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Titre: Identification du comportement mécanique des torons de carbone à partir d'essais in-situ et ex-situ Mots clés: Composites tissés, torons de carbone, milieux granulaires

Résumé:

Dans l'industrie aéronautique, l'utilisation de composites tels que les CMO (Composites à Matrice Organique) a fortement augmenté ces dernières années. Cela a conduit au développement et à l'optimisation des principaux éléments qui composent ces pièces. En particulier, les composites tissés 3D ont la capacité de s'adapter aux formes tridimensionnelles les plus complexes. Par conséquent, l'étude de tels matériaux est essentielle pour saisir toutes les transformations mécaniques produites au cours de leur fabrication.

Ce travail est focalisé sur la caractérisation mécanique des torons de carbone formant la structure fibreuse (i.e., le renfort) du matériau composite. Le toron est constitué du retordage de plusieurs fils élémentaires, chacun composé de dizaines de milliers de fibres de carbone, dont la cohésion est assurée par un ensimage.

Dans la première partie de ce travail, le processus de retordage, qui crée le toron en retordant les fils, est décrit et analysé. Il a conduit à un réarrangement des fibres dans la section transversale du toron et crée une configuration équilibrée de sorte que le couple de torsion global soit nul. Un modèle par éléments finis simule ce processus et montre les transformations internes qui s'y produisent. De plus, le retordage a la capacité de faciliter le tissage des torons car elle les rigidifie par un champ de contrainte radiale dirigée vers l'âme du toron.

Cet aspect est également observé lors de l'analyse du comportement transversal de la section du toron. Quelques essais mécaniques exsitu représentant le comportement de compaction transversal des torons sont analysés. Différents niveaux de retordage sont étudiés à cet effet, et un comportement élasto-plastique est observé. Pour modéliser ce comportement, une loi typique des milieux granulaires 2D (empilement de cylindres rigides frottants) est proposée et rend compte des résultats expérimentaux. Pendant la compression, la section du toron atteint un état critique où la fraction volumique de fibre reste constante et sa dilatance devient nulle. La limite plastique de Mohr-Coulomb représente le meilleur compromis entre un faible nombre de paramètres mécaniques à identifier et une description mécanique plus complète et réaliste. Le modèle proposé, en mettant en oeuvre une loi d'écrouissage pour l'angle de frottement et la cohésion apparente, avec la compacité transversale du toron comme paramètre interne, se veut une alternative viable aux modèles habituels de la littérature, prenant également en compte la présence du retordage et de l'ensimage via une cohésion effective.

Le comportement élasto-plastique de la section transversale est observé plus en détail lors de l'analyse du comportement de flexion du toron. Une série de tests in-situ sur le serrage d'un noeud permet l'observation de la variation de la forme de la section transversale (largeur et épaisseur) en fonction de la courbure. Le niveau de retordage influence fortement ces paramètres mais aussi la variation de la courbure le long du toron.

Enfin, après tissage, une tomographie du renfort tissé (interlock 3D) montre souvent une structure légèrement déformée par rapport à un modèle "idéal" de colonnes de torons dans des plans régulièrement espacés et perpendiculaires entre chaîne et trame. Une analyse par corrélation d'images volumiques originale est proposée pour réaligner le volume tomographié avec sa structure idéale.

Title: Identification of mechanical behavior of twisted carbon yarns from in-situ and ex-situ tests Keywords: Woven composites, Carbon yarns, Granular media Abstract: In the aeronautical industry, the use of composites such as OMC (Organic Matrix Composites) has rapidly increased in recent years. This has led to the development and optimization of the main components that make up these parts. In particular, 3D woven composites have the ability to adapt to the most complex three-dimensional shapes. Consequently, the study of such materials is essential to capture all the mechanical transformations produced during their manufacturing process.

This work focuses on the mechanical characterization of the carbon yarns forming the fibrous structure (i.e., the reinforcement) of the composite material. The yarn is formed by the twist of several elementary tows, each composed of tens of thousands of carbon fibers, whose cohesion is ensured by a sizing agent.

In the first part of this work, the spinning process, which creates the yarn by twisting the tows, is described and analyzed. It leads to a rearrangement of the fibers in the yarn cross section, creating a balanced configuration such that the overall torque is zero. A finite element model simulates this process and shows the internal transformations involved. Twist also has the ability to facilitate yarn weaving, as it stiffens them by a radial stress field directed towards the yarn core. This aspect is also observed when analyzing the transverse behavior of the yarn cross section. A number of ex-situ mechanical tests representing the transverse compaction behavior of yarns are analyzed. Different twist levels are studied, and an elasto-plastic behavior is observed. To model this behavior, a law typical of 2D granular media (stacking of rigid rubbing cylinders) is proposed and accounts for the experimental results. During compression, the yarn cross section reaches a critical state where the fiber volume fraction remains constant and its dilatancy becomes zero. The Mohr-Coulomb plastic limit represents the best compromise between a low number of mechanical parameters to be identified and a more complete and realistic mechanical description. By implementing a hardening law for the friction angle and apparent cohesion, with yarn transverse density as the internal parameter, the proposed model is a viable alternative to the standard models in the literature, also considering the presence of twist, sizing and water.

The elasto-plastic behavior of the cross section is observed in greater detail in the analysis of the yarn bending behavior. A series of in-situ tests on a loose tightening knot enables us to observe the variation in cross sectional shape (width and thickness) as a function of bending. The twist level has a strong influence on these parameters, but also on the variation in curvature along the yarn path.

Finally, after weaving, a tomography of the woven reinforcement (3D interlock) often shows a slightly distorted structure compared with a model constituted of regularly spaced yarn columns and perpendicular planes between warp and weft. An original digital volume correlation analysis is proposed to realign the tomographic volume with its ideal configuration.

Résumé en français

Au cours des dernières années, l'industrie aéronautique a connu une forte croissance de l'utilisation de composites avancés, notamment les CMO (Composites à Matrice Organique), en raison de leurs propriétés spécifiques exceptionnelles et de leurs avantages en termes de performance. Cette tendance a suscité un nombre considérable de travaux de recherche et de développement, conduisant à l'optimisation et à l'amélioration des composants essentiels des pièces composites. Parmi les avancées dans le domaine, les composites tissés en 3D se sont imposés comme une innovation majeure en raison de leur remarquable capacité à s'adapter à des formes tridimensionnelles complexes, ce qui en fait un choix idéal pour les applications aéronautiques. Ainsi, l'étude approfondie de ces matériaux, visant à élucider les phénomènes mécaniques internes qui se produisent lors du procedé de fabrication reste aujourd'hui encore un domaine de recherche très actif, et de fort enjeu applicatif.

Ce travail de thèse se concentre sur la caractérisation mécanique des torons de carbone qui constituent la structure fibreuse de renforcement au sein du matériau composite. Composés de plusieurs fils élémentaires torsadés, chacun composé de milliers de fibres de carbone liées par un agent de collage, l'ensimage, ces fils confèrent à la structure composite une résistance et une intégrite rémarquables pendant toutes les étapes de fabrication.

Etat de l'art

frottement et une cohésion effectifs.

Caractérisation du retordage

En se focalisant sur une étape cruciale, le retordage, dans la production de torons, un modèle par éléments finis a été développé, utilisant la formulation Arbitrary Lagrangian Eulerian (ALE). Ce modèle sophistiqué simule l'écoulement du matériau à travers le maillage sans déplacer les noeuds le long de l'axe du toron. La possibilité de se déplacer dans la direction transverse (sous l'action des efforts de contact et de frottement) révèle une migration des fils par rapport à l'axe du toron et des fibres par rapport à chaque axe de fil élémentaire, régis par des changements continus de tension des fibres, et une diminution progressive du moment de torsion global du toron. Cet aspect montre que le retordage est équilibré: la rotation globale de fils autour de l'axe du toron est compensée par une rotation opposée à l'interieur de chaque fil élémentaire. Une observation expérimentale valide ces remarques. Notamment, l'angle de retordage moyen des fibres par rapport à l'axe de chaque fil élémentaire est mesuré comme sensiblement uniforme, confirmant le caractère inextensible, et donc l'absence de glissement relatifs des fibres les unes par rapport aux autres au sein d'une même mèche. De plus, le retordage engendre une pression radiale dirigée vers le coeur du toron, augmentant significativement les contraintes géométriques engendrées par de nombreux points de croisement de fibres à l'intérieur du toron. Ceci génère de nombreuses "boucles" caractérisées par autant d' invariants topologiques, empêchant les fibres de se séparer ficilement.

Comportement en compression transversale

Lors du tissage et de la mise en forme de la préforme, certains aspects du comportement mécanique sont particulièrement mis en jeu, dont la compression transverse. Une série de tests mécaniques a été réalisée pour étudier le comportement de compression transversale des torons, sous des niveaux de retordage variables. Les résultats montrent un comportement élasto-plastique du toron. A l'aide d'un profilomètre, l'épaisseur et la largeur du toron, ainsi que le taux volumique de fibres (ou TVF) et la dilatance de la section ont été mesurées. Lors de la compression, le comportement de la section du toron atteint un état critique, pour lequel la TVF reste constante et la dilatance est nulle. Pour modéliser efficacement ce comportement, une approche élasto-plastique cohésive de la déformation de la section du toron fondée sur la surface limite de Mohr-Coulomb est proposée. Une loi d'écrouissage de l'angle de frottement et de la cohésion apparente dont le paramètre interne est la compacité transversale du toron (i.e., TVF) permet d'obtenir des résultats cohérents avec les observations expérimentales. De plus, ce modèle rend compte des déformations irréversibles observées expérimentalement. Cette approche trouve un compromis dans la direction recherchée : il nécessite un nombre minimal de paramètres mécaniques à identifier tout en étant fidèle aux résultats expérimentaux. De plus, le modèle proposé apparaît comme une alternative prometteuse à ceux existants dans la littérature, prenant en compte l'influence du retordage (pour l'instant inclus dans le paramètre de cohésion du fil), de l'ensimage (comprise dans la cohésion) et la possible présence d'eau, qui joue un rôle à la fois de cohésion capillaire et de lubrifiant en diminuant le frottement entre les fibres.

Comportement en flexion pure

Une analyse experimentale du comportement de flexion du toron a été effectuée. Malgré le couplage intrinsèque de la déformation de flexion avec d'autres pendant le procédé de fabrication (notamment la compression trasverse du toron), l'étude examine ici exclusivement la flexion pure. Cependant, cette approche apporte des éclairages sur les paramètres clés régissant le comportement de flexion du toron. À cette fin, un simple noeud est effectué avec un toron, et une séquence de scans tomographiques est réalisée à différentes étapes de serrage, contrôlé par une machine de traction à déplacement imposé. Les résultats expérimentaux révèlent une distribution inégale de la courbure de flexion le long du toron, avec des positions de valeurs maximales de courbure corrélées à une distance relative égale à une fraction du pas hélicoïdal, déterminé par le niveau de retordage. De plus, l'évolution de la section transversale du toron à différents points du noeud révèle un comportement fortement non linéaire, indicatif de la propension de certaines sections droites à subir un fort aplatissement de leur section, et en conséquence une localisation de la courbure. En exploitant les distributions de forces généralisées auto-équilibrées pour fermer la boucle du noeud, l'étude confirme qu'une correspondance unique entre moment et courbure n'est pas accessible. Au contraire, les résultats mettent en évidence la nécessité d'introduire des facteurs supplémentaires, tels que le retordage, qui influencent de manière complexe sur la réponse du toron lors de la flexion. La rigidité de flexion relative le long du toron est quantifiée, sous l'hypothèse d'un moment de flexion constant sur toute la longueur du toron (mode auto-équilibré dominant). Ce phénomène est illustré par un simple modèle élastique de la section transversale dont la géométrie est composée de deux hélices coaxiales, et qui montre une courbure non constante mais périodique le long du toron.

Alignement de composites tissés 3D

En perspective, plusieurs points sont susceptibles de compléter la caractérisation proposée. Des analyses statistiques des trajectoires des fibres induites par le retordage pourraient permettre d'élaborer un modèle moyen des efforts radiaux induit par la tension du toron pour enrichir le modèle de Mohr-Coulomb. De plus, les aspects de couplage entre la compression transversale et la flexion par exemple lors du contact entre deux torons croisés pourraient permettre de représenter une sollicitation habituellement rencontrée lors du tissage. L'influence de l'eau présente à l'intérieur des torons (lubrification et cohésion capillaire) est importante pour orienter le procédé industriel. Enfin, la mécanique de la préforme tissée, qui associe un grand nombre de torons en contact frottant est un développement ambitieux que l'on pourrait aborder dans le même esprit que ce travail.

"Apri la mente a quel ch'io ti paleso e fermalvi entro; ché non fa scïenza, senza lo ritenere, avere inteso." 

Outline of the dissertation

The original topic of the Ph.D. thesis was the mechanical description from the yarn to the preform scale (with the exception of the weaving process). However, yarns already represent a complex structure, and hence a large part of this thesis only focused on yarns, both on their manufacturing process and their mechanical properties.

Fibers are obviously much simpler elements. In fact, they are "infinitely" stiff in tension (i.e., inextensible) while infinitely soft in compression (they easily buckle) and in flexion (due to their very small diameter); hence they can hardly be processed as they are. A solution is to re-assembled them with the help of a sizing agent capable of producing tows with good integrity. However, during processing, the sizing phase reveals brittle or damageable, as the cohesion they confer to the tows is weak. To produce larger tows, more elementary tows could be grouped, but again their mutual cohesion is absent, and they tend to separate easily. Therefore, several tows are usually twisted together and become "yarns". This may look simple, but "twisting" is a very different type of "glue" than sizing. In fact, while the latter exploits physical chemistry to produce cohesion, the former uses topological entanglements; in such a case, the endowed apparent "cohesion" cannot be broken (without breaking the fibers). These two steps are essential, yet paradoxically, no model from the literature accounts for sizing or twisting in the mechanical properties of yarns. Hence we will discuss at length the way they could be incorporated into the mechanical picture.

As will be discussed in the present work, an analysis of yarn twist has been carried out, as it is still a topic of discussion in the literature. Subsequently, a diametral compression test campaign of the carbon yarn was completed and revealed the elasto-plastic behavior of the cross section. A constitutive model accounting for this phenomenon will be proposed. By lack of time, the coupling of the transversal behavior with the longitudinal one given by twist is not yet characterized in the model. In addition, an in-situ test allowed us to study the pure bending behavior of the yarn. It showed that the presence of the twist is an essential element for the mechanical characterization of bending. Finally, the description of bending needs more study both with regard to the use of the proposed constitutive law in the cross section, and with regard to the fact that the yarn is never in pure bending in the fabric but is in continuous interaction with other yarns.

Modeling at the scale of the preform providing the same mechanical behavior has not been realized at present. Instead, an analysis of a tomography scanned on an as-woven woven 3D textile was carried out in order to restore the image to an ideal textile configuration and to quantify the occurred transformations along the horizontal plane.

The structure of the manuscript is explained as follows:

• Chapter 1 illustrates the state of the art regarding woven reinforcements and their use in composite materials. First, the various steps involved in the manufacturing process are described. Next, the mechanical models suitable for predicting the mechanical behavior under different deformations are discussed. Particular emphasis is given to the yarn models of the literature, especially twist modeling.

• Chapter 2 focuses on understanding the initial geometry of the carbon fibers within the yarn. The key importance is given to the role of the spinning process during the manufacture of the yarn. This process creates a twisting of the tows inside the yarn and, in turn, a particular geometry of the fibers. A microtomographic observation of the cross section provides key elements for understanding the twist. Finally, a FE model based simulates the process of yarn spinning and provides important details about the internal fiber migration.

• Chapter 3, on the other hand, focuses on understanding the mechanical behavior of the yarn when subjected to diametral compression. A mechanical ex-situ test is performed to obtain information about the flattening and the change in fiber volume fraction (FVF) during compaction. Finally, an elasto-plastic model based on the similarity between parallel fibers within the section and a two-dimensional granular medium is illustrated and validates the experimental results.

• Chapter 4 discusses the flexural behavior of the yarn starting from in-situ experimental results. A simple bending model depicts the role of the twist along a yarn and shows the crucial importance of geometrical non-linearities in bending.

• After weaving, a preform may display some distortions which makes the topology of weaving difficult to read from a computed tomography image. As such, Chapter 5 is dedicated to making a direct correlation between a complete tomographic image of a 3D fabric and a simplified and ideal weaving model. The knowledge of the displacement field between the real and the ideal configuration provides essential elements to understand the major geometrical transformations that have taken place.

Chapter 1 3D woven reinforcements for composite materials In this Chapter, the state of the art concerning 3D woven reinforcements is illustrated. First, the manufacturing process of twisted carbon yarns and the composite part is described in detail. Then, a bibliography study about the characterization of the woven reinforcement is reported. In particular, more focus is given to the numerical and analytical methods attempting to describe the mechanical behavior of twisted yarns. In recent years, composite materials have more and more been widely used in many industries. In particular, woven composites represent a novelty for many applications, such as the aeronautical [START_REF] Marsh | Aero engines lose weight thanks to composites[END_REF] and automotive industry [START_REF] Patel | Physical, mechanical, and thermal properties of natural fiber-reinforced epoxy composites for construction and automotive applications[END_REF], as well as civil engineering for composite bridge decks [START_REF] Norton | Behavior of 3-d woven glass fiber reinforced polymeric bridge deck slabs[END_REF].

Their most crucial driver regards the lightening of the manufactured parts. In particular, this weight reduction is required by the aeronautical industry since it allows a much lower fuel consumption which translates into a decrease in CO 2 emitted in the atmosphere. The increasing presence of these materials in aircraft (it has gone from 5% of the total mass in the 70s to nowadays reaching or exceeding 50%) underlines the need to study and optimize these structures. Figure 1.1 shows the trend in the last 50 years of increasing use of composite materials in Airbus commercial aircraft. Moreover, an essential advantage of composites is their adjustability for different shapes, functionalities, and the required mechanical properties along some privileged directions.

Recently, they have become fundamental for the conception, development, and manufacture of engine fan blades, significantly lowering the total mass of the engine and ensuring a reduction of about 15% of the emitted CO 2 . For manufacturing these blades, the innovative Organic Matrix Composites (OMC) materials are utilized since they present high specific mechanical properties (i.e., the mechanical properties to weight ratio) and can be used in the cold parts of the engine. It is constituted by a woven preform (made of carbon yarns) which is infiltrated with a resin that forms the "matrix". The chemical-physical properties of each constituent, as well as their mutual interaction and the different steps of the manufacturing process, represent fundamental research topics to be mobilized for optimizing the material. In the following sections, their manufacturing process will be illustrated in its main steps. Then, a description of the existing mechanical models of woven reinforcements and the position of the proposed approach will be discussed.

Application in aeronautical industry

. Manufacturing process

The manufacturing of woven composites starts from the fabrication of yarns. Each yarn is a structure composed of more elementary unidirectional assemblies of fibers, the so-called tows, which are twisted together.

. Carbon fibers

Carbon fibers are obtained by the polymerization of PolyAcryloNitrile (PAN) [START_REF] Dupupet | Fibres de carbone[END_REF]. The result is constituted by a certain number of unidirectional fibers which are mainly composed of carbon but also include hydrogen, nitrogen, and oxygen. After a stabilization given by oxidation at 200-300 • C, the carbonization process, which takes a few minutes, heats the fibers at 700-1500 • C and releases all chemical species other than carbon. Optionally, graphitization obtained by heating the fibers up to 2000 • C eliminates the last residual traces of hydrogen, nitrogen, and oxygen, and increases the fiber longitudinal stiffness. Then, a surface treatment by means of a chemical attack increases the roughness and adds reactive sites at the surface. This step is very beneficial for the addition of a sizing agent allowing for the chemical grafting of short polymer chains. In fact, as exited from the carbonization/graphitization process, the fibers present very low reactivity and adherence. The sizing agent increases such adherence by the chemical bonding and physical sorption of interphase at the fiber surface. Not only it does increase the adherence (and therefore the internal cohesion of the whole bundle) but also it reduces friction (and the resulting damage) of the yarn during the weaving and forming processes. A scheme of the procedure is reported in figure 1.3, taken from Dupupet [START_REF] Dupupet | Fibres de carbone[END_REF].

. Twisted yarns

The many manufactured fibers are usually assembled in one-directional structures, called tows. Each tow is composed of thousands of fibers (in the case of those used by Safran Aircraft Engines 12,000, also referred to as 12k tows). Then, more twisted tows (usually, as of 2, 3, or 4) are united to form the complete twisted carbon yarn, thanks to a spinning process (described in details in chapter 2). Such a process is fundamental as twist eases weaving and increases the cohesion of the fibers which undergo further bending, shearing, or compression. This manufacturing step is characterized by the plying of more tows, which follow a helical trajectory characterized by a certain pitch, given by the twist level. This is obtained with the use of a spinning machine. The tows (from different bobbins), after some passages through rollers and eyelets, are re-assembled together at the entrance of the machine for forming the yarn, then the latter is wound around a rotating central bobbin. The control of the bobbin spindle rotation speed and the feeding velocity of the bundles into the machine confers the sought twist level.

. Weaving process

The weaving process consists in creating a homogeneous sheet (the fabric), following a prescribed pattern, by interlacing the yarns along two privileged directions which are mainly orthogonal to each other: the warp and weft. While the warp is directly structured along the length of the fabric on different lines (at least two lines for the 2D fabrics) and is controlled by the vertical movement of the loom heddles according to the desired weaving pattern, the weft is inserted orthogonally by the shuttle. Then, a reed separates the warp yarns along the fabric width and packs the inserted weft yarns into the rest of the fabric, which is already woven. A simple scheme of a weaving machine (the loom) is illustrated in figure 1. [START_REF] Dupupet | Fibres de carbone[END_REF].

The most common textiles present a two-dimensional structure. In such a case, many weaving patterns and configurations can be reached. However, the most common ones are represented by:

• the taffeta, if a warp passes above the weft while the following passes below (see figure 1.5a);

• the twill, if n consecutively warp yarns are passed below while the successive m are passed above the weft, with a shift of one yarn at every weft passage (see figure 1.5b);

• a n satin, if a weft yarn is chosen every n consecutive warp yarns and, for the following weft passage, a shift of m yarns is imposed (see figure 1.5c).

Such 2D structures present high mechanical properties along the in-plane directions (both for biaxial tensile or shearing deformation modes). Therefore, it can be proposed to superpose many horizontal layers in order to create a three-dimensional structure, as required in many applications in aeronautics. However, during bending or transversal shearing, or in more damaging events such as bird impact onto the engine blade, delamination might appear. The geometry of the multilayered textile favors the slippage of the layers and possible horizontal cracks in the resin. Such a mechanism may generate the separation of the different layers and cause a delamination which strongly limits the mechanical resistance of the composite.

To overcome this drawback, more layers of stacked 2D fabrics can be joined, using stitching or tufting techniques. Moreover, 3D woven fabrics have been introduced to manufacture woven reinforcements [START_REF] Gnaba | Through-the-thickness reinforcement for composite structures: A review[END_REF][START_REF] Mouritz | Review of applications for advanced threedimensional fibre textile composites[END_REF][START_REF] Mouritz | A mechanistic interpretation of the comparative in-plane mechanical properties of 3d woven, stitched and pinned composites[END_REF][START_REF] Saleh | Recent advancements in mechanical characterisation of 3d woven composites[END_REF]. In this case, it is no longer a stacking of independent layers, but some yarns undulate inside the fabric through the entire thickness in such a way as to keep the different levels together and to interlock many vertically stacked yarns, called yarn columns, as seen in figure 1.7. This task can be entrusted to a third type of yarn, the binder, which is oriented as the warp, or by some warp yarns, or even by all yarns in a given orientation (e.g., warp). Such textiles are obtained by the use of a complex Jacquard loom (see the entering warp yarns in a loom used by Safran figure 1.6), which allows controlling each heddle individually so as to reach very complex patterns.

This kind of fabric is called interlock. This family of textiles can be subdivided into two main categories:

• the angle interlocks present a particular angle of the joining yarns with respect to the horizontal plane, as they interlace more columns simultaneously;

• the orthogonal interlocks are characterized by a perfect vertical direction of the interlocking yarns.

Moreover, a 3D interlock can be subdivided with respect to the behavior of the interlocking yarns: there exists the so-called layer-to-layer (also referred to as ply-to-ply), in which interlocking yarns join only a few layers at a time, and the through-the-thickness interlocks, where all the layers are joint together by the same yarn.

It is important to note that during the weaving process the yarns are woven in a humid environment (water is sprayed over the loom). This results in better slippage (lubrication) and increases the yarn internal cohesion (capillary effect).

. Forming process and injection in a mold

When the reinforcement is completely woven and exits from the loom, some external yarns are cut for obtaining a shape corresponding to the targetted part. The preform is ready for entering inside a mold which firstly confers the desired shape during the forming process. This is mainly represented by a global twist of the preform around its main axis, as shown in figure 1.8).

Then, the mold hosts the injection of a resin to complete the whole composite part. A woven composite is created by adding a matrix within the fibrous reinforcement. In particular, Liquid Composite Molding (LCM) represents the technology used when dealing with 3D woven textiles. It consists of the injection of a liquid resin that saturates the reinforcement placed inside the mold. LCM is further subdivided into two different processes: Resin Transfer Molding (RTM) and infusion. The RTM process is characterized by the use of two matched parts that form the mold. The reinforcement, which is initially wet, in order to decrease the inter-yarn friction occurring during the forming process, is placed inside the mold and undergoes the forming process (see figures 1.9a and 1.9b). Then, as shown in figure 1.9c, a polymeric resin is injected inside the mold at a low pressure, and it impregnates the whole fibrous network, though there are preferential flow areas called race-tracking [START_REF] Geoffre | Influence of intra-yarn flows on whole 3d woven fabric numerical permeability: from stokes to stokesdarcy simulations[END_REF]. Some vent ports are capable of evacuating possible trapped air or resin in excess. Finally, once the resin has totally cured, the part is de-molded (see figure 1.9d). In the case of 3D woven composites with carbon reinforcement, the chosen type of resin is epoxy, as it presents very low viscosity and can better permeate through the fibrous structure invading the entire mold cavity in a shorter time before its curing.

Otherwise, a Vacuum-Assisted variant of the RTM method (VARTM) performs the same kind of process employing vacuum. A vacuum pump is created inside the cavity generated by both parts of the mold (the upper and lower parts) before injection. Once the desired pressure is reached, the resin flows into the preform. Then, when the resin reaches a gel consistency, the vacuum is freed.

In the case of infusion technology, the top part of the mold is substituted with a vacuum bag. Usually, this process is more suited for curing big parts. However, given the difficulty in controlling the deformation of the bag during the molding, which may influence the thickness of the part, the composite can present more imperfections. As such, the first methods are preferred for manufacturing the engine blades.

It is important to mention that, in all cases, the deformation of the textile reinforcement, which is a very porous medium with very compliant modes (those used for the forming), can cause strong variations of the fiber content (which is called also Fiber Volume Fraction, FVF) and thereby can affect the permeability. Thus, this variability impacts the capacity of the resin to saturate the preform, in spite of the desired preferential channels. As seen in figure 1.10, the fan blade with its peculiar form, called for by its aerodynamic property, is very demanding in terms of mechanical resistance, in particular in the more "fragile" parts such as the dovetail (the thickest part that is attached to the crankshaft). High mechanical stresses such as those induced by the possible impact of birds during the landing or take off, or simply the extreme centrifugal force given by the motor rotation leads to possible damage to the composite material. Therefore, the study of the mechanical behavior of the fibrous reinforcement is carried out through mechanical tests, mainly of two kinds. The first ones are devoted to the material studies, while the second ones are related to the parts of engines/plane certification for instance, and are most of the time more complex [START_REF] Aridhi | Textile composite structural analysis taking into account the forming process[END_REF]. In fact, the manufacturing process influences the mechanical behavior of the composite since each step affects the structure of the reinforcement. As such, in order to more effectively predict the behavior of the fibrous material, as well as to optimize it, mechanical simulations (namely FE) are carried out at different scales of the textile.

. Mechanical behavior of woven reinforcements

The overall mechanical behavior of woven reinforcements, which has been observed by scanning some woven samples by X-ray tomography or ad hoc mechanical tests, is affected by the relative motion (and proper deformation) of the carbon yarns. However, given the complex geometry of the interlacing yarns and the fibers constituting each twisted yarn, the complete understanding of the mechanical behavior of reinforcement remains today a topic of central interest in scientific 

. Scales of study

The first important distinction concerns the scale at which the analysis and observation of mechanical behavior are carried out. In fact, in the case of fabric reinforcements, the main scales are basically three (see figure 1.10):

• the first concerns the macroscopic scale (or macroscale, begin from the order of cm), which analyzes the macroscopic (regionally) homogenized behavior;

• the second, mesoscopic scale (or mesoscale, of the order of fractions of mm), whose point of interest corresponds to the deformation of yarns and matrix as such;

• finally, the microscopic scale, (or microscale, of the order of µm) which analyzes the interaction between the single fibers intertwined within the yarn.

. Deformation modes

The most important deformation modes which control the mechanical response of the woven reinforcement for this application are essentially:

• biaxial tension;

• in-plane shear;

• transverse compaction;

• bending. Figure 1.11: Mechanical response to biaxial tension of a plane weave -Ke is the ratio between the warp strain E22 and the weft strain E11, while T11 is the measured tensile force along the weft direction, from Hivet and Boisse [START_REF] Hivet | Consistent mesoscopic mechanical behaviour model for woven composite reinforcements in biaxial tension[END_REF].

Biaxial tension

When subjected to biaxial tension, the yarns having least of the crimp in the woven textile tend firstly to straighten. This phenomenon, which has been observed by (see figure 1.11 from Hivet and Boisse [START_REF] Hivet | Consistent mesoscopic mechanical behaviour model for woven composite reinforcements in biaxial tension[END_REF]), exhibits a highly non-linear tensile behavior, characterized, along one direction, by a very low initial stiffness prior to a very high one when yarns are straight.

Moreover, the presence of two main directions results in a coupling in the biaxial tensile behavior of the fabric: the ability to straighten a particular orientation (e.g., the warp), due to the greater load presence in this direction, increases the crimp of the yarns in the orthogonal direction (i.e., the weft).

In-plane shear A very important test for characterizing mechanical behavior is the so-called bias extension test (see figure 1.12a, developed by Charmetant [START_REF] Charmetant | Approches hyperélastiques pour la modélisation du comportement mécanique de préformes tissées de composites[END_REF]). In this case, the extensional strain applied to the coupon is at π/4 with respect to the yarn directions, and in contrast to the previous very stiff response, is always much softer. Strong geometrical non-linearities are at play in this mode.

It can be observed that, as the extension increases (and so the imposed shear angle between the two yarn orientations, as shown in figure 1.12b), after a very low stiffness, a critical value of the angle is reached for which this stiffness suddenly rises. This phenomenon, called shear-locking, is due to the contact between yarns, which saturates, and any further increase in the load gives rise to wrinkles which however cannot be observed or quantified by this test.

Transverse compaction

Transverse compaction is also characterized by a non-linear stiffening behavior. It is influenced by many factors such as the yarn compressive behavior, the weaving pattern (so the yarn crimps), and the actual fiber content, described by the Fiber Volume Fraction (FVF). During the transverse compaction of a 3D woven reinforcement, Potluri and Sagar [START_REF] Potluri | Compaction modelling of textile preforms for composite structures[END_REF] observed three different phenomenological steps (as shown in section 1.2.2). Firstly, the compression of the most warping yarns tends to decrease their curvature and flatten the whole fabric with a lateral expansion allowed by the friction with the compression device. This is immediately fol- lowed by the transversal compaction behavior of each yarn which leads to a progressive stiffening of the material. In this phase, the FVF rapidly increases and reaches a critical value. Finally, as the loading increases, the FVF remains mostly constant, and the fabric stiffness becomes similar to that of the fibers.

This behavior is paramount to understanding the forming process when the preform is shaped into the mold and resin is injected. In particular, the evolution of the FVF is strictly linked to the permeability of the reinforcement, which is key for the resin injection step.

Bending The bending behavior represents the most critical deformation mode observed during the forming process inside the mold. This deformation describes the evolution of the curvature of the woven reinforcement. Clearly, the global behavior is influenced by the bending rigidity of each yarn, as well as by the inter-yarn frictional behavior. In fact, the friction between the yarns does not allow easy slippage between them during bending. This implies that the bending stiffness of the entire fabric (even if thick) is greater than a simple "sum" of the stiffnesses of the single yarns.

Moreover, as observed from Charmetant [START_REF] Charmetant | Approches hyperélastiques pour la modélisation du comportement mécanique de préformes tissées de composites[END_REF] (see figure 1.14, the forming process (which bends the preform) causes dislocations inside the yarn columns. However, in the first order, these columns do not remain perpendicular to the neutral fiber of the textile. This suggests that the bending behavior of 3D fabrics does not match that of the simple Euler-Bernoulli beam theory. 3D woven fabric subjected to a three-point bending from Charmetant [START_REF] Charmetant | Approches hyperélastiques pour la modélisation du comportement mécanique de préformes tissées de composites[END_REF]: unlike Euler-Bernoulli beam cross sections which remain orthogonal to the neutral fiber, those of a 3D woven textile remain almost vertical in a first stage (first figure) before a more important curvature of the textile lets them rotate.

. Numerical modeling of woven reinforcements

Simulating the manufacturing process and modeling 3D woven reinforcements (e.g., FE method) require special attention for identifying and using the material properties given to the fibrous material. This operation is such that the overall mechanical behavior can be captured using a homogenized or at least reduced model to limit the overall computational cost. As such, numerical modeling is characterized by a constant compromise between accuracy and computational cost.

Following the same scheme presented in figure 1.10, there exist three different scales at which these simulations are carried out:

• the macroscale, which proposed a homogenized continuous model representing the whole 3D textile -section 1.3.1;

• the mesoscale, which aims to model each yarn in the textile as a single entity and describes the cross section mechanical behavior with some parameters (e.g., Young modulus, Poisson ratio, etc) -section 1.3.2;

• the microscale, which models the fibrous content contained in each yarn, by describing the behavior of the constituting fibers by letting interacting some "virtual fibers" representing an abstraction of real fiber bundles -section 1.3.3.

Concerning the latter two families of models, textile modeling must be a procedure characterized by the identification and calculation of the yarn trajectories (the yarn paths) and the shapes of the yarn cross sections. As such, a proper mechanical description of yarns is essential to capture both elements, as this influences the deformation and the mechanical behavior of the entire fabric [START_REF] Wielhorski | Numerical modeling of 3d woven composite reinforcements: A review[END_REF].

. Macroscopic modeling

The macroscopic description aims to simulate the mechanical behavior of the 3D fabric by modeling it as a continuum, to which different mechanical properties are inferred from the homogenization of the lower scale (i.e., the mesoscale, that of the yarns).

De Luycker [START_REF] Luycker | Simulation et expérimentation en mise en forme de renforts composites 3D interlocks[END_REF] uses a hypoelastic behavior law, previously proposed by Badel et al. [START_REF] Badel | Simulation and tomography analysis of textile composite reinforcement deformation at the mesoscopic scale[END_REF] at the mesoscale in 2008, and implements it at the macroscopic scale. His work developed a series of mechanical tests to identify the behavior in different deformation modes (the tests are equivalent to those that have been shown previously), and based on the identification of some parameters, it simulates the hemispherical forming of the 3D fabric, as reported in figure 1.15a.

Instead, Charmetant's work consisted of modeling 3D textiles starting from a hyperelastic behavior law. In the definition of this law, he uses the strain invariants dictated by the anisotropy of the medium and postulates simplifying assumptions (decoupling between different modes). Figure 1.15b shows a simulation of a three-point bending test (shown also in figure 1.14). As can be seen, the results are quite satisfactory in the central part, however, they are distant in the two lateral portions. Concerning the latter deficiency, Mathieu [START_REF] Mathieu | Modélisation du comportement Mécanique lors du procéé de mise en forme et pyrolyse des Interlocks CMC[END_REF] improved the model by adding a curvature stiffness to the constitutive law. [START_REF] Luycker | Simulation et expérimentation en mise en forme de renforts composites 3D interlocks[END_REF], (b) simulation of three points bending from Charmetant [START_REF] Charmetant | Approches hyperélastiques pour la modélisation du comportement mécanique de préformes tissées de composites[END_REF] (first simulated column) and Mathieu [START_REF] Mathieu | Modélisation du comportement Mécanique lors du procéé de mise en forme et pyrolyse des Interlocks CMC[END_REF] (second simulated column). As Mathieu [START_REF] Mathieu | Modélisation du comportement Mécanique lors du procéé de mise en forme et pyrolyse des Interlocks CMC[END_REF] introduced the bending behavior of the textile inside the macroscopic model, the results are largely improved. 

. Mesoscopic modeling

At the mesoscopic scale, each yarn is modeled as a continuum, to which certain geometric or mechanical characteristics are attributed.

On the one hand, these properties can be purely geometrical. These models can emulate the shape of the cross section and the trajectory of the neutral fiber of the yarn, based on some simple geometrical features. These features are descriptors both of the section shape and of the trajectory of the neutral fiber of the yarn. On the other hand, the yarn cross section is modeled using (i) rectangular [START_REF] Lomov | Textile composites: modelling strategies[END_REF][START_REF] Lomov | Modelling the geometry of textile composite reinforcement[END_REF], (ii) circular [START_REF] Liao | A novel approach to three-dimensional modeling of interlaced fabric structures[END_REF][START_REF] Lin | Computer representation of woven fabric by using b-splines[END_REF], (iii) elliptical [START_REF] Liao | A novel approach to three-dimensional modeling of interlaced fabric structures[END_REF][START_REF] Lomov | Textile composites: modelling strategies[END_REF][START_REF] Sherburn | Geometric and Mechanical Modelling of Textiles[END_REF][START_REF] Lomov | Modelling the geometry of textile composite reinforcement[END_REF], (iv) racetrack [START_REF] Liao | A novel approach to three-dimensional modeling of interlaced fabric structures[END_REF], (v) power ellipse [START_REF] Hearle | An energy method for calculations in fabric mechanics. part i: Principles of the method[END_REF][START_REF] Sherburn | Geometric and Mechanical Modelling of Textiles[END_REF] (shown in figure 1.16b) or (vi) lenticular [START_REF] Hearle | An energy method for calculations in fabric mechanics. part i: Principles of the method[END_REF][START_REF] Lomov | Textile composites: modelling strategies[END_REF][START_REF] Sherburn | Geometric and Mechanical Modelling of Textiles[END_REF][START_REF] Lomov | Modelling the geometry of textile composite reinforcement[END_REF] shapes. The yarn paths can be constructed using (i) natural splines, (ii) cubic Bézier splines [START_REF] Zheng | An overview of modeling yarn's 3d geometric configuration[END_REF], (iii) cubic splines [START_REF] Lin | Computer representation of woven fabric by using b-splines[END_REF][START_REF] Sherburn | Geometric and Mechanical Modelling of Textiles[END_REF][START_REF] Mahadik | Finite element modelling of tow geometry in 3d woven fabrics[END_REF], (iv) or even a combination of segments and sinusoidal curves [START_REF] Adanur | 3d modeling of textile composite preforms[END_REF] (see in figure 1.16a).

These analytical models are at the basis of two main Textile Geometry Preprocessors (TGP), namely WiseTex (developed by Lomov et al. [START_REF] Lomov | Textile geometry preprocessor for meso-mechanical models of woven composites[END_REF]) and TexGen (which is based on the work of Sherburn [START_REF] Sherburn | Geometric and Mechanical Modelling of Textiles[END_REF] in 2007 at Nottingham University). Both tools are capable of geometrically modeling 3D woven textiles at their mesoscopic scale and generally, they are used as an initialization for a full mechanical simulation (in particular of transversal compaction or forming process). In fact, if on the one hand, they describe well the spatial dimensions of the yarns, on the other hand, they lack an in-depth mechanical characterization necessary for capturing the evolution of the yarn cross sections when subjected to any specific external loading.

Mesomechanical models, in this sense, intend to describe the mechanical behavior of each yarn as a whole body with the use of hyper- [START_REF] Charmetant | Hyperelastic modelling for mesoscopic analyses of composite reinforcements[END_REF] or hypo-elastic laws [START_REF] Badel | Simulation and tomography analysis of textile composite reinforcement deformation at the mesoscopic scale[END_REF]. The first type of law is based on the partition of the free energy into major modes, related to an equivalent number of invariants entering inside the definition of the strain energy. Although the soundness of this approach, this formulation leads to the use of 5 invariants, with arbitrarily non-linear contributions. As such, in order to reduce the number of parameters, it is postulated that there is no coupling between these invariants. The second type, which is an incremental method, aims to calculate the objective stress tensor at each loading step despite the difficulties given by the strong anisotropy of the yarn fibers. However, the need to correctly capture all these deformation modes requires the use of an ever larger number of parameters so as to characterize the couplings of the modes. Hence it requires a very high computational cost and the necessity of many identification parameters that can be estimated only with sophisticated mechanical tests. Therefore these models lead naturally to truncate the number of free parameters, hence obtaining a significant deviation from the real behavior, particularly for the initial (presenting very low or inexistent stiffness) and asymptotic deformation (critical) states. Moreover, since these models are based on the hypothesis of mechanical behavior remaining in the elastic range, they are limited in describing all those non-reversible deformations observed during the many tests to which the yarns are subjected. Figure 1.17a shows the modeled yarns (from Badel et al. [START_REF] Badel | Simulation and tomography analysis of textile composite reinforcement deformation at the mesoscopic scale[END_REF]) deforming inside a representative volume of a sheared plane-weave textile using a hypo-elastic behavior law, while figure 1.17b represents the deformation modes from Charmetant et al. [START_REF] Charmetant | Hyperelastic modelling for mesoscopic analyses of composite reinforcements[END_REF] defining the invariants inside their hyper-elastic behavior law.

. Microscopic modeling

At the microscopic scale, textile modeling is characterized by using an approach in which the yarn, made up of thousands of fibers, is modeled considering a finite number of virtual fibers, each representing a few hundred real fibers. It should be stressed that is numerically impossible to describe a bundle of thousands of fibers. However, since there exists a well-posed limit for N → ∞, with N denoting the number of fibers, this number does not have an influence on the overall behavior. As such, it is legitimate to reduce this number to a few dozen while keeping the same mechanical behavior of the yarn. These virtual fibers were introduced in 1998 by Durville [START_REF] Durville | Modélisation du comportement mécanique de câbles métalliques[END_REF] (which is the base of the software Multifil, see a simulation of a transverse compaction in figure 1.19), who modeled them as an elastic beam, or in 2001 by Wang and Sun [START_REF] Wang | Digital-element simulation of textile processes[END_REF] who modeled them as simple digital chains (which is the base of the software DFMA (Digital Fabric Mechanics Analyzer)). Green et al. [START_REF] Green | Mechanical modelling of 3d woven composites considering realistic unit cell geometry[END_REF] modeled an orthogonal through-the-thickness interlock using digital chains. As shown in figure 1.18, the correspondence with the real specimen acquired via X-ray tomography is very satisfactory. Instead, Del Sorbo et al. [START_REF] Del Sorbo | Numerical investigations on a yarn structure at the microscale towards scale transition[END_REF] described the virtual fibers as chains of bonded spherical Discrete Elements for simulating the dynamic transverse impact of a projectile onto a Kevlar yarn. Recently, in 2021, Daelemans et al. [START_REF] Daelemans | Kinematic and mechanical response of dry woven fabrics in throughthickness compression : Virtual fiber modeling with mesh overlay technique and experimental validation[END_REF] proposed a mixed model of virtual fibers in which some aspects of elastic beams (the bending behavior) are coupled with truss elements representing the extensional behavior.

All these approaches have the characteristics of being able to highlight the irreversible and microscopic nature of the yarns, and therefore in a certain sense, they better capture some phenomena observed in reality. At the same time, however, the greatest challenges brought by these models are the high computational cost (due to the resolution of many contacts and friction problems between the fibers) and the difficulty in properly characterizing the initial geometry of these fibers within the yarns. Indeed, a too-low number of fibers and very compact initial states such as hexagonal compact or circular/elliptical dispositions is too unrealistic in terms of cross section Thus, as a first attempt, it is necessary to provide a progressive refinement of the cross section at the expense of increasing the computational cost due to the increased number of added virtual fibers. Otherwise, Moustacas et al. [START_REF] Moustacas | Modélisation et simulation par élément finis du comportement trans-verse de mèches de fibres de carbone[END_REF] introduced a random sinusoidal perturbation to the initial virtual fiber paths for characterizing a realistic value of the FVF inside the yarn cross section (see figure 1.20). However, even if the addition of disorder attempted to describe a more realistic yarn behavior, the chosen sinusoidal form contrasts with the characteristic of the fibers inside the yarn.

. Characterization of twist

The study of yarn twisting has been approached in the literature from various points of view. Of particular interest for understanding the phenomena that occur during the yarn spinning process are the works of Neukirch and van der Heijden, Tran et al. [START_REF] Neukirch | Geometry and mechanics of uniform n-plies: from engineering ropes to biological filaments[END_REF][START_REF] Tran | Application of topological conservation to model key features of zero-torque multi-ply yarns[END_REF], who analyzed the equilibrated conformation of a multi-ply yarn from a topological point of view. In fact, when a yarn is created, the arrangement of the different tows and fibers within it results in the formation of topological invariants that remain untouched when the yarn undergoes elementary transformations (such as bending or stretching, see figure 1.21) and contribute primarily to the tensional stiffness. This is valid until an attempt is made to slip out the tows from the yarns, or if one cuts them off.

Such topological invariants correspond to the mathematical description of mutual positioning configurations among the various fibers and, at a larger scale, the tows themselves. These configurations have been widely studied in the mathematical theory of braids and knots [START_REF] Cȃlugȃreanu | Sur les classes d'isotopie des noeuds tridimensionnels et leurs invariants[END_REF][START_REF] White | Self-linking and the gauss integral in higher dimensions[END_REF]. In the case of closed knots, the most interesting numerical invariant is the linking number L k , which is equal to the number of crossing points between two closed curves belonging to the same knot. When considering braids, the same kind of mutual relations occur, but closure must be handled (see figure 1.22).

The linking number has been integrated to study the deformation modes of twisted rods or ribbons as well [START_REF] Fuller | The writhing number of a space curve[END_REF][START_REF] Van Der Heijden | Helical and localised buckling in twisted rods: a uniform analysis of the symmetric case[END_REF]. In such a case, a twisted ribbon can be seen as a braid made of two curves: the first corresponds to the ribbon axis, while the second is the immaterial curve traveled by a ribbon particle that revolves around the axis. As such, globally, the linking number corresponds to the total number of rotations the ribbon underwent.

If one keeps twisting the ribbon or one tries to approach the two ends, one will notice a Figure 1.23: Illustration of linking, writhing, and total twist numbers for a doubly twisted ribbon, from van der Heijden and Thompson [START_REF] Van Der Heijden | Helical and localised buckling in twisted rods: a uniform analysis of the symmetric case[END_REF]. When the two ends are closer, the linking number, constant throughout the whole test and initially identical to the total twist, becomes equal to the writhing number. migration of elastic energy from torsional to bending, and the ribbon starts to coil (see the scheme in figure 1.23). The value of the linking number then becomes the sum of two contributions:

L k = T w + W r
The first one, i.e., the total twist, measures the ribbon twist around its axis and connotes the contribution of torsional energy. The second one, i.e., the writhing number, corresponds to the measure of the ribbon coiling, hence is related to the bending energy. It must be underlined that both T w and W r are geometrical quantities, meaning they can vary when the ribbon is further deformed (bending and stretching). However, their sum L k , which is a topological invariant, remains constant whatever the elementary transformation.

If, at the scale of tows, the calculation of this quantity is computable [START_REF] Neukirch | Geometry and mechanics of uniform n-plies: from engineering ropes to biological filaments[END_REF], when analyzing the fiber trajectories, given the many nonelementary entanglements and possible crossing points, it is more challenging to estimate it. As such, in order to simplify this description, many analytical models attempted to characterize these trajectories using very common and ideal geometries. The most common cases include the coaxial helical model by Hearle [START_REF] Hearle | 8-on the theory of the mechanics of twisted yarns[END_REF], or, for characterizing multiply yarns, doubly wound helices developed by Treloar [START_REF] Treloar | 25-the geometry of multi-ply yarns[END_REF], which utilizes the coaxial helices model for describing fiber paths with respect to the tow axis, or even a series of non-uniform epi-helices, as proposed by Stansfield [45] are the most notable models, reported in figure 1. [START_REF] Hearle | An energy method for calculations in fabric mechanics. part i: Principles of the method[END_REF].

For taking into account the migration within yarns, an analytical migration has been introduced following the sole geometrical constraint (constant FVF) [START_REF] Treloar | 28-a migrating filament theory of yarn properties[END_REF][START_REF] Hearle | Migration of fibers in yarns: Part i: Characterization and idealization of migration behavior[END_REF]. This kind of migration is socalled "ideal" migration, as it makes the hypothesis that each fiber in a twisted yarn constantly travels all radial distances from the core to the yarn skin and backward. However, this gives rise to non-smooth functions of the radial distance of the fiber along the yarn axis, providing singularities both at the core and at the most peripheral position. Hearle and Merchant [START_REF] Hearle | Merchant, 39-interchange of position among the components of a seven-ply structure: Mechanism of migration[END_REF] and El-Shiekh and Backer [START_REF] El-Shiekh | The mechanics of fiber migration: Part i: Theoretical analysis[END_REF] attempted to describe mechanically such a phenomenon by studying the observable
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Figure 1.24: Analytical models for describing fiber trajectories within twisted yarns: (a) coaxial helical model from Hearle [START_REF] Hearle | 8-on the theory of the mechanics of twisted yarns[END_REF], (b) doubly-wound helices for multiply yarns from Treloar [START_REF] Treloar | 25-the geometry of multi-ply yarns[END_REF] and (c) epihelices from Stansfield [START_REF] Stansfield | The geometry of twisted multi-filament structures[END_REF].

migration of seven-plies yarns when exiting from the nip rollers. Successively, Tao [START_REF] Tao | Mechanical properties of a migrating fiber[END_REF] proposed a conical model, in which the radius varies following a sinusoidal function, and performed a a posteriori mechanical analysis on many configurations.

Given these difficulties in characterizing the real trajectories of the filaments inside the yarn, a statistical analysis of the fiber orientation density function (ODF) has been introduced in the literature to make a direct comparison between experimental data, theoretical assumptions, and the yarn mesoscopic mechanical parameters [START_REF] Hearle | On the extended theory of mechanics of twisted yarns[END_REF][START_REF] Jeon | A new orientation density function of ideally migrating fibers to predict yarn mechanical behavior[END_REF][START_REF] Jeon | Orientation density function of ply yarn[END_REF]. This function is related to the probability that a certain number of fibers (and at a certain distance from the center of the yarn) have a value of their orientation angle in a given range of values and is used as the input for mechanical models.

To validate these hypotheses, some experiments were carried out to extract the geometry of the fibers and to measure their orientation angle. Among the most interesting is the invention of the Fiber Tracer Technique developed in 1952 by Morton and Yen [START_REF] Morton | 5-the arrangement of fibres in fibro yarns[END_REF] through which it is possible to extract the path of some colored fibers within a yarn when the entire yarn is immersed in a liquid that has the same refractive index as the original fibers.

More recently, the use of X-ray microtomography was developed for characterizing the orientation and geometry of fibers in yarns. An important parameter for measuring the global twist level of yarn is the turns per meter (TPM), widely used in textile engineering. It measures the number of revolutions the tows travel around the yarn axis in one meter. Nakamura and Goda [START_REF] Nakamura | Effect of yarn structure on mechanical properties of twisted yarn composites[END_REF] studied a twisted yarn made of a few natural ramie fibers and noticed a strong correlation between the change of position with respect to the yarn core given by migration and the variation of twist angle. At the same time, they noted that migration does not influence the yarn tensile strength. Finally, they employed the yarn twist contraction ratio (TCR) parameter, corresponding to the loss of yarn length due to twist, to describe the migration rather than the twist angle. In a recent article, Sibéllas et al. [START_REF] Sibéllas | Experimental study of the fiber orientations in single and multi-ply continuous filament yarns[END_REF] proposed a full experimental study of fiber orientation in twisted nylon yarns taking into account both a varying number of twist level (230, 350, or 410 TPM) and a different number of forming tows (1-ply, 2-plies, and 3-plies). Through an innovative technique of reconstructing the trajectories of the nylon fibers, they plotted the maps corresponding to the mean fiber orientation angle both with respect to the yarn axis and, in the multi-ply case, with respect to the axis of the individual tow, as reported in figure 1. [START_REF] Zheng | An overview of modeling yarn's 3d geometric configuration[END_REF]. Concerning the single yarn, a highly non-constant value of twist angle has been observed, with almost zero values in the center and gradually larger as the edge is approached. This can only partially be explained by the fact that it is a very high value of TPM. In fact, this configuration does not seem to match the hypothesis of an averagely constant orientation angle which should imply a migration within the cross section.

Concerning the multi-ply yarns, the contrary twists present inside each tow and for the whole yarn give rise to higher values of the twist angle at the contact points between the tows. Conversely, lower and more homogeneous values are observed when analyzing the orientation with respect to the axis of the single tow, which has a helical trajectory per se. This analysis enabled them to obtain experimental ODFs for absolute and relative orientation maps. In particular, in the case of a single tow, they compared the experimental ODFs with the theoretical ones in the literature and found good agreement.

. Limitations of existing models and motivation for the proposed model

In this chapter, we presented the manufacturing process and the mechanical behavior of 3D wovens as composite reinforcements since they strongly influence the mechanical response of the whole part.

Moreover, the most used approaches in the literature for modeling 3D woven reinforcements, or simulating their mechanical behavior when subjected to different mechanical tests, have been reported and discussed. Those models, mainly based on a macroscopic approach, have the characteristics of simulating the behavior of the fabric as a whole with a homogenized and rather simple model. However, they tend to oversimplify many mechanisms occurring within the fabric. This aspect is enhanced when a smaller-scale model (both mesoscopic and microscopic) is considered. In the first case, each yarn is modeled using a hypo-or hyper-elastic law that homogenizes the behavior of the cross section as a whole body. Unfortunately, these models, which are based on the assumption of elastic behavior, cannot capture the irreversible deformations observed inside the yarn, neither twisting nor sizing cohesion. Furthermore, to improve the characteristics of these behavior laws, the (important) number of descriptive parameters must necessarily increase, and therefore the number of needed mechanical tests becomes rapidly unaffordable.

Alternatively, a different type of problem is faced by the so-called micromechanical models which attempt to simulate real fibers using a few dozen virtual fibers with a very simple behavior law (linear elasticity but including contact and friction) and can describe the irreversible deformations of yarns. In this way, the number of mechanical parameters decreases drastically, but at the same time, the computational cost becomes discouragingly high since the number of contacts between the virtual fibers strongly increases with the number of virtual fibers used to describe a yarn (or the yarns). Moreover, obvious difficulties are found in the postulated initial geometry of the yarn, linked to the fiber distribution, which strongly influences the behavior during its deformation inside the fabric.

It is important to mention that in numerical modeling, not much importance has been given either to the twist of yarn fibers (impacting both their geometry and mechanical behavior), to the sizing agent, nor to the water content observed during the weaving or the forming processes, which play a significant role in the cohesion of fibers and the overall mechanical response of the textile.

In this sense, the objective of the thesis is to propose a yarn model that takes into account, on the one hand, its multi-filament constitution, and on the other hand, using a few parameters is capable to describe the plastic deformations observed. The framework at which this model will be proposed is hence mesoscopic modeling (homogenization of the carbon fibers) while capturing the nonreversible deformations observed during the manufacturing process typical of an elasto-plastic behavior.

To explain the proposed model, reference is made to the two-dimensional soil introduced by Schneebeli [START_REF] Schneebeli | Une analogie mechanique pour les terres sans cohesion[END_REF], whose example is shown in figure 1.26. It describes a certain bundle of parallel arranged steel rods as an equivalent two-dimensional granular medium with an elasto-plastic behavior law (e.g., a Mohr-Coulomb yield criterion), completely uncoupled with the longitudinal direction that remains totally elastic (for our case, the carbon fibers are even inextensible). This would represent a 0 th -order model for yarn cross section. When twist is introduced, nontrivial fiber trajectories appear in the cross section due to migration. Hence, the simplest way to slightly increase the complexity of such a model (i.e., the 1 st -order model) is the addition of 

= f z R c n
where n is the normal of the fiber trajectory. Indeed, one will not be able to follow individual fiber trajectories, and hence a statistical average is needed, which should exploit first a realistic set of trajectories. For a yarn of circular cross section, the homogenized body force field has to be radial, directed toward the section center and proportional to the mean yarn longitudinal tension. Therefore, before addressing the formulation of the elasto-plastic model, the study of the role of twist inside multi-ply yarns must be understood and characterized. In this Chapter, the study of twist on carbon yarn is addressed. First, the principles of the spinning machine are analyzed, and a FE model exploits the potential provided by the ALE formulation to simulate fiber migration within the cross section and consequently achieve a balanced twist. The model results are then compared with experimental observations on a portion of the yarn at the microtomograph, which confirms the main aspects of twist.

As introduced in the first chapter, the yarns are constituted by a small number of fiber bundles, also called the tows or plies. At the level of each fiber, a coating agent (i.e., the sizing) is introduced to better manipulate the tows and give them (endow them with) an internal cohesion. An elementary tow/bundle appears as stiff, resisting bending. But a modest flexural torque softens irreversibly this flexural stiffness, meaning that locally the sizing is brittle, and is damaged during flexion. The origin of this stiffness can be confirmed by burning the tow locally, with say a lighter. In this test, the organic sizing is calcinated and leaves the elementary filament cohesionless. However, water infiltration in the two can restore a partially reversible (but hysteretic) cohesion, a property that is exploited in weaving.

Yet, the most dramatic consequence of the cohesive sizing, is that it makes the longitudinal slip of filament with respect to the neighboring ones basically impossible, But this remains a very local property when the sizing is damaged. This means that the relative positioning of the filaments as established in the initial assembly of the tow is "frozen forever" in each tow, that is even in the twisting of yarns, and further in the weaving process. As such, the twist is introduced so to encourage such cohesion further, however, not using the physical chemistry, but rather a topological entanglement that will convert yarn tension into cross section "cohesion". Hence, the mechanical behavior of the yarn is influenced not only by the behavior of each constitutive fiber but also by their density (i.e., the fiber content or FVF) as well as their mutual interaction given by their sizing and overall geometrical disposition inside the yarn. So far, little importance has been given in the literature to this aspect when addressing the modeling of the overall woven reinforcements. In particular, most of the existing models do not provide any connection between the twist level or the sizing agent and the main mechanical parameters of the yarn. Therefore, in this chapter, fiber geometry given by twist will be studied, in particular in view of its resulting influence on mechanical behavior. Firstly, the fundamental role of the spinning process in the manufacture of the yarn, which is necessary to obtain a so-called "balanced twist", is analyzed. For demonstrating this phenomenon, we provide a numerical model (FE) that describes the effect of the twist on the arrangement of the fibers within the yarn. Finally, an analysis of an X-ray micro-tomography (µCT) of a twisted carbon yarn could offer, at a suitable resolution, essential elements in understanding the orientation of the fibers within the yarn cross section.

. Spinning process

The spinning process is a manufacturing process through which a number of tows (or continuous fibers) are plied together to form a thicker unidirectional structure, the yarn, wound around a bobbin. This process, known by man since the time of the Iron Age, was made efficient during the 19th century to create yarns used in the textile industry, which strongly developed during the Industrial Revolution. The machine used to create Safran carbon yarn uses the same identical principle employed more than a century ago. This manufacturing tool, whose scheme is reported in figure 2.1 consists of two main parts: a feeding zone, the creel, and the spinning zone. In the creel, a series of bobbins, each containing a different tow, are unrolled thanks to the rotation of their main axes. The tows, therefore, after being collected around a common roller, pass through a series of eyelets and then enter the spinning zone. A further passage around a nip roller lets the tows keep a flat-shaped cross section shape, which they partly maintain even inside the yarn.

The tows, leaving the nip rollers and being plied to form the yarn, enter the spinning area by passing through a central eyelet, which is positioned (above) at the same axial position as the bobbin axis around which the yarn is wound. The formed yarn then passes around a grommet which can freely move along a fixed annular track, the ring. The grommet material (usually an oil-repellent plastic material) minimizes friction and, thus, heating and wear with the ring. Finally, the yarn exiting from the grommet arrives at the tangential point of the central bobbin placed at the center.

. Study of kinematics

The bobbin is controlled by a spindle rotating at a constant angular velocity ω B , around which the yarn is wound. The rotation of the spindle entrains the "rotation" of the grommet (at an angular velocity ω G ), which is carried by the loop of the yarn around the bobbin. The necessary and sufficient condition for the created yarn to come into contact with the bobbin and be wound around it is that the two angular velocities are different [START_REF] Fraser | On the theory of ring spinning[END_REF] and, in particular that

ω B > ω G (2.1)
This is made possible by the fact that there is a feeding velocity v realized by controlling the rotation of the bobbins in the creel. In order to quantify this difference, consider a reference system R CE (different from that of the laboratory R L ) centered at the central eyelet O, and rotating around z axis (corresponding to the one passing by the bobbin core) at a constant velocity ω z ≡ ω G . For R CL , the grommet will appear stationary (i.e., ω ′ G = 0), while the bobbin will rotate at velocity ω ′ B ≡ ω rel , equal to ω B -ω G . By making the assumption of inextensible tows, ω rel is computed as

ω rel = v R B (2.2)
with R B labeling the radius of the bobbin. Therefore, the angular velocity of the grommet that the machine operator does not directly control is easily derived as:

ω G = ω B - v R B (2.3)
Moreover, for R CE the tows entering the central eyelet would appear rotating at -ω G (when actually for the laboratory operator R L they are not rotating). This indicates that ω G represents the rotational velocity responsible for creating the twist within the yarn. The resulting trajectories described by the tows inside the formed yarn correspond to helical paths whose pitch is controlled by the desired twist τ (expressed in turns per meter or TPM, or in rad/m). Let us label as s the curvilinear abscissa that follows the yarn path in the Euclidean space, while the azimuthal angle of the helix is denoted as β. The twist is derived as a function of the controlled parameters of the machine. 

τ = dβ ds = ω G dt v dt = ω G v = ω B v - 1 R B (2.4)

. Study of mechanics

So far, the twist problem has been analyzed from a kinematic point of view. It has been possible to calculate the spinning twist as a function of the machine control quantities. However, a description of the same phenomenon from a mechanical point of view needs to be employed. It should be noted that when they come out of the nip rollers, the tows have not yet undergone any internal torsion. In fact, at the same instant identified in a single point (also called point of convergence), yarn twist occurs to guarantee zero torque. With the exception of the first few revolutions of the machine, which require the yarn to be created near the bobbin, this point always is placed somewhere above O. Therefore, it is necessary to demonstrate a mechanical equilibrium that satisfies such a hypothesis. Although this is represented by a dynamic problem, if the transient phases of turning the machine on and off are ignored (corresponding to the angular acceleration/deceleration of the spindle and the feeding velocity), the problem can be analyzed in stationary terms. Hence it is possible to carry out the static balance of the yarn throughout the spinning machine.

The only mechanical loading the tows are subjected to before entering the spinning machine is a positive axial force (traction) T i (see figure 2.3). This force makes it possible to physically handle the yarn in the various parts of the machine and obviously helps the yarn to "glue" around the rotating bobbin.

When the tows entering the yarn are twisted, an internal torque inside each tow that balances the torque formed by the component of the tension forces projected onto the transverse yarn plane is created. This can be described by performing the rotation balance at the pole corresponding to 

Q = 0 = n i (T i d i sin Θ -Q i ) (2.5)
with d i representing the distance of the centroid of the i-th tow from the core of the yarn, Θ the mean tow orientation angle with respect to the yarn axis, and n the total number of tows forming the yarn.

Although simple, this equation should be solved only by considering the tension variation inside each tow and its impact on the distance with the yarn axis; therefore, given the too many unknowns, it cannot be solved using a simple statical equilibrium at rotation around O. This variable change of position, called migration, occurs at the scale of each tow and the fibers inside the tows.

. Characterization of migration

The study of fiber migration in yarns is a topic that still covers a wide range of more or less simplified models and experimental analyses in the laboratory aimed at understanding specifically what twist involves in the organization and the position of the different layers inside a yarn [START_REF] Treloar | 28-a migrating filament theory of yarn properties[END_REF][START_REF] Hearle | Migration of fibers in yarns: Part i: Characterization and idealization of migration behavior[END_REF][START_REF] Tao | Mechanical properties of a migrating fiber[END_REF][START_REF] Hearle | Merchant, 39-interchange of position among the components of a seven-ply structure: Mechanism of migration[END_REF][START_REF] El-Shiekh | The mechanics of fiber migration: Part i: Theoretical analysis[END_REF]. If one takes a bundle of unidirectional fibers (essentially parallel to the main axis of the bundle) and twists it, a certain orientation angle is created (which we labeled as θ) between the fiber and the yarn axis.

It could be hypothesized that this angle varies from a zero value at the center to a maximum one on the skin and that fibers follow concentric helices of identical pitch. In reality, their trajectory is more complicated as a result of fiber migration. Most of the studies aimed at analyzing migration can be essentially divided into two categories, characterized by different aspects.

The first category is focalized on the study of migration from a geometrical point of view. This condition is essentially due to the assumption that the whole length of a fiber at a certain distance from the center of the yarn must be the same as the whole length of another fiber, at a different distance, so that the fiber density (or intra-yarn fiber volume fraction) remains mainly constant all along the yarn axis.

On the other hand, the second category is more focused on the mechanical aspects of migration. If there were no migration, the value of the orientation angle would be different (ideally zero at the center of the yarn and maximum at the border). Consequently, the outermost fibers would travel longer trajectories for the same dz length of yarn. This would imply that, without fiber migration, the length of the outermost fibers would be greater than the innermost ones. However, since fibers are essentially inextensible, given their very high Young modulus, they cannot allow axial elongation and an increase of their axial tension. Hence, they are naturally inclined to decrease their axial tension by rapidly re-entering the interior of the yarn. For the same reason, since they cannot be compressed, the innermost fibers would be subject to an excessive decrease in tension, which would cause them to buckle and migrate toward the yarn skin.

This continuous movement results in an average value of θ which is homogeneous. Such an angle is responsible for creating a radial pressure directed toward the yarn center (at the scale of each fiber, this direction is given by the fiber trajectory normal vector) when the yarn is loaded axially (as it is during spinning and weaving). It is, therefore, crucial to understand this migration and, if possible, to characterize it to identify the distribution of this pressure within the cross section, improving the knowledge of the predicted yarn mechanical behavior.

It gets even more complicated when it comes to multi-ply yarns formed by more than one tow (or bundle). Since yarns must have a balanced torsion in each of their own cross sections, this implies an apparent migration of fibers at the yarn scale given by a double counter-directional trajectory (see figure 2.4). Moreover, this is characterized by two different migrations, the first concerning just the tows belonging to the yarn, and the second describes the change of trajectory of fibers within every tow.

. FE model of multi-ply yarn twist

It has been shown that the point of convergence O represents that immaterial point at which twist occurs and the yarn is created. Just before it, the (four) tows travel a straight trajectory. Downstream, the paths of the fibers within tows, and the tows within the yarn, are mainly those of doubly-wounded helices.

For this purpose, a dynamical FE analysis has been performed on four virtual fibers forming the four tows at the convergence point entrance. The chosen twist level corresponds to a 20 TPM yarn type, while the total length has been chosen to be 12 mm. Each virtual fiber has been modeled with a circular cross section (whose radius equals 0.25 mm), providing a linear elastic behavior. The selected Young modulus is similar to one of the fibers 150 GPa, while the Poisson's ratio equals 0.3. The material density is converted to 1 g/cm 3 , as it makes the hypothesis that a single virtual fiber describes a certain number of true carbon fibers. A general contact algorithm is used to consider the entanglement among the fibers. For this scope, a value of friction coefficient equal to 0.1 is used. Firstly, a rotation about the z axis allows the creation of the helical geometry downstream of the O point. A displacement of ∆ z = 0.5 mm ensures a large and positive tension value in each virtual fiber. The schematic representation of this step is shown in figure 2.5.

Secondly, in order to model the material passage and thus avoid the need to use a major fiber length for analyzing the mean yarn cross section, an Arbitrary Lagrangian-Eulerian (or ALE) formulation has been employed. This formulation is common in computational mechanics as it allows the FE mesh to be adapted to the type of problem to be modeled [START_REF] Donea | Encyclopedia of Computational Mechanics -Arbitrary Lagrangian-Eulerian methods[END_REF]. In fact, it permits the mesh velocity to be different from that of the material particle, thus providing simulations with significant deforma- tions or in which a material flows along a privileged direction. In the case of twisted fibers, this formulation provides an uncoupling of the kinematics along the z direction (in which one would expect the mesh to remain fixed while the material passes through) and the in-plane directions x-y, along which the fibers would eventually move along with the mesh.

The following paragraphs present the kinematics and mechanics in the ALE formulation and mention the types of mesh-update algorithms used to solve these problems.

Purely Lagrangian formulation The Lagrangian formulation, which is the most common in solid mechanics, consists of following the material particles during their motion in space. As such, if one discretizes the modeled domain (e.g., using a FE mesh), every node permanently follows the deformation of the body.

As such, the equation of motion is directly described by a mapping function φ, which relates each particle from the initial configuration X to the current one x (see figure 2.6).

In this case, both velocity v = ∂x/∂t and the deformation gradient F = ∂x/∂X are related to the initial configuration and therefore are easily computed. Since the FE mesh perfectly follows the motion in such a formulation, no convective term appears. Hence, this type of formulation is particularly time-saving and computationally less expensive in many applications. However, strong element distortions might occur, when the deformation is important, and the calculation loses accuracy.

Purely Eulerian formulation When dealing with problems in which large deformations happen or when the particle velocity is privileged along one direction, another viewpoint to de- scribe continuum mechanics is the Eulerian formulation, which is very popular for solving fluid mechanics problems.

In such a formulation, the computed physical quantities are associated with the fluid motion which passes through a fixed region of space. This region is the grid of nodes (or FE mesh) which remains completely fixed during the simulation, while the continuum moves and deforms with respect to it, as shown in figure 2.7.

The motion equations, in this case, are written with respect to the current configuration x, while the material velocity is expressed with respect to the fixed mesh v = v(x, t). Since there is a relative motion between the material particles and the FE mesh, convective effects appear. Since they are characterized by a series of non-symmetric quantities, Eulerian problems present higher numerical costs, particularly when complex motions occur.

ALE kinematics

It is possible to combine both previous formulations to benefit from the advantages of each viewpoint and, at the same time, minimize the drawbacks of each formulation. Such a description is called Arbitrary Lagrangian-Eulerian (ALE) formulation. ALE algorithms were introduced in finite differences by Noh [START_REF] Noh | A time-dependent two-space dimensional coupled eulerian-lagrangian code[END_REF] and Hirt et al. [START_REF] Hirt | An arbitrary lagrangian-eulerian computing method for all flow speeds[END_REF] and successively implemented in the FE scheme.

In ALE formulation, a third domain Ω χ is introduced as a reference which is neither the material (previously corresponding to the initial configuration X) nor the spatial one (i.e., x, the deformed body in Lagrangian formulation). The reference coordinates χ correspond to the mesh nodes.

The transformations between the reference and the material and spatial domains are identified as maps Ψ and Φ, respectively, as it can be seen in figure 2.8.

While the time derivation of the first one defines a mesh velocity v, the second one corresponds to the particle velocity in the reference configuration w. 

The relation between the three velocities is the fundamental equation of ALE and defines how

v = v + ∂x ∂X • w (2.6)
This equation states that the total material velocity of a particle in the material reference is equal to the sum of the mesh velocity and a relative velocity between the material and the mesh labeled as convective velocity

v c = v -v = (∂x/∂X) • w.
It is possible to obtain the Lagrangian and Eulerian expressions by making particular choices in ALE formulation. In particular, if Ψ = I, there is a coincidence between the reference configuration and the material one (i.e., the Lagrangian viewpoint), therefore X ≡ χ and w = 0. On the other hand, if Φ = I, the spatial coordinates correspond to the reference one x ≡ χ and the total velocity v is purely Eulerian.

Conservation equations in ALE context

When taking into account the mechanical problem, whatever the formulation employed, three different conservation equations are fundamental: the mass, momentum, and total energy. In a strong form, they are expressed as:

dρ dt = -ρ∇ • v (2.7) ρ dv dt = ∇ • σ + ρb (2.8) ρ dE dt = ∇ • (σ • v) + v • ρb (2.9)
with ρ denoting the material density, ρv the momentum, ρE the total energy, and b the vector of body forces included in the continuum.

When a FE analysis is carried out using an ALE formulation, it is important to insert the different terms defining the total (or material) velocity inside these equations. Moreover, since there is a material derivation in time, the following rule holds:

df dt = ∂f ∂t χ + ∇f • v c (2.10)
This equation states that a total variation in time of a quantity f equals the local variation (with the reference coordinates χ kept fixed), plus a term resulting from the convective velocity between the material and the reference system. The conservation equations, therefore, are written as:

dρ dt = ∂ρ ∂t χ + v c • ∇ρ = -ρ∇ • v (2.11) ρ dv dt = ρ ∂v ∂t χ + (v c • ∇)v = ∇ • σ + ρb (2.12) ρ dE dt = ρ ∂E ∂t χ + v c • ∇E = ∇ • (σ • v) + v • ρb (2.13)
It can be noted that these equations can be again expressed in both Lagrangian and Eulerian contexts by respectively imposing v c = 0 (or equivalently v = v) and v = 0 (or equivalently v = v c ).

Mesh-update algorithms

In order to avoid undesired local distortions and for "deciding" where to distort more or less, a FE implementation of such a scheme requires mesh-update algorithms for properly assigning to nodes the velocities v that favor a satisfactory calculation result.

Usually, standard FE solvers use two main techniques: mesh-adaptation and meshregularization techniques. While the former can adapt the mesh by moving the nodes and concentrating them in areas where the solution gradient is steep, the second one aims to maintain the most regularized mesh and avoid mesh distortions during the calculation.

Usually, it is convenient to use the first technique for solid mechanics, in which large deformation may appear. An automatic refinement controlled by an error function is preferable in areas where a concentration of nodes is desired.

In the case of fluid mechanics, or when a material flow is simulated (e.g., the advection of fibers arriving at the convergence point and forming the yarn is a proper example), the second method is preferred, as it provides an undistorted mesh, letting the material particle flow. This algorithm can be characterized by a simple interpolation method (usually based on the element volumes), a transfinite mapping characterized by a regular topology of the initial mesh, or a Laplacian smoothing (by solving a simple Laplacian problem for each component of the mesh velocities).

The present study will use an Abaqus/Explicit solver, which automatically sets the best meshadaptation scheme conformally to the simulated example.

Prescription of boundary conditions and mesh velocities

It is important to mention that the solutions strongly depend on the choice of the mesh velocities v that can be prescribed at the boundaries.

Usually, in the case of material flows, two surfaces are easily defined as the inlet and outlet sections. The component of the nodal velocity normal to them must be set as zero while the material is left free to pass through it (called Eulerian boundaries in Abaqus/Explicit). On the contrary, other surfaces define a motion of the material such that the nodes would remain fixed longitudinally, while transversally, they are left free to move along with the material (the so-called "sliding" boundaries in Abaqus/Explicit). Moreover, these boundaries allow a surface-to-surface contact algorithm including a friction coefficient of µ = 0.1.

Concerning the material velocities at the inlet boundaries, a value of the velocity v controlled by the spinning machine is prescribed along the z direction. At the outlet boundaries, the prescribed velocity along z is exactly the same. Moreover, a rotating velocity ω z is necessary for considering the spinning, which creates the twist inside the yarn. Finally, since there is a slope of the tows before entering the convergence point, there exists a horizontal velocity v h , such that, on average, the continuity equation for each tow is satisfied:

v h = ω z d i (2.14)
with d i representing the distance of the tow centroid to the yarn core. Finally, at the outlet, the nodes are left free to follow the material along x-y directions. All prescribed boundary conditions and the overall model scheme is shown in figure 2.9.

Results Figure 2.10 shows the results for the first rotation step. As can be seen, the four tows, which are initially arranged as a regular square, are twisted and create a single structure. Having no idea of the exact arrangement that the cross section has in the outlet, clearly, this does not yet vary in this step (it simply rotates around the z-axis), but it will present a changed shape in the next step, i.e., the advection. The longitudinal stress values in one section of the model are also shown.

It can be easily seen that the outermost virtual fibers are the most stressed. Certainly more interesting are the results obtained in the next step. From figure 2.11, firstly, it can be seen how the outlet cross section, after a few iterations of calculation changed its shape. Moreover, throughout the simulation, the virtual fibers mutually changed their position, and continuously migrated from the outside to the inside of the yarn.

This property is even more obvious when observing the disposition of virtual fibers in a median cross section, as illustrated in figure 2.12. The virtual fibers that are most tight exert a force directed toward those on the inside presenting a lower value of their axial tension. The difference in these two forces produces an imbalance that causes displacement of the fibers in the section.

The trajectories of the virtual fibers of one tow projected in the x-y plane can be observed. As figure 2.13 shows, after advection, the position of the fibers relative to the center of the yarn (at position (0, 0)) undergoes an important change. In fact, in the stretch of yarn in formation considered, we can see how the innermost fibers exchange with the outermost ones and vice versa, showing the direction of migration within each tow.

Finally, the comprehensive mechanical characteristics are outlined by a decline in the overall torque, as illustrated in figure 2.14. While it does not completely reach the theoretical null torque value, this trend reinforces how the fiber arrangement contributes significantly to this reduction. 

. Mechanical analysis downstram

In the previous sections, it has been shown how the migration of fibers within the yarn cross section occurs to establish a global null torque at the convergence point. However, it should be demonstrated that in other parts placed downstream any further torque would be created.

When observing the geometry of the yarn inside the spinning zone, one could identify a triangle OGB between the entry eyelet O, the grommet labeled as G, and the tangential point onto the bobbin called B. Given the punctual contact nature of the yarn, point G represents a juncture where most of the transformations mobilize. Since the grommet geometry is unknown in this detail, microscopic analysis cannot be carried out. However, it is possible to perform a macroscopic analysis considering the geometry of the yarn with respect to this point. Following the yarn path, if we cut the segments OG just after O and the segment GB just before B, we can observe a value of the tension at the top described by the vector T O , whose intensity is equal to T O = i T i while the one on the left is described by T B , of lower intensity (see figure 2.15a).

The passage of the yarn through point G involves the formation of a reaction force that the grommet exerts on the yarn. This force, which we will call R, can be mainly split into two components. The first component, directed as the bisector of angle δ = OGB, whose unit vector is labeled as n, is equal to:

R N = R • n = (T O + T B ) • n (2.15)
while the second, perpendicular to n and directed as the unit vector t, is calculated as:

R L = R • t = (T O + T B ) • t (2.16)
It is also possible to calculate the value of R L knowing the value of the coefficient of friction between the yarn and the grommet:

R L = R N µ L (2.17)
R L , which is directed longitudinally along the yarn, represents the total loss of tension at point G. Thus:

T B = T O -R L (2.18)
Zooming around point G can employ a simplified scheme like the one shown in figure 2.15b. Let ds be the infinitesimal length of yarn in contact with the grommet surface. Along ds, the tension applied to the yarn undergoes a strong decrease due to the longitudinal component of the reaction force of the grommet (directed as the axis of the yarn) R L . It should be stressed that friction follows the same direction in which motion occurs, defined by the yarn feeding velocity v. However, if an infinitesimal force is directed orthogonally to the motion direction, assuming the grommet-yarn friction isotropic, the resistance to such a force R T is zero.

Therefore, the possible introduced torque, which would also be proportional to the distance of the contact surface to the yarn axis r, is zero:

∆Q = R T r = 0 (2.19)
This means that, even at the most neuralgic point corresponding to G, introducing a nonzero torque inside the yarn is impossible after the convergence point. 

. Tomographic analysis of fiber geometry in a twisted carbon yarn

Following the same spirit proposed by Sibéllas et al. [START_REF] Sibéllas | Experimental study of the fiber orientations in single and multi-ply continuous filament yarns[END_REF], using µCT could provide important information about fiber orientation in twisted carbon yarns. A volumic image (8-bit) of four tows (48k) twisted yarn, with a resolution of 3.25 µm and a size of 901 × 600 × 1961 voxels, is available. The scan was performed at SIMAP Laboratory in Grenoble. Let denote z as the yarn main axis while (x, y) represents the cross section plane. Figure 2.16a shows the reconstructed yarn constituted by its fibrous microstructure, while figure 2.16b reports a transversal cut of a yarn formed of 4 tows of 12k carbon fibers each.

It is then possible to analyze its texture to calculate the fiber orientation angle and make some hypotheses about the yarn torsional behavior. For performing this analysis, two possible strategies can be carried out.

. Use of structure tensor

The first one involves using the structure tensor, which represents an essential tool in imagery, particularly for performing textural image segmentation.

For the given volume V (x, y, z) and its gradient ∇V , the structure tensor is defined as

S = K * (∇V ⊗ ∇V ) = K *   V 2 ,x V ,x V ,y V ,x V ,z V ,y V ,x V 2 ,y V ,y V ,z V ,z V ,x V ,z V ,y V 2 ,z   (2.20)
with K being either a simple normalized ( K = 1) integration window or a Gaussian kernel, and V ,α representing the partial derivative of V with respect to the α axis. At each voxel, the obtained tensorial field S is represented by a non-negative symmetric 3 × 3 matrix, which can be diagonalized. Its principal orientations of anisotropy are easily obtained by performing the eigenvector decomposition. The local orientation directions are directed as the eigenvector of the smallest eigenvalue. It is essential to underline that a proper choice of K is fundamental for allowing an average integration comparable to a few yarn fibers. At the same time, it should avoid confusion about their orientation. Indeed, the smallest eigenvalue should be detected in spite of the noise level in the image. Hence K cannot provide a too-small filtering size. A size of 5 voxels (or, equivalently, 16 µm corresponding to about 3 fiber diameters) is a good compromise for smoothing the orientation field while avoiding too noisy information on fiber orientations, whose vector field coincides with the three-dimensional tangential vector of each fiber t F . Figure 2.17 shows some fiber trajectories. As can be seen, when showing an (x, y) plot, the outermost fibers tend to draw a path akin to a circular arc, while the innermost ones present more complicated trajectories, which results in a continuous change of direction in the plane.

. Digital Image Correlation

Another strategy is represented by using Digital Image Correlation (DIC) [START_REF] Bruck | Digital image correlation using Newton-Raphson method of partial differential correction[END_REF][START_REF] Schreier | Image Correlation for Shape, Motion and Deformation Measurements[END_REF][START_REF] Grediac | Digital Image Correlation[END_REF]. This method is essential for measuring the displacement field between two images. The principle behind DIC is based on the gray level conservation between the pair, in which one of the two images is let deform and adapt onto the other [START_REF] Hild | Digital image correlation: From displacement measurement to identification of elastic properties -a review[END_REF].

Let g(x, y) define a test image, while f (x, y) represents a reference image. The objective of DIC is to find the displacement field u = {u x , u y } which best registers g onto f , by minimizing the L 2 norm of their mutual residual field:

η(x, y) = g(x, y) -f (x, y) (2.21)
with g labeling the back-deformed image, calculated as:

g(x, y) = g(x + u x (x, y), y + u y (x, y)) (2.22) (a) (b)
Figure 2.17: Trajectories of few random fibers within a twisted carbon yarn estimated using the structure tensor: (a) 3D view and (b) projection onto the x-y plane.

To make this a well-posed problem, u can be decomposed into a set of shape functions ψ i (x, y) defined on a FE mesh. Moreover, since this is a nonlinear problem, it can be easily handled by linearizing and solving, by an iterative Newton-Raphson algorithm, the following linear system:

[M ]{δu} = {b} (2.23)
with the correlation matrix and the right-hand side vector defined as:

M ij = (x,y)∈Ω S i (x, y) • S j (x, y) (2.24) b i = (x,y)∈Ω S i (x, y) • η(x, y) (2.25)
where Ω corresponds to the region of interest (the portion of image interested by the correlation and delimited by the FE mesh), and the sensitivity fields S i (x, y) are computed as:

S i (x, y) = ∇g(x, y) • ψ i (x, y) (2.26) ≈ ∇f (x, y) • ψ i (x, y)
Then, the displacement field obtained at a given iteration k is updated with the following:

{u} (k+1) = {u} (k) + {δu} (2.27)
The calculation continues until convergence (defined, for example, as a tolerance for the norm of δu).

In this case, the DIC will be used between two images representing two consecutive transversal cuts of the yarn: with dz denoting the z-distance between the cuts. The FE mesh is built considering the shape of the tows inside the yarn and can be initialized by clicking some points which define the tow boundaries. With the help of a triangulation algorithm internal to each tow, a consistent T3 mesh is assembled. The regularity of the computation is also ensured because common boundaries share the same nodes. Therefore, the contacting tows cannot separate each other.

f (x, y) = V (x, y, z) (2.28) g(x, y) = V (x, y, z + dz) (2.29) (a) (b) (c) (d)
Once the first DIC registration is computed, the displacement field provided at the nodes belonging to the boundaries is used for deforming the latter. Then, further regularization takes place and the eventually formed kinks caused by too coarse elements close to the boundaries are filtered out. Again, a consistent mesh for the tows is naturally recreated, as the boundaries present common kinematics, and a newer registration is carried out. This process is spread along the entire length of the yarn represented in the µCT. It is possible to estimate the evolution of the shape of the four tows within the yarn along the z axis, as shown in figure 2. [START_REF] Mathieu | Modélisation du comportement Mécanique lors du procéé de mise en forme et pyrolyse des Interlocks CMC[END_REF].

Note that the main difference with the previous method is that, in this case, the vector field is discontinuous (due to different tow boundaries), while the structure tensor makes the transition much more continuous.

Therefore, as now each tow is represented by a close polygon made of around 50 points, the centroid could be easily estimated. However, at the scale of each tow, the shape described by the polygon does not coincide with the real one. As such, only the fibrous texture included inside each polygon should be used for estimating the position of the corresponding centroid. In figure 2.19, a yarn cross section and its density map are reported. The latter has been evaluated as the difference between the gray levels corresponding to carbon fibers, found as the gray levels above a certain threshold corresponding to the minimum gray level of fibers (which can be easily estimated, given the high contrast of the image), and the threshold itself. Let ρ i (x, y) define the density map of the fibers inside the i-th tow. The i-th tow centroid coordinates are estimated as:

x G,i = Ω t,i ρ i (x, y) x dA Ω t,i ρ i (x, y) dA (2.30) y G,i = Ω t,i ρ i (x, y) y dA Ω t,i ρ i (x, y) dA (2.31)
with Ω t,i denoting the region of interest delimited by tow boundaries. The resulting centroids reported in figure 2.18 at four different yarn cross sections, describe four different three-dimensional curves. It is also possible to compute, following the same principle as in equations (2.30) and (2.31), the yarn centroid, by substituting the integral with a sum over all tows. Now that 5 three-dimensional curves p i = {x, y, z} are obtained, (note their z compontents z G,i are simply separated by dz). An approximation of these curves can exploit the least squares regression of this series of points with splines, whose polynomials are chosen to be of 4 th order. Figure 2.20a presents the calculated trajectories corresponding to the estimated spline curves and tows tangential vectors t T , as well as the yarn tangential vector t Y , obtained by the following the relation:

t j = ∂ j p j ∥∂ j p j ∥ (2.32)
with ∂ j p j representing the derivative of the j-th component of p. Let define d i the in-plane distance between each tow centroid and yarn axis. This parameter provides further information about the possible tow migration within the yarn. As it can be seen in figure 2.20b, for each tow d i slightly vary. This weak deviation can be explained by the fact that the effective yarn length, corresponding to one twisting turn (i.e., 5 cm), is much greater than the one provided by tomography (i.e., 6 mm). We expect to see much more deviation representing the migration phenomenon on a greater tomography yarn length. It is notable also the distance for the central yarn (in yellow) which remains strongly lower than the other three.

For each registration, the sought displacement field, once interpolated by means of the FE mesh, coincides again with the projection of the orientation vector of each fiber t F onto the (x, y) plane. However, fewer registrations could be performed if the choice of the interval length dz corresponds to more (e.g., 10) pixels. Of course, the estimated t F , in this case, has to be normalized. Knowing also the trajectories drawn by the yarn and its constitutive tows, one can calculate the disorientation angle between the fibers and the yarn axis:

θ = arccos (t F • t Y ) (2.33)
as well as the disorientation angle between the fibers and the tow axis to which each fiber belongs:

θ r,i = arccos (t F • t T,i ) (2.34)
Figure 2.21 shows, for different yarn cross sections, the orientation vector fields calculated by the DIC algorithm of fibers projected onto the (x, y) plane both absolute (i.e., with respect to the yarn main axis) and relative (i.e., with respect to each tow main axis). The first vector field describes an overall rotation around the yarn centroid, with the field intensity much larger around the boundaries and much lower when close to the yarn core. The second vector field, on the contrary, shows an opposite orientation within each tow, and of more homogeneous intensity. However, the areas where a greater fiber migration occurs can be noted by a greater intensity of the relative vector field. It can be noted how the same zones, essentially corresponding to the most peripheral portions of tows, when sweeping the z axis, progressively decrease the intensity and increase again.

These characteristics are confirmed when looking, in the form of a color map, at the value of θ and θ r in figure 2.22, which correspond, respectively, to the intensity of the vector fields shown before. A non-constant value of the orientation angle θ is observed in all the sections of the yarn, with a value closer to zero in the central portion and a maximal value at the border, while on the contrary, a much more homogeneous matter of θ r (however non-constant) is visible within the four tows, with most significant values shown at the furthest areas from the tow centroids. This is also confirmed when observing the average maps of the absolute and relative orientation angles, reported in figure 2.23. Concerning these last images, these measurements contrast somewhat with the observations of Sibéllas et al. on multi-ply yarns. However, it must be remembered that the initial geometry of the tow section is quite elongated. When twisted together, they tend to enclose themselves, creating many folds that allow some degree of discontinuity as the sizing has been damaged. Moreover, given the carbon yarn is twisted at 20 TPM, which represents a relatively low value, it is important to mention that the observation window in which this calculation has been carried (∼ 2000 pixel in z, corresponding to about 6 mm or about 0.12 turn) is probably not enough for a proper estimation of θ and θ r and a larger window, at the expense of a lower resolution, could be necessary for a better comprehension of the fiber geometry in twisted carbon yarns. A major variation in the twist angle of individual tows Θ can be seen in figure 2.24a. It is particularly obvious that one of the four tows, the central one, has much lower values than the other three. One can imagine that these values are only momentary and that these roles may interchange at different positions along the yarn axis. In relation to the above, the average values of the angle θ r for all fibers belonging to each tow with respect to the yarn axis are reported in figure 2.24b. This suggests that migration at the level of the four tows occurs with both a change in the orientation angle and the relative position of the tows axis with respect to the yarn and that this may strongly affect the value of the torque applied within each individual tow, which impacts the internal rotation of its fibers.

. Conclusions

In this Chapter, the main elements concerning yarn twist have been discussed. Firstly, the spinning machine and its operating principle were presented. Both kinematic and mechanical analysis provided information on how twist is actually created inside the yarn. As for the former, the combination of the advection velocity of the tows and the rotational velocity of the bobbin in the center confers to the yarn a rotation around its own axis, producing a twist.

Furthermore, it has been demonstrated that at the point of creation of the yarn (i.e., convergence point), there is no torque creation (possibly only around the grommet, albeit negligible). To demonstrate this statement, around the convergence point, a FE model has been created based on an Arbitrary Lagrangian Eulerian approach. This allowed us to conduct a mechanical simulation in which the advection velocity of fibers entering the yarn was modeled with a null mesh velocity, while the fibers were let interchange their position within the cross section. The torque produced by the rotation of the tows is balanced by the continuous change of position of the fibers inside the tows and the tows inside the yarn. This has been shown to be given by a continuous change of longitudinal tension within the fibers, which produces imbalances within the section and, therefore, the migration of the fibers themselves.

Moreover, some experimental observations have been carried out to estimate the fiber paths within yarns. This result has been achieved using the image structure tensor and ad hoc use of the DIC within a trunk of yarn about 6 mm long acquired using the µCT between consecutive cross sections. In particular, the latter also provided information at the level of each tow and allowed not only the calculation of the trajectory of the fibers in an absolute sense but also in a relative sense to the trajectories of the tows. This has produced maps of both absolute and relative angles of disorientation. It has been observed how the absolute angle varies a lot within the section, while the relative one is more homogeneous with respect to each tow.

As a perspective, the study twist carried by the proposed numerical simulation would provide an important statistical analysis for taking into account the coupling between the longitudinal direction and the cross section and implementing it as a radial body-force distribution within an elasto-plastic continuum model (i.e., 1 st -order granular medium model) illustrated in the next Chapter. The mechanical characterization of the carbon yarns, the major component of woven textiles for composite materials, is essential for optimizing the fabrication and the final properties of such materials.

This work focuses on carbon yarns formed by twisting several elementary tows, each composed of thousands of carbon fibers, whose weak cohesion is ensured by a sizing agent. Different twist magnitudes are studied in dry and wet conditions. Transverse compaction tests are performed with loading-unloading cycles of increasing amplitudes. They have shown that the yarn cross section approaches a critical state where the fiber volume fraction remains constant, irrespective of twist level and humidity.

The experimental results evidence an elasto-plastic behavior, analogous to that of a 2D granular medium. A simple model is proposed with a cohesive non-associated Mohr-Coulomb plasticity, having very few constitutive parameters. The effect of twist, water, and sizing can be accounted for.

. Introduction

Woven composites are becoming key elements in many manufactured parts, particularly for the aeronautics [START_REF] Marsh | Aero engines lose weight thanks to composites[END_REF] and automotive [START_REF] Patel | Physical, mechanical, and thermal properties of natural fiber-reinforced epoxy composites for construction and automotive applications[END_REF] industries. These composites contribute to lighter structures, thus reducing fuel consumption while maintaining excellent mechanical properties.

These excellent specific features are mainly due to the complex microstructure of these entangled fibrous materials, often composed of carbon, glass, or ceramic yarns. The stiffness and strength along the yarn axis are outstanding. However, in the transverse direction, the matrix controls the mechanical behavior, which is generally much weaker. To mitigate the effect of this large contrast, weaving offers a wide range of different architectures (up to 3D weaving) to engineer and optimize multiaxial mechanical performances [START_REF] Gnaba | Through-the-thickness reinforcement for composite structures: A review[END_REF][START_REF] Mouritz | Review of applications for advanced threedimensional fibre textile composites[END_REF][START_REF] Mouritz | A mechanistic interpretation of the comparative in-plane mechanical properties of 3d woven, stitched and pinned composites[END_REF][START_REF] Saleh | Recent advancements in mechanical characterisation of 3d woven composites[END_REF]. More generally, the entire manufacturing process plays a crucial role in optimizing the mechanical behavior of the composite since each step can modify the structure of the reinforcement [START_REF] Bussetta | Numerical forming of continuous fibre reinforced composite material: A review[END_REF].

To study the deformations occurring during the draping of dry textile reinforcements, many works [START_REF] Liang | A review of numerical analyses and experimental characterization methods for forming of textile reinforcements[END_REF][START_REF] Xie | Mechanics of textiles used as composite preforms: A review[END_REF] are devoted to characterizing the mechanical behavior of fibrous preforms through experiments and macroscale simulations for hemispherical forming as well as bending and biaxial tensile tests [START_REF] Boisse | Hypoelastic, hyperelastic, discrete and semidiscrete approaches for textile composite reinforcement forming[END_REF][START_REF] Mathieu | Locking and stability of 3d woven composite reinforcements[END_REF][START_REF] Mathieu | Stability of 3d textile composite reinforcement simulations: Solutions to spurious transverse modes[END_REF][START_REF] Chen | A hypoelastic stress resultant shell approach for simulations of textile composite reinforcement forming[END_REF][START_REF] Li | Improved hyperelastic model for simulating the forming of biaxial braided fabrics[END_REF][START_REF] Chen | Kinematic modeling of transverse shear in textile composite reinforcements forming[END_REF].

However, a mesoscopic mechanical analysis of woven reinforcements allows the mechanical phenomena occurring at this scale to be more faithfully captured. As such, a recent study [START_REF] Li | A novel modeling method for the mechanical behavior of 3d woven fabrics considering yarn distortion[END_REF] provides a very good fit for a variety of different tests on 3D woven fabrics (through-thickness compression, uniaxial and biaxial tension, and in-plane shear). This stresses the importance of a good characterization of the yarns themselves, not only in the longitudinal direction but also transversally. Indeed, a yarn by itself displays a subtle arrangement of the different fibers of its constituting tows inherited from the twisting, and its internal cohesion is quite essential. While the microscale remains out of reach (the number of elementary fibers is prohibitively large), a vast literature was devoted to representing yarn mechanical behavior at two main scales [START_REF] Gao | A review of multi-scale numerical modeling of three-dimensional woven fabric[END_REF][START_REF] Liang | A review of numerical analyses and experimental characterization methods for forming of textile reinforcements[END_REF][START_REF] Wielhorski | Numerical modeling of 3d woven composite reinforcements: A review[END_REF]: mesoscale and sub-mesoscale (also often called microscale).

Mesoscale approaches aim to characterize transverse properties using hyper- [START_REF] Charmetant | Hyperelastic modelling for mesoscopic analyses of composite reinforcements[END_REF][START_REF] Li | A novel modeling method for the mechanical behavior of 3d woven fabrics considering yarn distortion[END_REF][START_REF] Luycker | Modeling of hyperelastic bending of fibrous media using second-gradient isogeometric analysis: Weaving and braiding applications[END_REF] or hypo-elastic [START_REF] Badel | Simulation and tomography analysis of textile composite reinforcement deformation at the mesoscopic scale[END_REF] laws, assuming a homogeneous representation of the yarn. While these models are powerful, they require the identification of numerous constitutive parameters, which is very challenging experimentally.

Sub-mesoscale models attempt to describe the behavior of the constitutive model from an elementary description of the constituting fibers, assuming that contact and friction are the main phenomena responsible for the (mesoscale) yarn behavior [START_REF] Zhou | Multi-chain digital element analysis in textile mechanics[END_REF][START_REF] Durville | Simulation of the mechanical behaviour of woven fabrics at the scale of fibers[END_REF][START_REF] Green | Numerical modelling of 3d woven preform deformations[END_REF][START_REF] Durville | Determining the initial configuration and characterizing the mechanical properties of 3d angle-interlock fabrics using finite element simulation[END_REF][START_REF] Yang | Modeling of 3d woven fibre structures by numerical simulation of the weaving process[END_REF][START_REF] Li | A novel modeling method for the mechanical behavior of 3d woven fabrics considering yarn distortion[END_REF]. However, the number of filaments in classical yarns (often several tens of thousands) is inaccessible. When the number of fibers tends to infinity, a non-trivial asymptotic (homogenized) behavior exists and no longer depends on the number of fibers; it is thus appealing to introduce "virtual" fibers, each grouping multiple actual fibers. One difficulty is thus to characterize the properties of the virtual fibers, often assumed to be elastic. This approach captures irreversible deformations observed during the manufacturing process with few constitutive parameters. Still, it comes with a significant computational cost due to solving the numerous contact and friction events between the fibers, whose "non-smooth" behavior is well-known to call for a computationally demanding treatment. Additionally, the initial disposition of the fibers in sub-mesoscale models can lead to unrealistic choices (particularly for the yarn twist) that strongly impact the observed macroscopic behavior.

An alternative attractive choice would be to resort to the homogenized mechanical behavior, but this route has not been explored to the best of our knowledge.

To guide the choice of appropriate modeling, this study presents an experimental investigation focused on the transverse compaction of carbon yarns. The yarn thickness, width, and fiber volume fraction (FVF) during the compaction process are analyzed for different yarn types, humidity (wet or dry), and twist levels.

Building upon the experimental observations, it is proposed to account for the transverse mechanical behavior of the yarns as a continuous homogeneous solid (in the spirit of a mesoscale approach) whose constitutive law results from the homogenization of the fibrous microstructure. Thanks to the broad field of imaging techniques, the yarn cross section geometry can be estimated all along the compression cycles. The experimental observations suggest an elasto-plastic material response for carbon and glass yarn.

The outline of the present study is the following: Section 3.2 gives an overview of the different tested yarns, the experimental setup, and its exploitation. Section 3.3 presents the obtained results on the transversal compression tests performed on carbon yarns at different twisting levels. Section 3.4 recalls the theoretical fundamentals of the proposed Mohr-Coulomb-based elasto-plastic law and shows that it requires very few parameters. This law is implemented in a Finite-Element software, allowing for simulating of the transverse compaction test, whose results are presented in section 3.5. Finally, section 3.6 provides a conclusion emphasizing the significance of the proposed elasto-plastic description and suggests future research directions.

. Materials and Methods

. Carbon yarns

This study focused on 48,000 fiber yarns twisted from four tows, each consisting of 12,000 fibers. The elementary 12k tows are produced by two different suppliers, and their properties are summarized in Table 3.1. The first type, called IM7, is the carbon fiber produced by Hexcel. Referring to the manufacturer's data, the fiber diameter is 5.2 ± 0.2 µm, and the Young's modulus is 276 GPa. A DGEBA resin epoxy and pluronic F68 surfactant is used as a sizing agent. The second one, named T1100, is produced by Toray. The manufacturer's data indicate a fiber diameter of 5.5 ± 0.2 µm and Young's modulus of 324 GPa. The sizing agent contains a DGEBA resin epoxy.

Moreover, in order to study the influence of twist, four different levels have been chosen: 10, 20, 30, and 50 turns per meter (TPM).

It is important to recall that during the weaving, the loom is sprayed with demineralized water in order to wet the yarns and for draping, the fibrous reinforcement is also heavily wetted. It is expected that this humidity has a drastic impact on friction, and hence on the yarn mechanical behavior, motivating its experimental investigation, although the question is very seldom addressed in the literature. Therefore, the yarns were analyzed under wet conditions by completely immersing them in a container of demineralized water for about 15 minutes for complete saturation. Then, the yarn was allowed to be drained for a period of 30 minutes on an absorbent cloth so that only the entrapped water held by capillarity would remain. It should be noted that, at present, the one mainly used by Safran corresponds to IM7, 20 TPM, in wet conditions. 

. Experimental setup

A compaction testing machine (see figure 3.1) was designed specifically for performing a yarn diametral compression. The yarns are compressed between a circular metal plate of 50 mm diameter and a fixed transparent sapphire plate, below which a blue laser profilometer, Keyence VJ-6700 was placed. It offered a 20 µm lateral resolution. Along the yarn axis, the laser beam size was set to 100 µm. A set of weights and pulleys provide a low longitudinal yarn tension for the proper positioning of the yarn in the machine, allowing both to keep the yarn horizontal and to select the segment to be compressed. A lateral screw system allows the locking of the yarn after positioning and before compression. A dynamometer measures the axial force applied to the yarn by the screw system. Finally, an axial motor drives the profilometer longitudinally after each lateral yarn profile acquisition. Thus a complete 2D (longitudinal and transverse) map is scanned and recorded. To avoid the possible influence of boundary conditions on the experimental results, only a central portion of 40 mm of the compressed yarn is analyzed with the profilometer.

The transverse compaction test, at a 0.1 mm.min -1 velocity, consists of five repeated loadingunloading cycles in which the load increases at each cycle while the unloading is stopped at the same level of reaction force, 50 N, measured by a load cell. This value was set not to introduce a major perturbation in the fiber organization.

. Image post-processing

Let the z axis be aligned with the yarn length, y the compression direction (vertical in our set-up), and x the cross section direction in the observation window (see figure 3.

2).

The measurement is a profilometry map of the compressed yarn. The image gray level encodes the y-position of the fibers (integrated over the laser spot size (20×100 µm 2 ) with respect to the metal plate). Figure 3.3a shows one profile of the initial state of a carbon yarn twisted at 30 TPM. As can be seen in this figure, the measured maps are noisy, especially in the background. A large part of the noise can be suppressed by successive opening and closing morphological filters as illustrated in figure 3.3b. Moreover, the yarn surface appears to be very flat, in close contact with the sapphire window. The yarn thickness h can be easily estimated as the maximum gap between the yarn and the metal plate surface (this information is more precise than the direct measured displacement of the compression plate).

Even if the initial goal was to map the details of the yarn section topography when not contacting the lower compression plate, the useful part of the images rather lies in the yarn boundary as if they were binary. Thus, they must be processed to estimate the position of the left and right boundaries, denoted as x l (z) and x r (z) respectively.

Each boundary is processed independently, hence only the left one will be described here. The image is first cut at a maximum x value that lies in the yarn for all z. Its gray levels are further normalized between 0 (background) and 1 (yarn), and the resulting image is called J l (x, z). Then a cost function is defined as the L 2 norm of the residual between the cropped normalized image and its binary representation

T [x l (z)] = 1 2 z∈Ωz (J l (x, z) -H(x -x l (z))) 2 (3.1)
where H designates the Heaviside function.

The problem is further regularized with a coarse discretization of x l (z) using a onedimensional regular mesh and piecewise linear shape functions

x l (z) ≈ i ξ i • ψ i (z) (3.2)
whose amplitudes are collected in a vector {ξ}. A further regularization can be introduced in the form of a penalty given to the square of the (discrete) boundary curvature

T reg [x l (z)] = F 2 N -1 i=2 (2ξ i -ξ i-1 -ξ i+1 ) 2 (3.3) 
where the weight F can be tuned at will. It is chosen as having a large value initially and relaxed to a small value once the boundary position begins to settle onto a stationary solution. This nonlinear minimization problem is solved using an iterative Newton-Raphson scheme. Finally, having estimated both left and right boundaries, using the same procedure, the yarn width w is calculated as:

w(z) = x r (z) -x l (z) (3.4)
Because the yarn cross section is considered as being a mere rectangle for each z, the FVF is computed from its mean area A t = h⟨w(z)⟩ z (where ⟨...⟩ z denotes an average over z). Since the total area of carbon fibers cross section, A s = N (π/4) 2 , remains constant, the 2D-defined packing factor ϕ 2D is defined as

ϕ 2D = A s A t (3.5)
Let us stress that this estimate is approximative, in particular because of the a priori rectangular picturing of the cross section. Experimentally, even for moderate loads, the yarn is in very close contact with the observation window and presumably with the opposite compression plate. So both upper and lower yarn surface are flat. Thus, the main point to elucidate is the shape of the free surfaces on the sides of the yarn. Unfortunately, despite an accurate optical sensor, it was difficult to do more than the identification of the yarn "projection". Hence, in a first approximation, the geometry of the cross-section is chosen rectangular. Other geometries could easily be considered, such as the race-track, but the section aspect ratio under compression is such that the difference between a race-track and a rectangle is negligible. In the low load range, and for high twist levels, such a simplification may not be accurate. This is yet another argument for not reaching a complete unload in between cycles. It is noteworthy that whereas this rectangular approximation is indeed selected for calculating the experimental yarn packing factor ϕ 2D , the race-track geometry has been chosen as cross-section initialization for the further FE simulations to avoid angular points (cf. section 3.5). These interesting curves demonstrate an elasto-plastic behavior in this both conditions. A strong stiffening akin to an exponential law is observable while it is possible to capture an apparently linear elastic behavior when unloading the compressed yarn. It is noteworthy that the plastic strains are less pronounced while the compression becomes stronger. This is due to different effects. First, the yarn contact surface with the plates increases while the thickness decreases. Second, the yarn fiber fraction reaches its critical value, where the tangent modulus is higher than in its initial loose state. Thus, further compaction implies shear band reflection on the plates in contact and slips along these interfaces. This implies an exponential build-up of pressure from the edge to the yarn axis and an increased friction. All these effects contribute to rendering further plastic strains more and more difficult.

. Experimental results

. Mechanical response

Moreover, the experimental results emphasize that, at a given value of the vertical force, the yarn thickness is lower in the wet case than in the dry one. This is attributed to a lower mobilized friction when the yarn is wet.

. Thickness evolution

From the post-processed images, one can estimate the mean compression stress σ yy from the compression force and yarn area in contact with the plate (mean measured width multiplied by the known compressed yarn length). Hence, at this stage, besides the mean compressive stress, it is difficult to argue for finer information. Thus, the observed data is plotted as mean stress vs mean strain.

However, this assumption has no further consequences. Indeed, from the qualitative observations, a suited constitutive law will be formulated, and its parameters identified through an optimal matching of global observations (force, thickness) with simulated quantities. Thus, the following identification will take into account the uneven stress distribution underneath the contact surface. Similarly, the Hencky strain ε yy is computed along the compression axis. The corresponding stress-strain curves are shown in figure 3.6. Let us note that the initial state of the yarn is illdefined. As seen in figure 3.5, very large and irreversible changes in the initial thickness h 0 can result from a vanishing transverse force. The consequence is that stress strain curves appear to display huge differences in between different tests. Changing h 0 implies a mere translation of the Hencky strain. It is proposed to define h 0 conventionally so that the stress-strain curves coincide for large stress. Figure 3.7 shows that this procedure leads to an excellent collapse of all curves onto a master one, independently of the twist. The vertical stress presents different maximum values given that the contact area of the yarn with the metal plate is larger for the less twisted yarns.

. Width evolution

Regarding the evolution of width, a horizontal Hencky strain ε xx is computed (refer to figure 3.8). Given the difficulty in correctly estimating the initial state, and hence the strains in absolute fashion, a similar procedure as above can be followed, namely adjusting the initial width, w 0 , from the exploitation of the large stress data where the sensitivity to the preparation stage has been erased. Figure 3.8 shows the resulting strain evolution. Let us emphasize that the ε xx -ε yy curves, all exhibit a final slope of 1 (this would be true irrespective of the definition of h 0 and w 0 , but the redefinition of the initial state allows for the same asymptote to hold irrespective of the twist).This indicates that the yarn cross section reaches a state of constant area. Because of the decoupling between the cross section and the yarn axis (ε zz = 0), this means that the packing factor has reached a constant value, (i.e., constant FVF). This is a very important point that will be further referred to as the "critical state" and discussed in the modeling.

. FVF evolution

Finally, the evolution of the FVF for the four twist levels is shown in figure 3.9. In both yarn types and dry and wet conditions, after initial rapid growth, the value of the FVF stabilizes for most of the tests. This curve portion corresponds to the critical state where a constant cross section area (i.e., incompressibility for a 2D solid) was already reported.

Finally, concerning the humidity conditions, what distinguishes wet from dry yarns is how quickly the asymptotic isochoric regime is reached. In wet yarns, the transition from compressible Yarns are challenging to model for obvious reasons: they are highly flexible, and hence finite strain theory is needed, and they can exhibit huge contrast in their stiffness (e.g., very stiff under longitudinal tension but very compliant under compression as buckling is very easy). These observations prompted many attempts to propose a general framework for the constitutive law of yarns first as a hypo-elastic medium [START_REF] Xiao | Hypo-elasticity model based upon the logarithmic stress rate[END_REF][START_REF] Badel | Simulation and tomography analysis of textile composite reinforcement deformation at the mesoscopic scale[END_REF][START_REF] Boisse | Hypoelastic, hyperelastic, discrete and semidiscrete approaches for textile composite reinforcement forming[END_REF]. This allows one to deal with large strains but shows difficulties with non-conservative loading paths. Hyper-elasticity can be seen as a particular case of hypo-elasticity and offers a more secure framework for having a consistent thermodynamic description. However, the intrinsic anisotropy of yarns (at least transversally isotropic if the twist is ignored) leads to the formulation of elastic energy based on five strain invariants, where only two are involved in the case of transverse compaction, namely the spherical and deviatoric part of the 2D (x, y) strain (and similarly for stress).Moreover, very significant non-linearities are observed, thus leading to the use of large-order polynomial expansion based on these invariants to adjust the hyperelastic potential energy. This implies a large number of constitutive parameters and the need to perform many sophisticated experiments for their identification. Alternatively, one may postulate some truncation of the potential energy (e.g., ignoring the coupling between different invariants). Still, the resulting simplification is fragile (i.e., not based on a solid theoretical justification) and not entirely consistent with the starting point of using a very general theory. Moreover, the mechanical behavior of carbon yarns under transversal compression discussed in the previous section shows significant irreversible deformations, typical of an elasto-plastic behavior, which hyper-or hypo-elastic models cannot describe.

One may fear that adding plasticity to this problem may further increase the number of model parameters, but, as it will be shown, this leads to a significant simplification. It can also be argued that even an elasto-plastic behavior can be modeled as hyper-elastic, provided the loading path is simple (radial and monotonous). However, in practice, unloading is very common in textile processing, and hence, the previously reported behavior cannot be described by a hyperelastic law.

When observing the yarn cross section, the analogy with an ideal 2D granular medium composed of uniform disks (or cylinders) is striking (as only yarn twist has no counterpart in this parallel, but since the fiber angle induced by the twist is very small (even for the highest twist considered here), it is natural to address twist as a small perturbation to the 2D granular medium leading order description). Indeed, such systems were introduced long ago by Schneebeli [START_REF] Schneebeli | Une analogie mechanique pour les terres sans cohesion[END_REF] and further investigated both experimentally and numerically to understand the micro-mechanics within soils better. Essentially, in such Schneebeli models, the elastic deformation of the cylinders can be neglected (they can be considered rigid). Yet, the assembly can undergo large deformations by the opening or closing of contacts and solid friction. This is an emblematic example of non-smooth mechanics [START_REF] Moreau | Nonsmooth mechanics and applications[END_REF] when describing the "grains" themselves [START_REF] Cambou | Micromechanics of granular materials[END_REF].

Let us quickly recall what has been understood from such works. First, as often postulated in hyper-elastic models, in these 2D models, there is no coupling with the longitudinal direction, and the z direction plays no role in the reported experiment (no axial strain). In Schneebeli's models, in the (x, y) plane, a two-dimensional rigid-plastic behavior prevails because the cylinders can be considered rigid (non-deformable) and friction is supposed to be ruled by Coulomb's law. Starting from an equilibrium state, if all interfiber (i.e., intergrain) forces are multiplied by an arbitrary (positive) factor, the same state remains in equilibrium (such a situation cannot be replicated with hyper-elastic theory). This has far-reaching consequences: only the "direction" of the (2D) stress tensor matters and not its magnitude. Assuming isotropy in this cross section, two stress invariants may come into play, namely hydrostatic (i.e., pressure) and deviatoric. When the ratio of deviatoric over spherical part is smaller than the tangent of the friction angle, no motion is possible (a case of infinite stiffness again inaccessible for hyperelastic theory). When reaching the friction angle, flow takes place whose magnitude is ruled by plasticity theory (namely, stress should remain on the plastic limit). Therefore, only one parameter is needed to describe the plastic limit. Similarly, only the direction of the strain rate matters. Macroscopically, the ratio between the spherical part of the strain rate and its deviatoric part is relevant. This defines the dilatancy angle. Since Coulomb's friction is at play between cylinders, plasticity cannot be "associated", and hence, the dilatancy and friction angles differ.

Such media behavior depends on their "preparation". They can be in a "loose" or "dense" state, parametrized by a single scalar parameter, the compacity or surface (volume) fraction. Under shear, this initial state is progressively forgotten, and the volume fraction tends to a unique value, corresponding to the "critical state". Since the volume fraction does not change at this stationary state, the dilatancy angle is null. Hence, the friction angle is the only constitutive parameter needed to describe such a medium under large shear, and its compacity is uniquely defined.

Before reaching this critical state, again assuming isotropy, the difference δ in volume fraction with its value in the critical state can be used as the only relevant internal variable. Based on the same argument as previously, only the dependence of the friction angle, φ, and of the dilatancy angle, ψ with δ is sufficient to describe the constitutive law. Moreover, because δ can be treated as a small perturbation, ψ is to dominant order a linear function of δ. This relation controls the dilatant/contractant feature of the medium under shear, hence the evolution of δ (or the hardening law) for dense/loose states, respectively. Similarly to the dilatancy angle, the friction angle is to dominant order an affine function of δ. Thus, even enriching the behavior to include a varying volume fraction leads to no more than three constitutive parameters, φ(δ = 0), ∂φ/∂δ and ∂ψ/∂δ. Finally, Taylor's assumption states that the two latter quantities are equal

∂φ ∂δ = ∂ψ ∂δ (3.6)
reducing the number of unknowns to only two. Notably, despite the plastic behavior's complexity, the number of effective parameters is extremely small. This is known as 2D Mohr-Coulomb plasticity. Let us note that in 3D, there are two variants, Mohr-Coulomb and Drucker-Prager, but in 2D, they are identical.

Looking back to the experimental results described in section 3.3, it is now quite clear that the observed isochoric regime is actually identical to the critical state. Therefore, the corresponding FVF should be an intrinsic property common to all yarns, (again a result that cannot be derived from a macroscopic phenomenological description) independently of their twist, of the presence of water or of tow suppliers (unless some fiber diameter polydispersity would distinguish them). The same remark for ∂ψ/∂δ can be made. Because of the sizing formulation, only the friction angle in the critical state should depend on the wet/dry state and on the tow manufacturer.

Yet, the Schneebeli's model does not capture all the observed features of the yarns: -The yarn initially has some cohesion due to the sizing agent and the presence of water in the wet state through capillary forces. This effect can be introduced in the continuum by offsetting the plastic limit. -The twist is not accounted for in the 2D granular system (nor is it in the hyperelastic models). As emphasized previously, the twist is expected to be a small perturbation because of the low angle between fibers and yarn axis. Yet, it may introduce a small coupling between cross section deformation and axial stress. Indeed, if no axial displacement is considered, the transverse compression induces a longer fiber path length for some of them, which can only be mitigated by tow side-motion or cross section additional stress (akin to a surface tension) and fiber slip, assuming their inextensibility.

-When unloaded, the yarn shows a linear elastic behavior. Presumably, this elasticity is not due to the fiber response but rather to the sizing that coats the fibers. It may also receive a contribution from the yarn twisting, as mentioned above. Because of decoupling with the axial direction and the isotropy assumption in the cross section plane, Young's modulus and Poisson's ratio are needed.

The following section discusses the elasto-plastic behavior, considering the fiber bundle as a 2D granular medium through the Mohr-Coulomb yield criterion. Then, the identification procedure for analyzing the elasto-plastic behavior is described, and the identified parameters are discussed. Let us stress that implementing such behavior in modeling represents an original approach, as most FE solvers assume an identical behavior in all directions. The plastic potential, in green, has an opposite slope (negative dilatancy angle), so the plastic strain rate points towards the left (contraction) during the compaction test but varies its direction until a complete isochoric transformation.

. Mohr-Coulomb yield criterion

One of the most widely used plastic laws in soil mechanics is the Mohr-Coulomb yield criterion [START_REF] De Souza Neto | Computational Methods for Plasticity: Theory and Applications[END_REF], as expressed in equation (3.7). This criterion defines a limit surface for plasticity mobilization in Mohr's plane (τ n , σ n ), where τ n represents the shear component and σ n denotes the normal component of the stress vector on a plane of normal n (in the proposed convention, positive values denote traction), as illustrated in the schematic diagram of figure 3.10. This criterion takes into account the friction angle φ, which is an important parameter in the plasticity of granular media. The tangent of this angle denotes the limiting slope with respect to the horizontal plane at which a piled granular media may start to slump. Note that for a cohesionless material, the criterion is a straight line whose slope defines the friction angle. Cohesion can be included by a mere offset of this "cone"

|τ n | = c -σ n tan φ (3.7)
The same criterion can be described in terms of the deviator stress, s, and mean stress,

p s = σ xx -σ yy 2 2 + σ 2 xy (3.8) p = σ xx + σ yy 2 (3.9)
Here, s represents the radius of Mohr's circle, while p gives the position of its center. s and p are the two invariants of the 2D Cauchy stress tensor

σ 2D = σ xx σ xy σ xy σ yy (3.10)
In plasticity, the yield limit surface is conveniently defined as the surface where the yield function f (σ 2D ) reaches 0 and is negative in the elastic domain. Here, the yield function is defined such as:

f (σ 2D ) = s + p sin φ -c cos φ (3.11)
Once the onset of plasticity is defined, one must describe the direction of the plastic flow rate. It is usual to define this rule through a plastic potential, g(σ 2D ), such that the plastic strain rate is directed along its gradient:

εp 2D = λ ∂g ∂σ 2D (3.12)
where λ is called plastic multiplier and is always a non-negative parameter. Because of the underlying Coulomb friction, soil plasticity is generally "non-associated", meaning that f and g are independent. Given the way the Mohr-Coulomb yield function is written, following the same representation, the plastic potential is as follows:

g(σ 2D ) = s + p sin ψ (3.13)
where ψ is the dilatancy angle of the material. This angle defines the ability of a granular media to dilate or contract when subjected to shear strain. For contraction, this angle is negative, while for expansion, it is positive. It can be rewritten as [START_REF] Roscoe | The influence of strains in soil mechanics[END_REF]:

ψ = arcsin εp vol εp dev (3.14)
where εp vol is equal to the volumetric plastic strain rate (i.e., εp vol = εp xx + εp yy ), while εp dev is the norm of the deviatoric plastic strain rate (i.e., εp dev = ( εp xx -εp yy ) 2 + 4 εp 2 xy ). So far, the presentation was focused on the particular case of perfect plasticity where the plastic yield function and the plastic potential remain constant. However, in cases where such a limit varies, the evolution laws of the different parameters, defining hardening rules, are needed.

In granular media plasticity, the cohesion c and/or the friction angle φ, may vary along the plastic flow, leading to an "inflation" (or "deflation" in case of softening) of the elastic domain. In Mohr-Coulomb plasticity, compacity represents the most suitable internal variable that governs hardening during plastic deformation [START_REF] Roux | Texture-dependent rigid-plastic behavior[END_REF]. Hence the estimated mean cross section FVF ϕ 2D , defined as in equation (3.5), is exploited. The chosen hardening rules are given by

φ = φ(ϕ 2D ) (3.15) c = c(ϕ 2D ) (3.16)
It is noteworthy that the cohesion c is related to the maximum tensile stress, denoted c ′ , necessary to separate two particles (fibers here) from each other through:

c = c ′ • tan φ (3.17)
Based on this interpretation, it is proposed to keep c ′ constant throughout the compressive load. Thus, considering the hardening by the increase of the friction angle and, consequently, the cohesion c, it could be described only by equation (3.15).

The plastic consistency condition stipulates that, during plastic flow, the stress state, defined by a point in Mohr's plane, always remains on the yielding function limit (f (σ 2D ) = 0). As such, the differential of the yield function f must be set equal to zero

df = ∂f ∂σ 2D : C e 2D : dε 2D -dε p 2D + ∂f ∂φ + ∂f ∂c ∂c ∂φ ∂φ ∂ϕ 2D ∂ϕ 2D ∂ε p vol dε p vol = 0 (3.18)
with C e 2D being the isotropic elastic stiffness tensor defined in 2D. During the load step, at a given iteration k + 1, a trial elastic state is initially calculated

σ (k+1),tr 2D = σ (k) 2D + C e 2D : dε 2D (3.19)
If the plastic criterion is met (i.e., the corresponding yield function f tr ≥ 0), one must estimate the induced plastic strain. By using the consistency condition, equation ( which updates the plastic multiplier as

dλ (k+1) = dλ (k) + δdλ (3.21)
Now, since the trial stress overpassed the yield surface, an update of the stress is necessary as well 

. Identification procedure

As for the elastic part, the transversal Young modulus E T identification is carried out by the computation of the slope of the unloading lines and is estimated as 20 MPa.

. Dilatancy and friction angles

The FVF has been chosen as the internal variable when analyzing the plastic parameters. As plasticity is mobilized immediately, the plastic strains are approximately equivalent to the total ones. Hence, one can provide the horizontal strain ε p xx and vertical strain ε p yy from the experimental curves. Using the definition of the dilatancy angle ψ from equation (3.14) and assuming the measured strains as principal, the dilatancy angle reads The result is shown in figure 3.11 for one example (T1100, dry). Let us note that the data corresponding to the lowest values of ϕ 2D come from very low levels of compression for which the estimate of the yarn width is the least reliable. The most important feature to be retained from this graph is the linear trend shown in red, where the critical state is reached at a value ϕ 2D,cv

ψ(ϕ 2D ) = H(ϕ 2D -ϕ 2D,cv ) (3.25) 
The evolution law of the friction angle is proposed to obey the Taylor's assumption [START_REF] Rowe | The stress-dilatancy relation for static equilibrium of an assembly of particles in contact[END_REF],

namely φ = ψ + φ cv (3.26)
where ψ is the dilatancy angle, and φ cv is the friction angle at the critical state. The identified value is in agreement with the high values estimated experimentally on IM7 tows, by sliding a couple of tows parallel to each other (tan φ cv ≈ 0.6) [START_REF] Tourlonias | Influence of friction angle between carbon single fibres and tows: Experimental analysis and analytical model[END_REF].

. Cohesion

The identification of the cohesion law is more complex. It was earlier argued that c ′ could be read as a material property of the sizing (linked to the work necessary to separate two fibers). Hence, one can impose the yield criterion at the critical state, estimate c ′ , and by knowing the value of φ, retrieve the evolution of the cohesion c (refer to the geometry of the Mohr-Coulomb locus in figure 3.10). Since the lateral borders of the yarn are free the horizontal stress on average is σ xx = 0. Therefore the traction limit is estimated as:

c ′ = σ yy (1 + sin φ cv ) 2 sin φ cv (3.27)
and the evolution of cohesion is calculated using equation (3.17). By computing a series of simulations and updating the vertical stress σ yy , this value is progressively refined. Let us emphasize that this discussion neglects the possible effect of the yarn twist which opposes a possible decohesion. As will be seen in the following discussion, twist does induce a notable increase in c ′ , in an even more pronounced way than sizing. The results show that the twist level does not much influence the final fiber volume fraction ϕ 2D,cv that the yarn can reach. Indeed, this "critical" state is expected to be very robust (unless the fiber diameters would be polydisperse). Besides, it can be observed that this critical state does not depend on whether the yarn is dry or wet.

Nevertheless, it is noticeable that the friction angle at this critical state φ cv is greatly reduced (by 50%) by the lubricating effect of water. Again, no influence of the twist level or fiber type is observed on this parameter. In other words, the fiber arrangement (in the range of studied twist level) and type (mainly the sizing) do not impact the friction angle.

The identified hardening laws for each yarn type and water content conditions are seen to be described by a parameter assuming a constant value.

On the other hand, as expected, the cohesion parameter c ′ increases significantly according to the twist level with also significant variations between both dry and wet conditions. Indeed, c ′ is multiplied by about a factor 11 between 10 tpm to 50 tpm in dry condition and almost a factor 10 in wet conditions. Concerning the environmental conditions, for the IM7 fibers, c ′ is multiplied by at least a factor of 2 in wet conditions compared to the dry ones. This influence is less pronounced for T1100 fibers. However, in dry conditions for both fiber types, for a given twist level, c ′ remains invariant because the difference between sizing agents seems to be modest as compared to the fiber arrangement. Nevertheless, it is noticeable that, at a given twist level, the measurements show significant differences in wet conditions between both fiber types (up to +89% for IM7 twisted at 30 tpm). Let us stress that the IM7 fiber contains DGBA and pluronic F68 surfactant as sizing agents, whereas T1100 fiber contains only DGBA. Thus, although the influence of the sizing on c ′ is weaker than that of the twist level, when fixing the latter the influence of the water on the sizing could be highlighted. So, these subtle cohesion variations could help to clarify the influence of each parameter on the global mechanical behavior of the yarn. However, at this stage, it is too early to be definitive and these questions warrant further investigations under various conditions (e.g., number of fibers per tow, different twists or additional lubricants).

. Characterization of twist

The proposed constitutive law provides a complete description of the behavior of a parallel fiber bundle but does not include the effect of twist. Because the latter is usually a small perturbation, this Mohr-Coulomb description can be considered a first-order model.

In the experiments shown so far, the yarn is subjected to a tension of about F = 6 N -a value yarns typically are subjected to during weaving. This longitudinal force is assumed to be equally distributed among the N = 48000 fibers. To obtain orders of magnitude, the yarn is oversimplified as a cylinder of radius R, in which fibers have concentric helix geometries with the same pitch κ. Each fiber is assumed to be subjected to an equal tension force f z = F/N . As due to the helical geometry, each fiber exerts a radial force directed toward the yarn axis, characterized by a distribution of body forces b as

b = f z R c n (3.28)
where R c is the radius of curvature. As such, their radius of curvature R c (r), for a helix of radius r is

R c (r) ≈ κ 2 4π 2 r ≈ 90 mm (3.29)
where κ represents the helix pitch (because κ 2 ≫ 4π 2 r 2 ). Thus for the extreme helix, at 20 TPM, κ = 50 mm. Exploiting a simple balance, the pressure inside the yarn shows a parabolic profile with a maximum in its center, P = 4π 2 F/κ 2 , or about P ≈ 0.1 MPa which is much lower than the stress induced by transversal compaction (of the order of 5 MPa). It is noteworthy that this pressure only depends on the axial force and the pitch. For the largest twist κ = 20 mm and still F = 6 N, the core pressure would be P = 0.6 MPa, just a factor 10 below the applied compression stress.

Hence, it can be concluded that the twist level becomes negligible within the compression range encountered by the yarn. Nevertheless, it is important to mention its importance for the yarn integrity as, in the absence of external constraints, twist plays a crucial role in preserving the structural strength and cohesion of the yarns.

. Numerical results

This section presents the simulation of the experiments conducted on a T1100-type yarn under dry conditions, considering three levels of twist: 10, 30, and 50 TPM. Due to the challenging interpretation of low compression stages (highlighting a strong dependence on the preparation of the initial state), the analysis was focused on the largest compression forces (representative of the weaving and forming stages).

Indeed, the initial geometry of the yarn before compression is a difficulty (not only experimentally as discussed above, but also numerically). Starting from a circular geometry involves an initial computation where the contact area is to be determined at each load level, which is difficult in general and especially challenging for an elasto-plastic problem. However, the initial stage is soon forgotten. Thus, it is not useful to spend time resolving a very fragile problem, whereas only the robust results for high compression matter. Therefore, it has been decided to opt for an arbitrary choice where the contact area is already large to initiate our simulation. A further compression essentially erases the memory of this initial state. So, for all three twist levels, motivated by the large contact area of the yarn with both sapphire and metal plates, the cross section shape of the yarn is modeled as a race-track to avoid angular points.

Simulations were carried out on the final 0.3 mm of displacement d y . Indeed, the dimensions of the section, along with the assumed homogeneity of the FVF throughout the section, were determined from the observed yarn profile at 0.3 mm. The lower plate was fixed whereas the vertical displacement d y of the upper plate was controlled to reach the desired loading. The friction coefficient between the yarn and the plates was assigned to µ = 0.1. The yarn mean density is set at 1 g/cm 3 . Let us emphasize that the twist is only accounted for through an effective cohesion c ′ as earlier discussed. The previously described elasto-plastic law was incorporated in Abaqus UMAT and VUMAT subroutines reported in appendices A and B. For better numerical stability, the simulations were conducted using the Abaqus/Explicit solver (therefore employing the written VUMAT file).

Figure 3.12 shows the FVF values in the cross section of the simulated yarn in four principal frames. Although the FVF value is initially assumed homogeneous, it can be observed that a slightly larger density occurs in the lateral areas where shearing has been the most intense, approaching the critical state in these areas.

As noted in figure 3.13a, the experimental and numerical force-thickness curves are similar for all three twist levels in the loading and elastic unloading phases. Let us emphasize that, since this is an elasto-plastic model, a first phase of elastic compression is necessarily simulated in order to approach the experimental curve.

The growth of the average FVF with respect to the applied vertical stress also shows striking similarities with the experimental results (see figure 3.13b). However, the curves from the simulation, containing no difference in hardening law between the various twist levels, are closer to each other and reach the identified critical FVF, with an almost identical curve. Using a linear hardening law for the friction and dilatancy angles has greatly smoothed out the curve as compared to the experimental one. Finally, it can be seen that the low compression levels do not coincide since the initial part of the compression was not simulated.

As the longitudinal and transverse directions can be considered essentially decoupled, the 2D Mohr-Coulomb plasticity model used to describe the transverse behavior of the yarn can be easily extended to a 3D complete simulation along with fiber longitudinal direction. Indeed, as previously discussed, carbon fibers can be considered as almost inextensible. Thus, the twisted yarn is then also itself mostly inextensible and only slight rearrangements of fibers may induce a small axial strain. Besides, the very small twist angle and the difficulty to mobilize inter-fiber slippage over long distances again favor a very high longitudinally stiffness. 

. Conclusion

The diametral compression of yarns is a critical mechanical aspect of woven textiles that has been extensively studied in the literature. In this study, a compression test campaign to analyze the lateral profile of the yarn throughout the test has been conducted. The resulting curves revealed an elasto-plastic behavior and the occurrence of irreversible deformations within the cross section. Using a profilometer, the lateral profile images have provided information on thickness, width, and FVF (Fiber Volume Fraction).

However, due to experimental limitations (notably, the ability to observe only one side of the yarn profile), FVF measurement has been simplified by directly processing the width and thickness data. Additionally, the influence of twist level on yarn mechanical behavior has been investigated. Higher twist levels hindered the compression process and resulted in a more limited flattening of the yarn. Nevertheless, the observed FVF values remained relatively constant, indicating that the twist level did not significantly affect yarn compacity. This finding is crucial for optimizing yarn selection in weaving applications.

Furthermore, the presence of water had a significant impact on the mechanical behavior of the yarn. Compared to dry yarn, the introduction of water decreased the critical friction angle. Water acted as a lubricant, facilitating the mutual sliding of fibers during compression.

Overall, the experimental observations led to a homogenized behavior law that differs from widespread hyper-or hypo-elastic models. The Mohr-Coulomb elasto-plastic law in the section plane, akin to that observed in 2D granular media, offers not only a natural frame of description for these irreversible changes but also involves a drastic reduction in the number of constitutive parameters needed.

Additionally, the experimental results (together with Taylor's assumption) have led to a hardening law for cohesion based on the evolution of the friction angle and dilatancy during compression. Simulation results of yarn cross sections with different twist levels validated the experimental results, as evidenced by force-thickness and FVF compaction curves.

In the current model, yarn twist only appears heuristically through an effective cohesion. Ideally, a more accurate description of each fiber path should couple longitudinal tension and cohesion from a distribution of body forces in each cross section. The proposed study aims to analyze the flexural behavior of the yarn. A simple knot applied to the yarn and scanned is progressively tightened. The trajectory of the yarn in the knot presents a curvature with a highly variable trend. Linked to this is the flexural stiffness, which varies rapidly at points of lower or higher curvature. As such, a simple analytical model reveals how, even for elastic behavior, the twist is an essential parameter in developing the flexural law.

Chapter 4 Bending behavior of twisted carbon yarns

. Introduction

The bending behavior of the yarn represents one of the key elements in predicting the mechanical behavior of the preform during all steps in the manufacturing process. In particular, it is involved during weaving and forming. In fact, bending is relevant deformation during these processes, since the yarn enters in contact with another solid (or another stack of yarns). This immediately introduces the coupling of the longitudinal tension and bending curvature. While the former aspect has been previously discussed in chapter 3, in this study, a strong focus has been on pure bending, for which no contact occurs. Although, the combination of both aspects has not been analyzed for the present.

As mentioned in chapter 1, different models have been proposed in the literature for the mechanical description of the yarn and, thus, the whole preform. In one case, hyper-or hypo-elastic models make the assumption of decoupled behavior between the longitudinal and transverse directions (the cross section). Alternatively, microscopic models that describe the yarn as a group of virtual fibers do not refer to a specific description of the yarn but obtain a mechanical characterization of bending through the choice of the juxtaposition of the virtual fibers and sometimes by applying an initial twist to the bundle.

As can be guessed, the simplifying assumption of total decoupling between sectional and longitudinal behavior does not stand up since the fiber assembly constituting the yarn can easily deform (mainly flatten) when the yarn is globally bent. In the simplest case, if there were no twist and no sizing, a bundle of fibers subjected to bending would tend to "open up", and the section would lose its consistency. This is due to the fiber very low (or almost zero) bending stiffness, and thus of the yarn, which would immediately enter buckling and lose its sectional integrity. In fact, fibers are essentially inextensible, and hence in the section fibers may either be aligned with the yarn axis, supporting a positive tension, but no extension, or be "compressed", which immediately turns into "buckling" as the fiber does not stand any negative stress and simply move away to maintain the same length as the fibers under tension. If a weak sizing exists, the fibers will tend to move in a coherent fashion, and the yarn cross section has to deform to reach a flat and large shape. The twist creates a radial pressure directed toward the center of the yarn, which counteracts the possibility of flattening when the yarn is compressed (for example, during bending). In this sense, it is worth citing analytical models that attempted to characterize the yarn bending behavior [START_REF] Popper | Mechanics of bending of fiber assemblies[END_REF][START_REF] Park | Bending rigidity of yarns[END_REF], or numerical studies employing a microscopic model conducted on a multi-ply yarn [START_REF] Durville | Contact-friction modeling within elastic beam assemblies: an application to knot tightening[END_REF], by simulating the progressive tightening of a simple knot [START_REF] Audoly | Elastic knots[END_REF].

In this chapter, an in-situ test concerning the bending study of the yarn is intended to characterize its behavior and, therefore, to observe what factors come into play in the curvature and bending moment analysis. Then a simple bending model aims to observe the curvature behavior as a function of parameters such as the level of twist that characterize its cross section.

. Presentation of in-situ mechanical tests

This section presents the in-situ tests conducted at the 3SR laboratory of Grenoble-Alpes University on an IM7-type carbon fiber yarn twisted at 20 TPM by Johann Herrero, supervised by Sabine Rolland du Roscoat and Laurent Orgéas. A simple knot was created with a portion of the yarn corresponding to approximately 20 cm in length, keeping the ends locked with pieces of card- board glued onto the yarn to prevent it from losing part of its twist. Some water is sprayed onto the yarn surface to simulate a condition to which the yarn is subjected during the manufacturing process. Next, the cardboards were inserted into two grips of a mechanical traction device, positioned in the center of a tomograph for imaging the yarn (see the placed yarn inside the tomography shown in figure 4.1).

By controlling the vertical displacements of the upper clamp, the node is progressively tightened (not until fully closed) to study the evolution during the test of factors such as curvature and bending stiffness (by observing the evolution of the section).

Table 4.1 shows the scheme used for the acquisition and the moments at which the acquisition was performed. The resolution for the yarn images is 36 µm and the total acquisition time is about 50 minutes. Water was added between each step so that the humid condition would remain constant throughout the test (around 50%).

A reconstructed volume (the final step) is shown in figure 4.2. It is possible to observe how the loop does not present a perfectly circular shape. A non-constant curvature is seen along the entire path traveled by the yarn in the knot.

Step 

. Reconstruction of yarn path and estimation of curvature

This section presents the first steps for post-processing the images acquired by the tomograph. First, the interesting part of the image corresponding to that volume containing the entire node was identified.

. Initialization of the yarn path

A simple thresholding step resulted in the three-dimensional representation of the yarn (see figure 4.4a). This step did not require an in-depth analysis of the right thresholding value, as it represents an initialization step. Next, a polygonal of about 30 points was clicked directly on the volume corresponding to the portion of the yarn that was part of the knot loop. Having only the outer surface of the yarn available, it was first decided to click some points present on the outermost one, as can be seen, in figure 4.4b.

Next, it was decided to interpolate these values with a spline in order to obtain a continuous curve, as shown in figure 4.4c. This way, the vector tangent to the curve was calculated numerically (see equation (2.32) from chapter 2), and the cross sections to that vector were analyzed. MATLAB function obliqueslice allows one to reconstruct a two-dimensional image from an oblique volume cut. Figure 4.3 shows a yarn cross sections. It can be noted the blue point corresponds to the point of the spline, and the red one represents the cross section centroid, which has been calculated using the binarized area corresponding to the yarn. It is also interesting to note the flattened shape of the section, although not so pronounced, since it corresponds to a part in which the curvature is relatively low.

The series of cross section centroids corresponds approximately to the yarn path inside the knot loop, as illustrated in figure 4.4d. 

. Projection of yarn path onto the osculating plane

As seen in figure 4.5, the path of the loop, with the exception of the initial and final portions slightly shifted due to the presence of the other yarn portion coming from the straight segments, essentially belongs to a single plane, that is, the osculating plane of the curve corresponding to the path. Therefore, a further simplification is to project the set of points representing the path (obtained by centroids analysis) onto that plane.

Such a plane has been identified as the linear regression of the series of points corresponding to the identified path.

As seen in figure 4.6, the numerical computation of the tangent and normal vectors results in an uneven and rather noisy distribution. After identifying the osculating planes, these vectors, when constrained to lie in the plane, present a more regular pattern.

In figure 4.7, the comparison between the path before and after the projection step is shown, for all steps. As can be seen, the tighter the knot, the more the plane inclination increases is inclined with respect to the tension direction (vertical).

The plot of the loops in the Euclidean space is reported in figure 4.8a. Here, all loops are positioned so as to travel around a common point. It should be remembered that the loop vertical position varies a lot during the tightening. In fact, it has been necessary to recenter the X-Ray detector with respect to the loop vertically moved by the displacement of the traction machine. As such, these translations are made manually to ease the visual comparison of the loop sizes.

A particular point in each loop has been identified to have a common point of origin between steps. This key point corresponds to a point where the curvature of each step has the lowest value (see the asterisks from figure 4.8a), and the cross section results in a less flattened shape, as can be seen, for four steps chosen from the 11, from figure 4.8c to figure 4.8f. The evolution of this cross section, described by a light flattening through the various tightening steps, can be noticed. To further simplify the comparison between steps, the projected trajectories in the osculator plane have been all put in a X 2 -Y 2 plane (see figure 4.8b). Then, they were rotated and translated with (a) respect to the same key point so that the curvature evolution could be visually compared.
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. Estimation of the curvatures

To understand the evolution of the loop path during the steps, it is necessary to calculate the curvature for obtaining smooth curves. Hence, it was decided to divide the trajectories into eight segments each (see figure 4.9b) and to use a least-squares regression of the curves to a spline formed by polynomials of order 5 (for obtaining smooth curvature functions), maintaining continuity at the extremes of the intervals. The resulting curves, shown as dotted in figure 4.9c, are much smoother.

Let γ(s) be defined as the curve corresponding to the spline:

γ(s) = X 2 (s) Y 2 (s) (4.1)
where s represents the curvilinear abscissa of the curve. The curvature χ is calculated using the following rule for 2D curves:

χ(s) = |X ′ 2 Y ′′ 2 + Y ′ 2 X ′′ 2 | (X ′2 2 + Y ′2 2 ) 3/2 (4.2)
with ′ and ′′ denoting respectively the first and second derivatives with respect to s.

In figure 4.10, the curvature evolution along the path curvilinear abscissas for the different steps is shown. Given the different lengths of the loops, the chosen origin for s corresponds to the key point section. Two peaks of the curvature can be seen around the point of minimum curvature, basically corresponding to the key cross section.

On average, the distance between the two peaks is approximately 29 mm. This value is very characteristic since it corresponds to a fraction of the pitch due to twist (20 TPM corresponds to one turn every 50 mm, and this value is approximately close to half of the pitch). This is also confirmed by the final growth of the curvature value for the curves corresponding to the first, longer steps, suggesting a third peak at a similar distance. Moreover, the value of the curvature remains essentially constant throughout the test in the vicinity of the key point, and while gradually tightening the knot, it shows an important growth near the peaks. Finally, it is notable that throughout the test, the peaks always remain at the same relative distance with respect to the key points.

. Cross section analysis

After calculating the evolution of the curvature in the various loops, it is necessary to perform a cross-sectional analysis of the yarn to get a correct reading of the bending behavior and to correlate the bending stiffness to the curvature.

As seen in figure 4.11, five sections of each loop, placed at predetermined distances from the key section, were analyzed to observe their evolution throughout the test. It has been chosen those cross sections that provide a reasonable estimation of the geometrical quantities (no ambiguity with the presence of the other yarn segment entering the loop for the last steps) and quite differentiated values of curvature. The section thickness can be estimated starting from their binarized images (using an Otsu's [START_REF] Otsu | A threshold selection method from gray-level histograms[END_REF] thresholding method).

Since the four tows are free to move with respect to each other, the bending rigidity of the overall cross section should be calculated by summing the contributions of the bending rigidities of each tow. However, for some yarn cross sections (see, for example, the key section in figure 4.8), some tows are entangled. In that specific case, the joint rigidity of the tows is computed by their unified moment of inertia (assuming they do not move with respect to each other). This may be because before and after this section, the tows are aligned to a flat configuration (corresponding to the position of curvature peaks). The topological positioning can be described by the initials ABCD (each labeling a specific tow) before and after this section ACBD after, as shown in the bottom right portion of figure 4.11. Tows B and C have to cross somewhere in the middle. This crossing point produces a configuration with higher bending stiffness and, thus, lower curvature.

Moreover, it should be stressed that tows are essentially inextensible and cannot hold longitudinal compression, meaning that the most important constraint is having the same length. As such, the tows move to a position corresponding to a unique point when projected onto the yarn cross section plane. Hence, the yarn behavior resembles a theoretical one composed of only two tows (i.e., B and C). This is why the average distance between the major curvature peaks in the yarn is approximately half of the twist pitch.

The thickness value of the section is computed using the smaller radius of gyration:

h = 2R min = 2 J G,min A (4.3)
where J G,min corresponds to the minor of the eigenvalues of the inertia matrix of the portion of the yarn cross sections where it has been supposed the entangling tows are not moving from each other. Figure 4.12a shows the resulting values of the section thickness for the portion of the knot trajectories in which the sections are always inside the loops (see section 4.4).

In fact, as can be seen in figure 4.11, in cases where the curvature has low values, the four tows forming the yarn tend in part to separate and travel different trajectories.

These results show a strongly nonlinear behavior, for which the section parameters (e.g., bending stiffness) are affected by the values of the imposed curvature. In addition, it can be seen that the behavior at low curvature remains essentially linear (i.e., the stiffness is essentially constant), while near the peaks, the curvature strongly increases, and at the same time, the bending stiffness of the yarn is reduced. This indicates that for extreme curvature values, the folds produced by the twisting (refer to cross section µCT from figure 2.19 in chapter 2), can freely move sideway so that the overall yarn cross section flattens.
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. Identification of bending behavior

Up to this point, it has been possible to calculate the curvature of each loop path. The thickness value was estimated by analyzing the cross sections, and finally, the two quantities were correlated.

. Generalized eigenforces analysis

In order to proceed with the identification of the bending behavior of the yarn, it is necessary to estimate the value of the bending moment along the path of the loop so as to possibly explain the observed behavior by a mere (non-linear) curvature/bending moment law.

Since the values of the force applied at the two ends of the yarn were unavailable, it was decided to compute the equilibrium of the generalized eigenforces at the loop ends. As can be seen from the figure 4.13, since this is essentially a plane problem (i.e., one can confuse the threedimensional path of the bent yarn with that projected onto its mean X 2 -Y 2 osculator plane), only three eigenforces are needed: two forces directed as X 2 and Y 2 (namely F Y 2 and F X 2 ) and a bending moment M Z 2 . However, the force F Y 2 is predominant with respect to F X 2 , and, together with the bending moment M Z 2 corresponds to the generalized forces needed to be able to close the loop.

By making a simple balance to the rotation for each section of yarn in the loop, the value of the bending moment is equal to

M = M Z 2 + F Y 2 X 2 (4.4)
To find a bending law, it is necessary to obtain an unambiguous correspondence between the bending moment and curvature at each point in the yarn path and for each tightening step. Taking into consideration figure 4.14, where it is shown, for all steps, the curvature of half a loop as a function of X 2 , the goal of identification is to find, for each step, the right pair M Z 2 -F Y 2 (with the former horizontally translating the curves, while the latter scaling the graph size) so to make the curves coincide the most. As can be noticed, it is impossible to find a single moment-curvature match (note the peak of the curvature growing nonlinearly during tightening, while on the right, there is a linear behavior, consistently coincident for all steps).

These curves could never coincide by manipulating them with simple horizontal translation and scaling operations. Therefore, considering other elements, an extra parameter should be introduced within the bending law.

. Estimation of the relative stiffness factor

The bending law is necessarily varying along the yarn path. The initial curvature can capture this variability. So taking a reference point where the section does not vary much as the knot is tightened, the curvature at this point reflects the bending moment. As no clear bias is seen with X 2 in figure 4.14, the moment can be considered constant along the loop and only dependent on the tightening. Thus we can quantify a the relative stiffness factor J rel as follows:

J rel = χ(s) χ in (s) χr χ in,r (4.5) 
Here χ in represents the curve in the initial state (i.e., the Step 00 curve) while χ r and χ in,r represent the current (i.e., for all other steps) and initial reference curvatures, respectively. These quantities are determined at s = 0, where the curvatures are the lowest and pertain to the stiffest cross-sectional behavior. In order to perform a complete analysis, only the portion of the loops present in all steps was considered, i.e., part of the two lateral peaks and the "valley" in the center (roughly between s = -20 mm and s = 20 mm).

Figure 4.15a reports the results obtained for different values of the initial curvature χ in , a function of the relative stiffness factor J rel calculated as mentioned, and for different steps after the first one (evidently for step 00 the calculation of J rel does not make sense). It should be noted how as the initial curvature changed, beyond variations found for some intermediate steps (especially step 02), the value of the stiffness factor fell rapidly on average, This is confirmed when averaging them for all the steps as in figure 4.15b.

A least-squares approximation yielded a power law of the type J rel = A • χ B in + C for the curve χ in -J rel , which is necessary for the identification of the relative stiffness factor at all points of the section.

To achieve this, the curve showing, for step 00, the curvature trend as a function of the curvilinear abscissa was used, and the graph illustrating the value of J rel at all points along the loop was obtained, as seen in figure 4. [START_REF] Luycker | Simulation et expérimentation en mise en forme de renforts composites 3D interlocks[END_REF].

It is interesting to note that at points of lower initial curvature, the value of bending stiffness is maximum, while at points where the curvature is very high, the value of bending stiffness drops very rapidly, leading to more and more localized curvature due to the severe softening low (see figure 4.15). We can also see the two peaks (also on the left, which is achievable since the loop in the initial step has the greatest length) spaced about 33 mm apart (slightly higher than the measured distance between the curvature peaks, namely 29 mm). However, it should be reminded that there is a final torsion of the yarn given by the presence of the straighter segment of yarn, which could alter the value of the curvature in this portion of the knot. Moreover, the initial manipulation of the yarn to create the knot and the placement inside the traction machine could decrease the value of the twist level of some TPM. Finally, the distance between the minima of J rel , which were detected numerically (note the two squared points in figure 4.16b), coincide with the estimated fraction of the pitch of 29 mm.

The following section illustrates and discusses a simple model showing the effect of the twist on the bending behavior of twisted yarns by analyzing the relation between the curvature and the bending stiffness. 

. Simple bending model

To explain the experimental data that have been analyzed so far for the knot created on a 20 TPM yarn, in this section, a simple model shows how the twist factor strongly influences the bending and bending stiffness results.

For simplicity, we assume two cylindrical rods of linear elastic material twisted together to form a yarn with a helical pitch equal to 20 TPM, i.e., one complete turn of each 50 mm. Having only two rods modeled, the simplicity lies in that the curve describing the locus of contact points coincides with the yarn axis, as shown in figure 4.17. The yarn is encastred from one side, while a bending moment Mx is applied on the other.

Consistent with the notation used in chapter 2, we denote by τ the twist level, and we denote by β the angle of rotation of each tow around the axis of the yarn, whose path is described by the curvilinear abscissa s. There is, therefore, a linear relation between β and s:

β(s) = τ s (4.6)
Also, in the cross section, note two pairs of Cartesian axes, both centered at the center of gravity of the section, corresponding to the point of contact between the rods: x and y are the axes of the section, while x ′ and y ′ represent the principal axes of the horizontally arranged pair of rods. The principal inertia tensor of the pair of rods is computed as

J ′ = J ′ xx J ′ xy J ′ yx J ′ yy = πr 4 2 0 0 5πr 4 2 (4.7)
while the inertia tensor in cross section axes is a function of the rotation angle β:

J = J xx J xy J yx J yy = cos β sin β -sin β cos β J ′ xx J ′ xy J ′ yx J ′ yy cos β -sin β sin β cos β (4.8) = J ′ xx cos 2 β + J ′ yy sin 2 β (J ′ yy -J ′ xx ) sin β cos β (J ′ yy -J ′ xx ) sin β cos β J ′ xx sin 2 β + J ′ yy cos 2 β (4.9)
This inertia tensor is needed to write the constitutive bond of the beam corresponding to the yarn

M x (s) M y (s) = Mx 0 = E J xx J xy J yx J yy χ x χ y (4.10)
and the second equation of the linear system is used for the following relation:

χ y = - J xy J yy χ x (4.11)
We then obtain the expression of bending moment with respect to curvature, both of which are related to rotation about the x axis:

Mx = E J xx - J 2 xy J yy χ x (4.12)
or equivalently:

χ x (s) = Mx E J xx - J 2 xy Jyy = Mx EJ eq,xx (s) (4.13) 
For similarity with the experimental results, it was decided to use a value of the TPM that would guarantee the same pitch found experimentally, and in addition, the curvilinear abscissa s was centered to match the points of maximum stiffness. The section thickness of 2r was taken at the average thickness values along the entire path of the first loop.

As can be seen from the figure 4.18, the value of the equivalent inertia factor J xx,eq , normalized with respect to the maximum value (which we previously referred to as J rel ), shows a very similar trend with respect to the experimental data, although the latter show the lowest values "spread" for a longer length. Similarly, the evolution of the curvature, which from the curves is noted to be sinusoidal, has similar values compared to the experimental results (very different are the rightmost values due to a greater discrepancy between the spline and the trajectory).

Obviously, since these are important values of the curvature, we chose to integrate the yarn path using the assumption of finite rotations:

du ds = cos ϑ (4.14) dv ds = -sin ϑ (4.15) 
with u and v labeling the horizontal and vertical displacements with respect to the global axes. The rotation angle ϑ is calculated by integrating the curvature along the abscissa:

dϑ ds = χ x (4.16) 
Figure 4.19 shows the result of the integrated path of the modeled portion of the yarn (thick curve in red) and the comparison with the path of the initial loop (i.e., step 00, dotted curve in blue). It can be seen that the two curves to the eye look very similar in the middle part, while they differ when getting close to the straight segments of the knot.

All observed differences between the experimental results and the model are given in many aspects. The first one is given by the assumption of simply linear elastic behavior of the cross section. In fact, the case of two rods represents the simplest case and does not allow any evolution of the section during the bending. It should be underlined that the proposed model is completely linear but inhomogeneous. However, the real yarn behavior is not linear but shows a softening decreasing stiffness with the increasing curvature. Nevertheless, in the early behavior where nonlinearities are not very important, it gives some flavor of what could be expected. Moreover, this model assumes a constant bending moment throughout the whole path, which is not certainly true for the actual knot. Finally, it has to be noted that the curvature undergoes an important deviation in these areas due to the presence of the other segment of the yarn, which produces a torsion.

. Conclusions

In this chapter, the bending behavior of twisted carbon yarn was illustrated and discussed. This mechanical behavior has been addressed in the literature, however, without taking into account the impact that both the twist level has, and without assuming behavior more than the cross section, which instead exhibits strongly inelastic behavior.

Therefore, an in-situ test conducted on a tightening knot applied to a twisted IM7 yarn at 20 TPM produced about ten tomographic images. From the images, it was possible to extract most of the trajectory of the loops, and, through a series of operations designed to maintain, on the one hand, greater accuracy of calculation and, on the other hand, regularity of numerical results, the curvature of the yarn in the various steps was computed.

The loop, very different in shape from the circular one and mostly belonging to a single osculator plane, showed two main peaks of curvature and a very low curvature zone. While the former showed a further increase in curvature in the various tightening steps, the latter, on the other hand, showed values with less increase.

Secondly, sectional analysis was conducted from the binarized images of the yarn and the calculation of the thickness in the direction of the normal vector was carried out. It could be observed that the section in some places showed a single flattened structure that was more easily readable, coupled with a high value of curvature, while in others, it showed a structure formed by several bodies. These types of sections, observed around very low curvature values, highlighted the yarn multi-plied nature and separation into multiple parts resulting in a more thorough analysis.

In addition, an analysis based on self-balanced generalized eigenforces showed how the flexural behavior of the twisted yarn is very different from a simple elastic beam. Indeed, it was impossible to find an unambiguous correlation between moment and curvature, which required considering other parameters varying along the yarn length but expected to show a periodic pattern due to twist. In order to get around this difficulty, it was chosen instead to estimate the value of the relative stiffness at the various points of the loop, and this made it possible to know the evolution of the flexural stiffness as a function of the twist level since this binds perfectly with the distance between two consecutive points of maximum (or minimum) stiffness.

Finally, a simple model where two elastic rods, twisted together with a pitch identical to that observed experimentally, showed, albeit for a simple section that does not allow for its evolution by transverse compression, the same type of trend and for curvature and stiffness. Clearly, when the yarn is bent inside a textile, its contact with other yarns governs the overall bending behavior which is never free as in the knot case. The use of the proposed elasto-plastic behavior law, and the ability to increase its FVF to the critical state (aspects addressed in the previous chapter), are factors that need to be considered in future more complete models in which bending is strongly coupled with the transversal compression. The study of the mechanical behavior of the preform was not addressed in the present thesis. However, some aspects of weaving and its influence on the geometric arrangement of yarns within the preform are addressed in this Chapter.

The objective of the present study is to create a parametric model of an ideal 3D woven textile from a computed tomography at mesoscale without prior knowledge of the fabric architecture. The model is constructed by identifying a minimal number of parameters from the tomography and includes further assumptions about the textile properties (e.g., equally-spaced vertical yarn columns). A novel registration procedure called Model-based Digital Image Correlation (MDIC) is introduced for mapping the whole textile image onto its own model. It leads to a realignment of the yarn columns after deforming the textile image, from which the model is updated. Model extraction and registration steps are iterated up to a stationary solution. The final result is a perfect textile geometry with straight and orthogonal yarn columns and its mapping onto the original tomography image. The proposed procedure is applied successfully to a 3D woven textile and a 3D-injected woven composite. This novel technique is useful as a pre-processing step to image segmentation procedures or to ease the visual inspection performed by operators in correcting the yarn paths and yarn column deformations occurring during composite material manufacturing. Additionally, this alignment procedure could be used to deform a numerical ideal model to better fit the geometry of a real weave.

. Introduction

Nowadays, the use of composite materials is soaring in industries where lightweight components are key. The aeronautic industry is a clear example of such. For example, the introduction of composite parts in the LEAP engine lead to an overall reduction of 15% of fuel consumption with respect to the best-performing engine of the previous generation [START_REF] Safran | A technological leap forward[END_REF]. In particular, the use of 3D woven technology for the fan blade and fan case was fundamental in its design. Moreover, the use of this textile architecture allows for optimizing the textile reinforcement so that its customized mechanical properties best respond to the operational loads and even complex net shapes such as the fan blade. For instance, 3D woven interlock fabrics, interlacing two-yarn types (warp and weft) along the thickness dimension, confer very interesting out-of-plane properties, hence reducing the risk of delamination.

In order to guarantee the final mechanical performances, non-destructive testing (NDT) techniques based on high-resolution X-ray computed tomography (micro-CT) images have proven to be extremely useful and suitable to composite materials [START_REF] Desplentere | Micro-CT characterization of variability in 3D textile architecture[END_REF]. Indeed, this allows non-destructive inspections of the actual arrangement of yarns within manufactured textiles (i.e., just after weaving of the reinforcement and/or after matrix injection). From these CT images, visual inspection is performed through operators. Their role is, for example, to check the absence of missing yarns or anomalous yarn paths due to the weaving (e.g., as could result from friction with the shuttle inserting weft yarns) or any misplacement of yarns. Even if very rare, these defects could be detrimental to the final mechanical performance and NDT is thus a crucial step in quality control. Moreover, these tomographic volumes allow to create digital material twins of fibrous reinforcements as well.

Indeed, many works devoted to extracting the mesoscale textile model, employ image processing techniques and perform quantitative analyses therein [START_REF] Gereke | A review of numerical models for 3d woven composite reinforcements[END_REF][START_REF] Naouar | Meso-fe modelling of textile composites and x-ray tomography[END_REF][START_REF] Wielhorski | Numerical modeling of 3d woven composite reinforcements: A review[END_REF]. The techniques range from "classical" methods such as clustering operations [START_REF] Straumit | Quantification of the internal structure and automatic generation of voxel models of textile composites from x-ray computed tomography data[END_REF] or texture analysis [START_REF] Naouar | 3d composite reinforcement meso f.e. analyses based on x-ray computed tomography[END_REF], up to the more recent Deep Learning approaches [START_REF] Mendoza | Descriptive modeling of textiles using fe simulations and deep learning[END_REF][START_REF] Sinchuk | Geometrical and deep learning approaches for instance segmentation of cfrp fiber bundles in textile composites[END_REF][START_REF] Ali | Deep learning based semantic segmentation of µct images for creating digital material twins of fibrous reinforcements[END_REF][START_REF] Ali | Efficient processing of µct images using deep learning tools for generating digital material twins of woven fabrics[END_REF][START_REF] Blusseau | Instance segmentation of 3d woven fabric from tomography images by deep learning and morphological pseudo-labeling[END_REF]. Other approaches based on deformable models have also been explored [START_REF] Bénézech | Variational segmentation of textile composite preforms from x-ray computed tomography[END_REF][START_REF] Pidou-Brion | Active yarn meshes for segmentation on x-ray computed tomography of textile composite materials at the mesoscopic scale[END_REF]. The main idea is to start from a rough initial yarn path and a very coarse description of yarn shapes and to progressively deform the latter to fit them to the observed ones minimizing yarn interpenetration and adjusting yarn orientations, to name but a few.

So extracting the textile mesoscale model presents clearly many advantages to perform Finite Element Analyses on such complex structures. It could also be a pre-processing step to an automated control based on image analysis or machine learning. That being said, another strategy aiming at helping the aforementioned automated control (e.g., , based on image analysis or machine learning) as a pre-processing step or simply easing the operator's visual inspection could also be explored.

Let z denote the thickness direction, while x and y correspond, respectively, to the warp and weft mean orientations. Weaving technology of 3D textiles leads to some generic constraints: warp yarns are structurally held in parallel planes (x, z), and weft yarns are also inserted in parallel planes (y, z) orthogonal to the former. Thus, textiles are engineered through ideal models that obey these constraints so that the architecture describes how each yarn (weft or warp) navigates in the thickness direction. However, after manufacturing, the weave may be deformed and shaped to the final desired composite shape. Hence the initially parallel, equally spaced, orthogonal families of planes become distorted to curved and sheared surfaces. The fact that the weave has been deformed makes the visual inspection of CT images quite tricky, as one has to navigate in different cross sections to follow each yarn individually. The present study aims to start from a CT volume and correct it so that warp and weft are "moved" back to their ideal configuration (that of the loom or the CAD model). The question is thus to find the geometrical transformation, T , that will restore the perfect alignment of warp and weft planes. Because of its use for NDT purposes, the textile model is not assumed to be known in this work, so even if the topology is not obeyed strictly, it will not affect the transformation or its determination. Thus, the deliberate choice is not to segment individual yarns to reconstruct the deformed warp or weft planes. Instead, the large-scale structure will be considered, and the altered underlying warp and weft planes will guide our methodology for a robust approach. Such corrected CT images are thus much easier to control, limiting workload and the risk of misinterpretation. However, it is important to note that the proposed alignment is a deformation that affects the yarn cross-sections and fiber or yarn fractions. Those quantities are to be measured on the original CT volume. If needed, however, they can be mapped onto the ideal configuration, where a proper labeling of yarns for instance is naturally defined.

The above transformation also offers a side benefit. To assess the mechanical properties of the composite structure, it is usual to rely on finite element numerical simulation at the mesoscale. However, these simulations are often based on the CAD model of the textile in its ideal configuration. The mesh should be matched to the actual geometry to evaluate the effect of distortion or a defect (e.g., a missing/broken yarn). This can easily be done using the inverse transformation, T -1 (now from the ideal geometry to the actual one).

As such, the aim of the present work is to develop a method based on the registration of "abstract" textile models for transforming the real images into ideal ones. Here, the abstract model aims to provide a simpler representation of the textile that conforms to an ideal configuration (e.g., equally-spaced vertical yarn columns).

Since this method is based on measuring the relative deviations of a "known" real sample, in the form of a tomographic image, with respect to a numerical textile descriptor model, a registration method such as Digital Image Correlation (DIC) (local [START_REF] Sutton | Determination of displacements using an improved digital correlation method[END_REF] or global [START_REF] Besnard | Finite-element displacement fields analysis from digital images: Application to Portevin-Le Châtelier bands[END_REF]), or Digital Volume Correlation (DVC) (here again local [START_REF] Bay | Digital volume correlation: three-dimensional strain mapping using x-ray tomography[END_REF], or global [START_REF] Roux | Three-dimensional image correlation from X-Ray computed tomography of solid foam[END_REF][START_REF] Buljac | Digital volume correlation: Review of progress and challenges[END_REF]) is well-suited. Previous works have shown the potential of such methods in the context of 3D-woven composites [START_REF] Mendoza | The correlation framework: Bridging the gap between modeling and analysis for 3d woven composites[END_REF].

This study is presented as follows. Section 5.2 presents the studied tomographic samples (woven textile and composite part). Then, section 5.3 presents the chosen strategy for describing an ideal textile by incorporating some a priori (e.g., perfectly aligned, orthogonal yarn columns, equal spacing between the columns). Afterward, section 5.4 details the proposed Model-based DIC (MDIC) by building up the problem from a 1D formulation up to a 3D solution. Finally, section 5.5 presents the results on both studied samples before concluding with some remarks and perspectives in section 5.6.

. Tomography of 3D woven textiles

This section describes the two samples used for this study. The first one is a flat textile reinforcement (without a matrix), and the second one is a composite panel (with a resin matrix). Both samples are ply-to-ply angle interlocks (but with different weaving patterns) composed of carbon-fiber-based yarns. Both samples were scanned with a GE Phoenix X-ray tomograph (GE v|tome|x L300) and an image resolution set to allow for a mesoscale analysis (i.e., the yarns are distinguishable from each other, but the carbon fibers within them are not). Also, the samples are placed so that the warp columns are aligned with the x axis, the weft columns are oriented with the y axis, and the z axis corresponds to the textile thickness direction.

It should be noted that all calculations and computing times listed here been performed on an Intel i7 processor (4 cores) with 32 GB of RAM. Moreover, the code was developed using MATLAB.

. Textile reinforcement sample

This first "dry" sample is shown in figure 5.1. It contains 39 warp yarns and 32 weft yarns (total of 71 yarns). The warp yarns are distributed alternately in a sequence of 4 and 3 yarns in two consecutive columns. Similarly, two consecutive weft columns are composed of 5 and 4 yarns respectively. In this sample, there are 11 warp columns and 7 weft columns. The chosen voxel size of 20 µm leads to a volume image of 1472 × 1776 × 408 voxels.

This image is coarsened with an anisotropic downsampling with a ratio of 2:2:1 so that the yarns cross sections are closer to a circular shape rather than elliptical. This was shown useful when analyzing displacements of yarns [START_REF] Mendoza | Differentiating 3d textile composites: A novel field of application for digital volume correlation[END_REF] as similar displacement values along the two different in-plane directions will not have the same influence on the overall textile architecture. Afterwards, an isotropic downsampling by a factor 8 helps condensating the image so that only the useful features are maintained (i.e., yarn boundaries are kept, while fiber definition is lost). Thus, the size of the obtained coarsened volume is 92 × 111 × 51 voxels, with a final resolution of 320 × 320 × 160 µm.

The two vertical mid-planes (for warp and the weft directions) are shown in figure 5.2 for the original and the coarsened volumes.

. Flat composite sample

This second sample contains around 180 yarns distributed over warp and weft columns that are much closer between themselves than in the previous sample. It was scanned at a resolution of 42 µm (voxel size). An isotropic downsampling was performed so that the resulting volume would have a similar final voxel size as the previous sample in x and y directions, resulting in a volume image of 254 × 256 × 41 voxels (i.e., 320 µm). It should be noted that in this case, the anisotropic scaling was found to be less favorable to the calculations. Given that this step merely acts as a numerical trick to speed-up the calculations, the results shown for this sample will keep its original 

. Textile models

This section introduces the parametric textile model that will be used thoroughly in all the text. It is designed to describe an idealized textile and the actual one observed in the tomographic volume.

It should be noted that the textile model used here is essentially of 2D nature. As such, it does not seek to describe the exact position of every yarn on every textile layer but rather the average position of multiple yarns in their respective columns. Thus, the proposed processing pipeline adapts a single 2D model for an averaged representation of the 3D woven textile. Then, the same 2D model is adapted for every layer of the 3D woven composite, with the additional advantage to enforce regularity between layers.

As such, the first part of this section will focus on some preprocessing steps on the tomographic volume to ease a simple two-dimensional treatment of the textile. Next, the "building blocks" for the parametric model will be described. They hinge upon simple 1D functions defined over the 2D space. Finally, details are given for a simple identification procedure to construct the base textile model. As evoked earlier, this single model is meant to be adapted either to a 2D representation of the textile as well as to all of its layers. In such a case, the identification procedure is performed only once.

. Preprocessing of the tomographic volume

The first type of transformation applied to tomographic volume V ct (x, y, z) is represented by a z-average operation which can be carried out to "summarize" the overall textile information (from 3D volume to a 2D image). The resulting image I z (x, y) represents the global averaged position of the yarn columns, which can be obtained by:

I z (x, y) = 1 N z Nz z=1 V ct (x, y, z) (5.1)
where N z denotes the number of voxels along the thickness. In an ideal case, where yarn columns would be perfectly aligned with z and yarn orientations perfectly orthogonal, as shown in figure 5.5a, the resulting image I ideal z (x, y) (see figure 5.5c) would be a grid of projected yarn columns as thick "stripes" whose intensities would indicate the number of yarns per column. However, from the actual image shown in figure 5.5b, the z-averaged image I z (x, y) (see figure 5.5d) presents distorted and non-uniform stripes. This is due to local yarn distortions, uneven distances between yarn columns, non-perfectly vertical columns, nonperfectly orthogonal yarn orientations, and even image aberrations due to tomographic artifacts (e.g., cone artifact). Next, in order to isolate just one yarn orientation, a blurring operation, consisting of a convolution with a 2D Gaussian kernel G(l x , l y ) of width l x and l y respectively along x and y axes, is applied to I z (x, y). Let us introduce λ x and λ y respectively as the average distance (expressed in voxels) between weft and warp yarn columns. In order to separate warp yarn columns, the chosen kernel is G(λ x , 0), while in case of weft yarn columns, the kernel would be G(0, λ y ).

These preprocessing operations can be written as:

I z,warp (x, y) = G(λ x , 0) ⊛ I z (x, y) (5.2) 
I z,wef t (x, y) = G(0, λ y ) ⊛ I z (x, y) (

where ⊛ denotes a convolution product.

It should be noted that λ x and λ y could be identified either by visual inspection (as it can be seen on figure 5.6a) or via numerical means (as mentioned in section 5.3.3). As a result, the obtained images I z,warp (x, y) and I z,wef t (x, y), which are shown in figures 5.6b and 5.6c, depict a continuous evolution either for warp or weft yarn columns in the x-y plane without any discontinuities or holes.

Finally, for convenience, let us define a Z_MEAN function that computes the z-average I z (x, y) of the input volume V ct (x, y, z), and a GAUSSIAN_BLUR function that operates on I z (x, y) to compute I z,warp (x, y), I z,wef t (x, y). 

. Construction of the parametric model

The proposed parametric model is built based on the tomographic image of the textile (e.g., background gray level, or average yarn column spacing), and some assumptions about its characteristics (e.g., yarn sizes). It should be underlined that such assumptions do not represent a prior knowledge of the full textile description or initial design, but rather a set of "common-sense" textile features easily measured in the image which will be tailored in this work to 3D woven ply-to-ply angle interlocks. These assumptions are depicted in figure 5.5a and can be summarized as:

• Yarn columns are mostly vertical (i.e., roughly aligned with the z axis).

• Yarns undulate on their respective vertical planes and do not steer-off horizontally: warp yarns remain in their corresponding x-z planes, while weft yarns remain in their corresponding y-z planes.

• Yarn columns are roughly equidistant and sufficiently separated.

• The warp and weft orientations are overall aligned with the x and y axes respectively (i.e., orthogonality of yarn orientations).

• Yarns are continuous all along the observed sample (no cuts or missing segments).

First, a single parametric model I M (x, y) that describes the yarn column positions can be applied to I z (x, y). Second, the orthogonality of warp and weft yarns can be taken into account for isolating their contributions. As such, the model can be defined as:

I M (x, y) = c 0 + I M warp (y) + I M wef t (x) (5.4) 
with I M warp (y) and I M wef t (x) as two one-dimensional functions that represent the ideal dispositions of warp columns on y, and weft columns on x, and c 0 is a constant used to account for the arbitrary gray level background used during the tomographic reconstruction.

Third, given that yarn columns are meant to be sufficiently separated, each one-dimensional signal can be modeled using a series of Gaussian profiles. Let us introduce the following notation

G(x; c 1 , c 2 , c 3 ) = c 1 • exp - (x -c 2 ) 2 2c 2 3 (5.5)
defining the elementary Gaussian profile defined by its maximum intensity value c 1 , its (central) position c 2 , and its width c 3 . Warp and weft column distributions are hence described by a series of Gaussian profiles as follows:

I M warp (y) = ncwarp m=1 G(y; β m , y m , ω) (5.6) 
I M wef t (x) = n cwef t l=1 G(x; α l , x l , ω) (5.7) 
Here, I M warp (y) and I M wef t (x) are respectively composed of n cwarp and n cwef t yarn columns. The peak intensities, {β m } and {α l }, as well as the peak positions, {y m } and {x l }, are unique for each Gaussian profile (for m ∈ [1, n cwarp ] and l ∈ [1, n cwef t ]). A single profile width ω is used for both warp and weft yarn columns because the yarn sizes are identical. In conclusion 1 + 2 • n cwarp + 2 • n cwef t + 1 parameters need to be identified.

It is worth noting that more complex functions could be used for describing the yarn column profiles (at the cost of additional parameters). For instance, higher power exponential functions could be used here instead of Gaussian profiles in order to better describe a flattened shape for the peaks. Similarly, polynomial functions could be used to better capture possible inhomogeneous background intensity (instead of a constant value).

. Identification of the parametric model

Let us first define the parametric model using the z-averaged information. Instead of performing a single identification on the I z (x, y) image, we propose to exploit the respective x and y-average of I z (x, y) (from 2D image to 1D signals), defined as follows:

I ref,id warp (y) = 1 N x Nx x=1 I z (x, y) (5.8) 
I ref,id wef t (x) = 1 N y Ny y=1 I z (x, y) (5.9)
where N x and N y respectively representing the image size along the x and y directions. Both strategies are equivalent but require different implementations.

As such, n cwarp and n cwef t are identified using a peak detection algorithm on I ref,id warp (y) and I ref,id wef t (x) respectively. At this stage, a first estimation of the distance between two consecutive peaks is provided as follows:

∆y m = y m+1 -y m (5.10)

∆x l = x l+1 -x l (5.11)
As well for the model, their mean values can be used to define λ x and λ y which will also use for the blurring operations. As such, for the dry textile sample, λ x = 13 and λ y = 10 were found. Next, the peak positions and intensities are further refined using least squares regression on each cross average image β m , y m = arg min∥I M warp (y) -I ref,id warp (y)∥ 2 (5.12) α l , x l = arg min∥I M wef t (x) -I ref,id wef t (x)∥ 2 (5.13)

While the average width and background intensity are adjusted from the global model I M (x, y). This regression step is necessary since the detected peaks may not correspond to the overall best position for the Gaussian profiles. Finally, for convenience, let us define a GET_MODEL function that solves equations (5.12) and (5.13) on I z (x, y) and returns I M (x, y), I M warp (x, y), I M wef t (x, y) as defined in equations (5.4), (5.6) and (5.7).

. Model-based Digital Image Correlation

The proposed correlation (DIC) algorithm is applied between a given image (i.e., the real textile) and a model that has to be created starting from the same image but incorporating some assumptions about the weaving. As such, it represents an original extension of DIC called Modelbased DIC (MDIC).

As presented beforehand, the first step of the proposed method consists of constructing a model image from the observed textile, based on its tomographic image. Next, a correlation should be performed between this model image and the tomographic one to estimate the displacement field that better registers them. Then, the inverse of the found displacement field is applied on the tomographic image so as to "align" the textile. This new image is used to re-adapt (i.e., to correct) the parametric model and this registration procedure is repeated as many times as needed for convergence (overall correction displacement field close to zero). Each iteration of the whole procedure is called "great MDIC iteration". This process can be carried out as a 2D problem or as 2 independent 1D problems. In the former case, the model aligns both yarn orientations simultaneously. In the latter case, each calculation identifies the displacement orthogonal to the analyzed yarn orientation.

As the distortions present along the textile thickness are not corrected by a simple 2D algorithm, the z invariance of the method is successively relaxed and the proposed MDIC algorithm is illustrated in its 3D version for re-aligning the entire textile volume. This section will first recall the basis of DIC. Then, the full MDIC method will progressively be detailed.

. Classical DIC

This section presents the principles of Digital Image Correlation (DIC) [START_REF] Bruck | Digital image correlation using Newton-Raphson method of partial differential correction[END_REF][START_REF] Schreier | Image Correlation for Shape, Motion and Deformation Measurements[END_REF][START_REF] Grediac | Digital Image Correlation[END_REF] for the registration of image pairs. DIC is based on the assumption of conservation of the gray level and aims to find the displacement field u(x) that best aligns (registers) a given image g(x) onto a reference one f (x) [START_REF] Hild | Digital image correlation: From displacement measurement to identification of elastic properties -a review[END_REF] by minimizing the L 2 norm of their residual:

ρ(x) = g(x) -f (x) (5.14)
with the corrected image is defined as

g(x) = g(x + u(x)) (5.15)
and the displacement field u(x) that is discretized using a set of shape functions ψ i (x) inspired from the FE method [START_REF] Besnard | Finite-element displacement fields analysis from digital images: Application to Portevin-Le Châtelier bands[END_REF][START_REF] Sun | Finite element formulation for a digital image correlation method[END_REF]. Then, an iterative Newton-Raphson algorithm is used to solve a linear version of the problem as:

[M ]{δu} = {b} (5.16)

with:

M ij = x∈Ω S i (x) • S j (x)
(5.17)

b i = x∈Ω S i (x) • ρ(x) (5.18)
where Ω corresponds to the region of interest, and the sensitivity fields S i (x) are commonly computed as:

S i (x) = ∇g(x) • ψ i (x) (5.19) 
≈ ∇f (x) • ψ i (x)
It should be noted that the latter approximation is frequently used in DIC implementations since ∇g(x) approximates ∇f (x) at convergence. As a consequence, the matrix [M ] needs to be computed only once (as f (x) does not change). Finally, the displacement field at a given iteration k is updated with:

{u} (k+1) = {u} (k) + {δu} (5.20)
This process is carried out until convergence or a maximum number of iterations is attained.

. 1D-MDIC formulation

The 1D-signal model is constructed using the sum of Gaussian profiles as defined equations (5.6) and (5.7), for which, during the registration, the positions of the warp columns y m (x) = y 0 m + u y m (x) depend only on x, while the positions of weft columns x l (y) = x 0 l + u x l (y) depend only on y. Since for each yarn column, the correction to obtain is in the cross direction to the yarn longitudinal one, a two-dimensional image is required. As such, for the correction of weft yarns, the Gaussian model g = I M wef t (x) is spread along the yarn longitudinal direction y. There are two main advantages of such a model. First, it involves displacements u, identified by 1D-MDIC, of each 1D-Gaussian profile with respect to an initial position. The second advantage is, paradoxically, the non-conservation of gray levels. Indeed, by definition, gray levels between Gaussian profiles increase when yarns become closer to each other or decrease if they get farther apart. This is in contrast with the usual assumption of DIC that would keep and stretch the initial gray values in between, but this is in agreement with a more realistic yarn transformation.

In summary, g(x, y) can handle the model kinematics by a mere translation of the Gaussian profiles while also allowing for the proper conservation of X-ray attenuation (displacement has an impact on gray levels). Then, in the case of wefts, the corrected image, labeled as gweft (x, y), is written as

gweft (x, y) = n cwef t l=1 G(x; α l , x 0 l + u x l (y), ω) (5.21)
This summarizing image is fundamental for computing the new sensitivity fields

S l (x, y) = ∂ ∂u x l (y) gweft (x, y) (5.22) 
= ∂ ∂u x l (y) G(x; α l , x 0 l + u x l (y), ω) = α l (x -x 0 l -u x l (y)) ω 2 exp - (x -x 0 l -u x l (y)) 2 2ω 2
whose horizontal lines are used in equations (5.17) and (5.18) for the minimization problem. It should be noted that in the case of warp columns, the same kind of equations take place but with inverted axes and indices (i.e., β and m instead of α and l). ). Finally, let us explain how to extend the 1D-MDIC formulation so that it can be applied to 2D images. The first "dense" strategy consists in performing 1D-MDIC computations in each line along the main column direction in the 2D images. However, as it was pointed out in the previous section, the pre-processing steps (namely blurring along x and y orientations) enforce a continuity between successive lines. So, the idea is to compute 1D-MIC only at the cross position of the in-plane orthogonal direction. So only n cwef t calculations are performed for I z,warp (x, y), while only n cwarp calculations are performed for I z,wef t (x, y).

Moreover, in order to obtain a complete displacement field over the 2D space of the image, simple interpolation can be used. Here, the same FE framework is employed as in classical DIC, and the resulting displacement field is expressed over a structured mesh with nodes at every yarn column crossing point. It is noteworthy that this latter strategy is considerably faster than the former (dense one) and avoids regularization issues as well.

An example using these two strategies is shown in figure 5.8 (using figure 5.6c as the reference image) at which a registration along x is carried out. The results obtained from both methods are essentially identical: the final disposition of yarn profiles (oriented along the second column), their final residual maps (oriented along the third column) and the obtained displacement fields (oriented along the fourth column), are almost coincident. In other words, the difference maps present very low values both in terms of normalized gray level and displacement. Moreover, note that, since both cases share a common reference image (see figure 5.8a), ∆g = ∆ρ f . Even if, in this case (the dry textile), the computational time is very fast, the dense approach is 10 times slower than the interpolated one (1.1 seconds vs 0.10 seconds, respectively), due to the very different number of registrations. For these reasons, the interpolated strategy is chosen for all further calculations and a 1D_MDIC(f (x, y), g(x, y)) function is defined.

. 2D-MDIC formulation

The 2D formulation for the MDIC algorithm builds on top of the chosen 2D extension of 1D-MDIC (interpolated version). Indeed, the calculations are not performed at every vertical or horizontal line of the 2D images, but rather a FE formulation is used for interpolating the obtained displacement field. As such, a structured 2D FE mesh with nodal positions corresponding to the yarn crossing points (identified in the 1D signals as detailed in section 5.3.3).

Also, just as in the case for 1D-MDIC, the parametric formulation of deformed image g(x, y) embeds the kinematics as offsets to the center of the Gaussian profiles. These are u x i and u y i , corresponding to the nodal displacements of the horizontal and vertical Gaussian profiles respectively, whose index i ∈ [1, n cwef t • n cwarp ] sweeps all yarn columns crossing points. Let us stress that a horizontal profile corresponds to a Gaussian signal oriented along the x axis, while a vertical profile corresponds to a signal oriented along the y axis. As such, the corrected image is defined as where the displacement fields u x l (y) and u y m (x) can vary along the cross direction of the Gaussian profiles (vertical stripes, here corresponding to weft yarn columns, are horizontally deformed while horizontal stripes, the warps, are vertically deformed).

It is important to note that, while the initial position of the Gaussian profiles remains constant for all "lines" orthogonal to the orientation of the profiles, the associated displacements do not. As such, when initially u x l (y) = 0 and u y m (x) = 0, the obtained image is essentially composed of perfectly vertical and horizontal stripes (weft and warp). However, as these values evolve, the vertical stripes are horizontally deformed, and the horizontal stripes are vertically deformed. Crucially, this is performed on the parametric function g(x, y), which allows for the non-conservation of gray levels evoked beforehand.

As such, the displacements u x l (y) and u y m (x) are also expressed using a 1D FE formulation:

u x l (y) = ncwarp m=1 u x l,m • ψ 1Dm (y) (5.24) u y m (x) = n cwef t l=1 u y m,l • ψ 1D l (x) (5.25)
with u x l,m labeling the displacement of the horizontal profile l at the vertical position of node m, while u y m,l identifies the displacement of the vertical profile m, at horizontal position of node ; second to fourth row: respectively the results of "dense" approach ((d) to (f)), the results of interpolated approach ((g) to (i)) and their differences ((j) to (l)), in terms of final deformed image g, final residuals ρ f and displacement field u. The residual and difference maps (except for the displacement field) are normalized with respect to the image dynamic range and refer to the left colorbar, while the displacement fields refer to the right colorbar. The final disposition of yarn columns is shown in green, while their initial configuration is in red.

The corresponding sensitivity fields are also differentiated with respect to directions x and y:

S x i (x, y) = ∂ ∂u x i g(x, y) (5.35) = ∂ ∂u x i G(x; α i , x 0 i + u x i , ω) • ψ 1D i (y) = α i (x -x 0 i -u x i ) ω 2 exp - (x -x 0 i -u x i ) 2 2ω 2 • ψ 1D i (y) S y i (x, y) = ∂ ∂u y i g(x, y) (5.36) = ∂ ∂u y i G(y; β i , y 0 i + u y i , ω) • ψ 1D i (x) = β i (y -y 0 i -u y i ) ω 2 exp - (y -y 0 i -u y i ) 2 2ω 2 • ψ 1D i (x)
Finally, the parameters at iteration k are updated following:

{p} (k+1) = {p} (k) + {δp} (5.37)
The function corresponding to the computation of the 2D MDIC algorithm 2D_MDIC(f (x, y), g(x, y)) is defined. As done previously, this 2D MDIC formulation will be compared with a multiple 1D MDIC strategy (along each direction). The former case implies only calculation, while the latter requires blurring operations (to obtain I z,warp (x, y) and I z,wef t (x, y)) and multiple 1D MDIC calculations at the yarn columns positions (FE mesh lines). The chosen reference image is the z-averaged image of the tomographic volume, i.e., I z (x, y). The obtained vertical and horizontal displacement fields, shown in figure 5.9, are very similar. Yet, the elapsed time for the 2D MDIC calculation is 20 times that of the multiple 1D MDIC calculations (2 seconds vs 0.2 seconds, respectively). Thus, in the next paragraphs, the solution only the 1D MDIC algorithm will be taken for performing the correction of yarn distortions (i.e., 1D_MDIC).

. MDIC algorithm -2D correction

The whole MDIC iterative procedure aims to analyze an input image I ′ z (x, y) for identifying the optimal displacement field u(x, y) that best aligns the textile. For convenience, let us first define some helper functions: GATHER(u x (x, y), u y (x, y)), which combines two 2D displacement fields, and DEFORM2(I z (x, y), u(x, y)), that applies the displacement field given by GATHER onto the 2D image to realign. In particular, the DEFORM2 function is as follows:

Ĩz (x, y) = I z (x + u x (x, y), y + u y (x, y))

(5.38)

A great MDIC iteration is detailed within the do/while loop in algorithm 1. Here, both 1D or 2D variants of MDIC registrations can be used in order to obtain the displacement fields u x (x, y) and u y (x, y). Note that when the 1D method is employed, the partial images I z,wef t (x, y) and I z,warp (x, y) and their corresponding models are employed (i.e., I M wef t (x, y) and I M warp (x, y)). For the 2D method, the image I ′ z (x, y) and the image model I M (x, y) are used. Next, it is important to note that both model creation and model identification steps are always applied on the current best-aligned image I ′ z (x, y)← Ĩz (x, y). They follow the procedure detailed 

. MDIC algorithm -3D correction

During the forming process, the yarn columns within 3D woven textiles are most of the time bent due to the shearing. These kinds of in-plane yarn distortions could be observed from figure 5.2 on few yarn columns. In real parts, this phenomenon is even more pronounced. This leads to the fact that the previous 2D method based on the z-averaging is no longer suitable.

However, over small distances along z, the same methodology is expected to be applicable. Thus, it is proposed to introduce a Gaussian blurring operation along the z axis to be applied on the tomographic volume V ct (x, yz), as a first transformation. This is achieved with a kernel G(0, 0, l z ) of "zero-width" on the x and y axes, and l z along the z axis. Using a large value of l z (such as the entire thickness of the sample) leads to the previous 2D approach, since the z-blurring will become z-averaging. However, a lower limit on l z is the average distance λ z between two consecutive textile layers (e.g., see figure 5.11a). The appropriate value for l z should be such that the distortion of the textile along z does not lead to an overlap of two yarn columns over this distance. In the following, the minimum value l z = λ z is chosen to show that such an extreme choice, i.e., the most tolerant to large textile distortion, works nicely.

For example, λ z = 10 in the dry textile sample. Thus, the z-blurring transforms every initial warp and weft yarn column as smoothly varying along the z axis, as shown in the resulting volume V z (x, y, z) figure 5.11b.

Afterwards, in order to separate warp yarns from weft ones, two further Gaussian blurring operations are performed directly on the volume V z (x, y, z), similarly to the process detailed in section 5.3.1. Figures 5.11c and 5.11d, representing respectively V warp (x, y, z) and V wef t (x, y, z) volumes after the z-blurring operation, show the yarn columns as vertical layered structures which are not entirely straight.

The series of Gaussian blurring operations are synthesized as

V z (x, y, z) = G(0, 0, λ z ) ⊛ V ct (x, y, z) (5.41) V warp (x, y, z) = G(λ x , 0, 0) ⊛ V z (x, y, z) = G(λ x , 0, λ z ) ⊛ V ct (x, y, z) (5.42) V wef t (x, y, z) = G(0, λ y , 0) ⊛ V z (x, y, z) = G(0, λ y , λ z ) ⊛ V ct (x, y, z) (5.43)
It can be noted that I z (x, y), I z,warp (x, y) and I z,wef t (x, y) can be retrieved just by applying Z_MEAN function respectively to V z (x, y, z), V warp (x, y, z) and V wef t (x, y, z).

Let us define the helper function PREPROCESS which incorporates both the function Z_MEAN and the three-dimensional version of function GAUSSIAN_BLUR, for computing I ′ z (x, y), V z (x, y, z), V warp (x, y, z), V wef t (x, y, z) from input volume V ′ ct (x, y, z). Here, for keeping coherence with notations, the z-averaged image I z is labeled with ′ for underlying, similarly to what is illustrated in the 2D correction algorithm, its varying nature in the algorithm (it is computed from the updated volume V ′ ct ). Moreover, let the volume transformation Ṽct (x, y, z) = V ct (x + u x (x, y, z), y + u y (x, y, z), z) (5.44)

be represented by the function DEFORM3(V ct (x, y, z), u(x, y, z)) applied onto the initial volume.

Note that this transformation, although performed in 3D, respects the two-dimensional kinematics of the problem, described by displacement fields orthogonal to each mean yarn orientation. The three-dimensional version of the procedure reported in algorithm 2 has the purpose of finding, at each great iteration, the displacement field that best aligns an updated volume V ′ ct (x, y, z) with its ideal modeling representation, also in this case described by the model image I M (x, y) or by its one-dimensional versions I M warp (x, y), I M wef t (x, y), computed as in sections 5.3.2 and 5.3.3. Again, it is important to underline that all PREPROCESSING and GET_MODEL steps are always applied on the current aligned volume V ′ ct (x, y, z)← Ṽct (x, y, z). This procedure is repeated until a convergence criterion based on the RMS(V ′ ct (x, y, z), Ṽct (x, y, z)) is fulfilled. The 3D displacement field can be estimated by multiple uses of the 2D_MDIC algorithm (or its one-dimensional version 1D_MDIC) for all slices z k belonging to the blurred volume V z (x, y, z) (or the uncoupled versions V warp (x, y, z), V wef t (x, y, z)) with the corresponding model image. In concordance with the two-dimensional use of 1D_MDIC, the choice of computing as many zslices as the thickness size is permitted. However, for improving the computational time, further simplification can take place and subsequent calculations are performed just on a set of chosen z-slices. Indeed, a similar reasoning to that in sections 5.4.2 and 5.4.3 is used here: to benefit from the regularization and continuity provided by FE interpolation. As such, instead of analyzing all possible z-slices, only those corresponding to the textile layers are chosen (gathered into z chosen ). Naturally, a single 3D structured FE mesh can be built with nodes placed at every yarn column mean crossing points (on x and y) and separated by a distance of λ z (on z).

These calculations are illustrated in sections 5.4.2 and 5.4.3 and are detailed within the forall loop in algorithm 2 and highlighted in the diagram in figure 5.12. It is possible to note that the main difference with the simple 2D correction algorithm is that here the identified model image I M (x, y) is correlated with each z-slice of V z (x, y, z) and not directly with I ′ z (x, y). In the following section, the results obtained with the 3D correction from algorithm 2 of both a woven textile and an injected woven composite will be illustrated. Let us recall that given the more regular disposition of yarn columns, only the case of equally spaced columns is taken into account. 

. Results

This section presents the results of the MDIC algorithm on both samples: a 3D woven preform and a woven composite sample. The MDIC formulation is the one that benefits from interpolation (from 3D to 2D and from 2D to 1D), hence it uses multiple 1D MDIC registrations. Moreover, the equal spacing variant is also enforced.

. 3D woven preform sample

The results of the MDIC for the 3D woven textile corrections show both yarn columns orientations in a perfectly straight and orthogonal disposition. Moreover, the assumption of equally spaced columns forces this yarn disposition to be much more regular.

A total number of six greater iterations are enough for a full correction of the volume image, which has been obtained with a total elapsed time of 20 seconds (each great iteration is performed in no more than 3.5 seconds). Given that all calculations are computed in the coarsened volume, the found displacement at this scale can be interpolated so that a finer correction can be provided also for the original volume. It should be noted that its intensity has been multiplied by 16, which represents the in-plane scale factor between the original and the coarse volumes.

Figure 5.13 illustrates the 3D correction of the preform with the mesh plotted in red on top of the yarns, for four different slices equally distributed in the sample height.

Figures 5.14 and 5.15 show three equally-spaced vertical slices of the tomography directed both as the x-z plane (representing weft yarn cross sections) and the y-z plane (representing warp yarn cross sections). For the same chosen slice it is shown the initial, the final configuration, and the corresponding difference map. As it can be observed, after the correction the columns are more vertical and present a more regular disposition. Moreover, as shown in the difference maps, most of the displacement occurred along the weft direction, whilst the warp yarns remain almost untouched. This is described by a stronger alternation of positive and negative values of the difference map in the x-z slices around the yarn cross sections, while, along the y-z direction, the elongated structures representing the cross yarns show a high absolute value. This can be easily explained by the fact that the direction of the warp is more controllable and denser than the weft. However, it should be noted that given the fact that the method was applied at a coarser scale (focusing only on the change in position of the yarn neutral fiber), the displacements cause some non-physical distortions of the cross sections.

Moreover, similar results are exploitable when looking at the volume images of the initial and final configurations, reported in figure 5.16. Two vertical slices of the volumes are properly chosen to help read these transformations: if, before the correction, yarn columns corresponded rather to irregular surfaces and yarns continuously appeared and disappeared on these slices, after the correction the regularity mean that the displaced yarns are clearly visible throughout their entire length.

Finally, z-averaging of the volume has been computed for observing all the transformations that occurred in the textile within a single 2D image. As shown in figure 5.17, yarn columns are much more aligned, and the structure formed by the crossing points presents constant distances in both directions. In addition, it is noteworthy how the intensity of the image at various points has changed due to the 3D correction. This is due to having "moved" the yarns back to a correct position belonging to vertical columns; thereby, the integral of the gray level in the volume (i.e., matter density), is affected by this "physical" change. 

. 3D woven composite sample

While the previous sections used a dry sample (i.e., only the textile reinforcement is present), here a "complete" composite is explored (injected with an epoxy resin). Now the specimen images use inj subscript for referring to an injected preform (i.e., a woven composite) sample.

For this volume, λ x = 23, λ y = 15, and λ z = 8 were estimated as the distances between weft columns, warp columns, and thickness layers, respectively. Given the more regular textile structure, the results of the full 3D alignment are obtained with just one great iteration, computed in 8.5 seconds (note the higher number of yarns, but however the use of just one great iteration).

Figures 5.18 and 5.19 show three equally-spaced vertical slices of the volume, directed both along the warp and weft directions, in their initial and final configurations. As well, the third column of each figure illustrates the relative difference map. It is even more evident in this case, that the most of textile deformations occurred along the weft direction, while the warp yarn columns remain very similar to the initial configuration, which already presented a regular pattern. Indeed, strong variations of the gray level around the weft yarn cross sections for the x-z slices are accompanied by those within inter-cross section spaces for the y-z slices.

When looking at the whole volumes shown in figure 5.20, not only yarn columns are now aligned with the x and y axes (and orthogonal between themselves), but also the yarns in each column remain now properly in the same vertical thick plane (respectively x-z for warp and yz for weft columns). Moreover, the global composite deformation suggests that shearing of the weft structure directed along the thickness occurred during the manufacturing process. This is confirmed also when z-mean projection images (see figure 5.21), which decodes this deformation of weft columns to an increase of their z-mean gray levels. 

. Conclusions

In this study, a novel use of Digital Image Correlation has been proposed for converting the tomography of a woven textile to a more ideal configuration, in which the yarn columns are perfectly straight, vertical and orthogonal. It is noteworthy that the proposed method could be seen as a pre-processing step to image segmentation procedures or to ease the visual inspection performed by operators since the yarn paths and yarn column deformations could be significant during the composite material manufacturing.

This objective has been accomplished by registering the tomography with a parametric model of the textile, which stemmed directly from the observed weaving (e.g., yarn sizes, column spacing, weaving pattern). Moreover, the registration process is based on only one reference image, from which the "deformed" state is constructed. This novel idea leads to the MDIC method.

Besides, the construction of the model provides more freedom in the DIC formulation, as the elements included in the model are easily adapted to the DIC minimization problem. Also, since the goal of this study is to realign the real textile image, the latter is back-corrected with the opposite of the displacement field obtained by the registration of the model image onto the real one.

The MDIC method has been presented as multiple 2D problems or as multiple 1D problems. In the former case, the algorithm tackles the misalignment of warp and weft columns simultaneously. In the latter case, each orientation is handled separately. Moreover, the 1D version of the MDIC formulation is much faster and provides better-conditioned results compared to the 2D one.

Furthermore, it has been shown that if the yarn columns of the textile are sufficiently straight, a correction of the z-mean projection of the tomographic volume can be directly performed. However, for more distorted yarn columns along the thickness, the correction should be carried out by registering the same model throughout a given number of z-slices.

The complete correction method has been applied both on a woven textile and a composite tomographic volume for re-aligning yarn column distortions. Furthermore, the displacement required for aligning the weft columns was found to be greater than the one for warp columns (in both specimens). Moreover, since the composite part is more compact than the textile sample, all columns seem to have a homogeneous shearing along the thickness direction. As such, it is worth noting that this method not only provides a successful correction of yarn column distortions but also allows quantitative and qualitative analysis of all textile deformations that occurred during the manufacturing process (e.g., bending, shearing).

As a perspective, the presented procedure could be extended to deform ideal textiles performed by some Textile Geometry Pre-processors such as TexGen [START_REF] Sherburn | Geometric and Mechanical Modelling of Textiles[END_REF] or WiseTex [START_REF] Lomov | Textile geometry preprocessor for meso-mechanical models of woven composites[END_REF] in order to generate from them more realistic textile models suitable for mechanical FE simulations. This would presumably open the methodology to more complex textile architectures. A further extension of this work could be to address the through-the-thickness displacement field, after the (x, y) alignment.

Chapter 6 General conclusions

The use of CMO materials in the aviation industry has brought (and will bring) many benefits in reducing fuel consumption and emissions to the atmosphere. Indeed, the new design of nextgeneration engines will exploit the woven composite technology even more. Hence, since it is a complex material in its various parts, it needs proper mechanical characterization and mastering of the production process. In particular, the study of fibrous reinforcements is one of the topics of greatest interest because its proper use and knowledge of its characteristics affect the mechanical characteristics of the finished composite part. Numerical modeling, in this sense, saves time and money for the implementation of a series of mechanical tests and predicts the behavior of the entire preform. However, the most widely used models can only capture part of the mechanical properties. They present several aspects that can be improved regarding numerical performance and similitude to real behavior.

. Mechanical study of twisted yarns

Specifically, the mechanical characterization of the twisted carbon yarn remains the most crucial issue of numerical models. Two main kinds of approaches are present in literature: the first is characterized by using a hyper-or hypo-elastic law applied to a homogenized description of the fiber bundle. Although time-saving and simple, this approach needs many parameters to capture the most possible deformation modes and their coupling. Moreover, it makes the strong hypothesis that the mechanical behavior of the yarn is totally elastic when it has been shown that an elastoplastic behavior characterizes its cross section. The second approach models the carbon yarn as a bundle of dozens of macro (or virtual) fibers. This model can better capture the irreversible deformations observed in the yarn during the different steps of the manufacturing process. This means that, in fact, not all the intrinsic complexity of hyperelastic models is needed, as none of these parameters have to be included in the virtual fiber modeling. All its complexity comes from contact and friction, and hence it is unnatural to follow the hyperelastic route. What is needed is to capture (unilateral) contacts and friction (and sizing as an additional cohesion) but we would like to avoid the high cost of computation of these highly non-linear (non-smooth) behaviors. The solution may come from our experience in soil mechanics, especially simple soils such as dry sand. If one had to characterize the huge number of contacts and frictions between the grains (which are rigid), especially as they exponentially increase, one would end up with a too computationally expensive model. Using a plastic law one would realize the mechanical description of a continuous body constituting the set of grains maintaining a minimum value of parameters and would succeed in capturing the irreversible deformations present inside without the need to solve any contact/friction problem numerically. Indeed, the need for many contact problems to be solved makes these simulations very time expensive. In addition, the geometric arrangement of fibers modeled within the yarn cross section is unrealistic. This strongly affects the fiber content during simulation when the yarn cross section is compressed. Moreover, neither approach incorporates the concept of twist within its formulation (in the former case, this would include additional parameters difficult to identify, while in the latter, the twist makes the geometry of the component fibers further unrealistic).

. Characterization of twist

The major characteristics of the twist that is produced on multi-ply yarn are addressed in Chapter 2. The spinning machine, which produces the twist by winding the yarn around a bobbin, joins the tows at a single point so that the total torque is zero. A FE model was developed with the aim of mechanically explaining this phenomenon. Using the ALE (Arbitrary Lagrangian Eulerian) formulation, the material (i.e., the fibers) flows through the mesh has been simulated without displacing the nodes along the yarn axis. On the contrary, the mesh was left free to follow the material motion transversally. The result corresponds to the migration of the tows relative to the yarn axis and the fibers relative to each tow axis. This is governed by a continuous change of fiber tension, which creates an imbalance and drives the fiber motion. Experimental observations have validated this effect. Moreover, it could be seen that the fiber twist angle with respect to the axis of each tow has been observed as constant on average, as can be expected from a bundle of inextensible fibers twisted together. The twist generates a radial pressure directed toward the yarn core. Moreover, a high twist level significantly increases the number of geometric constraints given by the many fiber crossings points inside the yarn. These correspond to many topological invariants in that any elemental deformation of the yarn does not alter them and makes the yarn extremely rigid.

. Elasto-plastic behavior law for transversal compression

The twist effects can be included inside the proposed model described in Chapter 3 as a volumetric force distribution. This part of the manuscript first illustrates a series of ex-situ mechanical tests depicting the diametral compression of carbon yarn. The guidance of a profilometer allowed the reconstruction of the lateral profile of the same. Then, through the measurements of the thickness and the yarn width, the FVF was estimated. By performing a series of consecutive loading and unloading steps, a hardening elasto-plastic behavior of the cross section was observed. The FVF increases rapidly until it reaches a constant value at the end of the compression test. In this asymptotic state, called the critical state, the cross section no longer changes its volume, and the sliding fibers only change its shape. As such, an elasto-plastic behavior law has been developed with the intention to contain the advantages of both existing approaches and improve some hitherto unexplored aspects. The yarn was modeled as a homogeneous body with Mohr-Coulomb plasticity to characterize the cross section behavior. This law can describe the stacking and transverse slippage between the various fibers when the yarn is deformed in various ways. The FVF parameter becomes the internal variable that describes the hardening behavior observed during the transversal compaction. Its evolution during the simulation is much closer to the experimental observation. One of the most important benefits of the proposed law is that its formulation included very few parameters to identify, making the model easily exploitable, such as the friction angle and the cohesion describing the fiber sizing. Moreover, the impact of the presence of water has been studied. It has been shown that the same critical state can be reached more quickly since water lubricates the surface by decreasing the friction angle.

. Pure bending behavior

The local aspects observed from the ex-situ experiments were analyzed by studying the behavior of the yarn in pure bending. Although this type of deformation is always coupled with others during the manufacturing process (the yarn is very often in contact with other yarns of the orthogonal direction that affect its bending), the analysis of pure bending was proposed in order to understand which parameters play a key role in the bending law. A simple knot was applied to a yarn, and thanks to a tensile machine, it was tightened and scanned inside a tomograph in several steps. The experiment results show an uneven value of bending curvature, with the position of the maximum values characterized by having a relative distance equal to a fraction of the helical pitch given by the twist. Also of particular significance is the evolution of the yarn cross-sectional area at various knot points. In fact, strongly nonlinear behavior revealed a greater propensity for some sections to localize the increase in curvature while further flattening the section. Through the use of self-balanced generalized forces closing the loop of the knot, it was confirmed that there is no exact correspondence between moment and curvature and that other parameters, such as twist, come into play to be able to change the behavior of the yarn. Indeed, the relative bending stiffness along the yarn could be quantified with the assumption of a constant bending moment throughout the yarn. Finally, an analytical model, although including an elastic behavior of the cross section, showed a nonconstant curvature along the yarn path and validated the trend of those cross sections with lower initial bending stiffness. However, an enhancement of the same model would include non-linearities for capturing the increasing values of curvature in places showing initial low bending stiffness (e.g., the softening stiffness law).

. Alignment of 3D woven textile composites

Although the modeling of weaving has not been addressed, some geometrical aspects concerning the misalignments of yarns in the textile have been investigated. In this context, a tomography is computed onto the preform to understand the main transformation that occurred during weaving and to provide quality control of the processed part. In the last Chapter, the position of yarn paths within the 3D fabric was analyzed from a tomography of two samples. Thanks to creating a parametric model based on the equivalence between the gray level of the average position of the yarn columns and a series of Gaussian functions, a registration based on digital image correlation was performed. The result provided insight into the major transformations during the weaving process and allowed the initial image to be corrected by remapping the yarn columns toward a perfectly vertical and orthogonal position in both directions, as might ideally be expected from perfect loom weaving.

. Perspectives

Several studies can be pursued as a perspective to improve the mechanical characterization of the yarn. The first certainly concerns statistical analysis of fiber trajectories within the yarn due to twist application. A database would better quantify the radial pressure exerted toward the yarn core with the various levels of twist for the elasto-plastic model. Also of great interest is applying the proposed law in a more complex fabric model so that the flexural behavior of the yarn in its realistic configuration, in multiple parts in contact with other yarns, can be studied in depth, and the realization of numerical simulations would make use of the proposed Mohr-Coulomb description. In that case, the proposed law would be enriched by including the structure tensor related to the contact orientation. Indeed, an experimental tribological investigation between yarn and yarn (in wet conditions) would be welcome to more correctly characterize the contact points between fibers of crossing yarns at different angles.

Finally, with regard to the alignment method proposed in the last Chapter, it is possible to improve both the characteristics of the parametric model (by adding other parameters such as the width and predetermined positions of the yarn columns if predetermined by the weaving design) and to use the results obtained to deform purely ideal geometric fabric models such as TexGen or WiseTex for mechanical simulations of forming process or transversal compression of the entire reinforcement.

Since the main focus is the mechanical prediction of the preform, many possible applications of the proposed elasto-plastic model would be essential to understand the yarn mechanical behavior during the different manufacturing processes. In particular, a priority should be made to describe the weaving process, which should focus on possible damage the yarn would be subjected to. Moreover, since the woven yarns are wetted before entering the loom, after the weaving procedure, the water inside the yarns is allowed to evaporate, and this profoundly affects the mechanical behavior of the overall textile. The same attention should be addressed when analyzing the forming process. The addition of water, which plays a fundamental role as a lubricant in easing the sliding of yarns, should be carefully mastered, for which its degree of saturation can affect the behavior of the preform. --------------------------------------------------------- 
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 113 Figure 1.13: Mechanical response to transverse compaction of a woven fabric ((a) from Potluri and Sagar [14]).
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 115 Figure 1.15: Macroscopic modeling: (a) simulation of hemispherical forming process using an hypoelastic law from De Luycker[START_REF] Luycker | Simulation et expérimentation en mise en forme de renforts composites 3D interlocks[END_REF], (b) simulation of three points bending from Charmetant[START_REF] Charmetant | Approches hyperélastiques pour la modélisation du comportement mécanique de préformes tissées de composites[END_REF] (first simulated column) and Mathieu[START_REF] Mathieu | Modélisation du comportement Mécanique lors du procéé de mise en forme et pyrolyse des Interlocks CMC[END_REF] (second simulated column). As Mathieu[START_REF] Mathieu | Modélisation du comportement Mécanique lors du procéé de mise en forme et pyrolyse des Interlocks CMC[END_REF] introduced the bending behavior of the textile inside the macroscopic model, the results are largely improved.
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 116 Figure 1.16: Geometrical modeling of yarns: ((a)) polynomial description of the yarn path from Adanur and Liao [27], ((b)) power elliptical cross section from Sherburn [23] (figure taken from Wielhorski et al. [15]).
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 117 Figure 1.17: Mesomechanical model: (a) hypoelastic behavior law applied to a plane weave in shear test from Badel et al. [17]; (b) hyperelastic deformation modes used inside the strain energy from Charmetant et al. [29].
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 118 Figure 1.18: Microscopic modelisation of an orthogonal through-the-thickness interlock using digital chains from Green et al. [32].
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 119 Figure 1.19: Simulation of transversal compaction using virtual fibers as elastic beams (Multifil) from Durville et al. [35].
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 120 Figure 1.20: Microscopic modeling of a free yarn with a random perturbation of the virtual fibers from Moustacas et al. [36].
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 122 Figure 1.22: Calculation of linking number: (a) calculation on closed knots and closure operation for braids (b).
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 125 Figure 1.25: Orientation maps for a 410 TPM twisted nylon yarn obtained by Sibéllas et al. [56]: top row: absolute orientation angles ((a) 1-ply, (b) 2-plies, (c) 3-plies), bottom row: (d) ODF for 1-ply, relative orientation angles ((e) 2-plies, (f) 3-plies).
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 1 Figure 1.26: Schneebeli's soil, figure from Jenck et al. [58].
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 21 Figure 2.1: Scheme of spinning machine.
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 23 Figure 2.3: Mechanics of the spinning machine: all tows are subjected to an equal axial tension of intensity T i .
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 24 Figure 2.4: Schematical representation of what occurs inside the yarn cross section: the requirement of a zero-torque yarn produces inside each tow an opposite torque.
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 26 Figure 2.6: Schematic representation of a continuum deformation in a Lagrangian framework (X,Y ,Z) (the mesh follows the material points).
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 27 Figure 2.7: Schematic representation of a continuum deformation in an Eulerian framework (where the mesh remains fixed even when the specimen deforms).
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 28 Figure 2.8: Schematic representation of a continuum deformation in an ALE context and relative domain mappings.
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 29 Figure 2.9: Scheme of the prescribed boundary conditions and mesh velocities for the FE model using an ALE formulation.
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 210 Figure 2.10: Result of FE model -step 1 (rotation around z axis).
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 211 Figure 2.11: Result of FE model -step 2 (advection).
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 2 Figure 2.12: Evolution of a yarn cross section during the advection step (time history from top-left to bottom-right).
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 215 Figure 2.15: Equilibrium of the yarn around the contact point G: (a) represents the reaction force R for the triangle OGB which can be decomposed in a normal and longitudinal component; (b) zoom of the contact surface, in which one can notice a null additional torque due to a zero R T .
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 216 Figure 2.16: Tomography of yarn: (a) the reconstructed volume, (b) a horizontal cut at z = 1000 pixel.
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 218 Figure 2.18: Evolution of tows shapes and their centroid positions along the yarn axis: (a) z = 400 pix, (b) z = 800 pix, (c) z = 1200 pix and (d) z = 1600 pix. Note the yellow point refers to the central tow, while the white one refers to the whole yarn centroid.
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 219 Figure 2.19: Yarn cross section at z = 1000 pixel: (a) tomographic image and (b) its density map (the lighter parts are dense packing of filaments with sizing, while the darker parts are voids).
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 220 Figure 2.20: Calculated trajectories of the tows and the whole yarn: in (a) the tangential vectors of splines are shown, while (b) plots the mean tows in-plane distances with respect to the yarn axis d i as a function of the yarn axis z.
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 221 Figure 2.21: Disorientation vector fields at different yarn cross sections: first column absolute θ ((a) z = 400 pix, (c) z = 800 pix, (e) z = 1200 pix, (g) z = 1600 pix); second column relative to each tow axis θ r ((b) z = 400 pix, (d) z = 800 pix, (f) z = 1200 pix, (h) z = 1600 pix). Bigger arrows describe the tow (x, y) projected tangential vectors.
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 222 Figure 2.22: Disorientation angle maps (in radians): first column absolute ((a) z = 400 pix, (c) z = 800 pix, (e) z = 1200 pix, (g) z = 1600 pix); second column relative to each tow axis ((b) z = 400 pix, (d) z = 800 pix, (f) z = 1200 pix, (h) z = 1600 pix).
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 223 Figure 2.23: Mean disorientation angle maps (in radians): on the left absolute (a), while on the right relative to each tow axis (b).
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 224 Figure 2.24: Orientation angles along the yarn length: (a) tows orientation angles calculated using the estimated tows trajectories Θ and (b) mean fiber orientation angles θ r averaged for each tow.
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 31 Different yarn types tested by the transversal compression device. The standard one is highlighted in bold character.
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 31 Figure 3.1: Transverse compaction: test testing machine.
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 32 Figure 3.2: Schematic representation of the transversal compaction. The purple triangle shows schematically one profile scanned by the profilometer.
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 33 Figure 3.3: Resulting profile image: (a) raw image, (b) pre-filtered image using closing/opening operations.
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 34 Figure 3.4: Yarn cross section profile for different compaction stages.

Figure 3 .

 3 Figure 3.5 illustrates the force-displacement data of loading-unloading cycles for a 30 TPM IM7 yarn in both dry and wet conditions.These interesting curves demonstrate an elasto-plastic behavior in this both conditions. A strong stiffening akin to an exponential law is observable while it is possible to capture an apparently linear elastic behavior when unloading the compressed yarn. It is noteworthy that the plastic strains are less pronounced while the compression becomes stronger. This is due to different effects. First, the yarn contact surface with the plates increases while the thickness decreases. Second, the yarn fiber fraction reaches its critical value, where the tangent modulus is higher than in its initial loose state. Thus, further compaction implies shear band reflection on the plates in contact and slips along these interfaces. This implies an exponential build-up of pressure from the edge to the yarn axis and an increased friction. All these effects contribute to rendering further plastic strains more and more difficult.Moreover, the experimental results emphasize that, at a given value of the vertical force, the yarn thickness is lower in the wet case than in the dry one. This is attributed to a lower mobilized friction when the yarn is wet.
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 35 Figure 3.5: Mechanical response of loading-unloading cycles on a IM7 yarn (30 TPM): (a) dry and (b) wet conditions.
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 36373839 Figure 3.6: Evolution of the vertical Hencky strain ε yy during transversal compaction test: top row ((a) dry and (b) wet) IM7 fiber yarn; bottom row ((c) dry and (d) wet) T1100 fiber yarn.
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 310 Figure 3.10: Scheme of the Mohr-Coulomb yield criterion, in blue, and the proposed hardening rule until the critical state. The plastic potential, in green, has an opposite slope (negative dilatancy angle), so the plastic strain rate points towards the left (contraction) during the compaction test but varies its direction until a complete isochoric transformation.
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 311 Figure 3.11: Evolution of the dilatancy and friction angles for the carbon yarn (ex. T1100, dry): the red line represents the simplification of the law to a straight line, while the green line is a consequence of Taylor's assumption.
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 312 Figure 3.12: Simulation results on the T1100 yarn cross section FVF in the dry condition for: (a) 10, (b) 30 and (c) 50 TPM.
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 313 Figure 3.13: Comparison between the experimental and numerical results: (a) forcethickness curves (the same as the compaction machine response) and (b) the compaction curves and the evolution of the FVF confirming the null impact of twist onto the final fiber content in the critical state.
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 41 Figure 4.1: In situ device: the knot applied to the yarn inside the tomograph can be noticed.
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 42 Figure 4.2: Reconstructed volume of the knot at step 10.
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 43 Figure 4.3: Yarn cross section inside the loop portion of the knot: the blue point belongs to the interpolated spline point, while the red one represents the cross section centroid.
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 44 Figure 4.4: Reconstructed volume of initial knot loop (step 00): (a) the thresholded volume; (b) the polygonal in blue with respect to the yarn outer surface; (c) the numerical tangential vector to the interpolated curve; (d) the optimized path by calculating the cross section centroids.
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 45 Figure 4.5: Vertical view of the loop path (step 00): with the exception of the external portions, most of the curve belongs to a single plane.
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 46 Figure 4.6: Calculation of the tangential (in orange) and normal (in yellow) vectors on path (a) before and (b) after the projection onto the osculating plane (step 00).
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 47 Figure 4.7: Projection of yarn path onto its osculating plane: from top-left ((a) in red) to bottom-right ((k) in blue) it is shown, progressively, both the estimated path (continuous line) and the projected one (dotted line) of all steps.
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 48 Figure 4.8: Projected loops: top row: (a) 3D view; (b) their 2D representation with respect to their osculating planes; bottom row: (c) to (f) key cross section from four steps.
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 49 Figure 4.9: Projected loop paths: (a) projection onto the osculating plane, (b) interval division and (c) the spline curves obtained by least-squares regression.

Figure 4 . 10 :

 410 Figure 4.10: Estimated curvatures for different steps along the curvilinear abscissa.
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 8411 Figure 4.11: Raw and binarized images of four cross sections for steps 00 to 07.

Figure 4 . 11 :

 411 Figure 4.11: Continued: raw and binarized images of four cross sections for steps 08 to 10; on the right-hand side, the position of the four cross sections on the loops and zoom on the topological crossing of the tows around the key cross section.

Figure 4 . 12 :

 412 Figure 4.12: Estimation of the thickness (a), and corresponding curvature values (b).

Figure 4 . 13 :

 413 Figure 4.13: Scheme of the generalized eigenforces: (a) bending moment produced by a force directed as Y 2 and (b) constant bending moment.

Figure 4 . 14 :

 414 Figure 4.14: Plot of curvatures as a function of X 2 : there cannot be an unambiguous correspondence between the bending moment and the curvatures.

Figure 4 . 15 :

 415 Figure 4.15: Identification of the relative stiffness factor: (a) the factor as a function of the initial curvature and the steps; (b) the same curves averaged for all the steps.

Figure 4 . 16 :

 416 Figure 4.16: Relative stiffness factor as a function of the curvilinear abscissa: the two peaks of the initial curvature (a) corresponds to the minimum values of the factor (b).

Figure 4 . 17 :

 417 Figure 4.17: Scheme of the bending model: (a) the two twisted rods are equivalent to a beam having a periodically varying cross section; (b) the two circular sections rotate by an angle β around the yarn axis.

Figure 4 . 18 :

 418 Figure 4.18: Bending parameters predicted by the proposed model: (a) the evolution of the relative stiffness factor and (b) the resulting curvature.

Figure 4 . 19 :

 419 Figure 4.19: Comparison of yarn paths: the blue dotted curve represents the observed loop path at step 00, while the red thick curve represents the resulting path of the modeled yarn.
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 51 Figure 5.1: Reconstructed volume of the 3D woven fabric specimen.

Figure 5 . 2 :

 52 Figure 5.2: Visualization of mid x-z and mid y-z planes for both the original and coarsened volumes of the 3D woven fabric specimen. The indicated yarn types are seen longitudinally. The fine texture within the yarns is lost but the overall textile information is kept.
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 53 Figure 5.3: Reconstructed volume of the injected specimen

( a )Figure 5 . 4 :

 a54 Figure 5.4: Visualization of mid x-z and mid y-z planes for the volume of the injected specimen. The indicated yarn types are seen longitudinally.
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 55 Figure 5.5: 3D textile image: top row (a) and (b) the 3D volume images; bottow row (c) and (d) the z-averaged projections

Figure 5 . 6 :

 56 Figure 5.6: 2D Gaussian blurring: (a) raw image (with highlighted the mean yarn column distances λ x and λ y ); (b) and (c) the blurred images showing respectively only the warp and the weft yarn columns as continuous stripes.

Figure 5 . 7 :

 57 Figure 5.7: Example of 1D-MDIC algorithm where each line represents a signal (gray value as intensity). The reference f (x) is indicated above and below the g(x) block in which its evolution is shown for n = 6 iterations that lead to convergence. The evolution of the root mean square of the residuals (normalized with respect to the image dynamic range) is shown on the left.

Figure 5 .

 5 [START_REF] Mouritz | A mechanistic interpretation of the comparative in-plane mechanical properties of 3d woven, stitched and pinned composites[END_REF] shows an example of the 1D-MDIC algorithm on the top line of figure5.6c and the model image g(x) = I M wef t (x) defined in equation (5.7

  g(x, y) = c 0 + n cwef t l=1 G(x; α l , x 0 l + u x l (y), ω) + ncwarp m=1 G(y; β m , y 0 m + u y m (x), ω) (5.23)

Figure 5 . 8 :

 58 Figure5.8: Analysis of 1D-MDIC efficiency, comparison between a "dense" and an interpolated approach: first row the initial configuration in terms of real image (a), the model image (b) and the initial residual (c); second to fourth row: respectively the results of "dense" approach ((d) to (f)), the results of interpolated approach ((g) to (i)) and their differences ((j) to (l)), in terms of final deformed image g, final residuals ρ f and displacement field u. The residual and difference maps (except for the displacement field) are normalized with respect to the image dynamic range and refer to the left colorbar, while the displacement fields refer to the right colorbar. The final disposition of yarn columns is shown in green, while their initial configuration is in red.

Figure 5 . 9 :

 59 Figure 5.9: Comparison of sought displacement fields obtained using a series of interpolated 1D MDIC registrations ((a) and (d)) vs a 2D MDIC formulation ((b) and (e)) and their differences ((c) and (f)): the top row describes the registration directed along x (correction of weft yarns) while the bottom row describes the registration directed along y (correction of warp yarns). Displacement fields refer to the left colorbar, while difference maps refer to the right colorbar.

Figure 5 . 10 :

 510 Figure 5.10: Correction of the woven textile using the procedure of algorithm 1: (a) represents the model with a structured mesh built upon, (b) shows the deformed mesh at the end of MDIC correlation following the distorted paths of the real textile image, while (c) and (d) display the corrected disposition of yarn columns, respectively without and with equally spacing assumption, which perfectly match the undeformed mesh nodal positions.

Figure 5 . 11 :

 511 Figure 5.11: 3D Gaussian blurring: (a) raw volume (with highlighted the mean interyarn distance along the thickness λ z ); (b), (c) and (d) the blurred volumes showing respectively the evolution of the yarn crossing points along the thickness, just the warp surfaces, and just the weft surfaces.

Figure 5 . 13 :

 513 Figure 5.13: Illustration of the 3D correction showing the deformed mesh of four z-slices of the complete textile volume. The slices are extracted from the volume as shown on the top figure, whereas the bottom line displays the four slices z = z1 to z4 from left to right.

Figure 5 . 14 :

 514 Figure 5.14: Correction of weft yarn columns of a 3D woven textile at different x-z slices: (from top to bottom y = 444, y = 888 and y = 1332 pixel) first column initial, second column corrected (a thick red line corresponding to a yarn column highlights the performed correction), third column their difference maps normalized by the image dynamics.

Figure 5 . 15 :

 515 Figure 5.15: Correction of warp yarn columns of a 3D woven textile at different y-z slices: (from top to bottom x = 368, x = 736 and x = 1104 pixel) first column initial, second column corrected, third column their difference maps normalized by the image dynamics.

Figure 5 .

 5 Figure 5.16: (a) Initial and (b) corrected volumes of the 3D woven textile.

  Figure 5.17: z-averaged image of a 3D woven textile: (a) initial and (b) corrected configurations.

Figure 5 . 18 :

 518 Figure 5.18: Correction of weft yarn columns of a 3D woven composite at different x-z slices: (from top to bottom y = 64, y = 128 and y = 192 pixel) first column initial, second column corrected (a thick red line corresponding to a yarn column highlights the performed correction), third column their difference maps normalized by the image dynamics.

Figure 5 . 19 :

 519 Figure 5.19: Correction of warp yarn columns of a 3D woven composite at different y-z slices: (from top to bottom x = 64, x = 128 and x = 192 pixel) first column initial, second column corrected, third column their difference maps normalized by the image dynamics.

  (a) V ct,inj (b) V cor ct,inj

Figure 5 .

 5 Figure 5.20: (a) Initial and (b) corrected volumes of the 3D woven composite.

  Figure 5.21: z-averaged image of a 3D woven composite: (a) initial and (b) corrected configurations.
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Table 3 .

 3 2 provides, for both yarn types, both in dry and wet conditions and for different twist levels, all the identified plastic parameters in the critical state. In bold character, it is highlighted the standard yarn type employed by Safran.

	Fiber type		IM7 ( = 5.2 µm)				T1100 ( = 5.5 µm)		
	Humidity		dry			wet				dry			wet		
	TPM	10 20	30	50	10	20	30	50	10 20	30	50	10	20	30	50
	ϕ 2D,cv (%) 71 71	71	71	71	71	71	71	71 71	71	71	71	71	71	71
	φ cv ( • )	30 30	30	30	15	15	15	15	30 30	30	30	15	15	15	15
	H ( • /%)	6.7 6.7 6.7 6.7 10.0 10.0 10.0 10.0 6.7 6.7 6.7 6.7 10.0 10.0 10.0 10.0
	c ′ (MPa)	0.3 0.6 0.85 3.4 0.7	1.2	1.8	6.9 0.3 0.6 0.85 3.4 0.55 0.7 0.95 5.6
	Table 3.2: Identified parameters for two yarn types in different configurations. The
	standard one is highlighted in bold character.							
	3.4.3.3 . Overview of identified values								
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	07	32
	08	34
	09	36
	10	38

1: Acquisition steps.

TABLE ,

 , 

		NVALUE )
	!	
		INCLUDE ' ABA_PARAM . INC '
		DIMENSION TABLE (2* NVALUE )
	!	
	!	SET YIELD STRESS TO LAST VALUE OF TABLE , HARDENING TO ZERO
		SYIELD = TABLE ( NVALUE )
		HARD = 0. D0
	!	
	!	IF MORE THAN ONE ENTRY , SEARCH TABLE
	!	
		IF ( NVALUE . GT .1) THEN
		DO 10 K1 =1 , NVALUE -1
		EP1 = TABLE ( NVALUE + K1 +1)
		IF ( EPN . LT . EP1 ) THEN
		EP0 = TABLE ( NVALUE + K1 )
	!	
	!	CURRENT YIELD STRESS AND HARDENING
	!	
		DEP = EP1 -EP0
		SYIEL0 = TABLE ( K1 )
		SYIEL1 = TABLE ( K1 +1)

  TABLE OF DATA ( in future , if hardening is not linear this can help !) subroutine ahard ( syield , hard , epn , table , nvalue ) !

		include ' vaba_param . inc '
		dimension table (2* nvalue )
	!	
	!	SET YIELD STRESS TO LAST VALUE OF TABLE , HARDENING TO ZERO
		syield = table ( nvalue )
		hard = 0. D0
	!	
	!	IF MORE THAN ONE ENTRY , SEARCH TABLE
	!	
		if ( nvalue . gt .1) then
		do 10 k1 =1 , nvalue -1
		ep1 = table ( nvalue + k1 +1)
		if ( epn . lt . ep1 ) then
		ep0 = table ( nvalue + k1 )
	!	
	!	CURRENT YIELD STRESS AND HARDENING
	!	
		dep = ep1 -ep0
		syiel0 = table ( k1 ) *3.1416 d0 /180. d0
		syiel1 = table ( k1 +1) *3.1416 d0 /180. d0
		dsyiel = syiel1 -syiel0
		hard = dsyiel / dep
		syield = syiel0 +( epn -ep0 ) * hard
		goto 20
		endif
	10	continue
	20	continue
		endif
		return
		end
	! =========== END OF VUMAT ============

La caractérisation mécanique des torons de carbone reste un problème critique pour les modèles numériques. La littérature existante propose deux approches principales : La première utilise des lois hyper-ou hypo-élastiques appliquées à une description homogénéisée du faisceau de fibres correspondant au toron. Bien que cette description soit moins complexe et numériquement rapide, elle nécessite de nombreux paramètres pour décrire les différents modes de déformation et leurs couplages. En outre, elle suppose que le comportement mécanique du toron est purement élastique, et donc sans irréversibilité. La seconde approche modélise le toron de carbone comme un faisceau de plusieurs macrofibres (ou fibres virtuelles) interagissant via contacts élastiques et frottement. Ce modèle rend compte des déformations irréversibles observées au cours du processus de fabrication du toron en se concentrant sur le contact et le frottement. Cependant, cette approche présente un coût de calcul très important associé à la résolution des problèmes de contacts et frottements.Globalement, l'utilisation des deux approches de modèle conduit principalement à des arrangements géométriques irréalistes des fibres dans la section transversale du toron, en particulier en compression transverse. En outre, aucune de ces approches ne tient compte du retordage dans leurs formulations et de l'ensimage. L'objectif principal de ce travail est de fournir une loi de comportement, alternative aux lois existantes, pour laquelle les déformations irréversibles sont correctement décrites tout en maintenant une grande simplicité en réduisant drastiquement le nombre de paramètres constitutifs à identifier. En outre, certains aspects fondamentaux tels que le retordage, la présence éventuelle d'eau et l'ensimage sont pris en compte via un coefficient de

En dépit de l'importance de la modélisation du tissage dans la fabrication des préformes tissés 3D, il a été décidé de ne pas traiter cette question dans ce travail. Cependant, les aspects géométriques liés aux désalignements des torons dans le textile ont été étudiés. Dans cette perspective, des tomographies sont réalisées pour comprendre les principales transformations survenues pendant le tissage et assurer le contrôle-qualité des pièces produites. La partie finale de ce document analyse les trajectoires des torons dans le textile 3D, à partir de tomographies. Grâce à un modèle paramétrique représentant les colonnes de torons, un algorithme de corrélation d'images numériques entre la tomographie et une représentation idéale de la préforme permet à la fois la mesure de la distorsion et la correction du volume idéal. L'identification de cette transformation permet également de déformer une structure idéale de textile (issue de TexGen ou WiseTex) pour rendre compte d'une configuration plus réaliste des torons.Conclusions et perspectivesEn conclusion, cette thèse a été consacrée à certains aspects de la structure et du comportement des torons de carbone dans les composites tissés 3D. Grâce à une exploration du retordage, du comportement transversal et de la réponse en flexion du toron, ce travail propose une description originale du comportement mécanique du toron de carbone.

This comes from the highly anisotropic structure of the textile. Extreme stiffness along the yarn direction and easy shear modes are controlled by inter-yarn slippage.
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l. It may be worth noting that, given that the series of Gaussian profiles naturally provide the continuity along the signal direction, such interpolation is only required in directions orthogonal to the Gaussian profile. As such, this formulation represents something unusual for DIC, for which rather a classical two-dimensional FE mesh is used for computing the algorithm. Let us call u x i and u y i the nodal values (counted now as the total degrees of freedom of the MDIC problem), which are gathered into a vector {p}. This vector of parameters is of length 2

The solution to the linear approximation of the problem is iteratively solved with the linear system:

because of the interaction between directions x and y, the sub-matrices and sub-vectors are then defined as: Finally, a 2D displacement field u eq (x, y) (also expressed using FE shape functions) can be added to u(x, y) for imposing a supplementary textile assumption: yarn columns are equally spaced. The nodal values of this constant additional displacement field are

and can be computed just once immediately after the identification of the model. Note that at the end of every great iteration, this additional displacement field is just added to the one obtained by the correlations previously described. When using such an iterative method, the correction of the textile image has been reached in three great iterations in less than 4 seconds. The structured mesh and deformed mesh superposed on their corresponding 2D images are shown in figure 5.10. During the process, nodal positions in the model image (see figure 5.10a) move towards the real textile (see figure 5.10b). The opposite of the displacement field re-aligns the yarn columns to a more regular configuration which completely matches the structural nodal positions of the model image, as shown in figure 5.10c. Finally, the addition of equal spacing between yarn columns translates the nodes to a disposition with a perfectly constant distance in both directions (see figure 5.10d). However, one can see that most of the in-plane distortions are well corrected when taking into account either with or without yarn column equal spacing. So, the simplest case (including equal spacing assumption) could be taken into account for easing the realignment treatment of the tomography.

Algorithm 2: Complete MDIC algorithm -3D correction