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Résumé

Le travail de thèse porte sur la caractérisation de l’amortissement des structures complexes
par la méthode de corrélation. Dans le premier chapitre, un état de l’art rassemblant
de nombreuses méthodes de caractérisations locales et globales est présenté. Dans la
deuxième partie du chapitre, les méthodes de mesures expérimentales de l’amortissement
et un modèle analytique de référence sont abordés.

Dans le deuxième chapitre, la methode Inhomogeneous Wave Correlation (IWC) qui cal-
cule la corrélation entre le champ de déplacement mesuré et une onde plane inhomogène
est revisitée. Une nouvelle variante qui considère la décroissance exponentielle avec la
distance du point d’excitation dans la formulation d’onde inhomogène est introduite.
L’introduction de cette variante a pour but d’améliorer l’estimation de l’amortissement.
La validité de la méthode proposée est étudiée numériquement sur des structures planes
avec différents degrés de complexité. Les performances de la méthode en fonction la
position du point d’excitation et de la taille de la fenêtre d’observation sont également
étudiées.

Un nouveau modèle de corrélation basé sur la fonction de Green permettant d’estimer
les paramètres élastiques équivalents des structures complexes en fonction de l’angle de
propagation est détaillé dans le troisième chapitre. Contrairement à la méthode IWC men-
tionnée ci-dessus, le champ de déplacement mesuré est désormais corrélé avec un modèle
basé sur la fonction de Green. Cette dernière est plus adaptée pour décrire le champ
proche du point d’excitation et offre plus de stabilité sur l’estimation de l’amortissement
comparée aux méthodes précédentes. Plusieurs résultats, avec des données simulées et
mesurées, sont comparés au modèle analytique et montrent la précision de cette tech-
nique pour estimer précisément l’amortissement des structures complexes en fonction de
la fréquence et de l’angle de propagation des ondes. Dans la deuxième partie du chapitre,
la performance de la méthode sur l’estimation de l’amortissement en fonction des différents
points d’excitation est également étudiée et un filtre angulaire spatial est introduit pour
améliorer le résultat.

Dans le quatrième chapitre, la méthode des sources images qui a pour objectif d’améliorer
l’estimation de l’amortissement en basses fréquences des structures faiblement amorties
est introduite. Cette approche prend en compte les réflexions des ondes de flexion aux
frontières. La performance de la méthode est étudiée sur deux types de conditions limites :
bords simplement appuyés et bords libres. Le résultat est comparé à la méthode introduite
dans le troisième chapitre ainsi qu’au modèle analytique GLM.

Mots-clés: amortissement, méthode de corrélation, fonction de Green, méthode des
sources images, nombre d’onde
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Abstract

The thesis presents inverse correlation techniques able to measure accurately the damping
loss factor of complex plane structures. In the first chapter, the state of the art gathering
numerous local and global characterization methods is presented. In the second part of
the chapter, various topics of direct interest to the thesis such as classical damping loss
factor measurement techniques and the analytical solution based on the discrete general
laminate model (GLM) are briefly discussed.

In the second chapter, the inhomogeneous wave correlation (IWC) method based on the
maximization of the correlation between an inhomogeneous wave and the measured dis-
placement field as a function of the wave heading angle is revisited. A new variant that
considers the exponential decay with distance from the excitation point in the inhomo-
geneous wave formulation is introduced. The purpose of introducing this variant is to
improve the estimation of the damping loss factor. The validity of the proposed method
is investigated numerically on flat thin structures and sandwich damped structures. The
performance of the method related to the excitation point location and the size of the
observation window are also investigated.

A new Green’s function-based model correlation (GFC) method able to estimate the
equivalent elastic parameters of complex structures at different propagation angles is
detailed in the third chapter. Contrary to the IWC method, the measured displacement
field is correlated with a Green’s function-based model. This approach is more adapted
to describe the field near the excitation point and offers more stability in estimating
the damping loss factor compared to previous methods. Several results, with simulated
and measured data, are compared with an analytical discrete laminate model and show
the accuracy of this technique to recover the damping loss factor of complex structures
as function of the frequency and the heading angle. In the second part of the chapter,
the impact of different excitation location on the estimation of the wavenumber and the
damping loss factor is investigated. A spatial angular filter to rectify the estimation of
the damping loss factor is introduced.

In the fourth chapter, the image source method with an objective of improving the pre-
vious GFC method in the low frequency range and for lightly damped structures is in-
troduced. The proposed method takes into account the reflection at boundaries which is
ignored in the free field Green’s function used in the previous chapter. The performance
of the method is investigated for two types of boundary conditions: simply supported and
free edges. The identified parameters of the numerical simulations are compared to the
previous GFC method and to the analytical discrete laminate model.

Keywords: damping, inverse method, viscoelastic, Green’s function, image source method,
wavenumber
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Innovation of Québec (CRIAQ) for their financial support.

Thank you to my dear colleagues at Université de Technologie de Compiègne: Christophe
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Introduction

Context

Companies are creating new technological solutions to satisfy client demands and, on
the other hand, to respect the rules established by the local and global authorities on
noise pollution. The creation of complex structures like sandwich and composite panels
is crucial to meet these requirements.

Most industries, including the aviation business, the building industry, the automotive
industry, the railroad industry, and the armaments industry, use these materials. For
instance, the aircraft body in the aviation sector is roughly 50% constructed of composite
materials, as shown in Fig. 1. These materials make it possible to reduce body weight,
which in turn lowers fuel consumption. However, the usage of these materials significantly
impacts the acoustic performance of the aircraft. As a result, numerous studies have been
carried out to improve the design of the structure to overcome this limitation, with the
objective of increasing passenger comfort.

Figure 1: Usage of various materials in the Boeing 787 [44].

In the construction sector, the use of thick concrete is no longer privileged in the
economic point of view due to the weight of the wall that is proportional to the acoustic
performance. The usage of curtain wall or in french mur-rideau is more often adopted
because this wall can achieve similar or even superior performance acoustically and ther-
mally compared to the conventional materials with reduced thickness and cost.

Sandwich and composite materials are very practical because of their lightness and
their flexible mechanical properties compared to classical homogeneous materials. An
illustration of a sandwich with a lightweight thick honeycomb core and two thick stiff
skins is shown in Fig. 2. The anisotropic behavior of the panel makes it very challenging
to develop a robust predictive model.

The windshield of a car made up of glass skins and a viscoelastic core is another
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Introduction 2

Figure 2: Illustration of a sandwich with a honeycomb core panel [64].

example of complex structures. The frequency dependent behavior of the viscoelastic core
makes the estimation of equivalent material properties and in particular, the damping loss
factor very difficult.

Numerous characterization methods have been developed throughout the years to feed
numerical models with accurate input data. However, a robust method able to estimate
the damping loss factor remains an open issue. In this context, the main focus of the
thesis is to develop a robust predictive model able to characterize the damping loss factor
of these structures.

Research objectives

The flowchart of the inverse characterization method is shown in Fig. 3. The normal
displacement field is considered as an input. The scope of the thesis is to develop a
model predicting accurately the wavenumber and in particular, the damping loss factor
as a function of the frequency and the wave propagating angle of complex structures via
correlation technique.

The wavenumber k can be defined as the number of complete wave cycles per unit
length: k = 2π/λ, where λ represents the wavelength. The wavenumber is usually ex-
pressed in a complex form, with the imaginary part containing information about the
attenuation per unit distance and can be related to the damping loss factor. Accurate
estimation of these two fundamental parameters is extremely useful for predicting the
acoustic performance of a structure.

To reach this objective, the advantages and the drawbacks of precedent works are
investigated. Amongst the existing tools are the modal analysis, the McDaniel’s approach,
the discrete Fourier transform, Force Analysis Technique (FAT), the Inhomogeneous Wave
Correlation (IWC) method and the Green’s function correlation method.

In the low frequency range, the modal analysis is widely used to characterize the
material properties. In the mid and the high frequency range, this approach is no longer
applicable due to the high modal density and the high modal overlap of the vibrating
structure. The McDaniel’s approach based on the plane wave propagation allows the
characterization of one-dimensional structures in narrow frequency bands. The discrete
spatial Fourier Transform (DFT) has also been used widely to determine the wavenumber
of two dimensional structures. The rapidity of the method presents major advantages but
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Normal displacement of a panel

Inverse characterization methods

• Wavenumber

• Damping loss factor

• ….

• Modal analysis

• Force Analysis Technique

• McDaniel’s approach

• Inhomogeneous Wave Correlation

• Green’s function-based model

• …

Figure 3: Flowchart of the characterization process.

is limited to equally spaced measurement points and is not able to estimate the damping
loss factor.

The inhomogeneous wave correlation (IWC) method is the extension of the McDaniel’s
approach to two dimensional structures. This approach is based on the maximization of
the correlation between an inhomogeneous wave and the spatial field as a function of the
wave heading angle. However, the IWC method is based on the plane wave hypothesis
and is limited due to the nature of the plane wave itself. Indeed, the vibrational field near
the excitation point cannot be compared with a plane wave. Therefore the measurements
must be done over an observation area sufficiently far from the excitation point. In reality,
this condition is difficult to obtain due to the finite dimensions of the panel.

Another wave fitting approach based on the Green’s function which is more adapted
to describe the vibrational field near the excitation point has been developed recently.
This method has been successfully applied to isotropic structures and to orthotropic
elliptic structures. To our knowledge, this method has never been applied to anisotropic
structures.

Our first objective is to revisit the IWC method and introduce a new variant to
improve the estimation of the damping loss factor. The second objective is to develop
a new Green’s function correlation method able to estimate the damping loss factor of
anisotropic structures as a function of the frequency and the wave propagating angle. The
third objective is to develop a method overcoming the limitations of the free field Green’s
function and improving the estimation of the damping loss factor for lightly damped
structures and for the low frequency range.
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Outlines

The thesis is divided into four chapters. In the first chapter, the state of the art gath-
ering numerous local and global characterization methods is presented. The advantages
and limitations of each methods are presented. Classical experimental damping loss factor
measurement methods such as the 3dB method, the power input method and the decay
rate method are also presented in this chapter. Finally, the analytical solution based
on discrete general laminate model (GLM) [36] used as a reference for validation of the
estimated wavenumber and damping is briefly discussed.

The second chapter introduces a new variant of the inhomogeneous wave correla-
tion(IWC) method. This method is based on the maximization of the correlation function
between the measured displacement field and the inhomogeneous plane wave. The new
variant of the method that explicitly accounts the exponential decay of the wave ampli-
tude with the distance from the source is introduced. The validity of the proposed method
is investigated numerically on aluminium isotropic panel and anisotropic 7 layers epoxy
resin panel. The effect of the excitation point position and the size of the observation
window are also studied.

A new Green’s function-based model correlation (GFC) able to estimate the equivalent
elastic parameters of complex structures at different propagation angles is detailed in the
third chapter. Contrary to the IWC method, the measured displacement field is correlated
with a Green’s function-based model. This approach is more adapted to describe the field
near the excitation point. This technique offers more stability and reduces computation
time in estimating the damping loss factor compared to previous methods. The validity of
the proposed method is investigated numerically using the Finite Element Method (FEM)
on several sandwich panels and is tested experimentally on a non-isotropic thick sandwich
composite panel with a honeycomb core. The identified parameters of the numerical
simulations are compared to an analytical discrete general laminate model (GLM). The
experimental damping loss factor estimation is compared with reference methods such as
the power input method, the 3dB method and the decay rate method.

In the fourth chapter, the image source method is explored. Compared to the previ-
ous method, this approach takes into account the reflection at boundaries of the panels.
Combining this method with GFC improves the estimation of the damping loss factor for
low damping structures and for the low frequency range. The identified parameters of the
numerical simulations are compared to the previous GFC method and to the GLM.





Introduction 6



Chapter I

Literature review and state of the art

I. 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

I. 2 Local characterization method: Force Analysis Technique 10

I. 3 Global characterization methods . . . . . . . . . . . . . . . 13

I. 3. 1 McDaniel’s approach . . . . . . . . . . . . . . . . . . . . 13

I. 3. 2 Discrete spatial Fourier transform . . . . . . . . . . . . . 15

I. 3. 3 Inhomogeneous Wave Correlation method . . . . . . . . 20

I. 3. 4 InhomogeneousWave Correlation method for curved struc-
tures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

I. 3. 5 Inhomogeneous Wave Correlation- Green’s function method 26

I. 3. 6 Green’s function of elliptical orthotropic plates . . . . . 27

I. 4 Classical damping loss factor measurement techniques . . 29

I. 4. 1 Half-power bandwidth method (3dB method) . . . . . . 29

I. 4. 2 Decay Rate Method . . . . . . . . . . . . . . . . . . . . . 31

I. 4. 3 Power Input Method . . . . . . . . . . . . . . . . . . . . 32

I. 5 Spatial damping loss factor . . . . . . . . . . . . . . . . . . 35

I. 5. 1 Love-Kirchhoff’s theory . . . . . . . . . . . . . . . . . . . 35

I. 5. 2 Spatial average damping loss factor . . . . . . . . . . . . 37

I. 6 Image source method . . . . . . . . . . . . . . . . . . . . . 38

I. 6. 1 Image source method for simply supported and roller sup-
ported panels . . . . . . . . . . . . . . . . . . . . . . . . 38

I. 6. 2 Image source method for arbitrary boundary conditions 40

I. 6. 3 A wave fitting approach using an image source method . 47

I. 7 Discrete general laminate model . . . . . . . . . . . . . . . 50

I. 8 Conclusion of the chapter . . . . . . . . . . . . . . . . . . . 53

7



Chapter I - Literature review and state of the art 8

I. 1 Introduction

In the domain of transportation industry, noise control requires robust simulation tools
to predict the vibratory and acoustic levels inside and outside vehicles such as airplanes,
cars and trains. Numerous global [21, 86, 41, 42, 43, 7, 59, 60] and local [71, 72, 1, 57, 76, 5]
characterization methods have been developed throughout the years to feed the numerical
models with accurate input data.

One of the local approaches that has been widely used is the Force Analysis Technique
(FAT) [71, 72, 70, 1, 2, 57]. This method uses the equation of motion and a spatial
finite different scheme to estimate the elastic parameters. The Corrected Force Analysis
Technique (CFAT) [49, 48, 58, 55] extends the method to reduce the bias error of the
finite different scheme by adding correction factors. The main advantage of this method
is the ability to be applied without any knowledge outside of the studied area such as
the boundary conditions or sources. However, this method is sensitive to measurement
uncertainties due to the fourth-order derivatives of the measured deflections of the finite
difference scheme.

On the other hand, the global wave fitting approach which is less sensitive to mea-
surement uncertainties is adopted in this thesis. More often, the measured displacement
field is fitted with an inhomogeneous wave. McDaniel et al. [61, 62] applied the wave
fitting method to estimate the flexural wavenumber and the damping loss factor of one
dimensional structures. This approach is based on the error minimisation between a wave
model and the measured responses.

The discrete spatial Fourier Transform (DFT) [50, 42, 33] has also been widely used
to determine the wavenumber of two dimensional structures. The rapidity of the method
using the fast Fourier transform algorithm presents a major advantage but is limited to
equally spaced measurement points and is not able to estimate the damping loss factor.

The Inhomogeneous Wave Correlation (IWC) developed by Berthaut et al. [7] ex-
tends the McDaniel method for two-dimensional structures and the DFT method for the
identification of the damping loss factor. This approach is based on the maximization of
the correlation between an inhomogeneous wave and the spatial field as a function of the
wave heading angle. The method has been applied to one-dimensional structures [73, 45],
two-dimensional sandwich structures with honeycomb cores [41], stiffened panels [42, 43]
and panels with distributed resonators [87].

Cherif et al. [21] applied the IWC method to estimate the damping loss factor of
orthotropic structures using an iterative refinement process. Tufano et al. [86] applied
this approach to curved structures with resonators. However, the IWC method which is
based on the plane wave hypothesis is limited due to the nature of the plane wave itself.
Indeed, the vibrational field near the excitation point cannot be compared with a plane
wave. Therefore the measurements must be done over an observation area sufficiently far
from the excitation point. In reality, this condition is difficult to obtain due to the finite
dimensions of the panel.

To overcome this last limitation, Tufano [83] replaced the inhomogeneous wave func-
tion by the Green’s function of the isotropic infinite plate. This method combines advan-
tages of the IWC and the Green’s function. Compared to the IWC method, the Green’s
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function is more adapted to describe the vibrational field near the excitation point. Tu-
fano applied this method to isotropic laminated plate and isotropic homogeneous plate
with tuned mass damper (TMD).

Another wave fitting approach has been introduced by Cuenca et al. [27, 26, 28]. In
this approach, the harmonic displacement field model is constructed by using a linear
combination of the Green’s function of an infinite plate and its image sources, which rep-
resent the successive reflections of waves on the boundaries [27]. This model is then fitted
with the measured displacement field to estimate the material properties. Roozen et al.
[75] applied the method experimentally to estimate the wavenumber and the damping
loss factor of a thin isotropic plate by adding a Bayesian regularisation to increase the
accuracy of the method. Recently, Marchetti et al. [57] extended the method to char-
acterize elliptical orthotropic structures based on the analytical expression developed by
Berthaut [6] in the appendix of his thesis.

This chapter represents a general overview of these methods with a brief discussion
of their advantages and limitations. In the second part, various topics of direct interest
to this thesis will be briefly discussed. In Section I. 4, classical methods such as the 3dB
method, the decay rate method, the power input method and the spatial damping loss
factor are presented. Then, the image source method is presented in Section I. 6. Finally
as the discrete general laminate model (GLM) [36] will be used throughout this thesis as
a reference for validation of the estimated wavenumber and damping, a brief description
will be given in Section I. 7.
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I. 2 Local characterization method: Force Anal-
ysis Technique

The Force Analysis Technique (FAT) also known in French as Résolution Inverse
Filtrée Fenêtrée (RIFF) has been developed first by Pézerat and Guyader for localization
of external sources on a beam [71] and on a panel [72] and has been adapted to estimate
other elastic parameters such as the Young’s modulus and the damping loss factor. This
method is based on the estimation of the equation of motion by means of a finite difference
scheme.

The principle of the method is detailed here through the example of determining the
Young’s modulus E and the damping loss factor η of a thin isotropic panel [1]. The equa-
tion of motion of an isotropic panel within an area without external force (i.e., f(x, y) = 0)
is written as:

D

ρhω2
(
∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+

∂4w

∂y4
) = w(x, y) , (I.1)

where D is the bending stiffness, ρ is the mass density, h is the thickness and w(x, y) is
the displacement. The complex bending stiffness writes:

D =
E(1 + iη)h3

12(1− ν2)
, (I.2)

with E(1 + iη) the complex Young’s modulus, η the loss factor and ν the Poisson’s coef-
ficient. Eq. I.1 expresses the fact that the bilaplacian ∇4w(x, y) equals the displacement
w(x, y) up to a constant multiplier [1]. Assuming that the displacement w(x, y) is known,
the quantity D/ρh is quantifiable at any frequency without any knowledge of the location
and the amplitude of the force and the boundary conditions.

In reality, the displacement at any location is easily measured by using an accelerom-
eter or laser vibrometer but the fourth-order partial derivatives in Eq. I.1 is not direct.
To overcome this difficulty, the displacement wi,j can be measured at discrete abscissas
(xi, yi) over a regular mesh grid in order to approximate the partial derivatives using a fi-
nite difference scheme. The discretization of the equation of motion using finite difference
scheme writes:

D

ρhω2
(δ4xi,j + 2δ2x2yi,j + δ4yi,j) = wi,j , (I.3)

where δ4xi,j , δ
2x2y
i,j and δ4yi,j are the fourth-order partial derivatives of the displacement field.

These derivatives write:

∂4w

∂x4
≈ δ4xi,j =

1

∆4
x

(wi+2,j − 4wi+1,j + 6wi,j − 4wi−1,j + wi−2,j) , (I.4)

∂4w

∂y4
≈ δ4yi,j =

1

∆4
y

(wi,j+2 − 4wi,j+1 + 6wi,j − 4wi,j−1 + wi,j−2) , (I.5)
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∂4w

∂x2∂y2
≈ δ2x2yi,j =

1

∆2
x∆

2
y

(wi+1,j+1 − 2wi+1,j + wi+1,j−1 − 2wi,j+1

+ 4wi,j − 2wi,j−1 + wi−1,j+1 − 2wi−1,j + wi−1,j−1) .

(I.6)

The identification of the loss factor η and the Young’s modulus E can then be per-
formed. First, the displacement field wi,j is measured or simulated. Then, the discrete
bilaplacian ∇4

i,j = δ4xi,j + δ2x2yi,j + δ4yi,j is calculated with the finite difference scheme and Eq.
I.7 is solved in a least square sense.

 δ4x1 + 2δ2x2y1 + δ4y1
...

δ4xN + 2δ2x2yN + δ4yN

 D

ρhω2
=

 w1

...
wN

 . (I.7)

The method has been applied numerically to a simply supported isotropic thin plate
(Length Lx = 0.5 m, width Ly = 0.4 m, thickness h = 5 mm, density ρ = 1500 kg/m3,
Poisson’s ratio ν = 0.3, Young’s modulus E = 5 GPa and loss factor η = 0.05). The
geometry and the observation area of the simulation is shown in Fig. I.1.

Figure I.1: Geometry of the panel used for numerical simulation [1].

The method predicts precisely the Young’s modulus and the damping loss factor from
an exact displacement field without noise as shown in Fig. I.2a-b respectively. However
when the noise is added (Signal to noise ratio (SNR) = 40dB), the identification of the
Young’s modulus and the damping properties become erroneous.

In fact, the finite difference scheme is very sensitive to the noise. In order to overcome
this limitation, each field is windowed by a bi-dimensional Tukey window Ψ2D

i,j to replace
the truncation of the field at the edges by a smooth variation from zero amplitude.

The windowed field is then convoluted by the finite spatial response hi,j of a low-pass
filter with cut-off wavenumber kc = αkf , where kf corresponds to the natural wavenumber
and the coefficient α is chosen between 1 and 4 depending on the signal-to-noise ratio [1].
The complete expression of the Tukey window and the wavenumber filter can be obtained
in [1, 49, 48]. The summary of the procedure is shown in Fig. I.3.
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Figure I.2: Estimation of the Young’s modulus and the loss factor from the exact dis-
placement field and the noisy displacement field. (a) Young’s modulus E and (b) loss
factor η. The arrows shows the input values of E and η [1].

Figure I.3: Procedure to identify the properties of the structure. The derivatives ∇4
i,j is

determined from the displacement field wi,j. Both fields are then regularized and solved
based on the wanted criteria [1].

The results in Figs. I.4a-b show the identification of the Young’s modulus and the
damping loss factor after being windowed and filtered. The Young’s modulus is well
identified in Fig. I.4a and the relative error is almost the same for all the noise levels.
However, the relative error on loss factor is highly dependent on the level of noise especially
in the low frequency range [1].

The Force Analysis Technique has been extensively developed to determine material
properties of a Timoshenko beam [90], an isotropic plate [1, 30], an orthotropic plate [2]
and an anisotropic plate [58]. However, this local method is sensitive to measurement
uncertainties due to the fourth-order derivatives of the measured deflections. A careful
definition of the regularization (windowing + filtering) is needed to estimate accurately
the material properties.
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Figure I.4: (a) Young’s modulus E and (b) loss factor η estimated from windowed and
filtered signal [1].

I. 3 Global characterization methods

I. 3. 1 McDaniel’s approach

McDaniel et al. [61, 62] presented a method estimating the complex wavenumbers of
one dimensional structures. This approach is based on a nonlinear optimization algorithm
that minimizes the error between the measured response and the wave model by adjusting
the complex wavenumbers and amplitudes.

The principle of the method is detailed in this section. The solution of the homoge-
neous equation of a beam is defined as [62]:

Yw(x, ω) = c1(ω)e
ikx + c2(ω)e

−ikx + c3(ω)e
kx + c4(ω)e

−kx , (I.8)

where Yw(x, ω) is the measured displacement field and cn(ω) are the constants depending
on the boundary conditions and k is the wavenumber. The wavenumber of a beam k is
defined as:

k = 4

√
ρAω2

E(ω)(1− iη(ω))I
, (I.9)

where ρ is the mass density, A is the cross-sectional area, I is the area moment of inertia,
E is the Young’s modulus and η is the damping loss factor. The method has been applied
experimentally by placing accelerometers along the beam for each measurement points
{x1, x2, x3, ..., xn}. Eq. I.8 can then be defined in the matrices form:


Yw (x1, ω)
Yw (x2, ω)

...
Yw (xn, ω)

 =


eikx1 eikx1 e−kx1 e−kx1

eikx2 e−ikx2 ekx2 e−kx2

...
...

...
...

eikxn e−ikxn ekxn e−kxn




c1(ω)
c2(ω)
c3(ω)
c4(ω)

 . (I.10)

The complex wavenumber, k(ω) = kR(ω) + ikI(ω) and the amplitudes c1(ω), c2(ω),
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c3(ω) and c4(ω) can be estimated using a non-linear optimization algorithm [62]. In this
particular case, the normalized square, ε, is defined by:

ε =

√√√√( n∑
i=1

|Yw(xi, ω)− Ya(xi, ω)|2
)
/

(
n∑

i=1

|Ya(xi, ω)|2
)

, (I.11)

where Ya(xi, ω) is the actual displacement field. Given the values of k(ω) that minimize
the error, the damping loss factor can be estimated by the following relation [24]:

η(ω) =

∣∣∣∣Im(k)4

Re(k)4

∣∣∣∣ . (I.12)

The proposed method was applied to a beam and compared to the analytical solution.
The real part of normalized wavenumber and normalized frequency is shown in Fig. I.5
and the estimated loss factor is represented in Fig. (I.6). A good correlation between the
estimated values and the actual values demonstrates the robustness of the method.

Figure I.5: Real part of the normalized wavenumber and the normalized frequency [62].

The global wave approach method introduced by McDaniel shows a good approxi-
mation of the dispersion relation and the damping loss factor from a small number of
measured response amplitudes. The absence of any hypotheses about the boundary con-
ditions and the material properties represent major advantages of the method. However,
this method is limited to one dimensional structures.
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Figure I.6: Loss factor of the normalized wavenumber and the normalized frequency [62].

I. 3. 2 Discrete spatial Fourier transform

Discrete spatial Fourier transform is one of the most widely used method to determine
the flexural wavenumber of structures from the measured harmonic displacement field
[88, 82, 81]. The main advantage of this method is the computational efficiency due to the
existing fast Fourier transform (FFT) algorithm compared to other methods. To better
understand the spatial Fourier Transform, the temporal Fourier transform is described
in this section. The equivalent variables time-space will be described later to apply the
spatial-wavenumber Fourier Transform.

Temporal Fourier transform

Using the time convention eiωt, the temporal Fourier Transform and its inverse can be
described as [40]:

F (ω) =

∫ +∞

−∞
f(t)e−iωtdt , (I.13)

f(t) =
1

2π

∫ +∞

−∞
F (ω)eiωtdω , (I.14)

where Eq. I.13 is the temporal Fourier transform and Eq. I.14 is the inverse temporal
Fourier transform. An example of the temporal Fourier transform is shown in Fig. I.7.

Spatial Fourier transform

Analogous to the temporal Fourier transform in Eq. I.13 and in Eq. I.14, the spatial
Fourier transform writes:
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Figure I.7: Time and frequency representation of a 500 Hz decaying sine wave and random
noise [40].

F (k) =

∫ +∞

−∞
f(r)eik.rdr , (I.15)

f(r) =
1

2π

∫ +∞

−∞
F (k)e−ik.rdk , (I.16)

where Eq. I.15 is the spatial Fourier transform and Eq. I.15 is the inverse spatial Fourier
transform. The main difference between the temporal Fourier transform and the spatial
Fourier transform is the operating variables that have changed from ωt to kr. However, the
spatial Fourier transform is more complex than the temporal Fourier transform because
the transforms are over two dimensions, in some cases three dimensions, and negative
wavenumber terms are important [40]. The parallel between both Fourier transforms is
presented in Table I.1 [31].

The spatial Fourier transform has been extensively used in determining the flexural
wavenumber of 2D planar structures. This method assumes the harmonic displacement
of the form:

w(x, y, t) =
1

2π

∫ +∞

−∞
ŵ(x, y)eiωtdω , (I.17)

where ŵ(x, y) is the frequency dependent displacement field. In the discrete domain, the
displacement field of Eq. I.17 can be described as:
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Temporal Fourier Transform Spatial Fourier Transform

Time (s) Frequency (Hz) Space (m) Wavenumber (rad/m)

Number of points: N Number of points: N

Acquisition fe =
1
dt
= N

T
Measurement Ke =

2πN
L

time: T length: L

dt = T
N

df = 1
T

dL = L
N

dK = 2π
L

fmax = fe
2

Kmax = πN
L

Table I.1: Parallel between the temporal Fourier transform and spatial Fourier transform.
fe is the sampling frequency, Ke is the sampling wavenumber, dt is the time resolution, df
is the frequency resolution, dL is the length resolution, dK is the wavenumber resolution,
fmax is the maximum frequency and Kmax is the maximum wavenumber [31].

ŵ(xi, yj) =
1

2π

N1−1∑
p=0

N2−1∑
q=0

̂̂w(kxp, kyq) e−i(kxpxi+kyqyj) , (I.18)

where N1 and N2 are the number of measured data along axes x and y. The exponential
terms kxp and kyq writes:

kxp = p∆kx and kyq = q∆ky , (I.19)

where ∆kx = 2π
N1∆x

and ∆ky = 2π
N1∆y

are the discrete wavenumbers along axes x and y.

The Discrete Fourier transform ŵ −→ ̂̂w writes [42]:

̂̂w(kxp, kyq) = 1

N1N2

N1−1∑
i=0

N2−1∑
j=0

ŵ(xi, xj) e
i(kxpxi+kyqyj) . (I.20)

Ichchou et al. [42, 43] applied the DFT to identify the guided waves in a ribbed plate.
The characteristic of the panel with an area of 1.2 x 0.9 m2 is described in Table. I.2. The
multi-modes dispersion curve of the ribbed panel have been experimentally identified and
the result is shown in Fig. I.8. For the identification of the guided waves, the filtering
of the signal and the inverse discrete Fourier transform are applied. The summary of the
method is shown in Fig. I.9.

The rapidity and bijectivity of the method present major advantages compared to
other methods. The bijectivity means that the DFT can be inversed and filtering of the
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ρ E ν G h
Plate 2800 kg m−3 75 GPa 0.33 28 GPa 1.25 mm

ρ E ν G a b p
Ribs 2800 kg m−3 75 GPa 0.33 28 GPa 10 mm 10 mm 10 cm

Table I.2: Characteristics of the ribbed plate with a and b are the width and the height
of the ribs respectively and p is the spacing between two ribs [43].

Figure I.8: Experimental identification of the multi-modes dispersion curve. The result
is compared to the Wave Finite Elements Method (WFEM), the homogenized orthotropy
model and the pure plate and beam flexural wavenumber. Remark: The marker ∗ is
represented by the marker ◁ with different colours in the figure [43].

signal is possible. The rapidity of the method can be achieved by using a Fast Fourier
Transform (FFT) algorithm.

However, the DFT presents few major drawbacks such as aliasing, leakage and poor
resolution. The aliasing is due to the field discretization of the form:

̂̂w (kx, ky) = ̂̂w(kx + 2π

∆x
, ky

)
= ̂̂w(kx, ky + 2π

∆y

)
. (I.21)

The DFT is 2π
∆x

-periodic. This property implies erroneous treatment outside the do-
main [− π

∆x
, π
∆x

] or [− π
∆y

, π
∆y

]. The leakage is due to the finite space of the field. A singular

wavenumber (kx, ky) appears as a cardinal sine shape instead of a Dirac distribution.

The wavenumber resolution depends on the k-space grid where the poor resolution
may be induced. The DFT is also limited to the real part of the wavenumber only, thus
making it impossible to estimate the damping loss factor using this method. The method
has been successfully applied to complex structures such as a sandwich carbon fiber panel
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Figure I.9: Process to distinguish the multi-mode dispersion curve. a) The spatial velocity
a ribbed panel at 2400 Hz. b) The wavenumber of the ribbed panel by applying the DFT.
c) Filtering of the propagation segment to identify the guided wave. d) Inverse DFT of
the progagation segment of the guided wave [42].

with a honeycomb core [20] and a ribbed aircraft panel [31]. In the next section, the
Inhomogeneous Wave Correlation method that overcomes the limitation of the DFT is
presented.
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I. 3. 3 Inhomogeneous Wave Correlation method

The Inhomogeneous Wave Correlation (IWC) developed by Berthaut et al. [6, 7]
extends the McDaniel method for two-dimensional structures and the Fourier transform
for the identification of the damping loss factor. This approach calculates the correlation
between the measured displacement field ŵ(x, y) and an inhomogeneous wave defined as:

σ̂k,γ,θ (xi, yi) = e−ik(θ)(1+iγ(θ))(xi cos θ+yi sin θ) , (I.22)

where k is the wavenumber, γ is the attenuation factor, θ is the propagation angle and
(xi, yi) are the coordinates of the point i. The correlation function is given by:

IWC(k, γ, θ) =

∣∣∫ ∫
s
ŵ.σ̂∗

k,γ,θdxdy
∣∣√∫ ∫

S
|ŵ|2dxdy.

∫ ∫
S
|σ̂k,γ,θ|2dxdy

, (I.23)

where ∗ denotes the complex conjugate. In practice, it is assumed that the measured
displacement field ŵ(xi, yi) is known on arbitrary data points (xi, yi). The integration
over the complete surface S in Eq. I.23 are replaced by a finite weighted sum of the form
[7]:

∫ ∫
S

dxdy ←→
N∑

ρiSi , (I.24)

where ρi is a surface integration weight at point i (ρi = 1 if the surface is divided into
equal surface patches and the integrand is assumed constant over each patch) , Si is an
estimation of the surface around the point i and N is the total number of acquisition
points [7]. Thus, the correlation function in the discrete form can be defined as:

IWC(k, γ, θ) =
|
∑N

i=1 ŵ(xi, yi)σ
∗
k,γ,θ(xi, yi)ρiSi|√∑N

i=1 |ŵ(xi, yi)|2ρiSi

∑N
i=1 |σk,γ,θ(xi, yi)|2ρiSi

. (I.25)

The algorithm first defines the angle θ into a discrete set of values (θj). For each of
these angles, the value of (ki, γi) that maximizes the IWC function is determined [7]. The
schematic presentation of the application of the IWC method is shown in Fig. I.10.

Ichchou et al. [41] applied the method experimentally to determine the wavenumber
and the bending rigidities of an orthotropic sandwich honeycomb panel. A view of the
panel is presented in Fig. I.11 and the characteristic of the panel is described in Table.
I.3.

The θ-dependence wavenumbers at four different frequencies (496 Hz, 1000 Hz, 2000 Hz
and 3320 Hz) are shown in Fig. I.12 and the orthotropic behavior of the panel is clearly
visible. A good agreement of the dispersion curve along the kx direction and along the ky
direction compared to the model of Nilsson [65, 66] is visible on the left hand side of Fig.
I.13. On the right hand side, the dynamic stiffness of the panel is well identified above
1000 Hz in Fig. I.13.
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Figure I.10: Left side: The vibrational field and the presentation of the direction θ where
the correlation is determined. Right side: IWC function where the index of the maximum
corresponds to the wavenumber at a frequency f0 [84].

Face plates Core
E1 (GPa) 60.27 -
E2 (GPa) 60.27 -
E3 (GPa) - 0.668

ν 0.029 -
G12 (GPa) 5 -
G13 (GPa) 5 0.31
G23 (GPa) 5 0.137
ρ (kgm−3) 1594 49.65

Table I.3: Properties of the sandwich honeycomb panel [41].

Figure I.11: Honeycomb panel [41].

Cherif et al. [21] applied the IWC method to estimate the damping loss factor of
orthotropic structures using an iterative refinement process. The damping loss factor of
each frequency is determined by using the following expression (further details in Section
I. 5):
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Figure I.12: θ-dependence wavenumber of the honeycomb panel [41].

Figure I.13: Comparison of the identified wavenumber and the dynamic stiffness of the
IWC method and the model of Nilsson [41].
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η =

∣∣∣∣Im(k)4

Re(k)4

∣∣∣∣ . (I.26)

Figure I.14: Left: Dispersion curve of an orthotropic composite panel. Theoretical
wavenumbers in the directions kx (-) and ky (-) vs measured wavenumbers in the di-
rections kx (o) and ky (o). Right: The damping loss factor of an orthotropic composite
panel. △ 3dB method, + decay rate method,× power input method and - IWC method
[21].

Based on Fig. I.14, the estimation of the wavenumbers correlates well with the theo-
retical solution based on the discrete general laminate model [36] and the estimation of
the damping loss factor using the IWC method shows also a good correlation compared
to other experimental methods as shown in Fig. I.14) [21].



Chapter I - Literature review and state of the art 24

I. 3. 4 Inhomogeneous Wave Correlation method for curved struc-
tures

Tufano et al. [84] introduced a variant formulation of the IWC method for curved
structures. Using the notations and the coordinates system shown in Fig. I.15, the
following relationships stand:

y = R sinφ ≈ Rφ and kφ = Rky , (I.27)

where R is the curvature radius and φ is the angular coordinates. Note that Eq. I.27
is only valid when φ is small. Substituting these relationships in the expression of the
inhomogeneous wave (see Eq. I.22), the equation writes:

w̃k,γ,θ(x, φ) = e−ik(θ)(1+iγ(θ))((x−x0)cosθ+R(φ−φ0)sinθ) , (I.28)

where φ0 indicates the angular position of the point force. The modified inhomogeneous
wave correlation writes:

IWC(k, γ, θ) ==
|
∑N

i=1 ŵk,γ,θ(xi, φi)w̃
∗
k,γ,θ(xi, φi)ρiSi|√∑N

i=1 |ŵk,γ,θ(xi, φi)|2ρiSi

∑N
i=1 |w̃k,γ,θ(xi, φi)|2ρiSi

. (I.29)

Figure I.15: Curved structure coordinates system [84].

The proposed method has been studied over an aluminium aircraft sidewall panel in
three different configurations:

1. Bare configuration under a diffused acoustics field (DAF) excitation;

2. Bare configuration under a point mechanical excitation;

3. Addition of resonators to the panel under a diffused acoustics fields excitation.

Fig. I.16a shows the internal surface of the panel where the shaker is placed to excite
the structure. A 3D laser vibrometer is used to scan the displacement field of the ex-
ternal surface. The dispersion curve is projected in two orthogonal directions, axial and
circumferential directions.
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Figure I.16: Set-up of the experimental measurement of the panel [84].

Figure I.17: Dispersion curves for different types of configurations of the aluminium air-
craft sidewall panel. (a) Axial direction and (b) circumferential direction [86].

Fig. I.17a represents two different modes of propagation in the axial direction: the
flexural wavenumber of the plate and the flexural wavenumber of the stringer. On the
other hand, a good agreement of the axial wavenumber of two different loadings: shaker
and DAF are visible in Fig. I.17a. For the circumferential direction as shown in Fig.
I.17b, a good agreement between the experimental dispersion curve and the numerical
dispersion curve under the two different loading conditions is demonstrated.
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I. 3. 5 Inhomogeneous Wave Correlation- Green’s function method

The IWC method is based on the plane wave hypothesis and is therefore limited due to
the nature of the plane wave itself. Indeed, the vibrational field near the excitation point
cannot be compared with a plane wave. Therefore the measurements must be done over
an observation area sufficiently far from the excitation point. In reality, this condition is
difficult to obtain due to the finite dimensions of the panel.

To overcome this limitation, Tufano in his dissertation [83] replaced the inhomoge-
neous wave function by the Green’s function of the isotropic infinite plate [91]. This
method combines advantages of the IWC and the Green’s function. Compared to the
IWC method, the Green’s function is more adapted to describe the vibrational field near
the excitation point. Tufano applied the proposed method to an isotropic laminated plate
and an isotropic homogeneous plate with tuned mass damper (TMD).

For a thin plate of infinite dimensions subject to a harmonic point excitation, the
Green’s function is described as [83]:

G∞(k̂, r) =
i

8k̂2D
[H

(1)
0 (k̂r)−H

(1)
0 (ik̂r)] , (I.30)

where G∞ is the Green’s function of the infinite plate, k̂ is the complex wavenumber
defined by k̂ = kR + ikI , D is the bending stiffness defined by D = Eh3

12(1−ν2)
, E is the

Young’s modulus, h is the thickness, ν is the Poisson’s coefficient and H
(1)
0 is the zero

order Hankel’s function of the first kind. The radius, r, is defined as the distance between
the excitation point and the observation point.

Considering an acquisition region of area S, the normalized correlation function writes:

IWCG(k, γ) =
|
∑N

i=1 ŵ(ri)G∞
∗(k̂, ri)ρiSi|√∑N

i=1 |ŵ(ri)|
2ρiSi

∑N
i=1 |G∞(k̂, ri)|

2
ρiSi

, (I.31)

This approach estimates the complex wavenumber at each frequency by calculating the
correlation between the measured displacement field and the Green’s function by using
Eq. I.31.

Tufano applied the method to an isotropic 1.0 m × 0.6 m thermoplastic polymer
(ABS) panel (Thickness h = 0.01 m, Young’s modulus E = 1.0 GPa, density ρ = 980
kg/m3, Poisson’s coefficient ν = 0.35 and η = 2%, 4%). The dispersion curve of the
ABS is plotted in Fig. I.18a [83]. A good agreement between the proposed approach is
observed in the low frequency while an overestimation is observed in the high frequency
range.

The estimation of the damping loss factor using Eq. I.26 reaches asymptotically the
value of the structural damping introduced in the FE model [83]. The characterization
of the elastic properties using this approach is done globally by considering a full field
harmonic displacement field and not for each angle separately.
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Figure I.18: Left: Dispersion curve of an isotropic ABS panel compared to other methods.
Right: Damping loss factor estimation [83].

I. 3. 6 Green’s function of elliptical orthotropic plates

Recently, Marchetti et al. [57] introduced a new wave fitting approach of an orthotropic
elliptic plate based on the Green’s function which uses the decomposition of the Hankel’s
function. The method considers the normal displacement field measured over a regular
grid mesh (xp, yq). An off-axes orthotropy is considered assuming that the plate axes
are different from the orthotropy axes (x′, y′) of the material (see Fig. I.19). The angle
between the two coordinates systems corresponds to the orthotropy angle θ′ [57] .

Figure I.19: Example of the flexural wavenumber curve of an elliptical orthotropic plate.
(x, y) represents the measurement axes and (x′, y′) represents orthotropy axes [57].

The equation of motion of an orthotropic elliptic structure writes [6, 57]:

((√
D′

11

∂2

∂x′2 +
√

D′
22

∂2

∂y′2

)2

− ρhω2

)
w (x′, y′) = δ (x′ − x′

0, y
′ − y′0) , (I.32)

where w is the displacement field, ω is the angular frequency, ρ is the plate density, h is
the plate thickness and (x′

0, y
′
0) is the position of the source. The moduli D11 and D22

represent the flexural rigidity of the structure in (x′, y′).
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For infinite structures, the solution of the equation of motion in Eq. I.32 writes [6]:

G∞ (x′, y′, ω) =
i

8
√

ρhω2 4
√

D′
11D

′
22

(
H

(1)
0 (κr)−H

(1)
0 (iκr)

)
, (I.33)

where κ is a pseudo-wavenumber. The relation between the pseudo-wavenumber and the
bending rigidities is described as:

κr = 4
√

ρhω2

√
(x′ − x′

0)
2√

D′
11

+
(y′ − y′0)

2√
D′

22

. (I.34)

The values of the bending rigidities D′
11 and D′

22 and the orthotropy angle θ′ that
minimize the error between the Green’s function and the measured displacement field are
considered as the dynamic material characteristic. The performance of the method is
verified over a sandwich aluminium panel with a honeycomb core [57].

Figure I.20: Orthotropy angle identified by the Hankel fitting approach and the IWC
method assuming orthotropic and elliptical orthotropic plate characteristics [57].

Figure I.21: Equivalent bending rigidities identified by the Hankel fitting approach [57].

The angle of orthotropy identified by the Hankel fitting approach and the IWC method
is shown in Fig. I.20. Fig. I.21 compares the estimation of the bending rigidities using
Hankel fitting versus the analytical model [57]. A good correlation between all the meth-
ods is observed above 4.5 kHz.

This approach is based on the knowledge of the analytical solution of the Green’s func-
tion of elliptical orthotropic plates defined in the thesis of Berthaut [6]. The applicability
of this method to any kind of structures is however limited.
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I. 4 Classical damping loss factor measurement
techniques

A good estimation of the damping remains a big challenge in the research domain
due to the complexity of the dynamic interaction of system joints and geometry [11].
Various damping test methods have been developed throughout the years to characterize
the performance of damping treatments [21]. These methods can be classified into three
main groups. The first is the frequency-domain modal analysis for example the half-power
bandwidth method. The second is the time domain decay-rate methods such as the decay
rate method (DRM). The third is the method based on energy and wave propagation
such as the power input method (PIM). In this section, these classical damping loss
factor characterization techniques are presented.

I. 4. 1 Half-power bandwidth method (3dB method)

The half-power bandwidth or the 3dB method is broadly used to estimate the damping
loss factor in the low frequency range and assumes low damping [23, 29]. This method is
based on the estimation of the damping from the frequency response function of a system.
In theory, the damping is proportional to the width of the magnitude of the displacement
based transfer function curve when the magnitude is 3dB down from the peak.

Figure I.22: Schematic presentation of the half-power bandwidth method in estimating
the damping ratio [29].

This method has been extensively adopted to the single-degree-of-freedom (SDOF)
and to the multi-degree-of-freedom (MDOF) systems. The application of this method to
MDOF systems is based on the assumption that each peak in the frequency response func-
tion is affected only by the mode under study, which requires small damping (negligible
modal overlap) [67].

The frequency response function of a single degree of freedom system with viscous
damping excited by a harmonic force writes [67]:
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|X(ω)| = 1

1− (ω/ωn)2 + 2iξ(ω/ωn)
, (I.35)

where ωn is the natural frequency and ξ is the damping ratio. For low damping structures
where ξ ≪ 1, the peak magnitude at resonance is written as:

|X(ωn)| =
1

2ξ
. (I.36)

Half-power bandwidth is defined as the width ∆ω of the frequency-response magnitude
curve when the magnitude is 1√

2
of the peak (see Fig. I.22). The half-power points are

given by:

1√
2

1

2ξ
=

∣∣∣∣ 1

1− (ω/ωn)2 + 2iξ(ω/ωn)

∣∣∣∣ . (I.37)

For low damping structures, the two roots of Eq. I.37, ω1 and ω2 is written as [29]:

ω2 − ω1

ωn

= 2ξ . (I.38)

The modal damping ratio ξ can be related to the structural damping loss factor η by
the relation [35]:

η = 2ξ
√

1− ξ2 . (I.39)

For low damping structures, the relation η = 2ξ is rather used [32]. In practical, the
application of the method can be influenced by several factors [78]. The first is the choice
of the frequency resolution ∆Hz that may influence the extraction of the frequency. The
second is the spacing between two modes (see Fig. I.23). To avoid this second problem,
a modal separation method needs to be applied to separate both peaks.

Figure I.23: Example of two closely spaced modes [78].

The method can be applied by measuring the frequency response function of a point
of the panel subject to an excitation. The measurement can be done at few points and the
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average damping loss factor can be obtained. However, this method is only applicable in
the low frequency range where the modal density and the modal overlap are low. In high
frequency range, methods based on the statistical energy analysis can be adopted. In the
next section, the method based on the decay rate and the power input are discussed.

I. 4. 2 Decay Rate Method

The decay rate method is based on the logarithmic decrement of the transient struc-
tural response which is described as the response of an oscillator submitted to a mechanical
force at time t = 0 [47]. The method assumes the damping is similar for all the modes in
the frequency band (third-octave band here).

The amplitude of the response after the excitation will decay exponentially at a rate
of Ge(−πfηt), where G is the gain, f is the frequency, η is the damping loss factor and t is
the measurement time (see Fig. I.24).

Figure I.24: Transient response of a single degree of freedom system.

For low damping structures, the decay slope ∆dB between two instances, t1 and t2
with amplitudes G1 and G2 in decibels is described by [11]:

∆dB = 20log10
G1

G2

,

= 20log10
Ge−πfηt1

Ge−πfηt2
,

= 27.3fη(t2 − t1) .

(I.40)

The decay rate D = ∆dB/(t2− t1) is described as the difference of the gain decibels in
function of time. Thus, the solution of Eq. (I.40) in function of the damping loss factor
is defined as:
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η =
D

27.3f
. (I.41)

In practical, the measurement can be done by using an impact hammer and an ac-
celerometer over few excitation points. The result is then averaged spatially on one-third
octave frequency band.

This method is classically used in SEA related studies. For examples, Bolduc et al.
[13, 12] and Cherif et al. [21, 22] used the method to estimate damping for several types
of structures: a flat isotropic panel, an aircraft side wall (a curved ribbed panel) and a
sandwich carbon fiber panel with a honeycomb core.

I. 4. 3 Power Input Method

The estimation of the damping loss factor using the power input method is based on
the quotient between the power injected to the system and the dissipated energy.

The principle of the method is described in this section. Under the hypothesis of
steady-state conditions where the input energy is assumed to be equal to the dissipated
energy, the loss factor of a structural system can be written as [11, 53]:

η(ω) =
Ein

ET

, (I.42)

where Ein is the input energy and ET is the average total energy of the system.

In practical, the input energy Ein can be expressed in term of input power of the form
Pin = ωEin and can be calculated with a simultaneous measurement of the force and the
velocity at the point of excitation. The input power can be described as:

Pin =
1

2
|F |2Re{Q(ω)} , (I.43)

where F is the input force and Q(ω) is the input mobility. The input mobility is defined
as the quotient between the input velocity Vin and the input force. This relation writes:

Q(ω) =
Vin(ω)

F
. (I.44)

The calculation of the total energy ET requires an assumption, the total energy ET is
equal to twice the kinetic energy of the system [11]. The total energy writes:

ET = M⟨v2⟩ , (I.45)

where M is the mass of the system and ⟨v2⟩ is the average quadratic velocity of the
system. The damping loss factor is now defined as:

η =
Pin

ωET

=
1
2
|F |2Re{Q(ω)}

ωM⟨v2⟩
. (I.46)
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The power input method exploits the relation between the power and the energy under
the assumption of the statistical energy analysis. This method supposes that the damping
of the system is low and the damping is the same for all modes. To obtain a more accurate
result in estimating the damping loss factor, the measurement needs to be averaged to few
measurement locations and averaged over a frequency band (most commonly one-third
octave band).

In addition, the excitation must be done far from the edge to avoid error in calculating
the input power due to evanescent waves generated at boundaries. On the other hand,
the measurement must be done outside a circle RD from the excitation point to respect
the reverberant field criterion. Inside the circle, the measured field is dominated by the
direct field. The radius writes [19, 53]:

RD =
ωηh

2πcg
, (I.47)

where η is the damping estimated using the 3dB method, h is the thickness of the panel
and cg is the group velocity.

Figure I.25: Damping loss factor a steel plate. ◦ steady state method, □ decay rate
method and • in situ power input method [9].

Bies et al. [9] applied the decay rate method and the power input method to a mild
steel flat panel of 1 mm in thickness and 0.2 m2 in area. The method is compared to the
steady state method that is based on the power balance equation of a system [9]. The
measurement of loss factors using the decay rate method is underestimated compared to
the power input method. Furthermore, the estimation of the damping loss factor using
the in situ power input method shows a good correlation compared to the steady state
method as shown in Fig. I.25. The reason for the discrepancy between the steady state
and the transient method is that the energy distribution among modes of the system
during reverberant decay is not in steady state equilibrium [9].

Cherif et al. [20] applied the 3dB method, the power input method and the decay rate
method on two composite sandwich panels with different thickness. Mechanical properties
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of both panels are described in Fig. I.4. The estimation of the damping loss factor for
the thin and the thick panels is shown in Figs. I.26a-b. For both panels, the decay rate
method and the power input method are reliable compared to the 3dB method from 200
Hz to 1000 Hz. In the high frequency range (gray area in Figs. I.26a-b) , the power input
method shows discrepancies due to the limitation in injecting power to the system [20].

(a) Thin composite sandwich panel. (b) Thick composite sandwich panel.

Figure I.26: Comparison of the damping loss factor between the 3dB method, the power
input method and the decay rate method [20].

Thick panel skins Core Thin panel skins Core
h (mm) 0.96 25.4 0.51 6.35
E1 (GPa) 46 0.001 23.6 0.001
E2 (GPa) 46 0.001 23.6 0.001
E3 (GPa) 46 0.179 23.6 0.001
G12 (GPa) 17.6 1 10.34 1
G13 (GPa) 17.6 26 10.34 44.8
G23 (GPa) 17.6 56 10.34 24.1

ν12 0.3 0.45 0.141 0.45
ν13 0.3 0.01 0.141 0.01
ν23 0.3 0.01 0.141 0.01

ρ (kg/m3) 1900 64 1900 48

Table I.4: Mechanical properties of the thin and thick sandwich carbon fiber honeycomb
panels [20].

The decay rate method and the power input method that are based on statistical
energy analysis assumptions allow the estimation of the damping behavior in the high
frequency range. However, these approaches provides only spatially averaged power for
each substructure of the considered system in a defined frequency band (most commonly
one-third octave band).
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I. 5 Spatial damping loss factor

The attenuation of a plane wave γ is defined by the complex wavenumber of the form
k̂ = k(1 + iγ). For an infinite structure, the exponential decay of vibration energy with
distance r can be described as [24]:

< Edecay >= E0e
− ηωr

cg , (I.48)

where cg = ∂ω/∂k is the group velocity and E0 is the initial energy. The angular frequency
can also be written in the form of k = ω/cφ where k is the wavenumber and cφ is the
phase velocity. Eq. I.48 can then be written as:

< Edecay >= E0e
−η

cφ
cg

kr
. (I.49)

On the other hand, a harmonic displacement field can be defined in the form of
e−ikre−γkr. The decay energy of the displacement field can be described as:

< Ed >= E0e
−2γkr. (I.50)

Equating both propagating energy equations, the damping loss factor can be defined
as:

η = 2γ
cg
cφ

= 2
Im(k)

Re(k)

cg
cφ

. (I.51)

For pure bending waves propagation, the group velocity and the phase velocity is
related by cg = 2cφ. For longitudinal waves or shear waves, the medium is not dispersive
thus cg = cφ.

I. 5. 1 Love-Kirchhoff’s theory

Most commonly, the damping loss factor can be derived from the flexural wavenumber
kf based on the Love-Kirchhoff’s theory of a thin plate. The equation writes [73, 62, 21,
56]:

ηeq =

∣∣∣∣Im(kf )
4

Re(kf )4

∣∣∣∣ . (I.52)

The theory considers a constant ratio cg/cϕ = 2. In general, this relation is only valid
for pure bending and not applicable for thick structures. Fig. I.27 shows the velocity ratios
and the damping loss factor determined using Eqs. I.51 and I.52 for different values of
thickness of a sandwich beam. The properties are given in Table I.5.

The ratio is approximately equal to 2 for a thin core on the entire frequency range as
the behavior of the sandwich panel is dominated by the bending motion. The damping
loss factor estimation using Eq. I.51 and Eq. I.52 shows a good correlation. For a thick
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core, the ratio is approximately equal to 1 above 1000 Hz as the behavior of the thick
sandwich panel is dominated by the shearing of the core. The estimation of the damping
loss factor using the Love-Kirchhoff’s theory is overestimated.

In conclusion, the Love-Kirchhoff’s damping theory can easily be applied based on the
knowledge of the flexural wavenumber but only limited to thin structures. Meanwhile,
the damping loss factor estimation using Eq. I.51 is more general for both thin and thick
structures because this approach takes into account the wave propagation behavior.

h (mm) ρ (kg/m3) E (GPa) G (GPa) η
First skin 0.75 2700 70 - 0.001

Core 10.2 74 0.130 0.045 0.04
Second skin 2 2700 70 - 0.001

Table I.5: Characteristic of the sandwich beam [56].

Figure I.27: Velocity ratios and comparison of the equivalent and apparent loss factors of
a sandwich plate for different values of thickness of the core [56].
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I. 5. 2 Spatial average damping loss factor

The average damping loss factor of an isotropic panel can be described as:

< η(ω) >=

∫ 2π

0
η(ω, θ)dθ∫ 2π

0
dθ

. (I.53)

However, the relation is not applicable to non-isotropic structures because the number
of modes is different in each direction and the damping loss factor varies in each direction.
Manconi et al. [54] describes the method to calculate the average damping loss factor of
non-isotropic structures by considering the modal density [54]. A more general average
loss factor formulation is given by:

η̄(ω) =

∫ 2π

0
η(ω, θ)n(ω, θ)dθ∫ 2π

0
n(ω, θ)dθ

, (I.54)

where n(ω, θ) is the angular modal density for each direction given by [53, 36]:

n(ω, θ) =
S

π2

k(ω, θ)

cg(ω, θ)
. (I.55)

Here S is the area of the structure and k(ω, θ) and cg(ω, θ) are the wavenumber and
the group velocity at each angle and each frequency. Finally, the average loss factor of
non-isotropic structures is written as:

η̄(ω) =

∫ 2π

0
η(ω, θ) k(ω,θ)

cg(ω,θ)
dθ∫ 2π

0
k(ω,θ)
cg(ω,θ)

dθ
. (I.56)

The method defined in Eq. I.56 is adapted in this thesis, and the same averaging
method is also used in the reference analytical solution based on the discrete general
laminate model [36] (further details in Section I. 7).
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I. 6 Image source method

The Green’s function of an infinite plate estimates the damping loss factor precisely.
However, the method shows some discrepancies and is relatively less accurate in the
low frequency range and for lightly damped structures. This is due to the reflection at
boundaries which is ignored in the free field Green’s function.

In this section, the image source method for simply supported and roller supported
developed by Gunda et al. [37, 38] is first discussed. In the second part, the image source
method for abritrary boundary conditions developed by Cuenca et al. [25, 27, 28] is then
explained.

I. 6. 1 Image source method for simply supported and roller sup-
ported panels

The image source method or ray tracing techniques has been commonly employed in
disciplines such as acoustics, optics and electromagnetics. The work presented here is an
extension of the image source method in structural vibrations.

Gunda et al. [37] uses the combination of the image source method and the Han-
kel’s functions to construct the Green’s function of a finite plate with simply supported
boundary conditions. The feasibility of the method has been demonstrated by Gunda
in calculating the frequency-dependent response of thin plates and beams with simply
supported and roller supported panel.

The principle of the method is detailed in this section. The fundamental solution of
the isotropic Green’s function described in Eq. I.30 is based on the assumption that the
plate is infinite. To apply this to a finite plate, the boundary conditions on the plate edge
have to be satisfied [37].

Figure I.28: Schematic presentation of a semi-infinite plate [37].

To obtain the solution for a semi-infinite plate subjected to a point force F at point
rs(xs, ys), an imaginary point force F ′ at a distance ys from the edge is introduced. This
distance is equal to the distance of F from the edge of the plate. Assumes ra(x, 0) be any
point on the edge of the semi-infinite plate (see Fig. I.28). rs(xs, ys) and rs(xi, yi) are the
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coordinates of the source and the image points respectively. The distances of the source
and image locations writes:

rsa = ria = r =
√

(x− xs)2 + y2s =
√

(x− xi)2 + y2i . (I.57)

The deflection u, the normal slope θ, the shear force Fy and the bending moment My

at the edge of the plate can be expressed by calculating the sum of contributions from
both sources. These relationships write:

w = − i (F + F ′)

8k̂2D

[
H

(1)
0 (k̂r)−H

(1)
0 (ik̂r)

]
, (I.58)

θ =
(F ′ − F ) iy0

8k̂2D r

∂

∂r

[
H

(1)
0 (k̂r)−H

(1)
0 (ik̂r)

]
, (I.59)

Fy =
iy0 (F

′ − F )

8k̂2
∇2

(
1
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∂

∂r

[
H

(1)
0 (k̂r)−H

(1)
0 (ik̂r)

])
, (I.60)

My =
(F + F ′)
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(I.61)

Based on relationships described above, the simply supported boundary conditions
where the deflection and the bending moment are zeros implies the relation F ′ = −F .
The roller boundary conditions where the normal slope and the shear force are zeros
implies the relation F ′ = F .

However, the reflection coefficient of the free-free and the clamped boundary conditions
along the plate edge is not directly applied because the reflected wave has a local near field
response which includes wave propagation along the edge of the plate and evanescent waves
in orthogonal directions [18]. A different approach is required for these two boundary
conditions and will be briefly discussed later in this section.

Gunda applied the method to a finite simply supported rectangular plate. The con-
figuration of the image source contributions is shown in Fig. I.29.

The proposed method is compared with an example of a simply supported rectangular
steel plate. The dimensions of the panel are length a = 0.5842 m along x, width b =
0.7366 m along y and thickness h = 0.762 mm. Gunda considered 40 reflections for the
image sources method. The dynamic compliance C(ω) = u/F (ω), where u(ω) is the
displacement field and F (ω) is the input force as a function of x/a along y/b = 0.34 is
shown in Fig. I.30. Based on the result, a very good convergence between the modal
decomposition method and the image sources method is observed.
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Figure I.29: Infinite plate with positive (+) and negative (0) sources equivalent to a simply
supported plate with edges E1, E2, E3 and E4 [37].

Figure I.30: Dynamic compliance along the line y/b = 0.34 due to a unit force at (0.65a,
0.51b). - Image sources method and × Modal analysis. [37].

I. 6. 2 Image source method for arbitrary boundary conditions

The former is limited to the simply supported and to the roller supported boundary
conditions. For other boundary conditions, the reflection coefficient involves wave conver-
sion between the propagating and evanescent components of the field and depends on the
angle of incidence of the waves and on frequency [28]. Later in 1998 [38], Gunda developed
the harmonic Green’s function for a thin semi-infinite plate with clamped or free edges by
applying corrections to either simply supported or roller supported boundary conditions.
Recently, Cuenca et al. [28] introduced an image source method with arbitrary boundary
conditions.
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The Green’s function of the infinite plate G∞ describes the direct contributions of the
source to the displacement field and the incident field on boundaries. To better describe
this phenomenon, the Green’s function of an infinite plate G∞ is rather expressed in
rectangular coordinates.

For such purpose, an arbitrary oriented coordinates (ξ, µ), where ξ is the axial coor-
dinate, collinear to a given boundary and µ is the transverse coordinate, normal to the
boundary (see Fig. I.31). The Green’s function G∞ is represented as a sum of plane waves
in rectangular coordinates of the form [28]:

G∞ (ξ, µ, ξ0, µ0; kf ) =
i

8πk2
fD

∫ +∞

−∞
eikξ(ξ−ξ0)

ei
√

k2f−k2ξ |µ−µ0|√
k2
f − k2

ξ

+ i
e−
√

k2f+k2ξ |µ−µ0|√
k2
f + k2

ξ

 dkξ .

(I.62)

Figure I.31: Schematic presentation of the coordinates. r0, original source, rs, image
source and r, observation point [28].

Eq. I.62 is obtained using one-dimensional Fourier transform of the equation of motion

of an isotropic plate on coordinate ξ [28]. Transverse wavenumbers k
(1)
µ =

√
k2
f − k2

ξ and

k
(2)
µ = i

√
k2
f + k2

ξ as functions of the axial wavenumber kξ are shown in Fig. I.32.

The term ei
√

k2f−k2ξ |µ−µ0|/
√

k2
f − k2

ξ is considered a propagating wave for |kξ| < |kf |

and an evanescent wave for |kξ| > |kf |. Meanwhile, the term ie−
√

k2f+k2ξ |µ−µ0|/
√
k2
f + k2

ξ

represents an evanescent wave for all values of kξ [28].

For the application of this method, the Green’s function GΩ of the semi-infinite plate
is assumed as follow [28]:

{
D
(
∇4 − k4

f

)
GΩ (r, r0; kf ) = δ (r− r0) , r ∈ Ω

Boundary conditions, r ∈ ∂Ω
, (I.63)

where r0 is the location of the point source (see Fig. I.31) and the arbitrary boundary
conditions are considered linear and homogeneous along the edge. The displacement field
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Figure I.32: Transverse wavenumbers as functions of kξ. Lower curve, k
(1)
µ =

√
k2
f − k2

ξ

and upper curve, k
(2)
µ = i

√
k2
f + k2

ξ [28].

at r can be expressed as the sum of the Green’s function of the infinite plate and the
reflected field from the boundary, Gs. This relation writes:

GΩ(r, r0; kf ) = G∞(r, r0; kf ) +Gs(r, rs, µb; kf ) , (I.64)

where µb describes the location of the boundary along the edge (see Fig. I.31). To
determine Gs with arbitrary boundary conditions, the integrand of Eq. I.62 along axis
µ = µb, is written as:

wi (ξ, µ, ξ0, µ0, µb; kf ) = eikξ(ξ−ξ0)
(
A0e

−i
√

k2f−k2ξ(µ−µb) +B0e
√

k2f+k2ξ(µ−µb)
)

, (I.65)

where

A0 =
i

8πk2
fD

e−i
√

k2f−k2ξ(µb−µ0)√
k2
f − k2

ξ

, B0 =
i

8πk2
fD

ie
√

k2f+k2ξ(µb−µ0)√
k2
f + k2

ξ

. (I.66)

Similarly, the reflected wave is written as:

wr (ξ, µ, ξ0, µ0, µb; kf ) = eikξ(ξ−ξ0)
(
Ase

−i
√

k2f−k2ξ(µ−µb) +Bse
√

k2f+k2ξ(µ−µb)
)

, (I.67)

where As and Bs depend on the boundary conditions. The relation between A0, B0, As

and Bs is given by:

[
As

Bs

]
= R

[
A0

B0

]
, (I.68)

where

R (kξ, kf ) =

[
Rpp (kξ, kf ) Rep (kξ, kf )
Rpe (kξ, kf ) Ree (kξ, kf )

]
. (I.69)
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R(kξ, kf ) is the reflection matrix where (p) and (e) represent the propagating and
the evanescent components respectively. The reflected field Gs is the superposition of
an infinite number of elementary waves in the form of Eq. I.67. The reflected field is
interpreted as the contribution of the image source to the total bending field. This is
done by performing the changes of variables ξS = ξ0 and µb − µ0 = −(µb − µs) [28]. The
reflected field Gs can then be described as [28]:

G
(I)
S (r, rs, µb; kf ) =

i

8πk2
fD

∫ +∞

−∞
eikξ(ξ−ξs)

[
ei
√

k2f−k2ξ(µ−µb) e−
√

k2f+k2ξ(µ−µb)
] [ Rpp (kξ, kf ) Rep (kξ, kf )

Rpe (kζ , kf ) Ree (kξ, kf )

]


e
i
√

k2
f
−k2

ξ(µb−µs)√
k2f−k2ξ

i e
−
√

k2
f
+k2

ξ(µb−µs)√
k2f+k2ξ

 .

(I.70)

The final expression of the Green’s function of a semi-infinite plate GΩ (see Eq. I.64)
is given by the sum of the Green’s function of infinite plate G∞ described in Eq. I.62 and
the reflected field Gs described in Eq. I.63.

The present formulation introduced by Cuenca [28] represents the generality of the
first order image source method. Comparing to the application of the image source
method introduced by Gunda [37, 38], this approach includes an explicit dependence
on the location of the boundary µb which is important in order to take into account
the coupling between the incident field and the reflected field [28]. The corresponding
reflection matrices for a simply supported, roller, clamped and free edge is presented in
Tab. I.6.
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Boundary conditions Reflection matrix R(kξ,kf )

Simply supported

{
w(ξ, µb) = 0
Mµ(ξ, µb) = 0

[
−1 0
0 −1

]

Roller

{
∂w
∂µ
(ξ, µb) = 0

Vµ(ξ, µb) = 0

[
1 0
0 1

]

Clamped

{
w(ξ, µb) = 0
∂w
∂µ
(ξ, µb) = 0

−
√

k2f+k2ξ−i
√

k2f−k2ξ√
k2f+k2ξ+i

√
k2f−k2ξ

2
√

k2f+k2ξ√
k2f+k2ξ+i

√
k2f−k2ξ

2i
√

k2f+k2ξ√
k2f+k2ξ+i

√
k2f−k2ξ

√
k2f+k2ξ−i

√
k2f−k2ξ√

k2f+k2ξ+i
√

k2f−k2ξ



Free

{
Mµ(ξ, µb) = 0
Vµ(ξ, µb) = 0

[
ad−bc
ad+bc

−2ac
ad+bc

−2bd
ad+bc

−ad−bc
ad+bc

]
a = k2

f + (1− ν)k2
ξ

b = −k2
f + (1− ν)k2

ξ

c = −
√

k2
f + k2

ξ (k
2
f − (1− ν)k2

ξ )

d = i
√

k2
f − k2

ξ (k
2
f + (1− ν)k2

ξ )

Table I.6: Boundary conditions and reflection matrices for a simply supported, roller,
clamped or free edge [28].

Second and subsequent wave reflections on the boundaries

In the previous section, the contributions of the image source of first order is described.
However, the contribution of an image source of second order and subsequent cannot be
derived directly using the same procedure because an individual plane wave resulting from
the first reflection cannot be written in the form of Eq. I.67 in the local coordinate system
of another edge where a second reflection may take place [28].

Here, an approximation is proposed by neglecting the evanescent components of Eq.
I.67 because the wavelength is considered short compared to the plate dimensions which
is true only in the high frequency range. The approximation writes [28]:

G(II)
s (r, rs; kf ) = V (r, rs)

i

8πk2
fD

∫ |kf |
−|kf |

eikξ(ξ−ξs)A(s)
pp (kξ, kf )

ei
√

k2f−k2ξ(µ−µs)√
k2
f − k2

ξ

dkξ , (I.71)

where V (r, rs) is the validity conditions that is equal to 1 in the domain of the application

and 0 elsewhere. A
(s)
pp (θ) is the amplitude weight of the image source s [28]. The amplitude

weight A
(s)
pp (θ) is the product scalar of the reflection coefficients Rpp of the edges that

contribute in the construction of image sources s.
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Approximated Green’s function

Finally, the approximated Green’s function of the polygonal plate can be described as
a linear combination of the original source, the first order image sources and the second
order image sources of the form:

G̃Ω(r, r0; kf ) = G∞(r, r0; kf ) +
Nv∑
s=1

G
(I)
S (r, rs, µ

(s)
b ; kf ) +

∞∑
s=Nv+1

G(II)
s (r, rs; kf ) , (I.72)

where Nv is the number of vertices or edges of the plate.

Figure I.33: Square plate with three simply supported (SS) edges and one clamped (C)
edge [28].

The validity of the method is tested on a Levy-type plate in which the analytical
harmonic response of this panel is known analytically [79]. The schematic presentation
and the different boundary conditions of the edges is shown Fig. I.33. A square steel
panel with a length L = 1 m (Density ρ = 7850 kg/m3, Young’s modulus E = 210 GPa,
Poisson’s coefficient ν= 0.33 and damping ηskin=7%) is considered with simply supported
edges along y = 0, y = L and x = 0, and a clamped edge along x = L. The reference
solution is computed analytically by using a modal decomposition method and compared
to the proposed method with 488 sources contributions.

Figs. I.34a-b show the normal displacement of the exact solution and the image source
method at 3000 Hz. Fig. I.34c-d show the displacement field on vertical lines l1 to l5. Fig
I.34h shows the euclidean normalized error between the exact solution and the proposed
method. The results show good correlation in the whole plate except near the clamped
edge within a distance to half of the wavelength. This error is due to the evanescent waves
which are neglected for sources of second and higher orders.

This method has been successfully developed to characterize the isotropic structures
with arbitrary polygonal plates by using a generalised image source method. The advan-
tage of this method is that the wave propagation, geometry and boundary conditions can
be treated separately. To the best of our knowledge, the application of the image source
method is limited to polygonal isotropic structures. The application of this method to
non-isotropic structures may be one of the domain of interest.
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The potential of the image source method in combination with the Green’s function-
based model correlation (GFC) method will be studied in Chapter IV.

Figure I.34: Amplitude of Green’s function for the square plate. (a) Exact; (b) Image
sources method; (c)-(g) displacement field on vertical lines l1 to l5; -, exact; ..., Image
sources method; (h) Error as function of abscissa [28].
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I. 6. 3 A wave fitting approach using an image source method

Roozen et al. [75] presented a new wave fitting approach to estimate the material
properties of thin isotropic structures. The proposed method constructs the harmonic
displacement field model by combining the Green’s function of an infinite plate described
in Eq. I.30 and its image sources which represent the successive reflections of waves on
the boundaries [27]. The principle of the method is detailed in this section.

The response of the harmonic displacement field is approximated by means of a linear
combination of image sources of the form [75]:

w̃(xj, yj, ω) =
N∑

n=1

αn(ω)ϕn(xj, yj) , (I.73)

where αn is the strength of each image source and ϕn the Green’s function of an infinite
plate:

ϕn(xj, yj) = G∞(xj − x0(n), yj − y0(n)) , (I.74)

where x0(n) and y0(n) are the x and y-locations of the n-th image source. Considering
all M measurement points on the plate and N image sources, Eq. I.73 can be written in
matrix notation of the form:

w̃ = Φα . (I.75)

w̃ is a vector representing the projected displacement w̃(xj, yj, ω), Φ is a matrix repre-
senting the vectors of the image source Green’s functions, ϕn and α is a vector representing
the contribution strengths αn(ω). The vector of contribution strengths α can be deter-
mined via a regularized pseudo-inverse approach and the equation writes [75]:

α = argmin(||w −Φα||2 + λ2||α||2) , (I.76)

where λ is the Tikhonov regularisation term determined by a Bayesian characterization
[3, 68, 92].

Roozen applied the method numerically to an isotropic rectangular plate with free
edges and the structural loss factor of the panel is set at η = 5%. The convergence study
was also conducted with different number of images sources as shown in Fig. I.35. The
projected fields, w̃, for a frequency of 15 kHz are presented in Fig. I.35a-d for a varying
number of image sources. For the given geometry and the boundary conditions, nine
sources are enough to describe the vibrational of a point excited plate.

Furthermore, Roozen applied the method experimentally to a sandwich isotropic steel
panel with a polymer core. The experimental set-up of the sandwich panel is shown in Fig.
I.36. The estimation of the dispersion curve and the damping properties, is calculated
in a least squares senses between the measured field and the projected field with nine
sources. Fig. I.37 shows the result on the estimation of the wavenumber and the damping
loss factor.
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Figure I.35: Contour lines of the absolute vibration levels of a free edges panel at 15 kHz.
a) 1 source. b) 2 sources. c) 4 sources. d) 9 sources and e) Measured harmonic field from
the numerical simulations. f) Error e as a function of the frequency [75].
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Figure I.36: Experimental set-up of the image source method. The black line on the plate
indicates the measurement area [75].

Figure I.37: The estimation of the material properties. Left: The real part of the
wavenumber. Right: The damping loss factor [75].
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I. 7 Discrete general laminate model

Finally as the discrete general laminate model (GLM) [36] will be used throughout
this thesis as a reference for validation of the estimated wavenumber and damping, a brief
description is given here.

This approach assumes each layer as a thick laminate with orthotropic orientation,
rotational inertia and transversal shearing, membrane and bending deformations. The
equation of motion is developed following a wave approach based on discrete layer de-
scription.

Figure I.38: Global geometrical configuration. (a) Planar laminated composite panel and
(b) planar laminated composite beam [36].

The geometry of the planar composite panel is shown in Fig. I.38. This method
assumes membrane and bending displacements and rotations of each layer. Thus, the
displacement field of the i-th layer of the panel is defined as:


ui(x, y, z) = ui

0(x, y) + zφi
x(x, y) ,

vi(x, y, z) = vi0(x, y) + zφi
y(x, y) ,

wi(x, y, z) = wi
0(x, y) ,

(I.77)

where ui(x, y, z), vi(x, y, z) and wi(x, y, z) are the displacement along x-direction, y-
direction and z-direction respectively. φi

x(x, y) and φi
y(x, y) are the rotations along z-

direction and y-direction respectively.

For the i-th layer, five equilibrium equations are defined as:
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i
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M i
x,x +M i

xy,y −Qi
x + ziF i
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M i
xy,x +M i

y,y −Qi
y + ziF i

y − zi−1F i−1
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y,tt + I iz2v

i
,tt ,

(I.78)

where Qi
x,x and Qi

y,y are the transverse shear stress, N i
x,x, N

i
y,y and N i

xy,x are the in-plane
stress and M i

x,x, M
i
xy,y, M

i
xy,x and M i

y,y are the stress moments. The rotational inertia, the
in-plane, the bending, the transverse shearing effects and the orthotropic ply directions
are accounted for in each layer. The resulting dynamic equilibrium of Eq. I.78 is then
regrouped in two vectors: a displacement-rotation vector {U} and an interlayer forces
vector {F}:
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{U} =
{
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1
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(I.79)

To solve for the dispersion relations [36], the system of dynamic equilibrium equations
is expressed in term of a hybrid displacement-force vector ⟨e⟩ defined as:

⟨e⟩ =
{
U
F

}
. (I.80)

Assuming a harmonic solution ⟨e⟩ = e(ikxx+ikyy−iωt), a generalized complex polynomial
eigenvalue problem is defined as:

(k2
c [A2]− ikc[A1]− [A0]){e} = 0 , (I.81)

where kc =
√

k2
x + k2

y and [A0], [A1] and [A2] are real square matrices of dimensions
5N + 3(N − 1), where N is the number of layers. Assuming λ = ikc, Eq. I.81 can be
rewritten into a first order system in the form [36]:

(
λ

[
A1 A2

A2 0

]
−
[
−A0 0
0 A2

]){
e
λe

}
=

{
0
0

}
. (I.82)

Eq. I.82 represents the dispersion relations of the laminated composite structure. The
corresponding natural frequencies ωmn are obtained from the solution of Eq. I.81 in the
form:

(k2
mn[A2]− ikmn[A1]− [A0]){e} = ω2

mn[A02]{e} , (I.83)

kmn =
λ(m,n, Lx/Ly)

Lx

, (I.84)

where λmn is the frequency dependent boundary condition for each combination (m,n)
and side dimensions ratio (Lx, Ly). [A1], [A2], [A01] and [A02] are real square matrices
of dimensions 5N + 3(N − 1) with [A0] = [A01]− ω[A02].

Ghinet and Atalla [36] use the modal strain energy Un to identify the damping loss
factor of sandwich structures in function of the frequency and the wave heading angle.
The equivalent loss factor of a panel or a beam with N layers is defined as:

ηn =
1

π

∫ π

0

∑Nlay

k=1 ηkU
k
n

Un

dφ ,

=
1

π

∫ π

0

∑Nlay

k=1 ηkv
T
nR [λnA−B]vn

vT
nR [λnA−B]vn

dφ ,

(I.85)

where

A =

[
A1 A2

A2 0

]
; B =

[
A01 0
0 A2

]
; and vn =

{
e
λe

}
. (I.86)
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Eq. I.86 calculates the average damping loss factor over half wavenumber space with
respect to the heading direction φ.

Figure I.39: Left: Propagating wavenumber solutions of the sandwich beam. (· · ·) 3D
composite Spectral Finite Elements approach. [77]; (□□□) Discrete Laminate approach.
Right: Damping loss factor of the sandwich beam [36].

The method has been applied to a sandwich beam to determine the wavenumber and
the damping loss factor. The characteristic of the beam is defined in Table. I.7.

Skins Core
Young’s modulus (Pa) E1 = E3 210 x 109 E2 15.7642 x 106

Shear modulus (Pa) G1 = G3 80.77 x 109 G2 1.88 x 106

Density (kg/m3) ρ1 = ρ3 7850 ρ2 1000
Loss factor η1 = η3 0.001 η2 0.5

Table I.7: Material properties of the sandwich beam: Lx = 0.25 m; Ly = 0.02 m; h1 =
h3 = 0.449 mm; h2 = 0.035 mm [36].

The wavenumber and the damping loss factor results are plotted in Fig. I.39. Excellent
agreement is observed between the analytical discrete laminate model and the spectral
finite elements approaches [77].
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I. 8 Conclusion of the chapter

This chapter presented some of the characterization methods available in the open
literature and methods to estimate the damping loss factor of vibrating structures. The
advantages, the drawbacks and the results of each method have been briefly discussed.
The analytical solution based on the discrete general laminate model (GLM) has been
presented at the end of the chapter. This solution will be used as a reference for validation
of the estimate wavenumber and damping.

To conclude, the identification of the real part of the wavenumber is not an issue. It
can be obtained using various methods such as the force analysis technique (FAT), the
discrete Fourier transform (DFT), the inhomogeneous wave correlation (IWC) method,
the Green’s function based correlation. The latter can be even enhanced using the image
source method.

However few studies are presented to discuss the effect of important parameters such as
the source location, the size of the observation window and the averaging of the damping
over heading angles. In addition, robust estimation of the damping loss factor related
to the imaginary part of the wavenumber remains an open issue with the majority of
described characterization methods.

In consequence, the present work will revisit the IWC method in Chapter II, the
Green’s function based-model correlation (GFC) method in Chapter III and the GFC
method with the image source method (GFC-ISM) in Chapter IV to address explicitly
these remaining issues and in particular, robust estimation of the damping loss factor.
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The classical IWC method which is based on the maximization of the correlation be-
tween the measured displacement field and the inhomogeneous wave is investigated in
this chapter. An enhanced formulation of the Inhomogeneous Wave Correlation (IWC)
method that improves the estimation of the damping loss factor is introduced. The pro-
posed method takes into account the exponential decay with distance from the excitation
point in the inhomogeneous wave formulation. The validity of the proposed method is
investigated numerically using the Finite Element Method (FEM) on several panels: an
isotropic aluminium panel, a sandwich aluminium panel with a viscoelastic core and an
anisotropic 7 layers epoxy resin panel. In addition, the effect of the observation window
and the effect of the excitation location are also discussed.

II. 1 Introduction

In the open literature, the development of a robust method able to estimate the
wavenumber and in particular, the damping loss factor of planar complex structures re-
mains very challenging. The modal approach is broadly used to characterize the material
properties in the low frequency range. In the mid and the high frequency range, this ap-
proach is no longer applicable due to the high modal density and the high modal overlap
of the vibrating structure.

The inverse wave approach was first introduced by McDaniel et al. [61, 62] to esti-
mate the flexural wavenumber and the damping loss factor of one-dimensional structures.
Berthaut et al. [7] extended the method by developing an Inhomogeneous Wave Correla-
tion (IWC) method to identify the wavenumber as a function of the wave heading angle for
two-dimensional structures. The method is based on the maximization of the correlation
between the measured displacement field and plane waves of the form e±ik(θ)(x cos θ+y sin θ).

The method has been applied to complex structures such as a stiffened panel [42,
43], an orthotropic sandwich carbon fiber with honeycomb core [21] and a plate with
distributed resonators [87, 84]. Cherif et al. [21] applied the IWC method to estimate the
flexural wavenumber and the damping loss of orthotropic structures from a displacement
field measurement.

The ability of the classical IWC method to predict precisely the wavenumber of com-
plex structures is proven. However, the estimation of the damping loss factor remains very
difficult due to the nature of the plane wave itself. In fact, the classical formulation of
the IWC method neglects the effects of the wave propagation around the excitation point.
The method considers that the observation field is far from the excitation point and the
wave propagation is approximated by plane waves. In reality, the effect of the excitation
is not negligible especially when one considers the excitation point in the observation
window.

In fact, the presence of a point load excitation in the observation window provides a
very important impact especially on the estimation of the damping loss factor. In this
chapter, an enhanced formulation of the inhomogeneous wave that explicitly accounts
for the exponential decay of the wave amplitude with the distance from the source is
introduced to overcome this limitation. The proposed method improves the estimation of
the damping loss factor. The performance of the method is investigated numerically using
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the Finite Element Method (FEM) on several flat panels. The results are compared with
the classical IWC method and with a reference solution based on the general laminate
model [36].

In Section II. 2, the classical IWC method is described and the variant formulation is
introduced. The numerical validation on three different panels: 1) an isotropic aluminium
panel ; 2) a sandwich aluminium panel with a viscoelastic core; and 3) an anisotropic 7
layers epoxy panel; with a fixed excitation point is described in Section II. 3.

In Section II. 4, the precision of the method by changing the observation window size
is investigated on an isotropic aluminium panel and in Section II. 5, the effect of different
excitation location is illustrated on an isotropic aluminium panel and an anisotropic 7
layers epoxy panel.

II. 2 Theory

An excitation point O with coordinates (x0, y0) and an arbitrary observation point Mi

with the coordinates (xi, yi) are defined as shown. The vector between these two points
is defined as:

OMi = R cos (θ) x+R sin (θ) y , (II.1)

where R is the distance between points O and Mi and θ is the angle between the vector
OMi and the x-axis. Fig. II.1 shows the schematic presentation of the problem.

Figure II.1: Schematic presentation of the plate with an excitation point O and an arbi-
trary observation point Mi.

The inhomogeneous wave with a time-harmonic convention of e−iωt is written as:

σk,γ,θ(xi, yi) = eik.(1+iγ).OMi , (II.2)
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where k is the wavenumber vector and γ is the attenuation factor. The illustration of the
inhomogeneous wave subject to an excitation at x0 = 0.3 m in the xz plane using Eq.
II.2 is shown in Fig. II.2a. Implementing naively Eq. II.2, the wave amplitude decreases
in the positive direction from the excitation point and increases in the negative direction
from the excitation point.

To correctly account for damping, it is better to represent explicitly the associated
exponential decay of the wave amplitude with distance from the source as:

σ̃k,γ,θ(xi, yi) = ei.k.OMie−|k.γ.OMi| . (II.3)

The relationship between the attenuation constant and the damping loss factor de-
pends on the type of waves [24] and is discussed in Section I. 4.

The illustration of the wave propagation using this variant formulation is shown in
Fig. II.2b. The wave amplitude decreases exponentially in both positive and negative
directions from the excitation point at x = 0.3 m. The main objective of introducing
this formulation is to improve the estimation of the damping loss factor in the presence
of the excitation point in the observation window. Note that both formulations Eqs. II.2
and II.3 provide similar wave propagation results if the excitation point is outside of the
observation window, as the wave model is identical.
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(a) The classical inhomogeneous wave.
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(b) The enhanced inhomogeneous wave.

Figure II.2: The comparison of the two different formulation of the inhomogeneous waves
with an excitation at x0 = 0.3m and γ = 0.25.

For the application of the method, the enhanced formulation of the inhomogeneous
wave σ̃∗

k,γ,θ(xi, yi) (see Eq. II.3) is correlated to the measured displacement field ŵ(xi, yi)
by using the correlation function described in Section I. 3. 3. The damping loss factor is
determined using Eq. I.51 and the average damping loss factor is calculated using Eq.
I.56.
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II. 3 Numerical validation with a fixed excita-
tion point

For the isotropic aluminium panel and the sandwich aluminium with a viscoelastic
core, the simulations of the panels are done using an in-house finite element software with
solid 20-node hexahedron (HEXA20) elements [69, 8, 4]. For the 7 layers epoxy resin
panel, the simulations are done with ZPST shell elements [16, 92, 17, 51, 80].

All the panels are subjected to a mechanical point load excitation at x0 = 0.2 m
and y0 = 0.4 m. The calculation area of the correlation factor in Eq. I.25 is reduced
by 5 cm from each boundary to minimize the effect waves generated by the reflection at
boundaries. The schematic presentation of the panel is shown in Fig. II.3.

Figure II.3: Schematic presentation of the panel.

II. 3. 1 Isotropic aluminium panel

The method is first applied to a 1 m × 1.2 m isotropic aluminium panel (Density ρ
= 2796 kg/m3, Young’s modulus E = 69 GPa, Poisson’s coefficient ν= 0.33 and damping
η=2%, 5%).

2% structural damping

The IWC wavenumber maps at 6100 HZ of both classical IWC method and enhanced
IWC method are shown in Fig. II.4a-b, respectively. Both maps are identical because
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based on Eq. II.2 and Eq. II.3, the real part of wavenumber remains the same for both
formulations. Based on the maps, the isotropic behavior of the panel is clearly observed.

The dispersion curves obtained from both classical and enhanced IWC method are
shown in Fig. II.5. The results show a very good agreement compared to the analytical
solution based on the thin plate theory.

The damping loss factor estimated using the classical and the enhanced IWC method
are shown in Fig. II.6. The classical IWC method overestimates the damping loss factor
on the entire frequency range. The enhanced method still depicts discrepancies compared
to the theoretical value but shows a better agreement.

5% structural damping

The IWC wavenumber maps at 1850 Hz and 6100 Hz of the enhanced IWC method are
shown in Fig. II.7a-b, respectively. At 1850 Hz, the isotropic behavior is clearly visible.
At 6100 Hz, the amplitude of the maximum varies in function of the angle. The position
of the excitation coordinates generates a privileged direction of the wave propagation and
is well observed in the positive kx area in this case.

The dispersion curves obtained from both classical and enhanced IWC method are
shown in Fig. II.5. The results show a very good agreement compared to the analytical
solution.

The damping loss factor estimated using the classical and the enhanced IWC method
are shown in Fig. II.9. The classical IWC method underestimates the damping loss factor
over the entire frequency range. For the enhanced IWC method, the damping loss factor
shows a better agreement compared to the analytical solution above 3000 Hz. Below, the
estimation is still not accurate due to the modal behavior of the displacement field.

(a) Classical IWC method. (b) Enhanced IWC method.

Figure II.4: IWC wavenumber maps of the numerical isotropic aluminium panel at 6100 Hz
with 2% structural damping.
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Figure II.5: Comparison of the dispersion curve of the isotropic aluminium panel with
2% structural damping. - analytical, △ classical IWC method and × enhanced IWC
method.
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Figure II.6: Comparison of the dispersion curve of the isotropic aluminium panel with 2%
structural damping. - exact damping, △ classical IWC method and × enhanced IWC
method.

(a) 1850 Hz. (b) 6100 Hz.

Figure II.7: IWC wavenumber maps of the numerical isotropic aluminium panel at 1850 Hz
and 6100 Hz with 5% structural damping.
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Figure II.8: Comparison of the dispersion curve of the isotropic aluminium panel with
5% structural damping. - analytical, △ classical IWC method and × enhanced IWC
method.
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Figure II.9: Comparison of the dispersion curve of the isotropic aluminium panel with 5%
structural damping. - analytic,△ classical IWC method and × enhanced IWC method.

II. 3. 2 Sandwich aluminium panel with a viscoelastic core

The method is then applied to a 1 m × 1.2 m sandwich viscoelastic panel. The skins
are 2 mm thick aluminium panels (Density ρ = 2700 kg/m3, Young’s modulus E = 71 GPa,
Poisson’s coefficient ν= 0.33 and damping ηskin=1%). The core is a 0.76 mm viscoelastic
panel (Density ρ = 900 kg/m3, Young’s modulus E = 1 GPa, Poisson’s coefficient ν= 0.33
and damping ηcore=20%).

The IWC wavenumber maps at 1850 Hz and 6100 Hz are shown in Fig. II.10a-b,
respectively. At 1850 Hz, the isotropic behavior of the panel is observed. At 6100 Hz, a
privileged direction of propagation in the positive kx area is visible due to the effect of the
excitation point. The dispersion curves determined using the classical and the enhanced
IWC method are shown in Fig. II.11. Both of them are in a very good agreement
compared to the GLM.

The damping loss factor estimated using the classical and the enhanced IWC method
are shown in Fig. II.12. The classical IWC method overly underestimates the damping
loss factor above 1000 Hz. The proposed method shows a much better agreement in the
high frequency range above 4500 Hz. Between 3000 Hz to 4500 Hz, the enhanced IWC
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method slightly underestimates the damping loss factor. In the low frequency range, both
methods underestimate the damping loss factor. This error is due to the reflection at
boundaries.

(a) 1850 Hz. (b) 6100 Hz.

Figure II.10: IWC wavenumber maps of the numerical sandwich aluminium panel with a
viscoelastic core at 1850 Hz and 6100 Hz.
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Figure II.11: Comparison of the dispersion curve of the numerical sandwich aluminium
with a viscoelastic core panel. - GLM,△ classical IWC method and × enhanced IWC
method.
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Figure II.12: Comparison of the dispersion curve of the numerical sandwich aluminium
with a viscoelastic core panel. - analytic,△ classical IWC method and × enhanced IWC
method.

II. 3. 3 Anisotropic 7 layers epoxy resin panel

The method is then applied to a more complex 1 m × 1.2 m 7 layers epoxy resin panel
with different laminate angles. The mechanical properties of the epoxy resin is defined in
Table II.1. The thickness and the orientation angles of each layer is shown in Table II.2.

ρ E1 E2 E3 G12 G13 G23 ν12 ν13 ν23 η
(kg/m3) (GPa) (GPa) (GPa) (GPa) (GPa)

1500 133.36 7.7 7.7 3.1 3.1 2.6 0.29 0.29 0.4999 0.05

Table II.1: Mechanical properties of the epoxy resin.

Layer Thickness (m) Orientation (◦)
1 0.000125 0
2 0.000125 30
3 0.000125 90
4 0.00025 -30
5 0.000125 90
6 0.000125 30
7 0.000125 0

Table II.2: Thickness and orientation of each epoxy resin layer.

The normal displacement at 3350 Hz is shown in Fig. II.13. The IWC wavenumber
maps at 1100 Hz and 3350 Hz are shown in Fig. II.14a-b, respectively. For both frequen-
cies, privileged directions of propagation due to the effect of the excitation coordinates
are visible and the anisotropic behavior, where the wavenumber is no longer constant as
a function of the angle θ, is observed.

The dispersion curves at 0◦, 45◦ and 90◦ estimated using the enhanced IWC method
are shown in Fig. II.15. The results are compared to the reference solution based on the
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general laminate model [36]. Note that only the dispersion curves of the enhanced IWC
method is shown because both classical and enhanced method are identical in estimating
the real part of the wavenumber (see Section II. 2). The results at 0◦, 45◦ and 90◦ show
a very good agreement compared to the reference solution in the whole frequency range.
Based on this result, the robustness of the IWC method in estimating the wavenumber is
corroborated.

The damping loss factor estimated using the classical and the enhanced IWC methods
are shown in Fig. II.16. Both results are compared with the GLM in which a power
balance equation is used to estimate the loss factor [36]. In the low frequency range below
1500 Hz, both methods slightly underestimate the damping loss factor. The enhanced
method shows a good agreement in average compared to the reference solution from
2000 Hz to 7000 Hz. Above 7000 Hz, the enhanced method shows discrepancies. The
error is certainly due to the simple arithmetic averaging over angle θ while there are
definitely directions in which the estimation is not fine due to privileged directions of
wave propagation. A spatial angle filtering is needed and is discussed later in Chapter
III.

Figure II.13: Normal displacement w of the anisotropic 7 layers epoxy resin panel at 3350
Hz.

To conclude, the estimation of the wavenumber is the same for both classical and
enhanced IWC methods. On the contrary, the enhanced IWC method improves the
estimation of the damping loss factor compared to the classical method for all three
tested panels. The improvement is due to the variant formulation that takes into account
the exponential decay with distance from the excitation location.
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(a) 1100 Hz. (b) 3350 Hz.

Figure II.14: IWC wavenumber maps of the numerical sandwich aluminium panel with a
viscoelastic core at 1850 Hz and 6100 Hz.
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Figure II.15: Comparison of the dispersion curve of the numerical 7 layers epoxy resin
panel. - GLM 0◦, -. 45◦, - - 90◦, △ enhanced IWC method 0◦, ◦ enhanced IWC
method 45◦ and × enhanced IWC method 90◦.
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Figure II.16: Comparison of the damping loss factor of the numerical 7 layers epoxy resin
panel. - exact damping, △ classical IWC method and × enhanced IWC method.
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II. 4 Effect of the observation window

The objective of this section is to observe the effect of excluding the excitation location
for the observation window on the results of the IWC method. As discussed in Section
II. 2, both formulations Eqs. II.2 and II.3 provide similar wave propagation results if
the excitation point is outside of the observation window. Thus in this section, only the
enhanced method is used for the correlation function.

In theory, far from the excitation point and in the absence of strong reflections from
boundaries, the circular shape of the wave propagation has grown to a large enough
radius and the wave front can be approximated as a plane wave [34]. The IWC method is
supposed to be able to predict the damping loss factor if the excitation point is excluded
in the observation window and the vibrating field is dominated by plane wave.

To study the effect, two different sizes of the observation windows are investigated
in this section. To do so, the boundary at x = 0 m is reduced by ∆x1 = 30 cm and
∆x2 = 40 cm for each case respectively to avoid the presence of the excitation point in
the observation window. A point mechanical load excitation is fixed at x0 = 0.2 m and
y0 = 0.4 m. The schematic presentation of the reduced observation window is shown in
Fig. II.17.

Figure II.17: Schematic presentation of the panel. The size of the observation window
varies in function of ∆x.

The method with reduced observation window is applied to a 1 m × 1.2 m isotropic
aluminium panel (Density ρ = 2796 kg/m3, Young’s modulus E = 69 GPa, Poisson’s
coefficient ν= 0.33 and damping η=5%).

Figs. II.18 and II.19 show the IWC wavenumber maps at 1850 Hz and 6100 Hz for both
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configurations, ∆x1 = 30 cm and ∆x2 = 40 cm, respectively. The isotropic behavior of
the panel is visible for both frequencies and both configurations. The dispersion curves
estimated with reduced observation windows are shown in Fig. II.20. The results are
compared to the analytical solution based on the Love-Kirchhoff theory [39]. Based on
the result, the method is able to identify precisely the wavenumber on the entire frequency
range.

The estimation of the damping loss factor is shown in Fig. II.21. For the first case
where the window is reduced by ∆x1 = 30 cm, the estimation of the damping loss factor
above 3000 Hz shows a good correlation compared to the input data, η = 5%. Below
3000 Hz, the method is not able to predict precisely the damping. For the second case
where the window is reduced by ∆x2 = 40 cm, the estimation of the damping loss factor
converges to the analytical solution above 5000 Hz. The reduction of the observation
window deteriorates the method between 3000 Hz and 5000 Hz. The discrepancies shown
by the second case between 3000 Hz and 5000 Hz as compared to the first case is due
to the limited number of wavelength to predict precisely the damping loss factor. Below
3000 Hz, the discrepancies shown by both observation window sizes are more likely due
to the form of the propagating wave.

To conclude, the estimation of the wavenumber is less sensitive to the size of the
observation window. For both observation windows sizes, the method is able to predict
precisely the wavenumber in all the frequency range. On the other hand, the estimation
of the damping loss factor is more precise with a bigger observation window. In Chapter
III, a method based on the Green’s function is presented and allows the inclusion of the
excitation point in the observation window. This new method maximizes the observation
window size and improves tremendously the frequency range in which the correlation
technique is applicable.

(a) 1850 Hz. (b) 6100 Hz.

Figure II.18: IWC wavenumber maps of the aluminium panel at 1850 Hz and 6100 Hz for
the first case (∆x1 = 30 cm).
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(a) 1850 Hz. (b) 6100 Hz.

Figure II.19: IWC wavenumber maps of the aluminium panel at 1850 Hz and 6100 Hz for
the first case (∆x2 = 40 cm).
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Figure II.20: Comparison of the dispersion curve of the numerical isotropic alu-
minium panel with 5% structural damping. - analytic, × enhanced IWC method with
∆x1 = 30 cm and ◦ enhanced IWC method with ∆x2 = 40 cm.
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Figure II.21: Comparison of the damping loss factor of the numerical isotropic aluminium
panel with 5% structural damping and with reduced observation window. × enhanced
IWC with ∆x1 = 30 cm and − ◦ − enhanced IWC with ∆x2 = 40 cm.
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II. 5 Effect of the excitation location

Contrary to the previous application of the proposed method where the excitation
location is fixed at x0 = 0.2 m and y0 = 0.4 m, this section investigates the effect of
different excitation location on the estimation of the wavenumber and the damping loss
factor by fixing the size of the observation window.

Based on the observation of the IWC wavenumber maps in the two previous sections,
privileged directions of the wave propagation are dependant on the excitation position. For
isotropic structures where the wavenumber is similar regardless the directions of the angle
θ, the estimation of the wavenumber is easily determined by localising the global maximum
of the map for each frequency. However for non-isotropic structures, the estimation of
the wavenumber may be difficult for some of the directions θ if the excitation location is
badly chosen.

The first objective of this section is to illustrate this effect by applying the proposed
method to two panels: 1) an isotropic aluminium panel and 2) an anisotropic 7 layers
epoxy panel. Secondly, the objective of this investigation is to illustrate the impact of
different excitation location on the estimation of the damping loss factor.

The simulations are done over three different excitation points. The first one is
x01 = 0.2 m and y01 = 0.4 m. The second one is the central excitation at x02 = 0.5 m and
y02 = 0.6 m. The third one is an excitation near the edge at x03 = 0.1 m and y03 = 0.1 m.

For each case, the observation window is reduced by 5 cm from each boundary. The
schematic presentation of the three excitation points is shown in Fig. II.22.

Figure II.22: Schematic presentation of the panel with three different excitation points.
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II. 5. 1 Isotropic aluminium panel

The studied case is applied to a 1 m × 1.2 m isotropic aluminium panel (Den-
sity ρ = 2796 kg/m3, Young’s modulus E = 69 GPa, Poisson’s coefficient ν = 0.33 and
damping η = 5%).

The IWC wavenumber maps at 1850 Hz and 6100 Hz of the three different simulations
are shown in Fig. II.23. For the maps at 1850 Hz, the isotropic behavior of the panel is
clearly identifiable for the all cases as shown in Fig. II.23a, Fig. II.23c and Fig. II.23e.
However, a privileged direction of propagation is more pronounced for the third case
compared to the first and second cases.

For the maps at higher frequency of 6100 Hz, the isotropic behaviour is clearly visible
for the second excitation as shown in Fig. II.23d. The radius of the maximum is almost
constant as a function of the angle. For the first excitation as shown in Fig. II.23b,
a privileged direction of the propagation in the negative kx area of the map is visible.
However, the isotropic behavior of the panel is still identifiable. For the third excitation
as shown in Fig.II.23f, the wave propagation is very directive in the third quadrant of the
map. The isotropic behavior for this case is not easily identifiable.

The dispersion curves at 180◦ of each excitation are estimated in Fig. II.24. For the
first and second excitation, a good correlation of the dispersion curve compared to the
analytical solution is observed in the whole frequency range. For the third excitation,
some discrepancies are visible at 5000 Hz, 6800 Hz and 7600 Hz. These discrepancies are
certainly due to the privileged directions of the wave propagation of the panel.

However, the estimation of the damping loss factor is much more difficult to be ex-
ploited. Fig. II.25 shows the damping loss factor of three different excitation points
using the classical IWC method. For the central excitation, the method overestimates the
damping loss factor on the entire frequency range. For the first excitation, the method
underestimates the damping loss factor in the frequency range above 500 Hz. For the third
case, the method overestimates the damping loss factor below 3500 Hz and underestimates
the damping above 500 Hz.

Fig. II.26 shows the estimation of the damping loss factor using the enhanced formu-
lation of the IWC method. For the central excitation, the method shows discrepancies
on the entire frequency range. The discrepancies are due to the response observed in
the window is dominated by the near field which does not resemble to an inhomogeneous
plane wave. For the first and second excitation, the enhanced IWC method shows good
agreement above 4000 Hz compared to the input data. However below 4000 Hz, the
damping loss factor is underestimated. The error is certainly due to the simple arithmetic
averaging over angle θ while there are definitely directions in which the estimation is not
fine due to privileged directions of wave propagation. A spatial angle filtering is needed
and is discussed later in Chapter III.
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(a) 1850 Hz, x01 = 0.2 m and y01 = 0.4 m. (b) 6100 Hz, x01 = 0.2 m and y01 = 0.4 m.

(c) 1850 Hz, x02 = 0.5 m and y02 = 0.6 m. (d) 6100 Hz, x02 = 0.5 m and y02 = 0.6 m.

(e) 1850 Hz, x03 = 0.1 m and y03 = 0.1 m. (f) 6100 Hz, x03 = 0.1 m and y03 = 0.1 m.

Figure II.23: IWC wavenumber maps of the numerical isotropic aluminium with 5%
structural damping subjected to different points of excitation.
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Figure II.24: Comparison of the dispersion curve of the numerical isotropic aluminium
panel with 5% structural damping and with different excitation points at 180◦. - GLM,
× x01 = 0.2 m and y01 = 0.4 m, ◦ x02 = 0.5 m and y02 = 0.6 m, ◦ x03 = 0.1 m and
y03 = 0.1 m.
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Figure II.25: Comparison of the damping loss factor of the numerical isotropic aluminium
panel with 5% structural damping and with different excitation points using the classical
IWC method. - GLM, × x01 = 0.2 m and y01 = 0.4 m, ◦ x02 = 0.5 m and y02 = 0.6 m,
□ x03 = 0.1 m and y03 = 0.1 m.
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Figure II.26: Comparison of the damping loss factor of the numerical isotropic aluminium
panel with 5% structural damping and with different excitation points using the enhanced
IWC method. - GLM, × x01 = 0.2 m and y01 = 0.4 m, ◦ x02 = 0.5 m and y02 = 0.6 m,
□ x03 = 0.1 m and y03 = 0.1 m.
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II. 5. 2 Anisotropic 7 layers epoxy panel

The same investigation is then applied to an anisotropic 1 m × 1.2 m 7 layers epoxy
resin panel with different angles of orientation. The orientation angles and the thickness
of each layer are shown in Tab. II.2. The mechanical properties of the epoxy resin are
defined in Fig. II.1.

The IWC wavenumber maps at 1850 Hz and 6100 Hz of three different simulations
are shown in Fig. II.27. For the first case at 1850 Hz, some privileged directions in the
second and third quadrants can be seen as shown in Fig. II.27a. However, the anisotropic
behavior of the panel is still visible. For the first excitation at 6100 Hz as shown in Fig.
II.27b, the anisotropic behavior is less visible compared to the map at 1850 Hz but it can
still be identified.

For the second excitation where the panel is subject to a central excitation, the am-
plitude of the maximum is almost constant as a function of the angle and the anisotropic
behavior can easily be identified for both frequencies (see Figs. II.27c-d). However for
the third excitation, the wave propagation are very directive for both frequencies at 1850
Hz and 6100 Hz as shown in Figs. II.27e-f respectively and the anisotropic behavior is
no longer easily predictable. The amplitude of the maximum is concentrated in the third
quadrant of the map for both frequencies.

The dispersion curves at 40◦ and 220◦ for each excitation are presented in Figs. II.28
and II.29, respectively. A very good correlation is visible for all cases at 40◦. At 220◦, a
very good correlation is visible between the IWCmethod for the first and second excitation
as compared to the reference solution based on the general laminate model (GLM) [36].
However for the third excitation, some discrepancies are visible at 800 Hz 2800 Hz, 4600
Hz and 7600 Hz. These discrepancies are certainly due to the privileged directions of the
wave propagation of the panel as shown in the IWC wavenumber maps.

The damping loss factor estimation using the enhanced IWC method of three different
excitation points is shown in Fig. II.30. For the second case where the panel is subject to
a central excitation, the proposed method underestimates the damping loss factor in the
whole frequency range. For the first and third cases, the enhanced IWC method shows
good agreement compared to the GLM above 1000 Hz. Below this frequency, the proposed
method slightly underestimates the damping loss factor. Again, the error is certainly due
to the simple arithmetic averaging over angle θ while there are definitely directions in
which the estimation is not fine due to privileged directions of wave propagation. A
spatial angle filtering is needed and is discussed later in Chapter III.
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(a) 1850 Hz, x01 = 0.2 m and y01 = 0.4 m. (b) 6100 Hz, x01 = 0.2 m and y01 = 0.4 m.

(c) 1850 Hz, x02 = 0.5 m and y02 = 0.6 m. (d) 6100 Hz, x02 = 0.5 m and y02 = 0.6 m.

(e) 1850 Hz, x03 = 0.1 m and y03 = 0.1 m. (f) 6100 Hz, x03 = 0.1 m and y03 = 0.1 m.

Figure II.27: IWC wavenumber maps of the numerical anisotropic 7 layers epoxy resin
panel with 5% structural damping subject to different points of excitation.
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Figure II.28: Comparison of the dispersion curve of the numerical anisotropic 7 layers
epoxy resin panel with 5% structural damping and with different excitation points at
220◦. - analytic, × x01 = 0.2 m and y01 = 0.4 m, ◦ x02 = 0.5 m and y02 = 0.6 m, □
x03 = 0.1 m and y03 = 0.1 m.
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Figure II.29: Comparison of the dispersion curve of the numerical anisotropic 7 layers
epoxy resin panel with 5% structural damping and with different excitation points at
40◦. - analytic, × x01 = 0.2 m and y01 = 0.4 m, ◦ x02 = 0.5 m and y02 = 0.6 m, □
x03 = 0.1 m and y03 = 0.1 m.
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Figure II.30: Comparison of the damping loss factor of the anisotropic 7 layers epoxy resin
panel 5% structural damping and with different excitation points using the enhanced IWC
method. - analytic, × x01 = 0.2 m and y01 = 0.4 m, ◦ x02 = 0.5 m and y02 = 0.6 m, □
x03 = 0.1 m and y03 = 0.1 m.
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II. 6 Limitations related to the plane wave as-
sumption

Three different studies have been conducted to investigate the robustness of the
method in the previous sections. Globally, the enhanced method improves the estimation
of the damping loss factor compared to the classical IWC method. However, the applica-
tion of the proposed method in the presence of the excitation point shows discrepancies.
In fact, the plane wave assumption is limited due to the nature of the plane wave itself.

To observe this limitation, an example of a simply supported aluminium panel excited
with a point force is used for the demonstration (Length along x direction Lx = 2 m,
Length along y direction Ly = 1 m, Density ρ = 2796 kg/m3, Young’s modulus
E = 69 GPa, Poisson’s coefficient ν= 0.33 and damping η=10%). The panel is subject to
a central excitation at x0 = 1 m and y0 = 0.5 m.

The solution of the equation of motion is solved analytically by using the modal
decomposition method. The equation writes (time-harmonic convention of e−iωt) [39]:

w(x, y, ω) =
m∑

m=1

n∑
n=1

φmn(x0, y0)φmn(x, y)

ω2
mn − ω2 + iηωωmn

4

ρhLxLy

, (II.4)

where the mode shapes are written as:

φmn(x, y) = sin(
mπx

Lx

) sin(
nπy

Ly

) , (II.5)

and the eigen frequencies are defined by:

ωmn =

√
D

ρh

((
mπ

Lx

)2

+

(
nπ

Ly

)2
)

. (II.6)

Fig. II.31 shows the real part of the normal displacement of the panel along the vertical
line y = 0.5 m. The displacement field w(x, y = 0.5 m,ω) is compared to the Green’s
function of an isotropic infinite plate in Eq. I.30 and the enhanced inhomogeneous wave
in Eq. II.3.

In order to quantify the error, the normalized reconstruction error is calculated. The
equation writes [75]:

e =
||w(x, y, ω)− w̃||2

||w(x, y, ω)||2
, (II.7)

where w(x, y, ω) is the harmonic field and w̃ is either the Green’s function (see Eq. I.30)
or the inhomogeneous wave and ||...|| denotes the Euclidean norm of a matrix.

The error calculated for the case shown in Fig. II.31 is about 23.4% for the Green’s
function and is about 116.3% for the inhomogeneous wave.

To conclude, the error calculated between the measured displacement field and the
enhanced inhomogeneous wave is much superior compared to the error calculated between
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Figure II.31: Real part of the normal displacement of a simply supported panel along
y = 0.5 m, the Green’s function and the inhomogeneous wave (frequency, f = 5000 Hz).
- Harmonic field, - - Green’s function and -. inhomogeneous wave.

the measured displacement field and the Green’s function. The plane wave assumption
is very limited in the presence of the excitation point in the observation window. The
correlation function can be improved by replacing the inhomogeneous wave with the
Green’s function to represent better the vibrational field and will be studied in Chapter
III
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II. 7 Conclusion of the chapter

An enhanced formulation of the IWCmethod to improve the estimation of the damping
loss factor has been introduced in this chapter. The performance of the method has been
demonstrated numerically by comparison with a reference analytical model.

For the wavenumber, the classical and the new enhanced IWC method are able to
predict precisely the wavenumber for all the cases if the excitation point is correctly
defined. However, the accuracy of the estimation of the damping loss factor varies as
a function of different parameters. For the first case where the excitation point is fixed
and is in the observation window, the proposed method improves the estimation of the
damping loss factor compared to the classical method for all the panels.

For the second case where the excitation point is outside of the observation window,
the proposed method shows good agreement compared to the reference analytical model in
the high frequency range. However in the low frequency range, the method is limited due
to the window size. Here, the proposed method that takes into account the effect of the
excitation point presents a major advantage because the observation can be maximized
and thus, the estimation of the damping loss factor in the low frequency range can be
improved.

For the third case with three different excitation points, the damping loss factor es-
timation where the panel is subjected to a central excitation shows discrepancies in the
whole frequency range for both classical and enhanced methods. On the contrary, the
enhanced method improves the estimation of the damping loss factor when the panel is
subject to the excitation near the edge. Certainly, an enhanced angle averaging, exclud-
ing directions wherein the estimation is inaccurate will improve the results. This will be
illustrated in Chapter III.

In conclusion, the estimation of the damping loss factor of a finite panel using the
plane wave assumption remains difficult in the presence of the excitation point. In the
next chapter, the inhomogeneous wave is replaced with a Green’s function based-model.
It will be shown that this approach improves tremendously the estimation of the damping
loss factor because it is more adapted to describe the vibrational field near the excitation
point.
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In this chapter, a Green’s function-based model correlation (GFC) method able to
estimate the damping loss factor as a function of the frequency and the heading angle of
complex structures is introduced. The first part of this chapter is presented as an article
submitted to the Journal of Sound and Vibration in June 2022. A preliminary version of
the method developed herein has also been communicated and published in a conference
as:

M. N. Bin Fazail, J.-D. Chazot, G. Lefebvre, N. Atalla, Identification of the dispersion
curves and the damping loss factor using green’s function-based model of non-isotropic
structures, Proceedings of the 28th International Congress on Sound and Vibration, Sin-
gapore (2022)

In the second part of the chapter, a further work on the effect of the excitation location
to the estimation of the damping loss factor is presented. Three different excitation
locations are defined: the first is near a boundary, the second is at the center and the
third is near a corner. The performance of each excitation location is studied numerically
and experimentally.

https://iiav.org/content/archives_icsv_last/2022_icsv28/content/papers/papers/full_paper_424_20220315040236769.pdf
https://iiav.org/content/archives_icsv_last/2022_icsv28/content/papers/papers/full_paper_424_20220315040236769.pdf
https://iiav.org/content/archives_icsv_last/2022_icsv28/content/papers/papers/full_paper_424_20220315040236769.pdf
https://iiav.org/content/archives_icsv_last/2022_icsv28/content/papers/papers/full_paper_424_20220315040236769.pdf
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Damping loss factor characterization of complex
structures using a Green’s function-based model

Muhammad Najib BIN FAZAIL, Jean-Daniel CHAZOT, Gautier LEFEBVRE,
Noureddine ATALLA

Journal of Sound and Vibration (under review), 2022

Abstract

The Inhomogeneous Wave Correlation technique has been used to estimate experimentally
the wavenumber of simple and complex structures. However this method is essentially
focused on the real part of the wavenumber and is not always robust to measure the damp-
ing loss factor related to its imaginary part. Another correlation technique able to capture
the damping effects of complex structures as function of the heading angle accurately is
presented here. Instead of using an inhomogeneous plane wave, the correlation is made
with a Green’s function to better take into account the behavior of the structure excited
by a point force. Several results, with simulated and measured data, are compared with
an analytical discrete laminate model and show the accuracy of this Green’s Function
Correlation technique to recover the damping loss factor of complex structures with high
damping and in the mid to high frequency range.
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III. 1 Introduction

In the domain of transportation industry, noise control requires robust simulation
tools to predict the vibratory and acoustic levels inside and outside vehicles such as
airplanes, cars and trains. Numerous global [21, 86, 41, 42, 43, 7] and local [71, 72, 1, 57]
characterization methods have been developed throughout the years to feed the numerical
models with accurate input data.

One of the local approaches that has been widely used is the Force Analysis Technique
(FAT) [71, 72, 1, 57]. This method estimates the equation of motion by means of a finite
different scheme. The Corrected Force Analysis Technique (CFAT) [49, 48] extends the
method to reduce the bias error of the finite different scheme by adding correction factors.
The main advantage of this method is the ability to be applied without any knowledge
outside of the studied area such as the boundary conditions or sources. However, this
method is sensitive to measurement uncertainties.

The global method based on the wave fitting approach which is less sensitive to mea-
surement uncertainties is adapted in this paper. One of the first wave approach application
has been carried out by McDaniel et al. [62, 61] to estimate the complex wavenumber
and the damping loss factor of one dimensional structures. This approach is based on
the error minimisation between a wave model and the measured responses. The discrete
spatial Fourier Transform (DFT) [50, 42, 33] has also been used widely to determine the
wavenumber of two dimensional structures. The rapidity and the bijectivity of the method
presents major advantages but is limited to equally measurement points and is not able
to estimate the damping loss factor.

The Inhomogeneous Wave Correlation (IWC) developed by Berthaut et al. [7] extends
the previous method and allows the identification of the wavenumber. This approach is
based on the maximization of the correlation between an inhomogeneous wave and the
spatial field as a function of the wave heading angle or the direction of the wave propaga-
tion. The method has been applied to one-dimensional structures [73], two-dimensional
sandwich structures with honeycomb cores [41, 21], stiffened panels [42, 43], panel with
distributed resonators [87] and curved structures [86]. Cherif et al. [21] applied the IWC
method to estimate the average damping loss factor of orthotropic structures using an it-
erative refinement process. One of the major drawbacks of this approach is the complexity
to define the iteration range to achieve the convergence of results.

In fact, the IWC method which is based on the plane wave hypothesis is limited due
to the nature of the plane wave itself. Indeed, the vibrational field near the excitation
point cannot be compared with a plane wave. Therefore the measurements must be
done over an observation area sufficiently far from the excitation point. In reality, this
condition is difficult to obtain due to the finite dimensions of the panel. To overcome this
last limitation, Tufano in his dissertation [83] replaced the inhomogeneous wave by the
Green’s function of the isotropic infinite plate. This method combines advantages of the
IWC and the Green’s function which uses a set of Hankel’s function. Tufano applied his
method to an isotropic laminated plate and to an isotropic plate with tuned mass damper
(TMD).

Another wave fitting approach has been introduced by Cuenca et al. [27, 28]. In this
approach, the harmonic displacement field model is constructed by combining the contri-
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bution of the image sources emitting the Green’s function of an infinite plate. This model
is then fitted with the measured displacement field to estimate the material properties.
Roozen et al. [75] applied the method experimentally to estimate the wavenumber and
the damping loss factor of a thin isotropic plate by adding a Bayesian regularisation to in-
crease the accuracy of the method. Recently, Marchetti et al. [57] extended the method to
characterize elliptical orthotropic structures based on the analytical expression developed
by Berthaut [6] in the appendix of his thesis.

To the best of our knowledge, the application of the Green’s function to estimate the
wavenumber and in particular, the damping loss factor to more complex structures has
never been developed or at least published. This Green’s function-based model correlation
(GFC) method enables to estimate the wavenumber and in particular, the damping loss
factor in function of the heading angle without using an iterative refinement process. This
method offers more stability in estimating the damping loss factor for highly damped
structures in the mid to high frequency range.

The proposed method is applied to multilayered structures with different degrees of
complexities and compared to analytical solutions based on a discrete laminate model
[36]. On the other hand, experimental validations are also presented in this paper. The
estimation of the average damping loss factor is compared to reference methods such as
the half-power bandwidth method [67], the decay rate method [9, 11] and the power input
method [11].

In Section III. 2, the overview of the IWC method is described and the Green’s function
based-model replacing the plane wave assumption is introduced. The numerical validation
on panels with different complexities such as a sandwich laminated glass with frequency
dependant characteristic viscoelastic core, an anisotropic sandwich laminate panel with
different fibers orientation and an orthotropic sandwich graphite-epoxy with a viscoelastic
core panel is described in details in Section III. 3 to validate the feasibility of the method.
The experimental procedures to measure the harmonic field of the sandwich carbon fiber
honeycomb panel with thick core are described and associated results are discussed in
Section III. 4.

III. 2 Theory

III. 2. 1 Inverse Wave method

The method developed in this paper is based on the Inhomogeneous Wave Corre-
lation (IWC) function. This approach calculates the correlation between the measured
displacement field ŵ(x, y) and an inhomogeneous plane wave defined as:

σ̂k,γ,θ (xi, yi) = e−ik(θ)(1+iγ(θ))(xi cos θ+yi sin θ) , (III.1)

where k is the wavenumber, γ is the attenuation factor, θ is the propagation angle and
(xi, yi) are the coordinates of the point i. The correlation function is given by:
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IWC(k, γ, θ) =
|
∑N

i=1 ŵ(xi, yi)σ
∗
k,γ,θ(xi, yi)ρiSi|√∑N

i=1 |ŵ(xi, yi)|2ρiSi

∑N
i=1 |σk,γ,θ(xi, yi)|2ρiSi

, (III.2)

where ∗ denotes the complex conjugate, ρi is a surface integration weight at point i (ρi=1
if the surface is divided into equal surface patches and the integrand is assumed constant
over each patch), Si is an estimation of the surface around the point i and N is the total
number of acquisition points [7]. The algorithm first defines the angle θ into a discrete
set of values (θj). For each of these angles, the value of (ki, γi) that maximizes the IWC
function is determined [7].

III. 2. 2 IWC method with a Green’s function-based model

Using the same idea described in the Section III. 2. 1, a modified IWC method is
defined in this section. This formulation replaces the inhomogeneous wave with a Green’s
function-based model. For a thin plate of infinite dimensions subject to a harmonic point
excitation, the Green’s function is described as [38, 27]:

G∞(k̂, r) =
i

8k̂2D
[H

(1)
0 (k̂r)−H

(1)
0 (ik̂r)] , (III.3)

where G∞ is the Green’s function of the infinite plate, k̂ is the complex wavenumber
defined by k̂ = kR + ikI , D is the flexural stiffness defined by D = Eh3

12(1−ν2)
, E is the

Young’s modulus, h is the thickness, ν is the Poisson’s coefficient and H
(1)
0 is the zero

order Hankel’s function of the first kind. The radius, r, is defined as the distance between
the excitation point and the observation point.

The flexural stiffness in Eq. III.3 can be eliminated by introducing the dispersion
relation of the flexural wavenumber:

k2 =

√
ms

D
ω , (III.4)

where ms is the mass per unit area and ω is the angular frequency. Adding an angle
dependency of the governing equation, the proposed Green’s function-based model is [10]:

G(k̂, r, θ) =
ik̂2(θ)

8msω2
[H

(1)
0 (k̂(θ)r)−H

(1)
0 (ik̂(θ)r)] . (III.5)

This function does not verify the anisotropic infinite plate equation but enables to
estimate the equivalent elastic parameters of complex structures at different propagation
angles.

In polar coordinates, the correlation function writes:

GFC(k̂, r, θ) =
|
∑N

i=1 ŵ(r, θ)G
∗(k̂, r, θ)ρiSi|√∑N

i=1 |ŵ(r, θ)|
2ρiSi

∑N
i=1 |G(k, r, θ)|2ρiSi

. (III.6)



87 III. 2 - Theory

The identification of the complex wavenumber is obtained by maximizing GFC(k̂, r, θ)
at each angle and each frequency. The complex wavenumber can also be defined as
k̂(θ) = k(ω, θ)(1 + iγ(ω, θ)) where γ is the attenuation factor.

The estimation is done in two steps. First, the algorithm estimates the real part
of the wavenumber k(γ, θ) and then, the attenuation factor γ(ω, θ) is quantified. The
dispersion maps shown in this paper are obtained by calculating just the real part in the
GFC criterion.

III. 2. 3 Damping loss factor

Based on the method described in the previous section, the damping loss factor is
determined using the following equation [53, 47, 56]:

η(ω, θ) = −2Im(k̂(θ))

Re(k̂(θ))

cg
cφ

, (III.7)

where cg = ∂ω/∂k is the group velocity and cφ = ω/k is the phase velocity. Both group
and phase velocities can be estimated from the dispersion curve. Note that to better
calculate both group and phase velocities, a smoothing of the wavenumber is necessary.
Using the attenuation factor introduced in Eq. I.22, Eq. III.7 is rewritten as:

η(ω, θ) = −2γ(ω, θ) cg
cφ

. (III.8)

In general, the group velocity and the phase velocity are related by cg = 2cφ for a
pure bending wave propagation. For longitudinal wave or shear wave propagation, the
medium is not dispersive thus cg = cφ.

Average loss factor

This section describes the method to calculate the average damping loss factor of non-
isotropic structures [54]. The average damping loss factor of an isotropic panel can be
described as:

< η(ω) >=

∫ 2π

0
η(ω, θ)dθ∫ 2π

0
dθ

. (III.9)

However, the relation is not applicable to non-isotropic structures because the num-
ber of modes are different in each directions and the damping loss factor varies in each
direction. Therefore, a more general average loss factor formulation is given by:

η̄(ω) =

∫ 2π

0
η(ω, θ)n(ω, θ)dθ∫ 2π

0
n(ω, θ)dθ

, (III.10)

where n(ω, θ) is the angular modal density for each direction given by [53]:
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n(ω, θ) =
S

π2

k(ω, θ)

cg(ω, θ)
. (III.11)

Here S is the area of the structure and k(ω, θ) and cg(ω, θ) are the wavenumber and
the group velocity at each angle and each frequency. Finally, the average loss factor of
non-isotropic structures is written as:

η̄(ω) =

∫ 2π

0
η(ω, θ) k(ω,θ)

cg(ω,θ)
dθ∫ 2π

0
k(ω,θ)
cg(ω,θ)

dθ
. (III.12)

In this paper, the damping loss factor as function of the frequency and the angle is
estimated only for the numerical orthotropic sandwich graphite-epoxy with a viscoelastic
core panel, the numerical sandwich aluminium with a shape memory polymer (SMP) core
panel and the experimental sandwich carbon fiber honeycomb panel. For other panels,
the global average damping loss factor given in Eq. III.12 is studied and compared to
reference methods.
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III. 3 Numerical validations

The method described in the previous section is applied to four plane structures with
different complexities: the first one is a sandwich laminated glass with a frequency de-
pendant PVB core panel [89], the second one is an anisotropic laminate carbon fiber
plate with different orientation of the fibers [56] , the third one is an orthotropic sand-
wich graphite-epoxy with a viscoelastic core panel [36] and the fourth one is a very high
damping aluminium sandwich with a shape memory polymer core panel.

For each case, the specific objective is described as follow: 1) to investigate the limita-
tion of the proposed method for a low damping structure; 2) to investigate the accuracy
of the method for an anisotropic panel with a higher damping loss factor; 3) to investigate
the ability of the proposed method to estimate the damping loss factor as function of the
frequency and the heading angle of an orthotropic panel; 4) and to investigate the ability
of the proposed method to estimate the damping loss factor of a very highly damped
structure.

The simulations of the first, third and fourth panels are done using an in-house finite
element software with solid HEXA20 elements [69, 4] and the simulations of the second
panel are done using an in-house finite element software with ZPST elements [16, 51].

All the panels are subject to a central excitation with free-free boundary conditions.
The calculation area of the correlation factor in Eq. III.6 is reduced by 5 cm from each
boundary to minimise the effect waves generated by the reflection at boundaries. The
excitation point is rejected in the correlation function due to the singularity of the Green’s
function at r = 0 (see Eq. III.5).

III. 3. 1 Sandwich laminated glass with a frequency dependent PVB
core

The method is first applied to a 1 m × 1.2 m sandwich laminated glass panel with a
viscoelastic polyvinyl butyral (PVB) polymer core [89, 92]. The skins are 5 mm thick glass
panels (Density ρ = 2500 kg/m3, Young’s modulus E = 71.04 GPa, Poisson’s coefficient ν
= 0.2 and damping ηskin = 0.1%). The PVB viscoelastic core (Density ρcore = 1020 kg/m3

, Poisson’s coefficient νcore = 0.449) is 0.38 mm thick and has frequency dependant
Young’s modulus, shear modulus, and damping ratio defined in Table III.1.

The GFC wavenumber maps at 1850 Hz and 6100 Hz are shown in Fig. III.1a-b
respectively. At 1850 Hz, the maximum of the amplitude varies in function of the angle
and the privileged directions of propagation is visible. At 6100 Hz, the isotropic behavior
of the panel is identified. The wavenumber estimated in Fig. III.2 correlates well in the
frequency range compared to the GLM.

The ratio of the group velocity over the phase velocity estimated from the dispersion
curve of the laminated glass panel is shown in Fig. III.3. Below 6000 Hz, the ratio ap-
proaches 2 which corresponds to pure bending wave. Above 6000 Hz, the ratio approaches
1, the shear wave propagation dominates the global behavior of the system.

The damping loss factor identification is presented in Fig. III.4. The result is compared
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Frequency (Hz) Shear Modulus (Pa) Damping Young’s Modulus (Pa)

10 5.50E+07 0.46 1.65E+00
50 8.30E+07 0.27 2.49E+08
100 9.17E+07 0.24 2.75E+08
200 1.03E+08 0.21 3.08E+08
500 1.14E+08 0.15 3.42E+08
1000 1.21E+08 0.14 3.63E+08
2000 1.30E+08 0.12 3.90E+08
5000 1.38E+08 0.07 4.13E+08
10000 1.40E+08 0.04 4.19E+08
20000 1.41E+08 0.02 4.23E+08
30000 1.42E+08 0.02 4.24E+08

Table III.1: Properties of the sandwich laminated glass core.

with the GLM in which a power balance equation is used to estimate the loss factor [36].
The estimation using the Green’s function-based model is in good agreement with the
reference solution above 1000 Hz. Below 1000 Hz, the GFC overestimates the damping
loss factor due to the modal behavior of the panel.

(a) 1850 Hz (b) 6100 Hz

Figure III.1: GFC wavenumber maps of the numerical sandwich laminated glass panel at
1850 Hz and 6100 Hz.
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Figure III.2: Comparison of the dispersion curve of the numerical sandwich laminated
glass panel. - GLM and ∗ GFC.
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Figure III.3: Ratio of the group velocity over the phase velocity of the numerical sandwich
laminated glass panel.
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Figure III.4: Comparison of the damping loss factor of the numerical sandwich laminated
glass panel.- GLM and ∗ GFC.
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III. 3. 2 Anisotropic laminate composite panel

The proposed method is applied to a 1 × 1.2 m2 carbon fiber composite panel with
different orientations of the fibers (60◦/-60◦/-60◦/60◦) [56]. The mechanical properties of
the panel are shown in Table III.2.

The GFC wavenumber maps at 3600 Hz and 6100 Hz of the proposed method are shown
in Fig. III.5a-b respectively. For both frequencies, the anisotropic behavior of the panel
is visible and a good agreement with the GLM is demonstrated. The dispersion curves
at 0◦, 30◦, 60◦ and 90◦ are shown in Fig. III.6. The results show a very good agreement
compared to the GLM on the entire frequency range and for all four directions.

The damping loss factor is compared to the GLM energy based estimation in Fig. III.7.
The proposed method shows a good correlation compared to the GLM above 1500 Hz.
Below 1500 Hz, the GFC method shows some discrepancies due to the modal behavior of
the panel which is ignored in the free field Green’s function used in the proposed method.

h ρ Ex Ey Gxy νxy η
Parameters 0.187 mm 1540 kg/m3 133 GPa 8.8 GPa 6.6 GPa 0.31 5%

Table III.2: Optimal material parameters of one layer of the composite plate given by
Marchetti et al. [56].

(a) 3600 Hz (b) 6100 Hz

Figure III.5: GFC wavenumber maps of the numerical laminated composite panel at 3600
Hz and 6100 Hz. The black line shows the flexural wavenumber estimation using the
GLM.
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Figure III.6: Comparison of the dispersion curve of the numerical laminated composite
panel. – 0◦ GLM, – 30◦ GLM, – 60◦ GLM and – 90◦ GLM. ∗ 0◦ GFC, △ 30◦ GFC, ◦
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Figure III.7: Comparison of the damping loss factor of the numerical laminated composite
panel. - GLM and ∗ GFC.

III. 3. 3 Orthotropic sandwich graphite-epoxy with a viscoelastic core

The method is applied to an orthotropic 1 m × 1.2 m sandwich graphite-epoxy with
a viscoelastic core. The mechanical properties of the panel are defined in Table III.3.

The wavenumbers estimation at two different angles, 0◦ and 90◦, are shown in Fig.
III.8. The proposed method shows a good correlation in both directions compared with
the GLM on the entire frequency range.

The damping loss factor as function of the heading angle from 0 to π/2 is shown in
Fig. III.9b and compared to the GLM in Fig. III.9a [36]. In the low frequency range
below 250 Hz, the maxima of the damping loss factor from 0 to π/2 shows discrepancies
compared to the GLM due to the free field behavior assumed in the Green’s function
which is not respected in practice. Above 250 Hz, the variation of the overall damping
from 0 to π/2 shows the effect of the orthotropy of the skin on the estimation of the
damping loss factor. The damping loss factor maxima vary in function of the frequency
and the heading angle.

The estimation of the damping loss factor of the panel along three different directions
(0◦, 45◦ and 90◦) is shown in Fig. III.10. At 0◦, the result shows a good correlation
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Skins Core
h (mm) 1.52 0.127
E1 (GPa) 125 0.0021
E2 (GPa) 12.5 0.0021
E3 (GPa) 125 0.0021
G12 (GPa) 5.9 0.0007
G13 (GPa) 3 0.0007
G23 (GPa) 5.9 0.0007

ν12 0.4 0.499
ν13 0.032 0.499
ν23 0.4 0.499

ρ (kg/m3) 1600 970
η ( %) 1 50

Table III.3: Mechanical properties of the orthotropic sandwich graphite-epoxy with a
viscoelastic core panel [36].

compared to the GLM above 1500 Hz. Below, the proposed method overestimates the
damping loss factor. At 45◦, a good correlation above 500 Hz compared to the GLM is
visible. At 90◦, the proposed method shows a good correlation compared to the GLM
above 500 Hz.

The heading angle modal density averaged (see Eq. 12) damping loss factor is pre-
sented in Fig. III.11. A good correlation compared to the GLM in the frequency range
above 500 Hz is visible.
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Figure III.8: Comparison of the dispersion curve of the numerical sandwich graphite-
epoxy with a visceolastic core. - 0◦ GLM ,- - 90◦ GLM, × 0◦ GFC and △ 90◦ GFC.
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(a) GLM [36]. (b) GFC.

Figure III.9: Comparison of the damping loss factor of a sandwich graphite-epoxy with a
viscoelastic core panel as function of the frequency and the heading angle from 0 to π/2.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Frequency [Hz]

0

0.05

0.1

0.15

0.2

0.25

L
o
s
s
 f
a
c
to

r 

Figure III.10: Damping loss factor at 0◦, 45◦ and 90◦ of a sandwich graphite-epoxy with
a viscoelastic core panel. – 0◦ GLM, – 45◦ GLM and – 90◦ GLM. × 0◦ GFC, △ 45◦

GFC and ◦ 90◦ GFC.
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Figure III.11: Heading angle modal density averaged damping loss factor panel of a
sandwich graphite-epoxy with a viscoelastic core panel. – GLM and + GFC.
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III. 3. 4 High damping loss factor sandwich aluminium with a shape
memory polymer (SMP) core panel

The method is applied to a 0.5 m × 0.6 m aluminium sandwich with a Shape Memory
Polymer (SMP) viscoelastic core at 65◦C [14]. This structure has a very high damping
loss factor. The skins are 0.5 mm thick aluminium panel (Density ρ = 2700 kg/m3,
Young’s modulus E = 70 GPa, Poisson’s coefficient ν= 0.33 and damping ηskin=0.1%).
The rheological properties of the 2.2 mm SMP viscoelastic is described by Butaud [15]:

E∗(ω, T ) = E0 +
E∞ − E0

1 + γ(jωτ)−k + (jωτ)−h + (jωβτ)−1
, (III.13)

where E0 is the rubber modulus when ω → 0, E∞ is the glassy modulus when ω →∞, τ
is the characteristic time, estimate by the Time-Temperature Superposition Principle:

τ(T ) = aT (T ).τ0 , (III.14)

where aT (T ) is the shift factor at the temperature T and τ0 = τ(T0) is determined at
the reference temperature T0. The constants k, h, γ and β defined in Eq. III.13 are
represented in Table III.4. The Young’s modulus and the damping loss factor of the SMP
viscoelastic core are shown in III.12.
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Figure III.12: The Young’s modulus and the damping loss factor of the Shape Memory
Polymer(SMP) viscoelastic at 65◦C.

The GFC wavenumber maps at 500 Hz and 1900 Hz are demonstrated in Fig III.13a-b
respectively. The isotropic behavior of the panel are visible in both frequencies. The
wavenumber estimated in Fig. III.14 is compared to the GLM and the classical IWC
method. For the IWCmethod, the panel is subject to an excitation near the edge (x0 = 0.1
m, y0 = 0.1 m) and the observation window of the IWC calculation is taken outside of the
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source for the best condition of the plane wave hypothesis. The wavenumber identification
of both IWC and GFC methods shows good agreement compared to the theoretical model.

The average damping loss factor estimation is presented in Fig. III.15. The GFC
method shows a very good agreement in the frequency range above 500 Hz compared to
the GLM. Below 500 Hz, the method shows some discrepancies due to the modal behavior
of the panel which is ignored in the free field Green’s function used in the proposed method.
The classical IWC method shows discrepancies below 4500 Hz due to the limitation of
the plane wave hypothesis. The reliability of the GFC method is estimating the damping
loss factor is demonstrated in this very high damping loss factor configuration where the
contribution of the reflection waves at boundaries are very low.

(a) 500 Hz (b) 1900 Hz

Figure III.13: GFC wavenumber maps of the numerical sandwich aluminium SMP panel
at 500 Hz and 1900 Hz.

E0(MPa) E∞(MPa) k h γ β τ0( s)
0.67 2211 0.16 0.79 1.68 3.8e4 0.61

Table III.4: Parameters of the constants of the aluminium SMP core [15].
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Figure III.14: Comparison of the dispersion curve of the numerical sandwich aluminium
SMP panel. - GLM, □ IWC and ∗ GFC.



Chapter III - Green’s function based-model correlation method 98

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Frequency [Hz]

0

0.5

1

1.5

L
o

s
s
 f

a
c
to

r 

Figure III.15: Comparison of the damping loss factor of the numerical sandwich aluminium
SMP panel.- GLM, □ IWC and ∗ GFC.

III. 4 Experimental validation

A sandwich carbon fiber honeycomb panel (Fig. III.17) of dimensions 1 m × 1.5 m and
total thickness of 27.3 mm has been experimentally investigated. The plate was excited
by a point mechanical force via a stringer and an impedance head using a SmartShakerTM

K2007E01 with a maximum frequency range of 9000 Hz. The study is conducted in a
large frequency band from 50 Hz to 8000 Hz with ∆f = 6.25 Hz using white noise signal.
The panel was freely hung with flexible cords and the shaker is attached at the back
of the panel. The out of plane vibrational field is measured using a Polytec PSV-500
Scanning Vibrometer. The scan is performed with the mesh size of 17 mm × 17 mm and
the measurement is averaged over 25 times for each point. The schematic diagram of the
experimental set up is shown in Fig. III.16.

Shaker

Vibrometer

Plate

String

Impedance 

Head 

Condi oner Ampli er

Accelerometer and 

force sensor 

Acquisi on central

Figure III.16: Schematic diagram of the experimental set up.
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Figure III.17: Sandwich carbon fiber honeycomb panel.

(a) 1300 Hz (b) 7550 Hz

Figure III.18: GFC wavenumber maps of the dispersion of the experimental sandwich
carbon fiber honeycomb panel at 1300 Hz and 7550 Hz.
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Figure III.19: Comparison of the dispersion of the experimental sandwich carbon fiber
honeycomb panel. - - GLM 0◦,- GLM 90◦, x GFC 0◦ and △ GFC 90◦.
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Figure III.20: Ratio of the group velocity over the phase velocity (cg/cφ). -+- ratio at 0◦

and - ◦ - ratio at 90◦ of the experimental sandwich carbon fiber honeycomb panel.

Figure III.21: Damping loss factor of the experimental sandwich carbon fiber honeycomb
panel as function of the frequency and the heading angle from 0 to π/2.
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Figure III.22: Heading angle modal density averaged damping loss factor estimation of
the experimental sandwich carbon fiber honeycomb panel compared to reference methods.
⋄ 3dB method, + power input method, ∇ decay rate method and ∗ GFC method.
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Results and discussion

The GFC wavenumber maps at 1300 Hz and 7550 Hz are presented in Fig. III.18a-b
respectively. The non-isotropic behavior of the panel is visible at both frequencies. The
wavenumbers measurement of the experimental panel at 0◦ and 90◦ are shown in Fig.
III.19. The results are compared to the reference solution based on the general laminate
model (GLM) [36] using the properties defined in Table III.5.

Skins Core
h (mm) 0.96 25.4
E1 (GPa) 46 0.001
E2 (GPa) 46 0.001
E3 (GPa) 46 0.179
G12 (GPa) 17.6 1
G13 (GPa) 17.6 26
G23 (GPa) 17.6 56

ν12 0.3 0.45
ν13 0.3 0.01
ν23 0.3 0.01

ρ (kg/m3) 1900 64

Table III.5: The mechanical properties of the sandwich carbon fiber honeycomb panel
[21].

In the frequency domain below 1000 Hz, the estimation is less accurate compared to
the GLM model due to the modal behavior of the panel. Besides the localisation of the
maximum for each direction is difficult at these frequencies. Between 1000 Hz and 5000
Hz, the wavenumber at 0◦ shows good agreement compared to the reference. Above 5000
Hz, both experimental and theoretical dispersion curves at 0◦ show small divergence. This
error maybe due to the uncertainty of the material properties used in the reference GLM
model predictions. At 90◦, the estimation of the wavenumber shows good agreement
compared to the theoretical dispersion in the full frequency range.

The ratio cg/cφ is shown in Fig. III.20. In the low frequency range, the ratio ap-
proaches 2 which corresponds to the flexural wavenumber of the entire panel cross section.
In the mid frequency range, the ratio approaches 1 indicating that the wave propagation
is controlled by the shear stiffness of the core.

The damping loss factor as function of the frequency and the heading angle from 0 to
π/2 is presented in Fig. III.21. The fluctuations of the damping loss factor in some of
the directions are certainly due to the measurement errors. The variation of the damping
loss factor in function of the frequency and the heading angle is visible. The scatter of
the damping loss factor maxima is due to a non-isotropic behavior of the core.

The average damping loss factor estimation using Eq. III.12, is presented in Fig. III.22
and compared to the 3dB method, the decay rate method and the power input method.
The 3dB method is limited to the low frequency range. The decay rate method and the
power input method are expressed in a third octave frequency band.

In the mid frequency range, the power input, the decay rate and the proposed method
show good agreement. At low frequency below 500 Hz, the power input method overes-
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timates the damping loss factor due to the low number of modes which is the limitation
of the Statistical Energy Analysis (SEA) method [53]. At high frequency range above
2000 Hz, a good agreement between the proposed method, the decay rate method and
the power input method can be demonstrated. The discrepancies observed above 6000
Hz are certainly associated with the limitation of the mesh used to scan the displacement
field.

III. 5 Conclusion of the paper

A wave correlation method is proposed to estimate the wavenumber and in particular,
the damping loss factor of non-isotropic planar structures as a function of the heading
angle. The efficiency of the method is demonstrated both numerically and experimentally
by comparison with reference methods.

In general, the comparison of the dispersion curve and the damping loss factor between
the proposed identification technique and the reference solution are good for both numer-
ical and experimental studies. For the dispersion relation, the technique is able to predict
precisely the wavenumber on the entire frequency range. For the damping loss factor, the
method is much more accurate in high damping structures due to the assumption of the
technique itself where only direct field is considered in the correlation calculation. For
low damping structures and low frequency range, the method shows some discrepancies
and is relatively less accurate due to the reflection at boundaries. An application of the
image source method can be done to take into account the reflection at boundaries and
to improve the damping loss factor estimation especially for low damping structures.

The experimental demonstration of the efficiency of the proposed method on the sand-
wich carbon fiber with a honeycomb core opens the possibility to apply this technique
experimentally on more complex structures such as stiffened panels and curved structures.

Acknowledgement The authors would like to thank the Hauts-de-France Region, the
Natural Sciences and Engineering Research Council of Canada (NSERC) and the Con-
sortium for Aerospace Research and Innovation of Québec (CRIAQ) for their financial
support.
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103
III. 6 - Effect of the excitation location on the damping loss factor estimation using

Green’s function correlation method

In the wavenumber domain, the damping loss factor is related to its imaginary and is
very sensitive to measurement uncertainties. Usually, a central excitation is considered in
applying the Green’s function to avoid any privileged directions of wave propagation.

This part is a complementary work to this chapter investigating the impact of different
excitation locations on the estimation of the wavenumber and the damping loss factor.
A correction of the estimation of the damping loss factor based on the precision of the
wavenumber maps is applied. Based on the results, the choice of the excitation location
is very important in applying the Green’s function correlation method.

III. 6 Effect of the excitation location
on the damping loss factor estimation
using Green’s function correlation method

The estimation of the flexural wavenumber and the damping loss factor is very crucial
as both of them are strongly related to the sound radiation and the noise level generated
by this radiation. Methods such as the High Resolution Wavenumber Analysis [59, 60], the
Inhomogeneous Wave Correlation Method [7] and the Green’s function [75, 85, 57] have
been successfully developed to estimate the real and the imaginary parts of the wavenum-
ber of complex structures. However, uncertainties of the estimation of the wavenumber
and the damping loss factor due to the selection of the excitation locations are less dis-
cussed whereas these uncertainties may impact the validity of the results.

In most cases, a central excitation is considered to avoid any privileged direction of
wave propagation. In reality, a central excitation of the panel can sometimes be inaccessi-
ble and may not excite all modes. In this chapter, the effect of the excitation locations on
the estimation of the wavenumber and the damping loss factor as a function of the wave
propagating angle is investigated. Three different excitation coordinates are used. The
first is near the boundaries, the second is at the center and the third is near a corner. The
performance of each excitation position to estimate the wavenumber and the damping
loss factor is investigated.

A methodology to rectify the error on the estimation of the damping loss factor in
function of the excitation coordinates is introduced. This rectification allows a good esti-
mation of the average damping loss factor for any excitation coordinates. The method is
investigated numerically using an isotropic sandwich aluminium panel with a viscoelastic
core and is tested experimentally on a thick sandwich composite panel with a honeycomb
core.
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III. 7 Excitation location: numerical investiga-
tion

Three different excitation coordinates are defined. The first one is at x01 = 0.2 m and
y01 = 0.4 m. The second one is the central excitation at x02 = 0.5 m and y02 = 0.6 m .
The third one is an excitation near the edge at x03 = 0.8 m and y03 = 0.2 m.

The calculation area of the correlation factor in Eq. III.6 is reduced by 5 cm from each
boundary to minimise the effect of waves generated by the reflection at boundaries. The
excitation point is rejected in the correlation function due to the singularity of the Green’s
function at r = 0 (see Eq. III.5). The schematic presentation of the three excitation points
is shown in Fig. III.23.

Figure III.23: Schematic presentation of the panel with three different excitation points.

The method is first applied to a 1 m × 1.2 m sandwich aluminium panel with a
viscoelastic core. The skins are 2 mm thick aluminium (Density ρ = 2700 kg/m3, Young’s
modulus E = 71 GPa, Poisson’s coefficient ν= 0.33 and damping ηskin=1%). The core is
a 0.76 mm thick viscoelastic material (Density ρ = 900 kg/m3, Young’s modulus E = 1
GPa, Poisson’s coefficient ν= 0.49 and damping ηcore=20%).

The normal displacements w of the panel for three point load locations at 7100 Hz
are shown in Fig. III.24a-b and the Green’s function-based model correlation (GFC)
wavenumber maps at 2350 Hz and 7100 Hz are shown in Figs. III.25 and III.26 respec-
tively.

At 2350 Hz, the maximum of the amplitude in the −kx area for the first excitation
and the maximum of the amplitude in the (+kx,−ky) area for the third excitation are
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noisy as shown in Fig. III.25a and in Fig. III.25c respectively. The isotropic behavior
is less pronounced and the maximum amplitude for each angle is not easily identifiable.
The discrepancies are due to the limitation of the panel length in these directions. For
the second excitation where the panel is subject to a central excitation, the maximum
of amplitude is constant in all directions and the isotropic behavior is clearly visible as
shown in Fig. III.25b.

At 7100 Hz, the maximum of the amplitude in the −kx area for the first excitation
and the maximum of the amplitude in the (+kx,−ky) area for the third excitation depict
more incertitude as shown in Fig. III.26a and in Fig. III.26c respectively. Nevertheless,
the isotropic behavior of the panel are still identifiable compared to the case at 2350 Hz.
The maximum of the wavenumber for each angle is visible on the wavenumber maps. For
the second excitation, the maximum of amplitude is constant in all directions and the
isotropic behavior is clearly visible as shown in Fig. III.26b.

The estimation of the average damping loss factor is demonstrated in Fig. III.27. As
can be seen, the estimation of the imaginary part related to the damping loss factor is much
more sensitive to measurement uncertainties compared to the real part. The estimation of
the damping loss factor using the central excitation location shows a very good correlation
compared to the reference solution based on the generate laminate model (GLM) [36]. For
the first excitation, the average damping loss factor shows a good correlation above 6000
Hz. Below 6000 Hz, the result is less precise. For the third excitation, the result is
less accurate on the entire frequency range. The discrepancies for both first and third
excitation locations are due to the erroneous estimation of the attenuation factor γ(θ, ω)
in some of the wave propagation angle. A spatial angular filter is clearly needed for these
latter configurations.

In order to visualize clearly the effect, the damping loss factor as a function of the
frequency and the wave propagating angle map is shown in Fig. III.28a-c. For the second
excitation in which the estimation is the most accurate as shown in Fig. III.28b, the
damping loss factor is relatively constant for all wave propagating angles above 2000
Hz due to the quasi-constant wave propagation radius of the panel in all directions.
However for the first and the third excitation as shown in Fig. III.28a and Fig. III.28c
respectively, the damping loss factor estimations show discrepancies along some wave
propagation angles. These erroneous values cause divergence in the average damping loss
factor calculation using Eq. III.12. To overcome this limitation, a methodology to rectify
the discrepancies as function of the domain of applicability is proposed in the next section.
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(a) x01 = 0.2 m and y01 = 0.4 m. (b) x02 = 0.5 m and y02 = 0.6 m.

(c) x03 = 0.8 m and y03 = 0.2 m.

Figure III.24: Normal displacements w of the aluminium viscoelastic panel at 7100 Hz
for three point load locations.

Correction of the estimation of the damping loss factor

Based on the damping loss factor as a function of the frequency and the wave propa-
gating angle maps shown in Fig. III.28, a rectification on the estimation of the damping
loss factor is applied. Instead of calculating the average damping loss factor by taking
the damping values of all directions, the estimation is made only in the domain where the
result is not erroneous due to the limitation of the panel length in certain directions. Red
lines and arrows in Figs. III.25-III.26 define the applicable domain for the correction of
the estimation of the damping loss factor.

For each case, the domain of the angle to calculate the average damping loss factor is
defined in Table. III.6. The definition of the domain is made based on the precision of
the amplitude of the GFC wavenumber maps (see Figs. III.25a-c and Figs. III.26a-c).

The result of the rectified average damping loss factor is shown in Fig. III.29. The
estimation of the damping loss factor for the first and third excitation have been globally
improved compared to the previous estimation in Fig. III.27.

The GFC method performs at best when the panel is subjected to a mechanical point
load excitation at the center of the panel. In reality, a central excitation of the panel can
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(a) x01 = 0.2 m and y01 = 0.4 m. (b) x02 = 0.5 m and y02 = 0.6 m.

(c) x03 = 0.8 m and y03 = 0.2 m.

Figure III.25: GFC wavenumber maps of the aluminium viscoelastic panel at 2350 Hz for
three point loads locations. Red lines and arrows define the applicable domain for the
correction of the estimation of the damping loss factor.

Case Applicable domain θ
1 [−π

2
; π

2
]

2 [0; 2π]
3 [ π

2
; π]

Table III.6: Applicable domain in calculating the average damping loss factor.

sometimes be inaccessible and may not excite all modes. The interest of the correction
method is to be able to apply the GFC method for other excitation locations. For the
first excitation, a very good correlation between the estimated result and the reference
solution is observed above 1000 Hz. The performance of the proposed method to estimate
the damping loss factor is as good as the first case. For the third excitation, a good
agreement is seen above 3000 Hz and below this frequency, the method underestimates
the damping loss factor. The discrepancies shown by the third excitation is certainly
due to the impact of the excitation near the corner that causes greater reflections of
boundaries.
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(a) x01 = 0.2 m and y01 = 0.4 m. (b) x02 = 0.5 m and y02 = 0.6 m.

(c) x03 = 0.8 m and y03 = 0.2 m.

Figure III.26: GFC wavenumber maps of the aluminium viscoelastic panel at 7100 Hz for
three point loads locations. Red lines and arrows define the applicable domain for the
correction of the estimation of the damping loss factor.
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Figure III.27: Average damping loss factor of the aluminium viscoelastic panel. -⋄-
x01 = 0.2 m and y01 = 0.4 m, − ◦ − x02 = 0.5 m and y02 = 0.6 m, -×- x03 = 0.8 m and
y03 = 0.2 m and - GLM.
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(a) x01 = 0.2 m and y01 = 0.4 m. (b) x02 = 0.5 m and y02 = 0.6 m.

(c) x03 = 0.8 m and y03 = 0.2 m.

Figure III.28: Damping loss factor as a function of the frequency and the wave propagating
angle of the sandwich aluminium viscoelastic panel.

0 1000 2000 3000 4000 5000 6000 7000 8000

Frequency [Hz]

0

0.05

0.1

0.15

L
o

s
s
 f

a
c
to

r 

Figure III.29: Rectified average damping loss factor for the first and third excitation of
the sandwich aluminium viscoelastic panel. -⋄- x01 = 0.2 m and y01 = 0.4 m, − ◦ −
x02 = 0.5 m and y02 = 0.6 m, -×- x02 = 0.8 m and y02 = 0.2 m and - GLM.
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III. 8 Excitation location: experimental valida-
tion

The effect of the excitation location is investigated experimentally on a sandwich
carbon fiber honeycomb panel of dimensions 1 m × 1.5 m and total thickness of 27.3 mm.
The experimental set up is described in details in Section III. 4. Three different excitation
locations are marked with a red cross with their number in Fig. III.30.

Figure III.30: Definition of the three excitation points of the sandwich carbon fiber hon-
eycomb panel.

Results and discussion

The normal displacements w of the panel for each case at 3800 Hz are shown in
Fig. III.31a-c respectively. For the first case, the excitation point is at x01 = 0.28 m and
y01 = 0.56 m. For the second case, the excitation point is at x02 = 0.77 m and y02 = 0.46 m.
For the third case, the excitation point is at x03 = 1.17 m and y03 = 0.68 m.

The Green’s function-based model correlation(GFC) wavenumber maps for three ex-
citation points at 3800 Hz are shown in Fig. III.32. The orthotropic behavior of the panel
is visible for the second excitation where the panel is subject to a central excitation as
shown in Fig. III.32b. For the first excitation, the maximum of the amplitude is less
precise in the −kx area as shown in Fig. III.32a. For third excitation, the maximum of
the amplitude is less precise from −π to π as shown in Fig. III.32c. The discrepancies are
due to the limitation of the panel length in these directions. Red lines and arrows in Fig.
III.32a and Fig. III.32c define the applicable domain for the correction of the estimation
of the damping loss factor.

Fig. III.33 and Fig. III.34 show the dispersion curves of the experimental sandwich
carbon fiber at 0◦ and 90◦ respectively. In the high frequency range, a small divergence
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between experimental results and the GLM is observed at 0◦. This error maybe due to
the uncertainty of the material properties defined in Table III.5.

For the dispersion curve at 0◦, the estimation of the wavenumber for the first and
second excitation show good correlation compared to the reference solution based on the
general laminate model (GLM) above 1000 Hz. Below, the estimation is less accurate
compared to the GLM due to the modal behavior of the panel. For the third excitation,
the estimation of the wavenumber shows good correlation above 4000 Hz. Below 4000 Hz,
the estimation is less accurate due to the limited measurement length of the panel in the
0◦ direction.

For the dispersion curve at 90◦, the estimation of the wavenumber for the second
case where the panel is subject to a central excitation is accurate compared to the GLM
above 500 Hz. For the first and third excitation, the estimation below 3000 Hz shows
discrepancies due to the limited measurement length of the panel in the 90◦ direction for
both locations.

The estimation of the averaged damping loss factor using Eq. III.12 is shown in Fig.
III.35. The result is compared to the reference experimental steady-state power input
method expressed in a third octave frequency band and is averaged over three excitation
points [21]. For the first excitation, the proposed method underestimates the damping
loss factor below 2500 Hz. From 2500 Hz to 5000 Hz, the result is satisfactory compared
to the power input method. Above 5000 Hz, the damping loss factor is overestimated.

For the second excitation where the panel is subject to a central excitation, a good
agreement between the proposed method and the power input method is visible at high
frequency above 1500 Hz. The discrepancies observed above 6000 Hz are certainly associ-
ated with the limitation of the mesh used to scan the displacement field. The wavenum-
ber at 90◦ for 6000 Hz is approximately around 100 rad/m, considering a minimum of 4
elements per wavelength λ is required to estimate correctly the parameters [46], the mini-
mum wavelength required is then λmin = 15 mm. In this case, the mesh size described for
the experimental validation (17 mm × 17 mm) is superior to the minimum wavelength
required and explains the discrepancies observed above 6000 Hz.

For the third excitation, the proposed method shows discrepancies above 5000 Hz.
The error is due to the erroneous value in some of the wave propagating angle. Between
1500 Hz and 5000 Hz, the result is satisfactory compared to the power input method.

Fig. III.36a-c shows the damping loss factor of the sandwich carbon fiber honeycomb
panel as function of the frequency and the wave propagating angle from 0 to 2π. For
the experimental case, the estimation of the damping loss factor as function of the wave
propagating angle of the central excitation (see Fig. III.36b) is considered as reference.
For the three cases, the damping loss factor below 500 Hz shows discrepancies. The error
is associated to the modal behavior of the panel in the low frequency range. For the first
excitation as shown in Fig. III.36a, the damping loss factor estimation is overestimated
from π

2
to 3π

2
. For the third excitation as shown in Fig. III.36c, the discrepancies in

estimating the damping loss factor are visible from 0 to π and from 3π
2

to 2π. The
discrepancies for both cases are associated to the limited length of the panel in these
directions.



Chapter III - Green’s function based-model correlation method 112

(a) First excitation point. (b) Second excitation point.

(c) Third excitation point.

Figure III.31: Measured normal displacements w of the sandwich carbon fiber honeycomb
panel at 3800 Hz for three excitation points.

Correction of the estimation of the damping loss factor

Based on the damping loss factor as a function of frequency and the wave propagating
angle maps shown in Fig. III.36, the rectification of the experimental result is applied.
For each case, the domain of the angle used to calculate the average damping loss factor
is defined in Table. III.7. The definition of the domain is made based on the precision of
the GFC wavenumber maps (see Fig. III.32a and Fig. III.32c).

Case Applicable domain θ
1 [ -π

2
;π
2
]

2 [0; 2π]
3 [π; 3π

2
]

Table III.7: Applicable domain in calculating the average damping loss factor.

The result of the rectified average damping loss factor is shown in Fig. III.37. The
estimation of the damping loss factor for the first and third excitation show a better
agreement globally compared to the previous estimation in Fig. III.35. For both first and
second excitation, the results show a good correlation compared to the reference solution
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(a) First excitation point. (b) Second excitation point.

(c) Third excitation point.

Figure III.32: GFC wavenumber maps of the experimental sandwich carbon fiber hon-
eycomb panel at 3800 Hz for three excitation points. Red lines and arrows define the
applicable domain for the correction of the estimation of the damping loss factor.

based on the power input method.
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Figure III.33: Measured dispersion curves of the sandwich carbon fiber honeycomb panel
at 0◦. ⋄ first excitation point, ◦ second excitation point, × third excitation point and -
GLM.
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Figure III.34: Measured dispersion curves of the sandwich carbon fiber honeycomb panel
at 90◦. ⋄ first excitation point, ◦ second excitation point, × third excitation point and -
GLM.
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Figure III.35: Average damping loss factor of the experimental sandwich carbon fiber
honeycomb panel. -⋄- First excitation point, − ◦ − Second excitation point, -x- Third
excitation point and -×- Power input method.
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(a) First excitation point. (b) Second excitation point.

(c) Third excitation point.

Figure III.36: Damping loss factor η as function of the heading angle of the experimental
sandwich carbon fiber honeycomb panel.
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Figure III.37: Rectified average damping loss factor for the first and third excitation of the
experimental sandwich carbon fiber honeycomb panel. -⋄- First excitation point, −◦−
Second excitation point, -×- Third excitation point and -×- Power input method.
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III. 9 Conclusion of the chapter

A Green’s function based-model correlation method able to estimate the damping loss
factor as a function of the frequency and the heading angle is proposed in this chapter.
In the first part, the proposed method estimates accurately the damping loss factor as a
function of the frequency and the heading angle in the mid to high frequency range for
highly damped structures. The effect of the orthotropy of the skin on the estimation of
the damping loss factor is well demonstrated numerically and experimentally. However,
the method is less accurate for lightly damped structures in the low frequency range, the
image source method is proposed in Chapter IV to overcome this limitation.

In the second part, the performance of the method is observed on three different
excitation locations: the first is near one of the boundaries, the second is the central
excitation and the third is near the corner. The Green’s function correlation method
performs at best when the panel is subjected to a mechanical point load excitation at
the center of the panel. In reality, a central excitation of the panel can sometimes be
inaccessible and may not excite all modes. If the excitation point varies from the centre,
the application of the method may cause discrepancies in some of the wave propagating
angle and a rectification of the results is needed. A spatial angular filtering is introduced
and improves the estimation of the damping loss factor. The efficiency of the filtering is
demonstrated numerically and experimentally.





Chapter III - Green’s function based-model correlation method 118



Chapter IV

Estimation of the damping loss factor
in the low frequency range using the

image source method

IV. 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

IV. 2 Image source method for simply supported panels . . . . 121

IV. 3 Damping loss factor estimation of a simply supported
isotropic panel . . . . . . . . . . . . . . . . . . . . . . . . . 122

IV. 4 Image source method for free-free boundary conditions
panels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

IV. 5 Damping loss factor estimation of isotropic sandwich pan-
els with free-free boundary conditions . . . . . . . . . . . . 128

IV. 5. 1 Isotropic aluminium sandwich with a viscoelastic core . 128

IV. 5. 2 Sandwich laminated glass panel with a frequency depen-
dent PVB core . . . . . . . . . . . . . . . . . . . . . . . 130

IV. 6 Conclusion of the chapter . . . . . . . . . . . . . . . . . . . 133

119



Chapter IV - Image source method 120

IV.1 Introduction

In Chapter III, the Green’s function-based model correlation (GFC) method was used
to estimate accurately the damping loss factor of highly damped structures in the high
frequency range. However, the GFC model considers only the direct field in the formu-
lation which makes the estimation of the damping loss factor less accurate in the low
frequency range and for lightly damped structures.

To take into account the reflection at boundaries, Gunda et al. [37] uses the combi-
nation of the image source method and the Hankel’s functions to construct the Green’s
function of a finite plate with simply supported and roller supported boundary conditions.
This method describes the field as a superposition of contributions from the original source
and virtual sources located outside of the plate. Later, Gunda et al. [38] introduced the
image source method for clamped and free edges, which is developed starting from either
simply supported or roller supported solutions and applying corrections to account for
boundary excitation.

Cuenca et al. [28] introduced analytical solutions of the reflection matrix on various
boundary conditions such as clamped free edges for the first order image source model and
introduced a high-frequency approximation method for the second and subsequent orders.
Compared to the method of Gunda, the approach proposed by Cuenca is more general
for arbitrary boundary conditions. Roozen et al. [75] applied the method experimentally
to estimate the reflection coefficient, the wavenumber and the damping loss factor of a
thin isotropic plate. The work of Roozen concentrated mainly on the development of the
reflection coefficient as a function of the frequency. However, the accurate estimation of
the damping loss factor in the low frequency range remains still an open issue.

This chapter investigates the performance of the combination of the image source
model and the Green’s function correlation (GFC-ISM) method for the estimation of the
damping loss factor. The reflection coefficient of the image source model is determined
with the theoretical definition introduced by Gunda [37] for a simply supported boundary
conditions panel and Cuenca [28] for a free-free boundary conditions panel. The proposed
method is compared to the previous GFC method [10] and to the analytical discrete
general laminate model (GLM) [36] using numerical simulations. Based on the result,
the approach improves tremendously the estimation of the damping loss factor in the low
frequency range and for lightly damped structures.

In Section IV. 2, the image source method for simply supported panels is introduced.
The application of the GFC-ISM on an isotropic steel panel with two different damping
loss factor is investigated. In Section IV. 4, the image source method for free-free boundary
conditions is introduced. The numerical validation on two different panels is descried: 1)
a sandwich aluminium panel with a viscoelastic core and 2) a sandwich laminated glass
panel with a frequency dependent PVB core.
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IV.2 Image source method for simply supported
panels

The application of the image source method for simply supported panels is described
in details in Section I. 6. 1. To recall, the harmonic Green’s function of a rectangular plate
with simply supported boundary conditions can be described as a linear combination of
the original source and the image sources:

GΩ(k̂, r) = G∞(k̂; r, r0) +
Nv∑
i=1

α(i)G∞(k̂; r, ri) , (IV.1)

where Nv is the number of image sources, ri is the distance between the point of the panel
and the image source and α is the source strength equaling +1 or -1 for a rectangular
simply supported panel [37].

Using the idea described in Section III. 2. 2, the harmonic Green’s function (see Eq.
IV.1) is then correlated with the measured displacement field:

GFCISM(k̂, r) =
|
∑N

i=1 ŵi(r)GΩ
∗(k̂, r)ρiSi|√∑N

i=1 |ŵi(r)|2ρiSi

∑N
i=1 |GΩ(k, r)|2ρiSi

, (IV.2)

where ŵi(r) represents the measured displacement field, ∗ denotes the complex conjugate,
ρi is a surface integration weight at point i, Si is an estimation of the surface around the
point i and N is the total number of acquisition points.

The identification of the complex wavenumber is obtained by maximizing the cor-
relation function at each frequency. The complex wavenumber can also be defined as
k̂ = k(ω)(1 + iγ(ω)) where γ is the attenuation factor. The estimation is done in two
steps. First, the algorithm estimates the real part of the wavenumber k(γ) and then, the
attenuation factor γ(ω) is quantified by using the same algorithm, just as in the previous
GFC method.
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IV.3 Damping loss factor estimation of a sim-
ply supported isotropic panel

An example of a simply supported steel panel excited with a point force is used for
the demonstration of the approach (Length along x direction Lx = 1 m, length along y
direction Ly = 1.2 m, density ρ = 7800 kg/m3, Young’s modulus E = 210 GPa, Poisson’s
coefficient ν= 0.33 and damping η=1%, 5%). The panel is subjected to a central excitation
at x0 = 0.5 m and y0 = 0.6 m.

The solution of the equation of motion is solved analytically using the modal decom-
position method. The equation writes (time-harmonic convention of e−iωt) [39]:

w(x, y, ω) =
m∑

m=1

n∑
n=1

φmn(x0, y0)φmn(x, y)

ω2
mn − ω2 + iηωωmn

4

ρhLxLy

, (IV.3)

where the mode shapes are written as:

φmn(x, y) = sin(
mπx

Lx

) sin(
nπy

Ly

) , (IV.4)

and the eigen frequencies are defined by:

ωmn =

√
D

ρh

((
mπ

Lx

)2

+

(
nπ

Ly

)2
)

, (IV.5)

where D is the complex bending stiffness defined by D = E(1−iη)h3

12(1−ν2
.

The normal displacement of the panel for η = 1% at 1000 Hz is illustrated in Fig.
IV.1a and simulated fields with different number of sources are shown in Figs. IV.1b-f.
The comparison between the normal displacement w and the simulated vibrational field
is quantified using the normalized reconstruction error [52, 75]:

e =
||w −GΩ||2

||w||2
. (IV.6)

The error between the measured field and the simulated field with 1 source (equiva-
lent to the Green’s function of an infinite plate) is about 87.75%. As can be seen, the
error decreases when the number of sources increases. For this case, the variation of the
amplitude due to the constructive and destructive interferences of the direct waves and
the reflected waves starts to be visible with 441 sources (e = 14.39%) and the simulated
field with 2601 sources (e = 0.95%) is very similar to the normal displacement.

The normal displacement of the panel for η = 5% at 1000 Hz is illustrated in Fig.
IV.2a and simulated fields with different number of sources are shown in Figs. IV.2b-f.
The error decreases tremendously from e = 60.55% for 1 source to e = 23.53% for 9
sources. The simulated field depicts a very similar vibrational field behavior with only
121 sources (e = 0.60%). For 441 and 2601 sources, the error is as small as e = 0.063%
and e = 0.039% respectively. As expected, the number of sources needed to achieve the
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convergence of result for higher damping structures is lower compared to low damping
structures.

The normalized reconstruction error maps as a function of the frequency (10 to 1000
Hz) and the number of sources (1 to 2601 sources) for η = 1% and η = 5% are shown in
Fig. IV.3a-b. For η = 1%, the error in the very low frequency below 200 Hz is still very
high even if the number of sources is large, as illustrated in Fig. IV.3a. The error remains
high on the entire frequency range for the number of sources below 250. On the contrary
for the case where the damping loss factor is at η = 5%, a lower number of sources is
needed for the error to be lower than 5% even in the very low frequency range as shown
in Fig. IV.3b.

The estimation of the damping loss factor using different number of image sources is
shown in Fig. IV.4 for η = 1% and in Fig. IV.5 for η = 5%, respectively. For η = 1%,
the estimation of the damping loss factor with 1 source shows discrepancies on the entire
frequency range due to the modal behavior of the panel which is ignored in the free field
Green’s function used in the proposed method. The result shows a very good correlation
compared to the exact value with 2601 sources on the entire frequency range. For η = 5%,
the damping loss factor can already be predicted in the high frequency range with only 1
source. A good correlation in the low frequency range is depicted with 121, 441 and 2601
sources.

To conclude, the image source method increases the performance of the estimation of
the damping loss factor in the low frequency range. For low damping structures, a very
high number of sources is needed to obtain good results. In the high frequency range, a
lower number of sources is sufficient to estimate correctly the damping loss factor. Based
on the observation, a good estimation of the damping loss factor can be achieved with a
correlation error between the simulated and reconstructed fields below 25%.
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(a) Re{w}. (b) 1 source (e = 87.75%).

(c) 9 sources (e = 73.25%). (d) 121 sources (e = 34.45%).

(e) 441 sources (e = 14.39%). (f) 2601 sources (e = 0.95%).

Figure IV.1: Real parts of the normal displacement obtained using Eq. IV.3 and image
source models for η = 1% at 1000 Hz. The reference theoretical displacement is given in
(a).
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(a) Re{w}. (b) 1 source (e = 60.55%).

(c) 9 sources (e = 23.53%). (d) 121 sources (e = 0.60%).

(e) 441 sources (e = 0.063%). (f) 2601 sources (e = 0.039%).

Figure IV.2: Real parts of the normal displacement obtained using Eq. IV.3 and image
source models for η = 5% at 1000 Hz. The reference theoretical displacement is given in
(a).



Chapter IV - Image source method 126

(a) η = 1%. (b) η = 5%.

Figure IV.3: Normalized reconstruction error maps between the measured displacement
field and the simulated field of the panel as a function of frequency and the number of
sources.
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Figure IV.4: Estimation of the damping loss factor using different number of image sources
of the steel panel with η = 1%. - Exact,× 1 source, + 9 sources, □ 121 sources, ◦ 441
sources and ⋄ 2601 sources.
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Figure IV.5: Estimation of the damping loss factor using different number of image sources
of the steel panel with η = 5%. - Exact,× 1 source, + 9 sources, □ 121 sources, ◦ 441
sources and ⋄ 2601 sources.
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IV.4 Image source method for free-free
boundary conditions panels

In the previous section, the application of the image source method for a simply
supported panel on the estimation of the damping loss factor is investigated and a good
performance of the method is demonstrated. In reality, the experimental implementation
of simply supported boundary conditions is quite difficult even if it is possible [74]. In most
cases, experimental applications of wave fitting approaches use freely hanged structures.

For simply supported boundary conditions, the reflection coefficient or the source
strength are directly ±1. However, the reflection coefficient for free-free boundary con-
ditions panel where the bending moment and the shear force are zeros is not so simple
because the reflected wave has a local near field response which contains waves propaga-
tion along the edge of plate and evanescent waves in orthogonal directions [18].

The development of the image source method for free-free boundary conditions is
described in Section I. 6. 2. The image sources of first order are developed analytically
and an approximate method for calculating the contribution of image sources of second
and higher orders was introduced by Cuenca in [28]. The method considers the wave-
length as sufficiently short compared to plate dimensions and considers only propagating
components of plane waves of Eq. I.67.

It is observed that the hypothesis made by Cuenca deteriorates the result in the low
frequency range. The objective is to improve the estimation of the damping loss factor in
the low frequency range where the wavelength can not be considered short. Still, in this
section, only the first order image sources is used. The approximate method for second
and subsequent orders is ignored.

Figure IV.6: Image sources of a free-free boundary conditions panel.

Fig. IV.6 illustrates the reconstruction of the Green’s function of an infinite plate
G∞ defined in global coordinates (x, y) and first order images sources Gs defined in local
coordinates (ξ, µ). The harmonic Green’s function of a rectangular plate with free edges
is defined as:
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GΩ(k̂; r, r0) = G∞(k̂; r, r0) +
4∑

i=1

Gsi(k̂; r, rsi , µbi) . (IV.7)

Finally, the relation described in Eq. IV.7 is correlated with the measured displacement
field using the correlation function defined in Eq. IV.2.

IV.5 Damping loss factor estimation of isotropic
sandwich panels with free-free boundary
conditions

The method described in the previous section is now applied to two isotropic sandwich
structures: the first is a sandwich aluminium panel with a viscoelastic core [10] and the
second is a sandwich laminated glass panel with a frequency dependant PVB core [89].

The objective of the first simulations is to investigate the efficiency of the method on
the estimation of the damping loss factor of a mid to high damped structure in the low
frequency range and the objective of the second simulations is to investigate the efficiency
of the method for a low damped structure.

IV. 5. 1 Isotropic aluminium sandwich with a viscoelastic core

The method is applied to a 1 m × 1.2 m sandwich aluminium panel with a viscoelastic
core [63]. The skins are 2 mm thick aluminium (Density ρ = 2700 kg/m3, Young’s modulus
E = 71 GPa, Poisson’s coefficient ν = 0.33 and damping ηskin=1%). The core is a 0.76 mm
thick viscoelastic material (Density ρ= 900 kg/m3, Young’s modulus E = 1 GPa, Poisson’s
coefficient ν = 0.33 and damping ηcore = 20%).

The normal displacement at 2100 Hz and 7600 Hz are shown in Fig. IV.7a and Fig.
IV.7b respectively. Simulated fields with 1 source at 2100 Hz and 7600 Hz are shown in
Fig. IV.7c and Fig. IV.7d, respectively. Simulated fields with 5 sources at 2100 Hz and
7600 Hz are shown in Fig. IV.7e and Fig. IV.7f.

At 2100 Hz, the error between the displacement field and the simulated field with
1 source is is 51.67% and is reduced to 47.25% with 5 sources. At 7600 Hz, the error
between the displacement field and the simulated field with 1 source is 11.85% and the
error between the measured displacement field and the simulated field with 5 sources is
as low as 8.89%. The interference pattern between the direct and the reflected wave is
visible in Fig. IV.7f.

The estimation of the average damping loss factor with the image source is shown in
Fig. IV.8. In the high frequency range above 3000 Hz, both GFC and GFC-ISM methods
with 5 sources show a very good correlation compared to the GLM in which a power
balance equation is used to estimate the loss factor [36]. Between 500 Hz and 2000 Hz,
the GFC-ISM method improves the estimation of the damping loss factor compared to
the GFC method. Below 500 Hz, both GFC-ISM and GFC methods show discrepancies.
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(a) Re{w} at 2100 Hz. (b) Re{w} at 7600 Hz.

(c) 1 source at 2100 Hz
(e = 51.67%).

(d) 1 source at 7600 Hz
(e = 11.85%).

(e) 5 sources at 2100 Hz
(e = 47.25%).

(f) 5 sources at 7600 Hz
(e = 8.89%).

Figure IV.7: Amplitude of the Green’s function of the sandwich aluminium panel with
a viscoelastic core. (a) - (b) Exact solution at 2100 Hz and 7600 Hz. (c) - (d) Green’s
function of an infinite plate at 2100 Hz and 7600 Hz. (e) - (f) Green’s function of an
infinite plate + 4 sources at 2100 Hz and 7600 Hz.
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Figure IV.8: Comparison of the average damping loss factor of the sandwich aluminium
panel with a viscoelastic core. - GLM, ∗ 1 source and ◦ 5 sources.

IV. 5. 2 Sandwich laminated glass panel with a frequency dependent
PVB core

The method is then applied to a 1 m × 1.2 m sandwich laminated glass panel with a
viscoelastic polyvinyl butyral (PVB) polymer core [89, 92]. The skins are 5 mm thick glass
(Density ρ = 2500 kg/m3, Young’s modulus E = 71.04 GPa, Poisson’s coefficient ν = 0.2
and damping ηskin = 0.1%). The PVB viscoelastic core material (Density ρcore=1020
kg/m3 , Poisson’s coefficient νcore = 0.449) is 0.38 mm thick and has frequency dependant
Young’s modulus, shear modulus, and damping ratio defined in Table IV.1. The value of
each parameter is interpolated for the simulations.

Frequency (Hz) Shear Modulus (Pa) Damping Young’s Modulus (Pa)

10 5.50E+07 0.46 1.65E+00
50 8.30E+07 0.27 2.49E+08
100 9.17E+07 0.24 2.75E+08
200 1.03E+08 0.21 3.08E+08
500 1.14E+08 0.15 3.42E+08
1000 1.21E+08 0.14 3.63E+08
2000 1.30E+08 0.12 3.90E+08
5000 1.38E+08 0.07 4.13E+08
10000 1.40E+08 0.04 4.19E+08
20000 1.41E+08 0.02 4.23E+08
30000 1.42E+08 0.02 4.24E+08

Table IV.1: The properties of the sandwich laminated glass core panel [89].

The normal displacement w at 1100 Hz and 7600 Hz are shown in Fig. IV.9a and Fig.
IV.9b respectively. Simulated fields with 1 source at 1100 Hz and 7600 Hz are shown in
Fig. IV.9c and Fig. IV.9d, respectively. Simulated fields with 5 sources at 1100 Hz and
7600 Hz are shown in Fig. IV.9e and Fig. IV.9f, respectively.

At 1100 Hz, the error between the displacement field and the simulated field with 1
source is about 74.41% and the error between the displacement field and the simulated field
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(a) Re{w} at 1100 Hz. (b) Re{w} at 7600 Hz.

(c) 1 source at 1100 Hz
(e = 74.41%).

(d) 1 source at 7600 Hz
(e = 53.85%).

(e) 5 sources at 1100 Hz
(e = 58.82%).

(f) 5 sources at 7600 Hz
(e = 42.03%).

Figure IV.9: Amplitude of the Green’s function of the sandwich laminated glass with a
frequency dependent PVB core panel. (a) - (b) Exact solution at 1100 Hz and 7600 Hz.
(c) - (d) Green’s function of an infinite plate at 2100 Hz and 7600 Hz. (e) - (f) Green’s
function of an infinite plate + 4 sources at 1100 Hz and 7600 Hz.
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Figure IV.10: Comparison of the average damping loss factor of the sandwich laminated
glass with a frequency dependent PVB core panel . - GLM, ∗ 1 source and ◦ 5 sources.

with 5 sources is about 58.82%. As expected, the application of the image source method
reduces the error between the measurement and the simulated vibrational field. Some
parts of the variation of the amplitude due to the constructive and destructive interferences
of the direct waves and the reflected waves is visible in Fig. IV.9e as compared to the
normal displacement w in Fig. IV.9a. However, much more sources are needed to improve
further the results.

At 7600 Hz, the error between the measured displacement field and the simulated field
with 1 source is e = 53.85% and the error between the measured displacement field and
the simulated field with 4 sources is e = 42.03%. As can be seen, the application of the
image sources reduces the error between the measurement and the simulated vibrational
field.

The estimation of the average damping loss factor with the image sources is shown in
Fig. IV.10. In the high frequency range above 2000 Hz, the ISM method shows a slightly
better agreement with the GLM method [36] compared to the GFC method. Below
2000 Hz, the ISM method does not improve the estimation of the damping loss factor
compared to the GFC method. The error is due to the limited number of image sources
used for the correlation. A very high number of image sources is needed to estimate
accurately the damping loss factor in the low frequency for low damping structures.
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IV.6 Conclusion of the chapter

A wave correlation GFC-ISM method has been proposed to estimate accurately the
damping loss factor in the low frequency range and for lightly damped structures. The
robustness of the method has been demonstrated numerically on isotropic structures with
different boundary conditions by comparison with the previous GFC method and the
analytical discrete general laminate model (GLM).

In general, a very high number of sources is needed for low damping structures as
demonstrated for simply supported cases. For mid to high damped structures, a lower
number of image sources is sufficient to predict accurately the damping loss factor. It is
observed as well that even if the reduction in the correlation error between the simulated
and reconstructed fields is not very significant, the improvement in the estimation of the
damping is significant.

The efficiency of the method has also been demonstrated for panels with free edges.
Despite the theoretical definition of the reflection coefficient being limited to first order
only, the proposed method improves the estimation of the damping loss factor compared
to the previous GFC method.

The efficiency of the present work on isotropic sandwich structures opens the possibility
to apply this technique on non-isotropic structures by combining the angle-dependency
Green’s function described in Chapter III and the image source method.





General conclusion and perspectives

In the present work, inverse wave approaches have been adopted to estimate the com-
plex wavenumber of flat thin and sandwich damped structures. The GFC method pre-
sented here is able to estimate accurately the damping loss factor as function of the
frequency and the heading direction and overcomes limitations of previous methods.

An enhanced formulation of the inhomogeneous wave correlation (IWC) method has
been introduced in the second chapter. This formulation takes into account the effects of
the wave propagation around the excitation point by representing explicitly the associated
exponential decay of the wave amplitude with distance from the source with the objective
to improve the estimation of the damping loss factor. The proposed method has been
applied to simple isotropic structures and complex anisotropic structures. The results
have shown that the enhanced formulation improves slightly the estimation of the damping
loss factor. Nevertheless, the robustness of the IWC method to estimate the damping loss
factor in the presence of the excitation point remains questionable.

A Green’s function-based model correlation (GFC) method able to estimate the damp-
ing loss factor as a function of the frequency and the heading angle has been introduced
in the third chapter. This method eliminates the limitation of the free propagating plane
wave hypothesis of the IWC method. Several results, with simulated and measured data,
have been compared with an analytical discrete laminate model and have shown the accu-
racy of this Green’s Function Correlation technique to recover the damping loss factor of
complex structures with high damping and in the mid to high frequency range. An appli-
cation of the method to an orthotropic structure has shown the effect of the orthotropy of
the skin on the estimation of the damping loss factor. The proposed method is also able
to estimate the damping loss factor of an anisotropic sandwich laminate panel accurately.
The method has also been also investigated experimentally on a sandwich carbon fiber
panel with a honeycomb core. The damping loss factor as a function of the frequency and
the heading angle is well captured compared to classical methods such as the DRM and
PIM.

The performance of the GFC method as a function of different point loads excitation
has also been investigated in Chapter III. The proposed method performs at best when
the panel is subjected to a mechanical point load excitation at the centre of the panel. If
the excitation location varies from the centre, a correction factor is applied to estimate
correctly the damping loss factor.

Finally, the classical image source method has been used in the GFC method (GFC-
ISM) for two types of boundary conditions: simply supported and free edges. The former
is useful for analytical validations and the latter is compatible with experimental tests.
The method has been validated numerically using a steel panel with simply supported
boundary conditions and two sandwich isotropic structures with free-free boundary con-
ditions. The results have been compared to the previous GFC method. Based on the
results, the application of the image source method improves the estimation of the damp-
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ing loss factor. For low damping structures, a very high number of image sources is
however needed to improve the estimation in the very low frequency range.

The presented work demonstrates the robustness of using correlation based methods to
estimate the damping loss factor of planar complex structures. The perspective for future
work would be the application of the image source method to non-isotropic structures
with simply supported and free-free boundary conditions to improve the estimation of the
damping loss factor as function of the angle of propagation in the low frequency range and
for low damping structures. The development of the Green’s function correlation method
for curved structures to estimate the radial, axial, and azimuthal wavenumbers as well as
the damping loss factor would be the second area of future work. Finally, an interesting
case study would be the application of the Green’s function to built-up structures such
as stiffened and extruded panels.
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Conclusion générale et perspectives

Dans cette thèse, la méthode de corrélation a été adoptée pour estimer le nombre
d’onde complexe des structures minces ainsi que les structures en sandwich amorties.
Le modèle présenté ici est capable d’estimer précisément l’amortissement en fonction de
la fréquence et de la direction des propagations. Cette approche répond également aux
limitations des méthodes précedentes.

Une variante de la méthode Inhomogeneous Wave Correlation (IWC) a été présentée
dans le deuxième chapitre. Cette variante prend en compte la propagation de l’onde au-
tour du point d’excitation en représentant explicitement la décroissance exponentielle de
l’amplitude avec la distance à la source dans le but d’améliorer l’estimation de l’amor-
tissement. Cette dernière a été appliquée aux structures isotropes ainsi qu’aux structures
anisotropes laminées. La méthode présentée permet de prédire précisément le nombre
d’onde en fonction de l’angle et améliore légèrement l’estimation de l’amortissement.
Néanmoins, la robustesse de la méthode IWC pour estimer l’amortissement en présence
du point d’excitation reste un point faible.

Une méthode de corrélation basée sur la fonction de Green (GFC) qui est capa-
ble d’estimer l’amortissement en fonction de l’angle et la direction de propagation est
présentée dans le troisième chapitre. Cette méthode élimine la limitation de l’hypothèse
d’onde plane à propagation libre de la méthode IWC. Plusieurs résultats, avec des données
simulées et mesurées, sont comparés à un modèle analytique GLM et montrent la précision
de cette technique de corrélation pour estimer l’amortissement des structures complexes en
moyennes - hautes fréquences et des structures complexes fortement amorties. L’applica-
tion de la méthode à une structure orthotrope montre bien l’effet de l’orthotropie de la
peau sur l’estimation de l’amortissement. La méthode proposée est également capable
d’estimer précisément l’amortissement d’une structure sandwich stratifiée. La méthode
est également étudiée expérimentalement sur un panneau sandwich en fibre de carbone
avec une âme en nid d’abeille. L’amortissement en fonction de la fréquence et de la di-
rection des propagations est bien identifié par rapport aux méthodes classiques telles que
le DRM et le PIM.

La performance de la méthode GFC en fonction des différents points d’excitation est
également étudiée en complément dans ce chapitre. De manière générale, la méthode
proposée fonctionne au mieux lorsque le panneau est soumis à une excitation ponctuelle
en son centre. Si l’excitation n’est pas au centre, un filtre angulaire spatial est introduit
pour rectifier le resultat.

Enfin, la méthode classique des sources images dans la méthode GFC (GFC-ISM)
pour deux types de conditions aux limites : bords simplement appuyés et bords libres
a été introduite. Le premier est utile pour les validations analytiques et le second est
compatible avec les tests expérimentaux. La méthode a été validée numériquement en
utilisant un panneau en acier avec des conditions aux limites simplement appuyées et deux
structures sandwich isotropes avec des conditions aux limites libre-libre. Les résultats ont
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été comparés à la méthode GFC précédente. Les résultats montrent que l’application de la
méthode des sources images améliore l’estimation de l’amortissement. Pour les structures
faiblement amorties, un très grand nombre de sources images est cependant nécessaire
pour améliorer l’estimation de l’amortissement en très basses fréquences.

Le travail présenté démontre la robustesse pour estimer l’amortissement des structures
planes complexes en utilisant la méthode de corrélation. La première perspective des
futurs travaux serait l’application de la méthode des sources images à des structures non-
isotropes avec des conditions aux limites simplement supportées et libres pour améliorer
l’estimation de l’amortissement en fonction l’angle de propagation des ondes en basses
fréquences et pour les structures faiblement amorties. Le développement de la méthode de
corrélation de la fonction de Green pour les structures courbes afin d’estimer les nombres
d’onde radial, axial et azimutal ainsi que le facteur de perte d’amortissement serait la
deuxième perspective des futurs travaux. Enfin, l’application de la fonction de Green
à des structures raidies et extrudées constituerait des cas d’études très intéressants et
enrichissants.
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[26] J. Cuenca, F. Gautier, and L. Simon. Measurement of the complex bending stiffness
of a flat panel covered with a viscoelastic layer using the image source method. 8th
European Conference on Noise Control 2009, EURONOISE 2009 - Proceedings of
the Institute of Acoustics, 31(PART 3), 2009.

[27] J. Cuenca, F. Gautier, and L. Simon. The image source method for calculating
the vibrations of simply supported convex polygonal plates. Journal of Sound and
Vibration, 322(4-5):1048–1069, 2009.

[28] J. Cuenca, F. Gautier, and L. Simon. Harmonic Green’s functions for flexural waves
in semi-infinite plates with arbitrary boundary conditions and high-frequency approx-
imation for convex polygonal plates. Journal of Sound and Vibration, 331(6):1426–
1440, 2012.

[29] W. d. S. Clarence. Vibration Fundamentals and Practice. CRC Press LLC, Boca
Raton, FL, USA, 1999.

[30] K. Ege, N. B. Roozen, Q. Leclère, and R. G. Rinaldi. Assessment of the appar-
ent bending stiffness and damping of multilayer plates; modelling and experiment.
Journal of Sound and Vibration, 426:129–149, 2018.
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