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Roses belong to the Rosaceae family. Rosaceae is part of the Rosid clade, one of the biggest 

monophyletic groups of flowering plants. Rosaceae include flowers with five petals and numerous 

stamens. It is divided into three subfamilies: Rosoideae, Amygdaloideae and Dryaoideae including 

about 2000, 1000 and 30 species respectively. They include high valuable species for human as 

Fragaria, Rosa (subfamily Rosoideae), Rubus, Malus, Prunus, and Pyrus (subfamily Amygdaloideae) 

(Xiang et al. 2016). Thanks to their importance for human food, many of these species are sequenced 
with available genome on-line (https://www.rosaceae.org/; Jung et al. 2019).  

The genus Rosa consists of around 150-200 wild species, and contains four subgenus named 

Hulthemia, Platyrhodon, Hesperhodos, and Rosa. Subgenus Rosa contains twelve sections (Table 1; 

Rehder, 1940; Wissemann, 2003), which are not totally validate by phylogenetic studies (Figure 1; 

Fougère-Denazan et al. 2015). Indeed, it is not monophyletic, but it is divided into more than two 

subclades in which the biggest are Synstylae and Cinnamomeae. Beside the reticulate evolution of the 

genus Rosa, it is assumed that some clades are monophyletic and considered as more ancient roses 

as Laevigatae (R. laevigata), Bracteatae (R. bracteata), and Banksianae (R. banksiae) (Fougère-
Denazan et al. 2015; Zhu et al. 2015). Ploidy level in rose is also complicated, ranging from diploid to 

decaploid (Wissemann, 2003). This may explain a part of the difficulty to produce a phylogeny of Rosa 

genus due to interspecific hybridizations. For example, in the same section Caninae, R. canina, a wild 

European rose species, is pentaploid, but other species are tetraploid and hexaploid (Lim et al. 2005; 

Ritz et al. 2005). Furthermore, genomic organisation of Rosaceae is quite complicated. Ancestral 

Rosaceae are supposed to have nine chromosomes. Remodelling of genome in Rosaceae has evolved 

differently by fusions and fissions. In some of Rosaceae, there has been some whole genome 
duplication for example in Malus and Pyrus, but most of species of the Rosoideae subfamily such as 

Fragaria and Rosa have seven chromosomes (Vilanova et al. 2008; Jung et al. 2012; Xiang et al. 2016). 

As a consequence, classification and phylogeny of Rosaceae and Rosa are still much debated. 

Table 1 | Classification of the genus Rosa (Rehder, 1940 revised by Wissemann, 2003) 

 

Subgenus Section
Hulthemia
Rosa Pimpinellifoliae

Rosa = Gallicanae
Caninae
Carolinae
Cinnamomae
Synstylae
Indicae
Banksianae
Laevigatae
Bracteatae

Platyrhodon
Hesperodos
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Figure 1 | Network representing the relationships among copies of GAPDH obtained from Rosa 
species (Fougère-Danezan et al. 2015). Some polyploids have several copies with different affinities. 
The names of known polyploids are in bold (in R. sect. Caninae all species are presumed to be 
polyploids even when the ploidy number is not exactly known). Two types of copies, C1 and C2, are 
distinguished in the Cinnamomeae group. A ‘c’ followed by a number indicates the number attributed to 
one particular clone sequenced. Purple is attributed to Rosa subgenus Platyrhodon, yellow to R. sect. 
Banksianae, bright orange to R. sect. Bracteatae, brown to R. sect. Laevigatae, light pink to 
Pimpinellifoliae clade, green to Cinnamomeae clade, light blue to Synstylae clade and a deeper blue to 
R. sect. Caninae.  
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Humans used roses since antiquity for their fragrance and pleasant perfume. Nowadays, most of 

humans know roses for their flowers and associated symbols. Humans have spread roses all around 

the world and have created thousand varieties with many different characters. Rose breeders used this 

diversity to make new varieties. They have crossed roses from the Chinenses section originated from 

East Asia, roses from the Gallicanae section from central Europe, roses form Caninae section from 

Europe and Asia, and many other species. Cultivated roses can be classified as species roses (also 
named wild roses), old garden roses (cultivated since antiquity), and modern roses (roses crossed and 

selected by humans; Wissemann, 2003; Figure 2). Numerous crosses made by breeders have allowed 

the generation of thousand hybrids (more than 30,000), in which R. x hybrida cv. ‘La France’ created in 

1867 is the most famous as it is considered as the first “true” modern rose. This hybrid combines the 

growth-vigour of European roses, a typical rose fragrance, and the recurrent blooming of roses from the 

Chinenses section. However, such classifications of horticultural roses seem artificial melting a 

“temporal vision of the plant’s origin and the static view of its place in systems of classification” (Oghina-

Pavie, 2015). Nevertheless, in a genetic point of view, roses for Europe and Middle-East were 
progressively crossed with roses from Asia (Liorzou et al. 2016) sometimes for different fragrances, 

sometimes for everblooming traits, or sometimes for colours for example. 

 

 

Figure 2 | Classification of cultivated roses (American Rose Society, 2000)  

 

For the selection of new rose varieties, many characters are used: flower type, colour, shape, disease 

resistance, fragrance, vase life, number of flowers per stem, etc. Hybridization and natural or directed 

Genus Rosa

Species roses Old garden roses Modern roses

- Alba
- Ayrshire
- Bourbon and Climbing Bourbon
- Boursalt
- Centifolia
- Damask
- Hybrid Bracteata
- Hybrid China and Climbing Hybrid China
- Hybrid Eglanteria
- Hybrid Foetida
- Hybrid Gallica
- Hybrid Multiflora
- Hybrid Perpetual and Climbing HP
- Hybrid Sempervirens
- Hybrid Setigera
- Hybrid Spinosissima
- Miscellaneous OGRs
- Moss and Climbing Moss
- Noisette
- Portland
- Tea and Climbing Tea

- Floribunda and Climbing Floribunda
- Grandiflora and Climbing Grandiflora
- Hybrid Kordesii
- Hybrid Moyesii
- Hybrid Musk
- Hybrid Rugosa
- Hybrid Wichurana
- Hybrid Tea and Climbing Hybrid Tea
- Large-Flowered Climber
- Miniature and Climbing Miniature
- Mini-Flora
- Polyanta and Climbing Polyantha
- Shrub
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polyploidization allow the selection of numerous traits in roses. Some crosses between wild species led 

to horticultural groups, themselves included in middle age roses and modern roses: Noisette, Bourbon, 

Portland, Tea, and Tea Hybrids roses for example (Figure 2). Between 7-8 to 15-20 wild species 

(depending on the sources) have been used intensively to produce today’s cultivars (Kumari et al. 2021, 

Liorzou et al. 2016). The research interest for roses is clearly visible due to their diversity in 

morphological traits. These interests can explain the research effort on producing high quality genome 
references. Three genomes of R. chinensis cv. ‘Old Blush’ (shortly named Old Blush in our work) have 

been published, two of them coming from haploid calli (Raymond et al. 2018; Hibrand Saint-Oyant et al. 

2018).  

Scent extracts of very scented roses have been used in perfumes to make some important valuable 

products, even in the Antiquity (Krüssmann 1981; Widrlechner 1981). Varieties of R. x damascena and 

R. x centifolia are used for hundred years for these extractions, from enfleurage in olive oil in Antiquity, 

to essential oil distillation in the Middle Ages, and solvent or supercritical CO2 extraction nowadays.  

Rose scent is also a very important trait for selection of garden roses, and recently for the cut-flower 
market, but it is a complex trait because of the mix of hundreds of VOCs (volatile organic compounds). 

For example, the broodstocks used today contain phenolic methyl ethers such as TMB and DMT (1,3,5-

trimethoxybenzene and 3,5-dimethoxytoluene respectively). European roses do not produce phenolic 

methyl ethers. These compounds come from the ancient crosses with Chinese roses, which are known 

to have a “tea scent” due to DMT. Tea and Tea Hybrid roses are the result of these crossings, and 

explain the presence of this compound in modern roses (Scalliet et al. 2002; 2006; 2008). As a 

consequence, the genetic background of the broodstocks is largely made of genes from roses of the 
Chinenses section (Liorzou et al. 2016). New crosses are thus difficult to drive, as the typical rose scent 

must include specific terpenes and phenylpropanoids among others, but not DMT. Unfortunately, 

coming back to old cultivars as genitors could have huge effects on diseases, recurrent blooming, and 

vase life.   
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Figure 3 | isoprenoid biosynthetic pathway in plant cell. Adapted from Pulido et al. 2012. Enzyme 
name are in squared and products are in blue, In red are represented specific inhibitors. Dashed arrows 
represent multiple enzymatic step or unknown enzyme. AACT, Acetoacetyl-CoA thiolase; DMAP, 
dimethylallyl phosphate; DMAPP, dimethylallyl diphosphate; DXP, 1-deoxy-D-xylulose5-phosphate; 
DXR, 1-deoxy-D-xylulose 5-phosphate reductoisomerase; DXS, 1-deoxy-D-xylulose 5-phosphate 
synthase; CDP-ME, 4-(cytidine 5’-diphospho)-2-C-methyl-D-erythritol; CDP-MEP, 4-(cytidine 5’-
diphospho)-2-C-methyl-D-erythritol 2-phosphate; CMK, 4-(cytidine 5’-diphospho)-2-C-methyl-D-
erythritol kinase; FPP, farnesyl diphosphate; FPPS, farnesyl diphosphate synthase; GA-3P, 
glyceraldehyde 3-phosphate; GP, geranyl phosphate ; GPP, geranyl diphosphate; GGPP, 
geranylgeranyl diphosphate; HDR, 1-hydroxy-2-methyl-2-butenyl 4-diphosphate reductase; HDS, 1-
hydroxy-2-methyl-2-butenyl 4-diphosphate synthase; HMBPP, 1-hydroxy-2-methyl-2-butenyl 4-
diphosphate; HMG-CoA, 3-hydroxy-3-methylglutaryl CoA; HMGR, 3-hydroxy-3-methylglutaryl CoA 
reductase; HMGS, 3-hydroxy-3-methylglutaryl CoA synthase; HOMO, GPPS homodimeric; IPK, 
isopentenyl phosphate kinase; IPP, isopentenyl diphosphate; LSU, large sub-unit; MCT, 2-C-methyl-D-
erythritol 4-phosphate cytidyltransferase; MDS, 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase; 
MDD, 5-diphosphomevalonate decarboxylase; IDI, isopentenyl diphosphate isomerase; MEcPP, 2-C-
methyl-D-erythritol 2,4-cyclodiphosphate; MEP, 2-C- methyl-D-erythritol 4-phosphate; MK, mevalonate 
kinase; MVA, mevalonic acid; MVP, 5-phosphomevalonate; MVPP, 5-diphosphomevalonate; NUDX, 
nudix hydrolase; PMK, 5-phosphomevalonate kinase; SSU, small sub-unit. 
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 Rose petal VOCs are derived from many classes of compounds and are not restricted to phenolic 

methyl ethers. Phenylpropanoids/benzenoids and terpenoids are the most important VOCs family in 

rose petals (Baldermann et al. 2009). Phenylpropanoids/benzenoids are derived from aromatic 

aminoacids. In Rosa, they contain eugenol, benzyl alcohol or 2-phenylethanol for example. Surprisingly, 

in rose petals, three different biosynthetic pathways have been discovered for 2-phenylethanol (Tieman 

et al. 2006; Sakai et al. 2007; Chen et al. 2011; Sheng et al. 2018 ; Roccia et al. 2019), the most 
important phenylpropanoid for the typical scent of rose. Terpenoids also shows biochemical originality 

in roses. They are polymers of the prenyl building blocks IPP (isopentenyl diphosphate) and DMAPP 

(dimethylallyl diphosphate). These compounds are synthesized by two different pathways (Figure 3): 

the cytosolic mevalonate pathway (MVA pathway), and the plastidial 2-C-methyl-D-erythritol-4-

phosphate pathway (MEP pathway) (Lichtenthaler, 2001). The MVA pathway is involved in 

sesquiterpenes, triterpenes, dolichol, sterols and brassinosteroids synthesis. It always begins by the 

polymerisation of two units of IPP and one unit of DMAPP to give farnesyl-diphosphate (FPP). The MEP 

pathway is involved in monoterpenes, diterpenes, chlorophyll, carotenoids and gibberellins synthesis 
(Lichtenthaler et al. 2001). It always begins by the polymerisation of one unit of IPP and one unit of 

DMAPP to give geranyl-diphosphate (GPP), or three units of IPP and one unit of DMAPP to give 

geranylgeranyl-diphosphate (GGPP) (Figure 3). Rare exceptions exist in some species and one 

biochemical pathway of the rose is one of them. Indeed, this is the case of geraniol and its biochemical 

derivatives (nerol, b-citronellol, and their acetate and aldehyde derivatives), which are very important 

compounds in rose essential oil. Indeed, in lot of species (Table 2), geraniol is synthesized directly from 

the plastidial GPP by a terpene synthase (TPS), which removes the two phosphates. Surprisingly, in 

rose, geraniol is not synthesized by such enzyme, but by two enzymes, the first one, a cytosolic Nudix 

hydrolase of class I, removes one phosphate, and the second one, an unknown phosphatase, removes 

the second phosphate (Figure 4). Nudix hydrolases of class I are enzymes that cleave nucleoside 

diphosphate linked to some moiety X, like 8-oxo-7,8-dihydro-2’-deoxyguanosine 5’-triphosphate (8-oxo-

dGTP), an oxidized deoxyribonucleotide that could create a mutation if inserted into DNA during 

replication (Yoshimura et al. 2007). Numerous articles have discussed the role of Nudix hydrolases of 
class I in bacteria, fungi, mammals, and plants, but none of them had ever considered a role in 

biosynthesis of perfumes before the article of Magnard et al. (2015). Since this article, and since the 

beginning of this thesis work, other Nudix hydrolases of class I involved in the biosynthesis of other 

terpenes, or in the regulation of the IPP concentration itself, have been discovered in some species 

(Henry et al. 2018; Li et al. 2020; Sun et al. 2020). This suggests that this enzyme specialization could 

have occurred several times in angiosperm evolution bringing up the question of the phylogenetic origin 

of Nudix hydrolase of class I specialization in Rosa, and perhaps in Rosaceae. Furthermore, at the 
beginning of this work, we discovered in our laboratory, that the Nudix hydrolase of class I gene 

(RcNUDX1) was in multiple copies in the genome of Old Blush even though the homologous AtNUDX1 

was in single copy in the model plant Arabidopsis thaliana (Henry et al. 2018). As a consequence, the 

question of duplications and diversification was superimposed on that of the specialization. 
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Table 2 | Characterized geraniol synthases in plants. Only at least in vitro tested enzymatic activity 
are presented.   

 

 

Figure 4 | Geraniol dependent Nudix hydrolase I pathway in rose. Geranyl diphosphate is 
dephosphorylated by NUDX1 to produce GP. Dotted line represents an uncharacterized enzyme. 

 

In this work, we asked the following groups of questions:  

What is the exact copy number overview of RcNUDX1 in the genome of Old Blush, and in the genome 

of sequenced Rosaceae? Is it possible to estimate the copy number of NUDX1 in non-sequenced 

species of Rosa? 

What is the functional copy of RcNUDX1 in rose petals? When did evolve the specialization of NUDX1, 
in the genus Rosa or in the Rosaceae? What could hypothetically explain this specialization? 

As RcNUDX1 is cytosolic, where does the GPP come from? Is it synthesized by the plastidial MEP 

pathway and exported by an unknown mechanism, or is it synthesized by a novel cytosolic pathway? 

Does this export mechanism of GPP, or this new biosynthesis pathway, have appear in Rosa or in the 

Rosaceae? 

After a state of art of the literature on enzymatic processes involved in VOCs biosynthesis, this thesis 

present three chapters. The first one is published in the Plant Journal, and is about the specialization of 

NUDX1-2c and its role in E,E-farnesol biosynthesis in roses. The second one is published in Molecular 
Biology and Evolution. It concerns the origin and the evolution of geraniol production by NUDX1-1a in 

rose. The third one, not yet published is about the origin of cytosolic GPP in rose petals by changing in 

the function of FFPS1. We also add a review in annexes, in which we helped for the GC analyses of the 

Table. 

Species Name References Years
Ocimum basilicum ObGES Lijima et al. 2004

Cinnamomum tenuipilum CtGES Yang et al. 2005

Perilla frutescens PfTPS-PL Ito and Honda 2006

Catharanthus roseus CrGES Simkin et al. 2012

Valeriana officinalis VoGES Dong et al. 2013

Lippia dulcis LdGES Dong et al. 2013

Daucus carota DcTPS1 Yahyaa et al. 2016

Camptotheca acuminata CaGES Chen et al. 2016

Caladenia plicata CpGES1 Xu et al. 2017

Pelargonium x hybridum PhGES Blerot et al. 2018

Prunus dulcis PdTPS3 Nawade et al. 2019

Dendrobium officinale DoGES1 Zhao et al. 2020

NUDX1

geranyl phosphate geraniolgeranyl diposphate

Phosphatase
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I- Rose fragrance biosynthetic pathways 
Since several decades, considerable efforts have been made to understand VOCs biosynthesis in 

flowers (for a review see Muhlemann et al. 2014). In rose, many enzymes are already known for phenolic 

methyl ethers, phenylpropanoids and terpenes biosynthesis, but others are still unknown like those 

concerning oxylipins or benzenoids for example (Table 3). 

Table 3 | characterized genes involved in VOCs biosynthesis in different rose species or 
cultivars. Compounds are organized by their chemical family.  

a nudix hydrolase 

b alcohol acetyltransferases  
c linalool synthase 
d germacrene D synthase 
e linalool-nerolidol synthase 
f carotenoid cleavage dioxygenase 
g phenylacetaldehyde synthase  
h phenylacetaldehyde reductase 
i aromatic amino acid aminotransferase 

 

j phenylpyruvic acid decarboxylase  

k eugenol synthase 
l O-methyltransferase 
m phloroglucinol O-methyltransferase 
n orcinol O-methyltransferase

Familly Compound Species Gene Ref
Terpenes

Monoterpenes
geraniol R. x hybrida cv 'Papa Meilland' NUDX1a Magnard et al. 2018
geranial R. x damascena AAT1b Shalit et al. 2003
linalool Old Blush LINSc Magnard et al. 2018

Sesquiterpenes 
germacrene D R. x hybrida cv 'Fragrent Cloud' GDSd Guterman et al. 2002
nerolidol Old Blush LIN-NERS1e Magnard et al. 2018

Old Blush LIN-NERS2e Magnard et al. 2018
Apocarotenoids

β-ionone R. x damascena CCD4f Huang et al. 2009b
R. x damascena CCD1f Huang et al. 2009a

3-hydroxy-β-ionone R. x damascena CCD1f Huang et al. 2009a
Phenylpropanoids

2 phenylethanol R. x hybrida cv ‘Fragrant Cloud’ PAASg Farhi et al. 2010
R. wichurana PAASg Roccia et al. 2019
R. × damascena PARh Chen et al. 2010
R. x hybrida cv 'Hyves Piaget' AAATi Hirata et al. 2012
R. x hybrida cv ‘Hoh-Jun’ AAATi Hirata et al. 2012
R. x damascena AAATi Hirata et al. 2012
R. x hybrida cv 'Yves Piaget' PPDCj Hirata et al. 2016

2-phenylethyl acetate R. x damascena AAT1b Shalit et al. 2003
eugenol Old Blush RcEGS1k Yan et al. 2018
methyleugenol Old Blush RcOMT1l Wu et al. 2003

Benzenoids
TMB Old Blush POMTm Wu et al. 2004

Old Blush OOMT1n Scalliet et al. 2002
R. x hybrida cv 'Golden Gate' OOMT2n Lavid et al. 2002

DMT R. x hybrida cv 'Lady Hillingdon' OOMT1n Scalliet et al. 2002
Old Blush OOMT1n Scalliet et al. 2006
Old Blush OOMT2n Scalliet et al. 2006
R. x hybrida cv 'Golden Gate' OOMT1n Lavid et al. 2002
R. x hybrida cv 'Golden Gate' OOMT2n Lavid et al. 2002
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  I-1. Biosynthesis of phenolic methyl ethers 

Phenolic methyl ethers (DMT and TMB) originated from roses of the Chinenses section. This family of 
VOCs is defined as a phenol with hydroxyl groups. DMT gives a particular scent to some species and 

cultivars of this group, the so called “tea scent”. Phenolic methyl ethers are produced by O-

methyltransferases (OMT) which transfer methyl groups from orcinol or phloroglucinol to produce DMT 

and TMB respectively (Figure 5; Scalliet et al. 2002; 2006) . More precisely in the case of DMT, a 

duplication of OOMT (orcinol O-methyltransferase) in Chinenses’ roses has led to a specific activity in 

the biosynthesis pathway of DMT. OOMT1 is responsible for the first methylation of orcinol and OOMT2 

is responsible for the second methylation resulting to the production of DMT. A single amino acid 

polymorphism between OOMT1 and OOMT2 results in change of substrate specificity (Scalliet et al. 

2008). The biosynthesis of TMB needs one more step in the biosynthesis process because there are 

three methylations. First a phloroglucinol O-methyltransferase (POMT) methylates the phloroglucinol to 

produce 3,5-dihydrovinylanisole. Then OOMT1 and OOMT2 finalize the double methylation to produce 

TMB (Scalliet et al. 2002; Wu et al. 2004). 

 

Figure 5 | Phenolic methyl ethers biosynthesis pathway in rose. OOMT1 and OOMT2 are implicated 
in both 3,5-dimethoxytoluene and 1,3,5-trimetoxybenzene. OOMT, orcinol O-methyltransferase; POMT, 
phloroglucinol O-methyltransferase. 

 I-2. Biosynthesis of phenylpropanoids 

Phenylpropanoids are derived from phenylalanine and tyrosine amino acids. In rose this VOCs family 

contains 2-phenylethanol, eugenol, methyleugenol, 2-phenylethyl acetate, and 4-vinylphenol for 
example. 2-Phenylethanol is describe as a molecule with a sweet rose odour, the same as rose water 

in which it is mostly extracted during distillation. Unfortunately, it is not present in the rose model, Old 

Blush, that has been sequenced. Nevertheless, numerous pathways have been proposed in other rose 

varieties. These pathways always begin by L-phenylalanine as a precursor, giving 2-

phenylacetaldehyde in one enzymatic step or in two different steps, and then 2-phenylethanol in one 

enzymatic step. Thus, several biosynthetic routes exist to transform L-phenylalanine into 2-

phenylacetaldehyde in rose (Figure 6).  

OOMT1 OOMT2

OOMT1 OOMT2POMT

phloroglucinol 3,5-dihydroxyanisole 3,5-dimethoxyphenol 1,3,5-trimethoxybenzne

orcinol 3-methoxy-5-hydroxytoluene 3,5-dimethoxytoluene
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Figure 6 | phenylpropanoids biosynthesis pathway in rose. Two pathways are described in rose to 
produce 2-phenylaceaaldehyde, precursor of 2-phenylethanol. Dotted arrows represent 
uncharacterized multiple enzymatic steps. AAT1, alcohol acetyltransferases; AAAT3, aromatic amino 
acid aminotransferase; EGS1, eugenol synthase; OMT1, O-methyltransferase; PAAS, 
phenylacetaldehyde synthase; PAL, phenylalanine ammonia lyase; PAR, phenylacetaldehyde 
reductase; PPDC, phenylpyruvic acid decarboxylase. 

 

In Petunia x hybrida cv ‘Mitchell’, R. x hybrida cv. ‘Fragrant Cloud’ and cv ‘H190’, and Populus 

trichocarpa (poplar) genotype ‘Muhle Larsen’, a bifunctional phenylacetaldehyde synthase (PAAS) can 

catalyze both decarboxylation and oxidative deamination reactions and convert L-phenylalanine to 2-

phenylacetaldehyde (Kaminaga et al. 2006; Farhi et al. 2010; Günther et al. 2019). Genetic analysis of 

2-phenylethanol production in a segregating rose population has shown that this trait depends on 

specific PAAS alleles (Roccia et al. 2019). Aromatic aldehyde synthases (AAS) with the same catalytic 

properties as PAAS are also active in flowers or leaves of A. thaliana, depending on the ecotype 

(Gutensohn et al. 2011). Interestingly, one particular amino acid, present in a catalytic loop of these 
enzymes, determines whether they act as bifunctional aromatic aldehyde synthases (decarboxylation-

deamination), or only as monofunctional aromatic amino acid decarboxylases, like the one found in 

Solanum lycopersicum and P. trichocarpa in a different route also producing 2-phenylethanol (Tieman 

et al. 2006). A mutation of this amino acid is sufficient to switch enzyme activities (Torrens-Spence et 

al. 2013; Günther et al. 2019). In P. trichocarpa, genes coding for AAS and PAAS are clustered on the 

same chromosome, which suggests that they may have evolved from a common ancestor by gene 

duplication and neofunctionalization. 

In addition, another pathway leading to 2-phenylacetaldehyde biosynthesis from L-phenylalanine also 

exists in rose (Figure 6). In R. damascena, R. x hybrida cv.  ‘Hoh-Jun’, and R. x hybrida cv. ‘Yves Piaget’, 

it has been demonstrated that L-phenylalanine is first converted into phenylpyruvic acid by an aromatic 

L-phenylallanine phenylpyruvate

2-phenylacetaldehyde 2-phenylethanol 2-phenylethyl acetate(E)-cinnamic acid

coniferyl acetate eugenol methyleugenol

OMT1

AAT1

PPDCPAAS

PAR

EGS1

PAL

AAAT3
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amino acid aminotransferase, and then undergoes decarboxylation to form 2-phenylacetaldehyde by a 

phenylpyruvic acid decarboxylase (Hirata et al. 2012; Hirata et al. 2016). Similarly, in the fruits of 

Cucumis melo, L-phenylalanine is also converted by an amino acid transaminase to phenylpyruvic acid 

(Gonda et al. 2010). Experiments with transgenic petunia plants producing high levels of phenylpyruvate 

suggest that such an aminotransferase pathway could also be active in P. x hybrida petals (Oliva et al. 

2017). Interestingly in rose, the route B becomes active only in summer under high-temperature 
conditions, in contrast to the route A, which is active throughout the year, regardless of temperature, 

and produces a nearly constant amount of 2-phenylethanol. The seasonally induced pathway may have 

originated in wild rose species as a heat adaptation when roses spread to low latitudes and/or low 

altitudes. Alternatively, this pathway may have been selected during cultivation to produce blossoms in 

summer. (Hirata et al. 2016). 

Finally, in all species, the conversion from 2-phenylacetaldehyde to 2-phenylethanol is supposed to be 

catalyzed by a phenylacetaldehyde reductase, characterized in rose, poplar and tomato (S. 

lycopersicum) (Tieman et al. 2007; Chen et al. 2011; Günther et al. 2019). 2-phenylethanol may be 
further converted into ester derivatives, as shown in rose (Shalit et al. 2003).  

Eugenol biosynthetic pathway has also been studied in rose (Figure 6). Surprisingly a eugenol synthase 

gene (RcEGS1) has been cloned in petals of Old Blush despite the absence of eugenol production in 

this cultivar. RcEGS1 probably uses coniferyl acetate, a phenylalanine derivate, as substrate, because 

of their close homology. To confirm the role of this gene, virus induced gene silencing (VIGS) experiment 

was performed on R. x hybrida cv. ‘Yunxiang’ where this compound represents 12 % of total volatiles. 

Reduction of RcEGS1 expression led to a decrease in production of eugenol in petals (Yan et al. 2018). 
Further modification can occur on this compound and especially methylation. In R. chinensis spontanea, 

methyleugenol and isomethyleugenol are produced by a eugenol O-methyltransferase, RcOMT1, that 

can efficiently methylates eugenol and isoeugenol (Wu et al. 2004). RcOMT1, compared to other OMT 

has its maximum activity on eugenol (100 %) and isoeugenol (75 %).   

I-3. Biosynthesis of terpenes and terpenoids  

Majority of VOCs that are produced by roses are terpenes or terpenes derivatives named terpenoids. 

They all come from two non-volatile compounds: IPP and DMAPP, which could be considered as two 

building blocks, each containing a five-carbons chain with two inorganic phosphates. Their 

polymerisation head-to-head or head-to-tail, and their subsequent modifications lead to more than 
30,000 compounds in plants (Connolly and Hill, 1991). Plants can produce these two building blocks by 

two distinct pathways: the cytosolic MVA pathway, and the plastidial MEP pathway. In each cellular 

compartment, the polymerisation of IPP and DMAPP by different short chain isoprenyl-diphosphate 

synthase (IDS) lead to different precursors like the cytosolic FPP and the plastidial GPP and GGPP, for 

the most common. Each precursor is then used by different TPS to give cyclic terpenes, which could be 

modified by other enzymes to give terpenoids (Figure 3). Each precursor is the starting point of a terpene 

pathway: GPP for monoterpenes (C5H8)2, FPP for sesquiterpenes (C5H8)3 and triterpènes (C5H8)6, GGPP 

for diterpenes (C5H8)4, tetraterpenes (C5H8)8 and carotenoids, for example. It is noticeable, that some 
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TPSs do not build the terpene ring, but give directly rise to acyclic terpenes with an alcohol group, like 

geraniol (C10H18O) for monoterpenes, or farnesol isomers (C15H26O) for sesquiterpenes for example.  

Thanks to the genome assembly of Old Blush, between 73 and 48 TPSs were found depending on the 

algorithms and authors’ decision to validate a gene as a TPS after BLAST analyses (Raymond et al. 

2018; Yan et al. 2022). Among these TPSs, only five to ten are expressed in petals of open flowers. 

These TPSs can explain a part of terpene production by Old Blush such as monoterpenes or 
sesquiterpenes but few have been characterized. 

Linalool belongs to the acyclic monoterpene family. In rose petals, it is produced with an enantiomeric 

specificity, 3S or 3R. In Old Blush, R. x hybrida cv ‘Lady Hillington’, and R. x hybrida cv ‘The Mc Cartney 

rose’, linalool is only the (-)-(3R) enantiomer. It is produced with GPP as precursor by a plastidial (-)-

(3R)-linalool synthase. There are also two linalool/nerolidol synthases untargeted to plastids. In vitro, 

they produce the acyclic nerolidol with FPP as precursor, or (+)-(3R)-linalool with GPP as precursor. 

However, in the cytosol, these enzymes only produce very few amount of nerolidol probably because it 

may have reduced access to FPP (Magnard et al. 2018). Germacrene D in rose petals is one of the 
major emitted sesquiterpene. This VOC is produced by a sesquiterpene synthase, germacrene D 

synthase (GDS) or TPS1 and was the first rose TPS cloned and characterized (Guterman et al. 2002).  

Apocarotenoids are also an important trait in rose fragrance. These compounds are always in weak 

amounts but, according to perfumers, some of them, like ionones, are very important because they give 

the violet note to the rose scent. Apocarotenoids derived from the degradation of carotenoids, 

themselves synthesized with GGPP as precursor (Figure 3). They are thus also named norisoprenoids.  

Due to the diversity of carotenoids, numerous products can be formed. Carotenoid cleavage 
dioxygenase 1 and 4 (CCD1 and CCD4) are the major enzymes responsible of degradation of 

carotenoids to produce apocarotenoid volatiles with 13 carbons. They cleave symmetrically carotenoids 

inside the carbon chain, most of time in 9,10 (9’,10’) double carbon bound. CCD4 is highly expressed in 

petals of open and senescent flower (Raymond et al. 2018) and is able to produce b-ionone in vitro with 

b-carotene but is more efficient with 8’-apo-b-caroten-8’-al (Huang et al. 2009b). The R. x damascena 

CDD1 have also been characterized and can produce b-ionone and 3-hydroxy-b-ionone depending on 

substrate respectively b-carotene or zeaxanthin (Huang et al. 2009a). But, CCD1 is probably less 

implicated than RdCCD4, because it lacks chloroplast transfer peptide, and carotenoids are produced 

and stored in plastids. In Old Blush petals, the major apocarotenoids are b-ionol and dihydro-b-ionol. 

Enzymes responsible for their biosynthesis are not yet characterized, and the full comprehension of 

ionol biosynthesis in rose is still unclear. 
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II- Diversity of enzymes producing terpenes in plants 
II-1. The TPS family 

Proteins sequence of TPSs share at least 40 % identity and can be divided into six subfamilies from 

TPS-a to TPS-h (Chen et al. 2011; Table 4). They form a multiple gene family inside genomes but all 

originate from a common ancestor which was present before angiosperms and the gymnosperms 
(Bohlmann et al. 1998). Beside the identity that can be shared by TPSs, products of these enzymes 

cannot be predictable only on the basis of phylogeny and homology. They have to be completely 

characterized in vitro for their enzymatic activities. For example, fully characterization of all the TPSs of 

S. lycopersicum was done recently (Zhou and Pichersky, 2020). Nevertheless, phylogeny can give clues 

to know what a specific TPS produces. TPS-a are sesquiterpene synthases, whereas TPS-b are 

monoterpene synthases. TPS-b are restricted to gymnosperm. TPS-g produce exclusively acyclic 

terpenes because of the lack of a domain (RRx8W) at the beginning of the protein allowing the 

isomerization-cyclization reaction step (Williams et al. 1998; Chen et al. 2011). Some TPS can act as 

both mono- or sesquiterpenes synthase. This is the case for a-zingiberene synthase of Ocimum 

basilicum, which produces a-zingiberene, 7-epi-sesquithujene, a-bergamotene, b-bisabolene, and b-

sesquiphellandrene with FPP as substrate, but a-thujene, α-terpinene, and terpinolene with GPP 

(Davidovich-Rikanati et al. 2008). This is also the case for linalool-nerolidol synthases from rose 

(Magnard et al. 2008), Fragaria vesca (Aharoni et al. 2004), Antirrhinum majus (Nagegowda et al. 2008) 

Plectranthus amboinicus (Ashaari et al. 2020), which produce linalool or nerolidol with, respectively, 

GPP or FPP. Furthermore, the presence of a predictable signal peptide in the protein sequence could 

also give clues on the enzyme substrate, as GPP and GGPP are plastidial, but FPP not. For example, 
monoterpenes synthases are proteins often longer than sesquiterpene synthases because of the 

presence of a plastidial signal peptide (Bouvier et al. 2000; Degenhardt et al. 2009). It is the case of the 

Valeriana officinalis GES, which is clearly localized in plastids and in stromules (Dong et al. 2013). This 

localization is in agreement the one of the final step enzymes of the MEP pathway described in stromules 

of Catharanthus roseus cells (Guirimand et al. 2020).  
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Table 4 | Family of TPSs and their function in different organism groups. Adapted from Chen et al. 
2011.    

 

aBifunctional diterpenes synthase convert GGPP into CPP then in diterpene whereas monofunctional 
convert GGPP into diterpenes without CPP intermediate 

 

Mechanisms of monoterpenes or sesquiterpenes formation have been widely studied and reviewed, as 
resumed by Croteau (1987) and Degenhardt et al. (2009). TPSs do not act as phosphatases that directly 

hydrolyse the inorganic pyrophosphate of the substrates, IPP and DMAPP. Instead, these enzymes 

produce intermediate reaction compounds giving a carbocation. This carbocation can be cyclized and 

then form another carbocation (Figure 7). These mechanisms allow cyclization of monoterpenes and 

allow also the formation of hydroxy groups on other carbon than those where the pyrophosphate was 

bound (in the case of GPP, the carbon number 1). If the reaction is not complete, the product is released 

from the enzymatic site in the form of an alcohol, like geraniol, linalool, or farnesol for example. Indeed, 
in O. basilicum, it has been shown that the hydroxy group of geraniol is added to the intermediate 

carbocation formed by a GES, not by a phosphatase (Iijima et al. 2004). 

For sesquiterpenes, the numerous possibilities of carbocation formation and cyclisation between 

different carbon position lead to a high diversity of sesquiterpenes (Figure 7). The only cofactor used by 

TPSs are metal divalent ions (Mg2+ or Mn2+) needed for the carbocation formation, because it allows 

organisation between the pyrophosphate group and the active site (Tarshis et al. 1994; 1996).  

Subfamily Groups Functions Distribution 

TPS-a TPS-a-1 Sesquiterpenes Dicots

TPS-a-2 Sesquiterpenes Monocots

TPS-b Monoterpenes,
Isoprene

Angiosperms

TPS-c Diterpenes, 
copalyl synthase/Kaurene sytnhase, 
copalyl synthase

Land plants

TPS-d TPS-d-1 Sesquiterpenes,
monoterpenes

Gymnosperms

TPS-d-2 Sesquiterpenes Gymnosperms

TPS-d-3 Sesquiterpenes,
Diterpenes

Gymnosperms

TPS-e/f Monoterpenes,
Sesquiterpenes,
Diterpenes,
KS

Vascular plants 

TPS-g Monoterpenes,
Sesquiterpenes,
Diterpenes

Angiosperms

TPS-h Putative bifunctionala

Diterpenes
Selaginella
moellendorffii
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Many TPSs can produce several compounds. For example, At5g44630 can produce over 15 

sesquiterpenes in A. thaliana (Tholl et al. 2005), TPS25 can produce b-myrcene, b-Z-ocimene, b-E-

ocimene, and linalool in S. lycopersicum (Zou and Pichersky 2020). TPS can also have an enantiomeric 

specificity, like linalool synthase for example. Indeed, CbLIS of Clarkia breweri only produces (+)-(3S)-
linalool (Pichersky et al. 1995), RcLINS of R. chinensis (OB), only (-)-(3R)-linalool compounds (Magnard 

et al. 2018), but  PtTPS12 of P. trichocarpa, a racemic mixture of (-)-(3R) and (+)-(3S)-linalool (Irmisch 

et al. 2014) . At the opposite, some terpenes are not directly produced by TPS but derived from other 

terpenes, like nerol and b-citronellol, which derived from geraniol for example. 

 

Figure 7 | reaction mechanism of terpenes synthase (Degenhardt et al. 2009). (A) Mechanism of 
cyclic monoterperne synthase, that need two isomerization steps and one cyclization to produce α–
terpinyl cation. (B) Mechanism of acyclic monoterperne synthase. (C) Mechanism of sesquiterpenes 
synthase with one carbocation intermediate.  (D) Mechanism of sesquiterpene synthase with 
germacrene A intermediate which is re-protonated. Numbers on geranyl diphosphate and farnesyl 
diphosphate represent the numbering of carbon atoms. ‘number,number’ give the information of closure 
between carbons or shift.  
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II-2. Other enzymes producing terpenes and terpenoids 

The wide diversity of terpenes produced by TPSs can be increased by chemical modifications, named 

decorations, giving numerous terpenoids, probably several tens of thousands. By all the putative 

decorations catalyzed by enzymes, CYP450 (cytochrome P450) are probably the best example to 

present the diversity of product derived from terpenes. Beside the numbers of products raised by 

CYP450 an example can be the production of 8-hydroxy-geraniol by AtCYP76C4 by hydroxylation of 

geraniol or linalool oxides by AtCYP76C1 in flowers (Höfer et al. 2013; Boachon et al. 2015). CYP450 
is one of the most extended gene family in plants that can modify terpenes, but it is not the only one. 

Continuing on geraniol modification, alcohol dehydrogenase (ADH) can produce geranial by oxidation 

of geraniol in Zingiber officinale (Lijima et al. 2014). Geraniol can also be acetylated via acetyltransferase 

in R. x damascena flowers by RhAAT1 producing geranyl acetate (Shalit et al. 2003). A more complex 

biosynthesis pathway of monoterpene in plant starting from geraniol is described in the orchid Caladenia 

plicata (Xu et al. 2017). Geraniol is produced by a classical GES (CpGES1), then, in three subsequent 

reactions, β-citronellol is produced. Firstly, geranial is formed by oxidation of geraniol by an ADH 

(CpADH3). A geranial reductase (GER1) reduces geranial into β-citronellal. Finally, CpADH3 produce 
β-citronellol by reduction of β-citronellal. Also, some other enzymes have a role in direct terpenes 

production such as CCDs that produce apocarotenoids.  For example, in S. lycopersicum, cleavage of 

apo-8’-lycopenal, a lycopene derivative, by SlCCD1B allows the production of neral and geranial in fruits 

(Ilg et al. 2014).  

More recently, a new enzyme family has been discovered to be implicated in terpene production by 

dephosphorylation of prenyl-diphosphates. These enzymes are part of the Nudix hydrolase family.  

II-3. The NUDX1 family  

Nudix hydrolases are widely spread in all leaving organisms, from bacteria to eukaryotes. In the model 

plant A. thaliana, there are 28 NUDX genes (AtNUDX1 being one of them), but in other plants, this 
number can vary, e.g. 32 in S.  lycopersicum and 20 in Oryza sativa (Yoshimura and Shigeoka, 2015). 

In A. thaliana, NUDX genes are numbered from 1 to 27, except AtDcp2 described before the NUDX 

analysis in this species (Yoshimura and Shigeoka, 2015). AtDcp2 enzyme has an essential role in 

embryonic development by regulation of mRNA turnover. This enzyme hydrolyses capped mRNA by 

m7-GPPP to produce m7-GDP (Iwasaki et al. 2007; Gunawardana et al. 2007). Nudx hydrolases have a 

wide spectrum of substrates such as NADH, ADP-ribose, GDP-mannose, Malocyl-Coa, 8-oxo-(d)GTP… 

depending on the enzyme number. Each enzymes have their preferential substrate but not all the 

substrates are known. They all possess a Nudix motif (GX5EX7REUXEEXGU, where U is an aliphatic, 
hydrophobic residue) (Yoshimura and Shigeoka, 2015). This motif allows a nucleophilic substitution by 

water at the internal β-phosphate atom (Weber et al. 1992). Phosphate is bound to active site by 

hydrogen bound organised with divalent cations (Mg2+ or Mn2+) with the Nudix motif and the carbon 

moiety is surrounded by a hydrophobic amino acid (Liu et al. 2018; Jemth et al.  2019).  

Beside the Nudx enzyme family with a catalytical phosphatase activity, some other proteins have a 

structure near from this enzyme without Nudix motif and so without phosphatase activity. As a 
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consequence, they are considered to belong to a super-family of Nudix enzymes. This is the case of 

isopentenyl-diphosphate isomerase (IDI) which can isomerise IPP into DMAPP. The opposite reaction 

is less efficient. IDI protonated IPP or DMAPP to produce a carbocation and then re-protonated the 

carbocation to produce the electrophil isomer of the initial isopentenyl use for the reaction (Street et al. 

1994). In plants, IDI are localized in different organelles. The shortest isoform of A. thaliana AtIDI1 is 

targeted to the peroxisome and allow the production of DMAPP from the MVA pathway (Sapir-Mir et al. 

2008). The longest isoform of AtIDI1 is targeted to plastids, and the AtIDI2 protein is targeted to 

mitochondria (Phillips et al. 2008). 

Initially, AtNUDX1 was described to dephosphorylate 8-oxo-(d)GTP (Yoshimura et al. 2007). This 

oxidized ribonucleotide is produced by reactive oxygen species induced by numerous biotic and abiotic 

stress. It can pair with adenine and cytosine and thus incorporated into DNA or RNA, which enhance 

mutagenesis by replicational and translational errors. By dephosphorylation of this oxidized 

ribonucleotide, AtNUDX1 prevents such mutations and acts as a “cell sanitizer”. AtNUDX1 is the 

homologue of Escherichia coli MutT (Yoshimura et al. 2007), and Homo sapiens MTH1 (Gad et al. 

2014).  

In rose, Magnard et al. (2015) published for the first time the implication of a NUDX1 hydrolysing GPP 

to produce GP in rose petals, leading to geraniol by an uncharacterized phosphatase. The RhNUDX1 

gene is homologous to AtNUDX1 and is highly expressed in rose petals of modern garden roses such 

as R. x hybrida cv. ‘Papa Meilland’. RhNUDX1 shows a drastically reduce GPP hydrolase activity by 

mutation of the R34A and Y94A amino acids which are implicated in the coordination of divalent cations 

(Liu et al. 2018). Since this work, other NUDX1 have been implicated in terpenoid metabolism. In 
Tanacetum cinerariifolium a plastid-localized NUDX1 dephosphorylates E-chrysanthemyl-diphosphate 

(ChPP) into chrysanthemol, en route to production of pyrethrins (Li et al. 2020). In A. thaliana, AtNUDX1 

and AtNUDX3 dephosphorylate IPP and DMAPP into IP and DMAP (Henry et al. 2018), but another 

enzyme, named isopentenyl-phosphate kinase, phosphorylates IP and DMAP into IPP and DMAPP 

(Henry et al. 2015 and 2018). AtNUDX1 is probably more implicated in IPP dephosphorylation than in 

8-oxo-(d)GTP dephosphorylation because of the Km values (Henry et al. 2018; Jemth et al. 2019). This 

could be a regulation loop of the IPP and DMAPP homeostasy in cells.  

In vitro, most of NUDX1 proteins can hydrolysed numerous substrates. Such as DMAPP, IPP, GPP, 
FPP, NPP, LPP… (Henry et al. 2018; Li et al. 2020), but the question about their effective role in plant 

remain unclear. For example, RcNUDX1-1a can dephosphorylates FPP into FP in vitro, but there is no 

farnesol in Old Blush petals (Sun et al. 2020). As a consequence, the in vitro activity of NUDX1 is not a 

proof of in planta activity.  
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III- Biosynthesis of terpene precursors in plants 
III-1. The MVA and MEP pathways 

In plants, IPP and DMAPP are produced by two different pathways, the MVA and the MEP pathways. 

The MVA pathway is found in all living organism and comprises six enzymatic steps starting with two 

acetyl-CoA. In 2001, Lichtenthaler summarized the discovery of the MVA pathway. In 1951, Lynen et al. 

demonstrated that acetyl-CoA is an intermediate of cholesterol biosynthesis. In 1956, Wolf et al. and 

Tavormina et al. described the mevalonate as an essential intermediate for cholesterol biosynthesis. 

Finally, in 1958, Lynen et al. and Chaykin et al. demonstrated that IPP is an intermediate of sterol 

biosynthesis.  Konrad Bloch and Feodor Lynen obtained the Nobel Prize for this discovery in 1964. 

Since these works, biochemistry experiments have allowed to understand the organisation of the MVA 

pathway in numerous organisms such as mammals, yeast, bacteria and plants, without using cloning or 

heterologous expression methods. Nevertheless, since 1950 labelling experiments, and use of inhibitors 

of the MVA pathway, results suggested an alternative route in plants. For example, labelled 
mevalonolactone did not incorporate into carotenoids (Treharne et al. 1966), and uses of inhibitors of 

the MVA pathway decrease the production of sterols and ubiquinones, but not the production of 

plastoquinone and phylloquinone (Schindler et al. 1985). This type of results has led some authors to 

take an interest in other possible pathways and to discover the MEP pathway, also named non-

mevalonate pathway or Rohmer’s pathway (Disch et al. 1998; Rohmer et al. 1999; Lichtenthaler 1999). 

The MEP pathway include seven enzymatic steps starting from pyruvate and glyceraldehyde-3-

phosphate. The cloned of the MEP pathway encoded the 1-deoxy-D-xylulose-5-phosphate synthase 
(DXS) from Mentha x piperita (Lange et al. 1998). Finally, in 2002 the complete elucidation of the MEP 

pathway was done in plants (Rodriguez-Concepcion and Boronat, 2002), and widely studied and 

reviewed (Hemmerlin et al. 2012; Vravenova et al. 2012; Nagegowda and Gupta 2020) (Figure 3). 

The subcellular localization of enzyme in cells is an important key regulator for compounds biosynthesis 

because of substrate availability, multi enzyme complex formation, or localized chain reactions 

(reviewed by Bassard and Halkier, 2018). By enzyme targeting in different organelles such as plastid, 

mitochondria, nucleus, endoplasmic reticulum, some pathways can be active or not. The MVA pathway 

is described as being active in multiple sub-cellular compartments. First description of non-cytosolic 
enzyme in plant was in radish, in which 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR) 

activity was observed in membrane rich fractions after gradient centrifugation of cell lysis (Bach et al. 

1986). Further investigation has proved that HMGR is localized in endoplasmic reticulum membrane 

(review in Hemmerlin et al. 2012). In the protein sequence of HMGR, there are two or four 

transmembrane domains interspaced by a linker to the C-terminus of the protein with the catalytic 

domain oriented to the cytosol (Bach et al. 1999). Not all the MVA pathway is localized on membrane, 

some enzymes in the beginning of the pathway are localized in the cytosol or in peroxisomes. Indeed, 

in A. thaliana and C. roseus, phosphomevalonate kinase, mevalonate diphosphate decarboxylase, and 
an isoform of IDI are targeted to peroxisomes (Sapir-Mir et al. 2008; Simkin et al. 2011). These multiple 

sub-cellular localisations could indicate a channelling of intermediate reaction products. Unlike the MVA 

pathway, the MEP pathway is strictly localized in plastids (Kreuz and Kleinig, 1981; Heintze et al. 1990; 
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Lange et al. 1998; Hemmerlin et al. 2012). More precise subcellular localisation of enzymes of the MEP 

pathway was achieved in C. roseus chlorophyll-containing cells. First step of MEP pathway catalysed 

by DXS and 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR) are localized in plastid stroma, 

whereas final steps enzymes, 2-C-methyl-D-erythritol 4-phosphate synthase, 4-(cytidine 5′diphospho)-

2-C-methyl-D-erythritol kinase, 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase, (E)-4-hydroxy-

3-methylbut-2-enyl diphosphate synthase , and (E)-4-hydroxy-3-methylbut-2-enyl diphosphate 
reductase are localized in stromules (Guirimand et al. 2020). This organelle specific localization can 

extend contact area between plastids and other compartments, as endoplasmic reticulum for example, 

for compound exchange and enzyme contacts.  

III-2. Key regulators for IPP and DMAPP supply  

IPP and DMAPP are at the crossroads of specialized and primary metabolites production. Their 

concentrations are highly regulated in the different cell compartments. We have already described the 

regulation loop of NUDX1 and IPK on IPP and DMAPP homeostasy, but other mechanisms of regulation 

have been described. Indeed, they are regulated both by transcriptional and post-transcriptional 

mechanisms in the MVA and MEP pathways, but also by crosstalk between these pathways.  

All enzymes from the MEP pathway are transcriptionally regulated by light and DXS is the enzyme with 

the highest transcriptional regulation in the pathway (see review in Hemmerlin et al. 2012). DXS exists 

in two isoforms names classes 1 and 2. Class 1 DXS is used for primary metabolism as house kipping 

enzymes, and class 2 DXS are used for specialized metabolism. The expression of class 2 DXS genes 

is more regulated by stress, by organ specificity, or to modulate specialized metabolism in some tissues. 

For example, DXS is highly expressed in internal phloem parenchyma cells of C. roseus leaves, in which 

monoterpene indole alkaloids are synthetized (Burlat et al. 2004; Guirimand et al. 2020). DXS activity is 

also regulated by post-transcriptionnal mechanisms. For example, DXS activity is regulated by IPP 
concentration in P. trichocarpa. Adding IPP or DMAPP in vitro reduce activity by competition with 

thiamine-diphosphate, an essential cofactor (Banerjee et al. 2013). The medical fight against malaria 

has led to the testing of inhibitors of the MEP pathway in Plasmodium falciparum. Fosmidomycin is one 

of these inhibitors and is commonly used to inhibit DXR during laboratory experiments. This inhibition 

can be complemented by addition of 1-deoxy-D-xylulose (DOX). The mechanisms of inhibition of 

fosmidomycin mimics MEP, the reaction product of the DXR activity (Zeidler et al. 1998). For example, 

albino phenotype can be observed when fosmidomycin is applied to A. thaliana seedlings or to S. 

lycopersicum fruits. This phenotype is due to a reduction of carotenoids and chlorophyll biosynthesis in 

A. thaliana or lycopene biosynthesis in S. lycopersicum (Rodrıǵuez-Concepción and Boronat, 2002). 

In the MVA pathway the regulation of flux is done with the regulation of HMGR. Isoforms of HMGR can 

be differentially expressed in response to different stress, to different biological processes, or to organ 

specificity (see review in Hemmerlin et al. 2012). For example, Ginkgo biloba has three isoforms of 

HMGR. GbHMGR2 and GbHMGR3 are differentially expressed in tissues and respond to stress 

differentially. GbHMGR2 is highly expressed 48 h after cold treatment compared to GbHMGR3. By 

contrast ethylene treatment up-regulated GbHMGR3 four times more than GbHMGR2. The over 
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expression of HMGR expression is linked to an increase in terpene trilactone content derived from the 

MVA pathway (Rao et al. 2019). There are also proofs of feedback regulation. For example, over 

expression of AtFPPS2 leads to a decrease in AtHMGR expression, whereas, reduced expression of 

AtFPPS2 and reduced activity of AtFPPS2 increase AtHMGR expression in A. thaliana (Keim et al. 

2012). HMGR is also regulated by post-translational mechanisms such as phosphorylation / 

dephosphorylation. AtHMGR activity is negatively regulated by dephosphorylation induced by the  
Protein Phosphatase 2A (Leivar et al. 2011). Because of its key role in the regulation of MVA pathway 

in all organisms, HMGR has been targeted pharmaceutically to treat hypercholesterolemy in humans. 

Mevinolin, a compound of the statin family, is currently used to inhibit HMGR activity. Its inhibitor effect 

is due to its structure which looks like the HMG moiety of 3-hydroxy-3-methylglutaryl-coenzyme A. Thus, 

mevinolin can enter in the active site of HMGR and competitively inhibit the enzymatic reaction (Bach 

and Lichtenthaler, 1982 a; b).  

Numerous reports have also confirmed a cross talk between the MEP and the MVA pathways. Indeed, 

it has been demonstrated that IPP, DMAPP, GPP, FPP, and GGPP can move across membranes of 
plastids and mitochondria (Hemmerlin et al. 2012). This phenomenon shows that there are 

compensations and regulations when the concentration of precursors decreases or increases in the cell 

organelles. Cross talk between the MVA and MEP pathways is thus an important way to regulate terpene 

precursors homeostasy. Unfortunately, no transporter has ever characterized in such transport. 

Experiments on Vitis vinifera cell suspensions have established the basis of IPP import into plastids 

(Soler et al. 1993). In this work, IPP intake and saturation phenomenon respecting Michaelis kinetic was 

proposed to be an argument in favour of a transporter. Furthermore, intake of IPP was strongly inhibited 
by aminophenylethyl-diphosphate, a diphosphate analogue of IPP, but not by 2-phenylethanol (the 

same compound without phosphates). Moreover, protein-bindings inhibitors such as glyceraldehyde 3-

phosphate or DL-glyceraldehyde, reduce drastically respectively IPP import or IPP export into intact 

plastid  (Bick and Lange, 2003; Wang et al. 2003; Yang et al. 2012). In another work, IPP was presumed 

to be transported into plastids by a uniporter transporter (Flügge and Gao, 2005).  Overexpression of 

AtIPK into Nicotiana benthamiana leaves leads to an increase of plastid-synthetized monoterpenes such 

as linalool and β-ocimene. As cytosolic AtIPK increases the cytosolic IPP pool by phosphorylation of IP, 

a possible interpretation is that the excess of IPP was transported into plastids (Henry et al. 2015). 
Uptake of IPP into mitochondria for ubiquinones biosynthesis has also been indirectly prove by Lütke-

Brinkhaus et al. (1984). Indeed, working with isolated mitochondria in vitro, they demonstrated that [2-
14C]MVA-5-P was not incorporated into ubiquinone intermediates. They concluded that, in planta, IPP 

was imported into this organelle.  

DMAPP, FPP, GPP can also cross the inner membrane of plastids with different rates, even if IPP does 

two times more quickly than the others (Bick and Lange, 2003). Over production of GPP in S. 

lycopersicum fruits led to a decrease of carotenoid concentration and an increase of monoterpenes 

concentration (Gutensohn et al. 2013). Indeed, the IPP and DMAPP pool of plastids, was probably used 
to produce GPP (thus monoterpenes) but not GGPP (thus carotenoids). Interestingly, in the same plant, 
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with or without over production of plastidial GPP, the over production of a bi-functional TPS into the 

cytosol increases the concentration of monoterpenes, proving that GPP was exported from plastids to 

cytosol (Davidovich-Rikanati et al. 2008; Gutensohn et al. 2013).   

GGPP is also able to cross membranes. It is exported from plastids to cytosol and used by a 

geranylgeranyl transferase, belonging to the prenyl transferase family, to build geranyl-geranylated 

proteins. For example, a proof of export of plastidial GGPP was done on tobacco cells (Gerber et al. 

2009), by inhibition of MEP pathway by fosmydomycine. In this experiment, cytosolic geranyl-

geranylation of proteins was drastically reduced, proving that the MEP pathway was involved. 

III-3. Active sites and functioning of IDSs 

GPP, FPP, and GGPP are produced by IDS. These enzymes called GPPS, FPPS, and GGPPS (where 

S is for synthase activity) catalyse the polymerization of IPP and DMAPP, the end products of the MVA 

and MEP pathways. GPPS uses IPP and DMAPP to produce GPP, FPPS uses a second IPP to produce 

FPP, and GGPPS uses a third IPP to produce GGPP. GPP is the precursor of monoterpenoids, FPP, 

of steroids, cholesterols, farnesylated proteins, and sesquiterpenoids, and GGPP, of carotenoids, 

geranylgeranylated proteins, diterpenes, gibberellins, chlorophylls, and vitamin K1.  

Most of the IDS act in trans (head-to-tail) to produce E-GPP, E,E-FPP or E,E,E-GGPP, which are 

precursors of the most abundant isoprenoids. Sequential condensation allows the elongation to C10, C15, 

C20 products. IDSs start the reaction with one molecule of IPP (homoallylic substrate) and one molecule 

of DMAPP (allylic substrate) to produce GPP, FPPS can use a second IPP unit to produce FPP, and 

GGPPS a third IPP unit to produce GGPP. In the case of FPPS and GGPPS, firsts products (GPP and/or 

FPP) are conserved in the active site and become the allylic substrate during the sequential addition of 

IPP (Kellogg and Poulter 1997) (figure 8a). 

 

Figure 8 | mode of action of prenyl-diphosphate synthase. (A) sequential biosynthesis of prenyl 
diphosphate. Arrows indicate product formed for each step. Mg2+ as cofactor allow interaction between 
inorganic phosphate of substrate and amino acid from active site of enzyme. (B) schematic 
representation of one IDS sub-unit. For clarity some α helix are not presented. The elongation pocket is 
drawn in pink. The A-site corresponds to the place where allylic substrate binds and product carbon 
chain inserts. I site corresponds to the space where IPP binds. DMAPP, dimethylallyl diphosphate; 
FARM, first aspartate-rich motif; IPP, isopentenyl diphosphate; SARM, second aspartate-rich motif. 
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Some other IDSs have been identified and characterized to act in cis or trans (head-to-head or head-to-

middle) allowing the production of Z,Z-FPP in Solanum habrochaites (Sallaud et al. 2009), lavandulyl-

diphosphate in Lavandula (Demissie et al. 2013), neryl-diphosphate in S. lycopersicum (Schilmiller et 

al. 2009), chrisantemyl-diphosphate in Chrysanthemum cinerariaefolium (Rivera et al. 2001), and 

bornyl-diphosphate in Salvia officinalis and Lavandula angustifolia (Whittington et al. 2002; Despinasse 

et al. 2017). These irregular diphosphates are used by TPSs to produce irregular terpenes such as 
lavandulol, borneol, chrysanthemol (the precursor of pyrethrin), or Z,Z-farnesol for example. 

The results of the sequential condensation of IPP and DMAPP of short-chain IDS is that they all produce 

GPP as final product or as intermediate reaction product. Thus, concerning the origin of cytosolic GPP 

in rose petals, we focused only on this class of enzyme and do not take interest in medium or long-chain 

IDS producing respectively C30-C35, C40-C50 prenyl-diphosphates, because they are not able to produce 

GPP as intermediates (Vandermoten et al. 2009; Wang et al. 2016).  

Biosynthesis of prenyl-diphosphates by GPPS, FPPS or GGPPS, is performed by relatively identical 

enzymes. They have in common domains for substrate binding corresponding to the diphosphate 
substrate, such as IPP, DMAPP, GPP or FPP. These domains are called FARM and SARM (first and 

second aspartate-rich motif respectively). Amino acids in these conserved domains are essential to 

maintain substrates in the active site. Because aspartate is a polar amino acid, it interacts with divalent 

cation such as Mg2+. The recruitment of this cation helps to organise the diphosphate part of substrates 

in the active site and ensures its correct position (Ohnuma et al. 1996).  

Regarding the mechanisms of sequential condensation of IPP to produce prenyl diphosphate the 

mechanism can be described in several steps (Figure 8b). Basically, after the first condensation of IPP 
and DMAPP to produce GPP, GPP move inside the active site and bind to the site where allylic substrate 

bind. This site is called the A site and is formed with the FARM and the SARM. In the next step, IPP 

bind to his binding zone name the I site (Hosfield et al. 2004). A second condensation step is involved 

in FPPS and GGPPS. Finally, for GGPPS, FPP produce by the second step of condensation move to 

the A site before last condensation of IPP. Substrate movement inside the active site needs space, and 

the deep of the hydrophobic elongation pocket regulates the final product length. An example of these 

mechanism can be explained with the case of FPPS. FPP carbon chain is too big to enter properly in 

the elongation pocket and the FPP cannot bind the A site. Finally, FPP is released from the active site 
because it cannot stay in the active site. This mechanism is called the flooring model (Wang et al. 2016). 

Product chain length is regulated by amino acids near to the elongation pocket. With the tertiary structure 

of protein, it as been proposed that a chain length determination domain is located four and five amino 

acids before the FARM (Tarshis et al. 1994). At these position amino acids can form some “floor” that 

can change the deep of the elongation pocket (Tarshis et al. 1994; 1996; Ohnuma et al. 1996). 

During the different steps of IDS enzymatic cycle, numerous parts of proteins move to change the 3D 

structure of active site, to initiate each step in the right order (1st binding of allylic substrate, 2nd binding 

of IPP, 3rd condensation of both substrates). For example, the C-terminus of FPPS compose of charged 
amino acids that interact with IPP (Sond and Poulter, 1994) move after binding of IPP into I site to close 
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the active site and initiate the condensation of IPP and allylic substrate (Hosfield et al. 2004; Kavanagh 

et al. 2006; Park et al. 2017). 

III-4. Dimeric structures of LSU and SSU 

Short-chain IDS are essential for organisms, they can be easily identified by BLAST analysis on 

genomes. They are dimers of five different subunits, and can be classified into five subfamilies according 

to the way the subunits dimerize (Figure 9). The GPPS monomer can form a homodimer, named GPPS, 

which produce GPP and FPP. The FPPS monomer can also form a homodimer, named FPPS, which 
produces FPP. The large subunit (LSU) can form a homodimer, named GGPPS, which produces GGPP. 

The small subunit (SSU) can form a heterodimer with LSU, named GPPS, which mainly produces GPP. 

In recent works, authors distinguished a second small subunit (SSU-II) that can also form a heterodimer 

with LSU, named GPPS, but produces GPP and GGPP (Wang and Dixon, 2009). Other dimers are not 

functional.  

 

Figure 9 | biosynthesis of prenyl diphosphate in plant (adapted from Schmidt et al. 2009). Sub-
unit of isoprenyl disphosphate synthase working in dimers are represented by different colors. IPP, 
isopentenyl diphosphate; DMAPP, dimethylallyl diphosphate; GGPP, geranylgeranyl diphosphate; FPP, 
farnesyl diphosphate; GPP, geranyl diphosphate; LSU, large sub unit; SSU, small sub unit; FPPS, 
farnesyl diphosphate synthase; GPPS, homodimeric geranyl diphosphate synthase; IDI, Isopentenyl 
diphosphate isomerase 

In plastid, LSU can form a homodimer, and then acts as a GGPPS (Dogbo and Camara, 1987), or can 

form a heterodimer with SSU, and acts as a GPPS (Burke et al. 1999). The activity of the homodimer is 

altered when the heterodimer is built. The result of the competition is in favor of GPPS. Concurrence 

between GPP and GGPP production occurs in plastid with the same source of IPP and DMAPP 
produced by the MEP pathway. Overexpression of SSU genes of Lavandula x intermedia or A. majus 

in N. benthamiana leads to a decrease in carotenoid, chlorophyll and gibberellin contents associated 

with a visible stunting phenotype (Orlova et al. 2010; Adal and Mahmoud 2020). These phenotypes 

confirm a decrease of GGPP availability in plastid when SSU is overexpressed. In Humulus lupulus, 
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producing lot of monoterpenes, HlSSU is highly expressed in trichomes (Wang and Dixon 2009). In A. 

thaliana, GPP production increased during anthesis by up-regulation of AtSSU-II expression. AtSSU-II 

can interact with AtLSU leading to GPP production and thus monoterpene production (Chen et al. 2015). 

In A. majus flowers, AmSSU expression is dependent of circadian cycle. AmSSU is also up regulated 

at protein level after anthesis and corelated with flower monoterpene production (Tholl et al. 2004). 

Regulation of SSU level is not only tissue-dependent, but also inducible by stress. For example, 
treatment with methyl jasmonate, used for stress simulation, enhance monoterpene indole alkaloid in C. 

roseus, CrSSU expression been seven times increased after 12 h (Rai et al. 2013). In P. trichocarpa 

two LSUs and one SSU-I are present in the genome. The heterodimer has been tested in vitro and 

[LSU1/SSU-I] or [LSU2/SSU-I] increases GPP production by four and three times respectively (Lackus 

et al. 2019). Furthermore, larvae-damage up-regulates PtSSU-I expression to increase herbivory-

induced monoterpene in leaves by producing more GPP (Lackus et al. 2019). Thus, the regulation of 

SSU concentration in plastids is a way to tune the production of GPP and GPPS in organs or during 

stress.  

In another area, structural analyses have revealed that homodimer of SSU is inactive because of the 

lack of SARM. A conserved motif, CxxxC amino-acid (where x is a hydrophobic amino acid), is 

necessary for the interaction between LSU and SSU (Wang and Dixon 2009). By comparison of different 

LSUs and SSUs, they observed that one CxxxC is present on LSU, whereas two are present on SSU, 

allowing the interaction between proteins to produce heterodimer and enhance GPP biosynthesis. 

Product specify of the heterodimer can led to numerous options leading to an increase of GPP 

production with a conservation of GGPPS activity due to the LSU (Wang and Dixon 2009, Lackus et al. 

2019), or completely abolish GGPP production (Tholl et al. 2004; Rai et al. 2013). These different 

productions are supposed to be type-dependent of SSU I or II (Barja et al. 2021). Furthermore, the 

heterodimer formation is not restricted to the species level and can be obtained by heterologous 

expression and chimerical heterodimer formation (Tholl et al. 2004; Wang and Dixon 2009). For 

example, heterologous expression of SSU from A. majus or L. x intermedia gives heterodimers in N. 

benthamiana (Orlova et al. 2009; Adal and Mahmoud, 2019). 

Crystal structure of the heterodimer of GPPS in M. piperita has revealed that it is in fact a heterotetramer 

including two heterodimers of LSU and SSU (Chang et al. 2010). Compared to other IDS homodimers, 
where the elongation pocket regulates the product chain length (flooring model), the authors explained 

the production of GPP of the heterotetramer by a two-chamber model. In this model, no physical clump 

is formed in the elongation pocket. Indeed, when SSU interacts with LSU, it changes the movement of 

a highly mobile part name active site cavity loop 2, found on the top of the active site of LSU. This part 

normally protects the allylic substrate from solvent during the catalytic reaction. Reducing the movement 

of active site cavity loop 2 enhance the formation of a “chamber” and let the active site in an “open” 

conformation. By reducing efficiency of FPP formation during the second step of GGPP biosynthesis, 

activity of the heterotetramer produces GPP because it leaves the active site by solvation before 
elongation into FPP or GGPP. This explains the decrease of GGPPS activity in favor of GPPS activity. 

Because it is not a physical clump, this reduction of activity does not abolish completely the GGPPS 
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activity as in flooring model, and explains the residual GGPPS activity of the heterotetramer. In addition, 

directed mutagenesis on LSU reduces the movement of the active site cavity loop 2 and abolishes the 

GGPPS activity when the heterodimer is produced, leading to a heterotetramer producing only GPP 

(Hsieh et al. 2011). 

III-5. Homodimeric structures of IDSs 

Not all angiosperm species contain heteromeric GPPS protein but some of them have homomeric 

GPPS. The two monomers of GPPS have not the CxxxC motif allowing interaction with LSU. They have 
been identified and characterized in some species like C. roseus (Rai et al. 2013), Picea abies (Schmidt 

and Gershenzon, 2008) S. lycopersicum (van Schie, 2007), Chimonanthus praecox (Kamram et al. 

2020) but also in monocotyledon as the orchid in Phalaenopsis bellina (Hsiao et al. 2008). These 

homodimeric GPPS can produce GPP, and thus monoterpene. For example, the expression pattern of 

PbGPPS correlates with monoterpene production in flowers of different species (P. bellina versus P. 

equestris) (Hsiao et al. 2008). Recombinant P. abies homomeric GPPS (PaIDS2) produces only GPP 

in vitro with DMAPP and IPP (Schmidt and Gershenzon, 2008; Schmidt et al. 2010). In planta, the protein 

is predicted to be localized in plastids, and the gene responds to methyl jasmonate treatment: when it 
is over-expressed, it corelates with oleoresin production including monoterpenes. 

Homodimeric form of GPPS are not only implicated in monoterpene production, but also in ubiquinone 

or gibberellin production some species. For example, in S. lycopersicum esculentum, VIGs experiment 

targeting the homodimeric LeGPPS decreases its expression and reduce gibberellin content (Van Schie 

et al. 2007). The Norway spruce (P. abies) homodimeric GPPS (PaIDS3) which have a GPPS/GGPPS 

activity is predicted to be in mitochondria and is probably also implicated in ubiquinone formation 

(Schmidt and Gershenzon, 2008). 

Finally, the case of the A. thaliana homomeric GPPS which is both localized in plastid and mitochondria 
has been widely studied and first described as GPPS (Bouvier et al. 2000) but later as polyprenyl-

diphosphate synthase (Ducluzeau et al. 2012). This was confirmed because AtGPPS can restore 

ubiquinone biosynthesis in yeast hexaprenyl-diphosphate synthase mutant (Ducluzeau et al. 2012). The 

final conclusion of theses study is the product specificity of AtGPPS dependent on IPP / allylic substrate 

ratio (Bouvier et al. 2000; Hsieh et al. 2011).  

FPPSs have also been study in different organisms (archaea, bacteria, yeast, fungi, mammalian, plants 

because of their essential role in sterol biosynthesis. Their structures have been discovered thanks to 
the study of mode of action of diverse FPPS inhibitors used as anti-cholesterol in humans. The first 

FPPS crystal structure was determined in avian (Gallus gallus) and is composed of 10 alpha helices 

(named A to J). To be active, FPPS needs to form a homodimer, because a part of the end of the 

elongation pocket is formed by the second FPPS monomer (Tarshis et al. 1994). Many studies have 

tried to reduce the steric hindrance of amino acid from the chain length determination domain to increase 

length of hydrophobic pocket and allow longer product formation (C20, C25) (Tarshis et al. 1994, 1996, 

Ohnuma et al. 1996). On the contrary, increasing the steric hindrance of these amino acids reduces the 

product carbon chain length (Narita et al. 1999; Stanley-Fernandez et al. 2000). Many works also have 
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reported impact on activity and/or product length specificity when some other amino acids are changed, 

probably because of change in 3D structure dynamics and substrate positioning. Indeed, conformation 

changes during the catalytic cycle such as C-terminus movement or some shift of loops near to the 

active site are needed to close the active site and protect the substrate from solvent (Gabelli et al. 2005; 

Kavanagh et al. 2006; Rondeau et al. 2006; Park et al. 2016).   

FPPS are mostly localised in cytosol except CrFPPS which is targeted into peroxisome (Thabet et al. 

2011). In lot of species, there are many copies of FPPS in genomes, and sometimes several isoforms. 

For example, in A. thaliana, AtFPS1 gene encodes two isoforms: one short producing a protein targeted 

to cytosol, and one long producing a protein targeted to mitochondria (Cunillera et al. 1997; Manzano 

et al. 2006).  

FPPS can also be regulated at the gene expression level at the organ level or during stresses. For 

example, AtFPPS2 is only highly expressed in petals of A. thaliana (Cunillera et al. 1996; Boachon et 

al. 2019), and HlFPPS in secretory glands of H. lupulus (Okada et al. 2001). In Zea mays, ZmFPPS3 is 

up-regulated by wounding and elicitor treatment. This regulation allows substrate formation for 
sesquiterpene synthases, and thus produce sesquiterpenes for plant defence (Richter et al. 2015). This 

is also the case in Withania somnifera, in which WsFPPS up-regulation is described after methyl 

jasmonate or salicylic acid treatments, or even after mechanical wounding of leaves (Gupta et al. 2011). 

FPPS activity can also be regulated by FPP, DMAP or (Henry et al. 2015; Park et al. 2016).  

In summary, terpenes production is highly regulated in plants both by transcriptional and post-

transcriptional mechanisms of the MEP and MVA pathways, by a regulation loop of NUDX1 and IPK on 

IPP and IP, but also by reaction chanelling and crosstalks between organelles. It can be regulated by 
organ specificity, and biotic and abiotic stresses. In such a network of regulations, the appearance of a 

new enzymatic function necessarily modifies the production of other essential molecules and possibly 

the function of other enzymes. In this work, we wanted to describe the biochemical adaptation by 

describing the evolution of the NUDX1 gene family in Rosaceae and searching for the enzyme linked to 

a new production of cytosolic GPP. We thus obtained a putative scenario of functionality and evolution 

of NUDX1 and FPPS1 genes and enzymes. 
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Since the discovery and the publication of NUDX1 implication in geraniol biosynthesis in rose petals by 
dephosphorylation of GPP into GP (Magnard et al. 2015), numerous NUDX1 sequences have been 

cloned and sequenced in the BVpam laboratory. However, little was known about these sequences and 

their potential functions in rose scent. Thanks to a cross between OB and a hybrid of R. x wichurana, 

QTL analysis have shown that NUDX1 can also participate to (E,E)-farnesol biosynthesis. In this article 

1, the biosynthesis activities of NUDX1-1a and NUDX1-2 (we will find it to be encoded by NUDX1-2c in 

Article 2) are discussed according to mendelian segregation of the gene and acyclic terpenes, and to 

structural biochemistry of the active site. Indeed, the expressed RwNUDX1-2 was characterized, and 

investigations about protein sequence was performed to understand substrate specify for GPP or FPP. 
One major conclusion of Article 1 was that NUDX1-1a was expressed in OB petals and was involved in 

the production of geraniol, and that NUDX1-2 was expressed in R. x wichurana petals and was involved 

in the production of (E,E)-farnesol. 

In this work, I did the sequencing of NUDX1 gDNAs including the introns, I have compared these 

sequences with that of the reference genomes (GDR, Jung et al. 2019), and I have assigned them to 

the different Nudx1 clades in Rosa.  
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SUMMARY

Roses use a non-canonical pathway involving a Nudix hydrolase, RhNUDX1, to synthesize their monoterpe-

nes, especially geraniol. Here we report the characterization of another expressed NUDX1 gene from the

rose cultivar Rosa x wichurana, RwNUDX1-2. In order to study the function of the RwNUDX1-2 protein, we

analyzed the volatile profiles of an F1 progeny generated by crossing R. chinensis cv. ‘Old Blush’ with R. x

wichurana. A correlation test of the volatilomes with gene expression data revealed that RwNUDX1-2 is

involved in the biosynthesis of a group of sesquiterpenoids, especially E,E-farnesol, in addition to other

sesquiterpenes. In vitro enzyme assays and heterologous in planta functional characterization of the

RwNUDX1-2 gene corroborated this result. A quantitative trait locus (QTL) analysis was performed using

the data of E,E-farnesol contents in the progeny and a genetic map was constructed based on gene markers.

The RwNUDX1-2 gene co-localized with the QTL for E,E-farnesol content, thereby confirming its function in

sesquiterpenoid biosynthesis in R. x wichurana. Finally, in order to understand the structural bases for the

substrate specificity of rose NUDX proteins, the RhNUDX1 protein was crystallized, and its structure was

refined to 1.7 "A. By molecular modeling of different rose NUDX1 protein complexes with their respective

substrates, a structural basis for substrate discrimination by rose NUDX1 proteins is proposed.

Keywords: Nudix hydrolase, rose scent, sesquiterpenes, farnesol, volatile compounds, quantitative trait

locus, Nudix structure.

INTRODUCTION

Rose is one of the most economically important flowers,
with thousands of cultivars mainly used as cut flowers, as
garden ornamentals, and for the perfume industry. Fra-
grance is a very important rose trait that contributes to its
commercial value, beside flower shape and petal color
(Smulders et al., 2019). Hundreds of rose volatile com-
pounds have been identified so far, including terpenoids,
phenylpropanoids, and lipid-derived volatiles (Shalit et al.,
2004). Many of the rose volatiles are commonly used in the

perfume and cosmetic industry (Schwab et al., 2008). For
example, geraniol, one of the major monoterpene alcohols
(C10 terpenoid) from rose petals, is responsible for their
sweet floral rose smell (Chen and Viljoen, 2010). In many
plant species, monoterpene biosynthesis relies on plastid-
localized terpene synthases (TPSs) such as geraniol syn-
thase (GES) (Iijima et al., 2004; Yang et al., 2005; Ito and
Honda, 2007; Masumoto et al., 2010; Dong et al., 2013; Sim-
kin et al., 2013). However, no TPS with GES activity has
been characterized in roses to date. Instead, rose flowers
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use an alternative TPS-independent pathway to produce
geraniol, involving a diphosphohydrolase belonging to the
Nudix enzyme family. The cytosolic Nudix hydrolase
RhNUDX1 converts geranyl diphosphate into geranyl
monophosphate, which is then hydrolyzed to geraniol by
petal-derived phosphatase activity (Magnard et al., 2015).

Nudix hydrolases have been identified in many species,
including archaea, bacteria, eukaryotes, and viruses
(Gunawardana et al., 2009). They were originally defined
as housecleaning enzymes, eliminating toxic metabolites
from the cells (Bessman et al., 1996). Nudix hydrolases
constitute a superfamily of pyrophosphatases catalyzing
the hydrolysis of nucleoside diphosphates linked to differ-
ent X moieties (Bessman et al., 1996). Known substrates of
Nudix hydrolases include nucleoside triphosphates
(dNTPs) and their oxidized derivatives, such as 7,8-dihy-
dro-8-oxo-deoxyguanosine triphosphate (8-oxo-dGTP),
nucleotide sugars and alcohols, dinucleoside polyphos-
phates, dinucleotide coenzymes, and capped mRNAs
(McLennan, 2006). Members of the Nudix hydrolase super-
family all share a conserved Nudix box. This Nudix motif is
formed by a loop–a helix–loop structure, and provides
binding sites for divalent cations (usually Mg2+ or Mn2+)
that play a crucial role in catalysis. The presence of these
cations is required for the activity of the Nudix proteins.
The substrate specificity and the catalytic reaction mecha-
nism are also determined by regions outside of the Nudix
motif (McLennan, 2006; Gunawardana et al., 2009). For
example, enzymes acting on Coenzyme A share a motif
that is located outside of the Nudix box and is involved in
substrate recognition (Kupke et al., 2009). These regions,
together with the Nudix motif, form an a/b/a sandwich
structure, which is also known as the Nudix fold (Mildvan
et al., 2005). This fold is shared by the isopentenyl diphos-
phate isomerases, which, together with Nudix hydrolases
and other proteins, form a larger group. This group was
previously called the Nudix suprafamily (McLennan, 2006),
but is sometimes also referred to as the Nudix superfamily
or the Nudix homology clan (Srouji et al., 2017).

The functions of most Nudix hydrolases remain unclear
in plants. For example, Nudix hydrolase 1 from Arabidop-
sis thaliana (AtNUDX1) was first described as an NADH
pyrophosphatase (Dobrzanska et al., 2002). Under specific
physiological conditions, AtNUDX1 was later shown to be
involved in folate biosynthesis, using dihydroneopterin
triphosphate as a substrate (Klaus et al., 2005). AtNUDX1
was also proposed to be involved in the elimination of
harmful nucleoside- and deoxynucleoside-triphosphate
derivatives such as 8-oxo-dGTP, similar to the MutT pro-
tein from Escherichia coli (Ogawa et al., 2005; Yoshimura
et al., 2007). Recently, AtNUDX1 was shown to play a role
in the regulation of terpene biosynthesis, by acting on
isopentenyl diphosphate (IPP) precursors (Henry et al.,
2018).

The rose Nudix hydrolase RhNUDX1 has been shown to
be involved in the biosynthesis of the monoterpene geran-
iol, which is a major petal volatile in many scented roses
(Magnard et al., 2015). However, besides monoterpenols,
the petals of some rose species, such as Rosa x wichurana,
emit significant amounts of sesquiterpenes (Roccia et al.,
2019). Using a combination of molecular, genetic, and
structural approaches, we characterized a novel NUDX1
protein from R. x wichurana, RwNUDX1-2. Unlike
RhNUDX1, which is involved in monoterpene biosynthesis,
RwNUDX1-2 uses farnesyl diphosphate (FPP) to produce
farnesyl monophosphate (FP) as a precursor of E,E-far-
nesol and other sesquiterpenoids. Furthermore, we solved
the crystal structure of the RhNUDX1 protein and used
molecular modeling to provide structural bases for explain-
ing the different substrate specificities of NUDX1 enzymes
from different rose cultivars and from A. thaliana.

RESULTS

NUDX1 genes in rose belong to a complex gene family

organized in three clades: NUDX1-1 to NUDX1-3

In order to further investigate the functions of Nudix
hydrolases 1 in roses, we generated RNA-seq reads from
four different rose cultivars: R. chinensis cv. ‘Old Blush’
(OB), R. x wichurana (Rw), and two individuals (OW9035
and OW9047) obtained from a crossing between OB and
Rw. Next, we pooled the generated reads together, used
them to assemble a transcriptome de novo, and searched
it to identify independent NUDX1 mRNA transcripts. Sub-
sequently, we used the generated transcriptome as a refer-
ence to map the RNA-seq reads from each sample and to
quantify gene expression. Four sequences were retrieved
that were annotated as NUDX1 (Table S1). Among these
sequences, one corresponded to the sequence previously
characterized from R. x hybrida cv. ‘Papa Meilland’ (PM,
RhNUDX1 in Magnard et al., 2015) and was highly
expressed in the rose petals from OB (fragments per kilo-
base of transcript per million fragments mapped reads
[FPKM]: 9347.2) and OW9047 (FPKM: 6687.3). We named it
NUDX1-1. Another sequence was highly expressed in Rw
(FPKM: 1433.0) and OW9035 (FPKM: 1332.6), but differed
from the first sequence and was named NUDX1-2. It was
noticeable that NUDX1-1 and NUDX1-2 were not highly
expressed together in these four cultivars (Table S1). Two
other sequences were partial and corresponded to another
NUDX1 (NUDX1-3) but were weakly expressed in the rose
petals of the four individuals, as judged by the read counts
in the RNA-seq data. A search in the recently published
genomes was used to retrieve all NUDX1 sequences in OB
(Hibrand Saint-Oyant et al., 2018; Raymond et al., 2018).
NUDX1-1 was present in five highly similar copies on chro-
mosome 2 of the homozygous genomes (collectively
named RcNUDX1-1a, see Figure S1) and one less similar

© 2020 Society for Experimental Biology and John Wiley & Sons Ltd,
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copy on chromosome 4 (RcNUDX1-1b). NUDX1-2 was pre-
sent in two copies in the homozygous genomes
(RcNUDX1-2a and RcNUDX1-2b). A search in the heterozy-
gous genome allowed us to detect a third copy (RcNUDX1-
2c), missing in both homozygous genomes. NUDX1-3 was
present in one copy in the homozygous genomes
(RcNUDX1-3). Using genomic DNA from Rw as template,
several corresponding sequences were amplified and
named RwNUDX1-1, RwNUDX1-2a, RwNUDX1-2b,
RwNUDX1-2c, RwNUDX1-2c’, and RwNUDX1-3 (see
Table S2 for primers). All NUDX1 genes were predicted to
encode proteins of around 150 amino acids that contained
the characteristic Nudix box (Figure 1a) (Bessman et al.,
1996). Percentages of identity of these proteins are pre-
sented in Table S3. RwNUDX1-1 was identical to
RcNUDX1-1b, RwNUDX1-3 was identical to RcNUDX1-3,

and RwNUDX1-2c and c’ were very similar to RcNUDX1-2c.
Alignment of rose NUDX1 protein sequences with
AtNUDX1 and building of a phylogenetic tree confirmed
that the sequences could be separated into three well-sup-
ported clades, named NUDX1-1, NUDX1-2, and NUDX1-3
(Figure 1b). RhNUDX1, RcNUDX1-1a, RcNUDX1-1b, and
RwNUDX1-1 are closely grouped together, as are
RcNUDX1-2a, b, and c and RwNUDX1-2a, b, c, and c’.
RcNUDX1-3 and RwNUDX1-3 are in another cluster, to
which AtNUDX1 is the closest. As NUDX1-1 and NUDX1-2
were highly expressed in petals (Table S1), we decided to
focus on these two NUDX1 sequences.

NUDX1-1a expression is correlated with the production of

geraniol and other monoterpenoids while NUDX1-2

expression is correlated with the production of E,E-

farnesol and other sesquiterpenoid compounds

OB and Rw have distinct scent profiles: at the open flower
stage (stage four according to Bergougnoux et al., 2007),
OB produced mainly 1,3,5-trimethoxybenzene, geraniol,
dihydro-b-ionol, and germacrene D, while Rw was rich in
2-phenylethanol (2PE) and E,E-farnesol (Table 1). In order
to study the potential functions of NUDX1 genes, the
expressions of NUDX1-1 and NUDX1-2 were analyzed in
OB and Rw and in an F1 progeny from crosses between OB
and Rw genotypes. This mapping population (OW) con-
sists of a full-sib family of 151 hybrids (Hibrand Saint-
Oyant et al., 2018). A small subset of this rose population,
18 out of 151 rose plants, including the parents OB and
Rw, was subjected to quantitative reverse transcriptase-
PCR (qRT-PCR) to determine the transcript levels of
NUDX1-1 and NUDX1-2 across the OW population at stage
4. It was already known that RhNUDX1 was responsible for
the production of geraniol in modern roses (Magnard
et al., 2015). The NUDX1-1 gene was highly expressed in
OB and in 10 hybrids of the progeny (OW9007, OW9011,
OW9013, OW9021, OW9024, OW9047, OW9074, OW9099,
OW9149, and OW9204), while NUDX1-2 was expressed in
Rw and in 10 hybrids of the progeny (OW9007, OW9013,
OW9018, OW9021, OW9024, OW9035, OW9037, OW9082,
OW9099, and OW9149) (Figure 2a). Sequencing of the PCR
products showed that only RcNUDX1-1a and RwNUDX1-2c
were expressed. No correlation was found between the
expression of NUDX1-1 and NUDX1-2, suggesting that
they have independent functions. Indeed, NUDX1-1 and
NUDX1-2 were expressed independently in different indi-
viduals, or together as, for example, in OW9099 and
others. In addition, the expression levels of NUDX1-2 were
generally lower than the expression levels of NUDX1-1
(Wilcoxon rank-sum test, P < 0.01). Differential expression
of NUDX1-2 across the hybrids, with a known volatile-asso-
ciated function of RhNUDX1 (Magnard et al., 2015), could
indicate that NUDX1-2 was also associated with the pro-
duction of one or more volatiles in rose.

(a)

(b)

Figure 1. (a) Alignment of amino acid sequences of R. x hybrida cv. ‘Papa
Meilland’ (RhNUDX1), R. chinensis cv. ‘Old Blush’ (RcNUDX1-1a, RcNUDX1-
1b, RcNUDX1-2a, RcNUDX1-2b, RcNUDX1-2c, and RcNUDX1-3), R. x wichu-
rana (RwNUDX1-1, RwNUDX1-2a, RwNUDX1-2b, RwNUDX1-2c, RwNUDX1-
2c’, and RwNUDX1-3), and A. thaliana (AtNUDX1). The Nudix box corre-
sponding to the consensus sequence Gx5Ex7REUxEExGU (x, any amino
acid; U, bulky hydrophobic amino acid, normally Ile, Leu, or Val) is indi-
cated. (b) Unrooted neighbor joining tree displaying the relationships of
rose NUDX1 proteins with AtNUDX1 from A. thaliana (AtNUDX1). Align-
ment and tree were constructed using Geneious! software (version 10.2.3,
Biomatters, Auckland, New Zealand), and the bootstrap values are shown
as a percentage from 1000 bootstraps replicates.
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To study this hypothesis, the correlation between the
expression levels of the NUDX1 genes and the volatile pro-
files of these 16 selected rose hybrids and their parents
was analyzed. Spearman’s rank correlation test was per-
formed on the expression data of NUDX1-1 and NUDX1-2
with the volatile compounds data from the 18 samples.
GC-MS analysis results and correlations are shown in Data
S1. The volatile compounds that showed significant corre-
lation with either NUDX1-1 or NUDX1-2 expression levels
are presented in Figure 2b. NUDX1-1 expression had posi-
tive correlation with the following monoterpenes: neral
(P ≤ 0.001), geranial (P ≤ 0.001), b-myrcene (P ≤ 0.001),
geraniol (P ≤ 0.001), Z-b-ocimene (P ≤ 0.001), E-b-ocimene
(P ≤ 0.01), and limonene (P ≤ 0.05). NUDX1-2 expression
showed positive correlation with the following sesquiter-
penes: E,E-farnesol (P ≤ 0.0001), E,E-farnesal (P ≤ 0.001),
E-b-farnesene (P ≤ 0.001), E,E-a-farnesene (P ≤ 0.001),
Z,E-a-farnesene (P ≤ 0.001), E-nerolidol (P ≤ 0.01), allofar-
nesene (P ≤ 0.01), a-bisabolene (P ≤ 0.05), and farnesyl
acetate (P ≤ 0.05). The strongest correlation was observed
with E,E-farnesol (Data S1). This result showed that
NUDX1-2 is potentially involved in the production of
sesquiterpenoids in rose, in particular E,E-farnesol.

Quantitative trait locus (QTL) mapping for E,E-farnesol

content and mapping of the NUDX1-2 gene

We detected a major QTL for geraniol biosynthesis in the
OW progeny on the female linkage group 2, which co-
localized with RhNUDX1 (Magnard et al., 2015). In order to
further support the hypothesis that RwNUDX1-2 was

involved in the production of E,E-farnesol and other
sesquiterpenoids, we analyzed the distribution of the vola-
tiles produced in petals of all the progeny of the cross
between OB and Rw. Petals from 148 and 132 individuals
of the progeny were collected in 2014 and 2015, respec-
tively. Petals were subjected to hexane extraction and
extracts were analyzed by GC-MS (Data S2). In total, 104
compounds were identified among 153 individuals (includ-
ing the parents of the population, OB and Rw), but only
100 compounds were recovered in the samples collected
in 2015. The compounds with the highest correlation coef-
ficient with NUDX1-2 expression (Figure 2b, E,E-farnesol,
E,E-farnesal, E-b-farnesene, E,E-a-farnesene, and Z,E-a-far-
nesene) were chosen for further analyses. E,E-farnesol and
other sesquiterpenoid contents appeared to segregate in
the progeny (Figure S2). Due to the non-normal distribu-
tion of the variance residue of data, a log transformation
was applied to make the variance residue distribution
normal. The raw data were analyzed first by the non-
parametric Kruskal–Wallis rank-sum test (KW) (Table S4).
Interval mapping analysis was then performed on the

Table 1 Major volatile compounds extracted from petals of R. chi-
nensis cv. ‘Old Blush’ (OB) and R. x wichurana (Rw) at fully open
flower stage (stage four) and analyzed by GC-MS

Compounds

Cultivar

OB Rw

Z-3-Hexenyl acetate 5.55a nd
E-2-Hexenal 1.21 0.48
Z-3-Hexenol nd 0.77
Geraniol 10.96 nd
Geranial 4.43 nd
Germacrene D 8.42 nd
d-Cadinene 1.24 nd
E-b-Farnesene nd 0.75
E,E-Farnesol nd 2.17
Farnesyl acetate nd 0.83
2PE nd 73.04
2PEA nd 0.53
TMB 27.71 nd
Dihydro-b-ionol 9.90 nd

TMB, 1,3,5-trimethoxybenzene; 2PE, 2-phenylethanol; 2PEA, 2-
phenylethyl acetate; nd, not detected.
aValues represent the relative proportion of the total amount (av-
erage value of 7–9 different replicates from both 2014 and 2015).

(a)

(b)

Figure 2. (a) Gene expression levels of NUDX1-1 and NUDX1-2 in 16 F1
individuals from a cross between R. chinensis cv. ‘Old Blush’ (OB) and R. x
wichurana (Rw) and their parents. Transcript levels of NUDX1-1 and
NUDX1-2 were normalized to three housekeeping genes coding for a-tubu-
lin, elongation factor 1-a, and translationally controlled tumor protein
according to (Dubois et al., 2012). Error bars indicate standard deviation
(SD) obtained from two independent biological replicates with at least two
technical replicates each. A significant difference was found between the
medians of the expression levels of NUDX1-1a and NUDX1-2 (Wilcoxon
rank-sum test, P < 0.01). (b) Heatmap correlation (Spearman’s rank correla-
tion from !1 to +1) of NUDX1-1 and NUDX1-2 expressions with some of the
volatile scent compounds that showed significant correlation. *P ≤ 0.05;
**P ≤ 0.01; ***P ≤ 0.001. The complete correlation heatmap is available in
Data S1.
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log-transformed data, for the chromosome regions on
which QTLs were detected by KW both in 2014 and 2015
(Table S5). A step size of 1 cM was chosen to find regions
with potential QTL effects, i.e., where the LOD score was
greater than the threshold. QTLs were detected on linkage
group B7 for all the five compound contents (Table S5 and
Figure S3). For example, in 2014, E,E-farnesol biosynthesis
was detected on the male linkage group B7 (LG B7) at posi-
tion 51.173 cM (with the marker Rh12GR_21458_519) with
a LOD score higher than 20, explaining 49.9% of the
observed variation in E,E-farnesol content (Figure 3b).
Next, we developed a genetic marker for RwNUDX1-2, and
mapped the gene on the LG B7 at the same position of the
Rh12GR_21458_519_marker (Figure 3a). In the reference
sequence (homozygous genome from OB, Hibrand Saint-
Oyant et al., 2018; Raymond et al., 2018), no NUDX1-2
sequence was detected in this region (Figure S4). In the
heterozygous sequence of OB (Raymond et al., 2018),
RcNUDX1-2c (RcHt_S2031.3) is located on the scaffold
2031. The scaffold 2031 is syntenic with a region of chro-
mosome 7 (between 36.2 and 37.0 Mb, Figure S4) at a
position close to the peak of the QTL (marker
Rh12GR_21458_159 located at position 4.38 Mb of the
chromosome 7). These results clearly demonstrate that
NUDX1-2c co-localized with the QTL for E-E-farnesol
production.

Functional characterization of recombinant NUDX1

proteins in vitro and in vivo

To test the function of NUDX1-2, in vitro protein assays
and in vivo transient transformation assays were per-
formed. For the protein assay, five NUDX1 proteins were
expressed and purified using a bacterial Rosetta! system,
including two NUDX1-1 sequences from OB (RcNUDX1-1a
and RcNUDX1-1b), one from Rw (RwNUDX1-2c), one from
PM (RhNUDX1), and one from A. thaliana (AtNUDX1). Pri-
mers for gene cloning into expression vectors are listed in
Table S2. Each purified protein was incubated with five
potential substrates: GPP, FPP, IPP, dGTP, and 8-oxo-dGTP;
the results are presented in Table 2.

All NUDX1 proteins could convert GPP, FPP, and IPP
into related products, but only AtNUDX1 could use dGTP
and 8-oxo-dGTP as substrates (Table 2). Among all
NUDX1-1 proteins, RcNUDX1-1b and AtNUDX1 exhibited
higher kcat/KM values on both GPP and FPP than those of
the other rose proteins, indicating that AtNUDX1 and
RcNUDX1-1b could use these substrates with higher effi-
ciency in vitro. Most NUDX1-1 proteins had similar kcat/
KM values for GPP and FPP, indicating that they had simi-
lar reaction efficiencies on these two substrates in vitro.
For RwNUDX1-2c, however, the kcat/KM value for FPP was
140 times higher than that for GPP, indicating that
NUDX1-2 preferred FPP over GPP in vitro. In addition, all
proteins accepted IPP as substrate. Unlike AtNUDX1, rose
NUDX1 proteins did not accept dGTP and 8-oxo-dGTP as
substrates. However, due to the liquid chromatography
LC-MS method used for activity measurements, kinetics
parameters could not be determined for IPP and 8-oxo-
dGTP substrates.

In order to obtain more evidence for the function of
RwNUDX1-2, transient transformation of RwNUDX1-2c
(35S:RwNUDX1-2c) in Nicotiana benthamiana leaves was
conducted, in parallel with transient transformation of
RhNUDX1 (35S:RhNUDX1, positive control) and GFP (35S:
GFP, negative control). Three days after transformation,
infiltrated leaves were collected and freeze-dried, followed
by extraction and analysis of geraniol and farnesol glyco-
sides using ultrahigh-performance LC-MS. Very small
quantities of geraniol and farnesol glycosides were found
in the leaf samples that were infiltrated with 35S:GFP con-
struct. A significant amount of geraniol glycosides was
detected in the leaf samples that were infiltrated with 35S:
RhNUDX1 construct (Student t test, P ≤ 0.001) (Figure 4).
The amounts of farnesol glycosides were of the same
order as that of the control leaves. Interestingly, significant
amounts of both geraniol and farnesol glycosides were
found in the leaf samples that were infiltrated with 35S:
RwNUDX1-2c (Student t test, P ≤ 0.001), indicating that the
RwNUDX1-2 protein is involved in the production of far-
nesol and geraniol in vivo.

(b)(a)

Figure 3. (a) Genetic map of the male linkage group 7, based on SNP and
RwNUDX1-2 markers. The genetic region where the QTL for E,E-farnesol
production is located is enlarged to see the position of the markers. (b) A
LOD score curve obtained from interval mapping analysis of E,E-farnesol
contents in flowers on the male linkage group B7. The dashed line indicates
the genome-wide significant threshold based on a permutation test. The
marker framed in pink (Rh12GR_21458_519) indicates the highest LOD
obtained in this analysis. The unit for the locus axis is centimorgan (cM).
Volatile contents were analyzed in 2014.
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Determination of the crystal structure of the rose NUDX1-

1 protein

As demonstrated above, RhNUDX1, RcNUDX1-1a,
RcNUDX1-1b, RwNUDX1-2c, and AtNUDX1 can interact
with FPP, GPP, and IPP (Table 2). However, rose NUDX1
seem to have lost their function on oxidized nucleotides
(e.g., 8-oxo-dGTP). Moreover, NUDX1-2 seems to be more
active on FPP than on GPP, which is not the case for the
other rose proteins. In order to study the NUDX1–substrate
interactions and to find out if the 3D structure was respon-
sible for the different substrate specificities, the crystalliza-
tion of rose NUDX1 protein was carried out. NUDX1
protein requires cations for the catalytic reaction. Divalent
cations were therefore excluded during crystallization
assays to inactivate the enzyme and to capture the sub-
strate bound to the enzyme. The structure of RhNUDX1,
the first structure of a Nudix enzyme from rose, was thus
solved in the absence and in the presence of the GPP sub-
strate (Figure 5a). The RhNUDX1 structure without any
substrate was refined at 1.7 !A resolution (Table S6) with

one molecule per asymmetric unit in the protein crystal. In
contrast to AtNUDX1, RhNUDX1 seems to be monomeric
in solution, as the analysis using PISA (Krissinel and Hen-
rick, 2007) of intermolecular contacts in the crystal did not
identify assemblies of higher order. RhNUDX1 harbors the
Nudix fold (a/b/a sandwich structure). The GPP-bound
structure of RhNUDX1 was obtained by flash-soaking crys-
tals of RhNUDX1 in a solution of GPP and was refined at
1.45 !A resolution (Table S6). No structural difference was
detected when comparing the structures of RhNUDX1 with
and without GPP (root mean square deviation [RMSD] of
Ca, 0.19 !A) (Figure 5a). The X-loop (amino acids from posi-
tion 86 to 90), which connects b5 and b6 strands and which
is less conserved in the NUDX1 family, has been previ-
ously proposed to carry the substrate specificity (Srouji
et al., 2017). This loop seems to be more dynamic in the
presence of GPP and does not participate in the binding of
GPP (Figure 5a). The GPP substrate showed a well-defined
electron density map in the active site of RhNUDX1
(Figure 5b).

Table 2 Kinetic parameters of NUDX1 proteins: RcNUDX1-1a, RcNUDX1-1b, RhNUDX1, RwNUDX1-2c, and AtNUDX1, with several potential
substrates

Protein Substrates Activitiesa KM (M) kcat (sec
!1) kcat/KM (M!1 sec!1)

RcNUDX1-1a GPP + 1.96 9 10!6 (1.36 9 10!7) 0.20 (0.09) 1.02 9 105

FPP + 4.00 9 10!6 (1.01 9 10!6) 0.73 (0.48) 1.82 9 105

IPP + n.c.b n.c. n.c.
dGTP ! n.d.c n.d. n.d.
8-oxo-dGTP ! n.d n.d. n.d.

RcNUDX1-1b GPP + 2.61 9 10!7 (1.10 9 10!7) 0.30 (0.09) 1.15 9 106

FPP + 5.55 9 10!7 (6.86 9 10!8) 1.37 (0.81) 2.47 9 106

IPP + n.c. n.c. n.c.
dGTP ! n.d. n.d. n.d.
8-oxo-dGTP ! n.d. n.d. n.d.

RhNUDX1 GPP + 1.13 9 10!6 (4.13 9 10!7) 0.29 (0.11) 2.57 9 105

FPP + 1.54 9 10!6 (1.88 9 10!7) 1.21 (0.74) 7.86 9 105

IPP + n.c. n.c. n.c.
dGTP ! n.d. n.d. n.d.
8-oxo-dGTP ! n.d. n.d. n.d.

RwNUDX1-2 GPP + 8.78 9 10!6 (9.01 9 10!7) 0.21 (0.09) 2.39 9 104

FPP + 4.95 9 10!7 (7.90 9 10!8) 1.67 (1.51) 3.37 9 106

IPP + n.c. n.c. n.c.
dGTP ! n.d. n.d. n.d.
8-oxo-dGTP ! n.d. n.d. n.d.

AtNUDX1 GPP + 1.38 9 10!7 (4.86 9 10!8) 0.26 (0.10) 1.88 9 106

FPP + 4.84 9 10!7 (1.05 9 10!7) 1.91 (0.45) 3.95 9 106

IPP + n.c. n.c. n.c.
dGTP + n.c. n.c. n.c.
8-oxo-dGTP + n.c. n.c. n.c.

Data are presented as the means of three to six replicates using native protein, and the standard deviation (SD) is indicated between brack-
ets. FPP, farnesyl diphosphate; GPP, geranyl diphosphate; dGTP, deoxyguanosine triphosphate; IPP, isopentenyl diphosphate; 8-oxo-dGTP,
7,8-dihydro-8-oxo-deoxyguanosine triphosphate.
aActivities indicate the interaction between the protein and the substrate, + means interaction was detected and ! means no interaction
was detected.
bn.c., not calculated, which means that there was a detectable activity but data could not be used for calculation.
cn.d., not detected, which means that activity was too low to be detected with given substrates.
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The structure of the RhNUDX1/GPP complex is remark-
ably similar to the structure of the AtNUDX1/GPP complex
(PDB code 5GP0, Liu et al., 2018), with an RMSD of Ca
atoms of 0.75 !A (Figure 5c). In these structures, GPP is
nearly at the same position. Both structures were solved in
the absence of cations (due to the absence of cations in
the crystallization assays for RhNUDX1 and an E56A muta-
tion in the Nudix motif of AtNUDX1 to prevent cation bind-
ing). In the RhNUDX1/GPP complex, the two phosphate
groups of GPP make polar contacts with residues H49, Y94,
S47, and R34 and the aliphatic chain of GPP sits in a
hydrophobic pocket (Figure 6a). Although GPP is bound in
the active site, it is not in a position to be hydrolyzed, as
suggested by the structure of complexes of AtNUDX1/IPP
(Henry et al., 2018) and AtNUDX1/8-oxo-dGTP solved with
Mg2+ bound in the active of the enzymes (Jemth et al.,
2019). Therefore, we turned to molecular modeling to fur-
ther investigate and understand the substrate discrimina-
tion by rose NUDX1 proteins.

Modeling of rose NUDX1 proteins

From the newly determined RhNUDX1 crystal structure,
we conducted molecular modeling on rose NUDX1 pro-
teins, based on the available crystal structures of AtNUDX1
complexed with 8-oxo-dGTP (Jemth et al., 2019), with IPP
(Henry et al., 2018), and with GPP (Liu et al., 2018), of
E. coli MutT complexed with 8-oxo-dGMP (Nakamura
et al., 2010), and of human MTH1 complexed with 8-oxo-

GMP (Svensson et al., 2011). Models of others Rose
NUDX1 were obtained by structural homology from crystal
structures of NUDX1 proteins. The amino acid sequences
of rose NUDX1 proteins were first aligned with AtNUDX1,
MutT, and MTH1 according to sequence conservation and
secondary structure and manually adjusted in order to
have a correct structure-based sequence alignment (Fig-
ure S5). The AtNUDX1/IPP (PDB code 6DBZ) and AtNUDX1/
8-oxo-dGTP (PDB code 6FL4) structures contain two Mg2+

ions in the active site, stabilizing the interaction with their
substrates. These structures were used to position Mg2+

ions and ligands in the active sites of NUDX1 proteins.
Molecular dynamics (MD) trajectories were calculated for
20 ns and were analyzed for Ca RMSD, protein residue
fluctuation (RMSD), ligand position RMSD, the distance
between Mg2+ and the phosphate group, and predicted
binding energy (Figure S6 and Table S7). The values calcu-
lated for the analysis of MD trajectories showed limited
variations over time, suggesting that the structures mod-
eled after energy minimization and 20 ns MD represent
stable ligand-bound states. The representative structures,
corresponding to the mean binding energy at the end of
the MD trajectories, were compared.

Figure 4. Patterns of terpenol glycoside accumulation following transient
expression of NUDX1 genes in N. benthamiana. Leaves of N. benthamiana
were transformed with a NUDX1 construct (35S:RwNUDX1-2c or 35:
RhNUDX1) or with the 35S:GFP control. For each construct, eight indepen-
dent biological replicates were used to quantify relative amounts of ter-
penol glycosides. Relative amounts are given as mean peak areas
corresponding to the [C10H17]+ ion (m/z 137.1325) for geranyl glycosides
and to the [C15H24]+ ion (m/z 205.1952) for farnesyl glycosides (expressed
as arbitrary units); bars indicate the standard error. Means with different let-
ters are significantly different (Student’s t test, P < 0.01).

(a) (b) (c)

Figure 5. (a) Superimposition of the RhNUDX1/GPP complex (pink) and apo
RhNUDX1 (blue). The X-loop for the apo structure is colored in orange. (b)
Structure of the RhNUDX1/GPP complex. The electron density map con-
toured at 1.0 r is shown around the GPP ligand colored in cyan. The sec-
ondary structure elements are numbered according to Figure S5, and the
NUDX box (part of b4-loop-a1-loop) and the X-loop are colored in red and
yellow, respectively. (c) Superimposition of RhNUDX1/GPP (pink) and
AtNUDX1/GPP (PDB code 5GP0) (light blue). GPP is shown as sticks in cyan
(RhNUDX1) and blue (AtNUDX1).

(a) (b)

Figure 6. Comparison of GPP ligand position (a) in the crystal structure of
RhNUDX1 and (b) in the model obtained by molecular modeling. The ger-
anyl moiety is shown in cyan and the phosphate moiety in orange. Mg2+

ions are shown in green. The side chains of the residues of the ligand bind-
ing site are shown in sticks.
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The analysis of averaged values produced during MD
simulations (Table S7) show that AtNUDX1 exhibits the
lowest predicted binding energy for 8-oxo-dGTP, whereas
RwNUDX1-2c shows the lowest predicted binding energy
for FPP among the rose NUDX. This indicates that
AtNUDX1 presents a higher affinity for 8-oxo-dGTP and
RwNUDX1-2C for FPP, which is in good agreement with
the data in Table 2. MD models show a good fit with
known crystal structures. Indeed, in models of AtNUDX1/8-
oxo-dGTP and AtNUDX1/GPP, ligands are very close to
their position in the crystal structures (PDB codes 6FL4 and
6DBZ, respectively) (Figure S6a,d). For the RhNUDX1/GPP
model, although the ligand is nearly at the same position
(Figure 6b and Figure S7e), GPP is moved closer to the
Mg2+ coordination sites, confirming that in the crystal
structures of RhNUDX1/GPP and AtNUDX1/GPP (5GP0),
GPP is too far from the Mg2+ coordination sites for hydroly-
sis. Thus, MD provides a model for the RhNUDX1/Mg2+/
GPP complex that is relevant for the hydrolysis of the
phosphate group and compatible with geranyl chain posi-
tion (Figure 6b).

The binding site pockets with their equivalent amino
acids for AtNUDX1, RhNUDX1, and RwNUDX1-2c are
shown in Figure S7. In order to find differences in the
active sites of these proteins that could explain their sub-
strate preferences, only amino acids which are not con-
served in these proteins are discussed below. Five
residues that are not conserved and that can account for
substrate preferences were identified in the substrate
pocket of these proteins, namely, A11, F15, G40, S89, and
S91 in AtNUDX1; A18, C22, S47, A96, and F98 in
RhNUDX1; and V19, C23, G48, V97, and S99 in RwNUDX1-
2c. In addition, it has been shown in AtNUDX1 that N76
and S89, which are in the binding site pocket, play a role in
8-oxo-dGTP hydrolysis (Jemth et al., 2019). The position
corresponding to N76 is conserved in all NUDX studied
(Figure S5, N83 in RhNUDX1). However, there is no serine
at the position corresponding to S89 for rose enzymes.
This position is occupied either by an alanine residue (A96
in RhNUDX1, RcNUDX1-1a, and RcNUDX1-1b) or a valine
residue (V97 in RwNUDX1-2c). This amino acid substitu-
tion may account for a lower activity towards 8-oxo-dGTP
and could explain differences in substrate preferences.
Indeed, S89 establishes a hydrogen bond with oxygen
from 8-oxo-dGTP (Figure S7), which cannot happen with
V97 or A96.

Moreover, the binding pocket is slightly different in
RwNUDX1-2c compared to other NUDX1. RwNUDX1-2c
has a valine residue (V97) which is bulkier than the corre-
sponding alanine present in other rose NUDX. We already
mentioned that this position was shown to be important
for interaction with 8-oxo-dGTP in AtNUDX1 (Jemth et al.,
2019). In RwNUDX1-2c, V97 may render the binding pocket
more hydrophobic. RwNUDX1-2c also has a larger ligand

binding site and could fit the longer FPP aliphatic chain.
The ligand binding pocket is narrower in AtNUDX1 and in
RhNUDX1 due to the presence of F15 and F98, respec-
tively, while these positions are occupied by C23 and S99
in RwNUDX1-2c. Therefore, a subtle combination of amino
acids in the substrate binding pocket may account for the
observed substrate specificities.

DISCUSSION

Not so long ago, NUDX1 proteins were generally consid-
ered as ‘house cleaning’ enzymes (Bessman et al., 1996;
Yoshimura et al., 2007; Bessman, 2019). Indeed, NUDX1
proteins from E. coli and humans have been shown to play
major roles in removing oxidized nucleotides (Setoyama
et al., 2011; Gad et al., 2014). The human protein MTH1 is
critical for cancer cell survival where oxidative damage is
very high, and targeting this protein is a highly promising
anticancer strategy (Carter et al., 2015). However, involve-
ment of a NUDX1 protein in scent production has only
been described in roses recently (Magnard et al., 2015).
Since this initial discovery, several studies have shown that
in plants, these proteins may have evolved to fulfill other
roles, apart from sanitizing the cell from oxidized nucleo-
tides. In Arabidopsis, two Nudix hydrolases, among which
AtNUDX1, were shown to play a role in terpene biosynthe-
sis, by regulating the ratio of their precursors, IPP and
dimethylallyl diphosphate (Henry et al., 2018). It is not
known if the two functions, sanitization of nucleotide pools
and regulation of terpene biosynthesis, are both performed
by AtNUDX1 in vivo, perhaps in different tissues. It was
shown that AtNUDX1 activity on 8-oxo-dGTP is poor com-
pared to that of human MTH1 (Jemth et al., 2019). Never-
theless, AtNUDX1 is the only one of 25 Nudix hydrolases
present in Arabidopsis able to act on mutagenic derivatives
of dGTP and GTP and it is fully able to complement MutT
mutation in E. coli (Ogawa et al., 2005; Ogawa et al., 2008).

In this work, we investigated the molecular bases of the
peculiar scent composition of Rw, whose petals emit sig-
nificant amounts of E,E-farnesol and other sesquiterpenes.
To this end, we characterized F1 individuals in a cross
between OB and Rw, two rose cultivars with striking differ-
ences in scent composition. We found that only two genes
were highly expressed in the petals of the parental lines
OB and Rw, namely, RcNUDX1-1a and RwNUDX1-2c,
respectively. Expression of the RcNUDX1-1a gene corre-
lated with the production of geraniol in the OW progeny.
This finding was expected because RcNUDX1-1a was very
similar to RhNUDX1 from R. x hybrida cv. ‘Papa Meilland’,
which has been shown to be responsible for the biosynthe-
sis of monoterpenes, especially geraniol in this highly fra-
grant cultivar (Magnard et al., 2015). Interestingly,
expression of RwNUDX1-2c correlated with the production
of E,E-farnesol and other sesquiterpenoids in the OW pro-
geny. A major QTL governing the production of E,E-
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farnesol was detected, which co-localized with RhNUDX1-
2c, providing strong evidence that polymorphism at the
NUDX1-2c locus was responsible for the difference of E,E-
farnesol production in the OW progeny. We also have
shown that there is a link between NUDX1-2 expression
and the presence of linear sesquiterpenes such as E,E-⍺-
farnesene and E-b-farnesene. As QTLs for these com-
pounds co-localized with the QTL for farnesol, we can
assume that this locus is involved in the biosynthesis of
these compounds as well. We do not have mechanistic
data to explain this finding. FP could be converted to these
products by an uncharacterized pathway. Alternatively,
these compounds could be degradation products arising
from farnesol in planta or during the extraction process. A
terpene synthase has been previously shown to be respon-
sible for the production of the sesquiterpene germacrene D
in roses (Guterman et al., 2002). It is interesting to see that
expression of NUDX1-2 in the progeny did not correlate
with all sesquiterpenes; for example, it was not correlated
with the production of germacrene D (Data S1). Therefore,
it seems that in rose petals, two different pathways may
operate for the production of sesquiterpenoids.

In vitro assays showed that the recombinant rose
NUDX1 proteins could hydrolyze GPP, FPP, and IPP into
GP, FP, and IP respectively. GP has been shown to be fur-
ther hydrolyzed by an unidentified phosphatase (Magnard
et al., 2015), which may also be the case for FP and IP. The
RcNUDX1-1a and RcNUDX1-1b proteins did not show a
marked preference for GPP or FPP in vitro. Conversely,
RwNUDX1-2 used FPP more efficiently than GPP. Expres-
sion of RhNUDX1 led to the accumulation of geranyl glyco-
sides in tobacco leaves, without detectable biosynthesis of
farnesyl glycosides, suggesting a strict selection of the
GPP substrate in vivo. Conversely, expression of
RwNUDX1-2 led to accumulation of both farnesyl and ger-
anyl glycosides, indicating a relaxed substrate preference
in vivo, which may reflect differences in GPP and FPP sub-
strates availability in N. benthamiana leaves. Indeed, GPP
and FPP availabilities in the Rw rose cultivar could be
major factors impacting RwNUDX1-2c substrate preference
in planta. Nevertheless, experiments in N. benthamiana
showed that the biosynthesis of significant amounts of E,
E-farnesol derivatives in vivo was specific to the
RwNUDX1-2 protein. Taken together, the activity of the
RwNUDX1-2 in vitro and in planta and the co-localization
of the corresponding gene with a QTL for E,E-farnesol
accumulation are consistent with RwNUDX1-2 being
involved in the biosynthesis of E,E-farnesol and other
sesquiterpenoids in the petals of Rw.

E,E-farnesol is a sesquiterpene alcohol with a mild, deli-
cate, sweet-oily odor (Lapczynski et al., 2008). It is used as
an ingredient for perfume and cosmetic products, such as
deodorants and bath products. It may be present in high
amounts in petals of some flowers such as Actinidia

chinensis (Green et al., 2012). In plants, only five farnesol
synthases have been characterized so far (Schnee et al.,
2002; Cheng et al., 2007; Parveen et al., 2015; Chen et al.,
2016; Rusdi et al., 2018), and three of them produce a
blend of sesquiterpenes when provided with the substrate
FPP. In the present work, we show that, besides terpene
synthases, Nudix hydrolases may be involved in the
biosynthesis of sesquiterpenes, as shown previously in the
case of monoterpenes (Magnard et al., 2015).

Though several crystal structures of plant NUDX have
been solved with various substrates, the structural basis
for substrate preference is still under investigation. In this
paper, MD helped to understand the catalytic mechanism
of NUDX1. Key amino acids for substrate binding were
identified. Based on the results from MD, two positions
corresponding to S89 and S91 in AtNUDX1, A96 and F98-in
RhNUDX1, and V97 and S99-in RwNUDX1-2c could be
essential to explain RwNUDX1-2c preference for FPP. How-
ever, although the important S89 in AtNUDX1, which is H-
bonded to 8-oxo-dGTP, is absent in the rose NUDX, the
structural modeling could not fully explain why AtNUDX1
is the only enzyme which can hydrolyze 8-oxo-dGTP.
Sequence comparison of RcNUDX1-1a, RcNUDX1-1b,
RhNUDX1, RwNUDX1-2c, and AtNUDX1 also revealed dif-
ferences in the X-loop region (86–91 with sequence
LDEAKP in RhNUDX1) (Figure S5). This loop, which is well
defined in the RhNUDX1 apo structure but which is disor-
dered in RhNUDX1-GPP crystal structures, is one of the
most flexible parts during MD simulations, as plotted on
the protein Ca fluctuation diagram (Figure S6). It may also
interact with the substrate, but the precise role of the
X-loop is not known. It has been suggested that modifica-
tions within this region could alter substrate specificity,
thus allowing for altered substrate specificity and neofunc-
tionalization (Srouji et al., 2017). NUDX1 proteins can have
very different binding mechanisms even if they use the
same substrates. It has been shown that the substrate-in-
teracting amino acids are completely different when com-
paring MTH1 and MutT (Svensson et al., 2011), which
makes the identification of key amino acids quite compli-
cated. Although there are no specific residues in the X-loop
which interact with the ligand, the flexibility and dynamics
of this loop may still be important for ligand turnover.

We showed here that in Rw, the NUDX1-2 protein plays
a role in the biosynthesis of sesquiterpenoid scent com-
pounds, as a result of functional diversification in the
Nudix hydrolase gene family. It remains to be established
whether the NUDX1-dependent scent biosynthetic path-
ways are specific to roses, as they have not been character-
ized in other plant species so far. In many plants, such as
rice (Oryza sativa) and maize (Zea mays), biosynthesis of
farnesol is catalyzed by typical terpene synthases (Schnee
et al., 2002; Cheng et al., 2007). It is interesting to note that
farnesol is a precursor of the juvenile hormone in insects
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(Bell!es et al., 2005; De Loof and Schoofs, 2019). In some of
these insects, it has been shown that farnesol is derived
from FPP with the assistance of phosphatases from the
haloalkanoic acid dehalogenase superfamily (Cao et al.,
2009; Nyati et al., 2013). In recent years, the importance of
the convergence of multiple unrelated metabolic pathways
towards the biosynthesis of a single compound has been
increasingly acknowledged (Sun et al., 2016). The biosyn-
thesis of farnesol is therefore another striking example of
such metabolic convergence.

EXPERIMENTAL PROCEDURES

Plant material

A population of 151 F1 progeny was generated by crossing two
diploid roses (Hibrand Saint-Oyant et al., 2018): R. chinensis cv.
‘Old Blush’ (OB, maternal plant) and R. x wichurana (Rw, paternal
plant) originated from the Bagatelle garden (Paris, France). All
these rose plants were grown outside at INRA Angers (Experimen-
tal Unit Hortis, Angers, France). Petals of all descendants were col-
lected between May and July in 2014 and 2015. Progeny (148 and
132 individuals) were collected in 2014 and 2015, respectively.
This difference in sample size is because some roses that were
available in 2014 were dead in 2015 or too young to have flowers
in 2014 and became capable of blooming in 2015. Collected petals
were subjected to hexane extraction and extracts were analyzed
by GC-MS. Transient transformation assays were performed on
the leaves of 4-week-old N. benthamiana plants that were grown
inside a climate room (21 ! 1°C, 16-h light period and 8-h dark
period).

Total RNA extraction and primary cDNA synthesis

Sixteen out of the 156 progeny and the two parents were selected
for total RNA extraction: OW9007, OW9011, OW9013, OW9018,
OW9021, OW9024, OW9035, OW9037, OW9047, OW9049,
OW9069, OW9074, OW9082, OW9099, OW9149, OW9204, OB, and
Rw. The rose petals of these selected plants were collected and
frozen immediately in liquid nitrogen. Prior to RNA extraction, fro-
zen rose petals were ground to fine powder in liquid nitrogen
using a sterilized mortar and pestle. Approximately 300–400 mg
(3–4 tubes containing 100 mg ! 15%) of frozen ground petals was
used in order to obtain sufficient amounts of total RNA. Total RNA
was extracted using the NucleoSpin! RNA plant kit (MACHEREY-
NAGEL, D€uren, Germany) according to the manufacturer’s instruc-
tions with slight modification as follows: before adding the lysis
buffer (RAP), a spatula tip (around 5% of the sample weight) of
polyvinylpyrrolidone (PVP-40, Sigma-Aldrich, St. Louis, USA) and
ethylhexadecyldimethyl ammonium bromide (CTAB) (Sigma-
Aldrich) was added directly to the ground petals, followed by 5 ll
of b-mercaptoethanol (≥99.0%, Sigma-Aldrich). RNA was dissolved
in the mixture at 60°C for 5 min and subsequently extracted using
1 volume of chloroform or chloroform:isoamyl alcohol (24:1)
(Sigma-Aldrich). Supernatant was transferred to a new tube for
further procedures. Prior to the loading, 0.5 volume of 100% etha-
nol was added in order to adjust the binding condition. The
remaining washing procedures were performed according to the
manufacturer’s protocol, including decontamination of genomic
DNA using DNase.

The quality of the RNA samples was evaluated by absorbance
measurements using a NanoDrop 2000c (Thermo Fisher Scientific,
Waltham, USA), and the integrity was determined by

electrophoretic analysis. All the RNA samples used for the qRT-
PCR reactions had a 260/280 nm absorbance ratio between 1.7
and 2.2, while RNA samples with a 260/280-ratio close to 2 were
generally qualified for subsequent reactions. To rule out any
genomic DNA contamination in the RNA extracts, the RNA sam-
ples were subjected to PCR amplifications of the Tubulin and
NUDX1 gene (35 cycles). No visible amplifications of genomic
DNA were detected from the RNA samples. The primary cDNA
was synthesized from approximately 2 lg of total RNA using the
SuperScript! III reverse transcriptase, oligo-dT, and RNasOUTTM

recombinant RNase inhibitor (all mentioned products above are
from Thermo Fisher Scientific) in a reaction volume of 20 ll
according to the manufacturer’s procedure. The quality of the syn-
thesized cDNA was tested using PCR with the primers of the
housekeeping gene castor bean (Ricinus communis) translation-
ally controlled tumor protein (RcTCTP). If an amplicon was found
after 28 cycles of amplification, then the quality of cDNA sample
was assumed good enough for further analysis.

qRT-PCR analysis

The reaction mixture of primary cDNA was diluted 125 times
before qRT-PCR, which was carried out with a CFX96TM Real-Time
system equipped with C1000TM Thermal Cycler (Bio-Rad, Califor-
nia, USA). The qRT-PCR reaction mixture consisted of 10 ll of
SsoAdvanced

TM SYBR! Green Supermix (Bio-Rad), 2 ll of a pair of
primers (1 ll for each primer, final primer concentration: 10 lM),
2 ll of diluted cDNA mixture, and DNase-free water to reach a
total volume of 20 ll. The thermal cycling profile applied was 95°C
for 5 sec, followed by 30 sec at 58, 60, or 64°C depending on the
primer pair. In total 40 cycles were performed for each batch of
samples. Within each qRT-PCR batch, two negative controls with
water instead of cDNA were used. All qRT-PCR were carried out in
two biological replicates, each of which was subjected to RNA
extraction followed by qRT-PCR in two technical replicates. The
resulting quantification cycle (Cq) values were the mean of four
values from two biological and two technical replicates. These Cq
values were automatically determined by the CFX96TM Real-Time
system with default settings. In order to evaluate the changes in
expression levels of certain genes, three housekeeping genes that
have consistent transcription levels across different samples were
used as reference genes, i.e., genes that code for a-tubulin, elon-
gation factor 1-alpha, and TCTP according to Dubois et al. (2012).
To obtain the relative quantities of each amplified product in the
samples (relative to the reference genes), the DDCt method was
applied (Pfaffl, 2001). The melting curves of the amplified products
were analyzed to determine the specificity of each qRT-PCR reac-
tion, using the built-in standard method in the system. The pri-
mers that were used for RT-PCR and qRT-PCR are listed in
Table S2.

RNA sequencing and assembly

Extracted total RNAs of OB, Rw, OW9035, and OW9047 hybrids
with RNA integrity number (RIN) higher than 7 were used for RNA
sequencing (Eurofins Genomics, Ebersberg, Germany) using an
Illumina HiSeq 2500 sequencer with single-read module. The qual-
ity of the obtained RNA sequencing reads was assessed using
FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fa
stqc/), and reads were trimmed to remove sequencing adapters
using Trimmomatic (Bolger et al., 2014). This was followed by
reassessment using FastQC. The trimmed sequence reads of the
above four samples were pooled together and used for de novo
transcriptome assembly, using the software suite Trinity (Grabherr
et al., 2011). Next, we used the generated transcriptome as a
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reference to map the reads from each individual sample and then
estimate contig abundances using the RNA-Seq by Expectation
Maximization (RSEM) package (Li and Dewey, 2011). This was fol-
lowed by gene differential expression analysis in pairs using the
edgeR package (Robinson et al., 2010). The trimmed mean of M-
values (TMM) method (Robinson and Oshlack, 2010) was applied
for read counts normalization in FPKM values. Finally, the normal-
ized data were centered by median and log2-transformed to obtain
relative expression levels.

QTL analyses and development of a genetic marker for

NUDX1-2

QTL analysis was carried out using MapQTL! 5.0 (Van Ooijen,
2004). These QTL analyses were conducted using female and male
SNP maps that have been developed using JoinMap 4.0 (Van Ooi-
jen, 2006). Due to non-normality for most of the metabolites, the
data were analyzed first by KW. Interval mapping analysis was
performed with a step size of 1 cM to find regions with potential
QTL effects, i.e., where the LOD score was greater than the thresh-
old. A LOD threshold at which a QTL was declared significant was
determined according to a genome-wide error rate of 0.05 over
1000 permutations (Churchill and Doerge, 1994). The percentage
explained by the QTL (r2) was also presented.

Based on the RcNUDX1-2c sequence (RcHt_2031.3), PCR pri-
mers (RhNUDX1-2_F1 and RhNUDX1-2_R1, Table S2) were devel-
oped and length polymorphism was detected: two DNA fragments
(between 700 and 800 bp) for the locus in Rw and one DNA frag-
ment for the same locus in OB (around 700 bp). PCR reactions
were performed in 25 µl volume with 10 ng genomic DNA, 19
Q5! buffer, 0.200 mM dNTPs, 0.5 µM of each primer, and 0.02 U of
Q5! High-Fidelity DNA Polymerase (New England Biolabs, Ips-
wich, USA), with the following program: 98°C for 30 sec, 25 cycles
(98°C for 10 sec, 60°C for 15 sec, and 72°C for 90 sec), and 72°C
for 7 min. The PCR products were separated on agarose gel (2%
w/v) during 2 h at 140 V and stained with ethidium bromide.

NUDX1 enzyme assay and kinetic parameters analysis

using LC-MS

In order to determine the kinetic parameters of NUDX1 proteins
in vitro, NUDX1 genes were amplified and cloned into destination
vectors pHNGWA using the Gateway! technique, where the
NUDX1 protein was fused with the protein NusA (Busso et al.,
2005). The final constructs were transformed into the bacterial
strain Novagen! Rosetta (Merck, Darmstadt, Germany). Native
proteins (~16 kDa) were obtained by using TALON! metal affinity
resins (Clontech Laboratories, California, USA) to cleave away the
NusA tags under the reaction of thrombin. Purified native proteins
(5–56 ng) were added to substrates GPP, FPP, IPP, dGTP, or 8-oxo-
dGTP, ranging from 0.1 to 100 lM. The proteins and the substrates
were incubated in reaction buffer (50 mM Tris-HCl [pH 8.8], 5 mM

MgCl2, 14 mM b-mercaptoethanol, 10% glycerol, v/v) with a final
volume of 100 ll, for 15 min at 30°C with shaking. In parallel, for
each assay, a similar negative control that only contained corre-
sponding amounts of substrates was also included. The reactions
were stopped by adding 10 ll of EDTA (100 mM, pH 8) and 90 ll
of ethanol/0.5% NH4OH solution, according to a previously pub-
lished protocol (Magnard et al., 2015).

The NUDX1-dependent production of GP or FP was calculated
after subtracting the GP or FP amounts present in the correspond-
ing negative control set; KM and kcat values were calculated by fit-
ting the data (a series of GPP/FPP concentrations and the GP/FP
conversion rates) to the Michaelis-Menten equation using R (R

Core Team, 2015). For substrate specificity studies and the analy-
sis of reaction products, experiments were performed according a
previously published protocol (Magnard et al., 2015) with slight
adjustments as follows. Purified NUDX1 proteins (500–1000 ng)
were incubated with different substrates (GPP, FPP, IPP, and 8-
oxo-dGTP) at a concentration of ~20 lM in reaction buffer (100 ll
final volume) for 1 h at 30°C with shaking at 7 9 100 min!1. The
parameters and equipment settings were given in a previously
published study (Magnard et al., 2015).

Expression of NUDX1 in N. benthamiana and LC-MS

analysis of terpenol glycosides

For transient expression assays, four constructs were transformed
into Agrobacterium tumefaciens strain C58 (pMP90). These con-
structs allow, respectively, the expression of the following pro-
teins: RwNUDX1-2c (35S:RwNUDX1-2c), RhNUDX1 (Magnard
et al., 2015), GFP (35S:GFP), and the viral suppressor of gene
silencing p19 (Voinnet et al., 2003). The A. tumefaciens cultures
were grown overnight and diluted in infiltration buffer (pH 5.6, 2%
glucose, 5 g L!1 MS salt, 10 mM MES, and 0.2 mM acetosyringone)
to obtain a final OD600 value of 0.6. Before infiltration, the cultures
corresponding to NUDX1 and GFP constructs were mixed with the
suppressor construct culture in a ratio of 1:1. The bacterial culture
mixtures were kept in the dark at room temperature for at least
1 h prior to infiltration. Four-week-old non-flowering N. benthami-
ana plants were used. Young leaves were infiltrated either with A.
tumefaciens cultures harboring a NUDX1 construct (35S:
RwNUDX1-2c or 35:RhNUDX1) or the 35S:GFP control, all in com-
bination with 35S:P19. Three days after infiltration, 0.75 " 0.1 g of
fresh transformed leaves were collected, immediately frozen in liq-
uid nitrogen, and stored at !80°C before use. Frozen leaves were
freeze-dried prior to extraction and analysis. Terpenol glycosides
were extracted from powdered freeze-dried N. benthamiana
leaves with methanol, using 20 µl of methanol per mg of dry
weight. The samples were subjected to sonication for 10 min in
an ultrasonic bath (Elma, Singen, Germany) and centrifuged
(11 292 g, 10 min, 4°C). The supernatants were recovered for anal-
ysis. Terpenol glycosides were analyzed using LC-MS as described
previously (Magnard et al., 2015). Terpenol glycosides were quan-
tified using their respective characteristic ion: [C10H17]

+ (m/z
137.1325) for geranyl glycosides and [C15H24]

+ (m/z 205.1952) for
farnesyl glycosides. The major geranyl glycosides were putatively
identified as hexosyl-geraniol (C16H28O6), malonyl-hexosyl-geran-
iol (C19H30O9), and pentosyl-hexosyl-geraniol (C21H36O10). Simi-
larly, the main farnesyl glycosides were putatively identified as
hexosyl-farnesol (C21H36O6) and malonyl-hexosyl-farnesol
(C24H38O9). For each sample, total relative amounts of geranyl gly-
cosides were obtained by summing the peak areas corresponding
to the different geranyl glycosides; the same was done for farnesyl
glycosides. For each construct, eight independent biological repli-
cates were used.

GC-MS analysis of rose petal extracts

For volatile extraction, rose petals were collected between 8:30
and 10:30 in the morning. Each year, for each individual of the
OW progeny, petals from different flowers on the same individual
were harvested (from four to six independent flowers, depending
on the number of petals per flower). The petals were mixed, and
two to four technical replicates were prepared by placing 1 g of
petals into a glass vial for volatile compound extraction. One gram
of collected rose petals was incubated in 2 ml of hexane contain-
ing 5 mg L!1 camphor as internal standard, at 4°C overnight. On
the next day, the volatile extracts were transferred to a vial for GC-
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MS analysis. Extracts were analyzed on an Agilent 6850 Network
GC system equipped with a DB5 apolar capillary column
(30 m 9 0.25 mm) and coupled with a 7683B series injector and
5973 Network mass selective detector (all components from Agi-
lent Technologies, Santa Clara, USA). The carrier gas was helium
at a flow rate of 1.0 ml min!1. The separation was performed with
the following program: 40°C for 3 min, and subsequently a gradi-
ent of 3°C min!1 was applied until the temperature reached 245°C.
The injection volume was 2 ll with a split mode (split ratio 1:2)
and the injector and detector temperatures were 250°C. The
parameters for the mass spectrometer detector were set as fol-
lows: the mass scan range was 35–450 m/z and the ionization
energy was 70 eV. The identification of volatile compounds was
based on their retention time and the calculated Kovats retention
index in combination with their mass spectrum matching with
available databases (CNRS, Wiley 275, NIST08), using both Agilent
software MSD ChemStation D.02.00.275 and an archive of mass
spectra of essential oil components (Adam, 2007). The farnesol
produced by Rw was extracted and sent to the company Interna-
tional Flavors & Fragrances (IFF LMR Naturals, Grasse, France) for
isomer identification using the isomer-isolated farnesol standard.
Data were analyzed by R software (R Core Team, 2015) to examine
the correlations between data and determine the distribution of
the compounds and the variance between replicated samples
from the same genotype.

RhNUDX1 purification and crystal structure determination

A plasmid allowing the expression of RhNUDX1 protein in E. coli
was constructed by inserting the RhNUDX1 gene using the Gate-
way! technique in the pHGWA vector (Busso et al., 2005), which
adds a His6 tag to the C-terminus of the protein. RhNUDX1 protein
was overproduced by transforming E. coli Rosetta 2 (DE3) compe-
tent cells by this plasmid. A single colony was used to inoculate a
5-ml preculture in Lysogeny broth (LB) supplemented with
35 µg ml!1 chloramphenicol and 100 µg ml!1 ampicillin. The bac-
teria were then transferred to 1 L Terrific Broth supplemented with
0.8% glycerol, 35 µg ml!1 chloramphenicol, and 100 µg ml!1

ampicillin and grown at 18°C for 24 h. Bacteria were harvested by
centrifugation and the cell pellet was suspended in 50 mM Tris-
HCl (pH 8.0), 200 mM NaCl, 5 mM dithiothreitol (DTT), and 1 mM

phenylmethane sulfonyl fluoride (PMSF) and lysed by sonication.
The lysate was applied to a Ni-NTA affinity column equilibrated in
50 mM Tris-HCl (pH 8.0), 200 mM NaCl, 5 mM DTT, and 20 mM imi-
dazole. RhNUDX1 protein was eluted with a linear gradient from
20 to 500 mM of imidazole in the buffer used to equilibrate the col-
umn. Fractions containing RhNUDX1 were collected and treated
with 200 U of thrombin at 4°C for 18 h in order to cleave the His6
tag. RhNUDX1 was further purified using a Superdex 200 gel filtra-
tion column and concentrated in Amicon! (Millipore, Guyancourt,
France) to 2.5 mg ml!1. Crystallization assays were performed on
RhNUDX1 with and without its GPP substrate. Crystals were
obtained in 200 mM ammonium sulfate, 100 mM sodium acetate
(pH 4.6), and 25% PEG 400. Crystals were cryoprotected in 30%
ethylene glycol and flash-frozen in liquid nitrogen. GPP-containing
crystals were obtained by soaking the crystals 1 sec in 5 mM GPP
without divalent cations before flash-freezing in liquid nitrogen.
Diffraction data were collected on the synchrotron SOLEIL beam-
line Proxima-2 for RhNUDX1 and on the ESRF beamline ID29 for
RhNUDX1/GPP. Data were integrated and scaled with DIALS (Win-
ter et al., 2018). Phases were determined by molecular replace-
ment in PHASER (Phaser crystallographic software) (McCoy et al.,
2007) using the structure of MutT (PDB code 4KYX) as search
model. Modeling and refinement were carried out using COOT
(Emsley et al., 2010) and Phenix (Afonine et al., 2012).

Modeling of protein structures

Protein–ligand complexes for AtNUDX1 and RhNUDX1 were
modeled using their respective crystal structures. Other Rose
NUDX1 structures (RcNUDX1-1a, RcNUDX1-1b, and RwNUDX1-
2c) were generated by homology modeling with the program
MODELLER (!Sali and Blundell, 1993). In order to remove bias
from a single template, several structures were used as tem-
plates: the crystal structure of AtNUDX1 in complex with IPP
(PDB code 6DBZ), 8-oxo-dGTP (PDB code 6FL4), and GPP (PDB
code 5GP0), MutT and MTH1 in complex with 8-oxo-GMP (PDB
codes 3A6T and 3ZR0, respectively), and RhNUDX1 in complex
with GPP (this work, PDB code 6YPF). A structure-based align-
ment with the target sequence and the template structures was
generated with MODELLER and manually corrected. In a first
step, the ligand was added as a rigid molecule. Structures were
generated with the automodel routine of MODELLER. The Mg2+

ions and ligand, when absent from the structure, were added
and positioned according to AtNUDX1–Mg2+–ligand structures
(6DBZ and 6FL4). Ligand topology was added in the MODELLER
database. The protein–ligand complex was locally refined with
MODELLER. The structures were sorted according to their Dis-
crete Optimized Protein Energy (DOPE) score (Shen and !Sali,
2006), and the structure with the lowest DOPE score was chosen
as the prototype of the protein–ligand structure. In a second step,
the structure of the protein–ligand complex, either GPP, FPP, or
8-oxo-dGTP, was refined by MD simulation. The coordinates and
the topology of the ligands were generated with the CGenFF ser-
ver (Vanommeslaeghe and MacKerell, 2012). Mg2+ ions were
added in the active site, as they are important for binding and
catalysis. The charge of the Mg2+ was calculated with AMBER
(Case et al., 2005). The structure was then subjected to energy
minimization and 20 ns MD with GROMACS (version 2018.3)
(Abraham et al., 2015). Input parameter files for calculations with
GROMACS using the CHARMM36 force field were generated with
CHARMM-GUI (Lee et al., 2016). The protein–ligand complex was
equilibrated in explicit solvent with 150 mM KCl in a cubic box
with periodic boundary conditions at 303 K and 1 bar. The MD
trajectory was analyzed with the tools provided with GROMACS.
The protein–ligand binding energy was evaluated with PRODIGY-
LIG (Kurkcuoglu et al., 2018). The molecular structure figures
were prepared with PyMOL (Schr€odinger, 2015).
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General outline chapter 2:  
 

Article 2 “Duplication and specialization of NUDX1 in Rosaceae led to geraniol production in rose 
petals” 

Corentin CONART, Nathanaelle SACLIER, Fabrice FOUCHER, Clément GOUBERT, Aurélie RIUS-
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After finding that NUDX1 enzymes could be involved in the biosynthesis of different acyclic terpenes, 

and that NUDX1 copies were numerous in the genome of garden roses in Article 1, several questions 

arose about their duplications: what is the organisation of NUDX1 copies in the genome and what is the 

ancestral copy? When had they evolved, during domestication, or during evolution of some Rosaceae? 

What could explain the petal specificity of the expression? This Article 2 gives some answers. Indeed, 

NUDX1 copies were mapped on the available genomes of OB and other Rosaceae (GDR, Jung et al. 

2019), and their organisation in clusters has been verified by MinION sequencing. After this, a collection 
of more than 30 wild roses was used to investigate evolution of these copies in the genus Rosa, their 

expression and their duplication. It was then possible to conclude that geraniol production was due to a 

cluster of NUDX1-1a copies on chromosome 2. Finally, we also mapped transposable elements and 

interpretated their possible involvement in ancestral NUDX1 duplications, and their role in NUDX1-1a 

petal specificity expression. We concluded with an evolutive scenario of the NUDX1 gene family in 

Rosaceae.  

In this work, I verified the mapping of NUDX1 copies in Rosaceae by blastn on the online genomes (OB, 

R. multiflora, F. vesca, P. micrantha, P. persica, M. x domestica), and by MinION sequencing of OB, R. 

moschata, and R. laevigata. I also mapped all the transposable elements in these regions. I made all 

the qRT-PCR and qPCR experiments. I cloned the NUDX1-1a promoter, and made the GFP constructs 

and transient expression experiments. Finally, I studied the structure of the NUDX1-1a promoter  in 

several wild species. 
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Abstract

Nudix hydrolases are conserved enzymes ubiquitously present in all kingdoms of life. Recent research revealed that
several Nudix hydrolases are involved in terpenoid metabolism in plants. In modern roses, RhNUDX1 is responsible for
formation of geraniol, a major compound of rose scent. Nevertheless, this compound is produced by monoterpene
synthases in many geraniol-producing plants. As a consequence, this raised the question about the origin of RhNUDX1
function and the NUDX1 gene evolution in Rosaceae, in wild roses or/and during the domestication process. Here, we
showed that three distinct clades of NUDX1 emerged in the Rosoidae subfamily (Nudx1-1 to Nudx1-3 clades), and two
subclades evolved in the Rosa genus (Nudx1-1a and Nudx1-1b subclades). We also showed that the Nudx1-1b subclade
was more ancient than the Nudx1-1a subclade, and that the NUDX1-1a gene emerged by a trans-duplication of the more
ancient NUDX1-1b gene. After the transposition, NUDX1-1a was cis-duplicated, leading to a gene dosage effect on the
production of geraniol in different species. Furthermore, the NUDX1-1a appearance was accompanied by the evolution of
its promoter, most likely from a Copia retrotransposon origin, leading to its petal-specific expression. Thus, our data
strongly suggest that the unique function of NUDX1-1a in geraniol formation was evolved naturally in the genus Rosa
before domestication.

Key words: Rosaceae, Rosa, Nudix hydrolase, monoterpenes, NUDX1 synteny.

Introduction
Rosa is a complex taxon with more than 150 intertwined
species (Wissemann 2003). Only few (around 15) rose species
have been domesticated by humans since Antiquity (fig. 1). In
Knossos (1700 B.C.), roses were painted with only few petals
like wild briars (fig. 1a), whereas in Rome and Pompei (79
A.C.) they were presented with dozens of petals (fig. 1b),
meaning that the domestication process had already started.
Indeed, over the past three centuries, domestication resulted
in flowers with hundreds of petals often with a strong

fragrance. Some of the very ancient roses, approximately
1,000–2,000 years old, have come down to us as heritage roses
(fig. 1c). This includes Rosa chinensis cv. “Old Blush” (Old
Blush) from China, which is likely a natural hybrid between
wild species (Raymond et al. 2018). This rose has been largely
used by breeders, and many modern roses probably have Old
Blush as an ancestor. Other heritage roses have also been used
for horticultural selection and hybridization with other vari-
eties (supplementary table S1, Supplementary Material on-
line). As a result, modern roses are an extended combination
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between alleles of different wild species, and alleles that
appeared by spontaneous bud mutations.

One of the most important traits attracting humans to
roses is their pleasant fragrance. Geraniol is one of the rose
scent constituents, which contributes to the flower rosy note.
In contrast to most plants, formation of this monoterpene in
modern roses does not rely on a canonical biosynthetic path-
way (Magnard et al. 2015) that involves a plastidial monoter-
pene synthase (Sun et al. 2016). Instead, a cytosolic Nudix
hydrolase (RhNUDX1) converts geranyl diphosphate (GPP)
to geranyl phosphate (GP), which in turn is dephosphorylated
by uncharacterized phosphatase to geraniol.

Nudix hydrolases are conserved enzymes hydrolyzing nu-
cleoside diphosphates linked to some moiety X. They are
ubiquitously present in all kingdoms of life and were pro-
posed to function as housecleaning enzymes involved in
cell sanitation (McLennan 2013; Yoshimura and Shigeoka
2015; Srouji et al. 2017). However, recent research revealed
that Nudix hydrolases can be involved in terpenoid metabo-
lism in plants (Magnard et al. 2015; Henry et al. 2018; Li et al.
2020; Sun et al. 2020). Indeed, Arabidopsis thaliana Nudix
hydrolase 1 (AtNUDX1) together with an isopentenyl kinase
coordinately regulates the isopentenyl diphosphate amount
destined for higher-order terpenoid biosynthesis (Henry et al.
2015, 2018). Although AtNUDX1 is also able to efficiently
dephosphorylate GPP and farnesyl diphosphate (FPP)
in vitro, no geraniol nor (E,E)-farnesol was detected in this
species (Chen et al. 2003). In contrast, RwNUDX1-2 from a
cultivated hybrid of R. wichurana hydrolyzes specifically cyto-
solic FPP into farnesyl phosphate en route to (E,E)-farnesol
formation (Sun et al. 2020). The fact that members of NUDX1
family could have diverse functions in different species raises
the question about RhNUDX1 evolution, whether it is present
only in cultivated modern roses, or was already evolved in
wild Rosa and/or Rosaceae species.

Here, we investigated the origin of RhNUDX1 function. We
analyzed the evolution of all NUDX1 gene homologs, their
genomic localization and synteny by comparing the recently
published genomes of Old Blush (Hibrand Saint-Oyant et al.
2018; Raymond et al. 2018) and several closely related
genomes in the Rosaceae family (fig. 1c). We also examined
the transposable elements (TEs) surrounding these genes and
proposed an evolutionary scenario of duplication and special-
ization of NUDX1-1a, the gene encoding the Nudix hydrolase
responsible for the GPP hydrolysis in rose petals.

Results

RcNUDX1 Is Present in Multiple Copies in Old Blush,
but Only RcNUDX1-1a Is Highly Expressed in Its Petals
Discovery of terpene synthase-independent pathway for ge-
raniol biosynthesis in modern roses and the involvement of
RhNUDX1 in its formation (Magnard et al. 2015) raised the
question of how this trait was evolved. Thus, we have isolated
the corresponding genomic sequence from R. x hybrida cv.
‘Papa Meilland’, which revealed that RhNUDX1 contains a
single intron (RhNUDX1-rs for reference sequence). This se-
quence was used for phylogenetic analysis of NUDX1 genes in

Rosaceae family. A maximum likelihood tree (ML tree) rooted
with the A. thaliana homolog, AtNUDX1, was constructed
using genomic sequences of Old Blush, Fragaria vesca,
Malus x domestica, and Prunus persica, available in the
Genome Database for Rosaceae (GDR, www.rosaceae.org
[Jung et al. 2019]; supplementary table S2, Supplementary
Material online) as well as recently published R. x wichurana
sequences (Sun et al. 2020) (fig. 2). For the readability of the
ML tree, we did not use Old Blush sequences that were 100%
identical between them (supplementary table S3,
Supplementary Material online).

This ML tree revealed three well-resolved at nearly all node
clades, numbered Nudx1-1 to Nudx1-3, and a lesser-
supported clade named Nudx1-4. Two sequences
(Prupe.1G302800 and MD13G1049100) could not be assigned
to a clade, and appeared on branches with low bootstraps.
Interestingly, these branches and the Nudx1-4 clade include
exclusively sequences of M. x domestica and P. persica,
whereas the three other clades contain all the sequences of
Old Blush, R. x wichurana and F. vesca. As M. x domestica and
P. persica belong to Amygdaloidae subfamily and Rosa species
and F. vesca belong to Rosoideae subfamily (Xiang et al. 2017)
(fig. 1c), it suggests that duplications of the first ancestral
NUDX1 ortholog led to divergent sequences in the Nudx1-4
clade in Amygdaloidae, but to homologous sequences in well-
supported Nudx1-1 to Nudx1-3 clades in Rosoideae.
RhNUDX1-rs, which is involved in geraniol production in hor-
ticultural roses, was found in the Nudx1-1 clade. This clade
also encompasses closely related RcNUDX1-1 sequences from
Old Blush with 97.1–97.6% identity to the reference
RhNUDX1-rs (supplementary table S2, Supplementary
Material online), indicating that they could be the result of
very recent duplications of the same gene.

To gain insights in the evolution of these paralogs, we
analyzed their genomic organization in three Old Blush
genomes published in the GDR (supplementary table S2,
Supplementary Material online). We also sequenced the
Old Blush accession using MinION technology (supplemen-
tary table S5, Supplementary Material online). This technol-
ogy increases the error rate in sequences, but allows to obtain
very long reads without informatics assembly (Lu et al. 2016),
thus to verify gene clusters on chromosomes 2 and 4, and also
to detect alleles and null alleles on homologous chromo-
somes. Comparison of all these sequences allowed to draw
a comprehensive map in Old Blush (fig. 3), and a synteny map
in Rosaceae (fig. 4). Two clusters containing NUDX1 paralogs
were found in Old Blush genome. The first cluster on chro-
mosome 4 included the more ancient gene, RcNUDX1-3,
along with one copy of both RcNUDX1-1b and RcNUDX1-
2a, but a pseudogene WRcNUDX1-2a with two STOP codons
on the other homologous chromosome 4. The second cluster
was on chromosome 2 and contained four nearly identical
copies of RcNUDX1-1a and one pseudogene WRcNUDX1-1a
with a STOP codon. The four copies are nearly identical show-
ing 98.7% of DNA identities and 96.8–99.0% of protein iden-
tities (supplementary tables S3 and S4, Supplementary
Material online). Surprisingly, the RcNUDX1-1a genes were
totally absent on a second homologous chromosome 2,
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which thus correspond to a null allele naRcNUDX1-1a. Copies
of NUDX1-2 (RcNUDX1-2b and RcNUDX1-2c) were also found
on chromosomes 6 and 7, respectively.

Comparisons of the two NUDX1 clusters and the sur-
rounding genes of the other Rosaceae (fig. 4; supplementary
table S2, Supplementary Material online) revealed that the
possible ancestral gene NUDX1-3 has duplicated on chromo-
some 4 thus separating Amygdaloidae and Rosoideae subfa-
milies, and giving, respectively, sequences of the Nudx1-4
clade, and Nudx1-1 and Nudx1-2 clades. Indeed, they were
in the same microsyntenic region (fig. 4a). Furthermore, the
two unresolved sequences Prupe.1G302800 and

MD13G1049100 (fig. 2) were close to the homolog of the
marker gene F, in similar position to RcNUDX1-3 and its
orthologs in F. vesca and Potentilla micrantha, implying that
the ancestral gene had highly diverged between Rosoideae
and Amygdaloidae. The other cluster, with the RcNUDX1-1a
copies, was unique to Old Blush, indicating that it likely had
evolved in very ancient roses at the beginning of the domes-
tication process or in wild ancestors of Old Blush (fig. 4b).

Our previous RNAseq, QTL and correlation analyses
(Magnard et al. 2015; Sun et al. 2020) performed mainly on
modern hybrid roses, showed that RcNUDX1-1a was
expressed in petals and responsible for the geraniol
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FIG. 1. Overview of the evolution of the Rosaceae family and of the Rosa genus. (a) Antique murals in Knossos (!1,700 B.C.). Arrow shows the
original drawing of a wild rose (the other drawing was made during an irreversible restoration). (b) Antique murals in Pompei (!79 A.C.). Roses
were painted with dozens of petals (arrow). (c) Synthetic phylogeny and evolution diagram obtained by simplification of data from Fougère-
Danezan et al. (2015), Zhu et al. (2015), Xiang et al. (2017), Zhang et al. (2017), and Debray et al. (2019). Only species and varieties used or cited in
our article are shown (supplementary table S1, Supplementary Material online). Some species are written in gray because their phylogenetic
position is discussed (R. moschata, R. rugosa), or because they are allopolyploids (R. canina, R. spinosissima). Rosa foetida and R. stellata mirifica are
not shown because of their unresolved position. Heritage roses also include some crosses made by breeders, which are not considered as botanical
roses, and which are not shown here.
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production. On the other hand, the RcNUDX1-1b protein
was active in vitro, but the RcNUDX1-1b gene was not
expressed. We verified that it was also the case in a wild
species by checking the in vitro activities of RmNUDX1-1a
and RmNUDX1-1b proteins of the Moschata accession. These
activities were quite similar to those of the corresponding Old
Blush enzymes (supplementary table S6, Supplementary
Material online), suggesting that only the gene expression
could be responsible of geraniol production in wild species.
Thus, to determine whether the other RcNUDX1-1a homo-
logs, RcNUDX1-1b, RcNUDX1-2, and RcNUDX1-3, were
expressed in petal tissue, qRT-PCR analyses with gene-
specific primers were performed (supplementary table S7,
Supplementary Material online). These analyses revealed
that only RcNUDX1-1a transcripts indeed accumulate at
high levels in Old Blush petals (60,000x more than
RcNUDX1-1b), thus further suggesting that such mode of ex-
pression is rose specific and uniquely clustered RcNUDX1-1a
paralogs are involved in the biosynthesis of geraniol (supple-
mentary fig. S1, Supplementary Material online).

Taken together, these results support that the NUDX1-3
ancestral orthologs were duplicated many times in the
Rosaceae. The ortholog was probably an ortholog of
AtNUDX1 that had likely the same function. Although genes
within the Nudx1-1 and Nudx1-2 clades evolved in the sub-
family Rosoideae, the NUDX1-1a paralogs emerged only in the
genus Rosa. In addition, the high sequence similarity of the
clustered RcNUDX1-1a paralogs with the characterized
RhNUDX1-rs, as well as high level of expression, suggest that
these paralogs are involved in the biosynthesis of geraniol in
Old Blush. The presence of naRcNUDX1-1a opens the possi-
bility that one of the potential wild parents of Old Blush did
not have such cluster, and therefore the duplication of
RcNUDX1-1a had occurred in wild species of the genus Rosa.

The NUDX1-1a Paralogs Are Specific to Wild Roses
Producing Geraniol
To determine whether RcNUDX1-1a had already arisen in
wild species of Rosa or evolved early during the domestication
process, we performed GC–MS metabolic profiling of the

Nudx1-3
clade

Nudx1-4
clade

Nudx1-2
clade

Nudx1-1
clade

FIG. 2. ML tree of genomic sequences of NUDX1 homologs in the Rosaceae. The tree was made with sequences of Sun et al. (2020), and with
sequences obtained by BlastN (from ATG to STOP including the intron) in selected species of the GDR (Align_Rosaceae_MLtree.fasta,
Supplementary Material online). AtNUDX1 gene was used to root the tree (large black arrow). RhNUDX1-rs was added for reference (large orange
arrow). Clades were named according to Sun et al. (2020). Numbers correspond to bootstraps (%). Scale bar represents substitution per site.
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volatiles produced by petals along with analysis of the
RcNUDX1-1 homologs in a collection of 29 accessions of
wild roses and six accessions of heritage roses (supplementary
tables S1 and S8, Supplementary Material online). Their ge-
nomic DNAs and mRNAs were used to isolate and charac-
terize full-length NUDX1-1 sequences (table 1; supplementary
table S9, Supplementary Material online). Due to the high
sequence identity (89.5–91.6%, supplementary table S3,
Supplementary Material online) between RcNUDX1-1a and
RcNUDX1-1b, the primers were designed based on Old Blush
sequences to amplify the region from ATG to STOP codons
(supplementary table S7, Supplementary Material online).
Sequencing of the obtained PCR products revealed that the

primers were specific for Nudx1-1 clade and did not amplify
sequences of the Nudx1-2 and Nudx1-3 clades.

cDNAs were obtained from all species that emit geraniol
except for R. sericea producing a very small amount of this
compound (supplementary tables S8 and S9, Supplementary
Material online). We also cloned cDNAs from R. rubus that
does not produce geraniol, but these cDNAs were as close to
RcNUDX1-1a as to RcNUDX1-1b. For most of the accessions,
several genomic sequences (gDNA) of NUDX1-1 were
obtained. However, numerous gDNAs were attained for
some species due to the ploidy level (table 1; see supplemen-
tary table S1 for ploidy levels, Supplementary Material online)
and two species have only a single gDNA. Interestingly, in

RcHt_S1291.16

1,527 bp 1,524 bp 1,521 bp14,320 bp

10,387 bp 10,172 bp

naRcNUDX1-2c
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FIG. 3. Gene map of RcNUDX1 in Old Blush. Each pair of homologous chromosomes are shown. Similar regions including RcNUDX1 sequences are
highlighted in gray between the two homologous chromosomes. Gene lengths, from the ATG codon to the STOP, including introns, and intergenic
lengths are indicated. However, the picture does not respect these lengths. Gene numbers were obtained by making a systematic inventory of
chromosomes on the three genomes of Old Blush published in the GDR and by comparison with our MinION long reads (supplementary tables S2,
S5, and Align_OldBlush_DNAsequences.fasta, Supplementary Material online), but only sequence accessions useful for mapping are shown. Null
alleles were confirmed on chromosomes 2 and 7 because scaffolds available in the GDR including both upstream and downstream regions were
found. All null alleles were also confirmed by MinION sequencing (supplementary table S5, Supplementary Material online). Large orange arrows,
genes from Nudx1-1 clade; large blue arrows, genes from Nudx1-2 clade; large green arrows, genes from Nudx1-3 clade. Copies of RcNUDX1-1a are
arbitrarily numbered in orange on chromosome 2. Sequences with a dashed outline are pseudogenes including STOP codons. Chr, chromosomes.
Marker genes (gray arrows) used for microsynteny are listed in supplementary table S14, Supplementary Material online. On chromosome 2, gene
D was not found on scaffold RcHt_S929 but useful in MinION reads. On chromosome 6, marker genes were not found around the null allele in the
GDR, but MinION long reads included marker genes J, K, L, and RcNUDX1-2b, or its null allele (read numbers in supplementary Table S5,
Supplementary Material online).
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R. rubus, no NUDX1-1 gDNA corresponding to the isolated
cDNAs was detected.

All identified gDNAs contained one intron of variable size
(supplementary table S2, Supplementary Material online),

and clustered in two groups on the ML tree (fig. 5; supple-
mentary fig. S2, Supplementary Material online). The first
group included the Old Blush RcNUDX1-1a, and thus was
named Nudx1-1a subclade (orange names in supplementary
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FIG. 4. Synteny map of the Rosaceae genomes. (a) Microsynteny of chromosome 4 of Old Blush in the cluster region of RcNUDX1-1b, RcNUDX1-2a,
and RcNUDX1-3. (b) Microsynteny of chromosome 2 of Old Blush in the cluster region of RcNUDX1-1a. Chromosome numbers are indicated
except for P. micrantha for which the genome was nonassembled in the GDR (supplementary table S2, Supplementary Material online). Large
orange arrows, genes from Nudx1-1 clade; large blue arrows, genes from Nudx1-2 clade; large green arrows, genes from Nudx1-3 clade; large violet
arrows, sequences of the Nudx1-4 clade; large black arrows, other NUDX1 genes; large white arrows, unique genes; large gray arrows, genes used for
microsynteny (marker genes are listed in supplementary table S14, Supplementary Material online). Accession numbers of NUDX1 genes are in
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fig. S2, Supplementary Material online), whereas the second
group, named Nudx1-1b subclade, included the gDNAs
which were closer to RcNUDX1-1b than to RcNUDX1-1a
(red names in supplementary fig. S2, Supplementary
Material online). A BlastN analysis of all the gDNAs (supple-
mentary table S9, Supplementary Material online) revealed
that most of the gDNAs on the ML tree share 88.7–99.8%
identity with both the RcNUDX1-1a and RcNUDX1-1b
sequences. Thus, gDNAs displaying identity more than 1%
higher with RcNUDX1-1a than with RcNUDX1-1b were
assigned to the Nudx1-1a subclade and vice versa (supple-
mentary fig. S2, Supplementary Material online). Few gDNAs
were as close to RcNUDX1-1a as to RcNUDX1-1b because they
exhibit <1% identity in favor to either of two subclades
(shown in black in supplementary fig. S2, Supplementary
Material online). These sequences were often distant from
all other gDNAs (long black branches in supplementary fig. S2,

Supplementary Material online) and could have thus di-
verged in these particular species. Some of them were located
at the root of the tree suggesting that they could represent
NUDX1-1 ancestral sequences.

In contrast to Nudx1-1a subclade, Nudx1-1b subclade in-
cluded all the gDNAs from the species that do not produce
geraniol (blue stars in fig. 5 and table 1; supplementary table
S8, Supplementary Material online). Unlike NUDX1-1a
gDNAs, which were clearly absent in 8 accessions, NUDX1-
1b gDNAs were undetectable only in 2 accessions (supple-
mentary table S9, Supplementary Material online). The
gDNAs of Nudx1-1b subclade were closer to the root of the
phylogenetic tree than those of the Nudx1-1a subclade. Thus,
despite weak branch support of the ML tree, these data sug-
gest an ancestral origin of the NUDX1-1b genes.

All cloned cDNAs were found to correspond to the ORF
sequence found only in gDNAs belonging to the Nudx1-1a

Table 1. Comparison of Geraniol Concentration and Expression of NUDX1-1 Homologs in Wild and Heritage Roses.

Accession Namesa Geraniol Concentration
(mg/gFW)

qRT-PCR on NUDX1-1
Homologs (a.u.)b

Number of cDNA Clonesc Number of gDNAd Clonesc

Arvensis_B 0.0 (0.0)e 0.1 (0.1)e 0 2
Banksiae 0.0 (0.0) 0.0 (0.0) 0 4
Bracteata 0.0 (0.0) 0.0 (0.0) 0 1
Chinensis 0.0 (0.0) 0.0 (0.0) 0 2
Gigantea 0.0 (0.0) 0.0 (0.0) 0 2
Laevigata 0.0 (0.0) 0.0 (0.0) 0 1
Mirifica 0.0 (0.0) 0.0 (0.0) 0 5
Roxburghii 0.0 (0.0) 0.0 (0.0) 0 4
Rubus 0.0 (0.0) 0.7 (0.0) 3 6
Sericea 0.8 (0.3) 0.0 (0.0) 0 6
Foetida 3.0 (2.1) 13.3 (12.6) 2 3
Persian_Yellow 5.4 (1.9) 34.8 (30.3) 1 6
Ecae 5.8 (0.2) 0.0 (0.0) 1 3
Hugonis_B 17.9 (2.3) 0.0 (0.0) ndf 2
Canina 22.9 (6.0) 111.5 (1.6) 1 15
Phoenicia 27.0 (4.4) 155.2 (12.2) 1 7
Moschata 29.5 (10.2) 111.6 (5.8) 3 11
Fedtschenkoana 37.8 (5.9) 87.2 (3.3) 1 6
Rugosa 44.4 (24.2) 36.1 (24.0) 1 12
Centifolia 45.3 (17.2) 207.1 (131.9) 3 14
Arvensis_A 53.9 (52.8) 256.8 (139.7) 2 5
Gallica_B 63.4 (3.9) 91.5 (20.2) 1 3
Autumn_Damask 84.1 (11.6) 63.1 (18.8) 3 7
Hugonis_A 89.8 (31.4) 12.5 (0.3) nd 4
Nutkana 96.3 (26.3) 374.1 (129.2) 2 6
Old_Blush 99.8 (5.9) 61.0 (12.0) 1 2
Pendulina 104.4 (45.4) 174.8 (82.9) 2 3
Villosa 107.9 (10.4) 128.0 (6.0) 1 5
Gallica_A 108.7 (11.6) 88.3 (21.7) 2 6
Damask_Kazanlik 112.2 (39.5) 43.1 (1.6) 3 9
Majalis 112.6 (2.0) 25.3 (1.8) 2 7
Carolina 145.7 (40.7) 339.4 (100.7) 3 6
Woodsii 180.4 (2.8) 19.8 (3.0) 2 5
Officinalis 192.1 (42.5) 112.5 (8.3) 1 5
Spinosissima nd nd 1 14

aFor the rose accession names, see supplementary table S1, Supplementary Material online.
bAmplification with FP8-RP8 primers (supplementary table S7, Supplementary Material online).
cCloning with FP7-RP7 primers (supplementary table S7, Supplementary Material online).
dThe number of gDNA clones correspond to different genomic sequences from ATG to STOP codons (supplementary table S9 and Clones_gDNAs_cDNAs.fasta,
Supplementary Material online). They all included a single intron (Clones_IntronExonStructure.fasta, Supplementary Material online).
eValues correspond to averages, and SD are given in parentheses. Extensive values are given in supplementary tables S8 and S10, Supplementary Material online.
fNot done.
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subclade (orange asterisks in fig. 5; supplementary table S9,
Supplementary Material online), suggesting that only mem-
bers of this clade are expressed. Next, we evaluated expression
of NUDX1-1 homologs in the petals of all 34 accessions (ta-
ble 1; supplementary tables S1 and S10, Supplementary
Material online) by qRT-PCR with consensus primers, which
were capable of amplifying both NUDX1-1a and NUDX1-1b
(supplementary table S7, Supplementary Material online). As
no cDNAs belonging to the NUDX1-1b group were obtained,
transcripts detected in this analysis correspond to NUDX1-1a
homologs (table 1). NUDX1-1 transcripts were barely
detected in botanical species not producing geraniol. In con-
trast, NUDX1-1 was expressed in all species producing geraniol

and for which genomic sequences corresponding to NUDX1-
1a were obtained. The exceptions include two geraniol-
producing species (accessions Hugonis B and Ecae) with
very low NUDX1-1 expression, and two low-geraniol pro-
ducers (accessions Foetida and Persian Yellow) with substan-
tial NUDX1-1 expression (table 1). In the latter two species,
low geraniol levels could be the result of substrate limitation,
whereas in two former species another NUDX1 homolog
could be involved in geraniol production. We have recently
shown the existence of specialization of different homologs as
RwNUDX1-2c was active in R. x wichurana, but not in Old
Blush (Sun et al. 2020). In botanical and heritage roses,
NUDX1-1a expression was highly correlated (P-values <

Nudx1-1a subclade

Nudx1-1b subclade

FIG. 5. ML tree of genomic sequences of the Nudx1-1 clade. Orange asterisks indicate species in which a cDNA clone is the exact ORF of the gDNA
(supplementary table S9 and Clones_IntronExonStructure.fasta, Supplementary Material online). Blue stars indicate species not producing
geraniol (table 1; supplementary table S8, Supplementary Material online). Large orange and red arrows indicate, respectively, the RcNUDX1-
1a and RcNUDX1-1b genes of Old Blush. White dots correspond to bootstraps<70%, gray dots, between 70% and 95%, and black dots, more than
95%. The tree is rooted with a sequence of F. vesca (large black arrow). For the extended tree see supplementary figure S2 and
Align_OldBlush_MLtree.fasta, Supplementary Material online.
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0.001) with geraniol levels, as well as with the levels of acyclic
monoterpenes (supplementary fig. S3 and table S11,
Supplementary Material online). It was also positively corre-
lated with the production of the acyclic sesquiterpenes (E,E)-
farnesol, (E,E)-a-farnesene, and (Z, E)-a-farnesene as well as 2-
phenylethanol. A negative correlation was found for 2-
pentadecanone.

Thus, the presence of NUDX1-1a paralogs and its expres-
sion in some but not all botanical species as well as a positive
correlation between NUDX1-1a expression and geraniol levels
could indicate that the unique function of NUDX1-1a in ge-
raniol production was evolved naturally in the genus Rosa
before domestication.

Trans-Duplication of NUDX1-1b and Additional cis-
Duplications Led to a NUDX1-1a Cluster in the Genus
Rosa
Our data show that the ancestral RcNUDX1-1b gene homo-
logs exist in many wild roses and in some other Rosaceae
species, whereas RcNUDX1-1a homologs are only present in
some wild roses mostly producing geraniol. This strongly
suggested that NUDX1-1a homologs arose from trans-dupli-
cation of NUDX1-1b in wild roses, followed by cis-duplications
on chromosome 2.

To understand the origin of the clustered RcNUDX1-1a
paralogs on chromosome 2, we first performed a dot-plot
analysis of nucleotide sequence similarity (supplementary
fig. S4, Supplementary Material online). The identified re-
peated sequences (supplementary fig. S4a, Supplementary
Material online) were then compared with the TEs annotated
in the GDR (supplementary fig. S4b and table S12,
Supplementary Material online) to draw a comprehensive
map (fig. 6). This analysis revealed that all five copies of
RcNUDX1-1a with their intergenic regions were nearly iden-
tical and contained the same TEs in the same order (fig. 6a).
Each NUDX1-1a copy was surrounded by a fragment of the
Copia R24588 retrotransposon (class I, RNA intermediate) at
the 50-end, and by two embedded Miniature Interspersed TEs
(MITEs; Wicker et al. 2007) at the 3’-end (except for copy
number 5). MITE G13554 itself was inserted into MITE
P580.2030 (respectively, named in the GDR as
ms382250_RcHm_v2.0_Chr2_DXX-MITE_denovoRcHm_v2.0-
B-G13554-Map6 and ms580616_RcHm_v2.0_Chr2_noCat_de
novoRcHm_v2.0-B-P580.2030-Map20). The embedded MITEs
in the second copy were interrupted by a long sequence
containing genes, noncoding RNAs, and TEs (supplementary
table S12, Supplementary Material online). Analysis of the
four copies of these embedded MITEs revealed that they all
have more than 80% of identity compared with their consen-
sus sequences published in the GDR (supplementary table
S12, Supplementary Material online), suggesting that the ini-
tial RcNUDX1-1a block may have then been duplicated in
tandem after its initial insertion on chromosome 2.

To further analyze the origin of these block duplications,
we searched for MITE G13554, MITE P580.2030, and Copia
R24588 localizations around the RcNUDX1 homologs on
other chromosomes, and found two copies on chromosome

4 (supplementary table S12, Supplementary Material online).
Analysis of available genomic sequences of the two rose hap-
lotypes of the GDR revealed that Copia R24588 was absent on
chromosome 4 of one annotated haplotype (Raymond et al.
2018), whereas it was found manually in the other (Hibrand
Saint-Oyant et al. 2018). To compare the organization of the
clusters on chromosomes 2 and 4 in different species, we also
performed MinION sequencing of Moschata accession, which
produces geraniol, and of Laevigata accession, an unscented
rose species (supplementary table S13, Supplementary
Material online). In Moschata, we found two copies of
RmNUDX1-1a harboring the same organization of TEs as in
Old Blush, but none in the accession Laevigata (fig. 6a). As
R. laevigata is more ancient than R. moschata, which in turn is
more ancient than R. chinensis cv. “Old Blush” (Fougère-
Danezan et al. 2015; Debray et al. 2019), these results suggest
that a series of duplications occurred during the evolution of
the genus Rosa. Analysis of microsyntenic region of chromo-
some 4, that includes the cluster RcNUDX1-3/RcNUDX1-1b/
RcNUDX1-2a, revealed a sequence NUDX1-1b directly up-
stream of the same MITE and Copia R24588 elements found
in the chromosome 2 of Old Blush and Moschata (fig. 6b).
Contrary to chromosome 2, the MITE P580.2030 was repeated
in tandem and did not embed MITE G13554. The absence of
the embedded MITE suggests that the NUDX1 cluster on the
chromosome 4 of Old Blush is a likely candidate for being the
ancestral sequence from which RcNUDX1-1a blocks on chro-
mosome 2 originate.

To determine whether in general Rosa species have mul-
tiple copies of NUDX1-1a, we estimated the copy number of
NUDX1-1 homologs in some wild roses using qPCR experi-
ments on genomic DNA (Axelsson et al. 2013) (supplemen-
tary table S7, Supplementary Material online). Quantification
was done for 12 wild species, and revealed that the number of
NUDX1-1a copies ranged from three to ten in geraniol pro-
ducing species and from two to five in species producing no
geraniol (supplementary fig. S5, Supplementary Material on-
line). These results clearly show that the number of NUDX1-1
copies is indeed variable in rose species and overall higher in
species producing geraniol.

Taken together, these results are consistent with a trans-
duplication occurring in the genus Rosa between chromo-
some 4 and chromosome 2, and show that NUDX1-1a was a
result of specialized duplication of NUDX1-1b. After this du-
plication, MITE G13554 was inserted into MITE P580.2030.
The sequence block Copia R24588 NUDX1-1a with MITE
P580.2030 [MITE G13554] at the beginning or at the end,
was further duplicated in tandem in some wild roses produc-
ing geraniol.

Promoter Specificity and Gene Dosage Determine the
High NUDX1-1a Expression Level in Petals
Our results indicate that the clustered NUDX1-1a paralogs
arose from the duplication of the NUDX1-1b gene, which is
not expressed in petals, raising the question of how tissue
specificity and high levels of NUDX1-1a expression were
achieved.
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To answer this question, we first tested our hypothesis that
a gene dosage affects NUDX1-1a expression in wild roses pro-
ducing geraniol. Thus, we analyzed whether the number of
NUDX1-1 copies in the 13 already analyzed wild species (sup-
plementary fig. S5, Supplementary Material online) correlates
with the expression levels of NUDX1-1 homologs (table 1).
Indeed, the NUDX1-1a copy number positively correlated, al-
though not linearly, with the expression of NUDX1-1a in rose
petals (fig. 7). These results suggest that the number of dupli-
cation events leading to multiple copies of NUDX1-1a paralogs
directly impacts its expression in petals. We did not try to find
the exact expression level of each of the four copies of

RcNUDX1-1a, because of the very high DNA sequence identi-
ties in the exons (Align_OldBlush_DNAsequences.fasta and
Clones_IntronExonStructure.fasta, Supplementary Material
online), which would make almost impossible qRT-PCR exper-
iment, even with a High Melting Resolution technique (Roccia
et al. 2019). It was also because of the same length and struc-
ture of their promoters (see below and supplementary fig. S6,
Supplementary Material online) which could indicate a similar
expression.

Next, to investigate the contribution of promoters to dif-
ferent expression levels of the RcNUDX1-1a and b paralogs,
we searched for the presence of specific sequences or
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FIG. 6. Organization of the shared TEs around the NUDX1-1a and NUDX1-1b sequences in three accessions: Old Blush, Moschata, and Laevigata. (a)
Chromosome 2 of Old Blush and corresponding microsyntenic regions of Moschata and Laevigata accessions. The cluster could be interpreted
with two types of putative blocks (show on a top), which could then duplicate into five blocks. In the first hypothesis, MITEs are missing in block #5.
In the second hypothesis, MITEs are missing in block #1. (b) Chromosome 4 of Old Blush and corresponding microsyntenic regions of Moschata
and Laevigata accessions (MinION sequencing in supplementary table S13, Supplementary Material online). Only shared TEs are shown (sup-
plementary table S12, Supplementary Material online). Large orange arrows, genes from Nudx1-1 clade; large blue arrows, genes from Nudx1-2
clade; large green arrows, genes of Nudx1-3 clade; pink triangles, MITE P580.2030; dark blue triangles, MITE G13554; yellow arrow, Copia R24588;
large gray arrows, marker genes used to find reads in the MinION database (supplementary table S14, Supplementary Material online). Distances
between sequences are approximate and gene lengths and TE sizes are distorted to show the relative organization. Chr, chromosomes.
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structures upstream the coding sequences. In Old Blush, we
manually identified four repeats of a conserved 38 bp se-
quence, designated as box38 A to D. These repeats were iden-
tical in all five blocks of RcNUDX1-1a, #1 to #5, and always
located 138 bp upstream the RcNUDX1-1a transcription start-
ing site. Moreover, we found a 33-bp overlap between box38
A and a fragment of the Copia R24588 localized at the at the
50-end of each NUDX1-1a copy. In order to test the relation-
ship between Copia R24588 and box38, the fragments of
Copia R24588 and the box38 repeats upstream of each copy
of RcNUDX1-1a gene on the chromosome 2 were analyzed.
The Copia R24588 fragments contained the consensus se-
quence published in the GDR and identified from the inter-
spersed copies of Copia R24588 in the Old Blush genome. A
search for short homologous sequences of box38 in the Old
Blush genome using BlastN and multiple sequence alignment
(supplementary fig. S6, Supplementary Material online) con-
firmed that box38 was the result of the 3’-end duplication of
the Copia R24588 fragment (supplementary fig. S6a,
Supplementary Material online). There were no other box38
elements in the Old Blush genome, but only very short frag-
ments were found in other TE, intron, and intergenic hits
(supplementary fig. S6b, Supplementary Material online).
The available online PlantCARE tool (Lescot et al. 2002),
was unable to detect any known binding sites for transcrip-
tion factors in the box38 repeats, which does not exclude the
existence of unknown ones. To go further, we performed
another multiple sequence alignment using the Copia
R24588 consensus sequence of the GDR. On this sequence,
we aligned the following sequences: The Copia R24588 frag-
ment upstream RcNUDX1-1a blocks on chromosome 2, and
the Copia R24588 fragment upstream WRcNUDX1-2a on chro-
mosome 4 (fig. 8). The alignment clearly showed the origin of
the promoter fragment (fig. 8a) in the complete consensus

map of Copia R24588, with box38 A being the best aligned
within the 30 long-terminal repeat (LTR) of Copia R24588
(fig. 8b). It also showed that box38 B to D only exist upstream
RcNUDX1-1a blocks (fig. 8c).

To find whether this pattern is conserved in botanical roses
and important for the expression of NUDX1-1a in petals, we
compared the upstream sequences of NUDX1-1a and b in a
set of botanical roses producing and not producing geraniol
(supplementary fig. S7, Supplementary Material online).
Although the number of box38 repeats varied in the wild
roses, the 138 pb distance between the last box38 sequence
and the ATG codon of the NUDX1-1a was conserved (sup-
plementary fig. S7a, Supplementary Material online). In con-
trast, none of the upstream region of NUDX1-1b contained
any Copia R24588 sequence or box38 repeats (supplementary
fig. S7b, Supplementary Material online). One copy of the
box38 was also present in the Copia R24588 elements up-
stream WRcNUDX1-2a, WRmNUDX1-2a, and WRlNUDX1-2a
pseudogenes on chromosome 4 suggesting that it could be
more ancestral than those of chromosome 2.

All these results suggested a chronology of duplications:
the Copia R24588 fragment of chromosome 4 was trans-du-
plicated on chromosome 2, the box38 A was then cis-dupli-
cated into four copies, and one of the putative blocks in
figure 6a was cis-duplicated on chromosome 2.
Furthermore, these results indicated that the promoter of
RcNUDX1-1a seemed to be unique, and originated from a
specialization of a fragment of the LTR of Copia R24588.

Finally, we analyzed the impact of the box38 repeats and
different TEs in the promoter region of RcNUDX1-1a on the
specific expression of this paralog in rose petals (fig. 9).
Reporter gene encoding the green fluorescence protein
(GFP) was fused to the promoter region of RcNUDX1-1a of
different lengths (fig. 9a). The longest RcNUDX1-1a promoter
construct (a1085:GFP) included the entire 5’-region between
MITEs and RcNUDX1-1a copy #4. The other constructs were
made by removing the TEs one by one by PCR (supplemen-
tary table S7, Supplementary Material online). The 35S:GFP
used as a positive control displayed GFP fluorescence in
parenchymous and epidermal cells (fig. 9b and c). No detect-
able GFP expression was found in rose petals transferred with
the empty vector (fig. 9d and e) and the RcNUDX1-1b con-
struct (1,529 pb upstream of the ATG codon, named
b1529:GFP construct) used as a negative control (fig. 9f and
g). GFP fluorescence was observed in rose petals expressing
the three RcNUDX1-1a constructs, a1085:GFP, a521:GFP, and
a316:GFP (fig. 9h–j). However, the removal of the box38
repeats in the a138:GFP construct eliminated GFP expression
(fig. 9k and l) suggesting that the box38 repeats are essential
for petal expression.

Overall, these data suggest that the appearance of the
NUDX1-1a paralogs by the transposition of NUDX1-1b was
accompanied by the evolution of its promoter, likely by du-
plication of sequence in the LTR region of Copia R24588,
leading to the specific expression of this paralogs in petals.
This could come from the promoter of an ancestral copy of
NUDX1-2 which already had the box38 fragment.
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FIG. 7. Correlation between the expression of NUDX1-1 homologs and
the number of gene sequences in rose species. Expression of NUDX1-1
was determined by qRT-PCR with FP8-RP8 primers, and FP5-RP5 and
FP6-RP6 primers for reference genes (supplementary tables S7, and
S10, Supplementary Material online). Number of gene sequences was
estimated by qPCR with FP8-RP8 primers (supplementary fig. S5,
Supplementary Material online). Error bars correspond to SD. a.u.,
arbitrary units.
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Discussion
Our analysis of the NUDX1 genes in the Rosaceae family
revealed that three clades (Nudx1-1 to Nudx1-3) evolved in
the Rosoidae subfamily (including P. micrantha, F. vesca, and
Rosa species), and that two subclades (Nudx1-1a and Nudx1-
1b) evolved in the Rosa genus (figs. 1, 2, and 5; supplementary
S2 and table S2, Supplementary Material online). Considering
AtNUDX1 as an outgroup and RhNUDX1-rs from a modern
garden rose, the Nudx1-3 clade appeared to be more ancient
than the others, and the Nudx1-1a subclade more recent.
Comparative analysis of genetic maps of Old Blush, as a her-
itage rose producing geraniol, Moschata, as an accession of a
wild rose producing geraniol, and Laevigata, as an accession of
an unscented wild rose, allowed to access a global history of
duplications in the Rosoidae subfamily (figs. 3, 4, and 6). The
cluster NUDX1-3/NUDX1-1b/NUDX1-2a on chromosome 4
was found in Rosoidae accessions, suggesting a very old du-
plication of the putative ancestral NUDX1-3 gene. In the
Amygdaloidae subfamily (including P. persica and M. x domes-
tica), their multiple copies in the same microsyntenic region
(between marker genes F and Q in fig. 4) have significantly
diverged, thus forming a different clade, Nudx1-4 (fig. 2). In
contrast, the cluster of NUDX1-1a copies on chromosome 2 is
more recent, specific to some species of the Rosa genus and
absent in ancestral species like R. banksiae, R. roxburghii, and
R. laevigata (fig. 1c; supplementary fig. S2, Supplementary
Material online) (Fougère-Danezan et al. 2015; Debray et al.
2019). Moreover, the number of NUDX1-1a copies varies

depending on species, with two copies in the Moschata ac-
cession, and five copies in Old Blush (e.g., fig. 6; supplementary
fig. S5, Supplementary Material online). In Old Blush we iden-
tified two alleles on chromosome 2, one with five copies of
RcNUDX1-1a, and the other with a null allele (fig. 3; supple-
mentary table S2, Supplementary Material online), which
could confirm the previously predicted hybrid origin of this
heritage rose (Raymond et al. 2018).

Our analysis of the TE landscape of NUDX1-1 genes sug-
gested a trans-duplication of a first paralog from chromo-
some 4 to 2, and then several cis-duplications of NUDX1-1a
blocks including TEs in tandem (figs. 6 and 10; supplementary
fig. S4 and table S12, Supplementary Material online). The
presence of TEs in both the putative source of NUDX1-1a
on chromosome 4 and duplication blocks on chromosome 2
raise the possibility of TE-mediated mechanisms. Indeed, se-
quence similarity between TE copies across the genome can
be responsible for nonhomologous recombination and the
relocation and rearrangement of genomic features between
TE dense regions (Cerbin and Jiang 2018), as observed for
other biosynthetic gene clusters in plants (Boutanaev and
Osbourn 2018). Further extensive analysis of the repeat con-
tent in Rosa species and other Rosaceae will be required to
test this hypothesis and other putative TE-derived mecha-
nisms, such as Pack-MULE or retrotransposition (e.g., Jiang
et al. 2004; Cerbin and Jiang 2018; Krasileva 2019).

RcNUDX1-1a copies 2, 3, and 4 were found on chromo-
some 2 as repeats of a sequence block Copia R24588/
RcNUDX1-1a with MITE P580.2030 [MITE G13554] at the

0 500 1000 1500 2254

Copia R24588 RcNUDX1-1a

box38 repeat A

Copia R24588 consensus
Copia R24588 fragment (chromosome 4)
Copia R24588 fragment (chromosome 2)

LTR

B C DA

Copia R24588 consensus
1905 2098

2029
2000

box38 A

LTR LTRORFGAG

(c)

(a)

(b)

FIG. 8. Alignment interpretation of box38 of chromosomes 2 and 4 of Old Blush genome. (a) An interpretative map of a block on chromosome 2
showing the localization of Copia R24588 and box38 A fragment in the promoter of RcNUDX1-1a. (b) Manual annotation of Copia R24588
consensus with the different regions of the retrotransposon. (c) Alignment (MAAFT) of Copia R24588 consensus and upstream regions of
RcNUDX1-1a on chromosome 2, and WRcNUDX1-2a on chromosome 4 (alignment is given in Align_CopiaLTR_Chr2and4.fasta,
Supplementary Material online). This Copia R24588 fragment aligns 4 bp further with the box38 consensus (37/38 bp) than the fragments
seen in the repeat blocks of chromosome 2, strengthening the LTR origin hypothesis for box38. Red circle, Copia R24588 consensus of the GDR
(Raymond et al. 2018; Jung et al. 2019); Brown circle, upstream region of WRcNUDX1-2a on chromosome 4 (Jung et al. 2019; Hibrand Saint-Oyant
et al. 2018); Yellow circle with thick black line, Copia R24588 fragments (226 bp) located within NUDX1-1a block #1 on chromosome 2; yellow circle,
corresponding box38 repeat A; GAG, conserved capsid domain of the retrotransposon polyprotein; LTR, long-terminal repeat; ORF, open reading
frame. Coordinates are in bp.
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beginning or at the end (fig. 6; supplementary fig. S4,
Supplementary Material online). In addition, MITE
P580.2030, Copia R24588, and NUDX1 homologs were found
on one homologous chromosome 4 in a different configura-
tion (RcNUDX1-1b/MITE P580.2030/MITE P580.2030/. . ./
Copia R24588/wRcNUDX1-2a) where MITE P580.2030 does
not include MITE G13554, but is cis-duplicated in tandem.
This suggests that the copies of NUDX1 on chromosome 4,
including uninterrupted MITE P580.2030, are ancestral to
those on the chromosome 2 and have been rearranged
upon duplication (fig. 6). The parental status of the sequences
on chromosome 4 is also supported by the fact that the
microsynteny was not shared between Rosa species on chro-
mosome 2 (five interspersed copies of RcNUDX1-1a in Old
Blush, two in Moschata, and none in Laevigata), but was
conserved on chromosome 4. Finally, high expression of
NUDX1-1a, but not NUDX1-1b, in petals of fully opened flow-
ers (table 1; supplementary fig. S1 and table S10,
Supplementary Material online), further indicates that the
cluster on chromosome 2 acquired petal-specific expression
following duplication from chromosome 4 and subsequent

duplication in tandem of the rearranged block. Such cis-dupli-
cations can occur by nonallelic homologous recombination
between two identical sequences that may create an unequal
crossing-over, or by microhomology-mediated break-induced
replication mechanisms ( _Zmie!nko et al. 2014; Lye and
Purugganan 2019), even in synergy with TE mechanisms of
translocation (Krasileva 2019). In M. x domestica, clusters of
O-METHYLTRANSFERASE genes are associated with hairpins
structures from palindromic TEs provoked by DNA slippage
during replication (Han et al. 2007). In our work, MITEs
P580.2030 and G13554 are also forming !300–400 bp palin-
dromes associated with each replicated RcNUDX1-1a block
on chromosome 2.

We also discovered that repeats of a 38-bp fragment de-
rived from the LTR region of Copia R24588, and named box38,
was necessary and sufficient to drive previously discovered
petal-specific NUDX1-1a expression in petals of fully opened
flowers (Magnard et al. 2015) (figs. 7 and 9; supplementary fig.
S1, Supplementary Material online). The Copia R24588/box38
location in the 5’-upstream regions of the pseudogenes
WNUDX1-2a suggests that this gene may have been expressed

box38 GFP a1085:GFP

a521:GFP

a316:GFP

(a)

a138:GFP

(b) (c) (d) (e)

(g) (h) (i) (j)

Empty vector

b1529:GFP

(f)

(k) (l)

Copia R24588

MITE G13554

MITE P580.2030
138 bp

RcNUDX1-1b 5’-upstream fragment (1,529 bp)

FIG. 9. Confocal laser scanning microscopy of transient expression of GFP constructs in agroinfiltrated petals of Old Blush. (a) Schematic maps of
constructs including, respectively, 1085, 521, 316, and 138 bp upstream RcNUDX1-1a, 1529 bp upstream RcNUDX1-1b, and GFP alone (empty
vector). (b)–(i) Confocal images except for (d), (f), and (k) taken by reflection of light on the preparation. Petals were infiltrated with the following
constructs: 35S:GFP (b, c), empty vector (d, e), b1529:GFP (f, g), a1085:GFP (h), a521:GFP (i), a316:GFP (j), and a138:GFP (k, l). Cloning was made with
FP11-RP11 to FP15-RP11 primers (supplementary table S7, Supplementary Material online). Scale bars, 20 mm.
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originally. Thus, even if it really looks like a neofunctionaliza-
tion process, one cannot exclude subneofunctionalization as
well (see review in Baudino et al. 2020). However, during
trans-duplication from chromosome 4 to chromosome 2,
the box38 repeats were shuffled and ended up in front of
NUDX1-1a making its expression petal-specific (fig. 10). To
date, there is increasing evidence that TEs are a source of
diversification of species and can modify gene expression,
particularly in the Rosaceae (Gu et al. 2016; Wang et al.
2016; Zhao et al. 2016; Daccord et al. 2017; Jiang et al.
2019). Examples include recurrent blooming of roses and
strawberries due to an insertion of another Copia element
in the intron 2 of the antiflorigen homolog KSN (Iwata et al.
2012), and formation of more than five petals in roses due to
insertion of an uncharacterized TE in the intron 8 of
APETALA2/TOE, which deregulated its expression (Hibrand
Saint-Oyant et al. 2018). Several TE insertions in promoters
have also been described in Rosaceae, which modified tran-
scription levels as a result of new binding sites for

transcription factors or disruption of existing ones, new meth-
ylation/acetylation patterns, or hairpin structure formation
(Han and Korban 2007; Wang et al. 2009; Gu et al. 2016;
Morata et al. 2018; Ono et al. 2018; Zhang et al. 2019).

Our results show that box38 is part of the LTR region of
Copia R24588. LTRs flank the internal coding region of LTR
retrotransposons and act as promoter for the selfish tran-
scription of the canonical elements of the retrotransposon.
LTR regions contain regulatory sequences that can modify
gene expression occurring in cis and can contribute to neo-
functionalization in plants and eukaryotes (Kobayashi et al.
2004; Grandbastien 2015; Galindo-Gonz!alez et al. 2017). As
Old Blush is rich in TEs, which constitute 63.2% of the genome
including 35.2% of class I LTR retrotransposons (Hibrand
Saint-Oyant et al. 2018), further investigations are necessary
to understand the underlying mechanisms of petal-specific
expression.

We also found that the number of NUDX1-1a copies
impacts the level of geraniol emission in wild roses, in a

(a) (b)

FIG. 10. Scenario of evolution of NUDX1 in botanical roses. (a) Global scenario of duplications and specializations. Step 1, specialization of an
unknown ancestral NUDX1 into NUDX1-3; Step 2, cis-duplication of NUDX1-3; Step 3, specialization of NUDX1-3 into NUDX1-1b and NUDX1-2a
(during this step some TEs were probably inserted near NUDX1-2a); Step 4, trans-duplications of NUDX1-1b and NUDX1-2a (after this step,
NUDX1-2a could have pseudogenized); Step 5, functionalization of expression in petals (during this step box28 could have duplicate); Step 6, cis–
duplications of NUDX1-1a and increase of the level of geraniol emission. (b) Example of possible RcNUDX1-1b to RcNUDX1-1a transposition. Large
white arrow, putative ancestral NUDX1 gene; large orange arrows, genes from Nudx1-1 clade; large blue arrows, genes from Nudx1-2 clade; large
green arrows, genes from Nudx1-3 clade; pink drawings, MITE P580.2030; dark blue drawings, MITE G13554; yellow arrow, Copia R24588; dashed
gray arrows, specialization steps; black arrows, duplication steps; orange curvy arrows, volatile emission; Chr, chromosome.
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nonlinear gene dosage effect (fig. 7; supplementary fig. S3,
Supplementary Material online). A similar situation was de-
scribed in mammals, where the copy number of genes encod-
ing amylase was higher in populations with high-starch diets,
but not strictly linearly correlated to the amylase concentra-
tion in saliva (Perry et al. 2007; Axelsson et al. 2013). In an
evolution perspective, if the number of copies increases fit-
ness, these copies can be fixed by adaptive natural selection
rather than diverge by genetic drift (Hahn 2009). As
RcNUDX1-1a copies are very similar to each other (96.8–
99.0% of DNA identity resulting in 98.7% of protein identity),
it is possible that this gene, and thus geraniol concentration,
were important in the adaptation and evolution of Rosa spe-
cies. Interestingly, the blocks on chromosome 2 in Rosa look
similar to the repetitions of MATE1 in Zea mays, which in-
clude copies of Copia, Gypsy, and Mutator in their intergenic
regions and for which the total number of gene copies is
associated with aluminum tolerance (Maron et al. 2013).
This polymorphism is referred as copy number variations
(CNVs), that is, variation of number of gene copies between
individuals (Lye and Purugganan 2019), or between inbred
lines (Maron et al. 2013). It has been demonstrated that such
CNVs could be a very strong driving force leading to adapta-
tions (DeBolt 2010) even via secondary metabolism (Prunier
et al. 2017; Shirai and Hanada 2019). The differences of copy
number between Old Blush, Moschata, and Laevigata (figs. 6
and 7; supplementary fig. S5, Supplementary Material online)
could well correspond to ancestral CNVs, because of adapta-
tions of different populations in an ancestral species. It could
even have participated in the speciation of these species sim-
ilar to the situation in Picea spp. (Prunier et al. 2017).

Our results also showed the existence of correlation of
NUDX1-1a activity not only with geraniol levels but also
with some other volatiles (supplementary fig. S3,
Supplementary Material online). This could be due 1) to an
indirect effect (selection pressure on a transcription factor
that regulates several biosynthesis genes, or pleiotropic
effects), for example, as it was observed for terpenes and
phenylpropanoids in an overexpression experiment of PAP1
in R. x hybrida “Pariser Charme” (Ben Zvi et al. 2012); 2) to
diffuse selection pressure of pollinators, florivores, or parasites
on several volatile compounds (e.g., acyclic terpenoids and 2-
phenylethanol are known to be very attractive for insects;
Raguso 2004; Trhlin and Rajchard 2011); 3) to common bio-
synthetic pathway for acyclic terpenoids, as it is the case in
other species for geraniol, nerol, b-citronellol and their alde-
hydes and acetates (e.g., see review in Sun et al. 2016), or 4)
other unknown effects, like, for example, modifications or
redirections of different fluxes through pathways of precur-
sors or related to precursors.

In conclusion, NUDX1 genes duplicated several times in
Rosaceae species and probably acquired different functions.
In the Rosoidae subfamily, three distinct clades were formed
(fig. 10). The Nudx1-1 clade has evolved forming two subclades
by duplication. In the genus Rosa, the more ancient NUDX1-1b
gene was transposed from chromosome 4 and the surround-
ing TEs rearranged, such as the Copia R24588 element, provid-
ing the building blocks for box38. This raises the question of

how its promoter is specifically activated in the petals and by
which transcription factors. The resulting NUDX1-1a on chro-
mosome 2 was then able to produce geraniol in rose petals,
which could be a high driving force of selection. This driving
force was amplified in some rose species by several cis-dupli-
cations of NUDX1-1a. It is thus relevant to ask how the non-
linear effect of the gene copy number works in detail. Finally,
use of the box38 sequences for marker-assisted selection of
scented roses could be a relevant application.

Materials and Methods

Plant Materials and Sampling
Samples (fig. 1c; supplementary table S1, Supplementary
Material online) were collected in France in several botanical
gardens (Roseraie de Saint-Clair, Caluire, France; Roseraie de
Loubert, Les Brettes, France; Parc de la Tête d’Or, Lyon,
France), in the wild (Mornant, France), or in the BVpam lab-
oratory garden (Saint-Etienne, France). The same species or
variety in two different collections or different geographic
area received two different names of accession. Descriptive
data (ploidy, geography, phylogeny, and families) were
reported according to the literature (Cairns 2003;
Wissemann 2003; Schorr and Young 2007; Masure 2013;
Fougère-Danezan et al. 2015; Zhu et al. 2015; Zhang et al.
2017; Debray et al. 2019). Each sampling was repeated at least
three times between 2014 and 2019, depending on the loca-
tion, the flowering period, and the weather forecast. This last
point was important because wild roses often bloom during a
fortnight. Buds for DNA extraction, and petals for mRNA
extraction, were frozen in liquid nitrogen for transport and
conserved at !80 "C before further experiments. Petals for
volatile analysis were directly immersed in hexane containing
(þ/!)-camphor (#148075, Merck) at 5, 10, or 20 mg/l as an
internal standard. Each vial contained 1 g of petals of individ-
ual flowers and 2 ml of hexane and (þ/!)-camphor mix. Vials
were transported to the laboratory in ice.

GC–MS Analyses
The hexane extracts were recovered from the vial after 24 h at
þ4 "C and processed according to Sun et al. (2020): Agilent
6850 gas chromatograph, DB5 apolar capillary column (30 m x
0.25 mm), 7683B series injector, and 5973 Network mass se-
lective detector (Agilent Technologies). Helium at a flow rate
of 1.0 ml/min was used as a carrier gas with the following
program: 40 "C for 3 min, gradient of 3 "C min from 40 "C
to 245 "C, and 10 min at 245 "C. Injection volume was 2ml
with a split mode (split ratio 1:2) and the injector and detector
temperatures were 250 "C. The parameters for mass spec-
trometer detector were set as follows: mass scan range 35–
450 m/z, and ionization voltage 70 eV. Kovatz indexes (AI)
were calculated according to Adams (2007) and to the Nist
Web Book. Names and families of compounds (supplemen-
tary table S8, Supplementary Material online) were given by
screening Wiley 275 and Nist 08 databases, and by names
given by (Knudsen et al. 2006). Spearman’s correlation coef-
ficients (supplementary table S11, Supplementary Material
online) and heatmap (supplementary fig. S3, Supplementary
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Material online) were calculated with the R language and
environment (R Core Team 2015) using Hmisc (Harrell and
Dupont 2020) and corrr (Kuhn et al. 2020) packages.

DNA and RNA Extractions
For HMW-gDNA extraction, 100 mg of fresh buds were
grinded with pestle and mortar in 2 ml of CTAB buffer
(100 mM Tris–HCl pH 8.0, 3 M NaCl, 3% CTAB, 20 mM
EDTA, and 2% w/v PVP-40). 90 lg of Ribonuclease A
(Sigma-Aldrich) was added before heating for 45 min in water
bath at 65 !C. Cellular debris were pelleted (13,000" g, 5 min,
4 !C) and the supernatant was mixed with equal volume of
chloroform:isoamyl alcohol (24:1, v/v) and shaken slowly for
1 min. Aqueous phase was separated by centrifugation
(12,000 " g, 5 min, 4 !C). The upper phase was carefully
recovered and washed three times more. Nucleic acids were
precipitated by addition of 0.1 vol of 3 M sodium acetate pH
5.2 and 0.66 volume of cold ethanol 100% (#20 !C). Tubes
were mixed by inversion and kept at#20 !C for 1 h. DNA was
pelleted by centrifugation at 5,000 " g for 10 min at 4 !C.
DNA was washed three times with ethanol 70% and the pellet
was dried for 10 min at room temperature and resuspended
in 40ml of TE (10 mM Tris–HCl pH 8, 1 mM EDTA). All
centrifugations were performed with slow acceleration and
deceleration. Alternatively, the NucleoSpin Plant II Kit was
used (Macherey Nagel) for other experiment needing
gDNA (cloning and qPCR).

For RNA extraction, petals of opened flowers (anthesis
stage) were crushed in liquid nitrogen and extracted with
the NucleoSpin RNA Plant kit (Macherey-Nagel) with on-
column DNAse for gDNA removal with the NucleoSpin
rDNAse Set (Macherey-Nagel). Absence of gDNA was
checked by PCR. cDNA was obtained with the iScript
Ready-to-use cDNA Supermix kit (Biorad) at 42 !C for 1 h
with 1mg of RNA. All kits were used according to the man-
ufacturer’s instructions.

qPCR, qRT-PCR, and DNA Cloning for Sequencing
Primers used for cloning are given in supplementary table S7,
Supplementary Material online. Cloning of gDNAs and
cDNAs (Clones_gDNAs_cDNAs.fasta, Supplementary
Material online) were done after PCR amplification with
Phusion High Fidelity polymerase (Thermo Fisher Scientific).
The PCR parameters with RP7-FP7 primers were as followed:
98 !C for 1 min, 28 cycles of (98 !C for 10 s, 58 !C for 30 s, and
72 !C for 20 s), and 72 !C for 5 min. After purification of PCR
product with the NuceoSpin Gel and PCR clean up kit
(Macherey-Nagel), ligation was done into pCRBlunt
(Invitrogen), and transformed into Escherichia coli TOP10
(Invitrogen). Plasmid were purified with the NucleoSpin
Plasmid Kit (Macherey-Nagel). NUDX1-1 gDNA and cDNA
inserted into plasmids were sent to MWG Eurofins for se-
quencing using universal M13uni-21 primer.

Copy number determination of NUDX1-1 genes by qPCR
were performed with FP8-RP8 primers. The qPCR reaction
consisted of 10ml of SsoAdvancedTM SYBR Green Supermix
(Bio-Rad), 500 nM R and F primers, 20 ng of diluted gDNA in
20ml volume reaction. The parameters were as followed:

98 !C for 5 min, 40 cycles of 98 !C for 10 s and 58 !C for
30 s. At the end of each run, the melting curve was set to
0.5 !C every 2 s from 65 !C to 95 !C. The number of copies
was calculated by comparison with copies of RcNUDX1-1 as-
suming that there were seven copies in Old Blush (five
RcNUDX1-1a copies and two RcNUDX1-1b alleles; fig. 3; sup-
plementary fig. S5, Supplementary Material online). Three
biological replicates were performed with gDNA from three
different plants.

Amplifications for qRT-PCR were done according to Sun
et al. (2020) with housekeeping gene primers FP5-RP5 and
FP6-RP6 designed on RcEF1 and RcTUB sequences, respec-
tively (GenBank accession numbers BI978089 and
AF394915) (Dubois et al. 2012). To determine the expression
of the different RcNUDX1-1 homologs of Old Blush, FP1-RP1
to FP4-RP4 primers were used. For NUDX1-1 expression mea-
surement in the different Rosa species, FP8-RP8 primers were
used (fig. 7; supplementary fig. S5 and table S10,
Supplementary Material online). Diluted (1/25) cDNAs were
used in 20ml reaction with SsoAdvancedTM SYBR Green
Supermix (Bio-Rad). The PCR parameters were as followed:
95 !C for 30 s, and 30 cycles of (95 !C for 5 s, and 64 !C for
RcEF1 amplification [GenBank accession number BI978089],
or 58 !C for RcTUB [GenBank accession number AF394915]
and NUDX1-1 amplification for 30 s). At the end of each run,
the melting curve was set to 0.5 !C every 2 s from 65 !C to
95 !C. Cq values were automatically determined by the CFX96
Real-Time system with default settings. DCt method (Pfaffl
2001) was used for quantification by comparison with refer-
ence genes. For each species, several independent qRT-PCR on
different biological samples were performed.

Long-Read Sequencing
Sequencing library was prepared from 1mg fresh HMW-
gDNA for each species using the genomic DNA ligation se-
quencing kit (SQK-LSK109, version 14aug2019, Oxford
Nanopore Technologies) following the manufacturer’s rec-
ommendations. Library was then sequenced on a FLO-
MIN106 flow cell using a MinION device (Oxford Nanopore
Technologies). Obtained reads were subsequently basecalled
using guppy software in high accuracy mode with parameters
adapted to the sequencing kit and the flowcell
(dna_r9.4.1_450bps_hac.cfg) using guppy in GPU mode.
Basecalled fastq files were converted in fasta using the fastq_-
to_fasta program from the FASTX Toolkit v0.0.14. Blast data-
bases were obtained for each species from the fasta files then
the BlastN program (Camacho et al. 2009) was used to search
for reads containing NUDX genes using either RcNUDX1-1a, 1-
1b, 1-2a, 1-2b, 1-2c, and 1-3 sequences as query (supplemen-
tary tables S5 and S13, Supplementary Material online). Hits
on identified reads were then manually analyzed to determine
the organization of NUDX clusters.

Sequence Annotations, Phylogenies, and Synteny
Maps
Genes and transposons were named according to the GDR
(Jung et al. 2019). The sequence of R. x hybrida cv. ’Papa
Meilland’ (RhNUDX1, GenBank accession number
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JQ820249) was used to clone the corresponding gene includ-
ing the intron. It was named RhNUDX1-rs for reference se-
quence and was used to search sequences in “Rosa chinensis
Genome v1.0 chromosomes” (Hibrand Saint-Oyant et al.
2018), “Rosa chinensis Old Blush Illumina Genome v1.0
chromosomes,” “Rosa chinensis Old Blush homozygous
Genome v2.0 chromosomes” (Raymond et al. 2018), “Rosa
multiflora draft Genome v1.0” (Nakamura et al. 2018),
“Fragaria vesca Genome v4.0” (Edger et al. 2018), “Malus x
domestica Genome (GDDH13 v1-1)” (Daccord et al. 2017),
and “Prunus persica Genome v2.0.a1” (Verde et al. 2013,
2017), all published in the GDR. They were searched directly
using the blast tool online in the GDR, and/or by downloading
the fasta files in Geneious Prime software (Biomatters
Limited) for alignments, BlastN, and calculation of identity.
The nonassembled genome of P. micrantha “Potentilla
micrantha v1.0” (Buti et al. 2018) of the GDR was also used
because of the phylogeny proximity with the genus Rosa.
Sequences were directly searched in its scaffolds by BlastN
in the Genious Prime software. The ML tree in figure 2 was
calculated and drawn in the Geneious Prime software with
the plugin PhyML (Guindon et al. 2010) using complete DNA
sequences, and non full-identical sequences. The following
sequences published in Sun et al. (2020) were used as refer-
ences to name clades: RcNUDX1-1a (RcHm_v2.0_Chr2g0142
071, 0142081, 0142111, and 0142121), RcNUDX1-1b
(RcHm_v2.0_Chr4g0436181), RcNUDX1-2a (RcHm_v2.0_Chr4
g0436151), RcNUDX1-2b (RcHm_v2.0_Chr6g0244161), RcNU
DX1-2c (RcHt_S2031.3), RcNUDX1-3 (RcHm_v2.0_Chr4g04361
91), and RwNUDX1-1, RwNUDX1-2a, RwNUDX1-2b,
RwNUDX1-2c, RwNUDX1-2c’, RwNUDX1-3 (Genbank acces-
sion numbers, respectively, MT362556 to MT362561). The
gene sequences included the intron for increasing bootstraps
(Align_Rosaceae_MLtree.fasta and supplementary table S2,
Supplementary Material online). AtNUDX1 gene of
A. thaliana was used as an outgroup (GenBank accession
number AT1G68760). The dot-plot of similarity (supplemen-
tary fig. S4a, Supplementary Material online) was made with
the plugin LASTZ (Harris 2007). For microsynteny (figs. 3, 4,
and 6; supplementary table S2, Supplementary Material on-
line), marker genes around the NUDX1 genes were used to
verify correspondences between homologous regions in the
GDR and in MinION reads. They were arbitrarily named A to
S (full list in supplementary table S14, Supplementary Material
online).

The NUDX1 gene phylogeny (fig. 5; supplementary fig. S2
and Clones_IntronExonStructure.fasta, Supplementary
Material online) was reconstructed using the entire 660 bp,
thus including the intron, with F. vesca NUDX1 gene as out-
group (GenBank accession number XM_004297107.2). Indeed,
as the coding parts of the NUDX1 gene are strongly conserved
between species, too little phylogenetic information is con-
tained in the exonic sequences, whereas the intronic sequence
is more variable and makes the phylogenetic reconstruction
possible. NUDX1 genes were aligned using Clustalw
(Thompson et al. 2003), and sites ambiguously aligned were
removed with Gblocks (Castresana 2000), resulting in a 608 bp
alignment. ML phylogenetic reconstruction was conducted

using PhyML (Guindon et al. 2010) under a GTRþGþ I
model (Align_OldBlush_MLtree.fasta, Supplementary
Material online). Tree was rooted with the FvNUDX1-1 gene
(GenBank accession number XM_004297107.2). In order to
understand the history of duplication, we need to know which
sequences belongs to the chromosome 2 (NUDX1-1a paralog)
and which ones belong to the chromosome 4 (NUDX1-1b
paralog). To achieve that, all sequences were aligned by
BlastN against Old Blush RcNUDX1-1a (GenBank accession
number, CM009583.1, from position 59,567,055 to
59,567,676 bp) and RcNUDX1-1b (GenBank accession number
CM009585.1, from position 59,520,245 to 59,520,862 bp).
Identities of the DNA sequences and the putative proteins
were also calculated (supplementary tables S3 and S4,
Align_OldBlush_DNAsequences.fasta, and Align_OldBlush_
Proteins.fasta, Supplementary Material online) to draw the
comprehensive map (fig. 3). gDNAs displaying identity more
than 1% higher with RcNUDX1-1a than with RcNUDX1-1b
were assigned to the Nudx1-1a subclade and vice versa (sup-
plementary fig. S2 and table S9, Supplementary Material on-
line). As these two paralogs are very similar, some sequences
aligned similarly with BlastN (<1% with both references), and
thus were not assigned to one of the subclades.

Promoter Analysis, Cloning, and Transient Expression
For promoter analyses of Copia R24588 and box38 hits and
homology, we used BlastN (Camacho et al. 2009) with the
minimum seed size (word_size ¼ 7) allowing to recover hits
from short query sequences. Multiple alignments were per-
formed with MAFFT (Katoh et al. 2019) using the following
parameters (parameters –thread 2 –reorder –adjustdirectio-
naccurately –anysymbol –maxiterate 2 –retree 1 –genafpair).
Alignments are given in Align_CopiaBox38_Chr2.fasta and
Align_CopiaLTR_Chr2and4.fasta (Supplementary Materials
online). Quality control of the alignment and minor exten-
sions of the BlastN hits (up to 2 bp) within the box38 con-
sensus were performed manually. A consensus sequence logo
for box38 was created using WebLogo v2.8.2 (Crooks et al.
2004). We also mapped the consensus sequence of Copia
R24588 of the GDR by using RepeatClassifier, a tool included
with RepeatModeler2 (Flynn et al. 2020) and TE-Aid (https://
github.com/clemgoub/TE-Aid).

Primers used for cloning are given in supplementary table
S7, Supplementary Material online. For promoter cloning,
FP9-RP9 (upstream region of NUDX1-1b) and FP10-RP10 (up-
stream region of NUDX1-1a) were used and cloned into
pCRBlunt (Invitrogen) as mentioned above and sequenced
with the same procedure using the M13uni-21 primer for
sequencing. Amplification of the different promoter regions
was done with Phusion U Hot Start DNA Polymerase
(ThermoFisher Scientific) with combinations of USER ex-
tended primer FP11 to FP15 and RP11 with RcOB gDNA as
template (fig. 9). The PCR parameters’ primers were as fol-
lowed: 98 #C for 1 min, 25 cycles of (98 #C for 10 s, 60 #C for
30 s, and 72 #C for 30 s), and 72 #C for 5 min. PCR products
were cloned into a pCAMBIA2300 binary base vector with
linearized PacI-USER cassette upstream the GFP and NOS-
terminator using USER enzyme (New England Biolabs). The
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control construct based on double CaMV 35S promoter was
cloned into the same vector with the same method using the
binary vector pMDC32 containing this promoter as matrix
with FP16-RP16. All USER reaction was transformed into
E. coli TOP10 (Invitrogen). Plasmids were purified with the
NucleoSpin plasmid kit (Macherey Nagel). Sequence of con-
structs was verified before use.

These constructs were transformed into the Agrobacterium
strain LBA4404. Agrobacteria were grown on LB agar with
rifampicin (50mg/ml), gentamicin (20mg/ml), and kanamycin
(50mg/ml), and then screened by PCR for the presence of the
construct. Agrobacteria were grown in 25 ml of liquid LB with
antibiotics and collected by centrifugation at room tempera-
ture for 8 min at 4,000! g and washed in 10 mM MgCl2 and
10 mM MES pH 5.7 buffer three times. They were diluted to
OD600nm¼ 1.0 with wash buffer and infiltrated on the abaxial
side of Old Blush petals with a syringe. After 3 days, infiltrated
petals were observed with a TCS-SP2 inverted confocal scan-
ning laser microscope (Leica) with a !40/0.80W lens. The
argon laser was set at 488 nm for GFP excitation and the
fluorescent signal was captured at 500–550 nm.

Enzyme Assay
RcNUDX1-1a and RcNUDX1-1b cDNA sequences correspond-
ing to Old Blush gDNA1 and 2, respectively
(Clones_gDNAS_cDNAs.fasta, Supplementary Material on-
line), were amplified by PCR (primers FP17-RP17; supplemen-
tary table S7, Supplementary Material online) and cloned in
pET-30a(þ) between the KpnI and SalI restriction sites.
RmNUDX1-1a and RmNUDX1-1b cDNAs corresponding to
Moschata gDNA10 and gDNA2, respectively
(Clones_gDNAS_cDNAs.fasta, Supplementary Material on-
line), were synthetized (GenScript) and cloned in pET-
30a(þ) between the KpnI and SalI restriction sites.
Sequences and vectors were verified by sequencing and trans-
formed into E. coli BL21(DE3)pLysS.

Transformants were grown at 37 $C in LB medium until
OD600nm ¼ 0.4. Proteins were produced by overnight induc-
tion at 16 $C with 1 mM IPTG. After centrifugation, bacteria
pellet was resuspended in buffer (50 mM Tris–HCl pH 8.5,
500 mM NaCl, 2 mM DTT, 8% glycerol v/v, 10 mM imidazole,
0.25 mg/ml lysozyme) and lysed by sonication. Supernatant
was mixed with Ni-NTA agarose resin (Qiagen) for 1 h. Resin
was rinsed five times with 50 mM Tris–HCl pH 8.5, 500 mM
NaCl, 2 mM DTT, 8% v/v glycerol, and 50 mM imidazole, and
finally eluted in the same buffer but containing 250 mM im-
idazole. Proteins were desalted by passing through a PD10
desalting column (GE Healthcare) equilibrated with the assay
buffer (50 mM HEPES pH 8, 5 mM MgCl2, 5% v/v glycerol) and
quantified with the Bradford method. All steps of purification
were conducted on ice.

Enzymatic reactions were performed in assay buffer con-
taining different concentrations of GPP (0.5, 1, 2, 5, 10, 30, or
50mM) in 100ml reaction volume at 30 $C for 4 min, and
using 20 ng of proteins. Reactions were stopped by adding
100ml MeOH:H2O (10 mM NH4OH) 7:3 and mixed for 30 s.

Product analyses were performed on an Agilent 1260 in-
finity II LC system coupled to an Agilent Ultivo triple

quadrupole mass spectrometer (Agilent Technologies, Santa
Clara) using a Poroshell 120 HPH-C18 column (50 mm !
2.1 mm, particle size 1.9mm, Agilent) heated at 35 $C. The
mobile phases consisted of 10 mM ammonium bicarbonate
pH 10.2 with 0.15% v/v ammonia, as solvent A, and acetoni-
trile with 0.15% v/v ammonia, as solvent B, with a 0.6 ml min
flow rate. Two microliters of reaction mixture were injected
for each sample. Separation was achieved with a gradient
starting with 2% B reaching 98% B in 2, 1 min isocratic at
98% B and return at 2% B at 3.10 min with equilibration until
6.5 min. Mass spectrometer tunings were as follow: capillary
voltage 5000 V, gas temperature 350 $C, gas flow 12 l/min,
and nebulizer 55 psi. Products detection was achieved in neg-
ative and MRM modes with the following MS/MS transitions
and tunings: 312.2–78.9 m/z for GPP with Fragmentor at 70 V
and Collision Energy at 92 V and 233.1–78.9 m/z for GP with
Fragmentor at 75 V, and collision energy at 60 V. Data analysis
was performed with MassHunter quantitative software
(Agilent Technologies). Enzyme Kinetic parameters were de-
termined using the Lineweaver-Burk plot model.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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General outline chapter 3:  
 

Chapter 3 “A conserved bifunctional geranyl/farnesyl diphosphate synthase in Rosaceae 
provides cytosolic GPP precursor for NUDX1-1a-dependent geraniol biosynthesis in rose 
flowers” 

Corentin CONART, Dikki PEDENLA BOMZAN, Xing-Qi HUANG, Jean-Etienne BASSARD, Saretta N. 
PARAMITA, Denis SAINT-MARCOUX, Aurélie RIUS-BONY, Gal HIVERT, Anthony ANCHISI, Hubert 
SCHALLER, Latifa HAMAMA, Jean-Louis MAGNARD, Agata LIPKO, Ewa SWIEZEWSKA, Jame 
PATRICK, Laurence HIBRAND SAINT-OYANT, Michel ROHMER, Efraim LEWINSOHN, Natalia 
DUDAREVA, Sylvie BAUDINO, Jean-Claude CAISSARD and Benoît BOACHON. 

 

This chapter is under preparation for submission  

 

In the two previous articles, we described evolution and specialization of NUDX1-1a in Rosaceae, 

Rosideae, and Rosa. However, we did not answer the question about the origin of GPP, the substrate 

of NUDX1-1a enzyme. Indeed, NUDX1-1a is clearly cytosolic but, in general, GPP is biosynthesized in 

plastids. In this article we asked the question : where does the cytosolic GPP come from? Thanks to 

physiological experiments with stable isotopic labelled precursors, and specific inhibitors of the terpene 

pathways, we demonstrated that the GPP was biosynthesized in the cytosol by the MVA pathway. We 

also cloned all IDSs expressed in rose petals to find the enzyme responsible of the GPP biosynthesis. 

We characterized RcG/FPPS1, a mutated FPPS, that could synthesized both GPP and FPP in the 
cytosol. We then focused on the evolution of this bi-functional activity in Rosaceae and Rosids, and 

found that this novel function appeared before Rosaceae diversification. Furthermore, we found the 

mutation responsible of this novel function in the active site, we modelized the enzyme, and we built 

site-directed mutagenesis enzymes, and finally explained this bi-functional activity.  

In this work, I did all the molecular biology work (DNA constructs, qRT-PCR, site-directed 

mutagenesis…), and the in vitro characterization of IDSs after heterologous expression in E.coli and 

purification of proteins. I also took part in the identification of amino acids that can be responsible of the 
bi-functional activity of RcG/FPPS1. I optimized the culture condition of roses in vitro, in greenhouse, 

the transient experiments of petals, and I optimized all physiological experimentations such as the use 

of inhibitors and precursors of the MVA and MEP pathways. 
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I- Introduction 
Roses are known for centuries for their pleasant characteristic fragrance and esthetic morphological 

traits appealing to humans (Krüssmann, 1981). Despite the wide diversity of volatiles emitted by 

thousands of rose hybrids created so far, geraniol and its derivatives such as citronellol, for example, 

are essential compounds contributing to unique and well-known rose scents.  

Unlike other monoterpenes, the carbon skeleton of geraniol is identical to that of its precursor GPP. This 

structural feature initially allowed to hypothesize that geraniol could be formed by the action of 

phosphatase. However, the characterization of the first GES from sweet basil (Iijima et al. 2004) 
revealed that geraniol biosynthesis does not rely on phosphatase enzyme and involves, like in the case 

of other monoterpene synthases, the formation of a carbocation intermediate from GPP substrate in 

plastids. Since then, this canonical geraniol biosynthetic pathway was described in most geraniol-

producing plants, except for roses. Instead of plastidic GES, a cytosolic RhNUDX1 hydrolase was shown 

to be responsible for the production of geraniol in flowers of rose hybrids (Magnard et al. 2015). NUDX 

hydrolases are conserved enzymes found in all types of organisms and considered as “housecleaning” 

proteins associated with cell detoxification such as the dephosphorylation of organic pyrophosphates 
(Srouji et al. 2017). However, in rose hybrids and wild species producing geraniol, NUDX1-1a is highly 

and specifically expressed in petals and its encoding protein dephosphorylates GPP to GP in the cytosol 

(Conart et al. 2022) . A yet unknown phosphatase is assumed to catalyze the final step of geraniol 

biosynthesis. The fact that the rose NUDX1-1a is localized exclusively in the cytosol, and not in plastids 

where GPP is generally assumed to be synthesized from five-carbon building blocks, IPP and its 

isomeric from DMAPP derived from the MEP pathway, raised yet the unanswered question about the 

origin of GPP metabolized by cytosolic NUDX1-1a in roses.  

In plants, IPP and DMAPP are synthesized by two alternative and compartmentally separated pathways, 
the plastidic MEP pathway and the MVA pathway distributed between the cytosol, endoplasmic 

reticulum, and peroxisomes (Hemmerlin et al. 2012; Tholl, 2015). These two pathways are connected 

via a metabolic “cross-talk”, which is species- and organ-specific (Vranová et al. 2012). In general, the 

MVA-derived IPP and DMAPP are used by FPPS to produce FPP for cytosolic biosynthesis of 

sesquiterpenes and triterpenes and mitochondrial biosynthesis of ubiquinones and polyprenols. The 

MEP-derived plastidic IPP and DMAPP serve as precursors for GPP and GGPP, and ultimately of 

monoterpenes, diterpenes and tetraterpenes such as carotenoids. All plant short-chain trans- IDS using 

IPP and DMAPP substrates are homodimeric enzymes except for GPPSs (Chang et al. 2010), which 
have both homodimeric and heterodimeric architecture depending on plant species. The homomeric 

GPPSs have been described in gymnosperm and some angiosperm species (Bouvier et al. 2000; van 

Schie et al. 2007; Schmidt and Gershenzon, 2008; Hsiao et al. 2008; Rai et al. 2013), while the 

heteromeric GPPSs have been reported only in angiosperms so far including A. thaliana, M. piperita, S. 

lycopersicum, A. majus, C.roseus and H. lupulus (Burke and Croteau, 2002; Tholl et al. 2004; Orlova et 

al. 2009; Wang and Dixon, 2009; Rai et al. 2013; Hivert et al. 2020;). The heterodimeric GPPSs consist 

of a LSU, usually exhibiting GGPPS activity alone, and a SSU, which is itself generally catalytically 
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inactive but upon interaction with the large subunit, favors GPP formation. Thus, due to the existence of 

cross-talk between the two terpenoid biosynthetic pathways via the exchange of IPP and GPP (Bick and 

Lange, 2003), the cytosolic GPP in roses could derive from products of the MVA, the MEP pathway, or 

both, and rely either on homodimeric or heterodimeric GPPSs or on FPPS-like enzyme producing GPP 

as was reported in insects and Lithospermum erythrorhizon roots (Vandermoten et al. 2008; Ueoka et 

al. 2020; Suttiyut et al. 2022).    

In this study we investigated the origin of cytosolic GPP metabolized by NUDX1-1a in rose flowers to 

produce geraniol. Using OB flowers, we demonstrated that GPP is synthesized in the cytosol through 

the MVA pathway. We biochemically characterized the five IDS candidates retrieved from OB genome 

of which one cytosolic FPPS-like enzyme, named RcG/FPPS1, exhibited bifunctional G/FPPS activity 

in vitro. When the five IDS candidates were co-expressed in N. benthamiana leaves with RcNUDX1-1a, 

only RcG/FPPS1 co-expression enabled increased geraniol production, while its expression alone 

increased FPP-derived capsidiol accumulation. In addition, RcG/FPPS1 expression profile in rose 
flowers was found to be rhythmical and to be associated with both GPP and FPP rhythmical 

accumulations before geraniol emission. Finally, transient down- and upregulation of RcG/FPPS1 in OB 

flowers resulted in increased and decreased geraniol emission, respectively, and had similar effect on 

emissions of FPP-derived germacrene D and carotenoid derived dihydro-β-ionol (dhβ-ionol), thus 

providing genetic evidence for RcG/FPPS1 endogenous bifunctional activity. Reconstitution of 

RcG/FPPS evolution in addition to biochemical characterization of Rosaceae G/FPPSs and RcG/FPPS1 

point mutations we identified two amino acid conserved only in Rosaceae species and involved in the 
apparition of bifunctional activity of this enzyme. This enabled to solve the unanswered question about 

the cytosolic biosynthesis of monoterpenes in Rosaceae species such as strawberries and the origin of 

cytosolic GPP necessary for NUDX1-1a-dependent biosynthesis of geraniol in rose flowers. 

II- Results 
Geraniol is synthesized via the MVA pathway in rose flowers.  

To investigate the biosynthetic origin of cytosolic GPP metabolized by RcNUDX1-1a for geraniol 

production in rose flowers several independent approaches were used including (i) feeding of rose 
flowers with stable isotope-labeled pathway-specific precursors, (ii) inhibitory experiments with pathway-

specific inhibitors, (iii) analysis of natural isotopic ratios and (iv) analysis of subcellular GPPS activity. 

[2-13C]-mevalonolactone (13C-MEV), a specific precursor of the MVA pathway, rapidly incorporated in 

germacrene D, known to be produced from the MVA pathway-derived precursors by the previously 

characterized cytosolic sesquiterpene synthase (Guterman et al. 2002), and in geraniol reaching 64 % 

and 42 % of labeling after 54 h of feeding, respectively. Only relatively low incorporation of 2H2-DOX, a 

specific precursor of the MEP pathway, was observed in these compounds (Figure 3.1A). In comparison, 

both precursors were slowly incorporated in dhβ-ionol, an apocarotenoid volatile synthesized from 
plastidic GGPP (Huang et al. 2009a; b), resulting in only 13 % for 13C-MEV and 21 % for 2H2-DOX of 

labeling after 54 h of feeding (Fig. 1A). Consistently, treatment of rose flowers with mevinolin, a specific 

inhibitor of the MVA pathway, decreased geraniol emission by 68 %, which was similar to a reduction in 
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emission of germacrene D (73 %; Figure 3.1B). On the other hand, fosmidomycin, a specific inhibitor of 

the MEP pathway, did not affect the emission of these compounds, suggesting that the cytosolic MVA 

pathway makes a major contribution to geraniol biosynthesis in rose flowers. In contrast, the emission 

dhβ-ionol was reduced by both inhibitors suggesting that both the MVA and MEP pathways contribute 

to its formation and that a substantial metabolic exchange from the cytosolic MVA pathway to plastids 
occurs in rose flowers. The emission of TMB, a non-terpene volatile produced from acetyl-CoA 

independently of the MEP or MVA pathways (Scalliet et al. 2002) was used as a control and remained 

unchanged in these experiments.  

 

Figure 3.1 | Geraniol is synthesized through the MVA pathway in cytosol of rose flowers. (A) 
Kinetic of stable isotopes 13C-MEV or 2H2-DOX incorporation in VOCs emitted from OB flowers analyzed 
by GC-MS and expressed as % relative to total, mean ± SEM n = 4. (B) Effect of inhibitor treatments 
mevinolin or fosmydomycin on VOCs emitted from OB flowers analyzed by GC-MS and expressed as 
% relative to untreated control flowers. Data are means ± SEM, n = 18. Letters indicate statistically 
significant differences between samples analyzed by ANOVA and Tukey post-hoc test. (C) Natural 
12C/13C isotopic ratios δ(13C) of the VOCs emitted from rose petals treated or not with mevinolin or 
fosmidomycin analyzed by GC-IRMS. Data are means ± SEM, n = 5. p values indicate statistically 
significant differences analyzed by two-tailed Student’s t-test. (D) GPPS and FPPS activities in crude 
protein extracts from OB flowers and enriched sub-cellular cytosolic, plastidic and 
mitochondrial/peroxysomal fractions. 20 µg of proteins per fraction were incubated with IPP and DMAPP 
and MeOH extracts were analyzed by LC-MS/MS. Activities are expressed in pKat normalized by the 
ratio of proteins recovered from each compartment compared to crude. Data are means ± SEM, n = 3. 
 

Fig. 1. Geraniol is synthesized through the MVA pathway in cytosol of rose flowers.

(A) Kinetic of stable isotopes 13C-MEV or 2H2-DOX incorporation in VOCs emitted from RcOB flowers analyzed by GC-MS and expressed as
% relative to total, mean ± SEM n = 4. (B) Effect of inhibitor treatments mevinolin or fosmydomycin on VOCs emitted from RcOB flowers
analyzed by GC-MS and expressed as % relative to untreated control flowers. Data are means ± SEM, n = 18. Letters indicate statistically
significant differences between samples analyzed by ANOVA and Tukey post-hoc test. (C) Natural 12C/13C isotopic ratios δ(13C) of the VOCs
emitted from rose petals treated or not with mevinolin or fosmidomycin analyzed by GC-IRMS. Data are means ± SEM, n = 5. p values
indicate statistically significant differences analyzed by two-tailed Student’s t-test. (D) GPPS and FPPS activities in crude protein extracts from
RcOB flowers and enriched sub-cellular cytosolic, plastidic and mitochondrial/peroxysomal fractions. 20 µg of proteins per fraction were
incubated with IPP and DMAPP and MeOH extracts were analyzed by LC-MS/MS. Activities are expressed in pKat normalized by the ratio of
proteins recovered from each compartment compared to crude. Data are means ± SEM, n = 3.
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It was previously shown that the natural 12C/13C isotope ratios δ(13C) of terpenes differs depending on 

their origin due to preference of the pyruvate dehydrogenase from the MVA pathway for lighter 

substrates and that the use of pathway-specific inhibitors can modify this δ(13C) as a result of reduced 

contribution from the inhibited pathway (Jux et al. 2001). VOCs emitted from rose petals treated or not 

with inhibitors were thus analyzed by gas chromatography-isotope ratio mass spectrometry (GC-IRMS) 
(Figure 3.1C). Consistently with results obtained with inhibitory and labelling experiments the δ(13C) 

values measured for germacrene D and geraniol were similarly and significantly increased in roses 

treated with mevinolin compared to control flowers as a result of decreased contribution of the MVA 

pathway. δ(13C) values for these compounds were unaffected by fosmidomycin treatment confirming 

their essentially MVA pathway origin. Finally, δ(13C) values were not affected by any treatment for the 

control TMT and could not be determined for dhβ-ionol due to low signal and potential impurity in the 

pics. 

 Since both inhibitory and the precursor feeding experiments suggested that the MVA pathway 
predominantly contributes to geraniol formation in rose flowers, but GPPSs in most angiosperm species 

are localized in plastids, GPPS and FPPS activities were analyzed in different subcellular fractions. Both 

GPPS and FPPS activities were found in the cytosolic fraction, suggesting that GPP formation occurs 

mainly in the cytosol in rose flowers (Figure 3.1D). In addition, plastidic and mitochondrial fractions 

contained negligible GPPS and FPPS activities relative to the cytosol. GGPPS activity was not detected 

in these experiments because of being below the detection limit. Analysis of activities of marker enzymes 

and chlorophyll content in isolated fractions confirmed that the cytosolic fraction was barely 
contaminated by the other compartments (Figure S3.1). Taken together, these results indicate that in 

rose flowers, GPP is formed in the cytosol by unknown GPPS synthase from precursors derived from 

the MVA pathway.  

The cytosolic RcG/FPPS1 exhibits both GPP and FPP synthase activities.  
To identify the enzyme responsible for cytosolic GPP production in rose we blast searched the recently 

published genome of OB (Hibrand Saint-Oyant et al. 2018; Raymond et al. 2018) for trans-short-chain 

IDSs. This analysis yielded six IDS candidates including two putative FPPSs, RcG/FPPS1 (see below) 

and RcFPPS2, two putative large subunits of G(G)PPS designated RcGGPPS.LSU1 and 

RcGGPPS.LSU2, one small subunit of GPPS designated RcGPPS.SSU and one putative homodimeric 
GPPS designated RcGPPS.HOMO (Figure 3.2A) which all contained the expected conserved domains 

(Figure S3.2). RNAseq analysis of flowers from OB and nine rose hybrids producing different levels of 

geraniol revealed that all IDSs were expressed except for RcGGPPS.LSU2 which was not included in 

further experiments (Figure 3.2B). The expression of the five IDSs was found relatively low compared 

to NUDX1-1a and none of them was correlated to geraniol content contrarily to NUDX1-1a expression. 

A protein targeting prediction program, TargetP, predicted that only FPPSs have no transit peptide and 

are likely localized in the cytosol while the small and two large subunits of GPPS contain putative 

plastidic transit peptides and RcGPPS.HOMO contains a putative mitochondrial transit peptide (Figure 
S3.2A). To verify the program predictions, the CDS of each IDS candidate was fused to the N-terminus 
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of the coding sequence of the green fluorescent protein (eGFP) reporter for transient expression in OB 

petals. The subcellular localization observed in conical epidermal cells of OB petals was consistent with 

the program predictions (Figure 3.2C and Figure S3.2A). RcGPPS.SSU and RcGGPPS.LSU1 were both 

colocalized with the plastidic marker and also co-localized with each other. RcGPPS.HOMO was 

colocalized with the mitochondrial marker while both RcG/FPPS1 and RcFPPS2 were localized in the 
cytosol like RcNUDX1-1a. 

 

Figure 3.2 | The OB genome contains six IDS candidates of which two FPPS-like synthases 
localized in the cytosol.(A) Maximum likelihood tree of protein sequences of the six OB trans-short-
chain IDSs (highlighted in pink) with characterized IDSs from Abies grandis (Ag), Antirrhinum majus 
(Am), Arabidopsis thaliana (At), Clarkia breweri (Cb), Catharanthus roseus (Cr), Humulus lupulus (Hl), 
Mentha piperita (Mp), Phalaenopsis bellina (Pb), Picea abies (Pa), Populus trichocarpa (Pt), Quercus 
robur (Qr), Rosa chinensis ‘Old Blush’ (Rc) and Solanum lycopersicum (Sl). (B) Transcriptomic analysis 
of the six OB IDSs and NUDX1.1a compared to geraniol levels in 10 rose hybrids including R. chinensis 
‘Old Blush’ (OB), R. x hybrida ‘AkitoR’ (AK), R. x hybrida ‘The Fairy’ (FY), R. x damascena ‘Kazanlik’ 
(KZ), R. x odorata ‘Lady Hillingdon’ (LH), R. x hybrida ‘Mc Cartney’ (MC), R. x hybrida ‘Marius Ducher’ 
(MD), R. x hybrida ‘Pariser Charmehy’ (PC), R. x hybrida ‘Papa Meilland’ (PM) and R. x hybrida ‘Rouge 
Meilland’ (RM). Heatmap on top panel shows the expression levels of the six IDS candidates and 
NUDX1.1a from RNAseq analysis on open flowers from the 10 rose cultivars and expressed as 
transcripts per million (TPM). Data are means from 3 biological replicates. Heatmap on bottom panel 
shows the geraniol levels analyzed in the opened flowers of these 10 cultivars. Data are means from 3 
biological replicates. Pearson correlation coefficients (R-values) comparing the transcript levels of each 

Fig 2. The RcOB genome contains six IDS candidates of which two FPPS-like synthases localized in the cytosol.

(A) Maximum likelihood tree of protein sequences of the six RcOB trans-short-chain IDSs (highlighted in pink) with characterized IDSs from
Abies grandis (Ag), Antirrhinum majus (Am), Arabidopsis thaliana (At), Clarkia breweri (Cb), Catharanthus roseus (Cr), Humulus lupulus (Hl),
Mentha piperita (Mp), Phalaenopsis bellina (Pb), Picea abies (Pa), Populus trichocarpa (Pt), Quercus robur (Qr), Rosa chinensis µOld %OXVK¶
(Rc) and Solanum lycopersicum (Sl). (B) Transcriptomic analysis of the six RcOB IDSs and NUDX1.1a compared to geraniol levels in 10 rose
hybrids including R. chinensis µ2OG %OXVK¶ (OB), R. x hybrida µAkitoR¶� R. x hybrida µ7KH )DLU\¶� R. x damascena µKazanlik¶� R. x odorata µ/DG\
Hillingdon¶� R. x hybrida µ0F Cartney¶� R. x hybrida µ0DULXV Ducher¶� R. x hybrida µPariser Charmehy¶� R. x hybrida µ3DSD Meilland¶ and R. x
hybrida µ5RXJH Meilland¶. Heatmap on top panel shows the expression levels of the six IDS candidates and NUDX1.1a from RNAseq analysis
on open flowers from the 10 rose cultivars and expressed as transcripts per million (TPM). Data are means from 3 biological replicates.
Heatmap on bottom panel shows the geraniol levels analyzed in the opened flowers of these 10 cultivars. Data are means from 3 biological
replicates. Pearson correlation coefficients (R-values) comparing the transcript levels of each gene to geraniol content in the 10 rose cultivars
is shown on the right of top panel. R-values with significant p values �� 0.001) are highlighted in green. (C) Subcellular localization of RcOB
IDSs in epidermal cells of RcOB petals. Schematic diagrams of the constructs used are shown on the left with corresponding transient
expression in RcOB cells on the right. CDS of RcOB IDS candidates and RcNUDX1.1a were fused with eGFP or mCherry at their C-terminus
as indicated. mCherry was fused to different subcellular markers for cytosol (untargeted mCherry), plastids (CD3-999) and mitochondria
(CD3-991). Merge channel shows both eGFP and mCherry signals with bright field. Scale bar, 10 µm.

eGFP mCherry MergeC

RcFPPS1

A

G(G)PPS.LSU

B

OB AK FY KZ LH MC MD PC PM RM R-values
RcG/FPPS1  -0.57

RcFPPS2 -0.48
RcGGPPS.LSU1 0.27
RcGGPPS.LSU2 -0.34

RcGPPS.SSU -0.01
RcGPPS.HOMO -0.08

RcNUDX1.1a 0.86

0

Gene expression (TPM)

100 100000

0 40 80

Geraniol levels

Geraniol (µg/g FW)

G/FPPS1 eGFP

mCherry

FPPS2 eGFP

mCherry

GGPPS.LSU1 eGFP

mCherryCD3-999

GPPS.SSU eGFP

mCherryCD3-999

GGPPS.LSU1 eGFP

mCherryGPPS.SSU

GPPS.HOMO eGFP

mCherryCD3-991

G/FPPS1 eGFP

mCherryNUDX1.1a



Chapter 3: A conserved bifunctional geranyl/farnesyl diphosphate synthase in Rosaceae provides 

cytosolic GPP precursor for NUDX1-1a-dependent geraniol biosynthesis in rose flowers 

___________________________________________________________________________ 

 83 

gene to geraniol content in the 10 rose cultivars is shown on the right of top panel. R-values with 
significant p values (≤ 0.001) are highlighted in green. (C) Subcellular localization of OB IDSs in 
epidermal cells of OB petals. Schematic diagrams of the constructs used are shown on the left with 
corresponding transient expression in OB cells on the right. CDS of OB IDS candidates and 
RcNUDX1.1a were fused with eGFP or mCherry at their C-terminus as indicated. mCherry was fused 
to different subcellular markers for cytosol (untargeted mCherry), plastids (CD3-999) and mitochondria 
(CD3-991). Merge channel shows both eGFP and mCherry signals with bright field. Scale bar, 10 µm. 
 

To determine whether identified cytosol-localized candidates can produce GPP, recombinant mature 

RcG/FPPS1 and RcFPPS2 proteins were heterologously produced in E. coli. Copurification of 6-His-

tagged and untagged RcG/FPPS1 confirmed that it can form a homodimer (Figure S3.3A). Purified 

proteins were incubated with IPP and DMAPP followed by product analysis by LCMS (Figure 3.3A and 

Figure S3.4A). Surprisingly, RcG/FPPS1 efficiently converted IPP and DMAPP substrates into both GPP 

and FPP, while RcFPPS2 almost exclusively produced FPP. When both enzymes were incubated with 

IPP and GPP, FPP was formed (Figure S3.4B). In addition, the GPP/FPP product ratio of RcG/FPPS1 
was modified when changing the ratio of IPP and DMAPP concentrations enabling to produce more 

GPP when DMAPP was provided in excess and more FPP when IPP was provided in excess (Figure 

3.3B). Analysis of the kinetic parameters revealed that RcG/FPPS1 had a high affinity toward IPP in the 

presence of saturating DMAPP concentration with an apparent Km of 0.44 µM (Table 3.1). The kinetic 

parameters of RcFPPS2 for the GPP production could not be determined as the enzyme always 

produced FPP. However, when kinetic parameters were determined for FPP production and for IPP in 

the presence of the GPP as allylic cosubstrate, RcG/FPPS1 had a four-fold lower affinity for IPP than 

RcFPPS2. Moreover, the RcG/FPPS1 affinity was 120-fold lower for IPP when GPP was supplied 
instead of DMAPP as cosubstrate and RcG/FPPS1 produced FPP 15-fold less efficiently (kcat/Km ratio) 

than GPP. Thus, RcG/FPPS1 gained the ability to produce GPP while keeping similar catalytic efficiency 

for FPP production as RcFPPS2 suggesting that RcG/FPPS1 is a bifunctional geranyl/farnesyl 

diphosphate synthase whose product specificity could be modified by substrate availability. 

Table 3.1 | Kinetic parameters of RcOB IDS candidates and RcG/FPPS1 mutantsa. 

 

aAll values represent mean ± SE, n = 3. nd, not determined (below detection limit). Δ indicates the 

variable substrate. 

 

Table 1. Kinetic parameters of RcOB IDS candidates and RcG/FPPS1 mutants.

Substrates Product Protein Km (µM) Kcat (sec-1) kcat/Km (µM-1.sec-1)

DMAPP Δ IPP GPP

G/FPPS1 0.44 ± 0.03 0.321 ± 0.009 0.74 ± 0.03

GGPPS.LSU1 + GPPS.SSU 2.50 ± 0.15 0.023 ± 0.0008 0.0091 ± 0.0003

GGPPS.LSU1 6.74 ± 0.84 0.021 ± 0.002 0.0032 ± 0.0001

GPPS.HOMO 5.00 ± 1.29 0.001 ± 0.0001 0.0001 ± 0.00001

FPPS2 nd nd nd

GPP Δ IPP FPP

G/FPPS1 53.1 ± 5.1 2.87 ± 0.26 0.05 ± 0.000

FPPS2 13.1 ± 3.4 0.91 ± 0.17 0.07 ± 0.006

G/FPPS1-F88Y 9.08 ± 0.74 0.54 ± 0.03 0.06 ± 0.002

G/FPPS1-V123I 14.74 ± 1.94 0.93 ± 0.08 0.06 ± 0.003

G/FPPS1-F88Y/V123I 12.78 ± 3.07 1.78 ± 0.33 0.14 ± 0.011

All values represent mean ± SE, n = 3. nd, not determined (below detection limit). Δ indicates the variable substrate.
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To test whether the other isolated candidates, RcGGPPS.LSU1, RcGPPS.SSU and RcGPPS.HOMO 

could produce GPP, their corresponding mature recombinant proteins were analyzed. The identification 

of RcGPPS.SSU suggested that rose petals might contain a heterodimeric GPPS, which was confirmed 

by copurification of 6-His-tagged RcGGPPS.LSU1 with untagged RcGPPS.SSU (Figure S3.3B). Thus, 

product specificities of the small and large subunits were characterized by themselves and after 
copurification (Figure S3.4, Table 3.1). In the presence of IPP and DMAPP, GPP production was found 

for all of the other IDS candidates but was never found as the end product. RcGPPS.HOMO produced 

GPP and traces of FPP as well as to RcGPPS.SSU, surprisingly, an unexpected result which could be 

due to its alternative SARM motif (Figure S3.2). RcGGPPS.LSU1 also produced GPP in addition to 

GGPP and the ratio between products only slightly changed when the small subunit was coexpressed 

with RcGGPPS.LSU1 (Figure S3.4A). Kinetic evaluation of recombinant proteins revealed that their Km 

for IPP ranged from 2.5 to 6.74 µM. Out of four proteins the heterodimeric RcGGPPS.LSU1/GPPS.SSU 

(Figure S3.5) had the highest affinity towards IPP and the highest catalytic efficiency, which were 
respectively 5.7-fold and 81-fold lower than that of RcG/FPPS1 (Table 3.1). To assess the final product 

formed by each IDS, the enzymes were incubated with GPP or FPP in the presence of IPP (Figure 

S3.4C and S3.4D). FPP was the final product of RcGPPS.HOMO and RcGPPS.SSU. RcGGPPS.LSU1 

produced GGPP as a final product and its coexpression with RcGPPS.SSU made it slightly less efficient 

in converting IPP and FPP to GGPP supporting that the heterodimeric GPPS in rose is not efficient to 

produce GPP as sole product.   

 

Figure 3.3 | RcG/FPPS1 is a bifunctional enzyme producing GPPS and FPPS in vitro and in planta. 
(A) LC-MS/MS chromatograms of the reaction products from in vitro incubation of the five OB IDS 
candidates and the heterodimeric GPPS (RcGGPPS.LSU1/RcGPPS.SSU) with IPP and DMAPP. 
Chromatograms in blue represent the incubation of 250 ng of each protein for 5 minutes with 10 µM of 
the IPP and DMAPP substrates at 30 °C. Chromatograms in black represent the negative controls with 
incubation of the corresponding boiled proteins. 1 = DMAPP + IPP, 2 = GPP, 3 = FPP, 4 = GGPP. (B) 
LC-MS/MS quantification of the RcG/FPPS1 GPP/FPP product ratio depending on the indicated 
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concentrations of IPP and DMAPP provided. Incubations were realized as described in (A). Data are 
means SEM, n = 3.  (C) GC-MS quantification of the FPP-derived capsidiol and capsidiol acetate 
accumulating in N. benthamiana leaves transiently expressing empty vector (EV), RcG/FPPS1 or 
RcFPPS2 alone. Data are relative quantification to EV set at 100 %, mean ± SEM, n = 3. Letters depict 
statistically significant differences analyzed by ANOVA and Tukey post-hoc test. (D) LC-MS/MS 
qquantification of geraniol glycosides extracted from N. benthamiana leaves transiently expressing the 
five OB IDS candidates and the heterodimeric GPPS (RcGGPPS.LSU1/RcGPPS.SSU) alone of in 
coexpression with RcNUDX1-1a. Data are relative quantification to NUDX1.1a set at 100 %, mean ± 
SEM, n = 4. Letters depict statistically significant differences analyzed by ANOVA and Tukey post-hoc 
test. 
 
Then, the bifunctional G/FPP biosynthetic capacity of RcG/FPPS1 was assessed in planta. First, 

RcG/FPPS1 and RcFPPS2 were transiently expressed alone in N. benthamiana leaves which, 

compared to control leaves, resulted in increased accumulation of capsidiol and capsidiol acetate 

(Figure 3.3C), two FPP derived sesquiterpenoids known to accumulate in tobacco leaves (Takahashi et 

al. 2005; Li et al. 2015). This result confirmed that RcG/FPPS1 exhibits FPPS activity in planta. Second, 
all IDS candidates were transiently expressed alone and in combination with RcNUDX1-1a. Previously 

it was reported that N. benthamiana leaves produced geraniol glycosides and RcNUDX1-1a 

overexpression increased their levels (Magnard et al. 2015; Sun et al. 2020). Coexpression of 

RcNUDX1.1a only with RcG/FPPS1 and not any of the other IDS candidates further increased geraniol 

glycoside levels when compared to RcNUDX1.1a overexpression alone (Figure 3.3D) supporting that 

RcG/FPPS1, in addition to FPPS activity, also exhibit GPPS activity in planta. Overall, these results 

provide biochemical and genetic evidence that the cytosolic RcG/FPPS1 is a bifunctional enzyme 

capable of producing in planta cytosolic FPP in addition to GPP which results in geraniol production if 
NUDX1.1a is expressed.  

RcG/FPPS1 rhythmic expression precedes rhythmic GPP and FPP 
production.  

To further investigate the endogenous role of RcG/FPPS1 for geraniol production in OB flowers we 

analyzed RNA-seq datasets generated from petals over six flower development stages starting from 

closed buds to fully opened flowers (Figure S3.5A) and at two time points during a day/night cycle (12:00 

h and 24:00 h) (Figure S3.5B). All identified IDSs exhibited very low expression levels compared to 

RcNUDX1.1a and none of them correlated with geraniol emission which was confirmed by RT-qPCR 

analysis (Figure S3.5C and S3.5D). In contrast, RcNUDX1-1a, HMGRs and HDR, genes known to 

encode proteins catalyzing rate-limiting steps in the geraniol, the MVA and the MEP biosynthetic 
pathways, respectively, exhibit a significant positive correlation with geraniol emission (Figure S3.5B). 

However, because RNA-seq analysis revealed that RcG/FPPS1 is more expressed at night (24H) than 

during day (12H) (Figure S3.5B), a detailed analysis of IDSs’ expression over a daily light/dark cycle by 

RT-qPCR revealed that only RcG/FPPS1 out of five identified IDSs exhibits a strong rhythmic expression 

pattern with a maximum expression at night (Figure 3.4A and Figure S3.5D). Outstandingly, this 

rhythmic expression was shown to correlate with the peaks of both rhythmic GPP and FPP accumulation 

inside petal tissues (Figure 3.4B) and ultimately geraniol emission (Figure 3.4C) yet with a 3 h lag time 

between the peaks of RcG/FPPS1 expression, GPP and FPP levels and then geraniol emission (Figure 
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3.4A to 3.C). These results further supported that RcG/FPPS1 is associated with GPP and FPP 

formation in rose petals and ultimately with their derived VOCs products. 

RcG/FPPS1 down- and up-regulations in rose flowers affect geraniol, 
germacrene and dhB-ionol emissions  

To confirm the endogenous function of RcG/FPPS1, OB flowers were agroinfiltrated with 

RcG/FPPS1_RNAi construct or empty vector control. The resulting down-regulation of RcG/FPPS1 

observed in OB petals (Figure 3.4D) resulted in significant decrease of geraniol emission as well as 

germacrene D and dhB-ionol emissions compared to control while TMB was not affected (Figure 3.4E). 
Accordingly, rose flowers overexpressing RcG/FPPS1 (Fig. 4F) emitted significant higher amounts of 

these three compounds compared to control while TMB emission was unchanged (Fig. 4G). These 

results were consistent with inhibitory and precursor feeding experiments (Figure 3.1) as well as 

RcG/FPPS1 biochemical characterization (Figure 3.3) and confirmed that RcG/FPPS1 is involved in 

both GPP and FPP rhythmic production in rose flowers. This leads both to NUDX1.1a-dependent 

geraniol production as well as cytosolic sesquiterpenes and plastidic apo-carotenoid VOCs, whose 

emissions, similarly to geraniol, were found to be rhythmical (Figure 3.4C) and follow RcG/FPPS1 
expression.   

 

Figure 3.4 | RcG/FPPS1 rhythmical expression pattern precedes GPP and FPP accumulation and 
geraniol emission in rose flowers. (A) RT-qPCR quantification of RcG/FPPS1 transcript levels during 
a day/night cycle in OB petals, means ± SEM, n = 4. (B) LC-MS/MS quantification of GPP and FPP 
accumulations during a day/night cycle in OB petals, means ± SEM, n = 4. (C) GC-MS quantification of 
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VOC emissions during a day/night cycle in OB petals means ± SEM, n = 6 to 13. Night time is highlighted 
in gray in (A) to (C). (D) RT-qPCR quantification of RcG/FPPS1 transcript levels in OB flowers 
agroinfiltrated with empty vector control or RcG/FPPS1_RNAi construct. (E) GC-MS quantification of 
VOCs emitted from OB flowers agroinfiltrated as described in (D). Data in (D) and (E) are means ± SEM, 
n = 12. (F) RT-qPCR quantification of RcG/FPPS1 transcript levels in OB flowers agroinfiltrated with 
empty vector control or 35S:RcG/FPPS1 construct. (F) GC-MS quantification of VOCs emitted from OB 
flowers agroinfiltrated as described in (E). Data in (F) and (G) are means ± SEM, n = 6. p values in (D) 
to (G) indicate statistically significant differences analyzed by two-tailed Student’s t-test. 
 

The G/FPPS activity is conserved in Rosaceae 
To understand when the G/FPPS activity discovered in rose evolved from ancestral and bona fide 

FPPSs, we investigated the FPPS family in Rosid species. FPPS protein sequences were retrieved from 

both Rosoideae (R. chinensis, F. vesca, and Potentilla micrantha) and Amygdaloideae (Malus 

domestica, Prunus persica, and Prunus domestica) subfamilies within Rosaceae, and several Rosid 

species including previously characterized FPPSs such as A. thaliana and P. trichocharpa FPPSs. 

Phylogenetic analysis and comparisons of genes surrounding RcG/FPPS1 and RcFPPS2 (Figure 3.5A 

and B) enabled to place each Rosid FPPSs into either the FPPS1s or FPPS2s groups (highlighted on 
Figure 3.5A) as orthologs according to their shared synteny with one or the other rose (G)/FPPSs. This 

confirmed that RcG/FPPS1 evolved from a common ancestor in Rosids originally exhibiting FPPS 

activity such as AtFPPS1 and PtFPPS1 (Cunillera et al. 1996; Keim et al. 2012; Lackus et al. 2019). To 

identify when the bifunctional G/FPPS activity emerged in Rosids within the FPPS1 group we 

characterized several of its members including the phylogenetically distant to rose and previously 

characterized PtFPPS1 used as control, the uncharacterized MtFPPS1 belonging to the Fabaceae 

family and the closer FPPS1s from F. vesca and P. persica from Rosoideae and Amygdaloideae 
subfamilies, respectively. Their biochemical activities characterized in vitro (Figure 3.5C) and in planta 

(Figure 3.5D) revealed that the G/FPPS activity is well conserved in both Rosoideae and 

Amygdaloideae. FvG/FPPS1 and PpG/FPPS1, similarly to RcG/FPPS1, produced both GPP and FPP 

in vitro and their coexpression with RcNUDX1.1a in N. benthamiana leaves resulted in about 2-fold 

increase in geraniol production compared to leaves expressing RcNUDX1.1a only. Interestingly, 

PtFPPS1 and MtFPPS1, which still produced mostly FPP in vitro, also produced small amount of GPP, 

but 4-fold and 8-fold less importantly than RcG/FPPS1, respectively (Figure 3.5C). This was confirmed 

in planta where their co-expression with RcNUDX1.1a in N. benthamiana leaves also slightly improved 
geraniol production by about 1.2-fold compared to leaves expressing RcNUDX1.1 alone (Figure 3.5D). 

These results suggested that G/FPPS1 was conserved in Rosacea species but probably started to 

evolve earlier in Rosids. 
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Figure 3.5 | The bifunctional G/FPPS activity is conserved in Rosaceae. (A) Maximum likelihood 
tree of Rosid FPPSs from OB (Rc), Arabidopsis thaliana (At), Citrus sinensis (Cs), Fragaria vesca (Fv), 
Glycin max (Gm), Malus domestica (Md), Manihot esculenta (Me), Medicago truncatula (Mt), Prunus 
dulcis (Pd), Phaseolus vulgaris (Pv), Populus trichocarpa (Pt), Potentilla micrantha (Pm), Prunus persica 
(Pp), Rubus occidentalis (Ro), Theobroma cacao (Tc), Trifolium pratense (Tp) and Vitis vinifera (Vv). 
FPPS1 (blue) and FPPS2 (green) groups are highlighted and were defined according to phylogeny and 
synteny analysis (See (B)). Characterized classical FPPSs are depicted in green and characterized 
G/FPPS1s are depicted in red. (B) Microsynteny of genes encoding for Rosids FPPSs from FPPS1s 
and FPPS2s groups as used in (A). (C) LC-MS/MS quantification of the GPP/FPP product ratio formed 
by 250 ng of the indicated FPPSs incubated for 20 minutes with 10 µM DMAPP and IPP. Data are 
means ± SEM, n = 3. (D) LC-MS/MS quantification of geraniol glycosides accumulating in N. 
benthamiana leaves transiently expressing the indicated FPPSs alone of in coexpression with 
RcNUDX1-1a. Data are relative quantification to NUDX1.1a set at 100 %, mean ± SEM, n = 4., Letters 
in (C) and (D) indicate statistically significant differences analyzed by ANOVA and Tukey post-hoc test. 
 

 

Fig. 5. The bifunctional G/FPPS activity is conserved in Rosaceae. 
(A) Maximum likelihood tree of Rosid FPPSs from RcOB (Rc), Arabidopsis thaliana (At), Citrus sinensis (Cs), Fragaria
vesca (Fv), Glycin max (Gm), Malus domestica (Md), Manihot esculenta (Me), Medicago truncatula (Mt), Prunus
dulcis (Pd), Phaseolus vulgaris (Pv), Populus trichocarpa (Pt), Potentilla micrantha (Pm), Prunus persica (Pp), Rubus
occidentalis (Ro), Theobroma cacao (Tc), Trifolium pratense (Tp) and Vitis vinifera (Vv). FPPS1 (blue) and FPPS2
(green) groups are highlighted and were defined according to phylogeny and synteny analysis (See (B)).
Characterized classical FPPSs are depicted in green and characterized G/FPPS1s are depicted in red. (B)
Microsynteny of genes encoding for Rosids FPPSs from FPPS1s and FPPS2s groups as used in (A). (C) LC-MS/MS
quantification of the GPP/FPP product ratio formed by 250 ng of the indicated FPPSs incubated for 20 minutes with 10
µM DMAPP and IPP. Data are means ± SEM, n = 3. (D) LC-MS/MS quantification of geraniol glycosides accumulating
in N. benthamiana leaves transiently expressing the indicated FPPSs alone of in coexpression with RcNUDX1-1a.
Data are relative quantification to NUDX1.1a set at 100 %, mean ± SEM, n = 4., Letters in (C) and (D) indicate
statistically significant differences analyzed by ANOVA and Tukey post-hoc test.
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At least two amino acid residues evolved in Rosaceae G/FPPS are 
responsible for emergence the GPPS activity 

Rosaceae G/FPPSs gain their GPPS activity due to lowering their affinity toward IPP in the presence of 

GPP as cosubstrate (Table 3.1) likely through point mutations during the evolution. Thus, Rosaceae 

G/FPPS protein sequences were searched for conserved amino acid residues which evolved during the 

Rosaceae G/FPPSs evolution from ancestral orthologous FPPSs. When compared with the bona fide 

FPPSs from Rosids known to produce FPP, sequence alignment showed that a short QLLQ sequence 

at positions 59-62 (QLLQ59-62), the phenylalanine residue 88 (F88), and valine residue 123 (V123) are 
found in the Rosaceae G/FPPSs but not in the FPPSs (Figure 3.6A). To test whether these identified 

conversed residues could contribute to lower affinity for GPP resulting in its release from active site, a 

computational strategy combining homology-based modeling and molecular dynamics (MD) simulations 

was used. Binding free energies for GPP in presence of IPP and Mg2+ ions, which mimics the substrate-

binding step for FPPS activity, were calculated for RcG/FPPS1 (wild-type) and its mutated versions 

harboring ancestral orthologous amino acids for the identified conserved residues. Reversing both wild 

type F88 to Y88 and V123 to I123 independently but not QLLQ59-62 to KLLK59-62 resulted in significant 
lower binding free energy for GPP (Figure 3.6B). This suggested that Y88 and I123 in ancestral 

orthologs favors FPP production and their substitution to F88 and V123 during Rosaceae evolution could 

be responsible for gain of GPPS activity.   

To validate the model prediction and also examine the contribution of each conserved residue on the 

G/FPPS activity, several single and multiple RcG/FPPS1 mutants were generated by site-directed 

mutagenesis, and the corresponding recombinant proteins were biochemically characterized. 

Consistent with the model prediction, both F88Y and V123I substitutions independently reduced GPP 

formation similarly by about 55% compared to WT RcG/FPPS1 with a simultaneous increase in FPP 
formation (Figure 3.6C). A synergistic effect was detected in the double mutant (F88Y/V123I) with GPP 

production further reduced by an additional 45%. Kinetic analysis of both single and double mutants 

revealed that both F88Y and V123I substitutions significantly increase (3.6 - 5.9-fold) the affinity of 

proteins for IPP in the presence of GPP as cosubstrate (Table 3.1) thus making the mutated RcG/FPPS1 

biochemically very similar to the relatively distant RcFPPS2 although the latter produces almost 

exclusively FPP (Figure 3.6C). Moreover, N. benthamiana leaves coexpressing RcNUDX-1-a with each 

single mutant RcG/FPPS1-F88Y or RcG/FPPS1-V123I produced significantly less geraniol glycosides 

than leaves co-expressing RcNUDX1-1a with the native wild-type RcG/FPPS1 (Figure 3.6D). 
Coexpression of NUDX1.1a with the double mutant RcG/FPPS-F88Y-V123I further decreased geraniol 

production. When the opposite mutations, Y88F and I123V, were introduced into RcFPPS2, the 

recombinant mutant enzyme started to release GPP as a product (Figure 3.6C).  
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Figure 3.6| Two amino acid are critical for the GPPS activity of RcG/FPPS1. (A) Protein sequence 
alignment of Rosids FPPS1s and FPPS2s including characterized Rosaceae G/FPPS1s. Only relevant 
sequence parts are shown to focus on residues conserved only in Rosaceae G/FPPS1s (highlighted in 
red) compared to bona fide FPPS1s and FPPS2s. (B) Binding free energies of GPP for RcG/FPPS1 
and its mutated version F88Y, V123I and K59Q/K62Q after molecular dynamic (MD) simulation of 1500 
ps with GPP, IPP and Mg2+ placed in the active site. Data are means ± SEM of the five last recorded 
frames. (C) LC-MS/MS quantification of the GPP/FPP product ratio formed by the indicated recombinant 
proteins incubated for 20 minutes with 10 µM DMAPP and IPP. Data are means ± SE, n = 3. (D) LC-
MS/MS quantification of geraniol glycosides accumulated in N. benthamiana leaves transiently 
expressing the indicated genes alone of in coexpression with RcNUDX1-1a. Data are relative 
quantification to NUDX1.1a set at 100 %, mean ± SEM, n = 4. Letters in (B), (C) and (D) indicate 
statistically significant differences between samples analyzed by ANOVA and Tukey post-hoc test. (E) 
Superimposed model of RcG/FPPS1 homodimer and its mutated version RcG/FPPS1-F88Y at 1500 ps 
of MD simulation as described in (C). The model focuses of the elongation pocket containing GPP (top) 
and the interaction of both protein subunits around the amino acids Y88-Y’88 and V123-V123’. α helixes 

F

| | | |
RcG/FPPS1 S Y Q L L Q Q G L Q A F F L V L D D M M D G D G V L L R N

FvG/FPPS1.1 S Y Q L L Q H G L Q A F F L V L D D M M D G D G V L L R N
FvG/FPPS1.2 S Y Q L L Q H G L Q A F F L V H D D M M D G D G V L L R N

RoG/FPPS1 S Y Q L L Q E G L Q A F F L V L D D I M D G D G V L L R N
PpG/FPPS1 S Y Q L L Q E G L Q A F F L V L D D I M D G D G V V L R N
PdG/FPPS1 S Y Q L L Q E G L Q A F F L V L D D I M D G D G V V L R N
MdG/FPPS1 S Y Q L L Q Q G L Q A F F L V L D D I M D G D G V V L R N

MtFPPS1 S Y R L L K E G L Q A Y F L V L D D I M D N D G V L L R N
PtFPPS1 N Y K Y L K E G L Q A Y F L V L D D I M D S D G I L L R N
AtFPPS1 S F K L L K Q G L Q A Y F L V L D D I M D N D G I L L R N
RcFPPS2 S F K L L K E G L Q A Y F L V L D D I M D G D G I I L R N
FvFPPS2 S L K L L K E G L Q A Y F L V L D D I M D G D G I I L R N
RoFPPS2 S L K L L K E G L Q A Y F L V L D D I M D G D G I I L R N
PpFPPS2 S L K L L K D G L Q A Y F L V L D D I M D S D G I L L R N
PdFPPS2 S L K L L K D G L Q A Y F L V L D D I M D S D G I L L R N
MdFPPS2 S L K L L K D G L Q A Y F L V L D D I M D G D G I L L R N

123886259 FARMA

Fig. 6. Two amino acid are critical for the GPPS activity of RcG/FPPS1.
(A) Protein sequence alignment of Rosids FPPS1s and FPPS2s including characterized Rosaceae G/FPPS1s. Only relevant sequence parts
are shown to focus on residues conserved only in Rosaceae G/FPPS1s (highlighted in red) compared to bona fide FPPS1s and FPPS2s. (B)

Binding free energies of GPP for RcG/FPPS1 and its mutated version F88Y, V123I and K59Q/K62Q after molecular dynamic (MD) simulation of

1500 ps with GPP, IPP and Mg2+ placed in the active site. Data are means ± SEM of the five last recorded frames. (C) LC-MS/MS quantification

of the GPP/FPP product ratio formed by the indicated recombinant proteins incubated for 20 minutes with 10 µM DMAPP and IPP. Data are

means ± SE, n = 3. (D) LC-MS/MS quantification of geraniol glycosides accumulated in N. benthamiana leaves transiently expressing the
indicated genes alone of in coexpression with RcNUDX1-1a. Data are relative quantification to NUDX1.1a set at 100 %, mean ± SEM, n = 4.
Letters in (B), (C) and (D) indicate statistically significant differences between samples analyzed by ANOVA and Tukey post-hoc test. (E)

Superimposed model of RcG/FPPS1 homodimer and its mutated version RcG/FPPS1-F88Y at 1500 ps of MD simulation as described in (C).

The model focuses of the elongation pocket containing GPP (top) and the interaction of both protein subunits around the amino acids Y88-Y’88

and V123-V123’. α helixes are shown as well as the volumes of the elongation pockets for both protein versions and the hydrogen bound in

between both Y88-Y88’ subunits (green dash). (F) Root mean square fluctuations (RMSF) of each amino acid of RcG/FPPS1 homodimer and

its mutated versions during the 1500 ps of MD simulation as described in (C). Two groups of amino acid, the Hi-loop and the C-ter of subunit 1

displaying improved movements in mutants compared to WT RcG/FPPS1 are highlighted.
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are shown as well as the volumes of the elongation pockets for both protein versions and the hydrogen 
bound in between both Y88-Y88’ subunits (green dash). (F) Root mean square fluctuations (RMSF) of 
each amino acid of RcG/FPPS1 homodimer and its mutated versions during the 1500 ps of MD 
simulation as described in (C). Two groups of amino acid, the Hi-loop and the C-ter of subunit 1 
displaying improved movements in mutants compared to WT RcG/FPPS1 are highlighted.   
 

To validate the model prediction and also examine the contribution of each conserved residue on the 
G/FPPS activity, several single and multiple RcG/FPPS1 mutants were generated by site-directed 

mutagenesis, and the corresponding recombinant proteins were biochemically characterized. 

Consistent with the model prediction, both F88Y and V123I substitutions independently reduced GPP 

formation similarly by about 55% compared to WT RcG/FPPS1 with a simultaneous increase in FPP 

formation (Figure 3.6C). A synergistic effect was detected in the double mutant (F88Y/V123I) with GPP 

production further reduced by an additional 45%. Kinetic analysis of both single and double mutants 

revealed that both F88Y and V123I substitutions significantly increase (3.6 - 5.9-fold) the affinity of 
proteins for IPP in the presence of GPP as cosubstrate (Table 3.1) thus making the mutated RcG/FPPS1 

biochemically very similar to the relatively distant RcFPPS2 although the latter produces almost 

exclusively FPP (Figure 3.6C). Moreover, N. benthamiana leaves coexpressing RcNUDX-1-a with each 

single mutant RcG/FPPS1-F88Y or RcG/FPPS1-V123I produced significantly less geraniol glycosides 

than leaves co-expressing RcNUDX1-1a with the native wild-type RcG/FPPS1 (Figure 3.6D). 

Coexpression of NUDX1.1a with the double mutant RcG/FPPS-F88Y-V123I further decreased geraniol 

production. When the opposite mutations, Y88F and I123V, were introduced into RcFPPS2, the 

recombinant mutant enzyme started to release GPP as a product (Figure 3.6C).  

A closer look at the RcG/FPPS model after the 1500 ps of MD simulations revealed that double 

F88Y/V123I and single F88Y substitutions leads to the quick formation of a hydrogen bond between 

introduced tyrosine of each subunit (Y88-Y88’) (Figure 3.6E). The inability of F88 to form such a 

hydrogen bond likely renders the binding site shallow and less favorable for GPP binding preventing its 

full conversion to FPP. Modeling also revealed that isoleucine substituted to valine from both subunits 

(I123-123’) is located in the direct vicinity of this hydrogen bound and likely participate to better 

metabolization of GPP potentially through hydrophobic interactions. Moreover, F88 and V123 in WT 

RcG/FPPS1 preclude movements of the HI-loop (Substrates entrance in active site: Rondeau et al. 

2006; Kavanagh et al. 2006; Zhang et al. 2009) and C-terminal of enzyme (Known to refold and interact 

with substrate in active site: Fisher et al. 2011)  observed in RcG/FPPS1 mutants within MD simulation 

(Figure 3.6F). Substitutions of Q to K in the QLLQ59-62 sequence had no effect on the G/FPPS activity 

of RcG/FPPS1 neither alone nor in combination with F88Y/V123I (Fig. 6C). Taken together, these 

results suggest that conserved F88 and V123 in Rosaceae, which evolved from ancestral Y88 and I123 

are critical for bifunctional G/FPPS activity. 
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III- Discussion  
It is generally accepted that in most plants monoterpenes are produced in plastids by monoterpene 

synthases using GPP derived from the MEP pathway (Tholl, 2015). However, there are known few 

exceptions showing that in Rosaceae and Boraginaceae (L. erythrorhizon) monoterpenes or their 

derivatives are produced in the cytosol. Examples include the existence of a cytosolic pinene synthase 

in wild strawberries (Aharoni et al. 2004a), the cytosolic RcNUDX1.1a enzyme responsible for geraniol 

production in roses (Magnard et al. 2015), and the detection of GPPS activity in the cytosolic fraction of 

L. erythrorhizon (Sommer et al. 1995). Although cytosolic GPP could originate via crosstalk from the 
MEP pathway, feeding experiments with labeled precursors in F. vesca, Rubus idaeus, Rose hybrida 

(Francis and O’connell, 1969; Hampel et al. 2006, 2007), and in L. erythrorhizon (Inouye et al. 1979) 

suggested that the MVA pathway is the major contributor to the biosynthesis of monoterpenes and GPP-

derived compounds in these plant species. Recently LeGPPS encoding a cytosolic GPPS involved in 

shikonin biosynthesis has been isolated and characterized from L. erythrorhizon (Ueoka et al. 2020; 

Suttiyut et al. 2022), but it still remained unknown how cytosolic GPP production is achieved in roses 

for RcNUDX1-1a-dependent geraniol biosynthesis and in other Rosaceae for MVA-dependent 
monoterpene productions. Here, we provide biochemical (Figure 3.3, Figure S3.4 and Table 3.1) and 

genetic evidences (Figure 3.3B, Figure 3.4D to 3.4G) that a cytosolic bifunctional RcG/FPPS1 (Fig. 2B 

and Fig.3A) is involved in GPP biosynthesis in rose petals. This enzyme, which belongs to FPPS family 

(Fig. 2A) still keeps its ability to synthesize FPP but produces GPP 15-fold more efficiently (kcat/Km ratio) 

than FPP in vitro (Table 3.1) and is the only one out of five identified IDS candidates able to provide 

cytosolic GPP substrate for RcNUDX1.1a in planta (Figure 3.3D) while also providing FPP for capsidiol 

production (Figure 3.3C). Naturally, GPP is an intermediate product of FPPSs, but it does not release 

efficiently from the active site. The first short-chain prenyltransferase that can generate both GPP and 
FPP has been identified in aphids (Vandermoten et al. 2008), but was not reported in plants so far.  

The biochemical characterization of orthologous FPPSs from several Rosid species guided by 

phylogenetic analysis (Figure 3.5A and 3.5B) showed that the bifunctional G/FPPS activity was gained 

during evolution of Rosids from the classical FPPSs and was conserved in Rosaceae including OB, F. 

vesca and P. persica. Thus, these results also provide an answer to a long-standing question about the 

cytosolic and MVA-dependent monoterpene production in strawberries and raspberries (Figure 3.5C). 

This so far unknown G/FPPS activity is likely conserved in all Rosaceae species in which monoterpenes 

are known to greatly contribute to fruit aroma (Zhang et al. 2022)  

Moreover, FPPSs in FPPS1 groups (MtFPPS1 and PtFPPS1), but not FPPS2, exhibited dual activity 

although producing GPP at lower levels and less efficiently than Rosaceae G/FPPs (Figure 3.5C and 

3.5D), a property of enzymes within FPPS1 clade, which was not shown before. This residual GPPS 

activity of cytosolic FPPSs might contributes to the cytosolic GPP pool used for the synthesis of 

geranylated plant secondary metabolites as observed for cannabinoids and flavonoids (de Bruijn et al. 

2020) and potentially yet unknown proteins. 
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At least two amino acids F88 and V123, which are highly conserved in Rosaceae are responsible for 

efficient GPP production in addition to FPP by G/FPPSs (Figure 3.6). They modulate the affinity of 

enzymes towards GPP substrate and the product selectivity in favor of GPP production in addition to 

keeping FPP production (Table 3.1). The reasons why these mutations were selected during evolution 

for high cytosolic production of monoterpenes in specialized plant organs (Aharoni et al. 2004b) are 
currently unknown. It is possible that G/FPPS were selected during evolation because of the deficient 

capacity of plastidic heterodimeric GPPS to produce efficiently GPP as observed in rose (Figure 3.3, 

Figure S3.4 and Table 3.1).  

A comparison of the cytosolic GPP formation in roses and L. erythrorhizon reveals that both GPP-

producing enzymes evolved independently from conventional FPPSs. In the case of the rose enzyme, 

it had occurred through mutations leading to a bifunctional protein that favors GPP formation while 

continuing to produce FPP (Figure 3.3A). In contrast, in L. erythrorhizon, the enzyme produced 

exclusively GPP with the His residue at position 100 adjacent to the first Asp-rich motif, contributing to 
product specificity (Ueoka et al. 2020). Out of the three Rosaceae G/FPPS1 characterized in this study, 

RcG/FPPS1, FvG/FPPS1 and PpG/FPPS1 (Figure 3.5C and 3.D), all contained Leu instead of H100. 

Interestingly, FvG/FPPS1.2 contains H100 in addition to F88 and V123 (Figure 3.6A). However, even 

though it still produced both GPP and FPP to similar ratios, its activity was extremely low compared to 

the other characterized Rosaceae G/FPPS1s (Figure S3.6). These results suggest that the emergence 

of cytosolic GPPS activity occurred at least twice in phylogenetically distantly related plant species within 

Rosaceae and Boraginaceae families via different but convergent evolutionary mechanisms.  

The non-canonical biosynthetic pathway for geraniol production in roses requires both GPP availability 

and NUDX1.1a enzyme in the cytosol. While the NUDX1.1a specialization appeared during 

diversification of Rosa genius (Conart et al. 2022), our results show that the ability to synthesize the 

cytosolic GPP preceded NUDX1.1a acquisition in several Rosaceae genius indicating that two 

evolutionary events enabled high geraniol production in rose flowers. 

The discovery of bifunctional G/FPPSs suggests that plants have two types of homodimeric GPPSs in 

addition to heterodimeric ones, consisting of a catalytically inactive SSU interacting with a LSU. All 

previously characterized homodimeric GPPSs are evolutionarily related to GGPPSs forming a GGPPS-
like group (Tholl, 2015), while recently isolated LeGPPS (Ueoka et al. 2020) and Rosaceae G/FFPSs 

identified in this study are evolutionarily related to FPPSs. Within this FPPSs-like group, there are two 

types of enzymes: bifunctional enzymes like RcG/FFPS1, FvG/FPPS1 and PpG/FPPS1 (Figure 3.5C) 

and monofunctional enzymes with strict product specificity like LeGPPS. Moreover, members of the 

FPPSs-like group are localized in the cytosol (Figure 3.2B; Ueoka et al. 2020) in contrast to the 

heterodimeric GPPSs which are always found in the plastids and homodimeric GPPSs, most of which 

were shown to be localized in mitochondrial (Rai et al. 2013). Further studies of GPPSs and 

monoterpene production will uncover how widely the recruitment of FPPSs to produce GPP was used 
in plants.   
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IV- Materials and Methods 
Plant material and growth conditions 

Rosa chinensis “Old Blush” (OB) obtained from Guillot nursery owner and Nicotiana benthamiana plants 

were cultivated in growth chambers under white fluorescent lamps with a light intensity of 150-200 
µmol.m-2.s-1 with 50-60 % relative humidity at 21-22°C during the 16-h day period and 17°C during the 

6-h night period. OB plants were cultivated in a soil mix containing 3/10 perlite, 1/10 pouzzolane and 

6/10 Klasmann BP-substrate (Klasmann-Deilmann GmbH, Germany).  N. benthamiana plants were 

cultivated in a soil mix containing 3/8 perlite and 5/8 KlasmannTS3 substrate. 

Chemicals and synthesis of 1-deoxy-[5,5-2H2]-D-xylulose ([2H2]-DOX) 
All chemicals, authentic VOC standards, inhibitors and labelled precursors were purchased from Sigma-

Aldrich (St. Louis, MO, USA) otherwise stated. [2H2]-DOX was synthesized as described in ref. (Meyer 

et al. 2004). Chrysal professional 3 (Chrysal) was purchased from Chrysal France. 

Inhibitory and stable isotope-labelling experiments 
For labelling experiments, OB flowers at stage 5 (See Figure S3.5A) were harvested at 9H00. To favour 
precursors uptake, pedicel was removed by cutting in the middle of receptacle as transversal cross 

section and roses were then placed in 1 % chrysal solution for control treatment or 1 % chrysal solution 

containing 2 mg/ml (3R,S)-[2-13C]-mevalonolactone or 1mg/ml [2H2]-DOX in 1-ml plastic tubes. VOCs 

emitted from flowers where collected every 3h for 54h before GC-MS analysis as described below. For 

the calculation of VOCs labelling by each precursor, the percentage of labelled versus unlabelled VOCs 

was determined based on specific ions for each VOC as listed in (Fig. S7). For inhibitory experiment, 

OB flowers at stage 5 were harvested at 9:00 h, pedicel was removed as described above and each 

flower was cut in two equal longitudinal cross sections. One part was placed in 1% chrysal solution in 
1-ml plastic tubes for control treatment and the other part was placed similarly in control solution 

containing either 1 mg/mL of mevinolin or 1 mg/mL fosmydomycin. 24 hours following treatment, roses 

parts were placed in volatile collection system and VOCs were collected for 3 h before by GC/MS 

quantification of VOCs. For calculation each rose part treated with inhibitor was compared to its 

corresponding part treated with control treatment. 

VOC collection from the Headspace of OB flowers 
VOCs emitted from OB flowers were collected as previously described (Boachon et al. 2019) with minor 

modifications. Briefly, 1 flower (or 1/2 flower part) per sample were placed in 1-L glass jar and VOCs 

were pumped out with flow of 100 ml/min during the indicated times for each experiment and trapped 
on glass cartridges containing 30 mg of Porapak Q 80/100 mesh. Inlet air was filtered on similar 

cartridges filed with 100 mg of Porapak Q. Volatiles where eluted with 200 µl of hexane spiked with 50 

µM of camphor used as internal standard before GC-MS analysis.  

GC-MS analysis 
Samples were analyzed on an Agilent 8890 gas chromatograph system (Agilent Technologies), 

equipped with multiple purpose sampler (Gerstel, Germany) and connected to an Agilent 5977B mass 

detector (Agilent Technologies). Samples were run. Samples were injected in the injector set at 250°C, 
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on a HP-5MS-UI column (30 m x 0.25 mm x 0.25 µm) (Agilent Technologies) using a program consisting 

of 0.5 min at 50°C, followed by 15 or 20°C/min to 320°C, then 5min at 320°C, with a flow of 1.8mL/min 

of He as carrier gas. Mass spectrometer ionization was set at 250 °C, energy was set at 70 eV and 

mass spectrum was scanned from 30 to 300 amu. Products were identified based on their retention 

times and electron ionization mass spectra compared to those of authentic standards or those present 
in the NIST2017 and WILEY libraries. Quantification of compounds was performed using the Mass 

Hunter quantitative software (Agilent Technologies) using response factors of commercially available 

authentic standards relative to the internal standard and normalized to the weight of tissues. 

Isotopic 12C/13C analysis of VOCs by GC-C-IRMS 
OB flowers were harvested and treated as described above for inhibitory experiments. To obtain 

sufficient amounts of compounds to be analyzed, VOCs collection was upscaled by using 8 to 10 flowers 

per sample with 24 hours collection period and VOCs were eluted with 100 µL of hexane spiked with 50 

µM of camphor used as internal standard. Samples were analyzed by gas chromatography-isotope ratio 

mass spectrometry (GC-IRMS) on a 6890N GC gas chromatograph system (Agilent Technologies) 
connected to an Isoprime GV isotope ratio mass spectrometer (Elementar UK Ltd, Cheadle, UK) via the 

GC5MK1 GV combustion or pyrolysis interface. All samples were analysed in duplicate and verified by 

bracketing the analytical sequence with citronellol standard and geraniol standard every six analyses. 

The standards were calibrated to the international references V-PDB using the EA-IRMS technique. An 

amount of 1 µL of liquid sample was injected using a 7683 Agilent Technologies auto-sampler into the 

6890N gas chromatograph equipped with an Agilent HP-5 column (60 m x 0.320 mm x 0.25 µm I.D film 

thickness) used in chromatographic separation. The injection port was held at 250°C, fitted with a split 

liner containing glass wool, and operated in split mode. The oven temperature program started at 50°C 
during 1 min, increased to 325°C at a rate of 10 °C min-1, and held for 5 min. Compounds were separated 

at a flow rate of 1 mL.min-1. A heart split valve connected to the outlet of the GC column enabled the 

components to be obtained either in the combustion/pyrolysis tube or in the FID detector. This process 

allows elimination of the solvent peak as well as unwanted compounds. The combustion of carbon in 

carbon dioxide was undertaken using a tube containing copper oxide maintained at 850°C in a furnace. 

Silver wool was placed in the second portion of the tube to trap halogens and sulfur. A Nafion water trap 

was placed between the combustion furnace and the IRMS to remove water produced during the 
combustion. 12C/13C isotope ratios δ(13C) of VOCS were calculated as previously described (Cuchet et 

al. 2021). To verify that the headspace collection procedure did not favor lighter or heavier VOC 

isotopes, δ(13C) values of VOCs from a mix of authentic standards were calculated an compared when 

run directly on GC-C-IRMS of after being collected in the volatile collection system similarly as the rose 

samples. 

GPPS and FPPS activities on purified subcellular compartments 
20 g of OB petals at flower stage 5 were collected at 9:00 h, ground with a blender for 5 sec with ice 

cold buffer A (0.5 M sorbitol, 20 mM HEPES, 10 mM KCl, 1 % PVP40, 10% glycerol, 5 mM 2-

Mercaptoethanol, pH 7) and filtered through two layers of Miracloth (Merck Millipore) to obtain crude 
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extract proteins. All steps were realized on ice or at 4°C. The crude extract was centrifuge 15 min at 2 

500 g to pellet plastids. Supernatant was carefully collected and centrifuged 40 min at 15 000 g to obtain 

mitochondria and peroxyzomes in the pellet and cytosol in the supernatant. The pellet containing 

plastids was carefully resuspended in 4 ml of ice-cold buffer B (0.66 M sorbitol, 20 mM HEPES pH 7) 

and overlayed with a discontinues Percoll gradient consisting of 2 ml 80/20 % (v/v) Percoll/buffer B then 
4 ml of 20/80 % (v/v) Percoll/buffer B. Separation of plastids was realized by centrifugation at 5 000 g 

for 20 min. Purified plastids were carefully collected at the interface of both gradient solutions and 

washed twice with buffer B with centrifugation at 3 000 g for 5 min before being resuspended in essay 

buffer. Mitochondria where resuspend in essay buffer. Total protein concentrations of each subcellular 

fraction were quantified using the Bradford method (Bradford, 1976). Purity of each fraction was verified 

by measuring activities of marker enzymes: peroxisomal catalase (Aebi, 1984), mitochondrial fumarase 

(Huang et al. 2015), cytosolic alcohol dehydrogenase (Tong and Lin, 1988), and plastidic chlorophyll 

content by a confocal microscopy (D’Andrea et al. 2014). 

Identification of candidate genes, sequence analysis, phylogeny and synteny 
analysis 

OB and Rosids trans-short-chain IDSs where identified by BLAST search using previously characterized 

IDSs on available OB genomes (Raymond et al. 2018; Hibrand Saint-Oyant et al. 2018) and Genome 

Database for Rosaceae (GDR, www.rosaceae.org) (Jung et al. 2019). FPPS1 and FPPS2 genes from 

Rosids were identified by BLAST search on GDR and Phytozome.v13 database (https://phytozome-

next.jgi.doe.gov/) and wered used for comparative synteny with RcG/FPPS1 and RcFPPS2 using the 

synteny tool of Phytozome.v13 (Goodstein et al. 2012). Multiple sequence alignments were computed 

using the MUSCLE (codon) algorithm (gap open, -2.9; gap extend, 0; hydrophobicity multiplier, 1.2; 

clustering method, UPGMA) implemented in MEGA X(Kumar et al. 2018). Based on alignments, trees 
were reconstructed with MEGA X using a maximum likelihood algorithm and the Jones-Taylor-Thornton 

model with a gamma distribution of rate among sites (JTT+G). All site coverage was used. Ambiguous 

bases were allowed at any position. Bootstrap resampling analysis with 1000 replicates were performed 

to evaluate the topology of the generated trees. 

Sampling procedure for Gene expression analysis and metabolite profiling 
For analysis of OB flowers compared to nine Rose hybrids (Figure 3.2), petals from the indicated plants 

were harvested on flowers stage 5 corresponding to open flower with yellow stamen visible. Part of the 

samples were frozen in liquid nitrogen and stored at -80 °C for latter RNA extraction and part of the 

samples were placed in hexane containing 50 µM camphor used as internal standard pour metabolite 
profiling. For analysis OB flowers during developmental stages (Figure 3.4 and Figure S3.5), OB petals 

where harvested at 9:00h at different developmental stages as shown in (Figure S3.5A) : closed buds 

with closed sepals and closed coloured petals visible (stage 1), closed buds with sepals starting to open 

and closed red petals (Stage 2), buds starting to open with sepals curved and closed red petals (Stage 

3), open flowers with stamens not visible day1 (stage 4), open flower with yellow stamen visible and flat 

petals day1 (stage 5), open flower with brown stamen and petals starting to curve day2 (stage 6). 

Samples were immediately frozen in liquid nitrogen and stored at -80 °C for latter RNA extraction and 
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quantification of prenyl phosphates. Flowers at the same flower stages were collected similarly for VOCs 

emission analysis. For analysis of OB flowers during a day/night cycle (Figure 3.4 and Figure S3.5) 

petals were collected every 3h for 34h starting at 6:00 on day1 with flowers on stage 4 which evolved in 

stage 5 during day1 and in stage 6 on day2 as illustrated on Fig. S5B. Samples of day1 12H00 and 

24H00 were also used from transcriptomic analysis. Petals from at least four roses where pooled per 
sample. Samples were immediately frozen in liquid nitrogen and stored at - 80°C for latter RNA 

extraction and quantification of prenyl phosphates. Flowers at the same flower stages were collected 

similarly for VOCs emission analysis during a day/night cycle. 

Gene expression analysis (transcriptomic and RT-qPCR) compared to VOCs 
profiling 

For RNA extraction, tissues were ground in Nitrogen with mortar and pestle. 50 mg of petals per sample 

were then extracted using the Spectrum™ Plant Total RNA Kit (Sigma-Aldrich) according to the 

manufacturer instruction using the on-column DNAse treatment. RNA sample qualities were then 

verified with a bioanalyzer (Agilent Technologies) following manufacturer’s guidelines. For RNA-seq 

analysis, for each developmental stage, five replicates with a RIN above 8 were sequenced by BGI Tech 
Solutions (Hong Kong, China) using the DNB-Seq platform. About 30 million 150 bp paired-end reads 

were obtained per sample. Reads were checked with fastQC v0.11.9 and cleaned using fastp v0.21 

(Chen et al. 2018). Reads were then mapped onto the R. chinensis genome v2 (Raymond et al. 2018) 

using STAR v2.7.5a (Dobin et al. 2013), transcript assembly and coverage values were obtained using 

StringTie v2.1.4 (Pertea et al. 2015). TPMs were derived from coverage using a custom Perl script. For 

RT-qPCR analysis, reverse transcription (RT) was performed with the All-In-One MasterMix kit (Applied 

Biological Materials) according to the manufacturer’s protocol using 1 µg of total RNA per sample. cDNA 

samples were then diluted 10 times with ultrapure water. For quantitative real-time PCR (qPCR), 2.5 µl 
of diluted cDNA were mixed with 5 µL of SsoAdvanced Universal SYBR Green Supermix (Bio-Rad), 1 

µL of each forward and reverse specific primers (Fig. SX for the list and sequences of primers) and 

ultrapure water to a final reaction volume of 10 µl. Each sample were run with two technical replicates. 

qPCR parameters were as followed: 95°C for 30 sec and 45 cycles of (95 °C for 5 sec and 60 °C for 20 

sec). Quantification of relative transcripts accumulation was calculated using the efficiency of each 

gene-specific primers and the EΔCt method (Pfaffl, 2001). 

Generation of vector constructs  
To produce recombinant proteins heterologously in bacterial system and biochemically characterize OB 

and rosid IDSs including mutants, their coding sequences where synthetized by Genscript (Piscataway) 
into the pET-30a(+) vector between KpnI and SalI restriction sites. To study subcellular localization, 

CDSs of OB IDSs with modified 3’ ends to remove stop codons were PCR-amplified from OB flower 

cDNA and inserted in Gateway binary vectors in frame with the CDS of eGFP into pB7FWG2 or with 

the CDS of RFP into pH7RWG2 (Karimi et al. 2007)by Gateway LR reaction using LR-ClonaseTMII 

(Invitrogen). To characterize the activity of candidate genes in planta through transitory expression in 

N. benthamiana leaves, the CDS of all studied IDSs including mutants and RcNUDX1.1a were PCR-

amplified and inserted into the plant expression vector pCAMBIA3300u by the using the USER cloning 
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system (New England Biolabs) as previously described (Boachon et al. 2015). The RcG/FPPS1_RNAi 

construct was generated by using the Sol Genomics Network VIGS Tool (http://vigs.solgenomics.net/) 

(Fernandez-Pozo et al. 2015)which implemented the OB genome upon request to identify the best target 

region of the RcG/FPPS1 CDS and confirm that the designed double stranded RNA (dsRNA) trigger 

would not result in off-target interference. RcG/FPPS1_RNAi construct included two spliced RcG/FPPS1 
complementary DNA fragments corresponding to nucleotides 57-557 and 357-557 (in the antisense 

orientation) to create a hairpin structure. The sequence was then synthesized by Genscript (Piscataway) 

into pUC57 vector with EcoRV restriction sites. The RcG/FPPS1_RNAi obtained sequence was then 

cloned into pCAMBIA3300 between BamHI and KpnI restriction sites by standard cloning ligation. 

Primers used for cloning are listed in Figure S3.8. 

Sub-cellular localisation  
Fluorescent protein fusion constructs were transformed into Agrobacterium tumefaciens strain GV3101. 

After overnight night culture in LB containing the appropriate antibiotics at 28°C with 200 rpm shaking, 

the bacteria were centrifuged 8 min at 4 000 g at room temperature and washed 3 time in MgCL2 10 
mM, MES 10 mM, pH 5.7 before being incubated with 500 µM acetosyringone and then diluted to 

OD600nm = 0.6 for each construct. OB petals were co-transformed by agro-infiltration with cultures of 

equal density of agrobacteria harboring the genes of interest in a ratio of 1/1 (v/v). 4 days after, petal 

pieces were excised for observation by laser scanning confocal microscopy. Cell imaging was 

performed using a LSM780 confocal system microscope (Zeiss, Germany). Images were recorded with 

a Plan-Apochromat 20x/0.8 M27 objective. Excitation/emission wavelengths were 488/493-556 nm for 

eGFP constructs, and 561/590-628 nm for mCherry constructs, respectively. Images were processed 

via contrasts and brightness corrections with ImageJ software (NIH, USA). Vectors CD3-999 (plastid 
targeted mCherry) and CD3-991 (mitochondria targeted mCherry) (Nelson et al. 2007), purchased from 

the Arabidopsis Biological Resource Center (https://abrc.osu.edu/), and pCAMBIA2300 (untargeted 

35S:eGFP) where used as colocalization markers. 

In vitro characterization of IDSs 
E. coli strain BL21(DE3)pLysS were transformed with the recombinant protein expression vector pET-

30 a (+)) carrying the CDSs of studied IDSs. Transformed colonies were cultivated in LB containing 

chloramphenicol (50 µg/ml) and kanamycin (50 µg/ml). From liquid preculture, cultures of 250 ml were 

inoculated and set at OD600nm = 0.4 before IPTG (1 mM) induction over night at 16 °C with 200 rpm 

shaking. Bacteria were then harvested by centrifugation at 3 000 g for 5 minutes and the pellets were 
conserved at -80°C for one night. Pellets were resuspended in lysis buffer (50 mM Tris–HCl pH 7, 500 

mM NaCl, 2 mM DTT, 8 % glycerol v/v, 10 mM imidazole, 0.25 mg/ml lysozyme) and lysed by sonication 

for 3 min in ice (10 s sonication, 20 s stop, x 18 times). The resulting supernatant was mixed with Ni-

NTA agarose resin (Qiagen) for 1 h. The resin was rinsed five times with washing buffer (50 mM Tris–

HCl pH 7, 500 mM NaCl, 2 mM DTT, 8% v/v glycerol, 50 mM imidazole) and finally resuspended in the 

same buffer containing 250 mM imidazole. Proteins were desalted by passing through a PD10 desalting 

column (GE Healthcare) equilibrated with the assay buffer (25 mM MOPSO pH 7, 10 mM MgCl2, 5% v/v 
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glycerol) and quantified with the Bradford method (Bradford, 1976). All steps of purification were 

conducted on ice. Purified proteins were aliquoted and stored at -20 °C. Biochemical characterization 

of each IDS in vitro was performed in 100 µl assay buffer (25 mM MOPSO pH 7, 10 mM MgCl2, 5% v/v 

glycerol) with 100 ng to 5 µg of purified proteins and incubated from 5 to 20 minutes at 30°C with slowly 

shaking. Incubations were stopped by adding 100 µl of MeOH:H2O (containing 10 mM NH4OH) (7:3) 
and vortexed for 30 sec. Enzymatic Kinetic parameters were determined similarly by using 5 ng of 

RcG/FPPS1 and RcFPPS2 proteins (and the respective mutants) and 50 ng of RcGGPPS.LSU1, 

RcGPPS.SSU, RcGPPS.HOMO and co-purified RcGGPPS.LSU1 + RcGPPS.SSU proteins. Enzymatic 

reactions were performed in assay buffer containing concentrations of IPP, DMAPP and GPP ranging 

from 0.5, to 50 µM for varying substrate and 60 µM for the stable substrate in 100 µl reaction volume at 

30° C for 3 min. Incubations were stopped as described above. Kinetic parameters were calculated 

according to the Lineweaver-Burk plot model. Products were analysed by LC-MS/MS. 

In planta characterization of IDSs  
Plant expression constructs carrying the CDS of the studied IDSs were transformed into the 
hypervirulent Agrobacterium LBA4404. Transformed colonies were grown in LB media containing 

rifampicin (50 µg/ml), gentamicin (20 µg/ml) and kanamycin (50 µg/ml). After an overnight culture at 

28°C with 200 rpm shaking, the bacteria were centrifuged 8 min at 4 000 g at room temperature and 

washed 3 time in resuspension buffer (MgCL2 10 mM, MES 10 mM, pH 5.7). 4-5 weeks old N. 

benthamiana were co-transformed by agro-infiltration with cultures of equal density of agrobacteria 

harboring the genes of interest in a ratio of 1/3 P19, 1/3 NUDX1-1a and 1/3 IDS (v/v), or 2/3 P19 and 

1/3 IDS for single gene expression to a final OD600nm = 1.2. 4 days post-infiltration the transformed N. 

benthamiana leaves were ground in liquid nitrogen and stored at -80 °C. For quantification of geraniol 
glycosides, 200 mg of tissues were resuspended in 400 µl of MeOH:H20 (75:25) containing 10 µM of 

lavandulyl acetate used as internal standard. Samples were sonicated for 10 min at 40°C, vortexed for 

30 s, centrifuged 5 min at 4 000 g to pellet cellular debries and supernatant was collected for LC-MS/MS 

analysis. For capsidiol quantification, 200 mg of tissues were resuspended in 400 µl of hexane 

containing 10 µM of camphor used as internal standard. Samples were sonicated for 10 min at 40°C, 

vortexed for 30 s, centrifuged 5 min at 4 000 g to pellet cellular debries and supernatant was collected 

for GC-MS analysis. 

LC-MS/MS Analysis 
All LC-MS/MS analysis were performed on an Agilent 1260 infinity II LC system coupled to an Agilent 
Ultivo triple quadrupole mass spectrometer (Agilent Technologies, Santa Clara).  

For analysis of products from in vitro characterization of IDS, samples were run on a Poroshell 120 

HPH-C18 column (50 mm × 2.1 mm, particle size 1.9 µm, Agilent) heated at 40 °C. The mobile phases 

consisted of 10 mM ammonium bicarbonate as solvent A, and acetonitrile as solvent B, both containing 

0.15% v/v NH4OH. Two microliters of reaction mixture were injected for each sample. Chromatography 

was run at 0.6 ml min flow rate and separation was achieved with a gradient starting with 2% B reaching 

95% B in 2 min, followed by an isocratic phase at 98% B until 5 min and return at 2% B at 5.10 min with 
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equilibration until 10 min. Mass spectrometer tunings were as follow: capillary voltage 5500 V, gas 

temperature 350 °C, gas flow 12 l/min, and nebulizer 55 psi. Products detection was achieved in 

negative mode and MRM modes. 

For the quantification of prenyl phosphates in OB flowers, 400 mg of petals were ground in liquid nitrogen 

and mixed with 1 ml of ice cold MeOH:H2O (20 mM NH4OH) 7:3 containing 10 µM of 1-naphthyl 
phosphate used as internal standard. Samples were then sonicated for 10 minutes at 4°C, vortexed 

30se and centrifuged 5 min at 4 000 g. Supernatants were then reduced under with nitrogen flow on ice 

until 100 µl. Samples were analysed by LC-MS/MS as described above but on a Poroshell 120 HPH-

C18 column (100 mm × 2.1 mm, particle size 1.9 µm, Agilent).  

For geraniol glycosides quantification in N. benthamiana tissues samples were analyzed on a Poroshell 

120 HPH-C18 column (100 mm × 2.1 mm, particle size 2.7 µm, Agilent) heated at 40 °C. The mobile 

phases consisted of water as solvent A, and acetonitrile as solvent B, both containing 0.1% v/v formic 

acid. One microliters of samples were injected and separation was achieved at a flow rate of 0.5 ml/min 
starting with an isocratic phase with 20% B for 0.5 min, followed by a gradient reaching 85% B at 10 min 

and then 98 % at 10.5 min, followed by isocratic phase with 98% B until 12 min and return at 20% B at 

12.2 min with equilibration until 16 min. Mass spectrometer tunings were as follow: capillary voltage 

6000 V, gas temperature 350 °C, gas flow 12 l/min, and nebulizer 55 psi. Products detection was 

achieved in positive mode and MRM modes. 

MS/MS transitions and tunings for each compounds were as followed: 312.2 -> 78.9 m/z for GPP with 

Fragmentor set at 70 V and Collision Energy set at 92 V, 381.3 -> 78.8 m/z for FPP with Fragmentor set 
at 105 V and collision energy set at 124 V, 449.4 -> 78.7 m/z for GGPP with Fragmentor set at 110 V 

and collision energy set at 148 V, 23 -> 78.9 m/z for 1-Naphthyl phosphate with Fragmentor set at 64 V 

and Collision Energy set at 40 V, 137.1 -> 81 m/z for geraniol glycosides with Fragmentor set at 80 V 

and Collision Energy set at 8 V, 197.2 -> 137.1 m/z for lavandulyl acetate with Fragmentor set at 75 V, 

and collision energy set at 4 V.  

Data analysis were performed with MassHunter quantitative software (Agilent Technologies). 

Compounds were quantified according to standard curves constructed with the use of authentic 

standards except for geraniol glycosides that were quantified relatively as previously described 
(Magnard et al. 2015; Sun et al. 2020). 
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I- Diversification of NUDX1 in Rosaceae and in Rosa 

An inventory of NUDX1 gene copies and Nudx1 clades was first done in R. x wichurana, R. x hybrida 

cv. ‘Papa Meilland’, and OB (Article 1). In this work, we found three clades, that we named Nudx1-1 to 

Nudx1-3 on the NJ tree (Figure 1.1). These clades were highly supported, with bootstraps of 100. By 
studying NUDX1 copies of F. vesca and P. micrantha, we demonstrated that these clades were also 

present in the subfamily Rosoideae (Article 2). Indeed, the ML tree of NUDX1 copies of R. x wichurana, 

R. x hybrida cv. ‘Papa Meilland’, and F. vesca also showed bootstraps of 100 (Figure 2.2). NUDX1 

copies of P. micrantha scaffolds could not be used for this tree because the online genome was a draft, 

but we found highly similar sequences by BLAST (Table S2.2). Thanks to the sequenced genome of 

OB and its assembly at the chromosome scale (Raymond et al. 2018; Hibrand Saint-Oyant et al. 2018), 

it was then possible to map NUDX1 copies on chromosomes (Figure 2.3). Furthermore, it was also 
possible to map the alleles on each chromosome pair because three genomes were available online in 

the GDR (Jung et al. 2019). Indeed, because of the heterozygote status of the OB genome, reads were 

difficult to assembly and the corresponding online genome contains mismatches and errors (Raymond 

et al. 2018). As a consequence, authors did it also with haploid calluses and then obtained haplotype 

sequences of very good quality of assembly (Raymond et al. 2018; Hibrand Saint-Oyant et al. 2018). 

We also used the MINion (Oxford Nanopore) direct sequencing method of gDNA to obtain long reads 

without the assembly step (Figure 2.6). This technology is very useful to verify gene clusters and 

mapping. We used two diploid species: R. moschata, which emits geraniol, and R. laevigata, which does 
not. We found a very well conserved cluster on chromosome 4, which contains NUDX1-1, NUDX1-2 

and NUDX1-3 copies. We also found dispersed copies of NUDX1-2 on chromosomes 6 and 7. Finally, 

we also found a cluster of NUDX1-1 copies on chromosome 2, but only in the rose species that produced 

geraniol.  

In the same work, we were also able to compare the NUDX1 copies of Rosoideae to the NUDX1 copies 

of Amygdaloideae, the other major subfamily in the Rosaceae family, using the genomes of P. persica 

and M. x domestica published in the GDR (Jung et al. 2019). Surprisingly, all these sequences mapped 

in the same regions of OB’s chromosome 4, but they have highly diverged. We named them NUDX1-4 

sequences (Figure 2.4). Evolution between duplicated genes is a common phenomenon, because gene 

duplication relaxes selection pressure and thus allows accumulation of mutations (Scannell and Wolfe, 
2008). At the opposite, highly conserved sequences in Nudx1-1, Nudx1-2 and Nudx1-3 clades, indicate 

a high selection pressure, thus a putative conserved function. Obviously, due to the very low bootstrap 

of Nudx1-4 clade, and due to some paraphyletic NUDX1-4 sequences (Figure 2.2), this group should 

be studied in details in the future, functionally and phylogenetically, and revisited. Nevertheless, it seems 

that a first copy of NUDX1 on chromosome 4 was at the origin of NUDX1-4 sequences in 

Amygdaloideae, and, in parallel, at the origin of all the NUDX1 sequences in Rosoideae. In the same 

way, the single copy of NUDX1 in A. thaliana is located in the same microsyntenic region (unpublished 

result). In Rosoideae, the closest sequences, most at the base of the ML tree, belonged to the Nudx1-



General discussion  

___________________________________________________________________________ 

 103 

3 clades (Figure 1.1; Figure 2.2). We could thus conclude that this clade contains ancestral sequences, 

with perhaps, the same function in Rosoideae. 

More precisely, in Rosoideae, we found several copies of NUDX1-1 and NUDX1-2 genes, that we 

named a to c (Figure 2.3; Figure 2.6). NUDX1-1a was found on chromosome 2 forming a cluster of 4 

genes (99 % of identity) and one pseudogene in OB, and two copies in R. moschata. In OB, the other 

chromosome 2 contained a null allele, i.e. not a single copy of NUDX1 at this location. NUDX1-1b was 

found on chromosome 4 in all species of Rosoideae that we studied (Figure 2.3; Figure 2.4). NUDX1-

2a was also found on chromosome 4 in all species of Rosoideae. NUDX1-2b and c were respectively 

found on chromosomes 6 and 7 (Table S1.8; Figure S1.4; Figure 2.3; Figure2.4; Figure 2.6).  

The NUDX1-1a cluster on chromosome 2 was not found in roses without geraniol and in other 

Rosoideae (Table S2.2). Additionally, we cloned as much as possible gDNAs in more than 30 species 
of wild roses. These gDNAs clearly formed two subclades: Nudx1-1a subclade including NUDX1-1a 

homologs, and Nudx1-1b subclade including NUDX1-1b homologs of OB (Figure 2.5; Figure S2.2). On 

the ML tree, the Nudx1-1b subclade was more ancestral than the Nudx1-1a subclade. It included gDNAs 

of all rose species. At the opposite, Nudx1-1a subclade included only gDNAs of roses that produced 

geraniol. We could thus conclude that NUDX1-1b gene was ancestral compare to NUDX1-1a gene, and 

that the geraniol production is a “recent trait” in wild roses. 

Because we have found several copies of NUDX1-1a in OB and R. moschata, we tried to verify whether 

or not the copy number of this gene was variable in wild roses. For this purpose, we used 12 wild roses 

that we compared by qPCR to OB, knowing that OB had seven genes that could be amplified with our 

primers (five copies of NUDX1-1a, two copies of NUDX1-1b, two copies of NUDX1-2a, one copy of 
NUDX1-2b, and one copy of NUDX1-2c). The result was that the copy number was very variable from 

a wild rose to another. Furthermore, roses that had more copies than OB produced geraniol, and roses 

that had less, no geraniol. There was an exception concerning R. hugonis that we could not explain. 

Gene duplication is a common event, for example cytochrome P450 gene in A. thaliana have about 255 

duplications, and constitute one of the major gene family with 76 sequences considered as tandem 

duplications (Cannon et al. 2004). Indeed, when several identical copies of sequences are present on 

a DNA strand, some errors can occur and create tandem or interspersed copies (Żmieńko et al. 2014; 

Lye and Purugganan, 2019). For example, nonallelic homologous recombination between two identical 
sequences may create an unequal crossing-over. Microhomology-mediated break-induced replication 

may also occur during replication. In M. x domestica, clusters of O-METHYLTRANSFERASE genes 

were interpreted as duplications due to hairpins structures of MITEs that had provoked DNA slippage 

during replication (Han and Korban, 2007). This mechanism could be at the origin of the duplication on 

chromosome 2 because we found MITEs between NUDX1-1a copies (Figure 2.6; Figure S2.4). The 

sequence repetition on chromosome 2 looked like the sequence repetition of MATE1 in Zea mays 

(Maron et al. 2013). Indeed, in maize, there are three interspersed copies of MATE1 with gypsy, copia 

and mutator TEs repeated in the intergenic regions. Authors demonstrated that the different inbred lines 
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of maize have different numbers of copies. This is referred to as Copy Number Variations (CNVs), i.e. 

variation of number of gene copies between individuals (Lye and Purugganan, 2019), or between inbred 

lines (Maron et al. 2013). They argue that these different lines correspond to different adaptations to 

different soils, because MATE1 is involved in aluminium tolerance. In another work, DeBolt (2010) 

demonstrated that several CNVs appeared in only five generations in A. thaliana when a selection 

pressure was applied, making CNVs a very strong mechanism of adaptation. Such link between CNVs 
and adaptation is also documented in Homo sapiens evolution (Hsieh et al. 2019). We cannot be sure 

that the repetition of NUDX1-1a corresponded to CNVs in roses because of two arguments. Firstly, there 

are three individuals of OB sequenced in the GDR, and they have the same copy number, thus no CNV. 

Secondly, cultivated roses are clones, propagated by cuttings and grafting in botanical gardens, even 

for wild roses in collection. Nevertheless, the differences of copy number between OB, R. moschata, R. 

laevigata and other wild species of Rosa could well correspond to ancestral CNVs, that could correspond 

to adaptations of different individuals of a common ancestor. Evidences for the role of CNVs in functional 

divergence contributing to adaptations via secondary metabolism evolution at the inter-species level 
had already been exemplified (Shirai and Hanada, 2019). It could therefore be interesting to check for 

such NUDX1-1a CNVs in wild populations of roses and in different areas to gain knowledge on 

adaptation due to terpenols. Furthermore, examples of CNVs are numerous in domesticated plants (Lye 

and Purugganan, 2019), but not in wild species, as only one is documented in Picea spp. (Prunier et al. 

2017). CNVs could thus be a source of speciation in the wild. 

As we concluded before, NUDX1-1b was more ancestral than NUDX1-1a. We could then suppose that 

NUDX1-1b was duplicated in some wild roses from chromosome 4 to chromosome 2. Around these 

genes, we found several identical transposons: MITE P580.2030 and Copia R24588 (Fig. 6 in Article 

2). However, these transposons were in different orders. This could indicate a kind of shuffling of the 

different DNA fragment during duplication, which is a strong clue for transposon-mediated trans-
duplication, like in Pack-MULE (Packed Mutator-like Element) transposition for example. 

Most of the Pack-MULEs are less than 5 kb in size and flanked by opposite Tandem Inverted Repeats 

(TIRs) greater than 100 pb, which is the case in OB (Figure S2.4; TIRs are the two opposite sequences 

of a MITE). Pack-MULEs are composed of mixed fragments of different genes or sequences and often 

include introns, have a gene microsynteny not shared between species, exhibit expression, which does 

not resemble those of the parental sequences, and is often higher and tissue-specific (Ferguson et al. 

2013; Cerbin and Jiang, 2018; Zhao et al. 2016, 2018).  All these criteria are compatible with the 

hypothesis of a Pack-MULE in Rosa. Furthermore, on chromosome 2 only, MITE P580.2030 was 

interrupted by MITE G13554, which could be interpreted as an event more recent than the trans-

duplication of the Pack-MULE.  
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II- Specialization of NUDX1 in terpene production 
The Nudix hydrolase proteins were first described as enzymes that clean cells from potentially 

deleterious metabolites, and modulate the concentration of intermediates in some biochemical pathways 

(Bessman et al. 1996). They are found in all living organisms and consist of diphosphohydrolases of 

nucleoside diphosphates linked to some moiety X (Nudix). Their substrates are diverse including 

oxidized dNTPs, nucleotide sugars and alcohols, or capped RNAs (review in Mildvan et al. 2005; 

McLennan, 2006; Kraszewska, 2008; Srouji et al. 2017). One of these Nudix hydrolases has been 

studied since a long time. It was named MutT (Bessman et al. 1996) or NudA (McLennan, 2006) in 

Escherichia coli, 8-oxo-dGTPase (Sakumi et al. 1993) or MTH1 (Gad et al. 2014) in Homo sapiens, 
AtNUDT1 (Dobrzanska et al. 2002) or AtNUDX1 (Yoshimura et al. 2007) in A. thaliana. Several 

substrates were proposed for this NUDX1 enzyme, but one of them comes up more frequently: 8-oxo-

dGTP. This compound could cause mutations if incorporated into DNA sequences. NUDX1 removes 

one phosphate creating 8-oxo-dGMP, which cannot be integrated into DNA. However, this enzyme 

activity has been recently revisited in plants.   

In garden roses, it has been shown that RhNUDX1 was involved in geraniol production (Magnard et al. 

2015). Authors used an AFLP-differential display method on two cultivars with a close genetic 
background: the highly scented R. x hybrida cv. ‘Papa Meilland’ and the unscented R. x hybrida ‘Rouge 

Meilland’. They found that RhNUDX1 was the most expressed gene in the scented cultivar. It was also 

expressed during blooming in all tested cultivars producing geraniol. Using reverse genetic approach, 

in vitro enzymatic activity assays, and analysis of the progeny from a cross between OB that produces 

geraniol and R. x wichurana that does not, they demonstrated that the RhNUDX1 expression was 

strongly linked to geraniol production. They also showed that GPP was dephosphorylated by RhNUDX1 

producing GP, that was then dephosphorylated by an uncharacterized phosphatase to geraniol. In 

contrast, in other plants, GPP was involved in geraniol production by another terpene synthase 
dependent pathway. Indeed, O. basilicum (Iijima et al. 2004), Cinnamomum tenuipilum (Yang et al. 

2005), C. roseus (Simkin et al. 2013), Citrus sinensis (Li et al. 2017), C. plicata (Xu et al. 2017), and 

Pelargonium x hybridum (Blerot et al. 2018) possess a geraniol synthase, which directly hydrolyzes 

GPP to geraniol. This enzyme belongs to TPSs family. While geraniol synthases are localized in plastids, 

RhNUDX1 was shown to reside in the cytosol, raising the question about the origin of the cytosolic GPP 

in roses. In parallel, Henry et al. (2015; 2018) demonstrated that AtNUDX1 was involved in the regulation 

of IPP concentration in A. thaliana leaves. Using in vitro enzymatic assays and heterologous transgenic 

experiments, they showed that AtNUDX1 dephosphorylated IPP and DMAPP into IP and DMAP, and 
another enzyme, isopentenyl phosphate kinase, phosphorylated IP to IPP, and DMAP to DMAPP. As a 

consequence, the regulation of IPP and DMAPP concentrations by these two enzymes could modulate 

the metabolic flux of terpene metabolism. It has been shown that AtNUDX1 can hydrolyze GPP 

(precursor of monoterpenes), and FPP (precursor of sesquiterpenes) with equal catalytic efficiencies. 

Since GPP is generally produced into plastids but AtNUDX1 was localized in the cytosol, this likely 

explains the absence of geraniol production in planta. On the other hand, production of some 
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sesquiterpenes via TPS independent pathway was not excluded, as both FPP and AtNUDX1 are 

present in the cytosol.  

Substrate affinities of NUDX1 for IPP, GPP, FPP and 8-oxo-dGTP were discussed in several papers 

(Henry et al. 2018; Liu et al. 2018; Jemth et al. 2019; Article 1) raising the question of the diversification 

and/or specialization of this enzyme in the plant kingdom. Indeed, we demonstrated that in the flowers 

of a hybrid of R. wichurana, RwNUDX1-2c hydrolyzed specifically FPP to farnesyl monophosphate, 
which in turn gives rise to (E,E)-farnesol (Article 1). Another NUDX1 enzyme was recently characterized 

in T. cinerariifolium (Li et al. 2020).  The authors showed that although TcNudix1 gene was expressed 

specifically in ovarian trichomes of the flower, its expression could be also induced in leaves by methyl 

jasmonate treatment. TcNudix1 protein contains a plastid transit peptide at the N-terminus, that was 

confirmed by transient expression with a reporter gene. Analysis of enzyme activity revealed that 

TcNudix1 was capable of removing one phosphate from chrysanthemyl diphosphate producing 

chrysanthemyl monophosphate. Then, formation of chrysanthemol from chrysanthemyl monophosphate 

probably needed an endogenous phosphatase. Chrysanthemol is the precursor of six pyrethrins that 
protect ovaria and wounded leaves against phytophagous insects. Another example of evolution of the 

NUDX1 gene family seemed to have occurred in Pelargonium graveolens. PgNdx1 gene encodes the 

cytosolic protein with 65 % amino acid similarity with AtNUDX1, and 63 % with RhNUDX1, which can in 

vitro hydrolyze GPP into GP with high catalytic efficiencies (Bergman et al. 2021). However, no 

correlation was found between PgNdx1 expression and geraniol levels in different Pelargonium 

cultivars. In contrast, some authors have isolated and characterized a geraniol synthase from P. x 

hybridum, which suggests that perhaps both pathways exist in this genus (Blerot et al. 2018). This could 
be similar to a situation in R. x damascena, where Önder et al. (2021) have cloned a putative geraniol 

synthase. In Pelargonium, when GPP, GP and geraniol concentrations were analyzed in leaf extracts 

of Pelargonium cultivars, strong correlation between these compounds was found (Bergman et al. 

2021).  Moreover, in a cultivar that produces (-)-b-citronellol, but not geraniol, GPP, GP and citronellyl 

monophosphate (CP), but not citronellyl diphosphate were detected. The authors discussed the 

possibility that GP was transformed into CP, and then into (-)-b-citronellol, and proposed to search for 

a double bond reductase that could convert GP to CP.  

In summary, NUDX1 enzymes can therefore hydrolyze different diphosphates in the terpene pathways. 

They may have different activities and catalytic efficiencies, but their cellular compartmentation is also 

highly important and could give rise to specific metabolites. These specificities are based on different 

evolutionary histories from one species to another and from one family to another. In our work, we 
demonstrated that the CNV of NUDX1-1a corresponded to a gene dosage expression (Fig. 7 in Article 

2), and that the promoter of NUDX1-1a contained a regulatory element, that we named box38, of the 

LTR region of Copia R24588 which was sufficient for petal expression (Figs. 9, S6 and S7 in Article 2).  

Concerning the gene dosage effect, we demonstrated that the number of copies of NUDX1-1a in 

botanical roses was responsible for its expression in a nonlinear model, and that the expression of 

NUDX1-1a was correlated with the concentration of geraniol and other compounds (Figure 2.7; Figure 

S2.3). For example, Perry et al. (2007) find that the copy number of AMY1, a gene encoding salivary 
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amylase in Homo sapiens, is higher in populations with high-starch diets than in populations with low-

starch diets. Nevertheless, the correlation of the copy number and the concentration of amylase in saliva 

have an r2 of 0.351 meaning that the relation is not strictly linear and depends of other factors. Models 

of gene dosage effect predicts that the copies could quickly diverged if the selection pressure is not very 

high. At the opposite, the copies can be fixed by adaptative natural selection if the number of copies 

increases fitness (Hahn, 2009). Thus, as RcNUDX1-1a copies had an identity varying only from 97.1 to 
97.6 %, we can hypothesize that this gene, and thus acyclic terpene concentration, was very important 

in the adaptation and the evolution of Rosa species. 

Concerning the box38, element, we demonstrated that it was necessary and sufficient to drive previously 

discovered petal-specific NUDX1-1a expression in petals of fully opened flowers (Figure2.9). We also 

observed that it was differently repeated from a rose species to another, but always at 138 bp from the 

start codon (Figure S2.7). This box38 is a part of the LTR of Copia R24588 (Figure S2.6). LTR acts as 

a selfish transcription of the Copia elements and it is known that such sequences contain regulatory 

elements that can modify gene expression in cis and can contribute to neofunctionalization (Kobayashi 
et al. 2004; Grandbastien 2015; Galindo-Gonzàlez et al. 2017). Furthermore, box38 location in the 5’-

upstream region of the pseudogenes YNUDX1-2a (Figure 2.6) suggests that they have been expressed 

at the origin. However, during transposition of the MULE from chromosome 4 to chromosome 2, the 

box38 repeats were shuffled and placed in front of NUDX1-1a making its expression petal-specific. 

There is increasing evidence that TEs are a source of diversification of species and modification of gene 
expression, particularly in the Rosaceae (Gu et al. 2016, Wang et al. 2016, Daccord et al. 2017, Jiang 

et al. 2019). Indeed, several TE insertions have been described in Rosaceae, which modified 

transcription levels as a result of new binding sites for transcription factors or disruption of existing ones, 

new methylation/acetylation pattern, or hairpin structure formation (Han and Korban, 2007; Wang et al. 

2009; Iwata et al. 2012; Gu et al. 2016; Hibrand Saint-Oyant et al. 2018; Morata et al. 2018; Ono et al. 

2018; Zhang et al. 2019). Further investigations are thus necessary to understand the underlying 

mechanisms of petal-specific expression. 

Whatever the action mechanisms of box38, petal-expression of NUDX1-1a was positively correlated 
with the geraniol production of rose flowers (Figure 1.2; Figure S2.3). Logically, it was also correlated 

with the compounds putatively derived from geraniol. Such pathway has not been studied in roses but 

in some other species. This the case for nerol, b-citronellol, neral, geranial, and neryl acetate (Iijima et 

al. 2004; 2006; 2014; Ito & Honda, 2007; Yuan et al. 2011; Sato-Masumoto & Ito, 2014; Xu et al. 2017). 

(E)-b-ocimene and b-myrcene has never been involved in a geraniol pathway, but they also belong to 

acyclic monoterpenes. However, we also demonstrated that this correlation was not restricted to 

geraniol but also to some cyclic monoterpenes (limonene, a-phellandrene), acyclic sesquiterpenes 

((E,E)-farnesol, (E,E)-farnesal, (E,E)-a-farnesene, (Z,E)-a-farnesene, (E)-b-farnesene), aliphatics ((E)-

2-hexenol, (E,Z)-nonadienal), benzenoids (benzylalcohol), and phenylpropanoids (2-phenylethanol). It 

was also negatively correlated with DMT, 2-pentadecanone and 2-tridecanone. We could explain these 

correlations with three hypotheses.  
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First, it is possible that the activity of NUDX1-1a depends on a transcription factor. If it is up-regulated, 

NUDX1-1a activity would be up-regulated and geraniol concentration would increase if GPP is available. 

If other genes were regulated by this transcription factor, they were also overexpressed and some other 

compounds were produced with geraniol. They may up-regulate some genes but they also may down-

regulate others in different pathways (Dudareva et al. 2013). Such pleiotropic effects with transcription 

factors that regulate the expression of scent genes are known. For example, Ben Zvi et al. (2012) 
overexpressed PAP1 in R. x hybrida cv. ‘Pariser Charme’. PAP1 is a Myb transcription factor involved 

in production of anthocyanins in A. thaliana. They observed an increase of the transcription of several 

genes involved in color and scent, among which AAT1 and PAAS. AAT1 is a geraniol and citronellol 

acetyl transferase which can synthesize geranyl acetate, benzyl acetate, (Z)-3-hexenyl acetate and  b-

citronellyl acetate in vitro, in planta, or in transgenic plants with different efficiencies (Shalit et al. 2003; 
Guterman et al. 2006). PAAS is a phenylacetaldehyde synthase which synthesizes 2-

phenylacetaldehyde leading to 2-phenylethanol (Kaminaga et al. 2006). In our work, geranyl acetate, 

neryl acetate and 2-phenylethanol were positively correlated to NUDX1-1a activity. Thus, we could 

imagine that an up-regulation of the transcription factors could lead to a modulation of expression of 

several biosynthetic gene.  

In the second hypothesis, the volatile compounds could be correlated to NUDX1-1a activity only 

because they have been co-selected with geraniol for their roles in chemical communication with other 

species. In a meta-analysis work, (Junker and Blüthgen, 2010) demonstrated that flower scents have a 
dual function by attracting obligate flower visitors but repelling facultative ones. Considering attraction, 

2-phenylethanol is one of the most active compounds known for flower-visiting insects, and particularly 

for bees (Raguso, 2004). Furthermore, some compounds are considered as pheromones in bees. It is 

the case for (E)-b-ocimene, geraniol, nerol, geranial, neral, nerolic acid, geranic acid, and (E,E)-farnesol 

(Trhlin and Rajchard, 2011). In our work, seven of these nine compounds were positively correlated with 
NUDX1-1a activity in roses. An intriguing result was the negative correlation between 2-tridecanone and 

2-pentadecanone, and NUDX1-1a activity. Nevertheless, in R. rugosa, it has been demonstrated that 

2-tridecanone is strongly repellent for foraging bumble bees, and is present in high amounts in pollen 

(Dobson et al. 1999). One could imagine that selection by pollinators decreased the concentration of 

such compound in petals to increase landing, but increased it in pollen to decrease foraging. 

Furthermore, volatile compounds can also repel enemies (Junker and Blüthgen, 2010). Thus, for 

example, the presence of (E)-b-farnesene and 2-phenylethanol could also be involved in defense as it 

is the case in several species (Gibson and Pickett, 1983; Schnee et al. 2002; Günther et al. 2019). In 

summary, the selection pressure could modulate several gene expressions because several 

compounds are active both for attraction and defense. As a consequence, the indirect correlation of 

NUDX1-1a with all these products could just correspond to a diffuse selection pressure on several genes 

by insects.  

Concerning the third hypothesis, some compounds could be by-products of NUDX1-1a activity, and/or 
could be produced by the same pathway. This is the case for putative acyclic monoterpenes as we 

explained before, but it could also concern other compounds, and particularly acyclic sesquiterpenes. 
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In Rosa, RhNUDX1 can used FPP in vitro (Magnard et al. 2015), and this is also the case for, AtNUDX1 

in A. thaliana (Henry et al. 2018). In our work we demonstrated that in an hybrid of R. wichurana, 

RwNUDX1-2c used FPP to produce (E,E)-farnesol and derivatives in planta (Figure 1.2; Table 1.2). We 

also demonstrated that GPP and FPP were produced in the cytosol by the MVA pathway, with FPPS1 

and FPPS2 activities (Article 3). Furthermore, it has been demonstrated in Zea mays that (E)-b-

farnesene is a by-product of the (E,E)-farnesol synthase activity (Schnee et al. 2002). We could thus 

imagine that NUDX1-1a could use both GPP and some FPP in planta, and thus also produced acyclic 

sesquiterpenes. 

III- An evolutive scenario of geraniol production in Rosa 

Our results suggest that geraniol production in rose petals was due to two distinct evolutionary events 

during evolution of Rosids. The first event was the evolution in Rosaceae of a classical FPPS producing 

FPP into FPPS also producing GPP through point mutations of at least of two amino acids (F88 and 

V123) affecting the affinity of the protein for GPP binding. These mutations have led to a bi-functional 

enzyme, G/FPPS1, that could produce both GPP and FPP in the cytosol, the other enzyme, FPPS2, 

producing only FPP (Article 3). This specialization of G/FPPS1 occurred before the diversification of 

Rosaceae. Still before this diversification, NUDX1 gene was cis-duplicated several times on 

chromosome 4 (Article 2). These copies then diverged during the evolution of Amygdaloideae subfamily, 
giving a heterogeneous NUDX1-4 group with unknown functions. In the Rosideae subfamily, the three 

ancestral copies were trans-duplicated and then gave three clades: Nudx1-1, Nudx1-2 and Nudx1-3. It 

is likely that Nudx1-3 clade represents the ancestral NUDX1. After these events, during the evolution of 

Rosa, NUDX1-1a copy specialized into the production of geraniol. It is possible that the trans-duplication 

on chromosome 2 was due to a Pack-MULE as discussed before. Indeed, this type of transposition 

could explain the shuffling of NUDX1-1a and LTR fragments of Copia R24588 giving rise to the box38 

and thus the specific expression of NUDX1-1a in petals. NUDX1-1a was thus expressed in petals, and 
the encoding enzyme could metabolize GPP produced by G/FPPS1 to produce geraniol. However it is 

not known when during evolution G/FPPS1 acquired its specific expression in petal with a rhythmic 

pattern.   This geraniol production has been selected in many Rosa species. These speciation events 

could have come from CNV in individuals. Furthermore, in some species, at least in a hybrid of R. 

wichurana, NUDX1-2c could have specialized into production of (E,E)-farnesol (Article 1). 

The production of geraniol seems to have been selected in Rosa. We could assume that it is thanks to 

the action of pollinators, as the role of VOCs are very important in numerous flowers (review in 

Muhlemann et al. 2014).  Indeed, geraniol, (E,E)-farnesol, and their derivatives are known to be involved 

in bee attraction. For example, geraniol is detected by honey bees, as it was proved by the signals  

obtained with electroantennogram assays (Larson et al. 2020). It is also known that the Nasonov 
secretion in bees is made of geraniol, nerol, geranial, neral, nerolic acid, geranic acid, and (E,E)-farnesol 

(Pickett et al. 1980). The Nasonov secretion is considered as an orientation pheromone for bees (Trhlin 

and Rajchard, 2011; Bortolotti and Costa, 2014). Thus, geraniol and/or (E,E)-farnesol could have been 
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involved in the selection pressure that conserved Nudx1-1a cluster, and  perhaps NUDX1-2c in the 

hybrid of R. wichurana.  

We thus provided evidences that cytosolic GPPS function was present before acquiring NUDX1-1a 

expression in Rosaceae petals. It means that the cytosolic production of GPP was selected before (or 

in parallel) the specialization of Nudx1-1 and Nudx1-2 clades. This is in agreement with the observations 

in other Rosoideae.  Indeed, Aharoni et al. (2004) cloned a cytosolic linalool/nerolidol synthase which 

produced linalool (monoterpene) and nerolidol (sesquiterpene) in Fragaria x ananassa fruits. They also 

cloned a cytosolic pinene synthase which produced a-pinene, a-myrcene and other monoterpenes in F. 

vesca fruits. They concluded that there was a source of cytosolic GPP in strawberries. In another work, 

Hampel et al. (2007) observed a strong labelling of monoterpenes, such as linalool and a-pinene, when 

fruits of Rubus idaeus, were fed with labelled mevalonate, compared to labelled DOX. They concluded 

that monoterpenes could be synthesized either in the cytosol of raspberry fruits or using MVA-dependent 
precursors transported to plastids. Here we show in Roses that both scenarios could apply since GPP 

is formed in the cytosol where it is used by NUDX1.1a for geraniol production and is transported to the 

plastids where it is used to produce ionols.  It could be interesting to generalize these observations to 

other Rosoideae and also to Amygdaloideae, in flowers and fruits. It is possible that NUDX1-1b, NUDX1-

2 b and c, and NUDX1-4 were involved in terpene production in such subfamilies.  

Moreover, cytosolic GPP is not restricted to monoterpenes biosynthesis, as GPP can be involved in the 

prenylation of some compounds by prenyl transferases. Geranylation of compounds leads to numerous 

bioactive molecules, which are considered as an evolutionary advantage (Epifano et al. 2008). For 

example, in L. erythrorhizon, geranylated coumarins are produced in roots. The p-hydroxybenzoic acid 

is prenylated by GPP and allow production of shikonin (Ueoka et al. 2020). In Canabis sativa, 

cannabidiol and tetrahydrocannabinol are prenylated bioactive compounds (see review of prenylated 

compounds in Bruijn et al. 2020). Thus, one could imagine that the production of cytosolic GPP could 

also be the substrate of prenyl transferases for geranylation of yet unknown metabolites in Rosaceae. 

Conservation of 2 FPPSs in Rosaceae genomes (Figure 3.5), one of which produces cytosolic GGP in 

addition to FPP, raised the question about the evolutive advantage brought by this conservation and 

also the specialisation of IDSs for specific biological processes in specific organs. Indeed, it is likely that 

FPPS2 maintains the essential functions of FPP biosynthesis for production of vitals primary metabolites 

in cells such as sterols while RcG/FPPS1 specialized into production of GPP and FPP for VOCs 

production, at least in flowers. However, having conserved the FPPS activity of RcG/FPPS1 (unlike 

LeGPPS in L. erythrorhizon) could also benefit to plant fitness. First, RcG/FPPS1 bifunctional activity is 
like to kill two birds with one as it can produce both precursors leading to sesquiterpenes, monoterpenes 

and ionones (though crosstalk) biosynthesis in petals while FPPS2 function could be focused on primary 

metabolism. In addition, RcG/FPPS1 could complement and/or support FPPS2 essential functions as it 

was observed in Arabidopsis thaliana where both FPPS1 and FPPS2 can complement the loss of the 

other, respectively, since only the double mutant is lethal (Closa et al. 2010). Subcellular co-localization 
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of cytosolic FPPS in rose with one producing GPP raise the question about the existence of potential 

FPP and GPP biosynthesis channelling as RcG/FPPS1 produced GPP could be consumed as substrate 

by RcFPPS2. Furthermore, this subcellular co-localization of two FPPS could results in the putative 

formation of heterodimer between G/FPPS1 and FPPS2 but has not been explored yet. Indeed, the 

mutation of ancestral Y88 (and potentially I123V) from Rosids into F88 in Rosaceae results in the loss 

of the Y88-Y88’ hydrogen bound thus affecting the interaction between both RcG/FPPS1 subunits and 
ultimately RcG/FPPS1 product specificity. Thus, the interaction of both rose FPPS could affect their 

activity and thus product specificity. Studies investigating this question has been performed with the 

Saccharomyces cerevisiae FPPS (ERG20) to increased GPP production. This was achieved by 

supressing one allele of ERG20 WT in diploids strain to optimize improved ERG20 homodimers of 

mutant protein and thus GPP and monoterpenoid production (Ignea et al. 2014). 

Because RcG/FPPS1 product specificity can be modified depending on the ratio of IPP and DMAPP 

substrates provided in vitro (Figure 3.3) it is probable that endogenous substrate availability is critical 

for RcG/FPPS1 activity in planta. In vitro, the excess of DMAPP leads to higher formation of GPP by 

RcG/FPPS1 and inversely, excess of IPP leads to higher FPP formation. Thus, the concentration and 

IPP/DMAPP ratio in rose cells, which could depend on flower stage or rhythmicity probably drives the 
product specificity of RcG/FPPS1 towards GPP or FPP production and the subsequent downstream 

products. In tobacco, the production of IPP/DMAPP ratio from the MEP pathway stands in between 5:1 

and 7:1 (Tritsch et al. 2010) which corresponds approximately to the ratio produced by the HDR enzyme 

(Rohdich et al. 2002). The IPP/DMAPP ratio produced by the MVA pathway has received less attention. 

The last enzymatic step of this pathway produces only IPP which then is converted into DMAPP by the 

action of IDI. An example of potential regulation of terpenes production by IDI was reported in Artemisia 

annua, which accumulates more than 20 monoterpenes in glandular trichomes (Polichuk et al. 2010; 

Ruan et al. 2016). Its plastidic AaIDI-1 is 5-fold more expressed in trichomes than in roots and its 
encoded enzyme produces a 7:1 ratio of DMAPP/IPP in vitro (Ma et al. 2017). Increasing DMAPP 

quantity at the expense of IPP would mathematically favour GPP production instead of GGPP in plastid.  

Further investigations on the IPP/DMAPP ratio in rose flowers and on the involvement of IDI and its 

developmental and rhythmic expression pattern in petals will help to better understand the regulation of 

GPP and FPP derived VOC biosynthesis. In addition, the challenging quantification of cellular and 

subcellular IPP/DMAPP ratio would greatly help to better understand how the production of GPP, FPP 

or GGPP derived from both MVA and MEP pathways are regulated.  

As a conclusion, we demonstrated that cytosolic GPP production appeared in the Rosaceae before the 

functionalization of the Nudx1 clade, and before the production of GP (thus geraniol) by NUDX1-1a. We 

have described the major stages of this evolution in Rosoideae and Rosa. We have also demonstrated 
the importance of TEs in this scenario, both for gene duplication, and for gene neofunctionalization. In 

a structural point of view, we explained the effect of some mutations on the enzyme activity.   

 



 

 

 2 



   

Appendix 1 

_________________________________________________________________________________ 

 113 

 

 
 

 

 

 

 
 

Appendix 1 | 

 
Supplementary materials for chapter 1  

 

  



   

Appendix 1 

_________________________________________________________________________________ 

 114 

Table S1.1 | Sequences in RNAseq transcriptome with homologies to NUDX1 sequences. 

 

 

  

Table S1. Sequences in RNAseq transcriptome with homologies to NUDX1 sequences 
Sequence 

name 
Sequence 

length 
(bp) 

Corresponding 
NUDX1 sequence 

 
Expression in the cultivars (FPKM) 

   Rw OW9035 OB OW9047 
c34287_g1_i1 859 NUDX1-1 27.8 31.4 9347.2 6687.3 
c58359_g1_i1 274 NUDX1-3 (partial) 0.0 0.2 1.5 0.0 
c72373_g1_i1 164 NUDX1-3 (partial) 0.7 0.3 3.3 0.0 
c92297_g1_i1 1294 NUDX1-2 1433.0 1332.6 1.9 2.8 
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Table S1.2 | List of PCR primers. 

 

 

 

  

Table S2. List of PCR primers  
 

Primer name Primer sequence (5’-3’) Purpose 
M-NUDX F1 ATGGGAAACGAGACAGTAGTAGT Forward primer, for NUDX1-1 amplification 
M-NUDX R1 TCATGTTGGAAAAGGGTTAAATCC Reverse primer, for NUDX1-1 amplification 
RwNUDX 32F CACCATGGTCAACGAGACGGTG Forward primer, for amplification, protein expression 

and heterologous expression of NUDX1-2 
NUDX OB2 R3 GATTAAAAAGGGAAAGGATTAAATCC

AGCC 
Reverse primer, for amplification, protein expression 
and heterologous expression of NUDX1-2 

RcNUDX1.3 F ATGGAAAACGGCGCGT Forward primer, for NUDX1-3 amplification 
RcNUDX1.3 R TTACTGCCCTGAATTGGAATC Reverse primer, for NUDX1-3 amplification 
NUDX qPCR F AAGCCAAACCATCGCAGTAC Forward primer, for qPCR amplification on NUDX1-1 
NUDX qPCR R GGAAGATTGTCCCACTCATACC Reverse primer, for qPCR amplification on NUDX1-1 
RwNUDX qPCR F GAGCTTTGAGGAGTGTGCAAC Forward primer, for qPCR amplification on NUDX1-2 
RwNUDX qPCR R GCTGTTGATGATCTGCCAAGG Reverse primer, for qPCR amplification on NUDX1-2 

RcNUDX1.3 qPCR F2 GATCTTTATGCGAGCGGTTC Forward primer, for qPCR amplification on NUDX1-3 
RcNUDX1.3 qPCR R2 GTCGTCCCACTCGTACCAAC Reverse primer, for qPCR amplification on NUDX1-3 
Rc TCTP F TTGGTCTTTGCCTACTACAAAGAGG Forward primer, for qPCR control, housekeeping gene 

TCTP 
Rc TCTP R AAGCCAGTTGCTACTTCTTAGCACT Reverse primer, for qPCR control, housekeeping gene 

TCTP 
Rc Tub F ATTGAGCGTCCCACCTACAC Forward primer, for qPCR control, housekeeping gene 

Tubulin 
Rc Tub R AGCATGAAATGGATCCTTGG Reverse primer, for qPCR control, housekeeping gene 

Tubulin 
Rc EF1 F GGTAAGGACCTTCACATC Forward primer, for qPCR control, housekeeping gene 

EF1-alpha 
Rc EF1 R CAGCCTCCTTCTCAAACCTCT Reverse primer, for qPCR control, housekeeping gene 

EF1-alpha 
NUDX OB1 F CACCTTGGTTCCGCGTGGATCCATGGG

AAACGAGACAGTAGTAG 
Forward primer, for protein expression of NUDX1-1 

NUDX OB1 R TCATGTTGGAAAAGGATTAAATC Reverse primer, for protein expression of NUDX1-1 
RwNUDX F CACCTTGGTTCCGCGTGGATCCATGGT

CAACGAGACGGTGG 
Forward primer, for protein expression of NUDX1-2 

NUDX AT1 F CACCTTGGTTCCGCGTGGATCCATGTC
GACAGGAGAAGCGATA 

Forward primer, for protein expression of AtNUDX1 

NUDX AT1 R TTAGTCTCCACCACCATGAG Reverse primer, for protein expression of AtNUDX1 
RhNUDX1-2_F1 GATATAAAACATGGTCAACGAG Forward primer for genetic marker for NUDX1-2 
RhNUDX1-2_R1 GGAAAGGATTAAATCCAGCC Forward primer for genetic marker for NUDX1-2 
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Table S1.4 | Summary of QTLs for sesquiterpenoids detected with nonparametric Kruskal-Wallis rank- 

sum test in the OW progeny. In bold, QTLs also detected by Interval Mapping.  

 

a Linkage group (LG): A female map; B, male map 

b Closest molecular marker (MM) associated 
c Position on the LG (cM) 

d K value: Significance levels: *** 0.01, **** 0.005, ***** 0.001, ****** 0.0005, ******* 0.0001  

 

Table S4. Summary of QTLs for sesquiterpenoids detected with nonparametric Kruskal-Wallis rank-
sum test in the OW progeny. In bold, QTLs also detected by Interval Mapping. 
 
Compound Year QTL characteristics 

  LGa MMb Positionc Kd 
E,E-farnesol 2015 A1 Rh12GR_98623_1205 67.068 *** 

 2014 A3 Rh12GR_51455_751 19.414 **** 
 2015 A5 Rh12GR_51891_352 14.073 *** 
 2015 B5 RhMCRND_7474_560 61.167 *** 
 2015 B6 Rh12GR_12629_1266 47.96 *** 
 2014 B7 Rh12GR_21458_519 51.173 ******* 
 2015 B7 Rh88_33312_1396 50.506 ******* 

E,E-farnesal 2015 A1 Rh12GR_59097_179 65.735 **** 
 2014 A3 RhK5_18608_170 43.023 ***** 
 2015 A3 Rh12GR_54386_321 49.708 **** 
 2015 B6 Rh12GR_37919_235 47.294 **** 
 2014 B7 Rh88_33312_1396 50.506 ******* 
 2015 B7 Rh88_33312_1396 50.506 ******* 

E-!-farnesene 2015 A1 Rh12GR_98623_1205 67.068 *** 
 2015 A4 Rh12GR_24441_2313 4.685 **** 
 2015 B5 RhMCRND_29430_292 59.825 **** 
 2014 B6 Rh12GR_150_3109 39.257 ***** 
 2015 B6 Rh12GR_12629_1266 47.960 ***** 
 2014 B7 Rh88_33312_1396 50.506 ******* 
 2015 B7 Rh88_33312_1396 50.506 ******* 

E,E-"-farnesene 2015 A5 Rh12GR_8671_347 34.127 **** 
 2015 B5 RhMCRND_7474_560 61.167 *** 
 2014 B6 Rh12GR_79916_1503 42.591 **** 
 2015 B6 Rh12GR_12629_1266 47.96 ****** 
 2014 B7 Rh12GR_21856_430 45.164 ******* 
 2015 B7 Rh88_33312_1396 50.506 ******* 

Z,E-"-farnesene 2014 A7 RhK5_5399_322 0 *** 
 2014 B6 Rh12GR_14196_283 56.663 **** 
 2015 B6 Rh12GR_12629_1266 47.960 ****** 
 2014 B7 Rh12GR_21856_430 45.164 ******* 
 2015 B7 Rh88_33312_1396 50.506 ******* 

 

a Linkage group (LG): A female map; B, male map 
b Closest molecular marker (MM) associated 
c Position on the LG (cM)  

d K value:  Significance levels: *** 0.01, **** 0.005, ***** 0.001, ****** 0.0005, ******* 0.0001 
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Table S1.5 | Summary of QTLs for sesquiterpenoids detected with Interval Mapping in the OW progeny. 

The QTLs were detected in the male parent (Rw) and in the female parent (OW).  

 

a The threshold of the LOD score was defined by a permutation test (PT) 

b Linkage group (LG): A female map; B, male map 

c QTLs with a LOD higher than the threshold LOD were considered 

d position on the linkage group (cM)  

e closest molecular marker (MM) associated f % of explanation r2  

 

 

 

 

 

  

Table S5. Summary of QTLs for sesquiterpenoids detected with Interval Mapping in the OW progeny. 

The QTLs were detected in the male parent (Rw) and in the female parent (OW). 

Compound Year QTL characteristics   

  PTa LGb LOD 

scorec 

Positiond MMe r2f  

E,E-farnesol 2014 2.7 B7 22.36 51.173 Rh12GR_21458_519 49.9 

 2015 2.7 B7 27.87 50.506 Rh88_33312_1396 62.2 

E,E-farnesal 2014 2.6 A3 4.43 19.414 Rh12GR_51455_751 12.8 

 2014 2.7 B7 11.77 50.506 Rh88_33312_1396 61.9 

 2015 2.6 B7 27.68 50.506 Rh88_33312_1396 30.5 

E-!-farnesene 2014 
 

2.6 B6 3.02 48.627 RhMCRND_11020_192 8.9 

 2014 
 
 
 

2.6 B7 28.43 51.173 Rh12GR_21458_519 58.5 

 2015 
 
 
 

2.6 B7 28.55 50.506 Rh88_33312_1396 63.1 

E,E-"-farnesene 2015 
 

2.6 B6 2.82 47.96 Rh12GR_12629_1266 9.4 

 2014 
 

2.6 B7 16.08 45.164 Rh12GR_21856_430 39.2 

 2015 
 

2.6 B7 38.92 50.506 Rh88_33312_1396 74.3 

Z,E-"-farnesene 2015 2.8 B6 2.51 47.96 Rh12GR_12629_1266 8.4 

 2014 2.6 B7 8.17 45.164 Rh12GR_21856_430  22.3 

 2015 2.8 B7 36.94 50.506 Rh88_33312_1396 72.4 
a The threshold of the LOD score was defined by a permutation test (PT). 
b Linkage group (LG): A female map; B, male map 
c QTLs with a LOD higher than the threshold LOD were considered. 
d position on the linkage group (cM)  
e closest molecular marker (MM) associated 
f % of explanation r2 
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Table S1.6 | X-ray Diffraction data collection and refinement statistics. 

 

Statistics for the highest-resolution shell are shown in brackets.  

  

Table S6.  X-ray Diffraction data collection and refinement statistics 
!

 RhNUDX1 RhNUDX1/GPP 
PDB code 6YPB 6YPF 
Wavelength (Å) 0.9800 0.9700 
Resolution range (Å) 39.02-1.70 (1.76-1.70) 104.30-1.45 (1.50-1.45) 
Space group P 31 2 1 P 31 2 1 
Unit cell 
a, b, c 
", !, #���� 

 
48.674 48.674 103.132 

90 90 120 

 
49.2873 49.2873 104.286 

90 90 120 
Total reflections 179864 (18021) 117623 (10638) 
Unique reflections 16181 (1581) 26639 (2589) 
Multiplicity 11.1 (11.4) 4.4 (4.1) 
Completeness (%) 99.78 (99.56) 99.45 (98.69) 
Mean I/sigma(I) 6.59 (0.86) 10.66 (0.69) 
R-merge (%) 0.2217 (1.748) 0.05642 (0.7807) 
CC1/2 0.996 (0.476) 0.997 (0.512) 
CC* 0.999 (0.803) 0.999 (0.823) 
Reflections used in refinement 16172 (1574) 26592 (2565) 
Reflections used for R-free 1625 (159) 2007 (194) 
R-work 0.2083 (0.3798) 0.2030 (0.3701) 
R-free 0.2429 (0.4166) 0.2169 (0.4159) 
CC(work) 0.947 (0.740) 0.953 (0.723) 
CC(free) 0.936 (0.618) 0.943 (0.704) 
Number of non-hydrogen atoms 1135 1182 
  macromolecules 1057 1055 
  ligands - 19 
  solvent 78 108 
RMS (bonds) 0.006 0.007 
RMS (angles) 0.83 0.77 
Ramachandran favored (%) 97.58 98.37 
Ramachandran outliers (%) 0.00 0.00 
Rotamer outliers (%) 0.00 0.00 
Average B-factor (Å2) 30.16 35.84 
  macromolecules 29.69 34.49 
  ligands - 70.00 
  solvent 36.44 43.05 

 
Statistics for the highest-resolution shell are shown in brackets. 
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Table S1.8 | Accession numbers of the NUDX1 sequences.  

 

a, Reference of the genes are according to the GDR database (https://www.rosaceae.org/)  

b, A STOP codon is interrupting the ORF of this sequence, this sequence is not shown in Figure S1. 

c, Sequence shown in Figure 1.  

 

 

 

 

 

 

 

Table S8. Accession numbers of the NUDX1 sequences  
 

Sequence name GenBank accession number Genome IDa 

RcNUDX1-1a - RcHm_v2.0_Chr2g0142051/61b 
RcHm_v2.0_Chr2g0142071 
RcHm_v2.0_Chr2g0142081c 
RcHm_v2.0_Chr2g0142111 
RcHm_v2.0_Chr2g0142121 

RcNUDX1-1b - RcHm_v2.0_Chr4g0436181 

RcNUDX1-2a - RcHm_v2.0_Chr4g0436151 

RcNUDX1-2b - RcHm_v2.0_Chr6g0244161 

RcNUDX1-2c - RcHt_S2031.3 

RcNUDX1-3 - RcHm_v2.0_Chr4g0436191 

RwNUDX1-1 MT362556 - 

RwNUDX1-2a MT362557 - 

RwNUDX1-2b MT362558 - 

RwNUDX1-2c MT362559 - 

RwNUDX1-2c’ MT362560 - 

RwNUDX1-3 MT362561 - 
 
a, Reference of the genes are according to the GDR database (https://www.rosaceae.org/) 
b, A STOP codon is interrupting the ORF of this sequence, this sequence is not shown in 
Figure S1. 
c, Sequence shown in Figure 1. 
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Figure S1.1 | Alignment of amino acid sequences of four RcNUDX1-1a copies present in R. chinensis 

cv. ‘Old Blush’. RcHm_v2.0_Chr2g0142051/61 was not aligned, as A STOP codon is interrupting the 
ORF.  

 

 

 
 
Figure S1. Alignment of amino acid sequences of four RcNUDX1-1a copies present in R. 
chinensis cv. ‘Old Blush’. RcHm_v2.0_Chr2g0142051/61 was not aligned, as A STOP codon 
is interrupting the ORF. 
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Figure S1.2 | Distribution in the OW progeny (raw data and logarithm transformed data) of volatile 

compound amounts for E,E-farnesol (a and b), E,E-farnesal (c and d), E-β-farnesene (e and f), E,E-α-

farnesene (g and h) and Z,E-α-farnesene (i and j), Samples were collected in 2014 (a, c, e, g, i) and 

2015 (b, d, f, h).  

!
Figure S2. Distribution in the OW progeny (raw data and logarithm transformed data) of 
volatile compound amounts for E,E-farnesol (a and b), E,E-farnesal (c and d), E-β-farnesene 
(e and f), E,E-α-farnesene (g and h) and Z,E-α-farnesene (i and j), Samples were collected in 
2014 (a, c, e, g, i) and 2015 (b, d, f, h).   

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)
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Figure S1.3 | Localization of the QTLs for E,E-farnesol and other sesquiterpenoid compounds on the 

linkage group B7 of the male map.  

 

 

 

  

!
 
 
Figure S3. Localization of the QTLs for E,E-farnesol and other sesquiterpenoid compounds on 
the linkage group B7 of the male map.  
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Figure S1.4 | Micro-synteny analysis at the NUDX1-2c locus between a and b) the heterozygous 

sequence of R. chinensis cv. ‘Old Blush’ (OB) and c) the homozygous reference sequence obtained 

from OB. NUDX1-2c is located on scaffold 2031 from OB (in red). Five genes surrounding NUDX1-2c 

present highly similar sequences (e value below e-100 from BLASTP results) on scaffold 317 (from OB) 

and on chromosome 7 (from homozygous reference sequence). Highly similar sequences are linked 

with dotted lines and the genes are in the same color. Positions are indicated in kb for OB (a and b) and 

in Mb for the homozygous reference sequence (c). Reference of the genes are according to the GDR 
database (https://www.rosaceae.org/).  

 

  

 
Figure S4. Micro-synteny analysis at the NUDX1-2c locus between a and b) the heterozygous sequence of R. chinensis cv. ‘Old Blush’ (OB) and 
c) the homozygous reference sequence obtained from OB. NUDX1-2c is located on scaffold 2031 from OB (in red). Five genes surrounding 
NUDX1-2c present highly similar sequences (e value below e-100 from BLASTP results) on scaffold 317 (from OB) and on chromosome 7 (from 
homozygous reference sequence). Highly similar sequences are linked with dotted lines and the genes are in the same color. Positions are indicated 
in kb for OB (a and b) and in Mb for the homozygous reference sequence (c). Reference of the genes are according to the GDR database 
(https://www.rosaceae.org/).
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Figure S1.5 | Amino acid sequences alignment and structure indication of NUDX1 proteins for protein 

structure modelling using ESPript 3.0 (Robert and Gouet, 2014). RhNUDX1: NUDX1 protein of R. x 

hybrida cv. ‘Papa Meilland’; RcNUDX1-1a and RcNUDX1-1b: two NUDX1 proteins of R. chinensis cv. 

‘Old Blush’; RwNUDX1-2: NUDX1 protein from R. x wichurana; and AtNUDX1: NUDX1 protein from A. 

thaliana; MTH1_3ZR0: NUDX1 protein from Homo sapiens (Protein database bank ID 3ZR0); 

MutT_3A6T: NUDX1 protein from E. coli (Protein database bank ID 3A6T). Conserved amino acids are 

highlighted in red. NUDX box is highlighted in red and X-loop in yellow.  

 

 

  

 

!
Figure S5. Amino acid sequences alignment and structure indication of NUDX1 proteins for 
protein structure modelling using ESPript 3.0 (Robert and Gouet, 2014). RhNUDX1: NUDX1 
protein of R. x hybrida cv. ‘Papa Meilland’; RcNUDX1-1a and RcNUDX1-1b: two NUDX1 
proteins of R. chinensis cv. ‘Old Blush’; RwNUDX1-2: NUDX1 protein from R. x wichurana; 
and AtNUDX1: NUDX1 protein from A. thaliana; MTH1_3ZR0: NUDX1 protein from Homo 
sapiens (Protein database bank ID 3ZR0); MutT_3A6T: NUDX1 protein from E. coli (Protein 
database bank ID 3A6T). Conserved amino acids are highlighted in red. NUDX box is 
highlighted in red and X-loop in yellow. 
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Figure S1.6 | Analysis of the 20ns trajectories for RhNUDX1, RwNUDX1-2c, AtNUDX1, RcNUDX1-1a 

and RcNUDX1-1b. Each row corresponds to a specific kind of analysis for all the protein modelled. Lines 

are coloured according to substrate modelled (red, 8-oxo-dGTP, 8DG; green, GPP; blue, FPP). First 

row, protein C! RMSD (root mean square deviation); Second row, protein C! fluctuation over sequence 

(SD, standard deviation); Third row, ligand position RMSD; Fourth row, Mg2+-oxygen phosphate of 

ligand; Fifth row, ligand binding energy estimated by PRODIGY-LIG.  
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Figure S6. Analysis of the 20ns trajectories for RhNUDX1, RwNUDX1-2c, AtNUDX1, RcNUDX1-1a and RcNUDX1-1b. Each row corresponds to a specific 
kind of analysis for all the protein modelled. Lines are coloured according to substrate modelled (red, 8-oxo-dGTP, 8DG; green, GPP; blue, FPP). First row, 
protein C! RMSD (root mean square deviation); Second row, protein C! fluctuation over sequence (SD, standard deviation); Third row, ligand position 
RMSD; Fourth row, Mg2+-oxygen phosphate of ligand; Fifth row, ligand binding energy estimated by PRODIGY-LIG. 
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Figure S1.7 | Models of NUDX1- substrate interactions. Interaction of AtNUDX1 (blue) with 8- oxo-dGTP 

(a), GPP (d) and FPP (g). Interaction of RhNUDX1 (pink) with 8-oxo-dGTP (b), GPP (e) and FPP (h). 
Interaction of RwNUDX1-2c (green) with 8-oxo-dGTP (c), GPP (f) and FPP (i). Magnesium ions involved 

in ligand coordination are shown as green spheres. GPP and FPP are shown as sticks in yellow (geranyl 

and farnesyl moieties) and orange (diphosphate moiety). The ligands of known crystal structure are 

superimposed in cyan in a (8-oxo-dGTP from PDB code 6FL4), d (IPP from PDB code 6DBZ) and e 

(GPP from PDB code 5GP0). Hydrogen bond between S89 and 8-oxo-dGTP in AtNUDX1 is drawn as 

a dashed line.  
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Figure S7. Models of NUDX1- substrate interactions. Interaction of AtNUDX1 (blue) with 8-
oxo-dGTP (a), GPP (d) and FPP (g). Interaction of RhNUDX1 (pink) with 8-oxo-dGTP (b), 
GPP (e) and FPP (h). Interaction of RwNUDX1-2c (green) with 8-oxo-dGTP (c), GPP (f) and 
FPP (i). Magnesium ions involved in ligand coordination are shown as green spheres. GPP 
and FPP are shown as sticks in yellow (geranyl and farnesyl moieties) and orange 
(diphosphate moiety). The ligands of known crystal structure are superimposed in cyan in a 
(8-oxo-dGTP from PDB code 6FL4), d (IPP from PDB code 6DBZ) and e (GPP from PDB 
code 5GP0). Hydrogen bond between S89 and 8-oxo-dGTP in AtNUDX1 is drawn as a 
dashed line. 
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Supplementary materials for chapter 2  

 

Supplementary dataset table S8 is given as a digital form (.xlsx)  
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Figure S2.1 | Expression of RcNUDX1 genes in petals of full-opened flowers of Old Blush. The 

forward primer was designed to target a conserved sequence of the last exon of both genes including 

two different non-contiguous nucleotides, while reversed primers was targeted to a specific and less 

conserved sequence in the 3’-UTR sequence (primers FP1- RP1 to FP4-RP4, and FP6-RP6 for 
reference gene, table S7). RcNUDX1-2 represents the expression of RcNUDX1-2a, RcNUDX1-2b, and 

RcNUDX1-2c, because the primers bound the three sequences in qRT-PCR. Error bars correspond to 

SD.  

  

 
 
 

 
 
 
 
Fig. S1: Expression of RcNUDX1 genes in petals of full-opened flowers of Old Blush. 
The forward primer was designed to target a conserved sequence of the last exon of both 
genes including two different non-contiguous nucleotides, while reversed primers was 
targeted to a specific and less conserved sequence in the 3’-UTR sequence (primers FP1-
RP1 to FP4-RP4, and FP6-RP6 for reference gene, table S7). RcNUDX1-2 represents the 
expression of RcNUDX1-2a, RcNUDX1-2b, and RcNUDX1-2c, because the primers bound 
the three sequences in qRT-PCR. Error bars correspond to SD. 
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Figure S2.2 | Extended ML tree of genomic sequences of the Nudx1-1 clade. The tree was made 

with gDNA sequences (ATG to STOP including introns; FP7-RP7 primers were used for cloning; table 

S7, Clones_IntronExonStructure.fasta, Alignment_OldBlush_MLtree.fasta); Orange branches are 
gDNAs that matched with RcNUDX1-1a by blast analysis (i.e. their identity percentages with RcNUDX1-

1a and RcNUDX1-1b differ by more than 1% in favor of RcNUDX1-1a), red branches, with RcNUDX1-

1b (i.e. their identity percentages differ by more than 1% in favor of RcNUDX1- 1b), and dark branches, 

with both (i.e. their identity percentages differ by less than 1%). Scale bar represent substitution per site.  

  

 
 
 
 
Fig. S2: Extended ML tree of genomic sequences of the Nudx1-1 clade. 
The tree was made with gDNA sequences (ATG to STOP including introns; FP7-RP7 
primers were used for cloning; table S7, Clones_IntronExonStructure.fasta, 
Alignment_OldBlush_MLtree.fasta); Orange branches are gDNAs that matched with 
RcNUDX1-1a by blast analysis (i.e. their identity percentages with RcNUDX1-1a and 
RcNUDX1-1b differ by more than 1% in favor of RcNUDX1-1a), red branches, with 
RcNUDX1-1b (i.e. their identity percentages differ by more than 1% in favor of RcNUDX1-
1b), and dark branches, with both (i.e. their identity percentages differ by less than 1%). 
Scale bar represent substitution per site.  
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Figure S2.3 | Heatmap correlation between expression of NUDX1-1 homologs and concentrations 
of volatile compounds in 34 accessions of botanical roses. Blue to red colors and histogram heights 

are redundant information. Statistical significances are indicated by stars (P-values: ***<0.001; **0.001-

0.01; *0.01-0.05). Compound concentrations, correlation coefficients and P-values are given in tables 
S8 and S11. Primers FP8-RP8 were used for amplification and primers FP5-RP5 and FP6-RP6 for 

reference genes (table S7).   

 
 
Fig. S3: Heatmap correlation between expression of NUDX1-1 homologs and 
concentrations of volatile compounds in 34 accessions of botanical roses. 
Blue to red colors and histogram heights are redundant information. Statistical significances 
are indicated by stars (P-values: ***<0.001; **0.001-0.01; *0.01-0.05). Compound 
concentrations, correlation coefficients and P-values are given in tables S8 and S11. Primers 
FP8-RP8 were used for amplification and primers FP5-RP5 and FP6-RP6 for reference 
genes (table S7).  
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Figure S2.4 | Study of intergenic homologies in Old Blush chromosome 2. a. Dot-plot of similarity 

showing repeated blocks (in green), RcNUDX1-1a copies (in orange, Y axis on the left), and MITE 

positions in the intergenic regions (upside X axis). Downside X axis and Y axis on the right are the 

positions and the lengths of the DNA sequences on chromosome 2. b. Workflow showing the design of 

repeated MITEs in intergenic regions. Annotated TEs were search in the GDR (table S12), then 

characterized on a dot-plot of similarity, and finally interpreted as MITEs.   
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b. Workflow showing the design of repeated MITEs in intergenic regions. Annotated TEs 
were search in the GDR (table S12), then characterized on a dot-plot of similarity, and finally 
interpreted as MITEs.  
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Figure S2.5 | Estimation of the number of copies of NUDX1-1 homologs in 12 accessions of wild 
diploid rose, and Old Blush. The number of sequences of NUDX1-1 homologs was estimated by 

qPCR, verifying that the primer (FP8-RP8; table S7) amplified seven homologs in the reference Old 
Blush (five RcNUDX1-1a copies and two RcNUDX1-1b alleles; table S2, Figure S3.3). The chosen wild 

roses were all diploid to facilitate the calculation based on Ct values obtained in PCR for Old blush, and 

avoid caveats. Black bars indicate accessions that produce geraniol in petals, white bars, that do not 

produce geraniol (table S8). Error bars correspond to SD.  

 

  

 
 
 

 
 
 
 
 

 
 
 
 
Fig. S5: Estimation of the number of copies of NUDX1-1 homologs in 12 accessions of 
wild diploid rose, and Old Blush. 
The number of sequences of NUDX1-1 homologs was estimated by qPCR, verifying that the 
primer (FP8-RP8; table S7) amplified seven homologs in the reference Old Blush (five 
RcNUDX1-1a copies and two RcNUDX1-1b alleles; table S2, Fig. 3). The chosen wild roses 
were all diploid to facilitate the calculation based on Ct values obtained in PCR for Old blush, 
and avoid caveats. Black bars indicate accessions that produce geraniol in petals, white 
bars, that do not produce geraniol (table S8). Error bars correspond to SD. 
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Figure S2.6 | Multiple sequence aligments (MAFFT) of Copia R24588 hits in Old Blush 
homozygous genome. a. Aligment of Copia R24588 and box38 from RcNUDX1-1a block #1. Red 

circle, consensus sequence of Copia R24588; Yellow circle with thick black line, Copia R24588 

fragments (226 bp) located within NUDX1-1a block #1 on Old Blush chromosome 2; Yellow circles, 

box38 repeats A, B, C and D of each block on chromosome 2 (note that box38 repeat A includes 33 bp 

of the Copia R24588 fragment). b. Aligment of box38 from RcNUDX1-1a blocks and other hits obtained 

by blastn genomic targets for box38 against Old Blush genome). The repetition A to D of box38 is likely 

originated from a tandem duplication of the end of the Copia R24588 fragment (the last 5 bp of the 

box38 3’-end sequence is not annotated as Copia R24588 in the GDR). Consensus sequence was 

made with all the hits. Hits were obtained by blastn in Old Blush genome published in the GDR (Jung et 

al. 2019; Raymond et al. 2018). Alignments are given in Alignment_CopiaBox38_Chr2.fasta.   

 
 
 
Fig. S6: Multiple sequence aligments (MAFFT) of Copia R24588 hits in Old Blush 
homozygous genome. 
a. Aligment of Copia R24588 and box38 from RcNUDX1-1a block #1. Red circle, consensus 
sequence of Copia R24588; Yellow circle with thick black line, Copia R24588 fragments (226 
bp) located within NUDX1-1a block #1 on Old Blush chromosome 2; Yellow circles, box38 
repeats A, B, C and D of each block on chromosome 2 (note that box38 repeat A includes 33 
bp of the Copia R24588 fragment). 
b. Aligment of box38 from RcNUDX1-1a blocks and other hits obtained by blastn genomic 
targets for box38 against Old Blush genome). The repetition A to D of box38 is likely 
originated from a tandem duplication of the end of the Copia R24588 fragment (the last 5 bp 
of the box38 3’-end sequence is not annotated as Copia R24588 in the GDR). Consensus 
sequence was made with all the hits. 
Hits were obtained by blastn in Old Blush genome published in the GDR (Jung et al. 2019; 
Raymond et al. 2018). Alignments are given in Alignment_CopiaBox38_Chr2.fasta. 
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Figure S2.7 | Organization of the box38 repetitions upstream the coding region of NUDX1- 1a 
homologs. a. Repetition of box38 (large yellow arrows) at the 3’-end of Copia R24588 fragment. The 

last box38 is at 138 pb from the ATG codon of all NUDX1-1a homologs (orange boxes). The 5’- UTR of 

Old Blush of 55 pb is indicated. b. Organization of the same region upstream the coding region of 

NUDX1-1b homologs. The orange boxes correspond to the coding regions. Sequences were obtained 

after PCR amplication with a primer in Copia R24588 and a primer in the coding sequence (FP9-RP9 
and FP10-RP10 primers; table S7).  

 
 

 
 
 
Fig. S7. Organization of the box38 repetitions upstream the coding region of NUDX1-
1a homologs.  
a. Repetition of box38 (large yellow arrows) at the 3’-end of Copia R24588 fragment. The last 
box38 is at 138 pb from the ATG codon of all NUDX1-1a homologs (orange boxes). The 5’-
UTR of Old Blush of 55 pb is indicated.  
b. Organization of the same region upstream the coding region of NUDX1-1b homologs. The 
orange boxes correspond to the coding regions.  
Sequences were obtained after PCR amplication with a primer in Copia R24588 and a primer 
in the coding sequence (FP9-RP9 and FP10-RP10 primers; table S7). 
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Table S2.6 | In vitro activities of NUDX1-1 using GPP as substrate. 

 

  

Accession Enzyme name Km (M) Kcat (sec-1) Kcat/Km (sec-1.M-1)
Old Blush RcNUDX1-1a 2.97E-06 ± 5.63E-07 0.13 ± 0.01 4.39E+04 ± 5.10E+03
Moschata RmNUDX1-1a 2.27E-06 ± 2.60E-07 0.11 ± 0.01 4.87E+04 ± 2.84E+03
Old Blush RcNUDX1-1b 2.68E-06 ± 2.37E-07 0.32 ± 0.01 1.18E+05 ± 6.53E+03
Moschata RmNUDX1-1b 2.57E-06 ± 3.32E-07 0.29 ± 0.01 1.14E+05 ± 9.67E+03
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Table S2.7 | List of primers. 

 

 

  

Primer # Primer sequence Use Tm
FP1 5'-TGGAGAACGTGGTTCAGGA-3' qRT-PCR of RcNUDX1-1a 59°C
RP1 5'-CAGCCTGCTGTGCACTACATA-3' qRT-PCR of RcNUDX1-1a 59°C
FP2 5'-CCACTCTTCTGGCCTTTGGA-3' qRT-PCR of RcNUDX1-1b 59°C
RP2 5'-CCTGCTGGGCCTATGAATCA-3' qRT-PCR of RcNUDX1-1b 59°C
FP3 5'-GTCGTCCCACTCGTACCAAC-3' qRT-PCR of RcNUDX1-2 60°C
RP3 5'-GATCTTTATGCGAGCGGTTC-3' qRT-PCR of RcNUDX1-2 60°C
FP4 5'-GCTGTTGATGATCTGCCAAG-3' qRT-PCR of RcNUDX1-3 60°C
RP4 5'-GAGCTTTGAGGAGTGTGCAA-3' qRT-PCR of RcNUDX1-3 60°C
FP5 5'-GGGTAAGGAGAAGGTTCACATC-3’ qRT-PCR of EF1 (reference gene) 64°C
RP5 5'-CAGCCTCCTTCTCAAACCTCT-3’ qRT-PCR of EF1 (reference gene) 64°C
FP6 5'-ATTGAGCGTCCCACCTACAC-3’ qRT-PCR of TUB (reference gene) 58°C
RP6 5'-AGCATGAAATGGATCCTTGG-3’ qRT-PCR of TUB (reference gene) 58°C
FP7 5'-ATGGGAAACGAGACAGTAGTAGT-3’ gDNA and cDNA cloning of NUDX1 homologs 58°C
RP7 5'-TCATGTTGGAAAAGGGTTAAATCC-3’ gDNA and cDNA cloning of NUDX1  homologs 58°C
FP8 5'-AAGCCAAACCATCGCAGTAC-3’ qPCR and qRT-PCR of NUDX1  homologs 58°C
RP8 5'-GGAAGATTGTCCCACTCATACC-3’ qPCR and qRT-PCR of NUDX1  homologs 58°C
FP9 5'-TCTGAAGTGCGAACTGACAA-3' Cloning of upstream region NUDX1-1b  homologs 60°C
RP9 5'-AGCAAATACGACGCAATTTT-3' Cloning of upstream region NUDX1-1b homologs 60°C
FP10 5’-CTGGGAAGGGAAAAGGTGGA-3’ Cloning of upstream region NUDX1-1a  homologs 60°C
RP10 5’-TAATGCTGGAATTAGTTGGCCA-3’ Cloning of upstream region NUDX1-1a  homologs 60°C
FP11 5'-GGCTTAA[U]TATTTGTAATAATTCGTAACTGTGAC-3' Cloning of 138pb in NUDX1-1a  promoter 60°C
FP12 5'-GGCTTAA[U]TAGGGCTGAGATTGTTTTGC-3' Cloning of 316pb in NUDX1-1a  promoter 60°C
FP13 5'-GGCTTAA[U]GCCTCTTCCCGTCCTACTC-3' Cloning of 521pb in NUDX1-1a   promoter 60°C
FP14 5'-GGCTTAA[U]GGTGTTATGCAACATGAATGG-3' Cloning of 1100pb in NUDX1-1a   promoter 60°C
FP15 5'-GGCTTAA[U]GCCATTTGGGAAGAAAAATTA-3' Cloning of 1500 pb in NUDX1-1b   promoter 60°C
RP11 5'-GGTTTAA[U]CTGTCTCGTTTCCCTTGCTT-3' Reverse primer for FP11 to FP15 primers 60°C
FP16 5'-GGCTTAA[U]CGGTTTGCGTATTGGCTAGA-3' Cloning dCAMV 35S promoter 60°C
RP16 5'-GGTTTAA[U]GTAGAGAGAGACTGGTGATTTCA-3' Cloning dCAMV 35S promoter 60°C
FP17 5'-AAAGGTACCATGGGAAACGAGACAGTAGTAGT-3'    Cloning of RcNUDX1-1  into pET-30a(+) with Kpn I 58°C
RP17 5'-AAAGTCGACTCATGTTGGAAAAGGGTTAAATCC-3'    Cloning of RcNUDX1-1  into pET-30a(+) with Sal I 58°C
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Table S2.9 | Blast and alignment analysis of the gDNA and cDNA sequences cloned in wild and heritage 

roses a. 

 

Accession gDNA number Blast analysis cDNA alignment Remark
Arvensis_A gDNA1 RcNUDX1-1a None cDNA1 did not correspond to any gDNA

gDNA2 RcNUDX1-1a cDNA2
gDNA3 RcNUDX1-1b None
gDNA4 both None
gDNA 5 RcNUDX1-1a None

Arvensis_B gDNA1 RcNUDX1-1b no CDNA
gDNA2 RcNUDX1-1b

Autumn_Damask gDNA1 RcNUDX1-1a cDNA3 cDNA1 and cDNA2 did not correpond to any gDNA
gDNA2 Both none
gDNA3 RcNUDX1-1b none
gDNA4 RcNUDX1-1a none
gDNA5 RcNUDX1-1b none
gDNA6 RcNUDX1-1a none
gDNA7 RcNUDX1-1a cDNA3

Banksiae gDNA1 both no cDNA
gDNA2 both
gDNA3 both
gDNA4 both

Bracteata gDNA1 both no cDNA
Canina gDNA1 RcNUDX1-1a none

gDNA2 RcNUDX1-1a none
gDNA3 RcNUDX1-1a none
gDNA4 RcNUDX1-1a none
gDNA5 RcNUDX1-1b none
gDNA6 RcNUDX1-1b none
gDNA7 RcNUDX1-1a none
gDNA8 RcNUDX1-1b none
gDNA9 RcNUDX1-1b none
gDNA10 RcNUDX1-1a none
gDNA11 RcNUDX1-1b none
gDNA12 RcNUDX1-1a cDNA
gDNA13 RcNUDX1-1a none
gDNA14 RcNUDX1-1a cDNA
gDNA15 RcNUDX1-1a none

Carolina gDNA1 RcNUDX1-1a none cDNA1 and cDNA3 did not correspond to any gDNA
gDNA2 RcNUDX1-1a cDNA2
gDNA3 both none
gDNA4 both none
gDNA5 RcNUDX1-1a none
gDNA6 RcNUDX1-1a none

Centifolia gDNA1 RcNUDX1-1a none cDNA1 and cDNA3 did not correspond to any gDNA
gDNA2 RcNUDX1-1a none
gDNA3 RcNUDX1-1a cDNA2
gDNA4 RcNUDX1-1b none
gDNA5 RcNUDX1-1b none
gDNA6 RcNUDX1-1a none
gDNA7 RcNUDX1-1a none
gDNA8 RcNUDX1-1a none
gDNA9 RcNUDX1-1a cDNA2
gDNA10 RcNUDX1-1a none
gDNA11 RcNUDX1-1a none
gDNA12 RcNUDX1-1a none
gDNA13 RcNUDX1-1a none
gDNA14 RcNUDX1-1a none

Chinensis gDNA1 RcNUDX1-1b no cDNA
gDNA2 RcNUDX1-1b

Damas_Kazanlik gDNA1 RcNUDX1-1a none cDNA1, 2, 3 and 4 did not correspond to any gDNA
gDNA2 RcNUDX1-1b none
gDNA3 RcNUDX1-1a none
gDNA4 RcNUDX1-1a none
gDNA5 RcNUDX1-1b none
gDNA6 RcNUDX1-1b none
gDNA7 RcNUDX1-1a none
gDNA8 RcNUDX1-1b none
gDNA9 RcNUDX1-1a none

Ecae gDNA1 RcNUDX1-1b none cDNA1 and 2 did not correspond to any gDNA
gDNA2 RcNUDX1-1b none
gDNA3 RcNUDX1-1b none

Fedtschenkoana gDNA1 RcNUDX1-1b none
gDNA2 RcNUDX1-1b none
gDNA3 RcNUDX1-1a none
gDNA4 RcNUDX1-1a none
gDNA5 RcNUDX1-1b none
gDNA6 RcNUDX1-1a cDNA
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Foetida gDNA1 RcNUDX1-1b none cDNA1  did not correspond to any gDNA
gDNA2 RcNUDX1-1a cDNA2
gDNA3 both none

Gallica_A gDNA1 RcNUDX1-1a none cDNA1 and 3 did not correspond to any gDNA
gDNA2 both none
gDNA3 RcNUDX1-1a none
gDNA4 RcNUDX1-1a cDNA2
gDNA5 both none
gDNA6 RcNUDX1-1b none

Gallica_B gDNA1 both none
gDNA2 RcNUDX1-1a cDNA
gDNA3 RcNUDX1-1b none

Gigantea gDNA1 RcNUDX1-1b no cDNA
gDNA2 RcNUDX1-1b

Hugonis_A gDNA1 RcNUDX1-1b none cDNA was not searched for
gDNA2 RcNUDX1-1b none
gDNA3 RcNUDX1-1b none
gDNA4 RcNUDX1-1b none

Hugonis_B gDNA1 RcNUDX1-1b none cDNA was not searched for
gDNA2 RcNUDX1-1b none

Laevigata gDNA1 both none no cDNA
Majalis gDNA1 RcNUDX1-1a none cDNA1  did not correspond to any gDNA

gDNA2 RcNUDX1-1a none
gDNA3 RcNUDX1-1a cDNA2
gDNA4 RcNUDX1-1a none
gDNA5 RcNUDX1-1a none
gDNA6 both none
gDNA7 RcNUDX1-1a none

Mirifica gDNA1 RcNUDX1-1b no cDNA
gDNA2 RcNUDX1-1b
gDNA3 RcNUDX1-1b
gDNA4 RcNUDX1-1b
gDNA5 RcNUDX1-1b

Moschata gDNA1 RcNUDX1-1a none cDNA2 and 3 did not correspond to any gDNA
gDNA2 both none
gDNA3 RcNUDX1-1b none
gDNA4 RcNUDX1-1a none
gDNA5 RcNUDX1-1a none
gDNA6 both none
gDNA7 both none
gDNA8 RcNUDX1-1a none
gDNA9 RcNUDX1-1a none
gDNA10 RcNUDX1-1a cDNA1
gDNA11 RcNUDX1-1a none

Nutkana gDNA1 RcNUDX1-1a cDNA2 cDNA1  did not correspond to any gDNA
gDNA2 RcNUDX1-1b none
gDNA3 RcNUDX1-1a none
gDNA4 both none
gDNA5 both none
gDNA6 RcNUDX1-1a none

Officinalis gDNA1 RcNUDX1-1a cDNA
gDNA2 RcNUDX1-1b none
gDNA3 RcNUDX1-1a cDNA
gDNA4 RcNUDX1-1b none
gDNA5 both none

Old Blush gDNA1 RcNUDX1-1a cDNA
gDNA2 RcNUDX1-1b none

Pendulina gDNA1 RcNUDX1-1a none cDNA1 and 2  did not correspond to any gDNA
gDNA2 RcNUDX1-1a none
gDNA3 RcNUDX1-1a none

Persian Yellow gDNA1 RcNUDX1-1a none
gDNA2 both none
gDNA3 RcNUDX1-1a cDNA
gDNA4 RcNUDX1-1b none
gDNA5 RcNUDX1-1a none
gDNA6 RcNUDX1-1b none

Phoenicia gDNA1 RcNUDX1-1b none
gDNA2 RcNUDX1-1a none
gDNA3 RcNUDX1-1b none
gDNA4 RcNUDX1-1a cDNA
gDNA5 RcNUDX1-1a none
gDNA6 RcNUDX1-1b none
gDNA7 RcNUDX1-1a none

Roxburghii gDNA1 both no cDNA
gDNA2 RcNUDX1-1b
gDNA3 RcNUDX1-1b
gDNA4 RcNUDX1-1b
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Rubus gDNA1 both none cDNA1 , 2, 3 and 4 did not correspond to any gDNA
gDNA2 RcNUDX1-1b none cDNA1 has a STOP codon
gDNA3 RcNUDX1-1b none
gDNA4 both none
gDNA5 RcNUDX1-1b none
gDNA6 both none

Rugosa gDNA1 RcNUDX1-1b none cDNA1  did not correspond to any gDNA
gDNA2 RcNUDX1-1a none
gDNA3 RcNUDX1-1a none
gDNA4 RcNUDX1-1a none
gDNA5 RcNUDX1-1b none
gDNA6 RcNUDX1-1a none
gDNA7 RcNUDX1-1b none
gDNA8 RcNUDX1-1b none
gDNA9 both none
gDNA10 RcNUDX1-1a none
gDNA11 RcNUDX1-1b none
gDNA12 RcNUDX1-1a none

Sericea gDNA1 RcNUDX1-1b no cDNA
gDNA2 RcNUDX1-1b
gDNA3 RcNUDX1-1b
gDNA4 RcNUDX1-1b
gDNA5 RcNUDX1-1b
gDNA6 RcNUDX1-1b

Spinosissima gDNA1 both none
gDNA2 both none
gDNA3 RcNUDX1-1a none
gDNA4 both none
gDNA5 RcNUDX1-1b none
gDNA6 RcNUDX1-1b none
gDNA7 RcNUDX1-1b none
gDNA8 RcNUDX1-1a none
gDNA9 RcNUDX1-1a cDNA
gDNA10 RcNUDX1-1a none
gDNA11 RcNUDX1-1a none
gDNA12 RcNUDX1-1b none
gDNA13 RcNUDX1-1b none
gDNA14 RcNUDX1-1a none

Villosa gDNA1 both none
gDNA2 RcNUDX1-1a cDNA
gDNA3 RcNUDX1-1a none
gDNA4 both none
gDNA5 RcNUDX1-1a none

Woodsii gDNA1 RcNUDX1-1a cDNA2  did not correspond to any gDNA
gDNA2 RcNUDX1-1a
gDNA3 RcNUDX1-1a
gDNA4 RcNUDX1-1a
gDNA5 RcNUDX1-1a cDNA1

a gDNA and cDNA  in Clones_gDNAs_cDNAs.fasta and Clones_IntronExonStructure.fasta. Primers FP7-RP7 were used for cloning (Table S7).
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Table S2.11 | Statistical analysis between volatile compound concentrations and NUDX1-1 expressiona 

  

Compound name

Spearman's 
correlation 
coefficient P-values Compound name

Spearman's 
correlation 
coefficient P-values

(E)-2-hexenal -0.0888 0.6172 beta-eudesmol 0.3278 0.0583
(E)-2-hexenol 0.3469 0.0443 beta-myrcene 0.6504 3.1252
(E)-2-hexenylacetate -0.1457 0.4109 beta-pinene -0.0041 0.9815
(E)-2-nonenal 0.3060 0.0783 beta-sesquiphellandrene 0.2217 0.2074
(E)-alpha-bisabolene 0.2217 0.2074 borneol -0.2750 0.1154
(E)-beta-caryophyllene 0.1939 0.2717 caryophyllene oxide -0.1850 0.2947
(E)-beta-farnesene 0.5220 0.0015 decanal -0.2711 0.1208
(E)-beta-ionone -0.0086 0.9614 decane -0.1501 0.3966
(E)-beta-ocimene 0.5369 0.0010 dihydro-beta-ionol -0.2893 0.0969
(E)-cinnamicaldehyde 0.0798 0.6535 dihydro-beta-ionone -0.1508 0.3945
(E)-gamma-bisabolene 0.2217 0.2074 dodecanal -0.2013 0.2534
(E)-isoeugenol -0.1330 0.4530 dodecane -0.0438 0.8056
(E)-methylisoeugenol -0.2356 0.1797 elemicin -0.2356 0.1797
(E,E)-alpha-farnesene 0.5956 0.0002 elemol 0.3126 0.0717
(E,E)-farnesal 0.4189 0.0136 eugenol -0.2035 0.2483
(E,E)-farnesol 0.6876 7.0050 gamma-elemene 0.2750 0.1154
(E,E)-farnesylacetate 0.1302 0.4629 gamma-eudesmol 0.2449 0.1626
(E,Z)-nonadienal 0.3654 0.0335 gamma-terpinene 0.2958 0.0893
(Z)-3-hexenal -0.2457 0.1612 geranial 0.5637 0.0005
(Z)-3-hexenol 0.1001 0.5731 geraniol 0.7039 3.3973
(Z)-3-hexenylacetate -0.0797 0.6537 geranylacetate 0.6050 0.0001
(Z)-alpha-bisabolene 0.2217 0.2074 germacrene D -0.0512 0.7735
(Z)-beta-elemenone 0.2750 0.1154 germacrone 0.2750 0.1154
(Z)-beta-ocimene 0.3368 0.0513 heptadecane -0.0604 0.7341
(Z,E)-alpha-farnesene 0.5638 0.0005 heptadecene -0.0867 0.6258
(Z,E)-farnesal 0.3027 0.0817 heptanal 0.1950 0.2689
(Z,E)-farnesol 0.3087 0.0756 hexadecane -0.1820 0.3028
1-hexanol 0.2843 0.1031 hexanal 0.0321 0.8565
1-phenylethanol 0.0798 0.6535 hexylacetate -0.1599 0.3662
1,3,5-trimethoxybenzene -0.2948 0.0905 limonene 0.3669 0.0327
1,8-cineole 0.0798 0.6535 linalool -0.0577 0.7454
2-hexanol 0.1941 0.2713 methyleugenol -0.3282 0.0580
2-hexanone -0.0975 0.5829 methylsalicylate 0.0958 0.5895
2-pentadecanone -0.5822 0.0003 neral 0.6057 0.0001
2-phenylethanol 0.6984 4.3716 nerol 0.6750 1.1908
2-tridecanone -0.4081 0.0165 nerolidol 0.3269 0.0591
2,3-dihydrofarnesol 0.1700 0.3362 nerylacetate 0.4079 0.0166
2,4-decadienal -0.1330 0.4530 nonanal -0.2073 0.2392
3-hexanol 0.1419 0.4232 nonane -0.2233 0.2041
3-hexanone -0.0975 0.5829 nonanoic acid -0.2899 0.0962
3,5-dimethoxyphenol -0.2750 0.1154 octadecane -0.1918 0.2769
3,5-dimethoxytoluene -0.3832 0.0252 octadecene -0.1197 0.4998
4-vinylphenol -0.1153 0.5160 octanal -0.1652 0.3501
allo-ocimene 0.2420 0.1679 octane -0.1094 0.5376
alpha-bisabolol 0.2105 0.2320 pentadecane -0.2162 0.2192
alpha-cadinol -0.3082 0.0761 phenylacetaldehyde 0.1910 0.2792
alpha-humulene -0.0363 0.8383 phenylethylacetate 0.1113 0.5307
alpha-phellandrene 0.3737 0.0294 phenylethylbenzoate 0.3063 0.0780
alpha-pinene 0.2237 0.2033 sabinene 0.1153 0.5160
alpha-terpinene 0.2710 0.1210 tetradecanal 0.0824 0.6429
alpha-terpinolene 0.2705 0.1216 theaspirane -0.1508 0.3945
benzaldehyde 0.1614 0.3616 tridecane -0.1834 0.2989
benzylacetate -0.0831 0.6401 undecanal -0.2853 0.1018
benzylalcohol 0.4497 0.0076 undecane -0.1575 0.3736
benzylbenzoate 0.0518 0.7708 unknown 1 0.1895 0.2830
beta-citronellal 0.2786 0.1105 unknown 2 0.2217 0.2074
beta-citronellol 0.6225 8.4461 unknown 3 0.3157 0.0688
beta-citronellylacetate 0.0878 0.6212 unknown 4 0.0975 0.5829
beta-elemene 0.2983 0.0865
a Statistics correspond to expressions in Table S10, and volatile concentrations in Table S8
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Table S2.14 | List of marker genes used for microsynteny maps. 

 

 

Code number a Corresponding names in the GDR b

A RcHm_v2.0_Chr2g0142141, RC0G0033600, RcHt_S929.3, FvH4_6g32850, Prupe.3G053500, D17G1178400, MD09G1197500/7000
B RcHm_v2.0_Chr2g0142131, RC0G0033700, RcHt_S929.2, FvH4_6g32840, Prupe.3G053600, D17G1178500, MD09G1197600
C RcHm_v2.0_Chr2g0142041, RC0G0034500, RcHt_S929.1, FvH4_6g32830, Prupe.3G053700, D17G1178700, MD09G1197700
D RcHm_v2.0_Chr2g0142011, RC0G0034600, FvH4_6g32820, Prupe.3G053800, MD17G1178800, MD09G1197800
E RcHm_v2.0_Chr4g0436231, RC4G0402600, RcHt_S1291.19, RcHt_S866.15, FvH4_4g28360, Prupe.1G302500, MD13G1049400, MD16G1050400
F RcHm_v2.0_Chr4g0436201, RC4G0402500, RcHt_S1291.17, RcHt_S866.16, FvH4_4g28350, Prupe.1G302700, MD13G1049200, MD16G1050300
G RcHm_v2.0_Chr4g0436141, RC4G0401800, RcHt_S1291.10, RcHt_S866.22
H RcHm_v2.0_Chr4g0436131, RC4G0401700
J RcHm_v2.0_Chr6g0244121, RC6G0027100
K RcHm_v2.0_Chr6g0244171
L RcHm_v2.0_Chr6g0244181, RC6G0027600
M RcHm_v2.0_Chr7g0219431, RC7G0379800, RcHt_S2031.1, RcHt_S317.21
N RcHm_v2.0_Chr7g0219451, RC7G0379900, RcHt_S2031.2, RcHt_S317.20
O RcHm_v2.0_Chr7g0219471, RC7G0380000, RcHt_S2031.4, RcHt_S317.19
P RcHm_v2.0_Chr7g0219501, RC7G0380200, RcHt_S2031.6, RcHt_S317.16
Q RcHm_v2.0_Chr4g0436031, RC4G0401100, FvH4_4g28230, Prupe.1G303900, MD13G1048200/300
R RcHm_v2.0_Chr2g0142211, FvH4_6g32870, Prupe.3G53300, MD17G1178300, MD09G1196800
S RcHm_v2.0_Chr2g0142991, FvH4_6g32800, Prupe.3G054000, MD17G1179000, MD09G1197900

a Theses codes are used in Figs. 3,4,6.
b All sequences are numbered according to the GDR www.rosaceae.org ( Jung et al 2019).
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Figure S3.1 | Subcellular fractionation of rose petal crude extracts. Activities of marker ezymes and 

chlorophyll content measurement. Marker enzyme activities alcohol dehydrogenase (ADH), fumarase 

and catalase were assayed in cytosolic, plastitic and mitochondrial/peroxyzomal fractions compared to 

crude extract. Data are means ± SEM, n = 3. 1Specific activities in pKat mg-1 of proteins. 2Chlorophyll 

content in each fraction as relative fluorescence units. ND, not detectable. 

  

Fig. S1. Subcellular fractionation of rose petal crude extracts.
Activities of marker ezymes and chlorophyll content measurement. Marker enzyme activities alcohol dehydrogenase (ADH), fumarase
and catalase were assayed in cytosolic, plastitic and mitochondrial/peroxyzomal fractions compared to crude extract. Data are means
± SEM, n = 3. 1Specific activities in pKat mg-1 of proteins. 2Chlorophyll content in each fraction as relative fluorescence units. ND, not
detectable.

Control experiments Crude extract Cytosolic fraction Plastidic fraction
Mitochondrial and 

peroxizomal fraction
(Protein recovery as % to total) 100.0 (82.4 ± 1.4) (0.4 ± 0.1) (7.9 ± 0.5)

ADH activity (Cytosol)1 17.2 ± 7.3 39.1 ± 1.0 N D 1.8 ± 0.3
Fumarase activity (Mitochondria)1 2.6 ± 0.4 1.2 ± 0.4 3.3 ± 0.1 17.9 ± 0.4

Catalase activity (Peroxysome)1 93.8 ± 17.6 20.8 ± 9.8 64.2 ± 9.0 126.9 ± 5.2
Chlorophyll measurements (Plastids)2 0.2 ± 0.1 0.2 ± 0.1 3.4 ± 1.3 0.3 ± 0.1
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Figure S3.2 | The trans-short-chain IDSs member in OB and their characteristics. (A) The list of 

IDSs present in the genome of OB, their names, gene identity, sequences of their conserved first 

asparate motif (FARM), second aspartate motif (SARM) and CXXXC motifs and their predicted 

subcellular localization analyzed with TargetP 2.0. (B) ClustalW amino acid alignment of the OB IDS. 

Identical and similar amino acids are shown in black and grey, respectively. Conserved FARM, SARM 
and CXXXC motifs are highlighted.   
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RcGPP.SSU A I L AG D A L F P L G F Q H I V S N T P S D L V P E A R L L R V I T E I A R T V G S T GM A AGQ F L D L E - - - - - - G G P N A V E F V 210
RcGPPS/HOMO A V L AG D F L L S R A C V A L A S - - - - - - - - - L R N T E V V S L L S T V V E H - - L V T G E T MQM T T A A DQ R C S M E Y Y I E K 267

290 300 310 320 330 340 350
. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

RcG/FPPS1 V Q Y K T A Y Y S F Y L S V A C A L L M S G E E L D K H I D V K N L L V DMG I Y F Q V Q D D Y L D C F G D P E T I G K I G - T D I E D F K 255
RcFPPS2 V Q Y K T A Y Y S F Y L P V A C A L V M AG K N V E S H A D V K N I L I E MG T Y F Q V Q D D Y L D C F G D P E V I G K V G - T D I Q D F K 255
RcGGPPS.LSU1 H L H K T A A L - L E C A V V L G S I L G GG S D S E I E K L R T F A R Y I G L L F Q V V D D I L D V T K S S Q E L G K T AG K D L V A D K 313
RcGGPPS.LSU2 H V H K T A R L - L E A S V V CG A I MGGG N E I E V E KM R K Y A R C I G L L F Q V V D D I L D V T K S S E E L G K T AG K D L V S D K 310
RcGPP.SSU Q E K K F G E M - G E C S A V CGG L L AG A K D E E V D R L R R Y G R A V G V L Y Q V V D D I L E E K K N - - - - G K D E N E K K E K KG 275
RcGPPS/HOMO T Y Y K T A S L - I S N S C K A I A I L AG H T T E V AMM A Y E Y G K N L G L A F Q L I D D V L D F T G T S A S L G KG S I S D I R HG I 336

360 370 380 390 400 410 420
. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

RcG/FPPS1 C SWL V V K A L E L S N E E Q K K I L H E N Y G N P D - - - - - P A K V A K V K A L Y K E L D L QG V F A E Y E RQ S Y E K L I S S I E A 320
RcFPPS2 C SWM V V K A L E L S N E E Q K K L L H E N Y G K D D - - - - - Q E C I A K V K E L Y N V L D L QG V F T E Y E S S S Y D K L T K S I E A 320
RcGGPPS.LSU1 V T Y P K L MG I E K S K E - - - - - F A E K L N R D A - - - - - Q E Q L V G F D - - Q E K A A P L I A L A N Y I A Y RQ N - - - - - - - - 363
RcGGPPS.LSU2 A T Y P K L I G I E G A K N - - - - - F A A E L V AQ A - - - - - I E E L A Y F D - - G A K A A P L Y Y L A N Y I A K RQ T - - - - - - - - 360
RcGPP.SSU K S Y V K V Y G V E K A I E - - - - - V A E K L R S Q A - - - - - K Q E L DG F E K Y G DG V V P L H S F V D Y A V D R S F S L - - - - - - 329
RcGPPS/HOMO I T A P I L F AM E E F P Q L R - A V V E QG F D N P A N I E I A L D Y L G K S NG I Q R T R E L A R K H A N L A A E A I E S L P E S E D E 405

430 440
. . . . | . . . . | . . . . | . . . . | . .

RcG/FPPS1 H P S K A V Q E V L K S F L G K I Y K R K K 342
RcFPPS2 H P S K A V Q A V L K S F L A K I Y K RQ K 342
RcGGPPS.LSU1 - - - - - - - - - - - - - - - - - - - - - - 363
RcGGPPS.LSU2 - - - - - - - - - - - - - - - - - - - - - - 360
RcGPP.SSU - - - - - - - - - - - - - - - - - - - - - - 329
RcGPPS/HOMO D V R R S R R A L L D L T H L V I T R T K - 426

C X X X C

FARM

SARMC X X X C

Name Gene Id
Domains Localization

FARM SARM CXXXC motif(s) TargetP 2.0
RcG/FPPS1 RchiOBHm_Chr5g0000321 DDMMD DDYLD - Cytosol

RcFPPS2 RchiOBHm_Chr5g0075621 DDIMD DDYLD - Cytosol
RcGGPPS.LSU1 RchiOBHm_Chr2g0102671 DDLPCMD DDILD CVAAC Chloroplast
RcGGPPS.LSU2 RchiOBHm_Chr3g0493061 DDLPCMD DDILD CIASC Chloroplast

RcGPPS.SSU1 RchiOBHm_Chr6g0279181 DDLPCMD DDILE CVAAC/CSAVC Chloroplast
RcGPPS.HOMO RchiOBHm_Chr5g0014811 DDVLD DDVLD - Mitochondria

Fig. S2. The trans-short-chain IDSs member in RcOB and their characteristics.

(A) The list of IDSs present in the genome of RcOB, their names, gene identity, sequences of their conserved first asparate motif
(FARM), second aspartate motif (SARM) and CXXXC motifs and their predicted subcellular localization analyzed with TargetP 2.0. (B)
ClustalW amino acid alignment of the RcOB IDS. Identical and similar amino acids are shown in black and grey, respectively. Conserved
FARM, SARM and CXXXC motifs are highlighted.
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Figure S3.3 | RcG/FPPS1 is a homodimer and RcGPPS.SSU forms a heterodimer with 
RcGGPPS.LSU1. (A) Diagram on top shows the constructs used for purification of 6-HIS-Tagged 

RcG/FPPS1 alone and copurification of 6-HIS-Tagged Rc/GFPPS1 with untagged Rc/GFPPS1. SDS-

PAGE gel of the corresponding purifications is presented on the bottom. (B) Diagram on top shows the 
constructs used for purification of 6-HIS-Tagged RcGGPPS.LSU1 or 6-HIS-Tagged RcGPPS.SSU 

alone and copurification of 6-HIS-Tagged RcGGPPS.LSU1 with untagged RcGPPS.SSU. SDS-PAGE 

gel of the corresponding purifications is presented on the bottom. MW = molecular weight standards.  
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Fig. S3. RcG/FPPS1 is a homodimer and RcGPPS.SSU forms a heterodimer with RcGGPPS.LSU1.

(A) Diagram on top shows the constructs used for purification of 6-HIS-Tagged RcG/FPPS1 alone and copurification of 6-HIS-Tagged

Rc/GFPPS1 with untagged Rc/GFPPS1. SDS-PAGE gel of the corresponding purifications is presented on the bottom. (B) Diagram on top

shows the constructs used for purification of 6-HIS-Tagged RcGGPPS.LSU1 or 6-HIS-Tagged RcGPPS.SSU alone and copurification of 6-

HIS-Tagged RcGGPPS.LSU1 with untagged RcGPPS.SSU. SDS-PAGE gel of the corresponding purifications is presented on the bottom.
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Figure S3.4 | Enzymatic characterization of the five rose IDS candidates. LC-MS/MS 

chromatograms of the reaction products from in vitro incubation of the five OB IDS candidates and the 

heterodimeric GPPS (RcGGPPS.LSU1/RcGPPS.SSU) with (A) IPP and DMAPP, (B) IPP and GPP and 
(C) IPP and FPP. Chromatograms in blue represent the incubation of 5 µg of each protein for 20 minutes 

with 10 µM of substrates at 30 °C. Chromatograms in black represent the negative controls with 

incubation of the corresponding boiled proteins. 1 = DMAPP + IPP, 2 = GPP, 3 = FPP, 4 = GGPP. 

  

Fig S4. Enzymatic characterization of the five rose IDS candidates.

LC-MS/MS chromatograms of the reaction products from in vitro incubation of the five RcOB IDS candidates and the heterodimeric GPPS
(RcGGPPS.LSU1/RcGPPS.SSU) with (A) IPP and DMAPP, (B) IPP and GPP and (C) IPP and FPP. Chromatograms in blue represent the
incubation of 5 µg of each protein for 20 minutes with 10 µM of substrates at 30 °C. Chromatograms in black represent the negative
controls with incubation of the corresponding boiled proteins. 1 = DMAPP + IPP, 2 = GPP, 3 = FPP, 4 = GGPP.
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Figure S3.5 | Transcriptomic analysis of and metabolite profiling of OB genes during flower 
development and rhythmicity. (A) Pictures showing the six developmental stages (ST1 to 6) of OB 

flowers used for this analysis on left panel and development stages and times of collection for rhythmicity 

analysis on right panel. (B) Transcriptomic analysis of the genes involved in the MVA and MEP 

pathways, the six OB IDS candidates and RcNUDX1.1a. Heatmap on top panel shows the expression 

levels of the selected genes expressed as transcripts per million (TPM) from RNAseq analysis during 

development of OB flowers as described in (A) and at two time points during a day/night cycle (12:00 h 

and 24:00 h) of stage 5 flowers. Data are means from 4 biological replicates. Heatmap on bottom panel 

represents the levels of geraniol emission analyzed from the same developmental stages and time 
points by GC-MS. Data are means from 5 biological replicates. Spearman correlation coefficients (R-
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Fig. S5. Transcriptomic analysis of and metabolite profiling of RcOB genes during flower
development and rhythmicity.
(A) Pictures showing the six developmental stages (ST1 to 6) of RcOB flowers used for this analysis on left
panel and development stages and times of collection for rhythmicity analysis on right panel. (B)
Transcriptomic analysis of the genes involved in the MVA and MEP pathways, the six RcOB IDS
candidates and RcNUDX1.1a. Heatmap on top panel shows the expression levels of the selected genes
expressed as transcripts per million (TPM) from RNAseq analysis during development of RcOB flowers as
described in (A) and at two time points during a day/night cycle (12:00 h and 24:00 h) of stage 5 flowers.
Data are means from 4 biological replicates. Heatmap on bottom panel represents the levels of geraniol
emission analyzed from the same developmental stages and time points by GC-MS. Data are means from
5 biological replicates. Spearman correlation coefficients (R-values) comparing the transcript levels of each
gene to geraniol emission levels is shown on the right of top panel. R-values with significant p values (≤
0.05) are highlighted in green. (C) and (D) RT-qPCR relative quantification of IDSs and NUDX1.1a
transcript levels in RcOB flowers during six development stages (C) and a day/night cycle (D) as indicated
in (A). Data are means ± SEM, n = 4.
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values) comparing the transcript levels of each gene to geraniol emission levels is shown on the right of 

top panel. R-values with significant p values (≤ 0.05) are highlighted in green. (C) and (D) RT-qPCR 

relative quantification of IDSs and NUDX1.1a transcript levels in OB flowers during six development 

stages (C) and a day/night cycle (D) as indicated in (A). Data are means ± SEM, n = 4. 
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Figure S3.6 | FvFPPS1.2 having His residue at position 100 has low G/FPPS activity. (A) Rosaceae 

G/FPPS1s specific activities for GPP (left panel) and FPP (right panel) productions analyzed by LC-

MS/MS. 250 ng of indicated enzymes were incubated for 20 minutes with 10 µM DMAPP and IPP. Data 

are means of pKat ± SEM, n = 3. 
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Fig. S6. FvFPPS1.2 having His residue at position 100 has low G/FPPS activity.
(A) Rosaceae G/FPPS1s specific activities for GPP (left panel) and FPP (right panel) productions analyzed by LC-
MS/MS. 250 ng of indicated enzymes were incubated for 20 minutes with 10 µM DMAPP and IPP. Data are means
of pKat ± SEM, n = 3.
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Figure S3.7 | List of m/z ions used to calculate VOCs labelling. 

  

VOCs Unlabelled [2-13C]-mevalonolactone labelled [2H2]-DOX labelled
Geraniol 154 m/z (M + 0) 155 m/z (M + 1) + 156 m/z (M + 2) 156 m/z (M + 2) + 158 m/z (M + 4)

Germacrene D 204 m/z (M + 0) 205 m/z (M + 1) + 206 m/z (M + 2) + 207 m/z (M + 3)  206 m/z (M + 2) + 208 m/z (M + 4) + 210 m/z (M + 6)  
Dihydro-β-ionol 196 m/z (M + 0) 197 m/z (M + 1) + 198 m/z (M + 2) 197 m/z (M + 1) + 198 m/z (M + 2) + 199 m/z (M + 3)

Fig. S7. List of m/z ions used to calculate VOCs labelling.
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Figure S3.8 | List of primers used in this study. 

  

Oligoname Sequence(5'->3') Usage
RcNUDX1-1a_UCDS_F GGCTTAA[U]ATGGGAAACGAGACAGTAGT cloning into pCAMBIA2300-U
RcNUDX1-1a_UCDS_R GGTTTAA[U]TCATGTTGGAAAAGGGTTAAATC cloning into pCAMBIA2300-U
RcFPPS1_UCDS_F GGCTTAA[U]GCAATGGCGGATCTCAAGTC cloning into pCAMBIA2300-U
RcFPPS1_UCDS_R GGTTTAA[U]TCCAAGTTCCATGACCCACA cloning into pCAMBIA2300-U
RcFPPS2_UCDS_F GGCTTAA[U]ATGAGCAATTTAAGAGCCAAGT cloning into pCAMBIA2300-U
RcFPPS2_UCDS_R GGTTTAA[U]CTACTTCTGCCTCTTGTATATCT cloning into pCAMBIA2300-U
RcGGPPS_LSU_UCDS_F GGCTTAA[U]ATGAGCTGTGTGAATCTGAGC cloning into pCAMBIA2300-U
RcGGPPS_LSU_UCDS_R GGTTTAA[U]ACAGCAGAATCCCAACTCCT cloning into pCAMBIA2300-U
RcGGPPS_SSU_UCDS_F GGCTTAA[U]ATGGCGTTCTCAGTGGTTAC cloning into pCAMBIA2300-U
RcGGPPS_SSU_UCDS_R GGTTTAA[U]CAAGGTAATGCAAATGGTTCTGT cloning into pCAMBIA2300-U
RcHOMO_UCDS_F GGCTTAA[U]ATGATATATTCCCGGGGATTTTC cloning into pCAMBIA2300-U
RcHOMO_UCDS_R GGTTTAA[U]TCCAAGTTCCATGACCCACA cloning into pCAMBIA2300-U

RcNUDX1-1a_qPCR_F TGTTTTCATGAGGGCAGTGC qPCR primer
RcNUDX1-1a_qPCR_R CACGTTCTCCAAAGGCCAAA qPCR primer
RcFPPS1_qPCR_F TCATTGTCAATTCACCGCCG qPCR primer
RcFPPS1_qPCR_R GTCCAGTTCCTCACCTGACA qPCR primer
RcFPPS2_qPCR_F ATTTCAAACCGCCCATGGAC qPCR primer
RcFPFPS2_qPCR_R GCCGGTGAATTTCCAAGGAG qPCR primer
RcLSU1_qPCR_F CGGCTCTTCTTGAATGTGCA qPCR primer
RcLSU1_qPCR_F GCCCAATGTACCTCGCAAAA qPCR primer
RcSSU_qPCR_F TCACGGAGATTGCCAGAACT qPCR primer
RcSSU_qPCR_R ACACTCACCCATTTCCCCAA qPCR primer
RcHOMO_qPCR_F CTCTCTCGAGCTTGTGTTGC qPCR primer
RcHOMO_qPCR_R CAACGTTGATCAGCAGCAGT qPCR primer
RcPP2A_qPCR_F GATTCGTGATGCTGCTGCTA qPCR primer
RcPP2A_qPCR_R TTGCACGCAGAATTGTCATT qPCR primer
RcEF1a_qPCR_qPCR_F GGGTAAGGAGAAGGTTCACATC qPCR primer
RcEF1a_qPCR_qPCR_R CAGCCTCCTTCTCAAACCTCT qPCR primer

RcFPPS1_NcoI_F GGTACCATGGCGGATCTCAAGTCAAA Cloning FPPS1 into pRSF-DUET-1
RcFPPS1_NotI_R AAAGCGGCCGCCTACTTTTTCCTCTTGTAAATCTTACCC Cloning FPPS1 into pRSF-DUET-1

pET30a_UF GGCTTAA[U]AAATTCGAACGCCAGCACAT sub-cloning genscript pET30a+ vector into pCAMBIA2300-U
pET30a_UR GGTTTAA[U]TTGTTAGCAGCCGGATCTCA sub-cloning genscript pET30a+ vector into pCAMBIA2300-U

RcNUDX1-1a_ATG_F AAAAAGCAGGCTTGATGGGAAACGAGACAGTAGTAG cloning into pDON221
RcNUDX11a_NSTOP_R AAAAAGCAGGCTTGTGTTGGAAAAGGGTTAAATCCATC cloning into pDON221 without stop codon = FP fusion in C-ter
RcFPPS1_ATG_F AAAAAGCAGGCTTGATGGCGGATCTCAAGTCAAA cloning into pDON221
RcFPPS1_NSTOP_R AGAAAGCTGGGTTCTTTTTCCTCTTGTAAATCTTACCCAA cloning into pDON221 without stop codon = FP fusion in C-ter
RcFPPS2_ATG_F AAAAAGCAGGCTTGATGAGCAATTTAAGAGCCAAGT cloning into pDON221
RcFPPS2_NSTOP_R AGAAAGCTGGGTTCTTCTGCCTCTTGTATATCTTTGC cloning into pDON221 without stop codon = FP fusion in C-ter
RcLSU1_ATG_F AAAAAGCAGGCTTGATGAGCTGTGTGAATCTGAGC cloning into pDON221
RcLSU1_NSTOP_R AGAAAGCTGGGTTATTTTGCCTGTAAGCAATGTAAT cloning into pDON221 without stop codon = FP fusion in C-ter
RcSSU_ATG_F AAAAAGCAGGCTTGATGGCGTTCTCAGTGGTTAC cloning into pDON221
RcSSU_NSTOP_R AGAAAGCTGGGTTAAGACTAAAACTTCTATCAACTGC cloning into pDON221 without stop codon = FP fusion in C-ter
RcHOMO_ATG_F AAAAAGCAGGCTTGATGATATATTCCCGGGGATTTTC cloning into pDON221
RcHOMO_NSTOP_R AGAAAGCTGGGTTCTTCGTTCTTGTAATGACTAGATG cloning into pDON221 without stop codon = FP fusion in C-ter

AtFPPS1_Kpn1_F CGGGGTACCATGGAGACCGATCTCAAGTCA cloning AtFPS1 into pET30a+
AtFFPPS1_Sal1_R CGCGTCGACCTACTTCTGCCTCTTGTAGATCTT cloning AtFPS1 into pET30a+

Fig. S8. List of primers used in this study.
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Figure S3.9 | Accession numbers of genes used in this study. 
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Fig. S9. Accession numbers of genes used in this study.
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Titre : Origine et évolution de la biosynthèse du géraniol dans les pétales de rose 
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Résumé :  

La fleur de rose (Rosa sp) émet de nombreux composés organiques volatils (COV) appartenant à des 
familles chimiques d’origines variées telles que des phenylpropanoids, des dérivés d’acides gras ou des 
terpènes. Parmi les terpènes produits et émis, le géraniol est un composé majoritaire chez les roses 
modernes caractérisées avec un parfum fort. Contrairement aux autres plantes qui utilisent des terpènes 
synthases pour produire le géraniol, il a été découvert qu’une Nudix hydrolase (NUDX1) était impliquée 
dans la biosynthèse du géraniol en déphosphorylant le geranyl diphosphate (GPP) en geranyl 
monophosphate (Magnard et al. 2015). L’objectif de cette thèse était de mieux comprendre l’implication 
des NUDX1 dans la biosynthèse des terpènes et tenter de retracer une histoire évolutive concernant 
l’apparition de cette voie de biosynthèse cytosolique ayant abouti à la production de COV chez la rose. 
Pour ce faire, un inventaire des NUDX1 présent dans les génomes de référence publiés a été réalisé et 
a permis d’identifier et de caractériser une autre NUDX1 de rose impliquée dans la biosynthèse de 
(E,E)-farnesol. Grâce à un échantillonnage de roses sauvages il a également été possible de retracer 
une partie de l’histoire évolutive de NUDX1-1a, la copie de NUDX1 de rose exprimée dans les pétales 
responsable de la première étape de biosynthèse du géraniol. Enfin, avec la découverte de l’origine de 
NUDX1-1a dans le genre rosa, la question concernant l’origine du GPP cytosolique a été abordée afin 
d’identifier le gène responsable. Il a été également possible de retracer l’origine chez les Rosaceae de 
cette fonction afin de compléter la connaissance des différents évènements ayant permis l’apparition 
d’une voie de biosynthèse de terpènes non canonique chez la rose.  

 

Title: Origin and evolution of geraniol biosynthesis in rose petals  

Key words: rose, geraniol, biosynthesis, evolution, substrates 

Summary:  

Rose flower (Rosa sp) emits many volatile organic compounds (VOCs) belonging to chemical families 
of various origins such as phenylpropanoids, fatty acid derivatives or terpenes. Among the terpenes 
produced and emitted, geraniol is a major compound in modern roses characterized with a strong 
fragrance. Unlike other plants that use terpene synthases to produce geraniol, a Nudix hydrolase 
(NUDX1) was found to be involved in geraniol biosynthesis by dephosphorylating geranyl diphosphate 
(GPP) to geranyl monophosphate (Magnard et al. 2015). The objective of this thesis was to better 
understand the involvement of NUDX1 in the biosynthesis of terpenes and to attempt to trace an 
evolutionary history concerning the appearance of this cytosolic biosynthetic pathway that led to the 
production of VOCs in roses. To do this, an inventory of NUDX1 present in the published reference 
genomes was carried out and made it possible to identify and characterize another rose NUDX1 involved 
in the biosynthesis of (E,E)-farnesol. Thanks to a sampling of wild roses it was also possible to trace 
part of the evolutionary history of NUDX1-1a, the copy of rose NUDX1 expressed in the petals 
responsible for the first step of geraniol biosynthesis. Finally, with the discovery of the origin of NUDX1-
1a in the genus rosa, the question regarding the origin of cytosolic GPP was addressed in order to 
identify the responsible gene. It was also possible to trace the origin in the Rosaceae of this function in 
order to complete the knowledge of the different events that allowed the appearance of a non-canonical 
terpene biosynthetic pathway in the rose. 

 


