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-Introduction

On a sunny late summer afternoon, we are peacefully strolling in the forest, under the shade of the oaks and the soothing chant of the cuckoo. All of a sudden you hear a branch breaking under the weight of an animal afar. On the look-out, you are expecting to see a wild beast appear soon after. Since the branch broke in a loud bang, you are expecting a large forest animal. Your eyes would have scanned the horizon closer to the ground if the sound had been subtle. To be safe, you look around for potential shelters and take out your phone to capture the imminent encounter.

Let's assume now that the animal had appeared out of nowhere. Panic-stricken as you are, you rush to the top of a tree. However, it was jut a harmless hare. In another context, maybe, you may be a fine expert of the area and are convinced that the animal is irrelevant. This is the story of how you missed a once-in-alifetime opportunity to see a large deer up-close. Or maybe you take your time to evaluate your options. Should I stay or should I go?, you ask yourself, and as The Clash song is stuck in your head, you identify a wild boar rushing towards you while you remain helpless. The clash is imminent and you will not be able to escape it.

From this intense walk in the forest we learn the following lessons: one must always be watchful when treading off the beaten track, and, more importantly, our expectation can have a crucial impact on our decisions. These expectations related to decision-making, that we will call anticipation in the rest of this manuscript, are the object of this doctoral project.

Decision-making describes all types of decisions, from the simple case described above, i.e. stay or go given environmental cues, to more complex ones, such as choosing between work opportunities. The simplest form of decisions, which we call perceptual decisions, consists in the choice made subsequent to an external stimulus. Examples of it range from judging the color of a light or the pitch of a tone to deciding to hit the brake or continue driving upon seeing a traffic light. Therefore, perceptual decisions encompass a wide range of daily decisions that seem natural or even reactive. However, they have been at the core of neuroscience studies because even this simple form of behavior presents interesting complexity.

First, it appeared that perceptual decisions are different from reflexes, both because they involve the recollection of memories for object identification and action attribution (Ratcliff, 1978) and because they present variability in their triggered responses, unlike reflexes which are stereotypical (Poulton, 1950;[START_REF] Summerfield | Expectation in perceptual decision making: neural and computational mechanisms[END_REF].

Second, and related, even if straightforward from a naive perspective, perceptual decision-making recruits a variety of brain functions, including sensory and motor processing, memory systems, integrative systems, decision-making areas, valence judgement [START_REF] Warren | The impact of choice discriminability and outcome valence on visual decision making under risk[END_REF], feedback assessment of performance (Abrahamyan et al., 2016), and learning [START_REF] Thakur | Implicit and explicit learning of Bayesian priors differently impacts bias during perceptual decision-making[END_REF]. Because of this diversity, their usefulness for neuroscience research remains intact. The studies presented in this thesis are restricted to perceptual decision-making, unless specified otherwise. As we will see, most studies have focused on two-alternative forced-choice paradigms, where participants have to choose one of two options at each stimulus presentation, given the complexity of the subsequent analyses. We will similarly do so in the present work.

Perceptual decision-making is not bound to the stimulus only. A manifestation of that is the variability in the responses of a same subject to the same stimulus. For example, typical psychometric experiments involve the presentation of stimuli at the perceptual threshold, an individual threshold at which participants would report the stimulus with a 50% probability. Variability is also present in response times, as in speeded experiments participants report stimulus with a response time distribution resembling an exponentially-modified Gaussian distribution. An important factor of variability is perceptual anticipation, which is the individual expectation that a specific stimulus is bound to occurr. It has been observed for a century that correctly anticipating a stimulus would at the same time reduce the response time and increase the accuracy of the response (Poulton, 1950).

Anticipation can have several sources: an evaluation of the probability of an event happening (expectation, [START_REF] Summerfield | Expectation in perceptual decision making: neural and computational mechanisms[END_REF]), the influence of past stimuli and decisions (sequential effects, Abrahamyan et al. (2016) and [START_REF] Urai | Choice history biases subsequent evidence accumulation[END_REF]), or cueing of the upcoming stimulus [START_REF] Rohenkohl | Temporal Expectation Improves the Quality of Sensory Information[END_REF][START_REF] Petro | Pre-target alpha power predicts the speed of cued target discrimination[END_REF]. In this work, these different sources are merged and will be referred to as anticipation without distinction.

Anticipation is a covert process for the main part (Koch and Preuschoff, 2007), in the sense that participants are unaware of the expectations that they are building and would not be able to report what they have anticipated without forming a decision (Trevena and Miller, 2002). This is a major challenge for studying anticipation, and remains one although behavioral proxies are standardly used, such as response times and changes of mind, and experimental tricks, such as cue presentation or the modification of stimulus probability.

Behavioral models of decision-making have tried to explain the responses and response times to a given stimulus in terms of brain mechanisms. Among them, the Evidence-Accumulation Models stipulate that the brain accumulates evidence from external stimulation until it has enough evidence to judge in favor of one option. Evidence accumulation is the most popular framework for studying decision-making because of its simple mechanistic explanation of decision formation (Evans and Wagenmakers, 2020).

Among them, a specific model, called the Decision-Diffusion Model (DDM, also called the Drift-Diffusion Model), has established itself as a reference (Ratcliff, 1978;Ratcliff and Tuerlinckx, 2002;Ratcliff and McKoon, 2008). This model applies specifically to two-alternative forced-choice perceptual decision tasks. It proposes that evidence is integrated linearly until a decision boundary, at which time a decision is made. The response is further delayed by a non-decision time, corresponding to a biological delay due to sensory encoding and motor preparation. The DDM has received a lot of interest because of its simple formalism, its ability to accurately describe empirical behavioral observations (both in terms of response times and response accuracy), and the similarity of the mechanism it describes to neuronal recordings [START_REF] Roitman | Response of Neurons in the Lateral Intraparietal Area during a Combined Visual Discrimination Reaction Time Task[END_REF]Gold and Shadlen, 2001;[START_REF] Gold | The neural basis of decision making[END_REF].

While later versions of this model include inter-trial variability of certain parameters to explain how the accumulation process changes on a trial-to-trial basis other than because of random within-trial noise (Ratcliff and McKoon, 2008), the origin of their variance has received conflicted evidence. In the context of anticipation, it has been proposed that the starting point of the accumulation process could be shifted towards the boundary representing the preferred decision (Bode et al., 2012;Grosjean, Rosenbaum, and Elsinger, 2001;[START_REF] Hanks | Elapsed Decision Time Affects the Weighting of Prior Probability in a Perceptual Decision Task[END_REF]. However, other accounts have suggested instead that the sensory gain, that is, the accumulation rate, is modified so that evidence in favor of the preferred decision is accumulated faster (Lou et al., 2014;[START_REF] Urai | Choice history biases subsequent evidence accumulation[END_REF]. Likewise, neuronal recordings suggest that anticipation is accompanied by a pre-activation of the populations encoding sensory evidence [START_REF] Schlack | Remembering Visual Motion: Neural Correlates of Associative Plasticity and Motion Recall in Cortical Area MT[END_REF][START_REF] Puri | Category expectation modulates baseline and stimulus-evoked activity in human inferotemporal cortex[END_REF], and also a faster activation of neurons responsible for sensory integration (Lange et al., 2013). Some other models, such as the Leaky-Competing Accumulator (Usher and McClelland, 2001) or the Predictive Coding framework (Rao and Ballard, 1999), have also suggested that prior expectations could be seen as a pre-activation of neurons encoding for the preferred option in such a way that accumulation of evidence in favor of that option is also made faster. Translated to the DDM framework, this would mean that the starting point and the accumulation rate are in fact intertwined, which is not explicitly the case in the DDM formalism (Ratcliff and Tuerlinckx, 2002) and can only emerge when non-linear dynamics are at play.

The neuronal correlates of decision-making have been extensively studied in animal models, and in particular in rhesus monkeys [START_REF] Roitman | Response of Neurons in the Lateral Intraparietal Area during a Combined Visual Discrimination Reaction Time Task[END_REF][START_REF] Britten | Responses of neurons in macaque MT to stochastic motion signals[END_REF][START_REF] Kim | Neural correlates of a decision in the dorsolateral prefrontal cortex of the macaque[END_REF]. In humans, intracranial recordings are restricted to implanted patients, and therefore most studies use non-invasive recordings such as functional Magnetic Resonance Imaging (fMRI) or electroencephalography (EEG). fMRI presents the advantage of allowing imaging deep brain structures. However, since it measures metabolic brain activity, it is an indirect measure of brain activity and has low temporal resolution, of the order of the second. On the contrary, EEG has a millisecond temporal resolution, but only records superficial brain signals. Moreover, because of diffusion from the brain through the meninges, the skull, the scalp and the hair, to the electrodes, spatial resolution is poorer than with fMRI. Nevertheless, many neuroimaging studies, which we review in Chapter 3, have underlined the mechanisms of decision-making in humans.

Studying anticipation in humans presents further challenges. As mentioned earlier, it is a covert behavior, and consequently it is difficult to pinpoint it in time. Etymologically, "anticipate" comes from the Latin "anticipare", which is composed of the words "ante", meaning before, and "capere", meaning "to take". To anticipate is therefore to forecast. But how far ahead can one predict? In theory, studying the expectation of a specific event in time would require looking at all the activity of the brain up to that event, which is of course not feasible in practice. This is the reason why temporal cues are commonly used (see [START_REF] Petro | Pre-target alpha power predicts the speed of cued target discrimination[END_REF] for example). EEG becomes a privileged neuro-recording method in that context because of the short delay between the cue and the stimulus. The study we present in Chapter 5, which was developed thanks to the exploratory analysis lead on another dataset whose results are presented in Chapter 4,uses EEG. Several past studies, also reviewed in Chapter 3, have studied pre-stimulus brain activity and have successfully demonstrated that the behavior relates to the prestimulus activity, further discarding perceptual decision-making as a reflex mechanism. However, these studies have considered either endogenous pre-stimulus activity [START_REF] Wyart | Rhythmic Fluctuations in Evidence Accumulation during Decision Making in the Human Brain[END_REF], or considered that pre-stimulus fluctuations were related to general rather than stimulus-specific mechanisms [START_REF] Iemi | Spontaneous neural oscillations bias perception by modulating baseline excitability[END_REF]Samaha, Iemi, and Postle, 2017). In this context, it is unclear why anticipation should reduce response times to correctly-anticipated stimuli and increase these to incorrectly-anticipated stimuli. We sought here to identify specific patterns of anticipation, depending on whether a visual or an auditory stimulus has been expected.

Another challenge that this thesis addresses is that of single-trial analysis. Since trial-to-trial fluctuations of behavioral responses are observed, anticipation should also have an effect on a single-trial basis and identifying specific patterns at the single-trial level is therefore necessary. While some works have tried to classify anticipatory brain activity depending on the type of stimulus anticipated (Garipelli, Chavarriaga, and Millán, 2011;Chavarriaga et al., 2012;Khaliliardali et al., 2015), these have involved either different motor output requirements or value judgement, which can impact behavior and brain activity beyond perceptual anticipation. Whether perceptual anticipation creates stimulus-specific patterns identifiable at the single-trial level remains an open question.

In this doctoral project, we aimed at studying the neuronal correlates of an-ticipation and its stimulus specificity, and at building a model of decision-making that would allow for more flexibility in accounting for peri-stimulus effects, including anticipation. Chapter 3 reviews the existing literature of decision-making and anticipation and poses the central questions of this thesis, after which we detail preliminary investigation (Chapter 4) that led to the development of another experiment protocol to study anticipation (Chapter 5). Chapter 6 then presents a decision model that we developed. Chapter 7 finally summarizes our findings and offers future research perspectives.

-Introduction et résumé en français

En une belle après-midi de fin d'été, vous marchez paisiblement dans la forêt, à l'ombre des arbres et sous le bercement du chant du coucou. Tout à coup vous entendez au loin une branche se briser sous le poids d'un animal. Aux aguets, vous vous attendez à voir peu après la créature surgir. La branche qui s'est brisée ayant fait beaucoup de bruit, vous vous attendez à un grand animal de la forêt. Par précaution, vous guettez du coin de l'oeil tous les abris, et sortez la caméra pour immortaliser la rencontre imminente.

Supposons à présent que l'animal ait surgi sans que vous vous y attendiez. Pris de panique, vous vous réfugiez au sommet d'un arbre. Pourtant, il ne s'agissait que d'un lièvre inoffensif. Ou alors en grand connaisseur de la région, vous êtes persuadé que c'est un animal sans importance pour vous. C'est ainsi que vous avez manqué une opportunité unique de voir un grand cerf d'aussi près. Peut-être enfin que vous prenez le temps d'évaluer vos options, et alors même que vous aviez décidé de fuir en voyant qu'il s'agissait d'un sanglier, la bête charge déjà et vous avez peu de chance d'y échapper.

De cette promenade en forêt nous tirons les enseignements suivants : qu'il faut toujours être prudent lors d'excursions hors des sentiers battus, et surtout que nos attentes peuvent avoir un impact crucial sur nos décisions. Ces attentes liées à la prise de décision, que nous désignerons sous le terme d'anticipation dans la suite de ce manuscrit, sont l'objet de ces travaux de thèse.

La prise de décision est un objet d'intérêt dans de nombreux domaines, allant des mathématiques au marketing. En psychologie et en neurosciences, la prise de décision est un objet d'étude particulièrement intéressant car il entraîne des manifestations comportementales quantifiables, en particulier les temps de réponse et taux d'erreur. Dans cette thèse, il s'agira exclusivement, sauf indication contraire, de prise de décision perceptive, c'est-à-dire que l'on se concentre sur des choix faits en réponse à une stimulation sensorielle extérieure.

Nous définissons la prise de décision perceptive comme une réponse à un stimulus sensoriel, qui se fait de manière contingente. Nous excluons ainsi tous les mécanismes de réflexe pour nous concentrer sur les décisions qui mobilisent des mécanismes cognitifs. De nombreuses tâches de la vie quotidienne se ramènent à de la prise de décision perceptive, telles que le jugement de la couleur d'un objet ou de la hauteur d'un son, ou encore choisir de s'arrêter ou de continuer à la vue d'un feu de circulation. Il apparaît alors que la prise de décision perceptive englobe une grande variété de décisions qui semblent naturelles, ou que l'on qualifierait de "réflexes" dans la vie courante.

Cependant, les décisions perceptives se distinguent des réflexes en cela que les premières requièrent un accès à la mémoire pour identifier des objets et associer une action pour répondre (Ratcliff, 1978). Elles sont de plus différentes car, tandis que les réflexes sont des réponses stéréotypées, la réponse d'un même individu à une même stimulation présente une grande variabilité en termes de temps de réponse (Poulton, 1950;[START_REF] Summerfield | Expectation in perceptual decision making: neural and computational mechanisms[END_REF].

La prise de décision perceptive est au coeur des études en neurosciences car malgré ses manifestations comportementales simples et quantifiables, elle présente une complexité riche. En particulier, elle requiert la mobilisation de nombreux systèmes cérébraux, notamment les systèmes sensorimoteurs, de mémoire, les systèmes d'intégration, les aires de prise de décision, les jugements de valence de la décision [START_REF] Warren | The impact of choice discriminability and outcome valence on visual decision making under risk[END_REF], l'évaluation de la performance (Abrahamyan et al., 2016), et l'apprentissage [START_REF] Thakur | Implicit and explicit learning of Bayesian priors differently impacts bias during perceptual decision-making[END_REF]. Comme nous allons le voir, la majorité des études présentées dans cette thèse, y compris les nôtres, se sont consacrées aux paradigmes de choix forcés à deux alternatives. Dans ces paradigmes, les participants doivent choisir entre deux options à chaque présentation de stimulus.

La prise de décision perceptive ne s'explique ainsi pas entièrement par la présentation du stimulus. Une preuve de cela est la variabilité de la réponse d'un même sujet à un même stimulus. Par exemple, les tests psychométriques impliquent la présentation d'un stimulus au seuil de perception, un seuil subjectif auquel les participants déclarent la présence du stimulus dans 50% des cas. Cette variabilité est également présente dans les temps de réponse, comme en témoigne la distribution normale modifiée des temps de réponse dans des tâches de réponses rapides. Un facteur important de variation est l'anticipation perceptive, qui est l'attente qu'un stimulus spécifique se produise. Le fait que l'anticipation correcte réduit le temps de réponse et augmente la précision de la réponse est observé et documenté scientifiquement depuis près d'un siècle (Poulton, 1950).

Il existe plusieurs sources d'anticipation: l'évaluation de la probabilité qu'un événement se produise (l'espérance, [START_REF] Summerfield | Expectation in perceptual decision making: neural and computational mechanisms[END_REF]), l'influence des événements passés (les effets de séquence, Abrahamyan et al. (2016) et [START_REF] Urai | Choice history biases subsequent evidence accumulation[END_REF]), ou l'amorçage par le biais d'indices au sujet du stimulus à venir [START_REF] Rohenkohl | Temporal Expectation Improves the Quality of Sensory Information[END_REF][START_REF] Petro | Pre-target alpha power predicts the speed of cued target discrimination[END_REF]. Cette thèse considère toutes ces origines d'anticipation sans distinction.

De nombreux modèles tentent d'expliquer les mécanismes liés à la décision. En particulier, les modèles d'accumulation de l'évidence (Evidence Accumulation Models (EAM) en anglais) stipulent que le cerveau intègre l'information sensorielle et l'accumule jusqu'à atteindre un certain seuil, où la décision se produit. Parmis eux, le modèle de diffusion de la décision (DDM, Drift-Diffusion Model en anglais) s'est établi comme une référence (Ratcliff, 1978;Ratcliff and Tuerlinckx, 2002;Ratcliff and McKoon, 2008). Ce modèle s'applique en particuliers aux paradigmes de choix forcés à deux alternatives, et énonce que l'accumulation se fait de manière linéaire et sous l'influence de bruit, jusqu'à une borne de décision fixe. Ce modèle est très utilisé et apprécié car il prédit de manière précise la distribution des temps de réponse et les taux d'erreur. De plus, des enregistrements neuronaux ont montré que la fréquence de décharge des neurones dans les aires liées à la prise de décision du cerveau des primates non-humains suivait les trajectoires prédites par le DDM [START_REF] Roitman | Response of Neurons in the Lateral Intraparietal Area during a Combined Visual Discrimination Reaction Time Task[END_REF][START_REF] Kim | Neural correlates of a decision in the dorsolateral prefrontal cortex of the macaque[END_REF]Gold and Shadlen, 2001;[START_REF] Gold | The neural basis of decision making[END_REF].

Tandis que des versions plus élaborées de ce modèles ont considéré la variabilité inter-essai de certains paramètres pour expliquer les changements au sein du processus d'accumulation autrement que sous l'influence du bruit (Ratcliff and Tuerlinckx, 2002;Ratcliff and McKoon, 2008), l'origine de leur variation a été l'objet de plusieurs études aux résultats d'apparence contradictoires. Dans le contexte de l'anticipation, le déplacement du point de départ de l'accumulation vers la borne de décision préférée a été proposé (Bode et al., 2012;Grosjean, Rosenbaum, and Elsinger, 2001;[START_REF] Hanks | Elapsed Decision Time Affects the Weighting of Prior Probability in a Perceptual Decision Task[END_REF]. D'autres études ont cependant proposé que l'accumulation se fait plus rapidement quand le stimulus est correctement anticipé (Lou et al., 2014;[START_REF] Urai | Choice history biases subsequent evidence accumulation[END_REF]. De même, les enregistrements neuronaux suggèrent que l'anticipation s'accompagne d'une pré-activation des populations de neurones codant l'information sensorielle [START_REF] Schlack | Remembering Visual Motion: Neural Correlates of Associative Plasticity and Motion Recall in Cortical Area MT[END_REF][START_REF] Puri | Category expectation modulates baseline and stimulus-evoked activity in human inferotemporal cortex[END_REF], mais aussi d'une activation plus rapide des neurones qui intègrent l'information sensorielle (Lange et al., 2013). En réponse à cela, d'autres modèles, tels que le Leaky-Competing Accumulator (Usher and McClelland, 2001) ou les théories du codage prédictif (Rao and Ballard, 1999) ont suggéré que l'anticipation peut être considérée comme une préactivation des neurones liés à l'option prédite de telle sorte que l'accumulation de preuve en sa faveur est plus rapide. Ce mécanisme, transcrit dans le cadre du DDM, suggère que le point de départ et la vitesse d'accumulation sot liés, ce qui n'est pas explicitement le cas dans le DDM (Ratcliff and Tuerlinckx, 2002), et qui ne peut émerger que dans le cas de dynamiques non-linéaires.

Les mécanismes neuronaux de la prise de décision ont été largement étudiés chez l'animal, en particulier chez le singe [START_REF] Britten | Responses of neurons in macaque MT to stochastic motion signals[END_REF][START_REF] Kim | Neural correlates of a decision in the dorsolateral prefrontal cortex of the macaque[END_REF][START_REF] Roitman | Response of Neurons in the Lateral Intraparietal Area during a Combined Visual Discrimination Reaction Time Task[END_REF]. Chez l'humain, les enregistrements intracorticaux sont réservés aux patients qui ont des implants à usage médical. Par conséquent, la plupart des études utilisent des techniques d'enregistrement noninvasives telles que l'électroencéphalographie (EEG) ou l'imagerie par résonance magnétique fonctionnelle (IRMf). L'EEG offre trois principaux avantages pour l'observation de l'activité cérébrale. Premièrement, il s'agit d'une méthode indolore et non-invasive, qui la rend utilisable sur la majeure partie de la population. Deuxièmement, il permet d'obtenir une mesure directe de l'activité électrique cérébrale, contrairement à l'IRMf qui reflète l'activité cérébrale au travers de son activité métabolique. Troisièmement, l'EEG permet d'obtenir des signaux avec une bonne résoluton temporelle, de telle sorte qu'il est aisé d'identifier des phénomènes neuronaux brefs et de les lier causalement à des événements extérieurs, tels que des stimuli sensoriels, au travers des potentiels électriques (ERP: event-related potentials, en anglais). Par contraste, l'IRMf permet l'imagerie de zone cérébrales profondes avec une bonne résolution spatiale, au prix d'une mauvaise résolution temporelle (de l'ordre de la seconde). Malgré ces limitations, de nombreuses études en neuroimagerie, que l'on détaille dans le Chapitre 3, ont souligné les similitudes entre les processus de prise de décision chez l'humain et chez l'animal.

Une difficulté majeure dans l'étude des signaux neuronaux de l'anticipation est liée à la difficulté de concevoir des paradigmes expérimentaux permettant de créer l'anticipation. "Anticiper" vient du latin "anticipare", composé du mot "ante" (="avant") et "capere" (="prendre"). Ainsi, anticiper, c'est pré-dire. Mais à quel point dans le futur peut-on prédire ? Il est en effet difficile de savoir quand commence l'anticipation, car par définition, la période d'anticipation pourrait s'étendre à toute la période précédant un stimulus, qui par une interprétation extrème pourrait s'étendre à l'existence entière du participant depuis sa naissance. C'est pour cela que les paradigmes expérimentaux utilisent régulièrement l'amorçage temporel (par exemple, [START_REF] Petro | Pre-target alpha power predicts the speed of cued target discrimination[END_REF]). L'EEG devient alors une méthode privilégiée car elle permet d'observer l'activité cérébrale dans le temps restreint entre l'amorce et le stimulus. Pour cela, l'étude que nous proposons dans le Chapitre 5, et dont les travaux préliminaires sont présentés Chapitre 4, utilisent cette technique.

Plusieurs études menées par le passé, également présentées dans le Chapitre 3, ont montré que le comportement était lié à l'activité cérébrale pré-stimulus. Cependant, ces études se sont concentrées sur l'activité cérébrale endogène [START_REF] Wyart | Rhythmic Fluctuations in Evidence Accumulation during Decision Making in the Human Brain[END_REF], ou alors ont considéré les fluctuations pré-stimulus comme des mécanismes généraux plutôt que spécifiques au stimulus attendu [START_REF] Iemi | Spontaneous neural oscillations bias perception by modulating baseline excitability[END_REF]Samaha, Iemi, and Postle, 2017). Dans ce contexte, la raison pour laquelle l'anticipation correcte réduit les temps de réponse tandis que l'anticipation incorrecte les prolonge reste inconnue. Dans les Chaptres 4 et 5, nous avons par conséquent cherché à distinguer des motifs d'activation spécifiques au stimulus, en utilisant deux modalités sensorielles différentes (la vue et l'audition) pour réduire la compléxité de l'analyse.

Une autre problématique à laquelle ce travail tente de répondre est celle de l'analyse à l'essai unique. Par le passé, l'anticipation temporelle d'événements été mise en évidence dans l'activité cérébrale, où elle se manifeste sous la forme de Vari-ations Contingentes Négatives (appelées Contingent Negative Variations, ou CNV, en anglais) (Walter et al., 1964). Les CNV sont des signaux électriques de faible fréquence qui apparaissent en amont d'un événement, appelé événement cible, qui se produit systématiquement à un délai constant d'un événement d'amorce. Plus récemment, des études ont tenté de décoder le contenu sémantique des CNV à l'échelle de la décision unique (Chavarriaga et al., 2012;Garipelli, Chavarriaga, and R. Millan, 2009;Garipelli, Chavarriaga, and Millán, 2011;Khaliliardali et al., 2012;Khaliliardali et al., 2015). Ces travaux présentent le point commun de s'être concentrés sur une tâche de Go/NoGo, dans laquelle les participants devaient déclencher ou inhiber une réponse motrice, ce qui peut modifier le comportement et l'activité cérébrale au delà de l'anticipation perceptive pure. Il reste ainsi à déterminer si l'anticipation perceptive crée des motifs d'activité cérébrale specifiques au stimulus attendu à l'échelle de l'essai unique.

Cette thèse a donc pour but d'étudier les mécanismes neuronaux de l'anticipation à l'essai unique et leur spécificité au stimulus. De plus, un modèle de prise de décision qui prend en compte les effets peri-stimulus, y compris l'anticipation, de manière plus flexible que le DDM, a été élaboré. Dans un premier temps, les travaux passés sur la prise de décision et l'anticipation, tant d'un point de vue neurophysiologique qu'un point de vue computationel, sont détaillés (Chapitre 3). Ensuite, nous décrivons les analyses préliminaires (Chapitre 4) qui ont mené à l'élaboration d'un protocole expérimental dédié à l'étude de l'anticipation (Chapitre 5). Le modèle computationnel de prise de décision est présenté dans le Chapitre 6. A la lumière de ces études, des perspectives sont proposées dans le Chapitre 7.

Part I

Theoretical framework

-State of the art of anticipation in decisionmaking

Upon perceptual anticipation, "the subject is ready to respond in a certain way when he receives an expected signal, or actually responds in this way before he receives the signal, because he knows the signal is due, from his experience of the recent pattern of signals" (Poulton, 1950). From this seminal description of perceptual anticipation, we understand that perceptual decision-making is not solely bound to the stimulus, i.e. the tangible proof justifying an action, but also to prior expectations regarding this stimulus. This chapter first gives a description of perceptual decision-making in terms of neurological correlates, behavior, and models, establishing the theoretical framework underlying the work presented in this thesis, and then focuses more on anticipatory effects on perceptual decisions.

. Decision-making and its models

. The neurophysiology of decision-making

Decision-making has been widely studied in human and non-human primates as well as in rodents. In this part, we will detail historical findings on the brain processes underlying decision-making in non-human primates, then build bridges with the observations made from human electrophysiology and imaging studies. A summary of the theorized decision mechanism taking place in the brain immediately follows this analysis.

Decision-making in non-human primates

Monkeys have historically been privileged subjects of brain recordings because of their similarity with humans in terms of complexity of behaviors and the possibility of performing invasive neurophysiological recordings on this species. In decisionmaking, a widely-used paradigm for non-human primate studies is variants of the Random-Dot Motion (RDM) task, which consists for the animal of observing a cloud of dots, among which a certain proportion is moving coherently in one direction. Subjects then have to decide in which direction the coherent motion was.

The Medial Temporal (MT) area received attention as a candidate area for decision-making. [START_REF] Britten | Responses of neurons in macaque MT to stochastic motion signals[END_REF] used a RDM task on rhesus macaques to assess how cellular activity in MT related to the coherence of dot motion. They observed that single neurons would respond more strongly as coherence increased, and they would do so only when the motion was oriented in the neuron's preferred direction. This implies first, that, similar to neurons area V1 being tuned to specific line orientation [START_REF] Hubel | Receptive fields, binocular interaction and functional architecture in the cat's visual cortex[END_REF], MT neurons have receptive fields related to the direction of motion, and that their activity directly transcribed sensory information into neural code, as suggested by the proportional increase in the firing rate with the increase in coherence. Additionally, the authors observed local changes in the firing rate of single neurons when the stimulus coherence was 0%, i.e. when the dots were moving completely randomly. Although this finding might seem contrary to the hypothesis that MT neurons encode dot motion strength, the authors also observed that this activity could be explained by a linear combination of neuronal activity observed under 100% coherence. This suggests that under 0% coherence, neurons respond punctually to movement randomly taking place in their preferred direction.

Downstream from the MT area, the lateral intraparietal cortex (LIP) has also received attention in decision-making research. In an experiment led by [START_REF] Roitman | Response of Neurons in the Lateral Intraparietal Area during a Combined Visual Discrimination Reaction Time Task[END_REF], monkeys had to perform two variants of the RDM task: one where they could initiate their response (eye saccade) as quickly as possible after stimulus presentation (Response Time -RT -variant) and another where the stimulus was presented and a fixed delay period preceded a cue indicating when they could initiate their response (Fixed Duration -FD -variant). In both variants, the authors observed that the firing rate of LIP neurons increased up to a threshold until response initiation, when a response was made in the preferred alternative of the neuron. The firing rate ramping was additionally related to the motion coherence of the stimulus. When the response was outside of the neuron's receptive field, the activity was on the contrary decreased. Figure 3.1a, taken from Roitman and Shadlen (2002) (Figure 7), summarizes these findings. Importantly, the change of activity was maintained throughout the delay period in the FD variant, marking the difference between the observation made in MT, whose neuronal activity encodes sensory information. The LIP being also involved in movement planning and execution, the authors note that this pattern is distinguishable from motor preparation because it is observable several hundreds of milliseconds before the response in slow-response trials. These results indicate that the LIP plays a role in sensory information integration and decision formation, whereas MT played a sensory encoding role.

Extension to human decision-making

The FD variant was also implemented by [START_REF] Kim | Neural correlates of a decision in the dorsolateral prefrontal cortex of the macaque[END_REF], who observed neurons in the dorsolateral prefrontal cortex (dlPFC). As seen in Figure 3.1b (taken from [START_REF] Kim | Neural correlates of a decision in the dorsolateral prefrontal cortex of the macaque[END_REF]), the neuron firing rates in the dlPFC resemble these in the LIP (Figure 3.1a). The authors suggest that these neurons could integrate evidence over time by summing the spike counts of MT, which code the sensory evidence. Importantly, the authors further argue that the activity observed in this area comprises both sensory integration and motor planning information, which [START_REF] Roitman | Response of Neurons in the Lateral Intraparietal Area during a Combined Visual Discrimination Reaction Time Task[END_REF]). The solid lines represent the evolution in trials where the stimulus is in the receptive field of the neuron, while the dashed lines represent the evolution of the spiking rate in the presence of an out-of-field stimulus. b -in the dlPFC (taken from [START_REF] Kim | Neural correlates of a decision in the dorsolateral prefrontal cortex of the macaque[END_REF] further supports the intertwining of decision and motor processes in the brain. While this review focused on MT, LIP and dlPFC, other brain regions have been associated with decision-making in the monkey brain, and we refer the reader to [START_REF] Gold | The neural basis of decision making[END_REF] for a review. We will see in the following that the MT and LIP activity were particularly relevant for decision-making modelling, and the results in the dlPFC were replicated in humans.

As suggested by several groups (see in particular [START_REF] Gold | The neural basis of decision making[END_REF] and [START_REF] Heekeren | The neural systems that mediate human perceptual decision making[END_REF]), decision-making hence comprises at least three stages: a sensory encoding stage, where the perceptual information is transcribed into neural code, an integration stage, where information from the sensory encoding stage is collected and combined along with memory items, and a motor production stage, which consists of producing the behavioral manifestation of the decision. It must be noted however that these stages most likely happen in parallel, as is suggested by the dual role of the LIP in both the sensory integration and the motor production. How these stages are intertwined remains to be seen.

A visual categorization task performed on human participants aimed at uncovering the neuronal processes of visual decision-making in humans, using functional Magnetic-Resonance Imaging (fMRI) [START_REF] Heekeren | A general mechanism for perceptual decision-making in the human brain[END_REF]. In this task, participants had to decide whether an image represented a face or a house, and this under different noise conditions, making the discrimination more or less difficult. By observing variations in blood-oxygen-level dependent (BOLD) activity, the authors identified different regions that coded specifically for face and house options. In particular, the fusiform face area (FFA) and parahippocampal place area selectively coded for face and house stimuli, respectively. The authors also observed decreased activity in these areas in the presence of more noise, i.e. when the task was more difficult or more ambiguous. The authors therefore conclude that these areas are involved in evidence encoding, as the first step of the decision-making computation pipeline of the brain. [START_REF] Heekeren | A general mechanism for perceptual decision-making in the human brain[END_REF] additionally observed that BOLD activity in the dlPFC not only responded differently for house and face stimuli, but also presented more activity when the stimulus was clear compared to when it was noised. The authors also noted that its activity correlated positively with task performance, indicating that decisions are made through the integration of evidence, and that the dlPFC has a role in both the evidence integration and the motor planning stages of decision-making. This is similar to the observations made by [START_REF] Kim | Neural correlates of a decision in the dorsolateral prefrontal cortex of the macaque[END_REF] detailed earlier. [START_REF] Philiastides | Temporal Characterization of the Neural Correlates of Perceptual Decision Making in the Human Brain[END_REF] also observed differences in human EEG activity during a visual discrimination task. In their study, participants had to determine whether an image represented a face or a car. The N 170 component, known to appear upon face recognition [START_REF] Bentin | Electrophysiological Studies of Face Perception in Humans[END_REF], was present upon face but not upon car presentation. Then 300ms after stimulus presentation, the potential variation component was different depending on which stimulus was presented to participants. Spatially, the N170 presented differences between the two stimuli over occipital and centrofrontal electrodes, corresponding roughly to the primary visual cortex and the dlPFC. The 300ms component tended to appear later when the presented stimuli were more ambiguous, and since the component at 300ms also correlated with participant judgment, the authors conclude that this component might be more related to an evidence-accumulation process, whereas the N 170 component relates more to fast sensory evidence assessment.

A similar dual-stage decision pipeline was observed in the auditory system. [START_REF] Kaiser | Dynamics of Oscillatory Activity during Auditory Decision Making[END_REF] implemented a paradigm where participants were presented successively with two spoken syllables and had to determine whether these syllables differed in sound or in space (i.e. in their direction). Ambiguity in the sound was introduced by making the syllables phonetically close (between "da" and "ta"), while easy trials comprised easily distinguishable vowel sounds. They observed that activity in the gamma-band (40 -80Hz) of magnetoencephalography recordings was distinct depending on the sound type in the left inferior frontal cortex, and depending on location in the right parietal cortex. Mirroring the effects of difficulty in the FFA observed by [START_REF] Heekeren | A general mechanism for perceptual decision-making in the human brain[END_REF], this modulation was more important when the difference between syllables was obvious compared to when it was masked. Activity in the dlPFC was stronger around 300ms, and the timing depended on the task difficulty. The authors inter-pret these changes as latent of an evidence integration process. The authors also observed a motor preparation component in the high-beta range (around 30Hz) and noted that this component presented a latency that could explain the response time differences.

The accumulation of evidence is also intertwined with motor processes in humans, as suggested by different physiological studies [START_REF] Wyart | Rhythmic Fluctuations in Evidence Accumulation during Decision Making in the Human Brain[END_REF][START_REF] Spieser | Beyond decision! Motor contribution to speed-accuracy trade-off in decision-making[END_REF]. In a study led by [START_REF] Wyart | Rhythmic Fluctuations in Evidence Accumulation during Decision Making in the Human Brain[END_REF], human participants had to observe 8 Gabor grating frames and decide if on average the gratings were oriented rather along the cardinal axes or the diagonal axes. They showed that lateralized beta power (i.e. spectral power in the range 10 -30 Hz), whose variations are also observed upon motor execution and imagery [START_REF] Pfurtscheller | Event-related EEG/MEG synchronization and desynchronization: basic principles[END_REF], was a response-preparation signal occurring downstream from evidence integration. While this study shows that motor preparation and evidence integration occur in parallel, as motor activity is observed prior to movement onset, [START_REF] Spieser | Beyond decision! Motor contribution to speed-accuracy trade-off in decision-making[END_REF] furthermore observed that the motor preparation stage contributed to fast decisions under time constraints. More specifically, as opposed to prior beliefs that only the evidence-accumulation stage contributed to the speed-accuracy tradeoff, [START_REF] Spieser | Beyond decision! Motor contribution to speed-accuracy trade-off in decision-making[END_REF] showed that the motor processes also contributed to it. In their study, the authors considered muscular activity measured by electromyography upon motor response as well as the delay between the stimulus and the onset of the motor response while human participants were performing an Eriksen flanker task. Participants were instructed to decide either emphasizing on speed or on accuracy of the responses. They observed that the premotor and motor times (i.e. the delay between stimulation and muscular response and the duration of the muscular response, respectively) were shorter under the speed condition, with the motor time accounting for 20% of the speed gain between the accuracy and the speed condition. Therefore, the task strategy also impacts the motor production stage.

Figure 3.2 summarizes the different computing stages underlying decisionmaking in the brain, with the different brain areas involved for both human and non-human primates, according to the literature we reviewed here.

It is important to note that other modulatory effects on decisions exist beyond sensory evidence. For example, [START_REF] Wyart | Rhythmic Fluctuations in Evidence Accumulation during Decision Making in the Human Brain[END_REF] underlined that the phase of ongoing delta activity (activity in the 1 -3Hz-range) weighted the strength of sensory evidence, that is, evidence could be more or less integrated depending on when in a delta cycle a stimulus is presented. As will be seen later, anticipation, among others, has such an effect.

. Modelling decisions with Decision-Diffusion Model

Roitman and Shadlen (2002) observed that the activity in the LIP of monkeys followed a ramping pattern until the decision is made, which they interpreted as a symptom of evidence accumulation: the brain integrates sensory evidence up to a threshold, at which a choice is made Gold and Shadlen (2001) Note that these stages, while hierarchically organized, also overlap in time after stimulus presentation. After the decision is made, feedback emerging from the environment or directly from an internal evaluation of performance modifies the computation strategy for subsequent trials. The reference listed are detailed in the manuscript.

and Shadlen (2007). This theory has been formalized in terms of Evidence-Accumulation Models, among which the Diffusion-Decision Model (DDM, also referred to as Drift-Diffusion Model), which we detail more thoroughly in this section.

Formalism

The idea of the DDM was first introduced by Ratcliff (1978) as a behavioral model describing the general mechanism of memory retrieval, that is, how an information is processed in relation to known information in the brain. Categorization tasks, where participants judge the class of the presented stimulus, and detection tasks, where participants judge whether a target stimulus is present, are typical examples of tasks involving memory retrieval. This model is further used to quantify the speed-accuracy trade-off in recognition and decision tasks. Since its creation, the DDM has been widely applied to multiple experiment paradigms due to its versatility and simple formalism.

This model can be formalized by modelling the decision state as a particle subject to Brownian motion in a one-dimensional space. This is the diffusion process. The DDM is therefore defined by the equation (Equation 3.1):

dx = νdt + ση(t) , (3.1)
where the decision variable x varies by dx in infinitesimal time dt under a drift term ν. Its motion is additionally subject to noise η(t), whose magnitude is scaled by its variance σ. The decision is reached when the decision variable reaches a threshold, called boundary. Since the decision variable varies according to one degree of freedom, there are two mathematically possible boundaries (an upper and a lower bound), meaning that the DDM is particularly suited to two alternative forced-choice (2-AFC) paradigms. Note however that it is possible to reduce most forced-choice paradigms to fit the DDM framework by considering, as is typically done, correct versus incorrect decisions. The accumulation of evidence starts from a starting point x 0 , also called bias. Intuitively, if the decision trajectories start closer to the decision boundary, a decision will be made faster.

In this formalism, the decision depends explicitly on time. However, there is also non-contractible biological time due to information transmission in the nervous system, implied both at the sensory transmission and processing and at the motor planning and execution stage. The response time RT relates to the decision time DT by this offset, called non-decision time and noted T nd : RT = DT + T nd . A visual representation of the basic DDM and its parameters is given in Figure 3.3.

Later developments of the DDM introduced sources of variability to the nondecision time, starting point, and drift (Ratcliff and Tuerlinckx, 2002). Indeed, the inter-trial variability of the responses is not simply due to noise, but to variations in the decision policy. Allowing the drift, starting point and non-decision time to vary helps quantify the effects of these variations and hence better describe the shape of the response time distributions (Figure 3.4). As observed on Figure 3.4, adding drift variability results in a more peaked distribution of response times, and the authors also observed an increased error rate. It is also argued that increasing drift variability helps model error responses that are slower than correct responses. Adding starting point or response time variability shifts the mode of the response time distribution to the left. Adding more variability in starting point is also helpful in modeling error responses that are faster than correct ones.

A problem that can emerge when fitting the DDM with many sources of variability is the weight of contaminants. Some responses are indeed longer not because of the decision process itself but because of external factors, such as distraction, and some others are shorter because of anticipatory and motor preparation effects. The DDM does not account for these phenomena, and taking such trials into account can disrupt the fitting (Ratcliff and Tuerlinckx, 2002). Since filtering these trials can be particularly challenging, especially for the short trials that lie within the response time distribution, a solution is to consider these trials as contaminants, make an assumption on how their response time should be distributed and fit the proportion of contaminant trials. Effectively, the most striking consequence of accounting for contaminants is the softening of the right tail of the distribution (Figure 3.4,curve 5).

Link between model parameters and cognitive processes

Each of these parameters reflects a cognitive process with its behavioral consequences. In three experiments developed by Ratcliff and McKoon (2008), human participants had to judge whether the overall direction of moving dots was towards the right or the left under varying conditions. The DDM was subsequently fit to behavioral data. In the first experiment, only the stimulus coherence, that is the proportion of dots moving coherently in one direction, was varied. The authors observed that the drift rate tended to decrease with coherence, replicating the observations made by [START_REF] Roitman | Response of Neurons in the Lateral Intraparietal Area during a Combined Visual Discrimination Reaction Time Task[END_REF]. The drift hence relates to the quality of evidence accumulation, and the higher the drift, the faster and more accurate the decisions (Figure 3.5b).

The second experiment studied in addition to that the impact of the speedaccuracy trade-off on behavior by varying not only the coherence but also the instruction to participants across blocks. They observed this time a higher decision boundary when participants were instructed to respond as accurately as possible compared to when they were instructed to respond as quickly as possible, while changes in the drift rate reflected the variations in coherence better. The decision boundary hence reflects the speed-accuracy trade-off in the participant's decision policy, and increasing the boundary leads to slower but more accurate decisions (Figure 3.5a).

In their third experiment, the authors varied the proportion of left and right- The drift relates to the quality of evidence, so decreasing the drift (burgundy dotted curves) leads to slower and less accurate decisions.

moving trials, and observed that the accuracy increased while the response time decreased for the most represented alternative. The authors explained that a change in drift or in starting point could non-exclusively result in these behavioral observations (see also Figure 3.6).

Similarly, sequential effects induce such a preference for one of the option. Sequential effects are behavioral biases induced by previous stimuli and decisions (Yu and Cohen, 2008). Yu and Cohen (2008) have indeed shown that beyond the nature of the stimulus, past experience had a notable impact on decisions, even when sequences are effectively nonexistent and trials are presented randomly and trying to identify sequences is inefficient. These effects additionally lead to suboptimal behaviors, such as confirmation biases (Abrahamyan et al., 2016;[START_REF] Palminteri | The Importance of Falsification in Computational Cognitive Modeling[END_REF]. Yu and Cohen (2008) have suggested that these effects should result in a shift of the starting point of the accumulation in the DDM. However, [START_REF] Urai | Choice history biases subsequent evidence accumulation[END_REF] showed that sequential effects, which are the effects of previous decisions and stimulation on current and future decisions, induce drift variability. More specifically, the authors fitted several variants of the DDM to six datasets, corresponding to six different tasks: a visual detection task, and auditory detection task, visual motion tasks (a response time task and a fixed-duration task), and two interval comparison of visual motion tasks. The DDM was fit to each dataset using either history-dependent starting point, drift, both, or none. The results showed that models where both the starting point and the drift were history-dependent fitted data better than the other models. However, the drift bias was significantly more strongly correlated to the probability of choice repetition of each participant than the starting point bias, indicating that the drift variability explains sequential effects better than starting point variability. Cognitively, sequential effects impact evidence accumulation instead of simply requiring less additional evidence to reach the corresponding decision boundary.

. Other neurophysiological and behavioral observations and critiques of the DDM

While the DDM has established itself as the reference framework for studying decision-making, several limitations have arisen. First, the DDM fails at capturing some behavioral observations in certain context. For example, [START_REF] Ditterich | Stochastic models of decisions about motion direction: Behavior and physiology[END_REF] observed that, while the mean response time was correctly captured by the DDM, the predicted response time distributions did not resemble the observed ones, which were better captured when adding a urgency-signal (see "More complex dynamics"). Two major points can however be noted in the methods from [START_REF] Ditterich | Stochastic models of decisions about motion direction: Behavior and physiology[END_REF]. First, the DDM only took into account inter-trial variability of the drift, and not of the starting point or the non-decision time, while inter-trial variability of the non-decision time was considered when fitting the urgency model. As explained earlier, variability of the non-decision time can however allow for smoother left tails of the predicted response time distributions, which were indeed problematic in [START_REF] Ditterich | Stochastic models of decisions about motion direction: Behavior and physiology[END_REF] in the DDM fitting. Second, the fitting was performed by minimizing the sum of squared error on the mean response times, which does not take into account error responses or the error rate.

Second, and most importantly, Rabbitt (1966) noticed a post-error slowing, meaning that error responses tend to be followed by slower responses. Laming (1979a) and Laming (1979b) formulated the premature sampling hypothesis following this observation: evidence starts accumulating before the stimulus appears, which means that the inter-trial interval should have an impact on the decision behavior of participants. Indeed, if evidence accumulation starts a long time before meaningful evidence is presented, following the evidence-accumulation framework, decisions may be faster but may also be less adequate, as only noise is accumulated. However, in the DDM formulation, evidence accumulation starts only upon stimulus presentation. Grosjean, Rosenbaum, and Elsinger (2001) have shown that the DDM in its simple form was unable to predict the response time and accuracy fluctuations observed upon variation of the inter-trial interval. However, by tuning the width of the starting-point distribution to the duration of the inter-trial interval, they were able to reproduce the empirical behavioral patterns.

These observations also raise the issue of noise and variability in decisionmaking. The DDM considers within-trial and inter-trial variability as stochastic, which makes the extraction of their source difficult (Evans and Wagenmakers, 2020). However, as Grosjean, Rosenbaum, and Elsinger (2001)'s work underlined, behavior varies from one trial to other depending on the inter-response trials. It is also known that sequential effects has an impact on decisions and on DDM parameters, in particular the drift rate [START_REF] Urai | Choice history biases subsequent evidence accumulation[END_REF], which means that driftrate variability can at least in parts be explained by deterministic processes. Note however that some degree of randomness in the brain could be necessary to allow for fast adaptation and learning in changing environments [START_REF] Findling | Computational noise in reward-guided learning drives behavioral variability in volatile environments[END_REF].

The DDM assumes three stages to perceptual decision-making: a sensory encoding stage, a decision stage, and a motor response stage. The diffusion process describes the decision stage, while the sensory encoding and the motor response stages are encompassed in the non-decision time. These stages are assumed to take part sequentially and independently in the DDM. However, this seems contradictory with neurophysiological observations of the impact of task requirements on muscle activity prior to the response [START_REF] Spieser | Beyond decision! Motor contribution to speed-accuracy trade-off in decision-making[END_REF], and activity in the motor areas prior to the decision [START_REF] Turner | Advances in techniques for imposing reciprocity in brain-behavior relations[END_REF]. Evans and Wagenmakers (2020) proposed several ways to combine observations: first, other evidence-accumulation models could take into account more behavioral observations beyond response time distributions and error rates, such as confidence and changes of mind. This would require the implementation of new paradigms that would allow to observe these behaviors without changing the core decision mechanism. Second, joint-modelling [START_REF] Turner | Advances in techniques for imposing reciprocity in brain-behavior relations[END_REF] would allow to combine brain and behavioral recordings. Note however that single-trial modelling is an on-going field of research and presents many challenges that still need to be addressed [START_REF] Kang | A regularization method for linking brain and behavior[END_REF].

The mechanism of evidence-accumulation described in the DDM is also itself debated, and we focus here on two of the debated aspects. First, the fact that evidence accumulates constantly over time might be problematic, as it implies the possibility of infinite accumulation, which by extension implies the possibility of infinite working memory. This is however impossible, considering the limited shortterm memory capacities [START_REF] Miller | The magical number seven, plus or minus two: Some limits on our capacity for processing information[END_REF]. This point is further discussed in the next section "More complex dynamics". The second discussion regards the mechanism behind evidence accumulation. The decision variable intervening in the DDM is a summary of evidence in favor of and against the correct decision, and evidence in favor of one option is exactly equivalent to evidence again the others (Evans and Wagenmakers, 2020). Gold and Shadlen (2001) have proposed a neuronal mechanism by which decisions are made, and suggested that the brain estimates the likelihood ratio (LR) of an alternative versus the others and makes a decision depending on its value compared to a reference value. This theory can be completely integrated to the evidence-accumulation framework, as temporal integration simply transcribes to the product of LRs obtained at each time point. They present three mechanisms through which such a computation could be implemented. First, the brain could compute the probability density function (PDF) for each condition and compute the LR as the ratio of the height of these PDFs. However, they explain that this would be costly in terms of information storage, and that many factors could impact the decision and hence have to be accounted for in the computation of the PDFs. Another option is that instead of computing the LR, the brain computes the logLR, so instead of comparing the probabilities, the neural responses are compared. However, this would require the knowledge of the average neuronal response to the given stimulation, which is again challenging. The third possible mechanism is that instead of one group of neurons responding, two groups of neurons take part in the decision process: one encoding for the option, and the other having the opposite response. Usher and McClelland (2001) further suggested that the populations coding for an option receives inhibitory inputs from the populations encoding the alternative options. Such a lateral inhibition mechanism allows the sensory evidence to not depend on factors such as neuron excitability. Evans and Wagenmakers (2020) however underline that the feed-forward and lateral-inhibition mechanisms present enough similarities to make it challenging to decipher which strategy best describes behavioral data.

The observations made in monkeys in the section "The neurophysiology of decision-making" above mainly focused on the activity of the LIP, which displayed a ramping pattern very similar to the one described in the DDM, suggesting that the LIP might be the "evidence-accumulator" described in the DDM. However, other areas are involved in decision-making, such as the Medial Temporal (MT) lobe [START_REF] Katz | Dissociated functional significance of decision-related activity in the primate dorsal stream[END_REF]. In a moving-dot visual task, MT area has been shown to respond to pure noise [START_REF] Britten | Responses of neurons in macaque MT to stochastic motion signals[END_REF], as opposed to the LIP which displays the ramping activity related to stimulus coherence during decision-making [START_REF] Roitman | Response of Neurons in the Lateral Intraparietal Area during a Combined Visual Discrimination Reaction Time Task[END_REF]. Interestingly, [START_REF] Katz | Dissociated functional significance of decision-related activity in the primate dorsal stream[END_REF] has found that lesioning the LIP region in rhesus macaques did not impact the decision performance, whereas decisions were impaired upon lesioning the MT lobe. This finding suggests that LIP activity might be related to the decision variable, but not causally [START_REF] Huk | The Role of the Lateral Intraparietal Area in (the Study of) Decision Making[END_REF]. [START_REF] Latimer | No cause for pause: new analyses of ramping and stepping dynamics in LIP (Rebuttal to Response to Reply to Comment on Latimer et al[END_REF] also confronted the view of the LIP as the evidence integrator of the DDM, and suggested that neurons in the LIP rather presented a stepping response rather than a ramping pattern, and explained the ramping observed by [START_REF] Gold | The neural basis of decision making[END_REF] as the consequence of trial and neuron averaging. This view has however been debated [START_REF] Zylberberg | Cause for pause before leaping to conclusions about stepping[END_REF][START_REF] Latimer | No cause for pause: new analyses of ramping and stepping dynamics in LIP (Rebuttal to Response to Reply to Comment on Latimer et al[END_REF].

. More complex dynamics

As we have seen in the previous paragraph, the DDM framework presents some limitations both in explaining the mechanisms of evidence accumulation and accounting for certain types of data. Here, we review some alternative behavioral models that aimed at addressing these limitations. We distinguish two types of models: the urgency-gating models, and the models introducing leakage. Note that many other models exist within and outside of the evidence-accumulation framework, and that we solely focus on models that tackle the issues presented in the previous paragraph.

As mentioned earlier, the possibility of infinite evidence accumulation seems biologically implausible. Busemeyer and Townsend (1993) proposed a model where the drift term also depended on the decision state. Hence, the accumulation process took the form of a Ornstein-Uhlenbeck (OU) process, defined by the following equation (Equation 3.2):

dx = (I -λx)dt + ση(t) , (3.2) 
where the decision state x changes by dx at a rate I with a decay λ. As in the DDM, the OU process is subject to within-trial additive noise η(t), whose variance is σ.

In the same line, Usher and McClelland (2001) introduced the Leaky-Competing Accumulator Model (LCA), which, in addition to considering leakage, proposes a biologically-plausible mechanism describing how evidence against the considered alternative is taken into account through inhibition, and how the input is amplified by recurrent connections within the pool encoding the considered alternative. The accumulation hence takes the following form (Equation 3.3):

dx i = (ρ i -λx i + αf i -βΣ j̸ =i f j )dt + ση(t) , (3.3)
where the "population current" of the population encoding the alternative i x i , defined as the effect of the input on the cell population, changes by dx i under the influence of feedforward input ρ i and leakage λx i , and where the population firing rate f i exerts recurrent excitation by a factor α, and the firing rates of the populations coding for other alternatives sum (Σ j̸ =i f j ) and exert inhibition with a factor β. The firing rates f i introduce a non-linearity, which the authors justify as necessary to perform certain types of computations. However, in an attempt of simplification, they also proposed a linearized version of the LCA, where f i = x i , hence yielding dx i = (ρ i -(λα)x i -βΣ j̸ =i x j )dt + ση(t) Note that the LCA, in its linear formulation, is similar to the OU model with the addition of inhibition.

Another implementation of a similar mechanism has been proposed by Wong and Wang (2006), except that instead of lateral inhibition being performed directly by the populations on each other, a third non-selective pool of neurons receives excitation from the two pools and inhibits them in return. [START_REF] Bogacz | The physics of optimal decision making: A formal analysis of models of performance in two-alternative forced-choice tasks[END_REF] showed that the DDM was optimal in the sense that it reflects the best accuracy for a given decision time. They then studied the similarities and differences between the DDM and other models, both in terms of formalism and optimality, and in particular studied both the OU model and the LCA. [START_REF] Ditterich | Stochastic models of decisions about motion direction: Behavior and physiology[END_REF] suggested that activity in the LIP is due to temporal integration of sensory evidence. This formulation slightly differed from observation previously made in that in implied that time passing was a paramount element of decision-making. However, the classical DDM did not account for a cost of time. Therefore, [START_REF] Ditterich | Stochastic models of decisions about motion direction: Behavior and physiology[END_REF] tested the DDM with inter-trial drift variability against a model where sensory evidence is subject to a time-varying gain before integration. Mathematically, this transcribed into a drift ramping up as time passes. Note that inter-trial drift variability was not implemented in this case, but variability of the non-decision time was taken into account. He showed that the DDM was unable too predict the shape of response time distributions, as opposed to the urgency model that transcribed them closely.

Following this approach, Cisek, Puskas, and El-Murr (2009) argued that under constant evidence presentation, both an accumulation of evidence and a discounting of time could account for the same behavior. Therefore, they proposed a general formulation of the Urgency-Gating Model (UGM), in which the drift can be multiplied by any function of time, and then compared 4 formulations of the DDM and 2 formulations of the UGM in a task where human participants watched 15 tokens move sequentially and had to decide in which target most of the tokens ended. The DDMs were formulated with and without leakage, and with continuous or periodic input (i.e. sensory evidence was either considered constant throughout the trial, or presented in pulses, corresponding to when the tokens were moving). The UGM was considered in its simple form, or included a low-pass filter, which aimed at reducing sensory noise. The authors showed that, the DDM could not account for the observed behavior, even when considering leakage or varying evidence. Only the UGM was able to reproduce the observed response time distributions, and the authors argue that the filtering could be necessary to reduce the noise which would otherwise be amplified by the urgency gain. In addition, this filtering is biologically plausible, given that the activity of pools of neurons is taken into account, effectively reducing the noise of single neuron firings. The authors furthermore argue that a way this filtering could be achieved is through accumulation. Importantly, their fitting did not consider within-trial noise: they argue that this noise should not have an impact since the brain averages activity from a pool of neurons on short periods of time. Therefore, since response times Figure 3.7: Decision models with more complex dynamics. a: the Urgency Gating Model (UGM), according to which evidence is weighted according to the time that has passed since the beginning of the decision process [START_REF] Ditterich | Stochastic models of decisions about motion direction: Behavior and physiology[END_REF]Cisek, Puskas, and El-Murr, 2009). Figure adapted from Cisek, Puskas, and El-Murr (2009). b: the Collapsing-Bounds model, according to which the threshold symbolizing the amount of evidence necessary to make a decision decreases with time [START_REF] Drugowitsch | The Cost of Accumulating Evidence in Perceptual Decision Making[END_REF]. This model is equivalent to the UGM. c: the Leaky-Competing Accumulator model (LCA), according to which the alternatives are each encoded by a population of neurons (here, 1 and 2), which receive sensory input I1 and I2 and mutually inhibit each other while recurrent connections ensure that activity is maintained within their population (Usher and McClelland, 2001) in perceptual decisions are of the order of a second, within-trial noise has a weak impact on behavior. In contrast, within-trial noise is a major factor leading to the shape of response time distributions predicted by the DDM. Equivalently, the UGM has also been formulated in terms of collapsing boundaries, where instead of the drift increasing with time, the boundary distance is reduced over time [START_REF] Drugowitsch | The Cost of Accumulating Evidence in Perceptual Decision Making[END_REF]. Cisek, Puskas, and El-Murr (2009) also showed that the UGM was equivalent to the DDM in the case where the urgency signal was proportional to the elapsed time.

A visual summary of the models described in this section is proposed in Figure 3.7.

. Pre-stimulus signatures and effects on decision-making

While perceptual decision-making is bound to a sensory stimulus, past research has shown that other factors can impact decision behavior. As reviewed earlier, peri-stimulus events such as past errors (Rabbitt, 1966) and decisions (Abrahamyan et al., 2016;[START_REF] Urai | Choice history biases subsequent evidence accumulation[END_REF] induce behavioral variability. In this section, we delve deeper into anticipation per se, reviewing first the neural signatures of anticipation and their link to behavioral observations, then discussing how specific stimulus anticipation can be deciphered from brain activity patterns in human recordings, and finally how behavioral decision models can account for anticipation and other peri-stimulus effects.

. Behavioral consequences and neuronal signatures of anticipation

Anticipation reduces response times

The fact that perceptual decisions are not only bound to the stimulus but depend on past experience, expectations and learning, has been known since early psychological experiments. Poulton (1950) first outlined the impact of anticipation on response time and accuracy in perceptual decisions. Notably, Poulton (1950) showed that perceptual anticipation tended to reduce the variance of the response time distribution in some cases, that is, when participants could predict accurately the upcoming stimuli, their response times were on average shorter and more centered around the median response time. Note that this study was published almost three decades before the evidence-accumulation framework, and therefore, it did not establish which part of the decision-making process was impacted by anticipation, between the sensory encoding, evidence integration, or motor preparation stages. Since Poulton's study, the behavioral observations have been reproduced reliably, and some of the neural correlates of anticipation were studied, in addition for accounts on the mechanistic impact of perceptual anticipation on behavior. The following review describes these findings.

Anticipation impacts sensory evidence integration

A possible neural origin of the anticipation-driven reduction of response times is the enhancement of the accumulation process. By modifying the prior probability of occurring of a particular direction in a random dot motion task, [START_REF] Hanks | Elapsed Decision Time Affects the Weighting of Prior Probability in a Perceptual Decision Task[END_REF] found that both humans and monkeys responded faster to more likely stimuli and slower to less likely ones compared to when the two directions were presented equiprobably. The authors showed that modelling this effect using a time-varying starting-point bias in a DDM predicted behavioral data better than the DDM with a fixed starting-point and than a UGM. A time-varying starting-point, in that case, means that at each time step of the accumulation process, a term is added to the decision variable. That way, the prior expectation on the stimulus continues to have an impact even after the stimulus is displayed. In monkeys, the authors additionally observed that the spiking activity in the LIP displayed this additive dynamic bias. As shown earlier, the LIP is believed to be a central area of the evidence-accumulation stage [START_REF] Roitman | Response of Neurons in the Lateral Intraparietal Area during a Combined Visual Discrimination Reaction Time Task[END_REF][START_REF] Gold | The neural basis of decision making[END_REF]. Therefore, anticipation not only impacts the sensory encoding stage but also the evidence-accumulation stage of decision-making.

In humans, several similar observations have been made that corroborate the findings on the rhesus macaque. In a MEG study, in which 19 human participants had to perform the random dot motion task, Lange et al. (2013) explored the possibility that decisions and pre-stimulus activity over the motor cortices could be influenced based on prior information that the participants receive regarding the upcoming stimulus. Importantly, a textual cue preceded the presentation of the random dot stimulus and was informative in 2/3 of the trials. On trials in which the cue indicated the upcoming direction of motion, this cue was reliable 75% of the time. Some temporal jitter was added, so that the cue was presented randomly between 1 -1.5s before the stimulus, thus avoiding temporal predictability of the stimulus. Participants then had to report the motion they perceived using the index of the hand of the direction of the motion. Past experiments have shown that such decisions elicited effector-specific post-stimulus activation patterns in the primary motor cortex, showing that these patterns reflected sensory evidence accumulation of the stimulus [START_REF] Donner | Buildup of Choice-Predictive Activity in Human Motor Cortex during Perceptual Decision Making[END_REF]. Therefore, the authors assessed the different activation patterns in the pre-stimulus period in the same brain area in this experiment. They first confirmed that trials preceded by a correct informative cue were on average faster and responded to more accurately than trials where the expectation did not match the stimulus. Then, they observed that the alpha and beta-band activity over motor areas was significantly different whether participants expected leftward or rightward motions in the 600ms preceding stimulus onset. This pattern emerged whether the participants produced the motor response corresponding to their expectations or not, meaning that the decisions were not made solely on the basis of the anticipation. On trials cued with an uninformative word, the authors interestingly also observed a spontaneous lateralization of the beta-band activity over the motor cortex in the 250ms preceding the stimulus depending on the final decision of the participant. They noted that such a lateralization also emerged depending on the choice made during the immediately preceding trial, meaning that sequential effects emerged in these trials. The behavior on these trials was identically biased by the preceding choice, with a greater tendency to respond identically to the previous choice. While these effects could reflect to some extent a motor preparation phenomenon rather than perceptual anticipation, the authors argue that, with associative areas such as the dlPFC connecting downstream to motor areas, observing such fluctuations in the motor cortex indicates changes at the sensory integration stage.

Anticipation impacts sensory evidence encoding

Beyond the evidence integration stage, anticipation seems to modify sensory evidence encoding. [START_REF] Schlack | Remembering Visual Motion: Neural Correlates of Associative Plasticity and Motion Recall in Cortical Area MT[END_REF] observed a pre-activation of sensory areas in monkeys specific to the expected upcoming stimulus. To achieve this, they trained rhesus macaques to associate a static cue to a direction of motion of dots. As seen earlier, area MT encodes direction of motion, with neurons firing when a movement is made in their preferred direction and not otherwise. These neurons are inactive in the presence of static visual stimulation. In their experiment, the authors presented a static cue representing an arrow, and 1500ms later four blobs of dot motion, one for each cardinal direction, was presented. Monkeys had to select the direction indicated previously by the arrow. They observed an increase in spiking activity after the cue and before the decision is required when the cued direction was in the receptive field of the neuron and not otherwise. This finding suggested that sensory areas previously known to be bound to bottom-up control, i.e. to respond to an input and transmit information to higher cortical areas, were also bound to top-down control, whereby they respond to information received from higher-level cortical areas.

In human subjects pre-stimulus activity also appears specifically modulated by the anticipation of visual stimuli. In an fMRI study in which participants performed the face-house categorization task, [START_REF] Puri | Category expectation modulates baseline and stimulus-evoked activity in human inferotemporal cortex[END_REF] showed that the baseline activity of the fusiform face area displayed more activity when a face was cued compared to when a house was cued, and similarly the parahippocampal place area displayed more activity when cueing a house compared to a face. These two areas were previously reported to be involved in the poststimulus categorization process of this task [START_REF] Heekeren | A general mechanism for perceptual decision-making in the human brain[END_REF], particularly in the sensory encoding stage. Therefore, the pre-activation of these areas implies that anticipation modifies the sensory encoding stage, enhancing the encoding of the expected stimulus. Note that in this experiment, the cues were reliable 70% of the time, which means that the observed pre-activation cannot be imputed on precocious evidence encoding.

Similar observations have been made by [START_REF] Esterman | Perceptual Expectation Evokes Category-Selective Cortical Activity[END_REF] in a similar task, except that instead of deciding whether the stimulus was a face or a house, participants had to determine the gender of the face and the number of floors respectively, and were cued only on the class of the stimulus (face or house). The stimuli slowly emerged from noise and participants had to deliver their judgment as fast as possible. Behaviorally, they observed that responses were made earlier, i.e. when the stimuli are more noised, when participants formed valid expectations compared to when no cue was presented. Again, the fusiform gyrus and the parahippocampal gyrus presented increased activity when expecting a face and a house, respectively, and presented these activity patterns starting from 20% of pixel coherence in the stimulus images, i.e. after the 10 first seconds of viewing the noised stimulus. Anticipatory patterns were also observed in the early visual cortices. [START_REF] Kok | Prior Expectations Bias Sensory Representations in Visual Cortex[END_REF] presented a random dot motion task to participants, where the direction of the motion was primed by a tone. 5 possible directions existed, and two noises predicted with a 60% accuracy two distinct directions, while the others could be equally primed by either tone. The auditory cue effectively induced a perceptual bias, such that the participant perceived the motion more to the direction asso-ciated to the cue with increasing effect as the experiment went. By observing stimulus-evoked BOLD responses, they found that the representation encoded by activity in the secondary visual cortex V2 was significantly biased in the direction indicated by the cue. The primary visual cortex V1 showed similar patterns, although not significant. Participants who behaviorally showed a strong perceptual bias also had stronger V1 and V2 activity biases. From these studies, it appears that the modifications observed at the evidence accumulation stage could in fact emerge from an enhancement in sensory encoding of expected stimuli.

Temporal expectation might explain pre-stimulus fluctuations

Some researchers have proposed that temporal expectation can induce changes at the sensory level. [START_REF] Rohenkohl | Temporal Expectation Improves the Quality of Sensory Information[END_REF] asked human participants to decide whether a noised Gabor filter was tilted to the left or to the right. The target stimulus was surrounded by noise frames that were either presented at 400ms time intervals ("regular" condition) or presented with temporal jitter around 400ms ("irregular" condition). They observed that participants performed better at a given level of contrast when the temporal structure of the trial was fixed rather than when jitter was introduced, and also that response times were reduced in the regular compared to the irregular condition. Using a DDM, they showed that only a change a drift rate could explain the behavioral observations, meaning that temporal expectation enhances the perception of relevant visual information.

Seminal work in human electrophysiology led by Walter et al. (1964) indicated the presence of a potential variation, called the Contingent Negative Variation (CNV). They established that the CNV is a non-specific response to temporal association between a conditional and an imperative stimulus appearing after the presentation of the conditional stimulus and lasting until the presentation of the imperative stimulus. Their study entails five findings. First, they observed that this response is related to the association of both stimuli and is not elicited by either stimulus taken separately. Second, the CNV disappeared after several presentations of the conditional stimulus not followed by the imperative stimulus and restored when the imperative stimulus is reintroduced. Third, temporal jitter reduced the amplitude of the CNV. Fourth, the CNV appears when participants are told that the imperative stimulus will appear, and fades away if it does not. Conversely, the CNV is not elicited if participants are told in advance that the imperative stimulus will not appear. Fifth, a CNV also appeared when no imperative stimulus was presented but participants were instructed to respond when they estimated that a certain time interval had passed, and the amplitude of the CNV correlated negatively with the duration of the interval. They further replicated these findings by relating them to blinking rather than to motor responses. From these observations, one can conclude that the CNV is a pattern of temporal expectation unspecific to the type of response required by the imperative stimulus.

These findings were replicated by [START_REF] Pfeuty | Relationship between CNV and timing of an upcoming event[END_REF] in a time-interval comparison task, where participants were presented with two successive auditory tones and had to judge whether the second tone was shorter, longer, or of same duration as the first stimulus. They observed that the CNV either increased until the end of the second stimulus or decreased after the duration of the first one during the presentation of the second, depending on if the reference stimulus was long or short, respectively. In contrast with Walter et al. (1964), they found that the amplitude of the CNV was the same regardless of the duration, but that the peak was delayed when the memorized duration was longer, meaning that the slope of the CNV increased inversely with the duration of the reference stimulus. However, the CNV cannot always be observed if its amplitude is low compared to other stimulus-evoked potentials or if the contingency between the associated stimuli is low (e.g. in the presence of jitter). Min et al. (2008) observed instead the effect of the inter-stimulus interval on the alpha-band activity on electrode Oz overlying the visual cortex in an EEG study. Participants had to judge whether the shape or the color of two objects presented at either side of the visual field were identical or different, and the experimenters either maintained a fixed inter-trial interval or varied it. They observed longer reaction times and more accurate decisions for variable intervals compared to fixed intervals, suggesting that expectations might be built when trials are presented with a temporal structure. While they did not observe differences in the CNV, alpha-band power was significantly higher in the fixed-interval compared to the variable-interval condition. This result suggests that temporal expectation elicits a top-down modulation of relevant sensory areas, thereby increasing their activation prior to stimulus onset and consequently reducing response times. This hypothesis remains to be confirmed.

Pre-stimulus neural activity fluctuates beyond simple temporal prediction

However, in the tasks described in the first paragraphs of this section the changes in neuronal activity prior to stimulus onset cannot be ascribed to temporal expectation only. In the study of Lange et al. (2013)'s, the introduction of temporal jitter discards the contribution of pure temporal expectation. Moreover, the fact that the patterns observed in the motor cortex are specific to the side of the expected stimulus is evidence in favor of anticipatory processes selective for the upcoming stimulus rather than the required sensory modality. In a visual rabbit illusion paradigm, [START_REF] Grabot | Postdiction: When Temporal Regularity Drives Space Perception through Prestimulus Alpha Oscillations[END_REF] showed that there existed individual susceptibilities to the rabbit illusion, corresponding, as they interpret, to a prior of objects moving uniformly rather than in jumps. At each trial, the tendency to respond in alignment with this prior belief or not correlated with frontoparietal alpha power, making alpha power a possible correlate of anticipation rather than pure temporal expectation. Indeed, the visual flashes were presented a fixed time intervals one from another, so while the temporal structure might be necessary to observe alpha-band power fluctuations -and we argue that it is, since the rabbit illusion would not appear otherwise -, these contain information about specific anticipation beyond the timing of the next event. They have also shown that the pre-stimulus occipitoparietal alpha phase in the interval 600 to 200ms preceding the stimulus sequence differed between trials where an illusion is reported and where no illusion appeared. Again, the temporality of trials of either type is identical, meaning that alpha phase fluctuations and its behavioral consequence cannot be imputed to the temporal structure of the experiment.

As we will see in the next section, single-trial analyses of the CNV have revealed that it can be used to predict the judgment of participants (Garipelli, Chavarriaga, and R. Millan, 2009;Garipelli, Chavarriaga, and Millán, 2011;Chavarriaga et al., 2012;Khaliliardali et al., 2012;Khaliliardali et al., 2015). Hence, while it is elicited by a regular temporal structure in the trials, its content does not boil down to temporal prediction of events. The next session also reviews single-trial findings regarding the alpha band activity in the pre-stimulus period.

. Single-trial decoding of anticipation

The literature we previously reviewed identified two possible candidates for neural correlates of anticipation in the brain: pre-stimulus alpha power, and the CNV. Importantly, for these to be signatures of anticipation, they need to be distinguishable at the single-trial level. In other words, if these patterns are different depending on the type of expectation, then they can be considered as correlates of anticipation. Alternatively, their specific impact on decisions can be evaluated by correlating them with their single-trial neuronal and behavioral consequences.

Pre-stimulus alpha-band activity relates to the decision strategy

The role of pre-stimulus alpha-band power modulations has given rise to a variety of studies, and, as we will see, of results. Pre-stimulus and pre-decision alpha-band power has been shown to have an impact on the decision strategy itself. Bode et al. (2012) implemented a visual categorization task where participants had to judge whether a noised image represented a chair or a piano. Unbeknownst to them, some images consisted of pure noise, meaning that their final decision could not rely en sensory evidence. They removed potential influences of motor preparation elements by displaying the stimulus-response mapping at the end of each trial. They found that post-stimulus pre-decision occipitoparietal and frontopolar alpha power predicted participant choice in pure noise trials indicating that alpha activity might be related to choice outcomes. [START_REF] Barik | A machine learning approach to predict perceptual decisions: An insight into face pareidolia[END_REF] used a face pareidolia task to study the neuronal signatures of this phenomenon. In their task, participants were asked to judge whether a pure noise image comprised the image of a face or not. The authors later on used a classifier on the pre-stimulus period to predict whether a face would be perceived or not. Using hemispheric differential asymetry, they showed that the alpha-band power in the [-600 : -300]ms preceding stimulus presentation was most discriminative on all participants as of whether they would perceive a face or not in the pure noise image. This finding suggests that the pre-stimulus alpha band activity relates to the formation of the decision and not to evidence encoding, since the decisions were made in the absence of evidence.

In the same line, a series of studies analyzed whether the pre-stimulus alpha power impacted sensory sensitivity or rather a change in baseline excitability. The difference between these two possible mechanisms is that an enhancement of sensory sensitivity would transcribe into more accurate decisions, whereas an increase in baseline excitability would mean that both the noise and the relevant signal would be integrated, resulting in untouched accuracy but a shifted choice criterion. In similar studies, Samaha, Iemi, and Postle (2017) and [START_REF] Iemi | Spontaneous neural oscillations bias perception by modulating baseline excitability[END_REF] have shown evidence in favor of alpha power reflecting a change in baseline excitability. Samaha, Iemi, and Postle (2017) showed participants gratings combined with visual noise and participants had to decide whether the stimulus was tilted to the right or to the left. They were additionally asked to grade their confidence in their judgment. Only prestimulus power in frequencies around the alpha band in the occipitoparietal areas negatively correlated with confidence ratings, and alphaband power fluctuations accounted for 71% of the variance of the confidence. In contrast, they found no significant correlation between pre-stimulus alpha power and accuracy.

These findings suggest that alpha power does not reflect perceptual acuity, but rather a change in the subjective assessment of performance. [START_REF] Heekeren | The neural systems that mediate human perceptual decision making[END_REF] proposed that such a feedback module of decisionmaking existed, and these studies show that pre-stimulus alpha power may have an impact on this module. These findings have also been confirmed with the auditory modality by Wöstmann, Waschke, and Obleser (2019), whereby participants had to determine whether a sound was deeper or higher-pitched than a reference sound. Wöstmann, Waschke, and Obleser (2019) showed that low pre-stimulus alpha power in central channels related to higher confidence ratings.

Importantly, we note that all of these studies used stimuli close to the perceptual threshold or completely ambiguous stimulation. Within the evidenceaccumulation framework, such paradigms might be problematic as prior expectations then represent the only evidence at hand. Consequently, it becomes difficult to disentangle pre-stimulus influences from the accumulation process and conclude on which module of decision-making is impacted by anticipation.

Pre-stimulus alpha-band activity relates to sensory sensitivity

In contrast, several studies using more distinguishable stimuli have suggested that alpha power may be related to changes in sensory sensitivity. [START_REF] Petro | Pre-target alpha power predicts the speed of cued target discrimination[END_REF] implemented a grating identification paradigm, where participants had to decide whether a visual grating was vertical or horizontal. Importantly, and as opposed to the studies previously reported, the trials were temporally cued, which means that participants, while not expecting what type of target stimulus would be displayed to them, could predict when in time the stimulus would appear. The authors showed that prestimulus alpha power was negatively correlated with response times, and argue that this result is consistent with the theory of sensory facilitation. Indeed, shorter response times indicate that the evidence-accumulation process lasted for a shorter amount of time, and since the decisions were not cued and this effect was observed regardless of the stimulus, alpha power might facilitate evidence accumulation, according to the authors. It is noteworthy however that since the effect of alpha variations on response times were independent from the stimulus, alpha pre-activation appears as a general rather than specific expectation signal.

This goes in the direction of the authors' conclusion that alpha modulations also relate to temporal prediction. It corroborates the earlier findings of Lou et al. (2014): in a face-car discrimination task (similar to this of [START_REF] Philiastides | Temporal Characterization of the Neural Correlates of Perceptual Decision Making in the Human Brain[END_REF]), the authors tried to relate pre-stimulus alpha activity to post-stimulus signatures of perceptual decision-making. Noting again an early N 170 component and a later component 300ms post-stimulus, related respectively to sensory encoding and to evidence integration, the authors showed that pre-stimulus alpha power related to the early but not to the late post-stimulus component. Since increased alpha power also related with reduced categorization accuracy, the authors argue that pre-stimulus alpha power modulates the encoding of sensory information rather. Notably, the alpha activity that Lou et al. (2014) observed was located around central rather than occipitoparietal channels, which makes it more similar to µ-rhythms typically observed in motor planning and execution [START_REF] Pfurtscheller | Event-related EEG/MEG synchronization and desynchronization: basic principles[END_REF], supporting again that sensory and motor components of decision-making are closely intertwined.

However, it is unclear how these results apply to other paradigms. For example, Railo, Piccin, and Lukasik (2021) displayed low contrast gratings to the left or to the right of the visual field of participants who had to judge whether the stimulus appeared on the right or on the left. Additionally, participants gave their subjective visibility ratings, whereby they rated how sure they are of having seen the stimulus. In that experiment, the contralateral occipitoparietal sites rather than the central electrodes showed differences in pre-stimulus alpha power that predicted behavioral performance. Delta power over ipsilateral occipitoparietal sites also predicted participant performance in the task. Unlike Lou et al. (2014), the authors found no significant relation between these powers and post-stimulus ERP components. We do note however that the identified sites did not match in the two studies, potentially explaining the different observations. Where these two studies converge is in establishing the link between pre-stimulus alpha power and sensory discriminability. Before them, Dijk et al. (2008) also studied posterior prestimulus alpha power in an identification task, where they compared brain activity in hits versus misses. They observed that pre-stimulus alpha power correlated positively with visual discrimination ability, whereas response times did not vary systematically with alpha power. These results suggest that alpha power modulates the sensory gain. [START_REF] Kayser | Prestimulus influences on auditory perception from sensory representations and decision processes[END_REF] found similar results in the auditory system, when participants were asked to distinguish sounds based on their intensity or on their frequency. They identified two mechanisms through which pre-stimulus activity in the frontoparietal networks influenced decisions. On one hand, the alpha power seemed to affect the quality of early sensory evidence, i.e. had an impact on the sensory encoding stage of perceptual decisions. On the other hand, the phase of delta and alpha activity also seemed to impact decisions but on a higher level of the decision-making process.

Single-trial analyses of the CNV

As the CNV is traditionally more associated with temporal expectations and displays more noisy patterns than alpha power, it has received less attention for studies at the single-trial level, in particular in the context of expectation decoding. Work led by Chavarriaga and colleagues however investigated the possibility of using the CNV to control brain-computer interfaces. In all of their experiments, they used a Go/NoGo task, which consists for participant of taking an action or remaining still depending on an imperative stimulus. They additionally induced temporal expectation by placing a temporal cue (that took different forms depending on the experiment) at a fixed interval before the imperative stimulus. Garipelli, Chavarriaga, and R. Millan (2009) and Garipelli, Chavarriaga, and Millán (2011) implemented the Go/NoGo task by presenting sequentially two dots S1 and S2 on a screen, and participants had to respond if S1 was green and to withhold the response if S1 was yellow, hence implementing respectively anticipatory and non-anticipatory behaviors. The authors then classified the CNV of electrode Cz depending on whether anticipatory effects were present or not, and reached a 80% classification accuracy. Khaliliardali et al. (2015) implemented a more elaborate and ecological version of this task, where participants were immersed in a virtual driving scenario, and after countdowns of 4seconds during which informative cues were displayed, they were given an instruction of whether to brake or to continue driving. The CNV was again classified successfully between Go (i.e. when participants had to brake) and NoGo (i.e. when participants had to resume driving). While these results might be argued to entail solely motor preparation due to the task requirements, Chavarriaga et al. (2012) implemented a task where participants could simply emit a judgment without producing a motor output. In their study, participants observed a virtual agent navigating in a maze and had to assess at each crossing whether the direction indicated at the crossing was correct or not. In the "Keypress" condition, participants manifested their judgment by pressing a key on a keyboard. In the "Monitoring" condition, participants were asked to assess the indication without producing a motor response. They showed that the CNV could be used to accurately differentiate correct and erroneous feedback responses. The authors argue that these differences might emerge from attentional changes subsequent to incorrect propositions.

In addition to providing insight into the CNV discriminability, these studies were performed in an ecological environment, meaning that the observation made might be closer to the brain processes occurring naturally. However, these studies focused on disentangling anticipatory activity from non-anticipatory activity, and it remains to be seen whether the content of anticipation can be observed in neural activity at the single-trial level.

. The difficulty of electrophysiological studies of anticipation

Anticipation in essence is difficult to observe experimentally. By definition, perceptual anticipation encompasses effects up until stimulus presentation, which can in theory include any time from gestational onset of brain activity to the moment of stimulation. Of course, recording activity would set hardware (how to record from a brain that will undergo large changes of scale and connectivity?) and software (how to store so much information? How much information could be extracted from such recordings?) problems. While this reasoning is true in theory, as we would need to track the full experience of subjects, it is not only highly impractical but also unnecessary. Indeed, if we are interested in local differences and variations of anticipation, only a temporally-localized series of decisions should suffice.

Even so, the study of anticipation remains challenging. First, localizing the onset of perceptual anticipation at the single-trial level is a complex task in ecological environments. For example, when do we start expecting that another driver on the road will cut the road in front of us? This can vary from person to person and from time to time, likely depending on our drowsiness (not paying attention might reduce our expectation of such events to occur), our prior road experience (a person who had much experience of trucks misbehaving on the road might be on their guards anytime they see a truck), or our previous observation of the other driver's behavior (we would expect a driver who always had a tendency to switch lanes recklessly to hold such behaviors more often than drivers who seemingly drive safely). However, in many contexts of everyday life, cues indicate what will come next: seeing an orange traffic light in France announces that the red light is coming shortly and that drivers will need to stop. This type of signaling is used in the laboratory to pinpoint the time when participants are surely building anticipation [START_REF] Petro | Pre-target alpha power predicts the speed of cued target discrimination[END_REF]. While some anticipatory effects might be missed this way and different confounds are introduced, temporal rather than perceptual anticipation being a main one, this method is efficient to standardize the observations across participants and trials.

Second, and more related to single-trial studies in general, is the difficulty of forgoing trial averaging and to maintain temporal precision. Trial averaging is customary in EEG studies, as EEG data is extremely prone to noise and artefacts. fMRI, on the other hand, has a fairly low temporal resolution, of the order of seconds. As a comparison, it is possible to obtain millisecond resolution with EEG.

Third, anticipation is a pre-stimulus phenomenon. Typical EEG analyses relate brain electrical activity to a behavior or to a stimulus. However, anticipation is a covert behavior (Koch and Preuschoff, 2007), rendering its analysis more complex, not only in terms of data alignment as discussed earlier, but also in terms of deciphering its content. Asking participants what they anticipated is already a form of decision (Trevena and Miller, 2002) and it is hence an unreliable measure of anticipation, as it changes the underlying neuronal processes. Relating the brain activity of perceptual anticipation to a ground truth, e.g. what stimulus has been anticipated, remains a challenge. A way to do that is to use informative cues: these cues are predictive of the upcoming stimulus not only temporally, but also semantically. This is what has been used by Chavarriaga et al. (2012), where a symbol indicating the future direction to choose is displayed at a fixed time before the observer has to assess whether the direction picked is appropriate or not. However, informative cueing rarely occurs in ecological situations, where temporal but not semantic predictability can be obtained, or vice-versa. To further analyze anticipatory brain activity at the single-trial level, statistical classifiers are applied (Chavarriaga et al., 2012;[START_REF] Barik | A machine learning approach to predict perceptual decisions: An insight into face pareidolia[END_REF]. Instead of classifying brain activity in discrete categories, other studies have regressed pre-stimulus activity to measures, in particular response times [START_REF] Petro | Pre-target alpha power predicts the speed of cued target discrimination[END_REF], post-stimulus signals (Lou et al., 2014) or subjective awareness ratings [START_REF] Benwell | Low pre-stimulus EEG alpha power amplifies visual awareness but not visual sensitivity[END_REF].

The use of informative cueing to participants and machine learning tools in data processing appear as necessary for studying perceptual anticipation. How to go beyond informative cues and access the content of perceptual anticipation at the single-trial level without knowledge of a ground truth remains an open question.

. Modelling peri-stimulus effects

As we have seen earlier, perceptual anticipation changes pre-stimulus brain activity and has an impact on behavior. In this section, we will discuss how these effects can be accounted for in computational modelling of decision-making.

In addition to their EEG analyses described above, Bode et al. (2012) fitted the DDM so that the starting point of the decision process depended on the previous trial and found that this model particularly well described what was happening in the pure noise condition. This finding indicates that prior expectations should have an impact on the starting point of the accumulation process. Gold and Shadlen (2001) also argue that prior evidence is part of the integrated evidence, assuming that the brain integrated the log-likelihood ratio of alternatives: according to Bayes' rule, the posterior probability is the product of the prior and the likelihood. Since the integration of the log-likelihood ratio boils down to summing evidence at each time point, accounting for prior expectations has an additive effect. This is equivalent to considering prior expectations as a starting-point bias in the evidenceaccumulation process. The DDM has been presented with variations of the starting point, variation of the drift, and variation of the non-decision time, which as we have seen before could emerge all three from prestimulus brain activity (Ratcliff and Tuerlinckx, 2002). The problem is that the relation between these variabilities is not explicit in the DDM, they are fitted as independent parameters. This however does not seem to be the case: a proof of that is what happens in the absence of evidence (experiment done by [START_REF] Barik | A machine learning approach to predict perceptual decisions: An insight into face pareidolia[END_REF] on face pareidolia): participants are only shown random dots, so the sensory evidence is in fact null. The DDM predicts in this case that the drift rate should be null. Yet, participants classify these images as a face in a non-random fashion, based on their pre-stimulus activity, which indicates an accumulation thereof, and therefore, that the drift rate and the starting point should both have an effect.

Variations of the DDM also take into account phenomena that are not part of the evidence-accumulation framework, typically decisions that are too long because of some motor hesitation for example, and decisions that are too short and that correspond to guesses: these contaminants should correspond to a small proportion of trials, whose response times follow a uniform distribution (Ratcliff and Tuerlinckx, 2002). We argue otherwise: some of these guesses and hesitations are in fact part of the decision process. Guesses in particular are interesting because they should reflect a priori expectations on the upcoming stimulus. Again, since decisions are also made in the absence of evidence in a non-random fashion based on pre-stimulus activity [START_REF] Barik | A machine learning approach to predict perceptual decisions: An insight into face pareidolia[END_REF], then prior expectations are sufficient for evidence accumulation to take place and evidence is accumulated. The LCA seems to mimic the intertwining of starting point and drift biases: if one population has stronger initial activity, biologically-compatibly corresponding to prior preference towards this option [START_REF] Kok | Prior Expectations Bias Sensory Representations in Visual Cortex[END_REF]Lange et al., 2013;[START_REF] Schlack | Remembering Visual Motion: Neural Correlates of Associative Plasticity and Motion Recall in Cortical Area MT[END_REF][START_REF] Hanks | Elapsed Decision Time Affects the Weighting of Prior Probability in a Perceptual Decision Task[END_REF], recurrent excitation will drive its activity higher while lateral inhibition will silence the activity of the other population. Therefore, an initial bias in the starting state will result in a change of the rate of evidence accumulation.

Another interesting framework to account for expectations is predictive coding [START_REF] Rao | Dynamic Model of Visual Recognition Predicts Neural Response Properties in the Visual Cortex[END_REF]. The idea behind this modelling approach is that the brain is organized in a hierarchical manner, with several areas interconnected to achieve a goal. For example, the visual cortex is organized so that the primary visual cortex identifies simple features of the visual scenery such as line orientation, and further along the ventral visual pathway, in the higher-order area V4, contours are built (see Kandel et al., 2021, chapter 21, Figure 21-14). The connection between these areas are feedforward (i.e. from lower areas to higher areas) but also feedback (i.e. higher-order areas also regulate lower areas). Predictive coding argues that errors propagate along feedforward connections, while feedback connections transmit predictions made on the expected state in a given area (Rao and Ballard, 1999). As an example of this interaction, one may catch a glimpse of a chair covered in clothes in the dark and believe in the presence of an intruder because they initially failed to see that the object lies dangerously still, has a disproportionate nose to be human, and, notably, has four legs. Their perception remains blind to these details until they switch on the light and notice the cluttered inanimate object. As an example of feedback connection purely, Figure 3.8 (from Grossberg and Zajac (2017)) could seem to be pure visual noise, but if given the indication that a dog should appear on the picture, then the dog clearly appears and it is virtually impossible to see pure noise again. As a consequence, in the absence of input, feedback connections only will drive the system to a perception and, subsequently, a decision. A schematic explanation of the predictive coding framework applied to the dalmatian illusion is given in Figure 3.9. Note that the predictive coding framework and the LCA seem to make similar predictions and are compatible in terms of mechanistic description of the effect of expectations on decisions, and also in structure, due to the presence of recurrent and lateral connections.

An ambiguity exists between expectation and selective attention. Selective attention is the process through which a stimulus is selected by the brain on the basis of its relevance for a task. A stimulus can also be selected through selective attention because of its salience compared to other information. In comparison, expectation relates to the prior belief, in a probabilistic sense, that a given stimulus will arise. In this manuscript, we define the term "anticipation" as encompassing these two mechanisms without distinction. However, as reviewed by [START_REF] Summerfield | Expectation in perceptual decision making: neural and computational mechanisms[END_REF], these phenomena are elicited in different contexts while often combined. In the light of several studies [START_REF] Feldman | Attention, Uncertainty, and Free-Energy[END_REF][START_REF] Friston | The free-energy principle: a unified brain theory?[END_REF] Figure 3.9: Mechanism proposed by the predictive coding framework to combine prior knowledge and expectations to perception. In the context of the dalmatian illusion (Figure 3.8), the forward visual pathway sequentially forms a representation of the black and white blobs, and the feedback pathway informs that a dalmatian is on the picture, biases the preceding visual processing stages so that the contours of the dog appear, while not being represented by a solid line. [START_REF] Carrasco | Visual attention: The past 25 years[END_REF], they conclude that the starting point of the accumulation process should be related to expectation while selective attention drives the accumulation rate. While this conclusion aligns with our argument that starting point and drift rate co-vary, the studies we reviewed in "Single-trial decoding of anticipation" indicated that pre-stimulus alpha power related sometimes to the drift rate or sensory gain (Lou et al., 2014;[START_REF] Petro | Pre-target alpha power predicts the speed of cued target discrimination[END_REF], and others to the starting point (Bode et al., 2012), suggesting that the separation between the two phenomena might be more blurred even at the computational level.

Other endogenous effects could affect behavior locally, and it is unclear in the DDM and other models how these can be modeled and how they differ from general changes of decision strategies. For example, alertness has been shown to reduce response accuracy and increase response times, indicating a change of the decision strategy (Jagannathan, Bareham, and Bekinschtein, 2022). In an auditory localization task, where participants had to judge whether a guitar sound was coming from the left or from the right, Jagannathan, Bareham, and Bekinschtein (2022) observed that the ERP localization in the early post-stimulus period depended on the drowsiness of the participant. These changes in ERP related to variations in the drift rate, indicating that drowsiness modified the evidence-accumulation stage. Other endogenous effects have been shown to influence the evidence accumulation process. [START_REF] Wyart | Rhythmic Fluctuations in Evidence Accumulation during Decision Making in the Human Brain[END_REF] has shown that endogenous and task-unrelated fluctuation in delta-band phase modified the encoding of sensory evidence. In particular, they showed that visual gratings presented at troughs of the delta cycle were more strongly encoded as perceptual evidence than those presented at peaks of delta. However, a framework to compare the relative effects of endogenous and exogenous effects, including expectation, fatigue, alertness, or attention, remains to be established. In particular, as argued in a review by [START_REF] Summerfield | Expectation in perceptual decision making: neural and computational mechanisms[END_REF], selective attention and expectation are closely related and dissociating remains an unsolved challenge. Along with neurophysiological studies, computational approaches could bring a better qualitative and quantitative understanding of the peri-stimulus influences on decision-making.

. Remaining questions

From the literature we reviewed in this chapter, several questions regarding anticipation in perceptual decision-making remain unanswered. On the purely neurophysiological aspect, it remains unclear whether the anticipatory brain activity patterns observed previously hold any information about the semantic content of what is expected, or if they act as generic pre-activations of sensorimotor areas. More specifically, single-trial neural signatures of anticipation are yet to be uncovered. How behavioral models of decision-making can include these anticipatory effects and distinguish them from other sources of variability, such as attention and arousal, is another interesting line of research that should help in understanding the mechanisms and contributions to perceptual decisions.

Part II

Methods and results

-Inconclusive attempts at single-trial decoding of anticipation

The theoretical framework specified the major challenges for studying prestimulus states in general and anticipation in particular. This chapter summarizes attempts at single-trial decoding of anticipation that we made and turned inconclusive, as well as the reasons why limitations were encountered and the solutions we implemented. The next chapter, which consists of the paper that emerged from positive results, will explain the solutions we implemented to address some of these issues. The observations stated in this chapter were essential for obtaining the results presented in the next one.

. Initial paradigm

Data that was initially explored was obtained prior to the beginning of this thesis and I did not contribute to the experiment design nor to data collection. This section describes briefly its implementation and later discusses how it is suited for the study of anticipation, in particular at the single-trial level.

. Paradigm description

25 healthy human participants (all right handed, 11 female, 14 male, aged 28 ± 9) with normal or corrected-to-normal vision took part in the study, in which they had to classify audiovisual stimuli within two categories: "face" stimuli and "number+sound" stimuli. The "face" stimulus consisted of a sketch of a face [START_REF] Yang | Brain processes while struggling with evidence accumulation during facial emotion recognition: An ERP study[END_REF], and the "number+sound" stimulus was a combination of the image of a 3-digit number accompanied simultaneously by a sound. All the stimuli were displayed for 100 ms each.

The experiment consisted of 8 blocks of 60 randomly presented trials each. All the trials followed the same sequence: 1.5 second of rest, during which participants could move, 1.5 seconds of baseline where participants were instructed to limit their movements and blinks and to focus on the task, 0.9 seconds during which 9 frames of visual noise were displayed successively on a screen, to which stimulus presentation followed. Participants then had to report what they perceived as fast and accurately as possible by means of a mouse click. 15 participants were instructed to click left upon face detection and right if they saw a number and heard a sound, while the 10 others were instructed the opposite stimulus-response mapping. A summary of a trial sequence is given Figure 4.1. Note that, since each stimulus was given a 50% of occurring at each trial, the number of trials of each type was not exactly balanced, although it did not differ significantly from 50% (see Chapter 6, also [START_REF] Hoxha | Accounting for endogenous effects in decision-making with a non-linear diffusion decision model[END_REF]). EEG was recorded from 32 channels, placed according to the 10 -20 system, at 1000 Hz. BrainProduct's (Gilching, Germany) BrainAmp system with ActiCAP electrodes were used. A reference electrode was placed on F Cz and the ground electrode on AF z. In addition to that, the responses and response times were recorded synchronously.

Note that this dataset has been used for fitting decision models in the context of this doctoral work, as described in chapter 6.

. Challenges of the paradigm

The paradigm in itself constituted a challenge for several reasons. First, two sensory modalities were intertwined. Indeed, while the face stimuli were pure visual stimuli, number+sound stimuli combined both a visual (the number) and an auditory (the sound) information. From an analytic point of view, a recent study has shown that it was possible to distinguish visual perception of two images [START_REF] Riechmann | Using a cVEP-Based Brain-Computer Interface to Control a Virtual Agent[END_REF], and even to disentangle visual imagery between two possible options on some subjects [START_REF] Kosmyna | Attending to Visual Stimuli versus Performing Visual Imagery as a Control Strategy for EEG-based Brain-Computer Interfaces[END_REF]. These behaviors already required intensive analysis to yield results. We expected the signals of anticipation to be very noised, because it is not necessarily a time-locked or systematic behavior. In addition, we would like to decipher whether anticipation consists of a pre-activation of sensory areas or recruits higher-order brain areas. To answer this question, using distinct sensory modalities is essential.

Second, and most importantly, the ground truth of what has been anticipated cannot be recovered directly from experiment parameters. Anticipation relies on unconscious processes (Trevena and Miller, 2002), so participants cannot be asked what they anticipated without switching to a decision process (Koch and Preuschoff, 2007). While the aforementioned paradigm included a temporal cue for the anticipation, theoretically allowing for a time-locked behavior, the content of this anticipation remains undisclosed due to absence of an informative cue.

. Alpha band classification

Alpha-band activity corresponds to brain activity patterns whose frequencies hold between 8 and 13 Hz. Depending on the brain region involved, this frequency band has different names (for example, µ-band when the motor areas are involved). Here, we refer to all of the activities within this frequency range using the generic term alpha-band activity.

Past works have assessed the influence of pre-stimulus alpha band activity on decision behaviors. In particular, [START_REF] Iemi | Spontaneous neural oscillations bias perception by modulating baseline excitability[END_REF] and Samaha, Iemi, and Postle (2017) have shown in complementary works that the alpha-band power in the prestimulus period correlated with confidence ratings, whereas visual classification performance was not impacted. Moreover, [START_REF] Barik | A machine learning approach to predict perceptual decisions: An insight into face pareidolia[END_REF] have been able to underline that alpha-band power asymmetry was an indicative feature of whether participants reported having seen a face in a cloud of random dots. These studies taken together indicate that the alpha-band power in the pre-stimulus period is an interesting candidate for classifying anticipation.

The first attempt at classifying single-trial anticipation types therefore used alpha-band spectral power as features.

. Data processing

All the EEG data was processed using the MNE Python toolbox [START_REF] Gramfort | MEG and EEG data analysis with MNE-Python[END_REF]. Data blocks were first imported and concatenated to apply offline a 35Hz acausal low-pass filter. The continuous data was subsequently epoched between [-2, 0] s relative to stimulus onset, corresponding to 1.1s of baseline activity followed by the noise clip period for each trial.

The spectral power was then obtained by applying a multitaper on the full frequency range of the signal (i.e. until 40Hz) only on the period of interest, i.e. over the duration of the noise clip, and then averaging the powers obtained within the frequency range of interest, here [7.5, 13] Hz. Power computation resulted in 32 features, corresponding to the mean alpha power per electrode.

. Classification pipeline

Classification was performed on 480 trials. Since cross-validation was to be performed, it was necessary to reduce the number of features to avoid the "curse of dimensionality" [START_REF] Jain | Statistical Pattern Recognition: A Review[END_REF][START_REF] Delorme | Statistical Methods[END_REF], and hence overfitting to train data. We therefore added a supervised feature selection step to the pipeline, computed over train data. We used the Fisher score as the metric to assess the relative informativeness of each feature (Gu, Li, and Han, 2012), defined as (Equation 4.1):

F (i) = Σ j̸ =i (µ j -µ i ) 2 σ 2 i + σ 2 j (4.1)
Equation 4.1 computes the Fisher score of feature i. µ k is the mean of feature k over all samples, σ 2 k is its variance. These scores are computed for each feature, and the n features with the highest score are selected for classification. Here, n = 8, the goal being to keep the number of features within 20% of the number of samples.

After visualization of the post-stimulus brain activity, we considered the possibility that anticipation manifests in a pre-activation of the sensory areas to be recruited. In particular, we observed that electrodes T 7, T 8 and Oz were particularly discriminatory on the post-stimulus activity between the two classes: temporal electrodes presented more activity for the combined auditory and visual stimulus, whereas the purely visual stimulus manifested greater activity in the occipital region. We thus decided to compute the ratio of powers in these regions, resulting in 3 features, needing no further feature selection. Note that this method presents the advantage of being unsupervised and is therefore likely to induce less errors related to the poor mapping of labels in the classification pipeline.

For each participant, data is split into a train and a test set, the test set accounting for 25% of the samples. Since we want to compare the classification accuracy using either the generated anticipation labels or the stimulus labels, these sets are identical in both cases, and we ensured that the test and train sets had the same proportion of each class. The test set was only used for performance assessment.

Then, the hyper-parameters of a Support Vector Machine classifier (SVC) were tuned by means of embedded 5-fold cross-validation and 3-fold grid-search cross validation. For each round of the 5-fold cross-validation, that split the train data into a sub-train and validation sets, a model and set of hyper-parameters is fit on two thirds of the sub-train data and validated on the last third of sub-train data. The model and its hyper-parameters that best generalizes to the third of sub-train data is held. This results in 5 models, and the model finally selected is the one whose performance on the validation set is the best. A summary of the SVC hyper-parameters tested can be found Table 4.1. In the case of alpha power classification, this step was preceded by a feature selection step that used the Fisher ranking method described above. The selected model was subsequently trained again on the entirety of train samples. Last, the classification performance on test data was assessed using the accuracy, which is simply the rate of correct classifications over the test set. The test set being of small size (n = 120), the empirical threshold for significance might differ from the theoretical chance level [START_REF] Combrisson | Exceeding chance level by chance: The caveat of theoretical chance levels in brain signal classification and statistical assessment of decoding accuracy[END_REF][START_REF] Mueller-Putz | Better than random? A closer look on BCI results[END_REF], the latter being equal to the proportion of the most represented class. Empirical chance levels were hence computed for each participant using permutation testing: the classification pipeline was applied on the same data but the labels were shuffled so that they matched brain data randomly, and the accuracy of the classifiers trained on shuffled data was computed. This step was repeated 1000 times to obtain the distribution of null-hypothesis scores, and the real accuracy was compared against this distribution: if the accuracy lied above the 95 th percentile of the null-hypothesis distribution, then the classification was deemed successful.

Parameter name Values

Note that the pipeline described here corresponds to a supervised classification algorithm. However, as explained above, the ground-truth label of anticipation is unknown. We therefore manufactured the anticipation labels from the stimulus label and the observed behavior. Indeed, we assumed that short response times on correctly responded trials reflected a correct anticipation from the participant, while long response times and error trials corresponded on the contrary to trials poorly anticipated by the participant. We then split the trials into quartiles of response times, and used the following decision rule on each trial to build the anticipation labels: if an incorrect response was given to the trial or the response time lied within the fourth quartile of response times, then the anticipation label was the opposite of the stimulus labels, i.e. a "face" stimulus would correspond to a "number+sound" anticipation and a "number+sound" stimulus to a "face" anticipation. Otherwise, the anticipation label was kept identical to the stimulus label. The pipeline is summarized Figure 4.2.

. Results

First, we assessed the classification performance on alpha power features. When fitting the classifier over the labels generated through the anticipation la- 3: Classification performance when using pre-stimulus alpha power as a feature for classification. The accuracy is computed as the rate of correct classifications over the test set. We compared the performance of the classifier trained using stimulus labels and anticipation labels (generated using the pipeline described Figure 4.2), over the same test set. We also compared these classification performances to the null-hypothesis distribution for each subject, whose 2.5 th and 97.5 th percentiles are represented by the grey boxes.

bel generator (Figure 4.2), the results are significantly better than when training the classifier over stimulus labels (one-sided paired sample t-test, t 24 = 2.095, p = 0.023, Cohen's d = 0.419), indicating that there is a relation between pre-stimulus alpha activity and response time quantiles. We note that 4 of the 25 participants display above-chance classification accuracies, and the Fisher test revealed a group-level classification performance significantly above chance level (χ 2 = 87.55, p = 0.0008). Indeed, at chance level, only 5% of participants, i.e. n = 1, should display an above-chance classification accuracy. A visual summary of this result can be found in Figure 4.3.

We found similar results when using ratios of alpha powers in electrodes T 7, T 8 and Oz as features. The classification performance was marginally improved when using anticipation labels instead of stimulus labels (t 24 = 1.708, p = 0.05), with again 4 classification accuracies above the empirical individual chance-level. The Fisher test confirmed that the group-level classification accuracy lied significantly above chance-level (χ 2 = 86.21, p = 0.001). These results are summarized in The accuracy is computed as the rate of correct classifications over the test set. We compared the performance of the classifier trained using stimulus labels and anticipation labels (generated using the pipeline described Figure 4.2), over the same test set. We also compared these classification performances to the null-hypothesis distribution for each subject, whose 2.5 th and 97.5 th percentiles are represented by the grey boxes. 

. Discussion

While these analyses revealed an ability to classify pre-stimulus alpha-band single-trial features based on hypothesis-driven estimates of the class of the anticipation, the results are complicated to interpret. Indeed, most participants displayed chance-level classification accuracies, and there are several confounds that could have lead to poor fitting performances. First, we inverted only a quarter of the stimulus labels, which means that the anticipation labels match stimulus labels 75% of the time. However, the probability of anticipating the stimulus correctly in a 2-alternative forced-choice paradigm is defined by (Equation 4.2):

P correct anticipation = P anticipate A P stimulus A + P anticipate B P stimulus B (4.2) This formulation trivially assumes that anticipating either stimuli are independent, that being presented with either stimuli are independent events, and that the anticipation is independent from the upcoming stimulus. This last assumption comes from the fact that the stimulus sequences are by nature random, since the stimuli are equiprobable at each trial, and that no indication was provided concerning the upcoming stimulus.

In a 2-alternative forced-choice paradigm with equiprobable stimuli, we have in addition P stimulus A = P stimulus B = 0.5. Equation 4.2 hence becomes (Equation 4.3):

P correct anticipation = 0.5 × P anticipate A + 0.5 × (1 -P anticipate A ) = 0.5 (4.3)
Therefore, regardless of their biases in favor of either option at any time point, participants should anticipate correctly 50% of the time only. Consequently, setting 75% of correct anticipations in the labels already leads to poor model specifications and fitting.

Second, the features used may also be inadequate. Alpha power levels have also been associated with information gating (Jensen, Bonnefond, and VanRullen, 2012), which is bound to fluctuate within a recording session. Hence, there could be fluctuations unrelated to anticipatory processes that interfere with the signal of interest in this situation. We have not found a way of concluding which of these factors, if not both, contributed to making the results inconclusive. Nevertheless, our anticipation label generation algorithm possibly helped capturing single-trial stimulus-specific EEG anticipation patterns for some participants.

. Clustering

Instead of a supervised hypothesis-driven classification pipeline, unsupervised algorithms could have been used to make groups of trials based on the feature, and then decipher the label of each group depending on the characteristic of the trials each entails. This method circumvents the issue of the absence of ground-truth labels that we encountered previously and is thus useful for providing insight into how informative the alpha band power is for distinguishing between anticipation classes at the single-trial level.

. Clustering method

The alpha band power was used as a feature for clustering and was computed identically to previously. In a second time, we again computed the alpha power ratios between electrodes T 7, T 8 and Oz and clustered these features.

Then, we used the Ward's hierarchical clustering method [START_REF] Ward | Hierarchical Grouping to Optimize an Objective Function[END_REF] to split the trials in two categories in an unsupervised fashion. This method consists of grouping clusters iteratively, starting from individual samples until obtaining the target number of clusters (here, two), so that the variance of the samples in the cluster increases the least.

Checking the clustering accuracy was done using the same assumption as previously: longer response times reflect incorrect anticipation. Therefore, if we order the trials by decreasing response time and invert the stimulus labels one by one, a correct clustering should display an increasing accuracy when the number of inversion increases, and after half of the trials have been inverted, the clustering accuracy should decrease again to 0.5. For a qualitative interpretation of the results, we plotted the number of predictions matching the label as a function of the number of inversions performed on the stimulus labels. In addition to that, we identified the samples that were assigned to the same class as the stimulus label and those that were not. In the following, we will refer to these groups as the "match" class and the "mismatch" class respectively. Note that, since clustering is an unsupervised method and the labels assigned by the algorithm are not related to stimulus labels in a transparent manner, it is impossible to assert which class corresponds to correct or incorrect anticipations. Moreover, the mapping may be different from one participant to the other. We then observed the response time distributions for these two classes for each participant separately. Although we cannot conclude on which class represents the correct anticipation class (see Discussion), noting a qualitative difference between the response time distribution of the two generated classes is an indicator that clustering might have uncovered anticipation classes.

. Results

We first observed the evolution of the number of predicted labels matching the "ground labels", when the ground labels were formed from the stimulus labels, inverting them consecutively in the descending order of their corresponding response times. For both the power (Figure 4.5a) and power ratios (Figure 4.5b), we observe a quasi-symmetric shape, which indicates that some of the response time variability is explained by pre-stimulus alpha power. We note large confidence intervals around each curve, and that the global increase in the number of match observed in the first half of the inversion process is not monotonous. Note that this pattern is absent on a portion of the participants, which could indicate the inappropriateness of the clustering or the inversion algorithm, the catching of irrelevant patterns, or the irrelevance of the selected features. It is also noteworthy that the maximum average number of matches lies at around 265 trials out of the 480 displayed per participant, which means that the classification accuracy is of around 56% on average, corresponding to a low performance.

The response time distributions of match and mismatch samples also varies across subjects for both feature types, as seen in Figure 4.6. The greatest difference between match and mismatch response time distribution was observed for the participant displayed on Figures 4.6a and 4.6b. For the other participants, the distributions were more similar, as shown for example in Figures 4.6c These results support that the anticipation classes are ineffectively split using this technique.

. Discussion

Once again, while some participants display the expected pattern, no general tendency emerges at the group-level. Surprisingly, when looking at the distribution of predicted-correct and predicted-incorrect anticipations as a function of response times, it seems that incorrectly-anticipated trials are not more dense over the longer response times than the correctly-anticipated trials, according to the classification algorithm.

This particular analysis lacks a quantitative interpretation of the results at the group level. One could imagine performing a paired-sample statistical test to assess whether the difference between response time distributions of the match and mismatch class are significantly different. As mentioned earlier, clustering being an unsupervised method, the label names are assigned arbitrarily to each class, regardless of the stimulus label, and most likely in a different way for each participant. Therefore, although there is a difference between the two distributions in absolute value, assessing the sign of this difference consistently across participants is impossible. If it were decided to follow our main assumption that correct anticipation leads to faster and more accurate decisions to assign for each participant which of the match or mismatch class corresponds to correct anticipations, then the hypothesis that response time distributions are different is systematically validated because of the circular argument.

. Creation of a new paradigm

These analyses led to the conclusion that the paradigm described in this section was inadequate to study the neural substrates of anticipation. An adapted paradigm would need to fulfill the following requirements:

• It should be possible to extract a ground-truth label of anticipation, at least on a portion of the trials

• The sensory modalities should be as distinct as possible

The most straightforward way to induce anticipation is to present informative cues to the participants, and it is therefore the solution that was later retained during the elaboration of a new paradigm. However, in natural situations informative cues may not be present in the environment, and yet expectations seem to be present even if it leads to sub-optimal behaviors. Indeed, it seems that humans and other animals build expectations on the upcoming stimuli based on their prior experience, even when there is no underlying pattern in the stimulus sequence. This phenomenon, known as sequential effects, leads to subobtimal behaviors as participants tend to make more mistakes (Abrahamyan et al., 2016). This phenomenon is symptomatic of the construction of expectations in the brain, even in the absence of informative cues. Therefore, the experiment paradigm also needed to entail uncued trials. Maintaining the temporal predictability of the stimulus was essential to be able to uncover time-locked brain activity patterns in the EEG, thus the 0.9 second visual noise clip was maintained in all trials. Note that frames changing every 100ms elicited steady-state visually-evoked potentials (SSVEP).

Another important aspect to take into account when cueing trials is the effect of delayed responses. If the informative cues are systematically predictive of the upcoming stimulus, participants are likely to have made their final decision prior to stimulus onset. Such a situation would hinder the observation of anticipation, as participants are in a temporal expectation mode rather than attempting to guess the appropriate decision. For this reason, participants needed to be explicitly told that the cue was reliable 80% of cases. This threshold was chosen in reference to the usually admitted threshold in the study of error-related potentials (Ehrlich and Cheng, 2018;[START_REF] Chavarriaga | Errare machinale est: the use of error-related potentials in brain-machine interfaces[END_REF]. We assumed error-related potentials to be post-stimulus manifestations of anticipation, as they appear when expectations have been violated.

The design I implemented, described in the next chapter, in addition had to follow as closely as possible the existing paradigm in order to have an experimental continuity. There are ways in which it could have been more deeply modified, and these solutions are briefly mentioned in the next chapter and discussed in more details in the Discussion chapter.

Introduction

Perceptual anticipation is the expectation of an upcoming stimulus to which participants are ready to respond (Poulton, 1950). Anticipating upcoming stimuli is relevant when making decisions because it directly impacts behavior. Typically, correctly anticipating stimuli results in faster and more accurate decisions [START_REF] Petro | Pre-target alpha power predicts the speed of cued target discrimination[END_REF]Poulton, 1950). Moreover, pre-stimulus brain states were shown to impact confidence in judgment (Samaha, Iemi, and Postle, 2017) and the visibility of visual stimuli (Railo, Piccin, and Lukasik, 2021). Therefore, understanding perceptual anticipation is paramount to understanding decisionmaking at the single-trial level.

While other aspects of decision-making are starting to be well documented, pre-stimulus states such as anticipation remain broadly unexplored due to the experimental challenges they pose. First, in traditional analyses of brain recordings, brain activity is recorded relative to a specific event in time. However, anticipatory processes can begin any time before stimulus onset. While aligning all trials to a consistent point in time is a notoriously difficult task in the case of well-identified brain activity [START_REF] Barthélemy | Multivariate temporal dictionary learning for EEG[END_REF], it becomes highly challenging for modeling unconstrained patterns. Second, analyses that consist in classifying brain activity patterns between different types of tasks typically require the knowledge of a ground truth. In contrast, anticipation is mainly unconscious (Koch and Preuschoff, 2007), meaning that participants themselves may not be aware of what they are expecting. Asking them directly is asking for a decision, and is therefore likely to change the type of brain activity required (Trevena and Miller, 2002). To address both of these issues, several studies have used cues in their experiment paradigm in order to induce specific expectations and to pinpoint in time its beginning [START_REF] Petro | Pre-target alpha power predicts the speed of cued target discrimination[END_REF]Chavarriaga et al., 2012). It is noteworthy however that perceptual decisions in ecological contexts may need to be made in the absence of cue. Electroencephalography (EEG) is a neuro-recording technique of choice for this problem thanks to its fine temporal precision and its capability to capture both conscious and unconscious cortical activity. It has already been used to uncover several pre-stimulus brain activity patterns, which we detail in the following.

A neuronal component of expectation, called the Contingent Negative Variation (CNV), has been extensively studied in the context of temporal expectations. A CNV is a type of event-related potential (ERP) that emerges after a cue announcing a target stimulus is displayed. It takes the shape of a linearly increasing potential that reaches its maximum when the contingent stimulus is expected (Walter et al., 1964). Upon several presentations of this association of stimuli the CNV is created, and a weakening of the association, for example with jitters in the temporal relationship between the two events, the CNV disappears. Therefore, the CNV was originally established as a neural marker of temporal expectation.

It has been shown that the CNV is both associated with stimulus expectation and with motor preparation. Works led by Chavarriaga and collaborators (Garipelli, Chavarriaga, and R. Millan, 2009;Garipelli, Chavarriaga, and Millán, 2011;Khaliliardali et al., 2012;Chavarriaga et al., 2012;Khaliliardali et al., 2015) have shown that it is in fact possible to distinguish different forms of CNVs. These works used a Go/NoGo task, which consisted for participants in taking an action or remaining still depending on an imperative stimulus. The contingent stimulus was displayed at a fixed interval before the imperative stimulus. In these works, they tried to detect whether participations anticipated the need for a response or not. For example, Garipelli, Chavarriaga, and R. Millan (2009) and Garipelli, Chavarriaga, and Millán (2011) presented sequentially two dots S1 followed by S2, and a motor response had to be produced upon S2 presentation if S1 was green and withhold response if it was yellow. They were able to classify anticipation with an above-chance performance for some participants, reaching up to 80% classification accuracy. About half of the participants seemed to demonstrate different brain activity patterns during anticipation. Chavarriaga et al. (2012), Khaliliardali et al. (2012), and Khaliliardali et al. (2015) implemented more ecological versions of this task by immersing the participant in a maze (Chavarriaga et al., 2012) or in a simulated driving scenario (Khaliliardali et al., 2012;Khaliliardali et al., 2015). We note that these studies focused in particular on whether participants expected that an action was required or not. While these advances are particularly relevant for brain-computer-interface applications, the question of whether the semantic content of anticipation can be decoded at the single-trial level remains open. More specifically, we are interested in determining whether the CNV depends on the sensory event expected by the participant when there is always an action to perform and if these variations can be detected at the single-trial level.

Besides the CNV, other components of brain activity in the pre-stimulus period have been shown to have an effect on subsequent behavior. Among them, the activity in the alpha band [START_REF] Usher | The time course of perceptual choice: The leaky, competing accumulator model[END_REF][START_REF] Wang | Probabilistic decision making by slow reverberation in cortical circuits[END_REF][START_REF] Ditterich | Microstimulation of visual cortex affects the speed of perceptual decisions[END_REF][START_REF] Prat-Ortega | Flexible categorization in perceptual decision making[END_REF][START_REF] Abrahamyan | Adaptable history biases in human perceptual decisions[END_REF][START_REF] Glaze | Normative evidence accumulation in unpredictable environments[END_REF] has received a lot of interest, because it is thought to be representative of the gating of sensory information in the brain [START_REF] Jensen | Shaping Functional Architecture by Oscillatory Alpha Activity: Gating by Inhibition[END_REF] and Jensen, Bonnefond, and VanRullen (2012). Moreover, pre-stimulus alpha power has been associated with top-down processing [START_REF] Min | Prestimulus EEG alpha activity reflects prestimulus top-down processing[END_REF]. It remains however unclear how this pre-stimulus oscillatory activity influences decision-making. In particular, prestimulus alpha activity could modulate sensory sensitivity, sensory selectivity, or higher cognitive processes involved in decision-making, such as evidence integration or internal evaluation of decision performance. [START_REF] Iemi | Spontaneous neural oscillations bias perception by modulating baseline excitability[END_REF] and Samaha, Iemi, and Postle (2017) have shown in complementary studies that the confidence rating correlated with the alpha band activity in a visual classification task, whereas the perception of the stimulus itself, as assessed by the classification performance of participants, remained unaltered. Similar findings have been established in the auditory modality (Wöstmann, Waschke, and Obleser, 2019). In contrast, [START_REF] Barik | A machine learning approach to predict perceptual decisions: An insight into face pareidolia[END_REF] have shown that face pareidolia is related to certain levels of alpha activity, supporting that alpha activity at the single-trial level relates to the formation of decisions. Other studies have associated with sensory processes. Lou et al. (2014) suggested that pre-stimulus alpha power modulated the encoding of sensory information, since it correlated with the amplitude of stimulus-specific post-stimulus EEG activity. This finding is supported by the theory of selective attention carried by alpha oscillations (Foxe and Snyder, 2011). While the pre-stimulus effects have been studied, it remains to be shown whether this alpha-band activity is a neural correlate of anticipation, i.e. if it is specific to the anticipated stimulus.

Computational modeling of decision-making has provided insight into its processes, from sensory encoding to motor response. In particular, the Diffusion-Decision Model (DDM) (Ratcliff, 1978;Ratcliff and Tuerlinckx, 2002;Ratcliff and McKoon, 2008) explains response times and accuracy as the result of a linear accumulation of sensory evidence until a decision boundary which represents the speed-accuracy trade-off. The accumulation rate, called the drift, and the starting point of the accumulation are particularly interesting parameters when it comes to assessing the impact of prior expectations on decisions [START_REF] Urai | Choice history biases subsequent evidence accumulation[END_REF]Bode et al., 2012). Ratcliff and Tuerlinckx (2002) also introduced intertrial variability for these parameters to account better for possible fluctuations. However, whether anticipation modulates the starting point, as classically believed (Bode et al., 2012;Grosjean, Rosenbaum, and Elsinger, 2001), or the drift rate, i.e. the evidence accumulation stage [START_REF] Urai | Choice history biases subsequent evidence accumulation[END_REF], remains debated.

In this work, we show that it is possible to distinguish between anticipation of visual and auditory stimuli at the single-trial level. We implemented an EEG experiment where participants had to decide at each trial whether the stimulus they were presented with was an image of a face or a sound, and are cued as to which stimulus will be displayed in one part of the recording session. After confirming that anticipatory processes are present in our data, we performed a cluster-based analysis on EEG grand-averaged activity to underline differences between temporal expectation and perceptual anticipation. The next and main part of this study aims at differentiating EEG activity depending on what each participant has expected (a sound or an image), based on the cued trials only and using different components of the EEG activity (late ERP, spectral activity in the alpha band). We then applied the classifiers to uncued data, using the classifiers trained on cued data on the one hand and predictions made on poststimulus activity of uncued trials on the other side. To understand which stage of decision formation is modulated by anticipation on cued trials and assess the classification performance in the absence of ground-truth labels on uncued trials, we related the classification performance and prediction to DDM parameters. This analysis indicates that it is indeed possible to decipher the semantic content of anticipation even on uncued trials.

Materials and methods

Participants

42 participants (24 males, 18 females; 5 left-handed; aged 20 -64, mean: 30.43 ± 10.78) with normal or corrected-to-normal hearing and vision took part in this study. The experiment was approved by the Comité d'Ethique de la Recherche Paris-Saclay, under the application number 321. Each participant was informed about the purpose of the study and signed informed consent forms upon participation. All participants fully completed the experiment.

Experiment design

The experiment consisted of two parts, denominated "test" and "calibration" phases thereafter, which the participants completed within the same recording session. During the test phase, participants were presented randomly at each trial with either the sketch of a face ("face" trial) or a sound ("sound" trial). They were instructed to respond as fast as possible to each stimulus by pressing with their dominant hand on the right arrow of a keyboard for "face" stimuli and on the left arrow for "sound" stimuli. Each trial started with the apparition of a red cross in the middle of the screen, indicating a 1.5 s rest period to the participant. The cross then became white to instruct participants to start focusing on the task and avoid parasitic movements that can blur EEG signals (blinking, jaw and head movements in particular). This baseline period lasted for 1.5 to 3 seconds, with its duration varying randomly across trials. After that, a square visual noise clip appeared for 0.9 s in the middle of the screen, frames being updated at a rate of 10 Hz. While the last frame remained on the screen until the end of the trial, the stimulus was displayed for 200 ms at the end of the noise clip. The trial terminated upon participant response or after a timeout of 2 s after stimulus onset.

Trials in the calibration phase were identical to those in the test phase, with the addition that a cue appeared for 200 ms at the beginning of the noise clip, indicating which stimulus would be displayed. A pictogram of an eye indicated a "face" trial, and an ear icon indicated a "sound" trial. To eliminate the possibility of having created a delayed response instead of sensory anticipation, we set the cues to be inaccurate in 20% of the cases, excluding the ten first trials. We chose this catch probability according to the threshold at which oddball paradigms function, hence ensuring that the cue was still reliable (Ehrlich and Cheng, 2018;[START_REF] Chavarriaga | Errare machinale est: the use of error-related potentials in brainmachine interfaces[END_REF]. A summary of the sequence of a trial for these two phases is given Figure 1.

Participants performed 3 test and 4 calibration blocks of 60 trials each, resulting in 180 test trials and 240 calibration trials. 20 training trials preceded the test phase, and 60 training trials were performed before the calibration phase. The training phase preceding the calibration phase was longer so that Figure 1: Summary schematic of the sequence of a trial participants had time to learn the impact of the cue, the correct response to each target stimulus, and to avoid making mistakes in catch trials. Half of the participants performed the test blocks first, while the other group of participants started with the calibration blocks to prevent any influence of the order of the phases. Participants were free to take a break between each block and could decide when to continue with the next one. The experiment was performed in a dark room to enhance the sight of the visual stimulus.

Stimuli

Target stimuli consisted of a sound pulse at 1000 Hz for the sound stimulus, and a sketch of a face for the visual stimulus. The sketches were generated by [START_REF] Yang | Brain processes while struggling with evidence accumulation during facial emotion recognition: An ERP study[END_REF] from the Radboud Faces Database (Langner et al., 2010). Cue stimuli consisted of an open-source drawing of an eye and one of an ear, displayed at the center of a screen over a random dot square cloud. All stimuli lasted for 200 ms.

EEG data acquisition

EEG signals were recorded at 1000 Hz using 32 active AgCl electrodes, and the actiCHamp Plus amplifier (Brain Products GmbH, Gilching, Germany). The electrodes were placed according to the 10/20 international system. Electrode Fz served as the reference electrode upon acquisition.

To avoid contamination by stimulus-related activity, we applied offline a non-causal finite impulse response band-pass filter with cut-off frequencies 0.1-35Hz to remove high-frequency artifacts (muscle activity in particular) and lowfrequency artifacts, such as sweat. Data was subsequently epoched on the relevant periods of interest (see below).

EEG data comparisons: periods of interest

We wanted to see if we could distinguish the ERP forms between anticipation versus baseline, anticipation and no anticipation (i.e., pre-stimulus period with and without a cue), and visual versus auditory anticipation. The pre-stimulus period was defined as the window [-400 : 0] ms preceding the target stimulus for both stimuli and in both cued and non-cued conditions. It can equivalently be defined as the [500 : 900] ms time window following the onset of the noise clip and cue. Since the duration of the baseline period was randomly varied across trials, we defined two time intervals of interest in the baseline period:

[500 : 900] ms after the beginning of the baseline period and [-400 : 0] before cue onset. 4 comparisons were hence performed: early-baseline vs. anticipation, late-baseline vs. anticipation, anticipation vs. no anticipation, visual vs. auditory anticipation.

Computing ERP components

For the initial investigation of significant differences between the different periods of interest described above, ERP components were computed by averaging trials within category (early/late baseline, cued trials, uncued trials, face anticipation and sound anticipation). A comparison of the grand average was performed, averaging the signal both across trials and channels within participants.

Classification pipelines

Classifying ERPs using covariance matrices

The CNV is a candidate for discriminating the type of anticipation at the singletrial level. To use it as a feature for classification, we first applied a 1 -4Hz band-pass filter on raw calibration data and epoched it from 500 to 900ms after noise clip onset, corresponding to the last 400ms before stimulus onset. Trials were then split into 10 stratified folds, using cue label for stratification to ensure that the label distribution is preserved in each fold. For each cross-validation round, 9 of these folds were used as the train set and the remaining one as the test set, so that each fold was used once as the test set. Using the PyRiemann Python toolbox [START_REF] Congedo | Riemannian geometry for EEG-based brain-computer interfaces; a primer and a review[END_REF]Barachant et al., 2023), extended covariance matrices [REF] with XDawn components [REF] were computed for each class using the train set, selecting 8 components, and the Minimum Distance to Mean was used to assess the class of each trial. Using covariance matrices for EEG activity classification was proven efficient to improve classification accuracy on ERP data [START_REF] Barachant | A Plug&Play P300 BCI Using Information Geometry[END_REF] and motor imagery [START_REF] Barachant | Multiclass Brain-Computer Interface Classification by Riemannian Geometry[END_REF][START_REF] Barachant | Classification of covariance matrices using a Riemannian-based kernel for BCI applications[END_REF]. The classification accuracy was then computed for each test set and then averaged across test sets within participant.

Classifying pre-stimulus alpha-band power

As pre-stimulus alpha-band power has been shown to be predictive of behavior in other works [START_REF] Iemi | Spontaneous neural oscillations bias perception by modulating baseline excitability[END_REF]Samaha, Iemi, and Postle, 2017;[START_REF] Barik | A machine learning approach to predict perceptual decisions: An insight into face pareidolia[END_REF]Bode et al., 2012;Wöstmann, Waschke, and Obleser, 2019;Railo, Piccin, and Lukasik, 2021;Lou et al., 2014;[START_REF] Min | Prestimulus EEG alpha activity reflects prestimulus top-down processing[END_REF]Min et al., 2008;[START_REF] Petro | Pre-target alpha power predicts the speed of cued target discrimination[END_REF]Dijk et al., 2008), we used it as a feature to classify single trials according to the type of anticipation (face vs. sound anticipation). Alpha power is computed using a multitaper in the frequency band [8 -13]Hz over the time window of interest [-400, 0]ms before stimulus onset. The powers thus obtained are averaged over frequencies, resulting in 31 features, one per acquisition electrode.

The data used for fitting consists of the cued trials for each participant, i.e. 240 trials. To reduce the dimensionality of the feature space and avoid the "curse of dimensionality", the 8 most discriminative features are selected using Fisher ranking (Gu, Li, and Han, 2012): for each feature i, a score is computed using the following equation (Equation 1):

F (i) = Σ j̸ =i (µ j -µ i ) 2 σ 2 i + σ 2 j (1)
The 8 features with the highest score are selected. A SVM classifier is fitted over the cued trials using a 3-fold cross-validation, and the mean classification accuracy is used as a metric for classification assessment.

Classifying pre-stimulus activity of uncued trials

The afore-described classification pipelines are supervised. However, the groundtruth label of anticipation is unknown on trials of the test phase of the experiment, i.e. on uncued trials. To circumvent this issue, two solutions are proposed here. First, if we assume the stationarity of the anticipation phenomenon across tasks, the brain activity patterns of anticipation over uncued trials should be similar to those found on the cued trials. Therefore, classifiers trained on cued data can be applied on uncued data of the same participant. We hence retrained the classifiers obtained on all the trials of the calibration phase of the experiment for each participant, and predicted the corresponding anticipation class using the thus trained classifier on uncued trials.

The second solution consists of analyzing the post-stimulus effects of anticipation. Indeed, challenged expectations should result in potential variations in the post-stimulus period (Kappenman and Luck, 2011;Lou et al., 2014). Consequently, detecting mismatch signals in the post-stimulus ERP should indicate the type of anticipation produced by the participant in the pre-stimulus period, hence providing "ground-truth" labels on the type of anticipation on uncued trials. We therefore trained a classifier to detect incorrect anticipations in the post-stimulus period of the cued trials, using the same pipeline as described in "Classifying ERPs using covariance matrices". The ROC curves were plotted for each participant to verify the correctness of the classification, then the classifiers were trained again over all cued trials and were subsequently used to detect incorrect anticipations on uncued trials. The anticipation labels were then obtained by combining the stimulus labels and the labels obtained from this pipeline. These labels were then used as the cue labels in the pipelines described earlier.

The different pipelines used to generate the classes of anticipation on both cued and uncued trials are summarized Figure 2. In the following, we will refer to the anticipation on cued trials as "ground" anticipation when the cue label is used as the anticipation class, or as "classifier" when the anticipation class is the one predicted by the pre-stimulus classifier. On uncued trials, we will refer to "cued-pre-stimulus" anticipation when the anticipation is the one predicted by the aforementionned classifier trained on cued trials, or to "post-stimulus" when this anticipation is the one predicted by the pre-stimulus classifier trained using the labels predicted by the post-stimulus classifier trained on cued data and subsequently applied to uncued trials. We use two types of classifiers, symbolized by grey ellipsoids: a classifier trained to detect whether the anticipation is visual or auditory based on pre-stimulus EEG activity, and a classifiers trained to detect whether the anticipation was correct or incorrect (i.e. whether anticipation matched the following stimulus or not) based on post-stimulus EEG activity. The final labels that were used as the anticipation class are frames in light grey, with their denomination in the article underlined in the vicinity.

Linking brain and behavior

One of the main assumptions of the effects of anticipation on behavior is the reduction of response times and error rate subsequent to correct anticipations. If the classification algorithm was indeed trained to distinguish the type of anticipation, we should observe that correct anticipations are more represented among shorter reaction times relative to long ones. Conversely, incorrect anticipations should result in longer reaction times.

Response time quantiles

We first split the predicted anticipations depending on their correctness and behavioral outcome: the anticipation can either match the stimulus or not, corresponding to correct and incorrect anticipations respectively, and the response can match the stimulus or not, corresponding to correct and incorrect responses respectively. In addition, the trials were split into three groups depending on their response time: for each participant, we computed the 33 th and 66 th percentiles of response times and hence split the trials into short, medium, and long response times. We then studied the distribution of each of the four pairs of anticipation+response outcomes across response time quantiles. This was done separately for cued and uncued trials in order to compare the results on uncued trials to the more reliable ones over cued trials.

DDM fitting

To further analyze the effects of anticipation on behavior, we fitted diffusion decision models (DDMs) (Ratcliff, 1978;Ratcliff and Tuerlinckx, 2002;Ratcliff and McKoon, 2008) to behavioral data. According to DDMs, sensory evidence is accumulated linearly from a starting point z r until reaching a fixed decision boundary a, at which time a decision is made. The DDM is defined by the equation:

dx = νdt + N (t) (2) 
where the decision variable x varies by dx in infinitesimal time dt. The decision state can be viewed as a particle subject to Brownian motion with drift ν, Gaussian white noise term N(t). Additionally, a non-decision time T 0 is fitted to account for biological delay of sensory encoding and motor preparation explaining the difference between the decision time and the observed response time.

Our DDM analysis aimed at identifying whether changes in anticipation resulted in changes in the accumulation rate ν, or rather in a bias in the starting point z r . More specifically, correct anticipation resulting in faster and more correct decisions than incorrect anticipation, one could expect that correct anticipation either increases the rate of evidence accumulation, or that the decision is initially biased towards the correct decision.

One cued data, two hypotheses were tested:

1. correct anticipations should result in larger drifts or larger starting points than incorrect anticipations

participants who displayed above-chance classification performance should also display a larger parameter difference between correct and incorrect anticipations

To test these hypotheses, we fitted a DDM for each participant, fixing the boundary a = 1 and non-decision time T 0 = 0.3s for all participants. This was necessary in order to compare model parameters across participants, since these parameters are interdependent with the drift and the starting point. For each participant, both the drift term and the starting point were fitted separately depending on whether ground-truth anticipation was correct or incorrect. Starting point, drift, and non-decision time variability were additionally fitted for each subject, but not further analysed. The software fast-dm [START_REF] Voss | Fast-dm: A free program for efficient diffusion model analysis[END_REF] was used, using the Kolmogorov-Smirnov fitting method.

To test hypothesis 1, we performed paired-sample t-tests to assess whether the drifts and starting points significantly depended on the correctness of anticipation. To test hypothesis 2, we followed two complementary approaches. First, we performed independent sample t-tests to assess whether the parameter difference was significantly greater on participants displaying above-chance classification accuracies. Second, we performed a correlation analysis to assess a possible linear dependency of classification accuracy on either of the parameter difference.

The same DDM fitting was performed on uncued data, using this time the anticipation class predicted by either classifier (i.e. using "cued-pre-stimulus"and "post-stimulus"-based labels) to assess the correctness of anticipation. This time, we assessed whether a method provided a greater parameter difference than the other. Based on the DDM analysis of cued trials (see Results), this measure would indicate a better classification performance from one classifier or the other.

Statistical procedures

Behavioral effects

We first tested at the group level the effects of the presence of the cue and the stimulus on the response time and accuracy using a multivariate ANOVA procedure. We further tested the effect of congruent and incongruent cues and stimuli on the response time and accuracy on the cued condition only, using a multivariate ANOVA again. Note that the tests were done separately due to the unbalanced number of trials in each condition.

Significance of ERP differences

To test the group-level effects of anticipation on time series, we performed cluster-based permutation testing. The idea of this type of testing is explained in [START_REF] Maris | Nonparametric statistical testing of EEG-and MEG-data[END_REF], and the methodology is summarized here. This analysis aims to test the statistical significance of effects appearing in ERPs, all while correcting for multiple comparisons. Since the number of tests to perform is very big (901 time points, or pixels), classical corrections such as the Bonferroni correction are not adapted as they would result in meaningless reference thresholds. F-statistics of each pixel are computed to identify clusters of (uncorrected) significant activity. The pre-cluster threshold is set to p < 0.05. The signals are then shuffled and the statistics are computed again on the permutation. The statistics of the bigger cluster thus obtained are stored, and the whole process is repeated over several iterations to form the null-hypothesis distribution, against which all the clusters identified in the original signals are tested.

We performed 256 permutations. This number allowed us to obtain stable null hypothesis distributions while remaining time-efficient.

Significance of classification performance

We compute a mean classification score from the k-fold cross-validation for each participant and pipeline. The classification scores are compared to chance level that we obtained through permutation testing over 100 iterations. At each iteration, the labels are shuffled, and the classifier is re-run to compute the classification accuracy over the randomly labeled data. The null-hypothesis distribution of the chance level classification performance is thus obtained for each participant, and the classification performance is compared against this distribution. The p-value of the classification accuracy against the null-hypothesis distribution is computed for each participant and further compared across all participants using a Fisher test.

Results

We have analyzed EEG recordings from 42 participants who performed a sensory categorization task. At each trial, participants had to decide whether the stimulus they were randomly presented with was a sound or a visual stimulus consisting of a drawing of a face. The trials were preceded by a pre-stimulus period of 0.9 seconds, and on some trials a cue was presented at the beginning of this pre-stimulus period, indicating with 80% confidence the class of the upcoming stimulus. In that case, the pre-stimulus period was called the anticipation period.

Our analyses aimed to characterize the brain activation patterns related to specific stimulus anticipation, at the group level and at the single-trial level.

Behavioral results

We first tested the effects of the stimulus and the condition (i.e. presence or not of an informative cue) on the response times and accuracy at the group level using ANOVA. We observe a significant effect of the stimulus (RT auditory = 526ms, RT visual = 462ms, F 1,41 = 119.783, p < 0.001) and the condition (RT cued = 470ms, RT uncued = 526ms, F 1,41 = 70.304, p < 0.001) on the response time. We also note an interaction effect between stimulus and condition (F 1,41 = 30.024, p < 0.001), with responses of cued visual trials faster than any other trial type (p < 0.001), and uncued visual trials significantly faster than uncued auditory trials (t = 12.236, p < 0.001), but not than cued auditory trials (t = 1.058, p = 0.293). The accuracy however was impacted by neither the stimulus type or the presence of the cue. Note that there is no interaction effect of the two factors on the accuracy. These results show that the presence of the cue was effective in reducing the response times.

Then, we tested the effect of a congruent or incongruent cue and the stimulus on the response times and mean accuracy within the cued condition using ANOVA. We observed that incongruent trials had a significant effect on both the response time (RT congruent = 452ms, RT incongruent = 558ms, F 1,41 = 131.890, p < 0.001) and the accuracy (A congruent = 99.1%, A incongruent = 91.1%, F 1,41 = 31.140, p < 0.001), and observe as previously that the stimulus type had an effect on the response times (RT auditory = 496ms, RT visual = 445ms, F 1,41 = 67.009, p < 0.001) but not on the accuracy. We observed no interaction effect on either the response times or the accuracy. These results show that the cue was considered informative by the participants.

Together these results support the emergence of anticipatory effects subsequent to the presentation of an informative but partially unreliable cue, which validates the experimental paradigm implemented here.

Anticipatory activity is different from baseline activity

We first compared the electrical brain activity of the anticipation period to baseline brain activity. Since the duration of the baseline period was jittered across trials, we defined two periods of interest in the baseline period. The "early baseline" corresponded to the period [0, 900] ms from the beginning of the baseline period, and the "late baseline" corresponded to a period of 900 ms preceding the pre-stimulus period. On the grand average activity of all electrodes, we observe that the anticipation activity is significantly different from both early (cluster test, p = 0.03 in [-900 : -794]ms pre-stimulus, p = 0.004 in [-629 : 0]ms pre-stimulus) and late baseline activity (p = 0.004 in [-817 : 0]ms pre-stimulus).

Qualitatively, we observe that the anticipation period entails oscillations at a frequency of 10Hz, stronger than what is typically observed in brain activity. This is simply due to the design of the pre-stimulus period. Indeed, we showed participants 10 frames of random dots, which effectively trigger such patterns.

Anticipatory activity is distinct from temporal expectation

Next, we wanted to show that the anticipation activity is distinct from simple temporal expectation of the coming event. Therefore, we compared at the group level the brain activity in the anticipation period to the activity in the prestimulus period of uncued trials. Grand average ERPs (Figure 5) show a significant difference in two time periods: [-718 : -546]ms pre-stimulus (p = 0.017) and [-268 : 0]ms prestimulus (p = 0.023).

The first one corresponds to the visual-evoked potential due to the presentation of the cue, and is not relevant for our next analyses, because it is not related to anticipation but rather to sensory processing of information. The second one however is quite similar to the Contingent Negative Variation (CNV) that appears during temporal expectations. Since this signal is significantly different from the uncued one, where little perceptual anticipation can be made and temporal expectation should prevail, it indicates that the content of anticipation shapes the related brain activity.

Figure 6 shows the areas involved in anticipation by representing the difference of evoked activity in the pre-stimulus period in the calibration versus test phase, i.e. with and without an informative cue. We observe a general ramping of EEG activity, and a more positive difference in the central areas.

Figure 3: Grand average of early baseline and anticipatory EEG activity over all participants and channels, with 95% confidence interval over participants. The black lines denote the clusters of significant differences between anticipation and early baseline activity, as computed with a p = 0.05 threshold.

Figure 4: Grand average of late baseline and anticipatory EEG activity over all participants and channels, with 95% confidence interval over participants. The black lines denote the clusters of significant differences between anticipation and late baseline activity, as computed with a p = 0.05 threshold.

Figure 5: Grand average of anticipatory EEG activity in cued and uncued trials over all participants and channels, with 95% confidence interval over participants. The black lines denote the clusters of significant differences between cued and uncued pre-stimulus activity, as computed with a p = 0.05 threshold.

Figure 6: Difference of EEG activity evoked in the pre-stimulus period upon cue presentation and without the cue, over the lest 400ms before stimulus onset. The central areas seem to hold differences, consistent with the definition of CNV.

These observations are consistent with the definition of the CNV. Later activity is dominated by occipital activation, again due to the presence of SSVEPs which, in addition to the global ramping of activity, bestride activity in other channels.

Discriminating anticipation-specific neural signatures

We first tried to test whether the pre-stimulus ERP could be distinguished at the group level between visual and auditory anticipation, that is, whether the pre-stimulus ERP differed at the group-level when an eye and an ear cue were presented. As shown in Figure 7, we observed no significant difference between the two ERPs.

Qualitatively, however, we note a difference between the two grand averages, which indicates that some participants may display stronger differences between the two types of anticipation. The topographies also present some differences (Figure 8). We note a difference over the central areas, suggesting a difference between the CNVs and indicating that the CNV holds information about the type of expectation, but also a difference in the parietal-occipital electrodes. This difference might be due to a pre-activation of sensory areas in preparation of the upcoming stimulus.

Single-trial decoding of anticipation

Decoding anticipation from the CNV is feasible on some participants on cued trials

The core test of this study was to determine whether single-trial anticipation could be classified. In the context of our experiment, we hypothesized that participants would display differences in their CNV component depending on whether they expected a sound or a visual stimulus. To this aim, we filtered the signal to keep frequencies between 1 and 4 Hz, hence keeping only the lower frequency signals that characterize the CNV. As a first step, we only considered cued trials, as they allow for direct computation of the classification accuracy. The table of classification performances is shown Table 4. Out of the 42 participants, 26 displayed classification accuracies, as computed from a 10-fold cross-validation procedure, above their individual empirical chance level. We found that the classification accuracies were significantly above chance level at the group level, (Fisher test, χ 2 = 265.5, p < 0.0001). It is therefore possible to classify anticipation states in the pre-stimulus period at the single-trial level.

As the CNV appears after several presentations of the cue-stimulus association, we assess the effect of the condition order on the classification performance. We observed no significant difference between the two groups in the classification accuracy (Welch t-test, p = 0.341, df = 40). This result was expected since all the participants received 60 trials of training prior to the cued condition.

Alpha-band activity for estimating the single-trial anticipation class

Following the results of past studies, we also assessed whether the alpha-band power spectral density could characterize anticipation at the single-trial level.

Using the 8 most discriminative electrodes (selected by the Fisher rank, see Methods for more details) and a Support Vector Machine classifier, we found that they significantly differed from the empirical individual chance level at the group level (Fisher test, χ 2 = 115.7, p = 0.012), although only 5 participants showed above-chance classification accuracies. We conclude therefore that the alpha-band activity is different between the two classes of anticipation, although this difference is visible in fewer participants than differences in CNV.

We also tried to classify the ERP within the alpha frequency band using the same classification pipeline as for the CNV classification, this time filtering the raw signal between 8 and 13Hz. We found that 10 participants showed abovechance classification accuracies, representing again a smaller proportion of all participants compared to the classification of ERPs. Moreover, the classification accuracy was higher than chance at the group level (Fisher test, χ 2 = 175.5, p < 0.0001).

Given the better results obtained using ERP classification, the analyses performed on uncued trials are using the pipeline described in the ERP section.

Towards decoding single-trial anticipation on uncued trials

On uncued trials, we do not have the ground truth about what the participant expected. Therefore, a behavioral proxy for anticipation is necessary to check the validity of our classification. From the behavioral analyses, we found that incorrect anticipation led to longer response times, as seen in the effect of catch trials on the response times. Therefore, we assume in the following that incorrect anticipations lead to longer correct responses, while correct anticipations lead to shorter reaction times on correct responses. Uncued trials were classified for each participant using two pipelines. We first describe how post-stimulus activity was used to infer a ground truth for the state of anticipation. We additionally applied the classifier trained on the covariance matrices of ERPs of cued trials.

Using post-stimulus brain activity to decipher anticipation

Post-stimulus activity holds information about the prior expectations about the stimulus. We therefore trained a classifier to detect when the anticipation did not match the stimulus, using the same pipeline as previously.

The classification performance on cued trials was significantly above chance level (mean AUC across participants: 0.79 ± 0.12), with trials of one participant classified under chance level. Given the satisfactory results of the classification on cued trials, the classifiers were trained again on all the cued trials for each participant and applied to uncued data. The labels thus obtained were converted to anticipation labels, themselves used as the ground-truth labels of anticipation for classification. Applying the same pipeline as described earlier on CNV classification, we computed a classification score for each participant and then combined the p-values across participants using a Fisher test. The classifiers yielded above-chance classification accuracy for 5 participants, resulting in above-chance classification performance at the group-level (Fisher test, χ 2 = 121.1, p = 0.005).

We expected a predicted correct anticipation rate close to 50% for all the participants. However, we obtain that participants anticipate the trials correctly 31 ± 5% (mean±standard deviation) of the time, which is significantly different from 50% (one-sample t-test, t(41) = -27.6, p < 0.001).

In the following, we will refer to this pre-stimulus classification pipeline as "post-stimulus"-based.

Using the CNV classifier trained on cued trials

While further qualitative assessment of the classification performance is given later in the "Brain and behavior" results section, the rate of predicted-correct anticipations can quantitatively indicate the quality of the fit, as we expect again that around 50% of the trials are correctly anticipated. We observed that 53 ± 4% of the trials are correctly anticipated by each participant on average, according to the classifiers. This value also significantly differed from 50% (onesample t-test, t(41) = 4.746, p < 0.001).

However, when taking the "ground-truth" labels of anticipation on uncued trials as obtained through the post-stimulus classification, we observed that the classification accuracy lied at chance level. This could indicate either a failure of the post-stimulus classification or a failing of this pre-stimulus classification, although it is not possible to conclude on that based on the results presented above. The next analysis, whose results are presented thereafter, compared the classification predictions to behavioral observations to substantiate these results.

In the following, we will refer to these classification results as "cued-prestimulus"-based.

Relation to behavior

Behavioral predictions

Behavior in decision-making tasks is characterized by the mean response time of correct and incorrect responses and the response accuracy. The previous analyses yielded four different anticipation determination method: on cued data, we either used the cue as the class of anticipation (the "ground" method) or the label predicted by the classifier (the "classifier" method). On uncued data, we either trained the classifiers on pre-stimulus uncued data using labels predicted on post-stimulus activity (the "post-stimulus" method) or used the classifiers created during the "classifier" method trained on cued data to generate the anticipation labels of the uncued trials (the "cued-pre-stimulus" method). For each anticipation determination method, we therefore computed these quantities for each participant separately. The mean and standard deviation of these values across participants are presented Table 1 1: Mean response times on correct and incorrect responses (in ms) and response accuracy (in %) depending on the correctness of the anticipation and the anticipation determination method. In each cell, the mean within participant and then across participant ± the standard deviation across participant is presented. On cued trials, the "Ground" anticipation determination method corresponds to the hypothesis that the cue is the anticipation class, while the "Classifier" method means that anticipation labels are the ones returned by the CNV classifier. On uncued trials, the anticipation label is always obtained from pre-stimulus CNV classification. The "Post-stimulus" method is the one where the classifier is trained on uncued data using the labels obtained by the post-stimulus classification, while the "Cued-pre-stimulus" is the method where the classifier was trained on the pre-stimulus activity of cued trials and then applied to uncued data.

We additionally performed repeated measures ANOVAs on the response times and response accuracy, taking Response (correct or incorrect), Anticipation (correct or incorrect) and Anticipation determination method (Ground, Classifier, Post-stimulus or Cued-pre-stimulus) as within-subject factors. On response times, we observed a significant impact of anticipation (F (1,[START_REF] Railo | Subliminal perception is continuous with conscious vision and can be predicted from prestimulus electroencephalographic activity[END_REF], p = 0.01), as well as an interaction effect of anticipation and response (F (1,[START_REF] Railo | Subliminal perception is continuous with conscious vision and can be predicted from prestimulus electroencephalographic activity[END_REF], p = 0.02). Post-hoc analyses revealed that on correct responses, incorrect anticipations yielded significantly longer response times than correct anticipations (t(41) = 4.302, p Holm = 0.003). On response accuracy, we observed an effect of both the anticipation (F (1, 41) = 30.329, p < 0.001) and the anticipation determination method (F (3, 123) = 17.692, p < 0.001), as well as an interaction effect of those two factors (F (3, 123) = 26.045, p < 0.001). Post-hoc analyses revealed that only incorrectly-anticipated cued trials, as determined by the Ground method, were responded to less accurately than any other trial type (p S < 0.001).

Distribution of anticipation and behavioral outcomes in response time quantiles

For each participant, the trials were split into three groups depending on their tercile of response times. These terciles were computed individually, so that each participant had the same number of short, medium, and long response times. We then also assessed whether trials were anticipated correctly (i.e. if the anticipation and stimulus labels matched) and if they were responded to correctly (i.e. if the stimulus and response labels matched), yielding four pairs of possible anticipation-behavior outcomes. Figure 9 represents the distribution of anticipation-behavior outcomes in each response time tercile when the anticipation label is drawn directly from the cue label ("ground" method) (Figure 9a), on cued trials when the anticipation is predicted by the classifier (Figure 9b), on uncued trials using the post-stimulus method (Figure 9c), and on uncued trials using the cued-pre-stimulus method (Figure 9d).

On cued data (Figure 9a), we observed that, among correct responses, correct anticipations were prominently represented among shorter reaction times relative to longer ones, while on the contrary incorrect anticipations were denser on long reaction times. On the other hand, error responses tended to be more represented among longer reaction times relative to shorter reaction times regardless of whether the anticipation was correct or not. Only the proportion of incorrectly-anticipated correctly-responded trials was significantly higher in the third quantile than in the first (t = 12.816, p < 0.001) and second (t = 10.125, p < 0.001) quantiles, and correctly-anticipated incorrectly-responded trials were significantly more represented in the third relative to the first quantile of response times (t = 5.227, p < 0.001). These global trends were also found using the classifier method instead of the ground method on cued trials (Figure 9b). However, these differences were not significant at the group level.

On uncued data, the two sources of anticipation labels yielded qualitatively different results. While anticipation predicted by the post-stimulus method raised qualitatively similar results to those obtained on cued data, the trends are reversed when using anticipation predicted by the cued-pre-stimulus method. In particular, correct anticipations with correct responses qualitatively display longer reaction times while incorrect anticipations with correct responses tend to be shorter. Note that the post-stimulus-based classifier yielded that correctlyanticipated correctly-responded trials were significantly more represented in the first quantile than in the third (t = -6.310, p < 0.001). The same qualitative difference can be observed on the ground-truth cued trials (Figure 9a), although not significant.

These observations lead us to the interpretation that the post-stimulus method may have performed better than the cued-pre-stimulus method.

An interesting difference that emerges between cued and uncued trials lies in the distribution of correctly-anticipated error trials. These tend to have longer reaction times in the cued condition while they are more represented among the shorter reaction times in the uncued condition (Post-stimulus-based classifier: first-second quantile: t = 5.608, p < 0.001, first-third quantile: t = 5.720, p < 0.001; cued-pre-stimulus-based: first-second quantile: t = 4.356, p = 0.014). While it is possible that the classification algorithms failed on uncued trials, we propose the alternative view that error trials on correct anticipations result from different mechanisms depending on the condition: in the cued condition, these errors emerge when there is doubt either on the cue that has been seen or the motor command corresponding to the matching response. In contrast, as no indication about the upcoming stimulus is provided to the participant in uncued trials, shorter reaction times and errors could emerge in a repetitive task when motivation drops.

Anticipation and diffusion-decision models

We fitted the DDM to individual behavioral data in the cued condition to assess the mechanism by which response times and response accuracy are improved upon correctly anticipating the upcoming stimulus. For this, the boundary a = 1 and non-decision time T 0 = 0.3s were fixed for all participants, while the drift ν and starting point z r was fitted for each participant depending on whether the cue matched the stimulus or not. This resulted in 2 drifts and starting points per participant.

We first tested whether the drift or the starting point varied significantly depending on the correctness of anticipation. The drift was significantly greater on correctly-anticipated trials compared to incorrectly anticipated trials (pairedsample t-test: t(41) = 4.322, p < 0.001, Cohen's d = 0.667). We also observed a significant effect of anticipation correctness on the starting point value, whereby the starting point was closer to the correct decision boundary when the stimulus was correctly anticipated (paired-sample t-test: t(41) = 2.465, p = 0.018, Cohen's d = 0.380).

We then tested whether these differences also related to the classification accuracy on cued trials. We observed that participants that displayed abovechance classification performances had a significantly more positive difference in starting point between correctly and incorrectly-anticipated trials, compared to participants whose classification performance remained at chance-level (independent sample t-test: t(40) = 2.102, p = 0.042, Cohen's d = 0.668). Moreover, we noted a significant correlation between classification accuracy and difference in starting point (Pearson's r: 0.346, p = 0.025). Note that neither analysis revealed a significant relation between drift difference and classification accuracy.

Applying these results to assess classification performance on uncued data of the post-stimulus-based and the cued-pre-stimulus-based pipelines, we repeated the subjective fitting, this time using uncued trials. We then computed the difference between parameters of correctly and incorrectly-anticipated trials, and compared the differences within and across classification pipelines. Within pipeline, none of the pipelines returned a significant difference between parameters, which we could allocate to a poor fitting compared to cued trials. However, the comparison of these differences across pipelines signals that the cued-pre-stimulus-based pipeline returns significantly more positive start- In each plot, the anticipation label was extracted differently. (a) anticipation labels correspond to cue labels ("ground" method). (b) anticipation labels are the ones predicted by the classifier ("classifier" method). (c) anticipation labels are the ones predicted from pre-stimulus activity by the classifier trained on uncued data: the training was done using post-stimulus-predicted labels to build the "ground-truth" labels of anticipation ("post-stimulus" method). (d) anticipation labels are the ones predicted from pre-stimulus activity by the classifier trained on cued data ("cued-pre-stimulus" method). ing point differences than the post-stimulus-based pipeline (Shapiro-Wilk test: W = 0.615, p < 0.001, Wilcoxon signed-rank test: W = 346, p = 0.02, Cohen's d = 0.488). Given our analysis on cued trials, a better pipeline should display a more positive starting point difference, indicating that the cued-pre-stimulusbased pipeline could have been more accurate than the post-stimulus-based one.

Discussion

In this article, we sought to underline the neural correlates of anticipation in human EEG data evoked by both cued and uncued decisions. We showed that central ERPs, that we identified as the CNV, was not a general marker for unspecific anticipation but rather contained information about the expected stimulus at the single-trial level on cued trials. The classification performance was indeed robust on cued trials across participants. We subsequently attempted single-trial decoding of anticipation on uncued trials using two techniques: the first one used the classifiers trained on cued data, while the second involved a second classifier trained on cued trials to detect incorrect anticipations from post-stimulus activity. The classification performance on the latter was above chance level for 5 out of 42 participants, which is above chance at the group level, although there is a clear degradation of classification performance compared to the classification on cued trials. DDM modeling also allowed to associate anticipation with a shift of the starting point towards the associated decision boundary and an increase of the drift rate upon correct anticipation. Moreover, a better subjective classification performance of pre-stimulus EEG activity relates to an increased difference in starting points between correct and incorrect anticipations. This result also provides a method to assess the classification performance of anticipation on uncued trials.

In this work, we assessed the selectivity of the CNV and of pre-stimulus alpha-band power to specific perceptual anticipation. The CNV showed to be particularly indicative of the anticipated stimulus as 26 out of 42 participants displayed above-chance classification performance with the pipeline implemented here. Past literature associated the CNV to non-specific temporal expectation (Walter et al., 1964) or temporal estimation Kononowicz and Penney (2016). More recently, works have shown that it was possible to distinguish anticipation in Go/NoGo tasks at the single-trial level, that is, to distinguish anticipation between trials where a movement is required relative to when movement has to be withheld (Garipelli, Chavarriaga, and R. Millan, 2009;Garipelli, Chavarriaga, and Millán, 2011;Chavarriaga et al., 2012;Khaliliardali et al., 2012;Khaliliardali et al., 2015). While Chavarriaga et al. (2012) emancipated their analyses from motor preparation by requiring no motor output in one of their tasks, the authors argued that the differences are ascribable to attentional changes following an erroneous proposition. The present work goes further by showing that the CNV is specific to the anticipated type of stimulus. Whether this can be used for brain-computer interface applications remains to be investigated, as online control requires additional temporal constraints that were not considered here. Our experiment additionally provided a fixed time window for anticipation, making the stimulus temporally predictable. In ecological situations, events may not have such a regular temporal structure, and future works could focus on detecting anticipation onset.

The second feature explored is pre-stimulus alpha power. In the past, alpha activity was shown to be an important marker in the pre-stimulus period. While we did observe significant differences in alpha-band activation between the two types of anticipation in this study, the single-trial classification performance using alpha-band activity yielded poorer results than CNV-based classification. Several reasons could explain this. First, the alpha band activity was thought in the past to be related to a passive gating of sensory information and global mental states [START_REF] Pfurtscheller | Event-related synchronization (ERS) in the alpha band -an electrophysiological correlate of cortical idling: A review[END_REF]. This was referred to as an "idling" state. This, however, contradicts more recent evidence that sensory gating is made specifically for each sensory modality, and in a targeted fashion [START_REF] Jensen | Shaping Functional Architecture by Oscillatory Alpha Activity: Gating by Inhibition[END_REF]Jensen, Bonnefond, and VanRullen, 2012), or that attention is selective to specific stimuli (Foxe and Snyder, 2011). The second explanation, which we believe is the most likely, is that the paradigms implemented in previous studies used stimuli at different perception levels, including stimuli close to the individual perception threshold of each observer (Bode et al., 2012;[START_REF] Barik | A machine learning approach to predict perceptual decisions: An insight into face pareidolia[END_REF]Samaha, Iemi, and Postle, 2017). In these instances, stimulus perception would be highly dependent on the network excitability, represented by the alpha-band activity level. Here, we used clearly distinguishable stimuli. Samaha, Iemi, and Postle (2017) have however shown that the alpha-band activity biased the confidence ratings of participants and not the behavioral performance, which would mean that regardless of their alpha activity, participants could still sense the visual information they were presented with. In the same line, [START_REF] Benwell | Low pre-stimulus EEG alpha power amplifies visual awareness but not visual sensitivity[END_REF] showed that discrimination accuracy was unaltered by fluctuations of pre-stimulus alpha power while subjective ratings of awareness correlated negatively with alpha power. This is still compatible with our explanation, as it would mark a difference between sensed and perceived information, the latter requiring a conscious grasp of the stimulus.

The DDM analyses revealed that correct anticipation resulted both in a shift of the starting point toward the correct decision boundary and an increase in the drift rate. This is consistent with both the theory of premature sampling, whereby information is integrated before the stimulus appears (Laming, 1979a;Laming, 1979b;Grosjean, Rosenbaum, and Elsinger, 2001), and the idea of sensory facilitation [START_REF] Walz | Prestimulus EEG alpha oscillations modulate task-related fMRI BOLD responses to auditory stimuli[END_REF], whereby information is more easily integrated when it is expected. Premature sampling results in a starting point shift, while sensory facilitation could explain the increased drift rate. Interestingly, only the difference in starting point between correct and incorrect anticipation significantly varied between participants whose CNVs were classified with above-chance accuracy and participants with chance-level classification accuracy. In that sense, the classifier could have captured premature sampling more efficiently in those participants with good classification performance compared to those for which the classifier yielded chance-level classification accuracy. We further used this result to infer the classification performance of pre-stimulus activity of uncued trials. Classifying uncued pre-stimulus activity is particularly challenging due to the lack of ground-truth information regarding the class of anticipation. The DDM analysis on these trials revealed that the difference in starting points between correct and incorrect anticipations (as predicted by either classifier) was greater when the anticipation class was predicted using a classifier trained on cued data and applied directly on uncued data ("cuedpre-stimulus" pipeline) than when it was predicted from a classifier trained on uncued data, using labels predicted from post-stimulus EEG activity ("poststimulus" pipeline). However, upon comparing the distribution of anticipation and behavioral outcomes across response time quantiles, we observed that the "post-stimulus" pipeline yielded patterns more similar to cued trials than the "cued-pre-stimulus" pipeline, suggesting conversely a better performance of the "post-stimulus" pipeline. Note however that this analysis is qualitative, and that some uncertainty remains, as a quantitative assessment of the quality of the classification of anticipation based on post-stimulus activity on uncued data is equally difficult and was not performed here.

A variety of factors could be at the origin of anticipation. Among them, sequential effects have been shown to have an impact on subsequent decisions (Yu and Cohen, 2008;Bode et al., 2012;Abrahamyan et al., 2016;[START_REF] Palminteri | The Importance of Falsification in Computational Cognitive Modeling[END_REF][START_REF] Urai | Choice history biases subsequent evidence accumulation[END_REF]. Our experiment was designed in such a way that the stimuli were presented randomly to each participant at each trial, with a 50% chance of either stimulus being presented at each trial. Moreover, the stimuli were well distinguishable, reducing the uncertainty. It has however been shown that past stimuli and decisions had an impact on subsequent decisions even when sequences are absent from the experiment design (Yu and Cohen, 2008). We did not consider such effects here, in particular not in the cued experiment, where we implicitly assumed that the effect of the cue was greater than possible sequential effects. Indeed, the presence of the cue reduces the perceived uncertainty compared to uncued trials, as underlined by the reduction of response times in cued trials compared to uncued trials. We argue however that these effects should be considered in more uncertain contexts, for example when attempting to classify uncued pre-stimulus periods, or if the stimuli are closer to the perceptual threshold. The effect of global levels of attention on subsequent behavior could also be evaluated, as drowsiness is reflected in post-stimulus EEG patterns, possibly reflecting an alteration of the evidence integration stage of decision-making (Jagannathan, Bareham, and Bekinschtein, 2022). Future studies could weigh the contribution of the specific anticipation, sequential effects, and attention on behavior, and in particular response times, by means of regression analyses for instance.

It is very likely that the anticipatory processes we uncovered are implicit for the main part. Indeed, while our experiment did not include a feedback questionnaire, some participants reported that they deliberately ignored the cue in the calibration phase to avoid making mistakes. However, our behavioral analysis has shown that participants were systematically faster in the calibration phase compared to the test phase, regardless of the order in which the blocks were performed. The accuracy however did not decrease with increasing speed, although the cue was faulty in approximately 20% of the cases. It indicates that the participants finalized their decisions upon stimulus presentation, but still considered the cue as informative, as they tended to make more mistakes in catch trials, i.e. when the cue and the subsequent stimulus did not match. A deeper analysis, which could include for example a scaling of the reliability of the cue combined with an analysis of how behavior and subjective ratings of the usefulness of the cue, could be useful to investigate this effect.

In conclusion, the CNV holds information about perceptual anticipation, and it is possible to decipher what is expected from pre-stimulus EEG activity at the single trial level. Future works could deepen the uncovered relations between brain activity and behavioral predictions using modelling techniques to build a more precise description of the influence of anticipation on behavior and, consequently, refine the classification of uncued trials.

Supplementary materials A Behavioral data

In this section, we noted the visual and auditory stimuli 0 and 1 respectively.

Description of overall behavior (see also Figures 10 and 11): 4: Classification accuracy obtained from the covariance matrices of the 1 -4Hz-filtered pre-stimulus activity of cued trials ("accuracy"), compared to the empirical chance level ("chance (95%)"). The p-value corresponds to the position of the classification accuracy relative to the empirical distribution of chance level, obtained by permutation.

In the light of this study, it appears that the CNV, previously believed to be related to unspecific temporal expectation, in fact holds information about whether the expected stimulus is visual or auditory. While (Garipelli, Chavarriaga, and R. Millan, 2009;Garipelli, Chavarriaga, and Millán, 2011;Chavarriaga et al., 2012;Khaliliardali et al., 2012;Khaliliardali et al., 2015) previously established that the CNV patterns differed when an action has to be taken versus when motor response has to be withheld. As shown in the past, the CNV entails two waves: the early wave has been associated with sensory expectation and the late wave has been related to motor preparation [START_REF] Rohrbaugh | 13 Sensory and Motor Aspects of the Contingent Negative Variation[END_REF]. While the authors have argued that the differences they observed were unrelated to motor preparation, since they implemented a paradigm that did not necessitate an overt response (Chavarriaga et al., 2012), this motor component seems to be present even in the absence of motor output (Walter et al., 1964;Kononowicz and Penney, 2016). In contrast, our study was designed so that a motor response was required regardless of the stimulus, additionally using the same hand for response, which avoids laterality effects in motor preparation.

DDM modelling was used to establish that anticipation impacted both the starting point and the drift of the evidence accumulation process, which supports the intertwining of these parameters mentioned in the Theoretical framework. Moreover, we observed that participants whose CNV we were able to classify at the single-trial level with above-chance accuracy showed a greater difference in starting point between correctly and incorrectly-anticipated trials compared to participants with chance-level CNV classification accuracy. This metric allowed us to assess the CNV relative classification performance of two classification pipelines on uncued stimuli.

While we were also able to classify pre-stimulus alpha power between auditory and visual anticipation accurately at the group level, the number of participants for which the classification accuracy lied above chance-level was low (5 out of 42) compared to the number of participants for which the CNV was successfully classified (26 out of 42). This finding goes against previous theories that alpha power fluctuations reflected higher unspecific excitability [START_REF] Iemi | Spontaneous neural oscillations bias perception by modulating baseline excitability[END_REF]Wöstmann, Waschke, and Obleser, 2019), and instead goes in favor of the alternative explanation of sensory facilitation [START_REF] Petro | Pre-target alpha power predicts the speed of cued target discrimination[END_REF] or selective attention (Foxe and Snyder, 2011).

-Modelling decision-making with accounts of peri-stimulus effects

The Theoretical framework explained the necessity of developing a model that takes into account several sources of variability and is able to explain the origin of this variability. The DDM, while efficiently describing behavioral data and including variability for all of its parameters, considers these parameter fluctuations as independent sources of noise. However, our literature review also underlined that this is not the case, and that an important share of variability can probably be ascribed to deterministic phenomena, or at least quantifiable endogenous fluctuations in brain activity [START_REF] Wyart | Rhythmic Fluctuations in Evidence Accumulation during Decision Making in the Human Brain[END_REF][START_REF] Petro | Pre-target alpha power predicts the speed of cued target discrimination[END_REF]Jagannathan, Bareham, and Bekinschtein, 2022).

In this work, we therefore sought to develop an evidence-accumulation model in which different sources of variability are intertwined. In particular, the drift and starting point of the accumulation process have both been associated with prior expectations (Grosjean, Rosenbaum, and Elsinger, 2001;Bode et al., 2012;[START_REF] Urai | Choice history biases subsequent evidence accumulation[END_REF], without consensus. Non-linear dynamics allow for such an intertwining of parameters. We have previously reviewed several non-linear models of decision-making, including the OU (Busemeyer and Townsend, 1993) and its more constrained form the LCA (Usher and McClelland, 2001). Both of these models have the advantage of having a very simple form. However, they necessitate an additional decision boundary in order to compute the first-passage time, which is computationally costly to fit as it is mathematically ill-defined.

The present model, called the nl-DDM, addresses these issues. In the following article, we introduced its formalism and compared its fitting performance and parameters to these of the DDM. We also compared them in the context of the study of an additional peri-stimulus effect beyond task instruction, namely experiment time, and showed that the nl-DDM could explain behavioral data better than the DDM, all while requiring less parameters. We additionally compared the nl-DDM to the OU model and showed that the nl-DDM is simpler than the OU model for a similar mechanistic explanation of decision-making.

The Drift-Diffusion Model (DDM) is widely accepted for two-alternative forced-choice decision paradigms thanks to its simple formalism and close fit to behavioral and neurophysiological data. However, this formalism presents strong limitations in capturing inter-trial dynamics at the singletrial level and endogenous influences. We propose a novel model, the non-linear Drift-Diffusion Model (nl-DDM), that addresses these issues by allowing the existence of several trajectories to the decision boundary. We show that the non-linear model performs better than the drift-diffusion model for an equivalent complexity. To give better intuition on the meaning of nl-DDM parameters, we compare the DDM and the nl-DDM through correlation analysis. This paper provides evidence of the functioning of our model as an extension of the DDM. Moreover, we show that the nl-DDM captures time effects better than the DDM. Our model paves the way toward more accurately analyzing across-trial variability for perceptual decisions and accounts for peri-stimulus influences.

Perceptual decision-making has been studied extensively from behavioral 1,2 and neurophysiological 3,4 perspectives, as it is omnipresent in daily activities. When decisions are timed, evidence accumulation models accurately describe human and animal behavior. They assume that decisions are made when enough sensory evidence has been gathered.

Among them, the Diffusion Decision Model (DDM, also called Drift-Diffusion Model) 5 suggests that evidence is accumulated linearly, with a constant drift. The accumulation is additionally subject to Gaussian noise; hence the decision state can be seen as a particle following a Brownian motion. The popularity of this model yields from its intuitive formalism and good fit to behavioral 1 and neurophysiological data 3 . It has also been shown that the DDM formalizes the optimal strategy for decision-making under time constraints 6,7 . Interestingly, other forms of decision models such as the Leaky-Competing Accumulator model 8 , and attractor models 9,10 can be formulated equivalently to the DDM under certain constraints 6,11 .

The DDM accounts for global statistics of the behavior by describing the Response Time (RT) distribution and error rate. A major limitation of this model is that it does not consider inter-trial variability. However, behavioral studies have shown that sequential effects 12 impact prior expectations and the subsequent decision process 13 . Traditionally, expectations are modeled through the starting point, or bias, of the accumulation process 5 . Recent accounts have suggested that choice history affects subsequent drift rates 14 . Together, these studies suggest that these parameters could be intertwined and vary over time, as participants become more familiar with the task. To address this issue, 15,16 proposed an extended DDM, where starting points are uniformly distributed and drifts follow a Gaussian distribution without explicit dependence between them. However, this only provides global statistics about perceptual responses without insight into single decisions or inter-trial interactions. Moreover, the linear accumulation does not describe the variation of the dynamics at the scale of the single decision, which seems inconsistent with the aforementioned empirical observations. OPEN 1 CIAMS, Université Paris-Saclay, Paris, France. 2 CIAMS, Université d'Orléans, Orléans, France. 3 LISN, Université Paris-Saclay, Paris, France. 4 Max-Planck Institute for the Physics of Complex Systems, Dresden, Germany. 5 Computational Neuroscience, Brandenburg University of Technology Cottbus-Senftenberg, Cottbus, Germany. 6 CerCo, CNRS, Université Toulouse III -Paul Sabatier, Toulouse, France. 7 Swartz Center for Computational Neuroscience, INC, University of California San Diego, La Jolla, CA 92093, USA. * email: isabelle.hoxha@universite-paris-saclay.fr Linear evidence accumulation also assumes that evidence accumulation is independent of the decision state or of the time that passes. While some models consider the effect of time on the decision 17 , or dynamics close to the threshold 18,19 , no model to our knowledge accounts for initial dynamics. For example, ambiguous stimuli could yield flat initial drifts. This is partially translated into non-decision time, as it is assumed to be when sensory evidence is processed in the brain without contributing to the decision process.

Previous attempts at single-trial fitting of decisions have been made through attractor models 9,20,21 , and it has been shown that these models can be reduced to a Drift-Diffusion Model 6,22 , that is in that case, a Langevin equation with a non-linear drift 23 . Its dynamics allow for transitions between decision states under fluctuating stimuli 11 . However, the link between each parameter and the dynamics of the model is complicated to interpret. Moreover, the reduction proposed assumes a reflection symmetry of the network to obtain the given form. This seems limiting, in particular when each perceptual decision recruits different sensory modalities.

Moreover, while the few parameters of the DDM are advantageous in terms of complexity, it can be a limiting factor when analyzing endogenous effects, such as fatigue or training on decisions. Previous works have shown that post-stroke fatigue increases the non-decision time along experiment time, while RTs tended to decrease in healthy participants 24 . Increased environmental requirements in terms of workload can decrease RTs and alter accuracy 25 . While some models have taken into account the passing of time within each trials 17 , no models have tried to account for more global fluctuations to our knowledge.

Here we propose a straightforward one-dimensional non-linear form to address these limitations: the nonlinear Drift-Diffusion Model (nl-DDM). It recreates double-well-like dynamics from an evidence-accumulation perspective without assuming reflection symmetry. We show its validity and compare its fitting performances to these of the DDM. We first provide a formal description of the nl-DDM, relating it to the DDM. Then, we fit the models on two human behavior datasets: a lexical classification task already published 26 , and a multisensory classification task. Then, we used correlations to compare the parameters of both models on data simulated from DDM parameters and provide an empirical explanation of the effect of the nl-DDM parameters with analogies on the DDM. We show that it fits data equally well as the DDM while providing drift variability like the extended DDM. The dependency of the drift rate on the decision state provides a framework for more refined analyses of the decision process. Last, we considered the time spent performing the lexical task and showed that the nl-DDM modeled behavioral data significantly better than the DDM in that instance, supporting the necessity to account for the experiment time. We provide open-source code pluggable onto the PyDDM toolbox 22 for reproducibility and easy use of our model.

Results

In this paper, we introduce the non-linear Drift-Diffusion Model (nl-DDM) and show that it performs better than the DDM in terms of fitting accuracy on behavior. To this aim, we fitted both models on two datasets: a lexical classification dataset previously published in 26 , on which we also modeled the effects of the time spent doing the experiment, and a multi-sensory classification task. To provide insight into the meaning of nl-DDM parameters, we also performed correlation analyses between nl-DDM and DDM parameters on data generated from DDM parameters and subsequently fitted by the nl-DDM.

nl-DDM formalism. Our goal was to propose a simple model in which trajectories are attracted to a boundary. Placing ourselves in the context of two-alternative choice paradigms, our model needed two attractive states. In one dimension, this forces the existence of an unstable fixed-point between the two stable fixed-points 27 .

Therefore, the model we propose follows a Langevin equation where the drift varies with the state of the decision. The drift equation can be written in the following form: where x represents the decision variable and dx its variation in infinitesimal time dt. N(t) is a Gaussian white noise term. -k(x + a)(xz)(xa) represents the drift, and depends on several parameters. The parameter k is a time constant of the system, and a and z determine where the attractors, or decision boundaries, lie. ±a represent the two attractive states, and we constrain z to the interval ] -a, a[ to obtain z the unstable fixed-point. In this case, the drift corresponds to the deterministic part of the equation and depends on the current decision state. A summary of the parameters of the nl-DDM is given Fig. 1, which can be compared to the description of the DDM Fig. 5. In the following, we provide a formal explanation of the meaning of each parameter.

The interpretation of k as a time constant is straightforward from the equation: as k increases, a decision is reached faster for any given set of parameters.

To build an intuition for the other parameters, we first consider the potential function derived from the drift term (Fig. 2):

This profile is called a double-well potential profile. From Fig. 2, we can see that there are two sinks at ±a , as well as a source at z, which emerge from the topology of the system. Therefore, ±a are the decision boundaries and control, along with z, the speed-accuracy trade-off. Taking a the boundary for correct responses and -a for incorrect ones, we can see that moving z closer to -a makes the -a-well shallower and the a-well deeper (Fig. 2A). In other words, the correct decision becomes more attractive than the incorrect one. The gradient becoming more positive on the interval [z, a], the trajectories starting on that interval also reach the correct decision faster.

(1)

dx = -k(x + a)(x -z)(x -a)dt + N(t) , (2) V (x) = k 1 4 x 4 - z 3 x 3 - a 2 2 x 2 + a 2 zx .
By reducing a, both wells become shallower, making decisions slower (Fig. 2B). However, for a given noise scale, this also means that any perturbation in the wrong direction is easier to correct because a small perturbation in the other direction can counterbalance that effect. When the wells are deep, the decision variable is driven rapidly to the stable fixed-point, making perturbations less reversible.

We can also observe the impact of k on the potential function in Fig. 2C. Similar to the DDM, we can fit RTs by solving the Fokker-Planck equation corresponding to the Langevin equation (Eq. 1) 22 . Then, a non-decision time T nd shifts the resulting distribution and accounts for biological transmission delays.

This model is similar to the Double-Well Model (DWM), which emerges from attractor network models 11,23 . The potential profile of the DWM indeed takes the form:

Comparing this equation to Eq. ( 2), we observe a term in x 3 that is absent from the DWM, because of the reflection symmetry assumption made in the DWM 23,27 . However, when z = 0 and µ = 0 , we observe the equivalence of the systems:

This equivalence is coherent with the interpretation of z and µ as the impact of the stimulus on the decision and shows that in the absence of a stimulus, the two models follow the same behavior. Because the nl-DDM is not assuming reflection symmetry, the presence of a stimulus impacts the trajectories generated by the two models in different ways.

Model performance and comparisons. Behavioral results. It is helpful to obtain each participant's RTs and decision accuracy for decision-making analysis, particularly for decision model fitting.

We used two datasets in this paper, described in the Methods section. They both consist of classification tasks performed by human participants. One of them is a dataset collected by Wagenmakers et al. 26 , in which participants had to assess whether a word presented on screen existed or not. The second one is a dataset in which participants were shown visual stimuli or a combination of visual and auditory stimuli on screen and had to classify them according to their type (either "face" or "number+sound").

We describe here the validation conducted on the multi-sensory dataset. Analyses of the lexical dataset 26 are discussed later.

(3) The decision state is represented by a decision variable x traveling from a starting point (for example, drawn from a uniform distribution, centered around x 0 and of width 2s z . It is represented as "SP" on the figure) to a boundary ("Correct boundary" or "Incorrect boundary") under the influence of a drift. Here, the drift depends on the current state of the decision. Depending on the position of x 0 relative to z, the drift will hence have different shapes. The trajectory is also impacted by white noise so that real trajectories are similar to the thin blue lines. From the stimulus onset, the decision process is delayed by a certain non-decision time ( T nd ). Over an ensemble of decisions, probability density functions of correct and error response times can be created, as displayed here.

V (x) = -µx -αx 2 + x 4 . k = 4 a 2 = α/2
On average, participants were shown 49.82 ± 2.42% (mean ± standard deviation, N = 25 ) of "number+sound" stimuli, indicating the quasi-equiprobability of each stimulus. We then performed mixed-model ANOVAs on their RTs and response accuracy for both stimulus-response mapping (between-subject factor) and stimulus (within-subject factor). Across all participants and stimulus types, the mean RT is 535 ± 61 ms , with an accuracy of 98.59 ± 0.95% . For the "face" stimulus, participants responded after 539 ± 56 ms with an average accuracy of 98.51 ± 1.17% . Participants responded to the "number + sound" stimulus after 531 ± 69 ms on average with an accuracy of 98.68 ± 0.94% . The difference in performance between the types of stimuli is not significant in terms of accuracy (Table 1) nor RTs (Table 2).

In the "face-left" stimulus-response mapping, where participants were instructed to click left upon face stimulus presentation and right when they were presented with a number+sound stimulus, participants responded on average within 531 ± 74 ms with an accuracy of 98.48 ± 1.12% ( N = 15 ). Participants who underwent the "face- right" mapping ( N = 10 ) responded within 541 ± 30 ms with an accuracy of 98.77 ± 0.60% . The effect of the stimulus-response mapping on accuracy and RT was not significant (Tables 3 and4). We note a marginal interaction effect between stimulus-response mapping and stimulus type on the accuracy ( p = 0.052 , Table 1). However, pairwise post-hoc comparisons revealed no difference between interaction sub-conditions ( p Holm > 0.310).

These results show the uniformity of participant responses across mappings and stimuli. We computed the Bayesian Information Criterion (BIC) for each model fitted on the multi-sensory dataset to establish a comparison of model performance that considers the sample size and number of parameters for each model. This is indeed necessary when comparing performance across model types, since the number of parameters is different. We observed that the nl-DDM fitted RT data significantly better than the DDM, even when accounting for the number of parameters (Fig. 3, Shapiro-Wilk test: W = 0.928, p = 0.08 , one-tailed paired t-test, t( 49 Comparison of parameters. We compared the parameters of the DDM and nl-DDM using data generated from DDM parameters, varying the parameters B, ν, x 0 and s z consecutively. Each parameter varied 100 times, result- ing in 400 generated datasets, to which the parameters k, z, a, x 0 and s z of the nl-DDM were fitted. Although we fit the parameters separately for each stimulus, we merge all the results to build relations between the parameters of the DDM and the parameters of the nl-DDM. The correlation matrix of the nl-DDM and DDM parameters across all models is given Fig. 4. Note that, since the DDM parameters were artificially varied, the correlation coefficients within DDM parameters were discarded from our analysis.

We empirically computed the relation between the parameters within the nl-DDM. We observed a strong negative correlation between a the boundary and k the time constant. This corresponds to their opposed effect on the attractiveness of the correct response. Increasing either will make the decision more attractive, so to keep the same attractiveness of the correct response, if one increases, the other should decrease. In our data, since the noise term was constant, these two terms are strongly correlated. Note that the effect of each parameter remains different, as shown on Fig. 2B andC. While increasing k deepens both wells, increasing a will deepen the wells and pull them apart. Effectively, the relation between a and k is non-linear, as seen on Supplementary Fig. S2. We noted a positive correlation between k and z, which can also be understood with Fig. 2A,C: if k increases, the correct decision well becomes deeper and thus more attractive, and to correct for this effect, z needs to increase as well. k and s z the half-width of the starting-point distribution of the nl-DDM were related, while a related to the middle of the distribution x 0 and to its half-width s z . This can be explained by the symmetric effect of k on the depth of the potential wells (Fig. 2C) and the asymmetric effect of a (Fig. 2B). In the same line, z correlated positively to x 0 and negatively to s z . Increasing z results in slower correct and less accurate decisions. To maintain the same speed-accuracy trade-off, the starting-point distribution can be shifted towards the correct-decision boundary and it variability diminished so that a larger portion of it is located to the right of z, which is the attracting zone of the correct-decision boundary. Last, the starting-point parameters x 0 and s z in the nl-DDM positively correlated with each other.

Upon cross-model comparison, we first observed that the middles of the starting-point distributions and their width correlated positively, which was expected. x 0 of the nl-DDM and s z of the DDM were consequently also positively correlated, since they both correlated positively to s z of the nl-DDM, and a negatively to s z of the DDM for the same reason. x 0 of the DDM also correlated negatively with z of the nl-DDM: increasing x 0 in the DDM results in faster correct decisions and more accurate decisions. Decreasing z in the nl-DDM has the same effect, as the correct-decision well deepens and a larger proportion of the starting-point distribution is located to the right of z, hence towards the correct decision. s z of the DDM additionally correlated negatively to z and positively to k. Increasing s z with x 0 = 0 in the DDM results in faster decisions and lower accuracy. Decreasing z in the nl-DDM results in faster correct decisions, which is coherent with the effect of increasing s z . Increasing k makes decisions faster and since the potential wells deepen (Fig. 2C), the decisions are also more prone to noise and hence less accurate. All these effects mirror the ones observed upon increasing s z in the DDM.

The DDM boundary B correlated positively to k, a, z and x 0 and negatively to s z of the nl-DDM. Increas- ing B results in improved accuracy at the cost of slower decisions. Consistent with this effect, increasing a also increases the accuracy. Shifting the starting-point distribution towards the correct decision, i.e. to the right of z, while decreasing its variability results in more correct decisions (Fig. 2D), explaining the observed correlation. Increasing z results in slower correct responses due to the correct potential well being shallower (Fig. 2A), which mirrors the loss of speed implemented by an increase of B. Increasing k results in overall faster and less accurate decisions, which contradicts the effects of the boundary increase in the DDM. However, we also noted that k correlated positively with z and negatively with s z of the nl-DDM. These two parameters being positively and negatively correlated to B respectively, the increase of k upon increasing of B should be a consequence of these correlations.

We also observed a significant negative correlation between z and ν . This relationship was also expected, as increasing the drift ν in the DDM results in faster correct decisions. Mirroring this effect, z regulates the relative attractiveness of each decision well. As z becomes more negative, the correct decision (corresponding to decision boundary +a ) becomes more attractive, and hence correct decisions are made faster. Another explanation for this can be derived from Fig. 2: if we shift z closer to 0, the negative and positive wells of 2 will tend to be at the same level. It means that the mean maximum drift will decrease towards zero as z increases closer to the middle of the two boundaries ±a . In other words, increasing z will decrease the drift, hence the negative correlation. Conversely, a correlated positively with ν since pulling the potential well apart makes them more attractive (Fig. 2B). z also correlated positively with x 0 of the DDM, which was expected as both have an impact on the proportion of trials that reach either boundary in the absence of noise. we noted a negative correlation between DDM drift and nl-DDM starting-point distribution. Following 29 , higher DDM starting-point variability results in faster error responses. Therefore, across models, if the drift becomes greater in the DDM, hence making error responses slower, the starting-point variability in the nl-DDM should diminish to have the same effect.

Effects of time passing. The time spent performing the task is likely to impact the decision strategy, and we seek to model these effects using the DDM and the nl-DDM. We thus added a time condition to the lexical classification dataset, corresponding to whether the trial was performed in the first half of the experiment ("early" condition) or the second ("late" condition). Participant 2 did not complete all the blocks, and was eliminated from our analyses. Therefore, the following analyses are presented over 16 subjects, each exposed to all the conditions. Model fitting. The drift and z of the DDM and nl-DDM varied as a function of the stimulus complexity (common, rare, very rare, non-existent word), and the boundary of the DDM varied depending on both the instruction (speed/accuracy) and the time condition, resulting in 4 boundaries. In the nl-DDM the effects were modeled separately using a and k, fitting k depending on the time condition and a according to the instruction. Then, the starting-point distribution and non-decision time were fitted over all trials for each model. We compared the fitting performance of the two models. The BIC of the nl-DDM was significantly smaller than the BIC obtained by the DDM (Shapiro-Wilk test: W = 0.773, p < 0.001 , one-sided Wilcoxon signed-rank test ( BIC nl-DDM < BIC DDM : W = 34, p = 0.042 ), which shows that splitting the effects of instruction and experi- ment time yielded better results than combining them.

Analysis of the parameters of the lexical classification dataset. We fitted both the DDM and the nl-DDM taking into account the instruction, the time of the experiment (early/late trial) and the word type for each trial. In the DDM, we hence fitted 4 drifts, corresponding to the 4 word types, and 4 boundaries, corresponding to 2instructions × 2times . Conversely in the nl-DDM, we fitted 4z parameters (one per word type), 2a (one per instruction) and 2k (one per time of the experiment). We then performed paired t-tests to assess the discriminability of the parameters across conditions. We first compared the drift and z parameters across word types. In both the DDM and nl-DDM, we observed significant differences in the drifts and z between all word type pairs, except between rare and non-existent words (Tables 5,6). The two models therefore discriminate between word types equally well. We observed that k differed significantly between the two time conditions ( t(15) = 4.553, p < 0.001 ), and a differed significantly between the two instruction conditions ( t(15) = 4.879, p < 0.001 ). Comparing the boundaries of the DDM resulted in 6 comparisons, corresponding to the Bonferroni-corrected α = 0.05 6 = 0.008 . We noted no significant difference between early and late trials in the accuracy instruction ( t(15) = 2.784, p = 0.014 ), while all the other differences were significant (Table 7). The behavioral analysis (Supplementary Information 3) however underlined significant differences in RTs and accuracy across time of the experiment. The effects of time passing are therefore better transcribed by the nl-DDM than the DDM.

Discussion

We presented a non-linear model of decision-making. This model takes the form of a Langevin equation, and provides a framework in which individual trajectories of the decision variable can have different shapes under the same global parameters (Fig. 2D). We have shown that this model predicts behavioral data equally well as the DDM. From the formalism we have described, it becomes clear that inter-trial variability in drift emerges from the dynamics of the nl-DDM, offering the possibility for further single-trial analyses and modeling.

The interpretation of the nl-DDM parameters may seem counter-intuitive at first, particularly when considering that decisions are made faster when the boundaries are further apart. Our correlation analysis provided insight into bridging the meaning of nl-DDM and DDM parameters. The difference is that in the DDM, the gradient of the drift is constant, whereas it varies in decision space with the nl-DDM. By pulling the boundaries further apart, we effectively reduce the impact of one attractor on the other, making each of them more attractive. Therefore, a decision can be reached faster, at the price of accuracy. Similarly, increasing the drift in the DDM is equivalent to shifting z towards the negative boundary in the nl-DDM, as they both result in fast correct responses. However, note that these parameters are not entirely equivalent as we did not find a perfect mapping between them, meaning that the nl-DDM is conceptually different from the DDM (Fig. 4, see also Supplementary Information 2, Figs. S1 andS2).

We have shown that the nl-DDM can also account for changes in the decision dynamics that do not relate directly to a change in the experiment but rather to the state of the participants. While such an account necessitates an exponential multiplication of parameters in the DDM, the nl-DDM requires a simple duplication of the parameters. Indeed, if we again consider the case where there are two conditions (here, instruction and time), the DDM requires n instructions × n times boundaries, while the nl-DDM requires n instructions + n times boundary parameters (a and k). The version we showed here only split the trials into two instruction and time conditions, which results in the same number of parameters in the DDM and in the nl-DDM. Note however that any more instances of either condition would have meant more parameters in the DDM relative to the nl-DDM.

We argue that drift and starting-point variability are intertwined, as transcribed in the nl-DDM and in alignment with the view that evidence accumulation starts in anticipation of stimulus apparition 32 . EEG research has shown a matching between pre-stimulus activity and confidence ratings in human participants 33,34 . The startingpoint distribution models pre-stimulus states, and in the DDM the drift relates to the quality of the integrated stimulus 4 , with more ambiguous stimuli corresponding to lower drift rates. At the single-trial level, drift variability relates to the variation of the quality of stimulus perception and processing in the brain 1 . In our model, the starting point directly impacts evidence accumulation, allowing for a uniform theory of decision-making that includes explicit co-dependency of parameters. Some general forms of the DDM include a variance of the drift. In the nl-DDM, we have not implemented this possibility, as we assumed that the inter-trial variability of the drift emerged from the variability of the starting point. In neurophysiological terms, we assumed that the pre-stimulus arousal and stimulus expectations led to differences in the rate of evidence accumulation. This is supported by past observations, according to which pre-stimulus brain activation impacts RTs 35,36 . Pre-stimulus brain activity also modifies perceptual 37 and pain 38 thresholds. Therefore, depending on the pre-stimulus activity, decisions can be made even in the absence of actual evidence 33,39 , or under ambiguous evidence 40,41 . Along the same lines, 42 have shown that biases were implemented through local changes in accumulation rate, which supports the intertwining of accumulation rate and pre-stimulus states. However, 34,43-45 argue that pre-stimulus brain states should only affect the decision criterion, not how well participants perceived the stimuli. Translating the signal-detection theory to the evidence-accumulation scheme 16 , pre-stimulus states should only be changing the decision boundary, or equivalently the starting point, and not the drift rate. For example, 34 found that pre-stimulus alpha power did not impact the accuracy of visual evidence accumulation, but only the confidence in the decision. 33 found similar results with auditory stimuli. Although these observations seem to contradict our assumption that the starting point impacts the evidence-accumulation process, both phenomena could coexist, as more extreme starting points are more attracted to the closer attractor. This results in fast and confident observations, although little evidence has been accumulated (we would be located at a plateau in our model), i.e., even if the stimulus was not well perceived.

The current analysis uses a form of the DDM without all variabilities proposed by Ratcliff and Tuerlinckx 29 . The reason is two-fold. First, we wanted to use simple forms of both models to emphasize the characteristics of the ground parameters of each model. One may argue that the DDM should then have been fitted using a single point as the starting point. However, this would have introduced a confound when comparing the two models. Indeed, a major advantage of the nl-DDM is the variety of dynamics that it offers depending on the starting point. Since the DDM can also be improved by adding starting-point variability, implementing it in both models seemed to be a fair compromise. Second, and related to the first, any source of variability that could have been introduced in the DDM could also have been implemented in the nl-DDM. Besides starting-point variability, non-decision time variability could also exist in the nl-DDM. As argued above, the drift and starting-point variability should be intertwined, meaning that fitting a variability of the drift would be redundant to some extent in the nl-DDM, but we could implement variability in k, which, according to our analyses on time that passes, could be a natural mirror of the remaining effects of drift variability in the DDM.

The dynamics that we propose here is rooted in empirical observations made in neurophysiological studies. More specifically, three phases can be identified in the decision trajectories: an inertia stage, a quasi-linear evidence accumulation stage, and a plateau stage. The initial inertia relates directly to the brain activation needed to integrate sensory evidence. 35 and 36 have shown in human EEG studies that the brain activity prior to stimulus presentation changed the speed of responses. More specifically, they showed that the more pre-activated the required sensory area, the faster the decision. The nl-DDM mimics this behavior at the single-trial level: for trials starting close to the unstable fixed-point (i.e., further from the correct decision well), the trajectories start with a plateau-like stage, whereby little evidence is accumulated because the brain would need to process the stimulus more intensively in order to extract information from it, before integrating evidence faster. This initial inertia is circumvented by shifting the starting point closer to the decision well, resulting in faster and more accurate responses. The initial inertia in the DDM is referred to as the non-decision time and encompasses both sensory processing and motor planning and execution. The nl-DDM assumes therefore that part of these processes participates in the decision process, which goes beyond the conceptualization of decision-making as the sequence of sensation, perception, and motion.

A recent review from 46 shows the limitations of existing evidence-accumulation models. We try to address several of them with the nl-DDM, including the possibility for analyses beyond the global description of RTs and the formulation of initial and final dynamic changes during the decision process. In particular, our formal description has shown that different shapes of decision trajectories can co-exist within the same framework, not solely because of noise, but because of meaningful variability. We expect this model to be further used to gain insight into the across-trial variability of decisions.

The current study considered that the input was presented at the beginning of the trial and affected the decision in a constant fashion. We could also imagine more dynamic cases, where the input is processed over a finite period and participants accumulate evidence during stimulus presentation, as has been done in past DDM analyses 47,48 . In non-stationary contexts, the input can be considered as a variation of z in time. By shifting z to either boundary, more trajectories are attracted to the opposite boundary, hence increasing the likelihood of correct answers. In addition, it can be inferred from our formal analysis that changing z means changing the drift rate. This change in input could also explain error-correcting behaviors 49 and spontaneous changes of mind 50 . When the stimulus ends, the DDM is modified so that the drift is null, i.e. evidence is no longer accumulated. Therefore, changes of mind are the result of noise in the system. Conversely, stimulus termination could be modeled through shifting z in the nl-DDM, which effectively modifies the drift rate of the current decision, in a way that the decision variable could toggle towards the opposite boundary upon stimulus disappearance. Conceptually, the drift in the nl-DDM not only relates to the accumulation of evidence but also encompasses decision processes related to the post-processing of evidence.

We have shown that, while similar to the DWM 11 derived from attractor models 23 , the nl-DDM is equivalent to it only in the absence of input. A question that remains open is that of the mechanism underlying this equation. From the reduction computed in the paper by 23 , it would seem that a network of three populations could produce the dynamics we have described. However, the main assumption of the reduction was that the network was invariant through reflection. We argue that the mechanisms described by the nl-DDM are similar to these of the DWM, but offer a broader range of applications beyond the case of symmetrical models.

Extending this model to multiple-choice situations is another interesting ground of research. The DDM is inapplicable in such situations. The nl-DDM would require structural changes for multiple choices. Indeed, the decision variable's trajectory is here modeled in a one-dimensional space, where the alternatives are represented as attractors. Its multiple-choice variant would require more attractors. In 1D-space, adding more stable fixedpoints will result in two issues. First, traveling from one alternative to another may require passing through other decision wells, which seems incoherent with behavior. Second, adding stable fixed-points requires the implementation of as many unstable fixed-points, which would mean a two-fold increase in the number of parameters when adding one choice. A simpler solution would be to switch to a 2D-space, so there could be a central unstable fixed-point, and the subjective preference for each alternative would determine the position of each stable fixed-point.

Methods

Drift-Diffusion model. The Drift-diffusion model 5 is characterized by a linear accumulation disturbed by additive noise. Formally, this can be written as the following Langevin equation (Eq. ( 4)):

where x represents the decision variable, an abstract quantity representing the state of the decision, dx its infinitesimal variation in time dt, and N(t) is a Gaussian white noise, parameterized by its standard deviation σ . Figure 5 gives a representation of this model.

Evidence is accumulated following Eq. ( 4) until a decision boundary A > 0 or -A is reached. Typically, the positive boundary corresponds to correct decisions and the negative one to incorrect responses.

Finally, the starting point of accumulation is called the bias and is defined as a single point within the two boundaries. In general forms of this model, it is also possible to consider that the starting point is drawn from a uniform distribution centered around the bias x 0 and of width 2s z , such that [x 0 -s z , x 0 + s z ] ⊆] -A, A[ 51 , or from other parametric distributions 15 . We will consider uniformly distributed starting points in our fitting to provide a fair comparison of the two models without loss of generality.

The boundary separation represents the speed-accuracy trade-off. Indeed, if this separation is bigger, decisions are less impacted by noise and hence more accurate, but at the same time, they will take longer to reach from a given starting point. In contrast, the drift mainly impacts the speed of response, as a higher drift will lead to faster correct responses and longer incorrect responses.

Fitting is typically done globally over RTs. In fact, the trajectories defined by the equation cross the decision boundaries, forming a RT distribution usually compared to an exponentially modified Gaussian. In order to obtain a close fit, it is necessary to define a non-decision time (noted T nd ), which corresponds to the time neces- sary for sensory processing of the stimulus, motor planning and execution, independently of the decision process.

Data collection and processing. In order to test the quality of the fitting of the nl-DDM, we use RTs from a classification task performed by humans described thereafter. The paradigm was initially implemented to assess the relation between RTs and emotion valence of visual stimuli.

Classification task with different sensory modalities. We first tested the quality of the nl-DDM by fitting it to data we collected. 25 (11 female, 14 male) healthy right-handed participants aged 27.72 ± 8.96 (mean ± stand- ard deviation) with normal or corrected-to-normal vision and hearing consented to taking part in a perceptual classification task experiment. EEG brain activity was also recorded (not reported here). The experiment was performed under the local ethics committee approval of the Comité d'Ethique de la Recherche Paris-Saclay (CER-Paris-Saclay, invoice notice nb. 102). All the methods described were performed in accordance with the guidelines and regulations stated by this committee and disclosed in the invoice. An interview preceded the experiment to check with the participants for non-inclusion criteria (existing neurological and psychiatric disorders, uncorrected visual and hearing deficiencies). Informed consent was obtained from all the participants included in this study.

Participants were presented at each trial with images of faces or images of numbers, and had to respond with mouse clicks to report what stimulus they perceived. A sound accompanied images of numbers to suppress any ambiguity. Participants were instructed to respond using their right hand. To control for possible differences in motor response speeds between the two fingers, one group of participants ( N = 15 ) was instructed to report faces with a left click and numbers with a right click ("face-left" stimulus-response mapping), while the other ( N = 10 ) was given the opposite instruction ("face-right" stimulus-response mapping). Responses were constrained to 2 s after stimulus onset. No feedback on the performance was given to participants. At each trial, each stimulus had a 50% chance of occurring.

Each participant performed 480 classification trials, split into 8 blocks of 60 trials each. Between each block, participants were offered a break of free duration. Each trial followed the sequence described Fig. 6. First, a central red cross appeared on the screen, indicating a pause period. After 1.5 s, the cross became white as a signal for trial start. The white cross stayed for 1.5 s, after which a video clip of visual noise appeared: 9 frames of noise of 100 ms each were displayed. After the noise clip, a last frame of random visual noise was presented, and the stimulus appeared on top of it. The last frame stayed intact until the end of the trial, and the stimulus was displayed over it for 200ms. The trial was terminated upon participant response or timed out after 2 s. A trial lasted for about 5 s, resulting in blocks of about 5 min each.

We used face sketches as used in 52 , which were generated from the Radboud Face Dataset 53 . Number stimuli were generated at the beginning of the session for each participant, under the constraint that they were 3-digit integers. In total, 10 different face stimuli and 10 different number stimuli were used for each participant. Wagenmakers et al. 26 . To model the effects of time passing and discard the possibility of better performances emerging from the fitting algorithm or data acquisition, we also lead our analyses on a bigger pre-existing dataset taken from 26 . 17 human participants performed a classification task, as they were randomly presented with real or invented words. The invented words were generated from real words by changing a vowel, and the real words were labeled in three categories depending on their frequency (frequent, rare, or very rare). In total, stimuli were split into 4 categories of interest. Each participant performed 20 blocks (4) dx = νdt + N(t) , of 96 trials each, with as many invented words as real words in each block. Participants were given the additional instruction to define the speed-accuracy trade-off in each block: they alternated between blocks where speed was emphasized and blocks where accuracy was more important. Responses were limited to 3 s, and trials with RTs below 180 ms were discarded to avoid anticipatory responses. More details can be found in 26 , and the dataset can be accessed from here.

Lexical classification dataset from

Behavioral analyses. We are interested in comparing model parameters between the DDM and the nl-DDM. It is important to check whether participants' performance across stimulus-response mappings and stimuli is coherent in terms of RTs and accuracy. Indeed, the multi-sensory experimental paradigm we defined entails two types of stimuli and two motor commands for the choices. In addition, we have created two experimental groups, which were instructed to respond with opposite motor commands. First, we computed the percentage of stimuli in each class to verify that the stimuli were globally equiprobable for each participant. Since we designed the experiment to display each stimulus with the same probability at each trial, we expect this number to be close to 50% . Otherwise, participants could opt for a strategy that prioritizes one response against the other. Then, we performed two mixed-model ANOVAs, respectively testing RTs and accuracy. The stimulus-response mapping was considered a between-subject factor and the stimulus type a within-subject factor.

In the lexical classification data 26 , the effect of the time of the experiment is of special importance, as well as its interaction with the other experimental conditions (i.e. the word type and the instruction). We therefore performed two repeated-measures ANOVAs, respectively testing RTs and mean accuracy, assessing the effects of time (first half of the trials or second, resulting in two conditions: early vs. late trials), stimulus frequency, and instruction (accuracy or speed). One of the participants (participant 2) did not perform the 9 th block of the experiment, which removed a significant portion of trials in one of the conditions. This participant was removed from the analyses, and the analyses were therefore performed over 16 participants. Post-hoc analyses were performed using the Holm correction.

Data fitting.

The classical way of fitting evidence-accumulation models is by fitting one drift for each stimulus category separately. In that case, the positive and negative boundaries still correspond to correct and incorrect responses respectively, and the starting points are taken from the same distribution regardless of the stimulus. Consequently, one pair of boundaries ±B , the middle of the starting-point distribution x 0 and its half-width s z , and two drifts ν 0 and ν 1 (corresponding respectively to "face" and "number+sound" trials) have to be fitted in the DDM. Similarly, one pair of stable fixed-points ±a , one time scale k, the middle of the starting-point distri- bution x 0 and its half-width s z , and two unstable fixed-points z 0 and z 1 (that will tune the drift in the "face" and The decision state is represented through a decision variable that travels from a starting point that can be drawn for example from a uniform distribution, centered around x 0 and of width 2s z . The decision state is represented through a decision variable x traveling from a starting point (for example, drawn from a uniform distribution, centered around x 0 and of width 2s z . It is represented as "SP" on the figure) to a boundary ("Correct boundary" or "Incorrect boundary") under the influence of a constant drift (dotted line). The trajectory is also impacted by white noise so that real trajectories are similar to the thin blue lines. From the stimulus onset, the decision process is delayed by a certain nondecision time ( T nd ). Over an ensemble of decisions, RT distributions of correct and error responses can be estimated, as displayed here.

"number+sound" stimuli respectively) are needed for the nl-DDM. In both cases we fix the noise parameter to σ = 0.3 . As explained by 5 , since the speed-accuracy trade-off is determined by the boundary separation, fitting two parameters among drift, boundary, and noise is constraining enough. In addition, each model requires fitting a non-decision time T nd per stimulus type. Hence, 6 parameters must be fitted per participant for the DDM, against 7 for the nl-DDM.

We used the PyDDM toolbox 22 for the fitting, minimizing the negative log-likelihood function and an implicit resolution. The nl-DDM indeed does not have explicit solutions when z is not centered. The log-likelihood is such that the more negative, the closer the modeled distribution of RTs is to the empirical RT histogram.

Fitting the lexical classification dataset 26 . With this dataset, we were interested in modeling the effects of time passing throughout the experiment. Therefore, we created an artificial condition based on the sequence of blocks, which characterized the trials as happening early (i.e. within the first half of the experiment) or late (i.e. within the second half of the experiment). We discarded participant 2, for whom we did not have data for the 9 th block. All the other participants performed 20 blocks alternating between speed and accuracy instructions, therefore each time condition held 5 blocks with each instruction. Within the DDM framework and for each participant, one drift was computed per stimulus type, resulting in 4 drift terms: ν 1 , ν 2 , ν 3 , ν NW , corresponding respectively to frequent, rare, very rare, and non-existent word stimuli. 4 boundaries were fitted, corresponding to 2 instructions ×2 time conditions. The non-decision time, starting point, and starting-point variability were fitted for each participant over all trials. The within-trial noise parameter was fixed to 0.3. Hence, each model consisted of 11 parameters.

Within the nl-DDM framework, we fitted for each participant one z per stimulus type ( z 1 , z 2 , z 3 , z NW ). In addition, one parameter a was fitted per instruction condition and one parameter k per time condition, resulting in 4 more parameters. Similar to the DDM, the non-decision time, starting point, and starting-point variability were fitted over all trials from each participant and the noise scale is set to 0.3.

As previously, we used PyDDM 22 with negative log-likelihood minimization and implicit resolution.

Performance comparison. Since the fitting on both datasets was performed using a different number of parameters and samples, we computed the Bayesian Information Criterion for each model, defined as:

That way, a penalty for more samples and parameters is considered. The negative log-likelihood is the fitting score. Hence, we compare each loss pairwise, using a one-sided paired-sample t-test. Indeed, we want to test whether the nl-DDM is better than the DDM with these three metrics, hence testing the hypothesis BIC nl-DDM < BIC DDM . BIC = log(sample size) × n parameters + 2 × (Negative Log-Likelihood) . Figure 6. Timeline of a single trial. Each trial is preceded by a rest period, followed by a baseline period (necessary for EEG processing, not reported here), each lasting 1.5 s. A noise clip consisting of 9 random-dot frames of 100 ms each indicates the arrival of the stimulus in a non-stimulus-specific fashion. The stimulus then appears on a noisy visual background for 100 ms. The same noisy background frame then lasts until the participant's response and times out after 2 s otherwise.

Table 8. List of DDM parameters used for simulations and subsequent correlation analysis. A uniform sampling of 100 values was performed over the variation range of each parameter. One parameter was varied at a time, using the default value for all the other parameters.

Parameter

Default value Variation range

B 1 [0.2, 5] ν 0.2 [0, 10] x 0 0 [-1, 1] s z 0 [0, 1] σ 0.3 Kept constant T n d 0.3 Kept constant
Comparison of parameters. For a better understanding of the parameters of the nl-DDM, their interaction and their meaning in the DDM framework, we computed the Pearson's correlation coefficients of DDM and nl-DDM parameters over simulated experiments. In order to obtain correlation coefficients within nl-DDM parameters as well as across DDM and nl-DDM parameters, we varied one by one the DDM parameters B, ν, x 0 and s z , and simulated 500 data points for each parameter combination. The nl-DDM parameters k, z, a, x 0 and s z were subsequently fit to the generated datasets. Table 8 summarizes the sampling of DDM parameters as well as the default value for each parameter. We explored 100 variations of each parameter, resulting in 400 generated datasets. Since the noise parameters σ = 0.3 and T nd = 0.3s were kept constant when simulating the DDM, we also fixed σ = 0.3 and T nd = 0.3 in the nl-DDM. We computed the correlation matrix between all the parameters of both models. This allows for a first look into first-order interactions between model parameters, within and across model types. Since the correlations within DDM parameters were irrelevant due to their artificial manipulation, these coefficients were not computed. The correlation coefficients were computed using Pearson's ρ , defined as:

ρ x,y = cov(x, y) σ x σ y .
1

Comparing the Ornstein-Uhlenbeck and the nl-DDM model

Other non-linear models of decision-making exist, among which the Ornstein-Uhlenbeck (OU) model 1 . This model takes the form:

dx(t) = (λ x(t) + µ)dt + N(t)
We note that, similar to the nl-DDM, the variation depends on the current state of the decision x(t). µ corresponds to the effect of the stimulus, identical to the effect of the drift in the DDM. λ represents the effect of the state of the participant on the accumulation process. To represent an accumulation process for a two-alternative forced-choice task, accumulation boundaries have to be fitted in addition to these parameters. Due to their similarity in interpretation and differences in formalism, a comparison between the nl-DDM and the OU model was performed. To compare its fitting performance to these of the nl-DDM, we performed a 5-fold cross-validation in order to compare the fitting performances and to account for the complexity of both models. Indeed, the functional form of the OU drift is simpler than the nl-DDM equation but implements additional absorbing boundaries, which are a highly non-linear phenomenon, adding complexity to the model. Then, we fitted both models on the lexical classification dataset. The nl-DDM was defined using a pair of stable fixed-points ±a per instruction condition, one time scale k, the middle of the starting point distribution x 0 and its half-width s z , a non-decision time T nd , and fours unstable fixed-points z 1 , z 2 , z 3 , z NW , corresponding to frequent, rare, very rare, and non-existent word stimuli respectively. For the OU model, λ , µ 1 , µ 2 , µ 3 , µ NW (one per stimulus type), one boundary per instruction condition, a non-decision time, the middle of the starting point distribution x 0 and its half-width s z were fitted. For both models, the noise scale was set to σ = 0.3. The models were therefore defined using the same number of parameters. Note that, as opposed to the main analysis presented in the article, this analysis did not consider the effect of time passing to reduce the computation cost in anticipation of the computational cost of cross-validation. Data was then split into 5 folds, ensuring that each fold contained the same number of trials in each block, each instruction condition, and each stimulus type to ensure the uniformity of data presented. Both the nl-DDM and OU models were fitted to 4 folds and the fitting performance of the fitted model was tested on the remaining fold, so that each fold was used as the test set once. We then compare the train and the test Negative Log-Likelihood of the two models pairwise for each participant and each fold.

We observed that the test scores of the nl-DDM were significantly better than those of the OU model (Shapiro-Wilk test: W = 0.412, p < 0.001; one-sided paired Wilcoxon signed-rank test, W (80) = 349, p < 0.001, d = 0.785), meaning that the nl-DDM generalizes better than the OU, indicating a simpler model form. Although this result might seem surprising given that the nl-DDM is defined by a third-order differential equation and the OU with a linear form, it is noteworthy that the OU necessitates the definition of additional absorbing decision boundaries, which is mathematically ill-defined because of its highly non-linear nature. Consequently, its fitting is numerically challenging.

Correlation analysis on empirical data

The goal of the correlation analysis presented in the main paper was to underline links between the DDM and nl-DDM parameters. In this part, we are interested in knowing whether these relations are also found empirically.

We computed the Pearson's correlation coefficients of the nl-DDM parameters over all conditions and participants, using only the multi-sensory classification dataset for simplicity, i.e., over N = 50 observations. This allows supporting the observations we have noted in the formalism part. Indeed, since fewer parameters were fitted in this case than for the lexical classification dataset, the comparison becomes more straightforward. From the 25 participants, we obtained 50 fits per model type by duplicating for each stimulus type the boundaries and time constant terms, hence separating the stimulus types and obtaining 25 × 2 fits per model type.

The results of this analysis are presented Figure S1 and S2. The correlations within nl-DDM parameters observed on simulated data are found again. We observe that some of the correlations across nl-DDM and DDM parameters are modified due to DDM parameters not being fixed, as opposed to the analysis on simulated data presented in the main article.

This work has established a novel model of decision-making designed to allow a more precise study of peri-stimulus effects such as anticipation, sequential effects, and endogenous fluctuations of attention. Instead of implementing independent fluctuations of the drift and the starting point, these two terms are intertwined. We have shown that it describes behavioral data better than the DDM, and even more so when accounting for an additional effect, in this case the effect of experiment time: the nl-DDM accounts for the effects of instruction (speed vs. accuracy) and experiment time (early vs. late trial) better than the DDM with possibly less parameters.

Additionally, we performed an analysis to compare the nl-DDM to generic OU models, which, as described in the Theoretical Framework, encompass the LCA in their form. Again, the LCA is particularly interesting in the context of anticipation because it provides an explanation of the mechanism through which accumulation of evidence corroborating the expected stimulus is enhanced. Using cross-validation, we have shown that the nl-DDM offers a simpler description of behavioral data. Indeed, while the two models have the same number of parameters and the OU models is described by a simple linear equation, the additional boundary term in the OU model is highly non-linear, the smoothness of the nl-DDM helps this model generalize better to unseen data. In other words, the nl-DDM can be accurately fitted using less samples of the response time distribution than the OU model.

While the paper did not address the further possibility of studying anticipation, it is clear from the model form that the consequence of anticipation on behavior is qualitatively similar to this described by the LCA: if a decision is biased towards one option at the time of stimulus onset, then evidence is accumulated faster in that direction and evidence against the preferred alternative is accumulated more slowly. This can easily be translated to a two-attractor network model, similar to this described by Roxin and Ledberg (2008) and [START_REF] Prat-Ortega | Flexible categorization in perceptual decision making[END_REF], itself similar to the LCA. What changes is the shape of the dynamics.

This doctoral work aimed to study the traces of anticipation in EEG activity and to embed peri-stimulus effects in decision models. We managed to show that slow potentials as well as alpha-band oscillatory activity in the pre-stimulus period are indicative of the single-trial perceptual anticipation of participants. We furthermore developed a non-linear model, called the nl-DDM, that can explain the acceleration of evidence accumulation upon correct anticipation. Additionally, this model accounts for behavioral data under changing conditions better than other models. In particular, we investigated its fit relative to the DDM when considering the time of stimulus presentation within the experiment and speedaccuracy instruction, and concluded that a better fit could be achieved with the nl-DDM, potentially using less parameters. We also compared its fit to this of the OU model, which seems less complex, and found that the nl-DDM generalized better, indicating a simpler functional form.

These findings pave the way to a better understanding of perceptual anticipation. In the following, we discuss future perspectives for decision-making in general, and anticipation in particular.

. Dealing with more than two alternatives

Decision-making studies have mainly focused on two-alternative forced-choice tasks, involving two possible choices at every trial. However, some daily decisions involve multiple alternatives: which checkout line to pick, which pastry to eat, are everyday-life questions that require sensory evidence (how many people in front, which frosting looks best) and have a time requirement (if waiting too long, another customer could choose before and one would need to wait longer for the reward). How could studies in the laboratory mimic multiplicity of choice? The experiment display could easily replicate daily contexts in a virtual environment. This has been done extensively in autonomous driving experiments [START_REF] Haufe | EEG potentials predict upcoming emergency brakings during simulated driving[END_REF][START_REF] Haufe | Electrophysiology-based detection of emergency braking intention in real-world driving[END_REF][START_REF] Kim | Detection of braking intention in diverse situations during simulated driving based on EEG feature combina-tion[END_REF]. Relating to the methods used in this thesis and in the context of perceptual anticipation, the remaining problem is two-fold: how can computational models of decision-making be modified to consider more than two alternatives? And how can brain activity patterns of anticipation be deciphered among more than two options?

The DDM, which we referred to often in this manuscript, only takes into account two options. A way that it is used to incorporate more alternatives is to consider the two boundaries as the thresholds for correct and incorrect response. This way, any forced-choice paradigm boils down to a two-alternative forced-choice experiment without loss of generality. This is also what we have done in the analysis of the nl-DDM and the comparison with the DDM, although in that case the experimental design entailed two alternatives only. However, it could be interesting to identify the trajectory of the decision variable across all the options. In a one-dimensional space, this is however not possible: doing so would require all the decision boundaries to be represented along a single axis, and since the decision variable also varies along that axis, several boundaries would need to be crossed in order to reach the final one. It is trivial that this violates the concept of a decision boundary as the threshold at which a final decision is made. A solution to that is to use instead a two-dimensional space. With appropriate topography, the decision variable could reach a boundary all while avoiding the others. This is what has been proposed by [START_REF] Roxin | Drift-diffusion models for multiple-alternative forced-choice decision making[END_REF]. The nl-DDM can be extended naturally to a multi-decision paradigm by defining a decision well in two-dimensional space per alternative and placing them in circle. That way, one unstable fixed point remains necessary, and each of the stable fixed points of the system defines a decision boundary. What remains to be seen is the form of the equation of the decision trajectory. A straightforward solution would be to implement a drift term depending on the type of stimulus presented. Then, depending on the noise and the starting point, the decision variable could either reach the decision boundary corresponding to the stimulus, producing a correct response, or another one, producing an incorrect response.

For classification of anticipatory brain activity, the classifiers we used in our study can be trained to decode more than two classes. Since the pre-stimulus patterns we observed were not easily identifiable on the grand-average traces, we would however expect the classification accuracy to drop as we increase the number of classes to distinguish. Indeed, the distance between two classes becomes increasingly smaller as classes are added. This effect could be counterbalanced by the decrease of the level of chance, equal to 1/n classes for balanced classification, where n classes is the number of classes. For a 3-class balanced classification, where all three categories are equally represented, the theoretical chance level then drops to 33%. This has been done successfully in the past with post-stimulus brain activity [START_REF] Benwell | Low pre-stimulus EEG alpha power amplifies visual awareness but not visual sensitivity[END_REF].

. Multi-sensory integration

In all of the paradigms used in this doctoral work, a single modality was involved in each decision. In the Wagenmakers et al. (2008) lexical classification dataset, participants made their decision based solely on visual information. In the experiments presented in Chapters 4, 5 and 6, participants judged whether a stimulus was a sound or a visual stimulus. While these involved both the visual and the auditory modality, the decision was based on information received by only one of them. However, real-life decisions are often based on the multiplexing of sensory information, sometimes converging, sometimes conflicting. How the brain integrates sources of evidence and resolves conflicts is an interesting direction of research.

A single sensory stimulus can itself carry several indications that have to be captured. In a study lead by [START_REF] Kang | Multiple decisions about one object involve parallel sensory acquisition but time-multiplexed evidence incorporation[END_REF], participants had to judge two features of a random dot motion stimulus: the dominant color of the dots and the direction of motion. By doing so, they investigated whether the distinct sources of information were processed in parallel, i.e. at the same time, or rather in series. They showed that serial accumulation of sensory evidence could explain their observations better than parallel processing. However, when a single decision has to be made and different sensory modalities convey information, auditory stimuli appear to dominate visual cues [START_REF] Song | A Neural Circuit for Auditory Dominance over Visual Perception[END_REF]. Other studies underlined instead that cues are combined based on their reliability [START_REF] Knill | Do humans optimally integrate stereo and texture information for judgments of surface slant?[END_REF]. Future perspectives to combine these findings in a unifying theory are presented in a review by [START_REF] Najafi | Perceptual Decision-Making: A Field in the Midst of a Transformation[END_REF].

Understanding how the integration is done should also be helpful in understanding anticipation and its emergence. We hypothesize that perceptual anticipation should build upon the most reliable source of information rather than the most uncertain one. In that case, less importance is given to the unreliable source of information, and the correctness of the reliable source of information should be considered. A way that this hypothesis could be tested is by manipulating the reliability of information for a decision: sensory information is given to participants using several sensory modalities simultaneously, with some types of stimuli being more reliable than others. The reliability can be changed by artificially changing the reward rate after a decision, based on the information presented to participants. Behaviorally, the response times should decrease and the response accuracy increase over time as participants learn which information to rely on. At the brain activity level, error-related potentials and mismatch negativity should only emerge in the case where a prediction error has been made. Therefore, the absence of mismatch negativity would indicate that participants integrated reliable information, disregarding unreliable sources. Another possibility is that the amplitude of these potentials is modulated by the degree of uncertainty on the perceived stimulus: if one heavily relied on a wrong piece of information to make a decision, presenting a feedback that the decision is wrong should trigger a stronger brain response than if their prediction is less confident.

The timing of stimulus presentation is also of interest. Recency and primacy effects have been shown to emerge, without consensus of which occurs more often in decision-making. A possibility is that different sensory modalities yield different serial-position effects. To investigate this hypothesis, the paradigm we implemented could be extended so that evidence is slowly collected: successive informative cues in various sensory modalities are presented, but participants are instructed to judge only the last stimulus. Mixing congruent and incongruent cues in different sensory modalities would allow to investigate whether there are preferences depending on the sensory modality or the presentation order, or both. A pondering of whether the sequence or the sensory modality is the main factor would then be possible.

. Sequential effects on anticipation

In the literature review, we briefly mentioned the existence of sequential effects, which is the effect of past events on the current behavior. In particular, it has been shown that previous decisions and stimuli had a significant impact on current response times and accuracy, even in the case where the stimuli do not follow a specific structure (Yu and Cohen, 2008). This idea has been outlined in the past in different manners, for example by [START_REF] Remington | Analysis of sequential effects on choice reaction times[END_REF], or through primacy and recency effects, also called serial-position effect.

It could be that anticipation is also bound to sequential effects. First, the fact that participants are able to learn the underlying probability structure of a stimulus representation [START_REF] Acuña | Structure Learning in Human Sequential Decision-Making[END_REF] shows that expectation depends on past stimuli. Second, there exist multiple error signals in EEG traces, such as the mismatch negativity [START_REF] Näätänen | Early selectiveattention effect on evoked potential reinterpreted[END_REF] or the errorrelated potential [START_REF] Gehring | The Error-Related Negativity[END_REF], which mark when a stimulus contradicts prior expectations. Typically, error-related potentials can emerge when a virtual agent performs an action against the completion of a final goal (Ehrlich and Cheng, 2018). Interestingly, these traces vanish when the error is presented often enough. This supports the idea that learning takes place, that anticipation heavily depends on the learning process and that anticipation is malleable in time. However, while the impact of past stimuli and decisions on current decision behavior is increasingly better understood, it remains unclear how anticipation is affected by past stimuli, decisions, and anticipations.

A way to investigate this possibility is through Bayesian inference, similar to past works by Yu andCohen (2008) and[START_REF] Frund | Quantifying the effect of intertrial dependence on perceptual decisions[END_REF][START_REF] Frund | Quantifying the effect of intertrial dependence on perceptual decisions[END_REF]. In their studies, the likelihood of a given stimulus is computed at every trial depending on past stimulus sequence and prior information about the probability of the stimulus. Similarly, one could compute the probability of expecting a certain stimulus given past stimuli and expectations. We started investigating several possible mechanisms of anticipation construction [START_REF] Hoxha | Generating stimulus anticipation from stimulus and prediction history[END_REF].

We compared five models of anticipation generation, described in Figure 7.1. Model 1 is a variant of the model proposed by Yu and Cohen (2008), where participants predict which stimulus is coming next and the transition probabilities between estimated stimuli are defined as a function of the past state. Model 2 is different from Model 1 in that the estimated probability of switching is not conditioned on the stimulus. Model 3 is the closest to the model proposed by Yu and Cohen (2008), in that participants either evaluate that the stimulus will switch or will stay the same as previously, instead of directly estimating the stimulus that will be displayed. The transition probability, as in model 2, is unconditional of the previous stimulus. All three models estimate which stimulus is coming next. The two models we describe next instead estimate the next anticipation. Model 4 estimates the probability of switching anticipations between two trials, without exploiting previous stimuli. It therefore serves as a control model. Model 5 also estimates these probabilities, but they are this time conditioned on the previous anticipation and on whether the previous anticipation was correct or not.

At each trial, the transition probabilities are updated based on the previous stimulus and anticipation. Note that models 1 to 3 only use the previous stimulus, model 4 only the previous anticipation, and model 5 both. The probability is updated using Bayesian inference: the posterior probability is the product of a prior probability, that follows a beta distribution, and the probability of having the sample observed, called the likelihood. At each trial, the posterior thus obtained becomes the prior probability of the following trial, and the next state is defined using the maximum-a-posteriori (MAP) estimate. A summary of the inference process is given Figure 7.2.

We compared the performance of these models on the lexical classification dataset (Wagenmakers et al., 2008). For now, only a descriptive assessment of performance was made by regressing both the response times and the estimated probabilities against past trial index, and then comparing the two regressions, similar to what was done by Yu and Cohen (2008). We observed that the regressions coefficients of response times and probability are similar only for model 5 (Figure 7.3). Note that models 1 and 2 yielded identical results, and therefore only one of the graphs was represented.

To further confirm these results, several steps would be necessary. First, a quantitative assessment of the similarity of the regressions would be required. For example, several regressions could be done, one per participant, and then the correlation between coefficients could be computed. A second important step for model validation is simulation [START_REF] Palminteri | The Importance of Falsification in Computational Cognitive Modeling[END_REF]. In this context, a series of stimuli could be generated, and each model would attempt to guess the next stimulus. Then, we would compare the series of predictions to the series of generated stimuli for each model. However, defining which model is the closest to the computation taking place in the brain adds another layer of complexity.

. Toward a comprehensive theory of decision-making

While this PhD project focused on pre-stimulus effects, it investigated decisionmaking from anticipation to behavior. It is a step toward a more comprehensive theory of decision-making, encompassing pre-stimulus phenomena in addition to post-stimulus sensory encoding and integration.

Anticipation is one aspect of decision-making, and many others have to be taken into account for a fully-comprehensive theory. Alertness is another important aspect that impacts behavior (Jagannathan, Bareham, and Bekinschtein, 2022). The nl-DDM (Chapter 6) provided an idea on how to account for that. However, our EEG analyses (Chapters 4 and 5) largely neglected its effects, although the CNV (Kononowicz and Penney, 2016) and alpha-band oscillatory activity (Klimesch, 2012) are known to be modulated by attention. The datasets collected for these studies could nevertheless be suited for such an analysis. Indeed, the pre-stimulus period consists of noise frames updated every 100ms, and effectively, activity seems to be entrained by these frames, as shown in the grand average traces. These are steady-state visually-evoked potentials (SSVEPs), whose amplitude is modulated by attention [START_REF] Ding | Attentional Modulation of SSVEP Power Depends on the Network Tagged by the Flicker Frequency[END_REF]. The dataset therefore enables the assessment of alertness level, which could help future analyses in two ways. First, the relative impact of anticipation and alertness on response times and accuracy could be computed. Second, the CNV and alpha-band pre-stimulus power could be adjusted to the level of arousal measured by the SSVEP amplitude. That way, the detection of the two classes of anticipation could be improved, as it would be less contaminated by latent variations of attention.

Studies we reviewed in Chapter 3 considered confidence in addition to response times and accuracy. This is interesting because it is an additional behavioral measure, and also because it reflects a subjective assessment and is therefore complementary to objective measures that are response times and accuracy. In the past, confidence assessment was done mainly through dual-stage decisions, where participants first respond, and then assess their level of confidence (Samaha, Iemi, and Postle, 2017;Railo, Piccin, and Lukasik, 2021;[START_REF] Benwell | Low pre-stimulus EEG alpha power amplifies visual awareness but not visual sensitivity[END_REF]. However, this means that the confidence assessment relies in fact on a recall of the subjective experience rather than on the experience itself. Therefore, such an assessment of performance could be distorted with time [START_REF] Resulaj | Changes of mind in decision-making[END_REF]. Instead, response and confidence assessment could be done simultaneously using an analog system. For example, confidence could be encoded in the pressure with which participants press the response button if using a pressure captor, or if using a stirring wheel, participants could report their confidence level by stirring the wheel by a smaller or larger angle in the direction of the response.

. Toward decoding in ecological situations

The paradigm we implemented to observe the neural correlates of anticipation provided interesting fundamental results. However, as we have seen, it implements a scenario remote from naturally-emerging ones. It is difficult to imagine a situation in which one would need to declare whether an external stimulus is a face or a sound, and doing so a few hundred times in a row. Other experimental biases may exist in the laboratory setting, as uncontrollable as the gender of the experimenter [START_REF] Pillette | Experimenters' Influence on Mental-Imagery based Brain-Computer Interface User Training[END_REF], further arguing in favor of the necessity of experiments in a natural setting.

Furthermore, the study of anticipation could benefit brain-computer interface applications. Anticipation was studied in the past in the context of simulated driving (Khaliliardali et al., 2015), a brain-computer interface application that has been implemented in natural settings [START_REF] Haufe | EEG potentials predict upcoming emergency brakings during simulated driving[END_REF][START_REF] Haufe | Electrophysiology-based detection of emergency braking intention in real-world driving[END_REF][START_REF] Kim | Detection of braking intention in diverse situations during simulated driving based on EEG feature combina-tion[END_REF]. In autonomous driving situations, accurately detecting the user intent in a timely fashion is a life-or-death matter. Anticipation could also be beneficial to medical applications, such as independent wheelchairs [START_REF] Vanacker | Context-Based Filtering for Assisted Brain-Actuated Wheelchair Driving[END_REF]. Current implementations of brain-controlled wheelchairs are gaze-dependent, and require the user to control their gaze and be able to perceive visual stimulation (see [START_REF] Bastos | Robotic wheelchair commanded by SSVEP, motor imagery and word generation[END_REF] for example). This poses two issues. First, some patients, such as completely locked-in patients, might not be able to control their eye movements, making such devices impractical. Second, stimulus perception is bound to latency in brain response, and decoding, while performing above chance-level, is slow and improvable. Using anticipation could improve the action latency by detecting action intent and therefore make brain-computer interface applications more user-friendly and ergonomic.

Several challenges of studying anticipation at the single-trial level and ways to circumvent them have already been described in the Theoretical Framework (Chapter 3). This doctoral work, and in particular the analyses presented in Chapters 4 and 5, have shown the possibility of single-trial analyses on anticipation. Several challenges remain in order to study anticipation in ecological contexts:

• Covert anticipation, or more specifically, unsupervised classification of anticipation, which we attempted to analyse through uncued trials in Chapter 5 and by using unsupervised machine learning algorithms in Chapter 4. While Chapter 5 provided some insight into how to achieve this, cued trials were again used to build a representation of stimulus-specific anticipation pat-terns. However, Chapter 5 also showed that anticipation is very different depending on when it is cued compared to when it is not.

• Anticipation onset detection. The paradigms implemented in Chapters 4 and 5 used a temporal cueing to generate temporal expectation of the target stimulus. However, such a temporal structure is not systematically present in natural circumstances, and anticipation could emerge at different points in time before a stimulus. Chapter 5 showed that the CNV is a relevant marker of specific anticipation, so detecting the beginning of the CNV could be an indicator of anticipation onset. A method developed by Garipelli, Chavarriaga, and R. Millan (2009) should allow to do this. Likewise, we found that alpha band pre-stimulus oscillatory activity was significantly different between anticipation types for some participants and may be worth investigating as well.

• Online decoding poses several challenges in itself, even more so if an embedded system is at stake. First, the whole system, including the recording device, the decoding system and the output apparatus should be as compact as possible for ergonomic reasons. For example, if the goal is to build an independent wheel-chair, the system should be mobile and therefore the bulkiness of the system should be reduced to a minimum. In the same line, for fundamental research purposes, a heavier system would necessitate compromises on the ecological immersion of participants. Second, and latent to that, the decoding algorithm should remain simple so that it is fast enough to provide online decoding and energy efficient so that the energy supply of the system remains light-wight.

• Online classification accuracy needs to be assessed. There are a priori no ground-truth labels in real-life settings, so a way to provide feedback to the system so that it learns to distinguish different types of anticipation and corrects inadequate representations is paramount. Post-stimulus and postresponse brain signals could be exploited. Error-related potentials could for example be used to assess when participants observe an unexpected behavior from the machine (Ehrlich and Cheng, 2018). If an error-related potential appears upon stimulus presentation, it would mean that the participant did not expect that stimulus. Subsequently, the computer could take the other stimulus class as being the ground-truth anticipation of the user, and eventually correct the classification model to better match pre-stimulus brain activity patterns to their anticipation class.

. Concluding remarks

This thesis addresses the need for studies of perceptual anticipation. While studying anticipation remains a challenge, we have shown that machine-learning techniques allowed to detect stimulus-specific anticipation patterns in EEG activity at the single-trial level. Adequate experimental protocols should also help in gaining insight into pre-stimulus influences on decisions. Additionally, we have proposed a computational model to encompass anticipatory effects in the decision process. Anticipation is intrinsic to perception and crucial to understanding the world, and combining computational and neurophysiological approaches should enhance the development of a comprehensive theory of decision-making.
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 31 Figure 3.1: Evolution of the spiking rate in neurons from stimulus onset to saccade initiation (left side of each pannel), and aligned with saccade initiation (right side of each pannel). a -in the LIP (taken from Roitman and Shadlen (2002)). The solid lines represent the evolution in trials where the stimulus is in the receptive field of the neuron, while the dashed lines represent the evolution of the spiking rate in the presence of an out-of-field stimulus. b -in the dlPFC (taken from[START_REF] Kim | Neural correlates of a decision in the dorsolateral prefrontal cortex of the macaque[END_REF] 
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 32 Figure 3.2: Computational stages of decision making. Sensory information from the external world gets encoded into evidence which further gets integrated to reach a decision, manifesting in a motor command.Note that these stages, while hierarchically organized, also overlap in time after stimulus presentation. After the decision is made, feedback emerging from the environment or directly from an internal evaluation of performance modifies the computation strategy for subsequent trials. The reference listed are detailed in the manuscript.
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 33 Figure 3.3: DDM in its initial presentation. Evidence starts accumulating at an average drift ν from a starting point x 0 after a delay T nd from stimulus onset until a decision boundary ±b is reached, corresponding for example to correct and incorrect decisions respectively. The resulting probability density functions of response times predicted by the model are also given.
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 34 Figure 3.4: Effects of the source of variability on the shape of the response time distribution. For each curve, a source of variability, described in the legend, was added. This figure is reused with permission from Ratcliff and Tuerlinckx (2002) (Figure 11).
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 35 Figure 3.5: Impact of the boundary and the drift term of the DDM on the shape of correct and error response time distributions. (a) The boundary relates to the speed-accuracy trade-off, so decreasing the boundary (blue dotted curves) results in faster but less accurate decisions. (b) The drift relates to the quality of evidence, so decreasing the drift (burgundy dotted curves) leads to slower and less accurate decisions.

Figure 3 . 6 :

 36 Figure 3.6: Impact of starting point and drift variability on the shape of response time distributions. Their variation can explain the impact of prior expectations on behavior through two different mechanisms. (a) Shifting the starting point of accumulation towards the boundary of expectation means that evidence is accumulated at the same rate but less evidence is required to reach the boundary matching the expectation. (b) Modifying the drift rate, meaning that the accumulation of evidence itself is impacted. (c) The variation of starting point or drift term have different effects on the response time distribution. Figure taken from Urai et al. (2019) (Figure 1) with permission.
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 38 Figure 3.8: The Dalmatian illusion. A naive eye may only see a random combination of black and white stains, but with the prior information that a dog should appear on the image, a dalmatian becomes visible on the right of the image. A complete description of this illusion is available in Grossberg and Zajac (2017).
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 41 Figure 4.1: Description of the sequence of one trial in the initial paradigm. The period of interest for EEG analyses lies within the noise clip, i.e. 900 ms before stimulus onset. This figure was also used in Hoxha et al. (2023)
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 1 Summary of grid hyper-parameters tested for the SVC. C denotes the regularization parameter of a squared L2 penalty.
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 42 Figure 4.2: Diagram of the anticipation label generation algorithm from stimulus labels. These are further used to performed supervised learning on EEG data.
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 4 Figure 4.3: Classification performance when using pre-stimulus alpha power as a feature for classification. The accuracy is computed as the rate of correct classifications over the test set. We compared the performance of the classifier trained using stimulus labels and anticipation labels (generated using the pipeline described Figure4.2), over the same test set. We also compared these classification performances to
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 44 Figure 4.4: Classification performance when using the ratios of prestimulus alpha power in electrodes T 7, T 8 and Oz as features for classification.The accuracy is computed as the rate of correct classifications over the test set. We compared the performance of the classifier trained using stimulus labels and anticipation labels (generated using the pipeline described Figure4.2), over the same test set. We also compared these classification performances to the null-hypothesis distri-
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  and 4.6d. 
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 45 Figure 4.5: Qualitative assessment of the clustering performance, based on the number of predicted labels matching stimulus labels as a function of the number of inverted stimulus labels. Stimulus labels are inverted consecutively on the basis of the corresponding response times: the longer response times are inverted first, as they are assumed to be symptomatic of incorrect anticipations. The lines represent the average number of matches per participant, while the shading is the 95% confidence interval around this value.

  Alpha power features (d) Alpha power ratio features
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 46 Figure 4.6: Qualitative assessment of the clustering performance, based on the response time distributions for predicted labels matching stimulus labels ("match" class, in teal) and predicting labels not matching stimulus labels ("mismatch" class), for alpha power features (a, c) and alpha ratio features (b, d). Two illustrative participants have been chosen: (a, b) shows the response time distributions on the participant that displayed the most important qualitative difference in the response time distributions, and (c, d) these for a participant where the difference is less noticeable.
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 2 Figure 2: Different anticipation generation methods, on cued and uncued trials.We use two types of classifiers, symbolized by grey ellipsoids: a classifier trained to detect whether the anticipation is visual or auditory based on pre-stimulus EEG activity, and a classifiers trained to detect whether the anticipation was correct or incorrect (i.e. whether anticipation matched the following stimulus or not) based on post-stimulus EEG activity. The final labels that were used as the anticipation class are frames in light grey, with their denomination in the article underlined in the vicinity.
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 7 Figure 7: Grand average of anticipatory EEG activity grouped by the type of cue over all participants and channels, with 95% confidence interval over participants. Visual anticipation trials were cued by an eye icon, while auditory anticipation trials were cued by an ear icon.
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 8 Figure 8: Difference of pre-stimulus evoked activity between ear-cued and eyecued trials, announcing respectively an upcoming auditory and visual stimulus, over the last 400ms before stimulus onset.

  (a) Cued trials, anticipation=cue label (b) Cued trials, anticipation predicted (c) Uncued trials, anticipation predicted by classifier trained on uncued data (d) Uncued trials, anticipation predicted by classifier trained on cued data
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 9 Figure 9: Distribution of trials within each anticipation-behavior outcome type across response time terciles, for cued (a, b) and uncued (c, d) trials.In each plot, the anticipation label was extracted differently. (a) anticipation labels correspond to cue labels ("ground" method). (b) anticipation labels are the ones predicted by the classifier ("classifier" method). (c) anticipation labels are the ones predicted from pre-stimulus activity by the classifier trained on uncued data: the training was done using post-stimulus-predicted labels to build the "ground-truth" labels of anticipation ("post-stimulus" method). (d) anticipation labels are the ones predicted from pre-stimulus activity by the classifier trained on cued data ("cued-pre-stimulus" method).
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 10 Figure 10: Global mean response times per condition and stimulus type
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 11 Figure 11: Global mean accuracies per condition and stimulus type
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 1213 Figure 12: Mean response times per type of trial (congruence or incongruence between the cue and the stimulus) and stimulus type

Figure 1 .

 1 Figure1. Description of the Non-linear Drift-Diffusion Model (nl-DDM). The decision state is represented by a decision variable x traveling from a starting point (for example, drawn from a uniform distribution, centered around x 0 and of width 2s z . It is represented as "SP" on the figure) to a boundary ("Correct boundary" or "Incorrect boundary") under the influence of a drift. Here, the drift depends on the current state of the decision. Depending on the position of x 0 relative to z, the drift will hence have different shapes. The trajectory is also impacted by white noise so that real trajectories are similar to the thin blue lines. From the stimulus onset, the decision process is delayed by a certain non-decision time ( T nd ). Over an ensemble of decisions, probability density functions of correct and error response times can be created, as displayed here.

Figure 2 .

 2 Figure 2. Parameter manipulation on the nl-DDM. (A-C) Potential functions of the nl-DDM for different z (A Shifting z changes the relative attractiveness of each boundary, a (B Shifting a changes the accuracy and the speed of decisions), and k (C Shifting k changes the speed of decisions). The parameters are always the same for the solid black curve: a = 1, k = 1, z = 0 , allowing for a comparison of the effects of the different parameters. (D) Trajectories in the absence of noise for different values of x 0 , under a = 1, k = 1, z = 0 . It becomes clear that the drift range for each trajectory depends on the starting point. The trajectory approaches the boundary asymptotically and will eventually be crossed since noise is omnipresent.

  Stimulus 1.249 × 10 -5 1 1.249 × 10 -5 0.299 0.590 Stimulus * S-R mapping 1.758 × 10 -4 1 1.758 × 10 -4 4.202 0.052 Residuals 9.623 × 10 -4 23 4.184 × 10 -5 Comparison of loss values. Parameter fitting was performed using PyDDM 22 for both the nl-DDM and the DDM, minimizing the negative log-likelihood function. We fitted a model per participant and model type, resulting in 25 DDM and 25 nl-DDM on the sensory classification dataset. The DDM was fitted using 6 parameters (1 boundary, 2 drifts, i.e. one per stimulus, 1 starting point, 1 starting-point variability, 1 non-decision time), and the nl-DDM consisted of 7 parameters (k, a, 2z (one per stimulus), 1 starting point and variability, 1 non-decision time).

  ) = 1.714, p = 0.046, Cohen's d = 0.343, N = 25).

Figure 3 .

 3 Figure 3. Distribution of the differences between the BIC obtained after fitting the nl-DDM and fitting the DDM on the multi-sensory classification dataset. A more negative difference means a better fit of the nl-DDM compared to the DDM. This figure has been generated using JASP (0.16.0.0) 28 (see https:// jasp-stats. org/).
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 4 Figure 4. Correlation matrix of all parameters, computed from the parameters fitted over data simulated from DDM parameters. Pearson correlation coefficients were computed over N = 400 observations. This figure was obtained using the matplotlib (3.5.2) 30 -based Python library seaborn (0.11.2) 31 (see https:// matpl otlib. org/ and https:// seabo rn. pydata. org/) ⋆ : p < 0.05, ⋆⋆ : p < 0.01, ⋆⋆⋆ : p < 0.001.

Figure 5 .

 5 Figure 5. Description of the Drift-Diffusion model(DDM). The decision state is represented through a decision variable that travels from a starting point that can be drawn for example from a uniform distribution, centered around x 0 and of width 2s z . The decision state is represented through a decision variable x traveling from a starting point (for example, drawn from a uniform distribution, centered around x 0 and of width 2s z . It is represented as "SP" on the figure) to a boundary ("Correct boundary" or "Incorrect boundary") under the influence of a constant drift (dotted line). The trajectory is also impacted by white noise so that real trajectories are similar to the thin blue lines. From the stimulus onset, the decision process is delayed by a certain nondecision time ( T nd ). Over an ensemble of decisions, RT distributions of correct and error responses can be estimated, as displayed here.
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 71 Figure 7.1: Models of anticipation generation. Models 1 to 3 estimate the next stimulus directly based on previous stimuli, and models 4 and 5 estimate instead the next anticipation, based on past anticipation (model 4) or past stimulus and anticipation combined (model 5).
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 72 Figure 7.2: Graphical description of the Bayesian inference process. Note that models 1 to 3 do not use the previous prediction in the estimation, and model 4 does not use the previous stimulus.
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 73 Figure 7.3: Comparison of regression coefficients when regressing response times (in green and dots) or probability estimates (in purple and diamonds (model 2), triangles (model 3), squares (model 4) and stars (model 5)) against past trials. We note that the coefficients of response times and probability follow the same evolution only for model 5.
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		Cued		Uncued
	Ground	Classifier	Post-stimulus Cued-pre-stimulus
	Correct anticipation		
	RT correct RT incorrect Response accuracy 99.1 ± 1.0 97.8 ± 1.7 98.1 ± 2.1 450 ± 76 463 ± 76 480 ± 76 750 ± 490 596 ± 397 569 ± 422 Incorrect anticipation	526 ± 77 542 ± 219 97.8 ± 1.8
	RT correct RT incorrect Response accuracy 91.1 ± 9.1 97.6± 564 ± 98 474 ± 82 522 ± 310 576 ± 398 556 ± 161 544 ± 81 97.5 ± 1.8	523 ± 85 563 ± 232 97.5 ± 2.2
	Table		

Table 2 :

 2 Summary statistics of participant behavior across conditions Per condition (cued or uncued) and stimulus type (0: visual, 1: auditory). Cued,1 Uncued,0 Uncued,1 Cued,0 Cued,1 Uncued,0 Uncued,1

				RT			Accuracy	
	Cued,0 Mean 444.555 495.507	485.856	568.152	0.980	0.976	0.978	0.975
	Std. Deviation	89.502	79.152	81.567	86.600	0.021	0.021	0.020	0.023
	Minimum	332.390 384.330	353.933	421.945	0.897	0.919	0.908	0.905
	Maximum	688.908 795.446	681.172	820.106	1.000	1.000	1.000	1.000

Table 1 .

 1 Within subjects effects on accuracy.

Table 2 .

 2 Within subjects effects on response times.

	Cases	Sum of squares df Mean square F	p
	Stimulus	1201.903	1 1201.903	2.446 0.132
	Stimulus * S-R mapping	370.446	1	370.446	0.754 0.394
	Residuals	11303.230	23	491.445	

Table 3 .

 3 Between subjects effects on accuracy.

	Cases	Sum of squares df Mean square F	p
	S-R mapping	8.608 × 10 -5	1 8.608 × 10 -5 0.447 0.510
	Residuals	0.004	23 1.926 × 10 -4

Table 4 .

 4 Between subjects effects on response times.

	Cases	Sum of squares df Mean square F	p
	S-R mapping	1438.081	1 1438.081	0.179 0.676
	Residuals	184867.754	23 8037.728	

Table 5 .

 5 Paired samples T-test on the values of z fitted per word type on the lexical classification dataset.

	Measure 1		Measure 2	t	df p	Cohen's d
	z Frequent	-	z Rare	-7.526 15 < 0.001 -1.882
		-	z Very rare	-7.173 15 < 0.001 -1.793
		-	z Non-existent -5.438 15 < 0.001 -1.360
	z rare	-	z Very rare	-3.933 15 0.001	-0.983
		-	z Non-existent 1.082	15 0.296	0.271
	z Very rare	-	z Non-existent 5.617	15 < 0.001 1.404

Table 6 .

 6 Paired samples T-Test on drift values fitted per word type on the lexical classification dataset.

	Measure 1		Measure 2	t	df p
	ν Frequent	-	ν Rare	7.257	15 < 0.001
		-	ν Very rare	15.695	15 < 0.001
		-	ν Non-existent 9.899	15 < 0.001
	ν rare	-	ν Very rare	16.337	15 < 0.001
		-	ν Non-existent 0.419	15 0.681
	ν Very rare	-	ν Non-existent -10.031 15 < 0.001

Table 7 .

 7 Paired Samples T-Test on the decision boundary of the DDM, fitted on the lexical classification dataset according to the instruction (BAi: boundaries for the accuracy instruction, BSi: boundaries for the speed instruction) and time of the experiment (Bx1: early trials, Bx2: late trials).

	Measure 1		Measure 2	t	df	p	Cohen's d
	BA1	-	BA2	2.784	15	0.014	0.696
		-	BS1	9.635	15	< 0.001	2.409
		-	BS2	10.884	15	< 0.001	2.721
	BA2	-	BS1	8.003	15	< 0.001	2.001
		-	BS2	10.295	15	< 0.001	2.574
	BS1	-	BS2	7.020	15	< 0.001	1.755

L'anticipation est un processus implicite dans son essence(Koch and Preuschoff, 2007), dans le sens où les individus forment des attentes inconsciemment et ne pourraient ainsi pas exprimer (verbalement ou par le biais d'actions) leur anticipation sans basculer dans un processus de prise de décision(Trevena and Miller, 2002). Ceci pose une difficulté majeure dans l'étude de l'anticipation, malgré la présence de mesures comportementales indirectes, telles que les temps de réponses et les changements d'avis, et la possibilité de l'induire par des artifices expérimentaux, tels que l'amorçage ou la manipulation de la probabilité des stimuli.

Similarly,[START_REF] Iemi | Spontaneous neural oscillations bias perception by modulating baseline excitability[END_REF] used the signal-detection theory framework to establish whether a decrease in alpha power resulted in an increased baseline excitability or rather an improvement of stimulus sensitivity. Increased baseline excitability would mean that both relevant signal and noise are integrated faster, while an improved sensitivity would mean that participants respond more accurately because the signal-to-noise ratio is improved in the sensory encoding stage. For this, they implemented a series of two experiments. In the first one, participants had to judge whether a visual grating was present or not, and the authors observed that the false-alarm and the hit rates increased with decreasing alpha power in centroparietal electrodes. To corroborate this finding, the second experiment varied the task between blocks of trials, asking participants to successively perform a detection task (identical to experiment 1), a location task (participants judge whether the grating appears on the right or the left side of the screen), and orientation task (determine whether the grating is tilted to the left or to the right). While they again found an effect of alpha activity on the detection task, this effect was absent in the other two tasks, in which the performance was unrelated to fluctuations in alpha power. This finding supports the idea that a decrease in alpha power reflects an increase in baseline activity, as participants respond according to a more liberal decision criterion.[START_REF] Benwell | Low pre-stimulus EEG alpha power amplifies visual awareness but not visual sensitivity[END_REF] obtained similar results in a 19-AFC task, where people had to report what letter they had seen. They observed that the prestimulus alpha power correlated negatively with subjective ratings of awareness, but found no correlation between alpha power and discrimination accuracy.
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Data availability

The lexical classification dataset is already made available by Wagenmakers et al. [START_REF] Wagenmakers | A diffusion model account of criterion shifts in the lexical decision task[END_REF] and can be accessed here.

The multi-sensory classification dataset as well as the Python code are available at https:// github. com/ IsabH ox/ nl-DDM. git. The corresponding author can be contacted regarding these datasets.

Problem statement and hypotheses

From the literature review we presented, several questions emerged. In this thesis, we focus on two of them: Problem statement 1. What brain activity patterns relate to anticipation at the single-trial level?

2. How can we model the impact of anticipation on the decision process and behavior? Some assumptions will additionally guide our investigations:

Assumptions

• Accurate anticipation transcribes in shorter reaction times and more accurate responses

• Pre-stimulus brain activity holds information about perceptual anticipation

• In evidence-accumulation models of decision-making, the drift rate and the accumulation starting-point should interact 
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3 Behavioral analysis of the lexical classification dataset 5 The tables of ANOVAs on the behavior held by participants on the lexical classification task are given Tables S1, S2 andS3. We assessed the effects of word type, instruction and time of the experiment on both RT and accuracy by performing repeated-measures ANOVAs.

The RT varied significantly with word type (F(3, 45) = 36.329, p < 0.001, Supplementary Table S1), instruction (F(1, 15) = 16.541, p = 0.001), and time (F(1, 15) = 55.260, p < 0.001), with a significant interaction effect of word type and instruction (F (3,[START_REF] Lange | Reduced occipital alpha power indexes enhanced excitability rather than improved visual perception[END_REF] 
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any other word type, frequent words shorter RTs than rare or very rare words, and rare words yield prompter responses than very rare words (Supplementary Table S3).As expected, participants also responded significantly faster in the speed condition compared to the accuracy condition (t(15) = 4.067, p Holm = 0.001). Interestingly, participants responded faster in late relative to early trials (t(15) = 7.434, p Holm < 0.001).

The accuracy was also significantly impacted by word type (F(3, 45) = 179.581, p < 0.001, Supplementary Table S2), instruction (F(1, 15) = 23.863, p < 0.001), time (F(1, 15) = 102.297, p < 0.001), and the interaction between word type and time (F(3, 45) = 54.412, p < 0.001), and word type, time and instruction (F(3, 45) = 3.163, p = 0.034). Post-hoc analyses revealed that both frequent and non-existent words were responded to more accurately than both rare and very rare words (frequent-rare: t(15) = 18.567, p Holm < 0.001, frequent-very rare: t(15) = 11.197, p Holm < 0.001, non-existentrare: t(15) = 19.874, p Holm < 0.001, non-existent-very rare: t(15) = 12.504, p Holm < 0.001). Participants also responded significantly more accurately to rare words compared to very rare words (t(15) = 7.370, p Holm < 0.001). Accuracy trials were more accurate on average than speed trials (t(15) = 4.885, p Holm < 0.001). Early trials were more accurate than late trials (t(15) = 10.114, p Holm < 0.001).

From these results, it is noteworthy that the time of the experiment significantly impacts behavior, and seems to imply modifications in the speed-accuracy trade-off strategy. Note also that there is no interaction effect between time and instruction.