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Chapter 1 Remerciements Je souhaite d'abord remercier chaleureusement Stéphane Seuret et Julien Barral (mes deux directeurs de thèse) pour les conseils qu'ils m'ont prodigué et la patience (parfois le courage, il faut bien le dire) dont ils ont fait preuve tout au long de ma thèse, même après avoir constaté que la 20 ème version de tel ou tel article changeait du tout au tout pour rendre un résultat un petit peu plus général. En tout cas, il me semblait inévitable de ne pas énoncer l'adage suivant qui m'a été répété de très très (très) nombreuses fois:

"Le mieux est l'ennemi du bien.

Chapter 2 Introduction en français

La théorie de l'approximation métrique cherche à décrire géométriquement (souvent via le calcul de dimensions de Hausdor ) l'ensemble des éléments approximables par une famille de points (x n ) n∈N choisie à l'avance dans un espace métrique (X, d). Historiquement, cette théorie est née des travaux de Dirichlet portant sur l'approximation des nombres réels par des nombres rationnels au XIXème siècle. Ces travaux furent complétés et enrichis plus tard, dans les années 1920, par Jarnik et Besicovitch [START_REF] Jarnik | Diophantischen approximationen und Hausdorsches mass[END_REF] et récemment, dans les années 2000, par les travaux de Jaard [START_REF] Jaard | The spectrum of singularities of Riemann's function[END_REF], de Bugeaud [START_REF] Bugeaud | An inhomogeneous Jarnik theorem[END_REF], de Beresnevich et de Velani [START_REF] Beresnevitch | A mass transference principle and the Dun-Schaeer conjecture for Hausdor measures[END_REF]. Ce n'est qu'à partir des années 1990, que certains de ces problèmes d'approximation diophantienne ont été reformulés en terme d'approximation par des orbites de systèmes dynamiques [START_REF] Hill | The ergodic theory of shrinking targets[END_REF]. Dans ce cadre, on étudie le cas où la famille (x n ) n∈N est une orbite, i.e., x n = T n (x), x ∈ X, où X est un espace métrique et T : X → X est une application mesurable. Pour des exemples où T est le doublement de l'angle sur le cercle, une fonction Markovienne dilatante sur [0, 1] ou bien pour d'autres examples de fonctions dilatantes, voir [START_REF] Fan | A multifractal mass transference principle for Gibbs measures with applications to dynamical diophantine approximation[END_REF][START_REF] Liao | Diophantine approximation by orbits of expanding Markov maps[END_REF][START_REF] Persson | On shrinking targets for piecewise expanding interval maps[END_REF].

Ces ensembles jouent également un rôle important en analyse multifractale. Par exemple, l'étude des séries de Riemann [START_REF] Jaard | The spectrum of singularities of Riemann's function[END_REF] fait intervenir la vitesse d'approximation d'un réel par des nombres rationnels. Pour d'autres exemples de travaux mêlant analyse multifractale et approximation diophantienne, citons également les travaux de Barral, Seuret, Liao, Fan, Shmeling, Troubetzkoy, Jaard et Persson [START_REF] Barral | Besov spaces in multifractal environment, and the Frisch-Parisi conjecture[END_REF][START_REF] Fan | A multifractal mass transference principle for Gibbs measures with applications to dynamical diophantine approximation[END_REF][START_REF] Jaard | Functions with prescribed Hölder exponent[END_REF][START_REF] Liao | Diophantine approximation by orbits of expanding Markov maps[END_REF][START_REF] Persson | A note on random coverings of tori[END_REF]. Une façon de donner du sens à la notion d'approximation d'un point

x ∈ R d par une suite de points (x n ) n∈N de R d et d'en caractériser la vitesse, est de se donner des suites d'ensembles (U n (δ)) n∈N , où δ ≥ 1 (parfois on prend un multi-paramètre δ ∈ [1, +∞) k , où k ∈ N est xé) vériant: pour tout n ∈ N, pour tout δ ≥ 1, x n ∈ U n (δ),

pour tout δ ≥ 1, |U n (δ)| → 0, pour tout δ ′ > δ, pour tout n ∈ N, U n (δ ′ ) ⊂ U n (δ).
On s'intéresse alors pour chaque δ, à l'ensemble E δ des points x pour lesquels on peut trouver une innité d'entiers (n k ) k∈N telle que x ∈ U n k (δ). L'ensemble de ces points est appelé la limsup 1 des ensembles (U n (δ)) n∈N et s'écrit

E δ = lim sup n→+∞ U n (δ) := N ∈N n≥N U n (δ).
On dit alors qu'un point x est approximable à vitesse δ si x ∈ F δ := E δ \ δ ′ >δ E δ ′ et on cherche en général à calculer les dimensions de Hausdor (voir Section 4.2, Lemma 4.2.3 pour une dénition de la dimension de Hausdor ) dim H (E δ ) et dim H (F δ ) (dans les faits, on arrive souvent à calculer dim H (F δ ) quand on sait que H ζ (E δ ) > 0 où ζ est une jauge appropriée et H ζ est la mesure de Hausdor associée).

Le premier exemple historique de ce genre de calcul est le théorème de Jarnik-Besicovitch.

Théorème 2.1.1 ). Pour x ∈ R et r > 0, notons B(x, r) la boule fermée centrée en x et de rayon r. Alors, pour tout δ ≥ 1, on a, notant E δ := lim sup q∈N,0≤p≤q B( p q , 1 q 2δ ) et

F δ := E δ \ δ ′ >δ E δ ′ : dim H (E δ ) = dim H (F δ ) = 1 δ (2.1)
1 Notons ici que la dénition de l'ensemble lim sup n→+∞ U n est indépendante de la numérotation choisie pour les ensembles {U n } n∈N , c'est à dire que pour toute bijection ϕ : N → N, on a lim sup n→+∞ U n = lim sup n→+∞ U ϕ(n) . En particulier, nous prendrons dans ce manuscrit parfois des limsups d'ensembles sans préciser explicitement la numérotation choisie. 

H s ∞ (U n ) ≥ L d (B n ). Alors dim H (lim sup n→+∞ U n ) ≥ s.
Ajoutons ici que des études de dimensions de Hausdor d'ensemble limsup générés par des ensembles aléatoires faisaient déjà apparaître explicitement le rôle du contenu de Hausdor pour caractériser la dimension de l'ensemble limsup [START_REF] Ekström | Hausdor dimension of random limsup sets[END_REF][START_REF] Feng | Dimensions of random covering sets in Riemann manifolds[END_REF][START_REF] Jarvenpäa | Hausdor dimension of ane random covering sets in torus[END_REF][START_REF] Jarvenpäa | Hitting probabilities of random covering sets in torus and metric spaces[END_REF] 

B n ) = 1. Posons R n = x n + d i=1 (-r τ i n , r τ i n ).
(2.2)

Alors, pour tout 0 ≤ s ≤ d, le contenu de Hausdor de dimension s des rectangles R n peut être estimé explicitement en fonction de r n et des nombres τ 1 , ..., τ d à une constante multiplicative près C qui ne dépend que de d. En particulier, on obtient, que pour s 0 = min 1≤i≤d

d+ 1≤i≤d τ k -τ i τ k ([51]), H s 0 ∞ (R n ) ≥ Cr d n ≥ CL d (B n ).
On vérie facilement que ceci implique que pour tout s < s 0 et n assez grand,

H s ∞ (R n ) ≥ r d n = L d (B n ).
Par application du Théorème 2.1.3, on obtient un résultat qui avait été étblit par Wang, Wu et Xu dans [START_REF] Wang | Mass transference principle for limsup sets generated by rectangles[END_REF],

dim H (lim sup n→+∞ R n ) ≥ s 0 = min 1≤i≤d d + 1≤i≤d τ k -τ i τ k .
Lorsque la mesure n'est pas homogène (Alfhors régulière), le problème est plus complexe.

Le théorème de Barral Mentionnons aussi que pour tout 1 ≤ τ 1 ≤ ... ≤ τ d , toute suite de matrices de rotations (O k,n ) k∈N,0≤n≤2 k -1 ∈ O d (R) N , presque pour toute suite de réalisations de variables aléatoires i.i.d. et uniformément distribuées dans [0, 1] d , (x k,n ) k∈N,0≤n≤2 k -1 , il est démontré dans [START_REF] Jarvenpäa | Hausdor dimension of ane random covering sets in torus[END_REF] (et la preuve utilise implicitement le Corollaire 2.1.9 dans le cas de la masure de Lebesgue) que la famille de rectangles

R = x k,n + O k,n d i=1 (-2 -kτ i , 2 kτ i ), 0 ≤ n ≤ 2 k -1, k ∈ N vérie dim H (lim sup R∈R R) = min 1≤k≤d d + k j=1 τ k -τ j τ k .
En particulier la borne donnée par le Corollaire 2.1.9 est optimale. Nous verrons un peu plus tard qu'elle l'est même en un sens plus fort. (2.8) Beaucoup de suites de boules sont faiblement redondantes, comme la suite des boules rationnelles Ä B( p q , 1 q 2 ) ä q∈N,0≤p≤q,q∧p=1 , mais il existe aussi des exemples de suites naturelles de boules ne satisfaisant pas cette hypothèse. C'est le cas par example de la suite Ä B( p q , 1 q 2 ) ä q∈N,0≤p≤q

T k (B) = B n ∈ B : 2 -k-1 ≤ |B n | < 2 -k (2.7) N k (B) = max B∈T k (B) # {B ′ ∈ T k (B) : B ∩ B ′ ̸ = ∅} .
. Cependant, on peut montrer pour certains de ces exemples que, bien qu'elles ne satisfassent pas l'hypothèse de faible redondance, ces suites vérient tout de même l'équation (2.8) pour une 2.1 THÉORÈMES D'UBIQUITÉ 11 mesure naturelle ( Ä B( p q , 1 q 2 ) ä q∈N,0≤p≤q pour la mesure de Lebesgue). Ajoutons aussi que d'autres auteurs utilisent des hypothèses comparables mais lègèrements diérentes, telles que l'hypothèse de régularité optimale d'un système de points approximants (voir [START_REF] Bugeaud | An inhomogeneous Jarnik theorem[END_REF]).

Dans le cas où la mesure est faiblement conforme, l'hypothèse de faible redondance permet d'établir le théorème de majoration suivant.

Théorème 2.1.10 (D. [START_REF] Daviaud | Extraction of optimal sub-sequences of balls and application to optimality estimates of mass transference principles[END_REF]). Soit µ ∈ M(R d ) une mesure faiblement conforme, (B n ) n∈N une suite de boules faiblement redondante, centrées sur supp(µ)

et satisfaisant |B n | → 0, (U n ) n∈N une suite d'ouverts vériant U n ⊂ B n et 0 ≤ s < dim(µ).
Si pour tout n assez grand,

H µ,s ∞ (U n ) ≤ µ(B n ), alors on a dim H (lim sup n→+∞ U n ) ≤ s.
Notons qu'étant donnés µ ∈ M(R d ), (B n ) n∈N et (U n ) n∈N satisfaisant pour tout n ∈ N, U n ⊂ B n , il n'est pas vrai en général qu'il existe un exposant critique s 0 de sorte que pour tout s < s 0 , pour n assez grand, H µ,s ∞ (U n ) ≥ µ(B n ) et pour tout s > s 0 , pour n assez grand H µ,s ∞ (U n ) ≤ µ(B n ).

Néanmoins, dans le cas des mesures faiblements conformes, lorsque le choix des ensembles U n est fait de façon cohérente (par exemple, si l'on prend des rectangles contractés via les mêmes facteurs de contraction (τ 1 , . En particulier, les bornes données par les Corollaires 2.1.8 et 2.1.9 sont optimales en un sens relativement satisfaisant: sous des hyptohèses raisonables sur la suite (B n ) n∈N , on peut toujours extraire une sous-suite (B ϕ(n) ) n∈N qui vérie encore µ(lim sup n→+∞ B ϕ(n) ) = 1 et telle que la limsup générée par les ensembles contractés associés (boules ou rectangles) ont les dimensions attendues pour tous les ratios de contractions.

La prochaine section présente une application en approximation diophantienne. Ces résultats sont établis dans le Chapitre 9.

Application en approximation diophantienne

Comme mentionné précédemment, une des problématiques classiques en approximation diophantienne est de déterminer les dimensions de divers ensembles de points approximables par des nombres rationnels. Considérons f 0 :

R → R, f 1 : R → R et f 2 : R → R dénies par f 0 : x → 1 3 x, f 1 (x) = 1 3 x + 1 3 et f 2 (x) = 2 3 + 1 3
x et notons K 1/3 l'attracteur (voir Section 4.3, Proposition 4.3.1) de {f 0 , f 2 }. Un problème posé par Mahler consiste à déterminer la dimension de l'ensemble K 1/3 ∩ F δ (ou F δ est déni dans le Théorème 2.1.1) des points du Cantor triadique K 1/3 qui sont approximables par des rationnels à vitesse δ ≥ 1 xée. Ce problème reste non résolu encore aujourd'hui mais les théorèmes d'ubiquité ont tout de même permis d'établir des résultats partiels. Théorème 2.2.1 (Beresnevich-Velani [START_REF] Beresnevitch | A mass transference principle and the Dun-Schaeer conjecture for Hausdor measures[END_REF], ). Pour tout δ ≥ 1,

dim H Ç lim sup 0≤p≤q,q→+∞ B( p q , 1 q 2δ ) ∩ K 1/3 å ≥ dim H (K 1/3 ) 2δ .
La valeur de dim H Ä lim sup 0≤p≤q,q→+∞ B( p q , 1 q 2δ ) ∩ K 1/3 ä , où δ ≥ 1, a donnée lieu à plusieurs conjectures

(1) Levesley, Salp, Velani [START_REF] Levesly | On a problem of K. Mahler: Diophantine approximation and Cantor sets[END_REF]:

dim H Ç lim sup 0≤p≤q,q→+∞ B( p q , 1 q 2δ ) ∩ K 1/3 å = dim H (K 1/3 ) δ .
(2) Bugeaud-Durand [START_REF] Bugeaud | Metric Diophantine approximation on the middle-third Cantor set[END_REF]:

dim H Ç lim sup 0≤p≤q,q→+∞ B( p q , 1 q 2δ ) ∩ K 1/3 å = max ß dim H (K 1/3 ) δ , 2 δ + dim H (K 1/3 ) -1 ™ .
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Grâce au Théorème 2.1.3 (qui est impliqué par Théorème 2.1.6), on peut obtenir une caractérisation complète des points approximables par des rationnels dans un ensemble qui contient K 1/3 et qui a même dimension.

Notons Λ = {0, 1, 2} et le shift sur Λ N , σ, déni par σ((i 1 , i 2 , ...)) = (i 2 , ...). La projection canonique de Λ N sur [0, 1] est l'application

π : x = (x n ) n∈N → lim n→+∞ f x 1 • ... • f xn (0).
(2.9) Dénition 2.2.2. Soit ϕ : Λ N → {0, 1} dénie par

   ϕ(x) = 1 si x 1 = 1 ϕ(x) = 0 si x 1 = 0 ou 2 et K (0) 1/3 = π Åß x ∈ Λ N : lim inf k→+∞ S k ϕ(x) k = 0
™ã , où (S k ϕ) k∈N est la somme de Birkho de ϕ dénie pour x ∈ Λ N par

S k (ϕ)(x) = 1 k k-1 i=0 ϕ(σ i (x)).
Il est démontré dans ce manuscrit (Proposition 9.1.5) que dim H K (0)

1/3 = log 2 log 3 (= dim H K 1/3 ).

On a le résultat suivant:

Théorème 2.2.3 (D. [START_REF] Daviaud | An heterogeneous ubiquity theorem, application to self-similar measures with overlaps[END_REF]). Pour tout δ ≥ 1, dim H lim sup 0≤p≤q,q→+∞

B( p q , 1 q 2δ ) ∩ K (0) 1/3 = min ß log 2 log 3 , 1 δ 
™ .

(2.10)

On observe un phénomène de saturation: pour 1 ≤ δ ≤ log 3 log 2 , la dimension dim H lim sup 0≤p≤q,q→+∞ B( p q , 1 q 2δ ) ∩ K (0) 1/3 est constante égale à log 2 log 3 , puis décroit en 1 δ lorsque δ ≥ log 3 log 2 .

Dans la prochaine section, nous présentons une application du Corollaire 2.1.8 aux problèmes de cibles rétrécissantes faiblements conformes. B(f i (x), ψ(i)), où ψ : Λ * → R vérie lim |i|→+∞ ψ(i) = 0 et pour i = (i 1 , ..., i k ),

f i = f i 1 •...•f i k .
Historiquement, l'étude de ces ensembles est reliée à celle des cibles rétrécissantes sur l'attracteur d'un système dynamique répulsif [START_REF] Hill | The ergodic theory of shrinking targets[END_REF].

Plus précisément, supposons pour simplier que l'IFS S soit auto-similaire et satisfasse pour tout 1 ≤ i ̸ = j ≤ m, Im(f i )∩Im(f j ) = ∅. Alors son attracteur K peut être vu comme l'attracteur associé à la fonction mesurable répulsive F dénie par F (x) = f -1 i (x) si x ∈Im(f i ). Soit δ ≥ 1 et ψ : Λ * → Λ * la fonction dénie par ψ(i) = c i e -nδ . L'ensemble W (x, ψ) se réécrit simplement comme W (x, ψ) = z : F n (z) ∈ B(x, e -nδ ) pour une innité d'entiers n ∈ N , (2.11) qui sont justement les ensembles introduits et étudiés par Hill et Velani dans [START_REF] Hill | The ergodic theory of shrinking targets[END_REF].

Il existe cependant a priori plusieurs façons naturelles de choisir les classes de fonctions ψ que l'on considère: D'un point de vue dynamique, il est logique de considérer des fonctions ψ de la forme ψ(i) = |f i (K)| δ , où δ ≥ 1, puisqu'on a naturellement, lim sup

i∈Λ * B(f i (x), |f i (K)|) = K.
Dans ce cas, le Théorème 2.1.6 permet de montrer le résultat suivant: Théorème 2.3.1 (D. [START_REF] Daviaud | Dimension of weakly conformal iterated function system shrinking targets with overlaps[END_REF]). Notons dim(S) la dimension de conformalité de l'IFS S (Dénition (4.3.19)). Supposons que dim H (K) = dim(S).

Alors pour tout δ ≥ 1, pour tout x ∈ K, on a

dim H Ç lim sup i∈Λ * B(f i (x), |f i (K)| δ ) å = dim H (K) δ .
(2.12)

En approximation diophantienne, on préfère prendre des fonctions ψ de la forme ψ(i) = |f i (K)|g(|i|) où g : N → R est une fonction décroissante 2.3 CIBLES RÉTRÉCISSANTES FAIBLEMENT CONFORMES 15 (pour l'étude des ensemble W (x, ψ) dans ce cadre sous l'hypothèse que le système vérie l'OSC, citons les travaux de Hill et Velani et de Allen et Bárány [START_REF] Allen | On the Hausdor measure of shrinking target sets on self-conformal sets[END_REF][START_REF] Hill | The ergodic theory of shrinking targets[END_REF]).

Cette diérence de point de vue est justiée par (2.11) et provient également du fait que l'on cherche à faire des analogies entre l'étude de ces ensembles et le théorème de Khintchine dans le cadre rationnel que l'on rappelle. Notons ϕ : N → N la fonction d'Euler, dénie par ϕ(q) = # {1 ≤ p ≤ q : p ∧ q = 1} .

Théorème 2.3.2 (Khintchine [50]). Soit ψ : N : R + une fonction telle que q → ψ(q) q soit monotone. Alors

L d Ç lim sup q∈N,0≤p≤q,p∧q=1
B p q , ψ(q) q å = 1 ⇔ q≥1 ϕ(q)ψ(q) q = +∞.

Ajoutons qu'il était conjecturé par Dun et Schaeer que le Théorème 2.3.2 restait valide sans l'hypothèse de monotonie de q → ψ(q) q et que cette conjecture a été résolue récemment par Maynard et Koukoulopoulos [START_REF] Koukoulopoulos | On the Dun-Shaeer conjecture[END_REF].

Pour rendre cette analogie plus concrète, supposons pour simplier que le système S soit auto-similaire et appelons 0 < c 1 , ..., c m < 1 les ratios de contraction des fonctions f 1 , ..., f m . Rappelons que dans le cas autosimilaire, dim(S) est le réel solution de 1≤i≤m c dim(S) i = 1.

On dispose toujours sur le codage Λ N d'une mesure naturelle ν dénie pour tout i = (i 1 , ..., i k ) ∈ Λ * , par

ν(i) = c dim(S) i
.

Soit µ = ν(π -1 ), où π est la projection canonique de Λ N sur K (dénie ci-dessous en (2.9)). L'idée est d'obtenir des résultats de dichotomies de la forme suivante (où s ≥ 0 est non spécié ici):

   si i∈Λ * ψ(i) s = +∞, alors µ(W (x, ψ)) = 1 si i∈Λ * ψ(i) s < +∞, alors µ(W (x, ψ)) = 0.

Ceci en tête, il est clair que la fonction ψ ne peut pas être arbitraire et que ψ(i) doit dépendre de la génération du mot i, si on espère recouvrir CHAPTER 2: INTRODUCTION EN FRANÇAIS un ensemble de large mesure par des boules {B(f i (x), ψ(i))} i∈Λ n , pour une innité d'entiers n ∈ N.

Pour des exemples de tels théorèmes dans le cadre auto-similaire, référons à [START_REF] Levesly | On a problem of K. Mahler: Diophantine approximation and Cantor sets[END_REF] et mentionnons aussi le théorème suivant:

Théorème 2.3.3 (Baker [3]). Supposons que le système S satisfasse l'une des Théorème 2.3.4 (D. [START_REF] Daviaud | Dimension of weakly conformal iterated function system shrinking targets with overlaps[END_REF]). Soit g : N → (0, +∞) une fonction positive décroissante. Posons (2.14)

s g = inf    s ≥ 0 : k≥0 i∈Λ k k(|f i (K))|g(k)) s < +∞    . ( 2 
Remarquons que (2.14) donne une caractérisation complète de la dimension des ensembles W (x, ψ) lorsque ψ est de la forme ψ(i) = (|f i (K)|g(|i|)) s , pour tout s ≥ 0 et g : N → N positive décroissante.

La prochaine section présente une application en analyse multifractale de mesures discrètes, développée au Chapitre 11.

Application à l'analyse multifractale de mesures discrètes

Soit m ≥ 2 et S = {f 1 , ..., f m } un système de similitudes contractantes de rapports de contraction 0 < c 1 , ..., c m < 1 et soit K l'attracteur de S. Etant donné (q 1 , ..., q m+1 ) ∈ (0, 1) m+1 un vecteur de probabilité, nous étudions les mesures de probabilité solutions de l'équation perturbée

χ(•) = 1≤i≤m q i χ(f -1 i (•)) + q m+1 δ x 0 , (2.15) 
où δ x désigne la mesure de Dirac au point x. Ces mesures ont été introduites par Snigireva et Olsen dans [START_REF] Snigireva | L q spectra and Rényi dimensions of inhomogeneous self-similar measures[END_REF] sous l'appellation de mesures auto-similaires in-homogènes de mesure de condensation δ x 0 .

On peut montrer (cf Proposition 11.1.1) que de telles mesures sont discrètes et sont de la forme

χ(•) = C i∈Λ * p i c t i δ f i (x 0 ) , (2.16) 
où t > 0, (p 1 , ..., p m ) est un autre vecteur de probabilité, C > 0 est une constante de renormalisation an que χ soit une mesure de probabilité.

Des mesures très similaires ont été obtenues par Mandelbrot et Riedi [START_REF] Mandelbrot | Exceptions to the multifractal formalism for discontinuous measures[END_REF] en considérant des mesures réelles obtenues en inversant les fonctions de reparatitions associées à des mesures auto-similaires satisfaisant l'OSC et par Barral et Seuret en considerant le cas d'une mesure de Gibbs sur un Cookiecutter dans [START_REF] Barral | The singularity spectrum of the inverse of cookiecutters[END_REF]. Les propriétés multifractales de ces mesures ont été étudiées par Falconer dans [START_REF] Falconer | Representation of families of sets by measures, dimension spectra and Diophantine approximation[END_REF], par Barral et Seuret dans [START_REF] Barral | The multifractal nature of heterogeneous sums of dirac masses[END_REF][START_REF] Barral | The singularity spectrum of the inverse of cookiecutters[END_REF] et par Mandelbrot et Riedi dans [START_REF] Mandelbrot | Exceptions to the multifractal formalism for discontinuous measures[END_REF]. Ces derniers, en ne considérant seulement des dimensions locales obtenues via des limites exactes, Mandelbrot et Riedi n'ont pas relevé un phénomène intéressant mis en lumière par Falconer, Barral et Seuret.

L'analyse ne des propriétés multifractales de mesures est un sujet qui a vu le jour dans les années 1970 avec les travaux de Mandelbrot [START_REF] Mandelbrot | Intermittent turbulence in self-similar cascades, divergence of high moments and dimension of the carrier[END_REF][START_REF] Mandelbrot | Multiplications aléatoires itérées et distributions invariantes par moyennes pondérées[END_REF] 

E h µ = {x ∈ supp(µ) : dim(µ, x) = h} , ‹ E h µ = x ∈ supp(µ) : dim(µ, x) = dim(µ, x) = h , (2.17) 
CHAPTER 2: INTRODUCTION EN FRANÇAIS c'est-à-dire à déterminer pour tout h ∈ R,

   D µ (h) = dim H (E h µ ) et ‹ D µ (h) = dim H ( ‹ E h µ ).
On cherche généralement à comparer les dimensions de ces ensembles à la transformée de Legendre d'une fonction d'échelle, notée τ µ et dénie pour tout q ∈ R par τ µ (q) = lim inf n→+∞ -log D∈Dn:µ(D)̸ =0 µ(D) q n ou D n dénote l'ensemble des cubes dyadiques de génération n.

Fixons µ la mesure auto-similaire associée à S et (p 1 , ..., p m ), c'est-à-dire la mesure solution de l'équation

µ(•) = m i=1 p i µ(f -1 i (•)).
Nous allons voir que l'analyse multifractale de la mesure χ, donnée par (2.16), dépend à la fois de l'analyse multifractale de la mesure auto-similaire µ et de la vitesse d'approximation d'un point x par les points de l'orbite (f i (x 0 )) i∈Λ * .

Introduisons la dénition suivante. Dénition 2.4.1. Soit x ∈ K. Le degré d'approximation de x par rapport à (f i (x 0 )) i∈Λ * , noté ∆ x , est déni par

∆ x = sup ß ∆ : x ∈ lim sup n→+∞ B(f i (x 0 ), (2c i ) ∆ ) ™ .
Dans le cas où le point de base de (2.16) x 0 n'appartient pas à l'attracteur K de S, tous les points de supp(χ), excepté {f i (x 0 )} i∈Λ * , qui est de dimension 0, sont mal approchés par ces points, i.e, ont pour degré 1. Dans ce cas l'analyse multifractale de χ se déduit facilement de celle de µ.

Théorème 2.4.2 (D. [START_REF] Daviaud | Multifractal analysis of discrete self-similar measure satisfying AWSC[END_REF]). Soit x 0 / ∈ K. Alors, pour t > 0, la mesure χ dénie par (2.16) existe. De plus, pour tout h ≥ 0,

D χ (h) = D µ (h -t).
(2.18) Remarquons que ce résultat est vrai sans hypothèse de séparation sur la mesure µ. Une conséquence directe de ce résultat est que, lorsque l'attracteur K a mesure de Lebesgue 0, pour Lebesgue presque tout x 0 , la mesure χ a pour spectre multifractal un translaté du spectre de la mesure µ. En d'autres termes, pour simuler une mesure qui a pour spectre multifractal le spectre de la mesure µ translaté de t, il sut de tirer aléatoirement un point x 0 suivant la loi uniforme et de simuler la mesure χ associée. Ajoutons aussi que l'on montre dans ce manuscript que χ ne satisfait pas le formalisme multifractal même si µ le satisfait (car τ χ (q) = 0 pour q ≥ 1).

Lorsque x 0 est choisi sur K, le Corollaire 2.1.8 permet, sous certaines hypothèses de calculer le spectre de la mesure χ associée.

Théorème 2.4.3 (D. [START_REF] Daviaud | Multifractal analysis of discrete self-similar measure satisfying AWSC[END_REF]). Soit m ≥ 2, S = {f 1 , ..., f m } IFS auto-similaire satisfaisant AWSC (Denition 4.3.3) sans overlaps exacts et K ⊂ R d l'attracteur de S. Soit (p 1 , ..., p m ) un vecteur de probabilité, µ la mesure auto-similaire associée avec (p 1 , ..., p m ), x 0 ∈ K et C > 0 la constante de normalisation telle que la mesure

χ(•) = C i∈Λ * c t i p i δ f i (x 0 ) ,
soit une mesure de probabilité.

Posons q c = min {q :

τ µ (q) + qt = 0} et λ c = τ ′ µ (q c ). Alors: 1. La fonction τ χ satisfait         
pour tout q ≥ q c , τ χ (q) = 0 pour tout 0 ≤ q ≤ q c , τ χ (q) = τ µ (q) + t pour tout q ≤ 0, τ χ (q) ≥ τ µ (q) + t.

(

En particulier, pour tout h ≥ 0, on a

τ * χ (h) ≤    hq c si 0 ≤ h ≤ λ c + t τ * µ (h -t) si h ≥ λ c + t. (2.20) 2. Le sepectre multifractal D χ de χ satisfait    pour tout 0 < h ≤ λ c + t, D χ (h) = hq c pour tout λ c + t < h ≤ τ ′ µ (0 + ) + t, D χ (h) = τ * µ (h -t).
(2.21)

Pour tout

h > τ ′ µ (0 + ) + t, on a dim H ( ‹ E h-t µ ∩ {x : ∆ x = 1}) ≤ D χ (h) ≤ τ * µ (h -t).
Remarque 2.4.4. 

h ≥ τ ′ µ (0 + ), il existe m h ∈ M(R d ) telle que dim H (m h ) = τ * µ (h) et m h ( ‹ E h µ ) > 0, alors D χ (h + t) = τ * µ (h)
et χ satisfait le formalisme multifractal en h + t.

Remarquons que l'analyse multifractale est en toute généralité ardue pour h grand. Ce phénomène n'est pas étonnant puisque l'on peut construire des exemples de mesures auto-similaires associées à des systèmes satisfaisant des hypothèses de séparations très raisonnables mais qui ne satisfont pas le formalisme multifractal pour h grand (voir [START_REF] Testud | Phase transitions for the multifractal analysis of self-similar measures[END_REF]). [START_REF] Jarnik | Diophantischen approximationen und Hausdorsches mass[END_REF] and recently, around 2000, by the work of Jaard [START_REF] Jaard | The spectrum of singularities of Riemann's function[END_REF], Beresnevich and Velani [START_REF] Beresnevitch | A mass transference principle and the Dun-Schaeer conjecture for Hausdor measures[END_REF]. It is only since 1990 that certain problems in Diophantine approximation were formulated in terms of approximation by orbits of dynamical systems [START_REF] Hill | The ergodic theory of shrinking targets[END_REF]. In those settings, one studies the case where the family of points (x n ) n∈N is an orbit, i.e, x n = T n (x), x ∈ X, where X is a metric space and T : X → X is a measurable mapping. For examples where T is the doubling map on the torus, a Markovian expanding map on the torus or other examples of expanding maps, see [START_REF] Fan | A multifractal mass transference principle for Gibbs measures with applications to dynamical diophantine approximation[END_REF][START_REF] Liao | Diophantine approximation by orbits of expanding Markov maps[END_REF][START_REF] Persson | On shrinking targets for piecewise expanding interval maps[END_REF].

Conclusion et perspectives

A δ = (x 1 , ...., x d ) : ∃(p 1 , ..., p d ) ∈ N d , d i=1 |x i - p i q | ≤ q -δ , q ∈ N i.
Those sets also plays an important role in multifractal analysis. For example, the study of Riemann's series [START_REF] Jaard | The spectrum of singularities of Riemann's function[END_REF] depends on the speed of approximation of a real number by rational numbers. For other work mixing multifractal analysis and Diophantine approximation, let us refer to the work of Barral, Seuret, Jaard, Liao, Fan, Shmeling Troubetzkoy and Persson [START_REF] Barral | Besov spaces in multifractal environment, and the Frisch-Parisi conjecture[END_REF][START_REF] Fan | A multifractal mass transference principle for Gibbs measures with applications to dynamical diophantine approximation[END_REF][START_REF] Jaard | Functions with prescribed Hölder exponent[END_REF][START_REF] Liao | Diophantine approximation by orbits of expanding Markov maps[END_REF][START_REF] Persson | A note on random coverings of tori[END_REF].

3.1 Ubiquity theorems for every n ∈ N, for every δ ≥ 1, x n ∈ U n (δ),

for every δ ≥ 1, |U n (δ)| → 0, for every δ ′ > δ, for every n ∈ N, U n (δ ′ ) ⊂ U n (δ).
For each δ, we are interested in the sets E δ of points x for which there exists an innity of integers (n k ) k∈N such that x ∈ U n k (δ). The set of all those points is called the limsup 1 of the sequence (U n (δ)) n∈N and can be written as

E δ = lim sup n→+∞ U n (δ) := N ∈N n≥N U n (δ).
We say that a point x is approximable at speed

δ if x ∈ F δ := E δ \ δ ′ >δ E δ ′
and we aim in general at computing the Hausdor dimensions (see Section The rst historical example of such computations is the theorem of Jarnik-Besicovitch.

Theorem 3.1.1 ). For x ∈ R and r > 0, denote by B(x, r) the closed ball centered in x and of radius r. Then, for every δ ≥ 1,

denoting E δ := lim sup q∈N,0≤p≤q B( p q , 1 q 2δ ) and F δ := E δ \ δ ′ >δ E δ ′ , one has: dim H (E δ ) = dim H (F δ ) = 1 δ . (3.1)
The reader interested in other works around rational approximation may refer to [START_REF] Beresnevitch | A mass transference principle and the Dun-Schaeer conjecture for Hausdor measures[END_REF][START_REF] Bugeaud | An inhomogeneous Jarnik theorem[END_REF][START_REF] Bugeaud | Intersective sets and Diophantine approximation[END_REF][START_REF] Durand | Sets with large intersection and ubiquity[END_REF] (homogeneous and inhomogeneous rational approximation) and [START_REF] Allen | Dyadic Approximation in the Middle-Third Cantor Set[END_REF][START_REF] Bugeaud | Diophantine approximation and Cantor sets[END_REF][START_REF] Bugeaud | Metric Diophantine approximation on the middle-third Cantor set[END_REF][START_REF] Levesly | On a problem of K. Mahler: Diophantine approximation and Cantor sets[END_REF] (rational approximation of elements of the middle-third Cantor set).

Usually, to compute the Hausdor dimension of those sets, one proceeds separately for the lower-bound and the upper-bound. In practice, getting an 1 Remark here that the denition of lim sup n→+∞ U n does not depend on the manner we enumerate the sets {U n } n∈N in the sens that for any bijective mapping ϕ : N → N, one has lim sup n→+∞ U n = lim sup n→+∞ U ϕ(n) . In particular later on in the manuscript, there might be some limsup sets taken over families of sets for which the enumeration we choose is not explicitly stated.

upper-bound for dim H (E δ ) is often either straightforward, either very complex (the reader will notice that in this manuscript, the upper-bound for dim H (E δ ) are often much easier to establish than the corresponding lower-bound).

The ubiquity theorems, also called mass transference principles ( [START_REF] Beresnevitch | A mass transference principle and the Dun-Schaeer conjecture for Hausdor measures[END_REF]), are tools built to provide lower-bounds for dim H (E δ ).

Those theorems work in the following way: one look for a measure µ ∈ M(R d ) := probability measures on R d (hopefully adapted to our problem) such that µ(E 1 ) = 1. Then, using the geometric property of the measure µ (selfsimilarity, multifractal analysis for example), one establishes a lower-bound for dim H E δ for every δ > 1. Here is an important example of such theorems. One says that a measure µ ∈ M(R d ) is s-Alfhors regular, where 0 ≤ s ≤ d, if there exists two constants 0 < C 1 ≤ C 2 such that, for every ball B(x, r) with x ∈ supp(µ) := the topological support of µ and 0 < r ≤ 1, we have

C 1 r s ≤ µ (B(x, r)) ≤ C 2 r s .
The Lebesgue measure L d on [0, 1] d is an example of such a measure. Theorem 3.1.2 (Beresnevich-Velani [START_REF] Beresnevitch | A mass transference principle and the Dun-Schaeer conjecture for Hausdor measures[END_REF]). Let 0 ≤ s ≤ d be a real number and µ ∈ M(R d ) an s-Alfhors-regular measure. Let (B n ) n∈N be a sequence of closed ball centered on supp(µ) and satisfying:

|B n | → 0, µ(lim sup n→+∞ B n ) = 1.
Let δ > 1 be a real number and B a ball centered on supp(µ). For s 0 ≥ 0, denote by H s 0 the Hausdor measure of dimension s 0 (see (4.2.2)) and for n ∈ N,

B δ n = B(x n , r δ n ) if B n = B(x n , r n ). One has H s δ (lim sup n→+∞ B δ n ∩ B) = +∞.
In particular, we recover a result previously established by Jaard ([46] 1999),

dim H (lim sup n→+∞ B δ n ) ≥ s δ .
In the case µ = L d , one can also deal with the more general situation where instead of giving a lower-bound for the dimension of lim sup n→+∞ B δ n for every δ > Assume that:

for every n ∈ N large enough, H s ∞ (U n ) ≥ L d (B n ), L d (lim sup n→+∞ B n ) = 1.
Then , one has

dim H (lim sup n→+∞ U n ) ≥ s.
One should mention here that previous works on limsup generated by random sets already highlighted the role of the Hausdor content to characterize the dimension of those limsup sets [START_REF] Ekström | Hausdor dimension of random limsup sets[END_REF][START_REF] Feng | Dimensions of random covering sets in Riemann manifolds[END_REF][START_REF] Jarvenpäa | Hausdor dimension of ane random covering sets in torus[END_REF][START_REF] Jarvenpäa | Hitting probabilities of random covering sets in torus and metric spaces[END_REF] and recently, some interesting techniques based on the Hausdor where also developed in [START_REF] Eriksson-Bique | A new Hausdor content bound for limsup sets[END_REF].

One can for instance take U n an open rectangle for every n ∈ N. More precisely, x (τ 1 , ..., τ

d ) ∈ [1, +∞) d and let (B n := x n + d i=1 [-r n , r n ]) n∈N be a sequence of closed balls of [0, 1] d verifying |B n | → 0 and L d (lim sup n→+∞ B n ) = 1. Set R n = x n + d i=1 (-r τ i n , r τ i n ). (3.2)
Then, for every 0 ≤ s ≤ d, the s-dimensional Hausdor content of the the rectangles R n can be explicitly determined and depends on r n and the numbers τ 1 , ..., τ d up to some multiplicative constant C which only depends on d. As a consequence of this computation, one obtains that, for s 0 = min 1≤i≤d

d+ 1≤i≤d τ k -τ i τ k , H s 0 ∞ (R n ) ≥ Cr d n ≥ CL d (B n ).
It is also easily veried that this implies that for every s < s 0 and every large enough n,

H s ∞ (R n ) ≥ r d n = L d (B n ), Applying Theorem 3.1.3, one obtains dim H (lim sup n→+∞ R n ) ≥ s 0 = min 1≤i≤d d + 1≤i≤d τ k -τ i τ k .
When the measure is not homogeneous, the situation is more complex.

Barral-Seuret Theorem deals with the case where the measure is selfsimilar satisfying the Open Set Condition (OSC in short, see Section 4. 

B n ) = 1, then, for every δ ≥ 1, dim H (lim sup n→+∞ ) = dim(µ) δ . (3.3) 
In this manuscript, we develop a tool which plays the same role as the Hausdor content in Theorem 3.1.3 but in the case where µ is any probability measure of M(R d ). We will show in particular that the resulting ubiquity theorem extends both the Theorems 3.1.3 and 3.1.4.

A general ubiquity theorem

Let us start by introducing the following geometric quantity.

Denition 3.1.5 (D. [START_REF] Daviaud | An heterogeneous ubiquity theorem, application to self-similar measures with overlaps[END_REF]). Let µ ∈ M(R d ) be a probability measure, 0 ≤ s ≤ d and A ⊂ R d a measurable set. The s-dimensional µ-essential Hausdor content of A is dened as

H µ,s ∞ (A) = inf {H s ∞ (E) : E ⊂ A, µ(E) = µ(A)} . (3.4)
For µ ∈ M(R d ), denote by dim H (µ) the lower Hausdor dimension of µ (dened in Section 4.2, Denition 4.2.12). The ubiquity theorem associated with the essential Hausdor content is the following (the version stated here is simplied compared to Theorem 7.1.2). Theorem 3.1.6 (D. [START_REF] Daviaud | An heterogeneous ubiquity theorem, application to self-similar measures with overlaps[END_REF]). Let µ ∈ M(R d ) be a probability measure, Of course, to apply Theorem 3.1.6 to a measure µ, one needs to understand this measure nely enough so that one can estimate precisely H µ,s ∞ (U n ) for every 0 ≤ s < dim H (µ) and each set U n . It turns out that when the measure is weakly conformal (Section 4.3, Denition 4.3.1), it is possible to estimate precisely the s-dimensional Hausdor content of every open set and every s without any separation assumption on the IFS. Theorem 3.1.7 (D. [START_REF] Daviaud | Dimension of weakly conformal iterated function system shrinking targets with overlaps[END_REF]). Let µ ∈ M(R d ) be a weakly conformal measure and K its support.

(B n ) n∈N a sequence of balls |B n | → 0, (U n ) n∈N a sequence of open sets satisfying for every n ∈ N, U n ⊂ B n and 0 ≤ s ≤ dim H (µ). Assume that one has µ(lim sup n→+∞ 1 2 B n ) = 1, for every n large enough, H µ,s ∞ (U n ) ≥ µ(B n ).
For every 0 ≤ s < dim(µ), for every ε > 0, there exists a constant c = c(d, µ, s, ε) > 0 which depends on d, µ, s and ε, such that for every closed balls B = B(x, r) centered on K, for every 0 < r ≤ 1 and for every open set Ω, one has

c(d, µ, s, ε)|B| s+ε ≤ H µ,s ∞ ( B) ≤ H µ,s ∞ (B) ≤ |B| s c(d, µ, s, ε)H s+ε ∞ (Ω ∩ K) ≤ H µ,s ∞ (Ω) ≤ H s ∞ (Ω ∩ K). (3.6) 
For every s > dim(µ), H µ,s ∞ (Ω) = 0. 

B n ) = 1, then dim H (lim sup n→+∞ R n ) ≥ min 1≤i≤d dim(µ) + 1≤i≤d τ k -τ i τ k .
Note that Corollary 3.1.8 extends Theorem 3.1.4.

Let us also mention that for every

1 ≤ τ 1 ≤ ... ≤ τ d , every sequence of ro- tation matrices (O k,n ) k∈N,0≤n≤2 k -1 ∈ O d (R) N , almost every sequence of realiza- tion of i.i.d. uniformly distributed random variables on [0, 1] d , (x k,n ) k∈N,0≤n≤2 k -1 ,
it is proved in [START_REF] Jarvenpäa | Hausdor dimension of ane random covering sets in torus[END_REF] (and the proof uses implicitly the Corollary 3.1.9 in the case

µ = L d ) that the family R = x k,n + O k,n d i=1 (-2 -kτ i , 2 kτ i ), 0 ≤ n ≤ 2 k -1, k ∈ N veries dim H (lim sup R∈R R) = min 1≤k≤d d + k j=1 τ k -τ j τ k .
In particular, the bound obtained in Corollary 3.1.9 is optimal. We will see later on that it is indeed optimal in a strong sens.

Corollaries 3.1.8 and 3.1.9 shows how Theorem 3.1.6 is used: to get a lower-bound for dim H (lim sup n→+∞ U n ), one needs to establish for every n ∈ N large enough a relation which only depends on B n , U n and µ.

In Chapter 8, we study the optimality of the bound provided by Theorem 3.1.6.

Study of optimality in ubiquity theorems

The lower-bounds established in Theorems 3.1. For k ∈ N, dene

T k (B) = B n ∈ B : 2 -k-1 ≤ |B n | < 2 -k (3.7) N k (B) = max B∈T k (B) # {B ′ ∈ T k (B) : B ∩ B ′ ̸ = ∅} .
One says that B is weakly redundant if

lim k→+∞ log N k (B) k = 0. Heuristically, a sequence (B n ) n∈N is weakly redundant if, for each k ∈ N, each ball B n satisfying |B n | ≈ 2 -k intersects less than 2 o(k) other ball B n ′ satisfying also |B n ′ | ≈ 2 -k .
We emphasize that the weak redundancy property is a natural assumption to study the optimality of the bounds provided by ubiquity theorems but this condition is related only to the sequence of balls itself (no measure is involved) and an important consequence of this property is that, for every measure µ ∈ M([0, 1] d ) and every ε > 0, we have n∈N

|B n | ε µ(B n ) < +∞. (3.8)
There are many sequences of balls which satises the weak redundancy condition, such as the rational balls

Ä B( p q , 1 q 2 ) ä q∈N,0≤p≤q,q∧p=1
, but there are also examples of sequences of balls, natural to consider, which does not satisfy this condition. It is for instance the case of

Ä B( p q , 1 q 2 ) ä q∈N,0≤p≤q
. However, one can show that, in many situations, those sequences which does not satisfy the weak redundancy property still satises (3.8) for a measure characterizing well the system (it is the case for

Ä B( p q , 1 q 2 ) ä q∈N,0≤p≤q
with the Lebesgue measure). Let us also mention that there are other hypotheses used by dierent authors, that are comparable to the weak redundancy but slightly dierent. For example, the notion of optimal regularity of sequences of an approximating sequence of point has been used in some settings (see [START_REF] Bugeaud | An inhomogeneous Jarnik theorem[END_REF]).

In the case of a weakly conformal measure, the weak redundancy condition allows to state an upper-bound theorem.

Theorem 3.1.11 (D. [START_REF] Daviaud | Extraction of optimal sub-sequences of balls and application to optimality estimates of mass transference principles[END_REF]). Let µ ∈ M(R d ) be a weakly conformal measure, (B n ) n∈N a weakly redundant sequence of balls, centered on supp(µ) and sat-

isfying |B n | → 0, (U n ) n∈N a sequence of open set such that U n ⊂ B n and 0 ≤ s < dim(µ).
If for every large enough n,

H µ,s ∞ (U n ) ≤ µ(B n ), then dim H (lim sup n→+∞ U n ) ≤ s.
Remark that, given µ ∈ M(R d ), (B n ) n∈N and (U n ) n∈N satisfying, for every n ∈ N U n ⊂ B n , it is not true in general that there exists a critical exponent s 0 such that for every s < s 0 , for every n large enough,

H µ,s ∞ (U n ) ≥ µ(B n )
and for every s > s 0 , for every n large enough, 

H µ,s ∞ (U n ) ≤ µ(B n ).
) ∈ [1, +∞) d , dim H (lim sup n→+∞ R ϕ(n) ) = min 1≤i≤d dim(µ) + 1≤i≤k τ k -τ i τ k , when R n is dened as in (3.2).
In particular, the bound given by the Corollaries 3.1.8 and 3.1.9 are optimal in relatively satisfying sens: under reasonable hypotheses on the sequence (B n ) n∈N , one can always extract a sub-sequence (B ϕ(n) ) n∈N which still veries µ(lim sup n→+∞ B ϕ(n) ) = 1 and such that the limsup generated by the shrunk sets (balls or rectangles) have the expected Hausdor dimension for every contraction ratios at the same time.

The next section presents some results in Diophantine approximation.

Those results are established in Chapter 9.

An application in Diophantine approximation

As mentioned at the beginning of the introduction, a classical problem in Diophantine approximation consists in determining the Hausdor dimension of various sets of points approximable by rational numbers.

Consider f 0 : R → R, f 1 : R → R and f 2 : R → R dened as f 0 :

x → 1 3 x, f 1 (x) = 1 3 x + 1 3 and f 2 (x) = 2 3 + 1 3
x, and denote by K 1/3 the attractor (see Section 4.3, Proposition 4.3.1) of {f 0 , f 2 }. A problem raised by Mahler consists in computing the Hausdor dimension of the set K 1/3 ∩ F δ (where F δ is dened as in Theorem 3.1.1) of the points of K 1/3 which are approximable by rational numbers at speed δ ≥ 1 xed in advance. This problem, although intensively studied (see [START_REF] Allen | Dyadic Approximation in the Middle-Third Cantor Set[END_REF][START_REF] Beresnevitch | A mass transference principle and the Dun-Schaeer conjecture for Hausdor measures[END_REF][START_REF] Bugeaud | Diophantine approximation and Cantor sets[END_REF][START_REF] Levesly | On a problem of K. Mahler: Diophantine approximation and Cantor sets[END_REF] among many other works), remains unsolved to this day but the ubiquity theorems allowed to establish some partial results. Theorem 3.2.1 (Velani-Beresnevich [START_REF] Beresnevitch | A mass transference principle and the Dun-Schaeer conjecture for Hausdor measures[END_REF], ). For ever δ ≥ 1,

dim H Ç lim sup 0≤p≤q,q→+∞ B( p q , 1 q 2δ ) ∩ K 1/3 å ≥ dim H (K 1/3 ) 2δ . The value of dim H Ä lim sup 0≤p≤q,q→+∞ B( p q , 1 q 2δ ) ∩ K 1/3 ä , where δ ≥ 1,
has been the subject of various conjectures

(1) Levesley, Salp, Velani [START_REF] Levesly | On a problem of K. Mahler: Diophantine approximation and Cantor sets[END_REF]:

dim H Ç lim sup 0≤p≤q,q→+∞ B( p q , 1 q 2δ ) ∩ K 1/3 å = dim H (K 1/3 ) δ .
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(2) Bugeaud-Durand [START_REF] Bugeaud | Metric Diophantine approximation on the middle-third Cantor set[END_REF]:

dim H Ç lim sup 0≤p≤q,q→+∞ B( p q , 1 q 2δ ) ∩ K 1/3 å = max ß dim H (K 1/3 ) δ , 2 δ + dim H (K 1/3 ) -1 ™ .
Thanks to Theorem 3.1.3 (which implied by Theorem 3.1.6), one can obtain a complete characterization of points approximable by rational numbers in a set which contains K 1/3 and has same Hausdor dimension.

Denote by Λ = {0, 1, 2} and by σ the usual shift on Λ N , dened as σ((i 1 , i 2 , ...)) = (i 2 , ...). The canonical projection from Λ N on [0, 1] is the map

π : x = (x n ) n∈N → lim n→+∞ f x 1 • ... • f xn (0).
(3.9) Denition 3.2.2. Let ϕ : Λ N → {0, 1} be the mapping dened as

   ϕ(x) = 1 si x 1 = 1 ϕ(x) = 0 si x 1 = 0 ou 2 and K (0) 1/3 = π Åß x ∈ Λ N : lim inf k→+∞ S k ϕ(x) k = 0 ™ã ,
where (S k ϕ) k∈N is the Birkho average of ϕ dened for every x ∈ Λ N as

S k (ϕ)(x) = 1 k k-1 i=0 ϕ(σ i (x)).
It is shown in this manuscript (Proposition 9.1.5) that

dim H K (0) 1/3 = log 2 log 3 (= dim H K 1/3 ).
We have the following result:

Theorem 3.2.3 (D. [START_REF] Daviaud | An heterogeneous ubiquity theorem, application to self-similar measures with overlaps[END_REF]). For every δ ≥ 1,

dim H lim sup 0≤p≤q,q→+∞ B( p q , 1 q 2δ ) ∩ K (0) 1/3 = min ß log 2 log 3 , 1 δ ™ . (3.10)
Note that there is a saturation phenomena: for every 1 ≤ δ ≤ log 3 log 2 , the

dimension dim H (lim sup B∈Q B δ ∩ K (0) 1/3 ) is constant equal to log 2 log 3 , then decreases as 1 δ
when δ ≥ log 3 log 2 .

In the next section, we give an application of Corollary 3.1.8 to self-similar shrinking targets problems.

Weakly conformal shrinking targets

Let m ≥ 2 be an integer and S = {f 1 , ..., f m } a weakly conformal IFS. Denote by Λ = {1, .., m}, Λ * = k≥0 Λ k and K the attractor of S. Given x ∈ K, we study the set of elements approximable by the orbit of x under S, i.e, the sets

W (x, ψ) = lim sup i∈Λ * B(f i (x), ψ(i)),
where ψ : Λ * → R veries lim |i|→+∞ ψ(i) = 0 and for i = (i 1 , ..., i k ),

f i = f i 1 • ... • f i k .
Historically, the study of such sets is related to the study of shrinking targets on the attractor of an expanding dynamical system [START_REF] Hill | The ergodic theory of shrinking targets[END_REF].

More precisely, assume for the sake of simplicity that S is self-similar and satises for every 1 ≤ i ̸ = j ≤ m, Im(f i )∩Im(f j ) = ∅. Then its attractor K can be seen as the attractor associated with the expanding mapping F dened as

F (x) = f -1 i (x) si x ∈ Im(f i ).
Let δ ≥ 1 be a real number and ψ : Λ * → Λ * the mapping dened as ψ(i) = c i e -nδ . The set W (x, ψ) can be rewrote as

W (x, ψ) = z : F n (z) ∈ B(x, e -nδ
) for an innity of integer n ∈ N , (3.11) which are precisely the sets introduced and studied by Hill and Velani in [START_REF] Hill | The ergodic theory of shrinking targets[END_REF].

There are, a priori, several natural classes of mappings one could choose for ϕ:

From a dynamical standpoint, it is natural to consider ψ of the form

ψ(i) = |f i (K)| δ ,
where δ ≥ 1, since one naturally has lim sup

i∈Λ * B(f i (x), |f i (K)|) = K.
In this case, Theorem 3.1.6 can be used to prove the following result: Assume that que dim H (K) = dim(S), then, for every δ ≥ 1 and every x ∈ K, one has

dim H Ç lim sup i∈Λ * B(f i (x), |f i (K)| δ ) å = dim H (K) δ .
(3.12)

In Diophantine approximation, one often prefers to consider mappings

ψ of the form ψ(i) = |f i (K)|g(|i|)
where g : N → R is decreasing. For studies of the sets W (x, ψ) under those settings and the OSC, we refer to the work of Hill and Velani and Allen and Bárány [START_REF] Allen | On the Hausdor measure of shrinking target sets on self-conformal sets[END_REF][START_REF] Hill | The ergodic theory of shrinking targets[END_REF].

This dierence of point of view is justied by (3.11) and comes as well from the fact that one often aims at proving analogs of Khintchine's Theorem for rational numbers in the settings of IFS. To be more explicit, let us recall Khintchine's Theorem. Denote by ϕ : N → N the Euler mapping, dened as ϕ(q) = # {1 ≤ p ≤ q : p ∧ q = 1} .

Theorem 3.3.2 (Khintchine [50]). Let ψ : N : R + be a mapping such that q → ψ(q) q is monotonic. then

L d Ç lim sup q∈N,0≤p≤q,p∧q=1 B( p q , ψ(q) q ) å = 1 ⇔ q≥1 ϕ(q)ψ(q) q = +∞.
Let us mentioned that it was conjectured by Dun et Schaeer that Theorem 3.3.2 remains valid without the monotonicity assumption of q → ψ(q) q and this conjecture was solved recently by Maynard and Koukoulopoulos [START_REF] Koukoulopoulos | On the Dun-Shaeer conjecture[END_REF].

To make the analogy between Khintchine's Theorem and comparable result in the settings of IFS, assume to simplify that S is self-similar and call 0 < c 1 , ..., c m < 1 the contraction ratios of f 1 , ..., f m . Remember that in the case of self-similar IFS, dim(S) is the real number solution to

1≤i≤m c dim(S) i = 1.
One always has a natural measure ν on Λ N ν dened for every i

= (i 1 , ..., i k ) ∈ Λ * as ν(i) = c dim(S) i . Consider µ = ν(π -1
), where π is the canonical projection of Λ N on K (see (3.9) below). One aims at establishing dichotomies of the following form ( s ≥ 0 is not specied here):

   if i∈Λ * ψ(i) s = +∞, then µ(W (x, ψ)) = 1 if i∈Λ * ψ(i) s < +∞, then µ(W (x, ψ)) = 0.
That in mind, it is clear that ψ can not be arbitrary and that ψ(i) must depend on the generation of the word i if one hopes to cover a set of large measure by balls {B(f i (x), ψ(i))} i∈Λ n for an innity of integers n ∈ N.

For examples of such theorems in the self-similar case, one refers to [START_REF] Levesly | On a problem of K. Mahler: Diophantine approximation and Cantor sets[END_REF] and we mention the following result:

Theorem 3.3.3 (Baker [3]). Assume that S satises one of the following con- Theorem 3.3.4 (D. [START_REF] Daviaud | Dimension of weakly conformal iterated function system shrinking targets with overlaps[END_REF]). Let g : N → (0, +∞) be a positive and decreasing mapping and set 

dition    -m i=1 c dim(S) i log(c dim(S) i ) < -2 log( i≤i≤m c 2 dim(S) i ) c 1 = ... = c m .
s g = inf    s ≥ 0 : k≥0 i∈Λ k k(|f i (K))|g(k)) s < +∞    . ( 3 

Multifractal analysis of discrete measures

Let m ≥ 2 be an integer and S = {f 1 , ..., f m } of m ≥ 2 contracting similarities of contraction ratios 0 < c 1 , ..., c m < 1 and K the attractor of S. Given (q 1 , ...q m+1 ) ∈ (0, 1) m+1 a probability vector, we study the probability measure solution to the following equation

χ(•) = 1≤i≤m q i χ(f -1 i (•)) + q m+1 δ x 0 , (3.15) 
where δ x denotes the dirac measure at x. Such measures were introduced by Olsen and Snigireva in [START_REF] Snigireva | L q spectra and Rényi dimensions of inhomogeneous self-similar measures[END_REF] and are called in-homogeneous self-similar measures with condensation measure δ x 0 .

We can show (see Proposition 11.1.1) that such measures are discrete can be written as

χ(•) = C i∈Λ * p i c t i δ f i (x 0 ) , (3.16) 
where t > 0, (p 1 , ..., p m ) is an other probability vector, C > 0 is a renormalization constant so that χ is a probability measure.

Its worth mentioning that comparable measures where obtained and studied by Mandelbrot and Riedi in [START_REF] Mandelbrot | Exceptions to the multifractal formalism for discontinuous measures[END_REF] and by Barral and Seuret in [START_REF] Barral | The singularity spectrum of the inverse of cookiecutters[END_REF] 

E h µ = {x ∈ supp(µ) : dim(µ, x) = h} , ‹ E h µ = x ∈ supp(µ) : dim(µ, x) = dim(µ, x) = h , (3.17) 
i.e, computing for every h ∈ R,

   D µ (h) = dim H (E h µ ) and ‹ D µ (h) = dim H ( ‹ E h µ ).
One generally aims at comparing the dimensions of those sets to the Legendre transform of a scaling function, denoted by τ µ ((4.19)) and dened by, for all q ∈ R,

τ µ (q) = lim inf n→+∞ -log D∈Dn: µ(D)̸ =0 µ(D) q n
where, for n ∈ N, D n denotes the set of dyadic cubes of generation n.

Let µ be the self-similar measure associated with S and (p 1 , ..., p m ), i.e.

the measure solution to the equation

µ(•) = m i=1 p i µ(f -1 i (•)).
We will see that the multifractal analysis of the measure χ, given by (3.16), depends both on the multifractal analysis of the self-similar measure µ and on the speed of approximation of a point x by the orbit (f i (x 0 )) i∈Λ * . Let us introduce the degree of approximation of a point with respect to (f i (x 0 )) i∈Λ * . Denition 3.4.1. The degree of approximation of a point x ∈ K with respect to (f i (x 0 )) i∈Λ * , denoted ∆ x , is dened as

∆ x = sup ß ∆ : x ∈ lim sup n→+∞ B(f i (x 0 ), (2c i ) ∆ ) ™ .
In the case where the base point of (3.16) x 0 does not belong to the attarctor K of S, every points of supp(χ) outside the set {f i (x 0 )} i∈Λ * ( which has Hausdor dimension equal to 0) are badly approximated by those points, i.e, have degree equal to 1. In that case, the multifractal spectrum of χ is a translated of the multifractal spectrum of µ.

Theorem 3.4.2 (D. [START_REF] Daviaud | Multifractal analysis of discrete self-similar measure satisfying AWSC[END_REF]). Consider x 0 / ∈ K. Then, for every t > 0, the measure χ dened as (3.16) exists. Moreover, for every h ≥ 0,

D χ (h) = D µ (h -t). (3.18)
Remark that this result holds without any separation hypotheses on the system S. A direct consequence of this result is that, when the attractor K has Lebesgue measure equal to 0, for Lebesgue almost every x 0 , the spectrum of the measure χ is a translation by t of the spectrum of µ. In other word, to simulate a measure which has the same spectrum has µ but translated by t, it is enough to pick randomly x 0 according to the uniform law and to simulate the measure χ associated (which is discrete). Let us add that is established in this manuscript that in this case, χ does not satisfy the multifractal formalism (one actually has τ χ (q) = 0 for q ≥ 1).

In the case x 0 ∈ K, Corollary 3.1.8 allows, under certain hypotheses, to compute the spectrum of the measure χ.

Theorem 3.4.3 (D. [START_REF] Daviaud | Multifractal analysis of discrete self-similar measure satisfying AWSC[END_REF]). Let m ≥ 2, S = {f 1 , ..., f m } be a self-similar IFS satisfying AWSC (Denition 4.3.3) with no exact overlaps and K ⊂ R d the attractor of S. Let (p 1 , ..., p m ) be a probability vector, µ the self-similar measure associated with (p 1 , ..., p m ), x 0 ∈ K and C > 0 the normalizing constant such that the measure

χ(•) = C i∈Λ * c t i p i δ f i (x 0 ) ,
is a probability measure.

Dene q c = min {q : τ µ (q) + qt = 0} and λ c = τ ′ µ (q c ) . Then, recalling (4.16):

1. The mapping τ χ satises

        
for every q ≥ q c , τ χ (q) = 0 for every 0 ≤ q ≤ q c , τ χ (q) = τ µ (q) + t for every q ≤ 0, τ χ (q) ≥ τ µ (q) + t. In particular for every h ≥ 0, one has one has

τ * χ (h) ≤    hq c if 0 ≤ h ≤ λ c + t τ * µ (h -t) if h ≥ λ c + t. (3.20) CHAPTER 3: INTRODUCTION 2. The multifractal spectrum D χ of χ satises    for every 0 < h ≤ λ c + t, D χ (h) = hq c for every λ c + t < h ≤ τ ′ µ (0 + ) + t, D χ (h) = τ * µ (h -t).
(3.21)

3. For every h > τ ′ µ (0 τ ′ µ (q c ) exists when S satises the AWSC with no exact overlaps, see Theorem

+ ) + t, one has dim H ( ‹ E h-t µ ∩ {x : ∆ x = 1}) ≤ D χ (h) ≤ τ * µ (h -t).
4.3.39.
Assume in addition to the hypotheses of Theorem 3.4.

3 that for h ≥ τ ′ µ (0 + ), there exists m h ∈ M(R d ) such that dim H (m h ) = τ * µ (h) and m h ( ‹ E h µ ) > 0, then D χ (h + t) = τ * µ (h),
and χ satises the multifractal formalism at h + t.

One mentions also that the multifractal analysis of χ for h large is hard in general. This phenomena is not surprising since there exists some examples of self-similar measures satisfying very reasonable separation condition but does not satisfy the multifractal formalism in the decreasing part of the spectrum (see [START_REF] Testud | Phase transitions for the multifractal analysis of self-similar measures[END_REF]).

Conclusion and perspectives

As explained in this introduction, the mass transference principles (or ubiquity theorems) are tools used in metric number theory, dynamical systems and multifractal analysis. Hence, there are many natural question and extensions related to these three elds raised by this manuscript:

Can we estimate the µ-essential contents for a wider class of measures?

Can something general be said when the IFS is self-ane? Although 

A δ = (x 1 , ...., x d ) : ∃(p 1 , ..., p d ) ∈ N d , d i=1 |x i - p i q | ≤ q -δ , q ∈ N i.o. ,
where i.o. means that the inequality holds for innitely many q. In this case, the approximating sets are hyperboles.

In Chapter 4, some recall about the basic notion frequently used in this manuscript are given. It is also proved in this chapter that C 

L(R k , R p ), k, p ∈ N space of linear maps from R k to R p . ||ℓ||, ℓ ∈ L(R k , R p ), k, p ∈ N norm subordinated to || • || ∞ on both R k and R p of ℓ. See (4.21). ℓ , ℓ ∈ L(R k , R p ), k, p ∈ N See (4.
f ′ (x), f : R k → R p , k, p ∈ N and x ∈ R k dierential of f at x. C n (R k , R p ), n ∈ N ∪ ∞, k, p ∈ N space of mappings from R k → R p n times dierentiable with continuous n th dierential at any x ∈ R k . C n+ε (R k , R p ), n ∈ N ∪ ∞, k, p ∈ N, 0 < ε < 1 space of mappings from R k → R p n times dierentiable with ε-Hölder continuous n th dierential at any x ∈ R k . B(X)
Borel σ-algebra of X.

M(X)

space of Borel probability measure on X.

L d

Lebesgue measure on R d . µ, ν, η letters used for measures. µ-a.c. sequence of balls µ-asymptotically covering sequence of balls . See Denition 6.1.1.

supp(µ), µ ∈ M(X) topological support of µ. inf ess µ , µ ∈ M(X)
essential inmum with respect to µ. supess µ , µ ∈ M(X) essential supremum with respect to µ. 

τ µ (q), µ ∈ M(R d ), q ∈ R L q spectrum of µ, see (4.19). E h µ , ‹ E h µ , µ ∈ M(R d ),
L d Lebesgue measure on R d . H s ∞ (E), s ≥ 0, E ⊂ R d s-dimensional Hausdor content of E, see (4.7). H µ,s ∞ (E), s ≥ 0, µ ∈ M(R d ), E ⊂ R d s-dimensional µ-essential Hausdor content of E, see Denition 6.2.1. dim(µ, x), dim(µ, x), µ ∈ M(R d ), x ∈ supp(µ)
n < n ′ , B ϕ(n) ∩ B ϕ(n ′ ) = ∅ and n∈N B n ⊂ n∈N 5B ϕ(n) . (4.1) 
This lemma is useful when dealing with doubling measures. However in this manuscript, one mainly deals with measures that are not doubling. The rest of the section is dedicated to the establishment of a modied version of the traditional Besicovitch covering theorem more adapted for our purposes.

Proposition 4.1.2 (D. [START_REF] Daviaud | Extraction of optimal sub-sequences of balls and application to optimality estimates of mass transference principles[END_REF]). For any 0 < v ≤ 1, there exists Q d,v ∈ N ⋆ , a constant depending only on the dimension d and v, such that for every bounded subset E ⊂ R d and every covering F = B(x, r (x) ) :

x ∈ E, r (x) > 0 of E, there exists F 1 , ..., F Q d,v nite or countable sub-families of F such that:

∀1 ≤ i ≤ Q d,v , ∀L ̸ = L ′ ∈ F i , one has 1 v L ∩ 1 v L ′ = ∅.
E is covered by the families F i , i.e.

E ⊂ 1≤i≤Q d,v L∈F i L. (4.
2)

The case v = 1 corresponds to the standard Besicovich's covering lemma (see [START_REF] Mattila | Cambridge Studies in Advanced Mathematics[END_REF] 

B = 1≤i≤γ d,v +1 F i , ∀ 1 ≤ i ≤ γ d,v + 1, ∀L ∩ L ′ ∈ F i , one has L ∩ L ′ = ∅.
Proof. The proof is based on the following lemma, whose proof can be found in [START_REF] Mattila | Cambridge Studies in Advanced Mathematics[END_REF], Lemma 2.7, pp.30 -there, the result is obtained for v = 1/2 but the proof remains valid for any v < 1. 

∀ n ≥ 1, |B n | ≥ 1 2 |B|, ∀ n 1 ̸ = n 2 ≥ 1, vB n 1 ∩ vB n 2 = ∅, then B intersects at most γ v,d balls of B.
The families F 1 , ..., F γ d,v +1 are built recursively.

For k ∈ N, set

G (k) = L ∈ F : 2 -k-1 < |L| ≤ 2 -k .
Notice that, since

lim n→+∞ |B n | = 0, each G (k) is empty or nite.
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Observe rst that for every k ∈ N, for every ball B ∈ G (k) , and for every pair of balls

B 1 ̸ = B 2 ∈ k ′ ≤k G (k ′ ) \ {B}, one has vB 1 ∩ vB 2 = ∅ as well as |B i | ≥ |B| 2 for i = 1, 2.
By Lemma 4.1.4, this implies that B intersects at most γ d,v balls of

k ′ ≤k G (k ′ ) \ {B}.
To get Lemma 4.1.3, we are going to sort the balls of

k ′ ≤k G (k ′ ) recursively on k into families F 1 , ..., F γ d,v
+1 of pairwise disjoint balls. At each step, a new ball B will be added to one of those families of balls F i and the resulting family, F i {B} will be denoted again by F i . Let k 0 be the smallest integer such that G (k 0 ) is non-empty. Consider an arbitrary L 0 ∈ G (k 0 ) . By Lemma 4.1.4, L 0 intersects n 0 ≤ γ d,v other balls of G (k 0 ) , that are denoted by L 1 , ..., L n 0 . The sets F i are then set as follows:

∀ 1 ≤ i ≤ n 0 , F i = {L i }, ∀ n 0 + 1 ≤ i ≤ γ d,v , F i = ∅, F γ d,v +1 = {L 0 } .
Further, consider L ∈ G (k 0 ) \ 0≤i≤n 0 {L i } (whenever such an L exists). The same argument (Lemma 4.1.4) ensures that L intersects at most γ d,v balls of G (k 0 ) .

In particular there must exists 1 ≤ i ≤ γ d,v + 1 such that for every L ∈ F i , L ∩ L = ∅. Choosing arbitrarily one of those indices i, one adds L to F i := L F i (we keep the same name for this new family).

The same argument remains valid for any other ball L ′′ / ∈ 1≤j≤γ d,v +1 L∈F j {L}.

Hence, proceeding recursively on all balls of G (k 0 ) allows to sort the balls of

G (k 0 ) into γ d,v + 1 families (F i ) 1≤i≤γ d,v +1 of pairwise disjoint balls.
Next, let k 1 be the smallest integer such that k 1 > k 0 and G (k 1 ) is non empty, take an arbitrary L (1) 0 ∈ G (k 1 ) . It is trivial to check that the family G (k 0 ) ∪ G (k 1 ) and the ball L

(1) 0 satisfy the conditions of Lemma 4.1.4. Subsequently, L

(1) 0 intersects at most γ d,v balls of G (k 0 ) G (k 1 ) , and there must exist an integer 

1 ≤ i 0 ≤ γ d,v + 1 such that L (1) 0 ∩ L∈F i 0 L = ∅.
G (k 0 ) G (k 1 )
. Hence there exists an integer

1 ≤ i ≤ γ d,v + 1 such that L ∩ A∈F i A = ∅.
One adds L to the family F i , which remains composed only of pairwise disjoint balls.

One applies this argument to every ball of G (k 1 ) , hence nally sorting the balls of G (k 0 ) ∪ G (k 1 ) into γ d,v + 1 families of pairwise disjoint balls, as requested.

It is now easily seen that one can proceed recursively on k ≥ k 0 , ending up with the families F 1 , ..., F γ d,v +1 fullling the desired properties.

We are now ready to prove Proposition 4.1.2.

Proof. Fix

E ⊂ [0, 1] d and F = B(x, r (x) ) : x ∈ E, r (x) > 0 . One applies Besicovich's theorem (i.e. Proposition 4.1.2 with v = 1) to F = B(x, r (x) ) : x ∈ E r (x) > 0 . This provides us with a nite set of families of balls G 1 , ..., G γ d,1 +1 composed of pairwise disjoint balls satisfying (4.2), i.e. E ⊂ 1≤i≤Q γ d,1 +1 L∈G i L. For every 1 ≤ i ≤ Q d,1 , one sets G (v) i = 1 v L : L ∈ G i , i.e
. the sets of balls with same centers as G i but with radii multiplied by v

-1 > 1. Notice that by construction, ∀ 1 ≤ i ≤ Q d,1 , ∀ L ̸ = L ′ ∈ G (v) i , one has vL ∩ vL ′ = ∅. Hence, Lemma 4.1.3 yields γ d,v + 1 sub-families (G (v) i,j ) 1≤j≤γ d,v +1 of G (v) i such that: ∀ 1 ≤ j ≤ γ d,v + 1, ∀ L ̸ = L ′ ∈ G (v) i,j , one has L ∩ L ′ = ∅, G (v) i = 1≤j≤γ d,v +1 G (v) i,j .
Finally, we set for every

1 ≤ i ≤ Q d,1 and 1 ≤ j ≤ γ d,v + 1 F i,j = ¶ vL : L ∈ G (v) i,j © and F i = 1≤j≤γ d,v +1 F i,j .
These sets verify that:

∀ 1 ≤ i ≤ Q d,1 , ∀ 1 ≤ j ≤ γ d,v + 1, ∀L ̸ = L ′ ∈ F i,j , 1 v L ∩ 1 v L ′ = ∅ (because the balls of G i,j are pairwise disjoint), E ⊂ 1≤i≤Q d,1 G i = 1≤i≤Q d,1 1≤j≤γ d,v +1 F i,j .
This proves the statement and the fact that

Q d,v = Q d,1 .(γ d,v + 1).
One also recall the following density-lemma (which holds in metric sapces in which Besicovitch's theorem holds). Lemma 4.1.5 ([13]). Let m ∈ M(R d ), 0 < c < 1 and A be a Borel set with m(A) > 0. For every r > 0, set

A(r) = {x ∈ A : ∀r ≤ r, m(B(x, r) ∩ A) ≥ c m(B(x, r))} (4.3) Then m r>0 A(r) = m(A). (4.4)

Hausdor dimension, dimension of measures

Basic properties of the geometric measure theory are recalled in this section.

Hausdor measures, dimension and content

Let us start by recalling the denition of an outer measure. Denition 4.2.1. Let µ be a non negative function dened on the subsets of R d . One says that µ is an outer measure if it veries µ(∅) = 0,

for any A ⊂ B, µ(A) ≤ µ(B), for any sequence of sets (E n ) n∈N , µ n≥0 E n ≤ n≥0 µ(E n )
(with still ≤ even when the sets E n are disjoint measurable sets). 

H ζ t (E) = inf n∈N ζ(|B n |) : |B n | ≤ t,
H ζ (E) = lim t→0 + H ζ t (E). (4.6)
For t ∈ (0, +∞], s ≥ 0 and ζ : x → x s , one simply uses the usual notation

H ζ t (E) = H s t (E) and H ζ (E) = H s (E)
, and these measures are called s-dimensional Hausdor outer measure at scale t ∈ (0, +∞] and s-dimensional Hausdor measure respectively. Thus,

H s t (E) = inf n∈N |B n | s : |B n | ≤ t, B n closed ball and E ⊂ n∈N B n . (4.7)
The quantity H s ∞ (E) (obtained for t = +∞) is called the s-dimensional Hausdor content of the set E. Note that it is easily seen that for 0 ≤ s < d, the s-dimensional Hausdor content is not a measure. For any cube B, one has H s ∞ (B) = |B| s and, if one considers a packing by disjoints smaller cubes

B 1 , ..., B k , one has 1≤i≤k H s ∞ (B i ) = 1≤i≤k |B i | s = 1≤i≤k |B i | d s d > 1≤i≤k |B i | d s d ≥ (L d (B)) s d = |B| s = H s ∞ (B) = H s ∞ ( 1≤i≤k B i ).
The following lemma denes the Hausdor dimension of a set.

Lemma 4.2.3. Let E ⊂ R d be a subset of R d . There exists a unique 0 ≤

dim H (E) ≤ d such that    for any s < dim H (E), H s (E) = +∞ for any s > dim H (E), H s (E) = 0. (4.8)
The number dim H (E) is called the Hausdor dimension of the set E.

A very classical, but powerful, tool to estimate Hausdor dimension is the mass distribution principle, which is stated in the following proposition, together with the Billingsley lemma. Lemma 4.2.4 ([32]). Let E ⊂ R d be a Borel set.

Let ζ : R + → R + , be a mapping, increasing in a neighborhood of 0 and such that ζ(0) = 0. Assume that there exists a Borel measure µ ∈ R d and r 0 > 0 such that for any r ≤ r 0 and any

x ∈ E µ(B(x, r)) ≤ ζ(r).
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Then, there exists a constant C > 0 depending only on d such that

H ζ (E) ≥ µ(E) C .
In particular, if µ(E) > 0, for all r small enough and some 0 ≤ s ≤ d, one has ζ(r) ≤ r s then dim H (E) ≥ s.

Assume that there exist µ ∈ M(R d ) and 0 ≤ s ≤ d such that for every

x ∈ E, dim(µ, x) ≤ s. Then dim H (E) ≤ s.
Let us also give some basic properties of the Hausdor content.

Proposition 4.2.5. Let E ⊂ R d be a bounded set subset of R d . One has, for any 0 ≤ s ≤ d: 

1. H s ∞ (E) ≤ |E| s , 2. t : → H t ∞ (E) is a non increasing function, 3. for any δ ≥ 1, H s δ ∞ (E) ≥ (H s ∞ (E)) 1 δ , 4. H s ∞ (E) ≤ H s (E) and H s ∞ (E) = 0 ⇔ H s (E) = 0. Proof. Item ( 
(E) ≤ H s (E), one has H s (E) = 0 ⇒ H s ∞ (E) = 0.
We prove the second part of item [START_REF] Barral | On multifractal formalism for self-similar measures with overlaps[END_REF]. Assume that H s ∞ (E) = 0. Consider t > 0 and 0 < ε

1 s ≤ t. By (4.7), there exists a sequence of balls (B n ) n∈N such that E ⊂ n≥0 B n and n≥0 |B n | s ≤ ε. (4.9)
Notice that (4.9) implies that for any n ∈ N,

|B n | s ≤ ε, so that |B n | ≤ t. In particular, H s t (E) ≤ ε.
Letting ε → 0, one gets H s t (E) = 0 and letting t → 0, H s (E) = 0.

Item [START_REF] Barral | On multifractal formalism for self-similar measures with overlaps[END_REF] indicates that the Hausdor measure and the Hausdor content of a set are actually close to give the same geometric information about the distribution of the set E. 

{B i } i∈I is said to be a t-packing of E if, for every i ̸ = j ∈ I, B i is centered on E, |B i | ≤ t and B i ∩ B j = ∅.
In this manuscript, the denition a packing measure associated with a general gauge function will not be used, so that one only denes it in the following traditional way.

Denition 4.2.8. Let E be a subset of R d and 0 ≤ s ≤ d. The s-dimensional packing pre-measure of E is dened as

P s 0 (E) = lim t→0 + sup i∈I |B i | s : {B i } i∈I is a t-packing of E (4.11)
Let us remark that this set function is not an outer-measure for s < d. It is easily veried that, for any dense countable set E = {x n } n∈N , P s 0 (E) = +∞ and for every n ∈ N, P s 0 ({x n }) = 0.

To overcome this diculty, one denes the packing measure of a set E as follows.

Denition 4.2.9. Let E be a subset of R d and 0 ≤ s ≤ d. The s-dimensional packing measure of E is dened as 

P s (E) = inf i∈N P s 0 (E i ) : E ⊂ i∈N E i . ( 4 
P s (E 1 ∪ E 2 ) = P s (E 1 ) + P s (E 2 ).
It is standard that any outer measure satisfying item (2) is a Borel measure.

The following proposition denes the packing dimension of a set.

Proposition 4.2.10. Let E be a subset of R d . There exists a unique number

0 ≤ dim P (E) ≤ d such that    for any s < dim P (E), P s (E) = +∞
for any s > dim P (E), P s (E) = 0. The number dim P (E) is called packing dimension of E.

Remark 4.2.11. The denition of packing measures and Hausdor measures can be adapted to any metric space (X, d). (where X denotes the topological closure of X), one always has

A set E is called a G δ if E can be written as E = n∈N Ω k ,
dim P (lim sup n→+∞ U n ) = dim P (K).
This justies that the packing dimension is not a relevant quantity to study the size of limsup sets and explains why we only consider the Hausdor dimension in these cases.

Dimension of measures

The Packing and Hausdor dimension of a Borel measures are dened as follow.

Denition 4.2.12. Let µ ∈ M(R d ). For x ∈ supp(µ), the lower and upper local dimensions of µ at x are dened as

dim(µ, x) = lim inf r→0 + log(µ(B(x, r))) log(r) and dim(µ, x) = lim sup r→0 + log(µ(B(x, r))) log(r) .
Then, the lower and upper Hausdor dimensions of µ are respectively dened by dim H (µ) = ess inf µ (dim(µ, x)) and dim P (µ) = ess sup µ (dim(µ, x)). (4.14)

It is known (for more details see [START_REF] Falconer | Fractal geometry[END_REF]) that

dim H (µ) = inf{dim H (E) : E ∈ B(R d ), µ(E) > 0} dim P (µ) = inf{dim P (E) : E ∈ B(R d ), µ(E) = 1}.
When dim H (µ) = dim P (µ), this common value is simply denoted by dim(µ) and µ is said to be exact dimensional. In this case, for µ-almost every x ∈ supp(µ), one has

dim(µ, x) = dim(µ, x) = lim r→0 + log(µ(B(x, r))) log(r) = dim(µ).

Multifractal analysis of measures

The multifractal analysis of a measure µ ∈ M(R) aims at associating a spectrum which characterizes the pointwise behaviors of µ. The following sets are usually the object of such study.

Denition 4.2.13. For every µ ∈ M(R d ) and h ∈ R + , one sets

E µ (h) = {x ∈ supp(µ) : dim(µ, x) = h} , ‹ E µ (h) = x ∈ supp(µ) : dim(µ, x) = dim(µ, x) = h . (4.15) 
Given h ≥ 0, a point x ∈ supp(µ) belongs E h µ if for any ε > 0, there exists r x > 0 such that for every 0 < r ≤ r x , µ (B(x, r)) ≤ r h-ε and there exists a sequence of radii r n → 0 for which µ (B(x, r n )) ≥ r h+ε n . The multifractal spectra one naturally associates with µ are

D µ : h → dim H (E h µ ) and ‹ D µ : h → dim H ( ‹ E h µ ). (4.16) 
In many cases, D µ can be deduced from the study of the L q scaling function τ µ (q) dened below.

For p ∈ N, D p stands for the set of closed dyadic cubes of R d of generation p, i.e.

D p = d i=1 [k i 2 -p , (k i + 1)2 -p ] : ∀1 ≤ i ≤ d, k i ∈ N . (4.17) When D ∈ D p , write also p = p(D) so that, for every D ∈ p∈N D p , D ∈ D p(D) . Denition 4.2.14. Let µ ∈ M(R d ) and q ∈ R. One denes Θ µ (q, n) = D∈Dn:µ(D)̸ =0 µ(D) q . (4.18)
The L q scaling function τ µ of µ is dened as

τ µ (q) = lim inf n→+∞ -log 2 (Θ µ (q, n)) n ∈ [-∞, +∞]. (4.19)
The measure µ is said to verify the multifractal formalism at h when D µ (h) = τ * µ (h), where τ * µ (h) denotes the Legendre transform of τ µ at h dened as Proposition 4.2.15 ([32, 41]). Let µ ∈ R d .

τ * µ (h) = inf {hq -τ µ (q) : q ∈ R} .
The mapping q → τ µ (q) is concave and decreasing. In particular, the set on which τ µ does not admit a derivative is at most countable and τ µ admits right and left derivatives for all q's for which -∞ < τ µ (q) < +∞.

One has τ µ (1) = 0 and

τ ′ µ (1 -) ≤ dim H (µ) ≤ dim P (µ) ≤ τ ′ µ (1 + ).

Iterated function systems

Let m ≥ 2 be an integer. An Iterated Function System (IFS in short) is a set Proposition 4.3.1 (Hutchinson [44]). Let m ≥ 2 be an integer, U ⊂ R d an open set and S = {f 1 , ..., f m } a system of C 1 maps from U to U. Assume that S is uniformly contracting, i.e

S = {f 1 , ..., f m } of mappings f i : X → X, where X ⊂ R d . Given an open set U ⊂ R d and f : U → R d a dierentiable map, for any x ∈ U : f ′ (x) is the dierential of f at x. for ℓ ∈ L(R k , R d ), one denotes by ||ℓ|| = sup x∈R k ̸ =0 ||ℓ(x)|| ||x|| and ℓ = inf x∈R k ̸ =0 ||ℓ(x)|| ||x||
max 1≤i≤m sup x∈U ||f ′ i (x)|| < 1.
Then there exists a unique non empty compact set K satisfying

K = 1≤i≤m f i (K).
Moreover, for any (p 1 , ..., p m ) ∈ (0, 1) m , there exists a unique measure µ ∈

M(R d ) supported on K satisfying µ = 1≤i≤m p i µ(f -1 i (•)). (4.22)
From now on, an IFS designates a uniformly contracting system of C 1 maps.

The following notations are used throughout the manuscript: Λ(S) = {1, ..., m} and Λ(S) * = k≥0 Λ(S) k . When there is no ambiguity on the system S involved, one simply writes Λ(S) = Λ. K S denotes the attractor of S (or simply K when the context is clear).

For i = (i 1 , ..., i k ) ∈ Λ k , the cylinder [i] is dened by [i] = (i 1 , ..., i k , x 1 , x 2 , ...) : (x 1 , x 2 , ...) ∈ Λ N . Moreover, if (α n ) n∈N is a sequence of real numbers, one sets α i = α i 1 × ... × α i k and f i = f i 1 • ... • f i k .
For example, given the probability vector (p 1 , .., p m ),

p i = p i 1 × ... × p i k .
The set Λ N is endowed with the topology generated by the cylinders. The set of probability measures on the Borel sets with respect to this topology is denoted M(Λ N ).
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The shift operation σ :

Λ N → Λ N is dened for any (i 1 , i 2 , ...) ∈ Λ N by σ((i 1 , i 2 , ...)) = (i 2 , i 3 , ...). (4.23)
The canonical projection of Λ N on K will be denoted π Λ (or simply π when there is no ambiguity) and, xing any x ∈ K, is dened, for any

(i 1 , i 2 , ....) ∈ Λ N , by π((i 1 , ...)) = lim k→+∞ f i 1 • ... • f i k (x). (4.24)
It is easily veried that π is independent of the choice of x.

Let us recall the following classical result. Proposition 4.3.2 ([44]). Let (p 1 , ...p m ) be a probability vector and µ ∈ M(R d ) be the measure solution to (4.22). Dene ν ∈ M(Λ N ) by setting, for any cylinder

[i] = [(i 1 , ..., i k )], ν([i]) = p i = p i 1 × ... × p i k . Then: 1. µ = ν • π -1 .
2. ν is ergodic with respect to σ, i.e., for any Borel set A ⊂ Λ N , one has

σ -1 (A) ⊂ A ⇒ ν(A) = 0 or ν(A) = 1.

IFS and separation condition

In the study of the IFS's, understanding the possible overlaps between the images of the maps involved plays a key role. Let m ≥ 2 and S = {f 1 , ..., f m } be an IFS from an open set U ⊂ R d to U . Let us rst introduce, for all k ∈ N,

Λ (k) = i = (i 1 , ..., i n ) ∈ Λ * : 2 -k-1 < |f i (K)| ≤ 2 -k (4.25)
and 4. the asymptotically weak separation condition (AWSC) [START_REF] Feng | Gibbs properties of self-conformal measures and the multifractal formalism[END_REF] when, writing for k ∈ N,

Λ (k) = i = (i 1 , ..., i n ) ∈ Λ * : |f i (K)| ≤ 2 -k < |f (i 1 ,...i k-1 ) (K)| .
≤ i ̸ = j ≤ m, one has f i (K) ∩ f j (K) = ∅. f i (V ) ∩ f j (V ) = ∅ and 1≤i≤m f i (V ) ⊂ V.
t k (S) = max x∈R d # ¶ f i : i ∈ Λ (k) and f i (K) ∩ B(x, 2 -k ) ̸ = ∅ © , (4.27) 
one has

log t k (S) k → 0.
Let us also add here that when the IFS S has no exact overlaps, (i.e, for any i

̸ = j ∈ Λ * , f i ̸ = f j ), one also has t k (S) = max x∈R d # ¶ i : i ∈ Λ (k) and f i (K) ∩ B(x, 2 -k ) ̸ = ∅ © , (4.28) 
5. the exponential separation condition (ESC) [START_REF] Hochman | On self-similar sets with overlaps and inverse theorems for entropy in R d[END_REF] when S consists in ane invertible transformations and the following separation property is veried.

More precisely, dene the metric ∆ between ane invertible transformation by using the polar decomposition on the linear part and setting for

any (O, T, a), (O ′ , T ′ , a ′ ) ∈ O d (R) × S ++ d (R) × R d , ∆(OT + a, O ′ T ′ + a ′ ) = | log(||T ||) -log(||T ′ ||)| + ||O -O ′ || + ||a -a ′ ||.
Then S veries the ESC when there exists 0 < c < 1 such that, for any k ∈ N, no exact overlaps such that its linear parts have algebraic contracting ratio and the translation parts have algebraic coecient, then it satises the ESC [START_REF] Hochman | On self-similar sets with overlaps and inverse theorems for entropy in R d[END_REF].

any i ̸ = j ∈ Λ k , one has ∆(f i , f j ) ≥ c k . ( 4 
Let us also mention the following result.

Theorem 4.3.5 ([63]). Assume that the IFS S = {f 1 , ..., f m } veries that for

any 1 ≤ i ≤ m, for any x, f ′ i (x) is a similarity and x → f ′ i (x)
is Hölder. Then S veries the OSC ⇔ S veries the SOSC.

Let (p 1 , ..., p m ) be a probability vector and µ ∈ M(R d ) be the measure solution to (4.22). When the system satises the SSC, one recovers the intuitive notion of self-similarity for µ : Let A be a Borel set and i ∈ Λ k . Iterating 

µ(f i (A)) = j∈Λ k p i µ(f -1 j • f i (A)).
Since, in the case of the SSC, if j 

̸ = i, f j (K)∩f i (K) = ∅, one has f -1 j •f i (A) = ∅ so that µ(f i (A)) = p i µ(A) = µ(f i (K))µ(A).
µ(f i (A)) = µ(f i (K ∩ V ))µ(A). (4.31) Proof. Recall that K ∩ V ̸ = ∅ and that supp(µ) = K. Since V is open, one has µ(V ) > 0.
Denote by ν the measure on Λ N dened by, for any

[i] = [(i 1 , ..., i k )], ν([i]) = p i 1 × ... × p i k .
Let π be the canonical projection from Λ N on K, dened by (4.24). One has (4.30). Since (4.31) holds in an open set of full measure, one easily deduces that its proof actually holds for any self-similar measure satisfying the SOSC, which is proved to be equivalent to satisfy the OSC (Theorem 4.3.5).

µ = ν • π -1 , so that ν(π -1 (V )) > 0. Moreover, σ -1 π -1 (V ) = 1≤i≤m x∈π -1 (V ) (i, x) = π -1 1≤i≤m f i (V ) ⊂ π -1 (V ). Since ν is σ-ergodic, one has ν(π -1 (V )) = 1 = µ(V ).

Generalities on conformal and weakly conformal IFS

In this section one restricts ourselves to weakly conformal IFS's. This subclass contains in particular conformal (when the f i 's are C 1 conformal maps) and self-similar IFS (when the f i 's are ane similarities). The notation dened at the beginning of Section 4.3 are used.

Let us recall the denition of a weakly conformal map.

Denition 4.3.8. Let m ≥ 2 be an integer, U ⊂ R d an open set, S = {f i } m i=1
where each f i is a C 1 contractions from U to U and K the attractor of S.

One says that S is weakly conformal when, recalling (4.21),

lim k→+∞ sup (x i ) i∈N ∈{1,...,m} N log f ′ (x 1 ,...,x k ) (π(σ k (x))) -log ||f ′ (x 1 ,...,x k ) (π(σ k (x)))|| k = 0. (4.32)
In this case, a measure dened by (4.22) is called a weakly conformal-measure. are called respectively, self-similar and self-conformal measures. Note that this class of IFS contains for instance every system of holomorphic contracting mappings.

Assume that for any

1 ≤ i ≤ m, f i : R d → R d is dened by f i (x) = A i x + b i , where for any 1 ≤ i ≤ m, b i ∈ R d and A i ∈ GL d (R) has its eigenvalues equal in modulus to 0 < r i < 1 and for any 1 ≤ i, j ≤ m, A i A j = A j A i . Then S = {f 1 , ..., f m } is weakly-conformal.
Let us recall important results about weakly-conformal measures.

Geometric properties of C 1 weakly-conformal IFS

Let m ≥ 2 be an integer. One collects some useful geometric results when dealing with C 1 weakly conformal IFS.

Consider S = {f 1 , ..., f m } a C 1 weakly conformal IFS with attractor K and for every

x ∈ K, k ∈ N and i = (i 1 , .., i k ) ∈ Λ k , write c i (x) = ||f ′ i (x)||.
Let us recall the following result established as [START_REF] Feng | Dimension theory of iterated function systems[END_REF]Lemma 5.4]. Lemma 4.3.10 ([37]). For any c > 1, there exists a constant D(c) > 0 such that, for every k ∈ N, for every i ∈ Λ k and every x, y ∈ K,

D(c) -1 c -k ||f ′ i (x)|| • ||x -y|| ≤ ||f i (x) -f i (y)|| ≤ D(c)c k ||f ′ i (x)|| • ||x -y|| (4.33) D(c) -1 c -k ||f ′ i (x)|| ≤ |f i (K)| ≤ D(c)c k ||f ′ i (x)||. (4.34)
Remark 4.3.11. Let X ⊂ U be a compact set. It is proven in [START_REF] Feng | Dimension theory of iterated function systems[END_REF] that equation (4.33) actually holds for any (x, y) ∈ X 2 .

Note that, for every k ∈ N and every x ∈ K, one has

c ±k ||f ′ i (x)|| = ||f ′ i (x)|| 1+ ±k log c log ||f ′ i (x)|| .
Moreover, since there exists two constants C 1 , C 2 > 0 such that for every 1 ≤ i ≤ m and every x ∈ K,

C 1 ≤ f ′ i (x) ≤ ||f ′ i (x)|| ≤ C 2 ,
there also exists two constants 0 < t 1 ≤ t 2 such that

t 1 ≤ k log ||f ′ i (x)|| ≤ t 2 .
Combining this fact with Lemma 4.3.10, for any θ > 0, there exists C θ > 0 such that for every k ∈ N, every i ∈ Λ k and every x, y ∈ K,

C -1 θ c i (x) 1+θ ||x -y|| ≤ ||f i (x) -f i (y)|| ≤ C θ c i (x) 1-θ ||x -y||. (4.35)
In particular, there also exists C θ such that for every i ∈ Λ * and every x ∈ K, one has Let us remark that (4.36) also implies that there exist 0 < α ≤ β < 1 as well as C α , C β > 0 such that, for any k ∈ N, Given x = (x n ) n∈N ∈ Λ N , the following quantity, called Lyapunov exponent of S at x, denes a logarithmic shrink rate associated with IFS S at x. Proposition 4.3.12 ([37]). For any x = (x n ) n∈N , the Lyapunov exponent of S at x, is (well) dened as

C -1 θ c 1+θ i (x)|K| ≤ |f i (K)| ≤ C θ c 1-θ i (x)|K|.
C α α k ≤ |f i (K)| ≤ C β β k . ( 4 
λ(x) = -lim n→+∞ log |f x 1 • ... • f xn (K)| n . (4.38)
Moreover, for any probability vector (p When S is a self-similar and 0 < c 1 , ..., c m < 1 are the contracting ratio associated with the similarities f 1 , ..., f m , the lyapunov exponent of ν as in Proposition 4.3.12 is simply

1 , ..., p m ) ∈ [0, 1] m , denoting ν ∈ M(Λ N ) the measure dened by ν([i]) = p i , then there exists λ ν ≥ 0 such that for ν- almost any x = (x n ) n∈N , λ ( 
λ ν = - 1≤i≤m p i log c i .
The following consequence of Proposition 4.3.12 will be useful later on 

m )) k∈N ∈ ([0, 1] m ) N be a sequence of probability vectors such that (p

(k) 1 , ..., p (k) m ) → (p 1 , ..., p m ). Denote for k ∈ N ν, ν k ∈ M(Λ N ) the measures dened by, for any cylinder [(i 1 , ...i n )], ν k ([(i 1 , ..., i k )]) = p (k) i 1 • ... • p (k) in and ν([(i 1 , ..., i n )]) = p i 1 • ... • p in . 4.3 ITERATED FUNCTION SYSTEMS 63 Then ν k → k→+∞ ν weakly, so that lim k→+∞ λ ν k = λ ν .

Dimension of weakly-conformal IFS's

Let us recall the following fundamental result. Theorem 4.3.15 ). Let (p 1 , ..., p m ) ∈ [0, 1] m be a probability

vector, ν ∈ M(Λ N ) dened by, for any i ∈ Λ * , ν([i]) = p i and µ = ν • π -1 .
There exists h ≥ 0 such that for µ-almost every x ∈ K, there exists µ π -1 ({x}) ∈ M(Λ N ) such that:

(1) µ π -1 ({x}) (π -1 ({x})) = 1,
(2) for µ π -1 ({x}) -almost y = (y 1 , ..., y n , ..),

-log µ π -1 ({x}) ([y 1 , ..., y n ]) n → h. (4.40) 
(3) for every Borel set 

A ⊂ Λ N , ν(A) = K µ π -1 ({x}) (A)dµ(x).
dim(µ) = -h -1≤i≤m p i log p i λ .
In the rest of this sub-section, we dene the pressure function associated with a weakly conformal IFS, which is naturally related with the dimension of the attractor. The proof of the good denition of this quantity is very standard and does not diverge much from the proof in the conformal case.

Those computations in the weakly conformal case does not seem to be made explicitly in the literature and for the seek of completeness, the proof are made in this manuscript.

Proposition 4.3.16. Let m ≥ 2 be an integer, S = {f 1 , ..., f m } be C 1 weakly conformal IFS and K its attractor.

Let us x s ≥ 0 and z ∈ K. The following quantity is well dened and AND IFS independent of the choice of z :

P z (s) = lim k→+∞ 1 k log i∈Λ k ||f ′ i (z)|| s . (4.42)
Proof. Assume rst that the limit exists in R ∪ {-∞} and let us show that it is independent of the choice of z and that the limit is > -∞. Let c > 1 be a a real number. By (4.3.10), following the notation involved, for any k ∈ N, one has log

Ñ i∈Λ k D(c) -s c -sk |f i (K)| s é ≤ log Ñ i∈Λ k ||f ′ i (z)|| s é ≤ log Ñ i∈Λ k D(c) s c sk |f i (K)| s é . (4.43)
Since (4.43) holds for any c > 1, one gets that

lim k→+∞ 1 k Ñ log Ñ i∈Λ k ||f ′ i (z)|| s é -log Ñ i∈Λ k |f i (K)| s éé = 0, (4.44) 
which proves that this quantity does not depend on z. Moreover, there exists b > 0 so that for any k ∈ N, any i ∈ Λ k , any x ∈ K,

||f ′ i (x)|| ≥ b k .
This implies that if P z (s) is well dened, then P z (s) > -∞.

Let us now prove that the limit exists. For k ∈ N, write

g k = log Ñ i∈Λ k |f i (K)| s é . (4.45)
As in the conformal case, the existence of the pressure relies on a sub-additivity argument.

Lemma 4.3.17. For any ε > 0, there exists a constant M ε > 0 such that for any n, m ∈ N, one has

g n+m ≤ M ε + mε + g n + g m . (4.46)
Furthermore, any sequence (g n ) n∈N verifying (4.46) is such that ( gn n ) n∈N converges in R ∪ {-∞}.

Proof. Let us start by proving the second statement. Let (g n ) n∈N be a sequence satisfying (4.46). Fix ε > 0 and M ε satisfying (4.46). For any q ∈ N, b ∈ N, 4.3 ITERATED FUNCTION SYSTEMS 65 0 ≤ r < q, one has

g bq+r ≤ bg q + g r + (bq + r)ε + (b + 1)M ε , ⇒ g bq+r bq + r ≤ bq bq + r • g q q + (b + 1)M ε + g r bq + r + ε.
Fixing q large enough independently of b so that (b+1)Mε bq ≤ ε, for any large b ∈ N, one has g bq+r bq + r ≤ (1 + ε) g q q + 2ε. 

j ∈ Λ * , 1 2 D(c) -2 c -2k |f i (K)| • |f j (K)| ≤ |f ij (K))| ≤ 2D(c) 2 c 2k |f i (K)| • |f j (K)|. (4.47)
Proof. Let us start by establishing the lower-bound.

Let x, y ∈ K such that 

||f j (x) -f j (y)|| ≤ |f j (K)| ≤ 2||f j (x) -f j (y)||.
D(c) -1 c -k ||f ′ i (f j (x))|| • ||f j (x) -f j (y)|| ≤ ||f ij (x) -f ij (y)|| ≤ |f ij (K)|, (4.49)
and 

||f ′ i (f j (x))|| ≥ D(c) -1 c -k |f i (K)|.
1 2 D(c) -2 c -2k |f i (K)| • |f j (K)| ≤ |f ij (K)|.
Let us focus now on the upper-bound. Let x, y ∈ K such that 

||f ij (x) -f ij (y)|| ≥ 1 2 |f ij (K)|. ( 4 
||f ij (x) -f ij (y)|| ≤ D(c)c k ||f ′ i (f j (x))|| • ||f j (x) -f j (y)|| ≤ D(c) 2 c 2k |f i (K)| • |f j (K)|. (4.52)
The upper-bound is obtained by combining (4.51) and (4.52).

By Lemma 4.3.18, for any c > 1 and any n, n ′ ∈ N, one has

g n+n ′ = log Ñ i∈Λ n+n ′ |f i (K)| s é = log Ñ i∈Λ n ,j∈Λ n ′ |f ij (K)| s é ≤ log Ñ i∈Λ n ,j∈Λ n ′ 2 s D(c) 2s c 2sn |f i (K)| s |f j (K)| s é = n • 2s log(c) + log(2 s D(c) 2s ) + log Ñ ( i∈Λ n |f i (K)| s ) × ( j∈Λ n ′ |f j (K)| s ) é ≤ 2sn log(c) + log(2 s D(c) 2s ) + g n + g n ′ .
Fixing c = e ε 2s , one has 2s log(c) = ε and setting M ε = log(2 s D(c) 2s ) shows that (g n ) n∈N satises the condition of Lemma 4.3.17. Since P z (s) does not depend on z, one writes

P z (s) = P (s) = lim k→+∞ 1 k log Ñ i∈Λ k |f i (K)| s é .
As said above, the pressure function is naturally connected to the dimension of the attractor K associated with the underlying IFS. More precisely, the following quantity is a natural candidate for the dimension K. Let us denote by dim(S) the unique solution to P (s) = 0.

One says that dim(S) is the conformality dimension of S.
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The following notion was introduced by Barral and Feng in [START_REF] Barral | On multifractal formalism for self-similar measures with overlaps[END_REF] and will be usefull in this manuscript. Denition 4.3.20 ( [4]). One says that S is dimension regular if for any weakly conformal measure µ ∈ M(R d ) associated with the probability vector (p 1 , ..., p m ) ∈ [0, 1] m and S, recalling (4.3.12) and denoting ν ∈ M(Λ N ) verify-

ing µ = ν • π -1 , one has dim(µ) = min ® -1≤i≤m p i log(p i ) λ ν , d ´, (4.53) 
where λ ν is dened by ( 

dim(µ) = min ® -1≤i≤m p i log(p i ) λ ν , d ´= min ® 1≤i≤m p i log(p i ) m i=1 p i log(c i ) , d
´.

(

As proved in [START_REF] Hochman | On self-similar sets with overlaps and inverse theorems for entropy in R d[END_REF], any self-similar IFS on R satisfying ESC is dimension regular.

In the next subsection, we collect some results about weakly-conformal IFS satisfying AWSC. In particuler, we prove that if S is such an IFS and has no exact overlaps, then S is dimension regular. Proof. Fix ε > 0 and c > 1 small enough so that 8s log c ≤ ε.

By Lemma 4.3.17 there exists k ∈ N so large that the constant named

D(c) in Lemma 4.3.10 veries log D(c) k ≤ log c and | 1 k log i∈Λ k |f i (K)| s -P (s)| ≤ ε 2 . (4.56)
Writing again g k = log i∈Λ k |f i (K)| s , let us dene the probability vector (p i ) i∈Λ k by setting

p i = |f i (K)| s e g k .
Let ν be the weakly conformal measure associated with As a consequence, for any p ∈ N and any i 1 , ..., i p ∈ Λ k , one has

S ′ = {f i } i∈Λ k and (p i ) i∈Λ k . Applying Lemma 4.47, for any p ∈ N, i 1 , ..., i p ∈ Λ k ,, D(c) -2p c -2kp ≤ |f i 1 • ... • f i p (K)| p j=1 |f i j (K)| ≤ D(c) 2p c 2kp .
ν([i 1 ...i p ]) = p i 1 • ... • p i p = p j=1 |f i j (K)| s e pg k = p j=1 |f i j (K)| s e kp( g k k -P (s)) e pkP (s)
. 

Using
i = (i 1 , ..., i n ) ∈ Λ * , write n 1 = k⌊ n k ⌋ and n 2 = k(⌊ n k ⌋ + 1). Consider j ∈ Λ n 1 such that [i] ⊂ [j] and ℓ = (ℓ 1 , ..., ℓ n 2 -n ) ∈ Λ n 2 -n , one has e -n 2 ε |f (i 1 ,...,in,ℓ 1 ,...,ℓ n 2 -n ) (K)| s e n 2 P (s) ≤ ν([iℓ]) ≤ ν([i]) ≤ ν([j]) ≤ e n 1 ε |f (i 1 ,...,
C -1 ≤ min ® |f j (K)| |f i (K)| , |f i (K)| |f iℓ (K)| ´≤ max ® |f j (K)| |f i (K)| , |f i (K)| |f iℓ (K)| ´≤ C.
Hence there exists a constant γ s,ε such that for any i s) . Proof. Call K the attractor of S. Let us show rst that if any system S satisfying the AWSC also veries that, for any weakly-conformal measure µ ∈ M(R d ) associated with a probability vector (p 1 , ..., p m ) and S,

= (i 1 , ..., i n ) ∈ Λ * , one has γ -1 s,ε e -nε |f i (K)| s e nP (s) ≤ ν([i]) ≤ γ s,ε e nε |f i (K)| s e nP (
dim(µ) = -1≤i≤m p i log p i λ ν (4.61)
where ν is the measure associated on Λ N , then dim(S) = dim H (K).

Fix ε > 0 consider k ∈ N, S ′ = {f i } i∈Λ k and ν as in Lemma 4.3.23 applied with s = dim(S). Note that, since S satises the AWSC, so does S ′ . Then, considering the measure µ = ν • π -1 , where π is the canonical projection, one

has dim(S) -ε ≤ dim(µ) = -i∈Λ k p i log p i λ ν ≤ dim(S) + ε.
This proves that dim H (K) ≥ dim(S)-ε. Since it always holds that dim H (K) ≤ dim(S) (see [START_REF] Falconer | Fractal Geometry[END_REF]) and ε is arbitrary,

dim H (K) = dim(S).
Let us show that, for any system satisfying the AWSC, (4.61) holds for every weakly conformal measure µ.

Let µ ∈ M(R d ) be a weakly conformal measure associated with S and a probability vector (p 1 , ..., p m ) and ν ∈ M(Λ N ) such that µ = ν • π -1 .

It comes from from the proof of Theorem 4.3.15 [START_REF] Feng | Dimension theory of iterated function systems[END_REF] (applied to µ), that for any ε > 0, for µ-almost any x ∈ K such that µ π -1 ({x}) exists and satises the two rst items of Theorem 4.3.15, there exists n 0 large enough so that, for any n ≥ n 0 , there exists i 1 , ..., i Nn such that: 

for any 1 ≤ j ≤ N n , e -n(λ+ε) ≤ |f i j (K)| ≤ e -n(λ-ε) ,
µ π -1 ({x}) 1≤j≤Nn [i j ] ≥ 1 2 , (4.63) for any 1 ≤ j ≤ N n , e -n(h+ε) ≤ µ π -1 ({x}) ([i j ]) ≤ e -n(h-ε) (4.64)
Assume that h > 0 and take 0 < ε < min h 2 , λ 2 .

Combining (4.63) and (4.64), one gets In the following section, we prove that the AWSC can be equivalently dened using the sets Λ (k) and Λ (k) (see (4.25)).

N n ≥ 1 2 e n(h-ε) . (4.65) Note that # k : e -n(λ+ε) ≤ 2 -k ≤ e -n(λ-ε) ≤ 2nε log 2 . As a consequence, there exists k ∈ [ n(λ-ε) log 2 , n(λ+ε) log 2 ] such that #Λ (k) ∩ [i j ] 1≤j≤Nn ≥ N n 2nε log 2 ≥ 1 2 e nh 2 2nε log 2 . (4.66) Since for any ≤ j ≤ N n , [i j ]∩π -1 ({x}) ̸ = ∅, one also has f i j (K) ⊂ B(x, e -n(λ-ε) ), so that, writing n ′ = ⌊ n(λ-ε) log 2 ⌋, one has # ¶ i ∈ Λ (n ′ ) : f i (K) ∩ B(x, 2 -n ′ ) © ≥ 1 

Equivalent denitions of AWSC

For k ∈ N and x ∈ R d , recalling (4.26) and (4.25), set

T k (x) = ¶ f i : f i (K) ∩ B(x, 2 -k ) ̸ = ∅, i ∈ Λ (k) © T ′ k (x) = ¶ f i : f i (K) ∩ B(x, 2 -k ) ̸ = ∅, i ∈ Λ (k) © . Note that S satises AWSC ⇔ lim k→+∞ max x∈R d log T k (x) k = 0.
Proposition 4.3.28. One has

lim k→+∞ max x∈R d log T k (x) k = 0 ⇔ lim k→+∞ max x∈R d log T ′ k (x) k = 0.
Proof. By (4.37), there exists 0 < α < 1 2 < β ≤ 1 such that for every k ∈ N,

α k ≤ |f i (K)| ≤ β k .
Remark 4.3.29. (1): For every k ∈ N and every i

= (i 1 , ..., i n ) ∈ Λ (k) , one has C(α, β) -1 k ≤ k -log 2 log β + 1 ≤ n ≤ 2k -log 2 log α ≤ C(α, β)k.
(2): For every c > 1, by Lemma 4.47, for every i

= (i 1 , ..., i n ) ∈ Λ (k) , D(c) -2 min 1≤j≤m |f j (K)|c -2C(α,β)k 2 -k ≤ |f i (K)| ≤ 2 -k .
In particular, for any k ∈ N large enough, one has

c -1 2 C(α,β)k 2 -k ≤ |f i (K)| ≤ 2 -k . (4.68)
Lemma 4.3.30. For every ε 0 > 0, there exists k ε ∈ N such that for every

k ≥ k ε 0 , for every i = (i 1 , ..., i n ) ∈ Λ (k) , there exists 0 ≤ p ≤ ε 0 k such that (i 1 , ..., i n-p ) ∈ Λ (k) . Proof. Fix ε = ε 0 2C(α,β) and c > 1 such that c 1-ε β ε < 1. By Lemma 4.47, for any (i 1 , ..., i n ) ∈ Λ * and 0 ≤ p ≤ n, |f (i 1 ,...,in) (K)| ≤ D(c) 2 c n-p |f (i 1 ,...,i n-p ) (K)| × |f (i n-p+1 ,...,in) (K)|.
In particular, for p ≥ nε,

|f (i 1 ,...,i n-p ) (K)| ≥ D(c) -2 c -(n-p) |f (i n-p+1 ,...,in) (K)| 2 -k ≥ 2 -k D(c) -2 (c 1-ε β ε ) n .
This yields, for k large enough and p = ⌊εC(α, β)k⌋

+ 1 ≤ 2C(α, β)εk that |f (i 1 ,...,i n-p ) (K)| > 2 -k .
As a consequence, there must exists p ≤ 2C(α, β)εk such that (i 1 , ..., i n-p ) ∈ Λ (k) .

Lemma 4.3.31. For every c > 1, for every ε > 0, for every k large enough (depending on c) and every x ∈ R d , one has

#T k (x) ≤ k⌊ C(α,β) 2 log c log 2 ⌋C d c kd C(α,β) 2 max k≤k"≤k(1+⌊ C(α,β) 2 log c log 2 ⌋) max y∈R d #T ′ k ′ (y) (4.69) and #T ′ k (x) ≤ m kε #T k (x). Proof. Remark that, for each k ′ such that c -1 2 C(α,β)k 2 -k ≤ 2 -k ′ ≤ 2 -k ,
there exists a dimensional constant C d so that each ball B(x, 2 -k ) can be covered by less than

C d c kd C(α,β) balls of radius 2 -k ′ . This implies that # ¶ f i , i ∈ T k (x) ∩ Λ (k ′ ) © ≤ C d c kd C(α,β) 2 max y∈R d #T ′ k ′ (y).
Since one has

Λ (k) ⊂ k(1+⌊ C(α,β) 2 log c log Z ⌋) k ′ =k Λ (k ′ ) , it holds that #T k (x) ≤ k⌊ C(α,β) 2 log c log 2 ⌋C d c kd C(α,β) 2 max k≤k"≤k(1+⌊ C(α,β) 2 log c log 2 ⌋) max y∈R d #T ′ k ′ (y). (4.70)
Moreover, by Lemma 4.3.30, there exists ϕ k :

T ′ k (x) → T k (x) dened by ϕ k ((i 1 , ..., i n )) = (i 1 , ...i n-p )
with 0 ≤ p ≤ kε. The mapping ϕ k veries that each ber has cardinality smaller than m kε . This implies that

#T ′ k (x) ≤ m kε #T k (x).
Taking the log of the estimates of Lemma 4.3.31 and letting k tends to innity concludes the proof.

Dimension properties of self-similar measures

In this section, one recalls what is known about the dimension theory of selfsimilar measures and sets and the multifractal analysis of these measures. First we start with some preliminaries.

Some preliminaries

Let m ≥ 2 and S = {f 1 , ..., f m } be a self-similar system. It will be particularly convenient here to adopt a slightly dierent denition of the sets Λ (k) and Λ (k) . In this section we set for every k ∈ N

Λ (k) = i = (i 1 , ..., i n ) ∈ Λ * : θ k+1 < c i ≤ θ k (4.72) Λ (k) = i = (i 1 , ..., i n ) ∈ Λ * : c i ≤ θ k < c (i 1 ,...,i n-1 ) .
Let us collect few observations. (

): For every i = (i 1 , ..., i n ) ∈ Λ (k) , one has θ k ≥ c i = c (i 1 ,...,i n-1 ) • c n > θ k c n ≥ θ k+1 2 
In particular, one has

Λ (k) ⊂ Λ (k) .
(3):

Λ (k)
k∈N is a partition of Λ * .

(4): By iterating the self-similarity equation (4.22), for every k ∈ N, one has

µ(•) = i∈ Λ (k) p i µ(f -1 i (•)).
(5): For every i ∈ Λ (k) a similar argument as in Proposition 4.3.28 yields the existence of an integer 0 ≤ p ≤ 2⌊ log θ log β ⌋ such that (i 1 , ..., i n-p ) ∈ Λ (k) .

Lemma 4.3.33. Let r > 0 be a real number and x ∈ R d . For every k ≥

⌊ log r log θ ⌋ + 2, one has µ(B(x, r)) ≤ i∈ Λ (k) : f i (K)∩B(x,r)̸ =∅ p i ≤ µ(B(x, 2r)). (4.73)
Moreover,

1 ≤ i∈Λ (k) : f i (K)∩B(x,r)̸ =∅ p i i∈ Λ (k) : f i (K)∩B(x,r)̸ =∅ p i ≤ m 2⌊ log θ log β ⌋ . (4.74) Proof. Fix k ≥ ⌊ log r log θ ⌋ + 2. Note that for any i ∈ Λ (k) , if f i (K) ∩ B(x, r) = ∅, then µ(f -1 i (B(x, r))) = µ(K ∩ f -1 i (B(x, r))) = µ(f -1 i (f i (K) ∩ B(x, r))) = µ(∅) = 0. 4.3 ITERATED FUNCTION SYSTEMS 75 Also if f i (K) ⊂ B(x, r), 1 ≥ µ(f -1 i (B(x, r))) ≥ µ(f -1 i (f i (K))) = µ(K) = 1.
Using item (4) of Remark 4.3.32 and noticing that for every i ∈ Λ 

(k) , f i (K) ⊂ B(x,
i = (i 1 , ..., i n ) ∈ Λ (k) corresponds (i 1 , ..., i n-p ) ∈ Λ (k) with p ≤ 2⌊ log θ log β ⌋. Also, one has p i = p (i 1 ,...,i n-p ) × p (i n-p+1 ,...,in) ≤ p (i 1 ,...,i n-p ) .
In addition, at each such word (i 1 , ... k) . This yields the right-hand side.

, i n-p ) ∈ Λ (k) can correspond at most m 2⌊ log θ log β ⌋ words i = (i 1 , ..., i n ) ∈ Λ (
In particular, for very ball B, and k ≥ ⌊ The following Theorem summarized some of the known results about the dimension of self-similar measures and the dimension of the attractor associated with those self-similar systems. In the case where the IFS satises the OSC, the reader may refer to [START_REF] Falconer | Fractal geometry[END_REF], the case where the IFS satises the AWSC is established in this manuscript in Proposition 4.3.22 and in the case where the IFS satises the ESC, one refers to [START_REF] Hochman | On self-similar sets with overlaps and inverse theorems for entropy in R d[END_REF] for more details. 1. Assume that S satises the AWSC and has no exact overlaps (or the OSC), i.e, for any i 

log( 1 2 |B|) log(β) ⌋ + 1 one has µ(B) ≤ i∈Λ (k) β ,f i (K)∩B̸ =∅ p i ≤ µ(2B).
̸ = j ∈ Λ * , f i ̸ = f j . Then dim H (K) = dim(S)
dim(µ) = min ® 1≤i≤m p i log(p i ) 1≤i≤m p i log(c i ) , d
´.

Item [START_REF] Allen | On the Hausdor measure of shrinking target sets on self-conformal sets[END_REF] shows that IFS's on R verifying the ESC actually fall in the more general category of dimension regular self-similar IFS's (Denition 4.3.20).

Multifractal analysis of self-similar measures

Let us recall what is known in general about the multifractal formalism of self-similar measures.

Proposition 4.3.36. Let µ be a self-similar measure. Then:

1. τ µ is dierentiable at q = 1 + and τ

′ µ (1 + ) = dim H (µ), [69, Theorem 5.1], 2. τ µ (0) = -dim H (supp(µ)),
3. [START_REF] Feng | Gibbs properties of self-conformal measures and the multifractal formalism[END_REF] For any q > 0,

τ µ (q) = lim inf n→+∞ -log Θ µ (q, n) n = lim n→+∞ -log Θ µ (q, n) n .
The following quantity plays a particular role in the multifractal analysis of self-similar measures.

Denition 4.3.37. Let (p 1 , ..., p m ) ∈ (0, 1) m be a probability vector and µ ∈ M(R d ) the self-similar associated with S (i.e, satisfying (4.22)). For q ∈ R, let us dene T (q) as the unique solution to

m i=1 p q i r -T (q) i = 1.
(4.78) Proposition 4.3.38 ([32]). q → T (q) is a concave real analytic mapping and in particular, dierentiable over R. Moreover, the equation T ′′ (q) = 0 admits only a nite number of solutions so that T is strictly concave.

T (0) = -dim(S).

T ′ (1) = 1≤i≤m p i log(p i ) 1≤i≤m p i log(r i ) .
One summarizes here what is known about the multifractal analysis of self-similar measures depending on which separation condition they verify. One also compute the L q scaling function of self-similar measures satisfying AWSC with no exact overlaps. Note that, on R, this class contains the class of selfsimilar measures associated with systems satisfying the ESC and with similarity dimension smaller than one.

Theorem 4.3.39. Let µ ∈ M(R d ) be a self-similar measure associated with S.

1. [START_REF] Falconer | Fractal geometry[END_REF] Assume that S satises the OSC, then one has

τ µ (q) = T (q). (4.79) Moreover, for any h ∈ [τ ′ (+∞), τ ′ (-∞)], writing h = τ ′ (q), dim H ( ‹ E h µ ) = dim H (E h µ ) = τ * µ (h) = qT ′ (q) -T (q).
In particular, µ satises the mulfractal formalism at any h ≥ 0 (see Denition 4.2.14).

2. Assume that S satises the AWSC, then for any q > 0, µ satises the multifractal formalism at any h ∈ (τ ′ µ (+∞), τ ′ µ (0+)) [START_REF] Feng | Multifractal analysis of Bernoulli convolutions associated with Salem numbers[END_REF] . Moreover, if µ has no exact overlaps, then τ µ (q) = T (q) for any q > 0.

3. [START_REF] Barral | On multifractal formalism for self-similar measures with overlaps[END_REF] Assume that S is dimension regular, then τ µ is dierentiable on (0, 1] and µ satises the multifractal formalism at any h ∈ [τ ′ µ (1), τ ′ µ (0 + )]. Moreover, τ µ is given as follows: 4. [START_REF] Shmerkin | On Furstenberg's intersection conjecture, self-similar measures, and the L q norms of convolutions[END_REF] If d = 1 and S satises the ESC, then for any q ≥ 1, τ µ (q) = min {q -1, T (q)} .

If T ′ (1) > d, then, for all q ∈ [0, 1], τ µ (q) = d(q -1). If T ′ (1) < d and T (0) ≥ -d then τ µ (q) = T (q). If T ′ (d) > d and T (0) < -d, then setting q = inf {q : qT ′ (q) -T (q) ≤ d} , one has    If q ∈ [0, q), τ µ (q) = q(d+T ( q)) q -d If q ∈ [ q, 1], τ µ (q) = T (q).
In particular, τ µ is dierentiable at any q ̸ = q 0 , where q 0 is dened (if possible) by q 0 -1 = T (q 0 ). As a consequence, τ µ satises the multifractal formalism at any h ∈ [τ ′ (+∞), τ ′ (0

+ )] \ (τ ′ µ (q 0 -), τ ′ µ (q 0 + )).
Proof. Let us show the second part of Item [START_REF] Allen | On the Hausdor measure of shrinking target sets on self-conformal sets[END_REF]. Assume that S satises the AWSC and has no exact overlaps.

Let q > 0, k ∈ N and D ∈ D k . On one hand, recalling (4.28) and item (4) of Remark 4.3.32,

µ(D) q ≤ Ñ i∈ Λ (k) :f i (K)∩D̸ =∅ p i é q ≤ t q k max i∈ Λ (k) :f i (K)∩D̸ =∅ p q i (4.81) ≤ t q k i∈ Λ (k) :f i (K)∩D̸ =∅ p q i . (4.82)
On the other hand, Combining this remark with (4.81),(4.83), (4.85) and (4.87), one gets

Ñ D ′ ∈D k :D ′ ∩D̸ =∅ µ(D ′ ) é q ≥ Ñ i∈ Λ (k) :f i (K)∩D̸ =∅ p i é q ≥ max Λ (k) :f i (K)∩D̸ =∅ p q i (4.83) ≥ t -1 k i∈ Λ (k) :f i (K)∩D̸ =∅ p q i . (4.84) Note also that µ(D) q ≤ Ñ D ′ ∈D k ,D ′ ∩D̸ =∅ µ(D ′ ) é q ≤ 2 dq max D ′ ∈D k ,D ′ ∩D̸ =∅ µ(D ′ ) q (4.85) ≤ 2 dq D ′ ∈D k ,D ′ ∩D̸ =∅ µ(D ′ ) q (4.86) 4.3 ITERATED FUNCTION SYSTEMS 79 and D∈D k µ(D) q ≤ D∈D k D ′ ∈D k :D ′ ∩D̸ =∅ µ(D ′ ) q ≤ 2 d D∈D k µ(D) q . ( 4 
2 -q(d+1) t -1 k i∈ Λ (k) p q i ≤ D∈D k µ(D) q ≤ t q k γ d i∈ Λ (k) p q i . (4.88)
By denition of T (q), 

2 T (q)(-k-1) |K| ≤ i∈ Λ (k) p q i = i∈ Λ (k) c T (q) i c -T (q) i p q i ≤ 2 -T (q)k |K|.
lim k→+∞ log( D∈D k µ(D) q ) -k = T (q). (4.90) 
Now that we recall the standard notion required to our study, we start by giving an instructive construction.

Chapter 5

Anisotropic ubiquity for quasi-Bernoulli measures

In this chapter, one presents a construction which mixes some of the approach mentioned in introduction. Consider a sequence of balls (B n ) n∈N . The main theorem of this chapter, Theorem 5.1.5, gives a lower-bound for the Hausdor dimension of limsup sets generated by rectangles very much as in [START_REF] Wang | Mass transference principle from rectangles to rectangles in Diophantine approximation[END_REF], in which the measure they consider is the Lebesgue measure, but we assume here that µ(lim sup ]n→+∞ B n ) = 1 where µ is a geometrical realization of a quasi-Bernoulli measure.

Although this approach only deals with a particular case (in terms of measure and shape of shrunk sets), we will see that some important geometric quantities already appears naturally.

The rst Section, Section 5.1 states the main result, Theorem 5.1.5 and Section 5.2 is dedicated to the proof of Theorem 5.1.5.

Anisotropique ubiquity and geometric quasi-Bernoulli measures

As mentioned at the beginning of this chapter, a case one can treat to help us understanding the geometric quantities involved when one deals with heteroge- The measure µ is said to be quasi-Bernoulli when there exists a constant C µ ≥ 1 such that for every p ∈ N and every D ∈ D p with µ(D) > 0, one has

1 C µ µ ≤ µ D ≤ C µ µ.
(5.1)

The measure µ D is the renormalized restriction of µ to D and µ D is the rescaled version of µ D on the unit cube.

Exemple 5.1.2. Dene Λ = {0, 1}, Σ = Λ N , σ be the shift operator on Σ, and endow Σ with the standard ultra-metric distance. Let π the canonical projection of Σ onto [0, 1]. For any Hölder potential ϕ on Σ, denote by ν ϕ the unique equilibrium state associated with ϕ on Σ (see [START_REF] Bowen | Equilibrium states and the ergodic theory of Anosov diffeomorphisms[END_REF]). Then the measure µ ϕ = ν ϕ •π -1 is quasi-Bernoulli, and ν ϕ is also called a Gibbs measure associated with φ. This follows from the fact that there exists a number P (φ), the topological pressure of φ, and C ≥ 1, such that for all x ∈ Σ, for all n ∈ N:

C -1 ≤ ν ϕ ({y = (y i ) ∞ i=1 ∈ Σ : y i = x i for all 1 ≤ i ≤ n}) e -nP (φ)+ n-1 k=0 φ(σ k x) ≤ C.
Note that there exist quasi-Bernoulli measures obtained as projections of measures of Gibbs type associated to potentials ϕ with much weaker regularity properties (see [START_REF] Bárány | Domination, almost additivity, and thermodynamic formalism for planar matrix cocycles[END_REF][START_REF] Walters | Invariant measures and equilibrium states for some mappings which expand distances[END_REF]).

Remark 5.1.3. It is easily seen that a quasi-Bernoulli measure µ, if not supported on an ane hyperplane, is such that µ(∂[0, 1] d ) = 0. For otherwise its orthogonal projection onto at least one of the sets

{0} i × [0, 1] × {0} d-i-1
, which is quasi-Bernoulli as well, would have an atom at (0, . . . , 0)

or (0, . . . , 0 i , 1, 0, . . . , 0

d-i-1
). This should imply that it is a Dirac mass, hence µ is supported on a hyperplane. This property will be used in the proof of our main result.
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Let us recall the following result.

Proposition 5. 1.4 ([41]). A quasi-Bernoulli probability measure is exact dimensional.

One establishes the following ubiquity theorem:

Theorem 5.1.5 (D. [START_REF] Daviaud | An anisotropic inhomogeneous ubiquity theorem[END_REF]). Let µ ∈ P([0, 1] d ) be a quasi-Bernoulli probability measure fully supported on [0, 1] d . Let (B n := B(x n , r n )) n∈N be a sequence of balls in [0, 1] d such that lim n→+∞ r n = 0 and µ(lim

sup n→+∞ B n ) = 1. Let 1 ≤ τ 1 ≤ ... ≤ τ d be d real numbers, τ = (τ 1 , . . . , τ d ) and (O n ) n∈N ∈ O d (R) N be a sequence of orthogonal matrices. For n ∈ N, set R n = x n + O n R n , where R n = diag(r τ 1 n , ..., r τ d n ) • [0, 1] d (5.2)
and

s(µ, τ ) = min 1≤k≤d Ç dim(µ) + 1≤j≤k τ k -τ j τ k å . (5.3) One has dim H (lim sup n→+∞ R n ) ≥ s(µ, τ ). (5.4) 
Remark 5.1.6. (1) For convenience, in particular to follow the point of view adopted in [START_REF] Wang | Mass transference principle for limsup sets generated by rectangles[END_REF], the results are stated with R d endowed with ∥ ∥ ∞ and for balls shrunk into rectangles with one vertex equal to the center of the shrunk ball. However, we emphasize that, up to very slight modications of the proof (essentially by adding constants at some places), they still hold for another norm and if the balls are shrunk into rectangles containing the center of the initial cube.

(2) Given τ > 1, by taking τ i = τ for all 1 ≤ i ≤ d and O n = I d for all n ∈ N, , Theorem 5.1.5 reduces to Barral-Seuret's theorem [START_REF] Barral | Heterogeneous ubiquitous systems in R d and Hausdor dimensions[END_REF] in the special case of quasi-Bernoulli measures.

(3) By taking µ = L d and O n = I d for all n ∈ N, we recover the result established in [START_REF] Wang | Mass transference principle for limsup sets generated by rectangles[END_REF], i.e., formula established in [START_REF] Wang | Mass transference principle from rectangles to rectangles in Diophantine approximation[END_REF] in the case of the Lebesgue measure.

Remark 5.1.7.

The proof does not entirely use the exact dimensionality of µ, the key property is the quasi-Bernoulli property 5.1. However, the fact that dim H (µ) = dim P (µ) can be used to prove dim H (lim sup n→+∞ R n ) ≤ s(µ, τ ) under additional assumptions. The existence of upper bounds for the Hausdor dimension of limsup sets (including of rectangles) included in balls (B n ) n≥N will be achieved in chapter 8, under more general settings (see [START_REF] Barral | Heterogeneous ubiquitous systems in R d and Hausdor dimensions[END_REF] for the case τ 1 = • • • = τ d ). CHAPTER 5: ANISOTROPIC UBIQUITY FOR QUASI-BERNOULLI MEASURES

The expression of the lower-bound (5.3) is in fact naturally connected to the Hausdor content (4.7) of rectangles (which is also, up to some multiplicative constant, the so-called singular value function associated with τ , [START_REF] Koivusalo | Mass transference principle: From balls to arbitrary shapes[END_REF]). More precisely, s(µ, τ ) is the largest s ≥ 0 such that, for any n ∈ N,

H s Rn ≥ |B n | dim(µ) .
This key remark will be exploited to deal with more general ubiquity theorems.

5.2 Proof of Theorem 5.1.5

Fix once and for all the quasi-Bernoulli measure µ,

1 ≤ τ 1 ≤ ... ≤ τ d and τ = (τ 1 , ..., τ d ). Recall that α = dim(µ) is the dimension of µ.
The lower bound of Theorem 5.1.5 will be obtained by constructing a

Cantor set included in lim sup n→+∞ R n , and of dimension larger than or equal to s(µ, τ ). Before starting the construction, the following helpful result is recalled.

Lemma 5.2.1 ([11]). Let A = B(x, r) and B = B(x ′ , r ′ ) be two closed balls, and q ≥ 3 be such that A ∩ B ̸ = ∅ and A \ (qB) ̸ = ∅. Then r ′ ≤ r and qB ⊂ 5A.

Proof. Consider z ∈ A \ qB. One has

qr ′ ≤ ∥z -x ′ ∥ ∞ ≤ ∥z -x∥ ∞ + ∥x -x ′ ∥ ∞ ≤ r + r + r ′ .
Hence q-1 2 r ′ ≤ r, and in particular, one necessarily has r ′ ≤ r and qr ′ ≤ 2r + r ′ ≤ 3r.

Furthermore, if y ∈ qB, then ∥y -x∥ ∞ ≤ ∥x ′ -y∥ ∞ + ∥x ′ -x∥ ∞ ≤ qr ′ + r ′ + r ≤ 5r.
This concludes the proof.

We construct thereafter a Cantor set K as well as a sequence of strictly positive real numbers (ε p ) p∈N and a Borel probability measure η such that:

K ⊂ lim sup n→+∞ R n and η(K) = 1,
The sequence (ε p ) p∈N is decreasing with lim p→+∞ ε p = 0 and there exists a constant C such that for any p ∈ N, there exists r p > 0 verifying, for any ball B ⊂ R d of radius r less than r p , η(B) ≤ C.r s(µ,τ )-4εp .
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dim H (lim sup n→+∞ R n ) ≥ dim H (K) ≥ s(µ, τ ) -4ε p , hence, letting p → +∞ will conclude.
The construction of (K, η) is decomposed into several steps. Without loss of generality we assume that s(µ, τ ) > 0. Fix a decreasing sequence (ε p ) p∈N converging to 0 at ∞, such that ε 0 ≤ max(1, s(µ, τ )/4).

Step 1: Initialization Let us start with a denition. Denition 5.2.2. For ν ∈ P([0, 1] d ), β ≥ 0, and ε, ρ > 0, dene

E β,ε,ρ ν = x ∈ [0, 1] d : ∀ 0 < r ≤ ρ, B(x, r) ⊂ [0, 1] d and ν(B(x, r)) ≤ r β-ε . Then set E β,ε ν = n≥1 E β,ε, 1 n ν .
With β = α = dim H (µ), since µ(∂[0, 1] d ) = 0 (due to Remark 5.1.3 and the assumption that µ is fully supported), for all ε > 0, one has µ(E α,ε µ ) = 1. For all p ∈ N, consider ρ p ∈ (0, 1) small enough so that µ(E α,εp,ρp µ ) ≥ 1 2 .

(5.6)

For x ∈ E α,ε 1 ,ρ 1 µ ∩ lim sup n→+∞ B n , consider n x ≥ 1 large enough so that x ∈ B nx , 4r nx ≤ ρ 1 , and r -ε 1 nx ≥ max ¶ 4Q d 4 α-ε 1 , ρ -d/τ d 2
© .

(5.7)

Set

L x = B(x, 4r nx ). 

Q d := Q d,1 nite or countable families of balls F 1 i , 1 ≤ i ≤ Q d , such that: ∀ 1 ≤ i ≤ Q d , ∀L ̸ = L ′ ∈ F 1 i , it holds that L ∩ L ′ = ∅, E α,ε 1 ,ρ 1 µ ∩ lim sup n→+∞ B n ⊂ 1≤i≤Q d L∈F 1 i L. Since µ E α,ε 1 ,ρ 1 µ ∩ lim sup n→+∞ B n ≥ 1 2 , there exists 1 ≤ i 1 ≤ Q d such that µ L∈F i 1 L ≥ µ(E α,ε 1 ,ρ 1 µ ∩ lim sup n→+∞ B n ) Q d ≥ 1 2Q d .
(5.9)

Denote by (L

k ) k∈N the sequence of balls such that

F 1 i 1 = ¶ L (1) k © k∈N , (x (1) 
k ) k∈N the sequence of points such that for all k ∈ N, L

k = L x (1) (1) 
k , and set r

(1) k = r x (1) k . There exists N 1 ∈ N so that µ 1≤k≤N 1 L (1) k ≥ µ L∈F 1 i 1 L 2 . Set F 1 = ¶ L (1) k © 1≤k≤N 1 . One has µ L∈F 1 L ≥ 1 4Q d .
(5.10)

Remember that with every ball L , where n

(1)

k = n x (1) k ; set R (1) 
k = R n (1)
k

. Then dene K 1 , the rst generation of the Cantor set by setting

K 1 = ¶ R (1) k © 1≤k≤N 1 and K 1 = R∈K 1 R.
Finally, measure η 1 on the algebra generated by K 1 is obtained by concentrating the µ-measure of the balls L x on the rectangle R nx . More precisely, for

1 ≤ k ≤ N 1 set η 1 (R (1) 
k ) = µ Ä L (1) k ä 1≤k ′ ≤N 1 µ L (1) k ′ 
.

Since for all 1 ≤ k ≤ N 1 , the center x

(1)

k of L (1) 
k belongs to E α,ε 1 ,ρ 1 µ , recalling that |L x (1) k |/2 = 4r n (1)
k ≤ ρ 1 , the disjointness of the L

(1) j , as well as the inequality (5.10), we get that for all 1 ≤ k ≤ N 1 ,

η 1 (R (1) 
k ) ≤ 4Q d 4r n (1) k α-ε 1 ≤ r n (1) k α-2ε 1 , (5.11) 
where (5.7) has been used.

Step 2: Constructing the second generation

This step consists of two sub-steps: First we associate a set of dyadic cubes with each rectangle previously obtained, and then we work inside each of these cubes.

Sub-step 2.1: A set of dyadic cubes inside each R of K 1

Consider a rectangle R. There exists an orthogonal matrix

O ∈ O d (R), a point x ∈ [0, 1] d and 0 < ℓ d ≤ ℓ 2 ≤ ... ≤ ℓ 1 such that R = x + O R, with R = d i=1 [0, ℓ i ]. Set p = - ö log 2 Ä ℓ d 8 √ d äù . Intuitively, 2 -p ≈ ℓ d 8 √ d
, so that there are some cubes included in R with side-length 2 -p . We associate with R the set of dyadic cubes (see Figure 5.2)

C(R) = D ∈ D p : D ⊂ R, D = d i=1 [k i 2 -p , (k i + 1)2 -p ], 8|k i , ∀ 1 ≤ i ≤ d .
Observe that C(R) consists in dyadic cubes of generation p inside R that are quite far from each other. This will ensure that the rectangles used at a 

ℓ i ℓ d ≤ #C(R) ≤ κ d d i=1 ℓ i ℓ d .
Recalling (5.2), for every n ∈ N, one gets

κ -1 d • r d i=1 τ i -τ d n ≤ #C(R n ) ≤ κ d • r d i=1 τ i -τ d n .
(5.12) Now we construct a measure η 2 , which renes the measure η 1 by distributing the mass uniformly between the cubes of C(R) for R ∈ K 1 . For every

1 ≤ k ≤ N 1 and every D ∈ C(R (1) k ), set η 2 (D) = η 1 (R (1) 
k ) #C(R (1) k ) . By construction, η 2 (R (1) k ) = η 1 (R (1) 
k ). Recalling (5.11) and (5.12), one gets

η 2 (D) = η 1 (R (1) 
k ) #C(R (1) k ) ≤ r n (1) k α-2ε 1 κ -1 d • r n (1) k d i=1 -τ d +τ i = κ d • r τ d n (1) k α-2ε 1 + d i=1 τ d -τ i τ d . (5.13) Sub-step 2.2: Construction in each cube of C(R)
We start with preliminary observations about the measure µ. Recall Denition 5.1.1. Since µ is a quasi-Bernoulli measure, for every q ∈ N, every D ∈ D q such that µ(D) > 0, for every x ∈ [0, 1] d and r > 0 such that B(x, r) ⊂ D, due to (5.1) one has

µ(B(x, r)) = µ T -1 D (T D (B(x, r))) = µ(D)µ D B T D (x), r 2 -q ≤ C µ µ(D) µ B T D (x), r 2 -q .
Thus, for all x ∈ [0, 1] d and r > 0 such that B(x, r)

⊂ [0, 1] d one has µ B(T -1 D (x), r2 -q ) ≤ C µ µ(D)µ(B(x, r)).
(5.14) Also, for every p ∈ N, (5.1) yields

µ D (E α,εp,ρp µ ) ≥ µ(E α,εp,ρp µ ) C µ ≥ 1 2C µ . (5.15) Moreover, 
T -1

D (E α,εp,ρp µ ) = T -1 D (x) : ∀ r ≤ ρ p , B(x, r) ⊂ [0, 1] d , µ(B(x, r)) ≤ r α-εp = T -1 D (x) : ∀ r ≤ ρ p , B(x, r) ⊂ [0, 1] d , µ T D B T -1 D (x), r 2 q ≤ r α-εp ,
and using (5.14), one gets

T -1 D (E α,εq,ρq µ ) ⊂ ß T -1 D (x) : ∀ r ≤ ρ p , B(x, r) ⊂ [0, 1] d , µ(B(T -1 D (x), r2 -q )) µ(D) ≤ C µ r α-εp ™ = ß y ∈ D : ∀ r ≤ ρ p 2 -q , B(y, r) ⊂ D, µ(B(y, r)) µ(D) ≤ C µ r 2 -q α-εp ™ .
It follows that if we x p as above and set

E εp D = lim sup n→+∞ B n ∩ ß y ∈ D : ∀ r ≤ ρ p 2 -q , B(y, r) ⊂ D, µ(B(y, r)) µ(D) ≤ C µ r 2 -q α-εp ™ , (5.16) 
then by Denition 5.1.1 and the fact that µ(lim

sup n→+∞ B n ) = 1, we have µ(E εp D ) = µ(T -1 D (T D (E εp D ))) = µ(D)µ D (T D (E εp D )) ≥ µ(D) µ(E α,εp,ρp µ ) C µ ≥ µ(D) 2C µ ,
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We now continue the construction. Consider R ∈ K 1 . Fix D ∈ C(R). Remember that p(D) is the unique integer such that D ∈ D p(D) . The set E ε 2 D is well dened since µ(D) > 0 (the measure µ has been supposed to be fully supported on [0, 1] d ). For every x ∈ E ε 2 D , consider n x large enough so that:

• x ∈ B nx ,
• n x ≥ 2 and

4r nx ≤ ρ 2 2 -p(D) , and r -ε 2 nx ≥ max ¶ 4C µ Q d • η 2 (D)(4 • 2 p(D) ) α-ε 2 , ρ -d/τ d 3
© .

(5.18)

Set L x = B(x, 4r nx ), as in step 1 (see (5.8)). By repeating the same argument as in step 1, one can extract from {L x :

x ∈ E ε 2 D } a nite number N D of balls, L (D) 1 = L x (D) 1 , ..., L (D) N D = L x (D) N D such that for all 1 ≤ k 1 ̸ = k 2 ≤ N D one has L (D) k 1 ∩ L (D)
k 2 = ∅ and by (5.17)

µ 1≤k≤N D L (D) k ≥ µ(E ε 2 D ) 2 ≥ µ(D) 4Q d C µ . (5.19) 
and with each ball L 

K(R) = D∈C(R) ¶ R (D) k © 1≤k≤N D and K 2 = R∈K 1 K(R),
and

K 2 = R∈K 2

R.

One extends further the measure η 1 to the algebra generated by the elements of the set K 1 R∈K 1 C(R) K 2 by distributing the mass according to µ at that scale. More precisely, for all

R ∈ K 1 , D ∈ C(R) and 1 ≤ k ≤ N D , one sets η 2 (R (D) k ) = η 2 (D) µ(L (D) k ) 1≤k ′ ≤N D µ(L (D) k ′ )
Note the following facts: 

If R ∈ K 1 , D, D ′ ∈ C(R), 1 ≤ k ≤ N D and 1 ≤ k ′ ≤ N D ′ are such that R (D) k ̸ = R (D ′ ) k ′ ∈ K(R), then 3B (D) k ∩ 3B (D ′ ) k ′ = ∅.
(D) k is centered on E ε 2 D , then µ(L (D) k ) µ(D) ≤ C µ Ç 4r (D) k 2 -p(D)
å α-ε 2 so that by (5.19) and the third assertion of (5.18), we get

η 2 (R (D) k ) ≤ η 2 (D)4Q d C µ (4 • 2 p(D) ) α-ε 2 • (r (D) k ) α-ε 2 ≤ (r (D) k ) α-2ε 2 . (5.20)
Further steps: Induction scheme

We proceed as in step 2. Suppose that p ≥ 2, and for all 1 ≤ q ≤ p, a set K q and a measure η q , dened on the algebra generated by the elements of 1≤p≤q K p R∈Kp C(R), have been constructed in such a way that (5.11) holds and:

(i) For all 1 ≤ q ≤ p, K q is a nite subset of {R n } n≥q .

(ii) For all 2 ≤ q ≤ p, for all R ∈ K q , there exists

R ′ ∈ K q-1 and D ∈ C(R ′ ) such that R ⊂ D; one denotes by ¶ R (D) k © 1≤k≤N D
the family of rectangles of K q included in D.

(iii) For all 1 ≤ q ≤ p -1 and R ∈ K q , if r τ d is the length of the smallest side of R, then (r τ d ) -εq ≥ ρ -d q+1 .

(5.21)

(iv) For all 2 ≤ q ≤ p, R ∈ K q-1 , D ∈ C(R) and 1 ≤ k ≤ N D , with the rectangle R (D) k are naturally associated a point x (D) k ∈ E εq D , a ball L (D) k = B Ä x (D) k , 4r (D) k ä , as well as some integer n k ∈ N, such that n k ≥ q, x (D) k ∈ B (D) k := B n k = B(x n k , r n k ), R (D) k = R n k , r (D) k = r n k and 4r (D) k ≤ 2 -p(D) ρ q .
In particular, due to (5.16), one has µ(L

(D) k ) µ(D) ≤ C µ Ç 4r n (D) k 2 -p(D)
å α-εq .

(5.22

) (v) For all 2 ≤ q ≤ p, R ∈ K q-1 , D, D ′ ∈ C(R), 1 ≤ k ≤ N D and 1 ≤ k ′ ≤ N D ′ such that R (D) k ̸ = R (D ′) k ′ , one has 3B (D) k ∩ 3B (D ′ ) k ′ = ∅.
(vi) For all 1 ≤ q ≤ q ′ ≤ p and R ∈ K q , η q (R) = η q ′ (R).
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UBIQUITY FOR QUASI-BERNOULLI MEASURES (vii) For all 2 ≤ q ≤ p, R ∈ K q-1 , D ∈ C(R) and 1 ≤ k ≤ N D , one has η q (D) = η q-1 (R) #C(R) and (r (D) k ) -εq ≥ 4C µ Q d • η q (D)(4 • 2 p(D) ) (α-εq) . (5.23) (viii) For all 2 ≤ q ≤ p, R ∈ K q-1 , D ∈ C(R) and 1 ≤ k ≤ N D , one has 1≤k ′ ≤N D µ(L (D) k ′ ) ≥ µ(D) 4Q d (5.24)
and

η q (R (D) k ) = η q (D) • µ(L (D) k ) 1≤k ′ ≤N D µ(L (D) k ′ )
.

(5.25)

Notice that by (5.22), (5.23) (5.24) and (5.25), for all 2

≤ q ≤ p, R ∈ K q-1 , D ∈ C(R) and 1 ≤ k ≤ N D , one has η q (R (D) k ) = η q (D) • µ(L (D) k ) 1≤k ′ ≤N D µ(L (D) k ′ ) ≤ η q (D) µ(L (D) k ) µ(D)(4Q d ) -1 ≤ η q (D) 4r (D) k α-εq 4Q d C µ 2 p(D) α-εq ≤ r (D) k α-2εq
.

(

Thus, for all 2 ≤ q ≤ p, R ∈ K q-1 and D ∈ C(R), denoting by r τ d the length of the smallest side of R, by (5.11), (5.12), (5.23),(5.26) and (vi), one has

η q (D) = η q-1 (R) #C(R) ≤ r α-2ε q-1 κ -1 d • r d i=1 -τ d +τ i ≤ κ d r α-2ε q-1 + d i=1 τ d -τ i ≤ κ d r τ d α-2ε q-1 + d i=1 τ d -τ i τ d . (5.27)
Let us now explain the induction. Take R ∈ K p and D ∈ C(R). For every x ∈ E ε p+1 D , consider an integer n x large enough so that:

x ∈ B nx ,

n x ≥ p + 1, 4r nx ≤ ρ p+1 2 -p(D) , and r -ε p+1 nx ≥ max Å 4 α-ε p+1 η p (R) #C(R) 4Q d C µ 2 p(D)(α-ε p+1 ) , ρ -d/τ d p+2
ã .

Using Proposition 4.1.2 with v = 1, one can extract from the covering of E

ε p+1 D , L x := B(x, 4r nx ) : x ∈ E ε p+1 D , a nite set of balls F(D) := ¶ L (D) k := L (D) x k © 1≤k≤N D such that 5.2 PROOF OF THEOREM 5.1.5 93 ∀k ̸ = k ′ ≤ N D , L (D) k ∩ L (D) k ′ = ∅. In particular, 3B n x (D) k ∩ 3B n x (D) k ′ = ∅, writing Q d = Q d,1 , one has µ 1≤k≤N D L (D) k ≥ 1 2 µ(E ε p+1 D ) ≥ µ(D) 4Q d C µ .
(5.28)

Consider the collection of rectangles naturally associated with the balls L

(D) k K p+1 (R) = D∈C(R) ß R (D) k := R n x (D) k ™ 1≤k≤N D .
Then dene

K p+1 = R∈Kp K(R) and K p+1 = R∈K p+1
R.

The probability measure η p can be extended from the algebra generated by the elements of 1≤p≤p K q R∈Kp C(R) to the algebra generated by the sets of the union

1≤q≤p+1 K q R∈Kp C(R) as follows: For R ∈ K p and D ∈ C(R),
we impose that η p+1 (R) = η p (R) and η p+1 (D) = η p (R) #C(R) .

(5.29)

And then, for R ∈ K p , D ∈ C(R) and 1 ≤ k ≤ N D , we set

η p+1 (R (D) k ) = η p+1 (D) • µ(L (D) k ) 1≤k ′ ≤N D µ(L (D) k ′ )
.

(5.30)

It is easily checked that properties (i) to (viii) hold for p + 1 and this ends the induction.

Last step: the Cantor set and some of its properties.

Set K 0 = [0, 1] d and η 0 ([0, 1] d ) = 1. Dene K = p∈N K p and K = p∈N K p .
By construction, item (i) of the recursion implies that K ⊂ lim sup n→∞ R n . Now, for each p ≥ 1, let η p be the element of P([0, 1] d ) supported on K p and such that for every R ∈ K p the restriction of η p to R has ηp(R)

L d (R) as density with respect to L d |R .
It is easily seen, due to the separation property of the elements CHAPTER 5: ANISOTROPIC UBIQUITY FOR QUASI-BERNOULLI MEASURES of K p , for all p ∈ N, that ( η p ) p∈N * converges weakly to a Borel probability measure η such that η(R) = η p (R) for all p ∈ N and R ∈ K p .

Note that by construction the following properties hold:

Uniform separation property: For all p ∈ N and n 

∈ N such that R n ∈ K p , if n 1 , n 2 ∈ N such that R n 1 ̸ = R n 2 ∈ K(R n ) = {R ′ ∈ K p+1 : R ′ ⊂ R n }, one has 3B n 1 ∩ 3B n 2 = ∅.
η(R n ) ≤ r α-2εp n ,
and for all D ∈ C(R n ),

η(D) ≤ κ d r α-2εp+ 1≤i≤d τ d -τ i n = κ d r τ d n α-2εp+ 1≤i≤d τ d -τ i τ d
.

(5.31)

Upper bound for the η-measure of a ball.

Let C be a ball (recall that it is an Euclidean cube) of side length r contained in [0, 1] d . Several cases are distinguished.

• When C intersects K p for at most nitely many p ∈ N, it is clear that η(C) = 0, and we set p C = +∞.

• When C intersects a unique rectangle of K p , say R n C (p) , for innitely many p ∈ N, then η(C) ≤ η(R n C (p) ) ≤ r α-2εp
n C (p) for innitely many p, so η(C) = 0. Again, we set p C = +∞.

• Suppose now that we are not in one of the previous cases. There exists

p C ∈ N such that if p ≤ p C , C intersects a unique rectangle of K p and if p ≥ p C + 1, C intersects at least two rectangles of K p . Denote by R n C the unique rectangle in K p C intersecting C. Let v > 0 be such that r = r v n C
. Again, several cases are distinguished.

(i

) Suppose r ≥ r τ d n C (i.e. v ≤ τ d ): Suppose, moreover, that r < r n C , i.e.
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1 < v ≤ τ d . Remember that for D ∈ C(R n C ) one has (see (5.31)) η(D) ≤ κ d r n C α-2εp C + 1≤i≤d τ d -τ i .
Also, there exists κ d > 0, depending on d so that

# {D ∈ C(R n C ) : D ∩ C ̸ = ∅} ≤ κ d i:τ i <v r v n C r τ d n C i:τ i ≥v r τ i n C r τ d n C ≤ κ d r -dτ d + i:τ i <v v+ i:τ i ≥v τ i n C
.

Provided that κ d was chosen larger than κ d at rst, one gets This gives the following upper bound for η(C):

η(C) ≤ D∈C(Rn C ):D∩C̸ =∅ η(D) ≤ (# {D ∈ C(R n C ) : D ∩ C ̸ = ∅}) • κ d r n C α-2εp C + 1≤i≤d τ d -τ j ≤ κ 2 d r n C -2εp C r n C -dτ d +α+ i:τ i <v v+ i:τ i ≥v τ i + 1≤i≤d τ d -τ i ≤ κ 2 d r n C -2εp C r n C α+ i:τ i <v v-τ i ≤ κ 2 d r -2εp C r α+ i:τ i <v v-τ i v .
The mapping f : v →

α+ i:τ i <v v-τ i v
reaches its minimum at one of the τ i , say τ i 0 with 1 ≤ i 0 ≤ d. This can be rephrased as s(µ, τ ) = min 1≤i≤d (

α+ 1≤j≤i τ i -τ j τ i ) = f (τ i 0 ). It follows that η(C) ≤ κ 2 d r s(µ,τ )-2εp C .
(5.32)

On the other hand, if r ≥ r n C , i.e. v ≤ 1, then by (5.26), one has

η(C) ≤ η(R n C ) ≤ r α-2εp C n C ≤ r α-2εp C ,
and (5.32) holds as well, since α = f (τ 1 ) ≥ s(µ, τ ).

(ii) Suppose now that r < r 

≤ i ̸ = j ≤ N C,D , 3B (D) 
k i ∩ 3B (D) k j = ∅. Also, C intersects both B (D) k i and B (D) k j
, and by construction, since L (D)

k i ∩ L (D) k j = ∅ and |L (D) k j | = 4|B (D) k j |, we have r ≥ r (D) k j
. By Lemma 5.2.1 applied to each pair {A = C, B = B (D)

k j } and q = 3, one gets 1≤i≤N C,D 3B (D) k i ⊂ 5C. In particular, 1≤i≤N C,D L (D) k i ⊂ 10C since L (D) k i ⊂ 5B (D) k i for each i. Consequently, 1≤i≤N C,D µ(L (D) k i ) ≤ µ(10C).
Further recall that, by item (iv) of the recurrence scheme, for any 

1 ≤ i ≤ N C,D the ball L (D) k i is centered on E ε p C +1 D . Thus there is x ∈ E ε p C +1 D ∩ 10C.
η(C ∩ D) ≤ 1≤i≤N C,D η(R (D) k i ) ≤ η(D) 1≤i≤N C,D µ(L (D) k i ) 1≤j≤N D µ(L (D) j ) ≤ η(D) 1≤i≤N C,D µ(L (D) k i ) (4Q d ) -1 µ(D) ≤ 4Q d η(D) µ(D) µ(10C) ≤ C µ η(D) 4Q d 20r 2 -p(D) α-ε p C +1 . This yields η(C) ≤ D∈C(Rn C ):C∩D̸ =∅ η(C ∩ D) ≤ C d C µ max D∈C(Rn C ):C∩D̸ =∅ η(D) 4Q d 20r 2 -p(D) α-ε p C +1 . Moreover by (5.27), for each D ∈ C(R n C ) such that C ∩ D ̸ = ∅, η(D) ≤ κ d 2 2p(D)εp C 2 -s(µ,τ )p(D) , hence η(C) ≤ C d C µ κ d 4Q d 2 2p(D)εp C 2 -p(D) s(µ,τ ) 20r 2 -p(D) α-ε p C +1
.

Since C d 2 -p(D) ≥ r τ d n C ≥ r and the sequence (ε p ) p≥1 is decreasing and bounded, it follows that for some constant γ depending only on the dimension d and µ,

one has η(C) ≤ γ r -3εp C r α 2 -p(D)(α-s(µ,τ )) = γ r -3εp C r 2 -p(D) α-s(µ,τ ) r s(µ,τ ) .
Thus, as C d 2 -p(D) ≥ r and s(µ, τ ) ≤ α (so that t > 0 → t α-s(µ,τ ) is non decreasing), we nally obtain 

η(C) ≤ γ C α-s(µ,τ ) d r s(µ,τ )-3εp C ≤ γ C α d r s(µ,τ )-3εp C . • Suppose now that 20ρ p C +1 2 -p(D) ≤ r < r τ d
η(C) ≤ k i=1 η(D i ) ≤ ⌊(C d /20ρ p C +1 ) + 1⌋ d γ C α d 20ρ p C +1 2 -p(D) s(µ,τ )-3εp C ≤ γ 1 ρ -d p C +1 r s(µ,τ )-3εp C ≤ γ 1 r s(µ,τ )-4εp C
for some constant γ 1 depending only on d and µ (we used that 20ρ p C +1 2 -p(D) ≤ r to get the third inequality, and (iii) as well as the inequality ε p C ≥ ε p C +1 to get the fourth one).

To conclude the proof, note that due to the uniform separation property outlined after the last step of the construction of (K, η),

p(r) = inf{p C : C is ball of radius r included in [0, 1] d }
tends to +∞ as r tends to 0.

Combining the previous estimates, setting

γ 1 = max {γ 1 , γ.C α d , κ 2 d }, we nally get η(C) ≤ γ 1 r s(µ,τ )-4ε p(r) .
In particular, for any p ∈ N, setting r p = 1 2 sup {r : p(r) ≤ p}, it holds that for any r ≤ r p , any C of radius r, η(C) ≤ γ 1 r s(µ,τ )-4εp .

By Lemma 4.2.4, since η(K) = 1, it holds that dim H (K) ≥ s(µ, τ ) -4ε p .
Chapter 6

Asymptotically covering sequences of balls and essential content

This chapter comes as a preamble of Chapter 7. First, in Section 6.1 given a sequence of balls (B n ) n∈N , one investigates the link between satisfying the condition µ(lim sup n→+∞ B n ) = 1 and verifying a certain covering property, we call µ asymptotically covering ( Denition 6.1.1). This property is usually used in mass transference principles when the reference measure is doubling on its support ( [START_REF] Beresnevitch | A mass transference principle and the Dun-Schaeer conjecture for Hausdor measures[END_REF]).

In a second time, in Section 6.2, one denes and study the key geometric notion we will need to establish our main ubiquity theorem, Theorem 7.1.2, which is the essential Hausdor content. Some explicit estimates of this geometric quantity are given and some basic properties are established.

The last section, Section 6.1.3 gives a version of the Borel-Cantelli Lemma suitable for limsup sets of balls. 

∀ 1 ≤ i ≤ N Ω , B n i ⊂ Ω, ∀ 1 ≤ i ̸ = j ≤ N Ω , B n i ∩ B n j = ∅, one has µ 1≤i≤N Ω B n i ≥ Cµ(Ω). (6.1) 
In other words, for any open set Ω and any g > 0, there exists a nite set of disjoint balls of {B n } n≥g covering a large part of Ω from the µ-standpoint.

This notion of µ-asymptotically covering is related to the way the balls of B are distributed according to the measure µ. In particular, given a measure µ, this property turns out to be slightly stronger than being of lim sup of full µ-measure, as illustrated by the following Theorem. Theorem 6.1.2. Let µ ∈ M(R d ) and B = (B n := B(x n , r n )) n∈N be a sequence of balls of R d with lim n→+∞ r n = 0.

1. If B is µ-a.c, then µ(lim sup n→+∞ B n ) = 1. 2. If there exists v < 1 such that µ lim sup n→+∞ (vB n ) = 1, then B is µ-a.c.
Moreover, it results from the proof of the KGB-Lemma [START_REF] Beresnevitch | A mass transference principle and the Dun-Schaeer conjecture for Hausdor measures[END_REF] that if the µ is doubling, µ lim sup

n→+∞ B n = 1 ⇔ (B n ) n∈N is µ-a.c.
One emphasizes also that, in general, the contracted sets we consider in ubiquity theorems are much smaller than vB n for any v < 1. In particular, as it will be highlighted later in this manuscript, this condition is not restrictive at all for the cases we consider.

Consequences of the µ-asymptotic covering property

One rst shows that the constant C in Denition 6. Then for every open set Ω and every integer g ∈ N, there exists a subsequence (B

(Ω) (n) ) ⊂ {B n } n≥g such that: 1. ∀ n ∈ N, B (Ω) (n) ⊂ Ω, 2. ∀ 1 ≤ n 1 ̸ = n 2 , B (Ω) (n 1 ) ∩ B (Ω) (n 2 ) = ∅, 3. µ Ä n≥1 B (Ω) (n) ä = µ(Ω).
In addition, there exists an integer N Ω such that for the balls (B

(Ω)

(n) ) n=1,...,N Ω , the conditions (1) and ( 2) are realized, and (3) is replaced by µ Ä

N Ω n=1 B (Ω) (n) ä ≥ 3 4 µ(Ω).
The last part of Lemma 6.1.3 simply follows from item (3) and the σadditivity of µ.

Proof. The idea consists in covering Ω by pairwise disjoint balls amongst those balls of B, such that their union has measure at least Cµ(Ω), then in covering the complementary of the union of those balls in Ω (that is still open) with at least a proportion C of its measure, and so on.

More precisely, this is achieved as follows:

• Step 1: By application of Denition 6.1.1 to Ω 0 := Ω and g ∈ N, there exists C > 0 and some integers g ≤ n 1 ≤ ... ≤ n N 0 so that the family of balls

F 0 := ¶ B n i := B (0) i © 1≤i≤N 0 is pairwise disjoint and µ( 1≤i≤N 0 B n i ) ≥ Cµ(Ω).
• Step 2: Setting Ω 1 = Ω \ L∈F 0 L, applying Denition 6.1.1 to Ω 1 with the integer g provides us with a family F 1 of pairwise disjoint balls B

(1) 1 , ..., B

N 1 ∈ {B n } n≥g such that ∀ 1 ≤ i ≤ N 1 B (1) 
⊂ Ω 1 and µ(

1≤i≤N 2 B (1) 
i ) ≥ Cµ(Ω 1 ).

One sets

F 1 = F 0 F 1 . One sees that µ L∈F 1 L = µ L∈F 0 L + µ L∈G 1 L ≥ µ L∈F 0 L + C µ(Ω) -µ L∈F 0 L ≥ (1 -C)µ L∈F 0 L + Cµ (Ω) ≥ (C + C(1 -C))µ(Ω).
Observe that the balls of F 0 and F 1 are disjoint by construction.

• Following steps : Proceeding recursively, and applying the exact same argument as above, one constructs an increasing sequence of families (F i ) i∈N and a decreasing sequence of open sets Ω i such that:

∀ i ∈ N, L ∈ {B n } n≥g and ∀L ∈ F i , L ⊂ Ω i ⊂ Ω, ∀ i ∈ N, ∀L ̸ = L ′ ∈ F i , L ∩ L ′ = ∅, ∀ i ̸ = j ∈ N, ∀L ∈ F i and ∀L ∈ F j , L ∩ L ′ = ∅, ∀ i ∈ N, µ L∈F i L ≥ µ(Ω) 1≤k≤i C(1 -C) k-1 .
Finally, setting F = i∈N F i , one sees that F is constituted by pairwise disjoint balls chosen amongst {B n } n≥g satisfying Then for any Borel set E, for any g ∈ N, there exists a sub-sequence of balls (B 

µ(Ω) ≥ µ L∈F L ≥ µ(Ω) k≥1 C(1 -C) k-1 = µ(Ω),
(E) (n) ) ⊂ {B n } n≥g such that: 1. ∀1 ≤ n 1 ̸ = n 2 , B (E) (n 1 ) ∩ B (E) (n 2 ) = ∅, 2. µ n∈N B (E) (n) ∩ E = µ(E), 3. µ n∈N B (E) (n) ≤ µ(E) + ε,
B n ) = 1.
For every g ∈ N, applying Lemma 6.1.3, there exists a sub-family of balls,

F g ⊂ {B n } n≥g such that µ( L∈Fg L) = µ(R d ) = 1. In particular, µ( n≥g B n ) = 1 for every g ≥ 1, and µ(lim sup n→+∞ B n ) = µ( g≥1 n≥g B n ) = 1.
(2) Suppose next that there exists v < 1 such that µ(lim sup n→+∞ vB n ) = 1, and let us show that B is µ-a.c.

Let Ω be an open set in R d . Our goal is to nd a constant C such that the conditions of Denition 6.1.1 are realized.

Let E = Ω ∩ lim sup n→+∞ vB n . For every y ∈ E, consider an integer n y ≥ g large enough so that y ∈ vB ny and B(y, 2r ny ) ⊂ Ω. This is possible since lim n→+∞ r n = 0. Applying Proposition 4.1.2 with constant v ′ = 1-v 2 < 1 allows to extract from F nite or countable sub-families F 1 , ..., F Q d,v ′ such that:

∀1 ≤ i ≤ Q d,v ′ , L ̸ = L ′ ∈ F i , one has 1 v ′ L ∩ 1 v ′ L ′ = ∅.
E is covered by the families F i , i.e. (4.2) holds true.

Now, µ(Ω) = µ(E) ≤ µ Ä Q d,v ′ i=1 L∈F i L ä . There must exist 1 ≤ i 0 ≤ Q d,v ′ such that µ Ñ L∈F i 0 L é ≥ 1 Q d,v ′ µ(E) = 1 Q d,v ′ µ

(Ω).

There exist L 1 , L 2 , ... L N balls of F i 0 such that ∀1 ≤ i ≤ Q d,v ′ , every L ∈ F i is naturally associated with some y ∈ E and some ball B ny , with L ⊂ B ny ⊂ Ω,

µ 1≤k≤N L k ≥ 1 2Q d,v ′ µ(Ω),
∀1 ≤ i ≤ Q d,v ′ , if L ∈ F i is associated with y ∈ E and B ny and L ′ ∈ F i is associated with y ′ ∈ E and B n y ′ , then 1 v ′ L ∩ 1 v ′ L ′ = ∅ implies by (6.3) that B ny ∩ B n y ′ = ∅.
The rst fact implies that there exist

N integers n 1 , ..., n N such that B n k ⊂ Ω and µ 1≤k≤N B n k ≥ 1 2Q d,v ′ µ(Ω),
The second fact implies that these balls B n k , k = 1, ..., N are pairwise disjoint.

This exactly proves that B is µ-a.c.

A version of Borel-Cantelli Lemma

In this manuscript, one mainly focuses on establishing Hausdor dimension of limsup sets knowing that a certain limsup set of balls has full measure. In many situations, proving that those limsup sets have full measure is straightforward.

Given µ ∈ M(R d ), when establishing that a sequence of balls (B n ) n∈N veries µ(lim

sup n∈N B n ) = 1
is not straightforward, it is convenient to have a tool at our disposal to be able to determine whether or not it is the case. The case where the measure involved is doubling is treated by Beresnevich and Velani.

Theorem 6.1.5 ([12]). Let µ ∈ M(R d ) be a doubling measure and (B n ) n∈N a sequence of balls centered in supp(µ) such that |B n | → 0. Then the two following assertions are equivalent: and for innitely many Q,

1. µ(lim sup n∈N B n ) = 1.
Q s,t=1 µ(L B,s ∩ L B,t ) ≤ C µ(B) Q n=1 µ(L B,n ) 2 .
(6.6) (B): Assume that there exists C > 1 such that for any open ball B, there exists a sub-sequence of (B n ) n∈N (L n,B ) n∈N with, for any n ∈ N, L n,B ⊂ B, satisfying (6.5) and (6.6). Then µ(lim sup n→+∞ B n ) = 1, so that for any κ > 1, (κB n ) n∈N is µ-a.c.

Proof. Item A is proved in [START_REF] Beresnevitch | The divergence Borel-Cantelli lemma revisited[END_REF] (this part of the proof does not use the doubling property of the measure). Moreover, it is also proved in [START_REF] Beresnevitch | The divergence Borel-Cantelli lemma revisited[END_REF] that, if there exists C > 0 such that for any open ball B, there exists a sub-sequence of (B n ) n∈N (L n,B ) n∈N with, for any n ∈ N, L n,B ⊂ B, satisfying (6.5) and (6.6), then

µ(lim sup n→+∞ B n ∩ B) ≥ 1 C µ(B).
The following lemma combined with Theorem 6.1.2 nishes the proof of Proposition 6.1.6. This yields 

µ(E ∩ B ∩ A) = µ(E ∩ B) + µ(A ∩ B) -µ ((E ∩ B) ∪ (A ∩ B)) ≥ (c + 1 - c 2 -1)µ(B) = c 2 µ(B) > 0, which implies µ(E ∩ A) > 0,
1. If |A| ≤ 1, the mapping s ≥ 0 → H µ,s ∞ (A) is decreasing from H µ,0 ∞ (A) = 1 to lim t→+∞ H µ,t ∞ (A) = 0. 2. 0 ≤ H µ,s ∞ (A) ≤ min {|A| s , H s ∞ (A)}. 3. For every subset B ⊂ A with µ(A) = µ(B), H µ,s ∞ (A) = H µ,s ∞ (B). 4. For every δ ≥ 1, H µ, s δ ∞ (A) ≥ (H µ,s ∞ (A)) 1 δ .
5. For every s > dim H (µ), H µ,s ∞ (A) = 0.

Proof. Items (1), ( 2), (3) directly follow from the denition. Item (4) is obtained by concavity of the mapping x → |x| 1/δ .

(5) By Denition 4.2.12, for any s > dim H (µ), there exists a set E with dim H (E) < s and µ(E) = 1. Using item (2), one has then 0 ≤ H µ,s

∞ (A) = H µ,s ∞ (A ∩ E) ≤ H s ∞ (A ∩ E) ≤ H s (E) = 0.

Computation of essential content for the Lebesgue measure

When the measure µ is the Lebesgue measure, the computations are quite easy. Proposition 6.2.3. Let B = B(x, r) be a ball in R d , and L d be the d-dimensional

Lebesgue measure. Then for any 0

≤ s ≤ d, H L d ,s ∞ (B) = H L d ,s ∞ ( B) = r s .
Proof. One starts rst by computing H L d ,d ∞ (B).

Let ε > 0, and let E ⊂ B be a Borel set with

L d (E) = L d (B). Notice rst that since B covers E, recalling that R d is endowed with || • || ∞ one has H L d ,d ∞ (E) ≤ H d ∞ (B) ≤ |B| d .
Consider a sequence of balls (L n ) n∈N such that

H d ∞ (E) ≤ n≥0 |L n | d ≤ (1 + ε)H d ∞ (E).
This implies

(1 + ε)|B| d ≥ (1 + ε)H d ∞ (B) ≥ (1 + ε)H d ∞ (E) ≥ n≥0 |L n | d ≥ n≥0 L d (L n ) ≥ L d (E) = L d (B) = |B| d .
Taking the inmum on the Borel sets

E ⊂ B such that L d (E) = L d (A) gives |B| d ≤ (1 + ε)H L d ,d ∞ (B).
In particular,

1 1 + ε |B| d ≤ H L d ,d ∞ (B) ≤ |B| d . Letting ε → 0 shows that H L d ,d ∞ (B) = |B| d .
This implies, with item (4) of Proposition 6.2.2, that for any δ ≥ 1,

|B| d δ ≥ H L d , d δ ∞ (B) ≥ (H L d ,d ∞ (B)) 1 δ = |B| d δ ,
hence the result.

Essential content for weakly conformal measures

Estimates of essential contents for weakly conformal measures are now established.

Theorem 6.2.4 (D. [START_REF] Daviaud | Dimension of weakly conformal iterated function system shrinking targets with overlaps[END_REF]). Let S be a C 1 weakly conformal IFS of R d .

Let K be the attractor of S and µ be a weakly conformal measure associated with S. Then, For any 0 ≤ s < dim(µ), for any 0 < ε ≤ 1 for any ball B = B(x, r) centered on K and r ≤ 1, for any open set Ω, one has

c(d, µ, s, ε)|B| s+ε ≤ H µ,s ∞ ( B) ≤ H µ,s ∞ (B) ≤ |B| s c(d, µ, s, ε)H s+ε ∞ (Ω ∩ K) ≤ H µ,s ∞ (Ω) ≤ H s ∞ (Ω ∩ K). (6.8)
For any s > dim(µ), H µ,s ∞ (Ω) = 0.

Remark 6.2.5.

The system S is not assumed to verify any separation condition.

When the maps are similarities, one still has, for any s > dim(µ), H µ,s ∞ (Ω) = 0 but for s < dim(µ), there exists a constant c(d, µ, s) such that the following more precise estimates holds true [START_REF] Daviaud | An heterogeneous ubiquity theorem, application to self-similar measures with overlaps[END_REF]:

c(d, µ, s)|B| s ≤ H µ,s ∞ ( B) ≤ H µ,s ∞ (B) ≤ |B| s and c(d, µ, s)H s ∞ (Ω ∩ K) ≤ H µ,s ∞ (Ω) ≤ H s ∞ (Ω ∩ K). (6.9) 
Proof. Let us rst prove the above estimates for balls. Proposition 6.2.6. Let µ be a weakly conformal measure as in Denition 4.3.1. For any 0 < ε ≤ dim(µ), any 0 ≤ ε ′ ≤ 1 2 such that dim(µ) -ε + ε ′ > 0, there exists a constant χ(d, µ, ε, ε ′ ) > 0 such that for any ball B = B(x, r) with x ∈ K (the attractor of the underlying IFS) and r ≤ 1, one has

χ(d, µ, ε, ε ′ )|B| dim(µ)-ε+ε ′ ≤ H µ,dim(µ)-ε ∞ ( B) ≤ H µ,dim(µ)-ε ∞ (B) ≤ |B| dim(µ)-ε .
In addition, for any s > dim(µ), H µ,s ∞ (B) = 0.

Proof. Note rst that item (5) of Proposition 6.2.2 implies that for any s > dim(µ), H µ,s ∞ (B) = 0.

Let us consider 0 ≤ s < dim H (µ) and start by few remarks.

Set α = dim(µ) and let ε > 0 and ρ > 0 be two real numbers. One denes

E α,ρ,ε µ = x ∈ R d : ∀r ≤ ρ, µ (B (x, r)) ≤ r α-ε .
Since µ is α-exact dimensional, for µ-almost every x, lim r→0 + log µ(B(x,r)) log r = α. This implies that, for very ε > 0, µ

Ä ρ>0 E α,ρ,ε µ ä = 1.
Let ε > 0 and 0 < ρ ε ≤ 1 be two real numbers such that µ(E α,ρε,ε µ 

) ≥ 1 2 and write E = E α,ρε,ε µ . Write c i = |f i (K)|. Let us x i = (i 1 , ..., i k ) ∈ Λ * .
f i (B(x, r)) ⊃ B(f i (x 0 ), C ε ′ c i (x 0 ) 1-ε ′ r) ⊃ B Ñ f i (x 0 ), C -2 1-ε ′ ε ′ |K| -1+ε ′ 1-ε ′ c 1+ε ′ 1-ε ′ i r é . Remember that ε ′ ≤ 1 2 . Since 1+ε ′ 1-ε ′ ≤ 1 + 4ε ′ , f i (B(x, r)) ⊃ B Å f i (x 0 ), C -2 1-ε ′ ε ′ • |K| 1+ε ′ 1-ε ′ c 1+4ε ′ i r ã .
(6.10)

Writing µ i = µ(f -1 i ), (6.10) yields

E i := f i (E) = f i (x) ∈ K : ∀ r ≤ ρ ε , µ B(x, r) ≤ r α-ε ⊂ {f i (x), x ∈ K : ∀ r ≤ ρ ε , µ f -1 i Å B Å f i (x 0 ), C -2 1-ε ′ ε ′ • |K| 1+ε ′ 1-ε ′ c 1+4ε ′ i r ãã ≤ Ñ C -2 1-ε ′ ε ′ • |K| 1+ε ′ 1-ε ′ c 1+4ε ′ i r C -2 1-ε ′ ε ′ • |K| 1+ε ′ 1-ε ′ c 1+4ε ′ i é α-ε      = ß y ∈ f i (K) : ∀ r ′ ≤ C -2 1-ε ′ ε ′ • |K| 1+ε ′ 1-ε ′ c 1+4ε ′ i ρ ε , (6.11) 
µ i B(y, r ′ ) ≤ Ñ r ′ C -2 1-ε ′ ε ′ • |K| 1+ε ′ 1-ε ′ c 1+4ε ′ i é α-ε    .
Notice also that

µ i (E i ) = µ(E) ≥ 1 2 .
Let us emphasize that iterating equation (4.22) gives

µ = i ′ ∈Λ k p i ′ µ i ′ ,
which implies that µ i is absolutely continuous with respect to µ (since all p i 's are strictly positive).

We are now ready to estimate the µ-essential content of a ball B centered in K.

Let us write γ(S, ε

′ ) = C -2 1-ε ′ ε ′ • |K| 1+ε ′ 1-ε ′ . (6.12) Let B = B(x, r) with x ∈ K and r ≤ c 0 := min z∈K min 1≤i≤m f ′ i (z) . 6.2 ESSENTIAL HAUSDORFF CONTENT 111 Since x ∈ K, there exists i = (i 1 , ..., i k ) ∈ Λ * such that x ∈ f i (K), |f i (K)| ≤ 1 3 |B|, |f (i 1 ,...,i k-1 ) (K)| ≥ 1 3 |B|.
By (4.36), for any y ∈ K one has

|f i (K)| ≥ C -1 ε ′ ||f ′ i (y)|| 1+ε ′ |K| (6.13)
and

||f i (y)|| = ||f ′ (i 1 ,...,i n-1 ) (f n (x)) • f ′ in (x)|| ≥ ||f ′ (i 1 ,...,i n-1 ) (f n (x))||c 0 ≥ |f (i 1 ,...,i n-1 (K)| 1 1-ε ′ C -1 1-ε ′ ε ′ • |K| -1 1-ε ′ c 0 . (6.14)
Combining (6.13) and (6.14), one obtains

c i = |f i (K)| ≥ C -1-1+ε ′ 1-ε ′ ε ′ |K| -2ε ′ 1-ε ′ c 1+ε ′ 0 |f (i 1 ,...,i n-1 ) (K)| 1+ε ′ 1-ε ′ ≥ C -1-1+ε ′ 1-ε ′ ε ′ |K| -2ε ′ 1-ε ′ c 1+ε ′ 0 r 1+4ε ′ . (6.15) 
Note that E i ⊂ B.

Consider a set A ⊂ B verifying µ(A) = µ(B). One aims at giving a lowerbound for the Hausdor content of A which depends only on B, d, ε, ε ′ and the measure µ.

Consider a sequence of balls

(L n = B(x n , ℓ n )) n≥1 covering A ∩ E i , such that ℓ n < γ(S, ε ′ )ρ ε c 1+4ε ′ i and x n ∈ A ∩ E i .
Since µ i is absolutely continuous with respect to µ, it holds that µ i (A) = 1.

By (6.11) 

applied to each ball L n , n ∈ N , one has Å |Ln| γ(S,ε ′ )c 1+4ε ′ i ã α-ε ≥ µ i (L n ), so that, recalling (6.15), n∈N |L n | α-ε ≥ n∈N Ä γ(S, ε ′ )c 1+4ε ′ i ä α-ε µ i (L n ) ≥ Ä γ(S, ε ′ )c 1+4ε ′ i ä α-ε µ i n∈N L n ≥ Ä γ(S, ε ′ )c 1+4ε ′ i ä α-ε µ i (E i ) ≥ 1 2 Ä γ(S, ε ′ )c 1+4ε ′ i ä α-ε ≥ κ(µ, ε ′ , ε)r (1+4ε ′ ) 2 (α-ε) ≥ κ(µ, ε ′ , ε)r (1+16ε ′ )(α-ε) , (6.16) 
where κ(µ, ε

′ , ε) = 1 2 γ(S, ε ′ ) α-ε • Å C -1-1+ε ′ 1-ε ′ ε ′ |K| -2ε ′ 1-ε ′ c 1+ε ′ 0 ã (1+4ε ′ )(α-ε) .
This series of inequalities holds for any sequence of balls (L n ) n∈N with radius less than γ(S, ε ′ )ρ ε c 1+4ε ′ i centered in A ∩ E i . One now proves that one can freely remove those constraints on the center and the radius of the balls used to cover A ∩ E i , up to a multiplicative constant.

Consider balls (L

n = B(x n , ℓ n )) n≥1 covering A ∩ E i such that ℓ n < γ(S, ε ′ )ρ ε c 1+4ε ′ i but x n does not necessarily belongs to A ∩ E i .
Let n ∈ N. One constructs recursively a sequence of balls (L n,j ) 1≤j≤Jn such that the following properties hold for any 1 ≤ j ≤ J n :

L n,j is centered on A ∩ E i ∩ L n ; A ∩ E i ∩ L n ⊂ 1≤j≤Jn L n,j ; for all 1 ≤ j ≤ J n , |L n,j | = |L n |;
the center of L n,j does not belong to any L n,j ′ for 1 ≤ j ′ ̸ = j ≤ J n .

To achieve this, simply consider y

1 ∈ A ∩ E i ∩ L n and set L 1,n = B(y 1 , ℓ n ). If A ∩ E i ∩ L n ⊈ L 1,n , consider y 2 ∈ A ∩ E i ∩ L n \ L 1,n and set L 2,n = B(y 2 , ℓ n ). If A ∩ E i ∩ L n ⊈ L 1,n ∪ L 2,n , consider y 3 ∈ A ∩ E i ∩ L n \ L 1,n ∪ L 2,
n and set L 3,n = B(y 3 , ℓ n ), and so on... Note that, for any 1 ≤ j ≤ J n , any ball L j,n has radius ℓ n , intersects L n (which also has radius ℓ n ) and, because y j / ∈ 1≤j ′ ̸ =j≤Jn L j ′ ,n , it holds that, for

any j ̸ = j ′ , 1 3 L n,j ∩ 1 3 L n,j ′ = ∅. By Lemma 4.1.4, this implies that J n ≤ Q d, 1 3 .
Hence, denoting by ( L n ) n∈N the collection of the corresponding balls centered on A ∩ E i associated with all the balls L n , one has by (6.16) 

applied to ( L n ) n∈N : n∈N |L n | α-ε ≥ 1 Q d, 1 3 n∈N | L n | α-ε ≥ κ(µ, ε ′ , ε) Q d, 1 3 r (1+4ε ′ )(α-ε) .
Remark also that any ball of radius smaller that c i can be covered by at most Å

2c -4ε ′ i γ(S,ε ′ )ρε ã d balls of radius γ(S, ε ′ )ρ ε c 1+4ε ′ i . Moreover, by (6.15), c -4ε ′ i ≤ Å C -1-1+ε ′ 1-ε ′ ε ′ |K| -2ε ′ 1-ε ′ c 1+ε ′ 0 ã -4ε ′ r -4ε ′ •(1+4ε ′ ) . Setting κ(µ, ε, ε ′ , d) = á 2 Å C -1-1+ε ′ 1-ε ′ ε ′ |K| -2ε ′ 1-ε ′ c 1+ε ′ 0 ã -4ε ′ γ(S, ε ′ )ρ ε ë d
, any ball of radius less than c i can be covered by less than κ(µ, ε, ε

′ , d)r -4dε ′ •(1+4ε ′ ) balls of radius less than γ(S, ε ′ )ρ ε c 1+4ε ′ i .
This proves that, for any sequence of balls

L n with | L n | ≤ c i covering A ∩ E i , recalling (6.16), it holds that n∈N | L n | α-ε ≥ Q -1 d, 1 3 κ(µ, ε, ε ′ , d) -1 r 4dε ′ •(1+4ε ′ ) κ(µ, ε ′ , ε)r (1+16ε ′ )(α-ε) (6.17) ≥ Q -1 d, 1 3 κ(µ, ε, ε ′ , d) -1 κ(µ, ε ′ , ε)r (1+16ε ′ )(α-ε)+4dε ′ •(1+4ε ′ ) . (6.18)
Recalling that |E i | ≤ c i and Denition 4.7 , since (6.17) is valid for any covering

( L n ) n∈N of A ∩ E i with |L n | ≤ c i , one has |B| α-ε ≥ H α-ε ∞ (A) ≥ H α-ε ∞ (A ∩ E i ) ≥ Q -1 d, 1 3 κ(µ, ε, ε ′ , d) -1 κ(µ, ε ′ , ε)r (1+16ε ′ )(α-ε)+4dε ′ •(1+4ε ′ ) . (6.19)
Taking the inf over all the set A ⊂ B satisfying µ(A) = µ(B), one obtains

|B| α-ε ≥ H µ,s ∞ (B) ≥ Q -1 d, 1 3 κ(µ, ε, ε ′ , d) -1 κ(µ, ε ′ , ε)r (1+16ε ′ )(α-ε)+4dε ′ •(1+4ε ′ ) .
The results stands for balls of diameter less than c 0 .

Set ε ′ 0 = 16ε ′ (α -ε) + 4dε ′ • (1 + 4ε ′ )
and write

γ(d, µ, ε, ε ′ 0 ) = c α-ε+ε ′ 0 0 Q -1 d, 1 3 κ(µ, ε, ε ′ 0 , d) -1 κ(µ, ε ′ 0 , ε).
For any ball of radius less than 1 centered on K, one has

|B| α-ε ≥ H µ,α-ε ∞ (B) ≥ γ(d, µ, ε, ε ′ 0 )r α-ε+ε ′ 0 .
The estimates of Theorem 6. Recall that by item (5) of Proposition 6.2.2, for any s > dim(µ) and any set E, H µ,s ∞ (E) = 0.

Let us x s < dim(µ), ε ′ > 0 and set ε ′ = min ¶ dim(µ)-s 2 , 1 2 © > 0. Since K ∩ Ω ⊂ Ω and µ(K ∩ Ω) = µ(Ω), it holds that H µ,s ∞ (Ω) ≤ H s ∞ (Ω ∩ K).
It remains to show that there exists a constant c(d, µ, s, ε ′ ) such that for any open set Ω, the converse inequality

c(d, µ, s, ε ′ )H s+ε ′ ∞ (Ω ∩ K) ≤ H µ,s ∞ (Ω)
holds.

Let E ⊂ Ω be a Borel set such that µ(E) = µ(Ω) and

H s ∞ (E) ≤ 2H µ,s ∞ (Ω). (6.20)
Let {L n } n∈N be a covering of E by balls verifying

H s ∞ (L) ≤ n≥0 |L n | s ≤ 2H s ∞ (E). (6.21)
The covering (L n ) n∈N will be modied into a covering ( L n ) n∈N verifying the following properties:

K ∩ Ω ⊂ n∈N L n , n∈N L n ⊂ n∈N L n n≥0 | L n | s+ε ′ ≤ 8.2 s+ε ′ Q 2 d,1 γ(d, µ, ε, ε ′ ) n≥0 |L n | s ,
where Q d,1 and γ(d, µ, ε, ε ′ ) are the constants arising from Proposition 4.1.2 applied with v = 1 and Proposition 6.2.6.

Last item together with (6.20) and (6.21) then immediately imply that

γ(d, µ, ε, ε ′ ) 8.2 s+ε ′ Q 2 d,1 H s+ε ′ ∞ (K ∩ Ω) ≤ H µ,s ∞ (Ω). Setting c(d, µ, ε, ε ′ ) = γ(d,µ,ε,ε ′ ) 8.2 s+ε ′ Q 2 d,1
will then conclude the proof.

Let us start the construction of the sequence ( L n ) n∈N .

Let ∆ = (K \ n∈N B n ) ∩ Ω. For every x ∈ ∆, x 0 < r x ≤ 1 such that B(x, r x ) ⊂ Ω. One of the following alternatives must occur:

1. for any ball L n such that L n ∩ B(x, r x ) ̸ = ∅, |L n | ≤ r x , or 2. there exists n x ∈ N such that L nx ∩ B(x, r x ) ̸ = ∅ and |L nx | ≥ r x .
Consider the set S 1 of points of X for which the rst alternative holds.

By Proposition 4.1.2 applied with v = 1, it is possible to extract from the covering of S 1 , {B(x, r x ),

x ∈ S 1 }, Q d,1 families of pairwise disjoint balls, F 1 , ..., F Q d,1 such that S 1 ⊂ 1≤i≤Q d,1 L∈F i L. Now, any ball L n intersecting a ball L ∈ 1≤i≤Q d,1 F i must satisfy |L n | ≤ L.
In particular, since for any 

1 ≤ i ≤ Q d,
γ(d, µ, ε, ε ′ )|L| s+ε ′ ≤ H µ,s ∞ (L) ≤ B∈G L H µ,s ∞ (B) ≤ B∈G L |B| s . (6.22)
Replace the balls of G L by the ball L = 2L (recall that B∈G L B ⊂ 2L). The new sequence of balls so obtained by the previous construction applied to all the balls L ∈ ≤i≤Q d,1 F i is denoted by ( L k ) 1≤k≤K , where 0 ≤ K ≤ +∞.

It follows from the construction and (6.22

) that S 1 ⊂ 1≤k≤K L k and 1≤k≤K | L k | 2 s+ε ′ ≤ Q 2 d,1 γ(d, µ, ε, ε ′ ) n≥0 |L n | s . (6.23)
On the other hand, since for any x ∈ S 2 = ∆ \ S 1 , there exists

n x ∈ N such that L nx ∩ B(x, r x ) ̸ = ∅ and r x ≤ |L nx |, one has S 2 ⊂ n∈N 2L n , so that n∈N L n ∪ K ∩ Ω \ n∈N L n ⊂ 1≤k≤K L k ∪ n∈N 2L n .
Putting the elements of ( L k ) 1≤k≤K and (2L n ) n≥0 in a single sequence ( L n ) n≥0 , writing ( L n := 2 L n ) n∈N , by construction, K ∩ Ω ⊂ n∈N L n and due to (6.23):

H s+ε ′ ∞ (K ∩ Ω) ≤ n≥0 | L n | s+ε ′ ≤ 2 s+ε ′ Q 2 d,1 γ(d, µ, ε, ε ′ ) + 1 n≥0 |L n | s ≤ 8.2 s+ε ′ Q 2 d,1 γ(d, µ, ε, ε ′ ) H µ,s ∞ (Ω).
The proof is concluded now by setting

c(d, µ, s, ε ′ ) = γ(d, µ, dim(µ) -s, ε ′ ) Q 2 d,1 8.2 s+ε ′ .
Remark 6.2.7. 1. The proof of Proposition 6.2.6 only relies on the absolute continuity, for any i ∈ Λ * , of µ(f -1 i ) with respect to the weakly conformal measure µ.

2. The part of the proof of Theorem 6.8 which handles the case of open sets only relies on the fact that there exists γ(d, µ, ε, ε ′ ) such that for any x ∈ K, for any ρ > 0, there exists 0 < r x ≤ ρ so that, writing B = B(x, r x ),

γ(d, µ, ε, ε ′ )|B| dim(µ)-ε+ε ′ ≤ H µ,dim(µ)-ε ∞ ( B) ≤ H µ,dim(µ)-ε ∞ (B) ≤ |B| dim(µ)-ε . (6.24)
In particular Theorem 6.2.4 actually holds for any measure µ ∈ M(R d ) for which supp(µ) ⊂ K and for any i ∈ Λ * , µ(f -1 i ) is absolutely continuous with respect to µ (so that it holds for quasi-Bernoulli measures for instance).

It is easily veried that the estimates of Proposition 6.2.6 holds in particular if, for s ≥ 0, there exists a constant C > 0 such that for any

x ∈ supp(µ), any 0 < r < R, µ(B(x,r)) µ(B(x,R)) ≤ C. r R s
. This condition is naturally linked to the lower Assouad dimension dim L (µ) of µ dened as [START_REF] Fraser | A new perspective on the Sullivan dictionary via Assouad type dimensions and spectra[END_REF] dim

L (µ) = inf ß s ≥ 0 : ∀x ∈ supp(µ), ∀0 < r < R, µ(B(x, r)) µ(B(x, R)) ≤ C( r R ) s ™ . (6.25)
More precisely, the estimates of Proposition 6.2.6 and Theorem 6.2.4 holds for any s < dim L (µ).

Chapter 7

Heterogeneous ubiquity theorem

In this Chapter, the main ubiquity theorem of this manuscript is proved. Sec- 

tion
s µ (B, U ) = sup {s ≥ 0 : H µ,s ∞ (U ) ≥ µ(B)} . (7.1)
Let B = (B n ) n∈N be a sequence of closed balls, U = (U n ) n∈N a sequence of Borel subsets of R d , and s ≥ 0.

Let N µ (B, U, s) = {n ∈ N : s µ (B n , U n ) ≥ s} . (7.2)
Then, dene the µ-critical exponent of (B, U) as s(µ, B, U) = sup s ≥ 0 : (B n ) n∈Nµ(B,U ,s) is µ-a.c. .

(7.3) It is worth noting that, for s ′ ≤ s, one has N µ (B, U, s) ⊂ N µ (B, U, s ′ ).
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The main result of this paper is the following. In particular, for every µ ∈ M(R 

(B n ) n∈N is µ-a.c.
The question is then to give more explicit estimates of s(µ, B, U) depending on the specities of (µ, B, U).

(2) It is proved in Section 7.2.2 that s(µ, B, U) ≤ dim H (µ). This implies that for exact dimensional measures, min {s(µ, B, U), dim H (µ)} = s(µ, B, U).

(3) The case where µ satises min {s(µ, B, U), dim H (µ)} = 0 could also be treated, but although (7.4) is still obviously true, some distinction should further be made when investigating the existence of the gauge function. If H µ,s ∞ (U n ) = 0 for any n ∈ N, the set lim sup n→+∞ U n could, for instance, be empty. On the other hand, if (B n ) n∈N is µ-a.c and s µ (B n , U n ) > 0 for any n ∈ N, a gauge function can be constructed in a similar way than in the proof of Theorem 7.1.2. However the existence of a gauge function in the case min {s(µ, B, U), dim H (µ)} = 0 is of little interest for practical applications and is not treated in this manuscript.

A quite direct, but useful, corollary of Theorem 7.1.2 is the following: 

t(µ, δ, ε, B) = lim sup n→+∞ log(H µ,dim H (µ)-ε ∞ ( Bδ n )) log(|B δ n |) . (7.5)
Then the (µ, δ)-exponent of the sequence B is dened as t(µ, δ, B) = lim ε→0 t(µ, δ, ε, B).

(7.6)
It follows from the denitions that t(µ, δ, B) exists as a limit, since ε → t(µ, δ, ε, B) is monotonic. Moreover, one has dim H (µ) ≤ t(µ, δ, B) (see the proof of Corollary 7.1.6).

Next result provides a more explicit lower bound estimate of the Hausdor dimension of the limsup of δ-contracted balls; it is a consequence of Corol-

lary 7.1.4. Corollary 7.1.6. Let µ ∈ M(R d ) and B = (B n ) n∈N a µ-a.c sequence of closed balls of R d . Suppose that dim H (µ) > 0. For every δ ≥ 1, setting s δ = dim H (µ) δ • dim H (µ) t(µ, δ, B) , one has s µ, (B n ) n∈N , ( Bδ n ) n∈N ≥ s δ , hence dim H (lim sup n→+∞ B δ n ) ≥ dim H (lim sup n→+∞ Bδ n ) ≥ s δ .
7.2 Proof of Theorem 7.1.2 and Corollary 7.1.6

Preliminary facts

We gather in this subsection a series of results on which we will base the proof of Theorem 7.1.2.

The following lemma, which is a version of Besicovitch covering Lemma, as well as the subsequent one, both established in [START_REF] Daviaud | Extraction of optimal sub-sequences of balls and application to optimality estimates of mass transference principles[END_REF], will be used several times.

The following lemma will also be useful later. 

L ̸ = L ′ ∈ L i , vL ∩ vL ′ = ∅.
For s ≥ 0 and E ⊂ R d , a bounded subset such that H s ∞ (E) > 0, m s E will always denote a measure given by Proposition 4.2.6, associated with a (xed) constant κ d .

In the next two lemmas, the choice of the interval [START_REF] Barral | Sums of dirac masses and conditioned ubiquity[END_REF][START_REF] Barral | Heterogeneous ubiquitous systems in R d and Hausdor dimensions[END_REF] is convenient to take enough space between the shrunk balls involved in the construction elaborated in Section 7.2.1.

Lemma 7.2.2. Let t ∈ (5, 6), m ∈ M(R d ), and ε > 0. Let x ∈ R d be such that dim(m, x) ≤ β. Let C β,ε = 1 2 6 -β 2ε .
There exists an integer n x such that for every n ≥ n x ,

# 0 ≤ k ≤ n -1 : m(B(x, t -k-1 )) ≥ C β,ε m(B(x, t -k )) n ≥ 1 -ε. (7.7)
Previous lemma is a slight extension of result by Käenmäki [21, Lemma

2.2]

, which shows such a property at m-almost every point (where one has necessarily dim(m, x) ≤ d), and uses t integer (a choice that we could make).

Thus, points with a given local dimension with respect to a measure m are for most scales locally doubling.

Proof. Observe rst that if for a constant 0 < C ≤ 1 and some integer n ∈ N one has

# 1 ≤ k ≤ n : m(B(x, t -k-1 )) ≥ Cm(B(x, t -k )) n ≤ 1 -ε, then there necessarily exists N = ⌊(n -1)ε⌋ integers 0 < k 1 < • • • < k N < n such that for every 1 ≤ i ≤ N , m(B(x, t -k i -1 )) ≤ Cm(B(x, t -k i )).
In particular, writing k N +1 = n and k 0 = 0, this implies that

m(B(x, t -n )) = N i=0 m(B(x, t -k i+1 )) m(B(x, t -k i )) ≤ N i=0 m(B(x, t -k i -1 )) m(B(x, t -k i )) ≤ C N ≤ C (n-1)ε ≤ C nε/2 = (t -n ) ε -log(C) 2 log(t) .
The inequality C (n-1)ε ≤ C nε/2 occurs when n is large enough. Recalling that dim(m, x) ≤ β, if this happens for innitely many n, one should have

β ≥ lim sup r→0 + log m(B(x, r)) log r ≥ ε -log(C) 2 log(t) , which is equivalent to C ≥ t -β 2ε .
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# 0 ≤ k ≤ n -1 : m(B(x, t -k-1 )) ≥ C ε,β m(B(x, t -k )) n ≥ 1 -ε,
hence the result.

Lemma 7.2.3. Let m and µ be two elements of M(R d ), β ≥ 0 and ε > 0. For every x ∈ R d verifying dim(m, x) ≤ β, there exists ρ x > 0 and t x ∈ (5, 6) so that for all 0 < r ≤ ρ x there exists r ≤ r ′ ≤ r 1-ε such that

m(B(x, r ′ /t x )) ≥ C β, ε 2 m(B(x, r ′ )) and µ(∂B(x, r ′ /t x )) = 0. (7.8) Proof. Consider x ∈ R d such that dim(m, x) ≤ β.
We apply Lemma 7.2.2 to x and the measure m, and for an arbitrary t ∈ [START_REF] Barral | Sums of dirac masses and conditioned ubiquity[END_REF][START_REF] Barral | Heterogeneous ubiquitous systems in R d and Hausdor dimensions[END_REF] and ε ′ = ε 2 : for n ≥ n x , there must be an integer n ′ such that n

(1 -ε) ≤ n ′ ≤ n and m(B(x, t -n ′ -1 )) ≥ C β, ε 2 m(B(x, t -n ′ )). Let ρ x = min ¶ t -nx-1 , t -1 ε © . For r ∈ (0, ρ x ], let n be the integer such that t -n-1 < r ≤ t -n . The previous claim yields an integer n ′ ∈ [n(1 -ε 2 ), n] such that m(B(x, t -n ′ )) ≥ C β, ε 2 m(B(x, t -n ′ +1 )). Also, r ≤ r ′ = t -n ′ +1 ≤ t 1-(1-ε 2 )n = t 2 • t -n-1 • t ε 2 n ≤ t 2 • r • r -ε 2 ≤ r 1-ε . Consequently, m(B(x, r ′ /t)) ≥ C β, ε 2 m(B(x, r ′ )).
The desired conclusion holds if we choose t x ∈ (5, t) such that µ(∂B(x, r ′ /t x )) = 0.

The previous lemma will be used in the case β = d in our proof the main theorem (see step 2 of the construction in Section 7.2.1).

Next, we introduce some some sets associated to a given element of M(R d ), which will play a natural role in our construction. 

‹ E [α,β],ρ,ε m = ¶ x ∈ R d : dim(m, x) ∈ [α, β] and ∀r ≤ ρ, m(B(x, r)) ≤ r dim(m,x)-ε © (7.9)
and Dene

E [α,β],ρ,ε m = ß x ∈ ‹ E [α,β],ρ,ε m : ∀r ≤ ρ, 3 4 m(B(x, r)) ≤ m(B(x, r) ∩ ‹ E [α,β],ρ,ε m ) ™ . ( 7 
E [α,β],ε m = n≥1 E [α,β], 1 n ,ε m . (7.11) Proposition 7.2.6. For every m ∈ M(R d ), every β ≥ α ≥ 0 and ε > 0, m(E [α,β],ε m ) = m({x : dim(m, x) ∈ [α, β]}). (7.12) Notice that, for every 0 < ρ ′ < ρ, one has E [α,β],ρ,ε m ⊂ E [α,β],ρ ′ ,ε m .
These sets play a key role in the proofs of Theorem 7.1.2 .

Proof. Note that it is clear from Denition 4.2.12 that

{x : dim(m, x) ∈ [α, β]} = ρ>0 ‹ E [α,β],ρ,ε m .
Let ε ′ > 0. By Denition 4.2.12, there exists ρ ε ′ small enough so that 

m( ‹ E [α,β],ρ ε ′ ,ε m ) ≥ (1 -ε ′ )m({x : dim(m, x) ∈ [α, β]}).
ρε ′ such that m( ‹ E [α,β],ρ ε ′ ,ε m (ρ ε ′ )) ≥ (1 -ε ′ )m( ‹ E [α,β],ρ ε ′ ,ε m
). 

) ρε ′ ⊂ E [α,β],ρ,ε m
, so that, by (7.13) and (7.14) m

(E [α,β],ρ,ε m ) ≥ m(( ‹ E [α,β],ρ ε ′ ,ε m (ρ ε ′ )) ≥ (1 -ε ′ )m(E [α,β],ε m ) ≥ (1 -ε ′ ) 2 m({x : dim(m, x) ∈ [α, β]}).
In particular

m({x : dim(m, x) ∈ [α, β]}) ≥ m(E [α,β],ε m ) ≥ (1-ε ′ ) 2 m({x : dim(m, x) ∈ [α, β]}).
Letting ε ′ → 0 proves the result. Let (ε k ) k∈N be a sequence decreasing to 0 and such that ε 1 < s(µ, B, U).

For k ≥ 0, set s k = min {s(µ, B, U), α} -ε k . (7.16)
Along the construction of ζ, we only use that s k < s(µ, B, U) and the fact that s k < α is used at the end of our analysis (see equation (7.52)).

Step 1

We need the following lemma.

Using Lemma 6.1.3 with, (B n ) n∈Nµ(B,U ,s 1 ) (which is µ-a.c since s 1 < s(µ, B, U)), g = 0 and Ω = R d , one nds integers N 1 and n 1 < ... < n N 1 ∈ N µ (B, U, s 1 ) such that :

(i) : ∀ 1 ≤ i ≤ N 1 , B n i ∩ B n j = ∅, (ii) : µ( 1≤i≤N 1 B n i ) ≥ 1 2 . By Lemma 7.2.1 applied to {B n i } 1≤i≤N 1 and v = 4, the balls {B n i } 1≤i≤N 1 can be sorted in Q d,4 families of balls L 1 , ..., L Q d,4 such that for any 1 ≤ i ≤ Q d,4 , any L ̸ = L ′ ∈ L i , 4L ∩ 4L ′ = ∅, 1≤i≤Q d,4 L i = {B n i } 1≤1≤N 1 .
At least one of these families, L i 0 , must satisfy [START_REF] Barral | On multifractal formalism for self-similar measures with overlaps[END_REF] .

µ L∈L i 0 L ≥ 1 2Q d,
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In particular, if one must rename the balls of the family L i 0 , we can assume that the family {B n i } 1≤i≤N 1 satises

(i ′ ) : for any 1 ≤ i < j ≤ N 1 , 4B n i ∩ 4B n j = ∅ (ii ′ ) : and µ 1≤i≤N 1 B n i ≥ 1 2Q d,4
.

(7.17)

Set

W 1 = {U n i } 1≤i≤N 1 and W 1 = 1≤i≤N 1 U n i .
Along the construction of the Cantor set, for every U ∈ U, the ball of B naturally associated with U will be denoted

B [U ] (that is B [Un] = B n ).
The pre-measure η on the σ-algebra generated by the sets of W 1 is dened by

for every U ∈ W 1 , η(U ) = µ(B [U ] ) ‹ U ∈W 1 µ(B [ ‹ U ]
) .

(7.18) It is obvious that η(R d ) = η(W 1 ) = 1.
Recalling (7.2) and ( 7.3), since s 1 < s(µ, B, U), the sub-sequence (B n ) n∈Nµ(B,U ,s 1 ) is µ-a.-c. Remember also that lim n→+∞ r n = 0 and for every n ∈ N, |U n | ≤ r n .

So, for every n ∈ N µ (B, U, s 1 ),

H µ,s 1 ∞ (U n ) ≥ µ(B n ) and |U n | ≤ r n . (7.19)
In particular, by Denition 6.2.1, for every n ∈ N µ (B, U, s 1 ) for any set

E n ⊂ U n with µ(E n ) = µ(U n ), µ(B n ) ≤ H µ,s 1 ∞ (U n ) ≤ H s 1 ∞ (E n ).
By Proposition 4.2.6, and the notations therein, one has

m s 1 En (U n ) = 1 ≤ κ d |U n | s 1 H s 1 ∞ (E n ) ≤ κ d |U n | s 1 µ(B n ) . This implies that µ(B n ) ≤ κ d |U n | s 1 . (7.20)
By equation (7.20), recalling the fact that the sets Step 2

W 1 ⊂ {U n } n∈N , one has for every U ∈ W 1 , η(U ) ≤ µ(B [U ] ) 1 2Q d,4 ≤ 2Q d,4 κ d |U | s 1 .
This step (and all the following steps) is split into two sub-steps. First, into each open set U of W 1 , smaller intermediary balls are selected according to the µ-essential content of U . Then in a second time, each intermediary ball will be covered by balls of the sequence (B n ) n∈N according to the measure µ and, as in step 1, the sets U n associated with this covering will form the generation W 2 .

Let g ∈ N be such that for every n ≥ g, r n ≤ 1 3 min(|U | : U ∈ W 1 ). As above, since s 2 < s(µ, B, U), the sub-sequence (B n ) n∈Nµ(B,U ,s 2 ),n≥g is µ-a.c. The same arguments as above yield for every n ∈ N µ (B, U, s 2 ),

H µ,s 2 ∞ (U n ) ≥ µ(B n ) and |U n | ≤ r n (7.22) and µ(B n ) ≤ κ d |U n | s 2 . (7.23)
Covering with respect to the µ-essential content

Consider U ∈ W 1 . Set β = dim H (µ). For 0 ≤ k ≤ ⌊ β-α ε 2 ⌋ + 1, dene θ k = α + kε 2 . Write E U = U ∩ E [α,β],ε 2 µ ∩ lim sup n→+∞ B n . (7.24)
Notice that by Proposition 7.2.6 and by item (1) of Theorem 6.1.2, one has µ(E U ) = µ(U ).

In addition, using the denition (6.7) of H µ,s 2 ∞ , the fact that E U ⊂ U and µ(E U ) = µ(U ), and nally (7.1) applied with B n = B [U ] , one gets supported on E U such that for every ball B := B(x, r), one has

H s 2 ∞ (E U ) ≥ H µ,s 2 ∞ (U ) ≥ µ(B [U ] ) > 0.
m s 2 E U (B) ≤ κ d r s 2 H s 2 ∞ (E U ) . Also, since m s 2 E U (E U ) = 1 and E U ⊂ E [α,β],ε 2 µ
, and recalling (7.11), for any

0 ≤ k ≤ ⌊ β-α ε 2 ⌋ + 1, there exists ρ k,ε 2 such that m s 2 E U (E [θ k ,θ k+1 ],ρ k,ε 2 ,ε 2 µ ) ≥ 1 2 m s 2 E U (E [θ k ,θ k+1 ],ε µ ).
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Setting ρ U = min 0≤k≤⌊ β-α ε 2 ⌋+1 ρ k,ε 2 one has, for any 0 ≤ k ≤ ⌊ β-α ε 2 ⌋ + 1, m s 2 E U (E [θ k ,θ k+1 ],ρ U ,ε 2 µ ) ≥ 1 2 m s 2 E U (E [θ k ,θ k+1 ],ε µ ). (7.26) 
In particular,

m s 2 E U (E [α,β],ρ U ,ε 2 µ ) ≥ 1 2 (7.27) 
Let

S U := 0≤k≤⌊ β-α ε 2 ⌋+1 E [θ k ,θ k+1 ],ρ U ,ε 2 µ ∩ E U ∩ x ∈ R d : dim(m s 2 E U , x) ≤ d . (7.28)
Recalling that for every probability measure m, m({x ] ) ;

= dim(m, x) ≤ d}) = 1, one necessarily has m s 2 E U (S U ) ≥ 1/2. Let x ∈ S U ; consider 0 ≤ k x ≤ ⌊ β-α ε 2 ⌋ + 1 such that x ∈ E [θ kx ,θ kx+1 ],ρ U ,ε 2 µ . Applying Lemma 7.2.3, there exists 0 < r x < min ρ x , 1 3 min {|V | : V ∈ W 1 } and t x ∈ (5, 6) such that: 10 r x < ρ U ; (7.29) B(x, r x ) ⊂ U and µ(∂B(x, r x /t x )) = 0; (7.30) r -ε 2 x ≥ 5 d 4Q d,1 C ε 3 ,d η(U ) µ(B [U ] ) ≥ 5 s 2 4Q d,1 C ε 2 ,d η(U ) µ(B [U
(7.31)

r θ kx +2ε 2 x ≤ µ(B(x, r x )) ≤ r θ kx -2ε 2 x ; (7.32) m s 2 E U (B(x, r x /t x )) ≥ C ε 2 ,d • m s 2 E U (B(x, r x )). (7.33) 
Note that in (7.31) the second inequality follows automatically from the rst one since s 2 ≤ α ≤ d and the constant C ε,d is an increasing function of ε.

The family {B(x, r x ) : x ∈ S U } forms a covering of S U . We apply Proposition 4.1.2 with v = 1 (i.e., the standard Besicovich covering Theorem) to this family to extract

Q d,1 subfamilies of balls, G U 1 , ..., G U Q d,1 such that: ∀1 ≤ i ≤ Q d,1 , ∀B ̸ = B ′ ∈ G U i , one has B ∩ B ′ = ∅, S U ⊂ Q d,1 i=1 B∈G U i B.
In particular, m s 2

E U Ä Q d,1 i=1 B∈G U i B ä ≥ m s 2 E U (S U ) ≥ 1/2.
At least one of these families, say G U i 0 , veries that

m s 2 E U Ö B∈G U i 0 B è ≥ m s 2 E U (S U ) Q d,1 ≥ 1 2Q d,1
.

Writing G U i 0 = B U i 0 ,k k∈N
, one can nd an integer N U so large that

m s 2 E U 1≤k≤N U B U i 0 ,k ≥ 1 4Q d,1
.

Remind that each B U i 0 ,k is a ball B(x, r x ) satisfying (7.30), (7.31) and (7.33).

Finally, setting G U = B(x, r x /t x ) : B(x, r x ) ∈ F U i 0 , one has by construction

m s 2 E U B∈G U B = B∈G U m s 2 E U (B) ≥ C ε 2 ,d 4Q d,1 . (7.34) 
One then extends the pre-measure η to the Borel σ-algebra generated by the balls of G U , by the formula

for every B ∈ G U , η(B) = η(U ) × m s 2 E U (B) B ′ ∈G U m s 2 E U (B ′ ) . (7.35) 
By construction, this formula is consistent since η(U ) = B∈G U η(B).

Observe that by (4.10), (7.34) and (7.25), one has for every

B ∈ G U , η(B) ≤ η(U )κ d |B| s 2 H s 2 ∞ (E U ) 4Q d,1 C ε 2 ,d ≤ 4Q d,1 κ d C ε 2 ,d η(U ) µ(B [U ] ) |B| s 2 ≤ |B| s 2 -ε 2 , (7.36) 
where the second inequality of (7.31) was used. This is achieved simultaneously for all U ∈ W 1 .

Covering with respect to µ

Now, in order to build the second generation of the Cantor set K, we select balls of B that lie in the interior of these intermediate balls B ∈ G U .

Let U ∈ W 1 and B ∈ G U be one of these intermediary balls. Since B is µ-a.c., the last part of Lemma 6.1.3 proves the existence of a nite family

F B = {U n i } 1≤i≤N B such that (i 1 ) for every 1 ≤ i ≤ N B , one has B n i ⊂ B and max ß 2Q d,4 η(B) µ(B) , 5 d 4Q d,1 κ d C ε 3 ,d ™ ≤ r -ε 2 n i , (7.37) 
(i 2 ) for every 1 ≤ i ̸ = j ≤ N B , one has B n i ∩ B n j = ∅.
The pre-measure η is then extended to the σ-algebra generated by the elements of W 2 by setting for every

U ∈ W 1 , every B ∈ G U and V ∈ F B , η(V ) = η(B) × µ(B [V ] ) V ′ ∈F B µ(B [V ′ ] ) . (7.38) 
By construction, one has

V ∈F B η(V ) = η(B)
. Also, (7.37), (7.38), and

(i ′ 3 ) imply η(V ) µ(B [V ] ) ≤ 2Q d,4 η(B) µ(B) ≤ |V | -ε 2 , (7.39) 
so that by (7.23) and (7.39) one has

η(V ) ≤ 2Q d,4 η(B) µ(B) × µ(B [V ] ) ≤ |B [V ] | -ε 2 |V | s 2 ≤ |V | s 2 -ε 2 .
(7.40)

Recurrence scheme and end of the construction

Let p ∈ N * be an integer, and set W 0 = R d . Suppose that sets of balls W 1 , ..., W p as well as the measure η are constructed such that :

1. for every 1 ≤ q ≤ p, W q ⊂ {U n } n≥q , W q ⊂ W q-1 , and η is dened on the σ-algebra generated by the elements of p q=1 W q .

2. For every 1 ≤ q ≤ p -1, for every U ∈ W q , setting, as in step 2,

E U = lim sup n∈Nµ(B,U ,sq) B n ∩ U ∩ E [α,β],εq µ , then H sq ∞ (E U ) > 0. If m sq E U
stands for the measure associated with E U provided by Proposition 4.2.6, there exists ρ U > 0 such that for every 0

≤ k ≤ ⌊ β-α εq ⌋ + 1, setting θ k = θ (q) k = α + kε q , one has m sq E U (E U ∩ E [θ k ,θ k+1 ],ρ U ,εq µ ) ≥ 1 2 m sq E U (E U ∩ E [θ k ,θ k+1 ],εq µ ).
In particular,

m sq E U (E U ∩ 0≤k≤⌊ β-α εq ⌋+1 E [θ k ,θ k+1 ],ρ U ,εq µ ) ≥ 1 2 . 
3. For every 1 ≤ q ≤ p -1, for every U ∈ W q , there exists a nite family G U of balls B(x, r x /t x ), where x, r x < 1 3 min ¶ | U | : U ∈ W q © and t x satisfy (7.29), (7.30), (7.31), (7.33) and (7.34)

. Also, if B ̸ = B ′ ∈ G U , 3B ∩3B ′ = ∅.
Also, for every B ∈ G U , (7.35) and (7.36) hold true. Moreover W q+1 ⊂ U ∈Wq G U . 130 CHAPTER 7: HETEROGENEOUS UBIQUITY THEOREM 4. For every 1 ≤ q ≤ p -1, for every U ∈ W q , for every B ∈ G U there exists a family F B ⊂ {U n } n≥q of pairwise disjoint open sets such that :

for every U ̸ = U ∈ F B , one has 4B [ ‹ U ] ∩ 4B [ " U ] = ∅; (7.41) 
for every U ∈ F B , U ⊂ B, (7.38) and (7.40) hold true, as well as

2Q d,4 η(B) µ(B) ≤ |B [ ‹ U ] | -ε q+1 (7.42) 
and

B [ ‹ U ] ∩ ‹ E [θ k B ,θ k B +1 ],ρ U ,ε q+1 µ ̸ = ∅; (7.43) 
the following inequality also holds true:

µ Ñ ‹ U ∈F B B [ ‹ U ] é ≥ µ(B) 2Q d,4 . (7.44) 
In item (3), the fact that 3B ∩ 3B ′ = ∅ just follows from the choice of B(x, r x /t x ) instead of simply B(x, r x ).

The proof follows then exactly and rigorously the same lines as those of

Step 2. We do not reproduce it here, the only dierences are that W 1 , W 2 and s 2 are replaced by W p , W p+1 and s p+1 .

Finally, dene the Cantor set

K = p≥1 W p = p≥1 V ∈Wp B [V ] .
Applying Caratheodory's extension Theorem to the pre-measure η yields a probability outer-measure on R d that we still denote by η, which is metric, so that Borel sets are η-measurable and its restriction to Borel sets belongs to M(R d ). The so obtained measure η is fully supported on K. Also, for every p ≥ 2, for any U ∈ W p , B ∈ G U , and U ∈ F B , the inequalities (7.35), (7.36), (7.38) and (7.40) holds with s p and ε p instead of s 2 and ε 2 .

Upper-bound for the mass of a ball

Dene the gauge function ζ : R + → R + as follows: 

if for some p ≥ 1, 1 3 min {|U | : U ∈ W p+1 } ≤ r < 1 3 min {|U | : U ∈ W p }, then ζ(r) = 2Q d,4 10 d r sp-5εp ,
131 if r ≥ 1 3 min {|U | : U ∈ W 1 }, ζ(r) = 1, ζ(0) = 0.
Since ε p → 0, one checks that lim r→0 + log(ζ(r)) log(r) = min {s(µ, B, U), dim H (µ)}.

Let A be a ball of radius r. If there exists n ∈ N such that A does not intersect K n then η(A) = η(A ∩ K n ) = 0. Suppose that for every n ∈ N, A intersects K n . The goal is to prove that η(A) ≤ ζ(|A|) when |A| is small. Some cases must be distinguished.

First if for every n ∈ N, A intersects only one contracted set V n of K n , then by (7.36)

η(A) ≤ η(V n ) ≤ |V n | sn-εn → n→+∞ 0.
In the other case, there exists p ∈ N such that A intersects only one element of W p , and at least two elements of W p+1 . Denote by U the unique element of W p intersecting A. 

η(A) = η(U ) × B∈G U :B∩A̸ =∅ m s p+1 E U (B) B ′ ∈G U m s p+1 E U (B ′ ) ≤ 4Q d,1 C ε p+1 ,d η(U )m s p+1 E U (5A).
Then, by (4.10), (7.25), (7.37) and (7.39)

η(A) ≤ 4Q d,1 C ε p+1 ,d η(U )κ d (5|A|) s p+1 H µ,s p+1 ∞ (E U ) ≤ 5 s p+1 4Q d,1 κ d C ε p+1 ,d η(U ) µ(B [U ] ) |A| s p+1 ≤ |A| s p+1 |U | -2εp ≤ |A| s p+1 -2ε p+1 ≤ ζ(|A|), (7.46) 
where we used that|A| < |U |, and the mappings x → |U | -x and x → x -ε p+1 are decreasing.

Case 3:

If A intersects only one ball of G U : calling B this particular ball and r B its radius (at this stage there should be no confusion with the radii of the terms of the sequence (B n ) n≥1 ), two cases must again be distinguished:

(a) Subcase 3.1: |B| ≤ |A|: by (7.36), 

η(A) ≤ η(B) ≤ |B| s p+1 -ε p+1 ≤ |A| s p+1 -ε p+1 ≤ ζ(|A|).
[θ k B ,θ k B +1 ],ρ U ,ε p+1 µ .
The ball A must intersect at least two elements V ̸ = V ′ of W p+1 (by denition of p). Note that those sets must belong to F B (because A intersects only B). Applying Lemma 5.2.1 to the ball A with any

of those ball V ∈ F p+1 , since A ∩ V ̸ = ∅ and A \ B [V ] ̸ = ∅ (because A intersects an other dilated ball, B [V ′
] by hypothesis and two such balls veries (7.41)), one has

V ∩A̸ =∅ B [V ] ⊂ 5A. (7.48) Then, (7.38) and (7.44) imply that η 
(A) = η(B) • V ∈W p+1 :V ∩A̸ =∅ µ(B [V ] ) V ′ ∈F B µ(B [V ′ ] ) ≤ 2Q d, 4 η(B) µ(B) µ(5A). (7.49) 
Recalling (7.48), the ball 5A contains some of the balls of F B : Hence, by (7.43), ‹ E

[θ k B ,θ k B +1 ],ρ U ,ε p+1 µ ∩ 5A ̸ = ∅. Since |A| ≤ |B|, by (7.29), since r B < 1 10 ρ U , for any x ∈ ‹ E [θ k B ,θ k B +1 ],ρ U ,ε p+1 µ ∩ 5A one has µ(5A) ≤ µ(B(x, 10r)) ≤ (10r) θ k B -2ε p+1 . (7.50) 
Recalling (7.32) (applied to the ball B), one has 

µ(B) ≥ (r B ) θ k B +2ε p+1 . ( 7 
η(A) ≤ 2Q d,4 r s p+1 -ε p+1 B 10r θ k B -2ε p+1 r θ k B +2ε p+1 B = 2Q d,4 10 θ k B -2ε p+1 r s p+1 -θ k B - ε p+1 δ -2ε p+1 B r s p+1 -θ k B -ε p+1 -2ε p+1 r s p+1 -θ k B -ε p+1 -4ε p+1 ≤ 2Q d,4 10 θ k B -2ε p+1 r s p+1 -5ε p+1 .
Finally, recalling (7.16), s p+1 -5ε p+1 ≤ α ≤ θ k , and since r B ≥ r bound for lim sup n→+∞ B δ n for any δ large enough (independently of the sequence (B n ) n∈N ).

One emphasizes that the there isn't any particular reason for which the Assouad dimension should be a good notion of dimension for ubiquity. In particular, in Theorem 7.3.3, the bound when the lower bound is dim L (µ), in most cases, this lower bound could be not accurate. 

d i=1 |B n | τ i , where 1 ≤ τ 1 ≤ ... ≤ τ d . Denote C(U n ) the dyadic cubes C ⊂ U n of length-sides ≈ |B n | τ d intersecting K. Assume now that, for some s ≥ 0, for any n ∈ N large enough, H s ∞ C∈C(Un) C ⪆ |B n | α , then one gets dim H (lim sup n→+∞ U n ) ≥ s.
In particular, when the attractor K is the closure of its interior, one obtains the following extension of Theorem 5.1.5. Denition 7.3.5. Let 1 ≤ τ 1 ≤ ... ≤ τ d and τ = (τ 1 , ..., τ d ). For any x = (x i ) 1≤i≤d ∈ R d and r > 0, the τ -rectangle centered in x and associated with r is dened by

R τ (x, r) = d i=1 [x i - 1 2 r τ i , x i + 1 2 r τ i ]. (7.55) 
Theorem 7.3.6. Let S be a weakly conformal IFS of R d such that the attractor K is equal to the closure of its interior. Let µ be a weakly conformal measure as-

sociated with S. Let 1 ≤ τ 1 ≤ ... ≤ τ d , τ = (τ 1 , ..., τ d ) and (B n := B(x n , r n )) n∈N be a sequence of balls of R d satisfying r n → 0 and µ(lim sup n→+∞ B n ) = 1. Dene R n = Rτ (x n , r n ), where R τ (x n , r n ) = x n + d i=1 [- 1 2 r τ i , 1 2 r τ i ]. (7.56) 
Then

dim H (lim sup n→+∞ R n ) ≥ min 1≤i≤d ® dim(µ) + 1≤j≤i τ i -τ j τ i
´.

(7.57) Remark 7.3.7. ( 1) Since (τ 1 , ..., τ d ) → min 1≤i≤d dim(µ)+ 1≤j≤i τ i -τ j τ i is continuous, the result stands for the sequence of closed rectangles as well.
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(2) One may also apply any rotation to the shrunk rectangles, this wouldn't change the bound (since Hausdor contents are invariant by rotation).

(3) As said above, when K is the closure of its interior is that it is easy to compute H s ∞ (R n ∩ K). Without this assumption, the conclusion of Theorem 7.3.6 fails. Indeed, in general, no formula involving only the dimension of the measure and the contraction ratio can be accurate. For instance, consider a self-similar measure in R 2 carried by a line D and a sequence (B n ) n∈N of balls centered on the attractor K and verifying µ(lim sup n→+∞ B n ) = 1. Then, consider the sequence of rectangles R n with side-length

|B n | τ 1 × |B n | τ 2 , 1 ≤ τ 1 ≤ τ 2
and where the largest side (of side-length |B n | τ 1 ) is in the direction of D.

In this case, Theorem 7.3.1 yields the lower-bound dim H (lim

sup n→+∞ R n ) ≥ dim H (µ) τ 1 . Then if R n are the rectangles R n rotated by π 2 , Theorem 7.3.1 gives that dim H (lim sup n→+∞ R n ) ≥ dim H (µ) τ 2
. Moreover, under additional conditions, these lower bounds are equalities.

Proof. Given τ 1 = 1 ≤ τ 2 ≤ ... ≤ τ d and s ≥ 0, set τ = (τ 1 , . . . , τ d ) and g τ (s) = max 1≤k≤d sτ k - 1≤i≤k τ k -τ i .
We will need the following lemma (one refers to [START_REF] Koivusalo | Mass transference principle: From balls to arbitrary shapes[END_REF], Proposition 2.1 for the proof, although it is stated in terms of singular values functions).

Lemma 7.3.8.

Let τ 1 = 1 ≤ τ 2 ≤ ... ≤ τ d .
The are two positive constants C 1 and C 2 depending on d only such that for all s ≥ 0, r > 0 and x ∈ R d one has

C 1 r gτ (s) ≤ H s ∞ (R τ (x, r)) = H s ∞ ( Rτ (x, r)) ≤ C 2 r gτ (s) .
Recall that K is the closure of its interior, and note that since the weights p i are taken positive in Denition 4.3.1, one must have µ( K) > 0.

Denote µ = µ(•) µ( K)
and α = dim(µ) = dim( µ). It is easily veried that the computation made in the proof of Theorem 6.2.4 implies that, for any, ε ′ > 0 and any open set Ω ⊂ K, there exists a constant c(d, µ, s, ε ′ ) given by Theorem 6.2.4, so that

   c(µ, d, s, ε ′ )H s+ε ′ ∞ (Ω) ≤ H μ,s ∞ (Ω) ≤ H s ∞ (Ω) if s < α H μ,s ∞ (Ω) = 0 if s > α. (7.58) 
Also, µ being absolutely continuous with respect to µ, the sequence (B n ) n∈N is µ-a.c. Furthermore, up to a µ-a.c extraction, we can assume that each ball (B n ) n∈N is included in K (and we will do so).

Let ε > 0. Set R = {R n } n≥0 . By Lemma 7.2.8, up to a µ-a.c extraction, one can assume that for every n ∈ N, the ball B n satises

µ(B n ) ≤ r α-ε n .
Setting τ ′ = ( τ i τ 1 ) 1≤i≤d , for all 0 ≤ s < α -ε, one has

g τ ′ (s) = max 1≤k≤d ® sτ k -1≤i≤k τ k -τ i τ 1
´.

From equation (7.58) and Lemma 7.3.8, one deduces that

C 1 c(d, µ, s, ε ′ )r τ 1 g τ ′ (s+ε ′ ) n ≤ H μ,s ∞ (R n ). (7.59) 
In particular, for any s verifying

τ 1 g τ ′ (s + ε ′ ) ≤ α - ε 2 , (7.60) if r n ≤ 1 one has C 1 c(d, µ, s, ε ′ )r α-1 2 ε n ≤ C 1 c(d, µ, s, ε ′ )r τ 1 g τ ′ (s+ε ′ ) n ≤ H μ,s ∞ (R n ).
Since r n → 0, for n large enough, this yields

µ(B n ) ≤ r α-ε n ≤ C 1 c(d, µ, s, ε ′ )r τ 1 g τ ′ (s+ε ′ ) n ≤ H μ,s ∞ (R n ), (7.61) 
hence (B n ) n∈N μ(B,R,s) is µ-a.c., and s( µ, R, B) ≥ s.

Since ε ′ is aribitrary, it remains to note that

(7.60) ⇔ max 1≤k≤d ® sτ k -1≤i≤k τ k -τ i τ 1 ´≤ α -ε 2 τ 1 ⇔ ∀1 ≤ k ≤ d, sτ k -1≤i≤k τ k -τ i τ 1 ≤ α -ε 2 τ 1 ⇔ ∀1 ≤ k ≤ d, s ≤ α -1 2 ε + 1≤i≤k τ k -τ i τ k ⇔ s ≤ min 1≤k≤d ® α -1 2 ε + 1≤i≤k τ k -τ i τ k
´.

(7.62)
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Since ε > 0 was arbitrary, this implies that

s( µ, R, B) ≥ min 1≤k≤d ® α + 1≤i≤k τ k -τ i τ k
´, and applying Theorem 7.1.2 gives the desired lower bound estimate.

Remark 7.3.9. Note that the estimates made in the proof of Theorem 7.3.6, together with Lemma 7.3.8, can be used to show that, under the assumption that lim n→∞ log µ(Bn) log |Bn| = dim(µ), one has the following properties:

If s < min 1≤k≤d dim(µ)+ 1≤i≤k τ k -τ i τ k then, for n ∈ N large enough, H µ,s ∞ (R n ) ≥ µ(B n ). If s > min 1≤k≤d dim(µ)+ 1≤i≤k τ k -τ i τ k then, for n large enough, H µ,s ∞ (R n ) ≤ µ(B n ).
Chapter 8

Upper-bounds and optimality in ubiquity theorems

The problem of understanding whether the lower-bound established in Theorem 

(B) = B n : 2 -k-1 < r n ≤ 2 -k .
The family B is said to be weakly redundant when for all k, there exists an integer J k and T k,1 (B), .., T k,J k (B) a partition of T k (B) such that:

(C 1 ) T k (B) = 1≤j≤J k T k,j (B), (C 2 ) for every 1 ≤ j ≤ J k and every pair of balls B ̸ = B ′ ∈ T k,j (B), B ∩B ′ = ∅, (C 3 ) lim k→+∞ log 2 (J k ) k = 0.
So, a sequence of balls (B n ) n∈N is weakly redundant when at each scale 2 -k , the balls of the family {B n } n∈N that have radii ≈ 2 -k can be sorted in a relatively small number of families of pairwise disjoint balls. The following proposition illustrates why the weak redundancy property relates to overlaps between balls of the sequence of about the same radii. 

B ′ ∩ B ̸ = ∅} n = 0.
Proof. We show rst (1) ⇒ (2).

Fix ε > 0. Since B is assumed to be weakly redundant, there exists n ε ∈ N large enough so that for every n ≥ n ε ,

log(J n ) n ≤ ε.
Since for every 1 ≤ j ≤ J n the family T n,j is composed by pairwise disjoint balls, by Lemma 4.1.4, there exists a constant C > 0 depending on the dimension only such that any ball B ∈ T n (B) intersects less than C balls of T n,j (B). In particular, 

log # {B ′ ∈ T n (B) : B ′ ∩ B ̸ = ∅} n ≤ log(CJ n ) n ≤ ε + log C n . ( 8 
lim n→+∞ log max B∈Tn(B) # {B ′ ∈ T n (B) : B ′ ∩ B ̸ = ∅} n = 0.
Let us now prove that (2) ⇒ (1).

Assume that

lim n→+∞ log max B∈Tn(B) # {B ′ ∈ T n (B) : B ′ ∩ B ̸ = ∅} n = 0.
Let n ∈ N and set

J n = max B∈Tn(B) # {B ′ ∈ T n (B) : B ′ ∩ B ̸ = ∅} + 1.
Note that every B ∈ T n (B) intersects less than J n -1 balls of T n (B). Proceeding as in the proof of Lemma 4.1.3, one can sort the balls of T n (B) in J n families F n,1 , ..., F n, Jn such that each family F i is composed of pairwise disjoint balls.

Since

lim n→+∞ log J n n = 0,
the sequence B is weakly redundant.

In practice, one will often use the weak redundancy property in this manuscript through the following lemma.

Lemma 8.1.3. Let B = (B n ) n∈N be a weakly redundant sequence of balls of R d .

Then for every µ ∈ M(R d ) and any ε > 0, one has

n∈N |B n | ε µ(B n ) < +∞. (8.2) 
Proof. Let n ∈ N and T n (B), J n and T n,1 (B), ..., T n,Jn (B) as in Denition 8.1.1.

One has

n∈N

|B n | ε µ(B n ) = n≥0 1≤j≤Jn B∈T n,j (B) |B| ε µ(B) ≤ n≥0 1≤j≤Jn 2 -nε B∈T n,j (B)
µ(B).

Since for every n ∈ N and every 1 ≤ j ≤ J n , the family T n,j (B) is composed of pairwise disjoint balls, one has

B∈T n,j (B) µ(B) ≤ 1.
This, recalling that log 2 Jn n → 0, implies that n∈N

|B n | ε µ(B n ) ≤ n≥0 2 -nε J n < +∞.

Extraction of µ-a.c sub-sequences of balls

The concept of conditioned ubiquity was introduced by Barral and Seuret in [START_REF] Barral | Sums of dirac masses and conditioned ubiquity[END_REF]. It consists in asking the balls of the sequence (B n ) to verify some specic properties with respect to the measure µ. In numerous practical cases, once the sequence (B n ) n∈N is assumed to verify certain properties with respect to the measure µ, it is often quite easy to establish that the dimension of the limsup generated by the sets (U n ) n∈N is indeed provided by a ubiquity theorem. So the point of view is to prove that one can almost always extract from (B n ) a subsequence (B ϕ(n) ) which is still µ-a.c. and also veries those specic properties.

By doing so, we prove that one cannot hope in general for a better lower-bound.

Note that in full generality, understanding the optimality of a bound provided by a theorem such as Theorem 7.1.2, means understanding very nely the behavior of the measure µ on the sets U n (the sequence (B n ) n∈N being µ-a.c).

In this section, the balls (B n ) n∈N are supposed to be pairwise distinct and such that |B n | → n→+∞ 0.

The main theorem of this section is the following: Theorem 8.2.1 (D. [START_REF] Daviaud | Extraction of optimal sub-sequences of balls and application to optimality estimates of mass transference principles[END_REF]). Let 

µ ∈ M(R d ) Let (B n ) n∈N be a sequence of balls of R d . 1. If (B n ) n∈N is µ-a.c, then there exists a µ-a.c sub-sequence (B ϕ(n) ) n∈N
which is weakly redundant.

2. If there exists v < 1 such that µ(lim sup n→+∞ vB n ) = 1, then there exists a µ-a.c sub-sequence One also states here a proposition which is not particularly useful for practical applications, but highlights the fact that, given a measure µ and a µ-a.c sequence of balls, the relevant balls for the problem we study are indeed the balls verifying (8.3).

(B ϕ(n) ) n∈N verifying dim H (µ) ≤ lim inf n→+∞ log µ(B ϕ(n) ) log |B ϕ(n) | ≤ lim sup n→+∞ log µ(B ϕ(n) ) log |B ϕ(n) | ≤ dim P (µ). (8.
Proposition 8.2.3. Let µ ∈ M(R d ) be a measure and

(B n ) n∈N a sequence of balls satisfying |B n | → 0. Let ε > 0. Let us also dene B ε > = ¶ B n : µ(B n ) ≤ |B n | dim P (µ)+ε © and B ε < = B n : µ(B n ) ≥ |B n | dim H (µ)-ε . Then 1. for any v < 1, µ(lim sup B∈B ε > vB) = 0, 2. µ(lim sup B∈B ε < B) = 0.
Proof. [START_REF] Allen | Dyadic Approximation in the Middle-Third Cantor Set[END_REF] Let us recall that the upper packing dimension of µ satises dim P (µ) = supess µ dim(µ, x) .

Suppose that there exists 0 < v < 1 such that µ(lim sup B∈B ε > vB) > 0. Then there exists x ∈ lim sup B∈B ε > vB such that lim sup r→0 log µ(B(x, r)) log r ≤ dim P (µ).

Consider r x > 0 small enough so that, for any 0 < r ≤ r x , µ(B(x, r)) ≥

r dim P (µ)+ ε 2 and ( 1-v 2 ) dim P (µ)+ ε 2 ≥ r ε 4
x . Let also n be large enough so that x ∈ B n and |B n | ≤ r x . Then B(x, (1-v) 2

|B n |) ⊂ B n , so that µ(B n ) ≥ µ(B(x, 1 -v 2 |B n |)) ≥ |B n | dim P (µ)+ ε 2 ( 1 -v 2 ) dim P (µ)+ ε 2 ≥ |B n | dim P (µ)+ 3ε 4 . (8.4) 
This contradicts the denition of B ε > .

(2) Assume that µ(lim sup B∈B ε < B) > 0. Then, again, there exists x ∈ lim sup B∈B ε < B so that

lim inf r→0 log µ(B(x, r)) log r ≥ dim H (µ).
Consider r x > 0 small enough so such that for any 0 < r ≤ r x , µ(B(x, r)) ≤ r dim H (µ)-ε 2 . Consider n ∈ N large enough so that x ∈ B n and

|B n | ≤ r x . One has B n ⊂ B(x, |B n |), hence µ(B n ) ≤ µ(B(x, |B n |)) ≤ |B n | dim H (µ)-ε 2 .
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) of {B n } N n≥g k satisfying 1. ∀1 ≤ n 1 ̸ = n 2 , B (n 1 ,k) ∩ B (n 2 ,k) = ∅, 2. µ n∈N B (n,k) = 1.
Dene B ψ = (B ψ(n) ) n∈N as the sub-sequence of balls corresponding to k∈N B (n,k) n∈N .

Since the following inclusion holds k∈N n∈N

B (n,k) ⊂ lim sup n→+∞ B ψ(n) , (8.5) 
by item [START_REF] Allen | On the Hausdor measure of shrinking target sets on self-conformal sets[END_REF] one has µ(lim

sup n→+∞ B ψ(n) ) = 1.
Note that, for all k ∈ N, for all B ∈ B (n,k) n∈N , |B| ≤ 2 -k . Following the notation of Denition 8.1.1, for any k ∈ N, T k (B ψ ) can contain only balls of the sequence of the k rst families B (n,k) n∈N , which are composed of pairwise disjoint balls. This proves that T k (B ψ ) can be sorted in at most k + 1 families of pairwise disjoint balls. In particular, B ψ is weakly redundant.

It remains to show that (B ψ(n) ) n∈N is µ-a.c.

Let Ω be an open set and g ∈ N. One will extract from B ψ a nite number of balls satisfying the condition of Denition 6.1.1.

There exists k 0 so large that

         µ x : B(x, 2 -k 0 +1 ) ⊂ Ω ≥ 3µ(Ω) 4 for every k ≥ k 0 , B (n,k) n∈N ⊂ B ψ(n) n≥g µ(lim sup n→+∞ B ψ(n) ∩ Ω) ≥ 3µ(Ω)
4 .

Setting

" E = ß x ∈ lim sup n→+∞ B ψ(n) ∩ Ω : B(x, 2 -k 0 +1 ) ⊂ Ω ™ , it holds that µ( " E) ≥ 1 2 µ(Ω).
Recalling (8.5), for every x ∈ " E, consider B x , the ball of B (n,k 0 ) n∈N containing x. Note that, since for B ∈ B (n,k 0 ) n∈N , |B| ≤ 2 -k 0 , one has

B x ⊂ B(x, 2 -k 0 +1 ) ⊂ Ω. Set F 1 = ¶ B x : x ∈ " E © .
The set F 1 is composed of pairwise disjoint balls (by item (1) above) of B ψ(n) n≥g included in Ω and such that µ

L∈F 1 L ≥ µ( " E) ≥ 1 2 µ(Ω). (8.6) 
Using the σ-additivity of µ concludes the proof. µ , there exists r x > 0 small enough so that r ε 2

x ≤ (v ′ -v)

γ+ 3ε
2 and ∀0 < r ≤ r x , µ(B(x, r)) ≥ r γ+ 3ε 2 .

(8.10)

Since x ∈ lim sup n→+∞ vB n , for all n ∈ N, there exists n x ≥ n such that x ∈ vB nx and (v ′ -v)r nx ≤ r x . Note that B(x, (v ′ -v)r nx ) ⊂ v ′ B nx . This implies the following inequalities:

µ(B nx ) ≥ µ(v ′ B nx ) ≥ µ(B(x, (v ′ -v)r nx ) ≥ ((v ′ -v)r nx ) γ+ 3ε 2 ≥ r γ+2ε nx . Set B γ,2ε = {B n : µ(B n ) ≥ r γ+2ε n }. One just showed that lim sup n→+∞ vB n ∩ F [α,γ], ε 2 ⊂ lim sup B∈B γ,2ε v ′ B.
This proves that µ(lim sup B∈B γ,2ε v ′ B) = 1.

Since ε > 0 was arbitrary, the results also holds with ε 

|B ϕ(n ′ ) | β+εn ≤ µ(B ϕ(n ′ ) ) ≤ |B ϕ(n ′ ) | α-εn . It follows that α -ε n ≤ lim inf n ′ →+∞ log µ(B ϕ(n ′ ) ) log |B ϕ(n ′ ) | ≤ lim sup n ′ →+∞ log µ(B ϕ(n ′ ) ) log |B ϕ(n ′ ) | ≤ β + ε n . Letting n → +∞ shows that dim H (µ) ≤ lim inf n ′ →+∞ log µ(B ϕ(n ′ ) ) log |B ϕ(n ′ ) | ≤ lim sup n ′ →+∞ log µ(B ϕ(n ′ ) ) log |B ϕ(n ′ ) | ≤ dim P (µ).
It only remains to prove that (B ϕ(n) ) n∈N is µ-a.c.

Let Ω be an open set and g ∈ N. We nd a nite family of balls {L} i∈I ⊂ B ϕ(n) n≥g satisfying the conditions of Denition 6.1.1.

Note that, by (8.11),

setting E = k≥1 L∈F k L, then µ (E) = 1.
Let x ∈ Ω ∩ E and r x > 0 small enough so that B(x, r x ) ⊂ Ω. Consider k x ≥ ϕ(g) ≥ g large enough so that, for all n ≥ k x , |B n | ≤ 2r x . Recall that F kx ⊂ {B n } n≥kx . Finally, let us x k large enough so that µ( " E) ≥ µ(Ω) 2 , where " E = {x ∈ E : k x ≤ k}. For x ∈ " E, let L x ∈ F k be the ball that contains x (the balls of F k being pairwise disjoint, L x is well dened) and

{L i } i≥1 = ¶ L x : x ∈ " E © . One has for all 1 ≤ i < j, L i ∩ L j = ∅, for all i ∈ N, L i ∈ B ϕ(n) n≥g and L i ⊂ Ω, 8.2 EXTRACTION OF µ-A.C SUB-SEQUENCES OF BALLS 155 µ( i≥1 L i ) ≥ µ( " E) ≥ µ(Ω) 2 .
By σ-additivity, there exists N ∈ N such that µ( 1≤i≤N L i ) ≥ µ(Ω) 

B ̸ = B ′ ∈ F k , B ∩ B ′ = ∅, for any k ∈ N, B∈F k B ⊂ Ω k and µ B∈F k B = µ(Ω k ).
Let (B ϕ(n) ) n∈N be the sub-sequence arising from the family of balls F = k∈N F k . Since, for each k ∈ N, the balls of F k are pairwise disjoints, any x ∈ lim sup B ϕ(n) must belong to B∈F k B ⊂ Ω k for an innite number of k. In particular, x ∈ E. Moreover, the same argument as the proof of Proposition 8.2.5 shows that (B ϕ(n) ) n∈N is µ-a.c too. Remark 8.2.13. One could also choose to work with sequences of open balls (B n ) n∈N . In that case, lim sup n→+∞ B n = n∈N k≥n B k is a G δ set. In a particular, if (B n ) n∈N is µ-a.c and a set E veries lim sup n→+∞ B ϕ(n) ⊂ E, for some µ-a.c sub-sequences (B ϕ(n) ) n∈N , then E contains a G δ set of full measure.

In the following section, we make good use of Theorem 8.2.1 in order to study the optimality of Theorem 7.1.2.

Study of the optimality of ubiquity theorems

In the rst sub-ection, we provide an upper-bound theorem which can be seen as a counter-part of Theorem 7.1.2 in the cas of self-conformal measures. In the second sub-section, we combine this theorem with Theorem 8.2.1 to prove that the bound provided by Theorem 7.3.1 and 7.3.6 are sharp.

An upper-bound for ubiquity Theorem in the selfsimilar case

The upper-bound we prove in this seub-section is the following: 

|A n k | ≤ |B n |, U n ∩ K ⊂ k≥0 A n k and +∞ k=0 |A k,n | s+ ε 2 ≤ 2H s+ ε 2 ∞ (U n ∩ K).
Remember Theorem 6.2.4 and its notations. One has.

H

s+ ε 2 ∞ (U n ∩ K) ≤ k≥0 |A n k | s+ ε 2 ≤ 2H s+ ε 2 ∞ (U n ∩ K) ≤ 2 c(d, µ, s, ε 2 ) H µ,s ∞ (U n ) ≤ 2 c(d, µ, s, ε 2 ) µ(B n ). (8.14) 
Since for each n ∈ N,

U n ∩ K ⊂ k≥0 A n k , it holds that lim sup n→+∞ U n ∩ K ⊂ lim sup k,n→+∞ A n k .
For any ε > 0, one gets n≥0 k≥0

|A n k | s+ε ≤ n≥0 |B n | ε 2 2 c(d, µ, s, ε 2 ) µ(B n ).
In particular, by (8.13) s) , for the mapping g τ : R + → R + , dened as (see [START_REF] Koivusalo | Mass transference principle: From balls to arbitrary shapes[END_REF])

n ∈ N, H s ∞ (R n ) = |B n | gτ (
g τ (s) = max 1≤k≤d sτ k - 1≤i≤k τ k -τ i .
Note that g τ (s) does not depend on n. Corollary 8.3.2 can therefore be applied with s 0 = min s:gτ (s)≥d {s}.

Unfortunately, when such an s 0 does not exist, the dim H lim sup n→+∞ U n has to depend on the structure of the sequence (U n ) itself. For instance given 0 < s 1 < s 

, H s 1 ∞ (U n ) ≈ L d (B n ), for the others H s 2 ∞ (U n ) ≈ L d (B n ) and, in the case i, dim H lim sup n→+∞ U n = s i .
Here is how.

First scenario Following the scheme of example 3.5 in [START_REF] Koivusalo | Mass transference principle: From balls to arbitrary shapes[END_REF], it is also possible to construct two weakly redundant sequences of balls 

U n ) = s 1 .
Second secenario: Consider 0 < s 1 < s 2 ≤ d and two vectors τ 1 and τ 2 such that s 1 = min s:gτ 1 (s)≥d {s} and s 2 = min s:gτ 2 (s)≥d {s} . 

|B n | → 0, L d (lim sup n→+∞ B n ) = 1, for any n ∈ N, B n ⊂ [0, 1 2 ) × d i=2 [0, 1] or B n ⊂ ( 1 2 , 1] × d i=2 [0, 1], for any n ∈ N such that B n ⊂ [0, 1 2 ) × d i=2 [0, 1], U n = (R n ) with R
dim H (lim sup n→+∞ B δ n ) ≥ dim(µ) δ .
Assume furthermore that B is weakly redundant and lim sup n→+∞ log µ(Bn)

log(|Bn|) = dim(µ), then for every δ ≥ 1, dim H (lim sup n→+∞ B δ n ) = dim(µ) δ .
Corollary 8.3.6. Let µ be a weakly conformal measure verifying that its support, K, is the closure of its interior. Let ´.

1 ≤ τ 1 ≤ ... ≤ τ d , τ = (τ 1 , ..., τ d ) and (B n := B(x n , r n )) n∈N be a sequence of balls of R d satisfying r n → 0, µ(lim sup n→+∞ B n ) = 1. Dene R n = Rτ (x n , r n ), where R τ (x n , r n ) = x n + d i=1 [-1 2 r τ i n , 1 2 r τ i n ].
(8. [START_REF] Bugeaud | Intersective sets and Diophantine approximation[END_REF] Assume furthermore that (B n ) n∈N is weakly redundant and lim n→+∞ log µ(Bn)

log |Bn| = dim(µ), then dim H (lim sup n→+∞ R n ) = min 1≤i≤d ® dim(µ) + 1≤j≤i τ i -τ j τ i
´.

( 

R n ) = min 1≤i≤d ® d + 1≤j≤i τ i -τ j τ i
´.

Chapter 9

An application in Diophantine approximation

Let Q = ¶ B( p q , q -2 ) © q∈N * , 0≤p≤q
. Remember the following result in Diophantine approximation [START_REF] Jarnik | Diophantischen approximationen und Hausdorsches mass[END_REF]:

• lim sup B∈Q B = [0, 1]. • For any δ ≥ 1, dim H (lim sup B∈Q B δ ) = 1 δ . (9.1) 
Unlike in the case of the points in [0, 1], the approximation by rational numbers of elements of the middle third Cantor set K 1/3 set is not well understood yet. This question was raised by Mahler, and only some partial results are known (see [START_REF] Beresnevitch | A mass transference principle and the Dun-Schaeer conjecture for Hausdor measures[END_REF], [START_REF] Barral | Ubiquity and large intersections properties under digit frequencies constraints[END_REF]). Here we consider the set K (0)

1/3 of points in [0, 1] having an asymptotic lower frequency of appearance of the digit 1 in basis 3 equal to 0. This set contains K 1/3 and has the same Hausdor dimension as K 1/3 . We compute the Hausdor dimension of sets of points in K (0) 1/3 which are well approximable by rational numbers.

To describe more precisely the problem, let S = {f 1 , f 2 , f 3 } where f 1 , f 2 and f 3 are the contracting ane maps of R dened by f 0

(x) = 1 3 x, f 1 (x) = 1 3 x + 1 3 and f 2 (x) = 1 3 x + 2 3 . The attractor of S is [0, 1]. Let Λ = {0, 1, 2}.
The shift operation on the symbolic space Λ N is dened by σ. The canonical projection from Λ N to [0, 1] is the mapping

π : x = (x n ) n∈N → lim n→+∞ f (x 1 ,...,xn) (0). (9.2)
The set K 1/3 is the attractor of {f 0 , f 2 } and also the image by canonical projection of {0, 2} N . 

   ϕ(x) = 1 if x 1 = 1 ϕ(x) = 0 if x 1 = 0 or 2. and K (0) 1/3 = π Åß x ∈ Λ N : lim inf k→+∞ S k ϕ(x) k = 0 ™ã ,
where (S k ϕ) k∈N stands for the sequence of Birkho sums of ϕ.

It is also proved in Proposition 9.1.5 that

dim H K (0) 1/3 = log 2 log 3 (= dim H K 1/3 ). (9.
3)

As we will study the approximation of numbers of K (0) 1/3 , one introduces the irrationality exponent of a number.

Denition 9.0.2. Let x ∈ R, we dene the irrationality of x ξ(x) by ξ(x) = sup

ß δ : x ∈ B( p q , 1 q δ ) for innitely many (p, q) ∈ Z × N * ™ .
Let us state the main results of this subsection.

Theorem 9.0.3. For every δ ≥ 1,

   dim H {x : ξ(x) ≥ 2δ} ∩ K (0) 1/3 = log 2 log 3 if 1 ≤ δ ≤ log 3 log 2 , dim H {x : ξ(x) = 2δ} ∩ K (0) 1/3 = 1 2δ if δ ≥ log 3 log 2 . (9.4) 
Observe that a saturation phenomenon occurs : dim H {x : ξ(x) ≥ 2δ}∩

K (0) 1/3 = log 2 log 3 for 1 ≤ δ ≤ log 3 log 2
. We also conjecture that for δ ∈ [1, log 3 log 2 ], (9.4) should hold for the level set {x : ξ(x) = 2δ} . The computation of the Hausdor dimension of K 0 1/3 is a straightforward ap- plication of the thermodynamical formalism developed for instance in [START_REF] Bowen | Equilibrium states and the ergodic theory of Anosov diffeomorphisms[END_REF].

Let us rst introduce the following quantities.

Denition 9.1.1 ([14]). Let f : Σ → R be an Hölder function, k ∈ N and

i ∈ Λ k . Set Y k,f (i) = sup (xn)∈[i] e 0≤i≤k-1 f (σ k ((xn) n∈N )) Z k,f = i∈Λ k Y k,f (i).
Finally, dene the pressure of f as

P f = lim k→+∞ log Z k,f k . (9.5)
It is classical that, when the potential (i.e the function f ) is Hölder, there is an equilibrium measure associated with the Birkho averages of f . Theorem 9.1.2 ([14]). Let f : Σ → R be an Hölder function. Then there exists a unique measure µ f ∈ M(Σ) satisfying, for some constants C 1 , C 2 > 0, for any k ∈ N, i ∈ Λ k and x = (x n ) n∈N ∈ [i] that C 1 e 0≤j≤k-1 f (σ j (x))-kP f ≤ µ f ([i]) ≤ C 2 e 0≤j≤k-1 f (σ j (x))-kP f . (9.6) In order to study the equilibrium measure associated with the function ϕ dened in Denition 9.0.1, one estimates the pressure associated with the potentials qϕ for q ∈ R.

Lemma 9.1.3. One has P ϕ = log(2+e) (where ϕ is dened in denition 9.0.1) and for any q ∈ R, P q(ϕ-P ϕ ) = log(2 + e q ) -qP ϕ .

Proof. Let k ∈ N. Then, for any i = (i 1 , ..., i k ) ∈ Λ k and (x n ) n∈N ∈ [i]. Note that Y k ((x n )) = e 0≤i≤k-1 ϕ(σ k ((xn) n∈N )) does not depends on (x n ), but only on i. Z k,ϕ = (i 1 ,...,i k )∈Λ k e 0≤i≤k-1 ϕ(σ k ((xn) n∈N )) = (i 1 ,...,i k )∈Λ k e 1≤j≤k ϕ(i j ) = 0≤i≤k Ç k i å 2 k-i e i = (2 + e) k .
This proves that P ϕ = lim k→+∞

1 k log Z k,ϕ = log(2 + e).
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Z k,q(ϕ-P ϕ ) = (i 1 ,...,i k )∈Λ k e 0≤i≤k q(ϕ(σ k ((xn) n∈N )-P ϕ ) = (i 1 ,...,i k )∈Λ k e 1≤j≤k q(ϕ(i j )-P ϕ )

= e -kqP ϕ 0≤i≤k Ç k i å 2 k-i e qi = e -kqP ϕ (2 + e q ) k .

This proves that P q(ϕ-P ϕ ) = log(2 + e q ) -q log(2 + e).

The multifractal analysis of the measure µ q is linked with the set K 0 1/3 as follows.

Lemma 9.1.4. Let x = (x n ) n∈N ∈ Λ N and q ∈ R. One has

dim(µ ϕ , x) = log(2 + e) ⇔ lim inf k→+∞ # {0 ≤ i ≤ k : x i = 1} k + 1 = 0 (9.7)
⇔ dim(µ q(ϕ-P ϕ ) , x) = log(2 + e q ) ⇔ π(x) ∈ K 0 1/3 .

Proof. By Theorem 9.1.2 and Lemma 9.1.3, for any x = (x n ) n∈N ∈ Λ N , there exists C 1 > 0 and C 2 > 0 such that for any k ∈ N,

log C 1 k + 1 ≤ log µ ϕ ([x 0 , ..., x k ]) k + 1 - # {0 ≤ j ≤ k : x j = 1} k + 1 + log(2 + e) ≤ log C 2 k + 1 . (9.8)
This implies π(x) ∈ K 0 1/3 ⇔ lim inf k→+∞ #{0≤i≤k:

x i =1} k+1 = 0 ⇔ dim(µ ϕ , x) = log(2 + e).
Applying again Theorem 9.1.2 to q(ϕ -P ϕ ), there exists C ′ 1 > 0 and C ′ 2 > 0 such that for any k ∈ N,

C ′ 1 ≤ µ q(ϕ-P ϕ ) ([i])
e 0≤j≤k ϕ(x j )-(k+1)qP ϕ -(k+1)P q(ϕ-P ϕ ) ≤ C ′ 2 .

(9.9) By Lemma 9.1.3, one has e 0≤j≤k qϕ(x j )-(k+1)qP ϕ -(k+1)P q(ϕ-P ϕ ) = e 0≤j≤k qϕ(x j )-(k+1) log(2+e q ) , So that

log C ′ 1 k + 1 ≤ 1 k log(µ q(ϕ-P ϕ ) [i]) - # {0 ≤ i ≤ k : x i = 1} k + 1 + log(2 + e q ) ≤ log C ′ 2 k + 1 .
In particular it holds that dim(µ q(ϕ-P ϕ ) , x) = log(2 + e q ) ⇔ lim inf Proof. Note that K 0 1/3 contains the middle-third Cantor set K 1/3 , so that dim H (K 0 1/3 ) ≥ log 2 log 3 .

k→+∞ # {0 ≤ i ≤ k : x i = 1} k + 1 = 0,
We prove that the converse inequality also holds true.

Set s 0 = log 2 log 3

and let ε > 0. Assume that H s 0 +ε (K 0 1/3 ) = +∞. Let q ∈ R small enough so that log(2 + e q ) ≤ log 2 + log 3 2 ε. Let A ⊂ K 0 1/3 be a compact set such that H s 0 +ε (A) ≥ 6. For every y ∈ A, there exists x = (x n ) n∈N verifying π(x) = y and dim(µ q(ϕ-P ϕ ) , x) = log(2 + e q ). Consider k y large enough so that, for every k ≥ k y , µ q(ϕ-P ϕ ) ([x 0 , ..., x k-1 ]) ≥ e -k(log(2+e -q )+ ε log 3

2

) .

Let k A be large enough so that H s 0 +ε ( A := {y ∈ A : k y ≤ k A }) ≥ 4.

Fix 0 < t < 3 -k A and let k ∈ N be large enough so that 3

-k ≤ t. Set Λ( A, k) = ¶ [x 0 , ..., x k-1 ] : π((x n ) n∈N ) ∈ A and µ q(ϕ-P ϕ ) ([x 0 , ..., x k-1 ]) ≥ e -k(log(2+e -q )+ ε log 3 2 ) © . Note that ¶ f i ([0, 1]) : [i] ∈ Λ( A, k) © is a covering of A by balls of diameter smaller than 3 -k ≤ t and [i]∈Λ( ‹ A,k) |f i ([0, 1])| s 0 +ε = [i]∈Λ( ‹ A,k) 3 -k(s 0 +ε) = [i]∈Λ( ‹ A,k) e -k log 3(s 0 +ε) = [i]∈Λ( ‹ A,k) e -k(log 2+ε log 3) ≤ [i]∈Λ( ‹ A,k)
e -k(log(2+e q )+ 1 2 ε log 3)

≤ [i]∈Λ( ‹ A,k) µ q(ϕ-P ϕ ) ([i]) ≤ 1.
This implies that 4 ≤ H s 0 +ε ( A) ≤ 1, which is absurd. One must have then H s 0 +ε (K 0 1/3 ) < +∞. Since this holds for any ε > 0, dim H (K 0 1/3 ) ≤ s 0 = log 2 log 3 .

9.2 Proof of Theorem 9.0.3

Let us rst notice that by Proposition 9.1.5 and (9.1), one has

dim H lim sup B∈Q B δ ∩ K (0) 1/3 ≤ min ß 1 δ , log 2 log 3 ™ .
In particular, this proves that the expected upper-bound in Theorem 9.0.3 stands.

Before showing that the lower-bound also holds, let us start with some facts and remarks.

Remark 9.2.1. ∞ (K 1/3 ) > 0 (this is well known and easily follows from the fact that K 1/3 carries an Alfhors regular measure of dimension log 2 log 3 ).

Moreover, for every

k ∈ N, setting K k = {f i ([0, 1])} i∈{0,2} k , one has 1 = I∈K k |I| log 2 log 3 . (9.10) • For every k ∈ N, let us dene Ω k = I∈K k • I. (9.11) Since H log 2 log 3 ∞ ( I∈K k I \ Ω k ) = 0 (it is a nite set of points), it follows from (9.10) that CH log 2 log 3 ∞ (Ω k ) ≤ H log 2 log 3 ∞ (K 1/3 ) ≤ H log 2 log 3 ∞ I∈K k I = H log 2 log 3 ∞ (Ω k ) ≤ 1, (9.12) with C = H log 2 log 3 ∞ (K 1/3 ) > 0. • If n ∈ N and T ∈ T n = [ k 3 n , k+1 3 n [, 0 ≤ k ≤ 3 n -1 is a triadic interval of generation n, denote by F T the canonical homothetical mapping which sends [0, 1] to T . For every I ∈ J∈K k F T (J), for all n ≤ k ′ ≤ n + k and all x = (x n ) n∈N ∈ Σ such that π(x) ∈ I, one has S n+k ′ ϕ(x) n + k ′ = S n ϕ(x) n × n n + k ′ . (9.13)
We are now ready to nish the proof of Theorem 9.0.3.

Let (ε q ) q∈N be a positive sequence such that lim q→∞ ε q = 0. One constructs a family {U p,q,δ } δ≥1, q∈N, 0≤p≤q of open sets as follows: Let δ ≥ 1, q ∈ N * and 0 ≤ p ≤ q. Consider T a triadic interval of generation n q = ⌊log 3 (q 2δ )⌋ + 1 included in B( p q , q -2δ ). Let N p,q,δ be large enough to ensure that for any x ∈ Σ verifying π(x) ∈ T , one has S nq ϕ(x) n q × n q n q + N p,q,δ ≤ ε q .

(9.14)

Set

U p,q,δ = F T (Ω N p,q,δ ).

(9.15) By (9.13) and (9.14), for all x ∈ U p,q,δ one has S nq+Np,q ϕ(x) n q + N p,q ≤ ε q .

This implies that

Q≥1 q≥Q 0≤p≤q U p,q,δ ⊂ K (0) 1/3 ∩ Q≥1 q≥Q 0≤p≤q B( p q , q -2δ ).
Since U p,q,δ is an homothetic copy of Ω N p,q,δ (see (9.15)), by (9.12), due to the choice of n q there exists C > 0 independent of p, q and δ such that 3) .

H log 2 log 3 ∞ (U p,q,δ ) ≥ Cq -2δ log(2) log ( 
(9.16)

For 1 ≤ δ ≤ log 3 log 2 , it follows that H log 2 log 3 ∞ (U p,q,δ ) ≥ Cq -2 = L B p q , q -2 . (9.17) For δ ≥ log 3 log 2 , by concavity of x → x log 3 δ log 2 , H 1 δ ∞ (U p,q,δ ) ≥ (H log 2 log 3 ∞ (U p,q,δ )) log 3 δ log 2 ≥ C(q -2δ log 2 log 3 ) log 3 
δ log 2 = CL B p q , q -2 .

(9.18) By Theorem 7.1.2 applied to Q = (B( p q , 1 q 2 )) q∈N * ,0≤p≤q , U = (U p,q,δ ) q∈N * ,0≤p≤q and the Lebesgue measure, there exists a gauge function ζ : R + → R + satisfying lim r→0 + log ζ(r) log r = s 0 and

H ζ ( lim sup q∈N * ,0≤p≤q
U p,q,δ ) > 0.

Since lim sup q∈N * ,0≤p≤q B( p q , 1 q 2δ ) ⊂ {x : ξ

(x) ≥ 2δ}, for δ ∈ [1, log 3 log 2 [ one gets dim H {x : ξ(x) ≥ 2δ} ∩ K (0) 1/3 = log 2 log 3 . For δ ≥ log 3 log 2 , observe that {x : ξ(x) = 2δ} = lim sup q∈N * ,0≤p≤q B( p q , 1 q 2δ ) \ δ ′ >δ lim sup q∈N * ,0≤p≤q B( p q , 1 q 2δ ′ ). Since for every δ ′ > δ, dim H lim sup q∈N * ,0≤p≤q B( p q , 1 q 2δ ′ )∩K (0) 1 3 ≤ 1 δ ′ and lim r→0 + log ζ(r) log r = 1 δ
, one also has

H ζ ({x : ξ(x) = 2δ} ∩ K (0) 1/3 ) = H ζ lim sup q∈N * ,0≤p≤q B( p q , 1 q 2δ ) \ δ ′ >δ lim sup q∈N * ,0≤p≤q B( p q , 1 q 2δ ′ ) ∩ K (0) 1/3 > 0 so that dim H {x : ξ(x) = 2δ} ∩ K (0) 1/3 = 1 δ .
Chapter 10

Study of weakly conformal shrinking targets

In this chapter, the Hausdor dimension of weakly conformal shrinking targets are investigated in a general frame.

Recall the notation of Denition 4.3.19. Our main result is the following. 

* B(f i (x 0 ), |f i (K)| δ ) = K. 2. For any x 0 / ∈ K, for any δ > 1, lim sup i∈Λ * B(f i (x 0 ), |f i (K)| δ ) = ∅. (10.1) 
3. Assume in addition that dim H (K) = dim(S), then for any 

x 0 ∈ K, for any δ ≥ 1, dim H Ç lim sup i∈Λ * B(f i (x 0 ), |f i (K)| δ ) å = dim H (K) δ . ( 10 
x ∈ R, g 1 (x) = 1 4 x, g 2 (x) = 1 4 (x + 1)
172 CHAPTER 10: WEAKLY CONFORMAL SHRINKING TARGETS and g 3 (x) = 1 4 (x + t) where t ∈ R \ Q. Then Theorem 10.0.1 applies to S = {g 1 , g 2 , g 3 }.

Let m ≥ 2 and 0 < c 1 < ... < c m < 1 m real numbers satisfying c 1 + ... + c m ≤ 1.

Then for Lebesgue-almost every choice of a 1 , ...., a m ∈ R, Theorem 10.0.1 applies to the IFS S = {f 1 , ..., f m } where, for every

1 ≤ i ≤ m, f i (x) = c i x + a i .
It is relatively easy to see that Theorem 10.0.1 cannot hold when dim(S) > d. One could take for instance so many similarities so that for every

1 ≤ δ ≤ 2, dim H Ç lim sup i∈Λ * B(f i (x 0 ), |f i (K)| δ ) å = d.
To be more explicit, x t a badly approximable (by rationals) number and dene ϕ 1 

(x) = x 2 , ϕ 2 (x) = x+1 2 , ϕ 3 (x) = x+t 2 , ϕ 4 (x) = x+1+t
* B(f i (x 0 ), |f i (K)| δ ) = K.
Proof. Note rst that, since K is the (compact) attractor of S,

lim sup i∈Λ * B(f i (x 0 ), |f i (K)| δ ) ⊂ K.
We now prove the converse inclusion. 

i = (i 1 , ..., i n ) ∈ Λ * , ||f i (x 0 ) -f i (y)|| ≤ D(c)c n ||f ′ i (y)|| • ||x 0 -y||. ( 10 
||f i (x 0 ) -f i (y)|| ≤ max z∈K d(x 0 , z)D(c) 2 c 2n |f i (K)|. (10.5) 
Recall that there exist 0 < t 1 < t 2 so that, uniformly on n and i ∈ Λ n ,

t 1 ≤ log ||f i || n ≤ t 2 . Let ε > 0, taking c = e t 1 ε 4 
and writing κ(S, ε,

x 0 ) = max z∈K d(x, z)D(c) 2 , one gets ||f i (x 0 ) -f i (y)|| ≤ κ(S, ε, x 0 )|f i (K)| 1-ε 2 .
(10.6)

In particular, since |f i (K)| → 0, for n large enough, for any i ∈ Λ n ,

f i (K) ⊂ B(f i (x 0 ), |f i (K)| 1-ε ). Recalling that K = i∈Λ n f i (K), one concludes that K ⊂ lim sup i∈Λ * B(f i (x 0 ), |f i (K)| 1-ε ).
Remark 10.1.2. In the case where S = {f 1 , ..., f m } is a self-similar system, a more precise statement can be given. Denote 0 < c 1 , ..., c m < 1 the contracting ratio of respectively f 1 , ..., f m . In the self-similar case, for any z ∈ K and any 

i ∈ Λ * d(f i (x 0 ), f i (z)) = c i d(x, z) ≤ c i max y∈K d(y, x 0 ). Writing C(x 0 , S) = max y∈K d(y, x), this implies that f i (K) ⊂ B(f i (x 0 ), C(x 0 , S)c i ) and K = lim sup i∈Λ * B(f i (x 0 ), C(x 0 , S)c i ).
* B(f i (x 0 ), |f i (K)| δ ) = ∅.
Proof. We proceed by contradiction. Assume that lim sup i∈Λ * B(f

i (x 0 ), |f i (K)| δ ) ̸ = ∅. Consider x ∈ lim sup i∈Λ * B(f i (x 0 ), |f i (K)| δ ).
Fix n ≥ 1 and assume that there

exists i n = (i 1 , ..., i n ) ∈ Λ n such that the set S [i n ] = j = (j 1 , ..., j l ) ∈ [(i 1 , ..., i n )] ∩ k≥n Λ k such that x ∈ B(f j (x 0 ), |f j (K)| δ )
is innite. Then there must exist a letter i n+1 ∈ {1, ..., m} such that the set

S (i n ,i n+1 ) = j = (j 1 , ..., j l ) ∈ [(i 1 , ..., i n , i n+1 )] ∩ k≥n Λ k such that x ∈ B(f j (x 0 ), |f j (K)| δ )
is also innite.

Proceeding recursively, one constructs a word i = (i 1 , ...) ∈ Λ N such that for an innite number of integers k ∈ N,

x ∈ B(f i 1 • ... • f i k (x 0 ), |f i (K)| δ ). This implies that x = lim k→+∞ f i 1 • ... • f i k (x 0 ), so that for any n ∈ N, x = f i 1 • ... • f in ( lim k→+∞ f i n+1 • ... • f i n+k (x 0 )). Writing z n = lim k→+∞ f i n+1 • ... • f i n+k (x 0 ) ∈ K, one has x = f i 1 • ... • f in (z n ). It follows that, for any n ∈ N, d(f i 1 • ... • f in (x 0 ), x) = d(f i 1 • ... • f in (x 0 ), f i 1 • ... • f in (z n )).
(10.7) Write i = (i 1 , ..., i n ) and let ε > 0 be small enough so that 1 ≤ 1+ε 1-ε < δ. By (4.35) and (4.36) applied with θ = ε,

d(f i (x 0 ), f i (z n )) ≥ C -1 ε ||f ′ i (x)|| 1+ε ||x -z n || ≥ d(x, K) C -1 ε Ä |K| C ε ä-1-ε 1-ε |f i (K)| 1+ε 1-ε which implies that, for n large enough, d(f i (x 0 ), x) > |f i (K)| δ . (10.8)
This is a contradiction.

The following section is dedicated to the proof of item (3) of Theorem The result from Feng-Hu we wish to modify is Proposition 10.3.1 ). Let m ≥ 2 be an integer and S = {f 1 , ..., f m } a weakly conformal IFS. For any ε > 0, there exists n ε ∈ N as well as words i

1 , ..., i nε ∈ Λ * such for any 1 ≤ j < j ′ ≤ n ε , f i j (K) ∩ f i j ′ (K) = ∅, writing S ε = ¶ f i 1 , ..., f i nε ©
, there exists a probability vector P ε = (p 1 , ..., p nε ) such that the weakly conformal measure µ ε associated with P ε and S ε satises dim H (µ ε ) ≥ dim H (K) -ε.

Let us remark that, due to the the rst item, the IFS S ε = {T 1 , ..., T nε } satises the SSC and might not have K as attractor. We wish to modify this proposition so that the attractor of the IFS S ε can be taken equal to K.

Note also that in Proposition 10.3.1, because S ε satises the SSC, the dimension of a weakly conformal measure associated with S ε depends continuously on the choice of the probability vector. Moreover, writing ν ε the canonical measure on the coding associated with µ ε , then the Lyapunov exponent λ νε > 0 (see Denition 4.3.12) satises for ν ε

-almost (x n ) n∈N that lim n→+∞ log |T x 1 • ... • T xn (K)| n = -λ νε .
As announced above, one proves the following modied version of Proposition 10. 

s -ε 0 . Proof. Fix ε = ε 0 2 > 0. Consider S ε = ¶ f i 1 , ..., f i nε © , P ε , µ ε as in Theorem 10.3.1 and 0 < ε ′ < 1 5nεm • min 1≤i≤m p i . Set    g j = f j for 1 ≤ j ≤ m g j = f i j-m for m + 1 ≤ j ≤ n ε + m .
Also set S ε = {g 1 , ..., g m+nε } and note that S ε has attractor K. Denote by P ε,ε ′ = ( p 1 , ..., p m+nε ) the probability vector dened as

   p j = ε ′ for 1 ≤ j ≤ m p j = p j-m -m nε ε ′ .
Let µ ε,ε ′ be the weakly conformal measure associated with S ε and P ε,ε ′ . Applying Theorem 4.3.15 to µ ε,ε ′ , let us prove that the corresponding h (see second item of Theorem 4.3.15) tends to 0 as ε ′ tends to 0.

Set Θ = {1, ..., n ε + m} and Θ * = k>0 Θ k . Let us denote by π Θ the canonical projection of Θ N on K. One endows Σ Θ = Θ N with the metric d Θ dened for any x = (x n ), y = (y n ) ∈ Σ Θ by d Θ (x, y) = e -min{i∈N:x i ̸ =y i } and d Θ (x, x) = 0.

(10.9) Let us remark that the metric d allows to dene on Θ N the Hausdor dimension and the Packing dimension in a similar way than on R d .

Let ν ε,ε ′ ∈ M(Θ N ) be the Bernoulli product verifying ν ε,ε ′ • π -1 Θ = µ ε,ε ′ .
By the strong law of large numbers, for every

x = (x n ) n∈N in a set Σ Θ of ν ε,ε ′ -full measure, there exists N x ∈ N such that for any n ≥ N x , any 1 ≤ i ≤ n ε + m, # {1 ≤ j ≤ n : x j = i} n -p i ≤ ε ′ . (10.10) For n ∈ N, write A n = ¶ x ∈ Σ Θ : N x ≤ n © .
By Theorem 4.3.15, there exists N such that, using the notation involved,

µ ε,ε ′ Å B N = ß y : dim H (µ π -1 Θ ({y}) ε,ε ′ ) = h and µ π -1 Θ ({y}) ε,ε ′ (A N ) ≥ 1 2 ™ã ≥ 1 2 .
We x such an N .

The following lemma is useful to estimate the number of cylinders of generation n which intersects A N .

Lemma 10.

3.4. Consider N ∈ N, y ∈ K and x = (x n ) n∈N , x = ( x n ) n∈N ∈ π -1 Θ ({y}). Assume that for every 1 ≤ k ≤ N , x k or x k ∈ {1, ..., m} ⇒ x k = x k .
Then, for every 0 ≤ j ≤ N such that x j ≥ m + 1, one also has

x j = x j .
Proof. We proceed by contradiction. Suppose that the claim is not true and let x j 0 ≥ m + 1 be such for any 1 ≤ i < j 0 , x i = x i and

x j 0 ̸ = x j 0 . Write z = lim k→+∞ g x j 0 +1 • g x j 0 +2 • ... • g x j 0 +k (0) 
and z = lim k→+∞ g x j 0 +1 • g x j 0 +2 • ...g x j 0 +k (0).

Then, recalling that x, x ∈ π -1 Θ ({y}),

g x 1 • ... • g x j 0 -1 • g x j 0 (z) = g x 0 • ... • g x j 0 -1 • g x j 0 ( z) = y, which implies that g x j 0 (z) = g x j 0 ( z).
Recalling that the system {g m+1 , ..., g m+Nε } satises the SSC, one also has g x j 0 (K) ∩ g x j 0 (K) = ∅ which yields a contradiction.

Continuing the proof of the proposition, we note that, by (10.10), for 

every y ∈ B N , x = (x n ) n∈N ∈ π -1 θ ({y}) ∩ A N and N ′ ≥ N, # {1 ≤ k ≤ N ′ : x k ∈ {1, ..., m}} ≤ 2mε ′ N ′ . ( 10 
# ¶ i ∈ Θ N ′ : [i] ∩ A N ∩ π -1 Θ ({y}) ̸ = ∅ © ≤ ⌊2mε ′ N ′ ⌋+1 k=0 Ç N ′ k å m k . Since ε ′ < 1 5m so that 2mε ′ N ′ < N ′ 2 , # ¶ i ∈ Θ N ′ : [i] ∩ A N ∩ π -1 Θ ({y}) ̸ = ∅ © ≤ (⌊2mε ′ N ′ ⌋ + 2) Ç N ′ ⌊2mε ′ N ′ ⌋ + 1 å m ⌊2mε ′ N ′ ⌋+1 ,
Using Stierling formula, provided that ε ′ was chosen small enough at start and N (so N ′ too) large enough, there exists a constant C > 0 such that

# ¶ i ∈ Θ N ′ : [i] ∩ A N ∩ π -1 Θ ({y}) ̸ = ∅ © ≤ C(⌊2mε ′ N ′ ⌋ + 2) (N ′ ) ⌊2mε ′ N ′ ⌋+1 • m ⌊2mε ′ N ′ ⌋+1 Ä ⌊2mε ′ N ′ ⌋+1 e ä ⌊2mε ′ N ′ ⌋+1 2π(⌊2mε ′ N ′ ⌋ + 1) ≤ C(⌊2mε ′ N ′ ⌋ + 2) Ç mN ′ 2mε ′ N ′ e å ⌊2mε ′ N ′ ⌋+1 1 2π(⌊2mε ′ N ′ ⌋ + 1) ≤ C(⌊2mε ′ N ′ ⌋ + 2) e 2ε ′ 3mN ′ ε ′ = C(⌊2mε ′ N ′ ⌋ + 2)e 3mN ′ ε ′ log e 2ε ′ ≤ e √ ε ′ N ′ . (10.12) 
Since (10.12) holds for any N ′ ≥ N , one obtains that

dim P (A N ∩ π -1 Θ ({y})) ≤ √ ε ′ .
Recalling that, by denition of B N , the measure µ π

-1 θ ({y}) is h-exact dimen- sional, that µ π -1 θ ({y}) π -1 θ ({y}) = 1 and that µ π -1 θ ({y}) A N ≥ 1 2 , one has h = inf ¶ dim H (A), A Borel set satisfying µ π -1 θ ({y}) (A) > 0 © ≤ dim P (A N ∩ π -1 Θ ({y})) ≤ √ ε ′ .
By Remark 4.3.13 and the fourth item of Theorem 4.3.15, there exists a constant C depending on the system S such that

dim H (µ ε,ε ′ ) ≥ dim H (ν ε,ε ′ ) λ ν ε,ε ′ -C √ ε ′ , (10.13) 
where λ ν ε,ε ′ is given by Denition 4.3.12. Also, by Corollary 4.3.14, for any Bernoulli product ν ∈ M(Θ) associated with a probability vector P ∈ (0, 1) nε+m , the Lyapunov exponent depends continuously on the vector P . Recalling that Θ N is endowed with the metric given by (10.9), it is also classical that dim H (ν) 

→0 P ε,ε ′ = {0} m × P ε , lim ε ′ →0 dim H (ν ε,ε ′ ) λ ν ε,ε ′ = dim H (ν ε ) λ νε . ( 10 
z ∈ K, P (dim(S)) = lim k→+∞ 1 k log i∈Λ k |f i (K)| dim(S) = 0. Fix x 0 ∈ K, δ ≥ 1 and write L(δ) = lim sup i∈Λ * B(f i (x 0 ), |f i (K)| δ ).
Let us rst show that dim H (L(δ)) ≤ dim(S) δ .

Let α and β be as in (4.37) . If one must change the constants α and β, one can assume that there exists k 0 ∈ N such that for every k ≥ k 0 and every

i ∈ Λ k α k ≤ |f i (K)| ≤ β k .
Recalling the denition of Λ (k) (4.25), for every i =

(i 1 , ..., i n ) ∈ Λ (k) , one has α n ≤ 2 -k ≤ β n-1 ⇒ n ≤ k -log(2) log(β) + 1 ≤ 2k -log(2) log(β)
In particular every integer p ∈ N and every (i n+1 , ..., i n+p ) ∈ Λ p also verifying that (i 1 , ..; , i n+p ) ∈ Λ (k) must satisfy 

β n+p-1 ≥ α n ⇒ p ≤ n × ( log α log β -1) + 1 ≤ 2n( log α log β -1) ≤ k × C(α, β).
i = (i 1 , ..., i n ) ∈ Λ (k) , γ -1 ε ′ e -k ε 2 log 2 |f i (K)| dim(S) ≤ ν ε ′ ([i]) ≤ γ ϵ ′ e k ε 2 log 2 |f i (K)| dim(S) .
(10.16)

For any δ ≥ 1,

i∈∈ k≥k 0 Λ k |f i (K)| δ dim(S)+ε δ = i=(i 1 ,...,in)∈ k≥k 0 Λ (k) |f i (K)| dim(S)+ε ≤ k≥k 0 i=(i 1 ,...,in)∈Λ (k) 2 -kε γ ε ′ e k ε 2 log 2 ν ε ′ ([i]) (10.17) ≤ γ ε ′ C(α, β) k≥k 0 k2 -k ε 2 < +∞. (10.18) As a consequence, dim H (lim sup i∈Λ * B(f i (x 0 ), |f i (K)| δ )) ≤ dim(S) + ε δ ,
and letting ε tend to 0 establishes the upper-bound. Now we prove that dim H (L(δ)) ≥ dim(S) δ .

Let ε > 0 and µ ε be a weakly conformal measure as in Proposition 10.3.2. For any k ∈ N, the balls {B(f i (x 0 ), |f i (K)|)} i∈Λ k are centered on K = supp(µ) and their limsup covers K. This implies that µ ε (lim sup i∈Λ

* B(f i (x 0 ), |f i (K)|)) = 1. Applying Theorem 7.3.1, one gets s -ε δ ≤ dim H Ç lim sup i∈Λ * B f i (x 0 ), |f i (K)| δ å .
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Letting ε → 0 nishes the proof.

10.4 Some complements in the case of self-similar IFS Some cases of self-similar shrinking targets with overlaps have recently been studied in [START_REF] Baker | Intrinsic Diophantine approximation for overlapping iterated function systems[END_REF], where the following theorem is proved.

Theorem 10.4.1 ([3]). Let m ≥ 2 and S = {f 1 , ..., f m } be a system of m

similarities of contraction ratio 0 < c 1 , ..., c m < 1. Let µ ∈ M(R d ) be the self-similar measure solution to µ(•) = m i=1 c dim(S) i µ(f -1 i (•)). (10.19) 
Let g : N → (0, +∞) be a non increasing mapping. Assume that one of the following condition is satised:

   m i=1 -c dim(S) i log(c dim(S) i ) < -2 log m i=1 c 2 dim(S) i or c 1 = ... = c m . (10.20) If k∈N i∈Λ k k |f i (K)|g(k) dim(S) = +∞, then µ lim sup i∈Λ * B(f i (x), |f i (K)|g(|i|)) = 1.
Thanks to Theorem 7.1.2 we are able to complete Theorem 10.4.1.

Theorem 10.4.2 ( D. [START_REF] Daviaud | Dimension of weakly conformal iterated function system shrinking targets with overlaps[END_REF]). Let g : N → (0, +∞) be a non increasing mapping, dene .21) Assume that (10.20) is satised and that dim(µ) = dim(S). 

s g = inf    s ≥ 0 : k≥0 i∈Λ k k (|f i (K)|g(k)) s < +∞    . ( 10 
Then      dim H lim sup i∈Λ * B Å f i (x), |f i (K)|g(|i|) δsg dim(S) ã = dim(S) if 0 < δ ≤ 1 dim H lim sup i∈Λ * B Å f i (x), |f i (K)|g(|i|) δsg dim(S) ã = dim(S) δ if δ ≥ 1. ( 10 
(|f i (K))|g(k)) δ sg dim(S) dim(S)+ε δ ≤ k≥0 i∈Λ k k |f i (K))|g(k) sg dim(S)+ε dim(S)
< +∞.

This proves that dim H lim sup i∈Λ * B f i (x), |f i (K))|g(|i| δ sg dim(S) ) ≤ dim(S)+ε δ .
Letting ε → 0 concludes this part of the proof.

Now we prove that

dim H lim sup

i∈Λ * B f i (x), (|f i (K))|g(|i|)) δ sg dim(S) ≥ dim(S) δ .
Let ε > 0. Note that by (10.21)

k≥0 i∈Λ k k |f i (K))|g(k) sg 1+ε = +∞.
By Theorem 10.4.1, for any ε > 0,

µ lim sup i∈Λ * B (f i (x), (|f i (K)) |g(|i|)) sg (1+ε) dim(S) ) = 1. Using Theorem 7.3.1, one gets dim H lim sup i∈Λ * B f i (x), (|f i (K))|g(|i|)) δ sg dim(S) ≥ dim H (µ) (1 + ε)δ . Letting ε → 0, one has dim H lim sup i∈Λ * B f i (x), (|f i (K))|g(|i|)) δ sg dim(S)
≥ dim(S) δ and this ends the proof.

to R. The Wasserstein distance between µ and ν is

d(µ, ν) = sup ß f dµ -f dν : f ∈ Lip 1 (R d ) ™ . (11.3) It is known that (M(R d ), d) is complete [39]. Let us dene Φ : M(R d ) → M(R d ) by Φ(χ) = m i=1 q i χ(f -1 i (•)) + q m+1 η(•). (11.4) For any χ ∈ M(R d ) and f ∈ Lip 1 (R d ). One has f dΦ(χ) = m i=1 q i f • f i dχ + q m+1 f dη = m i=1 q i c i c -1 i f • f i dχ + q m+1 f dη. Note that, for any 1 ≤ i ≤ m, c -1 i f • f i is 1-Lipshitz. In particular, for any χ ′ ∈ M(R d ), one has f dΦ(χ) -f dΦ(χ ′ ) = m i=1 q i c i Å c -1 i f • f i dχ -c -1 i f • f i dχ ′ ã ≤ m i=1 q i c i c -1 i f • f i dχ -c -1 i f • f i dχ ′ ≤ m i=1 q i c i d(χ, χ ′ ).
Taking the supremum over f ∈ Lip 1 (R d ),

d(Φ(χ), Φ(χ ′ )) ≤ m i=1 q i c i d(χ, χ ′ ). (11.5) 
Since m i=1 q i c i < 1, Φ is contractive and admits a unique xed point. Let us prove that the measure χ given by (11.2) is indeed this xed point: and let us introduce the probability vector (p 1 , ..., p m ) = (c -t 1 q 1 , ..., c -t m q m ).

Φ(χ) = m i=1 q i χ(f -1 i (•)) + q m+1 η(•) = m i=1 q i q m+1 i∈Λ * q i f -1 i • η(f -1 i (•)) + q m+1 η(•) = q m+1 Ñ i∈ k≥1 q i η(f -1 i (•)) + η é = q m+1 i∈Λ * q i η(f -1 i (•)) = χ.
When η = δ x 0 , where x 0 ∈ R d and δ x denotes the Dirac measure at x, the measure χ given by (11.2) is

χ(•) = q m+1 i∈Λ * q i δ f i (x 0 ) = q m+1 i∈Λ * c t i p i δ f i (x 0 ) . (11.7) 
Measures which can be written as the right-hand side of (11.7) are called discrete self-similar measures and their multifractral properties of comparable measures have been studied in depth by Barral and Seuret in [START_REF] Barral | The multifractal nature of heterogeneous sums of dirac masses[END_REF][START_REF] Barral | The singularity spectrum of the inverse of cookiecutters[END_REF]. In the following sections, one makes good use of the techniques they developed to study the multifractal spectrum and the scaling function of χ.

In order to cover the largest class of self-similar measure we can, our result will be stated for IFS satisfying the AWSC (Denition 4. 

χ(•) = C i∈Λ * c t i p i δ f i (x 0 ) ,
is a probability measure.

Dene q c = min {q : τ µ (q) + qt = 0} and λ c = τ ′ µ (q c ) . Then, recalling Let (p 1 , ..., p m ) ∈ (0, 1) m be a probability vector, x 0 ∈ K, t > 0 and χ ∈ M(R d ) dened by

χ(•) = C i∈Λ * c t i p i δ f i (x 0 ) , (11.13) 
where C > 0 is chosen so that χ is a probability measure. In this section we study the scaling function τ χ associated with χ. For the sake of simplicity (and without loss of generality), in the two following sections, one assumes that |K| = 1. In particular, for any k ∈ N,

Λ (k) = i = (i 1 , ..., i n ) ∈ Λ * : c i ≤ 2 -k < c (i 1 ,.
..,i n-1 ) .

Let us dene µ the self-similar measure associated with S and (p 1 , ..., p m ) (i.e satisfying (4.22)). Recalling (4.78), dene q c = min ß q : T (q) q = -t ™ . (11.14) Let us prove that the equation T (q) q = -t admits a unique solution. It is known (e.g [START_REF] Falconer | Fractal geometry[END_REF], p 287) that T is C ∞ and strictly concave as soon as there exists ≤ i ̸ = j ≤ m such that log c i log p i ̸ = log c j log p j .

In that case, setting f (q) = T (q) + tq, one has f ′ (q) = T ′ (q) + t.

For q < 0 and q > 1, one has respectively T (q) < 0 and T (q) > 0, so that T (q) q > 0 and the equation T (q) q = -t does not admit a solution in (-∞, 0] ∪ [1, +∞). For q ∈ (0, 1), one has T (q) < 0 and T is increasing so that f ′ (q) > 0. Since f (0) = -dim(S) and f (1) = t, the equation f (q) = 0 admits a unique solution.
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In the case where one has for every 1 ≤ i ̸ = j ≤ m, , log c i log p i = log c j log p j = α, it is easily veried that α = dim(S) and T (q) = dim(S)q -dim(S) so that T (q) q = -t admits a unique solution as well.

We now estimates the mapping τ χ . The estimates are splitted into 3 lemmas.

Lemma 11.2.1. For every q > q c , one has τ χ (q) = 0.

(11.15)

Proof. Write p i = c t i p i and for every q ∈ R,

M (q) = m i=1 p q i . (11.16) 
Recalling (4.78), one has M (q) = 1 ⇔ m i=1 c tq i p q i = 1 ⇔ tq = -T (q) ⇔ t = -T (q) q , so that M (q) < 1 ⇔ q > q c

where q c = inf ¶ q : T (q) q = -t © .

Let us x q > q c .

It is known that if a measure η ∈ M(R d ) satises η({x}) > 0 for some x ∈ R d , then τ η (q) = 0 for every q ≥ 1. For the sake of completeness, the proof is recalled here. Fix η ∈ M(R d ), x ∈ R d as above, q ≥ 1 and n ∈ N. Write D n (x) ∈ D n the dyadic cube of generation n ∈ N containing x. One has 1 ≥ D∈Dn η(D) q ≥ η(D n (x)) q ≥ (η({x})) q , (11.17 We now deal with the case q c < q < 1. For every n ∈ N, one has 1 ≤ D∈Dn χ(D) q = C q D∈Dn Ñ i:f i (x 0 )∈D c t i p i é q ≤ C q D∈Dn i:f i (x 0 )∈D p q i (11.18)

= C q i∈Λ * p q i = C q k≥0 M (q) k = C q 1 1 -M (q) .

Equations (11.17) and (11.18) together prove that, for any q > q c , τ χ (q) = lim n→+∞ -log( D∈Dn χ(D) q ) n = 0.

Lemma 11.2.2. For every 0 ≤ q ≤ q c , one has T (q) + qt ≤ τ χ (q) ≤ τ µ (q) + qt. (11.19) Proof. We rst prove that T (q) + qt ≤ τ χ (q). Consider 0 ≤ q ≤ q c , for any n ∈ N, D 0 ∈ D n , one has χ(D 0 ) q ≤ Ñ i∈ k≥n Λ (k) :f i (x 0 )∈D 0

c t i p i é q + Ñ i∈ 0≤k<n Λ (k) :f i (x 0 )∈D 0 c t i p i é q ≤ k≥n 2 -kqt Ñ D ′ ∈Dn,D ′ ∩D 0 ̸ =∅ µ(D ′ ) é q + n-1 k=0 i∈Λ (k) :f i (x 0 )∈D 0 c tq i p q i ≤ 2 -qnt 1 -2 -qt × Ñ D ′ ∈Dn,D ′ ∩D 0 ̸ =∅ µ(D ′ ) é q + n-1 k=0 i∈Λ (k) :f i (x 0 )∈D 0 c tq+T (q) i c -T (q) i p q i ≤ 2 -qnt 1 -2 -qt × Ñ D ′ ∈Dn,D ′ ∩D 0 ̸ =∅ µ(D ′ ) é q +
n-1 k=0 i∈Λ (k) :f i (x 0 )∈D 0 2 -(k-1)(tq+T (q)) c -T (q) i p q i . 2 -(k-1)(tq+T (q)) c -T (q) i p q i ≤ 2 -qnt × 2 dq+d 1 -2 -qt D∈Dn µ(D) q + 2 • 2 -n(qt+T (q)) , (11.22) Recalling Remark 4.3.32 items (1) and [START_REF] Barral | Sums of dirac masses and conditioned ubiquity[END_REF], there exists a constant C > 0 such that for ever k ∈ N i∈Λ (k)

2 -(k-1)(tq+T (q)) c -T (q) i p q i ≤ C

i∈ Λ (k) c -T (q) i p q i = C2 -(k-1)(tq+T (q)) .

This implies

D∈Dn χ(D) q ≤ 2 -qnt × 2 dq+d 1 -2; -(k -1)(tq + T (q)) ot2 -n(qt+T (q)) , which proves that τ χ (q) ≥ inf {τ µ (q) + qt, T (q) + qt}. Since for 0 ≤ q ≤ 1, it always holds that T (q) ≤ τ µ (q), one gets τ χ (q) ≥ T (q) + qt.

Let us now prove that τ χ (q) ≤ τ µ (q) + qt: D∈Dn D ′ ∈Dn,D ′ ∩D̸ =∅ χ(D ′ ) q ≥ 1 2d

• 2 -qt(n-1) D∈Dn µ(D) q and τ χ (q) ≤ τ µ (q) + qt.

Lemma 11.2.3. For every q < 0, τ χ (q) ≥ τ µ (q) + qt.

Proof. Let us x q < 0. Remark that, for any n ∈ N, D 0 ∈ D n , one has µ(D 0 ) ≤ i∈Λ (n) ,f i (K)∩D 0 ̸ =∅ p i ≤ µ(2D 0 ). (11.24)

Equation (11.24) shows that τ χ (q) ≥ τ µ (q) + t. for q > q c , τ χ (q) = 0 for 0 ≤ q < q c , T (q) + qt ≤ τ χ (q) ≤ τ µ (q) + qt for q ≤ 0 τ χ (q) ≥ τ µ (q) + qt. The case 0 ≤ q ≤ q c should depend in general on the Diohantine properties of the sequence (f i (x 0 )) i∈Λ * (so in particular on the separation condition 11.3 PROOF OF PROPOSITION 11.1.6 193 satised by S) as the computation of τ χ involves the high-scale distribution of those points.

Recall that, by Theorem 4.3.39, if S satises the AWSC and has no exact overlaps, then for 0 < q < q c , recalling (4.78), one has T (q) = τ µ (q). As a consequence, τ µ is dierentiable at q c and the following corollary holds. Corollary 11.2.6. Assume that S satises the AWSC and has no exact overlaps. Then, writing λ c = τ ′ µ (q c ), one has

         for h ≤ λ c + t τ * χ (h) = hq c for λ c + t ≤ h ≤ τ ′ µ (0 + ) + t τ * χ (h) = τ * µ (h -t) for h ≥ τ ′ µ (0 + ) + t τ * χ (h) ≤ τ * µ (h -t).
(11.27)

In the following section, we compute the multifractal spectrum of χ when x 0 / ∈ K.

11.3 Proof of Proposition 11.1.6

Let m ≥ 2 and S = {f 1 , ..., f m } be a self-similar IFS and K the attractor of S.

Let us x (p 1 , ..., p m ) be a probability vector, x 0 / ∈ K and t > 0. We set χ(•) = i∈Λ * p i c t i δ f i (x 0 ) .

(11.28)

The proof of Proposition 11.1.6 readily follows from the following lemma.

Lemma 11.3.1. There exists C ′ > 1 such that for any ε > 0, there exists r ε > 0 such that for any 0 < r < r ε , recalling Remark 10.1.2 and the notation involved and writing κ(x 0 , S) = max {C(x 0 , S), 1} , one has C ′ -1 r t µ B x, 1 2κ(x 0 , S) r ≤ χ(B(x, r)) Let us recall that by Remark 10.1.2, f i (K) ⊂ B(f i (x 0 ), κ(x 0 , S)c i ) and that κ(x 0 , S) ≥ 1. Since ε > 0 is arbitrary, for any x ∈ K, one has dim(χ, x) = dim(µ, x) + t.

This proves that E h χ = E h-t µ .

Multifractal analysis of χ under AWSC

In this section, the system is assumed to verify the AWSC (see Denition The multifractal analysis of χ relies on the following proposition.

Proposition 11.4.1. Let x ∈ K and r > 0. There exists C ′ > 0 depending on the system S such that χ(B(x, r)) can be written as χ(B(x, r)) = T 1 (x, r) + T 2 (x, r), (11.34) where C ′ -1 r t µ(B(x, r

)) ≤T 1 (x, r) ≤ C ′ r t µ(B(x, 2r)) max i∈Λ * :c i ≥r,f i (x 0 )∈B(x,r) c t i p i ≤T 2 (x, r) ≤ O(log 2 (r)) max i∈Λ * :c i ≥r,f i (x 0 )∈B(x,r) c t i p i . (11.35) Proof. Let x ∈ K and r > 0.

χ(B(x, r)) = k≥0 i∈Λ (k) :f i (x 0 )∈B(x,r)

c t i p i = k≥ log(r)
-log(2) +2 i∈Λ (k) :f i (x 0 )∈B(x,r)

c t i p i + k< log(r)
-log(2) +2 i∈Λ (k) :f i (x 0 )∈B(x,r) c t i p i = T 1 (x, r) + T 2 (x, r).

On one hand 2 -(k+1)t µ(B(x, r/2))

≥ C ′ r t µ(B(x, r/2)).

We now estimates T As a consequence, writing for h ≥ 0,

F h = {x : h(x) = h} , (11.38) 
One has

E h χ = (F h \ h ′ <h F h ′ ) h ′ ≥h E h ′ -t µ E h-t µ h ′ >h F h ′ (11.39) = F h \ h ′ <h F h ′ ∪ E h ′ -t µ E h-t µ h ′ >h F h ′ .
Note that this decomposition is exact, so that the multifractal analysis only relies on estimating the dimension of the terms involved.

11.4.1 Estimates for D χ for h ≥ λ c + t

In the following sections, in order to avoid any confusion with the Dirac measure, denoted by δ • and the degree of points with respect to an approximating family, one will denote by the letter ∆ the degree of approximation. More precisely, the degree of a point x ∈ K with respect to {B(f i (x 0 ), c i )} i∈Λ * is dened as follows.

Denition 11.4.3. Let x ∈ [0, 1] d . Dene ∆ x , the degree of approximation ∆ x of x with respect to the family (B(f i (x 0 ), 2c i )) k∈N,i∈Λ k as

∆ x = sup ® ∆ ≥ 1 : x ∈ lim sup k→+∞,i∈Λ k B(f i (x 0 ), (2c i ) ∆ ) := B ∆ i
´.

Let us now deal with the case h ≥ λ c + t in Theorem 11.1.4. Note rst that the general estimates given in this case in item (2) readily follows from the following remark. Remark 11.4.4. As a straightforward consequence of (11.39) Proof. By Theorem 4.3.39, it is known that for q > 0, τ µ (q) = T (q). Hence, by Corollary 11.2.6, for h ≥ λ c , one has

τ * χ (h) ≤ τ * µ (h -t), which implies dim H (E h χ ) ≤ τ * µ (h -t).
Let us establish the converse inequality.

We recall the following results. Letting ε ′ → 0 proves the claim.

We now prove that for any sequence of balls (B n ) n∈N with |B n | → 0, any ∆ > 1 and any ε > 0,

‹ E h-t µ ∩ lim sup n→+∞ B ∆ n ⊂ lim sup n∈N: |Bn| h-t+ε ≤µ(Bn)≤|Bn| h-t-ε B ∆ n .
(11.41)

Consider x ∈ ‹ E h-t µ such that ∆ x > 1.
Fix ε and ε 0 < ε. There exists r x > 0, small enough so that ( 1 5 r x ) ε 0 ≥ r ε x and for every 0 < r ≤ r x , r h-t+ε 0 ≤ µ(B(x, r)) ≤ r h-t-ε 0 .

In particular, for any n ∈ N large enough so that x ∈ B ∆x n , B ∆x As a consequence of (11.41), one has for any ∆ > 1, Recalling that dim H (m h-t ) = τ * µ (h -t),

‹ E h-t µ ∩ lim sup n→+∞ B ∆ n < τ * µ (h -t),
D χ (h) = dim H (E h χ ) ≥ dim H ( ‹ E h-t µ ∩ {∆ x = 1}) ≥ τ * µ (h -t).
This concludes the proof of Proposition 11.4.5.

Remark 11.4.7. Remember that for any q > 0, τ µ (q) = T (q) so that τ µ is dierentiable on (λ c , dim(S)). It is proved in [START_REF] Feng | Gibbs properties of self-conformal measures and the multifractal formalism[END_REF] that in this case, the measure m h exists for any h ∈ [λ c , dim(S)), so that D χ (h + t) = τ * µ (h). Proof. The proof of Proposition 11.4.8 is divided in three steps:

1. We prove that, recalling the denition of the Legendre transform of a mapping (4.20), q c = max Let λ ≥ 0 be a real number. One has

T * (λ) λ + t = τ * µ (λ) λ -T (qc) qc = q c • τ * µ (λ) q c λ -T (q c ) ≤ q c .
Moreover, recalling that λ c = T ′ (q c ),

τ * µ (λ c ) λ c -T (qc) qc = q c • τ * µ (λ c ) q c λ c -T (q c ) = q c .
We τ * µ (T ′ (0)) T ′ (0) + t × T ′ (0) + t T ′ (0) + t -3ε ≤ (1 + ε 0 )(h + ε 0 )q c . (11.46) Since µ satises the multifractal formalism at any h ′ ∈ [0, T ′ (0)], combining (11.43), (11.44), (11.46) and (11.45) and letting ε 0 → 0, one obtains

B ∆ i i ≤ max 0≤k≤⌊ T ′ (0)-h+t ε ⌋+1 (h + ε 0 ) τ * µ ((k -1)ε + h -t) + ε 0 (k -1)ε + h ≤ (1 + ε 0 )(h + ε 0 )q c .
dim H F h ∪ E h-t µ ≤ hq c ,
which was the claim of item 2.

Let us now establish item 3 : 

(ε i ) i∈Λ * ∈ R + N such that ε i → 0 and ¶ B i : c λc+ε i i ≤ p i ≤ c λc-ε i i © i∈Λ * is µ c -a.c
F h ′ ∪ E h ′ -t µ = hq c ≥ τ * µ (h -t), so that dim H (E h χ ) = dim H F h \ h ′ <h F h ′ ∪ E h ′ -t µ E h-t µ h ′ >h F h ′ = hq c . (11.50) 
In particular, Corollary 11.4.9 together with Corollary 11.2.6 implies that χ satises the multifractal formalism for 0 ≤ h ≤ λ c + t. Moreover Remark
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 2 INTRODUCTION EN FRANÇAIS 2.1 Théorèmes d'ubiquité 2.1.1 Un historique des théorèmes d'ubiquité Fixons d ∈ N * et munissons R d de la norme ||(x 1 , ..., x d )|| ∞ = max 1≤i≤d |x i | (le choix de la norme n'importe en fait pas du tout pour les résultats de ce manuscrit).

  On dit que B est faiblement redondante si lim k→+∞ log N k (B) k = 0. Heuristiquement, une suite de boules (B n ) n∈N est faiblement redondante si pour chaque k ∈ N, chaque boule B n satisfaisant |B n | ≈ 2 -k intersecte moins de 2 o(k) autres boules B n ′ satisfaisant aussi |B n ′ | ≈ 2 -k . Une remarque importante est que la faible redondance est une hypothèse naturelle pour étudier l'optimalité des théorèmes d'ubiquité et qu'elle porte uniquement sur la famille de boules (il n'y pas d'hypothèse impliquant une mesure). La conséquence techniquement importante de cette propriété est que, pour tout mesure µ ∈ M([0, 1] d ) et tout ε > 0, on a n∈N |B n | ε µ(B n ) < +∞.

Corollaire 2 . 1 . 11 . 1 2 2 .

 211112 Soit µ ∈ M(R d ) une mesure faiblement conforme et (B n ) n∈N une suite de boules centrées sur supp(µ) vériant µ(lim sup n→+∞ B n ) = 1 et |B n | → 0. Alors: 1. Il existe une sous-suite (B ϕ(n) ) n∈N vériant µ(lim sup n→+∞ B ϕ(n) ) = 1 et, pour tout δ ≥ 1Si de plus supp(µ) = [0, 1] d , alors il existe une sous-suite (B ϕ(n) ) n∈N vériant µ(lim sup n→+∞ B ϕ(n) ) = 1 et, pour tout (τ 1 , ..., τ d ) ∈ [1, +∞) d , dim H (lim sup n→+∞ R ϕ(n) ) = min 1≤i≤d dim(µ) + 1≤i≤k τ k -τ i τ k ,où R n est donné par (2.2).
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 142 INTRODUCTION EN FRANÇAIS 2.3 Cibles rétrécissantes faiblement conformes Soit m ≥ 2 et S = {f 1 , ..., f m } un système faiblement conforme et notons Λ = {1, .., m}, Λ * = k≥0 Λ k et K son attracteur. Etant donné x ∈ K, on s'intéresse à l'ensemble des éléments approximables par l'orbite de x sous S, c'est-à-dire, aux ensembles de la forme W (x, ψ) = lim sup i∈Λ *

c 1 =

 1 ... = c m . Soit ψ : Λ * → R de la forme ψ(i) = |f i (K)|g(|i|), où g : N → R est positive et décroissante. Si n≥0 ng(n) dim(S) = +∞, alors, pour tout x ∈ K, µ(W (x, ψ)) = 1.Le Théorème 2.3.3 combiné au Théorème 2.1.6 nous permet de prouver le résultat suivant:

. 13 )

 13 Alors, sous les hypothèses du Théorème 2.3.3, si de plus dim(µ) = dim(S),pour tout δ ≥ 1, on a dim H lim sup i∈Λ * B(f i (x), (|f i (K)|g(|i|)) δsg dim(S) ) = dim(S) δ .
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 3 INTRODUCTIONTheorem 3.1.3). Let (B n ) n→+∞ be a sequence of balls of [0, 1] d verifying |B n | → 0, (U n ) n∈N a sequence of opens sets satisfying for every n ∈ N, U n ⊂ B n and 0 ≤ s ≤ d a real number.

CHAPTER 3 :

 3 INTRODUCTIONThen, one hasdim H (lim sup n→+∞ U n ) ≥ min {s, dim H (µ)} . (3.5)In Chapter 7, the result we show is actually slightly more general than Theorem 3.1.6.

CHAPTER 3 :

 3 INTRODUCTIONLet us introduce the following denition, which is equivalent to the notion of weakly redundant sequence of balls introduced byBarral and Seuret (Denition 8.1.1). Denition 3.1.10. Let B = (B n ) n∈N be a sequence of balls verifying |B n | → 0.

  Let ψ : Λ * → R be a mapping of the form ψ(i) = |f i (K)|g(|i|) where g : N → R is positive and decreasing. If n≥0 ng(n) dim(S) = +∞, then for every x ∈ K, µ(W (x, ψ)) = 1. Theorem 3.3.3 combined with Theorem 3.1.6 allows to prove the following result:

Remark 3 . 4 . 4 .

 344 Some examples of self-similar measures satisfying the hypotheses of Theorem 3.4.3 are given in Corollary 4.3.27.

Lemma 4 . 1 . 4 .

 414 For any 0 < v ≤ 1 there exists a constant γ v,d > 0 depending only on v and the dimension d only, satisfying the following: if a family of balls B = (B n ) n∈N and a ball B are such that

Denition 4 . 2 . 2 .

 422 Let ζ : R + → R + . Suppose that ζ is increasing in a neighborhood of 0 and ζ(0) = 0. The Hausdor outer measure at scale t ∈ (0, +∞] associated with ζ of a set E is dened by

  where the sets Ω k are non empty open sets. It is proved that any G δ dense set E has full packing dimension. In particular, when one studies sets of the form lim sup n→+∞ U n , with U n is an open set, denoting K = lim sup n→+∞ U n

(4. 20 )

 20 As said above, there are numerous examples of measures satisfying the multifractal formalism, among which a large class of self-similar measures (see Theorem 4.3.39), Gibbs measures, .... The basic properties of τ µ are summarized in the following proposition.

(4. 21 ) 56 CHAPTER 4 :

 21564 COVERING LEMMAS, HAUSDORFF MEASURES AND IFSLet us recall the following result.

( 4 . 26 )

 426 Denition 4.3.3. The IFS S is said to satisfy: 1. the strong separation condition (SSC) when for any 1

3 .

 3 the strong open set condition (SOSC) when S satises the open set condition and the involved open set V veries V ∩ K ̸ = ∅.

( 4 .

 4 [START_REF] Daviaud | An anisotropic inhomogeneous ubiquity theorem[END_REF], one has

(4. 30 )Lemma 4 . 3 . 6 .

 30436 Let us also mention the following comparable result when S satises the SOSC. Assume that S satises SOSC and call V the involved open set. Then for any µ ∈ M(R d ) solution to(4.22), µ(V ) = 1 and, for any Borel set A ⊂ V , any i ∈ Λ * , one has

Example 4 . 3 . 9 .

 439 If the maps f 1 , ..., f m are ane similarities or conformal maps (i.e verify ||f ′ (x)(y)|| = ||f ′ (x)|| • ||y|| for every x ∈ U, y ∈ R d ), the system S = {f 1 , ..., f m } is weakly conformal. In this case the IFS is called self-similar or self-conformal and the measures satisfying(4.22) 

(4. 36 ) 62 CHAPTER 4 :

 36624 COVERING LEMMAS, HAUSDORFF MEASURES AND IFS

  x) = λ(y)dν(y) := λ ν .

(4. 39 )

 39 Remark 4.3.13. By(4.37), the Lyapunov exponent are uniformly (with respect to weakly conformal measures) bounded by above and below by some positive constant.

(

  see Proposition 10.3.2). Corollary 4.3.14. Let ((p (k) 1 , ..., p

(4. 41 )

 41 denoting λ the Lyapunov exponent associated with ν ( (4.39)), µ is exactdimensional (Denition 4.14) and

(4. 48 )

 48 By Lemma 4.3.10, one has

(4. 50 )

 50 Combining (4.48), (4.49) and (4.50), one obtains

Lemma 4 . 3 .

 43 17 together with (4.44) concludes the proof of Proposition 4.3.16.

Denition 4 . 3 . 19 .

 4319 Let m ≥ 2 be an integer. Let S = {f 1 , ..., f m } be C 1 weakly conformal IFS and K its attractor.

  ) 2sp c 2skp = e pk2s•( log D(c) k +log c) ≤ e ε 2 pk .

(4. 60 )

 60 Let us now prove Proposition 4.3.22. 
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 744 Start by setting β = max 1≤i≤m c i and θ = min i=1≤m c i . (4.71) COVERING LEMMAS, HAUSDORFF MEASURES AND IFS

Remark 4 . 3 .

 43 32. (1): Its is easily veried that one can equivalently use the new sets Λ (k) or Λ (k) in the denition of AWSC (see Denition 4.3.3 and Proposition 4.3.28).

2

 2 Dimension of self-similar measures Let us start with the following remark. Remark 4.3.34. If the mappings f 1 , ..., f m are ane similarities, then the conformality dimension is called the similarity dimension. It is the unique real number s solution to m i=1 c s i = 1.

Theorem 4 . 3 .

 43 [START_REF] Feng | Gibbs properties of self-conformal measures and the multifractal formalism[END_REF]. Let S = {f 1 , ..., f m } be a self-similar IFS. Denote by K its attractor and 0 < c 1 , ..., c m < 1 the contracting ratios of f 1 , ..., f m .

  .87) Let us also remark, that, since, for any D ̸ = ‹ D ∈ D k , |D| = | ‹ D| = 2 -k and D ∩ ‹ D = ∅, by Lemma 4.1.4, for any i ∈ Λ (k) , f i (K) intersects at most γ d dyadic cubes of generation k.

  (4.88) and (4.89), one obtains

  neous and anisoptropic mass transference principles, is the specic case where the sequence (B n ) n∈N veries µ lim sup n→+∞ B n = 1 and µ is a geometric realization on the dyadic cubes of a quasi-Bernoulli measure fully supported on [0, 1] d . In this case, it is possible, given 1 ≤ τ 1 ≤ ... ≤ τ d , to establish a lower-bound for lim sup n→+∞ R n , where R n ⊂ B n is a rectangle of length-sidesd i=1 |B n | τ i .82 CHAPTER 5: ANISOTROPIC UBIQUITY FOR QUASI-BERNOULLI MEASURES Let us start by recalling what a geometric realization of a quasi-Bernoulli measure is. Denition 5.1.1. Let µ ∈ P([0, 1] d ). For D ∈ B([0, 1] d ) such that µ(D) > 0, dene µ D = µ | D µ(D) . When D is a closed dyadic subcube of [0, 1] d , T D : D → [0, 1] d stands for the canonical ane mapping which sends D onto [0, 1] d . In addition, when µ(D) > 0 one denes µ D = T D µ D ∈ P([0, 1] d ).

(5. 8 ) 1 µ∩ 1 µ∩

 811 Doing so for every x ∈ E α,ε 1 ,ρ lim sup n→+∞ B n provides us with a Besicovith covering F 1 = L x : x ∈ E α,ε 1 ,ρ lim sup n→+∞ B n such that for every x, the ball L x is naturally associated with an integer n x ≥ 1 such that x ∈ B nx and |L x | = 8r nx . Also, the shrunk rectangle R nx veries R nx ⊂ B nx ⊂ L x . This is illustrated by Figure5.1.

Figure 5 . 1 :

 51 Figure 5.1: Representation of B np , |L p | = 8r np and R np .

( 1 )

 1 k are naturally associated the ball B n (1) k and the rectangle R n (1) k

Figure 5 . 2 :

 52 Figure 5.2: Representation of the lacunarity of C(R) inside R.

  of rectangles of second generation by setting

5. 2

 2 PROOF OF THEOREM 5.1.5 91 If R ∈ K 1 , D ∈ C(R) and 1 ≤ k ≤ N D , using the second assertion of (5.18) and the fact that the ball L

  e. v > τ d ): Recall that r τ d n C is the length of the smallest side of the rectangle R n C . Since C has side length less than r τ d n C , and the side length of the cubes of C(R n C ) is larger than or equal to C -1 d r τ d n C , one deduces that C intersects at most C d of those cubes, where C d depends on d only. For all D ∈ C(R n C ), such that C ∩ D ̸ = ∅, denote by R (D) k 1 , ..., R (D) k N C,D the rectangles included in D that intersect C. • Suppose rst that 20r ≤ 2 -p(D) ρ p C +1 (where D ∈ D p(D) ): Note that 96 CHAPTER 5: ANISOTROPIC UBIQUITY FOR QUASI-BERNOULLI MEASURES for all 1

  Since one has 10C ⊂ B(x, 20r) and 20r 2 -p(D) ≤ ρ p C +1 , by (5.22) we get µ(10C) ≤ µ(B(x, 20r)) ≤ C µ µ(D) 20r 2 -p(D) α-ε p C +1 . (5.33) It follows from (5.28), (5.30) and (5.33) that

  of p(D), one has r τ d n C ≤ C d 2 -p(D) . Consequently, C is covered by at most ⌊(C d /20ρ p C +1 ) + 1⌋ d cubes of side length 20ρ p C +1 2 -p(D) . Denoting these cubes by D 1 , . . . , D k , and recalling (5.21), the previous estimate yields

  1.1 can be replaced by 1 if innite subsequences of balls are authorized. In fact Denition 6.1.1 ensures 6.1 LIMSUP AND µ-A.C PROPERTY 101 that any open set can be covered (with respect to the µ-measure) by disjoint balls B n of arbitrary large indices. Lemma 6.1.3. Let µ ∈ M(R d ) and B = (B n := B(x n , r n )) n∈N be a µ-a.c sequence of balls of R d with lim n→+∞ r n = 0.

( 6 . 2 )

 62 so that F fullls the conditions of Lemma 6.1.3.An easy consequence is the following. Corollary 6.1.4. Let µ ∈ M(R d ) and (B n ) n∈N be a µ-a.c sequence of balls.

  Since y ∈ vB ny , one has B(y, (1 -v)r ny ) ⊂ B ny ⊂ B(y, (1 + v)r ny ) ⊂ B(y, 2r ny ), (6.3) and the family F = B(y, (1 -v)r ny ) : y ∈ E covers E by balls centered on E.

104CHAPTER 6 :

 6 µ-A.C SEQUENCES OF BALLS Notice the following facts:

2 .

 2 There exists C > 1 such that for any open ball B centered on supp(µ), there exists a sub-sequence (L B,n ) n∈N of (B n ) n∈N satisfying: for every n ∈ N, L B,n ⊂ B, +∞ n=0 µ(L B,n ) = +∞, 6.1 LIMSUP AND µ-A.C PROPERTY 105 for innitely many Q ∈ N, 6.1.2, one can provide a version of this theorem valid for any probability measure on R d . Proposition 6.1.6 (D. [24]). Let (B n ) n∈N be a sequence of closed balls satisfying |B n | → 0 and µ ∈ M(R d ) be a probability measure. (A): Assume that (B n ) n∈N is µ-a.c. Then there exists C > 1 such that for any open ball B, there exists a sub-sequence of (B n ) n∈N , (L n,B ) n∈N satisfying, for any n ∈ N, L B,n ⊂ B, n≥0 µ(L B,n ) = +∞ (6.5)

Lemma 6 . 1 . 7 .

 617 Let E ⊂ R d . Assume that there exists 0 < c < 1 such that for any open ball B, µ(E ∩ B) ≥ cµ(B). Then µ(E) = 1. Proof. Assume that µ(E) < 1 and set A = R d \ E. By hypothesis, µ(A) > 0. By Lemma 4.1.5, there exists an open ball B such that µ(B) > 0 and µ(B ∩ A) ≥ (1 -

2 . 4

 24 are now established in the case of general open sets.

For any 1

 1 ≤ i ≤ Q d,1 and any ball L ∈ F i , denote by G L the set of balls L n intersecting L. Since E ⊂ n∈N L n and µ(E) = µ(Ω), one has E ∩L ⊂ B∈G L B and µ(E ∩ L) = µ(L).By Denition 6.2.1 and Proposition 6.2.6, this implies that

Theorem 7 . 1 . 2 .

 712 Let B = (B n ) n∈N be a sequence of closed balls of R d such that |B n | → 0 and U = (U n ) n∈N a sequence of open sets such that U n ⊂ B n for all n ∈ N. Then, for every µ ∈ M(R d ) such that min {s(µ, B, U), dim H (µ)} > 0 there exists a gauge function ζ : R + → R + such that lim r→0 + log ζ(r) log r = min {s(µ, B, U), dim H (µ)} and H ζ (lim sup n→+∞ U n ) > 0.

Corollary 7 . 1 . 4 .

 714 Let µ ∈ M(R d ) and B = (B n ) n∈N be a µ-a.c. sequence of closed balls of R d . Let U = (U n ) n∈N be a sequence of open sets such that U n ⊂ B n for all n ∈ N, and 0≤ s ≤ dim H (µ). If lim sup n→+∞ log H µ,s ∞ (Un) log µ(Bn) ≤ 1, then s(µ, B, U) ≥ s, so that dim H (lim sup n→+∞ U n ) ≥ s.In the classical case where the sets U n are shrunk balls of the form B δ n 7.2 PROOF OF THEOREM 7.1.2 AND COROLLARY 7.1.6 119 (with δ ≥ 1), it is convenient to consider the following quantity: Denition 7.1.5. Let µ ∈ M(R d ), ε > 0 and B = (B n ) n∈N be a sequence of balls of R d . For every δ ≥ 1, set

Denition 7 . 2 . 4 .

 724 Let β ≥ α ≥ 0 be real numbers, m ∈ M(R d ), and ε, ρ > 0 two positive real numbers. Then dene

.10) 122 CHAPTER 7 :.Denition 7 . 2 . 5 .

 1227725 HETEROGENEOUS UBIQUITY THEOREMNotice that, for every 0 < ρ < ρ ′ , one has E[α,β],ρ ′ ,ε m ⊂ E [α,β],ρ,ε m Let β ≥ α ≥ 0 be real numbers, m ∈ M(R d ), and ε > 0.

(7. 13 )

 13 By Lemma 4.1.5 (and the notations therein) applied to ‹ E [α,β],ρ ε ′ ,ε m , there exists

(7. 14 )

 14 Finally for ρ = min {ρ ε ′ , ρε ′ }, by Denition 7.2.4 and (4.3), one has ( ‹ E [α,β],ρ ε ′ ,ε m

Corollary 7 . 2 . 7 .) = 1 . 1

 72711 For every m ∈ M(R d ), for α = dim H (m) and β = dim H (m), for any ε > 0, one has m(E [α,β],ε m Construction of the Cantor set and the measure Recall that µ is a probability measure on R d , and that B = (B n := B(x n , r n )) n∈N is a µ-a.c sequence of balls of R d with lim n→+∞ r n = 0. Fix U = (U n ) n∈N a sequence of open sets satisfying U n ⊂ B n for every n ∈ N. Set α = dim H (µ), and assume that min {s(µ, B, U), α} > 0. Our goal is to construct a gauge function ζ : R + → R + such that lim r→0 + log ζ(r) log r = min {s(µ, B, U), dim H (µ)} as well as η ∈ M(R d ) supported on lim sup n→∞ U n such that for all r ∈ (0, 1] and x ∈ R d one has η(B(x, r)) ≤ ζ(2r).

(7. 25 )

 25 This allows us to apply Proposition 4.2.6: there exists a Borel probability measure m s 2 E U

7. 2

 2 PROOF OF THEOREM 7.1.2 AND COROLLARY 7.1.6

1 .

 1 Case 1: If |A| ≥ |U |, then by (7.40)η(A) ≤ η(U ) ≤ |U | sp-εp ≤ ζ(|A|).

( 7 . 45 ) 2 .

 7452 Case 2: If |A| < |U | and A intersects at least two balls of G U : Observe that when A intersects two balls B and B ′ of G U , since by item (3) of the recurrence scheme 3B ∩ 3B ′ = ∅, one necessarily has (by Lemma 5.2.1) B ∪ B ′ ⊂ 5A. Hence, B∈G U :B∩A̸ =∅ B ⊂ 5A and by (7.35) and (7.34),

2 :

 2 |A| ≤ |B|: Denote by k B the integer such that its center belongs to E

7. 3

 3 .0.2 Mass transference principle from ball to rectangle One emphasizes again that S is not assumed to verify any separation condition. Theorem 7.1.2 and Theorem 6.2.4 actually allows to deal with more general sets than shrunk balls. For instance, assume that, under the hypothesis of Theorem 7.3.1, the open sets U n ⊂ B n are shrunk rectangles inside of B n of length-sides

7. 1 .

 1 2 is sharp is key to ensure that the point of view adopted is relevant. Given µ ∈ M(R d ), in Section 8.[START_REF] Allen | Dyadic Approximation in the Middle-Third Cantor Set[END_REF] we investigate which properties one can ask a µ-a.c sequence of balls (B n ) n∈N to verify, up to an extraction keeping the sub-sequence µ-a.c (so that, in view of Theorem 7.1.2, the sequence extracted and the original one can not be distinguished). Using those results, in Section 8.3, one proves that, for weakly conformal measures, it is possible to establish a companion theorem to Theorem 7.1.4, which states that dim H lim sup n→+∞ U n ≤ s as soon as H µ,s∞ (U n ) ≥ µ(B n ) for n largeenough and the sequence (B n ) n∈N is weakly redundant (Denition 8.1.1). This property can indeed be obtained by extraction of µ-a.c sub-sequences. As corollaries, one proves that the bounds stated in Theorem 7.3.1 and Theorem 7.3.6 are sharp in a strong way: we may have taken too many balls to begin with, but if one only considers the balls needed to ensure that the sub-sequence is µ-a.c, then the Hausdor dimension of the limsup set associated with the corresponding U n 's is precisely the bound given in those theorems. In the rst section of this chapter, one states an extraction theorem of sub-sequences of balls which veries the µ-a.c property (or some condition that are related ). In the second section, an upper-bound theorem related to Theorem 7.1.2 is stated in the case of weakly conformal measures. The extraction theorem is also applied to show that the bound provided by Theorem 7.3.1 and Theorem 7.3.6 are indeed optimal. We rst start by a small section which study the basic properties of weakly redundant sequences of balls. Then in Section 8.2, we establish the main extraction theorem, Theorem 8.2.1. Section 8.3 is dedicated to the study of the optimality of the bound provided by Theorem 7.3.1 and 7.3.6. 8.1 Weakly redundant sequences of balls Let us start by dening weakly redundant sequences of balls. Denition 8.1.1. Let B = (B n =: B(x n , r n )) n∈N be a family of balls in R d . Denote by T k

Proposition 8 . 1 . 2 .

 812 Let B = (B n ) n∈N be a sequence of balls of R d . Then the following assertions are equivalent: 1. The sequence B is weakly redundant. 2. The sequence B satises lim n→+∞ log max B∈Tn(B) # {B ′ ∈ T n (B) :

8. 2 . 2

 22 Extraction of sub-sequences of balls with conditioned measure Let µ ∈ M(R d ) and (B n ) n∈N be an µ-a.c sequence of balls. This part aims to understand what condition can be assumed about the measure of the ball of the sequence (B n ) n∈N in general under the µ-a.c condition. More precisely, item (2) of Theorem 8.2.1 is proved.

  Consider a weakly redundant sequence of balls (B n ) n∈N of [0, 1] d and a sequence of open sets (U n ) n∈N , U n ⊂ B n satisfying:

K

  and B = (B n ) n∈N be a sequence of balls centered in K satisfying |B n | → 0 and µ lim sup n→+∞ B n = 1. Then by Theorem 7.3.1,

CHAPTER 9 :

 9 EXAMPLE MIDDLE-THIRD CANTOR SET Denition 9.0.1. Let ϕ : Λ N → {0, 1} dened by

Remark 9 .then

 9 0.4. Given an integer b ∈ N and dening ξ b (x) = sup ® δ ≥ 1 : x ∈ lim sup n∈N,0≤k≤b n -1 Theorem 9.0.3 holds with ξ b instead of ξ. In Section 9.1, (9.3) is established and Section 9.2 is dedicated to the proof of Theorem 9.0

5 .

 5 One has dim H (K 0 1/3 ) = log 2 log 3 .

Theorem 10 .0. 1 .

 101 Let m ≥ 2 be an integer. Let S = {f 1 , ..., f m } be a C 1 weakly conformal IFS of an open set U with attractor K. Then: 1. For any x 0 ∈ U, for any δ < 1, lim sup i∈Λ

2

 2 and Λ = {1, ..., 4}. Then it is proved in[START_REF] Baker | Intrinsic Diophantine approximation for overlapping iterated function systems[END_REF] Theorem 2.10] that for everyx 0 ∈ [0, 1 + t], dim H (lim sup i∈Λ * B(ϕ i (x 0 ), 1 4 |i| )) = 1.The next three sections, Sections 10.1, 10.2 and 10.3 are respectively dedicated to the proof of item (1), (2) and (3) of Theorem 10.0.1. The last section, Section 10.4 gives some complement when the system is self-similar. 10.1 Proof of item (1) of Theorem 10.0.1 Write s = dim H (K). The notations of the proof of Theorem 6.2.4 are adopted in this section. Lemma 10.1.1. For any x 0 ∈ U and any δ < 1, lim sup i∈Λ

10.0. 1 . 10 . 3 1 10. 3 . 1

 1103131 Proof of item (3) of Theorem 10.0.Variational principle and C 1 weakly conformal IFS A modied version of a proposition of Feng and Hu used in the proof of their variational principle [37, Theorem 2.13] is needed to prove item (3) of Theorem 10.0.1. The following sub-section is dedicated to this modication.

( 4 . 2 and 11 . 4

 42114 [START_REF] Bugeaud | Intersective sets and Diophantine approximation[END_REF]):In the following section we prove Proposition 11.1.6 and in Section 11.Theorem 11.1.4 is proved. More precisely, we rst study the scaling function τ χ (Section 11.2) and then we study the multifractal spectrum of χ.11.2 Scaling function of discrete self-similar measuresLet (p 1 , ..., p m ) ∈ (0, 1) m , χ ∈ M(R d ) given by(11.13) and µ the self-similar measure associated with (p 1 , ..., p m ) and S.

(11. 20 )

 20 It also holds thatÑ D ′ ∈Dn,D ′ ∩D 0 ̸ =∅ µ(D ′ ) é q ≤ (2d) q max D ′ ∈Dn,D ′ ∩D 0 ̸ =∅ µ(D ′ ) q ≤ 2 dq D ′ ∈Dn,D ′ ∩D 0 ̸ =∅ µ(D ′ ) q . (11.21) 11.2 SCALING FUNCTION OF DISCRETE SELF-SIMILAR MEASURES 191 Combining (11.20) and (11.21), recalling (4.25) and (4.78), one gets D∈Dnχ(D) q ≤ 2 -qnt × 2 dq 1 -2 -qt × D ′ ∈Dn,D ′ ∩D̸ =∅ µ(D ′ ) q + n-1 k=0 i∈Λ(k) 

First, since 0 ≥ 2

 02 ≤ q ≤ 1, notice that D∈Dn D ′ ∈Dn,D ′ ∩D̸ =∅ χ(D ′ ) q ≥ D∈Dn D ′ ∈Dn,D ′ ∩D̸ =∅ χ(D ′ ) q .Moreover, for every D ∈ D n and every i ∈Λ (n) such that f i (K) ∩ D ̸ = ∅, one has f i (x 0 ) ∈ f i (K) ⊂ D ′ ∈Dn,D ′ ∩D̸ =∅ D ′ so that, recalling (4.25), D ′ ∈Dn,D ′ ∩D̸ =∅ χ(D ′ ) q ≥ i∈Λ (n) : f i (K)∩D̸ =∅ p i c t iq -qt(n-1) µ(D) q .

(11. 23 )D∈Dn 2 -

 232 In particular, if ‹ D D 0 denotes a dyadic cube included in 1 2 D 0 of generation n = n + 2, one has D∈Dn χ(D) q ≤ ntq µ( ‹ D D ) q ≤ 2 -ntq D ′ ∈D n µ(D ′ ) q .

(11. 25 )

 25 We summarize in the following proposition our results about the scaling function τ χ . Proposition 11.2.4. The scaling function τ χ (Denition 4.19) veries

(11. 26 )

 26 Remark 11.2.5. Note that Proposition 11.2.4 holds without any separation assumption about S.

  x, r)) ≤ C ′ r t µ(B(x, 2κ(x 0 , S)r))

(11. 30 ). 194 CHAPTER 11 :≤ r 1 1+ε.-log( 2 ) 2 )

 3019411122 Proof. By Lemma 10.2.1, for any ε > 0, there exists only a nite set I ⊂ Λ * for which for any i ∈ I,x ∈ B(f i (x 0 ), c 1+ε i )DISCRETE SELF-SIMILAR MEASURES For r < min i∈I c 1+ε i , no word i ∈ Λ * satises that f i (x 0 ) ∈ B(x, r) and c i > r 1 1+ε.In particular, if f i (x 0 ) ∈ B(x, r), then c i This implies that, recalling (4.25), for any 0 < r small enough, one hasχ(B(x, r)) = k≥0 i∈Λ (k) :f i (x 0 )∈B(x,r) +2 i∈Λ (k) :f i (x 0 )∈B(x,r) +2 i∈Λ (k) :f i (x 0 )∈B(x,r)c t i p i = T 1 (x, r) + T 2 (x, r).

T 1 2 -

 12 (x, r) = k≥ log(r) -log(2) +2 i∈Λ (k) :f i (x 0 )∈B(x,r)i∈Λ (k) :f i (x 0 )∈B(x,r) kt µ(B(x, 2κ(c 0 , S)r)) ≤ Cr t µ(B(x, 2κ(c 0 , S)r)).

-log( 2 ) 2 - 2 -

 222 +2 i∈Λ (k) :f i (x 0 )∈B(x,r) (k+1)t i∈Λ (k) :f i (x 0 )∈B(x,r) (k+1)t µ B x, r 2κ(x 0 , S) ≥ C ′ r t µ B x, r 2κ(x 0 , S).

(11. 32 ) 1 1+ε) 2 )

 3212 Moreover, since for each1 1+ε log(r) -log(2) ≤ k ≤ -log(r) log(2) + 2 and each i ∈ Λ (k)11.4 MULTIFRACTAL ANALYSIS OF χ UNDER AWSC 195 satisfying f i (K) ∩ B(x, r) ̸ = ∅, one has f i (K) ⊂ B(x, 2κ(x 0 , S)r and we get i∈Λ (k) :f i (K)∩B(x,r)̸ =∅ c t i p i ≤ r t 1+ε µ(B(x, 2κ(x 0 , +2 i∈Λ (k) :f i (x 0 )∈B(x,r)

(11. 33 )

 33 Equation(11.31) together with(11.32) and(11.33) nishes the proof of Lemma 11.3.1. We derive now Proposition 11.1.6 from Lemma 11.3.1. By Lemma 11.3.1, for any x ∈ K and any ε > 0

4. 3 . 3 )

 33 with no exact overlaps (i.e, for any i ̸ = j ∈ Λ * , f i ̸ = f j ). As a simple consequence of the AWSC (4.28) and Proposition 8.1.2, the sequence (B(f i (x 0 ), r i )) i∈Λ * is weakly redundant (Denition 8.1.1).

T 1 -log 2 + 2 , 2 -

 1222 (x, r) = k≥ log(r) -log(2) +2 i∈Λ (k) :f i (x 0 )∈B(x,r) i∈Λ (k) :f i (x 0 )∈B(x,r) p i . Note that for every k ≥ log(r) -log(2) + 2, |f i (K)| ≤ r 2 so that i∈Λ (k) ,f i (K)∩B(x,r)̸ =∅ f i (K) ⊂ B(x, 2r).By Lemma (4.3.33), this implies that there exists constants C, C > 0 such thatT 1 (x, r) ≤ C k≥ log(r) -log(2) +22 -kt µ(B(x, 2r)) ≤ Cr t µ(B(x, 2r)).On the other hand, by Lemma 4.3.33 again, one also has that for, every k ≥ 11.4 MULTIFRACTAL ANALYSIS OF χ UNDER AWSC197 log r for every i ∈ Λ (k) such that , f i (K) ∩ B(x, r 2 ) ̸ = ∅, f i (K) ⊂ B(x, r). T 1 (x, r) = k≥ log(r)-log(2) +2 i∈Λ (k) :f i (x 0 )∈B(x,r) (k+1)t i∈Λ (k) :f i (x 0 )∈B(x,r)

. 2 .

 2 +2t k = O(log 2 r), which concludes the proof.A consequence of Proposition 11.4.1 is that, for any x ∈ K, dim(x, χ) is the smallest of the two exponents h1 (x) = dim(µ, x) + t = lim inf r→0 log T 1 (x,r)) log r and h 2 (x) = lim inf r→0 log T 2 (x,r) log rLet us remark that whenever c i ≥ r, one hasf i (x 0 ) ∈ B(x, r) ⇔ x ∈ B(f i (x 0 ), c δ i ), where δ = log c i log r ≥ 1. In particular, introducing h(x) = min    h : ∀ε > 0, ∃λ ≥ 0, δ ≥ 1, λ + t δ ≤ h + ε and x ∈ lim sup i∈Λ * :c λ+ε i ≤p i ≤c λ-ε i B(f i (x 0 ), c δ i ) For any x ∈ K,dim(χ, x) = min {dim(µ, x) + t, h(x)} .(11.37) 

Lemma 11 . 4 . 6 (

 1146 [START_REF] Barral | Sums of dirac masses and conditioned ubiquity[END_REF], Lemma 4.2). Let B = (B n ) n∈N be a weakly redundant sequence of balls and, for k ∈ N let T k (B) be dened as in Denition 8.1.1. Then for all α ∈ R,lim sup k→+∞ log # {B ∈ T k (B) : |B| α+ε ≤ µ(B) ≤ |B| α-ε } k ≤ sup a∈[α-ε,α+ε]τ * µ (a).

(11. 40 ) 200 CHAPTER 11 :

 4020011 Let (B n ) n∈N be a weakly redundant sequence of balls. For any ε > 0 and ∆ ≥ 1, let us show rst thatdim H Ç lim sup n∈N: |Bn| α+ε ≤µ(Bn)≤|Bn| α-ε B ∆ n å ≤ sup a∈[α-ε,α+ε] τ * µ (a) ∆ .Let ε ′ > 0 and k 0 ∈ N be large enough so that for any k ≥ k 0 ,# B ∈ T k (B) : |B| α+ε ≤ µ(B) ≤ |B| α-ε ≤ 2 k(sup a∈[α-ε,α+ε] τ * µ (a)+ε ′ ) .Note also that, for any p ∈ N,lim sup n∈N: |Bn| α+ε ≤µ(Bn)≤|Bn| α-ε B ∆ n ⊂ k≥p L∈{B∈T k (B):|B| α+ε ≤µ(B)≤|B| α-ε } L. DISCRETE SELF-SIMILAR MEASURES Moreover, k≥k 0 B∈{B∈T k (B):|B| α+ε ≤µ(B)≤|B| α-ε } |B| ∆ ( sup a∈[α-ε,α+ε] τ * µ (a) ∆ +2ε ′ ) ≤ k≥k 0 # B ∈ T k (B) : |B| α-ε ≤ µ(B) ≤ |B| α-ε 2 -k sup a∈[α-ε,α+ε] τ * µ (a)-k2∆ε ′ ≤ k≥k 0 2 k sup a∈[α-ε,α+ε] τ * µ (a)+kε ′ • 2 -k sup a∈[α-ε,α+ε] τ * µ (a)-k2∆ε ′ ≤ k≥k 0 2 kε ′ (-2∆+1) < +∞.This implies that dim H lim sup n∈N: |Bn| α+ε ≤µ(Bn)≤|Bn| α-ε B ∆ n ≤ sup a∈[α-ε,α+ε] τ * µ (a) ∆ + 2ε.

n ⊂ 1 2

 1 B n and |B n | ≤ rx 3 , one has |B n | h-t+ε ≤ | 1 5 B n | h-t+ε 0 ≤ µ(B(x, 1 5 |B n |) ≤ µ(B n ) ≤ µ(B(x, |B n |)) ≤ |B n | h-t-εwhich proves that (11.41) holds true.

  x = ∆} > 0.

11. 4 . 2

 42 Multifractal spectrum of χ for h ∈ [0, λ c + t] Let us start by proving the following proposition. Proposition 11.4.8. For any0 ≤ h ≤ λ c + t, one has dim H (F h ) = dim H F h ∪ E h-t µ = hq c .Moreover, there exists a gauge function ζ : R + → R + such that lim r→0+ log(ζ(r)) log r = hq c and H ζ (F h ) > 0.

2 .

 2 Using 1, we show that dim H F h ∪ E h-t µ ≤ hq c .

3 .≥ hq c . 202 CHAPTER 11 :

 320211 Finally we prove that there exists a gauge function ζ : R + → R + such that lim r→0+ log(ζ(r)) log r = hq c and H ζ (F h ) > 0,which also implies thatdim H F h ∪ E h-t µ DISCRETE SELF-SIMILAR MEASURESLet us start by proving that item 1 holds:

(11. 45 )•B

 45 We now estimate the Hausdor dimension of G h,3 :lim sup i∈Λ * : λ i ≥T ′ (0)+ε B ∆ i i ⊂ lim sup i∈Λ * : λ i ≥T ′ (0)-3ε B T ′ (0)+t-3ε h+ε i . Dening ∆ = T ′ (0)+t-3ε h+ε and ν ∈ M(Λ N ) dened by ν([i]) = c dim(S) i for everyi ∈ Λ * , the same computation as in (10.17) yields, for any ε ′ > 0,i∈Λ * |B ∆ i | dim(S)+ε ′ ∆ < +∞. Recalling that τ * µ (T ′ (0)) = dim(S)and (11.42) and letting ε ′ tends to 0, one 204 CHAPTER 11: DISCRETE SELF-SIMILAR MEASURES gets dim H G h,3 = dim H lim sup i∈Λ * : λ i ≥T ′ (0)-3ε ′ (0)) T ′ (0) + t -3ε ≤ (h + ε)

  ν c ∈ M(Λ N ) be the measure dened by ν c ([i]) = p qc i c -T (qc) i for every i ∈ Λ * and µ c its projection on K. For x ∈ Λ N , let us denote by X k (x) the cylinder of generation k containing x. One has, for ν c -almost every x ∈ Λ N :   log νc(X k (x)) log |π(X k (x))| → τ * µ (λ c ) c λc+ε i ≤ p i ≤ c λc-ε i ⇔ c τ * µ (λc)+qcε i ≤ ν c ([i]) ≤ c τ * µ (λc)-qcε i . (11.48) Since µ c (lim sup i∈Λ * 1 2 B i ) = 1, the construction made in the proof of Proposition 8.2.6 can easily be adapted to show that there exists a sequence
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  CHAPTER 2: INTRODUCTION EN FRANÇAIS lieu de déterminer une minoration de lim sup n→+∞ B δ n pour tout δ > 1, on décrit une quantité géométrique, le contenu de Hausdor (voir Section 4.2, equation (4.7)), à estimer pour minorer (ecacement) dim H (lim sup n→+∞ U n ) pour n'importe quelle suite d'ouverts (U n ) n∈N satisfaisant U n ⊂ B n . Théorème 2.1.3 (Koivusalo-Rams [51]). Soit (B n ) n→+∞ une suite de boules de [0, 1] d vériant |B n | → 0, (U n ) n∈N une suite d'ouverts vériant pour tout n ∈ N, U n ⊂ B n et 0 ≤ s ≤ d.

	Supposons que:
	la suite (B n ) n∈N vérie
	L d (lim sup

n→+∞ B n ) = 1, pour tout n ∈ N assez grand

  -Seuret traite le cas où la mesure est multinômiale de support [0, 1] d (mais on en déduit relativement simplement le cas autosimilaire satisfaisant l'Open Set Condition qu'on raccourcira en OSC, voir Section 4.3, Dénition 4.3.3 pour plus de détails sur les diérentes conditions de séparation). Pour µ une mesure auto-similaire, notons dim(µ) dimension de µ (voir Section 4.2, Dénition 4.2.12 et Section 4.3, Théorème 4.3.15). Corollaire 2.1.9. Soit µ ∈ M(R d ) une mesure faiblement conforme de support [0, 1] d et (B n ) n∈N une suite de boules de [0, 1] d vériant |B n | → 0. Soit (τ 1 , ..., τ d ) ∈ [1, +∞) d et R n , déni par (2.2).

	alors, pour tout δ ≥ 1,			
	dim H (lim sup n→+∞	B δ n ) ≥	dim(µ) δ	.
	Si			
	µ(lim sup	B n ) = 1,
	n→+∞		
	n→+∞	) =	dim(µ) δ	.

Théorème 2.1.4

). Soit µ ∈ R d une mesure multinômiale

de support [0, 1] d , (B n ) n∈N une suite de boules de [0, 1] d vériant |B n | → 0. Si µ(lim sup n→+∞ B n ) = 1, alors, pour tout δ ≥ 1, dim H (lim sup alors dim H (lim sup n→+∞ R n ) ≥ min 1≤i≤d dim(µ) + 1≤i≤d τ k -τ i τ k .

Notons que le Corollaire 2.1.8 étend directement le Théorème 2.1.4.

  Corollaires 2.1.8 et 2.1.9 illustrent l'intérêt du Théorème 2.1.6: pour minorer la quantité dim H (lim sup n→+∞ U n ), on établit pour tout n ∈ N une relation qui ne dépend que de B n , U n et µ. de l'optimalité de ces bornes est de montrer que si l'on ne dispose pas d'informations supplémentaires (par rapport à celles données par les hypothèses de ces théorèmes) sur la suite de boules (B n ) n∈N , il n'y a pas de raison que dim H (lim sup n→+∞ U n ) soit supérieur à la borne donnée. Une méthode pour établir que c'est le cas est d'extraire de (B n ) n∈N , quand c'est possible, une soussuite (B ϕ(n) ) n∈N qui vérie toujours les hypothèses des théorèmes d'ubiquité et telle que dim H (lim sup n→+∞ U ϕ(n) ) est précisément la borne donnée par le théorème. Dans cette situation, nous sommes assurés que l'on ne peut pas obtenir de meilleure borne sous les mêmes hypothèses. Introduisons la denition suivante, qui est une variante (équivalente) de la notion de suite de boules faiblements redondantes introduite par Barral et Seuret et rappelée également plus tard dans ce manuscrit (Dénition 8.1.1) .

	Dans le Chapitre 8, on étudie l'optimalité des bornes données par le
	Théorème 2.1.6.

2.1.3 Etude de l'optimalité du théorème d'ubiquité Les minorations établies par les Théorèmes 2.1.3, 2.1.4 et 2.1.6 n'ont d'intérêt que si elles sont, en un sens satisfaisant, optimales. Une façon de traiter la 10 CHAPTER 2: INTRODUCTION EN FRANÇAIS question Denition 2.1.1. Soit B = (B n ) n∈N une suite de boules vériant |B n | → 0. Pour k ∈ N, dénissons

  s. , ou i.s. signie que l'égalité ci-dessus à lieu pour une innité d'entiers q.

	Chapter 3
	Introduction
	Notons que dans ce cas-ci, les ensembles approximants sont des hyper-
	boles.
	The theory of metric approximation aims at describing geometrically (often by
	Les Chapitres 9, 10 et 11 donnent respectivement des applications en
	théorie métrique des nombres, en systèmes dynamiques ainsi qu'en analyse
	multifractale. On y montre les Théorèmes 2.3.1, Théorème 2.2.3 et Théorème
	2.4.3.

Nous commencerons dans le Chapitre 4 par rappeler et préciser les notions requises pour comprendre ce manuscrit. Ensuite, au Chapitre 5, nous donnerons une première construction qui est instructive concernant le résultat d'ubiquité que l'on souhaite montrer. Au Chapitre 6, nous dénirons la quantité géométrique au centre de notre théorème d'ubiquité général. Etant données une suite de boules (B n ) n∈N et une mesure µ ∈ M(R d ), nous établirons aussi un lien techniquement utile entre vérier µ(lim sup n→+∞ B n ) = 1 et vérier une certaine propriété de recouvrement pour (B n ) n∈N . Lorsque (B n ) n∈N vérie cette propriété, nous dirons que (B n ) n∈N est µ-asymptotiquement couvrante. Dans le Chapitre 7, nous démontrons notre résultat principal d'ubiquité, le Théorème 2.1.6 et nous l'appliquons aux mesures faiblements conformes. Dans le chapitre 8, nous étudions l'optimalité des théorèmes d'ubiquités établis. En particulier, nous montrons que les Corollaires 2.1.8 et 2.1.9 sont, en un certain sens, optimaux. computing Hausdor dimensions) the set of elements approximable by a family of points (x n ) n∈N chosen in advance in a metric space (X, d). Historically, this theory was born from the work of Dirichlet about the approximation of real numbers by rational numbers in the XIXth century. This work was completed and extended around 1920, by Jarnik and Besicovitch

  self-similar measure, denote by dim(µ) the dimension of µ (see Section 4.2, Denition 4.2.12 and Section 4.3, Theorem 4.3.15). Theorem 3.1.4). Let µ ∈ R d be a self-similar satisfying the OSC and (B n ) n∈N a sequence of balls centered on supp(µ) verifying |B n | → 0.

3, Definition 4.3.3 for more details about the dierent separation conditions). For µ a If µ(lim sup n→+∞

  3, 3.1.4 and 3.1.6 are meaningful only if they are, in a sens that is satisfying enough, optimal. One way to deal with this question is to show that, if one does not have more information (compared to the hypotheses of those theorems) about the sequence (B n ) n∈N , there is no reason for dim H (lim sup n→+∞ U n ) to be larger than the bound provided.

We can show this by extracting from the sequence (B n ) n∈N , when possible, a sub-sequence (B ϕ(n) ) n∈N which still veries the hypotheses of the ubiquity theorems and such that dim H (lim sup n→+∞ U ϕ(n) ) is precisely the bound given. In this situation, we are ensured that one can not obtain a better bound in general under the same hypotheses.

  a ball of radius r > 0 and t ≥ 0 ball with same center as B and radius tr. B δ , B ball of radius r > 0, δ ∈ R ball of same center as B and radius r δ .
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	Notations	Some notations used in this article are summarized here. Denition and references.	
	N		set of integers, {0, 1, 2, ...}.
	Q		set of rational numbers,	¶	p q : p ∈ Z, q ∈ N *	© .
	R		set of real numbers.		
	d ∈ N		dimension of the ambient R d .
	||x|| ∞ , x = (x 1 , ..., x d ) ∈ R d	norm on R d used in this manuscript and dened by ||x|| ∞ = max 1≤i≤d |x i |.
	D p , p ∈ N		set of dyadic cubes of generation p of R d . See (4.17).
	E, E ⊂ R d		topological closure of E.		
	E, E ⊂ R d		interior of E.		
	∂E, E ⊂ R d		boundary of E, dened by ∂E = E \ E.
	B(x, r), x ∈ R d , r > 0	closed ball with center x and radius r.
	|E|, E ⊂ R d		diameter of the set E.		
	tB, B				
			1 weakly conformal
	IFS's satisfying AWSC without exact overlaps are dimension regular (Denition
	4.3.20) and the scaling function of weakly conformal measures (under these
	hypothesis) is computed for q > 0. A particular case of the general ubiquity
	Theorem, Theorem 7.1.2 is treated in Chapter 5. More precisely, Chapter 5
	deals with the case where the measure involved is quasi-Bernoulli on R d .
		The Chapter 6 deals with the denition of the basic notion needed to
	prove Theorem 7.1.2. In particular, given a measure µ ∈ M(R d ) one denes
	the notion of µ-asymptotically covering sequences of balls and the µ-essential
	Hausdor content of a set. The essential content of open sets are also computed
	when the measure involved is weakly conformal. Finally, as an application, one
	derive from the Borel-Cantelli Lemma established in [12] for doubling measures
	a version which is valid for every probability measure on R d . Chapter 7 is ded-
	icated to the proof of Theorem 7.1.2 and its consequences when the measure
	is weakly-conformal. The optimality of the lower-bounds established in Chap-
	ter 7 are discussed in Chapter 8. Chapters 9, 10 and 11 gives application of
	Theorem 7.1.2 respectively, in Diophantine approximation, to weakly confor-
	mal shrinking targets and to the multifractal analysis of discrete self-similar
	measures.			

  21) as well.

	M d (R)	space of d × d real matrices.
	GL d (R)	space of d × d invertible real matrices.
	O d (R)	space of d × d orthogonal real matrices.
	S + d (R)	space of d × d non neagative symmetric real matrices.
	S ++ d (R)	space of d × d positive symmetric real matrices.

  i , where i = (i 1 , ..., i k ) ∈ {1, ..., m} k , k ∈ N f i 1 • ... • f i k , see Section 4.3. c i , p i where i = (i 1 , ..., i k ) ∈ {1, ..., m} k , k ∈ N c i 1 × ... × c i k and p i 1 × ... × p i k .

	Chapter 4	
	Covering Lemmas, Hausdor
	measures and iterated function
	systems	
	4.1 Covering lemmas	
		inferior and superior local
	dimension of µ at x, see This section is dedicated to the statement of various classical and less classical
	Denition 4.14. covering lemmas used throughout this manuscript. Let us start the well-known
	dim H (µ), dim H (µ), dim P (µ), dim P (µ), dim(µ), µ ∈ M(R d ) see Denition 4.14. 5r-covering lemma (see [32] Lemma 4.8 p.91).
	Lemma 4.1.1 (5r-lemma). Let (X, d) be a metric space and (B n ) n∈N a sequence
	See Section 4.3. of balls of X satisfying sup n∈N |B n | < +∞. There exists a sub-sequence of balls
	c i (x) where i = (i 1 , ..., i k ) ∈ {1, ..., m} k , k ∈ N, x ∈ R d (B ϕ(n) ) n∈N such that for any	||f ′ i (x)||, S see Section 4.3.2.1.
		denote the usual shift operation
	σ	on Λ N , see beginning of Section
		4.3.
		respectively Open Set Condition,
		Strong Open Set Condition and
	OSC, SOSC and AWSC	
		Asymptotically Weak Separation
		Condition, See Denition 4.3.3.
		pressure associated with a
	P (s), s ∈ R	weakly conformal IFS S, See
		Proposition 4.3.16.

f

  Let 0 < v < 1 and B = (B n ) n∈N be a countable family of balls such that lim n→+∞ |B n | = 0, and for every n ̸ = n ′ ∈ N, vB n ∩ vB ′ n = ∅.

	, Chapter 2, pp. 28-34 for instance).
	A rst step towards Proposition 4.1.2 is the next lemma, which allows to
	split a given family of weakly overlapping balls into a nite number of families
	of disjoint balls.
	Lemma 4.1.3. There exists γ d,v + 1 (γ d,v being the constant appearing in Lemma 4.1.4
	below) sub-families of B, (F i ) 1≤i≤γ d,v +1 , such that:

  The exact same argument shows L intersects at most γ d,v balls of

	AND IFS
	Consider L ∈ G (k 1 ) such that L / ∈ 1≤i≤γ d,v +1 F i (whenever such a ball
	exists).
	As before, we add this ball
	L (1) 0 to the family F i 0 .

  Hausdor measure only gives information at innitesimal scales compared to the diameter of the set E, while the Hausdor content gives information about the distribution of the set E taking all scales lower than the diameter of E into account. This fact is characterized eciently by the following version of the well-known Frostman lemma.Proposition 4.2.6 ([20]). Let s ≥ 0. There is a constant κ d > 0 depending only on the dimension d such that for any bounded set E ⊂ R d with H s ∞ (E) > 0, there exists a probability measure supported by E, that we denote by m s

						E , such
	that	for every ball B(x, r),	m s E (B(x, r)) ≤ κ d	r s H s ∞ (E)	.	(4.10)
	4.2.2 Packing measure and packing dimension		

The major dierence between those quantities is that 52 CHAPTER 4: COVERING LEMMAS, HAUSDORFF MEASURES AND IFS the Let us start by dening the t-packing of a set. Denition 4.2.7. Let E be a subset of R d and t > 0. A collection of balls

  COVERING LEMMAS, HAUSDORFF MEASURES AND IFS Remark 4.3.7. Theorem 2.1.4 was only stated for self-similar measures satisfying the strong separation condition and for multinomial measures. The main ingredient of the proof is actually

The proof of (4.31) is similar to the proof in the case of the SSC when one restricts ourselves to the open set V. 60 CHAPTER 4:

  .37) 4.3.2.2 Lyapunov exponent of C 1 weakly conformal IFS's

Let m ≥ 2 and let us x a C 1 weakly conformal IFS, S = {f 1 , ..., f m } with attractor K.

  4.39). Remark 4.3.21. When S is self-similar, calling 0 < c 1 , ..., c m < 1 the contraction ration of the similarities f 1 , ..., f m , for any probability vector (p 1 , ..., p m ), µ and ν as in Denition 4.3.20, one has

  Assume that S = {f 1 , ..., f m } satises the AWSC without exact overlaps. Then S is dimension regular and dim(S) = dim H (K). 4: COVERING LEMMAS, HAUSDORFF MEASURES AND IFS Lemma 4.3.23. Let ε > 0 and s ≥ 0 be a real numbers. There exists k ∈ N and a probability vector (p i ) i∈Λ k such that the weakly conformal measure ν associated with S ′ = {f i } i∈Λ k and (p i ) i∈Λ k veries, for any p ∈ N and i 1 , ..., i p ∈ Λ k , e -kpε |f i 1 ...i p (K)| s e pkP (s) ≤ ν([i 1 ...i p ]) ≤ e kpε |f i 1 ...i p (K)| s e pkP (s)

	(4.55)
	4.3.3 Weakly conformal systems satisfying AWSC
	4.3.3.1 Dimension regularity of C 1 weakly conformal IFS without
	exact overlaps
	We will prove the following result.
	Proposition 4.3.22 (D.). Had the IFS been conformal and satisfying some bounded distortion prop-

erties, the proof of Proposition 4.3.22 would follow directly from the existence of appropriated Gibbs measures. Unfortunately, such measures does not always exists in the weakly-conformal case but some measures that are close enough from satisfying the desired properties still exist as established by the following lemma.

CHAPTER

  (4.56), (4.57) and (4.58) concludes the proof.Remark 4.3.24. The measure ν can be extended over Λ N by the usual arguments. Moreover, for any

  Then by the proof of[START_REF] Hochman | On self-similar sets with overlaps and inverse theorems for entropy in R d[END_REF] Theorem 1.8] and Theorem 4.3.26 , for L m almost all (a 1 , ..., a m ) ∈ R m , setting f 1 (x) = c 1 x+a 1 , ..., f m (x) = c m x+a m , the system S = {f 1 , ..., f m } satises the AWSC, hence Theorem 11.1.4 applies to any self-similar measures associated with S. (x+t) where t is irrational. Then, the same proof as in[43, Theorem 1.6] and Theorem 4.3.26 yields that S = {f 1 , f 2 , f 3 } satises the AWSC and has no exact overlaps. It is worth mentioning that the proof of Theorem 4.3.26 relies on [68, Theorem 6.6] which is currently established only on R. An higher dimension version of this result would most likely lead to more examples.

	One can also provide explicit examples: set f 1 (x) = 1 4 x, f 2 (x) = 1 4 (x + 1)
	and f 3 (x) = 1 4		
		nh 2 2nε 2 e	.	(4.67)
		log 2	
	In particular, recalling (4.28) and Propostion 4.3.28,	
	log t k k	↛ 0	
	Remark 4.3.25. If S is a self-similar system and satises the OSC, then it
	satises the AWSC and has no exact overlaps, so that Proposition 4.3.22 holds
	for S.		

and S does not satisfy the AWSC. As a consequence, S satises the AWSC implies h = 0, which, recalling the last item of Theorem 4.3.15, concludes the proof.

We concludes this sub-section by giving some examples of self-similar measures satisfying AWSC with no exact overlaps. These examples are based on the following result proved by

Barral and Feng in [4]

.

Theorem 4.3.26 ([4]

). Let S be a self-similar IFS on R satisfying the exponential separation condition (see

Denition 4.3.3)

. Then E satises the AWSC if and only if dim(S) ≤ 1. Corollary 4.3.27. Let m ∈ N and c 1 , ..., c m ∈ (0, 1) m satisfying c 1 + ... + c m ≤ 1.

  2r) yields equation (4.73).

	Let us now prove that (4.74) holds. The left-hand side is a straightforward
	consequence of item (2) of Remark 4.3.32.
	By item (5) of Remark 4.3.32, at each

  and, for any self-similar measure associated with S and any probability vector (p 1 , ..., p m ), one hasdim(µ) = 1≤i≤m p i log(p i ) 1≤i≤m p i log(c i ).2. Assume that S satises the ESC and that no non trivial linear subspace V ⊂ R d is preserved by the linear part of each f i . Then dim H (K) = min {dim(S), d} and for any self-similar measure µ associated with S and any probability vector (p 1 , ..., p m ), one has

  In the case where R n 1 and R n 2 are elements of the same D ∈ C(R n ), this follows from (v); otherwise, this follows from the fact that two distinct elements D and D ′ of C(R n ) are distant from each other by at least 8 • 2 -p(D) , where, as before, p(D) is the unique integer such that D ∈ D p(D) .

The estimates (5.26) and

(5.27) 

show (by induction) that for all p ∈ N * and n ∈ N such that R n ∈ K p one has

  SEQUENCES OF BALLSIn this section, one investigates, given any probability measure µ, the relationship between being verifying µ lim sup n→+∞ B n = 1 and satisfying the covering property stated above where L d is replaced by µ. Denition 6.1.1. Let µ ∈ M(R d ). The sequence B = (B n ) n∈N of balls of R d is said to be µ-asymptotically covering (in short, µ-a.c) when there exists a constant C > 0 such that for every open set Ω ⊂ R d and g ∈ N, there is an integer N Ω ∈ N as well as g ≤ n 1 ≤ ... ≤ n N Ω such that:

	100	CHAPTER 6: µ-A.C
		6.1 Limsup sets of full measure and asymptoti-
		cally covering sequences of balls
		Let (B n ) n∈N be a sequence of balls of [0, 1] d satisfying |B n | → 0. An important
		covering property, highlighted in [11] and used to establish ubiquity theorems
		or mass transference principles in the case of the Lebesgue measure, is that for
		L d	1≤i≤k	B n i ≥	1 2	L d (Ω).

any open set Ω and any g ∈ N, assuming that L d (lim sup n→+∞ B n ) = 1 it is possible to nd disjoints balls B n 1 , ..., B n k ⊂ Ω with n i ≥ g for all i and

  By outer regularity, there exists an open set Ω such that E ⊂ Ω and m(Ω) ≤ µ(E) + ε. Applying Lemma 6.1.3 to Ω, the sequence (B n ) n∈N fullls the condition of Corollary 6.1.4. Assume rst that B = (B n ) n∈N is µ-a.c, and let us prove that µ(lim sup n→+∞

	6.1 LIMSUP AND µ-A.C PROPERTY	103
	Proof. 6.1.2 Proof of Theorem 6.1.2	
	(1)	

  which is a contradiction. only the shape of the sets (U n ) n∈N but also the geometric behavior related to the measure µ at high scale in the sets (U n ) n∈N .

	Also we work in this manuscript mainly with the || • || ∞ norm for conve-
	nience. Any other norm could have been chosen, the corresponding quantities
	would have been equivalent.
	In (4.7), only closed balls are considered. Choosing open balls does not
	change the value of (6.7) in Denition 6.2.1.
	The following propositions are directly derived from the properties of the
	standard Hausdor measures.
	Taking c = 1 C Proposition 6.2.2. and applying Lemma 6.1.7 nishes the proof of Proposition 6.1.6.
	(6.7)
	One will almost exclusively look at these contents at scale t = +∞ and
	one refers to H µ,s ∞ (A) as the s-dimensional µ-essential Hausdor content of
	A. Basic properties of those quantities are studied in Sub-section 7.2.2, and
	precise estimates of H µ,s ∞ (A) are achieved for the Lebesgue measure and weakly
	conformal measures (so that those estimates holds for self-similar measures and
	self-conformal measures) in this chapter.

Remark 6.1.8. A version of Proposition 6.1.6 might also be useful in more general metric spaces. The only geometric property we used to prove Proposition 6.1.6 is actually Proposition 4.1.2 (which also implies Lemma 4.1.5), so that Proposition 6.1.6 actually holds in any direction-limited spaces as dened in

[START_REF] Federer | Geometric measure theory, volume Band 153 of Die Grundlehren der mathematischen Wissenschaften[END_REF]

.

6.2 Essential Hausdor content

In this section, we introduce the key geometric notion on which our main ubiquity theorem, Theorem 7.1.2, relies. Denition 6.2.1. Let µ ∈ M(R d ), and s ≥ 0. The s-dimensional µ-essential

Hausdor content at scale t ∈ (0, +∞] of a set A ⊂ B(R d ) is dened as H µ,s t (A) = inf {H s t (E) : E ⊂ A, µ(E) = µ(A)} .

Note that in [51, Theorem 3.1] the underlying geometric notion key to handle the variety of shapes of the sets (U n ) n∈N is the Hausdor content. It is easily seen from (4.7) that the Hausdor content also carries some high scale geometric information (because there is no restriction concerning the diameter of the balls (B n ) in (4.7)). This will also be the case in this chapter to handle 6.2 ESSENTIAL HAUSDORFF CONTENT 107 not Let µ ∈ M(R d ), s ≥ 0 and A ⊂ R d be a Borel set. The s-dimensional H µ,s ∞ (•) outer measure satises the following properties:

  1 , the balls of F i are pairwise disjoint, applying Lemma 4.1.4 to the ball of F i intersecting L, we get that the ball L n intersects at most Q d,1 balls of F i , hence at most Q 2 One aims at replacing all the balls L n intersecting L by the ball 2L.

d,1 balls of 1≤i≤Q d,1 F i . Let L ∈ 1≤i≤Q d,1 F i .

  7.1 states Theorem 7.1.2. Section 7.2 is dedicated to the proof of Theorem 7.1.2. Finally in Section 7.3, Theorem 7.1.2 is applied to obtain mass transference principles for weakly conformal measures (with no separation conditions).

7.1 A general heterogeneous ubiquity theorem

The s-dimensional µ-essential Hausdor content is now used to associate a critical exponent to any sequence of open sets (U n ) n∈N such that U n ⊂ B n for all n ∈ N. This exponent is involved in our lower bound estimate of dim H (lim sup n→+∞ U n ). Denition 7.1.1. Let µ ∈ M(R d ). If B and U are Borel subsets of R d , the µ-critical exponent of (B, U ) is dened as

  d), one has

		Å	ã		
	dim H	lim sup n→+∞	U n	≥ min {s(µ, B, U), dim H (µ)} .	(7.4)
	Remark 7.1.3.				

[START_REF] Allen | Dyadic Approximation in the Middle-Third Cantor Set[END_REF] 

It is easily veried that the lower-bound in Theorem 7.1.2 equals -∞ if the sequence (B n ) n∈N is not assumed to be µ-a.c. Consequently, for the previous result to give non trivial information one has to assume that

  where Q d,v is the constant of the same name in Proposition 4.1.2) of L such that L = 1≤i≤Q d,v L i and for any

Lemma 7.2.1

([24]

). Let L be a family of pairwise disjoint balls satisfying sup L∈L |L| < +∞. Then, for any v ≥ 1, there exists sub-families L 1 , ..., L Q d,v 120 CHAPTER 7: HETEROGENEOUS UBIQUITY THEOREM (

  .2 PROOF OF THEOREM 7.1.2 AND COROLLARY 7.1.6 121 Setting C ε,β = 1 2 6 -β 2ε , one concludes that there exists n x such that for every n ≥ n x , one necessarily has

  C does not depend on B, (8.1) holds for every B provided that n is large enough, letting ε → 0, one gets

	8.1 WEAKLY REDUNDANT SEQUENCES OF BALLS	145
	.1)	

Since

  3) 8.2 EXTRACTION OF µ-A.C SUB-SEQUENCES OF BALLS 147 Remark 8.2.2. Theorem 8.2.1 implies in particular that if the sequence of balls (B n ) n∈N veries µ(lim sup n→+∞ vB n ) = 1, for some v < 1, it is possible to extract a µ-a.c sub-sequence verifying both items (1) and (2).

  8: UPPER-BOUND AND UBIQUITY This contradicts the denition of B ε < . Remark 8.2.4. For doubling measures, it is straightforward that item (1) can be replaced by simply µ(lim sup B∈B ε > B) = 0. It can be proved that this is also the case for 1-average d-1 unrectiable measures (as a consequence of [53, Theorem 2.11]). Some self-similar measures with open set condition satises this property (see [53] again for more details). Theorem 8.2.1 is obtained by proving rst that it is always possible to extract µ-a.c weakly redundant sequences of balls. Then one proves in parallel that it is also possible to extract µ-a.c sequences of balls which veries (8.3). Extraction of weakly redundant µ-a.c subsequences The main result of this section is stated here. Proposition 8.2.5. Let µ ∈ M(R d ) and (B n ) n∈N be a µ-a.c sequence of balls lim n→+∞ |B n | = 0. There exists a subsequence (B ψ(n) ) n∈N of (B n ) n∈N which is weakly redundant and µ-a.c. Proof. Let g k ∈ N be large enough so that ∀n ≥ g k , |B n | ≤ 2 -k . By Lemma 6.1.3, applied with the sequence (B n ) n∈N , Ω = R d for any k ∈ N, there exists a sub-sequence (B (n,k)

	The two next sub-section are dedicated to those results.
	8.2.1

  Denote by (B ϕ(n) ) n∈N the sub-sequence of balls that constitutes the family F. construction, for all i ∈ N, denotingN k,i = #F k,i ,for every n ∈ N there are at most N ≥ 1≤i,k≤n N k,i balls of B ϕ(k) k∈N

	and	
		F =	F k .
		k≥1
	By belonging to	1≤i,k≤n F i,k . As a consequence, for ‹ N large enough and every
	n ′ ≥ ‹ N , one has
			2	, which proves
	Lemma 8.2.10.	

  G δ sets of full measure and extraction of µ-a.c subsequences Let µ ∈ M(R) d be a probability measure and (B n ) n∈N be a µ-a.c sequence of balls. In this chapter, we proved that, up to a µ-a.c. exctraction, it is always possible to assume that a µ-a.c. sequence of balls satises certain prperties related to µ and usefull when studiying dimensions of limsup sets. In order to understand more nely the specic properties (depending on µ) one can assume lim sup n→+∞ B n to verify, up to a µ-a.c extraction, one inestigates in this subsection under which condition a Borel set E satisfying µ(E) = 1, satises that some µ-a.c sub-sequence (B ϕ(n) ) n∈N . We prove that it is the case in general if and only if E contains a G δ set of full measure. Proposition 8.2.12. Let µ ∈ M(R d ) be a probability measure and (B n ) n→+∞ be a µ-a.c sequence of balls satisfying |B n | → 0. E is a Borel set which containing a G δ set of full measure, then there exists a µ-a.c sub-sequence (B ϕ(n) ) n∈N such that lim sup n→+∞ B ϕ(n) ⊂ E. . Let ‹ E ⊂ E be a G δ set of full measure and let (Ω k ) k∈N be a decreasing sequence of open sets such that ‹ E = k∈N Ω k . By Lemma 6.1.3, there exists some families of balls (F k ) k∈N such that: for any k ∈ N, F k ⊂ {B n } n≥k , for any k ∈ N, for any

		4	, which
	proves that (B ϕ(n) ) n∈N satises Denition 6.1.1 with C = 1 4	and is indeed µ-
	a.c.	
	Proposition 8.2.5 and Proposition 8.2.6 together prove Theorem 8.2.1.
	8.2.3 there	
	lim sup	
	Proof	

n→+∞ B ϕ(n) ⊂ E for If

  Theorem 8.3.1. Let µ ∈ M(R d ) be a C 1 weakly conformal measure, K its support and (B n ) n→+∞ be a weakly redundant sequence of balls of R d verifying|B n | → 0. Let (U n ) n∈N be a sequence of open sets satisfying U n ⊂ B n . For any 0 ≤ s < dim(µ) such that for all large enough n ∈ N, H µ,s ∞ (U n ) ≤ µ(B n ), Note that if, for any n ∈ N, the ball B n intersects K, lim sup n→+∞ U n ∩ K = lim sup n→+∞ U n .Theorem 7.1.4 and Theorem 8.3.1 yields the following useful corollary. Corollary 8.3.2. Let µ ∈ M(R d ) be a weakly conformal measure. Let (B n ) n∈N be a weakly redundant µ-a.c sequence of balls satisfying |B n | → 0 and B n ∩ K ̸ = ∅ for any n ∈ N. (U n ) n∈N be a sequence of open sets satisfying that, for any n ∈ N, U n ⊂ B n .Assume that there exists s 0 such that 8.3 STUDY OF THE OPTIMALITY OF UBIQUITY THEOREMS 157 for any s < s 0 , for n large enough, H µ,s∞ (U n ) ≥ µ(B n ), for any s > s 0 , for n large enough, H µ,s ∞ (U n ) ≤ µ(B n ).Remark 8.3.3. It is easily seen from the proof that the condition H µ,s∞ (U n ) ≤ µ(B n ) inTheorem 8.3.1 can be weakened into lim inf n→+∞ Let us now prove Theorem 8.3.1 Recall that the sequence B = (B n ) n∈N is assumed to be weakly redundant. By Lemma 8.1.3, for any ε > 0, one has n≥0 |B n | ε µ(B n ) < +∞. Now, for n ∈ N, consider a sequence of balls (A n k ) k∈N satisfying that

	Then by Theorem 7.1.4 and Theorem 8.3.1,
	dim H (lim sup	U n ) = s 0 .
	n→+∞	
				log H µ,s ∞ (Un) log µ(Bn) ≥ 1.
				(8.13)
	dim H (lim sup	U n ∩ K) ≤ s.	(8.12)
	n→+∞		

Let

  This implies that dim H (lim sup n→+∞ U n ∩ K) ≤ s + ε and ε being arbitrary, the self-similar measure veries supp(µ) = [0, 1] d , the existence of s 0 as in Corollary 8.3.2 is ensured as soon as the shapes of the sets U n are uniform in n. For instance, consider the case where µ = L d and (U n = R n ) n∈N , where R n is an open rectangle associated with some vector τ = (τ 1 , ..., τ d ) dened as in Theorem 7.3.6. Recall that by Theorem 6.2.4, the Lebesgue essential Hausdor content and the classical Hausdor content are equivalent. It is easily veried that, for any

	158	CHAPTER 8: UPPER-BOUND AND UBIQUITY
	H s+ε (lim sup n→+∞	U n ∩ K) ≤ H s+ε (lim sup k,n→+∞	A n k ) < +∞.
		dim H (lim sup	U n ∩ K) ≤ s.
			n→+∞
	Remark 8.3.4.		
		,	
			|A n k | s+ε < +∞.	(8.15)
			n≥0 k≥0
	One concludes that	

When

  2 ≤ d, one could build two scenarios where a sequence of balls (B n ) n∈N of [0, 1] d satises L d (lim sup n→+∞ B n ) = 1 and a sequence of open sets (U n ) with U n ⊂ B n satisng that for some of the sets U n

  (B n,1 ) n∈N and (B n,2 ) n∈N such that:|B n,1 | → 0 and |B n,2 | → 0, 0 < L d (lim sup n→+∞ B n,2 ) < 1,8.3 STUDY OF THE OPTIMALITY OF UBIQUITY THEOREMS 159 lim sup n→+∞ R n,2 = ∅, where R n,2 ⊂ B n,2 is an open rectangle associated with τ 2 , lim sup n→+∞ B n,1 ⊂ [0, 1] d \ lim sup n→+∞ B n,2 and For any n ∈ N, denote by R n,1 ⊂ B n,1 an open rectangle associated with τ 1 . properties implies that that any sequence (B n ) n→+∞ corresponding to the family {B n,i } n∈N,i∈{1,2} is weakly redundant and satises L d (lim sup n→+∞ B n ) = 1. , the smallest real number such that the condition of Theorem 8.3.6 holds is s 2 , the largest real number such that the condition of Theorem 7.1.4 holds is s 1 and dim H (lim sup

	L d (lim sup	B n,1 ) = 1 -L d (lim sup	B n,2 ).
	n→+∞	n→+∞	
	Those Againn→+∞	

  n an open rectangle associated with τ 1 as in Theorem 8.3.6,for any n ∈ N such that B n ⊂ ( 1 2 , 1] × d i=2 [0, 1], U n = R n withR n an open rectangle associated with τ 2 . smallest real number such that the condition of Theorem 8.3.1 holds is s 2 , the largest real number such that the condition of Theorem 7.1.4 holds is s 1 ) = s 2 .8.3.2 Application in the case of balls and rectanglesWe can now show in which sense, in view of Theorem 8.2.1, Theorem 7.1.4 is sharp by applying Corollary 8.3.2 to the specic cases where the sets U n are balls or rectangles. Corollary 8.3.5. Let µ ∈ M(R d ) be a weakly conformal measure of support

	Then

and dim H (lim sup n→+∞ U n

  (µ a self-similar measure satisfying the of hypothesis of Corollaries 8.3.5 or 8.3.6 for µ), it is always possible to extract a µ-a.c sub-sequence of balls so that the Hausdor dimension of the limsup set associated with corresponding U n 's is the bound provided by Theorems 7.3.1 and 7.3.6 and 8.3 STUDY OF THE OPTIMALITY OF UBIQUITY THEOREMS 161 recalled in those corollaries. This in particular proves that those bounds are sharp. In the case of the Lebesgue measure, it is always veried that ) in the case of balls or rectangles is precisely the dimension of lim sup n→+∞ U n as soon as the sequence (B n ) is weakly redundant. More explicitly, given a weakly redundant sequence of balls (B n ) n∈N of [0, 1] d satisfying |B n | → 0 and L d (lim sup n→+∞ B n ) = 1, for any sequence rectangles associated with a vector τ as in Corollary 8.3.6, one has dim H (lim sup

	.17) Remark 8.3.7. Corollaries 8.3.5 and 8.3.6 are direct consequences of second item of Remark 7.3.2 and Remark 7.3.9, together with Corollary 8.3.2 (applied to, respectively, s 0 = dim(µ) δ and s 0 = s(µ, τ )). Note that, by Theorem 8.2.1 combined with Corollary 8.3.5 and Corollary 8.3.6, for any sequence of balls (B n ) n∈N satisfying µ lim sup n→+∞ 1 2 B n = n→+∞ log µ(B n ) log |B n | = dim(µ). As a consequence, the lower-bound provided by Theorem 7.1.4 (which is 1 lim established in [51]n→+∞

  • One has H

	log 2
	log 3

  Lemma 10.2.1. For any δ > 1, and any x 0 /
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	10.2 Proof of item (2) of Theorem 10.0.1
	∈ K, one has
	lim sup
	i∈Λ

  3.1.176 CHAPTER 10: WEAKLY CONFORMAL SHRINKING TARGETS Proposition 10.3.2. Let ε 0 > 0. There exists an IFS S ε 0 and a weakly conformal measure µ ε 0 (associated with S ε 0 ) such that supp(µ ε 0 ) = K and dim H (µ ε 0 ) ≥ s -ε 0 .Remark 10.3.3. Similarly to the proof of[START_REF] Feng | Dimension theory of iterated function systems[END_REF] Theorem 2.13], Proposition 10.3.2 yields a measure on Λ N and taking weak limits of ergodic averages of this measure gives an ergodic measure fully supported on K with dimension larger

  .11) 178 CHAPTER 10: WEAKLY CONFORMAL SHRINKING TARGETS Lemma 10.3.4 together with (10.11) yields for N large enough,

  10.3 PROOF OF ITEM (3) OF THEOREM 10.0.1 179 depends continuously on the choice of P . Since lim ε ′

  Let us recall that, by Proposition 4.3.16 and Denition 4.3.19, dim(S) veries, for any

				.14)
	Equation (10.14) combined with (10.13) proves that for ε ′ small enough, one
	has	dim H (µ ε,ε ′ ) ≥	dim H (ν ε ) λ νε	-2ε ≥ s -2ε,
	which concludes the proof of Proposition 10.3.2.
		We can now nish the proof of item (3) of Theorem 10.0.1.
	10.3.2 Proof of item(3) of Theorem 10.0.1

  and s = dim(S) combined with Remark 4.3.24 yield a constant γ ε ′ > 0 and a measure ν ε ′ ∈ M(Λ N ) such that for any k ∈ N and every

	180 CHAPTER 10: WEAKLY CONFORMAL SHRINKING TARGETS
	This implies that, for any ν ∈ M(Λ N ),
	ν([i]) ≤ kC(α, β).	(10.15)
	i∈Λ (k)	
	Consider ε > 0. Let us recall that Lemma 4.3.23 applied with
	ε ′ =	ε 2 log 2 2 -log(2) log(β)

  .22) 182 CHAPTER 10: WEAKLY CONFORMAL SHRINKING TARGETS Remark 10.4.3. As mentioned in Section 4.3, dim(µ) = dim(S) holds in many situations. For instance, any self-similar IFS acting on R d with similarity dimension less than d and satisfying Hochman's separation and irreducibility conditions [43] (Denition 4.3.3) satises this property.

	Proof. Let us rst check that		
	dim H lim sup i∈Λ *	B(f i (x), (|f i (K))|g(|i|)) δ sg dim(S) ) ≤	dim(S) δ	.
	Let ε > 0. Recalling (10.21), one has		
	k≥0 i∈Λ k			

  Theorem 11.1.4 (D.[START_REF] Daviaud | Multifractal analysis of discrete self-similar measure satisfying AWSC[END_REF]). Let m ≥ 2, S = {f 1 , ..., f m } be a self-similar IFS satisfying AWSC (Denition 4.3.3) with no exact overlaps and K ⊂ R d the attractor of S. Let (p 1 , ..., p m ) be a probability vector, µ the self-similar measure associated with (p 1 , ..., p m ), x 0 ∈ K and C > 0 the normalizing constant such that the measure

3.3) 

with no exact overlaps. Let us recall here that it is proved in

[START_REF] Barral | On multifractal formalism for self-similar measures with overlaps[END_REF] 

that this class of self-similar IFS contains the class of self-similar IFS on the real line satisfying ESC with dim(S) ≤ 1. For explicit examples of IFS satisfying this condition, see Corollary 4.3.27. One also adds that, since the proof of this result relies on Shmerkin's theorem

[START_REF] Shmerkin | On Furstenberg's intersection conjecture, self-similar measures, and the L q norms of convolutions[END_REF] 

about the L q spectrum of self-similar measures on the real line, if a similar result held for self-similars measure satisfying ESC and Hochman's irreducibility assumption on R d , then our theorem would also cover the case of IFS satisfying those assumption on R d with dim(S) ≤ d.

  2 . Recalling (4.28), one has max i∈Λ

		c t i p i
	≤ 4 i∈Λ Since -log r log 2 max 0≤k≤ -log(r) log(2) +2 t k log t k k → 0, one also has log max 0≤i≤k t i k → 0, so that	max

* :c i ≥r,f i (x 0 )∈B(x,r) c t i p i ≤ T 2 (x, r) = 0≤k≤ -log(r) log(2) +2 i∈Λ (k) :f i (x 0 )∈B(x,r) * :c i ≥r,f i (x 0 )∈B(x,r) c t i p i .

  .4 MULTIFRACTAL ANALYSIS OF χ UNDER AWSC 199 We now establish item (3) of Theorem 11.1.4. Proposition 11.4.5. Assume that there exists a measure mh-t ∈ M(R d ) such that m h-t ( ‹ E h-t µ ) > 0 and dim H (m h-t ) = τ * µ (h -t), then, for any h ≥ λ c , dim H (E h χ ) = τ * µ (h -t).

	, one has
	‹ E h-t

µ ∩ {∆ x = 1} ⊂ E h χ . Also, since for every h ≥ λ c + t, τ * χ (h) ≤ τ * µ (h -t), one has D χ (h) ≤ τ * µ (h -t).

11

  now show that item 2 holds: Since h → τ * µ (h) is continuous, there exists 0 ≤ ε ≤ min ε 0 , h 2 , t2such that for any λ, λ ′ ∈ [0, T ′ (0)] satisfying |λ -λ ′ | ≤ 3ε, one has |τ * µ (λ)τ * µ (λ ′ )| ≤ ε 0 and for every x > 0,For any λ ≥ 0, note that if ∆ ′ ≥ ∆, one has We now estimate by above the Hausdor dimension of G h,1 , G h,2 and G h,3 .11.4 MULTIFRACTAL ANALYSIS OF χ UNDER AWSC203• We start by estimating dim H G h,1 :Note that p i ≥ c h-t+ε i ⇒ µ(B i ) ≥ c h-t+ε i . Since h -t ≤ λ c ≤ T ′ (0), by (11.42), dim H (G h,1 ) = dim H lim sup i∈Λ * : λ i ≤h-t+ε

								B i ≤ τ * µ (h-t+ε) = h	τ * µ (h -t + ε) h	≤ hq c +ε 0 .
								(11.44)
	• Upper-bound for dim H G h,2 :
	Remark that Also by (11.38), lim sup i∈Λ B i ⊂ τ * µ (h -t) = h k=0 ⌊ T ′ (0)-h+t ε ⌋-2 τ * µ (h -t) h i∈Λ h-t+(k+2)ε ≤ hq c . i ∆ i lim sup ≤p i ≤c h-t+(k-1)ε i	B	(11.43) (k-1)ε+h h+ε
	F h ⊂ By Lemma 11.4.6, one has  	
		dim H	lim sup i∈Λ ∆ i i	≤
		0≤k≤⌊	max T ′ (0)-h+t ε	⌋+1	sup λ∈[h-t+(k-1)ε,h-t+(k+2)ε]	(h + ε)	τ * µ (λ) (k -1)ε + h	.
						x + t x + t -3ε	≤ (1 + ε 0 ).
			lim sup i∈Λ * : c λ+ε i ≤p i ≤c λ+ε i	B ∆ ′ i ⊂	lim sup i∈Λ * : c λ+ε i ≤p i ≤c λ+ε i	B ∆ i .
	Writing, for i ∈ Λ * ,				
					λ i =	log p i log c i	and ∆ i =	λ i + t h + ε	,
	one has						
	F h ⊂ lim sup i∈Λ * : λ i ≤h-t+ε	B i ∪	lim sup i∈Λ * : T ′ (0)-t-3ε≥λ i ≥h-t+ε	B i ∪ ∆ i	lim sup i∈Λ * : T ′ (0)-t-3ε≤λ i	∆ i i B

x : ∀ε > 0, ∃λ ≥ 0, ∆ ≥ 1,

λ + t ∆ ≤ h + ε and x ∈ lim sup i∈Λ * : c λ+ε i ≤p i ≤c λ+ε i B ∆ i    . Fix ε 0 > 0. = G h,1 ∪ G h,2 ∪ G h,3 . * : λ i ∈[h-t-ε,T ′ (0)-3ε) * : c i . * : λ i ∈[h-t-ε,T ′ (0)-3ε)

B

By choice of ε and

(11.42)

,

dim H G h,2 = dim H lim sup i∈Λ * : λ i ∈[h-t-ε,T ′ (0)-3ε)

  . Also, since by Proposition 4.3.22 S is dimension regular (Denition 4.3.20) so that dim(µ c ) = τ * µ (λ c ), applying Theorem 7.3.1, there exists a gauge function ζ : R + → R + such that which concludes the proof of Proposition 11.4.8. Corollary 11.4.9. For any h ≤ λ c + t, dim H F h \
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	and					
	H ζ	lim sup i∈Λ λc+ε i i ≤p i ≤c	i λc-ε i	λc+t h i B	> 0.
	By (11.49), this implies that			
	H ζ (F h ) ≥ H ζ	lim sup i∈Λ λc+ε i i ≤p i ≤c i λc-ε i	λc+t h i B	> 0,
	Let us point out that, recalling (11.38),
							λc+t
	lim sup i∈Λ λc+ε i i ≤p i ≤c	i λc-ε i	B i	h	⊂ F h .	(11.49)
	lim r→0+	log(ζ(r)) log r	= h	τ * µ (λ c ) λ c + t	= hq c ,

* : c * : c * : c h ′ <h

if supp(µ) = [0, 1] d , there exists a sub-sequence (B ϕ(n) ) n∈N verifying µ(lim sup n→+∞ B ϕ(n) ) = 1

the open set condition (OSC) when there exists a non empty open set V such that for any 1 ≤ i ̸ = j ≤ m, one has

[START_REF] Feng | Gibbs properties of self-conformal measures and the multifractal formalism[END_REF] At any q ≥ 1 for which τ ′ µ (q) exists (which is the case outside an at most countable set of q's), µ satises the multifractal formalism at h = τ ′ µ (q), so thatτ * µ (h) = dim H (E h µ ) = qh -τ µ (q).(4.77)Let us also mention that it is known that some self-similar measures do not satisfy the multifractal formalism for q < 0 [72] (i.e at h > τ ′ µ (0 + )).

, there exists a constant c = c(d, µ, s, ε) > 0 depending on the dimension d, µ, s and ε only, such that

11.4.7 and Corollary 11.4.9 implies Theorem 11.1.4.

Letting p → +∞ proves Theorem 5.1.5.

The next section introduces some ley notion in order to establish a more general mass transference principle than the one we just established.
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In addition, recalling that µ(∂B) = 0 by (7.30), one has µ(B n i ) > 0 and µ

Recall the denitions (7.10) and (7.28) of the sets E

[a,b],ρ U ,ε 2 µ and S U . By equations (7.29)- (7.33), there exists α ≤ a ≤ β such that the center of B belongs to S U ⊂ E [a,a+ε 2 ],ρ U ε 2 , µ and |B| ≤ ρ U , hence one has

By (i 2 ), and recalling (7.10), one has

By a slight abuse of notations, up to an extraction, we still denote by {B n i } 1≤i≤N B the balls B n i such that B n i ∩ ‹ E

[a,a+ε 2 ],ε 2 ,ρ U µ ̸ = ∅. The last inequality implies that the family of balls {B n i } 1≤i≤N B can be chosen so that it veries conditions (i 1 ) and (i 2 ), as well as the two following additional conditions:

The obtained family is still denoted by F B .

Applying again Lemma 7.2.1 to F B with v = 4, as in step one (see (7.17), (i ′ ) and (ii ′ )), if one must consider a subfamily, one can assume that the family F B satises (i 1 ) and (i 4 ) as well as the following condition (i ′

2 ) and (i ′ 3 ):

(i ′ 2 ) : for every 1 ≤ i ̸ = j ≤ N B , one has 4B n i ∩ 4B n j = ∅.

Finally one denes

and s p ≤ s p+1 , one gets

Since for any p ∈ N and any ball A satisfying |A| ≤ For any ε > 0, there exists a µ-a.c subsequence (B ϕ(n) ) n∈N of B such that for every n ∈ N, µ(B ϕ(n) ) ≤ (r ϕ(n) ) dim H (µ)-ε .

Proof. Set α = dim H (µ) and γ = suppess µ (dim(µ, x)).

Let Ω be an open set and ε > 0. By (7.2.6), µ(E

Recall (7.11) and that the sets E [α,γ],ρ,ε µ are non-increasing in ρ. In particular there exists ρ Ω > 0 such that the set E

Let g ∈ N. Applying Lemma 6.1.3 to Ω, the sequence (B n ) and the measure m, there exists N Ω as well as g ≤ n 1 ≤ ... ≤ n N Ω verifying:

We may assume that µ(B n i ) > 0 for every i, otherwise B n i does not play any role.

Item [START_REF] Baker | Intrinsic Diophantine approximation for overlapping iterated function systems[END_REF] together with (7.53) implies that

Furthermore, for every

and by (7.9) , item [START_REF] Allen | On the Hausdor measure of shrinking target sets on self-conformal sets[END_REF], and (7.2.7), it holds that

n }, the argument above shows that only balls of B ′ have been used to cover Ω . This is satised for every open set Ω, so that B ′ is a sub-sequence of B satisfying the condition of Denition 6.1.1, which concludes the proof of Lemma 7.2.8.

Proof of Corollary 7.1.6. [START_REF] Allen | Dyadic Approximation in the Middle-Third Cantor Set[END_REF] Observe that item (2) of Proposition 6.2.2 implies that t(µ, δ, ε, B) ≥ dim H (µ) -ε, and t(µ, δ, B) ≥ dim H (µ). Now choose ε > 0 so small that

up to an extraction, one can assume that for any n ∈ N,

Due to (7.5), there exists N ε ∈ N such that for any n ≥ N ε ,

Then, Proposition 6.2.2 (4) implies that for every n ≥ N ε ,
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Thus, setting s δ,ε =

Since the result holds for any ε > 0, one gets the desired conclusion. 

δ and there exists a gauge func-

2. Suppose that µ(lim sup n→+∞ B n ) = 1. Then, (7.54) still holds but the existence of the gauge function is not ensured. Furthermore if µ is doubling, then (B n ) n∈N is µ-a.c, so that the conclusion of item (1) holds.

Let µ be a weakly similar measure with support K, and set α = dim(µ). 

It follows that for any ε ′ > 0 and δ ≥ 1 one has Let us also notice that the computation in the proof of Theorem 7.3.1 actually shows that, under the assumption that lim n→+∞ log µ(Bn)

One also emphasizes that Theorem 7. 

(1) :
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Let us set 

Then, ε being arbitrary, this proves that ( as in the proof of 7.

Letting ε ′ → 0 proves the result in case (1).

(2) :

2 . By Lemma 7.2.8, one can assume once again that for any n ∈ N, µ(vB n ) ≤ (v|B n |) α-ε .

Using again Proposition 6.2.6 together with remark 6.2.7, one has

In particular this proves item [START_REF] Allen | On the Hausdor measure of shrinking target sets on self-conformal sets[END_REF] 

Remark 7.3.4. Following the notation of Denition 6.25, one has in particular, for any x ∈ supp(µ), dim(µ, x) ≥ dim L (µ). In particular, this implies dim H (µ) ≥ dim L (µ). 

and

Proposition 8.2.9. For every µ ∈ M(R d ), ρ > 0, every α 2 = infess µ (dim(µ, x))

Proof. For any x ∈ R d , for any ε > 0, there exists r x > 0 such that ∀r ≤ r x , r dim(µ,x)+ε ≤ µ(B(x, r)) ≤ r dim(µ,x)-ε . This implies For all ε > 0, there exists a sub-sequence (B ϕ(n) ) n∈N of B as well as

and for all n ∈ N, one has

Remark 8.2.11. The sequence (B ϕ(n) ) n∈N found in Lemma 8.2.10 is in particular µ-a.c by Theorem 6.1.2.

Proof. Let α = infess µ (dim(µ, x)) and γ = dim P (µ). Let ε > 0 and v < v ′ < 1.

By (8.9) and Theorem 6.1.2, µ(lim
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We are now ready to prove Proposition 8.2.6.

Proof. Set α = dim H (µ) and β = dim P (µ).

The strategy of the proof consists in constructing recursively coverings of the cube R d by using Lemma 7.2.8 and Lemma 8.2.10 and a diagonal argument (on the choice of ε) at each step.

More precisely, at step 1, one will build a sequence of nite families of balls (F 1,i ) i∈N verifying:

At step 2, a family of balls (F 2,i ) i∈N will be constructed such that items 1, 2, 3 and 4 holds with ε = ε i+1 .

The other steps are achieved following the same scheme.

The construction is detailed below:

Step 1:

Sub-step 1.1: By Lemma 7.2.8 and Lemma 8.2.10 applied to ε = ε 1 , there exists a µ-a.c sub-sequence (B ψ 1,1 (n) ) n∈N , satisfying, for every n ∈ N,

By Lemma 6.1.3 applied to Ω 1,1 , the sequence (B ψ 1,1 (n) ) n∈N and g = 1, there exists an integer N 1,1 as well as some balls L 1,1,1 , ..., L 1,1,N 1,1 ∈ {B n } n≥1 verifying:

Sub-step 1.2:

By Lemma 7.2.8 and Lemma 8.2.10 with ε = ε 2 , there exists a µ-a.c sub-sequence

One applies Lemma 6.1.3 to the open set Ω 1,2 , the sub-sequence of balls

The family F 1,2 is dened as

Proceeding iteratively as in Sub-steps 1.1 and 1.2, for any i ∈ N, at Substep 1.i a nite family of balls F 1,i is constructed so that the items 1, 2, 3 and 4 holds with ε i (instead of ε 1 ). Remember that, to justify the last item, this recursive scheme allows to cover R d , up to a set of µ-measure 0 (the argument is similar to the one developed at the end of the proof of Lemma 6.1.3 to obtain (6.2)).

Let us notice that the construction of the family F 2 does not rely on the existence of the family F 1 , so that the families F k can actually be built independently, following the same scheme, as described below.

Step k:

As in step 1, one constructs a family of balls (F k,i ) i≥1 verifying items 1, 2, 3 and 4 with ε = ε k+i-1 . Let η ∈ M(R d ) be a measure and (q 1 , ..., q m+1 ) ∈ (0, 1) m+1 a probability vector. One introduces the following perturbated self-similarity equation (of variable χ ∈ M(R d )):

Set

Such measures have been introduced by Snigireva and Olsen in [START_REF] Snigireva | L q spectra and Rényi dimensions of inhomogeneous self-similar measures[END_REF] and are called in-homogeneous self-similar measures with condensation measure η.

Proposition 11.1.1 ([26]). Equation (11.1) admits a unique solution ( [START_REF] Snigireva | L q spectra and Rényi dimensions of inhomogeneous self-similar measures[END_REF])

Proof. The existence and the unicity of the solution of (11.1) is established in [START_REF] Snigireva | L q spectra and Rényi dimensions of inhomogeneous self-similar measures[END_REF] but for for the convenience of the reader, we include the proof here.

Let us recall the denition of the Wasserstein distance on M(R d ). for every q ≥ q c , τ χ (q) = 0 for every 0 ≤ q ≤ q c , τ χ (q) = τ µ (q) + t for every q ≤ 0, τ χ (q) ≥ τ µ (q) + t. (11.8) In particular for every h ≥ 0, one has one has

(11.9)

2. The multifractal spectrum D χ of χ satises

(11.10)

3. For every h > τ ′ µ (0

Remark 11.1.5. If S satises the AWSC and has no exact overlaps, q c and τ ′ µ (q c ) exists by Theorem 4.3.39.

Assume furthermore that for h ≥ τ ′ µ (0 + ), there exists

and χ satises the multifractal formalism at h + t.

As a consequence of Theorem 11.1.4, one recovers the estimates of the scaling function and the multifractal spectrum established by Snigireva and Olsen in [START_REF] Snigireva | L q spectra and Rényi dimensions of inhomogeneous self-similar measures[END_REF] only for q ≥ 1 and q ≤ 0 in the case where the IFS satises the strong separation condition and the condensation measure is a Dirac (to see this, note here that the notation of [START_REF] Snigireva | L q spectra and Rényi dimensions of inhomogeneous self-similar measures[END_REF] involves the mapping β(q) = -(T (q) + qt) and that the sign of T (q) + qt depends on the fact that q ≤ q c or q ≥ q c ). Regarding the multifractal spectrum, since only limits (not liminf ) are considered in [START_REF] Snigireva | Multifractal spectra of in-homogenous selfsimilar measures[END_REF], one only recovers their estimates on the multifractal spectrum for q ≥ q c .
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The proof of item (1) of Theorem 11.1.4 relies on the existence of selfsimilar auxiliary measures for µ. It is worth mentioning that in the more genral case of systems satisfying AWSC with possible exact overlaps, it is known that µ satises the multifractal formalsim and auxiliary measures (that are not self-similar) exists [START_REF] Feng | Gibbs properties of self-conformal measures and the multifractal formalism[END_REF][START_REF] Feng | Multifractal analysis of Bernoulli convolutions associated with Salem numbers[END_REF] for every h ∈ (τ ′ µ (+∞), τ ′ µ (0 + )) even if it is not proved that τ µ is dierentiable on this interval. As a consequence, one might expect that item (1) of Theorem 11.1.4 actually holds assuming only that S satises AWSC. We also underline here that, although it is known that IFS on the real line satisfying exponential separation satises the multifractal formalism on R + \ I for I an interval (see [START_REF] Barral | On multifractal formalism for self-similar measures with overlaps[END_REF][START_REF] Shmerkin | On Furstenberg's intersection conjecture, self-similar measures, and the L q norms of convolutions[END_REF]) studying discrete measures under this only assumption should raise problem of a dierent nature (such as dealing with non weakly redundant sequences of balls).

Even under assumptions that are stronger than AWSC (with possible exact overlaps), there are self-similar measures which does not satisfy the multifractal formalism for every h ≥ τ ′ µ (0 + ) [START_REF] Testud | Phase transitions for the multifractal analysis of self-similar measures[END_REF]. As a consequence, there is a priori no reason that anything can be said in all generality about χ for h in this interval but in many concrete cases, it is still possible to compute the spectrum of µ for q < 0 (see [START_REF] Rutar | A multifractal decomposition for self-similar measures with exact overlaps[END_REF][START_REF] Shmerkin | A modied multifractal formalism for a class of self-similar measures with overlap[END_REF][START_REF] Testud | Phase transitions for the multifractal analysis of self-similar measures[END_REF]) and one might expect to be able to do it as well for the measure χ.

Note that that the case x 0 / ∈ K can also be dealt with.

Proposition 11.1.6. Let m ≥ 2 and S = {f 1 , ..., f m } be a self-similar IFS and K the attractor of S. Let (p 1 , ..., p m ) be a probability vector, x 0 / ∈ K, t > 0 and χ(•) = i∈Λ * p i c t i δ f i (x 0 ) . (11.11) Then for any h ≥ 0 D χ (h) = D µ (h -t).

(11.12)

Moreover the estimates of τ χ given by Theorem 11.1.4 still holds.

Remark 11.1.7. An interesting consequence is that no separation condition is assumed in Proposition 11.1.6 and D µ is easily deduced from the spectrum D χ . For instance if L d (K) = 0, then, for L d -almost every choice of x 0 , D χ is a translation of D µ . One must add to this remark that, since it will be proved that τ χ (q) = 0 for q ≥ 1, the measure χ does not satisfy the multifractal formalism in that case.

To nish this section we recall that examples of IFS's satisfying AWSC with no exact overlaps are given in Corollary 4.3.27.