Titre : Rhéologie d'un film granulaire Mots clés : Milieux granulaires, suspensions, rhéologie Résumé : Les mousses stabilisées par des particules ont démontré être des matériaux aux propriétés mécaniques prometteuses pour l'ingénierie civile. Cependant, la rhéologie d'un unique film de savon chargé en particule (ou film granulaire) en cisaillement simple n'a pour le moment pas été décrit formellement. Ces films sont étudiés expérimentalement et considérés comme des suspensions 2D macroscopiques modèles : une solution aqueuse de tetradecyl trimethyl ammonium bromide (TTAB) est utilisée pour former un film de savon dans lequel des billes de polystyrène sont piégées, formant une monocouche de particules confinées dans un plan. L'effet de paramètres interfaciaux de la phase fluide sur la rhéologie des films granulaires est étudié. Par la suite, un dispositif expérimental nouveau prenant avantage de la nature bidimen-sionnelle de cet objet est développé pour enregistrer l'écoulement à l'échelle locale, ce qui révèle la nature hétérogène du taux de cisaillement. Il est possible de rendre compte de ce résultat à travers l'application d'une théorie cinétique étendue pour une majeure partie de l'écoulement, tandis que ce modèle hydrodynamique révèle aussi l'existence d'un régime quasi-statique qui lui échappe. L'examen d'un point de vue statistique des événements de réarrangements entre les particules met en évidence l'accumulation lente, dans le régime quasi-statique, d'énergie élastique par les particules qui est soudainement et visqueusement dissipée. La comparaison est faite entre ces résultats et ceux qui sont enregistrés en étudiant des radeaux granulaires, révélant leur universalité.
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Abstract:

Particle-stabilized foams have proven to be materials with promising mechanical properties for civil engineering. However, the rheology of a single particle-laden film (or granular film) in a simple-shear configuration has yet to be formally described. It is studied experimentally as a macroscopic 2D model suspension: a tetradecyl trimethyl ammonium bromide (TTAB) solution in a water-glycerol mixture is made to form the liquid soap film in which polystyrene beads are trapped, forming a monolayer of particles confined in a plane. The effect of interfacial parameters of the fluid phase on the rheology of the particle-laden soap film is investigated. Thereafter, an orig-inal setup taking advantage of the 2D-nature of the object is developed to locally record the flow, which reveals the inhomogeneity of the shear-rate. This finding can be accounted for through an extended kinetic theory for the most part, while also revealing the existence of a quasi-static regime that escapes this hydrodynamic model. By statistically examining the re-arrangements events between particles, it is evidenced that in the quasistatic regime, particles store elastic energy for extended period of time that is abruptly and viscously dissipated. Comparison of these findings with what can be recorded on granular rafts reveals their universality.
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Résumé en français

Ce manuscrit de thèse traite de la rhéologie de sphères rigides assemblées en une monocouche horizontale par un film liquid. Les sphères sont suffisamment grandes pour dépasser en haut et en bas du film liquide et percer les deux interfaces liquide-air qui le composent. Ce travail trouve sa motivation d'une part dans les nombreux efforts déployés dans l'ingénierie civile pour la création de mousses de béton comme matériau de construction stable, léger, économique, adaptable et isolant [START_REF] Feneuil | Optimal cement paste yield stress for the production of stable cement foams[END_REF]. Ces objets sont constitués d'un assemblage de films liquides chargés en particules solides, et ce travail a pour but d'en donner une compréhension fondamentale en le réduisant à un objet modèle. La deuxième motivation de ces recherches se trouve dans le travail de thèse de Yousra Timounay [START_REF] Timounay | Rhéologie d'interface liquide/air chargées de grains : vers la consolidation d'un milieu aéré[END_REF] qui, de la même façon, a étudié la résistance mécanique de bulles de savon entièrement couvertes de sphères solides, ou "gas marbles". Elle a montré que la présence de deux interfaces liquide-air tenant les particules entre elles faisait des "gas marbles" des objets considérablement plus robustes que leur équivalent à une seule interface : les gouttes recouvertes de particules ou "gouttes armorées". Pour aller plus loin, elle a étudié la rétraction d'un film horizontal chargé en grain, et est apparue la complexité de cet objet à deux dimensions, partageant des caractéristiques tant avec les milieux granulaires secs qu'avec les suspensions. Il apparaît donc nécessaire d'approfondir les connaissances disponibles sur ces films granulaires dans un dispositif expérimental de rhéologie bien défini, et ainsi déterminer le rôle exact, dans la rhéologie des films granulaires, de la phase fluide qui lie les grains de façon continue, mais aussi des propriétés interfaciales d'un film liquide comme la tension de surface, ou encore des propriétés mécaniques des grains.

Le premier chapitre relate ce qui est déjà connu à ce sujet : il définit un film liquide et le rôle d'un surfactant dans sa création, la tension de surface, l'adsorption de particules aux interfaces, la force attractive qui agit entre deux particules à une interface. S'ensuit une revue des effets connus des particules sur les propriétés mécaniques des interfaces, notamment une rigidité et une stabilité accrues, les particules freinant par exemple les mécanismes de vieillissement d'une mousse, tout en formant des chaînes de forces permettant une meilleure résistance à la compression. Sont ensuite détaillés les modèles rhéologiques usuels de la rhéologie des suspensions et des milieux granulaires secs, d'abord les lois empiriques définissants une viscosité effective des suspensions, puis les modèles dits locaux faisant intervenir un nombre sans dimension, nommément le nombre visqueux J pour les suspensions et le nombre inertiel I pour les granulaires secs. Enfin, une revue est faite des aspects de la rhéologie des milieux granulaires qui échappe encore, au moins en partie, à ces mod-èles : la transition d'un régime interiel à un régime visquex et le problème d'additivité des contraintes, l'impossibilité de dériver les propriétés macroscopiques des écoulements granulaires à partir des propriétés microscopiques des grains, l'influence de la microstructure, son évolution et son anisotropie sur la rhéologie des milieux granulaire et en particulier dans les comportements rhéo-épaississants et rhéofluidifiants. Enfin, et c'est le plus important pour ce travail, l'incapacité des modèles locaux à décrire efficacement le comportement des milieux granulaires en régime confiné où la pression de confinement entre particules domine : dans ce régime, le taux de cisaillement dans le matériau est inhomogène, le nombre sans dimension décrivant l'écoulement dans les modèles locaux varie sur plusieurs ordres de grandeur tandis que la fraction volumique occupée par les grains et la contrainte de cisaillement sont homogènes et prennent des valeurs extrêmales. De cette analyse apparaissent les objectifs de ce manuscrit de thèse : outre le perfectionnement des travaux de Yousra Timounay sur les films granulaires et la détermination du rôle de ses différents constituants sur sa rhéologie, la force attractive existant entre les grains permet aisément d'explorer le régime confiné tout en observant l'hétérogénéité de l'écoulement grâce à la nature bidimensionnelle du film. Cette observation permet aussi d'interroger la microstructure du matériau en écoulement.

Le deuxième chapitre aggrège tous les matériaux et méthodes utilisés dans cette étude. Les particules sont des sphères de polystyrène silanisées et monodisperses de diamètre supérieur à 10 µm, la solution utilisée pour le film liquide est une mixture d'eau, de glycérol et de TTAB. Du dodécanol est parfois ajouté pour tester l'effet de la viscosité de surface. Les films granulaires son générés par extraction, en plongeant un cadre cylindrique dans un radeau granulaire préalablement formé. Le cadre est ensuite retourné et placé à l'intérieur d'une cellule de rhéomètre. Pendant le cisaillement, l'écoulement est mesuré par une caméra placée sous le rhéomètre. À partir des images capturées et par corrélation d'image numérique, le champ de vitesse des particules est calculé. Ce champ de vitesse respecte en moyenne les symétries du problème, mais quelques mouvements collectifs sont parfois observés. Les images prises par la caméra sont ausis traitées de façon indépendantes pour détecter la position exacte et la rayon apparent de chaque particule. La fraction surfacique occupée par les particules dans le film est alors calculée de façon locale. Les positions des centres de particule permettent aussi de calculer la fonction de corrélation radiale, confirmant la fraction surfacique. Enfin, un modèle de théorie cinétique étendue appliquée aux milieux granulaires permettant de rendre compte de l'hétérogénéité de l'écoulement en régime confiné est developpé.

Le troisième chapitre détaille les expériences basiques performées sur les films de savon et les films granulaires, pour déterminer l'influence des paramètres primaires. On y retrouve les mesures de la tension de surface sur des films sans particules et son évolution avec l'ajout de dodécanol, un co-surfactant, ainsi que son influence sur la viscosité de surface, puis des mesures de vieillissement de films de savon à travers l'évaporation. Concernant les films granulaires, ils vieillissent à travers la réorganisation de la microstructure des particules. La diminution de la tension de surface de la solution a pour effet de diminuer la contrainte totale mesurée entre les grains, tandis que l'augmentation de la viscosité de surface augmente cette contrainte.

Le quatrième chapitre est le coeur de l'étude. Il présente en premier lieu le dispositif expérimental utilisé pour étudier la rhéologie des films granulaires en cisaillement simple. La cellule correspond à une cellule de Couette cylindrique utilisée en deux dimensions avec un fond transparent, ce qui permet de placer une caméra sous l'entrefer. Les mesures sont effectuées à vitesse de rotation imposée et le couple résistif exercé par le film granulaire sur le cylindre de mesure est enregistré. Dans la gamme de vitesse explorable avec ce dispositif, aucune variation du couple n'est mesuré (à l'exception de la variation attendue par la réorganisation de la microstructure), le film est toujours dans un état confiné, et un écoulement hétérogène est observé. La vitesse décroît exponentiellement loin du cylindre en mouvement. La forme du profil est indépendante de la vitesse imposée à la paroi et l'application de la théorie cinétique étendue développée au chapitre deux permet d'en rendre compte en établissant la proportionnalité entre le taux de cisaillement local et les fluctuations de vitesse à une position donnée. Ce modèle présuppose que que le film granulaire est dans un régime collisionnel où l'inertie des particules domine dans la dynamique macroscopique, ce qui n'est vrai que pour des taux de cisaillement suffisamment élevés. Une large partie du film granulaire est généralement en dessous de ce critère, dans un régime quasi-statique. En changeant de perspective et en n'observant plus un écoulement moyen dans le temps mais en observant la statistique des réarrangements individuels entre les particules, la transition du régime collisionnel au régime quasi-statique est caractérisée. L'étude statistique confirme expérimentalement des résultats jusqu'alors numériques et met en évidence un changement de nature dans la contrainte entre les particules, d'abord essentiellement visqueuse dans le régime collisionnel, tandis que l'élasticité du contact entre les particules ne peut plus être négligée dans le régime quasi-statique. L'ensemble de ces résultats peut être rationnalisés en définissant un nombre sans dimension I c pour nombre inertio-capillaire, proche du nombre inertiel I à la différence que la pression interparticulaire est définie à travers la force attractive dérivant de la tension de surface. La variation du diamètre des particules ou de la viscosité de surface confirme cette rationalisation. Enfin, la microstructure dans cet écoulement hétérogène est interrogée. Par évaluation de la fonction de corrélation radiale dans différentes zone d'un film granulaire cisaillé, il apparaît que dans la zone quasi-statique les particules sont plus ordonnées et l'ordre persiste à de plus longues distances, formant des structures cristallines. Le cisaillement d'un film granulaire composé de deux tailles de particules différentes, pour lequel la création de cristaux est impossible, semble révéler que l'ordre est une conséquence du cisaillement hétérogène et non l'inverse.

Le cinquième et dernier chapitre cherche à répondre à une question : si les "gas marbles" sont considérablement plus résistantes que les gouttes armorées, quel est le rôle du nombre d'interfaces liquide-air dans la rhéologie des films granulaires ? Pour y répondre, la rhéologie des radeaux granulaires est étudiée dans le même cadre que les films granulaires. De part les spécificités des radeaux granulaires (et en particulier la présence d'un volume de liquide sous les particules), il est possible d'adapter le dispositif expérimental pour travailler à contrainte imposée et non à vitesse imposée. Dans un premier temps, les lois phénoménologiques moyennes usuelles de la rhéologie des radeaux granulaires sont retrouvées, montrant que ces objets se comportent comme des fluides à seuil et que le système est ordinaire. Cependant, l'étude locale montre que pour les contraintes faibles et proches de la contrainte seuil, l'écoulement est hétérogène, comme pour les films granulaires, tandis que l'écoulement est homogène aux fortes contraintes appliquées. Ce comportement était prévu par le modèle de théorie cinétique étendue, qui parvient encore à rendre compte de l'écoulement. Le nombre inertio-capillaire I c décrit bien encore une fois le problème, tandis que l'étude des radeaux granulaires permet aussi de faire varier la tension de surface. La dynamique microscopique des réarrangements entre les particules constituant les radeaux est la même que pour les films granulaires et la même transition est observée d'un régime collisonnel à un régime quasi-statique. En revanche, la valeur estimée du nombre inertio-capillaire I c à la transition entre les deux régimes est un ordre de grandeur plus grande pour les radeaux, montrant que la véritable pression inter-particulaire est plus élevée dans le cas de deux interfaces que d'une seule, et ainsi donnant un élément de réponse quant à la stabilité mécanique des "gas marbles".

Introduction

When particles encounter a fluid interface, they generally adsorb on it and stay at the interface. Loading a fluid interface with particles greatly changes its mechanical properties and these changes can be harvested in many useful ways. This is why chiromantis petersii, as well as many other species of frogs, evolved in a way that allowed them to produce a foam into which they could lay their eggs. The eggs, as tiny particles, stick to all the interfaces delimiting individual bubbles in the foam. Apart from the fact that the foam provides a humid environment that protects the eggs from predators, the foam also proves to be more stable thanks to the presence of the eggs. Nature is filled with similar examples, among which one could also cite the self-assembly of red ants into a cohesive raft to resist a flooding event. The mechanical stability of this particle-laden interfaces has sparked off some interest in the industry: flotation for example is a technique that consists of blowing bubbles to capture solid particles in suspension in a liquid, and is used both as a way to clean waste-waters and in the mining industry.

Civil engineering has an other use for the phenomenon, in ever-growing attempts to create concrete foams. The idea of injecting air inside a concrete holds many positive outcomes. For one, it will become lighter and consequently easier to manipulate. It also may be interesting to inject air as to modify the rheology: as a shaving cream is composed only of liquid and air, it still behaves as an elastic solid at the macroscopic scale. Additionally, concrete foams could, just like it is done with a puncture sealant spray, fill out nicely and easily any given delimited space, thanks to a spreading property given by the injection of air. Eventually, they would also be cheaper to create than their bulky counterparts, as less raw materials would be required and would be replaced by air. Last but not least, as stagnant air is a great insulating material (already used in double glazing), concrete foam would act both as a construction material and an insulating material, which is critical today in the context of an energy crisis.

The challenge is to produce a cement foam that is stable. Apart from the fact that a foam is always a metastable material, as surface tension tends to minimize the surface area and merge the bubbles into a single bubble, even a single bubble is ageing and ultimately risks to break. It has been proven however that the presence of solid particles at the interface stabilizes foams durably. Yousra Timounay, in her PhD work [START_REF] Timounay | Rhéologie d'interface liquide/air chargées de grains : vers la consolidation d'un milieu aéré[END_REF], aimed at giving an understanding of this stability. She extensively studied the mechanical properties of gas marbles, liquid bubbles fully covered in particles as depicted in figure 1, and the dynamics of their breakage. She found that these individual bubbles had a tremendous sturdiness and hinted the complex relation between the fluid interfacial properties and the grain mechanical properties. In her study of the opening of a flat particle-laden soap film, she noted they could be interpreted as a 2D suspension. Her approach can be largely dealt with in more depth. In the context of granular rheology, the study of an opening of a particle-laden film has to be interpreted with caution, as ratio between the surface occupied by the particles and the total surface evolves, as the fim retracts, while this ratio is usually an explicit variable in most rheology models. Major very fundamental issues still remain to be answered in the domain of the rheology of granular suspensions and dry granular materials, and the availability of a 2D granular media for experimental purposes would allow for new and original setups, to propose new ways of interpreting granular flows. This is the overall objective of this manuscript: designing a setup that allows for a measure on particle-laden soap films and, by taking advantage of the 2D nature of this object, measure quantities usually inaccessible in experiments to obtain a better understanding of granular flows. It is divided in five chapters:

• The first chapter gives the general context of the study. An overview of the interfacial dynamics of soap films is presented, with the introduction of surface tension and the role of surfactants. Soon after is described the process with which solid particles attach to interface and attract each other to create a particle-laden soap film, and how different it is from a usual soap film. Finally, an overview of the existing literature on granular flows is given, both in the case of suspensions and dry granular materials. From it we point out some of the remaining open questions of the field to state the objective of this work.

• The second chapter describes all the materials and methods used in this work, from the particles and solutions used to generate the particleladen soap films, to the use of a camera to record the flow of this 2D object and compute a local velocity field, as well as getting access to the microstructure of the material. Finally, the hydrodynamical model through which the flow is interpreted is presented.

• The third chapter presents basic measurements on this object. The objective is to understand the effect of surface tension, surface viscosity and evaporation on the mechanical properties of a soap film, and how it is affected by the presence of particles.

• The fourth chapter goes deeper in the study of particle-laden soap films.

It presents an original setup to record the flow of this 2D object, that allows to compute the velocity fluctuations of the particles at a given position. It is found that the flow is sustained and propagates through these fluctuations for a large part, which can be interpreted through a kinetic theory. However, a second flowing regime generally coexists inside a single film, in which the viscoelastic properties of the fluid are dominant in the way particles move past one another. The two regimes are well-defined in different regions of a single film, with different dynamics at play. The link between these regimes and the microstructure is investigated.

• Finally, the last chapter investigates the rheology of a single liquid-air interface laden with particles, or a granular raft, in the same framework.

It points out the similarities between the rheology of particle-laden soap films and particle rafts, hinting at the universality of the findings described, but also their differences.

-Generalities and state of the art

This first chapter gives fundamental context to the study. It is segmented in three main parts: the physical description of soap films, the interaction of athermal particles with fluid interfaces, and an overview of the rheological models used in the description of granular flows. I start from the most common concepts of the problem and build from all the subtlety of their definition the notions needed in the comprehension of this manuscript. Lastly, I then derive from this the main objectives of this thesis. 

. Liquid-air interfaces and soap films

We call interface the thin boundary layer of a few molecules in thickness that exists between two phases. This thesis involves mainly water-air interfaces, which will be the main focus of this chapter. The thin soapy solution trapped between two liquid-air interfaces is a soap film.

. Surface tension

The most common definition of a liquid is that of a material that takes the shape of its container, while conserving a constant volume. It is different from a solid in that its constituents (molecules, ions, atoms) move freely with respect to one another. It has to be differentiated from a gas in the way that while the constituents of the gas also take the shape of the container (liquids and gas are then fluids), the inter-particulate distance adapts and the gas takes up all the volume of the container.

If molecules constituting a liquid collectively occupy a constant volume, it is because they interact attractively between one another. It is then advantageous for a molecule, energetically speaking, to be completely surrounded by other molecules of the liquid [START_REF] Gennes | Capillarity and wetting phenomena: drops, bubbles, pearls, waves[END_REF]. On the contrary, when a molecule gets to the interface, it is surrounded by other molecules on only roughly half its surface and is "missing" half of the interaction it should have (see figure 1.1). In that sense, the most favorable shape for a liquid is the shape which, at constant volume, minimizes the exposed outer surface. For example, considering only one interface between the liquid and an other phase, and no other interaction, this is a sphere, which gives the general shape of a rain drop. Let U be the cohesion energy per molecule in the liquid phase, and a 2 the exposed area of the molecule. If the molecule is at the interface, then half of this exposed area loses the favorable cohesive interaction, and at the interface there is an energy depletion of χ ∝ U /(2a 2 ) per surface area. χ is called the surface tension, and while we gave it a molecular understanding, this is actually a macroscopic parameter, defined for an interface. For a simple water-air interface, at temperature T = 25°C, χ = 72 mJ.m -2 . It also possible to possible to define the surface tension at a liquid-solid interface, at a solid-gas interface or between two non-miscible liquids. The energy dW needed to raise of dA the area of a given interface of surface tension χ is:

dW = χdA (1.1)
The principle of minimum energy assures that the system will tend to a minimum surface area. It is possible to illustrate this through a quite common experiment: in a circular frame, tie two knots with a thread, in order to get a loop inside the frame. Dip it in a soapy solution to form a soap film inside the frame, then burst the film inside the loop. Almost instantaneously, the loop, free of the soap film, will take a circular shape (figure 1.2). This is the maximal area that can occupy the thread loop inside the frame. Consequently, this configuration is the minimum surface area that can occupy the soap film in the frame. In this example, the surface tension has a dynamic effect: it acts as a force on the length of the thread, able to pull apart the loop. From a dimensional view, it is possible to express χ in terms of a linear force in mN.m -1 , which will often be convenient: ⃗ df = χdl⃗ n, with ⃗ n the unit vector normal to the direction of the length dl.

. Surfactants

For a given liquid, it is possible to manipulate the surface tension. This is done by dissolving amphiphile molecules (surfactants) to the liquid phase: they have a polar hydrophilic head and a hydrophobic tail. As a result, these molecules get adsorbed at the interface between the liquid and the other phase. In the case of a water-air interface, the hydrophilic head will attach to the water part of the interface, while the hydrophobic tail will position itself toward the air (figure 1.3). The effect of this interfacial dissolution is that it diminishes the unfavorable interactions at the interface. As a result, the surface tension of the interface is reduced.

If the surfactant is soluble in the liquid phase, after the surface adsorption, the particles will start to aggregate in structures inside the bulk called micelles. The onset of the micelle formation is defined by a critical micellar concentration (CMC). Being confined in a monolayer at the interface, the number of surfactant molecules that can be adsorbed per unit of surface area is limited. So is the range of variation allowed for the surface tension. In particular, the surface tension isn't dependent on the surfactant concentration once it reaches the CMC. Without surfactant, χ = 72 mN.m -1 for a water-air interface. Using tetradecyltrimethylammonium bromide (TTAB, CH 3 (CH 2 ) 13 N (Br)(CH 3 ) 3 ), a cationic surfactant (the hydrophilic part is positively charged) at the CMC lowers the surface tension to a measured value of χ = 34 mN.m -1 , which is approximately half of the initial value.

While micelles play no part in a static measurement of the surface tension, they play a role once the interface is solicited. Thinking of the surface tension as a linear force on the interface, trying to pull on this interface will yield two distinct behavior. At first, the interface will stretch with a rigidity proportional to the static surface tension; this is the Marangoni elasticity. Then, as the surface area of the interface increases, necessarily, the concentration of surfactant adsorbed at the interface reduces and the surface tension dynamically increases. At some point in time then, the system is governed by the rate of adsorption/desorption of surfactant molecules to the interface and from the bulk (and in particular from micelles) [4]. This is called the Gibbs elasticity.

Anticipating on what will be described later, Gibbs elasticity should not be a parameter in simple shear flows, as the surface area of the interface is constant. When adding particles to the interface however, this is no longer the case, as menisci bridging the particles constantly deform.

. Liquid films

Superposing two interfaces to create a slender volume of liquid held between the two makes a liquid film. Typically, the thickness of a stable liquid film ranges from ten micrometers to a few nanometers. The usual method to create a film is to dip a rigid frame inside a surfactant solution and take it out: the liquid attaches to the frame and as the frame is pulled out, a film is formed connecting the frame to the bulk of the liquid. This film tries to minimize its exposed surface by adopting a catenoïd-like form (figure 1.4). This form is metastable: it represents less apparent surface that would a simple cylindrical film linking the frame to the bulk, as the apparent perimeter of the interfaces is significantly lower in the middle. However, would this perimeter in the middle get close to twice the thickness of the films, the inner interface would destabilize, merge onto itself to form one liquid filament that ultimately breaks up, and suddenly the film would retract to form a planar film inside the frame, completely disconnected from the bulk. The specific moment at which an interface merges onto itself and disconnects into two distinct surfaces is called the pinch-off. The pinch-off dynamics have been extensively studied in the case of two bulk of liquid detaching from each other [START_REF] Alfonso A Castrejón-Pita | Breakup of liquid filaments[END_REF][START_REF] Rafael Castrejón-Pita | Plethora of transitions during breakup of liquid filaments[END_REF][START_REF] Lagarde | Oscillating path between self-similarities in liquid pinch-off[END_REF][START_REF] Château | Pinch-off of a viscous suspension thread[END_REF][START_REF] Thiévenaz | The onset of heterogeneity in the pinch-off of suspension drops[END_REF] as this regroups a large variety of configurations (the detachment of a pendant drop out of a nozzle, the destabilization of a liquid filament,...) that corresponds to a variety of applications. A few major examples could be cited, as inkjet printing [START_REF] Lohse | Fundamental fluid dynamics challenges in inkjet printing[END_REF], the production of capillary rheometers or the destabilization of saliva filament into droplets in the transport of pathogens [START_REF] Abkarian | Stretching and break-up of saliva filaments during speech: A route for pathogen aerosolization and its potential mitigation[END_REF]. Essentially, this problem can be described by defining the Ohnesorge number Oh = η/ √ χρD, with η the dynamic viscosity of the fluid, χ the surface tension, ρ the density of the fluid and D the diameter of the nozzle through which goes the fluid (or the diameter of the frame in the case of the pulling out of a liquid film). It was named after Wolfgang von Ohnesorge that first used it to describe the problem in 1936 [START_REF] Von | The formation of drops by nozzles and the breakup of liquid jets[END_REF] and compares the viscous timescale to the inertial timescale with this capillary-induced motion. In a few words, for low Oh, the dynamics are inertial and the thinning is continuously accelerated until reaching a viscously-dominated velocity. This has been extended to fluids holding particles in suspension: for instance in [START_REF] Château | Pinch-off of a viscous suspension thread[END_REF], Chateau et al. found that adding particles has the effect of raising the effective viscosity of the ensemble, thus slowing down the thinning of the filament. Then, as the filament reaches a diameter comparable to the diameter of the particles, the suspension cannot be considered as a continuous media anymore and a new regime appears. This thinning behavior is still investigated for 3D suspensions, but when it comes to a thin curved liquid film detaching from a bulk of liquid, other questions may rise: in this case, the fluid that has to flow in order for the interface to move is the air inside the catenoïd, and not the liquid composing the interface. The density and the viscosity of air being several orders of magnitude lower than of water, one could wonder if the flow to be considered is the air flow inside to catenoïd or the liquid flow inside the film. And if it is the latter, what physical parameters have to be considered: indeed, several works on interfacial rheology used with success a so-called surface viscosity [START_REF] Cantat | Les mousses: structure et dynamique[END_REF], different from the bulk viscosity and which would be predominant at interfaces.

Once the pinch-off has happened and a film is created, it starts aging. For a single film, there is two distinct mechanisms: evaporation and drainage. Evaporation is a strictly interfacial phenomenon: water molecules exit the interface to the air. Drainage however takes place in the thickness of the film: under the influence of gravity, the liquid drains through the film and flows downwards. These two mechanisms lead to a thinning of the film which is ultimately responsible for its failure and bursting. What is commonly admitted about film bursting [4,[START_REF] Timounay | Rhéologie d'interface liquide/air chargées de grains : vers la consolidation d'un milieu aéré[END_REF] is that once the film reaches a critical thickness, small random deformations of the interface lead to the merging of the interfaces and the burst of the film. It may seem counter-intuitive then to say that adding a surfactant in a water solution helps to create longer-lasting soap films: as the surfactants reduce the surface tension, they reduce the elasticity of the film and thus the capacity of the film to resist random deformations. However, as most surfactants have a ionic head, they also repel each other when the interfaces get closer. Surfactants are actually needed to create soap films [START_REF] Gennes | Capillarity and wetting phenomena: drops, bubbles, pearls, waves[END_REF][START_REF] Pasquet | An optimized recipe for making giant bubbles[END_REF] as they reduce the critical thickness. Additionally, other methods can be employed to increase the longevity of liquid films. Indeed, both aging mechanisms (evaporation and drainage) can be slowed down: in a water film, adding some amount of glycerol has the double-effect of raising the viscosity to inhibit the drainage, while also slowing down the evaporation thanks to the fact that glycerol is hydrophilic. This is one of the key ingredients in producing everlasting bubbles [START_REF] Roux | Everlasting bubbles and liquid films resisting drainage, evaporation, and nuclei-induced bursting[END_REF]. The other main ingredient employed by Roux et al. in this article is the presence of solid particles in the film, as they greatly change the mechanical stability of the interface, as will be developed later on.

. Particle-laden soap films

Placing solid particles inside a liquid film or at fluid interfaces greatly changes the interfaces' properties. With the objective of applying this knowledge to the study of particle-laden soap films, this section will give a basic understanding of the mechanisms at play for particles attaching to an interface, the specific forces at play for particles in such configuration, and give a review of mechanical properties of particle-laden soap films.

. Adsorption at interfaces

Let us consider placing a water drop on a solid surface (see figure 1.5), surrounded by air. This drop may spread more or less depending on the affinity of the solid with water: the more hydrophilic the surface, the more the drop will spread on it. This is characterized by the wettability angle ζ between the drop and the surface. In this problem, there are three interfaces: water-air, water-solid and solid-air. They get in contact at a single line, defining the angle ζ which is the more favorable state energetically speaking. As developed in section 1.1.1, the surface tension χ of an interface is an energy per surface area. For the wetting problem, the displacement of the line of contact induces a variation of the surface area dA of each interface and then of the energy of the system dE, as:

dE = (χ SL -χ SG )dA SL + χ LG dA LG (1.2)
where the subscript SL denotes the solid-water interface, SG the solid-air and LG the water-air (this could be generalized to any liquid/gas). dA LG can be rewritten as cos(ζ)dA SL and then the equilibrium of the contact line becomes the Young-Dupré equation:

0 = χ SL -χ SG + χ LG cos(ζ) (1.3)
The problem is similar when placing a single solid particle at a water-air interface. The particle will feel the effect of gravity, of buoyancy and of the surface tension of the interfaces. As the water-air interface will deform close to the contact line, as the contact angle ζ is fixed, the wettability of the solid will induce a vertical component of the force resulting from the surface tension. If the solid particle is hydrophobic, then the surface tension will oppose buoyancy. If the particle is hydrophilic, it will oppose gravity. Let us consider a spherical particle of diameter d and contact angle ζ, initially in air, placed at a water-air interface (see figure 1.6). In the initial state, the whole surface area of the particle is in contact with air, while once the particle is at the interface, only the surface A SG is in contact with air and the remaining A SL is now in contact with water. The water-air interface sees its surface area reduced by A LG due to the presence of the particle. The energy of the system in the initial state E i and after the adsorption of the particle at the interface E ads then read:

E i = χ SG ⋅ πd 2 + χ LG A LG (1.4) E ads = χ SG A SG + χ SL A SL + χ LG (A LG + π(d/2) 2 sin 2 (ζ)) (1.5)
Using the obvious relation A SG + A SL = πd 2 , the exact dependency of A with ζ and d and the Young-Dupré relation 1.3, the difference of energy between the two states reads:

∆E a = χ LG ⋅ π(d/2) 2 (1 -cos(ζ)) 2 (1.6)
∆E a is called the attachment energy. Were we to consider the particle initially in the fluid, the sign before cos(ζ) would change but the conclusion would be the same: the attachment energy is always positive, the adsorption of a particle to the interface is favorable.

The particle adsorbs to the interface and is stable at a given depth dh = (d/2)(1 + cos(ζ)). Qualitatively, if the particle is larger or more hydrophilic, it will go deeper. In the case of a liquid film presenting two water-air interfaces, a rule of thumb would be that if the depth dh is larger than the thickness of the film h, the particle will naturally adsorb at both interfaces, while possibly deforming the interfaces in the vicinity of the particle to preserve the contact angle ζ at both contact lines. This gives a sufficient understanding of the phenomenon, but the reality is a bit more complex. In their work, Timounay et al. [START_REF] Timounay | Opening and retraction of particulate soap films[END_REF][START_REF] Timounay | Rhéologie d'interface liquide/air chargées de grains : vers la consolidation d'un milieu aéré[END_REF] found that polystyrene particles of contact angle ζ = 95°and diameters d = 250 µm and d = 140 µm (dh ≃ 114 µm and dh ≃ 64 µm, respectively) would position themselves differently in a liquid film whose thickness had been measured at h = 45 µm close to the particles. Indeed, the larger particles would form a monolayer bridging both interfaces, while the smaller particles would arrange themselves in two overlaid layers, one at each interface (figure 1.7). The bilayer configuration occurs for particles that should be large enough to cross both interfaces. Their interpretation of this observation is that it is also dependent on the density of the particles, and gravity and buoyancy forces result in a deformed interface at the vicinity of the particle. They also showed that particles in a film produce a film with extra-thickness around the particles (as could be expected to keep the contact angle ζ), while large surface of films without particles would get significantly thinner (h = 5 µm).

. Particle-particle attraction at the interface

To understand the interface deformation, we need to consider gravity and buoyancy. Considering a particle of diameter d, density ρ p that attaches itself at a depth dh to a water-air interface (of density ρ w and ρ a , respectively), the sum of gravity and buoyancy forces reads:

⃗ F = (ρ a g ( 4π 3 (d/2) 3 -dh 2 (d/2 - dh 3 
)) + ρ w gπdh 2 (d/2 - dh 3 ) -ρ p g 4π 3 (d/2) 3 ) ⃗ e z (1.7)
with ⃗ e z the upward vertical unit vector. In the most usual case, where ρ a ≪ ρ w ≤ ρ p , there is a force pulling the particle down. As a result, the interface deforms: while maintaining a wetting angle ζ with the particle, it now forms an angle α with the horizontal direction at the contact line (see figure 1.8). The force resulting from the water-air surface tension χ LG at the contact line has now an horizontal component, whose resultant is zero once integrated over the perimeter of the contact line (given the axisymmetry of the problem), and a vertical component written as: At equilibrium, the vertical component must compensate gravity and buoyancy forces. If the induced deformation is large enough and if there is more than one particle at the interface, between two neighboring particles the deformations may overlap. In that case, the axisymmetry of the problem is broken. Ensues an horizontal force pulling the particles together. As more particles are added, they are subject to this attractive force and tend to cluster. A large cluster of particles arranged in a monolayer at a single interface is generally called a granular raft, while I will call granular films the monolayer of particles trapped inside a liquid film. Closing a granular raft on itself to make a liquid drop fully covered in particles makes an liquid marble/armored drop, while the opposite (a bubble of air inside a liquid, covered in particles) is an armored bubble. Closing a granular film on itself to isolate a volume of air from the ambient air by the mean of a liquid film covered in particles makes a "gas marble". An example of a gas marble created with the solutions and particles used in this work is displayed on figure 1.9, for illustration. It is possible to distinguish the tiny particles that form the marble from the photo, and see how closely they are packed. These assemblies of particles at liquid-air interfaces greatly change the mechanical properties of the interfaces they occupy. It is also worth noting that the exact capillary forces between two particles at a single liquid-gas interface is a complex problem, even if the exact topography of the interface was known. In the case of particles whose density significantly differs from the density of the liquid at the surface of which they are placed, the deformation of the interface is large and the resulting attraction is called the Cheerios effect (from the breakfast cereals). The cereals are significantly lighter than milk, and thus curve the interface towards the air and aggregate. From a theoretical point of view, this problem has been tackled by Allain and Cloitre [START_REF] Allain | Interaction between particles trapped at fluid interfaces: I. exact and asymptotic solutions for the force between two horizontal cylinders[END_REF] who arrived at an exact solution for two vertical cylinders at an interface. The case of spherical particles has been considered by Kralchevsky and Nagayama [START_REF] Peter | Capillary interactions between particles bound to interfaces, liquid films and biomembranes[END_REF] and Vella and Mahadevan [START_REF] Vella | The "cheerios effect[END_REF], showing the prime importance of considering the apparent weight of the particles. Going from 2 to 3 particles however, Dalbe et al. [START_REF] Dalbe | Aggregation of frictional particles due to capillary attraction[END_REF] showed that the capillary forces do not exactly superpose linearly, as solid friction comes into play as soon as the first two particles touch. Even for only one particle, Danov and Kralchevsky [START_REF] Krassimir | Capillary forces between particles at a liquid interface: General theoretical approach and interactions between capillary multipoles[END_REF] pointed out that in general, the contact line is undulated because of the roughness of the particles. In that case, the particle acts as a capillary multipole and the capillary force between two particles can be approximated as a sum of Bessel functions, as long as the inter-particulate distance remains of the order of the capillary length l c = √ χ LG /ρg or lower. In their work, Velikov et al. [START_REF] Velikov | Direct observation of the dynamics of latex particles confined inside thinning water-air films[END_REF] reported experimentally that the range of attraction between latex particles inside a water film was more than ten times the diameter of the particles, but to our best knowledge, the attraction between particles inside a film sparked off very few studies in comparison to the attraction between particles at a single interface. The obvious reasoning would be to consider that in a film, particles are adsorbed at two interfaces instead of one, and thus the forces scale linearly with the number of interfaces and are multiplied by a factor of two. Timounay et al. [START_REF] Timounay | Gas marbles: much stronger than liquid marbles[END_REF] showed that this is not the case: they studied the mechanical stability of gas marbles, that is to say a particle-laden film closed on itself, and found that it was much more resilient than expected. Figure 1.10 is borrowed from their work in which they inflated or deflated gas marbles until the collapse of the object. It shows the typical pressure that they can undergo is independent of size of the particles and is one order of magnitude larger than the Laplace pressure. When comparing with result previously obtained on liquid marbles [START_REF] Monteux | Determining the mechanical response of particle-laden fluid interfaces using surface pressure isotherms and bulk pressure measurements of droplets[END_REF][START_REF] Taccoen | Probing the mechanical strength of an armored bubble and its implication to particle-stabilized foams[END_REF], they found that the trapped volume of air inside gas marbles could undergo an under-pressure ten times the under-pressure at which a liquid marble would collapse without deformation. Moreover, and unlike liquid marbles, the air volume inside a gas marble could undergo over-pressure of the same relative value without bursting. This points towards the very specific mechanical properties of a particle-laden liquid film. 

F χ,z = χ LG 2π(d/2) 2 sin 2 (ζ -α) sin(α) (1.8)

. Effect of particles on the interface properties

Since the pioneering works of Ramsden [START_REF] Ramsden | Separation of solids in the surface-layers of solutions and 'suspensions'(observations on surface-membranes, bubbles, emulsions, and mechanical coagulation).-preliminary account[END_REF] and Pickering [27] who demonstrated that adding solid particles at water-air interfaces increased the stability of foams and emulsions, extended research has been conducted to study the mechanical properties of such interfaces. Pitois and Rouyer produced a review of the studied rheological properties of granular rafts, granular films and particle-laden foams [START_REF] Pitois | Rheology of particulate rafts, films, and foams[END_REF]. Firstly, this stabilizing effect for foams can be partly attributed to the fact that the presence of particles inhibits the drainage, as determined on gas marbles by Roux et al. [START_REF] Roux | Everlasting bubbles and liquid films resisting drainage, evaporation, and nuclei-induced bursting[END_REF]. On the other hand, Gorlier et al. [START_REF] Gorlier | Yielding of complex liquid foams[END_REF] studied particle-laden foams, showing that the rheological properties were affected at the foam scale. Foams exhibit a yield stress that is a growing function of the volume fraction occupied by the particles Φ p but also a growing function of the inverse of the ratio between the particle diameter and the bubble diameter. The authors established the importance of particle contacts as this yield stress could be determined through a Mohr-Coulomb criteria used in granular packings.

As for properties of individual particle-laden interfaces, little is known about granular films when compared to granular rafts. Granular rafts are an assembly of particles on a single liquid-air interface, resting on top of a bulk of liquid. Granular rafts have proven to be sturdy objects that can withstand impacts while maintaining their structural integrity [START_REF] Petit | Bending modulus of bidisperse particle rafts: Local and collective contributions[END_REF]. The interface is owing this rigidity to the presence of the particles: the denser the raft, the more energetic the impact could be without breaking. Planchette et al. [START_REF] Planchette | Rupture of granular rafts: effects of particle mobility and polydispersity[END_REF] went on to study the effect of particle size, showing that small particles made for sturdier motionless rafts, but easier to break once flowing. He et al. [START_REF] He | Response of a raft of particles to a local indentation[END_REF] pursued in this direction by performing indentation tests on granular rafts, showing their rafts could undertake twice the force or the indentation a clean interface could before breaking. This rigidity has also been observed under compression: Circuta and Vella [START_REF] Cicuta | Granular character of particle rafts[END_REF] and Saavedra et al. [START_REF] Saavedra | Progressive friction mobilization and enhanced janssen's screening in confined granular rafts[END_REF] both showed that compressing a raft results in the establishment of force chains between particles that increased the confinement pressure between them. They also determined the importance of the boundaries delimiting the interface, in a Janssen effect analogy [START_REF] Ha Janssen | Versuche uber getreidedruck in silozellen[END_REF]. Jambon-Puillet et al. [START_REF] Jambon-Puillet | Wrinkles, folds, and plasticity in granular rafts[END_REF] went further in the compression to provoke out-of-plane motion in the form of buckling and wrinkles, which could be captured by a strictly elastic view of the raft. Using salt to reduce the repulsion between charged particles, Barman and Christopher [START_REF] Barman | Simultaneous interfacial rheology and microstructure measurement of densely aggregated particle laden interfaces using a modified double wall ring interfacial rheometer[END_REF][START_REF] Barman | Role of capillarity and microstructure on interfacial viscoelasticity of particle laden interfaces[END_REF] showed the predominance of attractive and/or repulsive forces between particles inside a raft to the 2D microstructure and the subsequent viscoelastic properties. Zang et al. [START_REF] Zang | Viscoelastic properties of silica nanoparticle monolayers at the air-water interface[END_REF] showed an equilibrium existed between rigidity and viscoelasticity, that was a function of the particle fraction.

We can expect some of these results to be transferable, at least qualitatively, to granular films. The main difference between the two is the absence, in the case of granular films, of a bulk of liquid underneath the particles. It is then all the more interesting to study granular films, firstly because all their properties should be interfacial ones, but also because they can be viewed as constitutive elements in particle-laden foams. Most of what is currently known about granular films comes from the PhD thesis of Yousra Timounay [START_REF] Timounay | Rhéologie d'interface liquide/air chargées de grains : vers la consolidation d'un milieu aéré[END_REF]. Studying the bursting of granular films, Timounay et al. [START_REF] Timounay | Opening and retraction of particulate soap films[END_REF] showed that in a bilayer configuration mentioned previously, the retraction happened at constant velocity, balancing liquid and particles inertia against surface tension. When the particles cross both interfaces of the liquid film, Timounay and Rouyer [START_REF] Timounay | Viscosity of particulate soap films: approaching the jamming of 2d capillary suspensions[END_REF] studied the retraction of a granular film through an original setup: they generated a rectangular granular film and placed an horizontal cylinder across the rectangular frame (represented on figure 1.11). They burst open one side of the film, and immediately the other side started pulling the cylinder to reduce its surface area. They assumed that granular films could be considered as 2D compressible objects subjected to 2D stress and strain tensors. Using Particle Image Velocimetry (PIV) to record the displacement of the film during the retraction, they could develop a kinematic model with a kinematic viscosity ν for the film. In the spirit of 2D granular flows, they could also assess the jamming surface fraction, that is to say the particle fraction at which the viscosity of a 2D granular media diverges, as ϕ m = 0.84. They showed that these results were compatible with usual models of suspensions in 2D by defining a 2D dynamic viscosity η 2D and showing it could be reasonably fitted with a 2D Krieger-Dougherty model for suspensions [START_REF] Irvin | A mechanism for nonnewtonian flow in suspensions of rigid spheres[END_REF][START_REF] John | The rheology of concentrated suspensions of spheres in simple shear flow by numerical simulation[END_REF]: In this study, they evaluated the surface fraction ϕ occupied by the particles before the onset of the retraction, with a film at rest. They then evaluated the kinetic parameters at this first instant of the retraction, considering the surface fraction constant during the experiment. The evaluation of ϕ is probably the main difficulty in this experiment and the main drawback of their setup: they found surface fractions around 0.8, some even at 0.84 which is the jamming fraction they deduced. At such high densities, the tiniest bit of compression, or the tiniest increase of ϕ, would result in a tremendous increase of viscosity, for the viscosity diverges at jamming. It is worth it, to complete their results, to perform experiments at fixed ϕ and further the analogy with granular materials. Simple shear experiments allow to maintain a constant surface area and, as long as no particles are added or lost, a constant surface fraction.

η 2D = η 0,2D (1 -ϕ/ϕ m ) -kϕm .

. Rheology of granular materials

In order to infer the correct frame of work in the study of the simple shear of particle-laden soap films, this section reviews the local models for 3D granular materials (the so-called µ(J) for suspensions and µ(I) for dry granular matter) while trying to give an idea of their possible extensions and/or limitations with developed non-local models.

. Suspensions and µ(J)

In 3D, the dispersion of solid particles inside a liquid is called a suspension. It is only natural, in the light of the works just mentioned, to suppose granular films would behave as 2D-suspensions. The rheology of suspensions has been extensively studied: in the dilute regime of low Φ (noted Φ for the particle volume fraction, as to distinguish from the particle surface fraction ϕ in 2D), Einstein gave a model for how the viscosity of the suspension η s was affected by the presence of the particles, and its dependency on Φ, as η s = η f (1 + 5 2 Φ), with η f the viscosity of the suspending fluid. This relation holds true for very dilute suspensions, as it neglects any interaction between particles. Particularly, it cannot be used to express the divergence of the viscosity at a high volume fraction, close to the jamming Φ m . Empirical models have emerged to qualitatively reproduce this two asymptotic behaviors. For example, one can cite the model proposed by Krieger and Dougherty [START_REF] Irvin | A mechanism for nonnewtonian flow in suspensions of rigid spheres[END_REF][START_REF] John | The rheology of concentrated suspensions of spheres in simple shear flow by numerical simulation[END_REF]:

η s = η f (1 - Φ Φ m ) -[η]Φm (1.9)
where [η] is a numerical constant that has to be equal to 2.5 in the case of spherical particles to retrieve the Einstein relation (while it does not correctly describe the divergence at high Φ).

For a long time however, the concentrated regime and the subsequent divergence of viscosity at the jamming escaped fundamental understanding. Then, Boyer et al. [START_REF] Boyer | Unifying suspension and granular rheology[END_REF] established that the relevant parameters to determine the state of stress of a suspension are: the viscosity of the fluid η f , the confining pressure between particles P p , and the shear-rate γ. With only this three parameters, they built a dimensionless viscous number J = γη f P p (initially called I ν ) whose value is sufficient to infer both the state of stress and the volume fraction of particles Φ. Physically, this number can be interpreted as the ratio between a macroscopic time of imposed deformation t macro = 1/ γ and a microscopic time of viscous rearrangement t micro = η f /P p . This dimensionless viscous number J is then the sole parameter of macroscopic friction law µ(J) = τ /P p , with τ the shear stress, and of a dilatancy law Φ(J).

They arrived at this result by designing a setup that allowed the shear stress τ and the confining pressure P p to be imposed at the same time while also recording both the shear-rate γ and the particle volume fraction Φ. In their setup (see figure 1.12), a plate on top of the suspension is driven at constant torque M (and thus τ ). The plate is pressed against the suspension with a given force F that translates into a particle pressure P p . After a transient regime, the plane then rotates at a constant and measured rotational speed ω from which is deduced γ. The top plate is porous, allowing the suspending fluid to flow through it but blocking the particles. As the normal force on the plate is imposed but not its position, the plate is free to move in the vertical direction: its position on the vertical axis is measured to obtain the effective volume occupied by the suspension and get, with a constant number of particles through the experiment, the volume fraction Φ. [START_REF] Boyer | Unifying suspension and granular rheology[END_REF] to study the rheology of 3D suspensions.

They then proceeded to vary the imposed stress τ and the particle pressure P p , using suspensions with two different viscosities for the carrying fluid. Plotting the friction coefficient µ = τ /P p against J, the data fell on a single curve (figure 1.13). The same has been observed while plotting the volume fraction with respect to J (figure 1.14). At vanishing J, their is little to no flow, the suspension is jammed with a jamming volume fraction Φ m = 0.585 and the friction coefficient tends to a finite value µ 0 = 0.32. Increasing J, the suspension has to dilate in order to flow, for the particles start to move past each other. The volume fraction Φ decreases. Increasing J means either de-creasing P p or increasing γ: in the first case, it is intuitive to understand that µ = τ /P p increases, while the second case means that the viscous effects are increased, and thus τ . In both cases then, increasing J leads to an increase of µ. Interestingly, these results are also in good agreement with usual rheological laws that try to correlate the shear stress τ to the shear-rate γ. The classical view is to define an effective viscosity η s of the suspension as the product of the viscosity of the suspending fluid η f and a function of volume fraction Φ. As Φ(J) is a monotonic function of J, it can be reversed as J(Φ). From the definition of J it is then possible to write:

P p = 1 J(Φ) η f γ (1.10)
Which is possible to transform to obtain, in the flow direction:

τ = µ(J(Φ)) J(Φ) η f γ = η s (Φ) γ (1.11)
Plotting the effective viscosity as a function of Φ yields results quite similar to what is usually seen in suspensions (figure 1.15). It is then possible to fit these data with empirical models used in suspensions such as the Krieger-Dougherty model [START_REF] Irvin | A mechanism for nonnewtonian flow in suspensions of rigid spheres[END_REF][START_REF] John | The rheology of concentrated suspensions of spheres in simple shear flow by numerical simulation[END_REF] mentioned previously. Finally, they demonstrated that theses results are compatible with previous understanding of dry granular flow, in which the rearrangement time cannot be attributed to viscous effects. The proper dimensionless number in this case can be modified to take the form of the inertial number I.

. The µ(I) rheology

The description of dry granular flows with a dimensionless number actually predates the description of suspensions. The first explicit mention of the inertial number I = γd/ √ P p /ρ as the ratio between two timescales dates back to an article in 2004 from the GDR MIDI [START_REF]GDR MiDi gdrmidi@ polytech. univ-mrs[END_REF] (even though it had been implicitly mentioned in previous works). The rearrangement timescale t micro = d/ √ P p /ρ, with d the grain diameter, P p the confining pressure and ρ the grain density, in the case of a dry granular material, has nothing to do with viscous effects.

It is purely inertial (hence the name "inertial number" for I) and can be understood as the time needed for a particle to fall in a gap of size d. Indeed, a sheared particle has to climb on top of the particles underneath in order to go past them, and falls back as soon as it is done. In the work of the GDR MIDI, it was hinted that in the case of a planar simple shear flow, the value of I could be used to discriminate between different asymptotic behaviors of granular flows. For example, they showed that increasing I resulted in an increase of the velocity drop at the walls, or in a decrease of the volume fraction. They also arrived at the conclusion that the effective friction coefficient µ = τ /P p was a growing function of the inertial number. However, even though this study regroups work produced in other geometries (annular shear, vertical-chute, inclined plane, heap flow, rotating drum), they did not generalize these results to these geometries, nor did they write an explicit law to link the observed quantities directly to I.

A year later though, a study by da Cruz et al. [START_REF] Da | Rheophysics of dense granular materials: Discrete simulation of plane shear flows[END_REF] was published continuing the work of the GDR MIDI on plane shear flows. From 2D numerical simulations, they wrote explicitly the dilatancy law ϕ(I) and the friction law µ(I) as:

ϕ(I) = ϕ m -aI (1.12) µ(I) = µ 0 + bI (1.13)
Φ m is the jamming surface fraction, µ 0 the effective friction coefficient when I tends to 0, and a and b two fitting parameters: a = 0.3 and b = 1.1 in their work. Interestingly, µ 0 = 0.25 in their work, which is lower than the friction coefficient used in the model between two individual particles (µ * = 0.4). As I is raised however, the value of the effective friction coefficient eventually exceeds the value of the friction coefficient between two particles. Varying the actual friction coefficient between particles showed that µ 0 depends weakly on this friction coefficient; even in the frictionless case of µ * = 0, the effective friction coefficient remains non-zero (µ 0 = 0.12). An other interesting finding is that they found a jamming surface fraction ϕ m = 0.81, significantly lower than the 0.84 obtained experimentally by Timounay [START_REF] Timounay | Viscosity of particulate soap films: approaching the jamming of 2d capillary suspensions[END_REF] for the 2D granular soap films. These two values represent what could be considered as two limits of acceptable values for ϕ m in 2D, as the jamming actually occur at different surface fraction depending on the way the material is solicited and structured through the solicitation, but also depending on the friction coefficient between particles. The study of jamming in 2D produced a lot of works that arrived at different values [START_REF] Coulais | Shear modulus and dilatancy softening in granular packings above jamming[END_REF][START_REF] Ts Majmudar | Jamming transition in granular systems[END_REF][START_REF] Zhang | Jamming for a 2d granular material[END_REF]. It can be defined in the absence of solicitation, in the least ordered state, as ϕ m = 0.826 [START_REF] Atkinson | Existence of isostatic, maximally random jammed monodisperse hard-disk packings[END_REF].

They also observed that µ seem to saturate when I > 0.2, which is not captured by their proposed friction law. However, because they have only few points in this regime, and because the error bars are large, they chose to not dwell on it (even though they will be proved right later on). More importantly, they used their findings to define, with respect to I, three flowing regimes for the granular material, although a bit arbitrarily. They used their observation of the saturation of µ for I > 0.2 to say that above this value exists a collisional regime: the media actually behaves as a gas, the dilatancy is strong and the particles collide but do not stay in contact. For low inertial number, typically I < 10 -2 , there is no distinct dependency on either the surface fraction or the effective friction with I, both are almost indistinguishable from their values ϕ m and µ 0 . They call this state the quasi-static regime. Between the two, they define a progressive transition that they call a dense flow regime, in which the dilatancy law and the friction law can both be interpreted as linear functions.

Jop et al. [START_REF] Jop | A constitutive law for dense granular flows[END_REF] concluded these collectives efforts by writing a complete constitutive law for the friction:

µ(I) = µ 0 + (µ 1 -µ 0 ) 1 1 + I 0 /I (1.14)
In this equation, µ 1 represents the value of the effective friction in the highinertial number regime, the so-called collisional regime described by da Cruz et al. at which they predicted the effective friction would saturate. I 0 is then a constant characteristic of this transition between the dense flow regime of a linear friction law to this saturation in the collisional regime. Going further, they generalized that friction law in 3D in a way that could also be applied to complex flows. So how does this compares to the findings of Boyer et al. [START_REF] Boyer | Unifying suspension and granular rheology[END_REF]? What are the differences between a suspension and a dry granular media and how can we link the two? Firstly, in a suspension, there is no saturation of the effective friction coefficient. This is so because of the suspending fluid and the hydrodynamic contribution to the stress. Because the effective viscosity of the suspension reads η s (J) = η f µ(J)/J, at high value of the viscous number J, the dominant term in µ(J) should scale as J. At intermediate values of J, the friction law should allow to retrieve the Einstein viscosity. Regrouping this intermediate and high J contributions constitute the hydrodynamic part of friction law. On the other hand, reducing J to an almost-zero value by reducing the viscosity of the carrying fluid η s should make a suspension behave as a dry granular media, and thus the friction law should be the one defined by Jop et al.. The most simple way to add this contact contribution to the hydrodynamic one is the one proposed by Boyer et al. and should read:

µ(J) = µ 0 + (µ 1 -µ 0 ) 1 1 + J 0 /J + 5 2 Φ m J 1/2 + J (1.15)
Going from a dependency in I to a dependency in J is a priori simple, as the two quantities are linked by a single dimensionless number, the Stokes number, that compares the kinetic energy of a particle to the viscous dissipation: St = I 2 /J. In practice this is still a researched area, as the transition value of the Stokes number between the two asymptotic regimes remains to be precised [START_REF] Tapia | Viscous to inertial transition in dense granular suspension[END_REF].

These constitutive equations are often called, in the mechanics' sense, local: at a given point in space, determining either the state of stress or the state of deformation allows access to the other, without having to consider what is happening at any other point in space. They give excellent results in a lot of experiments and simulations, and are often enough to describe granular flows, but still some weak points remain.

. Limits and non-localities

A review from Forterre and Pouliquen [START_REF] Forterre | Flows of dense granular media[END_REF] (the two co-authors of Jop in [START_REF] Jop | A constitutive law for dense granular flows[END_REF]) in 2008 presented the different efforts towards a constitutive law for dry granular flows, but also pointed out what still escaped comprehension of granular flows with their attempt. Since then, a lot of problems have been tackled, furthering the understanding of granular flow, and a lot still remains to be done. I just mentioned the transition from an inertial to the viscous regime, depending on the Stokes number. In their work, Tapia et al. [START_REF] Tapia | Viscous to inertial transition in dense granular suspension[END_REF] changed gradually the carrying fluid from water (η f = 1 mPa.s) to a water/UCON oil/sugar mixture of viscosity η f = 86 mPa.s and compared results obtained to those obtained with air as a carrying fluid (η s = 0.0183 mPas.s). Maintaining a constant volume fraction Φ, they were able to obtain results matching the findings of Boyer et al. [START_REF] Boyer | Unifying suspension and granular rheology[END_REF] for pressure-imposed flows, with a constant Newtonian viscosity at low Stokes number (high J/low I), and an apparent growing effective viscosity in the frictional regime of high Stokes number. They propose a shift in paradigm in the definition of these dimensionless numbers: instead of viewing J as the ratio between the viscous timescale to the shear timescale, they propose to see it as a ratio between the viscous stress η f γ to the confining stress P p . This way, the problem of this viscous to inertial transition becomes a problem of stress additivity; they then define a new dimensionless number K = J +αI 2 that represents the total of the viscous and inertial stress compared to the confining stress, with α a tunable parameter. In doing so, they can obtain an excellent collapse for all viscosities of the carrying fluid (and even the dry equivalent of their suspension) on either the friction law µ(K) or the dilatation law Φ(K). However, both cannot be obtained with the same value of α, showing that stress-additivity is not as evident as it would seem. Forterre and Pouliquen [START_REF] Forterre | Flows of dense granular media[END_REF] had already pointed out the problem of stress-additivity with the possible existence of cohesion between dry grains. Rognon et al. [START_REF] Pg Rognon | Rheophysics of cohesive granular materials[END_REF] studied numerically cohesion by defining a cohesion number C = F c /P p d 2 , with F c the typical cohesive force between two particles of diameter d. This cohesion number thus compares the cohesion stress to the confining pressure. The main effect of the cohesion in their work was to artificially raise the inertial effects in the friction and dilatancy laws. Very recently, Gans et al. [START_REF] Gans | Cohesion-controlled granular material[END_REF] designed an experimental way to control the cohesion that would help further research on the matter. Vo et al. [START_REF] Vo | Additive rheology of complex granular flows[END_REF] proposed to unify all relevant stresses in a single dimensionless parameter I m , as

I m = I ( 1 + α 1 /St 1 + α 2 C ) 1/2
, where α 1 and α 2 are tunable parameters that account to the relative importance of the shear-rate dependent effects (inertial to viscous) and the stresses opposing the movement (confinement and cohesion), respectively. The model yields excellent results, but remains to be validated experimentally.

Forterre and Pouliquen [START_REF] Forterre | Flows of dense granular media[END_REF] pointed out an other aspect of granular flows that escapes the description of local constitutive laws, even in the ideal case of a perfect understanding of stress-additivity: it remains impossible today to derive these constitutive equations from microscopic properties of the particles. Elasticity and roughness have been proven to greatly impact the rheology of granular flows, whether cohesion is involved [START_REF] Mandal | Flows of cohesive granular media[END_REF] or not [START_REF] Tapia | Influence of surface roughness on the rheology of immersed and dry frictional spheres[END_REF]. Even more, the existence of an effective static friction coefficient µ 0 in the friction law, even for frictionless particles, reveals the importance of the microstructure: this observation can only be explained by considering that particles are entangled. As a result, granular flows can exhibit non-local behaviors, with the formation of chain forces and the importance of wall conditions. This is well-known in the static case with the Janssen effect [START_REF] Ha Janssen | Versuche uber getreidedruck in silozellen[END_REF], but has recently been shown as a major effect in dense granular flows that ultimately leads to clogging [START_REF] Mcmillan | Visualizing force chains in clogged silos[END_REF].

The flow structures the material. As the structure changes, the properties change. Forterre and Pouliquen [START_REF] Forterre | Flows of dense granular media[END_REF] then argue that the exact rheology of granular materials is history-dependent, while this is not captured in the proposed constitutive equations. While it had been observed before, it has been demonstrated by Blanc et al. [START_REF] Blanc | Microstructure in sheared non-brownian concentrated suspensions[END_REF] that the microstructure of a sheared suspension was anisotropic, with contact forming mostly along the compression direction. Consequently, shear-reversal experiments [START_REF] Blanc | Local transient rheological behavior of concentrated suspensions[END_REF] allow experimentally to break the shear-induced structure to distinguish the hydrodynamic component in the viscosity of a suspension from the pure contact component. Most recently, Blanc et al. [START_REF] Blanc | Rheology of dense suspensions under shear rotation[END_REF] designed and tested a cross-shear rheometer that allows to go further, to probe the effect of the microstructure not only in 1D with shear-reversal, but going in any direction in a 2D plane. Their first experimen-tal results showed excellent agreement with numerical simulations and allowed to decouple hydrodynamic and contact contribution in any spatial direction.

The structuring of the material gives rise to peculiar behaviors. For suspensions, the friction law µ(J) is supposedly continuous and monotonous, and the deduced viscosity should be a function of Φ only (see section 1.3.1). However, it has been showed that dense suspensions could exhibit shear-thickening or shear-thinning, an increase or decrease in viscosity with shear-rate. The shearthickening behavior can be discontinuous, with a sudden jump in the viscosity at a given shear-rate. While it has been argued by Vàzquez-Quesada et al. [START_REF] Vázquez-Quesada | Shear thinning of noncolloidal suspensions[END_REF] that this type of behavior could be induced by the non-Newtonian properties of the carrying fluid itself (the shear-rate in the lubrication layer between two particles being a few orders of magnitude higher than the global mean shearrate), it has been proven to happen in the case of a perfectly Newtonian fluid. Wyart and Cates [START_REF] Wyart | Discontinuous shear thickening without inertia in dense non-brownian suspensions[END_REF] proposed a model to account for both continuous and discontinuous shear-thickening of suspensions: in their model, the transition is activated by the contact between particles. Consequently, there is a characteristic pressure scale P * at which particles come in contact and friction comes into play. The suspension is then characterized by two different jamming volume fraction Φ m , one in the frictionless state and an other one once the friction is activated. Interestingly, this partially explains the hysteresis in granular flows that Forterre and Pouliquen found troubling [START_REF] Forterre | Flows of dense granular media[END_REF]. Clavaud et al. [START_REF] Clavaud | Revealing the frictional transition in shear-thickening suspensions[END_REF] since performed pressure-imposed experiments in a rotating drum to experimentally validate this model and further bridge the gap between microscopic properties of the particles and the rheological behavior of a suspension.

Finally, the local constitutive equations assume the homogeneity of the shear-rate γ to define the dimensionless numbers I and J. Generally, in an experiment, the values of the shear-rate and shear stress in the whole material are deduced from a measurement performed at a boundary (the measuring cell of a rheometer). However, as pointed by Forterre and Pouliquen [START_REF] Forterre | Flows of dense granular media[END_REF], in confined systems, in the case of a flow where the pressure scale dominates over the inertial and the viscous stresses (I, J < 10 -2 ), the granular material is in a shear-rate independent regime where µ = µ 0 and Φ = Φ m . The shear-rate is inhomogeneous and a macroscopic spatial-average point of view, with values deduced from a single local measurement, fails to capture it. A proposed way to correctly describe these non-local flows is to explicitly write non-local equations. In these non-local models, a quantity linked to the shear-rate is generally introduced. This quantity is produced at a moving wall and diffuses in the material. The differential equation for the diffusion of this quantity gives a diffusion length: if the diffusion length is large enough, the quantity (and thus the shear-rate) is homogeneous. Otherwise, the quantity decays ex-ponentially from the source, correctly describing the inhomogeneous flow of a confined system. The object of this manuscript is not to discriminate between the existing models, only to capture the inhomogeneity of the flow of a granular film. Only one of them will be applied then, but it should be noted that Kamrin produced a review of the existing models and their particularities [START_REF] Kamrin | Non-locality in granular flow: Phenomenology and modeling approaches[END_REF]. A few of them should however be mentioned here. Bouzid et al. [START_REF] Bouzid | Nonlocal rheology of granular flows across yield conditions[END_REF] propose that because of the confinement, particles need to overcome an additional microscopic yield. As a result, they write that this is equivalent to having the inertial number I itself as a diffusive quantity. Their model does not prejudge of the microscopic origin of this additional yield stress and do not provide a physical explanation of this phenomenon, but accurately captures the flow of their numerical simulation.

An attempt at defining this diffusive quantity that predates the one from Bouzid et al. has been done by Bocquet et al. [START_REF] Bocquet | Granular shear flow dynamics and forces: Experiment and continuum theory[END_REF]: they observed experimentally this non-local behavior for a dry granular material in a cylindrical Couette cell. They defined a "granular temperature" T as the fluctuations of the momentum of the particles: T =< mV >, with m the mass of a particle, V its velocity and < ⋅ > the root mean square. The idea here is that even in a steady state, the particles at a given position may have different velocities and collide. Through elastic collisions, they exchange energy and momentum. The initial velocity fluctuations are produced at the moving wall and diffuse through the media. This corresponds to an extended kinetic theory: Bocquet et al. [START_REF] Bocquet | Granular shear flow dynamics and forces: Experiment and continuum theory[END_REF] propose to modify the expression of the viscosity of the traditional kinetic theory to account for its divergence at high volume fraction. This approach presents the advantage of giving its application domain from this viscosity expression: one consequence of it is a power-law linking the velocity fluctuations (and thus T ) to the local shear-rate of the time-averaged flow. It also gives a physical understanding of the microscopic process, and for this reason it is the approach selected in this manuscript to explain the inhomogeneous flow of granular films. It will be more thoroughly discussed in secton 2.5 Lastly, a lot of work has been produced to develop a self-activated process in the form of a cooperativity length. This was first written in an experimental work by Goyon et al. [START_REF] Goyon | Spatial cooperativity in soft glassy flows[END_REF], who defined the concept of fluidity g = γℓ /τ , with γℓ the local shear-rate at a given position and τ the shear stress. The fluidity is then the diffusive quantity in this model, and should be interpreted as the fact that re-arrangement of particles at a given point in space locally reduces the resistance to movement for the neighboring particles, allowing them to re-arrange in turn. It has since been extended by a number of numerical simulation [START_REF] Kamrin | Nonlocal constitutive relation for steady granular flow[END_REF][START_REF] Zhang | Microscopic description of the granular fluidity field in nonlocal flow modeling[END_REF][START_REF] Kim | Power-law scaling in granular rheology across flow geometries[END_REF].

. Objectives

From all of this, a few of the main objectives of this work appear. Firstly, the most evident one is to pursue the rheological work started by Timounay in her PhD: granular films will be put in a rheometer and deformed in a simple-shear configuration. This way, the surface area will remain constant and consequently the surface fraction ϕ will also remain constant. This will allow to refine measurements as well as the general mechanical properties of this peculiar object, and maybe deduce the effect of a few parameters (particle size, surface tension, surface fraction,...) on these properties.

The rheological properties of granular films will be compared to the usual local laws of granular matter. Because of the capillary pressure felt by the particles at the liquid-air interface, it will be shown that granular films are easily put in a very confined state with strong non-local effects. This is ideal: because of their 2D nature, local measurements on all particles are easily done. This will be taken advantage of as a way to deepen the understanding of granular flows in general, and more specifically the transition from a flowing regime to a quasi-static regime, and their specific dynamics.

Moreover, it should be noted that the 2D-nature of the film also allows to probe the microstructure of the particles. An attempt will be made to correlate the microstructure to the rheological properties.

Finally, because the particles interact attractively through the surface tension, it should be noted that granular films allow for a controlled cohesion, even though its measure remains an experimental challenge. With the thickness of the liquid film being so small compared to the other dimensions, the influence of the carrying fluid is an interesting question. The issue of stress additivity is then perfectly illustrated by granular films. Even more, because of their 2D nature, they seem to be good candidates to probe the effect of interfacial phenomenons.

-Materials and Methods

This chapter relates all the concrete elements and methods that are used to create the granular films in this study. It also give the methods used to perform rheological measurements, record their flow and characterize the granular films, and in particular measure their surface fraction and the relative local order of the assembly of particles. Lastly, the basis of the extended kinetic theory used in this work is developed. 

. Elementary components: particles and soap solutions

The objective here is to produce a dense particle-laden soap film that can be placed inside a rheometer cell afterwards, in order to shear the granular film and study its behavior. This imposes a few conditions on the materials used, as the granular films must be transportable and of a size adapted to the rheometer cell.

The particles are Dynoseeds from Microbeads. They are monodisperse spherical beads of polystyrene (-CH 2 CH(P h) n -) of different size and of density 1.05. Throughout the experiments performed on particle films, particles of diameter d = 40 µm, d = 80 µm, d = 250 µm have been used. Particles of diameter d = 140 µm have also been used to study particle rafts developed in chapter 5. In any case, they are sieved to get rid of possible outliers in the commercial batch. The wetting contact angle ζ of the solution on the particles being of prime importance in the way the particles adsorb at the interfaces, it is important for the particles to be as hydrophobic as possible: this makes the adsorption more stable and prevent them from sinking. The particles are treated through a process named silanization. After a cleaning with ethanol to get rid of impurities, they are soaked in a beaker filled with a solution of 1 g of silane (SiH 4 , 97%, Sigma Aldrich) diluted in 1 L of octane. In the beaker, roughly 1/3 of the volume is taken by the particles, for 2/3 for the solution. Left under agitation for 45 min, silanol groups will form and bond with the hydrogen atoms of the surface of the polystyrene beads, thus making the surface less hydrophilic. Everything is then rinsed in octane, then multiple times in ethanol. The efficiency of this process may vary depending on the diameter of the particles, as the right parameter is not really the mass of silane compared to the mass of the particles, but more to the total surface area of the particles, which is bigger for smaller particles (at constant total volume). However, the particles that have been used here all showed a contact angle of roughly ζ = 80°, measured by attaching one of them on a pendant drop. The particles of diameter d = 250 µm proved however to be hard to use: as they are the heaviest used, the surface tension proves to be a bit low to pull them out, and it is a lot harder to create a very dense film. In the best realization, a not-so-close-to-the-jamming surface fraction of ϕ = 0.72, led to very visible depleted zones of pure film with no particles who spontaneously appeared and disappeared in the shear, until a total destabilization of the film. the longevity of the granular films (this is a well-known effect due to the hydrophily of glycerol also mentioned in [START_REF] Pasquet | An optimized recipe for making giant bubbles[END_REF][START_REF] Roux | Everlasting bubbles and liquid films resisting drainage, evaporation, and nuclei-induced bursting[END_REF] for example). It also makes it so that the solution almost matches the particle density, as to avoid density effects or, in the case of the study of granular rafts, sedimentation (see chapter 5). I mostly used milli-Q water as Barman et al. [START_REF] Barman | Simultaneous interfacial rheology and microstructure measurement of densely aggregated particle laden interfaces using a modified double wall ring interfacial rheometer[END_REF][START_REF] Barman | Role of capillarity and microstructure on interfacial viscoelasticity of particle laden interfaces[END_REF] showed that ion concentration affects noticeably the way particles interact at a liquid-air interface, but as I also performed tests with tap water, no real difference has been found. This may be so because the solution is already largely ionic, as I add tetradecyltrimethylammonium bromide (TTAB) (CH 3 (CH 2 ) 13 N (Br)(CH 3 ) 3 , ionic surfactant, Sigma-Aldrich) at a concentration of 10 g⋅L -1 . This corresponds to approximately eight times the critical micelle concentration [START_REF] Fuguet | Critical micelle concentration of surfactants in aqueous buffered and unbuffered systems[END_REF] and assures that the surface tension does not vary in the experiments: even if the surface area between particles varies during shear, there should always be a great number of micelles in a film to serve as reservoirs of surfactant molecules and assure that Gibbs elasticity in not a limiting factor (see section 1.1.2). The presence of surfactant is a necessity to create a soap film and by extension a granular film [START_REF] Gennes | Capillarity and wetting phenomena: drops, bubbles, pearls, waves[END_REF][START_REF] Pasquet | An optimized recipe for making giant bubbles[END_REF]. The addition of TTAB in the solution decreases the stiffness of the liquid-air interfaces: by a pendant drop method, it is found to be χ = 34 mN⋅m -1 .

To test for viscous effects in the dynamics in granular films, Natrosol has been added to the solution. Past studies [START_REF] Olce | Instabilités de cisaillement dans l'écoulement concentrique de deux fluides miscibles[END_REF] showed that adding 4.5 g⋅L -1 of Natrosol in water would raise the viscosity of the solution by a factor 100, while maintaining Newtonian properties for a large range of shear-rates. Granular films produced with this solution have proven to be less dense and quickly destabilize, creating large region of naked soap films with no particles. As a result, they could not be compared to granular films made without Natrosol and will not be displayed.

Lastly, a so-called surface viscosity [START_REF] Cantat | Les mousses: structure et dynamique[END_REF] holds a major role in dissipation for soap films, due to their 2D nature. A study from Pitois et al. [START_REF] Pitois | Liquid drainage through aqueous foam: study of the flow on the bubble scale[END_REF] showed that the addition of a co-surfactant like dodecanol (DOH, C 12 H 25 OH) in a surfactant solution does not modify the viscosity nor the density of the solution. As it is a co-surfactant, it is not soluble in water alone, but the fact that its molecular structure is so similar to usual surfactants and that its polar head is small allows it to be soluble in between surfactant molecules, at the interface and in the surfactant micelles. Pitois et al. [START_REF] Pitois | Liquid drainage through aqueous foam: study of the flow on the bubble scale[END_REF] also demonstrated that it had two distinct effects: at small doses, dodecanol reduces the surface tension χ, while at bigger concentration, a saturation occurs (just like it would for a surfactant), and it is believed that, as dodecanol is not soluble in water, it mainly goes inside the surfactant micelles. This has for effect to raise the surface viscosity. I measured the surface tension for different concentrations of dodecanol by pendant drop method, and plotted the result on figure 2.2. It shows that the surface tension χ decreases up until a concentration in dodecanol of c DOH = 0.15 g⋅L -1 . This is larger that what had found Pitois et al. [START_REF] Pitois | Liquid drainage through aqueous foam: study of the flow on the bubble scale[END_REF] but is expected: as the concentration of TTAB in the solution is bigger than in their work, there is more "space" available for dodecanol molecules. In order to study the effect of surface viscosity then, I will set the concentration of dodecanol above the saturation, at c DOH = 0.2 g⋅L -1 . Higher concentrations are possible to reach, but as for the use of Natrosol, it proved to be complicated to obtain dense granular films then. 

. Generation of granular interfaces

In order to create a granular film, we first generate a granular raft. They are created in a Petri dish by filling a few millimeters of the Petri dish with the water-glycerol-TTAB solution, before spreading gently particles on top until the surface is fully covered. The surface is stirred manually to assure that the particles are adsorbed at the interface and form a monolayer, and are not just resting on top of each others in packs. In chapter 5, granular rafts will be themselves studied. In those experiments, the rafts are built directly under the rheometer. A two-cylinder frame of mean radius R = 30 mm, and separated by 2e = 10 mm, is filled with 44 g of solution in order to have always the same quantity of solution, near-top filled with still flat liquid-air interface. The particles are then spread directly in the cell. As shown in the photo of figure 2.5, the resulting raft is of annular shape. Once the measuring cylinder is descended inside the raft, this constitutes a 

. Local velocity fields

The bottom of the frame in which the films are created is a see-through window: I take advantage of the 2D-nature of the granular film to record the displacement of the particles with a camera. Two cameras were used throughout the experiments, the first one is a TIS DMK 37AUX273 (Stemmer Imaging) of resolution 1440x1080 px at which a framerate of 25 fps is achieved, with a small telecentric objective (VICO WWH10-110ATV2, Stemmer Imaging), that allows to record, in the plane of the interface, a rectangle of 5 by 6.5 mm. The other is a high-speed Phantom Miro M-120 of resolution 1920x1200 px with a Nikon objective, that has been ultimately preferred for its ability to reach a high frame-rate with no loss in resolution, used at a framerate of 50 fps. The image from the high-speed camera is of the approximate size of 6 by 9.6 mm in the plane of the interface. In both cases, the image is large enough to record a whole gap on the smaller side. The images are generally reduced to record not more than the gap width on the smaller side, for better memory management. A raw captured image of granular film is proposed on figure 2.6. The images are then treated through a Digital Image Correlation (DIC) software (DaVis 10.2, LaVision) to compute the instantaneous displacement field of the particles between two images. It is computed in a Cartesian system (O, x, y) whose origin is the center of the circular frame holding the granular film. Figure 2.7 shows an example of a displacement between two images for a granular film of particles d = 80 µm, recorded at 16 fps (images are skipped to maintain the same displacement for all applied viscosity), for a velocity of the measuring cylinder of Ω = 0.03 Hz (that corresponds to a velocity of the cylinder of 2.6 mm⋅s -1 , so 0.16 mm between two images). This shows that the displacement follows the moving wall close to it, with no slip velocity as the displacement recorded on the x-axis is the imposed displacement by the wall, but also with no relevant movement in the radial direction: the only recorded displacements on the y-axis are on the edge of the image and should be attributed to curvature. These displacement maps show that the axial symmetry of the system is translated into an axial symmetry in the displacement, as the displacements are symmetrical around the x = 0 axis. This computed displacement field is then converted in a velocity field in polar coordinates ⃗ V (r, θ, t). the norm of the velocity computed between to images. It confirms that at the moving wall, the velocity of the particles matches the velocity of the wall. It also shows that the axial symmetry is not necessarily respected: at a given radial position r, it is possible to find different velocities. The axial symmetry is then true in average, while fluctuations in time may occur. These fluctuations do not concern individual particles, they seem to extend to a group of particles, and highlight the importance of collective motion for granular media.

It is most important, to disentangle collective from individual motion, to get access to the velocity at the particle scale. To do so, the displacements fields are computed on a tesselation of boxes paving the whole recorded image. The size of the boxes is chosen in order to obtain one and only one particle in each box. For particles of diameter d = 80 µm, this corresponds to using squared boxes of approximately 11 px of size. As particles do not necessarily fit in the middle of a box, the tesselation is reproduced and shifted from one third of the boxes size and the software selects the best correlation from the computed displacements, as it should correspond to the box that fits the best to a particle. This limits the accessible range of particle sizes: to correctly capture the displacement of individual particles, it is important that the boxes are at least 10 px of size. The gap for the study of granular films occupying in total roughly 720 px on the camera sensor, this means that a maximum of 72 particles can fit in the gap to accurately compute the velocity fields for the particles. For the study of granular films, the gap size is e = 3.5 mm. This translates to a minimum size of particles that can be studied of d = e/72 ≈ 49 µm.

On the other hand, from these velocity fields, we want to develop a model that interprets the granular films as a continuum. This is only possible if a big enough number of particles fit in the gap, and we estimate this number to be approximately 10. This gives a maximal boundary for the size of the particles as d = e/10 = 350 µm. There are then two boundaries of particle diameter usable in the experiment, 10 < e/d < 72, or d ∈ [49; 350] µm. This range fixes the particle size usable for the experiments: only four particle sizes sold by this manufacturer fit the acceptable range of diameter needed for this study; d = 40 µm, d = 80 µm, d = 140 µm, d = 250 µm (even though 40 < 49, it will be considered close enough and we will find no evidence of this being wrong).

. Microstructure characterization

From the images captured with the camera, we can detect the position of the particles in the films and rafts. To do so, I use a home-made algorithm using the imfindcircles function of MATLAB, that detects and plots circles on a image. It is based on a circular Hough transformation: a high gradient in luminosity is interpreted as a possible edge of a circle and is designated as a "candidate" pixel. A range of possible radii for the circles is given, coming from the knowledge of the actual size of the particles: particles of diameter d = 80 µm are supposed to have a diameter of 11 px, and a little leeway is added. From the candidate pixels, all possible centers are determined. If enough candidate pixels are compatible with a possible center in particular, then the center is confirmed and associated with a specific radius. Additionally, a non-overlapping condition gives that no more than one center can be found inside of a circle. This algorithm is quite noise-resistant, in this regard a pre-treatment is performed on ImageJ to artificially increase contrast. .9 shows an image taken by the camera, cropped in a way that the image focuses entirely on the gap, and that no other thing that the particles can been seen, and in particular the walls of the cell. The moving wall is at the bottom of the image. Next to it is displayed the image produced by the algorithm, the blue circles represent the detected particles. As can be seen, little to no particles are detected at the bottom of the image, close to the moving wall. This is so because at the vicinity of the walls, it is experimentally challenging to obtain a uniform lighting. As a result, the images lack contrast on the edges and the detection is difficult. The detection is reliable in more than half the gap, located in the center. We can use the detected centers to characterize the microstructure of the granular material in a large central zone and infer the surface fraction ϕ.

. Surface particle fraction ϕ

From the detected centers and their associated radii, it is possible to directly compute the particle surface fraction as the ratio between the surface occupied by the particles and the size of the whole image. It is even possible to compute a surface fraction as a function of the radial position in the gap ϕ(r). However, this direct computation raises two main issues: firstly, we are reliant on the pixel resolution of the particles. For an apparent diameter of 11 px, as is the case for particles of diameter d = 80 µm with this setup, an error of one pixel in the evaluation of the radius ultimately leads to an error of 18% in the evaluation of ϕ (the error being 1 -(d + 2)/d). Secondly comes an issue of scale while evaluating ϕ(r). For particles of 80 µm in diameter, only about 43 particles can be fitted in a gap that is 3.5 mm wide. Evaluating ϕ(r) assumes that between two successive positions r and r + dr, the granular material, while inherently inhomogeneous (one would point either at a particle or at a hole between particles, not at a 3/4 of a particle), can be interpreted as an homogeneous body of particle fraction ϕ(r). This effect is certainly reduced by averaging on a great number of images. Here, the computation of particle fraction has been averaged over 500 images, which may not be sufficient to obtain noise-free results with a satisfying spatial resolution. These two issues of pixel resolution and homogeneity actually scale in opposition with the size of the particles: while reducing the diameter of the particles allows for a smaller scale of reasonable homogeneity, it actually increases the relative error made in the evaluation of the radius. As a result, it is difficult to obtain satisfactory results by evaluating the particle fraction this way.

Figure 2.10 shows the computed particle surface fraction from figure 2.9 as a function of the reduced radial position in the gap (s = 0 at the moving wall, s = 1 at the static wall, s = (r -R int )/e) for a given film of particle size d = 80 µm. As the treated images are cropped to exclude the vicinity of the walls, it does not show the two major drops to 0 at both walls, but can be guessed by the few points around s = 0.2 for which significantly lower surface fraction is recorded. This is an issue with the measuring technique, as we actually see particles at the walls (see figure 2.6) and it is so because of the difficulty to detect particles at the walls. Given a reasonable range of radial position s ∈ [0.2; 0.8], the mean particle surface fraction is ϕ = 0.77 for this particular example. It varies slowly but most importantly not monotonously with the radial position. It seems that it slowly decreases to reach a minimum value in the center of the gap, and then goes back up in a noisy way. Chapter 4 will show that the granular films flow inhomogeneously, with a monotonous decrease of the shear-rate away from the moving wall s = 0. As a result, we would expect the surface fraction to follow the opposite trend, with an increase away from the moving wall. This is not the case. It is supposed then that the slow decrease may be attributed to lighting effects, as the lighting is the most intense in the middle of the gap, leading to errors in evaluating the radius of particles, and the overall noise. The second part on the other end, where the film is almost not sheared, illustrates more the lack of significantly different images for the averaging at this position, as particles are not moving from one image to the next. Overall, this seem to indicate an homogeneous fraction everywhere in the gap. Looking at particle rafts supports this. Figure 2.11 shows the surface fraction as a function of the reduced radial variable for different applied stresses, on a raft with particles of diameter d = 140 µm. No relevant variation with stress is recorded. Regarding the spatial coordinate however, there seems to be a small dip in the middle at s = 0.5, as for films. In chapter 5, it will be demonstrated that for particle rafts, increasing the applied stress allows to transition from a strongly inhomogeneous shear-rate to an almost constant shear-rate on the whole gap. In the purely homogeneous cases (blues), since the recorded shear-rate is homogeneous, there is no reason for ϕ to be inhomogeneous, and this should also extend outside of the measured range. And since the value of ϕ measured in the available range is independent of stress and there is no evolution of the number of particles through the experiment (I checked for sinking particles), ϕ also has to be homogeneous for all applied stresses, even in the case of an inhomogeneous flow.

The surface fraction presented here (ϕ = 0.77 for the granular film) is very close to the jamming fraction, estimated at roughly ϕ = 0.82. While it varies from one film to another, it is always found to be close to the jamming. Consequently, an argument could be made here about the apparent homogeneity of the recorded surface fraction, as for very dense granular materials, a small inhomogeneity in ϕ that might be too small to record experimentally, could ultimately lead to a very large inhomogeneity of the materials' properties, as the viscosity diverges at jamming. This has been developed when discussing granular suspensions in section 1.3.1, but also when discussing the confined limit of the local models. If the variation of ϕ are too small to be recorded experimentally, it can be considered that the surface fraction is homogeneous and that other quantities are required to describe the material. But it would also be advisable to reach a better precision, and at least obtain sub-pixel resolution in the evaluation of ϕ to remove one of the two problems cited for the direct computation, by computing the radial correlation function.

. Radial correlation function

The radial correlation function allows for an evaluation of the microstructure and the existing order in particle films through the typical distance between particles and the long-range persistence of such a parameter. To this aim, we consider the coordinates of the particles' centers thus detected as coordinates of nodes in a network. Given the coordinates of the centers, the network is numerically produced by the KDTree function of the scipy library of Python. It is then possible to inquire specific information from this structure, such as the N k closest neighbors of the node k, or the n k (r) nodes at distance r from the node k. It is this second inquiry that we use to compute the radial correlation function g(r). To put it simply, it can be considered as a measure of the probability to find a particle at a distance r from a generic reference particle. It is defined as such:

g(r) = < n k (r + dr) -n k (r) > k ρ d π ((r + dr) 2 -r 2 ) (2.1)
where ρ d is the average number density of particles on the whole image. It then compares the density of particles in a slice of thickness dr at distance r from a generic particle to the mean density of particles: for an homogeneous and isotropic lattice (and after a first diameter to account for impenetrability), the pair correlation function is roughly constant and equal to one. For an ordered material, particles occupy specific positions dictated by their dimensions and the interaction between one an other. In consequence, the pair correlation function presents peaks at the more favorable positions to occupy in the assembly. The stronger the order is, the higher are the peaks.

For granular films, in order to investigate the effect of the flow on the microstructure of the material, it is useful to define a positional radial correlation function g S (r), as the ratio of the density of particles at distance r from a generic particle k in a subset S of all particles to the mean density of particles:

g S (r) = < n k (r + dr) -n k (r) > k∈S ρ d π ((r + dr) 2 -r 2 ) (2.2)
While this positional radial correlation function only considers the particles k in S as "roots" (i.e. as generic reference nodes), it still processes all the nodes of the network when evaluating n k (r), as to maintain a maximal spatial resolution independently of S. Typically, to produce a "positional" radial correlation function, the subset S is chosen as the particles in a specific zone of the material, chosen as to have the same flowing properties. This allows to check for the radial homogeneity of such a quantity, for example.

More precisely, it is also possible to check for the homogeneity of the surface fraction with this positional radial correlation function. In 2D, granular materials constituted of monodisperse discs arrange in an hexagonal lattice. It is then possible to relate the position of the peaks in the radial correlation function to the typical inter-particulate distance a. To visually represent it, an effective homogeneous hexagonal lattice is represented in figure 2.12, in which three particles of diameter d are separated by an inter-particulate distance a from one center (a node) to an other. This inter-particulate distance a is linked to ϕ and d with: [START_REF] Cantat | Les mousses: structure et dynamique[END_REF] shows the positional radial correlation function g S (r), computed from a single image taken of a granular film of mean surface fraction ϕ = 0.77, for three subsets of particles defined by their position is the gap, in terms of reduced space variable: S(s ∈ [0.3; 0.4]), S(s ∈ [0.5; 0.6]) and S(s ∈ [0.7; 0.8]). Note that the curves have been shifted for readability. The distance from the reference particle, on the x-axis, is normalized by d the particle diameter. There is at first a plateau whose value is 0 (or 2 and 4, accounting for the vertical translation), for the particles cannot be separated by less than a diameter d. What appears then is that the values associated with each peak are different from one subset to another, and this will be detailed later while discussing the possible link between order and the flow, in section 2.4. However, the position of the peaks are the same for all subsets. They fit the theoretical peaks' position for an hexagonal lattice of surface fraction ϕ = 0.77, with a mean inter-particulate distance a ≃ 1.085 × d. This validates the fact that we consider the films to have an homogeneous surface fraction ϕ, since this inter-particulate distance does not vary. 
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. Hydrodynamical model: the extended kinetic theory

The study of granular films' flow in chapter 4 will reveal that, in the way they are created here, they are always in a shear-rate independent regime, with a particle surface fraction apparently homogeneous and close to the jamming ϕ m . This confined regime goes in pair with an inhomogeneity of the flow, with high shear-rates close to the moving wall. This is one of the limits of the local models as presented in section 1.3.3. Defining a non-dimensional number from a spatially averaged shear-rate, in this case, is a flawed perspective, as it gives no intuition of the real flow. Out of the many existing models previously cited that try to extend on these confined regimes and make sense of them, one in particular has been picked to describe the flow of granular films. This does not mean that the others do not apply, as they share some major similarities in the solutions they give for the velocity profiles, but this system should not allow to distinguish between them. I chose to use the extended kinetic theory developed by Bocquet et al. [START_REF] Bocquet | Granular shear flow dynamics and forces: Experiment and continuum theory[END_REF], mainly for its simplicity and the way it conveys agreeable physical sense to the way energy is propagated through the material, while leading to nontrivial results. This section details the model, adapted from the work of Bocquet et al. [START_REF] Bocquet | Granular shear flow dynamics and forces: Experiment and continuum theory[END_REF], and developed in the 3D case (as was the case in the original work).

In this extended kinetic theory, particles are assumed to behave as partially elastic not deformable spheres, characterized by their diameter d and their density ρ, and a restitution coefficient that will be hidden in prefactors here for the sake of simplicity (as the material that constitutes the grains here is always polystyrene, it should not vary). Even though friction has been proven to hold a role in dense granular flows, as stated in section 1.3.3, it is here neglected. The general goal is to describe how the particles, through immediate collisions, exchange energy and deduce the velocity at all point. Strictly speaking, this is a local approach, in which one considers there exists a local mean relationship between the shear stress and the shear-rate; but since it extends on the usual local laws in the confined regime, for which an inhomogeneous flow is recorded for a seemingly homogeneous granular material in an homogeneous state of stress, it is sometimes designated as non-local.

The kinetic theory for granular media introduces then the concept of a "granular temperature" that diffuses in the material, in analogy with the kinetic theory for gazes. As Bocquet et al. [START_REF] Bocquet | Granular shear flow dynamics and forces: Experiment and continuum theory[END_REF] defined it, it is the timefluctuations of the kinetic energy of particles at a given position: T (r, θ) = m⟨V (r, θ, t) 2 -v θ (r) 2 ⟩, where ⟨⋅⟩ is the time-average, m the mass of a particle and v θ (r) = ⟨V (r, θ, t)⟩: as will be showed later on, in the experiments the circular coordinates are used and in the permanent regime, the mean velocity is a function of the radial coordinate r only. In this work, the velocities are directly recorded, and since the mass of particles may vary from one experiment to an other (as I vary the diameter d), it is more convenient to equivalently define the temperature as the velocity fluctuations only: T (r, θ) = ⟨V (r, θ, t) 2 -v θ (r) 2 ⟩. As all quantities in the flow, it is supposed to obey a transport equation:

ρ ( ∂T ∂t + ⃗ V ⋅ ⃗ ∇T ) = -⃗ ∇ ⋅ ⃗ Q -τ ∶ D -ϵT (2.3)
where τ is the stress tensor, D is the symmetrized strain rate tensor whose coefficients are defined by

D i,j = 1 2 (∂ i V j + ∂ j V i )
, ϵ is a coefficient representing the temperature loss rate per unit volume, and ⃗ Q is the heat flux. It is supposed in this hydrodynamical model that the stress and the displacement tensor are in relation by a local and linear relationship through the pressure P and a local effective viscosity η, just like it would for a Newtonian fluid. As for the heat flux, it is assumed it can be written through a Fourier law:

⃗ Q = -λ ⃗ ∇T (2.4) 
In the permanent regime, there exists no time-dependency. And as the velocity varies radially and is supported by the orthoradial axis, the diagonal where λ(T ) is the diffusion coefficient, ϵ(T ) the dissipation coefficient and τ γℓ is the work of internal forces, and represents the local heat production, as τ is the shear stress and γℓ the local shear-rate. In that form, the heat equation shows that the granular temperature is produced by the internal forces, in majority at the friction with the moving wall where the shear-rate is the most important (see chapter 4), and as particles collide they exchange energy, locally raising the temperature, allowing it to diffuse. The motion of a particle, through collisions, put the other particles in motion, which reduces the resistance of neighboring particles to the motion, and so on. The flow is then self-produced, just created at a wall and propagated. However the collisions are inelastic which leads to a loss term, characterized by this ϵ coefficient. To go further, the production term τ γℓ can be re-written by using the local effective viscosity η(T ) = τ / γℓ . Equation 2.5 now reads:

coefficients of D are zero, while D r,θ = D θ,r = 1 2 ∂ r v θ = 1 
d dr (λ(T ) dT dr ) -ϵ(T )T + τ 2 η(T ) = 0 (2.6)
To solve the heat equation, an explicit formula for the diffusion, dissipation and viscous coefficients is needed. The three coefficients explicitly depend on the temperature T: since the temperature propagates and dissipates through contacts between particles, the coefficients depend on the frequency of the collisions f . At the first order, the frequency of collisions is the typical inter-particulate distance over the typical velocity difference of two neighboring particles. While this typical velocity difference is by definition the square-root of the granular temperature T, the typical distance between the particles is related to the value of the pair-correlation function evaluated at contact g(d). So close to the jamming fraction, it is assumed that g(d) = (1 -Φ/Φ c ) -1 , with Φ c the random close packing in 3D [START_REF] Speedy | Glass transition in hard disc mixtures[END_REF]. Building from Chapman-Enskog theory for the kinetic theory of gases, it is possible to write the three coefficients as:

λ(T ) = λ ′ ρd(1 - Φ Φ c ) -1 T 1/2 ϵ(T ) = ϵ ′ ρ d ϕ(1 - Φ Φ c ) -1 T 1/2 η(T ) = η ′ ρd(1 - Φ Φ c ) -1 T 1/2 (2.7)
where λ ′ , ϵ ′ and η ′ are material-depend dimensionless coefficients. The addition of Bocquet et al. [START_REF] Bocquet | Granular shear flow dynamics and forces: Experiment and continuum theory[END_REF] here however, is to say that this close to the random close packing, Φ ∼ Φ c , the viscosity diverges, as shown in rheological measurements on suspensions, while the other two coefficients stay accurately described by Chapman-Enskog theory. This is so because in the dense regime, correlation between particle velocities are no longer negligible as collective motion is actually dominant. To account for this divergence, the power -1 in the expression of the viscosity is replaced by a phenomenological coefficient -β: in dilute and moderately dense systems, it will take -1 as value, but will be lower for dense systems. For example, in their work a dry granular spheres, Bocquet et al. [START_REF] Bocquet | Granular shear flow dynamics and forces: Experiment and continuum theory[END_REF] found β = 1.75. The coefficients then become:

λ(T ) = λ ′ ρd(1 - Φ Φ c ) -1 T 1/2 ϵ(T ) = ϵ ′ ρ d Φ c (1 - Φ Φ c ) -1 T 1/2 η(T ) = η ′ ρd(1 - Φ Φ c ) -β T 1/2 (2.8)
Having Φ in these expression is inconvenient, as even though in the system, Φ is close to the packing to the point it should not be distinguishable from it, this also means that we expect large variations of (1 -Φ/Φ c ). Considering what has been stated before for the pair-correlation function, it is possible to re-write the equation of state for a system of inelastic hard-spheres [START_REF] Hansen | Theory of simple liquids: with applications to soft matter[END_REF] as:

1 - Φ Φ c = a ρ P T (2.9)
where a is a dimensionless coefficient that depends solely on the restitution coefficient of the particles. Conveniently, ρ is known and P is constant in the system, it is then possible to reduce the coefficients as function of only one variable, measurable in the experiments, T :

λ(T ) = λ ′ P d a T -1/2 = λ 0 T -1/2 ϵ(T ) = ϵ ′ Φ c P da T -1/2 = ϵ 0 T -1/2 η(T ) = η ′ P β d ρ β-1 a β T -(2β-1)/2 = η 0 T -(2β-1)/2
(2.10)

where λ 0 , ϵ 0 and η 0 are dependent on particle properties and pressure, constant in a given experiment. Injecting these into the heat equation 2.6 yields:

d dr (λ 0 T -1/2 dT dr ) -ϵ 0 T 1/2 + τ 2 η 0 T (2β-1)/2 = 0 2λ 0 d 2 (T 1/2 ) dr 2 -ϵ 0 T 1/2 + τ 2 η 0 T (2β-1)/2 = 0 (2.11)
Finally, the heat equation reduces to a differential equation in which the only variable is the granular temperature T . To really solve it, the exact value of the phenomenological coefficient β is needed. Going back to the definition of the effective viscosity η(T ), it is possible to write:

η(T ) = τ γℓ = η 0 T -(2β-1)/2
(2.12)

which explicitly links the local shear-rate γℓ to the square-root of the velocity fluctuations T 1/2 by a power-law whose exponent is 2β -1. Both the shear-rate and the temperature are observables that can be measured through the velocity fields computations, which allows to plot one with respect to the other to obtain an experimental value for β and solve the heat equation on T . If β = 1, the differential equation is linear and can be analytically integrated, otherwise it necessitates a numerical integration. The power-law then gives the shearrate profiles from T , and a spatial integration gives the velocity profiles v θ (r).

Now that the model has been developed, a few comments should be made. Firstly, as stated before, the model does not take into account the friction between particles. This could be problematic as it has been demonstrated that the friction coefficient between particles affect the rheology of granular materials in a non-trivial way. That however does not cause any problem to Bocquet et al. [START_REF] Bocquet | Granular shear flow dynamics and forces: Experiment and continuum theory[END_REF] to find a good agreement between the theory and their experimental results, which shows that is will probably not be a problem in the study of granular films. Secondly, as Bocquet et al. [START_REF] Bocquet | Granular shear flow dynamics and forces: Experiment and continuum theory[END_REF] studied a dry granular flow, the dissipation term is assumed to stem from the inelasticity of the contacts. In the case of granular films with a carrying fluid, while this may well be still the case, it should be considered that the dissipation could also be caused by a viscous damping in a collision. In any case, hidden in the parameter ϵ 0 , this would not affect the form of the solutions found for the velocities, but could affect the eventual normalization made while varying parameters such as the particle diameter d. Also, the model assumes that the pressure P is homogeneous is the system, and in particular to collapse both radial derivations in the diffusive term. In a cylindrical Couette system, this is a usual assumption that allows for rheological measurements, but this will be checked before applying the model.

Two more delicate points have to be noted with this model and the way I intend to apply it. Its prime assumption is the existence of instantaneous collisions between particles, even though it tries to take into account collective motion. In an inhomogeneous flow as can be seen in a confined regime, it seems like this could be the case in the densely sheared region, but on the other hand, in the large almost not sheared region of the material, particles are kept in contact for extended period of times, this would not be the case. The study of these quasistatic regions and how they can be described without the kinetic theory will be one of the main focus of this work. Finally, this whole model has been developed in 3D. However, most of this work considers that granular films are 2D objects and defines 2D quantities to describe them. Adapting the model in 2D might be possible, but it would require to define equivalences to a number of explicit parameters in 2D which is not an easy task. Timounay for example, in her PhD thesis [START_REF] Timounay | Rhéologie d'interface liquide/air chargées de grains : vers la consolidation d'un milieu aéré[END_REF], defined a mass by surface area as the mass projected on the apparent surface of a particle to replace the density of the particles in her model, with some success. A 2D pressure should then also be defined, which is an even more delicate task. The choice here is then to keep everything 3D and assume that the dynamics are the same even though the flow is restricted to a given plane.

-Basic rheological measurements on granular films

This chapter describes basic measurements made on granular films and compared to naked soap films, in the absence of particles, to understand their general behavior. The idea is to give a very general understanding of the physics at play for granular films that can be put to contribution in the subsequent chapters. An attempt to measure experimentally the surface viscosity of a naked soap film is presented, as well as its surface tension and evaporation. The chapter goes on to show that the surface tension and surface viscosity hold an important role in the global rheology of a granular film, and that horizontal granular films age. 

. Measurements on naked films

Firstly, we study the properties of soap films in the absence of any particle. The soap films are made from a TTAB solution of water and glycerin (surface tension χ = 34 mN⋅m -1 ) of density that almost matches the density of the particles that are used afterwards (ρ ≈ 1050 kg⋅m -3 ). To investigate the effect of surface tension and surface viscosity, the solution has been modified with with the addition of 0.1 g⋅L -1 , 0.15 g⋅L -1 and 0.2 g⋅L -1 of dodecanol, concentrations that will allow for direct comparison in the case where particles are present. Higher concentration of dodecanol (namely 0.4 g⋅L -1 , 0.6 g⋅L -1 and 0.8 g⋅L -1 ) have also been used, but only on naked soap films with no particles, as for some reason it is not possible to create densely pack granular soap films at high concentration of dodecanol.

. Surface tension

The solution used already contains a surfactant, the TTAB, above its critical micelle concentration, and thus at the minimum surface tension that can be reached with this surfactant χ = 34 mN⋅m -1 . Surfactants are a necessity to create soap films and as reaching the critical micelle concentration yields the better results in the stability of the films, almost no leeway exists in the range of surface tension accessible. However, the use of a co-surfactant as dodecanol, insoluble in water but soluble in-between the molecules of surfactant, allows to decrease a little more the surface tension. The use of dodecanol (DOH, C 12 H 25 OH) in a surfactant solution greatly changes the interface properties: as related by Pitois et al. [START_REF] Pitois | Liquid drainage through aqueous foam: study of the flow on the bubble scale[END_REF], a small addition of dodecanol in the solution has for effect to decrease the surface tension until a critical concentration is reached, and further addition is believed to make the added molecules go directly to the micelles, thus not further decreasing the surface tension, but increasing the efficiency of the dissipative process in soap films designated as surface viscosity.

We plot on figure 3.1 the value of the measured surface tension of the solution for four different concentrations in dodecanol: 0 g⋅L -1 , 0.1 g⋅L -1 , 0.15 g⋅L -1 and 0.2 g⋅L -1 . It was measured using a pendant drop method, averaged over a few drops. It shows that with the solution of TTAB used, the value of the surface tension decreases as expected. It goes from of value of χ = 34.4 ± 0.5 mN⋅m -1 in the absence of dodecanol, to χ = 29.3 ± 0.5 mN⋅m -1 for c DOH = 0.2 g⋅L -1 . The evolution of the surface tension between the two last concentrations, c DOH = 0.15 g⋅L -1 and c DOH = 0.2 g⋅L -1 , is less than the estimated error on the measure, as it is only 0.2 mN⋅m -1 , which leads us to believe that the saturation of the interface occurs at a concentration close to c DOH = 0.15 g⋅L -1 , and any extra addition of dodecanol should only have an effect on the surface viscosity η i . Pitois et al. [START_REF] Pitois | Liquid drainage through aqueous foam: study of the flow on the bubble scale[END_REF] demonstrated that dodecanol had no effect neither on the density nor the usual viscosity of the solution. 

. Surface viscosity

Surface viscosity is the main process through which a soap film dissipates energy. As it holds this important rheological role, we want to get an estimation of the actual surface viscosity for the created interfaces. This is a current field of research and the exact value for the surface viscosity η i of a water-air interface is still an open question, however the admitted range is η i ∈ [10 -8 ; 10 -4 ] Pa ⋅ m ⋅ s [START_REF] Cantat | Les mousses: structure et dynamique[END_REF]. The solutions used here being Newtonian, it is admitted that, for soap films in the absence of particles, a Newtonian-like relation between the shear stress τ and shear-rate γm exists and that it involves the surface viscosity η i of the interfaces as:

τ = (η + 2η i h ) γm (3.1)
where η is the classic viscosity of the solution and h the thickness of the film, the factor 2 accounting for the presence of two interfaces. In the general case for soap films, the film is thin and the energy mostly dissipated through the surface viscosity, η +

η i h ≈ η i h .
An experimental setup is designed for the measure of the surface viscosity of soap films in the absence of particles. Figure 3.2 shows a sketch of a side view of the setup: by dipping inside the solution an annular frame, composed of two concentric cylinders of mean radius R = 30 mm and separated by a gap 2e = 10 mm, and pulling it out, a liquid film attaches to the cylinders, creating inside this annular frame an annular soap film. The frame is turned over and placed in the rheometer (MCR 501, Anton Paar). A hollow measuring cylinder attached to the axis of the rheometer, is taken down a few millimeters through the middle of the annular soap film, creating two gaps of width e = 4.5 mm, accounting for the 1 mm of thickness of the cylinder. The experiment is performed that way (relatively large soap films of 30 mm in radius, double-gap configuration) as to maximize the signal measured by the MCR 501 rheometer: for the first year of this PhD work, this was the only rheometer available and the signals measured were close to the minimal resolution of the system. In chapter 4, an other rheometer is used, a hundred times more precise, which allowed for reliable measurements on more stable films (circular and tinier) for an extended period of time. It is nonetheless possible to try to measure this surface viscosity in the setup used here. In terms of parameters measured by the rheometer (the measured torque M and the applied rotational velocity Ω), and noting that τ = M 2πhR 2 and γm = RΩ e , equation 3.1 reduces to:

η i = eM 4πR 3 Ω (3.2)
The difficult part is to obtain a resisting torque of significant value in this system with only a soap film and no particles. For c DOH = 0 g⋅L -1 , in the absence of dodecanol, or c DOH = 0.1 g⋅L -1 , this is not possible in this system. The resisting torque measured is always noise for moderate values of Ω, and when Ω becomes large, the film simply destabilizes and breaks. For c DOH = 0.2 g⋅L -1 however, at Ω = 1 rad⋅s -1 (which is approximately the highest velocity that can be reached without destabilizing the film) it is possible to obtain a resisting torque that is only three times the minimal torque that the rheometer used can measure, M = 0.3 µN⋅m. It is chosen to apply the same velocity for all remaining concentrations in dodecanol, as to compare with this one. It is important to compare with c DOH = 0.2 g⋅L -1 , as it is the highest concentration in dodecanol for which it is possible to make dense granular films (as will be detailed later in this chapter and in section 4.5.3). , in red and orange: while the measured torque is only three times the minimal torque that can be recorded, M = 0.3 µN⋅m, it is almost the same for both films, showing that this is not noise, even though it does not necessarily means that solely the dissipation in the liquid film is recorded (air friction will be discussed later on). The same goes for the other concentrations, even though it is not displayed here for clarity. Almost no time-variation of the measured torque is recorded, while the film is slowly evaporating and thus getting thinner. This tends to demonstrate that the classic viscosity plays no role in the resisting torque measured and the surface viscosity is the dominant dissipative term. Most importantly, this figure shows an increase of the resisting torque with the concentration in dodecanol, showing that the increase in concentration results in an increase in surface viscosity. The increase in the measured torque going to c DOH = 0.8 g⋅L -1 from c DOH = 0.6 g⋅L -1 is significantly lower than going from c DOH = 0.4 g⋅L -1 to c DOH = 0.6 g⋅L -1 and could be linked to a form of saturation. At the higher concentration, dodecanol tends to form a white precipitate at room temperature, and needs to be heated to re-solubilize. It might be that at this concentration in TTAB, higher concentrations of dodecanol are disadvantaged and unstable. As a result, high surface viscosity cannot be reached by the addition of dodecanol. A slow decrease is recorded for c DOH = 0.4 g⋅L -1 and could be imputed to evaporation. I will come back to this in the next section.

From the measured resisting torques, it is possible to deduce the corresponding surface viscosity for all concentrations in dodecanol, through equation 3.2. Figure 3.4 is a plot of these deduced surface viscosities for soap films, in the absence of particles, for the four concentrations in dodecanol that led to a reliable measure in the resisting torque. It shows a sharp increase in the surface viscosity at first, but seems to saturate around 1 × 10 -4 Pa⋅m⋅s for c DOH = 0.8 g⋅L -1 , which is coherent with a saturation in concentration of dodecanol. The value measured for c DOH = 0.2 g⋅L -1 is η i = 4 × 10 -6 Pa⋅m⋅s. It is the minimum surface viscosity measurable with this setup, as it corresponds to torques only three times the minimum measurable torque by the rheometer. The fact that in the absence of dodecanol no value could be computed means that this setup tends to show that the surface viscosity of the solution of water-glycerol with TTAB used here has a surface viscosity lower than 4 × 10 -6 Pa⋅m⋅s, while the literature usually place the surface viscosity of water in the range η i ∈ [10 -8 ; 10 -4 ] Pa ⋅ m ⋅ s. It seems to rule out almost half of the mentioned range. To really confirm that the measured effect has to be attributed to surface viscosity and not a classic viscosity however, one would need to measure the thickness of a soap film and its evolution through evaporation.

. Evaporation

It has been stated that the classic viscosity is not apparent because while the measured torque is almost constant, the thickness of a film still decreases through evaporation. Since the films are horizontal, we expect that the gravityinduced drainage does not play an important role, and that ageing mostly occurs through evaporation. The evaporation of a soap film happens through diffusion of water molecules in air and obeys a Fick's law that should translate into a linear decay of the thickness of the soap film with time. I borrowed the experimental apparatus from Champougny et al. [START_REF] Champougny | Influence of evaporation on soap film rupture[END_REF] to record the evolution of the thickness of a soap film with time. An optical fiber shines a white light that is focused on a soap film, and the reflected light is captured by a second optical fiber. The reflected light's spectrum is analyzed in a spectrometer (optical range 400-1000 nm) and the thickness is obtained by comparing the reflected intensity I r to the incident intensity I 0 at a spectroscopic wave-number k as: 

I r (k) I 0 (k) = sin 2 (nhk) ( 2n n 2 -1 ) 2 + sin 2 (nhk) (3.3) 
where h is the thickness of the film and n is the optical index of the soap film. The light reflected at the first interface of the film interferes with the light that is at first transmitted, goes through the thickness of the film, and is reflected at the second interface. Figure 3.5 shows an example of a reflected spectrum captured at a given instant t. A periodic shape is retrieved on the reflected intensity profile, showing the interference phenomenon. Maximal and minimal values of the intensity are marked with a color point for each period. The values of k at which the peak values are detected align in a linear fashion, represented by a green line, with a slope h/2 deduced from equation 3.3. For this measure, this results in a measured thickness h = 1421 nm. The measure is reliable with little noise, but subject to some time-variations.

Figure 3.6 shows the evolution of the thickness of a naked soap film, in the absence of dodecanol, from its creation to its burst. It shows that the thickness of a soap film created with the solution used in this work is of the order of 1 µm. It also shows a global decrease of the thickness. It can be noted from this plot that the expected life expectancy1 of a soap film at rest is approximately 70 s in the open air of the laboratory. The data is too noisy to conclude on an linear decrease of the thickness, but we refer to [START_REF] Champougny | Influence of evaporation on soap film rupture[END_REF], as they studied it for TTAB solutions in a controlled atmosphere. To make the point even clearer, figure 3.7 shows the evolution of the thickness of a soap film for all concentrations in dodecanol, in the open air. It shows that for c DOH = 0.4 g⋅L -1 and above, there is a sharp increase in the thickness of the films with the concentration, as it goes from h ≈ 1.5 µm for c DOH ≤ 0.2 g⋅L -1 to evolving between 25 to 15 µm for c DOH ≥ 0.4 g⋅L -1 . For the higher concentrations in dodecanol, the decrease of the thickness with time deviates a little from a linear decrease, seemingly with a slow exponential fashion, showing that evaporation is not the only ageing effect on the films, probably because drainage cannot be entirely suppressed in this horizontal configuration. The fact that the thickness evolves while the resisting torque is constant further confirms that the dominant dissipating process takes place at the interfaces, and thus stems from the surface viscosity. It should be noted that figure 3.3 shows a slow decrease of the torque with time for c DOH = 0.4 g⋅L -1 . Considering that at this concentration, the jump in thickness already occurred, and that the recorded resisting torques are still bellow the ones measured for higher concentrations, it could be said that this slow decrease shows that the effect of the classic viscosity is not entirely negligible for this concentration. However, note that the classic viscosity of the water-glycerol mixture, integrated over the 20 µm of thickness of a soap film, would result in an effective surface viscosity of 3×10 -7 Pa⋅m⋅s, several order of magnitudes lower than what is measured here, thus showing that the classic viscosity is still not enough to make sense of the dissipation in a soap film.

Figure 3.7: Time-evolution of the thickness of a soap film at rest, without particles, with solutions of different concentration of dodecanol: 0 g⋅L -1 (blue), 0.1 g⋅L -1 (green), 0.2 g⋅L -1 (red), 0.4 g⋅L -1 (purple), 0.6 g⋅L -1 (cyan), 0.8 g⋅L -1 (brown).

. Measurements on granular films

With this understanding of the general behavior of naked soap films, we turn our attention to particle-laden soap films and wonder how surface tension, surface viscosity and evaporation affect their behavior.

. Ageing

A granular raft is created in a Petri dish by spreading silanized polystyrene particles (Dynoseeds, Microbeads) of contact angle ζ = 80°and diameter d = 40 µm on the surface of the water-glycerol TTAB solutions used, in the absence of dodecanol, and with the addition of 0.1 g⋅L -1 and 0.2 g⋅L -1 of dodecanol. Higher concentrations are not investigated as for some reason it is not possible to create densely packed granular soap films at high concentration of dodecanol. The particles and the solutions are almost density matched (ρ ≈ 1050 kg⋅m -3 ). Again, the double-cylinder frame of mean radius R = 30 mm is dipped in the solution, crossing the raft, and then pulled out. The liquid film attached to the cylinders pulls out particles with it, creating inside this annular frame a granular film. The granular film thus produced forms, as shown on the photograph on figure 3.8, a monolayer of particles: the particles used are more than one order of magnitude larger than the soap films produced with these solutions, with d = 40 µm. Both the measuring cylinder and the annular frame are made coarse by gluing at their surface the same particles as the ones used to create the granular film. The frame is placed inside the rheometer and sheared at constant speed while the resisting torque is measured, as shown in figure 3.8. The film is solicited by a rotation of the measuring cylinder at constant velocity Ω = 1 rad⋅s -1 , while the resisting torque exerted by the film on both sides of the cylinder is recorded. Figure 3.9 shows the evolution of the recorded torque M with time t for different granular films, in the absence of dodecanol in the solution. They present the same general behavior: the torque slowly decreases with time, in a non-linear manner. The signal appears however noisy, sometimes suddenly increasing while the general behavior is for it to decrease. The measured torque is more than a hundred times the minimal torque that can be determined by the rheometer however, so this is not an issue with the precision of the measurement, this is a real feature of granular films. It may be the sign of collective motion of particles, with particles accumulating at one place and resisting movement, until unblocking and flowing. The measure also shows that for different realizations of a granular film, different values of torques have been found. It is so because the exact number of particles constituting the film (and thus the surface fraction ϕ) is not controlled and varies from one film to another, changing the rheological properties. Since the surface fraction cannot be measured in this preliminary experiments, the choice is made to say that since the method used to create the films is not changed, the surface fraction of the films is always the same in average. The fact that the onset of the torque's decay is delayed may be attributed to the structuring of the films, as will be again discussed at the beginning of chapter 4: the onset of the shear "activates" the contact between particles, thus raising the resistance of the films to the flow. The subsequent decrease could also be attributed to further evolution of the granular structure. This figure also shows that in ten granular films, none of them burst before 200 s while being sheared. The life-expectancy of naked soap films at rest, in the absence of particles, had been evaluated at roughly 70 s: this demonstrates the stabilizing effect of particles on the films. The decrease of the measure torque in figure 3.10 was not observed when looking at naked soap films. This tends to show that, as the evaporation played no noticeable role in the rheology of soap films in the absence of particles, it is again so in the presence of particles and the decrease is due to a whole other phenomenon. The first that comes to mind is the evolution of the granular structure. The easiest way to test it is to perform extra experiment, varying the wall velocity: this would allow to disentangle the effect of time and total shear. Indeed, the granular structure is supposed to be a function not of the time but of the total deformation. Figure 3.11 shows the decrease of the 2Dshear stress τ s with the total deformation γ for 4 different applied velocities: Ω ∈ [1, 3, 7, 10] rad⋅s -1 (or equivalently, shear-rate γ). The data displays an oscillating behavior of different amplitudes: this corresponds to a misuse of the rheometer at the time and should be ignored. What remains then is that all 4 curves collapse on this logarithmic decrease, which shows that the relevant parameter is indeed the total deformation and thus that this is a sign of the evolution of the microstructure, and not the evaporation of the liquid film. After the very first turn at which particles come into contact which delays the onset of the decrease of the measured torque, particles move as to reduce the stress they feel. The effect of evaporation in the ageing of a film thus cannot be measured. In a densely packed granular film where particles are always in contact, I do not have the tools to directly observe neither the thickness of the liquid part of the film in-between particles, nor its evolution. However, in her PhD work, Timounay [START_REF] Timounay | Rhéologie d'interface liquide/air chargées de grains : vers la consolidation d'un milieu aéré[END_REF] showed with a fluorescent solution that for less densely packed granular films at rest, the thickness of the liquid part of the film is heterogeneous, being roughly one order of magnitude larger close to the particles than in almost unoccupied regions. Her experiments showed that the film had its usual thickness close to the particles, as it would have in the total absence of particles, but was significantly thinner in the large regions unoccupied by the particles. She also found significantly bigger thicknesses of soap films as I measured, with h = 45 µm independently of the frame used. If it is not explained by the difference in shape (annular versus circular), this could be explained by the difference in surfactant used: while I used TTAB, she used sodium dodecyl sulfate (SDS).

While the decrease of the measured resisting torque can be explained by the structuring of the film, the origin of a high enough torque that can be measured inside a rheometer is probably due to the relatively high attractive forces between particles, through the surface tension. It is possible then to test the effect of surface tension of this measured resisting torque with the use of a co-surfactant.

. Surface tension and surface viscosity

It has been shown that adding 0.1 g⋅L -1 of dodecanol in the solution changes the surface tension of the film, while going to a concentration of 0.2 g⋅L -1 reaches the saturation in terms of surface tension but raises the surface viscosity enough for it to be measured. To investigate the effect of both parameters on the rheology of granular films, we create them with both solutions. We then plot the resisting torque M as a function of time, averaged over 10 granular films, for three different concentration in dodecanol 0 g⋅L -1 , 0.1 g⋅L -1 and 0.2 g⋅L -1 , sheared at a constant velocity Ω = 1 rad⋅s -1 , on figure 3.12. The blue curve is the one previously plotted on figure 3.10, in the absence of dodecanol. The green curve represents the medium concentration c DOH = 0.1 g⋅L -1 , while the red curve is the most concentrated solution c DOH = 0.2 g⋅L -1 . All three curves follow the same tendency of an exponential decrease, but they do not collapse. Indeed, the medium concentration of dodecanol is shifted approximately 15 µN⋅m downwards when compared to the absence of dodecanol. This is coherent with a decrease in the attractive force between the particles and a decrease in the surface tension. The higher concentration, for c DOH = 0.2 g⋅L -1 , also presents a shift. However, the values taken for the resisting torque are intermediate between those obtained with medium concentration in dodecanol and without dodecanol. This cannot be explained with the decrease in surface fraction, as it should have the opposite effect. Figure 3.7 demonstrated that the thickness of a soap film was constant, in the absence of particles and at rest, for all three solutions. Thus a variation in thickness cannot explain the change in the resisting torque measured. As the other parameters are not modified by the concentration of dodecanol, it can only be explained by a raise of the dissipation rate in the form of a raise of surface viscosity. Now that general observations have shown that rheological measurements performed on granular films are affected by the properties of the liquid film holding the particles, through the evaporation, the surface tension or the surface viscosity, and that a reasonable idea of the surface viscosity of soap films has been given, we will turn our eye to the rheology of granular films as a granular material and try to describe how these particles propagate their movement to their neighbors.

-Granular films

This chapter describes the rheological measurements performed on particleladen soap films, in which particles are arranged in a monolayer, designated as "granular films". Firstly, I show that in the range of velocity explored, no inertial or viscous effect on the macroscopic rheology is recorded. In this confined regime, the local shear-rate is inhomogeneous. To account for the inhomogeneity of the flow, I introduce the concept of granular temperature T and derive an extended kinetic theory model to obtain an analytical formula for the velocity of the particles that fits the data. The model allows to distinguish between two regimes coexisting in the material, that can be either flowing or in a quasi-static state, and a statistical analysis of the re-arrangements of the particles highlights the different dynamics at play between the two. To generalize these observations, I build a capillary-inertial number I c and check its validity by varying explicit parameters in the model. Finally, I investigate the possible link between the different regimes of the flow and the order in the microstructure. to develop this chapter and the reasoning behind this study of granular films, the particles of diameter d = 80 µm will always be used until the effect of particle size is investigated in section 4.5. In the same way, an other solution has been tested with the addition of 0.2 g⋅L -1 of dodecanol to change the surface viscosity, and this will be discussed in the same section. The particles and the solution are almost density matched (ρ ≈ 1050 kg⋅m -3 ). By dipping a cylindrical frame of radius R ext = 17.2 mm inside the raft and pulling it out, a liquid film attaches to the cylinder and particles are pulled out with it. This is represented on figure 4.1: the liquid film attaches to the frame, pulling out the particles that constituted the raft initially at rest on top of the solution. A particle-laden soap film is thus created in the cylindrical frame, in which the particles are arranged in a monolayer and cross both liquid-air interfaces. The frame is turned over and placed in the rheometer (MCR 302, Anton Paar). A drawing of the setup is displayed on figure 4.2: a hollow measuring cylinder of radius R int = 13.7 mm, attached to the axis of the rheometer, is taken down a few millimeters through the granular film, creating a gap of width e = 3.5 mm. Both the measuring cylinder and the cylindrical frame are made coarse by gluing at their surface the same particles as the ones used to create the granular film. A pre-shear is applied at a constant velocity Ω = 20 rad⋅s -1 for 100 s (the exact values of the velocity and its duration may have varied depending on the set of experiment, the relevant part being the existence of this pre-shear): this assures that the granular film is already structured, and always in the same manner, before any measurement is performed (the structuring of the granular material by a shear-flow is briefly discussed in section 1.3.3). Stopping abruptly the pre-shear to a much lower velocity leads generally to the bursting of the circular granular film trapped inside the hollow measuring cylinder, that we do not want to consider. In an ideal experiment, the existence of this inner film would not mater, as it should not be sheared but in a solid rotation, attached to interior wall of the measuring cylinder. In practice, we observe a change in the measured resisting torque before and after the burst, that could be explained if the measuring cylinder has trouble going through the film and was just bending it at first. The bursting of the interior film assures that the measuring cylinder go through, and the remaining annular film between both cylinders is planar. If the film is not dense enough in particles, it immediately destabilizes in the pre-shear because of the attraction between the particles. This leaves a compact part close to the exterior cylinder, while the part close to the measuring cylinder is a naked soap film. In that case, the surface fraction is highly inhomogeneous, only the naked soap film is sheared and not the particles. The experiment is stopped and no measurement is performed.

. Experimental setup and preliminary tests

If the surface fraction is high-enough (ϕ > 0.75), the particles stay in the whole gap as long as the velocity is not high enough to completely destabilize the film and eject drops (Ω < 50 rad⋅s -1 ). The experiment can then be performed on these films. The method used to produce the films then allows for a narrow range of surface fraction on which experiments are performed, typically 0.75 < ϕ < 0.79, which is very close to the anticipated jamming fraction of this 2D granular material (ϕ m ≈ 0.82). The mean surface fraction is a priori not allowed to evolve in this setup, as the surface area occupied by the film is set by the relative position of the cylinders and always constant.

The evolution of the resisting torque measured by the rheometer as a function of the applied velocity of the measuring cylinder is plotted on figure 4.3, compared to a benchmark test in pure air, in the absence of a granular film. It shows that for rotational velocities lower than 0.1 Hz, there is no variation of the measured torque M ≈ 5 µN⋅m. With the naked eye, it is possible to see that the movement does not propagate all the way through the gap, as particles close to the static wall appear to not be sheared. This will be confirmed later in section 4.2 when the velocity of particles will be discussed. And while we indeed register an increase in the measured torque for velocities Ω > 10 -1 Hz, it is indistinguishable from the increase measured when no film is put inside the cell of the rheometer and the cylinder simply turns in air. Indeed, this reaches the limit of the setup, where the friction with air on the measuring cylinder is no longer negligible, and the measure cannot be trusted. At such high surface fraction, it is possible to make sense of this observation with usual local rheology models for granular media. Close to the jamming fraction ϕ m , or equivalently in the confined regime of I, J < 10 -2 , we expect the stress to be independent of the shear-rate and equal to the minimum stress in the confined regime τ 0 (deduced from usual friction laws discussed in sections 1.3.1 and following). Translated into quantities measured by the rheometer, this means that the torque M should be weakly-dependent of the rotational velocity Ω. Secondly, it is also anticipated in this confined regime that the flow of the granular films will be inhomogeneous and that non-local effects will occur, as stated in section 1.3.3. To accurately describe the in-homogeneous flow then, the choice is made to observe the dynamics of the particles at a given velocity under the limit of air-friction Ω = 0.1 Hz, in a steady regime, and perform local measurements through direct visualization of the flow, rather than defining mean quantities that rely on the measure performed at the measuring cylinder then.

. Preliminary tests

The measuring cylinder is then driven at constant velocities ranging from 10 -3 to 1 rad⋅s -1 . To confirm that these velocities are all in the shear-rate independent regime, a first set of experiments is performed: the velocities are imposed for 50 s each, roamed in a random order to mask the effect of the ageing of the film through the evaporation of the liquid phase. Figure 4.4 shows an example of raw data measured by the rheometer. A few observations can be made from it. Firstly, the first imposed velocity (in red) corresponds to the pre-shear. The resulting resisting torque (in blue) shows an increase in the first seconds: this probably has to be linked to the structuring of the material. Contacts are established in the compression direction, raising the resisting torque, until a steady regime is found. Decreasing sharply the velocity leads to a drop in the measured torque, showing either friction with air or that the pre-shear has not been performed in the confined regime where the stress is independent of the shear-rate. However, all subsequent changes in the velocity do not modify the torque, confirming they are in this confined regime. A small jump in the resisting torque is observed for the highest imposed velocity, but this is clearly small enough to dismiss it. An other effect has a more important impact on the measured torque, and that is the ageing of the film. Setting aside the variation of the velocity Ω and concentrating on the global evolution of M , it appears that the torque is slowly decreasing throughout the experiment. Its evolution should be imputed to the ageing of the film, and the evaporation of the liquid part, as seen in section 3.2.1. Eliminating this long-term evolution, what remains is noise, probably partly intrinsic to the material and the inhomogeneous collisions of particles. To eliminate this noise, I average the resisting torque for each applied velocity. I regroup these values for different granular films and plot them on figure 4.5. While the values of measured torque for a given film are not constant, their is no clear dependency of the measured torque with the applied velocity. Indeed, while the torque does vary, it does not vary monotonously, and it varies differently from one film to an other. For example, considering the data of the film of particle surface fraction ϕ = 0.78 (◇), the minimum of the torque is reached for Ω = 10 -3 Hz, a small dip is for Ω = 10 -3 Hz, while all the other values seem to be roughly the same. Whereas that for the film ϕ = 0.77 (◻), Ω = 10 -3 Hz is the second highest-value of the measured torque, and the minimum is reached for Ω = 3 × 10 -3 Hz, revealing a discrepancy. This is because the random order through which the velocities are roamed is changed from one film to the next. The only relevant parameter in the evolution of the torque is the time from the creation of the film, and the evolution can only be imputed to the evaporation. Figure 4.5 also shows that the resisting torque seems to be a growing function of the surface fraction ϕ, but the exact dependency for such a narrow range of surface fraction would be too hard to determine without finding a way to effectively cancel the effect of evaporation. For the remaining experiments and after the pre-shear, 5 velocities will be used: Ω ∈ [10 -3 , 3 × 10 -3 , 10 -2 , 3 × 10 -2 , 10 -1 ] Hz (or turns per second, equivalently). They will be explored decreasingly for convenience, knowing that the evolution of the resisting torque will be only imputed to the evaporation. A camera is placed underneath the film to capture the flow at a frequency f = 50 images per second. For each velocity, a full turn is recorded, meaning the time spent on each velocity increases for decreasing Ω. For the lowest velocity Ω = 10 -3 Hz however, only half a turn is recorded for the sole purpose of saving some memory space on the hard drive. With the exception of the evolution through evaporation, it will be possible to consider that a single 2D shear stress applies throughout the experiment, taken as:

τ = ⟨M ⟩ 2πR 2 int (4.1)
where ⟨M ⟩ is the time-averaged torque throughout the experiment. This relies on the fact that in the system, it is possible to consider a small gapapproximation, as e/2R int ∼ 0.1, and say that the surface shear stress τ and the confining pressure p are roughly homogeneous. In a cylindrical Couette cell, the mechanical equilibrium imposes that the curvature of the cell is balanced by a radial decrease in the shear stress τ and pressure p as τ, p ∼ 1/r 2 , but if the gap e is sufficiently small (or R int /R ext ≈ 1), the effect of this decrease is not noticeable. Given the dimensions of the system, the actual decrease in stress is 1 -R 2 ext /R 2 int ≈ 34%, which is already quite big to apply a small gap approximation, but we will show later on that the inhomogeneity of the flow can only be captured by non-local models, independently of this approximation. While the fragility of a soap film makes it hard to create a granular film with a larger radius, it is also important to maintain a gap of this size in order to have enough particles in the gap as explained in section 2.3.

. Velocimetry

The images from the camera are taken through a DIC software (DaVis 10.2, LaVision) to compute the displacement field between two successive images and deduce the velocity fields of the particles (see section 2.3 for details). As the shear is never reversed, the material is always already structured, and the permanent regime is almost immediately met. An example of a velocity colormap is displayed on figure 4.6. It displays a large portion of the gap that in which the velocity is almost constant and equal to zero (blue/dark colors) relatively to a small region, situated close to the moving wall, at which the velocity is more than half the imposed velocity at the moving wall (yellow, red) and evolving on a very short distance. This indicates the inhomogeneous shear-rate that is characteristic of the confined regime. The fact the velocity at the moving wall meets the velocity of the wall itself, while there is no velocity at the static wall, indicates a no-slip condition. The map also shows that the norm of the velocity seems to follow the axial symmetry of the system, with color gradients being roughly parallel to the walls: the velocity weakly varies with the orthogonal position, but strongly with the radial position. This is not exactly true however: for example, there is a large green patch of mild velocities (next to the representation of the radial unit vector ⃗ e r ) that seems to progress on lower velocities at the right side of the map. This shows that at some time and some position, there can be velocity fluctuations around the expected symmetry. The green patch in question covering a few tens of particles, this also show that this is a collective motion. The displacements are computed on square boxes the size of a particle that pave the whole images, and this tesselation of boxes is reproduced shifted on a third of a particle size in all direction to make sure a box fits on every particle and we correctly capture the velocity of the particles. We obtain a velocity field for every time t and position ⃗ r as ⃗ V (r, θ, t), in polar coordinates given the axisymmetry of the system. What appears from these velocity fields is that the velocity of a particle is mainly supported by the orthoradial direction ⃗ e θ , while some movement in the radial direction ⃗ e r occasionally happen in collective motions. It appears that sometimes, at a given position, the movement propagates in some kind of a wave to the neighboring particles. This is in accord with the vision given of a granular material in a confined regime: in order to move, a particle needs to put in motion its surrounding. In the same way, a moving particle gives up space for its neighbors to move in turn.

In a time-averaged point of view, we retrieve the symmetry of the system and the velocity is supported by the orthoradial axis and varies only radially. the orthoradial direction, as a function of the radial position for all applied velocities. The whole gap is represented, with r ∈ [13.7; 17.2]. The linear scale is convenient to show the non-Newtonian character of the granular film, as the velocity profiles are not linear. From the logarithmic scale we can observe that the decrease of the velocity away from the moving wall is somewhat similar for all applied velocities. The velocity reaches less than 20% of the imposed velocity in the middle of the gap. It seems almost linear in logarithmic scale, which tend to show an exponential decrease. In order to emphasize on the similar trend followed independently of the applied velocity, the velocity profiles normalized by the imposed velocity of the wall is plotted on figure 4.8, expressed in terms of a reduced space variable s = r -R int e , characterizing the position relatively to the walls.

While the exact values of the velocity profiles may vary a little from one imposed velocity to an other, the general shape of the curve is preserved. More importantly, there is no monotonous tendency with the imposed velocity: the two extreme velocities, Ω = 10 -1 Hz and Ω = 10 -3 Hz are in dark blue and orange, and are both above the rest of the velocities. This tends to show that the variations should be interpreted as most likely random. All curves show the same behavior: the particles approximately have the velocity of the moving wall at its proximity, and the velocity sharply decreases away from it, in what seems to be an exponential decay. To insist even more on this, figure 4.9 displays the shear-rate profiles, with a shear rate defined locally as γℓ = r d(V θ /r)/dr ≃ dV θ /dr. Again, it shows a somewhat exponential decay and is clearly not homogeneous in the gap, while there is no clear dependency on the imposed wall velocity. This is what is sometimes observed in dense granular media: as the surface fraction ϕ is close to the jamming fraction, the shear-rate is inhomogeneous and localized close a moving wall, leaving a large part of the material not sheared. We also showed that at these velocities, the film is globally in a shear-rate independent state that corresponds to a confined regime. As related in section 1.3.3, in this regime the shear-rate is expected to be inhomogeneous, as demonstrated here. The use of a local rheology model, that defines a mean shear-rate γm = 2πΩR int /e, seems inappropriate in this case. It remains possible that these models apply here, and that the inhomogeneity of the flow reflects an inhomogeneity of the surface fraction. However, so close to the jamming fraction, such an inhomogeneity is impossible to record and is thus not the appropriate observable. We want to describe the flow of this material with the actual shear-rate γℓ , defined locally, and the use of a non-local model that introduces a diffusive quantity that can be measured in the system and allows to describe this inhomogeneous behavior.

. Hydrodynamical model for films

Out of the various non-local models that exist, briefly described in section 1.3.3, we test the extended kinetic theory developed by Bocquet et al. [START_REF] Bocquet | Granular shear flow dynamics and forces: Experiment and continuum theory[END_REF][START_REF] Losert | Particle dynamics in sheared granular matter[END_REF]. As developed in section 2.5, the kinetic theory for granular media introduces the concept of a "granular temperature" that diffuses in the material. I define it as the time-fluctuations of the velocity around its mean value at a given position in the permanent regime: T (s) = ⟨V θ (s, t) 2 -v θ (s) 2 ⟩. The kinetic theory is valid if at a given position, this granular temperature T is linked to the local shear-rate γℓ by a power-law, by the definition of the effective viscosity 

τ / γℓ = η 0 T -(2β-1)/2 (4.2)
where η 0 is dependent on density, diameter and mechanical properties of the particles, as well as pressure P , but is constant in a given experiment. T and γℓ are two observables that are deduced from the displacement fields computed and discussed in section 4.2. It is then possible to plot one with respect to the other, as per figure 4.10. On this figure, for γℓ > 2 × 10 -1 , the different curves align in a linear fashion. As the plot is in logarithmic scale, this shows that a power-law hold between the two quantities. This means that for high-enough shear-rates, it is possible to apply the kinetic theory. In this domain, fitting by a power-law T 1/2 ∼ γ1/(2β-1) ℓ yields β ≈ 1.00 ± 0.05. fits correctly the data for a large range of γℓ . However, for lower local shear-rates, all curves tend to diverge from the power-law in a convex way, leading to temperature values higher than what would have been found if the power-law was still valid. As a result, the velocity fluctuations at low shear-rates cannot be imputed only to the particle collisions and in this case, the kinetic theory is not valid. While the relation with kinetic theory has not been explicitly made, the deviation from the power-law in the velocity fluctuation has been observed in previous numerical and theoretical studies [START_REF] Koval | Annular shear of cohesionless granular materials: From the inertial to quasistatic regime[END_REF][START_REF] Pouliquen | A non-local rheology for dense granular flows[END_REF][START_REF] Khamseh | Flow of wet granular materials: A numerical study[END_REF][START_REF] Gaume | Microscopic origin of nonlocal rheology in dense granular materials[END_REF], which leads us to distinguish two regimes: one in which the power-law is valid, and in which the kinetic theory then should correctly describe the flow, and one for the smaller shear rates ( γℓ < 2 × 10 -1 s -1 ), where the temperature starts to deviate from the power-law. I interpret the deviation as a sign that velocity fluctuations cannot be described through the kinetic theory alone in this regime and the dynamics at play should be different. To reflect on this difference in dynamics, the first regime will be called the collisional regime, as the contact between the particles are of prime importance in the flow of the particles, while the other will be called the quasi-static regime and will be the focus of section 4.4. In their work, Bocquet et al. [START_REF] Bocquet | Granular shear flow dynamics and forces: Experiment and continuum theory[END_REF][START_REF] Losert | Particle dynamics in sheared granular matter[END_REF] defined the granular temperature by multiplying the velocity fluctuations by the mass of a particle, thus characterizing the capacity of two particles to exchange kinetic energy in a collision, but in our system of monodisperse particles of constant density, this is equivalent as the mass is a constant, as stated in section 2.5. The velocity fluctuations allow particles to collide and exchange energy, and that is how the movement is propagated. Granular temperature is primarily produced by the friction at the walls, and then by the internal forces inside the raft. The heat is then produced by the flow itself: as a particle moves, it locally increases the temperature. It also opens the way for neighboring particles to move in turn and reduces their resistance to movement. The movement propagates as such until a steady state is reached. In this way, the temperature diffuses through interactions between particles and is dissipated by the inelasticity of the contact. The granular temperature then follows a heat equation that relates the equilibrium between diffusion, dissipation and production through the inner forces, all characterized by coefficients dependent on the frequency of collisions and thus T -1/2 . The coefficients come down to λ = λ 0 T -1/2 for diffusion and ϵ = ϵ 0 T -1/2 for dissipation, while the production can be written τ γℓ = τ 2 η 0 T (2β-1)/2 , as developed in section 2.5. The heat equation then comes down to:

2λ 0 d 2 (T 1/2 ) dx 2 -ϵ 0 T 1/2 + τ 2 η 0 T (2β-1)/2 = 0 (4.3) 
where λ 0 and ϵ 0 are dependent on density, diameter and mechanical properties of the particles, as well as pressure P . These parameters are all constant and homogeneous on a given film. The phenomenological coefficient β, derived from the power-law linking T and γℓ is not a priori known and has to be determined. It was introduced by Bocquet et al. [START_REF] Bocquet | Granular shear flow dynamics and forces: Experiment and continuum theory[END_REF] to account for the divergence of the viscosity in the dense regime. For granular films, I find that β = 1 which is extremely convenient, as it allows to obtain an analytical solution of the heat equation. The heat equation then becomes:

d 2 (T 1/2 ) dx 2 - 1 δ 2 T 1/2 = 0 (4.4)
where a diffusion length δ appears, depending explicitly on the applied stress and defined as:

δ = √ 2λ 0 η 0 ϵ 0 η 0 -τ 2 (4.5)
All that remains now is to replace T 1/2 with γℓ (since β = 1, the two are proportional) and to integrate once to obtain the differential equation on the velocity V θ . Once all parameters normalized (v θ → v, x → s), we obtain:

d 3 (v) ds 3 - e 2 δ 2 dv ds = 0 (4.6) 
To finally solve this equation, three boundary conditions are needed. Two are imposed by the no-slip boundary condition and construction of v, v(0) = 1 and v(1) = 0. I borrow the third one directly from Bocquet et al. [START_REF] Bocquet | Granular shear flow dynamics and forces: Experiment and continuum theory[END_REF], who state that the gradient of temperature vanishes at the static wall: dT ds = 0 at s = 1. This is equivalent to say that the quasi-static regime spreads from the static wall and there is no heat production (no internal forces, γℓ = 0) at this boundary. This seems like a reasonable thing to do considering the shape of the velocity curves obtained (figure 4.8). Using only these three boundary conditions to solve the equation gives:

v(s) = sinh ( (1 -s)e δ ) sinh ( e δ ) (4.7) 
which has only one fitting parameter δ, the diffusion length. Applying this formula to the velocity profiles is done on figure 4.11: an excellent fit between the experimental data and the model is found, at least in linear scale, where the general decay of the velocity is captured. Plotting the velocity in logarithmic scale (figure 4.11(b)) shows that indeed, these fit actually deviate from the measured velocities close to the static wall, and this is even more evident at s = 1. However, the velocity decreasing for more than two order of magnitudes between both walls, making this mistake does not translate into visible errors in the linear scale and quite effectively captures the overall flow.

Looking more closely at the values of δ used in the fits shows a small dispersion around a mean value, with δ/e = 0.17 ± 0.04. As τ in the expression of δ is not supposed not vary (the velocities imposed assure we stay in the confined regime) and is fixed at the minimal value to put the particles in motion, δ reduces to its expression of a diffusion length at vanishing stress

(2λ 0 /ϵ 0 ) 1/2
= 0.60 mm (roughly 7 particles) measured experimentally. It would be most interesting to test the evolution of δ with τ and see if it is possible to eventually obtain, at high τ , in an inertial regime then, an infinite diffusion length that would lead to an homogeneous shear-rate. It is however impossible in this setup, as I cannot perform measurements outside the confined regime as showed in figure 4.3. The small dispersion of the computed values of δ should not be interpreted has having any physical meaning, as the evolution with the imposed velocity is not monotonous, as said when discussing figure 4.8. These variations are then probably a combination of the possible effect of evaporation of the liquid part of the film and the randomness in the data. Only one full turn was used to capture the flow for each velocity, meaning that any possible defect (e.g. an aggregate) would not appear on the captured images for all velocities if it was not stuck to the moving wall, and would affect the measured profiles for the velocities on which it would show.

The hyperbolic sinus found for the velocity is a common characteristic in multiple non-local models that intuitively corresponds to the somewhat exponential decay we measure experimentally. For the granular fluidity [START_REF] Goyon | Spatial cooperativity in soft glassy flows[END_REF][START_REF] Kamrin | Nonlocal constitutive relation for steady granular flow[END_REF][START_REF] Zhang | Microscopic description of the granular fluidity field in nonlocal flow modeling[END_REF][START_REF] Kim | Power-law scaling in granular rheology across flow geometries[END_REF] for example, the diffusive quantity g = γℓ /τ leads to the exact same differential equation on γℓ as for the kinetic theory in the case of an homogeneous stress τ . Given the small gap approximation in the system, the two would have then be equivalent, the only difference when applied to our system being the superposition between this hyperbolic sinus with a linear profile, whose relative importance can be set to zero here with no noticeable error. This shows that in this setup, the velocity profiles do not allow to discriminate between the different non-local models. In this case, kinetic theory provides a convenient way to describe the flow while giving a physical sense of the dynamic at play [START_REF] Kamrin | Non-locality in granular flow: Phenomenology and modeling approaches[END_REF]. One important comment has to be made at this point: equation 4.7 assumes that the whole film is described by the kinetic theory, and thus is in the collisional regime, while we discussed with figure 4.10 the existence of an other regime close to the static wall. Even more, two of the boundary conditions are set explicitly at the static wall. This partly explains why the fits deviate from the experimental data close to the static wall, as the kinetic theory is no longer valid and we expect the quasi-static region to behave differently from the collisional region. The time-average perspective of a mean shear-rate and velocity fluctuations fails to capture the specificity of this regime, we then shift the perspective to accumulated statistics and evidence major differences in the nature of the interactions between two particles in contact.

. Quasi-static regime

. Overview of previous numerical studies

Originally, the study of the quasi-static regime has been performed in 2D numerical simulations by Koval et al. [START_REF] Koval | Annular shear of cohesionless granular materials: From the inertial to quasistatic regime[END_REF]. In a 2D annular cell, they simulated the simple shear of dry disks of diameter d and friction coefficient µ p = 0.4 with a controlled velocity at the wall V w . The simulated system is extremely similar to the experimental setup of this study. It differs majorly in that the outer, static wall was allowed to move to adapt to the applied inter-particulate radial pressure P p , but also because they simulated a dry granular medium, with no attraction between the particles. For small-enough velocities, they recorded an inhomogeneous shear-rate with an exponential decrease of the velocity away from the moving wall. Because the system is simulated, they could compute the exact shear-stress and pressure locally and not rely on measurements made at the wall, as is the case in experiments with a rheometer. They then defined an effective friction µ = τ /P p and an inertial number I = γℓ d/ √ P p /ρ. We borrow their plot of the effective friction with the inertial number on figure 4.12. It reveals the two quantities are correlated as for I > 10 -2 , all curves overlap. However, under this value, they observed that the effective friction locally goes under the minimum value µ 0 that would be given by a local law to describe the overall flow (and different from the particle friction coefficient µ p ), represented as a solid line. They use this criteria to define the transition to the quasi-static regime. In the quasi-static regime, the curves do not superimpose, and if the imposed velocity is reduced enough, the whole cell is in the quasi-static regime. The µ(I)-curve is then completely shifted. This work as been continued more recently by Gaume et al. [START_REF] Gaume | Microscopic origin of nonlocal rheology in dense granular materials[END_REF]. The simulated system is approximately the same, with a 2D annular shear of particles under an imposed confining pressure P p . As they result, when they plotted the effective friction between particles µ = τ /P p as a function of the inertial number, displayed on figure 4.13(b), they obtained the same results. However, they also computed the velocity fluctuations, that they designated as ∆, with respect to the inertial number I. It is represented on figure 4.13(c). Again, the velocity fluctuations followed a unique trend with the inertial number for I > 10 -2 , independently of the applied velocity of the moving wall Ω. However, for sufficiently low applied velocity, allowing for low inertial numbers I < 10 -2 , the curves do not collapse. This is similar to what could be observed on figure 4.10: when the local shear-rate γℓ is low enough (< 2×10 -1 s -1 ), which is equivalent to say that what would be the inertial number I is low, the values of the velocity fluctuations T do not superimpose, the power-law linking T to γℓ does not hold and the kinetic theory cannot be applied. At least one of the hypothesis of the kinetic theory is not valid. And at such low shear-rates, it is doubtful that we could say that collisions between particles are instantaneous, as particles are actually maintained packed together for extended periods of time. To characterize the dynamics in the quasistatic region, Gaume et al. [START_REF] Gaume | Microscopic origin of nonlocal rheology in dense granular materials[END_REF] looked at elementary (local and instantaneous) shear-rates γi (s, θ, t) whose time-averaged value would be γℓ (s). In numerical works, these elementary strain events can be computed between two time-steps. Accumulating value for γi for all time-steps allowed to look at the shear-rate from a statistical point of view. Figure 4.14 shows the Probability Density Functions (PDFs) of the elementary shear-rates at two different position in the simulated system, one in the flowing zone (in red) and the other in the quasi-static regime, but for the same imposed wall velocity. What appeared was that in the case of the flowing zone, almost all shearrates were of the same sign as the mean shear-rate, showing that particles are sheared in direction of the flow. For the quasi-static regime, the elementary shear-rates behaved differently, as almost half the re-arrangements occurred in the direction opposed to the flow, inhibiting the onset of a macroscopic shear. More over, the values taken by the elementary shear-rates were only one order of magnitude lower than for the flowing regime, whereas the mean shear-rate varied by more than two order of magnitudes. Other numerical and theoretical works [START_REF] Pouliquen | A non-local rheology for dense granular flows[END_REF][START_REF] Khamseh | Flow of wet granular materials: A numerical study[END_REF] investigated the dynamics of the quasi-static regime and highlighted that while there is no overall macroscopic shear, important rearrangement events between particles still occur occasionally. Independently, Tighe et al. [START_REF] Brian P Tighe | Model for the scaling of stresses and fluctuations in flows near jamming[END_REF] studied numerically the scaling of shear stress and velocity fluctuations for an assembly of 2D disks in viscous contacts, above and under the jamming. Their numerical model uses the Durian foam bubble model [START_REF] Durian | Foam mechanics at the bubble scale[END_REF]. In this simplistic model, an assembly of 2D circular bubbles is sheared. The bubbles are not deformable and interact repulsively through a first force, stemming from the surface tension. This force is equiv-alent to having a spring linking every pair of bubbles in contact. This gives rise to an accumulation of elastic energy. The only other force in the model is a viscous drag force, proportional to the velocity difference between two particles in contact. In a re-arrangement then, the elastic energy accumulated is viscously dissipated. These two force must balance at all times for the system to be stable. Using only this two forces, Durian found an intermittent flow, with important re-arrangements occurring occasionally, in what he described as an avalanche-like process.

Using this model, Tighe et al. [START_REF] Brian P Tighe | Model for the scaling of stresses and fluctuations in flows near jamming[END_REF] decomposed the shear stress in the sheared system into the contributions of both forces: the viscous component of the drag force, and the elastic component of the repulsive force in between particles. Figure 4.15 shows the evolution of both components (denoted σ for them, while it is written τ is the rest of this work) with the imposed shear-rate, for three surface fraction under, at and above jamming (denoted ϕ c , against ϕ m in the manuscript). The viscous component is independent of the surface fraction: it is always proportional to the velocity difference between two particles, and thus is also proportional to the shear-rate γ (which homogeneous in their model, and thus equivalent to the local shear-rate γℓ developed here). This is not the case for the elastic component: at low surface fraction ϕ, the elastic component is almost proportional to the local shear-rate γ. At the jamming, ϕ = ϕ c , the elastic component in the stress is much more important, as particles are more closely packed. However, the evolution of this contribution with the shear-rate is damped, as they roughly obtain that the shear stress evolves with the shear-rate as σ ∼ γ1/2 (using their notations). This effect is even more important above the jamming. Finally, they found that both components in the stress were equal at roughly γ = 10 -2 .

From here, they developed the energetic process to describe the relation between stress and strain, in terms of relative bubble velocities at contact |∆v|, that is equivalent to the elementary shear-rates γi . Focusing on what happens at jamming, they noted that the energy is produced by the internal forces τ γ, which means the production either scales as γ2 or as γ3/2 whether the viscous component or the elastic component is dominant in the stress. It scales with γ2 if γ > 10 -2 , and with γ3/2 otherwise. On the other hand, the energy is dissipated viscously in the individual rearrangements between particles that move at a relative velocity |∆v|. The viscous force is directly proportional to |∆v|. The duration of the interaction scales as d/ γi , as particles have to go a distance of a full diameter d to fully pass one another. In the end, the energy balance means that the energy viscously dissipated scales with the elementary shear-rates as |∆v| 2 . Ultimately, this means that for the high shear-rate case, |∆v| ∼ γ while for the low shear-rate, |∆v| ∼ γ3/4 . To confirm this, they plotted the PDF of |∆v| for different values of γ < 10 -2 , reproduced on figure 4.16. When normalizing the relative velocities by the imposed shear-rate, they found a result similar to what observed Gaume et al. [START_REF] Gaume | Microscopic origin of nonlocal rheology in dense granular materials[END_REF], in that the PDF gets wider relatively to the applied shear-rate, with important re-arrangements existing in an almost not sheared material. As the curves collapse when rescaled with γ3/4 but not with γ, their theoretical development is valid is their simulated configuration.

. Experimental results

As far as I know however, there is no record of an experimental study recording the elementary re-arrangements between particles to validate all of these results. But it can be extracted from the velocity field recorded from the granular films, as in the experiment, we can compute the elementary shearrates γi (s, θ, t) between two successive images. To compare with numerical studies, we first determine the critical shear-rate that makes for the transition between the collisional and the quasi-static regime. We had previously deduced from figure 4.10 the value to be γ = 2×10 -1 s -1 . We recall the shear-rate profiles for different applied wall velocities on figure 4.17 to evaluate where, spatially, a granular film is in the collisional or the quasi-static regime. This shows that for the lowest velocity Ω = 0.001 Hz, the film is under the criterion of γℓ = 0.2 s -1 in the whole gap and we expect it to be in the quasi-static regime everywhere. As for the other imposed velocities, they are all above the criterion at least until s = 0.1. After that, they progressively all go under the limit value, up until s = 0.8 at which the highest velocity, Ω = 0.1 Hz also goes under. This tells us that s = 0.1, plotting the PDFs of the elementary shear-rates show the characteristics of the collisional regime, except for the lowest velocity, and that at s = 0.8, the PDFs will show the characteristics of the quasi-static regime.

Following the work from Gaume et al. [START_REF] Gaume | Microscopic origin of nonlocal rheology in dense granular materials[END_REF], I accumulate statistics from all the successive velocity fields to compute the Probability Density Function of the elementary shear-rates γi , at a given position s. The PDF at s = 0.1 is plotted on figure 4.18, normalized by the mean shear-rate γℓ at this position. For all applied velocities, we roughly obtain a single profile, with positive values of the elementary shear-rates and a narrow PDF centered on the mean value γℓ . This is not the case however for the lowest velocity, for which the PDF is wider and seems almost symmetrical around a 0-value, showing negative values of γi and revealing that some particles are actually moving in opposition to the overall flow. This is coherent with the results obtained by Gaume et al. [START_REF] Gaume | Microscopic origin of nonlocal rheology in dense granular materials[END_REF]: for all velocities that are in the collisional regime, in the flowing region, we obtain elementary shear-rates aligned with the overall flow.

To go further, we plot the PDFs of elementary shear-rates at s = 0.1 next to s = 0.8 on figure 4.19 to compare the collisional regime to the quasi-static one. Note that the lowest velocity for s = 0.1 as been excluded, as it is already in the quasi-static regime. While the PDFs at s = 0.1, in the collisional regime, are all narrow, positive and centered around their mean value (figure 4.19(a)), ℓ at s = 0.8 and show an excellent collapse of all the curves. This is coherent with results obtained numerically by Tighe et al. [START_REF] Brian P Tighe | Model for the scaling of stresses and fluctuations in flows near jamming[END_REF]: the granular film having a surface fraction of ϕ = 0.77, it is close to jamming. In any case, the energy dissipation in a re-arrangement scales as γ2 i . Because of the proximity to jamming, the elastic component of the stress should scale with γ1/2 ℓ . At high shear-rate, in the collisional regime (s = 0.1), the viscous component of the stress is dominant and scales γℓ , which means the energy production scales as γ2 ℓ . On the contrary, in the quasi-static regime (s = 0.8), the elastic component of the stress is dominant, which means the energy production scales as γ3/2 ℓ . Balancing the energy production with the energy dissipation yields that in the collisional regime, γi ∼ γℓ , and a single normalized PDF is obtained, independently of γℓ . In the quasi-static regime however, the energy balance give γi ∼ γ3/4 ℓ , which is what is obtained in figure 4.19(c).

In figure 4.19(c), a characteristic time t q appears to obtain a non-dimensional axis. The precise meaning, value and interpretation of this time will follow in section 4.5, but as it is written now it is compared to the time of an elementary rearrangement 1/ γi . This means according to the energy balance that it should be a visco-elastic time of the dissipation process.

. Scaling and robustness of the model

The apparition of this visco-elastic timescale in the inter-particle dynamics in the quasi-static regime finally brings up the question of the relevant physical parameters of the problem. If we can delimit to different regime based on the value of γℓ , what is the physical timescale of the problem to which compare 1/ γℓ ? Moreover, can we unite these findings to the usual framework used in the study of granular materials? If so, what are the relevant stress scales and how can we write the non-dimensional parameters of the problem?

Following what is usually done for granular matter, I build a pressure-scale for the granular film to compare to the shear stress. The inter-particulate pressure should stem from the attractive forces between particles, through the surface tension χ = 34 mN.m -1 . The horizontal component of the capillary force applying on the particles and pulling them together depends on the surface tension χ but also on the contact angle of the contact line, as developed in section 1.2.2. The soap film attaches to the particles with an angle ζ = 80°. I then define a pressure scale P = σ/d with σ = 2χ cos(ζ), the 2 accounting for the presence of 2 interfaces through which the particles interact and d the particle diameter. As we do not record any viscous or inertial behavior in the overall flow curves presented in section 4.1, I presume we are in a confined regime, and the inertial effects, while low, are still dominant on the viscous effects. The pressure scale being defined, an inertial timescale follows: t c = d √ ρd/σ, with ρ the particle density. With this timescale I define a capillary inertial number I c = γℓ t c that compares the two relevant timescales of the problem and should be the relevant parameter in the study. For particles of polystyrene and diameter d = 80 µm as used up until now, t c ≈ 2 × 10 -4 s, while if we were to define a viscous time with the dynamic viscosity of the fluid η f , we would obtain η f ⋅ d/σ ≈ 6.7 × 10 -6 s, confirming our choice of a capillary-inertial number. Ideally, one would have set or measured experimentally the pressure inside the liquid film, but even in a static system this remains an experimental challenge. Our attempts to do this in a system that has to be placed in a rheometer cell and then sheared failed.

Nonetheless, to test our scaling, I cannot vary the surface tension χ, as no real leeway is available to generate stable soap films [START_REF] Pasquet | An optimized recipe for making giant bubbles[END_REF] (this has also been stated multiple times before, in sections 2.1 and 3.1.1). Theoretically, it would be possible to vary the contact angle ζ, but the chemical treatment of the particles needed to get them less hydrophilic does not allow us to control the produced angle and this would require extensive physicochemical knowledge. Varying the particle density ρ would induce other density effects, such as the Cheerios effect, modifying the way the particles attach at the interfaces and the overall physics of the problem and we would not be able to simply compare the results. The particle diameter d however is easy to change, while conserving the other parameters constant. It also appears to be the most effective way to test the scaling through the capillary-inertial number, as I c varies with d 3/2 . Because we are developing a continuous media approach however, we need a minimum of 10 particles in the gap, and because we want to record the flow and capture the velocity fluctuations we need a maximum of roughly 72 particles in the gap (see section 2.3 for more details on these experimental limitations). This gives the two boundaries of particle diameter usable in the experiment, d ∈ [350; 49] µm. The most important thing is to maintain the same surface fraction ϕ, as it sets the overall confinement and should also determine the coefficient β that sets the power-law between the temperature T and the local shear-rate γℓ , as detailed in section 4.3.

. Particle diameter d

Complementary experiments are performed varying the particle size: I compare the results obtained previously with polystyrene particles of diameter d = 80 µm to results obtained with particles of size 40 and 250 µm. 40 µm is, stricto sensu, outside of the range of acceptable sizes we set for the experiment because of the technical difficulty to distinguish individual particles at such small sizes, but I will consider it close enough considering the lack of available diameters for these beads, and nothing in the following results seems to contradict this assumption.

For both new particle sizes, the general inhomogeneous macroscopic flow is similar: a highly sheared region appears close to the moving wall, while for a large part of the gap the film is almost not sheared and remains in a quasistatic state. We can then plot the square-root of the measured temperature (normalized by what should be the only velocity scale, d/t c ) with respect to the capillary inertial number I c for these new experiments and superpose them with previous results on figure 4.20 to check the validity of this scaling and generalize the regime transition in the kinetic theory from collisional to quasistatic. While the same velocities have been applied for these new experiments, only one or two for each new film is represented on figure 4.20 for readability. The data for the experiment performed with particles of diameter d = 40 µm superposes nicely with previous results: it follows the same power-law as for d = 80 µm for the highest shear-rates (and thus highest capillary inertial number I c ), which allows to use the kinetic theory, and then for low capillary inertial number, the velocity fluctuations deviate from the power-law. The I c value that delimits transition from collisional to quasi-static regime is now approximately at the critical capillary inertial number I * c = 3 × 10 -5 . For the experiment with d = 250 µm, this is a little less convincing: the data appears to follow the same trend, even though it is slightly shifted from previous data, with lower measured temperature at a given capillary inertial number. A number of reasons could be invoked to explain this discrepancy, and the most obvious is that the surface fraction ϕ is lower than for the other films because of the method used to create them. It could also be that because we use a different size of particles, other particle parameters may have varied such as the contact angle ζ. Additionally, we do not know the exact inter-particulate pressure P p that would be needed to rigorously define I c , but only a general pressure-scale P derived from the parameters of the problem, as the attraction force between particles at a liquid-air interface is non trivial (see section 1.2.2). However, the data for d = 250 µm is not incompatible with a critical capillary inertial number I * c = 3 × 10 -5 either, and this is the value that is chosen to delimit the collisional regime, in which the kinetic theory applies, from the quasi-static regime. Again, very important rearrangements occur in an otherwise almost not sheared region, with γi / γℓ ∼ 100. These events are rare but of great importance, they also allow for the neighboring particles to move in turn and as such could be associated, as Durian did in developing its model [START_REF] Durian | Foam mechanics at the bubble scale[END_REF], to an avalanche-like process. The timescale used in the scaling, t q , is deliberately different from the timescale used to define I c and the limit between the two regimes, t c . Indeed, using the particle-size-dependent t c for the scaling and varying d do not lead to a collapse of the PDFs when rescaling with γ3/4 in the quasi-static regime, as on figure 4.21(c), and only a constant value t q allows it. This makes sense from a physical point of view, as following the interpretation provided by the Durian foam bubble model, this timescale should hold a viscous component, as it should compare elastically stored energy to viscous dissipation. While t c remains the right parameter to describe the transition between the regimes, as showed here, it does not incorporate any viscous component. As soap films are very thin objects, it is notorious that the viscous process through which they dissipate energy does not involve the classic viscosity of the liquid phase, but a so-called surface viscosity [START_REF] Cantat | Les mousses: structure et dynamique[END_REF] η i specific for the dissipation at the interface, with the dimension of a classic viscosity integrated over a spatial dimension (the thickness of the interface). No consensus exists on the value of the surface viscosity for a soap film but proposed values are in the range [10 -8 , 10 -5 ] Pa ⋅ m ⋅ s. As for the elastic storage of energy, two processes are considered: either because of the attractive interaction between particles through the surface tension, they are held against each other and elastically deform, or the meniscus linking two particles elastically deforms in a rearrangement. In both cases, the elastic storage has the surface tension of the film as a prime component, and we should obtain t q ∼ η i /χ. We can however evaluate both scenarios in terms of order of magnitudes. Considering the elastic deformation, I use Hooke's law to relate the confining pressure P = σ/d to the strain ε as: P = Eε, with E = 3 GPa the Young's modulus of polystyrene. The density of stored energy in a contact is then w = 1 2 P ε = P 2 2E ≈ 4 × 10 -6 J⋅m -3 . On the other hand, we can tackle the deformation of the meniscus by considering the surface tension as an energy by surface area, and considering that in a rearrangement the meniscus deformation is of the size of the particle d. The elastic energy linked to this deformation should then read w ∼ χ/d ≈ 4 × 10 2 J⋅m -3 . This is considerably bigger than the estimation for the deformation of the polystyrene particles, so this looks like the appropriate mechanism to store elastic energy in a granular film. Anyway, as both elastic and viscous processes cannot be quantitatively investigated, the value of t q is then arbitrarily fixed at 10 -4 s, only to obtain PDFs between -1 and 1 with values similar to what is found in the collisional regime. In terms of order of magnitude, since t q ∼ η i /χ, this would correspond to a surface viscosity of roughly 3 × 10 -6 Pa ⋅ m ⋅ s, which is in the acceptable range. Note that using the traditional viscosity to build the visco-elastic time t q is not possible. Using a viscosity in Pa⋅s requires the use of an additional length-scale to normalize with the surface fraction a create a time, and it seems reasonable to use the thickness of the film. Because the contact angle of the liquid on the particles is kept the same independently of the size of the particles, we expect the thickness of the liquid film to scale with the particle size. Figure 4.21(c) shows however that t q is independent of the particle size.

. Surface viscosity η i

It is possible to physically change the surface viscosity of the fluid to discuss a little further this viscous time. Adding a co-surfactant like dodecanol (DOH, C 12 H 25 OH) in a soap solution has the property of changing the inter-face properties [START_REF] Pitois | Liquid drainage through aqueous foam: study of the flow on the bubble scale[END_REF]. While dodecanol in not soluble in water alone, the fact that its molecular structure is so similar to usual surfactants and that its polar head is small allows it to be soluble in between surfactant molecules, at the interface and in the surfactant micelles. The exact process remains partially understood, and the determination of surface viscosity remains an open problem, but at small concentrations (relatively to the concentration in surfactant), it weakly decreases the surface tension, and once the interface is saturated it starts increasing the surface viscosity. As related in section 4.5.3 a concentration of 0.2 g⋅L -1 of dodecanol in the solution of 10 g⋅L -1 of TTAB that we use is enough to significantly raise the surface viscosity and to make it measurable in the rheometer. To test the effect of surface viscosity on t q , I perform an additional experiment with particles of diameter d = 80 µm and the addition of 0.2 g⋅L -1 of dodecanol. Note that the decrease in measured surface tension (from χ = 34 mN.m without dodecanol to 29 mN.m with it, see section 3.1.1) is probably not significant enough to show on the transition in capillary-inertial number I c between the collisional regime and the quasi-static regime, but the effect of surface viscosity on the viscous dissipation in the quasi-static regime should be recorded. The general shape of the velocity profile is preserved, thus demonstrating that the addition of DOH has no effect on the velocity profiles of granular films. Thus, at a given wall velocity Ω, the local shear-rate γℓ and consequently the I c profile are also kept the same. Figure 4.22(b) then displays the normalized square-root of the granular temperature with respect to capillary inertial number. It shows the same trend, with a proportionality between the two (β ≈ 1) for I c > I * c , and a transition to the quasi-static regime around the same critical capillary inertial number I * c = 3 × 10 -5 . However, while the trend is the same, it is observed that at a given I c , the measured velocity fluctuations T are damped, and the overall curve is shifted downwards. This goes in the direction of a raise of the surface viscosity, as by definition of the power-law linking T 1/2 to I c 4.2, the two quantities are linked by a viscous coefficient which should be proportional to the surface viscosity.

To confirm this, figure 4 while keeping the same value of t q = 10 -4 s. In both cases, the PDF do not rescale: the value of I c being the same for both films at this position, the power used for the scaling cannot make the curves collapse. The only way to obtain a collapse on the PDF is by tuning the value of t q used and to make it vary depending on whether or not DOH has been used in the solution holding the particles. This is done so on figure 4.23(c): by using a new value t ′ q = 16 ⋅ t q for the granular film with dodecanol, we obtain a collapse of the PDFs, at least for the central part with the most probable re-arrangement events. This is roughly equivalent to a raise in surface viscosity by a factor of 20 when taking into account the change in surface tension. This allows for a better collapse on the central part of the PDFs, that corresponds to most re-arrangement events, and I consider that the lack of agreement for rarest events should be attributed mostly to noise. Independent measurements of surface viscosity performed on a naked film, free of particles, in chapter 3, do not lead to a value of surface viscosity in the absence of dodecanol, for it is too small to be recorded. At a concentration of 0.2g⋅L -1 of DOH however, a value of surface viscosity η i = 4 × 10 -6 Pa ⋅ m ⋅ s is registered from the direct measurement presented in section 3.1.2. While a direct measurement in the same setup and in the absence of dodecanol is not possible, the collapse of the PDFs presented here would allow to extrapolate a value for the surface viscosity of the solution without dodecanol. By extrapolating the definition of the visco-elastic time t q , the collapse of the PDFs would translate into a value of 2 × 10 -7 Pa ⋅ m ⋅ s for the surface viscosity of the interface in the absence of dodecanol. This is one order of magnitude smaller than the η i = 3 × 10 -6 Pa ⋅ m ⋅ s previously assumed to build t q = 10 -4 s -1 , but is still in the usual range of surface viscosity of water. This value obviously has to be taken lightly, as in this scaling the characteristic visco-elastic time appears only to the power 1/4 and as such, small variations in surface viscosity cannot be captured. Note that η i = 3 × 10 -6 Pa ⋅ m ⋅ s is however approximately the value of the surface viscosity for liquid-air interfaces that will be found independently when studying the rheology of particle rafts in chapter 5.

Obtaining more precise results on this visco-elastic process in the contact between particles in the quasi-static regime would require a more systematic variation of the surface viscosity. However, the determination of surface viscosity of a liquid-air interface remains an experimental topic currently investigated. Moreover, adding even more dodecanol to the solution changes the interface properties too much and this results in less dense granular films that cannot be directly compared to the ones created without the use of dodecanol. Since section nonetheless proved the importance of surface viscosity in the dissipation of energy between the particles. An other trail in the investigation of the contact between particles in a granular film may lay in their microstructure.

. Link between flowing regimes and microstructure

This has been stated quite a few times already, but the flow of a granular material and its microstructure are closely intertwined. Granular films seem to be convenient objects to study this link, as their 2D nature allow for direct observation of the microstructure. Figure 4.24 displays one of the images taken by the camera during the experiments. It qualitatively seems like some very ordered zones appear and particles arrange in a crystal-like form in hexagonal lattices, represented in color. Additionally, it seems like the emergence of these ordered structures is favored close to the static wall, in the quasi-static regime, rather than close to the moving wall in the collisional regime. This is quite intuitive, as in the collisional regime, particles are supposed to collide and be constantly moving past one another, while in the quasi-static particles are allowed to stay in contact for a period of time and store elastic energy that will be suddenly and viscously dissipated in a rearrangement. This would mean that the quasi-static regime is more "ordered" than the collisional regime. To investigate the relation between order and flow regimes, a granular film of surface fraction ϕ = 0.77, with particles of diameter d = 80 µm, is sheared at constant velocity Ω = 0.5 Hz. This velocity is convenient, as based on previously obtained results, this should mean that the film is in the collisional regime for approximately half the cell gap, and in the quasi-static regime in the other half. Out of the recorded images during the shear, we compute a positional radial correlation function g S (r), as defined in section 2.4.2, at a given time for three subsets of particles S(s ∈ [0.3; 0.4]), S(s ∈ [0.5; 0.6]) and S(s ∈ [0.7; 0.8]). We recall that this function can be interpreted as the probability to find a particle at a distance r from a generic reference particle, and that this positional function differs from the classic radial correlation function as it restricts the "generic reference" particles to a subset S of all the particles in the system and used for the computation. It thus computes the probability of finding a particle at a distance r from a particle in S, without a loss of spatial resolution. It is ideal in this system with an inhomogeneous flow, as it allows to investigate locally the persistence of the order. Choosing these particular subsets allows to analyze what happens in the quasi-static regime for S(s ∈ [0.7; 0.8]) and to gradually go to the collisional regime and figure out the differences in between them. The correlation functions for the three subsets are plotted on figure 4.25, shifted vertically by steps of two for readability. The very first observation that can be made is that the peaks, identified by dashed-lines, are positioned at the same distance to the reference particle. There is at first a plateau at a 0-value, for r/d ∈ [0; 1], for the particles are not allowed to be separated by less than a diameter d, and then the first peak corresponds to the typical distance between two particles. This means that the inter-particulate distance a is the same in the three subsets, independently of the capillary inertial number I c . The inter-particulate distance a is homogeneous in the film, with a ≃ 1.085 × d. In an hexagonal lattice, this corresponds to a particle surface fraction ϕ = π 2 √ 3 d 2 a 2 = 0.77 in the whole film. This validates the fact that we considered the films to have an homogeneous surface fraction ϕ, close to the jamming, while in a confined state, since this inter-particulate distance does not vary.

The second observation concerns the value of these peaks. Its seems that close to the moving wall, in the collisional regime, S(s ∈ [0.3; 0.4]) (yellow), it becomes very hard to distinguish peaks after 3 particle diameters, meaning that the local hexagonal order rapidly fades. In the quasi-static regime however, S(s ∈ [0.7; 0.8]) (blue), peaks can still be distinguished up to 6 particle diameters, showing a much more persistent order. This supports the idea that large crystal-like structures are more easily formed in the quasi-static regime. Without trying to pretend that there is any physical meaning behind it, it is possible to roughly approximate the shape of the peaks' envelope by a decreasing exponential, as:

κ(r) = 1 + 5 ⋅ e - r ξ (4.8)
where ξ is the characteristic length of the order correlation. The reasoning here is admittedly very basic: at r → ∞, the radial correlation function should have 1 for value for the order is lost, while in a perfect crystal with an hexagonal lattice and no loss of order, the first three layers of contacts should be composed of 6 particles, translating into a value of 6 in the radial correlation function at these positions.

Trying to capture the loss of order by this exponential decay gives, for these three subsets: ξ ≈ d for S(s ∈ [0.3; 0.4]); ξ ≈ 1.4 ⋅ d for S(s ∈ [0.5; 0.6]); ξ ≈ 2.5 ⋅ d for S(s ∈ [0.7; 0.8]). This can be interpreted as the fact that the hexagonal order is preserved only for the first neighbors, at r = d, in the collisional regime, while in the quasi-static regime, crystal-like structures emerge in which the order is preserved for a few particle diameters.

While this demonstrates the correlation between the flow regimes and the persistence of order in the case of a monodisperse granular film, it does not show causality. Is the structure the consequence of the inhomogeneous flow, is it the cause ? In other terms, if one was to find a way to prevent the emergence of order in the granular film, would it flow homogeneously ? To answer this question, one last experiment on granular films is performed: on the granular raft from which is extracted the granular film, particles of diameter d = 40 µm and particles of diameter d = 80 µm are spread in arbitrary proportions and the raft is messily stirred to ensure as much randomness as possible. A gran-ular film is formed from this raft, placed in the rheometer and sheared at the exact same velocities as monodisperse granular films. While the bidispersity of the particle sizes does not guarantee that no order may rise from their assembly, one can hope that it would be sufficient for an effect to be measured in the recorded flow. Figure 4.26 shows one of the normalized velocity profile obtained for such a granular film at an imposed velocity Ω = 0.01 Hz, compared to the normalized velocity obtained for the monodisperse case d = 80 µm (just like what was done on figure 4.22 for the surface viscosity). The velocity profile still decays in an exponential manner away from the moving wall, with a comparable characteristic length of decay δ as for the monodisperse case. This shows no noticeable effect of the bidispersity on the ability of particles to transmit movement and kinetic energy, as the film is just as inhomogeneously sheared. A snapshot of the bidisperse film is however displayed on figure 4.27: it shows that no crystalline structure has formed while shearing it. It does not completely rules out the possibility of a more complicated order in this system that cannot be recorded with the tools developed here, but this tends to demonstrate that order is not a necessity to obtain an inhomogeneous flow. The inhomogeneity then seems to be an intrinsic property of the confined macroscopic regime, with high confining pressure/attraction between particles and relatively low shear-rates and thus inertial and viscous effects. In this chapter, I designed an original setup to study this peculiar regime that is not accounted for in the local rheology models that define the shear-rate through a spatial average. With it, we saw that this regime manifests with a high surface fraction, close to the jamming fraction ϕ m , and a shear-rate independent shear stress. At the particle scale, this translates into an inhomogeneous shear-rate, decaying in an exponential fashion, independently from the capacity of the granular material to form strong ordered structure to resist the flow. This decrease leads to the coexistence of two regimes: one highly sheared, in which the collisions between particles are of prime importance in the dynamics and in which the partially elastic contacts can be accounted for through an extended kinetic theory, and one quasi-static regime in which rearrangements are rare and sudden. Between these rearrangements, particles interact elastically and this interaction energy is suddenly released through viscous interactions in a rearrangement. Because of the 2D-nature of the granular film, the elastic energy is is stored through the surface tension and dissipated with the surface viscosity.

. Partial Conclusion

-Granular rafts

One parameter that has been overlooked in the study of granular films is the influence of the number of liquid-air interfaces at which the particles adsorb. If one was to consider a granular raft, with particles resting at a single interface on top of a bulk of liquid, how would the dynamics be affected? Would the effect of the confinement be halved? Or, considering the closed 2D-objects equivalents of granular rafts and granular films, namely liquid marbles and gas marbles, are separated by a full order of magnitude in their mechanical stability, would granular rafts be ten times easier to put in motion? What portion of the physics developed on the study of granular films is universal and directly transposable for granular rafts? This is explored in this chapter, in which I study the flow of granular rafts. First, I show that a usual Bingham law is appropriate to describe the rheological behavior of granular rafts. However, at low shear stress, the characteristics of a confined regime appear, with an inhomogeneous flow. Adaptation to the extended kinetic theory model allow to accurately describe this, and again, distinguish between a collisional and a quasi-static regime coexisting at low shear stress. Once again, the statistical analysis of the re-arrangements allows to shed light on the different dynamics at play in both regimes. ). This is done so in an annular cell and placed directly inside the rheometer. The measuring cylinder, of radius R = 30 mm, attached to the axis of the rheometer, is dipped 10 mm deep in the solution and through the raft (figure 5.1), dividing the raft in two gaps e = 4.5 mm wide. It is first driven with a constant rotational velocity of 0.3 s -1 for 30 seconds, leading to a pre-shear of 9 turns in total, to assure the structuring of the material. While this was not possible for granular films, it is possible for granular rafts to impose a torque and record a permanent regime in the rotational velocity: because the measuring cylinder is dipped 10 mm deep into the solution, viscous dissipation occurs in the bulk of the liquid and allows to reach an equilibrium. It is then driven with a piece-wise constant torque ranging from 9 µN⋅m to 0.1 µN⋅m, for 200 s for each piece, while I record the resulting rotational speed. This transient time is independent of the applied torque/measured velocity. This may seem counter-intuitive, as one could expect the transient to be dependent on the total strain and to reflect the structuring of the raft and the creation of contacts between particles. The reason why it is indeed a transient time stems from the fact that the raft lies on a Newtonian fluid that is also sheared, with the cylinder being 10 mm deep in the solution. Through the Navier-Stokes equations, we can evaluate the viscous time for the establish- ment of the steady state to be t visc = ρ f e 2 /η f ≃ 30 s, with ρ f the fluid density, e the gap size and η f the fluid dynamic viscosity. In this regard, the steady state for the fluid flow underneath the raft is achieved at 5 ⋅ t visc = 150 s, as measured, at which the total shear has already exceeded any possibly limiting total structuring strain for the raft.

The permanent regime can be reached either by increasing or decreasing torque, showing no hysteresis: we can define a bijection between the applied torque M and the velocity of the measuring cylinder in the permanent regime Ω ∞ , for each raft of particle fraction ϕ. At a given velocity however, there are two contributions to the resisting torque exerted on the measuring cylinder: while one, of interest here, is from the particles composing the raft, the second one comes from purely hydrodynamic resistance of the 10 mm of viscous fluid supporting the raft. In an attempt to disentangle both contributions, the same experiment is performed without any particles, but this time by setting the cylinder velocity at Ω ∞ and by measuring the resisting torque of the fluid alone M f . At Ω ∞ , the resisting torque exerted by the raft alone on the measuring cylinder is then deduced to be the difference between the total resisting torque while shearing a raft and the resisting torque of the fluid alone at the same velocity, M -M f . Again, to allow for a full comparison with granular films, a camera is set underneath the raft. It allows to record the outer gap of the cell only, and record the displacement field of the raft in this region to compute the instantaneous velocity field ⃗ V (r, θ, t). This double-gap geometry should not have an influence on the dynamics of the particles, we should be able to directly compare the results with granular films. It has been chosen for granular rafts because by shearing the raft in its middle, we are actually shearing two interfaces, and this has for effect to double the signal measured by the rheometer.

In addition, the radius of the measuring cylinder has been considerably increased, going to R = 30 mm, for the same purpose of increasing the measured signal. Both of these modifications were not possible (or at least very difficult to do) with granular films, because of the complexity of creating an annular soap film of this size. Additionally, the increase in the radius as for effect to better the rheometric approximation that allows to consider an homogeneous stress inside the gap, as discussed already for the films in section 4.1. With a radius R = 30 mm and a gap size of e = 4.5 mm, the expected drop in shear stress between the two walls is 1 -R R + e = 24%, which is less than the 34% of the system used in the study of granular films. Finding again the same behavior should make a case for the inhomogeneity to be an intrinsic property of granular materials.

. Rheometry

First, as granular rafts have been already studied before as 2D granular materials with homogeneous properties, with quantitative results, I want to reproduce theses findings and make sure nothing peculiar exists in the present setup. The raw data produced by the rheometer allows to define the mean stress τ and the mean shear rate γm in the cell as:

τ = M -M f 4πr 2 ≃ M -M f 4πR 2 (5.1) γm ≃ RΩ ∞ e (5.2) 
In this framework, the stress is still a surface stress, in Pa⋅m, in order to describe the raft as a 2D-object. It can be seen as a stress integrated over the thickness of the raft, where a factor 1/2 has been used to account for the double-gap configuration.

It is then possible to plot rheograms for granular rafts of different surface fractions ϕ, as can be seen on figure 5.3. Granular rafts behave differently from granular films in that we clearly observe a dependency of the measured stress with the mean shear-rate. They flow when a yield stress is exceeded and do so at constant Newtonian viscosity: they behave has Bingham fluids. For a surface fraction ϕ ⩾ 0.74, a yield stress τ 0 has to be overcome to allow for the raft to flow; the bigger ϕ, the bigger the yield stress. When flowing, the raft does so with a seemingly constant viscosity η s which in turn is a growing function of ϕ. The recorded surface stresses are of the order of 10 -4 Pa⋅m. As developed in the beginning of section 1.3.1, empirical laws exist to account for the evolution of the yield stress and the apparent viscosity of 3D suspensions with the particle volume fraction Φ, as for example the Krieger-Dougherty law expressed in equation 1.9:

η s = η f (1 -Φ Φm ) -[η]Φm
, where Φ m is the jamming fraction, the particle fraction above which the suspension cannot flow and both quantities diverge to infinite values, and [η] is a numerical coefficient set to 2.5 to retrieve the behavior predicted by Einstein in the dilute regime. This Krieger-Dougherty behavior has been adapted by Brady [START_REF] Brady | The einstein viscosity correction in n dimensions[END_REF] to 2D suspensions to take the form η s = η 0 ϕ m (ϕ m -ϕ) -2ϕm . While plotting the values of τ 0 and η s deduced from the fit of the Bingham behavior from the rheograms figure 5.3, we may fit this 2D Krieger-Dougherty function to the values of η s , as shown on figure (5.4). The fit gives a value of ϕ m = 0.82 which is in the range proposed in literature for 2D granular material (as stated in section 1.2.3) and a surface viscosity for water of η 0 = 3.5 × 10 -6 Pa⋅m⋅s, which is almost the 3 × 10 -6 Pa⋅m⋅s that was used to build the visco-elastic timescale t q for the re-arrangement of particles in the quasi-static regime of the granular films. The stresses being considered here being small with respect to the rheometer sensitivity, the errorbars are large; however the data may be considered to be in a roughly good agreement with these usual rheological laws. However, when considering either the yield stress τ 0 or the surface viscosity η s , the last point, for the highest surface fraction ϕ, appears to be problematic as it does not follow the trend set by the previous points. Indeed, for the surface viscosity, the values of the last two points are roughly the same. The confidence intervals for the surface fraction actually overlap, but this would no be enough to explain the drop in the measured yield stress. While I was able to determine that no particle sank and that sinking was not the explanation behind this problematic point, out-of-plane motion would be a good candidate to explain this behavior: at ϕ = 0.79, so close to ϕ m = 0.82, a small out-of-plane motion would induce a just as small error in effective ϕ felt by the particles in their contact plane, which in turn would translate in a large change in τ 0 and η s . This effect would be different from the simple possible error in the measurement and would add to it. Let for a minute think that we would want to invert the two points ϕ = 0.79 and ϕ = 0.77, by imagining an out-of-plane motion in the case of ϕ = 0.79. This would mean an effective diameter of the particles in their plane of contact as d ′ = d(0.77/0.79) 1/2 . This is equivalent to saying that two particles in contact are actually in two different planes, separated by h o = d sin (arccos ((0.77/0.79) 1/ 2)) = 22 µm for particles of d = 140 µm, with half the particles going h o /2 up, and the other half going down. Trying to check for this out-of-plane motion proved to be of no avail, as the laser profilometer at hand in the laboratory was not precise enough to measure such small displacements on a moving object. Finally, it could be pointed out that the values for ϕ = 0.77 are deduced from a fit between only two points, as only two torques allowed for this particular raft to flow. This is a bit doubtful and more data would be required to make real quantitative conclusions, but that is not the point of our study: these result are sufficient to demonstrate that a Krieger-Dougherty law reasonably capture the rheological behavior of granular rafts as a 2D suspension and that a priori, granular rafts are not peculiar objects. However, as I will show later on, and just as we have demonstrated for granular films, these rheological measurements performed at the moving wall of the rheometer are wrongly assuming homogeneous rheological properties for the raft. This assumed homogeneity allows to use mean values of the shear rate, but actually fail to capture the non-local rheology of the material. With that in mind however, knowing a qualitative law such as the 2D adaptation of Krieger-Dougherty, that may be used adequately in industrial processes is enough, but for us persisting in hope of correcting an odd point seems less important.

. Velocimetry

To effectively obtain local results on the rheological behavior of the raft, a camera has been set underneath it to capture the velocity field of the flow ⃗ V (r, θ, t) by computing the displacement field between two consecutive images with a DIC software (DaVis 10.2, LaVision). An example of velocity map is displayed on figure 5.5. It has a few distinct characteristics: firstly, the velocity is zero at the static wall, as would be expected. It increases as we get closer to the moving wall. However it never reaches the moving wall velocity, as in this example 40% of it is lost as a wall slip. This was not the case for granular films. Lastly, it seems like mild velocities (cyan color in the example, 30% of the wall velocity) occupy a disproportionate part of the gap. This tend to illustrate the inhomogeneity of the flow. However, this is different from what was observed in granular films, as for the films a large part of the gap was not moving.

In the permanent regime, as for the films, this instantaneous velocity field varies around a time-averaged axisymmetric field where no radial displacement is recorded: ⟨ ⃗ V (r, θ, t)⟩ = v θ (r)⃗ e θ (where ⟨⋅⟩ denotes the time-average and ⃗ e θ the unit vector in the orthoradial direction). We can then plot reduced velocity profiles v θ /RΩ ∞ as a function of a reduced radial position s = (r -R)/e (see figure 5.6) for on particular raft with ϕ = 0.76 (× on figure 5.3). These velocity profiles expand on figure 5.3: while it was considered that one surface shear stress τ corresponds to a unique mean shear rate γm , these velocity profiles show that each τ corresponds to a whole profile, in which the shear-rate is not necessarily homogeneous. The two are only equivalent if the velocity profile is linear, in which case the local shear rate γℓ ≃ dv θ /dr is homogeneous through the gap and proportional to γm (the proportionality coefficient accounting for the wall slip). In that regard, the colors from figure 5 the exception of the approximation made in equation 5.1, the stress should be homogeneous: as we record a steady state, the forces exerted on the raft must balance each other in order to attain mechanical equilibrium. The striking difference between these velocity profiles and the ones obtained with granular films (figure 4.8), apart for the existence of a wall slip, is that multiple profiles are recorded, seemingly dependent on the imposed surface stress. This is not necessarily surprising, as for the granular films, the study had been developed only in a very confined regime at which only one value of surface stress had been recorded. The model however predicted an evolution of the velocity's diffusion length with the shear stress to retrieve an homogeneous flow in the inertial regime. Here, for rafts, it appears that the linear decrease of the velocity needed to describe the raft solely with γm is possible but not systematic. Setting aside the slip velocity and normalizing the velocity by its maximum value v M , thus defining a reduced velocity v = v θ /v M (figure 5.7), allows for a better visualization of the data: it then appears that reducing the shear stress (and getting it closer to the yield stress) increases the inhomogeneity of the local shear rate, while for the higher stresses (blue curves on figure 5.7), the profiles reach an almost linear shape that do not seem to continue to evolve with the stress increase. This not systematical homogeneity of the flow is better displayed on figure 5.8, which shows the local shear rate γℓ profiles. The local shear-rate displays a minimum around the center of the cell s = 0.5, while the maximal value of the shear-rate is always at the viscinity of the moving wall. The behavior greatly differs from the behavior found for granular films, for which not only the shape of the shear-rate profile was the same independently of the imposed wall velocity, but also its evolution was monotonous with a constant decrease through the gap. In this sense, it appears that a granular raft is not just "a granular film with half the liquid-air interfaces", nor is it evident yet that this object is "tenfold less strong" that a granular film would be, as is the case when comparing liquid and gas marbles. It is possible to note however, that while supposing an inhomogeneous shear-rate, a minimum of the shearrate in the middle of the gap could have been expected: in this setup, the granular raft is sheared by a cylinder that goes 10 mm deep inside the liquid solution supporting it. The solution being a Newtonian fluid, it flows with a unique viscosity and a linear velocity profile. This liquid being roughly the same density that the particles, it is expected for the two flows to affect each other; it is then very unlikely to find zero-velocities far away from the static wall, and more likely to find something similar to a plug-flow. The differences may just lie in this liquid flow underneath the raft then. The fact that the shear-rate can still be inhomogeneous for a granular raft begs the question of the applicability of the model developed for granular films. In the case of the inhomogeneous flow, can it be used to capture the actual velocity profiles measured? Is it possible to retrieve the two flowing regimes, either collisional or quasi-static, and if so, are their dynamics the same as for granular films? Can the possibility of having different shear stresses corresponding to different velocity profiles allow for a test of the theoretical expression of the diffusion length δ of the kinetic theory with stress, which was not possible for films?

. Hydrodynamical model for rafts

To compare with granular rafts, we introduce back the capillary inertial number I c = γℓ t c = γℓ d √ ρd/σ that we still suppose to be the relevant parameter to describe the flow: even with the presence of the fluid flow underneath the raft that obviously changes the overall flow, the fact that the granular flow is still not homogeneous demonstrates that particles are still interacting and that contacts are of prime importance in the flow. Extra experiments are performed with particles of diameter d = 80 µm. Additionally, because the creation of a raft does not require the presence of a surfactant inside the solution, an experiment is also performed without it, to get a surfactant tension of χ = 69 mN⋅m -1 .

We then go back to the kinetic theory for granular media, which relates the evolution of the "granular temperature", defined as the time-fluctuations of the velocity around its mean value at a given position: T (s) =< V θ (s, t) 2 -v θ (s) 2 >. This is only evaluated in the permanent regime. Still, the heat is produced by the flow itself: as a particle moves, they collide and it locally increases the temperature. It also opens the way for neighboring particles to move in turn and reduces their resistance to movement. The movement propagates as such until a steady state is reached. In this way, the temperature diffuses through interactions between particles. The heat equation developed in section 2.5 and used for the granular films still holds:

2λ 0 d 2 (T 1/2 ) dx 2 -ϵ 0 T 1/2 + τ 2 η 0 T (2β-1)/2 = 0 (5.3) 
where λ 0 , ϵ 0 , η 0 are respectively coefficients related to the diffusion, collision dissipation and effective viscosity, which are all dependent on density, diameter and mechanical properties of the particles, as well as pressure P (σ = χcos(ζ)).

These parameters are all constant and homogeneous on a given raft. The phenomenological coefficient β in the equation, that was introduced by Bocquet et al. [START_REF] Bocquet | Granular shear flow dynamics and forces: Experiment and continuum theory[END_REF] to relate for the divergence of viscosity close to the jamming transition, has to be re-evaluated here, as it may differ from the one measured for granular films. Re-written in terms of non-dimensional parameters, the power-law involving β now reads:

I c = (τ /η 0 )t c T (2β-1)/2
The I c profiles are deduced from the velocity profiles for all experiments, while the velocity fluctuations T profiles are also computed from the velocity fields. All data are then regrouped on a single figure 5.9. The behavior that emerges from this plot is a bit different from what was visible for granular films. The main characteristic remains: for large value of I c and for all experiments, the data follow a similar trend respecting a power-law predicted by the kinetic theory. However, the exponent of this power-law differs from what was observed for granular films, for which it could nicely be approximated as 1. Here, fitting the data yields β = 4/3 ± 0.05. An other major difference lies on the distinction between the collisional regime and the inertial regime made for the granular films. For rafts, it seems like even for extremely low capillary inertial number, some parts of a given raft would land on the determined power-law (dark violet curve for example). I interpret this as an effect of the forcing made by the flowing fluid underneath the raft: as this flow already sets that the less sheared part has to be in the middle of the gap, it may as well impose that for the flowing part to be close to what would be the collisional regime. I however decide to set the critical value for I c , I * c , at the maximal value for which on a profile exhibits a plateau in temperature. This corresponds to I * c = 2 × 10 -4 and appears on the orange curve of figure 5.9. Indeed, if a plateau is recorded for a given raft under this critical value, then the kinetic theory is no longer supposed to apply. The fact that the power-law seems to still be verified in other cases under this criterion has to be a parasitic effect, and the only one that comes to mind is the forcing of the fluid flow underneath that superimpose with the natural granular flow of the raft. Interestingly, the value found for I * c = 2 × 10 -4 is approximately ten times lower that the one retained for the granular film, 3 × 10 -5 . This can be interpreted as the sign that the confinement is ten times less effective in a granular raft to block the onset of a collisional regime and an overall flow of the material. This matches the observation made by Timounay et al. [START_REF] Timounay | Gas marbles: much stronger than liquid marbles[END_REF] that gas marbles were ten times more stable than liquid marbles. Even though this critical value is higher than it was for granular films, for some imposed stress on the raft, I c is always bigger than it, as displayed on figure 5.10. This means that for some imposed stress, the raft is supposed to always be in the collisional regime and described by the kinetic theory. The data with no surfactant and particles of diameter d = 140 µm perfectly collapses with the data with surfactant. While in the scaling for I c , I c only varies with the square-root of the surface tension, and the surface tension has only been varied by a factor of 2 (which is the maximal range physically available with water), this tend to show that the appropriate scaling for the inter-particulate pressure has been selected here, while it was not possible to confirm it for granular films. This is less obvious when comparing data obtained with particles of diameter d = 140 µm and d = 80 µm. It might be argued that changing the particle size has changed other properties that make the comparison not immediate: for granular films, particles of size d = 140 µm had not been used because it proved to be too difficult to make a dense film. This could be partly explained by the fact that these particles are heavier than smaller one, but the fact that it was still doable for particles of diameter d = 250 µm shows that this was not the only reason. It could be that these particles were less hydrophobic, even though the measured of the contact angle ζ after the chemical hydrophobic treatment was found to be the same, it could be that it evolved with time and it was not possible to measure it afterwards. A change in contact angle would induce a change on the attractive scale defined and thus on I c and would explain the shift. It could also be explained by the fact that different size of particles lead to different depth of penetration of a particle into the solution, and thus a different interaction with the liquid flow underneath, something that was not a problem when considering particle films.

Nonetheless, it appears that the exponent linking the temperature T and the capillary inertial number I c is always the same for rafts, β = 1.33 ± 0.05. Unfortunately, this exact experimental value for β does not allow to solve analytically the heat equation, even though a numerical integration would be possible. However, considering β = 1 to obtain a convenient analytical solution should introduce very little error: indeed, T 1/2 is approximately of the order of 1 for all I c . We then retrieve the heat equation 4.4 used for granular films, that can be transformed as a differential equation on the velocity: where the stress-dependent diffusion length δ remains:

d 3 (v) ds 3 -
δ = √ 2λ 0 η 0 ϵ 0 η 0 -τ 2 (5.5)
Again, to solve this equation, three boundary conditions are needed. v(0) = 1 and v(1) = 0 still hold because v has been constructed this way. However, the vanishing heat flux at the static wall used by Bocquet et al. [START_REF] Bocquet | Granular shear flow dynamics and forces: Experiment and continuum theory[END_REF] and for the granular films, dT ds = 0 at s = 1, clearly does not hold for granular rafts. Close to the static wall instead, the shear-rate is a growing function of the position in the gap s (because of the fluid flow underneath the raft, as stated before). As a result, the quasi-static regime -if present-is in the middle of the gap and not at the static wall. As a result, we only use two boundary conditions to solve the equation, which gives: Once again, an important comment about the integration of the differential equation: equation 5.6 assumes that the whole raft is described by the kinetic theory, and thus is in the collisional regime, but this is not systematically the case. For the highest imposed stresses, I c > I * c in the whole raft, and the collisional regime extends to the whole gap. But for the lowest imposed stresses, again, their is a coexistence in the gap between the collisional and the quasi-static regimes. Two collisional regimes exist at both walls, separated by a quasi-static regime of lowly-sheared particles (even though they have non-zero velocities). However, no discontinuity in the flow is allowed, and since there is only so many ways to connect both flowing regions, it makes no noticeable difference to wrongly assume that the whole raft is in the collisional regime. Section 5.5 will however show that dynamics similar to what was developed with granular films are at play in this regime for rafts.

It is interesting first to look more closely at the values of δ used in the fits, as for granular rafts we actually record an evolution of this diffusion length. Figure 5.12 shows these values, normalized by the size of the gap e, as a function of imposed stress τ . The diffusion length is a growing function of τ , as expected by the theory, however is does not follow the expected behavior of equation 5.5. This is not so surprising, as the model assumes an infinite media which is not the case in the system. In theory, the stress has a maximal value that it cannot exceed, which is compensated by an increase of the diffusion length δ until reaching an infinite value. In a finite-size case, this cannot be: the diffusion length has to saturate at a somewhat linear velocity profile, and in turn the stress exceeds its theoretical maximum value. The dashed line on figure 5.12 propose a theoretical behavior of the diffusion length that fits the three lowest stress values: this corresponds to a maximal value of the stress as (ϵ 0 η 0 ) 1/2 = 3.3 × 10 -4 Pa⋅m and a diffusion length at vanishing stress as (2λ 0 /ϵ 0 ) 1/2 = 0.57 mm (roughly 4 particles). Following the development made in section 2.5, we can determine some theoretical scalings of δ with particle diameter d. The maximal value of the stress in an infinite system should go as (ϵ 0 η 0 ) 1/2 ∝ d 3/2 , and the diffusion length at vanishing stress (2λ 0 /ϵ 0 ) 1/2 ∝ d. Varying only one parameter (the particle diameter d), it is not difficult to test both scalings at once, all the more so in a finite-sized experiment, when the theory relies on an infinite media. Supposing a fixed normalized stress τ /(ϵ 0 η 0 ) 1/2 ∝ τ /d 3/2 Pa⋅m -1/2 low enough so that finite-size effect are not predominant, the movement should propagate over the same number of particles δ/d. I test it by comparing the diffusion length for different applied stresses for d = 80 µm and d = 140 µm (figure 5.13).

Rescaling the stress by the theoretical diameter ratio proves to be effective as the points seem to be closer on the x-axis. However, since the velocity profiles are comparable for both sizes, with a cutoff at δ/e ≃ 0.5 and a somewhat linear evolution of δ before, it does not seem that δ scales with particle diameter d. On the other hand, scaling with e on the y-axis to take into account the finite-size effect while still normalizing by d 3/2 on the x-axis as predicted by the theory makes the points collapse on a single curve (figure 5.14). This normalization might be interpreted has the sign that the evolution of δ with τ is indeed the one suggested by the kinetic theory, with the difference of the saturation that has to exist because of finite-size effects, but also that because of confinement and these same finite-size effects the evolution of δ with d itself is neutralized, and a fundamentally non-local effect raises as it is actually set by the position of the walls. This is however too big a statement to make with only two particles sizes available, and more investigation should be conducted. Finally, I come back to the study of the quasi-static regime and the rearrangement dynamics between the collisional and quasi-static regime. It was found for granular films that computing the probability function of elementary shear-rates γi , both local and instantaneous -in between two images-, revealed two different behaviors for these regimes. In the collisional regime, the PDFs were narrow, centered around the mean value of the local shear-rate at this position γℓ , and all re-arrangement events occurred in accord with the flow, with γi > 0. In the quasi-static regime, this was not the case, with not-so-rare values for γi going two order of magnitudes higher than γℓ and almost half and the instantaneous shear-rates actually going against the flow, with negative values. Plotting these PDFs for both the raft with d = 140 µm (figure 5 By plotting the PDFs at s = 0.1, where the raft is in the collisional regime for all applied stresses (figure 5.15(a)) for particles of diameter d = 140 µm, there is a single PDF (figure 5.15(b)), independent on the applied stress. All rearrangement events occur in the direction of the flow ( γi / γℓ > 0) and the PDF are narrow and centered around the mean value, just as what observed for granular films. For the same raft, at s = 0.5, the quasi-static regime exists only for the lower stresses. For the higher stresses, I c > I * c (green curve and up), the raft is still in the collisional regime and the same observations can be made (figure 5.15(c)). For lower stresses however (red, orange and yellow curves), the PDFs start to widen and present negative values; some particles are occasionally moving against the overall flow, preventing the onset of a macroscopic shear. The lower I c , the wider the PDF: important rearrangements are still occurring while in a globally slightly sheared zone. This confirms confirms what had been obtained for granular films. The PDFs are however not as large as they were in quasi-static regime. This can be explained by the fact that the lowest I c value reached is not even one order of magnitude lower than I * c , while for the films it could reach values a hundred times lower. Again, this seems to be provoked by the existence of the fluid flow underneath the raft that tend to homogenize the shear-rate. Once more, rescaling in the quasi-static regime by γ3/4 ℓ make the PDFs collapse (figure 5.15(d)), showing that particles do not simply interact through immediate collisions but also accumulate elastic energy in the contact that they suddenly and viscously dissipate in a re-arrangement, as predicted in the Durian foam bubble model [START_REF] Durian | Foam mechanics at the bubble scale[END_REF]. Interestingly, this scaling does not show any discrepancy for the stresses at which the raft is supposed to be in the collisional regime. It seems like so close to the transition between the two regimes, as dotγ ℓ is of the order of 1, this yields no difference.

. Quasi-static regime

The same goes when considering the particles of size d = 80 µm: at s = 0.1 (figure 5.15(f)), for the two higher stresses, I c > I * c (figure 5.15(e)) and the PDFs are positive and independent of I c , while the third one is already wider with negative values. At s = 0.5 and at the highest stress, I c > I * c at the PDF is still positive and narrow (figure 5.15(g)). At the two lower stresses, the PDFs present negative values and the lower I c , the wider the PDF (figure 5.15(c)). In this quasi-static regime, the PDFs rescale with γ3/4 t -1/4 q (figure 5.15(h)).

The timescale used in the scaling of the quasi-static regime to obtain a non-dimensional axis, t q , to compare to the time of an elementary rearrangement 1/ γi , is still a visco-elastic time characteristic of the energy storage and dissipation in an elementary re-arrangement, as it was for granular films. It is different from the capillary inertial time t c as it should compare elastically stored energy to viscous dissipation. To reflect on the importance of the flow of the bulk of fluid underneath the raft here, it is this time defined with the classic viscosity of the fluid as t q = η f d/χ, which means it should vary with d. While considering only two particle diameter is not enough to confirm it, comparing figure 5.15(d) and (h) seem to support it, as both seem very similar width-wise when t q takes into account the particle size.

In just a few words, everything here demonstrated that while granular rafts have specificities that distinguished them from granular films, the main physics behind the way the particles convey energy and ultimately flow are the same in essence and should apply to every granular medias. On the one hand, usual phenomenological models used for suspensions give a relation linking the mean shear-rate and the shear stress τ ( γm ) while not capturing the inhomogeneity of the flow of these objects. It is however well captured by the extended kinetic theory, which also gives a physical understanding of the dynamics at play and gives a criteria to delimit two flowing regimes with different dynamics, just as it was for granular films. The model has a great descriptive value, but the fact that the diffusion length δ does not follow the theoretical evolution with τ shows it still lacks some predictive value. An other weak point of applying an extended kinetic theory model to granular raft is that at no point do we take into into account the effect of the liquid flow underneath the raft, that surely has some effect as it introduces a forcing of the flow. This was not a problem while looking at granular films. It was also evidenced that the transition between the collisional and quasi-static regime occurred at different values of the capillary inertial number I c , separated by one order of magnitude, just like the stability domain of gas marbles and liquid marbles were. For these reasons, it seems like granular rafts are not just a granular film with "half the liquid-air interfaces". Looking from a statistical point of view at individual rearrangements showed that for both granular films and granular rafts, different dynamics were at play between the collisional and quasi-static state: in the latter, it was evidence that at such high surface fraction, particles need to overcome a excess local yield stress to move other particles with them, as could be derived from the Durian foam bubble model [START_REF] Durian | Foam mechanics at the bubble scale[END_REF]. The viscous dissipation in a re-arrangement seem to be different for the two objects however, as it was demonstrated that for granular films it involved the surface viscosity, while for the rafts the classical bulk viscosity of the carrying fluid seem to be enough.

Conclusion and perspectives

Through this work, I demonstrated that granular films are singular objects that should be considered in the field of rheology. Their overall rheology is dictated by interfacial properties of a soap film, with surface tension acting as a confining pressure and surface viscosity being an important parameter in energy dissipation. Evaporation of the liquid part holds a role, even though the presence of the particles greatly increases the longevity of a film. For all their originality however, granular films can be described in the same framework as a usual granular material. Their 2D nature allows to record directly the flow of the whole material at the particle scale. Through the computation of local quantities such as the local shear-rate γℓ or the local velocity fluctuations, I demonstrated that the application of a kinetic theory extended to granular materials succeeded in describing locally the inhomogeneous flow of a very densely packed granular material, when constitutive relations building an effective friction law could only describe it from a spatially averaged point of view. Moreover, the availability of a 2D granular material allowed to bridge a gap with numerical studies and confirm experimentally some results. For one, I described the limits of the kinetic theory and investigated the dynamics at play outside of its range of application. In what then constitutes a quasistatic regime, that coexists along with the collisional regime of the kinetic theory, important but rare rearrangements occur, sometimes against the overall flow, in an overall weakly-sheared zone. In this quasistatic regime, elastic energy is stored through the surface tension and suddenly released through the surface viscosity.

The study of granular rafts showed that these findings, while bringing into play interfacial properties because of the 2D nature of the objects, were not peculiar. The whole framework is almost directly transposable to granular rafts. The main difference is that in the case of granular rafts, there exists a Newtonian flow of the liquid phase underneath, that introduces a forcing of the flow and is not accounted for in the developed framework.

While the inclusion of this forcing is an obvious direction for future work, it appears more fundamental to acquire a way to more precisely record and control the state of the stress of granular films. The design of an experimental apparatus able to set -or at least measure-the confining pressure inside a film would allow to extend even more on the precise characterization of the nondimensional numbers and most importantly their critical values between the collisional and quasistatic regime. Numerical models also predict fluctuations
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 1444 Pull-out of a granular film. . . . . . . . . . . . . . . . . . . . . . . 4.2 (a) Example of an image taken by the camera of a sheared film. (b) Sketch of the experimental setup used for the study of granular films. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.3 Measured torque M as a function of imposed velocity of the cylinder Ω for a granular film (×) and for air (×). . . . . . . . . . 4.4 Imposed velocity of the cylinder Ω (◻) and measured torque M (•) as a function of time t for ϕ = 0.78. . . . . . . . . . . . . . . . 4.5 Mean resisting torque M as a function of the applied rotational velocity of the measuring cylinder Ω for different granular films of surface fraction: (▽) ϕ = 0.76, (◻) ϕ = 0.77, (△) ϕ = 0.78 and (◇) ϕ = 0.78. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6 Norm of the velocity calculated between two images at a imposed velocity Ω = 0.1 Hz for a film of surface fraction ϕ = 0.78. The color bar relates the velocity to the velocity of the cylinder V w = 2πR int Ω. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.7 Velocity profiles (in linear and logarithmic scale) of a film of surface fraction ϕ = 0.78 for different wall velocities (in Hz): (×) 0.1, (×) 0.03, (×) 0.01, (×) 0.003, (×) 0.001. . . . . . . . . . . . . 4.8 Velocity profiles of a film of surface fraction ϕ = 0.78 normalized by the wall velocity (in Hz): (×) 0.1, (×) 0.03, (×) 0.01, (×) 0.003, (×) 0.001. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.9 Shear-rate profiles of a film of surface fraction ϕ = 0.78 for different wall velocities (in Hz): (×) 0.1, (×) 0.03, (×) 0.01, (×) 0.003, (×) 0.001. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.10 Square-root of the temperature as a function of the local shear rate. Same colors as in fig. 4.8, representing the imposed wall velocity (in Hz): (×) 0.1, (×) 0.03, (×) 0.01, (×) 0.003, (×) 0.001. The solid line represents the fit of the data T 1/2 ∼ γ1/(2β-1) ℓ with β = 1.00 ± 0.05. The dotted line delimits the collisional from the quasi-static regime at γℓ = 2 × 10 -1 s -1 . . . . . . . . . . . . . . . . 4.11 (a) Fitted normalized velocity profiles in linear scale and (b) dimensional velocity profiles in logarithmic scale. The solid lines represent the best fit of the data using equation 4.7. Same colors as in fig. 4.8, representing the imposed wall velocity (in Hz): (×) 0.1, (×) 0.03, (×) 0.01, (×) 0.003, (×) 0.001. . . . . . . . . . . . . 4.12 Effective friction µ as a function of the inertial number I for different imposed wall velocities V w . Taken from the work of Koval et al. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.13 (a) Illustration of the simulated configuration with a flowing region (in red) and a quasi-static zone (in grey). (b) Effective friction µ and (c) normalized velocity fluctuations ∆ as a function of the inertial number for different wall velocities. Taken from the work of Gaume et al. . . . . . . . . . . . . . . . . . . . . 4.14 PDF of elementary shear-rates in the flowing regime (a) and in the quasistatic regime (b). Taken from the work of Gaume et al. 4.15 Evolution with the shear-rate of the viscous component of the shear stress (a) and of the elastic component of the shear stress (b) for three surface fraction around the jamming. Taken from the work of Tighe et al.. . . . . . . . . . . . . . . . . . . . . . . . . 4.16 PDF of the elementary shear-rates, normalized by the imposed shear-rate, at the jamming fraction, for different shear-rates. Inset: same, but normalized by γ3/4 . Taken from the work of Tighe et al.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.17 Shear-rate profiles inside the gap. The dotted line delimits the collisional from the quasi-static regime at γℓ = 2×10 -1 s -1 . Same colors as in fig. 4.8, representing the imposed wall velocity (in Hz): (×) 0.1, (×) 0.03, (×) 0.01, (×) 0.003, (×) 0.001. . . . . . . . 4.18 Probability Density Function of elementary shear-rates γi normalized by the mean local shear-rate γℓ at s = 0.1. Same colors as in fig. 4.8, representing the imposed wall velocity. . . . . . . . 4.19 Probability Density Function of elementary shear-rates γi normalized: by the mean local shear-rate γℓ in the flowing region at s = 0.1 (a) and quasi-static region at s = 0.8 (b); by γ3/4 ℓ in the quasi-static region at s = 0.8 (c). Same colors as in fig. 4.8, representing the imposed wall velocity. . . . . . . . . . . . . . . . 4.20 Normalized square-root of the temperature as a function of the capillary inertial number. Same as in 4.10, plus: (○) d = 40 µm and (◻) d = 250 µm. The dashed line delimits the two flowing regimes at I * c = 3 × 10 -5 . . . . . . . . . . . . . . . . . . . . . . . . . 4.21 PDF of elementary shear-rates γi normalized: by the timeaveraged local shear-rate γℓ in the flowing region at s = 0.1 (a) and quasi-static region at s = 0.8 (b); by γ3/in the quasistatic region (c). Colors are the same used in 4.20 to distinguish the particle diameter: d = 40 µm (green), d = 80 µm (cyan), d = 250 µm (black). . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.22 (a) Normalized velocity profiles and (b) normalized square-root of the temperature as a function of the capillary inertial number. Same colors as in fig. 4.8, representing the imposed wall velocity (in Hz): (×) 0.1, (×) 0.03, (×) 0.01, (×) 0.003, (×) 0.001, for a granular film without DOH, with the addition of (◇) a granular film with 0.2 g⋅L -1 of DOH, at imposed velocity Ω = 0.01 Hz. . 4.23 PDF of elementary shear-rates γi , for imposed wall velocity Ω = 0.01 Hz, without (cyan) and with (purple) 0.2 g⋅L -1 of DOH, normalized: by the time-averaged local shear-rate γℓ in the quasi-static region at s = 0.8 (a); by γ3/in the quasi-static region with a constant visco-elastic time t q = 10 -4 s (b) and a variable visco-elastic time (t q = 10 -4 s without dodecanol, t q = 16 × 10 -4 s with dodeconal) (c). Colors are the same used in 4.22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.24 Example of an image taken of granular film while shearing it. Some of the most ordered regions are colored as an example. . . 4.25 Positional radial correlation function g S (r) for subsets S(s ∈ [0.3; 0.4]) (yellow), S(s ∈ [0.5; 0.6]) (green) and S(s ∈ [0.7; 0.8]) (blue), normalized by the particle diameter d. For readability, the plots have been shifted vertically by 0, 2 and 4, respectively. The dashed-lines are the theoretical position of peaks for an hexagonal lattice with a surface fraction of ϕ = 0.77, while the full lines represent a possible exponential decay of the peaks' envelope. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.26 (△) Normalized velocity profile for a bidisperse granular film of particle diameters 40 and 80 µm at imposed velocity Ω = 0.01 Hz compared to the profiles for a granular film with d = 80 µm. Same colors as in fig. 4.8, representing the imposed wall velocity (in Hz): (×) 0.1, (×) 0.03, (×) 0.01, (×) 0.003, (×) 0.001. . . . . 4.27 Example of an image taken of bidisperse granular film while shearing it. It appears to be much less ordered than the snapshot of figure 4.24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1 (a) Sketch of the experimental setup used for the study of granular rafts. (b) Example of an image taken by the camera. . . . 5.2 Imposed torque M = 1.5 µN⋅m (•) and measured velocity of the cylinder Ω (•) as a function of time t for ϕ = 0.74. The dotted line represents the steady regime with Ω ∞ = 54 mHz -1 . . . . . . 5.3 Surface shear stress τ as a function of the mean strain γm for different solid fractions: (▽) ϕ = 0.71, (◇) ϕ = 0.74, (×) ϕ = 0.76, (△) ϕ = 0.77 and (◻) ϕ = 0.79. The solid line represents a linear fit ττ 0 = η s (ϕ) γm corresponding to Bingham fluid behavior. . 5.4 (a) Surface shear yield stress τ 0 and (b) surface viscosity as a function of the particle surface fraction ϕ. The symbols are the same as figure 5.3. The solid line in (b) represents a Krieger-Dougherty fit η s = η 0 ϕ m (ϕ m -ϕ) -2ϕm with ϕ c = 0.82 and η 0 = 3.5 × 10 -6 Pa⋅m⋅s. . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5 Instantaneous velocity field for an imposed driving torque M = 6 µN.m, calculated with a DIC software. The color represents the norm of the velocity vector relatively to the velocity of the inner cylinder (RΩ ∞ = 17.5 mm.s -1 ). . . . . . . . . . . . . . . . . 5.6 Velocity profiles normalized by the wall velocity for different imposed surface stresses (in mPa⋅m): (×) 0.19, (×) 0.22, (×) 0.28, (×) 0.34, (×) 0.40, (×) 0.46, (×) 0.53, (×) 0.61. . . . . . . . 5.7 Reduced velocity profiles, normalized by their maximal value. Same colors as in fig. 5.6, relating the imposed surface stress. . 5.8 Reduced velocity profiles, normalized by their maximal value. Same colors as in fig. 5.6, relating the imposed surface stress. . 5.9 Normalized square-root of the temperature as a function of the capillary inertial number. Same colors as in figure 5.6 to represent the applied surface stress, plus (○): χ = 69 mN.m -1 , d = 140 µm and violets: χ = 34 mN.m -1 , d = 80 µm for different imposed stresses (☆) τ /σ = 0.014, (☆) τ /σ = 0.022, (☆) τ /σ = 0.041. All have a surface fraction ϕ = 0.76. The solid line represents the best fit of the data T 1/2 ∼ I 1/(2β-1) c with β = 1.33 ± 0.05. The dashed line delimits the collisional regime from the quasi-static regime at I * c = 2 × 10 -4 . . . . . . . . . . . . 5.10 I c profiles for a raft with d = 80 µm and ϕ = 0.76. The dotted line represents the delimiting value I * c between the collisional and quasi-static regime. Same colors as in fig. 5.6 representing the imposed stress. . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.11 (a) Fitted velocity profiles and (b) fitted I c profiles for a raft with d = 80 µm and ϕ = 0.76. The solid lines represent the best fit of the data using equation 5.6. The dotted line in (b) represents the delimiting value I * c between the collisional and quasi-static regime. Same colors as in fig. 5.6 representing the imposed stress. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.12 Normalized diffusion length δ/e used in the fits in fig. 5.11 (same colors) as a function of applied stress. The dashed line represents a possible evolution of δ/e as predicted by the theory in a infinite media, that would fit the first three experimental values. It corresponds to a maximal value of the stress of (ϵ 0 η 0 ) 1/2 = 3.3 × 10 -4 Pa⋅m and a diffusion length at vanishing stress as (2κ 0 /ϵ 0 ) 1/2 = 0.57 mm. . . . . . . . . . . . . . . . . . . . 5.13 Diffusion length as a function of the surface shear stress rescaled by: (left) gap length e and intrinsic surface pressure scale σ, (right) particle diameter ratio predicted by the theory d and d 3/2 . Same colors as in figure 5.9 to denote the value of τ . . . . 5.14 Diffusion length rescaled by gap length e as a function of the surface shear stress rescaled by particle diameter ratio predicted by the theory d 3/2 . Same colors as in figure 5.9 to denote the value of τ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.15 (a,e) I c as a function of s for different imposed stresses: same colors as in figure 5.6 for d = 140 µm (a) and (☆) τ /σ = 0.014, (☆) τ /σ = 0.022, (☆) τ /σ = 0.041 for d = 80 µm (e). The dotted line represents the critical value I * c delimiting the two flow regimes. PDF of elementary strains γi normalized: by the mean local strain γℓ in the flowing region (b,f) and quasi-static region (c,g); by γ3in the quasi-static region (d,h) for both particle diameters.
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 1 Figure 1: Photo of a gas marble created in the laboratory.
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 11 Figure 1.1: A molecule in the bulk of a liquid has with twice as much energy from attractive interactions as molecules at the interface.
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 12 Figure 1.2: Sketch of the loop pulled apart by surface tension. The soap film still occupies the rest of the circular frame.
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 13 Figure 1.3: Sketch of surfactant molecules adsorbed at a water-air interface and forming a micelle in the bulk of the liquid.
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 14 Figure 1.4: Schematic of a frame pulling out a liquid film out of a liquid volume.
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 15 Figure 1.5: A liquid drop making an angle ζ with a solid surface.
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 16 Figure 1.6: Adsorption of a neutrally buoyant solid spherical particle of contact angle ζ at a water-air interface.
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 17 Figure 1.7: Adsorption of particles in a film as a monolayer (a) or as a bilayer (b).
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 18 Figure 1.8: Weighting particle at an interface.

Figure 1 . 9 :

 19 Figure 1.9: Photo of a gas marble created in the laboratory.
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 110 Figure 1.10: Critical overpressures and underpressures of gas marbles, normalized by the Laplace pressure, as a function of their diameter D b for different particle sizes (•) d = 250 µm, (⋆) d = 315 µm, (▲) d = 590 µm. The gray area represents the stability range of gas marbles, the dashed area is the stability range of liquid marbles. Taken from [23].
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 111 Figure 1.11: Displacement field of a retracting granular film from Timounay et al. [23].
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 112 Figure 1.12: Experimental setup used by Boyer et al.[START_REF] Boyer | Unifying suspension and granular rheology[END_REF] to study the rheology of 3D suspensions.
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 113 Figure 1.13: Macroscopic friction coefficient as a function of the viscous number I v (noted J in the manuscript) [43].
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 114 Figure 1.14: Volume fraction as a function of the viscous number I v (noted J in the manuscript) [43].

Figure 1 . 15 :

 115 Figure 1.15: Viscosity of the suspension as a function of volume fraction Φ [43]. The green dashed line is a fit of a Krieger-Dougherty model.

  Figure 2.1 gives an example of this phenomenon, with a wide zone of pure soap film with no particles in the top left corner.
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 21 Figure 2.1: Example of an image captured by the camera of a particle-laden soap film with particles of diameter d = 250 µm. There is a clearly visible depleted zone with no particles marked in blue.

Figure 2 . 2 :

 22 Figure 2.2: Surface tension χ as a function of the concentration in dodecanol (DOH) in the solution.

Figure 2 .

 2 Figure 2.3 shows the creation of a granular film from a granular raft: a onecylinder frame of radius R ext = 17.2 mm is then dipped in the solution, going through the raft. When manually pulled out of the solution, a liquid film forms inside the frame. If the particles are light enough, the surface tension pulls particles in the process, forming a granular film. The frame is then turned over without particles falling off (they are trapped, as explained in section 1.2.1) and placed inside the rheometer.Figure 2.4 shows an example of a film thus created for particles of diameter d = 40 µm.The films in the frame are of a circular shape and a zoom-in allows to distinguish the particles. Some small packs exist, and especially for this specific size of particles: it is a consequence of the silanization that results in aggregates that are harder to break when the particles get smaller.

  Figure 2.3 shows the creation of a granular film from a granular raft: a onecylinder frame of radius R ext = 17.2 mm is then dipped in the solution, going through the raft. When manually pulled out of the solution, a liquid film forms inside the frame. If the particles are light enough, the surface tension pulls particles in the process, forming a granular film. The frame is then turned over without particles falling off (they are trapped, as explained in section 1.2.1) and placed inside the rheometer.Figure 2.4 shows an example of a film thus created for particles of diameter d = 40 µm.The films in the frame are of a circular shape and a zoom-in allows to distinguish the particles. Some small packs exist, and especially for this specific size of particles: it is a consequence of the silanization that results in aggregates that are harder to break when the particles get smaller.
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 23 Figure 2.3: Pull-out of a granular film.

Figure 2 . 4 :

 24 Figure 2.4: Example of a granular film created inside a cylindrical frame in whole (a) and zoomed-in to see the particles (b).
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 25 Figure 2.5: Example of a granular raft created inside the frame.

Figure 2 . 6 :

 26 Figure 2.6: Example of an image taken by the high-speed camera of a granular film with particles of diameter d = 80 µm.

  Figure 2.8 displays an example of a colormap of

Figure 2 . 7 :

 27 Figure 2.7: Top: example of displacement map on the x-axis between two consecutive images. Bottom: example of displacement map on the y-axis between the two same consecutive images.

Figure 2 . 8 :

 28 Figure 2.8: Map of the norm of the velocity calculated between two images at a velocity of Ω = 0.1 Hz for a film of surface fraction ϕ = 0.78. The color bar relates the velocity to the velocity of the cylinder V w = 2πR int Ω.

Figure 2 . 9 :

 29 Figure 2.9: Crop of an image taken by the camera with particles of diameter d = 140 µm (left) and associated detected particles in blue (right).

Figure 2

 2 Figure2.9 shows an image taken by the camera, cropped in a way that the image focuses entirely on the gap, and that no other thing that the particles can been seen, and in particular the walls of the cell. The moving wall is at the bottom of the image. Next to it is displayed the image produced by the algorithm, the blue circles represent the detected particles. As can be seen, little to no particles are detected at the bottom of the image, close to the moving wall. This is so because at the vicinity of the walls, it is experimentally challenging to obtain a uniform lighting. As a result, the images lack contrast on the edges and the detection is difficult. The detection is reliable in more than half the gap, located in the center. We can use the detected centers to characterize the microstructure of the granular material in a large central zone and infer the surface fraction ϕ.
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 210 Figure 2.10: Surface fraction profiles for a particle film of mean surface fraction ϕ = 0.77.

Figure 2 . 11 :

 211 Figure 2.11: Surface fraction profiles for a particle raft of mean surface fraction ϕ = 0.76. Same colors as in figure 5.6, denoting the applied surface stress (in mPa⋅m): (×) 0.19, (×) 0.22, (×) 0.28, (×) 0.34, (×) 0.40, (×) 0.46, (×) 0.53, (×) 0.61.
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 212 Figure 2.12: Representation of three particles arranged regularly in a loose hexagonal lattice.

Figure 2 . 13 :

 213 Figure 2.13: Positional radial correlation function g S (r) for subsets S(s ∈ [0.3; 0.4]) (yellow), S(s ∈ [0.5; 0.6]) (green) and S(s ∈ [0.7; 0.8]) (blue), normalized by the particle diameter d. For readability, the plots have been shifted vertically by 0, 2 and 4, respectively. The dashed-lines are the theoretical position of peaks for an hexagonal lattice with a surface fraction of ϕ = 0.77.

2 γℓ(

 2 γℓ being the local shear-rate at a given position). Consequently, the transport equation for the temperature reduces to a heat equation:
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Figure 3 . 1 :

 31 Figure 3.1: Surface tension χ as a function of the concentration in dodecanol (DOH) in the solution.

Figure 3 . 2 :

 32 Figure 3.2: Sketch of the experimental setup used for the rheological study of soap films without particles.

Figure 3 . 3 :

 33 Figure 3.3: Time-evolution of the measured torque for soap films without particles, at a constant velocity Ω = 1 rad⋅s -1 with solutions of different concentrations of dodecanol: 0.2 g⋅L -1 (red and orange), 0.4 g⋅L -1 (purple), 0.6 g⋅L -1 (cyan), 0.8 g⋅L -1 (brown).

Figure 3 .

 3 Figure 3.3 shows the measured resisting torque for naked films sheared at this velocity, for different concentration in dodecanol. Two soap films are represented for c DOH = 0.2 g⋅L -1, in red and orange: while the measured torque is only three times the minimal torque that can be recorded, M = 0.3 µN⋅m, it is almost the same for both films, showing that this is not noise, even though it does not necessarily means that solely the dissipation in the liquid film is recorded (air friction will be discussed later on). The same goes for the other concentrations, even though it is not displayed here for clarity. Almost no time-variation of the measured torque is recorded, while the film is slowly evaporating and thus getting thinner. This tends to demonstrate that the classic viscosity plays no role in the resisting torque measured and the surface viscosity is the dominant dissipative term. Most importantly, this figure shows an increase of the resisting torque with the concentration in dodecanol, showing that the increase in concentration results in an increase in surface viscosity. The increase in the measured torque going to c DOH = 0.8 g⋅L -1 from c DOH = 0.6 g⋅L -1 is significantly lower than going from c DOH = 0.4 g⋅L -1 to c DOH = 0.6 g⋅L -1 and could be linked to a form of saturation. At the higher concentration, dodecanol tends to form a white precipitate at room temperature,

Figure 3 . 4 :

 34 Figure 3.4: Deduced surface viscosity for soap films without particles, with solutions of different concentrations of dodecanol: 0.2 g⋅L -1 (red and orange), 0.4 g⋅L -1 (purple), 0.6 g⋅L -1 (cyan), 0.8 g⋅L -1 (brown).
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 35 Figure 3.5: Light spectrum reflected by a soap film (left) and deducted film thickness (right).

Figure 3 . 6 :

 36 Figure 3.6: Time-evolution of the thickness of a soap film at rest, without particles, using the solution used to create granular films.

Figure 3 . 8 :

 38 Figure 3.8: Sketch of the experimental setup used for the basic study of granular films (left) and photo of granular film (right).

Figure 3 . 9 :

 39 Figure 3.9: Resisting torque measured as a function of time, for 4 different granular films with particle diameter d = 40 µm at constant rotational speed Ω = 1 rad⋅s -1 .

Figure 3 .

 3 Figure 3.10 then shows the torque measured as a function of time, for granular films with particles of diameter d = 40 µm, in the absence of dodecanol, solicited at constant velocity Ω = 1 rad⋅s -1 and averaged over 10 films. A lot of the noise previously mentioned has been smoothed by application of this average. The x-axis is in logarithmic scale; after 5 s the measured torque decreases in a linear fashion: this is coherent with an logarithmic decay of the torque. At Ω = 1 rad⋅s -1 , 5 s represents a bit less than a full turn, or in terms of total shear γ = RΩt e = 5.6.The fact that the onset of the torque's decay is delayed may be attributed to the structuring of the films, as will be again discussed at the beginning of chapter 4: the onset of the shear "activates" the contact between particles, thus raising the resistance of the films to the flow. The subsequent decrease could also be attributed to further evolution of the granular structure. This figure also shows that in ten granular films, none of
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 310 Figure 3.10: Mean resisting torque measured as a function of time, calculated on 10 different granular films with particle diameter d = 40 µm at constant rotational speed Ω = 1 rad⋅s -1 .

Figure 3 . 11 :

 311 Figure 3.11: Mean shear stresses measured as a function of total deformation, calculated on a great number of granular films with particle diameter d = 40 µm at different but constant shear-rates/rotational speeds: Ω = 1 rad⋅s -1 (blue), Ω = 3 rad⋅s -1 (orange), Ω = 7 rad⋅s -1 (green), Ω = 10 rad⋅s -1 (red).
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 312 Figure 3.12: Mean resisting torque measured as a function of time, calculated granular films with particle diameter d = 40 µm at constant rotational speed Ω = 1 rad⋅s -1 , and for different concentration of dodecanol: 0 g⋅L -1 (blue), 0.1 g⋅L -1 (green), 0.2 g⋅L -1 (red).

4. 1

 1 .1 . Setup A granular raft is created in a Petri dish by spreading silanized polystyrene particles (Dynoseeds, Microbeads) of contact angle ζ = 80°on the surface of a TTAB solution of water and glycerin (surface tension χ = 34 mN⋅m -1 ). The particles used have diameters of d = 40 µm, d = 80 µm and d = 250 µm, but

Figure 4 . 1 :

 41 Figure 4.1: Pull-out of a granular film.

Figure 4 . 2 :

 42 Figure 4.2: (a) Example of an image taken by the camera of a sheared film. (b) Sketch of the experimental setup used for the study of granular films.

Figure 4 . 3 :

 43 Figure 4.3: Measured torque M as a function of imposed velocity of the cylinder Ω for a granular film (×) and for air (×).

Figure 4 . 4 :

 44 Figure 4.4: Imposed velocity of the cylinder Ω (◻) and measured torque M (•) as a function of time t for ϕ = 0.78.

Figure 4 . 5 :

 45 Figure 4.5: Mean resisting torque M as a function of the applied rotational velocity of the measuring cylinder Ω for different granular films of surface fraction: (▽) ϕ = 0.76, (◻) ϕ = 0.77, (△) ϕ = 0.78 and (◇) ϕ = 0.78.
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 46 Figure 4.6: Norm of the velocity calculated between two images at a imposed velocity Ω = 0.1 Hz for a film of surface fraction ϕ = 0.78. The color bar relates the velocity to the velocity of the cylinder V w = 2πR int Ω.

Figure 4 .

 4 7 then shows the orthoradial velocity, averaged both in time and in

Figure 4 . 7 :

 47 Figure 4.7: Velocity profiles (in linear and logarithmic scale) of a film of surface fraction ϕ = 0.78 for different wall velocities (in Hz): (×) 0.1, (×) 0.03, (×) 0.01, (×) 0.003, (×) 0.001.

Figure 4 . 8 :

 48 Figure 4.8: Velocity profiles of a film of surface fraction ϕ = 0.78 normalized by the wall velocity (in Hz): (×) 0.1, (×) 0.03, (×) 0.01, (×) 0.003, (×) 0.001.

Figure 4 . 9 :

 49 Figure 4.9: Shear-rate profiles of a film of surface fraction ϕ = 0.78 for different wall velocities (in Hz): (×) 0.1, (×) 0.03, (×) 0.01, (×) 0.003, (×) 0.001.

Figure 4 .

 4 Figure 4.10: Square-root of the temperature as a function of the local shear rate. Same colors as in fig. 4.8, representing the imposed wall velocity (in Hz): (×) 0.1, (×) 0.03, (×) 0.01, (×) 0.003, (×) 0.001. The solid line represents the fit of the data T 1/2 ∼ γ1/(2β-1) ℓ with β = 1.00 ± 0.05. The dotted line delimits the collisional from the quasi-static regime at γℓ = 2 × 10 -1 s -1 .

Figure 4 .

 4 Figure 4.11: (a) Fitted normalized velocity profiles in linear scale and (b) dimensional velocity profiles in logarithmic scale. The solid lines represent the best fit of the data using equation 4.7. Same colors as in fig. 4.8, representing the imposed wall velocity (in Hz): (×) 0.1, (×) 0.03, (×) 0.01, (×) 0.003, (×) 0.001.
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 412 Figure 4.12: Effective friction µ as a function of the inertial number I for different imposed wall velocities V w : (▲) 2.5, (◀) 1.5, (◇) 1.0, (▶) 0.5, (∎) 0.25, (•) 0.025, (▼) 0.0025, (⋆) 0.00025. Taken from the work of Koval et al. [80].

Figure 4 .

 4 Figure 4.13: (a) Illustration of the simulated configuration with a flowing region (in red) and a quasi-static zone (in grey). (b) Effective friction µ and (c) normalized velocity fluctuations ∆ as a function of the inertial number for different wall velocities. Taken from the work of Gaume et al. [83].

Figure 4 .

 4 Figure 4.14: PDF of elementary shear-rates in the flowing regime (a) and in the quasistatic regime (b). Taken from the work of Gaume et al. [83].

Figure 4 . 15 :

 415 Figure 4.15: Evolution with the shear-rate of the viscous component of the shear stress (a) and of the elastic component of the shear stress (b) for three surface fraction around the jamming. The solid line represents σ ∼ γ and the dashed line σ ∼ γ0.48 Taken from the work of Tighe et al. [84].

Figure 4 .

 4 Figure 4.16: PDF of the elementary shear-rates, normalized by the imposed shear-rate, at the jamming fraction, for different shear-rates. Inset: same, but normalized by γ3/4 . Taken from the work of Tighe et al. [84].

Figure 4 .

 4 Figure 4.17: Shear-rate profiles inside the gap. The dotted line delimits the collisional from the quasi-static regime at γℓ = 2 × 10 -1 s -1 . Same colors as in fig. 4.8, representing the imposed wall velocity (in Hz): (×) 0.1, (×) 0.03, (×) 0.01, (×) 0.003, (×) 0.001.

Figure 4 . 18 :

 418 Figure 4.18: Probability Density Function of elementary shear-rates γi normal- ized by the mean local shear-rate γℓ at s = 0.1. Same colors as in fig. 4.8, representing the imposed wall velocity.

Figure 4 . 4 ℓ

 44 Figure 4.19: Probability Density Function of elementary shear-rates γi normal- ized: by the mean local shear-rate γℓ in the flowing region at s = 0.1 (a) and quasi-static region at s = 0.8 (b); by γ3/4 ℓ in the quasi-static region at s = 0.8 (c). Same colors as in fig. 4.8, representing the imposed wall velocity.

Figure 4 . 20 :

 420 Figure 4.20: Normalized square-root of the temperature as a function of the capillary inertial number. Same as in 4.10, plus: (○) d = 40 µm and (◻) d = 250 µm. The dashed line delimits the two flowing regimes at I * c = 3 × 10 -5 .

Figure 4 .

 4 21 provides the three PDF previously plotted in section 4.4, on figure 4.19 for d = 80 µm but this time, only one wall velocity is considered Ω = 0.01 Hz, while the three diameters are tested. As a result, the local shear-rate γℓ is roughly the same at each position for all particle sizes, but the capillary inertial number varies. The same observations hold: at s = 0.1 (figure 4.21(a)), the films are always above the criterion I * c = 3 × 10 -5 and as a result the PDFs are all similar, narrow, centered around the mean value and independent of I c , with all elementary shear-rates positives. At s = 0.8, all the films are in the quasi-static regime, I c < I * c . The PDFs present negative values and the lower d, and by extension the lower I c , the wider the PDF (figure 4.21(b)). In this quasi-static regime, the PDFs still rescale with γ3/4 t -1/4 q (figure 4.21(c)), showing the relative importance of the elastic component compared to the viscous component in the total shear stress in such a dense regime.

Figure 4 . 4 ℓ

 44 Figure 4.21: PDF of elementary shear-rates γi normalized: by the time- averaged local shear-rate γℓ in the flowing region at s = 0.1 (a) and quasi-static region at s = 0.8 (b); by γ3/4 ℓ in the quasi-static region (c). Colors are the same used in 4.20 to distinguish the particle diameter: d = 40 µm (green), d = 80 µm (cyan), d = 250 µm (black).

Figure 4 .

 4 Figure 4.22: (a) Normalized velocity profiles and (b) normalized square-root of the temperature as a function of the capillary inertial number. Same colors as in fig. 4.8, representing the imposed wall velocity (in Hz): (×) 0.1, (×) 0.03, (×) 0.01, (×) 0.003, (×) 0.001, for a granular film without DOH, with the addition of (◇) a granular film with 0.2 g⋅L -1 of DOH, at imposed velocity Ω = 0.01 Hz.

Figure 4 .

 4 Figure 4.22(a) shows the normalized velocity profile of a granular film with 0.2g⋅L -1 of DOH, with d = 80 µm, at imposed velocity Ω = 0.01 Hz, compared to the previously obtained velocity profiles for d = 80 µm without dodecanol.The general shape of the velocity profile is preserved, thus demonstrating that the addition of DOH has no effect on the velocity profiles of granular films. Thus, at a given wall velocity Ω, the local shear-rate γℓ and consequently the

  .23 shows the PDFs of both films with or without DOH, at s = 0.8 for the same imposed wall velocity Ω = 0.01 Hz, which means at the same value of I c < I * c in the quasi-static regime. On figure 4.23(a), the PDF in the quasi-static regime are rescaled with γℓ , and figure 4.23(b) with γ3/4 ℓ /t 1/4 q

Figure 4 .

 4 Figure 4.23: PDF of elementary shear-rates γi , for imposed wall velocity Ω = 0.01 Hz, without (cyan) and with (purple) 0.2 g⋅L -1 of DOH, normalized: by the time-averaged local shear-rate γℓ in the quasi-static region at s = 0.8 (a); by γ3/4ℓ in the quasi-static region with a constant visco-elastic time t q = 10 -4 s (b) and a variable visco-elastic time (t q = 10 -4 s without dodecanol, t q = 16 × 10 -4 s with dodeconal) (c). Colors are the same used in 4.22.

Figure 4 . 24 :

 424 Figure 4.24: Example of an image taken of granular film while shearing it. Some of the most ordered regions are colored as an example.

Figure 4 . 25 :

 425 Figure 4.25: Positional radial correlation function g S (r) for subsets S(s ∈ [0.3; 0.4]) (yellow), S(s ∈ [0.5; 0.6]) (green) and S(s ∈ [0.7; 0.8]) (blue), normalized by the particle diameter d. For readability, the plots have been shifted vertically by 0, 2 and 4, respectively. The dashed-lines are the theoretical position of peaks for an hexagonal lattice with a surface fraction of ϕ = 0.77, while the full lines represent a possible exponential decay of the peaks' envelope.

Figure 4 .

 4 Figure 4.26: (△) Normalized velocity profile for a bidisperse granular film of particle diameters 40 and 80 µm at imposed velocity Ω = 0.01 Hz compared to the profiles for a granular film with d = 80 µm. Same colors as in fig. 4.8, representing the imposed wall velocity (in Hz): (×) 0.1, (×) 0.03, (×) 0.01, (×) 0.003, (×) 0.001.

Figure 4 . 27 :

 427 Figure 4.27: Example of an image taken of bidisperse granular film while shearing it. It appears to be much less ordered than the snapshot of figure 4.24.
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 5 2 shows an example of the raw data of the rotational velocity Ω as a function of time for an imposed torque M on a particular raft. It shows that a permanent regime is reached in about 150 s.
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 51 Figure 5.1: (a) Sketch of the experimental setup used for the study of granular rafts. (b) Example of an image taken by the camera.
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 52 Figure 5.2: Imposed torque M = 1.5 µN⋅m (•) and measured velocity of the cylinder Ω (•) as a function of time t for ϕ = 0.74. The dotted line represents the steady regime with Ω ∞ = 54 mHz -1 .
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 53 Figure 5.3: Surface shear stress τ as a function of the mean strain γm for dif- ferent solid fractions: (▽) ϕ = 0.71, (◇) ϕ = 0.74, (×) ϕ = 0.76, (△) ϕ = 0.77 and (◻) ϕ = 0.79. The solid line represents a linear fit ττ 0 = η s (ϕ) γm corresponding to Bingham fluid behavior.
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 54 Figure 5.4: (a) Surface shear yield stress τ 0 and (b) surface viscosity as a function of the particle surface fraction ϕ. The symbols are the same as figure 5.3. The solid line in (b) represents a Krieger-Dougherty fit η s = η 0 ϕ m (ϕ m -ϕ) -2ϕm with ϕ c = 0.82 and η 0 = 3.5 × 10 -6 Pa⋅m⋅s.

  .3 have been kept for the velocity profiles of figure 5.6 and denote the imposed surface stress (in mPa⋅m): × 0.19, × 0.22, × 0.28, × 0.34, × 0.40, × 0.46, × 0.53, × 0.61. Note that, with
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 55 Figure 5.5: Instantaneous velocity field for an imposed driving torque M = 6 µN.m, calculated with a DIC software. The color represents the norm of the velocity vector relatively to the velocity of the inner cylinder (RΩ ∞ = 17.5 mm.s -1 ).
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 56 Figure 5.6: Velocity profiles normalized by the wall velocity for different imposed surface stresses (in mPa⋅m): (×) 0.19, (×) 0.22, (×) 0.28, (×) 0.34, (×) 0.40, (×) 0.46, (×) 0.53, (×) 0.61.
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 57 Figure 5.7: Reduced velocity profiles, normalized by their maximal value. Same colors as in fig. 5.6, relating the imposed surface stress.

Figure 5 . 8 :

 58 Figure 5.8: Reduced velocity profiles, normalized by their maximal value. Same colors as in fig. 5.6, relating the imposed surface stress.

Figure 5 . 9 :

 59 Figure 5.9: Normalized square-root of the temperature as a function of the capillary inertial number. Same colors as in figure 5.6 to represent the applied surface stress, plus (○): χ = 69 mN.m -1 , d = 140 µm and violets: χ = 34 mN.m -1 , d = 80 µm for different imposed stresses (☆) τ /σ = 0.014, (☆) τ /σ = 0.022, (☆) τ /σ = 0.041. All have a surface fraction ϕ = 0.76. The solid line represents the best fit of the data T 1/2 ∼ I 1/(2β-1) c with β = 1.33 ± 0.05. The dashed line delimits the collisional regime from the quasi-static regime at I * c = 2 × 10 -4 .
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 510 Figure 5.10: I c profiles for a raft with d = 80 µm and ϕ = 0.76. The dotted line represents the delimiting value I * c between the collisional and quasi-static regime. Same colors as in fig. 5.6 representing the imposed stress.

6 )

 6 where A is a fitting parameter corresponding to the missing boundary condition. A and δ are then the only two fitting parameters. Applying this formula to the velocity profiles for particles of diameter d = 80 µm gives excellent results displayed on figure5.11, robust enough to be derived once to fit on the I c profiles without necessitating any adjustment of the fitting parameters.

Figure 5 .

 5 Figure 5.11: (a) Fitted velocity profiles and (b) fitted I c profiles for a raft with d = 80 µm and ϕ = 0.76. The solid lines represent the best fit of the data using equation 5.6. The dotted line in (b) represents the delimiting value I * c between the collisional and quasi-static regime. Same colors as in fig. 5.6 representing the imposed stress.
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 512 Figure 5.12: Normalized diffusion length δ/e used in the fits in fig. 5.11 (same colors) as a function of applied stress. The dashed line represents a possible evolution of δ/e as predicted by the theory in a infinite media, that would fit the first three experimental values. It corresponds to a maximal value of the stress of (ϵ 0 η 0 ) 1/2 = 3.3 × 10 -4 Pa⋅m and a diffusion length at vanishing stress as (2κ 0 /ϵ 0 ) 1/2 = 0.57 mm.

Figure 5 . 13 :

 513 Figure 5.13: Diffusion length as a function of the surface shear stress rescaled by: (left) gap length e and intrinsic surface pressure scale σ, (right) particle diameter ratio predicted by the theory d and d 3/2 . Same colors as in figure 5.9 to denote the value of τ .

Figure 5 . 14 :

 514 Figure 5.14: Diffusion length rescaled by gap length e as a function of the surface shear stress rescaled by particle diameter ratio predicted by the theory d 3/2 . Same colors as in figure 5.9 to denote the value of τ .

  .15(bd)) and d = 80 µm (figure 5.15(f-h)), at s = 0.1 for the collisional regime and at s = 0.5 to capture the quasi-static regime, yields approximately the same results.
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 54 Figure 5.15: (a,e) I c as a function of s for different imposed stresses: same colors as in figure 5.6 for d = 140 µm (a) and (☆) τ /σ = 0.014, (☆) τ /σ = 0.022, (☆) τ /σ = 0.041 for d = 80 µm (e). The dotted line represents the critical value I * c delimiting the two flow regimes. PDF of elementary strains γi normalized: by the mean local strain γℓ in the flowing region (b,f) and quasi-static region (c,g); by γ3/4 ℓ in the quasi-static region (d,h) for both particle diameters.
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The solution used for the experiments is a mixture of milli-Q water and glycerol. The glycerol used has a density of 1.25 and makes for 20% of the solution. Its primary role is to limit the evaporation of the solution to increase

The term of life expectancy is proper for soap films, as the bursting times follow a Weibull distribution very similar to what is observed for the age of death in human population, as I showed in a previous work[START_REF] Haffner | Can soap films be used as models for mortality studies?[END_REF] 

Remerciements

of the shear stress, but currently no material allows to record locally the stress.