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Titre: Méthodes de sketching pour problèmes inverses en traitement des images Résumé : Les fonctions de régularisation conçues par des méthodes basées sur les données ont connu un succès remarquable dans la résolution d'images. Cependant, les défis computationnels associés à l'opération dans des espaces de grande dimension constituent des obstacles importants pour ces méthodes. Cette thèse vise à alléger la charge computationnelle tout en maintenant de bonnes performances de restauration d'images en utilisant un cadre d'apprentissage statistique compressif appelé "sketching". Nous adaptons d'abord le "sketching" au contexte de la restauration d'images pour effectuer l'estimation d'un modèle de mélange gaussien (GMM) avec une covariance de rang faible. Pour accélérer davantage l'estimation, nous ajoutons une autre technique de réduction de dimension au cadre d'apprentissage compressif. Nous montrons que nous pouvons obtenir des performances de restauration d'images similaires à celles obtenues avec des modèles classiques. Pour étendre le sketching aux données plus complexes, cette thèse propose aussi d'adapter le skeching pour apprendre des fonctions de régularisation paramétrées par des réseaux neuronaux profonds (DNN). Afin d'y parvenir, nous proposons une approximation de l'opérateur de sketching qui peut être calculée explicitement pour la tâche d'apprentissage. Nous montrons que la fonction de régularisation proposée est capable de modéliser des distributions complexes et peut être utilisée pour la réduction du bruit.

Notations

We summarize here the main notations used throughout the paper. Other notations are given when appropriate.

Mathematical notations

|X|

Determinant of a matrix 

X

Inverse problems in image restoration

Inverse problems in image restoration refer to the challenge of recovering the original image from its degraded or corrupted version. Image restoration involves removing or reducing unwanted distortions, blurs, noise, or other types of degradation from an image, and restoring it to its original or improved state (Fig. 1.1).

Figure 1.1: Overview of inverse problems in image restoration

The problem of image restoration has been extensively studied in the last decades due to the growing importance of computer vision and the increasing availability of digital images. However, in numerous cases, such as medical imaging, satellite imaging, and aerial imaging, it remains a real challenge due to noise and artifacts, limited data, complex image content, ambiguity and uncertainty, and computational complexity.

The challenge of inverse problems in image restoration is posed by certain characteristics:

• Ill-posedness: Image restoration is often an indeterminate problem, meaning that solutions of the problem may not be unique. This is because the degradation process causes a loss of information and it may not be possible to recover the original image from the degraded version using mathematical operations alone. In addition, the solution may depend on various factors, such as the choice of regularization, the quality of the measurement and the level of noise, making it unstable or unreliable.

• Complexity: Image restoration is a computationally intensive task, especially when working with large images or high-dimensional data. Solving the inverse problem may require searching for parameters in a high-dimensional space, and the computational cost can be prohibitive.

• Unknown degradation: In many cases, the degradation process may not be known or may be difficult to model accurately.

Therefore, in order to solve such problem, additional information or assumptions about the solution, such as regularization, constraints, or prior knowledge, are usually required. Various mathematical models and algorithms have been developed, such as (explicit) regularization methods, deep learning, and Bayesian methods. Among these approaches, Bayesian methods provide a natural way to incorporate prior knowledge or assumptions about the image into the restoration process [START_REF] Demoment | Image reconstruction and restoration: overview of common estimation structures and problems[END_REF]. Several algorithms have been developed for Bayesian image restoration, including Markov chain Monte Carlo (MCMC) methods [START_REF] Alain | What regularized auto-encoders learn from the data-generating distribution[END_REF][START_REF] Vono | Bayesian image restoration under poisson noise and log-concave prior[END_REF][START_REF] Altmann | A bayesian approach to denoising of single-photon binary images[END_REF][START_REF] Pereyra | Proximal markov chain monte carlo algorithms[END_REF][START_REF] Durmus | Efficient bayesian computation by proximal markov chain monte carlo: when langevin meets moreau[END_REF], Markov random field (MRF) [START_REF] Blake | Markov random fields for vision and image processing[END_REF][START_REF] Roth | Fields of experts: a framework for learning image priors[END_REF], total variation [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF][START_REF] Chambolle | An algorithm for total variation minimization and applications[END_REF][START_REF] Louchet | Posterior expectation of the total variation model: properties and experiments[END_REF]7], Expected Patch Log-Likelihood (EPLL) [START_REF] Zoran | From learning models of natural image patches to whole image restoration[END_REF], etc. These methods differ in their computational efficiency and accuracy, and the choice of method depends on the specific problem and the characteristics of the data.

Classical Bayesian approaches, e.g. in [START_REF] Zoran | From learning models of natural image patches to whole image restoration[END_REF][START_REF] Deledalle | Image denoising with generalized gaussian mixture model patch priors[END_REF][START_REF] Niknejad | Image restoration using gaussian mixture models with spatially constrained patch clustering[END_REF][START_REF] Zhang | Global low-rank image restoration with gaussian mixture model[END_REF], rely on explicit prior like Gaussian mixture models (GMM) trained on a database of image patches. Recently, researchers proposed to use DNN to estimate the prior model. Methods such as the total deep variation [START_REF] Kobler | Total deep variation for linear inverse problems[END_REF][START_REF] Kobler | Total deep variation: A stable regularization method for inverse problems[END_REF], adversarial regularizers [START_REF] Lunz | Adversarial regularizers in inverse problems[END_REF][START_REF] Prost | Learning local regularization for variational image restoration[END_REF], as well as the Plug & Play approach and its extensions [START_REF] Singanallur V Venkatakrishnan | Plugand-play priors for model based reconstruction[END_REF][START_REF] Zhang | Plug-and-play image restoration with deep denoiser prior[END_REF][START_REF] Hurault | Gradient Step Denoiser for convergent Plug-and-Play[END_REF] deliver remarkably accurate results.

Computational challenges in learning. All of these methods involve "learning" the parameters of a mathematical model from large sets of empirical data. However, estimating the parameters from such large-scale datasets is a serious computational challenge. With the ever-growing size of datasets used to train the models, it has become increasingly difficult to develop algorithms that can handle the computational demands of these large datasets. In addition, the traditional learning techniques often cannot scale to the largest existing collections, making it challenging to train models on such data.

An effective solution to this problem is to compress the learning datasets. A statistical compressive learning method was introduced in [START_REF] Keriven | Sketching for large-scale learning of mixture models[END_REF]. It maps the entire training collection to a single vector that summarizes useful statistics of the data distribution. The proposed framework enables to compress the learning datasets, leading to reduced storage requirements and faster processing of remaining information. This allows tackling problems on large datasets that would be otherwise intractable due to limited resources.

This thesis focuses on developing and adapting this compressive learning approach for image restoration problems using Bayesian methods. The goal is to enhance the quality of restored images while reducing computational complexity and resource requirements. The proposed methods are evaluated on two image restoration problems: denoising and super-resolution, and compared with existing patch-based state-of-the-art methods. In addition, we illustrate the feasibility of adapting the sketching framework to the learning of a regularizer parameterized by neural networks (NN). Combining the advantages of sketching which reduces the learning cost and of the neural networks which have great expressive power, we aim to solve more general data inverse problems. In this context, we propose an alternative algorithm to overcome the limitations of the original sketch learning algorithm.

Organization of the introduction chapter

We first provide the overviews of two common image restoration problems: denoising and super resolution and some classical approaches in section 1.2. Then we formalize the key concepts of the compressive sketch learning framework in section 1.4. Finally, the main contributions of the thesis are summarized in section 1.5.

Common image restoration problems

In today's world, digital images are widely used in various fields and have become an integral part of our daily lives. However, images are often degraded or distorted due to various factors, such as noise, blur, and low resolution. This degradation can lead to the loss of important details and hinder the interpretation of the image. Therefore, image restoration has become an important area of research in image processing and computer vision. In this section, we outline two common image restoration problems: denoising and super-resolution problems.

Denoising problem

Denoising problem refers to the task of removing unwanted noise from an image while preserving the underlying structures and details. Noise can be introduced into an image due to various sources, such as the imaging sensor, transmission channel, or the environment. Mathematically, the general formulation of the denoising problem is to find the underlying clean image u ∈ R N from the observed noisy image v such that

v = u + , (1.1)
where is a realization of random vector = (E) i that models the noise. In this thesis, we always consider the additive white Gaussian noise (AWGN) model, i.e. we consider that E 1 , ..., E N are i.i.d. following N (0, σ 2 I N ) (Fig. 1.2). Challenges in image denoising Image denoising has been extensively studied in the last few decades due to the rapid development of computational imaging techniques and the increasing demand for high-quality images for various applications. In addition, the availability of large datasets and the development of deep learning methods have led to significant advances in image denoising [START_REF] Vincent | Extracting and composing robust features with denoising autoencoders[END_REF][START_REF] Bengio | Greedy layerwise training of deep networks[END_REF][START_REF] Jain | Natural image denoising with convolutional networks[END_REF][START_REF] Su | A survey of deep learning approaches to image restoration[END_REF]. Despite the progress that has been made in image denoising, there are still many challenges that need to be addressed. One of the biggest challenges is the development of methods that can remove noise while preserving image detail and structure. Many denoising methods tend to smooth the image and remove fine details, which may not be desirable in some applications [START_REF] Rafael | Digital Image Processing[END_REF]. Research is underway to develop methods that can effectively remove noise while preserving important features of the image. Another challenge is to develop methods that can handle different types of noise and noise levels [START_REF] Liu | Plug-and-play-based algorithm for mixed noise removal with the logarithm norm approximation model[END_REF]. Different imaging modes and environments introduce different types of noise, so there is a need for denoising methods that can accommodate these variations.

Super resolution

(Single-image) Super resolution is the problem of recovering a high-resolution image from a low-resolution version of the same image. Low resolution images can be modeled from high resolution images using the below formula

v = Au + , (1.2) 
where A is the degradation function, u ∈ R N is the high resolution image, v ∈ R N is the low resolution image, represents some additive noise. Generally, the degradation function is unknown, and it can vary depending on the situation. The classical degradation model considers down-sampling, blurring, and noise:

v = D (K * u) + , (1.3) 
where * represents a convolution operation, K is a kernel (typically a Gaussian blurring kernel) and D is a down-sampling operator with some scale factor f .

Challenges in super resolution One of the main challenges of super-resolution is to balance the increase in spatial resolution with the maintenance of image quality. Often, increasing the resolution of an image can lead to artifacts and noise, which can degrade the overall image quality . Another major challenge is the development of scalable super-resolution technologies capable of handling high-resolution images. Super-resolution techniques usually work well for low-resolution images, but their performance may degrade when applied to high-resolution images [START_REF] Dong | Image super-resolution using deep convolutional networks[END_REF][START_REF] Haihang Ruan | Efficient sub-pixel convolutional neural network for terahertz image super-resolution[END_REF][START_REF] Shi | Real-time single image and video superresolution using an efficient sub-pixel convolutional neural network[END_REF][START_REF] Haris | Deep backprojection networks for super-resolution[END_REF]. In addition, most existing super-resolution algorithms are tailored for specific types of images, such as natural scenes or human faces, and developing algorithms that work well for different types of images and scenes is another challenge [START_REF] Saharia | Image super-resolution via iterative refinement[END_REF][START_REF] Yoong | Deep learning algorithms for single image super-resolution: a systematic review[END_REF][START_REF] Karwowska | Using super-resolution algorithms for small satellite imagery: A systematic review[END_REF][START_REF] Saji | Super resolution techniques for medical image processing[END_REF].

Methods

A direct way to solve the denoising problem (1.1) (resp. the super resolution problem (1.2)) is to find an estimator û which minimizes û -u 2 (resp. û -Au 2 ). Unfortunately, without any prior information on the underlying image, we cannot properly solve this problem. Common strategies aim to find an estimator û which minimize the following formula

û ∈ arg min u Au -v 2 2 + λR(u), (1.4) 
where A = I n in the case of denoising. The first data-fidelity term Au -v 2 2 ensures that the estimate is consistent and the regularization term R(•) incorporates the prior information of image u. Therefore, the availability of prior knowledge about the image is essential for an accurate restoration.

Bayesian methods. The Bayesian methods provide a powerful framework for solving inverse problems in image processing, signal processing, and other fields. They provide a flexible framework for incorporating different types of prior knowledge into the solution of inverse problems. For example, in image restoration, one can use a Gaussian prior to enforce smoothness in the solution, or a sparsity prior to encourage a sparse solution.

In Bayesian methods, the goal is to compute the posterior distribution over the input given the observed output and any prior information. The posterior distribution is given by Bayes' theorem:

p(u|v) ∝ p(v|u)µ(u) (1.5)
where the likelihood p(v|u) is the probability of the observed output given the input, and the prior µ(u) is the probability distribution over the input based on prior knowledge.

The posterior distribution provides a complete characterization of the uncertainty in the solution to the inverse problem.

The maximum a posteriori (MAP) estimator [START_REF] Greig | Exact maximum a posteriori estimation for binary images[END_REF] aims to maximize the posterior probability p(u|v) which corresponds to:

ûMAP = arg max u p(u|v) = arg min u v -Au 2 2 -λ log(µ(u)) (1.6)
for an appropriate choice of λ. In this context, the regularizer is related to the prior distribution of the data, i.e., R(u) = -log(µ(u)).

Patch-based learning methods

In the past two decades, patch-based image restoration methods have been successful in image denoising [START_REF] Buades | A non-local algorithm for image denoising[END_REF][START_REF] Dabov | Image denoising by sparse 3-d transform-domain collaborative filtering[END_REF][START_REF] Elad | Image denoising via sparse and redundant representations over learned dictionaries[END_REF][START_REF] Monagi | Patch-based models and algorithms for image denoising: a comparative review between patch-based images denoising methods for additive noise reduction[END_REF][START_REF] Zoran | From learning models of natural image patches to whole image restoration[END_REF][START_REF] Kervrann | Optimal spatial adaptation for patch-based image denoising[END_REF][START_REF] Houdard | High-dimensional mixture models for unsupervised image denoising (HDMI)[END_REF][START_REF] Chatterjee | Patch-based near-optimal image denoising[END_REF][START_REF] Lebrun | A nonlocal bayesian image denoising algorithm[END_REF][START_REF] Lebrun | An analysis and implementation of the bm3d image denoising method[END_REF]. The patch-based image restoration method exploits the redundancy and self-similarity of natural images. The basic idea of the patch-based restoration method is to first divide the image into overlapping "patches" and then repair each patch independently. The repaired patches are then reassembled to form the final restored image. For example, in image denoising, let us denote the operator P i : R n → R p a linear operator which extracts the i -th patch, note as y i , of size P = s × s from an image for i ∈ {1, ..., H}. We note that patchy i = P i v, x i = P i u and e i = P i , the denoising problem 1.1 becomes ∀i ∈ {1, ..., H} y i = x i + e i (1.7) and patch y = {y i }.

The patch-based approach has several advantages over the image-based approach. Firstly, modeling the patches is generally more feasible and applicable than modeling the entire image. This is because the statistics of the noise and signal in a patch are often more homogeneous than across the entire image. Therefore, patch-based methods can better capture the local characteristics of the image and noise, which can lead to improved restoration performance. Secondly, processing patches independently is more computationally efficient than processing the entire image at once. The size of each patch is much smaller than the entire image, which reduces the complexity of the restoration algorithm and makes it more feasible to use complex models.

The patch-based approach in image denoising offers several advantages. However, it also has limitations when compared to the image-based approach. Patch-based methods operate on small local patches of an image. While this can be advantageous for capturing local details, it may lead to a loss of global information. Image-based methods consider the entire image, which can be beneficial for preserving overall structures and relationships. Moreover, in patch-based denoising, the processing of individual patches can result in blocky artifacts, especially at the patch boundaries. Image-based methods often produce smoother results that maintain a more coherent and natural appearance. The choice of patch size in patch-based methods is also crucial, and selecting an inappropriate patch size can lead to suboptimal denoising results. Image-based methods do not have this issue as they process the entire image without patch divisions.

Some classical patch-based image restoration methods. In patch-based restoration, numerous methods have adopted a Bayesian formulation of the restoration problem that leverages local or global statistical priors to model the distribution of individual patches. Below is a brief overview of some restoration methods that use priors on patches,

• Non-local Means (NLM) [START_REF] Buades | A non-local algorithm for image denoising[END_REF] works by calculating the similarity between patches based on the similarity of pixel values, rather than their spatial proximity. This allows the method to capture the statistical properties of natural image patches accurately. The restoration process is then performed by averaging over similar patches.

• Block-Matching and 3D Filtering (BM3D) [START_REF] Dabov | Image denoising by sparse 3-d transform-domain collaborative filtering[END_REF]: This method operates on groups of similar image patches. BM3D works by first finding groups of similar patches in a noisy image and then performing a collaborative filtering operation on each group. The filtered patches are then aggregated to produce the final denoised image. BM3D is known for its good performance on a wide range of noise levels and image types.

• K-SVD [START_REF] Elad | Image denoising via sparse and redundant representations over learned dictionaries[END_REF] is a dictionary-learning algorithm. The algorithm first learns a dictionary of basis functions that can be used to represent image patches. Then, the degraded patches are represented as linear combinations of basis functions, and the noisy patches are restored by representing them sparsely and then reconstructing the patches using sparse coefficients.

• The Expected Patch Log-Likelihood (EPLL) method [START_REF] Zoran | From learning models of natural image patches to whole image restoration[END_REF] (see chapter 3 for more details) uses a maximum a posteriori (MAP) estimator to estimate the clean image. Specifically, the method learns the distribution of patch coefficients from a set of training images that are similar to the input images and uses this learned distribution as the prior for the MAP estimator. The learned prior takes into account the statistical dependence between patch coefficients, as well as the distribution of image structures and textures. The EPLL method also introduces a set of latent variables to more accurately model the patch coefficients. These latent variables are used to capture the statistical dependencies between the patch coefficients and to regularize the estimator. The method uses an iterative algorithm to estimate the latent variables for clean images and from noisy input images. The framework works well when the noise level is low or moderate. However, the method can be computationally intensive due to the need for iterative optimization and the use of large dictionaries for patch modeling.

• HDMI [START_REF] Houdard | High-dimensional mixture models for unsupervised image denoising (HDMI)[END_REF] method operates on image patches and uses a high-dimensional mixing model to estimate the underlying clean signal from the noisy input image. The method assumes that the patches in a noisy image can be modeled as a linear combination of a set of basis functions and that the coefficients of the linear combination follow a sparse distribution. The basis functions are learned from the noisy images using an unsupervised learning algorithm. Once the basis functions are learned, the method uses a Bayesian framework to estimate the clean signal in the noisy input image. The method assumes that the linearly combined coefficients follow a mixture of Gaussian distributions, with each mixture component corresponding to a different cluster of patches. The method uses an iterative algorithm to estimate the mixture components and the clean signal that alternates between estimating the mixture components and the clean signal. (It works well at high noise levels or when the noise distribution is non-Gaussian). However, due to the high-dimensional nature of the mixture model and the need for iterative optimization, the method can be computationally intensive.

Deep Learning-based restoration methods use deep neural networks to learn the mapping from degraded to clean images. These methods have shown impressive performance and brought a revolution in image restoration. One of the early deep learning models which has been used for image denoising is the Stacked Denoising Auto-encoders (SdA) [START_REF] Vincent | Extracting and composing robust features with denoising autoencoders[END_REF] which is an extension of the stacked auto-encoder [START_REF] Bengio | Greedy layerwise training of deep networks[END_REF]. Then one proposed to use Convolutional Neural Networks (CNN) to denoise natural images [START_REF] Jain | Natural image denoising with convolutional networks[END_REF] and for image super-resolution task [START_REF] Dong | Image super-resolution using deep convolutional networks[END_REF]. Since then, the concept of deep neural network prior has been further explored in various image restoration tasks, including denoising [START_REF] Jain | Natural image denoising with convolutional networks[END_REF], inpainting [START_REF] Xie | Image denoising and inpainting with deep neural networks[END_REF] and super-resolution [START_REF] Dong | Image super-resolution using deep convolutional networks[END_REF]. In section 1.3.2, there is a brief overview over some notable deep learning based priors.

Prior estimation

In image restoration, the prior estimation is a process of estimating the prior knowledge or assumptions used to guide the restoration process. The choice of prior can significantly affect the performance of the restoration algorithm, and finding a suitable prior is crucial to obtain high-quality restored images. A good prior should be able to capture the important features of the original image while being robust to noise and artifacts.

In general, there are two types of priors: hand-crafted priors and data-driven priors. Handcrafted priors are a prior knowledge or assumptions about the image structure, designed by hand and incorporated into the restoration process. These priors are based on our understanding of the image structure and can be customized for a specific application or image type. Various types of priors can be used in image restoration, such as sparsity, smoothness, or low rank. However, hand-crafted priors are often application-specific and require domain expertise to design, which can be time-consuming and difficult. In addition, they may not capture all the complex structures and patterns that exist in real-world images.

In recent years, data-driven prior metrics have gained increasing attention due to their ability to capture more complex image structures and patterns. Unlike manually designed prior parameters, data-driven prior parameters can be learned from large-scale datasets and can be adapted to a variety of restoration tasks and image types.

Data-driven prior metrics have shown good results in various image restoration applications. However, the effectiveness of data-driven priors is highly dependent on the quality and diversity of the training data and the design of the learning algorithm. In addition, data-driven prior metrics may not generalize well to images that differ significantly from the training data. Therefore, it is crucial to carefully design and train data-driven prior parameters for each specific restoration task and application.

In this section, we provide an overview of some classical data-driven prior and learning algorithms.

Gaussian mixture model

Gaussian mixture models provide a flexible and tractable approach for modeling the statistical distribution of image patches, which is useful for capturing the complex structures and correlations present in natural images.

In Gaussian mixture model, each image patch is assumed to be generated from a mixture of several Gaussian distributions, with each Gaussian having a different mean and covariance matrix. The model parameters (i.e., the means, covariances, and mixing coefficients of the Gaussian components) can be estimated from a set of image patches. Once the model parameters are estimated, they can be used as a prior distribution for denoising or other image restoration tasks.

Learning algorithm

The expectation-maximization (EM) algorithm is a classical statistical algorithm used for GMM estimation. It is used to estimate the parameters of models with latent variables or missing data. The EM algorithm iteratively estimates the parameters of a probabilistic model by alternately computing an expectation step (E-step) and a maximization step (M-step) until convergence is achieved. The E-step computes the expected value of the unobserved variables given the observed data and the current estimate of the model parameters. This is done using Bayes' rule to compute the posterior distribution of the unobserved variables. The M-step updates the parameters of the model to maximize the likelihood of the observed data, based on the expected values computed in the E-step. This is done by solving an optimization problem, usually involving a gradient ascent method.

One important consideration when using the EM algorithm is that it is sensitive to the initial guess of the model parameters, and may converge to a local maximum instead of the global maximum of the likelihood function. Various techniques have been developed to address this issue, such as initialization methods and variants of the EM algorithm, such as the stochastic EM (SEM) [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF] and the Expectation Conditional Maximization (ECM) algorithms [START_REF] Meng | The EM algorithm-an old folk-song sung to a fast new tune[END_REF].

The SEM algorithm (Stochastic EM) is a modification of the EM algorithm that incorporates stochastic gradient descent to update the model parameters. Instead of processing the entire dataset in each iteration, the SEM algorithm uses randomly selected subsets of the data to estimate the parameters. This makes it more suitable for large datasets that may not fit in memory or may be computationally expensive to process. In SEM, the E-step is approximated using a random subset of the data, which reduces the computational burden of the algorithm. Specifically, instead of computing the expected values over the entire data set, SEM randomly selects a subset of the data and computes the expected values over that subset. This process is repeated multiple times with different subsets, and the results are averaged to obtain an estimate of the expected values. The Mstep in SEM is the same as in traditional EM, and involves updating the model parameters to maximize the likelihood of the observed data given the estimated expected values. The use of random subsets of the data in the E-step introduces some level of randomness into the algorithm, which can affect the convergence and accuracy of the estimates.

The ECM [START_REF] Meng | Maximum likelihood estimation via the ECM algorithm: A general framework[END_REF](Expectation Conditional Maximization) algorithm extends the EM algorithm to models with complex conditional distributions, such as hierarchical models or models with non-Gaussian errors. In the ECM algorithm, instead of computing the expected value of the complete-data log-likelihood, given the observed data and the current estimates of the parameters, the algorithm computes the expected value of the complete-data log-likelihood, given the observed data and the current estimates of some of the parameters, and then maximizes this expected value with respect to the remaining parameters. The ECM algorithm iterates between estimating the conditional expectations of the complete-data log-likelihood and maximizing them with respect to the parameters. Although the ECM algorithm is a powerful tool for estimating the parameters of complex statistical models, it requires careful implementation and tuning, and may be computationally expensive for large datasets.

The limitations of GMM. The GMM has been used successfully in several image restoration applications including image denoising [START_REF] Xu | Patch group based nonlocal self-similarity prior learning for image denoising[END_REF][START_REF] Deledalle | Image denoising with generalized gaussian mixture model patch priors[END_REF], image deblurring [START_REF] Afonso M Teodoro | Image restoration and reconstruction using variable splitting and class-adapted image priors[END_REF][START_REF] Ljubenović | Blind image deblurring using classadapted image priors[END_REF][START_REF] Deledalle | Image denoising with generalized gaussian mixture model patch priors[END_REF], image inpainting [START_REF] Wan | Nonlocal patches based gaussian mixture model for image inpainting[END_REF], super-resolution [START_REF] Sandeep | Single image super-resolution using a joint GMM method[END_REF][START_REF] Deledalle | Image denoising with generalized gaussian mixture model patch priors[END_REF][START_REF] Zoran | From learning models of natural image patches to whole image restoration[END_REF][START_REF] Hertrich | PCA Reduced Gaussian Mixture Models with Applications in Superresolution[END_REF]. However, there are also some limitations to this approach, such as the need for large amounts of training data to estimate the model parameters accurately and the assumption that the image patches are generated from a mixture of Gaussians, which may not always hold in practice. Therefore, researchers are continuing to explore alternative statistical priors and more sophisticated.

Deep learning-based priors

In recent years, deep learning-based prior approaches have gained significant attention due to the excellent performance of deep neural networks in image analysis and recognition tasks. One of the main advantages of this approach is that it can learn complex and highly nonlinear relationships between image content and prior distributions, which may not be possible in traditional hand-crafted priors. Moreover, the deep learning-based prior can be applied to a wide range of image restoration problems and can be adapted to different types of image degradation, making it highly versatile and effective. However, one of the challenges of using deep learning-based priors is that they require large amounts of training data and are computationally expensive to train and apply. In addition, one may be concerned about overfitting the training data and generalizing to new images. Indeed, through careful design and training, deep learning-based prior methods have shown encouraging results in various image restoration tasks. Below we provide some noteworthy deep learning-based priors.

Total deep variation

The total deep variation (TDV) [START_REF] Kobler | Total deep variation: A stable regularization method for inverse problems[END_REF], is based on the concept of Total Variation (TV) regularization, which has been widely used in image processing for denoising, deblurring, and inpainting.

The key idea behind TDV is to combine the benefits of TV regularization with those of deep learning. Specifically, TDV combines the variational formulation of inverse problems with deep learning by using a convolutional neural network (CNN) to extract local features on multiple scales and in successive blocks. The CNN is trained to learn a representation of the underlying image structure, which is then regularized using a total variation penalty. The use of a CNN allows for a more efficient and accurate estimation of the image structure, while the total variation penalty helps to enforce smoothness and reduce noise. The combination of these two techniques results in a powerful regularization method that can be used to solve a wide range of inverse problems in image processing. In addition to its effectiveness, TDV has also been rigorously analyzed mathematically. The optimal control formulation of the training problem in a mean-field setting allows for a precise understanding of the behavior of the regularizer, while the stability analysis helps to ensure that the method is robust to variations in the initial values and the parameters of the regularizer.

The TDV approach offers several advantages over traditional TV regularization. First, the use of deep learning allows for more efficient and accurate estimation of the image structure. Second, the TV penalty is applied to the neural network output rather than directly to the image, which improves the stability of the regularization and reduces the sensitivity to noise. Third, the TDV approach can be easily adapted to handle complex inverse problems, including those involving non-linear operators and non-convex optimization.

Adversarial regularizers

The generative adversarial networks (GANs) [START_REF] Lunz | Adversarial regularizers in inverse problems[END_REF][START_REF] Prost | Learning local regularization for variational image restoration[END_REF] consist of two neural networks: a generator network that takes a random noise vector as input and outputs a candidate image, and a discriminator network that takes an image as input and outputs a binary value indicating whether the image is real or fake. The generator is trained to produce images that are realistic enough to fool the discriminator, while the discriminator is trained to correctly distinguish between real and fake images. Once the GAN is trained, the generator can be used to sample from the learned prior distribution over the space of possible solutions. This prior distribution can then be used as a regularizer in the optimization problem, encouraging the estimated solution to be close to the high-probability regions of the prior distribution.

The use of adversarial regularizers has several advantages over traditional regularization techniques. For example, they can provide more realistic and natural-looking solutions, as the GAN is able to learn complex distributions that capture the true structure of natural images. Additionally, they can be more robust to noise and other artifacts in the data, as the GAN can learn to generate plausible images even when the input is corrupted.

Plug-and-Play approach and its extensions

Recent works in plug-and-play image restoration [START_REF] Singanallur V Venkatakrishnan | Plugand-play priors for model based reconstruction[END_REF][START_REF] Zhang | Plug-and-play image restoration with deep denoiser prior[END_REF][START_REF] Ono | Primal-dual plug-and-play image restoration[END_REF][START_REF] Afonso M Teodoro | Image restoration and reconstruction using targeted plug-and-play priors[END_REF][START_REF] Hurault | Gradient Step Denoiser for convergent Plug-and-Play[END_REF] have demonstrated the potential of utilizing a denoiser as an implicit image prior for addressing a wide range of inverse problems through model-based techniques. This characteristic offers significant benefits for plug-and-play image restoration, such as the seamless integration of the flexibility of model-based approaches and the effectiveness of learning-based methods. This is particularly pronounced when the denoiser is discriminatively trained using deep convolutional neural networks (CNNs) with substantial modeling capacity.

The principle idea is that "good performing denoiser can serve as a prior". In contrast to traditional model-based methods, which require the explicit and manually crafted definition of image priors, plug-and-play image restoration takes advantage of the ability to implicitly define the prior through the denoiser. This unique feature opens up the possibility of harnessing the capabilities of very deep CNN denoisers to enhance overall effectiveness in image restoration. Plug-and-play approach typically consists of two main steps. The first step involves disentangling the data term and prior term within the objective function through a variable splitting algorithm. This process leads to an iterative procedure where data subproblems and prior subproblems are solved alternately. The second step is dedicated to addressing the prior subproblem by employing readily available denoising algorithms, such as K-SVD [START_REF] Elad | Image denoising via sparse and redundant representations over learned dictionaries[END_REF], non-local means [START_REF] Buades | A non-local algorithm for image denoising[END_REF], or BM3D [START_REF] Dabov | Image denoising by sparse 3-d transform-domain collaborative filtering[END_REF]. In the Plug-and-Play approach, the image restoration problem is formulated as a constrained optimization problem, where the image prior is used as a regularizer to enforce some desired properties on the restored image.

Deep Image Prior

The main idea behind the Deep Image Prior (DIP) [START_REF] Ulyanov | Deep image prior[END_REF] is that a randomly initialized deep convolutional neural network (CNN) is sufficiently powerful to capture a great deal of low-level image statistics prior to any learning.

Unlike traditional image restoration methods that rely on hand-crafted priors or pretrained neural networks, the DIP approach uses no prior training data other than the given degraded image itself. In this approach, the image restoration problem is posed as an optimization problem, where the objective function is based on the architecture of the deep neural network. The DIP approach bridges the gap between learning-based methods using deep convolutional networks and learning-free methods based on handcrafted image priors such as self-similarity.

The DIP approach has shown promising results in several image restoration tasks, such as denoising, super-resolution, and inpainting. It has also opened up new research directions in the field of image restoration, such as the use of deep neural networks as implicit priors, and has become a popular topic of research in recent years.

Compressive approach: the sketching framework

Learning-based prior methods, such as deep neural networks, typically require a large amount of training data to learn the mapping between the input and output image spaces. The quality of the learned prior strongly depends on the quality and quantity of the training data. Training data must be representative of the variations and complexities that exist in the images to be restored. The larger and more diverse the training set, the better the generalization performance of the learned prior.

Moreover, learning-based prior methods can have significant computational requirements during the training phases. During the training phase, large amounts of data are typically processed in multiple iterations or epochs, which can require significant computational resources, such as high-end Graphics Processing Units (GPUs) or specialized hardware like Tensor Processing Units (TPUs). The training time can vary depending on the complexity of the network architecture and the size of the training dataset.

In this section, we will briefly introduce the statistical compressive learning framework proposed in [START_REF] Keriven | Sketching for large-scale learning of mixture models[END_REF] that is called sketching for the rest of the thesis. We will explain the details of the framework in Chapter 3.

Key concepts of the sketching framework

The sketching framework is a powerful approach that can help address the problem of handling large datasets in machine learning. By compressing the learning collections, we can reduce the amount of stored data, and make it easier and faster to process the remaining information, and make it possible to tackle problems on large datasets that are otherwise untractable with limited resources.

The sketching method of [START_REF] Keriven | Sketching for large-scale learning of mixture models[END_REF] involves mapping a whole training collection to a single vector that summarizes some useful statistics of the data distribution. This vector can be much smaller than the original data and can be used as a compressed representation of the dataset. Sketched learning can be used in a variety of machine learning tasks, such as classical learning tasks (PCA, Clustering, Gaussian modeling), supervised learning, and has been shown to be effective in handling large datasets, see Chapter 2 for more details.

The main idea of sketching is to compress the whole data collection into a fixed-size representation, a so-called sketch of data, such that enough information relevant to the considered learning task is captured. Then the learned parameters are estimated by minimizing a non-linear least-square problem built with the sketch. The cost of inferring the parameters of interest from the sketch does not depend on the number of data in the initial collection but on the number of parameters we want to estimate. Hence, it is possible to exploit arbitrarily large datasets in the sketching framework without demanding more computational resources.

During the sketching phase (Fig. 1.5), a huge collection of n d-dimensional data vectors 

X = {x i } n i=1 is summarized into a single m-dimensional (m n) vector ẑ with: ẑ = 1 n n i=1 Φ(x i ) = S(μ n ), (1.8) 
where μn := 1 n n i=1 δ x i the empirical probability distribution of the data, δ x i is the Dirac measure at x i and the function Φ : R d → R m or C m is called the feature map (typically random Fourier moments). Note that when the data (x i ) 1≤i≤n are drawn i.i.d. according to µ θ , and n is large, the sketch can be seen as a noisy observation of the density of interest. The operator S is a linear operator on measures µ defined by Sµ := E X∼µ Φ(X).

Computational benefits of the sketching

One of the main benefits of working with sketches is that the feature map has a simple expression which can be evaluated efficiently. This means that we can perform computations on compressed data much more quickly than on the original data. In addition, the average operation that is used to compute the sketch makes the computation parallelizable. This means that the computation can be easily parallelized across multiple processors or machines, allowing us to handle much larger datasets and perform computations much more quickly.

The goal of sketched learning is to compute an estimate of a distribution µ (or of distributional parameters θ of interest) by solving:

µ * θ = arg min µ θ ẑ -Sµ θ 2 2 .
(1.9)

In practice, this "sketch matching" problem can be solved by greedy Compressive Learning Orthogonal Matching Pursuit (OMP) algorithm and its extension Compressive Learning-OMP with replacement for mixture models. These greedy algorithms are suitable for any sketching operator S and any distribution density µ, as long as the sketch Sµ and its gradient ∇ θ Sµ with respect to the distributional parameters θ of interest have a closed-form expression: the core of these OMP-based algorithms is computing the expression of Sµ and ∇ θ Sµ.

Limitations of the sketching framework

To reduce the computational burden of the regularizer (prior model) learning, we first explore the sketching method in the image patches context where GMM with full covariance must be estimated from the compressed database. In [START_REF] Keriven | Sketching for large-scale learning of mixture models[END_REF], the sketching framework is implemented and evaluated on synthetic data to estimate a GMM with diagonal covariances. It is shown that on large synthetic data, for the estimation of GMM, the sketching produces precise results while requiring less memory space and computations.

However, real-life data needs to be modeled with more complex distributions. In this case, the original sketching feature map has no closed form. This limits the possible use of the sketching framework in practice.

Our goal is to recover a good approximation of the probability distribution of any unknown data from its sketch (i.e. beyond GMM). Given the substantial expressive power of neural networks (NN) [START_REF] Pan | Expressiveness of rectifier networks[END_REF], and the capacity of networks to approximate complex distributions due to the universal neural network approximation theorem [START_REF] Hornik | Multilayer feedforward networks are universal approximators[END_REF][START_REF] Csanád | Approximation with artificial neural networks[END_REF], our proposed approach involves adapting sketching techniques to neural networks (NN).

Due to the fact that NN have good generalization properties, the proposed regularization should be capable of encoding complex probability distributions. Unfortunately, a direct practical application of existing tools is not possible as closed-form expressions of Sµ are not available for sketching operator S based on random Fourier features.

Contributions

Motivations

Despite the recent advances in deep learning-based methods for image restoration, finding an appropriate prior distribution and learning the model efficiently from a large dataset are still important challenges. This is because deep learning-based methods require a large amount of training data to learn the complex features in the data, and the choice of prior distribution can significantly impact the restoration performance. Furthermore, deep learning-based methods may suffer from over fitting when trained on a limited dataset, which can lead to poor generalization performance on new images. Therefore, developing robust and efficient methods for prior modeling and learning from large datasets is an active area of research in image denoising and related tasks.

Moreover, to estimate the best possible model, we need to maximize the redundancy of structural information and use training databases as large as possible. With a larger dataset, the model has access to more diverse examples of natural image structures and noise patterns, which can help it learn a more robust and accurate prior distribution. Additionally, having a large dataset helps to increase the redundancy of structural information, which is beneficial for learning a model that can generalize well to new, unseen images. However, with larger datasets, it is important to use efficient learning algorithms that can handle the increased computational demands, and to carefully balance the size and diversity of the dataset with the available computational resources. As the traditional empirical minimization approaches require access to the whole training dataset, when the collection size is large, the learning process can be extremely costly. For instance, in the case of the classical learning method EM, the memory consumption and computation time depend on the size of the database.

Due to the curse of dimensionality, it is computationally expensive to manipulate the GMMs' covariance matrices. In [START_REF] Renna | Reconstruction of signals drawn from a gaussian mixture via noisy compressive measurements[END_REF], the authors show that most natural images and videos can be represented by a GMM with low-rank covariance matrices. The experiments have also shown the efficiency of low-rank covariance matrices applied to image denoising [START_REF] Parameswaran | Accelerating GMM-based patch priors for image restoration: Three ingredients for a 100× speed-up[END_REF] , image inpainting, high-speed video and hyperspectral imaging [START_REF] Yang | Video compressive sensing using gaussian mixture models[END_REF]. This motivates us to use such low-rank covariances in the GMM modeling of patches and extend the sketching framework accordingly to gain computational speedup and to manage the modeling of the image patches in the most possible flexible way. Hence, assuming that the patch prior is a GMM in high-dimension with flat tail covariances, we propose the Low-Rank OMP algorithm to learn the prior model. Our experiments show that the learned prior model can be used to perform image denoising [START_REF] Shi | Compressive learning for patch-based image denoising[END_REF].

We also propose to approximate the sketching operator S by a discrete version S d whose feature map can be calculated with closed-form expressions, and such that the approximation still permits to apply the sketch matching estimation method.

Outlines and contributions

The rest of the thesis is divided into five distinct chapters. In chapter 2 we propose to review the sketching framework by starting with the introduction of the concept of compressive sensing in section 2.1. It explains how the sketching framework is built and how the sketch operator is designed. Then some theoretical foundations of the sketching framework are discussed in section 2.2. In section 2.3, we explain the Compressive-Leraning Orthogonal Marching Persuit(OMP) algorithm for sketched learning.

In chapter 3 we focus on how we adapt the sketching to carry out the GMM estimation for the image denoising task. We propose an algorithm, LR-COMP, to estimate a GMM with low-rank approximation. Some experimental results are provided. The experiments illustrate that a high-dimensional GMM can be learned from a compressed database and then used for patch-based denoising task. We achieve denoising performances close to a state-of-the art model based method while the learning procedure uses less memory and time than the classical EM algorithm.

Chapter 4 consists of 2 parts that are extensions of chapter 3. We show empirically that the prior models learned from a compressed dataset approach can achieve satisfactory super-resolution performance, which can potentially be used for other image restoration tasks. We also provide a proof of concept that extends the sketching framework to video denoising task.

In chapter 5, we propose to adapt the sketching to neural networks to model more complex data. We show how we adapt sketching to the learning of regularizers parametrized by DNN. Our work shows the feasibility of batch-less learning of deep regularizers from a compressed dataset. Once the network is trained, the regularizer can be used for denoising. In order to achieve this, we propose an approximation of the compression operator that can be calculated explicitly for the task of learning a regularizer by DNN. Our approach overcomes the limits of greedy learning algorithms of the original sketching framework. The effectiveness of the proposed scheme is tested on synthetic examples and real dataset. Due to the limitation of our approximation of the sketching operator (the dependence on training points), the feasibility is illustrated on 2-D and 3-D data with possibly complex distributions. This work arises the broader open question of designing closed-form sketching operators in high dimensions [START_REF] Shi | Batch-less stochastic gradient descent for compressive learning of deep regularization for image denoising[END_REF].

Finally, the last chapter conclude our works.
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• Hui SHI, Yann We have briefly introduced the key concept of the sketching framework in section 1.4. In this chapter, we will present this compressive learning framework in detail.

Introduction

The sketching framework that we consider in this thesis was proposed in [START_REF] Bourrier | Compressive gaussian mixture estimation[END_REF][START_REF] Bourrier | Compressive gaussian mixture estimation[END_REF] to provide an efficient and lightweight machine learning algorithm for large-scale learning tasks. This compressive learning framework is primarily based on signal processing principles, with a particular emphasis on compressed sensing techniques and streaming algorithms [START_REF] Cormode | An improved data stream summary: the count-min sketch and its applications[END_REF].

Compressed sensing

Compressed sensing [START_REF] David | Compressed sensing[END_REF][START_REF] Emmanuel | Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[END_REF] is a mathematical framework for efficiently acquiring and reconstructing signals that are sparse or compressible in certain domains. In compressed sensing, a small number of linear measurements are used to acquire the signal, usually less than required by the Nyquist-Shannon sampling theorem [START_REF] Shannon | Communication in the presence of noise[END_REF]. The measurements are usually performed in a random or structured manner, using a sensing matrix with certain properties to achieve efficient reconstruction of the signal. Reconstruction of the signal from compressed measurements is performed by algorithms that exploit the sparsity or compressibility of the signal in certain domains (e.g., wavelet domain). These algorithms usually involve solving an optimization problem, such as basis pursuit or iterative thresholding algorithms, with the goal of recovering the sparsest or most compressible signal consistent with the measurements.

Mathematically, we consider the measurement process as

y = M x + , (2.1) 
where the linear observation y ∈ C m of a signal of interest x ∈ C d is obtained through a linear measurement operator M and some noise . In the compressed sensing setting, it assumes that the signal x is sparse and that it is possible to design a linear operator 

M : C d → C m ,
min x * ∈C d x 0 subject to M x * = y, = 0. (2.2)
However, this is a difficult NP problem and its practical utility is limited. An important challenge in compressed sensing is to design sensing matrices that exhibit desirable properties while minimizing the number of observations m required. The matrix determines how the signal is projected onto a lower-dimensional space during the measurement process. Ideally, the sensing matrix should satisfy certain properties such as incoherence or restricted isometry property (RIP) to ensure accurate recovery of the original signal. These properties allow for stable and robust reconstruction even from a limited number of observations. Additionally, it is crucial to develop practical recovery algorithms that can effectively reconstruct the original signal from these compressed measurements, with provable guarantees when used with suitable measurement matrices. These algorithms should also be computationally efficient and scalable to handle large-scale datasets. Balancing the trade-off between accuracy and computational complexity is a key consideration in developing practical recovery algorithms.

Compressive learning outline

Rooted in compressed sensing, some "compressive learning" frameworks have been exploited to reduce complexity and memory costs of several learning tasks. To further study the compressive learning frameworks, we first define the learning problem.

A learning procedure usually consists in trying to fit an underlying parameterized model M θ , (with θ ∈ Θ and Θ is a parameter set) to the data one is interested in. To achieve the model fitting, one aims to find a parameter θ * so that the model M θ * can be considered appropriate or suitable for a given training set X = {x 1 , ..., x n } ⊂ R d which contains the data one is interested in. The computation cost of estimating such a parameter θ * will depend on the size of the training set X, on the size of the model M and on the algorithm used for the estimation.

There are two main ways of compressing data in compressive learning frameworks to perform such estimation (Fig. 2.1). One is to compress each data of size d individually to d , for instance a randomized dimensionality reduction method proposed in [START_REF] Calderbank | Compressed learning: Universal sparse dimensionality reduction and learning in the measurement domain[END_REF]. We will introduce this method later in section 2.1.3. The other one is to compress the whole training set X of size dn into a single representation called sketch of size m. Note that m nd. The size of the sketch is determined by the complexity of the model and the specific task one aims to accomplish after the learning process, rather than being dependent on the number of elements n in the dataset. Note that the sketching framework that we consider in the thesis is a compressive learning framework of the second scheme.

Related works

Individual dimensionality reduction

The first scheme has been instantiated for a linear kernel Support Vector Machine [START_REF] Cristianini | An Introduction to Support Vector Machines and Other Kernel-based Learning Methods[END_REF][START_REF] Christopher | A tutorial on support vector machines for pattern recognition[END_REF] classification problem in [START_REF] Calderbank | Compressed learning: Universal sparse dimensionality reduction and learning in the measurement domain[END_REF]. We assume that data are vectors in R d , s-sparse, and their

w * ∈ arg min w n l=1 l(w T x i , y i ) (2.3)
where l is some loss function. To reduce the learning complexity of optimizing the cost function, the authors proposed to reduce the dimension of the vectors x i by replacing them 

Compressed estimation based on random projections

Random Gaussian projections are classical tools in dimensionality reduction. Based on the Johnson-Lindenstrauss theorem [START_REF] William | Extensions of lipschitz mappings into a hilbert space[END_REF], Thaper et al. proposed a compressive learning procedure to address the problem of approximating a distribution of the underlying continuous stream by a multidimensional histogram in [START_REF] Thaper | Dynamic multidimensional histograms[END_REF]. Precisely, given a data stream (a flow of data)

(x i ) i≥1 , where x i ∈ R d , the goal is to estimate a histogram H i 0 approximating the distribution of vectors x i for i ≤ i 0 .
The authors proposed to build and update a "dynamic summary data structure" they called "sketch" instead of storing and updating a complete histogram of the data stream. The sketch is generated by applying a random linear operator M to obtain a low-dimensional projection of the histogram H. This operator is intentionally designed to approximately preserve distances between histograms. Then the problem of finding the optimum histogram can be solved by computing a histogram whose sketch is "close" to the sketch of the data distribution. While this framework offers the advantage of reducing memory costs by avoiding updating the entire histogram, it has a significant drawback: the complexity of the recovery procedure is exponential in the dimension of the data. range of machine learning tasks, and provide a theoretical foundation for its use in these contexts.

Meanwhile, theoretical analysis of these approaches are provided and developed in [START_REF] Schellekens | Compressive k-means with differential privacy[END_REF][START_REF] Chatalic | Compressive learning with privacy guarantees[END_REF][START_REF] Schellekens | Differentially private compressive k-means[END_REF][START_REF] Traonmilin | The basins of attraction of the global minimizers of non-convex inverse problems with low-dimensional models in infinite dimension[END_REF][START_REF] Gribonval | Statistical learning guarantees for compressive clustering and compressive mixture modeling[END_REF][START_REF] Vayer | Controlling Wasserstein Distances by Kernel Norms with Application to Compressive Statistical Learning[END_REF] for establishing learning guarantees.

The design of the sketching operator

As mentioned earlier in section 1.4.1, the sketching framework requires two steps:

• With a sketching operator, compute a sketch vector z of size m. The sketch size depends on the complexity of the learning task.

• Solve a nonlinear least squares optimization problem on the sketch to learn the parameters of interest that best solves our learning task.

In this section, we will introduce the design of the sketching operator. Recall that we defined in section 1.4.1 the empirical sketch associated to a dataset

X = {x 1 , ..., x n } with ẑ = 1 n n i=1 Φ(x i ) = S(μ n ), (2.4) 
where μn := 1 n n i=1 δ x i the empirical probability distribution of the data samples x i , δ x i is the Dirac measure at x i and the function Φ : R d → R m or C m is the feature map (typically random Fourier moments).

Let P(R d ) denote the set of probability distributions over R d . For a given feature map Φ, D Φ ⊆ P(R d ) denotes the sub set with respect to which Φ is integrable. We define the sketching operator S :

D Φ → R m or C m on measures µ ∈ P(R d ) as Sµ := E X∼µ Φ(X) = R d µ X (x)Φ(X)dx. (2.5)
The sketching operator implicitly depends on the chosen feature map Φ.

With the definition, the empirical sketch can then be written as ẑ = S(μ n ). When the data (x i ) 1≤i≤n are drawn i.i.d. according to µ, and n is large, the sketch can be seen as a noisy observation of the density of interest µ, i.e. ẑ = Sµ + e, e = S(µ X -µ).

(2.6)

The sketch is designed such that it can be updated when new data samples arrive. In parallel computing, the sketches can be merged after being computed. The sketching operator should satisfy a specific kind of restricted isometry property [START_REF] Keriven | Sketching for large-scale learning of mixture models[END_REF]. In this thesis, the sketch is a sampling of the Fourier transform of µ, using frequency vectors (ω) i generated according to a Gaussian distribution. A common way to generate such frequency vector is to use a generative model

ω = Rψ (2.7)
where R is a radius and ψ is a directional vector drawn uniformly (and independently from R) on the unit sphere S d-1 .

Theoretical guarantees

Learn from the sketch

In the sketching setting, we map signals from the infinite-dimensional set of probability distributions on χ to a finite number of observations. In our case, χ = R d . Theoretically, one is able to recover an approximation of µ if it can be well approximated in some low-dimensional model. This can be interpreted as a form of generalized sparsity, the learning from the sketch can be seen as the non-convex optimization problem

µ * ∈ arg min µ∈Ξ Sµ -ẑ 2 (2.8)
where Ξ is the chosen low-dimensional model of the density of interest µ. For instance, in the Gaussian modeling case, one can approximate µ with a Gaussian mixture parameterized with a fixed number k of components and Ξ is the set of Gaussian mixtures.

Recovery guarantees

In this section, we present the theoretical recovery guarantees by first introducing the main concept of statistical learning. Given a data generating distribution µ ∈ P (χ) and a loss function l : χ × H → R which measures how adapted is a training sample x to a hypothesis h from some hypothesis class H, the goal of machine learning is to minimize the so-called expected risk :

R(µ, h) = E X∼µ l(x, h) (2.9)
The optimal hypothesis h * is that

h * ∈ arg min h∈H R(µ, h) (2.10)
In practice, we have only access to the data samples (x i ) and the true generating distribution µ is unknown. Empirical risk minimization (ERM) performs an estimate hypothesis ĥ such that ĥ ∈ arg min h∈H R(µ n , h).

(2.11)

Then excess risk which measures how good ĥ is good compared to h * is defined by R(µ, ĥ) -R(µ, h * ). In statistical learning, one aims to guarantee that the excess risk, with high probability, is bounded:

R(µ, ĥ) -R(µ, h * ) ≤ C n (2.12)
where C n decays at least at a rate 1/ √ n. In practice, one often relies on the following bound [START_REF] Gribonval | Statistical learning guarantees for compressive clustering and compressive mixture modeling[END_REF]:

R(µ, ĥ) -R(µ, h * ) ≤ 2sup h |R(µ, h) -R(µ n , h)|.
(2.13)

The right term sup|R(µ, h) -R(µ n , h)| defines a semi-norm on the space of finite signed measures M(χ).

Given a class ∆L(H

) := {l(•, h) -l(•, h ) : h, h ∈ H, we define µ -µ ∆L(H) := sup|R(µ, h) -R(µ n , h)| that capture differences in terms of excess risks.

The model set and the decoder

A decoder in compressive learning is an operator ∆ that "converts" a sketch to a probability distribution. In sketching, we would like to be able to decode the original µ from the sketch perfectly. However, it relies on the assumption that there exists a sub-probability distribution set Γ ∈ P(χ) in which the decoding is perfect and robust to noise. A decoder is defined as

∆ := z → ∆[z] ∈ Γ. (2.14)
Given a sketch z and a decoder ∆, we can find a hypothesis based on the risk minimization:

ĥ ∈ arg min h∈H R(∆[z], h) (2.15)
where the risk R(∆[z], h) acts as a proxy for the empirical risk. One hopes to produce a hypothesis which is as good as the one obtained by empirical risk minimization.

Theoretical guarantees of the sketching are obtained when the sketching operator S satisfies the so called Lower Restricted Isometric Property (LRIP) [START_REF] Gribonval | Statistical learning guarantees for compressive clustering and compressive mixture modeling[END_REF][START_REF] Keriven | Sketching for large-scale learning of mixture models[END_REF]:

∀µ, µ , µ -µ ∆L(H) ≤ C Sµ -Sµ 2 (2.16)
with some constant C > 0. This property, is verified with high probability, for GMM with sufficiently separated mean and random Fourier sketching as long as the sketch size m ≥ O(K 2 dpolylog(K, d)), i.e. when the size of the sketch essentially depends on the parameters K (the number of components) and d (the model dimension). When this condition holds, the following decoder :

∆[z] ∈ arg min µ∈Γ Sµ -z 2 . (2.17)
is ideal in the sense that it satisfies the Instance Optimality Property (IOP) which allows to have a control on the excess risk for all probability distributions [START_REF] Gribonval | Statistical learning guarantees for compressive clustering and compressive mixture modeling[END_REF].

A notion of separation is used to prove the restricted isometry property which in turn proves identifiability of the GMM in [START_REF] Gribonval | Statistical learning guarantees for compressive clustering and compressive mixture modeling[END_REF] and convergence of gradient descent in [START_REF] Traonmilin | The basins of attraction of the global minimizers of non-convex inverse problems with low-dimensional models in infinite dimension[END_REF]. We still show empirically that the sketching process is successful without this separation assumption in the context of image processing (see Chapter 3).

Learning algorithms

The compressive learning optimization problem eq. (2.8) is often non-convex and difficult to solve. Here we present the proposed heuristics used in the sketching with random Fourier features.

A heuristic greedy algorithm called Compressive Learning-Orthogonal Matching Pursuit (CL-OMP) was proposed [START_REF] Keriven | Sketching for large-scale learning of mixture models[END_REF], with applications to both Gaussian modeling and k-means clustering. The CL-OMP algorithm is a variant of the Orthogonal Matching Pursuit (OMP) [START_REF] Chandra Pati | Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition[END_REF] algorithm, which is a greedy algorithm for sparse signal recovery. Recently, new theoretical results on sparse recovery guarantees for the OMP algorithm in the context of continuous parametric dictionaries are presented in [START_REF] Elvira | When does OMP achieve exact recovery with continuous dictionaries?[END_REF].

The OMP algorithm for mixture models iteratively selects the most promising atoms (columns) from a dictionary matrix to approximate the unknown signal until the approximation error falls below a certain threshold. The OMP algorithm begins by initializing the estimate of the sparse signal to zero and selecting the atom from the dictionary that has the highest correlation with the residual error. This atom is added to the current estimate of the signal and the residual error is updated. The process is repeated by selecting the atom that has the highest correlation with the updated residual error until the approximation error falls below a certain threshold or a predetermined number of atoms have been selected.

The authors adapt the OMP algorithm to the setting of mixture model estimation, which allows the algorithm to adaptively update the mixture components based on the sketch. Specifically, the algorithm iteratively selects mixture components based on their correlation with the sketch, and then updates the corresponding mixture weights and means using a maximum likelihood estimate. Note that the CL-OMP algorithm is used for the compressive mixture estimation framework which imposes a non-negativity constraint on the weights of the mixture components. Hence, to enforce the non-negative correlation between atom and residual at each iteration, the selection rule involves the Real() operator rather than the modulus operator as in OMP in step 1. Experimental results show that the CL-OMP algorithm can achieve near-optimal estimation accuracy in terms of the sketch dimension and the number of mixture components, under suitable assumptions on the mixture components and the sketching operator. Algorithm 1 is a generic formulation of this algorithm. More implementation details are illustrated in [START_REF] Keriven | Sketching for large-scale learning of mixture models[END_REF].

Algorithm 1 CL-OMP. Input Empirical sketch ẑ, sketching operator S, sparsity K r ← ẑ; Θ ← ∅ for t = 1 to K do Θ ← arg max θ * Re Sµ θ Sµ θ 2 , r 2 , init = rand Step 2: Θ ← Θ ∪ {θ * } Step 3: α ← arg min α ẑ - |Θ| k=1 α k Sµ θ k 2 2
Step 4:

Θ, α ← arg min Θ,α ẑ - |Θ| k=1 α k Sµ θ k 2 2
, init = (Θ, α)

Step 5: r ← ẑ -|Θ| k=1 α k Sµ θ k ; end for return Support Θ, weights α

Conclusions

In this chapter, we recall the key concept of compressed sensing and some compressive learning frameworks. We focus on the sketching framework proposed by Gribonval et al. In addition, we present the theoretical guarantees of the sketching framework and the algorithm underlying the sketching. In the following chapter, we will present how we adapt the sketching method in the context of images. This chapter provides the first main distribution of this thesis: the adaptation of the sketching to carry out a GMM estimation with low-rank approximation for the image denoising problem.

Chapter 3

Sketching for image denoising In this chapter, we will explain in detail how we exploit the sketching framework in the context of image patches. The work described in this chapter was initially presented at the SSVM 2021 conference [START_REF] Shi | Sketched learning for image denoising[END_REF]. Subsequently, an article was published in the SIAM Journal on Image Science [START_REF] Shi | Compressive learning for patch-based image denoising[END_REF], which provides a more comprehensive version of the research. The article includes a finalized and consolidated version of the proposed learning algorithm, along with extensive numerical experiments for validation purposes.

Introduction

We consider the classical noisy observation model of a clean natural image u ∈ R N (composed of N pixels):

v = u + (3.1)
where v is the observed degraded version of u. The acquisition noise is an additive white Gaussian noise of variance σ, i.e.

i.i.d.

∼ N (0, σ 2 I N ). Recall that in patch-based image denoising, the noisy image v is divided into small patches {v i } H i=1 . Each patch v i ∈ R P (P is the patch size, typically P = 7 × 7) can be seen as a vector in a high dimensional space. The denoising problem is considered on each patch:

v i = u i + w i , (3.2) 
and a corresponding denoised version u * i of the true values u i are estimated. To overcome the ill-posedness of this inverse problem, various denoising methods [START_REF] Levin | Natural image denoising: Optimality and inherent bounds[END_REF][START_REF] Lebrun | A nonlocal bayesian image denoising algorithm[END_REF][START_REF] Lebrun | Implementation of the "non-local bayes" (nl-bayes) image denoising algorithm[END_REF][START_REF] Houdard | High-dimensional mixture models for unsupervised image denoising (HDMI)[END_REF] consider patch models within a Bayesian framework. According to the Bayes' theorem, the objective is to find u * i which maximizes the posterior probability distribution p(u i |v i ) under the prior µ(u i ). The Maximum A Posteriori (MAP) problem is formulated as

u * i = arg max u i ∈R P p(u i |v i ) = arg max u i ∈R P p(v i |u i )µ(u i ) ∝ arg max u i ∈R P e -u i -v i 2 2σ 2 µ(u i ) (3.3)
where • 2 denotes the 2 -norm. This yields

u * i = arg min u i ∈R P u i -v i 2 2 2σ 2 -log(µ(u i )). (3.4)
Ideally, the choice of the prior distribution should be determined by the nature of the image to be estimated. In practice, Gaussian Mixture Models (GMM) [START_REF] Yu | Solving inverse problems with piecewise linear estimators: From gaussian mixture models to structured sparsity[END_REF][START_REF] Wang | Sure guided gaussian mixture image denoising[END_REF][START_REF] Houdard | High-dimensional mixture models for unsupervised image denoising (HDMI)[END_REF] have shown their effectiveness. With the GMM prior, the solution of problem (3.4) can be approximated by a Wiener filter solution (see section 3.2.2). Among these various non-local denoising methods, the Expected Patch Log-Likelihood algorithm (EPLL) [START_REF] Zoran | From learning models of natural image patches to whole image restoration[END_REF] occupies a central position due to its efficient denoising performance. A large number of works build on the original EPLL formulation to deal with more general prior or go beyond the denoising problem [START_REF] Feng | Image restoration via efficient gaussian mixture model learning[END_REF][START_REF] Papyan | Multi-scale patch-based image restoration[END_REF][START_REF] Cai | Image denoising via patch-based adaptive gaussian mixture prior method[END_REF][START_REF] Luo | Adaptive image denoising by mixture adaptation[END_REF][START_REF] Ren | Example-based image synthesis via randomized patch-matching[END_REF][START_REF] Sulam | Expected patch log likelihood with a sparse prior[END_REF][START_REF] Deledalle | Image denoising with generalized gaussian mixture model patch priors[END_REF][START_REF] Saint-Dizier | A unified view on patch aggregation[END_REF]. EPLL uses a GMM prior learned from a very large set of patches extracted from clean images. The key to the success of EPLL is to find a good prior distribution. Since in practice patch sizes are typically greater than 5 × 5, estimating prior distributions in such a high-dimensional space is a difficult task. Moreover, to estimate the best possible model, we need to maximize the redundancy of structural information and use training databases as large as possible. As the traditional empirical minimization approaches require access to the whole training dataset, when the collection size is large, the learning process can be extremely costly. For instance, in the case of the classical learning method Expectation Maximization (EM), the memory consumption and computation time depend on the size of the database (see section 3.3).

In [START_REF] Keriven | Sketching for large-scale learning of mixture models[END_REF], the sketching is implemented and evaluated on synthetic data to estimate a GMM with diagonal covariances. It is shown that on large synthetic data, for the estimation of GMM, the sketching produces precise results while requiring fewer memory space and computations. In this chapter, we explore the sketching method in the image patches context where GMM with full covariance must be estimated from the compressed database.

Due to the curse of dimensionality, it is computationally expensive to manipulate the GMMs' covariance matrices. In [START_REF] Renna | Reconstruction of signals drawn from a gaussian mixture via noisy compressive measurements[END_REF], the authors show that most natural images and videos can be represented by a GMM with low-rank covariance matrices. The experiments have also shown the efficiency of low-rank covariance matrices applied to image denoising [START_REF] Parameswaran | Accelerating GMM-based patch priors for image restoration: Three ingredients for a 100× speed-up[END_REF], image inpainting, high-speed video and hyperspectral imaging [START_REF] Yang | Video compressive sensing using gaussian mixture models[END_REF]. This motivates us to use such low-rank covariances in the GMM modeling of patches and extend the sketching framework accordingly to gain computational speedup and to manage the modeling of the image patches in the most possible flexible way.

Contributions and outline

Fig. 3.1 summarizes the principle of our approach. We first construct a sketch by averaging random Fourier features computed over the whole image patch database. Then the model parameters are learned directly from the sketch by our Low-rank Continuous Orthogonal Matching Pursuit (LR-COMP) algorithm without access to the original database. Finally, the learned model is used with a Bayesian method (EPLL) for the denoising task. Our contributions in this chapter are the following: • We propose an algorithm LR-COMP to estimate a GMM with non-diagonal and low-rank covariance matrices. Compared to previous work in [START_REF] Keriven | Sketching for large-scale learning of mixture models[END_REF], our extension to non-diagonal covariance matrices allows us to learn a GMM prior from a compressed database of patches in the context of image denoising. Moreover, with the low-rank approximation of the covariance matrices, we lighten the computation burden in the denoising process while keeping good denoising performances.

• We demonstrate the performance of our approach on real large-scale data (over 4 millions training samples of patch size of 7 × 7) for the task of patch-based image denoising. We show that using models trained with the compressed database, we can obtain similar denoising performances compared to the models obtained with the classical EM algorithm. To the best of our knowledge, this is also the first time that the sketching framework has been applied with such high dimensional GMMs.

• Computationally, we estimate the model from a compressed database which is about 1000 times smaller than the original patch database. It leads to running time approximately two times faster compared to the EM method.

This chapter is organized as follows. Section 3.2 is a reminder of the EPLL framework.

Then we review the computational complexity of the EM algorithm in section 3.3. In section 3.4, we focus on explaining how to adapt the sketching framework to learn a GMM in the image patch context. We also interpret the extension to low-rank covariances and the implementation details of the adapted learning algorithm LR-COMP. In section 3.5, we provide numerical experiments that demonstrate the performance of our approach. Some conclusions and tracks for further works follow in section 3.6.

Image denoising with EPLL

We review in this section the Expected Patch Log-Likelihood (EPLL) framework for image denoising. EPLL is a patch-based image restoration algorithm introduced by Zoran and Weiss [START_REF] Zoran | From learning models of natural image patches to whole image restoration[END_REF]. Its application for super resolution is detailed in chapter 4. The EPLL framework restores an image u by performing the following maximum a posteriori (MAP) estimation over all N patches:

u * = arg min u∈R N P 2σ 2 u -v 2 2 - N i=1 log(µ(P i u)) (3.5) 
where P i : R N -→ R P is a linear operator that extracts a patch of P pixels centered at the position i, typically P = 7 × 7. The function µ(•) is the density of the prior probability distribution of the patches, which is supposed to be a GMM. Note that in practice, we assume that patches are distributed independently.

Optimization

Due to the non-convexity of µ(•), direct optimization of the problem may be difficult. The authors of EPLL propose to perform the optimization with "half-quadratic splitting" [START_REF] Geman | Nonlinear image recovery with half-quadratic regularization[END_REF]. By introducing N auxiliary unknown vectors o i ∈ R P and a denoising parameter β > 0, the problem is then considered as:

u * = arg min u∈R N o 1 ,...,o N ∈R P P 2σ 2 u -v 2 2 + β 2 N i=1 P i u -o i 2 2 - N i=1 log(µ(o i )). (3.6) 
The optimization (3.6) is accomplished by alternating the minimization with respect to u and o i .

• Solving u for fixed o i -Problem (3.6) turns into a linear inverse problem with the Tikhonov regularization. It has a closed form solution:

û = arg min u∈R N P 2σ 2 u -v 2 2 + β 2 N i=1 P i u -o i 2 2 = (I + βσ 2 P N i=1 P T i P i ) -1 (v + βσ 2 P N i=1 P T i o i ) (3.7)
with N i=1 P i P i = P I, where P is the number of patches overlapping each pixel. Hence we have

û = (I + σ 2 βI) -1 (v + σ 2 β ōi ) (3.8)
where ōi := ( N i=1 

P i P i ) -1 N i=1 P i o i = 1 P N i=1 P i o i is
o i ∈R P β 2 P i û -o i 2 2 -log(µ(o i )). (3.9) 
The solution of this problem depends on the choice of patch prior µ(•).

Denoising with a GMM prior

In the EPLL algorithm, we assume that the used prior is a finite Gaussian mixture model (GMM) with zero-mean for each component on centered patches: the empirical mean estimated from noisy patches are removed before the denoising process and added back in the end. We consider that a zero-mean patch x ∈ R P is a random vector generated from a distribution with density µ(x) defined as

µ(x) = K k=1 α k N P (x; 0 k , Σ k ) (3. 10 
)
where K is the number of Gaussian components and α k ≥ 0 are weights of each component such that K k=1 α k = 1. The function N P (x; 0 k , Σ k ) denotes the density of a Gaussian distribution with zero-mean with covariance Σ k ∈ R P ×P . Recall that the zero-mean Gaussian distribution density is:

N P (x; 0, Σ k ) = 1 (2π) P/2 |Σ k | 1/2 e -1 2 x T Σ -1 k x .
(3.11)

Hence, under the GMM prior, Problem (3.9) turns to:

ôi = arg min o i ∈R P β 2 P i û -o i 2 -log( K k=1 α k N P (o i ; m i , Σ k )) (3.12)
where we supposed that the mean m i are correctly estimated by the empirical mean of noisy patches. This problem cannot be solved in closed form as the second term is the logarithm of a sum of exponential. In [START_REF] Zoran | From learning models of natural image patches to whole image restoration[END_REF], the authors proposed to solve this problem by keeping only one Gaussian component. For a given centered patch õi = P i û -m i , we chose the component k * i that maximizes the posterior probability p(k i |õ i ). This leads to computationally efficient implementations. [START_REF] Tran | Dibos. Number of useful components in gaussian mixture models for patch-based image denoising[END_REF] also justified that only one component is required for good reconstructions. With p(õ i |k i ) ∼ N (0 P , Σ k i + 1 β I P ), the index k * i is chosen by

k * i = arg max 1≤k i ≤K p(k i |õ i ) = arg max 1≤k i ≤K p(k i )p(õ i |k i ) = arg max 1≤k i ≤K α k i p(õ i |k i ) = arg min 1≤k i ≤K -2 log α k i + log Σ k i + 1 β I P + õ i (Σ k i + 1 β I P ) -1 õi (3.13) 
where α k i and Σ k i are the weights and the covariance matrices of the kth Gaussian component for the given patch õi . With k * i (instead of a sum of K components), the solution of (3.12) is then a Wiener filtering solution:

ôi = arg min o i ∈R P β 2 õi -o i 2 2 -log K k=1 α k e -1 2 (õ i -m i ) T Σ -1 k (õ i -m i )
≈ arg min

o i ∈R P β 2 õi -o i 2 2 + 1 2 (õ i -m i ) T Σ -1 k * (õ i -m i ) = (Σ k * i + 1 β I P ) -1 Σ k * i õi + m i .
(3.14)

Eigenspace implementation of EPLL

The matrix inversions in (3.13) and (3.14) can be done efficiently by using the singular value decomposition over the covariance matrices. We denote 

Σ k = U k Λ k U T k , with U k ∈ R P ×P an unitary matrix and Λ k = diag(λ (k) 1 , ..., λ ( 
k * i = arg min 1≤k≤K -2 log α k + P j=1 log(λ (k) j + 1 β ) + [ṽ (k) i ] 2 j λ k j + 1 β (3.15)
where

ṽ(k) i = U T k õi . (3.16) Then (3.14) leads to ôi = U k * i S k * i U T k * i õi + m i = U k * i S k * i ṽ(k * i ) i + m i (3.17)
with

S k * i = diag   λ (k * i ) j λ (k * i ) j + 1 β   j=1,...,P . 
(3.18)

Learning a GMM with EM

In the previous section, we reviewed the EPLL algorithm which assumes that the prior is a GMM. Recall that a classical algorithm to learn the GMMs is the Expectation-Maximation (EM) algorithm (see chapter 1). It is important to note that using the EM algorithm on large-scale datasets face computational issues.

For the time complexity of one iteration of this algorithm, it is linear in the number of model components K and the number of elements in the database n. However it is cubic with respect to the dimensions P due to the fact that we need to inverse the covariance matrix when calculating the density in E-Step. Thus, when estimating a GMM with K-components on a database of n elements of dimension P , the computational complexity of one iteration of the EM algorithm is O(nKP 2 + KP 3 ). The major criticism of the EM algorithm is that when dealing with a large dataset, it often converges slowly. To address this problem, researchers have developed various variations of the traditional EM algorithm [START_REF] Geoffrey | The EM algorithm and extensions[END_REF][START_REF] Varadhan | Simple and globally convergent methods for accelerating the convergence of any EM algorithm[END_REF]. Learning parameters using EM technique faces computational issues linked to the size of the dataset and the number of parameters to estimate, which would make the use of (very) large image patches databases impractical. Therefore, we propose to use the sketching framework to learn the GMM.

Sketching image patches

In this section, we adapt the sketching framework described in chapter 2 to the context of image patches. As when using the classical EM algorithm, the GMM learning from sketch is performed under the assumption that the training patches are i.i.d.. Given a training set of n centered patches X = {x 1 , ..., x n } ⊂ R P , we define the empirical sketch by averaging the empirical characteristic function Φ with

ẑ = 1 n n i=1 Φ(x i ) = 1 n n i=1 e -jω T x j with ω ∈ R P . (3.19)
Thus the empirical sketch ẑ is expressed as

ẑ = 1 n n i=1 e -jω T 1 x i , ..., n i=1 e -jω T m x i T . (3.20) 
In other words, a sample of the sketched database is a m-dimensional frequency component calculated by averaging over patches (not to be mixed with usual 2D Fourier components of images). Thanks to the properties of the Fourier transform of Gaussians, the sketch of a single zero-mean Gaussian g Σ k at frequency ω l is

(S(g Σ k )) l = e -1 2 ω T l Σ k ω l . (3.21) 
Thus, given the weights α = (α k ) K k=1 and the covariance matrices

Σ = (Σ k ) K k=1 , the sketch of a zero-mean GMM µ Σ,α = K k=1 α k g Σ k is y = [S(µ Σ,α ) l ] l=1,...,m = K k=1 α k e -1 2 ω T l Σ k ω l l=1,...,m . (3.22) 
As a consequence, denoting P SD P the set of P × P positive semi-definite symmetric matrices, the problem of estimating GMM parameters becomes

(Σ * , α * ) ∈ arg min Σ=(Σ k ) K k=1 ,Σ k ∈P SD P α∈R K ,α k ≥0, K k=1 α k =1 ẑ -Sµ Σ,α 2 2 , (3.23) 
i.e.

(Σ * k ) K k=1 , (α * k ) K k=1 ∈ arg min Σ k ∈P SD P ,∀k α k ≥0, K k=1 α k =1 m l=1 1 n n i=1 e -jω T l x j - K k=1 α k e -1 2 ω T l Σ k ω l 2 . (3.24)
In practice, the positive definite constraint in the optimization problem is hard to enforce directly on the space of P × P matrices (as previous work only considered diagonal covariances, it was not an issue). Our method, based on the Burer-Monteiro method, permits us to respect the P SD P constraint by recasting the covariance estimation problem as an optimization over R P ×P without constraint (see section 3.4.3 for more details).

Recovery guarantees

Recall that we can guarantee theoretically the success of this estimation with a condition on the sketch size. These guarantees necessitate a "Lower Restricted Isometry Property" (LRIP) of the sketching operator. Recall that this property, is verified with high probability, for GMM with sufficiently separated mean and random Fourier sketching as long as the sketch size m ≥ O(K 2 dpolylog(K, d)). Empirical results seem to indicate that for d tot the total number of parameters, a database size of the order of d tot is sufficient: in the case of estimating a GMM with diagonal covariance matrices [START_REF] Keriven | Sketching for large-scale learning of mixture models[END_REF], the authors observe that the quality of the reconstruction exhibits a sharp phase-transition with respect to the sketch size m. This phase transition happens for m proportional to d tot . The excess risk of the GMM learning task is then controlled by the sum of an empirical error term and a modeling error term. This guarantees that the estimated GMM approximates well the distribution of the data [START_REF] Gribonval | Sketching datasets for large-scale learning (long version)[END_REF].

Note that EPLL uses a zero-mean GMM as the patch prior, therefore, during the learning process, the patches are centered before sketching and we do not estimate the mean of Gaussians. In our case, the sketched GMM learning problem reduces to the estimation of the sum of k zero-mean Gaussians with covariances Θ = (Σ k ) K k=1 , i.e µ Θ,α = K k=1 α k g Σ k where g Σ is the zero-mean Gaussian measure with covariance Σ. In this context, the notion of separation used to prove guarantees in [START_REF] Gribonval | Statistical learning guarantees for compressive clustering and compressive mixture modeling[END_REF] does not hold. Nonetheless, we empirically demonstrate the success of the sketching process even in the absense of this separation assumption.

Frequency sampling

The design of the probability distribution Υ for sampling the frequencies {ω 1 , ..., ω m } is essential to the success of sketching. In our work, we draw frequencies from the adapted radius frequency distribution proposed in [START_REF] Keriven | Sketching for large-scale learning of mixture models[END_REF]. The adapted radius heuristic proposes to sample ω as

ω = Rϕ (3.25)
where R ∈ R + is the norm of ω and ϕ ∈ R P is the random direction. The radius R is chosen with a radius distribution R ∼ p R (R; η) = ((ηR) 2 + 1 4 (ηR) 4 )

1 2 e -1 2 (ηR) 2 where η is a scale parameter that should be adjusted to the current dataset to ensure that most of the spectral content of the GMM is sampled. By combining this radius distribution with the decomposition (3.25), we have a frequency distribution referred as adapted radius frequency distribution. With this distribution, we avoid sampling very low frequencies. Design of the adapted radius distribution Assuming that we want to estimate a P -dimensional Gaussian g = N (0, I P ), we can compute the characteristic function ψ g (ω) associated with g:

ψ g (ω) = e -1 2 ω T ω . (3.26) 
The adapted radius heuristic proposes not to sample ω directly but rather to sample the radius of the P -dimensional Gaussian R = √ ω T ω. Thus, we draw the frequency ω ∈ R P as

ω = Rϕ (3.27)
where the radius R ∈ R + is chosen with a radius distribution R ∼ p R (R; η), and the direction ϕ ∈ R P is uniformly generated on the 2 unit sphere S P -1 , i.e. ϕ ∼ U(S P -1 ).

Then, the characteristic function ψ g (ω) reduces to

ψ g (ω) = ψ g (Rϕ) = e -1 2 R 2 = ψ(R). (3.28) 
We obtain a one-dimensional Gaussian function for R. To design the radius distribution, we consider the estimation of a Gaussian g = N (0, 1). We aim at sampling the radius R leading to large variations of the characteristic function when the parameters are close to the true parameters. In other words, when parameters (µ, σ 2 ) are close to (0,1), we want to have a large ψ (µ,σ 2 ) (R) -ψ (0,1) (R) . This can be accomplished by promoting the radius R which makes the norm of the gradient ∇ψ (µ,σ 2 ) (R) 2 large. Recall that ψ (µ,σ 2 ) (R) = e -jµR e -1 2 σ 2 R 2 and the norm of the gradient is:

∇ψ (µ,σ 2 ) (R) 2 2 = -jRψ (µ,σ 2 ) (R) 2 + - 1 2 R 2 ψ (µ,σ 2 ) (R) 2 = (R 2 + 1 4 R 4 )e -σ 2 R 2 . (3.29) Therefore, ∇ψ (0,1) (R) 2 2 = (R 2 + 1 4 R 4 ) 1 2 e -1 2 R 2 .
It yields the density of a radius distribution:

p R (R; η) = ((ηR) 2 + 1 4 (ηR) 4 ) 1 2 e -1 2 (ηR) 2 . (3.30)
Here the scale parameter η should be chosen to probe the spectral content of the true GMM model.

Extension to low-rank covariances

Bayesian MAP theory permits to use a GMM with degenerate covariance matrices as a denoising prior. In this case, the prior is given only in the union of subspaces spanned by the r leading eigenvectors of the K covariance matrices of the GMM. The experiments [START_REF] Parameswaran | Accelerating GMM-based patch priors for image restoration: Three ingredients for a 100× speed-up[END_REF][START_REF] Renna | Reconstruction of signals drawn from a gaussian mixture via noisy compressive measurements[END_REF] have shown that we can use low-rank covariance matrices for denoising while keeping good performance. This motivates the approximation of the covariance matrices in the GMM prior by low-rank matrices. Following classical Burer-Monteiro method [START_REF] Burer | Local minima and convergence in low-rank semidefinite programming[END_REF][START_REF] Chi | Nonconvex optimization meets lowrank matrix factorization: An overview[END_REF] in low-rank matrix estimation, we parameterize Σ k by its low-rank factors

Q k ∈ R P ×r : Σ k = Q k Q T k
, where r is the rank of Σ k . We define µ X,α the density function of a zero-mean GMM with

Q = (Q k ) K k=1
, where Q k is a factor of a covariance matrix.

Assuming that ẑ -Sµ X,α 2 2 has a minimizer, we approximate the minimization (3.23) by

( Q, α) ∈ arg min Q=(Q k ) K k=1 ,Q k ∈R P ×r α∈R K ,α k ≥0, K k=1 α k =1 ẑ -Sµ Q,α 2 2 , (3.31) 
i.e.

( Qk ) K k=1 , (α k ) K k=1 ∈ arg min Q k ∈R P ×r ,∀k α k ≥0, K k=1 α k =1 m l=1 ẑ - K k=1 α k e -1 2 ω T l Q k Q T k ω l 2 (3.32) 
where Q = { Q1 , ..., QK } is the collection of factorized rank reduced covariances. With the following proposition, we show that the difference between the costs minimized in (3.23) and (3.32) (the full rank and the low-rank cases, respectively) is associated with the smallest singular values of the covariance matrices. We qualitatively validate this approximation since these singular values are typically small. 2 . Then we have:

0 ≤ Sµ Ψ -ẑ 2 -Sµ Ψ * -ẑ 2 ≤ C max k (σ r+1 (Σ * k ))
where σ r+1 (Σ * k ) is the (r + 1)-th singular value of Σ * k sorted by decreasing order.

Proof. Let Φ * k = (Σ * k , α * k ) be the minimizer of the problem (3.23), i.e.

Φ * k ∈ arg min Σ k ∈P SD P α k ≥0, K k=1 α k =1 m l=1 K k=1 α k e -1 2 ω T l Σ k ω l -ẑl 2 (3.33)
and suppose that there exists a minimizer Φk = ( Qk , αk ) for the problem (3.31):

Φk ∈ arg min Q k ∈R P ×r α k ≥0, K k=1 α k =1 m l=1 K k=1 α k e -1 2 ω T l Q k Q T k ω l -ẑl 2 . (3.34)
Let Σk be the best rank-r approximation of Σ * k with the rank r i.e.

Σk ∈ arg min

Σ,rank(Σ)=r Σ * k -Σ 2 F . (3.35) 
Define Φ = ( Σk , α * k ). According to the definition (3.34) and the triangle inequality, we have

Sµ Φ -ẑ 2 ≤ Sµ Φ -ẑ 2 = Sµ Φ -Sµ Φ * + Sµ Φ * -ẑ 2 ≤ Sµ Φ -Sµ Φ * 2 + Sµ Φ * -ẑ 2 .
(3.36)

The first term (squared) is

Sµ Φ -Sµ Φ * 2 2 = K k=1 α * k S(µ Σk -µΣ * k ) 2 2 = m l=1 K k=1 α * k e -1 2 ω T l Σk ω l -e -1 2 ω T l Σ * k ω l 2 = m l=1 K k=1 α * k e -1 2 ω T l Σk ω l 1 -e -1 2 ω T l (Σ * k -Σk )ω l 2 . . (3.37) 
Using the convexity inequality |1 -e -x | ≤ |x| and Cauchy-Schwarz inequality, we have

e -1 2 ω T l Σk ω l (1 -e -1 2 ω T l (Σ * k -Σk )ω l ) ≤ 1 -e -1 2 ω T l (Σ * k -Σk )ω l ≤ 1 2 ω T l (Σ * k -Σk )ω l = 1 2 ω l , (Σ * k -Σk )ω l . (3.38) 
By the Eckart-Young-Mirsky theorem (Appendix .0.1), we have that the largest singular

value of Σ * k -Σk is σ r+1 (Σ * k ) and ω l , (Σ * k -Σk )ω l ≤ ω l 2 2 (Σ * k -Σk ) op = ω l 2 2 σ r+1 (Σ * k ). (3.39) 
Therefore, using K k=1 α k = α 1 = 1 and Hölder's inequality, an upper bound on (3.37) yields

Sµ Φ -SµΦ * 2 2 ≤ 1 4 m l=1 α 1 max k ω l 2 2 σ r+1 (Σ * k ) 2 = 1 4 m l=1 ω l 4 2 max k (σ r+1 (Σ * k )) 2 .
(3.40)

Denoting C = 1 2 m l=1 ω l 4 2
, we have from (3.36) that:

Sµ Φ -ẑ 2 ≤ C max k (σ r+1 (Σ * k )) + SµΦ * -ẑ 2 . (3.41)
Ideally, we would like to obtain a similar bound for Σ * k -Qk QT k µ . We conjecture that a RIP (Restricted Isometry Property) would be needed for such a result. As the verification of RIP remains an open theoretical question in the zero-mean GMM case, we leave this theoretical question for further work.

Related work

There exist other methods to learn GMMs by incorporating a dimensionality reduction technique. In the mixture models of probabilistic PCAs (MPPCA) [START_REF] Michael | Mixtures of probabilistic principal component analyzers[END_REF], the covariance matrix Σ k is parameterized as

Σ k = Q k Q k + γ 2 k I. (3.42)
The authors use the EM algorithm to optimize the parameters γ k and Q k . In the high dimensional data clustering (HDDC) model [START_REF] Bouveyron | High-dimensional data clustering[END_REF], the authors generalized the MPPCA by setting the covariance matrix as

Σ k = Q k diag(λ k )Q T k + γ 2 k I, λ k > 0. (3.43)
As for the MPPCA, the parameters are learned by the EM algorithm. In the HDMI model [START_REF] Houdard | High-dimensional mixture models for unsupervised image denoising (HDMI)[END_REF], a model selection algorithm for the intrinsic dimension of each mixture component is proposed. In this model, the noise variance γ k is a priori fixed and the other parameters are optimized by the EM algorithm. Finally, in the PCA-GMM model [START_REF] Hertrich | PCA Reduced Gaussian Mixture Models with Applications in Superresolution[END_REF],

the covariance matrix Σ k is expressed as:

Σ k = 1 γ 2 k (I -Q k Q T k ) + Q k S-1 Q T k -1
, S ∈ SP D(P ). (3.44) This model is a more general one than HDDC. The parameter γ k can either be fixed a priori or optimized simultaneously with the other parameters by the EM algorithm. Unlike the above models, our model doesn't estimate γ k , we rather set a similar user-defined parameter (called ζ in our case) at the denoising step. In our model, we also assume that the intrinsic dimension of each Gaussian component is the same and a priori fixed. Using automatically estimated ranks for covariances is a possible future work. Recall that problem (2.8) can be solved approximately using the greedy CL-OMP algorithm.

We adapt the algorithm in the GMMs context with our low-rank approximation. Several modifications are detailed below:

• Estimation of the factors of covariance instead of the covariance matrices.

As we approximate the covariance matrices with their factors, in each step of the algorithm, we do operations directly on the factorized rank reduced covariance Q instead of the covariance matrix Σ to lighten the computations.

• Non-negativity and the normalization of the weights. In Step 1 of the algorithm, we compute the real part of the correlation between the normalized atom and the residual as done in CL-OMP(R). This avoids a negative correlation and negative weights in practice. No matter how Step 3 was computed, using the projected gradient descent or the gradient descent, or with a direct calculation, there's negligible difference in the result and the running time. The weights are not forced to be sum-to-one at each iteration. However, after transforming the negative weights to zero, an l 1 -normalization of the weights is performed at the end of the algorithm.

The proposed algorithm is summarized in algorithm 2. In practice, we perform Step 4 with a descent algorithm (L-BFGS [START_REF] Dong | On the limited memory bfgs method for large scale optimization[END_REF]). We use more iterations in the ultimate Step 4 (for t = K) as a "final adjustment". With this "final adjustment" step, we reduced the running time by using fewer iterations in Step 4 for t < K. Our algorithm was implemented by

Algorithm 2 LR-COMP: Compressive GMM estimation with low-rank covariances

Input Empirical sketch ẑ, sketching operator S, sparsity K, rank r r ← ẑ; Q ← ∅ for t = 1 to K do

Step 1: Perform a gradient descent initialized with a P × r matrix of normally distributed random numbers:

Q * k ← arg max Q k Re Sµ Q k Sµ Q k 2 , r 2 , init = rand
Step 2: Extend the support:

Q ← Q ∪ {Q * k } Step 3: Find the corresponding weights: α ← arg min α≥0 ẑ - |Q| k=1 α k Sµ Q k 2 2
Step 4: Perform a gradient descent initialized with current parameters:

Q, α ← arg min Q,α ẑ - |Q| k=1 α k Sµ Q k 2 2 , init = (Q, α) Step 5: Update residual: r ← ẑ - |Q| k=1 α k Sµ Q k ;
end for Normalize the weights α k such that k α k = 1 return Support Q, weights α extending the MATLAB CL-OMP toolbox [START_REF] Keriven | SketchMLbox -A MATLAB toolbox for large-scale mixture learning[END_REF]. The main tool for the implementation of algorithm 2 is to compute the necessary gradients for the optimization problems in Steps 1, 3, and 4.

For the following section, denote the vector

v(Q) = Sµ Q ∈ C m .

Expression of the gradient for Step 1

In step 1, we have the optimization problem

Q * k ∈ arg max Q k ∈R P ×r Re Sµ Q k Sµ Q k 2 , r 2 , r ∈ C m . (3.45) Let F (Q k ) = -Re Sµ Q k Sµ Q k 2 , r 2 = -v(Q k ) T r v(Q k ) 2 , with r ∈ R m is the real part of r. The problem (3.45) turns to Q k * ∈ arg min Q k ∈R P ×r F (Q k ). (3.46)
We compute the gradient of F as follows:

∇ Q k F (Q k ) = - 1 v(Q k ) 2 2 (∇ Q k v(Q k )) T r v(Q k ) 2 - v(Q k ) T r(∇ Q k v(Q k )) T v(Q k ) v(Q k ) 2 = - (∇ Q k v(Q k )) T v(Q k ) 2 r + v(Q k ) T rv(Q k ) v(Q k ) 2 2 = (∇ Q k v(Q k )) T v(Q k ) 2 F (Q k )v(Q k ) v(Q k ) 2 -r . (3.47) For each component v l (Q k ) = e -1 2 ω T l Q k Q k T ω l , we have ∂v l (Q k ) ∂Q k = -v l (Q k )Q k T ω l ω T l . (3.48) 
Then for a given vector

z ∈ C m ∇ Q k v(Q k ) T z = - m l=1 z l v l (Q k )Q k T ω l ω T l . (3.49)
For the implementation on MATLAB in practice, the result of equation (3.48) is matrix of r × P , we then transpose it to a matrix of P × r.

∇ Q k v(Q k ) is a matrix of m × (P × r)
and the result of equation (3.49) is a matrix of r × P , i.e. we compute it by

∇ Q k v(Q k ) T z = -W (W T Q k * (v(Q k ) * z)) (3.50) 
where W = [ω 1 , ..., ω m ] ∈ M P,m (R) the frequency matrix and * the multiplication element by element in MATLAB. For instance, a matrix of size m × r multiplied using * with a m × 1 vector leads to a matrix of size m × r (multiplying all columns of the left side by the same column vector of the right side).

We compute the matrix G as

G = - 1 v(Q k ) 2 W W T Q k * v(Q k ) * F (Q k )v(Q k ) v(Q k ) 2 -r . (3.51)
The result G is a matrix of size P × r. We need to reshape all the elements of the matrix G into a single column vector which corresponds to the gradient

∇ Q k F (Q k ).

The solution of Step 3

The problem is

α * = arg min α∈R |Q| ẑ - |Q| k=1 α k Sµ Q k 2 2 . (3.52) Denote V (Q) = [v(Q 1 ), ..., v(Q |Q| )] ∈ R m×|Q| , α = [α, ..., α |Q| ] T ∈ R |Q|
, then the problem can be expressed as a least-square minimization

α * = arg min α∈R |Q| g(α) = arg min α∈R |Q| ẑ -V α 2 2 . (3.53)
We thus have

α * = (V T V ) -1 V T ẑ. (3.54)

Expression of the gradient for Step 4

The problem is

(Q * , α) ∈ arg min Q∈R |Q| ,Q k ∈R P ×r α∈R |Q| ẑ - |Q| k=1 α k Sµ Q k 2 2 . (3.55) Denote V = [v(Q 1 ), ..., v(Q |Q| )], α = [α 1 , ...α K ] T , we express h(Q, α) = ẑ -V α 2 2 , (3.56) 
so we have the gradients

∇ α h(Q, α) = 2V T (V α -ẑ) (3.57)
and

∇ Q k h(Q, α) = 2α k ∇ Q k v(Q k ) T (V α -ẑ). (3.58) 
In practice, as in Step 1, we compute the second gradient by calculating the matrix

G 2 = -2α k W (W T Q k * v(Q k ) * (V α -y)). (3.59) 
The gradient ∇ Q k h(Q, α) corresponds the vector after reshaping G 2 .

As the function minimized here is smooth; the descent will be guaranteed to converge to a local minimum. Recent works suggest that if all the OMP steps fall close enough to the Gaussian of the global optimum [START_REF] Traonmilin | The basins of attraction of the global minimizers of non-convex inverse problems with low-dimensional models in infinite dimension[END_REF], this step will converge to the global optimum under a restricted isometry condition.

Complexity of LR-OMP

When estimating a K-components GMM, the proposed algorithm LR-OMP has a computational cost of the order of O(mP 2 rK 2 ). In each iteration, the computational cost is dominated by the matrix-vector product W (W T Q) where W is a matrix of size P × m and W T Q is a matrix of size m × r. As m n, the computational cost of our algorithm is lower than that of the EM. Moreover, it is possible to exploit the advantages of GPU computing, since the matrix multiplication can be performed by using multiple GPUs in parallel [START_REF] Zhang | Matrix multiplication on high-density multi-gpu architectures: Theoretical and experimental investigations[END_REF]. This could result in a speed-up, especially for the "final adjustment" step.

Denoising with low-rank covariance matrices

In this section, we describe some modifications required in EPLL to use our estimated model. The estimated parameters are Ψ = { Q1 , ..., QK , α1 , ..., αK } with Qk ∈ R P ×r and α k ∈ R + . A singular value decomposition of Qk is given by Qk = Ûk Ŝk V T k . Ûk ∈ R P ×P , Vk ∈ mathbbR r×r are orthogonal matrices and Ŝk ∈ R P ×r is a rectangular matrix. The r-rank covariance matrix can be expressed with Σkr = Qk QT k = Ûk Ŝk ŜT k Û T k . We approximate the covariance matrix Σ k with Σ k Σk = Ûk Λk Û T k where Λk is formed as:

Λk =             ŝ2 k 1 . . . ŝ2 kr 0 0 ζ . . . ζ             (3.60)
where ζ is a user parameter. Denoting Û r k ∈ R P ×r the matrix formed by the first r columns of Ûk and Λr k the matrix formed with the first r rows and r columns of Λk , we have:

Σ k + 1 β I P -1 = Û r k ( Λr k + 1 β I r ) -1 Û rT k + β βζ + 1 (I p -Û r k Û rT k ) (3.61) 
and

Σ k + 1 β I P -1 Σ k = Û r k ( Λr k + 1 β I r ) -1 Λr k Û rT k + βζ βζ + 1 (I p -Û r k Û rT k ). (3.62) 
The detailed calculations leading to these equations are provides hereafter.

Then the Gaussian selection step of EPLL eq. (3.15) becomes

k * i = arg min 1≤k≤K -2 log α k + r j=1 log(ŝ 2 k j + 1 β ) + [v (k) i ] 2 j ŝ2 k j + 1 β - β βζ + 1 [v (k) i ] 2 j (3.63) where v(k) i = Û rT k õi . (3.64)
With the optimal component k * i , the estimated patch (3.14) becomes (recall that õi are centered patches and that m i are the estimated mean of patches

ôi = (Σ k * i + 1 β I P ) -1 Σ k * i õi = Ûk r i * ( Λr k * i + 1 β I r ) -1 Λr k * i Û rT k * i õi + βζ βζ + 1 (I p -Û r k * i Û rT k * i )õ i = Û r k * i Λ k * i v(k * i ) i + βζ βζ + 1 (õ i -Ûk * r v(k * i ) i )+m i (3.65) with Λ k * i = ( Λr k * + 1 β I r ) -1 Λr k * = diag ŝ2 k * ij ŝ2 k * ij + 1 β j=1,...,r . 
(3.66)

The expression of (3.61) Denoting Û r k ∈ R P ×r (resp. Û c k ∈ R P ×(P -r) )the matrix formed by the first r (resp. the last P -r) columns of Ûk and Λr k the matrix formed with the first r rows and r columns of Λk . We use the block matrix multiplication:

Σ k + 1 β I P -1 = Ûk ( Λk + 1 β I) -1 Û T k = Û r k ( Λr k + 1 β I r ) -1 Û rT k + (ζ + 1 β I P -r ) -1 Û c k Û cT k .
(3.67)

We have

Û c k Û cT k = (I p -Û r k Û rT k ), thus Σ k + 1 β I P -1 = Û r k ( Λr k + 1 β I r ) -1 Û rT k + β βζ + 1 (I p -Û r k Û rT k ).
(3.68)

Experimental Results

In this section we present several numerical experiments to illustrate the benefits of our approach1 .

Training setting

We randomly extract n = 4 × 10 6 patches of size P = 7 × 7 from the training images of the Berkeley Segmentation Database (BSDS) [START_REF] Martin | A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[END_REF]. Then the patches are compressed into a sketch. Based on observations from numerical simulations, the scale parameter η must be adjusted for each task and dataset [START_REF] Schellekens | When compressive learning fails: blame the decoder or the sketch?[END_REF]. In [START_REF] Keriven | Sketching for large-scale learning of mixture models[END_REF], the authors propose to estimate this parameter with a small sketch on a small subset from the dataset. In our work, we choose the optimal parameter η by hand. We then learn a mixture model of K = 20 Gaussian components with low-rank covariance matrices. We compare the denoised results with the results obtained with a GMM (full-rank) prior model learned by the EM algorithm. For the comparison, we train the prior from the same image patches dataset. The denoising is performed with EPLL2 . For the test images, we use two datasets: Set12 [START_REF] Zhang | Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising[END_REF] and BSD68 [START_REF] Roth | Fields of experts: A framework for learning image priors[END_REF] for a thorough evaluation.

Quality evaluation

To evaluate the quality of denoised images, we use two measures: PSNR (Peak Signal to Noise Ratio) and SSIM (Structural Similarity) [START_REF] Zhou Wang | Image quality assessment: from error visibility to structural similarity[END_REF].

The PSNR value of two images X 1 and X 2 is defined as

PSNR(X 1 , X 2 ) = 10log 10 1 MSE(X 1 , X 2 ) (3.69)
where MSE(X 1 , X 2 ) is the mean square error between X 1 and X 2 .

The SSIM index is calculated on various windows of an image. The measure between two windows x and y of common size N × N is:

SSIM(x, y) = (2µ x µ y + c 1 )(2σ xy + c 2 ) (ζ 2 x + ζ 2 y + c 1 )(σ 2 x + σ 2 y + c 2 )
(3.70) with

• µ x , µ y the average of x and y respectively,

• σ 2 x ,σ 2 y the variance of x and y respectively,

• σ xy the covariance of x and y, 2 two variables to stabilize the division with weak denominator,

• c 1 = (k 1 L) 2 , c 2 = (k 2 L)
• L the dynamic range of the pixels (255 in our case),

• k 1 = 0.01, k 2 = 0.03 by default. Another evaluation was carried out on the images from the BSD68 dataset. The test images have been corrupted by adding white Gaussian noise with standard deviations σ = 15, 20. Table 3.1 shows the average PSNR and SSIM values on the dataset. On average, our approach results are 0.2dB below the results with EM in terms of PSNR. However, our approach is about 2 times faster than the EM. Moreover, a loss of 0.2dB does not affect the visual quality in most natural images.

We also evaluate the similarity of the models learned via EM and LR-OMP. In figure 3.4 we visualize the leading eigenvectors of the learned covariance whose weight is the largest. The represented eigenvectors are ordered decreasingly with respect to the eigenvalues. The figure shows that the learned components have rich and similar structures except for the smallest eigenvalues where we observe differences. As we also observe that the eigenvalues decay much faster with our method than with EM, it is hard to interpret further the difference with the result of EM. We can still say that these different "dictionaries" lead to similar denoising results.

Influence of realization of sketching operator

Our approach performs stable performances with different initialization. Table 3.2 shows the variability of the PSNR/SSIM over different random sketch realizations. The evaluation is carried out on the classical images: cameraman, house, etc. The noisy images are obtained by adding white Gaussian noise with standard deviations σ = 20 to the test images.

Influence of sketch size and the compression rate

Theoretically, we can successfully estimate a GMM with sufficiently separated mean and random Fourier sketching with high probability as long as the sketch size m ≥ O(K 2 P polylog(K, P )). In our case, we learn zero-mean Gaussians. From [START_REF] Keriven | Sketching for large-scale learning of mixture models[END_REF], empirical results indicate that a sketch size of the order of the number of parameters is sufficient (i.e. it is conjectured that K 2 P could be reduced to KP ). In our experiments, we set m = cK(P × r + 1) = 10K(P × r + 1) ≈ 2 × 10 5 , i.e the compressed database is approximately 1000 times smaller than the original patch database. The gains in terms of memory is approximately n m times compared to the EM approach. Table 3.5 shows the denoising performance and estimation time with models learned by using different sketch sizes (c = 1, 5, 10, 20). Our experiments show that a larger sketch size doesn't improve the denoising performance necessarily, and indeed it causes more learning time. 

Influence of the rank r

Learning time

In terms of time complexity, the running time depends on the number of components K and the complexity of the descent algorithm. In our approach, we use the limited-memory BFGS algorithm to handle the optimization problems in Step 1 and 4. The latter is the most time-consuming part of the algorithm. To get the model (c = 10, r = 20) that achieves the denoising performance of our experiments (figure 3.3), it takes less than 2 hours on a computer with 2 * 32 cores AMD EPYC 7452 @ 2,35 GHz. With the same environment, our learning algorithm is about 2 times faster than the EM algorithm which 

Conclusions

In this chapter, we explained how we adapt the sketching framework in the context of image patches. We proposed an algorithm LR-COMP to estimate a GMM with low-rank approximation and provide an implementation of the algorithm. Experiments illustrate that a high-dimensional GMM can be learned from a compressed database and then used for patch-based denoising. We achieve denoising performances close to state-of-the art model based methods while the learning procedure uses less memory and time than the classical EM algorithm.

In this chapter we estimate a GMM with zero-mean. In this context, the notion of separation is used to prove the restricted isometry property which in turn proves identifiability of the GMM in [START_REF] Gribonval | Statistical learning guarantees for compressive clustering and compressive mixture modeling[END_REF] and convergence of gradient descent in [START_REF] Traonmilin | The basins of attraction of the global minimizers of non-convex inverse problems with low-dimensional models in infinite dimension[END_REF]. Proving a RIP on zero-mean would require a new notion of separation. We conjecture that an angular separation between Gaussians might enable us to prove such RIP. Such separation could e.g. compare the angle between eigenvectors of covariances by decreasing eigenvalue amplitude and weight the separation accordingly. The low-rank model should add even more separation as the Gaussians are supported on different sub-spaces. We still show empirically that the sketching process is successful without this separation assumption. This opens interesting new theoretical questions for the study of the success of compressive learning in patch-based image processing.

In the next chapter, we show that prior models learned with our proposed approach can be also used in super-resolution problem. In addition, we provide a proof of concept which extends the sketching framework to the video denoising task.

Extension to Super-resolution

Introduction

Super-resolution (SR) methods can be classified into two main categories based on the number of input low-resolution (LR) images: Single-Image Super-Resolution (SISR) and Multi-Image Super-Resolution (MISR).

In SISR, the goal is to enhance the resolution of a single LR image to obtain a highresolution (HR) image. SISR techniques focus on utilizing the inherent information present within the LR image itself to estimate missing high-frequency details and generate a plausible HR image. These methods employ various approaches such as interpolation, edge enhancement, and learning-based methods (e.g., deep neural networks) to recover the missing details and increase the resolution.

While in MISR, multiple LR images of the same scene or object are used to generate a higher-resolution output. By leveraging the additional information available from multiple LR images, MISR techniques aim to improve the SR performance compared to SISR. These methods typically involve aligning the LR images, estimating the high-resolution details, and fusing the information from multiple images to produce an enhanced HR result. MISR techniques can exploit inter-image correspondence, statistical relationships, or motion cues between the LR images to recover fine details and increase resolution.

Recall that in this thesis we refer to SISR in which the degradation model considers down-sampling, blurring, and noise. Mathematically, the forward operator for superresolution is given by

A = DK, (4.1) 
where D is a down-sampling operator with some scale factor f and K is a Gaussian blurring kernel.

Hence a LR image v ∈ R N is obtained from a HR image u ∈ R N by v = D (K * u) + , (4.2) 
where * represents a convolution operation, represents some additive Gaussian noise with standard derivation σ. We note that p (resp. p ) the height and q (resp. q ) the width of image u (resp. v). The down-sampling operator D : R p,q → R p ,q (p > p , q > q ) with scale factor f = p p = q q is given by D = p q pq F -1 p ,q GF p,q (4.3) with F p,q the discrete two-dimensional Fourier transform and G : R p,q → R p ,q . For a u ∈ R p,q , the (i, j)-th entry of G(u) is given by

                     u i,j , if i ≤ p 2 and j ≤ q 2 , u i+p-p ,j , if i > p 2 and j ≤ q 2 , u i,j+q-q , if i ≤ p 2 and j > q 2 , u i+p-p ,j+q-q , if i > p 2 and j > q 2 .
(4.4) Fig. 4.1 shows the images generated using a down-sampling operator with scale factor f = 2, 4, 8 respectively keeping the same Gaussian kernel window and noise level.

EPLL method for super-resolution

Recall that the EPLL of a given image u ∈ R N is defined under prior µ by:

EP LL µ (u) = N i=1 log µ(P i u), (4.5) 
where P i : R N → R P is a linear operator which extracts the i-th patch of P pixels from u centered at position i. In the context of super-resolution, introducing the latent variable {o i } N i=1 (recall that o i is a patch centered at the pixel i), the EPLL method defined the restored image by alternatively minimizing the following problems:

• Solving u for fixed o i û = arg min

u∈R N P 2σ 2 Au -v 2 2 + β 2 N i=1 P i u -o i 2 2
(4.6)

• Solving o i for all i given fixed u -For each o i we solve a patch MAP estimation under the patch prior p(o i ), i.e. for all i, ôi = arg min

o i ∈R P β 2 P i û -o i 2 2 -log(p(o i )). (4.7)
Note that problem (4.6) turns into a linear inverse problem with the Tikhonov regularization. It has a closed form solution referred to as Wiener filtering (A = I for denoising problem):

û = A T A + βσ 2 P N i=1 P T i P i -1
Av + βσ2 P N i=1

P T i o i . (4.8)
Note that solving equation (4.8) requires inverting a very large matrix, A T A can be diagonalized using a fast transform and the inversion of (A T A + βσ 2 P ) can be carried out efficiently in the transformed domain. Thus we implement the inverse using fast Fourier transform in practice.

The solution of problem (4.7) depends on the choice of patch prior µ(•). Under the GMM, we keep only 1 component k * which maximizes the log-likelihood for the given i-th centered patch õi = P i û -m i . Under this assumption, the solution of (4.7) is given by

ôi = (Σ k * i + 1 β I P ) -1 Σ k * i õi +m i . (4.9)

Experimental results

In this section, we show the super-resolution performance on some images. We implement the sketching framework (based on the MATLAB CL-OMP toolbox [START_REF] Keriven | SketchMLbox -A MATLAB toolbox for large-scale mixture learning[END_REF]) and the EPLL method for super-resolution both in Python1 . The prior learning process was carried on PlaFRIM 2 with 36-core Intel CascadeLake.

Training datasets In the experiments, the training dataset is generated with n = 4×10 6 high-resolution patches of size 3×3. In the compressive learning approach, we compress the dataset to sketches of size m = 10 4 to learn a GMM of 10 Gaussians with zero-means. For comparison, we learn a GMM from the (non-compressed) dataset using the EM algorithm.

Test images

The LR images v are generated using the forward model defined in equation (4.2). The results (Fig. 4.2) are given for images from the BSDS dataset for super-resolution by a factor f = 3 with a Gaussian noise with standard deviation σ = 2. The blur operator K is given by a convolution with a Gaussian kernel with standard deviation 0.5.

Quality evaluation

We use PSNR and SSIM values defined as (3.69) and (3.70) to measure the reconstruction quality. Note that due to different image sizes between the LR images and their corresponding original images, the computed PSNR/SSIM values comparing the original images and LR images are based on the original images and resized images. To align the LR images with the original size, we employ nearest-neighbor interpolation to shrink the LR images. Results in Fig. 4.2 show that the prior model learned from a compressed dataset can also be used in EPLL for super-resolution task.

We have similar results compared to the results obtained with prior model learned with EM algorithm. The gain compared to LR images on average is more than 2.5dB for PSNR value. 

Extension to video denoising

Introduction

Video denoising is much less explored than image denoising in the literature. The crucial aspects of video denoising include its need for good temporal coherence, good flickering removal, and the need for fast denoising algorithms. Unlike images, videos contain temporal information and exhibit strong temporal redundancy along motion trajectories.

This temporal redundancy provides valuable information that can be leveraged to enhance the denoising task. By considering the temporal aspect of videos, denoising algorithms can exploit the consistency of information over time to improve the quality of the denoised output.

Temporal coherence refers to the smoothness and consistency of the denoised frames across consecutive frames in a video sequence. Maintaining good temporal coherence in video denoising is crucial to ensure the visual quality and naturalness of the denoised video. It helps to prevent temporal artifacts and inconsistencies that can arise if denoising is applied independently to each frame without considering the temporal relationships.

Video denoising methods

State-of-the-art algorithms rely mainly on two factors to enforce temporal coherence in the results: the extension of search regions from spatial neighborhoods to spatio-temporal neighborhoods and motion estimation. Several video denoising methods address the issue of temporal coherence by incorporating temporal regularization or by jointly processing information from neighboring frames. For example, techniques such as motion estimation and compensation can be employed to align frames and reduce motion-related artifacts. Additionally, methods such as Video non-local Bayes (VNLB) [5] and V-BM4D [START_REF] Maggioni | Video denoising, deblocking, and enhancement through separable 4-d nonlocal spatiotemporal transforms[END_REF] take advantage of the temporal redundancy by grouping similar blocks across consecutive frames. This joint processing of similar blocks helps to improve the denoising performance while preserving temporal coherence.

The VNLB and V-BM4D methods mentioned earlier are both patch-based algorithms. Patch-based algorithms use 3D spatio-temporal patches: motion-compensated 3D patches which follow an estimated motion trajectory [START_REF] Buades | Patch-based video denoising with optical flow estimation[END_REF][START_REF] Ranjan | Optical flow estimation using a spatial pyramid network[END_REF][START_REF] Tae | Spatiotemporal transformer network for video restoration[END_REF][START_REF] Wang | Edvr: Video restoration with enhanced deformable convolutional networks[END_REF] or rectangular 3D patches.

In VNLB, we assume that similar patches can be modeled as i.i.d. samples from a prior distribution (Gaussian). Due to the high variability of spatio-temporal patches, the authors build a local Gaussian model for each patch from its most similar patches using video redundancy. The approach also assumes that similar patches have only a few modes of variation. The limitation of VNLB is that its performance is limited to a certain form of prior, and a different set of weights must be trained for each noise level. Moreover, it struggles with noise in flat areas, resulting in noticeable flicker.

V-BM4D performs block-matching across consecutive frames to identify similar patches. It searches for matching blocks in both the spatial and temporal dimensions. By finding similar patches across frames, the algorithm exploits temporal redundancy and motion information to enhance denoising. After the block-matching step, V-BM4D applies collaborative filtering to the matched patches. Collaborative filtering combines the information from multiple similar patches to estimate the underlying clean signal. By exploiting both the spatial and temporal redundancies, the algorithm achieves better denoising performance and temporal coherence. While V-BM4D is effective in many scenarios, it does have certain limitations. The performance of V-BM4D relies on accurate motion estimation. In cases where motion estimation is challenging, such as when objects move very quickly or when there are complex deformations, the denoising quality can degrade. Moreover, V-BM4D can be computationally intensive, especially for high-resolution videos. The processing time can be substantial, making it less suitable for real-time applications or devices with limited computational resources.

Sketching a video prior

Leveraging the idea of early methods for video denoising which extends the methods developed for single images to a sequence of frames, we aim to adapt the EPLL algorithm to video just by extending the neighboring area to the adjacent frames. The idea is to make use of redundancy in motion estimation by including temporal information.

We consider the observed video as a noisy image sequence v : X × T → R defined as

v(x, t) = u(x, t) + (x, t), u ∈ X , t ∈ T (4.10)
where u is the original (unknown) video, (x, t) ∈ N (0, σ 2 ) is i.i.d. white Gaussian noise of standard variance σ. The index (x, t) are 3-D spatio-temporal coordinates belonging to the spatial domain X and time domain T respectively. The proposed video denoising algorithm comprises the fundamental steps inherited from the EPLL algorithm. These steps are performed for each space-temporal patch of the video. We denote a 3D space-temporal video patch of size P = d × d × t of the noisy video v as q, resp. patch p of the clean video u. We assume that the video patches p i are identically and independently distributed from the prior distribution µ. We suppose that µ is zero-mean GMM parameterized by low-rank covariances Σ and weights α. To estimate the prior distribution µ, we first compress a given dataset of video patches {x i } n i=1 into a sketch following the definition of (3.19), recall that the sketch has components:

ẑl = 1 n n i=1 e -j ω l ,x i (4.11) 
at frequency ω l . We aim to find

Σ * , α * ∈ arg min Σ,α ẑ -Sµ Σ,α 2 2 . 
(4.12)

Experimental results

The video dataset is DAVIS-2017 which contains 90 videos, 6208 frames. First, we want to assess the performance of video denoising compared to image denoising without considering potential movements in real videos. We create simulated videos of t frames by duplicating a single image t times to create a sequence of images. This simulates a video with no or small movements since each frame is a duplicate of the original image.

In our experiments, the training dataset (we note dataset A) is generated with 4 × 10 6 patches {x i } N i=1 extracted from these simulated videos of size 3 × 3 × 3. For comparison, we also use the same dataset (we note dataset B) without duplicated frames for training, i.e the dataset is generated with 2D patches of size P = 3 × 3. The two datasets are compressed into sketches of the same sketch size m = 10 4 to estimate 10 components GMMs. We set the rank of covariance matrices Σ both to rank = 9 for the two cases. Fig. 4.4 shows the denoising results with PSNR values using the same training and denoising parameters. We see that the prior learned with simulated 3D video patches results in a remarkable reduction of noise compared to the 2D case. We then test the proposed approach on video sequences of 3 frames. The prior models used to perform the following denoising results are learned from a sketch of real 3D video patches. The training parameters for experiments on these videos are identical to those used in the experiments on simulated videos. Fig. 4.5 shows the denoising result on a video sequence with small movements. Fig. 4.6 shows the denoising result on a video sequence with small movements. Visual evaluations demonstrate that the proposed method reduces noise while preserving essential frame features, as shown in the expended view of the image. However, it is observed that some residual motion artifacts are present in the frames, particularly when there is significant motion. This observation may be attributed to the insufficient number of patches in the database. When the database lacks diversity or does not adequately represent the range of motion patterns present in the video frames, the learned prior model may struggle to accurately capture and remove motion artifacts. In such cases, the model's ability to generalize and handle various motion scenarios may be limited. Further research and exploration can focus on expanding the database of 3D patches, incorporating various motion patterns and considering different types of videos to enhance the model's ability to handle motion artifacts effectively. Alternatively, we propose incorporating motion estimation or alternative regularizers to better handle the temporal correlation.

Conclusions

This chapter empirically show that the prior models learned from a compressed dataset approach can achieve satisfactory super-resolution performance. In the second part, we exploit temporal and spatial redundancy characterizing natural video sequences. Our experiments show that priors learned from a sketch of 3D spacial-temporal patches can be used to performance denoising task. The prior learned from a sketch of 3D patches outperforms priors learned from a sketch of 2D patches in terms of denoising performance. Future work should be focused on developing methods that effectively enforce temporal consistency, reduce motion-related artifacts and improve the overall denoising performance. with u ∼ µ. Recall that in the MAP context, R(u) ∝ -log(µ(x)). Estimating the distribution µ (or of distributional parameters θ of interest) from a sketch corresponds to solving the optimization problem:

µ * = arg min µ ẑ -Sµ 2 2 . (5.2) 
As described in chapter 2, this "sketch matching" problem can be generally solved by greedy CL-OMP algorithm and its extension CL-OMPR [START_REF] Keriven | Sketching for large-scale learning of mixture models[END_REF]. In chapter 3, we show that when the distribution µ is a Gaussian mixture model (GMM) in high-dimension space with flat tail covariances, the problem can also be solved by the low-rank OMP algorithm. These greedy algorithms are suitable for any sketching operator S and any distribution density µ, as long as the sketch Sµ and its gradient with respect to the distributional parameters θ of interest have a closed-form expression. That is to say, the core of the OMP-based algorithms is computing the expression of Sµ and ∇ θ Sµ. However, real-life data tends to be complex and needs to be modeled with complex distributions. In this case, the sketching feature map is not always integrable with respect to the prior density of the data or it may not have a closed-form. This limits the advantages of using the sketching framework in practice.

In this chapter, we aim at recovering a good approximation of the probability distribution of any unknown data from its sketch (i.e. beyond Gaussian mixtures). As neural networks have great expressive power [START_REF] Hornik | Multilayer feedforward networks are universal approximators[END_REF][START_REF] Pan | Expressiveness of rectifier networks[END_REF], we propose to tackle the problem by adapting the sketching framework to neural networks. More precisely, we propose to define the regularizer R θ parameterized by a DNN, precisely a ReLU network f θ , that is,

R θ (•) = f θ (•) 2 2 . (5.3) 
Such a regularization corresponds to the parametric distribution density µ θ ∝ e -f θ (•) 2 2 . Thus it can be viewed as a generalized Gaussian distribution, where the bilinear form induced by the covariance matrix is replaced by a network. Due to the fact that neural networks have good generalization properties, the proposed regularization should be capable of encoding complex probability distributions. We aim to apply the sketching framework to such parametric densities. Unfortunately, a direct practical application of existing tools is not possible as closed-form expressions of Sµ are not available for sketching operator S based on random Fourier features.

Contributions and outline

In this chapter, we show the feasibility of learning regularizers parametrized by a DNN from a compressed database. Once the network is trained, the regularizer can be used for inverse problems such as denoising.

To do so, we propose to approximate the sketching operator Sµ by a discrete version S d µ that can be calculated with closed-form expressions, and such that the approximation still permits to apply the sketch matching estimation method. The approximation is performed on a grid of the domain where the data is located.

To find an estimate of the distribution µ θ (of density ∝ e -f θ (•) 2 2 ), we adapt the sketch matching problem with our approximate sketching operator in the following way:

θ * ∈ arg min θ∈Θ S d µ θ (p) -ẑ 2 2 , (5.4) 
where Θ is a set where the DNN inducing the regularizer R θ (•) = f θ (•) 2 2 can be parametrized (i.e. weights and bias). This problem can be solved practically with gradient descent based methods.

There are various advantages of our proposed approach. It doesn't depend on the size of the original database to solve the sketch matching problem. As a consequence, unlike traditional batch learning, which requires epochs through the entire dataset in our method, each gradient descent iteration in the training incorporates information from the whole original database. Once the empirical sketch has been computed (in a single pass, possibly in parallel), the dataset can be removed from memory. This reduces the memory complexity of the learning task. Moreover, the Jacobian ∇Sµ can be computed efficiently with back-propagation.

Our approach overcomes the limits of greedy learning algorithms of the original sketching framework: regardless of the complexity of the data distribution, the proposed sketching operator allows us to always have a closed form expression of S d µ θ . Thus, the sketching is no longer limited to the distribution densities for which the Fourier transform is explicit.

As a result, the learned regularizer can be used to solve inverse problems. The effectiveness of the proposed scheme is tested on synthetic examples and real dataset. Due to the limitations of our approximation of the sketching operator, the feasibility is illustrated on 2-D and 3-D data with possibly complex distributions. Our work thus opens the broader open question of designing closed form sketching operators in high dimension.

The rest of this chapter is organized as follows. We start by introducing the sketching framework, ReLU networks and some related works in section 5.2. In section 5.3, we then describe the proposed framework: the adaptation of the compressive learning framework to the learning of regularizers parameterized by ReLU networks. We explain in section 5.4 how is the denoising variational problem (1.6) solved. Section 5.5 illustrates the performance of the proposed methods on both synthetic data and real-life data. Finally, conclusions are drawn in section 5.7.

Background, related works

ReLU network

A ReLU network, that we denote by f θ , is defined as a fully connected, feed-forward network (multi-layer perceptrons) with rectified linear unit (ReLU) activations. The ReLU function is given by: ReLU (x) = max(x, 0). This activation has grown in popularity in feed-forward networks due to the success of first-order gradient based heuristic algorithms and the improvement in convergence to the approximated function for training ( [START_REF] Nair | Rectified linear units improve restricted boltzmann machines[END_REF]). We consider that the ReLU network has K hidden layers and each layer indexed by k has n k neurons. Note that the output layer is a linear layer without ReLU activation. As the network is a weighted graph with bias, the network parameters are the weight matrices

W k ∈ R n k ×n k-1 and bias vectors b k ∈ R n k , i.e., θ = {W k , b k } K+1 k=1 . Formally, given n 0 input data {x i } n 0 i=1 , n K+1 output data {y i } n K+1
i=1 , and a loss function L : R n 0 × R n K+1 → R + , the training task is to determine the network parameters θ * such that θ * = arg min θ L(f θ (x), y).

(5.5)

If L is differentiable, this problem can be solved by gradient descent based methods. The gradients of the network can be computed efficiently with back-propagation.

Related works

Sketching has been also incorporated into neural networks once [START_REF] Schellekens | Compressive learning of generative networks[END_REF]. Note that in their work, the authors combine the sketching with the generative networks to generate data samples. While in our work, we aim to cast the sketching framework to the ReLU network to learn a regularizer for solving the inverse problem. In addition, the authors proposed to approximate the sketching map by Monte-Carlo sampling. In our approach, we propose to do the approximation with a discrete sketching operator. Note that the sketching mentioned in our work reduces the dimensionality by performing a linear "projection" of the probability distribution of the data set {x i } n i=1 . This differs from the approach where the dimensionality reduction is carried out on the data x i themselves like [START_REF] Daniely | Sketching and neural networks[END_REF][START_REF] Daniely | Short and deep: Sketching and neural networks[END_REF]. Hence our method also differs from the method proposed in [START_REF] Wang | Random sketching for neural networks with ReLU[END_REF] in which the authors designed random sketching strategies for ReLU networks.

Sketching densities parameterized by DNN

In this Section, we explain how we adapt the sketching framework to estimate regularizations by DNN. Recall that the regularizer is defined as in (5.3). We start by explaining why there are no explicit closed-form expressions of the sketching function available in the context of prior parameterized by DNN. Intuitively, since ReLU networks define piecewise affine functions, we can indeed express a ReLU network f θ as:

f θ (x) = N R γ=1 1 Rγ (x)(W γ x + b γ ), (5.6) 
where 1 Rγ is the indicator function on each linear region R γ . The domain is partitioned into N R linear regions within which f corresponds to an affine function. We characterize each linear region by the set of units that are active in that domain. We have that

W γ = W (K+1) γ W (K) γ • • • W (1) γ
where W k γ is obtained by setting the i-th column of W k to 0 whenever the neuron i of the k-th layer is not active.

Given a dataset X, we aim at learning, from only the sketch z, an approximation µ θ for the probability distribution µ generating X. As considering a regularizer of the form 2 2 , it corresponds to parametric densities of the form µ θ (•) ∝ e -R θ (•) . Ideally, with the definition in (2.5), the sketch would have to be calculated as

R θ (•) = f θ (•)
z l = R d e -j<ω,x> e -f θ (x) 2 2 dx = R d e -j<ω,x> e -N R γ=1 1 Rγ (x)(Wγ x+bγ ) 2 2 dx = x d • • • x 1 e -j d p=1 ωpxp e -d p=1 ( N R γ=1 1 Rγ (x)((Wγ x)p+bγ p )) 2 dx 1 • • • dx d .
(5.7)

However, to the best of our knowledge, there is no analytic expression of such Fourier transform (Fourier transform on polygons). To tackle this issue, we consider approximating the continuous Fourier transform on a set of discrete points. This can be done by approximating the integral in the Fourier transform as a Riemann sum. The Riemann sum approximation can be expressed in terms of the discrete Fourier transform.

To be specific, we define an approximation S d : R d → C m of the sketching operator S such that S d µ θ (ω) ≈ Sµ(ω) for a given frequency ω. The approximated sketch z then has components:

zl = |∆Ω| p i ∈Ω e -j<ω l ,p i > µ θ (p i ) = |∆Ω| p i ∈Ω e -j<ω l ,p i > e -f θ (p i ) 2 2 , (5.8) 
where p i is a point in the d-dimensional cell Ω with volume |∆Ω|. Of course, the major pitfall of this approximation is the limitation for applications in high dimension as the number of points grows with respect to the dimension d. The required boundedness (or approximate boundedness such as in the Gaussian case) of the data is a valid assumption in many practical applications in signal and image processing. As a consequence, given N points {p i } N i=1 on the grid where the dataset X lives and the empirical sketch defined as (2.4), we consider a ReLU network sketch matching problem as finding the network parameters θ * in the set Θ of possible parametrizations, such that With the discretization, if µ θ is differentiable at point p i , the gradient of S d µ θ with respect to the parameters θ can be computed easily by

∇S d µ θ (p i ) = S d ∇µ θ (p i ) = -2|∆Ω| p i ∈Ω e -j<ω,p i > e -f θ (p i ) 2 2 f θ (p i )∇f θ (p i ), (5.10) 
where the gradient of the network ∇f θ (p i ) can be easily computed using automatic differentiation. Note that the discretization is used only in the estimation of the regularizer from the sketch. It thus only impacts the calculation time and memory requirement of the estimation of the regularizer and not the size of the compressed dataset itself.

where dist i = min j x j -p i 2 2 is the square distance between the data x j and its nearest grid point. This objective function imposes a regularizer that is close to the function "distance to the model". Note that for the non compressive learning approach, as we do not go through a (implicit) model of the density, we explicitly give the distance value, which is not necessary when using our proposed sketched method.

For the 2-D experiments, the network f θ is designed as a ReLU network with 3 fully connected hidden layers with 64, 128, and 256 neurons in each layer respectively. In the compressive learning approach, we compress the dataset to sketches with size m = 50, 100, 1000, 5000, i.e. with compression ratio r = 40000, 20000, 2000, 400 respectively. The models are trained with 200000 iterations. In the non compressive learning, we use the same learning rate with 50000 iterations.

Figure 5.1 shows the experimental results of 2-D synthetic data. The first row shows the synthetic spiral and GMM samples for training. We compare distribution densities learned from a compressive dataset with the proposed framework (2nd row) and distribution densities learned from a non compressive dataset (3rd row). The results shown in the 2nd row are models learned from 4000-fold compressed dataset while producing comparable results, indicating that our approach accomplishes its objective: learning efficiently a probability density prior from a compressed database (which will be evaluated when used as a regularization on real audio data). In fact, we match the distribution density of data directly in the compressive method which is not trivial for the non-compressed method.

Figure 5.2 shows the experimental results of 3-D synthetic spiral data. The network f θ is a ReLU network with 4 fully connected hidden layers of 64, 64, 128, and 192 neurons respectively. The learning rate is set to 10 -6 with 10 5 training iterations. For the example shown in the figure, the data is compressed to a sketch of size m = 1000. This figure demonstrates again the capacity of our method to estimate accurate complex 3-D distribution densities from the compressed dataset. Table 5.1 shows the learning times (in hours) with respect to the different sketch size. We see that training the same dataset, the non compressed learning takes much longer (20 times) than the compressive learning. Meanwhile, the proposed compressive learning approach is capable of recovering good approximations of the probability distribution of sample data.

Denoising results

We evaluate the regularizer learned with our method on white Gaussian noise denoising problem. The noisy dataset is of 500 samples and generated with noise level σ 2 . We choose the optimal hyper-parameters values (the learning rate η and the regularizer parameter λ) We perform different experiments to evaluate potential factors that could affect the results. First we assess the compression ratio, i.e. the sketch size. To have a quantitative comparison, we use the measurement signal-to-noise ratio (SNR) [START_REF] Quackenbush | Objective Measures of Speech Quality[END_REF] to evaluate the effectiveness of our method. The SNR is defined as SN R = 10 log 10 P signal P noise (5.14) where P signal and P noise are the total energy of the signal x and noise respectively. We define the power P (x) of a discrete time signal x(n) via P (x) = 1 N N n=1 x(n) 2 . We generate 10 different noisy datasets of 500 samples for each data type with noise level σ 2 = 0.15. Table 5.2 shows the average gain (SNR of reconstructed data -SNR of noisy data) in SNR with respect to the priors learned with different compression ratios. It is shown that the proposed approach is capable to learn distributions from databases with high compression ratios, and that regularizers trained from the compressed datasets The number of frequencies {ω} m l=1 used to compute sketches affects memory storage, 

Robustness to noise during training

To evaluate how robust our proposed method is to noise level during the training process, we train the regularizer on a compressed dataset of data samples generated with noise level σ 2 train = 0.15. We use the same network and training procedure as described above. Figure 5.6 shows the distribution density of the sampled data learned from the compressive noisy dataset and the denoising result. The result shows that the regularizer trained with a compressed noisy dataset has good denoising performance. This illustrates that our approach is robust to low noise level on the training set. This is easy to understand due to the fact that adding Gaussian noise corresponds to a convolution of the density with a Gaussian kernel, which does not change the shape of the distribution if small enough. It is even possible to add a deconvolution term to the distribution parameter estimation if the noise level in the training dataset is known. 

Application to audio denoising

In order to evaluate the effectiveness of our approach, we test it on the audio denoising task. The experiment presented below is performed on recorded musical notes (monophonic 16kHz audio snippets) from the NSynth dataset [START_REF] Engel | Neural audio synthesis of musical notes with wavenet autoencoders[END_REF]. The training data is an extracted 0.125s audio recorded from an acoustic guitar. After filtering the normalized audio data s(t) by two 4th-order Butterworth ([17]) low-pass filters h 1 and h 2 with a cutoff frequency of 1.5kHz and 3.75kHz, three frequency responses are constructed with s 1 (t) = h 1 * s(t), s 2 (t) = h 2 * (s(t) -s 1 (t)), and s 3 (t) = s(t) -s1(t) -s2(t). Then the frequency responses are concatenated, hence the training set is of dimension 2000 × 3; i.e. 2000 samples in dimension 3. by a factor of 30. Once the regularizer is learned, it is used to denoise the audio corrupted by Gaussian white noise of noise levels σ 2 = 0.1 and σ 2 = 0.2. Figure 5.8 and 5.9 show the audio denoising result with different noise levels. In the two cases, we gain more than 1dB on SNR in the case of small noise and more than 2.5dB in case of large noise. Similar denoising results (gain of 1dB in the small noise and 1.94dB in the case of large noise) are obtained from the priors learned from the non compressed approach with 3 times slower training time. The results show that, in addition to the original low-pass filtering effect, denoising can be achieved in low dimensions even when temporal consistency between individual samples is not guaranteed. These first feasibility results for solving inverse problem using regularizers learned from sketch are promosising if we could use a sketching operator in higher dimensions.

Conclusions

In this chapter, we illustrate the feasibility of adapting the compressive learning framework to the learning of a regularizer parameterized by a DNN. We achieve this by approximating the original sketching operator with a discrete one. With the proposed approximated sketching operator, the "sketch matching" problem can be solved with a gradient based algorithm. In addition, we define a new parametrization of the regularizer to solve the inverse problem. The regularizer is defined as the squared 2 -norm of a ReLU network and learned with a compressive dataset instead of the original dataset. It gathers the advantages of sketching which reduces the learning cost of the neural networks which have great expressive power. Experiment results on 2-D/3-D synthetic data and audio data show that our method accomplishes the objective of compressive learning in this context, illustrating the potential of sketched neural networks learning. However, our method relies on a discretization of the domain on which the data resides, which limits its use in high-dimensional domains (e.g., for image denoising). Future works will be needed to overcome this limitation. We want to design a fast sketching operator that avoids such discretization. This leads to a major open question: can we find a sketching operator such that any distribution parametrized by a DNN can be estimated from the sketch? Does such a sketching operator exist? Also our experiments suggest that the overparameterization phenomenom that begins to be well understood in classical learning [START_REF] Arora | On the optimization of deep networks: Implicit acceleration by overparameterization[END_REF][START_REF] Allen-Zhu | A convergence theory for deep learning via over-parameterization[END_REF], could also be well behaved in the context of compressive learning. Hence understanding this regime in compressive learning is a also a key question in relation to this work. 

Conclusions

In conclusion, this thesis has addressed the challenge of reducing the computational burden associated with learning a prior while maintaining high restoration performances for solving ill-posed inverse problems.

First, we adapt the "sketching" approach to carry out a GMM estimation in the context of image restoration. Our proposed algorithm, LR-COMP, is specifically designed to estimate a GMM with low-rank approximation. The contribution is also theoretical: we provide a proposition which qualitatively validates the approximation. The conducted experiments aimed to demonstrate the effectiveness of our approach. The results clearly illustrate that a high-dimensional GMM can be accurately learned from a compressed database, which in turn can be leveraged for patch-based denoising tasks. Remarkably, our method achieves denoising performances comparable to state-of-the-art model-based techniques while significantly reducing the memory and time requirements during the learning procedure. This improvement is particularly noteworthy when compared to the classical EM algorithm, which typically demands more extensive computational resources.

In the second part, we provide a demonstration of the feasibility of adapting the compressive learning framework to effectively learn a regularizer parameterized by a Deep Neural Network (DNN). To achieve this, we propose an approximation of the original sketching operator using a discrete version. This approximation allows us to solve the "sketch matching" problem through a gradient-based algorithm. Furthermore, we introduce a novel parameterization of the regularizer to address the denoising problem. This approach combines the benefits of sketching, which reduces the learning cost, and DNNs, which offer excellent expressive power. While our proposed approximation of the sketching operator has shown feasibility and promising results in 2D and 3D data with complex distributions, it is important to acknowledge its limitations.

Our third contribution focuses on extending the sketching framework to address image restoration tasks beyond single-image denoising. In this extension, we specifically investigate two applications: super-resolution and video denoising. For super-resolution, we conduct experiments to evaluate the performance of the prior models learned from a compressed dataset using the sketching approach. By leveraging the versatility of the sketching framework, we showcase its potential to achieve satisfactory super-resolution results. In addition to super-resolution, we also explore the applicability of the sketching framework to video denoising.

Finally, we provide an implementation of our proposed method in Python (see 1.5.2) to facilitate its practical application and further research. The implementation is designed to be accessible, allowing researchers and practitioners to easily reproduce and build upon our work. We strive to ensure that the code is well-documented and accompanied by clear instructions, enabling users to understand and modify the implementation according to their specific needs.

Perspectives

The theoretical RIP is indeed a fundamental concept in the field of compressive learning. It provides a measure of how well a linear operator preserves distances and enables accurate recovery of signals from compressed measurements. Fourier feature-based sketching operators have shown effectiveness in modeling mixtures. However, the existing theoretical analysis of these operators often relies on certain assumptions. In this thesis, despite not being able to establish the theoretical RIP under the given conditions, the empirical results demonstrate the success of the sketching process even without relying on the separation assumption. This finding challenges the existing theoretical understanding, new exploration in terms of theoretical analysis should be developed.

The second perspective would be to study a more effective way to integrate the sketching framework within deep learning. In our work, we exploited the feasibility of adapting the sketching to work with deep learning models. However, designing closed-form sketching operators that are suitable for high-dimensional data remains a challenging task and an open question. Understanding how to effectively combine sketching and deep learning methods to leverage the strengths of both approaches is an area that requires further exploration.

In this thesis, an objective is to utilize the sketching framework to estimate video priors for video denoising. We present a proof of concept for this approach. However, it has been observed that residual motion artifacts persist, especially in situations with significant motion. This issue may be attributed to the limited number of patches in the database. To address this limitation, future research and exploration can focus on expanding the database of 3D patches. This expansion should include a broader range of motion patterns and incorporate different types of videos. As an alternative approach, we propose integrating motion estimation techniques or alternative regularizers to enhance the model's ability to handle temporal correlation and improve its effectiveness in removing motion artifacts. • Mal-posé : La restauration d'images est souvent un problème sousdéterminé, ce qui signifie que les solutions du problème peuvent ne pas être uniques. En effet, le processus de dégradation entraîne une perte d'informations et il n'est pas toujours possible de récupérer l'image originale à partir de la version dégradée en utilisant uniquement des opérations mathématiques. En outre, la solution peut dépendre de divers facteurs, tels que le choix de la régularisation, la qualité de la mesure et le niveau de bruit, ce qui la rend instable ou peu fiable.

• Complexité : la restauration d'images est une tâche à forte intensité de calcul, en particulier lorsque l'on travaille avec des images de grande taille ou des données à haute dimension. La résolution du problème inverse peut nécessiter la recherche de paramètres dans un espace à haute dimension, et le coût de calcul peut être prohibitif.

• Dégradation inconnue de l'élément : dans de nombreux cas, le processus de dégradation peut ne pas être connu ou peut être difficile à modéliser avec précision.

Par conséquent, pour résoudre un tel problème, des informations ou des hypothèses supplémentaires sur la solution, telles que la régularisation, les contraintes ou les connaissances préalables, sont généralement nécessaires. Divers modèles mathématiques et algorithmes ont été développés, tels que les méthodes de régularisation (explicites), l'apprentissage profond et les méthodes bayésiennes.

Parmi ces approches, les méthodes bayésiennes fournissent un cadre puissant car elles fournissent un moyen naturel d'incorporer des connaissances préalables ou des hypothèses sur l'image dans le processus de restauration [START_REF] Demoment | Image reconstruction and restoration: overview of common estimation structures and problems[END_REF]. Plusieurs algorithmes ont été développés pour la restauration d'images bayésiennes, notamment les méthodes de Monte Carlo par chaîne de Markov [START_REF] Geman | Stochastic relaxation, gibbs distributions, and the bayesian restoration of images[END_REF][START_REF] Smith | Bayesian computation via the gibbs sampler and related markov chain monte carlo methods[END_REF][START_REF] Robert | Monte Carlo statistical methods[END_REF], champ aléatoire de Markov [START_REF] Blake | Markov random fields for vision and image processing[END_REF][START_REF] Roth | Fields of experts: a framework for learning image priors[END_REF], variation totale [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF][START_REF] Chambolle | An algorithm for total variation minimization and applications[END_REF][START_REF] Louchet | Posterior expectation of the total variation model: properties and experiments[END_REF]7], Expected Patch Log-Likelihood (EPLL) [START_REF] Zoran | From learning models of natural image patches to whole image restoration[END_REF], etc. Ces méthodes diffèrent par leur efficacité de calcul et leur précision, et le choix de la méthode dépend du problème spécifique et des caractéristiques des données.

Les approches bayésiennes classiques, par exemple dans [START_REF] Zoran | From learning models of natural image patches to whole image restoration[END_REF], s'appuient sur un a priori explicite comme les modèles de mélange gaussien (GMM) formés sur une base de données de parcelles d'images. Récemment, des chercheurs ont proposé d'utiliser des DNN pour estimer le modèle préalable. Des méthodes telles que la variation profonde totale [START_REF] Kobler | Total deep variation for linear inverse problems[END_REF][START_REF] Kobler | Total deep variation: A stable regularization method for inverse problems[END_REF], les régularisateurs adversaires [START_REF] Lunz | Adversarial regularizers in inverse problems[END_REF][START_REF] Prost | Learning local regularization for variational image restoration[END_REF], ainsi que l'approche Plug & Play et ses extensions [START_REF] Singanallur V Venkatakrishnan | Plugand-play priors for model based reconstruction[END_REF][START_REF] Zhang | Plug-and-play image restoration with deep denoiser prior[END_REF][START_REF] Hurault | Gradient Step Denoiser for convergent Plug-and-Play[END_REF] fournissent des résultats remarquablement précis.

Défis informatiques de l'apprentissage

Toutes ces méthodes impliquent l'apprentissage des paramètres d'un modèle mathématique à partir de vastes ensembles de données empiriques. Toutefois, l'estimation des paramètres à partir de ces ensembles de données à grande échelle constitue un défi informatique de taille. Avec l'augmentation constante de la taille des ensembles de données utilisés pour former les modèles, il est devenu de plus en plus difficile de développer des algorithmes capables de gérer les exigences informatiques de ces grands ensembles de données. En outre, les techniques d'apprentissage traditionnelles ne peuvent souvent pas s'adapter aux plus grandes bases de données existantes, ce qui rend difficile la formation de modèles sur de telles données.

Une solution efficace à ce problème consiste à compresser les ensembles de données d'apprentissage. Une méthode d'apprentissage compressif statistique appelé le sketching a été introduite dans [START_REF] Keriven | Sketching for large-scale learning of mixture models[END_REF], elle transforme l'ensemble de la base de données d'apprentissage en un vecteur unique qui résume les statistiques utiles de la distribution des données. Le cadre proposé permet de compresser les ensembles de données d'apprentissage, ce qui entraîne une réduction des besoins de stockage et un traitement plus rapide des informations restantes. Cela permet d'aborder des problèmes sur de grands ensembles de données qui seraient autrement insolubles en raison de ressources limitées.

Cette thèse se concentre sur le développement et l'adaptation de cette approche d'apprentissage compressif aux problèmes de restauration d'images à l'aide de méthodes bayésiennes. L'objectif est d'améliorer la qualité des images restaurées tout en réduisant la complexité informatique et les besoins en ressources. Les méthodes proposées sont évaluées sur deux problèmes de restauration d'images : le débruitage et la super-résolution, et comparées aux méthodes de pointe basées sur les patches. En outre, nous illustrons la faisabilité de l'adaptation du cadre du sketching à l'apprentissage d'un régularisateur paramétré par des réseaux de neurones (NN). En combinant les avantages du sketching, qui réduit le coût d'apprentissage, et des réseaux de neurones, qui ont un grand pouvoir d'expression, nous visons à résoudre des problèmes d'inversion de données plus généraux. Dans ce contexte, nous proposons un algorithme alternatif pour surmonter les limites de l'algorithme original du sketching.

Approche compressive : le sketching

Les méthodes préalables basées sur l'apprentissage, telles que les réseaux de neurones profond, nécessitent généralement une grande quantité de données d'apprentissage pour apprendre la correspondance entre les espaces d'image d'entrée et de sortie. La qualité de l'a priori appris dépend fortement de la qualité et de la quantité des données d'entraînement.

Les données d'apprentissage doivent être représentatives des variations et des complexités qui existent dans les images à restaurer. Plus l'ensemble de données d'entraînement est important et diversifié, meilleure est la performance de généralisation de l'a priori appris.

En outre, les méthodes de priorisation basées sur l'apprentissage peuvent avoir des exigences de calcul significatives pendant les phases d'apprentissage. Pendant la phase d'apprentissage, de grandes quantités de données sont généralement traitées en plusieurs itérations (epoch), ce qui peut nécessiter des ressources informatiques importantes, telles que des unités de traitement graphique (GPU) haut de gamme ou du matériel spécialisé comme les unités de traitement tensor (TPU). Le temps d'apprentissage peut varier en fonction de la complexité de l'architecture du réseau et de la taille de l'ensemble de données d'apprentissage.

Dans cette section, nous présentons brièvement le cadre d'apprentissage compressif statistique proposé dans [START_REF] Keriven | Sketching for large-scale learning of mixture models[END_REF] que nous appellerons le sketching pour le reste de la thèse. Nous expliquerons les détails du cadre au chapitre 3.

Concepts clés du sketching

Le sketching est une approche puissante qui peut aider à résoudre le problème du traitement de grands ensembles de données dans l'apprentissage automatique. En comprimant les bases de données d'apprentissage, nous pouvons réduire la quantité de données stockées, faciliter et accélérer le traitement des informations restantes et permettre de résoudre des problèmes sur de grands ensembles de données qui seraient autrement impossibles à traiter La méthode du sketching consiste à transformer la base de données d'apprentissage en un vecteur unique qui résume certaines statistiques utiles de la distribution des données. Ce vecteur est beaucoup plus petit que les données originales et peut être utilisé comme une représentation comprimée de l'ensemble de données. L'apprentissage par sketching peut être utilisé dans une variété de tâches d'apprentissage automatique, telles que les tâches d'apprentissage classiques (ACP, regroupement, modélisation gaussienne), l'apprentissage supervisé, et s'est avéré efficace dans le traitement de grands ensembles de données.

L'idée principale du sketching est de comprimer l'ensemble de la collecte de données en une représentation de taille fixe, ce que l'on appelle un sketch de données, de telle sorte que suffisamment d'informations pertinentes pour la tâche d'apprentissage considérée soient capturées. Ensuite, les paramètres appris sont estimés en minimisant un problème non linéaire des moindres carrés construit avec le sketching. Parallèlement, le coût de l'inférence des paramètres d'intérêt à partir du sketching ne dépend pas du nombre de données dans la base de données initiale, mais du nombre de paramètres que nous voulons estimer. Il est donc possible d'exploiter des ensembles de données de taille arbitraire dans le cadre du sketching sans exiger davantage de ressources informatiques.

Pendant la phase du sketching (Fig. 7.2), une énorme base de données de n vecteurs de données à d dimensions X = {x i } n i=1 est résumée en un seul vecteur à m dimensions (m n) vecteur ẑ avec :

ẑ = 1 n n i=1 Φ(x i ) = S(μ n ), (7.1) 
où μn := 1 n n i=1 δ x i la distribution de probabilité empirique des données, δ x i la mesure de Dirac à x i et la fonction Φ : R d → R m est appelée la carte des caractéristiques (généralement des moments aléatoires de Fourier). L'opérateur S est un opérateur linéaire sur les mesures µ défini par Sµ := E X∼µ Φ(X).

Avantages informatiques du sketching

L'un des principaux avantages du travail avec des sketches est que la carte des caractéristiques a une expression simple qui peut être évaluée efficacement. Cela signifie que nous pouvons effectuer des calculs sur des données compressées beaucoup plus rapidement que sur les données originales. En outre, l'opération moyenne utilisée pour calculer le sketch permet de paralléliser le calcul. Cela signifie que le calcul peut être facilement parallélisé sur plusieurs processeurs ou machines, ce qui nous permet de traiter des ensembles de données beaucoup plus importants et d'effectuer des calculs beaucoup plus rapidement.

L'objectif de l'apprentissage par sketching est de calculer une estimation d'une distribution µ (ou des paramètres de distribution θ d'intérêt) en résolvant :

µ * θ = arg min µ θ ẑ -Sµ θ 2 2 . (7.2)
En pratique, ce problème de "correspondance de sketch" peut être résolu par l'algorithme OMP (Orthogonal Matching Pursuit) à apprentissage compressif et son extension, l'algorithme OMP à apprentissage compressif avec remplacement pour les modèles de mélange.

Ces algorithmes gourmands conviennent à tout opérateur du sketching S et à toute densité de distribution µ, tant que le sketch Sµ et son gradient ∇ θ Sµ par rapport aux paramètres de distribution θ qui nous intéressent ont une expression de forme fermée : le coeur de ces algorithmes basés sur l'OMP consiste à calculer l'expression de Sµ et ∇ θ Sµ.

Limites du sketching

Pour réduire la charge de calcul de l'apprentissage du régularisateur (modèle préalable), nous explorons d'abord la méthode du sketching dans le contexte des correctifs d'image où le GMM avec des covariances complètes doit être estimé à partir de la base de données compressée. Dans [START_REF] Keriven | Sketching for large-scale learning of mixture models[END_REF], le sketching est mis en oeuvre et évalué sur des données synthétiques pour estimer un GMM avec des covariances diagonales. Il est démontré que sur de grandes données synthétiques, pour l'estimation d'un GMM, le sketching produit des résultats précis tout en nécessitant moins d'espace mémoire et de calculs.

En raison de la malédiction de la dimensionnalité, la manipulation des matrices de covariance des GMM est coûteuse en terme de calcul. Dans [START_REF] Renna | Reconstruction of signals drawn from a gaussian mixture via noisy compressive measurements[END_REF], les auteurs montrent que la plupart des images et vidéos naturelles pouvant être représentées par un GMM avec des matrices de covariance de faible rang. Les expériences ont également montré l'efficacité des matrices de covariance de faible rang appliquées au débruitage d'images [START_REF] Parameswaran | Accelerating GMM-based patch priors for image restoration: Three ingredients for a 100× speed-up[END_REF], l'inpainting d'images, la vidéo à grande vitesse et l'imagerie hyperspectrale [START_REF] Yang | Video compressive sensing using gaussian mixture models[END_REF]. Cela nous incite à utiliser de telles covariances de faible rang dans la modélisation GMM des patches et à étendre le sketching en conséquence pour gagner en rapidité de calcul et gérer la modélisation des patches d'image de la manière la plus flexible possible. Ainsi, en supposant que l'a priori des tâches est un GMM en haute dimension avec des covariances à queue plate, nous proposons l'algorithme Low-Rank COMP pour apprendre le modèle préalable. Nos expériences montrent que le modèle préalable appris peut être utilisé pour effectuer un débruitage d'image [START_REF] Shi | Compressive learning for patch-based image denoising[END_REF].

Cependant, les données réelles doivent être modélisées avec des distributions plus complexes. Dans ce cas, la carte originale des caractéristiques du sketching peut ne pas avoir une forme fermée. Cela limite l'utilisation possible du sketching dans la pratique.

Notre objectif est de récupérer une bonne approximation de la distribution de probabilité de toute donnée inconnue à partir de son sketch (c'est-à-dire au-delà du GMM). Comme les réseaux de neurones ont un grand pouvoir d'expression [START_REF] Hornik | Multilayer feedforward networks are universal approximators[END_REF][START_REF] Pan | Expressiveness of rectifier networks[END_REF], nous proposons de résoudre ces problèmes en adaptant le sketching aux réseaux de neurones.

Étant donné que les NN ont de bonnes propriétés de généralisation, la régularisation proposée devrait être capable de s'adapter à ces propriétés, et être capable d'encoder des distributions de probabilité complexes. Malheureusement, une application pratique directe des outils existants n'est pas possible car il n'existe pas d'expressions analytiques de Sµ pour l'opérateur de sketching S basé sur des moments de Fourier aléatoires.

Nous proposons d'approximer l'opérateur du sketching S par une version discrète S d qui peut être calculée à l'aide d'expressions explicites, et de telle sorte que l'approximation permette toujours d'appliquer la méthode d'estimation de l'adéquation du sketching.

Contributions

Motivations

Malgré les progrès récents des méthodes de restauration d'images basées sur l'apprentissage profond, la recherche d'une distribution préalable appropriée et l'apprentissage efficace du modèle à partir d'un grand ensemble de données restent des défis importants. En effet, les méthodes basées sur l'apprentissage profond nécessitent une grande quantité de données d'entraînement pour apprendre les caractéristiques complexes des données, et le choix de la distribution préalable peut avoir un impact significatif sur la performance de la restauration. De plus, les méthodes basées sur l'apprentissage profond peuvent souffrir d'un surapprentissage lorsqu'elles sont entraînées sur un ensemble de données limité, ce qui peut conduire à une mauvaise généralisation sur de nouvelles images. Par conséquent, le développement de méthodes robustes et efficaces pour la modélisation préalable et l'apprentissage à partir de grands ensembles de données est un domaine de recherche actif dans le débruitage d'images et les tâches connexes.

Pour estimer le meilleur modèle possible, nous devons maximiser la redondance des informations structurelles et utiliser des bases de données d'entraînement aussi grandes que possible. Avec un ensemble de données plus important, le modèle a accès à des exemples plus variés de structures d'images naturelles et de modèles de bruit, ce qui peut l'aider à apprendre une distribution préalable plus robuste et plus précise. En outre, un grand ensemble de données permet d'augmenter la redondance des informations structurelles, ce qui est bénéfique pour l'apprentissage d'un modèle capable de bien se généraliser à de nouvelles images inédites. Cependant, avec des ensembles de données plus importants, il est important d'utiliser des algorithmes d'apprentissage efficaces capables de gérer les exigences informatiques accrues et d'équilibrer soigneusement la taille et la diversité de l'ensemble de données avec les ressources informatiques disponibles.

Comme les approches traditionnelles de minimisation empirique nécessitent l'accès à l'ensemble des données d'apprentissage, lorsque la taille de la base de données est importante, le processus d'apprentissage peut s'avérer extrêmement coûteux. Par exemple, dans le cas de la méthode d'apprentissage classique EM, la consommation de mémoire et le temps de calcul dépendent de la taille de la base de données.

Plan de la thèse et contributions

Le reste de la thèse est divisé en cinq chapitres distincts.

Dans le chapitre 2, nous proposons de passer en revue le sketching en commençant par l'introduction du concept d'apprentissage compressé section 2.1. On explique comment le sketching est construit et comment l'opérateur du sketching est conçu. Ensuite, certains fondements théoriques du sketching sont examinés dans section section 2.2. Dans section 2.3, nous expliquons l'algorithme CL-OMP pour le sketching.

Dans le chapitre 3, nous nous concentrons sur la façon dont nous adaptons le sketching pour effectuer l'estimation GMM pour la tâche de débruitage d'image. Nous proposons un algorithme, LR-COMP, pour estimer un GMM avec une approximation de faible rang. Des résultats expérimentaux sont fournis. Les expériences illustrent qu'un GMM à haute dimension peut être appris à partir d'une base de données compressée et ensuite utilisé pour une tâche de débruitage basée sur les patches. Nous obtenons des performances de débruitage proches des méthodes basées sur un modèle d'état de l'art, tandis que la procédure d'apprentissage utilise moins de mémoire et de temps que l'algorithme EM classique.

Le chapitre 4 consiste en deux parties qui sont des extensions du chapitre 3. Nous montrons empiriquement que les modèles préalables appris à partir d'une approche d'ensemble de données compressées peuvent atteindre une performance de super-résolution satisfaisante, et qui peuvent potentiellement être utilisés pour d'autres tâches de restauration d'images. Nous fournissons également une preuve de concept qui étend le cadre du sketching aux tâches de débruitage vidéo.

Dans le chapitre 5, nous proposons d'adapter le sketching avec les réseaux de neurones pour modéliser des données plus complexes. Nous montrons comment nous adaptons le sketching à l'apprentissage de régularisateurs paramétrés par DNN. Notre travail montre la faisabilité de l'apprentissage sans "batch" des fonctions de régularisations parametrizées par un réseau de neurones profonds à partir d'un ensemble de données compressées.

Une fois le réseau entraîné, la fonction de régularisation peut être utilisée pour le débruitage. Pour ce faire, nous proposons une approximation de l'opérateur de compression qui peut être calculée explicitement pour la tâche d'apprentissage d'un régularisateur par DNN. Notre approche surmonte les limites des algorithmes d'apprentissage gourmands du sketching original. L'efficacité du schéma proposé est testée sur des exemples synthétiques et des ensembles de données réels. En raison des limites de notre approximation de l'opérateur du sketching (la dépendance des points d'entraînement), la faisabilité est illustrée sur des données 2-D et 3-D avec des distributions éventuellement complexes. Ce travail pose la question plus large de la conception d'opérateurs du sketching pouvant être calculés de manière explicite en haute dimension.

Enfin, le dernier chapitre conclut nos travaux.
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 15 Figure 1.5: Schema of the sketching framework.

  with m smaller than d which allows identifiability of all s-sparse signals, i.e. any x ∈ Σ s (where Σ s is the set of s-sparse vectors) is the only solution to the problem M x * = y over Σ s . One can theoretically recover any x by solving the following problem in the noiseless case:
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 21 Figure 2.1: Main compressive learning approaches.
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  k) P ) a diagonal matrix. The diagonal entries λ (k) i of Λ k are the singular values of Σ k . Then we can compute (3.13) by:
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 3 Figure 3.3 shows the denoising performance on 6 images of the Set12 dataset. The noisy images are obtained by adding zero-mean Gaussian noise with standard deviations σ = 20 to the test images. The covariance matrices of the model learned by the sketching have the rank r = 20. We observe that for most images, we obtain similar or better values of PSNR and SSIM.Another evaluation was carried out on the images from the BSD68 dataset. The test images have been corrupted by adding white Gaussian noise with standard deviations
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 33 Figure 3.3: From left to right: Original images, noisy images with noise σ = 20, results with EM model, results with LR-COMP model. The denoising results are evaluated with PSNR/SSIM. Similar denoising performances are obtained with LR-COMP with a 1000 times smaller compressed database. To estimate the prior model, our method is 2 times faster than the EM algorithm.
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Figure 3 . 4 :

 34 Figure 3.4: The first 20 eigenvectors of the covariance matrices (for the heaviest weight) learned by LR-OMP with rank r = 20 (a), r = 49(b) and EM (c). The decay of the corresponding eigenvalues (d).
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 35 Figure 3.5: Denoising performance (PSNR/SSIM) and estimation time (hours) of models learned with different sketch size. c = m/(K(P r + 1) = 1 (a), 5 (b), 10 (c), 20 (d).
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 3 Figure 3.6 shows the denoising performance of models estimated with different ranks. Our experiments show that the model with reduced rank results in a minor PSNR/SSIM drop compared to the full-rank model. However, the learning time is much faster. According to the experiments, we cannot reduce the rank further (less than 20) to keep good denoising performance.
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 36 Figure 3.6: Denoising performance (PSNR/SSIM) of models learned with different intrinsic dimensions. r = 10 (left), 20 (middle), 49(right).
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 41 Figure 4.1: Example of image with different degradation levels. From left to right: f = 1, 2, 4, 8.
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 42 Figure 4.2: Illustration of super-resolution by a factor of 3 with a Gaussian noise of standard deviation = 2. (a) The original high-resolution images. (b) The low-resolution images. (c) The super-resolution results obtained with GMM prior learned from a sketch of size m = 10 4 . (d) The results obtained with GMM prior learned from the original dataset with EM.
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 4 [START_REF] Allen-Zhu | A convergence theory for deep learning via over-parameterization[END_REF] shows the noisy frame used to test with PSNR value and the ground truth.
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 43 Figure 4.3: Used images in the experiments. Orignal frame (left) and frame with Gaussian noise of standard variance of σ = 25 (right).
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 44 Figure 4.4: Denoising results with priors learned from sketches of 2D patches (left) and simulated 3D patches (right) using the same training and denoising parameters.
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 45 Figure 4.5: Denoising result on "Cows" sequence. Original frames (top). Noisy frames with additive Gaussian noise of σ = 25 (middle) and denoised frames with a prior model learned from a sketch of real 3D patches (bottom).
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 46 Figure 4.6: Denoising result on "Tennis" sequence. Original frames (top). Noisy frames with additive Gaussian noise of σ = 25 (middle) and denoised frames with a prior model learned from a sketch of real 3D patches(bottom).
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 51 Figure 5.1: The distribution densities of sample data (top) learned from compressed dataset with sketching (compression ratio r = 4000)(middle) and original non compressed dataset (bottom).

Figure 5 .

 5 3 visually illustrates the 2-D denoising results using regularizers learned from the 4000 times compressed dataset (left) and the original dataset (right).

  Figure 5.4 shows the 3-D denoising results with different noise levels. The prior models used is learned from a dataset compressed 3000 times.
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 52 Figure 5.2: The 3-D spiral data samples (left) and the distribution density learned with the proposed approach (right, points of the learned distribution on a grid exceeding a given threshold).
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 53 Figure 5.3: Denoising results with regularizers learned with the compressed dataset of compression ratio r = 4000 (left) and the non compressed dataset (right). The noise level is set to σ 2 = 0.15.

Figure 5 .

 5 Figure 5.4: 3-D Denoising results with densities learned from the proposed method with a compression ratio r = 3000. The noise level is set to σ 2 = 0.1 (left) and σ 2 = 0.2 (right).
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 55 Figure 5.5: Regularizers learned via the proposed method with different learning parameters. Using the same number of grid points, we have better result when the network has more neurons. (Left) 3 hidden layers with 64, 128, 256 neurons in each layer. (Right) 3 hidden layers with 64, 128, 192 neurons in each layer.
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 56 Figure 5.6: Denoising result (right) with densities (middle) learned from the compressived noisy dataset (left) with noise level σ 2 train = 0.15. The noise level of the data is set to σ 2 = 0.2.

Figure 5 .

 5 7 shows a representation of the training dataset. The regularizer is learned from a sketch of size m = 200, i.e. the dataset is compressed
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 57 Figure 5.7: The transformed audio data with each axis corresponding to a different s i for the experiment on audio file.

Figure 5 . 8 :

 58 Figure 5.8: Audio denoising performances for different noise levels: (left) σ 2 = 0.1, SNR is 10.03 for noisy data and 11.39 for denoised data; (right) σ 2 = 0.2, SNR is 4.01 for noisy data and 6.64 for denoised data.
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 59 Figure 5.9: Audio denoising performance for noise level σ 2 = 0.2.
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 72 Figure 7.2: Le schéma du sketching.
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  the image after averaging all overlapping patches z i .• Solving o i for fixed u -The minimization problem (3.6) is separable with respect to the latent variable o

i . It means that for each o i we solve a patch MAP estimation under the patch prior µ(o i ), i.e. for all i, ôi = arg min

Table 3 .

 3 1: The average PSNR and SSIM on the BSD68 dataset with 2 different levels of noise.

	σ Sketching	EM
	15 31.8 / .876 32.0 / .879
	50 24.4 / .637 24.6 / .646

Table 3 .

 3 

	2: Image denoising performance comparison of models estimated over different
	random sketch realizations.			
		Realization 1 Realization 2 Realization 3 Realization 4
	cameraman	33.1 / .930	33.3 / .930	33.4 / .930	33.4 / .930
	house	35.4 / .926	35.4 / .925	35.4 / .926	35.4 / .925
	jetplane	32.1 / .936	32.3 / .937	32.4 / .937	32.4 / .937
	lena	32.0/ .931	32.2 / .931	32.2 / .931	32.2 / .931
	pirate	29.8 / .907	30.0 / .908	30.0 / .908	30.0 / .908

Table 5 . 1 :

 51 Table of leaning times with respect to the compression ratio: sketch used for training is r times smaller than the original dataset (results in bold).

			sketching	non
		r	40000 20000 2000	400 compressed
	Time	Spiral 0.19h 0.23h 0.28h 0.72h GMM 0.23h 0.18h 0.24h 0.73h	28.7h 28.5h

Table 5 .

 5 2: Table of reconstruction loss with respect to the compression ratio: sketch used for training is r times smaller than the original dataset (results in bold).

		sketching		non
	r	40000 20000 2000	400	compressed
	SNR Spiral +1.37 +1.89 +1.92 +2.31	+2.61
	Gain GMM +0.80 +0.86 +1.57 +1.82	+1.77

  Traonmilin, Jean-François Aujol. "Sketched learning for image denoising." In: The Eighth International Conference on Scale Space and Variational Methods in Computer Vision (SSVM), Cabourg, France, 05 2021. • Hui SHI, Yann Traonmilin, Jean-François Aujol. "Compressive learning for patchbased image denoising." SIAM Journal on Imaging Sciences, 15(3):1184-1212, 2022. • Hui SHI, Yann Traonmilin, Jean-François Aujol. "Compressive learning for deep regularization for denoising." In: The Ninth International Conference on Scale Space and Variational Methods in Computer Vision (SSVM), Santa Margherita di Pula, Italy, 05 2023.

norm is bounded. Given labeled data (X, Υ) = {(x i , y i ) :x i ∈ R d , y i ∈ {-1, 1} n i=1 }, oneaims to find a linear threshold classifier w * which minimizes:

The code is available on https://github.com/shihui1224/sketching-for-denoising

Matlab implementation based on the code of[START_REF] Parameswaran | Accelerating GMM-based patch priors for image restoration: Three ingredients for a 100× speed-up[END_REF] 

Mo Chen (2021). EM Algorithm for Gaussian Mixture Model (EM GMM) (https://www.mathworks.com/matlabcentral/fileexchange/26184-em-algorithm-for-gaussian-mixturemodel-em-gmm), MATLAB Central File Exchange. RetrievedOctober 11, 2021. 

The code is available on https://github.com/shihui1224/sketching-for-super-resolution

https://www.plafrim.fr

The source code to reproduce the experiments is available at https://github.com/shihui1224/sketchingdeep-regu-for-denoising
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Data Streams

The notion of sketch can also be found in the research in streaming. In the realm of data streams, standard statistical problems include tasks like identifying frequent items (referred to as heavy hitters) among the x i elements [START_REF] Gilbert | One sketch for all: fast algorithms for compressed sensing[END_REF] and estimating quantiles of the stream content. Some compressed representations of the data stream can be built when one aims to obtain such information at a given time without the need to store the entire data flow. This compressed representation, called "sketches", enables efficient estimations. Examples of using this type of sketches include the proposed algorithms for the heavy-hitters problem based on the Count Sketch in [START_REF] Charikar | Finding frequent items in data streams[END_REF] and Count-Min Sketch in [START_REF] Cormode | An improved data stream summary: the count-min sketch and its applications[END_REF].

The sketching framework of Gribonval et al.

Based on compressed sensing, a framework fitting a mixture of isotropic Gaussians to data vectors through the computation of a low-dimensional sketch of the data has been proposed in [START_REF] Bourrier | Compressive gaussian mixture estimation[END_REF][START_REF] Bourrier | Compressive gaussian mixture estimation[END_REF] . The sketch captures the empirical moments of the underlying probability distribution. Experiments show that it is possible to precisely estimate the mixture parameters when the sketch size is large enough. The proposed approach also scales to higher dimensions and requires less memory when dealing with extensive datasets. Then sketching method is extended to more learning tasks and models such as compressive K-means [START_REF] Keriven | Compressive k-means[END_REF][START_REF] Schellekens | Compressive k-means with differential privacy[END_REF], estimation for mixtures of multivariate elliptic α-stable distributions [START_REF] Keriven | Blind source separation using mixtures of alpha-stable distributions[END_REF], clustering [START_REF] Chatalic | Large-scale high-dimensional clustering with fast sketching[END_REF][START_REF] Chatalic | Learning to sketch for compresssive clustering[END_REF], etc.

In [START_REF] Keriven | Sketching for large-scale learning of mixture models[END_REF], Keriven et al extend the sketching framework to two traditional learning problems: recovering centroids for k-means or k-medians, and Gaussian mixture model (GMM) estimation with known covariance. For the k-means or k-medians problem, the authors proposed a sketching-based algorithm that iteratively updates the estimated centroids based on a low-dimensional sketch of the data. Specifically, they use the sketching operator to compute a low-dimensional summary of the data, and then use this summary to update the estimated centroids using a standard k-means or k-medians update rule. They show that their algorithm achieves near-optimal clustering accuracy in terms of the sketch dimension and the number of clusters, under suitable assumptions on the data and the sketching operator. For GMM estimation with known covariance, the authors proposed a sketching-based algorithm that directly estimates the mixture weights and means from a low-dimensional sketch of the data. They show that their algorithm achieves near-optimal estimation error in terms of the sketch dimension and the number of mixture components, under suitable assumptions on the data and the sketching operator.

By extending the sketching framework to these traditional learning problems, the authors demonstrate the versatility and applicability of the sketching method to a wide Chapter 4

Sketching for image super-resolution and video denoising This chapter is an extension of the works described in chapter 3. In the first part, we show empirically that the prior models learned from a sketch can achieve satisfactory super-resolution performance, showing the potential of the sketching framework for other image restoration tasks. In the second part, we provide a proof of concept that extends the sketching framework to the video denoising task.

Introduction

In this chapter, we want to solve the denoising inverse problem

(5.1)

Denoising

With the learned regularization term, one can solve the variational problem (1.6) by minimizing the following function:

(5.11)

The optimization problem can be solved by gradient descent based methods. Let u t be the estimation at iteration t, the gradient step writes

where η > 0 is the step size. Similarly, we can compute the gradient by using automatic differentiation. Also, note that this denoising method can easily be extended to other linear inverse problems, such as interpolation and deconvolution by including the corresponding forward measurement operator.

Experimental results with synthetic data

To validate the proposed framework, we first test it against 2-D and 3-D synthetic problems. To illustrate the advantage of the compressive learning framework in terms of (computational) learning times, the used training datasets are made of n = 10 6 samples which are generated from: a spiral with following parameters: the radius of circular curve R= 0.3 to 1, spiral length L = 2π, i.e. {(R i , L i )} n i=1 , where R i ∼ i.i.d. L i 2π and L i ∼ i.i.d. U([0, 2π)); and a zero-mean GMM of 2 Gaussians. The proposed approach is implemented with the pytorch framework 1 . It contains parts of code taken from the Python Compressive Learning toolbox [START_REF] Schellekens | Pycle: a python compressive learning toolbox[END_REF]. To train the network, we use the Adam optimizer [START_REF] Diederik | Adam: A method for stochastic optimization[END_REF] with a learning rate of value 10 -6 . The number of points on the grid is set to N = 20 d where d denotes the data dimension. For comparison, we propose to learn the regularizer on the non compressed dataset using the same network with the following learning objective function:

Appendices

Definition .0.1. Singular values For a matrix A ∈ C m×n and i = 1, ..., min(m, n), the singular values, noted σ i (A) (that we suppose sorted by decreasing order), of the matrix A are the square roots of the eigenvalues of the matrix AA T , i.e. :

with A T the trans conjugate of A.

Definition .0.2. Frobenius norm. For a matrix A ∈ C m×n , with σ i (A) the singular values of A, the Frobenius norm of A is defined as

Definition .0.3. Operator norm. For a continuous linear operator A : V → W where V and W are Banach spaces the operator norm of A is defined as 

The minimizer D * is unique if and only if σ r+1 < σ r .