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Abstract

The investigation of quantum entanglement has emerged as a prominent area of
study in theoretical high-energy and condensed-matter physics. Initially driven
by motivations rooted in black hole physics and the holographic principle, entan-
glement has been revealed to be a powerful tool for probing quantum many-body
physics. This thesis is primarily concerned with the investigation of entanglement
in 1D critical systems with open boundaries via entanglement quantifiers such
as the Rényi Entanglement Entropy (REE) and the Von Neumann Entanglement En-
tropy (EE). This is done by employing the replica trick and twist field formalism,
which allows one to reduce the calculation of REE in critical systems with open
boundaries to the determinations of correlators in a 1+ 1D cyclic orbifold Boundary
Conformal Field Theory (BCFT). In this framework, we first establish an exact and
general result for the second REE of an interval in the bulk of such a system. Then,
we specialize to critical one-dimensional quantum models described by compact
boson BCFTs with Dirichlet and Neumann BC, for which we are able to calculate
the REE of an interval more generally. As a by-product, we also obtain results for
the REE and EE of systems described by a non-compact boson BCFT. The thesis
also explores the calculation of REE for mixed BCs, in which case one needs to
use the Boundary Condition Changing Operators (BCCOs) formalism. The analytical
results for these investigations are compared with appropriate lattice numerics,
to good agreement. Additionally, an algebraic framework is presented for cyclic
orbifold conformal field theories, offering insights into their operator content and
fusion rules, which complements the more physical and geometrical approaches
of the other investigations.
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Introduction

The understanding of entanglement in quantum systems has emerged as a para-
mount research area across multiple scientific communities. The idea of persisting
quantum correlations between particles separated by vast distances1 was first
proposed in the landmark paper by Einstein, Podolsky, and Rosen (EPR) [1], where
they argued on the incompleteness of quantum mechanics in the Copenhagen
interpretation, due to its allowing of this type of ”spooky action at a distance”2.
In the decades since the EPR paper, many of the problems raised by [1] have been
addressed, but the core issue persists to this day: entanglement is a deeply puzzling
feature of quantum mechanics.

Consequentially, it has inspired a great deal of research into the foundations
of this subject [2–4] , complemented by experimental investigations [5]3 which have
established it as a substantial research interest. However, it could be said that the
study of entanglement truly came into its own at the end of the second millennium,
when the potential of quantum computing became apparent to scientists and
funding agencies alike, following a series of important theoretical breakthroughs.

These advancements consisted of algorithm proposals for quantum computa-
tions, that would surpass the limits of efficiency of classical programming methods
for certain types of problems. We mention, non-exhaustively, the Deutch-Jozsa
[6], Shor [7] and Grover algorithms [8], as well as the first quantum teleporta-
tion protocols [9]. All of these methods would be, of course, a purely theoretical
achievement if not for the development of quantum error correction proposals
[10] around the same period, which paved the way for their real-life implementa-
tion. A key element in the design of these types of proposals is the entanglement
between the different qubits involved in the computation. For certain algorithms,
working with highly entangled states for qubits can lead to important speed-ups
[11], while in the domain of quantum cryptography, entanglement is essential for
the secure distribution of encryption keys between remote participants [12].

A by-product of these developments was the understanding that entanglement
is a very useful resource for the numerical and analytical characterization of many-
body quantum systems. This lesson has been especially illuminating in the study
of their continuous phase transitions, for which the quantification of entanglement
offers new insights into their properties, as later paragraphs will show.

Consider then a critical quantum system in D′ dimensions. In such systems,
continuous phase transitions can occur at absolute zero temperature and are char-
acterized by abrupt shifts in the system’s ground state and collective properties
due to quantum fluctuations. Standard techniques allow for the mapping of D′-
dimensional quantum systems, at temperature T, to classical statistical models

1The term ”Verschränkung”(entanglement) has first been used by Schrödinger in a reply to the
EPR paper

2Einstein, private communication with Bohr
3Complimented with a Nobel Prize in 2022
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Introduction

in D = D′ + 1 dimensions [13]. Through this mapping, the quantum imaginary
time is traded for an additional spatial dimension in the statistical model, with a
length proportional to 1/T. Then, the Hamiltonian of the quantum system can be
interpreted as the anisotropic limit of the transfer matrix of the classical statistical
model [14]. Furthermore, a continuous phase transition occurring in the quantum
system at T = 0 corresponds to the same type of critical phenomena observed in
the higher-dimensional classical system, infinite in one of its dimensions.

Now, let’s shift our focus to such a classical critical statistical model in D
dimensions, which possesses a tunable parameter g, since this framework is more
straightforward when it comes to making contact with field theoretical methods.
What characterizes continuum phase transitions in such systems is the power-law
divergence of the correlation length ξ with respect to g, as we tune it towards its
critical value. At the critical point itself, the correlation length becomes infinite,
which implies that microscopic degrees of freedom are strongly correlated on
all distance scales. Close to criticality, power law divergences (with different
critical exponents) also characterize physical quantities of the theory such as the
susceptibility, and specific heat.

In these regimes, interesting conceptual consequences follow, from the uni-
versality hypothesis: there is a subset of properties of a system close to the critical
point (such as critical exponents and shape of correlation functions) of a contin-
uous phase transition that does not depend on the microscopic details of their
interactions. In consequence, critical statistical models can then be organized
into comparatively few universality classes, determined by their global features
(dimensionality, global symmetries, etc.).

Early support for these ideas was provided by Landau’s theory of continuous
phase transitions, through which one presupposes an ansatz for the free energy of
a system as a function of the order parameter of the system so that it satisfies some
global symmetry. This hypothesis is then used to obtain results for the critical
exponents. This approach is valid, as long as fluctuations of the order parameter
around its extremal value can be safely neglected, as is the case for systems of
dimensions D ≥ 4. For low-dimensional systems, however, the wrong results
(compared to experiment) are obtained, and one needs to employ a different
framework.

This framework is the renormalization group, an approach with a tumultuous
history that spans decades and has fundamentally changed the scientific paradigm
on the formulation of physical models. The idea of renormalization first appeared
in the first half of the 20th century, as an ad-hoc mathematical artifice one must
employ in perturbative calculations of particle physics, to obtain a finite result.
This procedure introduced the idea that each QFT has an energy scale of validity,
as well as a general sense of dissatisfaction for generations of theoretical physicists
between the 1950s and 1960s.

It was the pioneering work [15] of Kenneth Wilson that resolved this impasse
and, as a by-product, modified how we conceive of physical models, to this day.
The conceptual starting point of this approach, first implemented for the 2D Ising
model [16], is to consider the transformation of a theory with couplings {gk} under
some type of coarse-graining operation. In the case of [16], the operation consists
of dividing the initial lattice of size L = Na, with lattice spacing a into blocks of size
a′ = ba of adjacent spins, and assigning to each of them a new block spin variable.
Then, one arrives at a model for the block spins, on a lattice of size L, with lattice
spacing a′, and possibly higher-point interactions. In consequence, this block RG
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transformation has effectively mapped the initial theory to a new one.
In a generalization of this, Wilson proposed that such considerations extended

to all physical models, including QFTs. In this general framework, any theory
comes with a built-in energy scale and couplings that depend on it. Under
RG transformations, the scale is changed, and, implicitly, the couplings, so that
theories “flow” into other theories. This procedure can be iterated until one arrives
at a fixed point of the RG transformation, where the model is scale-invariant. The
theories corresponding to these fixed points, Wilson realized, are exactly the ones
describing continuous phase transitions. This offers a general explanation for the
universality hypothesis: theories in the same universality class are related by RG
transformations to the same fixed point.

The fixed points of the RG flow correspond to scale-invariant QFT defined
on a D dimensional Riemannian manifold. It is conjectured [17] that, for generic
D, under reasonable assumptions4, the symmetry of the theory is enhanced to
conformal invariance - the set of transformations that preserve angles between
curves. The conjecture is open, with a few notable exceptions. One of them is D =
4, for which this statement has been proven to all orders in perturbation theory
[18], but a complete, non-perturbative proof only exists for the two-dimensional
case [19, 20].

This is not the only way in which the D = 2 case is special. In two dimen-
sions, the symmetry has an infinite number of generators. The consequences of
this realization have been integrated into a unified theoretical framework for the
treatment of 2D Conformal Field Theory (CFT) by Belavin, Polyakov, and Zamolod-
chikov in the seminal paper [21], published in 1984. This work has proven to
be extremely influential, leading to progress in string theory, mathematics, and,
most relevantly for this thesis, the study of critical phenomena. To do a just
and complete presentation of this continuously growing body of work is beyond
the scope of this thesis5, as it would require compressing copious material from
several textbooks and many more research articles [14, 23–25]

In the case of continuous phase transitions, the identification of the scaling
limit of the critical 2D classical model (or 1D critical quantum chain) as a specific
2D CFT enables the exact calculation of critical exponents and correlators. This
breakthrough has significantly contributed to the quantitative understanding and
classification of numerous continuous phase transitions [21]. As the formalism
of 2D CFT has evolved, it has been extended to accommodate more features of
discrete systems, such as extended symmetries [26, 27], boundaries [28–33], and
defects [34–36]. Finally, 2D CFT plays an essential role in the quantification of
entanglement in 1D critical quantum systems, which we will now clarify.

Let us consider a quantum system, prepared in some pure state, and define
a spatial bipartition on it, say A|B. One then constructs a function (entanglement
measure), satisfying certain common-sense properties6, that associates a real num-
ber to each pure state. This essentially quantifies how the entanglement between
the subsystems changes depending on the choice of bipartition.

A very important such function7 is the Von Neumann entanglement entropy
SA. Crucially, for the ground states of a large class of many-body systems with

4These include reflection positivity, invariance under isometries of the spacetime, and others.
See [17] for a detailed discussion

5For a partial interdisciplinary summary of this material, we recommend the presentation [22]
6The meaning of common-sense will be explored in the next chapter
7Depending on one’s definition, it can be considered the unique measure of entanglement for

pure bipartite states as we explain in Section 1.2
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local interactions, this function has been observed to satisfy the area law : the
entanglement entropy scales with the size of the boundary separating A|B.

The first instances of this intriguing relation were discovered in old works on
the thermodynamics of black holes [37] [38], where entanglement was proposed
as an explanation for their entropy. Recent developments in the AdS/CFT research
have identified an area law as being connected with the holographic principle in
QFT which can be formulated in layman’s terms as: the information content of a
region of spacetime should depend on its surface area rather than on its volume. For a
detailed presentation of these topics, we refer the reader to specialized reviews
and textbooks [39, 40]

We stress that the ”area law” only addresses the leading behaviour of SA

and there are situations in which the subleading terms also contain interesting
information. This is the case, for example, in two-dimensional quantum systems
exhibiting topological order, for which the subleading correction to the area law is a
constant known as topological entropy γ [41, 42]. This quantity encodes information
about the topological phase in the system and can be used to detect it.

For one-dimensional quantum systems, if the area law holds, the entanglement
entropy will saturate, to a constant value, independent of the choice of bipartition.
This is the case for the ground state of any local, gapped Hamiltonian of spins with
finite couplings and system size, as proven rigorously by Hastings in [43]. For
non-critical free bosons and fermions as well, the area law is known to hold, albeit
there are no rigorous proofs for this yet [44]. However, the scaling of SA becomes
much more interesting when the area law does not hold, for instance when some
assumptions of [43] are relaxed. An intriguing example can be found in [45],
where a semi-infinite 1D quantum chain with nearest-neighbour interactions has
been engineered such that the entanglement entropy in the ground state satisfies
a volume law SA ∼ ℓ with respect to the interval size ℓ.

The area law can also be invalidated at criticality when the Hamiltonian be-
comes gapless. The behaviour depends on the properties of the system, such as
boundary conditions, as well as the nature of the bipartition. In the seminal work
of [46], a systematic approach to the calculation of the entanglement entropy using
the methods of 2D CFT has been put forward. One of the most well-known results
obtained in this framework [47, 48] is the leading contribution to the entanglement
entropy of an interval of length ℓ in an infinite system, SA ∼ c/3 log ℓ where c is
the central charge of the CFT that gives the scaling limit of the studied discrete
system. For more intricate setups, the infringements to the area law become more
mathematically involved. We will relegate these details of the method to the next
chapter, as they are too gruesome to include here. The main idea, however, is that
one can obtain, using 2D CFT, analytic predictions for the entanglement entropy
associated with a critical system — with good analytic control on both leading
and subleading contributions to it.

Understanding the dependence of the entanglement entropy on the length
scales of the system, through the area law or its replacements for critical systems,
also plays a crucial role in numerical quantum many-body studies. The “brute
force” simulation of a generic state in the Hilbert space of such systems is ex-
tremely challenging due to the exponential growth in the number of particles of
the parameters necessary to store it. In consequence, the system sizes one can
study with these methods are quite puny.

To circumvent these difficulties, methods for state approximation have been
developed, such as the Matrix Product State (MPS) representations of elements
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of the Hilbert space. These are used in conjunction with methods like the Den-
sity Matrix Renormalization Group (DMRG) [49] to study the energy spectrum
and correlation function of the model. These numerical approaches are based
on sensibly disregarding a subset of the Hilbert space of the system (and their
contribution to the quantities of interest) to save on computational resources. The
amount of entanglement in the state determines how much of the Hilbert space
we can “safely” discard for a particular numerical evaluation.

As discussed previously, for states of 1D local, gapped systems that obey the
area law, the entanglement entropy in the system saturates as we increase their
size, which means one can get very precise numerical results through DMRG
methods at a convenient computational cost (see [50] and references therein).
We remark that these techniques do not generalize straightforwardly to higher
dimensions, since, for D ≥ 2, the entanglement entropy of states satisfying the area
law scales with the perimeter of the subsystem [44], so that eventually limitations
of digital storage are reached, for large enough subsystem sizes.

For 1D critical systems, additional challenges appear, as the entanglement
entropy does not saturate but grows with respect to the size of the system. In
consequence, constructing a faithful MPS representation of a state requires, in
principle, progressively more computational resources as one considers bigger
systems. To surmount these issues, modifications to the MPS approach can be
implemented [51], but another approach is to approximate the state by using
the Multi-scale Entanglement Renormalization Ansatz (MERA) [52]. This latter
approach is more accurate in the calculation of correlators and more natural for the
simulation of ground states of critical systems due to its scale-invariance, but can
sometimes be less efficient than the MPS approach when it comes to computing
ground state energies and other local observables [53].

Having given a modicum of context on the relevance of entanglement to
different areas of physics research, let us now finish this introductory section with
a brief teaser of the chapters to come. In Chapter 1, we present a few notions
of quantum information to give a quantitative definition of what entanglement
measures are and discuss the ones relevant for this work. We follow this with
a review of the replica approach to the calculation of entanglement entropies
in critical systems, from a lattice perspective, and how this reduces, essentially,
to the evaluation of correlators in a cyclic orbifold CFT. The next four chapters
are in correspondence with the different projects completed during this doctoral
program, for which the overarching themes are the study of entanglement in
systems with boundaries and a more formal understanding of the properties of
cyclic orbifold CFTs. We will give a more detailed summary of their content at
the end of the technical introduction of Chapter 1.

9



Chapter 1

Entanglement, conformal field theory
and all that

This chapter aims to explore the intricacies of quantifying entanglement in quan-
tum systems. We will commence by presenting a few notions of quantum infor-
mation theory, allowing us to discern the characteristics of a reliable measure of
entanglement for pure states in bipartite systems. Then, we will introduce the
entanglement measures of relevance for the present work, the REE, and review
the replica trick approach to their calculation in 1D critical systems, focusing on the
lattice realization of this formalism. Consequently, we review the twist operator
approach and assess the main achievements and difficulties of this method.

1.1 A general setup

We consider a quantum system S, with Hilbert spaceH , defined on some spatial
domain C. The state of such a system is encoded in the density matrix ρ, which is a
hermitian (ρ = ρ†) and positive semi-definite (ρ ≥ 0) operator, normalized such that
Trρ = 1. From these properties, one infers that the eigenvalues of ρ are strictly
non-negative and sum up to 1.

If the density matrix can be written as ρ = |Ψ⟩ ⟨Ψ|, with |Ψ⟩ ∈ H , we classify
the state of our system as pure. If this is not the case, the system is in a mixed
state. In practice, to distinguish between these two kinds of states, it is sufficient
to calculate the quantum purity of ρ , defined as γ ≡ Trρ2 =

∑
i λ

2
i , where λi are the

eigenvalues of ρ. We then have:

Trρ2 < 1 (mixed) Trρ2 = 1 (pure) (1.1)

In all the physical setups presented in this thesis, the initial state of the system is pure, so
we will focus our attention on states with Trρ2 = 1.

Let us now consider a bipartition of C into regions A and B, such that the
Hilbert spaceH factorizes1

H = HA ⊗HB (1.2)

whereHA,HB encode the degrees of freedom in regions A and B respectively.

1In lattice gauge theories, for example, the Hilbert space of physical (gauge-invariant) states
does not admit such a tensor product decomposition with respect to the Hilbert spaces of each
subsystem and the quantification of entanglement becomes more subtle. Several proposals have
been put forward to address this issue [54–56]
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One of the central objects employed in the study of quantum entanglement is
the Reduced Density Matrix (RDM):

ρA = TrB |Ψ⟩ ⟨Ψ| (1.3)

defined as a partial trace over the Hilbert space of the subsystem B. It is important
to note that the partial trace operation does not, in general, preserve the purity of
the state, a fact that can be easily deduced from the Schmidt decomposition .

Schmidt decomposition

Let there be a quantum system, composed of two subsystems A and B with
Hilbert space dimensions dA, dB respectively, and let d = min (dA, dB). Any
pure state |Ψ⟩ has a Schmidt decomposition

|Ψ⟩ =

d∑
i=1

µi |i,A⟩ |i,B⟩ , (1.4)

whereµi ≥ 0 are known as Schmidt coefficients and {|i,A⟩} , {|i,B⟩} are sets of
orthonormal vectors in A and B respectively. The Schmidt rank r is defined
as the total number of non-vanishing Schmidt coefficients.

Using the Schmidt decomposition for some generic pure state ρ, and taking
the trace overHB, one now finds:

ρA =

d∑
i=1

λi |i,A⟩ ⟨i,A| (1.5)

where the eigenvalues λi = µ2
i of the RDM, also referred to as the entanglement

spectrum, are determined by the Schmidt coefficients. We can then conclude that
the RDM is pure if and only if there is only one non-vanishing Schmidt coefficient
µi equal to unity. This is equivalent to the factorizability of the initial state |Ψ⟩ ⟨Ψ|
over the bipartition A|B, and thus, it implies there is no entanglement between A
and B [57].

On the other hand, (1.4) also allows us to define a notion of maximally entan-
gled states |Ψmax⟩[57] - states for which all Schmidt coefficients are identical and
non-vanishing so that µi = 1/

√
d.

The RDM is essential for constructing entanglement measures - scalar quantities
that allow us to meaningfully characterize entanglement. To understand what a
“good” entanglement measure is, we will introduce a few more concepts from
quantum information theory, following standard references [57, 58].

1.1.1 What is a good entanglement measure?

It is pedagogical to frame our discussion in the foreground of an imaginary ex-
perimental setup: Alice and Bob are researchers, working together on a quantum
system S, prepared in some initial pure state |Ψ⟩. They implement a bipartition
A|B of the system, and each of them carefully(without changing |Ψ⟩) transports
the subsystem labelled by the initial of their name to their private workstations.
There, they are allowed to perform operations on the partition in front of them.

11
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Now, we should establish what kind of operations Alice and Bob are allowed
to perform on their quantum subsystems - these are formalized by the notion of
quantum channel.

Definition 1.1. Quantum channel/Proper quantum operation A quantum channel
is a linear map Φ between density matrices that acts as:

ρ→ ρ′ = Φ(ρ) =
∑

i

AiρA†i

where the matrices Ai are known as Kraus operators, and are constrained to satisfy∑
i

A†i Ai = 1 (1.6)

NB: In general, the states ρ and ρ′ can belong to different Hilbert spaces, so that the Kraus
operators are not necessarily square matrices.

The condition (1.6) ensures that the map Φ is trace-preserving, i.e. Trρ′ = 1.
Now, with respect to the bipartition A|B of our system, we can define the notion
of local operation.

Definition 1.2. Local operation Consider two quantum channels ΦA, ΦB, acting on a
state ρ as:

ρ→ ΦA(ρ) =
∑

i

(Ai ⊗ IB)ρ(A†i ⊗ IB)

ρ→ ΦB(ρ) =
∑

j

(IA ⊗ Bi)ρ(IA ⊗ B†i )

A local operation is then defined as the quantum channel ΦA ⊗ΦB acting on states
ρ as:

[ΦA ⊗ΦB] (ρ) =
∑

i

∑
j

(
Ai ⊗ B j

)
ρ
(
A†i ⊗ B†j

)
where the condition: ∑

i j

(
A†i ⊗ B†j

) (
Ai ⊗ B j

)
= I

follows trivially from the trace-preserving property of ΦA and ΦB.

We will also define here the slightly less restrictive separable operations:

Definition 1.3. (Separable operations) A separable operation ΦS is a quantum
channel acting on a state ρ as:

ρ→ ΦS(ρ) =
∑

i

(Ai ⊗ Bi)ρ
(
A†i ⊗ B†i

)
(1.7)

with Ai and Bi acting inHA andHB, respectively.

Note that for a separable operation ΦS one can have
∑

i A†i Ai , 1,
∑

i B†i Bi , 1.
This means that the set of local operations LO is a subset of the set of separable
operations SO[57].

Referring back to the experimental setup of Alice and Bob, their tinkering with
the subsystems A and B can be understood as a local operation acting on the initial
state of the system ρ . On top of this, the researchers are allowed to exchange

12
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among themselves classical information, in the sense of Shannon information
theory[59]. Combinations of local operations and transmission of classical infor-
mation constitute a fundamental type of process in quantum information theory,
known as Local Operation Classical Communication (LOCC). A simple example of
LOCC would consist of Alice measuring an observable on the subsystem A, and
communicating the results to Bob.

Although intuitively easy to understand, LOCC operations have technically
involved formal descriptions. They have been rigorously defined, initially for
protocols with a finite number of rounds of classical communication in [60], and
generalized to an infinite number of rounds in [61]. In practice, however, these
definitions are difficult to use and instead one takes advantage of the fundamental
result of [62], which establishes that the LOCC protocols form a subset of SO so
that any LOCC protocol can be written in the form (1.7).

Moving on, we can now establish what criteria define an entanglement mea-
sure for pure states. There is some uncertainty in the literature regarding the
minimal set of properties such a quantity should satisfy, so we will differentiate
between universally accepted axioms and additional constraints on entanglement
measures, following [58].

Entanglement measures

Consider a quantum system S with Hilbert space H of finite dimension
d = dimH , and a spatial bipartition of it A|B. Then, let there be a map
E : M → R+ withM, the set of pure density matrices of S (acting on H) .
We say E(ρ) is an entanglement measure with respect to A|B, if it satisfies the
essential properties[58, 63]

1. Monotonicity (under LOCC) Let Φ be a LOCC operation, such that
Φ(ρ) ∈ M. Then we must have

E(ρ) ≥ E(Φ(ρ))

2. Discriminance E(ρ) = 0 if ρ is separable

Then, there are additional properties one can require, of which we
mention [58]:

3. Normalization If ρ ∈ M is maximally entangled, then E(ρ) = log(d)

4. Asymptotic continuity Let there be two sequences of Hilbert spaces
{H

(n)
A } and {H (n)

B }, and define, for each n, the spaceH (n) = H (n)
A ⊗H

(n)
B .

Then, we say that E(ρ) satisfies asymptotic continuity if, for any two
sequences of pure states {ρn} and {σn}, with ρn and σn acting onHn one
has

||ρn − σn|| → 0⇒
E
(
ρn

)
− E (σn)

1 + log dimHn
→ 0 as n→∞ (1.8)

Heuristically, this property ensures that the entanglement per qubit
is continuous under ”small” changes in the state - such as adding
and removing a relatively small number of qubits to the system [60].
For measures that do not satisfy the above property, one can engineer
setups exhibiting entanglement locking [64], for which removing (or
measuring) even a single qubit from a state can dramatically change
the value of the entanglement measured by E(ρ).
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We stress that the presentation above holds only for bipartite quantum systems
prepared in pure states. For mixed ρ, the discussion of what properties a good
entanglement measure should satisfy is much more sophisticated, and we refer
the interested reader to [57, 58] for a detailed treatment.

1.1.2 Entanglement measures for pure states

Arguably the most important entanglement measure for pure states in bipartite
systems is the von Neumann entanglement entropy (EE) which is defined as:

S(A) = −TrρA logρA = −
∑

i

λi logλi (1.9)

where {λi} are the eigenvalues of ρA. The EE for pure states satisfies both the es-
sential and additional properties associated with entanglement measures defined
in the previous section [57, 63]. Furthermore, it satisfies a few more important
properties that we will now outline [57]:

1. Subadditivity: Let A,B be subsystems of the quantum system S. The
following inequality holds:

S(A) + S(B) ≥ S(A ∪ B) (1.10)

2. Strong subadditivity Let A,B,C be subsystems of A. The following inequal-
ity holds:

S(A ∪ C) + S(B ∪ C) ≥ S(A ∪ B ∪ C) + S(C) (1.11)

3. Araki-Lieb inequality Let A,B be generic subsystems of the quantum sys-
tem S. The following inequality holds:

|S(A) − S(B)| ≤ S(A ∪ B) (1.12)

Note that for complementary intervals, S(A∪B) = 0 and we must have that:

S(A) = S(B) (1.13)

Another important class of measures of bipartite entanglement and a natural
generalization of the EE are the Rényi entanglement entropies (REE) defined as:

Sn(A) =
1

1 − n
log TrAρ

n
A n ∈ R+ (1.14)

Crucially, the von Neumann entropy can be recovered as the n → 1 limit of
the REE:

S(A) = lim
n→1

Sn(A) (1.15)

There are a few ”standout” REE, which encode important properties about the
state of the system:

• The Hartley/Max entropy
S0(A) = log r (1.16)

encodes the Schmidt rank r of the state of the system ρ
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• The second Rényi entropy

S2(A) = − log TrAρ
2
A (1.17)

encodes the purity of the RDM

• Single-copy entanglement/Min entropy

S∞(A) = lim
n→∞

Sn(A) = − logλmax (1.18)

allows us to recover µmax, the largest eigenvalue in the spectrum of the RDM

We note that, for n , 1, the REE do not fulfil any of the properties (1.10)-(1.12).
Furthermore, they do not satisfy the asymptotic continuity and normalization
properties, so the REE do not qualify as entanglement measures if one includes
these additional constraints in the definition. In fact, for the case of bipartite
quantum systems prepared in pure states, the EE is the unique entanglement
measure that satisfies these additional properties [58, 60].

Despite being less impressive quantifiers of entanglement, the REE do hold
an important theoretical advantage over the EE: analytical tractability. The direct
computation of S(A) is difficult, as it requires either the diagonalization of ρA, or
an advantageous analytic characterization of ρA. Such an approach can be fol-
lowed, notably, for 1D non-interacting fermionic and bosonic many-body systems
prepared in their ground state [65, 66].

For critical 1D models, a different strategy is pursued: one computes the REE
for generic integer n ≥ 2, and then analytically continues (if possible) the result to
n → 1 to recover the EE from (1.15). In the work of Cardy and Calabrese [46],
the versatile replica trick approach to calculating REE has been introduced for this
purpose, which we will now proceed to present.

1.2 Entanglement for 1D quantum systems - The replica
trick

To illustrate the replica trick, we will consider a 1D quantum system of N sites
(labelled {0, . . . ,N − 1}), and lattice spacing ϵ with Hamiltonian H and periodic
BC, at zero temperature. The system is prepared in its ground state |Ψ0⟩ Now,
we introduce a spatial bipartition of the system into two subregions, namely the
interval A = [u, v] with 0 < u < v < L = Nϵ and its complement B. The aim, then,
is to calculate the nth REE of |Ψ0⟩with respect to this bipartition.

We will assume that the quantum Hamiltonian for the physical 1D system
is obtained in the anisotropic limit [67] of the transfer matrix of a classical 2D
statistical model, which we call M̂. Let us now consider a pair of states |α⟩ , |β⟩ for
the subsystem A. We can then express the elements of the RDM:

(ρA)αβ ≡ ⟨α|TrB(|Ψ0⟩ ⟨Ψ0|) |β⟩ (1.19)

in the path integral approach

(ρA)αβ =
Zαβ

Z1
, (1.20)

where Z1 stands for the partition function of M̂ on CL (the infinite cylinder of
width L), and Zαβ is the partition function on the infinite cylinder with a cut along
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α β

(a) (b)

Figure 1.1: (a) The cylinder partition function associated to a matrix element (ρA)αβ
of the ground-state density matrix ρA. The solid grey edges are identified. (b)
The partition function associated to TrA(ρn

A) for n = 3. The solid grey edges are
identified. The colours on the sides of the slits indicate the sewing order of the
copies.

the segment [u, v] of length ℓ = v − u, and boundary conditions defined by the
configurations α and β on both sides of the cut: see Fig. 1.1a. By construction,
ρA has unit trace. If n is a positive integer, the quantity TrA(ρn

A) is obtained by
stacking n copies of the cylinder, and connecting them cyclically along the cut, to
form the replicated surface Rn depicted in Fig. 1.1.b. Thus, we have the relation

TrA(ρn
A) =

Zn

Zn
1

, (1.21)

where Zn is the partition function of the model M̂, supported on the replicated
surface Rn. This surface is a ramified covering of CL, with branch points located
at the extremities of the interval A. Geometrically, these branch points are conical
singularities with an excess angle 2π(n − 1). Conical singularities are not singu-
larities as far as the smooth (and even complex) structure is concerned2. But they
are singularities in the sense of Riemannian geometry: while the metric is flat ev-
erywhere else on Rn, there is a delta-function of negative curvature (proportional
to the excess angle) localized at each branch point, following the Gauss-Bonnet
theorem [68].

Instead of working with replicated surfaces, we can adopt a different perspec-
tive, and replicate the degrees of freedom. To establish this idea, let us consider in
more detail the 2D statistical model M̂, which we can take, for convenience, to be a
classical spin model on the infinite cylinder, with nearest-neighbour interactions.
The partition function on CL is

Z1 =
∑
{s(i)}

∏
⟨i, j⟩

W[s(i), s( j)] , (1.22)

where s(i) is the spin on site i, ⟨i, j⟩ denotes a pair of neighbouring sites, and W is
the Boltzmann weight which defines the local interaction.

2in the sense that there exists a smooth (and in fact holomorphic) coordinate chart about any
branch point.
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For any positive integer n, we can define the discrete cyclic orbifold of M̂.
This model, which we denote M̂n, lives on the original surface CL, which we
parametrize using discrete coordinates m ∈ {0,N − 1} and t ∈ Z, so that u = muϵ
and v = mvϵ. However, at each lattice site i, we have n independent spin
variables (s1(i), . . . , sn(i)), and the nearest-neighbour interactions are given by∏n−1

a=0 W[sa(i), sa( j)] – in other words, the copies a = 0, . . . ,n − 1 are decoupled.
The partition function for n decoupled copies thus reads

Z(M̂n) =
∑
{sa(i)}

∏
⟨i, j⟩

n∏
a=1

W[sa(i), sa( j)] = Zn
1 . (1.23)

Local operators are n-tuples of M̂-operators. Additionally, since the model has an
internalZn symmetry generated by cyclic permutations of the copies, we can have
topological defects, which are oriented lines across which the local interaction is
modified as W[sa(i), sa( j)] 7→ W[sa(i), sa+1( j)]. We thus introduce the lattice twist
operators σ̂ and σ̂†, which insert the endpoints of a topological defect of this type.

We note that the construction of such defect operators is pretty standard in
statistical models enjoying a discrete or continuous symmetry - this includes for
instance Z2 disorder operators in the Ising model [69], and “electric” defects in
the six-vertex model [33]. In consequence, one can establish the relation:

⟨σ̂mu,0σ̂
†

mv,0⟩ =
Zn

Zn
1

, (1.24)

where we have employed the translational invariance of the model to set the
”time” coordinate of the twist operators to t = 0. The left-hand side is a correlator
of the orbifold model M̂n on the infinite cylinder, and the numerator Zn on the
right-hand side is, as above, the partition function of the original model M̂ on the
ramified covering Rn of CL.

By generalizing the above construction, one can establish that correlation func-
tions of twist operators on a generic Riemann surface Σ exactly correspond to
partition functions of M̂, supported on ramified coverings Σn of Σ with branch
points at the position of the twists. In this way, the Rényi entropy of an interval
A = [u, v], for positive integer, n ≥ 2 is related to a correlation function of twist
operators in the cyclic orbifold of M̂:

Sn(A) =
1

1 − n
log⟨̂σmu,0̂σ

†

mv,0⟩ . (1.25)

where mu and mv once again denote the discrete coordinates of the extremal sites
in the interval.

1.3 The twist field formalism at criticality

While the replica trick approach presented in Section 1.2 is valid for generic 1D
quantum systems, it leads to particularly impressive results when the models are
tuned to criticality.

The scaling limit N → ∞, ϵ → 0, and L = Nϵ = const. of the lattice model
M̂, with lattice spacing ϵ supported on the cylinder, CL is the 2D CFT M with
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Euclidean spacetime CL. In the context of our discussion,M is referred to as the
mother or seed CFT and has a central charge c.

Similarly, the scaling limit of the lattice theory M̂n living on CL corresponds
to the cyclic orbifold CFT Mn, which is defined on the infinite cylinder of cir-
cumference L and has a central charge of nc. To construct a cyclic orbifold CFT,
one replicates n times the theory M , resulting in M⊗n, the tensor product of n
copies ofM. This replicated theory possesses a global discrete symmetry, namely,
invariance under permutations of the n copies.

Next, one needs to gauge the Abelian Zn subgroup of cyclic permutations.
This process involves enlarging the space of configurations to include oriented
defect lines that implement a Zn domain wall. This means that the new theory
includes configurations that are related by cyclic permutations of the n copies, as
well as configurations that differ by the insertion of a Zn domain wall.

In consequence, the spectrum of Mn consists of two types of operators. On
one hand, the theory contains untwisted fields ϕ1 ⊗ . . . ϕn, which are simply n-
tuples of operators in the seed CFTM. Additionally, the theory contains twisted
operators O[k] with an associatedZn charge [k] which insert defect lines in the CFT.
To understand their effect, let us consider untwisted operators of the type:

ϕ(a) ≡ 1 ⊗ · · · ⊗ 1 ⊗ ϕ
(a)
⊗ 1 ⊗ · · · ⊗ 1 . (1.26)

where 1 is the identity operator in the mother CFTM, and ϕ acts on copy (a). The
monodromy of a twisted field O[k] relative to ϕ(a) is:

ϕ(a)(e2iπz, e−2iπz̄) · O[k](0) = ϕ(a−k)(z, z̄) · O[k](0) . (1.27)

meaning the O[k] implement the cyclic permutation symmetry on the ϕ(a).
Of key importance are the bare twist fields σ[1], σ[−1], which we often denote, for

convenience σ, σ†. They are primary operators, with conformal dimensions [70]

hσ = hσ = c/24(n − 1/n) (1.28)

and are the most relevant twist operators with charges±1. Under the state-operator
correspondence, they are associated with the lowest energy states in the twisted
sectors ±1.

In this framework, one can recover, following [46, 71], the CFT counterpart to
the relation (1.24):

Z(Σn)
Z(Σ)n = ⟨σ(w1, w̄1)σ†(w2, w̄2)⟩Σ , (1.29)

whereZ(Σn) is the partition function of the mother CFTM on the surface Σn, and
(wi, w̄i) are coordinates on the surface Σ.

Similar relations to (1.29) can be inferred for orbifold correlators with both
twisted and untwisted field insertions:

⟨(ϕ1⊗. . . ϕn)(w, w̄)σ(w1, w̄1)σ†(w2, w̄2)⟩Σ = ⟨σ(w1, w̄1)σ†(w2, w̄2)⟩Σ ⟨
n∏

j=1

ϕ j(we2πia, w̄e−2πia)⟩Σn

(1.30)
To illustrate how the notions presented in this section allow us to calculate

REE and find the EE, we will re-derive, in the framework and conventions of this
thesis, a standard result of [46].
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Example 1: EE in a periodic system

We consider the same setup as in Section 1.2, tuned to criticality. We want to
calculate, for generic n ≥ 2, the REE of an interval A = [u, v] of size ℓ = v − u :

Sn(A) =
1

1 − n
log⟨̂σmu,0̂σ

†

mv,0⟩ (1.31)

In the continuum limit ϵ → 0, lattice operators can be expressed as a local
combination of CFT scaling fields [14]. For the lattice twist operator σ̂, we should
then have [72–74]:

σ̂m,t = cn ϵ
2hσσ(w, w̄) + . . . (1.32)

where w = ϵm + itϵ is the continuum coordinate on the infinite cylinder CL, cn is
a non-universal amplitude, and the dots correspond to less relevant operators of
twist charge +1. Note that a similar expansion holds for σ̂†, but containing twist
fields with [k] = [−1]. We stress that since these expansions are local, they do not
depend on the particular choice of surface the lattice model is supported on, or
the BC imposed on it.

Plugging (1.32) in (1.31), we find:

Sn(A) =
1

1 − n
log ϵ4hσ⟨σ(u,u)σ†(v, v)⟩CL +

2 log cn

1 − n
+ . . . (1.33)

where u = muϵ, v = mvϵ, with 0 < u < v < L. Thus, to leading order, Sn(A) is
determined by a two-point function of bare twist fields on CL

We now remind a standard CFT result for the 2-point function of primary
operators on the infinite cylinder [23]:

⟨σ(u,u)σ†(v, v)⟩CL =
(L
π

sin
πℓ
L

)−4hσ
(1.34)

Putting everything together, we recover the result of [46] for the REE :

Sn(A) =
c(n + 1)

6n
log

( L
πϵ

sin
πℓ
L

)
+

2 log cn

1 − n
+ . . . (1.35)

By analytically continuing to n→ 1, one finds:

S(A) =
c
3

log
( L
πϵ

sin
πℓ
L

)
+ 2c′1 + . . . (1.36)

where c′1 = limn→1
log cn

1−n .
Note that by taking the L→∞ limit, one recovers the famous result of [47] for

an interval of length ℓ in an infinite system:

S(A) =
c
3

log
ℓ
ϵ
+ 2c′1 + . . . (1.37)

In the above example, we have considered one of the simplest applications of
the twist field formalism for the calculation of the REE and the determination of
the EE. However, this can be extended to more generic bipartitions and setups.
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Example 2: Disjoint intervals in a periodic system

For example, one can consider the entanglement between a union of M ≥ 2 disjoint
intervals A = [u1, v1] ∪ · · · ∪ [uM, vM], with ui, vi ∈ [0,L] and the rest of the system
with periodic BC. In this case, obtaining REE rests on the evaluation of a 2N point
correlator of twist fields on the closed surface Σ3 :〈 M∏

i=1

σ(wi, w̄i)σ†(wi, w̄i)
〉
Σ

(1.38)

which are difficult to evaluate, for generic CFTS. Alternatively, by (1.29), one can
try to compute the partition function Z(Σn) ofM on the branched covering Σn.
We now remind the Riemann-Hurwitz formula:

χ(Σn) = nχ(Σ) +
2M∑
i=1

(ki − 1) , (1.39)

which relates the Euler characteristicχ(Σ) = 2−2h of a Riemann surfaceΣ of genus
h to that of its n-sheeted cover χ(Σn), for which the covering map π : Σn → Σ has
2M branch points with ramification index ki = n . This implies that the genus g of
Σn is:

g = (n − 1)(M − 1) + nh (1.40)

Let us now review the current status of the computation of such partition
function for generic CFTs. At g = 1, one is essentially dealing with a torus partition
functionZ(τ, τ̄) which is invariant under the PSL(2,Z) (modular) group:

Z(τ) = Z
(

aτ + b
cτ + d

)
, for all

(
a b
c d

)
∈ SL(2,Z) (1.41)

The Z(τ, τ̄) have been calculated exactly for a variety of CFTs such as Virasoro
minimal models [75, 76], WZW models and free bosonic and fermionic CFTs [23].
If a CFT is consistently defined at g = 0 and g = 1, in the sense of [77], then it will
be consistently defined on all surfaces with g ≥ 2. The results of [77] guarantee
then that the partition functions at g ≥ 2 are well-defined mathematical objects,
but their calculation is still an open problem for most CFTs. Relevant exceptions
to this status are partition functions for free bosonic and fermionic CFTs on closed
surfaces, which have been computed in a series of seminal works in the 80’s
[70, 78], in which cyclic orbifold CFTs were studied for string theoretical reasons.
Beyond these, however, higher genus partition functions are only understood for
a few theories [79, 80]. We note, for completeness, that there are also impressive
formal results for the partition functions of Virasoro minimal models through the
Coulomb gas approach [81] on surfaces of genus g > 1 [82, 83], but a glance at
their expressions should convince the reader of their manifest impracticability for
the calculation of the REE .

With these considerations in mind, it is now clear why exact calculations of
the REE for disjoint intervals are difficult, for most CFTs. Despite this, important
results for the REE in these setups have been obtained for arbitrary M ≥ 2, for
the Dirac fermion and Ising CFTs [84–86], as well as for the compactified boson
of radius R [87, 88]

3At zero temperature Σ ≡ CL while at finite T > 0, the surface Σ is a torus
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In this latter case, let us review the results for the REE Sn(A) for two disjoint
intervals A = [u1, v1]∪ [u2, v2] in a periodic system of length L. For a generic CFT,
the moments of the RDM are related to a 4-point correlator of twist fields:

Trρn
A = c4

n⟨σ(u1)σ†(v1)σ(u2)σ†(v2)⟩ (1.42)

so that by global conformal invariance the REE have the form

Sn(A) =
c(n + 1)

6n
log

(
sL(u1 − u2)sL(v1 − v2)

sL(u1 − v1)sL(u2 − v2)sL(u1 − v2)sL(u2 − v1)

)
+

1
1 − n

logFn(r) +
4 log cn

1 − n

(1.43)

where
r =

sL(u1 − v1)sL(u2 − v2)
sL(u1 − u2)sL(v1 − v2)

, sL(u) =
L
π

sin
(
πu
L

)
(1.44)

and Fn(r) is a universal function chosen so that Fn(r)→ 1 as r→ 0 or r→ 1.
In the work of [87], which focuses on the case M = 2, for critical systems

described by the CFT of a compact boson of radius R, the function Fn(r) was
found to be

Fn(r) =
Θ(0 | R2τ/2)Θ(0 | 2τ/R2)

[Θ(0 | τ)]2 , (1.45)

where τ is an (n − 1) × (n − 1) matrix with elements

τi j(r) ≡ i
2
n

n−1∑
k=1

sin(πk/n)
Fk/n(1 − r)

Fk/n(r)
cos[2πk(i − j)/n] (1.46)

where Fk/n(y) ≡ 2F1(k/n, 1 − k/n; 1; y) is the Gauss hypergeometric function In
this setup, sending n → 1 in the first term of (1.43) is straightforward, while the
analytic continuation of Fn(r) is still an open problem. Progress has been made in
this direction, however, through the numerical extrapolation methods introduced
in [89] and employed in works such as [90].

This example highlights one important limitation of the twist field approach
for the determination of the EE. To obtain it, one needs to be able to solve what
are essentially two distinct problems. The first one is the CFT calculation of the
REE for a generic integer n using the twist field approach. The second difficulty
is purely mathematical: analytically continuing the Sn(A) to n = 1. In the ”success
story” of (1.36), both problems are tractable. In most cases, however, even when
the REE have been calculated for generic n, the analytic continuation remains
elusive [88].

Let us now explore another setup, which has been the main subject of this
thesis: the quantification of entanglement in critical quantum systems with open
BC. The characteristics of entanglement are significantly influenced by the pres-
ence of such physical boundaries, which has been extensively studied in various
contexts [46, 91–96]. These studies have yielded valuable insights into the subject.
Notably, in the case of holographic entanglement entropy [97, 98], examining the
effects of boundaries [99–102] has offered a fresh perspective on the information
paradox [103–107].

For such setups as well, the twist field formalism can be employed, but there
are several supplementary technicalities which we will now review.
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1.4 REE in systems with open BC

We will consider a 1D quantum system with identical open BCs with both its bulk
and boundary tuned to criticality, at zero temperature.

The scaling limit of such a system will be given by a BCFTMwith conformal
BC α defined on an infinite strip SL of width L = Nϵ. Such theories have been
intensely studied since their elaboration in Cardy’s works [28, 29, 108], and we
refer the reader to [24] for a recent and thorough presentation.

In this case, the simplest setup to consider is that of an interval A = [0, ℓ],
with ℓ = mϵ, starting at one of the boundaries of the system. The constructions
of Sections 1.2 and 1.3 can now be generalized to this setup. In the replica trick
approach, one has to evaluate a partition function on the n-sheeted strip SL,n with
a single branch point corresponding to the bulk end of the interval A [71]. In the
twist field approach, on the other hand, the moments of the RDM are given by
the lattice correlator:

TrAρ
n
A = ⟨̂σm,0⟩

(α,α)
SL

(1.47)

The leading BCFT contribution to this quantity is given by the one-point twist
correlator:

⟨σ(ℓ)⟩(α)
SL

(1.48)

By simple arguments of conformal invariance [28], it should have the form [46]:

⟨σ(ℓ)⟩αSL
= A(α)

σ

[2L
π

sin
(
πℓ
L

)]−∆n

(1.49)

where the one-point structure constant A(α)
σ can also be fixed by BCFT arguments

[109, 110] to be
A

(α)
σ = g1−n

α (1.50)

where gα is the Ludwig-Affleck ground state degeneracy [32] in the mother BCFT,
defined as the overlap between its ground state and the conformal boundary state
|α⟩. In consequence, one arrives at:

⟨σ(ℓ)⟩αSL
= g1−n

A

[2L
π

sin
(
πℓ
L

)]
(1.51)

and finds the leading contribution to the REE to be:

Sn([0, ℓ]) ∼
c(n + 1)

12n
log

(2L
πϵ

sin
πℓ
L

)
+ log gα +

log cn

1 − n
(1.52)

It is important to note that the same non-universal amplitude cn appears in both
(1.52) and (1.35) and originates from the locality of the expansion in (1.32). This
provides an alternative and more general explanation for the relation observed in
[71, 111] between the non-universal terms in the REE (1.52) and (1.35).

Another remarkable fact about the result (1.52) is that all the information about
the particularities of the conformal BC α is encoded in the boundary entropy log gα.
This boundary entropy allows exploring the boundary renormalization group
(RG) flows induced by the change of boundary conditions [112, 113]. For all other
setups, the dependence on the conformal BC becomes more complicated, as we
shall see in later chapters of this thesis.
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Figure 1.2: A Riemann surface with χ = −2

Moving on, the result in (1.52) can be continued to n → 1 to recover another
celebrated result for the EE [46]:

S(A) =
c
6

log
(2L
πϵ

sin
πℓ
L

)
+ log gα + c′1 (1.53)

When dealing with more general bipartitions, it is expected that the analytic
continuation may pose some challenges. In the case of open BC, it should be
noted that even determining the REE is more difficult.

Consider, for example, a bipartition such that A = [u, v] is strictly in the bulk
of the system so that 0 < u < v < L. To find the BCFT prediction for Sn(A) in this
case, one needs to calculate the twist 2-point function on the infinite strip SL with
conformal BC α [71] :

⟨σ(u)σ†(v)⟩(α)
SL

(1.54)

Such correlators are difficult to solve for generic seed BCFTs and arbitrary n, since
they require more in-depth knowledge of the cyclic orbifold BCFT.

From the replicated surface point of view, the problem of determining the REE
in this setup is even more difficult to address, compared to the periodic case. The
replicated surface SL,n has genus 0 and n disconnected boundaries, so that its
Euler characteristic is:

χopen = 2 − n (1.55)

Such a surface is conformally equivalent to a disk from which one has cut
n − 1 additional holes, as shown in Figure 1.2. For n = 2, this is of course an
annulus, for which the partition function is well understood for a variety of
BCFTs [25, 36, 114]. This observation is the cornerstone for the calculation of the
second REE , presented in Chapter 2.

For n > 2, however, few results are known. The difficulty stems from the fact
that objects of interest in a BCFTM defined on some open surfaceΣ are computed
or constructed by some implementation of a doubling trick. Qualitatively, this
means relating correlators inM to chiral CFT amplitudes on the double D(Σ) - the
surface obtained by duplicating all the points in the bulk of Σ [115]. The most
well-known example of such a procedure is Cardy’s doubling trick [28, 29] whose
general statement is that n-point functions of bulk primary operators on the Upper
Half Plane (UHP) satisfy the same Ward identities as 2n-point correlators of chiral
primary fields on C.

In a generalization of this, to calculate the BCFT partition function on an open
surface Σopen

n of Euler characteristic χopen = 2−n one can relate it to a CFT partition
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function on a closed Riemann surface Σclosed
n with χclosed = 4 − 2n. In consequence,

one needs to both calculate this latter quantity and ”reverse” the doubling trick
to recover the zero-point function on Σopen

n . This is a difficult task for most BCFTs.
One should observe, however, that Σclosed

n is the same Riemann surface (up to
conformal mapping) that is involved in the determination of the REE for two
disjoint intervals, so these two problems are closely related. As we will show in
Chapter 3, one can make this connection explicit.

Generalizing to the case of M disjoint intervals at zero temperature (even
for the compact boson) adds an extra layer of challenge. In this case, the open
replicated surface Σopen

n,M has g = (n − 1)(M − 1) and χopen = 1 − (n − 1)(2M − 1), and
the known results [88] for the partition function on the double of D(Σopen

n,M ) are more
difficult to manipulate.

While the discussion so far has focused on quantifying entanglement in the
ground state of a critical quantum system, we remark that one can also use these
types of CFT methods to obtain results for the REE for excited states. Notably,
such investigations were done in [116, 117] for critical systems with a free CFT
description and in [118] for those described by minimal models. We anticipate here
that the work in [118], based on finding ODEs satisfied by the twist field correlators
that describe the REE of an interval for excited states, is deeply connected to the
investigations in 4, for the REE of an interval in the ground state of a system with
different open BC.

1.5 Outline

We will present, then, in the following chapters of this thesis, our contribution to
the understanding of entanglement in systems with identical open BC. Firstly, in
Chapter 2, we reveal the calculation of the 2nd REE for a subsystem A in a generic
1D critical system described by a BCFTMwith conformal BC α and show how the
dependence of S2(A) on α is encoded in the annulus partition functionZα|α ofM.
This arises due to the conformal equivalence between a two-sheeted infinite strip,
with branch points at the ends of the interval A and an annulus of suitably chosen
aspect ratio, which we establish quantitatively by building suitable conformal
maps. We verify our findings with numerical checks on the Ising model, based
on Peschel’s trick[65].

Then, in Chapter 3, we focus our attention on 1D quantum systems described
by the BCFT of a compact boson with compactification radius R for both Dirichlet
and Neumann BC. For this computation, we have adapted the path integral and
SET methods of [70], also employed in [87], to account for the presence of a
conformal boundary. We were able to derive an exact result for the REE Sn(A) for
an interval in the bulk of the system, and all integer n ≥ 2. For finite R, we were not
able to find the analytic continuation to n→ 1. However, in the decompactification
limit R → ∞, we’ve managed, by employing some convenient identities [87],
to obtain analytic expressions for S(A), for both Dirichlet and Neumann BC.
Beyond various analytical checks, we’ve checked our R → ∞ results with lattice
predictions for the harmonic chain.

In Chapter 4, we consider yet another generalization of the setup of (1.52): the
implementation of mixed BC α , β, i.e. tuning the boundaries of the 1D system
to different critical points. At the level of the CFT this requires the introduction
of Boundary Condition Changing Operators(BCCOs), that implement the change in
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BCs. For an interval A starting at one of the boundaries of the system, the BCFT
contributions to the REE are calculated as 3-point functions of one (bulk) twist
field and two BCCOs. We introduce a general procedure for deriving differential
equations for these correlators and show how, for small n, they can be solved by
conformal bootstrap methods. To this end, we exploit the null vector conditions
on the orbifold primary states, inherited from the ones of the mother BCFT by the
induction procedure [119] as well as various orbifold Ward identities. This method
also allows a good handle of finite-size corrections, which we analyse for both the
critical Ising chain and the three-state Potts model.

In Chapter 5, we will present a more formal algebraic construction of the
cyclic orbifold CFTMn of diagonal and rational mother CFTs. After identifying
the maximal symmetry subalgebra ofMn, we classify the operator content with
respect to it and obtain the fusion rules and fusion numbers for all prime n. It is an
almost self-contained presentation and acts as a complement to the geometrical
approach of Chapters 2 and 4, and as a helpful toolbox for the calculations of
Chapter 4.
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Chapter 2

Second Rényi entropy and annulus
partition function for
one-dimensional quantum critical
systems with boundaries

2.1 Summary

In this chapter, heavily based on [120], we present new results pertaining to
the calculation of the second REE S2(A) of an interval A in the bulk of a one-
dimensional critical system with identical open boundaries. In this section, we
will present the results, as well as outline the methods and ideas involved in their
derivation.

We are considering systems whose scaling limit is given by a generic BCFTM
with central charge c and conformal BC α. We take the length of the system to be
L = Nϵ, where N is the number of sites and ϵ is the lattice spacing. Hence, we
consider bipartitions A = [u, v] with 0 < u < v < L as in Figure 2.1.

u v
`

α α

L

Figure 2.1: Interval in the bulk of a system with open BC

In comparison with the well-known result of [46] for an interval containing
one of the boundaries of the system (which we have rederived in Section 1.4) there
is an extra complication: the BCFT contribution to the REE is now determined by
a two-point function of twist fields on SL the infinite strip of width L

⟨σ(u)σ(v)⟩(α)
SL

(2.1)

where σ denotes the bare twist operator in the Z2 orbifold BCFT. We can, alter-
natively, write the above correlator in terms of the partition function of the seed
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BCFTM on a replicated surface:

⟨σ(u)σ(v)⟩(α)
SL
=
Z(SL,2)
Z(SL)2 (2.2)

where SL,2 is a two-sheeted cover of the strip with branch points at u and v.
One can now map the twist field correlator in (2.2) to the unit diskD using:

w 7→ z =
sL(w − u)
sL(w + u)

, sL(w) =
2L
π

sin
πw
2L

. (2.3)

We now write the twist field correlator onD as:

⟨σ(0, 0)σ(x, x̄)⟩(α)
D
=

[
|x|2(1 − |x|2)

]− c
8
F

(α)
2 (x) (2.4)

where x is the cross ratio on the unit diskD, given by:

x =
sL(v − u)
sL(v + u)

(2.5)

and F (α)
2 (x), is a universal function of the cross-ratio x that also depends on the

conformal BC α. We have defined F (α)
2 (x), so that that F (α)

2 (x) → 1 as x → 0 and
F

(α)
2 (x)→ g−2

α as x→ 1 for generic BCFTs 1. This is consistent with the notation of
Chapter 3 and other results in the literature [121].

Hence, the main analytical achievement we present in this chapter is the
computation of F (α)

2 (x) in terms of the annulus partition function of the mother
CFT:

F
(α)

2 (x) = g−2
α 2−

c
3

[
|x|2(1 − |x|2)

] c
12 Zα|α(τ) , (2.6)

where Zα|α(τ) is the partition function on the annulus Aτ of unit circumference,
width Im τ/2, and boundary condition α on both edges, and gα is the groundstate
degeneracy [32]. The parameter τ (which is pure imaginary) is related to x via:[

θ2(τ)
θ3(τ)

]2

= |x| , or equivalently τ(x, x̄) = i
2F1

(
1
2 ,

1
2 , 1; 1 − |x|2

)
2F1

(
1
2 ,

1
2 , 1; |x|2

) , (2.7)

where the θ j(τ)’s are the Jacobi elliptic functions (see appendix A.1.1).
These results are completely general and apply to any mother BCFT. This

includes, of course, CFTs built from minimal models and Wess-Zumino-Witten
models (for which the annulus partition functions have been determined in [36,
114]), free and compactified bosonic CFTs [23] to name a few. This result is
reminiscent of the well-known relation between the twist four-point function on
the sphere and the torus partition function Z(τ, τ̄) [70, 122, 123]

⟨σ(0)σ(η, η̄)σ(1)σ(∞)⟩C = 4−
c
3

∣∣∣η(1 − η)
∣∣∣− c

12 Z(τ, τ̄) , η =

[
θ2(τ)
θ3(τ)

]4

. (2.8)

The final result for the S2 entropy of an interval A = [u, v] in a system of length
L is, up to an additive non-universal constant coming from the normalization of
the lattice twist operator :

1There are cases in which the asymptotic behaviour of F (α)
2 (x) is more subtle, see Appendix

B.5.1
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Second Rényi entropy of an interval in the bulk

Sα2 ([u, v]) =
c

24
log

[
sL(2u)sL(2v)s2

L(v + u)s2
L(v − u)

]
+ 2 log gα − log Zα|α(τ)

To derive this result for generic BCFTs, two ingredients are essential. The
first one is the observation thatD2,x, the two-sheeted cover of the unit disk, with
branch points at 0 and x is conformally equivalent to the annulusAτ, through the
map:

t 7→ z = g(t) =
(
θ4(t|τ)
θ1(t|τ)

)2

(2.9)

α

α

1

Im τ
2 0 x

α α•
τ
2 •

1+τ
2

g(t)

Figure 2.2: The annulusAτ – fundamental domain pictured here – is mapped through
g to the two-sheeted diskD2,x. The black edges are identified.

The second ingredient is a variation of the SET method, a well-established
technique for the calculation of CFT correlators [70]. One considers the following
combination of orbifold correlators

⟨Torb(z)σ(0, 0)σ(x, x̄)⟩(α)
D

⟨σ(0, 0)σ(x, x̄)⟩(α)
D

(2.10)

where Torb(z) = T(z) ⊗ 1 + 1 ⊗ T(z) is the SET of the Z2 orbifold of M. In the
replicated surface picture, one finds, using (1.30):

⟨Torb(z)σ(0, 0)σ(x, x̄)⟩(α)
D

⟨σ(0, 0)σ(x, x̄)⟩(α)
D

= 2⟨T(z)⟩αD2,x
(2.11)

By taking advantage of the operator product expansion (OPE) between Torb(z) and
the bare twist fields, and utilizing the mapping given by Equation (2.9) to connect
the right-hand side of Equation (2.11) with the annulus partition functionZα|α(τ),
one can ultimately derive (2.6).

While the above procedure is general, we were able to produce an alternative
derivation of (2.4) for A-series minimal model seed BCFTs. The main idea was to
employ Cardy’s mirror trick[28, 124], to write the disk correlator (2.4) as a linear
expansion of conformal blocks on the sphere. The details of the calculation are
relegated to Appendix A.2.

Numerical checks

To check the theoretical prediction obtained in Section 2.2 with numerical deter-
minations of the Rényi entropy in a critical lattice model, we have considered the
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critical Ising chain with free BC, with Hamiltonian

Hfree = −

N−1∑
j=1

sx
j s

x
j+1 −

N∑
j=1

sz
j , (2.12)

where the sa
j act as Pauli matrices σa at site j and trivially on the other sites of the

system. We stress that both the bulk and the boundary of the chain are critical at
this point in the parameter space of the model. The scaling limit of this model is
theM(4, 3) A-series minimal model CFT of central charge c = 1/2, with free ( f )
conformal BC. The annulus partition function Z f | f (τ) is given by:

Z f | f (τ) =

√
θ3(τ)
η(τ)

= 21/6
(
x
√

1 − x2
)− 1

12 (2.13)

This model can be mapped to a fermionic chain through a Jordan-Wigner (JW)
transformation

c†k =
k−1∏
j=0

sz
js
+
k , s±k ≡

1
2

(sx
k ± i sy

k ) . (2.14)

Using Peschel’s trick [125, 126] one can recover the entanglement spectrum from
the eigenvalues of the N ×N correlation matrix of this fermionic model. In conse-
quence, one can recover the Rényi entropies for large sizes with an advantageous
computational cost that scales as O(N) with the number N of spins in the system,
instead of the O(2N) cost associated with directly determining the entanglement
spectrum in the spin chain.

For numerics, it will be useful to consider the shifted second Renyi entropy in
the lattice, which we define as:

G
α
2 ([mu,mv]) ≡ Ŝα2 ([mu,mv])−

1
8

log
(2N
π

)
= − log⟨̂σmu,0̂σmv,0⟩

(α)
SL
−

1
8

log
(2N
π

)
, (2.15)

so that, in the scaling limit, the leading BCFT contribution to (2.15) is

G
α
2 ([mu,mv]) ∼ − log⟨σ(u, ū)σ(v, v̄⟩(α)

SL
−

1
8

log
(2L
π

)
(2.16)

where u = muϵ and v = mvϵ, and ℓ = v − u ≡ mϵ
To investigate the agreement between the lattice data and the CFT result, we

have considered two ways of “growing” the interval length ℓ and depicted the
results in Figure 2.3. For the right side of Figure 2.3, we have considered an
interval that starts in the middle of the chain and grows towards one end. This
corresponds on the lattice to applying the first twist operator to the middle of the
chain, and the second one progressively closer to the right boundary. In the left
side of Figure 2.6, we consider the S2 entropy as the interval length ℓ is grown
equidistantly from the middle of the chain towards the boundaries. We see, in
both cases, that the agreement with the CFT prediction is very good, although, as
we will detail later in this chapter, one needs to consider unusually large system
sizes to reach it, due to severe finite-size effects.

We now give here the organization of this chapter. Section 2.2 provides a
detailed derivation of the main result (2.1) and a non-trivial check that our calcu-
lation does recover the result of [46, 94, 126] for the second Rényi entropy of an
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Figure 2.3: Plots of shifted Rényi entropy G f
2([mu,mv]) for the Ising chain with

free BC, against the scaled interval size m/N. The deviations from the theoretical
predictions are stronger as the interval is grown towards the boundaries

interval A touching the boundary. We also recover the known results for the Dirac
fermion [127–129] and more generally the compact scalar field of [121]. Lastly,
we extend our results to exact expressions for the mutual information and the
entropy distance in specific situations. In Section 2.3, we compare our numerical
results with the BCFT prediction (2.1) for the critical Ising spin chain, based on
Peschel’s trick. We also carry out a careful analysis of the finite-size effects. In Sec-
tion 2.4, we conclude with a recapitulation of our results and comment on future
directions for exploration. The Appendices A.1, A.2 and A.3 contain respectively
our notations and conventions for elliptic functions, the alternate derivation of
the main result based on boundary CFT techniques applied to the Z2 orbifold,
and the computation of the bosonic annulus partition function.

2.2 Exact calculation of the second Rényi entropy

We consider a one-dimensional quantum critical system of finite length L, with
open boundary conditions, and at zero temperature. We are interested in the
second Rényi entropy of an interval [u, v]. The critical point is assumed to
be described by a CFT. For a large enough system, the boundary flows to a
renormalisation-group fixed point. We will therefore assume that the boundary
condition is scale invariant. For a given bulk universality class, there is a set
of possible such conformal boundary conditions {Bα} [108],[30],[124],[130]. We
restrict to the case where the same boundary conditions are applied at the two
ends of the system, and we assume that there is a non-degenerate ground state
|ψ0⟩.

Evaluating the second Rényi entropy Sα2 ([u, v]) boils down to the computa-
tion of the following correlator in the Z2 orbifold of the original CFT [87], [46],
[110],[96]:

⟨σ(u, ū)σ(v, v̄)⟩(α)
SL
= exp[−Sα2 ([u, v])] , (2.17)

where σ denotes the twist operator2. This correlator is evaluated on the infinite
2Here, even though u and v are real, and hence u = ū and v = v̄, we use the standard notations
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strip (with imaginary time running along the imaginary axis) SL = {w ∈ C, 0 <
Re(w) < L} of width L with boundary condition (α) on both sides of the strip.
Alternatively, this two-point function is equal to the following ratio of partition
functions [46, 47]:

⟨σ(u, ū)σ(v, v̄)⟩(α)
SL
= Z2(u, v)/Z2

1 , (2.18)

where Z1 stands for the strip partition function, and Z2(u, v) stands for the partition
function on a two-sheeted covering of the infinite strip with branch points at u and
v, being understood that all edges have the same conformal boundary condition
α. The main result of this paper rests on the fact that this Riemann surface (once
compactified) is conformally equivalent to an annulus, as was observed in [110].
It is therefore not surprising that the two-twist correlation function is equal, up
to some universal prefactors, to the annulus partition function. We present two
different ways to derive this result. The first method, which we now detail, is
more geometric in nature: we unfold the two-sheeted Riemann surface into an
annulus via an explicit conformal mapping. The second method, which is more
algebraic, is based on Cardy’s mirror trick [108, 130] applied to the Z2 orbifold.
This second approach, which employs a larger set of BCFT and orbifold concepts,
has been relegated to Appendix A.2 to avoid congesting the logical flow of the
chapter.

2.2.1 Conformal equivalence to the annulus

To construct an explicit conformal map between the two-sheeted strip and the
annulus, it is convenient to first map the strip to the unit disk via

w 7→ z =
sL(w − u)
sL(w + u)

, sL(w) =
2L
π

sin
πw
2L

. (2.19)

The above conformal map also sends the two-sheeted strip (with branch points
at w = u and w = v) to the two-sheeted unit diskD2,x with branch points at z = 0
and z = x, with

x =
sL(v − u)
sL(v + u)

=
sin π

2L (v − u)
sin π

2L (v + u)
. (2.20)

Note that x is real, and 0 < x < 1. Let us now describe the conformal mapping
sending D2,x to an annulus. First, for any complex number τ with Im τ > 0, the
function

t 7→ z = g(t) =
(
θ4(t|τ)
θ1(t|τ)

)2

(2.21)

is a biholomorphic map from the torus of modular parameter τ to the double-
sheeted cover of the Riemann sphere with four branch points at positions

g(0) = ∞ , g
(1 + τ

2

)
= x , g

(
τ
2

)
= 0 , g

(1
2

)
=

1
x
, (2.22)

with

x =
(
θ2(τ)
θ3(τ)

)2

, τ = i
2F1

(
1
2 ,

1
2 , 1; 1 − x2

)
2F1

(
1
2 ,

1
2 , 1; x2

) , (2.23)

σ(u, ū) and σ(v, v̄) for bulk operators, which emphasizes the fact that the correlation function is not
a holomorphic function of u and v.
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and where the θ j(t, q)’s are Jacobi theta functions (see Appendix A.1.1 for defini-
tions and conventions). Using the properties (A.3) of these functions, we readily
see that the function g satisfies the identity:

g(t + τ/2) = g(t)−1 , (2.24)

for any t on the torus. In the present situation, since 0 < x < 1, the modular
parameter τ is pure imaginary, with Im τ > 0. Then, from the above relation we
get

g
(
τ
2
+ t̄

)
= g(t)−1 . (2.25)

Now notice that identifying t and τ/2 + t̄ amounts to folding the torus into an
annulus of unit width, and height Im τ/2

Aτ =
{
t ∈ C/Z,

Im τ
4
≤ Im t ≤

3 Im τ
4

}
, (2.26)

while identifying z and 1/z̄ on the two-sheeted Riemann sphere yields the two-
sheeted unit diskD2,x. In essence, these foldings are the reverse of Cardy’s mirror
trick [30]. The relation (2.25) ensures that the map g descends to the quotient,
yielding a biholomorphic map from the annulusAτ to the two-sheeted unit disk
D2,x, as shown in Figure 2.

α

α

1

Im τ
2 0 x

α α•
τ
2 •

1+τ
2

g(t)

Figure 2.4: The annulusAτ – fundamental domain pictured here – is mapped through
g to the two-sheeted diskD2,x. The black edges are identified.

2.2.2 Rényi entropy of an interval in the bulk

Recall that the twist σ is a primary operator of conformal dimensions hσ = h̄σ =
c/16 in theZ2 orbifold CFT. Using conformal covariance under the map (2.19), we
can relate the twist correlation functions on the strip and the unit disk:

⟨σ(u, ū)σ(v, v̄)⟩(α)
SL
= (sL(u + v))−c/4

⟨σ(0, 0)σ(x, x̄)⟩(α)
D
, (2.27)

where
x = x̄ =

sL(v − u)
sL(u + v)

≥ 0 . (2.28)

The strategy (adapted from [70]) to compute ⟨σ(0, 0)σ(x, x̄)⟩(α)
D

in terms of an an-
nulus partition function is the following. We insert the stress-energy tensor Torb

into the twist correlation function on the unit disk and study the behaviour of the
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function ⟨Torb(z)σ(0, 0)σ(x, x̄)⟩(α)
D

as z → x. Since σ is a primary operator, we have
the OPE

Torb(z)σ(x, x̄) =
hσσ(x, x̄)
(z − x)2 +

∂xσ(x, x̄)
z − x

+ regular terms, (2.29)

and thus

∂x log⟨σ(0, 0)σ(x, x̄)⟩(α)
D
=

1
2πi

∮
Cx

⟨Torb(z)σ(0, 0)σ(x, x̄)⟩(α)
D

⟨σ(0, 0)σ(x, x̄)⟩(α)
D

dz , (2.30)

where the integration contour Cx encloses the point x and goes anti-clockwise.
However, in (2.29) and (2.30) the parameter x stands for a complex variable
(independent of x̄). Setting x = x̄ thus yields

∂x

(
log⟨σ(0, 0)σ(x, x̄)⟩(α)

D

∣∣∣
x=x̄

)
= 2 ×

1
2πi

∮
Cx

⟨Torb(z)σ(0, 0)σ(x, x̄)⟩(α)
D

⟨σ(0, 0)σ(x, x̄)⟩(α)
D

dz . (2.31)

We will drop the |x=x̄, but from now on x is assumed – without loss of generality
– to be real positive, with 0 < x < 1.

In terms of the mother theory, ⟨Torb(z)σ(0, 0)σ(x, x̄)⟩(α)
D

is the one-point function
of the stress-energy tensor on the two-sheeted surfaceD2,x. Since Torb(z) = T(z) ⊗
I + I ⊗ T(z), we can write

⟨Torb(z)σ(0, 0)σ(x, x̄)⟩(α)
D

⟨σ(0, 0)σ(x, x̄)⟩(α)
D

= 2⟨T(z)⟩αD2,x
, (2.32)

where the last equality comes from the symmetry under the exchange of the two
copies of the unit disk. The last step is to compute ⟨T(z)⟩α

D2,x
by exploiting the

conformal equivalence between the two-sheeted cover of the disk D2,x and the
annulusAτ via the map z = g(t) described in (2.21):

⟨T(z)⟩αD2,x
=

(
dt
dz

)2

⟨T(t)⟩αAτ +
c

12
{t, z} , (2.33)

where {t, z} denotes the Schwarzian derivative of the map g. First, the one-point
function of T(z) on the annulus is

⟨T(t)⟩αAτ = 2iπ∂τ log Zα|α(τ) , (2.34)

where Zα|α(τ) denotes the partition function on the annulus Aτ (with boundary
condition α on both edges). Let |α⟩ be the boundary state associated to the
boundary condition α. SinceAτ has unit width, and height β/2 = −iτ/2, we have

Zα|α(τ) = ⟨α|eiπτ(L0+L̄0−c/12)
|α⟩ . (2.35)

We can exploit the differential equation (A.17) obeyed by the map z = g(t), namely(
dt
dz

)2

= −
1

4π2θ4
3(τ)z(z − x)(1 − xz)

, (2.36)

to derive

⟨T(z)⟩αD2,x
=

x(1 − x2)
4z(z − x)(1 − zx)

∂x log Zα|α(τ) +
c

12
{t, z} , (2.37)
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where we have also used the relation (A.11). The Schwarzian derivative can be
easily evaluated using (2.36), yielding

{t, z} =
3x2(1 + z4) − 4

(
x + x3) (z + z3) + 2

(
2x4 + x2 + 2

)
z2

8z2(z − x)2(1 − xz)2 , (2.38)

and in particular, the residue at z→ x is

1
2πi

∮
Cx

{t, z} dz = −
1 − 2x2

4x (1 − x2)
= −

1
8
∂x log x2(1 − x2) . (2.39)

Finally plugging the above in (2.31) we get

∂x log⟨σ(0, 0)σ(x, x̄)⟩(α)
D
= ∂x log Zα|α(τ) −

c
24
∂x log x2(1 − x2) . (2.40)

Upon integration, we obtain

⟨σ(0, 0)σ(x, x̄)⟩(α)
D
= const ×

[
x2(1 − x2)

]− c
24 Zα|α(τ) . (2.41)

To fix the multiplicative constant in the above relation, we consider the leading
behaviour as x tends to zero. In this limit, we have Im τ → +∞ and q → 0, with
the relation q = e2iπτ

∼ (x/4)4. Thus

Zα|α(τ) = ⟨α|eiπτ(L0+L̄0−c/12)
|α⟩ ∼

Im τ→∞
q−c/24 g2

α , gα = |⟨α|0⟩| , (2.42)

where |0⟩ is the normalized ground state wavefunction of the Hamiltonian with
periodic boundary conditions. The twist operator σ is normalized so that

⟨σ(0, 0)σ(x, x̄)⟩(α)
D
∼

x→0
x−c/4 , (2.43)

and hence the fully explicit relation (2.41) is

⟨σ(0, 0)σ(x, x̄)⟩(α)
D
= g−2

α 2−
c
3

[
x2(1 − x2)

]− c
24 Zα|α(τ) . (2.44)

Note that in the above equation we have assumed x = x̄, with 0 < x < 1. For a
generic complex x on the unit disk, the result still holds up to replacing x by |x| in
the r.h.s. as well as in (2.23). Back to the original problem on the strip, we obtain

⟨σ(u, ū)σ(v, v̄)⟩(α)
SL
= g−2

α 2−
c
3

[
sL(v + u)2sL(v − u)2sL(2u)sL(2v)

]− c
24 Zα|α(τ) , (2.45)

and we get the announced result (2.1) for the second Rényi entropy.

2.2.3 Rényi Entropy of an interval touching the boundary

As a check for the formula (2.45), we want to recover the expression for the
Rényi entropy S2 of an interval A = [0, ℓ] touching the boundary of the chain
[46, 94, 96, 111, 131]:

Sα2 ([0, ℓ]) =
c
8

log
[2L
π

sin
(
πℓ
L

)]
+ log gα . (2.46)
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Chapter 2 – Second Rényi entropy and annulus partition function for
one-dimensional quantum critical systems with boundaries

Let us consider the two-point function ⟨σ(u, ū)σ(v, v̄)⟩(α)
SL

in the limit u→ 0. On the
left-hand side of (2.45), we can use the bulk-boundary OPE:

σ(u, ū) ∼
u→0

Aα
σ (u + ū)−c/8 I , (2.47)

where Aα
σ = (gα)−1 is the OPE coefficient for the bulk operator σ approaching a

boundary with boundary condition α, and giving rise to the boundary identity
operator I. Hence, for u real:

⟨σ(u, ū)σ(ℓ)⟩(α)
SL
∼

u→0
(gα)−1 (2u)−c/8

⟨σ(ℓ)⟩(α)
SL
. (2.48)

On the right-hand side of (2.45), the limit u→ 0 corresponds to x→ 1 and τ→ 0,
with

q̃ = e−2iπ/τ
∼

(
1 − x2

16

)2

→ 0 . (2.49)

In a rational CFT, the annulus partition function decomposes on the characters of
primary representations Vk as

Zα|α(τ) =
∑

k

nk
αα χk(−1/τ) , χk(τ) = TrVk

(
qL0−c/24

)
. (2.50)

In the limit q̃ → 0, we get Zα|α(τ) ∼ n0
ααq̃−c/24, where k = 0 stands for the identity

operator, and n0
αα = 1, since we assumed a non-degenerate ground state |ψ0⟩. Thus

Zα|α(τ) ∼
(

1 − x2

16

)−c/12

∼ 2
c
4

(
s2

L(v)
u sL(2v)

) c
12

, (2.51)

where we have used (2.20) to obtain the second relation. After some simple
algebra, one gets for the right-hand side of (2.45):

⟨σ(u)σ(v)⟩(α)
SL
∼

u→0
g−2
α

 1
2L
π sin πℓ

L

c/8

(2u)−c/8 . (2.52)

Hence, comparing (2.48) and (2.52), we recover the well known one-point function

⟨σ(ℓ)⟩(α)
SL
= g−1

α

 1
2L
π sin πℓ

L

c/8

, (2.53)

which indeed yields (2.46).

2.2.4 Compact boson

We can further apply our main formula (2.1) by recovering the known results for
the Dirac fermion [127–129] and more generally the compact boson [121]. We
consider a compact scalar field ϕ ≡ ϕ + 2πR with action

S[ϕ] =
1

8π

∫
d2r ∂µϕ∂µϕ , (2.54)

and Dirichlet boundary conditions. The relevant annulus partition function is
(see Appendix A.3)

Z(τ) =
θ3(−R2/τ)
η(−1/τ)

. (2.55)
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Before plugging this partition function into our main formula (2.1), let us write it
as

Z(τ) =
θ3(−1/τ)
η(−1/τ)

×
θ3(−R2/τ)
θ3(−1/τ)

=
θ3(τ)
η(τ)

×
θ3(−R2/τ)
θ3(−1/τ)

. (2.56)

Now using

θ3(τ)
η(τ)

= 21/3
[
x2(1 − x2)

]− 1
12
= 2

1
3

(
s2

L(v − u)sL(2u)sL(2v)

s4
L(v + u)

)− 1
12

. (2.57)

we find (up to an additive constant)

Sα2 ([u, v]) =
1
8

log
sL(2u)sL(2v)s2

L(v − u)

s2
L(v + u)

− logF2(τ) , (2.58)

where the function F2(τ) is given by

F2(τ) =
θ3(−R2/τ)
θ3(−1/τ)

=

∑
m∈Z

exp
(
−iπm2R2/τ

)
∑
m∈Z

exp
(
−iπm2/τ

) . (2.59)

This is equivalent to the formulae (13) and (18) of [121] provided M̄ = iπ/4τ in
(18) [although we note a typo in the first term of (13)], and the result for the Dirac
fermion [namely F2(τ) = 1 for R = 1] follows.

2.2.5 Other entanglement measures

In this section, we present two other entanglement measures related to the second
Rényi entropy: mutual information and entropy distance. Here they are defined
in the same context as considered above, namely in a critical 1d quantum system of
finite size L, with open boundaries, and the same conformal boundary condition
on both sides.

When considering two disjoint subsystems A and B, a standard measure of the
information “shared” by A and B is given by the mutual information IA:B, defined
as (see [132] and references therein)

IA:B = SA + SB − SA∪B , (2.60)

where S stands for a given measure of entanglement for a single subsystem.
Using our result (2.1), we can express the mutual information (associated with
the second Rényi entropy) of two intervals each touching a different boundary of
the system, namely A = [0,u] and B = [v,L]. After some straightforward algebra
on (2.1) and (2.46), we get

I[0,u]:[v,L] =
c

12
log

[
s(2u)s(2v)

s(v + u)s(v − u)

]
+ log Zα|α(τ) . (2.61)

Back to the situation of a subsystem A consisting of a single interval [u, v]
inside the bulk of the system, we turn to the question of quantifying how much
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the whole spectrum of the density matrix ρA depends on the choice of external
parameters (see [133] and references therein) – in the present case, the external
parameter is the boundary condition. Here, we shall use the n-norm of an operator
Λ, defined as

∥Λ∥n =
{
Tr

[
(Λ†Λ)n/2

]}1/n
, (2.62)

and the associated Schatten distance3

Dn(ρ, ρ′) = ∥ρ − ρ′∥n . (2.63)

To be specific, we denote by ρA,α the reduced density matrix associated with the
ground state of our finite critical systems with boundary conditions α on both
sides of the system. Then we consider the Schatten distance Dn(ρA,α, ρA,β), where
α and β are two distinct conformal BCs. We restrict to the value n = 2, and we
have

D2(ρA,α, ρA,β) =
[1
2

Trρ2
A,α +

1
2

Trρ2
A,β − Tr(ρA,αρA,β)

]1/2

. (2.64)

The first two terms in (2.64) are given by (2.1), whereas the third term is obtained
by a slight generalization of the previous discussion. Indeed, we can write this
term as the two-twist correlation function

Tr(ρA,αρA,β) ∼ ⟨σ(u, ū)σ(v, v̄)⟩(αβ)
SL

(2.65)

on the infinite strip with BC α (resp. β) on both sides, for the first (resp. second)
copy of the mother CFT in theZ2 orbifold. Through the same line of argument as
in Section 2.2.2, we obtain

⟨σ(u, ū)σ(v, v̄)⟩(αβ)
SL
= (gαgβ)−12−

c
3

[
sL(v + u)2sL(v − u)2sL(2u)sL(2v)

]− c
24 Zα|β(τ) . (2.66)

As a result, we get

D2(ρA,α, ρA,β) = 2−
c
6

[
sL(v + u)2sL(v − u)2sL(2u)sL(2v)

]− c
48 Kαβ(τ) , (2.67)

where

Kαβ(τ) =

Zα|α(τ)
2g2

α

+
Zβ|β(τ)

2g2
β

−
Zα|β(τ)
gαgβ

1/2

. (2.68)

Plugging in the expression of the annulus partition function in terms of Ishibashi
states (A.26)

Zα|β(τ) = ⟨α|eiπτ(L0+L̄0−c/12)
|β⟩ =

∑
j

(Ψα
j )∗Ψβ

jχ j(τ) (2.69)

yields

Kαβ(τ) =

1
2

∑
j

∣∣∣∣Aα
j − Aβ

j

∣∣∣∣2 χ j(τ)


1/2

. (2.70)

Interestingly the term j = 0 cancels out, as follows from Aα
0 = Aβ

0 = 1. This means
that the vacuum sector does not contribute to the Schatten distance. Furthermore,

3While the most interesting distance is D1, it can be extremely difficult to evaluate directly. One
can instead exploit a replica trick developed in [134, 135]: one first computes the distance Dn for
all even n, followed by an analytic continuation to n = 1.
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this last expression is rather suggestive: it is the distance associated with the
following L2 norm (weighted by the positive coefficients χ j(τ)/2) on the A j space

∥A∥=

1
2

∑
j

∣∣∣A j

∣∣∣2 χ j(τ)


1/2

. (2.71)

We shall now consider some limiting cases of the Schatten distance (2.67).

Small interval in the bulk

The limit of a very small interval in the bulk is recovered for u → v, which
corresponds to q = e2iπτ

→ 0. In this regime we have

χ j(τ) ∼ qh j−c/24 (2.72)

As mentioned above the term j = 0 does not contribute, so the L2 norm (2.71) is
dominated by the term j0 corresponding to the most relevant state such that

Aα
j0 , Aβ

j0
. (2.73)

Then
Kαβ(τ) ∼

1
√

2

∣∣∣∣Aα
j0 − Aβ

j0

∣∣∣∣ qh j0/2−c/48 . (2.74)

and in the limit of a small interval in the bulk (ℓ → 0) the Schatten distance
behaves, up to a constant prefactor, as

D2(ρA,α, ρA,β) ∼
ℓ→0

ℓ2h j0−c/8

∣∣∣∣Aα
j0
− Aβ

j0

∣∣∣∣
sL(2v)2h j0

. (2.75)

Interval touching the boundary

In the limit u → 0 (v fixed), the parameter q goes to 1 so it is more convenient to
work with q̃ = e−2iπ/τ. Thus we use expression (2.68) together with

Zα|β(τ) =
∑

k

nk
αβ χk(−1/τ) , χk(−1/τ) = TrVk

(
q̃L0−c/24

)
∼

q̃→0
q̃hk−c/24 , (2.76)

For the vacuum sector to propagate, the left and right conformal boundary con-
ditions must be the same [114] :

n0
αβ = δαβ (2.77)

This implies that the identity character χ0 does not appear in the expansion of
Zα|β(τ) for α , β. Thus, the leading order behaviour of the annulus partition
function is:

Zα|β(τ) ∼ q̃−c/24+hk0 (2.78)

where k0 corresponds to the most relevant state that can propagate with boundary
conditions α on one side and β on the other. Equivalently, hk0 is the lowest allowed
conformal dimension in the spectrum of boundary changing operators between
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α and β. This implies that for an interval strictly touching the boundary the states
ρA,α and ρA,β simply become orthogonal

D2(ρA,α, ρA,β) →
u→0

√
∥ρA,α∥

2+∥ρA,β∥
2 . (2.79)

Furthermore the vanishing of the scalar product between ρA,α and ρA,β as u → 0
is controlled by hk0 :

Tr(ρA,αρA,β)
∥ρA,α∥∥ρA,β∥

=
Zα|β(τ)√

Zα|α(τ)Zβ|β(τ)
∼

u→0
u2hk0

(
sL(2v)
8s2

L(v)

)2hk0

. (2.80)

2.3 Comparison with numerics and finite-size scaling

2.3.1 Rényi entropy in a quantum Ising chain

To compare the theoretical prediction obtained in Section 2.2 with numerical
determinations of the Rényi entropy in a critical lattice model, we have focused
on the model that was the most numerically accessible, i.e. the Ising spin chain
with free boundary conditions, with Hamiltonian:

Hfree = −

N−1∑
j=1

sx
j s

x
j+1 − h

N∑
j=1

sz
j , (2.81)

where the sa
j have their usual definition – they act as Pauli matrices σa at site j

and trivially on the other sites of the system. The chain is taken to have length
L = Nϵ, where ϵ is the lattice spacing, and N is the number of spins. The scaling
limit of this system corresponds to taking N → ∞ and ϵ → 0 while keeping the
chain length L fixed. Finally, to achieve criticality, the external field h should be
set to h = 1. We stress that both the bulk and the boundary of the chain are critical
at this point in the parameter space of the model.

A convenient feature of this model is that it can be mapped to a fermionic
chain through a Jordan-Wigner (JW) transformation

a†k =
k−1∏
j=0

sz
js
+
k , s±k ≡

1
2

(sx
k ± i sy

k ) . (2.82)

Once the Hamiltonian of the fermionic chain has been obtained, one proceeds to
find a basis of fermionic operators ηi, η†i that diagonalizes it – and still satisfies the
standard anti-commutation relations {ηi, η†j } = δi j, etc. For free or periodic bound-
ary conditions, the procedure is standard, and we refer the reader to the excellent
review [136]. Having found the diagonal fermionic basis ηi, η†i one proceeds to
build the correlation matrix M ≡

〈
η · η†

〉
with η ≡ (η1, ··· , ηN, η†1, ··· , η

†

N)T. The eigen-
values of M are simply related to the values of the entanglement spectrum, and
thus one can calculate Rényi entropies for large sizes with an advantageous com-
putational cost that scales asO(N) with the number N of spins in the system. This
method, known in the literature as Peschel’s trick [65, 137], has been employed in
several works [125, 126] for both free and periodic boundary conditions, and we
refer to them for detailed explanations of the implementation.
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Due to the JW “strings” of sz operators in (2.82), the relation between the
fermionic and spin reduced density matrices of a given subsystem may be non-
trivial [125, 138]. For free and periodic BC though, the ground-state wavefunction
has a well-defined parity of the fermion number, and, as a consequence, the
fermionic and spin reduced density matrices of a single interval can be shown
to coincide. The Peschel trick fails, however, for the case of fixed BC, where the
above feature of the wavefunction no longer holds, as pointed out in [125]. There
has been progress, however, in adapting the trick to fixed BC, for the case of
an interval touching the boundary [125, 126, 139]. Extending the technique to
efficiently find the entanglement spectrum for an interval A that does not touch
the boundary is still an open problem.

To give concrete expressions to compare with the numerical data, we will
quickly review some basic aspects of the CFT description of the critical Ising
chain. It is well known that in the critical regime, the scaling limit of the infinite
and periodic Ising chains is the Ising CFT, namely the CFT with central charge
c = 1/2 and an operator spectrum consisting of three primary operators – the
identity I, energy ε and spin operators σ – and their descendants [23]. The case
of open boundaries is also well understood from the CFT perspective. There are
three conformal boundary conditions for the Ising BCFT, which, in the framework
of radial quantization on the annulus, allow the construction of the following
physical boundary states [23, 30]:

| f ⟩ = |1⟩⟩ − |ε⟩⟩ (free BC) , (2.83)

|±⟩ =
1
√

2
|1⟩⟩ +

1
√

2
|ε⟩⟩ ±

1
21/4 |σ⟩⟩ (fixed BC) , (2.84)

where |i⟩⟩ denotes the Ishibashi state [30, 140] corresponding to the primary op-
erator i. The physical boundary states |α⟩ are in one-to-one correspondence with
the primary fields of the bulk CFT4: | f ⟩ ↔ σ and |±⟩ ↔ I/ε. The annulus partition
function for the Ising BCFT is compactly written in terms of Jacobi theta functions
for all diagonal choices of BCs (α|α) and, in consequence, in terms of the parameter
x defined in Section 2.2

Z f | f (τ) =

√
θ3(τ)
η(τ)

= 21/6
(
x
√

1 − x2
)− 1

12
. (2.85)

and

Z+|+(τ) = Z−|−(τ) =

√
θ3(τ) +

√
θ4(τ)

2
√
η(τ)

= 21/6 1 + x
1
4

2

(
x
√

1 − x2
)− 1

12
. (2.86)

These relations allow us to express the orbifold two-point correlator on the disk
in an elementary way:

⟨σ(0, 0)σ(x, x̄)⟩( f , f )
D
=

[
|x|2(1 − |x|2)

]− 1
8
, (2.87)

⟨σ(0, 0)σ(x, x̄)⟩(+,+)
D
=

1 + |x|
1
4

2

[
|x|2(1 − |x|2)

]− 1
8
, (2.88)

which is, of course, very convenient for numerical checks. Note that the Z2

orbifold of the Ising model is equivalent to a special case of the critical Ashkin-
Teller model [142]. Therefore, the CFT we are considering here is nothing but the

4This statement is strictly true if the bulk CFT is diagonal, see [141] for a detailed discussion.
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Chapter 2 – Second Rényi entropy and annulus partition function for
one-dimensional quantum critical systems with boundaries

Z2 orbifold of a free boson. This might explain why the above two-point functions
end up being so simple.

Recall that the lattice operator σ̂m,t labelled by discrete indices is described in
the scaling limit by σ̂m,t ∼ c2 ϵ2hσ σ(w, w̄), where w = ϵm + iϵt, and c2 is a non-
universal amplitude. Hence, to obtain collapsed data for various chain lengths, it
will be convenient to introduce

G
α
2 ([mu,mv]) ≡ Ŝα2 ([mu,mv])−

1
8

log
(2N
π

)
= − log⟨̂σmu,0̂σmv,0⟩

(α)
SL
−

1
8

log
(2N
π

)
, (2.89)

so that, in the scaling limit, one expects from (2.27)

G
α
2 ([mu,mv]) ∼ − log⟨σ(u, ū)σ(v, v̄⟩(α)

SL
−

1
8

log
(2L
π

)
(2.90)

∼ − log⟨σ(0, 0)σ(x, x̄⟩(α)
D
+

1
8

log
[
sin

π(u + v)
2L

]
, (2.91)

where u = ϵmu and v = ϵmv. We remind that the length of the interval is given
by ℓ = v − u = ϵm with m = mv − mu, and emphasize that the entanglement is
considered as the ground state of the free BC Ising chain.
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Figure 2.5: Plot of shifted Rényi entropyG f
2([N/2,N/2+m]) for the Ising chain with

free BC, against the scaled interval size m/N. The deviations from the theoretical
predictions are stronger as the interval grows closer to the boundary.

To graphically emphasize the agreement between the fermionic chain data
and the theoretical prediction, we have looked at two ways of “growing” the
interval length ℓ. In Figure 2.5, we have considered an interval that starts in
the middle of the chain and grows towards one end. This corresponds on the
lattice to applying the first twist operator to the middle of the chain, and the
second one progressively closer to the right boundary. Since twist operators are
placed between lattice sites, one should consider even system sizes. The curves
of Figure 2.6, follow the dependence of the S2 entropy as the interval length ℓ is
grown equidistantly from the middle of the chain towards the boundaries. We see,
in both cases, that the agreement with the CFT prediction is very good, although,
as we will detail below, one needs to consider unusually large system sizes to
reach it.
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Figure 2.6: Plot of shifted Rényi entropy G f
2([N − m)/2, (N + m)/2]) for the Ising

chain with free BC, against the scaled interval size m/N. The deviations from the
theoretical predictions are stronger as the interval is grown towards the bound-
aries.
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Figure 2.7: Plot of shifted Rényi entropyG f
2([(N−m)/2, (N+m)/2]) for a wide range

of system sizes. The sizes typically accessible to exact diagonalization (N ∼ 10) or
DMRG methods (N ∼ 103) suffer from large finite-size effects.

2.3.2 Finite-size effects

There is a plethora of sources of finite-size corrections to the orbifold CFT result
calculated in Section 2.2. One should be aware of corrections from irrelevant
bulk and boundary deformations of the Hamiltonian [143], as well as unusual
corrections to scaling as analysed in [144, 145]. Finally, one should generically
worry about parity effects [146] but, in agreement with [147], we have found no
such corrections in the numerical results.

The strongest corrections, however, come from the subleading scaling of the
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lattice twist operators [118]. We remind that the lattice twist operator σ̂ can be
expressed, in the continuum limit ϵ→ 0 as a local combination of scaling operators
[67]:

σ̂m,t = c2 ϵ
2hσσ(w, w̄) + cε2 ϵ

2hσεσε(w, w̄) + . . . (2.92)

where the integers (m, t) give the lattice position of the operator as w = ϵ(m + it),
and the dots in (2.92) denote the contribution from descendant operators. The
amplitudes c2 and cε2 of the scaling fields are non-universal, and thus cannot
be inferred from CFT methods. However, since the expansion (2.92) does not
depend on the global properties of the system, it is independent of the choice of
BC. Using the exact results for the correlation matrix M of the fermionic system
associated with an infinite Ising chain [148], and the well-known result for the
Rényi entropies of an interval of length ℓ in an infinite system [46, 47], one can
find a fit for the values of c2 and cε2.

Moving on, the excited twist operator σε can be defined through point-splitting
as [118],[149]:

σε(w, w̄) := lim
η→w

[
(2|η − w|)2hε σ(w, w̄)(ε(η, η̄) ⊗ I)

]
. (2.93)

This operator has conformal dimensions hσε = h̄σε = hσ+hε/2. The expansion (2.92)
implies that in our case, the correlator of twist operators on the Ising spin chain
with free boundary conditions can be expressed in terms of CFT correlators as:

⟨̂σmu,0 σ̂mv,0⟩
( f , f )
N = (c2)2 ϵ4hσ ⟨σ(u, ū)σ(v, v̄)⟩( f , f )

SL

+ (c2cε2) ϵ4hσ+hε
[
⟨σε(u, ū)σ(v, v̄)⟩( f , f )

SL
+ ⟨σ(u, ū)σε(v, v̄)⟩( f , f )

SL

]
+ . . . (2.94)

Using the map (2.19), and recalling that L = Na, we get

⟨̂σmu,0 σ̂mv,0⟩
( f , f )
N = (c2)2

(
π

2N

)c/4 ⟨σ(0, 0)σ(x, x̄)⟩( f , f )
D[

sin π(u+v)
2L

]c/4 + (c2cε2)
(
π

2N

)c/4+hε
GL(u, v) + . . .

(2.95)

where u = muϵ and v = mvϵ are the physical positions of the twist operators, and
x is given by (2.20). The first term in the right-hand side of (2.95) corresponds to
the two-point function (2.45), whereas the function GL(u, v) in the second term is
defined as

GL(u, v) =
y−hε ⟨σε(0, 0)σ(x, x̄)⟩( f , f )

D
+ yhε ⟨σ(0, 0)σε(x, x̄)⟩( f , f )

D[
sin π(u+v)

2L

]c/4+hε
, (2.96)

with y = sin πu
L / sin π(u+v)

2L . The exact determination of the function GL(u, v) is be-
yond the scope of the present work – for instance, through a conformal mapping,
it would imply the calculation of the one-point function of the energy operator
on the annulus. Since, in the Ising CFT, we have hε = 1/2, this second term gives
a correction of order 1/

√
N to the Rényi entropy predicted by (2.1), which is in

agreement with the results of [96, 127, 144]. This is a very significant correction,
and it shows why the system sizes accessible through exact diagonalization (lim-
ited to N < 30) are not sufficient to separate the leading contribution from its
subleading corrections.
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To show the dramatic effect of this term, Figure 2.7 contains a comparison
of the collapse for diverse system sizes. As noticed in other works [94], where
DMRG methods were used, system sizes of N ∼ 100 are not enough to satisfyingly
collapse the data.

Furthermore, the module organization of the fields in the orbifold CFT implies
that the scaling exponents of finite-size corrections are half-integer spaced: there
will be contributions both at relative order O(N−1), and O(N−3/2), and so on. This
increases the difficulty of a finite-size analysis since there are more terms with
significant contributions for the system sizes that are numerically accessible. To
illustrate this, we give in Figure 2.8 a plot of the subleading contributions to the
lattice twist correlator

Fsubleading( j, k) = ⟨̂σmu,0 σ̂mv,0⟩
( f , f )
N − (c2)2

(
π

2N

)c/4 ⟨σ(0, 0)σ(x, x̄)⟩( f , f )
D[

sin π(u+v)
2L

]c/4 . (2.97)

The plot shows that even at N ∼ 103 the collapse is not perfect.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
m/N

1.00

1.05

1.10

1.15

1.20

1.25

1.30

(2N
)c/

4+
h

F s
ub

le
ad

in
g(

N 2
,N 2

+
m

)

1000 sites
1500 sites
2000 sites
2500 sites

0.46 0.48
1.03

1.05

1.07

Figure 2.8: The rescaled subleading contribution (2N/π)c/4+hεFsubleading to the lattice
two-point function of twist fields, for an interval starting in the middle of the chain
and growing towards one boundary. The plot shows that even at large system
sizes, the finite-size corrections are significant.
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2.4 Conclusion

In this chapter, we have reported exact results for the Rényi entropy S2 of a single
interval in the ground state of a 1D critical system with open boundaries, assuming
the same boundary conditions on both sides. This amounts to computing the two-
point function of twist operators in the unit disk with diagonal BCs (α) in the Z2

orbifold framework.
By constructing a biholomorphic mapping from the annulus to the two-sheeted

disk, we have managed to express the orbifold two-point correlator of twist fields
in terms of the annulus partition function of the mother CFT. We have also detailed
in the Appendix an alternative derivation of the result for minimal CFTs in the
A-series.

We have numerically checked the CFT result and found good agreement with
Ising spin chain data, for free BC. It was, however, necessary to achieve large
system sizes for this purpose, as the finite-size corrections decayed slowly (∼ N−hε

relatively to the dominant term) with the number of sites, as opposed to the case
of an interval in a periodic chain, where this decay is of order N−2hε (see [118]
for instance). Checking the result for other models and BCs could be achieved
through more sophisticated numerical techniques, like (adaptations of) the DMRG
approach (see [94, 150]).

To generalize the method of this section to Rényi entropies Sαn with n ≥ 2,
one would need, essentially, good analytic control of the partition function of the
mother BCFT on surfaces with n boundary components, which are not known for
generic BCFTs. In Chapter 3, we manage to perform such a calculation, for the
BCFT of a compact boson of radius R, with either Neumann or Dirichlet BC.

A natural extension would be to consider the second Rényi entropy for a sys-
tem with different conformal BCs on each side of the strip. However, this situation
adds the extra complication of insertions of boundary condition changing opera-
tors into the correlator of twist operators [130], thus requiring a calculation of the
four-point function of boundary operators on the two-sheeted disk. The simpler
setup of an interval containing one of the boundaries can, however, be addressed,
as we shall show in Chapter 4.
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Chapter 3

Entanglement entropies of an
interval for the massless scalar field
in the presence of a boundary

3.1 Summary

In this chapter, based on [151], we present new results for the calculation of the
REE Sn(A) for the compact and non-compact massless scalar BCFT either on the
half line or on the segment, when the same boundary condition is imposed at both
endpoints in the latter case. Both Dirichlet BC and Neumann BC are investigated.

These results give the leading contribution to the REE of an interval in the
ground state of a one-dimensional quantum critical system with open boundaries,
whose scaling limit is realized by one of the aforementioned BCFTs. In conse-
quence, for the compact case, our analysis applies to a gapless one-dimensional
quantum system belonging to the Luttinger liquid universality class, whose low
energy behaviour is captured by the massless compact real boson, which is a
CFT with c = 1. A prototypical example is the spin-1

2 XXZ spin chain (see Ap-
pendix B.1).

Our results are valid when such a system is defined on a segment of finite
length L or the half line - the latter case can be easily obtained from the former by
taking the limit L→∞.
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Figure 3.1: Spatial bipartitions considered in this chapter: the interval A (red
segment) is either on the half line (left panel) or on the segment of finite length L
(right panel), and the boundary condition is labelled by α. In the right panel, the
same boundary condition is imposed at both endpoints of the segment.

We consider the spatial bipartition of the system given by an interval A = (u, v)
and its complement when A is not adjacent to the boundary, namely 0 < u < v < L,
as shown in Figure 3.1. The moments of the reduced density matrix ρA read

Mα
n(A) ≡ Trρn

A = ⟨σ̂mu,0 σ̂
†

mv,0⟩ (3.1)

where σ̂ and σ̂† are the lattice twist operators discussed in Section 1.2 and mu, mv

are lattice coordinates such that u = muϵ, v = mvϵ. We remind that in the scaling
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limit, the lattice operator σ can be expanded into a linear combination of scaling
fields in the corresponding conformal field theory model, and the most relevant
among these primaries is the bare twist operator σ, with scaling dimension [46]

∆n =
c

12

(
n −

1
n

)
(3.2)

Hence [72, 73, 152]
σ̂ = cn ϵ

∆n σ + . . . (3.3)

where dots correspond to less relevant fields whose contribution to Trρn
A matters

when finite size corrections are taken into account. The prefactor cn is a non-
universal constant coming from the normalization of the microscopic operator
σ̂ and ϵ is a UV cut-off, like e.g. the lattice spacing. Thus, the moments of the
reduced density matrix Mα

n(A) in (3.1) can be written as

Mα
n(A) = c2

n ϵ
2∆n ⟨σ(u) σ†(v)⟩

SL
(3.4)

where SL = {w ∈ C, 0 < Re(w) < L} is the infinite strip (with imaginary time
running along the imaginary axis) of width L with boundary condition α on both
sides of the strip. The moments Trρn

A for the interval on the half line with either
Dirichlet and Neumann BC are obtained by taking the L→∞ in (3.4).

The CFT quantities that we are considering are related to the two-point func-
tions of twist fields ⟨σ(u) σ†(v)⟩

SL
on the strip SL ≡ {w ∈ C, 0 < Re(w) < L}. Since

the strip is conformally equivalent to the unit disk D ≡
{
z ∈ C , |z| ⩽ 1

}
via the

map:

w 7→ z =
s(w − u)
s(w + u)

s(w) ≡
2L
π

sin
(
πw
2L

)
(3.5)

we have

⟨σ(u) σ†(v)⟩
SL
=
⟨σ(0) σ†(x)⟩

D

s(u + v)2∆n
x =

s(v − u)
s(u + v)

, (3.6)

where the same boundary condition is imposed on both the boundaries of SL holds
on the boundary ofD. In the case of the BCFT on the half line, it is convenient to
consider the right half plane geometry RHP ≡

{
z ∈ C ,Re(z) ⩾ 0

}
, which can be

studied by taking L→∞ in (3.6), finding

⟨σ(u) σ†(v)⟩RHP =
⟨σ(0) σ†(x)⟩

D

(u + v)2∆n
x =

v − u
v + u

(3.7)

Thus, the computation of Rényi entropies we are interested in boils down to
evaluating the two-point function of twist fields ⟨σ(0) σ†(x)⟩

D
on the unit disk,

when 0 < x < 1, which can be written as:

⟨σ(0) σ†(x)⟩(α)
D
= [r(1 − r)]−∆n

F
(α)

n (r) r = x2 (3.8)

where F (α)
n (r) is a universal function, conventionally chosen so that F (α)

n (r)→ 1 as
r→ 0.

In consequence, the moments of the RDM take the following form

Mα
n(A) ≡ nTrρn

A = c2
n
F

(α)
n (r)

P(u, v)∆n
(3.9)
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where

P(u, v) ≡
s(2u) s(2v) s(v − u)2

ϵ2 s(v + u)2 r ≡
(

s(v − u)
s(v + u)

)2

(3.10)

and F (α)
n depends on the specific BCFT model, which is characterized also by the

boundary conditions labelled by α, and is related to partition functions on the
Riemann sphere with n boundary components. In particular, F (α)

2 is essentially
the annulus partition function, which is consistent with [120] and the results of
Chapter 3.

The moments (3.9) straightforwardly provide the REE of an interval A for a
BCFT on the strip

Sαn(A) =
∆n

n − 1
log

[
P(u, v)

]
+

log
[
c2

nF
(α)

n (r)
]

1 − n
(3.11)

which lead to the corresponding single copy entanglement (1.18) given by

Sα
∞

(A) =
c

12
log

[
P(u, v)

]
+ lim

n→∞

log
[
c2

nF
(α)

n (r)
]

1 − n
(3.12)

The expressions (3.4) and (3.9) for the moments of the reduced density matrix
naturally lead to the introduction of two kinds of ratios that are UV finite. A first
type of ratio can be defined for an assigned boundary condition α as follows

R(α)
n (A) ≡

Mα(A)
Mα(Au) Mα(Av)

(3.13)

where Au ≡ [0,u] and Av ≡ [0, v] (see Figure 3.1). In the BCFT we are considering,
by using the expressions in (3.9)-(3.10), this ratio becomes

R(α)
n (A) = g2(n−1)

α
F

(α)
n (r)
r∆n

(3.14)

From (3.13) and (1.14), the following UV finite combination of entanglement
entropies is obtained

In(A) ≡ Sn(Au) + Sn(Av) − Sn(A) (3.15)

For a BCFT on a segment, by using (3.11), one finds that this UV finite combination
becomes

In(A) = −
c

12

(
1 +

1
n

)
log(r) +

log
[
F

(α)
n (r)

]
n − 1

+ 2 log gα (3.16)

which is a function of the harmonic ratio r in (3.10).
Another type of UV finite ratio can be introduced only through the interval A,

without using the entanglement entropies of intervals adjacent to the boundary.
Instead, two different conformally invariant boundary conditions α1 and α2 must
be considered. From (3.4) and (3.9), these ratios are defined as

M(α1)
n (A)

M(α2)
n (A)

=
F

(α1)
n (r)

F
(α2)

n (r)
(3.17)

which leads to the following difference of Rényi entropies

Sα1
n (A) − Sα2

n (A) =
1

1 − n
log

(
F

(α1)
n (r)

F
(α2)

n (r)

)
(3.18)
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where we have denoted by Sαn(A) the Rényi entropies (1.14), to highlight its depen-
dence on the boundary condition α. We remark that the above expressions hold
for a BCFT on a segment and that the corresponding expressions for the BCFT on
the half-line are obtained by taking L→∞.

We remind that the disk two-point function (3.63) can be equivalently evalu-
ated as the following ratio of partition functions [46]

⟨σ(0) σ†(x)⟩
D
= Zn(x)/Zn

1 (3.19)

where Zn(x) stands for the BCFT partition function on the n-sheeted covering
of the unit disk Dn with branch points at 0 and x, while Z1 is simply the BCFT
partition function on the unit disk.

Strategy for BCFT computation

The goal, then, is to evaluate the partition function Zn(x) or, equivalently, the
two-point correlators on the disk in (3.19). This is presented in detail in Section
3.2, but we will summarize here the main ideas involved. The crucial insight is
that this problem is conceptually related, through the ”generalized” mirror trick
in [115], to the calculation of the REE of two disjoint intervals on the infinite line
for the compact boson CFT in [71].

In this case, the moments Trρn
A are obtained as the partition function of the

model on a specific n-sheeted Riemann surface M = Mn which is a Riemann
surface obtained through the replica construction, with genus g = n − 1 (see the
Appendix A of [85]). For a CFT, this special Riemann surface is characterized by
the harmonic ratio of the endpoints of the two intervals, which is a real parameter
in (0, 1). For instance, M4 has genus g = 3 and it is shown in the left panel
of Figure 3.2 for the special case of two equal intervals. Further analyses and
generalisations of Mn have been discussed e.g. in [85, 88, 153].

The method of the images allows one to find the n-sheeted Riemann surface
M = Sn for a BCFT on the half line and in its ground state as follows. Consider
Mn for two intervals of equal length (when n = 4, see the left panel of Figure 3.2),
which exhibits a Z2 symmetry (a reflection) with respect to a plane (see the black
plane in the middle panel of Figure 3.2). The n-sheeted Riemann surface Sn

corresponds to one of the two halves identified by this reflection plane, whose
union gives Mn. Thus, Sn has the topology of a sphere with n boundaries, which
has genus g = 0 and Euler characteristic χ = 2− n (for n = 4, see the right panel of
Figure 3.2). Such a surface, is of course, conformally equivalent to the n-sheeted
diskDn.

Let us now sketch our computational strategy, based on adapting the methods
of [70] ( which were also employed in [71]) to account for the conformal BC.
Following [70], in the path integral onDn for the partition function, we decompose
the field ϕ = ϕcl + ϕqu into the classical field ϕcl and a quantum part ϕqu. The
Euclidean action of the massless compact real boson on a generic Riemann surface
M equipped with metric gµν and whose target space is a circle of radius R reads

S[ϕ] =
1

8π

∫
M

gµν ∂µϕ∂νϕ
√
|g| d2x ϕ ∼ ϕ + 2πR (3.20)

Since the action S[ϕ] is quadratic and ϕcl satisfies the equation of motion, (3.20)
admits the decomposition S[ϕ] = S[ϕcl] + S[ϕqu].
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Figure 3.2: The Riemann surface S4 (right panel) is topologically a sphere with
four boundaries. It is obtained by exploiting the reflection symmetry of M4 for
two equal intervals (left panel) with respect to a plane (the black plane in the
middle panel).

This implies that the partition function on the Riemann surfaceM factorizes
as follows

Z(Dn) = Zcl(Dn; R)Zqu(Dn) (3.21)

where the classical and the quantum terms are defined respectively as

Zcl(Dn; R) ≡
∑

m

e−S[ϕ(m)
cl ]

Zqu(Dn) ≡
∫

[Dϕqu] e−S[ϕqu] (3.22)

where ϕ(m)
cl is the classical solution with winding m and the sum in m is over all

possible windings of the classical solutions. Note that while the classical part
depends on the compactification radius R, due to configurations of ϕcl with non-
trivial winding, the quantum termZqu(M) is independent of the compactification
radius R.

To calculate Zcl(Dn; R), one first finds the classical solutions on the double
D(Dn) in the standard way [70]. Following this, the effect of imposing the Dirichlet
or Neumann BC is to select a subset of these classical solutions which contribute
to the partition function onDn.

For the quantum part, it is simpler to calculate Zqu(Dn) as the square root
of the partition function of a complex boson Φ. Then, one can use the methods
of [70, 71, 154], together with the gluing conditions of the U(1) currents at the
boundary, to calculate the result.

For convenience, we give here a dictionary between the notation of [71] and
the conventions of this chapter. In our calculations, we have set g = 1/2, η = R2

and, in consequence, the Luttinger parameter and the compactification radius are
related as K = R−2. We will relegate to Section 3 a detailed comparison of our
result in (3.23) with the universal function Fn of [71].
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Few explicit analytic expressions for F (α)
n in (3.9) are available in the literature:

for the massless Dirac field, where F (α)
n = 1 identically for any value of n and

independently of the (conformally invariant) boundary conditions [129], and for
the massless compactified scalar for n = 2 and a generic conformally invariant
boundary condition, in terms of the annulus partition function [120]. In this
chapter, we extend the latter result for the massless compactified scalar to a
generic value of the Rényi index n, focussing on Dirichlet BC and Neumann BC .

Let us collect here the results for the universal functions F (α)
n derived in this

chapter. At finite compactification radius R we have:

Main results at finite R

The universal functions F (α)
n for Dirichlet (D) and Neumann (N) boundary

conditions to be:

F
(D)

n (r) =
Θ
(
τ(r)/R2

)
Θ
(
τ(r)

) F
(N)

n (r) =
Θ
(
R2 τ(r)/4

)
Θ
(
τ(r)

) (3.23)

where
Θ(h) ≡

∑
m∈Zn−1

eiπmt
·h·m (3.24)

is the Siegel theta function and τ the period matrix of [71]

τi j(r) ≡ i
2
n

n−1∑
k=1

sin(πk/n)
Fk/n(1 − r)

Fk/n(r)
cos

[
2πk(i − j)/n

]
(3.25)

where 1 ⩽ i, j ⩽ n − 1 and Fk/n(r) =2 F1(k/n, 1 − k/n; 1; r).

From the results (3.23) and equations (3.8) and (3.19) , we observe that the fol-
lowing relation occurs between the partition functions corresponding to Dirichlet
and Neumann BC

Z
(N)
n (R) = Z(D)

n (2/R) (3.26)

This provides a non-trivial consistency check of the dependence on the compact-
ification radius R in (3.23); indeed, for the compact massless boson this T-duality
relation is expected to hold, as discussed in [25] for the annulus (i.e. the n = 2
case) and in [155] for a generic Riemann surfaces with boundaries.

The limit of large compactification radius R→∞ corresponds to the case where
the target space is the infinite line. In this regime, we find that the moments Trρn

A
of the interval A = [u, v] on the strip of length L for Dirichlet and Neumann BC
become respectively

M(D)
n (A) =

c2
n

P(u, v)∆n
F̃

(D)
n (r) M(N)

n (A) =
c2

n

P(u, v)∆n
F̃

(N)
n (r) (3.27)

where cn are non-universal constants as in (3.3) and we have denoted the universal
functions by F̃ (D)

n to distinguish them from the finite R case.
We note that here the cn is assumed to relate twist fields in theZn orbifold of the

non-compact boson BCFT and lattice twist operators in a harmonic chain model
that is properly regularized in the UV and IR. In the case of Dirichlet boundary
conditions, the constant cn has the same UV origin as in Eq. (3.3). The case of
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Neumann boundary conditions is more subtle, as the lattice model requires an IR
regularization due to the presence of a zero mode.

We now report our results in this regime:

Main results in the decompactification limit

• For n ≥ 2 the result is:

F̃
(D)

n (r) ≡
1√∏n−1

k=1 Fk/n(1 − r)
F̃

(N)
n (r) ≡

1√∏n−1
k=1 Fk/n(r)

(3.28)

• By using (3.27), we can also obtain the UV finite combination (3.18) in
this regime, which reads

S(D)
n (A) − S(N)

n (A) =
1

2(n − 1)

n−1∑
k=1

log
(

Fk/n(1 − r)
Fk/n(r)

)
(3.29)

• In the limit n→∞, we have found:

lim
n→∞

1
n − 1

log F̃ (D)
n (r) =

∫ 1

0
log

[
Fκ(1 − r)

]
dκ (3.30)

and

lim
n→∞

1
n − 1

log F̃ (N)
n (r) =

∫ 1

0
log

[
Fκ(r)

]
dκ (3.31)

which allow for the swift numerical evaluation of the single copy
entanglement defined in (3.12).

• Using the results of [71], one finds:

lim
n→1

1
1 − n

log F̃ (D)
n (r) =

i
2

∫ i∞

−i∞

πz log[Fz(1 − r)]
[sin(πz)]2 dz (3.32)

and

lim
n→1

1
1 − n

log F̃ (N)
n (r) =

i
2

∫ i∞

−i∞

πz log[Fz(r)]
[sin(πz)]2 dz (3.33)

so that the EE can be evaluated numerically .

Comparison with numerical results in the decompactification limit

In Sec. 3.3 we check the validity of the analytic expressions in (3.27) and (3.29)
against numerical results for the entanglement entropies of a block of consecutive
sites in the spatial bipartitions shown in Figure 3.1 for harmonic chains defined
either on the semi-infinite line or on the segment, when either Dirichlet BC or
Neumann BC are imposed.

The Hamiltonian of a finite harmonic chain with nearest neighbour spring-like
interactions made by N−1 sites in the interior and two sites at its endpoints reads

Ĥ =
N∑

i=0

(
1

2m
p̂2

i +
mω2

2
q̂2

i

)
+

N−1∑
i=0

κ
2

(q̂i+1 − q̂i)2 (3.34)
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in terms of the position and the momentum operators q̂i and p̂i, that are hermitian
operators satisfying the canonical commutation relations [q̂i, q̂ j] = [p̂i, p̂ j] = 0 and
[q̂i, p̂ j] = iδi, j (we set ℏ = 1). At the endpoints of the harmonic chain we impose
the same boundary condition, which is either Dirichlet BC

q̂0 = q̂N = 0 (3.35)

or Neumann BC
q̂1 − q̂0 = 0 q̂N − q̂N−1 = 0 (3.36)

The entanglement entropies S(n)
A for a spatial interval A = [u, v], with u =

muϵ, v = mvϵ, containing mA = mv−mu consecutive sites can be computed through
the method developed in [44, 65, 66, 156–161]. The first step consists in con-
structing the reduced correlation matrices QA and PA, whose generic elements are
respectively ⟨q̂iq̂ j⟩ and ⟨p̂ip̂ j⟩, with i, j ∈ A. In both cases of interest (finite N and
N → ∞), their analytical expressions are known [157, 162, 163] or can be found
(3.97) for Dirichlet and Neumann BC.

The next step is to diagonalize, for each choice of bipartition A|B, the matrix
QA · PA. Similarly to Peschel’s trick, the eigenvalues of this matrix determine the
entanglement spectrum of the harmonic chain for that particular bipartition from
which the entanglement entropies are readily obtained.

We’ve considered four setups in the harmonic chain. For each boundary
condition (Neumann or Dirichlet) we’ve analyzed both the infinite chain on the
semi-infinite line and the finite chain made by N consecutive sites on the segment.
The continuum limit of the lattice results was compared against the corresponding
noncompact boson BCFT predictions on the right half plane RHP (for N → ∞)
and the strip SL (finite N).

In the case of Dirichlet b.c., our lattice data are taken by setting ω = 0 in
the analytic expressions for ⟨q̂iq̂ j⟩ and ⟨p̂ip̂ j⟩, given in (3.84) and (3.87), since they
remain well-defined in this limit. Instead, when Neumann b.c. are imposed,
the ⟨q̂iq̂ j⟩ correlator in (3.89) diverges in the massless limit ω → 0 because of the
occurrence of a zero mode. This forces us to set a small but non-vanishing mass:
in our analysis we have chosen ωmA ∼ 10−10 for the semi-infinite chains and
ωN ∼ 10−10 for the finite chains, which are much smaller than the other scales.

With these specifications, we have performed numerical comparisons for a
variety of entanglement quantifiers and bipartitions, copiously detailed in Sec-
tion 3.3. Of this, we will only reproduce here our numerical results for the EE
and the EE difference between Dirichlet and Neumann BC, since the EE is an
entanglement measure by all definitions 1. In the case of the massless scalar field
in the decompactification regime that we are exploring, we consider (3.29) and its
analytic continuation n → 1, which can be easily obtained from (3.32) and(3.33).
The results of our analyses for this UV finite quantity are shown in Figure 3.3.

The collection of the lattice data has been performed by setting mv to a constant
value in both setups: we have chosen ∈ {100, 200, 400} for the semi-infinite chains,
while we took= N/2 with N ∈ {100, 200, 400} for the finite chains. Then, we varied
mu ∈ {1, . . . ,mv − 1} and plotted the entanglement entropy in terms of mA/mv and
the entropy difference in terms of the corresponding cross ratio r in each case.
For Neumann BC, we have set ωmv ∼ 10−10 in both the semi-infinite and finite
chains. The agreement between the lattice data points and the corresponding
BCFT predictions is excellent in all these cases. In the insets of Figure 3.3 we have

1See Section 1.1.1
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reported SA;α − const, where the constant value that has been subtracted is given
by 1

6 log(2mv) for the semi-infinite chains (left panel) and 1
3 log(2N/π) for finite

chains (right panel).

r r

Figure 3.3: The difference between the entanglement entropy for Dirichlet BC and
Neumann BC for the bipartitions of Figure 3.1, either in the semi-infinite chains
(left panel) or in the finite chains (right panel). The insets show the entanglement
entropy for the two different boundary conditions.

Let us now summarize the outline of this chapter. We shall first present in
Section 3.2 the calculation of the twist 2-point function on the disk at finite R, and
in the decompactification limit R→∞. In Section 3.3, we check the results in the
decompactified limit against numerics in the harmonic chain, in a variety of se-
tups. For Dirichlet BC, the agreement is excellent for all the quantities considered,
while for Neumann BC, at larger values of the Rényi index n, the numerical results
deviate from the BCFT prediction - we presume this disagreement might be due
to the introduction of a zero mode regulator in the harmonic chain with Neumann
BC. We then conclude this chapter with Section 3.4, in which we discuss possible
extensions of this setup. Finally, in the appendix associated with this chapter, we
have relegated the more technical derivations of this work.

3.2 Entanglement entropies in the unit disk

In this section, we discuss the main BCFT calculation of this chapter. As antic-
ipated in Sec. 3.1, we employ the mirror trick to evaluate the partition function
Z(Sn) for the compact boson on the specific surface Sn occurring in our problem
because of the replica construction. Since the action is quadratic, the partition
function factorizes into a classical part and a quantum part, which are evaluated
separately.
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Figure 3.4: The cycles (red curves) employed in Sec. 3.2.1. Solid curves lie in the
first sheet, while dashed lines stand for curves on the second sheet. The unit disk
D corresponds to the white region. The twist fields are located at the origin and
x.

3.2.1 Partition function

Mirror trick

In Sec. 3.1 we have qualitatively discussed that evaluating the Rényi entropies for
the bipartitions in Figure 3.1 corresponds to computing a partition function on a
surfaceM = Sn with boundary which is topologically equivalent to a sphere with
n equal disks removed (for n = 4, see the right panel of Figure 3.2). In a BCFT, this
partition function can be obtained also as the two-point function ⟨σ(0) σ†(x)⟩

D
of

twist-fields on the unit diskD, placed at the origin and at x, with 0 < x < 1.
The replica construction introduces the branched covering M = Dn, which

is obtained by joining cyclically n copies of D through the cut along the interval
(0, x). A standard approach to investigate partition functions on a Riemann surface
M with boundaries is to introduce the so-called double ofM, that we denote by
D(M) [115]. The double ofM is a compact Riemann surface endowed with an anti-
holomorphic involutive map ζ (called a real structure) such that M = D(M)/ζ
and the boundary ∂M corresponds to the fixed points of ζ. For instance, the
double of the upper half plane is the whole plane with ζ(z) = z̄ and the double of
the right half plane is the entire plane with real structure given by the reflection
w.r.t. the vertical axis. The double of the unit diskD is the Riemann sphere CP1

with real structure ζ(z) = 1/z̄. This construction is allowed when ∂M is analytic
w.r.t. the complex structure induced by the metric and this condition is verified
for Dn. Thus, D(Dn) is simply the n-sheeted covering of the Riemann sphere CP1

with branch points at 0, x, 1/x and ∞ and the anti-holomorphic involution is (a
lift of) ζ(z) = 1/z̄. The case of the interval in the right half plane is considered in
Figure 3.2.

The first step of our analysis consists of constructing a canonical homology
basis for the genus n − 1 surface D(Dn) that is compatible with the involution ζ.
Consider the cycles C1 and B1 shown in Figure 3.4. The contour C1 is any cycle
in the same homology class as the unit circle. In particular, its homology class
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is invariant (even) under ζ. On the other hand, the homology class of B1 is odd
under ζ; indeedB1 can be chosen so that ζ(B1) is the same loop asB1, but with the
opposite orientation. These contours can be replicated on each sheet through the
deck transformation f sending sheet j to j+1, i.e. C j+1 = f (C j) andB j+1 = f (B j), for
1 ⩽ j ⩽ n − 1. Since the deck transformation commutes with the real structure ζ,
the (homology class of the) cycles B j and C j are respectively odd and even under
ζ. Although the contoursC j andB j for 1 ⩽ j ⩽ n−1 generate the whole homology
group, they do not form a canonical basis because B j intersects both C j and C j+1.
More precisely, their intersection numbers are ♯(Ci,B j) = δi, j − δi, j+1. However,
the cycles A j = C1 + · · · + C j are such that ♯(Ai,B j) = δi, j (and ♯(Ai,A j) = 0)
and therefore (A j,B j) is a canonical homology basis. Furthermore, this basis
satisfies ζ(A j) = A j and ζ(B j) = −B j (up to smooth deformations). Thus, under
ζ, each A j is invariant, while each B j just changes its orientation. The period
matrix corresponding to this canonical homology basis is (3.25) and its derivation
is discussed in Appendix B.2.

We are interested in the partition function of the compact real massless boson
ϕ ∼ ϕ+2πR on a compact Riemann surfaceMwith boundaries. The action (3.20)
for this BCFT can be written also as follows

S[ϕ] =
1

8π

∫
M

g(dϕ, dϕ)dµ =
1

8π

∫
M

dϕ ∧ ⋆ dϕ =
i

4π

∫
∂ϕ ∧ ∂̄ϕ (3.37)

where g is the metric tensor on M, whose volume form is dµ =
√
|g| d2x, and

⋆ is the Hodge star operator. In the last equality we introduced the Dolbeault
operators ∂ = 1

2 (d + i ⋆ d) and ∂̄ = 1
2 (d − i ⋆ d). The same boundary conditions

are imposed on all the boundary components of ∂M and in our case, they are
either Dirichlet BC or Neumann BC . The action (3.37) is invariant under Weyl
rescaling g → eφg. Such invariance can be made more manifest by introducing
the decomposition dϕ = ∂ϕ + ∂̄ϕ and using that ⋆ dz = −idz, ⋆ dz̄ = idz̄, which
imply ⋆ dϕ = −i∂ϕ + i∂̄ϕ. This leads to the last expression in (3.37), which is
manifestly independent of the metric (in a given conformal class). The partition
function Z =

∫
[Dϕ] e−S[ϕ] is obtained by performing the path integration over

all field configurations that satisfy the appropriate boundary conditions in ∂M,
which are Neumann BC or Dirichlet BC in our analysis. A non-compact real
boson ϕ takes values in R, while in the compact case that we are considering the
real field ϕ takes values in the circle of radius R, i.e. in R/(2πRZ). Thus, in the
latter case, the field configurations can be classified through their windings (or
instanton sectors). This means that∫

P j

dϕ = 2πn jR n j ∈ Z (3.38)

where the integer n j determines the winding number corresponding to the path
P j, which can be either a non-contractible cycle on the Riemann surface or an
open path connecting two of its boundary components.

Following the standard procedure to deal with these windings discussed in
[70], in the path integral for the partition function we decompose the field ϕ =
ϕcl + ϕqu into the classical field ϕcl and a quantum part ϕqu. The classical solution
ϕcl is a harmonic function ϕcl :M→ R/(2πRZ) satisfying (3.38) (hence it depends
on the winding vector n, having n j as j-th element), while the quantum field ϕqu

does not have windings.
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The quadratic form of the action (3.37) combined with the fact that ϕcl is a
solution of the equation of motion lead to decomposition S[ϕ] = S[ϕcl] + S[ϕcl],
where only the classical term S[ϕcl] depends on the winding vector. This implies
that the partition function on the Riemann surfaceM factorises as follows

Z(M) = Zcl(M; R)Zqu(M) (3.39)

where the classical and the quantum terms are defined respectively as

Zcl(M; R) ≡
∑

n

e−S[ϕcl] Zqu(M) ≡
∫

[Dϕqu] e−S[ϕqu] (3.40)

We remark that the quantum termZqu(M) is independent of the compactification
radius R.

Classical term

We consider first the classical part Zcl(M; R) of the partition function in (3.21)
in the case of same Dirichlet BC ϕ = ϕ0, where ϕ0 is a constant in R/(2πRZ).
Crucially we impose the same constant ϕ0 on on all the components of ∂M (see
Appendix B.1). Exploiting the U(1) invariance of the theory, we assume ϕ0 = 0
without loss of generality. Classical solutions of this Dirichlet problem are thus
harmonic functions ϕcl that vanish on the boundary. Combining the vanishing
(mod 2πR) of ϕcl on ∂M with the fact that any harmonic function is (locally) the
real part of an analytic function, ϕcl can be extended to the double D(M) through
the Schwarz reflection principle via the condition ϕcl(ζ(p)) = −ϕcl(p). This means
that classical solutions ϕcl onM satisfying vanishing Dirichlet BC are in one-to-
one correspondence with classical solutions on the double D(M) that are odd
under ζ. Hence, dϕcl is a harmonic form on D(M) satisfying ζ∗dϕcl = −dϕcl, where
ζ∗ denote the pullback by ζ.
On the other hand, the even harmonic forms on D(M) are such that ζ∗dϕcl = dϕcl

and their restriction to M provides the classical solutions satisfying Neumann
BC for all the components of ∂M. In this case ϕcl can be extended to D(M)
via ϕcl(ζ(p)) = ϕcl(p). Alternatively, we can consider the dual field θcl, which is
defined by dθcl = ⋆ dϕcl. When ϕcl satisfies Neumann BC, the dual field θcl obeys
Dirichlet BC; hence ζ∗dθcl = −dθcl. Since ζcl is an orientation reversing isometry, it
anticommutes with the Hodge star operator and therefore ζ∗dϕcl = dϕcl.

In the computation of the moments Trρn
A for the bipartitions shown in Fig-

ure 3.1, the Riemann surfaceM = Dn is topologically equivalent to a sphere with
n disks removed (for n = 4, see the right panel of Figure 3.2). Its double D(Dn)
is the compact Riemann sphere of genus g = n − 1 described in Sec. 3.2.1. When
n = 4, the double D(Dn) is topologically equivalent to the Riemann surface shown
in the left panel of Figure 3.2. Consider the canonical homology basis (A j,B j)
discussed in Sec. 3.2.1. It is a standard result of Hodge theory [164] that there
exists a unique dual basis (α j, β j) of real harmonic one-forms such that∮

Ai

α j = δi j

∮
Bi

α j = 0 and
∮
Ai

β j = 0
∮
Bi

β j = δi j . (3.41)

Because the homology class of Ai and Bi are respectively even and odd under
sigma, the relations (3.41) are also satisfied by ζ∗α j and −ζ∗β j. Hence, it follows
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from uniqueness that ζ∗α j = α j and ζ∗β j = −β j, meaning that, under ζ, the one-
forms α j are even, while β j are odd. For Dirichlet BC such that ϕ takes the same
value (modulo 2πR) on each boundary component of ∂Dn, we have that∫

B+j

dϕcl = 2πR m j m j ∈ Z (3.42)

where j ∈
{
1, . . . ,n−1

}
; beingB+j defined as the part ofB j that lies inside Dn, hence

B
+
j is a path connecting the j-th component to the ( j + 1)-th component of of ∂Dn

(see Figure 3.4). On D(Dn), we thus have that:∮
B j

dϕcl = 4πR m j m j ∈ Z (3.43)

Moreover, since ϕ is constant on each boundary component, we have
∮
A j

dϕcl = 0
for all the allowed values of j. The analytic continuation of dϕcl to D(Dn) only
involves the odd harmonic forms β j as follows

dϕcl = 4πR
∑

j

m jβ j (3.44)

The Riemann bilinear relation [164] provides the value of the action (3.37) for
this classical solution. It reads

S[ϕcl] =
1

8π

∫
Dn

dϕcl ∧ ⋆ dϕcl =
1

16π

∫
D(Dn)

dϕcl ∧ ⋆ dϕcl = πR2 mt
· τ−1

2 ·m (3.45)

where τ2 ≡ Im(τ) is the imaginary part of the (n − 1) × (n − 1) period matrix τ of
D(Dn) in the canonical homology basis (A j,B j). In our case, the period matrix is
purely imaginary. Indeed, given a basis of the holomorphic one-forms ωk such
that

∮
A j
ωk = δ j,k, we have ζ∗ωk = ωk and therefore

τi, j =

∫
Bi

ω̄ j =

∫
ζ(Bi)

ω j = − τi, j (3.46)

From (3.45) and the first expression in (3.40), for vanishing Dirichlet BC one
obtains

Z
(D)
n, cl = Θ

(
−R2 τ−1

)
(3.47)

in terms of the Siegel theta function (3.24) and of the period matrix defined by
(3.25), whose derivation is discussed in the Appendix B.2.

The case where Neumann BC are imposed on all the n boundary components
of Dn can be addressed by adapting the steps described above for Dirichlet bound-
ary conditions. For Neumann BC, the classical solutions can be extended to D(Dn)
through the requirement ϕcl ◦ ζ = ϕcl, as already mentioned. Given the canon-
ical homology base introduced above (see Sec. 3.2.1 and (3.41)), these classical
solutions correspond to harmonic forms dϕcl satisfying∫

A j

dϕcl = 2πn jR
∫
B j

dϕcl = 0 n j ∈ Z (3.48)
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where j ∈
{
1, . . . ,n − 1

}
and the absence of winding over B j follows from the fact

that dϕcl is even under ζ. Thus we have

dϕcl = 2πR
∑

j

n jα j (3.49)

Again, the Riemann bilinear relation allows us to compute the action (3.37) for
these classical solutions and the result is

S[ϕcl] =
πR2

4
nt
· τ · τ−1

2 · τ · n = − i
πR2

4
nt
· τ · n (3.50)

where the last step has been obtained by using that τ is pure imaginary, i.e. τ = i τ2.
Finally, we obtain

Z
(N)
n, cl = Θ

(
R2 τ/4

)
(3.51)

in terms of the Siegel theta function (3.24).

Quantum term

The quantum part of the partition function in (3.21) and (3.40) for M = Dn

is independent of the compactification radius R. Rather than determining the
quantum determinant of the Green function of the Laplacian on Dn, we find it
more convenient to adapt the analysis discussed in [71], which is heavily based
on the method introduced in [70]. In Sec. 3.2.1 the field ϕ has been decomposed
into the sum ϕ = ϕcl + ϕqu. In the following analysis of the quantum term ϕqu is
denoted just by ϕ to enlighten the expressions. SinceM = Dn is made by n copies
of the unit disk joined cyclically along the cut (0, x), the path integral in (3.40) can
be rewritten by introducing a field ϕ j on the j-th copy, for 1 ⩽ j ⩽ n. The total
action reads S[ϕ] =

∑
j S[ϕ j] and the fields on the consecutive copies are coupled

through their boundary condition along the cut.
Following [165], it is useful to perform a discrete Fourier transform for the n

bosonic fields in the different replicas and introduce

ϕ̃k =
1
√

n

n∑
j=1

e−2πi k j/n ϕ j 1 ⩽ k ⩽ n (3.52)

which is a complex combination of fields; hence it is more convenient to replace
the real bosons ϕ j with the complex bosons Φ j throughout the computation. The
result for the real field is obtained by taking the square root of the final expression.
The fields introduced through the transformation (3.52) are decoupled. However,
the coupling of the original fields ϕ j through the cut imposes the following twist
condition around the origin

ϕ̃k(e2iπz, e−2iπz̄) = e2πi k/n ϕ̃k(z, z̄) (3.53)

and a similar one around the branch point at x, with the phase factor e2πi k/n in the
r.h.s. replaced by its complex conjugate.

The partition function of a complex scalar on the Riemann sphere satisfying
the above twisted boundary conditions around four branch points for an assigned
value of k/n has been studied in [70]. In the case of the unit disk D and of two
branch points we are dealing with, this analysis tells us that the corresponding
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partition function can be written as the two-point function of particular twist
fields σk/n and σ†k/n placed at the endpoints of the branch cut. This leads us to
write the quantum part of the partition function as the following product (up to
normalization)

Z
2
n, qu =

n−1∏
k=1

⟨σk/n(0) σ†k/n(x)⟩
D

(3.54)

where the mode corresponding to k = n does not contribute because the corre-
sponding twist field is the identity operator.

A method to determine ⟨σk/n(0) σ†k/n(x)⟩
D

was developed in [70] and it is based
on the expectation value of the stress-energy tensor T(z) in the presence of the
twist fields. In Appendix B.3 the analysis of [70] has been adapted to the specific
cases under investigation and the main results are presented below. We find that

∂x log⟨σk/n(0) σ†k/n(x)⟩
D
= Resz→x

⟨T(z) σk/n(0) σ†k/n(x)⟩
D

⟨σk/n(0) σ†k/n(x)⟩
D

(3.55)

= − 2hk/n

(1
x
+

1
x − 1/x̄

)
− ∂x log

[
E(α)

k/n(x)
]

(3.56)

where

hk/n ≡
1
2

k
n

(
1 −

k
n

)
E(α)

k/n(x) ≡

 Fk/n

(
1 − |x|2

)
Dirichlet BC

Fk/n

(
|x|2

)
Neumann BC

(3.57)

(we remind that Fk/n(y) ≡ 2F1(k/n, 1 − k/n; 1; y)). As for the quantum part of the
partition function (3.54), this leads to

∂x logZn, qu = −∆n

(1
x
+

1
x − 1/x̄

)
− ∂x log E(α)

n (x) (3.58)

where we used that
∑n−1

k=1 hk/n = ∆n =
1

12 (n − 1/n) (see (3.2) with c = 1), and we
introduced

E(α)
n (x) ≡

√√
n−1∏
k=1

E(α)
k/n(x) (3.59)

From the relations reported in Appendix C of [71], the function E(α)
n (x) in (3.57)

can be expressed as a Siegel theta function as follows√√
n−1∏
k=1

Fk/n(|x|2) = Θ
(
τ(|x|)

) √√
n−1∏
k=1

Fk/n(1 − |x|2) = Θ
(
−τ(|x|)−1

)
(3.60)

in terms of the Siegel theta (3.24) and of the period matrix τ(x) defined in (3.25).
Then, integrating (3.58), for the quantum part of the partition function we get

Zn, qu(x) ∝
1

P(x)∆n E(α)
n (x)

P(x) ≡ |x|2
(
1 − |x|2

)
(3.61)

where

E(α)
n (x) ≡

 Θ
(
τ(|x|)

)
Dirichlet BC

Θ
(
−τ(|x|)−1

)
Neumann BC

(3.62)

and the overall constant, which can depend both on n and the BC, will be fixed
later.
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Two point functions of twist fields

Combining the classical part and the quantum part of the partition function, given
by (3.47)-(3.51) and (3.61)-(3.62) respectively, we find that the two-point functions
of the twist fields on the unit disk D for the compactified massless scalar field
with either Dirichlet BC or Neumann BC read respectively

⟨σn(0) σ†n(x)⟩(D)

D
∝

1
P(x)∆n

Θ
(
−R2 τ(x)−1

)
Θ
(
−τ(x)−1

) =
1

Rn−1P(x)∆n

Θ
(
τ(x)/R2

)
Θ
(
τ(x)

) (3.63)

⟨σn(0) σ†n(x)⟩(N)

D
∝

1
P(x)∆n

Θ
(
R2 τ(x)/4

)
Θ
(
τ(x)

) (3.64)

where P(x) has been defined in (3.61) and the last expression of (3.63) has been
obtained by employing the following identity

Θ
(
−τ(x)−1

)
=

√
det

(
−iτ(x)

)
Θ
(
τ(x)

)
(3.65)

which involves the Siegel theta function (3.24) and the period matrix (3.25).
In the limit x→ 0, for the generic element (3.25) of the period matrix we have

that τ(x)i, j → +i∞; therefore Θ(ητ(x)) → 1 for any constant η > 0, which implies
that F (α)

n (x) → 1 as x → 0 for any finite value of R. By applying this observation
to (3.63) and (3.64), at the leading order we find that

⟨σn(0) σ†n(x)⟩(α)
D
∼

1
|x|2∆n

x→ 0 α ∈
{
D,N

}
(3.66)

which fixes the overall normalizations in (3.63) and (3.64). Thus, we find the final
result for the twist correlator on the unit disk:

⟨σn(0) σ†n(x)⟩(D)

D
= P(x)−∆n

Θ
(
τ(x)/R2

)
Θ
(
τ(x)

) ⟨σn(0) σ†n(x)⟩(N)

D
,= P(x)−∆n

Θ
(
R2 τ(x)/4

)
Θ
(
τ(x)

)
(3.67)

Finally, the two-point twist correlators on the unit disk in (3.67) provide the
expressions for the two-point twist correlator on the infinite strip and right half
plane geometries, which are given by (3.6) and (3.7) respectively, as discussed in
Sec 3.1.From this, one readily recovers all the sought-after entanglement measures.

The Rényi entropies for the massless scalar field in the case of Dirichlet BC and
the spatial bipartition in the right panel of Figure 3.1 have been already studied in
[166], where implicit results have been found. This analysis has been developed
further in [121] for inhomogeneous systems. To apply the results of these works,
linear integral equations must be solved and, since analytic solutions have not
been found, approximate results can be obtained numerically by discretising the
interval A, as discussed in [166]. This provides an important benchmark for our
analytic results corresponding to Dirichlet BC; and we checked2 that our BCFT
expression is compatible with the one obtained numerically in [166]. In particular,
for n ⩽ 5 and various sizes for the interval, we have found numerical agreement
between the period matrix τ in (3.25) and the matrixM of [166], once the difference

2We are grateful to Alvise Bastianello for having shared with us his notebook for the numerical
evaluation of the expression obtained in [166].
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in the notations has been taken into account. Also the compatibility for the Rényi
entropies when n ⩽ 5 and for various values for the compactification radius
R ∈ (0.5, 3) has been checked. As n increases, higher accuracy in the discretization
procedure is needed to find agreement with our BCFT results in the continuum.

It is now interesting to make a more careful comparison with the results of
[71], which used similar techniques to calculate Rényi entropies for two disjoint
intervals in the infinite line. As already mentioned in Section 3.1, their calculation
is centred around the evaluation of the partition function of the compact boson
of radius R, on an n-sheeted Riemann surfaceMn, which is characterized by the
same period matrix τ as the double D(Dn) of the n-sheeted disk of our setup.

Based on this geometrical connection, it is interesting to compare the universal
function F [CCT′09]

n of [71] , which we reproduce below in our conventions

F
[CCT′09]

n (r) =
Θ
(
R2τ(r)/2

)
Θ
(
2τ(r)/R2

)
[Θ

(
τ(r)

)
]2

(3.68)

with the results for Neumann and Dirichlet BC in (3.23).
We note that the multiplicative factors of the period matrices in the Riemann-

Siegel functions in the numerator of (3.68) are not the same as the ones in the
numerators of (3.23). This difference arises in the calculation for the classical part,
from two sources: the winding condition around the cycle B j for the Dirichlet
BC (3.43), and the fact that for classical action (3.45) the spacetime isDn, and not
D(Dn), as it would be in the bulk case.

Thus, we found no obvious correspondence between the results for two dis-
joint intervals onMn and the results for Neumann and Dirichlet BC for a compact
boson with the same compactification radius R. However, we notice the relation:

F
[CCT′09],R

n (r) = F (D),R/
√

2
n (r)F (N),R

√
2

n (r) (3.69)

between the universal function F [CCT′09],R
n for a compact boson CFT of radius R,

in the two disjoint interval setup, and the functions F (D),R/
√

2
n (r), F (N),R

√
2

n (r) for one
interval in the bulk, for compact boson BCFTs with Dirichlet and Neumann BC
and different compactification radii R/

√
2 and R

√
2, respectively.

Beyond purely analytical considerations, such a relation between the bulk and
boundary entanglement properties of compact boson CFTs could be of interest
for numerical investigations of entanglement in the critical XXZ chain.

3.2.2 Decompactification regime

An important regime to explore is given by the decompactification regime R→∞.
Taking this limit in (3.23) does not provide well-defined finite expressions.

A similar problem already arises for the conformal boundary states of the com-
pact boson BCFT. Indeed, the boundary states corresponding to Dirichlet and
Neumann BC can be constructed through the |(m,n)⟩⟩ Ishibashi states as follows
[142]

|N⟩R =

√
R
2

∑
n∈Z

|(0,n)⟩⟩ |D⟩R =

√
1
R

∑
m∈Z

|(m, 0)⟩⟩ (3.70)

and do not have a well-defined behaviour as R→ ∞. For these boundary states,
a formal regularization scheme for the compact boson BCFT data (spectrum of
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primary fields, boundary states, structure constants) has been implemented [167,
168] to construct a well-defined decompactification limit. However, extending
this procedure to theZN orbifold of the compact boson BCFT is beyond the scope
of this work.

Well-defined expressions in the decompactification limit can be obtained as
follows. Since Θ

(
R2 τ(x)/4

)
→ 1 and Θ

(
−R2 τ(x)−1

)
→ 1 in this limit, and dis-

regarding proportionality constants for the moment, it is straightforward to find
that the two-point functions of twist fields in (3.63) and (3.64) become respectively

⟨σn(0) σ†n(x)⟩(D)

D
∝

1
P(x)∆n

F̃
(D)

n

(
x2

)
⟨σn(0) σ†n(x)⟩(N)

D
∝

1
P(x)∆n

F̃
(N)

n

(
x2

)
(3.71)

where we have employed the identities (3.60) and the functions (3.28). To fix
the CFT normalization in the above expressions, a careful, and slightly technical
consideration of the x→ 0 limit of (3.71) is necessary. We relegate it to Appendix
B.5.1 and give here the final results for the two-point functions on the unit disk in
the decompactification regime:

⟨σn(0) σ†n(x)⟩(D)

D
=

1
P(x)∆n

F̃
(D)

n

(
x2

)
⟨σn(0) σ†n(x)⟩(N)

D
=

1
P(x)∆n

F̃
(N)

n

(
x2

)
(3.72)

From (3.72) we arrive at the results reported in Section 1.14
As for the Rényi entropies of an interval in the segment, from (3.11) we have

Sαn(A) =
∆n

n − 1
log

[
P(u, v)

]
+ 2

log
(
cn

)
1 − n

+
1

2(n − 1)

n−1∑
k=1

log
[
Fk/n(yα)

]
(3.73)

where yD ≡ 1 − r and yN ≡ r (we remind that Fk/n(y) has been introduced in the
text below (3.25)). The corresponding result for the interval on the half line is
obtained by taking the limit L→∞ in (3.73).

Finally, by using (3.16) and (3.73), we find the following UV finite quantity

I
(n)
A =

∆n

1 − n
log(r) +

1
2(1 − n)

n−1∑
k=1

log
[
Fk/n(yα)

]
(3.74)

where we have also employed that gD = gN = 1 in our conventions, as shown
in B.5.1, and compatible with existing results in the literature [24]. As for the
entanglement entropy, the analytic continuation n→ 1 of (3.73) can be studied by
employing the following result [71]

lim
n→1

∂n

( n−1∑
k=1

log
[
Fk/n(y)

])
=

∫ i∞

−i∞

πz log[Fz(y)]
[sin(πz)]2

dz
i
≡ −D

′

1(y) (3.75)

where the integral along the imaginary axis defining D′1(y) is evaluated numer-
ically. This leads to the following result for the entanglement entropy of the
interval in the segment

Sα(A) =
1
6

log
[
P(u, v)

]
−
D
′

1(yα)
2

+ 2c′1 (3.76)

where the constant non-universal shift is given by c′1 ≡ limn→1
log cn

1−n . The entangle-
ment entropy of an interval on the half line is obtained by taking the L→∞ limit
of (3.76).
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From the UV finite quantity (3.74), we find it worth introducing

Î
(n)
A;α ≡ I

(n)
A −

∆n

1 − n
log(r) (3.77)

Its analytic continuation n→ 1 reads

Î
(1)
A;α =

D
′

1(yα)
2

(3.78)

in terms of (3.75), where the constant shifts depend on the boundary conditions.
The limit n → ∞ of (3.73) provides the single copy entanglement entropy in

the decompactification regime. By introducing

lim
n→∞

1
n − 1

n−1∑
k=1

log
[
Fk/n(y)

]
=

∫ 1

0
log

[
Fκ(y)

]
dκ ≡ S(y) (3.79)

where the integral defining S(y) can be evaluated numerically. For the single
copy entanglement entropy of the interval in the segment, one finds

Sα
∞

([u, v]) =
1

12
log

[
P(u, v)

]
+
S(yα)

2
+ 2c′

∞
(3.80)

where c′
∞
≡ limn→∞

log cn

1−n . The limit L → ∞ of (3.80) provides the single copy
entanglement entropy of the interval in the half-line in the decompactification
regime.

3.3 Numerical results from harmonic chains

In this section, we compare the BCFT results reported in Sec 3.1 and Sec. 3.2.2
for the decompactification regime with the entanglement entropies of a block
of consecutive sites in the spatial bipartitions shown in Figure 3.1 for harmonic
chains defined either on the semi-infinite line or on the segment, when either
Dirichlet BC or Neumann BC are imposed.

The Hamiltonian of a finite harmonic chain with nearest neighbour spring-like
interactions made by N−1 sites in the interior and two sites at its endpoints reads

Ĥ =
N∑

i=0

(
1

2m
p̂2

i +
mω2

2
q̂2

i

)
+

N−1∑
i=0

κ
2

(q̂i+1 − q̂i)2 (3.81)

in terms of the position and the momentum operators q̂i and p̂i, that are hermitian
operators satisfying the canonical commutation relations [q̂i, q̂ j] = [p̂i, p̂ j] = 0 and
[q̂i, p̂ j] = iδi, j (we set ℏ = 1). At the endpoints of the harmonic chain we impose
the same boundary condition, which is either Dirichlet BC

q̂0 = q̂N = 0 (3.82)

or Neumann BC
q̂1 − q̂0 = 0 q̂N − q̂N−1 = 0 (3.83)

We consider these quadratic systems in their ground state, that is a Gaussian
state. Since these are free systems, the crucial objects to perform our numerical
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analysis are the correlation matrices Q and P, whose generic elements are the
two-point correlators in the ground state, i.e. ⟨q̂iq̂ j⟩ and ⟨p̂ip̂ j⟩ respectively [44, 65,
66, 156–161].

For the Dirichlet BC (3.82), the generic elements of the correlation matrices Q
and P are given respectively by [169]

⟨q̂iq̂ j⟩ =
1
N

N−1∑
k=1

1
mωk

sin(πk i/N) sin(πk j/N) (3.84)

⟨p̂ip̂ j⟩ =
1
N

N−1∑
k=1

mωk sin(πk i/N) sin(πk j/N) (3.85)

where the dispersion relation reads

ωk ≡

√
ω2 +

4κ
m

[
sin(πk/(2N))

]2
> ω 1 ⩽ k ⩽ N − 1 (3.86)

In the massless regime (i.e. when ω = 0) and in the thermodynamic limit N→∞,
these correlators simplify respectively to [163]

⟨q̂iq̂ j⟩ =
1

2π
√
κm

(
ψ(1/2 + i + j) − ψ(1/2 + i − j)

)
(3.87)

⟨p̂ip̂ j⟩ =
2
√
κm
π

(
1

4(i + j)2 − 1
−

1
4(i − j)2 − 1

)
(3.88)

where ψ(z) is the digamma function. These correlators can be employed to inves-
tigate the semi-infinite massless harmonic chain with Dirichlet BC at its origin.

When the Neumann BC (3.83) are imposed, the generic elements of the corre-
lation matrices Q and P read respectively [162, 170]

⟨q̂iq̂ j⟩ =
1
2

N−1∑
k=1

1
mωk

Vi,k V j,k ⟨p̂ip̂ j⟩ =
1
2

N−1∑
k=1

mωk Vi,k V j,k (3.89)

where

ωk ≡

√
ω2 +

4κ
m

[
sin(θk/2)

]2
θk ≡

π(k − 1)
N − 1

(3.90)

and

Vi,k =

√
2 − δk,1

N − 1
cos

(
θk(i − 1/2)

)
(3.91)

The correlators in (3.89) can be written as ⟨q̂iq̂ j⟩ =
1
2 M(1)

i, j and ⟨p̂ip̂ j⟩ =
1
2 M(−1)

i, j , where

M(η)
i, j is defined as follows

M(η)
i, j ≡

1
(N − 1) (mω)η

+
2

N − 1

N−1∑
k=2

cos[θk(i − 1/2)] cos[θk( j − 1/2)](
2
√
κm

)η {
mω2/(4κ) + [sin(θk/2)]2

}η/2 (3.92)

In the thermodynamic limit N→∞, this expression becomes

I
(η)
i, j ≡

2

π
(
2
√
κm

)η ∫ π

0

cos[θ(i − 1/2)] cos[θ( j − 1/2)]{
mω2/(4κ) + [sin(θ/2)]2

}η/2 dθ (3.93)

=
1

π
(√

2κm
)η [

mω2/(2κ) + 1
]η/2 ∫ π

0

cos[θ(i + j − 1)] + cos[θ(i − j)]{
1 −

[
mω2/(2κ) + 1

]−1
cos(θ)

}η/2 dθ
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By employing the following formula [171]

F(a, b; n, ã2) ≡
1
π

∫ π

0

cos(nθ)
(1 − a cosθ)b

dθ =
2b Γ(n + b)

ab Γ(n + 1)Γ(b)
ãn+b

2F1

(
b,n + b ; n + 1 ; ã2

)
(3.94)

with ã ≡
(
1 −
√

1 − a2
)
/a, the integral in the last step of (3.93) can be performed,

finding

I
(η)
i, j =

1(√
2κm ω̃

)η [
F
(
1/ω̃2, η/2 ; i + j − 1, ã2

)
+ F

(
1/ω̃2, η/2 ; i − j, ã2

) ]
(3.95)

where ω̃2
≡ mω2/(2κ)+ 1. This observation allows us to write the analytic expres-

sions of the correlators in (3.89) in the thermodynamic limit in terms of (3.95) as
follows

⟨q̂iq̂ j⟩ =
1
2
I

(1)
i, j ⟨p̂ip̂ j⟩ =

1
2
I

(−1)
i, j (3.96)

In the massless limit ω→ 0, these expressions become respectively

⟨q̂iq̂ j⟩ = −
1

2π
√
κm

(
ψ
(
|i − j| + 1

2

)
+ ψ

(
i + j + 1

2

)
+ log(mω2/κ) + 4γ + log(4) + 2ψ

(
1
2

))
(3.97)

⟨p̂ip̂ j⟩ = −

√
κm

2π

(
1

(i − j)2 − 1/4
+

1
(i + j − 1)2 − 1/4

)
(3.98)

where γ = −ψ(1) ≃ 0.5772 is the Euler-Mascheroni constant. In all our numerical
analyses we have set κ = m = 1.

We remark that all the finite correlation matrices Q and P introduced above
are symmetric matrices satisfying Q P = 1

4 1, where 1 is the identity matrix, as
expected for the ground state.

Another important feature to highlight is the occurrence of the zero mode:
while it is forbidden by the Dirichlet BC (3.82), it is allowed by the Neumann
BC (3.83). The occurrence of the zero mode heavily influences the massless limit
ω→ 0 of the corresponding correlators. Indeed, while for Dirichlet BC (see (3.84)
and (3.85)) finite results are obtained in this limit, for Neumann BC (see (3.89))
the term corresponding to k = 1 in ⟨q̂iq̂ j⟩ is divergent as ω→ 0. Hence, exploring
the massless regime is more delicate when Neumann BC are imposed because
the zero mode could lead to effects that are difficult to quantify through analytic
methods.

The entanglement entropies S(n)
A of a block A made by mA consecutive sites can

be computed through a well-established method [44, 65, 66, 156–161]. The first
step consists of introducing the reduced correlation matrices QA and PA, whose
generic elements are respectively ⟨q̂iq̂ j⟩ and ⟨p̂ip̂ j⟩, with i, j ∈ A. Then, the Rényi
entropies S(n)

A are obtained as follows

Sn(A) =
1

n − 1

mA∑
j=1

log
[(
µ j +

1
2

)n

−

(
µ j −

1
2

)n ]
(3.99)

where {µ2
1, . . . , µ

2
mA
} is the spectrum of the mA ×mA matrix QA PA and provide the

symplectic eigenvalues {µ1, . . . , µmA} of the covariance matrix QA ⊕ PA. The limits
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n = 7

<latexit sha1_base64="6mKgRlBkf6elgtsbHlqxwL5J3K8=">AAAB63icbZDLSgMxFIbP1Futt6pLN8EiuCozipeNWnDjsoK9QDuUTJppQ5PMkGSEMvQV3LhQxK1P4hu4823MTLvQ1h8CH/9/DjnnBDFn2rjut1NYWl5ZXSuulzY2t7Z3yrt7TR0litAGiXik2gHWlDNJG4YZTtuxolgEnLaC0W2Wtx6p0iySD2YcU1/ggWQhI9hklrzyTnvlilt1c6FF8GZQufk8zVXvlb+6/YgkgkpDONa647mx8VOsDCOcTkrdRNMYkxEe0I5FiQXVfprPOkFH1umjMFL2SYNy93dHioXWYxHYSoHNUM9nmflf1klMeOmnTMaJoZJMPwoTjkyEssVRnylKDB9bwEQxOysiQ6wwMfY8JXsEb37lRWieVL3z6tm9W6ldw1RFOIBDOAYPLqAGd1CHBhAYwhO8wKsjnGfnzXmflhacWc8+/JHz8QM1X4/n</latexit>

n = 13

<latexit sha1_base64="0T6JbVu0UxaCrZDUjQe4pab/i2c=">AAAB63icbZDLSgMxFIbP1Futt6pLN8EiuCozStWNWnDjsoK9QDuUTJppQ5PMkGSEMvQV3LhQxK1P4hu4823MTLvQ6g+Bj/8/h5xzgpgzbVz3yyksLa+srhXXSxubW9s75d29lo4SRWiTRDxSnQBrypmkTcMMp51YUSwCTtvB+CbL2w9UaRbJezOJqS/wULKQEWwyS17W3H654lbdXOgveHOoXH+c5mr0y5+9QUQSQaUhHGvd9dzY+ClWhhFOp6VeommMyRgPadeixIJqP81nnaIj6wxQGCn7pEG5+7MjxULriQhspcBmpBezzPwv6yYmvPBTJuPEUElmH4UJRyZC2eJowBQlhk8sYKKYnRWREVaYGHuekj2Ct7jyX2idVL2zau3OrdSvYKYiHMAhHIMH51CHW2hAEwiM4BGe4cURzpPz6rzNSgvOvGcffsl5/wY254/o</latexit>

n = 50

<latexit sha1_base64="TuXb5JlaQmoiXIcAg0DFRk3JMTY=">AAAB7HicbZDLSgMxFIbP1Futt6pLN8EiuCoZxctGLbhxWcFpC+1QMmmmDc1khiQjlKHP4MaFIm59Ed/AnW9jOu1CW38IfPz/OeScEySCa4Pxt1NYWl5ZXSuulzY2t7Z3yrt7DR2nijKPxiJWrYBoJrhknuFGsFaiGIkCwZrB8HaSNx+Z0jyWD2aUMD8ifclDTomxlievXIy75Qqu4lxoEdwZVG4+T3PVu+WvTi+macSkoYJo3XZxYvyMKMOpYONSJ9UsIXRI+qxtUZKIaT/Lhx2jI+v0UBgr+6RBufu7IyOR1qMosJURMQM9n03M/7J2asJLP+MySQ2TdPpRmApkYjTZHPW4YtSIkQVCFbezIjogilBj71OyR3DnV16ExknVPa+e3eNK7RqmKsIBHMIxuHABNbiDOnhAgcMTvMCrI51n5815n5YWnFnPPvyR8/EDn4mQHg==</latexit>

n = 100

<latexit sha1_base64="bdshjyVflmJE7aaKW7zP2Ky/Btw=">AAAB7XicbZDLSgMxFIbP1Futt6pLN8EiuCoZxctGLbhxWcFeoC0lk2baaCYZkoxQhr6DGxeKuPVBfAN3vo3ptAtt/SHw8f/nkHNOEAtuLMbfXm5hcWl5Jb9aWFvf2Nwqbu/UjUo0ZTWqhNLNgBgmuGQ1y61gzVgzEgWCNYKH63HeeGTacCXv7DBmnYj0JQ85JdZZdXnhY4y7xRIu40xoHvwplK4+jzNVu8Wvdk/RJGLSUkGMafk4tp2UaMupYKNCOzEsJvSB9FnLoSQRM500m3aEDpzTQ6HS7kmLMvd3R0oiY4ZR4CojYgdmNhub/2WtxIbnnZTLOLFM0slHYSKQVWi8OupxzagVQweEau5mRXRANKHWHajgjuDPrjwP9aOyf1o+ucWlyiVMlIc92IdD8OEMKnADVagBhXt4ghd49ZT37L1575PSnDft2YU/8j5+AA6AkFg=</latexit>

n = 1000

BCFT <latexit sha1_base64="okO2RuRmkCI3Izg53sRV8qwi1+k=">AAAB63icbVDLSgNBEOz1GeMr6tHLYBA8hd2Aj4OHYEA8RsgLkiXMTmaTITOzy8ysEJb8ghcPinj1h7z5N84me9DEgoaiqpvuriDmTBvX/XbW1jc2t7YLO8Xdvf2Dw9LRcVtHiSK0RSIeqW6ANeVM0pZhhtNurCgWAaedYFLP/M4TVZpFsmmmMfUFHkkWMoJNJt3V75uDUtmtuHOgVeLlpAw5GoPSV38YkURQaQjHWvc8NzZ+ipVhhNNZsZ9oGmMywSPas1RiQbWfzm+doXOrDFEYKVvSoLn6eyLFQuupCGynwGasl71M/M/rJSa88VMm48RQSRaLwoQjE6HscTRkihLDp5Zgopi9FZExVpgYG0/RhuAtv7xK2tWKd1W5fKyWa7d5HAU4hTO4AA+uoQYP0IAWEBjDM7zCmyOcF+fd+Vi0rjn5zAn8gfP5A1SJjcM=</latexit>

BCFT

m
m

Figure 3.5: The function F̃ (D)
n for the bipartitions in Figure 3.1 with Dirichlet bound-

ary conditions. The black dotted lines correspond to the BCFT result given by the
first expression in (3.28). The data points have been obtained for the block of mA

consecutive sites either in the semi-infinite chain (left panel) or on the finite chain
made by N sites (right panel) with Dirichlet BC (see Sec. 3.3).

n→ 1 and n→∞ of (3.99) give respectively the entanglement entropy
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) ]
(3.100)

and the single-copy entanglement

S∞(A) =
mA∑
j=1

log
(
µ j +

1
2

)
(3.101)

In the following, we report some numerical results for the entanglement en-
tropies of a block A made by mA consecutive sites providing the bipartitions
shown in Figure 3.1, when either Dirichlet BC or Neumann BC are imposed and
the whole harmonic chain is in its ground state. This leads to four possible se-
tups for the harmonic chain: either an infinite chain on the semi-infinite line or
a finite chain made by N consecutive sites on the segment, and either Dirichlet
BC or Neumann BC (we remind that, in the case of the segment, the same BC is
chosen at both its boundaries). The continuum limit of the lattice results for the
semi-infinite chain and for the segment are compared against the corresponding
BCFT expressions for the massless scalar field in the decompactification regime,
either on the right half plane RHP or on the strip SL respectively.

Unless stated otherwise, for the semi-infinite chains the interval size mA is kept
fixed while its distance from the boundary is varied in such a way that r covers
the whole range r ∈ (0, 1). Instead, in the finite chains of even size N, the whole
range r ∈ (0, 1) is spanned by keeping one endpoint of A fixed in the middle of
the chain (this is not ambiguous for even values of N) while the interval grows
towards one of the boundaries of the finite chain.
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In the case of Dirichlet BC, our lattice data are taken by setting ω = 0 in the
correlators (3.84) and (3.87), which are still well-defined in this limit. Instead,
when Neumann BC are imposed, the first correlator in (3.89) diverges in the
massless limit ω → 0 because of the occurrence of the zero mode corresponding
to k = 1. This forces us to set a small but non-vanishing mass: in our analysis
we have chosen ωmA ∼ 10−10 for the semi-infinite chains and ωN ∼ 10−10 for the
finite chains, which are much smaller than the other scales in each setup. This
procedure is the standard one in the case of periodic BC (or infinite chain), where
the zero mode occurs as well.

For the harmonic chains on the semi-infinite line, when Dirichlet BC are ob-
served, we have observed that block sizes mA ∈ {50, 100} are large enough to
obtain a nice agreement with the BCFT predictions. Instead, for Neumann BC
large sizes for the blocks are typically needed: we used mA ∈ {200, 400} for the
semi-infinite chains and N ∈ {100, 200} for the finite chains.

We find it worth remarking that, in all the figures of this chapter, the lattice
data corresponding to Dirichlet BC have not been shifted to be compared with
the BCFT curves for all the UV finite quantities considered. On the other hand,
for the ones corresponding to Neumann BC, we have to introduce a constant shift
depending on the Rényi index and the lattice zero-mode regulator, that we are not
able to characterize analytically. It would be interesting to establish a quantitative
relation between this shift and ω, if it exists (see e.g. [170, 172] for some results in
this direction).

When the block A is not adjacent to the boundary, one can consider also the
blocks Au and Av, starting from the boundary, and made by mu and mv consecutive
sites as shown in Figure 3.6. The subsystems A, Au and Av lead to construct the
ratios (3.13), which provide the combination of entanglement entropies in (3.15).
The BCFT expressions for the UV finite ratios (3.13) are obtained by combining
(3.14) and (3.28), which tell us also that it is worth considering r∆nR(n)

A , for both the
finite and semi-infinite chains. From (3.10), we have that the ratio r is given by
r = [s(mv −mu)/s(mv +mu)]2 for the finite chains and r = [(mv −mu)/(mv +mu)]2 for
the semi-infinite chains.

u v
A

α

Au

Av

α

Figure 3.6: The three intervals relevant for constructing UV finite ratios (3.13). For
the semi-infinite chain, the α boundary on the right is sent to infinity

The numerical data for these quantities and the corresponding BCFT expres-
sions are shown in Figure 3.5 for Dirichlet BC and in Figure 3.7 and Figure 3.8
for Neumann BC . A remarkable agreement between the lattice data points in
the scaling limit and the BCFT predictions are observed for Dirichlet BC, for any
value of r considered and even for very large values of the Rényi index n. In-
stead, when Neumann BC are imposed, we obtain a nice agreement for n ⩽ 7
and r ∈ (0.5, 1). To understand these discrepancies, for Neumann BC we have
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reported also the UV finite ratio (3.13) in the cases of n = 3, n = 13 and n = 50
(see Figure 3.8), according to the colour code adopted in Figure 3.7. To enhance
the visibility of the data, the curves for various values of n have been deliberately
shifted vertically. The relation between the BCFT expressions of the quantities
considered in Figure 3.7 and Figure 3.8 is given in (3.14). The nice behaviour of the
lattice data points w.r.t. the BCFT curves in Figure 3.8 suggests that, in Figure 3.7,
larger blocks and system sizes are needed to obtain a better match with the BCFT
predictions.

Another possible reason for this discrepancy in Figure 3.7 could be related
to the occurrence of the zero mode. We have noticed that as n is increased to
larger values, at fixed N or mA, one needs smaller regulating ω for the HC data
to converge (up to shift). Thus, for the regulators ω and system sizes considered
in (3.7) the hypothesis that the HC data and the CFT results differ only by a shift
might not hold over the full range r ∈ (0, 1).

However, as mentioned earlier in this section, to probe beyond this assumption
one needs to analytically characterize the dependence ofF (N)

n onω in the harmonic
chain, as well as the finite-size corrections to the CFT result we’ve found. From
the point of view of numerics, it seems that to find good agreement between the
HC data and the CFT prediction at large n one needs to simultaneously work with
larger system sizes and smaller regulators ωN, to the effect of greatly increased
computational time.

Finally, it seems that the data forF (N)
n (r) is particularly sensitive to these effects,

as opposed to the quantities plotted in Figures 3.8 and 3.13. The deviation from the
CFT prediction in the r→ 0 case is less evident compared to Figure 5, which could
simply be an artefact of plotting on a logarithmic scale. In any case, a quantitative
understanding of these effects is beyond the analytical and numerical goals of this
project.

<latexit sha1_base64="S46+mxmzj6hGgHKWhBw2C41kJvY="></latexit> eF (N)

n

Neumann b.c: Half Line (sx) and Segment (dx) : draft version

<latexit sha1_base64="6MKBX/biNS53S4cuiG8V5PPKJAA=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV3xdQx48SIkYB6QLGF20puMmZ1dZmaFsOQLvHhQxKuf5M2/cZLsQRMLGoqqbrq7gkRwbVz321lZXVvf2CxsFbd3dvf2SweHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWMbqd+6wmV5rF8MOME/YgOJA85o8ZKddUrld2KOwNZJl5OypCj1it9dfsxSyOUhgmqdcdzE+NnVBnOBE6K3VRjQtmIDrBjqaQRaj+bHTohp1bpkzBWtqQhM/X3REYjrcdRYDsjaoZ60ZuK/3md1IQ3fsZlkhqUbL4oTAUxMZl+TfpcITNibAllittbCRtSRZmx2RRtCN7iy8ukeV7xriqX9Yty9T6PowDHcAJn4ME1VOEOatAABgjP8ApvzqPz4rw7H/PWFSefOYI/cD5/AOOwjQs=</latexit>r

<latexit sha1_base64="RSVN67prLgBjRPtfYwWrXQa6eDg=">AAAB7nicbZDLSgMxFIbP1Futt6pLN8EiuCqZipeNWnDjSirYC7RDyaSZNjSTGZKMUIY+hBsXirj1PXwDd76N6bQLbf0h8PH/55Bzjh8Lrg3G305uaXlldS2/XtjY3NreKe7uNXSUKMrqNBKRavlEM8ElqxtuBGvFipHQF6zpD28mefORKc0j+WBGMfNC0pc84JQYazXv0CWqYNwtlnAZZ0KL4M6gdP15kqnWLX51ehFNQiYNFUTrtotj46VEGU4FGxc6iWYxoUPSZ22LkoRMe2k27hgdWaeHgkjZJw3K3N8dKQm1HoW+rQyJGej5bGL+l7UTE1x4KZdxYpik04+CRCATocnuqMcVo0aMLBCquJ0V0QFRhBp7oYI9gju/8iI0KmX3rHx6j0vVK5gqDwdwCMfgwjlU4RZqUAcKQ3iCF3h1YufZeXPep6U5Z9azD3/kfPwAHNGQUw==</latexit>

N = 200
<latexit sha1_base64="GEzmCGcgGwqVdMaRCHKyRU5Lhi8=">AAAB7nicbZDLSgMxFIbP1Futt6pLN8EiuCoZpepGLbhxJRXsBdqhZNJMG5rJDElGKEMfwo0LRdz6Hr6BO9/GdNqFtv4Q+Pj/c8g5x48F1wbjbye3tLyyupZfL2xsbm3vFHf3GjpKFGV1GolItXyimeCS1Q03grVixUjoC9b0hzeTvPnIlOaRfDCjmHkh6UsecEqMtZp36BK5GHeLJVzGmdAiuDMoXX+eZqp1i1+dXkSTkElDBdG67eLYeClRhlPBxoVOollM6JD0WduiJCHTXpqNO0ZH1umhIFL2SYMy93dHSkKtR6FvK0NiBno+m5j/Ze3EBBdeymWcGCbp9KMgEchEaLI76nHFqBEjC4QqbmdFdEAUocZeqGCP4M6vvAiNk7J7Vq7c41L1CqbKwwEcwjG4cA5VuIUa1IHCEJ7gBV6d2Hl23pz3aWnOmfXswx85Hz8bS5BS</latexit>

N = 100A = 200
A = 400

<latexit sha1_base64="YMZpNopdcSait5DciX3QgRGBtyE=">AAAB6nicbZC7SgNBFIbPxluMt6ilIINBsAq7QqKFYsDGMkFzgWQJs5PZZMjs7DIzK4QlpaWNhSK2PoStr2DnM+hDOLkUmvjDwMf/n8Occ7yIM6Vt+9NKLSwuLa+kVzNr6xubW9ntnZoKY0lolYQ8lA0PK8qZoFXNNKeNSFIceJzWvf7lKK/fUqlYKG70IKJugLuC+YxgbaxrcV5oZ3N23h4LzYMzhdzF+9fd/lvlu9zOfrQ6IYkDKjThWKmmY0faTbDUjHA6zLRiRSNM+rhLmwYFDqhyk/GoQ3RonA7yQ2me0Gjs/u5IcKDUIPBMZYB1T81mI/O/rBlr/9RNmIhiTQWZfOTHHOkQjfZGHSYp0XxgABPJzKyI9LDERJvrZMwRnNmV56F2nHeK+ULFzpXOYKI07MEBHIEDJ1CCKyhDFQh04R4e4cni1oP1bL1MSlPWtGcX/sh6/QHg25H7</latexit>

n = 5

<latexit sha1_base64="tTP6Jhkj354f/pRs1y7wo2gDjLA=">AAAB6nicbZC7SgNBFIbPxluMt6ilIINBsAq7gaiFYsDGMkFzgWQJs5PZZMjs7DIzK4QlpaWNhSK2PoStr2DnM+hDOLkUmvjDwMf/n8Occ7yIM6Vt+9NKLSwuLa+kVzNr6xubW9ntnZoKY0lolYQ8lA0PK8qZoFXNNKeNSFIceJzWvf7lKK/fUqlYKG70IKJugLuC+YxgbaxrcV5oZ3N23h4LzYMzhdzF+9fd/lvlu9zOfrQ6IYkDKjThWKmmY0faTbDUjHA6zLRiRSNM+rhLmwYFDqhyk/GoQ3RonA7yQ2me0Gjs/u5IcKDUIPBMZYB1T81mI/O/rBlr/9RNmIhiTQWZfOTHHOkQjfZGHSYp0XxgABPJzKyI9LDERJvrZMwRnNmV56FWyDvH+WLFzpXOYKI07MEBHIEDJ1CCKyhDFQh04R4e4cni1oP1bL1MSlPWtGcX/sh6/QHcT5H4</latexit>

n = 2
<latexit sha1_base64="ZB+qIjTK0TdQcU/eU89mZIELygM=">AAAB6nicbZC7SgNBFIbPxluMt6ilIINBsAq7Bi+FYsDGMkFzgWQJs5PZZMjs7DIzK4QlpaWNhSK2PoStr2DnM+hDOLkUmvjDwMf/n8Occ7yIM6Vt+9NKzc0vLC6llzMrq2vrG9nNraoKY0lohYQ8lHUPK8qZoBXNNKf1SFIceJzWvN7lMK/dUqlYKG50P6JugDuC+YxgbaxrcV5oZXN23h4JzYIzgdzF+9fd7lv5u9TKfjTbIYkDKjThWKmGY0faTbDUjHA6yDRjRSNMerhDGwYFDqhyk9GoA7RvnDbyQ2me0Gjk/u5IcKBUP/BMZYB1V01nQ/O/rBFr/9RNmIhiTQUZf+THHOkQDfdGbSYp0bxvABPJzKyIdLHERJvrZMwRnOmVZ6F6mHeO80dlO1c8g7HSsAN7cAAOnEARrqAEFSDQgXt4hCeLWw/Ws/UyLk1Zk55t+CPr9Qfd05H5</latexit>

n = 3

<latexit sha1_base64="/VAHjMc8EFsrBogOldxfBiYsswA=">AAAB6nicbZC7SgNBFIbPxluMt6ilIINBsAq7QoyFYsDGMkFzgWQJs5PZZMjs7DIzK4QlpaWNhSK2PoStr2DnM+hDOLkUmvjDwMf/n8Occ7yIM6Vt+9NKLSwuLa+kVzNr6xubW9ntnZoKY0lolYQ8lA0PK8qZoFXNNKeNSFIceJzWvf7lKK/fUqlYKG70IKJugLuC+YxgbaxrcV5sZ3N23h4LzYMzhdzF+9fd/lvlu9zOfrQ6IYkDKjThWKmmY0faTbDUjHA6zLRiRSNM+rhLmwYFDqhyk/GoQ3RonA7yQ2me0Gjs/u5IcKDUIPBMZYB1T81mI/O/rBlr/9RNmIhiTQWZfOTHHOkQjfZGHSYp0XxgABPJzKyI9LDERJvrZMwRnNmV56F2nHdO8oWKnSudwURp2IMDOAIHilCCKyhDFQh04R4e4cni1oP1bL1MSlPWtGcX/sh6/QHj45H9</latexit>

n = 7

<latexit sha1_base64="A6GakuNhsBun7PFbp4dYJ+ljk2M=">AAAB63icbZC7SgNBFIbPxluMt6ilIItBsAq7ipdCMWBjmYC5QLKE2clsMmRmdpmZFcKS0tbGQhFb38HWV7DzGfQhnE1SaOIPAx//fw5zzvEjRpV2nE8rMze/sLiUXc6trK6tb+Q3t2oqjCUmVRyyUDZ8pAijglQ11Yw0IkkQ9xmp+/2rNK/fEqloKG70ICIeR11BA4qRTi1x4R618wWn6Ixkz4I7gcLl+9fd7lvlu9zOf7Q6IY45ERozpFTTdSLtJUhqihkZ5lqxIhHCfdQlTYMCcaK8ZDTr0N43TscOQmme0PbI/d2RIK7UgPumkiPdU9NZav6XNWMdnHkJFVGsicDjj4KY2Tq008XtDpUEazYwgLCkZlYb95BEWJvz5MwR3OmVZ6F2WHRPiscVp1A6h7GysAN7cAAunEIJrqEMVcDQg3t4hCeLWw/Ws/UyLs1Yk55t+CPr9QdN6pI0</latexit>

n = 13

<latexit sha1_base64="I7h7AkMiY/15iD6JX+OWjkkpQBw=">AAAB63icbZC7SgNBFIbPxluMt6ilIINBsAq7QtRCMWBjmYC5QLKE2clsMmRmdpmZFcKS0tbGQhFb38HWV7DzGfQh3E1SaOIPAx//fw5zzvFCzrSx7U8rs7C4tLySXc2trW9sbuW3d+o6iBShNRLwQDU9rClnktYMM5w2Q0Wx8DhteIOrNG/cUqVZIG/MMKSuwD3JfEawSS15UbI7+YJdtMdC8+BMoXD5/nW3/1b9rnTyH+1uQCJBpSEca91y7NC4MVaGEU5HuXakaYjJAPdoK0GJBdVuPJ51hA4Tp4v8QCVPGjR2f3fEWGg9FF5SKbDp69ksNf/LWpHxz9yYyTAyVJLJR37EkQlQujjqMkWJ4cMEMFEsmRWRPlaYmOQ8ueQIzuzK81A/LjonxVLVLpTPYaIs7MEBHIEDp1CGa6hADQj04R4e4ckS1oP1bL1MSjPWtGcX/sh6/QFPcpI1</latexit>

n = 50

<latexit sha1_base64="BAaVT2LJ8VlPdAVo64zdO+ytnWk=">AAAB7HicbZDLSgMxFIbPeK31VnUpSLAIrkpG8LJQLLhx2YLTFtpSMmmmDc1khiQjlKFL125cKOLWZ3DrK7jzGfQhTC8Lbf0h8PH/55Bzjh8Lrg3Gn87c/MLi0nJmJbu6tr6xmdvarugoUZR5NBKRqvlEM8El8ww3gtVixUjoC1b1e1fDvHrLlOaRvDH9mDVD0pE84JQYa3nywsW4lcvjAh4JzYI7gfzl+9fd3lv5u9TKfTTaEU1CJg0VROu6i2PTTIkynAo2yDYSzWJCe6TD6hYlCZlupqNhB+jAOm0URMo+adDI/d2RklDrfujbypCYrp7OhuZ/WT0xwVkz5TJODJN0/FGQCGQiNNwctbli1Ii+BUIVt7Mi2iWKUGPvk7VHcKdXnoXKUcE9KRyXcb54DmNlYBf24RBcOIUiXEMJPKDA4R4e4cmRzoPz7LyMS+ecSc8O/JHz+gO4FJJr</latexit>

n = 100
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Figure 3.7: The function F̃ (N)
n for the bipartitions in Figure 3.1 with Neumann

boundary conditions. The black dotted lines correspond to the BCFT result given
by the second expression in (3.28). The data points have been obtained for the
block of mA consecutive sites either in the semi-infinite chain (left panel) or on
the finite chain made by N sites (right panel) with Neumann BC, as discussed in
Sec. 3.3.
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Figure 3.8: The UV finite ratio (3.13) for the bipartitions shown in Figure 3.1 with
Neumann BC and n ∈ {3, 13, 50}, with the same colour code of Figure 3.7. We
have introduced artificial vertical shifts of the curves for different values of n to
enhance the distinguishability of the data.
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r r

Figure 3.9: The difference between the entanglement entropy for Dirichlet BC and
Neumann BC for the bipartitions of Figure 3.1, either in the semi-infinite chains
(left panel) or in the finite chains (right panel). The insets show the entanglement
entropy for the two different boundary conditions. The BCFT curves have been
obtained from (3.76).

In Sec. 3.1 we have observed that the difference (3.18) between the entangle-
ment entropies corresponding to two different conformally invariant boundary
conditions is another interesting UV finite quantity to investigate and it is a
function of the harmonic ratio r. In the case of the massless scalar field in the de-
compactification regime that we are exploring, we consider (3.29) and its analytic
continuation n → 1, which can be easily written by using (3.76). The results of
our analyses for this UV finite quantity are shown in Figure 3.9.

The collection of the lattice data has been performed by setting mv to a constant
value in both setups: we have chosen mv ∈ {100, 200, 400} for the semi-infinite
chains, while we took mv = N/2 with N ∈ {100, 200, 400} for the finite chains.
Then, we varied mu ∈ {1, . . . ,mv − 1} and plotted the entanglement entropy in
terms of mA/mv and the entropy difference in terms of the corresponding cross
ratio r in each case. For Neumann BC, we have set ωmv ∼ 10−10 in both the semi-
infinite and finite chains. In the case of Dirichlet BC, we have considered ω = 0,
but we checked that introducing a small non-vanishing ω, such that ωmv ∼ 10−10,
does not lead to changes that can be observed. The agreement between the lattice
data points and the corresponding BCFT predictions is excellent. In the insets
of Figure 3.9 we have reported SA;α − const, where the constant value that has
been subtracted is given by 1

6 log(2mv) for the semi-infinite chains (left panel) and
1
3 log(2N/π) for finite chains (right panel).

In Sec. 3.2.2 we have introduced the UV finite quantity (3.77), obtained from
(3.15) and (3.14), which depends on the cross-ratio r. Its limit n → 1 is given by
the following combination

Î
(1)
A;α = lim

n→1

log
(
r∆nR(n)

A

)
1 − n

= Sα(Au) + Sα(Av) − Sα(A) +
1
6

log r (3.102)

Our results for this UV finite quantity are reported in Figure 3.10 and Figure 3.11
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for Dirichlet BC and Neumann BC respectively. The corresponding BCFT expres-
sions are given by (3.78), which correspond to the dashed lines in these figures.
When imposing Dirichlet boundary conditions, we observe a remarkable con-
sistency between the lattice data points and the BCFT prediction, indicating an
excellent agreement for this quantity. Instead, a slight discrepancy is found in the
case of Neumann BC, which might be due to the zero mode, whose effect we are
not able to quantify.

The numerical analysis discussed above allows to evaluate also the corre-
sponding single copy entanglement (1.18) by applying (3.101). The resulting
numerical data in the thermodynamic limit can be compared with the BCFT pre-
dictions given by (3.80) and (3.79). These comparisons are shown in Figure 3.12
and Figure 3.13 for Dirichlet and Neumann BC respectively (semi-infinite chains
and finite chains made by N sites have been considered in the left and right pan-
els respectively). In these figures, the harmonic chain data for n → ∞ have been
obtained through (3.101). In particular, by using (3.14), one obtains

lim
n→∞

log
(
r∆nR(n)

A

)
1 − n

= Sα
∞

(A) − Sα
∞

(Au) − Sα
∞

(Av) −
1
12

log r (3.103)

Also in this analysis, we observe an excellent agreement between the lattice data
points in the scaling limit and the corresponding BCFT predictions for Dirichlet
BC; while in the case of Neumann BC, some discrepancy occurs (see the right
panel of Figure 3.13, for small values of r)
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Figure 3.10: The UV finite quantity (3.102) for Dirichlet BC . The dashed curves
correspond to the BCFT prediction (3.78). The results for the semi-infinite chains
and the finite chains made by N sites are reported in the left and right panels
respectively.
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<latexit sha1_base64="BWUlNAbne0HGJn9Pew57cAFxRlc=">AAAB63icbVDLSgNBEOz1GeMr6tHLYBA8hd2Aj2MwKB4j5AXJEmYns8mQmdllZlYIS37BiwdFvPpD3vwbZ5M9aGJBQ1HVTXdXEHOmjet+O2vrG5tb24Wd4u7e/sFh6ei4raNEEdoiEY9UN8CaciZpyzDDaTdWFIuA004wqWd+54kqzSLZNNOY+gKPJAsZwSaTbuv3zUGp7FbcOdAq8XJShhyNQemrP4xIIqg0hGOte54bGz/FyjDC6azYTzSNMZngEe1ZKrGg2k/nt87QuVWGKIyULWnQXP09kWKh9VQEtlNgM9bLXib+5/USE974KZNxYqgki0VhwpGJUPY4GjJFieFTSzBRzN6KyBgrTIyNp2hD8JZfXiXtasW7qlw+Vsu1uzyOApzCGVyAB9dQgwdoQAsIjOEZXuHNEc6L8+58LFrXnHzmBP7A+fwBVz6NzA==</latexit>

BCFT
<latexit sha1_base64="BWUlNAbne0HGJn9Pew57cAFxRlc=">AAAB63icbVDLSgNBEOz1GeMr6tHLYBA8hd2Aj2MwKB4j5AXJEmYns8mQmdllZlYIS37BiwdFvPpD3vwbZ5M9aGJBQ1HVTXdXEHOmjet+O2vrG5tb24Wd4u7e/sFh6ei4raNEEdoiEY9UN8CaciZpyzDDaTdWFIuA004wqWd+54kqzSLZNNOY+gKPJAsZwSaTbuv3zUGp7FbcOdAq8XJShhyNQemrP4xIIqg0hGOte54bGz/FyjDC6azYTzSNMZngEe1ZKrGg2k/nt87QuVWGKIyULWnQXP09kWKh9VQEtlNgM9bLXib+5/USE974KZNxYqgki0VhwpGJUPY4GjJFieFTSzBRzN6KyBgrTIyNp2hD8JZfXiXtasW7qlw+Vsu1uzyOApzCGVyAB9dQgwdoQAsIjOEZXuHNEc6L8+58LFrXnHzmBP7A+fwBVz6NzA==</latexit>

BCFT

m
m

Figure 3.11: The UV finite quantity (3.102) for Neumann BC, with the same
notation described in the caption of Figure 3.10.
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Chapter 3 – Entanglement entropies of an interval for the massless scalar field in
the presence of a boundary

<latexit sha1_base64="cfSEe2Let0drSe3ls2Jddz8I6qw="></latexit>
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Dirichlet b.c: Half Line (sx) and Segment (dx) : draft version

<latexit sha1_base64="9qaIuV/3H/DYohgnGPxV02Caytg=">AAAB/nicbVDLSgMxFM3UV62vUXHlJtgKrspMwQdIoVAQlxX6gs5QMmmmDU0yQ5IRylDwV9y4UMSt3+HOvzFtZ6GtBy4czrmXe+8JYkaVdpxvK7e2vrG5ld8u7Ozu7R/Yh0dtFSUSkxaOWCS7AVKEUUFammpGurEkiAeMdIJxfeZ3HolUNBJNPYmJz9FQ0JBipI3Ut09ST3HEGKzfNafQu4UlUa2U+nbRKTtzwFXiZqQIMjT69pc3iHDCidCYIaV6rhNrP0VSU8zItOAlisQIj9GQ9AwViBPlp/Pzp/DcKAMYRtKU0HCu/p5IEVdqwgPTyZEeqWVvJv7n9RId3vgpFXGiicCLRWHCoI7gLAs4oJJgzSaGICypuRXiEZIIa5NYwYTgLr+8StqVsntVvnyoFGvVLI48OAVn4AK44BrUwD1ogBbAIAXP4BW8WU/Wi/VufSxac1Y2cwz+wPr8AYock+Y=</latexit>

CFT n = 2
<latexit sha1_base64="8EFwWtSllGh33CV4+S55ItCGF0c=">AAAB/nicbVDLSgMxFM34rPU1Kq7cBFvBVZkpVAUpFAriskJf0BlKJs20oUlmSDJCGQr+ihsXirj1O9z5N6btLLT1wIXDOfdy7z1BzKjSjvNtra1vbG5t53byu3v7B4f20XFbRYnEpIUjFslugBRhVJCWppqRbiwJ4gEjnWBcn/mdRyIVjURTT2LiczQUNKQYaSP17dPUUxwxBut3zSn0bmFRVCvFvl1wSs4ccJW4GSmADI2+/eUNIpxwIjRmSKme68TaT5HUFDMyzXuJIjHCYzQkPUMF4kT56fz8KbwwygCGkTQlNJyrvydSxJWa8MB0cqRHatmbif95vUSHN35KRZxoIvBiUZgwqCM4ywIOqCRYs4khCEtqboV4hCTC2iSWNyG4yy+vkna55F6VKg/lQq2axZEDZ+AcXAIXXIMauAcN0AIYpOAZvII368l6sd6tj0XrmpXNnIA/sD5/AI6rk+k=</latexit>

CFT n = 5
<latexit sha1_base64="kVZUBCm/eL+3xwQdkXYSQoVcXKE=">AAAB/3icbVDLSgMxFM3UV62vUcGNm2AruCozhaoghUJBXFboCzpDyaRpG5pkhiQjlLELf8WNC0Xc+hvu/BvTdhbaeuDC4Zx7ufeeIGJUacf5tjJr6xubW9nt3M7u3v6BfXjUUmEsMWnikIWyEyBFGBWkqalmpBNJgnjASDsY12Z++4FIRUPR0JOI+BwNBR1QjLSRevZJ4imOGIO128YUejewICplp9Cz807RmQOuEjcleZCi3rO/vH6IY06Exgwp1XWdSPsJkppiRqY5L1YkQniMhqRrqECcKD+Z3z+F50bpw0EoTQkN5+rviQRxpSY8MJ0c6ZFa9mbif1431oNrP6EiijUReLFoEDOoQzgLA/apJFiziSEIS2puhXiEJMLaRJYzIbjLL6+SVqnoXhbL96V8tZLGkQWn4AxcABdcgSq4A3XQBBg8gmfwCt6sJ+vFerc+Fq0ZK505Bn9gff4AAxqUIw==</latexit>

CFT n = 50
<latexit sha1_base64="zxnz3AOkD7Ip7dw41x4YNwI9otg=">AAACAXicbVDLSgMxFM34rPU16kZwE2wFV2Wm4AOkUCiIywp9QWcomTTThiaZIckIZagbf8WNC0Xc+hfu/BvTdhbaeuDC4Zx7ufeeIGZUacf5tlZW19Y3NnNb+e2d3b19++CwpaJEYtLEEYtkJ0CKMCpIU1PNSCeWBPGAkXYwqk399gORikaioccx8TkaCBpSjLSRevZx6imOGIO128YEejewKCqu4zjFnl1wSs4McJm4GSmADPWe/eX1I5xwIjRmSKmu68TaT5HUFDMyyXuJIjHCIzQgXUMF4kT56eyDCTwzSh+GkTQlNJypvydSxJUa88B0cqSHatGbiv953USH135KRZxoIvB8UZgwqCM4jQP2qSRYs7EhCEtqboV4iCTC2oSWNyG4iy8vk1a55F6WLu7LhWoliyMHTsApOAcuuAJVcAfqoAkweATP4BW8WU/Wi/VufcxbV6xs5gj8gfX5A+ZQlJM=</latexit>

CFT n = 1000
<latexit sha1_base64="awaKnSV1VLfOgxGX8+ACn01Pzg4=">AAACBnicbVDLSgMxFM3UV62vUZciBFvBVZkp+AARCgVxWaEv6Awlk2ba0CQzJBlhGLpy46+4caGIW7/BnX9j+lho64HA4Zx7uTkniBlV2nG+rdzK6tr6Rn6zsLW9s7tn7x+0VJRITJo4YpHsBEgRRgVpaqoZ6cSSIB4w0g5GtYnffiBS0Ug0dBoTn6OBoCHFSBupZx9nnuKIMVi7bYyhdw1LwtMR9KgIdVrq2UWn7EwBl4k7J0UwR71nf3n9CCecCI0ZUqrrOrH2MyQ1xYyMC16iSIzwCA1I11CBOFF+No0xhqdG6cMwkuYJDafq740McaVSHphJjvRQLXoT8T+vm+jwys+oiBNNBJ4dChMGTdBJJ7BPJcGapYYgLKn5K8RDJBHWprmCKcFdjLxMWpWye1E+v68UqzfzOvLgCJyAM+CCS1AFd6AOmgCDR/AMXsGb9WS9WO/Wx2w0Z813DsEfWJ8/NV2XrA==</latexit>

CFT n ! 1

<latexit sha1_base64="Egx5vM41hreYcr2EekFplaeOuoE=">AAACAnicbVDLSgMxFM3UV62vUVfiJtgKLqTMFHyAFArddFnBPqAzlEyaaUOTzJBkhDIUN/6KGxeKuPUr3Pk3pu0stHrgwuGce7n3niBmVGnH+bJyK6tr6xv5zcLW9s7unr1/0FZRIjFp4YhFshsgRRgVpKWpZqQbS4J4wEgnGNdnfueeSEUjcacnMfE5GgoaUoy0kfr2UeopjhiDjfoUejfeOSyJqus4TqlvF52yMwf8S9yMFEGGZt/+9AYRTjgRGjOkVM91Yu2nSGqKGZkWvESRGOExGpKeoQJxovx0/sIUnhplAMNImhIaztWfEyniSk14YDo50iO17M3E/7xeosNrP6UiTjQReLEoTBjUEZzlAQdUEqzZxBCEJTW3QjxCEmFtUiuYENzll/+SdqXsXpYvbivFWjWLIw+OwQk4Ay64AjXQAE3QAhg8gCfwAl6tR+vZerPeF605K5s5BL9gfXwDZGyU0w==</latexit>

HC n = 1000

<latexit sha1_base64="0F9DX/3RTkePSquQt2W+97/OtFQ=">AAACAHicbVDLSgMxFM3UV62vURcu3ARbwYWUmUJVkEKhmy4r2Ad0hpJJM21okhmSjFCGbvwVNy4UcetnuPNvTNtZaPXAhcM593LvPUHMqNKO82Xl1tY3Nrfy24Wd3b39A/vwqKOiRGLSxhGLZC9AijAqSFtTzUgvlgTxgJFuMGnM/e4DkYpG4l5PY+JzNBI0pBhpIw3sk9RTHDEGm40Z9G69S1gStapTGthFp+wsAP8SNyNFkKE1sD+9YYQTToTGDCnVd51Y+ymSmmJGZgUvUSRGeIJGpG+oQJwoP108MIPnRhnCMJKmhIYL9edEirhSUx6YTo70WK16c/E/r5/o8MZPqYgTTQReLgoTBnUE52nAIZUEazY1BGFJza0Qj5FEWJvMCiYEd/Xlv6RTKbtX5epdpVivZXHkwSk4AxfABdegDpqgBdoAgxl4Ai/g1Xq0nq03633ZmrOymWPwC9bHN4C3lGM=</latexit>

HC n = 50

<latexit sha1_base64="0qq/5QyxUrKjlj84aHvr+4R7xaA=">AAACB3icbVDLSgMxFM3UV62vUZeCBFvBhZSZgg8QodBNlxXsAzpDyaSZNjTJDElGKEN3bvwVNy4UcesvuPNvTNtZaOuBwOGce7k5J4gZVdpxvq3cyura+kZ+s7C1vbO7Z+8ftFSUSEyaOGKR7ARIEUYFaWqqGenEkiAeMNIORrWp334gUtFI3OtxTHyOBoKGFCNtpJ59nHqKI8ZgvTaB3o13DkvC0xH0qAj1uNSzi07ZmQEuEzcjRZCh0bO/vH6EE06Exgwp1XWdWPspkppiRiYFL1EkRniEBqRrqECcKD+d5ZjAU6P0YRhJ84SGM/X3Roq4UmMemEmO9FAtelPxP6+b6PDaT6mIE00Enh8KEwZN0GkpsE8lwZqNDUFYUvNXiIdIIqxNdQVTgrsYeZm0KmX3snxxVylWb7M68uAInIAz4IIrUAV10ABNgMEjeAav4M16sl6sd+tjPpqzsp1D8AfW5w+0gpfs</latexit>

HC n ! 1

<latexit sha1_base64="6MKBX/biNS53S4cuiG8V5PPKJAA=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV3xdQx48SIkYB6QLGF20puMmZ1dZmaFsOQLvHhQxKuf5M2/cZLsQRMLGoqqbrq7gkRwbVz321lZXVvf2CxsFbd3dvf2SweHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWMbqd+6wmV5rF8MOME/YgOJA85o8ZKddUrld2KOwNZJl5OypCj1it9dfsxSyOUhgmqdcdzE+NnVBnOBE6K3VRjQtmIDrBjqaQRaj+bHTohp1bpkzBWtqQhM/X3REYjrcdRYDsjaoZ60ZuK/3md1IQ3fsZlkhqUbL4oTAUxMZl+TfpcITNibAllittbCRtSRZmx2RRtCN7iy8ukeV7xriqX9Yty9T6PowDHcAJn4ME1VOEOatAABgjP8ApvzqPz4rw7H/PWFSefOYI/cD5/AOOwjQs=</latexit>r <latexit sha1_base64="6MKBX/biNS53S4cuiG8V5PPKJAA=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV3xdQx48SIkYB6QLGF20puMmZ1dZmaFsOQLvHhQxKuf5M2/cZLsQRMLGoqqbrq7gkRwbVz321lZXVvf2CxsFbd3dvf2SweHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWMbqd+6wmV5rF8MOME/YgOJA85o8ZKddUrld2KOwNZJl5OypCj1it9dfsxSyOUhgmqdcdzE+NnVBnOBE6K3VRjQtmIDrBjqaQRaj+bHTohp1bpkzBWtqQhM/X3REYjrcdRYDsjaoZ60ZuK/3md1IQ3fsZlkhqUbL4oTAUxMZl+TfpcITNibAllittbCRtSRZmx2RRtCN7iy8ukeV7xriqX9Yty9T6PowDHcAJn4ME1VOEOatAABgjP8ApvzqPz4rw7H/PWFSefOYI/cD5/AOOwjQs=</latexit>r

<latexit sha1_base64="Y19OpmrfJ9bfc5Boy+b3ZX3qbGw=">AAAB9HicbVDLSgNBEOz1GeMr6tHLYCJ4CrsBH6BCMCAeI+QFyRJmJ7PJkNnZdWY2EJZ8hxcPinj1Y7z5N06SPWhiQUNR1U13lxdxprRtf1srq2vrG5uZrez2zu7efu7gsKHCWBJaJyEPZcvDinImaF0zzWkrkhQHHqdNb1iZ+s0RlYqFoqbHEXUD3BfMZwRrI7l3lfsa6lyjgrgtFbq5vF20Z0DLxElJHlJUu7mvTi8kcUCFJhwr1XbsSLsJlpoRTifZTqxohMkQ92nbUIEDqtxkdvQEnRqlh/xQmhIazdTfEwkOlBoHnukMsB6oRW8q/ue1Y+1fuQkTUaypIPNFfsyRDtE0AdRjkhLNx4ZgIpm5FZEBlphok1PWhOAsvrxMGqWic1E8fyzlyzdpHBk4hhM4AwcuoQwPUIU6EHiCZ3iFN2tkvVjv1se8dcVKZ47gD6zPH7VakBk=</latexit>

BCFT n = 2
<latexit sha1_base64="kw1rM2rVgF6qWatPl4TaVZfFP3c=">AAAB9HicbVBdSwJBFL1rX2ZfVo+9DGnQk+wKVlCBJESPBn6BLjI7zurg7Ow2MyuI+Dt66aGIXvsxvfVvGnUfSjtw4XDOvdx7jxdxprRtf1uptfWNza30dmZnd2//IHt41FBhLAmtk5CHsuVhRTkTtK6Z5rQVSYoDj9OmN6zM/OaISsVCUdPjiLoB7gvmM4K1kdy7yn0Nda5RXtyW8t1szi7Yc6BV4iQkBwmq3exXpxeSOKBCE46Vajt2pN0JlpoRTqeZTqxohMkQ92nbUIEDqtzJ/OgpOjNKD/mhNCU0mqu/JyY4UGoceKYzwHqglr2Z+J/XjrV/5U6YiGJNBVks8mOOdIhmCaAek5RoPjYEE8nMrYgMsMREm5wyJgRn+eVV0igWnItC6bGYK98kcaThBE7hHBy4hDI8QBXqQOAJnuEV3qyR9WK9Wx+L1pSVzBzDH1ifP7npkBw=</latexit>

BCFT n = 5
<latexit sha1_base64="O9W+ZQEAhYtRki01NhFOhh6OA9E=">AAAB9XicbVBdSwJBFL1rX2ZfVo+9DGnQk+wKVlCBJESPBn6BbjI7jjo4O7vMzBay+D966aGIXvsvvfVvGnUfSjtw4XDOvdx7jxdyprRtf1upldW19Y30ZmZre2d3L7t/0FBBJAmtk4AHsuVhRTkTtK6Z5rQVSop9j9OmN6pM/eYjlYoFoqbHIXV9PBCszwjWRnq4qdzWUOcS5cV1yc53szm7YM+AlomTkBwkqHazX51eQCKfCk04Vqrt2KF2Yyw1I5xOMp1I0RCTER7QtqEC+1S58ezqCToxSg/1A2lKaDRTf0/E2Fdq7Hum08d6qBa9qfif1450/8KNmQgjTQWZL+pHHOkATSNAPSYp0XxsCCaSmVsRGWKJiTZBZUwIzuLLy6RRLDhnhdJ9MVe+SuJIwxEcwyk4cA5luIMq1IGAhGd4hTfryXqx3q2PeWvKSmYO4Q+szx8q3pBW</latexit>

BCFT n = 50
<latexit sha1_base64="Tu+bTZpchbkcUAXhvtN6QIMHhfM=">AAAB+XicbVDLSgNBEOyNrxhfqx69DCaCp7Ab8AEqBAPiMUJekCxhdjJJhszOLjOzgbDkT7x4UMSrf+LNv3GS7EETCxqKqm66u/yIM6Ud59vKrK1vbG5lt3M7u3v7B/bhUUOFsSS0TkIeypaPFeVM0LpmmtNWJCkOfE6b/qgy85tjKhULRU1PIuoFeCBYnxGsjdS17fvKQw11blBB3LmO4xS6dt4pOnOgVeKmJA8pql37q9MLSRxQoQnHSrVdJ9JegqVmhNNprhMrGmEywgPaNlTggCovmV8+RWdG6aF+KE0Jjebq74kEB0pNAt90BlgP1bI3E//z2rHuX3sJE1GsqSCLRf2YIx2iWQyoxyQlmk8MwUQycysiQywx0SasnAnBXX55lTRKRfeyePFUypdv0ziycAKncA4uXEEZHqEKdSAwhmd4hTcrsV6sd+tj0Zqx0plj+APr8wd/A5D3</latexit>

BCFT n = 1000
<latexit sha1_base64="7LsAycTkhytFgsI2KVJTtOCdfUI=">AAAB/3icbVDLSgNBEOz1GeMrKnjxMpgInsJuwAfoIRgQjxHyguwSZiezyZDZ2WVmVggxB3/FiwdFvPob3vwbJ8keNLGgoajqprvLjzlT2ra/raXlldW19cxGdnNre2c3t7ffUFEiCa2TiEey5WNFORO0rpnmtBVLikOf06Y/qEz85gOVikWipocx9ULcEyxgBGsjdXKHN5XbGnKvUEEgV0fIZSLQw0Inl7eL9hRokTgpyUOKaif35XYjkoRUaMKxUm3HjrU3wlIzwuk46yaKxpgMcI+2DRU4pMobTe8foxOjdFEQSVNCo6n6e2KEQ6WGoW86Q6z7at6biP957UQHl96IiTjRVJDZoiDhyDw6CQN1maRE86EhmEhmbkWkjyUm2kSWNSE48y8vkkap6JwXz+5L+fJ1GkcGjuAYTsGBCyjDHVShDgQe4Rle4c16sl6sd+tj1rpkpTMH8AfW5w8W3JQ6</latexit>

BCFT n ! 1
<latexit sha1_base64="ODtQSoYzDv9DdkK7TEPnTwS1cQU=">AAAB/XicbVDLSgMxFL3js9bX+Ni5CbaCqzJTqAoqFLrpsoJ9QDuUTJppQzOZIckItRR/xY0LRdz6H+78G9N2Ftp6LhcO59xLbo4fc6a043xbK6tr6xubma3s9s7u3r59cNhQUSIJrZOIR7LlY0U5E7Sumea0FUuKQ5/Tpj+sTP3mA5WKReJej2LqhbgvWMAI1kbq2sfVCupczwvlBbpFJSfftXNOwZkBLRM3JTlIUevaX51eRJKQCk04VqrtOrH2xlhqRjidZDuJojEmQ9ynbUMFDqnyxrPrJ+jMKD0URNK00Gim/t4Y41CpUeibyRDrgVr0puJ/XjvRwZU3ZiJONBVk/lCQcKQjNI0C9ZikRPORIZhIZm5FZIAlJtoEljUhuItfXiaNYsG9KJTuirnyTRpHBk7gFM7BhUsoQxVqUAcCj/AMr/BmPVkv1rv1MR9dsdKdI/gD6/MHytuSNA==</latexit>

HC n = 50
<latexit sha1_base64="2o6EDjm8y+/xvLTiFzyBYh5mz5k=">AAAB/3icbVDLSgMxFL1TX7W+RgU3boKt4KrMFHyACoVuuqxgH9AOJZNm2tBMZkgyQqld+CtuXCji1t9w59+YtrPQ1nO5cDjnXnJz/JgzpR3n28qsrK6tb2Q3c1vbO7t79v5BQ0WJJLROIh7Jlo8V5UzQumaa01YsKQ59Tpv+sDL1mw9UKhaJez2KqRfivmABI1gbqWsfVSuocz0vVBDoFrmO4xS6dt4pOjOgZeKmJA8pal37q9OLSBJSoQnHSrVdJ9beGEvNCKeTXCdRNMZkiPu0bajAIVXeeHb/BJ0apYeCSJoWGs3U3xtjHCo1Cn0zGWI9UIveVPzPayc6uPLGTMSJpoLMHwoSjnSEpmGgHpOUaD4yBBPJzK2IDLDERJvIciYEd/HLy6RRKroXxfO7Ur58k8aRhWM4gTNw4RLKUIUa1IHAIzzDK7xZT9aL9W59zEczVrpzCH9gff4AqmSSpA==</latexit>

HC n = 1000
<latexit sha1_base64="eap/jtHi3M7EkPc34HhF2spTfzs=">AAACA3icbVDLSgMxFL3js9bXqDvdBFvBVZkp+ABdFLrpsoJ9QGcomTTThmYyQ5IRSim48VfcuFDErT/hzr8xbWehrScEDufcS3JOkHCmtON8Wyura+sbm7mt/PbO7t6+fXDYVHEqCW2QmMeyHWBFORO0oZnmtJ1IiqOA01YwrE791gOVisXiXo8S6ke4L1jICNZG6trHtSrybuYHFQXydIw8JkI9KnbtglNyZkDLxM1IATLUu/aX14tJGlGhCcdKdVwn0f4YS80Ip5O8lyqaYDLEfdoxVOCIKn88yzBBZ0bpoTCW5gqNZurvjTGOlBpFgZmMsB6oRW8q/ud1Uh1e+2MmklRTQeYPhSlHJui0ENRjkhLNR4ZgIpn5KyIDLDHRpra8KcFdjLxMmuWSe1m6uCsXKrdZHTk4gVM4BxeuoAI1qEMDCDzCM7zCm/VkvVjv1sd8dMXKdo7gD6zPH5UBlZM=</latexit>

HC n ! 1

Figure 3.12: Single copy entanglement entropy for the bipartitions in Figure 3.1
(see (3.103)) when Dirichlet BC are imposed. The same harmonic chains of Fig-
ure 3.5 have been employed.

<latexit sha1_base64="IbKUlTUpWH6XLB1SZc7AO7GIKLA="></latexit>
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Figure 3.13: Single copy entanglement entropy for the bipartitions in Figure 3.1
(see (3.103)) when Neumann BC are imposed. The same harmonic chains of
Figure 3.7 have been employed.
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3.4 Conclusions

In this chapter, we have employed CFT techniques to calculate the leading be-
haviour of entanglement entropies in a critical one-dimensional system belonging
to the Luttinger liquid universality class. Specifically, we have examined the sce-
narios where region A is an interval located on the half line or within a segment
that is not adjacent to the system boundary, as depicted in Figure 3.1.

In the case of the segment, the same boundary condition has been imposed
at both endpoints. Both Dirichlet and Neumann boundary conditions have been
considered. Our main results for the interval in the half line and in the segment
are given in (3.11), with the functions F (α)

n (r) given in (3.23), written in terms of
the Siegel theta function and of the period matrix (3.25), which occurs also for
the entanglement entropies of two disjoint intervals on the line [71]. Our analysis
extends the one performed in [120], whose results are recovered when n = 2.
Furthermore, we have checked numerically that our analytical expressions are
compatible with the implicit results of [166] for the compact boson with Dirichlet
boundary conditions.

In the decompactification regime, the analytic expressions found through the
BCFT approach of the twist fields method (see Sec. 3.2.2) have been compared with
the corresponding numerical results obtained in harmonic chains (see Sec. 3.3)
for the bipartitions shown in Figure 3.1. In the case of Dirichlet BC excellent
agreement has been found (see Figure 3.5, Figure 3.10 and Figure 3.12), while for
Neumann BC some discrepancies occurs (see Figure 3.7, Figure 3.8, Figure 3.11
and Figure 3.13). It is important to note that both the non-compact massless scalar
field and the harmonic chain exhibit a zero mode when Neumann boundary
conditions are applied. Consequently, they lack a normalizable ground state,
requiring the introduction of an infrared cut-off. The discrepancy observed may
originate from the method employed to regulate these models. In the case of the
harmonic chain, the zero mode was regulated by introducing a small mass, while
for the non-compact boson, the zero mode was regulated by compactifying the
target space. Finite size corrections in particular are expected to be sensitive to the
IR regulator [172]. Also, the UV finite quantity is given by the difference between
the entanglement entropy corresponding to different BC has been studied, finding
excellent agreement with the numerical lattice data (see Figure 3.9).

Natural extensions of our analysis involving the compact scalar could be per-
formed by considering mixed boundary conditions [173], or non-vanishing tem-
perature for the entire system, or a non vanishing mass [174], or a subsystem made
by the union of a generic number of disjoint intervals [88, 175, 176], or spatially
inhomogeneous backgrounds [121, 128, 166], or defects [150, 177–180].

Our results can be developed further in various directions. As for the lattice
calculations in the harmonic chains discussed in Sec. 3.3, a general issue to address
is to find a way to control analytically the effects of the zero mode. In our analysis,
this could help to understand the above-mentioned discrepancies between our
BCFT expressions and the lattice results when Neumann BC are imposed. We find
it worth investigating the spatial bipartitions in Figure 3.1 also in other interesting
1+1 dimensional models like the Ising BCFT [29], interacting BCFT models (see e.g.
the Liouville field theory [181, 182]). It may also be interesting to explore further
the effect of physical boundaries for other related entanglement quantifiers like
the entanglement Hamiltonians and their spectra [109, 183–196] or the logarithmic
negativity [163, 197–206].
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Chapter 4

Renyi entropies for one-dimensional
quantum systems with mixed
boundary conditions

4.1 Introduction

In this chapter, we consider the Rényi entanglement entropy in an open system
with mixed boundary conditions, when the subregion A is a single interval touching
the boundary – we take the boundary condition (BC) at one end of the chain to
be different from the BC at the other end (see Figure 4.1). In the scaling limit,
such an open critical system is described by a Boundary Conformal Field Theory
(BCFT), with a well-understood [30, 31, 108, 124] correspondence between the
chiral Virasoro representations and the conformal boundary conditions allowed by
the theory, and an algebra of boundary operators that interpolate between them.

ℓ

A

α β

L

Figure 4.1: An interval of length ℓ in a 1d critical chain with mixed BC (αβ) and
length L.

The more accessible setup of an interval touching one of two identical bound-
aries has been thoroughly analysed using either conformal field theory methods
[46, 87, 94, 120, 207] or exact free fermion techniques [125, 126, 139]. These analyt-
ical studies have been complemented with numerical implementations based on
density-matrix renormalization group (DMRG) techniques [96, 111, 208, 209] and
other methods [210]. In that setup, the subsystem A is at the end of a finite system
with the same boundary condition α on both sides. The computation of the Rényi
entanglement entropies rests on the evaluation of a twist one-point function on
the upper half-plane. Such a correlation function is straightforwardly fixed by
conformal invariance, and as a consequence, the entanglement entropy exhibits a
simple dependence on the interval and system sizes. Explicitly, in the case of an
interval of length ℓ at the end of a system of size L, one finds the leading universal
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behaviour (1.52), derived in [46] . When one studies systems with mixed BC, at the
level of the BCFT one has to introduce BCCOs, and thus the corresponding corre-
lators are more complicated. The core idea of this framework is that the singular
behaviour associated with the change in boundary conditions can be encoded in
the form of operators placed on the boundary, that interpolate between regions of
different BC α , β. Thus, to compute the Rényi entropy Sn in this setup, we will
evaluate three-point functions with one twist operator and two BCCO insertions.
Such setups have already been studied for the Ising and XX chains in [94], at the
level of the CFT on the replicated surface, and rely on the knowledge of relatively
simple closed-form expressions for the 2n-point correlator of BCCOs on the unit
disk for their calculations. However, such knowledge is the exception, rather than
the norm, for generic BCFTs.

In this chapter, we present an alternative method to compute such twist cor-
relation functions with mixed BCs, based on the null-vectors of the BCCOs. The
most technically demanding part of this framework is finding Ordinary Differen-
tial Equations (ODEs) that the correlators satisfy. According to Cardy’s doubling
trick [108], in the half-plane geometry, the three-point functions of interest obey
the same Ward identities as a four-point conformal block with the corresponding
operators, where the bulk twist operator σ(z, z̄) is replaced by the insertion of
σ(z)σ†(z̄). Thus, in an adaptation of the method of [118], we can derive a differen-
tial equation by combining knowledge of the null-vector conditions obeyed by the
twisted and untwisted fields under the symmetry algebra of the cyclic orbifold
[119] with the derivation of well-chosen Ward identities obtained from current
insertions in the correlators of interest. The final ingredient is the determination
of a subset of the (bulk and boundary) structure constants of the cyclic orbifold
BCFT, which fix the specific linear combination of solutions of the differential
equation that gives the sought correlator.

We have illustrated this approach with a variety of BCFT setups, that share
a common assumption: in the mother CFT, the mixed boundary conditions (αβ)
are implemented by a BCCO which is degenerate at level two under the Virasoro
algebra.

We provide here the outline of the chapter. In Section 4.2, we give a more con-
crete description of our setup and a summary of the analytical results obtained in
this work. Section 4.3 contains a comparison of our BCFT results with lattice data,
for both the Ising and three-state Potts critical chains. In Section 4.4 we review
some elements of the cyclic orbifold construction, with a focus on its implemen-
tation on the upper-half plane. We discuss in this section the bulk and boundary
operator algebra and show how some orbifold bulk and boundary structure con-
stants can be expressed in terms of mother BCFT quantities by unfolding and
factorizing arguments. We dedicate Section 4.5 to the derivation of ODEs for the
different setups described above. On top of the announced derivations involving
orbifold Ward identities, we also use the results on the fusion rules of the Zn

cyclic orbifold of [211] and some mathematical facts about the hypergeometric
differential equation, to derive low-order differential equations for the Ising case.
Finally, we have relegated the more technical derivations to the Appendix, to
avoid congesting the logical flow of the paper.
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4.2 Setup and summary of analytic results

We consider a quantum system at criticality on an open chain of size L, whose
universal properties are captured by a two-dimensional boundary conformal field
theory (BCFT). The left and right sides of the system are governed by conformal
boundary conditions denoted as α and β respectively. Our objective is to evaluate
the entanglement entropy of the ground state between the interval A = [0, ℓ] and
the remaining part of the system B = [ℓ,L], as depicted in Figure 4.1.

In the thermodynamic limit1 the nth Rényi entropy Sn(ℓ) is given (up to a
non-universal additive constant), by a correlation function of twist fields σ[46] :

Sn(l) =
1

1 − n
log⟨σ(w, w̄)⟩(αβ)

SL
, w = w̄ = ℓ (4.1)

where SL denote the infinite strip (with imaginary time running along the imagi-
nary axis)

SL = {w ∈ C, 0 < Re(w) < L} (4.2)

with boundary condition (α, β) on both sides of the strip. When α = β, the result
is well known [46] and is given by (1.52). At the CFT level, having the same
boundary condition α = β at both ends of the chain implies that the ground
state is conformally trivial, in the sense that its image under the state-operator
correspondence is the boundary identity operator. That is to say, the ground state
is the highest weight state |ψ11⟩with conformal dimension h11 = 0. Upon mapping
to the upper half planeH via the map z : SL →H

z(w) = −e−
iπw

L = e
iπ(L−w)

L (4.3)

computing the entanglement entropy boils down to the evaluation of a one-point
function

⟨σ(w, w̄)⟩(αα)
SL
= ⟨Ψ11| σ(ℓ) |Ψ11⟩

(αα)
SL
=

∣∣∣∣πL z
∣∣∣∣2hσ
⟨σ (z, z̄)⟩αH (4.4)

from which one easily recovers (1.52). However, when distinct boundary con-
ditions are employed, the ground state is no longer trivial. In this case, it is
mapped, under the state-operator correspondence, to a BCCO Ψαβ that inter-
polates between these distinct boundary conditions. Consequently, one has to
evaluate a three-point function instead

⟨σ(w, w̄)⟩(αβ)
SL
= ⟨Ψ(αβ)

| σ(w, w̄) |Ψ(αβ)
⟩SL
=

∣∣∣∣πL z
∣∣∣∣2hσ 〈
Ψ(βα)(∞)σ (z, z̄)Ψ(αβ)(0)

〉
H

(4.5)

Furthermore the CFT correlation function ⟨σ(w, w̄)⟩(αβ)
SL

captures only the lead-
ing asymptotic behaviour of the entanglement entropy as the system size tends
to infinity [118]. When comparing with a finite-size system, one needs to con-
sider various sources of corrections originating from irrelevant deformations of
the Hamiltonian in both the bulk and the boundary [144, 145]. Additionally, one
should generally be concerned about parity effects [146]. The most significant
corrections arise from the subleading scaling of the lattice twist operators [118].

1meaning L, ℓ ≫ 1, keeping 0 < ℓ/L < 1.
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Similar to any other lattice operator, the lattice twist operator σ̂ can be expressed,
in the continuum limit, as a local combination of scaling operators [73, 74]

σ̂ ∼
∑

j

c j
n ϵ

2hσ jσ j (4.6)

where ϵ→ 0 is an ultraviolet cut-off such as e.g. the lattice spacing. The constants
c j

n are non-universal, dimensionful amplitudes, and the sum contains an infinite
series of contributions from increasingly irrelevant operators. The leading opera-
tor is the bare twist field σ, which is primary with respect to the orbifold symmetry
algebra OVir⊗ ¯OVir. We shall denote its corresponding non-universal amplitude
c1

n ≡ cn for brevity. The subleading contributions consist of its descendants with
respect to this algebra, as well as the composite or excited twist fields σ j [118, 149]
and their descendants.

It is well known [94, 212] that for open systems, the finite-size corrections to
the leading CFT prediction for the entanglement entropy are much more severe
than for a periodic chain. To reproduce numerical data, it is crucial to identify and
compute the leading finite-size correction, that is correlation functions involving
excited twist fields

⟨σ j(w, w̄)⟩(αβ)
SL
=

∣∣∣∣πL z
∣∣∣∣2hσ j

〈
Ψ(βα)(∞)σ j (z, z̄)Ψ(αβ)(0)

〉
H

(4.7)

Let us now present a summary of the results obtained in this approach.

Summary of results

The main results of this chapter pertain to the second and third Rényi entropies,
under a specific scenario where the boundary conditions (α, β) are chosen in such
a way that the ground state of the mother BCFT of central charge:

c = 1 −
6(1 − g)2

g
(4.8)

corresponds to |ψ12⟩, characterized by a conformal dimension h12 = (3g− 2)/4. As
a consequence, |ψ12⟩ possesses a null-vector at level 2, enabling us to establish an
ordinary differential equation that governs the orbifold correlation function〈

Ψ
(βα)
12 (∞)σ j (z, z̄)Ψ(αβ)

12 (0)
〉
H

(4.9)

for a primary excited twist field σ j. Such differential equations can be solved
analytically in some cases (see Section 4.5), but if closed-form solutions are not
available one can always employ series methods (as explained in Appendix C.7).
The solutions can then be used to determine (4.9) as detailed in Section 4.5.

In the Z2 orbifold of a generic BCFT, we have derived a second-order and a
fourth-order ODE, respectively for the bare and composite2 twist correlator. In the
Z3 orbifold of a generic BCFT, we have determined a third-order ODE for the bare
twist correlator. We have also worked out, for the case of the Z2 and Z3 cyclic
orbifolds of the Ising BCFT, a variety of lower-order ODEs. All these ODEs are
presented and derived in Section 5.

2obtained by fusing the bare twist operator with an untwisted operator ϕ.
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Exact results for the Z2 orbifold

We have obtained an exact result3 for the leading BCFT contribution to the second
Rényi entropy, which applies to any critical system described by a BCFT based
on a minimal modelM(p, p′) with mixed conformal BC (α, β) chosen such that the
most relevant BCCO interpolating between them is ψ(αβ)

12 :

Sαβ2 ([0, ℓ]) =
c
8

log
2L
πϵ

sin
(
πℓ
L

)
− log F(αβ)

2 (ℓ/L) (4.10)

where
F(αβ)

2 (ℓ/L) =
1
gα

Gg(ℓ/L) +
1
gβ

Gg((L − ℓ)/L) (4.11)

and Gg does not depend on the boundary conditions and is given by

Gg(ℓ/L) =
sin 2πg
sin 3πg

(
Ig

(
− cos

πℓ
L

)
+ 2 cosπg Ig

(
cos

πℓ
L

))
(4.12)

with

Ig(x) =
(1 + x

2

)2g−1

2F1

(
g, 1 − g; 2 − 2g

∣∣∣ 1 − x
2

)
(4.13)

is essentially a Legendre function of the first kind. This expression depends in
a very simple way on the boundary conditions α and β via the terms gα and
gβ, and is manifestly invariant under exchanging α ↔ β and ℓ → L − ℓ. For
g ≥ 1/2, the function Gg interpolates smoothly between Gg(0) = 1 and Gg(1) = 0,
making manifest that the first term in (4.11) dominates the small ℓ behaviour,
while the second term controls the ℓ → L asymptotic. To put it differently,
F(αβ)

2 (ℓ/L) interpolates between its extremal values

F(αβ)
2 (0) =

1
gα
, and F(αβ)

2 (1) =
1
gβ
. (4.14)

It is interesting to check that the theoretical prediction for this kind of mixed
BC has the expected behaviour as the twist operator approaches the α and β
boundaries. We remind that the second Rényi entropy of an interval ℓ touching
one of the identical boundaries of a finite system of size L is given by:

Sγ2([0, ℓ]) =
c
8

log
[2L
πϵ

sin
(
πℓ
L

)]
+ log gγ (4.15)

In the limits ℓ → 0 and ℓ → L the effect of the boundary β and respectively, α is
suppressed. In consequence, we expect that this asymptotic behaviour is captured
by (4.15) with γ = α and γ = β, correspondingly.

To illustrate this result, we have plotted in Figure 4.2 the Rényi entropy Sαβ2
shifted by c

8 log L for different choices of mixed BC in the A-series minimal model
M(10, 9). We remind that in such BCFTs, the conformal BC are in one-to-one
correspondence with the primary fields ϕrs of the theory, and thus it is convenient
to label them as α ≡ (r, s)

3up to the usual non-universal additive constant
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Figure 4.2: Shifted second Rényi entropies for the mixed BC setups ((1, 2), (1, 1)),
((6, 6), (6, 5)) and ((8, 4), (8, 3)) for the BCFTs based onM(10, 9). The black curves
denote the mixed BC prediction interpolating between the identical BC results in
each case.

Furthermore, we’ve found that for a subset of these pairs of conformal BCs
(α, β) in a generic minimal modelM(p, p′), the expressions in (4.10) gains interest-
ing features. At the level of the mother BCFT, this is the case whenever the operator
ψ(ββ)

13 is not allowed in the theory. For BCFTs based on A-series minimal models
M(p, p′), this holds for any pair of mixed conformal BCs (α, β) ≡ ((r, 2), (r, 1)), la-
belled by bulk primary fields with 1 ≤ r < p. In this case, the following relation
holds for their corresponding ground state degeneracies

1 + 2 cos(πg)
g(r,2)

g(r,1)
= 0 (4.16)

and the function F(αβ)
2 simplifies into

F((r,2)(r,1))
2

(
ℓ
L

)
=

1
g(r,2)

(−2 cosπg) Ig

(
cos

πl
L

)
(4.17)

Consider now the difference in second Rényi entropies between two mixed BC
setups ((r, 2), (r, 1)) and ((r′, 2), (r′, 1)) for the same bulk CFT. We then find the
following universal result:

∆S2 = S((r′,2),(r′,1))
2 − S((r,2),(r,1))

2 = log
g(r,2)

g(r′,2)
= log

g(r,1)

g(r′,1)
(4.18)

where the latter equation follows from the expression of g(r,s) = S(r,s),(r0,s0)/
√

S(1,1),(r0,s0)

[32] in terms of S-matrix elements of minimal models [23] - here (r0, s0) denote the
Kac label of the field with the lowest conformal dimension of the diagonal bulk
CFT. In particular, for unitary minimal models (r0, s0) = (1, 1).

We illustrate these ideas graphically for the A-series minimal modelM(6, 5) in
Figure 4.3, by plotting the second Rényi entropies shifted by c

8 log L for two mixed
BC setups ((1, 2), (1, 1)) and ((3, 2), (3, 1)), together with the relevant identical BC
setups for each case.
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Figure 4.3: Shifted second Rényi entropies for the mixed BC setups ((1, 2), (1, 1))
and ((3, 2), (3, 1)) for the BCFTs based on M(6, 5). The difference between the
two curves is constant with respect to the interval size, and thus fixed by their
respective asymptotic behaviours around ℓ→ 0 and ℓ→ L

4.3 Numerical results and finite-size corrections in
quantum chains

To provide an independent appraisal of the validity of our CFT results, we have
performed a numerical analysis on the Ising and three-state Potts open quantum
chains for different settings of mixed BC. Once finite-size effects are properly
accounted for, the validity of the CFT results becomes apparent.

We should note that the Rényi entropies in the Ising case have already been
obtained, for generic n in the work of [94], through a different approach. We found
that our analytical calculations (for n = 2, 3) are compatible with their results.

Furthermore, by studying the finite-size corrections to their result, we manage
to quantitatively understand the deviation of the chain data from the leading
CFT prediction in the DMRG numerical analysis of [94], even for relatively large
system sizes M ∼ 102 sites. Thus, when the subleading CFT contribution to the
Rényi entropy is taken into account, as our analysis shall show, the agreement
with the lattice data is excellent, even for the small system sizes M ∼ 26 sites
accessible to exact diagonalization.
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4.3.1 The Ising quantum chain with mixed BC

The Hamiltonian of the Ising quantum chain with open BC, describing M spins
with generic BC at the boundary, is given by:

Hαβ = −

M−1∑
j=1

sz
js

z
j+1 − h

M∑
j=1

sx
j − hαsz

1 − hβsz
M , (4.19)

where sx,y,z
j denote Pauli spin operators acting non-trivially at site j, and as identity

at all the other sites. We denote the lattice spacing by ϵ, so that the length of the
chain is L = Mϵ. The parameters hα, hβ denote external fields (in the z direction)
acting at the boundary sites j = 1 and j =M. The ground state of this Hamiltonian
is then found by exact diagonalization (ED) for system sizes M ≤ 26 sites, and from
it, the Rényi entropies are extracted.

To take the scaling limit of the critical chain, we send M → ∞, ϵ → 0 while
keeping L fixed. In this limit, criticality is achieved in the bulk for h = 1, while
each boundary admits three critical points hα, hβ ∈ {0,±∞}.

From a CFT perspective, the scaling limit of the critical Ising chain with open
boundaries is very well understood. It is described by the BCFT with central
charge c = 1/2 and a bulk operator spectrum consisting of three primary operators
– the identity 1 (h1 = 0), energy ε (hε = 0) and spin operators s (hs = 1/16)– and
their descendants [23]. The three boundary critical points correspond to the three
conformal boundary conditions for the Ising BCFT, which, in the framework
of radial quantization on the annulus, allow the construction of the following
physical boundary states [23, 108]:

| f ⟩ = |1⟩⟩ − |ϵ⟩⟩ (free BC) , (4.20)

|±⟩ =
1
√

2
|1⟩⟩ +

1
√

2
|ϵ⟩⟩ ±

1
21/4 |s⟩⟩ (fixed BC) , (4.21)

where |i⟩⟩ denotes the Ishibashi state [108][140] corresponding to the primary op-
erator i. The physical boundary states |α⟩ are in one-to-one correspondence with
the primary fields of the bulk CFT 4: | f ⟩ ↔ s and |±⟩ ↔ 1/ε. The boundary fields
that interpolate between two conformal BCs can be inferred from this correspon-
dence, as shown in [108],[130]. Thus, the spectrum of primary boundary fields
ψ(αβ)

i of the Ising BCFT is the one of Table 4.1.

(αβ) + − f
+ ψ1 ψε ψs

− ψε ψ1 ψs

f ψs ψs ψ1, ψε

Table 4.1: Boundary operator spectrum of the Ising BCFT

On the discrete side, we are calculating the one-point correlator of the lattice
twist operator σ̂(m, t), where (m, t) are square-lattice coordinates. In the scaling
limit with ϵ → 0, σ̂(m, t) admits a local expansion into scaling operators of the
corresponding orbifold CFT. The two most relevant terms in this expansion are:

σ̂(m, t) = cn ϵ
2hσσ1(w, w̄) + cεn ϵ

2hσεσε(w, w̄) + less relevant terms , (4.22)
4This statement is strictly true if the bulk CFT is diagonal, see [213] for a detailed discussion.
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with the composite twist operator σε defined in (4.49) and hσε = hσ + hε/n. The
integers (m, t) parametrize the lattice, and they are related to the continuum coor-
dinate on the strip as w = (m + it)ϵ, w̄ = (m − it)ϵ. We can take advantage of the
translation invariance in the t direction to fix the ”time” coordinate of the lattice
twist operators to be t = 0. We will then denote their continuum coordinate by
ℓ = mϵ.

The amplitudes cn and cεn in (4.22) are not universal quantities, so we cannot
determine them by CFT techniques. However, they are also independent of the
global properties of the system (e.g. choice of BC) so they can be found from
a numerical analysis of the infinite Ising chain. Here one can employ the free
fermion techniques of [148] and the well-known analytical results for the Rényi
entropy of an interval in an infinite system [46, 214] to fit for the values5

We can now express the lattice one-point twist correlator with generic mixed
BC as an expansion of CFT correlators:

⟨σ̂(m, 0)⟩αβ = cnϵ
2hσ⟨σ(ℓ, ℓ)⟩αβ

SL
+ cεnϵ

2hσε ⟨σε(ℓ, ℓ)⟩
αβ
SL
+ . . . (4.23)

Using the map (4.3), we can make the dependence on system size in (4.23) explicit:

⟨σ̂(m, 0)⟩αβ = cn

(M
π

)−2hσ
⟨σ(z, z̄)⟩αβ

H
+ cεn

(M
π

)−2hσε
⟨σε(z, z̄)⟩αβ

H
+ . . . (4.24)

where z = exp(iπ(L− ℓ)/L), z̄ = exp(−iπ(L− ℓ)/L). In our computational setup, the
system sizes accessible through exact diagonalization are limited to M ≤ 26 and,
since twist operators are placed between lattice sites, we have only considered even
system sizes.

With system sizes of this order of magnitude, finite-size corrections are quite
strong. The most relevant corrections we have found arise from the subleading
scaling of the lattice twist operator, given in equation (4.24). The relative scaling
of the subleading term with respect to the leading one is O

(
M−2hϵ/n

)
. Finite-size

corrections of this magnitude can be suppressed only with much larger system
sizes M ∼ 103 sites, as shown in [120] . Since we do not have access, numerically,
to system sizes large enough to suppress these corrections, we had to take into
account the first two terms in the expansion of (4.24) to find a good agreement with
the lattice data. Furthermore, as the work of [94] suggests, the finite-size effects
are still important, even at the much larger system sizes M ∼ 100 sites accessible
through DMRG methods. We mention that such subleading contributions to the
lattice twist operator, which have been identified here from the operator spectrum
of the Z2 cyclic orbifold, have previously been understood, through the path
integral formalism on the corresponding replicated surface, under the name of
“unusual corrections” [144, 145].

We give now the results in theZ2 orbifold for the correlators appearing in the
expansion (4.23), for mixed fixed BC with α = +, β = − (calculated in Appendix

5Alternately, one could have used the exact result of [215] for cn in the periodic Ising chain, to
fit only for the non-universal constant cεn
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C.4) and mixed free-fixed BC with α = + and β = f :

⟨σ1(ℓ, ℓ)⟩+−SL
= 2−5/2

(2L
π

)−1/16 7 + cos 2πℓ
L(

sin πℓ
L

)1/16 ,

⟨σε(ℓ, ℓ)⟩
+−
SL
= 2−5/2

(2L
π

)−9/16 1 − 9 cos 2πℓ
L(

sin πℓ
L

)9/16 ,

⟨σ1(ℓ, ℓ)⟩+ f
SL
= 21/2

(2L
π

)−1/16 cos πℓ
4L(

sin πℓ
L

)1/16 ,

⟨σε(ℓ, ℓ)⟩
+ f
SL
= −21/2

(2L
π

)−9/16 cos 3πℓ
4L(

sin πℓ
L

)9/16 ,

(4.25)

where the interval ℓ starts at the α = + boundary. The expressions for the bare
twist correlators are in accord with the equivalent results obtained in [94].

With this mention, we show in Figure 4.4 the remarkable agreement between
our CFT calculations for the two terms contributing to the second Rényi entropy
Sαβ2 = − log⟨σ̂(m, 0)⟩(αβ) of the interval [0,m] on the lattice, and the numerical results
for the critical Ising chain from the exact diagonalization of the Hamiltonian.
Figure 4.4a illustrates the case of different (±) fixed BC on the two sides of the
chain, while Figure 4.4b corresponds to letting the m = 0 site free and applying a
magnetic field at the boundary site m =M − 1.

To illustrate the large amplitude of finite-size effects, we show in Figure 4.5
how the CFT prediction fares against the lattice results with and without the in-
corporation of the subleading term. Even for the curve including both subleading
and leading terms in (4.24), the agreement with lattice data is not perfect close to
the boundary. This can be traced to the presence of corrections from descendants
of twist operators, which introduce terms of O(M−hϵ−1) relative to the bare twist
contribution.

We can repeat the same kind of analysis for the third Rényi entropy, related to
the Z3-orbifold one-point function by Sαβ3 = −

1
2 log⟨σ̂(m, 0)⟩(αβ). The Ising orbifold

correlators in this case are given by:

⟨σ1(ℓ, ℓ)⟩+−SL
= 3−2

(2L
π

)−1/9 7 + 2 cos 2πℓ
L(

sin πℓ
L

)1/9 ,

⟨σε(ℓ, ℓ)⟩
+−
SL
= 3−2

(2L
π

)−4/9 1 + 8 cos 2πℓ
L(

sin πℓ
L

)4/9 ,

⟨σ1(ℓ, ℓ)⟩+ f
SL
= 2

(2L
π

)−1/9 cos πℓ
3L(

sin πℓ
L

)1/9 ,

⟨σ1(ℓ, ℓ)⟩+ f
SL
= 21/9

(2L
π

)−4/9 cos 2πℓ
3L(

sin πℓ
L

)4/9 .

(4.26)

In Figure 4.6, we once again compare our CFT calculations (including both the
leading and subleading term) with the critical chain results for the third Rényi
entropy Sαβ3 , to good agreement for mixed fixed BC (Fig. 4.6a) and mixed free fixed
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Figure 4.4: Plots of the second Rényi entropy Sαβ2 ([m/M]) in the critical Ising chain
with two types of mixed BC for a chain of size M = 26. The interval is grown from
the α = + boundary. We stress that the CFT prediction contains both the leading
and subleading BCFT contributions to Sαβ2 ([m/M])

BC (Fig. 4.6b). As for the Z2 results, including the CFT subleading contribution
to Sαβ3 is necessary to find a satisfying match with the lattice results. Further
finite-size corrections in this case decay as O

(
M−

2hε
3 −1

)
.

As advertised at the beginning of the section, our results for the bare twist
correlators (for all configurations of mixed BC) are compatible with the ones of
[94]. The subleading contribution to the Rényi entropies from the excited twist
correlator is largely responsible for the mismatch between the lattice and CFT
data in the aforementioned article.

4.3.2 The three-state Potts quantum chain with mixed BC

A natural extension of the Ising chain, the three-state Potts model allows the
spins at each site to take one of three possible values {R,G,B}, which we can also
conveniently parametrize by third roots of unity {1, ω, ω̄}, with ω = exp(2πi/3).
The Hamiltonian of the three-state Potts model, tuned to its bulk critical point
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Figure 4.5: Comparison of the second Rényi entropy in the critical Ising chain of
size M = 26 with mixed free fixed BC with CFT results. Inclusion of the subleading
term in the expansion 4.24 is crucial for obtaining a satisfying agreement with
lattice data

[216][217],[14] is given by:

Hαβ = −ζ

M−1∑
j=1

(
Z jZ†j+1 + Z†j Z j+1

)
+

M−1∑
j=2

(
X j + X†j

)
+ hH(α)

1 + hH(β)
M

 , (4.27)

where h are boundary couplings, ζ =
√

3
2π3/2 is the conformal normalization factor

[14] and the operators Z j and X j act at site j as:

Z =

 1 0 0
0 ω 0
0 0 ω2

 , X =

 0 1 0
0 0 1
1 0 0

 . (4.28)

The terms H(α)
1 and H(β)

M set the BCs at the ends of the chain. For this analysis,
we will set fixed BC of type R at site M and restricted boundary conditions of type
{G,B} at site 1 – the spin at site 1 is forbidden from taking the value R. The critical
points of interest for the boundaries correspond to h = +∞. However, for any
h > 0, the boundaries will flow towards the same critical points, up to irrelevant
boundary perturbations[143] . These are typically inconsequential for h a large
positive value. Furthermore, in our numerical analysis we can, in fact, implement
|h| → ∞ by restricting the local Hilbert spaces of the boundary sites to exclude the
{G,B} and {R} configurations on the left and, respectively, right boundary.

The scaling limit M → ∞, ϵ → 0 (with L = Mϵ fixed) of this critical chain is
also well understood. It is given by the D-series BCFTM(6, 5) with central charge
c = 4/5 and a bulk primary operator spectrum that contains the scalar fields given
in Table 4.2 as well as the non-diagonal fields {ϕ2/5,7/5, ϕ7/5,2/5, ϕ3,0, ϕ0,3} whose
labels indicate their respective holomorphic and antiholomorphic conformal di-
mensions. One can, as shown in Table 4.2, assign a Z3 charge to the scalar fields,
and their respective conformal families, that is consistent with the fusion rules
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Figure 4.6: Plots of the third Rényi entropy Sαβ3 ([m/M]) in the critical Ising chain
with two types of mixed BC for a chain of size M = 26. The interval is grown from
the α = + boundary.

between them. The conjugation in Table 4.2 is, therefore, used to differentiate the
fields with the same conformal dimension, but opposite Z3 charge.

Diagonal fields (h, h̄) Z3 charge
1 (0, 0) 0

ε ≡ ϕ12 (2
5 ,

2
5 ) 0

ϕ13 (7
5 ,

7
5 ) 0

ϕ14 (3, 3) 0
s, s† ≡ ϕ33 ( 1

15 ,
1
15 ) ± 1

ψ,ψ† ≡ ϕ34 (2
3 ,

2
3 ) ± 1

Table 4.2: Spectrum of spinless primary operators in the three-state Potts CFT
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In the scaling limit, the fixed and restricted6 boundary critical points will
correspond, naturally, to the conformal boundary states [108, 218].

|1⟩ = N[(|1⟩⟩ + |ψ⟩⟩ + |ψ†⟩⟩) + λ(|ϵ⟩⟩ + |s⟩⟩ + |s†⟩⟩)] (fixed R)

|ψ⟩ = N[(|1⟩⟩ + ω|ψ⟩⟩ + ω̄|ψ†⟩⟩) + λ(|ϵ⟩⟩ + ω|s⟩⟩ + ω̄|s†⟩⟩)] (fixed G)

|ψ†⟩ = N[(|1⟩⟩ + ω̄|ψ⟩⟩ + ω|ψ†⟩⟩) + λ(|ϵ⟩⟩ + ω̄|s⟩⟩ + ω|s†⟩⟩)] (fixed B)

|ε⟩ = N[λ2(|1⟩⟩ + |ψ⟩⟩ + |ψ†⟩⟩) − λ−1(|ϵ⟩⟩ + |s⟩⟩ + |s†⟩⟩)] (restricted GB)

|s⟩ = N[λ2(|1⟩⟩ + ω|ψ⟩⟩ + ω̄|ψ†⟩⟩) − λ−1(|ϵ⟩⟩ + ω|s⟩⟩ + ω̄|s†⟩⟩)] (restricted RB)

|s†⟩ = N[λ2(|1⟩⟩ + ω̄|ψ⟩⟩ + ω|ψ†⟩⟩) − λ−1(|ϵ⟩⟩ + ω̄|s⟩⟩ + ω|s†⟩⟩)] (restricted RG) ,
(4.29)

where

N =

√
2
√

15
sin

π
5
, λ =

√
sin(2π/5)
sin(π/5)

, (4.30)

and the |i⟩⟩’s are the Ishibashi states defined in [108]. These conformal boundary
states are labelled by the primary fields of Table 4.2.

Due to theZ3 symmetry of our model, we have some freedom to set which con-
formal boundary state corresponds to the fixed boundary condition R in the chain.
However, this uniquely determines the CFT boundary state that corresponds to
the restricted boundary conditions GB. This can be understood by considering
the spectrum of boundary fields that can interpolate between these conformal BC
[31], and ensuring the results are consistent with the underlying Z3 symmetry.
In our case, choosing fixed R ↔ |1⟩ forces us to assign restricted GB ↔ |ε⟩. The
most relevant boundary field interpolating between these BCs is ψ(GB,R)

12 [31] with
conformal dimension hε = 2/5.

We will now compare the quantum chain data for the second Rényi entropy
in the critical Potts chain with our correlator calculations in the Z2 orbifold of
the BCFT defined above. Our analysis will parallel the one for the Ising critical
chain. We first hypothesize the form of the local expansion (4.22) of the lattice
twist operator σ̂m,n in the case of the three-state Potts model:

σ̂(m,n) = c2 ϵ
2hσσ(w, w̄) + cε2 ϵ

2hσεσε(w, w̄) + less relevant terms , (4.31)

where hσ = 1/20, and the composite twist operator σε is built with the energy
operator ε of the Potts model so that hσε = 1/4. We’ve numerically estimated
the parameters c2, cε2 by a simple analysis of the critical three-state Potts critical
chain with periodic boundary conditions. Following this, the one-point lattice twist
correlator with our choice of mixed BC can be calculated from:

⟨σ̂(m, 0)⟩(GB,R) = c2

(M
π

)−2hσ1

⟨σ(z, z̄)⟩(GB,R)
H

+ cε2
(M
π

)−2hσε
⟨σε(z, z̄)⟩(GB,R)

H
+ . . . (4.32)

The correlators in (4.32) satisfy the second order (4.87) and fourth order (4.114)
ODEs with g = 6/5. While the solutions to equation (4.87) are known exactly
(4.92), one needs to solve (4.114) numerically to find the conformal blocks in
the expansion (4.81) of the excited twist correlator ⟨σε(z, z̄)⟩αβH . This is done by a
standard numerical implementation of the Frobenius method, whose details we
leave for Appendix C.7.

6In [108] they are referred to as ”mixed” BC.
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As in the case of the Ising BCFT, not all the solutions of these differential
equations are needed to build the twist field correlators in (4.32). Crucially, we
note that in the three-state Potts mother BCFT, there is no boundary operatorψ(RR)

7/5
living on the fixed conformal boundary of type R [31]. This means, as discussed
at the end of Section 4.5.1, that the expression for the leading BCFT to the second
Rényi entropy is given by (4.10) with the extra constraint (4.16). The relevant
ground state degeneracies were calculated in [217] and we reproduce them here
for convenience:

gR =

(
5 −
√

5
30

) 1
4

gGB = 2gR cos(π/5) (4.33)

Consequently, one finds the leading BCFT contribution in this case to be:

SGB|R
2 (ℓ) ∼

c
8

log
2L
πa

sin
(
πℓ
L

)
− log F(GB,R)

2 (l/L) (4.34)

with:

F(GB,R)
2

(
ℓ
L

)
=

1
gGB

(
−2 cosπ

6
5

)
I 6

5

(
cos

πl
L

)
(4.35)

where Ig is defined in (4.13). For the excited twist correlator, we do not have
a closed form expression, but the relevant expression (4.126) can be evaluated
numerically, as explained in Section 4.5.2.

Putting everything together, we can compare the lattice prediction for the
second Rényi entropy SGB|R

2 = − log⟨σ̂(m, 0)⟩(GB,R) with our analytic results in Figure
4.7. While the CFT prediction does not satisfyingly match the lattice data at all
points, we observe that the inclusion of the subleading term gives an analytic
curve that is closer to the lattice data. However, it is not enough to make up for
the severe finite-size effects.

Firstly, due to the operator content of the D-series M6,5 CFT, we expect the
higher order corrections in 4.32 to have a slower power law decay than in the case
of the Ising CFT. We conjecture that the next-to-subleading contribution to (4.32)
will decay as∼M−2(hσε+1/2). These corrections, we believe, arise from the combined
contribution of the ⟨σϕ13(w, w̄)⟩(GB,R)

S
and ⟨L(1)

−1/2L̄(1)
−1/2σϕ12(w, w̄)⟩(GB,R)

S
. While the first

correlator can be calculated by a repeat of the method employed for the subleading
term, the correlator involving the descendant twist field requires the derivation
of a new differential equation. Such an endeavour is beyond the scope of this
chapter.

Furthermore, the quantum chain sizes we can reach are diminished in the case
of the three-state Potts model, since the size of the space of states grows as ∼ 3M.
This memory constraint prevents us from reaching sizes at which higher-order
corrections are suppressed, using our computational methods. This limitation can
be, perhaps, bypassed through the usage of more sophisticated numerical tools,
such as DMRG or tensor network methods, to access system sizes M for which
the unknown higher-order correction terms are further suppressed.

Finally, one can use the method of Appendix C.7, applied this time to the
third order ODE of Section 4.5.3 to derive the leading CFT contribution to the
SGB|R

3 ([0, ℓ]) Rényi entropy. Since in this case, we have not derived an ODE for the
excited twist correlator, we have no handle on the finite-size corrections to the
lattice data, which should be even more severe for n = 3.
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Figure 4.7: Comparison of the second Rényi entropy in the critical three-state
Potts chain of size M = 18 with mixed (GB,R) BC with CFT results.

Instead, we have just checked that the CFT result for mixed BC matches the
values for the third Rényi entropies for identical GB and R boundaries:

Sα3 ([0, ℓ]) =
c
9

log
[2L
πϵ

sin
(
πℓ
L

)]
+ log gα (4.36)

in the asymptotic regimes ℓ→ 0 and ℓ→ L respectively.
Our expectations are met, as Figure 4.8 confirms.
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Figure 4.8: Comparison of shifted third Rényi entropies for (GB,R), (R,R) and
(GB,GB) BC. The mixed BC curve can be seen to interpolate between the identical
BC results
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4.4 The cyclic orbifold

In this section, we will present the construction of the cyclic orbifold BCFT on the
upper half-planeH. After reviewing a few essential features of theZn orbifold on
the Riemann sphere, we will discuss conformal boundary conditions, boundary
operators as well as bulk-boundary and boundary-boundary operator algebras.

4.4.1 The cyclic orbifold on the Riemann sphere

To build a cyclic orbifold CFT, one starts from any mother CFTM and constructs
the tensor product theory M⊗n. Then one considers all the Zn equivalent ways
of connecting the copies of the product theory, which creates n different sectors,
each with its corresponding operator families and labelled by aZn twist charge [k].
The spectrum of the cyclic orbifoldMn is then built as a reunion of the operator
families from all the sectors [k].

Symmetry algebra and operator content

InMn, each copy a of the mother CFT carries the components of the stress-energy
tensor Ta(z),Ta(z̄). We define the discrete Fourier modes of these currents as

T(r)(z) =
n−1∑
a=0

ωar Ta(z) , T
(r)

(z̄) =
n−1∑
a=0

ωar Ta(z̄) , (4.37)

where r is considered modulo n, and we have used the notation ω = exp(2iπ/n).
They satisfy the OPEs

T(r)(z)T(s)(w) =
δr+s,0 nc/2
(z − w)4 +

2T(r+s)(w)
(z − w)2 +

∂T(r+s)(w)
z − w

+ regz→w ,

T
(r)

(z̄)T
(s)

(w̄) =
δr+s,0 nc/2
(z̄ − w̄)4 +

2T
(r+s)

(w̄)
(z̄ − w̄)2 +

∂T
(r+s)

(w̄)
z̄ − w̄

+ regz̄→w̄ ,

(4.38)

where the Kronecker symbols δr+s,0 are understood modulo n. The symmetric

modes T(0)(z) and T
(0)

(z̄) are the components of the stress-energy tensor of Mn

with central charge nc, whereas the other Fourier modes T(r)(z),T
(r)

(z̄) with r , 0
should be regarded as additional conserved currents. Altogether, these Fourier
modes encode an extended conformal symmetry. The modes associated with
these currents are defined in the usual way:

L(r)
m =

1
2iπ

∮
dz zm+1 T(r)(z) ,

L̄(r)
m =

1
2iπ

∮
dz̄ z̄m+1 T

(r)
(z̄) .

(4.39)

In the sector of twist charge [k] one has the following mode decompositions

T(r)(z) =
∑

m∈−kr/n+Z

z−m−2 L(r)
m

T
(r)

(z̄) =
∑

m∈+kr/n+Z

z̄−m−2 L̄(r)
m

(4.40)
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and the commutation relations[
L(r)

m ,L
(s)
p

]
= (m − p)L(r+s)

m+p +
nc
12

m(m2
− 1) δm+p,0 δr+s,0 ,[

L̄(r)
m , L̄

(s)
p

]
= (m − p)L̄(r+s)

m+p +
nc
12

m(m2
− 1) δm+p,0 δr+s,0 .

(4.41)

Hermitian conjugation of the modes acts as:(
L(r)

m

)†
= L(−r)

mn ,
(
L̄(r)

m

)†
= L̄(−r)

−m . (4.42)

Orbifold primary operators are, by definition, annihilated by the action of all the
positive modes of OVir⊗OVir. Descendant operators with respect to this algebra
are constructed by the action of the negative m modes. We establish the notation
for descendants of a scaling (primary or not) operator O:(

L(r)
m · O

)
(z, z̄) :=

1
2iπ

∮
Cz

dw (w − z)m+1 T(r)(w)O(z, z̄) ,(
L̄(r)

m · O
)

(z, z̄) :=
1

2iπ

∮
Cz

dw̄ (w̄ − z̄)m+1 T
(r)

(w̄)O(z, z̄) ,
(4.43)

where the contour Cz encloses the point z.
It will be useful to work with the primary operator spectrum with respect to

the neutral subalgebra A ⊗ Ā generated by the algebra elements

L(r1)
m1
. . . L(rp)

mp and L̄(r1)
m1
. . . L̄(rp)

mp , with r1 + · · · + rp = 0 mod n . (4.44)

One can classify all Zn-symmetric operators of Mn into representations of A ⊗
Ā. This organization, described in detail in [211], distinguishes between three
types of operators. First, we have identified the untwisted non-diagonal operators
Φ[ j1... jn]. These operators are built fromZn-symmetrized combinations of products
of mother CFT primary operators ϕ j (with j = 1 referring to the identity operator
1):

Φ[ j1... jn] :=
1
√

n

n−1∑
a=0

(ϕ j1+a ⊗ · · · ⊗ ϕ jn+a) , (4.45)

in which at least one pair satisfies ji , jk. Its conformal dimension is given by
h[ j1... jn] =

∑
s h js .

The second type of primary operators under the neutral algebra are the un-
twisted diagonal fields Φ(r)

j , where the Fourier replica index r takes values in Zn .
The r = 0 diagonal fields are defined to be:

Φ(0)
j = Φ j := ϕ j ⊗ · · · ⊗ ϕ j , (4.46)

while for r , 0, they are constructed as:

Φ(r)
j :=

1
2nh j

L(r)
−1L̄(−r)

−1 ·Φ j , 1(r) :=
2
nc

L(r)
−2L̄(−r)

−2 ·Φ1 , (4.47)

The conformal dimension of a diagonal operator Φ(r)
j is then generically given by

h(r)
j = nh j + δr,0

(
1 + δ j,1

)
(4.48)
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We should note that the diagonal operators with r = 0 and the non-diagonal
operators are also primary under OVir ⊗OVir.

Finally, we have to consider twist operators, which come in distinct flavours.
For this chapter, we will mostly work with twist operators with Fourier replica in-
dex r = 0. Thereupon, just as for the diagonal fields, we will drop this specification
when the context heavily implies it, to decongest the notation.

We first consider the ubiquitous bare twist operators [46, 70, 87, 123] which
are denoted in our conventions σ[k] = σ[k]

1 , or, in light notation, σ = σ[1] and
σ† = σ[−1]. We have also the composite twist fields σ[k]

j , which can be defined
through point-splitting as in [219]:

σ[k]
j (z, z̄) := A j lim

ϵ→0

[
ϵ2(1−n−1)h jΦ[ j,1,...,1](z + ϵ, z̄ + ϵ̄) · σ[k](z, z̄)

]
, (4.49)

where the constantA j = n−2(1−n−1)h j−1/2 ensures that non-vanishing two-point func-
tions of twist operators are normalized to one. If n and k are coprime, the confor-
mal dimension of the bare twist operator is

hσ =
c

24

(
n −

1
n

)
, (4.50)

while for composite twist operators one has:

hσ j = hσ +
h j

n
. (4.51)

Having established the primary operator spectrum of the orbifold, we will now
review how the null vectors of the diagonal and twisted fields inMn are inferred
from the ones of the mother theoryM.

Null vectors for untwisted operators

Let us consider a generic mother CFTM, with central charge

c = 1 −
6(1 − g)2

g
, 0 < g ≤ 1 . (4.52)

The conformal dimensions of degenerate primary operators are given by the Kac
formula

hrs =
(r − sg)2

− (1 − g)2

4g
, (4.53)

where r, s are positive integers. The corresponding operator ϕrs is degenerate at
level rs. If the parameter g is rational, i.e. g = p/p′ with coprime p and p′, then
the set of operators ϕrs with 1 ≤ r ≤ p − 1 and 1 ≤ s ≤ p′ − 1 generates a closed
operator algebra, and the related CFT is the minimal modelMp,p′ . While we do
employ this parametrization extensively, in the present work we will consider a
more generic mother CFT, and we do not assume that it is a minimal model—unless
explicitly indicated.

Consider the situation when the mother CFT includes the degenerate operator
ϕ12, with null-vector condition(

L−2 −
1
g

L2
−1

)
ϕ12 = 0 . (4.54)
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In the untwisted sector of the orbifold CFT, we have

L(r)
n =

n∑
a=1

e2iπra/n

(
1 ⊗ . . . 1 ⊗ Ln

(a−th)
⊗ 1 ⊗ . . . 1

)
, n ∈ Z , (4.55)

and the diagonal untwisted operator associated to ϕ12 is

Φ12 = ϕ12 ⊗ · · · ⊗ ϕ12 . (4.56)

Using an inverse discrete Fourier transform, one easily finds, for any r ∈ Zn,L(r)
−2 −

1
ng

n−1∑
s=0

L(s)
−1L(r−s)

−1

 ·Φ12 = 0 . (4.57)

When inserted into a correlation function, the modes L(0)
m act as linear differential

operators. The treatment of the modes L(r)
m with r , 0 introduces an additional

difficulty, that we will address case by case, with the help of orbifold Ward
identities.

The induction procedure

The null vectors of the mother CFT also determine the null vector conditions on
twist operators inMn, through the induction procedure[119].

In the present work, we shall only be concerned with the twist sectors with
charges [±1]. In the notations of [211], induction can be expressed in terms of a
norm-preserving, invertible linear map Θ from the Hilbert space of the mother
CFT to that of the twisted sector [1], defined by

Θ |ϕ⟩ = |σϕ⟩ , ΘLmΘ
−1 = n

(
L(−m)

m/n − hσ δm0

)
, (4.58)

where ϕ is any primary operator in the mother CFT, and σϕ is the associated
composite twist operator in the orbifold CFT.

The simplest application to null-vectors is the case of the identity:

L−1 · 1 = 0 ⇒ L(1)
−1/n · σ = 0 . (4.59)

For a degenerate operator at level two, applying the induction map on (4.54)
yields [

L(2)
−2/n −

n
g

(L(1)
−1/n)2

]
· σ12 = 0 . (4.60)

The corresponding null-vector conditions for the operators σ† and σ†12 are easily
obtained by conjugation.

4.4.2 The cyclic orbifold on the upper half plane

To construct the cyclic orbifold BCFT, we will work on the upper half-plane H,
with the boundary along the real axis. We parametrize H by z = x + iy with
x ∈ R and y > 0, and we impose the gluing condition on the boundary for the
stress-energy tensor components:

T(0)(x) = T
(0)

(x) for x ∈ R , (4.61)
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which ensures that the boundary is conformal i.e., preserves a copy of the Virasoro
algebra [220]. TheZn orbifold, however, has an extended symmetry, and we must
choose if and how the components of the additional currents T(r,0) are glued at
the boundary. Our usage of the replica trick provides a clear indication for these
choices: since we are considering n copies of the same mother BCFT, we must
impose the gluing condition Ta(x) = T̄a(x) on each of them. By taking the Fourier
transform of this relation, we find that in the orbifold CFT we are effectively
imposing:

T(r)(x) = T
(r)

(x) for x ∈ R , (4.62)

for all the discrete Fourier modes of the stress-energy tensor components defined
in (4.37). This implies that the boundary preserves a full copy of the OVir algebra.

By the same reasoning on CFT replicas, the orbifold boundary states we are
interested in correspond to having the same conformal BC on the n copies of the
mother CFT. They are simply given by |α⟩⊗n and |β⟩⊗n.

On the upper half-plane, we will set the conformal BCαon the positive real axis
x > 0 and the conformal BC β on x < 0. To implement such mixed conformal BC in
a BCFT, we will have to work with the formalism of BCCOs [108]. These operators,
restricted to live on the boundary, are placed at the points of suture of regions of
different BC. The full operator algebra of a BCFT is then formed by considering
the OPEs between both BCCOs and bulk operators, as detailed in Appendix C.1.
For a given pair of conformal BCs (α, β), there can be several primary BCCOs
implementing the change α → β: we denote such an operator ψ(αβ)

h , where h
specifies its conformal dimension. The most relevant BCCO implementing α→ β
is simply referred to as ψ(αβ).

In theZn orbifold CFT, we will be concerned with the calculation of correlators
with insertions of diagonal BCCOs, namely :

Ψ
(αβ)
h = ψ(αβ)

h ⊗ · · · ⊗ ψ(αβ)
h︸               ︷︷               ︸

n times

. (4.63)

Then, orbifold correlators with mixed BC are obtained by inserting the most
relevant diagonal BCCO:

⟨O1(z1, z̄1) . . .On(zn, z̄n)⟩αβ
H
= ⟨Ψ(αβ)(∞)O1(z1, z̄1) . . .On(zn, z̄n)Ψ(βα)(0)⟩H . (4.64)

By Cardy’s doubling trick [28], [124], such (n+2)-point correlators satisfy the same
Ward identities as any of the (2n+2)-point conformal blocks on the Riemann sphere
Cwith external operators

Φ(∞),O1(z1),O1(z̄1), . . . ,On(zn),On(z̄n),Φ(0) , (4.65)

where Oi(z̄) is the antiholomorphic counterpart of Oi(z), and Φ(z) is the holomor-
phic part of the diagonal primary operator defined in (4.46), with the conformal
dimension ofΨ(αβ). In more precise terms, Oi is the operator conjugate to Oi with
respect to the symmetry algebra preserved by the boundary [221]. For Zn twist
operators, conjugation acts as σi = σ†i [70], so that the one-twist function

⟨σi(z, z̄)⟩(αβ)
H
= ⟨Ψ(αβ)(∞)σi(z, z̄)Ψ(αβ)(0)⟩H (4.66)
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satisfies the same Ward identities as the functions z̄−2hσi × Fk(z/z̄), where Fk is the
rescaled conformal block:

Fk(η) = Φk

σi(1)

Φ(0)

σ†
i (η)

Φ(∞)

= ⟨Φ|σi(1)Pkσ
†

i (η)|Φ⟩ , (4.67)

Pk is the projector onto the (A ⊗ Ā)-module of Φk, and {Φk} is the set of allowed
intermediary untwisted (diagonal or not) primary operators. In the following,
it will also be necessary to consider the conformal blocks in the channel η → 1,
namely

F̃ℓ(η) = Φ`

σi(1)

Φ(0)

Φ(∞)

σ†
i (η)

= ⟨Φ|Φ(1)Pℓσ†i (1 − η)|σi⟩ . (4.68)

Using the Ward identities implied by the OVir algebra (discussed in detail
in Section 4.5) for these functions, together with the null-vectors of the previous
section, will allow us to extract an ODE that the functions (4.67–4.68) satisfy.

To understand the structure of the conformal blocks, we also need to define
non-diagonal BCCOs, paralleling (4.45):

Ψ
(αβ)
[ j1... jn] :=

1
√

n

n−1∑
ℓ=0

(ψ(αβ)
j1+ℓ
⊗ · · · ⊗ ψ(αβ)

jn+ℓ
) , (4.69)

where the 1/
√

n factor ensures that the non-vanishing two-point functions of these
BCCOs are normalized to one. These operators appear in the OPE of the diagonal
boundary fieldsΨ(αβ)

j , and thus their conformal dimension determines the leading
singular behaviour of the conformal blocks. Naturally, we should now discuss
the operator algebra of the Zn orbifold BCFT.

4.4.3 Operator algebra of the cyclic orbifold BCFT

In the orbifold BCFT, the operator algebra consists of OPEs of three types. First,
there is the operator subalgebra of bulk operators, inherited from theZn orbifold
CFT on C. We shall not directly use the structure constants of this subalgebra in
this chapter, but they have been discussed in [118, 119, 123, 222]. The second type
of OPE we need to consider in the orbifold BCFT is the bulk-boundary OPE which
encapsulates the singular behaviour of a bulk field as it approaches a conformal
boundary. In our calculations, we will only need to work with the OPEs of
primary twist operators σi(z, z̄) as they are sent towards a conformal boundary α:

σi(x, y) ∼
y→0

∑
j

A
(α)
σi,Ψ j

(2y)h j−2hσi Ψ(αα)
j (x) (4.70)

where the sum runs over all the boundary operatorsΨ(αα)
j and their descendants

under OVir, and we have denoted the bulk-boundary structure constants byA(α)
σi,Ψ j

.
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Finally, we need to consider the OPEs of orbifold boundary operators. For generic
diagonal BCCOs, this takes the form

Ψ
(αβ)
i1

(x1)Ψ(βγ)
i2

(x2) ∼
x1→x2

∑
j

B
(βγ)Ψ j

Ψi1 ,Ψi2
(x1 − x2)−hi1−hi2+h jΨ

(αγ)
j (x2) (4.71)

with the index j running over all the orbifold BCCOs interpolating between the
conformal boundary conditions α and γ. We have denoted the boundary-boundary
structure constants byB(αβγ)Ψ j

Ψi1 ,Ψi2
. To calculate the structure constants of the OPEs that

are relevant for the present work, we will need to use factorization and unfolding
arguments for the correlator that determine them, along the lines of [211],[223]
and [123].

Calculation of boundary-boundary structure constants

Let us consider the calculation of boundary-boundary structure constants of the
type B(ββα)Ψk

Ψ∗,Ψ j
, where Ψ∗ denotes a generic untwisted orbifold primary BCCO. We

can express this as a three-point function on the upper half-planeH:

B
(ββα)Ψk
Ψ∗,Ψ j

= ⟨Ψ
(αβ)
k (∞)Ψ(ββ)

j (1)Ψ(βα)
∗ (0)⟩H . (4.72)

Since there are no twist insertions in the above correlator, it just factorizes into
a linear combination of products of mother BCFT three-point functions. Let us
first consider the case of a diagonal BCCO, with Ψ(βα)

∗ = Ψ
(βα)
i . Then, the orbifold

correlator factorizes into mother CFT three-point functions as:

B
(ββα)Ψk
Ψi,Ψ j

=
(
⟨ψ(αβ)

k (∞)ψ(ββ)
j (1)ψ(βα)

i (0)⟩H
)n
, (4.73)

so we find a simple expression for these coefficients, in terms of mother BCFT
boundary-boundary structure constants:

B
(ββα)Ψk
Ψi,Ψ j

=
(
B(ββα) k

i j

)n
. (4.74)

By similar considerations, the structure constants involving a non-diagonal BCCO
Ψ

(βα)
[i1...in] can be expressed as:

B
(ββα)Ψk
Ψ[i1 ...in],Ψ j

=
√

n
n∏

a=1

B(ββα) k
ia j (4.75)

The rest of the boundary-boundary structure constants of untwisted BCCOs can
similarly be expressed in terms of mother BCFT quantities, but we will not need
them in this work.

Orbifold bulk-boundary structure constants

The first bulk-boundary structure constant we need to calculate is A(α)
σ,Ψ1

, where
Ψ(αα)

1 is just the identity boundary field. This can be expressed as the one-point
function on the unit diskD:

A
(α)
σ,Ψ1
= ⟨σ(0, 0)⟩αD , (4.76)
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which is just the ratio of mother CFT partition functions:

⟨σ(0, 0)⟩αD =
Z

(α)
Dn[

Z
(α)
D

]n , (4.77)

where Dn denotes the n-th covering of the unit disk with branch points at 0 and
1. As shown in [110], we can express (4.76) in terms of the ground state degeneracy
gα = ⟨0|α⟩ [217] (which is defined as the overlap between the vacuum state |0⟩ and
the boundary state |α⟩ in the mother BCFT):

A
(α)
σ,Ψ1
= g1−n

α . (4.78)

Using this result, we can calculate the one-point structure constants of composite
twist operators σi, by using the definition (4.49) and the relation between twist
correlators on the disk D and the mother CFT partition function on Dn, which
simply gives:

A
(α)
σi,Ψ1
= A(α)

σ,Ψ1
Aα
ϕi
, (4.79)

where Aα
ϕi

is the mother CFT one-point structure constant of ϕi with conformal
boundary condition α. The proof is relegated to Appendix C.2.1.

Extending these results to more complicated bulk-boundary structure con-
stantsA(α)

σ[k]
i ,Ψ j

for generic choices of mother CFT and cyclic groupZn is not usually

straightforward and depends on our knowledge of correlation functions in the
mother CFT. For example, in Appendix C.2.2 we calculate the structure constant
A

(α)
σ,Ψ13

in the Z2 orbifold BCFT since it can be expressed in terms of a two-point
function of boundary operators in the mother CFT. For generic n and composite
twist operator σ[k]

i , knowledge of higher-point correlators in the mother CFT is
required to compute such structure constants through the same unfolding meth-
ods.

4.5 Differential equations in the Z2 and Z3 orbifold
BCFT

We consider the case of a generic BCFT, with central charge c. The model is
defined on the upper half plane, with conformal boundary conditions α and β set
on the negativeℜ(z) < 0 and positiveℜ(z) > 0 parts of the real axis, respectively.
We will work, for the entirety of this section, under the assumption that the most
relevant BCCO interpolating between these boundary conditions is ψ(αβ)

12 , with
conformal dimension h12. This implies that the BCCO has a null vector at level
2. Of course, our results also apply to the case where the BCCO is ψ(αβ)

21 , up to
changing g→ 1/g.

In the Zn orbifold of this theory, we will consider one-point correlators of
generic composite twist operators σi of twist charge [k = 1], in a background with
mixed BC α and β, corresponding to the replicated boundary conditions of the
mother BCFT. The change in boundary conditions in the orbifold theory will
be implemented by the diagonal BCCO Ψ(αβ)

12 defined in (4.63), with conformal
dimension hΨ12 = nh12. In this setup, we aim to calculate:

⟨σi(z, z̄)⟩αβ
H
= ⟨Ψ

(αβ)
12 (∞) σi(z, z̄)Ψ(βα)

12 (0)⟩H , (4.80)
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Using the information about the operator algebra of the orbifold BCFT we
have presented in Section 4.4.3, we can write the following block expansion for
(4.80)

⟨σi(ℓ, ℓ)⟩
αβ
H
= JSL(2,C)

∑
ℓ

A
(β)
σi,Ψℓ
B

(ββα)Ψ12
Ψℓ,Ψ12

F̃ℓ(η) , (4.81)

where η = z̄/z, and JSL(2,C) = (z)−2hσi is the Jacobian associated to the Möbius map
ζ 7→ ζ/z that takes (0, z, z̄,∞) 7→ (0, 1, η,∞). As per Cardy’s doubling argument
[220], the functions F̃k(η) are four-point conformal blocks (4.67) with Φ = Φ12, in
the channel η→ 1.

To proceed, we need to determine the differential equation satisfied by these
functions. To this end, we will use a combination of the null-vector conditions
and the orbifold Ward identities of [118]

4.5.1 The function ⟨Ψ12 · σ ·Ψ12⟩ in a generic Z2 orbifold

Following the general approach described above, the function ⟨Ψ12(∞)σ(z, z̄)Ψ12(0)⟩H
is given, up to the overall factor z−2hσ , by a linear combination of the conformal
blocks

Fk(η) = ⟨Φ12|σ(1)Pkσ(η)|Φ12⟩ . (4.82)

It turns out that this family of conformal blocks was already studied in [118], for
the calculation of the single-interval Rényi entropy in the excited state |Φ12⟩ with
periodic BC. Let us recall how the derivation of the corresponding ODE goes. The
null-vectors at level two of the untwisted chiral state |Φ12⟩ are:[

L(0)
−2 −

1
2g

(
L(0)
−1

)2
−

1
2g

(
L(1)
−1

)2
]
· |Φ12⟩ ≡ 0,[

L(1)
−2 −

1
g

L(0)
−1L(1)

−1

]
· |Φ12⟩ ≡ 0 ,

(4.83)

while the null vector at level 1/n of the bare twist operator σ is :

L(1)
−1/2 · σ ≡ 0 . (4.84)

We combine these with the orbifold Ward identity for the chiral correlator:

G
(1)(w, η) = ⟨Φ12| σ(1)Pkσ(η)T(1)(w)L(1)

−1 |Φ12⟩ , (4.85)

with (m1,m2,m3,m4) = (0,−1/2,−1/2,−1) in the notation of (C.22). This gives,
after taking into account (4.84):∑

p=0,1,2

dp ⟨Φ12| σ(1)Pkσ(η)L(1)
−p+2L(1)

−1 |Φ12⟩ = 0 , (4.86)

with dp calculated from the series (C.27).
By substituting the null vectors (4.54–4.84) and employing the identity (C.28),

one obtains the differential equation:

64g2η2(η − 1)2 ∂2
ηF + 16gη(η − 1)

[
(−14g2 + 23g − 6)η + 2g(1 − 4g)

]
∂ηF

+ (3g − 2)
[
+3(5g − 6)(1 − 2g)2η2 + 12g(1 − 2g)η + 16g2(g − 1)

]
F = 0 ,

(4.87)

whose Riemann scheme is given by:
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0 1 ∞

−2h12 −2hσ 2hσ − 2h12

−2h12 + h13/2 −2hσ + 2h13 2hσ − 2h12 + h13/2

This corresponds to the intermediary states {σ, σ13} in the channels η → 0 and
η → ∞, and {1,Φ13} in the channel η → 1. Note that, when the mother CFT is
a minimal modelMp,p′ , one can check for various values of (p, p′) that these are
exactly the intermediary states allowed by the orbifold fusion given in (5.4), and
that they all have multiplicity one.

To proceed, one can define the shifted function f (η):

F (η) = (1 − η)−2hση−2h12 f (η) , (4.88)

and substitute in (4.87) to find that f (η) satisfies a second order hypergeometric
equation (C.41) with parameters:

a = 2 − 3g , b =
3
2
− 2g , c =

3
2
− g . (4.89)

Since these coefficients are related via

a + 1 = b + c (4.90)

we can exploit Kummer’s quadratic transformation formula (see Appendix C.5),
leading to

⟨Ψ
(αβ)
12 (∞)σ(z, z̄)Ψ(αβ)

12 (0)⟩H =
1

|z − z̄|2hσ

(
Aαβ K1(ζ) + Bαβ K2(ζ)

)
, ζ =

(z + z̄)2

4|z|2

(4.91)
where

K1(ζ) = 2F1

( a
2
, b −

a
2

;
1
2

∣∣∣∣∣ ζ)
K2(ζ) =

√
ζ 2F1

( a + 1
2
, b −

a − 1
2

;
3
2

∣∣∣∣∣ ζ) (4.92)

To determine the coefficients Aαβ and Bαβ, we exploit the known behaviour in
the limit where the twist field σ approaches the boundary, that is z = x + iy → x.
We have to distinguish between two situations, as σ can either approach the β
boundary (x > 0) or the α boundary (x < 0).

In the former case, we expect, from the block expansion (4.81):

|z − z̄|2hσ⟨Ψ12(∞)σ(z, z̄)Ψ12(0)⟩H
z→z̄
−−→

(
A

(β)
σ,Ψ1
B

(ββα)Ψ12
Ψ1,Ψ12

+ |z − z̄|2h13x2h13A
(β)
σ,Ψ13
B

(ββα)Ψ12
Ψ13,Ψ12

)
(4.93)

where the various structure constants are expressed in terms of the mother BCFT
data as

A
(β)
σ,Ψ1
= g−1

β , A
(β)
σ,Ψ13
= g−1

β 2−4h13 , B
(ββα)Ψ12
Ψ1,Ψ12

= 1 , B
(ββα)Ψ12
Ψ13,Ψ12

=
(
B(ββα)ψ12

ψ13ψ12

)2
.

(4.94)
while the corresponding expressions for x < 0 are obtained by swapping α ↔ β
in the above equations.

For the task of fixing Aαβ and Bαβ only the leading behaviour in (4.93) is needed:

|z − z̄|2hσ⟨Ψ12(∞)σ(z, z̄)Ψ12(0)⟩H ∼z→z̄

 1
gβ

if Re(z) > 0
1
gα

if Re(z) < 0
(4.95)
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Furthermore, it will be convenient to switch to the following basis of solutions :

H1(ζ) = 2F1

(a
2
, b −

a
2

; b +
1
2
| 1 − ζ

)
H2(ζ) = (1 − ζ)

1
2−b

2F1

(a + 3
2
− b,

3 − a
2

;
3
2
− b | 1 − ζ

) (4.96)

When x > 0 one can directly use the relation

Ki = Pi jH j (4.97)

to transform to (4.96). The matrix P is given in (C.45), up to changing a → a/2,
b → b − a/2 and c → 1/2. For x < 0 on the other hand one must first analytically
continue (4.91) around ζ = 0, which simply changes Bαβ → −Bαβ in (4.91) , and
only then use (4.97). Then imposing the constraint (4.95), the constants Aαβ and
Bαβ are found to be

Aαβ =
Γ
(

g
2

)
Γ
(

3g
2 −

1
2

)
2
√
πΓ(2g − 1)

(
1
gα
+

1
gβ

)
, Bαβ =

Γ
(

3g
2

)
Γ
(

g+1
2

)
√
πΓ(2g − 1)

(
1
gβ
−

1
gα

)
(4.98)

Splitting the contributions proportional to 1/gα and 1/gβ leads to

F(αβ)
2 (ζ) =

1
gα

Gg

(√
ζ
)
+

1
gβ

Gg

(
−

√
ζ
)

(4.99)

and where the function Gg is given by

Gg(χ) = [2
√
πΓ(2g − 1)]−1

[
Γ
( g

2

)
Γ

(
3g
2
−

1
2

)
2F1

(
1 −

3g
2
,

1 − g
2

;
1
2

∣∣∣∣∣χ2

)
+

+ Γ

(
3g
2

)
Γ

(
g + 1

2

)
2χ 2F1

(
3 − 3g

2
, 1 −

g
2

;
3
2

∣∣∣∣∣χ2

)] (4.100)

The expression (4.100) can be further simplified using standard results for hyper-
geometric functions from [224] to arrive at:

Gg(χ) =
sin 2πg
sin 3πg

(
Ig (−χ) + 2 cosπg Ig (χ)

)
(4.101)

where

Ig(χ) =
(1 + χ

2

)2g−1

2F1

(
g, 1 − g; 2 − 2g

∣∣∣ 1 − χ
2

)
(4.102)

which leads to the main result (4.11).
By comparing the subleading terms in (4.91) with the ones in the expansion

(4.93) (and its x < 0 analogue) one can determine the orbifold boundary-boundary
OPE coefficients directly:

B
(ββα)Ψ12
Ψ13,Ψ12

= ⟨Ψ
βα
12 (∞)Ψαα

13 (−1)Ψαβ
12 (0)⟩ =

Γ(3g − 1)Γ(1 − 2g)
Γ(1 − g)Γ(2g − 1)

(
1 + 2 cos(πg)

gβ
gα

)
B

(ααβ)Ψ12
Ψ13,Ψ12

= ⟨Ψ
βα
12 (∞)Ψββ

13(1)Ψαβ
12 (0)⟩ =

Γ(3g − 1)Γ(1 − 2g)
Γ(1 − g)Γ(2g − 1)

(
1 + 2 cos(πg)

gα
gβ

)
(4.103)
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The results (4.103) are just the square of mother BCFT structure constants as
per (4.74). As a cross-check, we have verified that the above expressions are
compatible with the ones obtained by standard bootstrap methods [124, 130] in
the mother BCFT.

Moving on, we’ve found that, for some pairs of conformal BCs (α, β), the
expressions in (4.98) simplify because the boundary-boundary structure constant
B

(ββα)Ψ12
Ψ13,Ψ12

vanishes. At the level of the mother BCFT, this is equivalent to demanding

that the operator ψ(ββ)
13 is not allowed in the theory.

For BCFTs based on A-series minimal modelsM(p, p′), this holds for any pair
of mixed conformal BCs (α, β) ≡ ((r, 2), (r, 1)), labelled by bulk primary fields with
1 ≤ r < p. One can use well-established results about fusion rules in such models
[23], to check that:

ϕ12 ∈ ϕr1 × ϕr2 (4.104)

so that these BCs are interpolated by ψ(αβ)
12 and

ϕ13 < ϕr1 × ϕr1 (4.105)

which implies that ψ(ββ)
13 is not in the boundary operator spectrum of the BCFT.

This is reflected in the vanishing of the orbifold structure constant B(ββα)Ψ12
Ψ13,Ψ12

= 0,
since:

g(r,1) = −g(r,2)(2 cos(πg)) (4.106)

so that the function Fαβ2 will only depend on the conformal BC through g(r,2).
We note that such simplification is not necessarily restricted to A-series models.
Let us consider the D-series BCFT M(6, 5) (three-state Potts), with mixed BC
(α, β) ≡ (ϕ12, ϕ11) ≡ (GB,R), for which there is no boundary operator ψ(RR)

13 (with
conformal dimension h13 = 7/5) living on the conformal boundary of type R [31].
At the level of the operator algebra, this translates, once again, into the vanishing
of the boundary-boundary structure constants B(ββα),ψ12

ψ13,ψ12
as we have checked using

the results of [213], so that the same considerations as above will apply.

4.5.2 The function ⟨Ψ12 · σh ·Ψ12⟩ in a generic Z2 orbifold

From the perspective of critical quantum chains, the result in (4.10) only de-
termines the leading contribution to the second Rényi entropy. To understand
finite-size corrections to this result, we should also study the one-point function
of subleading primary twist operators, namely ⟨σh(z, z̄)⟩αβ

H
.

We shall derive an ODE for the conformal blocks

Fk(η) = ⟨Φ12|σh(1)Pkσh(η)|Φ12⟩ . (4.107)

Here we consider the case of a generic composite twist operator σh with conformal
dimension

ĥ = hσ +
h
n
, (4.108)

and thus we do not assume any null-vector condition on σh. Besides the null-
vector conditions at level two (4.83), we will need the null-vector at level three in
the module of |Φ12⟩:

L(1)
−2L(1)

−1 |Φ12⟩ =

[
−L(0)

−3 +
1
g

(
2gL(0)

−1L(0)
−2 −

(
L(0)
−1

)3
)]
|Φ12⟩ , (4.109)
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and two Ward identities obtained from:

⟨Φ12| σh(1)Pkσh(η)T(1)(z)L(1)
−1 |Φ12⟩ , (4.110)

with (m1,m2,m3,m4) = (−1, 1/2, 1/2,−2):

a0|1 ⟨Φ12|L
(1)
1 σh(1)Pkσh(η)L(1)

−1 |Φ12⟩ =

3∑
p=0

dp|1 ⟨Φ12| σh(1)Pkσh(η)L(1)
−2+pL(1)

−1 |Φ12⟩

(4.111)
and (m1,m2,m3,m4) = (−2, 1/2, 1/2,−1) :

a0|2 ⟨Φ12|L
(1)
2 σh(1)Pkσh(x)L(1)

−1 |Φ12⟩ + a1|2 ⟨Φ12|L
(1)
1 σh(1)Pkσh(x)L(1)

−1 |Φ12⟩ =

= d0|2 ⟨Φ12| σh(1)Pkσh(η)L(1)
−1L(1)

−1 |Φ12⟩ + d1|2 ⟨Φ12| σh(1)Pkσh(η)L(1)
0 L(1)

−1 |Φ12⟩+

+ d2|2 ⟨Φ12| σh(1)Pkσh(η)L(1)
1 L(1)

−1 |Φ12⟩ (4.112)

Putting everything together, and applying the change of function

F (η) = η−2h12 (1 − η)4h12−2̂h f (η) , (4.113)

we obtain the fourth-order ODE

(η − 1)4η3 ∂4
η f +

1
2

(η − 1)3η2 [(2g + 13)η + (2g − 11)
]
∂3
η f

−
1
8

(η − 1)2η
[
(16ĝh + 6g2

− 45g − 60)η2 + (20g2 + 34g + 96)η + (16ĝh + 6g2 + 3g − 36)
]
∂2
η f

−
g

16
(η − 1)

[
(48̂h + 18g − 75)η3 + (16g2

− 18g − 112̂h + 167)η2

+(80̂h + 16g2
− 74g − 53)η + (−16̂h − 6g + 9)

]
∂η f

+
g
8

[
(16g2̂h + 6g3

− 13g2 + 4)η2 + (−32g2̂h + 12g3 + 34g2
− 64g + 24)η

+(24 + 16g2̂h + 6g3
− 13g2 + 4)

]
f = 0 .

(4.114)
At this stage, it will be convenient to use the Coulomb-Gas parametrization to

analyse the local exponents of the ODE. Recall the relation between the mother
CFT central charge and the parameter g:

c = 1 − 24Q2 , Q =
1
2

(1/b − b) , b =
√

g . (4.115)

The conformal dimensions in the mother CFT are parametrized by the vertex
charge α as

hα = α(α − 2Q) , (4.116)

and we use the shorthand notation for the conformal dimension of composite
twisted operators

ĥα = hσ +
hα
n
. (4.117)

In this parametrization, the Riemann scheme for F (η) is given in Table 4.3.
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0 1 ∞

−2h12 −2̂hα 2̂hα − 2h12

−2h12 +
1
2 −2̂hα + h13 2̂hα − 2h12 +

1
2

−̂hα − 2h12 + ĥα+b −2̂hα + 2h13 ĥα − 2h12 + ĥα+b

−̂hα − 2h12 + ĥα−b −2̂hα + 2h13 + 2 ĥα − 2h12 + ĥα−b

Table 4.3: Singular exponents around η = 0, 1,∞

These exponents correspond to the intermediary states (counted with their mul-
tiplicities):

{1, [1, ϕ13],Φ13,Φ13} in the channel η→ 1 ,

{σh,L
(1)
−1/2 · σh, σh′ , σh′′} in the channels η→ 0 and η→∞ .

(4.118)

Here, we have defined h′ = hα+b and h′′ = hα−b. Recall that the conformal blocks are
labelled by primary operators under the neutral subalgebra A, and that L(1)

−1/2 · σh

is one of these operators. When the mother CFT is a minimal model, one can
check on various examples that the orbifold fusion rules derived in [211] from the
Verlinde formula are consistent with these intermediary states.

While an analytic solution to the differential equation is not known, one can
determine the conformal blocksFk(η) around η = 0 and F̃ (η) around η = 1 numer-
ically to arbitrary precision. Assuming this step has been performed, all that is left
is to calculate the structure constants in the block expansion (4.81). The boundary-
boundary structure constants are calculated from (4.74) and (4.75), while the bulk-
boundary structure constants can be calculated analytically through unfolding,
as shown, for some cases in Appendix C.2.2 and C.2.1. For numerical studies,
however, it is simpler to bootstrap some of the coefficients in the block expansion
(4.81) rather than to calculate all of them analytically.

To implement this method, as detailed in [130], one needs to compare the block
expansions in (4.81) with the block expansion corresponding to sending the twist
field to the part of the boundary, endowed with the α BC. The crucial point here is
that the conformal blocks Fk(η) are branched functions on C, with branch points
{0, 1,∞}, and, thus, sending the twist field to the boundary with BC α is equivalent
to crossing to the other branch of the function. This is marked by appending the
phase factor e2πi to the variable η to get:

⟨σh(z, z̄)⟩αβ
S
= JSL(2,C)

∑
ℓ

A
(α)
σh,Ψℓ
B

(ααβ)Ψ12
Ψℓ,Ψ12

F̃ℓ(e2πiη) . (4.119)

To proceed, one needs to find the monodromy matrix X around zero for the basis
F̃ℓ(η), which encodes the behaviour of the conformal blocks as the branch cut is
crossed:

F̃ℓ(e2πiη) =
∑

m

XℓmF̃m(η) . (4.120)

Since the monodromy of the blocks F̃ℓ around zero is non-diagonal, we can use
the fusing matrix Pi j to express the blocks F̃ℓ in terms of a basis of the blocks Fk,
which have diagonal monodromy around η = 0:

F̃ℓ(η) =
∑

k

PℓkFk(η) . (4.121)
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The blocks Fk(η) simply acquire a phase under z → e2πiz, so their monodromy
matrix Y is diagonal:

Fk(e2iπη) =
∑

j

YkjF j(η) , Ykj = δkj exp
[
2πi

(
−̂hα − 2h12 + ĥk

)]
, (4.122)

where the exponents in the exponential above, are simply read off from the Rie-
mann scheme. Then, the monodromy matrix of the blocks F̃ℓ(η) is found from the
matrix product:

X = P · Y · P−1 , (4.123)

which allows us to compare the block expansions in (4.81) and (4.119) to find a
duality relation, of the type presented in [130]:

A
(β)
σh,Ψi
B

(ββα)Ψi
Ψ12,Ψ12

=
∑

j

A
(α)
σh,Ψ j
B

(ααβ)Ψ j

Ψ12,Ψ12
X ji . (4.124)

Using the numerical determinations for Fk(η) and F̃ℓ(η) , one can find a good
estimate for the fusing matrix Pi j, and, consequently, Xi j. A more fleshed-out
example of how the determination of Pi j works has been relegated to the Appendix
C.7, where this equation is used for the case of the Z2 orbifold of the three-state
Potts model BCFT.

After solving the linear system in (4.124) one can evaluate the unknown struc-
ture constantsA(β)

σh,Ψi
andA(α)

σh,Ψi
. At this point, we stress that (4.124) gives, at most,

four constraints between the unknown structure constants. To fully determine
all these quantities, one should calculate the remaining four structure constants
through other methods.

Example: Three-state Potts model

Let us once again consider the 3-state Potts model BCFT with mixed BC (α, β) ≡
(GB,R) as mother theory. We are interested in this case in the one-point function
of the excited twist operator σε where ε ≡ ϕ12 is a primary field inM(6, 5).

The non-existence of a boundary field ψ(RR)
13 in this theory implies, through

the relations between mother BCFT and orbifold structure constants derived in
Section 4.4.3, the vanishing of some of the coefficients in the block expansions
(4.81) of the correlators in (4.32). In effect, only the block corresponding to the
identity operator contributes to these expressions when the twist field is sent to
the β boundary. This corresponds to the following fusion rules σε:

σε

∣∣∣∣∣∣
β

→ Ψ
(ββ)
1 (4.125)

Hence, we are led to obtain the following expressions for the excited twist corre-
lator on the UHP:

⟨σε(z, z̄)⟩αβ = z−2hσεA
(β)
σε,Ψ1
B

(ββα)Ψ12
Ψ1,Ψ12

F̃
(ε)

1 (η) , (4.126)

where we have:

F̃
(ε)

1 (η) = J1(u(η)) = (1 − u)−2hσε

∞∑
n=0

an(1 − u)n , (4.127)
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with the coefficients determined by the recursion relation (C.74), derived in Ap-
pendix C.7. The structure constants can be expressed in terms of known quantities
for theM(6, 5) BCFT, obtained in Appendix B:

A
(β)
σε,Ψ1

= g−1
R AR

ε , B
(ββα)Ψ12
Ψ1,Ψ12

= 1 . (4.128)

where the bulk-boundary structure constant AR
ε has been calculated in [218, 225]

to be:

AR
ε =

(
1 +
√

5
2

) 3
2

. (4.129)

4.5.3 The function ⟨Ψ12 · σ ·Ψ12⟩ in a generic Z3 orbifold

Here the relevant conformal blocks are

Fk(η) = ⟨Φ12|σ(1)Pkσ
†(η)|Φ12⟩ . (4.130)

We give the null vectors of |Φ12⟩ at levels two and three:

L(r)
−2 |Φ12⟩ =

1
3g

2∑
s=0

L(r−s)
−1 L(s)

−1 |Φ12⟩ , (4.131)

L(3−r)
−1 L(r)

−2 |Φ12⟩ =
1

3g

[
2L(0)
−1L(1)

−1L(2)
−1 +

(
L(3−r)
−1

)3
]
|Φ12⟩ , (4.132)

for r ∈ {0, 1, 2}. We will also need the null vectors for the out-state ⟨Φ12|, which can
be obtained by Hermitian conjugation (4.42).

To derive an ODE for the conformal blocks, we had to employ seven orbifold
Ward identities, together with six of the null-vector conditions above. To not
overload the presentation of this section with technical details, we relegate the
specifics of the derivation to Appendix C.6. We apply the change of function

F (η) = η−8h12/3 (1 − η)16h12/3−2hσ f (η) . (4.133)

The function f satisfies the ODE

(η − 1)3η2 ∂3
η f + (η − 1)2η

[
(g + 3)η + (g − 3)

]
∂2
η f

+
2
9

(η − 1)
[
2(2 + 3g)η2

− 2(7 − 15g + 18g2)η + (4 − 3g)
]
∂η f

+
4

27
(1 − 6g)(2 − 3g)(η + 1) f = 0 .

(4.134)

The Riemann scheme for F is

0 1 ∞

−
8
3h12 −2hσ 2hσ − 8

3h12

−
8
3h12 +

1
3 −2hσ + 2h13 2hσ − 8

3h12 +
1
3

−3h12 +
h14
3 −2hσ + 3h13 2hσ − 3h12 +

h14
3

The local exponents correspond to the intermediary states:

{1, [1, ϕ13, ϕ13],Φ13} in the channel η→ 1 ,

{σ12,L
(1)
−1/3 · σ12, σ14} in the channels η→ 0 and η→∞ .

(4.135)
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In the orbifold BCFT, this translates into the following fusion rules for the twist
operator with the boundary β:

σ1

∣∣∣∣∣∣
β

→ Ψ
(ββ)
1 +Ψ

(ββ)
[1,ϕ13,ϕ13] +Ψ

(ββ)
13 . (4.136)

The analytic solutions to the differential equation (4.134) are not known, but
they can be evaluated numerically, to arbitrary precision. Then, one can use the
bootstrap to determine some relations between the unknown structure constants
in the expansion (4.81), as outlined in the previous section, and determine the rest
analytically, by unfolding methods, to complete the calculation of the mixed BC
correlator of the bare twist.

We note that a fourth-order differential equation that the correlator (4.64)
satisfies has already been found in [223], where it plays a role in the determination
of the leading contribution to the third Rényi entropy of an excited state in a
periodic 1D critical chain. As predicted in [223], there is no degeneracy in the
exponents in the more constraining third-order differential equation we have
found here. Note that these exponents are the ones expected from the orbifold
fusion rules[211].

4.5.4 The function ⟨Ψ12 · σ13 ·Ψ12⟩ in the Z3 orbifold of the Ising
model

In this section, we will work with the Z3 orbifold of the Ising BCFT. The bulk
primary fields of this BCFT are ϕ11 ≡ 1, ϕ12 ≡ s and ϕ13 ≡ ε with hs = 1/16
and hε = 1/2. We will keep labelling the fields by their Kac indices, to not
overcomplicate the notation.

We will provide here an alternative method for finding a differential equation
for the one-point function:

⟨σ13(z, z̄)⟩ f+
H
, (4.137)

where the orbifold conformal boundary conditions α = f and β = + correspond to
setting fixed and free BC respectively, on all the copies of the Ising mother BCFT.
The diagonal BCCO Ψ( f+)

12 is the one interpolating between them in the orbifold,
since in the Ising BCFT only theψ( f+)

12 primary boundary field can change between
the CBCs (+)↔ ( f ) [130]. As in the previous sections, we aim to find a differential
equation satisfied by the conformal blocks

Fk(η) = ⟨Φ12|σ13(1)Pkσ
†

13(η)|Φ12⟩ . (4.138)

First, we use the fusion numbers in (5.4) to infer the dimension of the space of
conformal blocks for (4.137): ∑

i

N
i
σ13,σ

†

13
N
Φ12
i,Φ12
= 2 , (4.139)

which means the differential equation we seek should be second order.
By using the null-vectors induced on σ13 together with the right combination of

Ward identities, one should be able to rigorously derive it. Instead, we will assume
this equation exists and is of Fuchsian type – a linear homogenous ODE whose
three singular points are regular. The latter assumption is based on the observation
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that the method exploited in the previous sections relies on expressing orbifold
modes L(r,0)

m in terms of Virasoro generators, whose combined differential action
on correlators is well-understood in the literature [23],[226] to be of Fuchsian type.

Now, using the fusion numbers of (5.4), the fusion rules are

σ13 ×Φ12 → σ12 + L(2)
−2/3 · σ12 ,

σ13 × σ
†

13 → 1 + [1, ϕ13, ϕ13] ,
(4.140)

so we can determine the asymptotic behaviour of the solutions around the regular
singular points η ∈ {0, 1,∞} of the differential equation and infer the Riemann
scheme:

0 1 ∞

−hσ13 − 3h12 + hσ12 −2hσ13 hσ13 − 3h12 + hσ12

−hσ13 − 3h12 + hσ12 +
2
3 −2hσ13 + 2h13 hσ13 − 3h12 + hσ12 +

2
3

One can readily check that the entries of this Riemann scheme sum up to one,
so, by a general theorem on Fuchsian ODEs (see [227]), there is a unique second-
order Fuchsian ODE with this set of singular exponents. If we define the shifted
function f (η):

f (η) = ηhσ13+3h12−hσ12 (1 − η)2hσ13F (η) , (4.141)

we find, by the same considerations, that it should satisfy a second-order Fuchsian
differential equation with the Riemann scheme

0 1 ∞

0 0 −2hσ13 − 6h12 + 2hσ12
2
3 2h13 −2hσ13 − 6h12 + 2hσ12 +

2
3

This is just the canonical Riemann scheme of a hypergeometric differential equa-
tion (C.41), with coefficients:

a = −2hσ13 − 6h12 + 2hσ12 = −2/3 ,

b = −2hσ13 − 6h12 + 2hσ12 +
2
3
= 0 ,

c =
1
3
,

(4.142)

in the conventions of Appendix C.5. We notice that the exponents in the η → 1
channel are spaced by one, so we will have to deal with the degenerate exponents
to arrive at a closed-form solution. To do this, we will use the basis of solutions
in the η→ 0 channel – given in (C.42) – to construct a linearly independent basis
of solutions around η→ 1. The solutions for f can be simplified, in this case, to:

I1(η) = 1 , I2(η) = η2/3 , (4.143)

which gives the conformal blocks around η→ 0:

F1(η) = η−1/3(1 − η)−4/9 , F2(η) = η1/3(1 − η)−4/9 . (4.144)

in our normalisation convention.
To build the basis of solutions aroundη = 1, we look for the linear combinations

F̃i(η) =
∑

j P−1
i j F j(η) that have the following series expansion around η = 1 :

F̃1(η) = (1 − η)−4/9
(
1 + O[(1 − η)2]

)
, F̃2(η) ∼ (1 − η)5/9 , (4.145)
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since the power series associated with the orbifold identity should have no (1−η)
term due to the null-vectors L(r)

−1 ·1 ≡ 0, and both solutions should have the leading
coefficient normalised to one, in our convention for the conformal blocks. With
these requirements, one finds the fusing matrix P−1

i j to be:

P−1 =
1
2

(
1 1
3 −3

)
. (4.146)

Thus, the conformal blocks of (4.137) around η = 1 are found to be:

F̃1(η) =
η−1/3 + η1/3

2(1 − η)4/9 , F̃2(η) =
3(η−1/3

− η1/3)
2(1 − η)4/9 . (4.147)

For the physical correlation function, we write

⟨σ13(z, z̄)⟩ f+
H
= z̄−2hσ13

[
A

(+)
σ13,Ψ1
B

(++ f )Ψ12
Ψ1,Ψ12

F̃1(η) +A(+)
σ13,[ψ1,ψ13,ψ13]B

(++ f )Ψ12

[ψ1,ψ13,ψ13],Ψ12
F̃2(η)

]
.

(4.148)
Finally, we observe that B(++ f )ψ12

ψ13ψ12
vanishes, and hence B(++ f )Ψ12

[ψ1,ψ13,ψ13],Ψ12
= 0, so the

expression (4.148) simplifies to:

⟨σ13(z, z̄)⟩ f+
H
= 25/9

×
cos(2θ/3)
(r sinθ)4/9 , z = reiθ (4.149)

where we have also used:

A
(+)
σ13,Ψ1

= g−2
+ , B

(++ f )Ψ12
Ψ1,Ψ12

= 1 , (4.150)

and the value of the ground-state degeneracy for fixed BC g+ = 1/
√

2 in the Ising
BCFT [217].

4.5.5 More hypergeometric differential equations in the Ising
cyclic orbifold BCFTs

We have managed, in Sections 4.5.2 and 4.5.3 to obtain differential equations
for cyclic orbifolds of generic mother BCFTs, but have not been able to provide
analytic solutions for them.

One can, however, find second-order differential equations for particular
choices of Mp,p′ and composite twist fields (for the correlators of Section 4.5.2),
in the manner presented in Section 4.5.4, which allow us to exactly determine the
correlators. Since we want to compare the results of this section with lattice data
of the critical Ising spin chain with mixed BC, it will be particularly satisfying to
find such equations for the cyclic orbifolds of the Ising BCFT.

Let’s first consider the correlator:

⟨σ13(z, z̄)⟩αβn=2 (4.151)

in theZ2 Ising orbifold BCFT which should satisfy, up to a Möbius map, the same
differential equation as:

⟨Φ12| σ13(1)σ13(η) |Φ12⟩ (4.152)
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The orbifold fusion rules of [119], imply that the space of conformal blocks is
two-dimensional since: ∑

i

N
i
σ13,σ13

N
Φ12
i,Φ12
= 2 (4.153)

By the same type of arguments and assumptions as in Section 4.5.4, we infer that
(4.152) satisfies a second-order Fuchsian differential equation with the following
Riemann scheme:

0 1 ∞

−hσ13 − 2h12 + hσ1 −2hσ13 hσ13 − 2h12 + hσ1,1

−hσ13 − 2h12 + hσ13 +
1
2 −2hσ13 + 2h13 hσ13 − 2h12 + hσ12 +

1
2

so that we eventually find the one-point twist correlator to be

⟨σ13(z, z̄)⟩αβ(n=2) = z̄−2hσ13 g−1
+ F̃

n=2
Ψ1

(η) (4.154)

with

F̃
(n=2)
Ψ1

(η) =
1 + η3/4

2(1 − η)9/16η3/8 (4.155)

Finally, we can find an exact expression for the bare twist correlator:

⟨σ1(z, z̄)⟩αβn=3 (4.156)

in the Z3 Ising orbifold BCFT since it also satisfies a second order differential
equation with Riemann scheme:

0 1 ∞

−hσ1 − 3h12 + hσ12 −2hσ1 hσ1 − 3h12+hσ12

−hσ1 − 3h12 + hσ12 +
1
3 −2hσ1 +2h13 hσ1 − 3hΨ12+hσ12 +

1
3

We find:
⟨σ1(z, z̄)⟩αβn=3 = z̄−1/9g−2

+ F̃
n=3
Ψ1

(η) (4.157)

with

F̃
n=3
Ψ1

(η) =
1 + η1/3

2(1 − η)1/9η1/6 (4.158)

Other results for the Ising BCFT. We have also obtained results specific to the
Z2 andZ3 orbifolds of the Ising BCFT with fixed mixed BC with α = + and β = −,
for which the most relevant primary BCCO is ψ(+−)

2,1 . Since these results are not
based on deriving differential equations, it felt thematically appropriate to leave
their presentation for the Appendix C.4.

4.6 Conclusion

In this chapter, we have presented a general method for calculating Rényi en-
tropies Sαβn in the ground state of a 1D critical system with mixed open boundaries,
for an interval starting at one of its ends. This required computing three-point
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functions of one twist operator and two BCCOs on the upper-half planeH with
mixed BCs (α, β) in the Zn cyclic orbifold.

For this purpose, we have derived ODEs satisfied by these correlation func-
tions, by exploiting the null-vectors of the twisted and untwisted representations
of its symmetry algebra OVirn, together with Ward identities obtained from the
additional conserved currents of the theory. We used a combination of analytical
and numerical methods to find a basis of solutions (a.k.a conformal blocks) of
these ODEs.

For the examples provided in this chapter, we have calculated the boundary
and bulk-boundary structure constants needed to build the physical correlators
as linear combinations of the blocks. Among the setups we have analysed are the
leading and subleading contributions to the one-interval second and third Rényi
entropies of the Ising model, and the second Rényi entropy for the three-state
Potts model. We have also derived differential equations for mixed BC twist field
correlators in the Z2 and Z3 orbifolds of generic BCFTs, and obtained an explicit
expression for the second Rényi entropy valid for any diagonal minimal model,
but with a particular set of mixed boundary conditions.

We have compared the CFT results against critical Ising and three-state Potts
spin chain data. Since finite size effects are quite significant for open chains, we
have included both the leading and subleading contributions to the lattice twist
field correlator in our analytical prediction. In the Ising case, the agreement was
excellent for all choices of mixed BC, even though the system sizes we could reach
were limited. For the three-state Potts chain, however, the finite size effects are
even more severe, and as a consequence, the matching is less satisfactory. This
could be improved by using more sophisticated numerical techniques such as
DMRG [49, 228] or tensor network methods [210].

The clearest limitation of our method, first identified in [118], is that the process
for obtaining a differential equation becomes more difficult as n is increased. We
have checked using the fusion rules in (5.4) for n > 3 that the expected order of
the ODEs increases with n for generic minimal models, which implies that more
orbifold Ward identities will be needed to obtain the ODEs.

There are several possible extensions of the work presented in this chapter. A
possibility would be to generalize the setup for the calculation of Rényi entropies
of an interval contained in the bulk, with mixed BC. However, in this situation, one
would have to find a differential equation that a four-point function with two
twist fields and two BCCOs satisfies. Cardy’s doubling trick suggests that such
a correlator satisfies the same Ward identities as a six-point conformal block on
the complex plane, so the corresponding differential equation would be partial
instead of ordinary.
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Operator algebra of the cyclic
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5.1 Summary

In this chapter, we shall present a more detailed treatment of cyclic orbifold
CFTs. Such theories have been of interest for the construction of certain types
of superstring theories [70, 229], and constitute an active topic of research in the
mathematical community [230][231] [232].

Our main motivation for better understanding them, is, as explained in Chap-
ter 1, the study of entanglement in 1D critical systems. Beyond the exam-
ples presented in Sections 1.3, 1.4 (1.36), most situations involving boundaries
[110, 152, 173], finite size and finite temperature [233–238], or simply several
intervals [71, 84, 88, 123, 127, 132, 153, 163, 198–200, 239–241] are much more
complicated and to this day remain mostly unsolved for generic CFTs. The main
difficulty in such cases is that the Rényi entropy involves either the two-point
function of twist fields on non-trivial surfaces (such as the upper-half-plane or the
torus), or higher-point correlation functions. To make progress in such cases, a
more comprehensive understanding of fusion rules and their multiplicities in the
Zn orbifold, as well as a full characterization of the conformal blocks is of crucial
importance.

In this chapter, an adaptation of [211], we report some progress in that direction
based on the identification of the maximal chiral algebra of the cyclic orbifold.
Naively, the Virasoro algebra OVirn is extended by n − 1 simple currents, whose
modes L(r)

m obey the following commutation relations [119][
L(r)

m ,L
(s)
p

]
= (m − p)L(r+s)

m+p +
nc
12

m(m2
− 1) δm+p,0 δr+s,0 , (5.1)

with r, s ∈ Zn. There is however an important caveat: these n − 1 additional
currents are not local, as they have non-trivial monodromies around the twist
fields. This implies that acting with a mode L(r)

m on a local field yields a non-local
one. Therefore, it is not possible to arrange local fields into modules of the orbifold
chiral algebra OVirn. The cornerstone of this chapter is to identify the maximal
subalgebra of (the universal enveloping algebra of) OVirn that acts locally on
fields. It is generated by monomials of the form

L(r1)
m1
. . . L(rp)

mp such that r1 + · · · + rp ≡ 0 mod n , (5.2)

In the following, we refer to this algebra as the neutral algebra and denote it by An.
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For simplicity, we restrict our investigation to mother CFTs M which are
diagonal and rational (w.r.t. to the action of the Virasoro algebra), thus containing
finitely many primary fields ϕ j. One of the main results is that the cyclic orbifold
Mn is then also rational and diagonal w.r.t. the neutral algebra An. In particular,
there are finitely many An-primary fields, i.e. annihilated by all monomials of the
form (5.2) with

∑
p mp > 0. These primary operators come in three varieties:

• untwisted non-diagonal Φ[ j1... jn],

• untwisted diagonal Φ(r)
j ,

• and twisted σ[k](r)
j ,

where [ j1, . . . jn] denotes the equivalence class of ( j1, . . . , jn) under Zn permuta-
tions, j, j1, . . . , jn run over the primary operator spectrum of the mother theoryM,
while the Fourier replica index r and twist charge k take values in Zn and Z×n , re-
spectively. If we denote by χ[ j1... jn], χ

(r)
j and χ[k](r)

j the characters of the corresponding
An-modules, the torus partition function is diagonal :

Zorb =
∑

J=[ j1... jn]

|χJ|
2 +

∑
j

n−1∑
r=0

|χ(r)
j |

2 +
∑

j

n−1∑
k=1

n−1∑
r=0

|χ[k](r)
j |

2 , (5.3)

As we shall argue, this classification of primary operators is particularly well
suited for the determination of fusion rules, and the decomposition of correlation
functions into conformal blocks. This classification has been suggested by the
work of [119], which did not explicitly identify the neutral algebra An, but in
fact determined the modular data and fusion rules for precisely the same set of
operators, in the case n = 2. In this sense, the present chapter generalizes the
results of [119] to any prime n. We give then a summary of our results:

Summary of results

• We establish the operator content of the Zn orbifold CFT built from
an arbitrary rational, diagonal Virasoro CFT model. The Zn invariant
primary operators are identified as the primary operators of the An⊕Ān

neutral algebra.

• We build the modules under the chiral algebra An, and the decompo-
sition of the Hilbert space over these modules, for any prime n.

• We use the above decomposition property to characterize orbifold
conformal blocks. This allows us to decompose any four-point cor-
relation function of local primary operators in terms of finitely many
holomorphic and antiholomorphic conformal blocks, indexed by An-
and Ān-modules, respectively.

• By studying the modular characters, and applying constraints arising
from unitarity and modular relations to lift degeneracies, we obtain the
orbifold T and Smatrices. This leads, through the Verlinde formula,
to explicit expressions of the orbifold fusion numbersNγ

αβ.

These fusion rules, in their most compact form, are given by:
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Fusion rules in the cyclic orbifold

N
[k1...kn]
[i1...in],[ j1... jn] =

n−1∑
a,b=0

nk1
i1+a, j1+b

. . . nkn
in+a, jn+b

,

N
k(r)

[i1...in],[ j1... jn] =

n−1∑
a=0

nk
i1+a, j1 . . . n

k
in+a, jn ,

N
k(s)

[i1...in], j(r) = nk
i1, j . . . n

k
in, j ,

N
k(t)

i(r), j(s) = δr+s,t nk
i j .

N
[k1...kn]
i[p](r) j[q](s) = δp+q,0

∑
ℓ

SiℓS jℓ · Sk1ℓ . . . Sknℓ

Sn
1ℓ

,

N
k(t)

i[p](r) j[q](s) =
δp+q,0

n

∑
ℓ

SiℓS jℓSn
kℓ

Sn
1ℓ

+

n−1∑
a=1

ωnp(r+s−t) (P−a)iℓ(Pa) jℓSkℓ

S1ℓ

 ,
N

k[m](t)

i[p](r) j[q](s) =
δp+q,m

n

∑
ℓ

SiℓS jℓSkℓ

Sn
1ℓ

+

n−1∑
a=1

ωn(r+s−t)
(P†

pa−1)iℓ(P†qa−1) jℓ(Pma−1)kℓ

S1ℓ

 .

(5.4)

Here nk
i j and Si j are, respectively, the fusion numbers and modular S-matrix

of the mother theory, and ω stands for the first nth root of unity ω = exp (2πi/n).
The matrices Pa’s, which are labelled by a ∈ Z×n (the multiplicative group of integers
modulo n) , are also modular matrices acting on characters of the mother CFT –
see (5.118–5.119), and a−1 stands for the inverse of a in Z×n . The sums over ℓ run
over the primary operators of the mother CFT.

The chapter is organized as follows. In Section 5.2, we define, for a generic
integer n, the basic properties of the cyclic orbifold such as twist operators, the
conserved currents T(r), the orbifold Virasoro algebra OVirn, and the neutral al-
gebras An. In Section 5.3, we restrict the discussion to n prime and describe the
operator content, OPEs and conformal blocks. In Section 5.4, we analyse the
modular properties of the torus partition function and derive the fusion numbers.
In Section 5.5, we give some applications of our results for fusion rules and con-
formal blocks of the Z3 orbifold of minimal CFTs. In Section 5.6, we conclude
with a recapitulation of our results and comment on possible refinements and ex-
tensions. We have relegated to the Appendix the more technical proofs, to avoid
congesting the logical flow of the chapter.

5.2 Cyclic orbifolds

In this section, we provide some basic background on cyclic orbifoldsMn, such
as twist operators, the conserved currents, the symmetry algebra OVirn, and the
induction procedure.

5.2.1 The cyclic orbifold CFT

With the above motivation in mind, we define cyclic orbifold CFTs as follows. Let
M be any CFT with central charge c and primary operator content {ϕ1, ϕ2, ϕ3, . . . },
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which we call the mother CFT. By convention, we always takeϕ1 to be the identity
operator: ϕ1 = 1. The cyclic orbifold CFT M for a positive integer n, which is
usually denoted as

Mn =M
⊗n/Zn , (5.5)

is most easily defined in the path-integral formalism. If the configurations of the
mother theory are described by a field φ(r) with action A[φ], then the configu-
rations of M⊗n are (locally) described by n independent copies (φ1(r), . . . φn(r)),
with actionA[φ1]+ · · ·+A[φn]. Furthermore, the modding out byZn means that
configurations with topological defects (as described in the previous section) are
to be included. In particular, on the cylinder (and the torus, see section 5.4.1)
this implies that one must consider all possible Zn twisted boundary conditions.
Accordingly, the Hilbert space (for a closed system) splits into n distinct sectors la-
belled by the twist charge [k] ∈ Zn, corresponding to boundary conditions twisted
by the permutation of copies a 7→ a + k. Via the state-operator correspondence,
local fields also carry a twist charge.

In the untwisted sector [k = 0], the Hilbert space is simply the nth tensor
product of the mother theory Hilbert space. The associated operators are called
untwisted operators and are spanned by products of local operators acting on each
copy. These are generated, under the Operator Product Expansion (OPE), by
operators acting on a single copy a

ϕa = 1 ⊗ · · · ⊗ 1 ⊗ ϕ
(a)
⊗ 1 ⊗ · · · ⊗ 1 . (5.6)

By contrast, the Hilbert space in the twisted sector [k = 1] is in one-to-one corre-
spondence with the mother theory Hilbert space [119]. Indeed, one can untangle
the n copies coupled via the twist a→ a+1 into a single copy, at the cost of making
the system n times larger. More generally, the Hilbert space in the twisted sector
[k] maps to the tensor product of Ck copies of the mother theory Hilbert space,
where Ck is the number of cycles of the permutation a→ a+ k (in particular Ck = 1
exactly when k and n are coprime).

A generic operator O[k] with twist charge [k] inserts a defect line as explained
above, and hence its monodromy relative to a diagonal operator ϕa reads:

ϕa(e2iπz, e−2iπz̄) · O[k](0) = ϕa−k(z, z̄) · O[k](0) . (5.7)

being understood that upon going around the twisted fieldO[k](0), the fieldϕa(z, z̄)
does not encircle any other (twisted) field.

note that the twist charge [k] is conserved under fusion, in the sense that

⟨O
[k1]
1 (z1, z̄1) . . .O[kn]

m (zn, z̄n)⟩ = 0 if k1 + · · · + km , 0 mod n . (5.8)

Of particular interest is the bare twist operator σ[k], which is simply the most
relevant operator with twist charge [k]. Under the state-operator correspondence,
it maps to the lowest energy state in the twisted sector [k]. In the untwisted sector,
this is simply the identity σ[0] = 1. Moreover, to lighten the notation, we write σ
and σ† instead of σ[1] and σ[−1], respectively. The conformal dimension of the twist
operators σ and σ† is

hσ =
c

24

(
n −

1
n

)
. (5.9)

This fundamental result, which is at the heart of the universal behaviour 1.36
of entanglement entropy for 1D critical systems, is surprisingly easy to establish.
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Indeed, it is a simple consequence of the finite-size scaling of eigenenergies in CFT.
For a periodic system of size L, the orbifold Hamiltonian is 2π

L (L0 + L0 − nc/12), as
the orbifold central charge is nc, where c is the central charge of the mother theory.
Thus, the lowest energy in the sector [k = 1] is

E =
4π
L

(
hσ −

nc
24

)
. (5.10)

since σ is a scalar field (hσ = h̄σ). But as stated above, the twisted sector [1] for a
system of size L is nothing but the Hilbert space of the mother theory for a system
of size nL. From this perspective the Hamiltonian is 2π

nL (L0 + L0 − c/12), and the
state with the lowest energy is the vacuum, therefore

E = −
4π
nL

c
24
. (5.11)

Equating these two expressions yields (5.9). The argument is easy to generalize
to arbitrary k, and one finds

hσ[k] =
c

24

∑
cycle j

(
nkj −

1
nkj

)
. (5.12)

where the sum is over all cycles of the permutation a 7→ a+ k, and nkj is the length
of the jth cycle. In particular, when n is prime, one gets hσ[k] = hσ for all k ∈ Z×n .

5.2.2 Orbifold Virasoro algebra

now that we have discussed the splitting of the Hilbert space into twisted sectors,
we can describe the action of the extended orbifold algebra. In the orbifold CFT
Mn, each copy a of the mother CFT carries the components Ta(z),Ta(z̄) of the
stress-energy tensor, with OPEs

Ta(z)Tb(w) = δab

[
c/2

(z − w)4 +
2Tb(w)
(z − w)2 +

∂Tb(w)
z − w

]
+ regz→w ,

Ta(z̄)Tb(w̄) = δab

[
c/2

(z̄ − w̄)4 +
2Tb(w̄)
(z̄ − w̄)2 +

∂̄Tb(w̄)
z̄ − w̄

]
+ regz̄→w̄ ,

(5.13)

where c is the central charge of the mother CFT, and regz→w denotes a function
which is regular as z tends to w. It turns out to be convenient to work with the
discrete Fourier modes of these currents, namely

T(r)(z) =
n−1∑
a=0

ωar Ta(z) , T
(r)

(z̄) =
n−1∑
a=0

ωar Ta(z̄) , (5.14)

where ω = exp(2iπ/n) and r ∈ Zn. We get the OPEs

T(r)(z)T(s)(w) =
δr+s,0 nc/2
(z − w)4 +

2T(r+s)(w)
(z − w)2 +

∂T(r+s)(w)
z − w

+ regz→w ,

T
(r)

(z̄)T
(s)

(w̄) =
δr+s,0 nc/2
(z̄ − w̄)4 +

2T
(r+s)

(w̄)
(z̄ − w̄)2 +

∂T
(r+s)

(w̄)
z̄ − w̄

+ regz̄→w̄ .

(5.15)
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The invariant modes T(0)(z) and T
(0)

(z̄) are the components of the total stress-
energy tensor of Mn, with central charge nc, whereas the other Fourier modes

T(r)(z),T
(r)

(z̄) with r , 0 mod n can be regarded as additional conserved currents.
Altogether, these Fourier modes encode an extended conformal symmetry.

The Laurent expansion of the currents T(r)(z) depends on the twist sector in
which they act. Indeed, since by definition an operatorO[k] with charge [k] inserts
a defect line connecting copies a and a + k, we have the monodromy conditions
(in the absence of other twist operators in the vicinity of the origin)

T(r)(e2iπz) · O[k](0) = ωkrT(r)(z) · O[k](0) . (5.16)

As a result, the mode decomposition is of the form

T(r)(z) · O[k](0) =
∑

m∈−kr/n+Z

z−m−2 (L(r)
m · O

[k])(0) . (5.17)

with L(r)†
m = L(−r)

−m . Likewise, for T
(r)

we have

T
(r)

(z̄) · O[k](0) =
∑

m∈+kr/n+Z

z̄−m−2 (L̄(r)
m · O

[k])(0) . (5.18)

Importantly, in the twist sector [k], the allowed indices for L(r)
m (resp. L̄(r)

m ) are
m ∈ −kr/n + Z (resp. m ∈ +kr/n + Z). The OPEs (5.15) yield the commutation
relations [

L(r)
m ,L

(s)
p

]
= (m − p)L(r+s)

m+p +
nc
12

m(m2
− 1) δm+p,0 δr+s,0 ,[

L̄(r)
m , L̄

(s)
p

]
= (m − p)L̄(r+s)

m+p +
nc
12

m(m2
− 1) δm+p,0 δr+s,0 ,[

L(r)
m , L̄

(s)
p

]
= 0 ,

(5.19)

where the Kronecker symbols δr+s,0 are understood modulo n. These relations
define the two commuting orbifold Virasoro algebras OVirn and OVirn.

The invariant modes L(0)
m are the modes of the total stress-energy tensor, and

their index m is always an integer, as it should be. Of course, they form a Virasoro
algebra, with central charge nc:[

L(0)
m ,L

(0)
p

]
= (m − p)L(0)

m+p +
nc
12

m(m2
− 1) δm+p,0 , m ∈ Z , (5.20)

and similarly for the L̄(0)
m ’s.

Due to the conservation of Fourier indices in the commutation relations (5.19),
the two families of algebra elements

L(r1)
m1
. . . L(rp)

mp and L̄(r1)
m1
. . . L̄(rp)

mp , with r1 + · · · + rp = 0 mod n (5.21)

generate algebras of the universal enveloping algebra of OVirn and OVirn, which
we shall call the neutral algebras An and Ān, respectively. These neutral algebras
are of key importance for the classification of operators and the description of
correlations in the cyclic orbifold CFT.
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5.2.3 Orbifold induction procedure

As mentioned above, the Hilbert space H [1] of the twisted sector [k = 1] is in
one-to-one correspondence with the Hilbert spaceH of the mother theory [119].
More precisely, there is an isomorphismΘ1 : H →H [1], that is a norm-preserving,
invertible linear map. This map is quite simple: it encodes the identification of
states betweenH [1] andH that follows from unfolding the n copies of the cylinder
with twisted boundary conditions into a single copy of the cylinder.

In particular, we get the following identification between the stress-tensor T
of the mother theory (on the cylinder of perimeter nL) and the stress-tensor Ta

acting on the ath copy of the orbifold on the cylinder of perimeter L:

Ta(x, t) = Θ1 T(aL + x, t)Θ−1
1 , (5.22)

where 0 ≤ x < L and a = 0, · · · ,n − 1. In terms of modes, this means(
L(r)

m − δm,0
nc
24

)
=

1
n
Θ1

(
Lnm − δm,0

c
24

)
Θ−1

1 , m ∈ −r/n +Z , (5.23)

that is to say

L(r)
m =

1
n
Θ1LnmΘ

−1
1 +

c
24

(
n −

1
n

)
δm0 , m ∈ −r/n +Z . (5.24)

It follows that there is a one-to-one correspondence between Virasoro primary
states |ϕ j⟩ in the mother theory and primary states under the orbifold algebra in
the twisted sector [k = 1] of the cyclic orbifold, which we will denote by |σ[1]

j ⟩ :

|σ[1]
j ⟩ = Θ1 |ϕ j⟩ . (5.25)

The same elementary argument of finite-size scaling is used to derive (5.9) yields

hσ j =
c

24

(
n −

1
n

)
+

h j

n
= hσ +

h j

n
. (5.26)

The identification map Θ1 provides a comprehensive and explicit construction
of the twisted sector [k = 1] in terms of states of the mother theory, known as
the orbifold induction procedure [119]. Furthermore, since Θ1 is norm-preserving,
a state in the twisted sector is a null state if and only if it is the image (under
Θ1) of a null state in the mother theory. In that sense, the induction procedure
provides a full description of all null states in the twisted sector. Such null states
are important, as they can be exploited to derive differential equations for twist
correlation functions [118].

Of course, the above discussion can be adapted to all twisted sectors [k]. In
particular, when k and n are coprime (that is when the permutation a→ a+ k mod
n has a unique cycle), the Hilbert space H [k] can still be identified with H , via a
map Θk : H →H [k]. The relation between modes becomes simply

L(r)
m =

1
n
ΘkLnmΘ

−1
k +

c
24

(
n −

1
n

)
δm0 , m ∈ −kr/n +Z . (5.27)

The state |σ[k]
j ⟩ = Θk |ϕ j⟩ has the same conformal dimension as |σ[1]

j ⟩.
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5.3 Operator content, OPEs and conformal blocks

From now on, we restrict to the case when the number of copies is a prime integer
n. We shall describe the operator content of the cyclic orbifold CFTMn, in terms
of the primary operators {ϕ j} of the mother CFTM. InMn, operators and states
will be organized into representations of the neutral algebras An ⊕ Ān defined in
Sec. 5.2.2.

To simplify the discussion, we suppose that the mother CFT is diagonal,
namely every primary operator ϕ j is scalar, so that its conformal dimensions
obey h j = h̄ j, and all primaries correspond to distinct Virasoro modules. This is
the case in particular for all diagonal minimal models. Under these assumptions,
the torus partition function is a diagonal modular invariant

Z =
∑

j

∣∣∣χ j

∣∣∣2 (5.28)

and the modular S-matrix is real symmetric. The fusion numbers nk
i j, as given by

the Verlinde formula

nk
i j =

∑
m

SimS jmS̄mk

S1m
, (5.29)

can only take the values 0 or 1.

5.3.1 Invariant operators

Local operators in the Zn orbifold must form a set of mutually local fields. In
particular, they must be local with respect to the twist fields, i.e. be invariant under
cyclic permutations. In that sense, gauging the Zn symmetry in the replicated
theoryM⊗n removes 1 all fields inM⊗n that are notZn invariant. It turns out that
this condition is also sufficient: all invariant fields are local, as we will show in
section 5.4.1. Throughout the chapter, we will use the terms local and invariant
interchangeably when referring to fields/operators.

Importantly, the currents T(r)(z) themselves are not local for r , 0, since they
have non-trivial monodromies around twist fields (5.16). This means that acting
with a mode L(r)

m on a local field yields a non-local one, and therefore it is not
possible to decompose local fields into modules of the full orbifold algebra OVirn⊕

OVirn. Instead, one has to work with the neutral algebra An.
Invariant operators can be classified into three families of primary operators

and their descendants, with respect to the neutral algebras An ⊕ Ān. In this
section, we enumerate all (Pn

− P)/n + n2P primary invariant operators, where P
is the number of primary fields in the mother theory.

The proofs that these operators are primary and that the action of An ⊕ Ān on
them generates all invariant operators, are given in Appendix D.1.

The non-diagonal untwisted operators Φ[ j1... jn]. They are defined as

ΦJ = Φ[ j1,··· , jn] :=
1
√

n

n−1∑
a=0

(ϕ j1+a ⊗ · · · ⊗ ϕ jn+a) , (5.30)

1Such fields are not really removed: they are downgraded to semilocal fields in the cyclic
orbifold. At the level of states, while they do not contribute to the torus partition function, they
do contribute to twisted partition functions [36].
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where J = [ j1, · · · , jn] stands for the n-tuple ( j1, · · · , jn) moduloZn, that is the equiv-
alence class of ( j1, . . . , jn) under cyclic permutations. The indices (1+ a), . . . , (n+ a)
in (5.30) are understood modulo n. Part of the definition is to demand that at least
two labels among ( j1, · · · , jn) are distinct, ensuring that the fields ϕ j1+a ⊗ · · · ⊗ϕ jn+a ,
for 0 ≤ a ≤ n − 1 are linearly independent. Each ϕ j stands for a primary operator
in the mother CFT. The conformal dimension of ΦJ is

h[ j1,··· , jn] = h j1 + · · · + h jn , (5.31)

where h j is the conformal dimension of ϕ j.

The diagonal untwisted operators Φ(r)
j , with r ∈ Zn. For r = 0, let

Φ(0)
j = Φ j := ϕ j ⊗ · · · ⊗ ϕ j , (5.32)

where ϕ j is a primary operator in the mother CFT. For r , 0 mod n, we define

Φ(r)
j :=

1
2nh j

L(r)
−1L̄(−r)

−1 ·Φ j for ϕ j , 1 , (5.33)

and

1(r) :=
2
nc

L(r)
−2L̄(−r)

−2 · 1 =
2
nc

T(r)T
(−r)
. (5.34)

Recall that by convention, ϕ1 = 1 in the mother CFT. The reason for introducing a
specific definition of the operators 1(r) is the fact that L(r)

−1 ·1 = L̄(r)
−1 ·1 = 0, due to the

null-vector conditions L−1 · 1 = L̄−1 · 1 = 0 in the mother CFT. The corresponding
conformal dimensions are

h(r)
j = nh j + (1 − δr0) for ϕ j , 1 , (5.35)

h(r)
1 = 2(1 − δr0) . (5.36)

The prefactors in (5.33–5.34) are chosen to normalize the two-point function – see
below.

The twist operators σ[k](r)
j . These operators are indexed by three labels: j identi-

fies a primary field ϕ j in the mother theory, k , 0 mod n labels the twisted sector,
and r takes values in Zn. When j = 1 and r = 0, they simply correspond to the
“bare” twist operators

σ[k](0)
1 := σ[k] , (5.37)

and they all have conformal dimension

hσ =
c

24

(
n −

1
n

)
. (5.38)

as follows from the state-operator correspondence and the finite size scaling ar-
gument above (5.9). For j , 1 and r = 0, the twist operator σ[k](0)

j := σ[k]
j is the field

associated to the state |σ[k]
j ⟩ (as defined in section (5.2.3)) under the state-operator

correspondence. This defines a composite twist operator, with conformal dimension
given by (5.26), that is :

hσ j = hσ +
h j

n
. (5.39)
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Alternatively, this composite twist field can be constructed as the most relevant
field obtained in the fusion

Φ[ j,1,...,1] × σ
[k](0)
1 (5.40)

where the field Φ[ j,1,...,1] is defined at (5.30). Formally [219, 242] :

σ[k](0)
j (z, z̄) = A j lim

ϵ→0

[
ϵ2(1−n−1)h jΦ[ j,1,...,1](z + ϵ, z̄ + ϵ̄) · σ[k](z, z̄)

]
, (5.41)

where Φ[ j,1,...,1] is the non-diagonal untwisted operator given above, and h j is the
conformal dimension of ϕ j, and the constant prefactor is A j = n−2(1−n−1)h j−1/2. As
explained in section (5.2.3), the operators σ[k]

j are also primary under OVirn⊕OVirn.

For r , 0 the twist operators σ[k](r)
j are given by

σ[k](r)
j :=

B j,[[kr]] L(r)
−[[kr]]/nL̄(−r)

−[[kr]]/n · σ
[k]
j if ϕ j , 1 or kr , 1 mod n ,

B1,n+1 L(r)
−1−1/nL̄(−r)

−1−1/n · σ
[k] otherwise,

(5.42)

or equivalently as states

|σ[k](r)
j ⟩ := n−2Θk

B j,[[kr]] L−[[kr]]L̄−[[kr]] |ϕ j⟩ if ϕ j , 1 or kr , 1 mod n ,
B1,n+1 L−(n+1)L̄−(n+1) |0⟩ otherwise.

(5.43)

where [[m]] stands for the remainder of the Euclidean division of m by n, that is
the unique integer in the interval {0, . . . ,n − 1} such that [[m]] = m mod n. The

constant prefactors B j,m = n2
[
2mh j + cm(m2

− 1)/12
]−1

are included to normalize
the two-point function in the usual way (5.47).

The case j = 1 has to be treated separately because of the null-vector relations
obeyed by the bare twist operators [118, 119]:

L(k−1)
−1/n · σ

[k] = 0 , L̄(−k−1)
−1/n · σ

[k] = 0 . (5.44)

The conformal dimension of σ[k](r)
j is

h[k](r)
j =

hσ j +
[[kr]]

n if ϕ j , 1 or kr , 1 mod n ,
hσ + n+1

n otherwise.
(5.45)

Property. All the operators in the above list are primary under the neutral alge-
bra An⊕ Ān. They are local, by virtue of being invariant under cyclic permutations
of copies. They are scalar operators, namely they have conformal dimensions
h = h̄. Moreover, these are the only fields with these properties: any invariant
operator inMn can be obtained by acting with An ⊕ Ān on one of these invariant
primary operators. These fundamental properties are proven in Appendix D.1.

Two-point functions. The normalization factors have been chosen so that the
two-point functions are given by

⟨Φ[ j1,..., jn](z, z̄)Φ[ j1,..., jn](w, w̄)⟩ = |z − w|−4h[ j1 ,..., jn] ,

⟨Φ(r)
j (z, z̄)Φ(−r)

j (w, w̄)⟩ = |z − w|−4h(r)
j ,

⟨σ[k](r)
j (z, z̄)σ[−k](−r)

j (w, w̄)⟩ = |z − w|−4h[k](r)
j ,

(5.46)
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where r ∈ Zn and k ∈ Z×n . Any other two-point function of invariant primary
operators vanishes. This can be summarized by writing

⟨Φα(z, z̄)Φ†β(w, w̄)⟩ = δαβ |z − w|−4hα , (5.47)

whereΦα denotes an operator of the formΦ[ j1... jn],Φ
(r)
j or σ[k](r)

j , and the conjugation
α→ α† acts as

[ j1 . . . jn]→ [ j1 . . . jn] (5.48)
j, (r)→ j, (−r) (5.49)

j, [k], (r)→ j, [−k], (−r) (5.50)

5.3.2 Invariant Hilbert space

In any chiral OVirn-module with a lowest-weight state |hα⟩, we can define a formal
cyclic permutation operator π by

π · |hα⟩ := |hα⟩ , π · L(r)
m := ωr L(r)

m · π , (5.51)

and similarly for an OVirn-module. With this definition, we have πn = 1, and
hence the operator

Pr =
1
n

n−1∑
a=0

ω−ar πa . (5.52)

is the projector on the eigenspace of π corresponding to the eigenvalue ωr.
For any invariant primary operator Φα of the form Φ[ j1... jn], Φ

(r)
j or σ[k](r)

j , we
denote byVα the corresponding (An⊕ Ān)-module. The action of An (resp. Ān) on
the highest weight state |hα⟩ generates an An-module (resp. Ān-module), which
we denote as Vα (resp. V̄α). Since An and Ān commute, we have

Vα ≃ Vα ⊗ V̄α . (5.53)

It turns out that the An-modules Vα associated to the three types of invariant
primary operators Φα in the orbifold model can be viewed as eigenspaces of π in
OVirn-modules, namely

V[ j1,..., jn] ≃ P0 · (v j1 ⊗ · · ·⊗v jn) , V(r)
j ≃ Pr · (v j⊗ · · ·⊗v j) , V[k](r)

j ≃ Pr ·Θk ·v j . (5.54)

Here, we have denoted by v j the Vir-module associated with the primary op-
erator ϕ j in the mother CFT, and we have used the induction isomorphisms Θk

introduced in Sec. 5.2.3. For Ān-modules we have

V̄[ j1,..., jn] ≃ P0 ·(v̄ j1⊗· · ·⊗ v̄ jn) , V̄(r)
j ≃ P−r ·(v̄ j⊗· · ·⊗ v̄ j) , V̄[k](r)

j ≃ P−r ·Θk · v̄ j , (5.55)

where the v̄ j’s are the mother CFT’s Vir-modules.
Let H0 be the space of Mn states which are invariant under cyclic permu-

tations. We shall refer to H0 as the invariant Hilbert space. As a consequence
of the classification of invariant operators presented in Sec. 5.3.1, one gets the
(An ⊕ Ān)-module decomposition ofH0:

H0 =
⊕

J=[ j1... jn]

VJ ⊕

⊕
j

n−1⊕
r=0

V
(r)
j ⊕

⊕
j

n−1⊕
k=1

n−1⊕
r=0

V
[k](r)
j . (5.56)
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In this expression, the sums on j run over the primary operators ϕ j of the mother
CFT, whereas the sum on [ j1 . . . jn] runs over the equivalence classes of n-tuples
( j1, . . . , jn) under cyclic permutations, where the ja’s are indices of primary oper-
ators of the mother CFT, and with at least two distinct indices ja , jb.

5.3.3 On fusion numbers

Before moving on to operator product expansions and conformal blocks, it is
useful to discuss fusion numbers. From the above discussion, the cyclic orbifold
is a diagonal theory with respect to the extended symmetry An ⊕ Ān, therefore
operators {Φα} are labelled by a single symbol α, also labelling the irreducible
An-modules {Vα}. The fusion rules are generically of the form

Φα ×Φβ →
∑
γ

N
γ
αβΦγ , (5.57)

where the sum is over all primary invariant operators Φγ, and the non-negative
integersNγ

αβ are the fusion numbers. They obey

N
γ
αβ = N

γ
βα , N

γ
αβ = N

β†

αγ†
. (5.58)

Recall that we are assuming that, in the mother theory, all fusion numbers nk
i j are

0 or 1. But in the orbifold, non-trivial multiplicities (i.e. Nγ
αβ > 1) are expected

to appear. The fusion number Nγ
αβ is the dimension of the space of chiral vertex

operators [243] of type
(
γ
αβ

)
. Chiral three-point functions

C
γ
αβ(λ, µ, ν) = ⟨Φγ|ν† (λ ·Φα)(1)µ|Φβ⟩ (5.59)

for λ, µ, ν ∈ An are not all linearly independent. Indeed, they satisfy many linear
relations following from:

1. The commutation rules of An, which follow from[
L(r)

m ,L
(s)
p

]
= (m − p)L(r+s)

m+p +
nc
12

m(m2
− 1) δm+p,0 δr+s,0 . (5.60)

2. The properties of primary operators and states

[L(0)
m ,Φα(z, z̄)] = zm

(
(m + 1)hα + z∂z

)
Φα(z, z̄) , (5.61)

⟨Φγ|L
(r)
m<0 = 0 , ⟨Φγ|L

(0)
0 = hγ ⟨Φγ| , (5.62)

L(r)
m>0 |Φα⟩ = 0 , L(0)

0 |Φα⟩ = hα |Φα⟩ . (5.63)

3. The Ward identities associated with the OVirn currents. These can be ex-
pressed generally as closed contour identities, for any m-tuple of operators
Φ1, . . . ,Φm (primary or not) with twist charges k1, . . . , km:∮

dz (z − z1)q1 . . . (z − zm)qm ⟨T(r)(z)Φ1(z1, z̄1) . . .Φm(zm, z̄m)⟩ = 0 ,

if q j ∈ −
rk j

n
+Z and q1 + · · · + qm ≤ 2 . (5.64)
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4. The decoupling of null-vectors (e.g. if µ|Φβ⟩ is null, then Cγαβ(λ, µ, ν) = 0).

For instance, using (5.61) and (5.63), we have for m > 0:

C
γ
αβ(1, 1,L

(0)
−m) = ⟨Φγ|LmΦα(1)|Φβ⟩ =

(
(m + 1)hα − 2hα − 2hβ + 2hγ

)
C
γ
αβ(1, 1, 1) . (5.65)

Consider the whole set of constraints (5.60–5.64) plus the decoupling of null-
vectors as a linear system of equations for the functionAn ⊗ An ⊗ An → C

(λ, µ, ν) 7→ C
γ
αβ(λ, µ, ν) = ⟨Φγ|ν† (λ ·Φα)(1)µ|Φβ⟩ .

Then Nγ
αβ is the dimension of the solution space of this linear system. By the use

of orbifold Ward identities, one can show that the subset of coefficients

C
γ
αβ(µ) := Cγαβ(1, µ, 1) = ⟨Φγ|Φα(1)µ|Φβ⟩ , (5.66)

determines uniquely all the other coefficientsCγαβ(λ, µ, ν). Hence,Nγ
αβ corresponds

to the number of linearly independent solutions for the function µ 7→ Cγαβ(µ),

subject to (5.60–5.64). Let
(
Cαβ

)
m

, with m = 1, · · · ,Nγ
αβ, denote a basis of these

solutions.

If we now return to the physical three-point function (that is including the
anti-holomorphic degrees of freedom), generically we have

⟨Φγ|Φα(1, 1̄)µµ̄|Φβ⟩ =

N
γ
αβ∑

m,n=1

κm,p

(
C
γ
αβ

)
m

(µ)
(
C
γ
αβ

)
p

(µ̄) . (5.67)

However since the application (µ, µ̄) → ⟨Φγ|Φα(1, 1̄)µµ̄|Φβ⟩ is bilinear and sym-
metric, there exists a (real) basis

(
Xαβ

)
m

, such that

⟨Φγ|Φα(1, 1̄)µµ̄|Φβ⟩ =

N
γ
αβ∑

m=1

ϵm

(
Xγ
αβ

)
m

(µ)
(
Xγ
αβ

)
m

(µ̄) , (5.68)

where ϵm ∈ {−1, 0, 1}. The naturality theorem [244] implies that the above bilinear
form has maximal rank, thus ϵm = 0 must be excluded.

Let’s consider for instance the fusion process involving three non-diagonal
untwisted operators

Φ[i1...in] ×Φ[ j1... jn] → Φ[k1...kn] . (5.69)

For compactness we introduce the shorthand notation I = [i1 . . . in], J = [ j1 . . . jn]
and K = [k1 . . . kn]. Consider the following physical three-point function

C
K
IJ(µ, µ̄) = ⟨ΦKΦI(µ µ̄ ·ΦJ)⟩ , (5.70)

for µ ∈ An and µ̄ ∈ Ān. Using the definition of Φ[i1...in],Φ[ j1... jn],Φ[k1...kn] and the fact
that µ, µ̄ are invariant under the cyclic permutation Π, one can write

C
K
IJ(µ, µ̄) =

n−1∑
a,b=0

(
C

K
IJ

)
ab

(µ, µ̄) , (5.71)
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where (with a slight abuse of notation, as we now treat I, J and K as n-tuples)(
C

K
IJ

)
ab

(µ, µ̄) :=
1
√

n
⟨Πa[ϕk1⊗· · ·⊗ϕkn]Πb[ϕi1⊗· · ·⊗ϕin] (µ µ̄·(ϕ j1⊗· · ·⊗ϕ jn))⟩ . (5.72)

andΠ is the generator of cyclic permutations : Π[ϕi1⊗· · ·⊗ϕin] = [ϕi2⊗ϕi3⊗· · ·⊗ϕi1].
A closer inspection reveals that each symmetric bilinear form

(
C

K
IJ

)
ab

is rank at most
one. Indeed, decomposing

µ = L(r1)
m1
. . . L(rp)

mp (5.73)

together with

L(r)
m =

n−1∑
j=0

ω jr 1 ⊗ · · · ⊗ Lm
( j)
⊗ · · · ⊗ 1 , (5.74)

and likewise for µ̄, one ends up with a sum of products of three-point functions
in the mother theory of the form∏

c

⟨ϕkc+aϕic+b

(
λcλ̄c · ϕ jc

)
⟩ (5.75)

where λ, λ̄ are in (the enveloping algebra of) Virasoro. For each term in the
product, we have

⟨ϕkϕi(λ λ̄ · ϕ j)⟩ =

⟨ϕkϕiϕ j⟩ xk
i j(λ)xk

i j(λ̄) if nk
i j = 1 ,

0 if nk
i j = 0 ,

(5.76)

where xk
i j(λ) is uniquely determined by the Virasoro analogue of (5.60–5.64).

Clearly
(
C

K
IJ

)
ab

vanishes unless

⟨ϕk1+aϕi1+bϕ j1⟩ . . . ⟨ϕkc+aϕic+bϕ jc⟩ . . . ⟨ϕkn+aϕin+bϕ jn⟩ , 0 (5.77)

Moreover, when it does not vanish, it factorizes as(
C

K
IJ

)
ab

(µ, µ̄) :=
(
XK

IJ

)
ab

(µ)
(
XK

IJ

)
ab

(µ̄) (5.78)

where the linear forms
(
XK

IJ

)
ab

can be computed explicitly in terms of the xk
i j’s. For

instance, one has (
XK

IJ

)
ab

(L(0)
m ) ∝

n−1∑
c=0

xkc+a
ic+b, jc

(Lm) (5.79)

and (
XK

IJ

)
ab

(L(r)
m L(−r)

n )

∝

n−1∑
c,d=0

[
(1 − δcd)ω(c−d)rxkc+a

ic+b, jc
(Lm)xkd+a

id+b, jd
(Ln) + δcdxkc+a

ic+b, jc
(LmLn)

]
. (5.80)

We have decomposed the physical three point function ⟨Φγ|Φα(1, 1̄)µµ̄|Φβ⟩ in
terms of a family of solutions

(
XK

IJ

)
ab

(µ) of (5.60–5.64), and shown how to compute
them. The cardinal of this family is∑

a,b

nk1
i1+a, j1+b

. . . nkn
in+a, jn+b

, (5.81)
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where nk
i j is the fusion number for ϕi × ϕ j → ϕk in the mother CFT. By the

naturality theorem [244], the forms
(
XK

IJ

)
ab

(µ) span the whole space of solutions.

But, as we did not prove that the
(
XK

IJ

)
ab

(µ) are linearly independent, (5.81) is only
an upper bound for the fusion numberNK

IJ . The fact thatNK
IJ indeed equals (5.81),

and therefore the
(
XK

IJ

)
ab

(µ) are linearly independent, will be proved indirectly in
Sec. 5.4.3 via the Verlinde formula.

The above arguments can be easily extended to construct a family of inde-
pendent OPE coefficients (Cγαβ)m(µ) for a fusion process involving any kind of
untwisted operators, leading to the fusion numbers

N
[k1...kn]
[i1...in],[ j1... jn] =

∑
a,b

nk1
i1+a, j1+b

. . . nkn
in+a, jn+b

, (5.82)

N
k(r)

[i1...in],[ j1... jn] =

n−1∑
a=0

nk
i1+a, j1 . . . n

k
in+a, jn , (5.83)

N
k(s)

[i1...in], j(r) = nk
i1, j . . . n

k
in, j , (5.84)

N
ℓ(t)

j(r),k(s) = δr+s,t nk
i j . (5.85)

Fusion number involving twist fields on the other hand cannot be inferred using
the same elementary approach, because for such three-point functions the copies
of the mother CFT within the orbifold CFT are no longer decoupled. The answer,
as provided by Verlinde’s formula, will turn out to be more complicated, and not
expressible in terms of the fusion numbers of the mother theory alone. But while
we cannot at this stage easily compute the fusion numbers involving twist fields,
we can at least argue that they are finite, by showing that correlation functions in
the orbifold always involve finitely many (extended) conformal blocks.

Holomorphic factorization property and rationality Conformal field theories
obey the holomorphic factorization property [245]. On the plane/sphere, it means
that correlation functions can be decomposed as

⟨Φi1(z1, z̄1) · · ·Φim(zm, z̄m)⟩ =
∑

I,J

FI(z)ρIJFJ(z̄) (5.86)

where the (extended) conformal blocks FI are holomorphic functions of z =
(z1, · · · , zn), and FJ are anti-holomorphic. More generally, on a Riemann surface Σ
the factorization property becomes

ZΣ ⟨Φi1(z1, z̄1) · · ·Φim(zm, z̄m)⟩Σ =
∑

I,J

FI(z,p)ρIJFJ(z̄, p̄) (5.87)

where ZΣ stands for the partition function on Σ, and the conformal blocks FI

depend also holomorphically on the analytic coordinates p of the moduli of Σ.
The above holds in particular in the absence of field insertion (m = 0), meaning
that the partition function itself obeys the holomorphic factorization property. For
instance in genus one, with a flat metric, this is simply

Z(τ, τ̄) =
∑

i, j

χi(τ)ρi jχ j(τ̄) . (5.88)
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A CFT is said to be rational when all the sums involved above are finite.
Provided the mother theoryM obeys the holomorphic factorization property,

then so does its cyclic orbifold Mn. Consider for instance a generic correlation
function of twists fields on a Riemann surface Σ

⟨σk1
i1

(z1, z̄1) · · · σkm
im

(zm, z̄m)⟩Σ (5.89)

One can reinterpret this correlation function as a correlation function in the mother
theory on the n-sheeted branched cover π : Σ′ → Σ, with ramification index k j at
z j. We then have

ZΣ ⟨σk1
i1

(z1, z̄1) · · · σkn
im

(zm, z̄m)⟩Σ = ZΣ′⟨ϕi1(z1, z̄1) · · ·ϕim(zm, z̄m)⟩Σ′ , (5.90)

where in the r.h.s. both the correlation function and the partition function involve
the mother theory on the covering surface Σ′, with the metric g′ = π∗g being
the pull-back of the metric g on Σ. In practice, the picture above is slightly more
complicated, as the pull-back metric g′ has conical singularities at the ramification
points, but these can be regularized [122].

Exploiting the holomorphic factorization property of the mother theory then
yields

ZΣ ⟨σk1
i1

(z1, z̄1) · · · σkm
im

(zm, z̄m)⟩Σ =
∑

I,J

FI(z,p′)ρIJFJ(z̄, p̄′) (5.91)

The factorization property of the l.h.s. then follows from the fact that the moduli
p′ = p′(p, z) of the branched covering Σ′ depends holomorphically on the moduli
p of Σ and the positions z of the branched points. For instance, the 2-sheeted
cover of the sphere with four branch points at positions zi is a torus with moduli

τ(x) = i
2F1

(
1
2 ,

1
2 , 1; 1 − x

)
2F1

(
1
2 ,

1
2 , 1; x

) , x =
(z1 − z2)(z3 − z4)
(z1 − z3)(z2 − z4)

The above argument is easily adapted to the generic case involving descen-
dants of twist fields and/or untwisted fields. The last quantity to consider is
the partition function itself, but this is simply obtained by summing all twisted
partition functions of n copies of the mother theory, each of which obeys the
factorization property.

Furthermore, it is clear that if the mother theory is rational, then so is the
orbifold. As a consequence, all fusion numbers in the cyclic orbifold are finite
when the mother theory is rational.

5.3.4 (Extended) conformal blocks on the sphere

The computation of entanglement entropies in the case of a single interval embed-
ded in an infinite line (or a circle) at zero temperature boils down to a two-point
function of twist fields on the sphere [46, 87, 214]. The main simplification in that
case is that such two-point functions are completely fixed by conformal invariance.
In contrast, if the system has boundaries, or is at finite temperature with periodic
boundary conditions, the CFT computation involves two point functions of twist
fields on more complicated Riemann surfaces, namely, the upper half plane or
the torus[110, 152, 173, 233, 234, 236–238, 246]. Likewise, if the region A con-
sists of several disjoint intervals, Rényi entropies involve higher-point correlation
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functions of twist fields, or equivalently the partition function on higher genus
Riemann surfaces [71, 84, 85, 88, 123, 127, 132, 153, 163, 187, 198–200, 239, 240].
In such cases, conformal invariance alone is no longer sufficient, and the full re-
sources of two-dimensional CFT have to be brought to bear on the computation.
One practical approach is to expand correlation functions using standard Vira-
soro conformal blocks, either to produce asymptotic expansions in some limiting
cases (such as a small interval, for instance) [85, 212, 247–251] or to implement a
numerical bootstrap approach[222]. However, by building on the present work,
one can exploit the extended An symmetry and use extended conformal blocks
instead of a brute force expansion employing just Virasoro blocks.

As we shall now explain, the diagonal decomposition (5.68) of OPE coeffi-
cients is a key property for the analysis of correlation functions and allows for
a systematic description of orbifold conformal blocks. Consider the four-point
function

G(z, z̄) = ⟨Φ†1(∞)Φ2(1)Φ3(z, z̄)Φ4(0)⟩ , (5.92)

where Φ1, . . . ,Φ4 are (twisted or untwisted) invariant primary operators in Mn.
Inserting a resolution of the identity, we get

G(z, z̄) =
∑
α,µ,µ̄

z−hα34+|µ| z−hα34+|µ̄| ⟨Φ†1Φ2(µ · µ̄ ·Φα)⟩ ⟨(µ · µ̄ ·Φα)†Φ3Φ4⟩ , (5.93)

where we have used the notation hc
ab = ha + hb − hc, and |µ|, |µ̄| denote the levels

of µ, µ̄ respectively. In this expansion, Φα runs over all the invariant primary
operators, and {µ |Φα⟩} (resp. {µ̄ |Φα⟩}) is an orthonormal basis of Vα (resp. V̄α). We
now use the decomposition (5.68) for the three-point functions, which gives

⟨Φ†1Φ2(µ · µ̄ ·Φα)⟩ =
N

1
2α∑

m=1

(ϵ1
2α)m

(
X1

2α

)
m

(µ)
(
X1

2α

)
m

(µ̄) , (5.94)

⟨(µ · µ̄ ·Φα)†Φ3Φ4⟩ =

N
α
34∑

n=1

(ϵ4
3†,α)n (X4

3†,α)∗n(µ) (X4
3†,α)∗n(µ̄) . (5.95)

where we have used ⟨(µ · µ̄ ·Φα)†Φ3Φ4⟩ = ⟨Φ
†

4Φ
†

3(µ · µ̄ ·Φα)⟩∗. We get the decompo-
sition

G(z, z̄) =
∑
α

N
1
2α∑

m=1

N
α
34∑

p=1

(ϵ1
2α)m (ϵ4

3†,α)pFα,m,p(z) F̄α,m,p(z̄) , (5.96)

where the conformal blocks are defined by

Fα,m,p(z) =
∑
µ

z−hα34+|µ| (X1
2α)m(µ) (X4

3†,α)∗n(µ) , (5.97)

F̄α,m,p(z̄) =
∑
µ̄

z̄−hα34+|µ̄| (X1
2α)m(µ̄) (X4

3†,α)∗n(µ̄) , (5.98)

and the sums run over orthonormal bases {µ |Φα⟩} and {µ̄ |Φα⟩} of Vα and V̄α∗ ,
respectively.

note that each of the conformal blocksFα,m,p(z) has the form of an integer power
series in z, multiplied by a factor z−hα34 . The conformal block decomposition (5.96) is
indexed by the invariant primary operatorsΦα under the An ⊕ Ān neutral algebra.
Each internal primary state |Φα⟩ contributes with a multiplicity (i.e. number of
independent conformal blocks) given by the product of fusion numbersN1

2α×N
α
34.
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5.4 Modular properties and Verlinde’s formula

In this section, we recall the modular properties of the cyclic orbifold and obtain
the orbifold fusion rules from the Verlinde formula.

5.4.1 Torus partition function

Consider the torus of modular parameter τ

Tτ = C/(Z + τZ) , (5.99)

with Im τ > 0, and let us use the notations q = e2iπτ and q̄ = e−2iπτ̄. We denote by
Zm,p(τ) the partition function of Mn, where the copy a is connected to the copy
a + m (resp. a + p) along the cycle z → z + τ (resp. z → z + 1). Since changing
the orientation of both cycles yields the same torus, clearly Zm,p(τ) = Z−m,−p(τ).
Furthermore, the elementary modular transformations act as:

Zmp(τ + 1) = Zm−p,p(τ) , Zmp(−1/τ) = Zp,−m(τ) . (5.100)

For a general modular transformation, we have:

Zmp (τ) = Zam+bp,cm+dp

(
aτ + b
cτ + d

)
, (a, b, c, d) ∈ Z4 , ad − bc = 1 . (5.101)

The full partition function of the orbifold CFT is defined as the sum over all
possible defects:

Zorb(τ) =
1
n

n−1∑
m,p=0

Zmp(τ) , (5.102)

and it is manifestly modular invariant.
Denoting by Z(τ) the mother CFT partition function, we have the identities

Zm0(τ) = Z(nτ) , Z0m(τ) = Z(τ/n) , m , 0 mod n . (5.103)

Using these, together with the relations (5.101), we can express Zorb(τ) as:

Zorb(τ) =
1
n

Z00(τ) +
n−1∑
m=1

Zm0(τ) +
n−1∑
m=0

n−1∑
p=1

Zmp(τ)


=

1
n

Z(τ)n +
n − 1

n

Z(nτ) +
n−1∑
k=0

Z
(
τ + k

n

) , (5.104)

which is the standard result [229] for the partition function of the Zn orbifold.
Recall the definition (D.3) for the cyclic permutation of copies, and the family of
projectors

Pr =
1
n

n−1∑
a=0

ω−arΠa , (5.105)

on the eigenspaces of eigenvalueωr ofΠ. By construction, each individual twisted
partition function Zmp(τ) reads

Zmp(τ) = TrH [p]

[
Πm qL(0)

0 −nc/24 q̄L̄(0)
0 −nc/24

]
, (5.106)
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where H [n] is the space ofMn states with twist charge n. Therefore, the orbifold
partition function (5.102) can be rewritten as

Zorb(τ) =
n−1∑
p=0

TrH [p]

[
P0 qL(0)

0 −nc/24 q̄L̄(0)
0 −nc/24

]
. (5.107)

Hence we get the simple identity

Zorb(τ) = TrH0

[
qL(0)

0 −nc/24 q̄L̄(0)
0 −nc/24

]
, (5.108)

whereH0 is the invariant Hilbert space defined in Sec. 5.3.2. We recover that local
fields coincide with invariant fields.

5.4.2 Modular characters

Let us first fix the notations for the characters of the mother CFT, in the case when
it is rational, i.e. with a finite set of primary operators {ϕ1, . . . , ϕM}. We denote by
χ j the Virasoro character of the module associated to ϕ j in the mother CFT:

χ j(τ) = Trv j

(
qL0−c/24

)
. (5.109)

The χ j’s transform under the elementary modular maps as

χ j(τ + 1) = t j χ j(τ) , χi(−1/τ) =
M∑
j=1

Si j χ j(τ) , (5.110)

where t j = exp[2iπ(h j − c/24)], and S is a unitary matrix. Moreover, since we
assume that the mother theoryM is diagonal, the matrix S is real symmetric, and
satisfies (ST)3 = 1, where T = diag(t1, . . . , tM).

In the orbifold CFT, the characters associated to the An-modules VJ,V
(r)
j ,V

[k](r)
j

are, respectively:

χJ(τ) = χ j1(τ) . . . χ jn(τ) , (5.111)

χ(r)
j (τ) =

1
n

[
χ j(τ)n + (nδr0 − 1)χ j(nτ)

]
, (5.112)

χ[k](r)
j (τ) =

1
n

n−1∑
m=0

t−m/n
j ω−krm χ j

(
τ +m

n

)
. (5.113)

The proof for these expressions is given in [119]. and they can be considered as a
special case of [252, 253] (which are also employed in [254] and [230])

From the decomposition of the invariant Hilbert space H0, we can write the
partition function (5.108) as

Zorb(τ) =
∑

J=[ j1... jn]

|χJ|
2 +

∑
j

n−1∑
r=0

|χ(r)
j |

2 +
∑

j

n−1∑
k=1

n−1∑
r=0

|χ[k](r)
j |

2 , (5.114)

where the notations for the sums are the same as in (5.56). The orbifold characters
transform under the elementary modular maps as

χα(τ + 1) = Tα χα(τ) , χα(−1/τ) =
∑
β

Sαβ χβ(τ) , (5.115)
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with
TJ = t j1 . . . t jn , T

(r)
j = tn

j , T
[k](r)
j = ωkr t1/n

j , (5.116)

and

SI,J =

n−1∑
a=0

Si1, j1+a . . . Sin, jn+a ,

SI, j(r) = S j(r),[i1...in] = Si1, j . . . Sin, j ,

Si(r), j(s) =
Sn

ij

n
,

Si(r), j[k](s) = S j[k](s),i(r) =
ω−kr Si j

n
,

Si[k](r), j[ℓ](s) =
ω−ks−ℓr (Pℓ.k−1)i j

n
,

SI, j[k](r) = S j[k](r),I = 0 .

(5.117)

The matrices Pm appearing in this expression are defined as

Pm = T−m/n
·Qm · T[[−m−1]]/n , m ∈ Z×n , (5.118)

where [[−m−1]] denotes the inverse of (−m) modulo n, with 0 < [[−m−1]] < n, and
Qm is the matrix representing the linear action of the modular map

τ 7→ qm(τ) =
mτ − (m[[−m−1]] + 1)/n

nτ − [[−m−1]]
(5.119)

on the characters χ j of the mother CFT. We introduce the conjugation matrix C,
with matrix elements

Cαβ = δα,β† , (5.120)

and the diagonal matrix T with matrix elements Tα. The orbifold modular ma-
trices S and T satisfy the properties

S
t = S , (5.121)

S
2 = C , (5.122)

S
†
S = 1 , (5.123)

(ST )3 = C , (5.124)

where St denotes the transpose of S.
The main arguments for the proofs of these properties are given in the Ap-

pendix D.3. note that the relations (5.115) are not sufficient to determine com-
pletely the matrices S and T , because some distinct An-modules have the same
characters, namely

χ[ j1... jn](τ) = χ[ jp(1)... jp(n)](τ) for any permutation p of {1, . . . ,n}, (5.125)

χ(r)
j (τ) = χ(s)

j (τ) if r, s , 0 , (5.126)

χ[k](r)
j (τ) = χ[ℓ](s)

j (τ) if rk = sℓ mod n . (5.127)

However, the expressions (5.116–5.117) define a simple and elegant solution to
the constraints (5.121–5.124) in terms of the modular matrices of the mother CFT.
Furthermore, it agrees with the S matrix given in equation (10) of [253].

133



Chapter 5 – Operator algebra of the cyclic orbifold

5.4.3 Fusion rules

Recall our notation for the fusion numbers:

Φα ×Φβ →
∑
γ

N
γ
αβΦγ , (5.128)

where Φα,Φβ,Φγ are invariant primary operators. The fusion numbers can be
computed through the Verlinde formula

N
γ
αβ =

∑
δ

SαδSβδS
†

γδ

S1δ
, (5.129)

where the sum runs over all possible invariant primary operators Φδ described in
Section 5.3.1. This formula, together with (5.121–5.124), directly ensures that the
properties are satisfied

N
γ
αβ = N

γ
βα , N

γ
αβ = N

β†

αγ†
, (5.130)

are satisfied. In the case of untwisted operators, we get

N
K
I,J =

n−1∑
a,b=0

nk1
i1+a, j1+b

. . . nkn
in+a, jn+b

, (5.131)

N
k(r)

I,J =

n−1∑
a=0

nk
i1+a, j1 . . . n

k
in+a, jn , (5.132)

N
k(s)

I, j(r) = nk
i1, j . . . n

k
in, j , (5.133)

N
k(t)

i(r), j(s) = δr+s,t nk
i j , (5.134)

which confirms the hypothesis that the OPE coefficients constructed in Sec. 5.3.3
span the solution space of the linear system of equations which derive from the
orbifold algebraic rules and Ward identities. The fusion numbers involving twist
operators are given by

N
K
i[p](r) j[q](s) = δp+q,0

M∑
ℓ=1

SiℓS jℓ · Sk1ℓ . . . Sknℓ

Sn
1ℓ

, (5.135)

N
k(t)

i[p](r) j[q](s) =
δp+q,0

n

M∑
ℓ=1

SiℓS jℓSn
kℓ

Sn
1ℓ

+

n−1∑
a=1

ωap(r+s−t) (P−a)iℓ(Pa) jℓSkℓ

S1ℓ

 , (5.136)

N
k[m](t)

i[p](r) j[q](s) =
δp+q,m

n

M∑
ℓ=1

SiℓS jℓSkℓ

Sn
1ℓ

+

n−1∑
a=1

ωa(r+s−t)
(P†

pa−1)iℓ(P†qa−1) jℓ(Pma−1)kℓ

S1ℓ

 . (5.137)

The fusion numbers (5.136) depend on the Fourier indices r, s, t only through the
combination (r + s − t), as expected from the discussion in Sec. 5.3.3. Using the
unitarity of S, some of the terms can be expressed using the fusion numbers of
the mother CFT:

M∑
ℓ=1

SiℓS jℓ · Sk1ℓ . . . Sknℓ

Sn
1ℓ

=

M∑
ℓ1,...,ℓn−1=1

nℓ1
i j × nℓ2

ℓ1k1
nℓ3
ℓ2k2
. . . nℓn−1

ℓn−2kn−2
× nkn

ℓn−1kn−1
, (5.138)

M∑
ℓ=1

SiℓS jℓSn
kℓ

Sn
1ℓ

=

M∑
ℓ1,...,ℓn−1=1

nℓ1
i j × nℓ2

ℓ1kn
ℓ3
ℓ2k . . . n

ℓn−1
ℓn−2k × nk

ℓn−1k . (5.139)
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This is also the case for the first term in (5.137). For instance, for n = 3, we have

M∑
ℓ=1

SiℓS jℓSkℓ

S3
1ℓ

=

M∑
ℓ1,ℓ2,ℓ3=1

nℓ2
iℓ1

nℓ3
jℓ2

nℓ1
kℓ3
, (5.140)

and similar but more complicated expressions hold for n > 3.

5.5 Example applications

In this section, we shall present some applications of our results on theZ3 orbifolds
of minimal CFTs.

5.5.1 The Z3 orbifold of the Yang-Lee CFT

In this section, we shall present a simple application of our results for the operator
algebra of the cyclic orbifold CFT. We choose as mother theory the Yang-Lee
minimal model M(5, 2) with central charge c = −22/5, and primary operator
content {1, ϕ} with conformal dimensions h1 = 0 and hϕ = −1/5. The modular
S-matrix associated to this CFT is given by:

S =
2
√

5

(
− sin(2π/5) sin(4π/5)
sin(4π/5) sin(2π/5)

)
. (5.141)

The non-trivial fusion rule in the Yang-Lee CFT is

ϕ × ϕ→ 1 + ϕ . (5.142)

We will consider the Z3 cyclic orbifold of the above CFT. Its primary operator
content (with respect to the neutral algebra An ⊕ Ān) consists of:

• 2 non-diagonal untwisted operators: [1, 1, ϕ] and [1, ϕ, ϕ],

• 6 diagonal untwisted operators: 1(r),Φ(r) with r ∈ Z3,

• 12 twist operators: σ(r)
1 , σ

†(r)
1 , σ(r)

ϕ σ
†(r)
ϕ with r ∈ Z3.

Recall the definition of non-diagonal untwisted operators, e.g.

[1, 1, ϕ] :=
1
√

3
(1 ⊗ 1 ⊗ ϕ + 1 ⊗ ϕ ⊗ 1 + ϕ ⊗ 1 ⊗ 1) . (5.143)

Using the results of Sec. 5.4.3, we get the fusion rules between untwisted
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operators:

[1, 1, ϕ] × [1, 1, ϕ]→ [1, 1, ϕ] + 2[1, ϕ, ϕ] +
∑
r∈Z3

1(r) ,

[1, 1, ϕ] × [1, ϕ, ϕ]→ [1, 1, ϕ] + 2[1, ϕ, ϕ] +
∑
r∈Z3

Φ(r) ,

[1, ϕ, ϕ] × [1, ϕ, ϕ]→ 2[1, 1, ϕ] + 3[1, ϕ, ϕ] +
∑
r∈Z3

1(r) + 2
∑
r∈Z3

Φ(r) ,

[1, 1, ϕ] × 1(r)
→ [1, 1, ϕ] ,

[1, ϕ, ϕ] × 1(r)
→ [1, ϕ, ϕ] ,

1(r)
× 1(s)

→ 1(r+s) ,

Φ(r)
× 1(s)

→ Φ(r+s) ,

[1, 1, ϕ] ×Φ(r)
→ [1, ϕ, ϕ] +

∑
s∈Z3

Φ(s) ,

[1, ϕ, ϕ] ×Φ(r)
→ [1, 1, ϕ] + 2[1, ϕ, ϕ] +

∑
s∈Z3

Φ(s) ,

ϕ(r)
× ϕ(s)

→ [1, 1, ϕ] + [1, ϕ, ϕ] + 2 × 1(r+s) + Φ(r+s) .

(5.144)

The fusion rules between untwisted and twisted operators read

[1, 1, ϕ] × σ(s)
1 →

∑
r

σ(r)
ϕ ,

[1, ϕ, ϕ] × σ(s)
1 →

∑
r

σ(r)
1 +

∑
r∈Z3

σ(r)
ϕ ,

[1, 1, ϕ] × σ(s)
ϕ →

∑
r

σ(r)
1 +

∑
r∈Z3

σ(r)
ϕ ,

[1, ϕ, ϕ] × σ(s)
ϕ →

∑
r

σ(r)
1 + 2

∑
r∈Z3

σ(r)
ϕ ,

1(r)
× σ(s)

1 → σ(s+r)
1 ,

Φ(r)
× σ(s)

1 → σ(s+r)
1 + σ(s+r)

ϕ + σ(s+r+1)
ϕ ,

1(r)
× σ(s)

ϕ → σ(s+r)
ϕ ,

Φ(r)
× σ(s)

ϕ → σ(s+r−1)
1 + σ(s+r)

1 +
∑
t∈Z3

σ(t)
ϕ .

(5.145)

Finally, the fusion rules between twist operators read

σ(r)
1 × σ

†(s)
1 → [1, ϕ, ϕ] + 1(s+r) + Φ(s+r) ,

σ(r)
ϕ × σ

†(s)
1 → [1, 1, ϕ] + [1, ϕ, ϕ] + Φ(s+r−1) + Φ(s+r) ,

σ(r)
ϕ × σ

†(s)
ϕ → [1, 1, ϕ] + 2[1, ϕ, ϕ] + 1(s+r) +

∑
r∈Z3

Φ(r) ,

σ(r)
1 × σ

(s)
1 → σ†(r+s)

1 + σ†(r+s+1)
1 + σ†(r+s)

ϕ ,

σ(r)
ϕ × σ

(s)
1 → σ†(r+s)

1 +
∑
t∈Z3

σ†(t)ϕ ,

σ(r)
ϕ × σ

(s)
ϕ →

∑
t∈Z3

σ†(t)1 + σ
†(r+s)
ϕ + σ†(r+s+1)

ϕ + 2σ†(r+s+2)
ϕ .

(5.146)
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The other fusion rules are easily obtained by symmetry under conjugation.
As pointed out in Sec. 5.3.3, one may treat the OPE of twist operators σ(r)

i ×σ
†(s)
j

or σ(r)
i ×σ

(s)
j , by “unfolding” the three-point correlator corresponding to a particular

orbifold fusion rule, as a mother CFT correlator. This is done in two steps: first,
one translates the orbifold correlation function into an expectation value on the
replicated surface Σn. Then, one conformally maps this quantity to a correlator
defined on a Riemann surface that is more amenable to calculations (the Riemann
sphere C in our first example). This approach is exemplified in Appendix D.2 for
the calculation of the orbifold structure constant

C
[1,ϕ,ϕ]

σ(0)
ϕ
,σ†(0)
ϕ

= ⟨[1, ϕ, ϕ] · σ(0)
ϕ · σ

†(0)
ϕ ⟩ , 0 . (5.147)

Since the structure constant is non-vanishing, we can conclude that indeed the
OPE σ(0)

ϕ × σ
†(0)
ϕ produces the module [1, ϕ, ϕ]. However, this unfolding does not

allow us to extract the value of the associated multiplicity. From (5.146), we see
that this multiplicity is two. Furthermore, using this technique to infer the fusion
rules of the cyclic orbifold CFT from the mother CFT data is only feasible provided
the resulting correlator can be calculated, and the unfolding map is known.

One encounters both of these difficulties in trying to find the fusion rules
between twist operators in the same twist charge sector. Let us consider the
following orbifold three-point function of twist operators:

C
σ†i
σ jσk
= ⟨σi · σ j · σk⟩ . (5.148)

This translates into a three-point function on the three-sheeted cover of the Rie-
mann sphere, with branch points at (0, 1,∞), which we denote by Σ3:

⟨ϕi · ϕ j · ϕk⟩Σ3 . (5.149)

We can now calculate the genus of this surface Σ3, using the Riemann-Hurwitz
formula

2g − 2 = n(2h − 2) +
p∑

i=1

(ki − 1) , (5.150)

giving the genus g of an n-sheeted cover of a surface of genus h, with p branch
points having ramification indices ki. In our case, all the branch points have
ramification indices ki = 3, so that we find g = 1. Thus, there exists a conformal
map z 7→ t(z) between the surface Σ3 and a torus Tτ which allow us to relate
(5.149) to the following three-point function on the torus

⟨ϕi(t1, t̄1)ϕ j(t2, t̄2)ϕk(t3, t̄3)⟩Tτ . (5.151)

To complete such a calculation, one would have two non-trivial problems to solve:
finding the conformal map z 7→ t(z), and calculating the three-point correlator
(5.151). Assuming the conformal map has been found, one needs to calculate
the torus correlators on a case-by-case basis. For example, when (ϕi, ϕ j, ϕk) =
(1, 1, 1) or (1, 1, ϕ), results are already known – they correspond respectively to the
partition function of the Yang-Lee CFT, and the torus one-point function ⟨ϕ⟩Tτ ,
which have been calculated in [255].

However, the issue of counting multiplicities remains, and as we go beyond
this relatively simple example of theZ3 orbifold of the Yang-Lee CFT, to higherZn

orbifolds, the formula (5.150) shows that unfolding would require the calculation
of correlators on surfaces of genus g ≥ 2, for which few exact results are available
in the literature.
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5.5.2 Counting conformal blocks of twist correlators

We will provide a few examples of conformal block counting for four-point cor-
relators in Z3 cyclic orbifolds.

TheZ3 cyclic orbifold of the Ising CFT. We will first illustrate this by using the
minimal modelM(4, 3) (Ising CFT) as mother theory, with central charge c = 1/2,
and primary operator content {1, s, ε}with conformal dimensions h1 = 0, hs = 1/16,
hε = 1/2. To avoid confusion with the twist operators, we d The modular S-matrix
associated to this CFT is given by:

S =
1
2


1 1

√
2

1 1 −
√

2
√

2 −
√

2 0

 , (5.152)

and the fusion rules are

s × s→ 1 + ε , s × ε→ s , ε × ε→ 1 . (5.153)

We remind that for a four-point function ⟨Φ1Φ2Φ3Φ4⟩, the dimension of its space
of conformal blocks can be calculated from the fusion numbers of the theory [23]:

D
Φ3,Φ4
Φ1,Φ2

=
∑
α

N
Φα
Φ1,Φ2
N
Φ4
Φα,Φ3

, (5.154)

where the sum onα runs over all the primary fields in the CFT. Using the above, we
will calculate the dimensions of the space of conformal blocks for a few correlators
of physical interest in the Z3 orbifold of the Ising CFT.

Let us first consider the four-point functions of twist operators:

⟨σ j(z1, z̄1)σ†k(z2, z̄2)σ j(z3, z̄3)σ†k(z4, z̄4)⟩ , (5.155)

with j, k ∈ {1, ε}. In this case, one finds:

D
σ j,σ†k
σ j,σ†k
=

∑
α

(
N
Φα
σ j,σ†k

)2

= 4 , (5.156)

where the sum runs over the untwisted operators. The correlator with j = k = 1
gives the leading universal contribution in the calculation of the third Rényi
entropy of two disjoint intervals in the ground state of a quantum spin chain
with periodic boundary conditions, while the correlators with composite twist
insertions (i.e. for which j, k can be ε) provide expressions for the universal parts
of the first two subleading terms, as per the reasoning of [118].

Also of physical relevance are correlators of the type:

⟨σ j(z1, z̄1)σ†j (z2, z̄2)Φ(0)
i (z3, z̄3)Φ(0)

i (z4, z̄4)⟩ , (5.157)

with j ∈ {1, ε} and i ∈ {s, ϵ}. These allow for the calculation of leading and
subleading contributions to the third Rényi entropy of a single interval in an
excited state of the quantum Ising chain with periodic boundary conditions. We
find:

D
ε(0),ε(0)

σ1,σ
†

1
= Dε(0),ε(0)

σε,σ
†
ε
= Ds(0),s(0)

σ1,σ
†
ε
= 1 , (5.158)

and
D

s(0),s(0)

σ1,σ
†

1
= Ds(0),s(0)

σε,σ
†
ε
= 2 . (5.159)
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The Z3 orbifold of a Virasoro minimal modelMp,q. One can furthermore pro-
vide numerical checks2 for the claims of [118] at n = 3.

Provided the mother CFT is a diagonal Virasoro minimal modelMp,q [23], the
cyclic orbifold correlation function:

⟨σ1(z1, z̄1), σ†1(z2, z̄2),Φ(0)
21 (z3, z̄3),Φ(0)

21 (z4, z̄4)⟩ , (5.160)

where ϕ21 is the primary field with Kac indices (m,n) = (2, 1) (see [23]). According
to [118], this correlator should satisfy a third-order differential equation. We’ve
found evidence for this claim by calculating the dimension of the space of con-
formal blocks of this correlator for a few minimal models. The results are given
in Table 5.1. We see that indeed the space of conformal dimensions satisfies the

M(p, q) M(4, 3) M(5, 4) M(6, 5) M(7, 5) M(7, 6) M(8, 7)

D
Φ

(0)
21 ,Φ

(0)
21

σ1,σ
†

1
1 2 2 3 3 3

Table 5.1: Dimension of the space of conformal blocks for the correlator (5.160) in
diverse minimal modelsM(p, q).

bound
D
Φ

(0)
21 ,Φ

(0)
21

σ1,σ
†

1
≤ 3 , (5.161)

conjectured in [118] for all the cases we’ve checked. We should mention, as well,
that we’ve managed to derive the equation conjectured in [173], and it is part
of the results presented in Chapter 5. Furthermore, the conformal blocks in the
z1 → z2 channel were found in [173] to correspond to the following twist field
fusion rules:

σ1 × σ
†

1 → Φ1 + Φ[1ϕ1,3 ϕ1,3] + Φ1,3 (5.162)

in agreement with the results of (5.4).
In general, knowing the dimension of the space of conformal blocks can be a

useful guide in determining the BPZ-type differential equation that an orbifold
correlator involving twist fields satisfies. This is because conformal blocks form
bases of solutions around the singular points of these equations, so their order
can be inferred from the dimensions D. This, in turn, provides hints for finding
which combination of orbifold null-vectors and Ward identities [118] one should
manipulate to recover the BPZ-type equation.

5.6 Conclusion

In this chapter, we have provided a formal analysis of the Mn orbifold CFT,
with prime n, of a diagonal and rational mother CFTM. We have classified the
operators of the theory under the neutral algebra of the full orbifold symmetry
algebra. Analysing the spectrum of primary operators under An ⊕ Ān, we have
found exact solutions for its modular data, as well as closed expressions for the
fusion numbers ofMn. Our results are consistent with the ones obtained for n = 2
in [119]3.

2if the number of primary fields of the mother CFT has a reasonable value
3note that since at n = 2 there is only one twist charge sector, there are no fusion rules involving

three twist fields.
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To showcase the use of our results, we have explicitly given all the fusion rules
in theZ3-orbifold of the Yang-Lee CFT. We have also commented on the limitations
of the unfolding approach, which requires, even in this relatively simple case, the
computation of correlators on surfaces with genus g ≥ 1. As a second example,
we have shown how the fusion numbers can be used to count conformal blocks
and commented on applications to the calculation of Rényi entropies. The block
counting examples we have presented are consistent with previous results in the
literature [118].

natural directions for investigations can be realized by considering more in-
tricate mother CFTs as starting points. One could consider CFTs which are non-
diagonal, non-rational or have extended symmetries as mother CFTs and gener-
alize the results of this chapter. Alternatively, one could consider orbifolding by
a generic Zn group, i.e. removing the restriction of n to prime values: this will
cause each twist sector [k] to depend on the greatest common divisor gcd(k,n).

Finally, it would be mathematically interesting to find an interpretation for the
expressions of the fusion numbers (5.136) and (5.137) in terms of fusion processes
in the mother CFT. For n = 2, this has been done in [256], and the relevant surface is
the crosscap. To our knowledge, generalizing this argument to generic n remains
an open problem.
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Epilogue

In this thesis, we have investigated the properties of entanglement for pure states
in critical systems by using the methods of two-dimensional conformal field
theory. While the calculation of entanglement through these methods commenced
almost two decades ago [46], for models with open boundaries few exact results
have been obtained for all but the simplest bipartitions. This is because the
presence of the boundary introduces additional technical complications for the
field theoretical description of the system, discussed in detail in Chapter 1.

Let us now recap the results we’ve obtained, despite these obstacles. In Chap-
ter 2, we’ve derived the leading contribution to the second Rényi entropy of an
interval A in the bulk of a critical 1D system with open BC. This was done by relat-
ing Sα2 (A) to the annulus partition function of the BCFT that describes this system
in the scaling limit. In Chapter 3 we have restricted our interests to models whose
scaling limit is given by the free massless scalar of compactified with radius R
with Neumann or Dirichlet BC. What we’ve gained by imposing this restriction,
is that we’ve managed to obtain an exact result for the REE for all integer n ≥ 2.
As a by-product of this calculation, we’ve also obtained results in the R → ∞
(decompactification limit) which are important for numerical studies of harmonic
chains with open BC. These two projects were predominantly grounded in the
replicated surface framework.

In Chapter 4, we’ve considered a different setup: an interval A containing one
of the boundaries of a 1D critical system with mixed BC. For this project, we’ve
obtained results for the second and third Rényi entropy for a variety of mixed
BC setups, by using bootstrap methods in the cyclic orbifold BCFT. While this
method does not seem to conveniently extend to generic n, it does provide a good
handle on finite-size corrections.

From a more formal point of view, it would be interesting to use the treatment
of Chapter 5 and an extension of the methods of Chapter 4 to formally ”solve” the
cyclic orbifold BCFT, at least for rational seed BCFTs. In principle, after properly
classifying the boundary states of the theory, one should be able to use the sewing
constraints of [130] and unfolding methods as employed in Section 4.4.3, to fix
the bulk and boundary structure constants.

As the previous chapters have shown, determining the REE rests on either
the evaluation of the partition function of a BCFT M on a replicated Riemann
surface Σn or the calculation of a correlator in the Zn orbifold ofM on one copy
of Σn. For the derivations of Chapters 2 and 3 we have benefited from the fact
that the expressions for the annulus partition function (for generic BCFTs) and,
respectively, theDn partition function for the compact boson are relatively easy to
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handle analytically. Furthermore, at least in the case of the compact boson, it seems
that one could extend the results to address setups at finite temperatures and
more general bipartitions (multiple disjoint intervals) with a reasonable amount
of effort. However, even if one is to calculate the partition function through
Riemann surface methods, finding the analytic continuation to n→ 1 might turn
out to be a difficult task, as is already the case for the result [87] and our expressions
for the REE of the compact boson of finite radius R in Chapter 3.

While obtaining exact and explicit expressions for the EE is the ideal outcome
for these types of investigations, one can still learn a great deal about the prop-
erties of entanglement in a system from other types of results. For example, the
predictions of [121] , given implicitly as solutions to an integral equation that needs
to be solved numerically, are in agreement with our analytical results for the REE
of a compact boson with Dirichlet BC.

There are also setups, in which the interesting information is already captured
in some limiting regime of the model so that more approximate methods are
sufficient for physical interests. For example, for AdS3/CFT2 investigations [97],
the interest is mostly in the large central charge behaviour of the entanglement
entropies so that one sets up a series expansion for them in 1/c whose coefficients
are fixed by the structure constants of the orbifold operator algebra. For these
types of applications [110], extending the investigations of Chapters 4 and 5 to
BCFTs with c ≥ 1 could be useful.

To wrap up, we hope that this work has shown that there is still a lot of ”juice”
to squeeze from the methods of two-dimensional conformal field theory for the
exploration of entanglement in critical quantum systems with open boundaries.
We hope that the work presented in this thesis will foster further investigations
on these topics, as well as clarify certain murky details of some well-established
results.
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Appendix for chapter 2

A.1 Conventions and identities for elliptic functions

In this Appendix, we fix our notations and conventions for elliptic functions.

A.1.1 Jacobi theta functions

We use the following conventions for the Jacobi theta functions θi(t|τ) :

θ1(t|τ) = −i
∑

r∈Z+1/2

(−1)r−1/2yrqr2/2 , θ2(t|τ) =
∑

r∈Z+1/2

yrqr2/2 ,

θ3(t|τ) =
∑
n∈Z

ynqn2/2 , θ4(t|τ) =
∑
n∈Z

(−1)nynqn2/2 ,
(A.1)

where q = e2iπτ and y = e2iπt. Here, t is a complex variable and τ is a complex
parameter living in the upper half-plane. Theta functions have a single zero,
located at z = 0, 1/2, (1 + τ)/2 and τ/2, respectively. They have no pole. Using
Jacobi’s triple product identity one can rewrite them as

θ1(t|τ) = −iy1/2q1/8
∞∏

n=1

(1 − qn)
∞∏

n=0

(1 − yqn+1)(1 − y−1qn) ,

θ2(t|τ) = y1/2q1/8
∞∏

n=1

(1 − qn)
∞∏

n=0

(1 + yqn+1)(1 + y−1qn) ,

θ3(t|τ) =
∞∏

n=1

(1 − qn)
∞∏

r∈N+1/2

(1 + yqr)(1 + y−1qr) ,

θ4(t|τ) =
∞∏

n=1

(1 − qn)
∞∏

r∈N+1/2

(1 − yqr)(1 − y−1qr) .

(A.2)

They satisfy the following half-period relations

θ1(t|τ) = −i eiπ(t+τ/4) θ4(t + τ/2|τ) ,

θ2(t|τ) = eiπ(t+τ/4) θ3(t + τ/2|τ) ,

θ3(t|τ) = eiπ(t+τ/4) θ2(t + τ/2|τ) ,

θ4(t|τ) = −i eiπ(t+τ/4) θ1(t + τ/2|τ) .

(A.3)
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The functions θi(0|τ) ≡ θi(τ) are

θ2(τ) =
∑
n∈Z

q(n+1/2)2/2 = 2q1/8
∞∏

n=1

(
1 − qn) (1 + qn)2 ,

θ3(τ) =
∑
n∈Z

qn2/2 =

∞∏
n=1

(
1 − qn) (1 + qn−1/2

)2
,

θ4(τ) =
∑
n∈Z

(−1)nqn2/2 =

∞∏
n=1

(
1 − qn) (1 − qn−1/2

)2
.

(A.4)

Finally, we note the following relations

θ4
3(τ) = θ4

2(τ) + θ4
4(τ) , 2η3(τ) = θ2(τ)θ3(τ)θ4(τ) , (A.5)

where η(τ) is the Dedekind eta function :

η(τ) = q
1
24

∞∏
n=1

(1 − qn) . (A.6)

A.1.2 Elliptic integral of the first kind

The elliptic integral of the first kind K(x) is given by:

K (x) =
∫ π

2

0

dθ
√

1 − x2 sin2 θ
=
π
2 2F1

(1
2
,

1
2
, 1; x2

)
=
π
2
θ2

3(τ) . (A.7)

This means

x =
θ2

2(τ)

θ2
3(τ)

. (A.8)

The parameter x is called the elliptic modulus. The inverse relation is

q = e2iπτ = exp
(
−2π

K(x′)
K(x)

)
, x′ =

√

1 − x2 (A.9)

or equivalently

τ = i
K(
√

1 − x2)
K(x)

. (A.10)

In particular one can check that

x(1 − x2)
dτ
dx
=

2
iπθ4

3(τ)
. (A.11)

A.1.3 Weierstrass elliptic function

One possible way to derive the differential equation (2.36) is to express the function
g(t) defined in (2.21) in terms of the Weierstrass elliptic function℘(t). The function
℘ : Tτ → Ĉ is defined on the complex torus Tτ = C/ (Z + τZ) and takes values in
the Riemann sphere Ĉ = C ∪ {∞} :

℘(t) =
1
t2 +

∑
(m,n)∈Z2\(0,0)

1
(t −m − nτ)2 −

1
(m + nτ)2 . (A.12)
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This is a covering map of the two-sphere Ĉwith 4 ramification points :

e1 = ℘(1/2) , e2 = ℘
(1 + τ

2

)
, e3 = ℘

(
τ
2

)
, ∞ = ℘(0) . (A.13)

The lattice roots ei can be expressed in terms of the theta functions as :

e1 =
π2

3

(
θ4

2(τ) + 2θ4
4(τ)

)
, e2 =

π2

3

(
θ4

2(τ) − θ4
4(τ)

)
, e3 = −

π2

3

(
2θ4

2(τ) + θ4
4(τ)

)
.

(A.14)

The function g(t) as defined in (2.21) is simply the composition of ℘(t) with
a particular Möbius transformation that sends the ramification points to 0, 1/x, x
and∞ :

g(t) =
1
x
℘(t) − e3

e1 − e3
, x =

√
e2 − e3

e1 − e3
=

(
θ2(τ)
θ3(τ)

)2

, (A.15)

as follows from the fact that (℘(t) − e3)/g(t) is constant by virtue of being doubly
periodic and holomorphic (i.e. with no pole). Now from the differential equation
obeyed by ℘(t), namely

℘′2(t) = 4 (℘(t) − e1) (℘(t) − e2) (℘(t) − e3) , (A.16)

we get (
dg
dt

)2

= −4π2θ4
3(τ)g(g − x)(1 − xg) , (A.17)

from which (2.36) follows.

A.2 Alternative derivation of the second Rényi en-
tropy for An minimal models

In this Appendix, we present an alternative computation of the two-twist corre-
lation function (2.44) based on the mirror trick [30] and BCFT bootstrap methods
[130]. The conformal blocks are obtained in terms of the modular characters
(see also [118, 123]). The other key ingredients are the bulk and bulk-boundary
structure constants appearing in the conformal block expansion. We note that the
correspondence between conformal blocks and characters has also been employed
in the recent work of [222] for the evaluation of twist correlators on manifolds
without boundaries.

To avoid some technicalities, we restrict our attention to Virasoro minimal
models in the An series, for which the torus partition function is a diagonal
modular invariant. On the unit disk, the mirror trick amounts to replacing the
disk by its Schottky double [115], namely a sphere, and bulk fields ϕ(z, z̄) by a
pair of chiral fields, one at position z and the other at its mirror image 1/z̄ :

ϕ(z, z̄)→ ϕ(z) z̄−2hϕ(1/z̄) . (A.18)
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Thus we can decompose ⟨σ(0, 0)σ(x, x̄)⟩(α,α)
D

as a linear combination of conformal
blocks on the sphere

⟨σ(0, 0)σ(x, x̄)⟩(α,α)
D
=

∑
j

Xα
j f j(x, x̄) , (A.19)

f j(x, x̄) = x̄−2hσ
σ(0)

σ(x)

φj ⊗ φj
σ(∞)

σ(1/x̄)

. (A.20)

Indeed, for theZ2 orbifold of a minimal model in the An series, the fusion σ× σ is
of the form [118]

σ × σ =
∑

ϕ j primary

ϕ j ⊗ ϕ j , (A.21)

where the sum runs over the primary operators of the mother CFT. We shall
denote by h j the conformal dimension of ϕ j (recall that for An minimal models, all
primary operators are scalar, so h̄ j = h j). The expansion coefficients Xα

j in (A.19)
are obtained in terms of OPE structure constants as

Xα
j = Cϕ j⊗ϕ j

σσ A(α,α)
ϕ j⊗ϕ j

, (A.22)

which in turn can be expressed as [123]

A(α,α)
ϕ j⊗ϕ j

= ⟨(ϕ j ⊗ ϕ j)(0)⟩(α,α)
D
=

(
⟨ϕ j(0)⟩αD

)2
=

(
Aα

j

)2
, (A.23)

Cϕ j⊗ϕ j
σσ = ⟨σ(∞)(ϕ j ⊗ ϕ j)(1)σ(0)⟩C = 2−4h j⟨ϕ j(−1)ϕ j(1)⟩C = 2−8h j , (A.24)

so that
Xα

j = 2−8h j (Aα
j )2 . (A.25)

The OPE coefficient Aα
j is very much related to coefficients Ψα

j appearing in the
decomposition of the boundary state |α⟩ in terms of the Ishibashi states | j⟩⟩ :

Aα
j =
Ψα

j

Ψα
0

, |α⟩ =
∑

j

Ψα
j | j⟩⟩ . (A.26)

For minimal models in the An series, these coefficients are given in terms of the
modular S-matrix elements [257]:

Ψα
j =

S jα√
S0 j
, Aα

j =
S jα

S0α

√
S00

S j0
, (A.27)

where the index 0 corresponds to the identity operator.

Let us turn to the expression of the conformal blocks f j in terms of the characters
of the mother CFT. By a simple rescaling, we have

f j(x, x̄) = F j(η), η = |x|2 , (A.28)

where F j(η) is the standard conformal block

F j(η) =
σ(η)

σ(0)
φj ⊗ φj

σ(∞)

σ(1)

. (A.29)
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These conformal blocks are known [123] to be related to the characters χ j(τ) of the
mother theory via

F j(η) = 28h j−c/3 [η (1 − η)]−c/24 χ j(τ) , η = [θ2(τ)/θ3(τ)]4 . (A.30)

Assembling the above results, we obtain the expression

⟨σ(0, 0)σ(x, x̄)⟩(α,α)
D
= 2−

c
3

[
|x|2(1 − |x|2)

]− c
24

∑
j

(Aα
j )2 χ j(τ) . (A.31)

The last step is to relate the above linear combination of characters to the annulus
partition function:

Zα|α(τ) = ⟨α|eiπτ(L0+L̄0−c/12)
|α⟩ =

∑
j

(Ψα
j )2
⟨⟨ j|eiπτ(L0+L̄0−c/12)

| j⟩⟩ =
∑

j

(Ψα
j )2 χ j(τ) ,

(A.32)
using (A.26), and gα = Ψα

0 .

A.3 Annulus partition function for the compact boson

For the following discussion, it is useful to have in mind a lattice model whose
scaling limit is given by the free compact boson – we take for example the six-
vertex (6V) model on the square lattice. It is well established (see [258] for instance)
that the 6V model with homogeneous Boltzmann weights

a a b b c c

is critical in the regime

|∆| < 1 , ∆ =
a2 + b2

− c2

2ab
, (A.33)

and is described in the scaling limit by a free compact boson with action

S[ϕ] =
1

8π

∫
d2r ∂µϕ∂µϕ , ϕ ≡ ϕ + 2πR , (A.34)

where the compactification radius is given by R =
√

(2/π) cos−1 ∆. We consider
the 6V model on a rectangle of M × N sites, with periodic boundary conditions
in the horizontal direction, and reflecting boundary conditions at the top and
bottom edges, for even M,N. Any 6V configuration defines (up to a global shift) a
height function on the dual lattice, with steps±πR between neighbouring heights.
Since the local arrow flux into each of the boundaries is zero, the height function
is constant along each boundary, and it is periodic in the horizontal direction.
However, there can be a flux of 2m arrows (with m ∈ Z) going between the two
boundaries, and hence the height difference between the boundaries is of the form
2πmR. In the scaling limit N,M → ∞ with N/M = Im τ/2, the height function
renormalizes to the free boson ϕ, and we get

Z6V(M/N)→
∑
m∈Z

Zα|α+m(τ) , (A.35)
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where α is an arbitrary integer, and Zα|β(τ) denotes the partition function of (A.34)
on the annulus of Figure 2.4 with Dirichlet boundary conditions ϕ(x, 0) = 2πRα
and ϕ(x, Im τ/2) = 2πRβ. A path integral computation gives

Zα|β(τ) =
e−iπR2(α−β)2/τ

η(−1/τ)
. (A.36)

Hence, the scaling limit of the 6V partition function is

Z6V(M/N)→ Z(τ) =
∑

m∈Z e−iπR2m2/τ

η(−1/τ)
=
θ3(−R2/τ)
η(−1/τ)

. (A.37)

In the geometry of the infinite strip of width N sites, the 6V transfer matrix
generates the XXZ spin-chain Hamiltonian

HXXZ = −

N−1∑
j=1

(
sx

j s
x
j+1 + sx

j s
x
j+1 + ∆sz

js
z
j+1

)
, (A.38)

where sx,y,z
j are Pauli matrices acting on site j. Reflecting boundary conditions for

the 6V model (and thus Dirichlet boundary conditions for the boson) correspond
to free boundary conditions on the spins.
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B.1 An insight from the six-vertex model

The Hamiltonian of the spin-1
2 XXZ spin chain with open BC is [217]

HXXZ =

N−1∑
j=1

(
σx

jσ
x
j+1 + σ

y
jσ

y
j+1 + ∆ σ

z
jσ

z
j+1

)
− h1σ

x
1 − hNσ

x
N (B.1)

where σx,y,z
j denote the Pauli matrices acting on the j-th site, {h1, hN} are boundary

fields and the anisotropy parameter∆ lies in the critical regime |∆| < 1. The model
(B.1) is a gapless one-dimensional quantum system belonging to the Luttinger
liquid universality class. The related discrete 2D classical model is the six-vertex
model on the square lattice with Boltzmann weights

a a b b c c

such that
a2 + b2

− c2

2ab
= ∆ . (B.2)

The six-vertex model is mapped to a height model on the dual lattice, with height
values φ(p) ∈ Z, through the following simple rule. For any pair on neighbouring
faces p, p′, we set φ(p′) = φ(p) + 1 (resp. φ(p′) = φ(p) − 1) if p′ is above or to the
right of (resp. below or to the left of) p , following the reasoning of [258]. The
arrow conservation around each vertex ensures that the height ϕ is well defined,
up to an overall additive constant.

In the scaling limit, the height variable φ(p) provides a real compact boson
φ(p) → ϕ(p)/(πR), with renormalised radius R =

√
(2/π) arccos(−∆) [217]. Note

also that setting free BC in the XXZ chain (h1 = hN = 0) corresponds to Dirichlet
BC in the compact boson [259], while turning on the boundary fields leads to
Neumann BC [217].

From the above mapping, we see that in any partition function, the variation δϕ
along any trivial cycle is zero, whereas for non-trivial cycles or open paths joining
two boundary points this variation δϕ is a multiple of 2πR (by convention, we
only consider lattices for which these non-trivial cycles and open paths have even
length so that the configuration with δϕ = 0 along each of these cycles and paths
is allowed). In the scaling limit, this corresponds to (3.38).
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B.2 Period matrix

In this Appendix, we discuss the derivation of the period matrix (3.25). This is
a standard computation (see for instance [71]) that we report here for the sake of
completeness.

We are interested in the period matrix of the Riemann surface Σn given by the
n-sheeted covering surface over the Riemann sphere CP1 with four branch points
at 0, x, 1/x̄,∞ and a branch cut connecting 0 to x and another connecting 1/x̄ to∞.
Without loss of generality, we could assume x real positive. The Riemann surface
Σn can be defined as the algebraic curve wn = z(z − x)(z − 1/x̄)n−1 with (z,w) ∈ C2

(up to compactification and resolution of the singularity at the origin by a blow-
up). It is a compact Riemann surface with genus n− 1. This can be obtained from
the Riemann-Hurwitz theorem, which provides the Euler characteristics of the
n-sheeted covering Pn of a generic Riemann surface P1 as follows

χ(Pn) = nχ(P1) − 4(n − 1) (B.3)

where χ(P) = 2 − 2g is the Euler characteristic of a Riemann surface P without
boundaries. In our case Σ1 = CP

1; hence χ(Σn) = 4 − 2n.
A compact Riemann surface of genus g supports g linearly independent holo-

morphic one-forms. The ones for Σn have been constructed explicitly and read
[70]

ωk =
1

zk/n(z − x)(n−k)/n(z − 1/x̄)k/n
dz k ∈ {1, · · · ,n − 1} (B.4)

This is the basis of holomorphic one-forms diagonalising the holomorphic deck
transformation f that sends the j-th sheet to the ( j + 1)-th sheet; indeed, we have
that f ∗ωk = e−2πik/nωk, being f ∗ defined as the pullback of the deck transformation.

We work with the cyclesA j,B j and C j described in section 3.2.1 and depicted
in figure 3.4. The period matrix τ of Σn is then

τ = A−1
· B Ak, j =

∫
A j

ωk Bk, j =

∫
B j

ωk (B.5)

The integrals ∮
C j

ωk

∮
B j

ωk (B.6)

can be computed exactly [70]. Indeed, by using that f ∗ωk = e−2πik/nωk, we have∮
C j

ωk = e−2πik( j−1)/n
∮
C1

ωk

∮
B j

ωk = e−2πik( j−1)/n
∮
B1

ωk (B.7)

which tells us that just two contour integrals in the r.h.s. must be computed.
These integrals can be calculated by deforming the contours down to the branch
cut and using the integral representation of the Gauss hypergeometric function.
This gives ∮

C1

ωk = 2 i sin(πk/n)
∫ x

0
ωk = 2π i x̄k/nFk/n(|x|2) (B.8)

and ∮
B1

ωk = − 2πi x̄k/n e−πik/n Fk/n(1 − |x|2) (B.9)
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where we remind that Fa(y) ≡ 2F1(a, 1 − a; 1; y). The final result for the generic
element of the (n − 1) × (n − 1) period matrix reads

τi, j(|x|2) = i
2
n

n−1∑
k=1

sin(πk/n)
Fk/n(1 − |x|2)

Fk/n(|x|2)
cos

[
2πk(i − j)/n

]
(B.10)

which is the result obtained in [71]. The period matrix (B.10) satisfies the following
relation

τ(1 − |x|2) = −T · τ(|x|2)−1
· Tt (B.11)

where the generic element of the matrix T is T j,k ≡ δ j,k − δ j,k+1. This is reminiscent
of the relations found in Appendix C.3.3 of [88] in the special case of two disjoint
intervals on the line.

B.3 Green function in the presence of twist fields

Consider a non-compact complex scalar field Φ on the unit diskD satisfying the
following condition after a rotation of the complex coordinate z around a branch
point at z = 0 [70] (see also (3.53))

Φ(e2iπz, e−2iπz̄) = e2πi k/nΦ(z, z̄) (B.12)

and a similar condition with opposite phase after a rotation around z = x ∈ (0, 1).
To have a simpler notation and to prevent any potential confusion with the mirror
image, we will use the notation Φ(z) instead of Φ(z, z̄). However, it is important
to note that this does not imply that the field Φ(z) depends holomorphically on
the position z.

These conditions define the occurrence of a twist field σk/n at z = 0 and of its
conjugate field σ†k/n at z = x. The holomorphic part of the stress-energy tensor T(z)
for the complex boson we are considering is

T(z) = −
1
2

:∂zΦ(z)∂zΦ(z) : = − lim
w→z

[
∂zΦ(z) ∂wΦ(w)

2
+

1
(z − w)2

]
(B.13)

By adapting the analysis of [70] to the case where a conformal boundary occurs,
in the following, we show that

⟨T(z) σk/n(0) σ†k/n(x)⟩
D

⟨σk/n(0) σ†k/n(x)⟩
D

=
hk/n

[
x(1/x̄ − 2z) + z2

]2

z2(z − x)2(z − 1/x̄)2 −
x(x − 1/x̄)

z(z − x)(z − 1/x̄)
∂x log E(α)

k/n(x)

(B.14)
where hk/n and E(α)

k/n(x) have been defined in (3.57). Then, taking the residue of
(B.14) at z→ x leads to (3.56).

Let us consider the following Green functions on the unit diskD

Gk/n(z,w) =
⟨∂zΦ(z) ∂wΦ(w) σk/n(0) σ†k/n(x)⟩

D

⟨σk/n(0) σ†k/n(x)⟩
D

(B.15)

Hk/n(z,w) =
⟨∂z̄Φ(z) ∂wΦ(w) σk/n(0) σ†k/n(x)⟩

D

⟨σk/n(0) σ†k/n(x)⟩
D

(B.16)
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where |z| ⩽ 1, |w| ⩽ 1 and the boundary condition on ∂D reads

z ∂zΦ = ± z̄ ∂z̄Φ (B.17)

with + and − corresponding respectively to Dirichlet BC and Neumann BC . As
remarked above, the notation Hk/n(z,w) does not mean that Hk/n is holomorphic
in z (as a matter of fact it is antiholomorphic in z). On the other hand, the function
Gk/n is holomorphic in z and w; hence the Schwarz reflection principle can be
employed to obtain its analytic continuation to the whole Riemann sphere, via

Gk/n(z,w) =



±
1
z2

⟨∂z̄Φ(1/z̄) ∂wΦ(w) σk/n(0) σ†k/n(x)⟩
D

⟨σk/n(0) σ†k/n(x)⟩
D

|z| ⩾ 1, |w| ⩽ 1

±
1

w2

⟨∂zΦ(z) ∂w̄Φ(1/w̄) σk/n(0) σ†k/n(x)⟩
D

⟨σk/n(0) σ†k/n(x)⟩
D

|z| ⩽ 1, |w| ⩾ 1

±
1

w2 z2

⟨∂z̄Φ(1/z̄) ∂w̄Φ(1/w̄) σk/n(0) σ†k/n(x)⟩
D

⟨σk/n(0) σ†k/n(x)⟩
D

|z| ⩾ 1, |w| ⩾ 1

(B.18)
The Green function Hk/n, which is anti-holomorphic in z and holomorphic in w,
can be analytically continued similarly. Moreover, these two Green functions are
related through a mirror relation as follows

Gk/n(z,w) = ±
1
z2 Hk/n(1/z̄,w) (B.19)

whenever they are well defined functions, namely for z , w and z,w < {0, x, 1/x̄,∞}.
The r.h.s. of (B.19) is indeed holomorphic in z as Hk/n(1/z̄,w) is the composition of
two anti-holomorphic functions, namely Hk/n(z,w) and ζ(z) = 1/z̄.

Now one observes that zk/n(z − x)1−k/n(z − 1/x̄)k/n Gk/n(z,w) is holomorphic on
the whole Riemann sphere except for z = w, where a second-order pole occurs.
Hence, for Gk/n(z,w) we must have

Gk/n(z,w) = fk/n(z)
(
αk/n

(z − w)2 +
βk/n

(z − w)
+ γk/n

)
(B.20)

where αk/n, βk/n and γk/n are independent of z, while

fk/n(z) =
1

zk/n(z − x)(1−k/n)(z − 1/x̄)k/n
(B.21)

From the OPE of ∂zΦ(z) ∂wΦ(w) as z→ w, we have that Gk(z,w) = −2/(z−w)2+
O(1). This condition gives αk/n and βk/n, which can be plugged into (B.20), finding

Gk/n(z,w) = −
2 fk/n(z)
fk/n(w)

(
1

(z − w)2 −
f ′k/n(w)/ fk/n(w)

z − w
+ fk/n(w) f1−k/n(w)µk/n(w)

)
(B.22)

for some unknown function µk/n. The same argument for the complex variable w
leads to

Gk/n(z,w) = −
2 f1−k/n(w)

f1−k/n(z)

(
1

(z − w)2 −
f ′1−k/n(z)/ f1−k/n(z)

w − z
+ f1−k/n(z) fk/n(z)µ1−k/n(z)

)
(B.23)
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Comparing (B.22) and (B.23), one obtains

µk/n(z) =
k
n

(z − x) + Ak/n(x) Ak/n = A1−k/n (B.24)

Finally, combining (B.21)-(B.24), we arrive to

Gk/n(z,w) = (B.25)

= − 2 fk/n(z) f1−k/n(w)
[

k
n

z(z − 1/x̄)(w − x)
(z − w)2 +

(
1 −

k
n

)
w(w − 1/x̄)(z − x)

(z − w)2 + Ak/n(x)
]

Then, it follows from (B.13) that

⟨T(z) σk/n(0) σ†k/n(x)⟩
D

⟨σk/n(0) σ†k/n(x)⟩
D

=
hk/n

[
x(1/x̄ − 2z) + z2

]2

z2(z − x)2(z − 1/x̄)2 +
Ak/n(x)

z(z − x)(z − 1/x̄)
(B.26)

where the dependence on the boundary condition is encoded only in Ak/n(x).
In the case of Neumann BC, we can determine Ak/n(x) by exploiting the fact

that the field Φ(z) has no windings. In particular, ⟨Φ(z) ∂wΦ(w) σk/n(0) σ†k/n(x)⟩
D

must be a single-valued function of z. By using that dΦ = ∂zΦ dz + ∂z̄Φ(z) dz̄ and
comparing with (B.15) and (B.16), we find that the above condition implies∮

C1

[
Gk/n(z,w) dz +Hk/n(z,w) dz̄

]
= 0 (B.27)

To evaluate the l.h.s., one can first change variable to ξ ≡ ζ(z) = 1/z̄ and using
(B.19), finding∮
C1

Hk/n(z,w) dz̄ =
∮
C1

Hk/n(1/ξ̄,w) d(1/ξ) =
∮
C1

Gk/n(ξ,w) dξ Neumann BC

(B.28)
where we used that ζ(C1) = C1. Thus, the constraint (B.27) boils down to∮

C1

Gk/n(z,w) dz = 0 Neumann BC (B.29)

In the case of Dirichlet BC, the constraint (B.27) is automatically satisfied;
indeed the above change of variable leads to∮

C1

Hk/n(z,w) dz̄ = −
∮
C1

Gk/n(ξ,w) dξ (B.30)

Now, since Φ(z) vanishes on all boundary components, we have that∫
B+1

[
Gk/n(z,w) dz +Hk/n(z,w) dz̄

]
= 0 Dirichlet BC (B.31)

where B+1 is the part of B1 located inside the white region in Fig. 3.4, which
connects the two red points located on two different components of the boundary.

Using the above change of variable, the condition (B.31) becomes∮
B1

Gk/n(z,w) dz = 0 Dirichlet BC (B.32)
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where we used the fact that mirror image of B+1 is the remaining part of B1 with
the opposite orientation.

By using (B.25), the constraints (B.29) and (B.32) become∮
C

fk/n(z)
[

k
n

z(z − 1/x̄)(w − x)
(z − w)2 +

(
1 −

k
n

)
w(w − 1/x̄)(z − x)

(z − w)2 + Ak/n(x)
]

dz = 0

(B.33)
where the contour is either C = C1 for Neumann BC or C = B1 for Dirichlet BC;
hence

Ak/n(x)
∮
C

fk/n(z) dz = (B.34)

= −

∮
C

fk/n(z)
[

k
n

z(z − 1/x̄)(w − x)
(z − w)2 +

(
1 −

k
n

)
w(w − 1/x̄)(z − x)

(z − w)2

]
dz

The analysis of this equation has been already carried out in [70]. However, in
the following, we report a detailed derivation for the sake of completeness.

The first important feature to highlight is the fact that the r.h.s. of (B.34) does
not depend on w. This follows from the relation

∂
∂w

[
fk/n(z)

(
k
n

z(z − 1/x̄)(w − x)
(z − w)2 +

(
1 −

k
n

)
w(w − 1/x̄)(z − x)

(z − w)2

)]
= (B.35)

= −
∂
∂z

[
z(z − x)(z − 1/x̄) fk/n(z)

(z − w)2

]
Since (B.34) is independent of w, we can choose convenient points for w on the
Riemann sphere. In particular, considering w = x, we obtain

Ak/n(x)
∮
C

fk/n(z) dz = −
(
1 −

k
n

)
x (x − 1/x̄)

∮
C

fk/n(z)
z − x

dz (B.36)

Now one observes that the definition of fk/n(z) in (B.21) straightforwardly leads to

∂x fk/n(z) =
(
1 −

k
n

)
fk/n(z)
z − x

(B.37)

which can be employed in (B.36), finding that

Ak/n(x) = − (x − 1/x̄) x ∂x log
∮
C

fk/n(z)dz (B.38)

Since the integrals
∮
C

fk/n(z)dz have already been evaluated in (B.8) and (B.9), we
arrive to

Ak(x) = − (x − 1/x̄) x ∂x log E(α)
k/n(x) (B.39)

where E(α)
k/n(x) has been defined in (3.57). This concludes the derivation of (B.14),

whose residue at z→ x leads to (3.56).

B.4 Interval adjacent to the boundary

The entanglement entropies of the interval A = [0, v] for a BCFT with central
charge c defined on the segment [0,L] are [46] (see also (B.40))

Sn(ℓ) =
c

12

(
1 +

1
n

)
log

[2L
πϵ

sin
(
πv
L

)]
+ log(g) (B.40)
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up to subleading terms, where g is the boundary entropy of [32]. Focussing on
the case of the massless boson, which has c = 1, in the following we recover (B.40)
for this model by taking the limit u → 0 of ⟨σn(u) σ†n(v)⟩(α)

SL
for a finite value of R.

This provides an important consistency check of our BCFT results (3.23).
By employing (3.65), the expressions in (3.23) can be written respectively as

follows

F
(D)

n (r) = Rn−1
Θ
(
−R2τ(r)−1

)
Θ
(
−τ(r)−1

) F
(N)

n (r) =
( 2
R

)n−1 Θ
(
−4τ(r)−1/R2

)
Θ
(
−τ(r)−1

) (B.41)

whose prefactors can be written in terms of the ground state degeneracies [32] for
this model, which are [142, 217]

gD ≡

√
1
R

gN ≡

√
R
2

(B.42)

for Dirichlet and Neumann BC respectively,
From (3.10), we have that r→ 1− when u→ 0+. Taking this limit in (B.41), one

finds
F

(D)
n (r)→ g2(1−n)

D F
(N)

n (r)→ g2(1−n)
N (B.43)

(in the numerical checks of the Dirichlet BC case, R should not be too small).
The bulk-boundary Operator Product Expansion (OPE) of the twist field σ(u)

reads [110]

σ(u) ∼ An;α(2u)−∆n I + . . . u→ 0+ (B.44)

where I denotes the identity operator on the boundary, the dots indicate sublead-
ing contributions that have been neglected and An;α is the one-point structure
constant, which can be expressed in terms of the ground state degeneracy gα as
An;α = g1−n

α [46, 110]. In our case, combining this observation with (B.43), one
concludes that F (α)

n (r)→ A2
n;α as r→ 1, for α ∈ {D,N}. This observation and (3.9)

lead to
⟨σn(u) σ†n(v)⟩(α)

SL
∼ (2u)−∆nA

2
n;α [s(2v)]−∆n + . . . (B.45)

From the bulk-boundary OPE (B.44), it is straightforward to find that

⟨σn(u) σ†n(v)⟩(α)
S
∼ An;α(2u)−∆n⟨σ†n(v)⟩(α)

SL
+ . . . (B.46)

Finally, (B.45) and (B.46) are consistent when ⟨σ†n(v)⟩(α)
SL
= g(1−n)

α /s(2v)∆n , in agree-
ment with (1.52).

B.5 Limits in the decompactified case

B.5.1 Normalization of twist 2-point function

In this section, we determine the overall normalization of the two-point functions
of twist fields in the decompactified regime. In the finite R case, we have used the
x→ 0 behaviour of the twist correlator to fix such constants, and we shall pursue
the same strategy here, with a few modifications.
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The extra difficulty arises due to the continuous primary operator spectrum
of the non-compact boson CFT, which is formed by vertex operators Vγ =:
exp iγΦ(z, z̄) :, with scaling dimensions ∆γ = γ2 and γ ∈ R. Thus, in the ZN

orbifold of this theory [118, 211, 235], the untwisted sector is built from operators
1:

Vγ = Vγ1 ⊗ · · · ⊗ Vγn (B.47)

with γ = {γ1, . . . , γn} and the identity field given by I =V0.

The leading x→ 0 behaviour in (3.71) will then be obtained by considering the
OPE of the twist fields, which, by twist charge conservation can only contain fields
of type (B.47)2. Since the spectrum of untwisted primary fields is continuous, the
OPE should be given by a weighted integral over theVγ operators. We conjecture,
then, encouraged by previous works [235], that the contribution of untwisted
primary operators to the OPE of conjugate twist fields is :

σ(0, 0)σ†n(x) ∼ x−2∆n

∫
Rn

n∏
i=1

dγi δ

∑
i

γi

 xγ
2
C
Vγ

σ,σ†n
Vγ(0, 0) (B.48)

where the δ function appears as a consequence of U(1) charge conservation in
the non-compact boson CFT, and we work with the usual conventions that the
structure constant CI

σ,σ†n
= 1.

Now we plug (B.48) in the twist field two-point functions (3.71) to find the
primary field contribution to the limit x→ 0 for Neumann and Dirichlet BC:

⟨σ(0, 0)σ†n(x)⟩(α)
D
∼

x→0
x−2∆n

∫
Rn

n∏
i=1

dγi δ

∑
i

γi

 xγ
2
C
Vγ

σ,σ†n
⟨Vγ(0, 0)⟩αD (B.49)

Conveniently, the correlators in (B.49) factorize into one-point functions of the
non-compact boson BCFT:

⟨Vγ(0, 0)⟩αD =
n∏

i=1

⟨Vγi(0, 0)⟩αD (B.50)

which are given by [24]:

⟨Vγ(0, 0)⟩(N)

D
= δ(γ) ⟨Vγ(0, 0)⟩(D,ϕ0)

D
= eiγϕ0 (B.51)

for Neumann BC and Dirichlet BC with ϕ0 = constant. Thus, we find:

⟨Vγ(0, 0)⟩(N)

D
=

n∏
i=1

δ(γi) ⟨Vγ(0, 0)⟩(D,ϕ0)
D

= exp

i
n∑

i=1

γiϕ0

 = 1 (B.52)

and the dependence on ϕ0 drops, as it should. Thus, we find for Neumann BC:

⟨σ(0, 0)σ†n(x)⟩(N)

D
∼

x→0
x−2∆n + . . . (B.53)

and comparing with the straightforward x→ 0 limit of (3.64), we find c(N)
n = 1.

1strictly speaking onlyZN invariant linear combinations of such fields are local in the orbifold
but this subtlety can be ignored at this level.

2and their descendants, but their contribution in the x→ 0 limit is subldeading
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For Dirichlet BC, we arrive at:

⟨σ(0, 0)σ†n(x)⟩(D)

D
∼

x→0
x−2∆n

∫
Rn

n∏
i=1

dγi δ

∑
i

γi

 xγ
2
C
Vγ

σ,σ†n
(B.54)

The structure constant CVγ

σ,σ†n
depends smoothly on γ. Indeed it can be unfolded

to an n-point correlator of vertex operators on the Riemann sphere in the non-
compact boson CFT:

C
Vγ

σ,σ†n
= n−

∑2
i γ

2
i /2

〈
Vγ1

(
e2πi/n

)
Vγ2

(
e4πi/n

)
· · ·Vγn(1)

〉
C

(B.55)

Now, using the classical CFT result [23]:〈
Vγ1(z1) · · ·Vγnzn

〉
C
=

∏
i< j

|zi − z j|
2γiγ j (B.56)

we find the behaviour of the structure constants close to γi = 0:

C
Vγ

σ,σ†n
∼
γi→0

1 (B.57)

which is all we need, since we are interested in the leading x → 0 behaviour of
(B.54). Now, we integrate over the Dirac-δ function to arrive at:

⟨σ(0, 0)σ†n(x)⟩(D)

D
∼

x→0
x−2∆n

∫
Rn−1

n−1∏
i=1

dγi exp{−1/2| log x2
|

n−1∑
i, j=1

γiAi jγ j} (B.58)

where the matrix Ai j = 1+ δi j has det A = n. The leading asymptotic behaviour of
such an integral as x→ 0 follows from Laplace’s method

⟨σ(0, 0)σ†n(x)⟩(D)

D
∼

x→0
x−2∆n

1
√

n

(
2π
| log x2|

)(n−1)/2

(B.59)

Now, we need to compare (B.59) with the x→ 0 limit of (3.63). We have:

⟨σ(0, 0)σ†n(x)⟩(D)

D
∼

x→0
x−2∆n

1√
det(−iτ)

(c(D)
n + . . . ) (B.60)

From the relations (3.60), we have that:

1√
det(−iτ(x))

=

n−1∏
k=1

√
Fk/n(x2)

Fk/n(1 − x2)
∼

x→0

1
√

n

(
2π
| log x2|

)(n−1)/2

(B.61)

where we have used the det(−iτ(x)) identities of sections 4.5. in[71]. Thus, by
comparing (B.60) with (B.59) we fix c(D)

n = 1.

B.5.2 The x→ 1 behaviour

The x→ 1 behaviour of (3.71) is also of interest, as it provides information about
the one-point structure constants of the twist fields. Using the normalized two-
point functions in (3.72), we find, for Dirichlet BC:

⟨σ(0, 0)σ†n(x)⟩(D)

D
∼

x→1
(1 − x2)−∆n (B.62)
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since Θ(−τ−1(x))→ 1 as x→ 1.
Then, for Neumann BC, by using the property (3.65) in the second equation of

(3.72) we arrive at:

⟨σ(0, 0)σ†n(x)⟩(N)

D
∼

x→1
(1 − x2)−∆n

√
det(−iτ(x)) (B.63)

with

det(−iτ(x)) =
n−1∏
k=1

Fk/n(1 − x2)
Fk/n(x2)

∼
x→1

1
n

(
2π

| log(1 − x2)|

)(n−1)

(B.64)

easily found from (B.61)
We now want to see how the above expressions fare against the x → 1 be-

haviour implied by the bulk-boundary OPE of σ†n(x) fields, which has contribu-
tions from untwisted boundary fields exclusively.

To proceed, we need to present a few facts on the boundary field spectrum of
the non-compact boson BCFT which we dn ψ(α)(eiθ), with θ ∈ (0, 2π) a coordinate
parametrizing the boundary of the unit disk D. We use as reference [24], where
these concepts are explained in detail.

For Dirichlet BC, the spectrum of boundary operators only contains the bound-
ary identity operator ψ(D)

0 and its descendants, since we have Φ0 = const. along the
boundary. On the other hand, for Neumann BC, any boundary vertex operator
ψ(N)
γ =: exp iγΦ(eiθ) :, with scaling dimension∆γ = γ2/2 is allowed. Then, in theZn

orbifold of this BCFT, the untwisted sector of primary boundary fields consists of
the identity operatorΨ(D)

0 for Dirichlet b.c, while for Neumann BC we have :

Ψ(N)
γ = ψ

α
γ1
⊗ . . . ψαγn

(B.65)

For Dirichlet BC, the leading contribution to the bulk-boundary OPE of σ†n is
given by:

σ†n(x) ∼ (1 − x2)−∆nA
(D)

n,I I(1) (B.66)

In the Neumann BC setup, there are issues with the continuous spectrum of
boundary operators analogous to the ones outlined in Appendix B.5.1. To bypass
them, we conjecture the following continuum version of the bulk-boundary OPE
:

σ†(x) ∼ (1 − x2)−∆n

∫ +∞

−∞

(
n∏

i=1

dγi) δ

∑
i

γi

 (1 − x2)γ
2/2
A

(N)

n,Ψγ
Ψ(N)
γ (1) (B.67)

where A(N)

n,Ψγ
are bulk-boundary structure constants, and we have used that U(1)

charge neutrality holds on the boundary.
Now, we plug the OPEs (B.66) and (B.67) into their respective correlators and

find for the Dirichlet case:

⟨σ(0, 0)σ†n(x)⟩(D)

D
∼

x→1
(1 − x2)−∆n

(
A

(D)

n,I

)2
(B.68)

and we have used [173]
⟨σ(0, 0)⟩αD = A

(α)
n,I (B.69)

which, upon comparison with (B.62) fixes
(
A

(D)

n,I

)2
= 1.

For Neumann BC, the result is slightly more involved:

⟨σ(0, 0)σ†n(x)⟩(N)

D
∼

x→1
(1 − x2)−∆n

∫ +∞

−∞

(
n∏

i=1

dγi) δ

∑
i

γi

 (1 − x2)γ
2/2

(
A

(N)

n,Ψγ

)2
(B.70)
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where we have used that[173]:

⟨σ(0, 0)Ψ(α)
γ (1)⟩αD = A

(α)
n,Ψγ

(B.71)

The rest of this derivation is analogous to the one of Appendix B.5.1. The correlator
in (B.71) unfolds to a n-point function of boundary vertex operators on the unit
disk [173] which should be smooth in γi. Thus, we can approximateA(N)

n,Ψγ
≈ A

(N)

n,I
for γi → 0 small, since we are only interested in the leading x → 1 behaviour.
Then, we calculate the Gaussian integral as in Appendix B.5.1 to arrive at:

⟨σ(0, 0)σ†n(x)⟩(N)

D
∼

x→1

(
A

(N)

n,I

)2
(1 − x2)−∆n

(
2π

| log(1 − x2)|

)(n−1)/2

(B.72)

and by comparing with (B.63) we conclude that
(
A

(N)

n,I

)2
= 1.

Finally, since the one-point structure constants of twist fields are related to the
ground state degeneracies gα asA(α)

n,I = g1−n
α we obtain:

gD = 1 gN = 1 (B.73)

which is compatible with well-established results in the literature [24].
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Appendix for chapter 4

C.1 Mother BCFT conventions

We will define here our mother BCFT conventions on the upper-half plane H
parametrized by the coordinate z = x + iy. The boundary is aligned with the real
axis.

Bulk operators in the mother CFT are denoted by ϕi(z, z̄) while boundary
operators are written as ψ(ab)

j (x). The operator algebra consists of three types of
OPE, which we explicitate, to fix the notations for the corresponding structure
constants.

First, we have the bulk-bulk OPEs:

ϕi(z, z̄)ϕ j(0, 0) =
∑

ϕk scaling op.

Ck
i jz
−hi−h j+hk z̄−h̄i−h̄ j+h̄k ϕk(0, 0) (C.1)

where Ck
i j are the bulk structure constants.

The second type of OPE are boundary-boundary OPEs between BCCOs in-
terpolating different boundary conditions:

ψ(ab)
i (x)ψ(dc)

j (y) = δbd

∑
k

B(abc)ψk
ψiψ j

(x − y)hk−hi−h jψ(ac)
k (y) (C.2)

for x > y. The B(abc)ψk
ψiψ j

are the boundary-boundary structure constants. The Kronecker
delta formally expresses the fact that it only makes sense to consider correlations
of boundary operators ordered such that their BCs change consistently with their
labelling.

Finally, we consider the third kind of OPE, between the bulk and the boundary:

ϕi(z) =
∑

k

A(a)
ϕi,ψk

(2y)hk−∆i · ψ(aa)
k (x) (C.3)

with A(a)
ϕi,ψk

the bulk-boundary structure constants.

In [257],[213] all the structure constants A(a)
ϕi,ψk

and B(abc)ψk
ψiψ j

have been determined
for A-series and D-series BCFTs, in terms of fusion matrix elements of bulk CFT
four-point functions, and the entries of the modular S matrix. Relevant to this
paper are the results:

B(abc)ψk
ψiψ j

= Fbk

[
a c
i j

]
(C.4)
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where the fusion matrix relates bases of conformal blocks around z = 0 and z = 1

I
r
ia,cj(z) =

∑
rs

Frs

[
a c
i j

]
J

s
i j,ac(1 − z) (C.5)

defined in the bulk.
We also give the expressions for the 1-point structure constants of the BCFT in

terms of S-matrix elements of the mother CFT

A(a)
ϕi
≡ A(a)

ϕi,ψI
=

Sai

Sa1

√
S11

Si1
(C.6)

C.2 Computation of orbifold structure constants

C.2.1 Composite twist one-point structure constant in the ZN

orbifold BCFT

Assuming the one-point structure constant A(α)
σ1,ψ1

is known, let’s consider the
correlator: 〈

σ j(0, 0)
〉α
D
= A(α)

σ j,ψ1
(C.7)

We now use (4.49) to write the LHS of (C.7) as:〈
σ j(0, 0)

〉α
D
= A j lim

ϵ→0
ϵ2(1−N−1)h j

〈
Φ[ j,1,...,1](ϵ, ϵ̄)σ[k](0, 0)

〉α
D

(C.8)

Substituting the definition (4.45) of non-diagonal fields, we find:

〈
σ j(0, 0)

〉α
D
= N−2(1−N−1)h j−1 lim

ϵ→0
ϵ2(1−N−1)h j

N−1∑
a=0

〈(
ϕ j+a ⊗ ϕ1+a ⊗ . . . ϕ1+a

)
(ϵ, ϵ̄)σ[k](0, 0)

〉α
D

(C.9)
Each correlator in the sum above can be written as:〈(

ϕ j+a ⊗ ϕ1+a ⊗ . . . ϕ1+a

)
(ϵ, ϵ̄)σ[k](0, 0)

〉α
D
=

ZN,a

ZN
1,a

⟨ϕ j(ϵ, ϵ̄)⟩DN = A
(α)
σ1,ψ1
⟨ϕ j(ϵ, ϵ̄)⟩aDN

(C.10)
where ZN,a denotes the partition function on the N-sheeted disk with conformal
BC a, and branch point at 0. Now, we can unfold the disk correlator through the
conformal map w→ w1/N and substitute back in (C.9) to find:〈

σ j(0, 0)
〉α
D
= A(α)

σ1,ψ1
⟨ϕ j(0, 0)⟩aD (C.11)

so that we finally find:

A
(α)
σ j,ψ1
= A(α)

σ1,ψ1
Aa
ϕ j

(C.12)

C.2.2 Bulk-boundary structure constant in the Z2 orbifold CFT

In this section we compute the structure constant A(α)
σ1,Ψk

, which is given by the
UHP correlator: 〈

σ1(i/2,−i/2)Ψ(αα)
k (1)

〉α
H
= A(α)

σ1,Ψk
(C.13)
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where we have implicitly assumed that the boundary fieldΨk of scaling dimension
2hk can leave on α - otherwise the structureA(α)

σ1,Ψk
constant is trivially zero.

We can now map the LHS of (C.13) to the unit disk through:

z→
z − i/2
z + i/2

(C.14)

and then use the partition function expression of the correlator (as in the previous
section) to find (after a global rotation):〈

σ1(0, 0)Ψα
13(−i)

〉
D
= ⟨σ1(0, 0)⟩αD

〈
ψα13(−i)ψα13(−ie2iπ)

〉
D2,a

(C.15)

where D2,a is a 2-sheeted disk with branch point at 0. We unfold the correlator of
boundary fields through the map w→ w1/2 to find:〈

ψα13(−i)ψα13(−ie2iπ)
〉
D2,a
=

(
2i−1/2

)−2h13
〈
ψ(aa)

13 (i1/2)ψ(aa)
13 (−i1/2)

〉
D

(C.16)

The 2-point function of boundary fields on the disk can then be mapped to the
UHP, through:

w→ z =
i(w + 1)
2(1 − w)

(C.17)

and calculated to be: 〈
ψ(aa)

13 (i1/2)ψ(aa)
13 (−i1/2)

〉
D
= 2−2h13 (C.18)

so that, by putting everything together, we arrive at:

A
(α)
σ1,Ψ13

= A(α)
σ1,Ψ1

2−4h13 (C.19)

We note that (C.19) can be obtained from the result of [120] for the twist 2-point
function on the strip SL of width L with conformal BC α. In the limit L→ ∞, one
obtains the right half plane (RHP) correlator

⟨σ(u, ū)σ(v, v̄)⟩RHP = (u + v)−4hσ g−2
α 2−c/3[|x|2(1 − |x|2)]−2hσZα|α(−1/τ) (C.20)

with 0 < u ≤ v and

x =
v − u
v + u

τ(|x|) = i
2 F1

(
1
2 ,

1
2 , 1; 1 − |x|2

)
2 F1

(
1
2 ,

1
2 , 1; |x|2

) (C.21)

One can then compare the limit u→ 0 in the above expression with the expression
obtained by employing the bulk-boundary OPEs of the twist fields in the LHS of
(C.20) to recover the result (C.19).

For generic n, expressing the bulk-boundary structure constantA(α)
σ1,Ψ13

in terms
of mother BCFT quantities depends on our ability to calculate n-point functions of
boundary operators. For n ≥ 5, this becomes difficult to solve for generic mother
BCFTs.
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C.3 Orbifold Ward identities for bulk fields

Following [118], we give here the orbifold Ward identities for 4-point bulk
correlators:

∞∑
p=0

ap

〈
O1

∣∣∣L(r)
−m1−pO2(1)O3(x, x̄)

∣∣∣O4

〉
=

∞∑
p=0

bp

〈
O1

∣∣∣∣[L(r)
m2+pO2

]
(1)O3(x, x̄)

∣∣∣∣O4

〉
+

∞∑
p=0

cp

〈
O1

∣∣∣∣O2(1)
[
L(r)

m3+pO3

]
(x, x̄)

∣∣∣∣O4

〉
+

∞∑
p=0

dp

〈
O1

∣∣∣O2(1)O3(x, x̄)L(r)
m4+p

∣∣∣O4

〉
(C.22)

where the levels mi ∈ Z + rki/N satisfy:

m1 +m2 +m3 +m4 = −2 (C.23)

and the coefficients ap, bp, cp and dp are defined from the Taylor series:

(1 − z)m2+1(1 − xz)m3+1 =

∞∑
p=0

apzp (C.24)

(z − x)m3+1zm4+1 =

∞∑
p=0

bp(z − 1)p (C.25)

(z − 1)m2+1zm4+1 =

∞∑
p=0

cp(z − x)p (C.26)

(z − 1)m2+1(z − x)m3+1 =

∞∑
p=0

dpzp (C.27)

A useful identity

We give here the following commutation identity [118]:

⟨O1 |O2(1)O3(x, x̄)Ln| O4⟩ − ⟨O1 |LnO2(1)O3(x, x̄)| O4⟩

= {(1 − xn) [x∂x + (n + 1)h3] + (h4 − h1) − n (h2 + h3)} ⟨O1 |O2(1)O3(x, x̄)| O4⟩

(C.28)
where O2 and O3 are primary fields and |O2⟩, |O4⟩ are generic states. This com-
mutator identity allows one to express insertions of Virasoro modes Ln inside a
correlation function in terms of differential operators acting on them.

C.4 Rényi entropies for the critical Ising chain with
mixed fixed BC

In this section, we will derive the bare and excited twist contributions to the
second and third Rényi entropy in the critical Ising chain with fixed mixed BC
a = +, b = −. In the Ising BCFT, the boundary field that interpolates between the
corresponding conformal BC |±⟩ is the operator ψ(+−)

2,1 , with conformal dimension
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h2,1 = 1/2. In the ZN orbifold of this theory, the change in boundary conditions is
implemented by the diagonal operatorΨ(αβ)

2,1 defined as in (4.63).
The essential observation for the derivation of this section is that the space of

conformal blocks is one-dimensional for the chiral correlators〈
Φ1,3|σ

[−k]
j (1)σ[k]

j (η)|Φ1,3

〉
(C.29)

with j ∈ {1, ϕ1,3}in theZ2 andZ3 Ising orbifold CFTs. The result is obtained, as in
the discussion of Section 3, from the fusion rules of these theories, found in [119]
and [211]. These fusion rules also imply the leading singular behaviour of the
conformal block around the points η ∈ {0, 1,∞}. The corresponding exponents are
given in Table C.1.

0 1 ∞

N = 2, j = 1 −1 −
1

16 −
15
16

N = 2, j = ϕ1,3 −1 −
9

16 −
7
16

N = 3, j = 1 −1 −
1
9 −

8
9

N = 3, j = ϕ1,3 −1 −
4
9 −

5
9

Table C.1: Singular behaviour of the conformal block of (C.29) for different N and
twist field insertions σ[k]

j (η)

In the η→ 1 channel, the exponent corresponds to the fusion

σ[k]
j × σ

[−k]
j → Φ1 (C.30)

for all the chiral correlators we are considering in this section. The diagonal
operator Φ1 is defined as in (4.46).

From the exponents around η → 0 and η → 1 we can determine the generic
form of the conformal blocks for the four cases enumerated above to be:

f (N)
j (η) = η−1(1 − η)−2hσ j P(η) (C.31)

where P(η) is a generic polynomial in η. Furthermore, taking into account the
singular behaviour of f (N)

j (η) around η → ∞, one can constrain its degree in all
four cases to be ≤ 2, so that we have:

f (N)
j (η) = η−1(1 − η)−2hσ j (a2 η

2 + a1 η + a0) (C.32)

Around η→ 1, this function behaves as:

f (N)
j (η) ∼ (1 − η)−2hσ j

[
(a2 + a1 + a0) + (a2 − a0)(1 − η) + a2(1 − η)2 + . . .

]
(C.33)

To find ai, we will need to consider the first few results in the module of Φ1

from the OPE of twist fields in the ZN orbifold:

σ[k]
j (η)σ[−k]

j (1) = Φ1(1) +
2hσ j

Nc
(1 − η)2 T(0)(1) + . . . (C.34)

where T(0)(z) = L(0)
−2Φ1(z) is the SET of the chiralZN orbifold CFT. The correspond-

ing structure constant has been determined by applying a L(0)
2 from the left on

both sides of the OPE, and power matching in (1 − η). Finally, the term at level
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1 has vanished because the null vector L−11 ≡ 0 in the mother CFT induces the
null-vectors L(r)

−1Φ1 ≡ 0 in the orbifold.
Inserting (C.34) into (C.29) one finds, the coefficients

a0 = a2 =
2hσ j

Nc
a1 = 1 − 2a0 (C.35)

with which we fix the conformal blocks for all the cases presented in Table C.1.
We then use the block expansions for the mixed BC correlators to find:〈

σ[k]
j (z, z̄)

〉αβ
N
= g1−N

+ f N
j (η) (C.36)

where we have also used, notably, the results of (4.78) for the 1-point structure
constant of twist fields. After mapping to the strip through (4.3), we find for
N = 2:

⟨σ1(ℓ, ℓ)⟩+−SL
= 2−5/2

(2L
π

)−1/16 7 + cos 2πℓ
L(

sin πℓ
L

)1/16 (C.37)

⟨σε(ℓ, ℓ)⟩
+−
SL
= 2−5/2

(2L
π

)−9/16 1 − 9 cos 2πℓ
L(

sin πℓ
L

)9/16 (C.38)

and N = 3:

⟨σ1(ℓ, ℓ)⟩+−SL
= 3−2

(2L
π

)−1/9 7 + 2 cos 2πℓ
L(

sin πℓ
L

)1/9 (C.39)

⟨σε(ℓ, ℓ)⟩
+−
SL
= 3−2

(2L
π

)−4/9 1 + 8 cos 2πℓ
L(

sin πℓ
L

)4/9 (C.40)

C.5 Hypergeometric differential equation

The hypergeometric differential equation is canonically defined as:

η(η − 1) f ′′(η) + [(a + b + 1)η − c] f ′(η) + ab f (η) = 0 (C.41)

with the Riemann scheme:

0 1 ∞

0 0 a
1 − c c − a − b b

The solutions are constructed using the Gauss hypergeometric function 2 F1(a, b; c |
η). Following the conventions of [224], we give a standard basis of fundamental
solutions to (C.41) around the singular point η = 0:

I1(η) = 2 F1(a, b; c | η)

I2(η) = η1−c
2 F1(b − c + 1, a − c + 1; 2 − c | η)

(C.42)

and around η = 1:

J1(η) = 2 F1(a, b; a + b − c + 1 | 1 − η)

J2(η) = (1 − η)c−a−b
2 F1(c − b, c − a; c − a − b + 1 | 1 − η)

(C.43)
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The two bases of solutions are linearly related as

Ii(η) =
2∑

j=1

Pi jJ j(η) (C.44)

with the fusing matrix P

P =

 Γ(c)Γ(d)
Γ(c−a)Γ(c−b)

Γ(c)Γ(−d)
Γ(a)Γ(b)

Γ(2−c)Γ(d)
Γ(1−a)Γ(1−b)

Γ(2−c)Γ(−d)
Γ(1−c+a)Γ(1−c+b)

 (C.45)

and its inverse:

P−1 =

 Γ(1−c)Γ(1−d)
Γ(1−c+a)Γ(1−c+b)

Γ(c−1)Γ(1−d)
Γ(a)Γ(b)

Γ(1−c)Γ(1+d)
Γ(1−a)Γ(1−b)

Γ(c−1)Γ(1+d)
Γ(c−a)Γ(c−b)

 (C.46)

expressed in terms of Euler’s Gamma function Γ, with d = c − a − b.

C.6 Derivation of differential equation in the Z3 orb-
ifold BCFT

We present in this section all the orbifold Ward identities and null-vector condi-
tions necessary to derive the third-order differential equation (4.134).

The Ward identities

Ward 1 The correlator to integrate over is:

⟨Φ12|L
(1)
1 σ1(1)T(1)(z)σ̃1(η)L(1)

−1 |Φ12⟩ (C.47)

with (m1,m2,m3,m4) = (−1, 1/3,−1/3,−1), to find:

a0|1 ⟨Φ12| (L
(1)
1 )2σ1(1)σ̃1(η)L(1)

−1 |Φ12⟩ + a1|1 ⟨Φ12|L
(1)
1 L(1)

0 σ1(1)σ̃1(η)L(1)
−1 |Φ12⟩ =

d0|1 ⟨Φ12|L
(1)
1 σ1(1)σ̃1(η)L(1)

−1L(1)
−1 |Φ12⟩ + d1|1 ⟨Φ12|L

(1)
1 σ1(1)σ̃1(η)L(1)

0 L(1)
−1 |Φ12⟩

(C.48)

Ward 2 The correlator to integrate over is:

⟨Φ12| σ1(1)T(1)(z)σ̃1(η)L(1)
−1L(1)

−1 |Φ12⟩ (C.49)

with (m1,m2,m3,m4) = (−1, 1/3,−1/3,−1) to find:

a0|2 ⟨Φ12|L
(1)
1 σ1(1)σ̃1(η)

(
L(1)
−1

)2
|Φ12⟩ = d0|2 ⟨Φ12| σ1(1)σ̃1(η)

(
L(1)
−1

)3
|Φ12⟩

+d1|2 ⟨Φ12| σ1(1)σ̃1(η)L(1)
0

(
L(1)
−1

)2
|Φ12⟩ + d2|2 ⟨Φ12| σ1(1)σ̃1(η)L(1)

1

(
L(1)
−1

)2
|Φ12⟩

+ d3|2 ⟨Φ12| σ1(1)σ̃1(η)L(1)
2

(
L(1)
−1

)2
|Φ12⟩

(C.50)

Ward 3 The correlator to integrate over is

⟨Φ12|L
(1)
1 L(1)

1 σ1(1)T(1)(z)σ̃1(η) |Φ12⟩ (C.51)
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with (m1,m2,m3,m4) = (−1, 1/3,−1/3,−1) to find:

d0|3 ⟨Φ12|
(
L(1)

1

)2
σ1(1)σ̃1(η)L(1)

−1 |Φ12⟩ = a0|3 ⟨Φ12|
(
L(1)

1

)3
σ1(1)σ̃1(η) |Φ12⟩

+a1|3 ⟨Φ12|
(
L(1)

1

)2
L(1)

0 σ1(1)σ̃1(η) |Φ12⟩ + a2|3 ⟨Φ12|
(
L(1)

1

)2
L(1)
−1σ1(1)σ̃1(η) |Φ12⟩

+ a3|3 ⟨Φ12|
(
L(1)

1

)2
L(1)
−2σ1(1)σ̃1(η) |Φ12⟩

(C.52)

Ward 4 The correlator to integrate over is:

⟨Φ12| σ1(1)T(2)(z)σ̃1(η)L(1)
−1 |Φ12⟩ (C.53)

with (m1,m2,m3,m4) = (0,−1/3, 1/3,−2) so we find:

d0|4 ⟨Φ12| σ1(1)σ̃1(η)L(2)
−2L(1)

−1 |Φ12⟩ + d1|4 ⟨Φ12| σ1(1)σ̃1(η)L(2)
−1L(1)

−1 |Φ12⟩+

d2|4 ⟨Φ12| σ1(1)σ̃1(η)L(2)
0 L(1)

−1 |Φ12⟩ + d3|4 ⟨Φ12| σ1(1)σ̃1(η)L(2)
1 L(1)

−1 |Φ12⟩ = 0
(C.54)

Ward 5 The correlator to integrate over is:

⟨Φ12|L
(1)
1 T(2)(z)σ1(1)σ̃1(η) |Φ12⟩ (C.55)

with (m1,m2,m3,m4) = (−2,−1/3, 1/3, 0) so we find:

a0|5 ⟨Φ12|L
(1)
1 L(2)

2 σ1(1)σ̃1(η) |Φ12⟩ + a1|5 ⟨Φ12|L
(1)
1 L(2)

1 σ1(1)σ̃1(η) |Φ12⟩+

a2|5 ⟨Φ12|L
(1)
1 L(2)

0 σ1(1)σ̃1(η) |Φ12⟩ + a3|5 ⟨Φ12|L
(1)
1 L(2)

−1σ1(1)σ̃1(η) |Φ12⟩ = 0
(C.56)

Ward 6 The correlator to integrate over is:

⟨Φ12| σ1(1)T(2)(z)σ̃1(η)L(1)
−1 |Φ12⟩ (C.57)

with (m1,m2,m3,m4) = (−1,−1/3, 1/3,−1) to find:

a0|6 ⟨Φ12|L
(2)
1 σ1(1)σ̃1(η)L(1)

−1 |Φ12⟩ = d0|6 ⟨Φ12| σ1(1)σ̃1(η)L(2)
−1L(1)

−1 |Φ12⟩

+d1|6 ⟨Φ12| σ1(1)σ̃1(η)L(2)
0 L(1)

−1 |Φ12⟩ + d2|6 ⟨Φ12| σ1(1)σ̃1(η)L(2)
1 L(1)

−1 |Φ12⟩
(C.58)

Ward 7 The correlator to integrate over is:

⟨Φ12| σ1(1)T(1)(z)σ̃1(η)L(2)
−1 |Φ12⟩ (C.59)

with (m1,m2,m3,m4) = (−1, 1/3,−1/3,−1) to find:

a0|7 ⟨Φ12|L
(1)
1 σ1(1)σ̃1(η)L(2)

−1 |Φ12⟩ = d0|7 ⟨Φ12| σ1(1)σ̃1(η)L(1)
−1L(2)

−1 |Φ12⟩

+d1|7 ⟨Φ12| σ1(1)σ̃1(η)L(1)
0 L(2)

−1 |Φ12⟩ + d2|7 ⟨Φ12| σ1(1)σ̃1(η)L(1)
1 L(2)

−1 |Φ12⟩
(C.60)

The null-vector conditions

L(1)
−1L(2)

−1 |Φ12⟩ =
1
2

[
3gL(0)

−2 −
(
L(0)
−1

)2
]
|Φ12⟩ (C.61)

⟨Φ12|L
(1)
1 L(2)

1 = ⟨Φ12|
1
2

[
3gL(0)

2 −
(
L(0)

1

)2
]

(C.62)

2 L(0)
−1L(2)

−1L(1)
−1 |Φ12⟩ =

[
3gL(0)

−1L(0)
−2 −

(
L(0)
−1

)3
]
|Φ12⟩ (C.63)

2 L(0)
−1L(2)

−1L(1)
−1 |Φ12⟩ =

[
3gL(1)

−1L(2)
−2 −

(
L(1)
−1

)3
]
|Φ12⟩ (C.64)

2 ⟨Φ12|L
(0)
1 L(2)

1 L(1)
1 = ⟨Φ12|

[
3gL(0)

2 L(0)
1 −

(
L(0)

1

)3
]

(C.65)

2 ⟨Φ12|L
(0)
1 L(2)

1 L(1)
1 = ⟨Φ12|

[
3gL(2)

2 L(1)
1 −

(
L(1)

1

)3
]

(C.66)
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By removing from this linear system of 13 equations all terms containing modes
L(r)

n with r , 0, one indeed obtains (4.134).

C.7 Numerical implementation of the Frobenius method

We want to find a basis of solutions to the differential equation (4.114) that con-
verge on the entire range of interest - the unit circle |η| = 1.

The Fuchsian ODE (4.114) has singular points 0, 1,∞. The solutions around
η = 0 and η = 1 converge on the disks |η| < 1 and |η − 1| < 1 respectively. Thus,
only a portion of the unit semicircle, namely 0 < Arg(η) < π/3, is contained in the
convergence disk around η = 1. We can circumvent this problem by observing
that the solutions around η = ∞ can be convergent on the whole unit circle |η| = 1.
Even better, we can implement the change of variable

η 7→
1 + u

2u
, ∂η 7→ −2u2∂u . (C.67)

so that the new ODE, in the variable u has singular points at u = 0, 1,−1. The
original unit circle |η| = 1 is mapped to |u − 1/3| = 2/3, which is contained in the
convergence disk |u| < 1. Hence, applying the Froebenius method, and expressing
the solutions around u = 1 in terms of those around u = 0 will give the appropriate
numerical evaluation of the desired values of η.

Now, as explained in [118], a convenient way of finding power series solutions
around a point u = u0 is to rewrite the differential equation (4.114) in terms of the
operator θ = (u − u0)∂u, which satisfies:

(u − u0)n∂n
u =

n−1∏
k=0

(θ − k) (C.68)

Most importantly, we have that any polynomial P(θ) satisfies:

P(θ)(u − u0)r = P(r)(u − u0)r (C.69)

For u0 = 0, we can then rewrite the equation as: 8∑
i=0

uiPi(θ)

 = 0 (C.70)

where:
P0(θ) = 250θ4

− 125θ3
− 130θ2

− θ + 6

P1(θ) = −θ
(
−2125θ2 + 450θ + 997

)
− 174

P2(θ) = −250θ4 + 125θ3 + 130θ2
−

(
750θ3 + 1250θ2

− 2415θ + 4264
)
θ + θ − 3123

P3(θ) = −θ
(
4250θ2 + 5925θ + 6016

)
+ θ

(
−2125θ2 + 450θ + 997

)
− 8511

P4(θ) = 5θ
(
150θ3 + 575θ2 + 93θ − 332

)
+ θ

(
750θ3 + 1250θ2

− 2415θ + 4264
)
− 6000

P5(θ) = 2125θ
(
θ2 + 3θ + 2

)
+ θ

(
4250θ2 + 5925θ + 6016

)
P6(θ) = −250θ

(
θ3 + 6θ2 + 11θ + 6

)
− 5θ

(
150θ3 + 575θ2 + 93θ − 332

)
P7(θ) = −2125θ

(
θ2 + 3θ + 2

)
P8(θ) = 250θ

(
θ3 + 6θ2 + 11θ + 6

)
(C.71)
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We now seek power series solutions around u = 0 of the form:

Ii(u) = uri

∞∑
n=0

anun with a0 = 1 (C.72)

where the ri are the roots of the characteristic polynomial P0(r):

r1 = −3/10 r2 = 1 r3 = 1/5 r4 = −2/5 (C.73)

and are the same as the exponents around∞ in Table 4.3.
By substituting the ansatz (C.72) in the differential equation and employing

the identity (C.69) we find the following recursion relations for the coefficients an

of the solution Ii(u):

P0(ri + n)an = −

min{n,8}∑
i=1

an−i Pi(ri + n − i) a0 = 1 (C.74)

The four series found in this way converge for |u| < 1 and can be evaluated
numerically to arbitrary precision.

We note, at this point, that the solution corresponding to r4 is unphysical, since
it corresponds, according to Table 4.3, to the presence in the operator algebra of
the theory of a composite twist field formed with a primary operator that is
outside the Kac table, i.e. not present in theM(6, 5) CFT. This suggests that the
physical space of conformal blocks is actually three-dimensional, and thus, that
there should be a third-order differential equation satisfied by the excited twist
correlator in this setup.

One should now repeat the above computation for the solutions J j(u) around
u = 1, since these are the ones that appear in the block expansion (4.81) of BCFT
correlators. The recursion relation takes the same form as in (C.74), with different
roots:

λ1 = −1/2 λ2 = 9/10 λ3 = 23/10 λ4 = 23/10 + 2 (C.75)

A slight complication appears in this case because two of the roots of the
corresponding characteristic polynomial differ by an integer, that is, r4 = r3 + 2.
This will lead to the truncation of the corresponding recursion relations (C.74) for
r3 because at n = 2, the coefficient P0(r3 + 2) = 0. A good basis of solutions in this
case is {J1(u), J2(u), J(k)

3 (u), J4(u)}, where:

Ji(u) = (1 − u)ri

∞∑
i=0

an(1 − u)n

J(k)
3 (u) = (1 − u)r3[a0 + a1(1 − u)] + kJ4(u)

(C.76)

where k is a free parameter and the value we choose for it should not change
the final result for the physical correlator. We have chosen to set it to k0 =
0.04428171795178596 and define J3(u) = J(k0)(u).

The reason for this choice becomes apparent when one looks at our solution
for the fusing matrix M:

M =


0.207411 0.393808 0.152178 0

1.356 −2.30281 −0.444933 0
7.70383 71.6374 −22.7841 0
−8986.23 −19156.8 7211.61 5800.8

 (C.77)
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which relates the bases of conformal blocks around u = 1 and u = 0 as:

Ji(u) =
∑

j

Mi jI j(u) (C.78)

To obtain this solution, we have generated a linear system of equations for the
unknown Mi j from the evaluation of the above relations at different points {ui} in
the interval 0 < u < 1 (where both sets of solutions converge). In this context, the
parameter k0 was tuned so that the block J3(u) does not depend on the unphysical
solution I3(u) around u = 0. Furthermore, since the matrix elements (M−1)i4 = 0 can
be readily checked to vanish for i ∈ {1, 2, 3}, we can conclude that {J1(u), J2(u), J3(u)}
form the physical three-dimensional basis of conformal blocks around u = 1.
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Appendix D

Appendix for Chapter 5

D.1 Proofs of the properties of invariant operators

In this part of the Appendix, we give the proofs for the non-trivial statements
made in Sec. 5.3.1, about the properties of the operators of the form Φ[ j1,..., jn], Φ

(r)
j

and σ[k](r)
j under the neutral algebra An⊕ Ān. In particular, we say that an operator

Φ is primary under An ⊕ Ān if and only if

L(r1)
m1
. . . L(rp)

mp ·Φ = L̄(r1)
m1
. . . L̄(rp)

mp ·Φ = 0 (D.1)

for any (m1, . . . ,mp) such that m1 ≤ · · · ≤ mp and m1+· · ·+mp > 0, and r1+· · ·+rp = 0
mod n.

D.1.1 Untwisted sector

The untwisted sector contains local fields inM⊗n that are invariant under cyclic
permutations, therefore it is spanned by fields of the form

Ψ = P0

[
L(r1)

m1
. . . L(rp)

mp · L̄
(r̄1)
m̄1
. . . L̄(r̄p̄)

m̄p̄
· (ϕ j1 ⊗ · · · ⊗ ϕ jn)

]
, with

m1 ≤ · · · ≤ mp ≤ 0 ,
m̄1 ≤ · · · ≤ m̄p̄ ≤ 0 .

(D.2)
where P0 is the projector onto the invariant subspace, all mi, m̄i are integers,
and ϕ ji are primary fields in the mother theory. Let Π be the elementary cyclic
permutation of the copies, which acts on untwisted operators as

Π · (ϕ j1 ⊗ · · · ⊗ ϕ jn−1 ⊗ ϕ jn) ·Π−1 = (ϕ j2 ⊗ · · · ⊗ ϕ jn ⊗ ϕ j1) . (D.3)

and let Ps be the projectors

Ps[Φ] =
1
n

n−1∑
a=0

ω−saΠa
·Φ ·Π−a . (D.4)

Since Π · T(r)(z) ·Π−1 = ωr T(r)(z), where ω = exp(2iπ/n), it follows that

Π · L(r)
m ·Π

−1 = ωr L(r)
m . (D.5)

and therefore
L(r)

m Ps = Pr+sL
(r)
m (D.6)
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So the fieldΨ from (D.2) can be recast as

Ψ = L(r1)
m1
. . . L(rp)

mp · L̄
(r̄1)
m̄1
. . . L̄(r̄p̄)

m̄p̄
· P−r−r̄[ϕ j1 ⊗ · · · ⊗ ϕ jn] , (D.7)

where r = r1 + · · · + rp and r̄ = r1 + · · · + r̄p̄. We now have to distinguish two cases,
depending on whether ϕ j1 ⊗ · · · ⊗ ϕ jn is invariant or not.

Non-diagonal untwisted operators. When ϕ j1 ⊗ · · · ⊗ ϕ jn is not invariant un-
der cyclic permutations, states of the form (D.2) are said to be non-diagonal. In
particular, the most relevant field in that sector is

Φ[ j1... jn] ∝ P0(ϕ j1 ⊗ · · · ⊗ ϕ jn) . (D.8)

and therefore it is necessarily primary. We now prove that any operator in the
untwisted, non-diagonal sector is an (An ⊕ Ān)-descendant of some primary oper-
ator of the form Φ[ j1... jn].

Let’s start from a generic state of the form (D.7), that is

Ψ = L(r1)
m1
. . . L(rp)

mp · L̄
(r̄1)
m̄1
. . . L̄(r̄p̄)

m̄p̄
· P−r−r̄[ϕ j1 ⊗ · · · ⊗ ϕ jn] , (D.9)

where r = r1 + · · · + rp and r̄ = r1 + · · · + r̄p̄. now we simply observe that

L(r)
0 · Ps[ϕ j1 ⊗ · · · ⊗ ϕ jn] = L

(r)
0 · Ps[ϕ j1 ⊗ · · · ⊗ ϕ jn] = ĥ(r)

j1... jn
Ps+r[ϕ j1 ⊗ · · · ⊗ ϕ jn] ,

(D.10)

where

ĥ(r)
j1... jn
=

n∑
a=1

ωar h ja . (D.11)

The point is that in the non-diagonal sector there exists a, b such that h ja , h jb , and
therefore there exists an index q , 0 such that ĥ(q)

j1... jn
, 0. Hence, for any s we have

Ps[ϕ j1 ⊗ · · · ⊗ ϕ jn] ∝ L(q)
0 · Ps−q[ϕ j1 ⊗ · · · ⊗ ϕ jn] (D.12)

and therefore

P−r−r̄[ϕ j1 ⊗ · · · ⊗ ϕ jn] ∝
(
L(q)

0

)[[−rq−1]]
(
L

(q)
0

)[[−r̄q−1]]

P0(ϕ j1 ⊗ · · · ⊗ ϕ jn) (D.13)

Thus, we can writeΨ as An ⊕ Ān descendant of Φ[ j1... jn], namely :

Ψ ∝ L(r1)
m1
. . . L(rp)

mp

(
L(q)

0

)[[−rq−1]]︸                      ︷︷                      ︸
∈An

· L̄(r̄1)
m̄1
. . . L̄(r̄p̄)

m̄p̄

(
L

(q)
0

)[[−r̄q−1]]

︸                      ︷︷                      ︸
∈Ān

Φ[ j1... jn] (D.14)

It follows that any invariant operator in the untwisted, non-diagonal sector is an
(An ⊕ Ān)-descendant of some primary operator of the form Φ[ j1... jn].
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Diagonal untwisted operators. Let us first prove that the operators Φ(r)
j are An

primary. When r = 0, this follows from the fact that Φ(0)
j is a highest weight-state

of the full orbifold algebra. When r , 0 and j , 1, we consider

Ψ = L(s1)
m1
. . . L(sp)

mp · L
(r)
−1L̄(−r)

−1 ·Φ
(0)
j , with


m1 ≤ · · · ≤ mp ,

m = m1 + · · · +mp > 0 ,
s1 + · · · + sp = 0 mod n .

(D.15)

Furthermore m1, . . . ,mp ∈ Z because Φ(0)
j is untwisted. But since Φ(0)

j is a highest
weight-state of the full orbifold algebra,Ψ trivially vanishes unless mi+· · ·+mp ≤ 1
for all i. But since m1 ≤ · · · ≤ mp and m ≥ 1, the only case to be considered is
mp = 1 and m1 = · · · = mp−1 = 0. So all we need to prove is that

L(s1)
0 . . . L(sp−1)

0 · L(sp)
1 L(r)

−1L̄(−r)
−1 ·Φ

(0)
j = 0 . (D.16)

We first rewrite the r.h.s. using the orbifold Virasoro commutation rule[
L(r)

1 ,L
(s)
−1

]
= 2L(r+s)

0 (D.17)

yielding

L(s1)
0 . . . L(sp−1)

0 · L(sp)
1 L(r)

−1L̄(−r)
−1 ·Φ

(0)
j = 2L̄(−r)

−1 · L
(s1)
0 . . . L(sp−1)

0 · L(sp+r)
0 ·Φ(0)

j . (D.18)

Using L(s)
0 ·Φ

(0)
j = nh jδs0, we get

L(s1)
0 . . . L(sp−1)

0 · L(sp)
1 L(r)

−1L̄(−r)
−1 ·Φ

(0)
j = 2(nh j)p δs1,0 . . . δsp−1,0 · δsp+r,0L̄(−r)

−1 ·Φ
(0)
j = 0 (D.19)

since s1 + · · · + sn = 0 and r , 0. This shows that (D.15) must vanish, and hence
Φ(r)

j is primary under An. The case r , 0 and j = 1 can be treated similarly: the
condition on indices becomes m1 = · · · = mp−1 = 0 and mp = 2, and then the
relation L(s)

2 L(r)
−2 · 1 =

1
2ncδr+s,0 can be used.

Let’s now consider a generic state of the form (D.7) in the diagonal sector,
namely

Ψ = δr+r̄,0 L(r1)
m1
. . . L(rp)

mp · L̄
(r̄1)
m̄1
. . . L̄(r̄p̄)

m̄p̄
· (ϕ j ⊗ · · · ⊗ ϕ j) , with

m1 ≤ · · · ≤ mp ≤ −1 ,
m̄1 ≤ · · · ≤ m̄p̄ ≤ −1 .

(D.20)
where as above r = r1 + · · · + rp and r̄ = r1 + · · · + r̄p̄. If r = r̄ = 0, then Ψ is
immediately an (An ⊕ Ān)-descendant of Φ(0)

j . If r = −r̄ , 0 and j , 1, we use

L(−r)
1 L(r)

−1 · (ϕ j ⊗ · · · ⊗ ϕ j) = L̄(−r̄)
1 L̄(r̄)

−1 · (ϕ j ⊗ · · · ⊗ ϕ j) = 2nh j (ϕ j ⊗ · · · ⊗ ϕ j) , (D.21)

and rewriteΨ as

Ψ = (2nh j)−2

L(r1)
m1
. . . L(rp)

mp L(−r)
1︸            ︷︷            ︸

∈An

· L̄(r̄1)
m̄1
. . . L̄(r̄p̄)

m̄p̄
L̄(r)

1︸           ︷︷           ︸
∈Ān

 · L
(r)
−1L̄(−r)

−1 · (ϕ j ⊗ · · · ⊗ ϕ j) . (D.22)

In the case r = −r̄ , 0 and j = 1, we can proceed similarly and write

Ψ = (nc/2)−2
(
L(r1)

m1
. . . L(rp)

mp · L̄
(r̄1)
m̄1
. . . L̄(r̄p̄)

m̄p̄
· L(−r)

2 L̄(r)
2

)
· L(r)
−2L̄(−r)

−2 · 1 . (D.23)

This shows thatΨ is an (An ⊕ Ān)-descendant of Φ(r)
j or 1(r), respectively.
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Twist operators. Let us prove that the operator σ[k](r)
j is primary under An. For r =

0, this is straightforward, because, by construction, the composite twist operator
σ[k]

j is an OVirn primary operator of conformal dimension hσ j . For r , 0, if j , 1 or
kr , 1 mod n, we consider

L(s1)
m1
. . . L(sp)

mp · L
(r)
−[[kr]]/nL̄(−r)

−[[kr]]/n · σ
[k]
j , with


m1 ≤ · · · ≤ mp ,

m = m1 + · · · +mp > 0 ,
s1 + · · · + sp = 0 mod n .

(D.24)

If this quantity is non-zero, it is an L(0)
0 eigenvector of eigenvalue (hσ j + [[kr]]/n−m).

Because of the condition mi ∈ −ksi/n+Z, we have m ∈ Z, and hence m ≥ 1, so the
eigenvalue is strictly smaller than hσ j , which is not possible within the module of
σ[k]

j . For r = k−1 and j = 1, we consider

L(s1)
m1
. . . L(sp)

mp · L
(k−1)
−(n+1)/nL̄(−k−1)

−(n+1)/n · σ
[k]
1 , with


m1 ≤ · · · ≤ mp ,

m = m1 + · · · +mp > 0 ,
s1 + · · · + sp = 0 mod n .

(D.25)

If this quantity is non-zero, it is an L(0)
0 eigenvector of eigenvalue (hσ j−m+1+1/n).

Using a similar argument to the one in the previous case, we find that m is again
a strictly positive integer: this gives a non-admissible eigenvalue, due to the null-
vector relation L(k−1)

−1/n · σ
[k]
1 = 0. Hence, (D.24) and (D.25) must vanish, and thus

σ[k](r)
j and σ[k](r)

1 are primary under An. Similar proofs hold for Ān.

Let us consider a generic invariant descendant operator in the twisted sector

Ψ = P0

[
L(r1)

m1
. . . L(rp)

mp · L̄
(r̄1)
m̄1
. . . L̄(r̄p̄)

m̄p̄
· σ[k]

j

]
, (D.26)

where σ[k]
j is a composite twist operator associated to the primary operator ϕ j of

the mother CFT. By the commutation rules ofΠwith the orbifold Virasoro modes,
we have

Ψ = δr+r̄,0 · L
(r1)
m1
. . . L(rp)

mp · L̄
(r̄1)
m̄1
. . . L̄(r̄p̄)

m̄p̄
· σ[k]

j , (D.27)

where r = r1 + · · · + rp and r̄ = r̄1 + · · · + r̄p̄. If r = r̄ = 0, then Ψ is immediately an
(An ⊕ Ān)-descendant of σ[k](0)

j = σ[k]
j . For r = −r̄ , 0, if j , 1 or r , k−1, we use

L(−r)
[[kr]]/nL(r)

−[[kr]]/n · σ
[k]
j = L̄(r)

[[kr]]/nL̄(−r)
−[[kr]]/n · σ

[k]
j =

2[[kr]]hσ j

n
σ[k]

j , (D.28)

and rewriteΨ as

Ψ =

(
n

2[[kr]]hσ j

)2 (
L(r1)

m1
. . . L(rp)

mp · L̄
(r̄1)
m̄1
. . . L̄(r̄p̄)

m̄p̄
· L(−r)

[[kr]]/nL̄(r)
[[kr]]/n

)
·L(r)
−[[kr]]/nL̄(−r)

−[[kr]]/n·σ
[k]
j . (D.29)

Similarly, if j = 1 and r = k−1, we have

Ψ ∝
(
L(r1)

m1
. . . L(rp)

mp · L̄
(r̄1)
m̄1
. . . L̄(r̄p̄)

m̄p̄
· L(−k−1)

(n+1)/nL̄(k−1)
(n+1)/n

)
· L(k−1)
−(n+1)/nL̄(−k−1)

−(n+1)/n · σ
[k]
1 . (D.30)

This shows thatΨ is an (An ⊕ Ān)-descendant of σ[k](r)
j or σ[k](r)

1 , respectively.
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We turn to the two-point function of twist operators,

⟨σ[k](r)
i (z, z̄)σ[ℓ](s)

j (w, w̄)⟩ = ⟨σ[k](r)
i |σ[ℓ](s)

j ⟩ × |z − w|
−2h

σ
[k](r)
i
−2h

σ
[ℓ](s)
j . (D.31)

This vanishes if i , j, because the modules of ϕi and ϕ j are decoupled in the
mother CFT. This function also vanishes if k + ℓ , 0 mod n, by symmetry, under
the cyclic permutation of the copies. For i = j and k + ℓ = 0, the scalar product
⟨σ[k](r)

j |σ[−k](s)
j ⟩ is easily computed using the orbifold Virasoro commutation rules,

which gives
⟨σ[k](r)

j |σ[−k](s)
j ⟩ = δr+s,0 . (D.32)

D.2 Three-point functions

D.2.1 Three-point functions of twist operators

Let us first state a useful property of correlation functions, which actually derives
from the orbifold Ward identity (5.64).

Property. Let O1,O2,O3 be three operators of the orbifold CFT, with twist charges
k1, k2, k3, respectively, such that k1 = k2 + k3 mod n. For any r ∈ Zn and q1, q2, q3

such that qi ∈ −kir/n +Z, and q1 = q2 + q3 + 1, we have

∞∑
m=0

[
bm⟨(L

(r)
−q1+mO

†

1)O2O3⟩ − am⟨O
†

1(L(r)
q2+mO2)O3⟩ + eiπq2bm⟨O

†

1O2(L(r)
q3+mO3)⟩

]
= 0 ,

(D.33)

where the coefficients an, bn are given by

am =
(q3 + 1)q3 . . . (q3 −m + 2)

m!
, bm = (−1)m (q2 + 1)q2 . . . (q2 −m + 2)

m!
. (D.34)

note that, if q3 = −1 (resp. q2 = −1) then am = δm0 (resp. bm = δm0). For any value
of q1, q2, q3, the sum in (D.33) is finite, because, for any Oi, there exists an integer
m0 such that L±qi+m · Oi = 0 when m ≥ m0.
Proof. Consider the integral,∮

dz (z − 1)q2+1 zq3+1
⟨O
†

1(∞)T(r)(z)O2(1)O3(0)⟩ , (D.35)

where the contour encloses the points z = 0 and z = 1. Since the prefactor
(z − 1)q2+1 zq3+1 exactly compensates the monodromy of T(r)(z) around each of the
Oi’s, the integrand is single-valued, and hence the contour integral is closed.
Using the Cauchy theorem, we can split the latter into a contour enclosing only
z = 0, and a contour enclosing only z = 1. The Taylor expansions

(1 + u)q3+1 =

∞∑
m=0

amum , (1 − u)q2+1 =

∞∑
m=0

bmum , for |u| < 1 , (D.36)

allow us to write the integrand for each contour as a power series in z or (z − 1),
which in turn yields (D.33). ■
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The goal of this section is to describe a recursive algorithm for the computation
of OPE coefficients of the form

⟨σ†(−t)
k σ(r)

i (L(r1)
−m1

. . . L(rp)
−mp
·Φ(s)

j )⟩ , (D.37)

where p ≥ 1, and m1, . . . ,mp are integers, with m1 ≥ · · · ≥ mp ≥ 1, and r1+· · ·+rp = 0
mod n, in terms of the quantities

⟨σk σi (L(u1)
−1 . . . L

(uq)
−1 · L̄

(ū1)
−1 . . . L̄

(ūq̄)
−1 ·Φ j)⟩ , (D.38)

where u1 + · · · + uq = −(ū1 + · · · + ūq̄) = r + s − t mod n.

We start with the case r = s = t = 0, namely

⟨σ†kσi (L(r1)
−m1

. . . L(rp)
−mp
·Φ j)⟩ , (D.39)

Let us discuss the various cases, depending on the generator L(r1)
−m1

.

1. If m1 = 1, then we have m1 = · · · = mp = 1, and the correlator (D.39) is
already of the form (D.38).

2. If r1 = 0, then the action of L(0)
−m1

inside a correlation function is easily
expressed. Using the commutator between L(0)

−m1
and a primary operator,

we get
⟨Φ1Φ2(L(0)

−m1
· O3)⟩ = (m1h2 − h1 + h3)⟨Φ1Φ2O3⟩ , (D.40)

where Φ1,Φ2 are primary, and O3 is any scaling operator. Here, h1, h2, h3 are
the conformal dimensions of Φ1,Φ2,O3, respectively. Hence, we have

⟨σ†kσi (L(0)
−m1
· L(r2)
−m2

. . . L(rp)
−mp
·Φ j)⟩

= (m1hσi − hσk + hΦ j +m′) ⟨σ†kσi (L(r2)
−m2

. . . L(rp)
−mp
·Φ j)⟩ , (D.41)

where m′ = m2 + · · · + mp. Thus, the problem of computing (D.39) with the
insertion of a chain of p orbifold Virasoro generators, where the first one is
of the form L(0)

−m1
, has been reduced to the one with (p − 1) generators.

3. If m1 > 1 and r1 , 0, we shall use the linear relations (D.33) as follows.

First, we introduce a useful definition: for any operator O, and p ∈ N, let
Ap(O) be the space of descendants defined as

Ap(O) = span
[
L(u1)
−l1
. . . L(uq)

−lq
· O , q ≤ p , l1 ≥ · · · ≥ lq ≥ 1}

]
. (D.42)

For instance, the operator L(r1)
−m1

. . . L(rp)
−mp
·Φ j in (D.39) belongs to Ap(Φ j).

By convention, we take 1 ≤ r ≤ n − 1. For any integer m′1 ∈ {2, 3, . . . ,m1}, if
we set q1 = 2 − r1/n − m′1, q2 = 1 − r1/n, q3 = −m′1 in (D.33), we get a linear
relation of the form

m′1+(m2+···+mp)∑
l=0

bl ⟨σ
†

kσi (L(r1)
−m′1+l · L

(r2)
−m2

. . . L(rp)
−mp
·Φ j)⟩ = 0 . (D.43)
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We rewrite this as
m′1∑
l=2

bm′1−n ⟨σ
†

kσi (L(r1)
−l · L

(r2)
−m2

. . . L(rp)
−mp
·Φ j)⟩ = Bm′1

, (D.44)

where the right-hand side

Bm′1
= −

m2+···+mp∑
l=−1

bm′1+l ⟨σ
†

kσi (L(r1)
n · L

(r2)
−m2

. . . L(rp)
−mp
·Φk)⟩ , (D.45)

can be treated with the OVirn commutation relations, to give a linear com-
bination of the form

Bm′1
∈ −bm′1−1⟨σ

†

kσi (L(r2)
−m2

. . . L(rp)
−mp
· L(r1)
−1 ·Φ j)⟩ + ⟨σ†kσi Ap−1(Φ j)⟩ . (D.46)

The relations (D.44) for m′1 = 2, . . . ,m1 form an invertible triangular (m1−1)×
(m1 − 1) linear system for the coefficients ⟨σ†kσi (L(r1)

−l · L
(r2)
−m2

. . . L(rp)
−mp
· Φ j)⟩ with

l = 2, . . . ,m1. By solving this system, on gets (D.39) in terms of the Bm′1
’s.

Thus, we have reduced the computation of (D.39) to that of OPE coefficients
of the form

⟨σ†kσi (L(u1)
−l1
. . . L(uq)

−lq
·Φ j)⟩ and ⟨σ†kσi (L(u1)

−l1
. . . L(uq)

−lq
· L(r1)
−1 ·Φ j)⟩ , (D.47)

with 0 ≤ q ≤ p − 1.

Hence, in the three cases, the above steps define an algorithm to compute
(D.39) in terms of (D.38), by recursion on p.

We now turn to OPE coefficients of the form

⟨σ†(−t)
k σ(r)

i Φ
(s)
j ⟩ , (D.48)

with generic values of the Fourier indices r, s, t ∈ Zn. By convention, we take
0 ≤ r, s, t ≤ n− 1, and we introduce the notations (r̄, s̄, t̄) = (n− r,n− s,n− t). Recall
the definitions

σ(r)
i := const × L(r)

−r/nL̄(r̄)
−r/n · σi ,

Φ(s)
j := const × L(s)

−1L̄(s̄)
−1 ·Φ j ,

σ†(−t)
k := const × L(t̄)

−t/nL̄(t)
−t/n · σ

†

k ,

(D.49)

for non-zero r, s, t. Here, we have assumed that ϕi, ϕ j, ϕk is different from 1, but
the argument is easily adapted otherwise.

Using the Ward identity (D.33) with q1 = q2 = t/n, q3 = −1, for the insertion of
T(t̄)(z) in the function ⟨(L̄(t)

−t/nσ
†

k) σ(r)
i Φ

(s)
j ⟩, we get

const × ⟨σ†(−t)
k σ(r)

i Φ
(s)
j ⟩

= ⟨(L̄(t)
−t/nσ

†

k)(L(t̄)
t/nσ

(r)
i )Φ(s)

j ⟩ − eiπr̄/n
2∑

l=0

bl⟨(L̄
(t)
−t/nσ

†

k)σ(r)
i (L(t̄)

l−1Φ
(s)
j )⟩ . (D.50)

If t > r, then L(t̄)
t/nσ

(r)
i = 0, and the first term on the right-hand side vanishes. If

t ≤ r, using the commutation relations, we write this first term as

const ×
t + r

n
⟨(L̄(t)
−t/nσ

†

k)(L(r−t)
(t−r)/nL̄(−r)

−r/nσi )Φ(s)
j ⟩ , (D.51)
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and then we use again the identity (D.33) with q1 = q2 = (t − r)/n, q3 = −1 for the
insertion of T(r−t)(z) in ⟨(L̄(t)

−t/nσ
†

k)(L̄(−r)
−r/nσi )Φ(s)

j ⟩, which yields

⟨(L̄(t)
−t/nσ

†

k)(L(r−t)
(t−r)/nL̄(−r)

−r/nσi )Φ(s)
j ⟩ = δrthσk⟨(L̄

(t)
−t/nσ

†

k)(L̄(−r)
−r/nσi )Φ(s)

j ⟩

− eiπ(t−r)/n
2∑

l=0

b′n⟨(L̄
(t)
−t/nσ

†

k)(L̄(−r)
−r/nσi )(L(r−t)

l−1 Φ
(s)
j )⟩ . (D.52)

For the second term in (D.50), if r , 0, we have

⟨(L̄(t)
−t/nσ

†

k)σ(r)
i (L(t̄)

l−1Φ
(s)
j )⟩ = const × ⟨(L̄(t)

−t/nσ
†

k)(L(r)
−r/nL̄(r̄)

−r/nσi)(L
(t̄)
l−1Φ

(s)
j )⟩ , (D.53)

which, upon applying (D.33), yields

const ×
2−n∑
p=0

b′′p ⟨(L̄
(t)
−t/nσ

†

k)(L̄(r̄)
−r/nσi )(L(r)

p−1L(t̄)
l−1Φ

(s)
j )⟩ . (D.54)

Hence, we have shown how to express (D.48) in the form

⟨σ†(−t)
k σ(r)

i Φ
(s)
j ⟩ = ⟨(L̄

(t)
−t/nσ

†

k)(L̄(r̄)
−r/nσi )(λ ·Φ j)⟩ , (D.55)

where λ is a linear combination of generators of the form L(r1)
−m1

. . . L(rp)
−mp

with r1 +
· · ·+ rp = r+ s− t mod n. In other words, we have “pushed” the orbifold Virasoro
generators entering the definition of σ†(−t)

k and σ(r)
i , to translate them into an action

of OVirn onΦ(s)
j . Proceeding similarly with the OVirn modes, we express (D.48) as

⟨σ†(−t)
k σ(r)

i Φ
(s)
j ⟩ = ⟨σ

†

k σi (λ · λ̄ ·Φ j)⟩ , (D.56)

where λ is the same as above, and λ̄ is obtained from µ by the change L(r j)
−m j
→ L̄(−r j)

−m j
.

We can then use the algorithm described above in the case r = s = t = 0, to express
⟨σ†(−t)

k σ(r)
i Φ

(s)
j ⟩ in terms of (D.38). Finally, extending this line of argument for

⟨σ†(−t)
k σ(r)

i Φ
(s)
j ⟩ to the general case of (D.39) is straightforward.

D.2.2 Calculation of a three-point function in the Z3 orbifold of
the Yang-Lee CFT

A useful technique, which is often employed in the literature [46, 87, 109] is to
unfold the three-point function to a mother CFT correlator defined on C. Let us
consider, as a simple example, the three-point function:

C
[1,ϕ,ϕ]
σ
ϕ
,σ†
ϕ

= ⟨σϕ · [1, ϕ, ϕ] · σ†ϕ⟩ , (D.57)

in theZ3 orbifold. This can be expressed as a correlator on the replicated Riemann
surface Σ3 (with Σ3 conformally equivalent to the Riemann sphere C):

C
[1,ϕ,ϕ]
σ
ϕ
,σ†
ϕ

=
√

3 ⟨ϕ(∞,∞)ϕ(1, 1)ϕ(e2πi, e2πi)ϕ(0, 0)⟩Σ3 , (D.58)

which we map to C, through z 7→ w = z1/3, to find:

C
[1,ϕ,ϕ]
σ
ϕ
,σ†
ϕ

=

√
3

34hϕ
⟨ϕ(∞,∞)ϕ(1, 1)ϕ(e2πi/3, e−2πi/3)ϕ(0, 0)⟩C . (D.59)
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now, we use the result of [220] to express the four-point function ⟨ϕ|ϕ(1, 1)ϕ(w, w̄)|ϕ⟩
in terms of hypergeometric functions:

⟨ϕ|ϕ(1, 1)ϕ(w, w̄)|ϕ⟩

= |w|4/5|1 − w|4/5
[∣∣∣∣∣2F1

( 3
5
,

4
5
,

6
5

∣∣∣∣∣ w)∣∣∣∣∣2 + (Cϕ
ϕϕ)2

∣∣∣∣∣w−1/5
2F1

( 3
5
,

2
5
,

4
5

∣∣∣∣∣ w)∣∣∣∣∣2] , (D.60)

with the Yang-Lee CFT structure constant given by:

Cϕ
ϕϕ =

i
√

1
2 (3
√

5 − 5)Γ
(

1
5

)3

10πΓ
(

3
5

) . (D.61)

Thus, we find:
C

[1,ϕ,ϕ]
σ
ϕ
,σ†
ϕ

= −11.054494 , 0 . (D.62)

D.3 Proofs for modular matrices

D.3.1 The modular matrices Pn

Let us prove some useful properties of the matrices Pn’s defined in (5.118–5.119):

Pm+n = Pm , (D.63)
Pm · P−m−1 = 1 , (D.64)
Pt

m = Pm−1 , (D.65)

Pm = P−m , (D.66)

P†m Pm = 1 , (D.67)

T1/nPm T1/nP1−m−1 T1/n = Pm−1 , for n , 1 mod n . (D.68)

The notations P−m−1 ,Pm−1 ,P1−m−1 , where m−1 is the inverse of m in Z×n , are justified
by the property (D.63), which means that Pm is actually defined for m ∈ Z×n .

• To prove (D.63), we remark that the integer [[−m−1]] is unchanged under
m→ m + n, so we have

Pm+n = T−m/n−1
·Qm+n · T[[−m−1]]/n . (D.69)

On the other hand, from (5.119) we have qm+n(τ) = qm(τ) + 1, and hence
Qm+n = T ·Qn. As a result, we get Pm+n = Pm.

• For (D.64), we use the identity qm[q[[−m−1]](τ)] = τ, which yields, for 0 < m < n:

Pm · P−m−1 = T−m/n
·Qm ·Q[[−m−1]] · Tm/n = 1 . (D.70)

• To study the transpose Pt
m and the conjugate Pm, we use the following

properties of the modular group. Since S2 = 1, any element of the group can
be written in the form

Tp1 · S · Tp2 . . . S · Tpk , (D.71)
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where p1, . . . , pk ∈ Z. Let t(τ) = τ + 1 and s(τ) = −1/τ. Let us show, by
induction on k, that the following three equations are equivalent:

(tp1 ◦ s ◦ tp2 . . . s ◦ tpk)(τ) =
aτ + b
cτ + d

, (D.72)

(tpk ◦ s ◦ tpk−1 . . . s ◦ tp1)(τ) =
dτ + b
cτ + a

, (D.73)

(t−p1 ◦ s ◦ t−p2 . . . s ◦ t−pk)(τ) =
−aτ + b
cτ − d

. (D.74)

The proof goes as follows. For k = 2, we have

tp
◦ s ◦ tq =

pτ + (pq − 1)
τ + q

, (D.75)

and hence the equivalence is straightforward. now suppose that the above
equivalence holds for some k ≥ 2. We can write

(tp1 ◦ s ◦ . . . s ◦ tpk+1)(τ) =
a(s ◦ tpk+1)(τ) + b
c(s ◦ tpk+1)(τ) + d

=
bτ + (bpk+1 − a)
dτ + (dpk+1 − c)

, (D.76)

(tpk+1 ◦ s . . . s ◦ tp1)(τ) = (tpk+1 ◦ s)
(

dτ + b
cτ + a

)
=

(dpk+1 − c)τ + (bpk+1 − a)
dτ + b

, (D.77)

(t−p1 ◦ s ◦ t−p2 . . . s ◦ t−pk+1)(τ) =
−a(s ◦ t−pk+1)(τ) + b
c(s ◦ t−pk+1)(τ) − d

=
−bτ + (bpk+1 − a)
dτ − (dpk+1 − c)

,

(D.78)

and thus the equivalence holds also for k + 1. An important consequence is
that, if the matrix for (D.72) is M, then the matrices for (D.73) and (D.74) are
given by Mt and M respectively.

We apply the equivalence to the matrices Qn. Let us take 0 < m < n for
convenience, and denote am = [[−m−1]] and bm = (m[[−m−1]] + 1)/n, so that

nbm −mam = 1 , qm(τ) =
mτ − bm

nτ − am
. (D.79)

Changing m 7→ −am gives (am, bm) 7→ (n−m, bm− am), whereas m 7→ −m gives
(am, bm) 7→ (n − am, bm −m). Hence, we have

q−am(τ) =
−am(τ − 1) − bm

n(τ − 1) +m
, q−m(τ) =

−m(τ − 1) − bm

n(τ − 1) + am
, (D.80)

which yields Q−am = Qt
m · T−1 and Q−m = Qm · T−1, and finally

P−am = Tam/n ·Qt
mT−m/n = Pt

m , P−m = Tm/n
·QmT−am/n = Pm . (D.81)

• The combination of (D.64–D.66) yields the unitarity of Pm (D.67).

• For m , 1 mod n, we define am = [[−m−1]] and a′m = [[−(1 + am)−1]]. There
exist two integers bm, b′m such that

nbm −mam = 1 , nb′m − (1 + am)a′m = 1 . (D.82)
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A simple calculation gives

qm[q1+am(τ)] =
(m − 1)τ − b′′m

nτ − a′′m
, (D.83)

where a′′m = nb′m − ama′m and b′′m = mb′m − bma′m, and hence nb′′m − (m − 1)a′′m = 1.
Hence, if 0 < a′′m < n we have QmQ1+am = Qm−1 (otherwise we can always
shift a′′m by a multiple of n). This yields the identity (D.68).

For m = 1, we have [[−1]] = n − 1, and

q1(τ) =
τ − 1

n(τ − 1) + 1
= (s ◦ t−n

◦ s ◦ t−1)(τ) , (D.84)

which yields
P1 = T−1/nST−nST−1/n , P−1 = T1/nSTnST1/n . (D.85)

A recursion relation for the matrices Pm

In this section, we shall reproduce and prove a recursion relation for the Pm

matrices found in [253], which provides their decomposition into S and T matrices
after a relatively small number of recursive steps.

The key idea is to relate Pm matrices defined at different n. We will first make
the dependence on n of the Pm and Qm matrices explicit through the notation:

Pm → Pm|n Qm → Qm|n (D.86)

We now consider the product of matrices

Tn/mSTm/nPm|nT1/(mn) (D.87)

We substitute in the above the definition of (5.118) in the above to find:

Tn/mS Tm/nPm|nT1/(mn) = Tn/mS Qm|nTbm/m (D.88)

now the S matrix is given by:

S =
(

0 1
−1 0

)
(D.89)

while the Qm|n matrix is given by:

Qm|n =

(
m −bm

n −am

)
(D.90)

with nbm−mam = 1. Acting from the left on the above with the S matrix, one finds:

S Qm|n =

(
n −am

−m bm

)
= Qn|−m (D.91)

since nbm − mam = 1 is equivalent to (−m)am − bmn = 1. next, we have by the
definition in (5.118) that:

Pn|−m = Tn/mQm|nTam/m (D.92)

so that we have effectively established a recursive relation:

Pm|n = T−m/nST−n/mPn|−mT−1/(mn) (D.93)

for which the recursion ends with a term P0|n = P0|1 ≡ S.
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Example for n = 5

Suppose we want to calculate the P2|5 matrix. We use the recursion relation to
find:

P2|5 = T−2/5ST−5/2P5|−2T−1/10 (D.94)

noting that P5|−2 = P1|−2, and using once more the recursion relation, we find:

P1|−2 = T1/2ST2P−2|1T1/2 (D.95)

But P−2|1 = P0|1 = S, so, one can put everything together to find:

P2|5 = T−2/5ST−2ST2ST2/5 (D.96)

D.3.2 The orbifold modular S-matrix

In this section, we will show that the solution for the orbifold S-matrix we have
found satisfies the properties (5.121)-(5.124). In our calculations, the S and T
matrices (and any products made with them), are evaluated “block-by-block”, in
the sense that for each proof we provide here, the external indices are restricted
to correspond to only one type of operator – non-diagonal (ND), diagonal(D),
twisted (T). For example, checking unitarity in the D-D block means proving that:

(SS†)i(r), j(s) = δi(r), j(s) , (D.97)

for generic diagonal operator labels i(r), j(s).
We will only present in this section some of the more technical demonstrations

since the rest can be quickly reproduced by the interested reader through similar
or simpler arguments.

Symmetry of S

As a warm-up, let’s prove the symmetry of the S matrix. The check is straight-
forward everywhere but in the TT block, where we need to employ the property
(D.65) to find:

S
t
i[k](r), j[ℓ](s) =

ω−ks−ℓr (Pk.ℓ−1) ji

n
=
ω−ks−ℓr (Pℓ.k−1)i j

n
= Si[k](r), j[ℓ](s) . (D.98)

Unitarity of S

We present in this section the more involved proofs for the unitarity of S in the
DD and TT blocks.

In the DD block. We want to check the property:∑
α

Si(r),αS
∗

i′(r′),α = δ(i,r),(i′,r′) , (D.99)

where the sum in α runs over all the invariant primary operators in the orbifold.
We first consider the sum over ND operators :∑

J=[ j1,..., jn]

S(i,r),JS
∗

J,(i′,r′) , (D.100)
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which, using the known form of the S-matrix elements in this sector, is:∑
J

Si, j1 . . . Si, jn · Si′, j1 . . . Si′, jn , (D.101)

where the sum is over equivalence classes J of the n-tuples ( j1, · · · , jn) under
Zn, with the exception of n-tuples for which the indices are equal. This can be
expressed as: ∑

J=[ j1,..., jn]

=
1
n

 ∑
( j1,··· , jn)

−

∑
( j,··· , j)

 , (D.102)

where the first sum on the RHS is over all n-tuples ( j1, . . . jn). This means each ji

runs over the whole mother CFT spectrum so that the sum over the ND indices
can be conveniently expressed as:∑

J

Si(r),JS
∗

J,i′(r′) =
δi,i′

n
−

∑
( j,r) Sn

i, jS
n
i′, j

n2 (D.103)

On the other hand, the sum over D operators is given by:∑
j,s

Si(r), j(s)S
∗

j(s),i′(r′) =

∑
j,r Sn

ijS
n
i′ j

n2 (D.104)

so that we are just left with checking that the sum over T operators satisfies∑
j,s,k

Si(r), j[k](s)S
∗

j[k](s),i′(r′) =
nδr,r′ − 1

n
δi,i′ (D.105)

which is indeed the case.

In the TT block. We want to prove in this section that:∑
α

Si[k](r),αS
∗

α,i′[k′](r′) = δi,i′δr,r′δk,k′ (D.106)

where α runs once again over all invariant primary operators of the orbifold.
To start, the sum over non-diagonal entries vanishes, since theS-matrix entries

indexed by a twisted operator and a non-diagonal operator vanish. On the other
hand, the sum over diagonal field entries is easily calculated to be:∑

( j,s)

Si[k](r),( j,s)S
∗

( j,s),i′[k′](r′) =
1
n2

∑
( j,s)

ws(k−k′)Si jS ji′ =
δi,i′δk,k′

n
(D.107)

Finally, we now consider the sum over T entries:∑
j[t](s)

Si[k](r), j[t](s)S
∗

j[t](s),i′[k′](r′) (D.108)

We substitute our results and find:∑
j,s,t

Si[k](r), j[t]s S
∗

i′[k′](r′), j[t](s) =
1
n2

∑
j,s,t

ω−s(k−k′)−t(r−r′)(Ptk−1)i j(P†tk′−1) ji′ . (D.109)
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We now sum over s, to obtain a factor δk−1,k′−1 = δk,k′ . Then, we perform the sum
over j, and use the unitarity of the Pn matrices (D.67) to arrive at:∑

j,s,t

Si[k](r), j[t]s S
∗

i′[k′](r′), j[t](s) =
1
n

∑
t

ω−t(r−r′)δi,i′δk,k′ (D.110)

Finally, we sum over t and find:∑
j,s,t

Si[k](r), j[t]s S
∗

i′[k′](r′), j[t](s) = δi,i′δk,k′δr,r′ −
1
n
δi,i′δk,k′ , (D.111)

which, added to (D.107) gives the sought after result.

The relation (ST )3 = C

The constraint (5.124) on the modular data of the CFT is equivalent to:

STS = T †ST † (D.112)

As in the previous section, we will show that the relation above holds in the DD
and TT blocks.

In the DD block. We want to check the constraint:∑
α

Si(r),αTαSα,i′(r′) = T
†

i(r)Si(r),i′(r′)T
†

i′(r′) (D.113)

where the sum α runs over all the invariant primary operator labels.
Substituting our expressions for the S and T matrices, we find that the sum

over entries labelled by untwisted operators gives:∑
untwisted α

Si(r),αTαSα,i′(r′) =
1
n

(STS)n
ii′ (D.114)

while the sum over twisted operators vanishes. The RHS of (D.113) can also be
conveniently written as:

T
†

i(r)Si(r),i′(r′)T
†

i′(r′) =
1
n

(TST)n
i,i′ (D.115)

Since in the mother CFT the modular matrices are constrained by

STS = T†ST† (D.116)

we find that the relation (5.124) is indeed satisfied in this block.

In the TT block. We want to check the constraint:∑
α∈{D,T}

Si[k](r),αTαSα,i′[k′](r′) = T
†

i[k](r)Si[k](r),i′[k′](r′)T
†

i′[k′](r′) (D.117)

where we only need to consider the sum α running over the diagonal and twisted
primary labels, since Si[k](r),[ j1... jn] = 0. The sum over diagonal operator labels on
the LHS is swiftly calculated to be:∑

j,s

Si[k](r), j(s)T j(s)S j(s),i′[k′](r′) =
1
n

(STnS)ii′ δk+k′,0 (D.118)
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and we use (D.85) to rewrite the above as:∑
j,s

Si[k](r), j(s)T j(s)S j(s),i′[k′](r′) =
1
n

(
T−1/nP−1T−1/n

)
ii′
δk+k′,0 (D.119)

next, we want to evaluate the sum over twisted operator labels:∑
j,s,t

Si[k](r), j[t](s)T j[t](s)S j[t](s),i′[k′](r′) =
1
n2

∑
s,t

ω−t(r+r′)−s(k+k′−t)(Ptk−1T1/nPk′t−1)ii′ (D.120)

We sum over s, to obtain a δk+k′,t factor in the sum. If k + k′ = 0, the expression
vanishes since t runs from 1 to n − 1. So, we obtain:∑

j,s,t

Si[k](r), j[t](s)T j[t](s)S j[t](s),i′[k′](r′) =
(1 − δk+k′,0)

n
ω−(k+k′)(r+r′)(P(k+k′)k−1T1/nP1−k(k+k′)−1)ii′

(D.121)
Using the relation (D.68), the sum over twist fields becomes:∑

j,s,t

Si[k](r), j[t](s)T j[t](s)S j[t](s),i′[k′](r′) =
(1 − δk+k′,0)

n
ω−(k+k′)(r+r′)(T−1/nPk′k−1T−1/n)ii′ (D.122)

so that the LHS of (D.117) is just:∑
α∈{D,T}

Si[k](r),αTαSα,i′[k′](r′) =
1
n
ω−(k+k′)(r+r′)(T−1/nPk′k−1T−1/n)ii′ (D.123)

Substitution of our expressions for the modular data on the RHS of (D.117) com-
pletes the proof.
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[234] S. Datta and J. R. David, “Rényi entropies of free bosons on the torus and holography”,
JHEP 1404, 081 (2014), arxiv:1311.1218.

[235] B. Chen and J.-q. Wu, “Universal relation between thermal entropy and entanglement
entropy in conformal field theories”, Phys. Rev. D 91, 086012 (2015),
arxiv:1412.0761.
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