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Résumé en français

Introduction

Dans cette thèse, nous visons à pousser plus loin le développement théorique du

formalisme de la fonctionnelle de la densité d’ensemble pour décrire les excitations

électroniques. Pour le reste de la discussion, nous supposons que nous avons affaire

à un système électronique isolé. L’état de ce système ayant l’énergie la plus basse

est appelé état fondamental, tandis que les états ayant des énergies plus élevées

sont appelés états excités. Comprendre comment le système réagit à l’excitation est

d’un grand intérêt dans de nombreuses branches de la science qui utilisent la théorie

quantique, telles que la photochimie et la spectroscopie, mais aussi pour la concep-

tion de nouveaux matériaux. Comme nous le verrons bientôt, la description des

états fondamentaux électroniques est déjà une tâche difficile, puisque nous devons

résoudre le problème de l’interaction de plusieurs électrons de la nature quantique.

Dans la plupart des cas, il faut développer des approximations astucieuses de la so-

lution exacte qui réduisent les coûts de calcul, sans trop compromettre la précision

des résultats. On peut raisonnablement s’attendre à ce que le traitement des états

excités soit encore plus difficile.

De nos jours, les excitations électroniques sont le plus souvent traitées par

des méthodes de réponse, telles que la théorie de la fonctionelle de la densité

dépendante du temps (time-dependent density-functional theory - TD-DFT) [1, 2] et

les méthodes basées sur les fonctions de Green de nombreux corps (methods, based

on many-body Green’s functions) [3, 4, 5, 6, 7, 8, 9], qui sont très bien connues dans

la physique de la matière condensée. La méthode TD-DFT à réponse linéaire avec

l’équation de Casida [10] s’est avérée très efficace dans le traitement des excitations

neutres dans les molécules et les matériaux. Certaines limitations de la TD-DFT à

réponse linéaire sont la description à référence unique, qui est insuffisante pour les

i
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situations de (quasi-)dégénérescence, telles que les intersections coniques [2] et les

croisements évités dans les molécules, et avec l’approximation adiabatique couram-

ment utilisée, l’absence d’excitations multiples. En outre, la résolution de l’équation

de Casida entrâıne un coût de calcul modéré, ce qui rend la méthode plus coûteuse

que la méthode DFT standard de Kohn-Sham [11]. Le formalisme de la fonction

de Green a permis de décrire avec succès les excitations chargées, mais aussi neu-

tres, avec la méthode GW [3, 4, 5, 6], et l’équation Bethe-Salpeter (BSE) [7, 8],

respectivement. Ces méthodes ont également un coût de calcul modéré (dans leurs

implémentations les plus simples) et ne sont pas couramment utilisées en chimie

quantique, bien qu’elles aient récemment fait l’objet d’un intérêt croissant [12]. Les

méthodes couramment utilisées en chimie quantique sont les méthodes basées sur la

fonction d’onde multiconfigurationnelle, telles que la méthode champ autocohérent

complet de l’espace actif (complete active space self-consistent field - CASSCF) [13],

ou la méthode state-averaged CASSCF (SA-CASSCF) [14], qui sont utilisées pour

décrire les états de basse énergie dans les molécules. Bien que très précises, ces

méthodes nécessitent beaucoup d’expérience de la part de l’utilisateur et sont trop

coûteuses pour être applicables à de grandes molécules. Pour faire face aux coûts

de calcul, les méthodes d’embedding quantique (quantum embedding - QE), qui

utilisent des combinaisons de différentes approches, ont suscité l’intérêt au cours

des dernières décennies. Un exemple de ces méthodes, qui est également utilisé

dans cette thèse, est la théorie d’embedding de la matrice de densité (density matrix

embedding theory - DMET) [15, 16, 17].

Les développements réalisés dans cette thèse portent sur la construction de

méthodes de calcul “d’ensemble” pour accéder à la structure électronique de

plusieurs états quantiques à la fois. Un premier grand axe porte sur l’extension de

la théorie de la fonctionnelle de la densité (DFT), initialement focalisée sur l’état

fondamental, aux ensembles d’états électroniques (fondamental + excités) donnant

ainsi naissance au concept de DFT d’ensemble (ensemble density-functional theory

- eDFT), qui a suscité un intérêt croissant au cours des dernières décennies en

tant que méthode alternative peu coûteuse pour le traitement des excitations

électroniques. Les aspects formels et pratiques du DFT d’ensemble sont discutés

en détail et différentes approches pour le développement d’approximations de la
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fonctionnelle de la densité pour l’énergie d’échange-corrélation d’ensemble sont

introduits. Ces approches sont illustrées par des calculs numériques réalisés sur le

dimère asymétrique de Hubbard. De plus, un nouveau formalisme DFT d’ensembles

“N -centrés” étendu est proposé, qui combine les excitations neutres et chargées

en un seul ensemble, mettant ainsi en lumière le concept de dérivée discontinue

pour les excitations neutres. Un second grand axe de cette thèse porte sur des

calculs quantiques de type fonction d’onde. Dans ce travail, nous proposons une

stratégie “d’embedding quantique” pour décrire plusieurs états électroniques à la

fois, au moyen du partitionnement de la matrice densité à un electron basée sur

l’utilisation de transformations de Householder [18, 19]. L’efficacité et les limites

de cette nouvelle approche sont illustrées par des simulations numériques sur des

Hamiltonien de Hubbard et des molécules de petite tailles.

Chapitre 1: Différentes variantes de la théorie de la struc-

ture électronique de l’état fondamental

La description des états électroniques stationnaires est l’une des principales tâches de

la théorie de la structure électronique. À cet égard, divers systèmes physiques sont

pris en considération. En chimie quantique, les atomes, les molécules et les arrange-

ments moléculaires sont étudiés. En physique de la matière condensée, les matériaux

en vrac sont généralement modélisés comme des systèmes étendus. Dans tous les

cas, l’objectif fondamental de la théorie de la structure électronique est le même:

résoudre l’équation de Schrödinger à plusieurs électrons. Il s’agit toutefois d’une

tâche très exigeante, et c’est pour cette raison qu’une pléthore de méthodologies

différentes ont été développées, en grande partie guidées par le compromis entre

la précision et l’efficacité des calculs. Nous commençons notre discussion sur les

différentes méthodes par celles basées sur la théorie de la fonction d’onde (wave-

function theory - WFT).

Théorie de la fonction d’onde

Dans la théorie quantique, tout ce que nous pouvons savoir sur un système physique

est donné par son état quantique, |Ψ⟩, qui, comme nous le montrerons dans les

sous-sections suivantes, est un objet assez complexe. Lorsque nous étudions des

phénomènes statiques tels que les géométries d’équilibre en chimie quantique, |Ψ⟩
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est obtenu comme solution (état propre) de l’équation de Schrödinger indépendante

du temps,

Ĥ |Ψ⟩ = E |Ψ⟩ , (1)

où Ĥ est l’opérateur Hamiltonien, qui décrit les énergies cinétiques et les interactions

des particules constituant le système, et E est le niveau d’énergie du système dans

l’état propre |Ψ⟩. Il s’agit d’un problème de valeurs propres qui est d’une grande

importance dans la théorie de la structure électronique. Différents Hamiltoniens

sont utilisés en fonction du système considéré et de la complexité des phénomènes

étudiés. Dans la théorie de la fonction d’onde indépendante du temps ab initio,

combiné avec l’approximation de Born-Oppenheimer [20], nous sommes intéressés à

l’Hamiltonien électronique Ĥe, qui, dans la représentation de position, se lit comme

suit,

Ĥe = T̂e + Ŵee + V̂ne

≡ −1

2

N∑
i=1

∇2
i +

N∑
i=1

N∑
j>i

1

|ri − rj|
−

N∑
i=1

M∑
A=1

ZA

|ri −RA|
.

(2)

L’équation de Schrödinger indépendante du temps de l’Hamiltonien électronique se

lit comme suit,

Ĥe({RA}) |Ψe({RA})⟩ = Ee({RA}) |Ψe({RA})⟩ , (3)

où la fonction d’onde électronique Ψe({ri}, | {RA}) dépend des coordonnées des

électrons {ri}, ainsi que des coordonnées nucléaires {RA} de manière paramétrique.

Pour faciliter la résolution de l’équation de Schrödinger ci-dessus, il est important de

connâıtre au moins quelques propriétés mathématiques que la fonction d’onde d’un

système physique réaliste doit remplir. En général, la fonction d’onde Ψ doit inclure

des informations sur tous les électrons du système. Chaque électron possède quatre

degrés de liberté, comprenant trois coordonnées spatiales r = (x, y, z) ∈ R3 et une

coordonnée de spin σ ∈ {↑, ↓} où ↑ et ↓ représentent les valeurs propres (+1/2 et

−1/2, respectivement) de l’opérateur de projection de spin Ŝz. En outre, la fonction

d’onde doit être intégrable au carré si elle doit représenter un état quantique lié,∫
dx1

∫
dx2 . . .

∫
dxN |Ψ(x1,x2, . . . ,xN)|2 = 1, (4)
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où l’intégration sur une seule coordonnée spin-espace x est formellement représentée

comme une composition de l’intégration sur trois coordonnées spatiales et de la

sommation sur la seule variable spin,∫
dx ≡

∫
dr

∑
σ∈{↑,↓}

. (5)

La fonction d’onde doit également être antisymétrique par rapport à la permutation

des coordonnées de spin de deux électrons quelconques,

∀i, j Ψ(...,xi, ....,xj, ...) = −Ψ(...,xj, ....,xi, ...), (6)

de sorte que la probabilité de trouver deux électrons de même spin au même endroit

s’évanouit, |Ψ(...,xi, ....,xj = xi, ...)|2 = 0. C’est ce que l’on appelle le principe

d’exclusion de Pauli [21]. Cette dernière condition peut être réalisée en prenant

un produit antisymétrique d’un ensemble de spin-orbitales, i.e. fonctions à un seul

électron {ϕk(x)}Nk=1, qui est connu comme le déterminant de Slater,

Φ(x1,x2, . . . ,xN) :=
1√
N !

∣∣∣∣∣∣∣∣∣∣
ϕ1(x1) ϕ2(x1) . . . ϕN(x1)

ϕ1(x2) ϕ2(x2) . . . ϕN(x2)
...

...
. . .

...

ϕ1(xN) ϕ2(xN) . . . ϕN(xN)

∣∣∣∣∣∣∣∣∣∣
, (7)

Le déterminant de Slater est un ingrédient nécessaire de la méthode Hartree-Fock

(HF) [22, 23], qui est la base bien connue des méthodes plus avancées en chimie

quantique.

Analysons maintenant les méthodes standard de la théorie de la structure

électronique des états fondamentaux, en commençant par la méthode HF. Dans

la version restreinte à enveloppe fermée de la méthode HF (restricted closed-shell

Hartree-Fock), la fonction d’onde totale du système est approximée par un seul

déterminant de Slater Φ, construit à partir d’un ensemble d’orbitales moléculaires

(molecular orbital - MO) {φi(r)}N/2
i=1 . L’objectif est de trouver les meilleures MO pos-

sibles qui minimisent la valeur d’espérance suivante de l’Hamiltonien électronique,

⟨Φ|Ĥe|Φ⟩, qui se lit comme suit,

⟨Φ|Ĥe|Φ⟩ = 2

N/2∑
i=1

⟨φi|ĥ|φi⟩+

N/2∑
i=1

N/2∑
j=1

[
2 ⟨φiφj|φiφj⟩ − ⟨φiφj|φjφi⟩

]
, (8)
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où ĥ = −(1/2)∇2
r + vne(r) est la partie à un électron de l’Hamiltonien électronique,

qui comprend l’énergie cinétique électronique et l’attraction électron-nucléaire, et

⟨φiφj|φkφl⟩ :=

∫ ∫
dr1dr2

φ∗
i (r1)φ

∗
j(r2)φk(r1)φl(r2)

|r1 − r2|
. (9)

Les orbitales qui minimisent Eq. (8) obéissent à l’ensemble des équations intégro-

différentielles couplées, connues sous le nom d’équations de Hartree-Fock,

F̂ [{φj}]φi(r) = εiφi(r), (10)

où F̂ est l’opérateur de Fock dépendant de l’orbitale,

F̂ = ĥcore +

N/2∑
j=1

(
2Ĵj − K̂j

)
. (11)

Le premier terme du côté droit de l’équation ci-dessus,

ĥcore = −1

2
∇2

r −
M∑

A=1

ZA

|r−RA|
, (12)

est la somme de l’énergie cinétique d’un électron et de l’attraction électron-nucléaire,

et le second terme est constitué du potentiel de Coulomb (local) et du potentiel

d’échange (non local), respectivement,

Ĵjφi(r) =

(∫
dr′

φ∗
j(r

′)φj(r
′)

|r− r′|

)
× φi(r), (13)

K̂jφi(r) =

(∫
dr′

φ∗
j(r

′)φi(r
′)

|r− r′|

)
× φj(r). (14)

Comme les équations HF dépendent des vecteurs propres, elles doivent être

résolues de manière autocohérente. L’approche commune consistant à développer

les orbitales moléculaires dans une base d’orbitales atomiques a été proposée

indépendamment par Roothaan [24] et Hall [25].

L’énergie HF, que nous obtenons en insérant les solutions des Eqs. (10) dans

l’Eq. (8), est l’énergie la plus basse que l’on puisse obtenir en utilisant un seul

déterminant de Slater. L’énergie exacte de l’état fondamental dans l’approximation

de Born-Oppenheimer est toujours inférieure. L’énergie de corrélation, un terme

inventé par Löwdin [26], est la différence entre les deux énergies,

Ec = E − EHF < 0. (15)
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La théorie Hartee-Fock elle-même contient déjà une certaine corrélation. Celle-

ci est due à l’intégrale d’échange, qui diminue l’énergie totale pour chaque paire

d’électrons de même spin. Cet effet est également appelé corrélation de Fermi,

ce qui signifie que deux électrons de même spin ne peuvent pas occuper le même

point dans l’espace (équivalemment, la même MO). Cependant, dans les systèmes

réalistes, il existe des effets de corrélation que la méthode HF ne prend pas en

compte. Dans la littérature, ils sont communément regroupés dans la corrélation

dynamique et la corrélation statique. La corrélation dynamique peut être prise

en compte en approximant la véritable fonction d’onde comme une combinaison

linéaire de déterminants de Slater générés par des excitations de la fonction d’onde

occupés (dans le déterminant HF de l’état fondamental) vers les MO virtuels (inoc-

cupés), à condition qu’un seul déterminant de Slater soit une bonne approximation

de départ. Dans certains cas, il existe un autre effet appelé corrélation forte ou

statique, qui survient lorsque différents déterminants de Slater sont strictement ou

quasi dégénérés, et qu’ils doivent tous être pris en compte. Par conséquent, dans les

cas où la corrélation statique est importante, la fonction d’onde de référence doit

être multidéterminante.

Les corrélations dynamique et statique sont décrites à l’aide des méthodes dites

post-HF. La méthode de l’interaction de configuration (configuration interaction -

CI) est l’une des méthodes les plus simples pour récupérer la corrélation dynamique.

Dans la méthode CI, la fonction d’onde de l’état fondamental est écrite comme la

combinaison linéaire suivante,

|ΨCI⟩ = |ΦHF⟩+
∑
i

∑
a

Ca
i |Φa

i ⟩+
∑
i>j

∑
a>b

Cab
ij

∣∣Φab
ij

〉
+ . . . , (16)

où |Φa
i ⟩ est obtenu en excitant un électron de l’orbitale occupée (dans |ΦHF⟩) i vers

l’orbitale de spin inoccupée a, et ainsi de suite. Les coefficients CI, C = {CI}I sont

obtenus par minimisation variationnelle de la valeur espérée ⟨ΨCI(C)|Ĥe|ΨCI(C)⟩
tout en maintenant les orbitales HF fixes. Si nous prenons en considération toutes

les excitations possibles pour un ensemble de bases atomiques donné, nous obtenons

la méthode dite interaction de configuration complète (full configuration interaction

- FCI), qui est exacte pour un ensemble de base de orbitales donné. Malheureuse-

ment, l’échelle de la FCI est exponentielle, ce qui rend cette méthode inutile pour

la plupart des applications. En fait, l’échelle exponentielle de nombreuses méthodes
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très précises basées sur la fonction d’onde est l’une des principales raisons pour

lesquelles d’autres méthodes ont été développées, telles que la théorie de la fonc-

tionelle de la densité (density-functional theory - DFT) et la théorie de l’embedding

quantique. En ce qui concerne la méthode CI pratique, nous pouvons tronquer

l’expansion FCI aux excitations simples (configuration interaction singles - CIS),

aux excitations doubles (configuration interaction with singles and doubles - CISD),

et ainsi de suite. Chaque classe supplémentaire d’excitations donne une méthode

plus précise.

Outre la méthode CI, les deux autres méthodes couramment utilisées sont la

théorie des perturbations Møller-Plesset du second ordre (MP2), et la méthode du

cluster couplé (coupled cluster - CC). Ces méthodes ne sont pas variationnelles,

ce qui signifie que l’énergie approximative peut être inférieure à l’énergie réelle de

l’état fondamental. Cependant, elles sont size-consistent, ce qui signifie que pour

un système composé de sous-unités séparées à l’infini, l’énergie est additivement

séparable et la fonction d’onde est multiplicativement séparable.

Les méthodes CI, MP2 et CC sont des méthodes post-HF basées sur le

déterminant HF comme référence, qui conviennent pour décrire la corrélation dy-

namique. Dans les cas où la corrélation statique est importante, comme par exemple

dans les molécules étirées, aux intersections coniques, ou aux géométries d’équilibre

de certaines molécules comme l’ozone (voir Ref. [27] et les références qui y figurent),

la référence HF n’est pas qualitativement correcte, parce que plusieurs orbitales HF

(occupées et virtuelles) peuvent devenir dégénérées, ou presque dégénérées. Dans

de tels cas, il devient nécessaire de réoptimiser les orbitales dans l’expansion CI,

dans la méthode dite champ autocohérent multiconfigurationnel (multiconfigura-

tional self-consistent field - MCSCF). En pratique, la première étape de la MC-

SCF est l’identification des configurations électroniques dominantes dans la fonction

d’onde, qui sont généralement obtenues en considérant toutes les excitations possi-

bles dans un sous-espace orbital. Dans le langage de la MCSCF, un tel sous-espace

est appelé espace orbital actif. Ensuite, la fonction d’onde d’essai est développée

comme une combinaison linéaire de déterminants de Slater ou de fonctions d’état

de configuration (CSF) comme suit [28],

|Ψ(κ,C)⟩ = e−κ̂
∑
I

CI |ΦI⟩ , (17)
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où le terme exponentiel (avec paramètres κ = {κij}i>j fait tourner les orbitales HF

(occupées et virtuelles), et le sommand I s’étend sur les configurations, générées

à partir de l’espace orbital actif et du nombre d’électrons (dits actifs) distribués

dans cet espace. Plusieurs méthodes multiconfigurationnelles ont été proposées, qui

diffèrent par la manière dont les orbitales sont réoptimisées et dont l’espace actif

est divisé. Dans la méthode champ autocohérent de l’espace actif complet (complete

active space self-consistent field - CASSCF) [13], toutes les orbitales (doublement oc-

cupées, actives et virtuelles) sont réoptimisées et l’expansion FCI dans l’espace actif

est effectuée. L’espace actif peut également être divisé en plusieurs sous-espaces avec

des restrictions sur les excitations électroniques, ce qui est la pratique standard dans

la méthode champ autocohérent dans l’espace actif restreint (restricted active space

self-consistent field - RASSCF) [29, 30, 31]. Une approche encore moins coûteuse

consiste à sauter complètement l’optimisation orbitale et à effectuer l’expansion FCI

dans l’espace actif, composé des orbitales HF. Cela correspond à la méthode interac-

tion de configuration de l’espace actif complet (complete active space configuration

interaction - CASCI). Afin de récupérer la corrélation dynamique, les méthodes de

théorie des perturbations multiréférences telles que la méthode théorie des perturba-

tions du second ordre de l’espace actif complet (complete active space second-order

perturbation theory - CASPT2) [32] et théorie des perturbations du second ordre

de l’état de valence N-électron (N -electron valence state second-order perturbation

theory - NEVPT2) [33, 34, 35], sont couramment appliquées en plus d’une méthode

multiconfigurationnelle, ainsi que d’autres méthodes non basées sur la théorie des

perturbations, telles que le interaction de configuration multiréférence (multirefer-

ence configuration interaction - MRCI) [36, 37, 38], et la méthode methode du cluster

couplé multiréférence (multireference coupled cluster - MRCC) [39, 40, 41, 42, 43].

Théorie de la fonctionnelle de la densité

La théorie de la fonctionnelle de la densité (DFT) est la méthode de mécanique

quantique la plus utilisée en chimie quantique et en physique du solide. La variable

de base de la DFT est la densité électronique, qui est obtenue en intégrant dans la

fonction d’onde (précisément, dans son module carré) tous les degrés de liberté de

N − 1 électrons et tous les degrés de liberté de spin de N électrons, ce qui ne laisse

qu’une fonction de 3 coordonnées spatiales - une variable énormément simplifiée par
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rapport à la fonction d’onde,

n(r) = N
∑
σ=↑,↓

∫
dx2

∫
dx3 · · ·

∫
dxNΨ∗(r, σ,x2, . . . ,xN)Ψ(r, σ,x2, . . . ,xN). (18)

Par construction, il s’intègre au nombre d’électrons N .

Les racines de la DFT remontent au début du 20ème siècle avec l’introduction

du modèle dit Thomas-Fermi (TF) [44, 45]. À cet égard, la première fonctionnelle

de densité dérivée est celle de l’énergie cinétique des électrons libres,

TTF[n] = CTF

∫
dr n(r)5/3, (19)

où CTF = 3(3π2)2/3/10 est la constante de Thomas-Fermi en unités atomiques.

Toutefois, les fondements rigoureux de la théorie de la fonctionnelle de la densité ont

été consolidés en 1964 [46], lorsque Hohenberg et Kohn ont présenté deux théorèmes

établissant l’unicité de l’énergie de l’état fondamental en tant que fonctionnelle de

la densité de l’état fondamental. Le premier théorème de Hohenberg-Kohn établit

que la correspondance entre le potentiel externe vext et la densité de l’état fon-

damental n0 = nΨ0[vext] est bijective, de sorte que l’état fondamental, ainsi que

le potentiel externe, sont des fonctionnelles de la densité de l’état fondamental:

|Ψ0⟩ = |Ψ[vext]⟩ = |Ψ[n0]⟩ et vext(r) = vext[n0](r). Cela implique que le principe

variationnel peut être reformulé comme une minimisation sur les densités. À cette

fin, la fonctionnelle de la densité universelle de Hohenberg-Kohn a été introduite [46],

FHK[n] := ⟨Ψ[n]|T̂ + Ŵee|Ψ[n]⟩, (20)

qui est universelle dans le sens où elle est indépendante du potentiel externe vext.

Ensuite, dans le second théorème de Hohenberg-Kohn, on montre que l’énergie de

l’état fondamental pour un vext donné, est atteinte à la densité de l’état fondamental

n0 = nΨ0[vext] par minimisation sur les densités d’électrons comme suit,

E0[vext] = E0[n0] = min
n

{
FHK[n] +

∫
dr vext(r)n(r)

}
. (21)

Le problème du principe du minimum ci-dessus est qu’il n’est défini que pour les den-

sités qui proviennent de la résolution du problème des valeurs propres d’un Hamil-

tonien avec vext. Il s’agit des densités dites v-représentables, dont l’ensemble n’est

pas connu explicitement. Levy [47, 48], et plus tard Lieb [49], qui ont redéfini la
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fonctionnelle de densité universelle FHK[n] dans une minimisation contrainte sur

toutes les fonctions d’onde Ψ qui produisent une densité désirée n, ont trouvé une

solution,

FLL[n] := min
Ψ→n
⟨Ψ|T̂ + Ŵee|Ψ⟩ = ⟨Ψ[n]|T̂ + Ŵee|Ψ[n]⟩. (22)

Cette définition est communément appelée la formulation de recherche sous con-

trainte de Levy-Lieb, qui autorise toutes les densités N -représentables, c’est-à-dire

celles qui sont obtenues à partir d’un état antisymétrique à N électrons. Par

conséquent, le principe variationnel pour l’énergie électronique peut être décomposé

en une procédure de minimisation en deux étapes,

E0[vext] = min
Ψ

{
⟨Ψ|T̂ + Ŵee + V̂ext|Ψ⟩

}
= min

n

{
min
Ψ→n
⟨Ψ|T̂ + Ŵee|Ψ⟩+

∫
dr vext(r)n(r)

}
= min

n

{
FLL[n] +

∫
dr vext(r)n(r)

}
.

(23)

Contrairement à FHK[n], FLL[n] résout le problème de la v-représentabilité. Il existe

une définition encore plus générale de la fonctionnelle universelle, qui a été fournie

par Lieb [49]. La fonctionnelle de Lieb repose sur les fondements mathématiques

rigoureux de l’analyse convexe. En se basant sur la propriété que l’énergie de l’état

fondamental E0[v] est concave sur l’ensemble de tous les potentiels possibles v, Lieb

a montré que FL[n] est la transformée de Legendre-Fenchel de E0[v],

FL[n] ≡ sup
v

{
E0[v]−

∫
dr v(r)n(r)

}
. (24)

Cette construction est également appelée la maximisation de Lieb (Lieb maximiza-

tion). FL[n] est une enveloppe convexe de FLL[n] avec la propriété FL[n] ≤ FLL[n].

La fonctionnelle universelle F [n] introduite précédemment dans ses différentes

formulations, détient, en principe, toute l’information de tout système d’intérêt,

grâce aux théorèmes de Hohenberg-Kohn. Cependant, son utilisation pratique est

plutôt limitée, car elle implique la connaissance de systèmes à plusieurs corps en

interaction. Face à ce problème, Kohn et Sham ont proposé en 1965 une solution

astucieuse. Dans la théorie de la fonctionnelle de la densité de Kohn-Sham (KS-

DFT), la fonctionnelle de la densité universelle est divisée en deux contributions

comme suit,

F [n] = Ts[n] + EHxc[n], (25)
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où le premier terme, Ts[n], est la fonctionnelle (de la densité) d’énergie cinétique sans

interaction. Il peut être obtenu à partir de F [n] (avec n’importe quel formalisme),

en mettant à zéro l’opérateur d’énergie d’interaction Ŵee. Dans le formalisme de

Levy-Lieb, elle s’écrit comme suit,

Ts[n] = min
Ψ→n
⟨Ψ|T̂ |Ψ⟩ = ⟨Ψ[n]|T̂ |Ψ[n]⟩. (26)

Le terme restant dans l’Eq. (25), EHxc[n], est appelé la fonctionnelle Hartree-

échange-corrélation (Hxc), qui encode tous les effets de nombreux électrons au-delà

du niveau de calcul du champ moyen, tels que l’énergie cinétique et la répulsion

de Coulomb des électrons. En insérant la décomposition KS de la fonctionnelle

universelle dans Eq. (21), il est possible de montrer que la densité électronique min-

imisante peut être obtenue à partir d’un déterminant de Slater unique |ΦKS⟩, dont

les orbitales sont des solutions des équations KS,(
−∇

2
r

2
+ vext(r) + vHxc[nΦKS

]

)
φi(r) = εiφi(r), (27)

où

vHxc[nΦKS
] =

δEHxc[n]

δn(r)

∣∣∣∣
n=nΦKS

(28)

est le potentiel de Hartree-échange-corrélation (Hxc). La densité électronique à l’état

fondamental est, en principe, exactement reproduite par les orbitales KS comme suit,

nΦKS
(r) = 2

N/2∑
i=1

|φi(r)|2 = nΨ0(r). (29)

En pratique, une fois qu’un approximation fonctionnelle de la densité (density-

functional approximation - DFA) particulier de la fonctionnelle d’énergie Hxc est

choisi, les équations KS sont résolues de manière autocohérente, avec la même

procédure que celle décrite pour les équations de Roothaan-Hall dans la théorie

HF.

Théories de l’embedding quantique

Les méthodes de fonction d’onde de la chimie quantique que nous avons mentionnées

jusqu’à présent sont très développées et très précises pour fournir des détails sur la

structure électronique, mais elles sont généralement coûteuses. L’échelle exponen-

tielle du nombre de configurations avec la taille du système limite l’applicabilité des
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méthodes de fonction d’onde très précises (telles que FCI et CCSD(T)) aux petites

molécules [28]. D’autre part, la théorie de la fonctionnelle de la densité de Kohn-

Sham (Kohn-Sham density-functional theory - KS-DFT) est couramment utilisée

pour étudier des molécules et des matériaux de tailles et de complexités différentes.

Cependant, elle ne parvient pas à décrire la forte corrélation électronique, qui joue un

rôle important dans de nombreux systèmes intéressant les physiciens et les chimistes.

À cet égard, l’une des solutions est l’embedding quantique (quantum embedding -

QE), dont l’idée est de diviser le système étudié en fragments plus petits. Chaque

fragment est ensuite couplé au reste du système par l’intermédiaire d’un petit nom-

bre de degrés de liberté représentatifs, généralement appelés le “bain quantique”, et

résolu à l’aide d’une méthode précise de “haut niveau”. La partie restante est traitée

à un “bas niveau”, généralement au niveau du champ moyen. En tant qu’étape

d’affinage, un critère de cohérence peut être imposé pour faire correspondre une

certaine quantité (la fonction d’onde, la fonction de Green, la 1RDM ou la densité

électronique) de la description de haut niveau à celle du champ moyen. De cette

façon, le coût de calcul du traitement du système complet avec une méthode de

haut niveau est considérablement réduit. Plusieurs techniques d’embedding ont été

proposées en fonction de la quantité choisie et de la représentation des degrés de lib-

erté utilisés dans le partitionnement. En chimie quantique, frozen-density embedding

(FDE) [50, 51] et la théorie de la fonctionelle de la densité du sous-système [52, 53]

(subsystem density-functional theory) sont des exemples de méthodes d’embedding

qui utilisent le partitionnement de l’espace réel et la densité électronique de la DFT

comme variable de base. L’embedding de la WFT dans la DFT a également été

proposée [54, 55, 56, 57, 58], dans laquelle une méthode basée sur la WFT est (sou-

vent) utilisée pour traiter les parties chimiquement pertinentes du système complet,

et l’environnement est traité avec la DFT. La Théorie de champ moyen dynamique

(dynamical mean-field theory - DMFT) [59, 60, 61, 62, 63, 64, 65, 66, 67] et la plus

récente théorie de l’embedding de la matrice de densité (density-matrix embedding

theory - DMET) [15, 16, 17, 68], qui ont été initialement appliquées à la physique

de la matière condensée, fonctionnent avec une base orbitale locale. Ils utilisent la

fonction de Green à un électron et la matrice de densité réduite à un électron (one-

electron reduced density matrix theory - 1RDM), respectivement, comme variables
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de base. Dans ce qui suit, la DMET, qui est pertinente par rapport à l’un des projets

de ce doctorat, est présentée brièvement.

La théorie de l’embedding de la matrice de densité (DMET) a été introduite par

Knizia et Chan en 2012, proposée comme une alternative statique (indépendante

de la fréquence) à la DMFT pour décrire les systèmes de réseaux avec de fortes

corrélations locales. L’approche générale de la DMET peut être décomposée en

deux étapes:

1. Diviser le système à corps multiples complet en fragments locaux qui ne se

chevauchent pas dans la base orbitale localisée et, pour chaque fragment, trou-

ver les degrés de liberté effectifs bain quantique de l’environnement. L’espace

fragment+bain à corps multiples forme le cluster d’embedding de taille réduite

par rapport au système complet.

2. Résoudre une équation de Schrödinger effective du cluster précédemment

obtenu. Utiliser la solution de l’état fondamental de cluster pour obtenir des

contributions locales approximatives à l’énergie de l’état fondamental et à

d’autres propriétés du système complet.

Dans les applications pratiques de DMET, les deux étapes impliquent inévitablement

des approximations. Plus de détails sur la théorie exacte dans DMET, et la mise en

œuvre de la stratégie d’embedding d’une seule impureté sont donnés dans le texte

principal de cette thèse (Section 1.3, rédigée en anglais).

Chapitre 2: Systèmes modèles et Hamiltoniens modèles

Les Hamiltoniens modèles décrivent des versions simplifiées de systèmes “réels”,

ne contenant que les caractéristiques essentielles à la description du problème qui

nous intéresse. Contrairement aux Hamiltoniens ab initio tels que l’Hamiltonien

électronique dans Eq. (2), les Hamiltoniens modèles contiennent une poignée de

paramètres réglables en tant qu’approximations des opérateurs cinétique, potentiel

et de répulsion des électrons. Parfois, même des modèles très simples offrent des

aperçus théoriques surprenants sur les propriétés des molécules et des matériaux.

Deux des modèles utilisés dans cette thèse sont le modèle de Hubbard unidimen-

sionnel [69, 70, 71, 72] et le dimère asymétrique de Hubbard. Pour ce dernier,
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l’Hamiltonien est écrit dans la seconde quantification comme suit,

ĤHdim ≡ −t
∑

σ∈{↑,↓}

(ĉ†0σ ĉ1σ + ĉ†1σ ĉ0σ) + U
1∑

i=0

n̂i↑n̂i↓ +
∆v

2
(n̂1 − n̂0), (30)

où ĉ†iσ et ĉiσ sont les opérateurs de création et d’annihilation pour le site i,

n̂iσ = ĉ†iσ ĉiσ, n̂i = n̂iσ + n̂iσ, t est le paramètre d’énergie cinétique, U est la répulsion

électronique locale du site, et (∆v ̸= 0) est la différence de potentiel entre le site 1

et le site 0. Ces dernières années, le dimère de Hubbard a été le modèle de choix

pour étudier les caractéristiques et les limites de la DFT et de la TD-DFT, ainsi

que pour étudier de nouveaux concepts [73, 74, 75, 76, 77, 78].

Chapitre 3: Approches temporelles des excitations

électroniques

Dans ce chapitre, nous nous intéressons aux méthodes dépendantes du temps pour

étudier les états excités. Le deux de ces méthodes couramment utilisées pour les

excitations électroniques sont la théorie de la fonctionnelle de la densité dépendante

du temps (time-dependent density-functional theory - TD-DFT) qui est aujourd’hui

la méthode de choix pour le calcul des excitations neutres dans les molécules et les

solides [2, 79, 80], et la théorie des fonctions de Green (à plusieurs corps), qui est

bien connue en physique. Les deux approches standard de la fonction de Green

pour les excitations chargées et neutres sont respectivement la méthode GW et la

méthode de l’équation de Bethe-Salpeter. Dans ce résumé, nous ne faisons qu’un

bref survol des principaux aspects de la TD-DFT.

Théorie de la fonctionnelle de la densité

La TD-DFT, semblable à la DFT pour les états fondamentaux, repose sur une base

rigoureuse connue sous le nom de théorème de Runge-Gross (RG) [1] qui établit

les observables comme des fonctionnelles de la densité dépendant du temps. La

plupart des applications pratiques de TD-DFT utilisées aujourd’hui sont mises en

œuvre dans le régime de réponse linéaire (LR-TD-DFT). L’équation de travail de

la LR-TD-DFT est l’équation de Casida [10, 2], qui est une équation aux valeurs

propres généralisée qui se lit comme suit dans l’espace du produit occupé-virtuel
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(ia, jb) des orbitales KS,[
A(ω) B(ω)

B∗(ω) A∗(ω)

][
X(ω)

Y(ω)

]
= ω

[
−1 0

0 1

][
X(ω)

Y(ω)

]
, (31)

où les éléments des matrices A et B se lisent,

Aia,jb(ω) = δijδab(εa − εi) + ⟨φiφb|fHxc(ω)|φaφj⟩,

Bia,jb(ω) = ⟨φiφj|fHxc(ω)|φaφb⟩.
(32)

où fHxc(ω) est le kernel de Hartree-échange-corrélation (Hxc). La taille de la

matrice de l’équation de Casida est (2 × Nocc × Nvirt)
2. La présence de virtuels

entrâıne des coûts de calcul supplémentaires par rapport aux calculs KS-DFT de

l’état fondamental. En outre, en raison de la dépendance en fréquence du noyau

Hxc, il y a plus de solutions que la taille de la matrice ne le permet. Cependant,

dans la plupart des applications pratiques, l’approximation adiabatique (adiabatic

approximation - AA) est utilisée, dans laquelle la fonctionnelle de densité Hxc à

l’état fondamental est utilisée à la place du kernel Hxc, qui est indépendant de la

fréquence, c’est-à-dire fAA
Hxc = fHxc(ω = 0). L’inconvénient majeur de l’AA est que

les excitations multiples sont totalement absentes du spectre prédit. En outre, la

LR-TD-DFT présente d’autres difficultés, telles que la modélisation des excitations

de transfert de charge [81, 82, 83], et des intersections coniques [84, 85]. En ce qui

concerne ces problèmes, la TGOK-DFT est proposée dans ce travail comme une

méthode alternative pour décrire les excitations neutres, qui a la capacité de traiter

des états multiples de manière équilibrée, avec les mêmes orbitales (contrairement

à la LR-TD-DFT, qui est basée sur les orbitales KS-DFT de l’état fondamental).

Chapitre 4: Approches indépendantes du temps pour

les excitations électroniques neutres

Les approches indépendantes du temps pour décrire les états excités sont surtout

utilisées en chimie quantique. Une méthode très couramment utilisée est le state-

averaged CASSCF (SA-CASSCF) [14], dans lequel l’énergie moyenne d’un ensemble

de fonctions d’onde d’une symétrie spatiale et de spin donnée est optimisée, en

utilisant le même ensemble d’orbitales. On obtient ainsi des états fondamentaux

orthonormés et des états excités de basse énergie, ce qui est pratique pour traiter

les (quasi-)dégénérescences. Cette méthode est adaptée à la description d’un
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petit nombre d’états dans les molécules, par exemple à proximité d’intersections

coniques ou de croisements évités, où une optimisation équilibrée des orbitales

pour les états fondamentaux et excités est préférable (plutôt que d’utiliser des

orbitales optimisées pour l’état fondamental). Au cours des dernières décennies, la

théorie de la fonctionnelle de la densité d’ensemble (ensemble density-functional

theory - eDFT) basée sur le principe variationnel Theophilou-Gross-Oliveira-Kohn

(TGOK) [86, 87, 88, 89, 90] a été proposée comme une alternative peu coûteuse à

d’autres méthodes bien établies pour décrire les états excités.

Théorie de la fonctionnelle de la densité d’ensemble des excitations

neutres (TGOK-DFT)

La TGOK-DFT a été formulée à la fin des années 1980 par Gross, Oliveira

et Kohn [88, 89, 90] et est une généralisation de l’équiensemble DFT de

Theophilou [86, 87]. Contrairement à la KS-DFT, qui est une théorie de l’état

fondamental, la TGOK-DFT peut décrire à la fois l’état fondamental et l’état

excité (neutre). Dans ce contexte, la densité d’ensemble est utilisée comme variable

de base (à la place de la densité de l’état fondamental). La base de la TGOK-DFT

est le principe variationnel suivant (appelé TGOK) qui, pour des poids ordonnés

wI ≥ wI+1 ≥ 0, avec I ≥ 0, se lit comme suit,

Ew =
∑
I

wIEI ≤
∑
I

wI

〈
Ψ̃I

∣∣∣ Ĥ ∣∣∣Ψ̃I

〉
, (33)

où
{

Ψ̃I

}
est un ensemble de fonctions d’onde d’essai orthonormées de N -électron,

w = (w1, w2, . . .) représente la collection de poids d’ensemble qui sont attribués aux

états excités, et EI ≡ EN
I sont les énergies de l’état fondamental (I = 0) et des

états excités à N électrons (I > 0)
∣∣ΨN

I

〉
. Notez que la limite inférieure Ew, qui est

l’énergie exacte de l’ensemble, n’est pas une observable. Il s’agit simplement d’une

quantité auxiliaire (artificielle) à partir de laquelle les propriétés d’intérêt, telles que

l’énergie d’excitation, peuvent être extraites, comme suit,

∂Ew

∂wI
= EI − E0. (34)

Dans la formulation DFT des ensembles TGOK, l’énergie de l’ensemble est obtenue
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comme suit [89],

Ew = min
n→N

{
Fw[n] +

∫
dr vext(r)n(r)

}
, (35)

où la minimisation est restreinte aux densités d’électrons de N , i.e.,
∫
drn(r) = N ,

et la fonctionnelle de la densité universelle TGOK

Fw[n] :=
∑
I

wI ⟨Ψw
I [n]|T̂ + Ŵee|Ψw

I [n]⟩ , (36)

qui est évaluée à partir des fonctions propres de la fonctionnelle de la densité {Ψw
I [n]}

qui remplissent la contrainte de la densité
∑

I wInΨw
I [n](r) = n(r), est l’analogue

pour les ensembles TGOK de la fonctionnelle universelle de Hohenberg–Kohn (voir

Eq. (20)). Dans la formulation KS standard de TGOK-DFT [89], la fonctionnelle

TGOK est divisée en fonctionelle cinétique sans interaction et le fonctionelle de

Hartree-xc (Hxc), par analogie avec la KS-DFT classique:

Fw[n] = Tw
s [n] + Ew

Hxc[n]. (37)

De même que pour la KS-DFT, il est possible de dériver un ensemble d’équations

TGOK-DFT autocohérentes,(
−∇

2
r

2
+ vext(r) + vwHxc[n

w](r)

)
φw
p (r) = εwp φ

w
p (r), (38)

où

vwHxc[n](r) =
δEw

Hxc[n]

δn(r)
(39)

est le potentiel de la fonctionnelle de la densité Hxc de l’ensemble. Dans la théorie

exacte, les orbitales KS de l’ensemble reproduisent la densité exacte de l’ensemble,

nw(r) =
∑
I

wInΨI
(r). (40)

Chapitre 5: Théorie de la fonctionnelle de la densité

d’ensemble des excitations chargées

L’ensemble N -centré (N -centered ensemble) [91] peut être considéré comme la

version “grand canonique” des ensembles TGOK à l’état fondamental. Il est
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construit à partir des états fondamentaux de M -électrons où les trois valeurs

possibles de M ∈ {N − 1, N,N + 1} sont centrées sur N , (d’où le nom “N -centré”.)

L’énergie d’ensemble N -centré exacte est définie comme suit [91],

Eξ
0 = ξ−E

N−1
0 + ξ+E

N+1
0 +

(
1− ξ−

N − 1

N
− ξ+

N + 1

N

)
EN

0 , (41)

où les deux poids d’ensemble N -centré ξ− et ξ+, qui décrivent l’enlèvement/addition

d’un électron du/au système N -électron respectivement, sont rassemblés dans

ξ ≡ (ξ−, ξ+) . (42)

A partir de l’énergie d’ensemble N -centré, nous pouvons extraire la gap fondamen-

tale comme suit,

∂Eξ
0

∂ξ−
+

∂Eξ
0

∂ξ+
= EN−1

0 + EN+1
0 − 2EN

0 = Efund
gap . (43)

Nous pouvons également extraire les énergies individuelles cationiques, anioniques

et neutres, respectivement, comme suit,

EN−1
0 =

N − 1

N

(
Eξ

0 − ξ+
∂Eξ

0

∂ξ+
+

(
N

N − 1
− ξ−

)
∂Eξ

0

∂ξ−

)
, (44)

EN+1
0 =

N + 1

N

(
Eξ

0 − ξ−
∂Eξ

0

∂ξ−
+

(
N

N + 1
− ξ+

)
∂Eξ

0

∂ξ+

)
, (45)

and

EN
0 = Eξ

0 − ξ−
∂Eξ

0

∂ξ−
− ξ+

∂Eξ
0

∂ξ+
. (46)

À partir des équations (44)–(46), nous pouvons obtenir des théorèmes exacts sur le

potentiel d’ionisation IN0 = EN−1
0 −EN

0 et l’affinité AN
0 = EN

0 −EN+1
0 des électrons.

Cela se fait dans le formalisme DFT des ensembles N -centrés, qui peut être dérivé

en complète analogie avec TGOK-DFT.

Chapitre 6: Énergies d’échange et de corrélation dans

la DFT d’ensemble

Le présent chapitre se concentre sur la fonctionelle Hxc de l’ensemble, qui est

traitée comme une somme des fonctions d’échange et de corrélation de Hartree de

l’ensemble,

Ew
Hxc[n] = Ew

Hx[n] + Ew
c [n]. (47)
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Le contenu de ce chapitre, y compris les résultats numériques, s’inspire principale-

ment des sections 4 et 5 du chapitre du livre intitulé “Ensemble density functional

theory of neutral and charged excitations” (voir Ref. [92]). Dans ce résumé, seuls

les aspects de l’énergie de corrélation d’ensemble, Ew
c [n], et les résultats numériques

correspondants sur le dimère asymétrique de Hubbard sont discutés. Par com-

modité, nous continuons à nous concentrer sur les ensembles TGOK, mais la dis-

cussion s’applique à d’autres types d’ensembles comme, par exemple, les ensembles

N-centrés [91] ou les ensembles thermiques [93, 94, 95, 78].

À notre connaissance, très peu de travaux ont abordé la construction de DFAs

de corrélation d’ensemble dépendant du poids à partir des premiers principes. Nous

nous concentrons ci-après sur l’application de deux DFA courants qui reposent

sur le recyclage des fonctions de densité de l’état fondamental pour la descrip-

tion de l’énergie de corrélation d’ensemble. Nous étudions également le point

subtil récemment discuté dans la corrélation d’ensemble, à savoir la présence de

corrélations induites par l’état (state-driven - SD correlations) et de corrélations

induites par la densité (density-driven - DD correlations) [96, 97], et examinons une

possibilité des décompositions SD/DD. Les deux DFA de l’état fondamental pour

les énergies de corrélation et le concept de décomposition SD/DD sont étudiés dans

le modèle du dimère de asymétrique de Hubbard. Dans ce système modèle sim-

ple, les énergies de corrélation exactes (deux électrons et singulets) du bi-ensemble

de corrélation fonctionnelle de densité Ew
c (n) peuvent être évaluées par maximisa-

tion de Lieb [98, 76] à partir des expressions analytiques suivantes pour les énergies

d’interaction [78, 99, 100] :

EI(∆v) =
2U

3
+

2r

3
cos

(
θ +

2π

3
(I + 1)

)
, I = 0, 1, (48)

où

r =
√

3(4t2 + ∆v2) + U2 (49)

et

θ =
1

3
arccos

[
9U(∆v2 − 2t2) − U3

r3

]
. (50)

Les densités exactes de l’état fondamental et de l’état excité sont alors obtenues à

partir du théorème de Hellmann–Feynman comme suit,

nΨI
= 1 − ∂EI(∆v)

∂∆v
, (51)
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et l’équation polynomiale cubique que les énergies remplissent (voir l’Appendix de

la Ref. [98]). Par convention, nΨI
est la densité (l’occupation) sur le site 0 du

dimère de Hubbard (voir Eq. (30)). La densité bi-ensemble résultante se lit comme

nw = (1 − w)nΨ0 + wnΨ1 . Dans ce modèle, l’énergie de corrélation exacte du bi-

ensemble DD se lit explicitement comme suit,

Ew,DD
c (nw) = −w(nw − 1)(nΨ1 − 1)

×
[

2t√
(1− w)2 − (1− nw)2

+
U(1 + w)

(1− w)2

]
.

(52)

Par conséquent, l’énergie de corrélation SD est calculée comme

Ew,SD
c (nw) = Ew

c (nw)− Ew,DD
c (nw). Les deux DFA que nous testons sont les

suivants: Une description de l’énergie de corrélation d’ensemble utilisant la

fonctionelle d’état fondamental (indépendante du poids) (GS-ec) [101, 98],

Ew
c (nw)

GS−ec≈ Ec(n
w), (53)

où Ec(n) = Ew=0
c (n), et l’approximation GS-ic suivante, qui évalue l’énergie de

corrélation à l’état fondamental pour chaque état KS individuel de l’ensemble Φw
I ,

Ew
c (nw)

GS−ic≈ (1− w)Ec(nΦw
0
) + wEc(nΦw

1
)

= (1− w)Ec(nΦw
0
) + wEc(n = 1).

(54)

Dans la suite, le potentiel local sera fixé. Il est alors analogue au potentiel externe

des calculs ab initio, d’où la notation ∆v = ∆vext.

La Figure 1 montre la dépendance en poids de l’énergie de corrélation d’ensemble

(et ses composantes SD et DD), ainsi que les deux DFAs testés (Gs-ec et Gs-ic),

du dimère de Hubbard pour différents régimes d’asymétrie et de corrélation. Une

caractéristique particulière peut être observée: lorsque le modèle passe d’un régime

symétrique à un régime asymétrique et est fortement corrélé ∆vext ≪ U , ou pour des

régimes d’asymétrie et de corrélation comparables avec ∆vext ≈ U , les corrélations

DD deviennent importantes et négatives, tandis que les corrélations SD évoluent

dans la direction opposée, en particulier dans le cas de l’équiensemble (w = 1/2),

parfois utilisé dans les calculs. La valeur élevée des corrélations SD et DD par

rapport à l’énergie de corrélation de l’ensemble n’est clairement pas favorable au

développement des approximations de la fonctionnelle de la densité. En outre, ce
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projet a mis en évidence la difficulté de trouver un point de départ théoriquement

rigoureux et utile pour le développement d’approximations pour la corrélation dans

la eDFT. Bien que les corrélations DD doivent clairement être prises en compte,

le recyclage des approximations des fonctionnelles densité de l’état fondamental

pourrait être une direction à envisager. Cela est soutenu par l’observation de la

Figure 1, selon laquelle dans le cas asymétrique ∆vext = U , les approximations

standard GS-ic et GS-ec donnent des énergies de corrélation d’ensemble qui sont du

même ordre de grandeur que les énergies de corrélation exactes, contrairement aux

énergies de corrélation SD et DD.
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Figure 1: Décomposition SD/DD exacte de l’énergie de corrélation de l’ensemble

en fonction du poids du bi-ensemble w dans différents régimes d’asymétrie et de

corrélation. Une comparaison est faite avec les énergies de corrélation d’ensemble

approximatives GS-ec et GS-ic, à des fins d’analyse. Voir le texte pour plus de

détails.
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Chapitre 7: Dérivées discontinues dans la DFT d’ensemble

pour les excitations électroniques neutres : Une perspective

des ensembles N-centrés

Dans ce chapitre, nous exploitons la ressemblance entre la DFT d’ensemble N -

centré [91] et la TGOK-DFT [86, 87, 88, 89, 90] afin de fournir une description en

principe exacte de la densité fonctionnelle d’ensemble des états excités ionisés. Le

formalisme d’ensemble qui en résulte, où les états excités neutres sont incorporés

dans un ensemble N -centré régulier, sera appelé formalisme d’ensemble N-centré

étendu (extended N -centered ensemble formalism). Nous proposons de combiner les

ensembles TGOK et les ensembles N -centrés de la manière suivante,

Γ̂ξ TGOK+Nc
=

(
1−

∑
ν>0

Nν

N
ξν

)
|Ψ0⟩⟨Ψ0|

+
∑
ν>0

ξν |Ψν⟩⟨Ψν | ,
(55)

où Ψ0 ≡ ΨN
0 est l’état fondamental de référence à N électrons auquel tous les proces-

sus d’excitation possibles (neutres et chargés, y compris les excitations à électrons

multiples) peuvent s’appliquer. Par construction, la densité de l’ensemble N -centré

étendu ci-dessus s’intègre toujours au nombre d’électrons N , comme en TGOK-DFT.

Le fait que le nombre net d’électrons dans l’ensemble ne varie pas avec les poids

de l’ensemble, contrairement à la DFT pour les nombres fractionnaires d’électrons

(PPLB) [102], est absolument central dans la description des discontinuités de la

dérivée xc en tant que comme des dérivées de poids d’ensemble [103, 92]. Grâce à ce

formalisme, il est possible d’obtenir une quantification exacte des énergies orbitales

KS. Pour le démontrer, nous appliquons le formalisme général à un type partic-

ulier d’ensemble N -centré étendu, composé d’états d’électrons N fondamentaux et

excités (avec des poids ξNν ) et l’état fondamental à (N − 1) électrons (avec poids

ξ− := ξN−1
0 ), i.e.,

ξ ≡
({

ξNν
}
ν>0

, ξ−

)
. (56)

Les potentiels d’ionisation exacts à l’état fondamental et à l’état excité sont les

suivants (sans perte de généralité, nous nous concentrons sur les excitations d’un
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seul électron),

INν =
ν≥0
−εξN+ν −

1

N

(
Eξ

Hxc[n
ξ]−

∫
dr vξHxc(r)n

ξ(r)

)
+

(
1 +

ξ−
N

)
∂Eξ

Hxc[n]

∂ξ−

∣∣∣∣∣
n=nξ

+
∑
λ>0

(
ξNλ
N
− δλν

)
∂Eξ

Hxc[n]

∂ξNλ

∣∣∣∣∣
n=nξ

.

(57)

Si nous choisissons dans l’équation ci-dessus de faire l’identification suivante INν =

−εξN+ν , (exactification du théorème de Koopmans), le potentiel Hxc de l’ensemble

N -centré étendu, vξHxc, sera uniquement défini pour toutes les valeurs des poids de

l’ensemble ξ. Une conséquence essentielle de l’imposition d’une telle contrainte sur

le potentiel Hxc de l’ensemble est l’apparition de la discontinuité de la dérivée pour

les excitations neutres - une caractéristique qui a été mise en évidence à l’origine

par Levy [104]. Il se lit comme suit,∫
dr

N

(
v
ξNν →0+

Hxc (r)− v
ξNν =0
Hxc (r)

)
nΨN

0
(r)

=
∂E

ξNν
Hxc[nΨN

0
]

∂ξNν

∣∣∣∣∣∣
ξNν =0

,
(58)

où

ξNν ≡
notation

(
ξNν , 0, 0, . . . , 0, ξ− → 0+

)
. (59)

Cette procédure d’ajustement alternative et explicite du potentiel Hxc ne repose

pas sur le comportement asymptotique de la densité [104, 103, 92], ce qui signifie

qu’elle n’est pas seulement applicable aux systèmes moléculaires ab initio, mais

qu’elle devrait également être transférable à des modèles d’un réseau de taille finie

ou à des systèmes étendus, par exemple. Nous montrons dans la Figure 2 ci-dessous

que dans ce formalisme, la discontinuité de la dérivée est également observée dans

le dimère asymétrique de Hubbard.
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de la dérivée

0.15

0.30

0.45

0.60

0.75

P
ot

en
ti

el
H

xc
su

r
le

si
te

1

∆vext = 1

0.0 0.5 1.0 1.5 2.0

poids d’ensemble

0.0

0.3

0.6

0.9

∆vext = 5

vξHxc (Exact) vξHxc (Exchange-only)

0.000 0.025 0.050

0.000

0.015

0.030

t = 0.5, U = 1

( ξ1 ou ξ− )

ξ−→ 0+

ξ1 → 0+

ξ−→ 0+

ξ1 = 0

Figure 2: Variation du potentiel Hxc exact de l’ensemble N -centré étendu, et de son

approximation exchange-only (qui consiste à utiliser Eξ
Hx(n) à la place de la fonc-

tionnelle Hxc complète dans Eq. (57)), avec les poids d’ensemble dans le dimère de

Hubbard avec différentes asymétries. Pour chaque cas, la discontinuité de la dérivée

est mise en évidence par la flèche verte aux valeurs limites des poids d’ensemble. La

ligne noire verticale (en pointillés) à ξ1 = 1/2 indique la position de l’equiensemble

TGOK.
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Chapitre 8: Stratégie d’embedding quantique pour les en-

sembles d’états électroniques

Dans ce chapitre, nous présentons une stratégie d’embedding pour décrire les ex-

citations neutres des molécules, où l’objectif n’est pas de calculer le spectre entier

mais un petit nombre d’excitations de basse énergie. Pour cette raison, nous adop-

tons le formalisme des ensembles TGOK, qui permet un traitement systématique

et équilibré de tous les états individuels pour les excitations d’intérêt. Par analogie

avec la théorie de l’embedding de la matrice de densité (density matrix embedding

theory - DMET) [15, 16] et la Householder transformed density matrix functional

embedding theory (Ht-DMFET) [105], il s’avère que nous pouvons concevoir un

cluster d’embedding adapté à plusieurs états, en utilisant des transformations de

Householder successives sur l’ensemble TGOK de champ moyen.

Nous nous intéressons à la description de l’excitation singulet la plus basse pour

un système. Comme point de départ, nous choisissons une description du champ

moyen (ou sans interaction) du système complet, où l’idée est de trouver une base

appropriée de spin-orbitales qui offre un cluster d’embedding pour l’ensemble TGOK

d’états fondamentaux et états excités singuliers,

Γ̂ξ = (1− ξ) |Φ0⟩⟨Φ0|+ ξ
∣∣1Φl

h

〉〈
1Φl

h

∣∣ , (60)

où 0 ≤ ξ ≤ 1/2 tel que le principe variationnel de TGOK est respecté, |Φ0⟩ est

le déterminant de Slater de l’état fondamental du champ moyen (HF ou KS), et

|1Φl
h⟩ est la configuration de l’état excité du champ moyen avec l’excitation simple

HOMO→LUMO basée sur |Φ0⟩. Il est possible de montrer qu’en appliquant des

transformations de Householder successives [18, 19] sur la 1RDM de l’ensemble (voir

Eq. (60)), γξ
ijσ = Tr

[
Γ̂ξ ĉ†iσ ĉjσ

]
= (1 − ξ)γΦ0

ijσ + ξγ
1Φl

h
ijσ dans la base spin-orbitale

locale, nous obtenons une base spin-orbitale dans laquelle la 1RDM de l’ensemble

est transformée en une structure bloc-diagonale, un bloc étant le cluster avec une

impureté et trois spin-orbitales de bain, et un autre étant l’environnement de ce

cluster. Ce résultat est représenté schématiquement dans la Figure 3, qui le compare

à l’embedding d’un seul état du DMET standard (et du Ht-DMFET).
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Figure 3: Comparaison des clusters d’embedding pour les états uniques et les en-

sembles à deux états.

L’apparition du cluster d’embedding pour les ensembles a été exploitée dans

la conception d’une stratégie d’embedding à deux états pour décrire l’état fonda-

mental et le premier état excité (singulet). L’essence de notre stratégie est que les

approximations locales pour ces deux états individuels sont obtenues à partir de

l’Hamiltonien d’embedding suivant,

Ĥens−emb. = Q̂ĤQ̂ − µ1n̂1, (61)

où l’opérateur de projection Q̂ s’étend sur l’espace de Fock de l’impureté + trois

spin-orbitales de bain d’ensemble (voir Figure 3), et µ1 est le potentiel chimique sur

l’impureté (précisément, site 1), qui est ajustée pour optimiser le nombre d’électrons

selon la fonction de coût suivante,

CF({µi}) =
∑
I=0,1

(
L∑
i=1

⟨ΨCi
I (µi)|n̂i|ΨCi

I (µi)⟩ −N

)2

, (62)

où les potentiels chimiques {µi}1≤i≤L sont optimisés pour chaque site dans les cal-

culs d’embedding séparés. Ensuite, les fonctions d’onde du cluster d’embedding

{ΨCi
I } sont utilisées pour construire les approximations des énergies globales, selon

l’approche appelée partitionnement démocratique (democratic partitioning) [17].
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Cette stratégie a été appliquée à trois systèmes simples, l’un étant un système ab

initio, et les deux autres des systèmes modèles. Nous montrons dans ce résumé les

résultats du système ab initio de dimères d’hydrogène (utilisé à l’origine par Tran et

al. [106]). La Figure 4 montre les résultats exacts (FCI) et d’embedding pour l’état

fondamental et le premier état excité (singulet) du système de dimères d’hydrogène

le long de la courbe de dissociation des dimères. Les résultats FCI ont été obtenus

avec le logiciel python QuantNBody [107]. Les résultats de l’embedding montrent

un très bon accord avec les résultats FCI pour toutes les valeurs de la distance

intermoléculaire considérées. D’une manière similaire que pour l’embedding single-

shot de DMET [17], nous avons également effectué des calculs d’embedding avec

ajustement du potentiel chimique sur chaque atome d’hydrogène, afin d’obtenir le

nombre (globalement) correct d’électrons dans l’état fondamental et l’état excité. Il

s’avère que la correction du potentiel chimique a un effet négligeable sur les résultats,

probablement parce que le système est homoatomique.

0.5 Å0.4 Å0.3 Å

r r

Système de dimères d'hydrogène

0.5 1.0 1.5 2.0 2.5 3.0

Distance intramoleculaire r (Å)
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Figure 4: À gauche: représentation une schématique du système ab initio de dimères

d’hydrogène de Tran et al. [106]. À droite: les courbes de dissociation de l’état

fondamental et du premier état excité singulet de FCI (lignes bleues et rouges,

respectivement), et résultats de l’embedding correspondants (marqueurs bleus et

rouges, respectivement) pour le même modèle. Les résultats de l’embedding sont

représentés avec et sans ajustement du potentiel chimique (marqueurs en points (•)
et en croix (×), respectivement).
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Conclusions de la thèse

Dans ce manuscrit, nous avons discuté en détail des excitations électroniques et

présenté différentes méthodes standard utilisées pour décrire les excitations neutres

et chargées. Le travail central de cette thèse a été la continuation du développement

de formalisme d’ensemble indépendant du temps, qui est une alternative à d’autres

formalismes bien établis en chimie quantique et en physique de la matière condensée.

Nous avons discuté de divers aspects formels et pratiques particuliers à la théorie

de la fonctionelle de la densité d’ensemble (ensemble density-functional theory -

eDFT), et nous avons fait de nouveaux développements théoriques. Bien que la

DFT d’ensemble présente un grand potentiel dans la description de divers types

d’excitations et qu’elle soit capable de surmonter certaines limitations d’autres ap-

proches plus standard, telles que les méthodes de réponse linéaire, il reste encore

de nombreux défis à relever avant que le formalisme d’ensemble n’engendre des

méthodes pratiques largement utilisées.





Introduction

The world that surrounds us, consists of many different objects, which have well-

defined structure with volume and boundaries. At least that is how we perceive

them by our senses. They also possess continuously varying amounts of energy

(e.g. kinetic and potential energy). This is not the case for objects at a small

enough size scale, such as the order of ångstrom (equal to 10−10 m), with which

we are concerned in this thesis. At such scales, classical physics breaks down, and

quantum effects take precedence. The latter are theoretically described by quantum

mechanics, which emerged in the early decades of the 20th century. Among many

other strange things occurring in the quantum world, we find that small systems,

such as molecules, can only have discrete values of energy, so-called energy levels.

For each energy level there is an associated stationary state, which may be stable

with time or not. Assuming we are dealing with an isolated system, the state of that

system with the lowest energy is called the ground state, while those with higher

energies are called excited states. Exciting the system into a higher-energy state

requires input of the right amount of energy from an outside source, such as heat and

electromagnetic radiation. Understanding how the system reacts upon excitation is

of great interest in many branches of science that make use of quantum theory, such

as photochemistry and spectroscopy, but also for designing new materials.

In this thesis we aim at pushing further the theoretical development of the en-

semble density functional formalism for describing electronic excitations. As we will

discuss shortly, describing electronic ground states is already a difficult task, since we

have to solve the interacting many-electron problem. For most practical purposes,

one has to develop clever approximations to the exact solution that reduce compu-

tational costs, without compromising too much the accuracy of results. We should

reasonably expect that dealing with excited states will be even more challenging.

1



2 INTRODUCTION

Nowadays, electronic excitations are most commonly tackled with response meth-

ods, such as the time-dependent density-functional theory (TD-DFT) [1, 2] and

methods, based on many-body Green’s functions [3, 4, 5, 6, 7, 8, 9], which are very

well-known in condensed-matter physics. The linear-response TD-DFT method with

the Casida equation [10] has proven to be very successful in the treatment of neutral

excitations in molecules and materials. Some limitations of linear-response TD-DFT

are the single-reference description, which is insufficient for situations with (near-

)degeneracies, such as conical intersections between the ground state and the excited

states [2] in molecules, and with its commonly used adiabatic approximation, the lack

of double and higher excitations. Furthermore, solving the Casida equation entails

a moderate computational cost, which makes the method more expensive than the

regular Kohn-Sham DFT [11]. The Green’s function formalism has been successful

in describing charged, but also neutral excitations with the GW method [3, 4, 5, 6],

and the Bethe-Salpeter equation (BSE) [7, 8], respectively. These methods are also

of moderate computational cost (in their simplest implementations), are not rou-

tinely used in quantum chemistry, although recently they have attracted increasing

interest in this respect [12]. The commonly used methods in quantum chemistry are

the multiconfigurational wavefunction-based methods, such as the complete active

space self-consistent field (CASSCF) method [13], or its state-averaged version (SA-

CASSCF) [14], which are used for describing low-lying states in molecules. Although

very accurate, these methods require a lot of user experience, and are too expensive

to be applicable to large molecules. As a way of dealing with computational costs of

obtaining accurate descriptions of many-electron wavefunctions, quantum embedding

(QE) methods, which use combinations of different approaches, have been attracting

interest in recent decades. An example of the latter, which is also used in this thesis,

is density matrix embedding theory (DMET) [15, 16, 17].

In the present thesis, we turn our attention to the formalism of ensemble den-

sity functional theory (eDFT), which has been gaining increasing interest over last

decades as a low-cost alternative method for treatment of electronic excitations.

The first eDFT developed was the Theophilou-Gross-Oliveira-Kohn DFT (TGOK-

DFT) [86, 87, 88, 90, 89] for neutral excitations. Its extension to charged excitations

is the N -centered eDFT [91] by Senjean and Fromager, which is also an alternative
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approach to the traditional Perdew-Parr-Levy-Balduz (PPLB) DFT for charged ex-

citations [102]. The appealing feature of eDFT methods is that the computational

cost is essentially the same as that of KS-DFT for ground states. However, the

challenging aspect is now designing density-functional approximations (DFAs) for

ensemble exchange-correlation (xc) functionals, which depend both on electron den-

sity and ensemble weights of the excitations of interest. We will discuss various

formal and practical aspects of ensemble DFT, and development of approximations,

throughout Chapters 4 to 8.

This thesis is organized as follows. In Chapter 1, we review the basics of the

electronic structure problem, and all the standard methods that are nowadays used

in electronic structure theory for ground states, and briefly review quantum embed-

ding methods, which are gaining increasing interest in recent years. We begin in

Section 1.1 with reviewing the standard wavefunction methods in quantum chem-

istry, such as the Hartree-Fock (HF) method, and the configuration interaction (CI)

method, as well as multiconfigurational methods. Then, in Section 1.2, we switch

to density-functional theory (DFT), where we discuss exact DFT, the Kohn-Sham

approach (KS-DFT), and mention the most commonly used density-functional ap-

proximations (DFAs). The chapter concludes with Section 1.3, where we provide a

summary of some quantum embedding methods used in chemistry and condensed-

matter physics, and discuss density-matrix embedding theory (DMET) in more de-

tail. The latter is a key ingredient in one of the projects of this thesis, which is

presented in Chapter 8.

In Chapter 2, we briefly discuss about model systems, and introduce the two

models that are used throughout this PhD thesis, i.e. the one-dimensional Hubbard

model [69, 70, 71, 72], and the asymmetric Hubbard dimer [73, 74, 75, 76, 77, 78].

In Chapter 3, we turn our attention to excited states. This chapter is reserved

for time-dependent methods for describing electronic excitations. In Section 3.1, we

review linear response TD-DFT, deriving key equations, and discussing the features

and challenges of this method in its common implementation with the so-called

Casida equation. Following that, in Section 3.2, we introduce the theory of many-

body Green’s functions, and review the GW method for charged excitations, and

the Bethe-Salpeter equation method for neutral excitations.
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Chapter 4 is reserved for time-independent methods for describing neutral ex-

citations. In Section 4.1, we provide a summary of the wavefunction-based and

DFT-based time-independent methods with applications in quantum chemistry. In

Section 4.2, we introduce the formal aspects of TGOK ensemble density functional

theory (TGOK-DFT) for neutral excitations, and derive key equations for extract-

ing the neutral excitation energies in the context of ensemble formalism and its

density-functionalization.

In Chapter 5, the N -centered ensemble DFT is presented, which is a general-

ization of TGOK-DFT to charged excitations. We discuss extensively about the

ionization potential and affinity theorems, and the fundamental gap problem, all of

which pose a challenge in DFT. In light of the topic of this chapter, we also introduce

the traditional Perdew-Parr-Levy-Balduz (PPLB) DFT approach for charged exci-

tations, where describing the fundamental gap entails the knowledge of derivative

discontinuity of the exchange-correlation (xc) density functional in PPLB. Then, in

Section 5.3, we relate the derivative discontinuity to the ensemble weight derivative

of the xc functional for N -centered ensembles, and in Section 5.4, we present a way

to suppress the derivative discontinuity within the context of N -centered eDFT.

In Chapter 6, we return to discussing the TGOK-DFT, this time from a prac-

tical point of view. The goal of this chapter is to present different approaches

for designing DFAs for the ensemble Hartree-exchange-correlation (Hxc) functional.

Section 6.1 briefly presents the approximations for the ensemble Hartree-exchange

(Hx) functional, and points out advantages and disadvantages of each approach.

Section 6.2 discusses various approaches for approximating the ensemble correlation

functional, including recycling the ground-state DFAs [108], and designing weight-

dependent local density approximations (LDAs) based on the uniform electron gas

(UEG) model [109, 110]. Density-driven correlations are also discussed [96, 97],

and an exact decomposition of the ensemble correlation energy into state-driven

(SD) and density-driven (DD) correlations originally introduced by Fromager [97] is

presented. Results of two different ground-state DFAs and the exact SD/DD decom-

position are shown for the Hubbard dimer for various asymmetry and correlation

regimes.

In Chapter 7, we present the extended N -centered ensembles, which combine the
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TGOK and the N -centered ensembles into a single, unified formalism for describing

both neutral and charged excitations. It is shown that in the perspective of N -

centered ensembles, we can exactify the KS orbital energies for a neutral excitation of

interest. We also show that such an exactification is conditioned by the appearance

of the derivative discontinuity for neutral excitations, an observation that was first

derived by Levy [104], but is now made more general for any system, including finite

and infinite lattice systems. Proof-of-concept results are shown for the Hubbard

dimer in various asymmetry regimes.

In Chapter 8, which is the last chapter of this thesis, we present an embedding

strategy for multiple states, which combines the formalism of TGOK ensembles

and the bath construction technique of the Householder-transformed density-matrix

functional embedding theory (Ht-DMFET) [105, 111]. We show that, by means of

successive Householder transformations on the ensemble one-electron reduced density

matrix (1RDM), we can construct an embedding cluster for ensembles of ground and

excited states of mean-field (or non-interacting) systems. This result is exploited

for computing approximations to true ground and excited states inside the corre-

lated embedding cluster. The strategy is applied on three simple toy systems, with

promising results, but also new challenges. We finish the chapter by pointing out

different possibilities for improvement of the present strategy, and also the prospect

of turning the present embedding into a self-consistent approach for designing DFAs

for TGOK ensembles.

Finally, this thesis closes with conclusions and perspectives.





Chapter 1

Different flavors of ground-state

electronic structure theory

The description of stationary electronic states is one of the main tasks of electronic

structure theory. In this respect, various physical systems are considered. In

quantum chemistry, atoms, molecules, and molecular arrangements are studied,

while in condensed matter physics, materials in their bulk are usually modelled

as extended systems. Depending on the problem at hand, one may require the

knowledge of one or many electronic states of a given system. For example,

studying chemical reactions and prediction of reaction rates requires knowledge of

the ground-state energy along a certain reaction coordinate [112]. Determining the

feasibility of a certain photochemical reaction, or studying interactions with matter

and light requires knowledge of several, including excited states, and possibly the

whole molecular spectrum. In any case, the fundamental underlying objective of

electronic structure is the same: Solve the many-electron Schrödinger equation.

This, however, is a very demanding task, and for this reason, a plethora of

different methodologies have been developed, largely guided by the tradeoff

between accuracy and computational efficiency. Essentially, most of them can

be placed into two big groups - methods of wavefunction theory (WFT), and

methods based on reduced quantity theories. The former (WFT) deals with the

many-electron wavefunction, which is the central object of Schrödinger formulation

of quantum mechanics. For a comprehensive book on WFT-based methods in

7
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ELECTRONIC STRUCTURE THEORY

electronic structure theory, see Ref. [28] and references therein. The latter group

focuses on quantities that are mathematically simpler than the wavefunction,

and comprises several formalisms, including but not limited to, density-functional

theory (DFT) [46, 11], one-electron reduced density matrix functional theory

(1RDMFT) [113], and the theory of (many-body) Green’s functions (for more on

Green’s functions, see Ref. [65]). In last decades, novel formalisms have emerged,

such as quantum embedding [114], which make use of both WFT and reduced

quantity theories and, as such, are better placed in a separate category.

This chapter serves as a review for a subset of these methods for the de-

scription of electronic ground states. The emphasis is put on methods that are

relevant for the introduction of novel methods for excited states put forth in later

chapters. We first focus on wavefunction theory in Section 1.1. Our discussion

begins in Subsection 1.1.1 with the introduction of the ab initio many-electron

problem within the Born-Oppenheimer approximation, In Subsection 1.1.2, we

review the standard WFT-based methods, starting with the Hartree-Fock (HF)

theory. Built on the HF foundation are the so-called post-Hartree-Fock (post-HF)

methods, which can be grouped under variational and nonvariational methods.

The former contains the family of configuration interaction (CI) methods, the

most accurate of which is the full configuration interaction (FCI) method. The

latter group contains the many-body perturbation theory and the coupled-cluster

method, for example. After WFT-based methods, and a brief introduction to

reduced quantity theories, Kohn-Sham density-functional theory (KS-DFT) is

introduced in Section 1.2. The chapter concludes with quantum embedding (QE)

theories in Section 1.3, with particular focus on density matrix embedding theory

(DMET), which is used as a basis for developing the ensemble embedding approach

for excited states in the last chapter of this thesis.
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1.1 Wavefunction theory

1.1.1 Basic concepts in Wavefunction theory

1.1.1.1 Ab initio theory and electronic Hamiltonian

In quantum theory, everything we can ever know about a physical system is given by

its quantum state, |Ψ⟩, which, as will be shown in the following subsections, is quite

a complex object. The evolution of the system’s quantum state in time is governed

by the time-dependent Schrödinger equation [115], which in atomic units reads as,

Ĥ |Ψ(t)⟩ = i
∂ |Ψ(t)⟩

∂t
, (1.1)

where Ĥ is the Hamiltonian operator, which describes kinetic energies and inter-

actions of particles constituting the system. If Ĥ is time-independent, which is

usually the case when we are studying static properties such as equilibrium ge-

ometries in quantum chemistry, the wavefunction can be factorized into a time-

independent component, operated on by a unitary time-evolution operator, |Ψ(t)⟩ =

e−iĤ(t−t0)/ℏ |Ψ(t0)⟩, where |Ψ(t0)⟩ is an initial state. If the latter happens to be an

eigenvector of Ĥ, it is called a stationary state |Ψ(t0)⟩ = |Ψ⟩, which is described by

the time-independent Schrödinger equation,

Ĥ |Ψ⟩ = E |Ψ⟩ , (1.2)

where E is energy level of the system in the eigenstate |Ψ⟩. This is an eigenvalue

problem which is of paramount importance in electronic structure theory. Depending

on the system of interest, and complexity of phenomena we are studying, different

Hamiltonians are employed. In time-independent ab initio wavefunction theory, the

starting point is the molecular Hamiltonian. For M nuclei and N electrons, its

position representation, in atomic units, is given as,

Ĥ = T̂N + V̂NN + T̂e + Ŵee + V̂ne

≡ − 1

2

M∑
A=1

∇2
A

MA

+
M∑

A=1

M∑
B>A

ZAZB

|RA −RB|

− 1

2

N∑
i=1

∇2
i +

N∑
i=1

N∑
j>i

1

|ri − rj|
−

N∑
i=1

M∑
A=1

ZA

|ri −RA|
.

(1.3)

The first two terms on the right-hand side of the above equation are purely nu-

clear kinetic energy, and Coulomb repulsion, respectively. The next two terms are
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analogous quantities for electrons, while the last term is the Coulomb attraction be-

tween electrons and nuclei. The exact solution to this Hamiltonian (also called the

nonadiabatic solution) takes into account the quantum mechanical nature of both

electrons and nuclei. Its wavefunction Ψ can be formally expanded in a complete

product of two basis function sets, one for electrons, {Ψk({ri})}k≥0, and one for

nuclei, {χl({RA})}l≥0 [116],

Ψ({ri} , {RA}) =
∑
kl

CklΨk({ri}) χl({RA}). (1.4)

An equivalently exact description is the Born-Huang expansion [117], in which the

wavefunction is expanded as a single summation over electronic functions dependent

on nuclear geometry {Ψk({ri} | {RA})}k≥0, and purely nuclear functions,

Ψ({ri} , {RA}) =
∑
k

Ψk({ri} | {RA}) χk({RA}). (1.4 bis)

In practice, it is impossible to obtain the exact solution to the problem of motions of

electrons and nuclei in the complete electronic and nuclear basis. Finite-size expan-

sions of the sort in Eq. (1.4 bis) are employed in general nonadiabatic theory, which

is out of the scope of this thesis. However, in most electronic structure problems

of quantum chemistry, we can make reasonable assumptions to approximate our

problem. In particular, due to the relative heaviness of the nuclei of most elements

compared to the one of the electron (me/MN ≪ 1), we can assume that the nuclear

motions are much slower, and electrons will instantaneously adapt to any infinites-

imal change in nuclear positions (adiabatic theorem). This leads to the so-called

Born-Oppenheimer approximation [20], in which the nuclear and electronic motion

is treated in a separate manner (strongly coupled though), according to which the

wavefunction is approximated as a single product1,

Ψ ({ri} , {RA}) ≈ Ψe({ri} | {RA}) χ({RA}). (1.5)

The detailed account of various steps leading to the approximate form in Eq. (1.5)

is somewhat involved, but the main point is that nuclear dependence is now treated

1The single product form in Eq. (1.5) is made formally exact in the exact factorization ap-

proach [118, 119, 120]. This is inspired by probability theory [121]: given two sets of random

variables, A and B, their joint probability distribution can be written as a product p(A,B) =

p(A |B)p(B), where p(A |B) is conditional probability for A given B, and p(B) is marginal prob-

ability for B.
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parametrically. In other words, for each molecular geometry, we solve the following

N -electron Schrödinger equation,

Ĥe({RA}) |Ψe({RA})⟩ = Ee({RA}) |Ψe({RA})⟩ , (1.6)

where Ĥe is the electronic Hamiltonian,

Ĥe = T̂e + Ŵee + V̂ne

≡ −1

2

N∑
i=1

∇2
i +

N∑
i=1

N∑
j>i

1

|ri − rj|
−

N∑
i=1

M∑
A=1

ZA

|ri −RA|
.

(1.7)

Solving the above electronic eigenvalue problem yields ground and excited electronic

states for a given molecular configuration. After obtaining the ground-state elec-

tronic energy, we can reintroduce the operators from Eq. (1.3) acting on nuclei,

which gives the Hamiltonian for the nuclear motions in the field of electrons,

Ĥn ≡
1

2

M∑
A=1

∇2
A

MA

+
M∑

A=1

M∑
B>A

ZAZB

|RA −RB|
+ Ee({RA}). (1.8)

The sum of last two terms on the right-hand side of above equation is known as

the potential energy surface (PES) - a useful theoretical concept in searching for

stable molecular geometries or studying chemical reactions. Scanning over all pos-

sible nuclear arrangements and solving the above equation gives information on

nuclear motion. If PESs for individual electronic states are well-separated, i.e.

Ee0({RA})≪ Ee1({RA})≪ . . . then the Born-Oppenheimer approximation is rea-

sonable. However, under certain situations, such as conical intersections, this ap-

proximation breaks down, and more involved nonadiabatic theory is necessary. In

any case, regardless of the level of theory used for the description of nuclear motions,

we have to obtain the electronic wavefunction, which, as we shall see shortly, is a

rather complicated object.

1.1.1.2 Structure of the wavefunction

Let us now focus on the electronic Schrödinger equation in the Born-Oppenheimer

approximation (Eq. (1.6)). To facilitate solving this equation, it is important to

know at least some mathematical properties that the many-electron wavefunction Ψ

of a realistic physical system should fulfill. Firstly, the wavefunction has to include

the information on all the electrons in the system. Each electron has four degrees
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of freedom, comprising of three spatial r = (x, y, z) ∈ R3 and one spin coordinate

σ ∈ {↑, ↓} where ↑ and ↓ represent the eigenvalues (+1/2 and −1/2, respectively)

of the spin-projection operator Ŝz. In addition, the wavefunction has to be square-

integrable if it were to represent a bound quantum state.∫
dx1

∫
dx2 . . .

∫
dxN |Ψ(x1,x2, . . . ,xN)|2 = 1, (1.9)

where the integration over a single spin-space coordinate x is formally represented

as a composition of integration over three spatial coordinates and summation over

the single spin variable, ∫
dx ≡

∫
dr

∑
σ∈{↑,↓}

. (1.10)

The space of square-integrable wavefunctions is denoted as L2(R3N×{↑, ↓}N)2. Many

functions with vastly different mathematical properties belong to this space. Fortu-

nately, one fundamental physical principle, called the Pauli exclusion principle [21],

allows us to nail down a constraint that the electronic wavefunction has to follow.

In particular, it should be antisymmetric with respect to permutation of spin-space

coordinates of any two electrons,

∀i, j Ψ(...,xi, ....,xj, ...) = −Ψ(...,xj, ....,xi, ...), (1.12)

so that the probability of finding two electrons of the same spin in the same spot

vanishes, |Ψ(...,xi, ....,xj = xi, ...)|2 = 0. This can be realized in the following way.

Consider a set of spin-orbitals, i.e. single-electron functions {ϕk(x)}∞k=1, which is

assumed to be complete for the single-particle Hilbert space L2(R3 × {↑, ↓}). Each

spin-orbital is a product of spatial and spin function, ϕi(x) ≡ φi,σi
(x) = φi(r)×δσiσ.

In chemistry, the spatial function is usually (but not necessarily) called molecular or-

bital (MO). Then, the total N -electron wavefunction can be expanded in the space

of determinants of products of spin-orbitals, which are known as Slater determi-

nants [122]. Concretely, for a subset consisting of N spin-orbitals, {ϕk(x)}Nk=1, we

2In general, Lp(R3q × {↑, ↓}q) is a set of functions for which the following norm is finite,

∥f∥q :=

(∫
dx1

∫
dx2 . . .

∫
dxq|f(x1,x2, . . . ,xq)|p

)1/p

<∞, (1.11)

where the integration over {xi}1≤i≤q is given by Eq. (1.10).
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first write a product approximation to the many-electron wavefunction,

Ψ(x1,x2, . . . ,xN) ≈ ϕ1(x1)ϕ2(x2) . . . ϕN(xN), (1.13)

which is called Hartee product [123]. Evidently, the Hartree product does not fulfill

the constraint in Eq. (1.12), although it was used as approximate wavefunction in

the so-called Hartree method [124]. Then, the Slater determinant is obtained by

considering all possible permutations of Hartree products from the set {ϕk(x)}Nk=1,

Φ(x1,x2, . . . ,xN) :=
1√
N !

∣∣∣∣∣∣∣∣∣∣
ϕ1(x1) ϕ2(x1) . . . ϕN(x1)

ϕ1(x2) ϕ2(x2) . . . ϕN(x2)
...

...
. . .

...

ϕ1(xN) ϕ2(xN) . . . ϕN(xN)

∣∣∣∣∣∣∣∣∣∣
, (1.14)

where 1/
√
N ! is the normalization factor. Replacing the Hartree product with the

Slater determinant is key to the well-known Hartree-Fock (HF) method [22, 23],

which is an improvement over the Hartree method.

In general, any N -electron wavefunction can be expanded in the basis of Slater

determinants of all possible combinations of spin-orbitals. However, this approach

becomes inconvenient rather quickly with increasing number of electrons. Fortu-

nately, the second quantization formalism introduces a convenient abstraction in

the form of creation/annihilation operators, which takes the burden of imposing

antisymmetry on the wavefunction. It can be shown (see Appendix A) that a Slater

determinant is built by a string of fermionic creation operators acting on the ab-

stract vacuum state (no electrons), as follows. For example, the previous Slater

determinant can be written as,

|Φ⟩ = ĉ†1ĉ
†
2 . . . ĉ

†
N |vac⟩, (1.15)

where ĉ†i ≡ ĉ†iσi
creates an electron in the i-th spin-orbital. Then, the exact wave-

function can be written as a linear combination of all possible Slater determinants

as follows,

|Ψ⟩ =
∑

i<j<...<l

Cij...lĉ
†
i ĉ

†
j . . . ĉ

†
l |vac⟩, (1.16)

where Cij...l are the expansion coefficients, which are the sought-after quantities of

many wavefunction-based methods in quantum chemistry. Essentially, all of the
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standard quantum chemical methods (including post-HF, multiconfigurational and

multireference methods) deal with finding the optimal expansion coefficients, taking

the accuracy and computational speed into account such that the best possible

tradeoff is achieved for a given problem at hand. This is what will be discussed in

the remainder of this chapter.

1.1.2 Standard methods in electronic structure theory for

ground states

1.1.2.1 Variational and nonvariational methods

The exact ground-state solution to the many-electron problem is generally out of

reach for most realistic systems, and devising approximate methods becomes a ne-

cessity. There exist two classes of approximate methods, namely variational and

nonvariational, arising from two equivalent mathematical formulations of the time-

independent electronic structure problem. In the variational formulation, we have

for any Hamiltonian Ĥ, and any normalized quantum state |Ψ̃⟩, the following in-

equality,

E0 ≤ ⟨Ψ̃|Ĥ|Ψ̃⟩, (1.17)

where E0 is the ground-state energy of the system, described by Ĥ. This can be

written as a minimization,

E0 = min
Ψ̃

{
⟨Ψ̃|Ĥ|Ψ̃⟩

}
, (1.18)

which is known as the Rayleigh-Ritz variational principle. This is the basis of

variational wavefunction methods in quantum chemistry (Hartree-Fock, configura-

tion interaction, and multiconfigurational methods). All of these methods employ

a parameter-dependent trial state |Ψ(α)⟩, where the optimal set of parameters α0

satisfies the following stationarity condition,

∂

∂α

⟨Ψ(α)|Ĥ|Ψ(α)⟩
⟨Ψ(α)|Ψ(α)⟩

∣∣∣∣∣
α=α0

= 0. (1.19)
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The other class of approximate methods does not rely on the variational principle,

but rather on parametrizing the eigenvalue equation directly,[
Ĥ |Ψ(α)⟩ − E(α) |Ψ(α)⟩

]
α=α0

= 0, (1.20)

and projecting onto appropriate many-electron subspaces to find the optimal pa-

rameters α0. Methods based on the many-body perturbation theory (MBPT), and

the coupled-cluster (CC) method, belong to this class.

What follows is a review of the two variational methods which are relevant for this

thesis work, i.e. the HF and configuration interaction, followed by the reviews of

non-variational and multiconfigurational methods.

1.1.2.2 The Hartree-Fock method

The Hartee-Fock (HF) method is often the starting point for development of other

more advanced methods in quantum chemistry. In the restricted closed-shell version

of the HF method3, which will be discussed here, the total system’s wavefunction is

approximated by a single Slater determinant Φ, constructed from a set of molecular

orbitals4 (MOs) {φi(r)}N/2
i=1 . The goal is to find the best possible MOs that minimize

the following expectation value of the electronic Hamiltonian, ⟨Φ|Ĥe|Φ⟩. According

to the Slater-Condon rules [122, 125], this expectation value, which is also known

as the Hartree-Fock energy, is written as,

⟨Φ|Ĥe|Φ⟩ = 2

N/2∑
i=1

⟨φi|ĥ|φi⟩+

N/2∑
i=1

N/2∑
j=1

[
2 ⟨φiφj|φiφj⟩ − ⟨φiφj|φjφi⟩

]
, (1.21)

where ĥ = −(1/2)∇2
r + vne(r) is the one-electron part of the electronic Hamiltonian,

which comprises electronic kinetic energy, and electron-nuclear attraction. In the

second term on the right-hand side of Eq. (1.21), the two integrals are the Coulomb

3In restricted HF, we place two electrons in each MO, one with spin up, and one with spin

down. In second quantization, this means ĉ†2i−1 |vac⟩ = ĉ†i↑ |vac⟩ = |φi⟩ ⊗ |↑⟩ and ĉ†2i |vac⟩ =

ĉ†i↓ |vac⟩ = |φi⟩ ⊗ |↓⟩ for i = 1, 2, . . . , N/2. In unrestricted HF, different spin electrons are placed

in different (not necessarily orthonormal) MOs, ĉ†2i−1 |vac⟩ = |φi↑⟩ ⊗ |↑⟩ and ĉ†2i |vac⟩ = |φi↓⟩ ⊗ |↓⟩
for i = 1, 2, . . . , N/2. Orthonormality of spin-orbitals is then assured by the spin part.

4Throughout the rest of this section, unless specified oherwise, we work with molecular obitals,

or more generally, spatial orbitals, and assume spin degrees of freedom have been integrated out

in all expectation values.
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and exchange integral, respectively written in physicists’ notation5,

Jij ≡ ⟨φiφj|φiφj⟩ :=

∫ ∫
dr1dr2

φ∗
i (r1)φ

∗
j(r2)φi(r1)φj(r2)

|r1 − r2|
, (1.23)

Kij ≡ ⟨φiφj|φjφi⟩ :=

∫ ∫
dr1dr2

φ∗
i (r1)φ

∗
j(r2)φj(r1)φi(r2)

|r1 − r2|
. (1.24)

The minimization condition can be stated by the following Lagrangian,

L[{φi}, {εij}] = ⟨Φ[{φi}]|Ĥe|Φ[{φi}]⟩ −
N/2∑
i=1

N/2∑
j>i

εij (⟨φi|φj⟩ − δij) , (1.25)

such that

δL

δφ∗
i (r)

= 0,
∂L

∂εij
= 0, (1.26)

where εij are Lagrange multipliers that ensure orthonormality of molecular orbitals.

This technique is presented in more detail in Ref. [126]. Another way of obtaining

the optimized MOs is by means of orbital rotation, where the Slater determinant is

parametrized in the second quantization as follows,

|Φ(κ)⟩ = e−κ̂ |Φ⟩ , (1.27)

where |Φ⟩ is a trial determinant, and κ̂ is the singlet rotation quantum operator,

κ̂ =
∑
i>j

∑
σ

κij

(
ĉ†iσ ĉjσ − ĉ†jσ ĉiσ

)
(1.28)

endowed with orbital rotation parameters κ ≡ {κij}i>j. Then, the Hartree-Fock

energy is parametrized with κ as

EHF(κ) = ⟨Φ(κ)|Ĥe|Φ(κ)⟩, (1.29)

such that the minimum is obtained by the following stationarity condition

∂EHF(κ)

∂κij

∣∣∣∣
κ=κ0

= 0. (1.30)

5This is to be distinguished from another commonly used chemists’ notation,

(φiφj |φkφl) :=

∫ ∫
dr1dr2

φ∗
i (r1)φj(r1)φ

∗
k(r2)φl(r2)

|r1 − r2|
, (1.22)

which is related to the physicists’ notation by, (φiφj |φkφl) = ⟨φiφk|φjφl⟩. In this thesis, we use

the latter (physicists’).
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Complete derivation of the optimization within this approach is presented in

Ref. [28]. Either way, i.e. via Lagrangian or orbital rotation formulation, minimiza-

tion of respective function(al) yields the set of coupled integro-differential equations

for the MOs, known as the Hartree-Fock equations,

F̂ [{φj}]φi(r) = εiφi(r), (1.31)

where F̂ is the orbital-dependent Fock operator,

F̂ = ĥcore +

N/2∑
j=1

(
2Ĵj − K̂j

)
. (1.32)

The first term on the right-hand side of above equation,

ĥcore = −1

2
∇2

r −
M∑

A=1

ZA

|r−RA|
, (1.33)

is the sum of one-electron kinetic energy and electron-nuclear attraction, and the

second term consists of the (local) Coulomb, and (non-local) exchange potential,

respectively,

Ĵjφi(r) =

(∫
dr′

φ∗
j(r

′)φj(r
′)

|r− r′|

)
× φi(r), (1.34)

K̂jφi(r) =

(∫
dr′

φ∗
j(r

′)φi(r
′)

|r− r′|

)
× φj(r). (1.35)

Finally, the problem remains of how to approach the solution to the Hartree-Fock

equations. Since the HF equations are eigenvector-dependent, they must be solved

self-consistently. Roothaan [24] and Hall [25] independently proposed that molecular

orbitals are obtained as linear combinations of atomic orbitals χµ(r), centered on

nuclei. In this respect, each MO can be written as,

φi(r) =
K∑

µ=1

Cµiχµ(r), (1.36)

where K is the dimension of the atomic orbital basis set. The goal becomes to find

the optimal coefficients Cµi. Evidently, we have to deal with a finite amount of

K ≥ N/2 atomic orbitals, which imposes incompleteness error to the HF method.

The problem of which orbitals to use for a given system deserves a separate discus-

sion, but briefly, for quantum chemical computations, many basis sets have been



18 1.1. WAVEFUNCTION THEORY

developed, which include functions of various shapes, such as Slater-type, Gaussian-

type, and polarization functions.

Let us now derive the Roothaan-Hall equations. By inserting Eq. (1.36) into

Eq. (1.31), we first obtain an approximation (because of finite basis set) to the

Hartree-Fock equations,

F̂

K∑
µ=1

Cµiχµ(r) ≈ εi

K∑
µ=1

Cµiχµ(r). (1.37)

Multiplying on the left by χ∗
ν(r) and integrating, we obtain

K∑
µ=1

(∫
drχ∗

ν(r)F̂χµ(r)

)
Cµi = εi

K∑
µ=1

(∫
drχ∗

ν(r)χµ(r)

)
Cµi. (1.38)

If we define the Fock matrix, and the atomic orbital overlap matrix, respectively,

as,

Fµν :=

∫
drχ∗

µ(r)F̂χν(r), (1.39)

Sµν :=

∫
drχ∗

µ(r)χν(r), (1.40)

then Eq. (1.38) can be compacted as,

K∑
µ=1

FνµCµi = εi

K∑
µ=1

SνµCµi. (1.41)

The Fock matrix depends on its solutions, i.e. the molecular orbitals, or equivalently,

on atomic orbital expansion coefficients, Cµi (see Eq. (1.36)). The final form of the

so-called Roothaan-Hall equations can be written as,

F(C)C = SCε. (1.42)

The iterative self-consistent field (SCF) procedure for solving this equation can be

summarized as follows,

1. For a given physical system (e.g. molecule) start with a basis set and ob-

tain an initial guess for the MO coefficients (C0) - matrix. There are many

possibilities, one approach would be to obtain MO coefficients from a Hückel

Hamiltonian, for example.
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2. Evaluate the Fock matrix: F(Cn). Crucially, only the MOs with lowest N/2

orbital energies at a given iteration step are considered occupied and con-

tribute to the Coulomb and Exchange integrals. This is known as the Aufbau

principle.

3. Solve the generalized eigenvalue problem (equation above) to obtain a guess

for new Cn+1 matrix.

4. If, according to some measure (e.g. Frobenius norm), the difference between

MO coefficient matrices is small enough, i.e. ∥Cn+1 − Cn∥Frob. < tolerance,

terminate the iteration, otherwise return to the step 2 with new guess Cn+1,

and continue until step 4 is satisfied.

The computational bottleneck of the above SCF procedure is step 2, which includes

evaluation of two-electron Coulomb and exchange integrals (Eqs. (1.23) and (1.24),

respectively). This makes the HF method scale as O(K4) with the basis set size K if

all two-electron integrals are calculated. In practice, this is often not necessary, and

efficient implementations have been developed to reduce the quartic scaling [112].

Solving Eq. (1.42) with the above SCF procedure yields the so-called canonical

orbitals, which are used to obtain the HF energy,

EHF = 2

N/2∑
i=1

hii +

N/2∑
i=1

N/2∑
j=1

(2Jij −Kij) . (1.43)

As the basis set approaches completeness (K → ∞), the Hartree-Fock limit is

reached, which is the lowest possible energy one can obtain using a single Slater

determinant. The exact ground-state energy within the Born-Oppenheimer approx-

imation is always lower. Correlation energy, a term coined by Löwdin [26], is the

difference between the two energies,

Ec = E − EHF < 0. (1.44)

The term “correlation energy” defined this way is a tad misleading. If we consider

as “electron correlation” any energetic contribution that arises from the description

of electronic structure beyond the completely independent electron picture of the

Hartree product (see Eq. (1.13)) then even the Hartee-Fock theory itself does de-

scribe some correlation. The latter is due to the exchange integral (see Eq. (1.24))
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terms, which are a consequence of the Slater determinant approximation that prop-

erly antisymmetrizes the Hartree product. The exchange integral lowers the total

energy for each pair of electrons of the same spin. This effect is also called Fermi

correlation, which signifies that two electrons of the same spin cannot occupy the

same point in space (equivalently, the same MO). For opposite-spin electrons, there

is no additional term beside Coulomb integral which is present as an average approx-

imation of Coulomb repulsion for all electrons. In realistic systems, however, there

are correlation effects that HF method misses. In the literature, they are commonly

grouped under dynamical correlation and static correlation. In HF theory, each

electron can be seen as interacting with a mean-field cloud of the other electrons

spread over the molecule. However, the probability of finding any given electron at

some point in space, regardless of spin, depends on instantaneous positions of other

electrons due to Coulomb repulsion. This effect is called dynamical correlation. If

a single Slater determinant is a good starting point (in other words, it recovers

the vast majority of the total energy of molecule), then the dynamical correlation

can be accounted for by approximating the true wavefunction as a linear combi-

nation of Slater determinants generated through excitations from the occupied (in

the ground-state HF determinant) MOs to the virtual (unoccupied) MOs like in the

configuration interaction (CI) method or in n-th order Møller–Plesset perturbation

theory (MPn). In some cases, however, there is another effect called strong or static

correlation, which arises when different Slater determinants are strictly or quasi de-

generate. In molecular systems, this happens in specific situations, such as bond

breaking, and potential energy surface crossings. Strong correlation requires a mul-

tideterminantal reference wavefunction, and consequently, more involved reference

computational methods such as the complete active space configuration interaction

(CASCI) and complete active space self-consistent field (CASSCF) methods.

1.1.2.3 Configuration interaction

The single Slater determinant approximation in the HF method can be straightfor-

wardly improved upon without any further molecular orbital optimization. Assum-

ing that all MOs which are obtained by solving the Hartee-Fock equations, occupied
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and unoccupied (virtual), are a reasonable6 basis for the single-electron Hilbert

space, then the set of Slater determinants obtained from all possible distributions of

the N electrons among all (occupied and virtual) HF MOs, is a reasonable basis for

expanding the true system’s wavefunction. In fact, these Slater determinants can

be obtained simply by “exciting” electrons from the HF occupied orbitals to virtual

orbitals. If we label occupied HF spin-orbitals as i, j and virtual ones as a, b, then,

|ΦHF⟩ =
N∏
i=1

ĉ†i |vac⟩ . (1.45)

From |ΦHF⟩, we obtain singly, doubly, etc. excited determinants as,

|Φa
i ⟩ = ĉ†aĉi |ΦHF⟩ , (1.46)

∣∣Φab
ij

〉
= ĉ†aĉ

†
bĉiĉj |ΦHF⟩ , (1.47)

which are then used for expanding the wavefunction. This leads to the configuration

interaction (CI) method. The so-called CI expansion reads as,

|ΨCI⟩ = |ΦHF⟩+
∑
i

∑
a

Ca
i |Φa

i ⟩+
∑
i>j

∑
a>b

Cab
ij

∣∣Φab
ij

〉
+ . . . (1.48)

which can also be written more abstractly as,

|ΨFCI⟩ = |ΦHF⟩+
∑
S

CS |ΦS⟩+
∑
D

CD |ΦD⟩+ . . . , (1.49)

to emphasize that different terms contain single, double, and multiple excitations in

order. The CI coefficients C = {CI}I can be obtained from the variational principle

(Eq. (1.19)),

∂ECI(C)

∂C
=

∂

∂C

⟨ΨCI(C)|Ĥe|ΨCI(C)⟩
⟨ΨCI(C)|ΨCI(C)⟩ = 0, (1.50)

6The exact many-electron wavefunction should fulfill two additional constraints, namely the

nuclear cusp and Coulomb cusp condition. In practice, the MOs used to construct Slater deter-

minants almost never fulfill the nuclear cusp condition, except if expanded in STO basis sets,

and cannot reproduce the Coulomb cusp for any basis set at all. The latter condition is imposed

in explicitly correlated methods, which introduce the electron repulsion r12 = |r1 − r2|−1 in the

many-electron wavefunction. These methods, although well-known, are not standard in quantum

chemistry [28].
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which leads to the following eigenvalue problem,

HC = EC, (1.51)

with H is the CI matrix, given by,

HIJ = ⟨ΦI |Ĥe|ΦJ⟩. (1.52)

If we take into consideration all possible excitations for a given basis set, then

we obtain the so-called full configuration interaction (FCI) method (so-called exact

diagonalization in physics). Let us estimate the size of the FCI matrix. For a basis

set of K atomic orbitals and N electrons, there are
(
2K
N

)
possible Slater determinants,

considering that we can put at most 2 electrons in each spatial orbital. Considering

the minimal basis set scenario, K = N , we can, using Stirling’s formula, estimate

the scaling of the FCI matrix size with the number of electrons in the system,

Ndeterminants =

(
2N

N

)
=

(2N)!

(N !)2
≈ 1√

πN
e2N ln 2. (1.53)

As we see, the scaling is exponential, which makes the FCI method useless for most

applications. In fact, exponential scaling in most highly accurate wavefunction-based

methods is one of the main reasons for developing other methods, such as density-

functional theory (DFT), and quantum embedding theory, both of which will be

discussed later in this chapter (Sections 1.2 and 1.3, respectively). Nevertheless,

since FCI provides exact diagonalization of the electronic Hamiltonian in a given

finite basis set, it is still used for benchmarking calculations on small molecules, and

in embedding theory for diagonalizing Hamiltonians in embedding clusters. If we

want to make the method more practical, we have to resort to approximations that

make the diagonalization of the CI matrix affordable. Fortunately, the situation is

not so dire. Firstly, we can realize that the CI matrix is rather sparse, for at least

three reasons.

1. Due to the Brillouin theorem, single excitations are not coupled to the Hartree-

Fock determinant, i.e. the matrix elements of HF and all singly excited deter-

minants are zero,

⟨ΦHF|Ĥe|ΦS⟩ Brillouin th.
= 0. (1.54)
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2. Due to Slater-Condon rules [122, 125], all CI matrix elements which couple two

Slater determinants that differ by more than two excitations (e.g. HF-Triples,

Singles-Quadruples etc.) are also automatically zero. Hence the CI matrix

can be generally expressed as,



|ΦHF⟩ |ΦS⟩ |ΦD⟩ |ΦT ⟩ . . .

⟨ΦHF| EHF 0 ⟨ΦHF|Ĥe|ΦD⟩ 0 . . .

⟨ΦS| 0 ⟨ΦS|Ĥe|ΦS⟩ ⟨ΦS|Ĥe|ΦD⟩ ⟨ΦS|Ĥe|ΦT ⟩ . . .

⟨ΦD| ⟨ΦD|Ĥe|ΦHF⟩ ⟨ΦD|Ĥe|ΦS⟩ ⟨ΦD|Ĥe|ΦD⟩ ⟨ΦD|Ĥe|ΦT ⟩ . . .

⟨ΦT | 0 ⟨ΦT |Ĥe|ΦS⟩ ⟨ΦT |Ĥe|ΦD⟩ ⟨ΦT |Ĥe|ΦT ⟩ . . .
...

...
...

...
...

. . .


.(1.55)

3. In cases of molecular symmetry, determinants that belong to different irre-

ducible representations of the symmetry group are also uncoupled, yielding

zero matrix elements.

All these facts lead to substantial sparsification of the CI matrix. Secondly, not

all excitations are equally important in terms of magnitude of CI coefficients. For

example, we can truncate the FCI expansion to single excitations - which gives the

configuration interaction with singles (CIS) method, to double excitations, giving the

configuration interaction with singles and doubles (CISD) method, and so on. Each

class of excitations yields a more accurate method. Due to the Brillouin theorem,

CIS affords no improvement in energies over the HF result. However, singly excited

determinants are associated to orbital relaxation, which is important for calculating

molecular properties, [112]. The first actual improvement in ground state energy

may be achieved by the configuration interaction doubles (CID) method. Next in

order of accuracy is CISD, which couples single and double excitations, and already

reasonably well describes dynamical correlation. It is also not too costly, scaling as

O(K6) with basis set size K, which makes it useful for a large variety of systems.

By comparison, CISD with triples (CISDT), and CISD with triples and quadruples

(CISDTQ) scale as O(K8) and O(K10), respectively, which is already too expensive

for anything but small molecules and small basis sets [112].

Truncated CI methods can also be used for describing excited states and excitation

energies, which are approximated from higher eigenvalues of the CI matrix. In this

respect, CIS gives cheap estimates to excitation energies which are very similar to
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linear response time-dependent Hartree-Fock (TDHF) (see section 3.2.2). However,

going beyond CIS is required in order to obtain more accurate exctations and correct

ordering of excited states (for example, see Figure 4.15 in Ref. [112]).

There is one important energetic property called size-consistency, which might be

wrongly reproduced by truncated versions of the CI method. Suppose we have a

bipartite molecule characterized by A ∪ B, where A and B are sets of molecular

orbitals spanning the two subsystems, separated by some distance R. A computa-

tional method is said to be size-consistent, if the approximate energy of molecule is

additive for infinite separation,

lim
R→∞

EApprox.(A ∪B,R) = EApprox.(A) + EApprox.(B). (1.56)

This requires the total wavefunction to be multiplicatively separable,

lim
R→∞

∣∣ΨApprox.(A ∪B,R)
〉

=
∣∣ΨApprox.(A)

〉
⊗
∣∣ΨApprox.(B)

〉
. (1.57)

A related property, defined by Bartlett [127], is size-extensivity, which dictates that

any method should produce an energy that scales linearly with the number of elec-

trons, or the size of the system. Truncated CI methods are neither size-consistent

nor size-extensive.

1.1.2.4 Nonvariational post Hartree-Fock methods

The other of class post Hartree-Fock methods does not rely on the variational princi-

ple. Instead, optimal coefficients are derived by projection of the Hamiltonian onto

an appropriate many-body subspace.

The cheapest method of this class is many-body perturbation theory (MBPT), for

example, the Rayleigh-Schrödinger perturbation theory. The essence of this theory

is the splitting of a many-body Hamiltonian into two summands, where one part

(the unperturbed Hamiltonian) Ĥ0 should be easily solvable, and provide a quali-

tative description of the electronic structure, while another part (the perturbation),

V̂ , should account for a small correction to the Ĥ0, hence the name perturbation

theory. Then, the relevant equations are developed by considering the following

auxiliary Hamiltonian, dependent on a coupling constant λ,

Ĥλ = Ĥ0 + λV̂ , (1.58)
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where λ ranges from 0 to 1. This way, the “physical” Hamiltonian corresponds to

λ = 1, i.e. Ĥλ=1 = Ĥ = Ĥ0 + V̂ , and the unperturbed Hamiltonian to λ = 0, i.e.

Ĥλ=0 = Ĥ0. The solutions to Ĥ0, {Ψ(0)
I }I , can be used as a basis for expansion of

exact solutions (to Ĥλ=1). In this general procedure, the ground state and ground-

state energy of Ĥλ are written as Taylor expansions about λ = 0 as follows,

Eλ
0 ≈ E

(0)
0 +

dEλ
0

dλ

∣∣∣∣
λ=0

λ +
1

2

d2Eλ
0

dλ2

∣∣∣∣
λ=0

λ2 + . . . , (1.59)

∣∣Ψλ
0

〉
≈ |Ψ(0)

0 ⟩+
d
∣∣Ψλ

0

〉
dλ

∣∣∣∣∣
λ=0

λ +
1

2

d2
∣∣Ψλ

0

〉
dλ2

∣∣∣∣∣
λ=0

λ2 + . . . , (1.60)

for any 0 ≤ λ ≤ 1. The derivatives, dkEλ
0 /dλ

k and dk
∣∣Ψλ

0

〉
/dλk can be expressed

analytically in terms of the unperturbed solutions. Usually, the terms up to second

order for the energy and up to first order for the ground state are considered,

E0 ≈ E
(0)
0 + ⟨Ψ(0)

0 |V̂ |Ψ(0)
0 ⟩ −

∑
I ̸=0

|⟨Ψ(0)
0 |V̂ |Ψ(0)

I ⟩|2

E
(0)
I − E

(0)
0

, (1.61)

|Ψ0⟩ ≈ |Ψ(0)
0 ⟩ −

∑
I ̸=0

⟨Ψ(0)
0 |V̂ |Ψ(0)

I ⟩
E

(0)
I − E

(0)
0

|Ψ(0)
I ⟩. (1.62)

If we chose as unperturbed Hamiltonian the Fock operator, i.e. Ĥ0 = F̂ , then the

perturbation part V̂ = Ĥe− F̂ is known as the fluctuation potential, and the pertur-

bation theory is known as the Møller-Plesset (MP) perturbation theory. In relation

to the HF method, the correlation energy comes at the second order in energy per-

turbation expansion, which is a very cheap correction to add to the Hartree-Fock

energy. It is known as the Møller-Plesset second-order (MP2) method, which gives,

EMP2
el = EHF −

occ.∑
i,j

virt.∑
a,b

⟨ij|ab⟩ (2 ⟨ab|ij⟩ − ⟨ab|ji⟩)
εa + εb − εi − εj

. (1.63)

As we can see in the above equation, computing the MP2 energy requires both occu-

pied and virtual HF orbitals, which can be shown to formally scale as O(K5) [112].

Also, from the denominator of the second term, we can deduce that the correlation

energy of the MP2 method is negative. There is one potential problem though. If

the gap between occupied and virtual orbitals becomes small, then the MP2 corre-

lation energy EMP2
c = EMP2

el −EHF goes to −∞, which is a serious error. Moreover,
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the MP2 method is not variational, meaning that the correlation energy can get

below the FCI result. However, it is size-consistent at each order of perturbation [28].

Another size-consistent nonvariational method is the coupled cluster (CC)

method [128, 129]. The reason for size-consistency of this method comes from clever

parametrization of the wavefunction, which is called the exponential ansatz. In the

CC method, the set of coefficients for expanding the many-body state, also known

as cluster amplitudes, t = {tI}I , is collected in the cluster operator, which is written

as,

T̂ =
N∑
k=1

T̂k, (1.64)

where T̂k are the excitation operator components for different excitation levels, start-

ing with single excitations, doubles and so on,

T̂1 =
∑
i

∑
a

tai ĉ
†
aĉi, (1.65)

T̂2 =
1

4

∑
i,j

∑
a,b

tabij ĉ
†
aĉ

†
bĉj ĉi. (1.66)

Then, the exponential ansatz consists of applying the matrix exponential of the

cluster operator

eT̂ = 1 + T̂ +
1

2
T̂ 2 + . . . , (1.67)

to the Hartree-Fock reference determinant,

|ΨCC(t)⟩ = eT̂ |ΦHF⟩ , (1.68)

The advantage of this parametrization, compared to the linear parametrization of

the CI method is that it produces all possible Slater determinants one can get from

exciting the occupied electrons in the HF reference even if the cluster operator

is truncated, which is precisely what is done in approximate CC methods. This

can best be seen by comparing the two parametrizations. If we reintroduce the CI

expansion in Eq. (1.49) in terms of operators for single, double and higher excitations

as ĈS, ĈD, and so on, we can relate them to the cluster operator components, for
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which the lowest three orders read as,

ĈS = T̂1,

ĈD = T̂2 +
1

2
T̂ 2
1 ,

ĈT = T̂3 + T̂1T̂2 +
1

6
T̂ 3
1 .

(1.69)

As we can see, double and higher excitations can be produced by different kinds of

processes, which correspond to different products of cluster operator components.

For instance, double excitations from the HF reference can be reached by simultane-

ous excitations of two electrons (described by T̂2), or by products of single excitations

(described by T̂ 2
1 ). Hence, the ĈD coefficients and cluster amplitudes are related to

the cluster amplitudes by,

Cab
ij = tabij + tai t

b
j − taj t

b
i , (1.70)

A similar analysis can be done for triple and higher excitations.

In practice, the CC energy is obtained from the similarity-transformed Hamilto-

nian e−T̂ Ĥee
T̂ by projecting into the HF reference,

ECC = ⟨ΦHF|e−T̂ Ĥee
T̂ |ΦHF⟩, (1.71)

while the amplitudes are obtained by projections into the subspaces of excited de-

terminants,

⟨ΦS|e−T̂ Ĥee
T̂ |ΦHF⟩ = 0,

⟨ΦD|e−T̂ Ĥee
T̂ |ΦHF⟩ = 0,

⟨ΦT |e−T̂ Ĥee
T̂ |ΦHF⟩ = 0,

(1.72)

and so on, where the number of such equations depends on the order of truncation of

the cluster operator T̂ . This is also known as the linked CC formulation, where each

equation for the unknown amplitudes in Eq. (1.72) terminates at the fourth order

in T̂ (when T̂ is expanded using Eq. (1.67)), thus giving quite compact expressions.

This is because Ĥel contains at most two-electron operators. Another advantage of

the CC is that it is size-consistent. If we consider again the hypothetical molecule

A∪B (see Eqs. (1.56) and (1.57)) at R→∞, the cluster operator becomes additively

separable, i.e. limR→∞ T̂ (A∪B,R) = T̂ (A)+ T̂ (B), which, it can be shown, ensures
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that the CC energy is additively separable as in Eq. (1.56), and the CC wavefunction

is multiplicatively separable as in Eq. (1.57).

The coupled cluster methods are some of the most accurate single-reference post-

HF methods to date for molecules, which are often used as benchmarks for testing

more approximate and newer methods. One major drawback is that most imple-

mentations are very expensive. The most commonly used is the coupled cluster with

singles and doubles (CCSD) method [130], in which the cluster operator is truncated

up to double excitations, i.e. T̂ = T̂1 + T̂2. It scales as O(K6) [112], and is highly

accurate for situations where most of the correlation is dynamical. The even more

accurate coupled cluster with singles, doubles and triples (CCSDT) method, which

uses T̂ = T̂1 + T̂2 + T̂3, is already extremely expensive since it scales as O(K8) [112].

The most accurate method that is still commonly used at least for small molecules

(up to 10 atoms [28]) is CCSD(T) (with O(K7) scaling), which stands for coupled

cluster with singles, doubles and perturbative triples, where the triple excitations

are treated perturbatively with the MP method [130, 131]. Nevertheless, CCSD

and CCSD(T) methods can suffer from poor description of situations with strong

or static correlation, which was found to be the case for several molecules in bond-

dissociation limits [132, 133, 134]. In order to treat strong correlation, one possible

solution is the computationally expensive addition of higher excitations (CCSDT

and beyond). Another possibility is the multireference coupled cluster (MRCC)

method [39, 40, 41, 42, 43], which is based on a multiconfigurational wavefunction

instead of the HF reference (see below). Alternatively, both obstacles (i.e. compu-

tational cost and strong correlation) can be tackled simultaneously with quantum

embedding methods (introduced in Section 1.3), which facilitate the application

of highly accurate CC methods (and FCI) even on larger and strongly correlated

molecules by means of reducing full-size systems into easily solvable embedding

clusters.
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1.1.2.5 Multiconfigurational and multireference methods

So far, all the wavefunction-based methods, described in this chapter, are based

on the HF determinant as the reference point for the improvement of the electronic

structure description of correlated electrons. The HF reference point is most suitable

when electron correlation is essentially dynamical. However, in cases where static

correlation is important, like, for example in stretched molecules, close or at conical

intersections, or at equilibrium geometries of certain molecules such as ozone (see

Ref. [27] and references therein), the HF reference is not qualitatively correct, be-

cause several HF (occupied and virtual) orbitals can become degenerate, or nearly

degenerate. In such cases, it becomes necessary to reoptimize the orbitals in the

CI expansion, which leads to the multiconfigurational self-consistent field (MCSCF)

method. Practically speaking, the first step in MCSCF is the identification of the

dominant electronic configurations in the wavefunction, which are usually obtained

by considering all possible excitations within some orbital subspace. In the parlance

of MCSCF, such a subspace is called the active orbital space, and it is usually cho-

sen judiciously for a problem at hand, guided by chemical intuition. More recently,

an automated selection of relevant active spaces according to entropy-based orbital

entanglement measures has been proposed by Stein and Reiher [135]. The remain-

ing orbitals are either fully (doubly) occupied or empty (virtuals). Reframing this

idea within the variational principle, it means that both molecular orbitals and CI

coefficients are optimized together. There are two versions of MCSCF, namely the

state-specific MCSCF (SS-MCSCF) and state-averaged MCSCF (SA-MCSCF) ver-

sion. The latter is more suitable for excited states and is described in Section 4.1.

In SS-MCSCF, which is introduced here, the trial wavefunction is expanded as a

linear combination of Slater determinants or configuration state functions (CSFs)

as follows [28],

|Ψ(κ,C)⟩ = e−κ̂
∑
I

CI |ΦI⟩ , (1.73)

where the exponential term rotates orbitals, and the summand I runs over the

configurations, generated from the active orbital space and the number of (so-called

active) electrons distributed in that space. The MCSCF energy is then obtained
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variationally as,

EMCSCF(κ,C) =
⟨Ψ(κ,C)|Ĥe|Ψ(κ,C)⟩
⟨Ψ(κ,C)|Ψ(κ,C)⟩ , (1.74)

with the stationarity conditions given as,

∂EMCSCF(κ,C)

∂κij

∣∣∣∣
κ=κ0

=
∂EMCSCF(κ,C)

∂CI

∣∣∣∣
C=C0

= 0. (1.75)

Several multiconfigurational methods have been proposed, which differ in the way

the orbitals are reoptimized and the active space is divided. In the complete active

space self-consistent field (CASSCF) method [13], all orbitals (doubly occupied,

active, and virtual) are reoptimized, and the FCI expansion within the active space

is performed. In some programs, such as Molcas [136], one can further divide the

doubly occupied and virtual orbitals into those which are reoptimized (inactive, and

virtual, respectively), and those that are left out (frozen and deleted, respectively).

The active space can also be further divided into several subspaces with restrictions

on electron excitations, which gives the restricted active space self-consistent field

(RASSCF) method [29, 30, 31]. In most RASSCF implementations, the active space

is divided into three subspaces - RAS1 (only doubly occupied orbitals with a fixed

number of holes), RAS2 (all excitations - and consequently all occupations allowed)

and RAS3 (only empty orbitals with a fixed number of particles). An even cheaper

approach is to skip the orbital optimization entirely, and perform the FCI expansion

within the active space, composed of the HF orbitals. This corresponds to the

complete active space configuration interaction (CASCI) method. Figure 1.1 depicts

the different subspaces of (spin-)orbitals for the HF, FCI, CASSCF and CASCI

methods. All in all, multiconfigurational methods serve to provide a qualitatively

correct description of the electronic structure when static correlation is important.

In order to recover dynamical correlation, multireference perturbation-theory

methods such as the complete active space second-order perturbation theory

(CASPT2) [32] and N-electron valence state second-order perturbation theory

(NEVPT2) [33, 34, 35], are commonly applied on top of a multiconfigurational

method. Compared to MP2, CASPT2 and NEVPT2 start from the complete active

space zeroth order wavefuncion |ΨCAS⟩ (obtained variationally from Eq. (1.74)), and

with zeroth order Hamiltonians Ĥ0 that are much more involved. In both methods,

one takes into account a set of perturber functions {ΨK}K that interact with |ΨCAS⟩
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Figure 1.1: Schematic representation of spin-orbital subspaces in different variational

methods.

through the first order, i.e. ⟨ΨCAS|Ĥel|ΨK⟩ ̸= 0 (see Eq. (1.62)), to build the so-

called first-order interacting space (FOIS), and then considers a model Hamiltonian.

In CASPT2 the model Hamiltonian is a generalized Fock-like operator F̂ , while in

NEVPT2 it is the Dyall Hamiltonian ĤD, which contains one- and two-electron op-

erators [137]. There exist two versions of NEVPT2, namely the partially contracted

NEVPT2 (PC-NEVPT2) and the strongly contracted NEVPT2 (SC-NEVPT2),

with different dimensions of the FOIS. In CASPT2, and PC-NEVPT2, the FOIS

is divided into eight subspaces. The latter can be labelled as S
(k)
l according to the

pattern l of excitations involving inactive (i, j) and/or virtual (a, b) electrons from

|ΨCAS⟩, and the number k of electrons excited into or out of the active space [138].

For example, the space with label S
(+2)
ij has two inactive electrons promoted to

the active space, and comprises wavefunctions of the form {ÊuiÊvj |ΨCAS⟩}i≤j,u≤v,

where u, v are indices of active space spin-orbitals, and Êij = ĉ†i↑ĉj↑ + ĉ†i↓ĉj↓. The

seven remaining subspaces are S
(−2)
ab , S

(+1)
i , S

(+1)
ij,a , S

(−1)
a , S

(−1)
i,ab , S

(0)
i,a and S

(0)
ij,ab. Tak-

ing these details into consideration, the zeroth order Hamiltonians of CASPT2 and
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PC-NEVPT2 are built as follows,

ĤCASPT2
0 = P̂ΨCAS

F̂ P̂ΨCAS
+
∑
k,l

P̂
S
(k)
l
F̂ P̂

S
(k)
l
,

ĤPC−NEVPT2
0 = P̂ΨCAS

ĤDP̂ΨCAS
+
∑
k,l

P̂
S
(k)
l
ĤDP̂

S
(k)
l
,

(1.76)

where P̂ΨCAS
= |ΨCAS⟩⟨ΨCAS|, and P̂

S
(k)
l

is the projector onto subspace S
(k)
l . Then,

the first-order (FOIS) wavefunction corrections, and the second-order energy correc-

tions are obtained by the standard RSPT equations, with some modifications (for

more details, see Ref. [139]).

Besides CASPT2 and NEVPT2, there are other multireference methods for

describing dynamical correlation. The multireference configuration interaction

(MRCI) [36, 37, 38] is an extension of the CI method which uses |ΨCAS⟩ as the

reference state. Depending on the level of truncation, MRCI involves single, double,

and/or higher excitations out of all the determinants in |ΨCAS⟩. However, like in the

CI method, truncation in MRCI gives rise to size-inconsistency problems. Similarly,

the multireference coupled cluster (MRCC) [39, 40, 41, 42, 43] method is an exten-

sion of the single-reference CC method, which uses |ΨCAS⟩ as the reference state for

applying the exponential ansatz (see Eq. (1.67)).

Nowadays, multiconfigurational methods, and multireference methods for recov-

ering dynamical correlation, are widely used in many areas of research, such as

excited states [140, 141], photochemistry [142], catalysis [143], and actinide chem-

istry [144], to name a few. However, the exponential scaling with the size of the

active space makes these methods prohibitive in many situations. The limit of many

CASSCF implementations today is 18 electrons in 18 orbitals [145, 136], which can

be insufficient for even qualitative descriptions of many interesting systems with

strong correlation, such as transition metal complexes [146], although an implemen-

tation using graphical processing units (GPUs) has allowed to perform computations

on systems with more than one thousand atoms [147]. Besides, in order to lessen

the burden of exponential scaling, new techniques have emerged in recent decades,

such as the density matrix renormalization group (DMRG) method [148, 149], and

the density matrix embedding theory (DMET) [15, 16]. The focus of these methods

is no longer on approximately solving the full system, but on reducing the size of the

system in a certain smart way, and applying exact (i.e. FCI) or at least highly accu-
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rate solvers on smaller effective systems. In the DMET method, the latter (effective

systems) are called embedding clusters, and are generated from the active space of

“local fragment + delocalized bath” spin-orbitals. In this sense, the wavefunction in

DMET is very similar to that in multiconfigurational methods, differing mainly in

the type of single-electron spin-orbitals inside the active space. This method, which

is central to one of my PhD projects, will be discussed in more detail in Subsec-

tion 1.3.2, which is dedicated to quantum embedding. Before that, let us introduce

another solution to computational costs, the well-known density-functional theory

(DFT), which is a completely different paradigm from the wavefunction theory.
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1.2 Density Functional Theory

1.2.1 Briefly on reduced quantity theories

The wavefunction, which has been our object of interest so far, contains all the

information on the system, including its energy and other physical properties. This

is a fundamental postulate of quantum mechanics. However, for most practical

purposes, it is a thoroughly complicated object which is unwieldy and difficult to

store. In addition, because electrons are indistinguishable, and due to the presence

of at most two-electron operators in the electronic Hamiltonian, it can be shown

that the wavefunction is not necessary for computing the energy. For these reasons,

immense effort has been directed by physicists and chemists toward the development

of theories and methods that use simpler, reduced quantities.

In order to begin our discussion of reduced quantity theories, let us define the N -

electron density matrix operator,

Γ̂(N) := |Ψ⟩⟨Ψ| , (1.77)

describing the same quantum state as the wavefunction Ψ. It also says that the

system of interest is in a precisely known state, that is, it represents a “pure state”7.

In the position representation, the matrix elements of Γ̂(N) read as,

Γ(N)(x1, . . . ,xN ;x′
1, . . . ,x

′
N) = ⟨x1, . . . ,xN |Ψ⟩ ⟨Ψ|x′

1, . . . ,x
′
N⟩

= Ψ(x1, . . . ,xN)Ψ∗(x′
1, . . . ,x

′
N).

(1.80)

7More generally, in a realistic physical situation, in a given system, if we applied repeated

measurements, we could get different outcomes with certain probabilities. The outcomes could

be of many sorts, including excited states due to thermal or photochemical transfer of energy, or

states with different numbers of particles. The collection of all possible measurable states |Ψi⟩ with
their probabilities pi is called statistical ensemble, which is defined as density matrix operator,

Γ̂(N,p1,p2.,,,) :=
∑
i

pi |Ψi⟩⟨Ψi| . (1.78)

A pure state is then just an ensemble with p1 = 1 and pi
i>1
= 0. For a given operator Ô, its

ensemble-averaged expectation value is defined as,

⟨O⟩Γ̂(N,p1,p2.,,,) =
∑
i

pi⟨Ψi|Ô|Ψi⟩ = Tr
[
Γ̂(N,p1,p2.,,,)Ô

]
. (1.79)

More on ensembles will be discussed in the Chapters 4 and 5.
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The quantity Γ(N) is also called the N -electron density matrix, to distinguish it

from the operator Γ̂(N) in Eq. (1.77). Based on the above equation, we now define

the k-electron reduced density matrix (kRDM) as,

Γ(k)(x1, . . . ,xk;x′
1, . . . ,x

′
k) := k!

(
N

k

)∫
dxk+1· · ·

∫
dxN ×

Γ(N)(x1, . . . ,xk,xk+1, . . . ,xN ; x′
1, . . . ,x

′
k,xk+1, . . . ,xN),

(1.81)

which is nothing but the partial trace of the N -electron density matrix Γ(N) over

N−k electronic coordinates. In other words, we reduce the information contained in

Γ(N) by tracing out (integrating over) N − k electrons. The binomial factor in front

of the integral is due to the indistinguishability of the electrons (Pauli’s principle).

It can be shown that, for the electronic Hamiltonian, the ground-state energy is a

functional of the one-body γ ≡ Γ(1) and two-body Γ(2) reduced density matrices,

Ee[γ,Γ
(2)] = T [γ] + Wee[Γ

(2)] + Vne[γ]

=

∫ ∫
dxdx′

(
−δ(x− x′)

1

2
∇2

r + vne(r)

)
γ(x,x′)

+

∫ ∫
dxdx′Γ

(2)(x,x;x′,x′)

|r− r′| .

(1.82)

In fact, Ee is a functional of the 2RDM only, because all lower-order kRDMs are

obtained from higher-order ones with a recursive relation that can be derived from

Eq.(1.81),

Γ(k−1)(x1, . . . ,xk−1;x
′
1, . . . ,x

′
k−1) =

1

N − k + 1

∫
dxk Γ(k)(x1, . . . ,xk−1,xk;x′

1, . . . ,x
′
k−1,xk).

(1.83)

Thus, the 2RDM is all that is required for computing the energy. In principle,

we could obtain the ground-state energy by variationally minimizing over those

2RDMs that can be constructed from pure quantum states (that are pure-state N -

representable). However, the set of pure-state N -representable 2RDMs is not known

exactly (although some necessary conditions were derived by Mazziotti [150]), which

hinders the development of functionals based on this variable. The problem is that, if

we naively tried to minimize Eq. (1.82) with respect to the 2RDM, the minimizing

solution would not necessarily correspond to the one that is obtained from the

physical ground-state wavefunction. For this reason, simpler reduced variables, for
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which precise representability conditions are known, are preferred. For example,

in one-electron reduced density matrix functional theory (1RDMFT), the energy is

described as a functional of the 1RDM only [113, 151, 152]. In density-functional

theory (DFT), to which we now turn our attention, the even simpler electron density

n(x) = γ(x,x) is used as basic variable. The price we have to pay in 1RDMFT and

DFT is that the energy (and other observables) are no longer explicit functionals

of the reduced quantities of interest, and we must necessarily resort to developing

functional approximations.

1.2.2 Density-functional theory - historical background and

explicit density functionals

Density-functional theory (DFT) is the most widely used ab initio quantum me-

chanical method in quantum chemistry and solid-state physics. Testament to this

claim are the wide variety of computational packages, the Nobel Prize shared by W.

Kohn and J. Pople in 1998, and the rapid increase in number of scientific papers

involving the use of DFT with each passing year [153].

The basic variable in DFT is the electron density, which is obtained by inte-

grating (tracing out) the N -electron density matrix over all degrees of freedom of

N − 1 electrons, and all spin degrees of freedom of N electrons, leaving just a func-

tion of 3 spatial coordinates - an enormously simplified variable compared to the

wavefunction,

n(r) = N
∑
σ=↑,↓

∫
dx2

∫
dx3 · · ·

∫
dxNΨ∗(r, σ,x2, . . . ,xN)Ψ(r, σ,x2, . . . ,xN).(1.84)

By construction, it integrates to the number of electrons N . The roots of DFT lie

very early in the 20th century with the introduction of the so-called Thomas-Fermi

(TF) model [44, 45]. The TF model assumes that the electron density in atoms

can be locally approximated as a uniform cloud of free (noninteracting) electrons.

In this respect, the first density functional8 that was derived, is that of the kinetic

energy of free electrons,

TTF[n] = CTF

∫
dr n(r)5/3, (1.85)

8For more on functionals, see Appendix C.
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where CTF = 3(3π2)2/3/10 is the Thomas-Fermi constant in atomic units. Adding

the (classical) Coulomb repulsion and external potential contribution results in the

Thomas-Fermi energy,

ETF[n] = TTF[n] +
1

2

∫
dr

∫
dr′

n(r)n(r′)

|r− r′| +

∫
drvext(r)n(r). (1.86)

Minimizing this functional under the constraint of conserved electrons
∫
drn(r) = N

gives the Thomas-Fermi differential equation, which governs nonuniform density dis-

tribution in “realistic” systems. Although much simpler than wavefunction theory,

the applicability of TF model is limited, since it cannot predict shell structure in

atoms and molecular bonding, as the energy of a molecule is shown to be higher

than the sum of energies of individual atoms [154]. The first improvement over TF

model was achieved by Dirac [155], who derived the density functional expression of

the exchange energy,

Ex,D[n] = Cx

∫
dr n(r)4/3, (1.87)

where Cx = −3(3π2)1/3/4 (atomic units). Adding this term to the total energy in

Eq. (1.86) gives the Thomas-Fermi-Dirac model.

Another notable improvement is the correction by von Weizsäcker in 1935 [156],

which is exact for a closed-shell noninteracting 2-electron system,

TvW[n] =
1

8

∫
dr
|∇n(r)|2
n(r)

(1.88)

and represents the first step toward modeling inhomogeneity in electron density.

It guarantees some density features such as the exponential decay far away from

the system, and the cusp condition at nuclei, but still fails to describe shell struc-

tures [157]. The TF model and subsequent explicit density functionals, although in-

accurate for practical applications in chemistry, have regained some interest in recent

years with the emergence of orbital-free density-functional theory [158]. Notwith-

standing, the issue of applicability of density functionals begets an even more fun-

damental question, namely, “Given a density with certain distribution in space, can

we uniquely determine to which system it belongs?” The answer to this theoretical

question, together with its most successful practical implementation were addressed

some 30 years after the TF model, which led to the development of Kohn-Sham

DFT.
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1.2.3 Exact density-functional theory for ground states

1.2.3.1 Hohenberg-Kohn theorems

The rigorous foundations of density-functional theory were solidified in 1964 [46],

when Hohenberg and Kohn presented two theorems establishing the uniqueness of

ground-state energy as a functional of ground-state density. To begin the discussion,

let us consider the electronic Hamiltonian expressed in first quantization as follows,

Ĥe = T̂ + Ŵ +

∫
dr n̂(r)vext(r) (1.89)

where n̂(r) =
∑N

i=1 δ(r − ri) is the density operator, and vext(r) is now any multi-

plicative external (not necessarily Coulomb) potential. For simplicity, we assume

that the ground state of the Hamiltonian in Eq. (1.89) is nondegenerate. What

follows are statements of the two Hohenberg-Kohn theorems. Both theorems are

simple to prove with reductio ad absurdum, and their proofs are given in Appendix B.

First Hohenberg-Kohn theorem (HKI): The ground-state density nΨ0[vext](r)

determines up to a constant the external potential vext(r). The statement of HKI

given here consists of two parts, one for the map vext(r) → |Ψ0[vext]⟩ and another

for the map |Ψ0[vext]⟩ → nΨ0[vext](r).

HKI, part 1: Any two Hamiltonians in Eq. (1.89) with external potentials that

differ by more than a constant, i.e. v′ext(r) − vext(r) varies with r, give rise to

different ground states9, |Ψ0[v
′
ext]⟩ ≠ |Ψ0[vext]⟩.

HKI, part 2: Two different ground states |Ψ0[vext]⟩ and |Ψ0[v
′
ext]⟩ that correspond

to different external potentials (as in part 1), give rise to different electron densities,

nΨ0[vext] ̸= nΨ0[v′ext]
.

The consequence of HKI is that the map between vext and n0 = nΨ0[vext] is

bijective, such that the ground state, and also the external potential, are functionals

of the ground-state density: |Ψ0⟩ = |Ψ[vext]⟩ = |Ψ[n0]⟩ and vext(r) = vext[n0](r).

This implies that the variational principle can be reformulated as a minimization

9that differ by more than a global phase factor, |Ψ0[v
′
ext]⟩ ≠ eiϕ |Ψ0[vext]⟩ [159]. Oth-

erwise, they would still give the same energy and other observables ⟨Ψ0[v
′
ext]|Ô|Ψ0[v

′
ext]⟩ =

e−iϕeiϕ⟨Ψ0[vext]|Ô|Ψ0[vext]⟩ = ⟨Ψ0[vext]|Ô|Ψ0[vext]⟩.
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over densities. For this purpose, the universal Hohenberg-Kohn density functional

has been introduced [46],

FHK[n] := ⟨Ψ[n]|T̂ + Ŵee|Ψ[n]⟩, (1.90)

which is universal in the sense that it is independent of the external potential vext.

Then, the HK energy functional is defined as,

EHK[vext, n] := FHK[n] +

∫
dr vext(r)n(r), (1.91)

which leads us to the second Hohenberg-Kohn theorem:

Second Hohenberg-Kohn theorem (HKII): The minimum of the EHK[vext, n]

density functional, which is the ground-state energy for a given vext, is attained at

the ground-state density n0 = nΨ0[vext],

E0[vext] = E0[n0] = min
n
{EHK[vext, n]} . (1.92)

1.2.3.2 Universal density functional - different formulations

Taking a closer look at the HK theorems, and the DFT version of the variational

principle in Eq. (1.92), it is evident that so far, the theory is defined only for densities

that come from solving the eigenvalue problem of a Hamiltonian with vext. Such

densities are called interacting v-representable. This is problematic, since the set

of interacting v-representable densities is not known explicitly. A resolution was

achieved by Levy [47, 48], and later Lieb [49], who redefined the universal density

functional FHK[n] in a constrained minimization over all wavefunctions Ψ that yield

a desired density n,

FLL[n] := min
Ψ→n
⟨Ψ|T̂ + Ŵee|Ψ⟩ = ⟨Ψ[n]|T̂ + Ŵee|Ψ[n]⟩. (1.93)

This definition is commonly referred to as the Levy-Lieb constrained search formula-

tion. The set of admissible densities D in the domain of FLL[n] is known as the set of

N -representable densities, the properties of which are determined from requirements

of nonnegativity, integrability, and finite von Weizsäcker kinetic energy [159],

D =

{
n ∈ L1(R3)

∣∣∣∣ n ≥ 0,

∫
drn(r) = N,

√
n ∈ H1(R3)

}
, (1.94)
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where H1(R3) = {f |f ∈ L2(R3), ∇f ∈ L2(R3)} is a Sobolev space. Hence, the

variational principle for the electronic energy can be broken down into a two-step

minimization procedure,

E0[vext] = min
Ψ

{
⟨Ψ|T̂ + Ŵee + V̂ext|Ψ⟩

}
= min

n∈D

{
min
Ψ→n
⟨Ψ|T̂ + Ŵee|Ψ⟩+

∫
dr vext(r)n(r)

}
= min

n∈D

{
FLL[n] +

∫
dr vext(r)n(r)

}
.

(1.95)

In contrast to FHK[n], FLL[n] is well-defined for any N -representable density n in

the neighborhood of some ground-state density n0, which solves the problem of

v-representability. There exists an even more general definition of the universal

functional, which was provided by Lieb [49] (see also Ref. [160] for a related work on

the universal functional of 1RDMs by Valone). In Lieb’s formulation, the domain of

FLL[n] is extended from pure states to ensembles Γ̂ that yield a prescribed density

n,

FL[n] := min
Γ̂→n

Tr
[
Γ̂
(
T̂ + Ŵee

)]
, (1.96)

with the density matrix operators Γ̂ and electron density n(r) constructed as,

Γ̂ =
∑
k

λk |Ψk⟩⟨Ψk| , 0 ≤ λk ≤ 1,
∑
k

λk = 1, ⟨Ψk|Ψl⟩ = δkl,

n(r) = Tr
[
Γ̂n̂(r)

]
.

(1.97)

where {Ψk}k is a set of orthonormal wavefunctions in the N -electron Hilbert space.

Lieb’s functional rests on the rigorous mathematical foundation of convex analysis.

Based on the property that the ground-state energy E0[v] is concave on the set of all

possible potentials v10, Lieb showed that FL[n] is the Legendre-Fenchel transform of

10The concavity of ground-state energy, is a property such that for any two vext and v′ext and

any 0 ≤ α ≤ 1,

E0[(1− α)vext + αv′ext] ≥ (1− α)E0[vext] + αE0[v
′
ext]. (1.98)

This is easily verified from variational principle and linearity of Eq. (1.89) with vext. It remains to

specify what are the admissible vext. More precisely, Lieb introduced the spaces of all functions v

and n that make the integral
∫
drn(r)v(r) finite. It can be shown [159] that any N -representable

function n also belongs to X = L1(R3) ∩ L3(R3). Then,
∫
drn(r)v(r) is finite for all v belonging
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E0[v],

FL[n] ≡ sup
v

{
E0[v]−

∫
dr v(r)n(r)

}
. (1.100)

This construction is also called Lieb maximization. The advantage of FL[n] over

FLL[n] is that it is convex on the set of N -representable densities in Eq. (1.94)

(see footnote 10). In fact, it is a convex envelope of FLL[n] with the property

FL[n] ≤ FLL[n]. While FLL[n] is simpler to use in formal theory, FL[n] (with the

Lieb maximization form) is very convenient to use when deriving density-functional

approximations in model systems like the Hubbard dimer [98, 76], as will be shown

in later chapters.

1.2.4 Kohn-Sham Equations

The universal functional F [n] introduced previously in its various formulations,

holds, in principle, all the information of any system of interest, thanks to the

Hohenberg-Kohn theorem. However, its practical use is rather limited, because it

entails knowledge of interacting many-body systems. In light of this problem, Kohn

and Sham in 1965 proposed a clever solution. The suggestion comes from consid-

ering the following question. “Given the ground-state density of some interacting

system, can we find or envision a system of noninteracting electrons with exactly the

same ground-state density?” In other words, we would like to have a density that

is both interacting and noninteracting v-representable. The definite answer to this

question is debatable, but if it turns out to be “yes”, then the problem of solving

the many-electron Schrödinger equation can be bypassed altogether. This thought

experiment is the basis of Kohn-Sham density-functional theory (KS-DFT) [11]. In

to X∗ = L3/2(R3) + L∞(R3), where L∞(R3) is the space of all bounded functions,

L∞(R3) :=

{
v(r)

∣∣∣∣ sup
r∈R3

|v(r)| < M

}
. (1.99)

The space X∗ includes many, in particular Coulomb potentials. It can also be shown that X∗

is a dual space of X (and vice-versa), which a is critical property for preserving convexity (or

concavity) of functionals on X and X∗. Then, since E0[v] is concave for v ∈ X∗, it follows that

the Lieb functional FL[n] in Eq. (1.100) is convex on X, which means a global minimum can be

found.
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KS-DFT, the universal density functional is split into two contributions as follows,

F [n] = Ts[n] + EHxc[n], (1.101)

where the first term, Ts[n], is the noninteracting kinetic energy density functional.

It can be obtained from F [n] (with any formalism), by setting the interaction energy

operator Ŵee to zero. In the Levy-Lieb formalism, it is written as,

Ts[n] = min
Ψ→n
⟨Ψ|T̂ |Ψ⟩ = ⟨Ψ[n]|T̂ |Ψ[n]⟩. (1.102)

In the Lieb formalism, it is defined similarly to Eq. (1.100) as a Legendre-Fenchel

transform,

Ts[n] = sup
v

{
E0[v]−

∫
dr v(r)n(r)

}
, (1.103)

where E0[v] is the ground-state energy of the noninteracting Hamiltonian T̂ +∫
dr v(r)n̂(r). The remaining term in Eq. (1.101), EHxc[n], is called the Hartree-

exchange-correlation (Hxc) functional. Usually, it is further split into the three

terms,

EHxc[n] = EH[n] + Ex[n] + Ec[n], (1.104)

where the first term is the Hartree energy, which represents classical Coulomb re-

pulsion of continuous charge density n(r),

EH[n] =
1

2

∫
dr

∫
dr′

n(r)n(r′)

|r− r′| . (1.105)

The second term in Eq. (1.104) is called the exchange energy, which is formally

defined as,

Ex[n] = ⟨Φ[n]|Ŵee|Φ[n]⟩ − EH[n]. (1.106)

As we see, it is an implicit density functional11 because it depends on the occupied

orbitals in Φ[n] (see the exchange integrals HF theory in Eq. (1.24)), which in turn

depend on the density (due to the HK theorems for noninteracting electrons). Using

explicit density-functional approximations in place of exact exchange produces self-

interaction errors (SIE)12 which will be discussed in Subsection 1.2.5.

11Except for two electrons, where Ex[n] = −
1

2
EH[n].

12For exact (orbital-dependent) exchange, the sum of Hartree and exchange terms,

EH[nΦ] + Ex[Φ] = ⟨Φ|Ŵee|Φ⟩ =
N/2∑
i=1

N/2∑
j=1

2 ⟨φiφi|φjφj⟩ − ⟨φiφj |φjφi⟩
|r− r′| (1.107)
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The last term in Eq. (1.104), also an implicit density functional, is the correlation

energy, which encodes all the many-electron effects beyond the mean-field level of

calculation, such as kinetic energy and Coulomb repulsion of interacting electrons.

It contains kinetic and two-electron interaction contributions,

Ec[n] = ⟨Ψ[n]|T̂ + Ŵee|Ψ[n]⟩ − ⟨Φ[n]|T̂ + Ŵee|Φ[n]⟩

=

[
⟨Ψ[n]|T̂ |Ψ[n]⟩ − ⟨Φ[n]|T̂ |Φ[n]⟩

]
+

[
⟨Ψ[n]|Ŵee|Ψ[n]⟩ − ⟨Φ[n]|Ŵee|Φ[n]⟩

]
= Tc[n] + Uc[n].

(1.108)

Ec[n] ≤ 0, because according to the HK theorems,

⟨Ψ[n]| T̂ + Ŵee +

∫
dr n̂(r)vext[n](r) |Ψ[n]⟩

≤ ⟨Φ[n]| T̂ + Ŵee +

∫
dr n̂(r)vext[n](r) |Φ[n]⟩.

(1.109)

Finally, we can rewrite the variational principle with the KS decomposition. This

allows us to restrict the minimization to densities that come from Slater determi-

nants,13

E0 = min
n

min
Ψ→n

{
⟨Ψ|T̂ + V̂ext|Ψ⟩+ EHxc[nΨ]

}
= min

Ψ

{
⟨Ψ|T̂ + V̂ext|Ψ⟩+ EHxc[nΨ]

}
= min

Φ

{
⟨Φ|T̂ + V̂ext|Φ⟩+ EHxc[nΦ]

}
= ⟨ΦKS|T̂ + V̂ext|ΦKS⟩+ EHxc[nΦKS

].

(1.110)

The minimizing solution |ΦKS⟩ consists of orbitals that solve the Kohn-Sham (KS)

equations14, (
−∇

2
r

2
+ vext(r) + vHxc[nΦKS

]

)
φi(r) = εiφi(r), (1.111)

gives correct number of Coulomb integrals for i = j: ⟨φiφi|φiφi⟩, which is that of the opposite-spin

electrons interacting with each other in the same spatial orbital. This is no longer the case if we use

density-functional approximations (DFAs) such as the local-density approximation (LDA) in place

of Ex[Φ], which means that there will be some residual interaction of electrons with themselves

due to the product form of the Hartree term.
13This will lead to a minimum assuming, of course, that the ground-state density is both inter-

acting and noninteracting v-representable.
14The KS equations can be derived similarly to the HF ones, either via a Lagrangian or orbital

rotation techniques.
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where

vHxc[nΦKS
] =

δEHxc[n]

δn(r)

∣∣∣∣
n=nΦKS

(1.112)

is the Hartree-exchange-correlation potential. The ground-state electron density is,

in principle, exactly reproduced by the KS orbitals as follows,

nΦKS
(r) = 2

N/2∑
i=1

|φi(r)|2 = nΨ0(r). (1.113)

In practice, once a particular density-functional approximation (DFA) to the Hxc

energy functional is chosen, the KS equations are solved in a self-consistent manner,

with the same procedure as described for Roothaan-Hall equations in HF theory.

1.2.5 Density-Functional Approximations

As shown previously, the exchange and correlation functionals are the only function-

als that do not have an explicit density dependence, and have to be approximated

in practice. What follows is a quick glance at different DFAs. For a more de-

tailed discussion, the reader is referred to a recent comprehensive review of DFAs

by Toulouse [161].

The standard approximations are usually sorted in an order of increasing math-

ematical complexity, commonly referred to as the Jacob’s ladder of DFAs [162]. At

the bottom of the ladder sits the local density approximation (LDA), which is intro-

duced in the same paper as KS-DFT [11]. The idea of LDA, which was already used

in Thomas-Fermi theory, is that the electron density n(r) in an infinitesimal vol-

ume around some location r resembles that of the infinite uniform electron gas [163]

(UEG) with the same density n. The LDA exchange-correlation functional is then

approximated by integrating these infinitesimal local UEG energy contributions,

ELDA
xc [n] =

∫
drn(r) εxc(n(r)), (1.114)

where εxc(n) = εx(n) + εc(n) is the xc energy per particle of the UEG with den-

sity n. While the exchange part, εx(n) = Cxn
1/3 has an analytical expression (see

Eq. (1.87)), the correlation part εc(n) is only obtainable numerically using, for ex-

ample, quantum Monte Carlo calculations. Two commonly used parametrizations

for the correlation part are VWN [164] and PW92 [165] functionals. Next in order
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are generalized gradient approximations (GGA) [11, 166], where, in contrast to the

LDA, the xc functional attempts to “step away” from locality via the inclusion of

density gradients,

EGGA
xc [n] =

∫
dr eGGA

xc (n(r), ∥∇n(r)∥). (1.115)

Some commonly used GGA density functionals are B88 [167], LYP [168], PW91 [169,

170, 171] and PBE [172]. After GGA come meta-GGA functionals, which include

even more information on the variation of the density through Laplacians (see the

von Weizsäcker kinetic energy in Eq. (1.88)),

EmGGA
xc [n] =

∫
dr emGGA

xc (n(r), ∥∇n(r)∥,∇2n(r),

N/2∑
i=1

|∇ϕi(r)|2). (1.116)

Some commonly used mGGA functionals are TPSS [173] and SCAN [174]. The

functionals from the aforementioned three classes are explicit density functionals15,

for which the Hxc potential is a local multiplicative operator that can be derived

from Eq. (1.112). However, in the case of LDA/GGA functionals, the price to pay

is that SIE from the Hartree functional is never completely removed and is in part

responsible for the deviation from the correct piecewise linearity of the energy with

respect to electron number16. This deviation of (semi-)local LDA/GGA functionals

is a measure for the delocalization error, which gives rise to issues such as incorrect

dissociation of radical cations [175], lowering of barrier heights [176], and too small

fundamental gaps [177, 178]. Conversely, in HF theory, the deviation from piecewise

linearity tends toward the opposite direction, leading to localization error [178]. In

this respect, several approaches have been developed for correcting this issue, one

of which is the development of so-called hybrid functionals. One of the hybrid

functionals is the Becke 3-parameter hybrid [179], which includes a combination of

exact exchange energy with GGA density functionals [180],

EB3
xc [n] = ELDA

xc [nΦ] + a(Ex[Φ]− ELDA
x [nΦ]) + b(EGGA

x [nΦ]− ELDA
x [nΦ])

+ c(EGGA
c [nΦ]− ELDA

c [nΦ]).
(1.117)

15With the exception of mGGA functionals, which are partly orbital-dependent. A simple solu-

tion would be to solve the KS equations only with the density-dependent part, and then evaluate

the orbital-dependent part a posteriori. In practice, orbital dependence of mGGA is best treated

within the Generalized KS formalism (see main text).
16See the discussion on the Perdew-Parr-Levy-Balduz (PPLB) approach in Subection 5.2.2.
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The most well-known (semi-empirical) instance of this functional is B3LYP, which

uses B88 exchange and LYP correlation (semi-)local functionals, and the three pa-

rameters are a = 0.20, b = 0.71, c = 0.81, which were obtained by least-squares

fitting to a dataset of atomization energies, ionization potentials, proton affinities,

and total atomic energies [179]. The other family of hybrid functionals are range-

separated hybrids [181, 182, 183], in which the electron repulsion |r1 − r2|−1 is split

into different terms for short and long ranges, and similarly, combinations of DFAs

with exact exchange are used. A popular example of range-separated hybrid is

CAM-B3LYP [183, 184]. Due to their orbital dependence, B3LYP and CAM-B3LYP

represent a departure from KS-DFT, because the orbitals have to be optimized with

a nonlocal potential, like in HF theory17. In fact, hybrids have their own rigorous

framework, known as generalized Kohn-Sham (GKS) theory [185].

A more straightforward approach for correcting the SIE was proposed by Perdew

and Zunger in 1981, with the so-called self-interaction correction (SIC), which sub-

tracts the self-interaction of each occupied spin-orbital in ΦKS. It is written with

the spin-resolved xc functional as follows,

ESIC
xc [n↑, n↓] = EDFA

xc [n↑, n↓]−
N/2∑
i=1

∑
σ∈{↑,↓}

(
EH[niσ] + EDFA

xc [niσ]
)
, (1.118)

where niσ = |φiσ(r)|2 is the density of the i-th occupied spin-orbital of spin σ, and

nσ =
∑N/2

i=1 niσ is the total electron density of spin σ.

Another approach to solving deficiencies related to SIE is to use only exact

exchange (see Eq. (1.106)). Although the orbital dependence of exact Ex[Φ] prevents

a straightforward differentiation with respect to the density, obtaining the local

exchange potential vx[n](r) = δEx[n]/δn(r) is still possible in an indirect way, i.e.

via the one-to-one correspondence between densities and KS potentials due to the

HK1 theorem for noninteracting electrons. This leads to the equivalence

n→ n + δn⇔ vs → vs + δvs, (1.119)

from which we obtain the chain rule,

δEx

δvs(r)
≡
∫

dr′
δEx[n]

δn(r′)
χs(r

′, r), (1.120)

17Strictly speaking, the use of a nonlocal exchange potential is already discussed in the 1965

paper by Kohn and Sham (see Eqs. (2.22) to (2.24) in Ref. [11]).



CHAPTER 1. DIFFERENT FLAVORS OF GROUND-STATE
ELECTRONIC STRUCTURE THEORY 47

where

χs(r
′, r) =

δn(r′)

δvs(r)
= −2

occ.∑
i

virt.∑
a

(
φ∗
i (r

′)φ∗
a(r)φa(r

′)φi(r)

εa − εi
+ c.c.

)
(1.121)

is the KS static linear response function, which can be obtained from the KS equa-

tions by applying the perturbation vs → vs + δvs to the KS potential. However,

solving for exchange potential in Eq. (1.120) has to be done numerically in a pro-

cedure, known as optimized effective potential (OEP) [186, 187, 188]. Due to the

presence of unoccupied KS orbitals, the computation of OEP is quite involved, and

as such not routinely done.

DFT also encounters difficulties elsewhere, such as systems with prevalent van

der Waals forces (not discussed in this thesis), and strongly correlated systems like

transition metal oxides with partially filled d- or f-orbitals [189]. For the former, van

der Waals forces, several strategies have been proposed, such as using semiempirical

corrections [190, 191, 192, 193, 194, 195], and new classes of hybrid functionals, such

as double hybrid [196, 197, 198] and range-separated double hybrid [199] functionals

which include a fraction of MP2-based correlation energy. For the latter, strongly

correlated systems, which are central to this thesis, the regular single-configuration

KS scheme does not provide an adequate description of the electronic structure.

For solids, several extensions have been proposed, such as DFT+U [200, 201, 202]

(with U taken from the Hubbard model, see Chapter 2) which uses an orbital-

dependent exchange functional, and DFT+DMFT (see refs. in [203]), where DMFT

stands for dynamical mean-field theory (see Section 1.3). Alternatively, the single-

configuration formalism of KS-DFT was merged with density matrix embedding

theory (DMET) in the local potential functional embedding theory (LPFET) [204]

method (see also density embedding theory (DET) by Bulik et al. [205, 206] and self-

consistent density-functional embedding (SDE) by Mordovina et al. [207] for similar

approaches). Strictly speaking, LPFET makes use of the KS formalism on a lat-

tice, or in the basis of localized molecular orbitals (see 18), so in this respect, it is

a site occupation functional theory (SOFT) [208, 209]. In LPFET, the KS system

“learns” about the Hxc potential from the correlated embedding cluster of DMET

in a self-consistent fashion. In quantum chemistry, different strategies for strong

correlation which make use of DFT have been proposed. Some of them are listed in

Subsection 1.3.1 of the next section, which discusses quantum embedding.
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1.3 Quantum embedding and density matrix em-

bedding theory

1.3.1 Introduction

The quantum chemical wavefunction methods we have been discussing so far, al-

though highly developed and very accurate for providing electronic structure details,

are generally expensive. The exponential scaling of the number of configurations

with the size of the system (see Eq. (1.53)) limits the applicability of highly-accurate

wavefunction methods (such as FCI and CCSD(T)) to small molecules [28]. On the

other hand, the computationally affordable Kohn-Sham density-functional theory

(KS-DFT) is routinely used in studying molecules and materials of different sizes

and complexities. However, it fails to describe strong electron correlation, which

plays an important role in many systems of interest to physicists and chemists. In

this respect, one of the solutions is quantum embedding (QE), the idea of which is

to partition the system under study into smaller fragments. Each fragment is then

coupled with the rest of the system through a small number of representative degrees

of freedom, usually called “quantum bath”, and solved with an accurate “high-level”

method. The remaining part is treated at a “low level”, usually at the mean-field

level. As a refining step, a consistency criterion may be imposed to match some

quantity (e.g. the wavefunction, Green’s function, 1RDM or electron density) of

the high-level description to the mean-field one. This way, the computational cost

of treating the full system with a high-level method is significantly reduced. Based

on the quantity of choice, and the representation of degrees of freedom used in the

partitioning, several embedding techniques have been proposed. In quantum chem-

istry, frozen-density embedding (FDE) [50, 51] and subsystem density-functional

theory [52, 53] are examples of embedding methods that use real-space partitioning

and electron density of DFT as the basic variable. WFT-in-DFT embedding has also

been proposed [54, 55, 56, 57, 58], wherein a WFT-based method is (often) used to

treat chemically relevant parts of the full the system, and the environment is treated

with DFT. Dynamical mean-field theory (DMFT) [59, 60, 61, 62, 63, 64, 65, 66, 67]

and the more recent density-matrix embedding theory (DMET) [15, 16, 17, 68], which

were initially applied in condensed-matter physics, operate with a local orbital ba-
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sis (also called lattice basis)18. They use the one-electron Green’s function and the

one-electron reduced density matrix (1RDM), respectively, as basic variables. As

one project of my thesis deals with extending DMET toward excited states (see

Chapter 8), this technique will be presented in more detail in the following.

1.3.2 Density matrix embedding theory

1.3.2.1 Overview

Density matrix embedding theory (DMET) was introduced by Knizia and Chan in

2012[15]. It was proposed as a static (i.e. frequency-independent) alternative to

DMFT for describing lattice systems with strong local correlations. The general

approach in DMET can be broken down into two steps:

1. Split the full many-body system into nonoverlapping local fragments in the

localized orbital basis, and for each fragment, find the effective quantum bath

degrees of freedom from the environment. The many-body fragment+bath

space forms the reduced in size embedding cluster.

2. Solve an effective Schrödinger equation inside the previously obtained cluster.

Use the cluster ground-state solution to obtain approximate local contributions

to the ground-state energy and other properties of the full system.

In practical implementations of DMET, both steps inevitably involve approxima-

tions. For the sake of simplicity and clarity, the remainder of this section limits the

discussion to a general introduction to DMET, and a more detailed exposition of

the embedding of a single impurity, which is also used in the embedding strategy

for excited states presented in Chapter 8.

18By local (orbital or lattice) basis I mean a basis of orbitals which are localized in space and

orthonormal. In finite systems such as molecules, these can be, for example, Löwdin’s orthogonal

atomic orbitals (OAOs) [210, 211, 212]. In extended systems, local orbitals are represented by

Wannier functions, which in simplified models such as the Hubbard model, become lattice sites

(see Chapter 2).
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1.3.2.2 Exact embedding: Construction of a many-body bath in DMET

In the original work of Knizia and Chan [15, 16], DMET is introduced from the many-

body point of view, where the Hamiltonian of the full system is exactly mapped

onto an effective Hamiltonian obtained by projection onto a smaller subspace. The

mapping is achieved thanks to the so-called Schmidt decomposition of the full-size

waevefunction, a technique well known in quantum information theory [213], which

makes use of the Singular value decomposition (SVD). SVD is also a basic ingredient

in the DMRG method [148, 149]. The procedure in DMET is described as follows:

Considering the full lattice system of L sites (or localized orbitals), nothing prevents

us from splitting it into two parts that we call the fragment F , containing LF sites

(or orbitals), and the environment E, containing LE = L − LF sites (or orbitals).

Then, from the fragment, we can construct LF = 4LF possible many-body states19,

and from the environment LE = 4LE states. If we also assume that LF < LE, then

the FCI expansion of the ground-state wavefunction Ψ0 of the full system can be

written as,

|Ψ0⟩ =

LF∑
i=1

LE∑
j=1

Cij |Ai⟩ |Bj⟩ , (1.122)

where |Ai⟩ and |Bj⟩ are the fragment and environment many-body states, respec-

tively. The FCI coefficients Cij can be stored in a matrix of dimension LF × LE.

By applying the singular value decomposition technique, any such matrix can be

factorized as a product of three components,

C = UΣV†, (1.123)

where

U =

 | |
u1 . . . uLF

| |

 Σ =
[
σ 0LF×(LE−LF )

]
V† =

— v†
1 —
...

— v†
LE

—

 . (1.124)

U is a unitary matrix of dimensions LF × LF , σ = diag(σ1, . . . , σLF
), and V is

a unitary LE × LE matrix. Then, the LF × LE expansion in Eq. (1.122) can be

19That is because each site has four possible states, i.e. {|vaci⟩ , |χi↑⟩ , |χi↓⟩ , |χi↑χi↓⟩}1≤i≤LF+LE
.
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simplified to an expansion involving only LF terms as follows,

|Ψ0⟩ =

LF∑
i=1

LE∑
j=1

LF∑
a=1

UiaσaV
†
aj |Ai⟩ |Bj⟩

=

LF∑
a=1

σa

( LF∑
i=1

Uia |Ai⟩
)( LE∑

i=1

V †
aj |Bj⟩

)

=

LF∑
a=1

σa|Ãa⟩|B̃a⟩.

(1.125)

Eq. (1.125) is also known as the Schmidt decomposition of |Ψ0⟩. The new orthonor-

mal many-body states |Ãa⟩ and |B̃a⟩ are the rotated fragment and the so-called

DMET bath states20, the latter of which are of interest here because they represent

the most compact description of the entanglement between the fragment and its

environment. If we define the Schmidt projector as

P̂ =

LF∑
a=1

LF∑
b=1

|ÃaB̃b⟩⟨ÃaB̃b|, (1.126)

it is trivial to show that the ground states of the full-size Hamiltonian Ĥe and of

the effective Hamiltonian that acts only on the Schmidt subspace Ĥeff = P̂ ĤeP̂ , are

exactly the same. Since according to Eq. (1.125), P̂ leaves |Ψ0⟩ unchanged, we have

Ĥeff |Ψ0⟩ = P̂ ĤeP̂ |Ψ0⟩

= P̂ Ĥe |Ψ0⟩ = E0P̂ |Ψ0⟩

= E0 |Ψ0⟩ .

(1.127)

This is the rationale for exact DMET.

1.3.2.3 Embedding in practice, step 1: Construction of approximate

one-electron bath

In practice, since we do not have access to the true wavefunction (otherwise there

would be no point in performing an embedding), the exact projector P̂ is unknown,

so in the first step of DMET, the wavefunction is approximated with a mean-field

(e.g. HF or KS) description of the full system, where the ground state is a Slater

determinant,

|Ψ0⟩ ≈ |Φ0⟩ . (1.128)

20Not to be confused with bath spin-orbitals (see 1.3.2.3).
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In this case, the bath states in Eq. (1.125) can be constructed directly from single-

electron bath spin-orbitals, which in turn allows us to construct an approximate

projector P̂ .

For the remainder of this section, we will focus on the simplest case of a single-

impurity embedding, i.e. LF = 1 [105]. We begin with a basis of orthonormal local

spin-orbitals in a restricted formalism, {|χiσ⟩ = |χi⟩ |σ⟩ = ĉ†iσ|vac⟩}1≤i≤L, σ∈{↑,↓},

where the spin-orbitals {|χ1σ⟩}σ∈{↑,↓} are the impurities, and the remaining spin-

orbitals span the fragment’s environment one-electron subspace. Furthermore, in

the present case, the target of interest is the singlet ground state. Then, the central

quantity that is considered in DMET is the 1RDM [15, 16, 17], which will be the

same for both spins, i.e. γij = ⟨Φ0|ĉ†i↑ĉj↑|Φ0⟩ = ⟨Φ0|ĉ†i↓ĉj↓|Φ0⟩. The critical property

that allows for the construction of an exact bath spin-orbital subspace from the

1RDM is idempotency property of the latter, i.e. γ2 = γ, which is fulfilled if γ

comes from Φ0
21 [214].

In more detail, in the local basis (dropping the spin label for simplicity),

{|χi⟩}1≤i≤L = |χ1⟩ ⊕ {|χe⟩}2≤e≤L, (1.129)

γ has the following structure,

γ =

[
γ11 γ†

e1

γe1 γee

]
. (1.130)

The goal is now to change the representation to another orthonormal basis γ → γ̃

with a unitary transformation P that leaves γ11 unchanged,

P =

[
1 0†

e1

0e1 Pee

]
, (1.131)

and reduces the number of couplings between impurity γ11 and environment block

γee to just one element. That is, in the transformed matrix

γ̃ = P†γP =

[
γ11 γ†

e1Pee

P†
eeγe1 P†

eeγeePee

]
, (1.132)

the vector γ†
e1 in Eq. (1.130) should transform to γ†

e1Pee in Eq. (1.132) as follows,

γ†
e1 =

[
γ12 γ13 . . . γ1L

]
−→ γ†

e1Pee =
[
ξ 0 . . . 0

]
. (1.133)

21This is the case because, when diagonalized (for instance in the canonical spin-orbital basis),

γΦ0
has eigenvalues 1 for spin-orbitals occupied in Φ0 and 0 for spin-orbitals not occupied in Φ0.
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There are many possibilities for obtaining P. For instance, in one version of DMET

implementations [215], one would apply the SVD (as in Eq. (1.123)) to γ†
e1, and

use the V matrix as Pee. Alternatively, in Householder-transformed density matrix

functional embedding theory (Ht-DMFET), the Householder transformation [18] has

been applied to γ [105, 111]. In the special case of a single-impurity embedding,

either way gives the same result [105]. The Householder transformation is defined

as [19],

Pij =
1≤i,j≤L

δij − 2vivj, (1.134)

where

v1 = 0,

v2 =
γ21 − ξ√

2ξ(ξ − γ21)
,

vj =
j≥3

γj1√
2ξ(ξ − γ21)

,

(1.135)

and ξ is the only nonzero element of γ†
e1Pee in Eq. (1.133):

ξ = − sign(γ21)

√√√√ L∑
j>1

|γj1|2. (1.136)

Geometrically, the Householder transformation is a reflection, which implies that it

is unitary and Hermitian P† = P−1 = P. The Householder-transformed 1RDM γ̃

has the following structure,

γ̃ =

γ11 ξ 0†
E1

ξ γ̃22 γ̃†
E2

0E1 γ̃E2 γ̃EE

 , (1.137)

where we used the following notation for the Householder-transformed basis,

{|χ̃i⟩}1≤i≤L = |χ1⟩ ⊕ |χ̃2⟩ ⊕ {|χ̃E⟩}3≤E≤L. (1.138)

The impurity is now exclusively entangled with the bath spin-orbital, |χ̃2⟩, which is

a functional of γ. In fact, using Eqs. (1.134), (1.135) and (1.136), we find that

P22 = 1− 2v22 = 1− (γ21 − ξ)2

ξ(ξ − γ21)
= 1− (ξ − γ21)

ξ
=

γ21
ξ
, (1.139)

and

Pi2
i>2
= −2viv2 = −2

(γ21 − ξ)γi1
2ξ(ξ − γ21)

=
γi1
ξ
, (1.140)
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which implies that the bath spin-orbital, |χ̃2⟩, is simply the renormalized γe1 vec-

tor [214],

|χ̃2⟩ =
L∑
i=2

Pi2 |χi⟩ =
L∑
i=2

γi1√
γ†
e1γe1

|χi⟩ . (1.141)

At this point, we choose the subspace |χ1⟩ ⊕ |χ̃2⟩ to define the embedding cluster,

while the remainder, {|χ̃E⟩}3≤E≤L, is designated as the cluster’s environment (not

to be confused with fragment’s environment !). The construction of the cluster and

its environment is depicted in Figure 1.2. Unfortunately, there is in general a buffer

sector γ̃E2, connecting the cluster to its environment through the bath orbital, which

is not convenient for our purposes, because the desired outcome is strict disentan-

glement of the cluster from its environment. However, when P is applied to an

idempotent matrix, γ̃E2 vanishes, which is exactly what we want. This is easily

verified from Eq. (1.137) by setting γ̃2 = γ̃,

 γ2
11 + ξ2 ξ(γ11 + γ̃22) ξγ̃†

E2

ξ(γ11 + γ̃22) γ̃2
22 + ξ2 γ̃22γ̃

†
E2 + γ̃†

E2γ̃EE

ξγ̃E2 γ̃E2γ̃22 + γ̃EE γ̃E2 γ̃E2γ̃
†
E2 + γ̃2

EE

 =

γ11 ξ 0†
E1

ξ γ̃22 γ̃†
E2

0E1 γ̃E2 γ̃EE

 , (1.142)

and making elementwise comparison. Since ξ ̸= 0 (otherwise, the fragment would

already be disentangled from its environment, and there would be no need for per-

forming a transformation), this implies among other things,

ξγ̃E2 = 0E1 ⇒ γ̃E2 = 0E2,

ξ(γ11 + γ̃22) = ξ ⇒ γ11 + γ̃22 = 1.
(1.143)

Therefore, any mean-field 1RDM will have a block-diagonal structure in the

transformed basis,

γ̃Φ0 =

γ11 ξ 0†
E1

ξ 1− γ11 0†
E2

0E1 0E2 γ̃EE

 , (1.144)

where the embedding cluster will be a closed subsystem (with one electron per spin,

i.e. two in total), completely disentangled from its environment.

Judging from the structure of the matrix in Eq. (1.144), we can show22 that

|Φ0⟩ has a structure similar to that of a CASCI wavefunction. Firstly, from the

22See Eqs. (33) - (36) in Ref. [105], and the discussion therein.
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Impurity

Impurity's

|Ψ0⟩ ≈ |Φ0⟩

Embedding cluster

Impurity

bath

Cluster's
environment

environment

Many-electron system 
(lattice representation)

Impurity

bath

|Ψ0⟩ = ∑I
CI |ΦI⟩

entanglement with
cluster's environment

cluster is disentangled

Figure 1.2: Construction of the embedding cluster for a mean-field description (top

right) and a general (e.g. FCI) description of the full system (bottom right).

cluster spin-orbitals {|χ1⟩ , |χ̃2⟩} we form the analog of an active space in |Φ0⟩. If

we also diagonalize γ̃EE , we obtain a new set of cluster’s environment spin-orbitals

{|χ̆E⟩}1≤E≤L−2. For a given spin, the first N/2− 1 of these will be fully occupied in

|Φ0⟩, forming the so-called unentangled occupied environment or core spin-orbitals,

while rest, L − N/2, belong to unentangled unoccupied environment spin-orbital

subspace. Then, |Φ0⟩ can be factorized exactly,

|Φ0⟩ = |ΦC⟩|ΦE⟩, (1.145)

where
∣∣ΦC〉 is the embedding cluster wavefunction, which can be written either as

a single Slater determinant from the occupied spin-orbitals in |Φ0⟩ that diagonalize

the cluster’s 1RDM (i.e. the top-left subblock of Eq. (1.144)), or expanded in the

“impurity+bath” representation directly as follows [105],

|ΦC⟩ =
ξ2

1− γ11
|χ1↑χ1↓⟩+ (1− γ11) |χ̃2↑χ̃2↓⟩+ ξ (|χ1↑χ̃2↓⟩+ |χ̃2↑χ1↓⟩) , (1.146)

and
∣∣ΦE〉 is the cluster’s environment wavefunction, given as a Slater determinant

from the unentangled occupied environment spin-orbitals,

|ΦE⟩ =
∣∣χ̆1↑χ̆1↓χ̆2↑χ̆2↓ . . . χ̆(N/2−1)↑χ̆(N/2−1)↓

〉
. (1.147)
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For comparison, different representations of |Φ0⟩, together with their transforma-

tions, are shown in Figure 1.3.

|φ1↑⟩
|φ1↓⟩

|φN/2↑⟩
|φN/2↓⟩

⋮

|φN/2+1↑⟩
|φN/2+1↓⟩

⋮

| χ̆1↑⟩
| χ̆1↓⟩

|χ1↑⟩
|χ1↓⟩

⋮

| χ̃2↑⟩
| χ̃2↓⟩

| χ̆N/2↑⟩
| χ̆N/2↓⟩

⋮

Representations of  and the transformations between them|Φ0⟩

⋮

|χ1↑⟩
|χ1↓⟩
|χ2↑⟩
|χ2↓⟩

|χL↑⟩
|χL↓⟩

environment

Fragment

Fragment's

Fragment

bath

Occupied

Virtual

spin-orbitals

spin-orbitals

Unentangled
occupied
environment

Unentangled
unoccupied
environment

Householder
transformation

Diagonalization
of γΦ0

Molecular
spin-orbital basis

Local 
basis

Embedding 
basis

Rotation within the occupied spin-orbital subspace

Active
space

Figure 1.3: Representations of the Slater determinant different spin-orbital bases

(inspired by Figure 3 in Ref. [17]). In the molecular spin-orbital basis (left, Aufbau

ordering), |Φ0⟩ is a genuine Slater determinant. In the local basis (middle), |Φ0⟩ has

a linear expansion in all possible configurations (like CI, but with localized spin-

orbitals). This means that both fragment (middle, red) and environment (middle,

blue) actually span several Slater determinants (like in Eq. (1.122)). In the embed-

ding basis (right), |Φ0⟩ is fully expanded in the Slater determinant basis consisting

of spin-orbital combinations from the impurity+bath “active space” (orange box in

the figure), with all determinants sharing the same set of fully occupied orbitals

(right, blue), just like CASCI (cf. Figure 1.1).

Once we have obtained the disentangled embedding cluster using the Householder

transformation on an idempotent γ, we may project any operator inside the cluster.

This is straightforwardly expressed in the second quantization formalism by changing

the creation/annihilation operators to the transformed basis (using Eq. (1.131)),

d̂†iσ =
L∑

j=1

Pjiĉ
†
jσ d̂iσ =

L∑
j=1

Pjiĉjσ (1.148)

and keeping only the impurity and bath operators {ĉ†1σ = d̂†1σ, ĉ1σ = d̂1σ, d̂
†
2σ, d̂2σ}.
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1.3.2.4 Embedding in practice, step 2: Solving the effective Hamiltonian

and obtaining the energy

The exact decomposition for a mean-field (or non-interacting) system in Eq. (1.144)

provides a basis for an approximate embedding of interacting systems. The idea is

to restore the electron interactions either inside the entire impurity+bath cluster

(this is referred to as the interacting bath - IB approach), or only on the impurity

(noninteracting bath - NIB approach), while the cluster’s environment is kept as

a mean field. The interacting cluster wavefunction is then obtained by solving the

embedding Schrödinger equation,

Ĥemb.|ΨC⟩ = EC|ΨC⟩. (1.149)

The embedding Hamiltonian with IB reads as,

Ĥemb. =
2∑

i,j=1

∑
σ∈{↑,↓}

(h̃ij − µimpδijδi1) d̂
†
iσd̂jσ

+
1

2

2∑
i,j,k,l=1

∑
σ,σ′∈{↑,↓}2

g̃ijkl d̂
†
iσd̂

†
jσ′ d̂lσ′ d̂kσ,

(1.150)

where the one- and two-electron integrals in the above equation are expressed in the

Householder-transformed basis {|χ̃i⟩}1≤i≤L. Note that interactions with the unen-

tangled occupied environment orbitals can be added to the one-electron integrals,

h̃ij ←− h̃ij +

N/2−1∑
E=1

[
2 ⟨χ̃iχ̆E |χ̃jχ̆E⟩ − ⟨χ̃iχ̆E |χ̆E χ̃j⟩

]
. (1.151)

The chemical potential µimp is introduced as an ad-hoc variable which corrects the

occupation of the impurity (lattice site with index 1), such that the following con-

straint is fulfilled,

⟨ΨC(µimp)|n̂1|ΨC(µimp)⟩ = ⟨Φ0|n̂1|Φ0⟩, (1.152)

where Φ0 is the full-size reference Slater determinant. Then, once we have performed

the embedding calculation on site 1, we repeat the same process for other lattice

sites. For each site 1 ≤ i ≤ L, we obtain the interacting cluster wavefunction ΨCi

that fulfills the constraint in Eq. (1.152), which then implies that the total number

of electrons, when summed up from all the interacting clusters, should be conserved,

L∑
i=1

⟨ΨCi(µimp)|n̂i|ΨCi(µimp)⟩ = N. (1.153)
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Note that in systems with symmetry, it is sufficient to restrict the embedding cal-

culations to the asymmetric unit. For example, in Ht-DMFET of the uniform 1D

Hubbard lattice, due to translational invariance, only a single embedding calcula-

tion with chemical potential µimp that ensures correct lattice filling n = N/L is

necessary [105].

Recently, in local potential functional embedding theory (LPFET) [204], which

established a formally exact link between DMET and KS-DFT for Hubbard lattices,

µimp was related to the Hxc potential of the KS lattice. In the approximate LPFET

scheme,

µimp(n) ≈ vHxc(n) (1.154)

is the constraint that is made, which is fulfilled self-consistently, such that the uni-

form KS Hubbard Hamiltonian and the embedding Hamiltonian reproduce the same

lattice filling n. In second quantization, the uniform KS Hubbard Hamiltonian with

the Hxc potential vHxc(n) reads as,

ĤHubb.
KS = −t

L∑
i=1

∑
σ∈{↑,↓}

(ĉ†iσ ĉi+1σ + ĉ†i+1σ ĉiσ)− (µ− vHxc(n))
L∑
i=1

∑
σ∈{↑,↓}

ĉ†iσ ĉiσ,(1.155)

where t is the hopping integral, and µ is the physical chemical potential of the lattice

(see Eq. (2.6), and the discussion afterwards). In LPFET, which was designed in

the noninteracting bath (NIB) formalism, the embedding Hamiltonian reads as,

Ĥemb. =
2∑

i,j=1

∑
σ∈{↑,↓}

(h̃ij(n)− µimp(n)δijδi1) d̂
†
iσd̂jσ + Ud̂†1↑d̂1↑d̂

†
1↓d̂

†
1↓, (1.156)

where h̃ij(n) are now the Householder-transformed kinetic energy integrals (first

term on the right-hand side of Eq. (1.155)). LPFET presents a way to describe strong

correlation within the KS-DFT formalism, which is a challenge for approximate

functionals in DFT (see Subsection 1.2.5). Let us mention that there are similar

methods to LPFET, which make use of the KS-DFT formalism and embedding,

namely the density embedding theory (DET) by Bulik et al. [205, 206] and self-

consistent density-functional embedding (SDE) by Mordovina et al. [207]. Such a

connection between DFT and embedding will also be discussed later on in Chapter 8

for the description of excited states.
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Finally, once the embedding strategy of choice converges, we may compute ap-

proximations for 1RDM and 2RDM elements, which are building blocks for evalu-

ating the ground-state energy. In the democratic partitioning approach [17, 216], a

given RDM element is approximated as an average over all embedding clusters from

which we can extract it. For example, a 1RDM element γij of the interacting system

can be approximately obtained either from the cluster based on lattice site i or the

one based on lattice site j,

γij ≈ ⟨ΨCi |ĉ†iσ ĉjσ|ΨCi⟩, or γij ≈ ⟨ΨCj |ĉ†iσ ĉjσ|ΨCj⟩. (1.157)

Then, the value of γij that is used in DMET expectation values is obtained as the

arithmetic average,

γij ≈
1

2

∑
t∈{i,j}

⟨ΨCt |ĉ†iσ ĉjσ|ΨCt⟩. (1.158)

An analogous approach is made for the 2RDM elements, where now the average is

over four possible clusters (due to four-index elements),

Γ
(2)
ijkl ≈

1

4

∑
t∈{i,j,k,l}

∑
σ,σ′∈{↑,↓}2

⟨ΨCt |ĉ†iσ ĉ†jσ′ ĉlσ′ ĉkσ|ΨCt⟩. (1.159)

1.3.2.5 Further discussions on DMET

The single-impurity strategy presented here extends seamlessly to multiple-impurity

fragments [111], either with the use of the SVD as in original DMET [215], or with

the Block-Householder transformation [217], which is a generalization of the regular

Householder transformation. In any case, for LF fragment spin-orbitals, one obtains

the same amount (LF ) of bath spin-orbitals, and, in the idempotent 1RDM, a dis-

entangled cluster containing LF electrons in total. Although the multiple-impurity

versions of the two transformations no longer coincide, it was shown recently that the

bath spin-orbitals afforded by either transformation span the same subspace [111],

even when the full-size reference 1RDM is not idempotent anymore [214].

Regarding the self-consistency of the approach, the single-shot embedding with

impurity occupation matching is just the simplest possibility. Apart from the scheme

of LPFET [204] (see also DET[205, 206] and SDE [207] mentioned above), embed-

ding can be made self-consistent by enforcing different constraints. In the standard
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implementation of DMET, one tries to match the “high-level” interacting cluster

and “low-level” mean-field 1RDM elements in the fragment subspace by introducing

a non-local correlation potential to the full-size mean-field Hamiltonian [17]. Ener-

getics may be improved, but this is an ill-conditioned problem, since the 1RDM of

an interacting system is non-idempotent, which means that it is not representable by

a mean-field 1RDM. Also, the democratic partitioning in Eqs. (1.158) and (1.159) is

not the only possible solution for computing approximate energies. There is actually

no clear consensus on how to best reconstruct global expectation values from local

fragments. In this respect, a recent review by Nusspickel et al. [218] presents some

alternative approaches with better convergence properties with respect to cluster

size than the democratic partitioning. Concerning improvements of the convergence,

modifications of DMET with different fragmentations and matching constraints have

also been proposed. For example, Bootstrap embedding (BE) [219, 220, 221] strives

to ameliorate errors arising from fragment edges by using overlapping fragments,

and matching local properties from different partitionings.

DMET is a recent and promising method, undergoing active research in last

years. Several studies and extensions of DMET for specific systems and regimes have

been published, such as spin systems [222, 223, 224], single-ion magnets [225], non-

equilibrium dynamics [226], excited states [106, 227] and finite temperature [216],

to name a few. It has also been rigorously investigated from a mathematical point

of view [228, 229]. In addition, is worth mentioning, that quite recently, methods

that are similar in spirit to DMET but are derived from the exact factorization

approach of the electronic wavefunction, have been proposed [230, 231]. We can

expect more novel applications of DMET (and similar methods) in the near future.

In my opinion, it would be interesting to apply DMET to chemical compounds with

emerging potential for industrial applications in the next decades. For instance,

a DMET study of Frustrated Lewis Pairs [232, 233, 234], which have been gaining

interest as possible metal-free catalysts, could be illuminating with regard to gaining

new insights in chemistry, and on performance of the method.



Chapter 2

Model systems and Model

Hamiltonians

This short chapter is reserved for introducing model systems, which are extensively

used in the later chapters of this thesis work (see Chapters 6, 7 and 8). Firstly, what

are model systems and why are they useful? The main focus of most of the meth-

ods introduced in the previous chapter is solving the ab initio electronic structure

problem described by the electronic Hamiltonian within the Born-Oppenheimer ap-

proximation (Eq. (1.7)). As explained in that chapter, computationally affordable

standard methods, such as HF and KS-DFT, which reduce the electronic structure

problem to a set of single-electron equations, are inadequate for describing strongly

correlated systems of interest to chemistry and physics. On the other hand, standard

wavefunction methods that are more suitable for dealing with various complexities

of the many-electron problem, such as CASSCF in quantum chemistry, are usually

expensive, and a great deal of effort has gone into the development of quantum

embedding methods which aim at cleverly combining different approaches, like FCI

for the embedding cluster and HF for the full system. In order to facilitate the

development of new methods, it is crucial to look for model systems, which are

simplified versions of “real-life” systems, containing only those features that are es-

sential for the description the problem we are interested in. One such example we

have already mentioned in Subsection 1.3.2 are lattice models, which are introduced

in more detail here. It turns out that even very simple models with only a handful of

tunable parameters offer surprising theoretical insights into properties of molecules
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and materials.

Let us now gradually develop the discussion about models, starting from the ab

initio electronic Hamiltonian in Eq. (1.7). Using the second quantization formalism,

we can write a more compact representation as follows [28],

Ĥe ≡
∑
ij

hij

∑
σ∈{↑,↓}

ĉ†iσ ĉjσ +
1

2

∑
ijkl

gijkl
∑

σ,σ′∈{↑,↓}2
ĉ†iσ ĉ

†
jσ′ ĉlσ′ ĉkσ, (2.1)

where i now refers to an orbital (not a spin orbital) in an arbitrary orthonormal

basis, and

hij =

∫
dr χ∗

i (r)

(
−1

2
∇2

r −
M∑

A=1

ZA

|r−RA|

)
χj(r), (2.2)

and

gijkl =

∫
dr

∫
dr′

χ∗
i (r)χ

∗
j(r

′)χk(r)χl(r
′)

|r− r′| , (2.3)

are known as one- and two-electron integrals, respectively. As we see, the representa-

tion of the electronic Hamiltonian in Eq. (2.1) depends on the basis of single-electron

orbitals {χk(r)}k. This is especially useful for deriving model Hamiltonians, where

based on a small number of assumptions, certain integrals are omitted and others

simplified.

For example, in single-orbital lattices, which are simplifications of bulk solids, the

basis is given by lattice sites (more precisely Wannier functions, or localized orbitals

for chemists). One of the well-known models is the Hubbard model [69, 70, 71, 72],

which is used in condensed-matter physics for studying metal-insulator transitions

and high-temperature superconductivity. In this model, two assumptions are made,

1. Based on overlap arguments, one-electron integrals beyond nearest neighbors

are omitted. Nearest-neighbor couplings describe electron delocalization across

the lattice, which favors metallic behavior.

2. Electrons have only (super) short range interactions, i.e., when they are on

the same site. Longer-range interactions are neglected. This favors insulating

behavior in the model by pushing the electrons to localize one on each site.

This minimal set of assumptions turns out to be essential for describing the Mott

metal-insulator transition, which cannot be described by the conventional band
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structure theory. This effect is most easily seen in the one-dimensional (1D) Hub-

bard model, whose one- and two-electron integrals are simplified as,

hij = −t(δj(i+1) + δj(i−1)) ; t > 0, (2.4)

gijkl = Uδijδikδil. (2.5)

The uniform 1D Hubbard Hamiltonian is given as,

ĤHubb. = T̂ + Û − µN̂

1D≡ −t
L∑
i=1

∑
σ∈{↑,↓}

(ĉ†iσ ĉi+1σ + ĉ†i+1σ ĉiσ) + U

L∑
i=1

n̂i↑n̂i↓ − µ

L∑
i=1

∑
σ∈{↑,↓}

n̂iσ,
(2.6)

where t is called the hopping integral, which represents delocalization between near-

est neighboring sites (model version of the kinetic energy operator), U is called the

on-site repulsion, µ is the chemical potential (which controls the lattice filling), and

n̂iσ = ĉ†iσ ĉiσ is the spin-density operator for the site i. In the thermodynamic limit

L → ∞, there exists an exact ground-state solution to the Hubbard Hamiltonian,

which is known as the Bethe Ansatz [235] solution. The exact solution shows that the

half-filled model (N = L) is insulating for any nonvanishing site repulsion (U > 0),

with each site accommodating exactly one electron. For the non-interacting limit

(U = 0) and any lattice filling (n = N/L), the model reduces to the tight-binding

(or Hückel) model, in which electrons are allowed to freely flow across lattice sites as

in a metal. Metallic behavior is also present in the interacting (U > 0) model away

from half-filling. Different boundary conditions can be imposed, such as periodic

ĉL+1σ = ĉ1σ, antiperiodic ĉL+1σ = −ĉ1σ, and open ĉL+1σ = 0 boundary conditions.

For finite L <∞ models, each condition leads to different energies and degeneracies

in the non-interacting limit. An example of such a model used in this thesis is a

6-site Hubbard model with 6 electrons and open boundary conditions, which will be

used in Chapter 8 on embedding ensembles of ground and excited states.

Also a very popular model is the two-site Hubbard model, known as the Hubbard

dimer, with the Hamiltonian that reads,

ĤHdim ≡ −t
∑

σ∈{↑,↓}

(ĉ†0σ ĉ1σ + ĉ†1σ ĉ0σ) + U

1∑
i=0

n̂i↑n̂i↓ +
∆v

2
(n̂1 − n̂0), (2.7)
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where n̂i = n̂i↑ + n̂i↓. Adding a site-dependent potential ∆v ̸= 0 (often labelled

as ∆vext in analogy with the ab initio external potential, see Eq. (1.89)) turns it

into an asymmetric dimer, which makes it useful as a toy system for studying exact

and approximate DFT, and introduces additional physics, such as charge-transfer

excitations. In recent years, the Hubbard dimer has been the model of choice for

studying features and limitations of DFT and TD-DFT, and also for investigating

new concepts [73, 74, 75, 76, 77, 78]. It is also used extensively throughout this

thesis in the context of ensemble DFT (see Chapters 6,and 7).



Chapter 3

Time-dependent approaches to

electronic excitations

In the present chapter, we turn our attention to electronic excited states. For a

large part of the last decades, development of successful theories and efficient com-

putational methods for targeting excited states was lagging behind ground-state

counterparts. As we have discussed in chapter 1, there is no one-size-fits-all method

for solving ground-state problems. In the world of excited states, the diversity of

methods is even greater, largely because of different types of excitations of interest

to physicists and chemists. One possible distinction we can make, is that between

neutral and charged electronic excitations. In neutral excitations, the system has

the same number of electrons before and after the transition between stationary

states. In molecules, transitions between low-lying states are crucial for describing,

for example, photochemical activities. In insulators and semiconductors, an elec-

tron can be excited by a photon of just enough energy to make an exciton - a bound

electron-hole pair. Neutral excitation energies can be obtained experimentally from

many spectroscopy measurements, as diverse as absorption specroscopy (for exam-

ple, UV-visible spectroscopy, which is routinely used for conjugated molecules in

organic chemistry [236, 237]), or scattering experiments, such as inelastic X-ray

scattering, which is intensively used for studying electronic properties of solids [9].

In charged processes, the system either loses (ionization) or gains an electron (affin-

ity). Ionization is measured via photoemission [238], where photons of high-enough

energy to produce an unbound electron-hole pair are directed at the experimental
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sample. In contrast, affinity is measured by directing a beam of electrons of certain

energy in the inverse photoemission experiment [239].

A large variety of computational methods have been developed for targeting neu-

tral and/or charged excitations, based on either time-dependent or time-independent

theoretical formalisms. Although the two types of excitations are, from an experi-

mental point of view, very different phenomena occuring under distinct conditions,

we will later see that theoretically, it is possible to develop an ensemble DFT formal-

ism that unifies the description of both processes (see Chapters 5 and 7). Although

the ensemble formalism is attractive from a computational point of view, it is cur-

rently not routinely used due to several formal and practical challenges, which are

discussed in Chapters 6.

This chapter is reserved for an overview of two commonly used time-dependent

methods for electronic excitations. In Section 3.1, we review the time-dependent

density-functional theory (TD-DFT) which is nowadays the workhorse for com-

puting neutral excitations in molecules and solids [2, 79, 80]. In Section 3.2, we

introduce the formalism of many-body Green’s functions, which is well-known in

physics, and discuss two standard Green’s function methods for charged and neu-

tral excitations, namely the GW method and the Bethe-Salpeter equation method,

respectively. Time-independent approaches for excitations are not covered here, but

are instead reserved for Chapters 4 and 5.
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3.1 Time-dependent Density-Functional Theory

3.1.1 Introduction

Time-dependent density-functional theory (TD-DFT) is the most popular method

for describing neutral excitations and studying time-dependent phenomena. Sim-

ilarly to DFT for ground states, it relies on a rigorous foundation known as the

Runge-Gross (RG) theorem [1] that establishes observables as functionals of the

time-dependent density and initial wavefunction. In traditional TD-DFT, the de-

pendence on time is introduced into the electronic Hamiltonian via a (scalar) external

potential,

Ĥ(t) = T̂ + Ŵee +

∫
dr vext(r, t)n̂(r). (3.1)

We consider the corresponding time-dependent (td) Schrödinger equation,

i
∂ |Ψ(t)⟩

∂t
= Ĥ(t) |Ψ(t)⟩ , (3.2)

which governs the evolution of the system with time, given some initial state |Ψ(t0)⟩.
Furthermore, we will assume that the external potential does not contain any

derivatives with respect to time (this is true for scalar potential of uniform elec-

tric field, but not with vector potential of magnetic field). It is elementary to

show that if two such potentials differ by a purely td function, in the sense that

v′ext(r, t) = vext(r, t) + Q(t), the corresponding td states differ by a global phase

factor, Ψ[v′ext](t) = e−iΘ(t)Ψ[vext](t), where Θ(t) =
∫ t

0
Q(τ)dτ . A more general td

Hamiltonian would include couplings to both external electric and magnetic fields.

However, since magnetic effects are much smaller in physical phenomena involving

molecules [2], we will limit our discussion to Hamiltonians with time-dependence

coming only from uniform electric fields, for which the RG theorem was initially

developed.

3.1.2 Runge-Gross Theorem

As we saw for ground-state DFT, there exists an invertible map between external

potentials and ground-state densities: n0 = nΨ0[vext]. In 1984, Runge and Gross [1]

have shown that a similar relation exists between time-dependent scalar external
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potentials, and time-dependent densities, provided that an initial quantum state |Ψ0⟩
of the system is given. Similarly to the HK theorems, the proof of the RG theorem

consists of two steps, the only difference being the use of the current density in place

of the ground-state wavefunction as intermediate quantity between td potentials and

densities. Furthermore, it assumes vext(r, t) is Taylor-expandable around the initial

time. Briefly, in the first step, it is shown that for two td potentials that differ

by more than a time-dependent, but spatially-independent constant, v′ext(r, t) −
vext(r, t) ̸= Q(t), the corresponding current densities are different, j(r, t) ̸= j′(r, t).

In the second step, it is shown, using current densities and their gradients, that

if v′ext(r, t) − vext(r, t) ̸= Q(t), then the td densities cannot be the same, n′(r, t) ̸=
n(r, t). This establishes the invertible map: n(r, t) = n[vext,Ψ0](r, t)←→ vext(r, t) =

vext[n,Ψ0](r, t), and builds the foundation of TD-DFT.

3.1.3 Linear Response TD-DFT and Casida Equations

3.1.3.1 Time-dependent perturbation theory and linear response func-

tion

Most practical applications of TD-DFT are implemented in the linear response

regime (LR-TD-DFT). More generally, linear response theory deals with systems

whose output - the linear response, is proportional with respect to the external in-

put. In the context of TD-DFT, the input is the td external potential, which is

switched on at a certain time, while the output of interest is the td density. As we

will show, relevant equations can be derived within perturbation theory1. We write

our td Hamiltonian as,

Ĥ(t) = Ĥ0 + V̂1(t), (3.3)

where Ĥ0 is any static (time-independent) Hamiltonian, and V̂1 is any td external

perturbation. We will consider the external field sufficiently weak such that we

can expand the td wavefunction of the fully perturbed system in a power series

of the unperturbed wavefunctions. The idea is that the system is in its ground

state at t = 0, and then, we probe it gently with the external field. Quantum

1For reference, see the chapter on Time-Dependent Perturbation Theory in Principles of Quan-

tum Mechanics by R. Shankar [240]. See also the chapter on TD-DFT in Ref. [159].
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mechanical problems with one time-independent component and a td perturbation

are best tackled within the “interaction picture”. It means that all the operators are

transformed by a unitary transformation: Ô(I)(t) = eiĤ0tÔ(t)e−iĤ0t, and similarly

wavefunctions,
∣∣Ψ(I)(t)

〉
= eiĤ0t |Ψ(t)⟩. Then it is simple to show that the time-

evolution in the interaction picture is governed by a modified Schrödinger equation,

i
∂
∣∣Ψ(I)(t)

〉
∂t

= V̂
(I)
1 (t)

∣∣Ψ(I)(t)
〉
. (3.4)

For the remainder of this section, superscripts (I) are dropped unless necessary. The

td wavefunction is then given by the time-ordered unitary evolution operator acting

on the ground state of isolated system,

|Ψ(t)⟩ = T e−i
∫ t
0 V̂1(t′)dt′ |Ψ0⟩ . (3.5)

In linear response theory, the expansion of this operator only to first order is con-

sidered,

|Ψ(t)⟩ ≈ (1− i

∫ t

0

V̂1(t
′)dt′) |Ψ0⟩ . (3.6)

Consequently the time evolution of any observable Ô(t), will be approximated as

⟨Ô(t)⟩Ψ(t) ≈ ⟨Ô(t)⟩Ψ0 − i

∫ t

0

dt′⟨Ψ0|[Ô(t), V̂1(t
′)]|Ψ0⟩

= ⟨Ô(t)⟩Ψ0 − i

∫ ∞

0

dt′θ(t− t′)⟨Ψ0|[Ô(t), V̂1(t
′)]|Ψ0⟩,

(3.7)

where θ(x) is the Heaviside step function. In particular, if Ô(t) = n̂(r, t) =

eiĤ0tn̂(r)e−iĤ0t and the external perturbation operator is multiplicative, i.e. V̂1(t) =∫
dr v1(r, t) n̂(r, t), we obtain the following formula for the first-order approximation

to the td density response,

∆n(r, t) = n(r, t)− nΨ0(r)

≈ −i
∫ ∞

0

dt′
∫

dr′ θ(t− t′)⟨Ψ0|[n̂(r, t), n̂(r′, t′)]|Ψ0⟩v1(r′, t′)

=

∫ ∞

0

dt′
∫

dr′χ(r, t, r′, t′)v1(r
′, t′),

(3.8)

which becomes exact in the limit of an infinitesimally small perturbation v1 → δv1,

such that ∆n→ δn,

δn(r, t) =

∫ ∞

0

dt′
∫

dr′χ(r, t, r′, t′)δv1(r
′, t′). (3.9)
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The above equation can be seen as a matrix multiplication δn = χδv1, where the

operator χ, acting on δv1, is defined as the linear response function or susceptibility2,

χ(r, t, r′, t′) =
δn(r, t)

δv1(r′, t′)

∣∣∣∣
v1=0

= −iθ(t− t′)⟨Ψ0|[n̂(r, t), n̂(r′, t′)]|Ψ0⟩. (3.10)

The response function carries information about many properties, in particular, ex-

citation energies of the system. In practice, we just have to transform it to the

more useful frequency domain. Expanding the commutator, and inserting the reso-

lution of the identity for the unperturbed states {ΨI}I between density operators,

we obtain,

χ(r, t, r′, t′) =− iθ(t− t′)
∑
I

⟨Ψ0|n̂(r, t)|ΨI⟩⟨ΨI |n̂(r′, t′)|Ψ0⟩

+ iθ(t− t′)
∑
I

⟨Ψ0|n̂(r′, t′)|ΨI⟩⟨ΨI |n̂(r, t)|Ψ0⟩.
(3.11)

By plugging in the density operators in the interaction representation, n̂(r, t) =

eiĤ0tn̂(r)e−iĤ0t, and rearranging the phases e±iEI t, we can show that the linear re-

sponse depends only on the time difference τ = t− t′,

χ(r, r′, τ) =− iθ(τ)
∑
I

⟨Ψ0|n̂(r)|ΨI⟩⟨ΨI |n̂(r′)|Ψ0⟩e−iωIτ

+ iθ(τ)
∑
I

⟨Ψ0|n̂(r′)|ΨI⟩⟨ΨI |n̂(r)|Ψ0⟩eiωIτ ,
(3.12)

where ωI = EI −E0 is the neutral excitation energy of the isolated system (which is

described by Ĥ0). Changing to the frequency domain can now be done with Fourier

transform. The convolution theorem allows us to obtain the frequency-dependent

density response,

δn(r, ω) =

∫
dr′χ(r, r′, ω)δv1(r, ω), (3.13)

where the linear response function in Fourier space looks like (see Appendix D for

relevant integrals),

χ(r, r′, ω) =
∑
I

⟨Ψ0|n̂(r)|ΨI⟩⟨ΨI |n̂(r′)|Ψ0⟩
ω − ωI + i0+

−
∑
I

⟨Ψ0|n̂(r′)|ΨI⟩⟨ΨI |n̂(r)|Ψ0⟩
ω + ωI + i0+

.

(3.14)

2In fact, χ(r, t, r′, t′) is also called retarded response function, which is nonzero strictly for t′ ≤ t,

that is, when effect at time t (response) follows the cause (external field) at previous times t′.
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As we can see, the poles of χ coincide with excitation and de-excitation energies.

This expression for linear response is valid for any system. In particular, for a

noninteracting KS system, the linear response contains excitations from the KS

ground state, Φ0. Since n̂(r) is a one-electron operator, only single excitations

“survive”, i.e.,

χKS(r, r′, ω) =2
occ.∑
i

virt.∑
a

φ∗
i (r)φa(r)φ

∗
a(r

′)φi(r
′)

ω − (εa − εi) + i0+

− 2
occ.∑
i

virt.∑
a

φ∗
i (r

′)φa(r
′)φ∗

a(r)φi(r)

ω + (εa − εi) + i0+
,

(3.15)

and the excitation energies reduce to orbital energy differences.

3.1.3.2 Connection between response functions and the Casida equation

Just like in the ground-state DFT, TD-DFT is made practical by connecting the

true interacting system to the KS one. In LR-TD-DFT, the linear density response

of both systems is the same, i.e. δn(r, ω) = δnKS(r, ω), if the mapping is exact.

According to Eq. (3.13), this implies∫
dr′χ(r, r′, ω)δv1(r, ω) =

∫
dr′χKS(r, r′, ω)δvKS(r, ω), (3.16)

where δvKS(r, ω) is the perturbation to the ground-state KS potential. To make the

above equation workable, we turn to the KS system. Assuming the time evolution

starts from a nondegenerate ground state3, the td KS equations read as,(
−∇

2
r

2
+ vKS[n](r, t)

)
φk(r, t) = i

∂φk(r, t)

∂t
, (3.17)

where the td KS potential and density at time t read as,

vKS[n](r, t) = vext(r) + v1(r, t) + vHxc[n](r, t), (3.18)

and

n(r, t) =
N∑
k=1

|φk(r, t)|2. (3.19)

3In general, the td KS potential will depend not only on the td density, but also on initial states

of the interacting and KS system, i.e. vKS = vKS[n,Ψ0,Φ0]. If initial state is a nondegenerate

ground state such that nΨ0 = nΦ0 , then the potential only depends on density vKS = vKS[n].



72 3.1. TIME-DEPENDENT DENSITY-FUNCTIONAL THEORY

Unlike the td potential of the interacting sytem, which depends on time t, the td

KS potential also depends, through the density, on previous times t′ ≤ t (memory

effect). Therefore, to find the relation between the response functions χ and χKS,

we go back to the time domain, and make use of the chain rule of differentiation.

First of all, because the interacting and KS td densities are the same, (in the time

domain, δn(r, t) = δnKS(r, t)) we realize that,

χ(r, t, r′, t′) =
δn(r, t)

δv1(r′, t′)
=

δnKS(r, t)

δv1(r′, t′)
. (3.20)

By the chain rule, the rightmost term of the above equation reads,

δnKS(r, t)

δv1(r′, t′)
=

∫
dr′′
∫

dt′′
δnKS(r, t)

δvKS(r′′, t′′)
·
(
δvKS(r′′, t′′)

δv1(r′, t′)

+

∫
dr′′′

∫
dt′′′

δvHxc[n](r′′, t′′)

δn(r′′′, t′′′)
· δn(r′′′, t′′′)

δv1(r′, t′)

)
,

(3.21)

where

δvKS(r, t)

δv1(r′, t′)
= δ(r− r′)δ(t− t′), (3.22)

and the functional derivative of the Hxc potential with respect to the td density is

defined as the Hartree-exchange-correlation (Hxc) kernel4,

fHxc(r, t, r
′, t′) :=

δvHxc[n](r, t)

δn(r′, t′)
. (3.23)

By plugging the functional derivative definitions χ(r, t, r′, t′) = δn(r, t)/δv1(r
′, t′)

and χKS(r, t, r′, t′) = δnKS(r, t)/δvKS(r′, t′) into Eq. (3.21), we obtain a Dyson-like

equation relating the two response functions,

χ(r, t, r′, t′) =

∫
dr′′
∫

dt′′ χKS(r, t, r′′, t′′) ·
(
δ(r′′ − r′)δ(t′′ − t′)

+

∫
dr′′′

∫
dt′′′fHxc(r

′′, t′′, r′′′, t′′′) · χ(r′′′, t′′′, r′, t′)

)
.

(3.24)

4Just like response functions, the Hxc kernel should depend only on time difference (causality),

i.e. fHxc(r, t, r
′, t′) = fHxc(r, r

′, t − t′). However, this makes it difficult do define it as a second

functional derivative of some Hxc density functional. One possibility for is to start from the

Frenkel-Dirac action [155, 241], which however has problems associated with causality. There have

been many rigorous redefinitions of the action such as Keldysh pseudo-time formalism [242, 243],

or actions with the Berry phase [244], all of which attempt to derive causal equations of motion.
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In the frequency domain, it reads,

χ(r, r′, ω) = χKS(r, r′, ω)

+

∫
dr′′
∫

dr′′′χKS(r, r′′, ω)fHxc(r
′′, r′′′, ω)χ(r′′′, r′, ω).

(3.25)

Casida has shown [10] that Eq. (3.25) can be recast into a matrix representation in

the occupied-virtual product (ia, jb) space of KS orbitals, also known as transition

space. The so-called Casida equation looks like5,[
A(ω) B(ω)

B∗(ω) A∗(ω)

][
X(ω)

Y(ω)

]
= ω

[
−1 0

0 1

][
X(ω)

Y(ω)

]
, (3.26)

where the A and B matrix elements read,

Aia,jb(ω) = δijδab(εa − εi) + ⟨φiφb|fHxc(ω)|φaφj⟩,

Bia,jb(ω) = ⟨φiφj|fHxc(ω)|φaφb⟩.
(3.27)

This is a generalized eigenvalue problem, whose solutions are the interacting system’s

excitation energies ω with response eigenvectors [X(ω),Y(ω)], and de-excitation

energies −ω with response eigenvectors [Y∗(ω),X∗(ω)].

The size of the matrix in Eq. (3.26) is equal to (2×Nocc×Nvirt)
2. The presence

of virtuals entails additional computational costs compared to the ground-state KS-

DFT calculations, for example. This is also one of the reasons why ensemble DFT,

in particular the Theophilou-Gross-Oliveira-Kohn (TGOK) DFT [86, 87, 88, 90, 89]

is an appealing alternative, which will be discussed in more detail in Chapters 4

and 6. Because of frequency dependence in the Hxc kernel, there are more solutions

than the size of the matrix dictates. Thus, in principle, double and higher-order

excitations should be recovered even though the KS linear response function explic-

itly includes only single excitations. However, in most practical applications, the

so-called adiabatic approximation (AA) is employed, where the bare ground-state

Hxc density-functional is employed in place of the Hxc kernel,

fAA
xc (r, r′, t− t′) =

δ2EHxc[n]

δn(r′)δn(r)

∣∣∣∣
n=n(r,t)

. (3.28)

The latter has no memory effect, hence no frequency dependence. For example, in

the adiabatic local density approximation (ALDA), fHxc is directly computed from

5For a complete derivation, see the original paper by M. Casida [10], or, for example, the

following master’s thesis in Ref. [245].
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the LDA functional derivative, evaluated at the ground-state density,

fALDA
xc (r, r′, t− t′) = δ(r− r′)δ(t− t′)

d2(nεxc(n))

dn2

∣∣∣∣
n=nΦ0

(r)

. (3.29)

Consequently, ALDA gives frequency-independent matrix elements in Eq. (3.26), so

that only single excitation (and de-excitation) energies are recovered. Furthermore,

assuming that we are working with real algebra A∗ = A and B∗ = B, and A−B is

positive-definite [246], the generalized eigenvalue problem can be transformed into

a half-size symmetric eigenvalue problem,

ΩF = ω2F, (3.30)

where Ω = (A−B)1/2(A+B)(A−B)1/2 and F = (A−B)−1/2(X+Y). If we take

B = 0 (excitations and de-excitations are then decoupled), we obtain the Tamm-

Dancoff approximation (TDA),

AX = ωX, (3.31)

which is very similar to the configuration interaction singles (CIS) method.

In addition to excitation energies, the Casida equation can be used to extract os-

cillator strengths, which give information on optical transition intensities. For an

excitation ωI = EI − E0, the corresponding oscillator strength is given by,

fI =
2

3
ωI

∑
q=x,y,z

|⟨Ψ0|q̂|ΨI⟩|2. (3.32)

Transition matrix elements ⟨Ψ0|q̂|ΨI⟩ are obtained by probing the system with uni-

form electric field in different directions, V̂1(t) ≡ Eq cos (ωt)
∑N

i=1 q̂i . Then, from

eigenvectors of Eq. (3.30), oscillator strengths can be extracted as [10],

fI =
2

3

∑
q=x,y,z

|q†(A−B)−1/2FI |2, (3.33)

where qia =
∫
drφ∗

i (r)q̂φa(r).

3.1.3.3 Challenges in linear response TD-DFT

The success of LR-TD-DFT, as evident in the numbers of cited papers, mirrors that

of KS-DFT for ground states. Nonetheless, the method has several drawbacks that
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lead to inaccurate predictions, or no predictions at all for some types of excitations.

Some drawbacks of LR-TD-DFT are discussed in the following.

As already mentioned, in the commonly used AA, only single (1-particle-1-

hole) excitations are explicitly accounted for, with multiple excitations completely

missing in the AA spectrum. One explicit way to include multiple excitations is

to go beyond the linear response regime, but double excitations do not appear

before the KS third-order response function except as sums of single excitations

(i.e. there is no mixing with other single excitations in the second order) [247].

A more readily accessible improvement is, as mentioned earlier, to replace ALDA

by a frequency-dependent kernel, which creates additional solutions in the Casida

equation. Many approaches for introducing frequency dependence have been de-

veloped, such as dressed TDDFT [248], or methods based on many-body the-

ory [249, 250, 251, 252, 253, 254, 255], which however are not standard. In com-

parison, Spin-Flip TDDFT [256, 257, 258] tackles 2p2h excitations with frequency

independent kernels.

Another class of neutral excitations for which the standard LR-TD-DFT fails are

charge-transfer (CT) excitations [81, 82, 83]. A simple example suffices to show the

issue at hand (see pp.17-18 in Ref. [259] for more details). Consider a well-separated

two-level system with φ0 (donor, doubly occupied) and φ1 (acceptor, empty) orbitals

in the ground state. The CT excitation is given as the difference between donor

ionization, acceptor affinity, and resulting ionic Coulomb interaction,

ωCT ≈ I0 − A1 − 1/R. (3.34)

Within the AA, the same excitation can be approximated as the KS orbital energy

difference between the donor and the acceptor, plus a kernel contribution,

ωCT ≈ ε1 − ε0 + 2⟨φ0φ1|fHxc|φ0φ1⟩. (3.35)

However, since the involved orbitals are assumed well-separated with negligible dif-

ferential overlap φ0(r)φ1(r) ≈ 0, the Hxc kernel contribution vanishes (this is the

case for standard (semi-)local density functionals such as LDA/GGA), and the re-

sult is close to the KS energy difference, ω ≈ ε1 − ε0, which can be a drastic

underestimation of the true CT excitation energy. It turns out that using hy-

brids and range-separated hybrid functionals can be beneficial for describing CT
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excitations [260, 261, 262, 79]. Firstly, this is because the two classes of hybrids

afford a better description of the KS orbital energies than standard (semi-)local

ground-state density functionals. The poor orbital energy description of the latter

is related to the missing derivative discontinuity [79], which is a fundamental con-

cept of (time-independent) DFT for charged excitations [102], and also the more

recent N -centered ensemble DFT [91] (see Chapter 5 for a detailed discussion on

the derivative discontinuity and the N -centered eDFT, and Chapter 7 for the recent

work on exactification of the KS orbital energies). Secondly, the Hxc kernel of hy-

brid functionals partially accounts for the −1/R asymptotic behavior of the exact

charge-transfer excitation [263, 79].

LR-TD-DFT with (semi-local) functionals also fails for other cases, such as

Rydberg excitations [2, 264], and band gaps in solids [265] (as the asymptotic

limit of Rydberg series), and conical intersections [84, 85]. In the latter (conical

intersections), a balanced treatment of low-lying excited states is critical, which

cannot be expected from LR-TD-DFT as it relies on orbitals from a ground-state

DFT calculation. By comparison, in TGOK-DFT, which is one of the central

methods of this thesis work, the orbitals are optimized for ensembles of ground

and low-lying excited states (each of which are described by configuration-state

functions in the ensemble KS scheme, much like in state-averaged CASSCF in

Section 4.1), with the constraint that they (orbitals) reproduce the ensemble

density of the true interacting system. TGOK-DFT will be discussed in more detail

in Chapters 4 and 5. In addition, an embedding strategy for multiple states with

the formalism of TGOK ensembles is proposed in this thesis work, which is which

is the topic of Chapter 8. The latter strategy was successful in describing conical

intersections and avoided crossings in finite model systems.

3.1.4 Further discussion, extensions, and alternative ap-

proaches

Originally, the TD-DFT method that we discussed in this section, has been for-

mulated for scalar electric potentials vext(r, t) (see Subsection 3.1.2. An exten-

sion of TD-DFT with a more general electromagnetic interaction, known as time-
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dependent current density functional theory (TD-CDFT), includes magnetic field

effects through the td vector potential A(t). In TD-CDFT, whose formal proof was

first given by Ghosh and Dhara [266], the mapping of potentials to densities is ex-

tended to pairs of variables (v,A)↔ (n, j). This extension makes the RG theorem

more general for periodic systems [267], and offers a more suitable route than regular

TD-DFT for the development of xc kernels with memory effects [268, 269].

Finally, the usual LR-TD-DFT approach with Casida equation, although nowa-

days being a standard in most computational chemistry packages, has a moderate

computational cost, since the evaluation of the Casida equation requires both oc-

cupied and virtual orbitals, which scales roughly as O(K4) with the size K of the

system (e.g. number of atoms in the system). For dealing with the limitations

of the Casida equation, an alternative linear response scheme known as the Stern-

heimer method has been proposed [270, 271], which requires only occupied orbitals

for the evaluation of excitations, and can be completely parallelized for perturba-

tions with different frequencies [272]. Outside the scope of TD-DFT, the theory of

Green’s functions with the Bethe-Salpeter equation (BSE) formalism (see Subsec-

tion 3.2.3) offers a similar way for targeting neutral excitations, with essentially the

same computational cost (without considering the preceding GW calculation [12]).

Alternatively, TGOK-DFT, which is a variational and time-independent theory for

ensembles of ground and excited states, has been a subject of interest in recent

decades due to the prospect of obtaining neutral excitation energies with essentialy

the same cost as KS-DFT. The latter will also be explored further in this thesis in

various contexts (see Chapters 4 - 8).
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3.2 Green’s Function Theory

3.2.1 Introduction

The theory of (many-body) Green’s functions is another formalism for the

description of excitations, which is particularly popular in condensed-matter

physics. The Green’s function formalism allows for extraction of both neutral and

charged excitations, with the GW approximation [4, 5, 6] and the Bethe-Salpeter

equation [7, 8], respectively. This section is a brief attempt at summarizing the

key concepts about both GW and BSE. Far more comprehensive discussions are

available for example in the theses of F. Sottile [273] and F. Bruneval [274] (see

also Ref. [246] for a short introduction to Green’s functions).

3.2.2 Single-particle Green’s function and the GW method

The usual formalism is introduced in position representation in second quantization,

using creation Ψ̂† and annihilation Ψ̂ field operators (see Appendix A), taken in

the Heisenberg picture (which is the same as the interaction picture introduced in

Subsection 3.1.3 when the Hamiltonian is time-independent),

Ψ̂(x, t) ≡ eiĤtΨ̂(x)e−iĤt, Ψ̂†(x, t) ≡ eiĤtΨ̂†(x)e−iĤt. (3.36)

The time-ordered one-particle Green’s function at zero-temperature is defined as,

iG(1, 2) = ⟨ΨN
0 |T Ψ̂(1)Ψ̂†(2)|ΨN

0 ⟩

= θ(t1 − t2)⟨ΨN
0 |Ψ̂(1)Ψ̂†(2)|ΨN

0 ⟩ − θ(t2 − t1)⟨ΨN
0 |Ψ̂†(2)Ψ̂(1)|ΨN

0 ⟩,
(3.37)

where 1 ≡ (x1, σ1) = (r1, t1, σ1), and |ΨN
0 ⟩ is the ground state of the N -electron sys-

tem under study. The time ordering operator T ensures that creation/annihilation

operators appear chronologically from earlier to later times (when applied from right

to left, respectively). This means that the Green’s function describes two phenom-

ena. When t1 > t2, an electron is added to the N -electron system at time t2 and

position r2 with spin σ2, and then the removal of an electron at position r1 with

spin σ1 occurs later at time t1. On the other hand, if t2 > t1, an electron is removed

from the N -electron system at time t1 and position r1 with spin σ1, followed by the
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addition of an electron at position r2 with spin σ2 later at time t2. The one-particle

Green’s function contains in itself simpler, static reduced quantities, such as the

1RDM and the electron density,

γ(x2,x1) = ⟨ΨN
0 |Ψ̂†(x2)Ψ̂(x1)|ΨN

0 ⟩ = −iG(x1t1,x2t
+
1 ), (3.38)

n(r1) = −i
∑

σ1∈{↑,↓}

G(r1σ1t1, r1σ1t
+
1 ), (3.39)

where t+1 = t1 + 0+. The one-particle Green’s function also contains informa-

tion about charged excitations. This can be shown, just like for the linear re-

sponse function in TD-DFT, by transforming Eq. (3.37) to the frequency do-

main. The only difference is that we need to insert the projectors for N + 1-

electron states
∑

a |ΨN+1
a ⟩⟨ΨN+1

a | inside the t1 > t2 term, and N − 1-electron states∑
i |ΨN−1

i ⟩⟨ΨN−1
i | inside the t1 < t2 term. As a result, we arrive at the so-called

Lehmann representation for G,

G(x1,x2, ω) =
∑
a

fa(x1)f
∗
a (x2)

ω − Ea + i0+
+
∑
i

fi(x1)f
∗
i (x2)

ω − Ei + i0+
, (3.40)

where fa(x) = ⟨ΨN
0 |Ψ̂(x)|ΨN+1

a ⟩ and fi(x) = ⟨ΨN−1
i |Ψ̂(x)|ΨN

0 ⟩ are the Lehmann

(quasiparticle) amplitudes or Dyson orbitals. The corresponding poles are the exact

electron affinities (EA) AN
a = EN

0 − EN+1
a = −Ea, and ionization potentials (IP),

INi = EN−1
i − EN

0 = −Ei. In a noninteracting (or mean-field) Green’s function, the

amplitudes are replaced by spin-orbitals,

G(x1,x2, ω) =
virt∑
a

φa(x1)φ
∗
a(x2)

ω − εa + i0+
+

occ∑
i

φi(x1)φ
∗
i (x2)

ω − εi + i0+
, (3.41)

and EA/IP are given by the orbital energies. For a general, interacting Hamiltonian

with the one-electron operator h(1) ≡ −∇2
r1
/2 + vext(r1), and two-electron operator

wee(1, 2) ≡ |r1 − r2|−1, we do not know a priori how to obtain exact amplitudes in

Eq. (3.40), apart from solving the Schrödinger equation for N and N ± 1 electrons.

Concerning the one-particle Green’s function, it is possible to derive a series of

coupled equations of motion coupling it to other Green’s functions. The first one,

connecting G and G2 (the two-particle Green’s function) is given as [246],(
i
∂

∂t1
− h(1)

)
G(1, 2) + i

∫
d3wee(1, 3)G2(1, 3

+; 2, 3++) = δ(1, 2), (3.42)
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where 3+, 3++ means t3 + 0+ and t3 + 0+ + 0+, respectively, and G2 is defined as,

i2G2(1, 2; 1′, 2′) = ⟨ΨN
0 |T Ψ̂(1)Ψ̂(2)Ψ̂†(2′)Ψ̂†(1′)|ΨN

0 ⟩. (3.43)

In fact, coupled equations of motion continue for G2 and G3, and so on, which means

that we have to resort to approximations for practical purposes. For describing

charged excitations in this context, we need approximations to G2, while for neutral

excitations, which can be extracted from G2 (see Subsection 3.2.3), we would need

approximations for G3 [274]. For this purpose, the self-energy operator ΣHxc is

formally defined so as to close the recursive dependence on many-particle Green’s

functions, ∫
d3 ΣHxc(1, 3)G(3, 2) = −i

∫
d3wee(1, 3)G2(1, 3

+; 2, 3++). (3.44)

For the noninteracting Green’s function G0, ΣHxc = 0. Then, we can show that the

interacting Green’s function G is related to G0 by a Dyson equation,

G(1, 2) = G0(1, 2) +

∫
d34G0(1, 3)ΣHxc(3, 4)G(4, 2). (3.45)

Thus, the self-energy ΣHxc now contains all the (difficult-to-model) many-electron

effects, which is analogous to vHxc in KS-DFT, except that ΣHxc nonlocal and dynam-

ical (i.e. time-dependent), while vHxc is local and static. Transforming Eq. (3.42)

into the frequency domain, and using the definition of the self energy in Eq. (3.44),

we obtain,

[ω − h(r1)]G(x1,x2, ω)−
∫

dx3ΣHxc(x1,x3, ω)G(x1,x3, ω) = δ(x1,x2). (3.46)

Upon inserting the Lehmann representation of the Green’s function, we obtain a set

of eigenvalue equations for the Dyson orbitals, coupled through the self energy,

h(r1)fk(x1)−
∫

dx3ΣHxc(x1,x3, Ek)fk(x3) = Ekfk(x1), (3.47)

which is analogous to the HF and KS equations6. In fact, by inserting the non-

interacting functional approximation to the two-particle Green’s function into the

6To be more precise, in the HF theory, ΣHxc is static and nonlocal (see main text), while for

the KS system, ΣHxc becomes static and local.
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equation of motion: GHF
2 (1, 2; 1′, 2′) = G(1, 1′)G(2, 2′)−G(1, 2′)G(2, 1′), and Fourier-

transforming, we get the frequency-independent (local) Hartree and exchange self-

energy components [246],

ΣH(x1,x2) = δ(x1 − x2)vH(r1) Σx(x1,x2) = γ(x1,x2)wee(r1, r2), (3.48)

which, when inserted into Eq. (3.47), give back the HF equations. Thus, if we know

the self-energy, we can obtain all the quasiparticle enegies (ionization potentials and

electron affinities) of the system. The full self-energy ΣHxc (including correlation

effects) can be obtained, in principle exactly, from Hedin’s equations [3], which

is a set of five coupled equations including the above Dyson equation, and four

other equations for the self-energy (ΣHxc), the vertex function (Γ), the polarizability

(χ) and the screened Coulomb interaction (W ). Unfortunately, Hedin’s scheme is

computationally extremely expensive, so that approximations are usually necessary.

One of the most popular approximations in this respect is the GW method [4, 5,

6], which consists in omitting the vertex part of Hedin’s scheme. This gives the

approximate expression for the xc part of the self-energy as a product of Green’s

function G and the screened Coulomb interaction W ,

Σxc = iG(1, 2)W (2, 1+). (3.49)

In GW approximation, the polarizability reads,

χ0(1, 2) = −iG(1, 2)G(2, 1), (3.50)

which is known as the random-phase approximation (RPA). It is the input for the

screened Coulomb interaction,

W (1, 2) = wee(1, 2) +

∫
d34wee(1, 3)χ0(3, 4)W (4, 2). (3.51)

The computation of the self-energy proceeds as follows. Firstly, G is taken from a

noninteracting system, usually the Kohn-Sham system. Then, χ0 and the inverse

dielectric function ε−1 = [1 − weeχ0]
−1 are evaluated, which in turn is used to

evaluate the screened Coulomb interaction W = ε−1wee. Afterwards, Eq. (3.49) is

calculated as a convolution in the frequency domain. In solids, the plasmon-pole

model [275, 276] is commonly employed for ε−1, which simplifies the evaluation of

the convolution integral for Σxc.



82 3.2. GREEN’S FUNCTION THEORY

After obtaining the self-energy, we can use it to calculate quasiparticle energies

and band gaps. In the simplest G0W0 approach (also called single-shot GW ), the G

and W are obtained once from the KS ingredients. Also, an assumption is often made

that Dyson orbitals are not too different from the KS orbitals, so that approximate

quasiparticle energies can be obtained from the perturbation expansion of (Σxc−vxc)
on top of the KS Hamiltonian. The first-order quasiparticle energy corrections read,

EGW
k = εKS

k + ⟨φKS
k |Σxc(EGW

k )− vxc|φKS
k ⟩. (3.52)

In order to avoid solving this nonlinear equation for EGW
k , another approximation is

made by considering the Taylor expansion around the KS energies,

Σxc(EGW
k ) ≈ Σxc(ε

KS
k ) + (EGW

k − εKS
k )

∂Σxc(ω)

∂ω

∣∣∣∣
ω=εKS

k

. (3.53)

Inserting this back into Eq. (3.52) gives,

EGW
k ≈ εKS

k + Zk⟨φKS
k |Σxc(ε

KS
k )− vxc|φKS

k ⟩, (3.54)

where the renormalization factor Zk is equal to,

Zk =

[
1− ⟨φKS

k |
∂Σxc(ω)

∂ω

∣∣∣∣
ω=εKS

i

|φKS
k ⟩
]−1

. (3.55)

This linearization, which usually works well near the Fermi level in solids, has been

used extensively in the past for correcting KS-predicted energies and band structures

in semiconductors and insulators [277, 276, 278, 279], and surfaces [280, 281, 282].

For instance, based on Eq. (3.54), the fundamental gap can be expressed as the bare

KS gap plus a GW-based correction [283],

EN
g = IN0 − AN

0

GW≈ εN+1 − εN + ZN+1⟨φKS
N+1|Σxc(ε

KS
N+1)− vxc|φKS

N+1⟩

− ZN⟨φKS
N |Σxc(ε

KS
N )− vxc|φKS

N ⟩,

(3.56)

This simple perturbative correction may be improved upon by re-calculating G

self-consistently from Eq. (3.45), albeit with additional computational costs. For

further details on the different self-consistent GW implementations, see a review by

Reining [284], and the references therein. Nevertheless, even the G0W0 approach

is not cheap, with ordinary implementations scaling as O(K4) with system size
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K [285]. This is one of the reasons why other formalisms are being explored, such

as the N -centered ensemble DFT for charged excitations [91], which is introduced

Chapter 5. In the latter, the correction to the bare KS gap is given by the

weight derivative of the ensemble exchange-correlation (xc) density functional (see

Eqs. (5.24), (5.86) and (5.87) in Chapter 5), with essentially the same computational

cost as the regular KS-DFT.

3.2.3 Two-particle Green’s function and the Bethe-Salpeter

equation

The theory of Green’s functions can also describe neutral excitations. Within this

formalism, they are understood as a two-particle process. When an electron is ex-

cited, it leaves its occupied state behind, which creates a hole of net positive charge.

Then, the two charged entities interact, forming an exciton, followed by rearrange-

ment and screening of the rest of the electrons in the system [274]. Describing a

two-particle process requires a two-particle Green’s function, which is defined as,

i2G2(1, 2; 1′, 2′) = ⟨ΨN
0 |T Ψ̂(1)Ψ̂(2)Ψ̂†(2′)Ψ̂†(1′)|ΨN

0 ⟩. (3.57)

In general, G2 describes the propagation of either two particles, particle and a hole,

or two holes. Usually, the two-particle Green’s function is not used directly as such

when extracting neutral excitations. Rather, the object known as the four-point

linear response function is employed, which is defined as,

iχ(1, 2; 1′, 2′) = i2G2(1, 2; 1′, 2′)− iG(1, 1′)iG(2, 2′). (3.58)

This definition subtracts from the two-particle Green’s function any propagation

of independent pairs of entities. With the time-ordering choice of t′1 = t1 + 0+ and

t′2 = t2+0+, we arrive at the particle-hole linear response function or the polarization

propagator. The latter depends only on τ = t1− t2, so it can be Fourier-transformed

to the Lehmann representation, which reads [246],

χ(x1,x2;x
′
1,x

′
2, ω) =

∑
I

⟨ΨN
0 |Ψ̂†(x′

1)Ψ̂(x1)|ΨN
I ⟩⟨ΨN

I |Ψ̂†(x′
2)Ψ̂(x2)|ΨN

0 ⟩
ω − ωI + i0+

−
∑
I

⟨ΨN
0 |Ψ̂†(x′

2)Ψ̂(x2)|ΨN
I ⟩⟨ΨN

I |Ψ̂†(x′
1)Ψ̂(x1)|ΨN

0 ⟩
ω + ωI − i0+

,

(3.59)
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where the poles now reveal neutral excitation (and de-excitation) energies ωI =

EN
I − EN

0 . Similarly, for a noninteracting or mean-field system, like in HF theory

or KS-DFT, the linear response function can be expressed in terms of the occupied

and unoccupied (in the ground state) spin-orbitals,

χ0(x1,x2;x
′
1,x

′
2, ω) =

occ.∑
i

virt.∑
a

φ∗
i (x

′
1)φa(x1)φ

∗
a(x

′
2)φi(x2)

ω − (εa − εi) + i0+

−
occ.∑
i

virt.∑
a

φ∗
i (x

′
2)φa(x2)φ

∗
a(x

′
1)φi(x1)

ω + (εa − εi)− i0+
.

(3.60)

At this point, one may notice the analogy with TD-DFT. In LR-TD-DFT, the linear

response function (Eq. (3.14)) is derived from perturbation theory with an external

potential vext(r, t) that is local in space. Similarly, Eq. (3.59) can be derived from

perturbation theory with a nonlocal external potential uext(x,x
′, t) [8]. If we define

the Bethe-Salpeter kernel as ΞHxc(1, 2; 1′, 2′) = iδΣHxc(1, 1
′)/δG(2′, 2) (again, see the

analogy with the Hxc potential and kernel in TD-DFT), it is possible to show (see

Eqs. (4.1) - (4.5) in Ref. [8]) that the two functions, χ and χ0 are related by the

following four-point Dyson equation known as the Bethe-Salpeter equation,

χ(1, 2, 1′, 2′) = χ0(1, 2, 1
′, 2′)

−
∫

d 3456χ0(1, 3, 1
′, 4)ΞHxc(4, 5, 3, 6)χ(6, 2, 5, 2′).

(3.61)

Its inverse relation in the frequency domain reads (where time-ordering for particle-

hole propagator is assumed),

χ−1(x1,x2;x
′
1,x

′
2, ω) = χ−1

0 (x1,x2;x
′
1,x

′
2, ω)− ΞHxc(x1,x2;x

′
1,x

′
2, ω). (3.62)

The above equation can be recast as a matrix in the transition (ia, jb) space, just

like the Dyson equation (or practically speaking, the Casida equation, Eq. (3.26))

from TD-DFT.

Finally, let us look at some common approximations emanating from the BSE

formalism. If we use the Bethe-Salpeter kernel derived from the HF self-energy [246],

ΞHF
Hxc(x1,x2;x

′
1,x

′
2) = wee(r1, r2)[δ(x1 − x′

1)δ(x2 − x′
2)

− δ(x1 − x′
2)δ(x′

1 − x2)],
(3.63)

we obtain the time-dependent Hartree-Fock (TD-HF) equations. Omitting the ex-

change part (second pair of Dirac delta functions in Eq. (3.63)) gives the Dyson
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equation for time-dependent Hartee (TD-H) which can be contracted to a two-point

equation [274].

An improvement over the HF-based kernel is afforded by mixing in the GW

method. Using the GW approximation for Σxc and neglecting the G-dependence of

the screened Coulomb interaction W gives the kernel for the BSE@GW method [12],

ΞBSE@GW
Hxc (x1,x2;x

′
1,x

′
2, ω) = wee(r1, r2)δ(x1 − x′

1)δ(x2 − x′
2)

−W (r1, r2, ω)δ(x1 − x′
2)δ(x′

1 − x2).
(3.64)

Finally, using the static screening approximation W (ω = 0) gives the screened

TD-HF approximation, which has had several practical applications [286]. The

statically-screened BSE@GW kernel has been successful in describing charge-

transfer excitations [287, 288, 289], which, as mentioned in previous section, are

a challenge in LR-TD-DFT. Both the GW and BSE@GW have also been used

for describing (charged and neutral, respectively) excitations in various small

molecules [290]. However, just like in AAs for the xc kernel, the consequence of ne-

glecting frequency dependence is that multiple excitations are absent from the BSE

spectrum. Thus, developing frequency-dependent BSE kernels (dynamical screen-

ing) is one of the key next steps [12, 291]. If we compare LR-TD-DFT and BSE,

both methods are very similar and also have their own advantages and disadvantages.

While the electron density and its response are simpler to handle than their BSE

counterparts, BSE offers clear physical interpretations of the different approxima-

tions used in the kernel, and a systematically improvable way of approximating the

self-energy. The computational cost of standard implementations both methods is

the same once the BSE kernel is obtained, which is a bottleneck of the BSE method,

although significant progress in low-scaling GW calculations has been made [12].

Therefore, the same argument as in LR-TD-DFT applies in the case of BSE con-

cerning the motivation for development of TGOK-DFT for neutral excitations.





Chapter 4

Time-independent approaches to

neutral electronic excitations

In this chapter, we review time-independent approaches to neutral electronic ex-

citations. In contrast to TD-DFT (see Section 3.1), time-independent methods

for neutral excitations are not as commonly used, although several computational

packages such as Molcas [136] and ORCA [292, 293, 294, 295] offer highly devel-

oped implementations of wavefunction-based methods. One of the main difficul-

ties of targeting excited states in a time-independent way is that contrary to the

ground state, there is no minimum principle for a specific excited state, except in

the case of the lowest state of a given spatial and spin symmetry. In general, how-

ever, excited states are stationary points of the electronic energy landscape, which

are far more challenging to locate than energy minima. Some methods, such as

the ∆-SCF method [296, 297], and the equation-of-motion coupled cluster (EOM-

CC) method [298, 299], are designed for individual states, while others, such as

the state-averaged CASSCF (SA-CASSCF) method [14], are designed for a bal-

anced treatment of multiple states. In recent decades, ensemble density-functional

theory (eDFT) based on the Theophilou-Gross-Oliveira-Kohn (TGOK) variational

principle [86, 87, 88, 89, 90] has been proposed as a low-cost alternative to other

well-established methods for describing low-lying excited states.

The chapter is organized as follows. In Section 4.1, we begin with a very short

overview of wavefunction-based methods used in quantum chemistry for targeting

one or several excited states. Following that, in Section 4.2, we give a detailed intro-

87
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duction to TGOK-DFT, with a focus on the exact theory and its KS formulation.
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4.1 Brief review of standard time-independent

methods in quantum chemistry

Most of the WFT-based methods (and DFT) introduced in the Chapter 1 were

at some point also adapted for excited states. Here we mention the ones most

commonly used in quantum chemistry, divided into single-configuration methods,

which are based on a Slater determinant (or configuration state function) reference,

and multiconfigurational methods.

In the configuration interaction (CI) method (see Subection 1.1.2), excited states

are extracted simply from higher roots of the CI matrix. The simplest of those, the

configuration interaction singles (CIS) [300] is actually commonly used. In its prac-

tical implementation, it is related to time-dependent Hartree-Fock (TD-HF), and

similar to time-dependent density-functional theory (TD-DFT). Although computa-

tionally efficient, it only accounts for relaxation of orbitals in the excited states via

single excitations. Double and higher excitations are missing, just like in LR-TD-

DFT in the adiabatic approximation. Another excited-state method based on the

ground-state HF reference that has been gaining increasing interest is the equation-

of-motion coupled cluster (EOM-CC) method [298, 299], which can describe multi-

ple excitations, but is more expensive than CIS. In addition, different modifications

to the SCF procedure (of HF or KS-DFT) for describing individual excited states

with a single Slater determinant have been proposed, such as non-Aufbau recipe

for occupying orbitals in the ∆-SCF method [296, 297, 301] maximization of the

overlap between the occupied orbitals on successive SCF loops in the maximum

overlap method (MOM) [302], energy variance optimization in σ-the SCF [303, 304]

method, and the use of metadynamics-inspired biasing potential technique [305] in

SCF metadynamics [306].

As far as multiconfigurational approaches are concerned, the CASSCF method

introduced in Subection 1.1.2 may also be used to compute excited state energies and

wavefunctions. The possible adaptations for excited states are either state-specific

CASSCF [13], which searches for suitable wavefunctions for individual excited

states [28], or more commonly used state-averaged CASSCF (SA-CASSCF) [14],

in which the average energy of an ensemble of wavefunctions of a given spatial and
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spin symmetry is optimized, using the same set of orbitals. This way, orthonormal

ground and low-lying excited states are obtained, which is convenient for treating

(near-)degeneracies.

In SA-CASSCF, we start with a set of M orthonormal multiconfigurational

wavefunctions, which are expanded in the basis of Slater determinants, formed from

excitations in the active space,{
|Ψ̃(0)

I ⟩ =
∑
K

C
(0)
KI |ΦK⟩

}
1≤I≤M

. (4.1)

The orthonormality in the optimization process is preserved by introducing the

rotation operator in configuration space, in analogy with the orbital rotation,

Ŝ =
M∑
J=1

∑
K>J

SKJ

(
|Ψ̃(0)

K ⟩⟨Ψ̃
(0)
J | − |Ψ̃

(0)
J ⟩⟨Ψ̃

(0)
K |
)
. (4.2)

Hence, individual wavefunctions in SA-CASSCF are conveniently written using a

double exponential parametrization [28],

|Ψ̃I(κ,S)⟩ = e−κ̂e−Ŝ|Ψ̃(0)
I ⟩. (4.3)

The state-averaged energy is then a function of both orbital space κ = {κij}i>j (see

Eq. (1.28)) and configuration space S = {SKJ}K>J rotation parameters,

E(κ,S) =
M∑
I=1

wI⟨Ψ̃I(κ,S)|Ĥe|Ψ̃I(κ,S)⟩, (4.4)

where {wI}1≤I≤M are the weight coefficients of individual multiconfigurational

states, which are fixed at the beginning of the SA-CASSCF calculation. The sta-

tionarity condition is obtained as,

∂E(κ,S)

∂κij

∣∣∣∣
κ=κ0

=
∂E(κ,S)

∂SKJ

∣∣∣∣
S=S0

= 0, (4.5)

which can be derived analytically from Taylor expansions of the exponentials e−κ̂

and e−Ŝ. In the most commonly used equal-weight formulation, wI = 1/M. It is also

possible, albeit not common, to use unequally-weighted SA-CASSCF. The mathe-

matical foundation of SA-CASSCF is the Theophilou-Gross-Oliveira-Kohn (TGOK)

variational principle [86, 87, 88], which will be introduced in Subsection 4.2.2. This

method is suitable for describing a small number of low-lying states in molecules,
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for example close to conical intersections or avoided crossings, where a balanced op-

timization of orbitals for ground and excited states is preferable (rather than using

orbitals optimized for the ground state). However, just like all multiconfigurational

methods, it is computationally involved and requires substantial experience from the

user, especially for choosing a proper active space (see also the overview of multicon-

figurational methods in the context of ground states in Subsection 1.1.2). Moreover,

a post SA-CASSCF treatment is often necessary to recover a proper ordering of the

states, for example, and also for retrieving dynamical correlation effects. Examples

of the latter are multi-state PT2 methods, such as the multi-state CASPT2 (MS-

CASPT2) [307] and the quasidegenerate NEVPT2 (QD-NEVPT2) [308] methods.
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4.2 Ensemble DFT of neutral excitations

(TGOK-DFT)

4.2.1 Introduction

TGOK-DFT has been formulated in the end of the 1980’s by Gross, Oliveira,

and Kohn [88, 89, 90] and is a generalization of the equiensemble DFT of

Theophilou [86, 87]. In contrast to standard DFT, which is a ground-state theory,

TGOK-DFT can describe both ground and (neutral) excited states. In this context,

the ensemble density is used as a basic variable (in place of the ground-state den-

sity). For the description of charged excitations, a similar formalism, referred to as

N -centered eDFT, has been derived recently by Senjean and Fromager [91], which

will be described in Section 5.1.

The combination of quantum ensemble formalism together with the simplicity of

density-functional theory, lends itself to an elegant extension of existing machinery

of KS-DFT to neutral and charged excitations. In contrast to TD-DFT and BSE

methods, which involve post-KS calculations, the computational cost of eDFT is

essentially that of a standard KS-DFT calculation. For example, obtaining accurate

optical and fundamental gaps is as simple as adding a correction term from ensemble

xc functional to the bare KS gap, which is modelled in the ensemble DFA of choice.

Another promising feature of eDFT is that it can in principle describe any kind

of excitation, including the double excitations [110, 309] that LR-TD-DFT with

the adiabatic approximation misses (see Section 3.1.3.3). The challenging aspect

of the theory is now carried by the ensemble version of exchange-correlation (xc)

functional, for which the user has to input both electron density and ensemble

weights for excitations of choice. As it turns out, there are features and subtleties

of ensemble xc functional that are not present in regular ground-state DFT.

The main focus of this section, which is based on the book chapter “Ensemble

density functional theory of neutral and charged excitations” [92], is exact theory.

Discussion on development of DFAs for the ensemble xc functional from first princi-

ples is reserved for the Chapter 6 that follows. TGOK-DFT will be reviewed again in

a different context in Chapter 7, titled “Derivative discontinuities in ensemble DFT

for neutral electronic excitations: An N-centered perspective”, which discusses, for
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the time of writing of this thesis, unpublished work.

4.2.2 TGOK ensembles

Before deriving the main equations of TGOK-DFT, let us introduce the exact en-

semble theory. We start with the ensemble TGOK energy expression [88]

Ew =
∑
I

wIEI , (4.6)

which is simply a state-averaged energy where w = (w1, w2, . . .) denotes the collection

of ensemble weights that are assigned to the excited states, and EI ≡ EN
I are the

energies of the N -electron ground (I = 0) and excited (I > 0) states
∣∣ΨN

I

〉
. We

assumed in Eq. (4.6) that the full set of weights (which includes the weight w0

assigned to the ground state) is normalized, i.e., w0 = 1−∑I>0 wI , so that

Ew =

(
1−

∑
I>0

wI

)
E0 +

∑
I>0

wIEI

= E0 +
∑
I>0

wI (EI − E0) .

(4.7)

For ordered weights wI ≥ wI+1 ≥ 0, with I ≥ 0, the following (so-called TGOK)

variational principle holds [88],

Ew ≤
∑
I

wI

〈
Ψ̃I

∣∣∣ Ĥ ∣∣∣Ψ̃I

〉
, (4.8)

where
{

Ψ̃I

}
is a trial set of orthonormal N -electron wave functions. Note that the

lower bound Ew, which is the exact ensemble energy, is not an observable. It is just

an (artificial) auxiliary quantity from which properties of interest, such as the exci-

tation energies, can be extracted. Since it varies linearly with the ensemble weights,

the extraction of individual energy levels is actually trivial. Indeed, combining the

following two relations [see Eq. (4.7)],

∂Ew

∂wI
= EI − E0, (4.9)

and

EK =
K≥0

E0 +
∑
I>0

δIK(EI − E0)

= Ew +
∑
I>0

(δIK − wI)(EI − E0),
(4.10)
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leads to

EK = Ew +
∑
I>0

(δIK − wI)
∂Ew

∂wI
. (4.11)

Despite its simplicity the above expression has not been used until very recently for

extracting excited-state energies from a TGOK-DFT calculation [310, 109]. Further

details and reformulation of Eq. (4.11) in TGOK-DFT will be given in the following

subsections.

4.2.3 DFT of TGOK ensembles

In TGOK-DFT, the ensemble energy is obtained variationally as follows [89],

Ew = min
n→N

{
Fw[n] +

∫
dr vext(r)n(r)

}
, (4.12)

where the minimization is restricted to N -electron densities, i.e.,
∫
drn(r) = N ,

and the universal TGOK density functional

Fw[n] :=
∑
I

wI ⟨Ψw
I [n]|T̂ + Ŵee|Ψw

I [n]⟩ , (4.13)

which is evaluated from the density-functional eigenfunctions {Ψw
I [n]} that fulfill

the density constraint
∑

I wInΨw
I [n](r) = n(r), is the analog for TGOK ensembles of

the universal Hohenberg–Kohn functional (see Eq. (1.90)). Its construction relies on

a potential-ensemble-density map that is established for a given and fixed set w of

ensemble weight values. Therefore, the universality of the functional implies, like in

ground-state DFT, that it does not depend on the local external potential. However,

it does not mean that it is ensemble-independent1 and therefore applicable to any

excited state. As discussed in further detail in Secs. 6.1 and 6.2, encoding ensemble

dependencies into density functionals is probably the most challenging task in eDFT.

In the standard KS formulation of TGOK-DFT [89], the TGOK functional is split

into non-interacting kinetic and Hartree-xc (Hxc) ensemble energy contributions, by

1One may ask, why do we need a weight-dependent universal functional, instead of just using

the regular HK functional and plugging in the ensemble density, i.e. FHK[n
w]? The reason is

that a density nw that integrates to an integer number of electrons N , can be both pure-state and

ensemble N -representable at the same time. Therefore, we need additional weight dependence in

the functional to ensure that ensemble energy, and not a pure-state one is calculated.
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analogy with regular KS-DFT:

Fw[n] = Tw
s [n] + Ew

Hxc[n]. (4.14)

The non-interacting ensemble kinetic energy functional can be expressed more ex-

plicitly as follows within the constrained-search formalism [47],

Tw
s [n] = min

γ̂w→n

{
Tr
[
γ̂wT̂

]}
(4.15)

≡
∑
I

wI ⟨Φw
I [n]| T̂ |Φw

I [n]⟩ , (4.16)

where Tr denotes the trace, γ̂w =
∑

I wI |ΦI⟩ ⟨ΦI | is a trial ensemble density matrix

operator that fulfills the density constraint nγ̂w(r) ≡ Tr [γ̂wn̂(r)] =
∑

I wInΦI
(r) =

n(r), and n̂(r) ≡ ∑N
i=1 δ(r − ri) is the electron density operator at position r.

Combining Eqs. (4.12), (4.14) and (4.15) leads to the final TGOK-DFT variational

energy expression

Ew = min
{φp}

{
Tr
[
γ̂w
(
T̂ + V̂ext

)]
+ Ew

Hxc [nγ̂w ]
}

= Tr
[
γ̂w
KS

(
T̂ + V̂ext

)]
+ Ew

Hxc

[
nγ̂w

KS

]
, (4.17)

where the minimization can be restricted to single-configuration wave functions (de-

terminants or configuration state functions), hence the minimization over orbitals

{φp} on the first line of Eq. (4.17). The minimizing KS orbitals {φw
p }, from which

the KS wave functions {Φw
I [nw] ≡ Φw

I } in the minimizing density matrix operator

γ̂w
KS are constructed, fulfill the following self-consistent TGOK-DFT equations,(

−∇
2
r

2
+ vext(r) + vwHxc[n

w](r)

)
φw
p (r) = εwp φ

w
p (r), (4.18)

where

vwHxc[n](r) =
δEw

Hxc[n]

δn(r)
(4.19)

is the ensemble Hxc density-functional potential. In the exact theory, the ensemble

KS orbitals reproduce the exact (interacting) ensemble density, i.e.,∑
I

wInΦw
I

(r) =
∑
I

wInΨI
(r) = nw(r), (4.20)

where the individual KS densities read as

nΦw
I

(r) =
∑
p

nI
p

∣∣φw
p (r)

∣∣2, (4.21)



96 4.2. ENSEMBLE DFT OF NEUTRAL EXCITATIONS (TGOK-DFT)

and nI
p is the (weight-independent) occupation number of the orbital φw

p in the

single-configuration wave function Φw
I .

Let us now focus on the ensemble Hxc density functional. By analogy with

regular KS-DFT, it can decomposed into Hx and correlation energy contributions

as follows,

Ew
Hxc[n] = Ew

Hx[n] + Ew
c [n]. (4.22)

In the original formulation of TGOK-DFT [89], the Hx functional is further decom-

posed as follows,

Ew
Hx[n] = EH[n] + Ew

x [n], (4.23)

where

EH[n] =
1

2

∫
dr

∫
dr′

n(r)n(r′)

|r− r′| (4.24)

is the standard weight-independent Hartree functional, and

Ew
x [n] =

∑
I

wI ⟨Φw
I [n]| Ŵee |Φw

I [n]⟩ − EH[n] (4.25)

is the exact (complementary and weight-dependent) ensemble exchange functional.

Note that Φw
I [n], which describes one of the configurations included into the en-

semble, may not be a pure Slater determinant [311]. Other (weight-dependent)

definitions for the ensemble Hartree energy, where the explicit dependence on the

ensemble density n is lost, have been explored [312]. In the most intuitive one,

the ensemble Hartree energy is evaluated as the weighted sum of the individual KS

Hartree energies:

Ew
H [n] :=

∑
I

wIEH

[
nΦw

I [n]

]
. (4.26)

For the sake of generality, we will keep in the following both Hartree and exchange

energies into a single functional Ew
Hx[n] which is defined as

Ew
Hx[n] =

∑
I

wI ⟨Φw
I [n]| Ŵee |Φw

I [n]⟩ . (4.27)
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The remaining weight-dependent correlation energy can then be expressed as follows,

according to Eqs. (4.13) and (4.16),

Ew
c [n] = Fw[n]− Tw

s [n]− Ew
Hx[n]

=
∑
I

wI

(
⟨Ψw

I [n]|T̂ + Ŵee|Ψw
I [n]⟩ − ⟨Φw

I [n]|T̂ + Ŵee|Φw
I [n]⟩

)
,(4.28)

where the non-interacting KS {Φw
I [n]} and interacting {Ψw

I [n]} wave functions,

which both reproduce the (weight-independent here) trial ensemble density n,

whatever the ensemble weight values w, are in principle weight-dependent [313, 98].

Interestingly, the interacting density-functional wave functions lose their weight

dependence when the trial density n matches the exact physical ensemble density

nw, i.e., Ψw
I [nw] = ΨI ≡ ΨN

I . However, as shown in Subsection 6.2.2, the KS wave

functions remain weight-dependent, even in this special case.

As readily seen from Eqs. (4.14), (4.17) and (4.18), the only (but crucial)

difference between regular ground-state KS-DFT and TGOK-DFT is the weight

dependence in the ensemble density-functional Hxc energy and potential. The

computational cost should essentially be the same in both approaches. The

challenge lies in the proper description of the weight-dependent ensemble Hxc

density functional. Different approximations have been considered, such as the

use of (weight-independent) regular ground-state functionals [93, 101], or the use

of an ensemble exact-exchange energy [311, 314, 76] with or without approximate

weight-dependent correlation functionals [76, 109, 110]. Note that the expected

linearity-in-weight of the ensemble energy is not always reproduced in (approxi-

mate) practical TGOK-DFT calculations [101]. As a result, different weights can

give different excitation energies, which is a serious issue. This lead to different

computation strategies, such as trying to find an optimal value for the weights [315],

using Boltzmann weights instead [93], restricting to equiensembles [109, 110], or

considering the ground-state w = 0 limit of the theory, like in the direct ensemble

correction (DEC) scheme [316, 77]. A linear interpolation method has also been

proposed [101, 317].

Designing weight-dependent ensemble DFAs that systematically reduce the cur-

vature in weight of the ensemble energy, while providing at the same time accurate
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excitation energies, is an important and challenging task. Recent progress in this

matter will be extensively discussed in Secs. 6.1 and 6.2.

4.2.4 Extraction of individual state properties

In Subsection 4.2.3, we have shown that both exact ensemble energy and density

can be calculated, in principle exactly, within TGOK-DFT. At this point we should

stress that the KS and true physical densities are not expected to match individually,

even though they both reproduce the same ensemble density [see Eq. (4.20)]. This

subtle point will be discussed in more detail in Subsection 6.2.2. Nevertheless, in

complete analogy with Eq. (4.11), the exact individual densities can be extracted

from the ensemble density as follows [97],

nΨJ
(r) = nw(r) +

∑
I>0

(δIJ − wI)
∂nw(r)

∂wI
, (4.29)

which, by inserting the expression in Eq. (4.20), leads to the key result [97]

nΨJ
(r) = nΦw

J
(r) +

∑
I>0

∑
K≥0

(δIJ − wI) wK
∂nΦw

K
(r)

∂wI
, (4.30)

where, according to Eq. (4.21), the weight derivative of the individual KS densities

∂nΦw
K

(r)

∂wI
= 2

∑
p

nK
p φ

w
p (r)

∂φw
p (r)

∂wI
(4.31)

can be evaluated from the (static) linear response of the KS orbitals. This can be

done, in practice, by solving an ensemble coupled-perturbed equation [318, 97], for

example.

Turning to the excitation energies, we obtain from the variational GOK-DFT

ensemble energy expression and the Hellmann–Feynman theorem the following ex-

pression, where the derivatives of the minimizing (and therefore stationary) KS wave

functions do not contribute,

∂Ew

∂wI
= Tr

[
∆γ̂w

KS,I

(
T̂ + V̂ext

)]
+

∂Ew
Hxc[n]

∂wI

∣∣∣∣
n=nγ̂w

KS

+

∫
dr

δEw
Hxc[nγ̂w

KS
]

δn(r)
Tr
[
∆γ̂w

KS,I n̂(r)
]
, (4.32)
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with ∆γ̂w
KS,I = |Φw

I ⟩ ⟨Φw
I | − |Φw

0 ⟩ ⟨Φw
0 |. This expression can be further simplified as

follows [310]:

∂Ew

∂wI
= EI − E0 = EwI − Ew0 +

∂Ew
Hxc[n]

∂wI

∣∣∣∣
n=nγ̂w

KS

, (4.33)

where EwI denotes the Ith (weight-dependent) KS energy which is obtained by

summing up the energies {εwp } of the KS orbitals that are occupied in Φw
I . Hence,

the excitation energies can all be determined, in principle exactly, from a single

TGOK-DFT calculation.

As shown by Deur and Fromager [310], individual energy levels can also be

extracted (from the KS ensemble) and written in a compact form. For that purpose,

we will use the exact expression of Eq. (4.11) where we see, in the light of Eq. (4.33),

that it is convenient to express the total ensemble energy [first term on the right-

hand side of Eq. (4.11)] in terms of total KS energies. Levy and Zahariev (LZ)

made such a suggestion in the context of regular ground-state DFT [319]. For that

purpose, they introduced a shift in the Hxc potential that can be trivially generalized

to TGOK ensembles as follows [310],

δEw
Hxc[n]

δn(r)
→ vwHxc[n](r) =

δEw
Hxc[n]

δn(r)
+

Ew
Hxc[n]−

∫
dr

δEw
Hxc[n]

δn(r)
n(r)∫

drn(r)
. (4.34)

Note that, if the exact LZ-shifted Hxc potential were known, we would be able to

evaluate exact ensemble density-functional Hxc energies as follows,

Ew
Hxc[n] =

∫
dr vwHxc[n](r)n(r). (4.35)

Once the LZ shift has been applied to the ensemble Hxc potential, the (total N -

electron) KS energies will be modified as follows,

EwI → E
w

I = EwI + Ew
Hxc[nγ̂w

KS
]−
∫

dr
δEw

Hxc[nγ̂w
KS

]

δn(r)
nγ̂w

KS
(r), (4.36)

and the true ensemble energy will simply read as a weighted sum of (LZ-shifted) KS

energies:

Ew =

(
1−

∑
I>0

wI

)
Ew0 +

∑
I>0

wIEwI . (4.37)
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Note that the KS excitation energies are not affected by the shift:

EwI − E
w

0 = EwI − Ew0 . (4.38)

Thus, by combining Eqs. (4.11), (4.33), (4.37) and (4.38), we recover the exact

expression of Ref. [310] for ground- and excited-state energy levels:

EK = EwK +
∑
I>0

(δIK − wI)
∂Ew

Hxc[n]

∂wI

∣∣∣∣
n=nγ̂w

KS

. (4.39)

As readily seen from Eq. (4.39), applying the LZ shift is not sufficient for reaching

an exact energy level. The ensemble weight derivatives of the Hxc density functional

are also needed for that purpose.

Finally, it is instructive to consider the general expression of Eq. (4.39) in the

ground-state w = 0 limit of the theory, which gives

EI = Ew=0

I + (1− δI0)
∂Ew

Hxc[nΨ0 ]

∂wI

∣∣∣∣
w=0

, (4.40)

where nΨ0 is the exact ground-state density. As readily seen from Eq. (4.40), as we

start from a pure I = 0 ground-state theory (we recover the energy expression of

Levy and Zahariev in this case [319]), the inclusion of a given I > 0 excited state

into the ensemble induces an additional shift in the Hxc potential, which corresponds

to the weight derivative ∂Ew
Hxc[nΨ0 ]/∂wI |w=0 and can be interpreted as a derivative

discontinuity, as shown in Ref. [104] and extensively discussed in Section 5.2 of the

next chapter, in the context of charged excitations.



Chapter 5

Ensemble density-functional

theory of charged excitations

A recent adaptation of TGOK-DFT to charged excitations, which is referred to as

N -centered eDFT [91], is introduced in the present chapter. As already mentioned

at the beginning of Chapter 3, even though the neutral and charged excitations are

very different physical processes, their mathematical formulations of TGOK-DFT

and N -centered eDFT are very similar, as will be shown in the following.

This chapter is organized as follows. In Section 5.1, we introduce the N -centered

ensemble formalism and derive in-principle exact expressions for individual energy

levels, as well as the exact ionization potential and electron affinity theorems in the

formalism of N -centered eDFT. Then, in Section 5.2, which starts with a detour to

the traditional Perdew-Parr-Levy-Balduz (PPLB) DFT approach to charged exci-

tations, we discuss the equivalence between the xc derivative discontinuity, which

is a fundamental concept in DFT, and the ensemble weight derivative of the xc

density functional, which is central in eDFT. For a similar concept of derivative

discontinuity in the context of neutral excitations, the reader is referred to Chap-

ter 7. In Section 5.3, we give more details on the connection between PPLB and

N -centered pictures. We conclude with Section 5.4, which talks about suppression

of the derivative discontinuity (for charged excitations).

101
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5.1 DFT of charged excitations: The N-centered

ensemble formalism

5.1.1 N-centered ensembles

The N -centered ensemble [91] can be seen as the “grand canonical” ground-state

version of TGOK ensembles. It is constructed from the M -electron ground states

where the three possible values of the integer M ∈ {N − 1, N,N + 1} are, like the

corresponding ensemble density (see below), centered in N , hence the name “N -

centered”. The exact N -centered ensemble energy is defined as follows [91],

Eξ
0 = ξ−E

N−1
0 + ξ+E

N+1
0 +

(
1− ξ−

N − 1

N
− ξ+

N + 1

N

)
EN

0 , (5.1)

where the two N -centered ensemble weights ξ− and ξ+, which describe the re-

moval/addition of an electron from/to the N -electron system, respectively, are col-

lected in

ξ ≡ (ξ−, ξ+) . (5.2)

Similarly, the N -centered ensemble density reads as

nξ
0(r) = ξ−nΨN−1

0
(r) + ξ+nΨN+1

0
(r) +

(
1− ξ−

N − 1

N
− ξ+

N + 1

N

)
nΨN

0
(r).

(5.3)

Designed by analogy with TGOK-DFT (which describes neutral excitations), the N -

centered ensemble density integrates to the central integer number N of electrons:∫
drnξ

0(r) = N. (5.4)

In other words, even though we describe charged excitation processes, the number

of electrons remains fixed and equal to the integer N whatever the value of the

ensemble weights ξ. This major difference with the conventional DFT for fractional

electron numbers [102] has important implications that will be discussed extensively

in Section 5.2.

In this context, the ensemble energy can be determined variationally, as a di-

rect consequence of the conventional Rayleigh–Ritz variational principle for a fixed
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number of electrons, i.e.,

Eξ
0 ≤ ξ−

〈
Ψ̃N−1

∣∣∣Ĥ∣∣∣Ψ̃N−1
〉

+ ξ+

〈
Ψ̃N+1

∣∣∣Ĥ∣∣∣Ψ̃N+1
〉

+

(
1− ξ−

N − 1

N
− ξ+

N + 1

N

) 〈
Ψ̃N
∣∣∣Ĥ∣∣∣Ψ̃N

〉
, (5.5)

where {Ψ̃M} are trial M -electron normalized wave functions, provided that the (so-

called convexity) conditions ξ− ≥ 0, ξ+ ≥ 0, and ξ−(N − 1) + ξ+(N + 1) ≤ N

are fulfilled. Like in TGOK-DFT, the ensemble energy Eξ
0 varies linearly with the

ensemble weights. As a result, charged excitation energies can be extracted through

differentiation with respect to the N -centered ensemble weights. For example, since

∂Eξ
0

∂ξ±
= EN±1

0 −
(
N ± 1

N

)
EN

0 , (5.6)

the exact fundamental gap can be determined as follows,

∂Eξ
0

∂ξ−
+

∂Eξ
0

∂ξ+
= EN−1

0 + EN+1
0 − 2EN

0 = Efund
gap . (5.7)

We can also extract the individual cationic, anionic, and neutral energies, respec-

tively, as follows,

EN−1
0 =

N − 1

N

(
Eξ

0 − ξ+
∂Eξ

0

∂ξ+
+

(
N

N − 1
− ξ−

)
∂Eξ

0

∂ξ−

)
, (5.8)

EN+1
0 =

N + 1

N

(
Eξ

0 − ξ−
∂Eξ

0

∂ξ−
+

(
N

N + 1
− ξ+

)
∂Eξ

0

∂ξ+

)
, (5.9)

and

EN
0 = Eξ

0 − ξ−
∂Eξ

0

∂ξ−
− ξ+

∂Eξ
0

∂ξ+
. (5.10)

Eqs. (5.8)–(5.10) will be used in the following for deriving exact ionization potential

and electron affinity theorems.

5.1.2 DFT of N-centered ensembles

In complete analogy with TGOK-DFT, the N -centered ensemble energy can be

determined variationally as follows,

Eξ
0 = min

n→N

{
F ξ[n] +

∫
dr vext(r)n(r)

}
, (5.11)
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where, in the KS formulation of the theory [91], the universal N -centered ensemble

functional reads as

F ξ[n] = T ξ
s [n] + Eξ

Hxc[n]. (5.12)

The non-interacting kinetic energy functional

T ξ
s [n] = min

γ̂ξ→n

{
Tr
[
γ̂ξT̂

]}
(5.13)

is now determined through a minimization over N -centered density matrix operators

γ̂ξ ≡ ξ−
∣∣ΦN−1

〉 〈
ΦN−1

∣∣+ ξ+
∣∣ΦN+1

〉 〈
ΦN+1

∣∣
+

(
1− ξ−

N − 1

N
− ξ+

N + 1

N

) ∣∣ΦN
〉 〈

ΦN
∣∣ (5.14)

that fulfill the density constraint nγ̂ξ(r) = Tr
[
γ̂ξn̂(r)

]
= n(r). Combining

Eqs. (5.11), (5.12) and (5.13) leads to the final ensemble energy expression,

Eξ
0 = min

{φp}

{
Tr
[
γ̂ξ
(
T̂ + V̂ext

)]
+ Eξ

Hxc

[
nγ̂ξ

]}
= Tr

[
γ̂ξ
KS

(
T̂ + V̂ext

)]
+ Eξ

Hxc

[
nγ̂ξ

KS

]
, (5.15)

which is mathematically identical to its analog in TGOK-DFT [see Eq. (4.17)], even

though the physics it describes is completely different. The orbitals {φξ
p}, from

which the minimizing single-configuration KS wave functions
{

ΦM,ξ
0

}
in γ̂ξ

KS are

constructed, fulfill self-consistent KS equations that are similar to those of regular

(N -electron ground-state) KS-DFT:(
−∇

2
r

2
+ vext(r) + vξHxc[n

ξ](r)

)
φξ
p(r) = εξpφ

ξ
p(r). (5.16)

The only difference is that the N -centered ensemble Hxc potential vξHxc[n](r) =

δEξ
Hxc[n]/δn(r) is now employed. In the exact theory, the ensemble KS orbitals are

expected to reproduce the interacting N -centered ensemble density, i.e.,

nξ
0(r) = nγ̂ξ

KS
(r) (5.17)

= ξ−nΦN−1,ξ
0

(r) + ξ+nΦN+1,ξ
0

(r)

+

(
1− ξ−

N − 1

N
− ξ+

N + 1

N

)
nΦN,ξ

0
(r), (5.18)

or, equivalently [91],

nξ
0(r) =

(
1 +

ξ− − ξ+
N

) N∑
p=1

|φξ
p(r)|2 − ξ−|φξ

N(r)|2 + ξ+|φξ
N+1(r)|2. (5.19)
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Turning to the N -centered ensemble Hxc density functional, it can be decomposed

as Eξ
Hxc[n] = Eξ

Hx[n] + Eξ
c [n], where, by analogy with TGOK-DFT, the exact Hx

energy is expressed in terms of the N -centered ensemble density-functional KS wave

functions as follows,

Eξ
Hx[n] = ξ−

〈
ΦN−1,ξ

0 [n]
∣∣∣Ŵee

∣∣∣ΦN−1,ξ
0 [n]

〉
+ ξ+

〈
ΦN+1,ξ

0 [n]
∣∣∣Ŵee

∣∣∣ΦN+1,ξ
0 [n]

〉
+

(
1− ξ−

N − 1

N
− ξ+

N + 1

N

) 〈
ΦN,ξ

0 [n]
∣∣∣Ŵee

∣∣∣ΦN,ξ
0 [n]

〉
,

(5.20)

and the complementary correlation functional reads as

Eξ
c [n] = F ξ[n]− T ξ

s [n]− Eξ
Hx[n]

= ξ−

(〈
T̂ + Ŵee

〉
ΨN−1,ξ

0 [n]
−
〈
T̂ + Ŵee

〉
ΦN−1,ξ

0 [n]

)
+ξ+

(〈
T̂ + Ŵee

〉
ΨN+1,ξ

0 [n]
−
〈
T̂ + Ŵee

〉
ΦN+1,ξ

0 [n]

)
+

(
1− ξ−

N − 1

N
− ξ+

N + 1

N

)
×
[〈

T̂ + Ŵee

〉
ΨN,ξ

0 [n]
−
〈
T̂ + Ŵee

〉
ΦN,ξ

0 [n]

]
, (5.21)

where {ΨM,ξ
0 [n]} denotes the interacting density-functional N -centered ensemble.

When comparison is made with Subsection 4.2.3, it becomes clear that N -

centered and TGOK eDFTs are essentially the same theory (they only differ in

the definition of the ensemble). From that point of view, we now have a unified

eDFT for charged and neutral electronic excitations. As a result, N -centered eDFT

can benefit from progress made in TGOK-DFT, and vice versa.

5.1.3 Exact ionization potential and electron affinity theo-

rems

We have shown in Subsection 5.1.1 that neutral, anionic, and cationic ground-

state energies can be extracted exactly from the N -centered ensemble energy [see

Eqs. (5.8), (5.9), and (5.10)]. We can now use the variational density-functional

expression of Eq. (5.15) to obtain expressions for the fundamental gap, the ioniza-

tion potential (IP), and the electron affinity (EA). Note that these quantities are
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traditionally derived in the context of DFT for fractional electron numbers [102]

(see Section 5.2 for a detailed comparison). According to the Hellmann–Feynman

theorem, we can express the weight derivatives of the ensemble energy as follows,

∂Eξ
0

∂ξ±
= Tr

[
∆±γ̂

ξ
KS

(
T̂ + V̂ext

)]
+

∂Eξ
Hxc[n]

∂ξ±

∣∣∣∣∣
n=n

γ̂
ξ
KS

+

∫
dr

δEξ
Hxc[nγ̂ξ

KS
]

δn(r)
Tr
[
∆±γ̂

ξ
KSn̂(r)

]
, (5.22)

where ∆±γ̂
ξ
KS =

∣∣∣ΦN±1,ξ
0

〉〈
ΦN±1,ξ

0

∣∣∣ − N±1
N

∣∣∣ΦN,ξ
0

〉〈
ΦN,ξ

0

∣∣∣. Since the single-

configuration M -electron KS wave functions ΦM,ξ
0 are constructed from orbitals that

fulfill the KS Eq. (5.16), the above energy derivative can be rewritten in terms of

the KS orbital energies as [91]

∂Eξ
0

∂ξ±
= ± 1

N

N∑
p=1

(
εξ
N+ 1

2
± 1

2

− εξp

)
+

∂Eξ
Hxc[n]

∂ξ±

∣∣∣∣∣
n=n

γ̂
ξ
KS

. (5.23)

By plugging Eq. (5.23) into Eq. (5.7), we immediately obtain the following exact

expression for the fundamental gap:

Efund
gap = εξN+1 − εξN +

(
∂Eξ

Hxc[n]

∂ξ+
+

∂Eξ
Hxc[n]

∂ξ−

)∣∣∣∣∣
n=n

γ̂
ξ
KS

. (5.24)

If we now apply the LZ shift-in-potential procedure [319], by analogy with

TGOK-DFT (see Section 4.2.4), i.e.,

δEξ
Hxc[n]

δn(r)
→ vξHxc[n](r) =

δEξ
Hxc[n]

δn(r)
+

Eξ
Hxc[n]−

∫
dr

δEξ
Hxc[n]

δn(r)
n(r)∫

drn(r)
,

(5.25)

we can express both the ensemble energy and its derivatives in terms of the LZ-

shifted KS orbital energies εξp, thus leading to the following compact expressions for

the ensemble and individual energies [91], respectively:

Eξ
0 =

(
1 +

ξ− − ξ+
N

) N∑
p=1

εξp − ξ−ε
ξ
N + ξ+ε

ξ
N+1, (5.26)
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EN−1
0 =

N−1∑
p=1

εξp +

(
1− (N − 1)ξ−

N

)
∂Eξ

Hxc[n]

∂ξ−

∣∣∣∣∣
n=n

γ̂
ξ
KS

−(N − 1)ξ+
N

∂Eξ
Hxc[n]

∂ξ+

∣∣∣∣∣
n=n

γ̂
ξ
KS

,

(5.27)

EN+1
0 =

N+1∑
p=1

εξp +

(
1− (N + 1)ξ+

N

)
∂Eξ

Hxc[n]

∂ξ+

∣∣∣∣∣
n=n

γ̂
ξ
KS

−(N + 1)ξ−
N

∂Eξ
Hxc[n]

∂ξ−

∣∣∣∣∣
n=n

γ̂
ξ
KS

,

(5.28)

and

EN
0 =

N∑
p=1

εξp − ξ−
∂Eξ

Hxc[n]

∂ξ−

∣∣∣∣∣
n=n

γ̂
ξ
KS

− ξ+
∂Eξ

Hxc[n]

∂ξ+

∣∣∣∣∣
n=n

γ̂
ξ
KS

.

(5.29)

By subtraction, we immediately obtain in-principle-exact IP and EA theorems:

IN0 = EN−1
0 − EN

0

= −εξN +

(
1 +

ξ−
N

)
∂Eξ

Hxc[n]

∂ξ−

∣∣∣∣∣
n=n

γ̂
ξ
KS

+
ξ+
N

∂Eξ
Hxc[n]

∂ξ+

∣∣∣∣∣
n=n

γ̂
ξ
KS

, (5.30)

and

AN
0 = EN

0 − EN+1
0

= −εξN+1 −
(

1− ξ+
N

)
∂Eξ

Hxc[n]

∂ξ+

∣∣∣∣∣
n=n

γ̂
ξ
KS

+
ξ−
N

∂Eξ
Hxc[n]

∂ξ−

∣∣∣∣∣
n=n

γ̂
ξ
KS

. (5.31)

Interestingly, in the regular ground-state N -electron limit (i.e., when ξ = 0), the

expression of Levy and Zahariev [319] is recovered for the IP,

IN0 = −εξ=0
N +

∂Eξ
Hxc[nΨ0 ]

∂ξ−

∣∣∣∣∣
ξ=0

, (5.32)

where the asymptotic value of the LZ-shifted Hxc potential away from the system

[see Ref. [319] and Eq. (5.95)] can now be expressed explicitly, within the N -centered
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ensemble formalism, as ∂Eξ
Hxc[nΨ0 ]/∂ξ−

∣∣∣
ξ=0

. Similarly, we obtain the following ex-

pression for the EA:

AN
0 = −εξ=0

N+1 −
∂Eξ

Hxc[nΨ0 ]

∂ξ+

∣∣∣∣∣
ξ=0

. (5.33)

As readily seen from the above expressions, neutral and charged systems cannot

be described with the same (LZ-shifted) Hxc potential. As shown in Section 5.2,

the additional ensemble weight derivative correction [second term on the right-hand

side of Eqs. (5.32) and (5.33)] is actually connected to the concept of derivative

discontinuity which manifests in conventional DFT for fractional electron numbers,

when crossing an integer [320].

5.2 Review of the regular PPLB approach to

charged excitations and the concept of deriva-

tive discontinuity

5.2.1 Introduction

The concept of derivative discontinuity originally appeared in the context of DFT for

fractional electron numbers [102], which is the conventional theoretical framework for

the description of charged excitations. The (xc functional) derivative discontinuities

play a crucial role in the evaluation of fundamental gaps [320]. More specifically, they

correct the bare KS gap which is only an approximation to the true interacting gap.

It is well known that standard (semi)-local DFAs do not contain such discontinuities,

which explains why post-DFT methods based on Green functions, for example, are

preferred for the computation of accurate gaps [286, 321, 322, 323, 324, 325, 326,

284] (see also Subsection 3.2.2). Their substantially higher computational cost is a

motivation for exploring simpler (frequency-independent) strategies. The recently

proposed N -centered ensemble formalism [91, 327], which has been introduced in

Subsection 5.1.1, is (among others [328, 329, 330, 331, 332, 333, 334, 335]) promising

in this respect.

From a more fundamental point of view, it is important to clarify the similarities

and differences between N -centered eDFT and the standard formulation of DFT for
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charged excitations, which is often referred to as Perdew–Parr–Levy–Balduz (PPLB)

DFT [102]. More specifically, we should explain what the derivative discontinuity,

which is central in PPLB, becomes when switching to the N -centered formalism.

This is the purpose of this section.

After a brief review in the present section of the PPLB formalism and its im-

plications, we will show (in Section 5.3), on the basis of Ref. [103], that derivative

discontinuities exist also in N -centered eDFT and that they are directly connected

to the ensemble weight derivatives of the xc functional, like in TGOK-DFT [104].

Finally, we will explain in Section 5.4 why these discontinuities can essentially be

removed from the theory, unlike in PPLB, and discuss the practical implications.

5.2.2 Ensemble formalism for open systems

The key idea in PPLB is to describe electron ionization or affinity processes through

a continuous variation of the electron number, hence the need for an extension

of DFT to fractional electron numbers. Obviously, fractional charges cannot be

physically represented by a closed system with fixed amount of electrons. Instead,

they can be understood in statistical sense, e.g. an indication that the system is

open for an exchange of electrons with environment given some elapsed time. The

most appropriate quantity for open systems is thus ensemble of neutral and charged

(ground) states. For that purpose, the energy of an artificial (zero-temperature)

grand-canonical-type ensemble, which should not be confused with physical finite-

temperature grand-canonical ensembles of statistical physics [336], is constructed as

follows1,

G(µ) = min
M

{
EM

0 − µM
}
, (5.34)

where we minimize over integer numbers M of electrons and EM
0 denotes the exact

M -electron ground-state energy of the system. In this formalism, the number of

electrons in the system can be arbitrarily fixed by tuning the chemical potential µ.

For example, if the following inequalities are fulfilled,

EN−1
0 − µ(N − 1) > EN

0 − µN < EN+1
0 − µ(N + 1), (5.35)

1The minimum in Eq. (5.34) is unique, provided that the ground-state energy EM
0 is convex

with respect to electron number [102]. That is, for every M , EM+1
0 + EM−1

0 > 2EM
0 .
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or, equivalently,

−IN0 < µ < −AN
0 , (5.36)

then the system contains an integer number N of electrons (it is assumed that the

N -electron fundamental gap EN
g = IN0 − AN

0 is positive, so that Eq. (5.36) can be

fulfilled). In the special case where one of the inequality becomes a strict equality,

say

EN−1
0 − µ(N − 1) = EN

0 − µN, (5.37)

which means that the chemical potential is exactly equal to minus the N -electron

ionization potential,

µ = EN
0 − EN−1

0 = −IN0 , (5.38)

the N - and (N − 1)-electron solutions are degenerate (grand-canonical energy wise).

Therefore, they can be mixed as follows,

G (µ)
µ=−IN0= (1− α)

(
EN−1

0 − µ(N − 1)
)

+ α
(
EN

0 − µN
)

(5.39)

=
(

(1− α)EN−1
0 + αEN

0

)
− µ

(
N − 1 + α

)
(5.40)

≡ EN
0 − µN , (5.41)

where 0 ≤ α ≤ 1, thus allowing for a continuous variation of the electron number

N (which now becomes fractional) from N − 1 to N :

N ≡ N − 1 + α. (5.42)

This is the central idea in PPLB for describing the ionization of an N -electron

system. Ionizing the (N + 1)-electron system gives access to the N -electron affin-

ity. Interestingly, we recover from Eqs. (5.40), (5.41), and (5.42) the well-known

piecewise linearity of the energy with respect to the electron number [102]:

EN
0 ≡ (1− α)EN−1

0 + αEN
0 = (N −N )EN−1

0 + (N −N + 1)EN
0 . (5.43)

In order to establish a clearer connection between the PPLB and N -centered for-

malisms, we follow the approach of Kraisler and Kronik [328] where the ensemble



CHAPTER 5. ENSEMBLE DENSITY-FUNCTIONAL THEORY OF CHARGED
EXCITATIONS 111

weight α is used as a variable, in place of the electron number N . Therefore, in

PPLB, the ensemble energy reads as

Eα = (1− α)EN−1
0 + αEN

0 (5.44)

= (1− α)
〈
ΨN−1

0

∣∣T̂ + Ŵee

∣∣ΨN−1
0

〉
+ α

〈
ΨN

0

∣∣T̂ + Ŵee

∣∣ΨN
0

〉
+

∫
dr vext(r)n

α
0 (r), (5.45)

where

nα
0 (r) = (1− α)nΨN−1

0
(r) + αnΨN

0
(r) (5.46)

is the exact ground-state ensemble density. Note that, if we introduce the ensemble

density matrix operator

Γ̂α
0 = (1− α)

∣∣ΨN−1
0

〉 〈
ΨN−1

0

∣∣+ α
∣∣ΨN

0

〉 〈
ΨN

0

∣∣ , (5.47)

the ensemble energy and density can be expressed in a compact way as follows,

Eα = Tr
[
Γ̂α
0 Ĥ
]

(5.48)

and

nα
0 (r) = Tr

[
Γ̂α
0 n̂(r)

]
, (5.49)

respectively.

5.2.3 DFT for fractional electron numbers

On the basis of the “grand-canonical” ensemble formalism introduced in the previous

section, we can extend the domain of definition of the universal Hohenberg–Kohn

functional F [n] to densities n that integrate to fractional electron numbers, i.e.,∫
drn(r) = N − 1 + α, (5.50)

as follows,

F [n] = (1− α)
〈
T̂ + Ŵee

〉
ΨN−1

0 [n]
+ α

〈
T̂ + Ŵee

〉
ΨN

0 [n]
, (5.51)

where the ground-state density-functional wave functions fulfill the density con-

straint

(1− α)nΨN−1
0 [n](r) + αnΨN

0 [n](r) = n(r). (5.52)
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From now on we will take α in the range

0 < α ≤ 1, (5.53)

so that the integer electron number case systematically corresponds to α = 1. There-

fore, in the present density-functional PPLB ensemble, the N -electron state will

always contribute (even infinitesimally), and

N = ⌈∫ drn(r)⌉. (5.54)

At this point it is essential to realize that, unlike in N -centered eDFT, the ensemble

weight α is not an independent variable. Indeed, according to Eqs. (5.50) and (5.54),

it is an explicit functional of the density:

α ≡ α[n] =

∫
drn(r)− ⌈∫ drn(r)⌉+ 1. (5.55)

Therefore, in PPLB, the ensemble is fully determined from the density. The latter

remains, like in regular DFT for integer electron numbers, the sole basic variable in

the theory. Following Levy and Lieb [47, 48, 49], the extended universal functional

of Eq. (5.51) can be expressed in a compact way as follows,

F [n] = min
γ̂α→n

Tr
[
γ̂α
(
T̂ + Ŵee

)]
, (5.56)

where we minimize over grand-canonical ensemble density matrix operators

γ̂α ≡ (1− α)
∣∣ΨN−1

〉 〈
ΨN−1

∣∣+ α
∣∣ΨN

〉 〈
ΨN
∣∣ (5.57)

that fulfill the following density contraint:

Tr [γ̂αn̂(r)] = nγ̂α(r) = (1− α)nΨN−1(r) + αnΨN (r) = n(r). (5.58)

5.2.4 Kohn-Sham PPLB

The commonly used KS formulation of PPLB is recovered when introducing the

non-interacting kinetic energy functional

Ts[n] = min
γ̂α→n

Tr
[
γ̂αT̂

]
(5.59)

and the in-principle-exact decomposition

F [n] = Ts[n] + EHxc[n], (5.60)
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where the Hxc functional now applies to fractional electron numbers. Let us stress

that, unlike in N -centered eDFT, the Hxc functional has no ensemble weight

dependence because the weight is determined from the density n. Any dependence

in α is incorporated into the functional through the density. This is a major

difference with N -centered eDFT where the ensemble weight and the density are

independent variables, like in GOK-DFT. This subtle point will be central later on

when comparing the two theories.

According to the variational principle, the exact ensemble energy can be deter-

mined, for a given and fixed value of α, as follows,

Eα = min
n→N−1+α

{
F [n] +

∫
dr vext(r)n(r)

}
, (5.61)

where we minimize over densities that integrate to the desired number N − 1 +α of

electrons. According to Eqs. (5.59) and (5.60), the ensemble energy can be rewritten

as

Eα = min
n→N−1+α

{
min
γ̂α→n

{
Tr
[
γ̂α
(
T̂ + V̂ext

)]
+ EHxc[nγ̂α ]

}}
= min

γ̂α

{
Tr
[
γ̂α
(
T̂ + V̂ext

)]
+ EHxc[nγ̂α ]

}
≡ Tr

[
γ̂α
KS

(
T̂ + V̂ext

)]
+ EHxc[nγ̂α

KS
],

(5.62)

where the minimizing KS density matrix operator

γ̂α
KS = (1− α)

∣∣∣ΦN−1,α
0

〉〈
ΦN−1,α

0

∣∣∣+ α
∣∣∣ΦN,α

0

〉〈
ΦN,α

0

∣∣∣ (5.63)

reproduces the exact ensemble density of Eq. (5.46):

nγ̂α
KS

(r) = Tr [γ̂αn̂(r)] = nα
0 (r). (5.64)

The orbitals from which ΦN−1,α
0 and ΦN,α

0 are constructed fulfill self-consistent KS

equations, (
−1

2
∇2

r + vext(r) +
δEHxc[nγ̂α

KS
]

δn(r)

)
φα
i (r) = εαi φ

α
i (r), (5.65)

where, as readily seen from the following ensemble density expression,

nγ̂α
KS

(r) = (1− α)
N−1∑
i=1

|φα
i (r)|2 + α

N∑
i=1

|φα
i (r)|2

=
N−1∑
i=1

|φα
i (r)|2 + α|φα

N(r)|2,
(5.66)
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the highest occupied molecular orbital (HOMO) [i.e., φα
N ] is fractionally occupied.

This is the main difference with conventional DFT calculations for integer electron

numbers.

5.2.5 Janak’s theorem and its implications

Once the ensemble energy Eα has been determined (variationally), we can evaluate

the IP, which is the quantity we are interested in, by differentiation with respect to

the ensemble weight α [see Eq. (5.44)], i.e.,

dEα

dα
= −IN0 , (5.67)

which, according to the Hellmann–Feynman theorem and Eqs. (5.62), (5.63), and

(5.65), can be written more explicitly as follows,

dEα

dα
=

〈
ΦN,α

0

∣∣∣T̂ + V̂ext

∣∣∣ΦN,α
0

〉
−
〈

ΦN−1,α
0

∣∣∣T̂ + V̂ext

∣∣∣ΦN−1,α
0

〉
+

∫
dr

δEHxc[nγ̂α
KS

]

δn(r)

(
nΦN,α

0
(r)− nΦN−1,α

0
(r)
)

(5.68)

≡
N∑
i=1

εαi −
N−1∑
i=1

εαi

= εαN , (5.69)

thus leading to the famous Janak’s theorem [337]:

IN0 = −εαN , ∀α ∈ (0, 1]. (5.70)

As readily seen from Eq. (5.70), the energy εαN of the KS HOMO does not vary with

the fraction α > 0 of electron that is introduced into the (N − 1)-electron system.

Therefore, it matches the N -electron KS HOMO energy that we simply denote εNN :

εαN = εα=1
N ≡ εNN = −IN0 . (5.71)

Equally, with Janak’s theorem, we can evaluate electron affinity. The only difference

is that we need to consider a grand-canonical ensemble with N - and N + 1-electron

states,

γ̂α ≡ (1− α)
∣∣ΨN

〉 〈
ΨN
∣∣+ α

∣∣ΨN+1
〉 〈

ΨN+1
∣∣ , (5.72)
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for which the variationally obtained ensemble energy reads,

Eα = (1− α)EN
0 + αEN+1

0 . (5.73)

Differentiating with respect to α gives the negative of electron affinity,

dEα

dα
= EN+1

0 − EN
0 = −AN

0 . (5.74)

Similarly to Eq. (5.68), we can equate this with the HOMO energy of the (N + 1)-

electron system in KS PPLB,

dEα

dα
=

〈
ΦN+1,α

0

∣∣∣T̂ + V̂ext

∣∣∣ΦN+1,α
0

〉
−
〈

ΦN,α
0

∣∣∣T̂ + V̂ext

∣∣∣ΦN,α
0

〉
+

∫
dr

δEHxc[nγ̂α
KS

]

δn(r)

(
nΦN+1,α

0
(r)− nΦN,α

0
(r)
)

(5.75)

≡
N+1∑
i=1

εαi −
N∑
i=1

εαi

= εαN+1, (5.76)

where the minimizing KS density matrix operator is now equal to,

γ̂α
KS = (1− α)

∣∣∣ΦN,α
0

〉〈
ΦN,α

0

∣∣∣+ α
∣∣∣ΦN+1,α

0

〉〈
ΦN+1,α

0

∣∣∣ . (5.77)

Thus, giving the Janak’s theorem for affinity,

AN
0 = −εαN+1, ∀α ∈ (0, 1]. (5.78)

And just as before (see Eq. (5.71)), we can match the HOMO energy, now for a

(N + 1)-electron system, to the electron affinity

εαN+1 = εα=1
N+1 ≡ εN+1

N+1 = −AN
0 . (5.79)

Therefore, the fundamental gap can be evaluated as a difference between two KS

HOMO energies,

EN
g = IN0 − AN

0 = εN+1
N+1 − εNN . (5.80)

Importantly, as we will show later in Subsection 5.2.6, εN+1
N+1 ̸= εNN+1, since the two

energies correspond to different KS potentials. As a consequence, evaluating the

fundamental gap with above equation would require two KS calculations. If we are

to compute the gap with just one KS calculation for the N -electron system, the ap-

proximation Eg ≈ εNN+1−εNN usually drastically underestimates the fundamental gap
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by the amount that is known as the “derivative discontinuity” (DD) in traditional

PPLB (see Subsection 5.2.6 for a more detailed discussion).

At this point it is also important to mention that, unlike in N -centered eDFT

[see Eq. (5.32)], there is no ensemble weight derivative of the Hxc functional involved

in Janak’s theorem. Such a quantity does not exist in PPLB, simply because the

ensemble weight α and the density n cannot vary independently. However, while

the number of electrons is artificially held constant in the N -centered formalism, it

is not the case in PPLB. Indeed, variations in α induce a change in density [see the

third contribution on the right-hand side of Eq. (5.68)] that does not integrate to

zero:

1 =

∫
dr
(
nΦN,α

0
(r)− nΦN−1,α

0
(r)
)
̸= 0. (5.81)

Therefore, it is crucial, when evaluating the functional derivative of the Hxc

energy δEHxc[nγ̂α
KS

]/δn(r) (i.e., the Hxc potential), to consider variations of the

density δn(r) that do not integrate to zero. This is unnecessary in N -centered

eDFT. In PPLB, however, the proper modeling of the xc potential is essential for

describing charged excitations. This is clearly illustrated by the fact that the exact

xc potential exhibits derivative discontinuities when crossing an integer electron

number, as discussed further in Section 5.3.

Let us finally discuss the unicity of the xc potential. We recall that, in the

present review, the external potential is simply the (Coulomb) nuclear potential of

the molecule under study. It is fixed and it vanishes away from the system:

vext(r) →
|r|→+∞

0, (5.82)

which we simply denote vext(∞) = 0 in the following. As readily seen from

Eq. (5.70), when describing a continuous variation of the electron number N in

the range N − 1 < N < N , the KS potential becomes truly unique, not anymore

up to a constant. This can be related to the unicity of the chemical potential which

allows for fractional electron numbers, as discussed previously in the interacting

case [see Eq. (5.38)]. As a result, the xc potential is truly unique. More precisely,

as illustrated in Appendix E for a one-dimensional (1D) system, Janak’s theorem
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implies that [338]

δExc[nγ̂α
KS

]

δn(r)

∣∣∣∣
|r|→+∞

≡ vαxc(∞) = 0. (5.83)

5.2.6 Fundamental gap problem

According to Janak’s theorem, the fundamental gap can be evaluated in PPLB, in

principle exactly, from the HOMO energies as follows,

EN
g = IN0 − IN+1

0 = εN+1
N+1 − εNN . (5.84)

What is truly challenging in practice, in particular in solids [339], is the extrac-

tion of this gap from a single N -electron calculation. Indeed, the HOMO energy

εN+1
N+1 of the (N + 1)-electron system has no reason to match the lowest unoccupied

molecular orbital (LUMO) energy εNN+1 of the N -electron system, simply because the

infinitesimal addition of an electron to the latter system will affect the density [see

Eq. (E.10)] and, consequently, the xc potential. The impact of an electron addition

on the xc potential will be scrutinized in Section 5.3, in the context of N -centered

eDFT. If we denote

∆N
xc = εN+1

N+1 − εNN+1 (5.85)

the deviation in energy between the above-mentioned HOMO and LUMO, we recover

the usual expression [320]

EN
g = εNN+1 − εNN + ∆N

xc, (5.86)

where ∆N
xc can now be interpreted as the difference in gap between the physical and

KS systems. As readily seen from the key Eq. (5.24) of N -centered eDFT, that we

take in the regular N -electron ground-state DFT limit (i.e., ξ+ = ξ− = 0), ∆N
xc is

indeed a nonzero correction to the KS gap that can be expressed more explicitly as

follows,

∆N
xc =

∂E
(ξ−,0)
xc [nΨN

0
]

∂ξ−

∣∣∣∣∣
ξ−=0

+
∂E

(0,ξ+)
xc [nΨN

0
]

∂ξ+

∣∣∣∣∣
ξ+=0

. (5.87)

Note that we used in Eq. (5.87) the in-principle-exact decomposition

E
(ξ−,ξ+)
Hxc [n] = EH[n] + E(ξ−,ξ+)

xc [n], (5.88)
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where the regular (weight-independent) Hartree functional is employed. The

practical disadvantage of such a decomposition will be extensively discussed in

Section 6.1. We focus here on the exact theory.

In the language of N -centered eDFT, ∆N
xc describes the variation in ensemble

weights (while holding the ensemble density fixed and equal to the N -electron

ground-state density nΨN
0

) of the N -centered ensemble xc energy due to the

infinitesimal removal/addition of an electron from/to the N -electron system.

Evidently, standard (local or semi-local) DFAs do not incorporate such a weight

dependence because they were not designed for N -centered eDFT calculations

(we recall that the concept of N -centered ensemble has been proposed quite

recently [91, 327, 103]). Therefore, when such DFAs are used, the physical gap

is systematically approximated by the (also approximate) KS one. Note that

the resulting underestimation of the fundamental gap is highly problematic, for

example, when computing transport properties [340, 341]. The interpretation that

is given in PPLB for ∆N
xc is completely different. The latter actually originates

from the discontinuity that the xc potential (which is the functional derivative

of the xc energy) exhibits when crossing an integer electron number, hence the

name derivative discontinuity. In the language of PPLB, ∆N
xc is not described at

all when (semi-) local xc functionals are employed, simply because the latter do

not incorporate functional derivative discontinuities. The connection between these

two very different interpretations will be made in Section 5.3.

5.3 Connection between PPLB and N-centered

pictures

Crossing an integer electron number, which is a key concept in PPLB, can be de-

scribed in the context of N -centered eDFT by considering so-called left and right

N -centered ensembles [327]. These ensembles are recovered when ξ+ = 0 (electron

removal only) and ξ− = 0 (electron addition only), respectively. In the following,
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we will use the following shorthand notations,

left N -centered ensemble: (ξ−, 0)
notation≡ ξ−, (5.89)

right N -centered ensemble: (0, ξ+)
notation≡ ξ+, (5.90)

for convenience. For example, the right N -centered ensemble Hxc functional and KS

orbital energies will be denoted as E
ξ+
Hxc[n] ≡ E

(0,ξ+)
Hxc [n] and ε

ξ+
i ≡ ε

(0,ξ+)
i , respectively.

The exact left and right N -centered ensemble densities read as [see Eq. (5.3)]

nξ−(r) ≡
(

1− (N − 1)ξ−
N

)
nΨN

0
(r) + ξ−nΨN−1

0
(r), (5.91)

and

nξ+(r) ≡
(

1− (N + 1)ξ+
N

)
nΨN

0
(r) + ξ+nΨN+1

0
(r), (5.92)

respectively. Note that, with these notations, we have the following equivalence

relation,

ξ− = 0⇔ ξ+ = 0, (5.93)

as readily seen from Eqs. (5.91) and (5.92). When Eq. (5.93) is fulfilled, the system

is in its pure N -electron ground state which means, in the language of PPLB, that

it contains exactly the integer number N of electrons.

A clearer connection between the two theories can be established by comparing

the two limits ξ+ → 0+ (which describes the infinitesimal addition of an electron to

the N -electron system) and ξ+ = 0 (or, equivalently, ξ− = 0). For that purpose, we

first need to realize that, by analogy with PPLB (see Appendix E for the proof in

the simpler 1D case), the exact IP/EA theorems of N -centered eDFT in Eqs. (5.30)

and (5.31) can be alternatively written as follows [103],

AN
0 = IN+1

0

ξ+>0
= −εξ+N+1 + vξ+xc (∞) (5.94)

and

IN0
ξ−≥0
= −εξ−N + vξ−xc (∞), (5.95)

where we recall that vξ±xc (r) ≡ δEξ±
xc [n]/δn(r)

∣∣
n=nξ± . Thus, from the explicit expres-

sion of the LZ shift [see the second term on the right-hand side of Eq. (5.25)], we
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obtain the following exact expressions for the asymptotic values of the right and left

N -centered ensemble xc potentials, respectively:

vξ+xc (∞)
ξ+>0
=

(
ξ+
N
− 1

)
∂Eξ+

xc [n]

∂ξ+

∣∣∣∣
n=nξ+

− 1

N

(
E

ξ+
Hxc[n

ξ+ ]−
∫

dr v
ξ+
Hxc(r)n

ξ+(r)

) (5.96)

and

vξ−xc (∞)
ξ−≥0
=

(
ξ−
N

+ 1

)
∂Eξ−

xc [n]

∂ξ−

∣∣∣∣
n=nξ−

− 1

N

(
E

ξ−
Hxc[n

ξ− ]−
∫

dr v
ξ−
Hxc(r)n

ξ−(r)

)
.

(5.97)

We recall that the decomposition of Eq. (5.88) is employed for a direct comparison

with PPLB. Let us now consider the ξ+ → 0+ and ξ− = 0 limits in Eqs. (5.96) and

(5.97), respectively. Since

nξ+→0+(r) = nξ−=0(r) = nΨN
0

(r), (5.98)

v
ξ+→0+

H (r) = v
ξ−=0
H (r), (5.99)

E
ξ+
Hxc[n

ξ+ ]
∣∣∣
ξ+→0+

= E
ξ−
Hxc[n

ξ− ]
∣∣∣
ξ−=0

= EHxc[nΨN
0

], (5.100)

it comes, by subtraction,∫
dr

N

(
vξ+→0+

xc (r)− vξ+=0
xc (r)

)
nΨN

0
(r) = vξ+→0+

xc (∞)− vξ+=0
xc (∞) + ∆N

xc,

(5.101)

or, equivalently,

∆N
xc =

∫
dr

N

[ (
vξ+→0+

xc (r)− vξ+→0+

xc (∞)
)
−
(
vξ+=0
xc (r)− vξ+=0

xc (∞)
) ]

nΨN
0

(r),

(5.102)

where we used Eq. (5.87) and the relation vξ−=0
xc (r) = vξ+=0

xc (r), according to

Eq. (5.93). Note that, as readily seen from Eq. (5.102), ∆N
xc is insensitive to

constant shifts in the xc potential, as expected from Eq. (5.86).

The connection that is made explicit in Eq. (5.102) between the N -centered en-

semble weight derivative ∆N
xc of the xc density-functional energy [see Eq. (5.87)]

and the xc potential is an important result that was highlighted very recently in
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Ref. [103]. It proves that weight derivatives and derivative discontinuities are equiv-

alent, thus extending to charged excitations what was already known for neutral

excitations [104]. Indeed, if we systematically choose (but we do not have to in the

N -centered formalism, unlike in PPLB) the xc potential that asymptotically goes

to zero, i.e.,

vξ±xc (∞)=0, ξ± ≥ 0, (5.103)

then we recover what looks like a Janak’s theorem [see Eqs. (5.94) and (5.95)] and,

according to Eq. (5.101),∫
dr
(
vξ+→0+

xc (r)− vξ+=0
xc (r)

)
nΨN

0
(r) = N∆N

xc ̸= 0. (5.104)

It then becomes clear that, in the region of the system under study (i.e., where

the density nΨN
0

(r) is nonzero), the xc potentials obtained in the ξ+ → 0+ and

ξ+ = 0 limits, respectively, cannot match. In order to fulfill the arbitrary constraint

of Eq. (5.103), while still reproducing for ξ+ > 0 the correct density in all regions

of space [which includes a proper description of the density’s asymptotic behavior

(see Appendix E)], the xc potential must be shifted in the region the system, thus

ensuring that the ground-state density nΨN
0

(r) is also correctly reproduced in that

region. This has been nicely illustrated in Ref. [103] for an atom in 1D. Thus, we

recover a well-known result of PPLB: When an electron is infinitesimally added

(i.e., ξ+ → 0+) to a system with an integer number of electrons (ξ+ = 0 case),

the xc potential exhibits a jump (in the region of the system) which, according to

Eqs. (5.86) and (5.104), corresponds exactly to the deviation in fundamental gap of

the true system from the KS one.

5.4 Suppression of the derivative discontinuity

The fundamental gap expression of Eq. (5.24), which has been derived within

the N -centered eDFT formalism, may intrigue PPLB practitioners. Indeed, it

makes it possible to describe charged excitations, in principle exactly, without

invoking explicitly the concept of derivative discontinuity. Instead, all our attention

should be focused on the weight dependence of the N -centered ensemble xc density

functional. Note that, despite this major difference between N -centered eDFT
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and PPLB, the xc potential exhibits derivative discontinuities in both theories, as

we have seen in Section 5.3. One may argue that modeling weight dependencies

in ensemble xc density functionals is actually easier than modeling functional

derivative discontinuities. Nevertheless, as discussed in further detail in Secs. 6.1

and 6.2, designing weight-dependent exchange and correlation DFAs from first

principles raises several fundamental questions to which, up to now, no definitive

answers have been given.

From a conceptual point of view, the fact that we do not need anymore to

put efforts into the explicit description of derivative discontinuities, once we have

moved from the standard PPLB picture to the N -centered one, can be interpreted

as follows. Unlike in PPLB, the constraint in Eq. (5.103) is arbitrary because the

KS potential remains unique up to a constant when charged excitations occur in

N -centered eDFT, by construction. If, for simplicity, we keep this constraint for

ξ+ = 0, i.e., we set ṽξ+=0
xc (r) ≡ vξ+=0

xc (r) so that ṽξ+=0
xc (∞) = 0, which is likely to

be fulfilled in a practical N -electron DFT calculation, it can be relaxed as follows,

when ξ+ → 0+,

vξ+→0+

xc (r) → ṽξ+→0+

xc (r) = vξ+→0+

xc (r)−∆N
xc, (5.105)

thus leading to ṽξ+→0+

xc (∞) = −∆N
xc. We stress that ṽξ+xc is as exact as vξ+xc . However,

according to Eq. (5.102), which also holds for the new (shifted) potential ṽξ+xc (r), the

relation in Eq. (5.104) now reads as∫
dr
(
ṽξ+→0+

xc (r)− ṽξ+=0
xc (r)

)
nΨN

0
(r) = 0. (5.106)

In other words, via the shifting procedure of Eq. (5.105), we can simply move the

derivative discontinuity away from the system, i.e., in regions where the density is

essentially equal to zero. Consequently, with this change of paradigm, the absence

of derivative discontinuities in standard semi-local DFAs should not be considered

as an issue anymore. The ability of the local density approximation (LDA) to re-

produce relatively accurate LZ-shifted KS orbital energies, as shown in a 1D atomic

model [103], is actually encouraging since the latter are central in the evaluation

of both the IP and the EA [see Eqs. (5.32) and (5.33)]. On the other hand, the

resulting charged excitation energies are rather poor because weight dependencies
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are completely absent from standard LDA [103]. We hope that, in the near future,

(much) more efforts will be put into the design of weight-dependent DFAs. Re-

cent developments based on uniform electron gas models [109, 110] are a first and

important step in this direction.





Chapter 6

Exchange and correlation energies

in ensemble DFT

In Chapter 4 we introduced TGOK-DFT for describing neutral excitations, and two

methods for charged excitations, i.e. the PPLB method, and N -centered eDFT.

The latter as we have seen, places neutral and charged excitations in a unified

eDFT framework with the use of weight-dependent functionals. This is advanta-

geous since now we can benefit from developments of TGOK-DFT when designing

weight-dependent functionals for N -centered eDFT, and vice-versa. However, in

practice, we are currently still far away from knowing reliable and systematically

improvable approximations. For example, unlike in regular ground-state DFT, there

is no ensemble equivalent “Jacob’s ladder” of DFAs, which would allow us to pick

the most suitable functional for our computation. The present chapter focuses on

the ensemble Hxc functional, which is treated as a sum of the ensemble Hartree-

exchange and correlation functionals,

Ew
Hxc[n] = Ew

Hx[n] + Ew
c [n]. (6.1)

In Section 6.1, the problem of designing weight dependent DFAs for the ensemble

Hartee-exchange is briefly summarized. Then, in Section 6.2, we delve more deeply

into discussions on the issue of correlation energy in eDFT. Numerical results are

presented for the asymmetric Hubbard dimer. Section 6.3 closes this chapter with

a brief summary and comments on future directions of ensemble DFT. The content

of this chapter, including the numerical results, is mostly inspired by Sections 4 and

125
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5 in the book chapter “Ensemble density functional theory of neutral and charged

excitations”.
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6.1 The exact Hartree-exchange dilemma in

eDFT

6.1.1 Overview

This short section summarizes the problematic in design of weight-dependent

exchange DFAs. Despite several (scarce though) attempts [315, 342, 343, 110], it

is still unclear how weight dependencies can be introduced into standard (semi-)

local exchange functionals in a general and systematically improvable way. The

use of orbital-dependent exchange functionals seems much more promising in this

respect [108, 109, 344].

As mentioned before, in regular KS-DFT for ground-states, combining (a fraction

of) exact exchange energy with (semi-)local density functionals gave rise to the

well-known hybrid functionals such as B3LYP. As we will see in the following, its

extension to ensembles is nontrivial, because different formulations with distinct

pros and cons are possible. For simplicity, we will focus on TGOK ensembles, but

the discussion applies to other eDFTs like, for example PPLB or N -centered eDFT

(see Section 5.2).

6.1.2 Ensemble density matrix functional approach

(eDMHF)

We start with a brief review of the procedure that is usually followed by DFT prac-

titioners for extending HF to (TGOK in the present case) ensembles. In the regular

scheme, the ensemble HF energy is evaluated variationally by inserting the ensem-

ble (spin-summed one-electron reduced) density matrix (eDM) into the ground-state

DM-functional HF energy. For that reason, we refer to the approach as eDMHF.

The corresponding ensemble energy can be expressed as follows,

Ew
eDMHF ≡ min

{ΦI}

{∑
I

wI ⟨ΦI |T̂ + V̂ext|ΦI⟩+ WHF

[∑
I

wIγΦI

]}
, (6.2)

where V̂ext =
∫
dr v(r)extn̂(r) is an external (usually nuclear) potential operator.

The eDM is evaluated from the trial orthonormal set {ΦI} of single-configuration
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wave functions (i.e., Slater determinants or configuration state functions). The

ground-state HF interaction functional reads as

WHF [γ] =
1

2

∫
dr

∫
dr′

γ(r, r)γ(r′, r′)− 1
2
γ2(r, r′)

|r− r′| , (6.3)

where

γΦI
(r, r′) =

∑
kl

φk(r)φl(r
′)
∑

σ∈{↑,↓}

⟨ΦI |ĉ†kσ ĉlσ|ΦI⟩ (6.4)

is the spin-summed one-electron reduced density matrix (spin-summed 1RDM) of

the configuration ΦI , and {φk} is an orthonormal orbital basis. The most appealing

feature of this approach is that we can show that the minimizing orbitals in Eq. (6.2)

fulfill eigenvalue equations akin to that of the Fock operator (see Eqs. (1.31) - (1.35)),

with the only difference being that some orbitals can be fractionally occupied. How-

ever, the eDMHF energy is unphysical in many ways. For example, by construction,

it varies quadratically with the ensemble weights [see Eqs. (6.2) and (6.3)] while

the true physical ensemble energy is expected to vary linearly. Another problem

related to this discrepancy are the so-called ghost-interactions (GIs), which are un-

physical couplings between individual states in the ensemble. This can be seen more

explicitly,

WHF

[∑
I

wIγΦI

]
=

1

2

∑
IJ

wIwJ

∫
dr

∫
dr′

1

|r− r′|

×
(
γΦI

(r, r)γΦJ
(r′, r′)− 1

2
γΦI

(r, r′)γΦJ
(r, r′)

)
,

(6.5)

where, as readily seen, GI terms arise from all “I ̸= J” pairs. Let us stress that,

already in the original formulation of TGOK-DFT [89], the ensemble Hartree

energy, which is evaluated from the standard (ground-state) Hartree functional

[see Eq. (4.23)], includes GI errors [see the first term on the right-hand side of

Eq. (6.5)]. In the exact theory, the latter are supposed to be removed by the

weight-dependent ensemble exchange functional. It is not necessarily the case in

practice when, for example, standard (weight-independent) local or semi-local DFAs

are employed [345, 101]. For this reason, we present another approach, known as

the State-averaged Hartree-Fock (SAHF) which is GI-free by construction.



CHAPTER 6. EXCHANGE AND CORRELATION ENERGIES IN ENSEMBLE DFT129

6.1.3 State-averaged Hartree-Fock approach (SAHF)

If we inspect again Eq. (6.5), we can come up with a simple correction to the GI er-

rors by transforming it into an ensemble-weighted sum of functionals of spin-summed

1RDMs of individual configurations. More precisely, if we make the following sub-

stitution into the eDMHF energy expression in Eq. (6.2),

WHF

[∑
I

wIγΦI

]
−→

∑
I

wIW
HF [γΦI

] , (6.6)

we arive at a different energy expression, which will be referred to as state-averaged

HF (SAHF) energy in the following. It reads as,

Ew
eSAHF ≡ min

{ΦI}

{∑
I

wI

(
⟨ΦI |T̂ + V̂ext|ΦI⟩+ WHF [γΦI

]
)}

, (6.7)

where we assume for simplicity that interaction energies can be evaluated from the

individual (one-electron reduced) density matrices. Such a simplification is always

valid for single Slater determinants. For more general multideterminant (single

configuration though) wave functions, the simplification in Eq. (6.6) might be used

as an (additional) approximation. As we can see, one clear advantage of the SAHF

approach is that unlike eDMHF, it is explicitly GI-free. This point is probably the

strongest argument for promoting SAHF over eDMHF. On the other hand, in SAHF,

one cannot find a simple analogue to the Fock operator by minimizing Eq. (6.7)

with respect to orbitals. Note that both schemes would be good starting points for

turning the recently formulated ensemble reduced density matrix functional theory

(w-RDMFT) [346] into a practical method for the computation of low-lying excited

states.

6.2 Individual correlation energies in eDFT

While the previous section summarized the key approaches in description of orbital-

and weight-dependent ensemble Hx energies, this section deals with correlation ef-

fects in many-body ensembles. For convenience, we continue focusing on TGOK

ensembles but the discussion applies to other types of ensembles like, for exam-

ple, N-centered [91] or thermal ones [93, 94, 95, 78]. We will work within the
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original TGOK-DFT formalism [89], where a local multiplicative ensemble- density-

functional Hxc potential is employed, but the discussion holds also when orbital-

dependent exchange energies are employed (see Section 6.1).

6.2.1 State-of-the-art ensemble correlation DFAs and be-

yond

To the best of our knowledge, very few works have addressed the construction of

weight-dependent ensemble correlation DFAs from first principles. We can essen-

tially distinguish two different general strategies. In the first and most straightfor-

ward one, which we hereafter refer to as GS-ic, the (weight-independent) ground-

state correlation functional is recycled as follows [108],

Ew
c [nw]

GS−ic≈
∑
I

wIEc[nΦw
I

], (6.8)

where, in the exact theory, the KS wave functions {Φw
I } are expected to reproduce

the true ensemble density nw.

More recently [109, 110], Loos and coworkers explored another path. They

designed a first generation of weight-dependent ensemble LDA (eLDA) corre-

lation functionals where the regular ground-state LDA functional ELDA
c [n] =∫

drn(r)ϵc(n(r)), which is based on the infinite uniform electron gas (UEG) model,

is combined with the density-functional correlation excitation energies of a finite

UEG (hence the acronym fLDA used below) as follows,

Ew
c [n]

eLDA≈ ELDA
c [n] +

∑
I>0

wI

(
EfLDA
c,I [n]− EfLDA

c,I=0 [n]
)
. (6.9)

The individual correlation functional EfLDA
c,I [n] =

∫
drn(r)ϵfc,I(n(r)) is constructed

from the Ith state of the finite UEG:

Nf ϵ
f
c,I(n) ≡ ⟨ΨI(n)|T̂ + Ŵee|ΨI(n)⟩ − ⟨ΦI(n)|T̂ + Ŵee|ΦI(n)⟩ , (6.10)

where Nf is the number of electrons in the finite gas. If Nf is fixed, a parame-

terization of the correlation energy per particle ϵfc,I(n) as a function of the uniform

density n is obtained by varying the volume of the gas [109]. Note that, in a uniform

system, there is no need to introduce weight dependencies into the interacting and
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non-interacting (ground- or excited-state) density-functional wave functions, unlike

in the general definition of Eq. (4.28). Indeed, all the eigenstates of the (interact-

ing or non-interacting) uniform gas have the same (uniform) density n, which then

becomes the ensemble density of the gas, whatever the value of the ensemble weights:∑
I

wInΨI(n) =
∑
I

wInΦI(n) = n
∑
I

wI = n. (6.11)

Note also that, while the finite UEG allows for the incorporation of weight

dependencies into the correlation functional, the use of a regular LDA correlation

functional reduces finite-size errors. Refinements are possible, for example, by

including a dependence in the Fermi hole curvature [347].

The strategies depicted in Eqs. (6.8) and (6.9) miss various correlation effects

that we briefly review below. More insight will be given in the next subsections. Let

us start with the GS-ic approximation. From the exact expression,

Ec[nΦw
I

] =
〈
T̂ + Ŵee

〉
Ψ0[nΦw

I
]
−
〈
T̂ + Ŵee

〉
Φ0[nΦw

I
]
, (6.12)

where Ψ0[n] and Φ0[n] are the interacting and KS non-interacting ground-state

density-functional wave functions of regular KS-DFT, respectively, we immediately

identify two sources of errors. The first one is related to the fact that, as already

mentioned in Subsection 4.2.4, the individual KS density nΦw
I

does not necessarily

match the interacting individual one nΨI
. This subtle point was recently high-

lighted by Gould and Pittalis [96, 348]. It induces what the authors referred to as

density-driven (DD) correlation effects. Even if the true individual densities {nΨI
}

(which can be extracted in principle exactly from the KS ensemble, as shown in

Eq. (4.30) and Ref. [97]) were inserted into the expression of Eq. (6.12), we would

still not recover the correct individual excited-state correlation energies simply

because Ψ0[nΨI
] will always be a ground-state wave function, even when nΨI

is an

excited-state density. The missing energy contribution is connected to the concept

of state-driven (SD) correlation [96]. Interestingly, eLDA describes (approximately)

SD correlations, as readily seen from Eq. (6.10). However, it completely misses DD

ones, simply because KS and interacting (ground- or excited-state) wave functions

have the same density in a uniform system.
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Even though the physical meaning of DD and SD correlations is rather clear,

it is less obvious how their contributions to the total exact ensemble correlation

energy should be defined mathematically [96, 97, 348, 349]. Addressing this

fundamental question is of primary importance for the design of more accurate and

systematically improvable ensemble correlation DFAs, which is probably the most

challenging task in TGOK-DFT. Up to now, we have discussed the concept of DD

and SD correlations in the light of the GS-ic approximation [see Eqs. (6.8) and

(6.12)]. We may actually wonder if a proper definition can be (or should be) given

without referring explicitly to the GS correlation functional of KS-DFT. Indeed,

the latter appears naturally in TGOK-DFT only in the limiting w = 0 case. Gould

and Pittalis [96], and then Fromager [97], recently addressed this SD/DD ensemble

correlation energy decomposition issue from that perspective. A detailed and

complemented review of the two approaches is presented in the following.

6.2.2 Weight dependence of the KS wave functions in

TGOK-DFT

Before proceeding with the extraction of individual correlation energies from the

TGOK-DFT ensemble energy, which is convenient for deriving in-principle-exact

SD/DD decompositions [97], we would like to highlight the importance of weight

dependencies in the KS wave functions. It might be surprising at first sight

because the true ground and excited states of the system under study are of course

weight-independent. We explain below, with a simple argument, why it cannot be

the case in the KS ensemble.

Since the KS and true ensemble densities match for any set of weights w, their

derivatives with respect to the weights also match. Therefore, if we consider the

ground-state w = 0 limit of TGOK-DFT, it comes

∂

∂wJ

(∑
I

wInΨI
(r)

)∣∣∣∣∣
w=0

J>0
=

∂

∂wJ

(∑
I

wInΦw
I

(r)

)∣∣∣∣∣
w=0

, (6.13)
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or, equivalently,

nΨJ
(r)− nΨ0(r) = nΦJ

(r)− nΦ0(r) +
∂nΦw

0
(r)

∂wJ

∣∣∣∣
w=0

, (6.14)

where {ΦI} denote here the ground- and excited-state KS wave functions generated

from a regular ground-state KS-DFT calculation. In KS-DFT, the density constraint

applies to the ground state only, i.e., nΦ0(r) = nΨ0(r), not to the excited states.

Thus, we obtain the exact individual excited-state density expression, which can be

recovered from Eq. (4.30) when w = 0,

nΨJ
(r)− nΦJ

(r)
J>0
=

∂nΦw
0

(r)

∂wJ

∣∣∣∣
w=0

̸= 0, (6.15)

where we readily see that, in TGOK-DFT, the KS wave functions (the ground-state

one in the present case) are necessarily weight-dependent. This feature is central in

the design of DD correlation energies [97], as discussed further in the following. We

refer to Eq. (6.57) for an illustrative example (based on the prototypical Hubbard

dimer) of weight-dependent KS ground-state density.

6.2.3 Extraction of individual correlation energies

In this section we revisit the derivation of the individual energy levels in Eq. (4.39) in

order to construct individual correlation energies within the ensemble under study.

For that purpose, we start from the exact relation between individual and ensemble

energies in Eq. (4.11), and the variational TGOK-DFT ensemble energy expression

of Eq. (4.17), thus leading to, according to the Hellmann–Feynman theorem,

EJ =
∑
I≥0

wI ⟨Φw
I |T̂ + V̂ext|Φw

I ⟩+ Ew
Hxc[n

w]

+
∑
I>0

(δIJ − wI)
[
⟨Φw

I |T̂ + V̂ext|Φw
I ⟩ − ⟨Φw

0 |T̂ + V̂ext|Φw
0 ⟩
]

+
∑
I>0

(δIJ − wI)

∂Ew
Hxc[n

w]

∂wI
− ∂Eξ

Hxc[n
ξ,w]

∂wI

∣∣∣∣∣
ξ=w

 ,

(6.16)

or, equivalently,

EJ = ⟨Φw
J |T̂ + V̂ext|Φw

J ⟩+ Ew
Hxc[n

w]

+
∑
I>0

(δIJ − wI)

∂Ew
Hxc[n

w]

∂wI
− ∂Eξ

Hxc[n
ξ,w]

∂wI

∣∣∣∣∣
ξ=w

 ,
(6.17)
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where the following double-weight ensemble KS density has been introduced:

nξ,w(r) =
∑
I≥0

ξInΦw
I

(r). (6.18)

The last contribution (that is subtracted) on the right-hand side of Eq. (6.17)

originates from the Hellmann–Feynman theorem. In other words, derivatives of

the KS wave functions (and, therefore, of their densities) do not contribute to the

derivatives of the total ensemble energy, because the latter is variational.

As shown in Refs. [109, 97], the Hx contribution to the individual Jth energy level

reduces to the expectation value of the two-electron repulsion operator evaluated for

the Jth KS state, as one would guess. Indeed, once we have realized that, for given

weight values ξ, the ensemble KS potential that reproduces nξ,w is simply the one

that reproduces the true ensemble density nw, we deduce from Eq. (4.27) that

Eξ
Hx[n

ξ,w] =
∑
K≥0

ξK ⟨Φw
K |Ŵee|Φw

K⟩ , (6.19)

and, consequently,

∂Eξ
Hx[n

ξ,w]

∂wI

∣∣∣∣∣
ξ=w

=
∑
K≥0

wK
∂ ⟨Φw

K |Ŵee|Φw
K⟩

∂wI
. (6.20)

As a result, since Ew
Hx[n

w] = Ew
Hx[n

w,w], it comes

∂Ew
Hx[n

w]

∂wI
− ∂Eξ

Hx[n
ξ,w]

∂wI

∣∣∣∣∣
ξ=w

= ⟨Φw
I |Ŵee|Φw

I ⟩ − ⟨Φw
0 |Ŵee|Φw

0 ⟩ , (6.21)

thus leading to the expected result:

Ew
Hx[n

w] +
∑
I>0

(δIJ − wI)

∂Ew
Hx[n

w]

∂wI
− ∂Eξ

Hx[n
ξ,w]

∂wI

∣∣∣∣∣
ξ=w


= ⟨Φw

J |Ŵee|Φw
J ⟩ .

(6.22)

We conclude from Eq. (6.17) that the energy levels can be evaluated exactly within

TGOK-DFT as follows,

EJ = ⟨Φw
J |Ĥ|Φw

J ⟩+ Ew
c,J [nw], (6.23)

where the individual correlation energy of the Jth state is determined from the

ensemble correlation density functional as follows,

Ew
c,J [nw] = Ew

c [nw] +
∑
I>0

(δIJ − wI)

[
∂Ew

c [nw]

∂wI
− ∂Eξ

c [nξ,w]

∂wI

∣∣∣∣
ξ=w

]
. (6.24)
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In the following section, we will see how the concept of DD correlation emerges

from Eq. (6.24), once it has been rewritten more explicitly in terms of individual

densities.

6.2.4 Individual correlations versus individual components

According to the definition of the ensemble correlation functional in GOK-DFT [see

Eq. (4.28)], the exact ensemble correlation energy can be decomposed as follows,

Ew
c [nw] =

∑
J≥0

wJEwc,J [nw], (6.25)

Ewc,J [nw] = ⟨ΨJ |T̂ + Ŵee|ΨJ⟩ − ⟨Φw
J |T̂ + Ŵee|Φw

J ⟩ . (6.26)

Let us stress that these components do not match the individual correlation energies

of Eq. (6.24). Indeed, unlike the latter [see Eq. (6.23)], they do not give access to

the exact individual energy levels,

⟨Φw
J |Ĥ|Φw

J ⟩+ Ewc,J [nw] = ⟨ΨJ |T̂ + Ŵee|ΨJ⟩+

∫
dr vext(r)nΦw

J
(r)

̸= EJ ,

(6.27)

simply because the KS density nΦw
J

does not match, in general, the true physical

density nΨJ
. The concept of DD correlation, which was introduced recently by Gould

and Pittalis [96], originates from this observation. The important property that the

true individual correlation energies share with the individual correlation components

is that both of them can be used to construct the total ensemble correlation energy,

i.e.,

Ew
c [nw] =

∑
J≥0

wJE
w
c,J [nw]. (6.28)

The above expression can be deduced from Eq. (6.24) and the fact that, for any

{∆I}I>0,∑
J≥0

wJ

(∑
I>0

(δIJ − wI)∆I

)
=
∑
I>0

∑
J≥0

δIJwJ∆I −
(∑

J≥0

wJ

)∑
I>0

wI∆I

=
∑
I>0

wI∆I −
∑
I>0

wI∆I

= 0.

(6.29)
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From now on we will substitute the decomposition of Eq. (6.28) for the more conven-

tional one of Eq. (6.25). As shown in the following, with this change of paradigm,

DD-type correlation energy contributions will naturally emerge from the derivation

of a more explicit expression. Unlike in Ref. [96], the approach of Ref. [97], which

is reviewed in the next section, does not require additional (state-specific) KS sys-

tems, thus avoiding formal issues such as the non-uniqueness of KS potentials for

individual excited states or v-representability issues [97].

6.2.5 Density-driven ensemble correlation energy expres-

sion

Let us now derive a more explicit expression for the ensemble correlation energy,

on the basis of Eq. (6.28). We start with a simplification of the true individual

correlation energy expression of Eq. (6.24), where the standard decomposition into

components [see Eq. (6.25)] of the ensemble correlation energy will be employed.

On the one hand, we will have

∂Ew
c [nw]

∂wI
= Ewc,I [nw]− Ewc,0[nw] +

∑
K≥0

wK
∂Ewc,K [nw]

∂wI
, (6.30)

where, according to Eq. (6.26),

∂Ewc,K [nw]

∂wI
= − ∂

∂wI

[
⟨Φw

K |T̂ + Ŵee|Φw
K⟩
]

= −2

〈
Φw

K

∣∣∣∣T̂ + Ŵee

∣∣∣∣∂Φw
K

∂wI

〉
.

(6.31)

As readily seen from Eq. (6.31), the weight derivatives of the individual correlation

components are evaluated solely from the KS wave functions and their (static) linear

response to variations in the ensemble weights. The true interacting wave functions

are not involved since, unlike the KS wave functions, they do not vary with the

ensemble weights [see the comment that follows Eq. (4.28), and Eq. (6.26)]. Com-

bining Eqs. (6.25), (6.30), and (6.31) leads to the following expression for the first

two contributions in Eq. (6.24) to the true individual correlation energy:

Ew
c [nw] +

∑
I>0

(δIJ − wI)
∂Ew

c [nw]

∂wI

= Ewc,J [nw]− 2
∑
I>0

∑
K≥0

(δIJ − wI)wK

〈
Φw

K

∣∣∣∣T̂ + Ŵee

∣∣∣∣∂Φw
K

∂wI

〉
.

(6.32)
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On the other hand, according to Eq. (6.18),

∂Eξ
c [nξ,w]

∂wI

∣∣∣∣
ξ=w

=

∫
dr

δEw
c [nw]

δn(r)

∑
K≥0

wK
∂nΦw

K
(r)

∂wI
, (6.33)

thus leading to [see Eq. (4.30)]

−
∑
I>0

(δIJ − wI)
∂Eξ

c [nξ,w]

∂wI

∣∣∣∣
ξ=w

=

∫
dr

δEw
c [nw]

δn(r)

(
nΦw

J
(r)− nΨJ

(r)
)
. (6.34)

Finally, by combining Eqs. (6.24), (6.32), and (6.34), we recover the expression of

Ref. [97] for the deviation of the true Jth individual correlation energy from the

component Ewc,J [nw],

Ew
c,J [nw]− Ewc,J [nw] = −2

∑
I>0

∑
K≥0

(δIJ − wI)wK

〈
Φw

K

∣∣∣∣T̂ + Ŵee

∣∣∣∣∂Φw
K

∂wI

〉
+

∫
dr

δEw
c [nw]

δn(r)

(
nΦw

J
(r)− nΨJ

(r)
)
,

(6.35)

thus leading [see Eq. (6.26)] to the following exact expression for individual correla-

tion energies:

Ew
c,J [nw] = ⟨ΨJ |T̂ + Ŵee|ΨJ⟩ − ⟨Φw

J |T̂ + Ŵee|Φw
J ⟩

− 2
∑
I>0

∑
K≥0

(δIJ − wI)wK

〈
Φw

K

∣∣∣∣T̂ + Ŵee

∣∣∣∣∂Φw
K

∂wI

〉
+

∫
dr

δEw
c [nw]

δn(r)

(
nΦw

J
(r)− nΨJ

(r)
)
.

(6.36)

The above expression is a key result of Ref. [97] which, as we will see, allows us to

explore in-principle-exact SD/DD correlation energy decompositions.

Let us now analyze the different contributions on the right-hand side of

Eq. (6.36). While, on the first line, the bare Jth correlation energy component

is recovered, the additional terms on the second and third lines ensure that the

external potential energy is evaluated with the correct true density (see Eqs. (6.23)

and (6.27), and the supplementary material of Ref. [97]). Interestingly, in the sum-

mation (in K) over all the states that belong to the ensemble [see the second line of

Eq. (6.36)], one may separate the contribution of the state under consideration (i.e.,

the Jth state) from the others, thus defining an individual SD correlation energy:

Ew,SD
c,J [nw] = ⟨ΨJ |T̂ + Ŵee|ΨJ⟩ − ⟨Φw

J |T̂ + Ŵee|Φw
J ⟩

− 2wJ
∑
I>0

(δIJ − wI)

〈
Φw

J

∣∣∣∣T̂ + Ŵee

∣∣∣∣∂Φw
J

∂wI

〉
.

(6.37)
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The above definition, which was denoted SD in Ref. [97] (the “overline” notation is

dropped in the present work, for simplicity), differs substantially from the definition

of Gould and Pittalis [96]. In the latter, an additional state-specific KS wave func-

tion, which is expected to reproduce the true individual density of the state under

consideration, is introduced. In this case, the name “state-driven” means that the

correlation energy is evaluated from interacting and non-interacting wave functions

which share the same density. Here, no additional KS wave function is introduced,

which is obviously appealing from a computational point of view. One possible crit-

icism about the definition in Eq. (6.37) is its arbitrariness. Indeed, we may opt for

a more density-based definition, in the spirit of what Gould and Pittalis proposed,

by introducing, for example, the following auxiliary wave functions:

Φ
w

J = Φw
J +

∑
I>0

∑
K≥0

√
|δIJ − wI |wK

(
sgn(δIJ − wI) Φw

K +
∂Φw

K

∂wI

)
. (6.38)

Note that, in the ground-state w = 0 limit, Φ
w

0 reduces to the conventional KS wave

function Φw=0
0 of KS-DFT. What might be interesting in the (somehow artificial)

construction of the above individual auxiliary KS states is the possibility it gives

to recover, like in the Gould-Pittalis approach [96], all the KS contributions (to the

individual correlation energy) that appear on the first two lines of Eq. (6.36) from

a single expectation value, thus generating, on the other hand, (several) additional

terms that should ultimately be removed:〈
Φ

w

J

∣∣T̂ + Ŵee

∣∣Φw

J

〉
= ⟨Φw

J |T̂ + Ŵee|Φw
J ⟩+ 2

∑
I>0

∑
K≥0

(δIJ − wI)wK

〈
Φw

K

∣∣∣∣T̂ + Ŵee

∣∣∣∣∂Φw
K

∂wI

〉
+ . . .

(6.39)

Moreover, according to Eq. (4.30), we recover (among other terms) the correct phys-

ical density:

〈
Φ

w

J

∣∣n̂(r)
∣∣Φw

J

〉
= nΦw

J
(r) +

∑
I>0

∑
K≥0

(δIJ − wI)wK
∂nΦw

K
(r)

∂wI
+ . . .

= nΨJ
(r) + . . .

(6.40)

On that basis, we could argue that the first two lines on the right-hand side of

Eq. (6.36) should be interpreted as a SD correlation energy, while the third line
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would correspond to the missing DD correlation energy. The issue with such a

decomposition is that the individual DD correlation energies would then cancel out

in the weighted sum:∑
J≥0

wJ

∫
dr

δEw
c [nw]

δn(r)

(
nΦw

J
(r)− nΨJ

(r)
)

=

∫
dr

δEw
c [nw]

δn(r)
(nw(r)− nw(r)) = 0,

(6.41)

which means that the ensemble DD correlation energy would be zero. As a result,

with such an interpretation, the concept of DD correlation would not be of any help

in the development of correlation DFAs for ensembles. This is of course not what we

want [96]. In this respect, the definition in Eq. (6.37) is much more appealing. We

will stick to this definition from now on. Consequently, the complementary ensemble

DD correlation energy will read as [see Eqs. (6.25), (6.26), and (6.37)]

Ew,DD
c [nw] = Ew

c [nw]−
∑
J≥0

wJE
w,SD
c,J [nw] (6.42)

= 2
∑
J≥0

w2J

∑
I>0

(δIJ − wI)

〈
Φw

J

∣∣∣∣T̂ + Ŵee

∣∣∣∣∂Φw
J

∂wI

〉
. (6.43)

Thus, we recover another key result of Ref. [97]. As readily seen from Eq. (6.43),

the exact evaluation of the DD correlation energy only requires computing the

static linear response of the KS wave functions that belong to the ensemble, which

is computationally affordable.

Finally, at a more formal level, we note that the ensemble DD correlation en-

ergy expression of Eq. (6.43) is related to the individual components fw
J [n] =

⟨Φw
J [n]|T̂ + Ŵee|Φw

J [n]⟩ of the Hx-only approximation to the universal TGOK func-

tional [see Eqs. (4.14), (4.16), and (4.27)]

fw[n] := Tw
s [n] + Ew

Hx[n] =
∑
K

wK ⟨Φw
K [n]|T̂ + Ŵee|Φw

K [n]⟩ , (6.44)

as follows,

Ew,DD
c [nw] =

∑
J≥0

w2J

∑
I>0

(δIJ − wI)
∂fw

J [nw]

∂wI
. (6.45)

We can even establish a direct connection with the total ensemble functional fw[n],

by analogy with Eq. (6.19). Indeed, since

fξ
[
nξ,w

]
=
∑
K

ξK ⟨Φw
K |T̂ + Ŵee|Φw

K⟩ , (6.46)
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it comes

fw
J [nw] = fw [nw] +

∑
I>0

(δIJ − wI)
∂fξ

[
nξ,w

]
∂ξI

∣∣∣∣∣
ξ=w

. (6.47)

6.2.6 Application to the Hubbard dimer

The importance of DD correlations, which was revealed in Ref. [96], has been con-

firmed in Ref. [97], in the weakly asymmetric and stronly correlated regime of the

two-electron Hubbard dimer. We propose in the following to complete the study of

Ref. [97] by exploring all asymmetry and correlation regimes, and comparing exact

results with that of standard approximations.

6.2.6.1 Exact theory and approximations

The key DFAs for correlation energies, and the concept SD/DD decomposition of

correlation energies are investigated in the asymmetric Hubbard dimer model, which

has been introduced in Chapter 2. In this simple model system, exact (two-electron

and singlet) bi-ensemble density-functional correlation energies Ew
c (n) can be evalu-

ated through Lieb maximizations [98, 76] from the following analytical expressions

for the exact potential-functional interacting energies [78, 99, 100]:

EI(∆v) =
2U

3
+

2r

3
cos

(
θ +

2π

3
(I + 1)

)
, I = 0, 1, (6.48)

where

r =
√

3(4t2 + ∆v2) + U2 (6.49)

and

θ =
1

3
arccos

[
9U(∆v2 − 2t2) − U3

r3

]
. (6.50)

Exact ground- and excited-state densities are then obtained from the Hellmann–

Feynman theorem [see Eq. (2.7)],

nΨI
= 1 − ∂EI(∆v)

∂∆v
, (6.51)

and the cubic polynomial equation that the energies fulfill (see the Appendix of

Ref. [98]). The resulting bi-ensemble density reads as nw = (1− w)nΨ0 + wnΨ1 . The

Hx-only TGOK functional introduced in Eq. (6.44) can be expressed analytically as
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follows [98],

f ξ(n) = T ξ
s (n) + Eξ

Hx(n)

= −2t
√

(1− ξ)2 − (1− n)2 +
U

2

[
1 + ξ − (3ξ − 1)(1− n)2

(1− ξ)2

]
, (6.52)

so that, as shown in Appendix F, the exact DD ensemble correlation energy reads

explicitly as

Ew,DD
c (nw) = −w(nw − 1)(nΨ1 − 1)

×
[

2t√
(1− w)2 − (1− nw)2

+
U(1 + w)

(1− w)2

]
.

(6.53)

Since the KS excited-state density is always equal to 1 in this model [98], the pref-

actor (nΨ1 − 1) matches the deviation in density of the true physical excited state

from the KS one:

nΨ1 − 1 = nΨ1 − nΦw
1
. (6.54)

Then it becomes clear that Ew,DD
c (nw) is a DD correlation energy. We also see from

the expression of Eq. (6.53) that, in the regular ground-state DFT limit (w = 0),

this type of correlation disappears.

In the following we test two common DFAs: A (weight-independent) ground-state

density-functional description of the ensemble correlation energy (GS-ec) [101, 98],

Ew
c (nw)

GS−ec≈ Ec(n
w), (6.55)

where Ec(n) = Ew=0
c (n), and the GS-ic approximation introduced in Subsection 6.2.1

which, in the present case, gives

Ew
c (nw)

GS−ic≈ (1− w)Ec(nΦw
0
) + wEc(nΦw

1
)

= (1− w)Ec(nΦw
0
) + wEc(n = 1).

(6.56)

Note that the KS ground-state density nΦw
0

fulfills the constraint (1−w)nΦw
0
+wnΦw

1
=

nw, thus leading to

nΦw
0

=
nw − w

(1− w)
= nΨ0 +

w(nΨ1 − 1)

(1− w)
, (6.57)

where we readily see that, in general, nΦw
0
̸= nΨ0 . In the following, the local potential

will be fixed. It is then analogous to the external potential of ab initio calculations,

hence the notation ∆v = ∆vext.
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6.2.6.2 Results and discussion

Let us first discuss the strictly symmetric (∆vext = 0) dimer in which simple analyt-

ical expressions can be derived for both exact and approximate ensemble correlation

energies. In this special case, ground- and excited-state densities are equal to 1, in

both KS and physical interacting systems. Consequently, the ensemble DD corre-

lation energy vanishes [see Eq. (6.53)]. Total and SD ensemble correlation energies

are equal and vary linearly with the ensemble weight [76] as

Ew
c (nw = 1) = 2t(1− w)

(
1−

√
1 +

U2

16t2

)
= (1− w)Ec(n = 1), (6.58)

with the positive slope −Ec(n = 1). As readily seen, the excited state exhibits no

correlation effects in this density regime. Turning to the approximations, GS-ic

erroneously assigns a (ground-state) correlation energy to the excited state [see

Eq. (6.56)], thus leading to a total ensemble correlation energy that is wrong and

equal to Ec(n = 1), like in GS-ec [see Eq. (6.55)]. In conclusion, in the symmetric

case, both GS-ic and GS-ec approximations completely miss the weight dependence

of the ensemble correlation energy.

We now discuss the performance of GS-ec and GS-ic in the asymmetric dimer.

Results are shown in Fig. 6.1. The features described in the symmetric case are

preserved in the weakly asymmetric regime (see the top left panel of Fig. 6.1).

When the asymmetry is more pronounced, both exact and approximate ensemble

correlation energies exhibit curvature. By construction, these energies all reduce to

the same (ground-state) correlation energy when w = 0. They differ substantially

by their slope in the ground-state limit (w = 0). Further insight into GS-ic, for

example, is obtained from the following analytical expression,

∂Ew
c (nw)

∂w

∣∣∣∣
w=0

GS−ic≈ Ec(n = 1)− Ec(n = nΨ0)

+ (nΨ1 − 1)
∂Ec(n)

∂n

∣∣∣∣
n=nΨ0

,
(6.59)

where Ec(n = 1) − Ec(n = nΨ0) ≤ 0, as readily seen from Fig. 4 of Ref. [76].

Interestingly, in the strongly asymmetric ∆vext/U ≫ 1 regime, the true ground-

(nΨ0) and excited-state (nΨ1) densities tend to 2 and 1, respectively (see Fig. 1 of
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Ref. [98]). This is the situation where the slope in weight expressed in Eq. (6.59)

reaches its maximum (in absolute value), thus inducing a large deviation from the

exact slope, as shown in the bottom left panel of Fig. 6.1. At the GS-ec level of

approximation, the situation is less critical, at least for small weight values. As

readily seen from the following expression [see Eq. (6.55)],

∂Ew
c (nw)

∂w

∣∣∣∣
w=0

GS−ec≈ (nΨ1 − nΨ0)
∂Ec(n)

∂n

∣∣∣∣
n=nΨ0

, (6.60)

when ∆vext ∼ U , the slope (at w = 0) is relatively small since nΨ1 ∼ nΨ0 (see Fig.

1 of Ref. [98]). This is in agreement with the right panels of Fig. 6.1. Note that, in

this regime, GS-ic can exhibit positive slopes (see the top right panel of Fig. 6.1).

In this case, the density derivative contribution [second line of Eq. (6.59)], which

is positive [98, 76], is not negligible anymore and it (more than) compensates the

negative correlation energy difference [first line of Eq. (6.59)]. When the asymmetry

of the dimer is more pronounced (i.e., ∆vext ≫ U), the GS-ec slope (in weight)

remains negligible, as shown in the bottom left panel of Fig. 6.1. Indeed, in this

case, nΨ0 tends to 2. Moreover, since the ground-state correlation functional expands

as follows in the weakly and strongly correlated regimes [76],

Ec(n) = Ew=0
c (n)

U/t≪1≈ −U2 (1− (1− n)2)
5/2

16t
, (6.61)

and

Ec(n)
U/t≫1≈ U

[
|n− 1| − 1

2
(1 + (n− 1)2)

]
, (6.62)

respectively, we immediately see that ∂Ec(n)/∂n ≈ 0 when n approaches 2, whether

U/t is large or small. Note finally that, as already mentioned, in regimes where

the asymmetry is weaker than the correlation, i.e., ∆vext/t < t/U < 1 (see the

top left panel of Fig. 6.1), the slopes obtained at w = 0 with GS-ec and GS-ic are

identical and relatively weak. This can now be understood from the expressions

in Eqs. (6.59) and (6.60), and the fact that ∂Ec(n)/∂n|n=1 = 0 [76], knowing that

nΨ0 ≈ 1 [98] in this case.

We see in Fig. 6.1 that the overall weight dependence of the exact ensemble

correlation energy differs substantially from that of the GS-ec and GS-ic approxi-

mations. It is again instructive to look at the slope at w = 0. It can be expressed
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exactly as follows,

∂Ew
c (nw)

∂w

∣∣∣∣
w=0

= (nΨ1 − nΨ0)
∂Ec(n)

∂n

∣∣∣∣
n=nΨ0

+
∂Ew

c (nΨ0)

∂w

∣∣∣∣
w=0

, (6.63)

where we readily see from Eq. (6.60) that GS-ec neglects the derivative in weight of

the ensemble correlation density functional. As highlighted in Eq. (4.40) [see also

Section 5.3 for a more detailed discussion in the context of charged excitations], the

latter contribution is connected to the derivative discontinuity that the xc potential

exhibits when an excited state is incorporated into the ensemble. Since, in the

weakly correlated regime [76],

Ew
c (n)

U/t≪1≈ −U2 ((1− w)2 − (1− n)2)
3/2

16t(1− w)2

×
[
1 +

(1− n)2

(1− w)2

(
3− 4(1− 3w)2

(1− w)2

)]
,

(6.64)

it comes

∂Ew
c (nΨ0)

∂w

∣∣∣∣
w=0

U/t≪1≈ U2

16t
(nΨ0(2− nΨ0))

3/2 (1− 12(nΨ0 − 1)2
)
. (6.65)

Therefore, as long as the ground state does not deviate too much from the symmetric

nΨ0 = 1 density profile, which is the case when ∆vext ≪ U , the exact slope is not

negligible, and it is positive. This is in agreement with the top left panel of Fig. 6.1.

Interestingly, in this density regime, this feature is preserved when the strength

of electron correlation increases (not shown). Indeed, in this case, the ensemble

correlation functional reads as [76]

Ew
c (n)

U/t≫1, |n−1|≤w≈ −U

2

[
(1− w)− (3w− 1)(n− 1)2

(1− w)2

]
, (6.66)

n=nΨ0≈ U

2
(w− 1), (6.67)

thus leading to ∂Ew
c (nΨ0)/∂w ≈ U/2. When the dimer is strongly asymmetric, the

ground-state density approaches 2 and, in this case [76],

Ew
c (n)

U/t≫1, w≤|n−1|≤1−w≈ U |n− 1|

− U

2

[
(1 + w)− (3w− 1)(n− 1)2

(1− w)2

]
,

(6.68)

so that

∂Ew
c (nΨ0)

∂w

∣∣∣∣
w=0

U/t≫1≈ −U

2

(
1− (nΨ0 − 1)2

)
, (6.69)



CHAPTER 6. EXCHANGE AND CORRELATION ENERGIES IN ENSEMBLE DFT145

thus leading to ∂Ew
c (nΨ0)/∂w|w=0 ≈ 0. As readily seen from Eq. (6.65), the

same result is obtained in the weakly correlated regime. This is in complete

agreement with the bottom left panel of Fig. 6.1. It also explains why the deviation

of GS-ec from the exact result drastically reduces when ∆vext increases for a

fixed interaction strength U and relatively small weight values. Finally, in the

particular case where ∆vext = U , the computed ground-state densities equal

nΨ0 ≈ 1.30 and nΨ0 ≈ 1.46 in the moderately U/t = 1 and strongly U/t = 5

correlated regimes, respectively. As expected from Eqs. (6.65) and (6.69), the exact

slope will be substantial and negative, which agrees with the right panels of Fig. 6.1.

We now focus on the exact SD/DD decomposition of the ensemble correlation

energy. Results are shown in Fig. 6.2 for various correlation and asymmetry regimes.

In the ground-state limit, the slope of the DD ensemble correlation energy reads as

[see Eq. (6.53)]

∂Ew,DD
c (nw)

∂w

∣∣∣∣
w=0

= −(nΨ0 − 1)(nΨ1 − 1)

[
2t√

1− (1− nΨ0)
2

+ U

]
. (6.70)

Interestingly, when ∆vext ≈ U [nΨ0 ≈ nΨ1 in this case], the slope is nonzero (and

negative), whether the dimer is strongly correlated or not, as seen from the top

right and bottom left panels of Figs. 6.2. In the strongly correlated regime, the DD

ensemble correlation energy essentially varies in w as [see Eq. (6.53)]

Ew,DD
c (nw)

U/t≫1≈ −U(nΨ1 − 1)(nΨ0 − 1 + w(nΨ1 − nΨ0))
w(1 + w)

(1− w)2
, (6.71)

which means that, when approaching the equiensemble w = 1/2 case, it system-

atically decreases with the ensemble weight (because of the term (1 − w)2 in the

denominator), unlike the total ensemble correlation energy [see Eq. (6.66)]. As

long as the dimer remains close to symmetric, which requires that ∆vext reduces

as U increases (see Fig. 1 of Ref. [98]), the numerator in Eq. (6.71) will be small

enough such that DD correlations are at most equal to the total correlation

energy. This feature is actually observed in the moderately correlated U/t = 1

regime (see the top left panel of Fig. 6.2). However, in asymmetric and strongly

correlated regimes where 0 < ∆vext ≪ U (nΨ0 ≈ 1 and nΨ1 > 1 in this case)

or ∆vext ≈ U (i.e., nΨ0 ≈ nΨ1 ≈ 1.5) [98], the numerator is not negligible
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anymore and, consequently, the DD ensemble correlation energy is significantly

lower than the total one (see the bottom left panel of Fig. 6.2; see also Ref. [97]).

In such cases, the complementary SD ensemble correlation energy can be large

and positive. This may look unphysical at first sight but, if we return to the

definition of Eq. (6.37), we see that the individual SD correlation energies are

not guaranteed to be negative. The reason is that, unlike the total ensemble

correlation energy, they are not evaluated variationally. Note finally that, when

∆vext > U ≫ t (nΨ0 ≈ 2 and nΨ1 ≈ 1 in this case), the numerator in Eq. (6.71) will

be relatively small, because of the (nΨ1 − 1) prefactor, thus reducing the energy

difference between total and DD correlations (see the bottom right panel of Fig. 6.2).

In summary, with the present SD/DD decomposition [see Eqs. (6.42) and (6.43)],

both SD and DD correlation energies become relatively large (when compared to

the total ensemble correlation energy), especially in the commonly used equiensem-

ble case, and they mostly compensate when the Hubbard dimer has a pronounced

asymmetry. This is clearly not a favorable situation for the development of DFAs,

which was the initial motivation for introducing the SD/DD decomposition [96, 97].

The latter should definitely be implemented for atoms and diatomics, for example,

in order to get further insight. In the case of stretched diatomics, the present study

of the Hubbard dimer might be enlightening [350]. We should also stress that, in the

asymmetric ∆vext = U case, standard GS-ic and GS-ec approximations give ensem-

ble correlation energies that are of the same order of magnitude as the exact one,

unlike the SD and DD correlation energies. As briefly mentioned in Subsection 6.2.1,

exploring alternative SD/DD decompositions that rely explicitly on GS-ic, which is

maybe a better starting point, would be relevant in this respect. Work is currently

in progress in this direction.
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Figure 6.1: Exact (solid black lines) and approximate ensemble correlation energies

plotted as functions of the bi-ensemble weight for the Hubbard dimer in various

correlation and asymmetry regimes. See text for further details.

6.3 Conclusions and perspectives

In this chapter, recent progress in the design of weight-dependent xc DFAs has been

reviewed. While the focus was exclusively on TGOK ensembles, the conclusions can

be easily applied to N -centered or other types of ensembles. Firstly, the pros and

cons of using an (orbital-dependent) ensemble density matrix functional exchange

energy or state-averaging individual exact exchange energies have been discussed.

Turning to the design of DFAs for ensemble correlation energies, state-of-the-art

strategies have been discussed, in particular the combination of finite and infinite

uniform electron gas models as well as the recycling of standard (ground-state) cor-

relation DFAs through state-averaging. In the latter case, further improvements

may emerge from the concept of density-driven correlation, which does not exist in
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Figure 6.2: Exact SD/DD decomposition of the ensemble correlation energy plotted

as a function of the bi-ensemble weight w in various asymmetry and correlation

regimes. Comparison is made with the approximate GS-ec and GS-ic ensemble

correlation energies, for analysis purposes. See text for further details.

ground-state KS-DFT. How to define mathematically the corresponding correlation

energy is an open question to which we provided a tentative answer [see Eqs. (6.43)

and (6.45)]. Test calculations on the Hubbard dimer reveal how difficult it is to have

a definition that is both rigorous and useful for the development of approximations.

Work is currently in progress in other (briefly discussed) directions. Even though

it was not mentioned explicitly in the review, we would like to stress that current

formulations of eDFT do not give a direct access to exact response properties such

as oscillator strengths (see Eq. (3.32)), Dyson orbitals, or non-adiabatic couplings.

Extending Görling–Levy perturbation theory [351, 352, 353] to ensembles might be

enlightening in this respect. We recently became aware of such an extension [354]
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for the computation of excitation energies within the DEC scheme [316, 77], which is

an important first step. Nevertheless, a general quasi-degenerate density-functional

perturbation theory based on ensembles, where individual energy levels and prop-

erties can be evaluated, is still highly desirable. Work is currently in progress in

this direction. In this thesis, we also propose a strategy for development of implicit

ensemble density functionals with the use of quantum embedding, which is the main

topic of Chapter 8. In any case, the various formal (discused in Section 4.2) and

practical aspects of the theory that we discussed in Section 4.2 and the present

chapter should be investigated further in the near future in order to turn eDFT into

a reliable and low-cost computational method for excited states.





Chapter 7

Derivative discontinuities in

ensemble DFT for neutral

electronic excitations: An

N-centered perspective

The content of this chapter will be published in the forthcoming paper,

Cernatic, F.; Loos, P.-F.; Senjean, B. and Fromager, E. “Exact ensemble density

functional theory of neutral electronic excitations revisited: An extended N -centered

approach to exchange-correlation derivative discontinuities”, in preparation (2023).

In Chapter 4, we introduced TGOK-DFT for neutral excitations, followed by

the introduction of the N -centered eDFT in Chapter 5, which is an extension of

TGOK-DFT for describing charged excitations with exactly the same mathematical

language as the former, i.e., through weight dependence of the appropriate ensemble

version of the Hxc density functional. In this chapter, we present extended N -

centered ensembles, a new formalism which combines the TGOK and (regular) N -

centered ensembles into even more general ensembles that describe both neutral

and charged excitations. The density-functional theory of the extended N -centered

ensemble formalism describes excitation processes that are missing in TGOK and

N -centered eDFT, and sheds another light on the concept of derivative discontinuity

151
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CHAPTER 7. DERIVATIVE DISCONTINUITIES IN ENSEMBLE DFT FOR

NEUTRAL ELECTRONIC EXCITATIONS: AN N-CENTERED PERSPECTIVE

for neutral excitations [104, 355], which is less discussed in the literature than the

corresponding derivative discontinuity for charged excitations (for the latter, see

Sections 5.2, 5.3 and 5.4).

This chapter is organized as follows. In Section 7.1, we discuss the problem of

exactification of Kohn-Sham orbital energies in the context of neutral excitations.

In Section 7.2, we briefly review some pertinent concepts of TGOK-DFT (which has

already been introduced in Section 4.2). Following that, in Section 7.3, we intro-

duce the extended N -centered ensemble formalism and provide the key equations

for its density-functionalization. In Section 7.4, we demonstrate the procedure of

exactifying KS orbital energies in the extended N -centered eDFT perspective by

focusing on a particular ensemble of N -electron (ground and excited) states and the

(N − 1)-electron ground state. It is shown that in this perspective, exactification of

the KS orbital energies for a given neutral excitation energy comes with the appear-

ance of a derivative discontinuity in the xc potential, which matches the ensemble

weight derivative of the xc energy. This key result, which was originally highlighted

by Levy [104], is now generally applicable to any system, including finite models

and lattice systems. As an illustrative example, we show this result in the Hubbard

dimer for different asymmetry regimes.
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7.1 On the exactification of Kohn–Sham orbital

energies

In regular N -electron ground-state KS-DFT (see Subsection 1.2.4), the occupied and

virtual orbital energies {εi}i=1,2,... generated from a self-consistent KS calculation can

be used to compute total ground- and excited-state N -electron KS energies,

ENν =
∑
i

ni
νεi, (7.1)

where ni
ν ∈ {0, 1, 2} denotes the integer occupation of the ith KS orbital in the νth

KS state (ν ≥ 0) and
∑

i n
i
ν = N . It is well-known that, when it comes to describe

neutral excitation processes, the bare KS excitation energies and the true interacting

ones {ων}ν>0 do not match:

ων ≡ EN
ν − EN

0 ̸= ENν − EN0 . (7.2)

In the context of linear response TD-DFT, these two quantities are connected

through the Hxc kernel, i.e., the density-functional derivative of the (time-

dependent) Hxc potential (for example, see Eq. (3.35)). We focus in the follow-

ing on in-principle-exact time-independent density-functional approaches to neutral

electronic excitations and, more specifically, to ensemble ones. At this point we

should stress that, unlike in charged processes, any constant shift in the Hxc poten-

tial and therefore in the orbital energies,

εi → εi + c, (7.3)

leaves neutral KS excitation energies unchanged:

ENν − EN0 →
(
ENν + Nc

)
−
(
EN0 + Nc

)
= ENν − EN0 . (7.4)

From this standpoint, it seems impossible to exactify the KS orbital energies in the

description of neutrally excited states. Nevertheless, as recalled in the next section,

it is possible to describe exactly the deviation of the physical excitation energy from

the KS one by means of an ensemble-weight-dependent Hxc density functional. We

follow a slightly different (but connected) path in the present work by achieving

such a description through an exactification of the KS orbital energies for specific
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excitations. The key idea, which is based on the observation made in Eq. (7.4) and

the seminal work of Levy [104], consists in evaluating a neutral excitation energy

via two different charged processes, namely the ionization of the ground (ν = 0) and

the targeted excited (ν > 0) N -electron states, i.e.,

EN
ν − EN

0 =IN0 − INν , (7.5)

where {
INν =EN−1

0 − EN
ν

}
ν≥0

(7.6)

are the ground- and excited-state ionization potentials (IPs). Turning to the KS

system, specific shifts can be applied to the Hxc potential (which is unique up to

a constant as long as the number of electrons is fixed to the integer N) for each

ionization process separately so that the true interacting IPs are reproduced:

εi → εi + c1 = εi,

EN−1
0 − EN0 → EN−1

0 − EN0 − c1
!

= IN0 ,
(7.7)

and

εi → εi + c2 = ε̃i,

EN−1
0 − ENν → EN−1

0 − ENν − c2
!

= INν ,
(7.8)

where the two constant shifts c1 and c2 are not necessarily equal. If, for example, the

excited state of interest ν is described by a single-electron excitation (one hole, one

particle) from the highest occupied molecular orbital (HOMO) i = N to a virtual

one i = ν, then we automatically obtain from Eqs. (7.5), (7.7), and (7.8) what we

consider as the exactification of the KS orbital energies for neutral excitations, i.e.,

EN
ν − EN

0 = ε̃N+ν − εN . (7.9)

The question that is addressed in the rest of this work is how such a construc-

tion can be derived, in principle exactly, from a unified ensemble density-functional

formalism in which both charged and neutral excitation processes can be described

simultaneously. At this point we should stress that the proposed formalism, which is

referred to as extended N -centered ensemble DFT for reasons that will become clear

later on, is general enough such that multiple-electron excitations, which are absent

from standard (adiabatic) linear response TD-DFT spectra (see Subsection 3.1.3),

can be described along the same lines. In the particular case of double excitations,

for example, we would consider double ionization processes instead.
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7.2 Brief review of regular TGOK ensemble DFT

TGOK ensemble DFT was already reviewed in Chapter 4. Here we put an emphasis

on a subset of concepts in TGOK-DFT that are relevant in the context of extended

N -centered ensemble DFT, which is introduced in Section 7.3. To reiterate what has

been said before, TGOK-DFT is a time-independent extension of standard ground-

state DFT to neutral excited states where the ground-state energy is replaced by the

so-called ensemble energy, which is a convex combination of (N -electron) ground-

and excited-state energies,

Eξ TGOK
:=

(
1−

∑
ν>0

ξNν

)
EN

0 +
∑
ν>0

ξNν EN
ν , (7.10)

where ξ ≡
{
ξNν
}
ν>0

1 is the collection of positive and independent ensemble weight

values that are assigned to the ordered-in-energy N -electron excited states
{

ΨN
ν

}
ν>0

,

i.e.,

EN
ν =

〈
ΨN

ν

∣∣Ĥ∣∣ΨN
ν

〉
< EN

ν+1. (7.11)

Note that the weight ξN0 assigned to the ground-state energy EN
0 in Eq. (7.10) is

such that the collection of weights (including the ground-state one) is normalized:

ξN0 +
∑
ν>0

ξNν
TGOK

= 1. (7.12)

This constraint, where ξN0 is an affine function of the independent excited-state

ensemble weights [310], ensures that the total number of electrons is preserved when

deviating from the ground-state ξ = 0 limit of the theory, i.e.,∫
drnξ(r) = N, ∀ξ, (7.13)

where

nξ(r)
TGOK

:=

(
1−

∑
ν>0

ξNν

)
nΨN

0
(r)

+
∑
ν>0

ξNν nΨN
ν

(r),

(7.14)

1The notation for TGOK ensemble weights in this chapter is completely equivalent to the

notation w ≡ {wI}I>0 used in Chapters 4 and 6. The change from the latter to the former is made

in anticipation of the extended N -centered ensembles (see Section 7.3).
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is the ensemble density,
{
nΨN

ν
(r)
}
ν≥0

being the individual N -electron ground- and

excited-state densities. In the following, we use the more compact notation,

nξ(r) = Tr
[
Γ̂ξn̂(r)

]
, (7.15)

where Γ̂ξ is the ensemble density matrix operator,

Γ̂ξ TGOK
=

(
1−

∑
ν>0

ξNν

)
|ΨN

0 ⟩⟨ΨN
0 |

+
∑
ν>0

ξNν |ΨN
ν ⟩⟨ΨN

ν | ,
(7.16)

and Tr denotes the trace. Note that we have assumed, for simplicity, that both

ground and excited states are not degenerate but the formalism can be extended

straightforwardly to ensembles of multiplets [89].

The TGOK ensemble energy, as defined in Eqs. (7.10) and (7.11), can be deter-

mined variationally, i.e.,

Eξ = min
γ̂ξ

Tr
[
γ̂ξĤ

]
= Tr

[
Γ̂ξĤ

]
, (7.17)

where γ̂ξ =
∑

ν ξ
N
ν |Ψ̃N

ν ⟩⟨Ψ̃N
ν | is a trial ensemble density matrix operator, provided

that the ensemble weights are collected in decreasing order [88]:

ξNν ≥ ξNν+1, ν ≥ 0. (7.18)

In the context of ensemble TGOK-DFT [89], the variational ensemble energy expres-

sion of Eq. (7.17) can be recast into a minimization over noninteracting ensemble

density matrix operators,

Eξ = min
γ̂ξ

{
Tr
[
γ̂ξ
(
T̂ + V̂ext

)]
+ Eξ

Hxc[nγ̂ξ ]
}
, (7.19)

where Eξ
Hxc[n] is the ensemble Hxc density functional [see Eqs. (4.22) and (4.27)–

(4.28)], and the (weight-dependent [92]) minimizing KS wave functions
{

Φξ
ν

}
ν≥0

fulfill the following self-consistent noninteracting Schrödinger equation,(
T̂ + V̂ext +

∫
dr vξHxc(r)n̂(r)

) ∣∣Φξ
ν

〉
= Eξν

∣∣Φξ
ν

〉
, (7.20)

vξHxc(r) = δEξ
Hxc[n]/δn(r)

∣∣∣
n=nξ

being the weight-dependent Hxc potential. Equiva-

lently, the orbitals from which the KS ensemble is constructed fulfill the following
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ensemble KS equations,(
−∇

2
r

2
+ vext(r) + vξHxc(r)

)
φξ
i (r) = εξiφ

ξ
i (r). (7.21)

The latter differ from regular (ground-state) KS equations by (i) the weight depen-

dence of the Hxc potential and (ii) the fact that the KS orbitals, which reproduce

the exact ensemble density nξ(r), are fractionally occupied, i.e.,

nξ(r) =
∑
ν≥0

ξνnΦξ
ν
(r) (7.22)

=
∑
i

(∑
ν≥0

ξνn
i
ν

)∣∣∣φξ
i (r)

∣∣∣2, (7.23)

where ni
ν is the occupation of the KS orbital φξ

i in the KS analog Φξ
ν of the pure

state ν. Note that the (weight-dependent) total KS energies simply read

Eξν =
∑
i

ni
νε

ξ
i . (7.24)

Turning to the problematic raised in Section 7.1, we should first recall that the

exact deviation of the true interacting excitation energies from the KS ones is given

by the derivative with respect to the ensemble weights (while holding the ensemble

density constant) of the ensemble Hxc density functional energy [89, 310] (see also

Eq. (4.33)):

EN
ν − EN

0 −
(
Eξν − Eξ0

)
=

∂Eξ
Hxc[n]

∂ξNν

∣∣∣∣∣
n=nξ

. (7.25)

Therefore, within regular TGOK-DFT, the exactification of the (ensemble) KS or-

bital energies occurs only when the above ensemble weight derivative vanishes, which

may happen for very specific (a priori unknown) weight values [355, 98]. In other

words, such an exactification cannot, in general, be achieved, unless we introduce

intermediate ionization processes, as suggested in Section 7.1. The main challenge in

this case lies in the design of a unified ensemble density-functional formalism where

both neutral and charged excitations can be described. A solution to this problem

is proposed in the next section.

7.3 Extended N-centered ensemble DFT

Senjean and Fromager [91] have introduced some years ago the so-called N -centered

ensemble DFT formalism where the fundamental gap of N -electron ground states
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is described with the exact same mathematical language as in TGOK-DFT (see

Chapter 5). The approach also allows for a separate description of ionization and

affinity processes [91, 327, 103, 92], which is essential in the present context. The

close resemblance of N -centered ensemble DFT with TGOK-DFT is exploited in the

following in order to provide an in principle exact ensemble density-functional de-

scription of ionized excited states. The resulting ensemble formalism, where neutral

excited states are incorporated into a regular (ground-state) N -centered ensemble,

will be referred to as extended N -centered ensemble formalism.

7.3.1 Combining TGOK with N-centered ensembles

By analogy with regular N -centered ensemble DFT, where the ensemble weights

assigned to the (N − 1)- and (N + 1)-electron ground states are allowed to vary

independently [91], we propose to combine TGOK and N -centered (Nc) ensembles

as follows,

Γ̂ξ TGOK+Nc
=

(
1−

∑
ν>0

Nν

N
ξν

)
|Ψ0⟩⟨Ψ0|

+
∑
ν>0

ξν |Ψν⟩⟨Ψν | ,
(7.26)

where Ψ0 ≡ ΨN
0 is the reference N -electron ground state to which all possible exci-

tation processes (neutral and charged, including multiple-electron excitations) can

be applied. In other words, the integer number of electrons Nν =
∫
drnΨν (r) that

is described by the excited-state wave function Ψν (ν > 0) is not necessarily equal

to the number of electrons in the ground state,

N0 = N, (7.27)

that is referred to as the central (integer) number of electrons. However, by construc-

tion, the ensemble density still integrates to N , like in TGOK-DFT [see Eqs. (7.13)

and (7.15)]. As further discussed in Section 7.4, the fact that the net number of

electrons in the ensemble does not vary with the ensemble weights, unlike in DFT

for fractional electron numbers, is absolutely central in the description of xc deriva-

tive discontinuities as ensemble weight derivatives [103, 92]. Note also that, just like

in conventional ensembles (like TGOK ones), the ensemble weights assigned to the
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ground and excited states are positive,

ξ0 = 1−
∑
ν>0

Nν

N
ξν ≥ 0, (7.28a)

ξν ≥ 0, ∀ν > 0, (7.28b)

but they do not necessarily sum up to 1 anymore:∑
ν≥0

ξν = 1 +
∑
ν>0

(N −Nν)

N
ξν ̸= 1. (7.29)

In addition, within each subensemble containing all the states with the same number

N ± p (p = 0, 1, 2, . . . , N) of electrons, we impose the following weight ordering

constraints [see Eq. (7.18)],

ξν
Nν=Nν+1=N±p

≥ ξν+1, (7.30)

in order to be able to exploit, if necessary, the TGOK variational principle within

each (N ± p)-electron sector of the Fock space. We assume, by construction, that

a given sector is described by a single range of ν indices. Note that, in the present

work, the constraint of Eq. (7.30) will be used only for N -electron states (i.e.,

p = 0) while the (N − 1) sector will boil down to ground states only. The (N + 1)

sector will not be used. These choices are motivated by the problematic raised in

Section 7.1 and are by no means a limitation of the present ensemble formalism,

which is very general.

Let us finally turn to the extended N -centered ensemble energy,

Eξ TGOK+Nc
=

(
1−

∑
ν>0

Nν

N
ξν

)
E0 +

∑
ν>0

ξνEν , (7.31)

where E0 = EN
0 is the reference N -electron ground-state energy and Eν is an Nν-

electron eigenvalue of the electronic Hamiltonian, i.e.,

Ĥ |Ψν⟩ = Eν |Ψν⟩ , ν ≥ 0, (7.32)

with Nν ∈ {N,N ± 1, N ± 2, . . .}. Like in TGOK-DFT [310], the linearity of the

ensemble energy in the ensemble weights

ξ
TGOK+Nc≡ {ξν}ν>0 , (7.33)
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allows for a straightforward extraction of individual energy levels (and, therefore,

of the excitation energies) through first-order differentiations. Indeed, since both

ground- (ν = 0) [see Eq. (7.27)] and excited-state (ν > 0) energies can be expressed

as follows,

Eν =
ν≥0

Nν

N
E0 +

∑
λ>0

δλν

(
Eλ −

Nλ

N
E0

)
, (7.34)

where, according to Eq. (7.31),

∂Eξ

∂ξλ
= Eλ −

Nλ

N
E0 (7.35)

and

E0 = Eξ −
∑
λ>0

ξλ
∂Eξ

∂ξλ
, (7.36)

we immediately obtain the following compact expression in terms of the ensemble

energy (and its first-order derivatives),

Eν =
ν≥0

Nν

N
Eξ +

∑
λ>0

(
δλν −

Nν

N
ξλ

)
∂Eξ

∂ξλ
. (7.37)

Note that Eq. (7.37) generalizes expressions that have been derived previously and

separately in regular TGOK [310] (for neutral excited states) and N -centered [91, 92]

(for charged excited states) ensemble theories [see Eqs. (4.11), and (5.8)–(5.10)].

As shown in the following section, once a KS density-functional description of the

extended N -centered ensemble energy Eξ is established, it becomes possible to

relate formally any charged or neutral KS excitation energy to the true physical one.

7.3.2 Density-functionalization of the approach

According to both regular (ground-state) Rayleigh–Ritz and TGOK variational prin-

ciples, the extended N -centered ensemble energy of Eq. (7.31) can be determined

variationally, thus allowing for its in-principle-exact ensemble density-functional de-

scription. The exact same formalism as in TGOK-DFT can actually be used [see

Eqs. (7.19)–(7.24)]. The only difference is that we are now allowed to consider oc-

cupations in the KS wave functions [see Eq. (7.24)] that do not necessarily sum up
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to N : ∑
i

ni
ν = Nν . (7.38)

By rewriting the ensemble energy as follows [see Eqs. (7.19), (7.20), and (7.22)],

Eξ =
∑
ν≥0

ξνEξν + Eξ
Hxc[n

ξ]−
∫

dr vξHxc(r)n
ξ(r), (7.39)

and applying the Hellmann-Feynman theorem to its variational expression in

Eq. (7.19), which leads to

∂Eξ

∂ξλ
= Eξλ −

Nλ

N
Eξ0 +

∂Eξ
Hxc[n]

∂ξλ

∣∣∣∣∣
n=nξ

, (7.40)

we deduce from Eq. (7.37) the following exact expression for any individual energy

level included into the ensemble,

Eν =
ν≥0
Eξν +

Nν

N

(
Eξ

Hxc[n
ξ]−

∫
dr vξHxc(r)n

ξ(r)

)
+
∑
λ>0

(
δλν −

Nν

N
ξλ

)
∂Eξ

Hxc[n]

∂ξλ

∣∣∣∣∣
n=nξ

,

(7.41)

where, in the second term on the right-hand side, we recognize the analog for ensem-

bles of the Levy–Zahariev shift in potential [319, 310, 91] [cf. Eqs. (4.34) and (5.25)].

At this point we should make an important observation that will be exploited later

on, namely that the above expression is invariant under constant shifts in the en-

semble Hxc potential vξHxc(r)→ vξHxc(r) + c since [see Eqs. (7.13), (7.24), and (7.38)]

Eξν −
Nν

N

∫
dr vξHxc(r)n

ξ(r)

=
(
Eξν + Nνc

)
− Nν

N

∫
dr
(
vξHxc(r) + c

)
nξ(r),

(7.42)

even though the ensemble may contain states that describe different numbers of

electrons. This major difference between (extended or not) N -centered ensemble

DFT and the conventional DFT for fractional electron numbers originates from the

fact that, in the former theory, the number of electrons is artificially held constant

and equal to the integer N [see Eq. (7.13)].

We finally conclude from Eq. (7.41) that the energy associated to any (charged

or neutral) excitation ν → κ can be expressed exactly in terms of its KS analog as
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follows,

Eκ − Eν = Eξκ − Eξν

+
(Nκ −Nν)

N

(
Eξ

Hxc[n
ξ]−

∫
dr vξHxc(r)n

ξ(r)

)
+
∑
λ>0

(
δλκ − δλν −

(Nκ −Nν)

N
ξλ

)
∂Eξ

Hxc[n]

∂ξλ

∣∣∣∣∣
n=nξ

.

(7.43)

Eq. (7.43) is our first key result. It generalizes the neutral excitation energy expres-

sion of TGOK-DFT [89, 310] that was recalled in Eq. (7.25).

7.4 Revisiting density-functional derivative dis-

continuities induced by neutral excitations

In order to achieve an exactification of the KS orbital energies along the lines of

Section 7.1, we apply the general formalism of Sec. 7.3 to a particular type of

extended N -centered ensemble consisting of ground and excited N -electron states

(with weights ξNν ) and the (N − 1)-electron ground state (with weight ξ− := ξN−1
0 ),

i.e.,

ξ ≡
({

ξNν
}
ν>0

, ξ−

)
. (7.44)

According to Eqs. (7.5) and (7.43), where κ now refers to the ionized ground state,

the exact ground- and excited-state ionization potentials read (we focus for simpli-

ficity, but without loss of generality, on single-electron excitations)

INν =
ν≥0
−εξN+ν −

1

N

(
Eξ

Hxc[n
ξ]−

∫
dr vξHxc(r)n

ξ(r)

)
+

(
1 +

ξ−
N

)
∂Eξ

Hxc[n]

∂ξ−

∣∣∣∣∣
n=nξ

+
∑
λ>0

(
ξNλ
N
− δλν

)
∂Eξ

Hxc[n]

∂ξNλ

∣∣∣∣∣
n=nξ

.

(7.45)

As pointed out previously [see Eq. (7.42)], the above expression is invariant under

any constant shift in the ensemble Hxc potential. Therefore, we can always adjust

the latter potential in order to exactify the Koopmans theorem for a given ground
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or excited N -electron state ν and a given choice of ensemble weight values ξ:

INν = −εξN+ν

⇕∫
dr vξHxc(r)n

ξ(r) = Eξ
Hxc[n

ξ]

− (N + ξ−)
∂Eξ

Hxc[n]

∂ξ−

∣∣∣∣∣
n=nξ

+
∑
λ>0

(
Nδλν − ξNλ

) ∂Eξ
Hxc[n]

∂ξNλ

∣∣∣∣∣
n=nξ

.

(7.46)

Eq. (7.46), which is the second key result of this work, uniquely defines (not up

to a constant anymore) the Hxc potential. Interestingly, unlike in traditional

DFT approaches to electronic excitations, this alternative and explicit adjustment

procedure of the Hxc potential does not rely on the asymptotic behavior of the

density (see Refs. [103, 92] for a comparison of the two formalisms in the ground

state), which means that it is not only applicable to ab initio molecular systems

but it should also be transferable to finite-size lattice models or extended systems,

for example.

Let us finally have a closer look at the ionization of the ground (first scenario)

and νth excited (second scenario) states separately. In order to reach variationally

the latter state we only need to consider all the states that are lower in energy, which

can be denoted as follows,

ξ ≡
(
ξNν , 0, 0, . . . , 0, ξ−

)
, (7.47)

where (note the bold font)

ξNν ≡
(
ξN1 , ξN2 , . . . , ξNν

)
(7.48)

is a shorthand notation for the ν non-zero and monotonically decreasing ensemble

weights. In the first scenario, we adjust the Hxc potential such that the Koopmans

theorem is fulfilled for the ground state (ν = 0). As neutral excited states are

not involved in this case, the ensemble can be reduced to a regular N -centered

ensemble [91]:

ξ1 ≡
(
ξNν = 0, 0, 0, . . . , 0, ξ− > 0

)
. (7.49)
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On the other hand, in the second scenario (ionization of the νth excited state),

assigning an infinitesimal weight to the ionized ground state is sufficient, i.e.,

ξ2 ≡
(
ξNν > 0, 0, 0, . . . , 0, ξ− → 0+

)
, (7.50)

so that the ensemble weight derivative ∂Eξ
Hxc[n]/∂ξ− in Eq. (7.46) can be evaluated.

As a consequence of Eq. (7.46), we finally reach, without ever invoking fractional

electron numbers nor referring to the asymptotic behavior of the ensemble den-

sity, the desired exactification of the KS orbital energies, with a clear and explicit

construction of the corresponding Hxc potentials:

EN
ν − EN

0 = εξ2N+ν − εξ1N . (7.51)

Most importantly, the first and second scenarios have a connection point which is

reached when ξ− → 0+ and ξNν → 0+, respectively, and which corresponds to the

regular N -electron ground-state formulation of DFT (the density equals nΨN
0

in this

case). If we simply denote

ξNν ≡
notation

(
ξNν , 0, 0, . . . , 0, ξ− → 0+

)
, (7.52)

then comparing from Eq. (7.46) the two scenarios in Hxc potential at this connection

point leads to our third key result:∫
dr

N

(
v
ξNν →0+

Hxc (r)− v
ξNν =0
Hxc (r)

)
nΨN

0
(r)

=
∂E

ξNν
Hxc[nΨN

0
]

∂ξNν

∣∣∣∣∣∣
ξNν =0

.
(7.53)

If we use the formally convenient decomposition of the ensemble Hxc energy in terms

of the regular (weight-independent) Hartree functional and the weight-dependent xc

functional,

Eξ
Hxc[n] = EH[n] + Eξ

xc[n], (7.54)

then all Hartree terms can be removed from Eq. (7.53). Thus we recover, in a rather

different (N -centered) ensemble perspective, a feature that was originally highlighted

by Levy [104], namely that the exactification of neutral KS excitation energies is

conditioned by the appearance of a derivative discontinuity in the xc potential,

once the excitation of interest has been included into the ensemble. Moreover, that

derivative discontinuity matches the ensemble weight derivative of the xc energy, as

readily seen from Eq. (7.53).
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7.5 Application to the Hubbard dimer

The theory hitherto discussed is applied on the asymmetric Hubbard dimer (see

Eq. (2.7) in Chapter 2). We illustrate the key result in Eq. (7.53), together with

the two ionization scenarios of ground and excited states (Eq. (7.49) and Eq. (7.50),

respectively) for the dimer in three different asymmetry regimes. The extended N -

centered ensemble that we work with consists of the singlet ground states in the 2-

and 1-electron Fock spaces (neutral and ionic ground state, respectively), while for

the neutral excited state, we choose the lowest singlet excited state in the 2-electron

Fock space. Therefore, the ensemble is characterized by two weights, ξ ≡ (ξ1, ξ−),

where ξ1 controls the fraction of the neutral excited state, and ξ− controls the fraction

of the 1-electron ground state. According to Eqs. (7.28) and (7.30), the ensemble

weight constraints read as 0 ≤ ξ− ≤ 2, and 0 ≤ ξ ≤ 1/2 − ξ−/4. Moreover, for a

given (fixed) set of ensemble weights, the ensemble under study is invariant with

respect to arbitrary shifts in the external (or KS) potential (see Eq. (2.7)),

∆v

2
→ ∆v

2
− µ. (7.55)

Here, we show that adjusting the constant shift µ in the KS potential in order to ful-

fill an exact Koopmans’ theorem (Eq. (7.46)), brings about derivative discontinuities

of the Hxc potential. The exact noninteracting kinetic energy and Hartree-exchange

density functionals for our particular extended N -centered ensemble can be obtained

by generalizing the analogous bi-ensemble density functionals in TGOK-DFT [98]

and N -centered eDFT [91]:

T ξ
s (n) = −2t

√
(1− ξ)2 − (1− n)2, (7.56)

Eξ
Hx(n) =

U

2

[
1 + ξ − ξ−

2
+

(
1− 3ξ − ξ−

2

)
(1− n)2

(1− ξ)2

]
, (7.57)

while the correlation energy, Eξ
c (n) = F ξ(n)− T ξ

s (n)− Eξ
Hx(n), can be obtained by

Lieb maximization for any density n [98, 91]. The Hxc potential for a given site i

in the dimer is then determined as,

vξHxc,i =
(

(−1)i−1∆vξHxc/2
)
− µξ

Hxc, i = 0, 1, (7.58)

where ∆vξHxc = ∆vξKS(nξ)−∆vext, and (see Ref. [98])

∆vξKS(n) =
∂T ξ

s (n)

∂n
=

2t(n− 1)√
(1− ξ)2 − (1− n)2

. (7.59)
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In Eq. (7.58), the constant shift µξ
Hxc is determined, for a given ionization process,

from Eq. (7.46). Figure 7.1 displays the variation of vξHxc,1 for the two ionization sce-

narios considered (i.e. red-colored curves for the ionization of the 2-electron ground

state, and blue-colored curves for the ionization of the 2-electron first (singlet) ex-

cited state). In the first scenario (red curves), the Hxc potential plotted in Figure 7.1

is constrained to fulfill Eq. (7.46) for the 2-electron ground state ionization potential

IN0 = EN−1
0 − EN

0 , which, for the Hubbard dimer, reads as

IN0 =− εξh(nξ)− 1

2

(
Eξ

Hxc(n
ξ)−

1∑
i=0

vξHxc,in
ξ
i

)

+

(
1 +

ξ−
2

)
∂Eξ

Hxc(n)

∂ξ−

∣∣∣∣∣
n=nξ

,

(7.60)

where

εξh(nξ) = −

√
t2 +

[∆vξKS(nξ)]2

4
(7.61)

is the highest occupied molecular orbital (HOMO) energy of the KS system for the

unshifted (µ = 0 in Eq. (7.58)) Hxc potential [98]. In the second scenario (blue

curves in Figure 7.1), the Hxc potential is constrained to fulfill Eq. (7.46) for the

ionization of the 2-electron excited state IN1 = EN−1
0 − EN

1 , which reads as,

IN1 =− εξl (n
ξ)− 1

2

(
Eξ

Hxc(n
ξ)−

1∑
i=0

vξHxc,in
ξ
i

)

+

(
1 +

ξ−
2

)
∂Eξ

Hxc(n)

∂ξ−

∣∣∣∣∣
n=nξ

+

(
ξ

2
− 1

)
∂Eξ

Hxc(n)

∂ξ

∣∣∣∣∣
n=nξ

,

(7.62)

where εξl (n
ξ) = −εξh(nξ). These considerations lead to the appearance of the deriva-

tive discontinuity, which is clearly observed for all asymmetry regimes when pass-

ing from the set of limiting weights (ξ1 = 0, ξ− → 0+) to (ξ1 → 0+, ξ− → 0+).

For comparison, we also plot “exchange-only” results (dotted curves). The lat-

ter are obtained from Eqs. (7.60) and (7.62) by keeping only the Hartree-exchange

(Hx) density functional Eξ
Hx(n) (and its ensemble weight derivatives). For the sake

of consistency, the exchange-only results are evaluated at the exact extended N -

centered ensemble density nξ, hence the exact Hxc potential difference ∆vξHxc is

kept in Eqs. (7.60) and (7.62), even for calculating the exchange-only values.
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Figure 7.1: Variation of the exact Hxc potential of the extended N -centered en-

semble, and its exhange-only approximation, with ensemble weights in the Hubbard

dimer with different asymmetries (see main text for more pertinent details). For

each case, the derivative discontinuity is highlighted with the green arrow at limit-

ing ensemble weight values between the first scenario (Eq. (7.49)) and the second

one (Eq. (7.50)). The vertical (dotted) black line at ξ = 1/2 indicates the TGOK

equiensemble position.





Chapter 8

Quantum embedding strategy for

ensembles of electronic states

In the last section of Chapter 1, we introduced density matrix embedding theory

(DMET) for ground states. An idea that emerged in the course of my PhD was to

consider the possibility of adapting the single-shot embedding strategy of DMET

(or Ht-DMFET, see Subsection 1.3.2) for ensembles of ground and excited states.

The material presented in this chapter will be published in the forthcoming papers,

Cernatic, F.; Yalouz, S. “Quantum embedding strategy for multiple electronic

states”, in preparation (2023).

Cernatic, F.; Lasorne, B.; Fromager, E. “Perspectives in ensemble DFT of electronic

excited states”, invited “Perspective” paper, to be submitted to JCP (2023).

Cernatic, F.; Yalouz, S.; and Fromager, E. “Self-consistent local potential functional

embedding theory of many-electron ensembles”, in preparation (2023).

In the aforementioned section on DMET in Chapter 1, we introduced the approach

for constructing a quantum bath by means of unitary transformation in the single-

electron picture, the simplicity of which is very appealing. This way, as we have

seen, one can design embedding clusters that capture local correlations in a large

system without the need for solving the full-size problem. One may wonder whether

such a procedure can be extended to neutral or even charged excitations, where

ideally, an embedding cluster would reflect the changes in the wavefunction upon

169
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electronic excitation. The approach that we present here is intented for targeting

neutral excitations of molecules, where the goal is not to calculate the whole spec-

trum but a small number of low-lying excitations. For this reason, we adopt the

formalism of TGOK ensembles, which affords a systematic and balanced treatment

of all individual states for excitations of interest. As will be shown in the following,

it turns out that we are also able to design an embedding cluster that is suitable

for multiple states, with the use of successive Householder transformations on the

non-interacting TGOK ensemble (see Subsection 4.2.3) 1RDM.

The present chapter is organized as follows. Section 8.1 reintroduces DMET and

quantum embedding in the context of excited states. Section 8.3 discusses about

the problematic of clusterization of an ensemble 1RDM, which is non-idempotent

due to fractional occupation numbers. Our solution by means of successive House-

holder transformations is proposed. In Section 8.3, a single-shot embedding strategy

for ensembles is introduced, which can be seen as a multi-state extension of Ht-

DMFET [105]. Example calculations on three toy models are presented. In the final

section, we discuss various features and challenges of ensemble embedding theory,

and of capturing particular excited states, and point out possible improvements and

extensions of the present strategy.

8.1 Introduction

DMET has enjoyed great success in describing several regimes and systems of interest

in quantum chemistry and condensed-matter physics. Some of the applications are

stated in the review of DMET in Subsection 1.3.2. However, to our knowledge, there

are not too many applications of DMET or related methods to excited states. For

molecules, Tran et al. have combined DMET with SCF metadynamics for embedding

specific excited states [106]. Bootstrap embedding (BE) has also been adapted for

targeting excited states in a state-specific way [356]. Mitra et al. have studied

excited states of crystalline point defects by means of combining multiconfigurational

wavefunction-based methods and DMET [227]. For extended systems, DMET has

been applied to a response wavefunction for obtaining spectral functions of Hubbard

lattices [357, 358]. DMET has also been extended to finite temperatures in finite
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temperature density matrix embedding theory (FT-DMET) by Sun et al. [216], which

has been applied on the one and two-dimensional Hubbard models.

We would like to propose a strategy that is suitable for simultaneously describing

multiple electronic states. This is inspired by the Theophilou-Gross-Oliveira-Kohn

(TGOK) variational principle (see Eq. (7.17)). As a proof of concept, we stick to a

simple two-state ensemble, consisting of ground and singlet first-excited state, and

a single-impurity embedding. Just like in DMET for ground states, we can split

our strategy in two steps. The first step is to design an embedding cluster that is

in the mean-field (or noninteracting) limit exact for the aforementioned ensemble.

Then, once an embedding cluster is produced at the mean-field level, the single-

shot embedding calculation proceeds like in Ht-DMFET1 - by adjusting a chemical

potential so as to correct the number of electrons in the ground and excited state.

After optimization, the ground and first-excited state solutions of the embedding

cluster are used as approximations to true individual states.

8.2 Methodology

8.2.1 Step 1: Construction of the embedding cluster

8.2.1.1 The problematic of embedding excited states

The Householder transformation in introduced in 1.3.2.3 gives a closed embedding

cluster for a reference full-size 1RDM that comes from a Slater determinant |Φ⟩.
The key reason, as was stated there, is the idempotency of 1RDM, i.e., γ2

Φ = γΦ.

This implies that not just mean-field ground states, but any excited state with only

doubly occupied orbitals will be amenable to exact clusterization. However, there are

several challenges associated with describing excited states of an interacting system

with this approach. Firstly, when embedding excited states individually, it is difficult

to decide a priori which solution of the embedding Hamiltonian should be chosen

as a local approximation to the excited state of the full-size system. The problem of

identifying individual states inside a cluster with states of the full-size system may

to some extent be solved by combining quantum embedding theory with TGOK

1Or DMET. The two theories are equivalent in the conventional ground-state case (see Subsec-

tion 1.3.2, and Refs. [111, 214]).
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ensembles, which is the purpose of this work. This will ensure that at the mean-

field level, the ground and excited states within the embedding cluster correspond

in ordering to the ground and excited states in the full-size system2, provided that

we can design a unitary matrix that transforms the average of 1RDMs of individual

states, weighted by TGOK ensemble weights (i.e. the ensemble 1RDM), exactly into

a block diagonal form for any set of weights. Secondly, 1RDMs of excited states are

generally non-idempotent. For example, already at the mean-field level, the lowest

(singlet) excited state (excluding possible symmetry constraints) is a singly excited

state from the highest occupied molecular orbital (HOMO) to the lowest unoccupied

molecular orbital (LUMO), which is described by the following configuration state

function (CSF),

|1Φl
h⟩ =

1√
2

(
â†N/2+1,↑âN/2,↑ + â†N/2+1,↓âN/2,↓

)
|Φ0⟩, (8.1)

where h = N/2 (HOMO), l = N/2 + 1 (LUMO), |Φ0⟩ is the (HF or KS) ground-

state Slater determinant, {â†κ,σ}1≤κ≤L and {âκ,σ}1≤κ≤L are the creation and annihi-

lation operators, respectively, in the molecular spin-orbital basis {|φκσ⟩ = |φκ⟩ |σ⟩ =

â†κσ|vac⟩}1≤κ≤L, σ∈{↑,↓}. In that basis (which we hereafter refer to as the MO basis),

the 1RDM of |1Φl
h⟩, which we label as,

γ1κ,κ′ ≡ ⟨1Φl
h|â†κ↑âκ′↑|1Φl

h⟩ = ⟨1Φl
h|â†κ↓âκ′↓|1Φl

h⟩ (8.2)

is diagonal. Consider the concrete example of a 6-site and 6-electron Hubbard chain

(see Model 3 in Figure 8.4). In this case, γ1 reads

γ1 =



|φ1⟩ |φ2⟩ |φ3⟩ |φ4⟩ |φ5⟩ |φ6⟩
⟨φ1| 1 0 0 0 0 0

⟨φ2| 0 1 0 0 0 0

⟨φ3| 0 0 0.5 0 0 0

⟨φ4| 0 0 0 0.5 0 0

⟨φ5| 0 0 0 0 0 0

⟨φ6| 0 0 0 0 0 0


(8.3)

2Complications may arise, for example, if the double HOMO→LUMO excitation is degenerate

or higher in energy to the single HOMO→LUMO+1 excitation. In that case, if an embedding

cluster contains the HOMO and LUMO orbitals (but not LUMO+1), it will not be able to (locally)

match the singly-excited state with excitation into LUMO+1, and the TGOK variational principle

for the full-size system will not be correctly reproduced inside such a cluster.
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The two fractionally occupied spin-orbitals, |φ3⟩ (HOMO) and |φ4⟩ (LUMO)

make the above matrix non-idempotent (γ2
1 ̸= γ1), which means that a single House-

holder transformation will not give a two-orbital embedding cluster as in the ground-

state case (see 1.3.2.3). Therefore, if we are to stick to embedding a singly-excited

state (with correct spin symmetry), we have to find another strategy. A price to

pay is that we may have to produce more bath orbitals for achieving a disentangle-

ment, thereby increasing the cluster’s size. In fact, in Ref. [105], there was already

a hint that we could apply a string of successive Householder transformations on

submatrices of the 1RDM to generate additional bath orbitals and further resolve

the couplings of the impurity and impurity’s environment. Such a technique is used

in the tridiagonalization of matrices [359, 18], which is a preprocessing step for com-

puting the eigenvalues of symmetric matrices [19]. The following subsection explains

in more detail the mathematical intricacies of this technique.

8.2.1.2 Clusterization via successive Householder transformations

Let us begin by defining successive Householder transformations through a re-

currence relation. Starting with a general matrix γ, the i + 1-th Householder-

transformed matrix γ̃(i+1) is obtained as [19]

γ̃(1) = γ

γ̃(i+1) =
i≥1

P(i)γ̃(i)P(i)
(8.4)

where

P(i) =

[
1(i−1)×(i−1) 0(i−1)×(L−i+1)

0(L−i+1)×(i−1) P[γ̃(i)[i− :, i− :]]

]
. (8.5)

P is the Householder transformation as defined in Eqs. (1.134), (1.135) and (1.136),

and γ̃(i)[i− :, i− :] is a submatrix of γ̃(i) obtained by deletion of the first i−1 rows and

columns. Defined this way, γ̃(2) = P(1)γP(1) is the singly Householder-transformed

matrix as in Eq. (1.137). The effect of further transformations {P(i)}i≥2 is the

conversion of γ to a tridiagonal form, which is displayed in Figure 8.1.

We can also define the i-th partial tridiagonalization as,

Q(i) = P(1)P(2) . . .P(i). (8.6)
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Unlike P(i), which is unitary and Hermitian (as Householder transformations are),

Q(i) is unitary but not Hermitian, since the different P(i) are not commutative. This

can be easily seen by rewriting P(i) as

P(i) = 1L×L − 2v(i)v†(i), (8.7)

where 1L×L is the identity matrix and v(i) is the i-th Householder vector. Then, for

i ̸= j,

P(i)P(j) = 1L×L − 2(v(i)v†(i) + v(j)v†(j)) + 4(v†(i)v(j))v(i)v†(j). (8.8)

Now, since v(i)v†(j) ̸= v(j)v†(i), it follows that P(i)P(j) ̸= P(j)P(i), unless v†(i)v(j) = 0

(which is the case if γ is already tridiagonal). Thus, Q†(i) = P(i)P(i−1) . . .P(1) ̸=
Q(i).

As a consequence, care must be taken when defining transformations between

bases. This point will be raised later again when we construct an embedding cluster

for a two-state ensemble, based on successive Householder transformations as defined

above.

For the moment, let us label the initial localized spin-orbital (sites in the Hubbard

model) basis of γ as {|χk⟩}1≤k≤L, and the basis of γ̃(i) as {|χ(i)
k ⟩}1≤k≤L.

γ =

Initial matrix 1st Householder tr. 2nd Householder tr.

0

0 0

0
Full tridiagonalization

0

0

P(2)γ̃(2)P(2)P(1)γP(1)

(impurity)
Fixed element P(1) , P(2) … Householder

Individual

transformations

γ̃(2) γ̃(3)

Figure 8.1: Schematic representation of applying successive Householder transfor-

mations to γ.
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8.2.2 Step 2: Two-state ensemble embedding strategy

8.2.2.1 Transformation from local to embedding basis

We are interested in describing the lowest singlet excitation for a given system. As

a starting point, we chose a mean-field (or non-interacting) description of the full

system, where the idea is to find a suitable basis of spin-orbitals that affords an

embedding cluster for the TGOK ensemble of ground and singly excited states,

Γ̂ξ = (1− ξ) |Φ0⟩⟨Φ0|+ ξ
∣∣1Φl

h

〉〈
1Φl

h

∣∣ , (8.9)

where 0 ≤ ξ ≤ 1/2 such that the TGOK variational principle is fulfilled. Adopting

the clusterization procedure in Ht-DMFET (see 1.3.2.3), we work with ensemble

1RDM. In the local basis, it is defined as,

γξ
ijσ = Tr

[
Γ̂ξ ĉ†iσ ĉjσ

]
= (1− ξ)γΦ0

ijσ + ξγ
1Φl

h
ijσ . (8.10)

We define γξ
ij ≡ γξ

ij↑ = γξ
ij↓ (since we work with singlet states). In the MO basis of

our 6-site/6-electron Hubbard chain, such a matrix looks like,

γξ =



|φ1⟩ |φ2⟩ |φ3⟩ |φ4⟩ |φ5⟩ |φ6⟩
⟨φ1| 1 0 0 0 0 0

⟨φ2| 0 1 0 0 0 0

⟨φ3| 0 0
1− ξ

2
0 0 0

⟨φ4| 0 0 0
ξ

2
0 0

⟨φ5| 0 0 0 0 0 0

⟨φ6| 0 0 0 0 0 0


. (8.11)

The fractional occupations of the HOMO and LUMO are now controlled by ξ,

a single variable which directly indicates the presence of the excited state. In order

to capture the excitation, we would like to include both HOMO and LUMO inside

the embedding cluster. Therefore, we can expect the sought-after cluster to have at

least two bath spin-orbitals. Again, this is best illustrated with the Hubbard chain

example. We start with the equi-ensemble (ξ = 1/2 in Eq. (8.9)), and construct the

ensemble 1RDM in the localized basis,
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γ := γξ =



|χ1⟩ |χ2⟩ |χ3⟩ |χ4⟩ |χ5⟩ |χ6⟩
⟨χ1| 0.5 0.3751 0 −0.085 0 0.0149

⟨χ2| 0.3751 0.5 0.2902 0 −0.07 0

⟨χ3| 0 0.2902 0.5 0.3051 0 −0.085

⟨χ4| −0.085 0 0.3051 0.5 0.2902 0

⟨χ5| 0 −0.07 0 0.2902 0.5 0.3751

⟨χ6| 0.0149 0 −0.085 0 0.3751 0.5


, (8.12)

where the goal is to embed the first site, |χ1⟩. After applying the first House-

holder transformation (the weight-dependence dropped for simplicity), γ̃(2) = PγP,

we get the expected result where the top left 2 × 2 subblock is still coupled to the

rest of the matrix:

γ̃(2) =



|χ1⟩ |χ(2)
2 ⟩ |χ(2)

3 ⟩ |χ(2)
4 ⟩ |χ(2)

5 ⟩ |χ(2)
6 ⟩

⟨χ1| 0.5 −0.3849 0 0 0 0

⟨χ(2)
2 | −0.3849 0.5 −0.2122 0 0.1177 0

⟨χ(2)
3 | 0 −0.2122 0.5 0.3613 0 −0.0948

⟨χ(2)
4 | 0 0 0.3613 0.5 0.2692 0

⟨χ(2)
5 | 0 0.1177 0 0.2692 0.5 0.3788

⟨χ(2)
6 | 0 0 −0.0948 0 0.3788 0.5


. (8.13)

It turns out that, after applying three successive Householder transformations,

γ̃(4) = P(3)†γ̃(3)P(3), we obtain the representation of the ensemble 1RDM with a

block-diagonalized structure (note the first three spin-orbitals in the matrix below

come from previous 1RDMs in succession, {γ̃(i)}1≤i≤3, due to the recurrence in

Eq. (8.4)).

γ̃(4) =



|χ1⟩ |χ(2)
2 ⟩ |χ(3)

3 ⟩ |χ(4)
4 ⟩ |χ(4)

5 ⟩ |χ(4)
6 ⟩

⟨χ1| 0.5 −0.3849 0 0 0 0

⟨χ(2)
2 | −0.3849 0.5 0.2426 0 0 0

⟨χ(3)
3 | 0 0.2426 0.5 0.3247 0 0

⟨χ(4)
4 | 0 0 0.3247 0.5 0 0

⟨χ(4)
5 | 0 0 0 0 0.5 0.5

⟨χ(4)
6 | 0 0 0 0 0.5 0.5


. (8.14)

This is a very favourable result. Already from the traces of sub-blocks, we can see

that in the top-left 4× 4 subblock, we have 2 electrons per spin, and in the bottom-

right 2 × 2 subblock, we have 1 electron per spin. If we diagonalize each subblock
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separately, we find the following sets of eigenvalues (displayed as functions of the

ensemble weight ξ),

γ =



|µ1⟩ |µ2⟩ |µ3⟩ |µ4⟩ |ν1⟩ |ν2⟩
⟨µ1| 1 0 0 0 0 0

⟨µ2| 0
1− ξ

2
0 0 0 0

⟨µ3| 0 0
ξ

2
0 0 0

⟨µ4| 0 0 0 0 0 0

⟨ν1| 0 0 0 0 1 0

⟨ν2| 0 0 0 0 0 0


, (8.15)

where the two fractionally occupied orbitals can be identified with the HOMO and

LUMO in Eq. (8.11), i.e., |µ2⟩ = |φ3⟩ (HOMO), and |µ3⟩ = |φ4⟩ (LUMO). Further-

more, |µ1⟩ is the only fully occupied MO that has a nonzero overlap with the impurity

|χ1⟩, in analogy with the single-impurity embedding cluster in regular DMET (see

Eq. (37) in Ref. [105]). Evidently, with three successive Householder transforma-

tions, Q(3) = P(1)P(2)P(3), we managed to completely capture the excitation inside

a 4× 4 cluster. Based on this result, we can use the spin-orbital subspace,

|χ1⟩ ⊕ |χ(2)
2 ⟩ ⊕ |χ(3)

3 ⟩ ⊕ |χ(4)
4 ⟩ (8.16)

to form the ensemble embedding cluster that is suitable for both ground |Φ0⟩ and

singly-excited state
∣∣1Φl

h

〉
. As shown in Figure 8.2, compared to the single-state

embedding cluster in DMET, the ensemble embedding cluster is enlarged with three

bath spin-orbitals instead of one, where two of the latter are the HOMO and LUMO,

and another bath spin-orbital comes from the “inactive” orbitals of the ensemble

(fully occupied in both |Φ0⟩ and
∣∣1Φl

h

〉
). The transformation matrix Q(3) is also

easily expressed in second quantization. If we write Q(3) as Q for simplicity, the

change of basis reads,

d̂†iσ =
L∑

j=1

Qjiĉ
†
jσ d̂iσ =

L∑
j=1

Qjiĉjσ. (8.17)

Then, the subset of operators {ĉ†1σ = d̂†1σ, ĉ1σ = d̂1σ, d̂
†
2σ, d̂2σ, d̂

†
3σ, d̂3σ, d̂

†
4σ, d̂4σ} act on

the ensemble embedding cluster. The bath spin-orbital subspace is then given as,

{|χ(i)
iσ ⟩ = d̂†iσ |vac⟩}2≤i≤4,σ∈{↑,↓}. (8.18)
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The bath spin-orbitals are delocalized over the impurity’s environment, as shown

for the Hubbard chain in Figure 8.3 (see the next section for further discussion on

this model).

Impurity

Impurity's

Single-state 
embedding

Embedding cluster

Impurity

bath

Impurity

ensemble

Cluster's
environment

environment Ensemble
embedding

bath

Many-electron system 
(lattice representation)

Figure 8.2: Comparison of embedding clusters for single states, and two-state en-

sembles.

8.2.2.2 Single-shot two-state ensemble embedding calculation

Once the transformation Q for the two-state ensemble has been determined, the

computation step proceeds much the same way as in regular DMET. Firstly, we

construct the (ensemble) embedding Hamiltonian,

Ĥens−emb. = Q̂ĤQ̂ − µ1n̂1, (8.19)

where the many-body projector Q̂ spans the Fock space constructed from the im-

purity+bath spin-orbitals in Eq. (8.16). The goal is to extract the ground and the

lowest singlet excited state from the embedding Hamiltonian. Just like in regular

DMET (see Subsection 1.3.2), we perform the embedding over all localized spin-

orbitals (or lattice sites). The strategy that we choose in the following, is to add a

chemical potential on each localized spin-orbital. This time, chemical potentials are
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Figure 8.3: Bath spin-orbital coefficients in lattice site basis for the 6-site Hubbard

chain.

set to be different for each spin-orbital, i.e. {µi}1≤i≤L, and are tuned to optimize

the number of electrons in both ground and first excited state, for which we consider

the following cost function,

CF({µi}) =
∑
I=0,1

(
L∑
i=1

⟨ΨCi
I (µi)|n̂i|ΨCi

I (µi)⟩ −N

)2

. (8.20)

Although the above cost function does not fulfill any exact TGOK ensemble con-

straint (for example, ensemble local occupations, or density-driven correlations that

we discussed in Section 6.2 are not guaranteed at all to be obtained correctly using

the cost function in Eq. (8.20)), we expect it to produce reasonable results if the

system of interest is homogeneous (e.g. homoatomic molecules, see Section 8.3).

After optimization, the ground and first excited states of the embedding cluster

are used as approximations to the ground and first excited states of the true system,

which in practice means that 1RDM and 2RDM elements are evaluated locally from

embedding clusters. Then, the reconstruction of individual energy levels is done
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with democratic partitioning, as in Eqs. (1.158) and (1.159),

γΨI
ij ≈

1

2

∑
t∈{i,j}

⟨ΨCt
I |ĉ†iσ ĉjσ|ΨCt

I ⟩,

ΓΨI
ijkl ≈

1

4

∑
t∈{i,j,k,l}

∑
σ,σ′∈{↑,↓}2

⟨ΨCt
I |ĉ†iσ ĉ†jσ′ ĉlσ′ ĉkσ|ΨCt

I ⟩,
(8.21)

where Γ = Γ(2) is the 2RDM, ΨI is the wavefunction of the I-th stationary state

(|Ψ0⟩ being the ground state, and |Ψ1⟩ the first excited state) of the true system,

and ΨCt
I is the wavefunction of the I-th stationary state of cluster Ct localized on

impurity |χt⟩.

8.3 Illustrative examples

The two-state embedding strategy presented in the previous section is applied to

three simple systems (shown in Figure 8.4), one being an ab-initio system, and

the other two model systems. All calculations at the FCI and embedding levels

were carried out using QuantNBody - an open-source Python package with inbuilt

functions for easy construction and manipulation of many-body fermionic/bosonic

operators [107]. For analysis purposes, we also plot for each system overlap co-

efficients of individual FCI states with the mean-field states |Φ0⟩ and
∣∣1Φl

h

〉
. In

addition, we also plot FCI state overlaps with the HOMO→LUMO doubly excited

state, which is given by the following Slater determinant

∣∣Φ2l
2h

〉
= â†N/2+1,↑âN/2,↑â

†
N/2+1,↓âN/2,↓ |Φ0⟩ . (8.22)

The latter choice is motivated by the observation that the double HOMO→LUMO

excitation can also be mapped into a cluster like the one in Eq. (8.14), since the

HOMO and LUMO are fully contained inside the cluster (see Eq. (8.15) and the

subsequent discussion). For this reason, the embedding cluster may also recover

some double excitation character in individual states.

8.3.1 Ab-initio system consisting of Hydrogen dimers

The first system we chose for the application of our embedding strategy consists of

an arrangement of six hydrogen atoms, which was first studied by Tran et al. in
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Figure 8.4: Schematic depiction of the three models used in our ensemble embedding

calculations.

their work on extending DMET to excited states [106]. One- and two-electron inte-

grals were calculated with the Psi4 Python package [360], using the STO-3G basis

set. Since the original atomic orbitals are not necessarily orthogonal, an additional

preprocessing was carried out with Löwdin’s orthogonalization scheme to produce

orthogonal atomic orbitals (OAOs) [210, 211, 212], which were used as a starting

point for the construction of the embedding cluster and subsequent embedding cal-

culations. For obtaining a reference mean-field description of the full system, we run

a RHF calculation with Psi4. After extracting RHF molecular orbitals, we build the

ensemble 1RDM of the reference. We work in the equiensemble case (ξ = 1/2).

We observe that the chemical potential adjustment is almost negligible, probably

because the system is homoatomic (see Figure 8.5). Just like the state-specific ap-

proach of Tran et al. (see Figure 2 in Ref. [106]), our embedding calculations show

very good agreement with FCI results for the ground and first-excited state, even in

the region of avoided crossing close to r ≈ 0.65Å. One reason why embedding was

successful can be seen by inspecting the overlap values between the FCI states and

their mean-field approximations. As seen on Figure 8.6, the dominant contributing
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states are |Φ0⟩ in the ground state, and
∣∣1Φl

h

〉
in the first excited state, which are

precisely those mean-field states that were used as the starting point for constructing

the embedding cluster (see Eq. (8.9)).
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Figure 8.5: Dissociation curves of the FCI ground and first excited singlet states

(blue and red lines, respectively), and embedding results for the ground and first

excited state (blue and red markers, respectively) for the model of Hydrogen atoms

by Tran et al. [106]. Embedding results are plotted with and without chemical

potential tuning (dot (•) and cross (×) markers, respectively).
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Figure 8.6: Absolute overlap coefficients of the FCI ground and first excited singlet

states (left and right panel, respectively) with different mean-field states (see main

text) for the model of Hydrogen atoms by Tran et al. [106].
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8.3.2 Asymmetric Hubbard ring

We now apply our ensemble embedding strategy to a model Hamiltonian that we

call the “asymmetric Hubbard ring”. The model Hamiltonian of the ring reads,

Ĥ = −
8∑

i=1

ti
∑

σ∈{↑,↓}

(ĉ†iσ ĉi+1σ + ĉ†i+1σ ĉiσ) + U
8∑

i=1

n̂i↑n̂i↓ +
∆v

2

8∑
i=1

(−1)in̂i, (8.23)

where

ti =

t1 if i is odd.

t2 if i is even.,

(8.24)

where periodic (ĉ†9 = ĉ†1) boundary conditions have been used. The ring is an

8-site and 8-electron lattice system with alternating bond length, tuned by the

ratio t2/t1, and asymmetry imposed on pairs of nearest neighbouring sites by the

potential ∆v. The ratio t2/t2 plays a very similar role to intermolecular distance r

in the previous model. The t2/t1 ≪ 1 regime represents the bond breaking scenario,

when the molecule turns into four separate dimers, and t2/t1 ≫ 1 represents a

molecule with strong overlap between dimers. The peculiar feature of this model

is the energy crossing between the ground and first excited states at t2/t1 = 1,

U = 2 and ∆v = 1, which is a conical intersection (see Figure 8.7). It is probably

an accidental conical intersection, since by changing the ratio ∆v/U we observe

that the degeneracy at t2/t1 = 1 is lifted. In this model, the ensemble 1RDM and

the embedding cluster are built from orbitals of the tight-binding (U = 0) system.

We observe that embedding results are in very good agreement with FCI values

for ground and excited states, especially in the region of the conical intersection.

Surprisingly, in this model (and in the next model), we find that there is no chemical

potential tuning necessary to optimize the global number of electrons as long as two-

electron interactions with unentangled occupied orbitals in the cluster’s environment∣∣ΦEi
〉

are properly included in the embedding Hamiltonian (interestingly, the same

observation was reported by Marécat et al. in the application of their self-consistent

embedding scheme on the 1D Hubbard model [361]). As in the previous model, we

also plot overlap coefficients of true (FCI) states with |Φ0⟩,
∣∣1Φl

h

〉
and

∣∣Φ2l
2h

〉
. Again,

we find that the ground and singly-excited configurations contribute the most to

FCI wavefunctions.
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Figure 8.7: The FCI ground, first and second excited singlet states (blue, red and

grey lines, respectively), and embedding results for the ground and first excited

state (blue and red markers, respectively) for the asymmetric Hubbard ring model

at U = 2, ∆v = 1 and different ratios of t2/t1.
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Figure 8.8: Absolute overlap coefficients of the FCI ground and first excited singlet

states (left and right panel, respectively) with different mean-field states (see main

text) for the asymmetric Hubbard ring model at U = 2, ∆v = 1 and different ratios

of t2/t1.

8.3.3 Hubbard chain

As a final model, we chose a Hubbard chain of 6 sites and 6 electrons, which is a

finite 1D Hubbard model with open boundary conditions. This choice of boundary
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conditions is a sort of tradeoff. While chosing periodic boundary conditions would

make the model translationally invariant, the drawback is the degeneracy of HOMO

and LUMO levels in the tight-binding limit. On the contrary, “cutting” the ring

into a chain removes translational invariance, but it makes the HOMO and LUMO

levels in the tight-binding limit nondegenerate, with the following energies,

εm =
1≤m≤L

−2t cos

(
πm

L + 1

)
. (8.25)

Hence this is why we chose this model for our embedding study. As in the second

model, we build the equiensemble 1RDM from the system in the tight-binding limit.

We then proceed with the embedding calculations for t = 1 and U values in the range

0 < U < 10, where U = 10 corresponds to a (very) strongly correlated regime. The

challenge in this model is that near U ′ ≈ 1.79, there is a crossing between the lowest

two excited states of different symmetry. Overall, the chain has C2 point group

symmetry, which can gauged by the reflection plane operator (see Eqs. (8) - (9) in

Ref. [362]),

σ̂ =
∏
σ=↑,↓

L∏
k=L/2

[
1− (ĉ†k,σ − ĉ†−k,−σ)(ĉk,σ − ĉ−k,−σ)

]
. (8.26)

Firstly, the ground state (11A) is totally symmetric with ⟨σ̂⟩Ψ0 = 1. Turning to

lowest excited states, to the left of crossing point (U < U ′), the first excited state

belongs to a different symmetry (11B) with ⟨σ̂⟩Ψ1(U<U ′) = −1, than to the right

side (21A), where ⟨σ̂⟩Ψ1(U>U ′) = 1. As seen in Figure 8.9, our embedding strategy

was able to successfully reproduce both ground and first excited state energy for

U < U ′. Perhaps this is unsurprising, as up to that point, the most important

configurations to the true ground and excited states are |Φ0⟩ and
∣∣1Φl

h

〉
, respectively.

On the contrary, for U > U ′, the model was unable to converge to the correct first

excited state. One of the reasons, which can be immediately observed from the

overlap coefficients in Figure 8.10 is that, in this regime, there is an abrupt switch

in the dominant configuration of the first excited state from the HOMO→LUMO

singly-excited configuration
∣∣1Φl

h

〉
to the HOMO→LUMO doubly-excited one

∣∣Φ2l
2h

〉
,

due to symmetry reasons. Moreover, in that regime, the true excited state becomes

highly multiconfigurational, with other mean-field excitations, such as HOMO−1 →
LUMO, and HOMO→LUMO+1, which are nearly degenerate to

∣∣Φ2l
2h

〉
, having non-

negligible contributions in the FCI expansion. For comparison, we also plot overlap
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coefficients with the following two states in Figure 8.10,

|1Φl
h−⟩ =

1√
2

(
â†N/2+1,↑âN/2−1,↑ + â†N/2+1,↓âN/2−1,↓

)
|Φ0⟩, (8.27)

|1Φl+

h ⟩ =
1√
2

(
â†N/2+2,↑âN/2,↑ + â†N/2+2,↓âN/2,↓

)
|Φ0⟩, (8.28)

where h− = N/2 − 1 (HOMO−1) and l+ = N/2 + 2 (LUMO+1). Spin-orbitals

that are involved in the latter excitations are currently not included in our ensemble.

Including them would most likely improve the results, with a possible tradeoff being

the requirement for more bath spin-orbitals.
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Figure 8.9: The FCI ground, first, second and third excited singlet states (blue, red,

dark grey and light grey lines, respectively), and embedding results for the ground

and first excited state (blue and red markers, respectively) for the Hubbard chain

model at t = 1 and different U values.
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Figure 8.10: Absolute overlap coefficients of the FCI ground and first excited singlet

states (left and right panel, respectively) with different mean-field states (see main

text) for the Hubbard chain model at t = 1 and different U values.
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8.4 Conclusion

In this chapter, we developed and implemented an embedding strategy for two-state

TGOK ensembles of ground and singlet excited states. Firstly, we found that, by

means of a partial tridiagonalization based on Householder transformations of the

(mean-field or noninteracting) ensemble 1RDM, we were able to produce an em-

bedding cluster with an impurity coupled to the bath subspace consisting of three

delocalized spin-orbitals (instead of one, as obtained in the ground-state theory),

which are completely decoupled from the rest of the system. This is a generalization

of the clusterization of idempotent 1RDMs in DMET. Secondly, we exploited that

result to construct an embedding Hamiltonian for simultaneously describing locally

the ground and excited states of correlated systems. The strategy was applied to

three simple toy systems which have shown promising results, and also new chal-

lenges when it comes to targeting excited states. We observe that in the cases where

ground and first excited state levels are well-separated from higher excited states,

and overlap well with mean-field states used in the construction of the embedding

cluster, embedding results are in good agreement with the FCI results. On the con-

trary, as was observed in the case of the Hubbard chain, when there is a change in

ordering of the excited states (for symmetry reasons or upon geometry variations,

for example), the ensemble embedding based on a mean-field starting point with the

single HOMO→LUMO excitation does not describe the correct excited state of the

interacting system. One possible solution to such problems would be to consider

ensembles with excitations beyond HOMO and LUMO levels, for which we would

need to further enlarge the embedding cluster. Another possible improvement, more

in the spirit in LPFET [204, 111] (see Section 1.3.2), would be to make the embed-

ding self-consistent with a local, or even nonlocal potential added to the mean-field

Hamiltonian so as to enforce matching of the densities or 1RDMs of interacting

and mean-field (or noninteracting) ensembles. Concretely, instead of the electron

number constraint of the cost function in Eq. (8.20), we may consider the following

two-state ensemble constraint,

(1− ξ)⟨ΨCi
0 (µi)|n̂i|ΨCi

0 (µi)⟩+ ξ⟨ΨCi
1 (µi)|n̂i|ΨCi

1 (µi)⟩

= (1− ξ)⟨Φ0(µi)|n̂i|Φ0(µi)⟩+ ξ⟨1Φl
h(µi)|n̂i|1Φl

h(µi)⟩,
(8.29)
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to be fulfilled for each embedding cluster, separately. This would turn the present

single-shot ensemble embedding into a self-consistent strategy for developing DFAs

for TGOK-DFT that depend implicitly on the density (or the occupation of localized

spin-orbitals in the context of DMET), which is the main idea in LPFET that was

originally developed for ground-state DFT of Hubbard lattices [204]. In addition, it

would be of great benefit to find a way to model density-driven correlations within

such an approach, as the individual densities (or occupations) will have no reason be

the same for the interacting and mean-field systems (see Section 6.2). This will also

be the case for the occupations, evaluated from the correlated embedding clusters,

which will (in general) not individually match the mean-field ones in Eq. (8.29).

Work is in progress in these directions.





Thesis conclusions

In this manuscript, we discussed extensively about electronic excitations, and pre-

sented different standard methods that are used for describing neutral and charged

excitations. The central work of this thesis was further development of the ensem-

ble density-functional formalism, which is an alternative to other well-established

formalisms in quantum chemistry and condensed-matter physics. We discussed

about various formal and practical aspects that are particular to ensemble density-

functional theory, and made new theoretical developments. We have also made the

first step toward a practical approach of embedding excited states by combining

TGOK ensemble density functional theory and quantum embedding. In the follow-

ing, we briefly overview the main findings and original contributions, presented in

this thesis.

In Chapter 6, we reviewed recent progress in the design of weight-dependent xc

DFAs, focusing separately on the issues inherent to ensemble exchange and corre-

lation functionals. While the discussion was exclusively about TGOK ensembles,

the conclusions can be easily applied to N -centered or other types of ensembles. In

Section 6.1, we briefly overviewed two possible formulations for extending the exact

exchange energy from KS-DFT to ensembles, namely the ensemble density matrix

Hartree-Fock (eDMHF) approach, and the state-averaged Hartree-Fock (SAHF) ap-

proach. While the eDMHF suffers from ghost interactions, the SAHF approach,

although being free from the latter, is not amenable to standard SCF routines. In

Section 6.2 of that chapter, we discussed state-of-the-art strategies for the design of

DFAs for ensemble correlation energies, including the combination of finite and infi-

nite uniform electron gas models as well as the recycling of standard (ground-state)

correlation DFAs through state-averaging. In the latter case, further improvements

may emerge from the concept of density-driven correlation, which is a feature that

191
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is peculiar to ensemble correlation energy functional. How to define mathematically

the corresponding correlation energy is an open question to which we provided a

tentative answer [see Eqs. (6.43) and (6.45)]. We have shown, with test calculations

on the Hubbard dimer, that it is difficult to have a definition that is both rigor-

ous and useful for the development of approximations. For example, the state- and

density-driven correlations can become large and of opposite signs, and mostly com-

pensating when the Hubbard dimer has a pronounced asymmetry, which is clearly

an obstacle for the development of correlation DFAs for ensembles. We suggested

that the standard Gs-ic and GS-ec approximations may be a better starting point

in this respect. We concluded the chapter by pointing out possible directions for the

development of ensemble DFT.

In Chapter 7, we presented the extended N -centered ensemble formalism, which

combines the TGOK-DFT and the N -centered eDFT into an even more general

ensemble density-functional theory that describes both neutral and charged exci-

tations. This extended ensemble formalism now allows for extraction of ionization

potentials not only for the N -electron ground state (which is already accessible in

N -centered eDFT), but also for any (neutral or ionic) ground or excited state of our

choice. A key result of this chapter is the exactification of KS orbital energies in the

perspective of N -centered eDFT, which is achieved by imposing specific constraints

on the Hxc potential in order to fulfill the Koopmans’ theorem for a given ground

or excited N -electron state. We have then shown that for a given neutral excitation

of interest, the aforementioned constraints induce the discontinuity of the xc poten-

tial, which is related to the ensemble weight derivative of the xc functional. This

result was originally derived by Levy [104] based on arguments about asymptotic

behaviour of ensemble density. The key difference is that our derivation within the

context of extended N -centered eDFT does not rely on asymptotic behaviour of

electron density, and as such is not only applicable to finite ab initio systems, but

also to extended systems and lattice models. This was one of the key results of this

chapter, which was applied on the Hubbard dimer in different asymmetry regimes.

In Chapter 8, we presented a single-impurity embedding strategy for two-state

TGOK ensembles of ground and singlet excited states. We have shown that, by

means of a partial tridiagonalization based on Householder transformations of the
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(mean-field or noninteracting) ensemble 1RDM, we can obtain a representation with

a strictly decoupled block-diagonal structure consisting of the embedding cluster and

its environment, similarly to the regular DMET. The main difference from the latter,

where the (single-impurity) embedding cluster contained a single bath spin-orbital,

is that in the present case, the embedding cluster has an enlarged bath subspace of

three delocalized spin-orbitals, i.e. a single core spin-orbital that overlaps with the

impurity, and the two “active” spin-orbitals which are involved in the HOMO-LUMO

excitation and are fractionally occupied in the ensemble. Based on this result on the

mean-field ensembles, we constructed an embedding Hamiltonian for simultaneously

describing locally the ground and excited states of correlated systems. We applied

our single-shot embedding strategy to three simple toy systems. We observed that

when the ground and first excited state levels of the true (interacting) system are

well-separated from higher excited states, and overlap well with mean-field states

used in the construction of the embedding cluster, the embedding results of our

strategy are in good agreement with the FCI results, even in strongly correlated

regimes. On the other hand, when there are crossings among excited-state energy

levels, the present strategy may not recover the correct excited state. We closed that

chapter with some suggestions for improvement of the method, such as enlarging

the ensemble by including excitations beyond the HOMO-LUMO levels, and making

the embedding strategy self-consistent by imposing the TGOK ensemble density

constraint on localized spin-orbitals. The latter would open a connection of the

embedding strategy with TGOK-DFT, which would enable development of implicit

density-functional approximations for ensembles in an approach similar to that of

LPFET for ground states of Hubbard lattices. Work is in progress in these directions.

As a closing remark, while ensemble DFT shows great potential in describing

diverse types of excitations, and has the ability to overcome certain limitations of

other more standard approaches, such as linear response methods, there are still

many exciting challenges that lie ahead before the ensemble formalism will beget

practical methods that are widely used in quantum chemistry and condensed-matter

physics.
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A Second quantization

Electrons are by nature fermions, and as such they obey Pauli’s principle if more

than one are present in the system. Considering the single-particle Hilbert space

H1 with basis vectors {ϕi(x)}, the basis of two-electron Hilbert space {Φij(x1,x2)}
should belong to the antisymmetrized tensor product (also known as wedge product)

of H1 with itself,

|Φij⟩ = |ϕi⟩ ∧ |ϕj⟩ =
1√
2

(|ϕi⟩ ⊗ |ϕj⟩ − |ϕj⟩ ⊗ |ϕi⟩) ∈ H1 ΛH1. (A.1)

In this space, basis vectors where two electrons have the same state are properly

set to zero, |ϕi⟩ ∧ |ϕi⟩ = 0. This can be extended to N -electron systems, where the

basis vectors are elements of N -order antisymmetrized tensor product over H1,

|Φi1i2...iN ⟩ = |ϕi1⟩ ∧ |ϕi2⟩ ∧ · · · ∧ |ϕiN ⟩ ∈ ΛNH1. (A.2)

Projecting into position-spin basis ⟨x1,x2, . . . ,xN | gives the familiar Slater determi-

nants,

Φi1i2...iN (x1,x2, . . . ,xN) = ⟨x1,x2, . . . ,xN |Φi1i2...iN ⟩

=
1√
N !

det [{ϕiα(xβ)}1≤α,β≤N ] .
(A.3)

As we can see, the antisymmetrization procedure quickly becomes very tedious to

handle, especially when we are describing systems with large numbers of electrons,

or processes with changing numbers of electrons. These problems become easier to

handle, if we ask the question: “In a given state, which orbital is occupied, and

which is empty?”. For this purpose, the idea of second quantization is introduced.

Starting from a vacuum state |vac⟩, which is a state with no electrons, addition

of a new electron is represented by a quantum operator that “creates” an electron

occupying an orbital ϕi,

|ϕi⟩ = ĉ†i |vac⟩ . (A.4)

Adding another electron into another orbital ϕj simply means taking product of two

creation operators, the end result being an antisymmetrized state,

ĉ†i ĉ
†
j |vac⟩ =

1√
2

(|ϕi⟩ ⊗ |ϕj⟩ − |ϕj⟩ ⊗ |ϕi⟩) . (A.5)
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Continuing this procedure, an N -electron Slater determinant is produced by a string

of creation operators,

|Φi1i2...iN ⟩ = ĉ†i1 ĉ
†
i2
. . . ĉ†iN |vac⟩ . (A.6)

In this formalism, removing electrons is done by annihilation operators. Importantly,

you cannot destroy an electron if there are none. That means, ĉi |vac⟩ = 0. These

operators fulfill the anticommutation relations,{
ĉ†i , ĉ

†
j

}
= 0,{

ĉi, ĉj

}
= 0,{

ĉ†i , ĉj

}
= δij.

(A.7)

A similar role is fulfilled by the so-called field operators, which act in real space.

Creating (or destroying) an electron with a specified position and spin |x⟩ = |r, σ⟩
is done by the field operator Ψ̂†(x) (respectively Ψ̂(x)),

|x⟩ = Ψ̂†(x) |vac⟩ . (A.8)

The field operators also obey a set of anticommutation relations,{
Ψ̂†(x), Ψ̂†(x′)

}
= 0,{

Ψ̂(x), Ψ̂(x′)

}
= 0,{

Ψ̂†(x), Ψ̂(x′)

}
= δ(x− x′).

(A.9)

Conversions between creation/annihilation operators and field operators are easily

obtained using completeness relation in orbital and position-spin representation,

|ϕi⟩ =

∫
dx |x⟩ ⟨x|ϕi⟩ =

∫
dx |x⟩ϕi(x) =

∫
dxϕi(x) |vac⟩

⇐⇒ ĉ†i =

∫
dxϕi(x)Ψ̂†(x) ,

(A.10)

|x⟩ =
∑
i

|ϕi⟩ ⟨ϕi|x⟩ =
∑
i

|ϕi⟩ϕ∗
i (x) =

∑
i

ϕ∗
i (x)ĉ†i |vac⟩

⇐⇒ Ψ̂†(x) =
∑
i

ϕ∗
i (x)ĉ†i .

(A.11)
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B Proofs of Hohenberg-Kohn theorems I and II

B.1 Proof of HK1

Proof of HK1, part 1: Suppose that Ψ0 is simultaneously a ground state for two

potentials that differ by more than a constant, v′ext(r) − vext(r) ̸= const. If that is

true, Ψ0 is a solution of two different Schrödinger equations,

Ĥ[vext] |Ψ0[vext]⟩ = E0[vext] |Ψ0[vext]⟩ ,

Ĥ[v′ext] |Ψ0[v
′
ext]⟩ = E0[v

′
ext] |Ψ0[v

′
ext]⟩ .

(B.1)

Subtracting the two equations, with our assumption Ψ0[v
′
ext] = Ψ0[vext] leads to,(

Ĥ[vext]− Ĥ[v′ext]
)
|Ψ0[vext]⟩ = (E0[vext]− E0[v

′
ext]) |Ψ0[vext]⟩ . (B.2)

Projecting into the position-spin basis, and subtracting T̂ and Ŵee operators gives,(
N∑
i=1

(vext(ri)− v′ext(ri) )− (E0[vext]− E0[v
′
ext])

)
Ψ0[vext](x1,x2, . . . ,xN) = 0.(B.3)

For a physical system, Ψ0 ̸= 03. Therefore, the quantity inside parentheses has to

vanish,

N∑
i=1

(
vext(ri)− v′ext(ri)−

E0[vext]− E0[v
′
ext]

N

)
= 0, (B.4)

which implies,

vext(r)− v′ext(r) =
E0[vext]− E0[v

′
ext]

N
= const. (B.5)

Since this result contradicts our initial assumption, it must follow that

v′ext(r) ̸= vext(r) + const. implies Ψ0[v
′
ext] ̸= Ψ0[vext].

Proof of HKI, part 2: Assume that the two different ground states, Ψ0[vext] and

Ψ0[v
′
ext] integrate to the same density, nΨ0[vext] = nΨ0[v′ext]

. Then, according to the

variational principle,

E0[vext] = ⟨Ψ0[vext]|Ĥ|Ψ0[vext]⟩ < ⟨Ψ0[v
′
ext]|Ĥ|Ψ0[v

′
ext]⟩. (B.6)

3Except possibly on a set of measure zero. This includes all coordinates with coinciding electrons

xi = xj , which is still vanishingly small compared to all possible position-spin coordinates. This

assertion becomes problematic in a finite basis, or in lattice systems, where we can find two

potentials that differ by more than a constant, but still giving the same ground state, thereby

violating the HKI theorem [363].
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The right-hand side can be developed further as,

⟨Ψ0[v
′
ext]|Ĥ|Ψ0[v

′
ext]⟩ = ⟨Ψ0[v

′
ext]|Ĥ ′|Ψ0[v

′
ext]⟩+ ⟨Ψ0[v

′
ext]|V̂ext − V̂ ′

ext|Ψ0[v
′
ext]⟩

= E0[v
′
ext] +

∫
dr nΨ0[vext](r) (vext(r)− v′ext(r)) .

(B.7)

Combining Eqs. (B.6) and (B.7) gives

E0[vext] < E0[v
′
ext] +

∫
dr nΨ0[vext](r) (vext(r)− v′ext(r)) . (B.8)

Given our assumptions, the above inequality should be valid if we interchange primed

(’) and unprimed quantities. Adding the two versions together leads to the contra-

diction,

E0[vext] + E0[v
′
ext] < E0[v

′
ext] + E0[vext]. (B.9)

Hence, we are left with the conclusion that if v′ext(r) ̸= vext(r) + const., the ground-

state densities of the two Hamiltonians are different, nΨ0[vext] ̸= nΨ0[v′ext]
.

B.2 Proof of HKII

According to HKI part 2, for any ground-state density n(r), the ground state Ψ[n] is

uniquely defined. Then, for any external potential vext(r), the HK energy functional

(Eq. (1.91)) satisfies the variational principle,

EHK[vext, n] = FHK[n] +

∫
dr vext(r)n(r)

= ⟨Ψ[n]|T̂ + Ŵee|Ψ[n]⟩+

∫
dr vext(r)n(r)

= ⟨Ψ[n]|Ĥ[vext]|Ψ[n]⟩

≥ ⟨Ψ0[vext]|Ĥ[vext]|Ψ0[vext]⟩ = E0[vext].

(B.10)

When n = nΨ0[vext], Ψ[n] = Ψ0[vext], and

EHK[vext, nΨ0[vext]] = E0[vext]. (B.11)
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C Functions, Functionals and calculus of varia-

tions

This appendix is to some extent influenced by Appendix A in the book Density

Functional Theory: An Advanced Course by E. Engel and R. Dreizler [159].

C.1 From functions to functionals

To build the intuition on functionals, it is best to look at functions first. A mul-

tivariable function f(r) = f(x1, x2, . . . , xN) is a mapping f : Df ∈ RN → R that

takes as argument a discrete set of variables {xi}1≤i≤n and outputs a number. The

behaviour of a function around some point r0 in the direction of v can be assessed

by the Taylor expansion,

f(r0 + εv) = f(r0) + ε
df(r0 + εv)

dε

∣∣∣∣
ε=0

+
1

2
ε2

d2f(r0 + εv)

dε2

∣∣∣∣
ε=0

+O(ε3), (C.1)

where

df(r0 + εv)

dε

∣∣∣∣
ε=0

=
N∑
i=1

vi
∂f(r)

∂xi

∣∣∣∣
r=r0

= vT∇f(r0) (C.2)

and

d2f(r0 + εv)

dε2

∣∣∣∣
ε=0

=
N∑
i=1

N∑
j=1

vivj
∂2f(r)

∂xi∂xj

∣∣∣∣
r=r0

= vTHf (r0)v (C.3)

∇f(r) and Hf (r) are the gradient and Hessian of f .

C.1.1 Practical example: Energy optimization in Hartree-Fock theory

In the section on HF theory, we have seen that the HF energy can be obtained

variationally by orbital rotation. In practice, this may be done by the Newton

method (see, for example, Ref. [28]). Starting with a trial set of orbital rotation

parameters, κ = {κij}i>j, the energy is expanded up to second order as,

EHF(κ) = EHF(κ = 0) + κT E[1] +
1

2
κTE[2]κ, (C.4)

where E[1] = ∇EHF(κ = 0) and E[2] = HEHF(κ = 0). Approximate stationary

points κ+ may be obtained by finding the roots of first derivative of Eq. (C.4) with

respect to κ, which amounts to solving a system of linear equations,

E[2]κ+ = −E[1]. (C.5)
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One can then solve the above system repeatedly to obtain new steps κ+ until con-

vergence when E[1] = 0.

C.2 Functional and functional derivative

Similarly to multivariable functions which map vectors to numbers, functionals map

functions to numbers. Consider now a function f : [a, b] ∈ R → R. We define a

functional F [f ], which takes as input the values of f on its whole domain, and

outputs a number. We can also do calculus with functionals. By taking a small

variation η around f , subject to certain boundary conditions4, the functional F at

f + εη can be Taylor-expanded about ε = 0 as,

F [f + εη] = F [f ] + ε
dF [f + εη]

dε

∣∣∣∣
ε=0

+
1

2
ε2

d2F [f + εη]

dε2

∣∣∣∣
ε=0

+O(ε3). (C.6)

The second term is then defined as functional derivative of F ,

dF [f + εη]

dε

∣∣∣∣
ε=0

= lim
ε→0

F [f + εη]− F [f ]

ε
=

∫ b

a

dx η(x)
δF [f ]

δf(x)
. (C.7)

Leaving out precise mathematical details regarding this definition5, the sought after

quantity is the linear operator δF/δf , which is what is usually called “functional

derivative” in physical applications. Similarly, the second-order functional derivative

is defined as,

d2F [f + εη]

dε2

∣∣∣∣
ε=0

=

∫ b

a

dx

∫ b

a

dx′ η(x)η(x′)
δ2F [f ]

δf(x)δf(x′)
. (C.8)

Eqs. (C.7) and (C.8) can be seen as continuous analogues of Eqs. (C.2) and (C.3),

respectively, with δF/δf looking like continuous version of gradient, and δ2F/δfδf

the “continuous Hessian”.

C.2.1 Some identities of functional differentiation

1. Chain rule: If F is a functional of G, which in turn is a functional of f , then

the functional derivative of F with respect to f is obtained by,

δF [G[f ]]

δf(x)
=

∫
dx

′ δF [G]

δG(x′)

∣∣∣∣
G=G[f ]

δG[f ]

δf(x)
. (C.9)

4Usually, boundary conditions for the “direction” η, such as fixed endpoints η(a) = η(b) are

required, so that a stationarity condition for F [f ] can be found. This is in contrast to differentiating

a regular function f(r), where any direction v may be taken.
5The definition in Eq. (C.7) as also known as Gateaux derivative in calculus of variations.
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2. Regular function: If F is just a function of x, i.e. F = f(x), the functional

derivative becomes Dirac delta function

f(x) =

∫
dxδ(x′ − x)f(x′), (C.10)

δF

δf(x′)
=

δf(x)

δf(x′)
= δ(x′ − x). (C.11)

C.2.2 Example: Hartree functional

Consider the Hartee functional (Eq. (1.105)) from DFT. Plugging in a density with

small variation n + εη gives

EH[n + εη] =
1

2

∫
dr

∫
dr′

[n(r) + εη(r)][n(r′) + εη(r′)]

|r− r′|

= EH[n]

+ ε

∫
dr η(r)

(∫
dr′

n(r′)

|r− r′|

)

+
1

2
ε2
∫

dr

∫
dr′ η(r)η(r′)

1

|r− r′| .

(C.12)

From the different terms in ε, we can easily identify the first and second-order deriva-

tive of EH[n], which in DFT are known as Hartree potential and kernel, respectively,

vH[n](r) ≡ δEH[n]

δn(r)
=

∫
dr′

n(r′)

|r− r′| , (C.13)

fH[n](r, r′) ≡ δEH[n]

δn(r)δn(r′)
=

1

|r− r′| . (C.14)
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D Fourier transform

In Chapter 3, we use on several occasions the following Fourier transforms to switch

between the time and frequency domains,

f(ω) =

∫ ∞

−∞
dτf(τ)eiωτ f(τ) =

1

2π

∫ ∞

−∞
dτf(ω)e−iωτ . (D.1)

For example, in TF-DFT (Section 3.1), in order to transition from the linear re-

sponse function in the time domain, χ(r, r′, τ), to the same function in the frequency

domain, χ(r, r′, ω), we need to evaluate integrals like,

−i
∫ ∞

−∞
dτθ(τ)ei(ω−ωI)τ . (D.2)

Unfortunately, the above integral does not converge if we try to evaluate it directly.

A popular trick in physics is to replace θ(τ) with an η-dependent sequence of func-

tions θη(τ) that limit to θ(τ) as η → 0+,

θη(τ) =

e−ητ τ ≥ 0

0 τ < 0

, (D.3)

which does the job of converging the integral in Eq. (D.2),

lim
η→0+

−i
∫ ∞

−∞
dτθη(τ)ei(ω−ωI)τ

= −i lim
η→0+

∫ ∞

0

dτei(ω−ωI+iη)τ

= −i −1

i(ω − ωI + i0+)
=

1

ω − ωI + i0+
.

(D.4)
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E Asymptotic behavior of the xc potential

This appendix is equivalent to Appendix A in the book chapter “Ensemble density

functional theory of neutral and charged excitations” [92].

Let us consider the simpler one-dimensional (1D) case in which the KS-PPLB

equations read as

−1

2

d2φα
i (x)

dx2
+ (vext(x) + vαHxc(x))φα

i (x) = εαi φ
α
i (x), (E.1)

thus leading to

d2φα
i (x)

dx2
=

|x|→+∞
−2 (εαi − vαxc(∞))φα

i (x), (E.2)

where we used the limits vext(∞) = vαH(∞) = 0. Note that |φα
i (x)| is expected to

decay as |x| → +∞, which implies −2 (εαi − vαxc(∞)) > 0. Therefore,

φα
i (x) ∼

|x|→+∞
e−
√

−2(εαi −vαxc(∞))|x|, (E.3)

and

nγ̂α
KS

(x) ∼
|x|→+∞

α|φα
N(x)|2 ∼ α e−2

√
−2(εαN−vαxc(∞))|x|. (E.4)

In the true interacting system, the N -electron ground-state wave function ΨN
0 fulfills[

N∑
i=1

(
−1

2

∂2

∂x2
i

+ vext(xi)

)
+

N∑
1≤i<j

wee(|xi − xj|)
]

ΨN
0 (x1, . . . , xN)

= EN
0 ΨN

0 (x1, . . . , xN),

(E.5)

where wee(|xi − xj|) is a well-behaved two-electron repulsion energy in 1D. Let us

consider the situation where |x1| → +∞ while x2, . . . , xN remain in the region of

the system, which corresponds to an ionization process in the ground state. Since

wee(|x1 − xj|) → 0, the (to-be-antisymmetrized) wave function and its density can

be rewritten as

ΨN
0 (x1, . . . , xN) ∼

|x1|→+∞
φ[N ](x1) ΨN−1

0 (x2, . . . , xN) (E.6)

and

nΨN
0

(x1) ∼
|x1|→+∞

∣∣φ[N ](x1)
∣∣2, (E.7)
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respectively, where

d2φ[N ](x1)

dx2
1

∼
|x1|→+∞

−2
(
EN

0 − EN−1
0

)
φ[N ](x1) = 2IN0 φ[N ](x1), (E.8)

thus leading to the explicit expression

φ[N ](x) ∼
|x|→+∞

e−
√

2IN0 |x|. (E.9)

From the exact mapping of the ensemble PPLB density onto the KS system, we

deduce from Eqs. (E.7) and (E.9) that

nγ̂α
KS

(x) ∼
|x|→+∞

(1− α)e−2
√

2IN−1
0 |x| + α e−2

√
2IN0 |x| ∼ α e−2

√
2IN0 |x|, (E.10)

where we assumed that EN−1
g = IN−1

0 − IN0 > 0. Thus, we conlude from Eq. (E.4)

that

IN0 = −(εαN − vαxc(∞)). (E.11)

Any constant shift in the xc potential vαxc(r) does not affect the above expression.

Since, according to Janak’s theorem, IN0 = −εαN , the constant is imposed in PPLB

and

vαxc(∞) = 0. (E.12)

We now turn to the left and right formulations of N -centered eDFT. We recall

the shorthand notations (ξ−, 0)
notation≡ ξ− and (0, ξ+)

notation≡ ξ+. When ξ+ > 0,

the right N -centered ensemble density, which is mapped onto a non-interacting KS

ensemble, has the following asymptotic behavior [we just need to substitute N + 1

for N in Eqs. (E.4), (E.7), and (E.9)],

nξ+(x) ∼
|x|→+∞

ξ+ e−2
√

2IN+1
0 |x| (E.13)

∼ ξ+ e−2

√
−2(ε

ξ+
N+1−v

ξ+
xc (∞))|x|. (E.14)

Similarly, for ξ− ≥ 0, we have

nξ−(x) ∼
|x|→+∞

(
1− (N − 1)ξ−

N

)
e−2
√

2IN0 |x| (E.15)

∼
(

1− (N − 1)ξ−
N

)
e−2

√
−2(ε

ξ−
N −v

ξ−
xc (∞))|x|. (E.16)
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Thus, we conclude that

AN
0 = IN+1

0

ξ+>0
= −εξ+N+1 + vξ+xc (∞) (E.17)

and

IN0
ξ−≥0
= −εξ−N + vξ−xc (∞). (E.18)
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F Exact DD ensemble correlation energy in the

Hubbard dimer

This appendix is equivalent to Appendix D in the book chapter “Ensemble density

functional theory of neutral and charged excitations” [92].

For convenience, we will use the following exact expression for the ensemble DD

correlation energy:

Ew,DD
c (nw) = −(1− w)2w

∂f w
0 (nw)

∂w
+ w2(1− w)

∂f w
1 (nw)

∂w
. (F.1)

The individual Hx-only GOK energies are extracted from the ensemble one,

f ξ(n) = −2t
√

(1− ξ)2 − (1− n)2 +
U

2

[
1 + ξ − (3ξ − 1)(1− n)2

(1− ξ)2

]
, (F.2)

as follows,

f w
0 (nw) = f w (nw)− w

∂f ξ
(
nξ,w
)

∂ξ

∣∣∣∣∣
ξ=w

, (F.3)

and

f w
1 (nw) = f w (nw) + (1− w)

∂f ξ
(
nξ,w
)

∂ξ

∣∣∣∣∣
ξ=w

, (F.4)

where

nξ,w = (1− ξ)nΦw
0

+ ξnΦw
1
. (F.5)

Since nΦw
1

= 1 and

(1− w)nΦw
0

+ wnΦw
1

= nw, (F.6)

or, equivalently,

nΦw
0

=
nw − w

(1− w)
, (F.7)

it comes

nξ,w = (1− ξ)
(nw − w)

1− w
+ ξ (F.8)

and

∂nξ,w

∂ξ

∣∣∣∣
ξ=w

= 1− (nw − w)

1− w
=

1− nw

1− w
. (F.9)
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From the weight derivative expression

∂f ξ
(
nξ,w
)

∂ξ

∣∣∣∣∣
ξ=w

=
∂f ξ(nw)

∂ξ

∣∣∣∣
ξ=w

+
∂nξ,w

∂ξ

∣∣∣∣
ξ=w

× ∂f w(n)

∂n

∣∣∣∣
n=nw

, (F.10)

where

∂f ξ(n)

∂ξ
=

2t(1− ξ)√
(1− ξ)2 − (1− n)2

+
U

2

[
1− (n− 1)2(1 + 3ξ)

(1− ξ)3

]
(F.11)

and

∂f w(n)

∂n
=

2t(n− 1)√
(1− w)2 − (1− n)2

+ U
(3w− 1)(1− n)

(1− w)2
, (F.12)

thus leading to

∂f ξ
(
nξ,w
)

∂ξ

∣∣∣∣∣
ξ=w

=
2t(1− w)√

(1− w)2 − (1− nw)2

− 2t(1− nw)2

(1− w)
√

(1− w)2 − (1− nw)2

+
U

2

[
1− (nw − 1)2(1 + 3w)

(1− w)3

]
+ U

(3w− 1)(1− nw)2

(1− w)3
,

(F.13)

or, equivalently,

∂f ξ
(
nξ,w
)

∂ξ

∣∣∣∣∣
ξ=w

=
2t
√

(1− w)2 − (1− nw)2

(1− w)
+

U

2

[
1− 3(1− nw)2

(1− w)2

]
, (F.14)

it comes

f w
0 (nw) = −2t

√
(1− w)2 − (1− nw)2

(1− w)
+

U

2

[
1 +

(1− nw)2

(1− w)2

]
(F.15)

and

f w
1 (nw) = U

[
1− (1− nw)2

(1− w)2

]
. (F.16)

As a result,

∂f w
0 (nw)

∂w
=

2t(nw − 1)(nΨ1 − 1)

(1− w)2
√

(1− w)2 − (1− nw)2
+ U

(nw − 1)(nΨ1 − 1)

(1− w)3
(F.17)

and

∂f w
1 (nw)

∂w
= −2U(nw − 1)(nΨ1 − 1)

(1− w)3
, (F.18)

which leads, according to Eq. (F.1), to the final compact expression

Ew,DD
c (nw) = −w(nw − 1)(nΨ1 − 1)

×
[

2t√
(1− w)2 − (1− nw)2

+
U(1 + w)

(1− w)2

]
.

(F.19)
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Filip Cernatic

Ensemble density functional approach to electronic excitations:

Exact theory and approximations using quantum embedding.

Résumé
Cette thèse se concentre sur les nouveaux développements dans la théorie de la fonc-

tionnelle de la densité d’ensemble (eDFT), qui est une méthode indépendante du

temps pour décrire des ensembles d’états électroniques fondamentaux et excités. Les

aspects formels et pratiques de la méthode sont discutés en détail. Différentes ap-

proches sont introduites pour le développement d’approximations de la fonctionelle de

la densité (DFA), appuyés par des calculs test sur le dimère asymétrique de Hubbard.

Un nouveau formalisme dit “N-centré étendu” est introduit pour combiner excita-

tions neutres et chargées en un seul ensemble. Cette approche permet notamment

d’appréhender d’une nouvelle façon le concept de dérivée discontinue pour les exci-

tations neutres. Enfin, une stratégie d’embedding quantique d’ensemble est proposée

pour décrire plusieurs états électroniques. Cette derniere est basée sur le formalisme

de la matrice à densité réduite à un électron (1RDM).

Mots-clés: Excitations électroniques, théorie de la fonctionnelle de la densité, formal-

isme d’ensemble, approximations de la fonctionnelle de la densité, dérivée discontinue,

embedding quantique

Abstract
The thesis focuses on new developments in ensemble density-functional theory

(eDFT), which is a time-independent method for describing ensembles of ground and

excited electronic states. Formal and practical aspects of the method are discussed in

detail. Different approaches for developing density-functional approximations (DFAs)

are suggested, with test calculations presented for the asymmetric Hubbard dimer.

A new formalism of “extended N-centered” ensembles is proposed, which combines

neutral and charged excitations into a single ensemble. This approach elucidates in

a new way the concept of derivative discontinuity for neutral excitations. Lastly, a

quantum embedding strategy for describing multiple electronic states is proposed,

based on the one-electron reduced density matrix (1RDM) formalism.

Keywords: Electronic excitations, density-functional theory, ensemble formalism,

density-functional approximations, derivative discontinuity, quantum embedding
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