be attributed to the continuous quantum Zeno effect, which occurs due to strong dissipation and leads to a suppression of coherent transitions. Furthermore, their model extends the previous single-band treatments to the regime of strong dissipation. They benchmarked their results against the experimental data based on a the protocol presented in the previous paper (Ref. [START_REF] Yan | Observation of dipolar spin-exchange interactions with latticeconfined polar molecules[END_REF]).

Since the experimental conditions always lay in the quantum Zeno regime, it was impelling to derive an effective master equation in such a regime. The authors generalized the bosonic master equation obtained by Ref. [START_REF] García-Ripoll | Dissipation-induced hard-core boson gas in an optical lattice[END_REF] in this regime, i.e. Eq.(2.13), to the fermionic case obtaining:

d dt ρ = - i [H 0 ρ] + D[ρ] (2.33a 
)

, H 0 = -J j,σ (f † jσ f j+1σ + h.c) (2.33b) D[ρ] = 1 2 j 2A j ρA † j -ρA † j A j -A † j A j ρ . (2.33c)
D is a Lindblad dissipator that accounts for losses, and the jump operators are

A j = √ 2Γ eff (f j↑ f j+1↓ + f j↑ f j-1↓ ) -(f j↓ f j+1↑ + f j↓ f j-1↑ ) , where f ( †) j
are hard-core fermions operators (we will elaborate exstensively on this in Chapter 6, including all the relevant steps of the derivation in Sec. 6.A).

When γ t, second-order perturbation theory can be applied, which results in a net |↓ loss rate of 4Γ eff , where Γ eff = 2(t/ ) 2 γ (the correct coefficients are reported in Sec. 6.A) , which takes the same form as Eq. (2.12). This loss rate can be related to the dynamics of the number of |↓ particles with a rate equation,

dn j↓ dt = -4qΓ eff n j+1↑ n j↓ ,
where n j↓ is the number of |↓ molecules at site j, and q is the number of nearest neighbor lattice sites (for tunneling along the tube direction, q = 2) [START_REF] Baur | Two-body recombination in a quantum-mechanical lattice gas: Entropy generation and probing of short-range magnetic correlations[END_REF].

Assuming a uniform distribution of particles, a 50:50 mixture implies n j+1↑ = n j↓ = n ↓ , obtaining the following equation for the number loss dynamics:

dn ↓ dt = -8Γ eff [n ↓ (t)] 2 solved by ------→ n ↓ (t) = 1 2 (1 + 4Γ eff (t))
(2.34) This rate equation assumes that the loss rate only depends on the average density. This assumption is valid when the redistribution of density after a loss process occurs faster than the typical time between losses (t ( Γ eff )). It is important to note that the rate equation (2.34) is limited to considering only the conservation of the magnetization of the gas. However, it has been demonstrated that not only the total spin, but also the total spin of the gas is conserved, see Eq. (2.29). To address this limitation, we will introduce a new theory that can precisely incorporate the conservation of spin in this problem, particularly in the weakly-dissipative regime.

However, in order to overcome the fact that the experimental γ is larger than the band gap (e.g., 4 times larger for a V y = 5 E r and V ⊥ = 40 E r lattice), the authors were forced to incorporate higher bands. This will decreases γ and hence decreases the number of particles estimated from experiment (since the effective loss rate is inversely proportional to γ). By a numerical fit of the loss rate of two particles trapped in a double well along y, they exctracted a renormalized effective loss rate dubbed Γeff , which is ∼ 5 times larger than Γ eff (not shown). The authors then employed this renormalised loss rate for solving both the master equation (2.33a) and the rate equation (2.34).

The authors then benchmarked the prediction of the numerical solution of the rate equation (2.34) and the master equation in the strongly-dissipative regime (2.33a) against experimental data. The authors employed two distinct approaches to solve the master equation (2.33a). In the first method, a mean-field (MF) ansatz was utilized for the local density matrix (similar to Gutzwiller's approach), under the assumption that no correlations would be formed over time. Alternatively, the authors proposed a second method, which relied on stochastic sampling of quantum trajectories combined with t-DMRG, the latter being used as a reference for numerical exact results.

In Fig. 2.12 they show the obtained data; it appears that the RE is inadequate for describing the system's dynamics, and the MF solution provides a better fit to the data. However, it should be noted that the MF assumption is a simplification that prohibits entanglement between different parts of the system, which may be considered an extreme approximation.

Dynamics in the Dissipative Fermi-Hubbard Model: a second experiment

In this subsection we focus on the experimental setup described in Ref. [START_REF] Sponselee | Dynamics of ultracold quantum gases in the dissipative fermi-hubbard model[END_REF], which involved inducing a controlled lossy dynamics in Yb atoms, including both spin S = 1/2 and S = 5/2 Yb atoms. The experiment was carried out by the group of Prof. K. Sengstock and Dr. C. Becker in Hamburg in 2018.

The authors conducted an experiment using fermionic 173 Yb atoms confined within a one-dimensional optical lattice array. The analysis focused on two and six-spin component mixtures, for varying lattice depths. The unique properties of Yb allowed them to observe natural dissipation in the form of inelastic two-body collisions. They conducted the experiment in a regime where losses were the dominant energy scale and inelastic interactions (related to the Γ eff of Eq. (2.12)) were comparable to on-site interactions (related to U ).

This work aims at the possibility of realizing highly-correlated stationary states (i.e. Dicke states) by means of inelastic interactions namely, losses, which were predicted theoretically in Ref. [START_REF] Foss-Feig | Steady-state manybody entanglement of hot reactive fermions[END_REF] to be the unique stationary states. In addition, correlations manifest themselves in a strong suppression of the rate at which particles are lost due to inelastic collisions as it was shown in Refs. [START_REF] Zhu | Suppressing the loss of ultracold molecules via the continuous quantum zeno effect[END_REF][START_REF] Yan | Observation of dipolar spin-exchange interactions with latticeconfined polar molecules[END_REF].

The observed outcome can be attributed to the occurrence of two-body losses, which is the physical mechanism responsible for this phenomenon. When two atoms, initially in a metastable state, come together at the same position, their electronic clouds overlap, causing them to interact. Subsequently, at a certain rate, both atoms decay into the ground state, and the interaction energy is converted into kinetic energy, leading to the expulsion of the two atoms from the system. In the strongly dissipative regime, this process occurs almost instantaneously.

Experimental setup

The experiments were performed using 173 Yb atoms in the metastable state 3 P 0 , confined to one dimension by an optical lattice with a periodic potential along the 1D; s-wave collisions in the metastable state 3 P 0 are significantly inelastic, leading to the desired two-body loss mechanism.

The experimental process began with a two-step laser cooling method, followed by loading the atoms into a crossed optical dipole trap. Spin-polarization of the sample was achieved through optical pumping on the intercombination transition 1 S 0 → 3 P 1 . The atoms were then evaporatively cooled to quantum degeneracy, resulting in a sample of Figure 2.13: Measurement as a function of dimensionless time t/t SE , t SE = Γ t 2 , in a 1D lattice for the dissipative Fermi-Hubbard model with spin S = 1/2 fermions. Dotted and dashed lines represent fit with the formula (2.42), with κ considered to be constant at all times, for all data points and for the first 11 ones, respectively. Whereas, solid line shows the fit through the formula (2.42) with τ as fit paramter. Picture and caption taken from [START_REF] Sponselee | Dynamics of ultracold quantum gases in the dissipative fermi-hubbard model[END_REF].

approximately N 0 10 4 atoms at a temperature of T 0.25T F , where T F is the Fermi temperature.

A deep triangular two-dimensional optical lattice with a strength of V lat 42E r was then introduced, while simultaneously adding a one-dimensional lattice with a strength of V 1D 50E r along the third direction. This resulted in the formation of a Mott insulator in the ground state 1 S 0 . Finally, a rapid adiabatic passage was used to transfer the atoms to the metastable state through the ultra-narrow optical clock transition 1 S 0 → 3 P 0 . After this preparation, V 1D is linearly ramped down and after 300µs it reaches its final value. After this ramp time is set to zero, an array of tubes of 1D gases is formed. Afterwards, the system is allowed to evolve for a variable hold time during which atoms collide inelastically, leading to losses.

Ttwo types of experiments were conducted, each involving a gas with different spin values: a spin S = 1/2 gas, and a spin S = 5/2 gas, with 2 and 6 spin components, respectively. In both cases, the lattice depth was adjusted to 5, 6, or 8E r to enable tunneling in one dimension. Similar to the bosonic case, this provided a natural way of amplifying the effects caused by interactions by quenching the kinetic energy, which slowed down the molecules and allowed them to enter the strong-correlation regime. During the experiment, a uniform magnetic field with B 0 3G was applied perpendicularly to the long axis of the 1D lattice to establish a quantization axis for the atoms, which ). Picture taken from [START_REF] Sponselee | Dynamics of ultracold quantum gases in the dissipative fermi-hubbard model[END_REF].

was referred to as the z-direction.

The unitary dynamics is thus described by the Fermi-Hubbard model:

H = -t i,σ∈{↑,↓} c † i+1σ c iσ + H.c. + U i n i↓ n i↑ , (2.35) 
where n j,σ = c † j,σ c j,σ is the fermionic number operator regarding the i-th site and spin σ and c iσ /c † iσ are the fermionic annihilation/creation operators concerning the i-th site and spin state σ satisfying canonical anti-commutation relations, t represents the tunneling amplitude between nearest neighbour site, whereas U is the on site interaction coefficient.

The lossy dynamics can be expressed in the Lindblad form that models on-site twobody losses:

D[ρ] = γ L i=1 c i↓ c i↑ ρc † i↑ c † i↓ - 1 2 n i↓ n i↑ , ρ , (2.36) 
where γ is the rate at which losses take place.In both cases, the experiment has been performed in the strongly dissipative regime. The latter can be phenomenlogically represented by the fact that γ t and γ ∼ U . In particular, the experimental conditions are such that the ratio γ/U 0.29 is fixed by atomic properties. As such, this ratio cannot be tuned by changing the lattice depth and is thus constant in the measurements presented here.

Results

In both cases, with either 2 or 6 spin components, the primary physical quantity observed during the dynamics is the number of atoms N (t). The experimental data related to a two-spin mixture with a final 1D lattice depth of 6E r is displayed in Figure 2.13. After an initial lossy dynamics, the investigation found that losses ceased, and a substantial fraction of atoms remained in the system. This statement holds true for both two and six-component spin mixtures, regardless of the adopted lattice depth, as illustrated in Figure 2.14. This universal behavior is indicative of the emergence of a highly correlated state at long times, which is predicted to be a Dicke state in these works [START_REF] Foss-Feig | Steady-state manybody entanglement of hot reactive fermions[END_REF].

The saturation of N (t) has been interpreted as a consequence of the total spin conservation throughout the dynamics. Although the time required to enter the final highly correlated regime and the fraction of atoms remaining in the system differ between the two cases with two and six spin components, further theoretical studies are required to provide a quantitative understanding of this dependence.

On top of the observation that N (t) cannot go to zero, it was also observed experimentally that the particle loss rate is significantly reduced for the long-time dynamics, showing that, for strong inelastic interactions (γ → ∞) particle losses are inhibited (not shown). This can, once again, be interpreted as a manifestation of the continuous quantum Zeno effect within the realm of lossy fermionic gases in this case.

A more phenomenological description

A more phenomenological analysis has been presented in the experimental reference we have already discussed [START_REF] Sponselee | Dynamics of ultracold quantum gases in the dissipative fermi-hubbard model[END_REF]. The authors describe the time evolution of the total particle number using a rate equation of the type (2.5):

d dt N (t) = -PN κ N 0 N (t) 2 , (2.37) 
In this equation, PN = (N -1)/N represents the probability of finding an atom in a different spin state on a neighboring lattice site, for an uncorrelated spin mixture with N spin components at unitary filling. Here, N 0 ≡ N (t = 0) denotes the initial number of atoms, and κ is the loss coefficient, which is related to the effective loss rate through:

κ = 4 q Γ eff g (2) η 0 , (2.38) 
In Equation (2.38), q represents the number of nearest neighbors (with q = 2 for a 1D lattice), η 0 denotes the initial filling of the lattice (which is η 0 = 1 for a lattice with unitary filling), and g (2) is the nearest neighbor correlation function. For a system with two spin components, g (2) has the form given by [START_REF] Baur | Two-body recombination in a quantum-mechanical lattice gas: Entropy generation and probing of short-range magnetic correlations[END_REF]:

g (2) = 1 N -1 i,j n i n j -4 S i • S j / 2 n i n j , (2.39) 
Here, n i and S i are the number and spin operators for lattice site i, respectively. The summation over nearest neighbors is represented by ij . The expression for g (2) can be easily generalised to the case with an arbitrary number of spin component: with σ and σ two different flavours among the N components. To fit the experimental data, the authors assumed a time-dependent g (2) by introducing the variable κ(t), in contrast to the constant assumption which recovers equation (2.34). Specifically, they employed the following assumption:

g (2) = 1 N -1 ij σ =σ n iσ n jσ + n iσ n jσ -c † iσ c † jσ c iσ c jσ -c † iσ c † jσ c iσ c jσ n i n j , ( 2 
κ(t) = κ(0)e -t/τ , (2.41) 
with τ being the fit parameter. At this stage, the solution to Eq. (2.37) yields:

N (t) = N 0 1 + P N κ 0 τ -P N κ 0 τ e -t/τ t→∞ = N 0 1 + P N κ 0 τ , (2.42) 
which is plotted in Figs. 2.13, 2.14, displaying an excellent agreement with the experimental data. The assumption of exponential decay is crucial to achieve an asymptotic population in steady-state. Moreover, a g (2) equal to zero corresponds to a fully-symmetric Dicke state. We will provide further comments on this topic in Chapters 5 and 6.

Magnetic correlations in the lossy Fermi-Hubbard model

Theory

The emergence of entangled Dicke states as stationary states has consequences on the magnetic properties as well. These consequences have been analyzed from a theoretical perspective in Ref. [START_REF] Nakagawa | Dynamical sign reversal of magnetic correlations in dissipative hubbard models[END_REF]. The authors investigate the behavior of magnetic correlations, e.g. S i • S i+1 , in both (spinfull) Bose and Fermi-Hubbard models subject to two-body losses, where S i is the associated spin operator on site i. They focus on the dynamics of the spin correlations in the system, and show that under certain conditions, the sign of the magnetic correlations can change dynamically. This phenomenon, which they dub "dynamical sign reversal", can lead to interesting and potentially useful properties, such as the suppression of magnetic ordering and the emergence of novel phases.

The authors develop a theoretical framework to describe the dissipative Hubbard model by projecting the dynamics onto the relevant spin degrees of freedom and use quantum trajectories to explore the behavior of the system. The main result of the analtical analysis, developed using second order perturbation theory, consists in the derivation of the effective spin Hamiltonian:

H eff = η(J eff + iΓ) i,j S i • S j + 1 -2η 4 , (2.43) 
where

J eff = 4U t 2 /(U 2 + γ 2 ), Γ = 4γt 2 /(U 2 + γ 2 )
, and η = +1 (η = -1) for fermions (bosons). The authors have discovered that the spin degrees of freedom undergo evolution in accordance with a non-Hermitian ferromagnetic Heisenberg Hamiltonian (in the fermionic case). As a consequence, ferromagnetic correlations will emerge. This finding will be utilized in Chapter 6 to construct our theory for the dynamics of this setup.

To better understand the phenomenon of dynamical sign reversal, let us consider a simple scenario. We start with an anti-ferromagnetic system, such as the Néel state (|↑↓↑↓ . . . ), where the initial spin correlations are negative. As the system evolves, the decoherence dynamics is responsible for killing all singlets, leaving only triplets, or alternatively ferromagnetic configurations. This stabilizes the ferromagnetic configuration, which exhibits positive spin correlation functions and thus a sign reversal occurs. We show in Fig. 2.15 the numerical data showed in Ref. [START_REF] Nakagawa | Dynamical sign reversal of magnetic correlations in dissipative hubbard models[END_REF] exhibiting the sign reversal.

Experiment

These theoretical predictions were (partially) verified in an experimental work published this year [START_REF] Honda | Observation of the sign reversal of the magnetic correlation in a drivendissipative fermi gas in double wells[END_REF], carried out by the group of Prof. Takahashi in Kyoto.

The authors employed a degenerate Fermi gas of six-component 173 Yb (T /T F ∼ 0.15, T F : Fermi temperature), which is generated by evaporative cooling and then loaded into an optical superlattice which realizes an array of double-wells or a 1D optical lattice as well as the crossover between them.

On-site two-body losses were introduced as dissipation utilizing a photoassociation (PA) technique. In the PA process, two ground-state atoms in a doubly occupied site, where a PA laser beam is irradiated, are converted to an electronically excited short-lived molecule, which rapidly escapes from an optical trap [START_REF] Tomita | Observation of the mott insulator to superfluid crossover of a driven-dissipative bose-hubbard system[END_REF]. In this way, on-site two-body losses are realized with the PA laser, enabling them to control the loss rate by controlling the PA laser intensity.

The authors measured nearest-neighbor spin correlations by means of singlet-triplet oscillations (STOs) [START_REF] Trotzky | Controlling and detecting spin correlations of ultracold atoms in optical lattices[END_REF] which are optically induced by a spin-dependent potential gradient. The protocol then proceeds as follows (see also Fig. 2.16. The dynamics inside each double well is described by Eq. (2.26).

1. Tunneling freezing : they freezed tunneling between intra-and inter-dimer sites by ramping up the long lattice depth of double wells. 3. Site merging : by ramping down the short lattice depth they were able to detect the symmetry of both the orbital and spin part of the wavefunction. Here, two atoms in the singlet state which has a spatially symmetric two-particle wave function both occupy the lowest band, while for two atoms in the triplet state which has a spatially antisymmetric two-particle wave function, one atom occupies the lowest band and the other atom occupies the first excited band.

4. Irradiation of the PA laser : we irradiate the PA laser and remove two atoms which doubly occupy the lowest band, corresponding to the detection of the singlet states.

After irradiating the PA laser, the absorption imaging follows, in which observed atom number dynamics reflects the magnetic correlation of the prepared sample.

Fig. 2.17 shows the obtained experimental data starting from three different antferromagnetic configurations (dubbed (i)-(ii)-(iii)). As theoretically predicted, the lossy dynamics eliminates the singlet fraction p s , allowing only triplets to persist in the longterm. Consequently, ferromagnetic spin correlations arise, consistent with the Dicke-type correlation that was predicted in the stationary state.

Dark states in the dissipative Fermi-Hubbard model

In a recent work [START_REF] Yoshida | Liouvillian gap and single spin-flip dynamics in the dissipative fermi-hubbard model[END_REF] H. Yoshida and H. Katsura presented a new derivation for the dark state of the dynamics of the dissipative Fermi-Hubbard model with two-body losses. We sketch here the main steps. 

dρ dt = Lρ := -i[H, ρ] + x∈Λ L x ρL † x - 1 2 L † x L x , ρ . (2.44) 
Here, L is the Liouvillian superoperator acting on the density matrix ρ, H is the Hamiltonian, and L x are the quantum jump operators. The Hamiltonian is given by the SU(N ) Fermi-Hubbard model:

H = H hop + H int , (2.45) 
H hop = -t x∈Λ d µ=1 N σ=1 c † x,σ c x+eµ,σ + H.c. , (2.46) 
H int = U x∈Λ 1≤σ<τ ≤N n x,σ n x,τ , (2.47) 
where e µ is the unit vector in the direction µ (= 1, . . . , d), and H hop represents the nearest neighbor hopping term. Here, t ∈ R is the hopping amplitude and U ∈ R is the strength of interaction. The Lindblad operator

L x = 2γ 1≤σ<τ ≤N c x,σ c x,τ (2.48) 
describes a two-body loss at site x with rate γ > 0.

The authors first decomposed the Liouvillian as L = K+J with Kρ := -i

H eff ρ -ρH † eff , J ρ := x∈Λ L x ρL †
x , where

H eff := H -i 2 x∈Λ L † x L
x is the effective non-Hermitian Hamiltonian. The explicit form of H eff is given by a Fermi-Hubbard model with complex interaction, i.e.:

H int = (U -iγ) x∈Λ 1≤σ<τ ≤N n x,σ n x,τ .
(2.49)

It has been shown in Ref. [START_REF] Nakagawa | Exact liouvillian spectrum of a one-dimensional dissipative hubbard model[END_REF] that L possesses the same spectrum as H eff .

Dark states

A steady state of the Lindblad master equation is defined as a state ρ such that Lρ = 0.

To find a steady state, it is convenient to use H eff , because when |ψ is an eigenstate of H eff with real eigenvalue, |ψ ψ| is a steady state [START_REF] Nakagawa | Exact liouvillian spectrum of a one-dimensional dissipative hubbard model[END_REF].

To construct |ψ , they wrote by {v j (x)} x∈Λ the jth normalized eigenvector of H hop in the one-particle Hilbert space. Now we define a new set of operators,

a † j,σ = x∈Λ v j (x)c † x,σ (j = 1, . . . , L d ), (2.50) 
and they denote by |0 the normalized vacuum state annihilated by all c x,σ . Then, a Slater determinant a † j 1 ,1 . . . a † jn,1 |0 is an eigenstate of H hop . Since H hop is Hermitian, the eigenvalue is real. Furthermore, since this state has no double occupancy due to the Pauli exclusion principle, it is also an eigenstate of H int with eigenvalue zero. Therefore, it is an eigenstate of H eff with real eigenvalue.

Next, they define spin raising and lowering operators as

F σ,τ = x∈Λ c † x,σ c x,τ (σ = τ ). (2.51) 
Then, F σ,τ commute with H eff . Therefore,

|ψ = F N,1 M N • • • F 2,1 M 2 a † j 1 ,1 . . . a † jn,1 |0 , (2.52) 
(0 ≤ M σ , M 2 + . . . + M N ≤ n)
forms a family of eigenstates of H eff with real eigenvalue. These steady states are generalizations of the steady states in the SU(2) [START_REF] Foss-Feig | Steady-state manybody entanglement of hot reactive fermions[END_REF] and SU(3) [START_REF] Rosso | Eightfold way to dark states in su(3) cold gases with two-body losses[END_REF] Hubbard model with two-body losses.

Final remarks

Up to this point, we have reviewed the main theoretical and experimental works on both the Bose-and Fermi-Hubbard models with two-body losses. Regarding the bosonic case, we have observed a rich phenomenology in the strongly-dissipative regime, for which a comprehensive theory has already been developed. In the following Chapter 3, we will expand this theory to include a harmonic confinement, which makes the situation more realistic for modeling cold atom experiments. Additionally, we will present an extension to the K-body loss case in Chapter 4.

In the fermionic case, numerous crucial observations have been made. However, a theoretical framework that accurately describes the interplay between unitary and lossy dynamics is still lacking. Furthermore, spin conservation and its consequences have yet to be considered regarding dynamical properties. Our goal is to provide a theoretical framework for this setup that encompasses both weakly-and strongly-dissipative regimes. To this end, we will present novel results that aim to develop a comprehensive understanding of the system's behavior in Chapters 5 and 6.

On a more general note, despite various attempts with molecular [START_REF] Zhu | Suppressing the loss of ultracold molecules via the continuous quantum zeno effect[END_REF] and atomic gases [START_REF] Sponselee | Dynamics of ultracold quantum gases in the dissipative fermi-hubbard model[END_REF][START_REF] Honda | Observation of the sign reversal of the magnetic correlation in a drivendissipative fermi gas in double wells[END_REF] have been performed to realise the theoretically predicted incoherent mixture of Dicke states, the experimental certification of the latter remains a challenge. From a theoretical viewpoint, it is therefore impelling to devise a protocol which allows the identification and characterisation of the state obtained at the end of the dynamics. The latter observation holds for the case of SU(N) gases as well, where few experiments have been performed [START_REF] Sponselee | Dynamics of ultracold quantum gases in the dissipative fermi-hubbard model[END_REF][START_REF] Honda | Observation of the sign reversal of the magnetic correlation in a drivendissipative fermi gas in double wells[END_REF], and the corresponding theoretical counterpart is still at its infancy. In particular, in Chapter 7 we will present original results predicting that the stationary states in the SU(N) case are generalised Dicke states [START_REF] Rosso | Eightfold way to dark states in su(3) cold gases with two-body losses[END_REF]. For what concerns the dynamics, some observations have been made in the case of weak two-body losses [START_REF] Rosso | Eightfold way to dark states in su(3) cold gases with two-body losses[END_REF], whereas the QZ regime has not been addressed yet.

Chapter 3

The effect of the harmonic confinement on a one-dimensional Bose gas with strong two-body losses This Chapter is devoted to the study of the dynamics of a one-dimensional Bose gas subject to strong two-body losses and a harmonic confinement, building upon the findings of Ref. [START_REF] Rosso | The one-dimensional Bose gas with strong two-body losses: the effect of the harmonic confinement[END_REF]. In the regime of strong dissipation, known as the quantum Zeno regime, the gas undergoes fermionisation and can be described using a simple set of rate equations. By incorporating the local density approximation (LDA) and a Boltzmann-like dynamical equation, we extend the description to include an external confinement. Our analysis reveals that, in the absence of confinement, the population is anomalously depleted, resulting in the gas behaving as a low-temperature classical gas. When subject to harmonic confinement, the depopulation of the gas accelerates and introduces a novel decay regime, which we thoroughly characterise.

The chapter is organised as follows. We contextualise the problem in Sec. 3.1. In Sec. 3.2 we introduce the theoretical model, we define the limit of strong two-body losses and present the set of rate equations that describe its dynamics in the absence of any external potential. In Sec. 3.3 we solve the aforementioned equations assuming an equilibrium initial configuration. In Sec. 3.4 we consider the presence of the harmonic confinement: we generalise the equations describing the homogeneous gas and discuss the dynamics of an initial equilibrium state. Our conclusions are presented in Sec. 3.5.

Introduction

The second chapter highlighted the growing interest in studying quantum many-body physics with ultra-cold gases. The unique opportunity to study such systems in isolated conditions with minimal environmental effects has enabled the experimental investigation 83 of their closed-system dynamics under controlled settings (see for instance Refs. [START_REF] Trotzky | Probing the relaxation towards equilibrium in an isolated strongly correlated one-dimensional bose gas[END_REF][START_REF] Langen | Experimental observation of a generalized gibbs ensemble[END_REF][START_REF] Langen | Prethermalization and universal dynamics in near-integrable quantum systems[END_REF]).

Restricting our focus to one-dimensional Bose gases that at low temperature are described by the Lieb-Liniger model [START_REF] Lieb | Exact analysis of an interacting bose gas. i. the general solution and the ground state[END_REF][START_REF] Olshanii | Atomic scattering in the presence of an external confinement and a gas of impenetrable bosons[END_REF], several developments, among which the generalised hydrodynamics (GHD) [START_REF] Bertini | Transport in out-ofequilibrium xxz chains: Exact profiles of charges and currents[END_REF][START_REF] Castro-Alvaredo | Emergent hydrodynamics in integrable quantum systems out of equilibrium[END_REF][START_REF] Bouchoule | Generalized hydrodynamics in the one-dimensional bose gas: theory and experiments[END_REF], have produced a theoretical framework that successfully describes the experiments where bosonic gases are put out of equilibrium via a quantum quench of the external potential [START_REF] Schemmer | Generalized hydrodynamics on an atom chip[END_REF][START_REF] Wilson | Observation of dynamical fermionization[END_REF][START_REF] Malvania | Generalized hydrodynamics in strongly interacting 1d bose gases[END_REF]]. Yet, as we previously discussed, even these systems cannot be considered as perfectly isolated, and the most relevant form of environment to which they are coupled is represented by the surrounding vacuum into which atoms or molecules can leak [START_REF] Söding | Three-body decay of a rubidium bose-einstein condensate[END_REF][START_REF] Weber | Three-body recombination at large scattering lengths in an ultracold atomic gas[END_REF][START_REF] Tolra | Observation of reduced three-body recombination in a correlated 1d degenerate bose gas[END_REF].

In this Chapter we focus on the one-dimensional Bose gas with two-body losses. The previous chapter has extensively discussed the experimental relevance of two-body losses in ultracold gases with strong inelastic interactions. Here, we aim to advance the theoretical characterization of such experimental setups by investigating a correlated and lossy gas under inhomogeneous conditions. This study is crucial in providing a fundamental understanding and comparison to any cold atom experiment, since the theory for the homogeneous gas is inadequate when dealing with significant traps or extended waiting times.

From the theoretical viewpoint, a first important step in the description of the strongly-correlated and lossy Bose gas has been presented in Refs. [START_REF] Bouchoule | The effect of atom losses on the distribution of rapidities in the one-dimensional Bose gas[END_REF][START_REF] Bouchoule | Breakdown of tan's relation in lossy one-dimensional bose gases[END_REF], focusing primarily on the limit of weak losses (the case of strong interactions and fermionisation is discussed only for one-body losses). Here, instead, we are interested in the case of strong two-body losses, and our goal is to characterise the simplest experimental observable, namely the dynamics of the total number of particles composing the gas. This problem has already been discussed for a lattice gas described by the Bose-Hubbard model without any external confinement (see Ref. [START_REF] Rossini | Strong correlations in lossy one-dimensional quantum gases: From the quantum zeno effect to the generalized gibbs ensemble[END_REF]). Concerning the continuum situation, in Ref. [START_REF] Dürr | Lieb-liniger model of a dissipation-induced tonks-girardeau gas[END_REF] the authors present a solution of the dissipative Lieb-Liniger model, where the interaction constant has also an imaginary part. The study, that has the merit of highlighting in a transparent way the fermionisation induced by strong two-body losses, does not produce any prediction for the dynamics of the population of the gas.

As a starting point, and for pedagogical reasons, we show that in the absence of harmonic confinement the long-time dynamics deviates from naive mean-field expectations; in particular we show that the gas is turned into a low-temperature classical gas described by a Maxwell-Boltzmann momentum distribution function. The harmonic confinement has a qualitative impact on such behaviour. Two regimes are identified: that of weak confinement, where the period of an oscillation is long with respect to the loss rate, and of strong confinement, with opposite properties. Whereas in the former case the dynamics has all qualitative features of the homogeneous system, in the latter case we find that the harmonic trap accelerates the depletion of the gas.

Homogeneous Bose gas with strong two-body losses: the Quantum Zeno effect

We consider a bosonic gas trapped in one dimension and subject to strong two-body losses; for simplicity, we consider a homogeneous sample of length L with periodic boundary conditions. We introduce a field Ψ(x) satisfying canonical commutation relations [Ψ(x), Ψ(x )] = 0 and [Ψ(x), Ψ † (x )] = δ(xx ), and describe the dynamics using the Lindblad master equation with the following Hamiltonian and dissipator term:

H =H kin + H int = ¢ Ψ † (x) - 2 2m ∂ 2 x Ψ(x)dx + g 2 ¢ Ψ †2 (x)Ψ 2 (x)dx; (3.1a) D[ρ] = γ 2 ¢ Ψ 2 (x)ρΨ †2 (x) - 1 2 Ψ †2 (x)Ψ 2 (x), ρ dx. (3.1b) 
In Eq. (3.1a) we recognize the Lieb-Liniger model; the term in Eq. (3.1b) accounts for two-body losses. A study of this model in the weakly-dissipative limit has been presented in Ref. [START_REF] Bouchoule | The effect of atom losses on the distribution of rapidities in the one-dimensional Bose gas[END_REF][START_REF] Bouchoule | Breakdown of tan's relation in lossy one-dimensional bose gases[END_REF]; an ab-initio derivation of the master equation and critical discussion of the underlying approximations can be found in Ref. [START_REF] Dürr | Lieb-liniger model of a dissipation-induced tonks-girardeau gas[END_REF].

Strong dissipation and fermionisation

We are interested in studying this model in the strongly-dissipative regime, which is often called quantum Zeno regime. In order to better clarify this limit, it is useful to consider the non-Hermitian Hamiltonian associated to the master equation; we thus introduce the non-Hermitian version of the Lieb-Liniger model that has been thoroughly discussed in Ref. [START_REF] Dürr | Lieb-liniger model of a dissipation-induced tonks-girardeau gas[END_REF]:

H NHLL = ¢ Ψ † (x) - 2 2m ∂ 2 x Ψ(x)dx + g + i γ 2 ¢ Ψ †2 (x)Ψ 2 (x)dx. (3.2)
The strength of the non-linear term which accounts for the two-body elastic and inelastic interaction, is quantified by the dimensionless parameter:

ξ = m(g + i γ) 2 n , (3.3) 
where n is the one-dimensional density of the gas (H NHLL is number-conserving and thus the density n = N/L is well-defined). According to Ref. [START_REF] Dürr | Lieb-liniger model of a dissipation-induced tonks-girardeau gas[END_REF], the model can be mapped to a Tonks-Girardeau gas whenever |ξ| → ∞. It is well-known that the Bose gas becomes a gas of hard-core particles when g 2 n/m; this is true also when g = 0 and the following inequality is satisfied:

γ n m . (3.4) 
This inequality defines the regime of strong dissipation. If we consider a 87 Rb gas (atomic mass: m = 1.43 × 10 -25 Kg) with typical density n 1 × 10 7 m -1 as in Ref. [START_REF] Schemmer | Generalized hydrodynamics on an atom chip[END_REF],

we obtain that in order to enter the strongly-dissipative regime, the inequality reads: γ 7.24 × 10 -3 m•s -1 . In this regime the bosonic model is mapped to non-interacting fermions by the Jordan-Wigner transformation c(x) = (-1) N [0,x] Ψ(x), where N [0,x] is the number of bosons in the interval [0, x]. The new field operators satisfy canonical anticommutation relations: {c(x), c(x )} = 0 and {c(x), c † (x )} = δ(xx ) and the transformed Hamiltonian is a free-fermion model:

H NHLL = ¢ c † (x) - 2 2m ∂ 2 x c(x)dx. (3.5) 
Although the dissipation does not conserve the number of particles, it conserves the parity of the number of particles. Thus, in order to study the problem in the sector with an even number of particles, we introduce the field operators in momentum space via Fourier transform:

c k = L -1 2 ¡ c(x)e -ikx dx
where k = π(2n + 1)/L and n ∈ Z. The Hamiltonian in momentum space reads:

H NHLL = k 2 k 2 2m c † k c k . (3.6)
Summarizing, in the limit of infinitely-strong dissipation |ξ| → ∞, the Hamiltonian (3.2) is well-described by a non-interacting fermionic model, whose eigenstates and eigenenergies are defined by the occupation numbers of the modes k. This information is of great help also for discussing the stable modes of the master equation (3.1). Let us for instance consider a density matrix that is diagonal in the basis of the modes k and that is solely parametrised by a set of {λ k } coefficients related to the occupation of the modes:

ρ = k e -λ k c † k c k 1 + e -λ k = k 1 + (e -λ k -1)c † k c k 1 + e -λ k . ( 3.7) 
In order to prove that the latter density matrix is a stationary state of the master equation (3.1) we recast Eqs. (3.1) as:

∂ ∂t ρ(t) = - i H NHLL ρ -ρH † NHLL + γ 2 ¢ Ψ(x) 2 ρΨ(x) †2 dx. (3.8) 
Within the fermionised approximation, H NHLL is given by Eq. (3.6), which commutes with the density matrix (3.7); we consequently conclude that the first part of the r.h.s. of Eq. (3.8) vanishes. The part proportional to γ vanishes as well because Ψ(x) 2 is equal to zero for a fermionised state. We thus conclude that the fermionic modes identified above with the non-Hermitian Lieb-Liniger model are stable modes of the master equation (3.1).

The operators {c † k c k } k constitute an infinite set of operators that commute with the Hamiltonian; the state (3.7) is the associated generalised Gibbs ensemble (GGE) [START_REF] Vidmar | Generalized gibbs ensemble in integrable lattice models[END_REF]. The fermionic momenta, also called rapidities in the Bethe-ansatz context, can be observed in experiments by letting the gas expand in the one-dimensional tube [START_REF] Jukić | Free expansion of a lieb-liniger gas: Asymptotic form of the wave functions[END_REF][START_REF] Bolech | Long-time behavior of the momentum distribution during the sudden expansion of a spin-imbalanced fermi gas in one dimension[END_REF][START_REF] Bolech | Expansion after a geometric quench of an atomic polarized attractive fermi gas in one dimension[END_REF][START_REF] Campbell | Sudden expansion of a one-dimensional bose gas from power-law traps[END_REF][START_REF] Wilson | Observation of dynamical fermionization[END_REF]. This is different from performing a standard time-of-flight experiment on a one-dimensional gas: in this case the gas expands freely in three-dimensional space, and one instead probes the bosonic momentum distribution function [START_REF] Bloch | Many-body physics with ultracold gases[END_REF].

HOMOGENEOUS BOSE GAS WITH STRONG TWO-BODY LOSSES: THE QUANTUM ZENO EFFECT

Rate equations for the dissipative dynamics

In reality, in any experimental setting, the parameter ξ is never going to have infinite modulus. The main consequence of this fact is that the fermionic excitations described by the c k acquire a finite decay time and become quasi-stable. From an experimental viewpoint, this means that particles leak from the sample and the setup is depleted. It is interesting to observe that if the initial density satisfies the inequality (3.4), the gas will remain in the strongly-dissipative regime at all times because n(t) is a non-increasing function (the system can only lose particles). Interestingly, in the strongly-dissipative regime of the system under study, a set of modes (or quasiparticles) has been identified that remain almost stable. This finding sheds light on the onset of the quantum Zeno effect.

It has already been observed that in the presence of weak losses, the dynamics can be described with a time-dependent state that is a simple generalisation of the GGE proposed in (3.7) (see Refs. [START_REF] Lange | Time-dependent generalized gibbs ensembles in open quantum systems[END_REF][START_REF] Mallayya | Prethermalization and thermalization in isolated quantum systems[END_REF][START_REF] Rossini | Strong correlations in lossy one-dimensional quantum gases: From the quantum zeno effect to the generalized gibbs ensemble[END_REF][START_REF] Lenarčič | Perturbative approach to weakly driven many-particle systems in the presence of approximate conservation laws[END_REF]):

ρ(t) = k e -λ k (t)c † k c k 1 + e -λ k (t) .
(3.9)

Ref. [START_REF] Lange | Time-dependent generalized gibbs ensembles in open quantum systems[END_REF] presents the equations that determine the dynamics of the λ k (t) in general. However, there is a one-to-one correspondence between λ k (t) and

n k (t) tr[ρ(t)c † k c k ]: n k (t) = 1 1 + e λ k (t) ; (3.10) 
in this Chapter, instead of working with λ k (t) we prefer to work with n k (t). The primary objective is to derive the differential equations governing the evolution of n k (t) for this specific problem, which are as follows:

∂ ∂t n k (t) = -Γ eff ¢ +∞ -∞ (k -q) 2 n k (t)n q (t)dq; Γ eff = 2 3 πm 2 γ 2 g 2 + γ 2 2 . (3.11)
As anticipated, Γ eff , which dictates the typical decay rate of the fermionic modes, scales as γ -1 . Considering again the abovementioned 87 Rb gas discussed in Ref. [START_REF] Schemmer | Generalized hydrodynamics on an atom chip[END_REF], we estimate g ∼ 8.9×10 -36 kg•m 3 •s -2 and take a value for γ that is in the strongly-dissipative regime, γ = 2 × 10 -2 m•s -1 . We obtain:

Γ eff = 4.58 × 10 -19 m 3 •s -1 .
The rate equations (3.11) generalise those already obtained for a one-dimensional bosonic gas trapped in a lattice and described by the Bose-Hubbard model [START_REF] Rossini | Strong correlations in lossy one-dimensional quantum gases: From the quantum zeno effect to the generalized gibbs ensemble[END_REF]. The derivation of the equations is given here below and it is obtained by regularising the problem onto a lattice. The uninterested reader can jump directly to Sec. 3.3 without compromising the understanding of the rest of the Chapter.

Derivation of the rate equations

In order to derive the rate equations (3.11), we regularise the original problem introducing a short-length cutoff, a, that is the shortest length-scale of the problem. In this way, the original master equation is turned into a lattice problem. After introducing the lattice bosonic operators b † m , the master equation reads:

∂ ∂t ρ(t) = -i [H L , ρ(t)] + D L [ρ(t)] with H L = -J m b † m b m+1 + H.c. + U 2 m n m (n m -1); D L [ρ] = γ L m b 2 m ρb †2 m - 1 2 b †2 m b 2 m , ρ (3. 
12) The relation between the original parameters and the lattice ones is given by: Ja 2 ↔ 2 /(2m); U a ↔ g, and γ L a ↔ γ. Concerning the relation between the physical length of the original system L and the number of lattice points M it holds that M a ↔ L.

Following the methods employed in Ref. [START_REF] Rossini | Strong correlations in lossy one-dimensional quantum gases: From the quantum zeno effect to the generalized gibbs ensemble[END_REF], we fermionise the problem, introduce the momenta k = 2π L (n + 1), with n = 1, 2, . . . M and obtain the following rate equations for the occupation number of each fermionic mode:

∂ ∂t n k (t) = - 4Γ L M q [sin(ka) -sin(qa)] 2 n k (t)n q (t), Γ L = 2J 2 γ L U 2 + γ L 2 2 .
(3.13)

We now take the limit a → 0 + and obtain the rate equations that describe our system in the continuum limit. First, we observe that:

Γ L a 3 ↔ 3 m 2 γ 2 g 2 + γ 2 2 . (3.14) 
Since L is fixed and a is going to zero, the number of lattice points M is increasing; when M 1 we can change the sum into an integral via k → L 2π ¡ dk and using L/M = a we obtain:

∂ ∂t n k (t) = - 4Γ L a 2π ¢ π/a -π/a
[sin(ka)sin(qa)] 2 n k (t)n q (t)dq.

(3.15)

Let us now take the limit a k -1 max , where k max is the maximal wavevector that is going to be occupied during the dynamics. Since each function n k (t) is monotously decreasing (its derivative in Eq. (3.13) is never positive), it is enough to consider the largest wavevector that is occupied at time t = 0; this quantity is well defined. In this limit: sin(ka) ∼ ka for all relevant k; moreover the integration limits can be safely expanded to ±∞. We obtain:

∂ ∂t n k (t) = -Γ eff ¢ +∞ -∞ (k -q) 2 n k (t)n q (t)dq; 2a 3 Γ L π ↔ Γ eff . (3.16) 
Note that Γ eff has a well-defined continuum limit and the good dimensions of L 3 × T -1 , since n k is an adimensional quantity. This concludes our derivation.

Depletion of an initial equilibrium state

We now discuss the depletion dynamics of a Bose gas prepared in the ground state of the Tonks-Girardeau gas (|ξ| → ∞) with density n in . We consider the rate equations (3.11) with the following initial conditions: n k (0) = 1 for |k| < πn in and n k (0) = 0 otherwise. The initial fermionic momentum profile, n k (0), is symmetric with respect to k → -k transformations, and thus

¡ (k -q) 2 n q dq = ¡ (k 2 + q 2
)n q dq. Since the master equation is invariant under k → -k exchanges, this property is preserved during the whole dynamics and thus Eq. (3.11) is substituted by:

∂ ∂t n k (t) = -Γ eff ¢ +∞ -∞ k 2 + q 2 n k (t)n q (t)dq. (3.17) 
In order to get a better understanding of the problem we introduce the rescaled momentum k = k/n in and the rescaled time t = n 3 in Γ eff t so that the equations read:

∂ ∂ t n k( t) = - ¢ +π -π k2 + q2 n k( t)n q( t)dq; n k(0) = 1 for k ∈ [-π, π]; 0 otherwise. (3.18)
The adimensional normalised density of the gas reads ñ( t) = 1 

"Heating" to a low-temperature classical gas

With the aim of studying the dynamics of the gas, we employ Eq. (3.18) in order to write the two following equations (see App. 3.A for details on the derivation):

∂ ∂ t ñ( t) = -2 ¢ +π -π q2 n q( t)dq × ñ( t); ∂ ∂ t n k( t) = + n k( t) 2ñ( t) ∂ ñ( t) ∂ t -2π k2 ñ( t)n k( t). (3.19 
) If we divide the latter equation by n k( t) we obtain the following relation:

¢ n k ( t) 1 1 n k dn k = + 1 2 ¢ ñ( t) 1 1 ñ dñ -2π k2 ¢ t 0 ñ( t )d t , (3.20) 
which is solved by (see again App. 3.A for the details):

n k( t) = ñ( t)e -2π k2 ¡ t 0 ñ( t )d t , k ∈ [-π, π]; 0, otherwise. (3.21) 
This latter relation shows that n k( t) is fully determined by ñ( t), and in particular that momenta distribute according to a Gaussian function centred at k = 0 and truncated at k = ±π. The variance of the Gaussian is 4π

¡ t 0 ñ( t )d t -1
, which decays to zero as t-1 2 in the long-time limit (see below Sec. 3.3.2). Thus, at sufficiently long times, we can disregard the truncation at k = ±π and interpret the distribution as a Maxwell-

Boltzmann classical distribution n k = e µ k B T e - 2 k2
2mk B T with time-dependent temperature and chemical potential. Reintroducing for clarity the dimensional units, they read:

T (t) = 2 4πΓ eff k B m 1 ¡ t 0 n(t )dt ∼ 1 t 1 2 ; µ(T ) = k B T (t) 2 ln n(t) n in ∼ 1 t 1 2 ln t. (3.22)
The initial quantum gas at zero-temperature is turned, at long times, into a low-temperature and low-density classical gas. Note that at long times µ k B T , which is consistent with the proposed Maxwell-Boltzmann interpretation.

Long-time behaviour

We define the function ν( t) = ¡ t 0 ñ( t )d t and taking the integral on k ∈ [-π, π] of Eq. (3.21) we obtain:

¢ π -π n k( t)d k = 2πñ( t) = ñ( t) ¢ π -π e -2π k2 ν( t) d k; (3.23)
in terms of the function ν( t) we have:

ñ( t) = ∂ ∂ t ν( t) = 1 2π ¢ π -π e -2π k2 ν( t) d k = 1 2π 1 2ν( t) Erf[ 2πν( t)π]. (3.24) 
At long time, we expect that ν( t) → ∞ and consequently we insert in Eq. (3.24) the value lim x→∞ Erf[x] = 1. We obtain:

∂ ∂ t ν( t) = 1 8π 2 1 ν( t) , ⇒ ν( t) = 1 4π 2 t. (3.25) 
The statement used in the previous section to discuss the variance of n k( t) is thus proved. By differentiating with respect to t, we find the asymptotic behaviour of the density, which for clarity we present here also in dimensional units:

ñ( t) = 1 4π 1 t ; n(t) = n in × 1 4π 1 n 3 in Γ eff t . (3.26) 
We find a long-time behaviour characterised by n(t) ∼ t -1/2 , similarly to what has already been found in the analogous lattice problem [START_REF] Rossini | Strong correlations in lossy one-dimensional quantum gases: From the quantum zeno effect to the generalized gibbs ensemble[END_REF], presented in Chapter 2. In order to appreciate the interest of this result, it is useful to compare it with the meanfield prediction n(t) ∼ t -1 obtained from the equation ∂ t n = -κn 2 , which follows from the approximation of uncorrelated bosons, i.e. g (2) (0) is set to be equal to 1 in Eq. (2.5). In weakly-correlated bosonic gases, it is often the case that g (2) (0) = 1 is a good approximation (uncorrelated bosons), and the mean-field behaviour is recovered.

The typical decay time scales as (n 3 in Γ eff ) -1 , so that a dense gas has a shorter lifetime than a dilute one. To get a more concrete idea about this time-scale, we consider once more the example of the 87 Rb gas discussed above: for an initial density of 1 × 10 7 m -1 we obtain a typical time of 2 × 10 -3 s. The Zeno effect can be fully appreciated if one compares this value with the original typical decay time of the gas: (γn in ) -1 ∼ 5×10 -6 s. 3.27), which faithfully reproduces the entire dynamics of ñ( t). Right panel: Density profile in k-space plotted for t = 0 (black), 0.1 (red), and 1 (blue). The circles represent the n k for t = 0.1 and t = 1 computed with the numerical integration of the Eqs. (3.18). The solid lines are obtained by taking ñ( t) from the numerical results and inserting it in Eq. (3.21).

Numerical solution

In order to test the previous predictions, we have solved the Eqs. (3.18) with a 4 th -order Runge-Kutta numerical algorithm; the integration step is d t = 10 -3 and N step = 2 • 10 4 , while we have discretised the k space in 10 3 points in the interval [-π, π]. The results are summarized in Fig. 3.1. We first compare the numerically-computed density ñ( t) with the long-time behaviour given by Eq. (3.26); the latter faithfully describes the behaviour of ñ( t) even for values of t that are of order 10 -1 . Concerning the n k, we observe that the initial Fermi-sea at t = 0 first evolves into a Gaussian that is truncated at k = ±π; then, for sufficiently long times, it is possible to disregard this truncation and interpret the distribution as a Maxwell-Boltzmann classical distribution.

We conclude this section proposing the following formula to describe the dynamics of ñ( t):

f ( t) = 1 + A t 1 + B t , (3.27) 
where A and B are two coefficients to be determined. It is worth noting that the same formula has been proposed in Ref. [START_REF] Rossini | Strong correlations in lossy one-dimensional quantum gases: From the quantum zeno effect to the generalized gibbs ensemble[END_REF]. This functional form is motivated by its ability to capture both short-and long-term behaviors, as well as its simplicity which makes it useful for fitting experimental data. By comparing our ansatz with the short-and long-time limits, we obtain two conditions for the coefficients A and B that are solved by the following values: In Fig. 3.1 left panel we compare the numerically-computed ñ( t) with Eq. (3.27); the plot shows that our formula describes very well the numerical data.

A = - 8 

The harmonic confinement

We now include in our discussion the presence of an external potential, focusing on the experimentally-relevant case of a harmonic confinement:

V (x) = 1 2 mω 2 x 2 . (3.29)
In order to generalise the previous approach to an inhomogeneous situation, we employ the local-density approximation (LDA) and promote each fermionic momentum occupation number to a space-dependent quantity: n k (t) → f (x, k, t), where f (x, k, t) should be intended as an average over a small macroscopic region centered around x. The spatial density is obtained integrating over all possible momenta:

n(x) = 1 2π ¢ +∞ -∞ f (x, k, t)dk. (3.30) 
The time evolution of f (x, k, t) is dictated by a Boltzmann-like equation that includes the effect of losses:

∂f (x, k, t) ∂t + k m ∂f (x, k, t) ∂x + F (x) ∂f (x, k, t) ∂k = -Γ eff ¢ +∞ -∞
(kq) 2 f (x, k, t)f (x, q, t)dq.

(3.31) The force field depends on the potential; in the case of the harmonic potential:

F (x) = -∂ x V (x) = -mω 2 x.
The initial condition can be determined using the LDA for the equilibrium density profile n in (x) of a gas in a harmonic potential:

n in (x) =    R 2 HO π 1 -x 2 R 2 for x ∈ [-R, R], 0 otherwise; R = 2N in 2 HO . (3.32) 
Here, R represents the LDA radius of the gas, N in is the initial number of particles and HO = /(mω) is the harmonic oscillator length associated to the trap. The initial condition for the Boltzmann-like equation reads:

f (x, k, 0) = 1 for x ∈ [-R, R] and k ∈ [-πn in (x), πn in (x)]; 0 otherwise. (3.33)
This approach is an example of the treatments based on the so-called generalised hydrodynamics that has been recently introduced to discuss the dynamics of one-dimensional integrable models with Bethe-ansatz techniques.

Dimensionless units

In order to get a better understanding of the problem, we introduce the following dimensionless variables:

x = 1 R x; k = 2 HO R k. (3.34)
Notice that k has a different definition with respect to the one presented in Sec. 3.3. This choice is motivated by the fact that in these units the initial condition (3.33) takes the particularly simple form of a circle with unitary radius:

f (x, k, 0) = 1 for x2 + k2 ≤ 1; 0 otherwise. (3.35)
Also the Boltzmann-like equation (3.31) gets an intuitive form when the x and k coordinates are employed. We rescale time introducing:

t = Γt, with Γ = Γ eff 2mωN in 3 2 = Γ eff R 2 HO 3 = Γ eff π 3 n in (0) 3 ; (3.36) 
and we obtain:

∂f (x, k, t) ∂ t = - ω Γ k ∂f (x, k, t) ∂ x - x ∂f (x, k, t) ∂ k - ¢ +∞ -∞
( kq) 2 f (x, k, t)f (x, q, t)dq.

(3.37) As it is standard in the classical motion of the harmonic oscillator in phase space, in the absence of losses the initial unitary circle is remapped onto itself and rotates with a period T ω = 2π/ω. Note that the losses do not scatter momenta outside the unitary circle, so that the dynamics remains confined within it. The ratio ω/ Γ emerges as the relevant parameter that measures the competition between the harmonic confinement and two-body losses.

Similarly to what we have done in the homogeneous case, our focus will be the time evolution of the rescaled number of atoms Ñ , defined as Ñ = N/N (0); since the area of the initial circle is π, we have: 

Ñ ( t) = 1 π ¢ +∞ -∞ ¢ +∞ -∞ f (x, k, t) dx d k. ( 3 

Numerical solution

We simulate Eq.(3.37) using a numerical algorithm, the details of which are provided in App. 3.B. Our results for f (x, k, t) are presented in Fig. 3.2 for four different values of ω/ Γ. For some values of ω/ Γ a link to the animated version of the dynamics is provided in footnote 1 . The time dependence of the integrated and normalised population Ñ ( t) is reported in Fig. 3.3; the observation of Ñ ( t) shows the existence of two limiting behaviours, for small and large values of ω/ Γ, dubbed weak-confinement and strongconfinement regimes, whose description will be the object of the next sections.

1 To access the evolution of f (x, k, t) for ω/ Γ = 0.2 click here and for ω/ Γ = 1 click here. 42) Eq.( 45) To make the discussion more concrete, we identify the value of the trapping frequency that separates the two regimes. The relation ω/ Γ = 1 yields the following equation for the trap frequency:

N ~( t ~) ω=0 ω/Γ ∼ =0.05 ω/Γ ∼ =0.1 ω/Γ ∼ =0.2 ω/Γ ∼ =1 ω/Γ ∼ =10 Eq.(
ω = 1 Γ 2 eff 2mN in 3 (3.39)
Taking the numerical values obtained with the previous numerical estimates and an initial number of atoms N in = 10 3 we find ω = 0.22 s -1 ; this is an extremely small trapping frequency, given that those implemented in standard labs are of order 10 2 s -1 . The observation of the weak confinement regime thus requires the use of a more dilute and less populated gas. If we consider the same parameters used in the previous estimate but take a lower density value, n in = 5 × 10 6 m -1 , and an initial population of N in = 100 bosons, we obtain ω = 226.42 s -1 .

The limit of weak confinement: ω/ Γ 1

We begin with the analysis of the data in Fig. 3.2 for ω/ Γ ≤ 1, plotted in the first two lines. We observe that the gas depletion is stronger for higher values of k, a phenomenon that was characterising also the dynamics of the homogeneous gas, see Fig. 3.1. Moreover, in this inhomogeneous scenario, the losses are more effective in the centre of the trap, where the density is higher; a faster dynamics at higher densities was also observed in the homogeneous system, see Eq. (3.26). At the beginning of the dynamics the most long-lived population is thus located at the edges of the trap, where the density is lower and momenta are smaller. This is the first consequence of the presence of the trap: it changes the density profile of the gas with a faster depletion of the population at the centre.

In order to present a quantitative theory of the short-time dynamics in the weakconfinement limit, we present an analytical solution for the case ω = 0. Note that we are setting ω = 0 in Eq. (3.37) but we are keeping the initial condition (3.35), which is shaped by the presence of the trap. In order to better visualize the depletion phenomenon in real space, in Fig. 3.4 we show the behavior of the spatial density

Ñ (x, t) = 1 π ¢ +∞ -∞ f (x, k, t) d k, (3.40) 
(left panel) and of its rescaled version Ñ (x, t)/ Ñ (0, t) (right panel), showing how the dissipative evolution leads to a spatial profile much denser at the boundaries with respect to the center of the trap. Thanks to the LDA, we can model the gas as composed of several independent and homogeneous subparts located at different points of the trap and with different initial densities. According to our study of the homogeneous lossy gas in Sec. 3.3, each of these subparts features a long-time decay proportional to t- 1 2 . The long-time behaviour of the trapped gas is obtained by integrating all these contributions; after some algebra reported in Appendix 3.C we obtain:

Ñ ( t) ∼ 1 2 Γ(3/4) Γ(5/4) 1 √ t , (3.41) 
and Γ(x) is the Euler Γ function. This result is plotted in Fig. 3.3, where we observe that it reproduces quantitatively the long-time behaviour of the gas.

From weak to strong confinement

In the weak-confinement regime, once the inhomogeneous density profile shown in Fig. 3.4 has been created, the presence of the harmonic trap has an additional effect and induces a rotation in phase space (see for instance Fig. 3.2 for ω/ Γ = 0.1, second line). At time t ∼ T ω /4 the long-lived bosons located initially at the edges of the trap have moved to the centre, where they are quickly lost because at the centre of the trap the loss mechanism is more effective (see for instance Fig. 3.2 for ω/ Γ = 1.0, third line). The time t ∼ T ω /4 thus marks the onset of a novel behaviour that is clearly displayed in the plots of Ñ ( t) reported in Fig. 3.3. Since the time T ω /4 corresponds to the rescaled time t = π Γ/(2ω), we observe that when the initial confinement is weak, ω/ Γ 1, Ñ ( t) departs from the ω = 0 curve and after some oscillations collapses onto a new curve that describes the depopulation in the strong-confinement regime.

The limit of strong confinement: ω/ Γ 1

We observe in Fig. 3.3 that for ω/ Γ ≥ 1 all curves collapse onto a universal function. In this limit, the dynamics is strongly determined by the trap, and it results in a behaviour that is well described by the formula:

Ñ ( t) = 1 1 + t , (3.42) 
as it is shown in the plot.

We now present a simple model that can explain the formula in Eq. (3.42). For ω/ Γ ≥ 1, the inhomogeneities in the momentum distribution function that are created by the losses are rapidly washed out by the action of the trap, that rotates the f (x, k, t) in phase space (see for instance Fig. 3.2 for ω/ Γ = 10, fourth line). Since this rotation takes place on the shortest time-scale of the problem, we introduce a novel distribution function g(ẽ, t) that does not depend on x and k in a separate way, but only on the dimensionless energy ẽ = x2 + k2 that is conserved by the harmonic-oscillator dynamics; normalisation is ensured by the following relation: Ñ ( t) = 1 π ¡ ∞ 0 g(ẽ, t)dẽ. This "radial" symmetry in phase space is well highlighted by the plots in Fig. 3.2 for ω/ Γ = 10. In App. 3.D we show how to derive from Eqs. (3.37) the rate equation obeyed by g(ẽ, t), which we anticipate here:

∂g(ẽ, t) ∂ t = - 1 π 2 ¢ 1 0 dε g(ẽ, t)g(ε, t) ¢ + min( √ ẽ, √ ε) -min( √ ẽ, √ ε) dx ε -x2 ẽ -x2 + ẽ -x2 ε -x2 . (3.43)
We did not find an analytical solution of Eq. (3.43), but we could easily produce a numerical solution for the initial condition:

g(e, 0) = 2πe, (3.44) 
which satisfies ¡ 1 0 g(e, 0)de = π, the area of the circle. We display in Fig. 3.5 the numerically-computed Ñ ( t); the result is well described by Eq. (3.42). The appearance of this novel behaviour leads to an interesting qualitative observation: the presence of a harmonic confinement accelerates the depletion of the gas. Indeed, in the presence of a trap the depletion is eventually scaling as 1/t, whereas for a homogeneous system it scales as 1/t 1/2 . Clearly, the previous is a statement concerning the long-time asymptotics: the possibility of observing experimentally the decay as 1/t 1/2 is not ruled out if one works with a shallow trap and in the appropriate time regime.

Conclusions and perspectives

In this Chapter, we investigated the effect of a harmonic confinement on a one-dimensional Bose gas with strong two-body losses. Thanks to the fermionisation that takes place in the regime of strong dissipation, we developed a set of rate equations that describe the depopulation of each fermionic mode.

In the homogeneous case we have predicted both the dynamics of the density of the gas, displaying an anomalous t -1 2 decay, and the time-dependence of the fermionic momentum distribution function. This latter quantity, which is often called distribution of rapidities, is a measurable quantity, via an expansion in a one-dimensional setting. The main result of the chapter is that the presence of a harmonic confinement leads to a drastic modification of the dynamics of the gas; in particular, when the trap is strong, the density of the gas decreases as t -1 .

We have then shown the existence of a crossover time that signals the passage from the behaviour of a homogeneous-gas at short times to that of a strongly-confined gas at long times. Several of our predictions can be tested in state-of-the-art experiments.

Two directions of further study can be devised. The first one concerns the fact that during the dynamics the gas might leave the purely one-dimensional situation, and start to populate excited levels of the transverse confinement. The fact that we are working in the strongly-dissipative Zeno regime makes this not implausible because experiments are typically longer than standard ones. Usually, including higher energy bands in a numerical or analytical description can be extremely challenging, as it requires the inclusion of a novel degree of freedom, which enlarges exponentially the Hilbert space to be considered. In our case, instead, the rate-equation model scales linearly with the number of fermionic modes. As such, the inclusion of a higher-energy band within this framework is feasible and can be an important step to quantitatively describe the experimental data.

A second investigation direction concerns the study of strong and finite elastic interactions, which could be responsible for the scattering of the fermionic momenta in phase space. These processes could motivate the introduction of novel terms in the dynamics, so far neglected because they are less important than those discussed in the Chapter. Among the processes that could be anticipated, we mention diffusive terms, originally introduced in Ref. [START_REF] De Nardis | Hydrodynamic diffusion in integrable systems[END_REF], that have been shown to be eventually responsible for the thermalisation of the one-dimensional Bose gas in the presence of an external confinement [START_REF] Bastianello | Thermalization of a trapped one-dimensional bose gas via diffusion[END_REF]. The rate equations completely disregard interactions between the fermionic momenta, which could be responsible for some forms of redistribution, and eventually change the decay of the gas. The physical importance of these terms motivates further studies in this direction.

Appendix

3.A Homogeneous Bose gas: derivations

We now discuss the derivation of Eqs. (3.19) and of Eq. (3.21) presented in Sec. 3.3. We consider the time evolution of ñ( t) written as:

∂ ∂ t ñ( t) = - 1 2π ¢ π -π d k ∂ ∂ t n k( t). (3.45) 
We now insert the rate equations (3.18) obtaining:

∂ ∂ t ñ( t) = - 1 2π ¢ π -π d k ¢ π -π dq k2 + q2 n k( t)n q( t) = (3.46) = -2 1 2π ¢ π -π d kn k( t) ¢ π -π dq q2 n q( t) = (3.47) = -2ñ( t) ¢ π -π dq q2 n q( t). (3.48) 
For what concerns the time evolution of n k( t), the rate equations (3.18) can be recasted into the following form:

∂ ∂ t n k( t) = -2π k2 n k( t) ñ( t) -n k( t) ¢ π -π dq q2 n q( t) = (3.49) = -2π k2 n k( t) ñ( t) + n k( t) 2ñ( t) ∂ t ñ( t), (3.50) 
where in the last passage we used the previous result for ∂ t ñ( t). This concludes the derivation of Eqs. (3.19).

We want now to show that Eq. (3.20) is solved by Eq. (3.21). By integrating Eq. (3.20) one obtains:

ln n k( t) n k(0) = ln ñ( t) ñ(0) -2π k2 ¢ t 0 ñ( t )d t . (3.51)
By means of logarithm properties and subsequent exponentiation we get: 

n k( t) = ñ( t)e -2π k2 ¡ t 0 ñ( t )d t , ( 3 

3.B The numerical implementation of the Boltzmann equation

In this appendix we present some details related to the numerical simulation of the dynamics induced by Eq. (3.37). We integrate it exploiting the second-order Suzuki-Trotter expansion of the differential operator governing the dynamics, namely the r.h.s. of Eq. (3.37):

f (x, k, t + d t) = D HO d t/2 • D loss d t • D HO d t/2 f (x, k, t) + O(d t2 ). (3.53) 
Here, D HO d t/2 describes the dynamics induced by the trap, i.e. first term of the r.h.s. of Eq. (3.37), and D loss d t/2 is responsible for the two-body losses, i.e. second term of the r.h.s. of Eq. (3.37). The action of the two operators D HO d t/2 on the density distribution can be implemented exactly since it is a rigid rotation of the density function in the phase space x -k of and angle (ω/γ)d t = ωdt. The action of the the operator D loss d t is implemented with a fourth-order Runge-Kutta method with variable time-step.

We smoothened the initial condition in order to avoid numerical problems connected to the sharpness of the initial distribution. In particular we used:

f (x, k, 0) = 1 x2 + k2 ≤ 1 -ξ; e -[x 2 + k2 -(1-ξ)] 2 /ξ otherwise, (3.54) 
with ξ = 5d. This smoothening is visible in the plots of Fig. 3.2. For all the data shown in Fig. 3.2 we discretized the phase space with a grid of 250 × 250 pixels for the phase space x, k ∈ [-1.2, 1.2]. This discrtetization implies a resolution d = dx = d k = 9.6 • 10 -3 . We check that the results obtained for the timeevolution of the normalized density Ñ ( t) do not depend on the size of the pixels. In 

3.C Analytical solution for ω/ Γ = 0

We solve the Eq. (3.37) for ω/ Γ = 0. Whereas the presence of the trap is taken into account by the initial conditions, it is completely disregarded in the dynamics, so that it describes the situation where losses are extremely more important. The Boltzmann equation factorizes the dynamics at different x:

∂f (x, k, t) ∂ t = - ¢ + √ 1+x 2 - √ 1-x 2 ( k -q) 2 f (x, k, t)f (x, q, t)dq. (3.55)
where we have explicitly written that f (x, q, t) is different from zero only for x 2 + q 2 ≤ 1.

By rescaling momenta and time as follows:

K = π √ 1 -x2 k, Q = π √ 1 -x2 q, T = (1 -x2 ) 3 2 π 3 t; (3.56)
we can recast the Boltzmann-like equation in a form that we have already encountered, see Eq. (3.18) :

∂ ∂T f (x, K, T ) = - ¢ π π (K 2 + Q 2 )f (x, K, T )f (x, Q, T )dQ. (3.57) 
Using the results in Sec. 3.3, we obtain the long-time limit:

1 2π ¢ π -π f (x, K, T )dK ∼ 1 4π 1 T ⇒ ¢ √ 1-x 2 - √ 1-x 2 f (x, k, t)d k ∼ √ π 2 1 (1 -x2 ) 1 4 1 t (3.58)
We finally obtain the result reported in the main text:

Ñ ( t) = 1 π ¢ 1 -1 ¢ √ 1-x 2 - √ 1-x 2 f (x, k, t)dxd k = 1 √ 4π t ¢ 1 -1 1 (1 -x2 ) 1 4 dx = 1 2 Γ(3/4) Γ(5/4) 1 √ t . (3.59)

3.D Rate equations in the strong-confinement limit ω/ Γ 1

As discussed in the main text, in the strong-confinement limit we consider the phasespace density function g(ẽ, t), and the normalised population reads Ñ ( t) = 1 π ¡ 1 0 g(ẽ, t)dẽ. We now identify the evolution equation that is satisfied by g(ẽ, t).

First, we observe that the part of the Boltzmann-like equation that is responsible for the classical motion in phase space leaves g(ẽ, t) unchanged. Indeed:

k ∂g(ẽ, t) ∂ x - x ∂g(ẽ, t) ∂ k = k ∂ẽ ∂ x ∂g ∂ẽ - x ∂ẽ ∂ k ∂g ∂ẽ = 0. (3.60)
We then move to the loss term, which is local in space. Since the particles with energy ˜ are assumed to be uniformly spread in the region of the phase space with energy ˜ , we need to introduce the probability density p(x, ˜ ) that describes the fraction of particles with energy ˜ that are located at position x. With simple calculations we obtain:

p(x, ˜ ) = 1 π 1 √ ˜ -x2 . (3.61)
It is a good probability density, and indeed is satisfies Let us now focus on the loss of particles with energy ẽ due to the presence of particles with energy ˜ . Recall that losses depend on the squared momentum difference ( kq) 2 at the same position x. The particles with energy ẽ at position x can have two equally-likely momenta: ± kẽ,x , with kẽ,x = + √ ẽ -x2 . Note that π × kẽ,x × p(ẽ, x) = 1. The same is true for particles with energy ˜ at position x. Thus, concerning the loss-rate momentum dependence ( kq) 2 , four different combination of momenta are then possible: Let us first consider ˜ < ẽ. Here, we have to restrict the integration over x to ± √ ˜ , which is the maximal spatial extension of the particles with smallest energy; for |x| > √ ˜ no interaction is possible. The loss of particles with energy ẽ due to the presence of particles with energy ˜ reads:

¡ √ ˜ - √ ˜ p(x, ˜ )dx = 1,
           + kẽ,x + k˜ ,x -→ ( kẽ,x -k˜ ,x ) 2 + kẽ,x -k˜ ,x -→ ( kẽ,x + k˜ ,x ) 2 -kẽ,x + k˜ ,x -→ ( kẽ,x + k˜ ,x ) 2 -kẽ,x -k˜ ,x -→ ( kẽ,x -k˜ ,x ) 2 (3.63 
- ¢ √ ˜ - √ ˜ g(ẽ, t)g(˜ , t) p(x, ẽ) 2 p(x, ˜ ) 2 2( kẽ,x -k˜ ,x ) 2 + 2( kẽ,x + k˜ ,x ) 2 dx. (3.65) 
This expression can be simplified, because ( kẽ,x -k˜ ,x ) 2 + ( kẽ,x + k˜ ,x ) 2 = 2 k2 ẽ,x + 2 k2 ˜ ,x . The generalisation to the situation ˜ > ẽ is simple.

By integrating over ˜ , we write:

∂ ∂ t g(ẽ, t) = - ¢ ẽ 0 d˜ g(ẽ, t)g(˜ , t) ¢ √ ˜ - √ ˜ p(x, ẽ)p(x, ˜ )( k2 ẽ,x + k2 ˜ ,x )dx+ - ¢ 1 ẽ d˜ g(ẽ, t)g(˜ , t) ¢ √ ẽ - √ ẽ p(x, ẽ)p(x, ˜ )( k2 ẽ,x + k2 ˜ ,x )dx.
(3.66)

3.D. RATE EQUATIONS IN THE STRONG-CONFINEMENT LIMIT ω/ Γ 1 105

With some algebra, we obtain

∂ ∂ t g(ẽ, t) = - 1 π 2 ¢ ẽ 0 d˜ g(ẽ, t)g(˜ , t) ¢ √ ˜ - √ ˜ ˜ -x2 ẽ -x2 + ẽ -x2 ˜ -x2 dx+ - 1 π 2 ¢ 1 ẽ d˜ g(ẽ, t)g(˜ , t) ¢ √ ẽ - √ ẽ ˜ -x2 ẽ -x2 + ẽ -x2 ˜ -x2 dx. (3.67)
This equation is amenable to the compact writing which was presented in Eq. (3.43).

Chapter 4

Effects of atom losses on a one-dimensional Bose-Hubbard gas in the hard-core regime

In this Chapter we study the hard-core regime of the Bose-Hubbard model and in particular we investigate the effect of K-atom losses on the rapidity distribution ρ(k). The results are the outcome of a collaboration with F. Riggio, D. Karevski and J. Dubail from LPCT-Université de Lorraine (Nancy) [START_REF] Riggio | Effects of atom losses on a one-dimensional bose-hubbard gas in the hardcore regime[END_REF]. Under the assumption that the dissipation is weak enough to allow the system to relax between two loss events, we are able to determine the loss functional encoding the loss process for the general case of K-body losses. We give explicite expression for the one and two-body losses case and show their effects on the evolution of the total number of particles. We then mention in Sec. Sec:kinhomo how to include a harmonic trapping potential to the hard-core bosons gas by introducing the Wigner function of this system. The Chapter is organised as follows. In Sec. 4.1 we introduce the problem and its relevance. Sec. 4.2 is then dedicated to the presentation of the setup, the hypothesis and fundamental concepts such as the rapidity distribution and the loss functional, which will be the main subjects of our analysis. In Sec. 4.3 we present the method we used to compute the loss functional for one and two-body losses. We then generalised the method to the case of K-body losses where we distinguish the parity of K. Sec. 4.4 is dedicated to the presentation of the results in tho homogeneous case, we show the effect of atom losses on the rapidity distribution and the mean density. We briely mention in Sec. 4.5 how to include a harmonic confinement. We draw our conclusions in Sec. 4.6.

Introduction

In Chapter 2 we have extensively discussed the case of two-body losses. However, we mentioned the fact that cold-atom experiments suffer from different loss mechanisms, which are distinguished by the number of atoms K (K = 1, 2, 3, . . . ) involved in each 107 loss event. In this context, we propose a model of N hard-core bosons on a lattice subject to weak K-body losses. It is worth noting that despite its simplicity, this toy model can be connected to significant physical scenarios, or being a first approach to more complicated ones. For instance, in the case of K = 2, the master equation is strictly linked to the one derived in Ref. [START_REF] García-Ripoll | Dissipation-induced hard-core boson gas in an optical lattice[END_REF], see Eq. (2.13).

The inclusion of loss processes in integrable systems has recently garnered attention. In comparison to non-integrable models, where only energy and/or the number of particles are conserved, an integrable model possesses a significantly larger number of conserved charges. This abundance of conserved quantities grants an isolated integrable system a distinctive property: the equilibrium state of the system is described by a Generalized Gibbs Ensemble (GGE). The GGE is constructed by maximizing entropy while adhering to the constraints imposed by all conservation laws [START_REF] Doyon | Lecture notes on Generalised Hydrodynamics[END_REF]. It has been demonstrated that the dynamics of an integrable model is governed by equations akin to hydrodynamics, giving rise to the well-known theory of generalized hydrodynamics (GHD) [START_REF] Bertini | Transport in out-ofequilibrium xxz chains: Exact profiles of charges and currents[END_REF][START_REF] Castro-Alvaredo | Emergent hydrodynamics in integrable quantum systems out of equilibrium[END_REF]. However, coupling to the environment may lead to integrability breaking [START_REF] Hutsalyuk | Integrability breaking in the one-dimensional bose gas: Atomic losses and energy loss[END_REF]. In principle, with a sufficient number of loss events, one might expect the disappearance of integrability to result in the thermalization of the system. Nevertheless, this remains an open problem [START_REF] Bertini | Prethermalization and thermalization in models with weak integrability breaking[END_REF][START_REF] Johnson | Long-lived nonthermal states realized by atom losses in one-dimensional quasicondensates[END_REF].

The weakly-dissipative regime allows us to employ a time-dependent Generalised Gibbs Ensemble (t-GGE) ansatz for the dynamics of the density matrix written in terms of the rapidity distribution of the gas ρ(k). The loss functional F [ρ](k) accounting for K-body losses is then derived under this assumption.

The aim of this Chapter is to understand whether the integrability breaking caused by losses leads or not to the thermalization of the gas. We investigate the time evolution of the mean density n(t) = N (t)/L, L being the lattice size, and the rapidity distribution, for different initial rapidity distributions, and find non-trivial behaviours depending on the number of removed bosons K.

The model

Definition: lattice Tonks-Girardeau gas with K-body losses

We consider a lattice Tonks-Girardeau gas subject to atom losses. The configurations of the system are the ones of hard-core bosons on a one-dimensional lattice Z. Each site j ∈ Z is occupied by either zero or one boson. We write b † j /b j for the operator that creates/annihilates a boson on site j. Because of the hard-core constraint, these operators do not satisfy the usual bosonic canonical commutation relations. Instead, they satisfy the algebra of Pauli matrices, (b † j ) 2 = (b j ) 2 = 0, and

[b i , b † j ] = δ i,j (1 -n j ).
We consider the hard-core boson (HCB) Hamiltonian with nearest-neighbor hopping,

H HCB = - 1 2 j∈Z (b † j b j+1 + b † j+1 b j ). (4.1)
This Hamiltonian generates the unitary part of the evolution of the gas. In addition, we assume that the gas is subject to incoherent K-body loss processes, with K a positive integer. To describe the losses, we assume that the dynamics is Markovian, and we consider the following Lindblad equation for the density matrix ρ,

ρ(t) = -i[H HCB , ρ(t)] + Γ j∈Z L j ρ(t) L † j - 1 2 {L † j L j , ρ(t)} , (4.2) 
Here Γ is a constant that sets the loss rate, while the Lindblad operators

L j = K-1 l=0 b j+l (4.3)
remove K bosons from the K consecutive sites j, j + 1, . . . , j + K -1.

We stress that, with these loss terms, the model is not exactly solvable, so it is necessary to develop some effective approaches to tackle it.

Adiabatic losses, effective description by slow motion of the charges

To simplify the description of the system, we follow the approach of Ref. [START_REF] Bouchoule | The effect of atom losses on the distribution of rapidities in the one-dimensional Bose gas[END_REF] (where the approach was developed for a continuous gas), and we assume that the loss processes occur on very long times compared to the relaxation time scale due to the unitary evolution of the gas. In that limit, the gas has time to reach a local stationary state after each loss event. To efficiently exploit that assumption, we look at the slow dynamics of the conserved charges.

For convenience, from now on we focus on a finite system of L 1 sites, with periodic boundary conditions. The Hamiltonian H HCB commutes with an infinite set of hermitian operators Q a , a = 0, 1, 2 . . . that can be constructed using the Jordan-Wigner mapping to non-interacting fermions (see Subsec. 4.2.3 for details). These operators also commute among themselves, [Q a , Q b ] = [H HCB , Q a ] = 0. Moreover, they are local in the sense that Q a = L j=1 q a,j where q a,j is a charge density operator that has compact support (i.e. it acts on a finite number of sites around j).

The time evolution of the expectation value

Q a (t) = tr[ρ(t)Q a ], is obtained from Eq. (4.2), ˙ Q a (t) = Γ 2 L j=1 L † j [Q a , L j ] + [L † j , Q a ]L j (t). (4.4)
Moreover, the hermiticity of

Q a implies [L † j , Q a ]L j = L † j [Q a , L j ] * . Thus, ˙ Q a (t) = Γ L j=1 Re L † j [Q a , L j ] (t). (4.5)
This equation is exact and it is a direct consequence of Eq. (4.2). Notice that, in this form, it is not particularly useful, because to evaluate the r.h.s one needs to know the exact density matrix ρ(t). Now comes the crucial step. Importantly, the operator L † j [Q a , L j ] is local, because both the operator L j and the charge density q a,j have compact support. This, together with the assumption of slow losses, allows us to use the idea of local relaxation in the system. Namely, we expect that, under unitary evolution, the density matrix of a small subsystem quickly relaxes to a Generalized Gibbs Ensemble (GGE). Expectation values of local observables can then be evaluated with respect to the GGE density matrix, 

ρ GGE,{ Qa } ∝ e -a βaQa , ( 4 
d dt Q a = Γ L j=1 Re L † j [Q a , L j ] GGE,{ Q b } . (4.7)
It is this evolution equation that we study in great detail here. For lattice HCB, the description is further simplified by specifying the form of the conserved charges Q a . This is what we do next, by introducing the distribution of rapididites.

Slow evolution of the rapidity distribution

Hard-core bosons can be mapped to free fermions by a Jordan-Wigner transformation,

b † j = j-1 i=1 (-1) c † i c i c † j , b j = j-1 i=1 (-1) c † i c i c j . (4.8)
Here the operators c † j /c j create/annihilate a fermion on site j. They satisfy the canonical anticommutation relations {c i , c † j } = δ ij . Under the Jordan-Wigner mapping, the Hamiltonian (4.1) becomes

H HCB = - 1 2 L j=1 (c † j c j+1 + c † j+1 c j ). (4.9)
Moreover, the fermions satisfy antiperiodic (resp. periodic) boundary conditions if the number of particles N in the system is even (resp. odd):

c † L+1 = (-1) N -1 c † 1 . (4.10)
The Fourier modes are

c † (k) = 1 √ L L j=1 e ikj c † j (4.11) with k ∈ 2π L (Z + 1 2 ) if N is even, and k ∈ 2π L Z if N is odd. Either way the Hamiltonian reads H HCB = k ε(k)c † (k)c(k), (4.12) 
with ε(k) =cos k.

It is clear from the form (4.12) that any operator of the form

Q[f ] = k f (k)c † (k)c(k), (4.13) 
for any function f (k), commutes with the Hamiltonian H HCB . Moreover these conserved charges also commute among themselves. Convenient choices for f (k) are cos(nk) or sin(nk) for n ∈ N, which leads to a hermitian basis set of charges, where each charge has a charge density that is compactly supported. However, for the purposes of this Chapter, rather than to work with a specific choice of basis for the space of conserved charges Q a (or Q[f ]), it is more convenient to work directly with the occupation number, or 'rapidity distribution',

ρ(k) = L→∞ c † (k)c(k) , ρ(k) ∈ [0, 1]. (4.14)
It is clear that if we know the rapidity distribution ρ(k), then we also know the expectation values of any charge

Q[f ], because Q[f ] = k f (k)ρ(k).
Following Refs. [START_REF] Bouchoule | The effect of atom losses on the distribution of rapidities in the one-dimensional Bose gas[END_REF][START_REF] Rossini | Strong correlations in lossy one-dimensional quantum gases: From the quantum zeno effect to the generalized gibbs ensemble[END_REF], we can turn the evolution equation for the slow motion of the charges (4.7) into an equation for the slow evolution of the rapidity distribution itself,

ρ(k) = -ΓF [ρ](k), (4.15) 
where the loss functional

F [ρ](k) = L j=1 Re L † j [L j , c † (k)c(k)] GGE,ρ , (4.16) 
and the GGE density matrix itself is parameterized by the rapidity distribution ρ(k).

More precisely, the GGE density matrix is Gaussian for the fermions c † j , c j , and it is characterized by its two-point function c † (k)c(k ) GGE,ρ = ρ(k)δ k,k . All higher-order correlations can be computed using Wick's theorem for fermionic operators.

The functional (4.16) is the central object of this Chapter. In the next section we compute it explicitly for K-body loss processes. For one-and two-boson loss processes we get simple closed expressions. For loss events involving larger numbers K of bosons, we will see that we can express the loss functional as a small determinant, which follows from applying Wick's theorem to Eq. (4.16).

Deriving the loss functional

In this section we compute the functional F [ρ](k) explicitly. Importantly, in our calculation we uncover a different structure depending on the parity of the number K of bosons lost in each loss event, which can be traced back to the Jordan-Wigner string appearing in the mapping (4.8) to non-interacting fermions.

One-body losses

For K = 1 the Lindblad dissipators are L j = b j . Using translational invariance, the loss functional (4.16) that we need to compute is

F [ρ](k) = L b † 1 [b 1 , c † (k)c(k)] GGE,ρ = = L b † 1 b 1 c † (k)c(k) GGE,ρ -L b † 1 c † (k)c(k)b 1 GGE,ρ , (4.17) 
where L is the length of the system and the loss operator acts on the site j = 1. Both terms in the second line of (4.17) can be computed using the fact that the GGE is a gaussian state for the fermions, which allows us to use Wick's theorem. For the first term we have (using

c 1 = 1 √ L q e iq c(q)): L b † 1 b 1 c † (k)c(k) GGE,ρ = L c † 1 c 1 c † (k)c(k) GGE,ρ = qq e i(q-q ) c † (q )c(q)c † (k)c(k) GGE,ρ = qq e i(q-q ) c † (q )c(q) c † (k)c(k) + c † (q )c(k) c(q)c † (k) = N ρ(k) + ρ(k)(1 -ρ(k)). (4.18)
The second term requires more care, because the operator c † (k)c(k) is inserted between b † 0 and b 0 , and the latter change the parity of the number of particles in the system. The boundary conditions for the fermions are modified according to Eq. (4.10). Thus we need to relate the Fourier modes of the fermions with periodic boundary conditions to the ones with anti-periodic boundary conditions. For conciseness, let us introduce the two corresponding sets of momenta,

Q p = 2π L × {1, 2, . . . , L}, (4.19) 
Q ap = 2π L × 1 2 , 3 2 , . . . , L - 1 2 . (4.20)
Then we have the following identities,

(k ∈ Q p ) c(k) = i L q∈Q ap
e i(q-k)/2 sin((qk)/2) c(q), (4.21)

(k ∈ Q ap ) c(k) = i L q∈Q p e i(q-k)/2 sin((q -k)/2) c(q). (4.22)
We can insert them into the second term of Eq. (4.17), which leads to

b † 1 c † (k)c(k)b 1 = 1 L 2 q,q e i(q-q )/2 c † 1 c † (q ) c(q)c 1 sin((q -k)/2) sin((q -k)/2) . ( 4 

.23)

This correctly implements the change of boundaries of the fermions. Next we can apply Wick's theorem to evaluate the four-fermion correlator c † 1 c † (q ) c(q)c 1 . This leads to

L b † 1 c † (k)c(k)b 1 = N L 2 q ρ(q) sin 2 ( q-k 2 ) - 1 L q cot q -k 2 ρ(q) 2 - N 2 L 2 . (4.24)
The first term in the above equation has a pole of order 2 at q = k + 2πZ, and it is convenient to reduce its degree using the identity q 1/ sin 2 ( q-k 2 ) = L 2 . This leads to the equivalent expression

L b † 1 c † (k)c(k)b 1 = N L 2 q ρ(q) -ρ(k) sin 2 ( q-k 2 ) + N ρ(k)+ - 1 L q cot q -k 2 ρ(q) 2 - N 2 L 2 . (4.25)
Putting the two terms (4.18)-(4.25) together and taking the thermodynamic limit L → ∞, we arrive at the following form of the one-body loss functional

F [ρ](k) = ρ(k) -ρ 2 (k) + 2 π -π dp 2π cot k -p 2 ρ(p) 2 + n n + 2 π -π dq 2π ρ(k) -ρ(q) sin 2 ( k-q 2 ) , (4.26) 
where n = N /L is the density of particle and 1 means the Cauchy principal value of the integral. This result is similar to (but different from) the one given in Ref. [START_REF] Bouchoule | The effect of atom losses on the distribution of rapidities in the one-dimensional Bose gas[END_REF] for the Tonks-Girardeau gas in the continuum. Notice that the functional is non-linear in ρ(k), and also non-local in rapidity space.

Two-body losses

For K = 2, the dissipators are L j = b j b j+1 . Under the Jordan-Wigner mapping they become

L j = b j b j+1 = c j (-1) c † j c j c j+1 = -c j c j+1 . (4.27)
Then, to compute the functional F , we simply need to insert the dissipator (4.27) in the definition (4.16),

F [ρ](k) = j b + j+1 b + j [b j b j+1 , c † (k)c(k)] = q,q ,p,p e i(2p +p-2q-q ) M c † (q)c † (q )[c(p)c(p ), c † (k)c(k)] . (4.28)
Expanding the commutator in the braket leads to two terms

c † (q)c † (q )[c(p)c(p ), c † (k)c(k)] = c † (q)c † (q )c(p)c(p )c † (k)c(k) -c † (q)c † (q )c † (k)c(k)c(p)c(p ) . (4.29)
The first term can be expressed as

c † (q)c † (q )c(p)c(p )c † (k)c(k) = = c † (q)c † (q )c † (k)c(k)c(p)c(p ) + δ p k c † (q)c † (q )c(p)c(k) -δ pk c † (q)c † (q )c(p )c(k) . (4.30)
The second term is the expectation value of c † (k)c(k) in a state where two atoms have been removed, the parity of the initial number of particle is then unchanged. Hence, in contrast to the K = 1 case treated in the previous subsection, here the parity of the number of atoms does not change.

One can then apply Wick's theorem, and take the thermodynamic limit to obtain the loss functional,

F [ρ](k) = 2 π ¢ π -π dq sin 2 k -q 2 ρ(q) ρ(k). (4.31)
That functional presents some similarities with the loss functional found in the relation (5) of Ref. [START_REF] Rossini | Strong correlations in lossy one-dimensional quantum gases: From the quantum zeno effect to the generalized gibbs ensemble[END_REF].

K-body losses with K even

We now generalise this calculation to the case of K-body losses for K an arbitrary even integer. In this subsection we show that is possible to find a closed formula for the loss functional defined in (4.16) where the Lindblad operator is given by

L j = b j b j+1 . . . b j+K-1 .
Taking the Fourier transform of L 1 and L † 1 in (4.16) and using translational invariance, the loss functional reads

F even [ρ](k) = 1 L K-1 q 1 ,...,q K q 1 ,...,q K exp i K l=1 (q l -q l )l × c † (q K ) . . . c † (q 1 )[c(q 1 ) . . . c(q K ), c † (k)c(k)] , (4.32) 
with the index l running over the K sites. As mentionned in 4.3.2, in the case of even K-body losses the commutator in (4.32) reduces to K terms

c † (q K ) . . . c † (q 1 )[c(q 1 ) . . . c(q K ), c † (k)c(k)] = = δ kq K c † (q K ) . . . c † (q 1 )c(q 1 ) . . . c(q K-1 )c(k) + -δ kq (K-1) c † (q K ) . . . c † (q 1 )c(q 1 ) . . . c(q K-2 )c(q K )c(k) + . . . (4.33)
and applying Wick's theorem on each terms leads to a product of K terms of the form c † (q )c(q) . Using the property c † (q )c(q) = δ qq ρ(q) and taking the thermodynamic limit, the loss functional in (4.32) can be expressed as a sum of K terms each consisting of a K by K matrix determinant. Let us introduce the K × K matrix A (j)

[ρ] with matrix elements

[A (j) [ρ] ] ab = 1 2π ¡ π -π dq e i(b-a)q ρ(q) if b = j e i(b-a)k ρ(k) if b = j, (4.34) 
for indices a, b = 1, . . . , K. The superscript j indicates which column depends on the rapidity k. Apart from the j th column, the matrix essentially contains Fourier transforms of the rapidity distribution ρ(k). The loss functional then reduces to

F even [ρ](k) = K j=1 det A (j) [ρ] . (4.35)

K-body losses with K odd

In this last subsection we investigate the case of losses process with an odd number K of lost atoms. The reasoning is similar to the one we developped in the previous subsection, however like in the K = 1 case, we need to be careful about the change of boundary conditions for the fermions. We start by taking the Fourier transform of the Lindblad operators in the definition (4.16), which leads to the relation (4.32). The commutator in the loss functional gives two terms c † (q K ) . . . c † (q 1 )[c(q 1 ) . . . c(q K ), c † (k)c(k)] = c † (q K ) . . . c † (q 1 )c(q 1 ) . . . c(q K )c † (k)c(k)

-c † (q K ) . . . c † (q 1 )c † (k)c(k)c(q 1 ) . . . c(q K ) . (4.36)
As we have already discussed in the subsection 4.3.1, the first term is the expectation value of c † (k)c(k) in a state where the initial number of particles is preserved. However the second term corresponds to the expectation value of c † (k)c(k) in a state where K atoms have been removed. Since K is an odd number, the parity of the number of particle is changed and one needs to use the relations (4.21) to express c † (k)c(k) in the appropriate parity sector. Inserting the relations (4.21) in the second term, one has c † (q K ) . . . c † (q 1 )c † (k)c(k)c(q 1 ) . . . c(q K ) = q,q e i(q-q )/2 c † (q K ) . . . c † (q 1 )c † (q )c(q)c(q 1 ) . . . c(q K ) L 2 sin((qk)/2) sin((qk)/2) . (4.37)

Before using Wick's theorem on the above formula, one can notice that the first term in the right-hand side of (4.36) can be written as

c † (q K ) . . . c † (q 1 )c(q 1 ) . . . c(q K )c † (k)c(k) = = c † (q K ) . . . c † (q 1 )c † (k)c(k)c(q 1 ) . . . c(q K ) + + δ kq K c † (q K ) . . . c † (q 1 )c(q 1 ) . . . c(q K-1 )c(k) + -δ kq (K-1) c † (q K ) . . . c † (q 1 )c(q 1 ) . . . c(q K-2 )c(q K )c(k) + + . . . , (4.38) 
where we used the anti-commutation relation for the fermionic operators. As we proceed in the previous subsection, the Wick's contractions of (4.37) and of the first term in the right-hand side of (4.38) can be written as two determinants of two matrices B and C. The matrices B and C are (K + 1) × (K + 1) hermitian matrices and their matrix elements depend on the Fourier and Hilbert transforms [START_REF] Butzer | Fourier analysis and approximation. Lehrbücher und Monographien aus dem Gebiete der exakten Wissenschaften[END_REF] of ρ(k)

[B [ρ] ] ab =    1 2π ¡ π -π dq e i(b-a)q ρ(q) if a, b < K + 1 e -iak ρ(k) if b = K + 1 0 if a = b = K + 1, (4.39) [C [ρ] ] ab =                    1 2π ¡ π -π dq e i(b-a)q ρ(q) if a, b < K + 1 1 2π
1 π -π dq e -i(a-1)q ρ(q)(cot kq 2 + i)

if b = K + 1 1 2π 1 π -π dq ρ(q) -ρ(k) sin 2 ( k -q 2 ) if a = b = K + 1.
(4.40)

The loss functional for odd K takes the final form

F odd K [ρ](k) =   K j=1 det A (j) [ρ]   + det B [ρ] -det C [ρ] . (4.41)
It is possible to write a general expression valid both for even and odd K by introducing the factor 1 -(-1) K 2 which vanishes for K even, so that our final result, valid in all cases, reads numerically (and analytically for the special case K = 1), and we focus in particular on the time evolution of the atom density: where n 0 = n(0) is the initial atom density, ρ 0 (k) = ρ(t = 0, k) is the initial rapidity distribution, and I(t, k) is the integral

F K [ρ](k) =   K j=1 det A (j) [ρ]   + 1 -(-1) K 2 det B [ρ] -det C [ρ] . ( 4 
n = ¢ π -π ρ(k) dk 2π . ( 4 
I(t, k) = ¢ π -π dq 2π ρ 0 (q) tan k-q 2 + in 0 (1 -e -Γt ) . ( 4 

.47)

A similar (but different) expression was obtained in Ref. [START_REF] Bouchoule | The effect of atom losses on the distribution of rapidities in the one-dimensional Bose gas[END_REF] for the continuous Tonks-Girardeau gas with one-body losses. In Fig. (4.2) we show the evolution of the rapidity distribution from thermal initial states at different temperatures. We display the analytical result (4.46), as well as the numerical solution of Eq. (4.43) obtained from the Runge-Kutta method; they are in perfect agreement.

We see that loss processes spread the distribution in rapidity space. In the limit of large temperature for the initial state, the rapidity distribution is flat, and remains flat at all times. For smaller initial temperatures, it evolves into a bell-shape distribution where we plot the ratio ρ(k, t)/n(t) in the limit t → ∞, and fit the result with a Boltzmann distribution. The agreement is very good, even though it is clear from the exact formulas (4.46)-(4.47) that the distribution ρ(k, t) never becomes exactly thermal, even at infinite time.

EVOLUTION OF THE RAPIDITY DISTRIBUTION FOR A HOMOGENEOUS GAS119

To find a more striking signature of the fact that the system never goes to a lowdensity thermal distribution, we consider the case of an oscillating initial rapidity distribution ρ 0 (k) = (1cos(sk))/2, where s is an integer. In that case the long-time limit of the integral (4.47) can be evaluated analytically, lim t→∞ I(t, k) = (1e -2sn 0 e iks )/2, and when injected in Eq. (4.46) it leads to a late-time rapidity distribution of the form

ρ(k, t) n(t) = t→∞ α + β cos(sk) γ + δ cos(sk) , (4.48) 
where the coefficients α, β, γ, δ depend on the initial density n 0 and on the integer s. Thus, even at long time, the rescaled rapidity distribution is sensitive to the structure of the inital distribution (see also Fig. 4.3.(b)). We conclude that in general the rapidity distribution does not go to a low-density thermal distribution at long times.

Results for K = 2

We now consider the time evolution equation for the rapidity distribution for the K = 2 case, which is characterized by the functional given by Eq. (4.31). For simplicity, here we focus on initial rapidity distributions ρ 0 (k) that are symmetric under reflection k → -k.

Since the master equation is also invariant under k → -k, this property is conserved throughout the entire evolution. Then Eq. (4.31) simplifies to the following expression,

-π -π 2 0 π 2 π 0.0 0.5 1.0 1.5 2.0 2.5 3.0 ρ(k, t)/n(t) a) t = 0 t → ∞ Fit with a 1 e cos(k)/a2 -π -π 2 0 π 2 π Rapidity k 0.0 0.5 1.0 1.5 2.0 2.5 ρ(k, t)/n(t) b) t = 0 t → ∞
F [ρ] = 2 ρ(k) n(t) - 1 π cos (k)ρ(k) ¢ π -π
dq cos (q) ρ(q). (4.49)

Eq. (4.49) highlights the two distinct contributions to the time evolution of ρ(k, t): the first term in the right-hand side represents a mean-field contribution, as it does not introduce any structure in rapidity space, while the second term is responsible for generating quantum correlations and, consequently, introducing structure in k-space. In particular, this second term includes the first Fourier mode of the rapidity distribution, namely:

¢ π -π
dq cos (q) ρ(q), (4.50)

we will see in the following that this quantity plays a crucial role.

After some algebra presented in App. 4.B, one can derive an exact (implicit) expres- sion for the rapidity distribution at all times:
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ρ(k, t) = ρ 0 (k) • exp -2Γ ¢ t 0 1 -σ 0 cos (k) 1 + ∂ τ n(τ ) 2Γ n(τ ) 2 n(τ )dτ , (4.51) 
where σ 0 = sgn( ¡ π -π cos (k)ρ 0 (k)dk), with sgn(x) = ±1 the sign function. Eq. (4.51) shows that ρ(k, t) is entirely determined by ρ 0 (k) and n(t).

In Fig. 4.4 we show the evolution of the rapidity distribution for initial thermal states at different temperatures, and in Fig. 4.5 we show the corresponding evolution of the mean atom density n(t). It appears that, except for an initial infinite temperature state, the mean density always decays as n(t) ∝ 1/ √ t at very long times, while the density decreases as 1/t for an infinite temperature. These two behaviors follow from Eqs. (4.49)-(4.51), as we now explain.

Eq. (4.49) reveals that initial rapidity distributions that have a vanishing first Fourier mode (see Eq. (4.50)) always follow the exact same dynamics as the mean density, namely

n(t) = 1 1 + 2n(0)Γt , (4.52) 
characterized by a long-term decay as ∼ 1/t. This power law is then always found for initial rapidity distributions with vanishing first Fourier mode, including infinite temperature states.

In contrast, initial rapidity distributions that have a non-vanishing first Fourier mode decay as ∼ 1/ √ t at long times. This can be understood by looking at the long time limit of Eq. (4.51). Let us introduce the two time-dependent functions g(t) = times, as soon as the initial rapidity distributions has a non-vanishing first Fourier mode.

Then, expanding at first order in

|∂ τ n(τ )|/(2Γn(τ ) 2 ), f (t) becomes f (t) g(t) + 1 4Γ ln n(t) n(0) , (4.53) 
implying that, at large t, the difference between f (t) and g(t) grows as ln(t) (see App. 4.C for details). Integrating Eq. (4.51) over k leads to the mean density

n(t) = e -2Γg(t) 2π ¢ π -π dk ρ 0 (k) e 2Γb 0 cos (k)f (t) . (4.54)
Since the function f (t) diverges at large t, the latter integral can be evaluated by the saddle-point approximation; we denote k * b 0 the saddle point:

k * b 0 = 0 if b 0 = +1 and k * b 0 = π if b 0 = -1.
We are thus left with:

¢ π -π dk ρ 0 (k) e 2Γσ 0 cos (k)f (t) = t→∞ e 2Γ f (t) ¢ ∞ -∞ dk ρ 0 (k) e -Γ k 2 f (t) = π Γf (t) ρ 0 (k * σ 0 ) e 2Γ f (t) . (4.55)
Using Eq. (4.53), we find

n(t) t→∞ 1 Γf (t) ρ 0 (k * σ 0 ) 2 4πn(0) 1 Γg(t) ρ 0 (k * σ 0 ) 2 4πn(0) , (4.56)
where, in the second identity, we have used the fact that the logarithmic term in Eq. (4.53) is subleading. Since n(t) = ∂ t g(t), we arrive at an ordinary differential equation of the form ∂ t g(t) ∝ 1/g(t). Consequently, g(t) ∝ √ t, and then

n(t) ∝ t -1/2 , (4.57)
as expected from our numerical results, see Fig. 4.5. We note that a similar result was found recently in a lattice gas with similar but different two-body loss term [START_REF] Rossini | Strong correlations in lossy one-dimensional quantum gases: From the quantum zeno effect to the generalized gibbs ensemble[END_REF] as well as in its continuous analog [START_REF] Rosso | Eightfold way to dark states in su(3) cold gases with two-body losses[END_REF], although we stress that the loss functionals and rate equations for these models are different from the ones of this Chapter. We conclude this subsection with an investigation of the long time behavior of the rapidity distribution ρ(k, t), which is determined by the mean density n(t) according to Eq. (4.51). We have just we etablished that the first Fourier mode of the initial rapidity distribution strongly influences the long time behavior. In the case of a vanishing first Fourier mode, the rapidity density at time t is simply given (see Eqs. (4.52)-(4.51)) by ρ(k, t) = ρ 0 (k) n(t)/n(0). The ratio ρ(k, t)/n(t) is then time-independent, as illustrated in Fig. 4.6(c). In contrast, when the first Fourier mode of the initial distribution ρ 0 (k) is non-zero, the ratio ρ(k, t)/n(t) loses its dependence on the initial rapidity distribution at very long times. Indeed, in that case the rapidity distribution goes to a low-density, low-temperature, Boltzmann distribution of the form ρ(k, t)/n(t) e β(t) cos k with the effective inverse temperature β(t) = 2b 0 Γf (t). This is illustrated for the case of an initial thermal rapidity distribution in Fig. 4.6(a), where we see that the ration ρ(k, t)/n(t) gets concentrated around k = 0 and is very close to a Boltzmann distribution. Notice also that the effective temperature β(t) is negative when the sign of the first Fourier mode of the initial rapidity distribution is negative. This is illustrated in Fig. 4.6(b), where we display the ratio ρ(k, t)/n(t) at late time for the far-from-thermal initial rapidity distribution ρ 0 (k) = (1cos(k))/2. We observe that, at late times, the distribution gets concentrated around k = π and corresponds to a Boltzmann distribution at negative temperature.

Remarkably, these observations are in stark contrast with our findings for the K = 1 case. While we found that, for K = 1, the rapidity distribution never goes to a thermal distribution at late time, here for K = 2 the distribution goes to a low-density, lowtemperature (possibly negative), thermal distribution. As such, two-body losses can be employed as a thermalisation mechanism. This is always true, except in the special case where the first Fourier mode of the rapidity distribution vanishes; in that case the rapididity distribution is simply rescaled by a factor n(t)/n(0) under lossy evolution.

Generic observations for arbitrary K

We now turn to the case of higher K, and draw some general conclusions. Numerically, we solve the time evolution equation of the rapidity distribution for three-body losses (K = 3), see Fig. 4.7 for the evolution of the rapidity distribution from an initial thermal state, and Fig. 4.8 for the atom density n(t). In Fig. 4.7 we see that the effect of three-body losses is to spread the rapidity distribution in rapidity space, as already observed for one-body and two-body losses. We expect that this is a generic effect caused by K-body losses for any K. In Fig. 4.8, we observe that the mean density decays as t -1/2 for an initial infinite temperature state, while for any nonzero initial temperature it crosses over to a t -α decay at long times with an exponent α 0.21. This exponent seems to be independent of the initial temperature as long as it is non-zero, see Fig. 4.8. However, for an initial rapidity distribution that is far from thermal, such as for instance ρ(k, t = 0) = (1cos k)/2 or (1cos(2k))/2, we find that the density also decays as a power-law at late time, although with a different exponent We have not been able to analytically derive the observed generic power-law decay for K = 3 or for higher K, beyond the special case of the initial infinite temperature state. The latter case is easily understood because, for an infinite temperature state the rapidity distribution is constant, ρ(k) = n, and the equation (4.15) can be solved analytically. Then the determinant of the matrix B is equal to the determinant of C, and the matrices A reduce to identical and diagonal matrices. Therefore the loss functional is simply given by
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F K [ρ](k) = Kn K , (4.58)
which is the result expected from the mean-field approach. Then the solution of the evolution equation (4.15) gives the mean density

n(t) = n(0) (1 + n(0) K-1 K(K -1) Γt) 1/(K-1) . (4.59)
Beyond that simple case, we have not been able to express the loss functional in a simple form so as to derive the long-time decay of the mean density.

Similarly to the K = 1 and K = 2 cases, we have investigated the behavior of the rescaled rapidity distribution ρ(k, t)/n(t) at late times. Recall that this ratio reveals that the gas generically (i.e. unless the first Fourier mode of ρ(k) is tuned to zero) goes to a low-density, low-temperature thermal state for K = 2, while for K = 1 it never does. In Fig. 4.9 we display this ratio at late time for K = 3. Colored curves are obtained by solving numerically the time evolution equation of ρ(k) with an non-regular time step and a loss rate Γ =0.1. From blue to red, the simulation is performed with an initial distribution which is a Fermi-Dirac distribution ρ 0 (k) = (1 + exp(-cos(k)/T )) -1 . The dark and light green curves are respectively obtained from initial rapidity distributions (1cos(k))/2 and (1cos(2k))/2. The black dashed line is the long time behavior of the mean density predicted by Eq. (4.52). The orange dashed curve corresponds to the long time behavior of the mean density computed from an initial rapidity distribution with non-vanishing first Fourier mode. The gray dotted curve shows the long time behavior of the mean density for an initial rapidity distribution with no first Fourier mode.

(a)), the long time behavior of the density profile can not be described by a Boltzmann distribution, as it looks like a bell-shaped distribution that has a small dip at k = 0. A similar conclusion holds for Fig. 4.9.(b). Finally Fig. 4.9.(c) shows the emergence of peaks localised at k = ±π/2. We conclude that, in contrast with the K = 2 case, the late-time rapidity distribution is generically non-thermal.

Inclusion of a harmonic confinement

In this Section we briefly discuss how to include a harmonic confinement to the system under study in this Chapter. Following the same approach presented in Sec. 3.4 we now include a harmonic potential: We adopt a coarse-grained perspective of the gas: we assume that the gas can be divided into fluid cells which contain a large number of bosons, and that the state of the gas within each fluid cell [x, x+dx] is a certain macrostate represented by the local density of rapidities ρ(x, k). Such coarse-grained descriptions have been very successful lately in describing the out-of-equilibrium quantum many-body dynamics of nearly integrable gases. Here we investigate the effect of losses on our lattice hard-core gas within that coarse-grained description.

V (x) = ω 2 x 2 2 . (4.60) -π -π 2 0 π 2 π 0 5 10 ρ(k, t)/n(t) a) t = 0 Γt = 2.4 × 10 7 -π -π 2 0 π 2 π 0 5 10 ρ(k, t)/n(t) b) t = 0 Γt = 2.4 × 10 7 -π -π 2 0 π 2 π Rapidity k 0 5 10 15 ρ(k, t)/n(t) c) t = 0 Γt = 2.4 × 10 7
The equation satisfied by the position-dependent rapidity distribution is

∂ t ρ(x, k, t) + sin(k) ∂ x ρ(x, k, t) -ω 2 x ∂ k ρ(x, k, t) = -ΓF [ρ(x, k, t)](k). (4.61) 
In the first line, the term ∂ x sin(k)ρ(x, k) corresponds to the gradient of the current of quasi-particles with rapidity k, j(x, k) = sin(k)ρ(x, k). Here sin(k) is the group velocity of quasi-particles with lattice dispersion relation ε(k) =cos(k). The term -ω 2 x ∂ k ρ(x, k) in Eq. (4.61) corresponds to Newton's second law, and encodes the fact that the quasiparticles feel the harmonic potential and are accelerated according to

(k) = -∂ x V (x) = -ω 2 x.
Finally, the r.h.s of Eq. (4.61) is the loss term at position x, which follows from the assumption that the gas is locally homogeneous so that we can apply the formalism developed in previous sections, this time within each fluid cell [x, x + dx].

The numerical method employed to solve (4.61) is based on the one presented in Sec. 3.B. We are currently investigating the effect of a harmonic confinement on both the dynamics of the density of the gas and the rapidity distribution.

Conclusion

In this chapter, we investigated the effect of weak K-body losses on the rapidity distribution of a one-dimensional hard-core Bose gas. Thanks to the assumption of weak losses, we employed a t-GGE assumption and derived an expression for the loss functional F [ρ] for generic K.

In a homogeneous setting, we predicted both the dynamics of the gas density and the time-dependence of the rapidity distributions. We considered different classes of initial rapidity distributions: thermal distributions with temperature T and generic nonthermal distributions. The only case amenable to an analytical solution for any K is the one with infinite temperature, i.e., a constant initial rapidity distribution. This case leads to a mean-field equation of the type (2.5) (with g K = 1), with a long-time behavior of the mean density characterized by the exponent 1/(K -1) and a flat profile in rapidity space at all times.

For all the other initial rapidity distributions, depending on the number K of removed bosons, we discovered a very rich phenomenology. In particular, for K = 1, we observed that thermalization does not generally occur at long times. Interestingly, the case of K = 2 contrasts with K = 1, as we found that the rapidity distribution converges to a low-density (possibly negative) thermal distribution, except for the class of initial distributions with a vanishing first Fourier mode. The dynamics of the mean density for this class of initial distributions is the same as that of the infinite temperature case. Finally, for arbitrary K, we concluded that the late-time rapidity distribution is typically non-thermal.

Regarding the inhomogeneous case, we briefly explained how to incorporate a harmonic confinement in the description. Currently, we are investigating the effect of the external potential on both the gas density and its rapidity distribution. For one-body losses, the time evolution of the rapidity distribution ρ(t, k) is given by

∂ t ρ = -Γ ρ -(ρ 2 -H(ρ) 2 -n 2 (t)) + 2n(t)H (ρ) , (4.62) 
where Γ is the loss rate. We introduced the Hilbert transform

H(f (x)) = 1 2π ¡ π -π dy f (y) tan( x-y
2 ) with f (x) a periodic function. The mean density n(t) is known:

n(t) = n 0 e -Γt .
Here the rapidity distribution is a 2π-periodic real-valued function. From the rapidity distribution, we can construct a complex-valued function whose the imaginary part is the Hilbert transform of the real part: Q = ρ(k) + iH(ρ(k)). Such a function is called an analytic signal and can be analytically continued to the upper half-plane: the function

Q(z) = i 2π ¡ π -π dq ρ(q) tan( z-q 2 )
is well-defined for Im(z) > 0 and Re(z) ∈ [-π, π] and reduces to ρ(k) on the real axis.

Taking the Hilbert transform of (4.62)

∂ t H(ρ) = -Γ H(ρ) -H(ρ 2 -H(ρ) 2 ) + 2n(t)H(H (ρ)) (4.63) 
and adding (4.62) and i (4.63), one has

∂ τ Q(τ, z) = -(Q(τ, z) -i2n∂ z Q(τ, z) -Q 2 (τ, z) + n 2 (τ )). (4.64) 
We used some properties of the Hilbert transform: i)

H(H(f )) = -f , ii) H (f ) = H(f ). Moreover, since Q 2 (z) is analytic for Im(z) > 0, the function ρ 2 -H(ρ) 2 + i2ρH(ρ) is an analytic signal if and only if H(ρ 2 -H(ρ) 2 ) = 2ρH(ρ). Introducing the function Y (τ, z) = Q(τ, z + i2n(τ )), one gets ∂ τ Y (τ, z) = Y 2 (τ, z) -Y (τ, z) -n 2 (τ ) (4.65) 
This equation can be solved if one assumes Y (τ, z) = α(τ, z) e -τ . Indeed, thanks to this trick the above equation reduces to

∂ τ α(τ, z) = (α 2 (τ, z) -n 2 0 ) e -τ (4.66) 
Putting all terms depending on α in the left-hand side, one has

¢ dα α 2 -n 2 0 = -e -τ + C 1 , (4.67) 
which leads to

α(τ, z) = n 0 tanh n 0 e -τ + C 2 . (4.68) 
The initial condition Y (0, z) = Y 0 sets the constant:

C 2 = tanh -1 (Y 0 /n 0 ) -n 0 . Thus, one can write Y (τ, z) = n(τ ) tanh n 0 (e -τ -1) + tanh -1 (Y 0 /n 0 ) = n(τ ) tanh(n 0 (e -τ -1)) + Y 0 /n 0 1 + tanh(n 0 (e -τ -1))Y 0 /n 0 . (4.69) 
Finally, the rapidity distribution reads

ρ(t, k) = n 0 e -Γt Re        tanh n 0 (e -Γt -1) + i 2πn 0 ¡ π -π dq ρ 0 (q) tan k-q 2 + in 0 (1 -e -Γt ) 1 + i 2πn 0 tanh(n 0 (e -Γt -1)) ¡ π -π dq ρ 0 (q) tan k-q 2 + in 0 (1 -e -Γt )        . (4.70) 

4.B Derivation of Eq. (4.51) of the main text

In this section we present the main steps to derive the exact expression of the rapidity distribution in the homogeneous case for K = 2. We consider the time evolution of n(t) written as:

∂ t n(t) = 1 2π ¢ π -π ∂ t ρ(k, t)dk. (4.71) 
We now insert the evolution equation (4.49) obtaining:

∂ t n(t) = - 2Γn(t) 2π ¢ π -π ρ(k, t)dk + Γ 2π 2 ¢ π -π cos (k)ρ(k, t)dk 2 = -2Γn(t) 2 + Γ 2π 2 ¢ π -π cos (k)ρ(k, t)dk 2 (4.72)
By inverting the latter relation, one obtains:

¢ π -π cos (k)ρ(k, t)dk = π 2 Γ (∂ t n(t) + 2Γn(t) 2 ), (4.73) 
where |•| denotes the absolute value. At this point of the derivation it is useful to introduce the following variable: The long time behavior for non vanishing first Fourier mode distributions is presented by the red dashed line (see Eq. (4.56)). Right panel: difference between the two function f (t) and g(t) defined in the main text for a thermal and non-thermal distributions. sign function. We now claim that the function σ(t) is solely determined by its value at initial time, i.e. σ(t) = σ(0) σ 0 , the argument goes as follows. (i) If the first Fourier mode vanishes at some time t, then it must vanish also at any later time. This follows from Eq. (4.49). (ii) This implies that the sign of the first Fourier mode is continuous in time. Since it can take only discrete values, it is in fact a constant.

σ(t) = sgn( ¡ π -π cos (k)ρ(k, t)dk),
10 0 n(t)/n(0) ρ0(k) = 1 2 (1 -cos (k)) ρ0(k) = 1 2 (1 -cos (5k)) Eq.(51) ∼ t -1/2 10 -2 10 -1 10 0 10 1 10 2 10 3 10 4 Γt 0.0 0.5 1.0 1.5 f (t) -g(t) ρ0(k, T = 0.1) = 1 1+e cos (k)/T ρ0(k) = 1 2 (1 -cos (k))) ∼ log(t)
By inserting the latter equation in Eq. (4.49) the time evolution of the rapidity distribution can be then recasted into the following form:

ρ(k, t) = -2Γ ρ(k) n(t) + Γσ 0 cos (k)ρ(k) 2 Γ (∂ t n(t) + 2Γn(t) 2 ). (4.74) 
We now divide both sides by ρ(k, t) and then integrate:

ln ρ(k, t) ρ 0 (k) = -2Γ ¢ t 0 n(t )dt + Γσ 0 cos (k) ¢ t 0 2 Γ (∂ t n(t ) + 2Γn(t ) 2 )dt . (4.75)
By exponentiating the latter equation we get:

ρ(k, t) = ρ 0 (k) exp    -2Γ ¢ t 0 n(t )dt + σ 0 cos (k) ¢ t 0 2 ∂ t n(t ) + 2Γn(t ) 2 Γ dt    , (4.76 
) this concludes the derivation of Eq. (4.51).

4.C Additional data for the homogeneous K = 2 case

In this section we present additional data concerning the homogeneous K = 2 case. In particular, we show in Fig. 4.10 (left panel) the dynamics of the mean density for two different initial rapidity distributions which are not thermal. Firstly, we consider an initial distribution given by ρ 0 (k) = 1 2 (1cos (k)), which has first Fourier mode different from zero. Secondly, we consider ρ 0 (k) = 1 2 (1cos (5k)), whose first Fourier mode vanishes. We see that the dynamics induced by the former distribution has a longtime behaviour guven by ∼ 1/ √ t, whereas the latter, due to its vanishining first Fourier mode, is described by Eq. (4.52). This corroborates our findings for initial thermal distributions presented in the main text. Moreover, we show in Fig. 4.10 (right panel) the quantity

f (t) -g(t), where g(t) = ¡ t 0 n(τ ) dτ and f (t) = ¡ t 0 1 + ∂τ n(τ )
2Γ n(τ ) 2 n(τ )dτ for two different rapidity distributions. In the main text we took the first order expansion of f (t) resulting in a logarthmic growth for the quantity f (t)g(t), which is thus corroborated by the numerical data here presented. As such, given an initial rapidity distribution whose first Fourier mode is non-vanishing, one has a longtime decay of the mean density given by n(t) ∼ 1/ √ t.

Chapter 5

Spin conservation in the dissipative Fermi-Hubbard model with weak two-body losses

The present Chapter theoretically investigates the dynamics of a one-dimensional spin-1/2 fermionic gas subject to weak two-body losses, the results are reported in Ref. [START_REF] Rosso | One-dimensional spin-1/2 fermionic gases with two-body losses: Weak dissipation and spin conservation[END_REF].

Our approach highlights the crucial role played by spin conservation in the determination of the full time evolution. We focus in particular on the dynamics of a gas that is initially prepared in a Dicke state with a fully symmetric spin wave function, in a band insulator, or in a Mott insulator. In the latter case, we investigate the emergence of a steady symmetry-resolved purification of the gas. The chapter is organised as follows. We introduce the problem in Sec. 5.1. In Sec. 5.2 we describe the setup. In Sec. 5.3 we derive a dynamical equation for the evolution of the particle density. Next, we compare our theoretical predictions with numerical simulations for three different classes of initial states: Dicke states with fully-symmetric spin wavefunction (Sec. 5.3.1), band insulator (Sec. 5.5) and Mott insulators (Sec. 5.6). In Sec. 5.7 we discuss the effect of weak interactions. Finally, in Sec 5.8 we draw our conclusions.

Introduction

As we have seen in the second Chapter, several theoretical observations highlighted that fermionic gases confined in one-dimensional systems and exposed to two-body losses exhibit a category of stationary states that are highly entangled with a fully symmetric Dicke-like spin wavefunction, that could have important scientific and maybe technological applications [START_REF] Foss-Feig | Steady-state manybody entanglement of hot reactive fermions[END_REF]. Spin is conserved during the lossy dynamics, and this plays a crucial role in the emergence of these stationary states that possess entanglement properties. Here, we point out once again that several experimental studies have been conducted on this setup using molecular [START_REF] Yan | Observation of dipolar spin-exchange interactions with latticeconfined polar molecules[END_REF][START_REF] Zhu | Suppressing the loss of ultracold molecules via the continuous quantum zeno effect[END_REF] and atomic [START_REF] Sponselee | Dynamics of ultracold quantum gases in the dissipative fermi-hubbard model[END_REF] gases, which however have not 133 been able to certify the properties of the realised stationary state.

Various theoretical articles have addressed several aspects of the model and of its dynamics [START_REF] Foss-Feig | Steady-state manybody entanglement of hot reactive fermions[END_REF][START_REF] Nakagawa | Dynamical sign reversal of magnetic correlations in dissipative hubbard models[END_REF][START_REF] Nakagawa | Exact liouvillian spectrum of a one-dimensional dissipative hubbard model[END_REF] but the impact of spin conservation on the full dynamics, beyond determining its stationary properties, has not been understood yet.

In this Chapter we present a simple theoretical framework for describing the lossy dynamics of a one-dimensional fermionic gas with two-body losses that takes into account the exact conservation of spin. Even if most of the attention so far has focused on the theoretical characterisation of the strongly-dissipative regime, we address here the weakly-dissipative limit, which does not spoil the appearance of the highly-entangled stationary states. We highlight the crucial role played by spin in causing a non-trivial relaxation dynamics that affects in a qualitative way the long-time behaviour.

The setup

We consider a gas of spin-1/2 fermions trapped in a one-dimensional optical lattice with two-body contact interaction and on-site two-body losses. We introduce the fermionic operators c ( †) j,σ , which satisfy canonical anticommutation relations, and the Hamiltonian of the Hubbard model, which describes the gas in the single-band approximation:

H = -J j σ=↑,↓ c † j,σ c j+1,σ + H.c. + U j n j,↑ n j,↓ . (5.1) 
Here, J is the hopping amplitude, U is the interaction strength, and n j,σ = c † j,σ c j,σ is the spin-resolved on-site lattice density operator.

The presence of local two-body losses is accounted for by the jump operators L j = √ γ c j,↑ c j,↓ , where γ is the loss rate. The dynamics of the full density matrix ρ(t) is described by a Lindblad master equation:

ρ(t) = - i [H, ρ(t)] + j L j ρ(t)L † j - 1 2 L † j L j , ρ(t) , (5.2) 
where [•, •] denotes the commutator and {•, •} the anticommutator. We mention here that this is the lattice analogue of the model presented in Sec. 2.4.4. In the rest of the Chapter we will focus only on the lattice problem; nonetheless, several results can be easily generalised to the continuum case. In the experimental situations that we want to model [START_REF] Sponselee | Dynamics of ultracold quantum gases in the dissipative fermi-hubbard model[END_REF], i.e. those where losses are intrinsic, the ratio γ/U is determined by atomic (or molecular) properties, and is of the order of the unity; the ratio γ/J is instead tunable at will by modulating the strength of the optical lattice potential. We recall that there are experiments in which the ratio γ/U can be tuned at will by means, for instance, of photoassociation, as it has been done in Ref. [START_REF] Tomita | Observation of the mott insulator to superfluid crossover of a driven-dissipative bose-hubbard system[END_REF] We introduce the operator associated with the total spin of the gas:

S = 2 j,σ,σ c † j,σ σ σσ c j,σ , (5.3) 
where σ σσ is a vector whose components are the Pauli matrices. Since any two-body loss does not change the spin of the gas along any direction, the dynamics expressed by Eq. (5.2) is spin conserving and the expectation value of the spin along any direction, S • n, is a constant of motion. Moreover, it was also observed that the jump operators commute with S, as such it follows that also S 2 is a constant of motion, see Eq. (2.29).

The main purpose of this Chapter is to show how the presence of this constraint influences the dynamics.

Population dynamics for weak dissipation

We focus on the simplest experimental observable, N = j,σ n j,σ , and characterise how the number of fermions contained in the sample decreases in time because of loss processes. We will use the notation A t to denote the time-dependent expectation value of the observable A, namely A t tr ρ(t) A .

With simple algebraic passages, it is possible to show that N (t) N t obeys the following equation, which has an intuitive physical meaning:

d dt N (t) = -2γ j n j,↑ n j,↓ t . (5.4) 
Since we cannot treat in an exact analytical way the r.h.s. of this equation, we perform a series of approximations that are well justified in the limit of weak dissipation, γ J. Note that this is also the limit of weak interactions, U J. The first approximation that we perform, discussed in Sec. 5.7, consists in completely neglecting interactions.

Using a semiclassical reasoning, we observe that in the limit γ J, losses act on time scales that are much longer than those characterising the unitary time evolution. In between two loss processes, the long unitary dynamics has acted and averaged out any time-dependent physical operator or correlator. We thus employ a time-dependent stationarity condition, also called frozen-mode approximation, and assume that the system is always in a stationary state of the Hamiltonian, and that particle losses are responsible for a dynamics that explores this subspace of the state space. This theoretical approach follows from several ideas put forward in the context weakly-dissipative systems [START_REF] Lange | Time-dependent generalized gibbs ensembles in open quantum systems[END_REF][START_REF] Mallayya | Prethermalization and thermalization in isolated quantum systems[END_REF][START_REF] Bouchoule | The effect of atom losses on the distribution of rapidities in the one-dimensional Bose gas[END_REF][START_REF] Rossini | Strong correlations in lossy one-dimensional quantum gases: From the quantum zeno effect to the generalized gibbs ensemble[END_REF].

In practice, we focus on the operator that is responsible for losses, j n j,↑ n j,↓ t , and expand it in the basis of plane waves, c k,σ = L -1 2 j e -ikj c j,σ , that are the eigenmodes of the free-fermion Hamiltonian dynamics, obtaining:

1 L k,q,w,z n δ k+q-w-z,2πn c † k,↑ c w,↑ c † q,↓ c z,↓ t . (5.5) 
The Kronecker delta ensures that only momentum-conserving correlators (modulus 2π) are considered. The Hamiltonian time-evolution of the correlators in (5.5) is easily written:

c † k,↑ c w,↑ c † q,↓ c z,↓ t = e -i (E k +Eq-Ew-Ez)t c † k,↑ c w,↑ c † q,↓ c z,↓ 0 , (5.6) 
where E k = -2J cos(k) is the energy eigenvalue associated with the k-th mode of the free-fermion Hamiltonian. The request that the system explores only stationary states requires us to keep only the energy-conserving correlators, because their expectation value does not depend on time. This leads to an expression that can be further simplified by taking into account the conserved quantity S 2 (see Appendix 5.A for the explicit calculations):

Ṅ (t) = - 2γ L N (t) 2 4 + N (t) 2 + VarN t 4 - S 2 0 2 -Π t + Σ π 2 t + T u t , (5.7) 
with

VarN t = N 2 t -N 2 t , Π = k n k,↑ n k,↓ , Σ π 2 = k =q, k =π-q c † k,↑ c q,↑ c † π-k,↓ c π-q,↓ , (5.8a) 
T u = δk∈[0, π 2 ] c † π 2 +δk,↑ c -π 2 -δk,↑ c † π 2 -δk,↓ c -π 2 +δk,↓ + c † π 2 -δk,↑ c -π 2 -δk,↑ c † π 2 +δk,↓ c -π 2 +δk,↓ + H.c. . (5.8b) 
Eq. (5.7) highlights the crucial interplay between the number of particles, its variance, the spin of the gas, and various correlators of the gas in momentum space. In particular, Π is a density-density correlator, Σ π 2 takes into account correlators that are symmetric with respect to the center of the band, located at k = ±π/2 (note that in this operator momenta are defined mod 2π to restrict them to the first Brillouin zone), and T u considers Umklapp terms, where the difference in momenta is equal to ±2π; the presence of the two latter operators is a pure lattice effect.

The thermodynamic limit

The terms which appear in the r.h.s. of Eq. (5.7) have different scalings in the thermodynamic limit. We divide both the r.h.s and l.h.s. of Eq. (5.7) by L and focus on intensive quantities, whose limit is finite in the thermodynamic limit, which we simply indicate as lim L→∞ . We define the lattice density n(t) = lim L→∞ N (t)/L, the lattice spin density s 2 0 = lim L→∞ S 2 0 /L 2 and the correlator σ π 2 (t) = lim L→∞ Σ π 2 t /L 2 . It is expected that VarN t and N (t) scale to zero once divided by L 2 ; a similar result is expected for Π and T u because they are the sum of L terms. We obtain the simpler equation:

ṅ(t) = -2γ n(t) 2 4 - s 2 0 2 + σ π 2 (t) . (5.9) 
Note that a finite spin S 2 0 = 0 could have zero value s 0 = 0 in the thermodynamic limit.

We present in App. 5.B an argument demonstrating that σ π 2 (t) = 0 using the fact that the local properties of the system in the thermodynamic limit can be discussed also within the framework of the t-GGE [START_REF] Lange | Time-dependent generalized gibbs ensembles in open quantum systems[END_REF][START_REF] Rossini | Strong correlations in lossy one-dimensional quantum gases: From the quantum zeno effect to the generalized gibbs ensemble[END_REF]. This is a stronger approximation with respect to that used at the beginning of this section to derive Eq. (5.7) and requires that not only the system is always in a stationary state of the Hamiltonian, but also in that specific class of states that are GGE. In the case of non-interacting fermions, a GGE is a Gaussian state that is factorised in momentum space. We present the derivation in Appendix 5.B and report here the result:

Ṅ (t) = - 2γ L N (t) 2 4 - S x 2 + S y 2 + S z 2 2 . 
(5.10)

If we focus on intensive quantities and address the thermodynamic limit we observe that:

lim L→∞ S 2 L 2 = lim L→∞ S x 2 + S y 2 + S z 2 L 2 , (5.11) 
their difference i S 2 i -S i 2 being only i VarS i , which is subleading. We obtain the equation:

ṅ(t) = -2γ n(t) 2 4 - s 2 0 2 .
(5.12)

By employing this GGE approximation we thus see that σ π 2 = 0 and that can be neglected. Eq. (5.12), despite its simplicity, describes in a mean-field manner how to modify the uncorrelated time evolution equation for two-body losses (2.7) in order to include spin conservation.

Eq. (5.7) is thus a more refined version of Eq. ( 5.12) because it includes finite-size corrections. Whereas this might seem an unnecessary overshooting, the numerical simulations of the full master equation are computationally demanding, and we will present state-of-the-art numerics for lattices up to L = 10. For these lattice lengths, in several cases the dynamics predicted by Eq. (5.12) is recognisable only at short times. This higher accuracy comes at the price of introducing several new variables, for which we have not been able to write satisfactory and simple dynamical equations; when necessary, we will show how to treat them.

Dicke states and stationary populations

The first test for the population equation (5.7) consists in its application to states whose spin part is fully symmetric like in a Dicke state, and which are characterised by a spin quantum number S = N/2. We have seen in Chapter 2 that no particle can be lost from a Dicke state without changing the spin quantum number -that is, the loss cannot take place. As such, Dicke states are stationary in terms of number of particles.

Eq. (5.7) predicts that the population of Dicke states does not evolve in time. In order to prove this, we introduce the notation |D N for a generic Dicke state with N particles and spin S = N/2; the orbital part of the wavefunction can be arbitrary, provided it is fully antisymmetric. We show in Appendix 5.C that for a generic linear superposition of Dicke states, |Ψ D = N c N |D N , the following properties hold:

Ψ D | S 2 |Ψ D = 2 2 N 2 + VarN 2 + N , (5.13a) 
Ψ D | Π |Ψ D = 0, Ψ D | Σ π 2 |Ψ D = 0, Ψ D | T u |Ψ D = 0. (5.13b) 
From these properties we can deduce that Dicke states are stationary states of the dynamics: Ṅ (t) = 0. Eq. (5.12) takes into account the spin conservation in the thermodynamic limit, and predicts a stationary density

n ∞ = 2 s 0 . (5.14) 
Dicke states satisfy this relation; indeed, from the above formulas we obtain:

s 2 0 2 = lim L→∞ Ψ D | S 2 |Ψ D 2 L 2 = lim L→∞ N 2 + VarN + 2N 4L 2 = n 2 4 .
(5.15)

Dynamics from a band insulator

We now discuss the dissipative dynamics starting from a band insulator, namely:

|Ψ BI = j c † j,↑ c † j,↓ |0 , (5.16) 
where any lattice site is doubly occupied and the initial population is 2L. The system is in a spin-0 state, S 2 = 0, and a simple calculation shows that Π 0 = L, Σ π 2 0 = 0, and T u 0 = 0. The prediction for the dynamics of the lattice density n(t) in the thermodynamic limit is easily obtained from Eq. (5.12):

n(t) = 2 1 + γt . (5.17) 
The full solution of Eq. (5.7) is more challenging because it is not obvious how to give a prediction for the time-dependence of VarN t , Π t , Σ π 2 t , and T u t . (we could not derive closed expressions for their time-derivatives and a Gaussian expansion gives wrong predictions, possibly because here we are looking for beyond-Gaussian effects).

We can use Eq. (5.7) to get insights into the long-time dynamics of a finite system, since when N (t) tends to zero we have N (t) 2 N (t). In this limit it is possible to model the number of particles as a Bernoullian distribution, where with probability p the system has 2 particles, and with probability 1p it is empty. For such a distribution, N = 2p, VarN ∼ 4p and thus we estimate that, in the long-time limit, VarN t ∼ 2N (t). Concerning Π , we can bound it in the following way: since Π is a non-negative operator, Π ≥ 0; The various colors refer to different dissipation strengths, from γ/J = 10 -2 to γ/J = 10 (see legend). The thin blue dotted curve is the prediction for the thermodynamic limit in Eq. (5.17) whereas the thick blue dashed curve is Eq. (5.19). The latter faithfully describes the weakly-dissipative limit even at small sizes. The plot highlights the collapse of the curves for γ/J = 10 -2 , 10 -1 and 1. On the other hand, the appearance of a new behaviour in the strongly-dissipative Zeno limit is evident.

n / 2 h _ γ /J =10 -2 h _ γ /J =10 -1 h _ γ /J =1 h _ γ /J =10
since n k,↑ n k,↓ ≤ n k /2, we can write that Π < N/2. If we neglect the contributions from Σ π 2 and T u (which is justified a posteriori by numerical simulations), we thus obtain that the long-time scaling is exponential: N (t) ∼ exp(-t/τ ), with L/(2γ) < τ < L/γ. In all cases, τ depends on the size, which is compatible with the fact that in the thermodynamic limit we expect an algebraic decay.

We verified these predictions with exact numerical simulations of the full master equation using the stochastic quantum trajectories approach [START_REF] Daley | Quantum trajectories and open many-body quantum systems[END_REF] (for L > 4); we have used the python-based QuTiP package [START_REF] Johansson | Qutip: An open-source python framework for the dynamics of open quantum systems[END_REF][START_REF] Johansson | Qutip 2: A python framework for the dynamics of open quantum systems[END_REF] that allowed us to push our analysis up to L = 10 sites with high statistics (N traj ≥ 10 3 , N traj being the number of trajectories). Whenever not specified, we are using open boundary conditions; we present in App. 5.D a discussion concerning the effect of periodic boundary conditions. In particular, the latter are responsible for the emergence of "non-Dicke" steady states associated purely with lattice effects vanishining in the thermodynamic limit. The results of our numerical simulations are shown in Fig. 5.1, where we consider four values of γ/J, ranging from 10 -2 to 10. For γ/J ≤ 1 we observe a universal behaviour even at small sizes. Data are affected by important finite-size effects and indeed no collapse of curves at different 

N(t) .

Derivative of N(t) using Eq. ( 6) Numerical derivative of N(t)

.2: Time derivative of the population Ṅ (t) for L = 8 and γ/J = 10 -1 . Black solid line: calculation of Ṅ (t) using the r.h.s of Eq. (5.7) by running a numerical simulation with N traj = 2000 quantum trajectories that computes explicitly all the necessary quantities. Red thin line: numerical derivative of the N (t) computed with N traj = 2000 quantum trajectories and using the Euler method.

L has been observed (not shown). The comparison with the prediction in (5.17), which is plotted as a thin blue dotted line, is satisfactory only at short times and it improves for increasing lattice size. For L = 10 there is a quantitative agreement until the density decreases to n ∼ 0.4. For longer times, we observe the appearance of an exponential decay, as predicted in the previous paragraph. Motivated by our numerical simulations (not shown) we link VarN t and Π t to N (t), we propose:

Π t N (t) L + L -2 4 
N (t) 2 L 2 , (5.18a) 
VarN t 2 N (t) -2 Π t 1 - 2 L 2N (t) - N (t) 2 L . (5.18b) 
On the other hand, Σ π 2 t and T u t are negligible at all times. We substitute these expressions into Eq. (5.7) and obtain the following solution:

n(t) = 4 1 -2 L L exp 1 -2 L 2γt L -1 + 2 -4 L (5.19)
The above equation is the theoretical prediction plotted in Fig. 5.1 as a thick dashed blue line, which provides a satisfactory description of our numerics.

Since this latter result has been obtained using the numerical data, we perform a direct investigation of whether Eq. (5.7) is a good tool for describing the population dynamics. We compute the numerical derivative of the data displayed in Fig. 5.1 for L = 8 and γ/J = 0.1 using Euler's method and we compare the obtained curve with the prediction given by the r.h.s. of Eq. (5.7), by running a numerical simulation that computes explicitly all the necessary quantities. The comparison is shown in Fig. 5.2 and the agreement is excellent, showing that Eq. (5.7) models the system even at small sizes. This confirms the general validity of the approximations employed to derive Eq. (5.7).

Dynamics from a Mott insulator

Thermodynamic limit

We now consider an initial state with one particle per site, that is, a Mott insulator in the atomic limit. Because of the spin, the manifold of such states spans a subspace of dimension 2 L . Conservation of spin during the dynamics reflects here in a stationary population that is generally non-vanishing since the spin of the gas can range from 0 to L/2. We can easily discuss the dynamics in the thermodynamic limit: the asymptotic number of particles is n ∞ = 2 s 0 and the dynamics is given by:

n(t) = n ∞ tanh n ∞ γ 2 t + arctanh 1 n ∞ . (5.20) 
This result displays in a clear way the interplay between spin-conservation and dissipative dynamics. Not only the stationary properties of the gas are determined by the initial spin of the gas: the dynamics too is determined by it, since stationary properties are approached with a typical decay time

τ = 2 γn ∞ = γs 0 (5.21)
that depends on spin, and that is shorter for larger spin values. The link between the stationary number of particles and the typical decay time has already been highlighted in Ref. [START_REF] Sponselee | Dynamics of ultracold quantum gases in the dissipative fermi-hubbard model[END_REF], although the authors do not mention its connection with spin. In fact, Eq. (5.20) does not differ much in terms of functional form from Eq. (2.42) (at finite times), which have been used in Ref. [START_REF] Sponselee | Dynamics of ultracold quantum gases in the dissipative fermi-hubbard model[END_REF] to fit the experimental data in the strongly-dissipative regime.

Finite-size effects

If we consider a Mott insulator with N = L particles initialised in an eigenstate of S 2 with quantum number S, the asymptotic number of particles can be exactly characterised for any size assuming that the final state is a Dicke state. In this case we expect that the stationary state has a well defined number of particles given by the relation N ∞ = 2S.

When the initial Mott insulator is not an eigenstate of S 2 , we expect the final state to be an incoherent superposition of Dicke states with different number of particles (VarN > ) is in black. The blue curve is a fit to the dynamics using Eq. (5.20) and taking n ∞ as the only fitting parameter. 0) and spin. Assuming stationarity, Ṅ = 0, and recalling that for a linear superposition of Dicke states Π = 0, we obtain:

N ∞ ≤ 4 S 2 2 + 1 -1. (5.22) 
It is simple to verify that the bound is saturated when the initial state is an eigenstate of S 2 .

Typical decay time and spin

In order to test these predictions we performed several numerical simulations of the full master equation for an initial Mott insulator. We consider as initial state a Néel state with alternating spin up and down: |↑ ↓ ↑ ↓ . . . . Results for the decaying populations are shown in Fig. 5.3. We observe that, since the initial state is not an eigenstate of S 2 , the bound of Eq. (5.22) is satisfied but not saturated. It is shown that in this situation Eq. ( 5.20) provides an excellent description of the dynamics taking only n ∞ as fit parameter. We have verified that the fitted value of n ∞ does not satisfy the relation with the spin, i.e.

n ∞ = 2 √ S 2
L . We further investigate the typical time-scale with which the asymptotic number of particles is approached. The results in Fig. 5.4 show a clear exponential approach to gives a remarkably good description of the numerical data. Less accurate results are instead obtained with the formula τ = 2/(γn ∞ ), where n ∞ has been taken from the previous fit; the discrepancy is solely ascribed to finite-size effects and is expected to disappear in the thermodynamic limit. We finally perform a set of numerical simulations to test whether this latter relation between the decay time and the spin is true in general. We consider as initial state an uncorrelated Mott insulator where, on each lattice site, the spin S i is randomly oriented. In order to construct such a state, we randomly draw two angles, θ i and φ i , which identify a generic direction on the Bloch sphere, for every lattice site i. The goal of this procedure is not to sample in a uniform way the set of uncorrelated Mott insulators, but to generate states with widely variable values of S 2 . We have evolved in time 14 Mott insulators with uncorrelated and random site-dependent spin alignment; in all cases we observe an exponential approach to the stationary value of the number of particles. Red solid line: theoretical curve for τ predicted in the thermodynamic limit (5.23). Blue crosses: numerical fits of the decay time τ performed for 14 "random" Mott insulators with 10 4 quantum trajectories.

We fit the typical time-scale with which the asymptotic value is approached and compare it to the theoretical prediction given by Eq. (5.23). We first take as N ∞ the numerical value of the population at the longest computed time; we then fit N (t) -N ∞ at intermediate times, because at long times its value is comparable with the statistical error bars due to our stochastic sampling with quantum trajectories. The results shown in Fig. 5.5 display a clear correlation between the typical decay time predicted by the theory and the fitted one. Notice that the theoretical prediction has been derived in the thermodynamic limit, whereas here we consider numerical simulations for L = 6.

Symmetry-resolved purity

When starting from a Mott insulator, the system features a non-trivial dynamics also in terms of the purity of the total density matrix:

P tot = tr ρ(t) 2 .
(5.24)

Since the density matrix is reconstructed via the independent dynamics of N traj quantum trajectories [START_REF] Daley | Quantum trajectories and open many-body quantum systems[END_REF], we have that where |ψ i (t) is the i-th trajectory at time t. Thus, combining Eq. (5.25) with Eq. ( 5. [START_REF] Bohr | The quantum postulate and the recent development of atomic theory1[END_REF] we get (from now on we will omit the time dependence)

ρ(t) = 1 N traj N traj i=1 |ψ i (t) ψ i (t)| , ( 5 
P tot = 1 N 2 traj s N traj i,j=1 s|ψ i ψ i |ψ j ψ j |s = 1 N 2 traj N traj i,j=1 | ψ i |ψ j | 2 (5.26)
where {|s } is an orthonormal basis of the Hilbert space and in the second line we used that s |s s| = I.

The dynamics of a single quantum trajectory is governed by an effective non-Hermitian Hamiltonian H eff = Hi(γ/2) L i=1 L † i L i and by the stochastic quantum jumps determined by the jump operators L i [START_REF] Daley | Quantum trajectories and open many-body quantum systems[END_REF]. While the evolution induced by H eff conserves the number of particles, the quantum jumps do not: they couple the n-with the (n -2)particle sector of the Hilbert space. For this reason, if the initial state of is an eigenstate of N , each quantum trajectory |ψ i (t) will have at any time a well defined (although time dependent) number of particles. We can thus label the trajectories with a double index, |ψ n,α , where n is the particle sector and α labels the trajectories belonging to the n-th subspace. Note that n depends on time. Using the fact that ψ n,α |ψ m,β = 0 for n = m we write:

ρ = n p n ρ n , p n = N n N traj , (5.27) 
where N n is the number of trajectories belonging to the n-particle sector and

ρ n = 1 N n Nn α=1 |ψ n,α ψ n,α | , with tr [ρ n ] = 1. (5.28) 
We can thus link the total purity P tot to the symmetry-resolved purities P(ρ n ), i.e. the purities of the symmetry-resolved density matrices:

P tot = n p 2 n P (ρ n ) .
(5.29)

We now study the time-evolution of the total purity and of the symmetry-resolved purities for an initial Mott insulator with Néel order; we perform numerical simulations for L = 8 and γ/J = 0.1. In Fig. 5.6 we show the dynamics of the symmetry-resolved purities for the sectors n = 2, 4 and 6 (the purities for n = 8 and n = 0 are trivial and equal 1) and the behaviour of the occupation probabilities p n . The plot of P tot (dashed line in the top panel) shows that for n = 2 and 6 the symmetry-resolved purity is larger than the total one at long times, i.e. P (ρ n ) > P tot .

In Fig. 5.7 we show the symmetry-resolved purity normalised by its minimum possible value for a given n-particle subspace, i.e. the purity of a fully mixed state

P (ρ n ) min = 1/dim(H n ), where dim(H n ) = L n/2
2 is the dimension of the n-particle subspace of the Hilbert space (with S z = 0). Remarkably, the asymptotic dynamics features purities which are larger by orders of magnitude with respect to P (ρ n ) min . This is related to the fact that, despite our system is subject to particle losses, the non-trivial interplay between spin conservation and dissipation leads to the creation of a non-trivial dark subspace for all possible number of particles n. It is interesting to observe that differently from what reported in Ref. [START_REF] Vitale | Symmetry-resolved dynamical purification in synthetic quantum matter[END_REF] the purification process here is not transient, but takes place in the long-time limit. 

The effect of weak interactions

We now discuss the validity of the approximation introduced in Sec. 5.3, concerning the complete neglection of the interaction term in the Hubbard Hamiltonian. The discussion presented in this Chapter focuses on the limit of weak dissipation γ J, that in most experimental situations coincides with the limit of weak interactions U J. In Fig. 5.8 we show numerical simulations performed with a finite value of the interaction constant, U = γ, starting from a band insulator. The numerics clearly shows that the presence of interactions does not affect significantly the dynamics, when they are weak. The curious thing is that a weak dissipation, instead, can significantly affect the dynamics.

The reason why we can safely neglect interactions but not dissipation lies in the separation of time scales between unitary hopping dynamics (very fast) and dissipative/interaction dynamics (slow). Our theoretical analysis is a perturbative treatment of dissipation, and the population equation (5.7) is linear in γ; it can be regarded as a first-order expansion of the correct equation. It is well known from the standard timedependent perturbation theory and Fermi golden rule that a perturbative treatment of the unitary evolution due to interactions gives transition rates that are of order U 2 , and thus negligible with respect to the dissipative dynamics. Since γ and U are of the same order of magnitude, we obtain that interactions give a second-order correction in the weakly dissipative limit we deal with. For this reason, the whole discussion, performed in the U = 0 limit, is expected to provide accurate results for the weakly dissipative/interacting limit.

Conclusions

In this Chapter we have presented a theoretical study of the dissipative dynamics of a one-dimensional fermionic gas subject to two-body losses. Our study has focused on the non-trivial interplay between losses and spin conservation, as highlighted by the differential equation obeyed by the gas population, see Eq. (5.7). Not only we have shown that the stationary population is due to the initial spin of the gas, but also that the dynamics and its typical asymptotic decay time depends on the spin. Our analysis has focused on three kinds of initial states (Dicke states, band insulator and several kinds of Mott insulators), characterised by different dynamical properties.

The simplicity of the proposed equations, especially when considered in the thermodynamic limit, makes us think that they could have application in the modelisation of experimental studies [START_REF] Yan | Observation of dipolar spin-exchange interactions with latticeconfined polar molecules[END_REF][START_REF] Zhu | Suppressing the loss of ultracold molecules via the continuous quantum zeno effect[END_REF][START_REF] Sponselee | Dynamics of ultracold quantum gases in the dissipative fermi-hubbard model[END_REF]. Although the experiments have so far mainly focused on the strongly-dissipative Zeno limit, the fact that similar equations have been phenomenologically used for fitting experimental data [START_REF] Sponselee | Dynamics of ultracold quantum gases in the dissipative fermi-hubbard model[END_REF] hints at a possible use also in this regime (after replacing γ with the Zeno decay rate). In the following chapter we are going to generalise our results to the strongly-dissipative case, where non-trivial quantum correlations build up. Furthermore, the possibility of stabilizing Dicke states with a non-trivial entanglement content opens the exciting possibility to characterize the entanglement properties of the system, analogously to what has been done in Ref. [START_REF] Goto | Measurement-induced transitions of the entanglement scaling law in ultracold gases with controllable dissipation[END_REF] for bosonic particles, with also possible applications to quantum metrology.

Having the care of splitting the sums k,q as k=q + k =q one obtains the first five terms of Eq. (5.7).

We now consider the latter two terms

• q = πk, z = πw and k = w and k = πw. In this case:

c † k,↑ c w,↑ c † q,↓ c z,↓ t = c † k,↑ c w,↑ c † π-k,↓ c π-w,↓ t with k = w, π -w.
It describes processes that are symmetric with respect to lattice momentum π/2 and all momenta appearing in this expression should be intended mod 2π, so that they can be restricted to the first Brillouin zone [-π, π]. It is responsible for the term Σ π 2 in Eq. (5.7). • Finally we have to consider umklapp processes, where momentum is conserved modulus 2π. Two classes of processes transferring momentum +2π are possible:

• w = -k, z = -q and k + q = π;

• w = -q, z = -k and k + q = π.

Two similar opposite processes are possible that transfer momentum -2π. These processes are responsible for the term T u in Eq. (5.7).

5.B Gaussian density matrix: a dynamical equation for the thermodynamic limit

We start from Eq. (5.5) and focus on c † k,↑ c w,↑ c † q,↓ c z,↓ t . We now assume that the density matrix is Gaussian and that Wick's theorem applies:

c † k,↑ c w,↑ c † q,↓ c z,↓ t ∼ c † k,↑ c w,↑ t c † q,↓ c z,↓ t + -c † k,↑ c z,↓ t c † q,↓ c w,↑ t . (5.33) 
Of all the correlators which appear here, we only retain those which do not have an explicit time dependence because dissipation is weak and they average to zero between two dissipative events. Thus:

Ṅ (t) = - 2γ L k,q n k,↑ t n q,↓ t -c † k,↑ c k,↓ t c † q,↑ c q,↓ t .
(5.34)

By using the expressions (5.31), we finally obtain the dynamical equation in (5.12).

5.C Proof of relations (5.13) for Dicke states

In this appendix we prove the relations (5.13a) and (5.13b) that characterise Dicke states listed in Sec. 5.3.1.

ary states. Second, even in these situations, at finite size, Eq. (5.7) can be employed to describe the dynamics, and to characterise deviations from stationary Dicke states.

In order to support the latter statement, in Fig. 5.9, bottom panel, we compare the time derivative of the population computed from the numerical value of N (t) and from Eq. (5.7), displaying an excellent agreement. 

5.E Additional data on the calculation of the purity

We now comment on the convergence of the results presented in Sec. 5.6.4 with respect to the number of stochastic trajectories. From Eq. (5.25) it is clear that the degree of accuracy in the reconstruction of the density matrix depends on N traj . In particular, as N traj is increased we can account for more statistically-independent realisations of the dynamics; intuitively, one expects P (ρ n ) to be a monotonically decreasing function of N traj . This intuition is confirmed by the numerical data presented in Fig. 5.10. Decomposing the symmetry-resolved purity in terms of diagonal and off-diagonal overlaps we get that

P(ρ n ) = 1 N n + 1 N 2 n Nn α =β | ψ n,α | ψ n,β | 2 .
(5.35)

Since we are interested in the N n → ∞ limit, we observe that the limiting value of the purity can be obtained by only studying the second addend of the r.h.s. We now make the assumption that N n ∝ N traj and that the |ψ n,α are randomly distributed in the dark subspace H Dark 

The model

We consider a lossy gas of spin-1/2 fermions trapped in a one-dimensional (1D) optical lattice and prepared with one particle per site; several spin configurations will be considered. At time τ = 0 the optical lattice is lowered so that particles can tunnel to neighbouring minima; two-body losses can take place when two particles occupy the same site.

Our goal is to characterise the dynamics of the gas, which is described by a Lindblad master equation for ρ, the density matrix of the system:

ρ = L[ρ] = - i [H, ρ] + j L j ρL † j - 1 2 {L † j L j , ρ}. (6.1) 
The 1D Hubbard Hamiltonian models the optical lattice in the single-band approximation:

H = -t j,σ c † j,σ c j+1,σ + H.c. + U j n j,↑ n j,↓ ; (6.2) 
local two-body losses are described by the jump operators L j = √ γc j,↑ c j,↓ . The c j,σ operators satisfy canonical anticommutation relations (j labels the site and σ the spin) and the density operator is n j,σ = c † j,σ c j,σ ; the hopping amplitude is t and U is the interaction parameter, γ is the loss rate. The problem depends on two effective parameters: γ/(2t) and U/t. The spin of the gas is described by

S = j S j = 2 j τ,τ c † j,τ σ τ τ c j,τ , (6.3) 
where σ are the three Pauli matrices. The dynamics conserves the spin, as it can be deduced from the jump operators, that annihilate a spin singlet [START_REF] Foss-Feig | Steady-state manybody entanglement of hot reactive fermions[END_REF].

Details about the phase diagram

The specific focus of this Chapter is the study of the dynamics in Eq. (6.1) in the quantum-Zeno (QZ) regime. In order to define it in simple terms, we consider the non-Hermitian Hamiltonian associated to the problem [START_REF] Ashida | Non-hermitian physics[END_REF],

H = H -(i /2) j L † j L j . (6.4) 
As L † j L j = n j,↑ n j,↓ , this corresponds to the Hubbard model with complex interaction ξ = Ui γ/2. The decay times of the system depend on the imaginary part of the eigenvalues of H, which we compute numerically using the package QuSpin [START_REF] Weinberg | QuSpin: a Python Package for Dynamics and Exact Diagonalisation of Quantum Many Body Systems part I: spin chains[END_REF][START_REF] Weinberg | QuSpin: a Python Package for Dynamics and Exact Diagonalisation of Quantum Many Body Systems. Part II: bosons, fermions and higher spins[END_REF]. The asymptotic lifetime of the gas is determined by those eigenvalues whose negative imaginary part is closest to zero. The analysis of the complex eigenvalues shows the existence of two well-defined regions, see for instance the plot in Fig. 6.1, which will be analyzed in the next two subsections.

The non-Hermitian Hamiltonian H is a powerful tool that provides insights into the full dynamics of the master equation and, given its simpler structure, is also easier to deal with. Within the context of measurement-induced phase transition, the non-Hermitian Hamilonian dynamics, also called "no-click" dynamics, has been proven to be a very valuable tool, see for instance Ref. [START_REF] Biella | Many-Body Quantum Zeno Effect and Measurement-Induced Subradiance Transition[END_REF]. The term "no-click" stands for the dynamics without jumps but still in the presence of an environement, which accounts for the "nonhermicity".

Mean-field universality

In the weakly-dissipative and weakly-interacting regime appearing approximately for |ξ|/t 2, the imaginary part of all eigenvalues increases linearly with γ, see Fig. 6.1 (left panel). The plot in Fig. 6.2 shows the MF region and marks the boundary line |ξ|/t = 2 with a dot-dashed line. In the right panel of Fig. 6.2 we show the collapse of the curves by the appropriate rescaling with γ. We refer to this regime as the "mean-field (MF) regime" because, as explained in Chapter 5, the system dynamics can be described by a modified MF equation that incorporates spin conservation. 

Quantum Zeno regime

The QZ regime appears approximately for |ξ|/t 8.0, as marked in Fig. 6.1, where there is a group of eigenvalues whose imaginary part decreases as γ ×t 2 /|ξ| 2 (see App. 6.A), so that the lifetime of the gas increases with γ or with U . This result is more general than the standard QZ effect because it takes place also for small γ. In general, this increased lifetime follows from the absence of doubly-occupied lattice sites, so that losses are less effective. This can be the consequence of strong elastic interactions or of losses; in both cases, at long times, the gas is composed of long-lived hard-core fermionic particles which never occupy the same site in pairs. The plot in Fig. 6.3 (left) shows the QZ region and marks the boundary line |ξ|/t = 8.0 with a dot-dashed line. We verify the existence of the QZ regime also in the master equation beyond non-Hermitian physics by performing a numerical simulation of the dynamics in Eq. (6.1) with the package QuTiP [START_REF] Johansson | Qutip: An open-source python framework for the dynamics of open quantum systems[END_REF][START_REF] Johansson | Qutip 2: A python framework for the dynamics of open quantum systems[END_REF] In between the MF and QZ regions lies an intermediate one which acts as a crossover. The latter is characterised by different behaviours and no appropriate rescaling of time to obtain the collapse of the dynamics has been found so far. A thorough investigation of the model in the whole phase space is particularly interesting, and could help understanding whether another transient behaviour is "hidden" between the MF and QZ regimes. Now that the QZ regime has been properly defined, we focus on the dynamics of the gas in this limit.

Zeno limit and hard-core fermions

The QZ regime is characterised by an extensive subspace of long-lived hard-core states with at most one fermion per site. The effective master equation in this limit is given by [START_REF] Zhu | Suppressing the loss of ultracold molecules via the continuous quantum zeno effect[END_REF] :

ρ = L [ρ] = - i [H , ρ] + j L j ρL † j - 1 2 {L † j L j , ρ}. (6.6) 
We introduce the hard-core fermion (HCF) operators f j,σ that satisfy all the properties of the c j,σ and in addition the constraint f j,↑ f j,↓ = 0. The Hamiltonian of the HCFs is the restriction of H in Eq. (6.2) to the space of HCFs, and coincides with the Hubbard model in the U → ∞ limit: H = -t j,σ (f † j,σ f j+1,σ + H.c.). The jump operators follow from the judicious application of the dissipative Schrieffer-Wolff transformation [START_REF] Kato | Perturbation theory for linear operators[END_REF][START_REF] Kessler | Generalized schrieffer-wolff formalism for dissipative systems[END_REF] to the original model and are accompanied by the appearance of the loss rate Γ in Eq. (6.5), proper of the QZ regime, (see App. 6.A for details),

L j = Γ/2 µ=±1 (f j,↑ f j+µ,↓ -f j,↓ f j+µ,↑ ) . (6.7)
The new jump operator annihilates spin singlets on neighboring sites (j, j + 1) and/or (j -1, j).

In order to solve the HCF dynamics we decouple the spin and charge sectors, and propose an ansatz for the density matrix that is a product of the two:

ρ(τ ) = ρ c (τ ) ⊗ ρ s (τ ). (6.8) 
This spin-charge separation is motivated by the well-known results for the Hamiltonian in the U → ∞ regime, that have been recently extended in Ref. [START_REF] Nakagawa | Exact liouvillian spectrum of a one-dimensional dissipative hubbard model[END_REF] to the non-Hermitian Hamiltonian H. Whereas this decoupling does not automatically ensure that during the dynamics correlations between the two parts will not be created, we have observed a posteriori that this ansatz provides a good quantitative description of the dynamics. Several methods have been proposed to deal with spin-charge separation at U → ∞, which are taylored on the specific properties of HCFs [START_REF] Mielke | The one-dimensional hubbard model for large or infinite u[END_REF][START_REF] Noga | Separation of charge and spin degrees of freedom in the hubbard model[END_REF][START_REF] Östlund | Exact transformation for spin-charge separation of spin-1/2 fermions without constraints[END_REF][START_REF] Kumar | Canonical representation for electrons and its application to the hubbard model[END_REF][START_REF] Kumar | Exact solution of the infinite-u hubbard problem and other models in one dimension[END_REF][START_REF] Montorsi | Nonlocal order parameters for the 1d hubbard model[END_REF][START_REF] Nocera | Finite-temperature dynamics of the mott insulating hubbard chain[END_REF][START_REF] Tartaglia | Real-Time Evolution in the Hubbard Model with Infinite Repulsion[END_REF]; we use here one that is presented in Ref. [START_REF] Gamayun | Emergence of anyonic correlations from spin and charge dynamics in one dimension[END_REF]. The Hilbert space of N HCFs on a lattice of length L is mapped to a one-dimensional model of N spinless fermions on a lattice of length L tensored with a spin-1/2 chain of length N . For instance, the state with L = 4 sites and

N = 2 particles |↑ •• ↓ is mapped onto the state |• • •• ⊗ |↑↓ .
The key point is that the spin chain carries information about the spin of each particle in an ordered way, from left to right and the HCFs dynamics can swap the spin order only on the long time-scale of the super-exchange coupling and can be neglected in several situations.

We introduce the canonical spinless fermionic operators a j and the spin-1/2 operators Σ j in order to describe the emerging charge and spin degrees of freedom, and reformulate the master equation in this novel language. The Hamiltonian H acts only on the charge and is just a free-fermion model, easily solved in momentum space:

H = -2t k cos k a † k a k .
The jump operator L j removes two particles from neighbouring sites if they are in a spin singlet; in the new language it must take the form L j = Λ j a j (a j+1a j-1 ), where Λ j is an operator that checks whether the particles are in a spin singlet state and whose explicit expression is not necessary.

Since the dynamics of the charges is much faster than the loss rate, as expressed by the inequality t Γ, we employ a time-dependent generalised Gibbs ensemble (GGE) approximation for the charge sector. The density matrix associated to the charge sector

| ↑ ↓ ↑ ↓ ↑ ⟩ L′ 3 | ↑ ⟩ ( | ∘ ∘ ↓ ⟩ -| ↓ ∘ ∘ ⟩ ) | ↑ ⟩ f 3,↑ f 2,↓ f 3,↑ f 4,↓ Figure 6
.4: Sketch of a loss process taking place on |Ψ N at site j = 3. After the action of the jump operator L 3 , the state of the system is proportional to that written at the bottom. In this state, space correlations are created only for the fermions with spin down (highlighted by red), implying the value δ Ψ 0 = 1/2 in (6.13) for the antiferromagnetic state |Ψ N . (Right) Dynamics of the number of particles n(τ ) for an initial |Ψ N state.

The dashed curves for L = 10 and L = 12 are full simulations of the effective master equation for the hard-core states (6.6). The RE-DSC produces a very good description of the process, and the τ -1/3 is a fitting function.

takes the form ρ c (τ ) ∼ k e -β k (τ )a † k a k , and it is fully determined by the occupation numbers n k (τ ), determined by the inverse temperatures β k (τ ), and given by n k (τ ) = a † k a k τ . The problem is now reduced to finding an evolution equation, i.e. a rate equation, for the n k (τ )

Rate-equation dissipative spin cooling

The evolution of the occupation numbers n k (τ ) from the master eq. (6.6) is given by:

d dτ n k (τ ) = j L † j a † k a k , L j τ . (6.9) 
An inspection of the jump operator in Eq. (6.7) elucidates that:

(a) Losses do not simply take place when two particles get close by: it is also necessary that they are in a spin singlet.

(b) The action of L j on the state gives rise to quantum correlation only among a fraction of the whole (spinful) fermionic modes, according to the their initial spin structure.

Let us first analyse point (a): using the spin-charge decoupling we define the spinsinglet projection operator Π j,j+1 = (1 -4 2 Σ j • Σ j+1 )/4 on two neighbouring sites of the spin chain, that represents the spins of the j-th and j + 1-th particle and checks that they are in a spin singlet. In general, whether the two particles are neighboring depends on the charge part of the ansatz. Yet, we know that if they get close by, it is the operator Π j,j+1 that checks if they are in a spin singlet. We define the density of spin singlets between consecutive fermions at time τ ,

Π(τ ) = 1 L j Π j,j+1 τ , (6.10) 
and we impose that the global rate of decaying of fermions is replaced as Γ → Γ Π(τ ) for any momentum k. Point (b) instead requires to notice that losses can create correlations in general only on a fraction δ Ψ 0 of fermions. Let us consider for example an initial state with antiferromagnetic spin order, see Fig. 6.4. In this case, after applying the operator L 3 , spin-down fermions develop spatial quantum correlations (one fermion with spin down, highlighted in red, is indeed delocalised over two sites), while fermions with spin up remain in a product state. Since one loss process has created spatial correlations for half of the fermions, namely those with spin down, we have δ Ψ N = 1/2, i.e. the factor δ Ψ 0 takes into account the fraction of fermions among which spatial correlations are created after the action of the loss operator (6.7).

In order to understand why we need to use δ Ψ 0 = 1/2 for the Néel state, let us now consider an explicit calculation. We apply a jump operator to | ↑↓↑↓↑↓ ; if we take j = 3, the state is turned into a linear superposition:

|↑ •• ↓↑↓ -|↑↓ •• ↑↓ √ 2 ; (6.11) 
see also the sketch in Fig. 6.4. Now, it is easy to see that if we compute the momentum distribution function for spins ↑, n k,↑ = n ↑ = 1/3. The other spin component, instead, features spatial correlations: n k,↓ = n ↓cos(2k). In this case, the spins ↑ do not develop any spatial correlations, and for them a simple mean-field equation would be sufficient.

On the other hand, the spins ↓ feature spatial correlation; of course, the situation would be reverted if the jump operator had acted on another site. This implies the use of

δ Ψ N (τ = 0) = 1/2.
It is simple to generalise to generic spin states: δ Ψ 0 is given by the expectation value of the operator

δ = 1 2N j [P ↑ j P ↓ j+1 P ↑ j+2 + P ↓ j P ↑ j+1 P ↓ j+2 ], (6.12) 
with P ↑ j , P ↓ j the spin up/down projector for the spin Σ j of the j-th fermion. We shall therefore decompose the right hand side of Eq. (6.9) into a part proportional to 1δ Ψ 0 (τ ) where fermionic k dependence is integrated away and a part proportional to δ Ψ 0 (τ ) where the full momentum structure of the fermionic expectation value is kept. We report in App. 6.D further considerations about the time evolution of δ Ψ 0 (τ ).

We are then in position to combine the two observations to obtain the following rate-equation (for a full derivation see App. 6.B): .13) In order to close the equation and evaluate the time evolution of Π(τ ) and δ Ψ 0 (τ ), we need to describe the spin dynamics. What happens to spin degrees of freedom is rather simple: the number of singlets decreases with time. This is exactly what is obtained once the spin-charge decoupling is applied to the non-Hermitian Hamiltonian in eq. ( 6.4), analogously to previous results in Refs. [START_REF] Nakagawa | Dynamical sign reversal of magnetic correlations in dissipative hubbard models[END_REF][START_REF] Honda | Observation of the sign reversal of the magnetic correlation in a drivendissipative fermi gas in double wells[END_REF]:

d dτ n k (τ ) = -4Γ Π(τ ) ¢ π -π dq 2π (1 -δ Ψ 0 (τ )) + δ Ψ 0 (τ ) (cos k -cos q) 2 n q n k . ( 6 
H s = -Γ/2 j Σ j • Σ j+1 (6.14)
Noting that H s = -Γ/2 j (1 -Π j,j+1 ) [START_REF] Nakagawa | Dynamical sign reversal of magnetic correlations in dissipative hubbard models[END_REF][START_REF] Nakagawa | Exact liouvillian spectrum of a one-dimensional dissipative hubbard model[END_REF][START_REF] Yamamoto | Universal properties of dissipative tomonaga-luttinger liquids: Case study of a non-hermitian xxz spin chain[END_REF], we obtain a non-Hermitian time evolution [START_REF] Sergi | Time correlation functions for non-hermitian quantum systems[END_REF] applied to an infinite spin chain without considering the fact that losses change the number of particles, since in the thermodynamic limit the number of particles, at any density, is infinite:

ρ s (τ ) =
e -βs(τ )Hs ρ s (0) e -βs(τ )Hs Tr e -2βs(τ )Hs ρ s (0) , (

where ρ s (0) is the density matrix describing the initial spin state. Note that ρ s depends on time only via β s , and we compute Π (β s ) = tr[ρ s (β s )Π] and δ Ψ 0 (β s ) = tr[ρ s (β s ) δ] using an algorithm based on matrix-product-states [START_REF] Schollwöck | The density-matrix renormalization group in the age of matrix product states[END_REF]. In order to determine how β s flows with time, we observe that the spin is cooled each time a loss process takes place, and this depends on whether two particles are close-by, hence: dβs dτ (τ ) = Tr[ρ c (τ ) 1 L j n j n j+1 ], which can be solved numerically together with Eq. (6.13). The spin degrees of freedom are cooled down by this non-Hermitian evolution with a temperature that flows at a rate that depends on the charge properties of the gas, for this reason we dub Eq. (6.13) rate-equation dissipative spin cooling (RE-DSC).

Comparison with full quantum simulations

We first consider the system initialised in the Néel state |Ψ N . We perform exact simulations of the Lindblad dynamics of eq. (6.6) for up to L = 12 and compare it with our RE-DSC theory with regards to three experimentally accesible quantities: particle density, nearest neighbors correlations and momentum distribution function.

We show nn Fig. 6.5 (left panel) the dynamics of the density of particles starting from a Néel state. We reproduce well the numerical data, and we fit a decay at intermediate times compatible with the exponent 1/3, i.e. n(τ ) ∼ τ -1/3 . Let us notice that our theory addresses the thermodynamic limit of the model, and since the spin S 2 of the initial state scales as L and not as L 2 , we predict a final vanishing density n(τ → ∞) = 0, compatible with an algebraic decay [START_REF] Rosso | One-dimensional spin-1/2 fermionic gases with two-body losses: Weak dissipation and spin conservation[END_REF], as opposed to the finite density of the numerical simulations at finite sizes. The discrepancy at long time is fully under control.

Our theory gives full access to the correlations g (2) (τ ) 

g (2) (τ ) = 1 L i n i n i+1 τ n i τ n i+1 τ - 4 2 S i • S i+1 τ n i τ n i+1 τ , ( 6 
(τ ) which in our spin-charge decoupling is proportional to the density of singlets g (2) (τ ) = 4Π(τ ) since n j n j+1 = n 2 (within the t-GGE scheme) and 1 2 S i • S i+1 = 1 -4 Π i,i+1 (by definition). We show in Fig. 6.5 (right panel) the numerical data for g (2) (τ ) computed from the full numerical solution of the master equation starting from a Néel state, the data are in good agreement, up to finite-size effects, with our theoretical prediction obtained solving Eq. (6.13) with δ Ψ 0 = 1/2. The details about the numerical solution of Eq. (6.13) are presented in the App. 6.D.

We presented in Sec. 2.4 how the authors of Ref. [START_REF] Sponselee | Dynamics of ultracold quantum gases in the dissipative fermi-hubbard model[END_REF] phenomenologically describe the function g (2) (τ ) by a fitting formula which is then determined via experimental data; here we rather present a microscopic dynamical theory without fit parameters. Moreover, besides giving full access to the charge correlations, our theory predicts an algebraic decay. Notice that this is in contrast with the exponential decay witnessed in numerical simulations of small system sizes. As discussed in Ref. [START_REF] Sponselee | Dynamics of ultracold quantum gases in the dissipative fermi-hubbard model[END_REF], an exponential decay of g (2) (τ ) is necessary to have some population in the stationary state. Finally, the decay of g (2) (τ ) to zero for large τ indicates the creation of states whose spin-wavefunction is a Dicke state, which is one of the most intriguing aspects of this loss process [START_REF] Foss-Feig | Steady-state manybody entanglement of hot reactive fermions[END_REF][START_REF] Rosso | One-dimensional spin-1/2 fermionic gases with two-body losses: Weak dissipation and spin conservation[END_REF].

An important aspect of the RE-DSC theory is that it also allows to compute the momentum distribution function n k (τ ), that could be measured in an experiment. In Fig. 6.6 we present a comparison of the numerical data with the results of our theory; the agreement is excellent and explains very well the appearance of two peaks at k = ±π/2, which is a distinctive feature of this Zeno regime of strong losses.

We also apply our theory to the initial state with exactly one particle per site and fully incoherent, infinite temperature T = ∞, spin structure. In this case we have δ T =∞ 1 (in fact δ T =∞ = 1/8, see App. 6.C) at small and intermediate times, therefore we witness a much smaller modulation of the momentum distribution n k for this state compared to the Néel state, Fig. 6.6, at these intermediate time scales, giving an excellent numerical confirmation of one of the major predictions of Eq. (6.13): i.e. initial states with large spin order lead to time-evolved states with strong inhomogeneities of n k (τ ) in k-space.

We note that the t-GGE state ρ c (τ ) is a fermionic Gaussian state, and thus obeys Wick's theorem. Since a † k a q τ = δ k,q n k (τ ), this gives direct acces also to charge correlation functions of the state. For instance,

1 L i n i n i+1 = 1 L 2 k,q (1 -cos (k -q)) n k n q ,
and, in particular, for both, left and right panel, momentum distribution functions in Fig. 6.6 we obtain n i n i+1 = n 2 . We expect this result to be true more in general when one considers initial states which are product states in the charge degrees of freedom.

Spin identity initial state and mean field

Our RE-DSC (6.13) can therefore be viewed as an extension of the mean field equation first proposed in Refs. [START_REF] Baur | Two-body recombination in a quantum-mechanical lattice gas: Entropy generation and probing of short-range magnetic correlations[END_REF][START_REF] Sponselee | Dynamics of ultracold quantum gases in the dissipative fermi-hubbard model[END_REF]

: d dτ n(τ ) = -Γg 2 (τ ) n(τ ) 2
, which is recovered by Eq. (6.13) under the simplification δ Ψ 0 = 0, which means that no spatial structure is created during the loss evolution. We now apply our theory to the initial state with exactly one particle per site and fully incoherent spin structure with T = ∞. As reported in App. 6.C, we have δ T =∞ = 1/8. It is interesting to approximate the latter to δ T =∞ ∼ 0 so that the RE-DSC gives flat occupation of fermions in momentum space (no 

d dτ n(τ ) = -4 Γ Π β s (τ ) n(τ ) 2 , (6.17) 
where the spin temperature flows with time as

β s (τ ) = ¢ τ 0 n 2 (τ )dτ , (6.18) 
since in a state where n k (τ ) = n(τ ) there are no spatial correlations and thus

j n j n j+1 τ = n(τ ) 2 .
Knowing Π(β s ), a Runge-Kutta integration allows to compute easily n(τ ). We conclude by displaying the data in Fig. 6.7, which show the evolution of n(τ ) (left) and g (2) (τ ) (right) as a function of time. We reproduce well the numerical data which show a decay at intermediate times compatible with the exponent 1/4, i.e. n(τ ) ∼ τ -1/4 , after which numerical finite size effects become too relevant. Let us also mention here that, also for this initial state, we find an algebraic decay of correlations g (2) (Fig. 6.5) towards zero, indicating again the formation a Dicke-like spin wavefunction.

Conclusions

In this Chapter we have presented a theoretical model for the quantum Zeno dynamics of a spin-1/2 gas in the presence of two-body losses. We have characterised the dynamical phase diagram of the model by means of the spectral properties of the associated non-Hermitian Hamiltonian. The latter has been a valuable tool that allowed us to gain insights on the full master equation dynamics with the advantage of being easier to deal with. We found two main regimes MF and QZ depending on the module of the complex interaction strength ξ. Whereas the MF regime has been already characterized, the QZ one lacked a satisfactory theoretical description. The existence of an intermediate region where neither of the two rescalings works is also observed. However, no appropriate rescaling of time has been found to obtain the collapse of the dynamics so far. As a future perspective, it would be interesting to characterize the whole phase space, and could help understanding whether another transient behaviour is "hidden" between the MF and QZ regimes.

We then focused on the characterization of the full-time dynamics in the QZ regime Our approach is based on a spin-charge decoupling that holds for strong losses or strong interactions, and it is benchmarked against numerical simulations of the full master equation for small systems up to 12 lattice sites. Our model is based on the interplay between (i) a non-Hermitian spin dynamics and (ii) the build-up of a non-trivial momentum distribution function induced by losses; our study shows that it describes very well several observables at intermediate times. The main open point is whether it can describe the properties of the system at asymptotically-long times, and we leave this for future inspection. Our theory goes beyond previous studies by predicting the behaviour in real time of several observables: density, spin correlations and momentum distribution function; they can be tested in cold-atom experiments.

The results presented here also linked to two recent works, Ref. [START_REF] Yoshida | Liouvillian gap and single spin-flip dynamics in the dissipative fermi-hubbard model[END_REF] (theoretical, see subsection 2.4.8) and Ref. [START_REF] Honda | Observation of the sign reversal of the magnetic correlation in a drivendissipative fermi gas in double wells[END_REF] (experimental, see subsection 2.4.7). In the former, the authors discuss a dissipative SU (N )-Hubbard model with two-body losses. In particular, they focus on the decay at long-time of two-particle excitations, focusing on a different initial state with respect to the ones discussed here. They found for the QZ regime a behaviour ∼ t -1/2 for the decay of the density at long-time.

Ref. [START_REF] Honda | Observation of the sign reversal of the magnetic correlation in a drivendissipative fermi gas in double wells[END_REF], presented in Sec. 2.4, studies the dynamics of a SU(6) gas in presence of two-body losses. We believe that methods similar to those presented here could be used to describe that gas in the regime of strong losses. P 0 projects the density-matrix over the hard-core fermion (HCF) subspace, which is stable. We call ρ 0 the density matrix restricted to the subspace. With perturbative techniques, it is now possible to construct the effective master equation governing the dynamics for the dominant term ρ 0 (t):

d dτ ρ 0 = (L 1 + L 2 ) ρ 0 (6.24) with L 1 = P 0 L int P 0 ; L 2 = c - 1 λ c P 0 VP c VP 0 . (6.25)
First-order corrections: hard-core fermions

Let us start by analyzing the first order corrections given by L 1 . It can be shown [START_REF] García-Ripoll | Dissipation-induced hard-core boson gas in an optical lattice[END_REF] that L 1 is equivalent to a Hamiltonian that has been projected within states without double occupancies. This is precisely a hard-core fermion gas under unitary Hamiltonian evolution L .26) where f † iσ and f iσ are the HCF operators satisfying the Clifford algebra plus the hardcore constraint. The main result so far is that two body losses in the strongly dissipative regime lead to a coherent dynamics given by an hard-core fermion Hamiltonian.

1 [ρ 0 ] = -i [H , ρ 0 ] where H = -t i=1 f † i+1σ f iσ + H.c. ( 6 

Second-order corrections

The second order Liouville can be recasted in a Lindblad form:

L 2 [ρ 0 ] = i H 2 , ρ 0 + D 2 [ρ 0 ], (6.27) 
where:

H 2 = -t 2 j L † j L j ; (6.28a) D 2 [ρ 0 ] = j L j ρ 0 L † j - 1 2 L † j L j , ρ 0 . (6.28b)
The new set of jump operators describing the lossy dynamics is thus given by:

L i = Γ 2 [(f i,↑ f i+1,↓ -f i,↓ f i+1,↑ ) + (f i,↑ f i-1,↓ -f i,↓ f i-1,↑ )] , (6.29) 
with the coefficients given by:

t 2 = 4t 2 U 2 γ 2 1 1 + 2U γ 2 = U |ξ| , Γ = 4t 2 2 γ 1 1 + 2U γ 2 = γ |ξ| , (6.30) 
where we recall ξ = U/ti γ/2t is the adimensional complex interaction defined in the main text. Concluding, the effective master equation for the HCF has the following form (we dismiss here the notation ρ 0 , that is not used in the main text):

d dτ ρ(τ ) = - i H + H 2 , ρ(τ ) + j L j ρ(τ )L † j - 1 2 L † j L j , ρ(τ ) . (6.31) 
In the main text we do not make any explicit mention to H 2 because it is completely irrelevant in the study that we carry out. This of course depends on the specific problem that we have chose to address, and this could not be the case for other situations.

6.B Derivation of the rate equations -Eq. (6.13) of the main text

In this section we consider the effective master equation for HCF that we have derived in Sec. 6.A. Our goal is to present a derivation of the rate equations (6.13).

As we said in the main text, the Hamiltonian H has a simple form in the language of spin-charge separation:

H = -t j a † j a j+1 + H.c. = -2t k cos ka † k a k . (6.32) 
Similarly to what has been done for bosons in Ref. [START_REF] Rossini | Strong correlations in lossy one-dimensional quantum gases: From the quantum zeno effect to the generalized gibbs ensemble[END_REF] we propose a generalised-Gibbs ensemble:

ρ c (τ ) = k e -β k (τ )a † k a k Z k (τ ) (6.33)
fully determined by the occupation numbers n k (τ ) = a † k a k τ . Using the master equation, we can take the time-derivative of n k (t) = Tr a † k a k ρ(t) , that reads:

d dτ n k (τ ) = i H + H 2 , a † k a k t + j L † j a † k a k L j - 1 2 L † j L j , a † k a k t . (6.34) 
This expression can be simplified. First, we observe that [H , a † k a k ] = 0; in fact, a more general relation holds, [A, n k ] τ = 0, that is valid for any operator A. Indeed:

[A, n k ] τ = Tr [ρ(τ )An k ] -Tr [ρ(τ )n k A] (6.35)
but since [n k , ρ c (τ )] = 0, using the cyclic property of the trace we obtain the result. The latter statement is true also for A = H 2 : neither of the two Hamiltonians influences the charge dynamics.

Focusing on dissipation, we write:

- j 1 2 L † j L j , a † k a k = - j L † j L j a † k a k + 1 2 L † j L j , a † k a k (6.36)
and we obtain:

d dτ n k (τ ) = j L † j a † k a k , L j τ . (6.37) 
In order to continue, we need to give an expression to L j in the spin-charge language. We propose the following one:

L j = Γ 2 Λ j a j (a j-1 + a j+1 ) (6.38)
where Λ j is a complicated non-local object acting both on spin and on charge that we are not able to treat exactly. The role of Λ j is to check that not only two particles come close by, but that they are also in a spin-spinglet: this condition is necessary for a loss event to occur. At this stage, we find impossible to continue our work in an exact way. To begin with, we discuss what happens if we perform two "reasonable" approximations: first, that Λ j acts only on spin degrees of freedom, and second, that it simply checks whether two neighboring particles are in a spin-singlet channel. In particular, since we cannot say which one is the particle that is annihilated at position j, we will assume that it measures the average number of spin-singlets in the system:

Λ † j Λ j 1 N Π , +1 , ∀j. (6.39) 
Note that Λ j now commutes with any charge degree of freedom. These approximations are sufficient to continue our study.

The state (6.33) satisfies Wick's theorem:

c † z c † w c k c q τ = c † z c q τ c † w c k τ -c † z c k τ c † w c q τ (6.40)
and factorization in momentum space: c † z c q τ = δ z,q n q (τ ), so that:

c † z c † w c k c q τ = (δ z,q δ w,k -δ z,k δ w,q ) n q (τ )n k (τ ); (6.41a) c † z c † w c k c q τ -c † q c † k c w c z τ = 0. (6.41b)
Within the t-GGE approximation Starting from the following formula:

n k L j =Λ j n k Γ 2 1 L w,q e i(q+w)j 2 cos (w)a w a q = =Λ j Γ 2 1 L w,q e i(q+w)j 2 cos (w)a w a q (n k -δ k,w -δ k,q ) , (6.42) 
we obtain:

n k , L j = - Γ 2 2 L Λ j q e i(q+k)j (cos (k) -cos (k)) a k a q ; (6.43)
from which:

L † j n k , L j = - 2Γ L 2 Λ † j Λ j q,w,z e i(q+k)j (cos (k) -cos (k)) cos (w)a † z a † w a k a q . ( 6.44) 
If we now sum over j we are left with an expression where spin and charge are well separated:

j L † j n k , L j = - 2Γ L 2 1 N Π , +1 q,w,z δ k+q,w+z (cos (k) -cos (k)) cos (w) a † z a † w a k a q .
(6.45) Moving to expectation values, we get:

d dτ n k (τ ) = - 2Γ L Π(τ ) q (cos (k) -cos (q)) 2 n q (τ )n k (τ ) = = -2Γ Π(τ ) ¢ +π -π dq 2π (cos (k) -cos (q)) 2 n q (τ )n k (τ ). (6.46) 
Yet, at a more careful analysis, one finds that it is possible to give a better description of the dynamics by mixing the obtained rate equations with a mean-field behaviour:

d dτ n k (τ ) = -2Γ Π(τ ) ¢ +π -π dq 2π (1 -δ Ψ 0 (τ )) + δ Ψ 0 (τ )(cos (k) -cos (q)) 2 n q (τ )n k (τ ).
(6.47) We verified the theoretical predictions given by Eq. (6.47) with exact numerical simulations of the effective master equation (7.58) using the stochastic quantum trajectories approach; we have used the python-based QuTiP package [START_REF] Johansson | Qutip: An open-source python framework for the dynamics of open quantum systems[END_REF][START_REF] Johansson | Qutip 2: A python framework for the dynamics of open quantum systems[END_REF] that allowed us to push our analysis up to L = 12 sites with high statistics (N traj ≥ 10 3 , N traj being the number of trajectories).

6.C Evaluation of parameter δ Ψ 0 for the infinite-temperature state

Let us now discuss how to compute the parameter δ Ψ 0 = 1/8 for the initial state that is an incoherent superposition of all spin states, also called the infinite-temperature state.

We consider a single jump operator:

L j = Γ 2 (f j,↑ f j+1,↓ -f j,↓ f j+1,↑ + f j,↑ f j-1,↓ -f j,↓ f j-1,↑ ) (6.48)
which acts on the three sites j -1, j and j + 1. There are 8 possible spin configurations on the three sites, and in a spin incoherent state all of them are possible with equal probability. The jump operator (6.48) has a different action on each of them:

L j |↑↑↑ =0, (6.49a) 
L j |↑↑↓ = - Γ 2 |↑ •• , (6.49b) 
L j |↑↓↑ = + Γ 2 |↑ •• - Γ 2 |•• ↑ , (6.49c 
)

L j |↑↓↓ = - Γ 2 |•• ↓ , (6.49d) 
L j |↓↑↑ = + Γ 2 |•• ↑ , (6.49e 
)

L j |↓↑↓ = - Γ 2 |↓ •• + Γ 2 |•• ↓ , (6.49f) 
L j |↓↓↑ = + Γ 2 |↓ •• , (6.49g) L j |↓↓↓ =0. (6.49h) 
In two situations, those of Eqs. (6.49c) and (6.49f), the outcome state of the loss process has developed spatial quantum correlations, similarly to what was discussed for the Néel state in Eq. (6.11). In the other six situations, the outcome state does not feature any spatial quantum correlations. In summary, the probability that a spin ↑ particle develops spatial quantum correlations is 1/8; the same is true for a spin ↓ particle. This implies the use of δ T =∞ (τ = 0) = 1/8 for the dissipative rate equations for an initial state that is a fully-incoherent spin mixture.

We conclude by remarking that in general the parameter can be expressed as the expectation value δ Ψ 0 = δ Ψ 0 of a string of spin projectors, namely, given P ↑ j , P ↓ j the projectors on spin up/down on the fermion j, the operator

δ = 1 2N j P ↑ j P ↓ j+1 P ↑ j+2 + P ↓ j P ↑ j+1 P ↓ j+2 . (6.50) 
This expression can then be used to time evolve the parameter under non-hermitian spin evolution, as presented in the next section.

6.D Non-hermitian spin dynamics: time-dependent spin temperature β s (τ ) and time evolution of δ Ψ 0

In order to solve the rate equations for the charge in (6.46) that is Eq. ( 9) in the main text while solving self-consistently the spin dynamics, we need to consider the spin dynamics. The non-Hermitian spin dynamics is governed by a ferromagnetic Heisenberg Hamitlonian, namely:

H s = - Γ 2 Σ • Σ +1 ; Γ > 0. (6.51) 
Within this framework [START_REF] Sergi | Time correlation functions for non-hermitian quantum systems[END_REF], we propose the following ansatz for the density matrix for the spin degrees of freedom:

ρ s (τ ) = e -βs(τ )Hs ρ(0) e -βs(τ )Hs Tr e -2βs(τ )Hs ρ(0) ,

where ρ(0) is the initial spin state, and in the main text we have explicitly considered ρ(0) = 1/d (with d a normalization constant) for the maximally-mixed spin state, and ρ(0) = |Ψ Neel Ψ Neel | for the ordered Néel state. We employ matrix-product-states based algorithm [START_REF] Schollwöck | The density-matrix renormalization group in the age of matrix product states[END_REF] using the package ITensor [START_REF] Fishman | The itensor software library for tensor network calculations[END_REF] to reconstruct the expectation value of the operator

Π = 1 N Π , +1 (6.53) 
for every value of β s , so that the function Π(β) is obtained; two examples are given in Fig. (6.8).

The dynamics of β s (τ ) is given by:

β s (τ ) = 1 L j ¢ τ 0 n j n j+1 (τ ) dτ = = ¢ t 0 dτ ¢ π -π dq 2π ¢ π -π dk 2π n k n q (1 -cos(q -k)). (6.54)
The specific value of Π that should be taken at time τ thus requires the knowledge of the function β s (τ ). This turns the the rate equations into a set of integro-differential 10 0 10 1 10 2 10 3 equations, for which we propose a numerical approximate solution. We implement a 4 thorder Runge-Kutta (RK) algorithm that assumes that Π(β) is constant during the four intermediate steps of the RK algorithm. First, at fixed τ we compute β s (τ ) according to Eq. (6.54), next we use a simple linear interpolation of the MPS data to obtain the value for Π(τ ). Once the latter value has been obtained, we run the 4 standard intermediate steps of the RK algorithm. We employ an integration step of dτ = 10 -2 and N steps = 5 • 10 4 , while we have discretised the k space in 10 2 points in between the range [0, 2π], which corresponds to consider a lattice with L = 100 sites. We conclude by displaying the data In Fig. 6.9 we display the data for the evolution of β s as a function of time.

The parameter δ Ψ 0 (τ ) also depends on time, according to the same prescription of β s (τ ). We have investigated numerically such time evolution following the same procedure abovementioned. We observe numerically that δ Ψ 0 (τ ) is slowly varying in the region of interest, and thus it can be approximated with the value at inital time. Moreover, for the infinite temperature state this value remains negligible in the time interval of interest justifying the mean-field description presented in Sec. 6.6 of the main text for this initial state (not shown).

Chapter 7

Generalised Dicke states in the dissipative SU(N) Fermi-Hubbard model with two-body losses

In the present Chapter we present results on the study of the quantum dynamics and its associated stationary states of a one-dimensional SU (3)-symmetric system of cold atoms in the presence of two-body losses. These results are reported in Ref. [START_REF] Rosso | Eightfold way to dark states in su(3) cold gases with two-body losses[END_REF]. We exploit the representation theory of SU (3), the so-called eightfold way, as a scheme to organize the dark states of the dissipative dynamics in terms of generalized Dicke states and show how they are dynamically approached in each (weakly-and strongly-) interacting and dissipative regime.

The Chapter is organized as follows. In Sec. 7.1 we introduce the problem. In Sec. 7.2 we present the model under study and in Sec. 7.3 we show how the dark states of the dynamics can be organized via the eightfold way [START_REF] Georgi | Lie Algebras in Particle Physics[END_REF], the representation theory of SU (3). This elegant classification allows us to characterise a family of stationary states using the notion of generalised Dicke states [START_REF] Hartmann | Generalized dicke states[END_REF] describing the spin degrees of freedom of the gas. Next, in Sec. 7.4 ans Sec. 7.5, we discuss the system dynamics highlighting how the generalized Dicke-like states represent the unique attractor of the dynamics both in the weakly-dissipative and weakly-interacting limit as well as in the strongly-dissipative and strongly-interacting quantum Zeno regime, respectively. Finally, we draw our conclusions and discuss future perspectives in Sec. 7.6.

Introduction

In this Chapter we focus once again on a situation where the losses that naturally occur (or can be engineered as well) in the system can also be responsible for entangled stationary states like the SU (2) model studied in the previous two chapters.

In particular, the situation becomes even more interesting when one considers higher spins, which can be realised by means of a wide class of alkaline earth(-like) metal atoms, such as Sr and Yb. The resulting symmetry of the problem is a generalisation of the SU(2) one associated to spin 1/2 particles, called SU(N )-spin symmetry for a N -component spin. The latter can be decomposed as a SU (2) symmetry when one considers any two components among the N available ones. In this chapter we consider the paradigmatic case of alkaline-earth-like gases in optical lattices, experimentally realized with Yb [START_REF] Scazza | Observation of two-orbital spin-exchange interactions with ultracold su(n)-symmetric fermions[END_REF][START_REF] Pagano | A one-dimensional liquid of fermions with tunable spin[END_REF][START_REF] Franchi | State-dependent interactions in ultracold 174yb probed by optical clock spectroscopy[END_REF]33,[START_REF] Sponselee | Dynamics of ultracold quantum gases in the dissipative fermi-hubbard model[END_REF], which are subject to two-body losses due to inelastic two-body collisions in the metastable state 3 P 0 . We mention once again the recent experiment presented in Ref. [START_REF] Honda | Observation of the sign reversal of the magnetic correlation in a drivendissipative fermi gas in double wells[END_REF], where a six-components Yb has been employed, two-body losses are then induced by means of a photoassociation laser.

The (almost) perfect decoupling between the nuclear spin I and the electronic angular momentum J (ensured by the fact that J = 0 for the atomic states involved in the dynamics) implies that the relevant scattering processes are independent of I. As a result, this class of systems has an emergent SU (N )-spin symmetry (with N = 2I + 1) whose dynamics is governed by a SU (N )-symmetric Fermi-Hubbard model describing alkalineearth-like atoms in an optical lattice [START_REF] Gorshkov | Two-orbital s u(n) magnetism with ultracold alkaline-earth atoms[END_REF][START_REF] Cazalilla | Ultracold fermi gases with emergent su(n) symmetry[END_REF]. In the two-spin case (N = 2) the dissipative dynamics conserves the total spin and the system exhibits stationary states that are a mixture of highly-entangled wavefunctions with a Dicke-like spin component [START_REF] Foss-Feig | Steady-state manybody entanglement of hot reactive fermions[END_REF][START_REF] Rosso | One-dimensional spin-1/2 fermionic gases with two-body losses: Weak dissipation and spin conservation[END_REF][START_REF] Rosso | Dynamical theory for one-dimensional fermions with strong two-body losses: Universal non-hermitian zeno physics and spin-charge separation[END_REF], which could be exploited for various quantum-technology purposes. The impact of two-body losses for N > 2 has not been theoretically addressed at present, despite the availability of experimental data obtained in this regime [START_REF] Sponselee | Dynamics of ultracold quantum gases in the dissipative fermi-hubbard model[END_REF][START_REF] Honda | Observation of the sign reversal of the magnetic correlation in a drivendissipative fermi gas in double wells[END_REF].

The model

Introducing the fermionic operators c ( †) j,µ (with j and µ labelling the lattice site and the spin, respectively), which satisfy canonical anticommutation relations, the SU(N )symmetric Fermi-Hubbard Hamiltonian reads:

H = -J j,µ c † j,µ c j+1,µ + H.c. + U j,µ<µ n j,µ n j,µ . (7.1) 
Here, J is the hopping amplitude, U is the spin-independent interaction strength and n j,µ = c † j,µ c j,µ is the spin-resolved on-site lattice-density operator. The spin index can assume N values that in the following will be labelled with capital letters in progressive order (µ = A, B, C, . . . ). The Hamiltonian (7.1) is invariant under global SU(N ) rotations in spin space. As a consequence, the unitary dynamics conserves the expectation value of the N (N -1)/2 SU(2) pseudo-spin algebra generators defined in each subspace (here labelled by µµ ) as

Λ α µµ = 1 2 j c † j,µ , c † j,µ σ α c j,µ c j,µ , α = 0, x, y, z with µ < µ (7.2)
where {σ α |α = x, y, z} are the Pauli matrices and σ 0 = I 2 . For instance, the z-spin operator in the AB subsector is given by: The presence of local two-body losses is accounted for by the jump operators

Λ z AB = 1 2 j c † j,A , c † j,B σ z c j,A c j,B = 1 2 j (n j,A -n j,B ) . ( 7 
L j,µµ = √ γ c j,µ c j,µ , (7.4) 
with j = 1, • • • , L and µ < µ and γ being the dissipation rate. See Fig. 7.1 for a sketch of this loss process.

The dynamics of the full density matrix ρ(t) is described by a Lindblad master equation:

ρ(t) = - i [H, ρ(t)] + j,µ<µ D j,µµ [ρ(t)], (7.5) 
with D j,µµ [ρ(t)] = L j,µµ ρ(t)L † j,µµ -1 2 {L † j,µµ L j,µµ , ρ(t)}. The main difference with respect to the N = 2 case is that the spin components defined in Eq. (7.2) are not conserved quantities of the full dissipative dynamics: the breaking of these conservation laws is due to the presence of several spin sectors involved in the dynamics. For example, if the jump operator L j,BC acts, it is easy to see that Λ z AB changes its value since n j,B → n j,B -1, and thus it is no longer conserved along the dynamics.

Thus, in terms of symmetries, the study of the N = 3 case can be considered representative for all the N > 2 models, which therefore will not be explicitly considered. 

Equations of motion and dark states

Ṅµ (t) = -γ j µ =µ n j,µ n j,µ t . ( 7.6) 
First, we will present a construction allowing us to map out all the possible dark states of the dissipative dynamics factorizing spin and charge degrees of freedom. Such states are not affected by the dissipative dynamics and any statistical mixture of them is stationary with respect to the master equation (7.5). Next, we will study the system dynamics showing how the system evolves, because of dissipation, towards such a dark subspace. We consider the class of states where orbital and spin degrees of freedom factorize, namely |Ψ dark = |Ψ orb ⊗ |Ψ spin . If |Ψ orb is constructed as a Slater determinant of a set of appropriate orbital modes, i.e. the eigenstates of the hopping Hamiltonian in Eq. (7.1), the state is assured to commute with the Hamiltonian and never to have a double spatial occupation, so that no particle can leak out of it. Since the full many-body wave function |Ψ dark of the system must be fully-antisymmetric, and one such |Ψ orb is fully-antisymmetric, the spin wavefunction |Ψ spin must be fully-symmetric. In order to understand the properties of these states, we make use of group theory.

The irreducible representations of SU(3) are labeled by two integers (p, q) [START_REF] Georgi | Lie Algebras in Particle Physics[END_REF]; according to group theory, the fully-symmetric SU(3) states correspond to the representations with labels (p, 0) and the states belonging to it can be arranged in the shape of a triangle turned upside-down with edge length p + 1, see Fig. µµ . If we want, for instance, to construct all the states that stand on the top edge of the triangle, from left to right we need to apply the operator Λ + BC , that raises the value of Λ z BC by one, starting from |CCC . These states are generalised Dicke states [START_REF] Hartmann | Generalized dicke states[END_REF] since they are fully-symmetric with respect to the exchange of two particles generalizing the symmetry properties of the stationary states of the SU(2) lossy dynamics identified in Ref. [START_REF] Rosso | One-dimensional spin-1/2 fermionic gases with two-body losses: Weak dissipation and spin conservation[END_REF]. Given two spin sectors µ, µ , such states satisfy the relation (see App. 7.B)

S 2 µµ 2 = N µµ 2 N µµ 2 + 1 , (7.7) 
where S α µµ = Λ α µµ for α = x, y, z and N µµ = N µ + N µ = 2Λ 0 µµ . Conversely, Eq. (7.7) can be satisfied only by the generalized Dicke states. This can be explicitly seen by considering the irreducible representations of the SU(3) group with q = 0. These representations of the group are not fully-symmetric and, together with the q = 0 case, cover all the possible spin states that can be constructed within SU [START_REF] Andrews | Observation of interference between two bose condensates[END_REF]. By explicit construction of such states it is easy to see that for any q = 0 we get S 2 µµ / 2 < N µµ /2(N µµ /2 + 1) . While via the eightfold way we constructed explicitly the dark states for N = 3, our reasoning is general and generalized Dicke states are dark states of the master equation (7.5) for any N and regardless of the specific values of the system parameters.

Dynamics in the weakly-interacting and weakly-dissipative limit

While it is true that such states surely are stationary states of the dynamics it is not trivial to show that they are unique. Indeed, our analysis focused on states where the spin and orbital part of the wavefunctions factorize while we can not exclude a priori that non-factorizable dark states exhist. See subsection. 2.4.8 for a proof (written in second quantization language) of generalised Dicke states as dark states of the dynamics.

To corroborate this scenario, we will make use of Eq. (7.7) certifying that the system has flown to a mixture of generalised Dicke states. In what follows we will consider two paradigmatic regimes: (i) the weakly-dissipative and weakly-interacting regime and (ii) the strongly-dissipative and strongly-interacting limit.

We start by studying the regime of weak dissipation and weak interactions γ, U J, whereas the other regime will be analyzed in the next section. In this limit we can write the evolution of the spin-resolved densities as (see Appendices 7.C and 7.D):

ṅµ (t) = γ µ =µ s T µµ G s µµ , (7.8) 
where we defined the four-component vector s µµ = (s 0 µµ , s x µµ / , s y µµ / , s z µµ / ) (7.9) with s α µµ (t) = S α µµ t /L, s 0 µµ = Λ 0 µµ t /L, n µ = N µ /L and G = diag(-1, 1, 1, 1) being the relativistic Minkowsky tensor.

The fact that the time-derivative of spin-resolved populations is related to the Minkowski scalar product of a 4-component vector suggests some suggestive analogies with the theory of special relativity. The structure of Eq. (7.8) highlights indeed some of the symmetries of the problem as the internal rotations of the SU(2) pseudospins (indicating that the physics does not have a preferred direction in the internal space) and the analogs of the Lorentz boosts (which allow for the exchange between populations and coherences). Furthermore, the analogy with the Minkowski tensor, suggests an effective representation of the dynamics in a population-spin diagram, where the dynamics is constrained within an effective light cone, that we dubbed Dicke cone, as we will se below.

The N = 2 case and the Dicke cone

Let us start by briefly reviewing the N = 2 case. In this case we just have two spin sectors labelled as µ = A, B. Therefore, to determine the fixed points, we ask ṅA = ṅB = 0. From Eq.(7.8) we get the following stationarity condition

s T AB G s AB = 0 ⇒ s AB = 2 n AB , (7.10) 
where s AB = (s x AB ) 2 + (s y AB ) 2 + (s z AB ) 2 . The condition (7.10) holds both for Dicke states (N = 2) and generalized Dicke states (N > 2) 1 and defines the boundary of the Dicke cone within which the dynamics must take place because of the physical requirement s AB ≤ n AB /2. As a result, the system dynamics can be effectively visualized in a two-dimensional parameter space spanned by the variables s AB and n AB constrained to the Dicke cone. Finally, since the s AB is a constant of motion for the N = 2 case s AB (t) = s AB (0) and thus the dynamics must take place on the line defined by the initial value of the spin. In the t → ∞ limit, the boundary of the light cone are touched (i.e. n AB = 2s AB / ) and the system reaches a stable stationary state. The N = 2 case has been discussed extensively in Ref. [START_REF] Rosso | One-dimensional spin-1/2 fermionic gases with two-body losses: Weak dissipation and spin conservation[END_REF]. The conservation of the total spin, even in the presence of dissipative events, plays a crucial role in constraining the system dynamics. Indeed, given the initial conditions, it allows to be predictive about the final density of the system. Starting from the N = 2 case we want now to explore the N > 2 case where the dynamics does not conserve the spin. generic initial condition. When n C = 0 the dynamics is spin conserving s AB (t) = s AB (0) and the system dynamics follows vertical lines. Even if an additional internal state is now available, there are no physical processes that populate it. As a result, in this limit the system behaves effectively as in the N = 2 case. For n C > 0 the spin in the AB subspace is no longer conserved but gets shrinked. The trajectory in the n AB -s AB plane deviates on the left of the s AB (0) line and evolves until the boundary of the Dicke cone is approached.

A perturbative solution

We now propose a perturbative solution of the SU(3) dynamics for different initial conditions considering the experimentally-relevant situation where s x,y µµ = 0, ∀µ < µ . We also stress that this approach is well suitable for translationally invariant states where intensive variables are unambiguously representative of the global state of the system. The equations of motion for the populations read as: ṅµ = -γ n µ µ =µ n µ .

(7.11)

The dynamics cannot be analytically solved for a generic initial condition but only in few cases that we will now discuss. When the system is initially prepared with a large and equal fraction of the total population in the A and B sector and only a small amount of particles in the C subspace, n C (0) In both the cases the numerics (filled symbols) shows a good agreement with the predictions (dashed lines) of Eq. (7.12) (for the left panel) and Eq. (7.13) (for the right panel), even beyond the limit n C (0) 1. In all the panels s x,y µµ = 0, ∀µ < µ .

order in n C (0) reads (see App. 7.E for details): (7.12)

We found that the system gets empty in the long-time limit, i.e. lim t→∞ n A,B,C = 0. This is expected in the A, B sector since the initial condition s AB (0) = 0 implies s AB (t) = 0, ∀t > 0 and the system must evolve toward the origin of the Dicke cone s AB = n AB = 0.

In the A, C (or equivalently B, C) sectors the situation is quite different since we start from a large value of the spin s AC = s z AC = (n An C )/2 and again we flow toward the vacuum. This dynamics is shown in Fig. 7.4 (left panel) and the numerics shows a good agreement with the perturbative prediction (7.12). We also note that the presence of a non-vanishing population in C modifies the 1/t mean-field-like decay of n A,B and determines a 1/t 2 decay for n C .

We now consider the situation where the system is initially prepared with a large fraction of the total population in the A sector and a small (and equal) fraction of particles in the B, C sectors, i.e. n B (0) = n C (0) n A (0). At first order in n C (0) we find (see App. 7.E for details): n A (t) = n A (0) -2n B (0) 1e -γn A (0)t , n B,C (t) = n B,C (0) e -γn A (0)t . (7.13) In this case we get a steady-state with a non-vanishing particle density in the A sector, i.e. This determines a non-trivial dynamics in the AB subspace as shown in Fig. 7.4 (right panel), which is well captured by Eq. (7.13) for small values of n C . We conclude this part considering the case of equally-populated spin sectors. This state is of particular interest since can be easily realized in experiments [START_REF] Sponselee | Dynamics of ultracold quantum gases in the dissipative fermi-hubbard model[END_REF] and corresponds to a product state in which we have one particle per lattice site with maximallymixed spin degrees of freedom. We dubbed this state Mott incoherent state. This state has a total spin that vanishes in the thermodynamic limit as s 2 µµ ∼ 1/L ∀µ = µ . In this case Eq. (7.11) leads to ṅ(t) = -γ(N -1)n 2 (t) (7.14) which is solved for n(t)/n(0) = (1 + tγn(0)(N -1)) -1 . Here, the populations decay as 1/t with a typical rate given by γn(0)(N -1).

Strongly-interacting and strongly-dissipative limit

Let us now consider the strongly interacting and dissipative limit in which γ, U J. In this limit states with at most one particle per lattice site are quasi-stationary while states with more than one excitation per lattice site are energetically disfavoured and will be quickly dissipated on a timescale proportional to 1/γ. Consequently, the dynamics at long times will mainly take place in the hard-core fermion subspace with a new relevant timescale, namely Γ eff ∼ 1/γ, which is inversely proportional to the original dissipation rate, a typical signature of the Quantum Zeno effect.

Following a method first proposed in Refs. [START_REF] García-Ripoll | Dissipation-induced hard-core boson gas in an optical lattice[END_REF][START_REF] Zhu | Suppressing the loss of ultracold molecules via the continuous quantum zeno effect[END_REF] and reported in App. 6.A for the N = 2 case, we derive an effective Lindblad master equation that governs the dynamics in this regime (see App. 7.F for details). The effective Hamiltonian H = -J j,µ (f † j,µ f j+1,µ + H.c.) corresponds to a hopping Hamiltonian of hard-core fermions annihilated by the correspoding operators f j,µ . The effective jump operator takes into account nearest-neighbor losses and reads: L j,µµ = Γ eff [f jµ (f j-1,µ + f j+1,µ )f jµ (f j-1,µ + f j+1,µ )], with µ < µ , (7.15) where

Γ eff = 4 1+ 2U γ 2 J 2 
2 γ . This effective master equation is a generalization to the SU(3) case of the one presented in Chapter 6, firstly derived in Ref. [START_REF] Zhu | Suppressing the loss of ultracold molecules via the continuous quantum zeno effect[END_REF]. We want now to show that also in this regime the steady-state is a mixture of generalized Dicke state.

As a smoking gun we will study whether the condition (7. Again, in the long-time limit the curves asymptotically collapse on the Dicke cone where Eq. (7.7) holds. The latter statement is true for any of the subspaces; for what concerns the Mott incoherent state, given its particular structure and symmetry, we have that the dynamics is the same in each of the subspaces 7.G.

Conclusions

In this Chapter we studied the dynamics and steady-state properties of a SU(3)-symmetric cold-atom system in presence of two-body losses. While we explicitly considered the N = 3 case, our results are qualitatively valid for any N > 2, included N = 6 for which experiments have been performed [START_REF] Sponselee | Dynamics of ultracold quantum gases in the dissipative fermi-hubbard model[END_REF][START_REF] Honda | Observation of the sign reversal of the magnetic correlation in a drivendissipative fermi gas in double wells[END_REF]. We made use of the representation theory of SU (3) to organize the dark states of the dynamics which we discover to be generalised Dicke states. Moreover, in order to study the approach to the stationary state, we introduced a spin-population diagram allowing us to identify the relation in between these two quantities that characterises the stationary condition, represented by the generalised Dicke cone. We then extended the theory for the weakly-interacting and weakly-dissipative N = 2 case to the N = 3, proposing a perturbative solution of the latter for some releveant experimental conditions. As far as the strongly-dissipative and strongly interacting regime is concerned, we derived the effective master equation ruling the hard-core fermions dynamics. We leave for future work the extension of the theory presented in this regime for N = 2, i.e. Chapter 6, to the N = 3 case. We believe that combining the techniques here presented with the one of Chapter 6 a quantitative analysis of the experimental data of Ref. [START_REF] Honda | Observation of the sign reversal of the magnetic correlation in a drivendissipative fermi gas in double wells[END_REF] is possible.

This work also paves the way to future intriguing research directions. Among them we mention the study of inhomogeneous situations where the tensor G(x) acquires a spatial dependence allowing the exploration of analogies with general relativity and the implementation of experimentally-friendly protocols for the certification and exploitation of generalized Dicke states. Eventually, the extension to the three-body loss case opens further questions about the existance of conserved quantities and new classes of stationary states.

We also get L σσ j N µ |{N η } = N µ L σσ j |{N η } . 

7.B Proof of the generalised Dicke state relation

The goal of this section is to prove that any state belonging to a representation (p, 0) of the SU(3) group satisfies:

1 2 S 2 µµ = N µ,µ 2 
N µ,µ 2 + 1 . (7.24) 
Let us consider the diagram in Fig. 7.2 of the main text, where we focused on the ten states of the representation (3, 0). We redraw it (see Fig. 

AB

By simple observation, it is easy to establish that we have one state such that Λ 0 AB = 0, two states such that Λ 0 AB = 1/2, three states such that Λ 0 AB = 1 and in general that the number of states at fixed Λ 0 AB is 2Λ 0 AB + 1. These multiplets are highlighted by the dashed lines at fixed Λ 0 AB , whose value is indicated by the number in black.

Since we can use the operators Λ α AB with α = x, y, z to define three SU(2) spin operators: S α AB = Λ α AB , we then have that at fixed Λ 0 AB the spin operator S z AB takes values between -Λ 0 AB and +Λ 0 AB at integer steps. The states thus belong to a representation of S 2 AB = (S x AB ) 2 + (S y AB ) 2 + (S z AB ) 2 with quantum number Λ 0 AB , hence the thesis in Eq. (7.24) for µµ = AB.

The reasoning can be generalised also to the other two pseudo-spins Λ AC and Λ BC , so that the statement in Eq. (7.24) is true in full generality for any pair of indexes µµ .

7.C Details about the weakly dissipative and weakly interacting case

We report here the generalisation to the N = 3 case of the calculations presented in Chapter 5 for the N = 2 case. In this regime it is useful to expand Eq. (7.6) (main text) on the basis of plane waves c k,σ = L -1/2 j e ikj c kj,σ . We get Ṅµ (t) = -γ L k,q,w,z n σ =µ c † k,µ c w,µ c † q,σ c z,σ t δ k+q-w-z,2πn , (

where the Kronecker delta ensures the conservation of the momentum (modulus 2π).

The Hamiltonian time evolution of the correlators appearing in Eq. (7.25) can be written as c † k,µ c w,µ c † q,σ c z,σ t = e -i (E k +Eq-Ew-Ez)t c † k,µ c w,µ c † q,σ c z,σ 0 , (

where E k = -2J cos(k) is the energy of the eigenstate with quasi-momentum k of the free-fermion Hamiltonian. In analogy to the SU(2) case studied in Chapter 5 we keep only the energy-conserving correlators. Within this approximation we get: where N µµ = N µ + N µ = 2Λ 0 µµ . The operator C µµ accounts for different kind of correlations between the µ and µ spin sectors that will not be relevant in the thermodynamic limit L → ∞ and has the form:

Ṅµ (t) = - γ L µ
C σµ = -Π σµ t + Σ σµ t + T σµ t , (7.28) 
where The operator Π σµ is a density-density correlator between the σ and the µ spin sectors, Σ σµ accounts for correlators that are symmetric with respect to the center of the band, located at k = ±π/2 (note that in this operator momenta are defined mod 2π to restrict them to the first Brillouin zone), and T u considers umklapp terms, where the difference in momenta is equal to ±2π.

Π σµ = k n k,σ n k,µ , Σ σµ = k =q, k =π-q c † k,σ c q,σ c † π-k,µ c π-q,µ , (7.29) 
T σµ = δk∈[0, π 2 ] c † π 2 +δk,σ c -π 2 -δk,σ c †

7.D Dynamics of coherences and Gaussian approximation

Starting again from the Lindblad master equation (7.5) (main text) we get

Λx,y µµ (t) = α L † α Λ x,y µµ , L α t , (7.30) 
where Λ x,y µµ (t) = Λ x,y µµ t and we used the fact that L † j L j , Λ x,y µµ = 0. Using the defintion (7.2), after some algebra we get (L µ σ j ) † L µσ j , (7.33) in agreement with the fact that Λ x µµ + iΛ y µµ = Λ x µ µ -iΛ y µ µ . Let us now take the thermodynamic limit L → ∞ of the above set of equations. We divide both the sides by L and introduce the intensive quantities s ± µµ (t) ≡ Λ x µµ ±iΛ y µµ t /L. For the + coherence we get the following ṡ+ µ,µ = -γ L j σ =µµ c † j,σ c † j,µ c j,µ c j,σ t = -γ L 3 j σ =µµ k,q,w,z e i(k+q-w-z)j c † k,σ c † q,µ c w,µ c z,σ t = -γ L 2 σ =µµ k,q,w,z δ k+w,w+z c † k,σ c † q,µ c w,µ c z,σ t . (7.34)

Let us now assume that the density matrix is gaussian and exploit the Wick's theorem c † k,σ c † q,µ c w,µ c z,σ t ∼ c † k,σ c z,σ t c † q,µ c w,µ t δ k,z δ q,wc † k,σ c w,µ t c † q,µ c z,σ t δ k,w δ q,z , (7.35) where the Kronecker delta selects only the two-point correlator which do not have an explicit time dependence. As for the populations this comes from the fact that dissipation is weak and time-dependent correlators will average to zero between two dissipative events.

Inserting Eq. (7.35) into Eq. (7.34) se fnally get

ṡ± µµ = -γ σ =µ,µ
n σ s ± µµs ± σµ s ± µσ .

(7.36)

The set of equations ( 7) (main text) can be easily recasted in a set of equations for s 0,z µµ . We obtain ṡ0,z µµ = γ 2 σ =η s T ση G s ση (δ ηµ ± δ ηµ ) (7.37)

Eq. (7.36) and (7.37) are a closed set of equations for the four components of s σµ . This result allows to compute the time evolution of any initial state within the Gaussian approximation.

7.E Perturbative solutions in the weakly-dissipative regime

In this section we derive some solution for the N = 3 case in the weakly-dissipative regime and in absence of coherences s x,y σ,σ = 0 for σ, σ = A, B, C and σ < σ . The dynamics is ruled by Eq. ( 9 We now consider the case where the population in A and B sector is the same n A (t) = n B (t) and the system is initially prepared with a large fraction of the population in A, B and a small amount of population in the C sector, i.e n A (0) = n B (0) n C (0) = λ. We can thus use the following Taylor expansion in the small parameter λ n A (t) = n (7.41) The solution (7.41) predicts that the systems gets empty in the long time limit, i.e. lim t→∞ n(t) = lim t→∞ n C (t) = 0. The perturbative result (7.41) obtained for n C (t) is in very good agreement with the exact numerical integration of Eq. (7.39) as shown in Fig. 7.6.

We now derive an approximate solution when the system is initially prepared with a large fraction of the total population in the A sector and a small (and equal) fraction of particles in the B, C sectors, i.e. n B (0) = n C (0) = λ n A (0). During the dynamics the population in the B, C sectors remain equal n B (t) = n C (t) and, as we did before, we can exploit a Taylor expansion for the population densities n A (t) = n The set of equations (7.43) can be solved exactly. We get n (0)

A (t) = n (0) A (0), n (1) 
A = -2 1e -γn (0) A (0) , n

C = e -γn (0) A (0)t . (7.44)

In the long time limit the system gets empty in the B, C subspaces and display a non-vanishing density in the A sector The agreement with the numerical simulation is good and it is shown in Fig. 7.7.

7.F Derivation of the effective master equation in the quantum Zeno regime

In this Section we detail the derivation of the effective master equation governing the dynamics in the Zeno regime in the main text, following the same method presented in Sec. 6.A. As anticipated, the case study is when γ J, for this reason it will be useful to regroup the terms of the master equation in the following manner: dρ dt = (V + L int )ρ, (7.47a)

V[ρ] = - i [H J , ρ], (7.47b) 
L int [ρ] = - i [H int , ρ] + 1 D[ρ], (7.47c) 
where:

H J = -J j I σ=-I
c † j,σ c j+1,σ + H.c. (7.48a)

H int = U j σ<σ n j,σ n j,σ (7.48b 
)

D[ρ] = α L α ρL † α - 1 2 L † α L α , ρ (7.48c) 
This way of rewriting the master equation helps to realize the order of magnitude of the various term: V is of order J, whereas it has been assumed γ U ∼ O(1). It should be now more clear that it is possible to tackle the problem by means of a perturbative approach, where V is considered a perturbation with respect to L int .

Let us start by focusing on the properties of L int , a non-Hermitian operator with infinitely many eigenstates. Exploiting a generalized version of Kato's method [START_REF] Kato | Perturbation theory for linear operators[END_REF] it is possible to expand: L int = i λ i P i , using a complete set of projector operators with the following properties:

P i P j = δ ij P i , i P i = 1. (7.49) 
P 0 projects the density-matrix over the hard-core fermion (HCF) subspace, which is stable. We call ρ 0 the density matrix restricted to the subspace. With perturbative techniques, it is now possible to construct the effective master equation governing the dynamics for the dominant term ρ 0 (t): Let us start by analyzing the first order corrections given by L 1 . It can be shown [START_REF] García-Ripoll | Dissipation-induced hard-core boson gas in an optical lattice[END_REF] that L 1 is equivalent to a Hamiltonian that has been projected within states without double occupancies. This is precisely a hard-core fermion gas under unitary Hamiltonian evolution L 1 [ρ 0 ] = -i [H , ρ 0 ], where:

H = -J L i=1 I σ=-I f † i+1σ f iσ + H.c. , (7.52) 
with f † iσ and f iσ being hard-core fermionic operators satisfying the Clifford algebra plus the hard-core constraint: The main result so far is that two body losses in the strong dissipative regime lead to a coherent dynamics given by an hard-core fermion Hamiltonian.

f iσ = |0 i σ| i , f † iσ = |σ i 0| i ,

7.F.2 Second-order corrections

The second order Liouville can be recasted in a Lindblad form:

L 2 [ρ 0 ] = i H 2 , ρ 0 + D 2 [ρ 0 ], (7.54) 
where: The new set of jump operators describing the lossy dynamics is thus given by: L j,µµ = Γ eff [f jµ (f j-1,µ + f j+1,µ )f jµ (f j-1,µ + f j+1,µ )], µ < µ (7.56)

H 2 = -J 2 j L † j L j ; (7.55a) 
with the coefficients given by:

J 2 = 4J 2 U 2 γ 2 1 1 + 2U γ 2 , Γ eff = 4J 2 2 γ 1 1 + 2U γ 2 , (7.57) 
All in all, the effective master equation for the HCF has the following form (we dismiss here the notation ρ 0 , that is not used in the main text):

d dτ ρ(τ ) = - i H + H 2 , ρ(τ ) + j L j ρ(τ )L † j - 1 2 L † j L j , ρ(τ ) . (7.58) 
In the main text we do not make any explicit mention to H 2 because it is completely irrelevant in the study that we carry out. This of course depends on the specific problem that we have chose to address, and this could not be the case for other situations. In this section we present the dynamics in the 2s µµ / -ñ µµ for the AC and BC subspaces in the strongly interacting and dissipative limit. In Fig. 7.8 we show the dynamics for the other spin subspaces not shown in the main text. As it was already stated in the main text, the dynamics from the Mott incoherent state is independent on the subspace considered, given its rotational invariance. On the other hand, the generalized Néel state has different dynamics when considering different subspaces; nonetheless, in this particular case for L = 8, we found the same dynamics in the AC and BC subspaces given the symmetries of the initial state.

Chapter 8

Conclusions and perspectives

The main goal of this thesis is to contribute to the problem of lossy dynamics in manybody open quantum systems, with a focus on theoretical characterization of state-ofthe-art cold atom experiments. Losses and dissipation are ubiquitous in experiments on quantum matter, and tend to diminish the interesting quantum effects that can be investigated. In contrast, we have explored setups where the interplay between coherent unitary evolution and losses could result in non-trivial stationary and/or transient states featuring strong quantum correlations. These setups are not only of theoretical and experimental interest due to their unique properties, but also hold promise for the future realization of quantum technologies such as quantum simulation and quantum metrology, among others. We (mainly) addressed the problem of two-body losses in correlated gases, where loss processes are either instrinsic or induced by e.g. photoassociation. We have been interested in finding a theoretical description, at any timescale, of correlated lossy gases, with the long-term goal of characterise quantum states by means of losses. To that purpose, we used various techniques, such as effective analytical models and numerical quantum trajectories and tensor network simulations. The outcome of our analysis can be divided into two sets of results, according to the statistics of the atoms/molecules under study.

First, concerning the (spinless) bosonic case, we investigated the effect of a harmonic confinement in the case of two-body losses. The presence of an external confinement is common to the majority of cold atom experiments, the inclusion of such confining potential into our theoretical analysis fosters a more quantitative comparison between theory and experiments. Moreover, we extended the discussion to the generic K-body losses case; the latter, despite being a toy model, enhanced the believe that more generic loss processes still feature interesting physics in terms of quantum correlations building up in the system. As a future perspective, it would be interesting to study if such a toy model can be linked to some effective description of the dynamics in the hardcore limit.

Second, moving to the spinfull SU(2) fermionic case, we investigated how a conserved quantity, namely the spin of the gas, not only affects the stationary properties (as had already been understood in the literature) but also its dynamical properties. At first, we focused on the SU(2) weakly-interacting and weakly-dissipative limit; our contribution introduces a simple theoretical framework for describing this lossy dynamics that takes into account the exact conservation of spin. We unveiled the crucial role played by spin conservation also for the dynamics. We then focused on the quantum Zeno (QZ) limit of the same setup. Within this limit we unveiled a wide QZ region, identified by the peculiar behaviour of the lowest eigenvalues of the associated non-Hermitian Hamiltonian. We characterise the universal dynamics of this Zeno regime using an approximation scheme based on a effective decoupling of charge and spin degrees of freedom, where the latter are effectively cooled down by a non-Hermitian Heisenberg Hamiltonian. The spincharge separation assumption allowed us to predicts the behaviour in real time of several observables only at short-intermediate times; a more refined theory for the long-time limit is still lacking.

Coherently with the perspective of generalizing these ideas to the more generic case of SU(N ) gases and motivated by recent experimental works, we have moved on to tackle the SU(3) case. In particular, we have exploited the so-called eightfold way, as a scheme to organize the dark states in terms of generalized Dicke states. We introduced a new way of representing the dynamics of the gas in a spin-population diagram which highlights the approach towards the stationary states. And although our results have been derived for the explicit case of SU(3), they are qualitatively valid for any N > 2. This has also been the subject of a very recent experimental work [START_REF] Honda | Observation of the sign reversal of the magnetic correlation in a drivendissipative fermi gas in double wells[END_REF] for a SU(6) gas, in which the authors observed ferromagnetic spin correlations compatible with our theoretical predictions.

Our results raise interesting challenges that could be the object of further fruitful research activity. More specifically, a first example related to the harmonic confinement includes the extension to the fermionic case and the addition of novel terms in the dynamics, describing for instance diffusive processes, which may lead to the thermalisation of the gas. As far as fermionic gases are concerned, a well-established theoretical framework at any timescale is still lacking, especially in the Zeno regime. Future works may inspect the longtime behaviour of the gas and include finite-size effects, possibly generalising the foundings to the SU(N ) case. The latter offers, in addition, the possibility of investigating more generic processes, such as local three-body losses in a SU(3) gas for instance. The introduction of additional degrees of freedom given by a SU(N )-spin symmetry, with N > 2, enlarges the spectrum of (local) loss processes that are allowed. This observation opens interesting perspectives concerning the engineering of correlated quantum states driven by losses. A first route towards the exploration of these properties consists in designing (local) K-body lossy processes, possibly associated to conserved quantities constraining the dynamics and leading towards non-trivial stationary states. This will create new insights into quantum state engineering driven by dissipation, possibly introducing new correlated phases of synthetic quantum matter.

On a more experimental viewpoint, despite various experiments have been performed to realise the theoretically predicted incoherent mixture of Dicke states, the experimental certification of the latter remains a challenge. From a theoretical viewpoint, it is therefore impelling to devise a protocol which allows the identification and characterisation of the state obtained at the end of the dynamics.

On a more general note, the main observables concerning these setups that are analyzed in both experiments and theory, are usually the density of the gas, momentum distribution function and spin correlations. On the other hand, entanglement and its dynamics have not been analysed yet. The characterisation of the entanglement in closed quantum many-body systems is a key problem in out-of-equilibrium physics nowadays, its growth and propagation are the keys needed to answer fundamental questions such as thermalization in isolated systems. In the realm of open systems, this problem is enhanced by the introduction of the environment, which makes difficult to probe whether quantum correlations build up within the actual system or in between the system and the environment itself. The study of the entanglement dynamics in lossy correlated gases thus represents a formidable challenge. The first work in this direction is Ref. [START_REF] Goto | Measurement-induced transitions of the entanglement scaling law in ultracold gases with controllable dissipation[END_REF], which proposes a first numerical study at the level of single trajectory on the quench dynamics of a dissipative Bose-Hubbard model, spots a transition in the behaviour of the entanglement as the loss rate is increased. The extension to fermionic systems has not yet been proposed, the latter being a harder problem with respect to the bosonic counterpart, given the higher dimension of the associated Hilbert space which makes numerical simulations more demanding. This opens two main conceptual research lines.

On the one hand, because of the high computational cost required to simulate these systems, there is a need to devise increasingly refined numerical methods in order to be able to simulate larger systems and in wider and wider parameter ranges. We mention here for instance a combination of quantum trajectories and matrix-product states/operators [START_REF] Vovk | Entanglement-optimal trajectories of many-body quantum markov processes[END_REF][START_REF] Wellnitz | Rise and fall, and slow rise again, of operator entanglement under dephasing[END_REF][START_REF] Preisser | Comparing bipartite entropy growth in open-system matrix product simulation methods[END_REF], quantum state diffusion and its variations [START_REF] Gisin | The quantum-state diffusion model applied to open systems[END_REF][START_REF] Verstraelen | Quantum and classical correlations in open quantum-spin lattices via truncated-cumulant trajectories[END_REF], machine learning and dynamical mean-field theory [START_REF] Scarlatella | Dynamical mean-field theory for markovian open quantum many-body systems[END_REF][START_REF] Seclì | Steady-state quantum zeno effect of drivendissipative bosons with dynamical mean-field theory[END_REF], among others.

On the other hand, in between the two limit cases of open and out-of-equilibrium closed quantum systems lies an intermediate paradigm that has recently attracted significant attention, and it is represented by the case in which the environment is seen as a measurement apparatus, introducing the so called monitored systems [START_REF] Li | Quantum zeno effect and the many-body entanglement transition[END_REF][START_REF] Skinner | Measurement-induced phase transitions in the dynamics of entanglement[END_REF]. The latter are characterised by the fact that quantum information/entanglement dynamics is studied at the level of a single stochastic quantum trajectory, as opposed to the open systems here investigated, whose behavior is typically studied by the density matrix evolution.

The inclusion of driving and/or dissipation within the framework of monitored systems is an example of exciting theoretical research line that is pursued nowadays [START_REF] Ladewig | Monitored open fermion dynamics: Exploring the interplay of measurement, decoherence, and free hamiltonian evolution[END_REF][START_REF] Weinstein | Measurement-induced power-law negativity in an open monitored quantum circuit[END_REF][START_REF] Turkeshi | Enhanced entanglement negativity in boundary-driven monitored fermionic chains[END_REF]. A possible extension of this work would consist in considering losses as an example of dissipation that can be present in such systems. It is interesting to study whether the non-trivial interplay between measurements and losses could lead to new phases of non-equilibrium dynamics in settings accessible to state-of-the-art experiments.
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 11 Figure 1.1: Sketch of an open systems coupled to an environment through losses. Particles (red spheres) hop on a one-dimensional chain to nearest neighbor sites, dissipation is present in the form of K-body loss processes. Credits fo F. Riggio for the figure.
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 12 Figure1.2: One dimensional random walk described by a particle at position x ∈ Z at time t ∈ N 0 (discrete). Each colour represents a different realisation of such stochastic process. The continuum limit of a one-dimensional random walk is the brownian motion.

Figure 1 . 3 :

 13 Figure 1.3: Three dimensional optical lattice. Particles can tunnel along the y direction at a rate J t / . Once two particles tunnel to the same site, they are lost a rate Γ 0 . Picture taken from [222].
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 15 Figure 1.5: A sketch of a QED-cavity array. It consists of a regular arrangement of QED cavities. Neighboring cavities are coupled by photon hopping.Nonlinearities in the cavities may produce an effective repulsion between the photons leading to an anharmonic spectrum. The nonlinearity may be produced, e.g. by a two-level system (depicted in the inset) coupled to the light resonating in the cavity and subjected to decay. Photons in the cavities have a finite lifetime therefore the cavities are pumped with an external coherent drive. Picture taken from[START_REF] Tomadin | Many-body phenomena in qed-cavity arrays[END_REF].

  ) form an orthonormal basis in H S 1 and H S 2 , respectively. Substituting the latter expression in the expansion of |ψ (1.31), we immediately obtain the Schmidt decomposition (1.29). In the case where the two systems have different dimensions, i.e. m = dim{H S1 } = n = dim{H S2 } then the matrix d has dimension m × n, and at most r ≤ min {m, n} non-zero singular values.
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 18 Figure 1.8: Left panel: Pictorial representation of the phonomena of spontaneous emission.We consider a two level atom with ground and excited state respectively |g and |e . As part of this transition, the system emits a photon. Right panel: temporal profile of the single photons generated by the single 8 7Rb atom (red circles). The laser pulse as a function of time is given by the green area. Eventually, the solid blue line represents an exponential fit. Picture taken from Ref.[START_REF] Leong | Hongou-mandel interference between triggered and heralded single photons from separate atomic systems[END_REF].
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 19 Figure 1.9: Left panel: Bloch sphere representation of the Lindblad dynamics concerning the spontaneous emission starting from the excited |e state decaying towards the ground state |g . Right panel: Time evolution of the fraction of excitations n e (t) (solid light blue line) and n g (t) = 1n e (t) for the gound state (solid orange line).
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 21 Figure 2.1: Optical lattices. (a) Two-and (b) three dimensional optical lattice potentials formed by superimposing two or three orthogonal standing waves.For a two dimensional optical lattice, the atoms are confined to an array of tightly confining one-dimensional potential tubes, whereas in the three-dimensional case the optical lattice can be approximated by a three-dimensional simple cubic array of tightly confining harmonic-oscillator potentials at each lattice site. Picture taken from[START_REF] Bloch | Many-body physics with ultracold gases[END_REF] 
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 22 Figure 2.2: Absorption images of multiple matter wave interference patterns. These were obtained after suddenly releasing the atoms from an optical lattice potential with different potential depths V 0 after a time of flight of 15 ms. Values of V 0 were: a, 0 E r ; b, 3 E r ; c, 7 E r ; d, 10 E r ; e, 13 E r ; f, 14 E r ; g, 16 E r ; and h, 20 E r . Picture taken from Ref. [83]
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 23 Figure 2.3: (a) The electrons locally collide with the atoms constantly dissipating the BEC. (b) Temporal resolved signal from the ion detector. The bin size is 1µs. Points are experimental data averaged over 1800 experimental repetitions, while the solid curve is the numerical simulation of the associated Lindblad equation. After 5ms we typically collect 450 ions. Picture taken from [9].
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 25 Figure 2.5: Left panel: Two molecules sit on neighboring lattice sites. The particles can tunnel with a hopping amplitude t/ . The resulting doubly occupied site decays into the vacuum at a rate γ. Right panel: Effective model in the strongly-dissipative regime.The particles behave as hard-core bosons, when two of such impenetrable particles are on nearest-neighbor sites, they decay with a much weaker rate of order O(t 2 /( 2 γ). Picture taken from Ref.[START_REF] García-Ripoll | Dissipation-induced hard-core boson gas in an optical lattice[END_REF] .
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 26 Figure 2.6: Left panel: Number of molecules as a function of time in absence of a lattice potential along the 1D tubes. Experimental data are represented by blue dots. Solid line represents a fit through the formula (2.7). The dashed line shows the expectation for an uncorellated system. Right panel: Lossy dynamics in presence of a lattice potential for different lattice strength (black 1.8E r , red 3.9E r and green 6.0E r ) Solid lines show the fits performed with an equation of the form (2.5). Picture taken from[START_REF] Syassen | Strong dissipation inhibits losses and induces correlations in cold molecular gases[END_REF].

Figure 2 . 8 :

 28 Figure 2.8: Fermionic (left) and bosonic (right) quasi-momentum distributions. Dashed lines are the predictions using the rate equation. Data from quantum-trajectory simulations for L = 14 (symbols) are presented for two times. Picture taken from [168].
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 29 Figure 2.9: Left panel: Two molecules sit on neighboring lattice sites. The particles can tunnel with a hopping amplitude t/ . The resulting doubly occupied site decays into the vacuum at a rate γ. Right panel: Effective model in the strongly-dissipative regime.The particles behave as hard-core fermions, when two of such impenetrable particles are on nearest-neighbor sites, they decay with a much weaker rate Γ eff of order O(t 2 /( 2 γ). Picture taken from Ref.[START_REF] Sponselee | Dynamics of ultracold quantum gases in the dissipative fermi-hubbard model[END_REF] .

Figure 2 . 12 :

 212 Figure 2.12: Picture taken from Ref. [226]. Comparison of experimental loss dynamics for the deepest considered lattice to MF and t-DMRG calculations. (a) Molecule loss vs. time for V ⊥ = 80 E R and V y = 5 E R . The MF matches the experimental data better than the RE (experimental fit). (b) Comparison of t-DMRG simulations (χ MPS = 128, 2000 trajectories) to MF, for two different cases: i) an identical trap for the two spin states with trap frequency ω ↓ = ω ↑ = 2π ×38Hz; and ii) slightly different trap frequencies ω ↓ = 2π × 38 Hz, ω ↑ = 2π × 34.2 Hz. Shaded areas indicate the standard error of the mean.
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 214 Figure 2.14: Relative atom number N (t)/N 0 as a function of dimensionless time t/t SE , t SE = Γ t 2 for (a) two-and (b) six-spin mixtures and for 5, 6 and 8E r final lattice depth. The solid line shows the fit with the function(2.42). Picture taken from[START_REF] Sponselee | Dynamics of ultracold quantum gases in the dissipative fermi-hubbard model[END_REF].
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 402 Figure 2.15: (c) Time evolution of the spin correlation ψ(τ )| S 1 • S 2 |ψ(τ ) / ψ(τ )|ψ(τ )|ψ(τ )|ψ(τ ) of the Fermi-Hubbard model and (d) that of the Bose-Hubbard model. The parameters are set to U/t = 10 and γ/t = 3. The unit of time is the inverse hopping rate τ h = 1/t. Picture taken from Ref.[START_REF] Nakagawa | Dynamical sign reversal of magnetic correlations in dissipative hubbard models[END_REF] 
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 216 Figure 2.16: Schematic illustration of the sequence for STO measurement in a dimer.Here, we show the case of two spins (red and blue) per dimer. The sequence flows as loading, tunneling freezing, STO, site merging, and PA. Depending on the STO time, the two spins form the state in which one spin occupies the lowest band and the other spin occupies the first excited band, or the state in which both spins occupy the lowest band. Atoms in the latter state are removed by the PA laser. Picture taken from Ref.[START_REF] Honda | Observation of the sign reversal of the magnetic correlation in a drivendissipative fermi gas in double wells[END_REF] 

Figure 2 .

 2 Figure 2.17: (Dynamics of (b) the singlet fraction p s , and (c) the triplet fraction p t 0 in an isolated double-well lattice with on-site two-body losses. Here, we show their dependency on the irradiation time t PA of the PA laser. The dashed curves in (b), and (c) show the results of the exponential fit of the data with an offset, without an offset, and the constant fit, respectively, where the damping time constant of the exponential function is determined by the co-fit to A (the STO amplitude) and p s . Error bars denote the standard deviation, which is calculated with fitting errors of STO measurement and the standard deviations of the total atom number. Error bars in STO signals denote the standard deviation of three scans. Picture taken from Ref.[START_REF] Honda | Observation of the sign reversal of the magnetic correlation in a drivendissipative fermi gas in double wells[END_REF] 

  2π ¡ n k( t)d k and it satisfies ñ(0) = 1. It is linked to the physical density via the simple relation n = n in × ñ.

Figure 3 . 1 :

 31 Figure 3.1: Left panel: Comparison of the numerically-computed normalised density ñ( t) (red dots) with the long-time behaviour given by Eq. (3.26) (blue dashed line). The black solid line represents Eq. (3.27), which faithfully reproduces the entire dynamics of ñ( t). Right panel: Density profile in k-space plotted for t = 0 (black), 0.1 (red), and 1 (blue). The circles represent the n k for t = 0.1 and t = 1 computed with the numerical integration of the Eqs.(3.18). The solid lines are obtained by taking ñ( t) from the numerical results and inserting it in Eq. (3.21).
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 3832 Figure 3.2: Snapshots of the density function f (x, k, t) in the x -k phase space for different values of t = 0.1, 1, 5 and 10. Starting from the first row to the fourth one we set ω/ Γ = 0, ω/ Γ = 0.1, ω/ Γ = 1 and ω/ Γ = 10, respectively. The circle where f (x, k, t) is different from zero has unit radius (ticks not shown). Spirals are a numerical artefact due to the discretisation of the phase space, for further details see Appendix 3.B.
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 33 Figure 3.3: Time-evolution of the normalized density Ñ ( t) for different values of the ratio ω/ Γ. Black and cyan dashed lines are theoretical prediction for the weak and strong confinement case, Eq. (3.41) and Eq. (3.42) respectively. Vertical dashed lines mark the threshold time t tr = T ω /4 for ω/ Γ = 0.05, 0.1, 0.2 (purple, blue and red line, respectively).
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 34 Figure 3.4: Spatial density profile Ñ (x, t) (left panel) and its rescaled version Ñ (x, t)/ Ñ (0, t) for t = 0, 10, 100 and 500 and ω = 0.
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 135 Figure 3.5: Numerical solution of Eq. (3.43) for Ñ ( t) (red-dashed line) compared with the form Ñ ( t) = (1 + t) -1 (solid black line).
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 336 Figure 3.6: Comparison of the time-evolution of the normalized density Ñ ( t) for ω/γ = 0.1 obtained for two different discretization of the phase space d, as indicated in the legend.

Fig. 3 .

 3 Fig.3.6 we show Ñ ( t) for two different values of d. The two curves collapse for the time window under consideration.
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 41 Figure 4.1: This picture shows the system we are interested in. The hard-core bosons (red spheres) can jump from one site to empty one (white spheres). Two bosons can not be localised on the same site. Losses are represented by the large blue arrow which connects the bosons chain to its environment (green background). Here we are removing K consecutive atoms.
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 6 where the Lagrange multipliers β a are fixed by the expectation values of the charges Q a , which must be equal to tr[ρ GGE,{ Q b } Q a ]. Evaluating the r.h.s of Eq. (4.7) in the GGE density matrix leads to a closed evolution equation for the slow motion of the charges induced by the losses,
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 44 Evolution of the rapidity distribution for a homogeneous gas Having established the general form of the loss functional F [ρ] for K-body losses, summarized by Eqs. (4.26)-(4.31)-(4.35)-(4.41)-(4.42), we now turn to the time evolution of the rapidity distribution. We solve the evolution equation ρ(k) = -ΓF [ρ](k) (4.43)
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 441 Results for K = 1For one-body losses the atom density always decays exponentially,n(t) = n(0)e -Γt .(4.45) This simply follows from Eq. (4.7) applied to the total particle number Q a = N and to L j = b j : it gives Ṅ = -Γ N , which implies Eq. (4.45) for the atom density n = N/L. It turns out the evolution equation (4.43) for the rapidity distribution can be solved exactly for the loss functional for K = 1 (see Eq. (4.26)). The solution is derived in Appendix 4.A; it reads ρ(t, k) = n 0 e -Γt Re tanh n 0 (e -Γt -1) + i n 0 I(t, k) 1 + i n 0 tanh(n 0 (e -Γt -1)) I(t, k) , (4.46)
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 42 Figure 4.2: Effect of one-body losses on different rapidity distributions. Taking the initial distribution as ρ(k) = (1 + exp(-cos(k)/T )) -1 , we change the initial distribution by modifying the temperature T . The time evolution is obtained solving (4.15) with Runge-Kutta method. From left to right the temperature is decreasing T = 0.1, 1.0, 10.0, 100.0. The black dashed lines correspond to formula (4.46) and show a perfect agreement with numerical simulations.
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 43 Figure 4.3: Long time behavior of different rapidity distributions rescaled by the corresponding density. a) The initial distribution (blue curve) is a Fermi-Dirac distributions ρ 0 (k) = (1 + exp(-cos(k)/T )) -1 with T =0. The red curve is the distribution at long time according to Eq. (4.46). The black dashed line is a numerical fit with a Boltzmann distribution a 1 exp{cos(k)/a 2 }. b) The initial distribution (blue curve) is a cosinus function ρ 0 (k) = (1cos(sk))/2. The red curve is the distribution for t → ∞. Here it is clear that the distribution does not become thermal.
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 44 Figure 4.4: Effect of two-body losses on the rapidity distribution. The initial rapidity distribution ρ(k, 0) = 1/(1 + exp(-cos(k)/T )) is chosen with T = 0.1, 1, 10, 100 from left to right. The black dashed curve is the analytic solution (see Eq. (4.51)). After several loss events the rapidity distribution takes the form of a gaussian centered at k = 0. As in the one-body case, if initially the rapidity distribution is flat then it remains flat under lossy evolution.

1 +

 1 ∂τ n(τ ) 2Γ n(τ ) 2 n(τ )dτ . Numerically we observe that |∂ τ n(τ )| 2Γn(τ )
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 45 Figure 4.5: The mean density under two-body losses for different thermal-like initial rapidity distributions. The chemical potential is µ=0.0 so that the initial density is n(0) =0.5. Colored curves are obtained by solving numerically the time evolution equation of ρ(k) for the loss functional (4.31) with a time step dt=0.05 and a loss rate Γ =0.1. The red dashed line is the mean density associated to an initial rapidity distribution which is flat as shown in (4.59). The long time behavior at small temperatures is presented by the black dashed line (see Eq.(4.57)).
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 46 Figure 4.6: Long time behavior of different rapidity distributions rescaled by the corresponding density under two-body losses. For the subplots a, b and c, the blue curve represents the initial rapidity distribution while the red curve is the rapidity distribution at long time. The violet curve is the rescaled rapidity distribution at an intermediate time. a) The initial distribution is a Fermi-Dirac distributions ρ 0 (k) = (1 + exp(-cos(k)/T )) -1 with T =0.1. The green dashed curve is a fit with a Boltzmann distribution a 1 exp{a 2 cos(k)} where a 2 is positive. b) The initial rapidity distribution is (1cos(k))/2 which has a non-vanishing first Fourier mode. The green dashed curve is a fit with a Boltzmann distribution a 1 exp{a 2 cos(k)} where a 2 is negative. c) The initial rapididty distribution is (1cos(2k))/2 which has no first Fourier mode.
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 47 Figure 4.7: Effect of three-body losses on the rapidity distribution. The initial rapidity distribution ρ(k, 0) = 1/(1 + exp(-cos(k)/T )) is chosen with T = 0.10, 1.0, 100.0 from top left to bottom right.
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 462 9.(a) corresponds to a thermal initial rapidity distribution, and Figs. 4.9.(b)-(c) to non-thermal initial rapidity distributions ρ(k, t = 0) = (1cos k)/2 and (1cos(2k))/2 respectively. We observe that the rescaled rapidity distribution concentrates around the maxima of the initial rapidity distribution at long times. Even for an initial thermal distribution (Fig. 4.9 10 -1 10 0 10 1 10 2 10 3 10 4 10 5 10 (Γt) -0.38 ∼ (Γt) -0.21

Figure 4 . 8 :

 48 Figure 4.8: The mean density under three-body losses for different initial rapidity distributions. The chemical potential is µ=0.0 so that the initial density is n(0) =0.5. Colored curves are obtained by solving numerically the time evolution equation of ρ(k) with an non-regular time step and a loss rate Γ =0.1. From blue to red, the simulation is performed with an initial distribution which is a Fermi-Dirac distribution ρ 0 (k) = (1 + exp(-cos(k)/T )) -1 . The dark and light green curves are respectively obtained from initial rapidity distributions (1cos(k))/2 and (1cos(2k))/2. The black dashed line is the long time behavior of the mean density predicted by Eq. (4.52). The orange dashed curve corresponds to the long time behavior of the mean density computed from an initial rapidity distribution with non-vanishing first Fourier mode. The gray dotted curve shows the long time behavior of the mean density for an initial rapidity distribution with no first Fourier mode.

Figure 4 . 9 :

 49 Figure 4.9: Long time behavior of different rapidity distributions rescaled by the corresponding density under three-body losses. For the subplots a, b and c, the blue curve represents the initial rapidity distribution while the red curve is the rapidity distribution at long time. a) The initial distribution is a Fermi-Dirac distributions ρ 0 (k) = (1 + exp(-cos(k)/T )) -1 with T =0.1. b) The initial rapidity distribution is (1cos(k))/2 which has a non-vanishing first Fourier mode. c) The initial rapididty distribution is (1cos(2k))/2 which has no first Fourier mode.
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 4 A Deriving solution(4.46) 

Figure 4 . 10 :

 410 Figure 4.10: Left panel: the mean density under two-body losses for two different nonthermal rapidity distributions. Solid colored curves are obtained by solving numerically the time evolution equation of ρ(k) for the loss functional (4.31) with a time step dt=0.05 and a loss rate Γ =0.1. The green dashed line is the mean density given by Eq. (4.52).The long time behavior for non vanishing first Fourier mode distributions is presented by the red dashed line (see Eq. (4.56)). Right panel: difference between the two function f (t) and g(t) defined in the main text for a thermal and non-thermal distributions.
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 51 Figure 5.1: Dissipative dynamics of the normalised density of a band insulator for L = 4, 6, 8 and 10.The various colors refer to different dissipation strengths, from γ/J = 10 -2 to γ/J = 10 (see legend). The thin blue dotted curve is the prediction for the thermodynamic limit in Eq. (5.17) whereas the thick blue dashed curve is Eq. (5.[START_REF] Biella | Many-Body Quantum Zeno Effect and Measurement-Induced Subradiance Transition[END_REF]). The latter faithfully describes the weakly-dissipative limit even at small sizes. The plot highlights the collapse of the curves for γ/J = 10 -2 , 10 -1 and 1. On the other hand, the appearance of a new behaviour in the strongly-dissipative Zeno limit is evident.
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 53 Figure 5.3: Dissipative dynamics of a Néel state for L = 4, 6, 8 and 10 for γ/J = 0.1.The time-dependent population is plotted as a dashed red line. The upper bound to the total population given in Eq.(5.22) is in black. The blue curve is a fit to the dynamics using Eq. (5.20) and taking n ∞ as the only fitting parameter.
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 54 Figure 5.4: Dissipative dynamics of a Néel state for L = 4, 6, 8 and 10 for γ/J = 0.1 and long-time decay of N (t) to the stationary value N ∞ .In all cases we observe an exponential decay. The blue curve is not a fit, but the decay obtained from the theoretical prediction N t -N ∞ = e -t/τ with τ given by Eq.(5.23), which provides an excellent description of the decay time at all lattice lengths.
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 55 Figure 5.5: Decay time of the population N (t) approaching the asymptotic number of particles N ∞ as a function of S 2 / 2 , for L = 6 and γ/J = 0.1. Red solid line: theoretical curve for τ predicted in the thermodynamic limit (5.23). Blue crosses: numerical fits of the decay time τ performed for 14 "random" Mott insulators with 10 4 quantum trajectories.
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 56 Figure 5.6: Symmetry-resolved purity for the particle sectors n = 2, 4, 6 (solid lines) and purity of the full density matrix (dashed line). Data are obtained for a typical set of parameters J/γ = 10 , L = 8, and N traj = 10 3 .
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 57 Figure 5.7: Purity ratio P (ρ n ) /P (ρ n ) min for n = 2, 4, 6. Parameters are set as in Fig. 5.6.

= 10 Figure 5 . 8 :

 1058 Figure 5.8: Dissipative dynamics of the normalised density of a band insulator for L = 8 and 10 4 quantum trajectories. Different colors refer to different dissipation strengths, from γ/J = 0.1 to γ/J = 10. Solid lines: simulations with U = γ. Dashed lines: corresponding dynamics for U = 0. The plot highlights the collapse of the curves for U = 0 and U = 0 in the weakly dissipative limit.
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 59 Figure 5.9: Lossy dynamics from an initial band insulator with periodic boundary conditions using quantum trajectories (N traj = 10 4 for L = 4, 6 and N traj = 10 3 for L = 8) and γ/J = 0.1. Top left: dynamics of the population N (t). Top right: at finite size, the stationary state is not Dicke, as quantified by the operator O ND . Bottom panels: time-derivative of the population computed using the r.h.s. of Eq. (5.7) and with the numerical derivative of N (t).
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 510 Figure 5.10: Symmetry-resolved purity P (ρ n ) for n = 2, 4, 6 for different values of N traj . The dashed blue lines represent the theoretical prediction for the steady-state symmetryresolved purity P(ρ n ) = 2/ L n . Parameters are set as in Fig. 5.6.
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 61 Figure 6.1: Imaginary part (with opposite sign) of the eigenvalues of the non-Hermitian Hamiltonian H in the sector with N = L = 8 and S z = 0 for U = 0 (left) and γ = 0.1 (right). Green dashed vertical lines mark the boundaries of the MF region, while red dot-dashed lines mark the QZ one.
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 62 Figure 6.2: (Left) The parameter space and the QZ region marked by |ξ|/t > 8.0; the markers indicate the points of the phase diagram for which the Lindblad dynamics in Eq. (6.1) has been numerically studied. (Right) Universal QZ dynamics of the density of the gas for an initial Néel state according to the Lindblad equation (6.1): different markers correspond to different points in the QZ region of the parameter space. The collapse is obtained by rescaling time with γ. Simulations are performed for L = 6.
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 636 Figure 6.3: (Left) The parameter space and the QZ region marked by |ξ|/t > 8.0; the markers indicate the points of the phase diagram for which the Lindblad dynamics in Eq. (6.1) has been numerically studied. (Right) Universal QZ dynamics of the density of the gas for an initial Néel state according to the Lindblad equation (6.1): different markers correspond to different points in the QZ region of the parameter space. The collapse is obtained by rescaling time with Γ in Eq. (6.5). Simulations are performed for L = 6.
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 65 Figure 6.5: Dynamics of the number of particles n(τ ) (left) and of the spin correlation function g (2) (τ ) (right) for an initial ordered Néel state. Dashed lines are obtained with numerical simulations of the master equation for L = 10 and L = 12. Solid green lines indicate the theoretical predictions obtained with our RE-DSC theory.

25 Figure 6 . 6 :

 2566 Figure 6.6: Momentum distribution function n k (τ ) computed from the full numerical solution of the Lindblad master equation for L = 10 (squares) and L = 12 (triangles)at different times and the predictions of (RE-DSC) eq. (6.13) (dashed lines). Left: time evolution from the infinite temperature spin state. Right: time evolution from the Néel spin state.
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 67 Figure 6.7: Dynamics of the number of particles n(τ ) (left) and of the spin correlation function g (2) (τ ) (right) for an initial maximally-mixed spin state. Dashed lines are obtained with numerical simulations of the master equation for L = 10 and L = 12. Solid green lines indicate the theoretical predictions obtained with our MF-DSC theory.
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 6268 Figure 6.8: Non-Hermitian evolution for the spin-singlet projection operator for a (left) maximally-mixed spin state and (right) an ordered Néel state. Dashed lines: MPS data of the non-Hermitian Heisenberg evolution. Dotted lines: long-time behaviour.

τ∼ τ 1/ 2 ∼ τ 2/ 3 Figure 6 . 9 :

 2369 Figure 6.9: Time evolution of the effective spin chemical potential β s (τ ) (orange-dashed lines) compared with the time integral of the squared density (blue solid lines) for a maximally-mixed spin state (left) and an ordered Néel state (right). Dotted lines represent the theoretical trends.
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 371 Figure 7.1: Sketch without any mathemtical purposes of the local loss process under study. The spheres with three different colors refer to the different flavours A, B and C. Each site can lose particles through three different channels denoted by (i)-(ii)-(iii), respectively.
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 72 Figure 7.2: The eightfold way in a dark state. Triangular irreducible representation with labels (3, 0), which is composed of 10 states. The three arrows allow to identify each state through the quantum numbers Λ z µµ , where µ, µ take values in the three components of the gas, A, B and C. Note that only two of them are linearly independent.

  7.2 for an example with p = 3. The number of particles accomodated in the representation is N = p; The dimension of a representation (p, 0) is (p + 1)(p + 2)/2, and each state is uniquely determined by the values of Λ z µµ . In the case of the figure we have the ten fully-symmetric states of N = 3 particles. At the three vertices of the triangle we always find the fully-polarized states, in this case |AAA , |BBB and |CCC . The other states are obtained by repeated application of the spin-ladder operators Λ ±

7. 4 . 2 1 2 AB L 2 = 2 4 N 2 AB L 2 ,

 4222422 The N = 3 case and generalised Dicke-cone Let us consider the N = 3 case where the internal states are labelled as µ = A, B, C. In this case the spin components are no longer conserved and in general s µµ (t) = s µµ (0). In Fig.7.3 we show the dynamics of spin and number of particles in the AB subspace for a Taking the thermodynamic limit of Eq. (7.7) we get lim L→∞ S which gives the relation (7.10).

7. 4 . 3 Figure 7 . 3 :

 4373 Figure 7.3: SU(3) dynamics in the n ABs AB plane. In the n C = 0 case the evolution must follow vertical lines defined by the initial value of s AB . When n C > 0 the spin conservation does not hold. The dynamics escapes the vertical line defined by s AB (0) and deviates progressively towards s AB = 0 getting steady when n AB = 2s AB . Here we set n A = 0.5, n B = 0.4, (s x AB (0), s y AB (0), s z AB (0)) = (0.1, 0.1, 0.05) so that 2s AB (0) = 0.3.

Figure 7 . 4 :

 74 Figure 7.4: SU(3) dynamics in the weakly dissipative limit. Left panel: we set n A (0) = n B (0) = 0.8 and n C (0) is varied. Right panel: we set n A (0) = 0.8 and n B (0) = n C (0) is varied.In both the cases the numerics (filled symbols) shows a good agreement with the predictions (dashed lines) of Eq. (7.12) (for the left panel) and Eq. (7.13) (for the right panel), even beyond the limit n C (0)1. In all the panels s x,y µµ = 0, ∀µ < µ .

n[ 1 +

 1 A,B (t) = n A,B (0) 1 + γt n A,B (0) -n C (0) ln[1 + γt n A,B (0))] γt n A,B (0)] 2 , n C (t) = n C (0) [1 + γt n A,B (0)] 2 .
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 75 Figure 7.5: SU(3) dynamics in the sAB -ñAB plane. Orange circles: dynamics from the generalized Néel state. Green squares: dyanmics from the Mott incoherent state. The dashed line represents the Dicke cone satisfying Eq. (7.7).

7 )

 7 holds at long times for a generic µ, µ subspace. In order to verify this relation we solve numerically the master equation for open boundary conditions by means of quantum trajectories[START_REF] Johansson | Qutip: An open-source python framework for the dynamics of open quantum systems[END_REF][START_REF] Johansson | Qutip 2: A python framework for the dynamics of open quantum systems[END_REF]. In particular, we consider the dynamics starting from a generalized Néel state of the form |ψ g-Neel = |A B C . . . A B C and the Mott incoherent state. In Fig.7.5 we plot the system evolution in the AB subspace in the 2s AB / -ñAB plane where we defined:

δδ

  σµ + δ σ µ .(7.22) Thus, inserting Eq.(7.22) in Eq. (7.18) we get Eq. (7.17). From Eq. (7.22) we also easily get2 Λ 0 µµ , L σσ j = -L σσ j δ σµ + δ σ µ + δ σµ + δ σ µ , σµ + δ σ µδ σµδ σ µ .(7.23)

  7.B) focusing on the observablesΛ 0 AB = (n A + n B )/2 and Λ z AB = (n An B )/2.The axes cross at the origin, in correspondence with the state with Λ 0 AB = 0 and Λ z AB =

π 2 -

 2 δk,µ c -π 2 +δk,µ + c † π 2 -δk,σ c -π 2 -δk,σ c † π 2 +δk,µ c -π 2 +δk,µ + H.c. .

δ

  σµ -L σµ j δ µσ -L µσ j δ σµ -L σµ j δ σ µ , 2 Λ y µµ , L σσ j = -i -L µ σ j δ σµ -L σµ j δ µσ + L µσ j δ σµ + L σµ j δ σ µ ,(7.31)and thus for Λ ± µµ = Λ x µµ ± iΛ y µµ we obtainΛ + µµ , L σσ j = -L µ σ j δ σµ + L σµ j δ µσ , Λ - µµ , L σσ j = -L µσ j δ σµ + L σµ j δ σ µ .(7.32)Finally, combining (7.32) and (7.30) we obtain Eq. (7.36)Λx µµ + i Λy µµ =j σ =µ,µ (L µσ j ) † L µ σ j Λx µµi Λy µµ =j σ =µ,µ

  ) (main text) that for N = 3 gives ṅA = -γn A (n B + n C ), ṅB = -γn B (n A + n C ), ṅC = -γn C (n A + n B ). (7.38) 

( 1 )

 1 A (t) + O(λ 2 ), n C (t) = λn
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 76 Figure 7.6: SU(3) dynamics in the weakly dissipative limit. We compare the behavior of n C (t)/n C (0) for different values of n C (0) = λ with the perturbative result (7.41). Here we set n A (t) = 0.8.

( 1 )

 1 A (t) + O(λ 2 ), n C (t) = λn
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 77 Figure 7.7: SU(3) residual population (top panel) and violation of the spin conservation (bottom panel). Here we set n A (0) = 0.8 while n B (0) = n C (0) is varied. The numerics shows a good agreement with the prediction of Eq. (7.45) and Eq. (7.46).

  t) = n A (0) -2n B (0), lim t→∞ n B,C (t) = 0. (7.45)The result(7.45) also allow us to compute the violation of the spin conservation in the AB sectors, in the steady-state we getV AB = s AB (0)s AB (∞) = 2 n B,C(0).(7.46) 

L 1 = 1 λ c P 0

 110 P 0 L int P 0 ; L 2 = c -VP c VP 0 .(7.51)7.F.1 First-order corrections: hard-core SU(N ) fermions

  σ ∈ {-I, . . . , I}.(7.53) 
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 2 
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 78 Figure 7.8: SU(3) dynamics in the 2s µµ /ñµµ plane in the AC (left panel) and BC (right panel) subspaces. Orange circles: dynamics from the generalized Néel state. Green squares: dyanmics from the Mott incoherent state. The dashed line represents the Dicke cone satisfying Eq. (6) (main text). Data obtained with L = 8 and N traj = 2000

  

  

  

  

  ) which describes the transition probability for a Markov process. The Chapman-Kolmogorov equation has a simple intuitive interpretation, as illustrated in Fig 1.7: starting at point x 1 at time t 1 , the process reaches point x 3 at a later time t 3 . At some fixed intermediate time t 2 , the process takes on some value x 2 . The probability for the transition from (x 1 , t 2 ) → (x 3 , t 3 ) is obtained by multiplying the probabilities for the transitions (x 1 , t 1 ) → (x 2 , t 2 ) and (x 2 , t 2 ) → (x 3 , t 3 ) and summing over all possible intermediate positions x 2 .

	The Chapman-Kolmogorov equation (1.58) is an integral equation for the
	conditional probabilities. To solve this equation and gain a clearer understanding of why
	it implies the semi-group property, one considers the associated differential equation.
	Suppose that the propagator T (x, t|x , t ) is differentiable with respect to time. Then,
	we have:

  2. STOs: in each well STOs were driven by irradiating a gradient beam, which induces a spin-dependent potential gradient for atoms. This potential gradient creates an energy difference ∆ for atoms with different spins in a probed dimer, and the spin states in the dimer coherently oscillate between the singlet state |s = (|σ 1 , σ 2 -|σ 1 , σ 2 )/ √ 2 and the triplet state |t 0 = (|σ 1 , σ 2 + |σ 1 , σ 2 )/ √ 2 at a frequency ∆/ (STO frequency), where σ i (i = 1, 2) denotes a spin component.

  7.G SU(3) dynamics in the AC-BC subspaces in the Zeno regime
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Au Chapitre 3, nous entamons la discussion de notre travail, où nous étudions l'effet d'un confinement harmonique pour un gaz de Bose unidimensionnel avec pertes dans une configuration continue. En particulier, nous nous concentrons sur le cas de pertes à deux corps importantes et nous dévoilons le rôle d'un confinement externe sur la dynamique du système.

Au Chapitre 4, nous poursuivons l'étude des gaz bosoniques (sans spin) avec pertes en analysant un gaz piégé unidimensionnel présentant des pertes à K corps, avec K étant un entier. Sous l'hypothèse de dissipation faible, nous dérivons l'expression de la fonctionnelle de perte qui encode le processus de perte pour un K générique. En particulier, nous abordons la question de savoir si le gaz se thermalise ou non sous l'effet des pertes. Selon la valeur de K, la thermalisation peut se produire ou non.

For an ideal gas of identical particles with mass M in three dimensions with population density n in equilibrium at temperature T , the mean characteristic separation ā scales as ā ∼ n -1/3 , whereas the thermal de Broglie wavelength behaves like λ

T ∼ 2 /(M kBT ). For λT ā quantum effects become relevant.
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We start from Eq. (5.5) and focus on c † k,↑ c w,↑ c † q,↓ c z,↓ t . We retain only the momentumconserving (k + q = w + z + 2πn) and energy-conserving (ω k + ω q = ω w + ω z , with ω k = -2J cos k) correlators. We have identified five possibilities and the first three read:

• k = q = w = z. In this case:

• k = w, q = z and k = q. In this case:

c † k,↑ c w,↑ c † q,↓ c z,↓ t = n k↑ n q,↓ t with k = q.

• k = z, q = w and k = q. In this case:

c † k,↑ c w,↑ c † q,↓ c z,↓ t = c † k,↑ c k,↓ c † q,↓ c q,↑ t with k = q.

If we only consider these processes, we obtain

We simplify this expression by introducing the explicit expressions for the the spin operators. From the relations:

one easily obtains that:

n k,↑ n q,↓ ;

(5.32a)

(5.32b) Relation (5.13a) is simple and follows from the definition of Dicke state:

We begin by considering the the former of the relations in (5.13b). We first demonstrate it for a generic Dicke state with well-defined number of particles N and that is also an eigenstate of S z with eigenvalue m, |D N,m . The repeated application of the spinraising operator turns |D N,m into a fully polarised state:

Since this state is fully polarised, Π D N, N 2 = 0. By using the following expression for the spin-raising operator:

With this relation we can show that Π |D N,m = 0. From this we obtain that in general Π |D N = 0 and thus that also Π |Ψ D = 0. With similar reasonings it is possible to show also the other relations in (5.13b) and this concludes the proof.

5.D Periodic boundary conditions vs. open boundary conditions

The numerical analysis of the lossy dynamics of an initial band insulator shows also that for periodic boundary conditions the stationary value of the population is not zero, see Fig. 5.9, top left panel. This result is in contrast with the expectation that Dicke states are the unique stationary states: since S 2 0 = 0, if this were the case, the stationary population should be zero, no matter the boundary conditions. This problem was also mentioned in Ref. [START_REF] Foss-Feig | Steady-state manybody entanglement of hot reactive fermions[END_REF]. By looking at Eq. (5.7), we observe that a stationary state that is not a Dicke state is characterised by a non-zero expectation value of the operator O ND = -Π + Σ π 2 + T u ; roughly speaking, O ND ss measures the non-Dickeness of a stationary state. Whereas our numerics for open boundary conditions shows that O ND t ∼ Π t and that Π ss ∼ 0, this is not true for periodic boundary conditions. In Fig. 5.9, top right panel, we show that in the latter case the stationary value of O ND ss is different from zero at finite size. This explains why the stationary state is not empty: it is not a Dicke state.

Yet, if we consider O ND ss /L 2 in order to discuss the properties of the thermodynamic limit, such value should tend to zero for L → ∞. We have verified numerically this scaling for Σ π 2 ss and T u ss (not shown). Remarkably, for some values of L the value of Π ss is zero, and for other ones it is not. This absence of a smooth dependence on L prevents us from seeing a clear tendency towards zero for L → ∞ in the plots of N (t → ∞)/L and O ND ss /L 2 reported in Fig. 5.9. Nonetheless, by mathematical arguments we know that Π ss /L 2 → 0 for L → ∞ because Π is the sum of L non-negative and bounded operators. This is sufficient to let us conclude that in the thermodynamic limit O ND ss → 0 and that the stationary state is Dicke and empty.

We conclude this section with two messages. First, Eq. (5.12) retains its validity even with periodic boundary conditions, when numerical simulations show finite-size effects that qualitatively deviate from the assumption that Dicke states are the only station-1/dim(H Dark n ) for α = β. In the limit N n → ∞ we obtain:

(5.36)

In our specific case, we can estimate the dimension of the dark subspace by counting the number of antisymmetric orbital wavefunction to be associated to the fullysymmetric spin part of the wavefunction, a Dicke state with S = n/2 and S z = 0. Thus, dim(H Dark n ) = L n . Eq. ( 5.36) provides a very good estimation of the asymptotic value of the symmetry-resolved purity as shown in Fig. 5.10 where also the convergence with N traj is shown.

By numerical inspection, the asymptotic purity value is P(ρ n ) = 2/ L n ; we do not understand the reason for the 2 factor appearing in the formula, that points at a lack of ergodicity and to the fact that the only half of the dark subspace is explored by the dynamics. We pose that this is due to the specific spin structure of the initial Néel state, and that a Mott insulator with randomly-oriented spins would explore the full dark state; we leave a more systematic study to the future.

Finally, we stress that this numerical computation is quite heavy in terms of memory since it requires requires to allocate N traj wave functions of the many-body system for many values of t, this limits our analysis to N traj = 1250.

Chapter 6

Quantum Zeno physics in the lossy Fermi-Hubbard model with two-body losses

In this chapter, we extend the results presented in the previous chapter by considering an interacting one-dimensional gas of spin-1/2 fermions with strong two-body losses, following Ref. [START_REF] Rosso | Dynamical theory for one-dimensional fermions with strong two-body losses: Universal non-hermitian zeno physics and spin-charge separation[END_REF]. In Chapter 5, we addressed the weakly-interacting and weaklydissipative regime, where we highlighted the impact of spin conservation on the full dynamics, going beyond just determining the stationary properties. In contrast, in this chapter, we focus on the strongly-dissipative and strongly-interactive regime.

We characterise the dynamical phase diagram for the approach to the stationary state by performing a numerical study of the associated non-Hermitian Hamiltonian and its spectral properties. We identify a quantum-Zeno (QZ) regime when the system is strongly-dissipative and strongly-interacting. For a given initial state, a rescaling of times shows that the QZ dynamics is universal; we then develop a simple and predictive theory for such regime, using the key assumption that spin-charge separation takes place, where the spin degrees of freedom are dissipatively cooled according to a slow non-Hermitian Heisenberg Hamiltonian, and with a cooling rate set by the charge correlations of the gas. We present detailed results for the time evolution from initial states with one particle per site with either incoherent or antiferromagnetic spin order, showing how peculiar charge properties witnessed by the momentum distribution function build up in time.

The Chapter is organised as follows. In Sec. 6.1 we briefly review the model under study and in Sec. 6.2 we study its dynamical phase diagram. Then, in Sec. 6.3 we focus on the QZ regime characterised by hard-core fermionic particles, that we describe by means of spin-charge separation. In Sec. 6.4 we present our dynamical theory for the dynamics in the QZ regime. Next, we compare the prediction of our theory to full quantum simulations regarding the density of the gas, its momentum distribution function and spin correlations (Sec. 6.5). Furthermore, we also present a particular case of our general theory in Sec. 6.6, valid for the state with incoherent spin order. Finally, in Sec. 6.7 we draw our conclusions. Appendix 6.A Derivation of the effective master equation for hardcore fermions

In this section we present some details about the derivation of the effective master equation governing the dynamics in the quantum Zeno regime analyzed in the main text, that was called ρ = L [ρ]. We follow the method employed in Ref [START_REF] García-Ripoll | Dissipation-induced hard-core boson gas in an optical lattice[END_REF]; the final result has already been presented in Ref. [START_REF] Zhu | Suppressing the loss of ultracold molecules via the continuous quantum zeno effect[END_REF] without derivation. We regroup the terms of the master equation

in the following manner:

where the Hamiltonians are:

and the dissipation is:

This rewriting is useful to highlight the different orders of magnitude of the various term: V is a perturbation of order t, and we assume that in the quantum Zeno limit |Ui γ/2| t. In the following we are going to tackle the problem by means of a perturbative approach.

Let us start by focusing on the properties of L int , a non-Hermitian operator with infinitely many eigenstates. Exploiting a generalized version of Kato's method [START_REF] Kato | Perturbation theory for linear operators[END_REF] it is possible to expand: L int = i λ i P i , using a complete set of projector operators with the following properties:

Appendix

7.A Populations dynamics

The spin-resolved populations obey the following equation (see Eq. (7.6) in the main text) Ṅµ (t) = -γ j µ =µ n j,µ n j,µ . (7.17)

From the Lindblad equation (see Eq. ( 4) in the main text) and using the ciclic property of the trace we get

where in the second line we used that L † j L j , N µ = (L σσ j ) † L σσ j , N µ = γ c † j,σ c † j,σ c j,σ c j,σ , N µ = γ N j,σ N j,σ , N µ = 0.

(7. [START_REF] Biella | Many-Body Quantum Zeno Effect and Measurement-Induced Subradiance Transition[END_REF] Let us now evaluate the commutator N µ , L σσ j . This term non-zero only if σ = µ or σ = µ. We define the a generic N -particle state |{N η } and compute .20)